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Preface
	

In	this	book,	we	provide	an	array	of	 topics	in	probability	and	statistics	 that	are
applied	to	problems	in	finance.	For	example,	there	are	applications	to	portfolio
management,	asset	pricing,	risk	management,	and	credit	risk	modeling.	Not	only
do	we	cover	 the	basics	 found	 in	a	 typical	 introductory	book	 in	probability	and
statistics,	 but	 we	 also	 provide	 unique	 coverage	 of	 several	 topics	 that	 are	 of
special	 interest	 to	 finance	 students	 and	 finance	 professionals.	 Examples	 are
coverage	of	probability	distributions	that	deal	with	extreme	events	and	statistical
measures,	which	are	particularly	useful	for	portfolio	managers	and	risk	managers
concerned	with	extreme	events.

	
The	 book	 is	 divided	 into	 four	 parts.	 The	 six	 chapters	 in	 Part	 One	 cover

descriptive	 statistics:	 the	 different	 methods	 for	 gathering	 data	 and	 presenting
them	 in	 a	more	 succinct	way	while	 still	 being	 as	 informative	 as	 possible.	The
basics	of	probability	theory	are	covered	in	the	nine	chapters	in	Part	Two.	After
describing	 the	 basic	 concepts	 of	 probability,	 we	 explain	 the	 different	 types	 of
probability	distributions	(discrete	and	continuous),	specific	 types	of	probability
distributions,	 parameters	 of	 a	 probability	 distribution,	 joint	 probability
distributions,	conditional	probability	distributions,	and	dependence	measures	for
two	 random	 variables.	 Part	 Three	 covers	 statistical	 inference:	 the	 method	 of
drawing	 information	 from	 sample	 data	 about	 unknown	 parameters	 of	 the
population	from	which	the	sample	was	drawn.	The	three	chapters	in	Part	Three
deal	with	point	estimates	of	a	parameter,	confidence	intervals	of	a	parameter,	and
testing	 hypotheses	 about	 the	 estimates	 of	 a	 parameter.	 In	 the	 last	 part	 of	 the
book,	Part	Four,	we	provide	coverage	of	the	most	widely	used	statistical	tool	in
finance:	multivariate	regression	analysis.	In	the	first	of	the	three	chapters	in	this
part,	we	begin	with	the	assumptions	of	the	multivariate	regression	model,	how	to
estimate	 the	 parameters	 of	 the	 model,	 and	 then	 explain	 diagnostic	 checks	 to
evaluate	 the	 quality	 of	 the	 estimates.	After	 these	 basics	 are	 provided,	we	 then
focus	on	 the	design	and	 the	building	process	of	multivariate	 regression	models
and	finally	on	how	to	deal	with	violations	of	the	assumptions	of	the	model.
	 There	 are	 also	 four	 appendixes.	 Important	mathematical	 functions	 and	 their
features	 that	 are	 needed	 primarily	 in	 the	 context	 of	 Part	 Two	 of	 this	 book	 are
covered	 in	 Appendix	 A.	 In	 Appendix	 B	 we	 explain	 the	 basics	 of	 matrix



operations	and	concepts	needed	to	aid	in	understanding	the	presentation	in	Part
Four.	 The	 construction	 of	 the	 binomial	 and	 multinomial	 coefficients	 used	 in
some	 discrete	 probability	 distributions	 and	 an	 application	 of	 the	 lognormally
distributed	stock	price	to	derive	the	price	of	a	certain	type	of	option	are	provided
in	Appendix	C	and	D,	respectively.

	
We	would	like	to	thank	Biliana	Bagasheva	for	her	coauthorship	of	Chapter	15

(Conditional	 Probability	 and	 Bayes’	 Rule).	 Anna	 Serbinenko	 provided	 helpful
comments	on	several	chapters	of	the	book.
	 The	 following	 students	 reviewed	 various	 chapters	 and	 provided	 us	 with
helpful	 comments:	 Kameliya	Minova,	 Diana	 Trinh,	 Lindsay	Morriss,	Marwan
ElChamaa,	Jens	Bürgin,	Paul	Jana,	and	Haike	Dogendorf.

	
We	 also	 thank	 Megan	 Orem	 for	 her	 patience	 in	 typesetting	 this	 book	 and

giving	us	the	flexibility	to	significantly	restructure	the	chapters	in	this	book	over
the	past	three	years.
		
Svetlozar	T.	Rachev	
Markus	Höchstötter	
Frank	J.	Fabozzi	
Sergio	M.	Focardi	
April	2010
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CHAPTER	1
	

Introduction
	

It	 is	 no	 surprise	 that	 the	 natural	 sciences	 (chemistry,	 physics,	 life	 sciences/
biology,	 astronomy,	 earth	 science,	 and	 environmental	 science)	 and	 engineering
are	fields	that	rely	on	advanced	quantitative	methods.	One	of	the	toolsets	used	by
professionals	 in	 these	 fields	 is	 from	 the	 branch	 of	 mathematics	 known	 as
probability	 and	 statistics.	 The	 social	 sciences,	 such	 as	 psychology,	 sociology,
political	 science,	 and	 economics,	 use	 probability	 and	 statistics	 to	 varying
degrees.

	
There	 are	 branches	 within	 each	 field	 of	 the	 natural	 sciences	 and	 social

sciences	 that	 utilize	 probability	 and	 statistics	 more	 than	 others.	 Specialists	 in
these	areas	not	only	apply	 the	 tools	of	probability	and	statistics,	but	 they	have
also	contributed	 to	 the	 field	of	 statistics	by	developing	 techniques	 to	organize,
analyze,	and	test	data.	Let’s	look	at	examples	from	physics	and	engineering	(the
study	of	natural	phenomena	 in	 terms	of	basic	 laws	and	physical	quantities	and
the	design	of	physical	 artifacts)	 and	biology	 (the	 study	of	 living	organisms)	 in
the	 natural	 sciences,	 and	 psychology	 (the	 study	 of	 the	 human	 mind)	 and
economics	 (the	 study	 of	 production,	 resource	 allocation,	 and	 consumption	 of
goods	and	services)	in	the	social	sciences.
	 Statistical	 physics	 is	 the	 branch	 of	 physics	 that	 applies	 probability	 and
statistics	for	handling	problems	involving	large	populations	of	particles.	One	of
the	 first	 areas	 of	 application	 was	 the	 explanation	 of	 thermodynamics	 laws	 in
terms	 of	 statistical	 mechanics.	 It	 was	 an	 extraordinary	 scientific	 achievement
with	far-reaching	consequences.	In	the	field	of	engineering,	the	analysis	of	risk,
be	it	natural	or	 industrial,	 is	another	area	that	makes	use	of	statistical	methods.
This	discipline	has	contributed	important	 innovations	especially	in	the	study	of
rare	 extreme	 events.	 The	 engineering	 of	 electronic	 communications	 applied
statistical	methods	early,	contributing	to	the	development	of	fields	such	as	queue
theory	 (used	 in	 communication	 switching	 systems)	 and	 introduced	 the
fundamental	innovation	of	measuring	information.



	
Biostatistics	 and	 biomathematics	 within	 the	 field	 of	 biology	 include	 many

areas	 of	 great	 scientific	 interest	 such	 as	 public	 health,	 epidemiology,
demography,	and	genetics,	in	addition	to	designing	biological	experiments	(such
as	 clinical	 experiments	 in	 medicine)	 and	 analyzing	 the	 results	 of	 those
experiments.	 The	 study	 of	 the	 dynamics	 of	 populations	 and	 the	 study	 of
evolutionary	phenomena	are	 two	 important	 fields	 in	biomathematics.	Biometry
and	biometrics	 apply	 statistical	methods	 to	 identify	 quantities	 that	 characterize
living	objects.
	 Psychometrics,	a	branch	of	psychology,	is	concerned	with	designing	tests	and
analyzing	 the	 results	 of	 those	 tests	 in	 an	 attempt	 to	measure	 or	 quantify	 some
human	 characteristic.	 Psychometrics	 has	 its	 origins	 in	 personality	 testing,
intelligence	 testing,	 and	 vocational	 testing,	 but	 is	 now	 applied	 to	 measuring
attitudes	and	beliefs	and	health-related	tests.
	 Econometrics	 is	 the	branch	of	economics	 that	draws	heavily	on	statistics	 for
testing	 and	 analyzing	 economic	 relationships.	 Within	 econometrics,	 there	 are
theoretical	 econometricians	 who	 analyze	 statistical	 properties	 of	 estimators	 of
models.	Several	recipients	of	the	Nobel	Prize	in	Economic	Sciences	received	the
award	as	a	 result	of	 their	 lifetime	contribution	 to	 this	branch	of	economics.	To
appreciate	the	importance	of	econometrics	to	the	discipline	of	economics,	when
the	 first	 Nobel	 Prize	 in	 Economic	 Sciences	 was	 awarded	 in	 1969,	 the
corecipients	were	 two	econometricians,	Jan	Tinbergen	and	Ragnar	Frisch	(who
is	 credited	 for	 first	 using	 the	 term	 econometrics	 in	 the	 sense	 that	 it	 is	 known
today).	 Further	 specialization	 within	 econometrics,	 and	 the	 area	 that	 directly
relates	 to	 this	 book,	 is	 financial	econometrics.	 As	 Jianqing	 Fan	 (2004)	writes,
financial	econometrics

uses	statistical	techniques	and	economic	theory	to	address	a	variety	of
problems	from	finance.	These	include	building	financial	models,	estimation
and	inferences	of	financial	models,	volatility	estimation,	risk	management,
testing	financial	economics	theory,	capital	asset	pricing,	derivative	pricing,
portfolio	allocation,	risk-adjusted	returns,	simulating	financial	systems,
hedging	strategies,	among	others.
	

Robert	 Engle	 and	 Clive	 Granger,	 two	 econometricians	 who	 shared	 the	 2003
Nobel	 Prize	 in	 Economics	 Sciences,	 have	 contributed	 greatly	 to	 the	 field	 of
financial	econometrics.
	



Historically,	the	core	probability	and	statistics	course	offered	at	the	university
level	to	undergraduates	has	covered	the	fundamental	principles	and	applied	these
principles	 across	 a	 wide	 variety	 of	 fields	 in	 the	 natural	 sciences	 and	 social
sciences.	universities	typically	offered	specialized	courses	within	these	fields	to
accommodate	 students	who	 sought	more	 focused	 applications.	 The	 exceptions
were	 the	 schools	of	business	 administration	 that	 early	on	provided	a	 course	 in
probability	 and	 statistics	 with	 applications	 to	 business	 decision	 making.	 The
applications	 cut	 across	 finance,	 marketing,	 management,	 and	 accounting.
However,	 today,	 each	 of	 these	 areas	 in	 business	 requires	 specialized	 tools	 for
dealing	with	real-world	problems	in	their	respective	disciplines.

	
This	brings	us	to	the	focus	of	this	book.	Finance	is	an	area	that	relies	heavily

on	 probability	 and	 statistics.	 The	 quotation	 above	 by	 Jianqing	 Fan	 basically
covers	the	wide	range	of	applications	within	finance	and	identifies	some	of	the
unique	applications.	Two	examples	may	help	make	this	clear.	First,	 in	standard
books	on	statistics,	there	is	coverage	of	what	one	might	refer	to	as	“probability
distributions	 with	 appealing	 properties.”	 A	 distribution	 called	 the	 “normal
distribution,”	 referred	 to	 in	 the	 popular	 press	 as	 a	 “bell-shaped	 curve,”	 is	 an
example.	Considerable	space	is	devoted	to	this	distribution	and	its	application	in
standard	textbooks.	Yet,	the	overwhelming	historical	evidence	suggests	that	real-
world	 financial	data	commonly	used	 in	 financial	 applications	are	not	normally
distributed.	Instead,	more	focus	should	be	on	distributions	that	deal	with	extreme
events,	or,	in	other	words,	what	are	known	as	the	“tails”	of	a	distribution.	In	fact,
many	 market	 commentators	 and	 regulators	 view	 the	 failure	 of	 financial
institutions	and	major	players	in	the	financial	markets	to	understand	non-normal
distributions	as	a	major	 reason	 for	 the	 recent	 financial	debacles	 throughout	 the
world.	This	is	one	of	the	reasons	that,	in	certain	areas	in	finance,	extreme	event
distributions	 (which	 draw	 from	 extreme	 value	 theory)	 have	 supplanted	 the
normal	 distribution	 as	 the	 focus	 of	 attention.	 The	 recent	 financial	 crisis	 has
clearly	 demonstrated	 that	 because	 of	 the	 highly	 leveraged	 position	 (i.e.,	 large
amount	 of	 borrowing	 relative	 to	 the	 value	 of	 equity)	 of	 financial	 institutions
throughout	 the	world,	 these	 entities	 are	 very	 sensitive	 to	 extreme	 events.	 This
means	that	the	management	of	these	financial	institutions	must	be	aware	of	the
nature	of	the	tails	of	distributions,	that	is,	the	probability	associated	with	extreme
events.
	 As	 a	 second	 example,	 the	 statistical	measure	 of	 correlation	 that	measures	 a
certain	type	of	association	between	two	random	variables	may	make	sense	when
the	two	random	variables	are	normally	distributed.	However,	correlation	may	be



inadequate	in	describing	the	link	between	two	random	variables	when	a	portfolio
manager	 or	 risk	 manager	 is	 concerned	 with	 extreme	 events	 that	 can	 have
disastrous	 outcomes	 for	 a	 portfolio	 or	 a	 financial	 institution.	Typically	models
that	 are	 correlation	 based	will	 underestimate	 the	 likelihood	 of	 extreme	 events
occurring	 simultaneously.	 Alternative	 statistical	 measures	 that	 would	 be	 more
helpful,	the	copula	measure	and	the	tail	dependence,	are	typically	not	discussed
in	probability	and	statistics	books.

	
It	is	safe	to	say	that	the	global	financial	system	has	been	transformed	since	the

mid-1970s	due	to	the	development	of	models	that	can	be	used	to	value	derivative
instruments.	Complex	derivative	 instruments	 such	as	options,	 caps,	 floors,	 and
swaptions	 can	 only	 be	 valued	 (i.e.,	 priced)	 using	 tools	 from	 probability	 and
statistical	theory.	While	the	model	for	such	pricing	was	first	developed	by	Black
and	 Scholes	 (1976)	 and	 known	 as	 the	 Black-Scholes	 option	 pricing	model,	 it
relies	on	models	 that	can	be	 traced	back	 to	 the	mathematician	Louis	Bachelier
(1900).
	 In	 the	 remainder	 of	 this	 introductory	 chapter,	 we	 do	 two	 things.	 First,	 we
briefly	 distinguish	 between	 the	 study	of	 probability	 and	 the	 study	of	 statistics.
Second,	we	provide	a	roadmap	for	the	chapters	to	follow	in	this	book.
	



PROBABILITY	VS.	STATISTICS

	

Thus	far,	we	have	used	the	terms	“probability”	and	“statistics”	collectively	as	if
they	were	one	subject.	There	is	a	difference	between	the	two	that	we	distinguish
here	and	which	will	become	clearer	in	the	chapters	to	follow.

	
Probability	 models	 are	 theoretical	 models	 of	 the	 occurrence	 of	 uncertain

events.	At	the	most	basic	level,	in	probability,	the	properties	of	certain	types	of
probabilistic	models	are	examined.	In	doing	so,	it	is	assumed	that	all	parameter
values	that	are	needed	in	 the	probabilistic	model	are	known.	Let’s	contrast	 this
with	statistics.	Statistics	is	about	empirical	data	and	can	be	broadly	defined	as	a
set	 of	 methods	 used	 to	 make	 inferences	 from	 a	 known	 sample	 to	 a	 larger
population	 that	 is	 in	 general	 unknown.	 In	 finance	 and	 economics,	 a	 particular
important	example	is	making	inferences	from	the	past	(the	known	sample)	to	the
future	(the	unknown	population).	In	statistics.	we	apply	probabilistic	models	and
we	use	data	and	eventually	judgment	to	estimate	the	parameters	of	these	models.
We	do	not	assume	that	all	parameter	values	in	the	model	are	known.	Instead,	we
use	the	data	for	the	variables	in	the	model	to	estimate	the	value	of	the	parameters
and	then	to	test	hypotheses	or	make	inferences	about	their	estimated	values.
	 Another	 way	 of	 thinking	 about	 the	 study	 of	 probability	 and	 the	 study	 of
statistics	is	as	follows.	In	studying	probability,	we	follow	much	the	same	routine
as	 in	 the	 study	 of	 other	 fields	 of	 mathematics.	 For	 example,	 in	 a	 course	 in
calculus,	 we	 prove	 theorems	 (such	 as	 the	 fundamental	 theory	 of	 calculus	 that
specifies	 the	 relationship	 between	 differentiation	 and	 integration),	 perform
calculations	given	some	function	(such	as	the	first	derivative	of	a	function),	and
make	conclusions	about	the	characteristics	of	some	mathematical	function	(such
as	whether	the	function	may	have	a	minimum	or	maximum	value).	In	the	study
of	probability,	there	are	also	theorems	to	be	proven	(although	we	do	not	focus	on
proofs	in	this	book),	we	perform	calculations	based	on	probability	models,	and
we	 reach	 conclusions	 based	 on	 some	 assumed	 probability	 distribution.	 In
deriving	proofs	in	calculus	or	probability	theory,	deductive	reasoning	is	utilized.
For	this	reason,	probability	can	be	considered	as	a	fundamental	discipline	in	the
field	 of	 mathematics,	 just	 as	 we	 would	 view	 algebra,	 geometry,	 and
trigonometry.	 In	 contrast,	 statistics	 is	 based	 on	 inductive	 reasoning.	 More



specifically,	 given	 a	 sample	 of	 data	 (i.e.,	 observations),	 we	 make	 generalized
probabilistic	conclusions	about	the	population	from	which	the	data	are	drawn	or
the	process	that	generated	the	data.
	



OVERVIEW	OF	THE	BOOK

	

The	 21	 chapters	 that	 follow	 in	 this	 book	 are	 divided	 into	 four	 parts	 covering
descriptive	 statistics,	 probability	 theory,	 inductive	 statistics,	 and	 multivariate
linear	regression.
	



Part	One:	Descriptive	Statistics

	

The	 six	 chapters	 in	Part	One	 cover	descriptive	 statistics.	This	 topic	 covers	 the
different	 tasks	of	 gathering	data	 and	presenting	 them	 in	 a	more	 concise	yet	 as
informative	 as	 possible	 way.	 For	 example,	 a	 set	 of	 1,000	 observations	 may
contain	too	much	information	for	decision-making	purposes.	Hence,	we	need	to
reduce	this	amount	in	a	reasonable	and	systematic	way.

	
The	 initial	 task	of	 any	 further	 analysis	 is	 to	 gather	 the	data.	This	 process	 is

explained	 in	Chapter	 2.	 It	 provides	 one	of	 the	most	 essential—if	 not	 the	most
essential—assignment.	Here,	we	have	to	be	exactly	aware	of	the	intention	of	our
analysis	 and	 determine	 the	 data	 type	 accordingly.	 For	 example,	 if	 we	wish	 to
analyze	the	contributions	of	the	individual	divisions	of	a	company	to	the	overall
rate	of	return	earned	by	the	company,	we	need	a	completely	different	sort	of	data
than	when	we	decompose	the	risk	of	some	investment	portfolio	into	individual
risk	 factors,	 or	 when	 we	 intend	 to	 gain	 knowledge	 of	 unknown	 quantities	 in
general	 economic	 models.	 As	 part	 of	 the	 process	 of	 retrieving	 the	 essential
information	 contained	 in	 the	 data,	 we	 describe	 the	 methods	 of	 presenting	 the
distribution	of	 the	 data	 in	 comprehensive	ways.	This	 can	be	 done	 for	 the	 data
itself	 or,	 in	 some	 cases,	 it	 will	 be	 more	 effective	 after	 the	 data	 have	 been
classified.
	 In	 Chapter	 3,	 methodologies	 for	 reducing	 the	 data	 to	 a	 few	 representative
quantities	are	presented.	We	refer	to	these	representative	quantities	as	statistics.
They	will	help	us	in	assessing	where	certain	parts	of	the	data	are	positioned	as
well	as	how	the	data	disperse	relative	to	particular	positions.	Different	data	sets
are	commonly	compared	based	on	these	statistics	that,	 in	most	cases,	proves	to
be	very	efficient.

	
Often,	it	is	very	appealing	and	intuitive	to	present	the	features	of	certain	data

in	 charts	 and	 figures.	 In	 Chapter	 4,	 we	 explain	 the	 particular	 graphical	 tools
suitable	for	the	different	data	types	discussed	in	Chapter	2.	In	general,	a	graphic
uses	the	distributions	introduced	in	Chapter	2	or	the	statistics	from	Chapter	3.	By



comparing	 graphics,	 it	 is	 usually	 a	 simple	 task	 to	 detect	 similarities	 or
differences	among	different	data	sets.
	 In	Chapters	2,	3,	and	4,	 the	analysis	focuses	only	on	one	quantity	of	interest
and	 in	 such	 cases	we	 say	 that	we	 are	 looking	 at	 univariate	 (i.e.,	 one	 variable)
distributions.	 In	Chapter	 5,	we	 introduce	multivariate	 distributions;	 that	 is,	we
look	 at	 several	 variables	 of	 interest	 simultaneously.	 For	 example,	 portfolio
analysis	 relies	on	multivariate	 analysis.	Risk	management	 in	general	 considers
the	interaction	of	several	variables	and	the	influence	that	each	variable	exerts	on
the	others.	Most	of	the	aspects	from	the	one-dimensional	analysis	(i.e.,	analysis
of	 univariate	 distributions)	 can	 be	 easily	 extended	 to	 higher	 dimensions	while
concepts	 such	 as	 dependence	 between	 variables	 are	 completely	 new.	 In	 this
context,	 in	 Chapter	 6	 we	 put	 forward	 measures	 to	 express	 the	 degree	 of
dependence	between	variables	such	as	the	covariance	and	correlation.	Moreover,
we	introduce	the	conditional	distribution,	a	particular	form	of	distribution	of	the
variables	 given	 that	 some	particular	 variables	 are	 fixed.	For	 example,	we	may
look	 at	 the	 average	 return	 of	 a	 stock	 portfolio	 given	 that	 the	 returns	 of	 its
constituent	 stocks	 fall	 below	 some	 threshold	 over	 a	 particular	 investment
horizon.

	
When	we	assume	that	a	variable	is	dependent	on	some	other	variable,	and	the

dependence	is	such	that	a	movement	in	the	one	variable	causes	a	known	constant
shift	 in	 the	 other,	we	model	 the	 set	 of	 possible	 values	 that	 they	might	 jointly
assume	 by	 some	 straight	 line.	 This	 statistical	 tool,	 which	 is	 the	 subject	 of
Chapter	6,	is	called	a	linear	regression.	We	will	present	measures	of	goodness-
of-fit	 to	assess	 the	quality	of	 the	estimated	regression.	A	popular	application	 is
the	regression	of	some	stock	return	on	the	return	of	a	broad-based	market	index
such	as	the	Standard	and	Poor’s	500.	Our	focus	in	Chapter	6	is	on	the	univariate
regression,	also	referred	to	as	a	simple	linear	regression.	This	means	that	there	is
one	variable	 (the	 independent	variable)	 that	 is	assumed	 to	affect	some	variable
(the	 dependent	 variable).	 Part	 Four	 of	 this	 book	 is	 devoted	 to	 extending	 the
bivariate	regression	model	to	the	multivariate	case	where	there	is	more	than	one
independent	variable.
	 An	 extension	 of	 the	 regression	model	 to	 the	 case	where	 the	 data	 set	 in	 the
analysis	 is	 a	 time	 series	 is	 described	 in	 Chapter	 7.	 In	 time	 series	 analysis	we
observe	the	value	of	a	particular	variable	over	some	period	of	time.	We	assume
that	 at	 each	 point	 in	 time,	 the	 value	 of	 the	 variable	 can	 be	 decomposed	 into
several	components	representing,	for	example,	seasonality	and	trend.	Instead	of



the	variable	itself,	we	can	alternatively	look	at	 the	changes	between	successive
observations	to	obtain	the	related	difference	equations.	In	time	series	analysis	we
encounter	the	notion	of	noise	in	observations.	A	well-known	example	is	the	so-
called	random	walk	as	a	model	of	a	stock	price	process.	 In	Chapter	7,	we	will
also	present	the	error	correction	model	for	stock	prices.
	



Part	Two:	Basic	Probability	Theory

	

The	basics	of	probability	theory	are	covered	in	the	nine	chapters	of	Part	Two.	In
Chapter	8,	we	briefly	 treat	 the	historical	evolution	of	probability	 theory	and	its
main	 concepts.	 To	 do	 so,	 it	 is	 essential	 that	 mathematical	 set	 operations	 are
introduced.	We	 then	 describe	 the	 notions	 of	 outcomes,	 events,	 and	 probability
distributions.	Moreover,	we	distinguish	between	countable	and	uncountable	sets.
It	is	in	this	chapter,	the	concept	of	a	random	variable	is	defined.	The	concept	of
random	 variables	 and	 their	 probability	 distributions	 are	 essential	 in	models	 in
finance	where,	for	example,	stock	returns	are	modeled	as	random	variables.	By
giving	 the	associated	probability	distribution,	 the	random	behavior	of	a	stock’s
return	will	then	be	completely	specified.

	
Discrete	 random	 variables	 are	 introduced	 in	Chapter	 9	where	 some	 of	 their

parameters	 such	as	 the	mean	and	variance	 are	defined.	Very	often	we	will	 see
that	 the	 intuition	 behind	 some	 of	 the	 theory	 is	 derived	 from	 the	 variables	 of
descriptive	 statistics.	 In	 contrast	 to	 descriptive	 statistics,	 the	 parameters	 of
random	variables	no	longer	vary	from	sample	to	sample	but	remain	constant	for
all	drawings.	We	conclude	Chapter	9	with	a	discussion	of	 the	most	commonly
used	 discrete	 probability	 distributions:	 binomial,	 hypergeometric,	multinomial,
Poisson,	and	discrete	uniform.	Discrete	random	variables	are	applied	in	finance
whenever	 the	 outcomes	 to	 be	modeled	 consist	 of	 integer	 numbers	 such	 as	 the
number	of	bonds	or	loans	in	a	portfolio	that	might	default	within	a	certain	period
of	time	or	the	number	of	bankruptcies	over	some	period	of	time.
	 In	Chapter	 10,	we	 introduce	 the	 other	 type	 of	 random	variables,	 continuous
random	 variables	 and	 their	 distributions	 including	 some	 location	 and	 scale
parameters.	 In	 contrast	 to	 discrete	 random	 variables,	 for	 continuous	 random
variables	 any	 countable	 set	 of	 outcomes	 has	 zero	 probability.	 Only	 entire
intervals	 (i.e.,	uncountable	 sets)	can	have	positive	probability.	To	construct	 the
probability	 distribution	 function,	we	 need	 the	 probability	 density	 functions	 (or
simply	 density	 functions)	 typical	 of	 continuous	 random	 variables.	 For	 each
continuous	 random	 variable,	 the	 density	 function	 is	 uniquely	 defined	 as	 the
marginal	 rate	 of	 probability	 for	 any	 single	 outcome.	While	we	 hardly	 observe



true	 continuous	 random	 variables	 in	 finance,	 they	 often	 serve	 as	 an
approximation	to	discretely	distributed	ones.	For	example,	financial	derivatives
such	 as	 call	 options	 on	 stocks	 depend	 in	 a	 completely	 known	 fashion	 on	 the
prices	of	 some	underlying	 random	variable	 such	as	 the	underlying	stock	price.
Even	though	the	underlying	prices	are	discrete,	the	theoretical	derivative	pricing
models	rely	on	continuous	probability	distributions	as	an	approximation.

	
Some	 of	 the	 most	 well-known	 continuous	 probability	 distributions	 are

presented	 in	Chapter	11.	Probably	 the	most	popular	one	of	 them	 is	 the	normal
distribution.	 Its	 popularity	 is	 justified	 for	 several	 reasons.	 First,	 under	 certain
conditions,	 it	 represents	 the	 limit	 distribution	 of	 sums	 of	 random	 variables.
Second,	it	has	mathematical	properties	that	make	its	use	appealing.	So,	it	should
not	be	a	surprise	that	a	vast	variety	of	models	in	finance	are	based	on	the	normal
distribution.	 For	 example,	 three	 central	 theoretical	 models	 in	 finance—the
Capital	 Asset	 Pricing	 Model,	 Markowitz	 portfolio	 selection	 theory,	 and	 the
Black-Scholes	 option	 pricing	 model—rely	 upon	 it.	 In	 Chapter	 11,	 we	 also
introduce	 many	 other	 distributions	 that	 owe	 their	 motivation	 to	 the	 normal
distribution.	Additionally,	other	continuous	distributions	in	this	chapter	(such	as
the	 exponential	 distribution)	 that	 are	 important	 by	 themselves	 without	 being
related	 to	 the	 normal	 distribution	 are	 discussed.	 In	 general,	 the	 continuous
distributions	presented	in	this	chapter	exhibit	pleasant	features	that	act	strongly
in	 favor	 of	 their	 use	 and,	 hence,	 explain	 their	 popularity	with	 financial	model
designers	 even	 though	 their	 use	may	 not	 always	 be	 justified	when	 comparing
them	to	real-world	data.
	 Despite	the	use	of	the	widespread	use	of	the	normal	distribution	in	finance,	it
has	 become	 a	 widely	 accepted	 hypothesis	 that	 financial	 asset	 returns	 exhibit
features	 that	 are	 not	 in	 agreement	with	 the	 normal	 distribution.	These	 features
include	the	properties	of	asymmetry	(i.e.,	skewness),	excess	kurtosis,	and	heavy
tails.	understanding	skewness	and	heavy	 tails	 is	 important	 in	dealing	with	risk.
The	 skewness	of	 the	distribution	of	 say	 the	profit	 and	 loss	of	 a	bank’s	 trading
desk,	 for	 example,	may	 indicate	 that	 the	downside	 risk	 is	 considerably	greater
than	 the	 upside	 potential.	 The	 tails	 of	 a	 probability	 distribution	 indicate	 the
likelihood	 of	 extreme	 events.	 If	 adverse	 extreme	 events	 are	 more	 likely	 than
what	would	be	predicted	by	the	normal	distribution,	then	a	distribution	is	said	to
have	 a	 heavy	 (or	 fat)	 tail.	 Relying	 on	 the	 normal	 distribution	 to	 predict	 such
unfavorable	 outcomes	 will	 underestimate	 the	 true	 risk.	 For	 this	 reason,	 in
Chapter	 12	 we	 present	 a	 collection	 of	 continuous	 distributions	 capable	 of
modeling	asymmetry	and	heavy	tails.	Their	parameterization	is	not	quite	easily



accessible	 to	 intuition	at	 first.	But,	 in	general,	 each	of	 the	parameters	of	 some
distribution	has	a	particular	meaning	with	respect	to	location	and	overall	shape
of	 the	 distribution.	 For	 example,	 the	 Pareto	 distribution	 that	 is	 described	 in
Chapter	12	has	a	tail	parameter	governing	the	rate	of	decay	of	the	distribution	in
the	extreme	parts	(i.e.,	the	tails	of	the	distribution).

	
The	distributions	we	present	in	Chapter	12	are	the	generalized	extreme	value

distributions,	the	lognormal	distribution,	the	generalized	Pareto	distribution,	the
normal	 inverse	 Gaussian	 distribution,	 and	 the	 α-stable	 (or	 alpha-stable)
distribution.	 All	 of	 these	 distributions	 are	 rarely	 discussed	 in	 introductory
statistics	 books	 nor	 covered	 thoroughly	 in	 finance	 books.	 However,	 as	 the
overwhelming	 empirical	 evidence	 suggests,	 especially	 during	 volatile	 periods,
the	commonly	used	normal	distribution	is	unsuitable	for	modeling	financial	asset
returns.	The	α-stable	distributions,	a	more	general	class	of	limiting	distributions
than	the	normal	distribution,	qualifies	as	a	candidate	for	modeling	stock	returns
in	very	volatile	market	environments	such	as	during	a	financial	crisis.	As	we	will
explain,	some	distributions	lack	analytical	closed-form	solutions	of	their	density
functions,	requiring	that	these	distributions	have	to	be	approximated	using	their
characteristic	functions,	which	is	a	function,	as	will	be	explained,	that	is	unique
to	every	probability	distribution.
	 In	 Chapter	 13,	 we	 introduce	 parameters	 of	 location	 and	 spread	 for	 both
discrete	and	continuous	probability	distributions.	Whenever	necessary,	we	point
out	 differences	 between	 their	 computation	 in	 the	 discrete	 and	 the	 continuous
cases.	 Although	 some	 of	 the	 parameters	 are	 discussed	 in	 earlier	 chapters,	 we
review	 them	 in	Chapter	 13	 in	 greater	 detail.	 The	 parameters	 presented	 in	 this
chapter	 include	 quantiles,	 mean,	 and	 variance.	 Moreover,	 we	 explain	 the
moments	of	a	probability	distribution	 that	 are	of	higher	order	 (i.e.,	beyond	 the
mean	and	variance),	which	includes	skewness	and	kurtosis.	Some	distributions,
as	we	will	 see,	may	 not	 possess	 finite	 values	 of	 all	 of	 these	 quantities.	As	 an
example,	 the	 α-stable	 distributions	 only	 has	 a	 finite	 mean	 and	 variance	 for
certain	values	of	their	characteristic	function	parameters.	This	attribute	of	the	α-
stable	distribution	has	prevented	it	from	enjoying	more	widespread	acceptance	in
the	 finance	 world,	 because	 many	 theoretical	 models	 in	 finance	 rely	 on	 the
existence	of	all	moments.

	
The	 chapters	 in	 Part	 Two	 thus	 far	 have	 only	 been	 dealing	 with	 one-

dimensional	 (univariate)	 probability	 distributions.	 However,	 many	 fields	 of



finance	deal	with	more	than	one	variable	such	as	a	portfolio	consisting	of	many
stocks	 and/or	 bonds.	 In	 Chapter	 14,	 we	 extend	 the	 analysis	 to	 joint	 (or
multivariate)	 probability	 distributions,	 the	 theory	 of	 which	 will	 be	 introduced
separately	 for	 discrete	 and	 continuous	 probability	 distributions.	 The	 notion	 of
random	 vectors,	 contour	 lines,	 and	 marginal	 distributions	 are	 introduced.
Moreover,	 independence	 in	 the	 probabilistic	 sense	 is	 defined.	 As	measures	 of
linear	 dependence,	 we	 discuss	 the	 covariance	 and	 correlation	 coefficient	 and
emphasize	 the	 limitations	 of	 their	 usability.	 We	 conclude	 the	 chapter	 with
illustrations	 using	 some	 of	 the	 most	 common	 multivariate	 distributions	 in
finance.
	 Chapter	15	introduces	the	concept	of	conditional	probability.	In	the	context	of
descriptive	 statistics,	 the	 concept	 of	 conditional	 distributions	 was	 explained
earlier	in	the	book.	In	Chapter	15,	we	give	the	formal	definitions	of	conditional
probability	distributions	and	conditional	moments	such	as	the	conditional	mean.
Moreover,	 we	 discuss	 Bayes’	 formula.	 Applications	 in	 finance	 include	 risk
measures	 such	as	 the	 expected	 shortfall	 or	 conditional	value-at-risk,	where	 the
expected	return	of	some	portfolio	or	trading	position	is	computed	conditional	on
the	fact	that	the	return	has	already	fallen	below	some	threshold.

	
The	last	chapter	in	Part	Two,	Chapter	16,	focuses	on	the	general	structure	of

multivariate	distributions.	As	will	be	seen,	any	multivariate	distribution	can	be
decomposed	 into	 two	 components.	 One	 of	 these	 components,	 the	 copula,
governs	the	dependence	between	the	individual	elements	of	a	random	vector	and
the	other	component	specifies	the	random	behavior	of	each	element	individually
(i.e.,	the	so-called	marginal	distributions	of	the	elements).	So,	whenever	the	true
distribution	 of	 a	 certain	 random	 vector	 representing	 the	 constituent	 assets	 of
some	portfolio,	for	example,	is	unknown,	we	can	recover	it	from	the	copula	and
the	marginal	distributions.	This	 is	a	 result	 frequently	used	 in	modeling	market,
credit,	 and	 operational	 risks.	 In	 the	 illustrations,	 we	 demonstrate	 the	 different
effects	various	choices	of	copulae	(the	plural	of	copula)	have	on	the	multivariate
distribution.	 Moreover,	 in	 this	 chapter,	 we	 revisit	 the	 notion	 of	 probabilistic
dependence	 and	 introduce	 an	 additional	 dependence	 measure.	 In	 previous
chapters,	 the	 insufficiency	 of	 the	 correlation	 measure	 was	 pointed	 out	 with
respect	 to	 dependence	 between	 asset	 returns.	 To	 overcome	 this	 deficiency,	we
present	a	measure	of	 tail	dependence,	which	is	extremely	valuable	in	assessing
the	probability	for	two	random	variables	to	jointly	assume	extremely	negative	or
positive	values,	something	the	correlation	coefficient	might	fail	to	describe.
	



