
http://www.cambridge.org/9780521863940




Risk Modelling in General Insurance

Knowledge of risk models and the assessment of risk is a fundamental part of the
training of actuaries and all who are involved in financial, pensions and insurance
mathematics. This book provides students and others with a firm foundation in a wide
range of statistical and probabilistic methods for the modelling of risk, including short
term risk modelling, model based pricing, risk sharing, ruin theory and credibility.

It covers much of the international syllabuses for professional actuarial
examinations in risk models, but goes into further depth, with numerous worked
examples and exercises (answers to many are included in an appendix). A key feature
is the inclusion of three detailed case studies that bring together a number of concepts
and applications from different parts of the book and illustrate how they are used in
practice. Computation plays an integral part: the authors use the statistical package
R to demonstrate how simple code and functions can be used profitably in an actuarial
context.

The authors’ engaging and pragmatic approach, balancing rigour and intuition, and
developed over many years of teaching the subject, makes this book ideal for
self-study or for students taking courses in risk modelling.

roger j . gray was a Senior Lecturer in the School of Mathematical and Computer
Sciences at Heriot-Watt University, Edinburgh, until his death in 2011.

susan m . p itts is a Senior Lecturer in the Statistical Laboratory at the University of
Cambridge.



INTERNATIONAL SERIES ON ACTUARIAL SCIENCE

Editorial Board
Christopher Daykin (Independent Consultant and Actuary)

Angus Macdonald (Heriot-Watt University)

The International Series on Actuarial Science, published by Cambridge University Press in con-
junction with the Institute and Faculty of Actuaries, contains textbooks for students taking courses
in or related to actuarial science, as well as more advanced works designed for continuing pro-
fessional development or for describing and synthesising research. The series is a vehicle for
publishing books that reflect changes and developments in the curriculum, that encourage the
introduction of courses on actuarial science in universities, and that show how actuarial science
can be used in all areas where there is long-term financial risk.

A complete list of books in the series can be found at www.cambridge.org/statistics. Recent titles
include the following:

Solutions Manual for Actuarial Mathematics for Life Contingent Risks
David C.M. Dickson, Mary R. Hardy & Howard R. Waters

Financial Enterprise Risk Management
Paul Sweeting

Regression Modeling with Actuarial and Financial Applications
Edward W. Frees

Actuarial Mathematics for Life Contingent Risks
David C.M. Dickson, Mary R. Hardy & Howard R. Waters

Nonlife Actuarial Models
Yiu-Kuen Tse

Generalized Linear Models for Insurance Data
Piet De Jong & Gillian Z. Heller

Market-Valuation Methods in Life and Pension Insurance
Thomas Møller & Mogens Steffensen

Insurance Risk and Ruin
David C.M. Dickson



RISK MODELLING IN GENERAL
INSURANCE

From Principles to Practice

ROGER J. GRAY
Heriot-Watt University, Edinburgh

SUSAN M. PITTS
University of Cambridge



cambr idge un ivers i ty press

Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521863940

c© Roger J. Gray and Susan M. Pitts 2012

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Gray, Roger J.

Risk modelling in general insurance : from principles to practice /
Roger J. Gray, Susan M. Pitts.

p. cm.
ISBN 978-0-521-86394-0 (hardback)

1. Risk (Insurance) – Mathematical models. I. Pitts, Susan M. II. Title.
HG8054.5.G735 2012

368′.01–dc23
2012010344

ISBN 978-0-521-86394-0 Hardback

Additional resources for this publication at www.cambridge.org/9780521863940

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.



To the memory of
Roger J. Gray

1946–2011





Contents

Preface page xiii

1 Introduction 1
1.1 The aim of this book 1
1.2 Notation and prerequisites 2

1.2.1 Probability 2
1.2.2 Statistics 9
1.2.3 Simulation 9
1.2.4 The statistical software package R 9

2 Models for claim numbers and claim sizes 11
2.1 Distributions for claim numbers 12

2.1.1 Poisson distribution 13
2.1.2 Negative binomial distribution 16
2.1.3 Geometric distribution 18
2.1.4 Binomial distribution 20
2.1.5 A summary note on R 22

2.2 Distributions for claim sizes 23
2.2.1 A further summary note on R 24
2.2.2 Normal (Gaussian) distribution 24
2.2.3 Exponential distribution 25
2.2.4 Gamma distribution 28
2.2.5 Fat-tailed distributions 31
2.2.6 Lognormal distribution 35
2.2.7 Pareto distribution 40
2.2.8 Weibull distribution 45
2.2.9 Burr distribution 48
2.2.10 Loggamma distribution 51

2.3 Mixture distributions 54

vii



viii Contents

2.4 Fitting models to claim-number and claim-size data 58
2.4.1 Fitting models to claim numbers 60
2.4.2 Fitting models to claim sizes 65

Exercises 83

3 Short term risk models 90
3.1 The mean and variance of a compound distribution 91
3.2 The distribution of a random sum 93

3.2.1 Convolution series formula for a compound
distribution 95

3.2.2 Moment generating function of a compound
distribution 98

3.3 Finite mixture distributions 100
3.4 Special compound distributions 103

3.4.1 Compound Poisson distributions 103
3.4.2 Compound mixed Poisson distributions 108
3.4.3 Compound negative binomial distributions 110
3.4.4 Compound binomial distributions 114

3.5 Numerical methods for compound distributions 115
3.5.1 Panjer recursion algorithm 116
3.5.2 The fast Fourier transform algorithm 119

3.6 Approximations for compound distributions 124
3.6.1 Approximations based on a few moments 125
3.6.2 Asymptotic approximations 126

3.7 Statistics for compound distributions 128
3.8 The individual risk model 134

3.8.1 The mean and variance for the individual risk
model 136

3.8.2 The distribution function and moment gen-
erating function for the individual risk
model 137

3.8.3 Approximations for the individual risk model 139
Exercises 140

4 Model based pricing – setting premiums 147
4.1 Premium calculation principles 148

4.1.1 The expected value principle (EVP) 148
4.1.2 The standard deviation principle (SDP) 149
4.1.3 The variance principle (VP) 149
4.1.4 The quantile principle (QP) 149
4.1.5 The zero utility principle (ZUP) 150



Contents ix

4.1.6 The exponential premium principle (EPP) 150
4.1.7 Some desirable properties of premium

calculation principles 152
4.1.8 Other premium calculation principles 154

4.2 Maximum and minimum premiums 155
4.3 Introduction to credibility theory 156
4.4 Bayesian estimation 157

4.4.1 The posterior distribution 158
4.4.2 The wider context of decision theory 159
4.4.3 The binomial/beta model 161
4.4.4 The Poisson/gamma model 163
4.4.5 The normal/normal model 165

4.5 Bayesian credibility theory 169
4.5.1 Bayesian credibility estimates under the

Poisson/gamma model 170
4.5.2 Bayesian credibility premiums under the

normal/normal model 172
4.6 Empirical Bayesian credibility theory: Model 1 – the

Bühlmann model 176
4.7 Empirical Bayesian credibility theory: Model 2 – the

Bühlmann–Straub model 185
Exercises 196

5 Risk sharing – reinsurance and deductibles 205
5.1 Excess of loss reinsurance 206

5.1.1 Reinsurance claims 210
5.1.2 Simulation results 212
5.1.3 Aggregate claims model with excess of loss

reinsurance 213
5.2 Proportional reinsurance 221
5.3 Deductibles (policy excesses) 223
5.4 Retention levels and reinsurance costs 226
5.5 Optimising the reinsurance contract 228
5.6 Optimising reinsurance contracts based on maximising

expected utility 228
5.6.1 Excess of loss reinsurance 229
5.6.2 Proportional reinsurance 231

5.7 Optimising reinsurance contracts based on minimising
the variance of aggregate claims 234
5.7.1 Minimising Var[S I] subject to fixed E[S I] 235



x Contents

5.7.2 Minimising Var[S R] subject to fixed Var[S I] 236
5.7.3 Comparing stop loss and equivalent

proportional reinsurance arrangements 237
5.7.4 Minimising Var[S I] + Var[S R] 238
5.7.5 Minimising the sum of variances when two

independent risks are shared between two
insurers 239

5.8 Optimising reinsurance contracts for a group of inde-
pendent risks based on minimising the variance of the
direct insurer’s net profit – finding the optimal relative
retentions 247
5.8.1 Optimal relative retentions in the case of

excess of loss reinsurance 247
5.8.2 Optimal relative retentions in the case of

proportional reinsurance 251
Exercises 253

6 Ruin theory for the classical risk model 267
6.1 The classical risk model 267

6.1.1 The relative safety loading 269
6.1.2 Ruin probabilities 270

6.2 Lundberg’s inequality and the adjustment coefficient 272
6.2.1 Properties of the adjustment coefficient 272
6.2.2 Proof of Lundberg’s inequality 276
6.2.3 When does the adjustment coefficient exist? 279

6.3 Equations for ψ(u) and ϕ(u): the ruin probability and
the survival probability 282

6.4 Compound geometric representations for ψ(u) and
ϕ(u): the ruin probability and the survival probability 291

6.5 Asymptotics for the probability of ruin 296
6.6 Numerical methods for ruin quantities 303

6.6.1 Numerical calculation of the adjustment
coefficient 303

6.6.2 Numerical calculation of the probability of ruin 305
6.7 Statistics for ruin quantities 308
Exercises 310

7 Case studies 316
7.1 Case study 1: comparing premium setting principles 316

7.1.1 Case 1 – in the presence of an assumed model 316



Contents xi

7.1.2 Case 2 – without model assumptions, using
bootstrap resampling 322

7.2 Case study 2: shared liabilities – who pays what? 332
7.2.1 Case 1 – exponential losses 333
7.2.2 Case 2 – Pareto losses 338
7.2.3 Case 3 – lognormal losses 344

7.3 Case study 3: reinsurance and ruin 348
7.3.1 Introduction 348
7.3.2 Proportional reinsurance 351
7.3.3 Proportional reinsurance with exponential

claim sizes 353
7.3.4 Excess of loss reinsurance in a layer 356
7.3.5 Excess of loss reinsurance in a layer with

exponential claim sizes 360

Appendix A Utility theory 368

Appendix B Answers to exercises 380

References 386
Index 389





Preface

My co-author Roger died in March 2011. His tragic death was a terrible shock,
and he is, and will be, greatly missed by me and, I am sure, by all who knew
him.

The original plan for writing this book was that Roger and I would each write
our own chapters separately. We then planned to go through the whole book
together, chapter by chapter, and make various changes as necessary when
we had each read what the other had written. Unfortunately, and very sadly,
Roger died before this process was completed. At the time of his death, the
draft versions of Chapters 2 to 7 and Appendix A were written, and we had
a very preliminary sketch of Chapter 1. However, only two chapters had been
discussed in detail by both of us together. Fred Gray (Roger’s brother), David
Tranah (Cambridge University Press) and I were unanimous that Roger would
have wanted the book to be completed, and so I began to put Roger’s and my
draft chapters together, to complete Chapter 1, and to edit the whole book in
order to unify our two approaches, to fill obvious gaps, and to avoid too much
repetition. My aim was that the result would be in line with what Roger would
have wanted, and I very much hope that the finished book stands as a fitting
tribute to his memory.

There are many people to thank for their help during the production of this
book. First and foremost, thanks are due to everyone at Cambridge University
Press. Special thanks go to David Tranah, who has been most helpful, with
great patience and kindness at every stage. Thanks also go to Irene Pizzie for
her careful and efficient copy-editing.

During our discussions Roger told me that he had a long list of people to
thank in connection with the book, but unfortunately the conversation moved
on without any names being mentioned. I know that David Wilkie, Iain Currie
and Edward Kinley would have been on Roger’s list, and I would like to take
this opportunity to thank them. I would also like to thank everyone else who

xiii



xiv Preface

was helpful to Roger in the writing of his parts of the book, but whose names
are unknown to me.

For my own part, I have been fortunate in having had excellent teachers,
co-workers and students over the years, and my understanding of the subject
matter of the book, and of effective ways to teach it, would not have been
possible without them. I would like to thank them all. In addition, my thanks
go to all those who were so supportive of my efforts to complete the book after
Roger’s death. Among these, I am especially grateful to David Tranah (whose
wise advice and generous practical help were invaluable), Alan and Brenda
Cole, Brigitte Snell and Rita McLoughlin. Finally, but most importantly of all,
I thank my husband, Andrew, for his unfailingly good-humoured support and
encouragement throughout the writing of this book.

Susan M. Pitts
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Introduction

1.1 The aim of this book

Knowledge of risk models and the assessment of risk will be of great impor-
tance to actuaries as they apply their skills and expertise today and in the future.
The title of this book “Risk Modelling in General Insurance: From Principles
to Practice” reflects our intention to present a wide range of statistical and
probabilistic topics relevant to actuarial methodology in general insurance. Our
aim is to achieve this in a focused and coherent manner, which will appeal to
actuarial students and others interested in the topics we cover.

We believe that the material is suitable for advanced undergraduates and stu-
dents taking master’s degree courses in actuarial science, and also those taking
mathematics and statistics courses with some insurance mathematics content.
In addition, students with a strong quantitative/mathematical background tak-
ing economics and business courses should also find much of interest in the
book. Prerequisites for readers to benefit fully from the book include first
undergraduate-level courses in calculus, probability and statistics. We do not
assume measure theory.

Our aim is that readers who master the content will extend their knowledge
effectively and will build a firm foundation in the statistical and actuarial con-
cepts and their applications covered. We hope that the approach and content
will engage readers and encourage them to develop and extend their critical
and comparative skills. In particular, our aim has been to provide opportuni-
ties for readers to improve their higher-order skills of analysis and synthesis of
ideas across topics.

A key feature of our approach is the inclusion of a large number of worked
examples and extensive sets of exercises, which we think readers will find
stimulating. In addition, we include three case studies, each of which brings

1



2 Introduction

together a number of concepts and applications from different parts of the
book.

While the book covers much of the international syllabuses for professional
actuarial examinations in risk models, it goes further and deeper in places.

The book includes appropriate references to the open source (free and eas-
ily downloadable) statistical software package R throughout, giving readers
opportunities to learn how simple code and functions can be used profitably in
an actuarial context.

1.2 Notation and prerequisites

The tools of probability theory are crucial for the study of the risk models in
this book, and, in §1.2.1, we give an overview of the required basic concepts
of probability. This overview also serves to introduce the notation that we will
use throughout the book. In §1.2.2 and §1.2.3, we indicate the assumed pre-
requisites in statistics and simulation, and finally in §1.2.4 we give information
about the statistical software package R.

1.2.1 Probability

We start with definitions and notation for basic quantities related to a random
variable X. Our first such quantity is the distribution function (or cumulative
distribution function) FX of X, given by

FX(x) = Pr(X ≤ x), x ∈ R.
The function FX is non-decreasing and right-continuous. It satisfies 0 ≤
FX(x) ≤ 1 for all x in R, lim

x→∞ FX(x) = 1 and lim
x→−∞ FX(x) = 0. Most of the

random variables in this book are non-negative, i.e. they take values in [0,∞).
If V is a non-negative random variable, then we assume without comment that
FV (v) = 0 for v < 0. For a non-negative random variable V , the tail of FV is
Pr(V > v) = 1 − FV (v) for v ≥ 0.

A continuous random variable Y has a probability density function fY , which
is a non-negative function fY , with

∫ ∞
−∞ fY (y)dy = 1, such that the distribution

function of Y is

FY (y) =
∫ y

−∞
fY (t)dt, y ∈ R.

This means that FY is a continuous function. The probability that Y is in a set
A is Pr(Y ∈ A) =

∫
A

fY (y)dy. (For those readers who are familiar with measure
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theory, note that we will tacitly assume the word “measurable” where neces-
sary. Those readers who are not familiar with measure theory may ignore this
remark, but may like to note that a rigorous treatment of probability theory
requires more careful definitions and statements than appear in introductory
courses and in this overview.)

Let N be a discrete random variable that takes values in N = {0, 1, 2, . . .}.
Then Pr(N = x), x ∈ R, is the probability mass function of N. We see that
Pr(N = x) = 0 for x � N, so that, for a discrete random variable concentrated
on N, the probability mass function is specified by Pr(N = k) for k ∈ N. We
then have

∑∞
k=0 Pr(N = k) = 1. The distribution function of N is

FN(x) =
∑
{k:k≤x}

Pr(N = k), x ∈ R,

and the graph of FN is a non-decreasing step function, with an upward jump of
size Pr(N = k) at k for all k ∈ N. The probability that N is in a set A is

Pr(N ∈ A) =
∑
{k:k∈A}

Pr(N = k).

We use the notation E[X] for the expected value (or expectation, or mean) of
a random variable X. The expectation of the continuous random variable Y is

E[Y] =
∫ ∞

−∞
y fY (y)dy,

while for the discrete random variable N taking values in N, the expectation is

E[N] =
∞∑

k=0

k Pr(N = k).

We note that there are various possibilities for the expectation: it may be finite,
it may take the value +∞ or −∞, or it may not be defined. The expectation of
a non-negative random variable is either a finite non-negative value or +∞.

For a real-valued function h on R and a continuous random variable Y , the
expectation of h(Y) is

E
[
h(Y)

]
=

∫ ∞

−∞
h(y) fY (y)dy,

whenever the integral is defined, and for a discrete random variable N taking
values in N, the expectation of h(N) is

E
[
h(N)

]
=

∞∑
k=0

h(k) Pr(N = k).
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For r ≥ 0, the rth moment of X is E[Xr], when it is defined. The rth moment
of a continuous random variable Y is∫ ∞

−∞
yr fY (y)dy,

and the rth moment of the discrete random variable N taking values in N is

∞∑
k=0

kr Pr(N = k).

Recall that if E[|X|r] is finite for some r > 0, then E[|X|s] is finite for all
0 ≤ s ≤ r. Throughout the book, when we write down a particular moment
such as E[N3], then, unless otherwise stated, we assume that this moment is
finite.

The rth central moment of a random variable X is E[(X−E[X])r]. The second
central moment of X is called the variance of X, and is denoted by Var[X]. The
variance of X is given by

Var[X] = E
[
(X − E[X])2] = E[X2] − (E[X]

)2
.

The standard deviation of X is SD[X] =
√

Var[X]. We define the skewness of X
to be the third central moment, E[(X − E[X])3], and the coefficient of skewness
to be given by

E[(X − E[X])3]/
(
(SD[X])3). (1.1)

We define the coefficient of kurtosis of X to be

E[(X − E[X])4]/
(
(SD[X])4), (1.2)

but note that various definitions are given in the literature; see the discussion
in §2.2.5.

The covariance of random variables X and W is given by

Cov[X,W] = E
[
(X − E[X])(W − E[W])

]
= E[XW] − E[X]E[W].

The correlation between random variables X and W (with Var[X] > 0 and
Var[W] > 0) is given by

Corr[X,W] =
Cov[X,W]√

Var[X] Var[W]
.

For random variables X1, . . . , Xn we have

Var[X1 + · · · + Xn] =
n∑

i=1

Var[Xi] + 2
∑
i< j

Cov[Xi, Xj].
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Random variables X1, . . . , Xn are independent if, for all x1, . . . , xn in R,

Pr(X1 ≤ x1, . . . , Xn ≤ xn) = Pr(X1 ≤ x1) . . .Pr(Xn ≤ xn).

For independent random variables X1, . . . , Xn and functions h1, . . . , hn, we have

E
[
h1(X1) . . . hn(Xn)

]
= E

[
h1(X1)

]
. . .E

[
hn(Xn)

]
.

This means that, for independent random variables X1, . . . , Xn, we have

Var[X1 + · · · + Xn] = Var[X1] + · · · + Var[Xn],

because, for i � j, the independence of Xi and X j implies that Cov[Xi, Xj] = 0.
Random variables X1, X2, . . . are independent if every finite subset of the Xi

is independent. We say X1, X2, . . . are independent and identically distributed
(iid) if they are independent and all have the same distribution.

Conditioning is one of the main tools used throughout this book, and it is
often the key to a neat approach to derivation of properties and features of
the risk models considered in later chapters. The conditional expectation of X
given W is denoted E[X | W]. The very useful conditional expectation formula
states that

E
[
E[X | W]

]
= E[X]. (1.3)

The conditional variance of X given W is defined to be

Var[X | W] = E
[(

X − E[X | W]
)2 | W]

= E
[
X2 | W] − (E[X | W]

)2
.

The conditional variance formula is

Var[X] = E
[
Var[X | W]

]
+ Var

[
E[X | W]

]
. (1.4)

This may be seen by considering the terms on the right-hand side of (1.4). We
have

E [Var[X | W]] = E
[
E[X2 | W] − (E[X | W])2

]
= E

[
X2] − E [(E[X | W])2

]
,

where we have used the conditional expectation formula, and

Var
[
E[X | W]

]
= E

[
(E[X | W])2

]
− (E[E[X | W]

])2
= E

[
(E[X | W])2

]
− (E[X])2 ,

on using the conditional expectation formula again. Adding these terms it is
easy to see that the right-hand side of (1.4) is equal to the left-hand side.
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We assume that moment generating functions, probability generating func-
tions and their properties are familiar to the reader. The moment generating
function of a random variable X is denoted

MX(r) = E[erX], (1.5)

and this may not be finite for all r in R. For every random variable X, we have
MX(0) = 1, and so the moment generating function is certainly finite at r = 0.
If MX(r) is finite for |r| < h for some h > 0, then, for any k = 1, 2, . . ., the
function MX(r) is k-times differentiable at r = 0, with

M(k)
X (0) = E

[
Xk], (1.6)

with E
[|X|k] finite. If random variables X and W have MX(r) = MW(r) for all

|r| < h for some h > 0, then X and W have the same distribution.
The moment generating function of a continuous random variable Y is

MY (r) =
∫ ∞

−∞
ery fY (y)dy.

The moment generating function of a discrete random variable N concentrated
on N is

MN(r) =
∞∑

k=0

erk Pr(N = k).

The probability generating function of N is

GN(z) = E
[
zN] = ∞∑

k=0

zk Pr(N = k), (1.7)

for those z in R for which the series converges absolutely. Since the series
converges for |z| ≤ 1 (and possibly for a larger set of z-values), we see that the
radius of convergence of the series is greater than or equal to 1. If E[N] < ∞
then

E[N] = G′N(1),

and if E
[
N2] < ∞ then

Var[N] = G′′N(1) +G′N(1) − (G′N(1)
)2
,

where G(k)
N (1) = lim

z↑1
G(k)

N (z) if the radius of convergence of GN is 1. From (1.5)

and (1.7) we have

GN(z) = MN
(

log(z)
)

and MN(r) = GN
(
er),
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where here, and throughout the book, when we write down relationships
between generating functions, we assume the phrase “for values of the
argument for which both sides are finite”.

Moment generating functions and probability generating functions are both
examples of transforms. Transforms are useful for calculations involving sums
of independent random variables. Let X1, . . . , Xn be independent random vari-
ables, and let MXi be the moment generating function of Xi, i = 1, . . . , n. Then
the moment generating function of T = X1 + · · · + Xn is the product of the
moment generating functions of the Xi:

MT (r) = MX1 (r) . . . MXn (r). (1.8)

Similarly, let N1, . . . ,Nn be independent discrete random variables taking val-
ues in N, and let GNi be the probability generating function of Ni, i = 1, . . . , n.
Then the probability generating function of M = N1 + · · · + Nn is

GM(z) = GN1 (z) . . .GNn (z). (1.9)

Sums of independent random variables play an important role in the models in
this book, so transform methods will be important for us.

The cumulant generating function KX(t) of a random variable X is given by

KX(t) = log
(
MX(t)

)
,

and this is discussed further in §2.2.5.
In the above discussion, we have given separate expectation formulae for

continuous random variables and for discrete random variables. We now intro-
duce a more general notation that covers both of these cases (and other cases
as well). For a general random variable X with distribution function FX, we
write

E[X] =
∫

xFX(dx). (1.10)

This is a Lebesgue–Stieltjes integral. We can think of the integral as shorthand
notation for

∫
x fX(x)dx if X is continuous with density fX, and as shorthand

for
∑∞

k=0 k Pr(X = k) if X is discrete and takes values in {0, 1, 2, . . .}. This
notation means we can give just one formula that covers both continuous and
discrete random variables. However, it also covers more general random vari-
ables. Later in this book we will meet and use random variables which are
neither purely continuous, nor purely discrete, but which have both a discrete
part and a continuous part. To make this precise, suppose that there exist real
numbers x1, . . . , xm and p1, . . . , pm, where 0 ≤ pk ≤ 1 for k = 1, . . . ,m, and
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where
∑m

k=1 pk ≤ 1, and suppose there also exists a non-negative function f ,
with

∫ ∞
−∞ f (t)dt ≤ 1, such that the distribution function of X is

FX(x) = Pr(X ≤ x) =
∑
{k:xk≤x}

pk +

∫ x

−∞
f (t)dt. (1.11)

Of course, we must have

m∑
k=1

pk +

∫ ∞

−∞
f (x)dx = 1.

In this case, the distribution of X consists of a discrete part, specified by the xk

and the pk (with Pr(X = xk) = pk), and also a continuous part, specified by f .
The distribution function FX has an upward jump of size pk at xk, k = 1, . . . ,m,
and is continuous and non-decreasing (and not necessarily flat) between these
jumps. We say that the distribution of X has an atom at xk (of size pk), for
k = 1, . . . ,m. For this X, and for a set A, we have

Pr(X ∈ A) =
∫

A
FX(dx) =

∑
{k:xk∈A}

pk +

∫
A

f (x)dx. (1.12)

As in (1.10), the expectation of X is E[X] =
∫

xFX(dx), and, with FX as in
(1.11), the integral is∫

xFX(dx) =
m∑

k=1

kpk +

∫ ∞

−∞
x f (x)dx. (1.13)

In general, for a function h, we have

E[h(X)] =
∫

h(x)FX(dx), (1.14)

and, when h(x) = erx, we find that the moment generating function of X is

MX(r) = E
[
erX] = ∫ erxFX(dx). (1.15)

With FX as in (1.11), the equations (1.14) and (1.15) become

E[h(X)] =
m∑

k=1

h(k)pk +

∫ ∞

−∞
h(x) f (x)dx

and

MX(r) =
∫

erxFX(dx) =
m∑

k=1

erk pk +

∫ ∞

−∞
erx f (x)dx.
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Note that a Lebesgue–Stieltjes integral over an interval (a, b], a ≤ b, is written∫
(a,b]

. . . FX(dx),

where . . . is to be replaced by the required function to be integrated. Finally,
we have, from (1.12),∫

(a,b]
FX(dx) = Pr

(
X ∈ (a, b]

)
= FX(b) − FX(a−),

where FX(a−) denotes lim
x→a−

FX(x), and x → a− means that x converges to a

from the left.
In this subsection, we have given a brief overview of probability. For more

discussion and details, see, for example, Grimmett and Stirzaker (2001), Gut
(2009) and the more advanced Gut (2005).

1.2.2 Statistics

We assume that the reader has met point estimation and properties of esti-
mators (for example, the idea of an unbiased estimator), confidence intervals
and hypothesis tests (for example, t tests, χ2 tests, Kolmogorov–Smirnov test).
We further assume a working knowledge of maximum likelihood estimators
and their large sample properties. Familiarity with plots, such as histograms
and quantile (or Q–Q) plots, is assumed, in addition to familiarity with the
empirical distribution function. Useful references are DeGroot and Schervish
(2002) and Casella and Berger (1990). The introduction to §2.4 contains an
overview of some ideas and methods in statistics. At various points in the book
we use more advanced statistical ideas – whenever we do this, references to
appropriate texts are given.

1.2.3 Simulation

We take as prerequisite some knowledge of simulation of observations from
a given distribution using a pseudo-random number generator and various
techniques, such as the inverse transform (or inversion or probability inte-
gral transform) method. For more details and background, see, for example,
chapter 11 in DeGroot and Schervish (2002) and chapter 6 in Morgan (2000).

1.2.4 The statistical software package R

The simulations, statistical analyses and numerical approximations in this book
are carried out using the statistical software package R. We assume familiarity
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with how R works and with basic commands in R. Useful references are Ven-
ables and Ripley (2002) and Verzani (2005). The package R is available for
(free) download; see http://cran.r-project.org/.

There is an add-on actuarial package actuar, and this can be installed using
the Installpackage(s) submenu of the Packages menu. Choose a conve-
nient CRAN mirror, and then select the package actuar for installation. It
only has to be installed once, but it must be attached to the R workspace at the
beginning of each R session, using the R command library(actuar).

http://cran.r-project.org/


2

Models for claim numbers and claim sizes

In a portfolio of general insurance risks, such as a portfolio of motor insurance
policies, two obvious quantities of interest are the number of claims arriving in
a fixed time period and the sizes of those claims. We model these quantities as
random variables with appropriate probability distributions, and this modelling
process is the subject of this chapter.

There are many probability distributions available as potential models for
both claim numbers and claim sizes in general insurance. Suitable models for
claim numbers are “counting distributions”; that is, distributions of discrete
random variables that can assume some or all of the values in N = {0, 1, 2, . . .}.
The most suitable and widely used models for claim sizes are distributions
of continuous random variables that assume positive values only and have
“fat tails” (or “heavy tails”), that is distributions which allow for occasional
occurrences of very large values.

In this chapter we consider the principal models used in practice. We review
the properties of the distributions one by one, illustrate how they are fitted to
data on claim numbers and sizes, and consider how we assess the success of
the models in reflecting the variation and distribution of the data.

In §2.1 and §2.2 we give summaries of the relevant properties of the various
distributions – our aim is that these two sections will provide a useful refer-
ence for the reader, and will also fix notation for these distributions. In §2.1
we consider three families of counting random variables used as models for
claim numbers, namely the one-parameter Poisson family, the two-parameter
negative binomial family (which includes the one-parameter geometric sub-
family), and the two-parameter binomial family. In this section, we also include
a discussion of the Poisson process.

In §2.2 we consider eight families of continuous random variables used
as models for claim sizes. The first three, while not providing good mod-
els for claim sizes in most practical situations, are useful for reference and
comparison purposes, and are included for completeness – these families are

11



12 Models for claim numbers and claim sizes

the two-parameter normal (Gaussian) family, the one-parameter exponential
family and the two-parameter gamma family (which includes the exponential
as a sub-family). The five families of important distributions used as mod-
els in practice and considered here are four two-parameter families, namely
the lognormal, Pareto, Weibull (of which the exponential is a sub-family) and
loggamma families, and the three-parameter Burr family (of which the Pareto
is a sub-family). All these distributions, except the normal distribution, are for
positive random variables. A normally distributed random variable can take
negative values as well as positive values, and so, strictly speaking, it is not
an appropriate model for a positive claim size. However, it is included here
because the normal distribution may be used as an approximation to many dis-
tributions and also because it arises as a limiting distribution, for example in
the Central Limit Theorem.

In §2.3 we consider mixture distributions, which arise in a Bayesian context
when we extend claim-size distribution models to allow for heterogeneity of
risks within a portfolio. We do this by recognising that there is uncertainty in
the value of a parameter in a claim-size distribution, and then adopting a prob-
ability distribution, called a “prior” or “mixing” distribution, to model that
uncertainty. We then derive the overall, unconditional (marginal) distribution
of the claim-size (or claim-number) random variable, here called a “mixture”
distribution. The approach provides further motivation for the use of particu-
lar families of claim-size distributions and is also itself a source of fat-tailed
distributions.

In §2.4 we consider the fitting of models to data on claim numbers and claim
sizes. We will fit all the distributions introduced in §2.1 to data on claim num-
bers and all the distributions introduced in §2.2 to data on claim sizes, using the
method of maximum likelihood and several other approaches to the estimation
of model parameters. We will assess the goodness of fit of each of the models
using various informative visual displays and appropriate test statistics.

2.1 Distributions for claim numbers

The most widely used model for the process which gives rise to claims in
a portfolio of business in general insurance is a Poisson process, for which
(informally, and in the simplest case) claims arise “at random”, one after
another through time and at a constant intensity (the rate per unit time). In
this case the number of claims which occur in a given time interval has a
Poisson distribution with appropriate mean. A more formal description of
the Poisson process and its properties is given in §2.1.1 and in §2.2.3. Other
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distributions used for the number of claims in a given time interval include the
two-parameter family of negative binomial distributions, which allows for a
heavier tail than the Poisson and may provide a better fit to claim-number data
in certain cases (for example in motor insurance). In certain cases, when it is
appropriate to declare that the number of claims cannot exceed some known
number, it can be appropriate to adopt a binomial distribution for the number
of claims. This case can arise, for example, when we are dealing with a portfo-
lio consisting of a known number of similar policies on each of which at most
a single claim can arise.

Let {Nt}t≥0 denote the claim-number process, where Nt is the number of
claims which arise up to and including time t. We sometimes write N(t) instead
of Nt. Unless otherwise stated, we will consider a time period of length 1 and
write N for N1.

2.1.1 Poisson distribution

The Poisson family of distributions has a single parameter, usually denoted
λ (> 0), which represents the mean of the distribution: that is, the expected
number of claims per unit time in a Poisson process.

Notation N ∼ Poi(λ) or N ∼ Poisson(λ).

The probability mass function is given by

Pr(N = n) = e−λ
λn

n!
, n = 0, 1, 2 . . . .

The probability generating function GN(z) = E[zN] is given by

GN(z) = exp{λ(z − 1)}. (2.1)

The moment generating function MN(t) = E[etN] is given by

MN(t) = exp{λ(et − 1)}, (2.2)

from which we find E[N] = λ (confirming λ as the mean) and E[N2] = λ + λ2,
giving Var[N] = λ. Note that the mean and variance of a Poisson distribution
are equal.

The third central moment of the distribution is E[(N − E[N])3] = λ (this
follows easily from the results of Exercise 2.5). It follows that the coefficient of
skewness (see (1.1)) for the distribution is 1/

√
λ. As λ increases, the coefficient

of skewness decreases and the distribution becomes more symmetrical.

Simulation We can simulate a random sample of size n from N ∼ Poi(λ)
in R using the command sample = rpois(n,lambda), where the



14 Models for claim numbers and claim sizes
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Figure 2.1. Histograms of samples simulated from Poisson distributions with
parameters λ = 4 (mean = 4) (a) and λ = 40 (mean = 40) (b).

R objects n and lambda contain the values of n and λ, respectively.
Here, the R object we create is a vector of observations of length n
called “sample” (see §2.1.5).

The histograms in Figure 2.1 display 1000 claim numbers simulated from
Poi(4) and Poi(40) distributions in R.

The commands used were of the form

pois_mean4=rpois(1000,4)

hist(pois_mean4)

summary(pois_mean4)

var(pois_mean4)

The sample means and variances, and the minimum and maximum values
that were observed, were as follows:

sample from Poi(4): mean 3.986, variance 3.950, min 0, max 12;
sample from Poi(40): mean 40.117, variance 40.716, min 23, max 61.

The reader will note that the Poi(40) is much more symmetrical than the
Poi(4).
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The sum of independent Poisson random variables is a Poisson random vari-
able (with mean equal to the sum of the component means). This is seen
as follows. Let N1, . . . ,Nk be independent Poisson random variables, with
Ni ∼ Poi(λi), i = 1, . . . , k, and let N = N1 + · · · + Nk. By (1.9), the probability
generating function of N is

GN(z) =
k∏

i=1

exp
(
λi(z − 1)

)
= exp

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎝ k∑

i=1

λi

⎞⎟⎟⎟⎟⎟⎟⎠ (z − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ ,
so that N ∼ Poi

(∑k
i=1 λi

)
.

Example 2.1 Claims arise on two portfolios, A and B, independently of one
another. The number of claims which arise on portfolio A in a week has a
Poi(λ1) distribution; for portfolio B the distribution is Poi(λ2).

Suppose λ1 = 5 and λ2 = 3. Let T denote the combined number of claims
on both portfolios in a week: it follows that T ∼ Poi(λ1 + λ2) ∼ Poi(8). Then
the probability that a total of ten or more claims occur in a week is

Pr(T ≥ 10) = 1 − Pr(T ≤ 9) = 0.2834,

using the R command 1 - ppois(9,8).

The Poisson process
The Poisson distribution is a key building block for the Poisson process, which
we now describe. Consider a process where events occur at points in time; for
example, consider the process of claim arrivals at an insurance company. Let
N(t) be the number of events in the time interval (0, t], and define N(0) = 0.
The collection of random variables {N(t) : t ≥ 0} is a stochastic process that
models the number of events over time. For t ≥ 0 and s > 0, the random
variable N(t + s) − N(t) is the increment of the process {N(t) : t ≥ 0} over
the interval (t, t + s], and this gives the number of events in (t, t + s]. A process
{N(t) : t ≥ 0} that satisfies the three properties below is called a Poisson process
with rate (or intensity) λ (> 0).

(a) Independent increments For k = 2, 3, . . ., the numbers of events in k
disjoint intervals (given by the increments of {N(t) : t ≥ 0} over these
intervals) are independent.

(b) Stationary increments For all h > 0 and for all t ≥ 0, the distribution
of the increment N(t + h) − N(t) depends only on h (and not on t), i.e.
the distribution of the number of events in an interval depends only on the
length of that interval and not on its left end point.

(c) Poisson distribution For all t ≥ 0, the random variable N(t) has a Poisson
distribution with mean λt.
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We can use the above three properties to deduce, for example, that, for s > 0
and t ≥ 0, the number of events N(t + s) − N(t) in (t, t + s] and the number of
events N(t) in (0, t] are independent Poisson random variables with means λs
and λt, respectively.

2.1.2 Negative binomial distribution

The negative binomial family of distributions has two parameters, usually
denoted k (> 0) and p (0 < p < 1).

Notation N ∼ nb(k, p).

The probability mass function is given by

Pr(N = n) =
Γ(k + n)
Γ(n + 1)Γ(k)

qn pk, n = 0, 1, 2 . . . ,

where q = 1 − p, and where Γ is the gamma function, defined by Γ(α) =∫ ∞
0

xα−1e−x dx for α > 0. We recall that Γ(α + 1) = αΓ(α), and that, for n =
1, 2, . . ., we have Γ(n) = (n − 1)!.

In the case that k is an integer, the distribution models the number of failures
before the kth “success” occurs in a series of independent Bernoulli trials (that
is, trials which can be regarded as having only two possible outcomes, which
we call “success” and “failure”), each with Pr(success) = p. The probability
mass function can now be expressed as follows:

Pr(N = n) =

(
k + n − 1

n

)
qn pk =

(k + n − 1)!
n!(k − 1)!

qn pk, n = 0, 1, 2 . . . .

The probability generating function GN(z) exists for |z| < 1/q, and is given by

GN(z) =

(
p

1 − qz

)k

. (2.3)

The moment generating function MN(t) is finite for t < − log q and is given by

MN(t) =

(
p

1 − qet

)k

, (2.4)

from which we find E[N] = kq/p and Var[N] = kq/p2. Note that, since p < 1,
the variance is greater than the mean – a feature not available for the Pois-
son family. This observation indicates that, for Poisson and negative binomial
distributions with the same mean, the latter allows for greater spread – and in
particular a heavier tail – than the Poisson. This feature helps to explain why
the negative binomial distribution sometimes fits claim-number data better than
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the Poisson does – this can occur when the observed frequency distribution of
the number of claims tails off to include some rather high values (which a fitted
Poisson model cannot capture); see Example 2.2.

The third central moment is given by [kq(2 − p)]/p3 (readers wishing to
verify this result are recommended to use the results of Exercise 2.5). It follows
that the coefficient of skewness (see (1.1)) for the distribution is always positive
and is given by (2 − p)/

√
kq. For fixed p, the coefficient of skewness decreases

as k increases, and the distribution becomes more symmetrical. For fixed k, the
coefficient of skewness increases as p increases.

Simulation We can simulate a random sample of size n from N ∼ nb(k, p) in
R using the command sample = rnbinom(n,k,p), where the R
objects n, k and p contain the values of n, k and p, respectively.

The histograms in Figure 2.2 display 1000 claim numbers simulated from
nb(2, 1/3) and nb(20, 1/3) distributions, which have means 4 and 40, and
variances 12 and 120, respectively.
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Figure 2.2. Histograms of samples simulated from negative binomial distribu-
tions with parameters k = 2, p = 1/3 (mean = 4) (a) and k = 20, p = 1/3 (mean
= 40) (b).
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The commands used for the simulations were

negbin_2_0.333=rnbinom(1000,2,1/3)

negbin_20_0.333=rnbinom(1000,20,1/3)

The sample means and variances, and the minimum and maximum values
that were observed, were as follows:

sample from nb(2, 1/3): mean 4.187, variance 13.003, min 0, max 25;
sample from nb(20, 1/3): mean 40.5, variance 128.256, min 9, max 78.

The reader will note that the nb(20, 1/3) is much more symmetrical than the
nb(2, 1/3). For a related distribution, sometimes also called a negative binomial
distribution in the literature, see §3.4.3

2.1.3 Geometric distribution

The geometric family is a sub-family of the negative binomial family, namely
the special case given by setting k = 1; the geometric family thus has a single
parameter, denoted p (where 0 < p < 1). The distribution models the num-
ber of failures that occur before the first success in a series of independent
Bernoulli trials, each with success probability p.

Notation N ∼ geo(p).

The probability mass function is given by

Pr(N = n) = qn p, n = 0, 1, 2 . . . ,

where q = 1 − p.
The probability generating function GN(z) exists for |z| < 1/q and is given

by

GN(z) =
p

1 − qz
. (2.5)

The moment generating function MN(t) is finite for t < − log q and is given by

MN(t) =
p

1 − qet
, (2.6)

from which we find E[N] = q/p and Var[N] = q/p2. The third central moment
is [q(2 − p)]/p3 and the coefficient of skewness (see (1.1)) is (2 − p)/

√
q,

which increases as p increases.

Simulation We can simulate a random sample of size n from N ∼ geo(p) in
R using the command sample = rgeom(n,p), where the R objects
n and p contain the values of n and p, respectively.



2.1 Distributions for claim numbers 19

geom_mean4 (a) (b)

Fr
eq

ue
nc

y

0 5 10 15 20 25 30

0
50

10
0

15
0

20
0

25
0

30
0

geom_mean40
Fr

eq
ue

nc
y

0 100 200 300 400

0
10

0
20

0
30

0
40

035
0

Figure 2.3. Histograms of samples simulated from geometric distributions with
parameters p = 0.2 (mean = 4) (a) and p = 1/41 (mean = 40) (b).

The histograms in Figure 2.3 display 1000 claim numbers simulated from
geo(0.2) and geo(1/41) distributions, which have means 4 and 40, and
variances 20 and 1640, respectively.

The commands used for the simulation were

geom_mean4=rgeom(1000,0.2)

geom_mean40=rgeom(1000,1/41)

The sample means and variances, and the minimum and maximum values that
were observed, were as follows:

sample from geo(0.2): mean 4.164, variance 19.753, min 0, max 30;
sample from geo(1/41): mean 38.89, variance 1634.66, min 0, max 385.

For a related distribution, also sometimes called a geometric distribution in
the literature, see §3.4.3.

For integer k, the random variable N ∼ nb(k, p) can be represented as the
sum of k independent, identically distributed (iid) random variables, each dis-
tributed geo(p). This is because the probability generating function for the
nb(k, p) distribution is equal to the probability generating function for the
geo(p) distribution raised to the power of k; see (2.3) and (2.5) (and similarly
for the moment generating functions; see (2.4) and (2.6)).
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Table 2.1. Comparison of tail probabilities for four distributions

Pr(N ≥ 10) Pr(N ≥ 12) Pr(N ≥ 15)

Poi(3) 0.0011 0.000071 0.00000067
nb(3, 0.5) 0.019 0.0065 0.0012
nb(2, 0.4) 0.030 0.013 0.0033
nb(1, 0.25) 0.056 0.032 0.013

Example 2.2 In Table 2.1 we compare selected tail probabilities for N ∼
Poi(3), N ∼ nb(3, 0.5), N ∼ nb(2, 0.4) and N ∼ nb(1, 0.25) ≡ geo(0.25)
distributions, all of which have mean E[N] = 3, and have increasing vari-
ances (3, 6, 7.5, and 12 respectively). The probabilities were obtained from
R, using, for example, the command 1 - pnbinom(11,3,0.5), which eval-
uates Pr(N ≥ 12) for nb(3, 0.5), and returns 0.006469727. In each case, the tail
probability increases as we move from the Poisson distribution to successive
negative binomial distributions.

2.1.4 Binomial distribution

The binomial family of distributions has two parameters, n and p, where n
is a positive integer and 0 < p < 1. The distribution models the number of
successes which occur in a series of n independent Bernoulli trials, each with
Pr(success) = p and Pr(failure) = q = 1 − p. Unlike the distributions in the
preceding situations, the values which can be assumed by the binomial random
variable are restricted – to a maximum of n – so in the context of modelling
numbers of claims this distribution is only appropriate in situations in which
we know in advance the maximum possible number of claims. As mentioned
earlier, an area of possible application is the situation in which we are dealing
with a fixed number of policies (n), on each of which a maximum of one claim
can arise.

Notation N ∼ bi(n, p).

The probability mass function is given by

Pr(N = x) =

(
n
x

)
px(1 − p)n−x, x = 0, 1, . . . , n.

The probability generating function GN(z) is given by

GN(z) = (q + pz)n. (2.7)
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The moment generating function MN is given by

MN(t) = (q + pet)n, (2.8)

from which we find E[N] = np and E[N2] = n(n − 1)p2 + np, giving Var[N] =
npq. Note that the variance of N is lower than the mean.

The third central moment is npq(q − p) (readers wishing to verify this
result are recommended to use the results of Exercise 2.5). It follows that the
coefficient of skewness (see (1.1)) for the distribution is (q − p)/

√
npq. As

p increases from 0 to 1, the coefficient of skewness decreases from positive
values through zero (at p = 0.5) to negative values.

Simulation We can simulate a random sample of size m from N ∼ bi(n, p)
in R using the command sample = rbinom(m,n,p), where the R
objects m, n and p contain the values of m, n and p, respectively.

The histograms in Figure 2.4 display 10 000 claim numbers simulated from
bi(50, 0.1), bi(50, 0.5) and bi(50, 0.9) distributions, which have means 5, 25,
and 45, and variances 4.5, 12.5, and 4.5, respectively. The command used for
the first simulation was
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Figure 2.4. Histograms of samples simulated from binomial distributions with
parameters n = 50 and p = 0.1 (mean = 5) (a), p = 0.5 (mean = 25) (b), and
p = 0.9 (mean = 45) (c).
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bi_50_0.1=rbinom(10000,50,0.1)

The bi(1, p) distribution is called the Bernoulli(p) distribution and has
moment generating function q+pet, mean p and variance pq. The random vari-
able N ∼ bi(n, p) can be represented as the sum of n iid Bernoulli(p) random
variables. This follows from (1.9), because the probability generating function
of the bi(n, p) distribution is the same as the probability generating function of
the bi(1, p) raised to the power n.

Example 2.3 Suppose claims arise according to a Poisson process with inten-
sity λ (per hour), and let Nt denote the number of claims which arise in the
period (0, t], of length t hours. Then Nt ∼ Poi(λt).

Suppose we know that m claims arise in (0, t]; that is, we know Nt = m.
Consider Ns, the number of claims which arise in the period (0, s], where

0 < s < t. For n = 0, 1, . . . ,m

Pr(Ns = n | Nt = m) =
Pr(Ns = n , Nt = m)

Pr(Nt = m)
.

Using the independence properties of the Poisson process (see §2.1.1) we
have

Pr(Ns = n | Nt = m) =
Pr(Ns = n) Pr(Nt−s = m − n)

Pr(Nt = m)

=
e−λs(λs)n

n!
e−λ(t−s)(λ(t − s))m−n

(m − n)!
m!

e−λt(λt)m

=
m!

n!(m − n)!

( s
t

)n (
1 − s

t

)m−n
.

So Ns | (Nt = m) has a bi(m, s/t) distribution.

2.1.5 A summary note on R

The basic version of R provides specific commands for calculating the prob-
ability mass function, distribution function and quantiles for the binomial,
geometric, negative binomial and Poisson distributions, along with commands
for simulating observations from them. For distribution dist with parameter
p1 (or parameters p1, p2), these commands are of the following form.

probability mass function: ddist(x, p1) (or ddist(x, p1, p2)),
where x is a single value or a vector of values;

distribution function: pdist(x, p1);
quantiles: qdist(p, p1), where p is a single probability or a vector of

probabilities;
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simulated values: rdist(n, p1), where n is the required number of obser-
vations.

For example:

dpois(3,2) returns 0.1804470 and this is Pr(N = 3) where N ∼ Poi(2);
ppois(c(1,2,3),2) returns 0.4060058 0.6766764 0.8571235 (here

c(1,2,3) is the vector (1, 2, 3), and R calculates Pr(N ≤ 1), Pr(N ≤ 2)
and Pr(N ≤ 3) where N ∼ Poi(2));

dnbinom(3,2,1/3) returns 0.1316872 and this is Pr(N = 3), where N ∼
nb(2, 1/3);

pnbinom(v,2,1/3), with v=c(0,1,2), returns 0.1111111 0.2592593
0.4074074 (for example, 0.4074074 is Pr(N ≤ 2), where N ∼ nb(2, 1/3));

qgeom(h,0.1), with h=c(0.25,0.5,0.75), returns the quartiles 2 6 13 (for
example, the upper quartile of the geo(0.1) distribution is 13, the smallest
value of x for which Pr(N ≤ x) ≥ 0.75, where N ∼ geo(0.1));

rbinom(100,20,0.4) returns a sample of 100 observations randomly gen-
erated from a bi(20, 0.4) distribution.

2.2 Distributions for claim sizes

We are concerned with modelling the financial losses which can be suffered
by individuals and insurance companies as a result of insurable events such
as storm or fire damage to property, theft of personal property and vehicle
accidents. When an insured event occurs, the cost to the insurer is referred to
as an insurance loss, and distributions used to model the costs are often called
loss distributions.

An insurance company’s individual loss on a policy is not only non-negative,
but can also (in many cases) potentially be very high. So, to be suitable as
models for claim sizes, probability distributions must allow for the occurrence
in practice of very high values – distributions which do allow for this are
described as having “fat tails” or “heavy tails”. Such distributions are positively
skewed and, in addition, have relatively high probabilities in the right-hand
tails. They are discussed further in §2.2.5.

We begin with a brief review of three probability distributions which are not
fat-tailed – the normal, exponential and gamma distributions. Although these
distributions are thin-tailed (and the normal is not restricted to non-negative
values), we sometimes use them as reference distributions for comparing
results with those using genuinely fat-tailed distributions, so we include here
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brief summaries of their properties. We follow these with a consideration of a
series of positive distributions generally regarded as being fat-tailed:

• lognormal distribution;
• Pareto distribution;
• Weibull distribution;
• Burr distribution;
• loggamma.

Hogg and Klugman (1984) is a classic text on models for insurance losses.

2.2.1 A further summary note on R

The basic R package provides specific commands for calculating the
probability density function, the distribution function and quantiles for the
exponential, gamma, lognormal, normal and Weibull distributions, along with
commands to simulate observations from them. The names used by R com-
mand are as in dexp(x, lambda) for the exponential distribution, where
lambda contains the value of λ, pnorm(x, mu, sigma) for the normal dis-
tribution, where mu contains the value of μ and sigma contains the value
of σ, and similarly we have qgamma(p, alpha, lambda) for the gamma
distribution, rlnorm(n, mu, sigma) for the lognormal distribution and
rweibull(n, alpha, beta) for the Weibull distribution – see the follow-
ing sections for further details.

The corresponding commands for the Burr, loggamma and Pareto distribu-
tions are not supported in the basic R package, but are available in an add-on
package called actuar. Commands such as dburr, plgamma and rpareto

can then be used. Most of the work in the sections below has been achieved
without resorting to the facilities of actuar, but examples of calculations that
require it are also included.

2.2.2 Normal (Gaussian) distribution

The normal (Gaussian) family of distributions has two parameters, usually
denoted μ and σ (> 0), which (as the notation suggests) represent the mean
and standard deviation, respectively, of the distribution.

Notation X ∼ N(μ, σ2).

The probability density function is given by

f (x) =
1

σ
√

2π
exp

{
−1

2

( x − μ
σ

)2
}
, −∞ < x < ∞. (2.9)
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Note that the density function tails off exponentially in x2 as x → ∞; this is a
very fast tail-off. The distribution is very thin-tailed.

The distribution function F(x) = Pr(X ≤ x) is not expressible in a convenient
closed form, but particular values are available from R, and tables are widely
available. For example, to find Pr(X ≤ 2) in the case X ∼ N(1, 0.52) in R, we
use the command pnorm(2,1,0.5), which returns the value 0.9772499. The
distribution function of a N(0, 1) random variable is denoted Φ(x).

The moment generating function MX is given by

MX(t) = exp

(
μt +

1
2
σ2t2

)
, (2.10)

from which we find E[X] = μ, Var[X] = σ2, E[(X−μ)3] = 0, E[(X−μ)4] = 3σ4.
In the context of two-tailed, symmetrical distributions, μ is a location param-

eter because the density function (2.9) has the form g(x−μ), where the function
g does not depend on μ; we note X − μ ∼ N(0, σ2). In addition, σ is a scale
parameter because the density function of Y = X − μ is of the form 1

σ
h(y/σ),

where h does not depend on σ.
A linear function of a normal random variable is also normal – in fact

X ∼ N(μ, σ2)⇒ a + bX ∼ N(a + bμ, b2σ2),

which follows because the moment generating function of a + bX is

E
[
e(a+bX)t] = eat MX(bt) = exp

(
(a + bμ)t +

1
2
σ2b2t2

)
.

In particular, note that

X ∼ N(μ, σ2)⇒ Z =
X − μ
σ
∼ N(0, 1). (2.11)

The transformation of X to Z given in (2.11) is known as standardisation.

Simulation We can simulate a random sample of size n from X ∼ N(μ, σ2)
in R using the command sample = rnorm(n, mu, sigma), where
n, mu and sigma contain the values of n, μ and σ, respectively.

2.2.3 Exponential distribution

The exponential family has a single parameter, usually denoted λ (> 0).

Notation X ∼ Exp(λ).

The probability density function is given by

f (x) = λe−λx, x > 0. (2.12)
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Note that the density function tails off exponentially as x → ∞. The
distribution function is given by

F(x) = 1 − e−λx, x > 0. (2.13)

The tail probability is Pr(X > x) = e−λx, x ≥ 0; the distribution has exponential
tails and will generally underestimate the probability of large claims.

It is easy to show, by integration of xr f (x), that

E[Xr] =
Γ(r + 1)
λr

, r > 0. (2.14)

The moment generating function MX(t) is finite for t < λ, and is given by

MX(t) =
(
1 − t

λ

)−1
, t < λ, (2.15)

from which we find that E[Xr] = r!/λr, r = 1, 2, 3, . . .. In particular, we have
E[X] = 1/λ and Var[X] = 1/λ2. Note that the mean and standard deviation are
equal. The third and fourth central moments and the coefficients of skewness
and kurtosis (see (1.1), (1.2) and §2.2.5) are considered in Example 2.5.

The distribution is often parameterised using the mean μ = 1/λ as the
parameter; in this form, the density function (2.12) becomes

f (x) =
1
μ

e−x/μ, x > 0,

which is of the form 1
μh (x/μ). Thus the parameter μ is a scale parameter.

The rth moment has the property E[Xr] ∝ μr, and

X ∼ Exp(λ)⇒ kX ∼ Exp(λ/k), for k > 0. (2.16)

The flexibility of the exponential family as a model for data is restricted by
the fact that it has only one parameter.

Simulation A simulated sample of size n from the exponential distribution
Exp(λ) can be obtained from R using sample = rexp(n,lambda),
where n and lambda contain the values of n and λ, respectively.
Alternatively, we can use a command based on the inverse transform
method of simulating values from a probability distribution. In this
case, the method (solving u = F(x) for x, where u is an observation
of a uniform distribution on (0,1)) gives a result which can be imple-
mented most easily using the command x = - log(u)/lambda.
Hence, to generate a random sample of size n from the Exp(λ) distri-
bution, we can use sample = - log(runif(n))/lambda, where
runif(n)simulates a sample of size n from a uniform distribution
on the interval (0, 1).
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The exponential distribution possesses an important lack of memory prop-
erty, which will be useful in certain reinsurance calculations later on in the
book. The property states that, for x > 0, w > 0,

Pr(X > x + w | X > w) = Pr(X > x), (2.17)

as is easily demonstrated. Using the notation X − w | X > w to represent the
random variable X − w conditional on X assuming a value greater than w, we
can express the lack of memory property as

X ∼ Exp(λ)⇒ X − w | X > w ∼ Exp(λ),

and also

X − w | X > w ≡ X,

where ≡ means “has the same distribution as”. The geometric distribution
has an equivalent property in “discrete time” for the observed numbers of tri-
als/claims – it is a consequence of the independence of the trials involved (see
Exercise 2.3).

The Poisson process: inter-event times
The exponential distribution also plays an important role in the Poisson pro-
cess. Let {N(t) : t ≥ 0} be a Poisson process with rate λ, as in §2.1.1. Let T1 be
the time from t = 0 to the first event, and, for j > 1, let T j be the time between
the ( j − 1)st event and the jth event. The T j are the inter-event times.

For t ≥ 0, it follows that

Pr(T1 > t) = Pr(N(t) = 0) = e−λt,

so that T1 has an exponential distribution with mean 1/λ. For t ≥ 0 and s ≥ 0,
we have, using properties (b) and (c) of the Poisson process (see §2.1.1),

Pr(T1 > s, T2 > t) =
∫ ∞

s
Pr(T2 > t | T1 = v)λe−λv dv

=

∫ ∞

s
Pr(no events in (v, v + t])λe−λv dv

=

∫ ∞

s
e−λtλe−λv dv by (b) and (c)

= e−λ(t+s). (2.18)

Put s = 0 in the final expression to get

Pr(T2 > t) = e−λt,
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so that T2 is also exponentially distributed with mean 1/λ. Further, (2.18)
shows that T1 and T2 are independent. Proceeding by induction, it is easy
to show that T1,T2, . . . are independent exponentially distributed random
variables with mean 1/λ.

The lack of memory property (2.17) of the exponential distribution means
that, given that a time w has already elapsed since the last event, the proba-
bility that a further time x elapses before the next event is simply the original
unconditional probability that the inter-event time is at least x; the distribution
“does not remember” that time w has already elapsed.

2.2.4 Gamma distribution

The gamma family has two parameters, usually denoted α (> 0) and λ (> 0).

Notation X ∼ gamma(α, λ) or X ∼ γ(α, λ).

The probability density function is given by

f (x) =
λα

Γ(α)
xα−1e−λx, x > 0. (2.19)

The exponential family above is the one-parameter sub-family for the case
α = 1.

The distribution function is

F(x) = Pr(X ≤ x) =
∫ x

0

λα

Γ(α)
tα−1e−λt dt =

1
Γ(α)

∫ λx

0
uα−1e−u du.

We see that F(x) is expressible as an incomplete gamma function; that is, as a
gamma-type integral, but with finite upper limit. Particular values are available
from R. For example, to find Pr(X ≤ 200) in the case X ∼ gamma(2, 0.02), we
use the command pgamma(200,2,0.02), which returns the value 0.9084218.

For α > 1, the gamma density tails off more slowly than the exponential
distribution, and having two parameters allows the family more flexibility than
a one-parameter family (for example the exponential) as a model for data.

By integration we find

E[Xr] =
1
λr

Γ(α + r)
Γ(α)

, r > 0. (2.20)

The moment generating function MX(t) is finite for t < λ, and is given by

MX(t) =
(
1 − t

λ

)−α
, t < λ, (2.21)
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from which we find E[X] = α/λ and Var[X] = α/λ2. It is useful to note that
the parameters can be found easily from the mean and variance by noting λ =
E[X]/Var[X] and then α = λE[X].

The third and fourth central moments are 2α/λ3 and (6α + 3α2)/λ4, from
which it follows that the coefficients of skewness and kurtosis (see (1.1) and
(1.2)) are 2/

√
α and 3 + 6/α, respectively (see Exercise 2.7).

The parameter 1/λ is a scale parameter, and

X ∼ gamma(α, λ)⇒ kX ∼ gamma(α, λ/k), for k > 0. (2.22)

The parameter α is a shape parameter – it determines the skewness and kurtosis
– as α increases, the distribution becomes more and more symmetrical and
approaches a normal distribution.

Simulation We simulate a random sample of size n from X ∼ gamma(α, λ)
in R using the command sample = rgamma(n, alpha, lambda),
where n, alpha and lambda contain the values of n, α and λ,
respectively.

The histograms in Figure 2.5 display 1000 claim sizes simulated from
Exp(0.01) and gamma(2, 0.02) distributions, which have means 100 and
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Figure 2.5. Histograms of samples simulated from an exponential distribution
with parameter λ = 0.01 (mean = 100) (a) and from a gamma distribution with
α = 2, λ = 0.02 (mean = 100) (b).
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variances 10 000 and 5000, respectively. The commands used for the simu-
lation were

exp_0.01=rexp(1000,0.01)

gamma_2_0.02=rgamma(1000,2,0.02)

The sample means and variances, and the minimum and maximum values
that were observed, were as follows:

sample from Exp(0.01): mean 101.5, variance 10301, min 0.03, max 826.5;
sample from gamma(2, 0.02): mean 98.17, variance 4882.3, min 2.10, max

490.7.

In the case that α is an integer, the gamma(α, λ) distribution is also known
as the Erlang distribution, after the Danish mathematician, statistician and
engineer A. K. Erlang (1878–1929), a pioneer in the study of telecommu-
nications networks. In this case, the random variable X ∼ gamma(α, λ)
can be represented as the sum of α iid Exp(λ) random variables by (1.8),
because the gamma(α, λ) moment generating function is the αth power of the
Exp(λ) moment generating function in (2.15). The distribution function can be
expressed as a finite sum as follows:

F(x) = 1 −
α−1∑
j=0

e−λx (λx) j

j!

(as the reader may verify by repeated integration by parts). The distribution
models the time from t = 0 to the αth event in a Poisson process with rate λ.

In the case that α is of the form α = n/2, where n is a positive integer, and
λ = 1/2, the gamma(n/2, 1/2) distribution is usually called the χ2

n distribution
(“chi-squared distribution with n degrees of freedom”). If X ∼ gamma(α, λ),
where 2α is a positive integer, then the random variable 2λX ∼ χ2

2α (see
Exercise 2.7).

Figure 2.6 shows the probability density functions for a normal distribution,
an exponential distribution and a gamma distribution, all with the same mean.

Example 2.4 We consider the sum of independent gamma random variables
with the same scale parameter. Let X ∼ gamma(α1, λ) and Y ∼ gamma(α2, λ)
with X and Y independent, and let S = X + Y .

Using (2.21) and (1.8), we have

MS (t) = MX(t)MY (t) =
(
1 − t

λ

)−α1
(
1 − t

λ

)−α2

=

(
1 − t

λ

)−(α1+α2)
.
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Figure 2.6. Probability density functions, for 0 < x < 400, of normal (solid line),
exponential (dashed line) and gamma (dotted line) distributions, each with mean
100; the variances are 5000, 10 000, and 5000, respectively.

We identify this as the moment generating function of a gamma(α1 + α2, λ)
random variable, so we can conclude that S = X + Y ∼ gamma(α1 + α2, λ).
As an illustration, suppose that claim sizes arising in one portfolio have a
gamma(10, 2) distribution and that claim sizes from another portfolio have,
independently, a gamma(6, 2) distribution. If we add the sizes of a randomly
selected claim from each portfolio, we find the sum S ∼ gamma(16, 2). If
we want the value of Pr(S > 12), it can be found using R: the command
1 - pgamma(12,16,2) returns the value 0.03440009.

2.2.5 Fat-tailed distributions

The concept of “fat tails” (or “heavy tails”) can be characterised formally in
several ways. For a non-negative distribution, one general description is to state
that a fat-tailed distribution is one whose tail is not “exponentially bounded”;
that is, one whose tail probabilities are not of the form Pr(X > x) ≤ be−ax, x >
0, for any positive constants a and b. In the case of a non-negative distribution
(as in the case of models for claim sizes), the concept applies to the single right-
hand tail, but it can be applied to one or both tails in the case of a two-tailed
distribution. We may also say that a distribution FX , where X is a non-negative
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random variable, is fat-tailed if the moment generating function MX(t) = E[etX]
is not finite for any t > 0.

The literature on fat tails is extensive, and authors take different, but related,
approaches to the concept. A discussion of different classes of fat-tailed dis-
tributions is beyond the scope of this book; see Embrechts et al. (1997) for a
detailed treatment.

An example of a family of very thin-tailed distributions is the normal (Gaus-
sian) family (see §2.2.2). An example of a family of fat-tailed distributions with
two tails is the “Student’s t” family. Figure 2.7 shows the density functions of
one of each type.

Another concept related to fat tails is a characteristic of the shape of a
probability density function known as kurtosis, which is a measure of the
“peakedness” of a density relative to that of a normal distribution. The coeffi-
cient of kurtosis is defined for distributions with finite fourth moments and is
based on the fourth central moment, namely E[(X − E[X])4]. Recall from (1.2)
that the coefficient of kurtosis is given by the scaled quantity

E[(X − E[X])4]/{Var[X]}2, (2.23)

which, for a normal distribution, equals 3. Distributions with a kurtosis
coefficient greater than 3 are said to be leptokurtic and have a more sharply
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Figure 2.7. Probability density functions of a “standard” normal distribution (very
thin-tailed, solid line) and a t2 distribution (fat-tailed, dashed line).
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peaked density function than the normal distribution (as for the Student’s t
distribution in Figure 2.7 – lower probability in the centre, higher in the tails).

While the coefficient of kurtosis can be calculated for skewed distributions
(with fourth moments), its interpretation is straightforward for symmetrical,
peaked distributions (comparable to the normal distribution). Its numerical
value for skewed distributions, while it can be interesting, is not a particularly
useful guide.

The coefficient of kurtosis is scale-free; that is, kX has the same kurtosis as
X. So, for example, the kurtosis of γ(α, λ) does not depend on the scale param-
eter – the two-parameter γ(α, λ) has the same kurtosis as the one-parameter
γ(α, 1).

In the case that X has a finite moment generating function in a neigh-
bourhood of the origin, central moments of orders 2, 3 and 4 can be found
conveniently from the cumulant generating function KX(t), given by

KX(t) = log MX(t). (2.24)

Let κ j be the coefficient of t j/ j! in the power series expansion of KX(t); we
call κ j the jth cumulant of the distribution of X, and it can be found from the
power series expansion, or by differentiation, on noting that κ j = K( j)(0), the
jth derivative of KX(t) evaluated at t = 0.

It transpires (see Exercise 2.5) that

E[(X − E[X])2] = κ2 , E[(X − E[X])3] = κ3 , E[(X − E[X])4] = κ4 + 3κ2
2,

giving the coefficient of skewness as κ3/(κ2)3/2 and the coefficient of kurtosis
as
(
κ4/κ

2
2

)
+ 3.

Note Some authors work with the excess kurtosis, which is the kurtosis as
defined above in excess of 3 (and therefore such that the normal distribution is
said to have kurtosis 0).

An example of a family of fat-tailed distributions is the lognormal family
(see §2.2.6). Figure 2.8 shows the tails of normal and lognormal distributions
(with the same means and variances) for comparison.

Note When displaying data in the context of fat-tailed models, plotting log x
instead of x on the horizontal axis can produce a helpful alternative display.

Before examining some families of fat-tailed distributions, we present two
examples which examine kurtosis relating to distributions already considered.

Example 2.5 We find the coefficient of kurtosis for X ∼ Exp(λ) using the
cumulant generating function. By (2.15) and (2.24), we have

MX(t) = λ/(λ − t) ⇒ KX(t) = log λ − log(λ − t)
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Figure 2.8. Tails of normal (solid line) and lognormal (dashed line) densities
with mean 1000 and standard deviation 500: above 1000 (a) and above 1500
(magnified) (b).

and hence

KX
′(t) = (λ − t)−1, KX

′′(t) = (λ − t)−2,

KX
′′′(t) = 2(λ − t)−3, KX

(4)(t) = 6(λ − t)−4.

So

κ2 = KX
′′(0) = λ−2,

κ3 = KX
′′′(0) = 2λ−3,

κ4 = KX
(4)(0) = 6λ−4.

Hence the fourth central moment is 6λ−4 + 3λ−4 = 9λ−4 and, by (2.23), the
coefficient of kurtosis is 9λ−4/(λ−2)2 = 9.

The exponential distribution may have a relatively high numerical value for
its coefficient of kurtosis, but the density function is decreasing (with its mode
at x = 0) and there is no flexibility in its shape – the exponential family does
not accommodate a non-zero mode.

Note The coefficient of skewness is 2λ−3/(λ−2)3/2 = 2.

Example 2.6 A source of fat-tailed distributions (with two tails) is found in
the difference between two independent random variables of certain types. We
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examine here the kurtosis of the symmetrical variable W = X−Y , where X and
Y are independent gamma(α, 1) random variables.

By (2.20) we have E[X] = α, E[X2] = α(α + 1), E[X3] = α(α + 1)(α + 2)
and E[X4] = α(α + 1)(α + 2)(α + 3). Using these results for X, we find that
E[W] = 0 and Var[W] = Var[X] + Var[Y] = 2α. We also have E[W3] = 0 (by
the symmetry of W), and

E[W4] = E[(X − Y)4] = E[X4 − 4X3Y + 6X2Y2 − 4XY3 + Y4]

= 2α(α + 1)(α + 2)(α + 3) − 8α2(α + 1)(α + 2) + 6α2(α + 1)2

= 12α(α + 1).

Hence the coefficient of kurtosis of W is given by

12α
(α + 1)
(4α2)

= 3

(
1 +

1
α

)
,

and, since α > 0 this is greater than the coefficient of kurtosis for the normal
distribution.

Notes

(1) We can also derive the result using the cumulant generating function of
W = X−Y , which is easily found to be KW(t) = −α{log(1− t)+ log(1+ t)}.

(2) The result in Example 2.6 applies to the more general case for which X
and Y are independent γ(α, λ) random variables, since then X − Y can be
written as (1/λ)(X1 − Y1), where X1 and Y1 are γ(α, 1) variables.

2.2.6 Lognormal distribution

The lognormal family has two parameters, usually denoted μ and σ (> 0).

Notation X ∼ lognormal(μ, σ).

The probability density function is given by

f (x) =
1

σ
√

2π

1
x

exp

⎧⎪⎪⎨⎪⎪⎩−1
2

(
log x − μ

σ

)2
⎫⎪⎪⎬⎪⎪⎭ , x > 0.

The name “lognormal distribution” arises from the fact that

X ∼ lognormal(μ, σ)⇔ Y = log X ∼ N(μ, σ2). (2.25)

So, if X ∼ lognormal(μ, σ) then log X has a normal distribution with mean μ
and standard deviation σ. The lognormal parameters μ and σ are sometimes
referred to as the “meanlog” and “sdlog” parameters.



36 Models for claim numbers and claim sizes

The distribution function (and hence tail probabilities) are found using the
log transformation to normal and the distribution function of the standard
normal distribution Z ∼ N(0, 1):

F(x) = Pr(X ≤ x) = Pr(log X ≤ log x) = Pr

(
Z ≤ log x − μ

σ

)
. (2.26)

There is no problem regarding the existence (finiteness) of moments (but a
moment generating function MX(t) is not finite for any positive value of t). The
general moment E[Xr] is easily found from the moment generating function
of Y = log X, which is MY (t) = exp

(
tμ + 1

2 t2σ2
)
, as follows, on noting that

X = eY :

E[Xr] = E[erY ] = MY (r) = exp

(
rμ +

1
2

r2σ2

)
. (2.27)

This gives

E[X] = MY (1) = exp

(
μ +

1
2
σ2

)
, E[X2] = MY (2) = exp

(
2μ + 2σ2

)
.

So

E[X] = exp

(
μ +

1
2
σ2

)
, Var[X] = exp

(
2μ + σ2

)
(eσ

2 − 1). (2.28)

It can be useful to note (from (2.28)) that the mean and variance are
related by

Var[X] = {E[X]}2(eσ
2 − 1). (2.29)

Particular values of the distribution function are available from R. For exam-
ple, to find Pr(X ≤ 200) in the case X ∼ lognormal(4.5, 0.6325), we use the
command plnorm(200,4.5,0.6325), which returns the value 0.8965547.

The lognormal density tails offmore slowly than the exponential and gamma
distributions.

Simulation We can simulate a random sample of size n from X ∼
lognormal(μ, σ) in R, using sample = rlnorm(n, mu, sigma)

or, less simply, sample = exp(rnorm(n, mu, sigma)), where
n, mu and sigma contain the values of n, μ and σ, respectively.

Figure 2.9(a) shows the probability density functions of two lognormal dis-
tributions. Figure 2.9(b) shows a histogram of 1000 claim sizes simulated from
lognormal(4.5, 0.6325), which has mean 110 and variance 5950 approximately.

The command used for the simulation was

lnorm_4.5_0.6325=rlnorm(1000,4.5,0.6325)
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Figure 2.9. (a) Probability density functions of lognormal(4.5, 0.6325) (solid line)
and lognormal(5.5, 0.5) (dashed line). (b) Histogram of sample simulated from a
lognormal distribution with parameters μ = 4.5 and σ = 0.6325 (mean ≈ 110).

The sample mean and variance, and the minimum and maximum values that
were observed, were as follows:

sample from lognormal(4.5, 0.6325): mean 110.2, variance 6645, min 8.45,
max 750.5.

Example 2.7 Let X ∼ lognormal(0.8, 0.3). We find the mean and standard
deviation of the distribution and evaluate some tail probabilities.

By (2.28) and (2.29) we have

E[X] = e0.845 = 2.3280 , SD[X] = e0.845(e0.09 − 1)1/2 = 0.7144.

By (2.26) we have (writing Z for a N(0, 1) random variable)

Pr(X > 5) = Pr(log X > log 5) = Pr

(
Z >

log 5 − 0.8
0.3

)
= 1 − Φ(2.6981) = 0.00349.

Note The R command 1 - plnorm(5,0.8,0.3) returns 0.003486548.
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We evaluate the probability that the value assumed by X exceeds 5, given
that it exceeds 4, as follows:

Pr(X > 5 | X > 4) = Pr(X > 5 and X > 4)/Pr(X > 4)

= Pr(X > 5)/Pr(X > 4) = Pr(Z > 2.6981)/Pr(Z > 1.9543)

= 0.00349/0.0253 = 0.138.

Confirming this using R,

(1 - plnorm(5,0.8,0.3))/(1 - plnorm(4,0.8,0.3))

returns 0.1376341.

Example 2.8 Suppose X ∼ lognormal(μ, σ). We derive an expression for the
coefficient of skewness as follows. By (2.28),

E[(X − E[X])2] = e2μ+σ2
(eσ

2 − 1),

and by (2.27) we have

E[(X − E[X])3] = E[X3] − 3E[X]E[X2] + 2(E[X])3

= e3μ+(9σ2/2) − 3e3μ+(5σ2/2) + 2e3μ+(3σ2/2)

= e3μ+(3σ2/2)
(
e3σ2 − 3eσ

2
+ 2

)
.

Hence the coefficient of skewness is given by

e3μ+(3σ2/2)
(
e3σ2 − 3eσ

2
+ 2

)
e3μ+(3σ2/2)(eσ2 − 1)3/2

=
(eσ

2
+ 2)(eσ

2 − 1)2

(eσ2 − 1)3/2

= (eσ
2
+ 2)(eσ

2 − 1)1/2.

The skewness increases rapidly as σ2 increases.

Example 2.9 Suppose that claims occur on a portfolio of general insurance
policies independently of one another and are of two types; each claim is
classified as being of “type A” or “type B”. Type A claim sizes have an expo-
nential distribution with mean 2, while type B claim sizes have an exponential
distribution with mean 8, and 75% of claims are of type A.

We examine some properties of X, the size of a randomly chosen claim
arising on the portfolio: we have

Pr(X > 10) = Pr(X > 10 | A) Pr(A) + Pr(X > 10 | B) Pr(B)
= 0.75e−5 + 0.25e−10/8 = 0.0767

and

E[X] = E[X | A] Pr(A) + E[X | B] Pr(B) = 0.75(2) + 0.25(8) = 3.5.
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Noting that the second moment of V ∼ Exp(1/μ) is E[V2] = 2μ2, we have

E[X2] = 0.75(8) + 0.25(128) = 38,

and so Var[X] = 25.75.
Suppose now we replace X by (a) a single exponential variable Y with the

same mean as X, so Y ∼ Exp(1/3.5), and (b) a single lognormal variable
W with the same mean and variance as X, and in each case repeat the tail
probability calculation.

(a) Pr(Y > 10) = e−10/3.5 = 0.0574;
(b) setting 3.52(exp(σ2) − 1) = 25.75 and then μ + σ2/2 = log(3.5) yields

W ∼ lognormal(0.68673, 1.06398).

Then we have Pr(W > 10) = Pr(Z > 1.5187) = 0.0644, where Z ∼ N(0, 1).

We note that Pr(X > 10) is greater than both Pr(Y > 10) and Pr(W > 10).
By using a single “compromise” variable to model the claim sizes, be it expo-
nential or a (fat-tailed) lognormal, we are failing to take proper account of the
heterogeneity in the portfolio (the presence of two types of claims with dif-
ferent properties), and as a result we under-estimate the probability of large
claims. This can have serious consequences for the under-pricing of insurance
products and the consequent financial health of the insurance company.

Example 2.10 An insurance analyst is examining the distribution of “large”
and “very large” claims, that is claims in excess of £20 000 and £35 000
respectively. Let X represent claim size (in units of £1000).

We calculate the conditional tail probability Pr(“very large | “large”); that
is, Pr(X > 35 | X > 20) using three models with similar means: (a) X ∼
Exp(1/10); (b) X ∼ gamma(0.5, 0.05); (c) X ∼ lognormal(1.45, 1.30). First
note that Pr(X > 35 | X > 20) = Pr(X > 35)/Pr(X > 20).

(a) Pr(X > 35 | X > 20) = e−3.5/e−2 = e−1.5 = 0.223. (Note that we can get
the result Pr(X > 35 | X > 20) = Pr(X > 15) = e−1.5 directly by appealing
to (2.17), the lack of memory property of the exponential distribution.)

(b) X ∼ gamma(0.5, 0.05)⇒ 0.1X ∼ χ2
1 (see Exercise 2.7)

⇒ Pr(X > 35 | X > 20) = Pr(χ2
1 > 3.5)/Pr(χ2

1 > 2)

= 0.0614/0.1573 = 0.390.

(c) Pr(X > 35 | X > 20) = Pr(log X > log 35)/Pr(log X > log 20)

= Pr(Z > 1.6195)/Pr(Z > 1.189)

= 0.0527/0.1172 = 0.450,
where Z ∼ N(0, 1).



40 Models for claim numbers and claim sizes

We note the increasing conditional tail probabilities as we go from the
exponential to the gamma to the lognormal model.

2.2.7 Pareto distribution

The Pareto family is a wide one, with several sub-families. Here we consider
the sub-family most widely used in general insurance as a model for claim
sizes (sometimes called the “American Pareto”), which has two parameters,
usually denoted α (> 0) and λ (> 0), and which allows for all positive values
to be realised. Its density and distribution functions exhibit “power law” decay.
The family of distributions is named after the Italian economist V. F. D. Pareto
(1848–1923).

Notation X ∼ Pa(α, λ) or X ∼ Pareto(α, λ).

The probability density function is given by

f (x) =
αλα

(λ + x)α+1
, x > 0. (2.30)

The distribution function is given by

F(x) = 1 −
(

λ

λ + x

)α
, x > 0. (2.31)

Moments of the form E[Xr], r = 1, 2, 3, . . ., exist only for r < α. For example,
in the case 0 < α ≤ 1 no moments exist; in the case 1 < α ≤ 2 only the
first moment E[X] exists; in the case 2 < α ≤ 3 only the first two moments
E[X] and E[X2] exist; and so on. The mean exists only in the case α > 1,
and the variance exists only in the case α > 2. Since the number of moments
which exist is restricted, the moment generating function is +∞ for all positive
arguments.

The general moment E[Xr] is given by

E[Xr] =
Γ(α − r)Γ(1 + r)

Γ(α)
λr, 0 < r < α, (2.32)

which may be shown by induction using integration by parts. The results for
the mean and variance are

E[X] =
λ

α − 1
, α > 1; Var[X] =

αλ2

(α − 1)2(α − 2)
, α > 2. (2.33)

It can be useful to note that, in the case that the variance exists, the mean and
variance are related by

Var[X] =
α

α − 2
{E[X]}2. (2.34)
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The Pareto distribution tails off more slowly than the exponential, gamma
and lognormal distributions.

The probability density function (2.30) can be written as

f (x) =
α

λ

1
(1 + x/λ)α+1

, x > 0.

The parameter λ is a scale parameter, and

X ∼ Pa(α, λ)⇒ kX ∼ Pa(α, kλ), for k > 0. (2.35)

The parameter α is a shape parameter – it determines the skewness (see
Exercise 2.13). Particular values of the distribution function are available from
the basic R package – as an illustration we find Pr(X ≤ 200) in the case X ∼
Pa(4, 300) by evaluating the distribution function directly. Noting (2.31), we
use the explicit command

1-(300/500)^4

which returns the value 0.8704.

Simulation Simulated values of the distribution can be obtained from the basic
R package using a command based on the inverse transformation
method of simulating values from a probability distribution – in
this case the method gives a result which can be implemented most
easily as x = lambda*(u^(-1/alpha) - 1), where lambda and
alpha contain the values of λ and α, respectively, and where u

contains an observation from a uniform distribution on (0, 1). We
can thus simulate a random sample of size n from X ∼ Pa(α, λ) using
the command sample = lambda*(runif(n)^(-1/alpha)-1),
where n contains the value of n (and see the note below for simulation
using the R package actuar).

The histograms in Figure 2.10 display 1000 claim sizes simulated from
Pa(4, 300), which has mean 100 and variance 20 000 approximately. The
command used for the simulation was

par_4_3000 = 300*(runif(1000)^{-1/4}-1)

The sample mean and variance, and the minimum and maximum values that
were observed, were as follows:

sample from Pa(4, 300): mean 104.4, variance 21288, min 0.02, max 1757.
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Figure 2.10. Histograms of a sample simulated from a Pareto distribution with
parameters α = 4 and λ = 300. (a) Histogram of the full data set; (b) histogram of
all observations less than 1000. There were four observations above 1000, namely
1106, 1237, 1588 and 1757.

Note Using the facilities of the R add-on package actuar we can repro-
duce the results above: for Pr(X ≤ 200), in the case X ∼ Pa(4, 300), we can
use the command ppareto(200,4,300), which returns 0.8704; a sample of
1000 simulated claim sizes from Pa(4, 300) is obtainable using the command
rpareto(1000,4,300).

The Pareto distribution possesses an important conditional tail property,
which is useful in certain reinsurance calculations. The property states that,
for X ∼ Pa(α, λ), the variable X−w | X > w also has a Pareto distribution, with
the same first parameter and shifted second parameter. In fact,

X ∼ Pa(α, λ)⇒ X − w | X > w ∼ Pa(α, λ + w). (2.36)

So, given that a claim size exceeds an amount w, the distribution of the amount
by which it exceeds w has this other Pareto distribution. The property is easily
demonstrated (see Exercise 2.13).

The Pareto distribution can be derived as follows. Let X1 ∼ Exp(1) and
X2 ∼ gamma(α, λ) with X1 and X2 independent. Using standard methods for



2.2 Distributions for claim sizes 43

transformation of densities (see, for example, sect. 4.7 of Grimmett and Stirza-
ker (2001)), Y = X1/X2 ∼ Pa(α, λ); the Pareto distribution representing the
ratio of the exponential and the gamma distributions has a fatter tail than those
of the two component distributions.

The Pareto distribution also arises in the context of mixture distributions;
see §2.3.

Figure 2.11 shows the probability density functions for a lognormal distri-
bution and a Pareto distribution with the same means and variances.

Figure 2.12 shows the probability density functions for three Pareto distri-
butions with different parameters – in one case the mean does not exist, and in
the other two cases the mean is 10.

Example 2.11 Suppose that a claim size X is modelled as X ∼ Pa(5, 360)
and that we want to calculate the mean sizes of claims greater than 80 and less
than 80.

From (2.36) we have X − 80 | X > 80 ∼ Pa(5, 440), so by (2.33) we have
E[X − 80 | X > 80] = 440/4 = 110, and thus E[X | X > 80] = 190. By (2.31)
and (2.33) we know that Pr(X > 80) = (360/440)5 and E[X] = 360/4 = 90.
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Figure 2.11. Probability density functions, for 0 < x < 400 only, of
lognormal(4.056, 1.048) (solid line) and Pa(4, 300) (dashed line), both of which
have mean 100 and variance 20 000.
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Figure 2.12. Probability density functions of Pa(1, 5) (solid line), Pa(3, 20)
(dashed line) and Pa(6, 50) (dotted line). (a) Densities in the range 0 < x < 20.
(b) Densities in the range 20 < x < 60, and it is clear that the Pa(1, 5) distribution
(which does not have any finite moments) crosses over the other densities and has
a fatter tail.

Then

E[X] = E[X | X > 80] Pr(X > 80) + E[X | X ≤ 80] Pr(X ≤ 80).

Substituting values from above, we have

90 = 190(360/440)5 + E[X | X ≤ 80]{1 − (360/440)5},

and so E[X | X ≤ 80] = 32.11.

Example 2.12 In Table 2.2 we compare some tail probabilities for selected
distributions. The first five distributions all have mean E[X] = 1000. The first
four have increasing standard deviations, 1000, 1414, 2000 and 3000, respec-
tively (most values given are rounded). The first Pareto distribution does not
have a finite standard deviation; the second and third Pareto distributions do
not have any finite moments. The table illustrates the wide range of behaviours
we can capture with these distributions.
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Table 2.2. Some tail probabilities

Pr(X > 5000) Pr(X > 10 000) Pr(X > 15 000)

Exp(0.001) 0.00674 4.54 × 10−5 3.06 × 10−7

gamma(0.5, 0.0005) 0.0253 0.00157 0.000108
lognormal(6.10304, 1.26864) 0.0285 0.00716 0.00281
lognormal(5.75646, 1.51743) 0.0344 0.0114 0.00549
Pa(1.5, 500) 0.0274 0.0104 0.00579
Pa(0.8, 500) 0.147 0.0875 0.0641
Pa(0.5, 1000) 0.408 0.302 0.250

2.2.8 Weibull distribution

The Weibull family has two parameters, which we will denote c (> 0) and γ
(> 0). The family of distributions is named after the Swedish engineer and
mathematician, E. H. W. Weibull (1887–1979).

Notation X ∼Wei(c, γ) or X ∼Weibull(c, γ).

The probability density function is given by

f (x) = cγxγ−1e−cxγ , x > 0.

The distribution function is given by

F(x) = 1 − e−cxγ , x > 0. (2.37)

The tail probability is given by Pr(X > x) = e−cxγ , which shows that the distri-
bution can be regarded as a generalisation of the exponential distribution, since
putting γ = 1 gives the tail probability for an exponential distribution; in fact,
Wei(c, 1) ≡ Exp(c).

The Weibull random variable is also obtainable as a power function of
an exponential variable – if X ∼ Exp(λ) then Y = X1/γ ∼ Wei(λ, γ), or,
equivalently, if X ∼Wei(c, γ) then Xγ ∼ Exp(c) (see Example 2.13).

Simulation for X ∼Wei We can simulate a random sample of size n from
X ∼Wei(c, γ) in R using the command

sample = rexp(n,c)^(1/gamma),

where n, c and gamma contain the values of n, c and γ, respec-
tively. With a different Weibull parameterisation, we can use a simpler
command rweibull (see below).
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It is clear from the form of the tail probability that in the case γ ≥ 1 the tails
will be as thin as, or thinner than, exponential tails – so to qualify as a fat-tailed
distribution we restrict the parameter value to the case γ < 1.

There is no problem regarding the existence of moments (but in general there
is not a convenient, usable moment generating function). The general moment
E[Xr] can be found easily using the transformation to exponential:

E[Xr] = E[Xγ(r/γ)] = E[Yr/γ],

where Y ∼ Exp(c). Hence, by (2.14), we have

E[Xr] = Γ

(
1 +

r
γ

)
c−r/γ, r > 0. (2.38)

This general expression is rather awkward in certain cases, but is easy to use in
other cases – for example in the case γ = 1/2 we have E[X] = 2/c2, E[X2] =
24/c4, giving Var[X] = 20/c4.

There is an alternative parameterisation which we will denote as

X ∼Wei2(α, β).

The relationship between the parameters in the second version and those in the
first, X ∼Wei(c, γ), is α = γ, β = c−1/γ.

For Wei2(α, β), the probability density function is given by

f (x) =
α

β

(
x
β

)α−1

e−(x/β)α , x > 0; (2.39)

the distribution function is given by

F(x) = 1 − e−(x/β)α , x > 0,

and the moment E[Xr] is given by

E[Xr] = Γ
(
1 +

r
α

)
βr, r = 1, 2, 3, . . . .

For example, in the case α = 1/2 we have E[X] = 2β, E[X2] = 24β2, giving
Var[X] = 20β2.

The second parameterisation (2.39) reveals that the parameter β is a scale
parameter – in fact, X ∼Wei2(α, β)⇒ kX ∼Wei2(α, kβ), for k > 0, and is the
parameterisation used in R. The parameter α is a shape parameter.

Particular values of the distribution function are available – for example,
to find Pr(X ≤ 200) in the case X ∼ Wei2(0.5, 50) we use the command
pweibull(200,0.5,50), which returns the value 0.8646647.
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Figure 2.13. Probability density functions of Wei(1, 0.5) ≡ Wei2(0.5, 1) (solid
line), Wei(1, 1) ≡ Wei2(1, 1) (dashed line) and Wei(1, 1.5) ≡ Wei2(1.5, 1) (dotted
line).

Figure 2.13 shows the probability density functions for three Weibull
distributions.

Simulation for X ∼Wei2 We can simulate a random sample of size n from
X ∼Wei2(α, β) in R using the command

sample = rweibull(n, alpha, beta)

where n, alpha and beta contain the values of n, α and β, respec-
tively.