Part	Three:	Inductive	Statistics

	

Part	 Three	 concentrates	 on	 statistical	 inference	 as	 the	 method	 of	 drawing
information	from	sample	data	about	unknown	parameters.	In	the	first	of	the	three
chapters	 in	 Part	 Three,	 Chapter	 17,	 the	 point	 estimator	 is	 presented.	 We
emphasize	 its	 random	 character	 due	 to	 its	 dependence	 on	 the	 sample	 data.	As
one	 of	 the	 easiest	 point	 estimators,	 we	 begin	 with	 the	 sample	 mean	 as	 an
estimator	 for	 the	 population	 mean.	 We	 explain	 why	 the	 sample	 mean	 is	 a
particular	form	of	the	larger	class	of	linear	estimators.	The	quality	of	some	point
estimators	 as	measured	by	 their	 bias	 and	 their	mean	 square	 error	 is	 explained.
When	 samples	 become	 very	 large,	 estimators	 may	 develop	 certain	 behavior
expressed	 by	 their	 so-called	 large	 sample	 criteria.	 Large	 sample	 criteria	 offer
insight	 into	an	estimator’s	behavior	as	 the	 sample	 size	 increases	up	 to	 infinity.
An	important	large	sample	criterion	is	the	consistency	needed	to	assure	that	the
estimators	will	eventually	approach	the	unknown	parameter.	Efficiency,	another
large	 sample	 criterion,	 guarantees	 that	 this	 happens	 faster	 than	 for	 any	 other
unbiased	estimator.	Also	 in	 this	 chapter,	 retrieving	 the	best	 estimator	 for	 some
unknown	parameter,	which	is	usually	given	by	the	so-called	sufficient	statistic	(if
it	 should	 exist),	 is	 explained.	 Point	 estimators	 are	 necessary	 to	 specify	 all
unknown	distributional	parameters	of	models	in	finance.	For	example,	the	return
volatility	 of	 some	 portfolio	 measured	 by	 the	 standard	 deviation	 is	 not
automatically	known	even	if	we	assume	that	the	returns	are	normally	distributed.
So,	we	have	to	estimate	it	from	a	sample	of	historical	data.

	
In	Chapter	18,	we	 introduce	 the	confidence	 interval.	 In	contrast	 to	 the	point

estimator,	 a	 confidence	 interval	 provides	 an	 entire	 range	 of	 values	 for	 the
unknown	parameter.	We	will	see	that	the	construction	of	the	confidence	interval
depends	 on	 the	 required	 confidence	 level	 and	 the	 sample	 size.	Moreover,	 the
quality	criteria	of	confidence	intervals	regarding	the	trade-off	between	precision
and	 the	 chance	 to	 miss	 the	 true	 parameter	 are	 explained.	 In	 our	 analysis,	 we
point	 out	 the	 advantages	 of	 symmetric	 confidence	 intervals,	 as	 well	 as
emphasizing	 how	 to	 properly	 interpret	 them.	 The	 illustrations	 demonstrate
different	 confidence	 intervals	 for	 the	 mean	 and	 variance	 of	 the	 normal



distribution	 as	 well	 as	 parameters	 of	 some	 other	 distributions,	 such	 as	 the
exponential	 distribution,	 and	 discrete	 distributions,	 such	 as	 the	 binomial
distribution.
	 The	 final	 chapter	 in	 Part	 Two,	 Chapter	 19,	 covers	 hypothesis	 testing.	 In
contrast	 to	 the	 previous	 two	 chapters,	 the	 interest	 is	 not	 in	 obtaining	 a	 single
estimate	 or	 an	 entire	 interval	 of	 some	 unknown	 parameter	 but	 instead	 in
verifying	 whether	 a	 certain	 assumption	 concerning	 this	 parameter	 is	 justified.
For	this,	it	is	necessary	to	state	the	hypotheses	with	respect	to	our	assumptions.
With	these	hypotheses,	one	can	then	proceed	to	develop	a	decision	rule	about	the
parameter	based	on	the	sample.	The	types	of	errors	made	in	hypothesis	testing—
type	 I	 and	 type	 II	 errors—are	 described.	 Tests	 are	 usually	 designed	 so	 as	 to
minimize—or	at	 least	bound—the	type	I	error	to	be	controlled	by	the	test	size.
The	often	used	p-value	of	some	observed	sample	is	introduced	in	this	chapter.	As
quality	criteria,	one	often	focuses	on	the	power	of	the	test	seeking	to	identify	the
most	powerful	test	for	given	hypotheses.	We	explain	why	it	is	desirable	to	have
an	unbiased	and	consistent	test.	Depending	on	the	problem	under	consideration,
a	test	can	be	either	a	one-tailed	test	or	a	two-tailed	test.	To	test	whether	a	pair	of
empirical	 cumulative	 relative	 frequency	 distributions	 stem	 from	 the	 same
distribution,	 we	 can	 apply	 the	 Kolmogorov-Smirnov	 test.	 The	 likelihood-ratio
test	 is	 presented	 as	 the	 test	 used	 when	 we	 want	 to	 find	 out	 whether	 certain
parameters	 of	 the	 distribution	 are	 zero	 or	 not.	We	 provide	 illustrations	 for	 the
most	common	test	situations.	In	particular,	we	illustrate	the	problem	of	having	to
find	out	whether	the	return	volatility	of	a	certain	portfolio	has	increased	or	not,
or	whether	the	inclusion	of	new	stocks	into	some	portfolio	increased	the	overall
portfolio	return	or	not.
	



Part	Four:	Multivariate	Linear	Regression

	

One	of	the	most	commonly	used	statistical	tools	in	finance	is	regression	analysis.
In	Chapter	6,	we	introduced	the	concept	of	regression	for	one	independent	and
one	dependent	variable	 (i.e.,	 univariate	 regression	or	 simple	 linear	 regression).
However,	much	more	must	be	understand	about	regression	analysis	and	for	this
reason	 in	 the	 three	 chapters	 in	 Part	 Four	 we	 extend	 the	 coverage	 to	 the
multivariate	linear	regression	case.

	
In	Chapter	20,	we	will	give	the	general	assumptions	of	the	multivariate	linear

regression	model	such	as	normally	and	independently	distributed	errors.	Relying
on	these	assumptions,	we	can	lay	out	the	steps	of	estimating	the	coefficients	of
the	regression	model.	Regression	theory	will	rely	on	some	knowledge	of	linear
algebra	and,	in	particular,	matrix	and	vector	notation.	(This	will	be	provided	in
Appendix	 B.)	 After	 the	 model	 has	 been	 estimated,	 it	 will	 be	 necessary	 to
evaluate	 its	 quality	 through	 diagnostic	 checks	 and	 the	 model’s	 statistical
significance.	 The	 analysis	 of	 variance	 is	 introduced	 to	 assess	 the	 overall
usefulness	 of	 the	 regression.	 Additionally,	 determining	 the	 significance	 of
individual	 independent	variables	using	 the	appropriate	F-statistics	 is	explained.
The	two	illustrations	presented	include	the	estimation	of	the	duration	of	certain
sectors	of	the	financial	market	and	the	prediction	of	the	10-year	Treasury	yield.
	 In	Chapter	21,	we	focus	on	the	design	and	the	building	process	of	multivariate
linear	 regression	models.	The	 three	principal	 topics	covered	 in	 this	chapter	are
the	 problem	 of	 multicollinearity,	 incorporating	 dummy	 variables	 into	 a
regression	 model	 and	 model	 building	 techniques	 using	 stepwise	 regression
analysis.	 Multicollinearity	 is	 the	 problem	 that	 is	 caused	 by	 including	 in	 a
multivariate	 linear	 regression	 independent	 variables	 that	 themselves	 may	 be
highly	 correlated.	 Dummy	 variables	 allow	 the	 incorporation	 of	 independent
variables	 that	 represent	a	characteristic	or	attribute	such	as	 industry	sector	or	a
time	period	within	which	an	observation	falls.	Because	the	value	of	a	variable	is
either	one	or	zero,	dummy	variables	are	also	referred	 to	as	binary	variables.	A
stepwise	regression	is	used	for	determining	the	suitable	independent	variables	to
be	included	in	the	final	regression	model.	The	three	methods	that	can	be	used	in



a	 stepwise	 regression—stepwise	 inclusion	method,	 stepwise	 exclusion	method,
and	standard	stepwise	regression	method—are	described.

	
In	the	introduction	to	the	multivariate	linear	regression	in	Chapter	21,	we	set

forth	the	assumptions	about	the	function	form	of	the	model	(i.e.,	that	it	is	linear)
and	 assumptions	 about	 the	 residual	 or	 error	 term	 in	 the	 model	 (normally
distribution,	 constant	 variance,	 and	 uncorrelated).	 These	 assumptions	 must	 be
investigated.	Chapter	22	describes	these	assumptions	in	more	detail	and	how	to
test	 for	 any	 violations.	 The	 tools	 for	 correcting	 any	 violation	 are	 briefly
described.
	



Appendixes

	

Statistics	 draws	 on	 other	 fields	 in	 mathematics.	 For	 this	 reason,	 we	 have
included	 two	 appendices	 that	 provide	 the	 necessary	 theoretical	 background	 in
mathematics	 to	 understand	 the	 presentations	 in	 some	 of	 the	 chapters.	 In
Appendix	A,	we	present	important	mathematical	functions	and	their	features	that
are	 needed	 primarily	 in	 the	 context	 of	 Part	Two	of	 this	 book.	These	 functions
include	 the	 continuous	 function,	 indicator	 function,	 and	 monotonic	 function.
Moreover,	 important	 concepts	 from	 differential	 and	 integral	 calculus	 are
explained.	In	Appendix	B,	we	cover	the	fundamentals	of	matrix	operations	and
concepts	needed	to	understand	the	presentation	in	Part	Four.

	
In	Appendix	C,	we	explain	the	construction	of	the	binomial	and	multinomial

coefficients	used	in	some	discrete	probability	distributions	covered	in	Chapter	9.
In	 Appendix	 D,	 we	 present	 an	 explicit	 computation	 of	 the	 price	 formula	 for
European-style	 call	 options	 when	 stock	 prices	 are	 assumed	 to	 be	 lognormally
distributed.
	



PART	One
	

Descriptive	Statistics
	



CHAPTER	2
	

Basic	Data	Analysis
	

We	are	confronted	with	data	every	day.	Daily	newspapers	contain	information	on
stock	 prices,	 economic	 figures,	 quarterly	 business	 reports	 on	 earnings	 and
revenues,	and	much	more.	These	data	offer	observed	values	of	given	quantities.
In	 this	 chapter,	 we	 explain	 the	 basic	 data	 types:	 qualitative,	 ordinal,	 and
quantitative.	For	now,	we	will	restrict	ourselves	to	univariate	data,	that	is	data	of
only	 one	 dimension.	 For	 example,	 if	 you	 follow	 the	 daily	 returns	 of	 one
particular	stock,	you	obtain	a	one-dimensional	series	of	observations.	If	you	had
observed	two	stocks,	then	you	would	have	obtained	a	two-dimensional	series	of
data,	 and	 so	 on.	 Moreover,	 the	 notions	 of	 frequency	 distributions,	 empirical
frequency	distributions,	and	cumulative	frequency	distributions	are	introduced.

	
The	 goal	 of	 this	 chapter	 is	 to	 provide	 the	methods	 necessary	 to	 begin	 data

analysis.	 After	 reading	 this	 chapter,	 you	 will	 learn	 how	 to	 formalize	 the	 first
impression	you	obtain	from	the	data	in	order	to	retrieve	the	most	basic	structure
inherent	 in	 the	 data.	 That	 is	 essential	 for	 any	 subsequent	 tasks	 you	 may
undertake	with	 the	data.	Above	all,	 though,	you	will	have	 to	be	fully	aware	of
what	you	want	to	learn	from	the	data.	For	example,	you	may	just	want	to	know
what	 the	minimum	 return	 has	 been	 of	 your	 favorite	 stock	 during	 the	 last	 year
before	you	decide	to	purchase	that	stock.	Or	you	may	be	interested	in	all	returns
from	last	year	to	learn	how	this	stock	typically	performs,	 that	 is,	which	returns
occur	more	often	 than	others,	 and	how	often.	 In	 the	 latter	 case,	 you	definitely
have	to	be	more	involved	to	obtain	the	necessary	information	than	just	knowing
the	 minimum	 return.	 Determining	 the	 objective	 of	 the	 analysis	 is	 the	 most
important	task	before	getting	started	in	investigating	the	data.
	



DATA	TYPES

	



How	To	Obain	Data

	

Data	are	gathered	by	several	methods.	In	the	financial	industry,	we	have	market
data	based	on	regular	trades	recorded	by	the	exchanges.	These	data	are	directly
observable.	Aside	 from	 the	 regular	 trading	process,	 there	 is	 so-called	over-the-
counter	(OTC)	business	whose	data	may	be	less	accessible.	Annual	reports	and
quarterly	 reports	 are	 published	 by	 companies	 themselves	 in	 print	 or
electronically.	These	data	are	available	also	in	the	business	and	finance	sections
of	 most	 major	 business-oriented	 print	 media	 and	 the	 Internet.	 The	 fields	 of
marketing	 and	 the	 social	 sciences	 employ	 additional	 forms	 of	 data	 collection
methods	such	as	telephone	surveys,	mail	questionaires,	and	even	experiments.

	
If	one	does	research	on	certain	financial	quantities	of	interest,	one	might	find

the	data	available	from	either	free	or	commercial	databases.	Hence,	one	must	be
concerned	 with	 the	 quality	 of	 the	 data.	 unfortunately,	 very	 often	 databases	 of
unrestricted	 access	 such	 as	 those	 available	 on	 the	 Internet	 may	 be	 of	 limited
credibility.	 In	 contrast,	 there	 are	many	 commercial	 purveyors	 of	 financial	 data
who	 are	 generally	 acknowledged	 as	 providing	 accurate	 data.	 But,	 as	 always,
quality	has	its	price.
	



The	Information	Contained	in	the	Data

	

Once	the	data	are	gathered,	it	is	the	objective	of	descriptive	statistics	to	visually
and	computationally	convert	the	information	collected	into	quantities	that	reveal
the	essentials	in	which	we	are	interested.	usually	in	this	context,	visual	support	is
added	since	very	often	that	allows	for	a	much	easier	grasp	of	the	information.

	
The	 field	 of	 descriptive	 statistics	 discerns	 different	 types	 of	 data.	 Very

generally,	there	are	two	types:	nonquantitative	(i.e.,	qualitative	and	ordinal)	and
quantitative	data.
	 If	certain	attributes	of	an	item	can	only	be	assigned	to	categories,	 these	data
are	referred	to	as	qualitative	data.	For	example,	stocks	listed	on	the	New	York
Stock	Exchange	(NYSE)	as	items	can	be	categorized	as	belonging	to	a	specific
industry	 sector	 such	 as	 the	 “banking,”	 “energy,”	 “media	 and
telecommunications,”	and	so	on.	That	way,	we	assign	each	item	(i.e.,	stock)	as
its	 attribute	 sector	 one	 or	 possibly	 more	 values	 from	 the	 set	 containing
“banking,”	 “energy,”	 “media	 and	 telecommunications,”	 and	 so	 on.1	 Another
example	would	be	the	credit	ratings	assigned	to	debt	obligations	by	commercial
rating	 companies	 such	 as	 Standard	 &	 Poor’s,	 Moody’s,	 and	 Fitch	 Ratings.
Except	 for	 retrieving	 the	value	of	 an	attribute,	nothing	more	can	be	done	with
qualitative	data.	One	may	use	a	numerical	code	to	indicate	the	different	sectors,
e.g,	1	=	“banking,”	2	=	“energy,”	and	so	on.	However,	we	cannot	perform	any
computation	with	 these	 figures	 since	 they	 are	 simply	 names	 of	 the	 underlying
attribute	sector.
	 On	the	other	hand,	if	an	item	is	assigned	a	quantitative	variable,	the	value	of
this	variable	is	numerical.	Generally,	all	real	numbers	are	eligible.	Depending	on
the	 case,	 however,	 one	 will	 use	 discrete	 values,	 only,	 such	 as	 integers.	 Stock
prices	 or	 dividends,	 for	 example,	 are	 quantitative	 data	 drawing	 from—up	 to
some	digits—positive	real	numbers.	Quantitative	data	have	the	feature	that	one
can	perform	transformations	and	computations	with	them.	One	can	easily	think
of	the	market	capitalization	of	all	companies	comprising	some	index	on	a	certain
day	while	 it	 would	make	 absolutely	 no	 sense	 to	 do	 the	 same	with	 qualitative



data.2
	



Data	Levels	and	Scale

	

In	 descriptive	 statistics	 we	 group	 data	 according	 to	 measurement	 levels.	 The
measurement	 level	 gives	 an	 indication	 as	 to	 the	 sophistication	 of	 the	 analysis
techniques	 that	one	can	apply	 to	 the	data	collected.	Typically,	a	hierarchy	with
five	 levels	 of	 measurement	 is	 used	 to	 group	 data:	 nominal,	 ordinal,	 interval,
ratio,	and	absolute	data.	The	latter	three	form	the	set	of	quantitative	data.	If	the
data	are	of	a	certain	measurement	level,	it	is	said	to	be	scaled	accordingly.	That
is	the	data	are	referred	to	as	nominally	scaled,	and	so	on.

	
Nominally	 scaled	data	 are	 on	 the	 bottom	 of	 the	 hierarchy.	Despite	 the	 low

level	 of	 sophistication,	 this	 type	 of	 data	 are	 commonly	 used.	 An	 example	 of
nominally	scaled	is	qualitative	data	such	as	the	attribute	sector	of	stocks	or	the
credit	 rating	of	a	debt	obligation.	We	already	 learned	 that	even	 though	we	can
assign	numbers	as	proxies	to	nominal	values,	these	numbers	have	no	numerical
meaning	 whatsoever.	 We	 might	 just	 as	 well	 assign	 letters	 to	 the	 individual
nominal	values,	for	example,	“B	=	banking,”	“E	=	energy”	and	so	on.
	 Ordinally	scaled	data	are	one	step	higher	in	the	hierarchy.	One	also	refers	to
this	type	as	rank	data	since	one	can	already	perform	a	ranking	within	the	set	of
values.	We	can	make	use	of	a	relationship	among	the	different	values	by	treating
them	 as	 quality	 grades.	 For	 example,	 we	 can	 divide	 the	 stocks	 comprising	 a
particular	stock	index	according	to	their	market	capitalization	into	five	groups	of
equal	size.	Let	“A”	denominate	the	top	20%	of	the	stocks.	Also,	let	“B”	denote
the	next	20%	below,	and	so	on,	until	we	obtain	the	five	groups	“A,”	“B,”	“C,”
“D,”	and	“E”.	After	ordinal	scaling	we	can	make	statements	such	as	group	“A”
is	better	than	group	“C.”	Hence,	we	have	a	natural	ranking	or	order	among	the
values.	However,	we	cannot	quantify	the	difference	between	them.

	
until	now,	we	can	summarize	that	while	we	can	test	the	relationship	between

nominal	data	 for	equality	only,	we	can	additionally	determine	a	greater	or	 less
than	relationship	between	ordinal	data.
	 Data	on	an	interval	scale	are	such	that	they	can	be	reasonably	transformed	by



a	 linear	 equation.	 Suppose	we	 are	 given	 values	 for	 some	variable	x.	 It	 is	 now
feasible	to	express	a	new	variable	y	by	the	relationship	y	=	ax	+	b	where	the	x’s
are	our	original	data.	If	x	has	a	meaning,	then	so	does	y.	 It	 is	obvious	that	data
have	to	possess	a	numerical	meaning	and	therefore	be	quantitative	in	order	to	be
measured	on	an	interval	scale.	For	example,	consider	the	temperature	F	given	in
degrees	Fahrenheit.	 Then,	 the	 corresponding	 temperature	 in	 degrees	Celsius	C
will	 result	 from	 the	 equation	C	=	 (F	-	 32)/1.8.	Equivalently,	 if	 one	 is	 familiar
with	physics,	 the	 same	 temperature	measured	 in	degrees	Kelvin,	K,	will	 result
from	K	=	C	+	273.15.	So,	say	the	temperature	on	a	given	day	is	55°	Fahrenheit
for	Americans,	 the	 same	 temperature	will	mean	approximately	13°	Celsius	 for
Europeans	and	 they	will	not	 feel	 any	cooler.	Generally,	 interval	data	 allow	 for
the	 calculation	 of	 differences.	 For	 example,	 (70°-60°)	 Fahrenheit	 =	 10°
Fahrenheit	may	 reasonably	 express	 the	 difference	 in	 temperature	 between	Los
Angeles	 and	 San	 Francisco.	 But	 be	 careful,	 the	 difference	 in	 temperature
measured	in	Celsius	between	the	two	cities	is	not	the	same.
	 Data	measured	 on	 a	 ratio	 scale	 share	 all	 the	 properties	 of	 interval	 data.	 In
addition,	 ratio	 data	 have	 a	 fixed	 or	 true	 zero	 point.	 This	 is	 not	 the	 case	 with
interval	 data.	 Their	 intercept,	 b,	 can	 be	 arbitrarily	 changed	 through
transformation.	 Since	 the	 zero	 point	 of	 ratio	 data	 is	 invariable,	 one	 can	 only
transform	the	slope,	a.	So,	for	example,	y	=	ax	is	always	a	multiple	of	x.	In	other
words,	 there	 is	a	 relationship	between	y	and	x	 given	by	 the	 ratio	a,	 hence,	 the
name	used	to	describe	this	type	of	data.	One	would	not	have	this	feature	if	one
would	 permit	 some	b	 different	 from	 zero	 in	 the	 transformation.	 Consider,	 for
example,	 the	 stock	price,	E,	 of	 some	European	 stock	 given	 in	 euro	 units.	 The
same	 price	 in	 U.S.	 dollars,	D,	 would	 be	D	 equals	E	 times	 the	 exchange	 rate
between	euros	and	U.S.	dollars.	But	if	a	company’s	stock	price	after	bankruptcy
went	 to	zero,	 the	price	 in	either	currency	would	be	zero	even	at	different	 rates
determined	by	the	ratio	of	U.S.	dollar	per	Euro.	This	is	a	result	of	the	invariant
zero	point.

	
Absolute	data	are	given	by	quantitative	data	measured	on	a	scale	even	stricter

than	 for	 ratio	 data.	 Here,	 along	with	 the	 zero	 point,	 the	 units	 are	 invariant	 as
well.	Data	measured	on	an	absolute	scale	occurs	when	transformation	would	be
mathematically	 feasible	but	 lacked	any	 interpretational	 implication.	A	common
example	is	provided	by	counting	numbers.	Anybody	would	agree	on	the	number
of	stocks	comprising	a	certain	stock	index.	There	is	no	ambiguity	as	to	the	zero
point	 and	 the	 count	 increments.	 If	 one	 stock	 is	 added	 to	 the	 index,	 it	 is
immediately	clear	 that	 the	difference	 to	 the	content	of	 the	old	 index	 is	 exactly



one	 unit	 of	 stock	 assuming	 that	 no	 stock	 is	 deleted.	This	 absolute	 scale	 is	 the
most	intuitive	and	needs	no	further	discussion.
	



Cross-Sectional	Data	and	Time	Series

	

There	is	another	way	of	classifying	data.	Imagine	collecting	data	from	one	and
the	 same	quantity	 of	 interest	 or	variable.	A	variable	 is	 some	quantity	 that	 can
assume	 values	 from	 a	 value	 set.	 For	 example,	 the	 variable	 “stock	 price”	 can
technically	assume	any	nonnegative	real	number	of	currency	but	only	one	value
at	a	 time.	Each	day,	 it	assumes	a	certain	value	 that	 is	 the	day’s	stock	price.	As
another	 example,	 a	 variable	 could	 be	 the	 dividend	 payments	 from	 a	 specific
company	over	some	period	of	time.	In	the	case	of	dividends,	the	observations	are
made	each	quarter.	The	set	of	data	then	form	what	is	called	time	series	data.	In
contrast,	 one	 could	 pick	 a	 particular	 time	 period	 of	 interest	 such	 as	 the	 first
quarter	of	the	current	year	and	observe	the	dividend	payments	of	all	companies
comprising	 the	 Standard	&	 Poor’s	 500	 index.	 By	 doing	 so,	 one	would	 obtain
cross-sectional	 data	 of	 the	 universe	 of	 stocks	 in	 the	 S&P	 500	 index	 at	 that
particular	time.

	
Summarizing,	 time	 series	 data	 are	 data	 related	 to	 a	 variable	 successively

observed	 at	 a	 sequence	 of	 points	 in	 time.	Cross-sectional	 data	 are	 values	 of	 a
particular	variable	across	some	universe	of	 items	observed	at	a	unique	point	 in
time.	This	is	visualized	in	Figure	2.1.
	FIGURE	2.1	The	Relationship	between	Cross-Sectional	and	Time	Series	Data
	





FREQUENCY	DISTRIBUTIONS

	



Sorting	and	Counting	Data

	

One	 of	 the	 most	 important	 aspects	 when	 dealing	 with	 data	 is	 that	 they	 are
effectively	 organized	 and	 transformed	 in	 order	 to	 convey	 the	 essential
information	 contained	 in	 them.	 This	 processing	 of	 the	 original	 data	 helps	 to
display	the	inherent	meaning	in	a	way	that	is	more	accessible	for	intuition.	But
before	advancing	to	the	graphical	presentation	of	the	data,	we	first	describe	the
methods	of	structuring	data.

	
Suppose	that	we	are	interested	in	a	particular	variable	that	can	assume	a	set	of

either	 finite	 or	 infinitely	 many	 values.	 These	 values	 may	 be	 qualitative	 or
quantitative	 by	 nature.	 In	 either	 case,	 the	 initial	 step	 when	 obtaining	 a	 data
sample	 for	 some	variable	 is	 to	 sort	 the	values	of	 each	observation	and	 then	 to
determine	 the	 frequency	 distribution	 of	 the	 data	 set.	 This	 is	 done	 simply	 by
counting	 the	 number	 of	 observations	 for	 each	 possible	 value	 of	 the	 variable.
Alternatively,	if	the	variable	can	assume	values	on	all	or	part	of	the	real	line,	the
frequency	 can	be	 determined	by	 counting	 the	 number	 of	 observations	 that	 fall
into	nonoverlapping	intervals	partitioning	the	real	line.
	 In	our	illustration,	we	begin	with	qualitative	data	first	and	then	move	on	to	the
quantitative	aspects.	For	example,	suppose	we	want	to	analyze	the	frequency	of
the	 industry	 subsectors	 of	 the	 component	 stocks	 in	 the	 Dow	 Jones	 Industrial
Average	(DJIA),	an	index	comprised	of	30	U.S.	stocks.3	Table	2.1	displays	 the
30	 companies	 in	 the	 index	 along	 with	 their	 respective	 industry	 sectors	 as	 of
December	12,	2006.	By	counting	the	observed	number	of	each	possible	Industry
Classification	Benchmark	(ICB)	subsector,	we	obtain	Table	2.2,	which	shows	the
frequency	 distribution	 of	 the	 variable	 subsector.	 Note	 in	 the	 table	 that	 many
subsector	 values	 appear	 only	 once.	 Hence,	 this	 might	 suggest	 employing	 a
coarser	 set	 for	 the	 ICB	 subsector	 values	 in	 order	 to	 reduce	 the	 amount	 of
information	in	the	data	to	a	necessary	minimum.
	 Now	suppose	you	would	like	to	compare	this	to	the	Dow	Jones	Global	Titans
50	 Index	 (DJGTI).	Ths	 index	 includes	 the	50	 largest	market	 capitalization	and
best-known	blue	chip	companies	listed	on	the	NYSE.	The	companies	contained



in	this	index	are	listed	in	Table	2.3	along	with	their	respective	ICB	subsectors.4
The	next	step	would	also	be	to	sort	the	data	according	to	their	values	and	count
each	hit	of	a	value,	finally	listing	the	respective	count	numbers	for	each	value.	A
problem	arises	now,	however,	when	you	want	 to	directly	compare	the	numbers
with	those	obtained	for	the	DJIA	because	the	number	of	stocks	contained	in	each
index	 is	 not	 the	 same.	 Hence,	 we	 cannot	 compare	 the	 respective	 absolute
frequencies.	Instead,	we	have	to	resort	to	something	that	creates	comparability	of
the	 two	data	 sets.	This	 is	 done	by	 expressing	 the	number	of	 observations	of	 a
particular	 value	 as	 the	 proportion	 of	 the	 total	 number	 of	 observations	 in	 a
specific	data	set.	That	means	we	have	to	compute	the	relative	frequency.
TABLE	2.1	DJIA	Components	as	of	December	12,	2006
	Source:	Dow	Jones,	“The	Company,	Fact	Sheets,”	http://www.dj.com/.
		

	

Company Industrial	Classification
Benchmak	(ICB)	Subsector

3M	Co. Diversified	Industrials
Alcoa	Inc. Aluminum
Altria	Group	Inc. Tobacco
American	Express	Co. Consumer	Finance
American	International	Group	Inc. Full	Line	Insurance
AT&T	Inc. Fixed	Line	Telecommunications
Boeing	Co. Aerospace
Caterpillar	Inc. Commercial	Vehicles	&	Trucks
Citigroup	Inc. Banks
Coca-Cola	Co. Soft	Drinks
E.I.	DuPont	de	Nemours	&	Co. Commodity	Chemicals
Exxon	Mobil	Corp. Integrated	Oil	&	Gas
General	Electric	Co. Diversified	Industrials
General	Motors	Corp. Automobiles
Hewlett-Packard	Co. Computer	Hardware
Home	Depot	Inc. Home	Improvement	Retailers
Honeywell	International	Inc. Diversified	Industrials

http://www.dj.com/


Intel	Corp. Semiconductors
International	Business	Machines	Corp. Computer	Services
Johnson	&	Johnson Pharmaceuticals
JPMorgan	Chase	&	Co. Banks
McDonald’s	Corp. Restaurants	&	Bars
Merck	&	Co.	Inc. Pharmaceuticals
Microsoft	Corp. Software
Pfizer	Inc. Pharmaceuticals
Procter	&	Gamble	Co. Nondurable	Household	Products
united	Technologies	Corp. Aerospace
Verizon	Communications	Inc. Fixed	Line	Telecommunications
Wal-Mart	Stores	Inc. Broadline	Retailers
Walt	Disney	Co. Broadcasting	&	Entertainment

	

	

TABLE	 2.2	 Frequency	 Distribution	 of	 the	 Industry	 Subsectors	 for	 the	 DJIA
Components	as	of	December	12,	2006
	Source:	Dow	Jones,	“The	Company,	Fact	Sheets,”	http://www.dj.com/.
	

	
ICB	Subsector Frequency	ai
Aerospace 2
Aluminum 1
Automobiles 1
Banks 2
Broadcasting	&	Entertainment 1
Broadline	Retailers 1
Commercial	Vehicles	&	Trucks 1
Commodity	Chemicals 1
Computer	Hardware 1

http://www.dj.com/


Computer	Services 1
Consumer	Finance 1
Diversified	Industrials 3
Fixed	Line	Telecommunications 2
Full	Line	Insurance 1
Home	Improvement	Retailers 1
Integrated	Oil	&	Gas 1
Nondurable	Household	Products 1
Pharmaceuticals 3
Restaurants	&	Bars 1
Semiconductors 1
Soft	Drinks 1
Software 1
Tobacco 1

	

	

TABLE	2.3	Dow	Jones	Global	Titans	50	Index	as	of	December	12,	2006
	Source:	Dow	Jones,	“The	Company,	Fact	Sheets,”	http://www.dj.com/.
	

	
Company	Name ICB	Subsector
Abbott	Laboratories Pharmaceuticals
Altria	Group	Inc. Tobacco
American	International	Group	Inc. Full	Line	Insurance
Astrazeneca	PLC Pharmaceuticals
AT&T	Inc. Fixed	Line	Telecommunications
Bank	of	America	Corp. Banks
Barclays	PLC Banks
BP	PLC Integrated	Oil	&	Gas
Chevron	Corp. Integrated	Oil	&	Gas

http://www.dj.com/


Cisco	Systems	Inc. Telecommunications	Equipment
Citigroup	Inc. Banks
Coca-Cola	Co. Soft	Drinks
ConocoPhillips Integrated	Oil	&	Gas
Dell	Inc. Computer	Hardware
ENI	S.p.A. Integrated	Oil	&	Gas
Exxon	Mobil	Corp. Integrated	Oil	&	Gas
General	Electric	Co. Diversified	Industrials
GlaxoSmithKline	PLC Pharmaceuticals
HBOS	PLC Banks
Hewlett-Packard	Co. Computer	Hardware
HSBC	Holdings	PLC	(UK	Reg) Banks
ING	Groep	N.V. Life	Insurance
Intel	Corp. Semiconductors
International	Business	Machines	Corp. Computer	Services
Johnson	&	Johnson Pharmaceuticals
JPMorgan	Chase	&	Co. Banks
Merck	&	Co.	Inc. Pharmaceuticals
Microsoft	Corp. Software
Mitsubishi	UFJ	Financial	Group	Inc. Banks
Morgan	Stanley Investment	Services
Nestle	S.A. Food	Products
Nokia	Corp. Telecommunications	Equipment
Novartis	AG Pharmaceuticals
PepsiCo	Inc. Soft	Drinks
Pfizer	Inc. Pharmaceuticals
Procter	&	Gamble	Co. Nondurable	Household	Products
Roche	Holding	AG	Part.	Cert. Pharmaceuticals
Royal	Bank	of	Scotland	Group	PLC Banks
Royal	Dutch	Shell	PLC	A Integrated	Oil	&	Gas
Samsung	Electronics	Co.	Ltd. Semiconductors
Siemens	AG Electronic	Equipment
Telefonica	S.A. Fixed	Line	Telecommunications



Time	Warner	Inc. Broadcasting	&	Entertainment
Total	S.A. Integrated	Oil	&	Gas
Toyota	Motor	Corp. Automobiles
UBS	AG Banks
Verizon	Communications	Inc. Fixed	Line	Telecommunications
Vodafone	Group	PLC Mobile	Telecommunications
Wal-Mart	Stores	Inc. Broadline	Retailers
Wyeth Pharmaceuticals

	

	



Formal	Presentation	of	Frequency

	

For	a	better	formal	presentation,	we	denote	the	(absolute)	frequency	by	a	and,	in
particular,	 by	 ai	 for	 the	 i-th	 value	 of	 the	 variable.	 Formally,	 the	 relative
frequency	fi	of	the	i-th	value	is	then	defined	by

where	 n	 is	 the	 total	 number	 of	 observations.	With	 k	 being	 the	 number	 of	 the
different	values,	the	following	holds

In	our	illustration,	let	n1	=	30	be	the	number	of	total	observations	in	the	DJIA
and	n2	=	50	the	total	number	of	observations	in	the	DJGTI.	Table	2.4	shows	the
relative	 frequencies	 for	 all	 possible	 values.	 Notice	 that	 each	 index	 has	 some
values	that	were	observed	with	zero	frequency,	which	still	have	to	be	listed	for
comparison.	When	we	look	at	the	DJIA,	we	observe	that	the	sectors	Diversified
Industrials	 and	 Pharmaceuticals	 each	 account	 for	 10%	 of	 all	 sectors	 and
therefore	 are	 the	 sectors	 with	 the	 highest	 frequencies.	 Comparing	 these	 two
sectors	to	the	DJGTI,	we	see	that	Pharmaceuticals	play	as	important	a	role	as	a
sector	with	an	18%	share,	while	Diversified	Industrials	are	of	minor	importance.
Instead,	Banks	 are	 also	 the	 largest	 sector	with	18%.	A	comparison	of	 this	 sort
can	now	be	carried	through	for	all	subsectors	thanks	to	the	relative	frequencies.

	
Naturally,	frequency	(absolute	and	relative)	distributions	can	be	computed	for

all	types	of	data	since	they	do	not	require	that	the	data	have	a	numerical	value.
	



EMPIRICAL	CUMULATIVE	FREQUENCY	DISTRIBUTION

	



Accumulating	Frequencies

	

In	addition	to	the	frequency	distribution,	there	is	another	quantity	of	interest	for
comparing	 data	 that	 are	 closely	 related	 to	 the	 absolute	 or	 relative	 frequency
distribution.	Suppose	that	one	is	interested	in	the	percentage	of	all	large	market
capitalization	stocks	in	the	DJIA	with	closing	prices	of	less	than	U.S.	$50	on	a
specific	day.	One	can	sort	the	observed	closing	prices	by	their	numerical	values
in	 ascending	 order	 to	 obtain	 something	 like	 the	 array	 shown	 in	 Table	 2.5	 for
market	prices	as	of	December	15,	2006.	Note	that	since	each	value	occurs	only
once,	 we	 have	 to	 assign	 each	 value	 an	 absolute	 frequency	 of	 1	 or	 a	 relative
frequency	of	1/30,	respectively,	since	there	are	30	component	stocks	in	the	DJIA.
We	start	with	the	lowest	entry	($20.77)	and	advance	up	to	the	largest	value	still
less	than	$50,	which	is	$49	(Coca-Cola).	Each	time	we	observe	less	than	$50,	we
added	 1/30,	 accounting	 for	 the	 frequency	 of	 each	 company	 to	 obtain	 an
accumulated	 frequency	 of	 18/30	 representing	 the	 total	 share	 of	 closing	 prices
below	 $50.	 This	 accumulated	 frequency	 is	 called	 the	 empirical	 cumulative
frequency	at	the	value	$50.	If	one	computes	this	for	all	values,	one	obtains	the
empirical	 cumulative	 frequency	 distribution.	 The	 word	 “empirical”	 is	 used
because	 we	 only	 consider	 values	 that	 are	 actually	 observed.	 The	 theoretical
equivalent	 of	 the	 cumulative	 distribution	 function	 where	 all	 theoretically
possible	 values	 are	 considered	will	 be	 introduced	 in	 the	 context	 of	 probability
theory	in	Chapter	8.

	
TABLE	2.4	Comparison	of	Relative	Frequencies	of	DJIA	and	DJGTI.
	

	
Relative	Frequencies

ICB	Subsector DJIA DJGTI
Aerospace 0.067 0.000
Aluminum 0.033 0.000
Automobiles 0.033 0.020



Banks 0.067 0.180
Broadcasting	&	Entertainment 0.033 0.020
Broadline	Retailers 0.033 0.020
Commercial	Vehicles	&	Trucks 0.033 0.000
Commodity	Chemicals 0.033 0.000
Computer	Hardware 0.033 0.040
Computer	Services 0.033 0.020
Consumer	Finance 0.033 0.000
Diversified	Industrials 0.100 0.020
Electronic	Equipment 0.000 0.020
Fixed	Line	Telecommunications 0.067 0.060
Food	Products 0.000 0.020
Full	Line	Insurance 0.033 0.020
Home	Improvement	Retailers 0.033 0.000
Integrated	Oil	&	Gas 0.033 0.140
Investment	Services 0.000 0.020
Life	Insurance 0.000 0.020
Mobile	Telecommunications 0.000 0.020
Nondurable	Household	Products 0.033 0.020
Pharmaceuticals 0.100 0.180
Restaurants	&	Bars 0.033 0.000
Semiconductors 0.033 0.040
Soft	Drinks 0.033 0.040
Software 0.033 0.020
Telecommunications	Equipment 0.000 0.040
Tobacco 0.033 0.020

	

	

TABLE	2.5	DJIA	Stocks	by	Share	Price	in	Ascending	Order	as	of	December	15,
2006
	Source:	http://www.dj.com/TheCompany/FactSheets.htm,	December	15,	2006.
	

http://www.dj.com/TheCompany/FactSheets.htm


	
Company Share	Price
Intel	Corp. $20.77
Pfizer	Inc. 25.56
General	Motors	Corp. 29.77
Microsoft	Corp. 30.07
Alcoa	Inc. 30.76
Walt	Disney	Co. 34.72
AT&T	Inc. 35.66
Verizon	Communications	Inc. 36.09
General	Electric	Co. 36.21
Hewlett-Packard	Co. 39.91
Home	Depot	Inc. 39.97
Honeywell	International	Inc. 42.69
Merck	&	Co.	Inc. 43.60
McDonald’s	Corp. 43.69
Wal-Mart	Stores	Inc. 46.52
JPMorgan	Chase	&	Co. 47.95
E.I.	DuPont	de	Nemours	&	Co. 48.40
Coca-Cola	Co. 49.00
Citigroup	Inc. 53.11
American	Express	Co. 61.90
united	Technologies	Corp. 62.06
Caterpillar	Inc. 62.12
Procter	&	Gamble	Co. 63.35
Johnson	&	Johnson 66.25
American	International	Group	Inc. 72.03
Exxon	Mobil	Corp. 78.73
3M	Co. 78.77
Altria	Group	Inc. 84.97
Boeing	Co. 89.93
International	Business	Machines	Corp. 95.36



	

	



Formal	Presentation	of	Cumulative	Frequency	Distributions

	

Formally,	the	empirical	cumulative	frequency	distribution	Femp	is	defined	as

where	k	is	the	index	of	the	largest	value	observed	that	is	still	less	than	x.	In	our
example,	 k	 is	 18.	When	 we	 use	 relative	 frequencies,	 we	 obtain	 the	 empirical
relative	cumulative	 frequency	distribution	defined	analogously	 to	 the	empirical
cumulative	 frequency	 distribution,	 this	 time	 using	 relative	 frequencies.	Hence,
we	have

In	our	example,	 	(50)=18/30=0.6=60%
	 Note	that	the	empirical	cumulative	frequency	distribution	can	be	evaluated	at
any	real	x	even	 though	x	need	not	be	an	observation.	For	any	value	x	between
two	 successive	 observations	 x(i)	 and	x(i+1),	 the	 empirical	 cumulative	 frequency
distribution	 as	well	 as	 the	 empirical	 cumulative	 relative	 frequency	 distribution
remain	 at	 their	 respective	 levels	 at	 x(i);	 that	 is,	 they	 are	 of	 constant	 level	 Femp
(x(i))	 and	 	 (x(i)),	 respectively.	 For	 example,	 consider	 the	 empirical	 relative
cumulative	 frequency	 distribution	 for	 the	 data	 shown	 in	 Table	 2.5.	 We	 can
extend	the	distribution	to	a	function	that	determines	the	value	of	the	distribution
at	 each	 possible	 value	 of	 the	 stock	 price.5	 The	 function	 is	 given	 in	 Table	 2.6.
Notice	 that	 if	no	value	 is	observed	more	 than	once,	 then	 the	empirical	 relative
cumulative	frequency	distribution	jumps	by	1/N	at	each	observed	value.	 In	our
illustration,	the	jump	size	is	1/30.
	 In	 Figure	 2.2	 the	 empirical	 relative	 cumulative	 frequency	 distribution	 is
shown	a	graph.	Note	that	the	values	of	the	function	are	constant	on	the	extended
line	between	two	successive	observations,	indicated	by	the	solid	point	to	the	left
of	 each	 horizontal	 line.	At	 each	 observation,	 the	 vertical	 distance	 between	 the
horizontal	 line	 extending	 to	 the	 right	 from	 the	 preceding	 observation	 and	 the
value	of	the	function	is	exactly	the	increment,	1/30.



	
The	computation	of	either	form	of	empirical	cumulative	distribution	function

is	obviously	not	intuitive	for	categorical	data	unless	we	assign	some	meaningless
numerical	proxy	to	each	value	such	as	“Sector	A”	=	1,	“Sector	B”	=	2,	and	so	on.
	TABLE	 2.6	 Empirical	 Relative	 Cumulative	 Frequency	 Distribution	 of	 DJIA
Stocks	from	Table	2.5
	

FIGURE	 2.2	 Empirical	 Relative	 Cumulative	 Frequency	 Distribution	 of	 DJIA
Stocks	from	Table	2.5
	





DATA	CLASSES

	



Reasons	for	Classifying

	

When	quantitative	variables	are	such	that	the	set	of	values—whether	observed	or
theoretically	 possible—includes	 intervals	 or	 the	 entire	 real	 numbers,	 then	 the
variable	 is	 said	 to	 be	 a	 continuous	 variable.	 This	 is	 in	 contrast	 to	 discrete
variables,	which	assume	values	only	from	a	finite	or	countable	set.	Variables	on
a	 nominal	 scale	 cannot	 be	 considered	 in	 this	 context.	 And	 because	 of	 the
difficulties	with	interpreting	the	results,	we	will	not	attempt	to	explain	the	issue
of	classes	for	rank	data	either.

	
When	one	counts	the	frequency	of	observed	values	of	a	continuous	variable,

one	 notices	 that	 hardly	 any	 value	 occurs	more	 than	 once.6	 Theoretically,	with
100%	chance,	 all	observations	will	yield	different	values.	Thus,	 the	method	of
counting	the	frequency	of	each	value	is	not	feasible.	Instead,	the	continuous	set
of	 values	 is	 divided	 into	 mutually	 exclusive	 intervals.	 Then	 for	 each	 such
interval,	the	number	of	values	falling	within	that	interval	can	be	counted	again.
In	other	words,	one	groups	the	data	into	classes	for	which	the	frequencies	can	be
computed.	Classes	should	be	such	that	their	respective	lower	and	upper	bounds
are	real	numbers.	Moreover,	whether	the	class	bounds	are	elements	of	the	classes
or	not	must	be	specified.	The	class	bounds	of	a	class	have	to	be	bounds	of	 the
respective	 adjacent	 classes	 as	well,	 such	 that	 the	 classes	 seamlessly	 cover	 the
entire	data.	The	width	should	be	the	same	for	all	classes.	However,	 if	 there	are
areas	 where	 the	 data	 are	 very	 intensely	 dense	 in	 contrast	 to	 areas	 of	 lesser
density,	then	the	class	width	can	vary	according	to	significant	changes	in	value
density.	In	certain	cases,	most	of	the	data	are	relatively	evenly	scattered	within
some	range	while	there	are	extreme	values	that	are	located	in	isolated	areas	on
either	end	of	the	data	array.	Then,	it	is	sometimes	advisable	to	specify	no	lower
bound	to	the	lowest	class	and	no	upper	bound	to	the	uppermost	class.	Classes	of
this	sort	are	called	open	classes.	Moreover,	one	should	consider	the	precision	to
which	 the	 data	 are	 given.	 If	 values	 are	 rounded	 to	 the	 first	 decimal	 place	 but
there	 is	 the	chance	that	 the	exact	value	might	vary	within	half	a	decimal	about
the	value	given,	class	bounds	have	to	consider	this	lack	of	certainty	by	admitting
plus	half	a	decimal	on	either	end	of	the	class.



	



Formal	Procedure	for	Classifying

	

Formally,	there	are	four	criteria	that	the	classes	need	to	meet.

	

Criterion	#1:	Mutual	Exclusiveness:	Each	value	can	be	placed	in	only	one
class.
	Criterion	#2:	Completeness:	The	set	of	classes	needs	to	cover	all	values.

	
Criterion	#3:	Equidistance:	If	possible,	form	classes	of	equal	width.
	Criterion	#4:	Nonemptyness:	If	possible,	avoid	forming	empty	classes.
		

It	 is	 intuitive	 that	 the	 number	 of	 classes	 should	 increase	with	 an	 increasing
range	 of	 values	 and	 increasing	 number	 of	 data.	 Though	 there	 are	 no	 stringent
rules,	 two	rules	of	 thumb	are	given	here	with	respect	 to	the	advised	number	of
classes	(first	rule)	and	the	best	class	width	(second	rule).	The	first,	the	so-called
Sturge’s	rule,	states	that	for	a	given	set	of	continuous	data	of	size	n,	one	should
use	the	nearest	integer	figure	to

1	+	log2n	=	1	+	3.222	log10	n
	

Here,	 loga	n	 denotes	 the	 logarithm	of	n	 to	 the	base	a	with	a	 being	 either	 2	 or
10.
	 The	 second	 guideline	 is	 the	 so	 called	 Freedman-Diaconis	 rule	 for	 the
appropriate	class	width	or	bin	size.	Before	turning	to	the	second	rule	of	thumb	in
more	detail,	we	have	 to	 introduce	 the	notion	of	 the	 interquartile	range	 (IQR).
This	 quantity	measures	 the	 distance	 between	 the	 value	where	 is	 closest	 to
0.25,	that	is,	 the	so-called	“0.25-quantile,”	and	the	value	where	 is	closest	to
0.75,	that	is,	the	so-called	“0.75-quantile.”	7	So,	the	IQR	states	how	remote	the
lowest	25%	of	the	observations	are	from	the	highest	75%.	As	a	consequence,	the
IQR	comprises	the	central	50%	of	a	data	sample.	A	little	more	attention	will	be



given	 to	 the	 determination	 of	 the	 above-mentioned	 quantiles	when	we	 discuss
sample	moments	and	quantiles	since	formally	there	might	arise	some	ambiguity
when	computing	them.8
	 Now	we	can	return	to	the	Freedman-Diaconis	rule.	It	states	that	a	good	class
width	is	given	by	the	nearest	integer	to

2	×	IQR	×	N-1/3
	

where	N	 is	 the	 number	 of	 observations	 in	 the	 data	 set.	 Note	 that	 there	 is	 an
inverse	relationship	between	the	class	width	and	the	number	of	classes	for	each
set	of	data.	That	is,	given	that	the	partitioning	of	the	values	into	classes	covers
all	 observations,	 the	 number	 of	 classes	 n	 has	 to	 be	 equal	 to	 the	 difference
between	the	largest	and	smallest	value	divided	by	the	class	width	if	classes	are
all	of	equal	size	w.	Mathematically,	that	means

n	=	(xmax	−	xmin	)	/	w
	

where	 xmax	 denotes	 the	 largest	 value	 and	 xmin	 denotes	 the	 smallest	 value
considered.
	 One	should	not	be	intimidated	by	all	these	rules.	Generally,	by	mere	ordering
of	the	data	in	an	array,	intuition	produces	quite	a	good	feel	for	what	the	classes
should	look	like.	Some	thought	can	be	given	to	the	timing	of	the	formation	of	the
classes.	That	is,	when	classes	are	formed	prior	to	the	data-gathering	process,	one
does	not	have	 to	 store	 the	 specific	values	but	 rather	 count	only	 the	number	of
hits	for	each	class.
	



Example	of	Classifying	Procedures

	

Let’s	illustrate	these	rules.	Table	2.7	gives	 the	12-month	returns	(in	percent)	of
the	235	Franklin	Templeton	Investments	Funds	on	January	11,	2007.	With	 this
many	data,	 it	becomes	obvious	that	 it	cannot	be	helpful	 to	anyone	to	know	the
relative	performance	 for	 the	235	 funds.	To	obtain	an	overall	 impression	of	 the
distribution	 of	 the	 data	without	 getting	 lost	 in	 detail,	 one	 has	 to	 aggregate	 the
information	given	by	classifying	the	data.
	TABLE	 2.7	 12-Month	 Returns	 (in	 %)	 for	 the	 235	 Franklin	 Templeton
Investment	Funds	(Luxemburg)	on	January	11,	2007
	





For	 the	sake	of	a	better	overview,	 the	ordered	array	 is	given	 in	Table	2.8.	A
quick	glance	at	the	data	sorted	in	ascending	order	gives	us	the	lowest	(minimum)
and	largest	(maximum)	return.	Here,	we	have	xmin	=	-18.3%	and	xmax	=	41.3%,
yielding	a	range	of	59.6%	to	cover.

	
We	first	classify	the	data	according	to	Sturge’s	rule.	For	the	number	of	classes,

n,	we	obtain	the	nearest	 integer	to	1	+	log2	235	=	8.877,	which	is	9.	The	class
width	 is	 then	 determined	 by	 the	 range	 divided	 by	 the	 number	 of	 classes,



59.6%/9,	yielding	a	width	of	roughly	6.62%.	This	is	not	a	nice	number	to	deal
with,	so	we	may	choose	7%	instead	without	deviating	noticeably	from	the	exact
numbers	given	by	Sturge’s	rule.	We	now	cover	a	range	of	9	×	7%	=	63%,	which
is	slightly	larger	than	the	original	range	of	the	data.
	TABLE	 2.8	 Ordered	 Array	 of	 the	 235	 12-Month	 Returns	 for	 the	 Franklin
Templeton	Investment	Funds	(Luxemburg)
	



Selecting	a	value	for	the	lower-class	bound	of	the	lowest	class	slightly	below
our	minimum,	 say	 -20.0%,	 and	 an	 upper-class	 bound	 of	 the	 highest	 class,	 say
43.0%,	we	spread	the	surplus	of	the	range	(3.4%)	evenly.	The	resulting	classes
can	be	viewed	in	Table	2.9,	where	 in	 the	first	 row,	 the	 indexes	of	 the	class	are
given.	 The	 second	 row	 contains	 the	 class	 bounds.	 Brackets	 indicate	 that	 the
value	 belongs	 to	 the	 class	 whereas	 parentheses	 exclude	 given	 values.	 So,	 we
obtain	a	half-open	interval	for	each	class	containing	all	real	numbers	between	the
lower	bound	and	 just	below	the	upper	bound,	 thus	excluding	 that	value.	 In	 the
third	 row,	 we	 have	 the	 number	 of	 observations	 that	 fall	 into	 the	 respective
classes.
	 We	can	check	for	compliance	with	the	four	criteria	given	earlier.	Because	we
use	half-open	intervals,	we	guarantee	that	Criterion	#1	is	fulfilled.	Since
TABLE	2.9	Classes	for	the	235	Fund	Returns	According	to	Sturge’s	Rule
		

	



Class	Index
I [ai;	bi) aI
1 [-20,-13) 2
2 [-13,-6) 7
3 [-6,1) 17
4 [1,8) 56
5 [8,15) 66
6 [15,22) 53
7 [22,29) 16
8 [29,36) 9
9 [36,43) 9

	

the	lowest	class	starts	at	-20%,	and	the	highest	class	ends	at	43%,	Criterion	#2
is	satisfied.	All	nine	classes	are	of	width	7%,	which	complies	with	Criterion	#3.
Finally,	compliance	with	Criterion	#4	can	be	checked	easily.
Next,	we	apply	 the	Freedman-Diaconis	 rule.	With	our	ordered	array	of	data,

we	can	determine	the	0.25-quartile	by	selecting	the	observation	whose	index	is
the	 first	 to	 exceed	 0.25	 ×	N	 =	 0.25	 ×	 235	 =	 58.75.	 This	 yields	 the	 value	 of
observation	 59,	 which	 is	 4.2%.	Accordingly,	 the	 0.75-quartile	 is	 given	 by	 the
value	whose	index	is	the	first	to	exceed	0.75	×	235	=	176.25.	For	our	return	data,
it	is	x177,	which	is	18.9%.	The	IQR	is	computed	as	18.9%	−	4.2%	=	14.7%	such
that	the	class	width	(or	bin	size)	of	the	classes	is	now	determined	according	to

	Taking	the	data	range	of	59.6%	from	the	previous	calculation,	we	obtain	as	the
suggested	 number	 of	 classes	 59.6%/4.764	 =	 12.511.	 Once	 again,	 this	 is	 not	 a
neat	 looking	 figure.	 We	 stick	 with	 the	 initial	 class	 width	 of	w	 =	 4.764%	 as
closely	as	possible	by	selecting	the	next	integer,	say	5%.	And,	without	any	loss
of	 information,	we	 extend	 the	 range	 artificially	 to	 60%.	So,	we	 obtain	 for	 the
number	of	classes	60%/5	=	12,	which	is	close	to	our	original	real	number	12.511
computed	 according	 to	 the	 Freedman-Diaconis	 rule	 but	much	 nicer	 to	 handle.
We	again	spread	the	range	surplus	of	0.4%	(60%	−	59.6%)	evenly	across	either
end	 of	 the	 range	 such	 that	 we	 begin	 our	 lowest	 class	 at	 -18.5%	 and	 end	 our



highest	class	at	41.5%.	The	classes	are	given	in	Table	2.10.	The	first	row	of	the
table	 indicates	 the	 indexes	 of	 the	 class	 while	 the	 second	 row	 gives	 the	 class
bounds.	The	number	of	observations	that	fall	into	each	class	is	shown	in	the	last
row.9
	TABLE	 2.10	 Classes	 for	 the	 235	 Fund	 Returns	 According	 to	 the	 Freedman-
Diaconis	Rule
	

	
I [ai;	bi) aI
1 [-18.5;-13.5) 2
2 [-13.5;-8.5) 4
3 [-8.5;-3.5) 5
4 [-3.5;1.5) 18
5 [1.5;6.5) 42
6 [6.5;11.5) 35
7 [11.5;16.5) 57
8 [16.5;21.5) 36
9 [21.5;26.5) 18
10 [26.5;31.5) 2
11 [31.5;36.5) 9
12 [36.5;41.5) 7

	

	

Let	us	next	compare	Tables	2.9	and	2.10.	We	observe	a	finer	distribution	when
the	 Freedman-Diaconis	 rule	 is	 employed	 because	 this	 rule	 generates	 more
classes	for	the	same	data.	However,	it	is	generally	difficult	to	judge,	which	rule
provides	 us	 with	 the	 better	 information	 because,	 as	 can	 be	 seen	 in	 our
illustration,	 the	 two	rules	set	up	completely	different	classes.	But	 the	choice	of
class	 bounds	 is	 essential.	 By	 just	 slightly	 shifting	 the	 bounds	 between	 two
adjacent	classes,	many	observations	may	fall	from	one	class	into	the	other	due	to
this	alteration.	As	a	result,	this	might	produce	a	totally	different	picture	about	the
data	 distribution.	 So,	 we	 have	 to	 be	 very	 careful	 when	 we	 interpret	 the	 two



different	results.

	
For	example,	class	7,	that	is,	[22;29)	in	Table	2.9,	contains	16	observations.	10

Classes	9	and	10	of	Table	2.10	cover	approximately	the	same	range,	[21.5;31.5).
Together	 they	 account	 for	 20	 observations.	We	 could	 now	 easily	 present	 two
scenarios	that	would	provide	rather	different	conceptions	about	the	frequency.	In
scenario	one,	suppose,	one	assumes	that	two	observations	are	between	21.5	and
22.0.	Then	there	would	have	to	be	16	observations	between	22.0	and	26.5	to	add
up	to	18	observations	in	class	9	of	Table	2.10.	This,	in	return,	would	mean	that
the	16	observations	of	class	7	from	Table	2.9	would	all	have	to	lie	between	22.0
and	26.5	as	well.	Then	the	two	observations	from	class	10	of	Table	2.10	must	lie
beyond	29.0.	The	other	 scenario	 could	 assume	 that	we	have	 four	 observations
between	21.5	and	22.0.	Then,	 for	similar	 reasons	as	before,	we	would	have	14
observations	 between	 22.0	 and	 26.5.	 The	 two	 observations	 from	 class	 10	 of
Table	2.10	would	now	have	to	be	between	26.5	and	29.0	so	that	the	total	of	16
observations	 in	 class	 7	 of	 Table	 2.9	 is	 met.	 See	 how	 easily	 slightly	 different
classes	can	lead	to	an	ambiguous	interpretation?	Looking	at	all	classes	at	once,
many	of	 these	 puzzles	 can	be	 solved.	However,	 some	uncertainty	 remains.	As
can	be	seen,	the	choice	of	the	number	of	classes,	and	thus	the	class,	bounds	can
have	 a	 significant	 impact	 on	 the	 information	 that	 the	 data	 conveys	 when
condensed	into	classes.
	



CUMULATIVE	FREQUENCY	DISTRIBUTIONS

	

In	contrast	to	the	empirical	cumulative	frequency	distributions,	in	this	section	we
will	introduce	functions	that	convey	basically	the	same	information,	that	is,	the
frquency	 distribution,	 but	 rely	 on	 a	 few	more	 assumptions.	 These	 cumulative
frequency	distributions	 introduced	here,	however,	 should	not	be	confused	with
the	theoretical	definitions	given	in	the	chapters	on	probability	theory	to	follow,
even	though	one	will	clearly	notice	that	the	notion	is	akin	to	both.

	
The	 absolute	 cumulative	 frequency	 at	 each	 class	 bound	 states	 how	 many

observations	have	been	counted	up	to	this	particular	class	bound.	However,	we
do	not	exactly	know	how	the	data	are	distributed	within	the	classes.	On	the	other
hand,	 when	 relative	 frequencies	 are	 used,	 the	 cumulative	 relative	 frequency
distribution	 states	 the	 overall	 proportion	 of	 all	 values	 up	 to	 a	 certain	 lower	 or
upper	bound	of	some	class.
	 So	 far,	 things	 are	 not	 much	 different	 from	 the	 definition	 of	 the	 empirical
cumulative	 frequency	 distribution	 and	 empirical	 cumulative	 relative	 frequency
distribution.	At	each	bound,	the	empirical	cumulative	frequency	distribution	and
cumulative	 frequency	 coincide.	 However,	 an	 additional	 assumption	 is	 made
regarding	 the	 distribution	 of	 the	 values	 between	 bounds	 of	 each	 class	 when
computing	 the	 cumulative	 frequency	 distribution.	 The	 data	 are	 thought	 of	 as
being	 continuously	 distributed	 and	 equally	 spread	 between	 the	 particular
bounds.11	Hence,	both	forms	of	the	cumulative	frequency	distributions	increase
in	 a	 linear	 fashion	 between	 the	 two	 class	 bounds.	 So	 for	 both	 forms	 of
cumulative	distribution	functions,	one	can	compute	the	accumulated	frequencies
at	values	inside	of	classes.
	 For	a	more	thorough	analysis	of	this,	let’s	use	a	more	formal	presentation.	Let
I	denote	the	set	of	all	class	indexes	i	with	i	being	some	integer	value	between	1
and	 nI=I	 (i.e.,	 the	 number	 of	 classes).	 Moreover,	 let	 aj	 and	 fj	 denote	 the
(absolute)	 frequency	 and	 relative	 frequency	 of	 some	 class	 j,	 respectively.	 The
cumulative	frequency	distribution	at	some	upper	bound,	 ,	of	a	given	class	i	is
computed	as
(2.1)



	

In	 words,	 this	 means	 that	 we	 sum	 up	 the	 frequencies	 of	 all	 classes	 whose
upper	bound	is	less	than	 	plus	the	frequency	of	class	i	itself.	The	corresponding
cumulative	relative	frequency	distribution	at	the	same	value	is	then,
(2.2)
	

This	 describes	 the	 same	 procedure	 as	 in	 equation	 (2.1)	 using	 relative
frequencies	instead	of	frequencies.	For	any	value	x	in	between	the	boundaries	of,
say,	class	i,	 	and	 ,	the	cumulative	relative	frequency	distribution	is	defined	by
(2.3)
	

In	 words,	 this	 means	 that	 we	 compute	 the	 cumulative	 relative	 frequency
distribution	at	value	x	 as	 the	 sum	of	 two	 things.	First,	we	 take	 the	 cumulative
relative	frequency	distribution	at	the	lower	bound	of	class	i.	Second,	we	add	that
share	 of	 the	 relative	 frequency	 of	 class	 i	 that	 is	 determined	 by	 the	 part	 of	 the
whole	interval	of	class	i	that	is	covered	by	x.
Figure	2.3	might	appeal	more	to	intuition.	At	 the	bounds	of	class	 i,	we	have

values	of	the	cumulative	relative	frequency	given	by	Ff 	and	Ff	( ).We	assume
that	 the	 cumulative	 relative	 frequency	 increases	 linearly	 along	 the	 line
connecting	Ff( )	and	Ff	( ).	Then	at	any	value	x*	inside	of	class	i,	we	find	the
corresponding	 value	Ff(x*)	 by	 the	 intersection	 of	 the	 dash-dotted	 line	 and	 the
vertical	 axis	 as	 shown	 in	 the	 figure.	 The	 dash-dotted	 line	 is	 obtained	 by
extending	a	horizontal	 line	 through	 the	 intersection	of	 the	vertical	 line	 through
x*	and	the	line	connecting	Ff( )	and	Ff )	with	slope	[Ff(x*)-Ff 	/(x*-	 ).
	FIGURE	2.3	Determination	of	Frequency	Distribution	within	Class	Bounds
	





CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

univariate	data	
Qualitative	data	
Quantitative	data	
Measurement	level	
Nominally	scaled	data	
Ordinally	scaled	data	
Rank	data	
Interval	scale	
Ratio	scale	
Absolute	data	
Variable	
Time	series	data	
Cross-sectional	data	
Relative	frequency	
Empirical	cumulative	frequency	
Empirical	cumulative	frequency	distribution	
Function	
Continuous	variable	
Open	classes	
Discrete	variables	
Open	classes	
Sturge’s	rule	
Freedman-Diaconis	rule	
Interquartile	range	
Half-open	interval	
Absolute	cumulative	frequency
	



CHAPTER	3
	

Measures	of	Location	and	Spread
	

Now	 that	we	have	 the	data	 at	 our	 disposal,	maybe	 classified,	 and	possibly	 the
corresponding	frequency	distributions	computed	as	well,	it	is	time	to	retrieve	the
information	 using	 some	 concise	 measures.	 Generally,	 there	 are	 two	 possible
ways	 to	 do	 this.	 In	 this	 chapter,	 one	 of	 the	 two	 ways	 is	 presented:	 the
computation	of	key	numbers	conveying	specific	information	about	the	data.	The
alternative,	the	graphical	representation,	will	be	presented	in	the	next	chapter.	As
key	numbers	we	will	introduce	measures	for	the	center	and	location	of	the	data
as	well	as	measures	for	the	spread	of	the	data.
	



PARAMETERS	VS.	STATISTICS

	

Before	we	go	 further,	however,	we	have	 to	 introduce	a	distinction	 that	 is	valid
for	any	type	of	data.	We	have	to	be	aware	of	whether	we	are	analyzing	the	entire
population	or	just	a	sample	from	that	population.	The	key	numbers	when	dealing
with	 populations	 are	 called	 parameters	 while	 we	 refer	 to	 statistics	 when	 we
observe	only	a	sample.	Parameters	are	commonly	denoted	by	Greek	letters	while
statistics	are	usually	assigned	Roman	letters.

	
The	difference	between	these	two	measures	is	that	parameters	are	values	valid

for	 the	 entire	 population	 or	 universe	 of	 data	 and,	 hence,	 remain	 constant
throughout	whereas	statistics	may	vary	with	every	different	sample	even	though
they	each	are	selected	from	the	very	same	population.	This	is	easily	understood
using	the	following	example.	Consider	the	average	return	of	all	stocks	listed	in
the	S&P	500	index	during	a	particular	year.	This	quantity	is	a	parameter	µ,	for
example,	 since	 it	 represents	all	 these	stocks.	 If	one	 randomly	selects	10	stocks
included	 in	 the	 S&P	 500	 stocks,	 however,	 one	 may	 end	 up	 with	 an	 average
return	for	 this	sample	that	deviates	from	the	population	average,	µ.	The	reason
would	 be	 that	 by	 chance	 one	 has	 picked	 stocks	 that	 do	 not	 represent	 the
population	 very	 well.	 For	 example,	 one	 might	 by	 chance	 select	 the	 top	 10
performing	stocks	included	in	the	S&P	500.	Their	returns	will	yield	an	average
(statistic)	 that	 is	above	 the	average	of	all	500	stocks	(parameter).	The	opposite
analog	arises	if	one	had	picked	the	10	worst	performers.	In	general,	deviations	of
the	statistics	from	the	parameters	are	the	result	of	one	selecting	the	sample.
	



CENTER	AND	LOCATION

	

The	measures	we	present	first	are	those	revealing	the	center	and	the	location	of
the	 data.	 The	 center	 and	 location	 are	 expressed	 by	 three	 different	 measures:
mean,	median,	and	mode.
	



Mean

	

The	mean	 is	 the	quantity	given	by	the	sum	of	all	values	divided	by	the	size	of
the	data	 set.	The	 size	 is	 the	number	of	possible	values	or	observations.12	Note
that	 the	size	of	a	population	 is	usually	 indicated	by	N.	The	size	of	a	 sample	 is
given	by	the	number	of	data	contained	in	the	sample,	commonly	symbolized	by
n.	Hence,	the	population	mean	is	defined	by
(3.1)
	

In	contrast,	the	sample	mean	is	defined	by
(3.2)
	

Note	 that	 the	 summation	 in	 equation	 (3.2)	 is	 only	 over	 the	 elements	 in	 the
sample	set,	xs,i.	In	the	following,	we	will	not	use	the	indication	s	(as	done	here
for	xs,i)	when	we	consider	samples	since	it	will	be	obvious	from	the	context.
The	interpretation	of	the	mean	is	as	follows:	The	mean	gives	an	indication	as

to	which	value	 the	 data	 are	 scattered	 about.	Moreover,	 on	 average,	 one	has	 to
expect	a	data	value	equal	to	the	mean	when	selecting	an	observation	at	random.
However,	one	incurs	some	loss	of	information	that	is	not	insignificant.	Given	a
certain	data	size,	a	particular	mean	can	be	obtained	 from	different	values.	One
extreme	would	be	that	all	values	are	equal	to	the	mean.	The	other	extreme	could
be	 that	 half	 of	 the	 observations	 are	 extremely	 to	 the	 left	 and	 half	 of	 the
observations	 are	 extremely	 to	 the	 right	 of	 the	 mean,	 thus,	 leveling	 out,	 on
average.

	
For	example,	consider	a	set	S	with	only	 two	possible	values	 (i.e.,	x1	and	x2)

such	that	|S|	=	2.	Let	the	first	scenario	be	x1	=	x2	=	0.	The	resulting	mean	is	µ	=
0.5	×	(x1	+	x2)	=	0.	A	second	scenario	could	be	x1	=	-1,000	and	x2	=	1,000,	again



resulting	in	a	mean	µ	=	0.5	×	(x1	+	x2)	=	0.	So,	both	scenarios	produce	equivalent
means	 even	 though	 they	 result	 from	 completely	 different	 data.	 This	 loss	 of
information	 is	 the	 cost	 of	 consolidating	 data.	 It	 is	 inherent	 in	 all	 sorts	 of
reduction	of	data	to	key	figures.
	 The	requirements	on	the	data	such	that	the	mean	can	be	computed	should	be
noted.	The	data	have	 to	be	quantitative;	otherwise,	computation	of	 the	mean	is
infeasible.	As	a	consequence,	both	nominal	and	rank	scale	data	have	no	means.
So,	one	has	to	be	careful	when	attempting	to	calculate	means.
	 If	 we	 are	 dealing	 with	 classified	 data,	 the	 mean	 is	 computed	 in	 a	 slightly
different	manner.	Since	we	have	no	information	as	to	the	true	values,	we	choose
the	centers	of	the	classes	to	represent	the	values	within	the	classes.	The	centers
of	the	classes	are	each	weighted	with	the	classes’	respective	relative	frequencies
and	summed	to	compute	the	mean.	Formally,	we	will	use	the	following	notation:
	

	
n =	the	number	of	observations
I	∈	{1,	.	.	.,	nc} =	the	class	index
cI	=	bI	-	aI =	the	center	of	class	I
pI =	the	relative	frequency	of	class	I
hI =	the	absolute	frequency	of	class	I

	

	

Then,	the	sample	mean	of	classified	data	is	defined	by
(3.3)
	

	To	illustrate,	recall	the	classes	as	given	in	Table	2.9	of	Chapter	2,	which	lists
the	classes	 according	 to	Sturge’s	 rule.	We	obtain	as	 class	 centers	 the	values	 in
Table	3.1	The	mean	is

	



TABLE	3.1	Class	Centers	of	Fund	Returns
	

Note	that	if	we	had	computed	the	mean	from	the	original	data	according	to	the
definition	given	by	equation	(3.2),	we	would	have	obtained	 	=	12.323,	which	is
almost	the	same	number.	We	can	see	that	in	this	example,	classification	results	in
little	to	no	loss	as	far	as	the	mean	is	concerned.	This	might	be	an	indication	of	an
equal	distribution	of	 the	data	 inside	of	 the	classes	or,	alternatively,	of	 lopsided
data	in	some	classes	being	canceled	out	by	data	tilted	in	the	opposite	direction	in
other	classes.
	



Median

	

A	second	measure	of	the	center	of	a	distribution	is	the	median.	In	symbols,	we
denote	the	population	median	by	µ̂	and	the	sample	median	by	m	d,	respectively.
Roughly	 speaking,	 the	median	 divides	 data	 by	 value	 into	 a	 lower	 half	 and	 an
upper	half.	A	more	rigorous	definition	for	 the	median	is	 that	we	require	that	at
least	half	of	 the	data	are	no	greater	and	at	 least	half	of	 the	data	are	no	smaller
than	the	median	itself.13
	 This	can	be	stated	in	a	formal	way	as	follows.	For	the	median,	it	has	to	be	true
that

and

In	words,	 this	means	 that	 both	 the	 number	 of	 indexes	whose	 corresponding
values	are	no	greater	 than	md	 and	 the	number	of	 indexes	whose	corresponding
values	are	no	less	than	md	have	to	account	for,	at	least,	50%	of	the	data.
	 To	calculate	either	one,	it	is	imperative	that	we	have	the	data	presented	in	an
array	 of	 ascending	 values.	 Now,	 for	 a	 set	 containing	 an	 uneven	 number	 n	 of
values	or	observations,	we	obtain	 the	median	by	 the	data	point	with	 index	(n	 -
1)/2	 +	 1.	 This	 value	 can	 be	 expressed	 by	 the	 so-called	 ceiling	 function	 [n/2],
which	 is	 the	 smallest	 integer	number	greater	 than	or	 equal	 to	n/2.	Our	median
thus	obtained	is	then
(3.4)
	

	The	feature	of	this	median,	now,	is	that	the	number	of	values	that	is	not	greater
than	it	is	exactly	equal	to	the	number	of	values	that	is	not	smaller	than	it,	namely
(n	 -	 1)/2.	 When	 we	 look	 at	 the	 corresponding	 empirical	 relative	 cumulative

distribution	function,	 	,	we	will	notice	that	the	function	first	crosses	the	level
of	0.5	at	the	median;	that	is,	 	(md	)	>	0.5	.