The histogram in Figure 2.14 displays 1000 claim sizes simulated from
Wei2(0.5, 50), which has mean 100 and variance 50 000. The command used
for the simulation was

weibull2_0.5_50=rweibull(1000,0.5,50)

The sample mean and variance, and the minimum and maximum values that
were observed, were as follows:

sample from Wei2(0.5, 50): mean 94.80, variance 43283, min 0.000, max 3484.
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Figure 2.14. Histogram of sample simulated from a Weibull distribution with
parameters (version 2) α = 0.5, β = 50. There were three observations above
1500, namely 1517, 1725 and 3484.

Example 2.13 Suppose X ∼Wei(c, γ). We verify that Xγ ∼ Exp(c).
By (2.37) we have Pr(X ≤ x) = 1 − e−cxγ . Letting Y = Xγ yields

FY (y) = Pr(Y ≤ y) = Pr(Xγ ≤ y) = Pr(X ≤ y1/γ)

= 1 − e−c(y1/γ)γ = 1 − e−cy,

which is the distribution function of the Exp(c) distribution.

2.2.9 Burr distribution

The Burr family has three parameters, usually denoted α (> 0), λ (> 0) and
τ (> 0). The family of distributions is named after the American academic
statistician and quality control specialist I. W. Burr (1908–1989).

Notation X ∼ Burr(α, λ, τ).

The probability density function is given by

f (x) =
ατλαxτ−1

(λ + xτ)α+1
, x > 0. (2.40)

The distribution function is given by

F(x) = 1 −
(

λ

λ + xτ

)α
, x > 0. (2.41)
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The Pareto family of §2.2.7 is the two-parameter sub-family for the case τ = 1.
The Burr random variable is obtainable as a power function of a Pareto random
variable – if X ∼ Pa(α, λ) then Y = X1/τ ∼ Burr(α, λ, τ), or, equivalently, if
X ∼ Burr(α, λ, τ) then Xτ ∼ Pa(α, λ). For this reason, the Burr distribution is
sometimes called a “transformed Pareto” distribution.

The general moment E[Xr] exists only for r < ατ, and can be found easily
using the transformation to Pareto:

E[Xr] = E[Xτ(r/τ)] = E[Yr/τ],

where Y ∼ Pa(α, λ). Hence, using results for the Pareto distribution, we have

E[Xr] = Γ
(
α − r

τ

)
Γ

(
1 +

r
τ

)
λr/τ

Γ(α)
, 0 < r < ατ. (2.42)

The mean and variance can be obtained from (2.42) in particular cases for
which the parameter values satisfy ατ > 2. The reader can verify that, in the
case α = 6, λ = 20, τ = 0.5, we have E[X] = 40, E[X2] = 32 000 and
Var[X] = 30 400.

Figure 2.15 shows the probability density functions for three Burr(α, λ, τ)
distributions.
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Figure 2.15. Probability density functions of Burr(2, 1, 1) (solid line),
Burr(1, 1, 1) (dashed line) and Burr(1, 1, 2) (dotted line).
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Particular values of the distribution function are available from the basic R
package – as an illustration we find Pr(X ≤ 50) in the case X ∼ Burr(6, 20, 0.5)
by evaluating the distribution function directly. We use the explicit command

1-(20/(20+50^0.5))^6

which returns the value 0.8373898.

Simulation We can simulate an observation of a Burr(α, λ, τ) distribution in
R using the command

x = (lambda*(u^(-1/alpha) - 1))^(1/tau)

where lambda, alpha and tau contain the values of λ, α and τ,
respectively. The R object u contains an observation of a uniform
distribution on (0, 1), which is equivalent to taking the τth root of an
observation simulated from Pa(α, λ) as described earlier (and see the
note below).

The histogram in Figure 2.16 displays a sample of claim sizes (the 997 of
1000 which were less than 1000) simulated from Burr(6, 20, 0.5), which has
mean 40 and variance 30 400. The command used for the simulation was

burr_6_20_0.5_B
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Figure 2.16. Histogram of observations less than 1000 in a sample of size 1000
simulated from a Burr distribution with parameters α = 6, λ = 20, τ = 0.5. There
were three observations above 1000, namely 1337, 3011 and 3051.
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burr6_20_0.5=(20*(runif(1000)^(-1/6) - 1))^2

The sample mean and variance, and the minimum and maximum values that
were observed, were as follows:

sample from Burr(6, 20, 0.5): mean 40.49, variance 26779, min 0.000,
max 3051.

The probability density function (2.40) can be reparameterised (λ→ βτ) and
expressed as

ατ

β

(
x
β

)τ−1 1
[1 + (x/β)τ]α+1

,

revealing β = λ1/τ to be a scale parameter.

Note Using the facilities of the R add-on package actuar, we can reproduce
the results above. But first note that the parameterisation used by actuar is
different to that used above – the new parameterisation is Burr 2(a, b, c), where
a = α, b = τ and c = λ−1/τ. So, for Pr(X ≤ 50) in the case X ∼ Burr(6, 20, 0.5)
in the original parameterisation, we reparameterise and use the command
pburr(50,6,0.5,0.0025), which returns 0.8373898; a sample of 1000
simulated claim sizes from Burr(6, 20, 0.5) is likewise obtainable using the
command rburr(1000,6,0.5,0.0025).

2.2.10 Loggamma distribution

The loggamma family has two parameters, usually denoted α (> 0) and λ (> 0).

Notation X ∼ loggamma(α, λ).

The probability density function is given by

f (x) =
λα

Γ(α)
x−(λ+1)(log x)α−1, x > 1. (2.43)

It is important to note that the loggamma variable only assumes values greater
than 1 – this can give rise to complications and difficulties with the chosen
units in use. There is no scale parameter.

The name “loggamma distribution” arises from the fact that

X ∼ loggamma(α, λ)⇔ Y = log X ∼ gamma(α, λ). (2.44)

So, if X ∼ loggamma(α, λ) then log X has a gamma distribution with parame-
ters α and λ. The loggamma parameters α and λ are sometimes referred to as
the “shapelog” and “ratelog” parameters.
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The distribution function F(x) is given by

F(x) = Pr(X ≤ x) = Pr(eY ≤ x) = Pr(Y ≤ log x), (2.45)

where Y ∼ gamma(α, λ), and hence is expressible as an incomplete gamma
function.

The general moment E[Xr] exists for r < λ, and can be found easily using
the transformation to gamma, on noting X = eY , where Y ∼ gamma(α, λ):

E[Xr] = E[erY ] = MY (r),

where MY is the moment generating function of Y . Hence, using the relevant
result (2.21) for the gamma distribution, we have

E[Xr] =
(
1 − r

λ

)−α
, r < λ. (2.46)

Figure 2.17 shows the probability density functions for three loggamma
distributions.

Simulation A random sample of size n from a loggamma(α, λ) distribution
may be simulated in R using the command

sample = exp(rgamma(n, alpha, lambda))
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Figure 2.17. Probability density functions of loggamma(3.5, 1.9) (solid line),
loggamma(8, 4) (dashed line), loggamma(22, 10) (dotted line).



2.2 Distributions for claim sizes 53
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Figure 2.18. Histogram of observations less than 1000 in a sample of size 1000
simulated from a loggamma distribution with parameters α = 6, λ = 2. There
were three observations above 1000, namely 1197, 1506 and 42272.

where n, alpha and lambda contain the values of n, α and λ,
respectively.

The histogram in Figure 2.18 displays a sample of claim sizes (the 997 of
1000 which were less than 1000) simulated from loggamma(6, 2), which has
mean 64 but does not have finite moments of higher orders. The sample mean
and variance, and the minimum and maximum values that were observed, were
as follows:

sample from loggamma(6, 2): mean 91.45, variance 1795530, min 1.69, max
42272.

Note Particular values of the distribution function are available from the basic
R package – as an illustration, when X ∼ loggamma(3.5, 1.9) we can find
Pr(X ≤ 10) using the command pgamma(log(10),3.5,1.9), which returns
the value 0.7288797. Using the facilities of the R add-on package actuar

this result can be reproduced using the command plgamma(10,3.5,1.9).
Simulations from loggamma(α, λ) can also be carried out using the command
rlgamma(n, alpha, lambda).
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Table 2.3. Further tail probabilities

Pr(X > 5000) Pr(X > 10 000) Pr(X > 15 000)

Wei2(0.5, 500) 0.0423 0.0114 0.00418
Wei2(0.3, 107.985) 0.0424 0.0204 0.0124
Burr(2, 43691, 1.5) 0.0121 0.00175 0.000540
Burr(1.5, 500, 1) 0.0274 0.0104 0.00579
Burr(1, 5000, 1) 0.500 0.333 0.25
loggamma(5, 1.33545) 0.0117 0.00616 0.00419
loggamma(20, 3.42402) 0.0306 0.0114 0.00617

Example 2.14 In Table 2.3 we compare some more tail probabilities for
selected distributions. The two Weibull distributions have mean E[X] = 1000
and standard deviations 2240 and 5410, respectively. The first Burr has mean
1000 and standard deviation 1217. The second Burr has mean 1000 but does
not have a finite standard deviation. The third Burr has no finite moments.
The two loggamma distributions have mean 1000; the first one does not have
a finite standard deviation; the second one has approximate standard devia-
tion 6380 (most values given are rounded). The table again illustrates the wide
range of behaviours we can capture with these distributions.

2.3 Mixture distributions

Mixture distributions

(a) enable us to include in models for claim amounts the variability amongst
risks in a portfolio (that is, they allow us to model heterogeneity of risks);

(b) provide a source of further fat-tailed loss distributions; and
(c) shed further light on some distributions we have already met.

Suppose we model a policyholder’s claim sizes X using a conditional dis-
tribution X | θ, where θ can be thought of as a “risk parameter” for that
policyholder. Policyholders represent a variety of risks and have different risk
parameters, and we model the variation across policyholders by regarding the
various θs as being independent realisations of a random variable with known
probability distribution. This gives the joint density, which we can write as
fX,θ(x, θ) = fθ(θ) fX|θ(x | θ).

In Bayesian work, the distribution with density fθ(θ) is called the “prior
distribution”, and, given data x = (x1, . . . , xn), we are mostly interested in
estimating quantities such as E[θ | x].
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Here we are interested in the overall distribution of X – the distribution of
claim amounts averaged over the portfolio with respect to the chosen “prior”.
The probability density function of this distribution is given as

fX(x) =
∫

fX,θ(x, θ)dθ =
∫

fθ(θ) fX|θ(x | θ)dθ, (2.47)

and the distribution is usually called the marginal distribution of X. Here
we call it a “mixture distribution” with respect to the conditional claim
size distribution and the “prior” distribution of θ, here called the “mixing
distribution”.

To illustrate this, consider claim sizes which have exponential distributions,
that is suppose X | λ ∼ Exp(λ). Let us suppose that the variation in λ across the
portfolio of risks can be modelled using a gamma(α, β) distribution with known
parameters, and let us use this to average across the risks. We are considering
a “mixture of exponentials with a gamma mixing distributon”. By (2.47) the
density function of the mixture distribution fX(x) is found as follows:

fX(x) =
∫

fX,λ(x, λ) dλ

=

∫
fλ(λ) fX|λ(x | λ) dλ

=

∫ ∞

0

βα

Γ(α)
λα−1 e−βλλe−λx dλ

=
βα

Γ(α)
Γ(α + 1)

(β + x)α+1
×
∫ ∞

0
h(λ)dλ,

where h(λ) is the density function of λ ∼ gamma(α+1, β+ x). The integral has
value 1, and so

fX(x) =
αβα

(β + x)α+1
,

which, from (2.30), is the density of a Pa(α, β) distribution.
This provides an illuminating view of the Pareto distribution – it arises as a

mixture of exponentials where the mixing distribution is gamma. The resulting
Pareto distribution has fatter tails than the original exponential distribution.

Certain properties of the X ∼ Pa(α, β) distribution can be established (or ver-
ified) using the mixture structure. For example, we can verify the expressions
for E[X] and E[X2] (see (2.32)) as follows. Using the conditional expectation
result E

[
E[X | Y]

]
= E[X], and noting that X | λ ∼ Exp(λ) with E[X | λ] = 1/λ,
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we have, for α > 1,

E[X] = E
[
E[X | λ]

]
= E[1/λ] =

∫ ∞

0

βα

Γ(α)
1
λ
λα−1 e−βλ dλ

=
β

α − 1
×
∫ ∞

0
h(λ)dλ,

where h(λ) is the density function of λ ∼ gamma(α − 1, β). Hence

E[X] =
β

α − 1
.

Similarly, noting that E[X2 | λ] = 2/λ2, we have, for α > 2,

E[X2] = E
[
E[X2 | λ]

]
= E[2/λ2] =

∫ ∞

0

βα

Γ(α)
2
λ2
λα−1 e−βλ dλ

=
2β2

(α − 1)(α − 2)
×
∫ ∞

0
h(λ)dλ,

where h(λ) is the density function of λ ∼ gamma(α − 2, β). Hence

E[X2] =
2β2

(α − 1)(α − 2)
.

Notes

(i) The “mixture of exponentials with a gamma mixing distribution” can be
generalised by adopting a gamma model for the claim sizes instead of an
exponential one, that is taking X | λ ∼ gamma(δ, λ), with δ known, as
the claim size model, and with a gamma(α, β) mixing distribution for λ
as before. This gives a mixture distribution called a generalised Pareto
distribution, a three-parameter distribution with density function

f (x) =
Γ(α + δ)
Γ(α)Γ(δ)

βαxδ−1

(β + x)α+δ
, x > 0.

The Burr distribution also arises as a mixture distribution for which the
mixing distribution is a gamma distribution – see Exercise 2.20.

(ii) The Pareto, generalised Pareto and Burr distributions are all special cases
of a family of distributions known as the transformed beta family.

It is worth noting here that the concept of mixture distributions applies to
models for claim numbers as well. This again enables us to allow for variability
in the risks across a portfolio; that is, to model the heterogeneity of the num-
bers of claims occurring for different risks. Two situations stand out as being
especially interesting.
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(1) N | λ ∼ Poi(λ) with mixing distribution gamma(α, β).
The probability mass function of the mixture distribution is found as

follows. For k = 0, 1, 2, . . ., we have

Pr(N = k) =
∫

fλ(λ) Pr(N = k | λ) dλ

=

∫ ∞

0

βα

Γ(α)
λα−1 e−βλ e−λ

λk

k!
dλ

=
Γ(α + k)
Γ(α)Γ(1 + k)

βα

(β + 1)α+k
×
∫ ∞

0
h(λ)dλ,

where h(λ) is the probability density function of λ ∼ gamma(α + k, β + 1).
Hence

Pr(N = k) =
Γ(α + k)
Γ(1 + k)Γ(α)

(
β

β + 1

)α (
1

β + 1

)k

, k = 0, 1, 2, . . . ,

which is the probability mass function of a nb (α, β/(β + 1)) distribution.
This provides an illuminating view of the negative binomial distribu-
tion – it arises as a mixture of Poissons where the mixing distribution
is gamma. We will see this again in the context of the risk models in
Chapter 3.

Noting E[N | λ] = λ we have E[N] = E[λ] = α/β (= α q/p, where p =
β/(β + 1)).

(2) N | p ∼ bi(n, p) with mixing distribution with density function

fp(p) =
Γ(α + β)
Γ(α)Γ(β)

pα−1(1 − p)β−1, 0 < p < 1, (α > 0, β > 0).

This mixing distribution is a widely used model for proportions, probabil-
ities and some ratios. It is called the beta distribution with parameters α
and β – we denote the distribution beta(α, β). The distribution has mean
α/(α + β) and variance αβ/[(α + β)2(α + β + 1)].

The probability mass function of the mixture distribution is found as
follows. For k = 0, 1, . . . , n we have

Pr(N = k) =
∫

fp(p) Pr(N = k | p) dp

=

∫ 1

0

Γ(α + β)
Γ(α)Γ(β)

pα−1 (1 − p)β−1 n!
k!(n − k)!

pk (1 − p)n−k dp

=
n! Γ(α + β) Γ(α + k) Γ(β + n − k)
k! (n − k)!Γ(α) Γ(β) Γ(α + β + n)

×
∫ 1

0
h(p)dp,
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where h(p) is the density function of P ∼ beta(α + k, β + n − k). Hence we
have

Pr(N = k) =
n! Γ(α + β) Γ(α + k) Γ(β + n − k)
k! (n − k)!Γ(α) Γ(β) Γ(α + β + n)

, k = 0, 1, 2, . . . , n.

This mixture distribution is called the beta-binomial distribution.

Noting E[N | p] = np, we have E[N] = E[np] = nα/(α + β).

2.4 Fitting models to claim-number and claim-size data

This section is concerned with modelling claim numbers and claim sizes; that
is, fitting probability distributions from selected families to sets of data con-
sisting of observed claim numbers or claim sizes. The family may be chosen
after an exploratory analysis of the data set – looking at numerical summaries
such as mean, median, mode, standard deviation (or variance), skewness, kur-
tosis and plots such as the empirical distribution function. Of course, one may
want to fit a distribution from each of several families to provide comparisons
among the fitted models, comparisons with previous work and choice.

To fit a parametric model, we have to calculate estimates of the unknown
parameters of the probability distribution. Various criteria are available, includ-
ing the method of moments, the method of maximum likelihood, the method of
percentiles and the method of minimum distance.

The method of moments leads to parameter estimates by simply matching the
moments of the model, E[X], E[X2], E[X3], . . . , in turn to the required num-
ber of corresponding sample moments calculated from the data x1, x2, . . . , xn,
where n is the number of observations available. The sample moments are
simply

1
n

n∑
i=1

xi,
1
n

n∑
i=1

x2
i ,

1
n

n∑
i=1

x3
i , . . . .

It is often more convenient to match the mean and central moments, in
particular matching E[X] to the sample mean x and Var[X] to the sample
variance

s2 =
1

n − 1

n∑
i=1

(xi − x)2.

An estimate produced using the method of moments is called an MME, and
the MME of a parameter θ, say, is usually denoted θ̃. The approach is usually
relatively easy to implement, but the estimates it produces tend to have high
standard errors (that is, they are imprecise) – in some cases, MMEs can be
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very poor and unreliable. However, the method can be used if other methods
are unavailable, or to provide starting values for other methods which require
them (or at least benefit from having them).

The method of maximum likelihood is the most widely used method for
parameter estimation. The estimates it produces are those values of the param-
eters which give the maximum value attainable by the likelihood function,
denoted L, which is the joint probability mass or density function for the data
we have (under the chosen parametric distribution), regarded as a function of
the unknown parameters. In practice, it is often easier to maximise the log-
likelihood function, which is the logarithm of the likelihood function, rather
than the likelihood itself. An estimate produced using the method of max-
imum likelihood is called an MLE, and the MLE of a parameter θ, say, is
denoted θ̂. MLEs have many desirable theoretical properties, especially in the
case of large samples.

In some simple cases we can derive MLE(s) analytically as explicit functions
of summaries of the data. Thus, suppose our data consist of a random sample
x1, x2, . . . , xn from a parametric distribution whose parameter(s) we want to
estimate. Some straightforward cases include the following:

• the MLE of λ for a Poi(λ) distribution is the sample mean, that is λ̂ = x ;
• the MLE of λ for an Exp(λ) distribution is the reciprocal of the sample mean,

that is λ̂ = 1/ x ;
• the MLEs of μ and σ2 for a N(μ, σ2) distribution are μ̂ = x and

σ̂2 =
1
n

n∑
i=1

(xi − x)2;

• the MLEs μ and σ for a lognormal(μ, σ) distribution are obtained from the
yi = log xi data as μ̂ = y and

σ̂ =

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
i=1

(yi − y)2

⎞⎟⎟⎟⎟⎟⎠1/2

;

• the MLE of α for a Pa(α, λ∗) distribution, with the parameter value λ∗

known, is given by

α̂ =
n

n∑
i=1

log(1 + xi/λ
∗)

;

• the MLE of β for a Wei2(α∗, β) distribution, with the parameter value α∗

known, is given by
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β̂ =

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

xα
∗

i /n

⎞⎟⎟⎟⎟⎟⎠1/α∗

.

In other cases we find that the equations satisfied by the MLEs cannot be
solved explicitly – in such cases we find the MLEs by solving equations or
maximising likelihoods (or log-likelihoods) by numerical methods.

The R command fitdistr is available for fitting the following dis-
tributions (among others) using the method maximum likelihood: Poisson,
geometric, negative binomial, exponential, gamma, lognormal, normal and
Weibull. The command is implemented in a package called “MASS” – this
package should be attached to the workspace at the start of a session using
the command library(MASS). The command does not support the binomial,
Pareto, Burr or loggamma distributions. We will see examples of the use of
fitdistr in the following sections.

The method of percentiles is based on matching a set of particular per-
centiles of the distribution to be fitted with those of the sample. For example,
with three parameters to be estimated, we could match the lower quartile, the
median and the upper quartile. To use the method, the distribution function of
the distribution to be fitted must have an explicit, tractable form.

The method of minimum distance minimises a particular “distance function”
between the empirical distribution and the chosen parametric distribution. One
such function is the “Cramér–von Mises distance function”, which is the sum
of the squared differences between the empirical distribution function of the
data (at the n data values) and the theoretical distribution function of the chosen
distribution. We will use this approach (which is implemented in the R add-on
package actuar using the command mde) in one case, for illustration.

Unless otherwise stated, we will estimate parameters of fitted distributions
using maximum likelihood estimation.

2.4.1 Fitting models to claim numbers

We illustrate using a data set consisting of the numbers of claims in one year on
a sample of 10 000 policies from a general insurance portfolio. The numbers
of claims range from 0 to 5 and are summarised in the frequency distribution
in Table 2.4. The table shows that, for example, 115 policies had exactly two
claims each.

Summary measures for the sample of 10 000 observations of claim numbers
are as follows:

mean 0.1161, variance 0.1420, standard deviation 0.3769, min 0, max 5.

Note that the sample variance is larger than the mean.
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Table 2.4. Frequency distribution of claim numbers

No. of claims r 0 1 2 3 4 5 ≥ 6

No. of policies fr 9002 862 115 16 4 1 0

We will fit a Poisson distribution (Poi(λ)), a geometric distribution ( geo(p))
and a negative binomial distribution (nb(k, p)) to the data and compare the
results.

Poisson fit

MLE λ̂ = r =

∑5
j=0 r fr

10000
= 0.1161 (= MME λ̃),

where r and fr are as in Table 2.4.
The fitted distribution can then be calculated using the fitted frequency for r

claims, f̂r = 10 000 × Pr(N = r), where N ∼ Poi(0.1161).

The whole operation can be conveniently carried out in R as follows:

library(MASS)

fitp=fitdistr(nclaims, "poisson")

lam=fitp$estimate[1]

r=0:6

fittedp=10000*dpois(r, lam)

The first line enables the command fitdistr, which uses the method of max-
imum likelihood to fit a distribution from the specified family to the data set
of 10 000 claim numbers, here called nclaims. The object fitp holds the
estimate λ̂ (and its standard error). The estimate is made available as object
lam using the command fitp$estimate[1]. The distribution is tabulated
for r = 0, 1, . . . , 6 so we set a corresponding vector r. The values of the fitted
probability mass function are then produced by the command dpois(r,lam);
we calculate the fitted frequencies using 10000*dpois(r,lam). The resulting
frequencies are shown in Table 2.5.

Note Although not required here, one may wish to define fittedp[7] sep-
arately to cover the tail Pr(N ≥ 6) and ensure that the sum of fitted frequencies
is exactly 10 000.

Geometric fit

MLE p̂ = 1/(1 + r) = 0.8960 (= MME p̃).
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Table 2.5. Frequency distributions of observed and fitted claim numbers

No. of claims Frequency Poisson Geometric Neg. binomial

0 9002 8903.9 8959.8 9002.6
1 862 1033.7 932.0 858.8
2 115 60.0 97.0 117.5
3 16 2.3 10.1 17.7
4 4 0.1 1.0 2.8
5 1 0.0 0.1 0.5

≥ 6 0 0.0 0.0 0.1

10 000 10 000 10 000 10 000

The fitting was performed using R as follows:

fitg=fitdistr(nclaims,"geometric")

p=fitg$estimate[1]

r=0:6

fittedg=10000*dgeom(r,p)

The resulting frequencies are shown in Table 2.5.

Negative binomial fit

MLEs k̂ = 0.5349 , p̂ = 0.8217.

The fitting was performed using R as follows:

fitnb=fitdistr(nclaims,"negative binomial")

p1=fitnb$estimate[1]

p2=fitnb$estimate[2]

p3=p1/(p1+p2)

r=0:6

fittednb=10000*dnbinom(r,p1,p3)

The command fitdistr applied to the negative binomial uses the parame-
terisation k and μ, where μ = k(1 − p)/p. Line 4 in the sequence of commands
above is the calculation of p using p = k/(k + μ), which we require for the use
of dnbinom(n,k,p). The resulting frequencies are shown in Table 2.5.

Note The MMEs in this case are the solutions of E[N] = (1 − p)/p = r =
0.1161 and Var[N] = (1 − p)/p2 = sample variance = 0.142035, which imme-
diately give p̃ = 0.1161/0.142035 = 0.8174 and then k̃ = 0.5197. In this case,
the MMEs are very close to the MLEs.
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We can assess how well the fitted distributions reflect the distribution of the
data in various ways. We should, of course, examine and compare the tables of
frequencies and, if appropriate, plot and compare empirical distribution func-
tions. More formally, we can perform certain statistical tests. Here we will
use the Pearson chi-square goodness-of-fit criterion. In this approach we con-
struct the test statistic χ2 =

∑
(O − E)2/E, where O is the observed frequency

in a cell in the frequency table and E is the fitted or expected frequency (the
frequency expected in that cell under the fitted model), and where we sum
over all usable cells. A cell is deemed to be usable provided the expected fre-
quency in it is not too small – rules of thumb for deciding this include the
over-conservative “all cells must have E ≥ 5” and “all cells must have E ≥ 1,
and not more than 20% of the cells should have E < 5”. Neighbouring cells are
combined if necessary, which is often the case in the right tail of a positively
skewed distribution.

The value of the test statistic is then evaluated in one of two ways.

(1) We convert it to a P-value, which is a measure of the strength of the evi-
dence against the hypothesis that the data do follow the fitted distribution.
If the P-value is small enough, we conclude that the data do not follow the
fitted distribution – we say “the fitted distribution does not provide a good
fit to the data” (and quote the P-value in support of this conclusion).

(2) We compare it with values in published tables of the distribution function
of the appropriate χ2 distribution, and if the value of the statistic is high
enough to be in a tail of specified size of this reference distribution, we
conclude that the fitted distribution does not provide a good fit to the data.

The appropriate χ2 reference distribution depends on the number of cells we
used when we summed terms to calculate the test statistic. For example, if we
estimate one parameter in the fitting process and then use four cells in our cal-
culations, the appropriate χ2 reference distribution has parameter (“degrees of
freedom”) (df) 2; if we estimate two parameters in the fitting process and then
use six cells in our calculations, the appropriate χ2 reference distribution has
three degrees of freedom. The P-values can be found in R by using the com-
mand 1-pchisq(c, d), where c and d contain the values of the χ2 statistic
and the appropriate degrees of freedom, respectively.

Examining Table 2.5, we see empirically that the fit of the Poisson distribu-
tion is poor – apart from the dominating cell for r = 0, the frequencies expected
under the fitted model are very far away from the observed frequencies; in par-
ticular, the Poisson model totally fails to reproduce the tail of the observed
data. The observed data include 21 policies with three or more claims, while
the Poisson fit manages an expected frequency of only 2.4 – the tail of the
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fitted Poisson is much too light. The geometric fit is better, but, like the Pois-
son, the geometric is a member of a single-parameter family, so its distribution
is not very flexible, and its ability to fit an observed frequency distribution is
restricted. The negative binomial fit is much better – in fact, it is very good
indeed for these particular data – even the tail has been picked up very suc-
cessfully. The negative binomial distribution is a member of a two-parameter
family, and this additional parameter gives the family much more flexibility
than the others considered. The distribution also allows for “variance > mean”.
The fact that it is a generalistion of the geometric distribution is reflected in its
much better fit compared to the geometric.

Table 2.6 shows various quantities for each of the distributions fitted to
the data. For each distribution we present the value of the log-likelihood of
the data achieved using the maximum likelihood estimates, say max(log L);
for convenience we actually present −max(log L), for which small values are
desirable. Since the geometric family is a (one-parameter) sub-family of the
(two-parameter) negative binomial family, the models “N ∼ geo(p)” and
“N ∼ nb(k, p)” are described as being nested, and the latter will fit the data
better than the former. We note that the value of −max(log L) for the negative
binomial fit is lower than that for the geometric fit. A standard result for nested
models states that the reduction in −2 log L in this case (where we are com-
paring one nested model with a model with one additional parameter) has a χ2

distribution with one degree of freedom; such a distribution has an upper 5%
point of approximately 3.84. In consequence, many statisticians regard a reduc-
tion of at least 2 in −log L as the minimum improvement required to justify the
inclusion of an extra parameter in the preferred model.

We examine the evidence – the values of the log-likelihoods, the chi-square
test statistics and the P-values for the three fits – and make a judgement as to
our preferred model. Here the evidence supports the conclusions that the nega-
tive binomial distribution fits the data well, whereas the Poisson and geometric
distributions do not.

Table 2.6. Summary of Poisson, geometric and negative binomial fits

Poisson Geometric Neg. binomial

No. of parameters 1 1 2
−max(log(L)) 3786.9 3725.9 3717.0
No. cells used 4 4 5

(r = 0, 1, 2,≥ 3) (r = 0, 1, 2,≥ 3) (r = 0, 1, 2, 3,≥ 4)
χ2 (df) 224.0 (2) 17.4 (2) 0.981 (2)
P-value from R 0.00 0.00017 (< 0.02%) 0.61
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In a fuller analysis we would also examine the estimated standard errors of
the parameter estimates; in particular, we would note whether the estimate of
the additional parameter in the negative binomial fit is significantly different
from zero – in this case it is, and this supports the inclusion of the extra param-
eter in the model. The reader may want to extend the account given above by
finding the standard errors of fitted parameters – by exploring further the fitting
procedures and output from R and/or analytically by explicitly evaluating the
second derivatives of log-likelihoods at the MLEs and using asymptotic the-
ory (see, for example, sect. 7.8 of DeGroot and Schervish (2002) or chap. 4 of
Morgan (2000)).

Formally, we reject the hypothesis that the number of claims has a Poisson
(or geometric) distribution. We conclude that these distributions do not provide
an adequate description of the variation in the claim numbers that we have
observed.

We conclude that it is certainly worth including the additional parameter and
fitting the negative binomial distribution – our preferred model for the claim
numbers is the negative binomial.

2.4.2 Fitting models to claim sizes

We illustrate using a data set consisting of a sample of 140 claim sizes (settled
amounts paid, after excess, in pounds sterling) arising from claims on a general
insurance portfolio. The claims range from £8 to £34 975, and are given in
Table 2.7.

Half of the claim sizes are in the range (8, 1114), but there are many quite
large claims and a few very large ones indeed. The histograms in Figure 2.19
give a good visual summary of the data; Figure 2.19(b) shows the data set after
removing the four largest claims.

Summary measures for the sample of claims are as follows:

mean 2939.3, standard deviation 5000.2, min 8, max 34,975, sample coefficient
of skewness 3.74, sample coefficient of kurtosis 19.67.

The high positive skewness of the sample reflects the fact that the standard
deviation is large compared to the mean, and this suggests in turn that the
exponential distribution (for which mean = standard deviation) may not fit the
data well. We note also the very high value of the kurtosis coefficient.

Examining the tails, we note that nine claims (6.4%) are greater than £10 000
and three (2.1%) are greater than £20 000.

We fit the following loss distributions one by one (using various computa-
tional methods) to the set of 140 claim sizes: exponential, gamma, lognormal,
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Table 2.7. Sample of 140 claim sizes

8 42 72 103 108 117 120 122
134 150 178 191 207 215 228 231
266 275 286 311 320 321 323 350
358 380 411 422 448 486 511 514
532 559 560 564 582 593 605 612
622 634 649 652 666 678 701 722
730 765 770 778 796 815 823 844
865 876 889 902 911 935 960 993

1001 1023 1087 1092 1095 1114 1148 1196
1228 1288 1351 1396 1432 1476 1504 1531
1577 1599 1609 1656 1687 1742 1772 1804
1832 1919 1976 2030 2077 2114 2162 2215
2265 2289 2390 2426 2443 2500 2572 2604
2630 2723 2827 2969 3116 3332 3706 4103
4161 4414 4673 4870 5161 5253 5447 5410
5622 5801 5989 6184 6256 6742 7111 7555
8319 8633 9413 10216 11899 12829 13821 14433

19832 22421 27641 34975
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Figure 2.19. Histograms of claim size data: (a) histogram of the full data set; (b)
histogram of all observations less than 15 000 (that is, omitting four observations,
namely 19832, 22421, 27641 and 34975).

Pareto, Weibull, Burr and loggamma. In each case we will then construct a
grouped frequency distribution with the same ten cells, basing this on a set
of equi-probable groups determined by the fitted exponential distribution. For
each fit we present two informative displays: (1) a histogram with the fitted
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density function superimposed and (2) a graph of the “ecdf”, the empirical
(cumulative) distribution function of the sample, with the “cdf”, the (cumula-
tive) distribution function of the fitted distribution superimposed. Recall that
the empirical distribution function F̂n based on a sample x1, . . . , xn is given by

F̂n(x) =
1
n

n∑
i=1

1(xi ≤ x) =
#{i : xi ≤ x}

n
, x ∈ R,

where 1(xi ≤ x) is unity if xi ≤ x and is zero otherwise. At the end of this
chapter we present a set of further revealing displays in the form of quantile–
quantile plots (Q–Q plots); in each plot the quantiles of the sample are plotted
against the corresponding values calculated for the fitted distribution. All of
these displays assist us in exploring the data – we can compare the distribution
of the data with each of the fitted distributions in turn and come to an informal
view on the goodness-of-fit of each one.

In each case we again present the value of −max(log L), the negative of the
log-likelihood of the data achieved using the maximum likelihood estimates,
for which small values are desirable.

We compare the observed frequencies with each of the seven sets of
expected frequencies formally by performing two distribution-free tests: (a)
a chi-square goodness-of-fit test and (b) a Kolmogorov–Smirnov (K–S) test.
In both cases the null hypothesis that the sample comes from a specified distri-
bution is contrasted with a general (“not so”) alternative. The K–S test statistic
is the maximum difference between the values of the ecdf of the sample and
the cdf of the fully specified fitted distribution.

Note The R command used for a K–S test of the null hypothesis that the
sample clsize comes from a distribution from the family dist is

ks.test(clsize, "pdist", p1, p2, ...)

where p1, p2, ... are the parameters of the fitted distribution from the fam-
ily dist. The command returns the value of the test statistic and the P-value
for the sample.

Exponential: X ∼ Exp(λ)

MLE : λ̂ = 1/x = 1/2939.286 = 0.0003402187.

We will use ten groups whose boundaries {upbd j} are determined using
Pr(X ≤ upbd j) = j/10, j = 1, 2, . . . , 9. By (2.13) we have Pr(X ≤ x) =

1 − exp(−λx), which we estimate by 1 − exp(−λ̂x ), giving

upbd j = −
1

λ̂
log(1 − j/10).
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Table 2.8. Frequency distributions for observed and fitted
claim sizes for exponential, gamma and lognormal fits

Class interval O E (Exp) E (gamma) E (lognormal)

0–310 19 14 24.6 22.3
310–656 25 14 15.3 23.3
656–1048 22 14 13.3 18.2
1048–1501 12 14 12.2 14.6
1501–2037 14 14 11.7 12.0
2037–2693 13 14 11.3 10.1
2693–3539 5 14 11.3 8.8
3539–4731 5 14 11.5 8.0
4731–6768 11 14 12.2 7.8
>6768 14 14 16.6 14.9

Table 2.9. Summary of exponential, gamma and lognormal fits

Exponential Gamma Lognormal

−max(log(L)) 1258.0 1250.6 1237.7
χ2 (df) 27.6 (8) 21.54 (7) 7.17 (7)
P-value 0.00056 (< 0.1%) 0.0030 (0.3%) 0.411
K–S statistic 0.185 0.125 0.049
P-value 0.000144 (<0.02%) 0.025 (2.5%) 0.897

With the claim sizes held in the R object clsize, we can find the cell bound-
aries easily and in a general way, which we will use later, with the quantile
command as follows:

j=1:9

upbd=qexp(j/10, 1/mean(clsize))

This produces the (rounded) cell boundaries as 310, 656, 1048, 1501, 2037,
2693, 3539, 4731, 6768, and the resulting observed frequencies are given in
the second column of Table 2.8.

The expected frequencies under the fitted exponential distribution are given
in the third column of Table 2.8, and the summary values of the exponential fit
are given in the second column of Table 2.9. The fit is poor – we see that the
model under-fits the data for claims up to about £1000 (that is, gives expected
frequencies which are lower than the observed frequencies) and over-fits for
claims in the approximate range £2500 to £5000. In addition, using the fitted
model X ∼ Exp(0.00034022) we find Pr(X > 10000) = exp(−3.4022) = 0.033
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and Pr(X > 20000) = exp(−6.8044) = 0.0011. The fitted exponential model
gives only 3.3% of claims greater than £10 000 and only 0.11% greater than
£20 000 – the sample contains 6.4% and 2.1%, respectively.

Formally we reject the hypothesis that the number of claims has an expo-
nential distribution – we conclude that the exponential distribution does not
provide an adequate description of the variation in the claim sizes that we have
observed.

Figure 2.20 shows a histogram of the claim sizes (excluding the four largest
and with more smoothing (combined cells) above the value 7000) with the fit-
ted exponential density superimposed – the unsatisfactory under-fitting and
over-fitting mentioned above is clear. The figure also shows the empirical
distribution function (ecdf) of the whole sample of 140 claim sizes with the
distribution function (cdf) of the fitted exponential superimposed. This display
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Figure 2.20. Histogram of (136) claim sizes with fitted exponential distribution
added (a); ecdf of (all 140) claim sizes with cdf of fitted exponential added (dashed
line) (b).
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is very effective in highlighting the poor fit in the tail of the distribution – the
fitted exponential reaches values close to unity at lower claim sizes than is the
case for the observed claim sizes, that is the fitted tail is too light/thin.

Gamma: X ∼ gamma(α, λ)
The maximum likelihood estimation for this distribution is most conve-
niently performed analytically under a simple reparameterisation, namely
using parameters α and μ, where μ = E[X] = α/λ. The MLEs of α and μ

can be shown to satisfy the following:

μ̂ = x,

and α̂ is the value of α which maximises the following log-likelihood
expression:

�n(α) = nα(logα − log x − 1) + (α − 1)
∑

log xi − n log Γ(α),

where n is the sample size. The optimisation can be carried out in many ways:
in R using the non-linear optimisation procedures nlm or optim, by computer
search, and in mathematics computer packages. When α̂ has been found, we
can find λ̂ from the relation λ̂ = α̂/̂μ, this being justified using the “invariance
property” of MLEs (which states that, if θ̂ is the MLE of θ then h(̂θ) is the MLE
of h(θ)).

Here we have μ̂ = x = 2939.286, and, noting that
∑

log xi = 995.0292, we
conduct a computer search to find the value of α that maximises

�n(α) = 140α(logα − 8.985922) + 995.0292(α − 1) − 140 log Γ(α).

The maximising value of this function is found to be α̂ = 0.6893, from which
we find λ̂ = 0.6893/2939.286 = 0.0002345.

Notes

(1) Using nlm in R with any reasonable starting value returns α̂ = 0.68935.
(2) For interest, the MMEs are α̃ = 0.34554, λ̃ = 0.00011756.

Using the upper cell boundaries determined above and held in the R vec-
tor upbd, we can find the frequencies in the cells under the fitted gamma
distribution from the cumulative frequencies returned by the command

140*pgamma(upbd,0.6893,0.0002345)

The cell frequencies are shown in the fourth column of Table 2.8, and the
summary values of the gamma fit are given in Table 2.9. The (two-parameter)
gamma family includes the (one-parameter) exponential family as a special



2.4 Fitting models to claim-number and claim-size data 71
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Figure 2.21. Histogram of (136) claim sizes with fitted exponential (solid line)
and gamma (dashed line) distributions added (a); ecdf of (all 140) claim sizes
with cdf of fitted gamma added (dashed line) (b).

case (the models are nested), but the gamma fit is again poor – we see that
the model under-fits the data for claims between about £300 and £1000 and
over-fits for claims between about £2500 and £5000.

Formally, we reject the hypothesis that the claim sizes have a gamma distri-
bution – we conclude that the gamma distribution does not provide an adequate
description of the variation in the claim sizes that we have observed.

Figure 2.21 shows the histogram for the claim sizes (excluding the four
largest) with the fitted gamma density added to that of the fitted exponen-
tial – the unsatisfactory nature of the fit is clear. The figure also shows
the ecdf of the whole sample of 140 claim sizes with the cdf of the fitted
gamma superimposed. This display highlights the poor fit in the tails of the
distributions.

Note For illustration, we also fit a gamma distribution using another method
of parameter estimation, namely the method of minimum distance, which can
be implemented using the actuar command mde. To avoid problems with the
workings of the optimisation routine, it has been found that using the logs of
the parameters is more reliable in some cases, and we adopt this approach.
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First we define a function based on the logged parameters which will produce
a gamma cdf and be acceptable to mde, and then specify a set of starting values.
Then we carry out the minimisation of the Cramér–von Mises distance between
the ecdf and the gamma cdf. (Note that + at the beginning of a line is the
continuation prompt in R.)

pgammalog=function(x,logshape,lograte)

+ pgamma(x,shape=exp(logshape),rate=exp(lograte))

mdefit=mde(clsize,pgammalog,start=list(logshape=

+ log(0.6),lograte=log(0.0002)),measure="CvM")

exp(mdefit$estimate[1])

0.8377546

exp(mdefit$estimate[2])

0.0004142281

The fitted distribution is gamma(0.8378, 0.0004142).

Lognormal: X ∼ lognormal(μ, σ)
Before fitting a lognormal distribution, it is instructive to view a display of
the logged data – see Figure 2.22. The display shows that the logged claim
sizes have a distribution which may be similar to a normal distribution but
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Figure 2.22. Histogram (a) and normal quantile–quantile plot (b) of the log(claim
sizes).
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with a modest negative skew, and hence suggests that the claim sizes may be
modelled quite well by a lognormal distribution.

Noting that Y = log X ∼ N(μ, σ2) we can find the MLEs of μ and σ directly
from the logged data as the sample mean and standard deviation of the log(xi)
values: we find μ̂ = 7.1074 and σ̂ = 1.3748.

Notes

(1) For interest, we also fit the distribution using the R command fitdistr

as follows:

fitln=fitdistr(clsize,"lognormal")

p1=fitln$estimate[1]

p2=fitln$estimate[2]

This gives μ̂ = p1 = 7.1074 and σ̂ = p2 = 1.3699.
(2) The MMEs are μ̃ = 7.3062 and σ̃ = 1.1659.

The fitted cell frequencies come from the cumulative frequencies returned
by the command

140*plnorm(upbd,mean(log(clsize)), sd(log(clsize)))

and are shown in Table 2.8. The summary of the lognormal fit is given in
Table 2.9. The fit is very good indeed – we accept the hypothesis that the
lognormal distribution provides an adequate description of the variation in the
claim sizes that we have observed.

Figure 2.23 shows the histogram for the claim sizes (excluding the four
largest) with the fitted lognormal density superimposed. The figure also shows
the ecdf of the whole sample of 140 claim sizes with the cdf of the fitted log-
normal superimposed. This display highlights the good fit of the lognormal
distribution.

Pareto: X ∼ Pa(α, λ)
The log-likelihood for this distribution is given by

�n(α, λ) = n logα + nα log λ − (α + 1)
∑

log(λ + xi),

and the MLEs therefore satisfy the equations

α̂ =
n∑

log
(
1 + xi/̂λ

) and
nα̂

λ̂
− (α̂ + 1)

∑(
1

λ̂ + xi

)
= 0,

which must be solved by numerical methods (and see Exercise 2.21).
We will find the MLEs by maximising the log-likelihood in R; we need

starting values, which we take from the MMEs, which are α̃ = 3.0560 and
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Figure 2.23. Histogram of (136) claim sizes with fitted lognormal distribution
added (a); ecdf of (all 140) claim sizes with cdf of fitted lognormal added (dashed
line) (b).

λ̃ = 6043.1. The R function nlm is a minimisation procedure, so the negative of
the log-likelihood function is declared (as a function of a vector x of length 2)
as follows:

fp = function(x){

+ -(140*log(x[1]) + 140*x[1]*log(x[2])

+ - (x[1]+1)*sum(log(x[2]+clsize))) }

(Note that + at the beginning of a line is the continuation prompt in R.)
With starting values α = 3, λ = 6000, we achieve the maximisation of the

log-likelihood using the command nlm(fp,c(3,6000)), which returns the
MLEs α̂ = 1.9870 and λ̂ = 3074.5.

The fitted cell frequencies come from the cumulative frequencies returned
by the actuar command 140*ppareto(upbd,1.987,3075) and are shown
in Table 2.10. The summary of the Pareto fit is given in Table 2.11. The fit is
again very good – we accept the hypothesis that the Pareto distribution pro-
vides an adequate description of the variation in the claim sizes that we have
observed.

Figure 2.24 shows the histogram for the claim sizes (excluding the four
largest) with the fitted Pareto density superimposed. The figure also shows
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Table 2.10. Frequency distributions for observed and fitted claim sizes for
Pareto, Weibull, Burr and loggamma fits

Class interval O E (Pareto) E (Weibull) E (Burr) E (loggamma)

0–310 19 24.3 26.8 21.8 24.2
310–656 25 20.3 16.9 22.2 25.5
656–1048 22 17.2 14.2 19.0 18.2
1048–1501 12 14.6 12.6 15.7 13.7
1501–2037 14 12.6 11.6 13.0 10.8
2037–2693 13 10.9 10.9 10.7 8.9
2693–3539 5 9.6 10.4 9.0 7.7
3539–4731 5 8.6 10.3 7.8 7.0
4731–6768 11 8.1 10.7 7.2 6.9
>6768 14 13.9 15.7 13.6 17.1

Table 2.11. Summary of Pareto, Weibull, Burr and loggamma fits

Pareto Weibull Burr Loggamma

−max(log(L)) 1238.7 1245.8 1237.4 1243.9
χ2 (df) 9.36 (7) 17.09 (7) 7.43 (6) 9.48 (7)
P-value 0.228 0.0168 (1.7%) 0.283 0.220
K–S statistic 0.049 0.0927 0.0377 0.0762
P-value 0.891 0.180 0.989 0.390

the ecdf of the whole sample of 140 claim sizes with the cdf of the fit-
ted Pareto superimposed. This display highlights the good fit of the Pareto
distribution.

Figure 2.25 shows the histogram for the claim sizes (excluding the four
largest) with the fitted lognormal and Pareto densities superimposed. Despite
the very different nature of the two models (note the behaviours close to the
origin), the fits are very close over most of the range of claim sizes.

Weibull: X ∼Wei(c, τ) or X ∼Wei2(α, β)
The moments of the distribution involve gamma functions, and finding MMEs
is awkward. In addition, finding MLEs is also complicated unless carried out
using a computer package. Other methods of estimating the parameters are
sometimes used – the method of percentiles, based on matching the quartiles
of the distribution and the sample, is easy to implement in this case (see notes
below).
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Figure 2.24. Histogram of (136) claim sizes with fitted Pareto distribution added
(a); ecdf of (all 140) claim sizes with cdf of fitted Pareto added (dashed line) (b).
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Figure 2.25. Histogram of claim sizes with fitted lognormal (solid line) and Pareto
(dashed line) distributions added.
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The log-likelihood in the Wei2 parameterisation is given by

�n(α, β) = n logα − n log β + (α − 1)
∑

log

(
xi

β

)
−
∑(

xi

β

)α
.

We will fit the distribution here (in the Wei2 parameterisation) using the R
command nlm to minimise the negative of the log-likelihood as follows:

fw = function(x){

+ -(140*log(x[1]) - 140*log(x[2])

+ + (x[1]- 1)*sum(log((clsize/x[2])))

+ - sum((clsize/x[2])^x[1]))}

(Note that + at the beginning of a line is the continuation prompt in R.) With
starting values α = 0.7, β = 2300, we achieve the maximisation of the
log-likelihood using the command nlm(fw,c(0.7,2300)), which returns the
MLEs α̂ = 0.75697 and β̂ = 2402.7.

The fitted cell frequencies come from the cumulative frequencies
returned by the command 140*pweibull(upbd,0.75697,2402.7). The
cell frequencies are shown in Table 2.10. The summary of the Weibull fit is
given in Table 2.11.

Notes

(1) The R optimising function fitdistr gives slightly different maximis-
ing values, but the fitted frequencies are very close using the two pairs of
estimated parameters.

(2) The lower and upper quartiles of the claim sizes are 561 and 2699.75,
respectively (using a standard definition of the positions of the quar-
tiles). The method of percentiles based on these two quartiles gives
exp(−561/β)α = 0.75 and exp(−2699.75/β)α = 0.25, which give estimates
α∗ = 1.001 and β∗ = 1948.

Figure 2.26 shows the histogram for the claim sizes (excluding the four
largest) with the fitted Weibull density superimposed. The (two-parameter)
Weibull family includes the (one-parameter) exponential family as a special
case – the models are nested. The Weibull is only a slightly better fit than the
exponential, which is also shown. The figure also shows the ecdf of the whole
sample of 140 claim sizes with the cdf of the fitted Weibull superimposed.

Taking into account all the evidence – the histogram and fitted density,
the ecdf and cdf of fitted distribution, and the P-value of the chi-square
goodness-of-fit test (and not ignoring the P-value of the K–S test statistic) –
it appears that the Weibull model is not a particularly good fit to the data. On
the basis of the chi-square test, we can formally reject the hypothesis (at levels
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Figure 2.26. Histogram of (136) claim sizes with fitted Weibull (solid line) and
exponential (dashed line) distributions added (a); ecdf of (all 140) claim sizes with
cdf of fitted Weibull added (dashed line) (b).

of testing down to 1.8%) that the Weibull distribution provides an adequate
description of the variation in the claim sizes that we have observed. Several
other fits are better.

Burr: X ∼ Burr(α, λ, τ)
The log-likelihood for the Burr(α, λ, τ) distribution is given by

�n(α, λ, τ) = n(logα + log τ + α log λ)

+ (τ − 1)
∑

log xi − (α + 1)
∑

log(λ + xτi ).

We will maximise this using the command nlm in R, with starting values found
by evaluating the expressions for the quartiles and the mean E[X] for various
choices of the parameters until suitable values are found. The MLEs are α̂ =
1.2191, λ̂ = 6077.3, τ̂ = 1.1864.

The fitted cell frequencies come from the cumulative frequencies returned
by the actuar command 140*pburr(upbd, p1, p2, p3), where p1, p2
and p3 are the fitted parameters in the form required by R (see the note at the
end of §2.2.9). The frequencies are shown in Table 2.10. The summary of the
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Figure 2.27. Histogram of (136) claim sizes with fitted Burr distribution added
(a); ecdf of (all 140) claim sizes with cdf of fitted Burr added (dashed line) (b).

Burr fit is given in Table 2.11. Since the Pareto family is a two-parameter sub-
family of the three-parameter Burr family, the models are nested – the latter
will fit the data better, and the value of −max(log L) for the Burr fit will be
lower than that for the Pareto fit. The fit is very good indeed – we accept the
hypothesis that the Burr distribution provides an adequate description of the
variation in the claim sizes that we have observed.

Figure 2.27 shows the histogram for the claim sizes (excluding the four
largest) with the fitted Burr density superimposed. The figure also shows
the ecdf of the whole sample of 140 claim sizes with the cdf of the fit-
ted Burr superimposed. This display highlights the very good fit of the Burr
distribution.

The reduction in −max(log L) for the Burr fit compared to the Pareto fit,
however, is small (only 1.3), and, from a statistical point of view, one would
question whether this justifies the “cost” of including the extra parameter (see
the discussion in §2.4.1).

Loggamma: X ∼ loggamma(α, λ)
Recall from (2.44) that X ∼ loggamma(α, λ)⇔ Y = log X ∼ gamma(α, λ). We
can find the MLEs of α and λ from the logged data yi = log(xi) in a similar
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Figure 2.28. Histogram of (136) claim sizes with fitted loggamma distribution
added (a); ecdf of (all 140) claim sizes with cdf of fitted loggamma added (dashed
line) (b).

way to that used earlier for the gamma distribution. We find α̂ = 23.959 and
λ̂ = 3.371.

The fitted cell frequencies come from the cumulative frequencies returned
by the command (in actuar) 140*plgamma(upbd,23.959,3.371). The
frequencies are shown in Table 2.10, and the summary of the loggamma fit
is given in Table 2.11.

Figure 2.28 shows the histogram for the claim sizes (excluding the four
largest) with the fitted loggamma density superimposed (solid line). The figure
also shows the ecdf of the whole sample of 140 claim sizes with the cdf of the
fitted loggamma superimposed. This display supports the view that the fit is
good, but with a slight over-fitting in the tail.

On the basis of the chi-square statistic alone, the fit appears to be
satisfactory – but a further visual display (see Figure 2.29 in the following)
shows that the fit in the tail is, in fact, poor.

Quantile–quantile plots
As a further set of visual displays, we present in Figure 2.29 quantile–quantile
(Q–Q) plots for all seven fitted distributions – the added straight lines help us
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Figure 2.29. Q–Q plots for fitted exponential, gamma, lognormal, Pareto,
Weibull, Burr and loggamma distributions.
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Table 2.12. Summary statistics for the seven fits

Parameters −max(log L) P-value (χ2) P-value (K–S)

Exponential 1 1258.0 0.185 0.00014
Gamma 2 1250.6 0.003 0.025
Lognormal 2 1237.7 0.411 0.897
Pareto 2 1238.7 0.228 0.891
Weibull 2 1245.8 0.017 0.180
Loggamma 2 1243.9 0.220 0.390
Burr 3 1237.4 0.283 0.989

to assess how well the fitted distributions perform. We note that, as is often the
case with claim sizes, a fit can be good at lower claim sizes, can be assessed by
goodness-of-fit statistics as good overall, but can still be less than satisfactory
in the tail.

Summary of fits
In Table 2.12 we present summary statistics for the seven fits. Noting the infor-
mation in Table 2.12, and taking into account the histograms, ecdfs and Q–Q
plots, it appears that the lognormal and Burr distributions provide the best fits
to the claim size data, followed closely by the Pareto. The loggamma fit is poor,
the Weibull rather worse, and the gamma, and thus the exponential, are totally
inadequate as models for the data.

Taking the view that the inclusion of the third parameter for the Burr fit is
not justified when compared to the Pareto fit, our judgement is that the most
effective fits are provided by the lognormal and Pareto models.

As suggested in §2.4.1, the reader may want to calculate and examine the
estimated standard errors of fitted parameters to extend the account here and
provide a fuller analysis.

Further distributions
There exist other distributions in use which arise as reciprocals or other func-
tions of distributions already considered here. Further types of distribution are
also used for certain purposes, including threshold distributions (distributions
of X | X > T ), limited distributions (distributions of X | X ≤ T ) and limited
distributions with additional probability mass, as used, for example, in excess
of loss reinsurance; see Chapter 5.
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Exercises

2.1 Let N ∼ Poi(λ).
(a) Verify the recursion formula

Pr(N = n + 1) =
λ

n + 1
Pr(N = n), n = 0, 1, 2, . . . ,

with starting value Pr(N = 0) = e−λ.
(b) Consider the case in which λ is not an integer.

By using the recursion formula in (a) to compare Pr(N = n) with
Pr(N = n + 1) and Pr(N = n − 1), show that the most likely number
of claims which arise is given by [λ], where [x] denotes the integer
part of the number x. What is the corresponding result in the case
that λ is an integer?

2.2 Let N ∼ nb(k, p) for general k. Verify the recursion formula

Pr(N = n + 1) =
n + k
n + 1

(1 − p) Pr(N = n), n = 0, 1, 2, . . . ,

with starting value Pr(N = 0) = pk.
2.3 Let N ∼ geo(p).

(a) For n = 0, 1, 2, . . . and for k = 0, 1, 2, . . ., show that

Pr(N ≥ n + k | N ≥ k) = Pr(N ≥ n)

and comment in the context of the occurrence of additional claims
over and above claims which have already arisen.

(b) The number of claims which arise on a group of policies in a year,
N, is modelled as having a geo(0.9) distribution. Find the conditional
probability Pr(N > 9 | N ≥ 8).

2.4 Policies of a certain type are examined one by one until one is found on
which a claim arose last year.

Assuming independence from policy to policy, and that for each policy
the probability of a claim arising in a year is 0.1, calculate how many
policies have to be examined to ensure a probability of at least 0.95 that
a policy is found on which a claim arose last year.

2.5 Consider a random variable X with moment generating function MX(t)
and cumulant generating function KX(t) = log MX(t). Let κ j be the jth
cumulant; that is, the coefficient of t j/ j! in the power series expansion of
KX(t). Assume moments are finite as necessary.
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By considering the first four derivatives of KX(t) and MX(t) evaluated
at t = 0, and using the facts that E[X j] = M( j)(0) and κ j = K( j)(0),
verify that

Var[X] = κ2, E[(X − E[X])3] = κ3, E[(X − E[X])4] = κ4 + 3κ2
2.

2.6 Claim sizes are modelled as an exponential random variable with param-
eter λ. Suppose we have a random sample (X1, X2, . . . , Xn) of n such
claim sizes. Let

Xmin = min(X1, X2, . . . , Xn), Xmax = max(X1, X2, . . . , Xn);

that is, Xmin is the smallest and Xmax is the largest of the n claim sizes.
(a) By considering Pr(Xmin > x), show that Xmin ∼ Exp(nλ).
(b) By considering Pr(Xmax ≤ x), find an expression for the probability

density function of Xmax.
2.7 Let X ∼ gamma(α, λ).

(a) Verify that the third and fourth central moments are given by

E[(X − E[X])3] = 2α/λ3, E[(X − E[X])4] = (6α + 3α2)/λ4,

and hence that the coefficients of skewness and kurtosis are 2/
√
α

and 3 + 6/α, respectively.
State the corresponding results for X ∼ Exp(λ).

(b) Consider the case that 2α is an integer.
Show that 2λX ∼ gamma(α, 1/2); that is, 2λX ∼ χ2 with 2α degrees
of freedom.

2.8 Claims arise on a portfolio of business in a Poisson process at a rate of
four per hour.
(a) Calculate the probability that the time between two successive claim

arrivals exceeds 45 minutes.
(b) Calculate the probability that the time from any fixed time origin to

the third subsequent claim arising exceeds 45 minutes.
2.9 Let X ∼ gamma(α, λ) and Y ∼ gamma(β, θ), with X and Y independent.

Let W = X − Y .
(a) Show that the cumulant generating function of W is given by

KW(t) = −α log(1 − t/λ) − β log(1 + t/θ),

and hence (or otherwise) show that coefficients of skewness and
kurtosis of W are given by

2(αθ3 − βλ3)
(αθ2 + βλ2)3/2
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and

6(αθ4 + βλ4)
(αθ2 + βλ2)2

+ 3,

respectively.
(b) Setting θ = βλ/α gives E[W] = 0. Find expressions for the coeffi-

cients of skewness and kurtosis of W in this case (they are functions
of α and β only).

2.10 The sizes of claims last year on a portfolio of motor insurance policies
have a lognormal distribution with parameters μ = 6 and σ = 0.65. It is
estimated that the sizes of all claims next year will increase by 12%.

Calculate the probability that the size of a claim next year will exceed
1000.

2.11 Let X ∼ lognormal(μ, σ). Show that, for a > 0 and k = 0, 1, 2, . . .,∫ a

0
xk fX(x)dx = exp

(
kμ +

k2σ2

2

)
Φ

(
log a − μ − kσ2

σ

)
.

2.12 Individual losses on an insurance portfolio, X, are modelled as a lognor-
mal random variable with parameters μ = 2 and σ = 0.5. Let S be the
aggregate (total) loss for 100 independent individual losses. The distri-
bution of S can be approximated by that of a normal distribution with
appropriate parameters.
(a) Calculate the probability that an individual loss exceeds 10.
(b) Calculate the mean and variance of S .
(c) Calculate the approximate probability that S exceeds 920.
(d) Calculate the approximate interval, symmetrical and centred on the

mean, within which 90% of values of S lie.
(e) Calculate the 99th percentile of the distribution of S , that is the value

s0.99 such that Pr(S > s0.99) = 0.01.
2.13 Let X ∼ Pa(α, λ).

(a) By writing x as (λ+ x)−λ, or otherwise, show that, in the case α > 1,
the mean is given by

E[X] =
λ

α − 1
.

(b) By considering Pr(X − w > x | X > w), x > 0 , w > 0, show that
X − w | X > w ∼ Pa(α, λ + w).

(c) Let α > 2 and M > 0. Find expressions in terms of α, λ and M for
(1) E[X − M | X > M],
(2) E[(X − M)2 | X > M].
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(d) Show that, for α > 3, the coefficient of skewness is given by

(
2(α + 1)
α − 3

) (
α − 2
α

)1/2

and comment on its value.
2.14 Let X have a lognormal distribution with parameters μ = 5 and σ = 1,

and let Y have a Pareto distribution with parameters α and λ. Calculate
the values of α and λ such that X and Y have the same mean and variance
as each other.

2.15 Suppose that claims occur on a portfolio of general insurance policies
independently of one another and are of two types: each claim is classi-
fied as being of “type A” or “type B”. Type A claim sizes are distributed
Pa(4, 300) and type B claim sizes are distributed Pa(6, 2500); 80% of
claims are of type A.

Let X denote the size of a randomly chosen claim arising on the
portfolio.
(a) Calculate: (i) Pr(X > 2000); (ii) E[X] and Var[X].
(b) Calculate Pr(Y > 2000), where Y has a Pareto distribution with the

same mean and variance as X in part (a)(ii).
(c) Comment on the difference in the answers to parts (a)(i) and (b).

2.16 By considering Pr(Y ≤ y), or otherwise, show that (for positive c, k, α,
β, γ, λ, σ, τ)
(a) X ∼ gamma(α, λ)⇒ Y = kX ∼ gamma(α, λ/k);
(b) X ∼ lognormal(μ, σ)⇒ Y = kX ∼ lognormal(μ + log k, σ);
(c) X ∼ Pa(α, λ)⇒ Y = kX ∼ Pa(α, kλ);
(d) X ∼Weibull(c, γ)⇒ Y = kX ∼Weibull(ck−γ, γ);
(e) X ∼Wei2(α, β)⇒ Y = kX ∼Wei2(α, kβ);
(f) X ∼ Burr(α, λ, τ)⇒ Y = kX ∼ Burr(α, λkτ, τ);
(g) X ∼ Exp(λ)⇒ Y = X1/γ ∼Wei(λ, γ);
(h) X ∼ Pa(α, λ)⇒ Y = X1/τ ∼ Burr(α, λ, τ);
(i) X ∼ lognormal(μ, σ)⇒ Y = log X ∼ N(μ, σ2);
(j) X ∼ loggamma(α, λ)⇒ Y = log X ∼ gamma(α, λ).

2.17 The failure rate (or, depending on circumstances, the hazard rate or the
force of mortality) at value x for a non-negative random variable X,
denoted q(x), is defined as q(x) = f (x)/[1 − F(x)], where F and f are
the cdf and pdf of X, respectively.

For an item whose lifetime distribution has probability density func-
tion f (x), q(x) is the probability of failure in (x, x + dx), given survival
up to time x, and it follows from the definition that
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f (x) = q(x) exp

(
−
∫ x

0
q(t)dt

)
.

Let the parameters c, α, γ, λ and τ all be positive.
(a) Show that X ∼ Exp(λ) has a constant failure rate q(x) = λ.
(b) Show that a decreasing failure rate q(x) = α/(λ + x) corresponds to

X ∼ Pa(α, λ).
(c) Show that the failure rate q(x) = cγxγ−1 corresponds to

X ∼Weibull(c, γ).

Comment on the cases
(1) γ < 1,
(2) γ > 1,
(3) γ = 1.

(d) Find the failure rate for X ∼ Burr(α, λ, τ), and comment on the case
τ = 1.

Note Some readers will recognise these results (in different notation)
from a life table perspective.

2.18 Show that using a normal mixing distribution for normal claim amount
means (with known variance) gives a normal mixture distribution; that
is, show that, if X | μ ∼ N(μ, σ2) and μ ∼ N(μ0, σ

2
0) (with μ0, σ

2, σ2
0

known), then X has a normal distribution.
Note It is sufficient to show that the pdf fX(x) is proportional to

e−g(x), where g(x) is of the form a(x − b)2 with a > 0.
2.19 Let N be the number of trials required to get the first success in a series

of independent, identical Bernoulli trials with Pr (success) = p, so N has
probability mass function

Pr(N = n) = p(1 − p)n−1 , n = 1, 2, 3, . . . .

There is uncertainty about the value of p, which is modelled using a
mixing distribution which is beta(1, β) (see §2.3). Show that the mixture
distribution for N has a probability mass function given by

Pr(N = n) =
β

(β + n)(β + n − 1)
, n = 1, 2, 3, . . . .

2.20 Show that a mixture of Weibull(c, γ) distributions with a gamma(α, λ)
mixing distribution for c is a Burr(α, λ, γ) distribution.

2.21 Suppose we have a random sample of observations x1, x2, . . . , xn from
X ∼ Pa(α, λ), with both parameters unknown. Let α̂ and λ̂ be the MLEs
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of α and λ. Find two expressions for α̂ in terms of λ̂, and, by equating
them, show that λ̂ satisfies the equation

n∑
log

(
1 + xi/̂λ

) − ∑(
1

1+xi /̂λ

)
∑ (

xi /̂λ

1+xi /̂λ

) = 0.

2.22 Suppose we have a random sample of observations x1, x2, . . . , xn from
X ∼ Wei(c, γ), with both parameters unknown. Derive an equation
satisfied by γ̂, the MLE of γ, which does not involve ĉ, the MLE of c.

2.23 Given a sample of observations (x1, x2, . . . , xn), find the method of
moments estimator and the maximum likelihood estimator of
(a) α, in the case X ∼ Pa(α, 2);
(b) c, in the case X ∼Weibull(c, 1/2).

2.24 Given a sample of observations (x1, x2, . . . , xn), find the method of
moments estimators of α and λ (obtained by matching the sample mean
and sample variance with the mean and variance of the probability
distribution) in the cases
(a) X ∼ gamma(α, λ);
(b) X ∼ Pareto(α, λ).

2.25 A random sample of 100 observations (x1, x2, . . . , x100) from a distribu-
tion modelled as X ∼ Pa(α, 200) gives∑

log(200 + xi) = 566.926.

(a) Verify that the MLE of α is α̂ = 2.696.
(b) Find the three quartiles x0.25, x0.5, x0.75 (where xp is defined by

Pr(X ≤ xp) = p) of the fitted distribution.
(c) The numbers of observations in the sample in the ranges (0, x0.25),

(x0.25, x0.5), (x0.5, x0.75) and (x0.75,∞) are 19, 28, 22 and 31, respec-
tively. Calculate a χ2 goodness-of-fit statistic, and comment on
the extent to which the stated Pareto model provides an adequate
description of the variation in the data.

2.26 A random sample of 1000 observations (x1, x2, . . . , x1000) from a popula-
tion gives sample mean x = 754.51 and standard deviation sx = 965.67.
The transformed data yi = log(xi) give sample mean y = 5.9139 and
standard deviation sy = 1.4227.
(a) Using the method of moments (by matching means and variances),

estimate the parameters in the following proposed models for the
data:
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(1) gamma(α, λ),
(2) Pa(α, λ),
(3) Weibull(c, 1/3).

(b) Using the method of maximum likelihood, estimate the parameters
in the following proposed models for the data:
(1) Exp(λ),
(2) lognormal(μ, σ),
(3) loggamma(α, λ).

(c) Using each of the fitted Pareto, Weibull, exponential and lognormal
models
(1) calculate Pr(X > 2000);
(2) find the 95th percentile of the fitted distribution, that is the value

x0.95, where Pr(X > x0.95) = 0.05.



3

Short term risk models

One of the key quantities of interest to an insurance company is the total
amount to be paid out on a particular portfolio of policies over a fixed time
interval, such as an accounting period. This quantity may be approached in
various ways, and we mention two popular models below. We refer to both
these models as examples of short term risk models because they model a
risk over a fixed time period. This is in contrast to the classical risk model in
Chapter 6, where the stochastic evolution of the flow of claim payments and
premium income is modelled over time, and properties of this evolution over
an infinite time period are derived. As might be expected, the techniques and
results of Chapter 6 are deeper and more complex than those in this chap-
ter, but they build on the foundations that we develop here for short term
models.

One short term model is the individual risk model, where we consider the
portfolio to consist of a fixed number, n, of independent policies, and the total
amount claimed on the portfolio in a fixed time period is modelled as a random
variable T , given by

T = Y1 + · · · + Yn,

where Yi is the total amount claimed on policy i, and Y1, . . . ,Yn are assumed to
be independent, but not necessarily identically distributed. It turns out that it is
more difficult than might be expected at first sight to deal with this apparently
simple quantity in terms of numerical calculations and in terms of obtain-
ing analytical expressions for the distribution of T . This model is considered
in §3.8.

Another short term model is the collective risk model (or aggregate risk
model), where we model successive claims arising from the portfolio as inde-
pendent, identically distributed (iid) random variables X1, X2, X3, . . ., and
we ignore which policy gives rise to which claim. The number of claims

90



3.1 The mean and variance of a compound distribution 91

in the fixed time period is a random variable, N, say, which is assumed to
be independent of the Xi. The total claim amount (or aggregate claims) is
modelled as a random variable S given by

S = X1 + · · · + XN .

The distribution of S is an example of a compound distribution, and the prop-
erties and behaviour of compound distributions form the subject matter of
§§3.1–3.7.

Both of the above insurance models have been much studied; for early work,
see Cramér (1994) and the references to E. F. O. Lundberg (1876–1965) and
others given there, while, more recently, issues of journals such as The ASTIN
Bulletin and Insurance: Mathematics and Economics contain papers about
these models and modifications of them.

3.1 The mean and variance of a compound distribution

First we define a compound distribution.

Definition 3.1 Let X1, X2, . . . be iid random variables and let N be a random
variable taking values in {0, 1, 2, 3, . . .}, independent of {Xi}∞i=1. Let

S = X1 + · · · + XN ,

with S = 0 if N = 0. The random variable S is called a random sum. The
distribution of a random sum is said to be a compound distribution.

We sometimes refer to N as “the counting random variable” (even if X1 is
also discrete), and to X1 as “the step random variable”.

Example 3.2 (i) Suppose an experiment consists of throwing a number of
fair coins, where the number of coins to be thrown is decided by first
throwing a fair die. Suppose we are interested in the total number S of
heads. Let N be the number on the die, so that N has a discrete uniform
distribution on {1, 2, . . . , 6}, with Pr(N = n) = 1/6, n = 1, . . . , 6. Let Xi

take the value 1 or 0 according as to whether the ith coin thrown shows
a head or a tail. Then the total number of heads is the random sum S =
X1 + · · · + XN .

It is easy to see that

E[N] =
1
6

6∑
n=1

n =
7
2

and Var[N] =
1
6

6∑
n=1

n2 − 49
4
=

35
12
.
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Conditional on N = n, the random variable S has a binomial distribution
with parameters n and 1/2, and so

E[S | N = n] =
n
2

and Var[S | N = n] =
n
4
.

Then E[S | N] = N/2, and the conditional expectation formula (1.3) gives

E[S ] = E
[
E[S | N]

]
= E

[N
2

]
=

7
4
.

Similarly we see that Var[S | N] = N/4, and, using the conditional
variance formula (1.4), we have

Var[S ] = E
[

Var[S | N]
]
+ Var

[
E[S | N]

]
= E[N/4] + Var[N/2]

=
7
8
+

35
48
=

77
48
.

(ii) Suppose the number N of claims in one time unit has a Poisson distri-
bution with parameter λ = 10, and suppose that claims X1, X2, . . . are iid
random variables, independent of N, with mean and variance both equal
to unity. Then the total amount claimed is S = X1+ · · ·+XN . Given N = n,
S is the sum of n iid random variables each with mean and variance 1, so
that

E
[
S | N = n

]
= n and Var

[
S | N = n

]
= n.

Using the conditional expectation and variance formulae, together with
properties of the Poisson distribution in §2.1.1, we obtain

E
[
S
]
= E

[
E
[
S | N]] = E[N] = 10

and

Var
[
S
]
= E

[
Var[S | N]

]
+ Var

[
E[S | N]

]
= E[N] + Var[N] = 20.

From the definition, we see that a random sum S is the sum of a random
number N of random variables. Since it would be simpler to deal with the sum
of a fixed number of iid random variables, we often use conditioning on N, as
in Example 3.2, because this conditioning reduces our calculations to those for
a fixed number of random variables as an intermediate step. Conditioning will
be a major tool when working with compound distributions.

At the beginning of this chapter, we gave the motivation for random sums in
insurance for the case where N is the number of claims and the Xi are the claim
amounts. However, any random variable that is the sum of a random number N
of iid random variables (independent of N) is a random sum. In the following
example, the number of claims is itself a random sum.
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Example 3.3 Suppose that, in a certain region, the number of floods in a
fixed time period is a random variable N, and that the ith flood gives rise to Mi

claims, where M1,M2, . . . are iid random variables, independent of N. Then
the total number of claims in the time period is T = M1 + · · · + MN , a random
sum.

In general, compound distributions are determined once we know the two
relevant input distributions, i.e. the distributions of N and X1. Typically we are
given the distributions of N and X1 and we are interested in the behaviour of
the resulting random sum S . A first step might well be to determine the mean
and variance of S , and in the theorem below we give formulae for these in
terms of the means and variances of the input distributions.

Theorem 3.4 For a random sum S = X1 + · · · + XN, we have

E[S ] = E[N]E[X1] (3.1)

and

Var[S ] = E[N] Var[X1] + Var[N]
(
E[X1]

)2
. (3.2)

Proof We know that E[S | N = n] = nE[X1], and so E[S | N] = NE[X1].
Using the conditional expectation formula (1.3), we have

E[S ] = E
[
E[S | N]

]
= E

[
NE[X1]

]
= E[N]E[X1].

By our independence assumptions in the definition of a random sum, we have
Var[S | N = n] = n Var[X1], and so Var[S | N] = N Var[X1]. Hence, using the
conditional variance formula (1.4), we obtain

Var[S ] = E
[

Var[S | N]
]
+ Var

[
E[S | N]

]
= E

[
N Var[X1]

]
+ Var

[
NE[X1]

]
= E[N] Var[X1] + Var[N]

(
E[X1]

)2
. �

You might like to check for yourself that the mean and variance of S in
Example 3.2(i) and (ii) agree with the results of applying (3.1) and (3.2).

3.2 The distribution of a random sum

We often need more than the mean and the variance of a compound distribu-
tion. This is demonstrated in the following example, which shows that two
compound distributions with the same mean and variance can behave very
differently in their tails.
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Example 3.5 Suppose that the number of claims in one time period has a
Poisson distribution with mean 10, and consider the total amount S claimed in
one time period. We consider two cases as follows.

• Claim sizes have a gamma distribution with parameters α = 3, λ = 2.
• Claim sizes have a translated Pareto distribution with density

f (x) =
3
x4

for x > 1. (3.3)

As an aside, we show how this translated Pareto distribution relates to the
Pareto distribution in Chapter 2; note that, if Y ∼ Pa(3, 1) as defined in §2.2.7,
then

Pr(Y > y) =

(
1

1 + y

)3

, y ≥ 0.

We then find that the random variable Y + 1 (obtained from Y by translating
one unit to the right) has tail probability

Pr(Y + 1 ≥ y) = Pr(Y ≥ y − 1) =

(
1
y

)3

, y > 1,

so that Y + 1 has a probability density function as in (3.3).
Both the gamma and the translated Pareto claim-size distributions have

mean 3/2 and variance 3/4, so that resulting compound distributions have the
same mean, 15, and the same variance, 30.

Table 3.1 shows the tail probability Pr(S > x) of the total claim amount for
various x-values. These tail probabilities were obtained using the fast Fourier
transform algorithm in R (see §3.5.2).

Table 3.1. Tail probabilities for two
compound Poisson distributions with the

same mean and variance

x Pr(S > x)

Gamma Pareto

10 0.8134 0.8226
20 0.1749 0.1634
30 0.008139 0.01014
40 0.0001196 0.001018
50 7.404 × 10−7 0.0002769
60 2.330 × 10−9 0.0001158
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While these two compound distributions have similar tail probabilities in the
region of the mean, E[S ] = 15, they have very different tail probabilities for
large x, with the tail probability for a very large total claim amount being much
higher for Pareto-distributed claims.

The above example shows that we may need to look beyond the mean and
variance of the random sum S if we are concerned, for example, with its tail
behaviour, and so we turn now to consider the whole distribution of S. Since
S involves sums of independent random variables, we shall use either con-
volutions or transforms in finding expressions for its distribution. The word
“transforms” here is a generic term including probability generating func-
tions, moment generating functions (which are essentially Laplace transforms),
characteristic functions (essentially Fourier transforms), cumulant generating
functions, etc. The convolution approach is in §3.2.1, and §3.2.2 gives an
approach via moment generating functions. Examples and illustrations of these
two approaches follow in §3.4.

3.2.1 Convolution series formula for a compound distribution

Convolutions are used to find the distributions of sums of independent random
variables.

Definition 3.6 Let X1, . . . , Xn be iid with distribution function F. For fixed
n ≥ 1, the n-fold convolution or nth convolution power F�n of F is the
distribution function of X1 + · · · + Xn. This means that, for n ≥ 1,

F�n(x) = Pr(X1 + · · · + Xn ≤ x).

For n = 0, F�0 is defined by

F�0(x) = 1[0,∞)(x),

where 1A(x) is the indicator function of the set A, which takes the value 1 if
x ∈ A and is zero otherwise. This means that

F�0(x) =

{
1 if x ≥ 0
0 otherwise.

Note that F�0 is the distribution function of a random variable that takes
the value 0 with probability 1, and that F�1 is just the distribution function F
itself.
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Example 3.7 Suppose that X1, X2, . . . are independent exponentially dis-
tributed random variables with mean μ. We know from §2.2.4 that X1+ · · ·+Xn

has a gamma(n, 1/μ) distribution, so that

F�n(x) =
∫ x

0

tn−1e−t/μ

μn(n − 1)!
dt.

Check that this means that

F�2(x) = 1 −
(
1 +

x
μ

)
e−x/μ,

which completes this example.

We shall mostly deal with the case where F has a density f , say, as in the
example above. In this case, we can obtain a formula for F�n in terms of F�(n−1)

and f by conditioning on X1. For n ≥ 2, we obtain

F�n(x) = Pr(X1 + · · · + Xn ≤ x)

=

∫
Pr(X1 + · · · + Xn ≤ x | X1 = t) f (t)dt

=

∫
Pr(X2 + · · · + Xn ≤ x − t) f (t)dt

=

∫
F�(n−1)(x − t) f (t)dt. (3.4)

We can check that (3.4) works when n = 1 as follows. Putting n = 1 into (3.4)
gives F(x) on the left-hand side. On the right-hand side we obtain∫

F�0(x − t) f (t)dt =
∫

1[0,∞)(x − t) f (t)dt =
∫ x

−∞
f (t)dt = F(x),

so that the left-hand side is equal to the right-hand side in this case.
Further, for the Xi as in Example 3.7, if we put n = 2 into (3.4) and write f

for the density of Xi, then we obtain

F�2(x) =
∫ x

0
F(x − t) f (t)dt

=

∫ x

0

(
1 − e−(x−t)/μ)1

μ
e−t/μ dt

= 1 − e−x/μ − x
μ

e−x/μ,

as given in Example 3.7.
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When the Xi are non-negative random variables with density f , then (3.4)
becomes

F�n(x) =
∫ x

0
F�(n−1)

X (x − t) f (t)dt,

and this is the case that arises most often in the rest of the book.
Finally, we note that, for a general distribution function F, (3.4) becomes

F�n(x) =
∫

F�(n−1)(x − t)F(dt),

using the notation
∫
. . . F(dt) as in §1.2.1.

The following theorem gives an expression for the distribution function FS

of a random sum S in terms of convolution powers of the step distribution
function.

Theorem 3.8 The distribution function of the random sum S = X1+· · ·+XN is

FS (x) =
∞∑

n=0

F�n
X (x) Pr(N = n), (3.5)

where FX is the distribution function of X1.

Proof Conditioning on N, we have

FS (x) = Pr(S ≤ x) =
∞∑

n=0

Pr(S ≤ x | N = n) Pr(N = n).

Observe that, since N = 0 implies that S = 0, we have

Pr(S ≤ x | N = 0) = 1[0,∞)(x) = F�0
X (x).

For n ≥ 1, we have

Pr(S ≤ x | N = n) = Pr(X1 + · · · + Xn ≤ x) = F�n
X (x),

so that

FS (x) =
∞∑

n=0

F�n
X (x) Pr(N = n). �

It is sometimes helpful to separate out the term for n = 0, and then we have

FS (x) = Pr(N = 0)1[0,∞)(x) +
∞∑

n=1

F�n
X (x) Pr(N = n). (3.6)

When X1 is a strictly positive random variable, X1 + · · · + Xn is also strictly
positive, and so F�n

X (0) = Pr(X1 + · · · + Xn ≤ 0) = 0 for n ≥ 1. This means
that, in this case, FS (0) = Pr(N = 0). Hence when Pr(N = 0) > 0 and X1
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is strictly positive, the distribution function FS has a positive jump of size
Pr(N = 0) at zero.

If FX has a density fX , then, for n ≥ 1, F�n
X has density f *n

X , where f *1
X =

fX and, for n > 1, f *n
X (x) =

∫
f *(n−1)
X (x − t) fX(t)dt (see Exercise 3.2). Note

the different notation � and * for convolution of distribution functions and
convolution of densities, respectively. Thus (3.6) becomes

FS (x) = Pr(N = 0)1[0,∞)(x) +
∫ x

−∞

∞∑
n=1

f *n
X (t) Pr(N = n)dt. (3.7)

This shows that the distribution of S consists of an atom at zero and a part with
a density. For some particular choices for the distributions of N and X1, there
is a simple explicit expression for FS (x), as we will see in Example 3.17.

3.2.2 Moment generating function of a compound distribution

An alternative approach to the distribution of sums of independent random
variables is via moment generating functions. In this subsection, we find the
moment generating function of S = X1 + · · · + XN in terms of the probability
generating function of N, given by (1.7), that is

GN(z) = E[zN] =
∞∑

n=0

zn Pr(N = n),

and of the moment generating function of X1, given by (1.15), that is

MX(r) = E[erX1 ] =
∫

erxFX(dx),

where FX is the distribution function of X1. Recall from §1.2.1 that the gener-
ating functions GN(z) and MX(r) are not necessarily finite for all real values of
z and r. In statements below that relate various generating functions, we tacitly
assume that r is such that both sides are defined.

The following theorem gives the moment generating function of S in terms
of GN and MX .

Theorem 3.9 The moment generating function of the random sum S = X1 +

· · · + XN is

MS (r) = GN
[
MX(r)

]
. (3.8)

Proof It is easy to see that

E
[
erS | N = n

]
= E

[
er(X1+···+Xn)] = (MX(r)

)n
,
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so that E
[
erS | N] = (MX(r))N . Using the conditional expectation formula and

recalling that the GN(z) = E[zN], we find

MS (r) = E
[
E[erS | N]

]
= E

[
(MX(r))N] = GN

[
MX(r)

]
. �

Given a formula for MS (r), we can use it to find moments of S because
E[S k] = M(k)

S (0) (see (1.6)). For example, recall that G′N(1) = E[N] and
MX(0) = 1, so that

E[S ] = M′S (0) = G′N
(
MX(0)

)
M′X(0) = E[N]E[X1],

and we have recovered (3.1).
Sometimes it is helpful to have corresponding formulae for other trans-

forms of S . For example, if X1 is a discrete random variable concentrated on
{0, 1, 2, . . .} with probability generating function GX , then S = X1 + · · ·+ XN is
also discrete and concentrated on {0, 1, 2, . . .}. The probability generating func-
tion of S is found using the same conditioning argument as in Theorem 3.9,
and this gives

GS (z) = GN
[
GX(z)

]
. (3.9)

If we are interested in the characteristic function φS (r) = E[eiS r], where i is√−1, then we find similarly that

φS (r) = GN
[
φX(r)

]
, (3.10)

where φX(r) is the characteristic function of X1.
Recall that cumulant generating functions were defined in §2.2.5. The

cumulant generating function of S is

KS (r) = log
(
MS (r)

)
= log

(
GN

[
MX(r)

])
.

We use the fact that GN(z) = E
[
zN] = E[eN log z] = MN(log z) to see that KS (r)

can also be written

KS (r) = log
(
MN

[
log(MX(r))

])
= KN

[
KX(r)

]
, (3.11)

where KN and KX are the cumulant generating functions of N and X1, respec-
tively. This provides us with an easy way to find the cumulants and moments
of S . For example, differentiating (3.11), we find that

K′S (r) = K′N
(
KX(r)

)
K′X(r).

It is clear that KX(0) = log
(
MX(0)

)
= log(1) = 0, and so we have

E[S ] = K′S (0) = K′N(0)K′X(0) = E[N]E[X1].

Differentiating again, we have
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K′′S (r) = K′′N
(
KX(r)

)(
K′X(r)

)2
+ K′N

(
KX(r)

)
K′′X (r),

so that, putting r = 0, we obtain

Var[S ] = K′′S (0) = K′′N (0)
(
K′X(0)

)2
+ K′N(0)K′′X (0)

= Var[N]
(
E[X1]

)2
+ E[N] Var[X1].

Thus we have obtained (3.1) and (3.2) again.
Sometimes we can use (3.8) to find an explicit expression for the distribution

of S – we will see this in action in Example 3.18.
So far in this chapter we have seen various general properties of compound

distributions. In §3.4 we will look at particular cases for the counting random
variable in a random sum. In order to do this, we need the notion and properties
of a finite mixture distribution, which we consider in §3.3.

3.3 Finite mixture distributions

Recall that mixture distributions were introduced in §2.3, where the mixing
distributions had densities. A finite mixture distribution is an example of a
mixture distribution where the mixing random variable is discrete with a finite
number of possible values.

Example 3.10 Suppose that the number of car accidents in a day on a partic-
ular road has a Poi(λ1) distribution if the day is classified as “rainy”, a Poi(λ2)
distribution if the day is classified as “wintry”, and a Poi(λ3) distribution oth-
erwise (where, in this simple model, we assume that there are clear criteria
by which each day is classified as belonging to exactly one of the categories
“rainy”, “wintry” and “other”). Suppose further that 40%, 10% and 50% of
days are “rainy”, “wintry” and “other”, respectively. Let N be the number of
accidents on a randomly chosen day. Let θ be a random variable that takes the
values 1, 2 or 3 according to whether the day is “rainy”, “wintry” or “other”,
respectively. Then

Pr(θ = i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.4 if i = 1
0.1 if i = 2
0.5 if i = 3.

Then the distribution of N | (θ = i) is Poi(λi), i = 1, 2, 3, and, for x = 0, 1, 2, . . .,

Pr(N ≤ x) =
3∑

i=1

Pr(N ≤ x | θ = i) Pr(θ = i)

= 0.4F1(x) + 0.1F2(x) + 0.5F3(x),

where Fi is the distribution function of a Poi(λi) distribution, i = 1, 2, 3.
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This motivates the following definition.

Definition 3.11 A random variable Y has a finite mixture distribution with
mixing proportions p1, . . . , pn if it has distribution function

FY = p1F1 + · · · + pnFn

for some n ∈ {1, 2, . . .}, where F1, . . . , Fn are distribution functions, pi ∈ [0, 1],
i = 1, . . . , n, and

∑n
i=1 pi = 1.

Most often, the pi will be in (0, 1), but it is helpful to allow the values 0 and
1 in the definition. Observe that FY is indeed a distribution function (because
the Fi are distribution functions). Further, if Fi has density fi, i = 1, . . . , n, then
FY has density

fY = p1 f1 + · · · + pn fn.

Suppose that random variable Wi has distribution function Fi. Then the mix-
ture random variable Y with distribution function FY =

∑n
i=1 piFi may be

interpreted as

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
W1 with probability p1

W2 with probability p2
...

Wn with probability pn.

We can check that, with this representation, we do indeed have that FY =

Pr(Y ≤ y) is equal to
∑n

i=1 Pr(Wi ≤ y)pi =
∑n

i=1 piFi.
If we wish to simulate an observation from the mixture distribution FY , then

one way to do this is first to simulate an observation i from a discrete random
variable I that takes values 1, 2, . . . , n with probabilities p1, . . . , pn, respec-
tively. Once the value of i is simulated, we would simulate an observation
from the distribution Fi of Wi. (Note that this bears no relationship whatsoever
to the operation of adding up the random variables W1, . . . ,Wn.)

The moments of Y are given by

E[Yr] =
∫

yrFY (dy) =
∫

yr
n∑

i=1

piFi(dy)

=

n∑
i=1

pi

∫
yrFi(dy) =

n∑
i=1

piE[Wr
i ].

Similarly, the moment generating function of Y is given by

MY (r) =
∫

eryFY (dy) =
n∑

i=1

pi

∫
eryFi(dy) =

n∑
i=1

piMi(r), (3.12)

where Mi is the moment generating function of Wi.
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Example 3.12 (i) Suppose that Y has density

fY (y) =
5e−5y

2

(
1 + 2e−5y

)
.

This may be written

fY (y) =
1
2
× 5e−5y +

1
2
× 10e−10y, (3.13)

and we see that the distribution of Y is a finite mixture of an exponential
distribution with mean 1/5 and exponential distribution with mean 1/10,
with both mixing proportions equal to 1/2. We call this an equal mixture
of the two exponential distributions. Its moment generating function is
given by

MY (r) =
1
2
× 5

5 − r
+

1
2
× 10

10 − r
=

5(20 − 3r)
2(5 − r)(10 − r)

for r < 5.
(ii) Suppose a policyholder makes at most one claim in a given year, and that

the probability of making a claim is p. If a claim is made, then it has an
Exp(λ) distribution. Let Y be the amount claimed by the policyholder in
one year. Then

Y =

{
0 with probability 1 − p
W with probability p,

where W has an Exp(λ) distribution. Then, for y ≥ 0, the amount claimed
can only be greater than y if a claim is actually made, and so we have

1 − FY (y) = Pr(Y > y) = p Pr(W > y) = pe−λy.