	 We	will	 try	 to	make	 this	 clear	with	 a	 simple	 example.	 Suppose	 that	we	 are
analyzing	 seven	 companies	 (C1	 through	C7)	 with	 respect	 to	 their	 percentage
stock	price	gains	and	their	2006	credit	rating	as	assigned	by	Standard	and	Poor’s
(S&P).	The	data	are	shown	in	Table	3.2.	According	to	(3.4),	 the	median	of	 the
percentage	 stock	 price	 gains	 is	 the	 value	x(┌7/2┐)	 =	x(4)	 =	 0.063,	which	 is	 the
return	of	company	C2.	By	the	same	definition,	the	median	of	the	S&P	ratings	is	x

.	Note	 that	because	 companies	C2	 and	C4	 have	a	BB	 rating	 ,	 the
third	and	 fourth	positions	are	 shared	by	 them2.	So	 the	 4	 ordered	 array	of	S&P
ratings	may	place	either	company	C2	or	company	C4	 in	position	4	 and,	hence,
make	 its	value	 (BB)	 the	median.	Additionally,	 the	 implication	of	 the	 empirical
cumulative	 relative	 frequency	 distribution	 on	 the	 selection	 of	 the	 median	 is
demonstrated.	In	the	fourth	column,	the	empirical	cumulative	relative	frequency
distribution	 is	 given	 for	 both	 the	 returns	 and	 the	 S&P	 ratings	 of	 the	 seven
companies.	 The	 graphs	 of	 the	 empirical	 cumulative	 relative	 frequency
distributions	are	shown	in	Figures	3.1	and	3.2.
	 In	 Figure	 3.1,	 since	 each	 value	 occurs	 once	 only,	 we	 have	 seven	 different
entries	of	which	one,	namely	0.063,	is	exactly	in	the	middle	having	three	values
smaller	 and	 larger	 than	 it.	 This	 is	 indicated	 in	 the	 figure	 by	 the	 cumulative
frequency	function	first	crossing	the	value	of	0.5	at	the	return	of	0.063.	In	Figure
3.2,	there	are	six	frequency	increments	only,	despite	the	fact	that	there	are	seven
companies.	This	is	due	to	companies	C2	and	C4	having	the	same	rating,	BB.	So,
for	the	rating	of	BB,	the	cumulative	frequency	of	0.5	is	crossed	for	the	first	time.
There	is	no	ambiguity	with	respect	to	the	median.
	TABLE	3.2	Empirical	Distribution	of	Percentage	Returns	and	S&P	Rating
	

FIGURE	3.1	Empirical	Distribution	of	Percentage	Stock	Price	Returns
	



FIGURE	3.2	Empirical	Distribution	of	S&P	Credit	Ratings
	

TABLE	3.3	Empirical	Distribution	of	Percentage	Returns	and	S&P	Rating	with
Additional	Company
	



If,	 in	contrast,	we	have	a	 set	 containing	an	even	number	of	observations	ne,
the	median	is	calculated	as	the	average	of	the	value	with	index	ne/2	and	the	value
with	index	ne/2	+	1.14	Thus,	we	have
(3.5)
	

	In	 this	 case	 where	 there	 is	 an	 even	 ne,	 the	 empirical	 relative	 cumulative
distribution	function	has	a	value	of	at	least	0.5	at	the	median;	that	is,	 	(md	)	≥
0.5	.	Why	not	take	x(n/2)?	The	reason	is	that	at	least	half	of	the	values	are	at	least
as	large	and	at	least	half	of	the	values	(including	the	value	itself)	are	not	greater
than	x(n/2).	But,	the	same	is	true	for	x(n/2	+1).	So,	there	is	some	ambiguity	in	this
even	case.	Hence,	the	definition	given	by	equation	(3.5).

	
To	also	convey	the	intuition	behind	the	definition	in	the	case	where	there	is	an

even	number	of	observations,	 let’s	extend	 the	previous	example	by	using	eight
rather	 than	 seven	 companies.	We	 have	 added	 company	C8.	Also,	 company	C2
has	received	a	credit	downgrade	to	B.	The	new	data	set	is	displayed	in	Table	3.3.
	 We	now	use	the	definition	given	by	equation	(3.5)	to	compute	the	median	of
the	returns.	Thus,	we	obtain	the	following	median

We	 display	 this	 in	 Figure	 3.3	 where	 we	 depict	 the	 corresponding	 cumulative
relative	empirical	frequency	distribution.
FIGURE	 3.3	 Empirical	Distribution	 of	 Percentage	 Stock	 Price	Returns;	 Even
Number	of	Companies
	



For	the	ratings,	we	naturally	obtain	no	number	for	the	median	since	the	ratings
are	given	as	rank	scaled	values.	The	definition	for	the	median	given	by	equation
(3.5)	therefore	does	not	work	in	this	case.	As	a	solution,	we	define	the	median	to
be	the	value	between	x 	and	x 	;	;	that	is,	it	is	between	B	and	BB,	which	is	a
theoretical	value	since	it	is	not	an	observable	value.	However,	if 	had	been	B,
for	 example,	 the	 median	 would	 be	 B.	 The	 cumulative	 relative	 empirical
frequency	distribution	is	shown	in	Figure	3.4.
	 Note	 that	one	can	determine	the	median	in	exactly	 the	same	way	by	starting
with	the	highest	values	and	working	through	to	the	lowest	(i.e.,	 in	the	opposite
direction	of	how	it	 is	done	here).	The	resulting	order	would	be	descending	but
produce	the	same	medians.

	
One	 common	 mistake	 is	 to	 confuse	 the	 object	 with	 its	 value	 of	 a	 certain

attribute	when	stating	the	median.	In	the	example	above,	the	median	is	a	certain
return	or	rating	(i.e.,	a	certain	value	of	some	attribute)	but	not	the	company	itself.
	 For	 classified	 data,	 we	 have	 to	 determine	 the	 median	 by	 some	 different
method.	 If	 the	 cumulative	 relative	 frequency	 distribution	 is	 0.5	 at	 some	 class
bound,	 then	 this	 class	 bound	 is	 defined	 to	 be	 the	median.	 If,	 however,	 such	 a
class	bound	does	not	exist,	we	have	to	determine	the	class	whose	lower	bound	is
less	than	0.5	and	whose	upper	class	bound	is	greater	than	0.5;	that	is,	we	have	to



find	what	 is	 referred	 to	 as	 the	class	of	 incident.	 The	median	 is	 determined	 by
linear	 interpolation.	For	 a	visual	presentation	of	 this	procedure,	 see	Figure	 3.5
where	the	class	of	incidence	is	bounded	by	a	and	b.	Formally,	if	it	is	not	a	class
bound,	the	population	median	of	classified	data	is
(3.6)
	

where	aI	 <	 0.5	 and	 bI	 >	 0.5.	 The	 corresponding	 sample	 median	 is	 computed
using	 the	 empirical	 relative	 cumulative	 distribution	 function,	 instead,	 and
denoted	by	 .	For	our	data	from	Table	2.9	in	Chapter	2,	 this	would	lead	to	a
median	equal	to

FIGURE	 3.4	 Empirical	 Distribution	 of	 S&P	 Ratings;	 Even	 Number	 of
Companies
	

By	nature	of	the	median,	it	should	be	intuitive	that	the	data	have	to	be	at	least
of	 rank	 scale.	 Thus,	 we	 cannot	 compute	 this	 measure	 for	 nominal	 data,	 even
though	 it	 is	 occasionally	 done,	 producing	meaningless	 results	 and	 resulting	 in
drawing	wrong	conclusions.
	FIGURE	3.5	Interpolation	Method	to	Retrieve	Median	of	Classified	Data
	





Mode

	

A	third	measure	of	location	presented	here	is	the	mode.	Its	definition	is	simple.	It
is	 the	 value	 that	 occurs	 most	 often	 in	 a	 data	 set.	 If	 the	 distribution	 of	 some
population	 or	 the	 empirical	 distribution	 of	 some	 sample	 are	 known,	 the	mode
can	be	determined	 to	be	 the	value	corresponding	 to	 the	highest	 frequency.	For
populations,	the	mode	is	denoted	by	M	and	for	the	sample	the	mode	is	denoted
by	m.	Formally,	the	mode	is	defined	by
(3.7)
	

	In	our	earlier	example	using	the	S&P	ratings	of	the	eight	companies,	the	mode	is
the	value	B	since	f	emp(B)	=	0.25	=	max.
	 If	it	should	be	the	case	that	the	maximum	frequency	is	obtained	by	more	than
one	value,	one	speaks	of	a	multimodal	data	set.	 In	 the	case	of	only	one	mode,
the	data	set	is	referred	to	as	unimodal.
	 When	we	have	class	data,	we	cannot	determine	a	mode.	Instead,	we	determine
a	mode	class.	 It	 is	 the	class	with	 the	greatest	absolute	or	 relative	frequency.	 In
other	 words,	 it	 is	 the	 class	 with	 the	 most	 observations	 of	 some	 sample	 in	 it.
Formally,	it	is
(3.8)
	

For	the	class	data	in	Table	2.9	in	Chapter	2,	the	mode	class	is	class	I	=	5.
Of	 the	 three	measures	of	central	 tendency,	 the	mode	is	 the	measure	with	 the

greatest	loss	of	information.	It	simply	states	which	value	occurs	most	often	and
reveals	 no	 further	 insight.	This	 is	 the	 reason	why	 the	mean	 and	median	 enjoy
greater	use	in	descriptive	statistics.	While	the	mean	is	sensitive	to	changes	in	the
data	set,	the	mode	is	absolutely	invariant	as	long	as	the	maximum	frequency	is
obtained	 by	 the	 same	 value.	 The	mode,	 however,	 is	 of	 importance,	 as	will	 be
seen,	in	the	context	of	the	shape	of	the	distribution	of	data.	A	positive	feature	of
the	mode	is	that	it	is	applicable	to	all	data	levels.



	



Weighted	Mean

	

Both	 the	 mean	 and	 median	 are	 special	 forms	 of	 some	 more	 general	 location
parameters	and	statistics.
	 The	mean	 is	a	particular	 form	of	 the	more	general	weighted	mean	 in	 that	 it
assigns	equal	weight	of	 to	all	values,	 that	 is,	1/N	 for	 the	parameter	and	1/n	 for
the	 statistic.	 The	 weighted	 mean,	 on	 the	 other	 hand,	 provides	 the	 option	 to
weight	each	value	individually.	Let	wi	denote	the	weight	assigned	to	value	xi	,	we
then	define	the	population	weighted	mean	by
(3.9)
	

and	the	sample	weighted	mean	by
(3.10)
	

respectively.	One	 reason	 for	 using	 a	weighted	mean	 rather	 than	 an	arithmetic
mean	might	 be	 that	 extreme	values	might	 be	of	 greater	 importance	 than	other
values.	Or,	if	we	analyze	observations	of	some	phenomenon	over	some	period	of
time	 (i.e.,	we	 obtain	 a	 time	 series),	we	might	 be	 interested	 in	 the	more	 recent
values	compared	to	others	stemming	from	the	past.15

As	 an	 example,	 consider	 once	 again	 the	 eight	 companies	 from	 the	 previous
example	 with	 their	 attributes	 “return”	 and	 “S&P	 rating.”	 To	 compute	 the
weighted	average	of	all	eight	returns,	we	might	weight	the	returns	according	to
the	 respective	 company’s	S&P	credit	 rating	 in	 the	 following	manner.	The	best
performer’s	 return	 is	weighted	by	8,	 the	 second	best	 performer’s	 returns	 by	7,
and	so	on.	If	two	or	more	companies	have	the	same	rating,	they	are	assigned	the
weights	equal	to	the	average	of	the	positions	they	occupy.	Hence,	the	weighted
mean	is	computed	as



	



Quantiles

	

Now	let	us	turn	to	the	generalization	of	the	median.	The	median	is	a	particular
case	of	a	quantile	or	percentile.	Analogously	to	the	median,	a	percentile	divides
the	ordered	data	array,	whether	population	or	sample,	into	two	parts.	The	lower
part	 represents	 α	 percent	 of	 the	 data	 while	 the	 upper	 part	 accounts	 for	 the
remaining	(1	-	α)	percent	of	the	data	for	some	given	share	α	∈(0,	1).16
	 Formally,	we	define	the	population	α-percentile	µα	for	countable	data	by
(3.11)
	

and	the	sample	percentile	qα	by
(3.12)
	

That	 is,	 in	 equations	 (3.11)	 and	 (3.12)	 the	 portion	 of	 values	 no	 greater	 than
either	µα	or	qα	is	at	least	α,	while	the	share	of	values	no	less	than	either	µα	or	qα
is	 at	 least	 (1	 -	 α	 ).	 At	 the	 α-percentiles,	 the	 cumulative	 distribution	 functions
assume	values	of	at	least	α	for	the	first	time.
FIGURE	3.6	0.25-and	0.30-Percentiles	of	Returns
	



The	following	convention	is	used	for	the	same	reason	as	with	the	median:	to
avoid	ambiguity.17	That	is,	if	n	×	α	is	an	integer,	that	is,	there	exists	some	index
(i)	with	exactly	the	value	of	n	×	α,	then	the	α-percentiles	is	defined	to	be	0.5	×
[x(i)	+	x(i	+	1)].	Again,	the	percentile	defined	as	the	arithmetic	mean	of	x(i)	and	x(i
+	1)	is	just	by	convention.	The	α-percentile	could	just	as	well	be	defined	to	be	any
value	 between	 these	 two	 numbers.	 In	 this	 case,	 the	 corresponding	 cumulative
distribution	 function	 assumes	 the	 value	 α	 at	 x(i).	 If,	 however,	 n	 ×	 α	 is	 not	 an
integer,	then	the	requirements	of	equations	(3.11)	and	(3,12)	are	met	by	the	value
in	the	array	with	the	smallest	index	greater	than	n	×	α	(i.e.,	x([n	×	α])).

	
We	 illustrate	 the	 idea	 behind	α-percentiles	with	 an	 example	 given	 in	Figure

3.6.	 Consider	 again	 the	 eight	 companies	 given	 in	 Table	 3.3	 and	 their	 two
attributes	“return”	and	”S&P	rating.”	Assume	that	we	are	interested	in	the	worst
25%	and	30%	returns.	Thus,	we	have	to	compute	the	0.25-and	0.30-percentiles.
First,	we	 turn	our	 attention	 to	 the	0.25-percentile.	With	n	 equal	 to	 8,	 then	8	×
0.25	 =	 2.	 Hence,	 we	 compute	 q0.25	 =	 0.5(x(2)	 +	 x(3))	 =	 0.5(0.047	 +	 0.051)	 =
0.049.	So,	 the	0.25-percentile	 is	not	an	observed	value.	The	meaning	of	 this	 is
that	any	return	no	greater	than	0.049	is	in	the	lower	25%	of	the	data.	Next,	we
compute	 the	0.30-percentile.	Since	8	×	0.3	=	2.4	 is	not	an	 integer	number,	 the
0.30-percentile	 is	x(3)	 =	 0.051.	We	can	visually	 check	 that	 for	 both	percentiles
just	computed,	the	definition	given	by	(3.12)	is	valid.
	



For	q0.25	=	0.049,	at	least	25%	of	the	data	(i.e,	x(1)	and	x(2))	are	no	greater	and
at	least	75%	of	the	data	(i.e.,	x(3),	.	.	.,	x(7),	and	x(8))	are	no	less.	For	q0.30	=	0.051,
at	least	30%	of	the	data	(i.e.,	x(1),	x(2),	and	x(3))	are	no	greater	while	at	least	70%
of	the	data	(i.e.,	x(3),	.	.	.,	x(7),	and	x(8))	are	no	less.	Note	that	q0.3	=	x(3)	is	counted
in	both	the	“no	greater”	and	“no	less”	set	since	this	observed	value	is,	naturally,
eligible	for	both	sets.

	
Particular	 percentiles	 are	 the	 median—in	 this	 notation,	 q0.5	 (as	 already

introduced)	 and	 the	 quartiles,	 q0.25	 and	 q0.75,	 partitioning	 the	 data	 into	 0.25
lower	and	0.75	upper	or	0.75	lower	and	0.25	upper	shares,	respectively.
	 With	 respect	 to	 data	 level	 issues,	 we	 know	 from	 the	 particular	 case	 of	 the
median	 that	 the	 data	 have	 to	 be,	 at	 least,	 ordinal	 scale.	 However,	 the	 only
plausible	 meaning	 of	 a	 percentile	 for	 any	 α	 is	 given	 when	 the	 data	 are
quantitative.

	
With	class	data,	the	methodology	to	obtain	general	α-percentiles	is	the	same	as

presented	 for	 the	 median	 of	 classified	 data.	 Thus,	 if	 the	 cumulative	 relative
frequency	distribution	at	some	class	bound	happens	to	be	equal	to	our	threshold
α,	then	this	class	bound	is	the	α-percentile	we	are	looking	for.	If,	however,	this	is
not	 the	 case,	we	 have	 to	 determine	 the	 class	 of	 incidence.	We	 can	 restate	 the
definition	of	the	class	of	incidence	as	follows:	It	is	the	class	whose	lower	bound
is	 less	 than	 and	 whose	 upper	 bound	 is	 greater	 than	 α.	 Again,	 through	 linear
interpolation,	we	obtain	the	particular	percentile.
	 Formally	then,	we	obtain	the	population	α-percentile	by
(3.13)
	

with	F(aI)	<	α	and	F(bI)	>	α	.	The	sample	percentile	is	obtained	by
(3.14)
	

in	 that	 we	 use	 the	 empirical	 cumulative	 relative	 frequency	 distribution	 of	 the
sample	 rather	 than	 the	 population	 cumulative	 relative	 frequency	 distribution
from	 equation	 (3.13).	 As	 an	 example,	 consider	 the	 data	 from	 Table	 2.9	 in



Chapter	 2.	 Suppose	 that	 we	 are	 interested	 in	 the	 0.3-percentiles.	 The	 class	 of
incidence	is	class	4	since	F(a4)	=	0.111	<	0.3	and	F(b4)	=	0.349	>	0.3.	Hence,
according	to	equation	(3.14),	the	0.3-quantile	is	given	by



VARIATION

	

Rather	 than	 measures	 of	 the	 center	 or	 one	 single	 location,	 we	 now	 discuss
measures	 that	 capture	 the	way	 the	 data	 are	 spread	 either	 in	 absolute	 terms	 or
relative	 terms	 to	 some	 reference	 value	 such	 as,	 for	 example,	 a	 measure	 of
location.	Hence,	 the	measures	 introduced	here	are	measures	of	 variation	 .	We
may	 be	 given	 the	 average	 return,	 for	 example,	 of	 a	 selection	 of	 stocks	 during
some	period.	However,	the	average	value	alone	is	incapable	of	providing	us	with
information	 about	 the	 variation	 in	 returns.	Hence,	 it	 is	 insufficient	 for	 a	more
profound	 insight	 in	 the	data.	Like	almost	everything	 in	 real	 life,	 the	 individual
returns	will	most	likely	deviate	from	this	reference	value,	at	least	to	some	extent.
This	 is	due	 to	 the	fact	 that	 the	driving	force	behind	each	 individual	object	will
cause	it	to	assume	a	value	for	some	respective	attribute	that	is	inclined	more	or
less	in	some	direction	away	from	the	standard.

	
While	 there	 are	 a	 great	 number	 of	 measures	 of	 variation	 that	 have	 been

proposed	in	the	finance	literature,	we	limit	our	coverage	to	those	that	are	more
commonly	used	in	finance.
	



Range

	

Our	 first	measure	 of	 variation	 is	 the	 range.	 It	 is	 the	 simplest	measure	 since	 it
merely	computes	the	difference	between	the	maximum	and	the	minimum	of	the
data	set.	Formally,	let	xmin	and	xmax	denote	 the	minimum	and	maximum	values
of	a	data	set,	respectively.	Then,	the	range	is	defined	by
(3.15)
	

As	an	example,	let’s	use	the	return	data	of	the	eight	companies	from	Table	3.3.
The	maximum	return	is	xmax	=	x(8)	=	0.096	while	the	minimum	return	is	xmin	=
x(1)	=	0.027.	Thus,	the	range	is	r	=	0.096	-	0.027	=	0.069.
What	does	this	value	tell	us?	While	the	mean	is	known	to	be	0.065,	the	values

extend	over	some	interval	that	is	wider	than	the	value	of	the	average	(i.e.,	wider
than	 0.065).	 It	 seems	 like	 the	 data	might	 be	 very	 scattered.	But	 can	we	 really
assume	that?	Not	really,	since	we	are	only	taking	into	consideration	the	extreme
values	of	either	end	of	the	data.	Hence,	this	measure	is	pretty	sensitive	to	shifts
in	these	two	values	while	the	rest	of	the	data	in	between	may	remain	unchanged.
The	same	range	is	obtained	from	two	data	sets	that	have	the	same	extremes	but
very	different	 structures	within	 the	data.	For	 example,	 suppose	 that	we	have	 a
second	 set	 of	 returns	 for	 the	 eight	 companies	 as	 shown	 in	 Table	 3.4	with	 the
asterisks	indicating	the	names	of	the	companies	in	our	new	data	set.	As	we	can
easily	 see	 for	 this	 new	 data	 set,	 the	 range	 is	 the	 same.	 However,	 the	 entire
structure	within	 the	 data	 set	 is	 completely	 different.	 The	 data	 in	 this	 case	 are
much	 less	 scattered	 between	 the	 extremes.	 This	 is	 not	 indicated	 by	 the	 range
measure,	 however.	Hence,	 the	 range	 is	 the	measure	of	variation	with	 the	most
limited	usefulness,	 in	 this	 context,	 due	 to	 its	 very	 limited	 insight	 into	 the	 data
structure.
	TABLE	3.4	Alternative	Set	of	Returns	of	Eight	Companies
	

	



Company Return
A* 0.027
D* 0.060
B* 0.064
C* 0.065
H* 0.067
G* 0.068
F* 0.070
E* 0.096

	

	

For	data	classes,	we	obtain	the	range	by	the	span	between	the	upper	bound	of
the	uppermost	class	and	the	lower	bound	of	the	lowest	class.	Formally,	the	range
of	class	data	is	given	by
(3.16)
	

where	nC	 is	 the	number	of	classes	and	 the	class	 indexes	 I	∈	{1,	 .	 .	 .,	nC}.	For
our	data	from	Table	2.9	in	Chapter	2,	we	obtain	as	the	range

RC	=	b9	-	a1	=	43	-	(-20)	=	63
	

This,	of	course,	is	larger	than	the	range	for	the	underlying	data,	R	=	59.6,	since
the	classes	are	required	to	cover	the	entire	data	set.



Interquartile	Range

	

A	solution	to	the	range’s	sensitivity	to	extremes	is	provided	by	the	interquartile
range	(IQR)	in	that	the	most	extreme	25%	of	the	data	at	both	ends	are	discarded.
Hence,	 the	 IQR	 is	 given	 by	 the	 difference	 between	 the	 upper	 (i.e.,	 25%)	 and
lower	(i.e.,	75%)	quartiles,	respectively.	Formally,	the	population	IQR	is	defined
by
(3.17)
	

The	 sample	 IQR	 is	 defined	 analogously	 with	 the	 quartiles	 replaced	 by	 the
corresponding	sample	quartiles.
As	an	example,	consider	the	return	data	given	in	Table	3.3.	With	q0.25	=	0.049

and	q0.75	=	0.083	(rounded	from	0.0825),	 the	 IQR	is	0.034.	Note	 that	only	 the
values	x(2),	x(3),	x(6),	 and	x(7)	 enter	 the	 computation.	 For	 the	 remaining	 data,	 it
only	 has	 to	 be	 maintained	 that	 the	 numerical	 order	 of	 their	 values	 is	 kept	 to
obtain	the	same	value	for	the	IQR.
	 When	the	data	are	classified,	the	sample	IQR	is	analogously	defined	by
(3.18)
	

	
For	the	class	data	from	Table	2.9	of	Chapter	2,	we	obtain	as	quartiles	 	=

5.094	 and	 18	 Hence,	 the	 IQR	 is	 given	 by	 .	 The	 actual
IQR	of	the	original	data	is14.7.

	
The	 IQR	 represents	 the	 body	 of	 the	 distribution.	 The	 influence	 of	 rare

extremes	 is	 deleted.	But	 still,	 the	 IQR	 uses	 only	 a	 fraction	 of	 the	 information
contained	in	the	data.	It	conveys	little	about	the	entire	variation.	Naturally,	if	the
IQR	is	large,	the	outer	segments	of	the	data	are	bound	to	be	further	away	from
some	center	than	would	be	feasible	if	the	IQR	was	narrow.	But	as	with	the	range,
the	same	value	for	the	IQR	can	be	easily	obtained	analytically	by	many	different



data	sets.
	



Absolute	Deviation

	

To	overcome	 the	shortcomings	of	 the	 range	and	IQR	as	measures	of	variation,
we	introduce	a	third	measure	that	accounts	for	all	values	in	the	data	set.	It	is	the
so-called	mean	absolute	deviation	 (MAD).	The	MAD	is	 the	average	deviation
of	all	data	from	some	reference	value.19	The	deviation	is	usually	measured	from
the	median.	So,	for	a	population,	the	MAD	is	defined	to	be
(3.19)
	

whereas	for	a	sample,	it	is
(3.20)
	

The	 MAD	 measure	 takes	 into	 consideration	 every	 data	 value.	 Due	 to	 the
absolute	 value	 brackets,	 only	 the	 length	 of	 the	 deviation	 enters	 the	 calculation
since	the	direction,	at	least	here,	is	not	of	interest.20
	 For	the	data	in	Table	3.3,	the	MAD	is	computed	to	be

So,	on	average,	each	return	deviates	from	the	median	by	1.8%	per	year.
For	class	data,	 the	same	problem	arises	as	with	 the	mean;	 that	 is,	we	do	not

have	knowledge	of	the	true	underlying	data.	So	we	cannot	compute	the	distance
between	 individual	data	 from	 the	median.	Therefore,	we	 seek	an	alternative	 in
that	we	use	the	class	centers	representing	the	data	inside	of	the	classes	instead.
Then,	the	mean	average	deviation	is	the	weighted	sum	of	the	deviations	of	each
class’s	central	value	from	the	classified	data	median	where	the	weights	represent
the	relative	class	weights.	So,	if	the	central	value	of	class	I	is	denoted	by	cI,	then
the	formal	definition	of	the	class	data	MAD	of	a	population	of	size	N	is	given	by



where	 the	 number	 of	 classes	 is	 given	 by	 nC.	 The	 MAD	 of	 sample	 classified
data	is	given	by
(3.21)
	

for	a	sample	of	size	n	with,	again,	nC	classes.
For	 example,	 using	 the	 sample	 in	 Table	 2.9	 in	 Chapter	 2,	 the	 MAD	 is

computed	as21

	If	we	compute	 the	MAD	for	 the	original	data,	we	observe	a	value	of	8.305,
which	 is	 just	 slightly	 higher	 then	MADC.	 Thus,	 the	 data	 are	 relatively	 well
represented	by	the	class	centers	with	respect	to	the	MAD.	This	is	a	result	for	this
particular	data	set	and,	of	course,	does	not	have	to	be	like	this	in	general.
	



Variance	and	Standard	Deviation

	

The	next	measure	we	 introduce,	 the	variance,	 is	 the	measure	of	variation	used
most	 often.	 It	 is	 an	 extension	 of	 the	 MAD	 in	 that	 it	 averages	 not	 only	 the
absolute	but	the	squared	deviations.	The	deviations	are	measured	from	the	mean.
The	 square	 has	 the	 effect	 that	 larger	 deviations	 contribute	 even	 more	 to	 the
measure	than	smaller	deviations	as	would	be	the	case	with	the	MAD.	This	is	of
particular	interest	if	deviations	from	the	mean	are	more	harmful	the	larger	they
are.	 In	 the	 conext	 of	 the	 variance,	 one	 often	 speaks	 of	 the	 averaged	 squared
deviations	as	risk.
	 Formally,	the	population	variance	is	defined	by
(3.22)
	

One	can	show	that	equation	(3.22)	can	be	alternatively	written	as
(3.23)
	

which	is	sometimes	preferable	to	the	form	in	equation	(3.22).
The	sample	variance	is	defined	by

(3.24)
	

using	 the	 sample	mean	 instead.	 If,	 in	 equation	(3.24),	we	 use	 the	 divisor	n	 -1
rather	 than	 just	n,	we	obtain	 the	corrected	 sample	 variance,	 which	we	 denote
s*2.	This	is	due	to	some	issue	to	be	introduced	in	Chapter	17.
As	an	example	 to	 illustrate	 the	calculation	of	equation	(3.24),	we	use	as	our

sample	the	revenue	for	nine	European	banks	based	on	investment	banking	fees
generated	 from	 initial	 public	 offerings,	 bond	 underwriting,	 merger	 deals,	 and
syndicated	 loan	 underwriting	 from	 January	 through	March	 2007.	The	 data	 are
shown	in	Table	3.5.	With	a	sample	mean	of	x̅	=	$178	million,	the	computation	of



the	sample	variance,	then,	yields

or,	 in	words,	 roughly	$1.5	billion.	This	 immense	 figure	 represents	 the	 average
that	 a	 bank’s	 revenue	 deviates	 from	 the	mean	 squared.	Definitely,	 the	 greatest
chunk	 is	 contributed	 by	 Deutsche	 Bank’s	 absolute	 deviation	 amounting	 to
roughly	 $100	 million.	 By	 squaring	 this	 amount,	 the	 effect	 on	 the	 variance
becomes	even	more	pronounced	The	variance	would	reduce	significantly	if,	say,
Deutsche	 Bank’s	 deviation	 were	 of	 the	 size	 of	 the	 remaining	 bank’s	 average
deviation.
TABLE	3.5	Ranking	of	European	Banks	by	Investment	Banking	Revenue	from
January	through	March	2007
	Source:	Dealogic	published	in	 the	European	edition	of	 the	Wall	Street	Journal,
March	20,	2007.
	

	
Bank Revenue	(in	million	$)

Deutsche	Bank 284
JP	Morgan 188
Royal	Bank	of	Scotland 173
Citigroup 169
BNP	Paribas 169
Merrill	Lynch 157
Credit	Suisse 157
Morgan	Stanley 155
Lalyon 153

	

	

Related	 to	 the	 variance	 is	 the	 even	 more	 commonly	 stated	 measure	 of
variation,	 the	 standard	 deviation.	 The	 reason	 is	 that	 the	 units	 of	 the	 standard
deviation	 correspond	 to	 the	 original	 units	 of	 the	 data	 whereas	 the	 units	 are



squared	in	the	case	of	the	variance.	The	standard	deviation	is	defined	to	be	the
positive	square	root	of	the	variance.	Formally,	the	population	standard	deviation
is
(3.25)
	

with	the	corresponding	definition	for	the	sample	standard	deviation	being
(3.26)
	

Hence,	 from	 the	 European	 bank	 revenue	 example,	 we	 obtain	 for	 the	 sample
standard	deviation

	This	 number	 can	 serve	 as	 an	 approximate	 average	 deviation	 of	 each	 bank’s
revenue	from	the	nine	bank’s	mean	revenue.
	 As	discussed	several	times	so	far,	when	we	are	dealing	with	class	data,	we	do
not	have	access	to	the	individual	data	values.	So,	the	intuitive	alternative	is,	once
again,	to	use	the	class	centers	as	representatives	of	the	values	within	the	classes.
The	corresponding	sample	variance	of	the	classified	data	of	size	n	is	defined	by

for	nC	classes.22	Alternatively,	we	can	give	the	class	variance	by
(3.27)
	

As	 an	 example,	we	 use	 the	 data	 in	Table	2.9	 in	 Chapter	 2.	 The	 variance	 is
computed	using	equation	(3.27).23	So,	with	the	mean	roughly	equal	to	x̅C	=	12.4	,
we	obtain

	
The	corresponding	standard	deviation	is	SG	=	 	=	10.8	 ,	which	 is	higher

than	the	MAD.	This	is	due	to	large	deviations	being	magnified	by	squaring	them



compared	to	the	absolute	deviations	used	for	the	computation	of	the	MAD.
	



Skewness

	

The	last	measure	of	variation	we	describe	in	this	chapter	is	the	skewness.	There
exist	 several	 definitions	 for	 this	measure.	The	Pearson	skewness	 is	 defined	 as
three	 times	 the	 difference	 between	 the	 median	 and	 the	 mean	 divided	 by	 the
standard	deviation.24	Formally,	the	population	Pearson	skewness	is
(3.28)
	

and	the	sample	skewness	is
(3.29)
	

As	can	be	easily	 seen,	 for	 symmetrically	distributed	data	 skeweness	 is	 zero.
For	data	with	 the	mean	being	different	 from	the	median	and,	hence,	 located	 in
either	the	left	or	the	right	half	of	the	data,	the	data	are	skewed.	If	the	mean	is	in
the	left	half,	the	data	are	skewed	to	the	left	(or	left	skewed)	since	there	are	more
extreme	 values	 on	 the	 left	 side	 compared	 to	 the	 right	 side.	 The	 opposite	 (i.e.,
skewed	to	the	right	(or	right	skewed)),	is	true	for	data	whose	mean	is	further	to
the	 right	 than	 the	median.	 In	 contrast	 to	 the	MAD	and	variance,	 the	 skewness
can	obtain	positive	as	well	as	negative	values.	This	is	because	not	only	is	some
absolute	deviation	of	interest	but	the	direction,	as	well.

	
Consider	the	data	in	Table	3.5	and	let’s	compute	equation	(3.29).	The	median

is	given	by	md	=	x(5)	=	x(6)	=	$169	million	 and	 the	 sample	mean	 is	 	=	$178
million.	Hence,	the	Pearson	skewness	turns	out	to	be	sP	=	($169	-	$178)/$41	=
-0.227,	 indicating	 left-skewed	 data.	 Note	 how	 the	 units	 (millions	 of	 dollars)
vanish	 in	 this	 fraction	 since	 the	 standard	 deviation	 has	 the	 same	 units	 as	 the
original	data.
	 A	different	definition	of	skewness	is	presented	by	the	following



(3.30)
	

Here,	 large	deviations	are	additionally	magnified	by	 the	power	 three	and,	 akin
to	 the	 previous	 definition	 of	Pearson’s	 skewness	 given	by	 equation	(3.29),	 the
direction	is	expressed.	In	contrast	to	equation	(3.29)	where	just	two	measures	of
center	enter	the	formula,	each	data	value	is	considered	here.
As	an	example,	assume	that	the	nine	banks	in	Table	3.5	 represents	 the	entire

population.	Thus,	we	have	 the	population	 standard	deviation	given	as	σ	=	$39
million.	The	skewness	as	in	equation	(3.30)	is	now

Interestingly,	 the	 skewness	 is	 now	 positive.	 This	 is	 in	 contrast	 to	 the	 Pearson
skewness	 for	 the	 same	 data	 set.	 The	 reason	 is	 that	 equation	 (3.30)	 takes	 into
consideration	 the	 deviation	 to	 the	 third	 power	 of	 every	 data	 value,	whereas	 in
equation	(3.29)	the	entire	data	set	enters	the	calculation	only	through	the	mean.
Hence,	 large	 deviations	 have	 a	much	 bigger	 impact	 in	 equation	(3.30)	 than	 in
equation	(3.29).	Once	again,	the	big	gap	between	Deutsche	Bank’s	revenue	and
the	average	revenue	accounts	for	the	strong	warp	of	the	distribution	to	the	right
that	is	not	given	enough	credit	in	equation	(3.30).



Data	Levels	and	Measures	of	Variation

	

A	final	note	on	data	 level	 issues	with	respect	 to	the	measures	of	variation	is	 in
order.	Is	is	intuitive	that	nominal	data	are	unsuitable	for	the	computation	of	any
of	the	measures	of	variation	just	introduced.	Again,	the	answer	is	not	so	clear	for
rank	 data.	 The	 range	 might	 give	 some	 reasonable	 result	 in	 this	 case	 if	 the
distance	between	data	points	remains	constant	so	that	two	different	data	sets	can
be	compared.	The	more	sophisticated	a	measure	is,	however,	the	less	meaningful
the	results	are.	Hence,	 the	only	scale	 that	all	 these	measures	can	be	reasonably
applied	to	are	quantitative	data.
	