This means that Y has distribution function

FY (y) = Pr(Y ≤ y) =

{
0 if y < 0
1 − pe−λy if y ≥ 0

=

{
0 if y < 0
1 − p + p(1 − e−λy) if y ≥ 0.

This may be rewritten as

FY (y) = (1 − p)1[0,∞)(y) + pFW(y).

Recall from Definition 3.6 that 1[0,∞) is the distribution function of a ran-
dom variable, Z say, that takes the value 0 with probability 1, i.e. such that
Pr(Z = 0) = 1. We sometimes call this distribution “a unit mass at zero”.
Thus the distribution of Y is a finite mixture of a unit mass at zero and an
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exponential distribution with mean 1/λ, with mixing proportions 1− p and
p, respectively. Note that the moment generating function of Z is

MZ(r) = E[eZr] = 1, (3.14)

so that the moment generating function of Y is

MY (r) = (1 − p) + p
λ

λ − r
for r < λ.

The definition of a finite mixture distribution extends easily to a countable
mixture distribution

∑∞
i=1 piFi, where the Fi are distribution functions and the

pi are in the interval [0, 1] and sum to unity. As a final observation we note that
a compound distribution,

FS =

∞∑
n=0

Pr(N = n)F�n
X ,

is a countable mixture of F�0
X , F�1

X , F�2
X , . . . with mixing proportions Pr(N =

0), Pr(N = 1), Pr(N = 2), . . ., respectively.

3.4 Special compound distributions

In this section, we return to a consideration of compound distributions, and we
study the properties of various special compound distributions with particular
choices for the distribution of the counting random variable.

3.4.1 Compound Poisson distributions

A Poisson distribution (with mean λ, say, see §2.1.1) is a common choice for
the distribution of the counting random variable N, and the resulting random
sum S = X1 + · · · + XN is said to have a compound Poisson distribution. Let
the step random variables X1, X2, . . . be iid with distribution function FX . We
use the notation CP(λ, FX) for a compound Poisson distribution with Poisson
parameter λ and step distribution function FX. From the convolution series
formula (3.5) for FS , the compound Poisson distribution function is

FS (x) =
∞∑

n=0

e−λλn

n!
F�n

X (x). (3.15)

From the moment generating function (3.8) for a compound distribution, and
from the probability generating function (2.1) for the Poisson distribution, we
find that the moment generating function of S is
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MS (r) = exp
[
λ(MX(r) − 1)

]
, (3.16)

where MX is the moment generating function corresponding to FX . The
cumulant generating function of S is given by

KS (r) = log
(
MS (r)

)
= λ(MX(r) − 1).

From this, it is particularly simple to find compound Poisson cumulants in
terms of λ and moments of X1, since, for j = 1, 2, . . .,

κS , j = K( j)
S (0) = λM( j)

X (0) = λE[X j
1]. (3.17)

This shows that the mean and variance of the compound Poisson random
variable S are

E[S ] = κs,1 = λE[X1] and Var[S ] = κS ,2 = λE
[
X2

1
]
, (3.18)

and these are the same as given by (3.1) and (3.2). The coefficient of skewness
of the compound Poisson random variable S is

E
[
(S − E[S ])3](

SD[S ]
)3 =

κS ,3

κ3/2
S ,2

=
λE

[
X3

1

](
λE

[
X2

1

])3/2 = E
[
X3

1

]
√
λ
(
E
[
X2

1

])3/2 . (3.19)

Example 3.13 (i) Suppose that X1 is degenerate at 1, so that Pr(X1 = 1) =
1 and MX(r) = er. Then (3.16) gives the moment generating function of
S as

MS (r) = exp (λ(er − 1)) ,

which we recognise from (2.2) as the moment generating function of a
Poisson distribution with mean λ. We can also see the same thing from
the convolution series (3.5) as follows. The n-fold convolution of the
distribution function FX of X1 is

F�n
X (x) = Pr(X1 + · · · + Xn ≤ x) = 1[n,∞)(x),

so that the distribution function of S is

FS (x) =
∞∑

n=0

e−λλn

n!
1[n,∞)(x).

Hence FS has a jump of size e−λλn/n! at n, n = 0, 1, 2, . . ., and we
recognise this as the distribution function of a Poisson distribution with
mean λ.

If X1 is degenerate at a (> 0), so that Pr(X1 = a) = 1, then FS has a
jump of size e−λλn/n! at na, n = 0, 1, 2, . . ..
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(ii) If X1 has an exponential distribution with mean μ, then, for n ≥ 1, X1 +

· · · + Xn has a gamma distribution with density

fX1+···+Xn (x) =
xn−1e−x/μ

(n − 1)!μn
, x > 0

(see §2.2.4). From (3.7), FS consists of an atom of size Pr(N = 0) = e−λ

at 0 and of a part on (0,∞) with density

fS (x) =
∞∑

n=1

e−x/μxn−1

(n − 1)!μn

e−λλn

n!

=
λe−λ−(x/μ)

μ

∞∑
n=1

1
(n − 1)!n!

(
λx
μ

)n−1

.

This can be written in terms of modified Bessel functions defined by

Iν(x) =
∞∑

n=0

(x/2)2n+ν

n! Γ(ν + n + 1)
, x ∈ R, ν ∈ R.

Then

fS (x) = e−λ−(x/μ)

√
λ

μx
I1

⎛⎜⎜⎜⎜⎜⎜⎝2
√
λx
μ

⎞⎟⎟⎟⎟⎟⎟⎠ .
(iii) We can use R to simulate observations from compound distributions in

general, and we illustrate this below for a compound Poisson distribution.
Suppose that we wish to simulate n observations from a compound

Poisson distribution, where the Poisson parameter is λ and where the
claims are exponentially distributed with mean μ, i.e. we wish to simulate
from a CP(λ,Exp(1/μ)) distribution as in (ii) above.

Assume that the R objects n, lambda and mu contain the numerical val-
ues of n, λ and μ. The following R code produces the required simulated
values:

total_claims = rep(0, n)

numclaims = rpois(n, lambda)

for(i in 1:n)

+ total_claims[i] = sum(rexp(numclaims[i], 1/mu))

where + at the beginning of a line is the continuation prompt in R. The
above code works as follows. The first line initialises total_claims to
be a vector of n zeros. The second line simulates n observations from a
Poi(λ) distribution. We interpret the ith entry in the vector numclaims
as being the number of claims in the ith Poisson random sum. For
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each i-value in turn, the remaining lines simulate the relevant number of
exponential random variables, which are then added up to give a simulated
value of the ith random sum.

Figure 3.1 shows a histogram of the result when n = 5000, λ = 10 and
μ = 10. By (3.18) and (3.19), this compound Poisson distribution has true
mean, variance and coefficient of skewness given, respectively, by

λμ = 100, λ × 2μ2 = 2000 and
6μ3

√
λ(2μ2)3/2

= 2.12.

Note the observed skewness in the sample of 5000 observations.

Independent compound Poisson random variables have the useful property
that the sum of a fixed (i.e. non-random) number of them is also a compound
Poisson random variable, as is shown in the following theorem.

Theorem 3.14 Let S 1, . . . , S m be independent compound Poisson random
variables with Poisson parameters λ1, . . . , λm and step distribution functions
F1, . . . , Fm, respectively. Then T = S 1 + · · · + S m has a compound Poisson
distribution with Poisson parameter
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Figure 3.1. Histogram of a sample of 5000 observations simulated from a
compound Poisson distribution (Poisson parameter λ = 10) and exponentially
distributed claim sizes (mean μ = 10).
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λ = λ1 + · · · + λm

and step distribution function

F =
m∑

i=1

λi

λ
Fi.

Proof Let Mi(r) be the moment generating function belonging to Fi. From
(3.16) S i has the moment generating function E

(
erS i

)
= exp (λi(Mi(r) − 1)).

Then T has the moment generating function

MT (r) = E
[
exp(r (S 1 + · · · + S m))

]
=

m∏
i=1

E[exp(rS i)]

=

m∏
i=1

exp
(
λi(Mi(r) − 1)

)
= exp

⎛⎜⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎜⎝ m∑
i=1

λiMi(r)

⎞⎟⎟⎟⎟⎟⎠ − λ⎞⎟⎟⎟⎟⎟⎠
= exp

⎛⎜⎜⎜⎜⎜⎝λ ⎛⎜⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎜⎝ m∑
i=1

λi

λ
Mi(r)

⎞⎟⎟⎟⎟⎟⎠ − 1

⎞⎟⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎟⎠ . (3.20)

From the expression for the moment generating function of a finite mixture in
(3.12), we observe that

m∑
i=1

λi

λ
Mi(r)

is the moment generating function belonging to the distribution function

F =
m∑

i=1

λi

λ
Fi.

This is a finite mixture of the m distributions F1, . . . , Fm, with mixing propor-
tions (λ1/λ), . . . , (λm/λ). By comparison with (3.16), we recognise (3.20) as a
compound Poisson moment generating function with Poisson parameter λ and
step distribution function F. �

Example 3.15 Suppose that S 1 and S 2 are independent compound Poisson
random variables, each with Poisson parameter 10, so that λ1 = λ2 = 10.
For i = 1, 2, suppose that the step random variables for S i are exponentially
distributed with mean μi, where μ1 = 1 and μ2 = 1/2. Thus we have F1(x) =
1−e−x and F2(x) = 1−e−2x. By Theorem 3.14, the random variable S = S 1+S 2
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has a compound Poisson distribution with Poisson parameter λ = λ1 + λ2 = 20
and with step distribution function

F(x) =
λ1

λ
F1(x) +

λ2

λ
F2(x) =

1
2

F1(x) +
1
2

F2(x)

=
1
2
(
1 − e−x) + 1

2
(
1 − e−2x) = 1 − 1

2
e−x − 1

2
e−2x.

The step distribution F is an equal mixture of an exponential distribution with
mean 1 and an exponential distribution with mean 1/2.

3.4.2 Compound mixed Poisson distributions

Here we consider the case where the counting random variable has a mixed
Poisson distribution (as introduced in §2.3), in which case the resulting random
sum is said to have a compound mixed Poisson distribution.

When fitting counting distributions to data, it is frequently observed that
the data are not consistent with a distribution that has equal mean and vari-
ance, as is implied by the choice of a Poisson distribution; often the variance
is larger than the mean (see the discussion in §2.1.2). In these cases, one way
to find a more suitable distribution is to consider a mixed Poisson distribu-
tion as follows: given λ, suppose that N has a Poisson distribution with mean
λ, i.e. N | λ ∼ Poisson(λ), and suppose that λ is itself a (positive) random
variable.

Conditioning on λ, and using the fact that N | λ is a Poisson distribution
with mean λ, provides the technical tool for calculation of quantities for N.
For example, using the conditional expectation and variance formulae (1.3)
and (1.4), we have

E[N] = E
[
E[N | λ]

]
= E[λ]

and

Var[N] = E
[
Var[N | λ]

]
+ Var [E[N | λ]] = E[λ] + Var[λ].

Provided that Var[λ] > 0, this last expression shows that Var[N] > E[N].
Writing Fλ for the distribution function of λ, the probabilities for N are
given by

Pr(N = n) =
∫

(0,∞)
Pr(N = n | λ)Fλ(dλ) =

∫
(0,∞)

e−λλn

n!
Fλ(dλ).

If Mλ is the moment generating function of λ, then we obtain (using the
conditional expectation formula again)

GN(z) = E[zN] = E
[
E[zN | λ]

]
= E

[
exp(λ(z − 1))

]
= Mλ(z − 1), (3.21)
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so that the probability generating function GN(z) of the mixed Poisson is equal
to the moment generating function Mλ of the mixing distribution, evaluated at
z−1. In the following example we consider a specific choice for the distribution
of λ (see also §2.3).

Example 3.16 Suppose that N | λ has a Poisson distribution with mean λ

and that λ is exponentially distributed with mean 1/ν (ν > 0). Using (3.21), we
obtain

GN(z) =
ν

ν − (z − 1)
=

ν

ν + 1

1 − z
ν + 1

.

From (2.5) we recognise this as the probability generating function of a
geometric distribution with success probability p = ν/(ν + 1), so that

Pr(N = n) =
ν

(ν + 1)n+1
, n = 0, 1, 2, . . . .

The mean and variance of this geometric distribution are (1 − p)/p = 1/ν and
(1 − p)/(p2) = (ν + 1)/(ν2). We see that

Var[N] =
ν + 1
ν2
=
ν + 1
ν
E[N] > E[N],

and hence this mixed Poisson distribution has its variance greater than its mean.

When N is as in Example 3.16, then the mixed Poisson is a geometric
distribution (a special case of the negative binomial distribution), and so the
compound mixed Poisson distribution is, in this case, the same as a compound
geometric distribution.

Formulae, such as those for the mean, variance, moment generating
function, etc. for compound mixed Poisson distributions may be obtained
by substituting the above formulae for N-quantities into the appropriate
random sum formulae. In particular, from (3.1) and (3.2), we find that
the mean and variance of the compound mixed Poisson random variable
S = X1 + · · · + XN are

E[S ] = E[N]E[X1] = E[λ]E[X1]

and

Var[S ] = E[N] Var[X1] + Var[N]
(
E
[
X2

1
])2

= E[λ] Var[X1] + (E[λ] + Var[λ]) (E[X1])2 .
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3.4.3 Compound negative binomial distributions

Recall from §2.1.2 that the random variable N has a negative binomial
distribution, N ∼ nb(k, p), if it has probability mass function

Pr(N = n) =
Γ(k + n)
Γ(n + 1)Γ(k)

qn pk, n = 0, 1, . . . ,

where 0 < p = 1 − q < 1 and k > 0. The probability generating function of N
is (see (2.3))

GN(z) =

(
p

1 − qz

)k

, |z| < 1
q
.

A related random variable is defined by M = N + k, so that M takes values
in {k, k + 1, . . .}. Then M is a shifted version of N, with

Pr(M = n) = Pr(N = n − k) =
Γ(n)

Γ(n − k + 1)Γ(k)
qn−k pk, n = k, k + 1, . . . .

(3.22)
In the literature, this distribution is sometimes also called the negative bino-
mial distribution (so care must be taken when looking up the negative binomial
distributions in books to make sure that it is clear which of these two distribu-
tions is intended). We will use the notation M ∼ ñb(k, p) to denote this shifted
negative binomial distribution. The probability generating function of M is

GM(z) =

(
pz

1 − qz

)k

, |z| < 1
q
.

When k = 1, N ∼ nb(1, p) is a geometric geo(p) distribution as in §2.1.3.
When k = 1 in (3.22), the random variable M has a shifted geometric
distribution, with probability mass function

Pr(M = n) = qn−1 p, n = 1, 2, . . . .

This distribution is sometimes also called a geometric distribution in the
literature, and we write g̃eo(p) for this distribution.

Suppose that a random sum S = X1 + · · · + XN has counting random
variable N ∼ nb(k, p). Then the random sum S is said to have a compound
negative binomial distribution. If k = 1, then S is said to have a compound
geometric distribution. The terms “compound negative binomial” and “com-
pound geometric” are also sometimes used in the literature when the counting
random variable has a ñb(k, p) and g̃eo(p) distribution, respectively. In this
book, we will specify the counting distribution explicitly to avoid any possible
confusion.



3.4 Special compound distributions 111

From (3.1) and (3.2), the mean and variance of the compound nb(k, p)
random variable S are given by

E[S ] = E[N]E[X1] =
kq
p
E[X1]

and

Var[S ] = E[N] Var[X1] + Var[N] (E[X1])2

=
kq
p

Var[X1] +
kq

p2
(E[X1])2

=
kq
p
E
[
X2

1
]
+

kq2

p2
(E[X1])2 .

For the compound ñb(k, p) case, the mean and variance of S̃ = X1 + · · · + XM ,
where M ∼ ñb(k, p), are

E[S̃ ] =
k
p
E[X1]

and

Var[S̃ ] =
k
p

Var[X1] +
kq
p2

(E[X1])2 =
k
p
E
[
X2

1
]
+

k(q − p)
p2

(E[X1])2 .

If the step distribution has moment generating function MX(r), then, from
(3.8), the moment generating function of S = X1 + · · · + XN is GN

(
MX(r)

)
,

so that the compound nb(k, p) distribution has a moment generating function
given by (

p
1 − qMX(r)

)k

. (3.23)

Similarly, the moment generating function of a compound ñb(k, p) distribution
is given by (

pMX(r)
1 − qMX(r)

)k

. (3.24)

The simplest negative binomial is the geometric, when k = 1. For certain
step distributions, there are easy explicit expressions for the resulting com-
pound geometric distributions. Example 3.17 derives such an expression from
the convolution series formula for FS given in (3.7), whereas Example 3.18
derives an expression from the moment generating function formula in (3.8).

Example 3.17 Suppose that the counting random variable has a g̃eo(p) dis-
tribution with Pr(N = n) = qn−1 p, n = 1, 2, . . ., where q = 1 − p, so that
N ∼ ñb(1, p), and suppose that X1 has an exponential distribution with mean
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μ. Since Pr(N = 0) = 0 and Pr(X1 = 0) = 0, the compound distribution does
not have an atom at zero, and consists solely of a distribution with a density
fS . From (3.7), and using the fact that the n-fold convolution of an exponential
distribution with mean μ is a gamma distribution with parameters n and 1/μ
(as discussed in §2.2.4), we have

fS (x) =
∞∑

n=1

xn−1e−x/μ

μn(n − 1)!
qn−1 p

=
pe−x/μ

μ

∞∑
n=1

1
(n − 1)!

(
qx
μ

)n−1

=
p
μ

e−px/μ.

Thus, in this case, the random sum S has an exponential distribution with mean
μ/p.

Example 3.18 Suppose that X1 has an exponential distribution with mean μ,
as in the previous example, so that its moment generating function is MX(r) =
(1 − μr)−1. Suppose that N has a geometric distribution, where

Pr(N = n) = qn p, n = 0, 1, 2, . . . ,

where q = 1 − p, so that N ∼ nb(1, p). We aim to find the distribution of S
by substituting for GN and MX in (3.8) and then manipulating the resulting
expression to obtain a moment generating function that we recognise. From
(3.8), the compound distribution has a moment generating function

MS (r) = GN [MX(r)] =
p

1 − q
1

1 − μr

.

This expression may be rearranged as follows.

p

1 − q
1

1 − μr

=
p(1 − μr)

p − μr
= p + q

p
p − μr

= p + q
1

1 − μ
p

r
.

Using (3.12), we see that this is the moment generating function of a distribu-
tion that is a mixture of a distribution with moment generating function 1 and
a distribution with moment generating function [1 − r(μ/p)]−1, with mixing
proportions p and q, respectively. We recognise [1 − r(μ/p)]−1 as the moment
generating function of an exponential random variable, W say, with mean μ/p
and distribution function FW(x) = 1 − exp[−x(p/μ)], x > 0. For the first com-
ponent of the mixture, we observe from (3.14) that 1 is the moment generating
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function of a random variable, Y say, that takes the value 0 with probability 1,
and FY (x) = 1[0,∞)(x). Hence the random sum S has distribution function

FS (x) = pFY (x) + qFW(x). (3.25)

From (3.25), we find

FS (x) =

⎧⎪⎨⎪⎩ 0 if x < 0
1 − q exp(− p

μ x) if x ≥ 0.
(3.26)

The result in Example 3.18 can also be found via the infinite convolution
power series in (3.7), and the result in Example 3.17 can be obtained via
moment generating functions. It is a good exercise to check that you can do
these for yourself (see Exercises 3.11 and 3.12).

These methods can be extended relatively easily to deal with compound
negative binomials with k = 2 or with gamma step distributions with shape
parameter α = 2 (or both). The next example shows one way to approach the
k = 2 case.

Example 3.19 Suppose that N ∼ nb(2, p), 0 < p = 1−q < 1, and that X1 has
an exponential distribution with mean μ. Then, from (3.8), the random sum S
has moment generating function

MS (r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ p

1 − q
1

1 − μr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

.

From Example 3.18, the expression inside the brackets can be written

p + q
1

1 − μ
p

r
,

so that

MS (r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝p + q
1

1 − μ
p

r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

= p2 + 2pq
1

1 − μ
p

r
+ q2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1

1 − μ
p

r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

. (3.27)

We recognise [1 − r(μ/p)]−2 as the moment generating function of a
gamma(2, p/μ) distribution with density (p/μ)2xe−px/μ. Hence (3.27) is the
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moment generating function of a three-component mixture consisting of a
unit mass at zero (with mixing proportion p2), an exponential distribution
with mean μ/p (with mixing proportion 2pq) and a gamma(2, p/μ) distribution
(with mixing proportion q2). Then we have, for x > 0,

Pr(S > x) = 2pqe−px/μ + q2
∫ ∞

x

p2te−pt/μ

μ2
dt

=
(
q2(px + μ) + 2pqμ

) e−px/μ

μ
. (3.28)

3.4.4 Compound binomial distributions

Consider a group life insurance policy covering m lives, where, in a year, there
is at most one claim on each life. If we assume that the probability of a claim is
the same value, p say, for each life, and that the m lives are independent, then
the number N of claims on the whole policy in one year has a binomial bi(m, p)
distribution. If the sizes of the claims are iid random variables, independent of
N, then the total amount S claimed on this policy in one year has a compound
binomial distribution.

From (3.1) the mean of a compound binomial random variable S , with
counting random variable N ∼ bi(m, p) and step random variables X1, X2, . . ., is

E[S ] = E[N]E[X1] = mpE[X1],

and, from (3.2), the variance of S is (with q = 1 − p)

Var[S ] = E[N] Var[X1] + Var[N] (E[X1])2

= mp Var[X1] + mpq (E[X1])2

= mpE
[
X2

1
] − mp2 (E[X1])2 .

Using (3.8) and the binomial probability generating function in (2.7), we
find that the moment generating function of a compound binomial distribu-
tion is

MS (r) = GN
(
MX(r)

)
= (q + pMX(r))m ,

where MX(r) is the moment generating function of the step random variables
X1, X2, . . ..

The next example shows how a particular compound binomial distribution
is the same as a particular compound negative binomial distribution, and illus-
trates (again) the value of developing the facility of working with generating
functions.
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Example 3.20 Suppose that N has a binomial distribution N ∼ bi(m, p), with
0 < p = 1 − q < 1, and that X1 has an exponential distribution with mean μ.
Let GN be the probability generating function of N and let MX be the moment
generating function of X1. Then the resulting compound binomial distribution
has a moment generating function

MS (r) = GN
(
MX(r)

)
=

(
q + p

1
1 − μr

)m

.

Reversing the argument in Example 3.18, we find

q + p
1

1 − μr
=

q(1 − μr) + p
1 − μr

=
1 − qμr
1 − μr

= q

(
q(1 − μr)
1 − qμr

)−1

= q

(
1 − p

1 − qμr

)−1

.

Hence the moment generating function of the random sum S is

MS (r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ q

1 − p
1

1 − qμr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
m

,

and, from (3.23), we recognise this as belonging to a compound nega-
tive binomial nb(m, q) distribution with steps exponentially distributed with
mean qμ.

3.5 Numerical methods for compound distributions

In general, the distribution of the random sum S = X1 + · · ·+ XN is determined
when we know the distributions of the counting random variable N and the
step random variable X1. In several of the examples in §3.4, it was possible to
find simple explicit expressions for the compound distributions resulting from
specific choices for the counting and step distributions. However, this is not
usually feasible except for certain special cases, and in the general case we
must resort to numerical methods or to approximations.

In this section, we consider the problem of numerically evaluating the dis-
tribution of S , given particular known distributions for N and X1. We consider
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two numerical methods, the Panjer recursion algorithm and the fast Fourier
transform algorithm, for calculating the compound distribution on a computer.
These two methods are illustrated and compared in Example 3.22. In both
cases, probability distributions are stored in one-dimensional arrays, and so
we work with discrete distributions for N and X1 (and so also for S ).

3.5.1 Panjer recursion algorithm

This popular and much-used algorithm was proposed by Panjer (1981), and
can be applied when the counting distribution satisfies a certain condition as
follows. Let pn = Pr(N = n), n = 0, 1, 2, . . ., and suppose that the pn satisfy
Panjer’s recursion formula,

pn =

(
a +

b
n

)
pn−1, n = 1, 2, . . . , (3.29)

for some a and b. Many commonly used counting distributions satisfy this
formula. For example, if N has a Poisson distribution with mean λ, then, for
n ≥ 1,

pn =
e−λλn

n!
=
λ

n
pn−1,

so that (3.29) holds with a = 0 and b = λ. Check for yourself that (3.29)
also holds for the binomial distribution bi(m, p) (with a = −p/(1 − p) and
b = (m + 1)p/(1 − p)) and for the negative binomial distribution nb(k, p) (with
a = 1− p and b = (k−1)(1− p)). Not all distributions satisfy this recursion, for
example the discrete uniform and the ñb(k, p) negative binomial case, although
sometimes the recursion algorithm can be generalised to cover these cases (see
sect. 4.6 in Klugman et al. (1998)).

Assume that X1 takes values in {1, 2, . . .} and write fk = Pr(X1 = k), k =
1, 2, . . ., so that X1 is a positive discrete random variable (see the discussion
after the proof of the theorem below for how to proceed if Pr(X1 = 0) > 0 or if
X1 is not discrete).

We assume that the counting and step distributions are known, i.e. that
a, b and { fk}∞k=1 are known. The resulting random sum is concentrated on
{0, 1, 2, . . .} (because N ≥ 0, X1 > 0 and X1 is concentrated on {1, 2, . . .}),
and we write gr = Pr(S = r), r = 0, 1, 2, . . .. The gr are unknown, and the next
result gives a recursion by which they may be calculated sequentially.

Theorem 3.21 With notation as above, assume the pn satisfy (3.29). Then the
gr satisfy
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(i) g0 = p0,

(ii) gr =

r∑
j=1

(
a +

b j
r

)
f jgr− j, r = 1, 2, . . .. (3.30)

Before proceeding with the proof, note that the right-hand side of (ii) in
(3.30) involves gr−1, gr−2, . . . , g0, so that (ii) does indeed give gr in terms of
known quantities and of g0, g1, . . . , gr−1. Hence we can use (3.30) to find, first
of all, g0, then g1 in terms of g0, then g2 in terms of g1 and g0, etc., i.e. we can
use (3.30) to find each gr in turn.

Proof Since Pr(X1 ≤ 0) = 0, the discussion below (3.6) yields g0 = Pr(S =
0) = Pr(N = 0) = p0, which gives (i).

For (ii), we first show that the probability generating function GN(z) of N
satisfies

G′N(z) =
a + b
1 − az

GN(z). (3.31)

To see this, use (3.29) to obtain

GN(z) − p0 =

∞∑
n=1

pnzn

=

∞∑
n=1

zn

(
a +

b
n

)
pn−1

= azGN(z) + b
∞∑

n=1

zn

n
pn−1,

which gives

(1 − az)GN(z) = p0 + b
∞∑

n=1

zn

n
pn−1.

Differentiate this with respect to z to obtain

−aGN(z) + (1 − az)G′N(z) = bGN(z),

and this yields (3.31).
We now use (3.31) to find an expression for the probability generating

function GS (z) of S . First note that from (3.9) we have GS (z) = GN
[
GX(z)

]
,

where GX(z) is the probability generating function of X1. Differentiating this
relationship with respect to z, and then substituting (3.31), we find

G′S (z) = G′N
[
GX(z)

]
G′X(z)

=
a + b

1 − aGX(z)
GN

[
GX(z)

]
G′X(z).
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Hence

(1 − aGX(z)) G′S (z) = (a + b)GS (z)G′X(z),

which, in terms of series, states that⎛⎜⎜⎜⎜⎜⎝1 − a
∞∑

k=1

fkzk

⎞⎟⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎜⎝ ∞∑
k=1

kgkzk−1

⎞⎟⎟⎟⎟⎟⎠ = (a + b)

⎛⎜⎜⎜⎜⎜⎝ ∞∑
k=0

gkzk

⎞⎟⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎜⎝ ∞∑
k=1

k fkzk−1

⎞⎟⎟⎟⎟⎟⎠ .
Equate coefficients of zr−1 on the left- and right-hand sides of this equation to
obtain

rgr − a
r−1∑
j=1

f j(r − j)gr− j = (a + b)
r∑

j=1

j f jgr− j,

so that

rgr =

r−1∑
j=1

(ar − a j) f jgr− j +

r∑
j=1

(a j + b j) f jgr− j

=

r−1∑
j=1

(ar + b j) f jgr− j + (ar + br) frg0

=

r∑
j=1

(ar + b j) f jgr− j.

Hence, on dividing by r we get

gr =

r∑
j=1

(
a +

b j
r

)
f jgr− j,

as required. �

If X1 has an atom at zero, so that f0 = Pr(X1 = 0) > 0, then we obtain the
corresponding recursion

(i) g0 =

∞∑
n=0

pn f n
0 ,

(ii) gr =
1

1 − a f0

r∑
j=1

(
a +

b j
r

)
f jgr− j, r ≥ 1

(3.32)

(see Exercise 3.15). Note that this yields (3.30) when f0 = 0.
If X1 is not a discrete random variable, then we can still use the Panjer

recursion algorithm if we first approximate the distribution of X1 by a discrete
distribution. One way to do this is to choose h > 0 and put

fk = Pr
(
X1 ∈ ((k − 0.5)h, (k + 0.5)h

])
for k = 0, 1, 2, . . . .
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Here fk is the mass given by the distribution of X1 to the interval of width h
centred on kh. This approximation is better if we choose a small value for h, so
that the discretisation error is small. If we discretise in this way, then gr given
by the Panjer recursion algorithm will be the mass given to rh by the compound
distribution belonging to N and the discrete distribution that is being used as an
approximation to the true distribution of X1. Thus gr is an approximation to the
probability that the random sum S = X1+· · ·+XN is in

(
(r−0.5)h, (r+0.5)h

]
, so

that {gr}∞r=0 is an approximation to the distribution of the true S . This method
of discretisation is illustrated in Example 3.22 in Section 3.5.2.

3.5.2 The fast Fourier transform algorithm

Recall that the characteristic function of the random variable S is φS (θ) =
E
[
eiθS ] = ∫ eiθxFS (dx). From (3.10), when S = X1 + · · ·+XN , its characteristic

function φS (θ) satisfies

φS (θ) = GN
[
φX(θ)

]
, (3.33)

where φX is the characteristic function of X1. This means that, given GN and
φX , we can find the Fourier transform of the distribution of S .

In terms of numerical approximations, working with Fourier transforms is
relatively easy because of the wide availability of fast Fourier transform rou-
tines in software packages. In this subsection, we outline how to use the fast
Fourier transform algorithm to calculate numerical approximations to FS .

As we did for the Panjer recursion, we work with discrete random vari-
ables, discretising the distribution of X1 if necessary, possibly as described in
§3.5.1. The fast Fourier transform (FFT) algorithm takes as input a finite 1×m-
dimensional array a = (a0, . . . , am−1). The discrete Fourier transform of a is the
function

â(θ) =
m−1∑
k=0

akeiθk.

At first sight, it may seem necessary to store the function â(θ) for all θ ∈ R
in order to keep complete information on a. However, it turns out that we can
recover a completely from the m complex values â(θ0), . . . , â(θm−1), where θ j =

2π j/m, j = 0, . . . ,m − 1, are called the Fourier frequencies. Hence

â(θ j) =
m−1∑
k=0

akei2π jk/m. (3.34)
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The “recovery” of a from these m values of the transform at the Fourier
frequencies is given by the inversion formula

ak =
1
m

m−1∑
j=0

â(θ j)e
−i2πk j/m; (3.35)

see Exercise 3.16.
Hence, starting with the 1 × m-dimensional array a = (a0, . . . , am−1), the

FFT returns the 1 × m-dimensional array â = (â(θ0), . . . , â(θm−1)) (containing
complex values). The inverse FFT starts with â and returns a. Comparison of
(3.34) and (3.35) shows that the direct and inverse calculations are essentially
of the same type, differing only in the presence or absence of an initial con-
stant and the presence or absence of a minus sign in the exponent. The FFT
algorithm exploits this, and makes use of various techniques to carry out the
calculations efficiently. Naive calculation of (3.34) involves of the order of m2

operations, whereas it turns out that if m is a power of 2, then the FFT algo-
rithm uses approximately m log2 m operations. We do not give the details of
the algorithm here. Interested readers should see Brigham (1974) and Grübel
(1989).

The FFT algorithm may be applied to probability distributions, since, if Y is
a random variable whose distribution is concentrated on {0, 1, . . . ,m − 1} with
pk = Pr(Y = k), then p̂(θ) is the characteristic function φY (θ) of Y .

We now describe how to apply the FFT algorithm to compound distributions.
Our input (1×m-dimensional) array holds the distribution of X1, which for now
is assumed to be discrete and such that Pr(X1 ≥ m) = 0. The algorithm returns
an output (1 × m-dimensional) array holding the distribution of S . Hence m
must be big enough to hold (the bulk of) the distribution of S , and in addition
m should be a power of 2 for efficient calculation. Let fk = Pr(X1 = k). Use
the FFT algorithm to find φX(θ j), and then calculate GN(φX(θ j)) = φS (θ j),
j = 0, . . . ,m−1. Finally, use the inverse FFT algorithm to find gk = Pr(S = k),
k = 0, . . . ,m − 1.

As an example, we show how easily this can be carried out in a software
package that contains a fast Fourier transform algorithm. We use the package
R. Suppose we want to calculate the gk for a compound Poisson distribution
with known Poisson parameter λ and a particular claim-size distribution with
known fk. Suppose that the value of λ is stored in lambda, and that f is the
1 × m-dimensional array containing the values of f0, . . . , fm−1. We aim to cal-
culate the corresponding gk, and we suppose that they will be stored in an array
g. We use the transform relationship φS (θ) = exp (λ(φX(θ) − 1)) to evaluate g
very simply, in just one line in R:
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g = Re(fft(exp(lambda*(fft(f) -1)),inverse=T)/m)

In R, the discrete Fourier transform of the array f is achieved using fft(f),
and the inverse is achieved with the argument inverse=T. In R, this inverse
transformation step does not divide by the array length m, which we require in
(3.35), so we include this division by m explicitly in the R directive. Finally we
take the real part of the inverse, because the gk are real, and this makes for a
neater output. If using a different package, care has to be taken because it may
differ from R in the inclusion or otherwise of the constant in the relationships
giving the direct and inverse transforms. It is important to get the constant in
the right place, as we need the direct transform step in (3.34) to correspond to
finding the characteristic function of the claim-size distribution.

In many applications, the distribution of X1 is neither discrete nor concen-
trated on {0, . . . ,m − 1} for any m. In these cases, before the FFT algorithm
can be used, we must discretise and truncate the distribution of X1. To do this,
choose m (a power of 2) and h, and put fk = Pr(X1 ∈ ((k − 0.5)h, (k + 0.5)h])
k = 0, . . . ,m − 1, and use this as an approximation to the distribution of X1.
Here, h needs to be small to make the discretisation error small and m needs
to be large enough so that

[
0, (m − 0.5)h

]
holds most of the distributions of X1

and S . After applying the FFT algorithm, the resulting gk is an approximation
to Pr(S ∈ ((k − 0.5)h, (k + 0.5)h]).

Example 3.22 We now illustrate the practical application of Panjer recursion
and the FFT algorithm in finding the distribution of a particular random sum.
We consider Example 3.18 again, where Pr(N = n) = qn p, n = 0, 1, 2, . . ., with
0 < p = 1 − q < 1, and where X1 is exponentially distributed with mean μ.
From Example 3.18, we already know that the distribution of the resulting ran-
dom sum S is a mixture of a unit mass at zero and an exponential distribution
with mean μ/p, with mixing proportions p and q, respectively, so in real appli-
cations we would not need to use numerical methods to find the distribution
of this particular S . However, the fact that the true distribution of S is known
means that this is a good example for assessing the performance of the two
numerical procedures, as we do here.

For both calculation methods, we need to have discrete step distributions,
so we first discretise the distribution of X1. If we follow the method suggested
after the proof of Theorem 3.21, then, for a given discretisation parameter h,
we set

f0 = Pr(0 < X1 ≤ h/2) = 1 − exp

(
− h

2μ

)
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and, for k = 1, 2, . . .,

fk = Pr
(
(k − 0.5)h < X1 ≤ (k + 0.5)h

)
= exp(−(k − 0.5)h/μ)

(
1 − exp(−h/μ)

)
.

Check that
∑∞

k=0 fk = 1. Then ( f0, f1, f2, . . .) is a discrete approximation to the
distribution of X1.

Panjer recursion algorithm
The distribution of N satisfies the Panjer recursion formula (3.29) with a = q
and b = 0, so we can use the Panjer recursion algorithm. Since f0 > 0 we
use the form of the recursion given in (3.32) and code this on a computer. We
assume that the user specifies the values of p and μ, together with the values
of the discretisation parameter h and of the number m specifying the length
of the calculated 1 × m-dimensional array (g0, g1, . . . , gm−1), where gr is our
numerical approximation to Pr

(
(r − 0.5)h < S ≤ (r + 0.5)h

)
. We see that

g0 =

∞∑
n=0

qn p f n
0 =

p
1 − q f0

.

We combine this with (3.32) to obtain a procedure for finding the 1 × m-
dimensional array g containing the values g_0,...,g_(m-1) of g0, . . . , gm−1.
Let f be the 1×m-dimensional array containing the values f_0,...,f_(m-1)
of f0, . . . , fm−1, and let p and q contain the values of p and q, respectively, all
assumed to be known. In order to apply the Panjer recursion formula, we first
find the value of g0 and then find successive gk recursively. R directives to carry
this out are shown below:

g = rep(0,m)

g[1] = p/(1-q*f[1])

i = 1

while (i<=m-1){

g[i+1] = q*(f[2:(i+1)]%*%g[i:1])/(1-q*f[1])

i = i+1

}

Here f[j] is the jth entry in the array f, f[i:j] is the array ( fi−1, . . . , f j−1),
and the operation %*% is a scalar product.

Note that rather than predetermining the number m of gr to be calculated and
finding f before the loop, we could instead evaluate each fk as needed inside
the loop and include a condition for stopping.

The numerical results are contained in Table 3.2 for the case where μ = 1
(without loss of generality, we can work on a monetary scale where the unit is
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Table 3.2. Discretised approximations for the geometric/exponential example

x True Panjer FFT FFT
m = 4096 m = 8192

0.00 0.091735162 0.091738925 0.091739889 0.091738926
0.02 0.001649890 0.001649904 0.001650866 0.001649904
0.04 0.001646893 0.001646907 0.001647867 0.001646907
0.06 0.001643902 0.001643915 0.001644874 0.001643916
0.08 0.001640915 0.001640929 0.001641886 0.001640929
...

...
...

...
...

9.98 0.0006671464 0.0006671444 0.0006675336 0.0006671446
10.00 0.0006659345 0.0006659325 0.0006663210 0.0006659327
10.02 0.0006647248 0.0006647228 0.0006651105 0.0006647230
...

...
...

...
...

64.76 4.586006e-06 4.585709e-06 4.588384e-06 4.585711e-06
64.78 4.577675e-06 4.577379e-06 4.580049e-06 4.577381e-06

equal to the mean size of a claim) and p = 1/11, so that E[N] = 10, a small
mean number of claims but useful for the purposes of this illustrative example.
The discretisation parameter is h = 0.02. In the column labelled “true”, we
use Example 3.18 to calculate Pr(x − 0.5h < S ≤ x + 0.5h), i.e. the discretised
values of the true distribution of S , where x = kh for some non-negative integer
k. Results are shown in the table for a few small values of x, then for a few
values of x in the region of E[S ] = μS = 10, and finally for a few values of x in
the region of μS +5

√
Var[S ] = 64.77. In the column labelled “Panjer” the table

also shows the corresponding values from the Panjer recursion algorithm.

The fast Fourier transform algorithm
We work with ( f0, . . . , fm−1) as for the Panjer recursion, with parameters h and
m, making sure that m is a power of 2 for efficient use of the FFT algorithm.
For the geometric/exponential example above, (3.33) becomes

φS (θ) =
p

1 − qφX(θ)
.

Assume that the values of p, μ, m and h are specified, and that the 1 × m-
dimensional array f contains the values f_0,...,f_(m-1) of f0, . . . , fm−1.
Then we use the FFT algorithm in R as follows to find the 1 × m-dimensional
array g:

g = Re(fft(p*(1-q*fft(f))^{-1},inverse=T)/m)
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Table 3.3. Maximum errors for the geometric/exponential example

Panjer FFT FFT
m = 4096 m = 8192

Max absolute error 3.76 × 10−6 4.73 × 10−6 3.76 × 10−6

Max percentage error 0.0084 0.059 0.0084

where ^(-1) denotes the function that raises to the power −1. We run this
for the same choices of p and μ as for the Panjer recursion algorithm, and
with the same choice of discretisation parameter h = 0.02. For the choice of
m, note that we need to make sure that the bulk of the distribution of S is
contained on [0, (m−0.5)h). Preliminary calculations show that E[S ] = 10 and
Var[S ] = 120. If we choose m = 4096 = 212 then (m − 0.5)h = 81.91, which
is more than six standard deviations above the mean of S . We first try the FFT
algorithm with this choice of m, and repeat it with m = 8192 = 213 to see
whether the resulting g-values are much affected. The results are in Table 3.2.
We also note that the maximum absolute errors and the maximum percentage
errors are as in Table 3.3.

In summary, for this example, with m = 8192 for the FFT algorithm, the
results are similar for both the Panjer and the FFT algorithms, although when
the FFT algorithm is used with m = 4096 it is not as accurate as the Pan-
jer algorithm. It should be noted that, even with today’s fast computers, the
time taken for the Panjer algorithm is noticeably longer than that for the FFT
algorithm, even when m = 8192. This is not important for the values given
above, but we see that if, for example, we were carrying out a procedure where
many thousands of such calculations are required, then these small differences
in time become important. On the other hand, if interest is only in the values
of gr for not too large r, then the Panjer algorithm can be used just up to the
required values, whereas the FFT algorithm would still need a large value of
m to achieve accuracy in the low r-values. However, in many cases, it is the
upper tail probabilities of S , and hence large r-values, that are of interest.

3.6 Approximations for compound distributions

There are various approximation formulae for the distribution of a random sum
S =

∑N
i=1 Xi, and we discuss a few of them here. Although modern computing

power means that numerical evaluation of compound distributions is much
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faster than it used to be, nevertheless quick and easy approximations may still
be of some use, and, for example, asymptotic approximations can be helpful in
showing how the tail of a compound distribution function depends on various
parameters in the limit.

3.6.1 Approximations based on a few moments

Assume that N and X1 have finite second moments, so that S = X1+· · ·+XN has
finite mean μS and variance σ2

S . A very simple approximation, based only on
these two summary numbers, is the normal approximation, where we approx-
imate the distribution of S by a N(μS , σ

2
S ) distribution and Pr(S ≤ x) by

Φ
(
(x − μS )/σS

)
, where Φ is the standard normal distribution function. These

probabilities are very easy to find, using, for example, standard normal tables,
a calculator or a computer. However, the normal approximation is necessar-
ily symmetric, and is likely to be rather crude as an approximation to the
distribution of S , which typically is skew.

Motivated by the above drawback, but still aiming to have a simple approx-
imation based on a few moments of S , we consider the translated gamma
approximation, which is defined as follows. If Y has a gamma(α, ν) distribu-
tion and if k is a constant, then the random variable k + Y is said to have a
translated gamma distribution. We assume that S has a finite third moment
and we let βS = E

[
(S − μS )3]/σ3

S be the coefficient of skewness of S . For the
approximation, we choose k, α and ν so that the first three moments (or, equiv-
alently, the first three cumulants) of k+Y match those of S . Then the translated
gamma approximation to the distribution of S has parameters

k = μS − 2σS

|βS | ,

α =
4

β2
S

,

ν =
2

|βS |σS
.

See Exercise 3.20, where you are asked to find these for yourself. Figure 3.2
compares the normal and translated gamma approximations to the true Pr(S >

x) when X1 is exponentially distributed with mean 2, and Pr(N = n) =
(1 − p)n p, n = 0, 1, 2, . . ., with p = 0.1. From the figure, we see that the
translated gamma (which is very close to the true distribution function tail) is
an improvement over the normal approximation. (See Exercise 3.21 to carry
out the details of this approximation for this example.) It might be argued
that we expect a gamma distribution function tail to be good for a compound
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Figure 3.2. True (solid line), normal approximation (broken line) and translated
gamma approximation (dotted line) for the tail of the compound geometric dis-
tribution function with p = 0.1 and X1 exponentially distributed with mean 2.

geometric/exponential distribution, where the true tail of the distribution
function of S has an exponential decay (see Example 3.18). You are asked
to investigate the quality of the normal and translated gamma approximations
for compound Poisson distributions in Exercise 3.22.

3.6.2 Asymptotic approximations

In this section, we illustrate asymptotic approximations by means of a par-
ticular case, that of the compound negative binomial distribution, where N ∼
nb(α, p). Let FX be the distribution function of the step random variable X1,
and let MX be its moment generating function. In order to express the asymp-
totic approximations, we write g(x) ∼ h(x) as x → ∞ if g(x)/h(x) → 1 as
x → ∞. The use of the symbol ∼ for asymptotic approximations is limited
to the present section of the book. Elsewhere, the symbol ∼ is used for “is
distributed as”.

Theorem 3.23 Suppose that

Pr(N = n) =

(
α + n − 1
α − 1

)
qn pα, n = 0, 1, . . . ,

where q = 1 − p, that FX(0−) = limx↑0 FX(x) = 0 and that FX is continuous.
Suppose that there exists κ > 0 such that MX(κ) = 1/q, and suppose that
ν = qM′X(κ) < ∞. Then

Pr(S > x) ∼ pαxα−1e−κx

νακΓ(α)
as x→ ∞.
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The proof of this result is beyond the scope of this book. The interested
reader is referred to Embrechts et al. (1985b) (see also Embrechts et al.
(1985a)). However, in the example below we work out the above asymptotic
approximation for some special cases.

Example 3.24 When the step random variable is exponentially distributed
with mean μ, we find that κ solves

1
1 − μκ =

1
q
,

so that κ = p/μ. In addition, ν is given by

ν = qM′X(κ) =
qμ

(1 − μκ)2
=
μ

q
.

Then the asymptotic approximation is

Pr(S > x) ∼ pα−1qαxα−1e−px/μ

Γ(α)μα−1
as x→ ∞. (3.36)

If α = 1, so that N has a geometric distribution, this becomes

Pr(S > x) ∼ qe−px/μ as x→ ∞.
Looking back at the explicit expression for FS (x) in (3.26), we see that Pr(S >

x) = qe−px/μ, so that, in this case, the asymptotic approximation is equal to the
exact tail probability. However, this is a special case. If, for example, we have
α = 2, then (3.36) becomes

Pr(S > x) ∼ pq2xe−px/μ

μ
as x→ ∞. (3.37)

Equation (3.28), in Example 3.19, gives the true tail probability as

Pr(S > x) =
(
q2(px + μ) + 2pqμ)

e−px/μ

μ
,

so that the asymptotic approximation is not exact in this case. However, we can
easily verify the result of Theorem 3.23 since

Pr(S > x)
asymptotic approximation

=
q2(px + μ) + 2pqμ

pq2x

= 1 +
μ(q + 2p)

pqx
,

and this final quantity converges to unity as x tends to infinity. Table 3.4 shows
the true value of Pr(S > x), the asymptotic approximation, and the ratio of the
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Table 3.4. Pr(S > x), the asymptotic approximation and the
ratio (true/approximation) for the nb(2, 1/6) case, with

exponentially distributed claims with mean 1

x Pr(S > x) Asymptotic
approximation

Ratio

0 9.722222 × 10−1 0.000000 –
20 1.172617 × 10−1 8.257869 × 10−2 1.420000
50 1.624720 × 10−3 1.391027 × 10−3 1.168000

100 7.248934 × 10−7 6.687209 × 10−7 1.084000
200 8.051953 × 10−14 7.727402 × 10−14 1.04200
400 5.267524 × 10−28 5.159181 × 10−28 1.021000

two, when α = 2 and p = 1/6 (so that E[N] = 10) and μ = 1. For this example,
we have E[S ] = 10 and Var[S ] = 70. It is clear that the convergence to unity
as x→ ∞ is not fast.

3.7 Statistics for compound distributions

In the preceding sections of this chapter, we have dealt with compound distri-
butions arising from known distributions for the counting random variable N
and the step random variable X1. However, when we are applying the theory in
practice, we do not have certain knowledge of the underlying distributions, but
we have to use statistical methods to make inferences about them, and about
the resulting quantities of interest, from the available data. For example, if we
are interested in such quantities as the tail probabilities Pr(S > y) for the ran-
dom sum S = X1 + · · · + XN , then our statements about such quantities will be
subject to statistical uncertainty.

In this section, we take a (sometimes informal) look at statistical estima-
tion for compound distributions. We do this through a particular case, where
claims arrive in a Poisson process with rate λ (see §2.1.1 and §2.2.3 for prop-
erties of a Poisson process), and where claims are independent exponentially
distributed random variables with mean μ. We suppose that our main aim is
to make inferences about various characteristics of the distribution of the total
amount S claimed in one time unit. This means that S is a random sum with
the counting random variable N having a Poisson distribution with mean λ and
with exponentially distributed step random variable X1.

This is a fully parametric example, where we assume particular parametric
families for the underlying distributions, and where these families are assumed
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known, although the parameter values are unknown and must be estimated
from data. For this example, we assume that we observe n inter-claim arrival
times T1, . . . ,Tn and n claim sizes X1, . . . , Xn, where the Ti are iid, and the Xi

are iid and are independent of the Ti. We use these data to estimate λ and μ in
a straightforward way, and then to make inferences about the distribution of S .

We use likelihood methods as described in §2.4 to estimate λ and μ. From
properties of Poisson processes, we know that T1, . . . ,Tn are independent
exponentially distributed with mean 1/λ. The log-likelihood based on the n
observations T1 = t1, . . . ,Tn = tn is

�n(λ) = n log λ − λ
n∑

i=1

ti,

and

d�n

dλ
=

∑n
i=1 ti
λ

(
n∑n

i=1 ti
− λ

)
.

Hence the maximum likelihood estimator is λ̂ = (T̄ )−1, where T̄ =
∑n

i=1 Ti/n.
Using results for maximum likelihood estimators (see, for example, sect. 4
of Morgan (2000), chap. 9 of Pawitan (2001) and sect. 5.5 of van der Vaart
(1998)), we have (writing→d for convergence in distribution)

√
n
(
λ̂ − λ)→d N

(
0,
(
E[−d2�1/dλ

2]
)−1

)
, as n→ ∞,

so that, for large n, the distribution of λ̂ is approximately normal with mean
λ and variance λ2/n. This means that an asymptotic 100(1 − α)% confidence
interval for λ has end points λ̂ ± zα/2λ/

√
n, where zα is the upper 100α% stan-

dard normal percentage point. Since λ is unknown, this gives an approximate
asymptotic 100(1 − α)% confidence interval for λ as

(
λ̂L, λ̂U

)
=

(
λ̂ − zα/2λ̂√

n
, λ̂ +

zα/2λ̂√
n

)
.

Repeating the process for μ, we find the maximum likelihood estimator for
μ is μ̂ = X̄ =

∑n
i=1 Xi/n, and that, for large n, μ̂ is approximately normally dis-

tributed with mean μ and variance μ2/n. This gives rise to an approximate
asymptotic 100(1 − α)% confidence interval for μ given by

(μ̂L, μ̂U) =

(
μ̂ − zα/2μ̂√

n
, μ̂ +

zα/2μ̂√
n

)
.

So far, we have made inferences about the parameters of the input distribu-
tions, i.e. those of N and X1. Now we use these to make inferences about the



130 Short term risk models

distribution of S . A first step is to estimate its mean, E[S ] = λμ, and a natural
estimator is

Ê[S ] = λ̂ μ̂.

This estimate is a function of the original data, and so it is a random variable.
We can demonstrate the variability of this estimate by means of a small simu-
lation. Using simulation methods for the exponential distribution as explained
in §2.2.3, we simulate t1, . . . , tn from an exponential distribution with mean
1/λ = 0.1, and x1, . . . , xn from an exponential distribution with mean 1, and
we evaluate Ê[S ] = λ̂μ̂ for these data. If we repeat the whole simulation M
times, so that we get M pairs of samples each of size n, then we can calculate
M observations of λ̂μ̂. Figure 3.3 shows the histogram of M such values, where
M = 1000, for two sample sizes, n = 30 and n = 300. From the figure, we can
see the effect of increasing the sample size: when n = 300, the histogram is
more closely clustered about the true E[S ] (= λμ = 10) than is the histogram
for n = 30 (note the different scales on the two sets of axes). In addition, the
histogram for n = 300 is more symmetric than that for n = 30.
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Figure 3.3. Histograms of 1000 simulated values of Ê[S ] in the Pois-
son/exponential case where λ = 10 and μ = 1, for sample sizes n = 30 (a) and
n = 300 (b).
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This example illustrates the variability in Ê[S ] = λ̂μ̂ by simulating from
known distributions. In practice, we only have one sample of Ti observations
and one sample of Xi observations, and the true values of λ and μ are unknown.
For this particular quantity, we are estimating a relatively simple function of
λ and μ (i.e. their product). This means that we may obtain an approximate
variance for λ̂μ̂ directly, using the above approximate variances for λ̂ and μ̂.
Using the independence of λ̂ and μ̂, we have

Var
[
Ê[S ]

]
= Var

[
λ̂μ̂
]
= E

[
λ̂2μ̂2] − (E[λ̂μ̂])2

= E
[
λ̂2]
E
[
μ̂2] − (E[λ̂]E[μ̂])2

.

Using the above asymptotic normality results for λ̂ and μ̂, we obtain

Var
[
λ̂μ̂
] ≈ (λ2

n
+ λ2

) (
μ2

n
+ μ2

)
− λ2μ2 = λ2μ2

(
2
n
+

1
n2

)
. (3.38)

Another approach to assessing the variability of λ̂μ̂ is to find an asymptotic
confidence interval for E[S ] using the delta method. In the discussion below,
we will use the delta method without proof; for more details see, for exam-
ple, sect. 5.7 in DeGroot and Schervish (2002), chap. 5 of Morgan (2000) and
chap. 3 of van der Vaart (1998). The delta method also works for the estima-
tion of more complicated functions of λ and μ than their product, including
ones where the above direct approach to the variance is not feasible. Here we
illustrate the use of the delta method as applied to the estimation of λμ. First,
let β = (λ, μ)T and β̂ = (λ̂, μ̂)T, where T denotes the transpose. Let �n be the
log-likelihood of β based on T1 = t1, . . . ,Tn = tn and X1 = x1, . . . , Xn = xn, so
that

�n(λ, μ) = n log λ − λ
n∑

i=1

ti − n log μ − 1
μ

n∑
i=1

xi.

From results for maximum likelihood estimators (see Morgan (2000), Pawitan
(2001) and van der Vaart (1998)), we have

√
n(β̂ − β)→d N

⎛⎜⎜⎜⎜⎜⎝( 0
0

)
,Σ =

(
E

[
− ∂2�1

∂β∂βT

])−1⎞⎟⎟⎟⎟⎟⎠ ,
where ∂2�1/∂β∂β

T is the 2 × 2 matrix of second derivatives of �1. We have
∂2�1/∂λ∂μ = 0, ∂2�1/∂λ

2 = −1/λ2 and ∂2�1/∂μ
2 = 1/(μ2) − (2x1)/(μ3). On

noting that

E

[
−∂

2�1

∂μ2

]
=

2E[X1]
μ3

− 1
μ2
=

1
μ2
,
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we find that

√
n

((
λ̂

μ̂

)
−
(
λ

μ

))
→d N

((
0
0

)
,Σ =

(
λ2 0
0 μ2

))
.

Let g(λ, μ) = λμ. The delta method tells us that

√
n(λ̂μ̂ − λμ) →d N(0, σ2(λ, μ)),

where

σ2(λ, μ) = (∂g/∂λ, ∂g/∂μ)Σ

(
∂g/∂λ
∂g/∂μ

)
, (3.39)

and we find that σ2(λ, μ) = 2λ2μ2. This gives

λ̂μ̂ ± zα/2
√

2λ̂μ̂√
n

(3.40)

as the end points of an approximate asymptotic 100(1−α)% confidence interval
for E[S ].

Note that the delta method gives

Var
[
λ̂μ̂
] ≈ 2λ2μ2

n
, (3.41)

which agrees with (3.38) to order n−1. The resulting approximate standard
errors of λ̂μ̂ are given by the square roots of these two variances. When n = 30,
these are 0.2603λμ (from the square root of (3.38)) and 0.2582λμ (from the
square root of (3.41)). When n = 300, the corresponding standard errors are
0.08172λμ and 0.08165λμ. For both (3.38) and (3.41), the standard error when
n = 30 is about three times bigger than that when n = 300, and this matches
what is observed in Figure 3.3 (note the different scales on the horizontal axes
in the two panels).

The above approaches are asymptotic. In this particular example, we know
that nμ̂ has a gamma distribution with parameters n and 1/μ, and that λ̂/n is
the reciprocal of a gamma random variable with parameters n and λ (so λ̂/n
has an inverse gamma distribution). This means that for this example we can
find exact confidence intervals for λ and μ (see Exercise 3.25).

Tail probabilities of the total amount claimed are also quantities of potential
interest in insurance. Suppose that we wish to estimate sy = Pr(S > y) for
some fixed (usually large) value y. Since sy is determined by λ and μ, we may
write sy = sy(λ, μ) for some function sy(·, ·). An estimate for sy is given by the
plug-in estimator ŝy = sy(λ̂, μ̂).
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In contrast to the E[S ] case, the quantity of interest sy is not a simple explicit
function of λ and μ. In fact, for y ≥ 0, and recalling that FX is the distribution
function of X1, we have

sy =

∞∑
k=0

e−λλk

k!
(
1 − F�k

X (y)
)

=

∞∑
k=1

e−λλk

k!

∫ ∞

y

tk−1e−t/μ

μk(k − 1)!
dt,

where the integral is the tail probability for the relevant gamma distribution,
and where 1 − F�0

X (y) = 0. The above expression is quite complicated, and
so we calculate the estimator ŝy numerically, using either the Panjer recursion
algorthm or the fast Fourier transform algorithm.

We now turn to the practical problem of quantifying the variation in ŝy given
one sample of Ti observations and one sample of Xi observations when the
true parameter values are unknown, so that we can obtain confidence intervals
for sy.

In view of the complicated dependence of sy on λ and μ, a possible
approach is to use a technique called the parametric bootstrap, which gives
confidence intervals for sy as follows. We simulate n observations t∗1, . . . , t

∗
n

from an exponential distribution with parameter λ̂ = n/
∑n

i=1 ti, and we sim-
ulate n observations x∗1, . . . , x

∗
n from an exponential distribution with mean

μ̂ =
∑n

i=1 xi/n. These ∗-samples are our bootstrap samples, which give rise to
estimates

λ∗ = n/
n∑

i=1

t∗i and μ∗ =
m∑

i=1

x∗i /n,

and we obtain s∗y = sy(λ∗, μ∗). Repeating the sampling and subsequent calcula-
tions M times in total, we can find M values

√
n(s∗y,1 − ŝy), . . . ,

√
n(s∗y,M − ŝy).

Next, we find the lower α/2-quantile q∗α/2 and the upper α/2-quantile q∗1−(α/2)
of these values, and we obtain an approximate 100(1−α)% confidence interval
for sy given by (

ŝy −
q∗1−(α/2)√

n
, ŝy −

q∗α/2√
n

)
.

There are other methods for obtaining bootstrap confidence intervals, and the
interested reader is referred to Efron and Tibshirani (1993).

The above is a sketch of some possible ways to estimate various quantities
relating to the distribution of a random sum given data on the counting and
step random variables. There are many other statistical techniques and methods
that could be used. For example, if we adopt a Bayesian approach, then prior
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distributions for the parameters are updated in the light of the available data
into posterior distributions for the quantites of interest. See §4.4 and Klugman
(1991) for Bayesian methods in insurance (mostly in the context of credibility
theory).

Various non-parametric methods have also been proposed in the liter-
ature. Csörgő and Teugels (1990) consider, among other things, a non-
parametric estimator for the asymptotic approximation to Pr(S > x) given in
Theorem 3.23.

The above methods apply when we have data on the input distributions,
i.e. on the distribution of N and/or on the distribution of X1. An alternative sce-
nario arises if we have iid data S 1, . . . S n on the compound distribution itself,
and then we can use standard statistical methods to estimate features of the
distribution of S directly from the S -data; this is done in Case Study 7.1.

3.8 The individual risk model

So far in this chapter we have considered the collective risk model for a
portfolio of short term insurance contracts. Now we turn our attention to an
alternative model, the individual risk model, for the total amount claimed in a
fixed time period on a portfolio of policies. This model was briefly introduced
at the beginning of this chapter. In this section, we define it formally and study
its properties and behaviour.

In the individual risk model there is a fixed number, n say, of policies, and,
for i = 1, . . . , n, the amount claimed on policy i in the fixed time period is a
random variable Yi. We assume that the Yi are independent non-negative ran-
dom variables, but they do not necessarily all have the same distribution. The
total amount claimed on the whole portfolio in the fixed time period is

T = Y1 + · · · + Yn.

For the individual risk model that we consider throughout the rest of this sec-
tion, we specialise to the case where, for i = 1, . . . , n, with probability qi there
is a claim on policy i during the time period and with probability 1 − qi there
is no claim on policy i. If there is a claim on policy i, then the amount claimed
is a random variable Zi. Thus in the individual risk model we assume that

Yi =

{
0 with probability 1 − qi

Zi with probability qi,
(3.42)

where Zi is a positive random variable. This means that the distribution of Yi is
a finite mixture (see §3.3) of an atom at zero (with mixing proportion 1 − qi)
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and the distribution FZi of Zi (with mixing proportion qi). With this form of
the individual risk model, we are interested in quantities such as E[T ], Var[T ],
Pr(T > x), etc.

When Z1, . . . ,Zn all have the same distribution, this is called the homo-
geneous individual risk model; otherwise it is known as the heterogeneous
individual risk model.

We observe that in the individual risk model we keep track of how much
is claimed on each individual policy. This is in contrast to the collective risk
model, where claims on the whole portfolio are modelled as iid random vari-
ables, irrespective of which policy gives rise to which claim. In other words, in
the individual risk model we work at the level of individual policies, whereas
in the collective risk model we work at the level of the whole portfolio.

Example 3.25 We give a simple example of the individual risk model that
motivates the choice of the specific special form for the Yi in (3.42). Consider a
portfolio of n policies over a one-year time period, where for each policy there
is at most one claim during the year (for example, this could be a portfolio
of life insurance policies). For policy i, the probability of exactly one claim is
qi (independently of other policies), so that there are no claims on this policy
during the year with probability 1 − qi. If a claim is made on policy i then it
will be for a fixed known amount bi (> 0). In this case Yi is a discrete random
variable with

Yi =

{
0 with probability 1 − qi

bi with probability qi.

This could be a model for a portfolio of life insurance policies for n individuals,
where the ith individual has mortality qi and with benefit bi to be paid when
there is a claim on the life of individual i.

For this example, T = Y1 + · · · + Yn is also a discrete random variable. We
have

Pr(T = 0) =
n∏

i=1

(1 − qi).

To find the possible values of the random variable T , note that if n = 2 then the
distribution of T is concentrated on the set {0, b1, b2, b1 + b2}, although these
four values need not be distinct. In general, the distribution of T is concentrated
on the set

{0}
⋃( n⋃

j=1

{
bi1 + · · · + bij : i1 < · · · < i j, i1, . . . , i j ∈ {1, . . . , n}});
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these 2n values need not all be distinct. In principle it is not difficult to calculate
all possible values of T together with the associated probabilities. For an easy
example, suppose that n = 2 and that b1, b2 and b1 + b2 are distinct. Then

T =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 with probability (1 − q1)(1 − q2)
b1 with probability q1(1 − q2)
b2 with probability q2(1 − q1)
b1 + b2 with probability q1q2.

However, it can be tricky to do this by hand for large n.

3.8.1 The mean and variance for the individual risk model

In this section we find the mean and variance of T in the individual risk model.
First let E[Zi] = μi and Var[Zi] = σ2

i (assumed finite). Then from (3.42) we
have

E[Yi] = (1 − qi) × 0 + qiE[Zi] = qiμi,

and so

E
(
T
)
=

n∑
i=1

E
(
Yi
)
=

n∑
i=1

qiμi. (3.43)

For the variance, it is easy to see that

Var[Yi] = E[Y2
i ] −

(
E[Yi]

)2

= (1 − qi) × 02 + qiE[Z2
i ] − q2

i μ
2
i

= qi
(
σ2

i + μ
2
i
) − q2

i μ
2
i

= qiσ
2
i + qi(1 − qi)μ

2
i .

Using the independence of the policies, the variance of the total amount
claimed is

Var[T ] =
n∑

i=1

Var[Yi] =
n∑

i=1

(
qiσ

2
i + qi(1 − qi)μ

2
i
)
. (3.44)

Example 3.26 In Example 3.25, we have an individual risk model where the
Zi in (3.42) are deterministic, i.e. Pr(Zi = bi) = 1, where the bi are known fixed
positive values. In this case μi = E[Zi] = bi and σ2

i = Var[Zi] = 0, so that
E[Yi] = qibi and Var[Yi] = qi(1−qi)b2

i . From (3.43) and (3.44), the expectation
and variance of the total amount claimed on the whole portfolio in this special
case are given by

E[T ] =
n∑

i=1

qibi and Var[T ] =
n∑

i=1

qi(1 − qi)b
2
i .
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3.8.2 The distribution function and moment generating function
for the individual risk model

From (3.42), and using Definition 3.11 for the distribution function of a finite
mixture, the distribution function of the amount Yi claimed by individual i is

FYi(x) = (1 − qi)1[0,∞)(x) + qiFZi (x) (3.45)

(recall from Definition 3.6 that 1[0,∞)(x) is the distribution function of a random
variable that takes the value zero with probability 1). We aim to express the
distribution of T in terms of a convolution product of the distributions of the
Yi, so we first explain what is meant by the convolution of two distribution
functions. Let U and V be independent non-negative random variables with
distribution functions F and G, respectively. The convolution product F �G is
the distribution function of U + V , and is given by

F �G(x) = Pr(U + V ≤ x) =
∫

[0,x]
F(x − y)G(dy), x ≥ 0.

When G has density g, this is

F �G(x) =
∫ x

0
F(x − y)g(y)dy.

When G = F, we find that F � G = F�2, as in Definition 3.6. Now we
turn our attention back to the individual risk model, where the random vari-
ables Y1, . . . ,Yn are independent, so the total amount T claimed on the whole
portfolio has the distribution function

FT (x) =
(
FY1 � · · · � FYn

)
(x). (3.46)

Now consider moment generating functions. Let MZi(r) be the moment gen-
erating function of Zi. Then, using the expression for the moment generating
function of a finite mixture given in (3.12), the moment generating function of
Yi in (3.42) is

MYi(r) = E[eYir] = 1 − qi + qiE[eZir] = 1 − qi + qiMZi (r). (3.47)

Using (1.8), we find that the moment generating function of T is

MT (r) =
n∏

i=1

MYi (r) =
n∏

i=1

(1 − qi + qi MZi(r)). (3.48)

Example 3.27 We continue with the special case in Examples 3.25 and 3.26,
where Zi = bi with probability 1. In this case, we have FZi (x) = 1[bi,∞)(x), so
that

FYi (x) = (1 − qi)1[0,∞)(x) + qi1[bi,∞)(x),



138 Short term risk models

which may be plugged into the right-hand side of (3.46) to give an expression
for FT (x).

For the moment generating function, we first note that MZi (r) = ebir, and so

MT (r) =
n∏

i=1

(1 − qi + qie
bir),

completing this example.

In the general case given by (3.45), the random variable Yi can be thought
of in various ways. We have already mentioned that the distribution of Yi is a
finite mixture of an atom at zero (with probability 1 − qi) and the distribution
FZi (with probability qi).

For an alternative representation, first consider the definition of a compound
binomial random variable S = X1+· · ·+XN , where N ∼ bi(m, p) and X1, X2, . . .

are iid with distribution function FX and moment generating function MX (see
§3.4.4). The moment generating function of S is

MS (r) = (1 − p + pMX(r))m. (3.49)

A special case of this is when m = 1, when N has a Bernoulli distribution with
success probability p, i.e. N ∼ bi(1, p), in which case the moment generating
function of S is

MS (r) = 1 − p + pMX(r).

Comparing the preceding expression with (3.47), it is clear that Yi has a com-
pound Bernoulli distribution with p = qi and MX = MZi , and (3.46) shows
that the distribution of T is given by the convolution product of n compound
Bernoulli distributions. This representation provides a nice link between the
individual risk model and the compound distributions studied in earlier sec-
tions of this chapter. The next example shows how a compound binomial arises
in a certain special case.

Example 3.28 Consider the homogeneous individual risk model, so that
FZ1 = · · · = FZn = FZ , and let MZ be the moment generating function asso-
ciated with FZ . Suppose further that q1 = · · · = qn = q. Then from (3.48) we
have

MT (r) = (1 − q + qMZ(r))n.

By referring to (3.49), this shows that in this special case T has a com-
pound binomial distribution with counting random variable having a bi(n, q)
distribution and steps having distribution function FZ .
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3.8.3 Approximations for the individual risk model

At its core, the individual risk model is conceptually simple, being the sum
of n independent random variables, and as such is easy to deal with in prin-
ciple. However, for large n, even the simplest individual risk model such as
that in Examples 3.25, 3.26 and 3.27 can lead to tricky calculations. This moti-
vates the use of approximations for the distribution of T for an individual risk
model with known q1, . . . , qn and known distributions for Z1, . . . ,Zn (and hence
known μi and σ2

i ) in (3.42).
The most natural and straightforward approximation is the normal approxi-

mation, justified by the Central Limit Theorem for large n. Here, the distribu-
tion of T is approximated by a normal distribution with mean and variance the
same as E[T ] and Var[T ], respectively, so, by (3.43) and (3.44), we obtain the
approximation

N

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

qiμi,
n∑

i=1

(qiσ
2
i + qi(1 − qi)μ

2
i )

⎞⎟⎟⎟⎟⎟⎠
for the distribution of T . We then obtain approximations for quantities such as
Pr(T > x) by calculating the corresponding quantities for the approximating
normal distribution.

One of the main advantages of the normal approximation is that it is quick
and easy to apply; another is that we only need to know the μi and the σ2

i

for each i (instead of the whole distribution of Zi). Disadvantages include
the fact that the approximating normal distribution gives positive probability
to the negative half-line, whereas the true distribution of T is concentrated
on [0,∞). In addition, the approximating normal is a continuous distribution
with no atoms, whereas the true distribution of T has an atom at zero of size∏n

i=1(1 − qi). In applications, qi is often small, meaning 1 − qi is not small, so
that this atom at zero might not be negligible for small n.

Other approximations have been studied for the individual risk model. With
the introduction of the popular Panjer recursion algorithm for numerical eval-
uation of various types of compound distributions, it became much easier to
calculate the total claim amount for the collective risk model than for the
individual risk model. This led to the use and study of collective risk model
approximations for the individual risk model. One of the most common of
these is the compound Poisson approximation, where we aim to use a CP(λ, F)
distribution to approximate the distribution of T for an individual risk model
with given n, qi and FZi as in (3.42).

In order to specify this approximation completely, we need to choose appro-
priate λ and F for the compound Poisson. One way to do this is described in the
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following. Recall from §3.8.2 that Yi has a compound Bernoulli distribution
where the counting random variable has a bi(1, qi) distribution and the step
random variable has distribution function FZi . We replace the counting distri-
bution bi(1, qi) by a Poi(λi) distribution, where λi = qi, so that the distribution
of Yi is replaced by a CP(qi, FZi ) distribution, which has the same mean, qiμi,
as Yi. Extending this, we replace the distributions of Y1, . . . ,Yn by independent
compound Poisson distributions CP(q1, FZ1 ), . . . , CP(qn, FZn ), respectively.
Then we replace the true distribution of T = Y1 + · · · + Yn by the distribu-
tion of the sum of the n independent compound Poisson random variables. By
Theorem 3.14, this sum has a compound Poisson distribution CP(q+, F), where
q+ = q1 + · · · + qn and F =

∑n
i=1(qi/q+)FZi . We use this final CP(q+, F) as an

approximation to the distribution of T :

FT ≈ CP(q+, F).

The step distribution of the approximating compound Poisson distribu-
tion is a finite mixture of the individual claim-size distributions (with
distribution functions FZ1 , . . . , FZn ) with corresponding mixing proportions
(q1/q+), . . . , (qn/q+). This mixture may be interpreted as follows. Suppose we
know that we have a claim from the portfolio in question, but we do not know
which policy the claim comes from. Then intuitively it comes from the ith
policy with probability qi/q+. Given that the claim comes from policy i, we
know that the claim size has distribution function FZi . This is exactly what the
mixture distribution is saying. The mean and variance of the approximating
compound Poisson distribution are calculated in Exercise 3.31.

There are other ways to choose an approximating compound Poisson distri-
bution, and there are other compound distribution approximations. These have
been much studied, together with bounds on the distance between the true
and approximating distributions (see, for example, sect. 4.6 in Rolski et al.
(1999)). In addition to the above approximating models for the individual risk
model, there is also the consideration of numerical evaluation of the distribu-
tion of the total amount claimed on the whole portfolio. We mention briefly
two approaches here. Since the distribution of T is the convolution of n distri-
bution functions, we may apply the fast Fourier transform algorithm to obtain
numerical approximations to the distribution of T . Other approaches include
recursion formulae, such as the De Pril recursion (see De Pril (1986), (1989)).

Exercises

The following exercises refer to a random sum S = X1 + · · · + XN , where
X1, X2, . . . are iid, independent of N. Recall that the random variable N is called
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the counting random variable, and that the random variable X1 is called the step
random variable.

3.1 If X1 is non-negative and if Pr(X1 = 0) = a > 0, find Pr(S = 0).
3.2 Show by induction on k that if F has density f , then, for k ≥ 1, F�k has

density f *k (where ∗ and � are as in §3.2.1).
3.3 When X1 has distribution function FX , FX(0) = 0 and Pr(N = 0) > 0,

show that the distribution function FS of S is a finite mixture of a unit
mass at zero and a proper distribution with distribution function

F̃S (x) =
∞∑

n=1

F�n
X (x)

Pr(N = n)
Pr(N ≥ 1)

;

find the mixing proportions. Show that F̃S is itself a compound distribu-
tion function.

3.4 Let X and Y be independent random variables with cumulant generating
functions KX(r) = logE[erX] and KY (r) = logE[erY ]. Let κX, j = K( j)

X (0)
be the jth cumulant of X, and define κY, j similarly. Show that the cumu-
lant generating function of X + Y is KX+Y (r) = KX(r) + KY (r), and hence
show that cumulants of independent random variables are additive, i.e
the jth cumulant of X + Y is κX+Y, j = κX, j + κY, j.

3.5 Let S be a random sum and suppose that the counting random variable
N and step random variable X1 have cumulant generating functions KN

and KX , respectively. Use the relationship KS (r) = KN(KX(r)) to find the
first three cumulants of S in terms of the cumulants of X1 and N.

3.6 Let S be the total claim amount in a year arising from a portfolio with N
claims in a year and with iid positive claims X1, X2, . . ..
(a) If N has a Poisson distribution with mean λ, show that the cumulant

generating function of S is KS (r) = λ(MX(r) − 1), where MX(r) is
the moment generating function of X1. Hence find expressions for
the cumulants of S in terms of λ and the moments of X1. What can
you say about the skewness of the total claim amount?

(b) Suppose that N has a negative binomial distribution with parameters
k (a positive integer) and p, so that N ∼ nb(k, p) and

Pr(N = n) =

(
k + n − 1

n

)
pk(1 − p)n, n = 0, 1, 2, . . . .

Find expressions for the first three cumulants of S in terms of k, p,
q = 1 − p and the moments of X1. Comment on the skewness of the
total claim amount in this case.

3.7 Find the covariance between a random sum S and its counting random
variable N.
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3.8 (a) Consider a portfolio of n (n constant) independent motor insur-
ance policies, where the aggregate claims S i for policy i in one
year has a compound Poisson distribution with Poisson parame-
ter λi and claim-size distribution function F, and assume that F is
known. Suppose that {λi} are iid random variables, so that different
people may have different accident rates. Find the expectation and
variance of the total aggregate claims S in one year for the whole
portfolio.

(b) Now consider a portfolio of n building insurance policies for build-
ings in a particular area where the risk of flooding varies from year
to year. The total amount S i claimed for policy i in one year has a
compound Poisson distribution with Poisson parameter λ and claim-
size distribution function F; assume that F is known. Suppose that λ
is a random variable that varies from year to year, and that, given
λ, the S i are independent random variables. Find the expectation
and variance of the total amount S claimed for the whole portfo-
lio in one year, and compare your answers with those you obtained
in (a).

3.9 Let N be the number of claims in a year on a portfolio of fire insurance
policies. Suppose that N has a mixed Poisson distribution, so that the
conditional distribution of N, given λ, is Poi(λ), and suppose that λ has a
gamma distribution with mean μ and variance μ2/2. Find the distribution
of N.

3.10 In a particular region, the number of severe weather events in a year
is a random variable N with Pr(N = n) = (1 − p)n p, n = 0, 1, 2, . . .,
0 < p < 1. The ith severe weather event gives rise to Mi insurance
claims, where the Mi are iid random variables, independent of N, with
Pr(M1 = k) = (1 − p̃)k p̃, k = 0, 1, 2, . . ., 0 < p̃ < 1. Find the distribution
of the total number T of insurance claims arising from severe weather
events in one year in this region.

3.11 For Example 3.17, use the moment generating formula (3.8) to obtain
the distribution of the random sum resulting from an ñb(1, p) counting
distribution and an exponential step distribution with mean μ.

3.12 For Example 3.18, use the convolution series formula (3.7) to obtain
the distribution of the random sum resulting from an nb(1, p) counting
distribution and an exponential step distribution with mean μ.

3.13 Suppose that Pr(N = n) = qn p, n = 0, 1, 2, . . ., 0 < p < 1, q = 1 − p, and
that X1, X2, . . . are iid random variables, independent of N, with density
f (x) = λ2xe−λx, x > 0. Show that the resulting compound distribution
function has tail
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Pr(S > x) =

√
qe−λx

2

(
(1 +

√
q)eλ

√
qx − (1 − √q)e−λ

√
qx
)
.

Hint: Find the moment generating function of S as in Example 3.18.
Then use partial fractions to write the second component as the sum of
two recognisable moment generating functions.

3.14 Find the distribution function of S if N ∼ nb(2, p), with Pr(N = n) =
(n + 1)(1 − p)n p2, n = 0, 1, 2, . . ., 0 < p < 1 and X1 has density f (x) =
λ2xe−λx, x > 0.

3.15 Assume that pn = Pr(N = n) and that the pn satisfy (3.29), i.e. that

pn = (a + b/n) pn−1 for n = 1, 2, . . . .

Suppose that fk = Pr(X1 = k) for k = 0, 1, 2, . . ., with f0 > 0 and∑∞
k=0 fk = 1. Note that this is different from the assumptions for Theo-

rem 3.21, where the distribution of X1 is concentrated on {1, 2, . . .}. Let
gk = Pr(S = k). Find g0, and derive the recursion formula (3.32) for gr,
r ≥ 1, in terms of a, b, the f j and g0, . . . , gr−1.

3.16 Prove that the discrete Fourier transform inversion formula (3.35) works,
i.e. show that if you plug the right-hand side of (3.34) into the right-hand
side of (3.35), then you do indeed obtain ak.

3.17 Using a computer, carry out the Panjer recursion algorithm for the com-
pound geometric distribution with exponentially distributed step random
variable, with parameter values as for Table 3.2. Check that you can
duplicate the values in the Panjer algorithm column of Table 3.2.

Using a package with a fast Fourier transform algorithm, experiment
with its use and with how the package carries out the inverse, so that you
can reproduce the numbers in the last two columns of Table 3.2.

Experiment with changing the discretisation parameter h. For exam-
ple, you could try h large, for example 0.1, and h much smaller.

For the FFT algorithm, look at the effect of changing m. In particular,
look for the wrap-around errors that occur when m and h are such that the
interval [0,mh) is not large enough to hold most of the distribution of S .

3.18 Using a computer, explore the use of the Panjer recursion algorithm and
the FFT algorithm for compound Poisson distributions.

3.19 Suppose that N has a Poisson distribution with mean λ, and that X1 is
non-negative with moment generating function MX(r) < ∞ for all r, and
with finite moments μ j = E

[
X j

1

]
, j = 1, 2, . . .. Define the standardised

random variable Z by

Z =
S − λμ1√

λμ2
.
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Show that the moment generating function of Z is

MZ(r) = exp

⎡⎢⎢⎢⎢⎢⎣λ ⎛⎜⎜⎜⎜⎜⎝ ∞∑
k=1

μkrk

k!
(√
λμ2

)k − μ1r√
λμ2

⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ .
Show that as λ → ∞, MZ(r) converges to exp

(
r2/2

)
(the moment

generating function of a standard normal distribution). This provides
justification for the normal approximation to a compound Poisson
distribution for large λ.

3.20 Let X1, X2, . . . be iid claim sizes, and let N be the number of claims in a
time period, independent of the Xi. Let S be the resulting total amount
claimed in one time period. For the translated gamma approximation,
we approximate the distribution of S by that of V = k + Y , where k is a
constant, Y has a gamma(α, ν) distribution, and k, α and ν are chosen so
that V has the same mean, variance and coefficient of skewness as S .

Find the mean, variance and coefficient of skewness of V , and hence
verify the expressions given in §3.6.1 for k, α and ν in terms of the mean,
variance and coefficient of skewness of S .

3.21 Figure 3.2 shows the normal and translated gamma approximations for
Pr(S > x), together with the true values, in the case where Pr(N = n) =
qn p, 0 < p < 1, q = 1− p, and X1 is exponentially distributed with mean
μ, when p = 0.1 and μ = 2. Work out the details of these approximations,
and reproduce Figure 3.2 for yourself.

3.22 Investigate the quality of the normal and translated gamma approxi-
mations for compound Poisson distributions with various distributions
for the step random variable. You will have to make use of numerical
approximations for the “true” distribution.

3.23 For the set-up in Exercise 3.13, find the asymptotic approximation given
by Theorem 3.23, and verify that

Pr(S > x)/asymptotic approximation→ 1 as x→ ∞.
3.24 This exercise illustrates the effect of uncertainty in parameter values.

Consider a portfolio of n independent policies, whose premium each year
is £c per policy. The total amount claimed from a single policy has a
compound Poisson distribution with Poisson parameter λ and individual
claims have a gamma(α, δ) distribution. The expense in settling a claim
is a random variable uniformly distributed between £a and £b (0 < a <
b < ∞), and is independent of the associated claim size. Let S be the total
amount claimed together with the total expenses for the whole portfolio.
(a) Show that S has a compound Poisson distribution with Poisson

parameter λn, and steps distributed as the sum of two independent
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random variables X and Y , where X has a gamma distribution and Y
has a uniform distribution.

(b) Suppose that c = 80, λ = 0.4, α = 1, δ = 0.01, a = 50 and b = 100.
Assume that the distribution of S may be approximated by a normal
distribution. Find the number of policies the company must sell in a
year to be at least 99% sure that the premium income will cover the
cost of the claims and expenses.

(c) Suppose that α and δ are not known exactly, but we know 0.95 ≤ α ≤
1.05 and 0.009 ≤ δ ≤ 0.011. Assume that all other parameter values
are as in (b) and that the distribution of S may be approximated by
a normal distribution. In the worst possible case (i.e. taking those
parameter values leading to the largest values of E[S ] and Var[S ]),
find the number of policies that the company must sell in one year to
be at least 99% sure that the premium income will cover the cost of
the claims and expenses.

3.25 Assume we have inter-claim arrival times T1, . . . ,Tn, iid exponential ran-
dom variables with mean 1/λ, and claim sizes X1, . . . , Xn, iid exponential
random variables with mean μ, as in §3.7. We found that the maximum
likelihood estimators of λ and μ are λ̂ = 1/T̄ , where T̄ =

∑n
i=1 Ti/n, and

μ̂ = X̄, where X̄ =
∑n

i=1 Xi/n, respectively.
(a) Find μ̂L and μ̂U in terms of percentage points of an appropriate χ2

distribution and of the data, such that Pr
(
(μ̂L, μ̂U) � μ

)
= 1 − α

exactly for a given α, 0 < α < 1.
Hint: use the fact that nμ̂ has a gamma distribution, and recall
Exercise 2.7(b).

(b) Find λ̂L and λ̂U such that Pr
(
(λ̂L, λ̂U) � λ) = 1 − α.

3.26 This and the following exercise use the same simulated samples, and you
may wish to do them together.

Consider the compound Poisson example in §3.7. Simulate sam-
ples t1, . . . , tn and x1, . . . , xn from exponential distributions with means
0.1 and 1, respectively, for n = 100. Using your samples, calculate
Ê[S ] = λ̂μ̂, where ˆ denotes the maximum likelihood estimator, and
find the 95% confidence interval for E[S ] given in (3.40). Does your
confidence interval cover the true E[S ] = 10? Repeat the entire proce-
dure a large number of times, and record the proportion of the confidence
intervals that cover the true E[S ]. Repeat for n = 30 and n = 300.

3.27 Use the samples you simulated in Exercise 3.26 to find ŝy = Pr(S > y)
(you will need to calculate ŝy numerically from λ̂ and μ̂) for various
choices of y, such as y = 10, 20, 30. Calculate parametric bootstrap
confidence intervals for ŝy, as in §3.7.
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3.28 Consider an individual risk model (3.42), where Zi has an exponential
distribution with mean bi. Calculate the mean and variance of the total
amount T claimed on the whole portfolio. Compare your values with
those obtained in Example 3.26.

3.29 In the individual risk model with Yi as in (3.42), let E[Zi] = μi (> 0),
Var[Zi] = σ2

i and E
[
(Zi − μi)3] = βi. Show that T = Y1 + · · ·Yn has

skewness

E
[
(T − E[T ])3] = n∑

i=1

(
qiβi + 3qi(1 − qi)μiσ

2
i + (1 − qi)(1 − 2qi)qiμ

3
i
)
.

Show that it is possible to have T with negative skewness, even if Zi has
positive skewness for every i.

3.30 In a portfolio of n independent policies, suppose that the amount claimed
on policy i in a particular year has a compound Poisson distribution
CP(λi, Fi).
(a) Show that the total amount claimed on the whole portfolio in a year

has a compound Poisson distribution.
(b) By showing that Yi can be written in the form of (3.42), show that

this can be regarded as an individual risk model. Identify qi and show
that the distribution of Zi is itself a compound distribution.

3.31 Let T be the total amount claimed on the whole portfolio in the individual
risk model in (3.42). Suppose that the compound Poisson approximation
is made as in §3.8.3. Let T̃ be a CP(q+, F) random variable, where q+
and F are as in §3.8.3. Find E[T̃ ] and Var[T̃ ], and compare your answers
to the true values E[T ] and Var[T ].
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Model based pricing – setting premiums

An insurer is in business to provide insurance cover against specified risks.
The insurer offers to provide a policy with certain benefits under particular
conditions, and contracts to do this at a stated price, the premium. The customer
may or may not accept the offer – if the contract is accepted and the premium
is paid, the customer becomes the policyholder.

In this chapter we consider various pricing principles on which a general
(non-life) insurer may base the premiums to be charged. We consider the pre-
mium based on the profile of the risks involved alone, not inflated or otherwise
adjusted for the insurer’s running costs or profit margins or other external
considerations (such as competition in the marketplace).

In §4.1 we consider six principles based on the summary properties of the
distribution of the random variable representing the risk. Two of these cases
involve the insurer’s view of the utility of the risk – an introduction to utility
theory is given in Appendix A.

In §4.2 we consider the maximum and minimum premiums which are
consistent with utility principles.

In §4.3 to §4.7 we consider an important branch of actuarial science called
credibility theory, which consists of applications of Bayesian statistics in a
general insurance context. The methods are concerned with setting a premium
for a risk, taking into account the recent claims experience of the risk (and
usually that of other comparable risks) – this methodology provides a major
illustration of experience rating.

Let S 1, S 2, . . . , S n be a sequence of iid random variables representing the
aggregate claims from a risk (that is, the total of the sizes of all claims aris-
ing) in years 1, 2, . . . , n. Let S represent any one of the S i. We will often use
the simpler term “risk” for the “aggregate claims from a risk”. The expected
(mean) risk is E[S ], and it is referred to as the pure premium for the risk.

147
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Suppose the premium charged each year by the insurer to insure the risk is P.
Consider three cases:

(a) P > E[S ];
(b) P = E[S ];
(c) P < E[S ].

In case (a) the insurer is wisely charging more than the pure premium, but,
even so, the cumulative surplus on this business may, or may not, at some point
become negative. In case (b) the insurer is charging only the pure premium
and making no provision for statistical variation in the risk, in particular for
outcomes in which the risk exceeds its expected value. In case (c) the insurer
is unwisely charging less than the expected risk, and the cumulative surplus on
the business will eventually become negative (with probability 1), regardless
of the initial surplus. This fate awaits the insurer in case (b) also.

The insurer recognises therefore that the premium must be set at a level
above that of the expected risk (the mean aggregate claims). In other words,
some premium “loading” is necessary to ensure P − E[S ] > 0. The quantity
P − E[S ] is the risk loading in the premium.

4.1 Premium calculation principles

A premium calculation principle is a rule for setting the premium P to be
charged to cover a risk, S , say. The use of the different premium calculation
principles which follow requires that we know various properties of the dis-
tribution of S . Let the mean and standard deviation of S be denoted E[S ] and
SD[S ], respectively. In practice, of course, we will not know the distribution of
S or its moments exactly, and we may have to estimate the moments or other
properties of the distribution in the face of underlying parameter uncertainty.