Empirical	Rule

	

Before	 continuing,	 we	 mention	 one	 more	 issue	 relevant	 to	 all	 types	 of
distributions	of	quantitative	data.	If	we	know	the	mean	and	standard	deviation	of
some	 distribution,	 by	 the	 so	 called	 empirical	 rule,	 we	 can	 assess	 that	 at	 least
75%	of	the	data	are	within	two	standard	deviations	about	the	mean	and	at	least
89%	of	the	data	are	within	three	standard	deviations	about	the	mean.25
	



Coefficient	of	Variation	and	Standardization

	

As	mentioned	previously,	the	standard	deviation	is	the	most	popular	measure	of
variation.	However,	some	difficulty	might	arise	when	one	wants	to	compare	the
variation	 of	 different	 data	 sets.	 To	 overcome	 this,	 a	 relative	 measure	 is
introduced	using	standard	deviation	relative	to	the	mean.	This	measure	is	called
the	coefficient	of	variation	and	defined	for	a	population	by
(3.31)
	

and	for	samples,	by
(3.32)
	

TABLE	3.6	Investment	Banking	Revenue	Ranking	of	a	Hypothetical	Sample
	

	
Bank Revenue	(in	million	$)
A 59
B 55
C 51
D 50
E 48
F 42
G 37
H 35
I 20

	

	



	
The	 advantage	 of	 this	measure	 over	 the	mere	 use	 of	 the	 standard	 deviation

will	 be	 apparent	 from	 the	 following	 example.	 Suppose	 we	 have	 a	 sample	 of
banks	 with	 revenues	 shown	 in	 Table	 3.6.	 Computing	 the	 mean	 and	 standard
deviation	 for	 this	 new	group,	we	 obtain	 x̅	 =	 $44	million	 and	 s	 =	 $12	million,
respectively.	At	 first	 glance,	 this	 second	group	of	banks	 appears	 to	vary	much
less	than	the	European	sample	of	banks	given	in	Table	3.5	when	comparing	the
standard	 deviations.	 However,	 the	 coefficient	 of	 variation	 offers	 a	 different
picture.	For	 the	 first	 group,	we	have	v1	 =	 0.231	 and	 for	 the	 second	group,	we
have	 v2	 =	 0.273.	 That	 is,	 relative	 to	 its	 smaller	 mean,	 the	 data	 in	 the	 second
sample	has	greater	variation.
	 Generally,	 there	 is	 a	 problem	 of	 comparison	 of	 data.	 Often,	 the	 data	 are
transformed	 to	 overcome	 this.	 The	 data	 are	 said	 to	 be	 standardized	 if	 the
transformation	is	such	that	the	data	values	are	reduced	by	the	mean	and	divided
by	 the	 standard	 deviation.	 Formally,	 the	 population	 and	 sample	 data	 are
standardized	by
(3.33)
	

and
(3.34)
	

respectively.	 So,	 for	 the	 two	groups	 from	Tables	3.5	 and	3.6,	we	 obtain	 Table
3.7	 of	 standardized	 values.	Note	 that	 the	 units	 ($	million)	 have	 vanished	 as	 a
result	of	 the	standardization	process	since	both	 the	numerator	and	denominator
are	 of	 the	 same	 units,	 hence,	 canceling	 out	 each	 other.	 Thus,	 we	 can	 create
comparability	by	simply	standardizing	data.
TABLE	3.7	Standardized	Values	of	Investment	Banking	Revenue	Data	for	Nine
European	Banks
	



TABLE	3.8	Sample	Return	Data
	



MEASURES	OF	THE	LINEAR	TRANSFORMATION

	

The	linear	 transformation	of	some	form	y	=	a	×	x	+	b	of	quantitative	data	x	as
used,	for	example,	in	the	standardization	process	is	a	common	procedure	in	data
analysis.	For	example,	through	standardization	it	is	the	goal	to	obtain	data	with
zero	mean	and	unit	variance.26	So,	one	might	wonder	what	the	impact	of	this	is
on	the	measures	presented	in	this	chapter.

	
First,	 we	 will	 concentrate	 on	 the	 measures	 of	 center	 and	 location.	 The

transformation	has	no	effect	other	than	a	mere	shift	and	a	rescaling	as	given	by
the	equation.	Hence,	 for	example,	 the	new	population	mean	 is	µt	=	a	×	µ	+	b,
and	the	new	mode	is	mt	=	a	×	m	+	b.	We	demonstrate	this	for	the	median	of	the
sample	annual	return	data	in	Table	3.8.
	 The	median	of	the	original	data	(x(i),	i	=	1,	.	.	.,	8)	is	md	=	0.5	×	(x(4)	+	x(5))	=
0.052.	In	the	second	row	of	the	table,	we	have	the	transformed	data	(y(i),	i	=	1,	.	.
.,	 8).	 If	 we	 compute	 the	 median	 of	 the	 transformed	 data	 the	 way	 we	 are
accustomed	to	we	obtain

Instead,	 we	 could	 have	 obtained	 this	 value	 by	 just	 transforming	 the	 x-data
median,	which	would	have	yielded

as	well.
For	 the	measures	 of	 variation,	 things	 are	 different.	We	will	 present	 here	 the

effect	of	the	linear	transformation	on	the	range,	the	MAD,	and	the	variance.	Let
us	once	again	denote	the	transformed	data	by	yi	=	a	×	xi	+	b	where	the	original
data	are	the	xi	.
	 We	begin	with	the	range	of	yi,	Ry,	which	is	given	by



where	Rx	denotes	 the	 range	of	 the	original	data.	Hence,	 the	 transformation	has
a	mere	rescaling	effect	of	the	size	a	on	the	original	range.	Since	the	b	cancel	out
each	other,	the	transformation’s	change	of	location	has	no	effect	on	the	range.	In
equation	(3.35),	we	used	the	fact	that	for	a	linear	transformation	with	positive	a,
the	maximum	of	the	original	x	produces	 the	maximum	of	 the	 transformed	data
and	 the	minimum	of	 the	 original	 x	 produces	 the	minimum	of	 the	 transformed
data.	 In	 the	 case	 of	 a	 negative	 a,	 the	 range	 would	 become	 negative.	 As	 a
consequence,	by	convention	we	only	consider	the	absolute	value	of	a	when	we
compute	the	range	of	transformed	data	(i.e.,	Ry	=	|a|	×	Rx).
Next,	we	analyze	the	MAD.	Let	MADx	and	MADy	denote	the	original	and	the

transformed	data’s	MAD,	 respectively.	Furthermore,	 let	md	 and	mtd	 denote	 the
original	and	the	transformed	data’s	median,	respectively.	The	transformed	MAD
is	then

where	we	 have	 used	 the	 fact	 already	 known	 to	 us	 that	 the	 original	median	 is
translated	into	the	median	of	the	transformed	data.	Hence,	the	original	MAD	is
merely	rescaled	by	the	absolute	value	of	a.	Again,	the	shift	in	location	by	b	has
no	effect	on	the	MAD.
Finally,	 we	 examine	 the	 population	 variance.27	 Let	 σ2x	 and	 σ2y	 denote	 the

variance	 of	 the	 original	 and	 the	 transformed	 data,	 respectively.	Moreover,	 the
population	means	 of	 the	 xi	 and	 the	 yi	 are	 denoted	 by	 µx	 and	 µy,	 respectively.
Then	the	variance	of	the	yi	is
(3.37)
	



	In	equation	(3.37),	we	used	 the	 fact	 that	 the	mean	as	a	measure	of	center	 is
transformed	 through	multiplication	 by	a	 and	 a	 shift	 by	b	 as	 described	 before.
Thus,	 the	 variance	 of	 the	 transformed	 data	 is	 obtained	 by	 multiplying	 the
original	variance	by	the	square	of	a.	That	is,	once	again,	only	the	scale	factor	a
has	an	effect	on	the	variance	while	the	shift	can	be	neglected.

	
In	general,	we	have	seen	that	the	linear	transformation	affects	the	measures	of

variation	through	the	rescaling	by	a	whereas	any	shift	b	has	no	consequence.
	



SUMMARY	OF	MEASURES

	

We	 introduced	 a	 good	 number	 of	 concepts	 in	 this	 chapter.	 For	 this	 reason,	 in
Table	3.9	the	measures	of	location/center	and	variation	are	listed	with	their	data
level	qualifications	and	transformation	features.
	TABLE	 3.9	 Measures	 of	 Center/Location	 and	 Variation:	 Data	 Level
Qualification	and	Sensitivity	to	Linear	Transformation
	

	

Measure	of	Locationa Data
Levelb

Sensitivity	to	Transformation	y	=	a	×	x	+
b

Mean MQ µy	=	a	⋅	µx	+	b	ӯ	=	a	⋅	x̅	+	b
Median (R),	MQ µ̂	y	=	a	⋅	µ̂	+	b	m	d	,y	=	a	⋅	md	,x	+	b
Mode N,	R,	MQ My	=	a	⋅	Mx	+	b	my	=	a	⋅	mx	+	b
α-percentile (R),	MQ µ	α,y	=	a	⋅	µ	α,x	+	b	qα,y	=	a	⋅	qα	,x	+	b
Measure	of	Variation Data	Level Sensitivity	to	Transformation	y	=	a	×	x	+

b
Range MQ Ry	=	|a|	⋅	Rx
MAD MQ MADy	=	|a|	⋅	MADx
Variance MQ σ2y	=	a	2	⋅	σ2x	s2y	=	a2	⋅	s2x
Skewness	Pearson MQ σP,y	=	sign(a)	⋅	σP,x	sP,y	=	sign(a)	⋅	sP,x
Generalized	Skewness MQ

Coefficient	of
Variation

MQ

a	If	two	formulae	are	given	for	a	measure,	the	left	formula	is	for	the	population
while	the	right	one	is	for	the	sample.	b	N	=	nominal	scale	(qualitative);	R	=	rank
scale	(ordinal);	MQ	=	metric	or	cardinal	scale	(quantitative,	i.e.,	interval,	ratio,



and	absolute	scale).	c	The	sign	of	a	number	x,	denoted	by	sign(x),	is	the
indicator	whether	a	number	is	negative,	positive,	or	zero.	For	negative	numbers,
it	is	equal	to	-1,	for	positive	numbers,	it	is	equal	to	1,	and	for	zero,	it	is	equal	to
0.	For	example,	sign(-5)	=	-1.

	

	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Parameters	
Statistics	
Mean	
Median	
Ceiling	function	
Class	of	incident	
Mode	
Multimodal	
unimodal	
Mode	class	
Weighted	mean	
Arithmetic	mean	
Quantile	
Percentile	
Quartiles	
Measures	of	variation	
Range	
Interquartile	range	
Mean	absolute	deviation	
Variance	
Corrected	sample	variance	
Standard	deviation	
Skewness	
Pearson	skewness	
Empirical	rule	
Coefficient	of	variation	
Standardized
	



CHAPTER	4
	

Graphical	Representation	of	Data
	

In	 this	 chapter,	 we	 describe	 various	 ways	 of	 representing	 data	 graphically.
Typically,	graphs	are	more	 intuitively	appealing	 than	a	 table	of	numbers.	As	a
result,	 they	 are	more	 likely	 to	 leave	 an	 impression	on	 the	user.	 In	general,	 the
objective	 when	 using	 graphs	 and	 diagrams	 is	 to	 provide	 a	 high	 degree	 of
information	 efficiency	 and	with	 greater	 clarity.	 The	 intention	 is	 to	 present	 the
information	 contained	 in	 the	 data	 as	 attractively	 as	 possible.	Though	 there	 are
numerous	graphical	tools	available,	the	coverage	in	this	chapter	is	limited	to	the
presentation	of	the	most	commonly	used	types	of	diagrams.	Some	diagrams	are
suited	 for	 relative	 as	 well	 as	 absolute	 frequencies.	Wherever	 possible,	 this	 is
taken	 into	 consideration	 by	 thinking	 about	 the	 purposes	 for	 using	 one	 or	 the
other.	 In	 general,	 diagrams	 cannot	 be	 used	 for	 all	 data	 levels.	 So	 with	 the
introduction	of	each	diagram,	the	data	level	issue	is	clarified.

	
We	 begin	 with	 the	 graphs	 suitable	 and	 most	 commonly	 used	 with	 data	 of

categorical	or	 rank	 scale.	The	use	of	diagrams	 is	 then	extended	 to	quantitative
data	with	a	countable	value	set	so	that	individual	values	are	clearly	disjoint	from
each	other	by	some	given	step	or	unit	size,	and	to	class	data.
	



PIE	CHARTS

	

The	 first	graphical	 tool	 to	be	 introduced	 is	 the	pie	chart,	 so-named	because	of
the	circular	shape	with	slices	representing	categories	or	values.	The	size	of	 the
slices	is	related	to	the	frequencies	of	the	values	represented	by	them.	One	speaks
of	this	relationship	as	proportionality	between	the	size	and	the	frequency.28
	 One	further	component	of	the	pie	chart	is	also	attributed	meaning,	the	radius.
That	 is,	 if	 several	 data	 sets	 of	 possibly	 different	 size	 are	 compared	with	 each
other,	the	radius	of	each	pie	chart	is	proportional	to	the	magnitude	of	the	data	set
it	represents.	More	precisely,	if	one	pie	represents	a	set	A	of	size	SA	=	|A|	and	a
second	pie	represents	a	set	B	of	size	SB	=	|B|,	which	is	k	=	SA/SB	times	that	of	A,
then	the	pie	of	B	has	to	have	a	radius	rB,	which	is	√k	times	the	length	of	radius	r
of	pie	A,	tht	is,	rB	=	rA	⋅√k.29
	TABLE	4.1	Berkshire	Hathaway	Third	Quarter	Reports:	Revenues	of	1996	and
2006
	Source:	Berkshire	Hathaway,	Inc.,	http://www.berkshirehathaway.com/	(April	4,
2007).
	

	
Revenues	(in	million	$) 1996 2006
Insurance	and	Other
Insurance	premiums	earned $971 $6,359
Sales	and	service	revenues 722 13,514
Interest,	dividend	and	other	investment	income 220 1,117
Investment	gains/losses 96 278
Utilities	and	Energy
Operating	revenues 2,780
Other	revenues 69
Finance	and	Financial	Products

http://www.berkshirehathaway.com/


Income	from	finance	businesses 6
Interest	income 400
Investment	gains/losses
Derivative	gains/losses -11
Other ____ 854
Total $2,015 $25,360

	

	

As	an	example,	we	consider	the	(unaudited)	third	quarter	reports	of	Berkshire
Hathaway,	Inc.	for	the	years	1996	and	2006	as	shown	in	Table	4.1.	In	particular,
we	analyze	the	revenues	of	both	quarters.	Note	that	some	positions	appear	in	the
report	 for	one	year	while	 they	do	not	 in	 the	other	year.	However,	we	are	more
interested	 in	 positions	 that	 appear	 in	 both.	 In	 the	 table,	 we	 have	 the
corresponding	revenue	positions	listed	as	given	by	the	individual	reports.	From
the	table,	we	can	see	that	in	2006,	the	position	“derivative	gains	and	losses”	has
a	negative	value	that	creates	a	problem	since	we	can	only	represent	positive—or,
at	 least,	 with	 the	 same	 sign—values.	 So,	 we	 just	 charge	 it,	 here,	 against	 the
position	 “Other”	 to	obtain	 a	value	of	 this	 position	 equal	 to	$843	million.	This
procedure,	 however,	 is	most	 likely	 not	 appreciated	 if	 one	 is	 interested	 in	 each
individual	position.

	
We	can	now	construct	two	separate	pie	charts	representing	1996	and	2006.	We

depict	them	in	Figure	4.1	and	Figure	4.2,	respectively.
	 Note	that	the	two	largest	positions	in	1996	remain	the	two	largest	positions	in
2006.	However,	while	“insurance	premiums	earned”	was	the	largest	position	in
1996,	accounting	for	48%	of	revenues,	it	ranked	second	in	2006,	accounting	for
25%	of	 revenue.	 In	absolute	 figures,	 though,	 the	value	 is	about	 seven	 times	as
large	 in	 2006	 as	 in	 1996.	Since	 the	 total	 of	 the	 revenues	 for	 2006	 exceeds	 10
times	that	of	1996,	this	has	to	be	reflected	in	the	radius.	As	mentioned,	the	radius
of	2006	has	to	be

	For	a	size	comparison,	we	display	both	pie	charts	jointly	in	Figure	4.3.
	FIGURE	4.1	Pie	Chart	of	Third	Quarter	Berskhire	Revenues,	1996



	Source:	Berkshire	Hathaway,	Inc.,	http://www.berkshirehathaway.com/	(April	4,
2007).
	

FIGURE	4.2	Pie	Chart	of	Third	Quarter	Berkshire	Revenues,	2006.

	
Source:	Berkshire	Hathaway,	Inc.,	http://www.berkshirehathaway.com/	(April	4,
2007).
	

http://www.berkshirehathaway.com/
http://www.berkshirehathaway.com/




BAR	CHART

	

The	next	graphical	tool	suitable	for	categorical	data	is	the	bar	chart.	It	assigns	a
vertical	rectangle	or	bar	to	each	value	or	observation.30	While	the	width	of	each
rectangle	 is	 the	 same,	 the	 height	 is	 determined	 by	 either	 relative	 or	 absolute
frequency	 of	 each	 particular	 observation.	 Sometimes	 it	 is	 better	 to	 rotate	 the
diagram	by	 90	 degrees	 such	 that	 bars	with	 identical	 lengths	 along	 the	 vertical
axis	 are	 obtained	 while	 the	 bars	 are	 extended	 horizontally	 according	 to	 the
frequencies	of	the	respective	values	or	observations.	Absolute	frequency	is	more
commonly	used	with	bar	charts	than	relative	frequency.
	FIGURE	4.3	Comparison	of	1996	and	2006	Berkshire	Pie	Charts
	Source:	Berkshire	Hathaway,	Inc.,	http://www.berkshirehathaway.com/	(April	4,
2007).
	

The	use	of	bar	 charts	 is	demonstrated	using	 the	Berkshire	 third	quarter	data
from	the	previous	example.	We	perform	the	task	for	both	years,	1996	and	2006,
again	correcting	for	the	negative	values	in	position	“Derivative	gains/losses”	in
2006	in	the	same	fashion.	The	bar	charts	are	shown	in	Figures	4.4	and	4.5.	The
two	 largest	 positions	 of	 both	 reports	 become	 immediately	 apparent	 again.	 In
contrast	 to	 the	 pie	 chart,	 their	 respective	 performance	 relative	 to	 the	 other
revenue	 positions	 of	 each	 report	 may	 become	 more	 evident	 using	 bar	 charts.

http://www.berkshirehathaway.com/


While	the	bar	of	“insurance	premiums	earned”	towers	over	the	bar	of	“sales	and
service	revenues”	in	1996,	this	is	exactly	the	opposite	in	the	bar	chart	for	2006.
One	 must	 be	 aware	 of	 the	 absolute	 frequency	 units	 of	 both	 diagrams.	 Even
though	the	bars	seem	to	be	about	the	same	height,	the	vertical	axis	is	different	by
a	factor	of	10.

	
In	Figure	4.6,	we	list	each	observation	without	netting.	This	means	we	do	not

net	the	negative	“Derivative	gains/losses”	against	“Other”.	Even	though	the	first
position	of	the	two	is	negative	(i.e.,	-$11,000,000),	we	still	prefer	to	assign	it	a
bar	 extending	 upward	with	 height	 equal	 to	 the	 absolute	 value	 of	 this	 position
(i.e.,	 +$11,000,000).31	 In	 some	 way,	 we	 have	 to	 indicate	 that	 the	 value	 is
negative.	Here,	it	is	done	by	the	text	arrow.
	FIGURE	4.4	Bar	Chart	of	Berkshire	Third	Quarter	Revenue	($	million),	1996
	Source:	Berkshire	Hathaway,	Inc.,	http://www.berkshirehathaway.com/	(April	4,
2007).
	

FIGURE	4.5	Bar	Chart	of	Berkshire	Third	Quarter	Revenue	($	million),	2006
	Source:	Berkshire	Hathaway,	Inc.,	http://www.berkshirehathaway.com/	(April	4,
2007).
	

http://www.berkshirehathaway.com/
http://www.berkshirehathaway.com/


FIGURE	4.6	Bar	chart	of	Berkshire	Third	Quarter	Revenue	($	million),	2006.
“Derivative	Gains/Losses”	of	Negative	11	Not	Netted	Against	“Other”
	Source:	Berkshire	Hathaway,	Inc.,	http://www.berkshirehathaway.com/	(April	4,
2007).
	

The	width	of	the	bars	has	been	arbitrary	selected	in	both	charts.	usually,	they
are	chosen	such	that	the	diagram	fits	optically	well	with	respect	to	the	height	of
the	bars	and	such	that	data	values	can	be	easily	identified.	But	beyond	this,	the
width	has	no	meaning.
	

http://www.berkshirehathaway.com/


STEM	AND	LEAF	DIAGRAM

	

While	 the	 the	pie	chart	 and	bar	chart	are	graphical	 tools	 intended	 for	use	with
categorical	data,	 the	next	four	tools	are	intended	for	use	with	quantitative	data.
The	 first	 such	 graphical	 tool	 we	 will	 explain	 is	 the	 so-called	 stem	 and	 leaf
diagram.	 The	 data	 are	 usually	 integer-valued	 and	 positive.	 The	 diagram	 is
constructed	from	a	numerically	ordered	array	of	data	with	leading	one	or	more
digits	of	the	observed	values	listed	along	a	vertical	axis	in	ascending	order.	For
each	observed	value,	the	row	with	the	corresponding	leading	digit(s)	is	selected.
The	 remaining	specifying	digit	of	each	observation	 is	noted	 to	 the	 right	of	 the
vertical	 axis	 along	 the	 row,	 again,	 in	 numerically	 ascending	 order.	 How	 this
works	 exactly	will	 be	 shown	 in	 the	 next	 example.	Hence,	with	 the	 data	more
frequent	around	the	median	than	in	the	outer	parts	and	distributed	in	an	overall
irregular	and,	generally,	non-symmetric	manner,	the	resulting	diagram	resembles
the	shape	of	a	maple	leaf.
	FIGURE	4.7	Stem	and	Leaf	Diagram	of	S&P	500	Index	Prices
	

As	 an	 example,	we	 consider	 the	 closing	 prices	 of	 the	 S&P	500	 stock	 index
during	 the	 period	 between	 October	 31,	 2005	 and	 March	 14,	 2006.	 Table	 4.2
shows	 the	 corresponding	prices	 in	 chronological	 order	 from	 the	 top	 left	 to	 the
bottom	right.	We	next	have	to	order	the	individual	prices	according	to	size.	This
is	 easy	 and,	 hence,	 not	 shown	 here.	 The	 resulting	 stem	 and	 leaf	 diagram	 is
shown	in	Figure	4.7.	As	we	can	see,	we	have	selected	a	period	where	the	S&P
500	 stock	 index	was	 between	 1200	 and	 1299.	 So,	 all	 prices	 have	 two	 leading



digits	 in	 common,	 that	 is,	 12,	 while	 the	 third	 digit	 indicates	 the	 row	 in	 the
diagram.	The	last	(i.e.,	 fourth)	digit	 is	 the	number	that	 is	put	down	to	the	right
along	the	row	in	numerical	order.	If	you	look	at	the	diagram,	you	will	notice	that
most	prices	in	this	sample	are	between	1260	and	1299.	In	general,	 the	data	are
skewed	to	the	right.
	



FREQUENCY	HISTOGRAM

	

The	 frequency	 histogram	 (or	 simply	 histogram)	 is	 a	 graphical	 tool	 used	 for
quantitative	 data	 with	 class	 data.	 On	 the	 horizontal	 axis	 are	 the	 class	 bounds
while	 the	 vertical	 axis	 represents	 the	 class	 frequencies	 divided	 by	 their
respective	 class	widths.	We	 call	 this	 quantity	 the	 frequency	density	 since	 it	 is
proportional	 to	 the	 class	 frequency.	 The	 frequency	 can	 be	 either	 relative	 or
absolute.	The	concept	of	density	is	derived	from	the	following.	Suppose,	one	has
two	 data	 sets	 and	 one	 uses	 the	 same	 classes	 for	 both	 data.	 Without	 loss	 of
generality,	we	 have	 a	 look	 at	 the	 first	 class.	 Suppose	 for	 the	 first	 data	 set,	we
have	 twice	 as	 many	 observations	 falling	 into	 the	 first	 class	 compared	 to	 the
second	data	 set.	This	 then	 leads	 to	 a	 higher	 data	 concentration	 in	 class	 one	 in
case	 of	 the	 first	 data	 set;	 in	 other	words,	 the	 data	 are	more	 densely	 located	 in
class	one	for	data	set	one	compared	to	data	set	two.
	TABLE	 4.2	 S&P	 500	 Index	 Prices	 (U.S.	 dollars,	 rounded)	 for	 the	 Period
October	31,	2005	through	March	14,	2006
	



The	diagram	is	made	up	of	rectangles	above	each	class,	horizontally	confined
by	 the	 class	 bounds	 and	 with	 a	 height	 determined	 by	 the	 class’s	 frequency
density.	 Thus,	 the	 histogram’s	 appearance	 is	 similar	 to	 the	 bar	 chart.	 But	 it
should	 not	 be	 confused	 with	 a	 bar	 chart	 because	 this	 can	 lead	 to
misinterpretation.32	If	relative	frequencies	are	used,	then	the	area	confined	by	the
rectangles	adds	up	 to	one.	On	 the	other	hand,	 if	absolute	 frequencies	are	used,
then	the	area	is	equal	to	the	number	of	data	values,	n.	That	follows	because	if	we
add	up	all	the	individual	rectangles	above	each	class,	we	obtain	for



for	a	sample	of	size	n	where	we	have	nC	classes,	and	where	ΔI	 is	 the	width	of
class	I.
The	 histogram	 helps	 in	 determining	 the	 approximate	 center,	 spread,	 and

overall	shape	of	the	data.	We	demonstrate	the	features	of	the	histogram	using	six
exemplary	data	sets.	In	Figure	4.8	we	have	three	 identical	data	sets	except	 that
data	set	2	is	shifted	with	respect	to	data	set	1	and	data	set	3	is	shifted	by	some
additional	 amount.	 That	 is,	 all	 three	 data	 sets	 have	 measures	 of	 center	 and
location	 that	 are	 different	 from	 each	 other	 by	 some	 shift.	Apart	 from	 this,	 the
spread	and	overall	shape	of	the	individual	histograms	are	equivalent.

	
In	Figure	4.9,	we	show	three	additional	data	sets.	Data	set	4	is	still	symmetric

but,	 in	 contrast	 to	 the	 three	 previous	 data	 sets,	 it	 has	 varying	 class	 widths.
Besides	being	shifted	to	the	right,	data	set	5	has	an	overall	shape	that	is	different
from	 data	 set	 4	 in	 that	 it	 appears	more	 compact.	 It	 is	 still	 symmetric,	 but	 the
spread	 is	 smaller.	 And	 finally,	 data	 set	 6	 is	 shifted	 even	 further	 to	 the	 right
compared	to	data	sets	4	and	5.	unlike	the	other	five	histograms,	 this	one	is	not
symmetric	but	skewed	to	the	right.	Furthermore,	the	spread	seems	to	exceed	the
histogram	of	all	the	others	data	sets.
	FIGURE	 4.8	 Exemplary	 Histograms:	 Same	 Shape,	 Same	 Spread,	 Different
Medians
	

FIGURE	4.9	Exemplary	Histograms:	Different	Median,	Spread,	and	Shape
	



FIGURE	4.10	Histogram	with	Absolute	Frequency	Density	H(I)	of	Daily	S&P
500	Returns	(January	1,	1996	to	April	28,	2006)
	

As	an	example,	consider	 the	daily	 logarithmic	 returns	of	 the	S&P	500	stock
index	during	the	period	between	January	2,	1996	and	April	28,	2006	(i.e.,	2,600
observations).	 For	 the	 classes	 I,	 we	 take	 the	 bounds	 shown	 in	 Table	 4.3.	 The
class	width	is	0.01	for	all	classes,	hence,	equidistant	classes.	For	each	class,	we
give	absolute	as	well	as	 relative	 frequencies,	 that	 is,	a(I)	and	 f(I),	 respectively.



Accordingly,	we	compute	the	absolute,	H(I),	as	well	as	relative,	h(I),	 frequency
densities	in	Table	4.4.	The	corresponding	histogram	is	shown	in	Figure	4.10	for
the	absolute	frequency	density.

	
As	 can	 be	 seen	 by	 the	 shape	 of	 the	 histogram,	 the	 data	 appear	 fairly

symmetricly	distributed.	The	two	most	extreme	classes	on	either	end	of	the	data
are	 almost	 invisible	 and	 deceivingly	 appear	 to	 have	 the	 same	 density	 due	 to
scale.
	 Finally,	 the	 quantiles	 of	 a	 distribution	 can	 be	 determined	 via	 the	 histogram
when	 we	 use	 relative	 frequencies.	 As	 mentioned	 in	 Chapter	 2	 where	 we
discussed	data	classes,	we	assume	 that	 the	data	are	dispersed	uniformly	within
the	data	classes.	Then,	the	α-percentile	is	the	value	on	the	horizontal	axis	to	the
left	of	which	the	area	covered	by	the	histogram	accounts	for	α%	of	the	data.	In
our	example,	we	may	be	interested	in	the	30%	lower	share	of	the	data,	that	is,	we
are	looking	for	the	α	0.3-quantile.
	TABLE	4.3	Class	Data	of	Daily	S&P	500	Logarithmic	Returns	from	January	2,
1996	through	April	28,	2006	with	a(I)	Absolute	and	f(I)
	



TABLE	4.4	Frequency	Densities	of	S&P	500	Logarithmic	Returns	from	January
2,	2006	with	H(I)	Absolute	and	h(I)	Relative	Frequency	Density
	



Since	 class	 1	 represents	 60%	 of	 the	 data	 already,	 the	 0.3-quantile	 is	 to	 be
within	 this	class.	Because	of	 the	uniform	distribution,	 the	median	of	class	1	 is
equal	to	this	percentile,	that	is,	q0.3	=	4.5.

	
using	 the	methods	described	 for	 computation	of	 quantiles	 for	 class	data,	we



determine	class	 seven	 to	be	 the	 incidence	class	 since	 the	 empirical	 cumulative
relative	frequency	distribution	is	equal	to	0.14	at	α7	and	0.48	at	β7,	respectively.
The	0.3-quantile	is	then	computed	to	be	q0.3	=	-0.005.
	 We	 double	 check	 this	 by	 computing	 the	 area	 covered	 by	 the	 histogram	 for
values	less	than	or	equal	to	-0.005.	This	area	is

	The	procedure	is	visualized	in	Figure	4.11.
	FIGURE	4.11	Determination	of	30%	Quantile	using	the	Histogram	for	Relative
Frequency	Densities,	f(I)
	



OGIVE	DIAGRAMS

	

From	our	coverage	of	cumulative	frequency	distributions	in	Chapter	2,	we	know
that	 at	 some	 class	 bound	 b	 the	 cumulative	 frequency	 distribution	 function	 is
equal	 to	 the	 sum	 of	 the	 absolute	 frequencies	 of	 all	 classes	 to	 the	 left	 of	 that
particular	 bound	 while	 the	 cumulative	 relative	 frequency	 distribution	 function
equals	 the	sum	of	 the	 relative	 frequencies	of	all	classes	 to	 the	 left	of	 the	same
bound.	With	 histograms,	 this	 equals	 the	 area	 covered	 by	 all	 rectangles	 up	 to
bound	b.	For	continuous	data,	we	assume	that	inside	the	classes,	the	cumulative
frequency	 increases	 linearly.	 If	 we	 plot	 the	 cumulative	 relative	 frequency
distribution	at	each	class	bound	and	interpolate	linearly,	this	diagram	is	called	an
ogive.33
	 As	an	example,	we	use	 the	 returns	 from	Table	4.5	 along	with	 the	 classes	 in
Table	4.6.	In	Figure	4.12,	we	display	the	empirical	cumulative	relative	frequency
distribution	of	the	returns.34	In	Figure	4.13,	we	match	the	empirical	cumulative
relative	 frequency	 distribution	with	 the	 ogive	 diagram	 obtained	 from	 the	 data
classes.
	TABLE	 4.5	 Daily	 S&P	 500	 Logarithmic	 Returns	 of	 Period	 March	 17,	 2006
through	April	28,	2006
	

TABLE	4.6	Classes	of	Daily	S&P	500	Stock	Index	Returns	for	Period	March	17,
2006	through	April	28,	2006



	

	
Class Bounds Ogive
I [-0.015,	-0.008) 0.033
II [-0.008,	-0.001) 0.400
III [-0.001,	0.006) 0.867
IV [0.006,	0.013) 0.967
V [0.013,	0.020) 1.000

Note:	Right	column	contains	values	of	ogive	at	upper-class	bounds.
	

	

FIGURE	4.12	Empirical	Cumulative	Relative	Frequency	Distribution	of	Daily
S&P	500	Returns	for	the	Period	March	17,	2006	through	April	28,	2006
	

Notice	 that	 at	 each	 upper-class	 bound,	 ogive	 and	 Ffemp	 intersect.	 This	 is
because	at	each	upper-class	bound,	all	values	less	than	or	equal	to	the	respective
bounds	 have	 been	 already	 considered	 by	 the	 empirical	 cumulative	 relative
frequency	distribution.	However,	 the	ogive	keeps	 increasing	 in	a	 linear	manner
until	 it	 reaches	 the	 cumulative	 relative	 frequency	 evaluated	 at	 the	 respective
upper-class	bounds.35	Hence,	the	ogive	assumes	the	value	of	Ffemp	at	each	class
bound.



	FIGURE	 4.13	 Empirical	 Cumulative	 Relative	 Frequency	 Distribution	 of	 the
Daily	S&P	500	Stock	Index	Returns	versus	Ogive	of	Classes	of	Same	Data	for
the	Period	March	17,	2006	through	April	28,	2006
	

Looking	at	classes	I	and	V	in	Figure	4.13,	one	can	see	that	the	ogive	attributes
frequency	to	areas	outside	the	data	range.	In	the	case	of	class	I	starting	at	-0.015,
the	ogive	ascends	even	though	the	first	observation	does	not	occur	until	-0.0103.
Analogously,	 the	 ogive	 keeps	 ascending	 between	 the	 values	 0.0174	 and	 0.020
until	it	assumes	the	value	one.	This	is	despite	the	fact	that	no	more	values	could
be	observed	beyond	0.0174.	It	is	due	to	the	assumption	of	a	continuous	uniform
distribution	of	the	data	within	classes	already	mentioned.
	



BOX	PLOT

	

The	box	plot	or	box	and	whisker	plot	manages	in	a	simple	and	efficient	way	to
present	 both	 measures	 of	 location	 and	 variation.	 It	 is	 commonly	 used	 in	 the
context	of	testing	the	quality	of	estimators	of	certain	parameters.

	
To	 construct	 a	 box	 plot,	 the	 median	 and	 the	 lower	 and	 upper	 quartiles	 are

needed.	The	interquartile	range	(IQR)	representing	the	middle	50%	of	the	data	is
indicated	 by	 a	 horizontal	 box	 with	 its	 left	 and	 right	 bounds	 given	 by	 lines
extending	 vertically	 above	 the	 lower	 and	 upper	 quartile,	 respectively.	Another
vertical	 line	 of	 equivalent	 length	 extends	 above	 the	median.	The	 values	 at	 1.5
times	the	IQR	to	either	the	left	and	right	of	the	lower	and	upper	quartiles,	define
the	 lower	 and	 upper	 limit,	 respectively.	 Dashed	 horizontal	 lines	 combine	 the
lowest	value	greater	 than	or	 equal	 to	 the	 lower	 limit	 and	 the	 left	bound	of	 the
box.	The	highest	value	less	than	or	equal	to	the	upper	limit	and	the	right	bound
of	the	box	are	combined	by	an	equivalent	line.	These	dashed	lines	including	the
corresponding	 two	 values	 are	 referred	 to	 as	whiskers	 due	 to	 their	 appearance.
Above	 both	 these	 two	 whisker	 values,	 a	 vertical	 line	 of	 length	 less	 than	 the
vertical	bounds	of	 the	box	 is	 extended.	Finally,	 any	value	beyond	 the	 limits	 is
referred	to	as	outliers.	They	are	indicated	by	asterisks	(*)	or	plus	sign.
	 Analogously,	 the	 box	 plot	 can	 be	 turned	 counterclockwise	 by	 90	 degrees.
Then	 the	 box	 extends	 vertically	 with	 the	 end	 at	 the	 lower	 quartile	 below	 the
partition	 at	 the	 median	 and,	 again,	 the	 median	 below	 the	 end	 at	 the	 upper
quartile.	The	 line	 to	 the	 lower	whisker	extends	vertically	down	from	the	 lower
box	end	while	the	line	to	the	upper	whisker	extends	vertically	up	from	the	upper-
box	end.	Outliers	are	now	below	or	above	the	limits.
	 The	box	plot	can	offer	insight	as	to	whether	the	data	are	symmetric	or	skewed.
It	 also	gives	 some	 feel	 for	 the	 spread	of	 the	data,	 that	 is,	whether	 the	data	 are
dispersed,	in	general,	or	relatively	compact	with	some	singular	extremes,	or	not
much	scattered	at	all.	Due	to	the	nature	of	the	diagram,	however,	it	can	only	be
used	for	quantitative	data.36
	 To	 illustrate	 the	 procedure	 for	 generating	 the	 box	 plot,	we	 first	 analyze	 the
daily	 logarithmic	 returns	 of	 the	Euro-U.S.	 dollar	 exchange	 rate.	The	 period	 of



analysis	is	January	1,	1999	through	June	29,	2007	(n	=	2,216	observations).	The
next	step	is	to	determine	the	quartiles	and	the	median.	They	are	given	to	be

q0.25	=	−0.0030	
md	=	0.0001	
q0.75	=	0.0030

		
	 From	 the	 quartiles,	 we	 can	 compute	 the	 IQR.	 This	 enables	 us	 to	 then
determine	the	lower	and	upper	limit.	For	our	data,we	obtain

LL	=	q0.25	−	1.5	⋅	IQR	=	−0.0120
	 UL	=	q0.75	+	1.5	⋅	IQR	=	0.0120
	

where	LL	 denotes	 lower	 limit	 and	UL	 denotes	 upper	 limit.	With	 our	 data,	we
find	that	the	values	of	the	limits	are	actually	observed	values.	Thus,	we	obtain	as
whisker	ends

LW	=	LL	=	−0.0120
	 UW	=	UL	=	0.0120
	

with	LW	and	UW	denoting	the	lower-and	upper-whisker	ends,	respectively.
	 By	 construction,	 any	 value	 beyond	 these	 values	 is	 an	 outlier	 denoted	 by	 an
asterisk.	The	resulting	box	plot	is	depicted	in	Figure	4.14.
	FIGURE	 4.14	 Box	 Plot	 of	 the	 Daily	 Logarithmic	 Returns	 of	 the	 EUR-USD
Exchange	Rate	from	January	1,	1999	through	June	29,	2007
	



As	 a	 second	 illustration,	 we	 use	 the	 daily	 S&P	 500	 stock	 index	 returns
between	January	4,	2007	and	July,	20,	2007	(n	=	137	logarithmic	returns).	The
quantities	of	interest	in	this	example	are

q0.25	=	−0.0015
	 q0.75	=	0.0049
	 md	=	0.0010
	 IQR	=	0.0063
	 LL	=	-0.0011
	 UL	=	0.0144
	 LW	=	-0.0107
	 UW	=	0.0114
		

	 The	resulting	box	plot	is	displayed	in	Figure	4.15.	It	can	be	seen	in	the	figure
that	 neither	 the	 lower	 nor	 upper	 limits	 are	 assumed	 by	 observations.
Consequently,	 it	 follows	 that	 the	whiskers	do	not	 extend	across	 the	 full	 length
between	quartiles	and	limits.	In	general,	the	second	plot	reveals	some	skewness
in	the	data	that	can	be	confirmed	by	checking	the	corresponding	statistics.
	