4.1.1 The expected value principle (EVP)

This is the simplest premium calculation principle and sets P as

P = E[S ] + αE[S ] = (1 + α)E[S ] (4.1)

for some α > 0. The pure premium is increased by a percentage of the mean
of the risk (that is, by a percentage of itself). To use this principle in practice,
we need to know E[S ]. The value α is called the relative security loading on
the pure premium E[S ].
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4.1.2 The standard deviation principle (SDP)

This principle sets P as

P = E[S ] + αSD[S ] (4.2)

for some α > 0. The pure premium is increased by a percentage of the standard
deviation of the risk. To use this principle in practice, we need to know E[S ]
and SD[S ] (or Var[S ]). Within the context of SDP, we may again refer to α as
the relative security loading.

4.1.3 The variance principle (VP)

This principle sets P as

P = E[S ] + αVar[S ] (4.3)

for some α > 0. The pure premium is increased by a percentage of the variance
of the risk. As in §4.1.2, to use this principle in practice we need to know E[S ]
and Var[S ] (or SD[S ]). We may again refer to α as the relative security loading.

4.1.4 The quantile principle (QP)

This principle sets P to be a particular quantile of the distribution of S . For
example, if we use the 95th percentile, P satisfies Pr(S ≤ P) = 0.95. The
premium is set at a point which ensures a given size for the upper tail beyond
P of the distribution of the risk. To use this principle in practice, we need to
have a model for the distribution of S , or at least know the values of certain
higher percentiles of the distribution.

Example 4.1 Suppose an insurer wants to have probability at least 0.95 of
being able to cover a risk S . For illustrative purposes only, suppose the risk
is modelled as having a normal distribution with known mean E[S ] and stan-
dard deviation SD[S ]. The insurer requires Pr(S ≤ P) = 0.95, and the 95th
percentile of the standard normal distribution is 1.6449, so we require P to
satisfy

P − E[S ]
SD[S ]

= 1.6449,

giving P = E[S ] + (1.6449× SD[S ]). In this case, the insurer’s approach
of using the quantile principle is equivalent to using the standard deviation
principle (4.2) with relative security loading given by α = 1.6449.
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4.1.5 The zero utility principle (ZUP)

This principle sets P to satisfy

u(W) = E[u(W + P − S )], (4.4)

where u(·) and W are the insurer’s utility function and initial wealth, respec-
tively. See Appendix A for an introduction to utility functions. From Appendix
A, we note here that u(W) represents the value the insurer places on having
wealth W, and that u(·) satisfies u′(x) ≥ 0 and u′′(x) ≤ 0 for all x > 0 (so that
u(·) is concave).

In (4.4), the insurer sets the premium using a benchmark of indifference in
utility terms: P is such that the insurer has “zero gain” in expected utility by
insuring the risk. With no insurance in place, the insurer’s utility is simply
u(W); with insurance in place, the insurer’s wealth increases by the receipt of
the premium P but decreases by the aggregate claims paid (the risk S ), and so
the insurer’s utility is now a random variable (a function of the random variable
S ), with expected value E[u(W + P − S )].

To use this principle in practice, we need to know, in general, the insurer’s
utility function, initial wealth (but see §4.1.6) and certain expectation proper-
ties of the random variable S .

4.1.6 The exponential premium principle (EPP)

This is a special case of the zero utility principle (4.4), for the case in which
the insurer’s utility function is of exponential form, namely u(x) = −e−βx, for
some β > 0. In this case P satisfies

−e−βW = E[−e−β(W+P−S )],

and so, noting that W and P are constants, we have 1 = e−βP
E[eβS ], and hence

P is given by

P =
1
β

logE[eβS ] =
1
β

log MS (β) (4.5)

when MS (β) < ∞. Note that in this case the premium is independent of the
insurer’s initial wealth. To use this principle in practice, we need to know the
parameter of the insurer’s exponential utility function and the moment gener-
ating function of S . Using Jensen’s inequality (see Appendix A), we can show,
reassuringly, that P ≥ E[S ] (see also Exercise 4.1).

The function (4.5) giving the premium can be shown to be an increasing
function of β, a property which has a direct interpretation in terms of the
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risk aversion of the insurer setting the premium. This property features in
Example 4.2 and in Exercises 4.1 and 4.3.

Example 4.2 (i) An insurer sets the premiums for two risks, S 1 and S 2,
using the exponential premium principle, with utility function u(x)=
− e−3x. Suppose S 1 ∼ N(8, 2) and S 2 ∼ N(6, 4). We use (4.5) with β = 3.

By the formula (2.10) for the moment generating function of a normal
distribution, we have

MS 1 (3) = exp

(
3 × 8 +

1
2
× 32 × 2

)
= exp(33),

MS 2 (3) = exp

(
3 × 6 +

1
2
× 32 × 4

)
= exp(36).

So, the EPP premium for risk 1 is 33/3 = 11 and that for risk 2 is
36/3 = 12. The premium is higher for risk S 2, despite the fact that the
expected aggregate claims for S 2 is lower. This reflects the greater uncer-
tainty in the outcome for S 2, as summarised in the higher variance of the
distribution.

(ii) An insurer sets the premium for a risk S using the exponential premium
principle, with utility function u(x) = −e−βx. Suppose S ∼ N(μ, σ2). Then

log MS (β) = βμ +
1
2
β2σ2,

giving

P =
1
β

(
βμ +

1
2
β2σ2

)
= μ +

1
2
βσ2.

We note that in this case EPP produces a premium that is also consistent
with the variance principle.

We also note that the premium is an increasing function of μ (higher
expected claims leads to higher premium) and also of σ (higher uncer-
tainty of claims leads to higher premium). It is also an increasing function
of β, exhibiting the role of the utility function parameter as a measure of
risk aversion – higher values of β correspond to higher risk aversion and
the consequent setting of higher premiums. For more on risk aversion, see
Appendix A.

Suppose instead that S ∼ Exp(1/μ). By (2.15), MS (β) = (1 − βμ)−1 for
βμ < 1. So

P = −1
β

log(1 − βμ).

We note again that the premium is an increasing function of μ and also of
β (to see this, look at a Maclaurin expansion for log(1 − βμ)).
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4.1.7 Some desirable properties of premium calculation principles

There are various properties that are desirable for principles used in calculating
premiums, and we give some of these below.

(1) Simplicity versus use of information
The characteristics of the distribution of the risk we need to know for EVP,
SDP, VP and QP are as follows:

EVP: E[S ];
SDP, VP: E[S ], SD[S ];
QP: one or more of the higher percentiles of the distribution.

So EVP is the simplest principle, followed by SDP and VP; QP in general
requires a different kind of statistical information.

The use of ZUP requires a knowledge of the insurer’s utility function (and
with non-exponential-form utility functions also requires knowledge of the
insurer’s initial wealth); it also requires knowledge of certain expectation prop-
erties of the random variable S . The use of EPP requires knowledge of the
moment generating function of S .

The other side of the “simplicity” coin is the “use of information”. Being
relatively simple principles, EVP, SDP and VP use only limited summary infor-
mation about the distribution of S , specifically the first and second moments;
QP uses information on quantiles, a different type of summary information. In
general, ZUP and EPP require more information about the distribution of S .
Since knowledge of the moment generating function means not just that we
know all the moments of the distribution, but is equivalent to knowing the dis-
tribution function itself, using EPP effectively assumes a full knowledge of the
distribution of the risk.

(2) Additivity
When the insurer takes a portfolio view of several risks, one can argue that the
premium income for the portfolio should be equal to the sum of the premiums
for the individual risks comprising the portfolio. To be precise, let P1 and P2

be the premiums for independent risks S 1 and S 2, respectively. The additivity
property states that

PS 1+S 2 = PS 1 + PS 2 .

It is easy to see that this property holds for EVP and for VP, but that it does not
hold for SDP (the variance of the sum of independent variables is the sum of
the individual variances – standard deviations, however, do not in general “add
up”). This property also holds for EPP (see Exercise 4.2).
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A generalisation of the additivity property comes from noting that adding
extra cover should not decrease the premium. So it makes sense to demand

PS 1+S 2 ≥ PS 1 ; (4.6)

here S 2 is a non-negative random variable that is independent of S 1. The
property (4.6) holds in general for EVP, VP, SDP and EPP.

(3) Scale invariance
This property states that if P is the premium for risk S then the premium for
the risk cS should be cP, where c is a positive constant. This is obviously sen-
sible – for example, if we double the risk, we should double the premium. This
scaling property is well-illustrated when the insurer’s business is re-expressed
in another currency: suppose £1 = $c, then the sterling risk S , when expressed
in dollars, becomes the random variable cS , and the premium changes from
£P to $cP.

The property holds for EVP and SDP, but does not hold for VP (see
Exercise 4.2) or EPP.

The above properties are desirable from a theoretical standpoint. In practice,
however, they may not be held to rigidly – an insurer will take into account the
relevant “initial wealth” (through the capital/reserves supporting the business),
the expected profits and the market factors when deciding premiums.

Example 4.3 The use of simulated data can help us to appreciate the use and
effects of some of the premium calculation principles. Here we consider the
information contained in a simulated sample of 10 000 observations of a risk, in
this case an aggregate claims variable S . The variable has a compound Poisson
CP(λ, FX) distribution, where X is exponentially distributed with mean μ.

In the simulation, λ was taken to be 0.1 and μ was taken to be 100. For this
model, Pr(S = 0) = exp(−0.1) = 0.9048, E[S ] = 10 and Var[S ] = 2000. The
simulated data set obtained consisted of 9013 values “S = 0” and 987 other
values ranging from 0.13323 to 1183.1 – the data set has a major spike at value
0 (reflecting the fact that the claim frequency used was low) and has a long tail
to the right (reflecting the tail of the exponential distribution).

Summary statistics of the simulated data are as follows:

sample mean 10.263; standard deviation 46.155; variance 2130.3; 95th per-
centile 68.158.

Using these sample statistics as estimates of the corresponding underly-
ing population characteristics, we can see what premiums are produced using
various principles.
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(i) EVP with relative security loadings 0.5 (50%) and then 1.5 (150%):

P = 10.263+ 0.5 ∗ 10.263 = 15.4 and P = 10.263+ 1.5 ∗ 10.263 = 25.7.

(ii) SDP with relative security loadings 0.2 and then 1.645:

P = 10.263+0.2∗46.155 = 19.5 and P = 10.263+1.645∗46.155 = 86.2.

(iii) VP with relative security loading 0.01:

P = 10.263 + 0.01 ∗ 2130.3 = 31.6.

(iv) QP using the 95th percentile:

P = 68.2.

The simulation was performed in R. A data set, here called simsamp,
was created by issuing the command simsamp=simcomp(10000,0.1,100),
which calls up and executes a function simcomp previously stored as a text file
as follows:

simcomp=function(n, lambda, mu){

s=(1: n)*0

numclaims = rpois(n, lambda)

for(i in 1:n){

s[i]=sum(rexp(numclaims[i], 1/mu))}

s}

The method of simulation follows that in §3.4.1, but in the R code above we
have illustrated how to build this into an R function.

We will return to the properties of premiums in Case Study 1 in Chapter 7.

4.1.8 Other premium calculation principles

There are several other premium calculation principles available, in partic-
ular one or two based on an adjustment to the distribution function of the
risk which produces a weighted version of the original density function – the
weight increases as x increases, producing a density with fatter tails than it had
originally. Further information can be found in Dickson (2005).
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4.2 Maximum and minimum premiums

First consider things from the point of view of an individual exposed to a pos-
sible loss and seeking insurance cover against that loss. Suppose the individual
adopts a utility function u(x) and has wealth W. Suppose also that the loss faced
by the individual is represented by the random variable S and that insurance is
available for a premium P. We assume that the individual behaves rationally,
according to the expected utility criterion.

The individual’s expected utility with no insurance cover is E[u(W − S )],
and the individual’s expected utility with insurance cover is

E[u(W − P)] = u(W − P).

So the individual will buy the insurance (or be indifferent) if

u(W − P) ≥ E[u(W − S )].

As the premium P increases, the value of u(W−P) decreases. It follows that the
maximum premium the individual will be prepared to pay, say Pmax, satisfies

u(W − Pmax) = E[u(W − S )]. (4.7)

So, by Jensen’s inequality, Pmax satisfies

u(W − Pmax) ≤ u
(
E[W − S ]

)
= u(W − E[S ]),

which implies that Pmax ≥ E[S ]. The individual exposed to the loss is prepared
to pay more than the expected loss – prepared, in fact, to pay the difference
between the premium demanded and the expected loss to protect against a
major (possibly catastrophic) loss.

Now consider things from the point of view of the insurer. Suppose the
insurer adopts a utility function v(x) and has wealth V (neither of which need
be the same as for the individual). The insurer’s expected utility if no cover
is purchased is v(V), and the insurer’s expected utility if cover is purchased is
E[v(V + P − S )]. So the insurer will provide the cover (or be indifferent) if

E[v(V + P − S )] ≥ v(V).

As the premium P decreases, the value of E[v(V +P−S )] decreases. It follows
that the minimum premium the insurer will accept, say Pmin, satisfies

E[v(V + Pmin − S )] = v(V). (4.8)

So, by Jensen’s inequality, Pmin satisfies

v(V) ≤ v
(
E[V + Pmin − S ]

)
= v(V + Pmin − E[S ]),
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which implies that Pmin ≥ E[S ]. The insurer will not provide cover for a
premium less than E[S ].

We conclude from this simple argument that an insurance contract between
the individual wanting cover and the insurer is only possible if

Pmax ≥ Pmin ≥ E[S ].

Example 4.4 Suppose a risk S represents aggregate claims and has a com-
pound Poisson distribution with rate (Poisson) parameter 0.1, with individual
claim amounts having an exponential distribution with mean 100. (This is the
same structure as we adopted for the variable S in Example 4.3 in which we
used simulated data.) The party to be insured has initial wealth W and uses a
utility function u(x) = −e−0.005x.

The maximum premium the party to be insured will pay, Pmax, satisfies (4.7),
which leads to

e0.005Pmax = E[e0.005S ].

Now E[etS ] is the moment generating function of S , which, having a compound
Poisson distribution with rate parameter 0.1, is given by (3.16) as

MS (t) = E[etS ] = e0.1(MX (t)−1),

where the moment generating function of X, MX(t), is given by (2.15) as
MX(t) = (1 − 100t)−1. So MX(0.005) = 2 and MS (0.005) = e0.1. Hence Pmax

satisfies e0.005Pmax = e0.1, and so 0.005Pmax = 0.1, giving Pmax = 20. We note
that E[S ] = 0.1 ∗ 100 = 10 and that Pmax > E[S ].

4.3 Introduction to credibility theory

Credibility theory provides a framework for setting premiums in general insur-
ance. It is an important illustration of experience rating, in which the premium
is based on information coming from the recent past history of the risk and
possibly that of other, comparable, risks with relevant information to add to the
premium setting process. As more information becomes available (in the form
of the latest year’s claims experiences), the premium is updated. The method
is easy to implement, and has found a range of useful areas of application.

The premium for a risk calculated on this basis is called a credibility pre-
mium, and, as we will see, is a weighted average of two quantities. One of these
quantities summarises past information from the risk itself; the weight attached
to this quantity is called the credibility factor. The other quantity summarises
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other relevant information, and is based mostly or entirely on information
external to the risk itself.

In §4.5 we will consider the theory and methods of formal Bayesian credi-
bility theory, which is rooted in Bayesian statistics, and then, in §4.6 and §4.7,
we move on to consider the more widely applied empirical extensions of this
methodology. There are two well-known models of empirical Bayesian credi-
bility theory (EBCT). Model 1 (the Bühlmann model) provides an introduction
to the basic method. The more useful model 2 (the Bühlmann–Straub model)
provides a more practical extension of the basic method, incorporating as it
does measures of risk volumes (measures of the volumes of business the claims
experiences relate to).

We begin with a brief review of Bayesian estimation in §4.4, and consider
three important models, all of which share some relevant characteristics, two
of which find a natural place in the credibility framework.

4.4 Bayesian estimation

The methodology and practice of Bayesian statistics date from the second half
of the eighteenth century. The methods are named after the Rev. Thomas Bayes
(1702–1761), an English Presbyterian minister and mathematician who pub-
lished work on probability (and other topics). His paper Essay Towards Solving
a Problem in the Doctrine of Chances was read posthumously to the Royal
Society of London in 1763 and was published in the Society’s Philosophical
Transactions.

Students of elementary probability are familar with Bayes’ rule or Bayes’
theorem for events for calculating probabilities conditional on the occurrence
of some event E (with Pr(E) > 0),

Pr(Ai | E), i = 1, 2, . . . ,m,

in the situation that the events {Ai, i = 1, 2, . . . ,m} constitute a partition of the
sample space and the probabilities Pr(Ai) (> 0) and Pr(E | Ai), i = 1, 2, . . . ,m,
are known. The rule/theorem is usually stated as follows:

Pr(Ai | E) =
Pr(Ai) Pr(E | Ai)

m∑
i=1

Pr(Ai) Pr(E | Ai)

, i = 1, 2, . . . ,m. (4.9)

The essential feature of Bayesian statistics is the use of prior probabili-
ties or probability distributions to summarise the knowledge or beliefs we
have concerning the values of the parameters in our model – separately from
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considering the information in the data. Bayesian statistics was out of favour
in the nineteenth century as scientists did not really know how to handle
prior probabilities. In the first half of the twentieth century, there were major
developments in the theory and practice of frequentist statistics (“classical”
methods, based on likelihood arguments). A modern Bayesian movement grew
during the second half of the twentieth century, given rein by the availability
of powerful computing facilities, which enabled new statistical methods to be
developed and implemented. Proponents of Bayesian statistics argue that the
Bayesian approach is philosophically consistent and has pragmatic advantages
over other approaches, enabling it to be used to tackle problems in complex
statistical situations and to produce sensible answers to questions. In the late
twentieth century and in more recent years, there has been much increased
interest, and extensive research, in Bayesian methods, with ever-widening
applications being explored.

4.4.1 The posterior distribution

Suppose we have data x = (x1, x2, . . . , xn), where xi is an observation of the
random variable Xi, and where X1, . . . , Xn are iid, distributed as a random vari-
able X whose distribution depends on an unknown parameter θ. We want to
estimate the value of θ (note that θ may be a vector of several individual
parameters).

We have a model for the data, i.e. a probability distribution for X, and
we write f (x | θ) for the resulting joint probability density function of
X = (X1, . . . , Xn), explicitly recognising the dependence on the value of the
parameter θ. The function f (x | θ) represents the information in the data rel-
evant to estimating θ. Once the data values have been observed and so are
known numbers, the function f (x | θ) can be regarded as a function of θ, and
in this context it is called the likelihood function. Here and in the following we
use a generic notation f (·) for probability density functions; the argument of
the function indicates which density function is intended.

We have some prior information about θ – from our own experience and
knowledge and often that of others – and our current knowledge and beliefs
about θ are summarised and expressed by adopting a probability distribution
for the parameter, called the prior distribution, written as f (θ). The actual value
of θ is then a value selected from this distribution.

The prior information and the likelihood are combined to produce an
updated distribution called the posterior distribution, and we write f (θ | x)
for the density of the posterior distribution. This distribution summarises our
combined knowledge about θ (from the prior beliefs and the data as expressed
in the likelihood), and Bayesian inference is based on it.
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The main result, which follows, is usually called Bayes’ Theorem, and gives
the mechanism by which the posterior is calculated. It is a fundamental result
on conditional probability distributions – expressed in our current notation it
is as follows:

f (θ | x) =
f (θ) f (x | θ)

f (x)
=

f (θ) f (x | θ)∫
f (θ) f (x | θ)dθ . (4.10)

We often write this informally as

posterior =
prior × likelihood

marginal
,

where marginal is short for “marginal density of the data after averaging over
the prior distribution of θ”. As the denominator is a number (not a function of
θ), the result is often expressed in proportional form:

f (θ | x) ∝ f (θ) f (x | θ), (4.11)

and, once the right-hand side is established, the required scaling is sometimes
obvious or easily calculated.

In a case in which the posterior distribution is in the same “family” of distri-
butions as the prior, the prior is said to be a conjugate prior for the likelihood
concerned. This will occur when the likelihood itself has the same functional
form in θ as the prior.

The posterior distribution encompasses all our current information about the
parameter θ, and we now regard the actual value of θ as being a value selected
from this posterior distribution, rather than as coming from the prior.

Note that (4.10) is written in terms of probability density functions, but the
ideas and methods may also be applied to discrete distributions; see §4.4.3.
We will see how to use the posterior distribution after a short diversion to put
Bayesian methodology into a wider context.

4.4.2 The wider context of decision theory

Bayesian methodology lies naturally within the general framework of decision
theory, in which the consequences of alternative actions (decisions) are con-
sidered in the context of criteria based on the concept of a loss function. The
loss function, which depends on the parameter (say θ) and the action chosen
(say a), is denoted L(θ, a), and represents the loss, or penalty, we suffer if we
take action a when the value of the parameter is θ. The possible values of the
parameter θ are often referred to as the states of nature.

A well-known decision criterion is the minimax criterion, in which we
choose the action for which the maximum possible loss that we can suffer



160 Model based pricing – setting premiums

as a result is minimised (that is, we choose the action which gives the “least
worst” potential loss).

Another criterion is based on choosing the action which minimises the
expected loss – where we take the expectation with respect to a probability
distribution over the possible values of the parameter. The distribution we use
is the prior distribution of the parameter, and the loss is now a random variable
whose expected value is called the Bayes loss, B(a), which is a function of the
action concerned. In symbols: B(a) = Eθ[L(θ, a)], where the suffix notation Eθ
indicates that the expectation is with respect to θ. Using the Bayes criterion,
we choose the action for which the Bayes loss is minimised.

With relevant data available – a random sample x from the distribution
whose parameter is to be estimated – we can construct a decision rule, d(x),
which specifies which action to take for each possible value of an appropriate
statistic computed from the sample data. This in turn gives us a risk function,
R(θ, d), which is the expected value of the loss function averaged over the dis-
tribution of the data – it is a function only of the decision rule and the value
of the parameter. In symbols: R(θ, d) = EX[L(θ, d(X))] = EX[L(θ, d)] for short.
The data change our problem from one of a choice of action in the presence
of a loss function to one of a choice of decision rule in the presence of a risk
function.

It is not generally possible to find a decision rule which minimises the risk
function R(θ, d) for all values of the parameter. So we employ decision criteria
such as minimax or Bayes.

The Bayesian approach involves having a prior distribution for θ. The risk
function is now a random variable. Using the Bayes criterion now, we choose
the decision rule which minimises the Bayes risk function, B(d), which is the
expected value of the risk function with respect to the prior distribution of θ.
In symbols: B(d) = Eθ[R(θ, d)]

Appealing to a theorem which involves changing the order of the two aver-
aging operations involved, it transpires that the rule which minimises the Bayes
risk function B(d) is the rule which minimises the expected loss with respect to
the posterior distribution of the parameter. So the Bayesian decision rule is the
rule which minimises the posterior expected loss (for more details, see Sect. 6.4
of DeGroot and Schervish (2002)). In the context of estimation, simple loss
functions which are used include the following:

quadratic (squared error) loss L(θ, d) = (θ − d)2,
absolute loss L(θ, d) = |θ − d|,
all or nothing (0–1) loss L(θ, d) = 0 for d = θ and L(θ, d) = 1 for

d � θ,
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Table 4.1. Bayesian estimators for various loss functions

Loss function Bayesian estimator

Quadratic loss the mean of the posterior distribution
Absolute loss the median of the posterior distribution
All or nothing loss the mode of the posterior distribution

and a decision rule d is an estimator of θ.
For each of the three loss functions given above, the Bayesian estimator can

be identified easily with a summary characteristic of the level of the posterior
distribution of the parameter, as indicated in Table 4.1.

We will assume in the following that we are estimating under a quadratic
loss function, and thus that the Bayesian estimator will be the mean of the
posterior distribution.

4.4.3 The binomial/beta model

The binomial/beta model provides a good introduction to Bayesian estimation,
and illustrates some (but not all) of the general features of credibility premiums
we will meet later.

Suppose we have a single observation x of a random variable X such that
X | p ∼ bi(n, p), so that, given p, X is the total number of successes in n
independent trials, each with success probability p. The likelihood is given by

f (x | p) = Pr(X = x | p) =

(
n
x

)
px(1 − p)n−x ∝ px(1 − p)n−x.

The data-based estimator of p (the maximum likelihood estimator, see §2.4) is
given by

p̂ =
X
n
. (4.12)

We adopt a beta distribution as the prior for p – this is the conjugate prior
for the binomial likelihood. So, we take as the prior distribution beta(a, b) with
both parameters known and with density function

f (p) =
1

B(a, b)
pa−1(1 − p)b−1, 0 < p < 1, a > 0, b > 0,

where the beta function B(a, b) = Γ(a)Γ(b)/Γ(a + b). Then the estimate of p
using the prior mean, which we will denote p̃, is given by

p̃ =
a

a + b
. (4.13)
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The posterior distribution of p is found using (4.11), giving

f (p | x) ∝ pa−1(1 − p)b−1 px(1 − p)n−x = pa+x−1(1 − p)b+n−x−1, 0 < p < 1.

We recognise this as the functional part of the beta(a+ x, b+ n− x) density, so
the posterior distribution is given by

p | x ∼ beta(a + x, b + n − x).

The Bayesian estimator, which we will denote p∗, is the mean of the posterior
distribution, so

p∗ =
X + a

n + a + b
. (4.14)

We note that the prior parameters have been transformed according to

(a, b)→ (a + x, b + n − x),

and that the data-based estimator X/n has been replaced by (X + a)/(n+ a+ b).
The value of the prior information can be thought of as being equivalent to
having an additional a + b trials, of which a were successes.

It is instructive – and important in the context of credibility theory – to note
that the Bayesian estimator can be expressed as a weighted average of the
data-based estimator and the prior mean as follows:

p∗ =
n

n + a + b
X
n
+

a + b
n + a + b

a
a + b

,

which in turn can be expressed as

p∗ = Z
X
n
+ (1 − Z)

a
a + b

, where Z =
n

n + a + b
. (4.15)

We note that as n increases (⇔ more data), the weight attaching to the data-
based estimator (X/n) increases and the weight attaching to the prior mean
correspondingly decreases.

Example 4.5 Suppose we have n= 20 policies, on each of which there can be
at most one claim in a year, and we observe a total of x= 7 claims in a year.
Assume that, given p (= Pr(claim)), the total number of claims X | p∼ bi(20, p).
By (4.12), the data-based estimate of p = Pr(claim) is p̂= 7/20= 0.35.

(i) Suppose we adopt a beta(4, 6) prior for p. The prior estimate p̃ is the prior
mean, so, by (4.13), p̃ = 4/10 = 0.4. The posterior distribution of p is
beta(11, 19), so the Bayesian estimate is, by (4.14), p∗ = 11/30 = 0.367.
From (4.15), we can express p∗ as

p∗ =
20
30

7
20
+

10
30

4
10
,
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and we note that the weight attached to the data-based estimate is equal to
Z = 20/30 = 0.667.

(ii) Suppose instead we adopt a beta(2, 3) prior for p. The prior estimate
p̃ is the prior mean, so p̃= 2/5= 0.4. The posterior distribution of p is
beta(9, 16), so the Bayesian estimate is p∗ = 9/25= 0.36. We can express
p∗ as

p∗ =
20
25

7
20
+

5
25

2
5
,

and we note that the weight attached to the data-based estimate is equal to
Z = 20/25 = 0.8.

The Bayesian estimates are different. The second (0.36) is lower and closer
to the data-based estimate (0.35). The explanation comes from the fact that,
while the priors have the same mean (0.4), they have different variances. The
first prior has variance 0.0218 whereas the second has variance 0.04. This
greater uncertainty about the value of p inherent in the second prior leads to
the prior mean getting lower weight. The data-based estimate gets correspond-
ingly higher weight (Z = 0.8 compared to Z = 0.667), pushing the estimate
closer to the data-based estimate.

4.4.4 The Poisson/gamma model

The Poisson/gamma model provides another good introduction to Bayesian
estimation, and is relevant to the use of credibility theory for estimating
expected numbers of claims (rather than setting premiums).

Our data consist of n observations x1, . . . , xn of random variables X1, . . . , Xn,
where, given λ, the Xi are iid Poisson random variables, i.e. Xi | λ ∼ Poi(λ),
for i = 1, . . . , n. The likelihood is given by

f (x | λ) =
n∏

i=1

e−λ
λxi

xi!
∝ e−nλλ

∑
xi .

The data-based estimator of λ (the maximum likelihood estimator) is

λ̂ =

∑
Xi

n
= X. (4.16)

We adopt a gamma distribution as the prior for λ – this is the conjugate prior
for the Poisson likelihood. So, taking as the prior distribution gamma(α, β),
with both parameters known and with density function (see (2.19))

f (λ) =
βα

Γ(α)
λα−1e−βλ, λ > 0, α > 0, β > 0 ,
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we find that the estimate of λ using the prior mean is

λ̃ =
α

β
. (4.17)

The posterior distribution of λ is found using (4.11), giving

f (λ | x) ∝ λα−1e−βλe−nλλ
∑

xi = λα+
∑

xi−1e−(β+n)λ, λ > 0.

We recognise this as the functional part of a gamma density: the posterior
distribution is

λ | x ∼ gamma
(
α +

∑
xi, β + n

)
.

The Bayesian estimator is therefore given by

λ∗ =
∑

Xi + α

n + β
. (4.18)

We note that the prior parameters have been transformed according to

(α, β)→
(
α +

∑
xi, β + n

)
,

and the data-based estimator
∑

Xi/n has been replaced by (
∑

Xi + α)/(n + β).
The value of the prior information can be thought of as being equivalent to
having an additional β observations which sum to α.

As with the previous model considered in this section, the Bayesian estima-
tor can be expressed as a weighted average of the data-based estimator and the
prior mean, in this case

λ∗ =
n

n + β

∑
Xi

n
+

β

n + β
α

β
,

which in turn can be expressed as follows:

λ∗ = ZX + (1 − Z)
α

β
, where Z =

n
n + β

. (4.19)

We note that as n increases (⇔ more data), the weight attaching to the data-
based estimator (X) increases, and the weight attaching to the prior mean
correspondingly decreases.

Example 4.6 Suppose we observe a total of
∑

xi = 13 claims on a group of
n = 50 private motor policies. Assume that, given λ, the number of claims Xi

on policy i are iid with Xi | λ ∼ Poi(λ), i = 1, . . . , n. The data-based estimate
of λ is, by (4.16), λ̂ = 13/50 = 0.26.
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(i) Suppose we adopt a gamma(6, 30) prior for λ. The prior estimate λ̃ is the
prior mean, so, by (4.17), λ̃ = 6/30 = 0.2. The posterior distribution of λ
is gamma(19, 80), so the Bayesian estimate is, by (4.18),

λ∗ = 19/80 = 0.2375.

From (4.19), we can express λ∗ as

λ∗ =
50
80

13
50
+

30
80

6
30
,

and we note that the weight attached to the data-based estimate is equal to
Z = 50/80 = 0.625.

(ii) Suppose instead we adopt a gamma(2, 10) prior for λ. The prior estimate
λ̃ is the prior mean, so λ̃ = 2/10 = 0.2. The posterior distribution of λ is
gamma(15, 60), so the Bayesian estimate is λ∗ = 15/60 = 0.25. We can
express λ∗ as

λ∗ =
50
60

13
50
+

10
60

2
10
,

and we note that the weight attached to the data-based estimate is equal to
Z = 50/60 = 0.833.

The Bayesian estimates are different. The second (0.25) is higher and closer
to the data-based estimate (0.26). The explanation comes from the fact that,
while the priors have the same mean (0.2), they have different variances. The
first prior has variance 0.0067 whereas the second has variance 0.02. This
greater uncertainty about the value of λ inherent in the second prior leads to
the prior mean getting lower weight. The data-based estimate gets correspond-
ingly higher weight (Z = 0.833 compared to Z = 0.625), pushing the Bayesian
estimate closer to the data-based estimate.

4.4.5 The normal/normal model

The normal/normal model is a “standard” part of the theory of Bayesian
estimation, and it provides the clearest motivation for the methodology of
credibility theory for estimating premiums. The model illustrates the general
features of credibility premiums that we will meet later.

Our data consist of n observations x1, . . . , xn of random variables X1, . . . , Xn,
where, given μ, we assume that the Xi are iid normally distributed random
variables, Xi | μ ∼ N(μ, σ2), i = 1, . . . , n, where σ is known. In this set-up,
we are concerned with estimating μ, and, to keep our analysis as simple as
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possible, we assume that the other parameter σ is known. The likelihood is
given by

f (x | μ) =
n∏

i=1

1

σ
√

2π
exp

[
− 1

2σ2
(xi − μ)2

]
∝ exp

[
− 1

2σ2

∑
(xi − μ)2

]
.

The data-based estimator of μ (the maximum likelihood estimator) is given by

μ̂ =

∑
Xi

n
= X. (4.20)

We adopt a normal distribution as the prior for μ – this is the conjugate prior
for the normal likelihood. So, taking as the prior distribution N(μ0, σ0

2), with
both parameters known and with density function

f (μ) ∝ exp

[
− 1

2σ0
2

(μ − μ0)2

]
,

the estimate of μ using the prior mean is given by

μ̃ = μ0. (4.21)

The posterior distribution of μ is found using (4.11), giving

f (μ | x) ∝ exp

[
− 1

2σ0
2

(μ − μ0)2

]
exp

[
− 1

2σ2

∑
(xi − μ)2

]
= exp[−A/2],

where, as a function of μ,

A =
1

σ0
2σ2

[
σ2(μ − μ0)2 + σ0

2
∑

(xi − μ)2
]

∝ 1
σ0

2σ2
[(σ2 + nσ0

2)μ2 − 2(μ0σ
2 + nxσ0

2)μ]

∝ σ2 + nσ0
2

σ0
2σ2

(
μ − μ0σ

2 + nxσ0
2

σ2 + nσ0
2

)2

.

We recognise this as the functional part of another normal density, whose
mean and variance we can identify from this expression. Thus the posterior
distribution of μ | x is normal with mean

μ∗ =

nx

σ2
+

μ0

σ0
2

n
σ2
+

1
σ0

2

and variance
1

n
σ2
+

1
σ0

2

. (4.22)
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The Bayesian estimator of μ is therefore given by

μ∗ =

nX
σ2
+

μ0

σ0
2

n

σ2
+

1
σ0

2

. (4.23)

It is again instructive – and important in the context of credibility theory –
to note that the Bayesian estimator can be expressed as a weighted average of
the data-based estimator and the prior mean as follows:

μ∗ =

n
σ2

n

σ2
+

1
σ0

2

X +

1
σ0

2

n

σ2
+

1
σ0

2

μ0,

which in turn can be expressed as

μ∗ = ZX + (1 − Z)μ0, Z =

n
σ2

n

σ2
+

1
σ0

2

. (4.24)

As with the previous models, we note that as n increases (⇔ more data), the
weight attaching to the data-based estimator (X) increases, and the weight
attaching to the prior mean correspondingly decreases.

We note also that, for fixed n and σ, the weight Z is an increasing function of
σ0. Large prior variance equates to somewhat uninformative prior information
(greater uncertainty about the value of μ), so less weight is given to the prior
mean and more weight is given to the sample mean (which incorporates the
information in the data).

For fixed n and σ0, the weight Z is a decreasing function of σ2. Large vari-
ance for the data equates to somewhat unreliable information from that source,
so less weight is given to the sample mean and more weight is given to the
prior mean.

The posterior variance in (4.22) has the interesting property that its recipro-
cal is the sum of the reciprocals of the variance of the data-based estimate X
(which has variance σ2/n) and the variance of the prior distribution (σ2

0):

(posterior variance)−1 = (variance(X))−1 + (prior variance)−1.

It is worth examining the marginal (unconditional) distribution of X in the
model X | μ ∼ N(μ, σ2) with prior μ ∼ N(μ0, σ0

2). We can easily obtain the
mean and variance using the conditional expectation and variance formulae in
(1.3) and (1.4):
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E[X] = E
[
E[X | μ]

]
= E[μ] = μ0

and

Var[X] = E
[
Var[X | μ]

]
+ Var

[
E[X | μ]

]
= E[σ2] + Var[μ] = σ2 + σ0

2.

We note that, by averaging over the distribution of μ, the variance of X is
increased (from σ2 to σ2 + σ0

2). We also note (see Exercise 2.18) that the
marginal distribution of X (the mixture distribution) is also normal, so we can
summarise the findings as follows:

X | μ ∼ N(μ, σ2) and μ ∼ N(μ0, σ0
2)⇒ X ∼ N(μ0, σ

2 + σ0
2).

These results are used in connection with averaging the distributions of claims
over different risk parameters in a heterogeneous portfolio.

Example 4.7 Suppose we observe total claims of
∑

xi = £42 600 on a group
of 20 general insurance claims. Using a normal model with mean μ and stan-
dard deviation σ = £600 (assumed known) for the conditional distribution of
a single claim amount, given μ, then the data-based estimate of μ is, by (4.20),
μ̂ = x = £42 600/20 = £2130.

(i) Suppose we adopt a N(2400, 1502) prior for μ. The prior estimate μ̃ is the
prior mean, so, by (4.21), μ̃ = £2400. From the general results given above,
the posterior distribution of μ is normal with mean £2250 and variance
1002. The Bayesian estimate is, by (4.23), μ∗ = £2250. From (4.24), we
can express μ∗ as

5
9
× 2130 +

4
9
× 2400,

and the weight attached to the data-based estimate is Z = 5/9 = 0.556.
(ii) Suppose instead we adopt a N(2400, 2502) prior for μ. The prior estimate μ̃

is the prior mean, so μ̃ = £2400. The posterior distribution of μ is normal
with mean £2190 and variance 118.22, so the Bayesian estimate is μ∗ =
£2190. We can express μ∗ as

125
161
× 2130 +

36
161
× 2400,

and the weight attached to the data-based estimate is Z = 125/161 =
0.776.

The Bayesian estimates are different. The second (£2190) is lower and closer
to the data-based estimate (£2130). The explanation comes from the fact that,
while the priors have the same mean (£2400), they have different variances.
The first prior has variance 1502 whereas the second has variance 2502. This
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greater uncertainty about the value of μ inherent in the second prior leads to the
prior mean getting lower weight. The data-based estimate gets correspondingly
higher weight (Z = 0.776 compared to Z = 0.556), moving the Bayesian
estimate closer to the data-based estimate.

4.5 Bayesian credibility theory

We set the premium for next year for a risk covered by a general insurance con-
tract by estimating a parameter in a probability model. The estimate is based
on information from two sources:

(a) recent past data from the risk itself;
(b) relevant information from other sources.

We will have one quantity summarising the information from each source. We
want the method to be easy to implement, and we insist that

• the premium is a weighted average of the two quantities from sources (a)
and (b) above; and
• the premium lends itself to easy regular updating.

For source (a) we will use the statistic x, the mean annual aggregate claims
on the risk over the recent past. For source (b) we will use the best estimate
of the premium based on the experience of other “similar” or “comparable”
risks; call this estimate μ. The data from these other risks are referred to as the
collateral data. The premium set in this way is called a credibility premium
and is given by the formula

Zx + (1 − Z)μ. (4.25)

In this formula, the statistic x comes from the individual experience, that is
from the risk itself; the quantity μ comes from the collective experience, as
represented by the collateral data. The quantity Z, 0 < Z < 1, is the weight
attached to the data from the risk itself and is called the credibility factor.

If the other risks (those providing the collateral data) have similar claims
experience amongst themselves and to the risk we are considering, then the
collateral data will be reliable and useful to us in setting the premium for the
risk, and so Z will be (relatively) low. If, on the other hand, the other risks
have rather different claims experience amongst themselves and from the risk
we are considering, then the collateral data will not be so relevant or useful
to us in setting the premium for the risk we are considering, and so Z will be
(relatively) high.
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In principle, Z should increase over time, as it will be based on more data
relating directly to the risk itself.

There are two methods used for evaluating Z and the premium, namely

• Bayesian credibility theory;
• empirical Bayesian credibility theory.

Bayesian credibility theory is the subject of this section, and, as we will see,
the method can be applied to estimating claim numbers as well as estimating
premiums. In Bayesian credibility theory, the input from the collateral data is
represented by a prior distribution for the parameter.

Empirical Bayesian credibility theory is the subject of §4.6 and §4.7. In
this approach there is no prior distribution involved and the collateral data is
provided by actual quantitative data from a group of comparable risks.

4.5.1 Bayesian credibility estimates under the
Poisson/gamma model

In this case we are concerned with estimating only the expected number of
claims (not with estimating premiums). Suppose that the number of claims, X,
which arise under a risk in a year can be modelled as X | λ ∼ Poi(λ). Our
problem in this case is to estimate E[X | λ], that is to estimate λ, given data on
claim numbers for the past n years.

As we have indicated, the Bayesian approach is to regard λ as a random
variable with some known prior distribution, with the actual value of λ being a
value selected from this distribution. As in §4.4.4, we adopt a gamma prior for
λ: λ ∼ gamma(α, β).

Initially, for a “new” risk, we have no data from the risk itself, so the first
problem is to decide how to estimate λ in this situation. Our solution is to use
the mean of the prior distribution, giving our first estimate as λ̃ = α/β.

Suppose now that we do have data from the risk, in the form of
x = (x1, x2, . . . , xn), the numbers of claims over the past n years – our model
is Xi | λ ∼ Poi(λ). These observations change our information set – we can
review our estimate of λ, incorporating the new information. We now view the
value of λ as coming from the posterior distribution of λ given the data x. From
§4.4.4 we have

λ | x ∼ gamma
(
α +

∑
xi, β + n

)
.

Noting (4.18) and (4.19), the Bayesian estimate is given by

λ∗ =
∑

xi + α

n + β
=

n
n + β

∑
xi

n
+

β

n + β
α

β
= Zx + (1 − Z)

α

β
, (4.26)
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where the credibility factor Z = n/(n + β). The value α/β is the estimate of λ
if we have no data from the risk itself; x is the estimate of λ using only data
from the risk itself. The Bayesian estimate is a weighted average of these two
separate estimates and is in the form of a credibility estimate.

We note that 0 ≤ Z ≤ 1, and with n = 0 the estimate reverts to the prior
mean. The factor Z is an increasing function of n (more data from the risk
leads to more weight being attached to the estimate from that source, x).

Example 4.8 Suppose that the number of claims, X, that arise under a risk
in a year can be modelled as X | λ ∼ Poi(λ). We have data on the observed
number of claims for each of the past eight years, and we estimate λ at the
start of each year. (The claims data used in this example were simulated from
a Poisson distribution with mean λ = 100.)

Table 4.2 shows the credibility factors and estimates of λ under two different
assumed gamma prior distributions (gamma(80, 1) and gamma(400, 5)), both
of which have mean 80. In each case the initial estimate is the prior mean.
For example, at the start of year 4 we have n = 3 years data available, with a
total of 282 claims and a mean of 94 claims. At this point, using the first prior,
Z = 3/(3 + 1) = 0.75, and the Bayesian estimate of λ is therefore

λ∗ = 0.75 × 94 + 0.25 × 80 = 90.5,

which is, of course, the mean of the gamma(362, 4) posterior distribution.
We note that the estimates rise from the original λ∗ = 80 and move towards

the value of λ actually used to simulate the claim numbers data (λ = 100).
This occurs faster, and more clearly, with the first prior. The main difference
between the priors is that the first has variance 80/12 = 80 whereas the second

Table 4.2. Credibility factors and estimates for Example 4.8

α = 80, β = 1 α = 400, β = 5

Year Number of
claims

Z Estimate of λ Z Estimate of λ

1 97 0 80 0 80
2 101 0.500 88.5 0.167 82.8
3 84 0.667 92.7 0.286 85.4
4 111 0.750 90.5 0.375 85.2
5 95 0.800 94.6 0.444 88.1
6 105 0.833 94.7 0.5 88.8
7 110 0.857 96.1 0.545 90.3
8 101 0.875 97.9 0.583 91.9
9 – 0.889 98.2 0.615 92.6
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has variance 400/52 = 16. The second prior has much lower variance, which
corresponds to the fact that we have stronger prior belief in the initial estimate
of 80. This is reflected in the much lower values of the credibility factors (and
the estimates) at all stages and the slower convergence to 100 – the developing
sequence of estimates is more reluctant to move away from 80 in the direction
of the overall sample mean (= 100.5 after eight years) and the true value of λ.

4.5.2 Bayesian credibility premiums under the
normal/normal model

We now return to the problem of estimating premiums. Suppose that the
aggregate claims, X, that arise under a risk in a year can be modelled as

X | θ ∼ N(θ, σ1
2),

where σ1 is known. The pure premium for the risk is E[X | θ] = θ, which is
fixed but unknown and is called the risk parameter for the risk concerned. Our
problem is to estimate E[X | θ], that is to estimate θ, given relevant data x.

As we know, the Bayesian approach is to regard θ as a random variable
with some known prior distribution, with the actual value of θ being a value
selected from this distribution. Here, as in §4.4.5, we adopt a normal prior (but
with altered notation, to fit in with the usual conventions of credibility theory):
θ ∼ N(μ, σ2

2).
Before we have any data from the risk itself, our estimate of θ is the prior

mean, so θ̃ = μ. Suppose now we do have data from the risk, in the form of
x = (x1, x2, . . . , xn), the aggregate claims over the past n years – our model is
Xi | θ ∼ N(θ, σ1

2). These observations change our information set – we can
review our estimate of θ, incorporating the new information. We now view the
value of θ as coming from the posterior distribution of θ given the data x.

From §4.4.5 we have that θ | x is normal with mean

θ∗ =

nx

σ2
1

+
μ

σ2
2

n

σ2
1

+
1
σ2

2

and variance

1
n

σ2
1

+
1
σ2

2

.
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Noting (4.23) and (4.24), the Bayesian estimator of θ is therefore given by

θ∗ =

nX

σ2
1

+
μ

σ2
2

n

σ2
1

+
1
σ2

2

= ZX + (1 − Z)μ, (4.27)

where

Z =

n

σ2
1

n

σ2
1

+
1

σ2
2

=
n

n +
σ2

1

σ2
2

.

The value μ is the estimate of θ if we have no data from the risk itself; x is
the estimate of θ using only data from the risk itself. The Bayesian estimate
is a weighted average of these two separate estimates, and is in the form of a
credibility estimate – it is the credibility premium. The credibility factor is

Z =
n

n + σ1
2/σ2

2
.

We note that 0 ≤ Z ≤ 1, and with n = 0 the estimate reverts to the prior mean;
Z is an increasing function of n (more data from the risk leads to more weight
being attached to the estimate from that source, x).

There are two sources of variation in this model. The first, summarised by
the risk variance σ2

1, is the variation in claims from year to year for the risk
concerned – it is internal to the risk and is called the within risk variance. The
second, summarised by the prior variance σ2

2, is the variation in the expected
claims from risk to risk across a (real or imagined) collective of comparable
risks – it is external to the risk and is called the between risk variance. With
this interpretation we have the following very useful result, which informs the
whole of our work on credibility theory:

credibility factor Z =
n

n +
within risk variance

between risk variance

. (4.28)

Recalling points made in §4.4.5, we note that, for fixed n and σ1, the weight
Z is an increasing function of σ2. With a larger prior variance, less weight is
given to the prior mean and more weight is given to the sample mean.

For fixed n and σ2, the weight Z is a decreasing function of σ1. With a larger
variance for the data from the risk, less weight is given to the sample mean and
more weight is given to the prior mean.
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Table 4.3. Credibility factors and premiums for Example 4.9

μ = 300, σ2
2 = 400 μ = 300, σ2

2 = 100

Year Claims Z Premium Z Premium

1 310 0 300 0 300
2 343 0.889 309 0.667 307
3 332 0.941 325 0.800 321
4 348 0.960 327 0.857 324
5 315 0.970 332 0.889 330
6 – 0.976 329 0.909 327

Example 4.9 Suppose the aggregate claims, X, which arise under a risk in a
year can be modelled as X | θ ∼ N(θ, 50). From experience with other business,
we adopt as a prior θ ∼ N(300, 400). We have the claims figures for the past
five years for the risk (£, thousands: 310, 343, 332, 348, 315).

Table 4.3 shows the credibility factors and premiums for the risk under
the prior specified above, and, for comparison, with a second prior, namely
θ ∼ N(300, 100). The premiums are set at the start of each year. For exam-
ple, at the start of year 3 we have n = 2 years data available, with a total
claim amount of 653 and a mean of 326.5. At this point, using the first
prior, Z = 2/[2 + (50/400)] = 16/17 = 0.941, and the estimate of θ is there-
fore θ∗ = 0.941 × 326.5 + 0.059 × 300 = 324.9, which is, of course, the mean
of the posterior distribution, which is N(324.9, 23.53).

The first prior has higher variance than the second, and so is less informa-
tive about θ; the higher variance corresponds to greater risk-to-risk variation.
We have less useful “external” information and must rely more on the data
from the risk itself. The ratio of “between” to “within” risk variance using
the first prior is 8:1, while using the second prior it is only 2:1. With the
first prior more weight is given to the data from the risk itself – this is
reflected in the higher values of the credibility factors (and the estimates) at all
stages.

A question of independence Let X1, X2, . . . represent the aggregate claims for
a risk in successive years. The risk has its own risk parameter θ, which is
fixed, but unknown. Our main structural assumption is as follows: given θ,
the random variables X1, X2, . . . are a sequence of independent and identically
distributed random variables, and we also have Xi | θ ∼ N(θ, σ2

1). The inde-
pendence property can be expressed in other words by stating that the Xi are
conditionally independent given θ.



4.5 Bayesian credibility theory 175

Consider now the marginal (unconditional) distribution of Xi. As noted in
§4.4.5 (and using our current notation), Xi has a normal distribution with
E[Xi] = μ and Var[Xi] = σ1

2 + σ2
2. So the Xi are identically distributed.

Now, using the conditional expectation formula (1.3), we find that

E[XiXj] = E
[
E[XiXj | θ]] = E[E[Xi | θ]E[Xj | θ]],

by conditional independence. But E[Xi | θ] = θ and hence

E[XiX j] = E[θ2] = Var[θ] + {E[θ]}2 = σ2
2 + μ

2.

Now, since E[Xi]E[Xj] = μ2, we have E[XiX j] � E[Xi]E[Xj] if σ2
2 > 0, and it

follows that the unconditional Xi are not independent. This shows that the Xi

are conditionally independent but are not (unconditionally) independent.
So, if we know the risk parameter for a risk, successive claim amount vari-

ables are independent. But if we do not know the risk parameter for the risk,
successive claim amount variables are not independent (but have dependence
through the risk parameter).

As a way to illustrate this, let σ2
1 = 1 for simplicity, and suppose that you are

told the value of X1. You know that X1 | θ ∼ N(θ, 1), and so knowing the value
of X1 gives you information about possible values of θ. For example, suppose
x1 = 15. Since this value comes from a N(θ, 1) distribution it is very likely that
θ has a value somewhere between 12 and 18 (otherwise it is most unlikely that
you would have observed x1 = 15). So you know something about θ, the risk
parameter for the risk involved, and this in turn tells you something about the
possible values of X2. Knowledge of X1 gives you knowledge of X2, and so X1

and X2 are not independent. However, if θ is known, then X1 tells us nothing
further about X2.

Comments on the Bayesian approach With both the Poisson/gamma and the
normal/normal models the Bayesian estimate of the quantity concerned is a
weighted average of an estimate based on the data from the risk itself and an
estimate based on “external” information. So it is in the form we require for it
be considered a credibility estimate. The fact that it is in the form we require
is not guaranteed and will not always be the case – with some distributions we
cannot make the Bayesian estimate fit the form of a credibility estimate.

A general difficulty with credibility estimates is that we need to know the
value of the credibility factor Z. In the two models above, we were able to solve
the problem, provided we knew the values of various parameters, in particular
parameters summarising our prior beliefs.

In the following section we consider an “empirical” approach to the calcula-
tion of credibility premiums, in which the use of a prior is abandoned and the
information therein is replaced by quantitative collateral information.
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4.6 Empirical Bayesian credibility theory: Model 1 – the
Bühlmann model

This model was formulated by Hans Bühlmann; see Bühlmann (1967). We
again want to estimate the premium for a risk, and we now set the risk in a
collective of comparable risks for which we have relevant data over the past
several years. The information from the collateral data enables us to proceed
using a similar approach to that which we have previously used, but with the
advantage that we can allow the collateral data to provide the between risk
information, rather than relying on a parametric model for the distribution of
the data and a fully specified prior distribution to summarise our informa-
tion/beliefs about the unknown parameter. The method is referred to as an
empirical Bayesian method, and in this context is called empirical Bayesian
credibility theory, which we will call EBCT for short. In summary:

EBCT = Bayesian credibility theory

− distributional assumptions

+ collateral data.

In this section we consider the first of two EBCT models, called EBCT
Model 1 – this serves as an introduction to the more widely applicable and
useful EBCT Model 2, which we consider in §4.7

Let X1, X2, . . . , Xn represent the aggregate amounts (or numbers) of claims
that arise under a risk over n successive years. We want to estimate the pure
premium for the risk, which is the expected value of Xn+1, given that we have
observed the values of X1, X2, . . . , Xn. The basic structure of our model is that
the distribution of each Xi, i = 1, 2, . . . , n, depends on the value of a parameter
θ, which is fixed for that risk, but is unknown. The parameter θ is called the
risk parameter for the risk. We regard θ as a random variable with unknown
distribution.

We make the following structural assumption concerning a single risk with
risk parameter θ.

Assumption Given θ, the Xi, i = 1, 2, . . . , n, are iid.

Note that this assumption is a statement about conditional distributions. We are
assuming that the aggregate claims for the risk are identically distributed from
year to year. This is actually a stronger assumption than is required – all we
need is stationarity in first and second moments (constant mean and variance
from year to year). It follows from our assumption that the (unconditional) Xi

are identically distributed – it does not follow from our assumption that they
are independent.
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Table 4.4. Structure of Bayesian and empirical Bayesian models

Normal/normal Poisson/gamma EBCT

Prior θ ∼ N(μ, σ2
2) λ ∼ gamma(α, β) none

Conditional mean of Xi θ λ m(θ)
Conditional variance of Xi σ1

2 λ s2(θ)

Since, given θ, the distribution of Xi does not depend on i, we can introduce
notation for the mean and variance of the conditional distribution using sym-
bols which depend only on θ. We will adopt the symbols in general use, so we
define

m(θ) = E[Xi | θ] and s2(θ) = Var[Xi | θ]. (4.29)

The pure premium/estimator for the risk is E[Xi | θ] = m(θ), and so we can
now state that our problem is to estimate m(θ), given data x = (x1, x2, . . . , xn).

In Table 4.4 we give the earlier normal/normal and Poisson/gamma Bayesian
models alongside the new empirical structure. Using the table to compare the
normal/normal model (as in §4.5.2) and EBCT, we find that

E[m(θ)] in EBCT corresponds to E
[
E[Xi | θ]] = E[θ] = μ;

Var[m(θ)] in EBCT corresponds to Var
[
E[Xi | θ]] = Var[θ] = σ2

2, the between
risk variance; and

E[s2(θ)] in EBCT corresponds to E
[
Var[Xi | θ]] = E[σ1

2] = σ1
2, the within

risk variance.

The credibility premium in the normal/normal model is Zx + (1 − Z)μ, where

Z =
n

n +
σ2

1

σ2
2

=
n

n +
within risk variance

between risk variance

.

A similar analogy between the Poisson/gamma model and EBCT can be
demonstrated, noting that Z can be expressed as

Z =
n

n + β
=

n

n +
α/β

α/β2

.

The above comparisons suggest that we tentatively adopt the formula

ZX + (1 − Z)E[m(θ)] (4.30)
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for use in EBCT for the credibility premium/estimator, where the credibility
factor Z is given by

Z =
n

n +
within risk variance

between risk variance

=
n

n +
E[s2(θ)]

Var[m(θ)]

. (4.31)

Theorem 4.11 in the following shows that we can justify this adoption under
the criterion of using the “best” linear estimator of m(θ), that is the estimator
which is the linear function of the observations with minimum mean square
error.

As a preliminary to the proof of the theorem, we first establish some expec-
tations that we will require. In doing so, we use E[Xg(θ) | θ] = g(θ)E[X | θ]
(see, for example, Sect. 7.7 of Grimmett and Stirzaker (2001)).

Lemma 4.10 With the set-up and notation of EBCT Model 1, we have

(i) E
[
Xi
]
= E

[
X
]
= E[m(θ)];

(ii) E
[
Xim(θ)

]
= E

[
Xm(θ)

]
= E

[
m2(θ)

]
;

(iii) E
[
X

2]
=

1
n
E
[
s2(θ)

]
+ E

[
m2(θ)

]
.

Proof For (i), note that the conditional expectation formula (1.3) implies that
E[Xi] = E

[
E[Xi | θ]] = E[m(θ)], and it follows that

E
[
X
]
=

1
n
E

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

Xi

⎤⎥⎥⎥⎥⎥⎦ = 1
n

nE[m(θ)] = E[m(θ)].

For (ii), using the conditional expectation formula (1.3) again, we have

E[Xim(θ)] = E
[
E[Xim(θ) | θ]] = E[m(θ)E[Xi | θ]] = E[m2(θ)],

and hence E[Xm(θ)] = E[m2(θ)].
For (iii), by conditional independence, note that, for i � j,

E[XiXj] = E
[
E[XiXj | θ]] = E[E[Xi | θ]E[X j | θ]],

and so E[XiXj] = E[m2(θ)]. Further, we have

E[X2
i ] = E

[
E[X2

i | θ]
]
= E

[
Var[Xi | θ] + {E[Xi | θ]}2]

= E[s2(θ)] + E[m2(θ)].
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It follows that

E
[
X

2]
=

1

n2
E

⎡⎢⎢⎢⎢⎢⎢⎣ n∑
i=1

Xi

n∑
j=1

X j

⎤⎥⎥⎥⎥⎥⎥⎦
=

1

n2

{
nE[X2

i ] + n(n − 1)E[XiXj]
}

for i � j

=
1

n2

{
nE[s2(θ)] + nE[m2(θ)] + n(n − 1)E[m2(θ)]

}
=

1
n
E
[
s2(θ)

]
+ E

[
m2(θ)

]
,

as required. Alternatively, one can show Var[X | θ] = 1
n s2(θ), and use this to

find Var[X] and hence E[X
2
]. �

We now derive the credibility premium/estimator; that is, we verify that the
form of the optimum linear estimator a0 + a1X1 + a2X2 + · · · + anXn of m(θ) is
indeed that of the credibility estimator tentatively adopted above.

Theorem 4.11 Let X1, X2, . . . , Xn be a sequence of random variables, each
of whose distribution depends on a parameter θ, and which, given θ, are iid,
with E[Xi | θ] = m(θ) and Var[Xi | θ] = s2(θ). Let a0, a1, . . . , an be constants.
Then the estimator a0 +

∑n
j=1 a jX j of m(θ) for which

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎪⎨⎪⎪⎪⎩m(θ) − a0 −

n∑
j=1

ajX j

⎫⎪⎪⎪⎬⎪⎪⎪⎭
2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

is minimised is given by

ZX + (1 − Z)E[m(θ)], where Z =
n

n +
E[s2(θ)]

Var[m(θ)]

. (4.32)

Proof The problem is symmetric in the Xi, and so a1 = a2 = · · · = an = ã,
say, so that

a0 +

n∑
j=1

a jX j = ao + ã
n∑

i=1

Xj,

which means that the estimator is of the form a+ bX. The problem is therefore
to find a and b such that

S = E
[{

m(θ) − a − bX
}2]
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is minimised. Taking the partial derivative of S with respect to a gives

∂S
∂a
= 0⇒ E[m(θ) − a − bX] = 0.

Using Lemma 4.10(i), we have a + bE[m(θ)] = E[m(θ)], and hence

a = (1 − b)E[m(θ)]. (4.33)

Taking the partial derivative of S with respect to b gives

∂S
∂b
= 0⇒ E[X{m(θ) − a − bX}] = 0,

so, using Lemma 4.10(i), (ii) and (iii), we have

aE[m(θ)] + b

(
1
n
E[s2(θ)] + E[m2(θ)]

)
= E[m2(θ)]. (4.34)

Solving (4.33) and (4.34) gives

b =
n

n +
E[s2(θ)]

Var[m(θ)]

,

and so, denoting b by Z, we have that the best estimator is given by

ZX + (1 − Z)E[m(θ)],

and the result is proved. �

The estimator involves three quantities, E[m(θ)], E[s2(θ)] and Var[m(θ)],
which we have to estimate from collateral data. These quantities are sometimes
referred to as the three structural parameters.

We suppose now that the risk we are interested in is one of a collective of
a fixed number N of comparable risks. Our data now consist of values xi j of
random variables Xi j, where Xi j represents the aggregate amount (or number)
of claims for risk number i in year j, i = 1, 2, . . . ,N, j = 1, 2, . . . , n , as in
Table 4.5. For convenience, we are making the (perhaps rash) assumption that
we have complete data – the same number of years data for each risk.

For each risk, say risk i, the distribution of each Xi j, j = 1, 2, . . . , n, depends
as before on the value of a risk parameter θi, which is fixed for that risk, but
unknown. We regard θi as a random variable with an unknown distribution
function. Each risk has its own risk parameter, which is fixed for that risk over
the period of years we are considering. It is very important to recognise that
the risks are heterogeneous – different risks have different risk parameters –
and we will set appropriate premiums which reflect this.

For each risk, say risk i, we make the following structural assumption.
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Table 4.5. Collective of risks

Year

1 2 · · n

Risk 1 X11 X12 · · X1n

2 X21 X22 · · X2n

· · · · · ·
· · · · · ·
N XN1 XN2 · · XNn

Assumption 1 Given θi, the Xi j, j = 1, 2, . . . , n, are iid.

This is exactly the same assumption we made earlier for a single risk, and gives
us the within risk structure we require.

We need to make an assumption to give us appropriate between risk
structure, and it is conveniently expressed as follows.

Assumption 2 For different risks i, j (i � j), the pairs of variables (θi, Xil) and
(θ j, Xjk), l, k = 1, 2, . . . , n, are iid.

It follows from assumption 2 that any two variables in different rows in
Table 4.5 are iid. It also follows from assumption 2 that the risk parameters
θi, i = 1, 2, . . . ,N, are iid. The “identicality” of the distributions is a formal
statement which firms up what we mean by the references to a collective of
“comparable risks”. We can think of the values of the risk parameters for the
different risks as coming from some common underlying distribution.

For risk i define m(θi) = E[Xi j | θi] and s2(θi) = Var[Xi j | θi]; these do not
depend on j (because of our assumptions). We identify m(θi) and s2(θi) as the
mean and variance of the amounts (or numbers) of claims for risk i (row i in
Table 4.5).

Now, since θi, i = 1, 2, . . . ,N, are identically distributed, it follows that none
of E[m(θi)], E[s2(θi)] or Var[m(θi)] depend on i. So we write them as E[m(θ)],
E[s2(θ)] and Var[m(θ)], respectively, bringing us back to the three structural
parameters we have already met:

E[m(θ)], the expected value (the average) of the risk means;
E[s2(θ)], the expected value (the average) of the risk variances – it is is the

average variance within risks;
Var[m(θ)], the variance of the risk means – it is the variance between risks.
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We now seek estimators of the three structural parameters. The first two, the
estimators of E[m(θ)] and E[s2(θ)], are quite easy to identify, given the physical
nature of the parameters. The third, the estimator of Var[m(θ)], is less easy to
justify, but we can show that all three “usual” estimators (that is, the estimators
in everyday use) are unbiased for the parameters concerned.

We next define notation. Let

Xi =
1
n

n∑
j=1

Xi j

be the mean amount (or number) of claims for risk i over the n years for which
we have data (the mean for row i in Table 4.5), and let

X =
1
N

N∑
i=1

Xi =
1

Nn

N∑
i=1

n∑
j=1

Xi j

be the overall mean amount (or number) of claims for all years and all
risks involved. It is important to note our notation here: the mean amount
(or number) of claims for an individual risk (risk i) is now denoted Xi,
and X denotes the overall mean amount (or number) of claims for all risks
involved.

The usual estimators of the structural parameters are given in Table 4.6. The
estimator of E[m(θ)] is the overall mean of the claims data for all the risks
in the collective. The estimator of E[s2(θ)] is the mean of the individual risk
sample variances. The estimator of Var[m(θ)] is the sample variance of the risk
means corrected for bias – the correction is a reduction given by the estima-
tor of E[s2(θ)] divided by n, the number of years data for each risk we have
available.

Table 4.6. Usual estimators of the structural parameters in
EBCT Model 1

Structural parameter Estimator

E[m(θ)] X

E[s2(θ)]
1
N

N∑
i=1

1
n − 1

n∑
j=1

(Xi j − Xi)2

Var[m(θ)]
1

N − 1

N∑
i=1

(Xi − X)2 − 1
Nn

N∑
i=1

1
n − 1

n∑
j=1

(Xi j − Xi)
2
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It is easy to verify that X is unbiased for E[m(θ)]:

E[X] =
1

Nn

N∑
i=1

n∑
j=1

E[Xi j] =
1

Nn

N∑
i=1

n∑
j=1

E[E(Xi j | θi)]

=
1

Nn

N∑
i=1

n∑
j=1

E[m(θi)] =
1
N

N∑
i=1

E[m(θi)]

=
1
N

NE[m(θ)] = E[m(θ)] .

The verification of the unbiasedness of the other two estimators is deferred to
Exercise 4.13 (some hints are given).

Comments on the calculation of the credibility premium for a risk
(i) The credibility factor

Z =
n

n +
E[s2(θ)]

Var[m(θ)]

is the same for all risks in the collective – it only has to be calculated
once. Its value is between 0 and 1, and it is an increasing function of n.

(ii) A large value of E[s2(θ)] implies large variability from year to year within
risks. This implies low credibility for the data from the particular risk
concerned, which implies a low value of the credibility factor Z.

(iii) A large value of Var[m(θ)] implies large variability between risks. This
implies that data from other risks are not very relevant/informative/reliable,
which implies high credibility for the data from the individual risk
concerned, and hence we have a high value of the credibility factor Z.

(iv) E[s2(θ)] and Var[m(θ)] are positive parameters. While the estimator of the
former parameter is always positive, that of the latter can be negative. If
this occurs we take a pragmatic approach – we set Var[m(θ)] = 0; then
Z = 0 and the credibility estimate for risk i is just the overall mean X.

To sum up, the credibility premium for risk i in the collective is given by

Z × {mean for risk i} + (1 − Z) × {estimate of E[m(θ)]},
that is

ZXi + (1 − Z)X. (4.35)

Example 4.12 Table 4.7 gives the aggregate claims in five successive years
from comparable policies covering the estate (buildings, vehicles, stock) of
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Table 4.7. Aggregate claims for the
four risks in Example 4.12

Year

Risk 1 2 3 4 5

1 146 151 132 96 136
2 108 94 107 135 93
3 130 142 106 150 95
4 157 175 129 138 159

Table 4.8. Sample means and variances
for the four risks in Example 4.12

Risk Risk mean Risk variance

1 132.2 467.2
2 107.4 287.3
3 124.6 549.8
4 151.6 331.8

four medium-sized businesses. The claims are inflation-adjusted and are in
units of £1000.

We will calculate the credibility premium to be charged in the coming year
(year 6) for each risk, giving full details for risk 1. We are assuming that the
conditions which have held for the past five years justify our adoption of the
structural assumptions that underpin EBCT Model 1, and that these conditions
continue to hold in the coming year.

First we calculate the sample mean and variance for each risk. The values
are given in Table 4.8.

The estimate of E[m(θ)] is the mean of the four risk means (the overall
mean), namely x = (132.2 + 107.4 + 124.6 + 151.6)/4 = 128.95.

The estimate of E[s2(θ)] is the mean of the four risk sample variances,
namely (467.2 + 287.3 + 549.8 + 331.8)/4 = 409.025.

The estimate of Var[m(θ)] is an adjusted version of the sample variance for
the four risk means, which is 335.637; the estimate is

335.637 − 409.025/5 = 253.83.

This gives the credibility factor as

Z =
5

5 + 409.03/253.83
= 0.756.
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Table 4.9. Credibility premiums
for the four risks in Example 4.12

Risk Premium (£)

1 131 410
2 112 650
3 125 660
4 146 080

The credibility premium for risk i is therefore given by

0.756xi + 0.244 × 128.95 = 0.756xi + 31.46.

The credibility premium for risk 1 is

0.756 × 132.2 + 31.46 = 131.40 (= £131 400).

The credibility premiums for all four risks (calculated in R with greater
accuracy throughout) are given in Table 4.9.

It is easy to check that the mean of the credibility premiums equals x, the
mean of the risk means (the overall mean of the claims data – the estimate
of E[m(θ)]). This will always be the case (see Exercise 4.14), and reflects the
fact that overall the insurer receives the appropriate total pure premium for the
group of risks. As emphasised earlier, the risks are heterogeneous – they have
different risk parameters – and the credibility premiums for individual risks
vary, reflecting the claims experience of the risks. The higher the value of the
mean claims in the available history of the risk (xi), the higher the credibility
premium for that risk. But over all the risks things average out as they should.

4.7 Empirical Bayesian credibility theory: Model 2 – the
Bühlmann–Straub model

This model was formulated by Bühlmann and Straub; see Bühlmann and
Straub (1970).

The model we have discussed in §4.6 (EBCT Model 1) clearly shows
similarities with a “pure” Bayesian approach and is a necessary and useful
introduction to “empirical” credibility methods. However, it involves rather
restrictive assumptions and is not very useful in practice.

EBCT Model 2 – the Bühlmann–Straub model – encompasses a major gen-
eralisation of Model 1 by allowing for changing levels of business (changing
risk volumes). It is easy to see why this is such an important and practical
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extension and improvement. The risk during one year may relate to cover for a
small business with four shops and three delivery vans on the road – the busi-
ness may do well, expand, and next year have six shops and four vans on the
road. The increased estate (buildings, vans, stock) and general activity is not
taken account of by Model 1 but is taken account of by Model 2.

With this recognition of changing risk volumes, it is inappropriate now
to assume that, given the risk parameter, the claims variables are identically
distributed. The assumptions we do make for Model 2 are most conveniently
expressed in a manner which makes them less restrictive than was the case
for Model 1 – and these assumptions are made not about the claims variables
themselves, but about the variables representing claims per unit of risk volume.

So, let Y1,Y2, . . . ,Yn represent the aggregate claims in n successive years
for a risk, and let P1, P2, . . . , Pn be corresponding risk volumes. These risk
volumes are known numbers (not random variables) and can be quantified in
various ways – for example, numbers of policies in a changing portfolio, num-
bers of shops in a chain, numbers of vehicles in a fleet, etc. A sensible general
measure which can be used – perhaps obvious once mentioned – is the annual
premium income the insurer has charged to cover the risk over recent years
(provided the premiums were set sensibly to reflect the risk).

We introduce Xi to represent the aggregate claims in year i scaled to take
account of the volume of business, that is

Xi = Yi/Pi , i = 1, 2, . . . , n, (4.36)

so Xi is the aggregate claims per unit of risk volume in year i.
The basic structure of this model is that the distribution of each variable

Xi, i = 1, 2, . . . , n, depends on the value of a risk parameter θ, which is fixed
for that risk but unknown, and is regarded as a random variable with unknown
distribution function. It is not appropriate to assume that the Xi are identically
distributed, either conditionally (given θ), or unconditionally.

Assumptions

(1) Given θ, the Xi, i = 1, 2, . . . , n, are independent.
(2) E[Xi | θ] does not depend on i.
(3) PiVar[Xi | θ] does not depend on i.

Under these assumptions we define

m(θ) = E[Xi|θ] and s2(θ) = PiVar[Xi|θ]. (4.37)

To motivate assumption (3), consider a risk which consists of a portfolio of
independent policies – suppose the number of policies in force in year i is Pi (a
known number). Suppose also that, for each policy, the aggregate claims in any
given year have mean m(θ) and variance s2(θ), where θ is the risk parameter for
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all policies involved. The aggregate claims in year i is Yi, and let Xi = Yi/Pi,
as in (4.36). It is clear that

E[Yi | θ] = Pim(θ) and Var[Yi | θ] = Pi s
2(θ).

Hence, Var[Xi | θ] = s2(θ)/Pi, and so PiVar[Xi | θ] = s2(θ), thus satisfying the
stated assumption (3).

The pure premium per unit of risk is m(θ), and we want to estimate
the expected value of the aggregate claims in the coming year, namely
E[Yn+1 | θ] = Pn+1m(θ) (we assume we know Pn+1 at the start of
year n + 1). So our problem is again to estimate m(θ), given the data
(y1, P1), (y2, P2), . . . , (yn, Pn), and of course, derived from these, x1, x2, . . . , xn.

As in the case of Model 1 we want to find the estimator of m(θ) which is the
linear function of the observations X1, X2, . . . , Xn with minimum mean square
error; we want to choose a0, a1, . . . , an to optimise the estimator of m(θ) given
by a0 + a1X1 + a2X2 + · · · + anXn.

Theorem 4.14 below gives the derivation of the credibility premium. Again,
as in §4.6, and as a preliminary to the proof, we give some expectations we
will require (the verifications of the first three are the same as the verifications
in the proof of §4.6; the fourth is different, and is deferred to Exercise 4.20).

Lemma 4.13 With the set-up and notation of EBCT Model 2, we have

(i) E[Xi] = E[m(θ)];
(ii) E[Xim(θ)] = E[m2(θ)];

(iii) E[XiX j] = E[m2(θ)] for i � j;

(iv) E[X2
i ] = 1

Pi
E[s2(θ)] + E[m2(θ)].

Unlike the situation in the previous analysis, the constants a1, a2, . . . , an in
this case are not equal (since the Xi are not identically distributed).

Theorem 4.14 Let X1, X2, . . . , Xn be a sequence of random variables, each
of whose distribution depends on a parameter θ, and which, given θ, are
independent, with E[Xi | θ] = m(θ) and PiVar[Xi | θ] = s2(θ), i = 1, . . . , n.

Then the estimator a0 +
∑n

j=1 ajX j of m(θ) for which

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎪⎨⎪⎪⎪⎩m(θ) − a0 −

n∑
j=1

ajX j

⎫⎪⎪⎪⎬⎪⎪⎪⎭
2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

is minimised is given by

ZX + (1 − Z)E[m(θ)],

where

X =

∑n
i=1 PiXi∑n

i=1 Pi
and Z =

∑n
i=1 Pi∑n

i=1 Pi +
E[s2(θ)]

Var[m(θ)]

.
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Proof Let S = E
[
{m(θ) − a0 − a1X1 − a2X2 − · · · − anXn}2

]
. Taking the par-

tial derivative of S with respect to a0 gives

∂S
∂a0
= 0⇒ E [m(θ) − a0 − a1X1 − a2X2 − · · · − anXn] = 0.

Noting that E[Xi] = E[m(θ)] (by Lemma 4.13(i)), this gives

a0 = (1 − a1 − a2 − · · · − an)E[m(θ)].

For j = 1, 2, . . . , n we have

∂S
∂a j
= 0⇒ E

[
Xj {m(θ) − a0 − a1X1 − a2X2 − · · · − anXn}

]
= 0.

This gives

E[X jm(θ)] = a0E[Xj] +
∑
i� j

aiE[XiXj] + ajE[X2
j ],

from which, using Lemma 4.13, we have

E[m2(θ)] = a0E[m(θ)] +
n∑

i=1

aiE[m2(θ)] + a jE[s2(θ)]/Pj.

Using the expression for a0 above and Lemma 4.13, and after some algebra,
we find

a j =

⎛⎜⎜⎜⎜⎜⎝1 − n∑
i=1

ai

⎞⎟⎟⎟⎟⎟⎠ Var[m(θ)]
E[s2(θ)]

Pj.

Hence, summing from j = 1 to n, we have
n∑

j=1

aj =

⎛⎜⎜⎜⎜⎜⎝1 − n∑
i=1

ai

⎞⎟⎟⎟⎟⎟⎠ Var[m(θ)]
E[s2(θ)]

n∑
j=1

P j,

which gives

a0 =

E[m(θ)]
E[s2(θ)]

Var[m(θ)]∑n
i=1 Pi +

E[s2(θ)]
Var[m(θ)]

,

and

aj =
Pj∑n

i=1 Pi +
E[s2(θ)]

Var[m(θ)]

, j = 1, 2, . . . , n.

Putting these expressions into a0 + a1X1 + · · · + anXn, we find that the “best”
linear estimator is given by

E[m(θ)] E[s2(θ)]
Var[m(θ)] +

∑n
i=1 PiXi∑n

i=1 Pi +
E[s2(θ)]

Var[m(θ)]

.
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Table 4.10. Collective of risks for Model 2

Year

1 2 · · n

Risk 1 Y11; P11 Y12; P12 · · Y1n; P1n

2 Y21; P21 Y22; P22 · · Y2n; P2n

· · · · · ·
· · · · · ·
N YN1; PN1 YN2; PN2 · · YNn; PNn

This may be written as

ZX + (1 − Z)E[m(θ)],

where

Z =

∑n
i=1 Pi∑n

i=1 Pi +
E[s2(θ)]

Var[m(θ)]

and X =

∑n
i=1 PiXi∑n

i=1 Pi
,

and the result is proved. �

Notes

(1) X can of course also be written as X =

∑n
i=1 Yi∑n
i=1 Pi

.

(2) The coefficient aj of X j in the optimal estimator is proportional to Pj, the
risk volume for that year – this makes good sense as the claims data for
years with higher risk volumes should have greater influence on the value
of the credibility premium.

(3) In the case that the risk volumes are all equal, Model 2 is, in practice, the
same as Model 1; putting all the risk volumes Pi equal to 1 gives

Z =
n

n +
E[s2(θ)]

Var[m(θ)]

,

which is exactly the expression we had in the case of Model 1.

We now consider how to estimate the three structural parameters E[m(θ)],
E[s2(θ)] and Var[m(θ)] using data from a collective of N (fixed) comparable
risks. Our data consist of values (yi j, Pi j), where yi j is an observation of a ran-
dom variable Yi j which represents the aggregate claims for risk i in year j,
i = 1, 2, . . . ,N, j = 1, 2, . . . n. We present the data in the cells in Table 4.10 in
the form Yi j; Pi j.
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For each i and j define Xi j = Yi j/Pi j. For each risk, say risk i, the distribution
of each Xi j, j = 1, 2, . . . , n, depends on a risk parameter θi, which is fixed for
that risk, but unknown.

For each risk, say risk i, we make the following distributional assumptions.

Assumptions

(1) Given θi, the Xi j, j = 1, 2, . . . , n, are independent.
(2) E[Xi j | θi] does not depend on j.
(3) Pi jVar[Xi j | θi] does not depend on j.

Under these assumptions we define

m(θi) = E[Xi j | θi] and s2(θi) = Pi jVar[Xi j | θi].

Each risk therefore has the same structure as that of the single risk we
considered earlier – this gives us the within risk structure we require.

We now make assumptions to give us the appropriate between risk structure:

Assumptions (continued)

(4) For different risks i � j, the pairs of variables (θi, Xil) and (θ j, Xjk), l, k =
1, 2, . . . , n, are independent.

(5) The risk parameters θi, i = 1, 2, . . . ,N, are iid.

Since θi, i = 1, 2, . . . ,N, are identically distributed, it follows that none of
E[m(θi)], E[s2(θi)] or Var[m(θi)] depend on i, and so we write them as E[m(θ)],
E[s2(θ)] and Var[m(θ)], respectively.

We now seek estimators of these three structural parameters, and at this point
it is helpful to introduce some new notation – we will adopt the statistical con-
vention of using a clear point (•) in place of a subscript to indicate that we have
summed over that subscript (so, for example, the sum of x31, x32, x33, . . . , x3n

is denoted x3•, the sum of y15, y25, y35, . . . , ym5 is denoted y•5, and the sum of
zi j over all values of i and j is denoted z••).

We now have

Xi =

∑n
j=1 Pi jXi j∑n

j=1 Pi j
=

∑n
j=1 Yi j∑n
j=1 Pi j

=
Yi•
Pi•

, (4.38)

X =

∑N
i=1

∑n
j=1 Pi jXi j∑N

i=1
∑n

j=1 Pi j

=

∑N
i=1 Pi•Xi∑N

i=1
∑n

j=1 Pi j

=

∑N
i=1

∑n
j=1 Yi j∑N

i=1
∑n

j=1 Pi j

=
Y••
P••

(4.39)

and finally

P∗ =
1

Nn − 1

N∑
i=1

Pi•
(
1 − Pi•

P••

)
. (4.40)
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Table 4.11. Usual estimators of the structural parameters in EBCT Model 2

Structural
parameter

Estimator

E[m(θ)] X

E[s2(θ)]
1
N

N∑
i=1

1
n − 1

n∑
j=1

Pi j(Xi j − Xi)2

Var[m(θ)]
1
P∗

⎧⎪⎪⎨⎪⎪⎩ 1
Nn − 1

N∑
i=1

n∑
j=1

Pi j(Xi j − X)2 − 1
N

N∑
i=1

1
n − 1

n∑
j=1

Pi j(Xi j − Xi)
2

⎫⎪⎪⎬⎪⎪⎭

It is important to note our notation here: the mean of the claims (per unit of
risk volume) for an individual risk (risk i) is now denoted Xi and is a weighted
mean, the weights being the risk volumes (see definition of Xi above). The
symbol X now denotes the overall (weighted) mean claims (per unit of risk
volume) for all risks involved.

The credibility premium for risk i now appears as

ZiXi + (1 − Zi)E[m(θ)], (4.41)

where Xi is given by (4.38) and

Zi =
Pi•

Pi• +
E[s2(θ)]

Var[m(θ)]

. (4.42)

We give the usual estimators for the structural parameters in Table 4.11.
These estimators are unbiased – it is easy to verify that X is unbiased for
E[m(θ)]:

E[Xi j] = E[E(Xi j | θi)] = E[m(θi)] = E[m(θ)],

and it follows immediately that

E[X] = E

⎡⎢⎢⎢⎢⎢⎣∑N
i=1

∑n
j=1 Pi jXi j∑N

i=1
∑n

j=1 Pi j

⎤⎥⎥⎥⎥⎥⎦ = E[m(θ)].

We defer the unbiasedness of the estimator of E[s2(θ)] to Exercise 4.21.

Comments

(1) The estimators revert to those of Model 1 in the case that the risk volumes
are the same for all risks and years. Setting Pi j = 1 for all i, j we have∑n

j=1 Pi j = n and P∗ = [n(N − 1)]/(Nn − 1) (see Exercise 4.22).
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Table 4.12. Aggregate claims/volumes of business for
the four risks in Example 4.15

Risk 1 2 3 4 5

1 33 ; 4 26 ; 4 28 ; 5 41 ; 5 34 ; 5
2 22 ; 3 16 ; 2 19 ; 3 29 ; 4 33 ; 5
3 114 ; 16 117 ; 19 116 ; 18 171 ; 22 139 ; 22
4 77 ; 8 74 ; 8 59 ; 7 86 ; 10 98 ; 12

(2) While the estimates of E[m(θ)], E[s2(θ)] and Var[m(θ)] only have
to be calculated once for the collective (and hence the expression
E[s2(θ)]/Var[m(θ)] is the same for all risks), the credibility factors Zi are
different for different risks, since the expression for Zi involves Pi•, the
total risk volume for that risk.

(3) Zi is an increasing function of Pi• – high risk volume for a risk implies
high credibility factor for that risk.

(4) As with Model 1, this model can be applied to estimating the expected
number of claims in the coming year rather than finding the credibility
premium – this is the case if the variables Yi j represent the number of
claims for the risk rather than the aggregate claims.

To sum up, the credibility premium for risk i in the collective is given by

ZiXi + (1 − Zi)X,

where

Xi =

∑n
j=1 Pi jXi j∑n

j=1 Pi j
, and Zi =

∑n
j=1 Pi j∑n

j=1 Pi j +
E[s2(θ)]

Var[m(θ)]

,

with the structural parameters estimated as above.

Example 4.15 Table 4.12 gives the aggregate claims Yi j, i = 1, 2, 3, 4,
j = 1, 2, 3, 4, 5, in five successive years from comparable policies covering
the estate (buildings, vehicles, stock) of four medium-sized companies. The
level of activity for each company has been changing from year to year, and
for each company and year loss adjusters have given a quantitative assessment
(Pi j) of the relative volume of business (the exposure covered by the policy).
The claims are inflation-adjusted and are in units of £1000. The cells in the
table contain the data in the form Yi j ; Pi j.

We will calculate the credibility premium per unit of risk volume to be
charged in the coming year for each risk. We are assuming that the condi-
tions which have held for the past five years justify our adopting the structural
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Table 4.13. The Xi j for the four risks in Example 4.15

Risk 1 2 3 4 5

1 8.2500 6.5000 5.6000 8.2000 6.8000
2 7.3333 8.0000 6.3333 7.2500 6.6000
3 7.1250 6.1579 6.4444 7.7727 6.3182
4 9.6250 9.2500 8.4286 8.6000 8.1667

Table 4.14. Intermediate calculations for Example 4.15

Risk Yi• Pi• Xi
∑5

j=1 Pi j(Xi j − Xi)2 ∑5
j=1 Pi j(Xi j − X)2

1 162 23 7.0435 24.407 26.148
2 119 17 7.0000 4.7167 6.4431
3 657 97 6.7732 37.653 66.516
4 394 45 8.7556 13.155 106.06

assumptions which underpin EBCT Model 2 (for example, we are assum-
ing that the claims per unit of risk volume from year to year for a particular
company have constant mean).

The calculations for this example were done using R (see the computing
recipes listed after this example), and the intermediate results are quoted to
five significant figures.

First we calculate the Xi j (these are given in Table 4.13). Next we calculate
the values of Yi•, Pi•, Xi (using (4.38)) and X (using (4.39)), followed by the
sums we require for the calculation of the estimates; these intermediate values
are shown in Table 4.14.

For the calculations in the last column of Table 4.14 we require the value

X = Y••/P•• = 1332/182 = 7.3187.

We will also require P∗, which, by (4.40), is given by

{23(1 − 23/182) + 17(1 − 17/182) + 97(1 − 97/182) + 45(1 − 45/182)}/19

= 6.0359.

From Table 4.11, the estimate of E[m(θ)] is 7.3187, and the estimate of E[s2(θ)]
is given by

(24.407 + 4.7167 + 37.653 + 13.155)/(4 × 4) = 4.9957.

Further, the estimate of Var[m(θ)] is given by

[(26.148 + 6.4431 + 66.516 + 106.06)/19 − 4.9957]/6.0359 = 0.96134,
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Table 4.15. Credibility factors and
premiums for the four risks in Example 4.15

Risk Zi Premium per unit
of risk (£)

1 0.8157 7094
2 0.7659 7075
3 0.9492 6801
4 0.8965 8607

(note that the correct value from R is 0.96137). The ratio E[s2(θ)]/Var[m(θ)]
from R is 5.1965. The credibility factor for risk 1 is 23/(23 + 5.1965) = 0.81570
(by (4.42)), and the credibility premium per unit of risk volume is

0.81570 × 7.0435 + 0.18430 × 7.3187 = 7.094.

The credibility factors and premiums for all four companies are given in
Table 4.15.

If the assessments of the risk volumes for companies 1, 2, 3 and 4 for the
coming year are 5, 6, 24 and 11, respectively, then the insurer’s credibility
premiums will be £35 470, £42 450, £163 220 and £94 680.

Computing recipes in R for EBCT Model 2

Recipe 1: using a simple sequence of elementary step-by-step calculations for
Example 4.15
Note that # is the comment symbol in R.

n=5 # number of years’ data for each risk

N=4 # number of risks in the collective

y1=c(33,26,28,41,34) # claims for risk 1

p1=c(4,4,5,5,5) # risk volumes for risk 1

x1=y1/p1 # claims per unit risk volume for risk 1

c12 = sum(y1) # total claims for risk 1

c13 = sum(p1) # total risk volumes for risk 1

x1bar=c12/c13

So x1bar contains X1. Carry out similar commands for y2, p2, x2, c22, c23,
x2bar (containing X2); y3, p3, x3, c32, c33, x3bar (containing X3); and y4,
p4, x4, c42, c43, x4bar (containing X4).

c2=c(c12,c22,c32,c42)

c3=c(c13,c23,c33,c43)
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c5=c6=1:N*0 # set up two N-element vectors

xbar=sum(c2)/sum(c3)

c5[1]=sum(p1*(x1-x1bar)^2)

c6[1]=sum(p1*(x1-xbar)^ 2)

So xbar, c5[1] and c6[1] contain

X,
5∑

j=1

P1 j(X1 j − X1)2 and
5∑

j=1

P1 j(X1 j − X)2,

respectively. Carrry out similar commands for c5[2], c5[3], c5[4], c6[2],
c6[3] and c6[4].

pstar=sum(c3*(1-c3/sum(c3)))/(N*n-1)

e1 = xbar

e2 = sum(c5)/(N*(n-1))

e3 = (sum(c6)/(N*n-1) - e2)/pstar

z1 = c13/(c13 + e2/e3)

prem1 = z1*x1bar + (1-z1)*xbar

So e1, e2 and e3 contain the estimates of E[m(θ)], E[s2(θ)] and Var[m(θ)],
respectively, and z1 and prem1 contain the credibility factor and credibility
premium, respectively, for risk 1. Carry out similar commands for z2, prem2,
z3, prem3, z4 and prem4.

Recipe 2: via a function which uses matrices and a simple loop
First the claims and risk volumes are entered into matrices (here of dimension
4 × 5 and named mex411y and mex411p). The data are entered column by
column.

mex411y=matrix(c(33,22,114,77,26,...,139,98),4,5)

mex411p=matrix(c(4,3,16,8,4,...,22,12),4,5)

where ... denotes other values to be entered. A vector containing the credi-
bility premiums, here called credpremiums, is created issuing the command

credpremiums=ebctmodel2(4,5,mex411y,mex411p)

which calls up and executes a function called ebctmodel2 previously stored
as a text file as follows:

ebctmodel2=function(N,n,my,mp){

mx=my/mp

c2=apply(my,1,sum)

c3=apply(mp,1,sum)
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c5=c6=1:N*0

xibar=c2/c3

xbar=sum(c2)/sum(c3)

for (i in 1:N){

c5[i]=sum(mp[i,]*(mx[i,]-xibar[i])^ 2)

c6[i]=sum(mp[i,]*(mx[i,]-xbar)^2)}

pstar=sum(c3*(1-c3/sum(c3)))/(N*n-1)

e1 = xbar

e2 = sum(c5)/(N*(n-1))

e3 = (sum(c6)/(N*n-1) - e2)/pstar

z=c3/(c3+e2/e3)

prem=z*xibar+(1-z)*xbar

prem}

Exercises

4.1 Let P be the premium for a risk S calculated using the exponential
premium principle, with utility function parameter β (> 0).
(a) By using Jensen’s inequality (see Appendix A) on E[−eβS ] show that

P ≥ E[S ].
(b) By expanding E[eβS ] as far as the term in β2, show that, for small

β, the results of using the exponential premium principle can be
approximated by using the variance principle.

4.2 Show that
(a) the exponential premium calculation principle satisfies the additivity

property for independent risks,
(b) the expected value and the standard deviation premium calcula-

tion principles satisfy the scale invariance property, but the variance
principle does not.

4.3 Let u(x) be a utility function (with u′(x) > 0 and u′′(x) < 0). The risk
aversion of an individual or company using this utility function and with
wealth x can be measured by the function

r(x) =
−u′′(x)
u′(x)

,

where higher values of r(x) correspond to greater risk aversion (see
Appendix A).

Find the risk aversion r(x) under
(a) the log utility function u(x) = β log x,
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(b) the exponential utility function u(x) = −e−βx,
(c) the fractional power utility function u(x) = βx1/2,

where in all cases x > 0 and β > 0.
In each case state whether or not the risk aversion depends on

(1) current wealth,
(2) the parameter β.
If there is dependence, comment on the nature of that dependence.

4.4 An insurer sets the premium P for a risk as the 90th percentile of the dis-
tribution of the risk. Suppose the risk, in units of £1000, has a Pa(5, 16)
distribution (and hence has mean £4000).
(a) Calculate the premium P.
(b) Calculate the relative security loadings required if the same premium

were to be arrived at using (1) the expected value principle and (2)
the standard deviation principle.

4.5 Consider an individual who adopts u(x) = −e−0.004x as the (exponential)
utility function, and makes decisions according to the expected utility
criterion. Suppose the individual buys insurance to cover a loss which
has a normal distribution with mean μ = £5000 and standard deviation
σ. Find the range of values of σ for which the premium the individual
will be prepared to pay is £6000 or less.

4.6 Consider an individual who adopts u(x) = −e−0.0001x as the (exponential)
utility function and makes decisions according to the expected utility cri-
terion. Suppose the individual buys insurance to cover a loss which has
a compound Poisson distribution with rate parameter 2 and an individual
claim size which is constant at £5000. Find the maximum premium the
individual will be prepared to pay.

4.7 Repeat Exercise 4.6, but in the case in which the individual claim size
(£) is uniformly distributed on (0,10 000).

4.8 Let S be a risk and suppose we model S as S ∼ N(μ, σ2). The insurer
wants to fix a premium P for insuring the risk; let us call Pr(S ≤ P) the
insurer’s security level.

Show that
(a) setting P using the expected value principle with relative security

loading α gives the insurer a security level of Φ(αμ/σ), and
(b) setting P using the variance principle with relative security loading

α gives the insurer a security level of Φ(ασ).
4.9 Suppose the number of claims which arise in a year on a group of policies

is modelled as X ∼ Poi(λ) and that we observe a total of 14 claims over
a six year period. Suppose also we adopt a gamma(6, 3) distribution as a
prior distribution for λ.
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(a) State the maximum likelihood estimate of λ and the prior mean.
(b) State the posterior distribution of λ, find the mode of this distribu-

tion, and hence state the Bayesian estimate of λ under all or nothing
loss.

(c) Recall the result of Exercise 2.7(b).
(1) Using tables, find the Bayesian estimate of λ under absolute

error loss.
(2) Using tables, find an equal-tailed 95% Bayesian interval esti-

mate of λ, that is an interval (λL, λU), such that

Pr(λ > λU | x) = Pr(λ < λL | x) = 0.025.

(d) Find the credibility estimate (the Bayesian estimate under
squared-error loss) of λ.

4.10 Suppose we model the annual claims which arise under a risk, X, in units
of £1000, as X | θ ∼ N(θ, 0.52), and we adopt a N(2, 0.22) prior for θ. You
observe a total claim amount of £16 240 over a period of seven years.
(a) Find the marginal (unconditional) distribution of X.
(b) Find the credibility factor and the credibility premium for the risk.
(c) Find an equal-tailed 95% Bayesian interval estimate of θ.

4.11 A general insurer examines the records for a collective of five separate
risks, each of which has been in existence for at least eight years. The
mean and variance of the aggregate claims over the past eight years
(adjusted for inflation) for each risk are given in Table 4.16. Calculate
the credibility premiums for all five risks (using EBCT Model 1).

4.12 Table 4.17 gives the values of Xi j, the aggregate claims for each of three
risks in a collective for each of the past five years.
(a) Show that the credibility premium for risk i is given by

0.9749Xi + 1.792

and calculate the premium for each risk.

Table 4.16. Means and variances of the
aggregate claims in Exercise 4.11

Risk Within risk mean Within risk variance

1 121 246
2 104 187
3 130 223
4 107 159
5 118 204
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Table 4.17. Aggregate claims for
Exercise 4.12

Year j

Risk i 1 2 3 4 5

1 76 65 77 68 74
2 59 54 62 50 56
3 95 81 89 82 83

(b) Explain why the credibility premiums depend almost entirely on the
means for the individual risks.

4.13 In EBCT Model 1 show that the second two estimators in Table 4.6 are
unbiased for the parameters concerned by answering (a) and (b).
(a) Show that

1
N

N∑
i=1

1
n − 1

n∑
j=1

(Xi j − Xi)
2

is unbiased for E[s2(θ)].
Hint: For fixed i, and given θi, the variables Xi j, j = 1, 2, . . . , n, are
iid and hence constitute a random sample with mean Xi from a dis-
tribution with variance Var[Xi j | θi] = s2(θi). Now use the standard
result that the sample variance of a random sample of observations
is an unbiased estimator of the population variance, that is

E

⎡⎢⎢⎢⎢⎢⎢⎣ 1
n − 1

n∑
j=1

(
Xi j − Xi

)2 | θi

⎤⎥⎥⎥⎥⎥⎥⎦ = s2(θi).

(b) Show that

1
N − 1

N∑
i=1

(Xi − X)2 − 1
Nn

N∑
i=1

1
n − 1

n∑
j=1

(Xi j − Xi)
2

is unbiased for Var[m(θ)].
Hint: The Xi are iid, with mean X. Use the

E[sample variance] = population variance

result as used in part (a), together with the conditional variance
formula (1.4).

4.14 Suppose the credibility premiums for a collective of risks are calculated
using EBCT Model 1. Show that, in general, the mean of the credibility
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Table 4.18. Data for Exercise 4.15

Year

Risk 1 2 3 4 5 m(i) ss(i)

1 44 49 53 43 61 50 216
2 70 74 61 83 72 72 250
3 54 67 49 44 61 55 338

Table 4.19. Numbers of claims for Exercise 4.16

Year

Risk 1 2 3 4 5 6

1 127 156 166 141 123 151
2 150 134 123 141 147 127
3 138 179 176 150 154 193
4 176 158 181 129 182 110

premiums equals the mean of the observed risk means (the overall mean
of the claims data).

4.15 Table 4.18 shows the values of xi j, i = 1, 2, 3, j = 1, 2, 3, 4, 5, the annual
aggregate claims for the past five years for three risks, together with some
summary statistics, where m(i) denotes the mean claims for risk i, that
is m(i) = xi, and ss(i) denotes

∑5
j=1(xi j − m(i))2. Calculate credibility

estimates of the pure premium for the coming year for risk 1 using:
(a) the normal/normal Bayesian model with X | θ ∼ N(θ, 100) and a

N(65, 200) prior distribution for θ, and
(b) EBCT Model 1.

4.16 Table 4.19 gives the annual numbers of claims for the past six years
for four different risks in a collective. Table 4.20 gives some summary
statistics.
(a) Using the Poisson/gamma model with prior parameters α = 150 and

β = 1, calculate a credibility estimate of the number of claims for
the coming year for each risk.

(b) Using the Poisson/gamma model with prior parameters α = 450 and
β = 3, calculate a credibility estimate of the number of claims for
the coming year for each risk.
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Table 4.20. Summary
statistics for Exercise 4.16

Risk Xi

6∑
j=1

(Xi j − Xi)
2

1 144 1416
2 137 590
3 165 2176
4 156 4550

Table 4.21. Aggregate claims/volumes of business for Exercise 4.17

Year

Risk 1 2 3 4 5 6

1 32 ; 6 19 ; 5 22 ; 5 28 ; 6 19 ; 6 29 ; 7
2 56 ; 11 71 ; 10 77 ; 10 56 ; 12 91 ; 14 89 ; 14
3 23 ; 4 22 ; 5 32 ; 6 29 ; 7 37 ; 7 52 ; 8
4 27 ; 8 30 ; 8 23 ; 8 33 ; 8 29 ; 8 31 ; 8
5 79 ; 14 130 ; 15 115 ; 16 91 ; 18 141 ; 18 118 ; 18

(c) Using EBCT Model 1, estimate the number of claims for the coming
year for each risk.

(d) Comment on the differences between the answers to parts (a), (b)
and (c).

4.17 Table 4.21 gives the aggregate claims Yi j, i = 1, 2, 3, 4, 5, j =
1, 2, 3, 4, 5, 6, in six successive years from five comparable portfolios.
For each portfolio and year, we have a measure (Pi j) of the volume
of business (the exposure covered by the policies in the portfolio). The
claims are inflation-adjusted and are in units of £1000. The cells in the
table contain the data in the form Yi j ; Pi j.
(a) Using EBCT Model 2, calculate the credibility premiums per unit of

risk volume for the coming year for all five risks.
(b) Supposing the risk volumes for the coming year for the five portfo-

lios are assessed to be 8, 16, 10, 8 and 20, respectively, calculate the
total value of the five premiums for next year.

4.18 The mean claims (£, to the nearest £10) over the past ten years for each
risk in a collective of six comparable risks is given in Table 4.22.
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Table 4.22. Mean claims for Exercise 4.18

Risk 1 2 3 4 5 6

Mean claims 5120 6230 7470 8230 9670 11 050

Table 4.23. Volumes of business for Exercise 4.18

Risks 1–2 3–8 9–12

Vol. of business per year in years 1–6 5 5 8
Vol. of business per year in years 7–10 8 10 10

(a) Pure premiums for the coming year’s cover for all six risks are to be
calculated using EBCT Model 1, using the experience of the group
of six risks as the collateral information. The pure premium for next
year for risk 1 has been calculated on this basis and is £5486.
(1) Determine the value of the credibility factor.
(2) Determine the value of the mean of the within risk variances of

the claims over the past ten years for these six risks.
(3) Calculate the pure premiums for the coming year for risks 2, 3

and 4.
(b) Suppose now that you are told that the six risks in part (a) are in fact

part of a larger collective of 12 comparable risks (the additional risks
being numbered 7–12). In addition you have information on the vol-
ume of business corresponding to these risks as given in Table 4.23.
Pure premiums for the coming year’s cover are now to be calculated
using EBCT Model 2 using the experience of the group of all 12
risks as the collateral information. The pure premiums per unit of
risk volume for next year for risks 1 and 2 have been calculated on
this basis and are £876 and £1029, respectively. Calculate the pure
premiums per unit of risk volume for the coming year for risks 3
and 4.

4.19 Table 4.24 shows the aggregate claims (£), denoted Yi j, for each of three
risks over five years, together with some summary statistics, where m(i)
denotes yi and ss(i) denotes

∑5
j=1(yi j − m(i))2.

(a) Using EBCT Model 1, calculate the credibility premium for the
coming year for each of these three risks.

(b) Now suppose you have available a risk volume, denoted Pi j, corre-
sponding to the aggregate claims Yi j. You are given the values of the
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Table 4.24. Data for Exercise 4.19

Year

Risk 1 2 3 4 5 m(i) ss(i)

1 2543 1964 2494 2527 2007 2307 346 714
2 2799 2806 2176 2152 2657 2518 432 146
3 2421 2337 1550 1694 2023 2005 587 350

Table 4.25. Total risk
volumes for Exercise 4.19

Risk 1 2 3

5∑
j=1

Pi j 765 881 535

total risk volume,
∑5

j=1 Pi j for each risk, as recorded in Table 4.25.
Using EBCT Model 2, the credibility premium per unit of risk vol-
ume for the coming year for risk 1 has been calculated to be 15.53.
Calculate the credibility premiums for the coming year for each risk,
given that the risk volumes will be 165, 180 and 120 for risks 1, 2
and 3, respectively.

4.20 In EBCT Model 2 show that E[X2
i ] = (1/Pi)E[s2(θ)] + E[m2(θ)].

4.21 In EBCT Model 2 show that

E

⎡⎢⎢⎢⎢⎢⎢⎣ 1
N

N∑
i=1

1
n − 1

n∑
j=1

Pi j(Xi j − Xi)
2

⎤⎥⎥⎥⎥⎥⎥⎦ = E[s2(θ)].

Hint: First show that
n∑

j=1

Pi j(Xi j − Xi)
2 =

n∑
j=1

Pi jX
2
i j − Pi•Xi

2

and E[Xi
2
] = (1/Pi•)E[s2(θ)] + E[m2(θ)].

4.22 In EBCT Model 2 show that, in the case Pi j = 1 for all i, j, we have
P∗ = n(N − 1)/(Nn − 1), and hence show that the estimators of the three
structural parameters given in the text revert to those used in Model 1.

4.23 For the past five years an insurance company has insured 12 differ-
ent small chains of general retailers against loss from, or damage to,
their premises by fire, theft or other general insurable cause. For chain
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Table 4.26. Annual claims and numbers of shops for Exercise 4.23

Chain Year 1 Year 2 Year 3 Year 4 Year 5

1 4500 ; 4 1990 ; 5 6820 ; 5 7560 ; 6 1440 ; 6
2 940 ; 3 460 ; 3 520 ; 3 2770 ; 3 800 ; 4
3 4010 ; 5 5170 ; 4 2590 ; 3 4380 ; 5 7940 ; 6
4 6150 ; 8 42 140 ; 8 34 730 ; 10 17 110 ; 10 10 890 ; 11

i = 1, 2, . . . , 12 and year j = 1, 2, . . . , 5, the random variable Yi j

represents the annual claims and Pi j represents the number of shops in
the chain. You may assume that the sequence (Yi j, Pi j), i = 1, 2, . . . , 12,
j = 1, 2, . . . , 5, satisfies the assumptions of EBCT Model 2.

The data from the first four chains in the collective are shown in
Table 4.26. The claims are inflation-adjusted and are in £. The cells in
the table contain the data in the form Yi j ; Pi j.

The credibility premium per shop for the coming year has already
been calculated for chains 1 and 2: it is £1077 for chain 1 and £905 for
chain 2. Calculate the credibility premium per shop for the coming year
for chains 3 and 4.
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Risk sharing – reinsurance and deductibles

The purpose of risk sharing is to spread the risk among those involved. The
principal, or direct, insurer may pass on some of the risk to another insur-
ance company, which, in this role, is called the reinsurer. In doing so, the
direct insurer is purchasing insurance from the reinsurer. In addition, the direct
insurer may structure the policy such that the policyholder – the insured party –
is responsible for some of the risk, by including a deductible or policy excess
in the conditions of the cover. In this case the insured party has to bear a spec-
ified sum whenever a claim is settled – the direct insurer is only responsible
for the payment of the amount over and above the excess. The relationship the
policyholder has with the direct insurer is parallel to the relationship the direct
insurer has with the reinsurer – both the policyholder and the direct insurer are
buying insurance to cover part of the risk they are exposed to.

Buying insurance protects the policyholder against the effects of “large”
losses. Similarly, the inclusion of a reinsurance arrangement often protects the
direct insurer against the effects of “very large” claims. In particular it protects
the direct insurer against having sole responsibility (or any responsibility) for
the tails of the distributions of large claims.

As we shall see later in this chapter, the effects of this are as follows:

• there is a reduction in the mean amount paid out by the direct insurer on
claims;
• there is a reduction in the variability of the amount paid out by the direct

insurer on claims;
• there is a reduction in the probability that the direct insurer will face a “very

large” payout on any particular claim (or collection of claims).

In other words, reinsurance “stabilises” the direct insurer’s payouts on claims.
One can also argue that the availability of reinsurance arrangements allows

205
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smaller companies to become involved in the direct insurance of large risks,
thus increasing competition.

There are two principal types of reinsurance arrangement:

• excess of loss reinsurance, which we consider in §5.1;
• proportional reinsurance, which we consider in §5.2.

We will examine the properties of these various arrangements at the claim
level, so let X be the claim amount (the total amount to be met by all those
involved), V the amount of the claim paid by the policyholder, Y the amount
of the claim paid by the direct insurer, and Z the amount of the claim paid by
the reinsurer. So, in all cases, X = V + Y + Z.

We begin by studying the case in which there is no deductible in place, so
V = 0 and X = Y+Z. In §5.3 we consider the case in which there is a deductible
in place but no reinsurance arrangement. The case with both a deductible and
reinsurance in place is considered in Example 5.9 and as Case study 2 in
Chapter 7. In §5.4 we examine the relationship between retention levels (the
amounts of risks covered by the direct insurer) and the costs involved in rein-
surance contracts – and the consequences for the direct insurer’s profit on the
business. In §5.5 to §5.8 we consider several selected issues relating to the
optimisation of reinsurance contracts seen from the point of view of the direct
insurer or the reinsurer.

While we will consider only simple reinsurance arrangements, it must be
noted that in practice insurance companies may have in place arrangements
with very complicated structures.

First, a note on notation. As each reinsurance contract involves at least the
random variables X, Y and Z, we use quantities with suffices to denote which
random variable is involved. For example, we write fX and FX for the proba-
bility density function and the distribution function, respectively, of the claim
amount X. Recall that we assume moments are finite as necessary (without
saying so explicitly each time).

5.1 Excess of loss reinsurance

Under this arrangement, the direct insurer sets a retention level M (>0) and
pays in full any claim for which X ≤ M. The direct insurer retains an amount
M of the risk. For claims for which X > M, the direct insurer pays M and the
reinsurer pays the remaining amount X −M. So the amounts paid by the direct
insurer and the reinsurer, Y and Z, respectively, are defined as follows:
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Y =

{
X if X ≤ M
M if X > M,

(5.1)

Z =

{
0 if X ≤ M
X − M if X > M.

(5.2)

We can write this conveniently as

Y = min(X,M), Z = max(0, X − M). (5.3)

In all cases, X = Y + Z.
Under this type of reinsurance arrangement, the direct insurer has limited

liability (limited to M on each claim) and no exposure to the “risky tail” of the
claims distribution. This general feature makes this type of reinsurance attrac-
tive to the direct insurer. The reinsurer has unlimited liability (unless there is a
cap on the claim amount, and we will see an example of this in Case study 3
in Chapter 7) – the reinsurer has sole responsibility for the “risky tail” of the
claims distribution. As a result, this type of reinsurance is, in general, not so
attractive to the reinsurer.

The probability that a claim involves the reinsurer is

Pr(X > M) = 1 − FX(M).

To avoid trivialities, we assume that M is such that FX(M) < 1.
It is easy to derive an expression for the reduction in the mean amount paid

by the direct insurer on a claim, as follows:

E[Y] =
∫ M

0
x fX(x)dx +

∫ ∞

M
M fX(x)dx

=

∫ ∞

0
x fX(x)dx −

∫ ∞

M
x fX(x)dx +

∫ ∞

M
M fX(x)dx

= E[X] −
∫ ∞

M
(x − M) fX(x)dx.

We can write this as

E[Y] = E[X] −
∫ ∞

0
y fX(y + M)dy. (5.4)

So the expected reduction in payout by the direct insurer on a claim is given by

E[reduction for direct insurer] =
∫ ∞

0
y fX(y + M)dy.

This expected reduction in payout on a claim by the direct insurer is of course
the expected payout on the claim by the reinsurer, E[Z], and can also be found
directly and easily from the definition of Z:
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E[Z] =
∫ ∞

M
(x − M) fX(x)dx =

∫ ∞

0
y fX(y + M)dy. (5.5)

We note that the distribution of the direct insurer’s payout Y , net of rein-
surance, is neither purely discrete nor purely continuous. It has an atom at M
of size Pr(Y = M) = Pr(X > M) and it has a density fX on (0,M). Hence it
is of the form given in (1.11). From the formula for the expectation of such a
random variable in (1.13) we obtain

E[Y] = M Pr(Y = M) +
∫ M

0
x fX(x)dx,

which gives the same answer for E[Y] as obtained earlier.

Example 5.1 Suppose we model the claim amount, X, as X ∼ Exp(λ) with
mean μ = 1/λ. The proportion of claims which involve the reinsurer is given
by the tail probability (from (2.13))

Pr(X > M) = 1 − FX(M) = e−λM = e−M/μ.

Using (5.4) we find the direct insurer’s expected payout on a claim as follows:

E[Y] = E[X] −
∫ ∞

0
yλe−λ(y+M)dy

= E[X] − e−λM
∫ ∞

0
yλe−λydy

= E[X] − e−λM
E[X]

= (1 − e−λM)E[X] = (1 − e−M/μ)μ.

Hence (or directly) the reinsurer’s expected payout on a claim is given by

E[Z] = E[X] − E[Y] = e−λM
E[X] = μe−M/μ.

As an illustration, suppose that E[X] = £1000 and that the retention level is
M = £2000. Working in units of £1000, we have λ = μ = 1 and M = 2, and we
find that the reinsurer is involved in about 100e−2 % = 13.5% of claims. In the
event of a claim, the expected payouts by the two insurers potentially involved
are E[Y] = 0.8647 units and E[Z] = 0.1353 units; that is, the expected amounts
paid by the direct insurer and the reinsurer are, respectively, £865 and £135
approximately. However, as the reinsurer will in general only be interested in
claims with which they are actually involved, we revisit these calculations later
(in Example 5.3).
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Example 5.2 Suppose we model the claim amount, X, as a two-parameter
Pareto random variable with parameters α (>0) and λ (>0); that is, with
probability density function as given in (2.30):

fX(x) =
αλα

(λ + x)α+1
, x > 0.

The proportion of claims that involve the reinsurer is given by

Pr(X > M) = 1 − FX(M) =
(

λ

λ + M

)α
.

Assume α > 1 so that we may consider expectations (see §2.2.7). By (5.5) the
reinsurer’s expected payout on a claim is given by

E[Z] =
∫ ∞

0
y fX(y + M)dy

=

∫ ∞

0
y

αλα

(λ + M + y)α+1
dy

=

(
λ

λ + M

)α ∫ ∞

0
y

α(λ + M)α

(λ + M + y)α+1
dy.

The final integral defines the mean of a Pareto random variable with parameters
α and λ + M and so equals (λ + M)/(α − 1), so we have

E[Z] =
(

λ

λ + M

)α (λ + M
α − 1

)
=

λ

α − 1

(
λ

λ + M

)α−1

=

(
λ

λ + M

)α−1

E[X].

It follows that the direct insurer’s expected payout on a claim is given by

E[Y] = E[X] − E[Z]

=

[
1 −

(
λ

λ + M

)α−1]
E[X].

As an illustration, suppose we work in units of £1000, with Pareto parame-
ters α = 3 and λ = 2, then E[X] = 1 (= £1000). With retention level M = 2
(= £2000), the reinsurer is involved in 100(2/4)3 % = 12.5% of claims. In
the event of a claim, the expected payouts by the two insurers potentially
involved are E[Y] = 0.75 units and E[Z] = 0.25 units, that is £750 and £250,
respectively – but see Example 5.4.
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5.1.1 Reinsurance claims

Let us call a claim which involves the reinsurer (a claim such that X > M)
a “reinsurance claim”. It is important to recognise the information available
to the parties involved. While the direct insurer knows all claim amounts, a
typical claim record (of actual payouts) for the direct insurer may be

x1, x2,M(1), x3,M(2), x4, x5, x6, . . . ,M(m), xn,

in which there are n claim amounts ≤M and m reinsurance claims. A set of data
of this form is an example of a “censored sample”, in which some observations
are not known (or stated) exactly and are replaced by a value which they are
know to exceed.

The reinsurer’s claims record may involve only the reinsurance claims – the
reinsurer may not have any information about the other claims. In this case a
typical claims record for the reinsurer will be z∗1, z

∗
2, . . . , z

∗
m, where z∗j = x j −M

is the amount paid out by the reinsurer on a reinsurance claim.
Formally we can introduce a new random variable Z∗, the amount paid by

the reinsurer on a reinsurance claim, defined as

Z∗ ≡ X − M | (X > M) (5.6)

and read as Z∗ = X − M, given X > M. We can also write Z∗ ≡ Z | (Z > 0).
The variable Z∗ is a very useful addition to the tools we use in this chapter.

We can establish its distribution as follows: for z ≥ 0 we have

Pr(Z∗ > z) = Pr(X − M > z | X > M)

= Pr(X > z + M | X > M)

=
Pr(X > z + M)

Pr(X > M)
.

We can write this as

Pr(Z∗ > z) =
1 − FX(z + M)

1 − FX(M)
. (5.7)

Now let I be the random variable which indicates whether or not a claim is a
reinsurance claim (that is, I = 1 if the claim is a reinsurance claim and I = 0 if
the claim is not a reinsurance claim). Noting that E[Z | (X > M)] = E[Z∗] and
E[Z | (X ≤ M)] = 0, we have, using the conditional expectation formula (1.3),

E[Z] = E[E[Z | I]]

= E[Z | I = 1] Pr(I = 1) + E[Z | I = 0] Pr(I = 0)

= E[Z | (X > M)] Pr(X > M) + E[Z | (X ≤ M)] Pr(X ≤ M),
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which gives

E[Z] = E[Z∗] Pr(X > M). (5.8)

This is just the mathematics of common sense – for example, if the reinsurer
pays out on 25% of claims, and the reinsurer’s average payout on such claims
is £10 000, then the reinsurer’s average payout over all claims is £2500.

Example 5.3 (Example 5.1 revisited.) The exponential tail probability is
Pr(X > x) = 1 − FX(x) = e−λx, so

Pr(Z∗ > z) =
e−λ(z+M)

e−λM
= e−λz.

Hence Z∗ ∼ Exp(λ), a result which illustrates the “lack of memory” property
of the exponential distribution (see (2.17)). So the expected payout by the rein-
surer on claims with which the reinsurer is involved is given by E[Z∗] = 1/λ.
We also note from Example 5.1 that E[Z] = (1/λ)e−λM, illustrating result (5.8),
namely

E[Z] = E[Z∗] Pr(X > M).

For the illustration in Example 5.1, Z∗ ∼ Exp(1), and

E[Z] = 1 × exp(−2) = E[Z∗] Pr(X > 2).

Example 5.4 (Example 5.2 revisited.) The Pa(α, λ) tail probability is given
by 1 − FX(x) = (λ/(λ + x))α, so from (5.7) we have

Pr(Z∗ > z) =

(
λ

λ + M + z

)α
(

λ
λ + M

)α =

(
λ + M

λ + M + z

)α
.

Hence Z∗ ∼ Pa(α, λ + M). This is the conditional Pareto tail result of (2.36):

X ∼ Pa(α, λ)⇒ X − M | X > M ∼ Pa(α, λ + M).

So the expected payout by the reinsurer on claims with which the reinsurer is
involved is given by E[Z∗] = (λ + M)/(α − 1). We also note that

E[Z] =
λ

α − 1

(
λ

λ + M

)α−1

,

illustrating result (5.8). For the illustration in Example 5.2, Z∗ ∼ Pa(3, 4). We
also have E[Z∗] = 2 and E[Z] = 0.25 = 2 × 0.125 = E[Z∗] Pr(X > 2).
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5.1.2 Simulation results

To illustrate the results of Example 5.2 and Example 5.4 involving the Pareto
distribution, a simulation of 10 000 claim amounts was carried out (using R).
The claim amount distribution used in the simulation is X ∼ Pa(6, 50), for
which E[X] = 10 and Var[X] = 150. Excess of loss reinsurance with retention
level M = 25 is in place.

First, we calculate some theoretical values. We find that

Pr(X > M) = (50/75)6 = 0.08779.

Letting Y , Z and Z∗ be as above, we have E[Y] = 8.683, E[Z] = 1.317 and
E[Z∗] = 15 (using Example 5.2 and Example 5.4). In addition, let XLO be the
amount of a claim which is less than 25, that is XLO = X | X ≤ 25, and let
XRE be the amount of a reinsurance claim, that is XRE = X | X > 25. We
calculate E[XRE] by noting

E[XRE] = E[X | X > 25] = E[X − 25 | X > 25] + 25

= E[Z∗] + 25 = 15 + 25 = 40.

Now, using

E[X] = E[X | X ≤ 25] Pr(X ≤ 25) + E[X | X > 25] Pr(X > 25)

= E[XLO] Pr(X ≤ 25) + E[XRE] Pr(X > 25),

we have

10 = E[XLO] × {1 − (2/3)6} + 40 × (2/3)6,

which gives E[XLO] = 7.113.
In the simulation, the claim amounts were generated from a vector of 10 000

random numbers – from a uniform distribution on (0,1) – using the probabil-
ity integral transformation method (see §2.2.7 for simulation from a Pareto
distribution): the R code used was

x=50*(runif(10000)^(-1/6) - 1)

The claim amounts vector x was then manipulated to produce vectors y, z
and zstar containing the values indicated by these vectors’ names, and these
vectors were also summarised, using the commands (for example) length(y)
and summary(y). In the simulation, the claim amounts ranged from 0.002 to
198.8, and 916 of them were reinsurance claims (compared to an expected
number of 877.9). Finally, vectors containing the values of variables XLO and
XRE were constructed and summarised.
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Table 5.1. Theoretical results behind the simulation in §5.1.2

Number Expected number Mean SD

X 10 000 – 10 12.25
Y 10 000 – 8.683 7.706
Z 10 000 – 1.317 6.903
Z∗ − 877.9 15 18.37
XLO − 9122 7.113 6.083
XRE − 877.9 40 18.37

Table 5.2. Simulation results in §5.1.2 (selected from R output)

Number Min. Median Mean Max. SD

x 10 000 0.002 6.121 10.14 198.8 12.65
y 10 000 0.002 6.121 8.718 25.00 7.767
z 10 000 0.000 0.000 1.426 173.8 7.295
zstar 916 0.002 10.04 15.57 173.8 19.00
xlo 9084 0.002 5.361 7.076 25.00 6.082
xre 916 25.00 35.04 40.57 198.8 19.00

The results (theoretical and from the simulation) are summarised in
Tables 5.1 and 5.2. In addition to the theoretical means, the relevant standard
deviations (SD) have been calculated (the values of the standard deviations of
Y and Z can be obtained from results given in Exercise 5.4), and are given for
information and for comparison with the results from the simulation.

The histogram in Figure 5.1 gives a display of the simulated claim amounts
(up to 140). The strong skew of the amounts is evident – about 50% of the
claim amounts are less than 6.1 (about 25% are less than 2.5 and about 75%
are less than 13). Three claims for very large amounts (greater than 140) are
not included in the histogram. The two histograms in Figure 5.2 give displays
of the amounts paid by the direct insurer and the 916 non-zero amounts paid
by the reinsurer. The spike at 25 in the insurer’s histogram is self-explanatory,
and the otherwise general skewness of both displays is again evident.

5.1.3 Aggregate claims model with excess of loss reinsurance

We now consider the aggregate claims model from Chapter 3 with excess
of loss reinsurance arrangements (at the claim level) in place. Let Xi be the
amount of the ith claim, and let Yi and Zi be the amounts of this claim paid by
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Figure 5.1. Histogram of all claim sizes less than 140 in a simulated sample of
10 000 claim sizes from a Pareto distribution with parameters α = 6 and λ = 50.

the direct insurer and reinsurer, respectively. Let N and N∗ be the number of
claims and the number of reinsurance claims, respectively. Let S be the aggre-
gate claim amount, and let S I and S R be the aggregate claim amounts paid by
the insurer and reinsurer, respectively. Then S = S I + S R, and we have the
following representations as compound distributions involving all claims:

S = X1+X2+ · · ·+XN ; S I = Y1+Y2+ · · ·+YN ; S R = Z1+Z2+ · · ·+ZN . (5.9)

We have a second representation for S R in terms of reinsurance claims only:

S R = Z∗1 + Z∗2 + · · · + Z∗N∗ . (5.10)

In the important case that N ∼ Poi(λ), the random variables S , S I and S R

above have compound Poisson (CP) distributions (see §3.4.1):

S ∼ CP(λ, FX); S I ∼ CP(λ, FY ); S R ∼ CP(λ, FZ). (5.11)
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Figure 5.2. Histograms of payouts by direct insurer (a) and payouts by reinsurer
on 916 reinsurance claims (b).

We find the distribution of N∗ as follows. Note that N∗ | (N = n) has a
bi(n, p) distribution, where p = Pr(X > M). Using the conditional expectation
formula (1.3), and the fact that the probability generating function of a bi(n, p)
distribution is

(
pz + 1 − p)n (see (2.7)), we have

GN∗ (z) = E
[
zN∗ ] = E[E[zN∗ | N]] = E[(pz + 1 − p)N

]
= GN(pz + 1 − p).

When N ∼ Poi(λ), this becomes

GN∗ (z) = exp
(
λ(pz + (1 − p) − 1)

)
= exp

(
pλ(z − 1)

)
.

Hence N∗ has a Poisson distribution, with mean pλ. Using the representation
for S R in (5.10) we have

S R ∼ CP(p λ, FZ∗ ). (5.12)

Equating the means of S R from its two representations (in (5.11) and (5.12))
gives λE[Z] = pλE[Z∗], that is E[Z] = E[Z∗] Pr(X > M), as noted in (5.8).
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As discussed in Chapter 3, the model for S as a compound distribution
incorporates important structural assumptions. One of these is that the
sequence of claim amounts {Xi} is a sequence of independent, identically dis-
tributed random variables. While this is probably a realistic assumption for the
risks in most portfolios, there are particular situations in which the indepen-
dence of the variables may be questioned. It is quite possible that a situation
could exist in which claim amounts tend to be all rather low (or indeed rather
high), with the amounts therefore being positively correlated, not independent.
For example, if we were to consider claims for vehicle damage arising from a
single road traffic accident, there may well be a tendency for the claim amounts
to be mostly low (or high), depending on the severity of the incident. This
feature could also arise, for example, in the case of claims arising on home
insurance policies in an area hit by flooding. Similary, there may be correla-
tions among direct insurer’s amounts {Yi}, or among reinsurer’s amounts {Zi}.
As with all models, it is wise to keep the assumptions in mind when applying
the models.

As also discussed in Chapter 3, it is not usually possible to calculate proba-
bilities exactly for compound distributions. In Example 5.5, S has a compound
Poisson distribution and we want to calculate the probability that it assumes
a value less than a specified amount. The method adopted here is to assume
that the distribution of S can be approximated by a normal distribution (with
matching mean and variance) as discussed in §3.6.1. With Poisson parameter
λ = 100, the approximation will be acceptable, but we must be aware that in
other circumstances the use of a normal approximation may be unjustified and
produce misleading answers. A compound Poisson variable S ∼ CP(λ, FX)
has positive skewness (the coefficient of skewness is actually k/

√
λ, where

k = E[X3]/{E[X2]}3/2), and this will have to be recognised in the case that λ is
small. In addition, the claim amount variable may well be modelling a distribu-
tion which in practice has a fat (or heavy) tail and is strongly positively skewed.
When either or both of these situations pertains, the use of a normal distribution
to approximate the distribution of S will lead to inaccurate answers – in partic-
ular it will underestimate tail probabilities of the form Pr(S > c) for “large” c.

Example 5.5 Suppose S has a compound Poisson distribution with claim rate
(Poisson mean) 100 and individual claim amount variable X with the simple
discrete distribution

x 10 20 30 60
Pr(X = x) 0.2 0.4 0.3 0.1

for which E[X] = 25 and E[X2] = 810. Using the expression for compound
Poisson cumulants in (3.17), we find
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E[S ] = 100 × E[X] = 2500,

Var[S ] = 100 × E[X2] = 81 000,

SD[S ] = 284.6.

Suppose the direct insurer wants to be 95% sure of making a profit on this
business, and the direct insurer decides to set a premium P using the expected
value principle with relative security loading α (see (4.1)), so that P = (1 +
α)E[S ]. Then

Pr(insurer makes a profit) = Pr(S < P) = Pr (S < (1 + α)E[S ]) .

Using a normal approximation for the distribution of S , we have

Pr(insurer makes a profit) = Φ

(
αE[S ]√
Var[S ]

)
,

where we recall that Φ is the N(0, 1) distribution function. In this case, and
for a probability of 0.95, we have 2500α/

√
81 000 = 1.6449, which gives

α = 0.1873. So the direct insurer sets a premium using a relative security
loading of 18.73%, and therefore charges a premium of 1.1873×2500 = 2968.

Suppose the direct insurer enters into an excess of loss reinsurance contract
with retention level M = 28. The direct insurer’s payout on a claim, Y , assumes
values 10, 20 and 28 with probabilities 0.2, 0.4 and 0.4, respectively. We have
E[Y] = 21.2 and E[Y2] = 493.6. The reinsurer’s payout on a claim, Z, assumes
values 0, 2 and 32 with probabilities 0.6, 0.3 and 0.1, respectively. We have
E[Z] = 3.8 and E[Z2] = 103.6.

The distribution of the direct insurer’s aggregate claim amount in (5.11) is
S I ∼ CP(100, FY ), for which we have

E[S I] = 100 × E[Y] = 2120,

Var[S I] = 100 × E[Y2] = 49 360,

SD[S I] = 222.2.

The distribution of the reinsurer’s aggregate claim amount in (5.11) is S R ∼
CP(100, FZ), for which we have

E[S R] = 100 × E[Z] = 380,

Var[S R] = 100 × E[Z2] = 10 360,

SD[S R] = 101.8.

Claims greater than M = 28 have amounts 30 and 60, and these occur with
probabilities in the ratio 3:1, so Z∗ assumes values 2 and 32 with probabilities
0.75 and 0.25, respectively. Hence E[Z∗] = 9.5 and E[(Z∗)2] = 259. We also
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have Pr(claim is a reinsurance claim) = 0.4, so the rate of reinsurance claims
is 0.4×100 = 40. The alternative representation for S R (in terms of reinsurance
claims only, see (5.12)) is therefore S R ∼ CP(40, FZ∗ ), from which we find that

E[S R] = 40 × E[Z∗] = 380,

Var[S R] = 40 × E[(Z∗)2] = 10 360,

as found above.
Suppose now that the reinsurer also sets a premium (to be paid by the direct

insurer) using the expected value principle, in this case with a relative security
loading of 25%. Then the reinsurer’s premium, PR say, is given by PR = 1.25×
E[S R] = 1.25 × 380 = 475.

The direct insurer’s position is now as follows – premium income P = 2968,
payout on claims S I with mean 2120 and variance 49 360, and reinsurance
premium to pay PR = 475. Let us calculate the quantity

Pr(direct insurer’s total payout > 3000)

with and without the reinsurance contract in place (using normal approx-
imations to the distributions of the direct insurer’s total payout). With no
reinsurance in place, the direct insurer’s total payout is S and has mean 2500
and variance 81 000. We find

Pr(S > 3000) = 1 − Φ(1.757) = 0.0395.

With the reinsurance in place, the direct insurer’s total payout is S I + PR and
has mean 2120 + 475 = 2595 and variance 49 360. We find

Pr(S I + PR > 3000) = 1 − Φ(1.823) = 0.0342,

which we note is lower than 0.0395. Going further into the tail of the
distributions, we find that, without reinsurance,

Pr(direct insurer’s total payout > 3300) = 0.0025,

and is only 0.00075 with reinsurance. The size of the “with reinsurance” prob-
ability relative to the corresponding “no reinsurance” probability is sensitive to
the parameters of the situation, for example the size of the reinsurer’s security
loading.

Example 5.6 Suppose S has a compound Poisson distribution with claim
rate (Poisson mean) 100 and individual claim amount variable X ∼ Exp(1)
with mean 1 (in using this value for the mean we are effectively adopting the
expected claim amount as our monetary unit). The direct insurer has an excess
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of loss reinsurance contract in place with retention level M = 2 (that is, twice
the expected claim amount). We have E[X] = 1 and E[X2] = 2, and so we have

E[S ] = 100 × E[X] = 100,

Var[S ] = 100 × E[X2] = 200,

SD[S ] = 14.14.

The direct insurer’s payout on a claim, Y , has E[Y] = 1−e−2 = 0.8647 (from
Example 5.1) and E[Y2] = 2(1 − 3e−2) = 1.188 (obtainable from the result in
Exercise 5.3(a)). The reinsurer’s payout on a claim, Z, has E[Z] = e−2 = 0.1353
and E[Z2] = 2e−2 = 0.2707 (again from Example 5.1 and Exercise 5.3(a)).

For the direct insurer we have S I ∼ CP(100, FY ), and

E[S I] = 100 × E[Y] = 86.47,

Var[S I] = 100 × E[Y2] = 118.8,

SD[S I] = 10.9.

For the reinsurer we have S R ∼ CP(100, FZ), and

E[S R] = 100 × E[Z] = 13.53,

Var[S R] = 100 × E[Z2] = 27.07,

SD[S R] = 5.20.

From Example 5.3, Z∗ ∼ Exp(1). Hence E[Z∗] = 1 and E[(Z∗)2] = 2. We
also have that the probability that a claim is a reinsurance claim is e−2 so the
rate of reinsurance claims is 100e−2 = 13.53 (13.534 to five significant fig-
ures). The alternative representation for S R (in terms of reinsurance claims
only, (5.12)) is therefore S R ∼ CP(13.534, FZ∗ ), from which we obtain

E[S R] = 13.534 × E[Z∗] = 13.53,

Var[S R] = 13.534 × E[(Z∗)2] = 27.07,

as found above.
Suppose the expected claim amount is actually £1070. The calculations

above are being carried out using £1070 as the monetary unit, so the values
of E[S I] and SD[S I] are actually 86.4665× 1070 = £92 519 and

√
118.7988×

1070 = £11 662, etc.
To illustrate the results, a simulation of 10 000 observations of S , S I and

S R was carried out, using the claim amount distribution and parameter values
as above. In order to generate each observation of {S , S I , S R}, a value for the
number of claims, n, was generated (from a Poi(100) distribution) and then n
claim amounts were generated (from an exponential distribution with mean 1),
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Table 5.3. Simulation results in Example 5.6 (selected from R output)

Number Min. Median Mean Max. SD

S 10 000 54.62 99.61 100.1 160.4 14.15
S I 10 000 48.92 86.28 86.57 129.8 10.91
S R 10 000 0.7794 13.06 13.53 40.33 5.22

S

Fr
eq

ue
nc

y

40 60 80 100 120 140 160 180

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Figure 5.3. Histogram of 10 000 simulated aggregate claim amounts from com-
pound Poisson distribution CP(100, FX), where X ∼ Exp(1).

say amounts x1, x2, . . . , xn. The amounts of each claim to be paid by the insurer
and the reinsurer were calculated, say y1, y2, . . . , yn and z1, z2, . . . , zn, respec-
tively, and summing the xi, yi and zi gave single simulated values of S , S I and
S R. The process was repeated 10 000 times, and the results are summarised
and given in Table 5.3.

The means and standard deviations of the simulated data are in close
agreement with the theoretical results.

The histogram in Figure 5.3 gives a display of the simulated values of the
aggregate claim amounts S . The two histograms in Figure 5.4 give displays of
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Figure 5.4. Histograms of aggregate payouts by direct insurer (a) and
reinsurer (b).

the aggregate amounts paid by the direct insurer and the reinsurer, here denoted
SI and SR, respectively. The histograms of SI and SR exhibit approximate
symmetry and normality (that of SR less so).

5.2 Proportional reinsurance

Under this arrangement, the direct insurer pays a proportion of each claim (say
a proportion β) and the reinsurer pays the remainder of the claim (a proportion
1 − β). The value of β, the proportion of the risk retained by the direct insurer,
is agreed in advance by the parties involved.

So, Y and Z, the amounts paid by the direct insurer and the reinsurer,
respectively, are defined simply as follows:

Y = βX, Z = (1 − β)X, (5.13)

where X is the claim amount. As before, we have X = Y + Z (of course).



222 Risk sharing – reinsurance and deductibles

Under this type of reinsurance arrangement, both the direct insurer and the
reinsurer are involved in paying each claim, and both have unlimited liability
(unless there is a cap on the claim amount). The direct insurer now has some
exposure to the “risky tail” of the claims distribution, and as a result this type
of reinsurance is, in general, less attractive to the direct insurer than is excess of
loss reinsurance. Since the reinsurer does not have sole responsibility for the
“risky tail” of the claims distribution, this type of reinsurance is, in general,
more attractive to the reinsurer than is excess of loss reinsurance. This type of
reinsurance arrangement is also called “quota share” reinsurance.

From the definitions of Y and Z, we have immediately that

E[Y] = βE[X], SD[Y] = βSD[X]; (5.14)

E[Z] = (1 − β)E[X], SD[Z] = (1 − β) SD[X]. (5.15)

The mathematics of the situation are straightforward, involving only a change
of scale of the variable X. For example, the distribution function of the direct
insurer’s payout Y is given by

FY (y) = Pr(Y ≤ y) = Pr(βX ≤ y) = Pr(X ≤ y/β) = FX(y/β).

The following results on the scaling of variables will be useful:

X ∼ Exp(λ)⇒ βX ∼ Exp(λ/β) by (2.16);
X ∼ Pa(α, λ)⇒ βX ∼ Pa(α, βλ) by (2.35);
X ∼ gamma(α, λ)⇒ βX ∼ gamma(α, λ/β) by (2.22);
X ∼ lognormal(μ, σ)⇒ βX ∼ lognormal(log β + μ, σ).

The last of these follows easily from log(βX) = log(β) + log(X) and then noting
that, if X ∼ lognormal(μ, σ), then log(X) ∼ N(μ, σ2).

The extension to the aggregate claims model is easy – the proportionality
carries through to the aggregate amounts. As before, letting S be the aggregate
claim amount and letting S I and S R be the aggregate claim amounts paid by
the direct insurer and the reinsurer, respectively, we have

S = X1 + X2 + · · · + XN ,

S I = Y1 + Y2 + · · · + YN = βX1 + βX2 + · · · + βXN = βS , (5.16)

and similarly

S R = Z1 + Z2 + · · · + ZN = (1 − β)S . (5.17)

Example 5.7 Suppose an aggregate claim amount variable S has a compound
Poisson distribution with claim rate λ and individual claim amount variable X
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which is exponentially distributed with mean μ. There is a proportional reinsur-
ance contract in place under which the direct insurer retains (pays) a proportion
β of each claim amount.

From (3.18) we have E[S ] = λμ,Var[S ] = 2λμ2, and we note that S I and
S R also have compound Poisson distributions. Using (5.14)–(5.17) we have
S I = βS , S R = (1 − β)S , and the mean and variance of S I and S R are given by

E[S I] = λβμ and Var[S I] = 2λβ2μ2;

E[S R] = λ(1 − β)μ and Var[S R] = 2λ(1 − β)2μ2.

5.3 Deductibles (policy excesses)

This arrangement will probably be familiar to anyone with a general insurance
policy – certainly to those with a private motor policy. The policyholder agrees
to bear the first amount, say D, of any loss (and so only submits a claim when
the loss exceeds D). In this arrangement D is called a deductible or the policy
excess.

An obvious benefit to the insurer of including deductibles in policies is the
removal of small claims from the insurer’s record, leading to savings in admin-
istrative effort and costs. The overall reduction in the number and average
amount of potential claims to be settled opens up the possibility of a lowering
of premiums, with consequent market advantages.

The policyholder and the insurer are effectively in the same relative positions
as the direct insurer and reinsurer, respectively, in an excess of loss reinsurance
arrangement as described in §5.1. There is an obvious difference, however, in
that the policyholder does not receive any money from another party (unlike a
direct insurer, who receives a premium). The policyholder’s financial involve-
ment is all “outgo” – consisting of a premium payment to the insurer and an
amount D or less of each loss.

Let X represent the loss, and now let Y and Z represent the amounts of the
loss paid by the policyholder and the insurer, respectively. Then

Y =

{
X if X ≤ D
D if X > D,

(5.18)

Z =

{
0 if X ≤ D
X − D if X > D;

(5.19)

that is,

Y = min(X,D), Z = max(0, X − D). (5.20)
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Losses up to D are uninsured; losses in excess of D are insured, and the insured
loss is given by Z∗ ≡ X − D | X > D (that is, the loss incurred by the insurer
on losses with which the insurer is involved). The insurer is, of course, only
exposed to risk from insured losses.

From (2.17) and (2.36), we note that

for X ∼ Exp(λ), the insured loss ∼ Exp(λ), and
for X ∼ Pa(α, λ), the insured loss ∼ Pa(α, λ + D).

Increasing the value of D increases the policyholder’s risk exposure and
reduces the insurer’s exposure. Whether or not this is acceptable to the poli-
cyholder depends on whether or not they receive a fair reduction in premium
to compensate for the increased exposure. Whether or not it is worthwhile for
the insurer depends on whether the balance between risk exposure and prof-
its is acceptable. Some effects of introducing deductibles, and aspects of the
relationship between the positions of the policyholder and the insurer and the
size of the deductible, are explored in Exercises 5.18 and 5.19. In Case study
2 in Chapter 7 we examine a situation in which a deductible and a reinsurance
contract are both in place.

Example 5.8 Suppose we model the individual loss, X, as X ∼ Exp(1/μ)
(with mean μ). Then, using results from Examples 5.1 and 5.3, and averag-
ing over all losses (potential claims), we find the expected payments for the
policyholder and the insurer to be, respectively,

E[Y] = (1 − e−D/μ)μ and E[Z] = μe−D/μ.

For insured losses, Z∗ ∼ Exp(1/μ).
In the case that μ = £3000 and D = £150, we find that Pr(X > 150) =

0.9512, and so the insurer is involved in about 95.1% of all losses. Over all
losses, the expected payouts by the policyholder and the insurer on an individ-
ual loss are £146.31 and £2853.69, respectively. About 4.9% of losses are for
amounts less than or equal to £150 and do not lead to claims – the expected
size of such losses, which are borne by the policyholder, is £74.38. For insured
losses, the insurer’s expected payout is £3000.

Suppose now we consider the aggregate model in which S has a compound
Poisson distribution, losses occur at rate λ, and the individual loss distribution
is as above. Let S P and S I represent the aggregate payouts by the policyholder
and the insurer, respectively. Then we have
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S P ∼ CP(λ, FY ) and E[S P] = λμ(1 − e−D/μ),

and

S I ∼ CP(λ, FZ) and E[S I] = λμe−D/μ.

For insured losses, we have S I ∼ CP(pλ, F∗Z), where p = Pr(X > D) = e−D/μ,
giving again E[S I] = λμe−D/μ.

Example 5.9 Consider a situation in which individual losses, X, are modelled
by a Pareto random variable X ∼ Pa(λ + 1, λ), with parameters chosen so that
the monetary unit is the expected loss (E[X] = 1) for convenience. An insurer
writes policies to cover such losses with an individual excess of D per loss; the
policyholder submits a claim on any loss which exceeds D. Let Y and Z be the
amount of a loss paid by the policyholder and the insurer, respectively. We find
expresssions for E[Z] and E[Y].

We note that Z = 0 for X ≤ D and Z = X − D for X > D. Then, using
the conditional tail property of the Pareto distribution (2.36), the insured loss
Z∗ ≡ X − D | X > D ∼ Pa(λ + 1, λ + D). The probability that the insurer is
involved in a loss is

Pr(X > D) =
(

λ

λ + D

)λ+1

,

and the expected payout by the insurer on a claim is E[Z∗] = (λ + D)/λ. Then
we obtain

E[Z] = E[Z | X ≤ D] Pr(X ≤ D) + E[Z | X > D] Pr(X > D)

= 0 +
(
λ + D
λ

) (
λ

λ + D

)λ+1

=

(
λ

λ + D

)λ
.

Hence

E[Y] = E[X] − E[Z] = 1 −
(

λ

λ + D

)λ
.

Suppose now that aggregate losses S have a compound Poisson distribution
S ∼ CP(π, FX) with X as above, and that the insurer has arranged proportional
reinsurance with another company, with retained proportion β of each claim
amount. Both insurers set their premiums using the expected value principle
(4.1): the direct insurer uses a loading factor (relative security loading) of θ1

and the reinsurer uses a loading factor of θ2(>θ1) – we will see later in §5.4
why we must have θ2 > θ1. We consider the direct insurer’s expected profit on
this business.
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Using the results of §5.1.3 and working with insured losses only, the
aggregate claim amount, S CL say, has distribution S CL ∼ CP(π∗, FZ∗), where

π∗ = π
(

λ

λ + D

)λ+1

and Z∗ ∼ Pa(λ + 1, λ + D),

giving

E[S CL] = π
(

λ

λ + D

)λ
.

Note that we can also represent the distribution of S CL as S CL ∼ CP(π, FZ),
and we find the same formula for E[S CL].

The premium charged by the direct insurer is

(1 + θ1)E[S CL] = (1 + θ1)π
(

λ

λ + D

)λ
.

With the reinsurance in place, the direct insurer pays βS CL and the reinsurer
pays (1 − β)S CL. So the insurer’s expected claim amount is

E[βS CL] = βπ
(

λ

λ + D

)λ
.

The reinsurer’s premium is

(1 + θ2)E[(1 − β)S CL] = (1 + θ2)(1 − β)π
(

λ

λ + D

)λ
.

It follows that the direct insurer’s expected profit is

(1 + θ1)π
(

λ

λ + D

)λ
− βπ

(
λ

λ + D

)λ
− (1 + θ2)(1 − β)π

(
λ

λ + D

)λ
= π

(
λ

λ + D

)λ
[θ1 − (1 − β)θ2].

5.4 Retention levels and reinsurance costs

We consider now the relationship between retention levels and the costs
involved in reinsurance contracts (in this section we will ignore deductibles).

Suppose the aggregate claim amount faced by a direct insurer, S , has a
compound Poisson distribution with claim rate λ and individual claim amount
variable X. Let Y and Z represent the payouts on a claim by the direct insurer
and the reinsurer, respectively. For simplicity, let us assume that both the direct
insurer and the reinsurer set their premiums using the expected value principle,
with relative security loadings of θ and ψ, respectively.
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Note that we must have ψ > θ. If this were not so, the direct insurer could
reinsure the entire risk and in so doing make a guaranteed profit (by “pocketing
the difference” (θ − ψ) per unit of risk) – the transaction would produce a
risk-free profit to the direct insurer and would constitute an arbitrage opportu-
nity. The case ψ = θ corresponds to a risk sharing arrangement for which all
retention levels are possible and equivalent – this is not a realistic scenario.

Before any considerations of reinsurance, the direct insurer has an expected
payout of E[S ] = λE[X] (by (3.18)), and so, with the security loading θ there
is premium income from the policyholders of (1 + θ)λE[X].

The reinsurer has an expected payout of λE[Z], and so, with security loading
ψ the reinsurer has premium income from the direct insurer of (1 + ψ)λE[Z].

So the direct insurer’s premium income, net of reinsurance costs, is

(1 + θ)λE[X] − (1 + ψ)λE[Z].

The direct insurer’s expected payout, net of reinsurance, is λE[Y]. To ensure
that the insurer has a positive expected profit, we therefore require

(1 + θ)λE[X] − (1 + ψ)λE[Z] > λE[Y],

which, with E[Y] = E[X] − E[Z], gives the condition

θE[X] > ψE[Z]. (5.21)

We note therefore that we require the two relative security loadings to
satisfy the following inequalities, which give lower and upper bounds on
the reinsurer’s security loading for contracts with the direct insurer to be
practicable:

θ < ψ <
E[X]
E[Z]

θ.

In the case of proportional reinsurance with retained proportion β, the con-
dition which ensures positive expected profit for the insurer, namely (5.21),
becomes θE[X] > ψ(1−β)E[X], which in turn gives the condition β > 1−(θ/ψ).
The condition imposes a lower bound on the retained proportion β. The direct
insurer must retain a certain proportion of the risk (for example, with θ = 0.1
and ψ = 0.2, the direct insurer must retain at least 50% of the risk) – it is not
possible to pass over too much of the risk exposure while maintaining prof-
itability. The more risk the direct insurer passes over, the more secure the direct
insurance business is, but there is a price to pay in reduced profitability (less
direct insurance business is being conducted, and reinsurance is expensive).

In the case of excess of loss reinsurance with X ∼ Exp(1/μ) (with mean
μ) and retention level M, we have, from Example 5.1, that E[Z] = μe−M/μ
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and condition (5.21) becomes M > μ log(ψ/θ). The condition imposes a lower
bound on the retention level M (for example, with θ = 0.1 and ψ = 0.2, the
direct insurer’s retention level M must be at least 0.693μ) – again we see that
the direct insurer must retain at least a specified level of exposure to the risks
involved.

The direct insurer cannot make profits if there is not enough direct insurance
business, that is if the direct insurer does not maintain enough risk exposure.
The results above are good illustrations of the trade-off between security and
profitability.

5.5 Optimising the reinsurance contract

In the remaining sections of this chapter we examine selected issues concern-
ing optimising reinsurance arrangements seen from the point of view of the
direct insurer or the reinsurer as appropriate. In §5.6 we establish optimal
retention levels for the direct insurer based on maximising the expected utility
of the direct insurer’s assets at the end of the period of insurance – we do this
separately for excess of loss contracts and proportional contracts. In §5.7 we
look at the problem of minimising the variance of the aggregate claims for each
party involved. In §5.8 we consider the optimisation of reinsurance contracts
for a portfolio of independent risks, based on minimising the uncertainty of the
direct insurer’s net profit.

We continue to consider only simple reinsurance structures, noting again
that in practice insurance companies may have in place much more complex
arrangements.

5.6 Optimising reinsurance contracts based on maximising
expected utility

Consider a direct insurer who has a known initial wealth and a set of pos-
sible actions which lead to different financial gains. We will suppose that the
direct insurer has adopted a utility function u(x) (see Appendix A) and chooses
which action to take using the expected utility criterion, that is the action that
maximises the expected utility of wealth is chosen.

In particular, we suppose the direct insurer has initial wealth W and uses
an exponential utility function u(x) = −e−αx for some α > 0. Then, if action
A leads to financial gain G(A), the direct insurer chooses the action A which
maximises
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E[u(W +G(A))] = E[− exp{−α(W +G(A))}]. (5.22)

We suppose that the direct insurer is exposed to a risk with aggregate claims
variable S , where S ∼ CP(λ, FX), and where the claim amount variable X has
probability density function fX(x) and distribution function FX(x).

5.6.1 Excess of loss reinsurance

Suppose the direct insurer effects excess of loss reinsurance with retention level
M, and let the direct insurer’s premium be P. We assume that the reinsurer’s
premium is calculated using the expected value principle (4.1), with relative
security loading ψ. We will denote this premium by PR, which is, of course, a
function of M. Then PR is given by

PR = (1 + ψ)λE[Z] = (1 + ψ)λ
∫ ∞

M
(x − M) fX(x)dx,

where Z is the reinsurer’s payment on a claim.
The aggregate claims S I net of reinsurance paid by the direct insurer has

a CP(λ, FY) distribution, where Y is the direct insurer’s payout on a claim.
By (3.16) the random variable S I has a moment generating function MS I (t) =
E[exp(tS I)] = exp[λ{MY (t) − 1}], which is also a function of M because the
distribution of Y depends on M. The direct insurer’s wealth at the end of the
insurance period is W + P − PR − S I , and M is chosen such that

E[u(W + P − PR − S I)] = E[− exp{−α(W + P − PR − S I)}]
= −e−α(W+P) exp(αPR)E[exp(αS I)],

is maximised, which is equivalent to minimising

exp(αPR)E[exp(αS I)] = exp(αPR) exp[λ{MY (α) − 1}].
Taking logarithms, the problem can now be expressed as follows: minimise
with respect to M the function

h(M) = αPR + λ (MY (α) − 1) . (5.23)

We have

PR = (1 + ψ)λ

(∫ ∞

0
x fX(x)dx −

∫ M

0
x fX(x)dx − M

(
1 − FX(M)

))
.

Assume that fX is well-behaved, so that we may differentiate with respect to
M to obtain
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∂PR

∂M
= (1 + ψ)λ

(−M fX(M) − (1 − FX(M)
)
+ M fX(M)

)
= −(1 + ψ)λ

(
1 − FX(M)

)
.

By (1.15), the moment generating function of Y is

MY (α) =
∫ M

0
eαx fX(x)dx + eαM(1 − FX(M)

)
,

and so

∂MY (α)
∂M

= eαM fX(M) + αeαM(1 − FX(M)
) − eαM fX(M)

= αeαM(1 − FX(M)
)
.

Hence, from (5.23) we have

h′(M) = α
∂PR

∂M
+ λ

∂MY (α)
∂M

= λα
(
1 − FX(M)

) (
eαM − (1 + ψ)

)
.

It follows that h′(M) = 0 when M satisfies

FX(M) = 1 or eαM = 1 + ψ.

The first of these corresponds to the “no reinsurance” case, while the second
gives M = (1/α) log(1+ ψ). When M < (resp. >) (1/α) log(1+ ψ), it is easy to
check that h′(M) < 0 (resp. > 0), so that M = (1/α) log(1+ψ) does indeed give
a minimum. We conclude that the direct insurer’s expected utility of wealth at
the end of the insurance period is maximised by setting the retention level M at

M =
1
α

log(1 + ψ). (5.24)

This result is interesting and instructive in several ways: we see that the direct
insurer’s optimal retention level

• does not depend on the direct insurer’s initial wealth (this is to be expected
in the presence of the exponential utility function);
• does not depend on the individual claim size distribution;
• is a decreasing function of the direct insurer’s utility function parameter α

(α is related to the direct insurer’s risk aversion – the more “safety/security
conscious” is the direct insurer, the higher will be the value of α) – increas-
ing α corresponds to setting a lower retention level and passing more of the
risk to the reinsurer;
• is an increasing function of the reinsurer’s premium security loading ψ

– the more expensive is the reinsurance, the less the direct insurer will
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purchase – this corresponds to the direct insurer setting a higher retention
level and passing less of the risk to the reinsurer.

5.6.2 Proportional reinsurance

Suppose the direct insurer effects proportional reinsurance with retained pro-
portion β, then the aggregate claim paid by the direct insurer, S I , is given by
S I = βS and S I ∼ CP(λ, FY ), where Y = βX. The aggregate claim paid by
the reinsurer, S R, is given by S R = (1 − β)S and S R ∼ CP(λ, FZ), where
Z = (1 − β)X. The moment generating function of S R is given by

MS R (t) = exp[λ{MZ(t) − 1}] = exp[λ{MX((1 − β)t) − 1}].
Let P denote the direct insurer’s premium, and, in this case, let us assume

that the reinsurer sets an “exponential premium” with parameter η; that is, an
exponential utility function u(x) = −e−ηx is used and the premium is set at
PR using the exponential premium principle (4.5), so that, assuming MX

(
(1 −

β)M
)
< ∞ and using (3.16) we have

PR =
1
η

log MS R (η)

=
1
η

[λ{MX((1 − β)η) − 1}]

=
λ

η

[∫ ∞

0
exp((1 − β)ηx) fX(x)dx − 1

]
.

The direct insurer’s wealth at the end of the insurance period is W+P−PR−βS ,
and β is chosen to maximise

E[u(W + P − PR − βS )] = E[− exp{−α(W + P − PR − βS )}]
= −e−α(W+P) exp(αPR)E[exp(αβS )].

This is equivalent to minimising

exp(αPR)E[exp(αβS )] = exp(αPR) exp[λ{MX(αβ) − 1}],
where we assume MX(αβ) < ∞. Taking logarithms, the problem can now be
expressed as follows: minimise with respect to β the function

h(β) = αPR + λ

[∫ ∞

0
exp(αβx) fX(x)dx

]
. (5.25)

Assuming that fX is well-behaved, we find that the derivatives with respect to
β of

PR =
λ

η

[∫ ∞

0
exp((1 − β)ηx) fX(x)dx − 1

]
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and ∫ ∞

0
exp(αβx) fX(x)dx

are, respectively,

λ

η
(−η)

∫ ∞

0
x exp((1 − β)ηx) fX(x)dx = −λ

∫ ∞

0
x exp((1 − β)ηx) fX(x)dx

and

α

∫ ∞

0
x exp(αβx) fX(x)dx.

Hence, from (5.25) we have

h′(β) = −αλ
∫ ∞

0
[exp((1 − β)ηx) − exp(αβx)]x fX(x)dx.

It follows that h′(β) = 0 if and only if (1 − β)η = αβ, that is if and only if
β = η/(η + α). The reader can verify that h′′ > 0, thus verifying that we have
found a minimum for h(β).

We conclude that the direct insurer’s expected utility of wealth at the end
of the insurance period is maximised by setting the retained proportion of the
risk, β, at

β =
η

η + α
. (5.26)

As in §5.6.1, the result is interesting and instructive in several ways: we see
that the direct insurer’s optimal retained proportion

• does not depend on the direct insurer’s initial wealth (this is to be expected
in the presence of the exponential utility function);
• does not depend on the individual claim size distribution;
• is a decreasing function of the direct insurer’s utility function parameter α –

increasing α corresponds to setting a lower retained proportion and passing
more of the risk to the reinsurer;
• is an increasing function of the reinsurer’s utility function parameter η – the

more risk averse the reinsurer is, the higher the reinsurer’s premium will be
and the less reinsurance the direct insurer will purchase – this corresponds
to the direct insurer setting a higher retained proportion and passing less of
the risk to the reinsurer.

Example 5.10 Suppose the annual aggregate claims for a portfolio of risks,
S , is modelled as S ∼ N(μ, σ2) and P denotes the annual premium charged by
the direct insurer to cover the overall risk. Suppose the direct insurer (who has
initial wealth W) effects proportional reinsurance, with retained proportion β
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of each claim (so S I = βS and S R = (1 − β)S ), where β is to be chosen such
that the insurer’s expected utility of wealth at the end of the year is maximised
with respect to the exponential utility function u(x) = − exp(−αx). Suppose
also that the reinsurer sets the premium PR using the expected value principle
with relative security loading ψ, where ψ < ασ2/μ.

From (2.10), S has the moment generating function

MS (t) = E[exp(tS )] = exp(tμ + t2σ2/2).

The direct insurer’s expected utility at the end of the year is given by

E[− exp{−α(W + P − PR − S I)}] = −kE[exp{α(PR + S I)}],
where k = exp{−α(W + P)}. The reinsurer’s premium is

PR = (1 + ψ)E[S R] = (1 + ψ)(1 − β)μ,

and

E[exp(αS I)] = E[exp(αβS )] = MS (αβ) = exp(αβμ + α2β2σ2/2).

Hence the direct insurer’s expected utility at the end of the year can be written
as −k exp(h(β)), where

h(β) = αμ(1 + ψ)(1 − β) + αβμ + α2β2σ2/2,

where k > 0 and does not depend on β. We maximise the expected utility by
finding the value of β which minimises h(β). Differentiating with respect to β
gives

h′(β) = −αμ(1 + ψ) + αμ + α2σ2β = 0⇒ β = ψμ/(ασ2).

Noting that h′′(β) = α2σ2 > 0 confirms that we have a minimum.
The optimal value of the retained proportion β is an increasing function of

ψ – this reflects the fact that, as the price of reinsurance increases, the direct
insurer will purchase less reinsurance and retain more of the risk (higher β).
The optimal β is a decreasing function of α – this reflects the role of α in the
utility function as a measure of the direct insurer’s attitude to risk – a higher
value of α reflects a more risk-averse insurer, one who will therefore pass over
more of the risk – and will purchase more reinsurance and retain less of the risk
(lower β). Note also that increasing the direct insurer’s uncertainty (as mea-
sured by the risk variance σ2) while keeping the expected aggregate claims (μ)
the same produces a lower value of β – other things being equal, the insurer
faced with a more uncertain overall commitment will pass over more of the
risk.
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Suppose instead that the reinsurer sets an “exponential premium” with
parameter η, so that

PR =
1
η

log MS R (η).

The moment generating function of S R is given by

MS R (η) = E[exp(ηS R)] = E[exp(η(1 − β)S )]

= MS [η(1 − β)] = exp{η(1 − β)μ + η2(1 − β)2σ2/2},
so

PR = (1 − β)μ + η(1 − β)2σ2/2.

In this case we have to minimise

h(β) = α(1 − β)μ + αη(1 − β)2σ2/2 + αβμ + α2β2σ2/2.

Taking the derivative, we find

h′(β) = −αμ − αη(1 − β)σ2 + αμ + α2σ2β,

and setting h′(β) = 0 gives αβ = η(1 − β), and so

β =
η

η + α
.

Again we have h′′(β) > 0, confirming a minimum. We note that this is the same
result as we have in (5.26) when S is modelled as a compound Poisson random
variable.

5.7 Optimising reinsurance contracts based on minimising
the variance of aggregate claims

Maximising expected income, profits or wealth, or minimising expected pay-
out, are not necessarily the only desirable outcomes insurers may want to
consider – they may also be interested in reducing the uncertainty inherent in
their situation. Statistically, the insurer may want to consider not only the level,
but also the spread of the insurer’s payout – in other words to consider second
order moments (in addition to first order moments) of the payout distribution.

Many investors would choose to gamble for a probabilistic return X1 dis-
tributed X1 ∼ N(2, 1) rather than for a return X2 distributed X2 ∼ N(3, 4),
despite the fact that the second gamble has a higher expected return. The
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probability that the first gamble produces a positive return is 0.977, whereas
for the second it is only 0.933.

In this section we consider five situations in which our optimality criterion
is expresed in terms of minimising the variance of the aggregate payout of
the insurer (S I) or the reinsurer (S R), or the sum of the variances of the two
payouts, subject to some appropriate constraint.

It is convenient now to consider reinsurance arrangements in which the
amount paid by the direct insurer can be defined directly as a function, say
g(·), of the aggregate claims S , rather than being defined in terms of the indi-
vidual claim amounts. We define two principal types of such a reinsurance
arrangement:

• stop loss reinsurance (with retention level M): S I = g(S ) = min(S ,M) (and
S R = max(0, S − M));
• proportional reinsurance (with retained proportion β): S I = g(S ) = βS (and

S R = (1 − β)S ).

Note that, while “stop loss” reinsurance is not the same as “excess of loss”
reinsurance (which is based on individual claim amounts), proportional rein-
surance as defined above is equivalent at the aggregate claims level to the
proportional reinsurance introduced earlier.

We note that the function g(·) satisfies 0 ≤ g(x) ≤ x for x ≥ 0; in this context
we may refer to it as a reinsurance function. See Case study 3 in Chapter 7 for
other properties of reinsurance functions.

5.7.1 Minimising Var[S I] subject to fixed E[S I]

Suppose the insurer wants to reduce the uncertainty of the aggregate payout
S I . Trivially, the whole risk could be reinsured, but this is not realistic. What
the insurer needs to look for is an arrangement that minimises the uncertainty
in S I , but is subject to some sensible constraint. An appropriate such constraint
is given by setting a value for the expected payout, so let us fix the expected
payout at E[S I] = c for some c (<E[S ]).

We show in the following that, among all reinsurance arrangements with
E[S I] = c, it is stop loss reinsurance, with retention level M such that
E[min(S ,M)] = c, that minimises Var[S I]. To show this, let g(·) be any reinsur-
ance function such that S I = g(S ) and E[g(S )] = c. Recall that 0 ≤ g(x) ≤ x.
We now consider Var[g(S )], given by

Var[g(S )] = E
[
(g(S ) − c)2] = E[(g(S ) − M + M − c)2]

= E
[
(g(S ) − M)2] − (M − c)2.
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This holds for any reinsurance function g such that E[g(S )] = c, and in
particular it holds for the above stop loss reinsurance, so we have

Var
[
min(S ,M)

]
= E

[
(min(S ,M) − M)2] − (M − c)2.

We know that

min(S ,M) − M =

{
S − M if S ≤ M
0 otherwise,

so

E
[
(min(S ,M) − M)2] = E[(S − M)21(S ≤ M)

]
,

where we recall that 1(A) is the indicator function of the event A. If S ≤ M,
then 0 ≤ g(S ) ≤ S ≤ M, so that

(S − M)21(S ≤ M) ≤ (g(S ) − M)21(S ≤ M) ≤ (g(S ) − M)2.

This means that

E
[
(min(S ,M) − M)2] ≤ E[(g(S ) − M)2],

and this implies that

Var[min(S ,M)] = E
[
(min(S ,M) − M)2] − (M − c)2

≤ E[(g(S ) − M)2] − (M − c)2

= Var[g(S )].

Hence Var[S I] is minimised, subject to E[S I] = c, by using stop loss rein-
surance S I = min(S ,M) with retention M determined by E[S I] = c. The
result reflects the fact that the direct insurer will find attractive a reinsurance
arrangement where the direct insurer has limited liability (and no exposure to
the “risky tail” of the aggregate claims distribution).

5.7.2 Minimising Var[S R] subject to fixed Var[S I]

Suppose the reinsurer wants to reduce the uncertainty of the aggregate payout
S R. Trivially, the reinsurer could accept no risk at all, but this scenario is of
no interest here. What the reinsurer needs to look for is an arrangement that
minimises the uncertainty in S R, but is subject to some sensible constraint. An
appropriate such constraint is given by setting a value for the uncertainty faced
by the direct insurer, so let us fix the variance of S I at Var[S I] = c for some
c > 0. Then we have

Var[S R] = Var[S − S I]

= Var[S ] + Var[S I] − 2 Cov[S , S I].
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Now Var[S ] is fixed and Var[S I] is fixed (= c) by our constraint. So Var[S R] is
minimised when Cov[S , S I] is maximised.

The correlation coefficient between S and S I is given by Cov[S , S I] divided
by {Var[S ] Var[S I]}1/2, which is fixed. So Cov[S , S I] is maximised when the
correlation coefficient between S and S I is maximised, which occurs (with
value +1) when S and S I are linearly related in a positive sense, that is when
S I = βS , with β > 0.

Hence Var[S R] is minimised, subject to Var[S I] = c, by using proportional
reinsurance with S I = βS (and where β is given by β = {Var[S I]/Var[S ]}1/2).
The result reflects the fact that the reinsurer will find attractive a reinsurance
arrangement in which the reinsurer does not have sole responsibility for the
“risky tail” of the aggregate claims distribution.

5.7.3 Comparing stop loss and equivalent proportional
reinsurance arrangements

Suppose the direct insurer effects stop loss reinsurance with retention level
M, so that S I = min(S ,M). Consider a proportional arrangement which is
equivalent as regards uncertainty, in the sense that the direct insurer’s payouts
under both arrangements have the same variance. So let S ∗I = βS , where β =
{Var[S I]/Var[S ]}1/2 (>0), giving Var[S ∗I ] = Var[S I].

We introduce a proportional reinsurance arrangement which gives the direct
insurer the same expected payout as the stop loss arrangement above – so let
S †I = γS , where γ = E[S I]/E[S ], 0 ≤ γ ≤ 1, and giving E[S †I ] = E[S I].

In §5.7.1, we found that, for fixed expected payout, the direct insurer
achieves minimum variance for this payout by using stop loss reinsurance. It
follows that Var[S I] ≤ Var[S †I ]. But

Var[S I] = Var[S ∗I ] = β2 Var[S ] and Var[S †I ] = γ2 Var[S ],

from which it follows that β2 Var[S ] ≤ γ2 Var[S ] and hence β ≤ γ. Hence

E[S ∗I ] = βE[S ] ≤ γE[S ] = E[S I].

We conclude that, if we compare stop loss and proportional reinsurance
arrangements which give the direct insurer the same uncertainty (equal vari-
ance of payout), the direct insurer’s expected payout under the proportional
arrangement is less than or equal to that under the stop loss arrangement.

We next consider the above reinsurance contracts with regard to the coef-
ficient of variation of the payouts for the direct insurer and for the reinsurer.
The coefficient of variation (c.v.) of a random variable is the standard devi-
ation expressed as a multiple of the mean – it is a dimensionless measure
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of uncertainty which takes into account the level (the expected value) of the
variable. So for a random variable with mean μ and standard deviation σ, the
c.v. is given by σ/μ. In most circumstances lower values of a c.v. are preferred
to higher values. It is interesting to examine the implications of the results
of §5.7.2 and §5.7.3 for the c.v.s of the payouts by the direct insurer and the
reinsurer under stop loss and proportional contracts.

Define a stop loss arrangement such that S I = min(S ,M) and S R =

max(0, S − M), and a proportional arrangement such that S ∗I = βS and
S ∗R = (1 − β)S , subject to the constraint Var[S I] = Var[S ∗I ].

The result of §5.7.2 implies that Var[S R] ≥ Var[S ∗R]. The result of the current
subsection implies that E[S I] ≥ E[S ∗I ], which in turn implies that E[S R] ≤
E[S ∗R]. We deduce from these results that, for “equivalent” contracts we have
the following.

For the direct insurer

stop loss proportional
SD[S I]
E[S I]

≤ SD[S ∗I ]

E[S ∗I ]
;

for the reinsurer

stop loss proportional
SD[S R]
E[S R]

≥ SD[S ∗R]

E[S ∗R]
.

So, for the direct insurer’s payout, c.v.(stop loss) ≤ c.v.(proportional), and for
the reinsurer’s payout, c.v.(stop loss) ≥ c.v.(proportional). These considera-
tions show that, using the criterion of “low c.v.”, stop loss arrangements are
desirable for the direct insurer, while proportional arrangements are desirable
for the reinsurer.

5.7.4 Minimising Var[S I] + Var[S R]

Consider an aggregate claims variable S with S = S I + S R under a general,
unspecified, reinsurance arrangement. Consider a proportional reinsurance
arrangement with the same variance for the direct insurer’s payout. This
arrangement has S ∗I = βS and S ∗R = (1 − β)S , where β = {Var[S I]/Var[S ]}1/2,
giving Var[S ∗I ] = Var[S I].

For the general arrangement we have

Var[S I] + Var[S R] = Var[S I] + Var[S − S I]

= Var[S I] + Var[S ] + Var[S I] − 2 Cov[S , S I].
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Similarly, for the proportional arrangement we have

Var[S ∗I ] + Var[S ∗R] = Var[S ∗I ] + Var[S − S ∗I ]

= Var[S ∗I ] + Var[S ] + Var[S ∗I ] − 2 Cov[S , S ∗I ].

Noting Var[S ∗I ] = Var[S I] and the relationship between the correlation coef-
ficient (Corr) and the covariance, Corr[X, Y] = Cov[X,Y]/{Var[X] Var[Y]}1/2,
we have

Var[S ∗I ] + Var[S ∗R] − {Var[S I] + Var[S R]}
= 2 Cov[S , S I] − 2 Cov[S , S ∗I ]

= 2 {Var[S ] Var[S I]}1/2{Corr[S , S I] − Corr[S , S ∗I ]}.
But we know that Corr[S , S I] ≤ 1 and Corr[S , S ∗I ] = 1, so that Corr[S , S I] −
Corr[S , S ∗I ] ≤ 0. This gives

Var[S ∗I ] + Var[S ∗R] ≤ Var[S I] + Var[S R].

Hence the sum of the variances of the payouts by both parties is minimised by
using proportional reinsurance.

Continuing, we note that Var[βS ] + Var[(1 − β)S ] = (2β2 − 2β + 1) Var[S ],
which is minimised by setting β = 0.5. Hence the sum of the variances of
the payouts by both parties is minimised by using proportional reinsurance
with retained proportion 0.5, that is when the aggregate risk is shared equally
between the direct insurer and the reinsurer.

5.7.5 Minimising the sum of variances when two independent
risks are shared between two insurers

Consider two insurance companies A and B which are exposed to aggregate
claims S A and S B, respectively, where S A and S B are independent random
variables. Let us suppose that the two companies share their risks with each
other as follows:

company A retains g1(S A) and reinsures S A − g1(S A) with company B;
company B retains g2(S B) and reinsures S B − g2(S B) with company A,

where gi(·), i = 1, 2, are reinsurance functions (so they satisfy 0 ≤ gi(x) ≤ x,
i = 1, 2). Then the total payouts for company A and company B are TA and TB,
respectively, where

TA = g1(S A) + {S B − g2(S B)} and TB = g2(S B) + {S A − g1(S A)}.
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Hence, since S A and S B are independent, we have

Var[TA] = Var[g1(S A)] + Var[S B − g2(S B)]

and

Var[TB] = Var[g2(S B)] + Var[S A − g1(S A)].

Suppose the function g1(·) does not define a proportional reinsurance arrange-
ment. If we now choose β1 = {Var[g1(S A)]/Var[S A]}1/2 and define g∗1 by
g∗1(S A) = β1S A, then g∗1(·) does define a proportional arrangement and we have
Var[g∗1(S A)] = Var[g1(S A)]. We know that the variance of the reinsurance pay-
out, subject to fixed variance for the direct insurance payout, is minimised by
proportional reinsurance (see §5.7.2), hence

Var[S A − g∗1(S A)] ≤ Var[S A − g1(S A)].

A similar argument holds for g2(·). Hence Var[TA] + Var[TB] is minimised by
both companies using proportional reinsurance.

In Exercise 5.31 you are asked to show that the optimal arrangement is in
fact that in which each company shares its risk equally with the other.

Example 5.11 Suppose an aggregate claims variable S is distributed as
S ∼ CP(6, FX), where the individual claim amount is fixed at X = £1000.
We consider four cases, which will illustrate the results of §5.7.1–§5.7.4. Note
that E[X] = 1000, E[X2] = 106, E[S ] = 6000 and Var[S ] = 6 × 106.

Case 1 Suppose the direct insurer requires a fixed expected payout and, sub-
ject to this, wants to minimise the variance of the payout, Var[S I]. We know
from the result in §5.7.1 that a stop loss reinsurance contract must be arranged,
with retention level M set to produce the required E[S I].

The number of claims, N, has distribution N ∼ Poi(6), so that

pk = Pr(N = k) = e−66k/k!, k = 0, 1, 2, . . . .

We note that N = 0 implies that S = S I = S R = 0. If N = r, then S = 1000r,
r = 1, 2, . . ., and the situation can be displayed as in Table 5.4. Suppose we
fix M between 1000r and 1000(r + 1). The direct insurer’s expected payout is
given by

E[S I] =
r∑

k=0

1000k × pk + M

⎛⎜⎜⎜⎜⎜⎝1 − r∑
k=0

pk

⎞⎟⎟⎟⎟⎟⎠ .
For example, with r = 3,

E[S I] = 1000p1 + 2000p2 + 3000p3 + M(1 − p0 − p1 − p2 − p3),
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Table 5.4. Stop loss arrangement with claim size fixed at £1000 in
Example 5.11

N Probability S S I S R

0 p0 0 0 0
1 p1 1000 1000 0
2 p2 2000 2000 0
· · · · ·
r pr 1000r 1000r 0
r + 1 pr+1 1000(r + 1) M 1000(r + 1) − M
r + 2 pr+2 1000(r + 2) M 1000(r + 2) − M
· · · · ·

Table 5.5. Stop loss arrangement of Table 5.4 for which the direct
insurer’s payout has minimum variance, subject to having fixed expected

value in Example 5.11

N Probability S S I S R

0 p0 0 0 0
1 p1 1000 1000 0
2 p2 2000 2000 0
3 p3 3000 3000 0
4 p4 4000 3685 315 (= 4000 − 3685)
5 p5 5000 3685 1315 (= 5000 − 3685)
6 p6 6000 3685 2315 (= 6000 − 3685)
· · · · ·

which gives

E[S I] = 150 000e−6 + M(1 − 61e−6) = 371.81 + 0.84880M.

For 3000 ≤ M ≤ 4000, this gives 2918 ≤ E[S I] ≤ 3767.
Suppose then the direct insurer requires E[S I] = 3500. We achieve this by

taking r = 3 and solving 371.81+0.84880M = 3500, which gives M = 3685.4.
We take M = 3685, so

S I = min(S , 3685) and S R = max(0, S − 3685).

So the direct insurer pays a maximum of the first three claims in full and
£685 towards the fourth claim. The situation is now as shown in Table 5.5.
Continuing, we find

E[S 2
I ] = 10002 p1 + 20002 p2 + 30002 p3 + 36852 Pr(four or more claims)

= 12.52245 × 106,
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and so

Var[S I] = 12.52245 × 106 − 35002 = 27.25 × 104.

The mean and variance of the reinsurer’s payout are given by

E[S R] = 6000 − 3500 = 2500

and

Var[S R] =
∞∑

n=4

(1000n − 3685)2 × pn − 25002,

which evaluates to 480.0×104. The standard deviation of the reinsurer’s payout
(£2191) is more than four times as high as that of the direct insurer’s payout
(£522). Note that (to four significant figures) Var[S I]+Var[S R] = 507.2× 104.

Case 2 Consider now the case in which the direct insurer effects propor-
tional reinsurance with retained proportion chosen so that the direct insurer’s
expected payout is the same as in Case 1, namely £3500. Let S (2)

I = βS ,
where β satisfies βE[S ] = 3500. Then β = 7/12, so that S (2)

I = (7/12)S and
S (2)

R = (5/12)S are the direct insurer’s and reinsurer’s payouts, respectively.
The mean and variance of the direct insurer’s payout are given by

E[S (2)
I ] = 3500 and Var[S (2)

I ] = (7/12)2 Var[S ] = 204.17 × 104.

This greatly exceeds Var[S I] in Case 1. The mean and variance of the
reinsurer’s payout are given by

E[S (2)
R ] = 2500 and Var[S (2)

R ] = (5/12)2 Var[S ] = 104.17 × 104,

which is very much less than Var[S R] in Case 1. Note that Var[S (2)
I ] +

Var[S (2)
R ] = 308.3 × 104.

Case 3 Consider now the case in which the direct insurer effects proportional
reinsurance with retained proportion 0.5. Let S (3)

I = S (3)
R = 0.5S denote the

direct insurer’s and reinsurer’s payouts, respectively. The mean and variance
of the direct insurer’s payout are given by

E[S (3)
I ] = 0.5E[S ] = 3000 and Var[S (3)

I ] = 0.52 Var[S ] = 150 × 104,

which again greatly exceeds Var[S I] in Case 1. Similarly, E[S (3)
R ] = 3000 and

Var[S (3)
R ] = 150 × 104, which again is very much less than Var[S R] in Case 1.

Note that Var[S (3)
I ] + Var[S (3)

R ] = 300 × 104.
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Table 5.6. Summary of results for Cases 1–4 in Example 5.11

E[S I] Var[S I] E[S R] Var[S R] Var[S I] + Var[S R]
×104 ×104 ×104

Stop loss 3500 27.25 2500 480.0 507.2
(M = 3685)
Proportional 3500 204.2 2500 104.2 308.3
(β = 7/12)
Proportional 3000 150 3000 150 300
(β = 0.5)
Proportional 1279 27.25 4721 371.5 398.8
(β = 0.2131)

Case 4 Consider now a further case, with direct insurer’s and reinsurer’s
payouts denoted S (4)

I and S (4)
R , respectively, for which Var[S (4)

I ] = Var[S I] =
27.25 × 104 as in Case 1, and with Var[S (4)

R ] minimised. The result in §5.7.2
informs us that we need a proportional arrangement, so let S (4)

I = βS , with

β =

√
Var[S ]

Var[S (4)
I ]
= 0.2131.

The mean of the direct insurer’s payout is given by E[S (4)
I ] = β×6000 = 1279.

The mean and variance of the reinsurer’s payout are given by

E[S (4)
R ] =(1 − β) × 6000 = 4721 and

Var[S (4)
R ] =(1 − β)2 × 6 × 106 = 371.5 × 104,

which is less than the value of Var[S R] in Case 1. Note that (to four significant
figures) Var[S (4)

I ] + Var[S (4)
R ] = 398.8 × 104.

The results of all four cases in this example are summarised in Table 5.6.

Example 5.12 Consider two insurance companies, A and B. Company A
issues one-year term assurances to a large group of independent lives aged
30 – the sum assured in each case is £600 000 and the number of deaths has a
Poi(5) distribution. Company B issues one-year term assurances to a different
and independent large group of independent lives aged 40 – the sum assured in
each case is £800 000 and the number of deaths has a Poi(7) distribution. Each
company reinsures with the other. We consider three cases below which will
illustrate the result of §5.7.5.

Let SA and SB denote the aggregate claims for companies A and B respec-
tively, in units of £100 000, so that SA ∼ CP(5, FXA), where XA = 6 and
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SB ∼ CP(7, FXB), where XB = 8. The means and variances of SA and SB are
given by

E[SA] = 5 × 6 = 30, Var[SA] = 5 × 62 = 180,

and

E[SB] = 7 × 8 = 56, Var[SB] = 7 × 82 = 448.

Case 1 Suppose company A retains the first 36 units of its claims (= £3.6
million), that is it covers the first six claims, while company B retains the first
56 units of its claims (= £5.6 million), that is it covers the first seven claims.
Let SAI and SAR = SA − SAI denote the retained and reinsured amounts for
company A; similarly for SBI and SBR. The calculations below were carried
out first “by hand” and were then verified using R.

For company A, the number of claims is NA ∼ Poi(5). The mean and
variance of SAI are given by

E[SAI] =
5∑

n=0

6n × Pr(NA = n) + 36 Pr(NA ≥ 6) = 27.04

and

Var[SAI] =
5∑

n=0

(6n)2 × Pr(NA = n) + 362 Pr(NA ≥ 6) − E2[SAI] = 84.35.

The mean and variance of SAR are given by

E[SAR] = E[SA − SAI] = 30 − 27.04 = 2.96

and

Var[SAR] = Var[SA − SAI] =
∞∑

n=7

(6n − 36)2 Pr(NA = n) − E2[SAR] = 42.61.

For company B, the number of claims is NB ∼ Poi(7). The mean and
variance of SBI are given by

E[SBI] =
6∑

n=0

8n × Pr(NB = n) + 56 Pr(NB ≥ 7) = 47.66

and

Var[SBI] =
6∑

n=0

(8n)2 × Pr(NB = n) + 562 Pr(NB ≥ 7) − E2[SBI] = 131.85.