For	 illustrative	 purposes	 only,	 the	 plots	 are	 also	 displayed	 turned
counterclockwise	 by	 90	 degrees.	 This	 can	 be	 observed	 in	 Figures	 4.16	 and
4.17.37
	FIGURE	4.15	Box	Plot	of	the	Daily	S&P	500	Stock	Index	Logarithmic	Returns
Over	the	Period	January	4,	2007	through	July	20,	2007
	

FIGURE	 4.16	 Box	 Plot	 of	 Daily	 EUR-USD	 Exchange	 Rate	 Returns
(counterclockwise	by	90	degrees)
	

FIGURE	 4.17	 Box	 Plot	 of	 Daily	 S&P	 500	 Stock	 Index	 Returns
(counterclockwise	by	90	degrees)
	





QQ	PLOT

	

The	 last	 graphical	 tool	 that	 we	 will	 explain	 is	 the	 quantile-quantile	 plot	 or
simply	the	QQ-plot.	Also	referred	to	as	the	probability	plot,	its	use	is	limited	to
quantitative	data.

	
When	 we	 compare	 two	 populations,	 we	 match	 each	 quantile	 or	 percentile

from	one	population	with	the	corresponding	quantile	from	the	other	population.
If	we	compare	 two	samples,	 the	diagram	is	composed	of	 the	pairs	obtained	by
matching	 the	 components	 of	 each	 array	 from	 two	data	 sets	 cell	 by	 cell.38	 The
ordered	 arrays	 have	 to	 be	 of	 equal	 length.	 The	 horizontal	 axis	 represents	 the
values	 from	one	data	set	while	 the	vertical	axis	 from	the	other.	Additionally,	a
line	 is	 extended	 through	 the	 pair	 containing	 the	 lower	 quartiles	 and	 the	 pair
containing	the	upper	quartiles.	If	all	observation	pairs	are	located	relatively	near
this	 line,	 the	 two	 data	 sets	 are	 very	 likely	 related	 to	 the	 same	 population.
Theoretically,	if	for	both	samples,	the	data	should	be	from	the	same	population,
the	sample	quantile	pairs	should	be	very	close	to	the	line	extended	through	the
lower	and	upper	quartiles.	Small	deviations	would	be	 the	 result	of	 the	 random
sampling.
	 QQ-plots	 are	 often	 used	 to	 compare	 either	 two	 samples	 or	 empirical	 and
theoretical	distributions	to	see	whether	a	sample	is	from	a	certain	population.	As
an	example,	we	will	compare	the	daily	returns	of	the	S&P	500	stock	index	and
the	Euro-U.S.	dollar	 exchange	 rate	during	 the	period	between	 January	4,	2007
and	June	26,	2007.	The	corresponding	sample	quartiles	and	IQRs	are	given	to	be
	

	
EUR-USD S&P	500

q0.25 -0.0026 -0.0016
q0.75 0.0027 0.0049
IQR 0.0053 0.0065



	

	

	
The	 resulting	 plot	 is	 displayed	 in	 Figure	 4.18.	 As	we	 can	 see,	 the	 data	 fits

quite	 well	 along	 the	 line	 between	 the	 quartiles.	 However,	 below	 the	 lower
quartile,	the	U.S.	dollar	pairs	deviate	quite	obviously.	So,	in	the	extreme	return
movements,	the	two	data	sets	have	strong	differences	in	behavior.	That	is,	for	the
S&P	500	stock	 index,	much	 lower	 returns	are	observed	 than	 for	 the	Euro-U.S.
dollar	exchange	rate	data	during	the	same	period.

	
The	 following	statement	 requires	some	knowledge	of	probability	 theory	 that

we	will	cover	 in	Chapters	9	 through	13.	One	should	not	be	disappointed	 if	 the
following	 remark	 is	 not	 quite	 intuitive,	 at	 this	 stage.	 Typically,	 an	 empirical
distribution	 obtained	 from	 a	 sample	 is	 compared	 to	 a	 theoretical	 distribution
from	 a	 population	 from	 which	 this	 sample	 might	 be	 drawn.	 Very	 often	 in
financial	 applications,	 the	 continuous	 normal	 (or	 Gaussian	 distribution)	 is	 the
initial	 choice	distribution.39	 Then,	 if	 the	 quantile	 pairs	 should	 deviate	 to	 some
degree	from	the	imaginary	line	through	the	quartile,	the	hypothesis	of	a	normal
distribution	for	the	analyzed	data	sample	is	rejected	and	one	will	have	to	look	for
some	 other	 distribution.	We	 will	 not	 go	 into	 detail	 at	 this	 point,	 however.	 In
Figure	4.19,	we	have	two	QQ	plots.	The	left	one	displays	the	empirical	quantiles
of	 the	 daily	 Euro-British	 pound	 (GBP)	 exchange	 rate	 returns	 (horizontal	 axis)
matched	 with	 the	 theoretical	 quantiles	 from	 the	 standard	 normal	 distribution
(vertical	 axis).	 The	 relationship	 looks	 curved	 rather	 than	 linear.	 Hence,	 the
normal	distribution	ought	to	be	rejected	in	favor	of	some	alternative	distribution.
If	 we	 look	 at	 the	 right	 plot	 displaying	 the	 sample	 quantiles	 of	 the	 GBP-USD
exchange	 rate	 returns	 matched	 with	 the	 standard	 normal	 quantiles,	 we	 might
notice	 that	 in	 this	case	 the	relationship	 looks	fairly	 linear.	So,	at	a	 first	glance,
the	 GBP-USD	 exchange	 rate	 returns	 might	 be	 modeled	 by	 the	 normal
distribution.
	FIGURE	4.18	QQ	Plot	of	Daily	S&P	500	Returns	versus	EUR-USD	Exchange
Rate	Returns	for	the	Period	January	4,	2007	through	June	26,	2007
	



FIGURE	 4.19	 Comparison	 of	 Empirical	 and	 Theoretical	 Distributions	 using
Box	Plots
	





CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Pie	chart	
Bar	chart	
Stem	and	leaf	diagram	
Frequency	histogram	
Frequency	density	
Ogive	
Box	plot	(box	and	whisker	plot)	
Whiskers	outliers	
Quantile-quantile	plot	
Probability	plot
	



CHAPTER	5
	

Multivariate	Variables	and	Distributions
	

In	previous	chapters,	we	examined	samples	and	populations	with	respect	to	one
variable	 or	 attribute	 only.	 That	 is,	 we	 restricted	 ourselves	 to	 one-dimensional
analysis.40	However,	for	many	applications	of	statistics	 to	problems	in	finance,
there	 is	 typically	 less	of	 a	need	 to	analyze	one	variable	 in	 isolation.	 Instead,	 a
typical	problem	faced	by	practitioners	is	to	investigate	the	common	behavior	of
several	 variables	 and	 joint	 occurrences	 of	 events.	 In	 other	 words,	 there	 is	 the
need	to	establish	joint	frequency	distributions.	Along	with	measures	determining
the	 extent	 of	 dependence	 between	 variables,	 we	 will	 also	 introduce	 graphical
tools	for	higher	dimensional	data	to	obtain	a	visual	conception	of	the	underlying
data	structure.
	



DATA	TABLES	AND	FREQUENCIES

	

As	 in	 the	 one-dimensional	 case,	 we	 first	 gather	 all	 joint	 observations	 of	 our
variables	 of	 interest.	 For	 a	 better	 overview	 of	 occurrences	 of	 the	 variables,	 it
might	be	helpful	to	set	up	a	table	with	rows	indicating	observations	and	columns
representing	the	different	variables.	This	table	is	called	the	table	of	observations.
Thus,	 the	cell	of,	say,	 row	 i	and	column	 j	contains	 the	value	 that	observation	 i
has	 with	 respect	 to	 variable	 j.	 Let	 us	 express	 this	 relationship	 between
observations	 and	 variables	 a	 little	 more	 formally	 by	 some	 functional
representation.

	
In	the	following,	we	will	restrict	ourselves	to	observations	of	pairs,	that	is,	k	=

2.	In	this	case,	the	observations	are	bivariate	variables	of	the	form	x	=	(x1,x2).41

The	first	component	x1	assumes	values	in	the	set	V	of	possible	values	while	the
second	component	x2	takes	values	in	W,	that	is,	the	set	of	possible	values	for	the
second	component.
	 Consider	the	Dow	Jones	Industrial	Average	over	some	period,	say	one	month
(roughly	22	 trading	days).	The	 index	 includes	 the	 stock	of	30	 companies.	The
corresponding	table	of	observations	could	then,	for	example,	list	the	roughly	22
observation	dates	 in	 the	columns	and	the	 individual	company	names	row-wise.
So,	 in	 each	 column,	 we	 have	 the	 stock	 prices	 of	 all	 constituent	 stocks	 at	 a
specific	date.	If	we	single	out	a	particular	row,	we	have	narrowed	the	observation
down	to	one	component	of	the	joint	observation	at	that	specific	day.
	 Since	 we	 are	 not	 so	 much	 interested	 in	 each	 particular	 observation’s	 value
with	respect	to	the	different	variables,	we	condense	the	information	to	the	degree
where	 we	 can	 just	 tell	 how	 often	 certain	 variables	 have	 occurred.42	 In	 other
words,	we	are	interested	in	the	frequencies	of	all	possible	pairs	with	all	possible
combinations	of	first	and	second	components.	The	task	is	to	set	up	the	so-called
joint	frequency	distribution.	The	absolute	joint	frequency	of	the	components	x
and	y	is	denoted	by
(5.1)
	



which	 is	 the	 number	 of	 occurrences	 counted	 of	 the	 pair	 (v,w).	 The	 relative
joint	frequency	distribution	is	denoted	by43

(5.2)
	

The	 relative	 frequency	 is	 obtained	 by	 dividing	 the	 absolute	 frequency	 by	 the
number	of	observations.
While	joint	frequency	distributions	exist	for	all	data	levels,	one	distinguishes

between	qualitative	data,	on	the	one	hand,	and	rank	and	quantitative	data,	on	the
other	 hand,	 when	 referring	 to	 the	 table	 displaying	 the	 joint	 frequency
distribution.	 For	 qualitative	 (nominal	 scale)	 data,	 the	 corresponding	 table	 is
called	 a	 contingency	 table	 whereas	 the	 table	 for	 rank	 (ordinal)	 scale	 and
quantitative	data	is	called	a	correlation	table.

	
As	an	example,	consider	the	daily	returns	of	the	S&P	500	stock	index	between

January	 2	 and	 December	 31,	 2003.	 There	 are	 252	 observations	 (i.e.,	 daily
returns);	that	is,	n	=	252.	To	see	whether	the	day	of	the	week	influences	the	sign
of	the	stock	returns	(i.e.,	positive	or	negative),	we	sort	 the	returns	according	to
the	 day	 of	 the	 week	 as	 done	 in	 Table	 5.1.	 Accumulating	 the	 252	 returns
categorized	 by	 sign,	 for	 each	 weekday,	 we	 obtain	 the	 absolute	 frequencies	 as
given	in	Table	5.1.	We	see	that	while	there	have	been	more	positive	returns	than
negative	 returns	 (i.e.,	 137	 versus	 115),	 the	 difference	 between	 positive	 and
negative	returns	is	greatest	on	Mondays.	On	Fridays,	as	an	exception,	there	have
been	more	negative	returns	than	positive	ones.
	TABLE	 5.1	 Contingency	 Table:	 Absolute	 Frequencies	 of	 Sign	 (v)	 of	 Returns
Sorted	by	Weekday	(w)
	

As	 another	 example,	 and	 one	 that	 we	 will	 used	 throughout	 this	 chapter,
consider	 the	 bivariate	 monthly	 logarithmic	 return	 data	 of	 the	 S&P	 500	 stock
index	and	the	General	Electric	(GE)	stock	for	the	period	between	January	1996



and	December	2003,	96	observation	pairs.	The	original	data	are	given	in	Table
5.2.	We	 slightly	 transform	 the	 GE	 returns	 x	 by	 rounding	 them	 to	 two	 digits.
Furthermore,	we	separate	them	into	two	sets	where	one	set	of	returns	coincides
with	 negative	 S&P	 500	 stock	 index	 returns	 and	 the	 other	 set	 coincides	 with
nonnegative	 S&P	 500	 stock	 index	 returns.	 Thus,	 we	 obtain	 a	 new	 bivariate
variable	of	which	the	first	component,	x,	is	given	by	the	GE	returns	with	values	v
and	the	second	component,	y,	is	the	sign	of	the	S&P	500	stock	index	returns	with
values	w	 =	 -	 and	 w	 =	 +.44	 The	 resulting	 contingency	 table	 of	 the	 absolute
frequencies	 according	 to	 equation	 (5.1)	 is	 given	 in	 Table	 5.2.	 The	 relative
frequencies	according	to	equation	(5.2)	are	given	in	Table	5.3.
	 If	 we	 look	 at	 the	 extreme	 values	 of	 the	 GE	 returns,	 we	 notice	 that	 the
minimum	return	of	v	=	-0.38	occurred	simultaneously	with	a	negative	S&P	500
return.	On	the	other	hand,	the	maximum	GE	return	of	v	=	0.23	occurred	on	a	day
when	the	index	return	was	positive.

	
In	general,	it	should	be	intuitively	obvious	from	the	GE	returns	under	the	two

different	regimes	(i.e.,	positive	or	negative	index	returns)	 that	 the	stock	returns
behave	quite	differently	depending	on	the	sign	of	the	index	return.
	TABLE	 5.2	 Absolute	 Frequencies	 ax,y(v,w)	 of	 Rounded	 Monthly	 GE	 Stock
Returns	x	versus	Sign	of	Monthly	S&P	500	Stock	Index	Returns	y
	

	
S&P	500	(y)

GE	Return	(x) - +
-0.38 1
-0.30 1
-0.26 1
-0.22 1
-0.16 1
-0.13 2 1
-0.12 1
-0.11 1 1
-0.10 1



-0.09 1 2
-0.08 2
-0.07 3 1
-0.06 1 2
-0.05 2 1
-0.03 2 1
-0.02 1 4
-0.01 3 4
0.00 1 8
0.01 4
0.02 2 5
0.03 1 1
0.04 4 1
0.05 2
0.06 1 1
0.07 3 1
0.08 4
0.09 3
0.10 1 1
0.11 1 2
0.12 1
0.14 1
0.15 1
0.17 2
0.19 1
0.23 1

Note:	Column	2:	w	=	negative	sign,	Column	3:	w	=positive	sign.	Zero	frequency
is	denoted	by	a	blank.

	

	

TABLE	 5.3	 Relative	 Frequencies	 fx,y(v,w)	 of	 Rounded	 Monthly	 GE	 Stock
Returns	(x)	versus	Sign	of	Monthly	S&P	500	Stock	Index	Returns	(y)



	

	
S&P	500	(y)

GE	Return	(x) - +
-0.38 0.0104
-0.30 0.0104
-0.26 0.0104
-0.22 0.0104
-0.16 0.0104
-0.13 0.0208 0.0104
-0.12 0.0104
-0.11 0.0104 0.0104
-0.10 0.0104
-0.09 0.0104 0.0208
-0.08 0.0208
-0.07 0.0313 0.0104
-0.06 0.0104 0.0208
-0.05 0.0208 0.0104
-0.03 0.0208 0.0104
-0.02 0.0104 0.0417
-0.01 0.0313 0.0417
0.00 0.0104 0.0833
0.01 0.0417
0.02 0.0208 0.0521
0.03 0.0104 0.0104
0.04 0.0417 0.0104
0.05 0.0208
0.06 0.0104 0.0104
0.07 0.0313 0.0104
0.08 0.0417
0.09 0.0313
0.10 0.0104 0.0104



0.11 0.0104 0.0208
0.12 0.0104
0.14 0.0104
0.15 0.0104
0.17 0.0208
0.19 0.0104
0.23 0.0104

Note:	Column	2:	w	=	negative	sign,	Column	3:	w	=positive	sign.	Zero	frequency
is	denoted	by	a	blank.

	

	



CLASS	DATA	AND	HISTOGRAMS

	

As	 in	 the	 univariate	 (i.e.,	 one-dimensional)	 case,	 it	 is	 sometimes	 useful	 to
transform	the	original	data	 into	class	data.	The	requirement	 is	 that	 the	data	are
quantitative.	The	 reasons	 for	classing	are	 the	 same	as	before.	 Instead	of	 single
values,	 rows	 and	 columns	 may	 now	 contain	 intervals	 representing	 the	 class
bounds.	Note	 that	either	both	variables	can	be	class	data	or	 just	one.	The	 joint
frequency	 of	 classed	 data	 is,	 again,	 best	 displayed	 using	 histograms	 of	 the
corresponding	density,	a	concept	that	will	be	defined	now.	In	the	bivariate	(i.e.,
two-dimensional)	 case,	 the	 histogram	 is	 a	 three-dimensional	 object	 where	 the
two-dimensional	base	plane	is	formed	by	the	two	axes	representing	the	values	of
the	 two	 variables.	 The	 axis	 in	 the	 third	 dimension	 represents	 the	 frequency
density	of	each	combination	class	I	and	class	J	defined	by
(5.3)
	

	 In	 words,	 the	 absolute	 frequency	 of	 pairs	 denoted	 by	 a(I,J)	 with	 the	 first
component	in	class	I	and	the	second	component	in	class	J	is	divided	by	the	area
with	length	ΔI	and	width	ΔJ.	using	relative	frequencies,	we	obtain	the	equivalent
definition	of	density
(5.4)
	

Note	 that	 definitions	 (5.3)	 and	 (5.4)	 do	 not	 yield	 the	 same	 values,	 so	 one	 has
to	clarify	which	form	of	frequency	is	applied,	relative	or	absolute.
Rather	than	an	area,	the	bivariate	histogram	now	represents	a	volume.	When

using	 absolute	 joint	 frequencies,	 as	 done	 in	 definition	 (5.3),	 the	 entire	 volume
covered	by	the	histogram	is	equal	to	the	total	number	of	observations	(n).	When
using	 relative	 frequencies,	 as	 done	 in	definition	 (5.4),	 the	 entire	 volume	under
the	histogram	is	equal	to	one	or	100%.

	
In	our	GE-S&P	500	return	example,45	we	have	96	pairs	of	joint	observations



where	component	1	is	the	return	of	the	index	in	a	certain	month	and	component
2	 is	 the	 stock’s	 return	 in	 the	 same	month.	With	 the	 ranges	 determined	 by	 the
respective	minima	(i.e.,	 	and	the	respective	maxima
(i.e.,	 	reasonable	lowest	classes	are	given	with	lower
bounds	of	-0.40	for	both	return	samples.	We	can	thus	observe	that	the	range	of
the	 index	 is	 less	 than	 half	 the	 range	 of	 the	 stock,	 which	 is	 in	 line	 with	 the
hypothesis	 that	 an	 index	 is	 less	 likely	 to	 suffer	 from	extreme	movements	 than
individual	stocks.
	FIGURE	5.1	Histogram	of	Relative	Joint	Frequency	of	S&P	500	Index	and	GE
Stock	Returns
	

We	 choose	 two-dimensional	 classes	 of	 constant	 width	 of	 0.05	 in	 each
dimension.46	Thus,	we	obtain	 the	class	bounds	as	given	 in	Table	5.4.	First,	we
determine	the	absolute	bivariate	frequencies	a(I,J)	of	each	class	(I,J)	by	counting
the	respective	return	pairs	that	fall	into	the	class	with	index	I	in	the	first	and	J	in
the	second	component.	Then,	we	divide	the	frequencies	by	the	total	number	of
observations	 (i.e.,	 96)	 to	 obtain	 the	 relative	 frequencies	 f(I,J).	 To	 compute	 the
relative	densities	according	to	equation	(5.2),	we	divide	the	relative	frequencies
by	the	area	0.05	×	0.05	=	0.0025,	which	is	the	product	of	the	respective	constant
class	 widths.	 The	 resulting	 values	 for	 formula	 (5.3)	 are	 given	 in	 Table	 5.5.
Plotting	the	histogram,	we	obtain	the	graphic	in	Figure	5.1.
	



MARGINAL	DISTRIBUTIONS

	

Observing	 bivariate	 data,	 one	 might	 be	 interested	 in	 only	 one	 particular
component.	 In	 this	 case,	 the	 joint	 frequency	 in	 the	 contingency	 or	 correlation
table	can	be	aggregated	to	produce	the	univariate	distribution	of	the	one	variable
of	interest.	In	other	words,	the	joint	frequencies	are	projected	into	the	frequency
dimension	of	 that	particular	 component.	This	distribution	 so	obtained	 is	 called
the	marginal	distribution.	The	marginal	distribution	treats	the	data	as	if	only	the
one	 component	was	 observed	while	 a	 detailed	 joint	 distribution	 in	 connection
with	the	other	component	is	of	no	interest.
	TABLE	5.4	Class	Bounds	of	Classes	I	(S&P	500)	and	J	(GE)
	

	
I J

[-0.40,-0.35) [-0.40,-0.35)
[-0.35,-0.30) [-0.35,-0.30)
[-0.30,-0.25) [-0.30,-0.25)
[-0.25,-0.20) [-0.25,-0.20)
[-0.20,-0.15) [-0.20,-0.15)
[-0.15,0.10) [-0.15,0.10)
[-0.10,-0.05) [-0.10,-0.05)
[-0.05,0.00) [-0.05,0.00)
[0.00,0.05) [0.00,0.05)
[0.05,0.10) [0.05,0.10)
[0.10,0.15) [0.10,0.15)
[0.15,0.20) [0.15,0.20)
[0.20,0.25) [0.20,0.25)
[0.25,0.30) [0.25,0.30)
[0.30,0.35) [0.30,0.35)



[0.35,0.40) [0.35,0.40)
	

	

The	frequency	of	certain	values	of	the	component	of	interest	 is	measured	by
the	marginal	 frequency.	For	 example,	 to	obtain	 the	marginal	 frequency	of	 the
first	component	whose	values	v	are	represented	by	the	rows	of	the	contingency
or	correlation	table,	we	add	up	all	joint	frequencies	in	that	particular	row,	say	i.
Thus,	we	obtain	 the	 row	 sum	as	 the	marginal	 frequency	of	 this	 component	vi.
That	 is,	 for	 each	 value	 vi,	 we	 sum	 the	 joint	 frequencies	 over	 all	 pairs	 (vi,	 wj)
where	vi	is	held	fix.
	 To	obtain	 the	marginal	 frequency	of	 the	 second	 component	whose	 values	w
are	 represented	 by	 the	 columns,	 for	 each	 value	 wj,	 we	 add	 up	 the	 joint
frequencies	of	that	particular	column	j	 to	obtain	the	column	sum.	This	time	we
sum	 over	 all	 pairs	 (vi,	 wj)	 keeping	 wj	 fix.	 Formally,	 the	 relative	 marginal
frequency	at	value	vi	of	component	variable	x	is	defined	by
(5.5)
	

where	 the	 sum	 is	 over	 all	 values	wj	 of	 the	 component	 y.	 The	 converse	 case,
that	is,	the	relative	marginal	frequency	at	value	wj	of	the	component	variable	y,	is
given	by	the	following	definition
(5.6)
	

where	summation	is	over	all	values	vi	of	component	variable	x.
TABLE	5.5	Histogram	Values	of	S&P	500	Stock	Index	and	GE	Stock	Returns
	



For	example,	 consider	 the	bivariate	variable	where	 the	 sign	of	 the	S&P	500
stock	index	returns	is	one	component	and	the	other	component	is	the	GE	stock
returns.	 From	 the	 relative	 frequencies	 in	 Table	 5.3,	 we	 compute	 the	 marginal
frequencies	defined	by	equations	(5.5)	and	(5.6).	The	results	are	given	in	Table
5.4.	From	the	table,	we	see	that	in	fy(w	=	+)	=	60%	of	the	cases,	the	returns	of	the
S&P	500	were	positive.	We	also	learn	that	the	most	common	GE	return	value	is



zero,	occurring	with	a	frequency	of	fx(v	=	0)	=	0.0937;	that	is,	in	0.0937	×	96	=	9
months	of	that	period,	the	S&P	500	stock	index	remained	unchanged.
	



GRAPHICAL	REPRESENTATION

	

A	 common	 graphical	 tool	 used	 with	 bivariate	 data	 arrays	 is	 given	 by	 the	 so-
called	scatter	diagram	or	scatter	plot.	In	this	diagram,	the	values	of	each	pair	are
displayed.	Along	 the	horizontal	 axis,	usually	 the	values	of	 the	 first	 component
are	displayed	while	along	the	vertical	axis,	the	values	of	the	second	component
are	displayed.	The	scatter	plot	is	helpful	in	visualizing	whether	the	variation	of
one	 component	 variable	 somehow	 affects	 the	 variation	 of	 the	 other.	 If,	 for
example,	 the	 points	 in	 the	 scatter	 plot	 are	 dispersed	 all	 over	 in	 no	 discernible
pattern,	the	variability	of	each	component	may	be	unaffected	by	the	other.	This	is
visualized	 in	 Figure	 5.2.	 The	 other	 extreme	 is	 given	 if	 there	 is	 a	 functional
relationship	between	the	two	variables.	Here,	 two	cases	are	depicted.	In	Figure
5.3,	the	relationship	is	linear	whereas	in	Figure	5.4,	 the	relationship	 is	of	some
higher	order.47	When	two	(or	more)	variables	are	observed	at	a	certain	point	in
time,	one	speaks	of	cross-sectional	analysis.	In	contrast,	analyzing	one	and	the
same	variable	at	different	points	in	time,	one	refers	to	as	time	series	analysis.	We
will	come	back	to	the	analysis	of	various	aspects	of	joint	behavior	in	more	detail
in	the	subsections	that	follow	this	discussion.
	FIGURE	5.2	Scatter	Plot:	Extreme	1—No	Relationship	of	Component	Variables
x	and	y
	



FIGURE	 5.3	 Scatter	 Plot:	 Extreme	 2—Perfect	 Linear	 Relationship	 between
Component	Variables	x	and	y
	

FIGURE	 5.4	 Scatter	 Plot:	 Extreme	 3—Perfect	 Cubic	 Functional	 Relationship
between	Component	Variables	x	and	y
	

Once	again,	consider	the	bivariate	monthly	return	data	of	the	S&P	500	stock
index	and	the	GE	stock	from	the	histogram	example.	We	plot	the	pairs	of	returns
such	that	 the	GE	returns	are	the	horizontal	components	while	the	index	returns
are	 the	 vertical	 components.	 The	 resulting	 plot	 is	 displayed	 in	 Figure	 5.5.	 By
observing	 the	 plot,	we	 can	 roughly	 assess,	 at	 first,	 that	 there	 appears	 to	 be	 no



distinct	structure	in	the	joint	behavior	of	the	data.	However,	by	looking	a	little	bit
more	thoroughly,	one	might	detect	a	slight	linear	relationship	underlying	the	two
returns	 series.	That	 is,	 the	 observations	 appear	 to	move	 around	 some	 invisible
line	starting	 from	 the	bottom	 left	corner	and	advancing	 to	 the	 top	 right	corner.
This	would	appear	quite	 reasonable	since	one	might	expect	some	 link	between
the	GE	stock	and	the	overall	index.
	FIGURE	 5.5	 Scatter	 Plot	 of	 Monthly	 S&P	 500	 Stock	 Index	 Returns	 versus
Monthly	GE	Stock	Returns
	



CONDITIONAL	DISTRIBUTION

	

With	the	marginal	distribution	as	previously	defined,	we	obtain	the	frequency	of
component	x	at	a	certain	value	v,	for	example.	We	treat	variable	x	as	if	variable	y
did	 not	 exist	 and	 we	 only	 observed	 x.	 Hence,	 the	 sum	 of	 the	 marginal
frequencies	of	x	has	to	be	equal	to	one.	The	same	is	true	in	the	converse	case	for
variable	y.	Looking	at	the	contingency	or	correlation	table,	the	joint	frequency	at
the	fixed	value	v	of	the	component	x	may	vary	in	the	values	w	of	component	y.
Then,	 there	 appears	 to	 be	 some	 kind	 of	 influence	 of	 component	 y	 on	 the
occurrence	of	value	v	of	component	x.	The	influence,	as	will	be	shown	later	in
equations	(5.14)	and	(5.15),	is	mutual.	Hence,	one	is	interested	in	the	distribution
of	 one	 component	 given	 a	 certain	 value	 for	 the	 other	 component.	 This
distribution	 is	 called	 the	conditional	 frequency	distribution.48	The	 conditional
relative	frequency	of	x	conditional	on	w	is	defined	by
	(5.7)
	

The	 conditional	 relative	 frequency	 of	 y	 conditional	 on	 v	 is	 defined
analogously.	In	equation	(5.7),	both	commonly	used	versions	of	the	notations	for
the	conditional	 frequency	are	given	on	 the	 left	 side.	The	right	side,	 that	 is,	 the
definition	of	the	conditional	relative	frequency,	uses	the	joint	frequency	at	v	and
w	 divided	 by	 the	 marginal	 frequency	 of	 y	 at	 w.	 The	 use	 of	 conditional
distributions	 reduces	 the	original	 space	 to	 a	 subset	 determined	by	 the	value	of
the	conditioning	variable.	If	in	equation	(5.7)	we	sum	over	all	possible	values	v,
we	obtain	the	marginal	distribution	of	y	at	the	value	w,	fy(w),	in	the	numerator	of
the	expression	on	the	right	side.	This	is	equal	to	the	denominator.	Thus,	the	sum
over	all	conditional	relative	frequencies	of	x	conditional	on	w	is	one.	Hence,	the
cumulative	relative	frequency	of	x	at	the	largest	value	x	can	obtain,	conditional
on	some	value	w	of	y,	has	 to	be	equal	 to	one.	The	equivalence	 for	values	of	y
conditional	on	some	value	of	x	is	true	as	well.

	
For	the	monthly	S&P	500	stock	index	and	GE	returns	whose	marginal	relative



distributions	 are	 given	 in	 Table	 5.6,	 we	 can	 easily	 compute	 the	 conditional
frequencies	 according	 to	 equation	 (5.7).	 In	 case	 one	 is	 interested	 in	 the
conditional	distribution	of	 the	GE	returns	given	a	down	movement	of	 the	S&P
500	index	(i.e.,	w	=	-),	one	would	obtain	the	conditional	frequencies	as	listed	in
Table	5.7.	We	see	 that,	 for	example,	a	GE	return	of	v	=	0	 is	much	more	 likely
under	an	up-scenario	of	 the	 index	(i.e,	 f	 (0	 |	+	 )	=	0.1379)	 than	under	a	down-
scenario	(i.e.,	f	(0	|	−	)	=	0.0263).	under	a	down-scenario,	the	most	frequent	GE
return	 value	 is	 v	 =	 0.04	 with	 conditional	 frequency	 f	 (0.04	 |	 −	 )	 =	 0.1054	 .
However,	 in	 an	unconditional	 setting	of	Table	5.6,	 the	 joint	 occurrence	 of	v	 =
0.04	and	w	=	-	happens	only	with	f	(0.04,	−	)	=	0.0417.
	



CONDITIONAL	PARAMETERS	AND	STATISTICS

	

Analogous	 to	 univariate	 distributions,	 it	 is	 possible	 to	 compute	 measures	 of
center	and	location	for	conditional	distributions.	For	example,	the	sample	mean
of	x	conditional	on	some	value	w	of	y	is	given	by
	(5.8)
	

The	corresponding	population	mean	is	given	by
(5.9)
	

	TABLE	 5.6	 Marginal	 Relative	 Frequencies	 of	 Rounded	 Monthly	 GE	 Stock
Returns	x,	f(v),	and	of	Sign	of	Monthly	S&P	500	Stock	Index	Returns,	f(w)
	



TABLE	5.7	Conditional	Frequencies—fx|w	 (v)	=	 f	 (v|	 w)	 of	 Rounded	Monthly
GE	 Stock	Returns	 (x)	 Conditional	 on	 Sign	 of	Monthly	 S&P	 500	 Stock	 Index
Returns	(y)
	



In	 equation	 (5.8),	 we	 sum	 over	 all	 empirical	 relative	 frequencies	 of	 x
conditional	on	w	whereas	in	equation	(5.9),	we	sum	over	the	relative	frequencies
for	all	possible	population	values	of	x	given	w.	Also,	the	conditional	variance	of
x	given	w	can	be	computed	in	an	analogous	fashion.	The	conditional	population
variance	is	given	by
	(5.10)
	



The	conditional	sample	variance	is	given	by
(5.11)
	

	In	 contrast	 to	 definition	 (5.11)	where	we	 just	 sum	 over	 observed	 values,	 in
definition	 (5.10),	we	 sum	 over	 all	 possible	 values	 that	 x	 can	 assume	 (i.e.,	 the
entire	set	of	feasible	value).

	
For	 the	computation	of	 the	conditional	 sample	means	of	 the	GE	 returns,	we

use	 equation	 (5.8).	 A	 few	 intermediate	 results	 are	 listed	 in	 Table	 5.8.	 The
statistics	are,	then,	 .	Comparison	of	the	two	shows	that
when	we	have	negative	index	returns,	the	conditional	sample	average	of	the	GE
returns	 reflects	 this,	 in	 that	we	have	a	negative	value.	The	opposite	holds	with
positive	 index	 returns.	 A	 comparison	 of	 the	 two	 statistics	 in	 absolute	 values
indicates	that,	on	average,	the	negative	returns	are	larger	given	a	negative	index
scenario	than	the	positive	returns	given	a	positive	index	scenario.
	 For	 the	 conditional	 sample	 variances	 of	 the	 GE	 returns	 we	 use	 definition
(5.11)	and	obtain

	These	statistics	reveal	quite	similar	spread	behavior	within	the	two	sets.49
	



INDEPENDENCE

	

The	previous	discussion	raised	the	issue	that	a	component	may	have	influence	on
the	 occurrence	 of	 values	 of	 the	 other	 component.	 This	 can	 be	 analyzed	 by
comparison	of	the	joint	frequencies	of	x	and	y	with	the	value	in	one	component
fixed,	 say	 x	 =	 v.	 If	 these	 frequencies	 vary	 for	 different	 values	 of	 y,	 then	 the
occurrence	of	values	x	 is	 not	 independent	of	 the	value	of	y.	 It	 is	 equivalent	 to
check	whether	a	certain	value	of	x	occurs	more	frequently	given	a	certain	value
of	y,	that	is,	check	the	conditional	frequency	of	x	conditional	on	y,	and	compare
this	conditional	frequency	with	the	marginal	frequency	at	this	particular	value	of
x.	The	formal	definition	of	independence	is	if	for	all	v,w
(5.12)
	

that	is,	for	any	pair	(v,w),	the	joint	frequency	is	the	mathematical	product	of	their
respective	marginals.	 By	 the	 definition	 of	 the	 conditional	 frequencies,	we	 can
state	an	equivalent	definition	as	in	the	following
(5.13)
	

which,	in	the	case	of	independence	of	x	and	y,	has	to	hold	for	all	values	v	and	w.
Conversely,	 the	 analogous	 of	 equation	 (5.13)	 has	 to	 be	 true	 for	 the	 marginal
frequency	of	y,	fy(w),	at	any	value	w.	 In	general,	 if	one	can	find	one	pair	 (v,w)
where	either	equations	(5.12)	or	(5.13)	and,	hence,	both	do	not	hold,	then	x	and	y
are	dependent.	So,	it	is	fairly	easy	to	show	that	x	and	y	are	dependent	by	simply
finding	a	pair	violating	equations	(5.12)	and	(5.13).
TABLE	5.8	Conditional	Sample	Means	of	Rounded	Monthly	GE	Stock	Returns
Conditional	on	Sign	v	of	Monthly	S&P	500	Stock	Index	Returns
	



Now	we	show	that	the	concept	of	influence	of	x	on	values	of	y	is	analogous.
Thus,	the	feature	of	statistical	dependence	of	two	variables	is	mutual.	This	will
be	shown	in	a	brief	formal	way	by	the	following.	Suppose	that	the	frequency	of
the	values	of	x	depends	on	the	values	of	y,	in	particular,50

(5.14)
	

Multiplying	each	side	of	equation	(5.14)	by	fy(w)	yields



(5.15)
	

which	 is	 just	 the	 definition	 of	 dependence.	 Dividing	 each	 side	 of	 equation
(5.15)	by	fx	(v)	>	0	gives

showing	that	the	values	of	y	depend	on	x.	Conversely,	one	can	demonstrate	 the
mutuality	of	the	dependence	of	the	components.
Let’s	 use	 the	 conditional	 frequency	 data	 from	 the	 GE	 returns.	 An	 easy

counterexample	to	show	that	the	data	are	not	independent	is,	for	example,

fx	(	−0.38)	fy	(−)	=	0.0104	×	0.3956	=	0.0042	≠	0.0104	=	fX	,Y	(−0.38,	−)
		

	Thus,	 since	 the	 joint	 frequency	 of	 a	 GE	 return	 of	 -0.38	 and	 a	 negative	 index
return	does	not	equal	the	product	of	the	marginal	frequencies,	we	can	conclude
that	the	component	variables	are	not	independent.
	