The mean and variance of SBR are given by

E[SBR] = E[SB − SBI] = 56 − 47.66 = 8.34
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Table 5.7. Summary of each company’s payouts
in Case 1 in Example 5.12

Expected payout

Company A 27.04 + 8.34 = 35.38 (= £3 538 000)
Company B 47.66 + 2.96 = 50.62 (= £5 062 000)

Variance of payout

Company A 84.35 + 176.90 = 261.25
Company B 131.85 + 42.61 = 174.46

and

Var[SBR] = Var[SB − SBI] =
∞∑

n=8

(8n − 56)2 Pr(NB = n) − E2[SBR] = 176.90.

A summary of each company’s payouts is presented in Table 5.7. The sum of
the variances of the two payouts is 435.71.

Case 2 Suppose instead that each company retains 60% of its aggregate
claims. Let SA(2)

I and SA(2)
R denote the retained and reinsured amounts,

respectively, for company A; similarly for SB(2)
I and SB(2)

R . Then we have

SA(2)
I = 0.6SA, SA(2)

R = SA − SA(2)
I = 0.4SA

and

SB(2)
I = 0.6SB, SB(2)

R = SB − SB(2)
I = 0.4SB.

For company A, the means and variances are

E[SA(2)
I ] = 0.6 × 30 = 18, Var[SA(2)

I ] = 0.62 × 180 = 64.8

and

E[SA(2)
R ] = 0.4 × 30 = 12, Var[SA(2)

R ] = 0.42 × 180 = 28.8.

For company B, the means and variances are

E[SB(2)
I ] = 0.6 × 56 = 33.6, Var[SB(2)

I ] = 0.62 × 448 = 161.28

and

E[SB(2)
R ] = 0.4 × 56 = 22.4, Var[SB(2)

R ] = 0.42 × 448 = 71.68.

A summary of each company’s payouts is presented in Table 5.8. The sum of
the variances of the two payouts is 326.56.
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Table 5.8. Summary of each company’s payouts
in Case 2 in Example 5.12

Expected payout

Company A 18 + 22.4 = 40.4 (= £4 040 000)
Company B 33.6 + 12 = 45.6 (= £4 560 000)

Variance of payout

Company A 64.8 + 71.68 = 136.48
Company B 161.28 + 28.8 = 190.08

Case 3 Suppose now that each company retains 50% of its aggregate claims.
Let SA(3)

I and SA(3)
R denote the retained and reinsured amounts, respectively,

for company A; similarly for SB(3)
I and SB(3)

R . Then we have

SA(3)
I = SA(3)

R = 0.5SA, SB(3)
I = SB(3)

R = 0.5SB.

For company A, the means and variances are

E[SA(3)
I ] = 0.5 × 30 = 15, Var[SA(3)

I ] = 0.52 × 180 = 45

and

E[SA(3)
R ] = 15, Var[SA(3)

R ] = 45.

For company B, the means and variances are

E[SB(3)
I ] = 0.5 × 56 = 28, Var[SB(3)

I ] = 0.52 × 448 = 112

and

E[SB(3)
R ] = 28, Var[SB(3)

R ] = 112.

For each company, the expected payout is 15 + 28 = 43 (= £4 300 000) and the
variance of the payout is 45 + 112 = 157. The sum of the variances of the two
payouts is 314.

We summarise the results of all three cases in Table 5.9. The rows indicated
A + B give the sums of the means (= 86) and the sums of the variances of
the payments by the two companies. We note that the sum of the variances of
the payouts is lower for the proportional reinsurance arrangements than for the
stop loss arrangement (as indicated by the result in §5.7.5). The sum of the
variances is lowest for the “equal share of the risk” proportional arrangement
(as indicated by the result of Exercise 5.31).
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Table 5.9. Summary of each company’s payouts for Cases
1–3 in Example 5.12

Arrangement Company Mean Variance

No reinsurance A 30.00 180.00
B 56.00 448.00

A + B 86.00 628.00
Stop loss (A retains 36, B 56) A 35.38 261.25

B 50.62 174.46
A + B 86.00 435.71

Proportional (each retains 60%) A 40.40 136.48
B 45.60 190.08

A + B 86.00 326.56
Proportional (each retains 50%) A 43.00 157.00

B 43.00 157.00
A + B 86.00 314.00

5.8 Optimising reinsurance contracts for a group of
independent risks based on minimising the variance of

the direct insurer’s net profit – finding the optimal
relative retentions

In this final section on reinsurance contracts, we consider a portfolio consisting
of n independent risks. The direct insurer will arrange a reinsurance contract
(of the same type, excess of loss or proportional) for each risk, and the prob-
lem is to decide the relative retentions that should be used for the risks in the
portfolio.

The criterion we will use is that of minimising the variance of the direct
insurer’s net profit after reinsurance costs, which we will assume are calculated
on the basis of the expected value principle (that is, with a simple security
loading being applied to the reinsurer’s expected payout for each risk). The
minimisation of variance will be performed subject to a suitable constraint,
namely that the expected value of the direct insurer’s net profit is fixed, say at
some value c.

The results which follow are due to the influential Italian probabilist and
statistician Bruno de Finetti (1906–1985).

5.8.1 Optimal relative retentions in the case of excess of loss
reinsurance

Suppose we have n independent risks, with aggregate claims for risk i being
denoted S i, i = 1, . . . , n. For this derivation, we assume that each S i has a
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compound Poisson distribution, so let S i ∼ CP(λi, FXi ), i = 1, . . . , n, where Xi

is the claim amount variable for risk i. Let Xi have probability density function
fi and distribution function Fi, where Fi(x) = 0 for x ≤ 0 and Fi(x) < 1 for all
finite x (that is, the claim amount is not bounded above).

For each risk i, assume there is an excess of loss reinsurance arrangement
with retention Mi, i = 1, . . . , n. For risk i, let the premium charged by the direct
insurer to cover the risk, the direct insurer’s payout, the reinsurer’s payout and
the reinsurer’s security loading be denoted Pi, S I

i , S
R
i and ψi respectively. Let

M = (M1, . . . ,Mn).
The reinsurer’s premium for risk i is given by

(1 + ψi) × E[S R
i ] = (1 + ψi) × λiE[reinsurer’s payout on claim Xi]

= (1 + ψi)λi

∫ ∞

Mi

(x − Mi) fi(x)dx.

The direct insurer’s expected payout on risk i is

E[S I
i ] = λiE[direct insurer’s payout on claim Xi]

= λi

(∫ Mi

0
x fi(x)dx + Mi (1 − Fi(Mi))

)
.

The direct insurer’s net profit, say IP(M), is given by

IP(M) =
n∑

i=1

{
Pi − (1 + ψi)E[S R

i ] − S I
i

}
.

We want to minimise Var[IP(M)], subject to the constraint E[IP(M)] = c.
First, we note expressions for the required quantities:

E[IP(M)] =
n∑

i=1

{
Pi − (1 + ψi)λi

∫ ∞

Mi

(x − Mi) fi(x)dx

− λi

(∫ Mi

0
x fi(x)dx + Mi (1 − Fi(Mi))

)}
and

Var[IP(M)] =
n∑

i=1

Var[S I
i ]

=

n∑
i=1

λiE[(direct insurer’s payout on claim Xi)
2]

=

n∑
i=1

λi

{∫ Mi

0
x2 fi(x)dx + M2

i (1 − Fi(Mi))

}
.
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We use the method of Lagrange multipliers to perform the constrained
optimisation. Let

h(M) = Var[IP(M)] − γ {E[IP(M)] − c
}
.

We set ∂h/∂Mi = 0, i = 1, . . . , n. The derivatives are given by

∂

∂Mi
Var[IP(M)] = λi

[
M2

i fi(Mi) + 2Mi(1 − Fi(Mi)) − M2
i fi(Mi)

]
= 2λiMi(1 − Fi(Mi))

and
∂

∂Mi
E[IP(M)] = ψiλi(1 − Fi(Mi)).

These expressions yield

∂h
∂Mi

= 2λiMi(1 − Fi(Mi)) − γψiλi(1 − Fi(Mi)),

and hence

∂h
∂Mi

= 0⇔ 2Mi(1 − Fi(Mi)) = γψi(1 − Fi(Mi)).

The claim amount is unbounded, which means that 1 − Fi(Mi) � 0. Hence

∂h
∂Mi

= 0⇔ Mi = γψi/2 = θψi for some θ (= γ/2).

It is easy to show that ∂2h/∂M2
i > 0, i = 1, . . . , n, at the turning point; for

a function of the form of h(·), this is sufficient to confirm that we have a
minimum. Hence the optimal relative retentions are given by

Mi = θψi , i = 1, . . . , n , for some θ. (5.27)

The result is very simple indeed – the relative retentions for the risks are sim-
ply proportional to the reinsurer’s security loadings and do not depend on the Pi

or the distributions of the S i. The actual values of the Mi are obtained from the
constraint E[IP(M)] = c, using a specified value for c. We note from the result
Mi ∝ ψi (from (5.27)) that higher reinsurance costs (higher ψi) correspond to
higher retentions for the direct insurer.

It may be convenient to use an alternative form for IP(M), which comes
from writing S I

i = S i − S R
i and which gives

IP(M) =
n∑

i=1

{
Pi − (1 + ψi)E[S R

i ] − (S i − S R
i )
}
.
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From this we get

E[IP(M)] =
n∑

i=1

{
Pi − E[S i] − ψiE[S R

i ]
}
. (5.28)

It may be easier to calculate the value of this expression, which involves E[S R
i ],

than the original expression, which also involves E[S I
i ].

We note from this expression that if the direct insurer wants a higher
expected profit, this corresponds to having a lower E[S R

i ] and hence a higher
E[S I

i ], which in turn corresponds to higher retentions, exposure to more risk
and reduced security.

Example 5.13 Consider three risks:

S 1 ∼ CP(100, FX1 ), S 2 ∼ CP(200, FX2 ), S 3 ∼ CP(100, FX3 ),

where X1, X2 and X3 have exponential distributions with means 1, 2 and 3,
respectively. The direct insurers premium is calculated using a 20% security
loading on the expected aggregate claim amount, while the reinsurer’s premi-
ums are calculated using loadings of 30%, 40% and 50%, respectively, on the
reinsurer’s expected payouts for the three risks.

We want to arrange excess of loss reinsurance such that Var[IP(M)] is min-
imised, subject to the requirement that the direct insurer’s expected profit be
40. We find immediately from the above result that the optimal retentions
satisfy M1 = 0.3θ, M2 = 0.4θ and M3 = 0.5θ, for some θ.

Now (see Example 5.3) for X ∼ Exp(1/μ) (with mean μ), and with retention
M, we have E[Z∗] = μ, Pr(X > M) = e−M/μ and E[Z] = μe−M/μ. Here we have
E[S 1] = 100, E[S 2] = 400 and E[S 3] = 300, and the direct insurer’s premiums
are P1 = 120, P2 = 480 and P3 = 360. We also have

E[S R
1 ] = 100 × 1 × e−0.3θ/1 = 100e−0.3θ,

E[S R
2 ] = 200 × 2e−0.4θ/2 = 400e−θ/5,

E[S R
3 ] = 100 × 3e−0.5θ/3 = 300e−θ/6.

Hence, using (5.28) we have

E[IP(M)] = (120 − 100 − 0.3 × 100e−0.3θ)

+ (480 − 400 − 0.4 × 400e−0.2θ)

+ (360 − 300 − 0.5 × 300e−θ/6)

= 160 − 30e−0.3θ − 160e−0.2θ − 150e−θ/6.

Setting this equal to 40, and solving numerically (by simple computer eval-
uation and search, or the use of a mathematics package, or a formal iterative
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solving technique), we find θ = 5.455, from which we find the optimal
retention levels to be M1 = 1.64, M2 = 2.18 and M3 = 2.73.

Suppose the direct insurer had required an expected profit of 30 instead of
40. We find θ = 5.030, and the optimal retention levels are lower, at M1 = 1.51,
M2 = 2.01 and M3 = 2.52 (lower profit corresponds to reduced exposure to
risk and greater security).

5.8.2 Optimal relative retentions in the case of
proportional reinsurance

Suppose we have n independent risks, with aggregate claims for risk i being
denoted S i, i = 1, . . . , n. Suppose that for each i there is a proportional rein-
surance arrangement in place. For risk i, let the premium charged by the direct
insurer to cover the risk, the retention level (direct insurer’s retained propor-
tion), the direct insurer’s payout, the reinsurer’s payout and the reinsurer’s
security loading be denoted Pi, βi, S I

i , S
R
i and ψi, respectively. Thus we have

S I
i = βiS i and S R

i = (1 − βi)S i.
The reinsurer’s premium for risk i is

(1 + ψi) × E[S R
i ] = (1 + ψi)(1 − βi)E[S i].

The direct insurer’s expected payout on risk i is E[S I
i ] = βiE[S i]. Write β for

(β1, . . . , βn). Then the direct insurer’s net profit, IP(β) say, is given by

IP(β) =
n∑

i=1

{
Pi − (1 + ψi)(1 − βi)E[S i] − S I

i

}
.

We want to minimise Var[IP(β)] subject to the constraint E[IP(β)] = c.
First, we note expressions for the required quantities:

E[IP(β)] =
n∑

i=1

{Pi − (1 + ψi)(1 − βi)E[S i] − βiE[S i]}

=

n∑
i=1

{Pi − (1 + ψi − ψiβi)E[S i]}

and

Var[IP(β)] =
n∑

i=1

Var[S I
i ] =

n∑
i=1

β2
i Var[S i].

We again use the method of Lagrange multipliers to perform the constrained
optimisation. Let

h(β) = Var[IP(β)] − γ
{
E[IP(β)] − c

}
.
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We set ∂h/∂βi = 0, i = 1, . . . , n. The derivatives are given by

∂h
∂βi
= 2βi Var[S i] − γψiE[S i],

and hence

∂h
∂βi
= 0⇔ 2βi Var[S i] = γψiE[S i]⇔ βi =

1
2
γψi
E[S i]

Var[S i]
.

Hence the optimal relative retentions are given by

βi = θψi
E[S i]

Var[S i]
, i = 1, . . . , n , for some θ. (5.29)

Clearly ∂2h/∂β2
i > 0, i = 1, . . . , n; this is sufficient for a function of the form

of h(·) to confirm that we have a minimum. The actual values of the βi are
obtained from the constraint E[IP(β)] = c, using a specified value for c.

The relative retentions for the risks are proportional to the reinsurer’s secu-
rity loadings and do not depend on the Pi. We note from (5.29) that higher
reinsurance costs (higher ψi, higher ψiE[S i]) correspond to higher retentions
for the direct insurer, while higher uncertainty in the aggregate claims (higher
Var[S i]) corresponds to lower retentions. We note also (from the expression for
E[IP(β)] above) that if the direct insurer wants a higher expected profit, this
corresponds to having higher retentions, and thus exposure to more risk and
reduced security.

Note that it is possible that this approach to optimising the proportions to be
retained by the direct insurer may result in one or more of them turning out to
exceed 1. If we do get β1 > 1 (say) then what we would do in practice is set
β1 = 1 and use this value in the calculations based on E[IP(β)] = c.

Example 5.14 Consider three risks with the same means and variances as
the risks in Example 5.13, so E[S 1] = 100, Var[S 1] = 200, E[S 2] = 400,
Var[S 2] = 1600, E[S 3] = 300 and Var[S 3] = 1800.

Suppose, also as in Example 5.13, that the direct insurers premium is cal-
culated using a 20% security loading on the expected aggregate claim amount,
while the reinsurer’s premiums are calculated using loadings of 30%, 40% and
50%, respectively on the reinsurer’s expected payouts for the three risks.

We want to arrange proportional reinsurance using the above criterion,
and also requiring that the direct insurer’s expected profit is 30. We find
immediately from (5.29) that the optimal retentions satisfy

β1 = 0.3 × (100/200)θ = 3θ/20,

β2 = 0.4 × (400/1600)θ = θ/10,

β3 = 0.5 × (300/1800)θ = θ/12.
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Then

E[IP(β)] = 120 − (1.3 − 0.3 × 3θ/20) × 100

+ 480 − (1.4 − 0.4 × θ/10) × 400

+ 360 − (1.5 − 0.5 × θ/12) × 300

= 33θ − 180.

Setting this equal to 30, we find θ = 70/11, from which we find the optimal
retentions to be β1 = 0.955, β2 = 0.636 and β3 = 0.530.

Suppose the direct insurer had required an expected profit of 40 instead
of 30. We find the optimal retentions are higher, at β1 = 1 (the insurer now
retains 100% of risk 1), β2 = 0.667 and β3 = 0.556 (higher expected profit
corresponds to higher exposure to risk and reduced security).

Exercises

5.1 Claim amounts from a general insurance portfolio are lognormally dis-
tributed with mean £1000 and standard deviation £2000. Excess of
loss reinsurance with retention level £1750 is in place. Calculate the
probability that the reinsurer is involved in a claim.

5.2 Claim amounts have a Pa(5, 4) distribution, and excess of loss reinsur-
ance with retention level M is in place. Calculate the value of M such
that the mean amounts paid by the direct insurer and the reinsurer on a
claim are equal.

5.3 Suppose claim amounts are distributed as X ∼ Exp(1/μ) and an excess
of loss contract with retention level M is in place. Let Y and Z be the
amounts paid out on a claim by the direct insurer and the reinsurer,
respectively. Let p = Pr(X > M) = e−M/μ.
(a) Show that the moment generating function MY (t) of Y is given by

MY (t) =
1

1 − μt
{1 − μpteMt},

and hence, or otherwise, show that E[Y2] is given by

E[Y2] = 2μ{μ(1 − p) − Mp}.
(b) Show that E[Z2] is given by

E[Z2] = 2μ2 p.
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5.4 Suppose claim amounts are distributed as X ∼ Pa(α, λ) and an excess
of loss contract with retention level M is in place. Let Y and Z be the
amounts paid out on a claim by the direct insurer and the reinsurer,
respectively.

Show that E[Y2] and E[Z2] are given by

E[Y2] =
2λ

(α − 1)(α − 2)

[
λ(1 − ηα−2) − (α − 2)Mηα−1

]
and

E[Z2] =
2λ2ηα−2

(α − 1)(α − 2)
,

where η = λ/(λ + M).
5.5 The claim amounts arising from a risk have a Pa(α, λ) distribution, where

the value of λ is known. The direct insurer has arranged an excess of
loss reinsurance contract with retention level M. In the past year, there
were a total of m reinsurance claims, that is there were m claims which
exceeded M and hence involved the reinsurer. The amounts of these
claims are known to the reinsurer – suppose the amounts paid by the
reinsurer on these claims are r1, r2, . . . , rm, and this is all the information
the reinsurer has.
(a) Show that the maximum likelihood estimator of α, based on the

information available to the reinsurer, is given by

α̂ = m

⎛⎜⎜⎜⎜⎜⎝ m∑
i=1

log(λ + M + ri) − m log(λ + M)

⎞⎟⎟⎟⎟⎟⎠−1

.

(b) In a particular situation, with λ = 5000 and M = £6000, a total of
176 claims exceeded £6000 last year, and for these claims

176∑
i=1

log(ri + 11 000) = 1693.3,

where the {ri} are defined as above.
(1) Show that the maximum likelihood estimate of α is 3.171.
(2) Using the fitted model, calculate the probability that a claim will

involve the reinsurer, show that the mean amount of reinsur-
ance claims is £11 067, and hence, or otherwise, find the mean
amount of claims which do not involve the reinsurer.

5.6 An insurer covers an individual loss X with excess of loss reinsurance in
place with retention level M. The insurer pays Y and the reinsurer pays
Z = X − Y . Show that
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YZ =

{
0 if X ≤ M
M(X − M) if X > M.

Hence show that E[YZ] = ME[Z] and Cov[Y, Z] ≥ 0. Deduce that

Var[X] ≥ Var[Y] + Var[Z].

5.7 Let X be a random variable with a lognormal distribution with parame-
ters μ and σ and probability density function f (x). Verify the following
result, which is needed for some reinsurance calculations: for any real
number c > 0 and k = 0, 1, 2, . . .∫ c

0
xk f (x)dx = exp

(
kμ +

k2σ2

2

)
Φ

(
log c − μ − kσ2

σ

)
.

5.8 The aggregate claims for a risk S , in units of £1000, has a compound
Poisson distribution S ∼ CP(100, FX), where X ∼ Pa(5, 4). The direct
insurer has an excess of loss reinsurance contract in place, with reten-
tion level M, where M is the upper 5% point of the individual claims
distribution.
(a) Show that M = £3282 and specify the distribution of the amount

paid by the reinsurer on a reinsurance claim (that is, on a claim which
involves the reinsurer).

(b) Specify the distribution of S R, the aggregate annual claim amount
paid by the reinsurer, and find the mean and standard deviation of S R.

(c) Find the mean of S I , the aggregate annual claim amount paid by the
direct insurer.

5.9 Suppose aggregate claims S ∼ CP(100, FX), where the claim amount
X is measured in units of £1000 and modelled as a Pa(6, 10) random
variable. The direct insurer is considering entering into one of two dif-
ferent types of reinsurance contract – excess of loss with retention M,
and proportional with retained proportion β. The direct insurer wants an
expected payout of £1500 on a claim. The reinsurer’s premium is to be
chosen such that there is a probability of 0.95 that the reinsurer makes a
profit on the business, and you may assume that the reinsurer’s aggregate
payout can be approximated by a normal distribution.
(a) Show that β = 0.75 and M = 3.195.
(b) Calculate the reinsurer’s premium for each arrangement; comment

on the answers.
5.10 The distribution of total annual claims S on a general insurance portfolio

is to be modelled as a compound Poisson distribution S ∼ CP(1000, FX).
The direct insurer has an excess of loss reinsurance contract in place,
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with retention level £4000 on each claim. Consider the following models
(all with the same mean) for a loss X (in units of £1000).
Model 1: X has an exponential distribution with mean 2.
Model 2: X has a Pareto distribution with parameters α = 4 and λ = 6.
Model 3: X has a lognormal distributon with parameters μ = 0.2877 and
σ = 0.9005.

(a) State, or derive, the distribution of Z∗ ≡ X−4 | X > 4 using Model 1.
(b) State, or derive, the distribution of Z∗ ≡ X−4 | X > 4 using Model 2.
(c) Calculate the values of the mean and standard deviation of the total

annual claims paid by the reinsurer under each of the three models.
(Note: the calculations for Model 3 require the result of Exercise 5.7
above and are the most onerous.)

5.11 Consider the aggregate claims model S ∼ CP(λ, FX), where X = Y + Z
and S = S I + S R, in the usual notation for the amounts paid out by
the direct insurer and the reinsurer, respectively, in the presence of a
reinsurance contract. In particular, suppose there is an excess of loss
reinsurance contract in place with retention level M on each claim. Let
p = Pr(X > M), and let Z∗ denote the amount paid by the reinsurer on a
reinsurance claim.

From (5.8) we know that E[Z∗] = (1/p)E[Z]. Show that

Var[Z∗] =
1
p

Var[Z] − 1 − p

p2
{E[Z]}2.

5.12 Suppose the annual aggregate claims S from a portfolio of risks has a
compound Poisson distribution, with Poisson parameter 100. Each claim
which arises comes from one of two separate sub-portfolios and is of
one of two types: the amounts of type 1 claims have an exponential
distribution with mean 1, while those of type 2 claims have an expo-
nential distribution with mean 2, where 60% of claims are of type 1. Let
X represent a randomly selected claim, so we have S ∼ CP(100, FX).

Excess of loss reinsurance is in place, with retention level 1.8 on each
claim. Let X = Y + Z and S = S I + S R in the usual notaion.
(a) By using conditional expectation arguments with X, Y and Z, verify

the following values:
E[X] = 1.4 E[X2] = 4.4,
E[S ] = 140 Var[S ] = 440,
E[Y] = 0.9756 E[Y2] = 1.3727,
E[Z] = 0.4244 E[Z2] = 1.4994,
E[S I] = 97.56 Var[S I] = 137.27,
E[S R] = 42.44 Var[S R] = 149.94.
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(b) Suppose the heterogeneity of the portfolio is not recognised, and
the distribution of claim amounts is represented by the single vari-
able X which is exponentially distributed with mean 1.4. Recalculate
all the moments in part (a) and comment on the consequences for
the reinsurer of being unaware of the heterogeneity present in the
system.

5.13 Consider a portfolio of private motor policies. In the event of an accident
or other incident covered by the policy, the loss (cost of repairs and/or
replacement of parts or the whole vehicle) has a Pa(α, λ) distribution. A
deductible (excess) of £150 is applied to all losses – no claim is made
if the loss is less than £150; otherwise a claim is always made (for the
loss less the deductible). A sample of 100 claims has mean £1210 and
standard deviation £1790.
(a) Calculate method of moments estimates of α and λ.
(b) Estimate the proportion of losses that do not lead to claims.
(c) Excess of loss insurance is to be arranged with another company so

that the direct insurer’s mean payout on claims is reduced to £1000.
Find the retention limit the direct insurer must set on individual
claims to achieve the required reduction in the direct insurer’s mean
payout.

5.14 The annual aggregate claims S from a risk has a compound Poisson dis-
tribution S ∼ CP(200, FX), where the individual claim X is modelled
crudely as taking the value £1000 or £5000, with probabilities 0.75 and
0.25, respectively. The direct insurer’s premium is calculated using the
expected value principle, with relative security loading factor 0.3.

The direct insurer wants to arrange excess of loss reinsurance for this
risk. The reinsurer’s premiums are calculated using the expected value
principle, but with a loading factor 0.5.

Let IP(M) denote the direct insurer’s annual profit, net of reinsurance
costs, under a contract with retention level for a claim set at M. Suppose
that M is a value between £1000 and £5000 chosen such that the variable
IP(M) has coefficient of variation 1/3, that is

standard deviation(IP(M))
mean(IP(M))

=
1
3
.

(a) Show that IP(M) satisfies

IP(M) = 145 000 + 75M − S I ,

where S I is the aggregate claims paid out by the direct insurer, and
hence show that that M = £3557.
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(b) Using the value of M found in (a), and assuming normality as
required, calculate the approximate probability of each of the follow-
ing two events, quoting your calculated probabilities to three decimal
places:
(1) the direct insurer’s annual profit is positive;
(2) the reinsurer’s annual profit is positive.

5.15 Consider the aggregate claims model S ∼ CP(λ, FX). A reinsurance
arrangment is in place, defined at the level of individual claims. Let Y
and S I represent, respectively, the amount of an individual claim and the
aggregate amount, paid by the direct insurer; similarly for Z and S R for
the reinsurer. So X = Y + Z and S = S I + S R.
(a) By considering Var[S I + S R], show that the covariance between S I

and S R is given by Cov[S I , S R] = λE[YZ] and hence find an expres-
sion for the correlation coefficient between S I and S R in terms of
moments of Y and Z.

(b) Calculate the correlation coefficient between the direct insurer’s and
the reinsurer’s aggregate claim amounts in Example 5.5.

(c) Calculate the correlation coefficient between the direct insurer’s and
the reinsurer’s aggregate claim amounts in Example 5.6.

5.16 A life insurance company covers 1000 lives for one-year term insurance
in amounts (in units of £100 000) as shown below:

Benefit amount 1 2
Number of insured lives 600 400

The insured lives can be assumed to be independent, with a single
probability of a claim of 0.025 applying to all lives.
(a) Find the mean and standard deviation of the total claim amount,

S , and hence calculate the (approximate) probability that the direct
insurer’s total payout on this business exceeds £4.5 million.

(b) A reinsurance contract is arranged with the aim of reducing both
the uncertainty in the direct insurer’s payout and the probability
calculated in (a). The direct insurer sets a retention level of £160 000
and purchases the necessary cover at a cost of £0.0275 per £1
of cover.
(1) Calculate the cost of the reinsurance.
(2) Find the mean and standard deviation of the direct insurer’s

total payout on claims with the reinsurance in place, and hence
calculate the revised (approximate) probability that the direct
insurer’s total payout on this business exceeds £4.5 million;
comment briefly on the effect of the reinsurance.
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5.17 Suppose that S has a compound Poisson distribution with claim rate λ
and that individual claim amount variable X has a Pareto distribution
with parameters α (>2) and γ. The direct insurer has a proportional
reinsurance contract in place under which a proportion β of each claim
amount is retained. Find expressions for the mean and variance of the
aggregate claim amounts paid by the direct insurer and the reinsurer.

5.18 An insurer sells 2000 one-year policies covering independent and iden-
tical risks. A maximum of one claim is permitted under each policy. The
probability of a loss arising under each policy is 0.15, and the loss X has
an exponential distribution with mean 1 (we are taking the expected loss
as our monetary unit). One thousand of the policies sold have no excess,
while 1000 of them each have an excess of size D imposed, where D has
been set at the lower 30% point of the loss distribution. For policies with
an excess, a claim arises if and only if the loss exceeds the excess.

Let S 1 denote the aggregate claims which arise on the 1000 policies
with no excess and let S 2 denote the aggregate claims which arise on the
1000 policies with an excess. Let S = S 1 + S 2.
(a) (1) Show that D = 0.3567, and specify the distribution of X − D |

X > D.
(2) Calculate the mean and variance of S 1 and S 2, and hence

calculate the mean and variance of S .
(b) Assume that the insurer sets premiums using the expected value

principle with a relative security loading of 20%. Using the nor-
mal distribution, calculate approximately the probabilities that the
insurer makes a profit on the business consisting of:
(1) the 1000 policies with no excess;
(2) the 1000 policies with an excess;
(3) all 2000 policies;
comment briefly on the results.

5.19 Suppose S has a compound Poisson distribution, with losses occurring at
rate λ and with individual loss variable X exponentially distributed with
mean μ. A policyholder has cover against this risk by means of a policy
that incorporates a deductible D on each loss. The insurer’s premium
is calculated using the expected value principle with relative security
loading θ. Let P, IP and PTC denote the premium charged by the insurer,
the insurer’s profit and the policyholder’s total costs/payout, respectively.
(a) Show that

P = (1 + θ)λμe−D/μ,

E[IP] = θλμe−D/μ,
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Var[IP] = 2λμ2e−D/μ,

E[PTC] = λμ(1 + θe−D/μ).

(b) In the case λ = 0.3, θ = 0.2 and μ = 1 (in units of £1000), cal-
culate the premium charged by the insurer, the insurer’s expected
profit and the policyholder’s expected total costs, for each of the
following cases:
(1) D = 0,
(2) D = 0.1 (= £100),
(3) D = 0.2 (= £200),
(4) D = 0.3 (= £300);
comment on the results. Calculate the policyholder’s relative savings
in premium (in percentage terms relative to the case D = 0) of having
a policy with a deductible as given in cases (2)–(4) above.
Calculate the policyholder’s relative savings in expected total costs
(in percentage terms relative to the case D = 0) of having a policy
with a deductible as given in cases (2)–(4) above.

(c) Suppose S represents the aggregate losses for a portfolio with λ =
200. Again suppose θ = 0.2 and μ = £1000. Using a normal approx-
imation, calculate the probability that the insurer makes a profit on
this business for each of the cases (1)–(4) given in part (b) above;
comment on the results.

5.20 Suppose S has a compound Poisson distribution with claim rate λ and
individual claim amount variable X with mean μ. The insurer’s premium
is calculated using the expected value principle with relative security
loading θ. The insurer enters into a proportional reinsurance contract
with retained proportion β, where the reinsurer’s premium is calculated
according to the same principle to that used by the direct insurer, but
with a loading factor of ψ.

Show that the direct insurer’s expected profit is given by

λμ[ψβ − (ψ − θ)],

and comment briefly on the relationship between the expected profit and
the value of β.

5.21 Claims occur on a portfolio of insurance policies according to a Pois-
son process. Individual claims have value 1 or 2, each value occurring
with probability 0.5. The insurer adopts an exponential utility func-
tion u(x) = −e−αx and makes decisions on the basis of maximising the
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insurer’s expected utility of wealth. The insurer effects excess of loss
reinsurance with retention level M, where 1 < M < 2, where the rein-
surer’s premium is calculated using a simple security loading factor of ψ
on the reinsurer’s expected payout.

Using the approach described in §5.6.1, calculate the values of the
retention level M for which the direct insurer’s expected utility at the
end of the year is maximised in the following cases:
(a) ψ = 0.3, α = 0.15,
(b) ψ is reduced by one-third to 0.2, α = 0.15,
(c) ψ = 0.3, α is increased by one-third to 0.2;
comment on the results.

5.22 Claims occur on a portfolio of insurance policies according to a Poisson
process. All individual claims have the same value. The insurer adopts
an exponential utility function u(x) = −e−αx and makes decisions on the
basis of maximising the insurer’s expected utility of wealth, and effects
proportional reinsurance with retained proportion β. The reinsurer sets
an exponential premium with parameter η (see §4.1.6 and the example
of proportional reinsurance in §5.6.2).

Using the approach of §5.6.2, calculate the values of the retained pro-
portion β for which the direct insurer’s expected utility at the end of the
year is maximised in the following cases:
(a) α = 0.4, η = 1,
(b) α = 0.4, η is increased by one-half to 1.5,
(c) α is doubled to 0.8, η = 1;
comment on the results.

5.23 The total annual claims from an insurer’s portfolio have a compound
Poisson distribution with rate parameter λ and with individual claim
sizes which have an exponential distribution with mean μ.

The insurer receives a total premium P in respect of this portfolio
(where P > λμ) and arranges a quota share (proportional) reinsurance
contract under which the two parties share the risk and the premium.
The direct insurer retains a proportion β of the risk where 0 ≤ β ≤ 1 and
passes on (1 − β)P as premium to the reinsurer.

The direct insurer’s net profit for the year is the premium income
retained less the proportion of claims paid out by the direct insurer. The
direct insurer adopts the utility function u(x) = −e−αx.
(a) Show that the expected utility of the direct insurer’s net profit for the

year is given by

− exp[−αβP + λ{(1 − αβμ)−1 − 1}],
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and hence show that this expected utility is maximised when the
direct insurer chooses β to satisfy

β =
1
αμ

[
1 −

(
λμ

P

)1/2]
.

(b) Comment on the dependence of the direct insurer’s optimum β on (i)
the degree of the direct insurer’s risk aversion and (ii) the premium
received P.

(c) Evaluate the optimum value of β in the case λ = 100, μ = £150,
P = £20 000 and α = 0.005.

5.24 An individual is considering buying insurance to cover a loss, X(£),
which is modelled as having a uniform distribution on (0, 200). The
insurance on offer has a compulsory excess of £50, so the individual
pays min(X, 50) and the insurer pays max(0, X − 50).
(a) By considering the expected outgoings of the individual (or of the

insurer), justify the fact that the individual will have to be prepared
to pay a premium of at least £56.25 for the cover on offer.

(b) Suppose the individual has current wealth £300, that the exponential
utility function u(x) = −e−0.02x is adopted, and that the individual
acts rationally in utility terms. Decide whether or not the indi-
vidual will purchase the cover if it is on offer for a premium of
£100.

(c) In the general case with the individual having current wealth £W
and adopting a utility function u(x) = −e−αx, show that the maxi-
mum premium P the individual will be prepared to pay for the cover
satisfies the inequality

eαP[(150α + 1)e50α − 1] < e200α − 1,

and hence verify the result found in (b).
5.25 Suppose aggregate claims are distributed S ∼ N(μ, σ2). A stop loss rein-

surance contract is in place, with retention level M, so that the payments
by the direct insurer and the reinsurer are, respectively, S I = min(S ,M)
and S R = max(0, S − M). The reinsurer sets an exponential premium
with parameter η (see §4.1.6 and §5.6.2).

Show that the reinsurer’s premium is given by

1
η

log
{
Φ

(M − μ
σ

)
+ g(M, μ, σ, η)

}
,
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where

g(M, μ, σ, η) =

exp

(
1
2
η2σ2 − η(M − μ)

) [
1 − Φ

(
M − μ − ησ2

σ

)]
.

5.26 In Example 5.10, suppose the reinsurer sets the premium PR using the
standard deviation principle as PR = E[S R] + ψSD[S R], where ψ < ασ.

Show that the direct insurer’s optimal retention is β = ψ/(ασ), and
comment on the nature of the dependence of the optimal retention on ψ,
α and σ.

5.27 Let S represent the total annual claims from an insurer’s portfolio.
Assume we adopt a simple model for S , namely that S has an exponential
distribution with mean £10 million.
(a) The insurer wishes to enter into a reinsurance contract with the

requirement E[S I] = £8 million. Calculate and compare the vari-
ances of the direct insurer’s claims under a stop loss arrangement
and under a proportional arrangement. Comment on your results.

(b) The insurer wishes to enter into a reinsurance contract with the
requirement SD[S I] = £3 million. Calculate and compare the vari-
ances of the reinsurer’s claims under a stop loss arrangement and
under a proportional arrangement. Comment on your results.

(c) Calculate and compare Var[S I] + Var[S R], the sum of the variances
of the direct insurer’s claims and the reinsurer’s claims under
(1) a stop loss arrangement, with retention chosen so that the sum

of variances is minimised;
(2) a proportional arrangement with retention β = 0.75;
(3) a proportional arrangement with retention β = 0.5.
Comment on the results.

5.28 Consider the aggregate claims model S ∼ CP(λ, FX), where FX(0) = 0
and FX(x) < 1 for all finite x > 0, that is the values of the claim
amount variable X are positive and not bounded above. An excess of
loss reinsurance arrangement is in place, with retention level M on each
claim. The parties want to find the value of M which will minimise
Var[S I]+Var[S R], the sum of the variances of the direct insurer’s claims
and the reinsurer’s claims.
(a) Show that Var[S I] + Var[S R] has a turning point at M, where M

satisfies ∫ ∞

M
(x − M) fX(x)dx = M{1 − FX(M)}.



264 Risk sharing – reinsurance and deductibles

(b) In each of the following cases, derive an expression for the optimal
value of M in terms of the parameters of the distribution of the claim
amount variable X (in each case show explicitly that a minimum
value for the sum of the variances has been found):
(1) X has a Pareto distribution with parameters α (>2) and γ;
(2) X has an exponential distribution with mean μ.

(c) Suppose we drop the assumption that the values of X are unbounded
and we allow for a cap on the claim amount – in particular suppose
X has a uniform distribution on (0, 1). Find the optimal value of M
in this case.

5.29 In this exercise we minimise the variance of the direct insurer’s pay-
out, subject to a fixed expectation – a parallel result to that of §5.7.1
in the case that aggregate claims have a compound Poisson distribution
and we compare excess of loss (rather than stop loss) and proportional
arrangements.

Suppose S has a compound Poisson distribution with individual claim
amount variable X with probability density function f (x). Let min(X,M)
and βX be the direct insurer’s payouts on a claim under an excess of loss
arrangement and a proportional arrangement, respectively, with

E[min(X,M)] = E[βX] = c,

for some c. Let S I and S ∗I denote the direct insurer’s aggregate payouts,
under these excess of loss and proportional arrangements, respectively.

By considering ∫ ∞

0
(βx − M)2 f (x)dx

and using an argument similar to that used in §5.7.1, deduce that
Var[S I] ≤ Var[S ∗I ]; that is, that the variance of the direct insurer’s aggre-
gate payout is minimised (for the two competing arrangements) by using
excess of loss reinsurance.

5.30 In this exercise we compare excess of loss and equivalent proportional
reinsurance arrangements – a parallel result to that of §5.7.3.

Suppose aggregate claims S are distributed S ∼ CP(λ, FX), with
FX(0) = 0, and the insurer has an excess of loss reinsurance contract
in place with retention level M on each claim amount. Let S I denote the
direct insurer’s aggregate payout under this arrangement.

Consider a proportional arrangement which is equivalent as regards
uncertainty, in the sense that the direct insurer’s payouts under both
arrangements have the same variance. So define S ∗I = βS , where
β = {Var[S I]/Var[S ]}1/2, giving Var[S ∗I ] = Var[S I]. By applying the
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result in §5.7.1 to individual claims, and arguing in a similar way to that
used in §5.7.3, show that E[S ∗I ] ≤ E[S I].

5.31 Consider the situation explored in §5.7.5, in which we seek to minimise
the sum of the variances of the payouts when two independent risks are
shared between two insurers.

Extend the argument to show that the optimal arrangement is that in
which each company shares its risk equally with the other.

5.32 Consider two insurance companies A and B, which are exposed to
independent risks and for which the aggregate claims variables are
denoted SA and SB, respectively. Consider the situation for which SA ∼
CP(200, FX) and SB ∼ CP(400, FX), and where, in both cases, individ-
ual claim amounts X have an exponential distribution with mean 1 (we
are taking the expected claim amount as our monetary unit). Each com-
pany reinsures with the other. Let TA and TB represent the resulting total
payouts by companies A and B, respectively.
(a) Suppose each company enters into an excess of loss reinsurance

agreement with the other with retention level 1.6. Calculate the value
of Var[TA] + Var[TB].

(b) Explain clearly why the minimum possible value for Var[TA] +
Var[TB] under any reinsurance arrangement is 600.

5.33 Let S 1, . . . , S n be independent and identically distributed random vari-
ables representing the annual claims from each of n (>1) insurance
companies. Suppose the companies effect a mutual reinsurance agree-
ment under which company j ( j = 1, . . . , n) pays an amount R(S i) of
the claims of each other company i, where 0 ≤ Var[R(S i)] ≤ Var[S i].
So company j pays S j less the amounts paid towards risk j by the other
companies, namely (n− 1)R(S j), plus the amount to reinsure parts of the

other risks, namely
∑

i� j
R(S i).

We can therefore represent the amount paid out by company j,T j, as
follows:

T j = S j − (n − 1)R(S j) +
∑
i� j

R(S i).

Show that Var[T j] is minimised in the case that the function R(·) is of
the form R(x) = x/n.

Hint: Find an expression for Var[T j] in terms of n, Var[S j], Var[R(S j)]
and Cov[S j,R(S j)]. Noting that, given any rule R(x), we can select a
rule R∗(x) = βx with Var[R∗(S )] = Var[R(S )], find an expression for the
minimum value of Var[T j] in terms of n, β and Var[S j] and hence deduce
the result.



266 Risk sharing – reinsurance and deductibles

5.34 Consider a portfolio consisting of three independent risks, for which the
aggregate claims are modelled as S 1 ∼ N(10, 1), S 2 ∼ N(20, 22) and
S 3 ∼ N(30, 32). The insurer charges premiums for the three risks of
11, 24, and 39, respectively, and wants to arrange proportional rein-
surance for each risk. The reinsurer’s premiums are calculated using
the expected value principle, with relative security loadings on the
reinsurer’s expected payouts of 20%, 30% and 40%, respectively.

The direct insurer wants to determine which the retentions to set so
that the variance of the direct insurer’s net profit is minimised, subject to
the constraint that the direct insurer’s expected net profit is 5.
(a) (1) Show that the expected value of the direct insurer’s net profit can

be expressed in terms of the retentions (β1, β2, β3, respectively)
as 2β1 + 6β2 + 12β3 − 6.

(2) Determine the percentage of each risk the direct insurer should
retain.

(b) Examine, and comment on, the way in which the results in (a)
change if:
(1) the direct insurer’s expected net profit requirement is increased

from 5 to 7 (with all other original values remaining unchanged);
(2) the direct insurer’s combined premium is reduced from 74 to

70.5 (with all other original values remaining unchanged);
(3) the reinsurer’s security loading factor is increased for the third

risk from 40% to 50% (with all other original values remaining
unchanged).
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Ruin theory for the classical risk model

In Chapter 3 we considered risk models for a fixed time period. Now we widen
our focus and consider risk models that evolve over time. Our basic model,
the classical risk model, is introduced in §6.1, and in this chapter our aim is
to study ruin theory for this model. Ruin theory is concerned with quantities
related to the event that the insurance company’s capital becomes negative at
some point in time. These ruin quantities are defined in §6.1 and §6.2, and their
properties and behaviour are studied in later sections of this chapter. Numerical
calculation of, and statistical inference for, these ruin quantities are discussed
in §6.6 and §6.7.

6.1 The classical risk model

We aim to build a time-evolving risk model that captures the evolution of
the reserves of an insurance company. We follow the principle of putting
together separate models for the arrivals of claims and for the claim sizes,
an approach that we found to be useful and tractable in Chapter 3. In addition
we incorporate an extra ingredient describing the inflow of premium income.

In the classical risk model we assume the following.

(i) The claim sizes X1, X2, . . . are iid positive random variables with distribu-
tion function FX and finite mean μ.

(ii) The claims arrive in a Poisson process with rate λ (>0).
(iii) The claim sizes X1, X2 . . . are independent of the claim-arrival process.
(iv) Premium income accrues linearly in time at rate c (>0), so that by time t

the total amount of premiums received is ct.
(v) At time t = 0 the insurance company has (non-negative) initial capital u.

267
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Note that in the above assumptions for the classical risk model, the claim sizes
have finite mean μ. We write MX(r) for the moment generating function of the
Xi. This is not necessarily finite for all r. Recall that, when we write expressions
involving moment generating functions, we assume, unless stated otherwise,
that r is such that the moment generating function is finite.

There are various important stochastic processes arising from the classical
risk model. The first is the Poisson process {N(t) : t ≥ 0}, where N(t) is the
number of claims that arrive up to and including time t.

The second stochastic process is {S (t) : t ≥ 0}, where

S (t) =
N(t)∑
i=1

Xi, (6.1)

so that S (t) is the total amount claimed by time t.
Thirdly we have the risk reserve (or surplus) process {U(t) : t ≥ 0}, where

U(t) is the risk reserve at time t given by

U(t) = u + ct − S (t) = u + ct −
N(t)∑
i=1

Xi. (6.2)

Here U(t) is the amount of surplus at time t, taking account of the inflow of
premiums and the outflow of claim payments, starting with capital u at time
t = 0. Note that in (6.2) u + ct is deterministic, but S (t) is a random variable,
so that U(t) is a random variable.

We can summarise various properties of N(t) and S (t). From §2.1.1 and
§2.2.3, we have N(t) ∼ Poi(λt), and the times between successive claim arrivals
are iid exponential random variables with mean 1/λ. In addition, the sample
paths of {N(t)} are non-decreasing step functions. We also have that, for fixed
t, the random variable S (t) has a compound Poisson distribution given by

S (t) ∼ CP(λt, FX),

and the results of Chapter 3 may be applied to S (t). In particular, from our
equations for the mean and variance of a compound Poisson distribution in
(3.18), we have

E[S (t)] = λμt and Var[S (t)] = λtE[X2
1]. (6.3)

Recall that we assume that moments of X1 are finite as required, so that if we
write E[X2

1], then we are tacitly assuming that it is finite.
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We also have, from the convolution series formula for a compound distribu-
tion in Theorem 3.8,

Pr(S (t) ≤ x) =
∞∑

n=0

e−λt(λt)n

n!
F�n

X (x),

and, from the expression for a compound Poisson moment generating function
in (3.16), we have

MS (t)(r) = exp(λt(MX(r) − 1)).

In the above formulation, U(t) is the risk reserve of an insurance company.
However, this model is also often used for the “risk reserve” corresponding to a
particular portfolio of policies. In this second context, u is the capital allocated
to this portfolio by the insurance company, and ruin theory for this portfolio is
one way of assessing its riskiness.

We remark here that the classical risk model involves many simplifications
of how an insurance business operates in practice. For example, the model
assumes that the claim-arrival rate λ remains constant over time, that no interest
is earned on the surplus, that there is no inflation, that premium income is
received continuously in time, that claims are paid out immediately, and in
addition there are many independence assumptions. It is easy to think of real
life situations where these assumptions do not hold. Nevertheless, this model
forms the basis of many models used in insurance mathematics. As we shall
see, analysis of this “simple” model is relatively tractable, although it does
call upon rather heavier mathematical machinery than that used for the fixed-
time models in Chapter 3. This mathematical machinery involves, for example,
results from renewal theory, properties of Laplace transforms, and techniques
of integration theory. In the text of this chapter, we quote and use such results
without proof, referring the interested reader to other sources.

6.1.1 The relative safety loading

From (6.2) and (6.3), the expected surplus at time t is

E[U(t)] = u + ct − E[S (t)] = u + ct − λμt, (6.4)

and the expected profit per unit time in (0, t] is

E[U(t) − U(0)]
t

=
(u + ct − λμt) − u

t
= c − λμ.

In general, we hope to make a profit, and this motivates the net profit condition:

c > λμ. (6.5)
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Given λ and μ, we aim to set the premium rate c so that (6.5) is satisfied
(although bear in mind that there may be other considerations in the setting
of premiums, for example forces of competition between insurance compa-
nies). For the classical risk model, c − λμ is the expected net income in each
unit time interval. In view of (6.5), we introduce the relative safety loading (or
premium loading factor or relative security loading) θ, defined by

θ =
c − λμ
λμ

,

so that the premium rate c may be written c = (1+ θ)λμ. The net profit condi-
tion is satisfied if and only if the relative safety loading θ is positive. We note
that the relative safety loading θ is the same as the relative security loading for
the expected value premium principle in §4.1.1.

6.1.2 Ruin probabilities

The expected surplus in (6.4) may be written in terms of the relative safety
loading,

E[U(t)] = u + θλμt,

and the expected profit over (0, t] is θλμt. We assume that we have positive
relative safety loading, so that the expectation of U(t) is positive and increases
steadily with time t. However, {U(t)} is a stochastic process and has random
fluctuations about its expectation, and so there could still be a possibility
that U(t) becomes negative at some point. Indeed, from (6.3), we know that
Var[U(t)] = λtE[X2

1], so that the variability of U(t) is increasing in t.
More formally, if U(t) < 0 for some t ≥ 0 then ruin is said to occur. An

obvious concern is with the probability that a ruin event occurs. Intuitively,
we see that this probability depends on the initial capital u, in the sense that
we might expect that a higher value of u is safer, leading to a reduction in the
probability of ruin. We shall see later that this is indeed so.

We define the probability of ruin given initial capital u to be

ψ(u) = Pr(U(t) < 0 for some t > 0). (6.6)

This is also known as the probability of eventual ruin, or the infinite-time
horizon ruin probability.

A related quantity is the finite-time ruin probability with time horizon t0

(>0), given by

ψ(u, t0) = Pr(U(t) < 0 for some t in (0, t0]).
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There are several logical relationships that hold between the various ruin
probabilities. We have already mentioned that we expect ψ(u) to be non-
increasing in u, that is for 0 ≤ u1 ≤ u2 we expect

ψ(u1) ≥ ψ(u2). (6.7)

This can be seen formally as follows. For u ≥ 0, let Au be the event that ruin
occurs in (0,∞) when the initial capital is u. Suppose that u2 ≥ u1, and consider
a ruin sample path for initial capital u2. Translating this sample path down-
wards, we see that this will also be a ruin sample path when it starts at u1. Thus
we have Au2 ⊆ Au1 . This implies Pr(Au2 ) ≤ Pr(Au1 ), and we obtain (6.7). We
can see by a similar argument that, for t0 ≥ 0,

ψ(u1, t0) ≥ ψ(u2, t0).

Define Au,t to be the event that ruin occurs in (0, t] when the initial capital is u.
Then, for 0 < t1 ≤ t2 < ∞, we have Au,t1 ⊆ Au,t2 ⊆ Au, and so

ψ(u, t1) ≤ ψ(u, t2) ≤ ψ(u).

Further, if tn → ∞ as n→ ∞, and if 0 < t1 ≤ t2,≤ · · · , then Au,t1 ⊆ Au,t2 ,⊆ · · ·
and ∪∞n=1Au,tn = Au. By continuity of probability (see, for example, chap. 1 of
Grimmett and Stirzaker (2001)), we obtain

ψ(u, tn)→ ψ(u) as n→ ∞,
and further

ψ(u, t)→ ψ(u) as t → ∞.
We also define the survival probability

ϕ(u) = 1 − ψ(u) = Pr(U(t) ≥ 0 for all t ≥ 0), (6.8)

so that ϕ(u) is the probability of never being ruined with initial capital u.
When U(t) is interpreted as the surplus for a particular portfolio, then ruin

probabilities may be used as measures of “dangerousness” for that portfolio,
with, of course, higher ruin probabilities corresponding to more dangerous
portfolios.

When U(t) is interpreted as the surplus for a whole insurance company, then
ruin corresponds to insolvency of the insurance company. In real life, insurance
companies do fail, but we note that in practice the solvency/insolvency of an
insurance company involves very many different and more complicated con-
siderations. Insurance companies fail for many reasons (for example, because
of factors affecting the whole financial market, or because of fraud). In addi-
tion, solvency arrangements are subject to legal requirements. These wider
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aspects of solvency/insolvency, while very interesting and topical, are beyond
the scope of this book and are not considered further here.

6.2 Lundberg’s inequality and the adjustment coefficient

Ruin probabilities can be difficult to evaluate explicitly except for certain spe-
cial cases for the claim-size distribution. This is a familiar situation in applied
probability modelling, and one which we met in Chapter 3. As in Chapter 3,
this means that we often consider approximations. Another common approach
is to look for simple bounds for the relevant quantity, and, in this section, we
do this for the ruin probability ψ(u) in the classical risk model with positive
relative safety loading.

The upper bound given in this section is called Lundberg’s bound, and it
applies when the claim-size distribution satisfies a condition relating to its
moment generating function MX(r).

Theorem 6.1 (Lundberg’s inequality.) In the classical risk model with Pois-
son rate λ > 0, premium income rate c > 0 and positive relative safety loading,
suppose there exists a unique R > 0 that solves

MX(r) − 1 =
cr
λ
, (6.9)

where MX(r) is the claim-size moment generating function. Then the probabil-
ity of ruin ψ(u), with initial capital u(≥0), satisfies

ψ(u) ≤ e−Ru for all u ≥ 0.

Note that the Lundberg inequality gives an easy upper bound for the ruin
probability. This upper bound is less than 1 for u > 0, and is decreasing in u.

The positive number R is the adjustment coefficient (or the Lundberg expo-
nent) and is an important characteristic of a risk model. We look at various of
its properties in §6.2.1; we give a proof of Theorem 6.1 in §6.2.2; and in §6.2.3
we consider when the adjustment coefficient exists.

6.2.1 Properties of the adjustment coefficient

The adjustment coefficient is often used as a single-number summary of
riskiness, since larger R corresponds to a smaller upper bound for the ruin
probability in the Lundberg inequality in Theorem 6.1. Intuitively we might
prefer a portfolio with a larger adjustment coefficient.

Note also that the defining equation (6.9) for the adjustment coefficient may
be written

MX(r) − 1 = (1 + θ)μr. (6.10)
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This (and (6.9)) may be solved explicitly in certain special cases, as Exam-
ple 6.2 shows.

Example 6.2 In a classical risk model with positive relative safety loading
θ, claims are exponentially distributed with mean μ, so that the claim-size
moment generating function is (1 − μr)−1 for r < μ−1. By (6.10), in order
to find the adjustment coefficient R, we seek a positive solution to

1
1 − μr

− 1 = (1 + θ)μr.

Because MX(r) is only defined for r < μ−1, this means that the adjustment
coefficient must lie in (0, μ−1). We find that R solves

1 − (1 − μr) = (1 + θ)μr(1 − μr).

This simplifies to

(1 + θ)(μr)2 − θμr = 0,

which is

(1 + θ)μ2r

(
r − θ

(1 + θ)μ

)
= 0.

This equation has two solutions, r = 0 and r = θ/(1 + θ)μ. We know R > 0,
so that the second value is the only candidate for R, and the second value is
indeed in the range (0, μ−1) (because θ > 0). Thus the adjustment coefficient
for exponentially distributed claims is

R =
θ

(1 + θ)μ
=

1
μ
− λ

c
,

where λ and c are the Poisson rate and the premium income rate, respec-
tively. Theorem 6.1 yields that for exponential claims the probability of ruin
satisfies

ψ(u) ≤ exp

(
− θ

(1 + θ)μ
u

)
for all u ≥ 0,

completing this example.

How does the adjustment coefficient depend on the other parameters in the
risk model? For example, how would you expect it to depend on the relative
safety loading θ? On an intuitive level, if θ increases, then we interpret this in
terms of the portfolio being “safer”, and so we might expect R to be larger. We
can see that this is indeed so for exponentially distributed claims as follows.
From (6.10), we can find R graphically by plotting the curve y = MX(r) − 1
and the line y = (1 + θ)μr. The r-coordinate of the point where the curve and
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r

R

Figure 6.1. Graphs of y = MX(r) − 1 (solid line) and y = (1 + θ)μr (dashed line).
The adjustment coefficient is the r-coordinate of the point of intersection.

the line cross is R; see Figure 6.1. Now suppose that θ is increased, but that λ,
μ and the claim-size distribution all stay unchanged. Then the gradient of the
straight line increases while the curved line remains unchanged, which means
that the point of intersection moves further from the origin and so R increases.

The equation satisfied by R in (6.10) does not involve λ, except via θ. So,
if the claim-size distribution is unchanged, but λ and c change in such a way
that the relative safety loading θ is unchanged, then the value of the adjustment
coefficient remains the same.

Another observation is that R depends on the units used for the claim sizes,
as in the following example.

Example 6.3 In a classical risk model with claim-arrival rate λ, suppose that
the premium rate is c and that the claim amounts X1, X2, . . . (£) are indepen-
dent exponentially distributed random variables with mean μ. Now consider
the same model, but with all monetary quantities given in euros. Let β be the
exchange rate, so that the new premium rate is c′ = βc, and the new claim
amounts are X′1, X

′
2, . . ., where X′i = βXi. You can check for yourself that both

models have the same relative safety loading θ = (c − λμ)/(λμ). For the new
claim-amount distribution, we have

1 − FX′(y) = Pr(X′1 > x) = Pr(X1 > x/β) = e−x/(βμ),
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which shows that X′1 has an exponential distribution with mean βμ. From
Example 6.2, the adjustment coefficient R′ for the euro model is

R′ =
θ

(1 + θ)μβ
,

and this is R′ = R/β, so that the adjustment coefficient is not the same in the
two different currencies. Note, however, that the initial capital will also be in
euros, so that the resulting Lundberg upper bound will be the same in both
currencies.

When claims are exponentially distributed (and in some other special cases)
the adjustment coefficient has an easy explicit expression in terms of the
parameters of the model. However, in general the equations for the adjustment
coefficient in (6.9) or (6.10) have to be solved numerically, for example using
the Newton–Raphson method; see §6.6. In such situations, we often need to
have some idea of the size of R in order to start off a computational search or
iterative procedure. Lemma 6.4 gives a bound on the size of R which may be
useful in such contexts.

Lemma 6.4 In a classical risk model with positive relative safety loading θ
and claim sizes X1, X2, . . ., suppose that E[X1] = μ and μ2 = E

[
X2

1

]
< ∞. Then

the adjustment coefficient R satisfies

R ≤ 2μθ
μ2

.

Observe that this simple upper bound involves the claim-size distribution
only via its first two moments, whereas the equations (6.9) and (6.10) for the
adjustment coefficient involve the whole claim-size distribution via its moment
generating function.

Proof Observe from (6.10) that R satisfies∫
(0,∞)

eRxFX(dx) − 1 = (1 + θ)μR. (6.11)

By taking the first three terms of a Taylor expansion, the left-hand side satisfies∫
(0,∞)

eRxFX(dx) − 1 ≥
∫

(0,∞)

(
1 + Rx +

R2x2

2

)
FX(dx) − 1

= 1 + Rμ +
R2

2
μ2 − 1

= Rμ +
R2

2
μ2.
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Combining this with (6.11), we have

Rμ +
R2

2
μ2 ≤ (1 + θ)μR,

and rearrangement gives the upper bound in the lemma. �

By this lemma, we know that R ∈ (0, 2μθ/μ2). See Exercise 6.3 for a positive
lower bound on R when the claim sizes are bounded.

6.2.2 Proof of Lundberg’s inequality

In this section we go into more mathematical depth and we prove Lundberg’s
inequality (Theorem 6.1).

Proof of Theorem 6.1 From the definition of the probability of ruin ψ(u) in
(6.6) it seems that to check for ruin we must look at U(t) for all t ≥ 0. However,
between claims, the sample path of the surplus process {U(t) : t ≥ 0} increases
linearly at rate c > 0 and the path jumps down at the time of a claim. Thus
ruin can only occur at the time of a claim, and this means that we only need to
look at the surplus process at the claim times. With initial capital u, define, for
n = 1, 2, . . .,

ψn(u) = Pr(ruin occurs on or before the nth claim).

Since the occurrence of ruin on or before the nth claim implies ruin somewhere
in (0,∞), we have, for n = 1, 2, . . .,

ψn(u) ≤ ψ(u) for all u ≥ 0.

We also have

ψn(u)→ ψ(u) as n→ ∞; (6.12)

see Exercise 6.4. It follows that

ψ(u) ≤ e−Ru ⇔ ψn(u) ≤ e−Ru for all n = 1, 2, . . .. (6.13)

Hence in order to prove the theorem, it is enough to show that

ψn(u) ≤ e−Ru for all n = 1, 2, . . .. (6.14)

We prove (6.14) by induction on n. For n = 1, note that ψ1(u) is the probabil-
ity that ruin occurs at the first claim. Suppose the first claim arrives at T1 = t,
so that, just before the first claim, the surplus is u + ct. If the first claim X1
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causes ruin, then we must have X1 > u+ ct. Recall that claims arrive in a Pois-
son process so T1 has an exponential distribution with mean λ−1. Conditioning
on the time of the first claim, we find

ψ1(u) = Pr(ruin occurs at the first claim)

=

∫ ∞

0
Pr(ruin occurs at the first claim | T1 = t)λe−λtdt

=

∫ ∞

0
Pr(X1 > u + ct)λe−λtdt

=

∫ ∞

0
λe−λt

∫
(u+ct,∞)

FX(dx)dt.

In the inner integral, we have x ≥ u + ct, so that, for these x-values,

1 ≤ exp(−R(u + ct − x)),

where we have also used that R > 0. This gives

ψ1(u) ≤
∫ ∞

0
λe−λt

∫
(u+ct,∞)

e−R(u+ct−x)FX(dx)dt

≤
∫ ∞

0
λe−λt

∫
(0,∞)

e−R(u+ct−x)FX(dx)dt, (6.15)

where the last line follows because we have extended the range of integration
of the inner integral and the extra part is non-negative. We rewrite (6.15) to get

ψ1(u) ≤ e−Ru
∫ ∞

0
e−(λ+cR)tλ

∫
(0,∞)

eRxFX(dx)dt. (6.16)

Note that λ
∫

(0,∞)
eRxFX(dx) is λMX(R), and, from the equation (6.9) for R, we

know that λMX(R) = λ + cR. Then (6.16) becomes

ψ1(u) ≤ e−Ru
∫ ∞

0
(λ + cR)e−(λ+cR)t dt.

The integrand is the density of an exponential distribution with mean
(λ+ cR)−1, so the integral is 1. Thus we have shown

ψ1(u) ≤ e−Ru for all u ≥ 0,

and we have proved (6.14) for n = 1.
Now suppose that n ≥ 1 and assume that ψn(u) ≤ exp(−Ru) for all u ≥ 0.

Conditioning on the time and size of the first claim, we find that ψn+1(u) is∫ ∞

0

∫
(0,∞)

λe−λt Pr(ruin by claim (n + 1) | T1 = t, X1 = x)FX(dx)dt,
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and this is∫ ∞

0

∫
(0,u+ct]

λe−λt Pr(ruin by claim (n + 1) | T1 = t, X1 = x)FX(dx)dt

+

∫ ∞

0

∫
(u+ct,∞)

λe−λt Pr(ruin by claim (n + 1) | T1 = t, X1 = x)FX(dx)dt.

If X1 = x, where x > u + ct, then ruin occurs at the first claim, and

Pr(ruin by claim (n + 1) | T1 = t, X1 = x) = 1.

This means that∫ ∞

0

∫
(u+ct,∞)

λe−λtPr(ruin by claim (n + 1) | T1 = t, X1 = x)FX(dx)dt

=

∫ ∞

0

∫
(u+ct,∞)

λe−λtFX(dx)dt.

If the first claim is X1 = x, with x ≤ u + ct, then ruin does not occur at the first
claim. In this case, immediately after the first claim, the surplus is u + ct − x,
and, given the independence and distributional assumptions of the model, the
evolution of the model from this point onwards is probabilistically the same
as the evolution of a new risk model with the same Poisson arrival rate λ, the
same premium income rate c, and the same claim-size distribution function
FX , but starting with initial capital u+ ct− x. The (n+1)st claim in the original
model corresponds to the nth claim in the new model, so that the probability
of ruin on or before the (n + 1)st claim in the original model is the same as
ψn(u + ct − x). This means that∫ ∞

0

∫
(0,u+ct]

λe−λtPr(ruin by claim (n + 1) | T1 = t, X1 = x)FX(dx)dt

=

∫ ∞

0

∫
(0,u+ct]

λe−λtψn(u + ct − x)FX(dx)dt.

Putting all this together we obtain

ψn+1(u) =
∫ ∞

0
λe−λt

∫
(0,u+ct]

ψn(u + ct − x)FX(dx)dt

+

∫ ∞

0
λe−λt

∫
(u+ct,∞)

FX(dx)dt.

In the second term on the right-hand side above, we have

1 ≤ exp(−R(u + ct − x)) for x > u + ct
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(as in the n = 1 case). For the first term, the inductive hypothesis implies that
ψn(u + ct − x) ≤ exp(−R(u + ct − x)). Therefore we have

ψn+1(u) ≤
∫ ∞

0
λe−λt

∫
(0,u+ct]

e−R(u+ct−x)FX(dx)dt

+

∫ ∞

0
λe−λt

∫
(u+ct,∞)

e−R(u+ct−x)FX(dx)dt

=

∫ ∞

0
λe−λt

∫
(0,∞)

e−R(u+ct−x)FX(dx)dt.

The last expression is the same as the right-hand side of (6.15), and so we
follow the same steps as in the n = 1 case to obtain

ψn+1(u) ≤ e−Ru for all u ≥ 0.

Hence (6.14) holds by induction, and thus, by (6.13), we have proved
Theorem 6.1. �

6.2.3 When does the adjustment coefficient exist?

We now turn to the question of whether or not the adjustment coefficient R
exists for a particular risk model. From the equation (6.10) for R, we consider
whether or not there is a unique positive solution of

MX(r) − 1 = (1 + θ)μr. (6.17)

This equation only makes sense for those r-values for which the claim-size
moment generating function is finite.

Fortunately there are relatively simple conditions which imply the existence
of R. We write r → a− to mean that r converges to a from the left.

Lemma 6.5 In the classical risk model with positive relative safety loading,
suppose there exists r∞, 0 < r∞ ≤ ∞, such that the moment generating function
MX(r) of the claim-size distribution satisfies (i) and (ii) below:

(i) MX(r) < ∞ for all r < r∞,
(ii) MX(r)→ ∞ as r → r−∞.

Then there exists a unique positive solution to (6.17).

Proof Let h(r) = MX(r) − 1 − (1 + θ)μr, which is defined for r < r∞ by con-
dition (i) in the statement of the lemma. By (6.17), we want to show that there
is a unique positive solution of h(r) = 0 in (0, r∞). We use several properties of
the moment generating function MX(r) of the positive random variable X1 for
0 ≤ r < r∞:
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(a) MX(0) = 1,
(b) MX(r) is continuous, differentiable and strictly convex,
(c) M′X(0) = μ.

Property (a) follows from the definition of MX(r) = E[erX1 ]. For (b) and (c),
we know that MX is differentiable infinitely many times for |r| < r∞ with

M(n)
X (r) = E

[
Xn

1erX1
]
; (6.18)

see, for example, the proof of th. 4.8.3 in Gut (2005). Thus MX is differentiable
and continuous on |r| < r∞, and also (c) holds.

Further, M′′X (r) = E[X2
1erX1 ], and we now show that this is strictly positive.

Since X1 > 0 with probability 1, there exists η > 0 such that p = Pr(X1 > η) is
strictly positive. Hence

M′′X (r) ≥ pE
[
X2

1erX1 | X1 > η
] ≥ pη2erη > 0.

Thus MX is strictly convex, and we have shown (b).
By (a) we have h(0) = 0. By (b) we have that h(r) is continuous and convex

on (0, r∞), and also continuous at zero. By (c), h′(0) = μ− (1+ θ)μ = −θμ, and
this is negative (because the relative safety loading θ is positive). So we know
that the graph of h starts at zero by going downwards, and that it is continuous
and convex. Consider now its behaviour as r approaches r∞ from the left. If
r∞ < ∞, then

h(r)→
(

lim
r→r−∞

MX(r)

)
− 1 − (1 + θ)μr∞,

so that, by condition (ii) in the statement of the lemma, we have

h(r)→ ∞ as r → r−∞.

This means that the graph of h(r) is as shown in Figure 6.2, and so there must
be a unique R in (0, r∞) such that h(R) = 0.

If r∞ = ∞, then we need a more careful argument to show that h(r) → ∞,
because in this case the term −(1 + θ)μr converges to −∞ as r → r−∞, while
MX(r) → ∞, so we need to establish which of these convergences “wins”.
With p and η as above, we have, for r > 0,

MX(r) = E[erX1 ] ≥ peηr.

Hence we have

h(r) ≥ perη − 1 − (1 + θ)μr.

The convergence of erη to∞ will be much faster than the convergence of −(1+
θ)μr to −∞, so that the right-hand side converges to∞, and hence h(r)→ ∞ as
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r

h
(r

)

0 R

Figure 6.2. Graph of y = h(r) = MX(r) − 1 − (1 + θ)μr when r∞ is finite.

r → r−∞. A similar argument to the r∞ < ∞ case then shows there is a unique
positive solution to h(r) = 0 when r∞ = ∞. �

Example 6.6 (i) Suppose that X1 has a Pareto distribution Pa(1, 1) with den-
sity fX(x) = (1 + x)−2, x > 0. For every r > 0, the moment generating function
MX(r) is not finite (see Exercise 6.8), so (i) of Lemma 6.5 is not satisfied.
Indeed, since MX(r) = ∞ for all r > 0, there is no positive r satisfying
the adjustment coefficient equation (6.17), and hence there is no adjustment
coefficient.

(ii) If X1 has an exponential distribution with mean μ, then MX(r) = (1− μr)−1

for r < μ−1. Conditions (i) and (ii) of Lemma 6.5 are satisfied with r∞ = μ−1,
so that Lemma 6.5 implies the existence of R (and we have already found it in
Example 6.2).

(iii) Suppose X1 has a uniform distribution on (0, a) for some a > 0, so that X1

has probability density function

fX(x) =

{
1/a for 0 < x < a
0 otherwise.

Then

MX(r) =
era − 1

ra
,

and conditions (i) and (ii) of Lemma 6.5 are satisfied with r∞ = ∞. Hence the
adjustment coefficient exists in this case.
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The conditions in Lemma 6.5 are often referred to as “small claims” con-
ditions, and they imply a certain bound on the decrease of the tail of the
claim-size distribution, which we now explain. By condition (i) of Lemma 6.5,
we can find r0 > 0 such that MX(r0) < ∞. We have, for all x ≥ 0,

er0 x1(X1 > x) ≤ er0X1 ,

where 1(X1 > x) is 1 if the event X1 > x occurs and is zero otherwise. Taking
the expectation of both sides gives

er0 x Pr(X1 > x) ≤ MX(r0),

which tells us that

Pr(X1 > x) ≤ Ke−r0 x, (6.19)

where K = MX(r0) < ∞. Thus any claim-size distribution that satisfies condi-
tion (i) of Lemma 6.5 has tail 1 − FX(x) that decreases at least exponentially
fast as x tends to infinity. This rules out distributions with heavy tails such as
the Pareto distribution.

6.3 Equations for ψ(u) and ϕ(u): the ruin probability and the
survival probability

In §6.2 our focus was on the Lundberg inequality, which gives an upper bound
for the probability of ruin. In this section we derive equations for the proba-
bility of ruin ψ(u) and for the survival probability ϕ(u). By now we have had
experience of working with applied probability quantities, and so it comes as
no surprise that these equations only have easy explicit solutions for certain
special choices for the claim-size distribution. It is also not unexpected that the
exponential distribution is one of these special cases. We give examples using
the exponential distribution below.

Throughout the rest of this chapter we assume, unless otherwise stated, that
the claim-size distribution has a density fX . This is for ease of exposition and
to avoid a few minor complications. For ruin theory in the general case, the
interested reader is referred to sects. 5.3 and 5.4 in Rolski et al. (1999).

We first show that ϕ(u) and ψ(u) are continuous.

Lemma 6.7 In the classical risk model with positive relative safety loading,
the survival probability ϕ(u) and the ruin probability ψ(u) are continuous at
u > 0 and right-continuous at u = 0.
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Proof In this proof we write Pru(·) to show explicitly the dependence on the
initial capital u. Recall that the Poisson rate is λ and the premium income rate
is c. Let T1 be the time of the first claim, which has an Exp(λ) distribution, by
results for the inter-event times in a Poisson process in §2.2.3. For all u ≥ 0
and h > 0 we have

ϕ(u) = Pru(U(t) ≥ 0 for all t > 0)

= Pru(U(t) ≥ 0 for all t > 0 | T1 > h)e−λh

+

∫ h

0
Pru(U(t) ≥ 0 for all t > 0 | T1 = s)λe−λs ds. (6.20)

If T1 > h then no claims occur in (0, h] and so U(h) = u + ch. Because of the
memoryless property of the exponential distribution (see (2.17)), we know that
T1 − h | (T1 > h) ∼ T1, and this means that, given T1 > h, then the time from
t = h to the first claim has an exponential distribution with mean 1/λ. Hence,
when T1 > h, the probabilistic behaviour of the surplus process after time t = h
is the same as that of the original process but with initial capital u + ch. Thus
(6.20) becomes

ϕ(u) = ϕ(u+ch)e−λh+

∫ h

0
Pru(U(t) ≥ 0 for all t > 0 | T1 = s)λe−λs ds. (6.21)

The integral term satisfies

0 ≤
∫ h

0
Pru(U(t) ≥ 0 for all t > 0 | T1 = s)λe−λs ds ≤

∫ h

0
λe−λs ds,

and this tends to zero as h ↓ 0. Hence, taking the limit as h ↓ 0 in (6.21), we
obtain

ϕ(u) = lim
h ↓ 0

ϕ(u + ch),

so that ϕ is right-continuous at u for u ≥ 0.
For u > 0, let h > 0 be such that u − ch > 0. Then (6.21) implies that

ϕ(u − ch) = ϕ(u)e−λh +

∫ h

0
Pru−ch(U(t) ≥ 0 for all t > 0 | T1 = s)λe−λs ds.

(6.22)
Letting h ↓ 0, we find that

lim
h↓0

ϕ(u − ch) = ϕ(u),

so that ϕ(u) is left-continuous at u > 0. Thus ϕ(u) is continous at all u > 0 and
right-continous at u = 0. Since ψ(u) = 1 − ϕ(u), the same is true for ψ(u). �



284 Ruin theory for the classical risk model

Lemma 6.8 shows that the survival probability ϕ(u) and the ruin probability
ψ(u) each satisfy an integro-differential equation. It is a side result of the proof
of the lemma that (at least when FX has a density) the functions ϕ(u) and ψ(u)
are differentiable at u > 0. For the general case, see sect. 5.3.1 in Rolski et al.
(1999).

Lemma 6.8 In the classical risk model with Poisson rate λ, premium rate c,
claim-size distribution function FX (with density fX) and positive relative
safety loading, the survival probability ϕ(u) satisfies, for u > 0,

ϕ′(u) =
λ

c
ϕ(u) − λ

c

∫ u

0
ϕ(u − x) fX(x)dx, (6.23)

and the ruin probability ψ(u) satisfies, for u > 0,

ψ′(u) =
λ

c
ψ(u) − λ

c
(1 − FX(u)) − λ

c

∫ u

0
ψ(u − x) fX(x)dx. (6.24)

Proof Condition on the time T1 and size X1 of the first claim to see that

ϕ(u) = Pr(U(t) ≥ 0 for all t ≥ 0)

=

∫ ∞

0

∫ ∞

0
Pr(U(t) ≥ 0∀ t ≥ 0 | X1 = x, T1 = s) fX(x)dxλe−λs ds.

If the size X1 = x of the first claim is greater than the surplus u+ cs at the time
T1 = s of the first claim, then the first claim causes ruin, and so

Pr(U(t) ≥ 0∀ t ≥ 0 | X1 = x, T1 = s) = 0 if x > u + cs.

Hence

ϕ(u) =
∫ ∞

0

∫ u+cs

0
Pr(U(t) ≥ 0∀ t ≥ 0 | X1 = x, T1 = s) fX(x)dxλe−λs ds.

When x ≤ u + cs, we know that ruin cannot occur before the time s of the
first claim, so that, in order to check that ruin does not occur, we only need to
check the surplus process after the first claim. The assumptions of the classical
risk model imply that the probabilistic behaviour of the surplus process after
the first claim is the same as that of the original surplus process, except that it
starts with capital u + cs − x. Thus we have, for x ≤ u + cs,

Pr(U(t) ≥ 0 for all t ≥ 0 | X1 = x, T1 = s) = ϕ(u + cs − x),

and so we obtain

ϕ(u) =
∫ ∞

0

∫ u+cs

0
ϕ(u + cs − x) fX(x)λe−λs dx ds.
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In the outer integral with respect to s, we make the substitution to a new
variable z = u + cs:

ϕ(u) =
∫ ∞

u

λ

c
e−λ(z−u)/c

∫ z

0
ϕ(z − x) fX(x)dx dz

=
λ

c
eλu/c

∫ ∞

u
e−λz/c

∫ z

0
ϕ(z − x) fX(x)dx dz. (6.25)

The right-hand side of (6.25) is the product of two functions of u,

ϕ(u) = h1(u)h2(u),

where

h1(u) =
λ

c
eλu/c and h2(u) =

∫ ∞

u
r(z)dz,

where r(z) = e−λz/c
∫ z

0
ϕ(z − x) fX(x)dx. It is easy to check that r(z) ≥ 0 and∫ ∞

0
r(z)dx ≤

∫ ∞

0
e−λz/c dz < ∞.

Using the continuity of ϕ in Lemma 6.7, it can be shown that r(z) is continuous.
Then, by elementary calculus (see, for example, th. 5.1 in Apostol (1967)), we
have

h′2(u) = −r(u).

We also have h′1(u) = (λ/c)h1(u). Hence ϕ(u) is differentiable with

ϕ′(u) =
λ

c
h1(u)h2(u) − h1(u)r(u)

=
λ

c
ϕ(u) − λ

c
eλu/ce−λu/c

∫ u

0
ϕ(u − x) fX(x)dx

=
λ

c
ϕ(u) − λ

c

∫ u

0
ϕ(u − x) fX(x)dx,

and we have proved the integro-differential equation (6.23) for ϕ.
To obtain the corresponding equation for ψ(u), we replace ϕ(u) in (6.23) by

1 − ψ(u) to get

−ψ′(u) =
λ

c
(
1 − ψ(u)

) − λ
c

∫ u

0

(
1 − ψ(u − x)

)
fX(x)dx

=
λ

c
(
1 − ψ(u)

) − λ
c

FX(u) +
λ

c

∫ u

0
ψ(u − x) fX(x)dx.

This means that

ψ′(u) =
λ

c
ψ(u) − λ

c
(
1 − FX(u)

) − λ
c

∫ u

0
ψ(u − x) fX(x)dx,

which is the integro-differential equation (6.24) for ψ. �
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In Lemma 6.9, we use the integro-differential equation for ϕ(u) in order to
obtain an integral equation for ϕ(u).

Lemma 6.9 In the classical risk model with Poisson rate λ, premium rate
c, claim-size distribution function FX and positive relative safety loading, the
survival probability ϕ(u) satisfies

ϕ(u) = ϕ(0) +
λ

c

∫ u

0
ϕ(u − x)

(
1 − FX(x)

)
dx. (6.26)

Proof The integro-differential equation (6.23) for ϕ says that, for all v > 0,

ϕ′(v) =
λ

c
ϕ(v) − λ

c

∫ v

0
ϕ(v − x) fX(x)dx,

and integrating this from 0 to u gives∫ u

0
ϕ′(v)dv =

λ

c

∫ u

0
ϕ(v)dv − λ

c

∫ u

0

∫ v

0
ϕ(v − x) fX(x)dx dv.

The left-hand side is ϕ(u) − ϕ(0), so that

ϕ(u) = ϕ(0) +
λ

c

∫ u

0
ϕ(v)dv − λ

c

∫ u

0

∫ v

0
ϕ(v − x) fX(x)dx dv. (6.27)

We next concentrate on the inner integral in the double integral term. Using
fX(x) = − d

dx (1 − FX(x)), FX(0) = 0 and integration by parts, we get∫ v

0
ϕ(v − x) fX(x)dx

=
[−ϕ(v − x)

(
1 − FX(x)

)]v
x=0 −

∫ v

0
ϕ′(v − x)

(
1 − FX(x)

)
dx

= −ϕ(0)
(
1 − FX(v)

)
+ ϕ(v) −

∫ v

0
ϕ′(v − x)

(
1 − FX(x)

)
dx.

The double integral in (6.27) is then as follows:∫ u

0

∫ v

0
ϕ(v − x) fX(x)dx dv = −ϕ(0)

∫ u

0

(
1 − FX(v)

)
dv +

∫ u

0
ϕ(v)dv

−
∫ u

0

∫ v

0
ϕ′(v − x)

(
1 − FX(x)

)
dx dv.

(6.28)
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We now interchange the order of integration in the third term on the right-hand
side of (6.28) to see that∫ u

0

∫ v

0
ϕ′(v − x)

(
1 − FX(x)

)
dx dv

=

∫ u

0

(
1 − FX(x)

) ∫ u

x
ϕ′(v − x)dv dx

=

∫ u

0

(
1 − FX(x)

)(
ϕ(u − x) − ϕ(0)

)
dx

=

∫ u

0
ϕ(u − x)

(
1 − FX(x)

)
dx − ϕ(0)

∫ u

0

(
1 − FX(x)

)
dx.

Insert this into (6.28) to see that∫ u

0

∫ v

0
ϕ(v − x) fX(x)dx dv

= −ϕ(0)
∫ u

0

(
1 − FX(x)

)
dx +

∫ u

0
ϕ(v)dv

−
∫ u

0
ϕ(u − x)

(
1 − FX(x)

)
dx + ϕ(0)

∫ u

0

(
1 − FX(x)

)
dx

=

∫ u

0
ϕ(v)dv −

∫ u

0
ϕ(u − x)

(
1 − FX(x)

)
dx.

By substituting this into (6.27), it is easy to check that

ϕ(u) = ϕ(0) +
λ

c

∫ u

0
ϕ(u − x)

(
1 − FX(x)

)
dx,

and the lemma is proved. �

The above result gives rise to simple expressions for ϕ(0) and ψ(0) in the
following lemma. These simple expressions show that ϕ(0) and ψ(0) depend
on the claim-size distribution only through its mean.

Lemma 6.10 In the classical risk model with Poisson rate λ, premium rate c,
mean claim size μ and positive relative safety loading θ, the survival and ruin
probabilities with zero initial capital are, respectively, given by

ϕ(0) =
θ

1 + θ
= 1 − λμ

c
and ψ(0) =

1
1 + θ

=
λμ

c
.

Proof We aim to let u → ∞ in the integral equation (6.26) for ϕ, so we
first consider ϕ(u) as u → ∞. We know that ϕ(u) is bounded (because it is a
probability), that it is non-decreasing in u (because ψ(u) is non-increasing in
u; see (6.7)), and hence limu→∞ ϕ(u) exists and is finite.
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Intuitively, we expect limu→∞ ϕ(u) to be 1, and we now indicate how this
may be shown. From the definition of ϕ(u) in (6.8), we have

ϕ(u) = Pr
(
u + ct − S (t) ≥ 0 for all t ≥ 0

)
= Pr

(
S (t) − ct ≤ u for all t ≥ 0

)
= Pr

(
L ≤ u

)
,

where L = supt≥0
(
S (t) − ct

)
is the maximum aggregate loss.

We now show that L is a proper random variable, that is we now show that
L is finite with probability 1. To do this, we consider the sample paths of the
process {S (t) − ct : t ≥ 0}, and we want to show that the supremum of this
process, L, is finite with probability 1. We have E[S (t) − ct] = (λμ − c)t,
and we know that this is negative because of positive safety loading, so we
might expect that eventually the sample paths of {S (t)− ct} are indeed negative
with probability 1. This is indeed so, as can be shown using deeper results,
for example using ths. I.2.3 and II.5.1 in Gut (1988). The sample paths of
{S (t) − ct : t ≥ 0} decrease linearly between claims and have upward jumps at
claim times, so that, with probability 1, L = supt≥0

(
S (t) − ct

)
is finite, which

means that L is a proper random variable. Therefore we have

ϕ(u) = Pr(L ≤ u)→ 1 as u→ ∞.
We now let u tend to infinity in (6.26), which, using the Monotone

Convergence Theorem (see, for example, th. 1.26 in Rudin (1986)) leads to

1 = ϕ(0) +
λ

c

∫ ∞

0

(
1 − FX(x)

)
dx. (6.29)

We can write ∫ ∞

0

(
1 − FX(x)

)
dx =

∫ ∞

0

∫
(x,∞)

FX(dt)dx,

and, interchanging the order of integration, we find that this is∫
(0,∞)

∫ t

0
dxFX(dt) =

∫
(0,∞)

tFX(dt) = μ.

So we have shown that ∫ ∞

0

(
1 − FX(x)

)
dx = μ, (6.30)

a very useful result, and one that we will use again in this chapter. Hence (6.29)
becomes

1 = ϕ(0) +
λ

c
μ,
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and we obtain

ϕ(0) = 1 − λμ
c
=

θ

1 + θ
.

Using ψ(u) = 1−ϕ(u), we see that ψ(0) = (1+ θ)−1, as given in the lemma. �

Lemmas 6.9 and 6.10 are used to obtain an integral equation for ψ(u) in the
following lemma.

Lemma 6.11 In the classical risk model with Poisson rate λ, premium rate c,
claim-size distribution function FX and positive relative safety loading, the
ruin probability ψ(u) satisfies

ψ(u) =
λ

c

∫ ∞

u

(
1 − FX(x)

)
dx +

λ

c

∫ u

0
ψ(u − x)

(
1 − FX(x)

)
dx. (6.31)

Proof Starting with the integral equation (6.26) for ϕ, we put ϕ(u) = 1−ψ(u)
and get

1 − ψ(u) = 1 − ψ(0) +
λ

c

∫ u

0

(
1 − ψ(u − x)

)(
1 − FX(x)

)
dx.

By the expression for ψ(0) in Lemma 6.10, and rearranging, this becomes

ψ(u) =
λμ

c
− λ

c

∫ u

0

(
1 − FX(x)

)
dx +

λ

c

∫ u

0
ψ(u − x)

(
1 − FX(x)

)
dx

=
λ

c

∫ ∞

u

(
1 − FX(x)

)
dx +

λ

c

∫ u

0
ψ(u − x)

(
1 − FX(x)

)
dx,

where we have used again the fact that μ =
∫ ∞

0

(
1 − FX(x)

)
dx (see (6.30)), and

the lemma is proved. �

The equations in this section form the starting point for explicit and asymp-
totic results for ϕ(u) and ψ(u) in §6.4 and §6.5. They also may be used to
give explicit solutions for ϕ(u) and ψ(u) in special cases, and the next example
illustrates the use of the integro-differential equations to obtain ψ(u) when the
claims are exponentially distributed.

Example 6.12 In a classical risk model, suppose the claims are exponentially
distributed with mean μ. Then (6.24) becomes

ψ′(u) =
λ

c
ψ(u) − λ

c
e−u/μ − λ

cμ

∫ u

0
ψ(u − x)e−x/μ dx.

We make the substitution z = u − x in the integral to get

ψ′(u) =
λ

c
ψ(u) − λ

c
e−u/μ − λ

cμ
e−u/μ

∫ u

0
ψ(z)ez/μ dz. (6.32)
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The right-hand side of (6.32) is a differentiable function of u, and so, using
similar techniques as in the proof of Lemma 6.8, we find that

ψ′′(u) =
λ

c
ψ′(u) +

λ

cμ
e−u/μ +

λ

cμ2
e−u/μ

∫ u

0
ψ(z)ez/μ dz

− λ
cμ

e−u/μψ(u)eu/μ

=
λ

c
ψ′(u) − 1

μ

(
λ

c
ψ(u) − λ

c
e−u/μ − λ

cμ
e−u/μ

∫ u

0
ψ(z)ez/μ dz

)
=

(
λ

c
− 1
μ

)
ψ′(u),

where (6.32) has been used for the last line. From Example 6.2 we have

λ

c
− 1
μ
= − θ

(1 + θ)μ
= −R,

so that

ψ′′(u)
ψ′(u)

= −R.

Integrating, we find that

log(ψ′(u)) = −Ru + c1,

where here and below we use c1, c2, c3, c4 to denote constants. The preceding
expression means that

ψ′(u) = c2e−Ru.

Another integration yields

ψ(u) = c3e−Ru + c4.

We know that ψ(0) = 1/(1 + θ) and limu→∞ ψ(u) = 1 − limu→∞ ϕ(u) = 0 (see
Lemma 6.10 and its proof). These conditions give c3 = 1/(1 + θ) and c4 = 0,
and so, for exponentially distributed claims,

ψ(u) =
1

1 + θ
e−Ru =

1
1 + θ

e−θu/((1+θ)μ).

Note that, because θ > 0, the above expression for ψ(u) is indeed smaller than
the Lundberg upper bound e−Ru (see Theorem 6.1).
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6.4 Compound geometric representations for ψ(u) and ϕ(u):
the ruin probability and the survival probability

In this section, we obtain representations of the ruin probability and survival
probability as the tail and distribution function, respectively, of a particular
compound geometric distribution. We give here a derivation of the results for
the ruin and survival probabilities via Laplace transforms.

In order to state the compound geometric results, we first define the
necessary quantities and notation. Let

fI(x) =
1 − FX(x)

μ
, x ≥ 0. (6.33)

Check that fI(x) ≥ 0 for all x, and that
∫ ∞

0
fI(x)dx = 1 (use (6.30)), so that

fI is a probability density function. The probability distribution with density
fI is called the equilibrium distribution associated with FX . It has distribution
function

FI(x) =
∫ x

0

(
1 − FX(y)

)
μ

dy. (6.34)

Equilibrium distributions are often used in applied probability, and the claim-
size equilibrium distribution will be useful in both this section and the next.