COVARIANCE

	

In	 this	 bivariate	 context,	 we	 introduce	 a	 measure	 of	 joint	 variation	 for
quantitative	data.	It	is	the	(sample)	covariance	defined	by
(5.16)
	

	 In	definition	(5.16),	for	each	observation,	the	deviation	of	the	first	component
from	its	mean	 is	multiplied	by	 the	deviation	of	 the	second	component	 from	its
mean.	The	 sample	covariance	 is	 then	 the	average	of	all	 joint	deviations.	Some
tedious	calculations	lead	to	an	equivalent	representation	of	definition	(5.16)

which	 is	 a	 transformation	 analogous	 to	 the	 one	 already	 presented	 for
variances.
using	relative	frequency	distributions,	definition	(5.16)	is	equivalent	to

(5.17)
	

	In	equation	(5.17),	 the	value	set	of	component	variable	x	has	r	values	while
that	 of	y	 has	 s	 values.	 For	 each	 pair	 (v,w),	 the	 product	 of	 the	 joint	 deviations
from	the	respective	means	 is	weighted	by	 the	 joint	 relative	frequency.	51	 From
equation	 (5.17)	 we	 can	 see	 that,	 in	 case	 of	 independence	 of	 x	 and	 y,	 the
covariance	can	be	 split	up	 into	 the	product	of	 two	 terms.	One	 term	 is	variable
only	in	x	values	while	the	other	term	is	variable	only	in	y	values.
	(5.18)
	



The	important	result	of	equation	(5.18)	 is	 that	 the	covariance	of	 independent
variables	is	equal	to	zero.	The	converse,	however,	is	not	generally	true;	that	is,
one	 cannot	 automatically	 conclude	 independence	 from	 zero	 covariance.	 This
statement	is	one	of	the	most	important	results	in	statistics	and	probability	theory.
Technically,	if	the	covariance	of	x	and	y	is	zero,	the	two	variables	are	said	to	be
uncorrelated.	 For	 any	 value	 of	 cov(x,y)	 different	 from	 zero,	 the	 variables	 are
correlated.	 Since	 two	 variables	 with	 zero	 covariance	 are	 uncorrelated	 but	 not
automatically	independent,	it	is	obvious	that	independence	is	a	stricter	criterion
than	no	correlation.	52
	 This	concept	is	exhibited	in	Figure	5.6.	In	the	plot,	 the	two	sets	representing
correlated	and	uncorrelated	variables	are	separated	by	the	dashed	line.	Inside	of
the	dashed	circle,	we	have	uncorrelated	variables	while	the	correlated	variables
are	 outside.	 Now,	 as	 we	 can	 see	 by	 the	 dotted	 line,	 the	 set	 of	 independent
variables	 is	 completely	 contained	 within	 the	 dashed	 circle	 of	 uncorrelated
variables.	The	 complementary	 set	 outside	 the	 dotted	 circle	 (i.e.,	 the	 dependent
variables)	 contains	 all	 of	 the	 correlated	 as	 well	 as	 part	 of	 the	 uncorrelated
variables.	Since	 the	dotted	 circle	 is	 completely	 inside	of	 the	dashed	 circle,	we
see	that	independence	is	a	stricter	requirement	than	uncorrelatedness.
	 The	 concept	 behind	 Figure	 5.6	 of	 zero	 covariance	 with	 dependence	 can	 be
demonstrated	by	a	simple	example.	Consider	two	hypothetical	securities,	x	and
y,	with	the	payoff	pattern	given	in	Table	5.9.	In	the	left	column	below	y,	we	have
the	payoff	values	of	security	y	while	in	the	top	row	we	have	the	payoff	values	of
security	x.	Inside	of	the	table	are	the	joint	frequencies	of	the	pairs	(x,y).	As	we
can	see,	each	particular	value	of	x	occurs	in	combination	with	only	one	particular
value	of	y.	Thus,	 the	 two	variables	(i.e.,	 the	payoffs	of	x	and	y)	are	dependent.
We	compute	the	means	of	the	two	variables	to	be	x̄	=	0	and	ȳ	=	0,	respectively.
The	resulting	sample	covariance	according	to	equation	(5.17)	is	then



which	 indicates	 zero	 correlation.	 Note	 that	 despite	 the	 fact	 that	 the	 two
variables	are	obviously	dependent,	the	joint	occurrence	of	the	individual	values
is	such	that,	according	to	the	covariance,	there	is	no	relationship	apparent.
FIGURE	 5.6	 Relationship	 between	 Correlation	 and	 Dependence	 of	 Bivariate
Variables
	

TABLE	 5.9	 Payoff	 Table	 of	 the	 Hypothetical	 Variables	 x	 and	 y	 with	 Joint
Frequencies
	

The	previous	example	is	a	very	simple	and	artificial	example	to	demonstrate
this	 effect.	As	 another	 example,	 consider	 the	monthly	 returns	 of	 the	 S&P	500
stock	 index	and	GE	 stock	 from	Table	5.2.	With	 the	 respective	means	given	as

	and	 ,	according	to	equation	(5.16),	we	obtain	sS&P500,GE
=	cov(rS&P500,rGE)	=	0.0018.
	



CORRELATION

	

If	 the	 covariance	 of	 two	 variables	 is	 nonzero	 we	 know	 that,	 formally,	 the
variables	 are	 dependent.	 However,	 the	 degree	 of	 correlation	 is	 not	 uniquely
determined.
	 This	 problem	 is	 apparent	 from	 the	 following	 illustration.	 Suppose	 we	 have
two	variables,	x	and	y,	with	cov(x,y)	of	certain	value.	A	linear	transformation	of,
at	least,	one	variable,	say	ax	+	b,	will	generally	lead	to	a	change	in	value	of	the
covariance	due	to	the	following	property	of	the	covariance

cov(ax	+	b,y)	=	acov(x,	y)
	

This	 does	 not	 mean,	 however,	 that	 the	 transformed	 variable	 is	 more	 or	 less
correlated	 with	 y	 than	 x	 was.	 Since	 the	 covariance	 is	 obviously	 sensitive	 to
transformation,	 it	 is	 not	 a	 reasonable	 measure	 to	 express	 the	 degree	 of
correlation.
	 This	shortcoming	of	the	covariance	can	be	circumvented	by	dividing	the	joint
variation	 as	 defined	 by	 equation	 (5.16)	 by	 the	 product	 of	 the	 respective
variations	 of	 the	 component	 variables.	 The	 resulting	 measure	 is	 the	 Pearson
correlation	coefficient	or	simply	the	correlation	coefficient	defined	by
(5.19)
	

where	 the	covariance	 is	divided	by	 the	product	of	 the	 standard	deviations	of	x
and	y.	By	definition,	rx,y	∈[−1,1]	for	any	bivariate	quantitative	data.	Hence,	we
can	 compare	 different	 data	with	 respect	 to	 the	 correlation	 coefficient	 equation
(5.19).	Generally,	we	make	the	following	distinction

rx,y	<	0	Negative	correlation
	rx,y	=	0	No	correlation
	rx,y	>	0	Positive	correlation
	



to	indicate	the	possible	direction	of	joint	behavior.
In	 contrast	 to	 the	 covariance,	 the	 correlation	 coefficient	 is	 invariant	 with

respect	 to	 linear	 transformation.	That	 is,	 it	 is	 said	 to	be	 scaling	 invariant.	 For
example,	if	we	translate	x	to	ax	+	b,	we	still	have

rax+b,y	=	cov(ax	+	b,	y)	/	(sax+b	⋅	sy)	=	a	cov(x,	y)	/	asx	⋅	sy	=	r	x,y
		

	 For	example,	using	 the	monthly	bivariate	 return	data	 from	the	S&P	500	and
GE,	we	compute	sS&P500	=	Var(rS&P500)	=	0.0025	and	sGE	=	Var(rGE)	=	0.0096
such	that,	according	to	(5.19),	we	obtain	as	the	correlation	coefficient	the	value
rS&P500,GE	 =	 0.0018/(0.0497	 ·	 0.0978)	 =	 0.3657.	 This	 indicates	 a	 noticeable
correlation	 despite	 a	 covariance	 close	 to	 zero.	 The	 reason	 is	 that,	 while	 the
covariance	 is	 influenced	 by	 the	 small	 size	 of	 the	 returns,	 the	 correlation
coefficient	 is	 invariant	 to	 the	 scale	 and,	 hence,	 detects	 the	 true	 linear
dependence.

	
In	 standard	 statistical	 analysis	 of	 financial	 and	 economic	 data,	 one	 often

resorts	to	functions	of	the	original	variables	such	as	squares	or	higher	powers	to
detect	 dependence	 structures	 even	 though	 the	 correlations	 are	 zero.	 In	 other
words,	if	the	data	should	yield	a	correlation	of	zero	(i.e.,	rX,Y	=	0),	we	could,	for
example,	 look	 at	 x2	 and	 y2	 instead.	 Very	 often,	 correlation	 is	 then	 detected
between	x2	and	y2,	which	is	in	favor	of	dependence	of	the	variables	x	and	y.
	 We	issue	the	warning	that	the	correlation	statistic	measured	is	a	result	of	each
individual	 sample	 and,	 hence,	 influenced	 by	 the	 data	 even	 though	 the	 data	 of
different	 samples	 stems	 from	 the	same	population.	This	 sensitivity	needs	 to	be
kept	 in	 mind	 as	 with	 all	 statistics.53	 We	 repeat	 the	 warning	 in	 Chapter	 6
regarding	the	insufficiency	of	the	correlation	coefficient	as	a	measure	of	general
dependence.
	



CONTINGENCY	COEFFICIENT

	

So	far,	we	could	only	determine	 the	correlation	of	quantitative	data.	To	extend
this	 analysis	 to	 any	 type	of	data,	we	 introduce	 another	measure.	The	 so-called
chi-square	test	statistic	denoted	by	χ2	using	relative	frequencies	is	defined	by
(5.20)
	

and	using	absolute	frequencies	by
(5.21)
	

The	 intuition	 behind	 equations	 (5.20)	 and	 (5.21)	 is	 to	 measure	 the	 average
squared	deviations	of	the	joint	frequencies	from	what	they	would	be	in	case	of
independence.	 When	 the	 components	 are,	 in	 fact,	 independent,	 then	 the	 chi-
square	 test	 statistic	 is	 zero.	However,	 in	 any	 other	 case,	we	 have	 the	 problem
that,	again,	we	cannot	make	an	unambiguous	statement	to	compare	different	data
sets.	 The	 values	 of	 the	 chi-square	 test	 statistic	 depend	 on	 the	 data	 size	n.	 For
increasing	 n,	 the	 statistic	 can	 grow	 beyond	 any	 bound	 such	 that	 there	 is	 no
theoretical	 maximum.	 The	 solution	 to	 this	 problem	 is	 given	 by	 the	 Pearson
contingency	coefficient	or	simply	contingency	coefficient	defined	by
(5.22)
	

The	 contingency	 coefficient	 by	 definition	 (5.22)	 is	 such	 that	 0	 ≤	 C	 <	 1.
Consequently,	 it	assumes	values	 that	are	strictly	 less	 than	one	but	may	become
arbitrarily	close	 to	one.	This	 is	 still	not	 satisfactory	enough	 for	our	purpose	 to
design	 a	 measure	 that	 can	 uniquely	 determine	 the	 respective	 degrees	 of
dependence	of	different	data	sets.
There	is	another	coefficient	that	can	be	used	based	on	the	following.	Suppose

we	 have	 bivariate	 data	 where	 the	 value	 set	 of	 the	 first	 component	 variable



contains	r	 different	values	and	 the	value	 set	of	 the	 second	component	variable
contains	s	different	values.	 In	 the	extreme	case	of	 total	dependence	of	x	and	y,
each	 variable	 will	 assume	 a	 certain	 value	 if	 and	 only	 if	 the	 other	 variable
assumes	a	particular	corresponding	value.	Hence,	we	have	k	=	min{r,s}	unique
pairs	that	occur	with	positive	frequency	whereas	any	other	combination	does	not
occur	at	all	(i.e.,	has	zero	frequency).	Then	one	can	show	that

such	 that,	 generally,	 0	 ≤	C	 ≤	 	 <	 1.	 Now,	 the	 standardized	 coefficient
can	be	given	by
(5.23)
	

which	is	called	the	corrected	contingency	coefficient	with	0	≤	C	≤	1.	With	the
measures	(5.20)	through	(5.23)	and	the	corrected	contingency	coefficient,	we	can
determine	the	degree	of	dependence	for	any	type	of	data.
The	 products	 of	 the	 marginal	 relative	 or	 absolute	 frequencies,	 that	 is,

fx(vi)fy(wj)	 and	 ax(vi)ay(wj),	 used	 in	 equations	 (5.20)	 and	 (5.21),	 respectively,
form	 the	 so-called	 indifference	 table	 consisting	 of	 the	 frequencies	 as	 if	 the
variables	were	independent.

	
using	GE	returns,	from	the	joint	as	well	as	the	marginal	frequencies	of	Table

5.6,	we	can	compute	the	chi-square	test	statistic	according	to	equation	(5.20)	 to
obtain	χ2	=	9.83	with	n	=	96.	The	 intermediate	 results	are	 listed	 in	Table	5.10.
According	to	equation	(5.22),	the	contingency	coefficient	is	given	by	C	=	0.30.
With	k	=	min{2,35}	=	2,	we	obtain	as	the	corrected	contingency	coefficient	Ccorr
=	 0.43.	 Though	 not	 perfect,	 there	 is	 clearly	 dependence	 between	 the	monthly
S&P	500	stock	index	and	GE	stock	returns.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Table	of	observations	
Bivariate	variables	
Joint	frequency	distribution	
Absolute	joint	frequency	
Relative	joint	frequency	distribution	
Contingency	table	
Correlation	table	
Frequency	density	
Marginal	distribution	
Marginal	frequency	
Scatter	diagram	
Scatter	plot	
Cross-sectional	analysis	
Time	series	analysis	
Conditional	frequency	distribution	
Independence	
Dependent	
Covariance	
Pearson	correlation	coefficient	(correlation	coefficient)	
Scaling	invariant	
Chi-square	test	statistic	
Pearson	contingency	coefficient	(contingency	coefficient)	
Corrected	contingency	coefficient	
Indifference	table
	TABLE	5.10	Indifference	Table	of	Rounded	Monthly	GE	Stock	Returns	x	versus
Sign	y	of	Monthly	S&P	500	Stock	Index	Returns
	





CHAPTER	6
	

Introduction	to	Regression	Analysis
	

In	 this	 chapter	 and	 the	 one	 to	 follow,	 we	 introduce	 methods	 to	 express	 joint
behavior	 of	 bivariate	 data.	 It	 is	 assumed	 that,	 at	 least	 to	 some	 extent,	 the
behavior	of	one	variable	is	the	result	of	a	functional	relationship	between	the	two
variables.	In	this	chapter,	we	introduce	the	linear	regression	model	including	its
ordinary	 least	 squares	 estimation,	 and	 the	 goodness-of-fit	 measure	 for	 a
regression.
	 Regression	 analysis	 is	 important	 in	order	 to	understand	 the	 extent	 to	which,
for	example,	a	security	price	is	driven	by	some	more	global	factor.	Throughout
this	 chapter,	 we	 will	 only	 consider	 quantitative	 data	 since	most	 of	 the	 theory
presented	does	not	apply	to	any	other	data	level.

	
Before	advancing	into	the	theory	of	regression,	we	note	the	basic	idea	behind

a	regression.	The	essential	relationship	between	the	variables	is	expressed	by	the
measure	of	scaled	linear	dependence,	that	is,	correlation.
	



THE	ROLE	OF	CORRELATION

	

In	many	applications,	how	two	entities	behave	together	is	of	interest.	Hence,	we
need	to	analyze	their	joint	distribution.	In	particular,	we	are	interested	in	the	joint
behavior	 of	 them,	 say	 x	 and	 y,	 linearly.	 The	 appropriate	 tool	 is	 given	 by	 the
covariance	 of	 x	 and	 y.	 More	 exactly,	 we	 are	 interested	 in	 their	 correlation
expressed	 by	 the	 correlation	 coefficient	 explained	 in	Chapter	 5.	Generally,	we
know	that	correlation	assumes	values	between	−1	and	1	where	the	sign	indicates
the	direction	of	the	linear	dependence.	So,	for	example,	a	correlation	coefficient
of	 −1	 implies	 that	 all	 pairs	 (x,y)	 are	 located	 perfectly	 on	 a	 line	with	 negative
slope.	This	is	important	for	modeling	the	regression	of	one	variable	on	the	other.
The	strength	of	the	intensity	of	dependence,	however,	is	unaffected	by	the	sign.
For	 a	 general	 consideration,	 only	 the	 absolute	 value	 of	 the	 correlation	 is	 of
importance.	This	is	essential	in	assessing	the	extent	of	usefulness	of	assuming	a
linear	relationship	between	the	two	variables.

	
When	dealing	with	regression	analysis,	a	problem	may	arise	from	seemingly

correlated	 data	 even	 though	 they	 are	 not.	 This	 is	 expressed	 by	 accidental
comovements	of	components	of	the	observations.	This	effect	is	referred	to	as	a
spurious	regression.
	



Stock	Return	Example

	

As	an	example,	we	consider	monthly	returns	of	the	S&P	500	stock	index	for	the
period	January	31,	1996	and	December	31,	2003.	The	data	are	provided	in	Table
6.1.	This	time	span	includes	96	observations.	To	illustrate	the	linear	dependence
between	the	index	and	individual	stocks,	we	take	the	monthly	stock	returns	of	an
individual	stock,	General	Electric	(GE),	covering	the	same	period.	The	data	are
also	 given	 in	 Table	 6.1.	 The	 correlation	 coefficient	 of	 the	 two	 series	 is	

	 using	 the	 formula	 shown	 in	 Chapter	 5.	 This	 indicates	 a	 fairly
strong	correlation	in	the	same	direction	between	the	stock	index	and	GE.	So,	we
can	expect	with	some	certainty	that	GE’s	stock	moves	in	 the	same	direction	as
the	 index.	 Typically,	 there	 is	 a	 positive	 correlation	 between	 stock	 price
movement	and	a	stock	index.

	
For	 comparison,	 we	 also	 compute	 the	 correlation	 between	 these	 two	 series

using	weekly	 as	well	 as	daily	 returns	 from	 the	 same	period.	 (The	data	 are	not
shown	here.)	In	the	first	case,	we	have	 	while	in	the	latter,	we	have	

	 This	 difference	 in	 value	 is	 due	 to	 the	 fact	 that	 while	 the	 true
correlation	is	some	value	unknown	to	us,	the	correlation	coefficient	as	a	statistic
depends	on	the	sample	data.
	



Correlation	in	Finance

	

Let’s	 focus	 on	 the	 inadequacy	of	 using	 the	 correlation	 as	 an	 expression	of	 the
dependence	 of	 variables.	 This	 issue	 is	 of	 extreme	 relevance	 in	 finance.
Historically,	returns	have	been	modeled	with	distributions	where	it	was	sufficient
to	 know	 the	 correlations	 in	 order	 to	 fully	 describe	 the	 dependence	 structure
between	 security	 returns.	 However,	 empirical	 findings	 have	 revealed	 that,	 in
reality,	 the	 correlation	 as	 a	 measure	 of	 linear	 dependence	 is	 insufficient	 to
meaningfully	 express	 the	 true	 dependence	 between	 security	 returns.	 For	 this
reason,	 the	statistical	concept	of	copula	has	been	 introduced	 in	 finance	 to	help
overcome	this	deficiency.	Often,	extreme	joint	movements	of	returns	occur	that
cannot	be	explained	by	the	correlation.	In	addition,	a	measure	of	tail	dependence
is	used	to	express	the	degree	to	which	one	has	to	expect	a	security	to	falter	once
another	security	is	already	on	its	way	to	hit	bottom.	We	will	cover	this	topic	in
Chapter	16.
	TABLE	6.1	Monthly	Returns	of	the	S&P	500	Stock	Index	and	General	Electric
During	the	Period	January	31,	1996	and	December	31,	2003
	





REGRESSION	 MODEL:	 LINEAR	 FUNCTIONAL
RELATIONSHIP	BETWEEN	TWO	VARIABLES

	

So	 far,	 we	 have	 dealt	 with	 cross-sectional	 bivariate	 data	 understood	 as	 being
coequal	variables,	x	and	y.	Now	we	will	present	the	idea	of	treating	one	variable
as	 a	 reaction	 to	 the	 other	 where	 the	 other	 variable	 is	 considered	 to	 be
exogenously	 given.	 That	 is,	 y	 as	 the	 dependent	 variable	 depends	 on	 the
realization	of	the	regressor	or	independent	variable	x.	In	this	context,	the	joint
behavior	 described	 in	 the	 previous	 section	 is	 now	 thought	 of	 as	y	 being	 some
function	of	x	and	possibly	some	additional	quantity.	In	other	words,	we	assume	a
functional	relationship	between	the	two	variables	given	by	the	equation
(6.1)
	

which	is	an	exact	deterministic	relationship.	However	we	admit	that	the	variation
of	y	will	be	 influenced	by	other	quantities.	Thus,	we	allow	for	some	additional
quantity	 representing	 a	 residual	 term	 that	 is	 uncorrelated	 with	 x	 which	 is
assumed	 to	 account	 for	 any	movement	 of	 y	 unexplained	 by	 (6.1).	 Since	 these
residuals	 are	 commonly	 assumed	 to	 be	 normally	 distributed—a	 concept	 to	 be
introduced	in	Chapter	11—assuming	that	residuals	are	uncorrelated	is	equivalent
to	assuming	that	residuals	are	independent	of	x.	Hence,	we	obtain	a	relationship
as	modeled	by	the	following	equation
(6.2)
	

where	the	residual	or	error	is	given	by	ε.
In	addition	to	being	independent	of	anything	else,	the	residual	is	modeled	as

having	zero	mean	and	some	constant	variance,	 .	A	disturbance	of	 this	sort	 is
considered	 to	 be	 some	 unforeseen	 information	 or	 shock.	 Assume	 a	 linear
functional	relationship,
(6.3)
	

where	 the	 population	 parameters	 α	 and	 β	 are	 the	 vertical	 axis	 intercept	 and



slope,	respectively.	With	this	assumption,	equation	(6.2)	is	called	a	simple	linear
regression	or	a	univariate	regression.54	The	parameter	β	determines	how	much
y	changes	with	each	unit	change	in	x.	It	is	the	average	change	in	y	dependent	on
the	 average	 change	 in	 x	 one	 can	 expect.	 This	 is	 not	 the	 case	 when	 the
relationship	between	x	and	y	is	not	linear.



DISTRIBUTIONAL	 ASSUMPTIONS	 OF	 THE	 REGRESSION
MODEL

	

The	independent	variable	can	be	a	deterministic	quantity	or	a	random	variable.
The	 first	 case	 is	 typical	 of	 an	 experimental	 setting	 where	 variables	 are
controlled.	 The	 second	 case	 is	 typical	 in	 finance	 where	 we	 regress	 quantities
over	which	we	do	not	have	any	direct	control,	for	example	the	returns	of	a	stock
and	of	an	index
	 The	 error	 terms	 (or	 residuals)	 in	 (6.2)	 are	 assumed	 to	 be	 independently	 and
identically	 distributed	 (denoted	 by	 i.i.d.).	 The	 concept	 of	 independence	 and
identical	 distribution	means	 the	 following.	 First,	 independence	 guarantees	 that
each	error	assumes	a	value	that	is	unaffected	by	any	of	the	other	errors.	So,	each
error	is	absolutely	unpredictable	from	knowledge	of	the	other	errors.	Second,	the
distributions	of	all	errors	are	the	same.	Consequently,	for	each	pair	(x,y),	an	error
or	 residual	 term	assumes	 some	value	 independently	 of	 the	other	 residuals	 in	 a
fashion	 common	 to	 all	 the	 other	 errors,	 under	 equivalent	 circumstances.	 The
i.i.d.	 assumption	 is	 important	 if	 we	 want	 to	 claim	 that	 all	 information	 is
contained	in	the	function	(6.1)	and	deviations	from	(6.1)	are	purely	random.	In
other	words,	the	residuals	are	statistical	noise	such	that	they	cannot	be	predicted
from	other	quantities.55
	 The	distribution	 identical	 to	 all	 residuals	 is	 assumed	 to	have	 zero	mean	and
constant	variance	such	that	the	mean	and	variance	of	y	conditional	on	x	are
(6.4)
	

	In	words,	once	a	value	of	x	 is	 given,	we	assume	 that,	 on	 average,	y	will	 be
exactly	 equal	 to	 the	 functional	 relationship.	 The	 only	 variation	 in	 (6.4)	 stems
from	the	residual	term.	This	is	demonstrated	in	Figure	6.1.	We	can	see	the	ideal
line	given	by	the	linear	function.	Additionally,	the	disturbance	terms	are	shown
taking	on	values	along	the	dash-dotted	lines	for	each	pair	x	and	y.	For	each	value
of	x,	ε	has	the	mean	of	its	distribution	located	on	the	line	α	+	β	·	x	above	x.	This
means	that,	on	average,	the	error	term	will	have	no	influence	on	the	value	of	y,	y



=	f̄	(x)	where	the	bar	above	a	term	denotes	the	average.	The	x	is	either	exogenous
and,	hence,	known	such	that	f̄	(x)	=	f	(x)	or	x	is	some	endogenous	variables	and,
thus,	f̄	(x)	is	the	expected	value	of	f(x).
	FIGURE	6.1	Linear	Functional	Relationship	between	x	and	y	with	Distribution
of	Disturbance	Term
	

The	 distributions	 of	 all	 ε	 are	 identical.	 Typically,	 these	 distributions	 are
assumed	to	follow	normal	distributions,	a	distribution	that	will	be	discussed	in
Chapter	 11.56	 Consequently,	 the	 error	 terms	 are	 continuous	 variables	 that	 are
normally	 distributed	 with	 zero	 mean	 and	 constant	 variance.	 Formally,	 this	 is
indicated	by

We	 will	 not,	 however,	 discuss	 this	 any	 further	 here	 but	 instead	 postpone	 our
discussion	 to	Chapter	8	where	we	cover	 random	variables	 and	 their	 respective
probability	distributions.



ESTIMATING	THE	REGRESSION	MODEL

	

Even	if	we	assume	that	the	linear	assumption	(6.2)	is	plausible,	in	most	cases	we
will	 not	 know	 the	 population	 parameters.	We	 have	 to	 estimate	 the	 population
parameters	 to	 obtain	 the	 sample	 regression	 parameters.	 An	 initial	 approach
might	be	to	look	at	the	scatter	plot	of	x	and	y	and	iteratively	draw	a	line	through
the	 points	 until	 one	 believes	 the	 best	 line	 has	 been	 found.	 This	 approach	 is
demonstrated	in	Figure	6.2.	We	have	five	pairs	of	bivariate	data.	While	at	 first
glance	 both	 lines	 appear	 reasonable,	 we	 do	 not	 know	 which	 one	 is	 optimal.
There	might	very	well	exist	many	additional	lines	that	will	look	equally	suited	if
not	better.	The	intuition	behind	retrieving	the	best	line	is	to	balance	it	such	that
the	sum	of	the	vertical	distances	of	the	y-values	from	the	line	is	minimized.
	FIGURE	6.2	Scatter	Plot	of	Data	with	Two	Different	Lines	as	Linear	Fits
	

What	we	need	is	a	formal	criterion	that	determines	optimality	of	some	linear
fit.	Formally,	we	have	to	solve
(6.5)
	

That	 is,	 we	 need	 to	 find	 the	 estimates	 a	 and	 b	 of	 the	 parameters	 α	 and	 β,
respectively,	 that	 minimize	 the	 total	 of	 the	 squared	 errors.	 Here,	 the	 error	 is



given	by	the	disturbance	between	the	line	and	the	true	observation	y.	By	taking
the	square,	we	penalize	larger	disturbances	more	strongly	than	smaller	ones.	This
approach	given	by	(6.5)	is	called	the	ordinary	least	squares	(OLS)	regression	or
methodology.57	 Here,	 the	 minimum	 is	 obtained	 analytically	 through	 first
derivatives	 with	 respect	 to	 α	 and	 β,	 respectively.	 The	 resulting	 estimates	 are,
then,	given	by
(6.6)
	

and
(6.7)
	

Least	 squares	 provide	 the	best	 linear	 estimate	 approach	 in	 the	 sense	 that	 no
other	 linear	 estimate	 has	 a	 smaller	 sum	 of	 squared	 deviations.58	 The	 line	 is
leveled	meaning	that

That	 is,	 the	disturbances	cancel	each	other	out.	The	line	 is	balanced	on	a	pivot
point	(	x̄,	ȳ	)	like	a	scale.
If	x	and	y	were	uncorrelated,	b	would	be	 zero.	Since	 there	 is	 no	 correlation

between	the	dependent	variable,	y,	and	the	independent	variable,	x,	all	variation
in	 y	 would	 be	 purely	 random,	 that	 is,	 driven	 by	 the	 residuals,	 ε.	 The
corresponding	 scatter	plot	would	 then	 look	 something	 like	Figure	6.3	with	 the
regression	 line	 extending	 horizontally.	 This	 is	 in	 agreement	 with	 a	 regression
coefficient	β	=	0.
	



Application	to	Stock	Returns

	

As	 an	 example,	 consider	 again	 the	 monthly	 returns	 from	 the	 S&P	 500	 index
(indicated	 by	X)	 and	 the	 GE	 stock	 (indicated	 by	 Y)	 from	 the	 period	 between
January	31,	1996	and	December	31,	2003.	Below	we	list	the	intermediate	results
of	regressing	the	index	returns	on	the	stock	returns.
	

FIGURE	6.3	Regression	of	uncorrelated	Variables	x	and	y
	

(Here,	we	chose	to	present	x̄2	with	the	more	precise	five	digits	since	the	rounded
number	 of	 0.0000	 would	 lead	 to	 quite	 different	 results	 in	 the	 subsequent
calculations.)	Putting	this	into	(6.6)	and	(6.7),	we	obtain



	The	estimated	regression	equation	is	then

ŷ	=	0.0093	+	1.0575x
		

	The	scatter	plot	of	the	observation	pairs	and	the	resulting	least	squares	regression
line	are	shown	in	Figure	6.4.
	FIGURE	 6.4	 Scatter	 Plot	 of	 Observations	 and	 Resulting	 Least	 Squares
Regression	Line
	

From	both	the	regression	parameter	b	as	well	as	 the	graphic,	we	see	that	 the
two	 variables	 tend	 to	move	 in	 the	 same	 direction.	 This	 supports	 the	 previous
finding	of	a	positive	correlation	coefficient.	This	can	be	 interpreted	as	follows.
For	 each	unit	 return	 in	 the	S&P	500	 index	value,	one	can	expect	 to	 encounter
about	1.06	times	a	unit	return	in	the	GE	stock	return.	The	equivalent	values	for
the	parameters	using	weekly	and	daily	 returns	are	b	=	 1.2421	and	a	=	 0.0003
and	b	=	1.2482	and	a	=	0.0004,	respectively.
	



GOODNESS	OF	FIT	OF	THE	MODEL

	

As	explained	in	the	previous	chapter,	the	correlation	coefficient	rx,y	is	a	measure
of	the	relative	amount	of	the	linear	relationship	between	x	and	y.	We	need	to	find
a	related	measure	to	evaluate	how	suitable	the	line	is	that	has	been	derived	from
least	squares	estimation.	For	this	task,	the	coefficient	of	determination,	or	R2,	is
introduced.	This	goodness-of-fit	measure	calculates	how	much	of	 the	variation
in	y	is	caused	or	explained	by	the	variation	in	x.

	
If	 the	percentage	explained	by	 the	coefficient	of	determination	 is	 small,	 the	 fit
might	not	be	a	too	overwhelming	one.	Before	introducing	this	measure	formally,
we	present	some	initial	considerations.
	 Consider	 the	 variance	 of	 the	 observations	 y	 by	 analyzing	 the	 total	 sum	 of
squares	of	y	around	its	means	as	given	by

The	 total	 sum	 of	 squares	 (denoted	 by	 SST)	 can	 be	 decomposed	 into	 the	 sum
of	 squares	 explained	 by	 the	 regression	 (denoted	 by	 SSR)	 and	 the	 sum	 of
squared	errors	(denoted	by	SSE).	That	is,59

SST	=	SSR	+	SSE
	

with

and

where	 ŷ	 is	 the	 estimated	 value	 for	y	 from	 the	 regression.	The	SSR	 is	 that	 part
of	the	total	sum	of	squares	that	is	explained	by	the	regression	term	f(x).	The	SSE
is	the	part	of	the	total	sum	of	squares	that	is	unexplained	or	equivalently	the	sum
of	squares	of	the	errors.	Now,	the	coefficient	of	determination	is	defined	by60



R2	takes	on	values	in	the	interval	[0,1].	The	meaning	of	R2	=	0	is	that	there	is
no	discernable	linear	relationship	between	x	and	y.	No	variation	in	y	is	explained
by	the	variation	in	x.	Thus,	the	linear	regression	makes	little	sense.	If	R2	=	1,	the
fit	of	the	line	is	perfect.	All	of	the	variation	in	y	is	explained	by	the	variation	in
x.	In	this	case,	the	line	can	have	either	a	positive	or	negative	slope	and,	in	either
instance,	expresses	the	linear	relationship	between	x	and	y	equally	well.61	Then,
all	points	(xi,yi)	are	located	exactly	on	the	line.

	
As	 an	 example,	we	use	 the	monthly	 return	data	 from	 the	previous	 example.

Employing	 the	 parameters	 b	 =	 1.0575	 and	 a	 =	 0.0093	 for	 the	 regression	 ŷt
estimates,	we	obtain	SST	=	0.5259,	SSR	=	0.2670,	and	SSE	=	0.2590.	The	R2	=
0.5076	 (0.2670/0.5259).	 For	 the	 weekly	 fit,	 we	 obtain,	 SST	=	 0.7620,	 SSR	 =
0.4420,	 and	 SSE	=	 0.3200	 while	 got	 daily	 fit	 we	 have	 SST=	 0.8305,	 SSR	 =
0.4873,	and	SSE	=	0.3432.	The	coefficient	of	determination	is	R2	=	0.5800	for
weekly	and	R2	=	0.5867	for	daily.
	



Relationship	between	Coefficient	of	Determination	and	Correlation
Coefficient

	

Further	analysis	of	the	R2	reveals	that	the	coefficient	of	determination	is	just	the
squared	correlation	coefficient,	rx,y,	of	x	and	y.	The	consequence	of	this	equality
is	that	the	correlation	between	x	and	y	is	reflected	by	the	goodness-of-fit	of	the
linear	 regression.	Since	any	positive	 real	number	has	a	positive	and	a	negative
root	with	the	same	absolute	value,	so	does	R2.	Hence,	the	extreme	case	of	R2	=	1
is	 the	result	of	either	rx,y	=	-1	or	rx,y	=	1.	This	 is	 re	peating	 the	fact	mentioned
earlier	that	the	linear	model	can	be	increasing	or	decreasing	in	x.	The	extent	of
the	 dependence	 of	 y	 on	 x	 is	 not	 influenced	 by	 the	 sign.	 As	 stated	 earlier,	 the
examination	of	the	absolute	value	of	rX,Y	is	important	to	assess	the	usefulness	of
a	linear	model.