We need several Laplace transform results, which we give below. Recall that
the Laplace transform of a function h(x), x ≥ 0, is the function

h̃(s) =
∫ ∞

0
e−sxh(x)dx,

for real s-values (where the integral is defined), see chap. XIII in Feller (1971).
In the following, where we write an equation between Laplace transforms, we
tacitly understand that the relationship holds for those s values for which both
sides of the equation are finite.

(LT1) Let X be a non-negative random variable with probability density func-
tion f (x) and distribution function F(x). The Laplace transform of the
tail function 1 − F(x) is

(1 − F)˜(s) =
(1 − f̃ (s))

s
, s > 0,

(see eq. (2.7) in chap. XIII of Feller (1971)).
(LT2) If h(x) =

∫ x

0
f (x − y)g(y)dy, and f and g are integrable, then

h̃(s) = f̃ (s)g̃(s), (6.35)

(see sect. 2 in chap. XIII of Feller (1971)). We need to use this when g
is a positive bounded function and f is a probability density function,
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and in this case it is easy to verify that the Laplace transforms are finite
for s > 0 and that (6.35) is satisfied.

(LT3) If h(x) = α f (x) + βg(x), where f and g are functions and α and β

are constants, then the Laplace transform of h is h̃(s) = α f̃ (s) + βg̃(s)
(immediate from the definition of the Laplace transform).

(LT4) If Y is a random variable with probability density function fY and
moment generating function MY , then f̃Y (s) = E[e−sY ] = MY (−s)
(immediate from the definitions of the Laplace transform and the
moment generating function).

(LT5) A continuous function h is uniquely determined by its Laplace trans-
form h̃(s) in some interval a < s < ∞ (see the corollary to th. 1.4 in
sect. XIII.1 of Feller (1971)).

We now state the main theorem of this section. The expression for ψ(u) in
(6.36) below is called the Pollaczek–Khintchine formula. We discuss the inter-
pretation of the theorem in terms of compound geometric distributions after
the proof. However, you might like to see whether you can spot a compound
geometric in (6.37) below before you look at the proof or discussion.

Theorem 6.13 In the classical risk model with Poisson rate λ, premium rate
c, mean claim size μ and positive relative safety loading, the ruin probability
satisfies

ψ(u) =
∞∑

n=1

(
1 − λμ

c

) (
λμ

c

)n (
1 − F�n

I (u)
)
, (6.36)

where FI is as in (6.34) and F�n
I denotes the n-fold convolution of FI (see

§3.2.1). The survival probability is given by

ϕ(u) =
∞∑

n=0

(
1 − λμ

c

) (
λμ

c

)n

F�n
I (u). (6.37)

Proof We start with the integral equation (6.31) for ψ(u), which may be
written

ψ(u) =
λμ

c
(
1 − FI(u)

)
+
λμ

c

∫ u

0
ψ(u − x) fI(x)dx, (6.38)

where fI is as in (6.33). Note that ψ(u) is a probability, and hence bounded, so
it certainly has a Laplace transform for all s > 0. Taking the Laplace transform
of (6.38) we obtain, using (LT1), (LT2) and (LT3),

ψ̃(s) =
λμ

c
(
1 − FI

)
˜(s) +

λμ

c
ψ̃(s) f̃I(s)

=
λμ

c

(
1 − f̃I(s)

)
s

+
λμ

c
ψ̃(s) f̃I(s).
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Rearranging the above, we find that

ψ̃(s) =
1
s
λμ

c

(
1 − f̃I(s)

)(
1 − λμ

c
f̃I(s)

) . (6.39)

We now aim to link this to results in §3.4.3 for the moment generating function
of a compound geometric distribution. By (LT4), we know that f̃I(s) is MI(−s),
where MI is the moment generating function of the claim-size equilibrium
distribution. From (3.24) we know that(

1 − λμ
c

)
MI(r)(

1 − λμ
c

MI(r)
) (6.40)

is the moment generating function MG1 (r) of a compound geometric dis-
tribution function G1 with an ñb (1, 1 − λμ/c)-distributed counting random
variable and a step random variable distributed as the claim-size equilibrium
distribution. Recall that if M ∼ ñb(1, p) then

Pr(M = n) = (1 − p)n−1 p, n = 1, 2, . . . ,

so that Pr(M = 0) = 0. Thus, from (3.7), this compound distribution function
G1 has a density g1, say. By (LT4) and (6.40), the Laplace transform of g1 is

g̃1(s) = MG1 (−s) =

(
1 − λμ

c

)
MI(−s)(

1 − λμ
c

MI(−s)
) =

(
1 − λμ

c

)
f̃I(s)(

1 − λμ
c

f̃I(s)
) ,

and so

1 − g̃1(s) =
1 − f̃I(s)

1 − λμ
c

f̃I(s)
.

This means that, from (6.39), we have

ψ̃(s) =
λμ

c

(
1 − g̃1(s)

)
s

.

Using (LT1), (LT3) and (LT5) (using that ψ is continuous, see Lemma 6.7) we
deduce that

ψ(u) =
λμ

c
(
1 −G1(u)

)
. (6.41)

As a check, we note that the right-hand side gives the correct values when
u = 0 and when u → ∞. Substituting the convolution series expression (3.5)
for the compound distribution function into (6.41), we get
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ψ(u) =
λμ

c

⎛⎜⎜⎜⎜⎜⎝1 − ∞∑
n=1

(
1 − λμ

c

) (
λμ

c

)n−1

F�n
I (u)

⎞⎟⎟⎟⎟⎟⎠
=
λμ

c

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=1

(
1 − λμ

c

) (
λμ

c

)n−1

−
∞∑

n=1

(
1 − λμ

c

) (
λμ

c

)n−1

F�n
I (u)

⎞⎟⎟⎟⎟⎟⎠
=

∞∑
n=1

(
1 − λμ

c

) (
λμ

c

)n (
1 − F�n

I (u)
)
,

and (6.36) is proved.
For ϕ(u) (= 1 − ψ(u)), from (6.41) we see that

ϕ(u) = 1 − λμ
c

(1 −G1(u))

= 1 − λμ
c
+
λμ

c

∞∑
n=1

(
1 − λμ

c

) (
λμ

c

)n−1

F�n
I (u)

= 1 − λμ
c
+

∞∑
n=1

(
1 − λμ

c

) (
λμ

c

)n

F�n
I (u)

=

∞∑
n=0

(
1 − λμ

c

) (
λμ

c

)n

F�n
I (u),

where we have used F�0(u) = 1 for all u ≥ 0 (see Definition 3.6), and (6.37) is
proved. �

By the convolution series expression in (3.5) the right-hand side of (6.37)
is the distribution function G of a random sum S = Z1 + · · · + ZN , where the
counting random variable N has a geometric distribution with

Pr(N = n) =
(
1 − λμ

c

) (
λμ

c

)n

, n = 0, 1, 2, . . . , (6.42)

so that N ∼ nb(1, 1 − λμ/c) (see §3.4.3), and the step random variables, that is
the Zi, are distributed as the equilibrium distribution associated with the claim
sizes. So (6.37) says that ϕ(u) = G(u), and thus the survival probability is the
same as the compound geometric distribution function G.

Note that (6.36) can be written

ψ(u) =
∞∑

n=0

(
1 − λμ

c

) (
λμ

c

)n (
1 − F�n

I (u)
)
, (6.43)

where we have added the n = 0 term. This works because in the n = 0 term, the
factor 1 − F�0

I (u) is zero (see the definition of F�0 for a distribution function
F in Definition 3.6). Rearranging the right-hand side of (6.43) gives
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ψ(u) =
∞∑

n=0

(
1 − λμ

c

) (
λμ

c

)n

−
∞∑

n=0

(
1 − λμ

c

) (
λμ

c

)n

F�n
I (u)

= 1 −
∞∑

n=0

(
1 − λμ

c

) (
λμ

c

)n

F�n
I (u), (6.44)

and this is just ψ(u) = 1 − G(u), where G is as above. This is as expected
from ψ(u) = 1−ϕ(u) = 1−G(u). Thus the ruin probability is the tail of the
compound geometric distribution G. We obtain the following theorem.

Theorem 6.14 In the classical risk model with Poisson rate λ, premium
rate c, mean claim size μ and positive relative safety loading, the survival
probability ϕ(u) and the ruin probability ψ(u) are given by

ϕ(u) = G(u) and ψ(u) = 1 −G(u), u ≥ 0,

where G is the compound geometric distribution function

G(u) =
∞∑

n=0

(
1 − λμ

c

) (
λμ

c

)n

F�n
I (u),

and where FI is the claim-size equilibrium distribution function in (6.34).

The compound geometric representations of ϕ(u) and ψ(u) are useful
because compound geometric results and techniques from Chapter 3 are now
available for application to survival and ruin probabilities.

In Example 6.15, we illustrate how the compound geometric representation
works when the claims are exponentially distributed. Recall that in Exam-
ple 6.12, we used the integro-differential equation for ψ(u) to find an exact
expression for the ruin probability for exponential claims. The compound
geometric approach provides an alternative way to find ψ(u) in this case.

Example 6.15 For exponential claims with mean μ, the equilibrium density
and distribution functions are

fI(x) =
1
μ

e−x/μ and FI(x) = 1 − e−x/μ, x > 0,

so that the equilibrium distribution is also exponentially distributed with mean
μ. We note that the distribution of the counting random variable N in (6.42)
can be written in terms of the relative safety loading θ (using λμ/c = 1/(1+ θ))
to give

Pr(N = n) =
θ

1 + θ

(
1

1 + θ

)n

, n = 0, 1, 2, . . . ,



296 Ruin theory for the classical risk model

and so

N ∼ nb
(
1,

θ

1 + θ

)
.

We obtained an explicit form for a compound distribution function when the
counting random variable is nb(1, p) and the steps are exponentially distributed
in Example 3.18. Therefore, replacing p and q in Example 3.18 by θ/(1 + θ)
and 1/(1 + θ), respectively, we find from (3.26) that

ϕ(u) = 1 − 1
1 + θ

e−θu/((1+θ)μ), u ≥ 0.

Thus we obtain

ψ(u) = 1 − ϕ(u) =
1

1 + θ
e−θu/((1+θ)μ) =

1
1 + θ

e−Ru, u ≥ 0,

where R is the adjustment coefficient (see Example 6.2). This expression for
ψ(u) is the same as that obtained in Example 6.12.

6.5 Asymptotics for the probability of ruin

We next turn our attention to the behaviour of the ruin probability ψ(u) as u
becomes large in a classical risk model with positive relative safety loading. We
consider the “small claims” case, so that the adjustment coefficient exists. The
main result of this section, Theorem 6.20, is a classical result in ruin theory.
The proof requires results from renewal theory, which we will quote without
proof (see, for example, chap. XI in Feller (1971) and chap. V in Asmussen
(2003)). We summarise here the results that we need.

A renewal-type equation for an unknown quantity Z(u), defined for u ≥ 0,
is of the form

Z(u) = z(u) +
∫ u

0
Z(u − x) f (x)dx, (6.45)

where z(u) is a known function and f (x) is a known proper probability density
function of a positive random variable, where “proper” means that∫ ∞

0
f (x)dx = 1.

We assume that the functions Z and f are such that the integral is defined.
Equations like (6.45) have been much studied, and there are many general
results about the solution Z(u).

We note in passing that this sort of equation is similar to the integral equa-
tions that we found for ϕ and ψ in (6.26) and (6.31). These two equations can
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be put into a form that resembles (6.45), but with f (x) = (λμ/c) fI(x) (see
Exercise 6.16). This f (x) is not a proper probability density function because∫ ∞

0
f (x)dx =

λμ

c

∫ ∞

0
fI(x)dx =

λμ

c
,

and λμ/c < 1 because we have positive relative safety loading. This means
that (6.26) and (6.31) are not strictly renewal-type equations. However, they
are known as defective renewal-type equations.

Returning now to (proper) renewal-type equations as in (6.45), we quote
below (in Theorem 6.19) the main renewal theory result that we need about
the solution Z(u). First we define an integrability property that appears in
Theorem 6.19.

Definition 6.16 Let z be a non-negative function on [0,∞). For h ≥ 0 and k
a non-negative integer, let mk(h) and mk(h) be defined by

mk(h) = sup{z(y) : kh < y ≤ (k + 1)h},
mk(h) = inf{z(y) : kh < y ≤ (k + 1)h}.

Define the upper and lower sums σ̄(h) and σ(h) by

σ(h) = h
∞∑

k=0

mk(h),

σ(h) = h
∞∑

k=0

mk(h).

Then the function z is directly Riemann integrable if

σ(h) < ∞ and σ(h) < ∞ for all h > 0,

and

σ(h) − σ(h)→ 0 as h ↓ 0.

Example 6.17 Consider the function z(x) = ae−bx for x ≥ 0, where a and
b are positive constants. We show that z is directly Riemann integrable. First
note that z is decreasing, so that

mk(h) = ae−bkh and mk(h) = ae−b(k+1)h.

The upper and lower sums are

σ(h) = ah
∞∑

k=0

e−bkh =
ah

1 − e−bh
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and

σ(h) = ah
∞∑

k=0

e−b(k+1)h =
ahe−bh

1 − e−bh
,

which are both finite for all h > 0. Further we have

σ(h) − σ(h) =
ah

1 − e−bh
− ahe−bh

1 − e−bh

=
ah

1 − e−bh

(
1 − e−bh

)
= ah,

and this tends to zero as h ↓ 0. Hence the function z(x) = ae−bx is directly
Riemann integrable.

Remark 6.18 From Asmussen (2003), a function z is directly Riemann inte-
grable if it is bounded and continuous and if there exists a directly Riemann
integrable function z∗ such that z ≤ z∗.

For more on directly Riemann integrable functions, see sect. 1 of chap. XI
in Feller (1971), sect. V.4 in Asmussen (2003) and sect. 6.14 of Rolski et al.
(1999).

We are now ready to quote the relevant renewal theorem, called the Key
Renewal Theorem (see th. V.4.3 in Asmussen (2003)).

Theorem 6.19 Suppose that Z(u) satisfies the renewal-type equation (6.45).
If z ≥ 0 and is directly Riemann integrable, then

Z(u)→
∫ ∞

0
z(x)dx∫ ∞

0
x f (x)dx

as u→ ∞,

where the right-hand side is interpreted as zero if
∫ ∞

0
x f (x)dx = ∞.

Theorem 6.20 presents the Cramér–Lundberg asymptotic result for ψ(u).
We consider claim sizes that satisfy the conditions in Lemma 6.5, so that
heavy-tailed distributions are ruled out and the adjustment coefficient R exists,
satisfying R > 0 and

MX(R) − 1 = cR/λ. (6.46)

Theorem 6.20 In the classical risk model with positive relative safety load-
ing θ, suppose that the claim-size moment generating function MX(r) satisfies
conditions (i) and (ii) of Lemma 6.5, and let R be the adjustment coefficient.
Then

eRuψ(u)→ A as u→ ∞, (6.47)
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where

A =
θ

R
∫ ∞

0
xeRx fI(x)dx

=
μθ

M′X(R) − μ(1 + θ)
, (6.48)

and where fI(x) is as in (6.33).

Proof From the integral equation for ψ(u) in Lemma 6.11, it follows that

ψ(u) =
λμ

c

∫ ∞

u
fI(x)dx +

λμ

c

∫ u

0
ψ(u − x) fI(x)dx. (6.49)

We aim to use Theorem 6.19 to find an asymptotic result for eRuψ(u), and the
first step is to find a renewal-type equation of the form (6.45) for eRuψ(u). To
this end, multiply (6.49) by eRu to obtain

eRuψ(u) =
λμ

c
eRu

∫ ∞

u
fI(x)dx +

λμ

c

∫ u

0
eR(u−x)ψ(u − x)eRx fI(x)dx.

This is of the form in (6.45) with

Z(u) = eRuψ(u), u ≥ 0

z(u) =
λμ

c
eRu

∫ ∞

u
fI(x)dx, u ≥ 0

f (x) =
λμ

c
eRx fI(x), x ≥ 0. (6.50)

It is clear that z ≥ 0, so, in order to apply Theorem 6.19, we need to check
two things: (i) that f is a proper probability density function, and (ii) that z is
directly Riemann integrable.

For (i), it is immediate that f (x) ≥ 0, and, using integration by parts, we
have ∫ ∞

0
f (x)dx =

λμ

c

∫ ∞

0
eRx

(
1 − FX(x)

)
μ

dx

=
λ

c

([
eRx

R
(
1 − FX(x)

)]∞
0

+
1
R

∫ ∞

0
eRx fX(x)dx

)
=
λ

c

([
eRx

R
(
1 − FX(x)

)]∞
0

+
1
R

MX(R)

)
. (6.51)

In order to evaluate the square brackets, we need to consider

lim
x→∞ eRx(1 − FX(x)

)
.
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By the bound on the tail of the claim-size distribution given in (6.19), we can
choose r0 in (R, r∞), where r∞ is as in Lemma 6.5, such that

1 − FX(x) ≤ Ke−r0 x, (6.52)

where K = MX(r0) < ∞. Hence we have

lim
x→∞ eRx(1 − FX(x)

) ≤ lim
x→∞Ke−(r0−R)x = 0. (6.53)

So, from (6.51) and (6.46), we find∫ ∞

0
f (x)dx =

λ

cR
(MX(R) − 1) = 1.

Thus f (x) is a proper probability density function.
For (ii), we show that z satisfies the conditions of Remark 6.18. We first

note that z is non-negative and continous (because it is the product of two
continuous functions). By (6.52), we have, for all u ≥ 0,

z(u) =
λμ

c
eRu

∫ ∞

u

(1 − FX(x))
μ

dx

≤ λK
c

eRu
∫ ∞

u
e−r0 x dx

=
λK
cr0

e−(r0−R)u,

where 0 < R < r0. This shows that z is bounded above by λK/(cr0). Let
z∗(u) = ae−bu, where a = λK/(cr0) and b = r0 − R. Then by Example 6.17 the
function z∗ is directly Riemann integrable. Hence by Remark 6.18 the function
z is directly Riemann integrable, and (ii) is satisfied.

Thus we may apply Theorem 6.19 to conclude that

eRuψ(u)→
∫ ∞

0
z(x)dx∫ ∞

0
x f (x)dx

as u→ ∞. (6.54)

To evaluate the limit, we see that∫ ∞

0
z(x)dx =

λμ

c

∫ ∞

0
eRx

∫ ∞

x
fI(y)dy dx.

Interchanging the order of integration and using the definition of f (x) in (6.50)
gives
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0
z(x)dx =

λμ

c

∫ ∞

0
fI(y)

∫ y

0
eRx dx dy

=
λμ

c

∫ ∞

0
fI(y)

(
eRy − 1

)
R

dy

=
1
R

∫ ∞

0

λμ

c
eRy fI(y)dy − λμ

cR

=
1
R

∫ ∞

0
f (y)dy − λμ

cR

=
1
R

(
1 − λμ

c

)
. (6.55)

Then the limit in (6.54) is given by

1
R

(
1 − λμ

c

)
λμ

c

∫ ∞

0
xeRx fI(x)dx

=
θ

R
∫ ∞

0
xeRx fI(x)dx

, (6.56)

where the equality follows on recalling that λμ/c = 1/(1 + θ). This means that
(6.47) and the first expression for A in (6.48) are proved.

The final step is to show that the limit in (6.47) is equal to the right-hand
expression in (6.48). We observe that, by (6.52),∫ ∞

0
xeRx fI(x)dx ≤ K

μ

∫ ∞

0
xe−(r0−R)x dx,

and this is finite because R < r0. Integrating by parts, we see that the
denominator in (6.54) is∫ ∞

0
x f (x)dx =

λ

c

∫ ∞

0
xeRx(1 − FX(x)

)
dx

=
λ

c

{[(
x
R
− 1

R2

)
eRx(1 − FX(x)

)]∞
0

+

∫ ∞

0

(
x
R
− 1

R2

)
eRx fX(x)dx

}
=
λ

c

{
1

R2
+

1
R

∫ ∞

0
xeRx fX(x)dx

− 1
R2

∫ ∞

0
eRx fX(x)dx

}
,

where we have used (6.53) and the fact that limx→∞ xeRx(1−FX(x)
)
= 0, which

can be seen by applying (6.52). Thus we have, by (6.18),
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0
x f (x)dx =

λ

c

{
1

R2
+

M′X(R)

R
− MX(R)

R2

}
=
λ

c

{
M′X(R)

R
− 1

R2
(MX(R) − 1)

}
.

We know that MX(R) − 1 = cR/λ by (6.46), so that∫ ∞

0
x f (x)dx =

λ

c

{
M′X(R)

R
− c
λR

}
=

λ

cR

{
M′X(R) − c

λ

}
. (6.57)

Hence the limit is given by∫ ∞
0

z(x)dx∫ ∞
0

x f (x)dx
=

1
R

(
1 − λμ

c

)
λ

cR

(
M′X(R) − c

λ

) = μθ

M′X(R) − (1 + θ)μ
,

where the last step is obtained using λμ/c = 1/(1 + θ) and simplifying. �

Theorem 6.20 implies the Cramér–Lundberg approximation:

ψ(u) ≈ Ae−Ru for large u, (6.58)

where A is given in (6.48). Recall the the Lundberg bound ψ(u) ≤ e−Ru for all
u ≥ 0. The Cramér–Lundberg approximation (6.58) shows that the adjustment
coefficient is even more important than we have previously thought because,
as well as being the exponential decay rate of an upper bound for the ruin
probability in the Lundberg inequality, the adjustment coefficient also gives
the correct asymptotic decay rate. However, note that Theorem 6.20 does not
tell us how large u has to be for the approximation to be any good.

In order to calculate the Cramér–Lundberg approximation, we need to find
R and A. Both of these quantities depend on the whole claim-size distribution
via its moment generating function. They are not simple functions that depend
only on a few moments of the claim-size distribution, and thus it can be difficult
to evaluate the approximation explicitly, except in certain special cases. In the
following example we find A in the case of exponential claims.

Example 6.21 When claims are exponentially distributed with mean μ, we
know that R= θ/

(
(1+ θ)μ

)
(see Example 6.2). Further, since MX(r)= (1− μr)−1,

we have

M′X(r) =
μ

(1 − μr)2
,

so that

M′X(R) =
μ(

1 − θ

1 + θ

)2
= μ(1 + θ)2.
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Hence, from the second expression for A in (6.48), we obtain

A =
μθ

μ(1 + θ)2 − μ(1 + θ)
=

1
1 + θ

.

Then Theorem 6.20 gives

eRuψ(u)→ 1
1 + θ

as u→ ∞,

and the right-hand side of (6.58) shows that the Cramér–Lundberg approxima-
tion for ψ(u) is

Ae−Ru =
1

1 + θ
e−Ru.

From Examples 6.12 and 6.15 we know that

ψ(u) =
1

1 + θ
e−Ru,

so that, for exponential claims, the Cramér–Lundberg approximation is the
same as the true ψ(u).

6.6 Numerical methods for ruin quantities

In this section we consider the question of calculating the adjustment coeffi-
cient R or the probability of ruin ψ(u) for a classical risk model where we know
the claim-arrival rate λ and the claim-size distribution FX , and with known
premium accrual rate c (or, equivalently, with known relative safety loading θ).
As we have seen in earlier sections of this chapter, for certain claim-size dis-
tributions, there are explicit expressions for R and ψ(u) in terms of λ, c (or θ)
and the parameters of the claim-size distribution. But what about claim-size
distributions for which there are no such easy expressions? In this section,
we consider numerical methods which allow for the calculation of (numerical
approximations to) R and ψ(u) in these cases.

6.6.1 Numerical calculation of the adjustment coefficient

Recall from (6.10) that the adjustment coefficient R is the unique positive
solution of

MX(r) − 1 − (1 + θ)μr = 0, (6.59)
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where we assume that the conditions of Lemma 6.5 are satisfied, so that we
are sure that there is a unique positive solution of (6.59). As in the proof of
Lemma 6.5, let

h(r) = MX(r) − 1 − (1 + θ)μr,

so that R is the positive solution to h(r) = 0. Numerical search methods may
be used to find the positive solution to this equation, and we illustrate this
in Example 6.22. For details of such methods, see, for example, Conte and
de Boor (1980) or Epperson (2007).

Example 6.22 We demonstrate a numerical approach to finding R for expo-
nentially distributed claims with mean μ and positive relative safety loading θ.
For the purposes of illustrating the numerical approach, we pretend that we do
not know the true expression for R. Instead we give a numerical procedure that
starts with the input parameters of the risk model and from these produces a
sequence r0, r1, r2, . . . such that rn → R as n→ ∞.

In this example, we have

h(r) =
1

1 − μr
− 1 − (1 + θ)μr,

and this is defined for r < r∞, where r∞ = 1/μ. Here r∞ is as in Lemma 6.5,
and Example 6.6(ii) shows that r∞ = 1/μ for the exponential distribution. We
want to find the root of h(r) = 0 in the interval (0, 1/μ). The Newton–Raphson
algorithm is a numerical procedure defined by

rn+1 = rn − h(rn)
h′(rn)

, n = 1, 2, . . . ,

where, once we have selected an appropriate r0, the subsequent rn are calcu-
lated recursively. One way to find r0 is to use the upper bound on R given in
Lemma 6.4, which in this case is

R ≤ 2μθ

E[X2
1]
=
θ

μ
,

so that R is in the interval (0, θ/μ). We could then carry out a binary search of
this interval to find r0 close to R, and then use the Newton–Raphson algorithm;
we illustrate this below.

For a specific example, suppose that μ = 1 and θ = 0.2. We note in passing
that (6.59) does not depend on λ (except through θ) so that we do not need to
specify a value for λ. Thus we know that R is in (0, θ/μ) = (0, 0.2). For this
example, we have

h(r) =
1

1 − r
− 1 − 1.2r.
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We evaluate h at the midpoint of the interval (0, 0.2), and we recall that the
shape of h(r) is given in Figure 6.2. We find (using a computer) that

h(0.1) = −0.009, which means that R is in (0.1, 0.2).

Evaluating h at the midpoint of the interval (0.1, 0.2), and repeating, we obtain

h(0.15) = −0.004, which means that R is in (0.15, 0.2);
h(0.175) = 0.002, which means that R is in (0.15, 0.175).

If we take r0 = 0.1625 (the midpoint of the interval (0.15, 0.175)), then use the
Newton–Raphson algorithm (on the computer), we find that

r1 = 0.1667983,

r2 = 0.1666668,

r3 = 0.1666667.

We stop the algorithm when two successive rn are within a specified distance
from each other. If this distance is 10−6, say, then the algorithm stops with r3

and the value 0.1666667 is returned as the numerical approximation for R.
The advantage of using exponentially distributed claims for this illustrative

example is that we can see how well this procedure performs because we know
the true value of R. From Example 6.2, we have R = θ/

(
(1 + θ)μ

)
, so the true

value of R is 1/6. This means that R = 0.1666667 to seven decimal places, so r2

is correct to six decimal places. The above calculations were calculated using
the software package R (be careful: R is not to be confused with the adjustment
coefficient R). In Exercise 6.19 you are asked to write your own R function and
to investigate other choices of r0. Note especially that an inappropriate choice
of r0 can give rise to rn that converge to zero, which is another solution of
h(r) = 0, and not to the adjustment coefficient R.

6.6.2 Numerical calculation of the probability of ruin

In this subsection, we use numerical methods to evaluate the probability of ruin
ψ(u). The approach that follows exploits the representation in (6.44) of ψ(u) as
the tail of a compound geometric distribution,

ψ(u) = 1 −G(u),

where G(u) is a compound geometric distribution function for which the
counting random variable N has, for n = 0, 1, 2, . . .,

Pr(N = n) =
(
1 − λμ

c

) (
λμ

c

)n

=

(
1 − 1

1 + θ

) (
1

1 + θ

)n

, (6.60)
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and where the step random variables are iid with distribution function FI (recall
that FI is the claim-size equilibrium distribution function, defined in (6.34)).
In Example 3.22 we saw that numerical calculation of compound geometric
distributions can be carried out using either the Panjer recursion algorithm or
the FFT algorithm. Hence one or other of these numerical methods provides
the core of a numerical method for calculating ψ(u).

Here we describe how to do this using the FFT algorithm for a classical
risk model with positive relative safety loading θ, with claim-size distribution
function FX and claim-size mean μ. We illustrate the method for exponentially
distributed claims. In order to obtain the numerical approximation to the dis-
tribution function G, the first step is to discretise the step distribution, that is to
discretise the equilibrium distribution FI associated with FX . We will be work-
ing with the FFT algorithm, so we choose a discretisation parameter h (a small,
positive real number) and a truncation parameter m (a large positive integer that
is a power of 2) as we did in §3.5.2. In general, we define a (1×m)-dimensional
array equil in R such that

equil = (equil[1], equil[2], ... , equil[m])

where, for k taking the value k ≥ 1, the entry equil[k+1] contains the
value of

FI
(
(k + 0.5)h

) − FI
(
(k − 0.5)h

)
=

∫ (k+0.5)h

(k−0.5)h

1 − FX(x)
μ

dx,

and equil[1] contains the value of∫ 0.5h

0

1 − FX(x)
μ

dx.

For exponentially distributed claims with mean μ, we obtain an explicit for-
mula for equil[k+1] as follows. We know that the equilibrium distribution
associated with this particular claim-size distribution is also an Exp(1/μ) dis-
tribution (see Example 6.15), and so, for k taking the value k ≥ 1, we have that
equil[k+1] contains the value of e−(k−0.5)h/μ

(
1 − e−h/μ

)
, while equil[1]

contains the value of 1−e−h/(2μ). For other choices of claim-size distribution, it
may not be possible to evaluate equil explicitly in this way, and then the ele-
ments of the (1 × m)-dimensional array equil may be evaluated numerically.
For another approach, see Pitts (2006).

With the (1 × m)-dimensional array equil as a truncated discretised
approximation for FI , we now calculate the tail of the compound geometric
distribution with counting random variable as in (6.60) and with this truncated
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discretised distribution in equil as the step distribution. We use this tail as an
approximation to 1−G(u) and hence as an approximation to ψ(u). We give the
R code for achieving this using the FFT algorithm. Assume that the R objects
m and h already contain the chosen values of the truncation and discretisation
parameters m and h, respectively. In the R code, we illustrate the method for
exponentially distributed claims with μ = 1 and with θ = 0.1:

mu = 1

theta = 0.1

grid = 0:(m-1)

equil = exp(-(grid-0.5 )*h/mu)*(1-exp(-h/mu))

equil[1] = 1 - exp(-h/(2*mu))

q = 1/(1+theta)

gfft = (1-q)*(1-q*fft(equil))^(-1)

g = Re(fft( gfft, inverse=T)/m)

psi = 1-cumsum(g)

(see §3.5.2). Let S be a random variable with a compound geometric distri-
bution given by the true G. Then, in the preceding R code, the R object g is
a (1 × m)-dimensional array, where the value gk+1 in g[k+1] is a numerical
approximation to Pr((k − 0.5)h < S ≤ (k + 0.5)h). The R code gives psi as a
(1×m)-dimensional array, where psi[k+1] contains the value of 1−∑k+1

i=1 gi,
so that psi[k+1] contains a numerical approximation to Pr

(
S > (k + 0.5)h

)
,

that is to 1 − G
(
(k + 0.5)h

)
. Hence the value in psi[k+1] is a numerical

approximation to ψ
(
(k + 0.5)h

)
.

If we want approximations to ψ(kh), then one possibility is to take the
average of the approximations to ψ

(
(k− 0.5)h

)
and ψ

(
(k+ 0.5)h

)
, so that we

calculate (psi[k] + psi[k+1])/2. Doing this, with m = 8192 and h =
0.01 (see Example 3.22), and selecting the appropriate elements from the
resulting array, we obtain the values in the third column of Table 6.1.

For exponentially distributed claims, Example 6.15 gives an explicit expres-
sion for the true ψ(u), and we show these true values in the second column of
Table 6.1; this means that we can evaluate the quality of the FFT numerical
approximations. The absolute error is given in the fourth column of Table 6.1.
We repeated the calculations with m = 16 384 (with the same h = 0.01), and
the results are given in the final two columns of the table. We see that when
m = 8192 the FFT approximation is accurate to three decimal places, except
for u = 20 and u = 25, which are accurate to two decimal places. When
m = 16 384 the FFT approximations are correct to five decimal places. For an
approach using the Panjer recursion algorithm for this example, see Dickson
(2005), sect. 7.9.3.
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Table 6.1. Ruin probabilities for exponential claims with mean 1 and relative
safety loading 0.1, with h = 0.01

u True ψ(u) FFT Absolute FFT Absolute
(m = 8192) error (m = 16 384) error

5 0.57703311 0.57683781 0.0001952987 0.57703165 1.45 ×10−6

10 0.36626393 0.36594565 0.0003182753 0.36626237 1.56 ×10−6

15 0.23248105 0.23208491 0.0003961444 0.23247963 1.43 ×10−6

20 0.14756419 0.14711874 0.0004454511 0.14756296 1.23 ×10−6

25 0.09366437 0.09318769 0.0004766719 0.09366334 1.02 ×10−6

30 0.05945218 0.05895574 0.0004964407 0.05945134 8.47 ×10−7

6.7 Statistics for ruin quantities

So far in this chapter we have been concerned with ruin quantities such as the
adjustment coefficient R and the probability of ruin ψ(u) for a classical risk
model, where the claim-arrival rate λ, the premium accrual rate c (or equiva-
lently the relative safety loading θ) and the claim-size distribution FX are all
known. However, as for §3.7, in practice λ and FX are often unknown and must
be statistically estimated from data.

For example, suppose we have a sample T1,T2, . . . ,Tn of n inter-claim
arrival times in a classical risk model, so that the Ti are iid exponentially
distributed random variables with mean 1/λ. As in §3.7 (see also §2.4), the
maximum likelihood estimator of λ is

λ̂ =

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
i=1

Ti

⎞⎟⎟⎟⎟⎟⎠−1

.

Suppose that we also have n observations X1, X2, . . . , Xn of the claim sizes, iid
with distribution function FX. One approach is to suppose that the claim-size
distribution belongs to a parametric family with density f (x; ν), say, where
ν is a (possibly vector-valued) parameter. We could use the data X1, . . . , Xn

to construct an estimator, for example the maximum likelihood estimator, ν̂
of ν. The adjustment coefficient would then be estimated by the adjustment
coefficient belonging to a classical risk model with Poisson parameter λ̂ and
claim-size density f (x; ν̂) (see Exercise 6.22).

For certain parametric families of claim-size distributions, there are explicit
expressions for R and ψ(u) in terms of λ, ν and c (or θ). In Example 6.23 we
consider statistical estimation of ψ(u) in one such case when the claims are
exponentially distributed.
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Example 6.23 Suppose that the claims are iid with an exponential distribu-
tion with mean μ, and that μ and λ are unknown. We assume that c is known
and that c > λμ. Assume further that the available data consist of a sample
T1, . . . ,Tn of claim inter-arrival times and a sample X1, . . . , Xn of claim sizes.
This is the same set-up as in §3.7. There we obtained maximum likelihood
estimators of λ and μ to be

λ̂ = T̄−1 and μ̂ = X̄,

respectively, where T̄ =
∑n

i=1 Ti/n and X̄ =
∑n

i=1 Xi/n.
From Example 6.15, the true (but unknown) ruin probability is given by

ψ(u) =
1

1 + θ
exp

(
− θ

(1 + θ)μ
u

)
=
λμ

c
exp

(
−
(

1
μ
− λ

c

)
u

)
= g(λ, μ),

say. The plug-in estimator is the probability of ruin that belongs to a classical
risk model with Poisson rate λ̂, exponentially distributed claims with mean μ̂
and with premium accrual rate c. It is possible that we have samples such that
c < λ̂μ̂, even though the true model has c > λμ. When we do not have positive
relative safety loading, it is intuitively plausible that ruin is certain, and this can
be proved (see Asmussen (2000), cor. III.1.4). Hence we define our estimator
of ψ(u) to be

ψ̂(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ̂μ̂

c
exp

(
−
(

1
μ̂
− λ̂

c

)
u

)
if c > λ̂μ̂

1 otherwise.

As the sample size n increases, the Strong Law of Large Numbers means that,
with probability 1, λ̂ converges to λ and μ̂ converges to μ, so that, with proba-
bility 1, eventually we will have c > λ̂μ̂, and hence eventually ψ̂(u) is the same
as g(λ̂, μ̂). We use the delta method (see §3.7) to obtain

√
n
(
ψ̂(u) − ψ(u)

)
→d N

(
0, σ2(λ, μ)

)
,

where σ2(λ, μ) is obtained using (3.39). This yields (see Exercise 6.21)

σ2(λ, μ) = ψ2(u)

((
1 +

λu
c

)2
+
(
1 +

u
μ

)2)
.

The above asymptotic normality result for ψ̂(u) gives rise to an approximate
asymptotic 100α% confidence interval for ψ(u), and this confidence interval
has end points
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ψ̂(u) ± zα/2√
n

√
σ2(λ̂, μ̂),

where zα/2 is the upper 100α/2 % standard normal percentage point.

When claims are exponentially distributed, a plug-in estimator for R is
defined similarly, and a similar asymptotic normality result holds (see Exer-
cise 6.22, where you will find that the calculations for R are simpler than those
for ψ(u)).

In parametric cases where there is no explicit formula for R (or ψ(u)) in
terms of λ and ν, then we can still estimate R (or ψ(u)) by the adjustment
coefficient (or the probability of ruin) that belongs to a classical risk model with
claim-arrival rate λ̂ and claim-size density f (x; ν̂), but now we use numerical
calculation to evaluate the estimators.

In an alternative non-parametric approach, we could estimate the claim-size
distribution function by the empirical distribution function F̂n based on the
sample X1, . . . , Xn, given by

F̂n(x) =
1
n

n∑
i=1

1(Xi ≤ x). (6.61)

This means that F̂n is the distribution function of a probability measure that
assigns mass n−1 to each of X1, . . . , Xn. The adjustment coefficient is then
estimated by the adjustment coefficient belonging to a classical risk model
with Poisson parameter λ̂ and claim-size distribution function F̂n (see Grandell
(1979) and sect. 1.3 in Grandell (1991)). Note that statistical estimation of the
adjustment coefficient has also been considered by various authors, for exam-
ple Christ and Steinebach (1995), Csörgő and Steinebach (1991), Csörgő and
Teugels (1990), Embrechts and Mikosch (1991), Herkenrath (1986) and Pitts
et al. (1996).

Exercises

6.1 In a classical risk model, claims arrive at rate λ per accounting period and
premiums arrive at rate £2.1λ per accounting period. The claims have the
density function

f (x) =
1
2

e−x +
1
4

e−x/2, x > 0.

Find the Lundberg upper bound on the probability of ruin.
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6.2 Consider a classical risk model where the claims X1, X2, . . . are deter-
ministic with Pr(X1 = μ)= 1 and with relative safety loading θ > 0.
(a) Show that the conditions of Lemma 6.5 are satisfied with r∞ = ∞.
(b) Write down an equation satisfied by the adjustment coefficient R.
(c) Let Rexp be the adjustment coefficient when claims are exponentially

distributed with mean μ and the relative safety loading is θ > 0.
Show that Rexp < R, and compare the corresponding Lundberg
bounds.

6.3 Consider a classical risk model with relative safety loading θ > 0 and
with iid claims X1, X2, . . . such that there exists a constant m > 0 with
Pr(X1 < m) = 1.
(a) Show that the conditions of Lemma 6.5 are satisfied with r∞ = ∞.
(b) Show that the adjustment coefficient R satisfies

R >
1
m

log(1 + θ).

Hint: For 0 ≤ x ≤ m and R > 0, first show that

eRx ≤ x
m

(eRm − 1) + 1.

6.4 In a classical risk model with positive relative safety loading, define, for
n = 1, 2, . . .,

ψn(u) = Pr(ruin occurs on or before the nth claim, initial capital u).

Show that ψn(u)→ ψ(u) as n→ ∞, that is show (6.12).
Hint: Let An,u be the event that ruin occurs on or before the nth claim
when the initial capital is u.

6.5 Show that the adjustment coefficient for a classical risk model with rela-
tive safety loading θ > 0 and claims that have a gamma distribution with
mean 1 and variance 0.5 is given by

R =
3 + 4θ − √9 + 8θ

2(1 + θ)
.

6.6 If the claims in Exercise 6.5 are mistakenly assumed to be exponentially
distributed with mean 1, compare the resulting adjustment coefficient
Rexp with the true R found in Exercise 6.5. Compare the resulting
Lundberg bounds, and comment.

6.7 In a classical risk model, individual claim sizes are iid with density
function

f (x) =
1 + 3x

4
e−x, x > 0,

and the relative safety loading is θ = 1/4. Find the adjustment coefficient.
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6.8 Suppose claim sizes X1, X2, . . . are iid with probability density function

fX(x) =
1

(1 + x)2
, x > 0,

and let MX(r) be the moment generating function of X1. Show that, for
all positive r and M,

MX(r) >
1

(1 + M)2

∫ M

0
erx dx.

Show that the right-hand side converges to infinity as M → ∞, and hence
that MX(r) is not finite for r > 0 (see Example 6.6 (i)).

6.9 Suppose that the claim sizes X1, X2, . . . in a classical risk model have a
distribution that is the convolution of two exponential distributions, with
means 1 and 0.5, respectively, so that the claim-size density is

fX(x) = g ∗ h(x) =
∫ x

0
g(x − t)h(t)dt,

where g(x) = e−x and h(x) = 2e−2x for x > 0. The relative safety loading
is 3/8. Find the adjustment coefficient R. Compare R to the adjustment
coefficient Rg for claims with density g, and to the adjustment coefficient
Rh for claims with density h.
Hint: The moment generating function for a convolution is the product
of the separate moment generating functions.

6.10 Suppose that the adjustment coefficient exists for a classical risk model
with positive relative safety loading. Let ϕ(u) be the survival probabil-
ity with initial capital u ≥ 0. Use the Lundberg inequality to show that
ϕ(u)→ 1 as u→ ∞.

6.11 In the set-up of Exercise 6.1, show that the moment generating func-
tion of the equilibrium distribution FI associated with the claim-size
distribution is

MI(r) =
3 − 4r

3(1 − r)(1 − 2r)
.

Show that the moment generating function of the compound geometric
distribution G with counting distribution as in (6.42) and step distribution
FI can be written as follows:

M(r) =
2
7
+

A
1 − 6r

+
B

6 − 7r
,

for some constants A and B which you should find. Hence find ϕ(u)
using the representation of ϕ as the distribution function G (given in
Theorem 6.14). Show that
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ψ(u) =
20
29

e−u/6 +
5

203
e−6u/7.

6.12 In this exercise we present an alternative way to find the ruin probability
for Exercise 6.11. With the same set-up as in Exercise 6.1, write down
the integro-differential equation (6.23) and show that

ϕ′(u) =
10ϕ(u)

21
− 5e−u

21
I1(u) − 5e−u/2

42
I2(u),

where I1(u) =
∫ u

0
ϕ(z)ez dz and I2(u) =

∫ u

0
ϕ(z)ez/2 dz. Hence show that

ϕ′′(u) = − 5
42
ϕ(u) − 1

42
ϕ′(u) +

5e−u

42
I1(u).

Show that

ϕ′′′(u) +
43
42
ϕ′′(u) +

6
42
ϕ′(u) = 0.

Solve this second order differential equation for ϕ′(u), and hence show
that

ϕ(u) = C + De−u/6 + Ee−6u/7,

for constants C, D and E. Use equations for ϕ(0), ϕ(∞) and ϕ′(0) to find
C, D and E. Hence find ψ(u), and check that you get the same answer as
in Exercise 6.11.

6.13 In the set-up of Exercise 6.1, using the results of Exercises 6.11 and 6.12
for ψ(u) and Exercise 6.1 for the Lundberg upper bound, construct a
plot (use a computer) showing ψ(u) and the Lundberg upper bound, and
compare these two quantities.

6.14 In the set-up of Exercise 6.5, show that the equilibrium distribution
FI associated with the claim-size distribution has moment generating
function

MI(r) =
4 − r

(2 − r)2
.

Using an approach similar to Exercise 6.11, use the compound geometric
representation to find ϕ(u), and hence show that ψ(u) is given by

ψ(u) = Ae−Ru + Be−αu,

where R is the adjustment coefficient; you should specify α, A and B in
terms of θ.
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6.15 Let ϕ(u) be the survival probability with initial capital u in Exercise 6.14.
Use the integro-differential equation method (see Exercise 6.12) to show
that

(1 + θ)ϕ′(u) = ϕ(u) − 4e−2I(u),

where I(u) =
∫ u

0
ϕ(x)e2x dx. Show that

(1 + θ)ϕ′′′(u) + (3 + 4θ)ϕ′′(u) + 4θϕ′(u) = 0.

Hence find ϕ(u) and the ruin probability, and check that you get the same
answer as in Exercise 6.14.

6.16 In the classical risk model with positive relative safety loading, start-
ing with the integral equation (6.31) for ψ(u), show that ψ(u) satisfies a
defective renewal-type equation

ψ(u) = z(u) +
∫ u

0
ψ(u − x) f (x)dx,

where f (x) ≥ 0 for all x > 0 and
∫ ∞

0
f (x)dx < 1, that is f (x) is a

defective probability density function, and where you should specify z(u)
in terms of the equilibrium distribution FI , see (6.34), associated with the
claim-size distribution.

6.17 Find the Cramér–Lundberg approximation (6.58) for the probability of
ruin for a classical risk model with claim sizes and relative safety load-
ing as in Exercise 6.1. Investigate how good the approximation is by
comparing it to the true probability of ruin (found in Exercises 6.11
and 6.12).

6.18 Consider a classical risk model with positive relative safety loading.
Suppose that the adjustment coefficient R exists and that

ψ(u) = ae−cu + be−du, u ≥ 0,

where a, b, c and d are constants satisfying a > 0, 0 < a + b < 1 and
0 < c < d < ∞. Find the adjustment coefficient and the relative safety
loading in terms of a, b, c and d, and write down the Cramér–Lundberg
approximation for ψ(u).

6.19 For a classical risk model with exponentially distributed claims with
mean μ and with positive safety loading θ, write an R function to find
the adjustment coefficient R using the Newton–Raphson algorithm with
starting point r0.

When μ = 1 and θ = 0.2, as in Example 6.22, try r0 = 0.1625 and
check that you get r1, r2 and r3 as in the example.
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What happens if you take r0 = 0.05? Can you explain what is
going on?

6.20 For a classical risk model with deterministic claims equal to μwith prob-
ability 1 and relative safety loading θ, write an R function to find the
adjustment coefficient R using the Newton–Raphson method. Use your
function to find R when μ = 1 and θ = 0.1. Compare your numerical
answer to the adjustment coefficient for exponentially distributed claims
with mean 1 and θ = 0.1. (See also Exercise 6.2.)

6.21 Consider the estimation of ψ(u) in Example 6.23. Show that the quantity
σ2(λ, μ) in the example is given by

σ2(λ, μ) = ψ2(u)

((
1 +

λu
c

)2
+
(
1 +

u
μ

)2
)
.

6.22 In a classical risk model with known premium income rate c and
unknown claim-arrival rate λ, suppose that claims are exponentially dis-
tributed with unknown mean μ. Assume that c > λμ. Suppose that
a sample T1, . . . ,Tn of inter-arrival times and an independent sample
X1, . . . , Xn of claims are available. Construct a plug-in estimator R̂ of
the adjustment coefficient R. Obtain an asymptotic normality result for
R̂, and use this to find an approximate asymptotic 100α% confidence
interval for R.
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Case studies

7.1 Case study 1: comparing premium setting principles

We examine the use of different premium setting principles under different
models for an aggregate insurance loss S . We want to compare the differ-
ent approaches – in particular we want to obtain measures of the uncertainty
associated with the premiums set so that we can ascertain how “precise” and
reliable the premiums set by the different principles are.

We will use theory and simulated data as far as we can, and also turn to the
bootstrap resampling technique for additional enlightenment.

We will compare premiums set using some or all of the following principles
(as described in §4.1):

(1) EVP (expected value principle)
(2) SDP (standard deviation principle)
(3) VP (variance principle)
(4) QP (quantile principle)
(5) EPP (exponential premium principle)

under various distributional assumptions for the risk/aggregate loss S .
We study first the case in which we have an assumed model for the distri-

bution of S , and then the case in which we base our premiums solely on the
information in an observed sample of values of S (with no assumed model).

7.1.1 Case 1 – in the presence of an assumed model

Let us assume that S has a compound Poisson distribution S ∼ CP(λ, FX),
where λ is the claim rate and X is the individual loss variable. Further, let us
assume, for illustrative purposes, that X ∼ Exp(1/μ) (with mean μ). Using
various results in Chapters 2 and 3, we have

316
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E[X] = μ, E[X2] = 2μ2, E[S ] = λμ and Var[S ] = 2λμ2,

and the moment generating function of S is

MS (t) = exp[λ{(1 − μt)−1 − 1}].
The EVP premium using relative security loading α1 is given by

PEVP = λμ + α1 × λμ = (1 + α1)λμ.

The SDP premium using relative security loading α2 is given by

PS DP = λμ + α2 × (2λμ2)1/2.

The VP premium using relative security loading α3 is given by

PVP = λμ + α3 × 2λμ2.

The QP premium set at the 100(1 − α4)th percentile of the distribution of S is
given by PQP, where

Pr(S > PQP) = α4.

The EPP premium using the insurer’s utility parameter α5 is given by

PEPP =
1
α5

log MS (α5) =
λ

α5
[(1 − μα5)−1 − 1].

If we assume that the values of λ, μ and α1 are known, then we can, for
example, identify the values of α2, α3 and α5 that produce SDP, VP and EPP
premiums which match the EVP premium. We can, in fact, force the SDP, VP
and EPP premiums to match the EVP premium by choosing

α2 =

(
λ

2

)1/2

α1, α3 =

(
1

2μ

)
α1 and α5 =

α1

μ(1 + α1)
,

respectively.
To include the QP premium we need to have information on the (cumula-

tive) distribution function (cdf) of S . One method of getting this distributional
information is to use Panjer’s iterative approach to evaluating a discretised ver-
sion of the distribution function (see §3.5.1). We will use this approach in what
follows and also gain insight by identifying quantiles of simulated samples.

To illustrate these ideas, let us suppose that λ = 100 and μ = 1 (we are
taking the individual expected loss as our monetary unit for convenience), and
that the insurer sets an EVP premium with 50% security loading – that is,
α1 = 0.5 and PEVP = 150. To match this with SDP and VP, the insurer requires
α2 = 5/

√
2 = 3.536 and α3 = 0.25. To match with EPP, the insurer should

choose the utility function parameter to be α5 = 1/3. Using Panjer’s approach,



318 Case studies

we find that Pr(S ≤ 150) ≈ 0.999, and so, to match the other premiums,
the QP premium would have to be set at or near the 99.9th percentile of the
distribution of S . A simulation of one million values of S also produced a
relative frequency of values less than 150 of 0.999. This very high demand in
terms of quantiles reflects the light tail of the exponential and the fact that the
standard deviation of S is only

√
200 = 14.14 – the value 150 is more than 3.5

standard deviations above the mean of S . It also suggests that, under the given
model, we should consider the 50% security loading in the EVP premium as
being excessively high.

As in §3.6.1, we use a normal approximation to the distribution of the com-
pound Poisson random variable S ∼ CP(100, FX). The aggregate loss S has
mean 100 and variance 200, and we get Pr(S ≤ 150) ≈ Φ(3.536) = 0.9998,
suggesting that the percentile we should use is even higher than the 99.9% one.

A situation as above in which an insurer can be 99.9% sure of meeting
all claims using premium income only and without recall to any reserves
(which are attracting interest or other gains) is quite unrealistic – another
company will offer policies with premiums much lower than 150. So let us
consider instead an EVP premium with only 10% security loading – that is
α1 = 0.1 and PEVP = 110. To match this with the SDP, the insurer requires
α2 = 1/

√
2 = 0.7071 (which is much more consistent with the oft-quoted

commercial “rule of thumb”, which sets a premium at “mean plus half stan-
dard deviation”). The matching VP and EPP premiums have α3 = 0.05 and
α5 = 1/11. In practice, the insurer will use reserves if required to meet any
shortfall in aggregate payout – if the insurer sets aside 40 units for this pur-
pose, then there is a total sum available of 110 + 40 = 150, and we know from
the above that there is then a probability of about 0.999 of being able to meet
the commitments on this business.

Using a normal approximation to the distribution of S gives Pr(S ≤ 110) ≈
Φ(0.707) = 0.760. In addition, a Panjer recursion gave the percentile of the
distribution of S corresponding to S = 110 as the 75.6th percentile, and a
simulation of one million values of S produced a relative frequency of values
less than 110 of 0.766. Taking all this into account, we will set QP premiums
at the 76th percentile of the distribution of S .

In practice, the values of λ and μ used in the preceding expressions for EVP,
SDP, VP and EPP are not known parameters, but are sample estimates based
on past data, say λ̂ and μ̂. The estimates here will be simply the correspond-
ing sample means for relevant data over recent years (assuming stationary
behaviour over the years, these are not only the obvious estimates obtained
by the method of moments, but are also the maximum likelihood estimates;
see §2.4). These estimates have their own sampling distributions, means and
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standard deviations. In turn, the EVP, SDP, VP and EPP premiums, with
known security loadings, are statistics, that is functions of sample data with
no unknown parameters and whose values can therefore be calculated when
we have the data. The QP premium is also a statistic, as it is based on an
estimated distribution function.

The (estimates of the) EVP and SDP premiums, for example, are now

PEVP = (1 + α1)λ̂μ̂ and PS DP = λ̂μ̂ +
√

2α2λ̂
1/2μ̂,

respectively. Clearly the premiums are now complicated expressions, and their
sampling properties will be hard to establish – consider, for example, the matter
of establishing the standard error of PS DP or PQP.

With a model in place for the distributions of X and S , we can assess the dis-
tribution of the premiums by repeated simulation. Consider the case in which
we assume the model S ∼ CP(λ, FX), where X ∼ Exp(1/μ). To represent the
estimation of λ and μ from past data over, say, ten years, a simulation of ten
values of the number of losses N is performed (in the simulation N ∼ Poi(100)
was used) and the mean number is calculated, giving the estimate λ̂. For each
simulated value of N, the appropriate number of losses is simulated (in the sim-
ulation X ∼ Exp(1) with mean μ = 1 was used) and the mean of all the losses
over the ten years is calculated, giving μ̂. We then calculate our first simulated
value of each of the four premiums PEVP, PS DP, PVP and PEPP (using α1 = 0.1,
α2 = 1/

√
2, α3 = 0.05 and α5 = 1/11). We repeat this process 10 000 times,

giving vectors containing that number of values of each premium – these vec-
tors are then summarised, revealing properties of the premiums set by the four
different principles.

Selected results (from R output) are shown in Table 7.1. The results show
consistency across the four premium setting principles considered – the levels
of uncertainty (lack of precision, as measured by the standard deviations and
ranges of the simulated premiums) associated with the principles appear to be
very similar.

Simulation details See Simulation note 1 at the end of the case study.

Table 7.1. Simulation results for exponential losses

Number Min. Median Mean Max. SD Range

PEVP 10 000 90.41 110.0 110.1 130.3 4.904 39.90
PS DP 10 000 90.89 110.0 110.1 129.7 4.794 38.83
PVP 10 000 89.75 110.0 110.1 131.1 5.132 41.38
PEPP 10 000 89.69 110.0 110.1 131.2 5.155 41.52
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Table 7.2. Simulation results for exponential losses from direct
simulation of S

Number Min. Median Mean Max. SD Range

PEVP 10 000 108.3 110.0 110.0 111.8 0.4965 3.516
PS DP 10 000 108.1 110.0 110.0 112.1 0.5339 4.051
PVP 10 000 107.3 110.0 110.0 112.7 0.6847 5.374
PEPP 10 000 107.2 110.0 110.1 112.8 0.7164 5.609
PQP 10 000 107.3 109.7 109.7 112.8 0.6581 5.453

A second approach does not involve estimating λ and μ separately from past
data each time – it is not designed to include an allowance for parameter uncer-
tainty. In this approach we simply simulate a sample of values of the aggregate
loss S (here a sample size of 1000 was used) and use the sample mean and
variance as estimates of E[S ] and Var[S ]. These estimates are then used in the
calculation of the EVP, SDP and VP premiums. For the EPP premium, we do
need estimates of λ and μ, and we get these indirectly from the sample mean
and variance (using method of moments estimation). For illustrative purposes,
we also include the QP premium as found by identifying the 76th percentile
of the sample values of S . We then repeat this process 10 000 times, giving
vectors containing that number of values of each premium – these vectors are
then summarised, revealing properties of the premiums set by the five different
principles. Selected results are presented in Table 7.2.

The uncertainty (lack of precision) associated with the methods is very much
lower than is the case using the first approach, and the results again show rea-
sonable consistency across the five premium setting principles considered (but
less markedly so than in the first study). The results for the QP premiums are
more in line with those for the VP and EPP principles than with the others.

The results presented in Tables 7.1 and 7.2, when taken together, indicate
that the various premium setting principles we have considered perform with
reasonably similar levels of precision. We do note, however, that in each study
separately the uncertainty associated with the VP and EPP approaches is higher
than that with the EVP and SDP approaches. In each study, the EPP approach
has produced the premiums with the highest uncertainty of those approaches
included.

Based on the standard deviations, one could tentatively suggest that the
approaches fall into three groups – {EVP, SDP}, {QP} and {VP, EPP}.
Further work, especially with other models for the individual losses, is
required.
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Table 7.3. Simulation results for lognormal losses with E[X] = Var[X] = 1

Number Min. Median Mean Max. SD Range

PEVP 10 000 108.1 110.0 110.0 111.9 0.4903 3.774
PS DP 10 000 107.5 110.0 110.0 112.0 0.5397 4.414
PVP 10 000 106.9 110.0 110.0 112.7 0.6999 5.802
PQP 10 000 107.1 109.6 109.6 112.8 0.6491 4.901

Simulation details See Simulation note 2 at the end of the case study.

We now repeat the second analysis above in the case that the loss variable
X has a lognormal(μ, σ) distribution. We will consider SDP, VP and QP pre-
miums set to match the EVP premium with 10% security loading. We again
use λ = 100, and we will consider two sets of lognormal parameters, both of
which give E[X] = 1 (and E[S ] = 100) as before.

Lognormal (1) X ∼ lognormal(μ, σ) with μ = −0.5 log 2 and σ = (log 2)0.5.
From earlier results, we have E[X] = Var[X] = 1, E[S ] = 100,Var[S ] = 200,
α1 = 0.1, α2 = 1/

√
2 and α3 = 0.05, all as before.

A simulation of one million values of S produced a relative frequency of
values less than 110 of 0.769. The normal approximation for Pr(X ≤ 110) is
as before (0.760), and we will set QP premiums again at the 76th percentile of
the distribution of S . Selected results of 10 000 simulations of the premiums
are presented in Table 7.3. The results are very similar to those in the case
X ∼ Exp(1). The VP approach has produced the premiums with the highest
uncertainty of the approaches included.

Simulation details See Simulation note 3 at the end of the case study.

Lognormal (2) X ∼ lognormal(μ, σ) with μ = −0.5 log 5 and σ = (log 5)0.5.
In this case we have E[X] = 1,Var[X] = 4, E[S ] = 100, Var[S ] = 500,
α1 = 0.1, α2 = 1/

√
5 and α3 = 0.02, reflecting the change in the value of

Var[S ] from 200 to 500.
A simulation of one million values of S produced a relative frequency of val-

ues less than 110 of 0.717. The normal approximation for Pr(X ≤ 110) is now
lower, at 0.673. Taking all this into account, we will set QP premiums at the
70th percentile of the distribution of S . Selected results of 10 000 simulations
of the premiums are presented in Table 7.4.

The results for this case (X ∼ lognormal with Var[X] = 4 and Var[S ] = 500)
are noticeably different from the earlier case (X ∼ lognormal with Var[X] = 1
and Var[S ] = 200). As a result of the increase in the values of Var[X] and



322 Case studies

Table 7.4. Simulation results for lognormal losses with E[X] = 1
and Var[X] = 4

Number Min. Median Mean Max. SD Range

PEVP 10 000 107.3 110.0 110.0 112.9 0.7810 5.657
PS DP 10 000 106.7 110.0 110.0 117.7 0.9528 10.99
PVP 10 000 106.0 109.9 110.0 129.2 1.298 23.26
PQP 10 000 105.4 108.8 108.8 112.3 0.9745 6.844

Var[S ], the uncertainty associated with the SDP principle is considerably
higher than before. In the case of the VP approach, the increase in uncertainty
is even more striking. The increase in uncertainty associated with the EVP
and QP approaches is more modest. This suggests that the VP approach is the
least robust to increased uncertainty in the individual and aggregate loss dis-
tributions – this is consistent with the fact that variance itself is a non-robust
measure of spread, being highly susceptible to unusually high observations –
in the simulation one sample had an especially high variance, producing a VP
premium as high as 129.2, considerably higher than that produced by the other
approaches.

Simulation details See Simulation note 4 at the end of the case study.

It is left as an exercise for the reader to investigate the effects of using a
Pareto distribution instead of a lognormal distribution for the individual losses;
X ∼ Pa(2.5, 1.5) and X ∼ Pa(1.8, 0.8) are suggested models (they are used in
Case study 2).

7.1.2 Case 2 – without model assumptions, using bootstrap
resampling

To assess the precision of an estimator (for example, a sample statistic such
as the mean, median, maximum, standard deviation, or, in the case of paired
data, the correlation coefficient), we require information on the sampling
distribution of the estimator. In some situations we have an exact distribu-
tion to work with – for example, if our data comprise a random sample of
size n from a N(μ, σ2) distribution, then we know that X̄, the usual esti-
mator of μ, has distribution X̄ ∼ N(μ, σ2/n), giving the standard error of
estimation as s.e.(X̄) = σ/

√
n. In some cases, with large samples, we can

appeal to the asymptotic distribution of the estimator (for example, under
fairly general conditions, maximum likelihood estimators have well-known
and usable large-sample distributions).
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In many situations, however, we do not have sufficient (if any) knowledge
about the underlying population distribution to justify adopting a particular
model for the distribution of our estimator. The question then arises of how to
assess the precision of our estimator when we do not have an expression for
its standard error and all we do have is a sample of data from the unknown
population distribution.

This difficulty faces us when we try to assess the precision of premiums
set by the various principles when we do not have a model in place for the
distribution of the losses and all we have is a sample of such losses.

Bootstrap estimation is an imaginative technique which essentially replaces
distributional assumptions by the use of computing power to perform repeated
simulations of samples and consequent calculations. The method is attrac-
tively simple and is easily implemented – it can provide answers to questions
which defy traditional approaches to statistical analysis. The methodology of
the bootstrap was proposed by Efron (see Efron (1979)) – the technique has
become widely known and applied since then.

The bootstrap technique is based on using the empirical (cumulative) distri-
bution function (ecdf) (see (6.61)) of the sample we do have, in place of the
unknown (cumulative) distribution function of the underlying population vari-
able. (We do not have the distribution we need, so we “pick ourselves up by our
bootstraps” and use the only thing available – the equivalent sample version –
instead.) We now regard the ecdf as a proxy population distribution function
and sample repeatedly from it. The samples, each of which is called a bootstrap
sample, are taken with replacement. For each such sample drawn, we calculate
the value of our estimator, and, over a succession of samples, this provides an
observed sampling distribution of our estimator. The bootstrap technique is an
example of a resampling technique (the name coming from the use of repeated
samples taken from the ecdf of our actual sample).

Example 7.1 To assist the reader to appreciate the technique, we illustrate the
bootstrap technique first with a simple problem: estimate the precision of the
sample mean and median claim amounts as estimators of the mean and median
claim amounts, respectively, in the underlying population, given the following
random sample of 50 claim amounts (in some suitable units, and sorted for
convenience):

14 24 39 50 104 111 114 138 181 204
259 379 407 420 438 453 503 550 587 607
632 645 653 666 772 795 821 860 1017 1172

1278 1398 1424 1583 1794 1917 1918 1963 2074 2085
2252 2347 2460 2559 2743 3151 3189 3351 8618 10026
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Figure 7.1. Histogram of sample of 50 claim amounts.

A histogram of the claim amounts is presented in Figure 7.1 – the data are
strongly positively skewed. The sample mean and standard deviation are x̄ =
1434.9 and s = 1885.3. The sample median is 783.5. Using standard statistical
theory we can estimate the standard error of estimation using x̄ as s.e.(x̄) =
1885.3/

√
50 = 266.6. We cannot find a corresponding approximation to the

standard error of the sample median without inappropriate assumptions about,
or knowledge of, the probability density function of the underlying population
variable, knowledge we do not have.

We now assess the variation of the sample mean and median using the boot-
strap technique by taking 1000 samples from the ecdf of our sample. A graph
of the ecdf is given in Figure 7.2.

We sample from the ecdf by taking 1000 samples (each of size 50) with
replacement, one after another, from the original sample, the set of claim
amounts. We save the mean and median of each sample and then summarise
the collections of these 1000 bootstrap means and bootstrap medians. The
standard deviations of these collections give us our estimated standard errors
of estimation. Figure 7.3 displays histograms of the bootstrap means and
medians. The summary results are given in Table 7.5.
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Figure 7.2. Empirical (cumulative) distribution function of sample of 50 claim
amounts.
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Figure 7.3. Histograms of sample means (a) and medians (b) for 1000 bootstrap
samples from the original sample of 50 claim amounts.
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Table 7.5. Summary results for the bootstrap means and bootstrap
medians in Example 7.1

Min. Median Mean Max. SD Range

Means 727.7 1400 1426 2427 263.4 1699
Medians 438.0 783.5 813.3 1794 215.5 1356

The distribution of the bootstrap means has a modest positive skew – but it
will be modelled quite well by a normal distribution. The level/location of the
means is summarised as 1400 and 1426 using the median and mean, respec-
tively. The inclusion of very high values in the sample of claim amounts is
reflected in the extremes of the set of means, in particular a maximum of 2427
and a range of 1699. The standard deviation of the means is 263.4, which is
in good agreement with our earlier estimate of the standard error of estimation
s.e.(x̄)= 266.6.

The distribution of the sample medians is strongly positively skewed and
clearly far from a normal distribution – this implies that any asymptotic theory
for the sampling distribution of a median based on sampling from a normal
population may not be valid in this case. The level/location of the medians
is summarised as 783.5 (fortuitously, the same value as the median of the
original amounts) and 813.3 using the median and mean, respectively. The
sample medians are less variable than the sample means – while the minimum
observed median is lower than the minimum observed mean (438.0 versus
727.7), the maximum observed median is much smaller than the maximum
observed mean (1794 versus 2427). The range of the medians is 1356, and
the standard deviation is 215.5, much lower than the corresponding values
for the means (1699, 263.4). These results reflect the fact that, for posi-
tively skewed distributions, the sample median is a more efficient estimator
of level/location than the sample mean – the sample median is a more robust
estimator.

Simulation details See Simulation note 5 at the end of the case study.

We now return to comparing the precision of EVP, SDP, VP and QP premiums,
using a bootstrap approach to resample from a set of aggregate claim amounts.

Let us suppose we are setting premiums based on the following sample of
100 aggregate claim amounts (sorted):
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Figure 7.4. Histogram of sample of 100 aggregate claim amounts.

1091 1171 1229 1233 1285 1327 1334 1358 1367 1369
1388 1402 1424 1450 1462 1490 1498 1510 1519 1537
1543 1556 1566 1568 1618 1637 1643 1654 1663 1707
1714 1716 1718 1739 1748 1753 1754 1755 1757 1759
1814 1816 1819 1834 1837 1838 1843 1844 1859 1864
1873 1884 1885 1885 1889 1897 1899 1913 1949 1955
1999 2005 2030 2033 2051 2061 2064 2067 2096 2098
2119 2170 2180 2187 2194 2240 2240 2245 2267 2276
2314 2323 2344 2361 2368 2416 2640 2714 2715 2745
2779 2850 2970 2993 3175 3205 3380 3523 4343 5065

A histogram of the amounts is given in Figure 7.4 – the data are again strongly
positively skewed. The sample mean, variance and standard deviation are x̄ =
2002.54, s2 = 395 605 and s = 628.971, respectively.

We will base our analysis on an EVP premium with 10% security loading,
which, based on the sample above, is 1.1 × 2002.54 = 2202.8. To match this
with SDP and VP premiums, we require α2 = 0.3184 and α3 = 0.0005062. The
percentile of the data closest to 2202.8 is the 75th percentile, so we will set QP
premiums at this percentile.
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Table 7.6. Summary results using bootstrap samples

Number Min. Median Mean Max. SD Range

PEVP 10 000 1970 2200 2202 2510 69.22 539.4
PS DP 10 000 1925 2196 2200 2597 85.48 672.0
PVP 10 000 1876 2192 2200 2774 110.4 898.3
PQP 10 000 1949 2206 2204 2714 75.44 765.3

We now take 10 000 bootstrap samples from our data set consisting of the
100 aggregate claim amounts and, for each bootstrap sample, calculate the
premiums using each of the four methods. The summary results are given in
Table 7.6.

In this study the EVP approach gives the most precise (greatest consis-
tency, lowest uncertainty) results, followed in order by the QP, SDP and VP
approaches (as measured by the standard deviation). The VP approach – per-
haps not surprisingly – again reveals itself as performing poorly in this regard
relative to the other approaches.

As a result of this study, one can perhaps suggest that EVP, SDP and QP fall
into one group, with VP on its own.

Simulation details See Simulation note 6 at the end of the case study.

Simulation notes

Simulation note 1 The simulation was carried out by executing a function,
here called simprems and previously stored as a text file, as given below. The
output from the function is an R object – a list containing four vectors called
premslist.list. The command

premsim1 = simprems(10000,100,1)

executes the function once, carrying out 10 000 simulations of the numbers of
claims and corresponding aggregate claims over ten years, the calculation of
estimates of λ and μ each time, and the calculation of the premiums as given
by each of the four setting principles being considered. The results (the list of
four vectors) are held in the object premsim1 and can be retrieved using, for
example,

summary(premsim1[[2]])
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to obtain a summary of the 10 000 simulated values of PS DP. The text defining
the function is

simprems = function(n,lambda,mu){

pevp = psdp = pvp = pepp = (1:n)*0

for(i in 1:n){

nc = rpois(10,lambda)

nctot = sum(nc)

lambdahat= nctot/10

muhat = sum(rexp(nctot,1/mu))/nctot

pevp[i] = 1.1*lambdahat*muhat

psdp[i] = lambdahat*muhat + muhat*lambdahat^(0.5)

pvp[i] = lambdahat*muhat + 0.1*lambdahat*muhat^2

pepp[i] = 11*lambdahat*((1 - muhat/11)^(-1) - 1) }

premslist.list = list(pevp,psdp,pvp,pepp) }

Simulation note 2 The simulation was carried out by executing a function,
here called simprems2 and previously stored as a text file, as given below.
The output from the function is an R object – a list containing five vectors
called premslist.list. The command

premsim2 = simprems2(10000,100,1)

executes the function once, carrying out 10 000 simulations of the values of
E[S ] and Var[S ] (using the sample mean and variance of a sample of 1000
observations of S each time) and the calculation of the premiums as given
by each of the five setting principles being considered. The results (the list of
five vectors) are held in the object premsim2 and can be retrieved using, for
example,

summary(premsim2[[4]])

to obtain a summary of the 10 000 simulated values of PEPP. The text defining
the function is

simprems2 = function(n,lambda,mu){

pevp = psdp = pvp = pepp = pqp = (1:n)*0

for (j in 1:n){

nc = rpois(1000,lambda)

aggclaims = (1:1000)*0

for (i in 1:1000){

aggclaims[i] = sum(rexp(nc[i],1/mu))}

sbar = mean(aggclaims)
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ssd = sd(aggclaims)

lambdaest = 2*sbar^2/ssd^2

muest = ssd^2/(2*sbar)

pevp[j] = 1.1*sbar

psdp[j] = sbar + (1/2^(0.5))*ssd

pvp[j] = sbar + 0.05*ssd^2

pepp[j] = 11*lambdaest*((1-muest/11)^(-1) - 1)

pqp[j] = quantile(aggclaims,0.76) }

premslist.list=list(pevp,psdp,pvp,pepp,pqp) }

Simulation note 3 The simulation was carried out by executing a function,
here called simprems3 and previously stored as a text file, as given below.
The output from the function is an R object – a list containing four vectors
called premslist.list. The command

premsim3 = simprems3(10000,-0.5*log(2),(log(2))^(0.5))

executes the function once, carrying out 10 000 simulations of samples of val-
ues of S of size 1000, and using the sample mean and variance as estimates
of E[S ] and Var[S ] in the calculation of the premiums each time. The text
defining the function is

simprems3 = function(n,lambda,m,s){

pevp = psdp = pvp = pqp = (1:n)*0

for (j in 1:n){

nc = rpois(1000,lambda)

aggclaims = (1:1000)*0

for (i in 1:1000){

aggclaims[i] = sum(rlnorm(nc[i],m,s))}

sbar = mean(aggclaims)

ssd = sd(aggclaims)

pevp[j] = 1.1*sbar

psdp[j] = sbar + (1/2^(0.5))*ssd

pvp[j] = sbar + 0.05*ssd^2

pqp[j] = quantile(aggclaims,0.76) }

premslist.list=list(pevp,psdp,pvp,pqp) }

Simulation note 4 This is as in simulation note 3, except that the lines
defining psd[j], pvp[j] and pqp[j] in simprems3 are changed to

psdp[j] = sbar + (1/5^(0.5))*ssd

pvp[j] = sbar + 0.02*ssd^2

pqp[j] = quantile(aggclaims,0.7)
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This gives the function simprems4, which is executed as

premsim4 = simprems4(10000,-0.5*log(5),(log(5))^(0.5))

Simulation note 5 We define a function boot1 as follows:

boot1 = function(data,n){

sampmean = sampmedian=(1:n)*0

for(i in 1:n){

bootsamp=sample(data,replace=T)

sampmean[i] = mean(bootsamp)

sampmedian[i] = median(bootsamp) }

outlist.list = list(sampmean,sampmedian) }

and execute it using

bootsim1 = boot1(amounts,1000)

where amounts is the vector containing the sample of 50 claim amounts. The
object bootsim1 contains two vectors, the first of which contains 1000 boot-
strap means – each component is the mean of a random sample of size 50
selected with replacement from the vector amounts. Similarly, the second vec-
tor contains 1000 bootstrap medians – the components are the medians of the
bootstrap samples whose means comprise the first vector.

Simulation note 6 We define a function boot2 as follows:

boot2 = function(data,n){

pevp = psdp = pvp = pqp = (1:n)*0

for(i in 1:n){

bootsamp = sample(data,replace=T)

m1 = mean(bootsamp)

s1 = sd(bootsamp)

v1 = var(bootsamp)

pevp[i] = 1.1*m1

psdp[i] = m1 + 0.3184*s1

pvp[i] = m1 + 0005062*v1

pqp[i] = quantile(bootsamp,0.75) }

outlist.list = list(pevp,psdp,pvp,pqp) }

and execute it using

bootsim2 = boot2(aggclaims,10000)
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where aggclaims is the vector containing the sample of 100 aggregate claim
amounts. The object bootsim2 contains four vectors, the first of which con-
tains 10 000 bootstrap EVP premiums – similarly the other vectors contain the
SDP, VP and QP premiums (based on the same bootstrap samples).

7.2 Case study 2: shared liabilities – who pays what?

We examine individual and aggregate insurance losses in the situation in which
there is both a deductible and an excess of loss reinsurance arrangement in
place for each loss, as described in Chapter 5. We want to investigate how
the losses break down into payments by the three parties involved, namely the
policyholder, the direct insurer and the reinsurer.

Let us suppose that an insurer writes policies with deductible (excess) D
per individual loss, so the insured party bears the first D units of any loss and
submits a claim if the loss exceeds D. The insured loss is X − D | (X > D). In
addition, we suppose the insurer has entered into an excess of loss reinsurance
contract with another company whereby the direct insurer pays a maximum of
M units in respect of each individual claim, with the remaining amount being
borne by the reinsurer. The policyholder is involved in all losses, the direct
insurer is involved in losses which exceed D, and the reinsurer is involved in
losses which exceed D + M. While in practice the insurers are only interested
in insured losses, it is of interest to study the basic partition of a general loss
into the three basic component parts, averaging over all losses.

We will model a general individual loss (gross – before taking account of
the deductible and reinsurance) as a random variable X, and let C, Y and
Z denote the components attributable to the policyholder (the customer), the
direct insurer and the reinsurer, respectively. So we have X = C + Y + Z in all
cases.

We can express C, Y and Z as follows:

C =

{
X if X ≤ D
D if X > D,

Y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if X ≤ D
X − D if D < X ≤ D + M
M if X > D + M,

Z =

{
0 if X ≤ D + M
X − (D + M) if X > D + M.

We will derive some general theoretical expressions under three models for
the loss X: (1) an exponential distribution (for illustration), (2) a two-parameter
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Pareto distribution, and (3) a lognormal distribution. We will also compare our
theoretical results with those of simulations. We will also study the correspond-
ing results for aggregate losses, examining the expected payouts by the three
parties involved.

7.2.1 Case 1 – exponential losses

Suppose, for illustration purposes, that the individual loss variable X has an
exponential distribution with mean 1 (we are again taking the expected loss as
our monetary unit for convenience). We note that in this case Pr(X > k) = e−k,
for k ≥ 0.

We can find expressions for E[C], E[Y] and E[Z] in turn quite easily by
evaluating the integrals which define these expectations. But it is easier to find
E[Z] first and then deduce the others. We have

E[Z] =
∫ ∞

D+M
{x − (D + M)}e−x dx =

∫ ∞

0
ue−(u+D+M) du

= e−(D+M)
∫ ∞

0
ue−u = e−(D+M).

Alternatively, we can introduce the reinsurance claim variable Z∗, where

Z∗ ≡ Z | (X > D + M) ≡ X − (D + M) | (X > D + M).

Then in this exponential case we have (by appealing to the lack of memory
property (2.17)) that Z∗ has the same distribution as X, with E[Z∗] = 1. Using
the relationship

E[Z] = E[Z∗] Pr(X > D + M),

we then have again E[Z] = e−(D+M).
Now consider the variable Y +Z (≡ X −C), which is the amount attributable

to the direct insurer and reinsurer together and is easily defined as follows:

Y + Z =

{
0 if X ≤ D
X − D if X > D.

The variable Y + Z has the same structure as Z, with D + M replaced by D.
Since E[Z] = e−(D+M), it follows immediately that E[Y + Z] = e−D, and hence
that E[Y] = e−D − e−(D+M).

Finally, since 1 = E[X] = E[C] + E[Y] + E[Z], we find E[C] = 1 − e−D.
To sum up:

E[C] = 1 − e−D, E[Y] = e−D − e−(D+M) and E[Z] = e−(D+M).
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Note The fact that the expressions for E[C],E[Y] and E[Z] are the same as
those for Pr(X ≤ D),Pr(D < X ≤ D + M) and Pr(X > D + M), respectively, is
a feature of this particular case, in which X ∼ Exp(1).

We now find the expected sizes of losses conditional on the loss having a
value less than D, between D and D + M, and greater than D + M. We know
that E[Z∗] = E[X − (D + M) | (X > D + M)] = 1, and so we have

E[X | (X > D + M)] = D + M + 1.

Similarly, we have E[X − D | (X > D)] = 1, and so E[X | (X > D)] = D + 1.
Now, from

E[X] = E[X | (X ≤ D)] Pr(X ≤ D) + E[X | (X > D)] Pr(X > D),

we have 1 = E[X | (X ≤ D)](1 − e−D) + (D + 1)e−D, and so

E[X | (X ≤ D)] = 1 − De−D

1 − e−D
.

Finally, from

E[X] = E[X | (X ≤ D)] Pr(X ≤ D)

+E[X | (D < X ≤ D + M)] Pr(D < X ≤ D + M)

+E[X | (X > D + M)] Pr(X > D + M),

we have

1 =

{
1 − De−D

1 − e−D

}
(1 − e−D)

+E[X | (D < X ≤ D + M)](e−D − e−(D+M))

+ (D + M + 1)e−(D+M),

from which we get

E[X | (D < X ≤ D + M)] = 1 + D − Me−M

1 − e−M
.

To sum up:

E[X | (X ≤ D)] = 1 − De−D

1 − e−D
,

E[X | (D < X ≤ D + M)] = 1 + D − Me−M

1 − e−M
,

E[X | (X > D + M)] = D + M + 1.

Some numerical values are presented in Table 7.7. We note the obvious fact that
Pr(X ≤ D) increases as the deductible D increases. For fixed retention M, both



7.2 Case study 2: shared liabilities – who pays what? 335

Table 7.7. Probabilities for exponential losses

M = 3 M = 3 M = 5 M = 5
D = 0.1 D = 0.3 D = 0.1 D = 0.3

Pr(X ≤ D) 0.0952 0.2592 0.0952 0.2592
Pr(D < X ≤ D + M) 0.8598 0.7039 0.8987 0.7358
Pr(X > D + M) 0.0450 0.0369 0.0061 0.0050

Table 7.8. Expected values for exponential losses

M = 3 M = 3 M = 5 M = 5
D = 0.1 D = 0.3 D = 0.1 D = 0.3

E[C] 0.0952 0.2592 0.0952 0.2592
E[Y] 0.8598 0.7039 0.8987 0.7358
E[Z] 0.0450 0.0369 0.0061 0.0050
E[XLO] 0.0492 0.1425 0.0492 0.1425
E[XMED] 0.9428 1.1428 1.0661 1.2661
E[XHI] 4.1 4.3 6.1 6.3

Table 7.9. Expected values (£) when one monetary unit is £5000

M = 15 000 M = 15 000 M = 25 000 M = 25 000
D = 500 D = 1500 D = 500 D = 1500

E[C] 476 1296 476 1296
E[Y] 4299 3520 4494 3679
E[Z] 225 184 30 25
E[XLO] 246 713 246 713
E[XMED] 4714 5714 5330 6330
E[XHI] 20 500 21 500 30 500 31 500

Pr(D < X ≤ D + M) and Pr(X > D + M) decrease as the deductible increases,
while, for fixed deductible, Pr(D < X ≤ D + M) increases and Pr(X > D + M)
decreases as the retention increases.

Let E[XLO],E[XMED] and E[XHI] represent E[X | (X ≤ D)], E[X | (D <

X ≤ D + M)] and E[X | X > D + M], respectively; see Table 7.8. In the case
that our unit (E[X]) represents £5000, we have Table 7.9 (entries in £).

We note that, as we would expect, both E[C] and E[X | (X ≤ D)] increase as
the deductible D increases. For fixed retention M, both E[Y] and E[Z] decrease
as the deductible increases, while for fixed deductible E[Y] increases and E[Z]
decreases as the retention increases.



336 Case studies

Table 7.10. Theoretical results for exponential losses

Number Expected number Mean

X 10 000 – 1
C 10 000 – 0.2592
Y 10 000 – 0.7039
Z 10 000 – 0.0369
Z∗ – 369 1
X : 0 < X ≤ 0.3 – 2592 0.1425
X : 0.3 < X ≤ 3.3 – 7039 1.1428
X : X > 3.3 – 369 4.3

Table 7.11. Simulation results for exponential losses

Number Min. Median Mean Max.

x 10 000 0.000 0.699 1.013 9.336
c 10 000 0.000 0.300 0.259 0.300
y 10 000 0.000 0.399 0.713 3.000
z 10 000 0.000 0.000 0.040 6.036
zstar 394 0.004 0.662 1.023 6.036
x: 0 < x <= 0.3 2606 0.000 0.142 0.144 0.300
x: 0.3 < x <= 3.3 7000 0.300 0.948 1.150 3.299
x: x > 3.3 394 3.304 3.962 4.323 9.336

To illustrate these results, a simulation of 10 000 losses was carried out
(using R), using X ∼ Exp(1), D = 0.3 and M = 3. The loss vector x was
manipulated to produce vectors c, y, z and zstar containing the values indi-
cated by these vectors’ names, and the data were then summarised. Vectors
containing the losses less than 0.3, between 0.3 and 3.3, and greater than 3.3
were also constructed and summarised.

The corresponding theoretical results are given in Table 7.10. The simulation
results are given in Table 7.11.

Note The simple R code used to produce the required vectors of data was as
follows (xlo, xmed and xhi are the parts of the x-vector such that 0 < x≤ 0.3,
0.3 < x ≤ 3.3 and x> 3.3, respectively):

d = 0.3

m = 3

x = rexp(10000,1)

c = pmin(x,d) #’parallel min’ c[i]=min(x[i],d[i])

z = pmax(0,x-d-m) #’parallel max’
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y = x - c - z

xlo = x[x <= d]

x2 = x[x > d]

xmed = x2[x2 <= d+m]

xhi = x[x > d+m]

zstar = xhi - (d+m)

We extend the situation now to one in which we study an aggregate loss
variable S , where S has a compound Poisson distribution with claim rate λ and
individual claim size variable X ∼ Exp(1). Each loss arises on a policy with
deductible D in force. In addition, an excess of loss reinsurance arrangement
is in place whereby the direct insurer pays a maximum of M on each loss.

Let S C , S I and S R represent the aggregate amounts of the losses paid by the
policyholder (the customer), the direct insurer and the reinsurer, respectively.
Then we know the following:

S ∼ CP(λ, FX) and E[S ] = λE[X] = λ,
S C ∼ CP(λ, FC) and E[S C] = λE[C] = λ(1 − e−D),
S I ∼ CP(λ, FY ) and E[S I] = λE[Y] = λ{e−D − e−(D+M)},
S R ∼ CP(λ, FZ) and E[S R] = λE[Z] = λe−(D+M).

To illustrate these results, a simulation of 10 000 aggregate losses was carried
out (using R), using X ∼ Exp(1), λ = 100, D = 0.3 and M = 3. In this case
the expected payouts are simply 100 times what they are for individual losses,
that is E[S ] = 100 × 1 = 100, E[S C] = 100(1 − e−0.3) = 25.92, E[S I] =
100(e−0.3 − e−3.3) = 70.39, E[S R] = 100e−3.3 = 3.688. The simulation results
are given in Table 7.12. We note that the number of losses (N ∼ Poi(100))
ranges from 63 to 139, and that the means of the simulated data are in close
agreement with the theoretical results.

Note The simulation was carried out by executing a function, here called
cpsimre1 and previously stored as a text file, as given below. The output

Table 7.12. Further simulation results for exponential losses

Number Min. Median Mean Max.

N 10 000 63 100.0 99.81 139
S 10 000 49.65 99.39 99.73 156.5
S C 10 000 15.66 25.80 25.86 36.97
S I 10 000 30.47 69.84 70.18 115.1
S R 10 000 0.000 3.189 3.700 17.89
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from the function is an R object – a list containing five vectors – called
payout.list. The command

case1sim = cpsimre1(10000,100,1,0.3,3)

executes the function once, carrying out 10 000 simulations of the number of
claims and resulting aggregate payout variables in the case λ = 100, μ = 1,
D = 0.3 and M = 3. The results (the list of five vectors) are held in the object
case1sim and can be retrieved using, for example,

summary(case1sim[[3]])

to obtain a summary of the values of S C . The text defining the function is

cpsimre1 = function(n,lam,mu,d,m){

xagg = cagg = yagg = zagg = numcl = (1:n)*0

for (i in 1:n){nc = rpois(1,lam)

if(nc == 0){

numcl[i] = xagg[i] = cagg[i] = yagg[i] = zagg[i] = 0}

else{x = rexp(nc,1/mu)

c = pmin(x,d)

z = pmax(x - d - m,0)

y = x - c - z

numcl[i] = nc

xagg[i] = sum(x)

cagg[i] = sum(c)

yagg[i] = sum(y)

zagg[i] = sum(z) } }

payout.list = list(numcl,xagg,cagg,yagg,zagg) }

7.2.2 Case 2 – Pareto losses

Suppose now that the individual loss variable X has a Pareto distribution, X ∼
Pa(α, λ). This distribution is fat-tailed, whereas the exponential is thin-tailed
(see Chapter 2). For the distribution to have finite mean we require α > 1,
and for it to have finite variance we require α > 2; it should be noted that, in
many applications of the Pareto distribution as a model for insurance losses,
the value of α estimated from data is less than 2.

Before proceeding, the reader should verify that, for X ∼ Pa(α, λ) with α > 1
and for b > 0,∫ ∞

b
x f (x)dx =

∫ ∞

b
x

αλα

(λ + x)α+1
dx =

(
λ

λ + b

)α (λ + bα
α − 1

)
.
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As in Case 1 we will take the mean of the distribution of X to be our mone-
tary unit, that is E[X] = λ/(α − 1) = 1, and so we will take α = λ + 1. We then
have

Pr(X > k) =
(

λ

λ + k

)λ+1

, for k ≥ 0.

As in Case 1, we can find expressions for E[C],E[Y] and E[Z] in turn quite
easily by evaluating the integrals which define these expectations. But again it
is easier to find E[Z] first and then deduce the others:

E[Z] =
∫ ∞

D+M
{x − (D + M)} f (x)dx

=

∫ ∞

D+M
x f (x)dx − (D + M) Pr(X > D + M)

=

(
λ

λ + D + M

)λ+1 (λ + D + M
λ

+ D + M
)

− (D + M)
(

λ

λ + D + M

)λ+1

=

(
λ

λ + D + M

)λ
.

It follows (see Case 1), on replacing D + M by D in this result, that

E[Y + Z] =
(

λ

λ + D

)λ
,

and hence

E[Y] =
(

λ

λ + D

)λ
−
(

λ

λ + D + M

)λ
.

Finally, we have

E[C] = 1 −
(

λ

λ + D

)λ
.

We give some numerical values follow for the case α = 12 (X ∼ Pa(12, 11),
with mean 1 and variance 1.2 – which gives a model with variance fairly close
to that of the exponential model used in Case 1), and using the same values for
D and M, in Table 7.13.

These values are quite close to those obtained using X ∼ Exp(1) in Case 1.
An explanation may be found in the choice of the parameter values: α = 12
corresponds to a much less fat-tailed distribution than is the case for lower
values of α, and is very much higher than would normally be appropriate for
modelling insurance losses. Tables 7.14 and 7.15 follow for the more realistic
cases α = 2.5 (X ∼ Pa(2.5, 1.5), with mean 1 and variance 5) and α = 1.8
(X ∼ Pa(1.8, 0.8), with mean 1 but without a finite variance).
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Table 7.13. Probabilities when X ∼ Pa(12, 11)

M = 3 M = 3 M = 5 M = 5
D = 0.1 D = 0.3 D = 0.1 D = 0.3

Pr(X ≤ D) 0.1029 0.2759 0.1029 0.2759
Pr(D < X ≤ D + M) 0.8463 0.6811 0.8867 0.7151
Pr(X > D + M) 0.0508 0.0429 0.0103 0.0089

Table 7.14. Probabilities when X ∼ Pa(2.5, 1.5)

M = 3 M = 3 M = 5 M = 5
D = 0.1 D = 0.3 D = 0.1 D = 0.3

Pr(X ≤ D) 0.1490 0.3661 0.1490 0.3661
Pr(D < X ≤ D + M) 0.7903 0.5793 0.8264 0.6111
Pr(X > D + M) 0.0607 0.0546 0.0246 0.0229

Table 7.15. Probabilities when X ∼ Pa(1.8, 0.8)

M = 3 M = 3 M = 5 M = 5
D = 0.1 D = 0.3 D = 0.1 D = 0.3

Pr(X ≤ D) 0.1910 0.4363 0.1910 0.4363
Pr(D < X ≤ D + M) 0.7512 0.5109 0.7815 0.5379
Pr(X > D + M) 0.0578 0.0528 0.0274 0.0258

Within each table we can note the same behaviour as we found in Case 1 –
but drawing general conclusions from a comparison of the tables must be
approached with care, bearing in mind that having fixed the mean loss at 1,
the loss distribution is constrained to be of the form Pa(λ + 1, λ). For example,
under this constraint,

Pr(X > D + M) =
(

λ

λ + D + M

)λ+1

,

and for fixed D+M this probability is not monotonic (increasing or decreasing)
in λ.

Table 7.16 of tail probabilities shows the values of Pr(X > 3.1) again, along-
side columns for smaller tails, namely Pr(X > 6), Pr(X > 8) and Pr(X > 10) –
in the last three columns the probabilities are increasing as α decreases. The
expected sizes of the components of the loss under X ∼ Pa(1.8, 0.8) are given
in Table 7.17. In the case that our unit (E[X]) represents £5000, we have
Table 7.18 (entries in £).



7.2 Case study 2: shared liabilities – who pays what? 341

Table 7.16. Tail probabilities when X ∼ Pa(α, α − 1)

Pr(X > 3.1) Pr(X > 6) Pr(X > 8) Pr(X > 10)

α = 12 0.0508 0.0054 0.0014 0.0004
α = 2.5 0.0607 0.0179 0.0099 0.0061
α = 1.8 0.0578 0.0212 0.0134 0.0092

Table 7.17. Expected values when X ∼ Pa(1.8, 0.8)

M = 3 M = 3 M = 5 M = 5
D = 0.1 D = 0.3 D = 0.1 D = 0.3

E[C] 0.0899 0.2249 0.0899 0.2249
E[Y] 0.6285 0.5046 0.7079 0.5782
E[Z] 0.2816 0.2705 0.2022 0.1969

Table 7.18. Expected values (£) when one monetary unit is £5000

M = 15 000 M = 15 000 M = 25 000 M = 25 000
D = 500 D = 1500 D = 500 D = 1500

E[C] 450 1124 450 1124
E[Y] 3142 2523 3539 2891
E[Z] 1408 1353 1011 984

When we compare these results with those for Case 1 we see that, over all
losses, the policyholder has a similar expected payout (to within £200), while
that for the direct insurer is considerably reduced and that for the reinsurer is
considerably increased (hugely increased in relative terms).

To illustrate these results, a simulation of 10 000 losses was carried out
(using R), using X with a Pareto distribution with α = 1.8, mean = 1, D = 0.3
and M = 3. As in Case 1, the loss vector x was manipulated to produce vec-
tors c, y, z and zstar, and the data were then summarised. Vectors containing
the losses less than 0.3, between 0.3 and 3.3, and greater than 3.3 were again
constructed and summarised. The simulation results are given in Table 7.19.

The fat-tailed nature of the Pa(1.8, 0.8) distribution used here as our model
for the losses results in a maximum observed loss of 194.5 (compare this with
E[X] = 1): in repeated simulations, we find that the maximum observed loss
and maximum payout by the reinsurer exhibit high variation.
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Table 7.19. Simulation results when X ∼ Pa(1.8, 0.8)

Number Min. Median Mean Max.

x 10 000 0.000 0.377 1.009 194.5
c 10 000 0.000 0.300 0.225 0.300
y 10 000 0.000 0.077 0.511 3.000
z 10 000 0.000 0.000 0.273 191.2
zstar 561 0.001 1.932 4.859 191.2
x: 0 < x <= 0.3 4344 0.000 0.115 0.127 0.300
x: 0.3 < x <= 3.3 5095 0.300 0.732 0.974 3.300
x: x > 3.3 561 3.301 5.232 8.159 194.5

Note The simple R code used to produce the required vectors of data is the
same as that used in Case 1, except for the third line, in which the command

x = rexp(10000,1)

is replaced by

x = 0.8*(runif(10000)^(-1/1.8) -1)

As in Case 1 we extend the situation to one in which S has a compound Pois-
son distribution with claim rate now given the symbol ν and individual claim
size variable X ∼ Pa(λ + 1, λ), with mean 1. Each loss arises on a policy with
deductible D in force. In addition, an excess of loss reinsurance arrangement
is in place whereby the direct insurer pays a maximum of M on each loss. Let
S C , S I and S R be as before. Then we know the following:

S ∼ CP(ν, FX) and E[S ] = νE[X] = ν,

S C ∼ CP(ν, FC) and E[S C] = νE[C] = ν
{
1 −

(
λ

λ + D

)λ}
,

S I ∼ CP(ν, FY ) and E[S I] = νE[Y] = ν
{(

λ
λ + D

)λ − ( λ
λ + D + M

)λ}
,

S R ∼ CP(ν, FZ) and E[S R] = νE[Z] = ν
(

λ
λ + D + M

)λ
.

To illustrate these results, a simulation of 10 000 aggregate losses was carried
out using X ∼ Pa(1.8, 0.8), ν = 100, D = 0.3 and M = 3. The expected
payouts are simply 100 times what they are for individual losses calculated
over all losses, that is E[S ] = 100, E[S C] = 100 × 0.2249 = 22.49, E[S I] =
100 × 0.5046 = 50.46 and E[S R] = 100 × 0.2705 = 27.05.

The simulation results are given in Table 7.20. We note that the number
of losses (N ∼ Poi(100)) ranges from 66 to 141, and that the means of the
simulated data are in close agreement with the theoretical results.
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Table 7.20. Further simulation results when X ∼ Pa(1.8, 0.8)

Number Min. Median Mean Max.

N 10 000 66 100.0 99.86 141
S 10 000 36.05 92.68 100.6 2225
S C 10 000 14.01 22.39 22.45 31.74
S I 10 000 18.92 50.10 50.45 94.37
S R 10 000 0.000 18.08 27.69 2144

The fat-tailed nature of the Pa(1.8, 0.8) distribution used here as our model
for the individual losses results in a maximum observed aggregate loss of 2225
(compare this with E[X] = 100): in repeated simulations, we find that the max-
imum observed aggregate loss and maximum aggregate payout by the reinsurer
exhibit high variation.

Note The simulation was carried out by executing a function as in Case 1 –
the function, called ‘cpsimre2, is the same as cpsimre1, except that the
function is defined as

cpsimre2 = function(n,rate,lambda,d,m)

and, in line 3, the statement

nc = rpois(1,lam)

is replaced by

nc = rpois(1,rate)

and, in line 5, the statement

x = rexp(nc,1/mu)

is replaced by

x = lambda*(runif(nc)^(-1/(lambda + 1)) -1)

The command

case2sim = cpsimre2(10000,100,0.8,0.3,3)

executes the function once, carrying out 10 000 simulations of the number of
claims and resulting aggregate payout variables in the case ν = 100, λ = 0.8,
D = 0.3 and M = 3. The results (the list of five vectors) are held in the object
case2sim and can be retrieved using, for example,

summary(case2sim[[4]])

to obtain a summary of the values S I .
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7.2.3 Case 3 – lognormal losses

Suppose now that the individual loss variable X has a lognormal(μ, σ) distri-
bution (so log X ∼ N(μ, σ2)). Then Pr(X > k) = 1 − Φ ((log k − μ)/σ

)
.

For convenience, let us use the symbol g for

g(μ, σ) = eμ+σ
2/2 = E[X],

h1(x) for

h1(x, μ, σ) = Φ

(
log x − μ − σ2

σ

)
and h2(x) for

h2(x, μ, σ) = Φ

(
log x − μ

σ

)
.

Before proceeding, the reader should verify that, for X ∼ lognormal(μ, σ),∫ a

0
x f (x)dx = g h1(a)

(see Exercise 5.7).
The following results are then easily obtained:

E[C] = g h1(D) + D{1 − h2(D)},
E[Y] = g {h1(D + M) − h1(D)} − D{h2(D + M) − h2(D)}

+M{1 − h2(D + M)},
E[Z] = g {1 − h1(D + M)} − (D + M){1 − h2(D + M)}.

As before we will take the mean of the loss distribution to be E[X] = 1, so
setting μ + σ2/2 = 0 we have σ2 = −2μ, g = 1,

h1(x) = Φ

⎛⎜⎜⎜⎜⎜⎝ log x + μ√−2μ

⎞⎟⎟⎟⎟⎟⎠ , and h2(x) = Φ

⎛⎜⎜⎜⎜⎜⎝ log x − μ√−2μ

⎞⎟⎟⎟⎟⎟⎠ .
Some numerical values follow for the two lognormal distributions below:

(1) μ = −0.5 log 2 (= −0.34657) , σ = (log 2)0.5 (= 0.83255), for which
E[X] = 1 and Var[X] = 1, and

(2) μ = −0.5 log 5 (= −0.80472), σ = (log 5)0.5 (= 1.26864), for which
E[X] = 1, and Var[X] = 4.

Probabilities of the form Pr(X ≤ k) can be found easily using R as in, for
example,
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Table 7.21. Probabilities and expected values for lognormal losses
with E[X] = Var[X] = 1

M = 3 M = 3 M = 5 M = 5
D = 0.1 D = 0.3 D = 0.1 D = 0.3

Pr(X ≤ D) 0.0094 0.1515 0.0094 0.1515
Pr(D < X ≤ D + M) 0.9527 0.8163 0.9818 0.8407
Pr(X > D + M) 0.0379 0.0321 0.0088 0.0078
E[C] 0.0998 0.2858 0.0998 0.2858
E[Y] 0.8449 0.6658 0.8835 0.6991
E[Z] 0.0553 0.0484 0.0167 0.0151

Table 7.22. Probabilities and expected values for lognormal losses
with E[X] = 1 and Var[X] = 4

M = 3 M = 3 M = 5 M = 5
D = 0.1 D = 0.3 D = 0.1 D = 0.3

Pr(X ≤ D) 0.1189 0.3765 0.1189 0.3765
Pr(D < X ≤ D + M) 0.8177 0.5659 0.8536 0.5979
Pr(X > D + M) 0.0635 0.0576 0.0275 0.0257
E[C] 0.0953 0.2437 0.0953 0.2437
E[Y] 0.7031 0.5668 0.7872 0.6441
E[Z] 0.2016 0.1895 0.1175 0.1122

a = -0.5*log(2)

b = sqrt(log(2))

d = c(0.1,0.3)

plnorm(d,a,b)

which return the values 0.0094016 and 0.1515422 for Pr(X ≤ 0.1) and Pr(X ≤
0.3), respectively, in the case X ∼ lognormal(−0.5 log 2, (log 2)0.5).

(1) X ∼ lognormal with E[X] = 1 and Var[X] = 1 (see Table 7.21);
(2) X ∼ lognormal with E[X] = 1 and Var[X] = 4 (see Table 7.22).

Here, with a unit (E[X]) representing £5000, we have the corresponding
values (entries in £) in Table 7.23. When we compare these results with those
for Case 1 (X ∼ Exp with mean £5000) and Case 2 (X ∼ Pa(1.8, 0.8) in units
of £5000), we see that the policyholder’s position is similar in all three cases.
Over all losses, the direct insurer’s expected payout in this last (lognormal)
case lies between those in the exponential and Pareto cases. Again, over all
losses, the reinsurer’s expected payout in the lognormal case is about 70% of
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Table 7.23. Expected values (£) when one monetary unit is £5000

M = 15 000 M = 15 000 M = 25 000 M = 25 000
D = 500 D = 1500 D = 500 D = 1500

E[C] 476 1219 476 1219
E[Y] 3516 2834 3936 3220
E[Z] 1008 947 588 561

Table 7.24. Simulation results for lognormal losses with E[X] = 1
and Var[X] = 4

Number Min. Median Mean Max.

x 10 000 0.005 0.454 1.016 112.6
c 10 000 0.005 0.300 0.244 0.300
y 10 000 0.000 0.154 0.570 3.000
z 10 000 0.000 0.000 0.202 109.3
zstar 576 0.002 1.757 3.503 109.3
x: 0 < x <= 0.3 3792 0.005 0.146 0.152 0.300
x: 0.3 < x <= 3.3 5632 0.300 0.780 1.006 3.294
x: x > 3.3 576 3.302 5.057 6.803 112.6

that in the Pareto case when the lower retention level (M) is in place, and is a
bit less than 60% of it when the higher retention level is in place. In this limited
comparison, the direct insurer’s liability is highest under the exponential loss
model, while the reinsurer’s liability is highest under the Pareto loss model.

To illustrate the results, a simulation of 10 000 losses was carried out (using
R), using X ∼ lognormal with μ = −0.5 log 5, σ = (log 5)0.5, E[X] = 1,
Var[X] = 4, D = 0.3 and M = 3. The simulation results are given in Table 7.24.
The fat-tailed nature of the lognormal distribution used here as our model for
the losses results in a maximum observed loss of 112.6 (compare this with
E[X] = 1): in repeated simulations, the maximum observed loss and maximum
payout by the reinsurer again exhibit high variation.

Note The simple R code used to produce the required vectors of data is the
same as that used in Case 1, except for the third line, in which the command

x = rexp(10000,1)

is replaced by

x = rlnorm(10000, -0.5 * log (5), log (5)^(0.5))
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Table 7.25. Further simulation results for lognormal losses with
E[X] = 1 and Var[X] = 4

Number Min. Median Mean Max.

N 10 000 58 100.0 100.2 146
S 10 000 43.38 98.30 101.0 333.2
S C 10 000 14.64 24.38 22.44 35.76
S I 10 000 22.46 56.67 57.03 101.1
S R 10 000 0.000 15.89 19.53 236.3

As in the earlier cases, we now extend the situation to one in which we
study an aggregate loss variable S , where S has a compound Poisson distribu-
tion with claim rate λ and individual claim size variable X ∼ lognormal(μ, σ).
Each loss arises on a policy with deductible D in force. In addition, an excess
of loss reinsurance arrangement is in place whereby the direct insurer pays a
maximum of M on each loss. Let S C , S I and S R be as before. The expected
payouts are simply λ times what they are for individual losses when averaged
over all losses.

To illustrate these results, a simulation of 10 000 aggregate losses was car-
ried out (using R), using X ∼ lognormal with μ = −0.5 log 5, σ = (log 5)0.5,
λ = 100, D = 0.3 and M = 3. In this case the expected payouts are E[S ] =
100× 1 = 100, E[S C] = 100× 0.2437 = 24.37, E[S I] = 100× 0.5668 = 56.68
and E[S R] = 100 × 0.1895 = 18.95.

The simulation results are as in Table 7.25. We note that the number of losses
(N ∼ Poi(100)) ranges from 58 to 146, and that the means of the simulated data
are in close agreement with the theoretical results.

The fat-tailed nature of the lognormal distribution used here as our model
for the individual losses results in a maximum observed aggregate loss in this
particular simulation of 333.2 (compare this with E[X] = 100); in repeated
simulations, we again find that the maximum observed aggregate loss and
maximum aggregate payout by the reinsurer exhibit high variation.

Note The simulation was carried out by executing a function as in Case
1 – the function, called cpsimre3, is the same as cpsimre1, except that the
function is defined as

cpsimre3 = function(n,lam,mu,sigma,d,m)

and, in line 5, the statement

x = rexp(nc,1/mu)
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is replaced by

x = rlnorm(nc,mu,sigma)

The commands

mu = -0.5* log(5)

sigma = log (5)^(0.5)

case3sim = cpsimre3(10000, 100, mu, sigma, 0.3, 3)

executed the function once, carrying out 10 000 simulations of the number
of claims and resulting aggregate payout variables in the case λ = 100,
μ = −0.5 log 5, σ = (log 5)0.5, D = 0.3, and M = 3. The results (the list
of five vectors) are held in the object case3sim and can be retrieved using, for
example,

summary(case3sim[[5]])

to obtain a summary of the values S R.

7.3 Case study 3: reinsurance and ruin

7.3.1 Introduction

In this case study we bring together ideas and techniques from Chapters 5 and
6 in order to investigate the effect of reinsurance on various ruin quantities.
In particular, as in Chapter 6, we consider the classical risk model in which
claims X1, X2, . . . are iid positive random variables with distribution function
FX , moment generating function MX(r) and finite mean μX, arriving in a Pois-
son process with rate λ, and where the Xi are independent of the claim-arrivals
process. The premium income rate is c = (1 + θ)λμX , where θ is the relative
safety loading, assumed positive. The initial capital is u ≥ 0 , so that the surplus
at time t ≥ 0 is given by

U(t) = u + ct −
N(t)∑
i=1

Xi, (7.1)

where N(t) is the number of claims arriving in (0, t].
With this model, we consider two ruin quantities. The first is the adjustment

coefficient R (if it exists, see §6.2.3), and the second is the ruin probability
ψ(u). We hope to have small ruin probabilities. The Lundberg inequality in
Theorem 6.1 states that ψ(u) ≤ e−Ru for all u ≥ 0, so that in general we prefer
to have larger R so that the upper bound on the ruin probability is smaller. One
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way to approach reinsurance is to look at its effect on either R or ψ(u), and that
is what we do here.

Suppose now that the direct insurer takes out a reinsurance contract such
that, on a claim Xi, the direct insurer pays Yi and the reinsurer pays Zi, where

Yi = g(Xi) and Zi = Xi − g(Xi).

Thus the reinsurance is “per claim”. Proportional reinsurance with retained
proportion β and excess of loss reinsurance with retention limit M both fit into
this scheme, with g(x) = βx and g(x) = min(x,M), respectively, and there are
other possibilities for g(·), one of which is considered in §7.3.4. We require
that the function g takes the non-negative real numbers into the non-negative
real numbers, and that

(i) g(0) = 0,
(ii) 0 ≤ g(x) ≤ x, and

(iii) g(x) and x − g(x) are non-decreasing.

These are all common sense requirements for g(·): (i) means that, if the original
claim Xi is zero, then both the direct insurer’s and the reinsurer’s payouts are
zero; (ii) means that the direct insurer’s and the reinsurer’s payouts are both
non-negative and never larger than the original claim size; and (iii) means that
neither the direct insurer’s payout nor the reinsurer’s payout decreases if the
original claim size increases.

The expected payouts for the direct insurer and reinsurer are μY and μZ ,
respectively, where

μY = E[Yi] =
∫

g(x)FX(dx) and μZ = μX − μY , (7.2)

although, as in Chapter 5 and §7.2, in practice it can sometimes be easier to
find μZ by direct integration and then use μY = μX − μZ to find μY . By (ii)
above, we see that

μY =

∫
g(x)FX(dx) ≤

∫
xFX(dx) = μX (<∞).

The claim payouts for the direct insurer are Y1,Y2, . . .. These are iid because
the original Xi are iid and each Yi is g(Xi). We write FY for the distribution
function of Yi. The Yi arrive at the direct insurer at the instants when the orig-
inal claim arrives, that is the Yi arrive in a Poisson process with rate λ. We
further note that this Poisson process is independent of the Yi because of the
independence assumptions in the original risk model without reinsurance.
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The reinsurer charges a premium for taking on the reinsurance risk, and we
suppose that this is calculated using the expected value principle (see Chap-
ter 4) with security loading ζ, so that the premium rate for the reinsurer is
(1 + ζ)λμZ per unit time. As in §5.4, we require ζ > θ in order to avoid the
possibility that the direct insurer can make a profit while bearing none of the
risk.

The direct insurer’s surplus at time t, taking account of reinsurance (that is,
net of reinsurance), is UI(t), where

UI(t) = u + (1 + θ)λμXt − (1 + ζ)λμZt −
N(t)∑
i=1

Yi.

This is of the same form as (7.1), with c replaced by

cI = (1 + θ)λμX − (1 + ζ)λμZ (7.3)

and Xi replaced by Yi. Thus we can model the direct insurer’s surplus, net of
reinsurance, as that of a classical risk model with Poisson rate λ, initial capital
u, claim-size distribution function FY and premium rate cI .

For the net profit condition to be satisfied in the direct insurer’s model, net
of reinsurance, we require that cI > λμY , and, as explained in §5.4, this means
that ζ < μXθ/μZ . Putting this together with the requirement that ζ > θ, we find
(as in §5.4) that

θ < ζ <
μX

μZ
θ =

(
1 +

μY

μZ

)
θ. (7.4)

The direct insurer’s relative safety loading, taking account of reinsurance, is

θI =
cI − λμY

λμY
=

(1 + θ)λμX − (1 + ζ)λμZ − λμY

λμY

=
θμX − ζμZ

μY
= θ − (ζ − θ)μZ

μY
, (7.5)

where we have used μX − μY − μZ = 0 (see (7.2)).
Similarly, the reinsurer’s surplus is also modelled as a classical risk model,

with surplus at time t given by

URe(t) = uRe + (1 + ζ)λμZt −
N(t)∑
i=1

Zi,

where uRe is the reinsurer’s initial capital, and we note that uRe is not neces-
sarily the same as the direct insurer’s initial surplus u. Further, some of the Zi

may be zero, as happens, for example, in the case of excess of loss reinsurance.
In this case, we can equivalently model the reinsurer’s surplus by only count-
ing the non-zero claims, which arrive according to a Poisson process with rate
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λ∗ = λPr(Zi > 0). To see this, let Z∗i be as in §5.1.1, so that Z∗i is distributed as
Zi | Zi > 0. Let N∗(t) be the number of non-zero reinsurance claims in (0, t], so
that N∗(t) ∼ Poi(λ∗t) (see §5.1.3). The process {N∗(t) : t ≥ 0} inherits the prop-
erty of stationary independent increments from the corresponding property of
the Poisson process {N(t)}, and so {N∗(t)} is a Poisson process with rate λ∗. We
also have that

N(t)∑
i=1

Zi =

N∗(t)∑
i=1

Zi∗,

since we have only omitted the zero Zi in the left-hand sum in order to obtain
the right-hand sum. Hence the reinsurer’s surplus at time t is given by

URe(t) = uRe + c∗t −
N∗(t)∑
i=1

Z∗i ,

where c∗ = (1 + ζ)λ∗E[Z∗i ].
In this case study we will be concerned with ruin quantities for the direct

insurer, taking account of reinsurance, and for these we will need the moment
generating function of the Yi, given by

MY (r) = E[erY1 ] = E[erg(X1)] =
∫

erg(x)FX(dx). (7.6)

Because 0 ≤ g(x) ≤ x, we have immediately from (7.6) that, for r ≥ 0, MY (r) ≤
MX(r), so that if MX(r) is finite for some r > 0, then MY (r) is also finite. We
also know that MY (r) < ∞ for all r ≤ 0 because Yi is a non-negative random
variable.

In the following sections, we consider specific choices for g and FX , and we
look at the effects of the reinsurance on the adjustment coefficient and/or the
probability of ruin.

7.3.2 Proportional reinsurance

In this section, we consider the case of proportional reinsurance (see §5.2) with
retained proportion β, 0 < β < 1, where g(x) = βx for x ≥ 0, so that

Yi = βXi and Zi = (1 − β)Xi.

Note that the function g(x) = βx satisfies (i), (ii) and (iii) in §7.3.1. We have

μY = βμX , μZ = (1 − β)μX,
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and, from the expression for cI in (7.3),

cI = (1 + θ)λμX − (1 + ζ)λμZ

= (1 + θ)λμX − (1 + ζ)λ(1 − β)μX

= ((1 + θ) − (1 + ζ)(1 − β)) λμX

= (θ − ζ + (1 + ζ)β) λμX.

For positive relative safety loading net of reinsurance, we require cI > λμY ,
and, for given θ and ζ, this means that

(θ − ζ + (1 + ζ)β) λμX > βλμX,

or equivalently

θ − ζ + (1 + ζ)β > β.

Hence we require

β > 1 − θ
ζ
. (7.7)

From the expression for θI in (7.5), the relative safety loading net of reinsur-
ance is

θI =
θμX − ζμZ

μY
=
θμX − ζ(1 − β)μX

βμX

=
θ − ζ + βζ

β
= ζ − (ζ − θ)

β
. (7.8)

For the adjustment coefficient, assume that the moment generating function
MX(r) of the Xi satisfy conditions (i) and (ii) of Lemma 6.5, that is assume that
there exists rX,∞, 0 < rX,∞ ≤ ∞, such that MX(r) < ∞ for all r < rX,∞, and
MX(r) → ∞ as r → r−X,∞. By Lemma 6.5, the adjustment coefficient R exists
for the original direct insurer’s model without reinsurance.

For the direct insurer’s model with reinsurance, the moment generating
function of Yi (see (7.6)) is

MY (r) =
∫

erβxFX(dx) = MX(βr).

Thus we have MY (r) < ∞ for all r < rX,∞/β, and MY (r)→ ∞ as r → (rX,∞/β)−.
This means that the conditions of Lemma 6.5 are satisfied by MY (r), with r∞
in Lemma 6.5 replaced by rY,∞ = rX,∞/β, and so the adjustment coefficient
RI exists for the direct insurer taking account of reinsurance. From (6.10) the
equation for RI is

MY (r) − 1 = (1 + θI)μY r,
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and, for proportional reinsurance, this is

MX(βr) − 1 = (1 + θI)βμXr.

7.3.3 Proportional reinsurance with exponential claim sizes

We now suppose that the claims sizes X1, X2, . . . are independent exponen-
tially distributed random variables with mean μX . For the direct insurer without
reinsurance, we have

MX(r) =
1

1 − μXr
for r < rX,∞ =

1
μX
,

and from Example 6.2 the adjustment coefficient is

R =
θ

(1 + θ)μX
.

Consider proportional reinsurance with retained proportion β, where, from
(7.7), we have β ∈ (1 − θ/ζ, 1). Then Yi = βXi, so that

Pr(Yi > y) = Pr

(
Xi >

y
β

)
= exp

(
− y
βμX

)
,

and hence Y1,Y2, . . . are independent exponentially distributed random vari-
ables with mean βμX . Thus the direct insurer’s risk model including reinsur-
ance is a classical risk model with exponentially distributed claims; that is, it
is of exactly the same type as the original model for the direct insurer without
reinsurance, but with a new mean claim size βμX and a new premium income
rate cI . This is very good news, as it means that we already know that such a
model has an adjustment coefficient, and, moreover, Example 6.2 shows that,
when reinsurance is included, the direct insurer has an adjustment coefficient
given by

RI =
θI

(1 + θI)μY

=
θI

(1 + θI)βμX

=
θ − ζ + βζ

(β + θ − ζ + βζ)βμX
, (7.9)

where we have used (7.8) for θI . For a concrete example, consider the case
where μX = 1, θ = 0.3 and ζ = 0.4. Without reinsurance, the direct insurer has
adjustment coefficient

R =
θ

(1 + θ)μX
=

0.3
1.3
= 0.23077. (7.10)
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Figure 7.5. The adjustment coefficient RI with proportional reinsurance plotted
against the retained proportion β for exponentially distributed claims with mean
1, θ = 0.2 and ζ = 0.4. The dotted line shows the adjustment coefficient R without
reinsurance.

When the direct insurer takes out proportional reinsurance with retained pro-
portion β, by (7.7), we need β to satisfy β > 1 − θ/ζ, that is β > 0.25. Then we
find that, with reinsurance, the direct insurer has adjustment coefficient

RI =
0.4β − 0.1

(1.4β − 0.1)β
=

4β − 1
14β2 − β .

Figure 7.5 shows RI plotted against β for β > 0.25 and also shows the adjust-
ment coefficient R without reinsurance. Recall that in general we prefer larger
values of RI over smaller values. We see that when β = 1 (when the direct
insurer retains the whole of every claim), then, as expected, RI is the same
as the adjustment coefficient R for the original model without reinsurance.
Further, we note from the figure that for smaller values of β, taking out the rein-
surance leads to an adjustment coefficient RI which is smaller than the original
one, whereas for moderate and larger values of β, the reinsurance leads to an
increase in the adjustment coefficient. From the graph, we see that there is an
optimum retained proportion βopt that maximises the adjustment coefficient.
We can find the value of βopt via differentiation as follows. We find (after some
simplification) that

dRI

dβ
=
−56β2 + 28β − 1

(14β2 − β)2
.
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The quadratic in the numerator is zero when β = 0.0387 and β = 0.461.
Only the second of these is greater than 0.25, and so βopt = 0.461 (and
from Figure 7.5 this is a maximum). The maximum value of the adjustment
coefficient is

Ropt =
4βopt − 1

14β2
opt − βopt

= 0.3357.

We next consider the effect of proportional reinsurance on the probability
of ruin in the case of exponential claims. For the classical risk model with
exponential claims, we have an exact expression for the probability of ruin,
given in Example 6.12. Using this, we find that the probability of ruin with
initial capital u for the direct insurer without reinsurance is

ψ(u) =
1

1 + θ
e−Ru.

Recalling that the direct insurer’s model with reinsurance is also a classical risk
model with exponentially distributed claims, we know that, with reinsurance,
the direct insurer’s probability of ruin is

ψI(u) =
1

1 + θI
e−RIu,

where θI and RI are the relative safety loading and the adjustment coefficient
for retained proportion β, as given in (7.8) and (7.9), respectively. With μX = 1,
θ = 0.3 and ζ = 0.4 as above, it is interesting to consider the probability of
ruin for the particular choice β = βopt. Figure 7.6 shows this, together with
the probability of ruin without reinsurance. The retained proportion βopt pro-
duces the largest adjustment coefficient and hence the smallest upper bound
(via Lundberg’s inequality) on the probability of ruin. Nevertheless, we note
that the resulting probability of ruin is not smaller than the original ruin prob-
ability for every value of u. From Figure 7.6, we see that for small values of
u the probability of ruin without reinsurance is smaller than the probability of
ruin with reinsurance with retained proportion βopt.

For a particular value of u, we might also investigate the effect of other
choices of β. Table 7.26 shows ψI(u) for u = 5 and u = 10 for various β-
values. The value β = 1 corresponds to the original model without reinsurance.
From the table, we see that, when u = 5, the choice β = 0.5 has a smaller
ruin probability ψI(5) than that obtained with βopt. Thus, for a particular u,
it is possible to have other β-values with a smaller ruin probability than that
achieved by βopt. In addition, we see from Table 7.26 that, with some choices
of u and β, it is possible for the reinsurance to lead to a situation where the
probability of ruin ψI(u) with reinsurance is larger than the probability of ruin
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Table 7.26. Ruin probabilities ψI(5) and ψI(10) with proportional
reinsurance with retained proportion β for exponential claims with mean

1, θ = 0.3, ζ = 0.4

β 0.30 0.40 βopt = 0.46 0.50 0.60 1
ψI(5) 0.3308 0.1703 0.1578 0.1574 0.1611 0.2243
ψI(10) 0.1167 0.03335 0.02945 0.002973 0.03163 0.07653
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Figure 7.6. The probability of ruin without reinsurance (solid line) and the prob-
ability of ruin with proportional reinsurance with retained proportion βopt for
exponentially distributed claims with mean 1, θ = 0.2 and ζ = 0.4.

ψ(u) without reinsurance. For example, if u = 10, then ψ(10) = 0.07653, but
with proportional reinsurance with β = 0.3 has ψI(10) = 0.1167. We saw a
similar effect of low β-values on the direct insurer’s profitability in §5.4.

7.3.4 Excess of loss reinsurance in a layer

We now consider a different type of reinsurance where, on a claim Xi, the direct
insurer and the reinsurer pay Yi and Zi, respectively, where

Yi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xi if Xi ≤ M
M if M < Xi ≤ M + A
Xi − A if Xi > M + A

(7.11)
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and

Zi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if Xi ≤ M
Xi − M if M < Xi ≤ M + A
A if Xi > M + A,

where M and A are positive real numbers. In this set-up, the reinsurer’s payout
is the excess of the original claim Xi over the retention limit M up to a max-
imum reinsurance payout of A, that is this is excess of loss reinsurance with
retention M in a layer of size A. It is easy to check that Yi + Zi = Xi. To avoid
trivialities, throughout this section we assume that

Pr(Xi ≤ M) > 0, Pr(M < Xi ≤ M + A) > 0, Pr(Xi > M + A) > 0. (7.12)

This reinsurance scheme fits into that of §7.3.1 with, for x ≥ 0,

g(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x if x ≤ M
M if M < x ≤ M + A
x − A if x > M + A,

which may be written

g(x) = min(x,M) +max(x − M − A, 0).

Plots of g(x) and x − g(x) against x are shown in Figure 7.7. Note that, in
each plot, the scale on the vertical axis is different from the scale on the hor-
izontal axis. From Figure 7.7, we see that g(0) = 0, g(x) and x − g(x) are
non-decreasing, and 0 ≤ g(x) ≤ x, so that the conditions (i), (ii) and (iii) in
§7.3.1 are satisfied.

The reinsurer’s expected payout on a claim Xi is

μZ =

∫
(M,M+A]

(x − M)FX(dx) + A Pr(Xi > M + A) (7.13)

=

∫
(M,M+A]

xFX(dx) − M Pr(M < Xi ≤ M + A)

+ A Pr(Xi > M + A),

and the direct insurer’s expected payout per claim net of reinsurance is

μY = μX − μZ =

∫
xFX(dx) − μZ

=

∫
(0,M]

xFX(dx) +
∫

(M+A,∞)
xFX(dx)

+ M Pr(M < Xi ≤ M + A) − A Pr(Xi > M + A). (7.14)
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Figure 7.7. The functions g(x) (a) and x − g(x) (b) for excess of loss reinsurance
with retention M in a layer size A.

The moment generating function of a typical direct insurer’s payout Yi net of
reinsurance is given by (7.6) as

MY (r) =
∫

erg(x)FX(dx)

=

∫
(0,M]

erxFX(dx) + erM Pr(M < Xi ≤ M + A)

+

∫
(M+A,∞)

er(x−A)FX(dx). (7.15)

As in §7.3.2, we assume there exists rX,∞, 0 < rX,∞ ≤ ∞, such that conditions
(i) and (ii) in Lemma 6.5 are satisfied by MX(r); that is, MX(r) < ∞ for all
r < rX,∞ and MX(r) → ∞ as r → r−X,∞, so that the adjustment coefficient R
exists for the direct insurer without reinsurance. We now ask whether MY (r)
also satisfies the same conditions for some rY,∞, 0 < rY,∞ ≤ ∞, because if these
conditions are satisfied, then Lemma 6.5 implies that the adjustment coefficient
exists for the direct insurer when the above reinsurance is in place. We show
below that the two conditions are indeed satisfied for this reinsurance contract
with rY,∞ = rX,∞.

From the argument below (7.6), we know that MY (r) < ∞ for all r < rX,∞, so
MY (r) satisfies (i) in Lemma 6.5 with r∞ replaced by rX,∞. For (ii), we consider
lim

r→r−X,∞
MY (r). From (7.15), we have
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MY (r) ≥
∫

(M+A,∞)
er(x−A)FX(dx)

≥ erM Pr(X1 > M + A). (7.16)

When rX,∞ = ∞, the right-hand side of (7.16) converges to infinity as r → r−X,∞
(recall that we assume Pr(Xi > M + A) > 0 in (7.12)), and hence in this case
MY (r) converges to infinity as r → r−X,∞.

The above argument does not work when rX,∞ is finite, because in this case
the right-hand side of (7.16) has a finite limit as r → r−X,∞. Taking a different
approach, we note from (7.15) that, for 0 < r < rX,∞,

MY (r) ≥
∫

(M+A,∞)
er(x−A)FX(dx)

= e−rA

(
MX(r) −

∫
(0,M+A]

erxFX(dx)

)
≥ e−rA

(
MX(r) − er(M+A) Pr(Xi ≤ M + A)

)
= e−rA MX(r) − erM Pr(Xi ≤ M + A). (7.17)

When rX,∞ < ∞, the right-hand side of (7.17) converges to

e−rX,∞A lim
r→rX,∞

MX(r) − erX,∞M Pr(Xi ≤ M + A). (7.18)

In the finite rX,∞ case, we know that e−rX,∞A and erX,∞M are finite. By assumption,
we have lim

r→r−X,∞
MX(r) = ∞, and, putting all these things together, we see that

(7.18) is∞. Hence we must have MY (r)→ ∞ as r → r−X,∞. Thus MY (r) satisfies
conditions (i) and (ii) of Lemma 6.5 with r∞ in the lemma replaced by rX,∞.
From the statement of Lemma 6.5, this means that the adjustment coefficient
RI exists for the direct insurer when reinsurance is included. This adjustment
coefficient RI is the unique positive solution of

MY (r) − 1 = (1 + θI)μYr,

where MY is given by (7.15), μY is given by (7.14), and, from (7.5), we have

θI =
θμX − ζμZ

μY

(recall that θ and ζ are the loading factors for the direct insurer’s premium
without reinsurance and for the reinsurer’s premium, respectively).
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7.3.5 Excess of loss reinsurance in a layer with exponential claim
sizes

In this section we consider excess of loss reinsurance with retention M in a
layer of size A as described in §7.3.4, when the claim sizes X1, X2, . . . are
independent exponentially distributed random variables with mean μX and dis-
tribution function FX(x) = 1− e−x/μX , x ≥ 0. As in §7.3.3, for the direct insurer
without reinsurance, the adjustment coefficient exists and is given by

R =
θ

(1 + θ)μX
.

With reinsurance in place, the direct insurer’s claim sizes Y1,Y2, . . . are iid
with Yi given by (7.11). This means that the distribution of Yi includes a dis-
crete atom at M with probability Pr(Yi = M) = Pr(M < Xi ≤ M + A). For
exponentially distributed Xi, this is

Pr(Yi = M) = e−M/μX
(
1 − e−A/μX

)
,

so that the distribution function of Yi has a jump of this size at M. The complete
distribution function of Yi is

FY (y) = Pr(Yi ≤ y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pr(Xi ≤ y) if 0 ≤ y < M
Pr(Xi ≤ M + A) if y = M
Pr(Xi − A ≤ y) if y > M,

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
FX(y) if 0 ≤ y < M
FX(M + A) if y = M
FX(y + A) if y > M,

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − e−y/μX if 0 ≤ y < M
1 − e−(M+A)/μX if y = M
1 − e−(y+A)/μX if y > M.

The distribution function FY is shown in Figure 7.8, together with the distri-
bution function FX . We do not recognise FY as one of the standard named
distributions, which means that this case is more difficult than the propor-
tional reinsurance case in §7.3.3, where the Yi were found to be exponentially
distributed. In the excess of loss reinsurance in a layer, we must work out
quantities such as μZ , μY and MY (r) from scratch, which we now do.

From (7.13), the expected payout μZ on a claim Xi for the reinsurer is

μZ =

∫ M+A

M
(x − M)

1
μX

e−x/μX dx + Ae−(M+A)/μX .
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Figure 7.8. The distribution functions FX (a) and FY (b) for excess of loss rein-
surance with retention M in a layer size A. The function FY has a jump of size
FX(M + A) − FX(M) at M.

Substituting w = x − M, we find that

μZ = e−M/μX

∫ A

0
w

1
μX

e−w/μX dw + Ae−(M+A)/μX

= e−M/μX
(
μX − μXe−A/μX − Ae−A/μX

)
+ Ae−(M+A)/μX

= μXe−M/μX
(
1 − e−A/μX

)
, (7.19)

where we have used integration by parts to obtain the second line in (7.19).
Then the expected payout per claim for the direct insurer net of reinsurance is

μY = μX − μZ = μX

(
1 − e−M/μX + e−(M+A)/μX

)
. (7.20)

From (7.3), the direct insurer’s premium rate with reinsurance is

cI = (1 + θ)λμX − (1 + ζ)λμZ

= (1 + θ)λμX − (1 + ζ)λμXe−M/μX
(
1 − e−A/μX

)
,

and, from (7.5), the direct insurer’s relative safety loading inlcuding reinsur-
ance is

θI =
θμX − ζμZ

μY
=
θ − ζe−M/μX

(
1 − e−A/μX

)
1 − e−M/μX

(
1 − e−A/μX

) . (7.21)

Condition (7.4) becomes

θ < ζ <
μX

μZ
θ =

eM/μX

1 − e−A/μX
θ.



362 Case studies

Without reinsurance, the direct insurer’s claim-size moment generating func-
tion is

MX(r) =
1

1 − μXr
for r < rX,∞ =

1
μX
.

With reinsurance, the direct insurer’s claim-size moment generating function
is given by (7.15); that is, for r < rX,∞ = 1/μX ,

MY (r) =
∫

(0,M]
erxFX(dx) + erM Pr(M < Xi ≤ M + A)

+

∫
(M+A,∞)

er(x−A)FX(dx)

=

∫ M

0

1
μX

e(r−1/μX)x dx + erM
(
e−M/μX − e−(M+A)/μX

)
+ e−rA

∫ ∞

M+A

1
μX

e(r−1/μX)x dx.

After a few steps of calculation, this can be shown to be as follows:

MY (r) =
1

1 − μXr
+ exp

((
r − 1

μX

)
M

)
×
(
1 − e−A/μX

) (
1 − 1

1 − μXr

)
=

1
1 − μXr

− exp

((
r − 1

μX

)
M

)
×
(
1 − e−A/μX

) ( μXr
1 − μXr

)
. (7.22)

We saw in §7.3.4 that MY (r) satisfies the conditions of Lemma 6.5 with r∞
replaced by rX,∞ and rX,∞ = 1/μX for exponentially distributed claims. Thus
the adjustment coefficient RI for the direct insurer with reinsurance exists, with
RI ∈ (0, 1/μX). The equation satisfied by RI is

MY (r) − 1 = (1 + θI)μY r,

where, for exponentially distributed claims, MY (r), θI and μY are given by
(7.22), (7.21) and (7.20), respectively. This equation for RI does not have an
easy closed-form solution, and so RI must be found numerically, using the
methods of §6.6.1.

To do this, we set

h(r) = MY (r) − 1 − (1 + θI)μYr
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and then use the Newton–Raphson method to find successive approximations
r1, r2, . . . to RI , where

rn+1 = rn − h(rn)
h′(rn)

, n = 1, 2, . . . ,

and where we must choose an appropriate initial value r0. The function MY (r)
is known explicitly, and its derivative M′Y (r) may also be found; it is given by

M′Y (r) =
μX

(1 − μXr)2

+ M exp

((
r − 1

μX

)
M

) (
1 − e−A/μX

) (
1 − 1

1 − μXr

)
− exp

((
r − 1

μX

)
M

) (
1 − e−A/μX

) μX

(1 − μXr)2
.

To write the functions MY (r) and M′Y (r) neatly, we define

h1(r) = exp

((
r − 1

μX

)
M

) (
1 − e−A/μX

)
,

and then we have

MY (r) =
1 − h1(r)μXr

1 − μXr

and

M′Y (r) =
μX

(1 − μXr)2
(1 − h1(r)) − Mh1(r)

μXr
1 − μXr

.

As a preliminary to carrying out the Newton–Raphson calculation, we first give
R functions for calculating MY (r) and M′Y (r) for given M, A and μX, which we
assume are already in R objects M, A and muX. For MY (r) we have

mgfY = function(muX,M,A,r){

temp = exp((r - (1/muX))*M)*(1 - exp(-A/muX))

mgf = (1-temp*muX*r)/(1-muX*r)

mgf

}

and an R function for M′Y (r) is

mgfYderiv = function(muX,M,A,r){

temp = exp((r - (1/muX))*M)*(1 - exp(-A/muX))

mgfderiv = muX*(1-muX*r)^(-2)*(1-temp) -M*temp*muX*r/

(1-muX*r)

mgfderiv

}
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Next, we give an R function to find RI using the Newton–Raphson method.
Look back at §6.6.1 to see the basic structure of such a function. In particular,
n is the number of iterations to be carried out. The R function is

layerRexp = function(muX,theta,zeta,M,A,n,rzero){

muZ = muX*exp(-M/muX)*(1-exp(-A/muX))

muY = muX-muZ

thetaI = (theta*muX - zeta*muZ)/muY

i=1

s=(1:n)*0

s[1] = rzero

while(i<n){

i=i+1

temp1 = mfgY(muX,M,A,s[i-1]) -1 -(1+thetaI)*muY*s[i-1]

temp2 = mfgYderiv(muX,M,A,s[i-1]) - (1+thetaI)*muY

s[i] = s[i-1]-temp1/temp2

}

s

}

We illustrate this when μX = 1, θ = 0.3 and ζ = 0.4 (which are the same
values as in §7.3.3) and with M = 2 and A = 1. From (7.19) and (7.20) we
easily find that

μZ = 0.08555 and μY = 0.91445.

We also see (using (7.21)) that

θI = 0.2906.

From (7.10), we know that the adjustment coefficient for the direct insurer
without reinsurance is R = 0.23077, and one possibility is to set the initial
value in the Newton–Raphson method to be r0 = R. If we do this, and run
layerRexp as follows:

RI = layerRexp(1,0.3,0.4,2,1,10,0.23077)

then we find that the R returns the value 0.27947 for the adjustment coefficient
RI . We note that RI > R.

The R function layerRexp can be used to find RI as a function of M for var-
ious A-values. Figure 7.9 shows RI against M for A = 0.6, A = 1.0 and A = 1.4,
together with the adjustment coefficient R without reinsurance. For the range
of M-values shown, the adjustment coefficient increases as A increases. For
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Figure 7.9. The adjustment coefficient RI net of reinsurance plotted against the
retention limit M for exponentially distributed claims with mean 1, for A = 1.4
(solid), A = 1.0 (dot-dashed) and A = 0.6 (dotted line). The adjustment coefficient
R without reinsurance is shown as a horizontal line.

each of the three A-values, the adjustment coefficient RI increases to a maxi-
mum for particular maximising M-values (different for different A-values), and
then decreases. For the M- and A-values shown, the direct insurer’s adjustment
coefficient with reinsurance is greater than the original adjustment coefficient
without reinsurance.

Figure 7.10 shows RI against A for three different M-values, and also shows
R. Here the situation is more complicated, and we see that the graphs cross
over. However, for the M- and A-values shown, RI is greater than the original R.

Going one stage further, a two-dimensional plot is given in Figure 7.11,
which shows RI as a function of both M and A. The features exhibited are the
same as those described above.

If we let A = ∞ in §7.3.4, then this corresponds to excess of loss reinsurance
with retention M, and results in this case can be compared to those in Dickson
and Waters (1996).

A possible direction for extension for this case study is to explore the
effect on the adjustment coefficient when the claim sizes are not exponen-
tially distributed, but have another distribution (although remember that for
an adjustment coefficient to exist in the original model without reinsurance,
this distribution should not be heavy-tailed). You could try this for both
proportional reinsurance and for excess of loss reinsurance in a layer.
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Figure 7.10. The adjustment coefficient RI net of reinsurance plotted against the
layer size A for exponentially distributed claims with mean 1, for M = 0.5 (solid),
M = 1.5 (dot-dashed) and M = 3.0 (dotted line). The adjustment coefficient R
without reinsurance is shown as a horizontal line.
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Figure 7.11. The adjustment coefficient RI net of reinsurance plotted against the
retention limit M and the layer size A for exponentially distributed claims with
mean 1.
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You might like to try a more challenging extension, which is to find the
direct insurer’s probability of ruin ψI(u), net of reinsurance, for excess of loss
reinsurance in a layer, with exponentially distributed claims. There is no easy
explicit formula for ψI(u), so numerical methods would be needed.

For more on the effect of reinsurance on ruin quantities, see Dickson and
Waters (1996) and Schmidli (2008), and the references given therein.



Appendix A

Utility theory

For our purposes, we restrict our consideration of utility theory to that which
is concerned with the concept of the utility of money. The utility of a sum of
money is not its actual monetary value, but is the value placed by an individual
(for example an investor) or an institution on gaining or losing that sum of
money, in the context of the existing assets of the individual/institution. The
following situations illustrate the idea.

• A gift of £1000 will be received with different reactions by two people of
very different circumstances. A rich person who has a healthy bank balance,
has everything they want, and is content, will probably think little about
having an extra £1000 – it will not change their behaviour or contentment in
a major way. A poorer person, struggling to pay some accumulated house-
hold bills on top of feeding a family, will find the extra £1000 of enormous
value – they can perhaps clear their debts and make a fresh start.
• A similar observation can be made about a single individual – an individual

with current wealth £2000 will regard a gift of £1000 as being more useful
than they would if their current wealth were £100 000.
• Consider a gambler faced with deciding whether or not to enter into a bet in

which £1000 will be won or lost, each outcome having probability 0.5. The
gambler’s expected gain on the bet is zero. For many people, the prospect
of not losing the £1000 is more attractive than the prospect of gaining the
same sum – a person with such a viewpoint will not accept the bet. Putting it
another way, how much would you be prepared to pay for a bet in which you
win £1000 or nothing, each outcome having probability 0.5? Your expected
gain is £500, but you may not be willing to pay £500 for the bet – if you
are willing, you will definitely have to pay out £500 (the cost of the bet) and
you may end up with a net gain of £500, but the odds are not stacked in your
favour. For an entry fee of £500 and “50:50” odds, you may demand a return,

368
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if you win, of more than £1000 – you may want a return of, say, £1200, so
that your expected net gain is positive (in this case £100). A person taking
this approach is said to be “risk averse” and will prefer a certain return of
less than £k to a gamble with expected return of £k.
• You may be prepared to pay a premium of £600 to insure a risk (for example,

your house) where the expected loss (the average loss per risk over the whole
portfolio of comparable risks) is only £400. The value to you of the “extra”
£200 is the protection it offers you against a catastrophic loss (for example,
the cost of rebuilding or replacing your house if it is destroyed) – the insurer
is charging is a “risk premium” of £200, which you are prepared to pay.
• An investor’s decisions will be influenced by their attitude to risk – they

may decide to choose one investment over another on grounds other than a
simple comparison of the expected monetary gains of the two investments.

These illustrations show that monetary values alone do not provide an
adequate quantitative description of the value we put on sums of money in
differing circumstances – the following section does, however, provide such a
description.

A.1 Utility functions

A utility function is a mathematical way of representing the value an individual
(or institution) places on having specified levels of wealth.

We will denote a general utility function by u(x), which represents a measure
of the value the individual places on having wealth x > 0. We require u(x) to
be a “well-behaved” function of x; specifically, in the light of the preceding
examples, we require it to have the following two properties.

(i) We assume that a rational person will value greater wealth at least as highly
as lower wealth, and so we require that u(x) is non-decreasing:

y > z⇒ u(y) ≥ u(z), that is u′(x) ≥ 0 for all x > 0.

(ii) We assume that a rational person with given wealth will value additional
wealth of a fixed amount at least as highly as they would if they had greater
wealth to start with, and so we require that u′(x) is non-increasing:

y > z⇒ u′(y) ≤ u′(z), that is u′′(x) ≤ 0 for all x > 0.

A utility function is thus concave.

Note that utility is a relative, not an absolute, measure – the utility functions
u(x) and au(x) + b (with a > 0) are equivalent, and, in their definitions of
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utility functions, some authors require the strict inequalities u′(x) > 0 and
u′′(x) < 0.

A.1.1 Examples of utility functions

Here are some examples of utility functions:

(i) linear u(x) = x;
(ii) exponential u(x) = −e−αx, α > 0;

(iii) quadratic u(x) = x − αx2, for 0 < x ≤ 1/2α, α > 0;
(iv) piecewise

u(x) =

{
x − αx2 for 0 < x ≤ 1/2α
1/4α for x ≥ 1/2α

α > 0;

(v) log u(x) = log x;
(vi) fractional power u(x) = xγ, 0 < γ < 1.

The first of these, the linear function, is included for comparison only – it is
not used as a utility function as it simply measures the actual monetary value
of wealth. Indeed, the use of a linear function in utility arguments can lead to
difficulties of interpretation.

It is sometimes more convenient to use the exponential utility function (ii)
in the form u(x) = 1 − e−αx.

The restriction on the range of x in the quadratic utility function (iii) is
required to satisfy the properties of the first and second derivatives of a utility
function.

Another version of the fractional power utility function above is

u(x) =
xγ − 1
γ

, for x ≥ 1, 0 < γ < 1. (A.1)

This is a generalisation of the log utility function (v) for x ≥ 1: the limit of the
function (A.1) as γ → 0 gives the log utility function.

Figure A.1 shows the relative shapes of linear, exponential, quadratic and
piecewise utility functions (all with u(0) = 0 and scaled appropriately).
Figure A.2 shows a log utility function and fractional power utility func-
tions (version (A.1)) with γ = 0.75 and γ = 0.25 (for x > 1 and scaled
appropriately).

The property u′′(x) ≤ 0 summarises the concept of decreasing (or diminish-
ing) marginal utility, which recognises that the additional value of an increase
in wealth of a fixed amount decreases (strictly speaking, does not increase)
as the wealth to which it is added increases. Equivalently, one can express
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Figure A.1. Comparable linear, exponential, quadratic and piecewise utility
functions.
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Figure A.2. Comparable log and fractional power utility functions.
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Figure A.3. Decreasing marginal utility.

this by saying that the added value of an incremental increase in wealth is
less (strictly speaking, is not more) than the reduction in value of an equal
decrease in wealth – “I would rather not lose £1000 than gain £1000” – see
Figure A.3.

A.2 Expected utility criterion

Consider an individual with wealth W who faces a choice between two actions
that have uncertain financial outcomes, such that taking action i leads to a
financial gain S i, i = 1, 2.

The expected utility criterion states that the individual chooses the action
that leads to the higher expected utility, that is action 1 is chosen if

E[u(W + S 1)] > E[u(W + S 2)];

otherwise action 2 is chosen (and if the two expected utilities are equal, the
individual is indifferent to which action is chosen).

With an exponential utility function u(x) = −e−αx, the initial wealth does not
affect the decision, since

E[u(W + S 1)] = −E[exp(−α(W + S 1))] = − exp(−αW)E[exp(−αS 1)],
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and the individual therefore chooses action 1 if

− exp(−αW)E[exp(−αS 1)] > − exp(−αW)E[exp(−αS 2)],

that is, if

E[exp(−αS 1)] < E[exp(−αS 2)],

assuming the expectations exist.
This conclusion can be expressed in the notation of moment generating

functions: the individual chooses action 1 if MS 1 (−α) < MS 2 (−α).

Example A.1 Consider an individual who adopts an exponential utility func-
tion u(x) = −e−αx and who faces the choice of two actions as above, with the
gains S 1 ∼ N(250, 200) and S 2 ∼ N(300, 1200). Using the standard result for
the moment generating function of a normal random variable, we have

MS 1 (−α) = exp(−250α + 200α2/2) = exp(−250α + 100α2)

and

MS 2 (−α) = exp(−300α + 1200α2/2) = exp(−300α + 600α2).

Using the expected utility criterion, the individual chooses action 1 if

exp(−250α + 100α2) < exp(−300α + 600α2),

that is if −250α + 100α2 < −300α + 600α2, that is if α > 0.1. So the indi-
vidual chooses the action with the lower expected gain if the parameter of
the exponential utility function is high enough. This feature, in which the
individual chooses to avoid the much greater uncertainty of the second out-
come, illustrates the concept of risk-aversion and the role of the parameter α
(see §A.3).

Example A.2 Consider a TV quiz show in which a contestant has the oppor-
tunity to answer a series of questions; for each successive correct answer, the
contestant’s winnings double (or approximately double). Suppose the con-
testant has reached the £64 000 level of winnings and is faced with the next
question – a multiple-choice question with four possible answers. If the con-
testant answers correctly, the winnings will move up to the £125 000 level; if
the contestant answers incorrectly, the winnings will drop back to the £32 000
level.

Suppose a contestant, Susan, sees the next question and the four possible
answers, but has no idea about which of the available answers is the correct
one. Should she answer the question, or walk away with the £64 000?

We compare two situations in which Susan may find herself, and with three
different utility settings.
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Situation (1) Susan has no access to other facilities of the quiz such as “ask
the audience” or “50:50” (in which two wrong answers from the four pos-
sible answers are removed before the contestant selects the answer from the
two remaining), and she simply guesses the answer from the four available
answers, so

Pr(Susan gives the correct answer) = 1/4.

Situation (2) Susan has the “50:50” facility still available to her, uses it, and
then guesses from the two remaining available answers, so

Pr(Susan gives the correct answer) = 1/2.

We will assume that Susan makes her decisions on the basis of the expected
utility criterion applied to her winnings after this round of the quiz, and we will
work with a monetary unit of £1000. We consider these two situations in each
of three utility settings.

• Utility setting A – using monetary values only (a linear utility function).
Situation (1): Susan’s expected winnings after giving her answer are

1
4
× 125 +

3
4
× 32 = 55.25,

which is less than her guaranteed 64, so she should walk away.
Situation (2): Susan’s expected winnings after giving her answer are

1
2
× 125 +

1
2
× 32 = 78.5,

which is greater than her guaranteed 64, so she should answer the question.
• Utility setting B – using an exponential utility function u(x) = −e−0.01x;

Susan’s utility of winnings if she walks away is −e−0.64 = −0.527.
Situation (1): Susan’s expected utility of winnings after giving her

answer is

−1
4
× e−1.25 − 3

4
× e−0.32 = −0.616,

which is less than −0.527, so she should walk away.
Situation (2): Susan’s expected utility of winnings after giving her

answer is

−1
2
× e−1.25 − 1

2
× e−0.32 = −0.506,

which is greater than −0.527, so she should answer the question.
The decisions for both settings are the same as those based on monetary

value alone.
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• Utility setting C – using an exponential utility function with a higher value
of α, namely u(x) = −e−0.02x; Susan’s utility of winnings if she walks away
is −e−1.28 = −0.278.

Situation (1): Susan’s expected utility of winnings after giving her
answer is

−1
4
× e−2.5 − 3

4
× e−0.64 = −0.416,

which is less than −0.278, so she should walk away.
Situation (2): Susan’s expected utility of winnings after giving her

answer is

−1
2
× e−2.5 − 1

2
× e−0.64 = −0.305,

which is less than −0.278, so she should walk away.
The decision in situation (2) is not the same as that based on monetary

value alone, or that using the utility function with the lower value of α. With
α = 0.01 Susan chooses to answer the question (she chooses to gamble),
whereas with α = 0.02 she is not willing to gamble and instead walks away
with the existing guaranteed winnings.

A.3 Risk aversion

An individual who adopts as his utility function a function u(x) which is strictly
concave, that is with u′(x) > 0 and u′′(x) < 0, is described as being risk-averse.

There is a generally accepted measure which quantifies the degree of risk
aversion, and which we motivate by considering an individual with current
wealth x faced with the following gamble:

win an amount h with probability 1/2 + p,
lose an amount h with probability 1/2 − p,

where h > 0 and p > 0.
Using monetary value only, the individual’s expected wealth after accepting

the gamble is x + 2ph. The gamble favours the individual, and more so as p
(or h) increases.

With utility considerations, the individual’s expected utility after accepting
the gamble is given by

expected utility =

(
1
2
+ p

)
u(x + h) +

(
1
2
− p

)
u(x − h).
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Using Taylor expansions, we get

expected utility =

(
1
2
+ p

) {
u(x) + hu′(x) +

1
2

h2u′′(x) + · · ·
}

+

(
1
2
− p

) {
u(x) − hu′(x) +

1
2

h2u′′(x) − · · ·
}

= u(x) + 2phu′(x) +
1
2

h2u′′(x) + · · ·

= u(x) +
1
2

h2
{
4

p
h

u′(x) + u′′(x)
}
+ · · · .

The “indifference” position occurs in the case where the expected utility
after accepting the gamble equals the utility without accepting the gamble,
namely u(x). For small h, this occurs (approximately) when

p = −1
4

h
u′′(x)
u′(x)

.

An individual who is more risk-averse than another will require p to be
higher to persuade them to accept the gamble. This justifies the accepted mea-
sure of risk aversion for an individual with utility function u(·) and current
wealth x. It is the coefficient of risk aversion, denoted r(x), and defined by

r(x) = −u′′(x)
u′(x)

. (A.2)

Increasing values of r(x) correspond to increasing risk aversion.
An individual whose risk aversion does not depend on current wealth has

r(x) constant (= α say, where α > 0) and so this time the utility function
satisfies

u′′(x)
u′(x)

= −α, that is u′′(x) + αu′(x) = 0.

A solution of this linear differential equation is the exponential utility function
u(x) = −e−αx. The risk aversion is independent of wealth, but increases as α
increases.

In Example A.1, the level of risk aversion dictates the individual’s choice of
action. In Example A.2, utility setting C (α = 0.02) corresponds to the contes-
tant being more risk-averse than with setting B (α = 0.01); the consequence is
that, even after using the “50:50” facility, Susan refuses the gamble and walks
away; she prefers the guaranteed £64 000 to the uncertainty of the gamble.

For the log utility function u(x) = log x, the risk aversion (A.2) decreases
with wealth (see Exercise 4.3).

Example A.3 Consider an investor, Roger, faced with the choice of two
actions:
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action 1 – invest in a product which returns a guaranteed £5000;
action 2 – invest in a product which returns £1000, £7000 or £12 000, these

outcomes having probabilities 0.4, 0.4 and 0.2, respectively.

Roger decides which action to take using the criterion of maximising the
expected utility of his wealth. He works in the context of a monetary unit of
£1000 and has initial wealth (in this unit) of W. Letting X represent the return
on the investment, Roger’s wealth becomes W + X.

Case 1 Suppose Roger adopts the quadratic utility function

u(x) = x − 0.02x2, 0 < x < 25.

If he takes action 1, then his utility is

(W + 5) − 0.02(W + 5)2 = −0.02W2 + 0.8W + 4.5.

If he takes action 2, then his expected utility is

E[u(W + X)] =
∑

u(W + x) Pr(X = x)

=
∑

[(W + x) − 0.02(W + x)2] Pr(X = x)

= −0.02W2 + (1 − 0.04E[X])W + E[X] − 0.02E[X2]

Here, E[X] = 5.6 and E[X2] = 48.8, so the expected utility is

−0.02W2 + 0.776W + 4.624.

Roger therefore chooses action 1 if

−0.02W2 + 0.8W + 4.5 > −0.02W2 + 0.776W + 4.624,

that is if W > 5.17. So, if Roger’s initial wealth is greater than a stated amount
(£5170), he chooses the investment with the certain return rather than the
investment with an uncertain return (albeit the gamble has a higher expected
return (£5600) than the fixed return (£5000)).

Noting that u′(x) = 1 − 0.04x and u′′(x) = −0.04, the coefficient of risk
aversion is given by r(x) = 0.04(1 − 0.04x)−1, and hence r(x) is an increasing
function of x. The higher Roger’s initial wealth, the more risk-averse he is –
the result reflects this fact.

In this illustration the utility function is almost linear, and for all values of
W for which the utility function is sensible, the expected utility for action 2 is
very close to the utility for action 1.
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Case 2 Suppose Roger adopts the exponential utility function u(x) = −e−αx.
The initial wealth can be ignored. Let q = e−α. If Roger takes action 1, then
his utility is −e−5α = −q5. If he takes action 2, then his expected utility is

E[u(X)] = E[−e−αX] = 0.4 × (−q) + 0.4 × (−q7) + 0.2 × (−q12).

Roger therefore chooses action 1 if

0.4q − q5 + 0.4q7 + 0.2q12 > 0.

The reader can verify (by computer search, or some other method) that this
inequality is satisfied for q < 0.9316, that is for α > 0.071. Higher α
corresponds to greater risk aversion.

Case 3 Suppose Roger adopts the log utility function u(x) = log x. If he takes
action 1, then his utility is log(W + 5). If he takes action 2, then his expected
utility is

E[u(X)] = 0.4 log(W + 1) + 0.4 log(W + 7) + 0.2 log(W + 12)

= log
[
(W + 1)0.4(W + 7)0.4(W + 12)0.2

]
.

Roger therefore chooses action 1 if

W + 5 > (W + 1)0.4(W + 7)0.4(W + 12)0.2.

The reader can verify (again by computer search, or some other method) that
this inequality is satisfied for W < 9.03.

The coefficient of risk aversion is given by r(x) = 1/x and is a decreasing
function of x. Higher initial wealth corresponds to lower risk aversion – with
W greater than a specified amount (£9030), Roger chooses the gamble.

A.4 Jensen’s inequality

The following inequality is one of a number of illustrations of a general result
published by the Danish telephone engineer and mathematician Johan Jensen
in the early part of the twentieth century. The inequality states the following:

Let Y be a random variable and let u(·) be a (strictly) concave function, so
u′′(x) < 0. Then

E[u(Y)] ≤ u(E[Y]), (A.3)

with equality if and only if Y is constant.

Proof We use a Taylor expansion (with remainder)

u(y) = u(a) + u′(a)(y − a) + u′′(z)(y − z)2/2,
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and so

u(y) ≤ u(a) + u′(a)(y − a),

since u′′(z) ≤ 0.
Considering y as an observation of random variable Y , and letting a = E[Y],

we have

u(Y) ≤ u(E[Y]) + u′(E[Y])(Y − E[Y]),

and, taking expected values through this inequality, gives the result. �

Note A graphical justification is available and is left to the reader (show from
a graph that u(y) satisfies

u(y) ≤ u(E[Y]) + u′(E[Y]){y − E[Y]},
and then proceed as above).

Example A.4 Consider an investor who adopts an exponential utility
function

u(x) = 1 − e−αx,

and who makes an investment with financial gain S , which is a random variable
with mean μ.

The expected utility of the investor’s gain on the investment is

E[u(S )] = E[1 − e−αS ] ≤ 1 − e−αμ,

by Jensen’s inequality (A.3). We note that the upper bound is an increasing
function of α.

Consider, for example, the case μ = 100 with two investors, Susan and
Roger, who use utility parameters α = 0.01 and α = 0.02, respectively. Their
expected utilities of gain have upper bounds of 1 − e−1 = 0.632 and 1 − e−2 =

0.865. The fact that the second investor, Roger, is more risk-averse than the
first, Susan, is balanced by the fact that there is at least the possibility of Roger
achieving a higher utility if he does invest.

If we have S ∼ N(100, 502) then the expected utilities of the investors’ gains
are in fact given by

E[1 − e−0.01S ] = 1 − exp(−100 × 0.01 + 502 × 0.012/2)

= 1 − e−0.875 = 0.583;

E[1 − e−0.02S ] = 1 − exp(−100 × 0.02 + 502 × 0.022/2)

= 1 − e−1.5 = 0.777.

We note that these expected utilities are, of course, lower than the bounds
obtained above using Jensen’s inequality.
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Answers to exercises

Chapter 2

2.1 (b) Modes at λ − 1 and λ.
2.3 (a) First note Pr(N ≥ n) = Pr(no successes in first n trials) = qn; the

geometric model possesses a “lack of memory” property.
(b) Pr(N ≥ 10 | N ≥ 8) = Pr(N ≥ 2) = 1 − Pr(N ≤ 1) = 0.01.

2.4 29.
2.6 (b) f (x) = nλe−λx(1 − e−λx)n−1 , x > 0.
2.7 (a) 2, 9.
2.8 (a) e−3 = 0.0498, (b) Pr(χ2

6 > 6) = 0.4232.

2.9 (b)
2(β − α)

{αβ(α + β)}1/2 ,
6(α2 − αβ + β2)
αβ(α + β)

+ 3.

2.10 0.1108.
2.12 (a) 0.2725; (b) 837.29, 1991.2; (c) 0.0319; (d) (763.9, 910.7); (e) 941.1.

2.13 (c) (1)
λ + M
α − 1

, (2)
2(λ + M)2

{(α − 1)(α − 2)} ;
(d) coefficient of skewness decreases to 2 as α increases.

2.14 α = 4.7844, λ = 926.02.
2.15 (a) (i) 0.00611, (ii) 180, 116 600; (b) 0.00410;

(c) ignoring heterogeneity under-estimates tail probability.
2.17 (c) Failure rate is (1) decreasing, (2) increasing, (3) constant (= c); X ∼

Exp(c), as in part(a).

(d) q(x) =
ατxτ−1

λ + xτ
; τ = 1 is Pa(α, λ), as in part (b).

2.22
n
γ̂
+
∑

log xi −
n
∑

xγ̂i log xi∑
xγ̂i

= 0.

2.23 (a) α̃ = 1 + 2/x , α̂ = n/
∑

log(1 + xi/2);
(b) c̃ = (2/x)1/2 , ĉ = n/

∑
(x1/2

i ).

380
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2.24 (a) α̃ = (x/s)2 , λ̃ = x/s2;

(b) α̃ =
2s2

s2 − x2
, λ̃ =

x(s2 + x2)

(s2 − x2)
.

2.25 (b) 22.52, 58.64, 134.5;
(c) χ2 = 3.6 on 2 df, P-value = 0.17, fit adequate.

2.26 (a) (1) α̃ = 0.6105, λ̃ = 0.0008091; (2) α̃ = 5.135, λ̃ = 3120;
(3) c̃ = 0.1996.

(b) (1) λ̂ = 0.001325; (2) μ̂ = 5.914, σ̂ = 1.423; (3) α̂ = 17.28,
λ̂ = 2.922.

(c) (1) 0.0786, 0.0809, 0.0706, 0.1179; (2) 2471, 3381, 2260, 3845.

Chapter 3

3.1
∑∞

n=0 an Pr(N = n) = GN(a).
3.3 FS = Pr(N = 0)1[0,∞) + Pr(N ≥ 1)F̃S , so the mixing proportions are

Pr(N = 0) and Pr(N ≥ 1).
F̃S is a compound distribution with step random variables distributed as
X1 and with counting random variable Ñ satisfying Pr(Ñ = n) = Pr(N =
n)/Pr(N ≥ 1) for n = 1, 2, . . ..

3.5 Let κS , j, κX, j and κN, j be the jth cumulants of S , X1 and N, respectively,
κS ,1 = κX,1κN,1;
κS ,2 = κN,2κ

2
X,1 + κN,1κX,2;

κS ,3 = κN,3κ
3
X,1 + 3κN,2κX,1κX,2 + κN,1κX,3.

3.6 (a) The jth cumulant of S is κS , j = λE[X j
1].

The skewness of S is positive.
(b) κS ,1 =

kq
p E[X1];

κS ,2 =
kq
p E

[
X2

1

]
+

kq2

p2

(
E[X1]

)2;

κS ,3 =
kq
p E[X3

1] + 3kq2

p2 E[X2
1]E[X1] + 2kq3

p3

(
E[X1]

)3.
The skewness of S is positive whether or not βX is positive.

3.7 E[X1]Var[N].
3.8 (a) Let mi be

∫
xiF(dx):

E[S ] = nm1E[λ];
Var[S ] = nm2E[λ] + nm2

1Var[λ].
(b) E[S ] = nm1E[λ];

Var[S ] = nm2E[λ] + n2m2
1Var[λ].

3.9 N ∼ nb
(
2, 2

2+μ

)
.

3.10 The distribution of T is a mixture of an atom at zero (with mixing
proportion p) and an nb

(
1, pp̃

1−p(1−p̃)

)
(with mixing proportion 1 − p).
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3.14 The distribution of S is a mixture of an atom at zero (with mixing
proportion p2) and (with mixing proportion 1 − p2) a distribution with
density

fS (x) =
3p2

√
1 − pλ

4

(
e−λ2 x − e−λ1 x

)
+

p2
√

1 − pλ

4

(
xe−λ2 x + xe−λ1 x

)
,

where λ1 = λ(1 +
√

1 − p) and λ2 = λ(1 − √
1 − p).

3.20 E[V] = k + α/ν;
Var[V] = α/ν2;

βV =
E[(V−E[V])3](

Var[V]
)3/2 =

2√
α

;

k = E[S ] − 2
√

Var[S ]
|βS | , α = 4

β2
S
, ν = 2

|βS |
√

Var[S ]
.

3.23 The asymptotic approximation is Pr(S > x) ∼ p
√

1−pe−(1−
√

1−p)λx

2
(
1−
√

1−p
) .

3.24 (b) 884 policies;
(c) 9721 policies.

3.25 (a) μ̂L =
2nμ̂

χ2
2n(α/2)

, μ̂U =
2nμ̂

χ2
2n(1−α/2)

, where χ2
n(α) denotes the upper 100α%

point of a χ2
n distribution.

(b) λ̂L =
χ2

2n(1−α/2)λ̂
2n , λ̂U =

χ2
2n(α/2)λ̂

2n .
3.28 E[T ] =

∑n
i=1 qibi, the same as in Example 3.26;

Var[T ] =
∑n

i=1 qi(2 − qi)b2
i , greater than or equal to the variance in

Example 3.26.
3.29 For example, if μi = 100, qi = 3/4, σ2

i = 1 and βi = 1 for all i, then
skewness is negative.

3.30 (b) qi = 1 − e−λi .
3.31 E[T̃ ] =

∑n
i=1 qiμi, the same as E[T ];

Var[T̃ ] =
∑n

i=1 qi(σ2
i + μ

2
i ), which is greater than or equal to Var[T ].

Chapter 4

4.3 (a) 1/x, (b) β, (c) 1/(2x);
(1) yes (decreases with wealth), no, yes (decreases with wealth);
(2) no, yes (increases with β), no.

4.4 (a) £9358; (b) (1) 1.340, (2) 1.038.
4.5 σ ≤ £707.11.
4.6 £12 974.
4.7 £14 366.
4.9 (a) 14/6 = 2.33, 6/3=2;

(b) gamma(20, 9), mode = estimate = 19/9 = 2.11;
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(c) (1) estimate = median = 2.19, (2) (1.36, 3.30);
(d) 20/9 = 2.22.

4.10 (a) N(2, 0.29); (b) 28/53 = 0.5283, 114.96/53 = 2.17;
(c) (1.90, 2.44).

4.11 119.9, 106.7, 126.8, 109.0, 117.5.
4.12 (a) 71.98, 56.58, 85.63.
4.15 (a) 51.36, (b) 50.91.
4.16 (a) 144.9, 138.9, 162.9, 155.1.

(b) 146, 141.3, 160, 154.
(c) 147.1, 143.3, 158.2, 153.4.

4.17 (a) 4.465, 6.151, 5.322, 3.838, 6.737; (b) £352 800.
4.18 (a) (1) 0.8712; (2) 6 142 021; (3) £6453, £7533, £8195; (b) £1081,

£1175.
4.19 (a) £2297, £2435, £2098; (b) £2562, £2758, £1940.
4.23 £1196, £2076.

Chapter 5

5.1 0.141.
5.2 0.757.
5.5 (b) (2) 0.0821, £1519.
5.8 (a) Z∗ ∼ Pa(5, 7.2823);

(b) CP(5, FZ∗),E[S R] = £9103, SD[S R] = £6648;
(c) E[S I] = £90 897.

5.9 (b) Proportional: £63 000; excess loss: £79 900.
5.10 (a) Exponential with mean 2; (b)Pa(4, 10).

(c) Mean SD
Model 1 270 700 32 900
Model 2 432 000 65 700
Model 3 304 400 47 500

5.12 (b)
E[X] = 1.4 E[X2] = 3.92
E[S ] = 140 Var[S ] = 392
E[Y] = 1.0130 E[Y2] = 1.4430
E[Z] = 0.3870 E[Z2] = 1.0837
E[S I] = 101.30 Var[S I] = 144.30
E[S R] = 38.70 Var[S R] = 108.37

5.13 (a) α̃ = 3.6829, λ̃ = 3096.3; (b) 0.160; (c) £2989.
5.14 (b) (1) 0.999, (2) 1.000.
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5.15 (a) E[YZ]√
E[Y2]E[Z2]

; (b) + 0.471; (c) + 0.477.

5.16 (a) £3.5 × 106, £0.732 × 106, 0.086.
(b) (1) £440 000;

(2) mean = £3.1 × 106, standard deviation = £0.629 × 106,
probability = 0.064.

5.17 E[S I] =
βλγ
α − 1 ,Var[S I] =

2β2λγ2

(α − 1)(α − 2) .

Similarly for S R, with 1 − β in place of β.
5.18 (a) (1) Exponential with mean 1.

(2) E[S 1] = 150, var[S 1] = 277.5;
E[S 2] = 105, var[S 2] = 198.975;
E[S ] = 255, var[S ] = 476.475.

(b) (1) 0.964, (2) 0.932, (3) 0.990.
5.19 (b) (1) £360, £60, £360; (2) £325.70, £54.30, £354.30;

(3) £294.70, £49.10, £349.10; (4) £266.70, £44.40, £344.40.
Premium: 9.5%, 18.1%, 25.9%.
Expected total costs: 1.6%, 3.0%, 4.3%.

(c) 0.977, 0.971, 0.965, 0.957.
5.21 (a) 1.749, (b) 1.215, (c) 1.312.
5.22 (a) 0.714, (b) 0.789, (c) 0.556.
5.23 (c) 0.179.
5.24 (b) Expected utility: no cover –0.033, with cover –0.045, so the individ-

ual will not purchase cover.
(c) Maximum premium the individual will be prepared to pay is £84.58.

5.27 In terms of a monetary unit of £10 million:
(a) stop loss 0.3162, proportional 0.64;
(b) stop loss 0.6736, proportional 0.49.
(c) (1) 0.6762 (retention = 1.5936); (2) 0.625; (3) 0.5.

5.28 (b) (1) γ/(α − 2), (2) μ; (c) 1/3.
5.32 (a) 812.5.
5.34 (a) (2) 75.9%, 56.9%, 50.6%.

(b) (1) 89.7%, 67.2%, 59.8%;
(2) 100%, 75%, 66.7%;
(3) 73.7%, 55.3%, 61.4%.

Chapter 6

6.1 R = 1/6, Lundberg upper bound is e−u/6.
6.2 (b) erμ = 1 + (1 + θ)μr;

(c) e−Ru < e−Rexpu .
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6.6 Rexp < R, e−Rexpu > e−Ru.
6.7 R = 1/7.
6.9 R = 0.2397, R < Rg, R < Rh.

6.11 ϕ(u) = 1 − 20
29 e−u/6 − 5

203 e−6u/7.
6.12 C = 1, D = − 20

29 , E = − 5
203 , ψ(u) = 20

29 e−u/6 + 5
203 e−6u/7.

6.14 A = 1
2(1+θ)

(
1 + (3+2θ)

√
9+8θ

9+8θ

)
, B = 1

2(1+θ)

(
1 − (3+2θ)

√
9+8θ

9+8θ

)
,

R = 3+4θ−√9+8θ
2(1+θ) , α = 3+4θ+

√
9+8θ

2(1+θ) .

6.15 ϕ(u) = 1 − Ae−Ru − Be−αu with A, B, R and α as in Exercise 6.14.
6.16 f (x) = λμ

c fI(x), z(u) = λμ
c (1 − FI(u)).

6.17 The Cramér–Lundberg approximation is 20
29 e−u/6, which is always smaller

than the true ψ(u) for this example.
6.18 Adjustment coefficient is R = c, the safety loading is θ = 1−a−b

a+b , and the
Cramér–Lundberg approximation is ae−cu.

6.19 If r0 = 0.05 then rn → 0 as n→ ∞.
6.20 R = 0.1877, but for exponential claim sizes Rexp = 0.0909.

6.22 R̂ =

{ 1
X̄
− 1

cT̄
if X̄ < cT̄

0 otherwise.√
n(R̂ − R)→d N

(
0, σ2(λ, μ)

)
, where σ2(λ, μ) = λ2/c2 + 1/μ2.

Confidence interval has end points R̂± zα/2√
n

√
σ2(λ̂, μ̂), where λ̂ = 1/T̄ and

μ̂ = X̄.
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adjustment coefficient, 272
and Cramér–Lundberg approximation, 302
existence, 279
and Lundberg’s inequality, 272
numerical methods for, 303
properties, 272
and reinsurance (case study), 348
statistical estimation of, 310

aggregate claims, 91
aggregate risk model, see collective risk model
asymptotic approximation, 126

Bühlmann model, 157, 176
Bühlmann–Straub model, 157, 185
Bayes’ rule, 157
Bayes’ Theorem, 159
Bayesian credibility estimate, 170
Bayesian credibility theory, 170

empirical, 176
Bayesian estimation, 157

Bayes loss, 160
Bayesian criterion, 160
binomial/beta model, 161
Poisson/gamma model, 163

Bernoulli trials, independent, 16
Bessel function

modified, 105
beta-binomial distribution, 58
between risk variance, 173
binomial distribution, 20

compound, 114
bootstrap, 323

parametric, 133
bootstrap confidence interval, 133

Burr distribution, 48

central moment, 4
claim numbers, 11

distributions for, 12
fitting models to data, 58
mixture distributions for, 56

claim sizes, 11
distributions for, 23
fitting models to data, 58
mixture distributions for, 54

classical risk model, 267
coefficient of variation (c.v.), 237
collateral data, 169
collective risk model, 90, 135, 139
compound distribution, 91

approximations for, 124
asymptotic approximation for, 127
compound binomial, 114
compound geometric, 110
compound mixed Poisson, 108
compound negative binomial, 110
compound Poisson, 103
counting random variable, 91
distribution function, 97
fast Fourier transform algorithm, 120, 123
mean, 93
moment generating function, 98
normal approximation, 125
Panjer recursion algorithm, 116
statistical estimation, 128
step random variable, 91
translated gamma approximation for, 125
variance, 93
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conditional expectation formula, 5
conditional tail property, 42
conditional variance formula, 5
conjugate prior, 159
convolution

power, 95
product, 137

correlation, 4
counting distributions, 11
counting random variable, 91
covariance, 4
Cramér–Lundberg approximation, 302
Cramér–von Mises distance function, 60, 72
credibility theory, 156

Bühlmann model, 157, 176
Bühlmann–Straub model, 157, 185
Bayesian credibility, 170
Bayesian credibility theory, 169
between risk variance, 173
credibility data, 169
credibility estimate, 170
credibility factor, 156, 169
credibility premium, 156, 169
EBCT model 1, 176
EBCT model 2, 185
empirical Bayesian credibility theory

(EBCT), 176
normal/normal model, 172
Poisson/gamma model, 163
structural parameters, 180, 189
within risk variance, 173

cumulant, 33, 141
cumulant generating function, 7, 33

random sum, 99
cumulative distribution function, 2

De Pril recursion, 140
decision rule, 160
decision theory, 159
deductible, 205, 223
delta method, 131, 309
direct insurer, 205
discrete Fourier transform, 119
discretisation, 118
distribution
χ2

n, 30
American Pareto, 40
Bernoulli, 22
beta, 57
binomial, 13
Burr, 48

compound, 91
compound geometric, 110
compound mixed Poisson, 108
compound negative binomial, 110
compound Poisson, 103
Erlang, 30
exponential, 25
fat-tailed, 32
finite mixture, 100
gamma, 28
Gaussian, 24
generalised (three-parameter) Pareto, 56
geometric, 18
heavy-tailed, 16
limited, 82
loggamma, 51
lognormal, 33
mixture, 43, 101
negative binomial, 13
normal, 24
Pareto, 40
Poisson, 13
shifted geometric, 110
shifted negative binomial, 110
thin-tailed, 23, 32
transformed Pareto, 49
translated Pareto, 94
Weibull, 45

distribution function, 2
distributions, threshold, 82

empirical Bayesian credibility theory (EBCT),
176

model 1, 176, 182, 184
model 2, 185

empirical distribution function, 9, 67
equal mixture, 102
excess, 205, 223
excess of loss, 206
excess of loss reinsurance, 82, 206
expectation, 3
expected frequency, 63
expected utility criterion, 372
expected value principle (EVP), 148
experience rating, 156
exponential premium principle (EPP), 150
exponentially bounded tail, 31

failure rate, 86
fast Fourier transform (FFT) algorithm, 119

for compound distributions, 120, 123
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vs. Panjer algorithm, 121–124
for probability of ruin, 306

fat tail, 11, 23, 31, 216
finite mixture distribution, 100
fitted frequency, see expected frequency
fitting models to claim numbers, 58, 60
fitting models to claim sizes, 58, 65
force of mortality, 86
Fourier frequencies, 119
fourth central moment, 4, 29, 32

gamma function, 16
incomplete, 28

Gaussian distribution, see normal distribution
geometric distribution, 27

compound, 110
shifted, 110

goodness-of-fit criterion, 63

hazard rate, 86
heavy tail, see fat tail, 16
heterogeneous individual risk model, 135
homogeneous individual risk model, 135

iid, 5, 216
independent random variables, 5
individual risk model, 90, 134, 138

compound Poisson approximation, 139
distribution function, 137
heterogeneous, 135
homogeneous, 135
mean, 136
moment generating function, 137
normal approximation, 139
skewness, 146
variance, 136, 146

insurance loss, 23

jth cumulant, 33
Jensen’s inequality, 378

Kolomogorov–Smirnov (K–S) test statistic, 67
kurtosis

coefficient of, 4, 32, 33
in terms of cumulants, 33
excess, 33
exponential distribution, 33
gamma distribution, 29

lack of memory property, 27
Lebesgue–Stieltjes integral, 7

leptokurtic distribution, 32
likelihood function, 59, 158
loggamma distribution, 51
lognormal distribution, 33, 35

meanlog, 35
sdlog, 35

loss distributions, 23
loss function, 159, 160
Lundberg exponent, see adjustment coefficient
Lundberg’s inequality, 272, 302, 348

marginal distribution, 55
maximum likelihood estimator (MLE), 9, 59,

129, 309
meanlog, 35
method of moments, 58
method of moments estimator (MME), 58
method of percentiles, 60
minimax criterion, 159
minimum distance estimation, 60, 71
mixed Poisson distribution, compound, 108
mixture distribution, 43, 54

finite, 100
mixing distribution, 55
mixing proportions, 101

moment, 4
moment generating function, 6, 7, 28

compound distribution, 98
individual risk model, 137
random sum, 98

motor insurance, 13

negative binomial distribution, 13, 16, 110
compound, 110
shifted, 110

nested model, 64
net profit condition, 269
normal approximation

for compound distribution, 125
individual risk model, 139

normal distribution, 24, 32
standardisation to N(0, 1), 25

normal/normal model, 165, 172

P-value, 63
Panjer recursion algorithm, 116

vs. FFT, 121–124
parametric bootstrap, 133
Pareto distribution

generalised (three-parameter), 56
transformed, 49
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translated, 94
Pareto loss, 338
Pearson criterion, 63
plug-in estimator, 132, 315
Poisson distribution, 13, 20

compound, 103
compound mixed, 108

Poisson process, 12, 15, 22
in classical risk model, 267
inter-event times, 27

Poisson/gamma model, 163, 170
policy excess, 205, 223
posterior distribution, 158
power law decay, 40
premium, 147

credibility, 173
pure, 147

premium calculation principle, 148
desirable properties of, 152
expected value principle (EVP), 148
exponential premium principle (EPP), 150
quantile principle (QP), 149
standard deviation principle (SDP), 149
variance principle (VP), 149
zero utility principle (ZUP), 150

premium setting principles
case study, 316

principal insurer, 205
prior distribution, 54, 158
probability density function, 2
probability generating function, 6
probability mass function, 3
probability of ruin, see ruin probability
proportional reinsurance, 221, 351

quantile principle (QP), 149
quota share reinsurance, 222

R, 9, 22, 24
random sum, 91, 92

distribution function of, 97
mean, 93
moment generating function, 98
variance, 93

ratelog, 51
reference distribution, 23
reinsurance, 205, 218

case study, 332, 348
excess of loss, 206
function, 235, 349
layer, 356

optimising, 228
proportional, 206, 221, 235, 351
quota share, 222
stop loss, 235

reinsurance claim, 210
reinsurer, 205
relative safety loading, 270
relative security loading, 148, 149, 270
renewal theory, 296
renewal-type equation, 296
resampling, 323
retention level, 206
risk aversion, 151, 230, 233, 373, 375

coefficient of, 376
risk function, 160

Bayes, 160
risk loading, 148
risk model

classical, 267
collective, 90
individual, 90, 134
short term, 90

risk parameter, 54, 172
risk retention, 227
risk sharing, 205, 332
ruin probability, 270

asymptotics, 296
case study, 348
compound geometric tail representation,

291, 295
finite-time, 270
integral equation for, 289
integro-differential equation for, 284
Lundberg’s inequality for, 272
numerical methods for, 305
reinsurance and ruin, 348
statistical estimation, 309

sdlog, 35
shapelog, 51
shared liabilities

case study, 332
shifted geometric distribution, 110
shifted negative binomial distribution, 110
short term risk models, 90
simulation, 9

inverse transform method, 26
skewness, 4

coefficient of, 4
in terms of cumulants, 33

standard deviation, 4
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standard deviation principle (SDP), 149
standardised random variable, 143
states of nature, 159
statistical estimation, 58, 128, 308
step random variable, 91
stop loss reinsurance, 235
structural parameters, 180, 189
Student’s t distribution, 32
survival probability, 271

compound geometric representation, 291,
295

integral equation for, 286
integro-differential equation for, 284

tail, 2
fat, 11, 23, 31
heavy, 11, 23, 31
thin, 23, 32

total claim amount, 91

transformed beta family, 56
Burr, 56
generalised (three-parameter) Pareto, 56
Pareto, 40, 42

translated gamma approximation, 125

uncertainty reduction, 234
unit mass at zero, 102
utility, 147, 368
utility function, 369, 370

variance, 4
variance principle (VP), 149

Weibull distribution, 45
alternative parameterisation, 46

within risk variance, 173

zero utility principle (ZUP), 150
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