	
With	 our	 previous	 example,	 we	 would	 have	 a	 perfect	 linear	 relationship

between	the	monthly	S&P	500	(i.e.,	x)	and	the	monthly	GE	stock	returns	(i.e.,	y),
if	say,	the	GE	returns	were	y	=	0.0085	+	1.1567x.	Then	R2	=	1	since	all	residuals
would	 be	 zero	 and,	 hence,	 the	 variation	 in	 them	 (i.e.,	 SSE	would	 be	 zero,	 as
well).
	



LINEAR	 REGRESSION	 OF	 SOME	 NONLINEAR
RELATIONSHIP

	

Sometimes,	 the	 original	 variables	 do	 not	 allow	 for	 the	 concept	 of	 a	 linear
relationship.	 However,	 the	 assumed	 functional	 relationship	 is	 such	 that	 a
transformation	 h(y)	 of	 the	 dependent	 variable	 y	 might	 lead	 to	 a	 linear
functionality	 between	 x	 and	 the	 transform,	 h.	 This	 is	 demonstrated	 by	 some
hypothetical	 data	 in	 Figure	 6.5	 where	 the	 y-values	 appear	 to	 be	 the	 result	 of
some	exponential	 function	of	 the	x-values.	The	original	data	pairs	 in	Table	 6.2
are	indicated	by	the	○	symbols	in	Figure	6.5.
	FIGURE	 6.5	 Least	 Squares	 Regression	 Fit	 for	 Exponential	 Functional
Relationship
	

We	assume	that	the	functional	relationship	is	of	the	form
(6.8)
	

	To	linearize	(6.8),	we	have	the	following	natural	logarithm	transformation	of
the	y-values	to	perform
(6.9)



	

	



Linear	Regression	of	Exponential	Data

	

We	estimate	using	OLS	the	ln	y	on	the	x-values	to	obtain	ln	a	=	0.044	and	b	=
0.993.	Retransformation	yields	the	following	functional	equation

ŷ	=	a	⋅	e	b⋅x	=	1.045	⋅	e	0.993⋅x
		

TABLE	 6.2	 Values	 of	 Exponential	 Relationship	 Between	 x	 and	 y	 Including
Least	Squares	Regression	Fit,	ŷ
		

	
x y ŷ̂

0.3577 1,5256 1.4900
1.0211 2,8585 2.8792
3.8935 49,1511 49.8755
4.3369 76,5314 77.4574
4.6251 102,0694 103.1211
5.7976 329,5516 330.3149
5.9306 376,3908 376.9731
7.1745 1305,7005 1296.2346
7.1917 1328,3200 1318.5152
7.5089 1824,2675 1806.7285

	

	

The	estimated	ŷ	-values	from	(6.10)	are	represented	by	the	+	symbol	in	Figure
6.5	in	most	cases	lie	exactly	on	top	of	the	original	data	points.	The	coefficient	of
determination	 of	 the	 linearized	 regression	 is	 given	 by	 approximately	 R2	 =	 1
which	 indicates	 a	 perfect	 fit.	Note	 that	 this	 is	 the	 least	 squares	 solution	 to	 the



linearized	problem	(6.9)	and	not	the	originally	assumed	functional	relationship.
The	 regression	 parameters	 for	 the	 original	 problem	 obtained	 in	 some	 other
fashion	 than	via	 linearization	may	provide	 an	 even	 tighter	 fit	with	 an	R2	 even
closer	to	one.62
	



TWO	APPLICATIONS	IN	FINANCE

	

In	this	section,	we	provide	two	applications	of	regression	analysis	to	finance.
	



Characteristic	Line

	

We	discuss	now	a	model	for	security	returns.	This	model	suggests	that	security
returns	are	decomposable	 into	 three	parts.	The	first	part	 is	 the	return	of	a	 risk-
free	asset.	The	second	is	a	security	specific	component.	And	finally,	the	third	is
the	 return	 of	 the	 market	 in	 excess	 of	 the	 risk-free	 asset	 (i.e.,	 excess	 return)
which	is	 then	weighted	by	the	individual	security’s	covariance	with	the	market
relative	to	the	market’s	variance	Formally,	this	is
(6.11)
	

where

RS	=	the	individual	security’s	return
	Rf	=	the	risk-free	return
	αS	=	the	security	specific	term
	βS,M	=	Cov(RS	,	RM	)	/	Var(RM	)	=	the	so-called	beta	factor
		

The	beta	factor	measures	the	sensitivity	of	the	security’s	return	to	the	market.
Subtracting	 the	 risk-free	 interest	 rate	Rf	 from	both	 sides	of	 equation	(6.11)	we
obtain	the	expression	for	excess	returns

RS	−	Rf	=	α	S	+	βS,M	(RM	−	Rf	)
	

or	equivalently
(6.12)
	

which	 is	 called	 the	 characteristic	 line	 where	 rS	 =	RS	 -	Rf	 and	 rM	 =	 RM	 -	 Rf
denote	the	respective	excess	returns	of	the	security	and	the	market.
This	form	provides	for	a	version	similar	to	(6.3).	The	model	given	by	(6.12)



implies	that	at	each	time	t,	the	observed	excess	return	of	some	security	rS,t	is	the
result	of	the	functional	relationship
(6.13)
	

So,	 equation	 (6.13)	 states	 that	 the	 actual	 excess	 return	 of	 some	 security	 S	 is
composed	 of	 its	 specific	 return	 and	 the	 relationship	 with	 the	 market	 excess
return,	that	is,	αS	+	βS,MrM,	t	,	and	some	error	εS,t	from	the	exact	model	at	time	t.
The	 term	 αS	 is	 commonly	 interpreted	 as	 a	 measure	 of	 performance	 of	 the
security	 above	 or	 below	 its	 performance	 that	 is	 attributed	 to	 the	 market
performance.	It	is	often	referred	to	as	the	average	abnormal	performance	of	the
stock.
While	we	have	described	the	characteristic	line	for	a	stock,	it	also	applies	to

any	portfolio	or	funds.	To	illustrate,	we	use	the	monthly	returns	between	January
1995	and	December	2004	shown	in	Table	6.3	for	two	actual	mutual	funds	which
we	refer	to	as	fund	A	and	fund	B.	Both	are	large	capitalization	stock	funds.	As	a
proxy	for	the	market,	we	use	the	S&P	500	stock	index.63	For	the	estimation	of
the	characteristic	line	in	excess	return	form	given	by	equation	(6.12),	we	use	the
excess	 return	data	 in	Table	6.3.	We	employ	 the	 estimators	 (6.6)	 and	 (6.7).	For
fund	A,	the	estimated	regression	coefficients	are	aA	=	-0.21	and	bA,S&P500	=	0.84,
and	therefore	rA	=	−0.21	+	0.84	⋅	rS&P	500	 .	For	fund	B	we	have	aB	=	0.01	and
bB,S&P500	=	0.82,	and	therefore	rB	=	0.01	+	0.82	⋅	rS&P	500	.
	TABLE	6.3	Data	to	Estimate	the	Characteristic	Line	of	Two	Large-Cap	Mutual
Funds
	







Interpreting	 the	 results	of	 the	performance	measure	 estimates	a,	we	 see	 that
for	 fund	A	 there	 is	 a	 negative	 performance	 relative	 to	 the	market	while	 for	 it
appears	that	fund	B	outperformed	the	market.	For	the	estimated	betas	(i.e.,	b)	we
obtain	for	fund	A	that	with	each	expected	unit	return	of	the	S&P	500	index,	fund
A	yields,	on	average,	a	return	of	84%	of	that	unit.	This	is	roughly	equal	for	fund
B	where	for	each	unit	return	to	be	expected	for	the	index,	fund	B	earns	a	return
of	82%	that	of	 the	 index.	So,	both	 funds	are,	as	expected,	positively	 related	 to
the	performance	of	the	market.



	
The	goodness-of-fit	measure	(R2)	is	0.92	for	the	characteristic	line	for	fund	A

and	0.86	for	fund	B.	So,	we	see	that	the	characteristic	lines	for	both	mutual	funds
provide	good	fits.
	



Application	to	Hedging64

	

As	 another	 application	 of	 regression,	 let’s	 see	 how	 it	 is	 used	 in	 hedging.
Portfolio	managers	and	risk	managers	use	hedging	 to	 lock	 in	some	price	of	an
asset	 that	 is	expected	to	be	sold	at	a	future	date.	The	concern	is	obviously	 that
between	 the	 time	a	decision	 is	made	 to	sell	an	asset	and	 the	asset	 is	sold	 there
will	be	an	adverse	movement	in	the	price	of	the	asset.	When	hedging	is	used	to
protect	against	a	decline	in	an	asset’s	price,	the	particular	hedge	used	is	called	a
short	 hedge.	 A	 short	 hedge	 involves	 selling	 the	 hedging	 instrument.	 When
hedging,	the	manager	must	address	the	following	questions:

1.	What	hedging	instrument	should	be	used?
2.	How	much	of	the	hedging	instrument	should	be	shorted?

	 The	 hedging	 instrument	 can	 be	 a	 cash	 market	 instrument	 or	 a	 derivative
instrument	such	as	a	futures	contract	or	a	swap.	Typically	a	derivative	instrument
is	 used.	 A	 primary	 factor	 in	 determining	 which	 derivative	 instrument	 will
provide	the	best	hedge	is	the	degree	of	correlation	between	the	price	movement
of	 the	asset	 to	be	hedged	and	 the	price	movement	of	 the	derivative	 instrument
that	is	a	candidate	for	hedging.	(Note	here	we	see	an	application	of	correlation	to
hedging.)
	 For	example,	consider	a	risk	manager	seeking	to	hedge	a	position	in	a	 long-
term	corporate	bond.	The	price	 risk	 is	 that	 interest	 rates	will	 rise	 in	 the	 future
when	 it	 is	 anticipated	 that	 the	 corporate	 bond	will	 be	 sold	 and	 as	 a	 result,	 the
price	of	the	corporate	bond	will	decline.	There	are	no	corporate	bond	derivative
contracts	that	can	be	used	to	hedge	against	this	interest	rate	risk.	Let’s	suppose
that	the	manager	decides	that	a	futures	contract,	a	type	of	derivative	instrument,
should	be	used.	There	are	different	 futures	contracts	 available:	Treasury	bonds
futures,	Treasury	bill	 futures,	municipal	 bond	 futures,	 and	 stock	 index	 futures.
Obviously,	 stock	 index	 futures	 would	 not	 be	 a	 good	 candidate	 given	 that	 the
correlation	of	stock	price	movements	and	interest	rates	that	affect	corporate	bond
prices	 may	 not	 be	 that	 strong.	 Municipal	 bond	 futures	 involve	 tax-exempt
interest	 rates	 and	 would	 not	 be	 a	 good	 candidate	 for	 a	 hedging	 instrument.
Treasury	bills	involve	short-term	interest	rate	and	hence	the	correlation	between
short-term	 and	 long-term	 interest	 rates	 would	 not	 be	 that	 strong.	 The	 most



suitable	futures	contract	would	be	Treasury	bond	futures	contract.	When	using	a
hedging	instrument	that	is	not	identical	to	the	instrument	to	be	hedged,	the	hedge
is	referred	to	as	a	cross	hedge.

	
Given	 the	 hedging	 instrument,	 the	 amount	 of	 that	 instrument	 to	 be	 shorted

(sold)	must	 be	determined.	This	 amount	 is	 determined	by	 the	hedge	 ratio.	For
example,	 let’s	 suppose	 that	we	are	going	 to	hedge	 a	 long-term	corporate	bond
using	a	Treasury	bond	futures.	Suppose	that	the	hedge	ratio	is	1.157.	This	means
that	 for	 every	 $1	 million	 par	 value	 of	 the	 instrument	 to	 be	 hedged,	 $1.157
million	par	value	of	the	hedging	instrument	(i.e.,	Treasury	bond	futures	contract)
should	 be	 sold	 (i.e.,	 shorted).	 In	 the	 case	 of	 a	Treasury	 bond	 futures	 contract,
there	is	really	not	one	Treasury	bond	that	can	be	delivered	to	satisfy	the	future
contract.	Instead,	 there	are	many	eligible	Treasury	bonds	that	can	be	delivered.
The	 one	 that	 is	 assumed	 to	 be	 delivered	 and	 that	 is	 what	 is	 known	 as	 the
“cheapest	 to	 deliver”	 (CTD)	 Treasury	 bond.	 A	 discussion	 of	 how	 the	 CTD	 is
determined	is	beyond	the	scope	of	this	text.	Now	here	is	where	regression	comes
into	play.
	 In	 cross	 hedging,	 the	 hedge	 ratio	 must	 be	 refined	 to	 take	 into	 account	 the
relationship	 between	 the	 yield	 levels	 and	 yield	 spreads.	 More	 specifically,
because	of	cross	hedging,	the	hedge	ratio	is	adjusted	by	multiplying	it	by	what	is
referred	 to	 as	 the	 yield	 beta	 which	 is	 found	 by	 estimating	 the	 following
regression:
(6.14)
	

where	the	estimated	β	is	the	yield	beta.
To	 illustration,	 suppose	 that	 on	 December	 24,	 2007,	 a	 portfolio	 manager

owned	 $10	 million	 par	 value	 of	 the	 Procter	 &	 Gamble	 (P&G)	 5.55%	 issue
maturing	March	5,	2037	and	trading	to	yield	5.754%.	The	manager	plans	to	sell
the	 issue	 in	 March	 2008.	 To	 hedge	 this	 position,	 suppose	 that	 the	 portfolio
manager	used	U.S.	Treasury	bond	futures	maturing	on	 the	 last	business	day	of
March	2008.	The	CTD	issue	for	this	futures	contract	is	the	Treasury	bond	6.25%
issue	 maturing	 on	 8/15/2003.	 The	 hedge	 ratio	 for	 this	 hedge	 without	 the
adjustment	for	yield	beta	is	1.157.	Table	6.4	shows	the	yield	and	yield	change	for
the	 P&G	 bond	 and	 the	 CTD	Treasury	 issue.	 The	 yield	 beta	 using	 the	 data	 in
Table	6.4	to	estimate	the	regression	given	by	(6.8)	and	the	adjusted	hedge	ratio



are	given	below:
	

	
Number	of	Trading	Days Yield	Beta Adjusted	Hedge	Ratio

Prior	30	trading	days	ending	12/21/2007 0.906 1.048
Prior	90	trading	days	ending	12/21/2007 0.894 1.034

	

	

	
As	 can	 be	 seen,	 the	 adjusted	 hedge	 ratio	 is	 considerably	 different	 from	 the

hedge	ratio	without	adjusting	for	the	cross	hedge	using	the	regression	to	compute
the	yield	beta.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Spurious	regression	
Copula	
Tail	dependence	
Dependent	variable	
Regressor	
Independent	variable	
Residual	term	
Simple	linear	regression	
univariate	regression	
Statistical	noise	
Normal	distribution	
Ordinary	least	squares	regression	
Coefficient	of	determination	
Goodness	of	fit	
Total	sum	of	squares	
Sum	of	squares	regression	
Sum	of	squares	
Excess	return	
Characteristic	line	
Hedging	
Short	hedge	
Cross	hedge	
Yield	beta
	TABLE	6.4	Yield	and	Yield	Change	for	each	Trading	Day	for	the	P&G	5.55%
3/5/2037	and	Treasury	6.25%	8/15/2023	(CTD	issue):	2/28/2007-12/21/2007
	









CHAPTER	7
	

Introduction	to	Time	Series	Analysis
	

In	 this	 chapter,	 we	 introduce	 the	 element	 of	 time	 as	 an	 index	 of	 a	 series	 of
univariate	 observations.	 Thus,	 we	 treat	 observations	 as	 being	 obtained
successively	rather	than	simultaneously.	We	present	a	simple	time	series	model
and	 its	 components.	 In	 particular,	 we	 focus	 on	 the	 trend,	 the	 cyclical,	 and
seasonal	terms	as	well	as	the	error	or	disturbance	of	the	model.	Furthermore,	we
introduce	 the	 random	 walk	 and	 error	 correction	 models	 as	 candidates	 for
modeling	security	price	movements.	Here	the	notion	of	innovation	appears.	Time
series	 are	 significant	 in	 modeling	 price	 processes	 as	 well	 as	 the	 dynamics	 of
economic	quantities.
	



WHAT	IS	TIME	SERIES?

	

So	 far,	 we	 have	 either	 considered	 two-component	 variables	 cross-sectionally
coequal,	which	was	the	case	in	correlation	analysis,	or	we	have	considered	one
variable	to	be,	at	least	partially,	the	functional	result	of	some	other	quantity.	The
intent	of	this	section	is	to	analyze	variables	that	change	in	time,	in	other	words,
the	 objects	 of	 the	 analysis	 are	 time	 series.	 The	 observations	 are	 conceived	 as
compositions	 of	 functions	 of	 time	 and	 other	 exogenous	 and	 endogenous
variables	as	well	as	 lagged	values	of	 the	series	 itself	or	other	quantities.	These
latter	quantities	may	be	given	exogenously	or	also	depend	on	time.

	
To	visualize	this,	we	plot	the	graph	of	20	daily	closing	values	of	the	German

stock	market	index,	the	DAX,	in	Figure	7.1.	The	values	are	 listed	in	Table	7.1.
The	time	points	of	observation	t	with	equidistant	increments	are	represented	by
the	horizontal	axis	while	 the	DAX	index	values	are	represented	by	 the	vertical
axis.
	TABLE	7.1	DAX	Values	of	the	Period	May	3	to	May	31,	2007
	Source:	Deutsche	Börse,	http://deutsche-boerse.com/.
	

	
Date t Level
5/3/2007 1 7883.04
5/4/2007 2 7764.97
5/7/2007 3 7781.04
5/8/2007 4 7739.20
5/9/2007 5 7697.38
5/10/2007 6 7735.88
5/11/2007 7 7659.39
5/14/2007 8 7619.31
5/15/2007 9 7607.54

http://deutsche-boerse.com/


5/16/2007 10 7499.50
5/17/2007 11 7481.25
5/18/2007 12 7505.35
5/21/2007 13 7459.61
5/22/2007 14 7479.34
5/23/2007 15 7415.33
5/24/2007 16 7475.99
5/25/2007 17 7442.20
5/29/2007 18 7525.69
5/30/2007 19 7516.76
5/31/2007 20 7476.69

	

	



DECOMPOSITION	OF	TIME	SERIES

	

Each	 point	 in	 Figure	 7.1	 is	 a	 pair	 of	 the	 components,	 time	 and	 value.	 In	 this
section,	 the	 focus	 is	on	 the	dynamics	of	 the	observations;	 that	 is,	one	wants	 to
know	what	the	values	are	decomposable	into	at	each	point	in	time.	A	time	series
with	observations	xt,	t	=	1,	2,	…,	n	is	usually	denoted	by	{x}t.65	In	the	context	of
time	series	analysis,	for	any	value	xt,	the	series	is	thought	of	as	a	composition	of
several	quantities.	The	most	traditional	decomposition	is	of	the	form
(7.1)
	

where

Tt	=	trend
	Zt	=	cyclical	term
	St	=	seasonal	term
	Ut	=	disturbance	(or	error)
		

FIGURE	7.1	DAX	Index	Values:	May	3	to	May	31,	2007
	



While	the	trend	and	seasonal	terms	are	assumed	to	be	deterministic	functions
of	 time	 (i.e.,	 their	 respective	 values	 at	 some	 future	 time	 t	 are	 known	 at	 any
lagged	time	t	-	d,	which	is	d	units	of	time	prior	to	t),	the	cyclical	and	disturbance
terms	are	random.	One	also	says	that	the	last	two	terms	are	stochastic.66	Instead
of	 the	cyclical	 term	Zt	 and	 the	disturbance	Ut,	 one	 sometimes	 incorporates	 the
so-called	 irregular	 term	 of	 the	 form	 It	 =	 φ⋅It−1	 +Ut	 with	 0	 <	 φ	 ≤	 1.	 That	 is,
instead	of	equation	(7.1),	we	have	now
(7.2)
	

With	 the	 coefficient	 φ,	 we	 control	 how	much	 of	 the	 previous	 time’s	 irregular
value	 is	 lingering	 in	 the	 present.	 If	 φ	 is	 close	 to	 zero,	 the	 prior	 value	 is	 less
significant	than	if	φ	were	close	to	one	or	even	equal	to	one.
FIGURE	7.2	Decomposition	of	Time	Series	into	Trend	T,	Seasonal	Component
S,	and	Irregular	Component	I
	



Note	that	Ut	and	It-1	are	independent.	Since	It	depends	on	the	prior	value	It-1
scaled	 by	 φ	 and	 disturbed	 only	 by	 Ut,	 this	 evolution	 of	 It	 is	 referred	 to	 as
autoregressive	of	order	one.67	As	a	consequence,	there	is	some	relation	between
the	 present	 and	 the	 previous	 level	 of	 I.	 Thus,	 these	 two	 are	 correlated	 to	 an
extent	 depending	 on	 φ.	 This	 type	 of	 correlation	 between	 levels	 at	 time	 t	 and
different	times	from	the	same	variable	is	referred	to	as	autocorrelation.68
	 In	Figure	7.2,	we	present	the	decomposition	of	some	hypothetical	time	series.
The	 straight	 solid	 line	 T	 is	 the	 linear	 trend.	 The	 irregular	 component	 I	 is
represented	by	the	dashed	line,	and	the	seasonal	component	S	is	the	dash-dotted
line	at	the	bottom	of	the	figure.	The	resulting	thick	dash-dotted	line	is	the	time
series	{x}t	obtained	by	adding	all	components.
	



Application	to	S&P	500	Index	Returns

	

As	 an	 example,	we	 use	 the	 daily	 S&P	500	 stock	 index	 returns	 from	 the	 same
period	January	2,	1996	to	December	31,	2003.	To	obtain	an	initial	impression	of
the	data,	we	plot	them	in	the	scatter	plot	in	Figure	7.3.	At	first	glance,	it	is	kind
of	difficult	to	detect	any	structure	within	the	data.	However,	we	will	decompose
the	returns	according	to	equation	(7.2).	A	possible	question	might	be,	is	there	a
difference	 in	 the	 price	 changes	 depending	 on	 the	 day	 of	 the	 week?	 For	 the
seasonality,	we	consider	a	period	of	length	five	since	there	are	five	trading	days
within	a	week.	The	 seasonal	 components,	St(weekday),	 for	 each	weekday	 (i.e.,
Monday	through	Friday)	are	given	below:
	

	
Monday -0.4555
Tuesday 0.3814
Wednesday 0.3356
Thursday -0.4723
Friday 0.1759

	

	

FIGURE	7.3	Daily	Returns	of	S&P	500	Stock	Index	Between	January	2,	1996
and	December	31,	2003
	



The	coefficient	of	the	irregular	term	is	φ	=	0.2850	indicating	that	the	previous
period’s	value	is	weighted	by	about	one	third	in	the	computation	of	this	period’s
value.	The	overall	model	of	the	returns,	then,	looks	like

yt	=	Tt	+	St	+	It	=	Tt	+	St	(	weekday	)	−	0.2850It	−1	+	Ut
	

The	 technique	 used	 to	 estimate	 the	 times	 series	model	 is	 the	moving	 average
method.	Since	it	is	beyond	the	scope	of	this	chapter,	we	will	not	discuss	it	here.
	 As	can	be	seen	by	Figure	7.4,	it	might	appear	difficult	to	detect	a	linear	trend,
at	least,	when	one	does	not	exclude	the	first	15	observations.	If	there	really	is	no
trend,	most	 of	 the	 price	 is	 contained	 in	 the	 other	 components	 rather	 than	 any
deterministic	term.	Efficient	market	theory	that	is	central	in	financial	theory	does
not	permit	any	price	 trend	since	this	would	indicate	 that	 today’s	price	does	not
contain	 all	 information	 available.	 By	 knowing	 that	 the	 price	 grows
deterministically,	this	would	have	to	be	already	embodied	into	today’s	price.
	FIGURE	7.4	Daily	S&P	500	Stock	Index	Prices	with	Daily	Changes	Extending
Vertically
	





REPRESENTATION	 OF	 TIME	 SERIES	WITH	 DIFFERENCE
EQUATIONS

	

Rather	 than	 representing	 {x}t	 by	 (7.1)	 or	 (7.2),	 often	 the	 dynamics	 of	 the
components	 of	 the	 series	 are	 given.	 So	 far,	 the	 components	 are	 considered	 as
quantities	 at	 certain	 points	 in	 time.	 However,	 it	 may	 sometimes	 be	 more
convenient	 to	 represent	 the	 evolution	 of	 {x}t	 by	 difference	 equations	 of	 its
components.	The	four	components	in	difference	equation	form	could	be	thought
of	as
(7.3)
	

with	the	change	in	the	linear	trend	ΔTt	=	c	where	c	is	a	constant,	and

ΔIt	=	φ	(	It	−1	−	It	−2	)	+	ξt
	

where	ξ	are	disturbances	themselves,	and

ΔTt	+	ΔSt	=	h(t)
	

where	 h(t)	 is	 some	 deterministic	 function	 of	 time.	 The	 symbol	 Δ	 indicates
change	in	value	from	one	period	to	the	next.
The	concept	that	the	disturbance	terms	are	i.i.d.	means	that	the	ξ	behave	in	a

manner	 common	 to	 all	 ξ	 (i.e.,	 identically	distributed)	 though	 independently	 of
each	other.	The	concept	of	statistical	independence	was	introduced	in	Chapter	5
while	for	random	variables,	this	will	be	done	in	Chapter	14.
	 In	general,	difference	equations	are	some	functions	of	lagged	values,	time,	and
other	stochastic	variables.	In	time	series	analysis,	one	most	often	encounters	the
task	of	estimating	difference	equations	such	as	the	type	above,	for	example.	The
original	 intent	 of	 time	 series	 analysis	 was	 to	 provide	 some	 reliable	 tools	 for
forecasting.69
	 By	forecasting,	we	assume	 that	 the	change	 in	value	of	some	quantity,	 say	x,
from	 time	 t	 to	 time	 t	 +	 1	 occurs	 according	 to	 the	 difference	 equation	 (7.3).



However,	since	we	do	not	know	the	value	of	the	disturbance	in	t	+	1,	ξt+1,	at	time
t,	we	incorporate	its	expected	value,	that	is,	zero.	All	other	quantities	in	equation
(7.3)	 are	 deterministic	 and,	 thus,	 known	 in	 t.	 Hence,	 the	 forecast	 really	 is	 the
expected	value	in	t	+	1	given	the	information	in	t.
	



APPLICATION:	THE	PRICE	PROCESS

	

Time	series	analysis	has	grown	more	and	more	important	for	verifying	financial
models.	Price	 processes	 assume	 a	 significant	 role	 among	 these	models.	Below
we	 discuss	 two	 commonly	 encountered	models	 for	 price	 processes	 given	 in	 a
general	setting:	random	walk	and	error	correction.70	The	theory	behind	them	is
not	 trivial.	 In	 particular,	 the	 error	 correction	 model	 applies	 expected	 values
computed	 conditional	 on	 events	 (or	 information),	 which	 is	 a	 concept	 to	 be
introduced	in	Chapter	15.	One	should	not	be	discouraged	if	these	models	appear
somewhat	complicated	at	this	early	stage	of	one’s	understanding	of	statistics.
	



Random	Walk

	

Let	us	consider	some	price	process	given	by	the	series	{S}t.71	The	dynamics	of
the	process	are	given	by
(7.4)
	

or,	equivalently,	ΔSt	=	εt	.
In	 words,	 tomorrow’s	 price,	 St+1,	 is	 thought	 of	 as	 today’s	 price	 plus	 some

random	shock	that	is	independent	of	the	price.	As	a	consequence,	in	this	model,
known	as	the	random	walk,	the	increments	St	-	St-1	from	t−1	to	t	are	thought	of
as	completely	undeterministic.	Since	the	εt	have	a	mean	of	zero,	the	increments
are	considered	fair.72	An	increase	in	price	is	as	likely	as	a	downside	movement.
At	time	t,	the	price	is	considered	to	contain	all	information	available.	So	at	any
point	in	time,	next	period’s	price	is	exposed	to	a	random	shock.

	
Consequently,	the	best	estimate	for	the	following	period’s	price	is	this	period’s

price.	 Such	 price	 processes	 are	 called	 efficient	 due	 to	 their	 immediate
information	processing.
	 A	more	general	model,	for	example,	AR(p),	of	the	form

St	=	α0	+	α1St	−1	+	…	+	αp	St	−p	+	εt
	

with	 several	 lagged	 prices	 could	 be	 considered	 as	 well.	 This	 price	 process
would	 permit	 some	 slower	 incorporation	 of	 lagged	 prices	 into	 current	 prices.
Now	 for	 the	price	 to	be	 a	 random	walk	process,	 the	 estimation	would	have	 to
produce	a0	=	0,	a1	=	1,	a2	=	…	=	ap	=	0.
	

Application	to	S&P	500	Index	Returns



	
As	 an	 example	 to	 illustrate	 equation	 (7.4),	 consider	 the	 daily	 S&P	 500	 stock
index	prices	between	November	3,	2003	and	December	31,	2003.	The	values	are
given	in	Table	7.2	along	with	the	daily	price	changes.	The	resulting	plot	is	given
in	Figure	7.4.	The	 intuition	given	by	 the	plot	 is	 roughly	 that,	on	each	day,	 the
information	 influencing	 the	 following	 day’s	 price	 is	 unpredictable	 and,	 hence,
the	price	change	seems	completely	arbitrary.	Hence,	at	first	glance	much	in	this
figure	seems	to	support	the	concept	of	a	random	walk.	Concerning	the	evolution
of	the	underling	price	process,	it	looks	reasonable	to	assume	that	the	next	day’s
price	is	determined	by	the	previous	day’s	price	plus	some	random	change.	From
Figure	7.4,	it	looks	as	if	the	changes	occur	independently	of	each	other	and	in	a
manner	common	to	all	changes	(i.e.,	with	identical	distribution).
	



Error	Correction

	

We	next	present	a	price	model	that	builds	on	the	relationship	between	spot	and
forward	 markets.	 Suppose	 we	 extend	 the	 random	 walk	 model	 slightly	 by
introducing	some	forward	price	for	the	same	underlying	stock	S.	That	is,	at	time
t,	we	agree	by	contract	to	purchase	the	stock	at	t	+	1	for	some	price	determined
at	t.	We	denote	this	price	by	F(t).	At	time	t	+	1,	we	purchase	the	stock	for	F(t).
The	stock,	however,	is	worth	St+1	at	that	time	and	need	not—and	most	likely	will
not—be	 equal	 to	 F(t).	 It	 is	 different	 from	 the	 agreed	 forward	 price	 by	 some
random	quantity	εt+1.	If	this	disturbance	has	zero	mean,	as	defined	in	the	random
walk	 model,	 then	 the	 price	 is	 fair.	 Based	 on	 this	 assumption,	 the	 reasonable
forward	price	would	equal73

F(t)	=	E[St	+1	|	t	]	=	E[St	+	εt	|	t	]	=	St
		

	So,	 on	 average,	 the	 difference	 between	 S	 and	 F	 should	 fulfill	 the	 following
condition:

Δ	≡	St+1	−	F	(t	)	≈	0
		

	 If,	 however,	 the	 price	 process	 permits	 some	 constant	 terms	 such	 as	 some
upward	trend,	for	example,	the	following	period’s	price	will	no	longer	be	equal
to	this	period’s	price	plus	some	random	shock.	The	trend	will	spoil	the	fair	price,
and	the	forward	price	designed	as	 the	expected	value	of	 the	following	period’s
stock	 price	 conditional	 on	 this	 period’s	 information	 will	 contain	 a	 systematic
error.	The	model	to	be	tested	is,	then,

St	+1	=	α0	+	α1F(t)	+	εt
	

with	 a	 potential	 nonzero	 linear	 trend	 captured	 by	 α0.	A	 fair	 price	would	 be	 if
the	estimates	are	a0	=	0	and	a1	=	1.	Then,	the	markets	would	be	in	approximate
equilibrium.	If	not,	the	forward	prices	have	to	be	adjusted	accordingly	to	prohibit



predictable	gains	from	the	differences	in	prices.
	TABLE	 7.2	 Daily	 S&P	 500	 Stock	 Index	 Values	 and	 Daily	 Changes	 between
11/3/2003	and	12/31/003
	

	
Date Pt Δt

12/31/2003 1111.92 2.28
12/30/2003 1109.64 0.16
12/29/2003 1109.48 13.59
12/26/2003 1095.89 1.85
12/24/2003 1094.04 -1.98
12/23/2003 1096.02 3.08
12/22/2003 1092.94 4.28
12/19/2003 1088.66 -0.52
12/18/2003 1089.18 12.70
12/17/2003 1076.48 1.35
12/16/2003 1075.13 7.09
12/15/2003 1068.04 -6.10
12/12/2003 1074.14 2.93
12/11/2003 1071.21 12.16
12/10/2003 1059.05 -1.13
12/09/2003 1060.18 -9.12
12/08/2003 1069.30 7.80
12/05/2003 1061.50 -8.22
12/04/2003 1069.72 4.99
12/03/2003 1064.73 -1.89
12/02/2003 1066.62 -3.50
12/01/003 1070.12 11.92
11/28/2003 1058.20 -0.25
11/26/2003 1058.45 4.56
11/25/2003 1053.89 1.81
11/24/2003 1052.08 16.80



11/21/2003 1035.28 1.63
11/20/2003 1033.65 -8.79
11/19/2003 1042.44 8.29
11/18/2003 1034.15 -9.48
11/17/2003 1043.63 -6.72
11/14/2003 1050.35 -8.06
11/13/2003 1058.41 -0.12
11/12/2003 1058.53 11.96
11/11/2003 1046.57 -0.54
11/10/2003 1047.11 -6.10
11/07/2003 1053.21 -4.84
11/06/2003 1058.05 6.24
11/05/2003 1051.81 -1.44
11/04/2003 1053.25 -5.77
11/03/2003 1059.02

	

	

The	methodology	to	do	so	is	the	so-called	error	correction	model	in	the	sense
that	today’s	(i.e.,	this	period’s)	deviations	from	the	equilibrium	price	have	to	be
incorporated	into	tomorrow’s	(i.e.,	the	following	period’s)	price	to	return	to	some
long-term	equilibrium.	The	model	is	given	by	the	equations	system

St	+2	=	St	+1	−	α	(	St	+1	−	F(t))	+	εt	+2	,	α	>	0
	F(t	+	1)	=	F(t)	+	β	(	St	+1	−	F(t))	+	ξt	+1	,	β	>	0
	

with

E[εt	+2	|	t	+	1]	=	0
	E[ξt	+1	|	t	]	=	0
		

	 At	 time	 t	 +	 2,	 the	 term	 α	 (	 St	 +1	 −	 F(t))	 in	 the	 price	 of	 St+2	 corrects	 for
deviations	from	the	equilibrium	(	St+1	−	F(t))	stemming	from	time	 t	+	1.	Also,



we	 adjust	 our	 forward	 price	F(t	 +	 1)	 by	 the	 same	deviation	 scaled	 by	 β.	Note
that,	now,	the	forward	price,	too,	is	affected	by	some	innovation,	ξt+1	,	unknown
at	 time	 t.	 In	 contrast	 to	 some	 disturbance	 or	 error	 term	 ε,	 which	 simply
represents	some	deviation	from	an	exact	functional	relationship,	 the	concept	of
innovation	such	as	in	connection	with	the	ξt	+1	is	that	of	an	independent	quantity
with	a	meaning	such	as,	for	example,	new	information	or	shock.

	
In	 general,	 the	 random	 walk	 and	 error	 correction	 models	 can	 be	 estimated

using	 least	 squares	 regression	 introduced	 in	 Chapter	 6.	 However,	 this	 is	 only
legitimate	 if	 the	 regressors	 (i.e.,	 independent	 variables)	 and	 disturbances	 are
uncorrelated.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Time	series	
Stochastic	
Irregular	term	
Autoregressive	of	order	one	
Autocorrelation	
Difference	equations	
Random	shock	
Random	walk	
Efficient	
Error	correction	model	
Innovation
	



PART	Two
	

Basic	Probability	Theory
	



CHAPTER	8
	

Concepts	of	Probability	Theory
	

In	 this	 chapter,	 we	 introduce	 the	 general	 concepts	 of	 probability	 theory.
Probability	 theory	 serves	 as	 the	 quantification	 of	 risk	 in	 finance.	 To	 estimate
probabilistic	 models,	 we	 have	 to	 gather	 and	 process	 empirical	 data.	 In	 this
context,	we	need	the	tools	provided	by	statistics.	We	will	see	that	many	concepts
from	Part	One	can	be	extended	to	the	realm	of	probability	theory.
	 We	 begin	 by	 introducing	 a	 few	 preliminaries	 such	 as	 formal	 set	 operations,
right-continuity,	 and	 nondecreasing	 functions.	 We	 then	 explain	 probability,
randomness,	and	 random	variables,	providing	both	 their	 formal	definitions	and
the	notation	used	in	this	field.
	



HISTORICAL	 DEVELOPMENT	 OF	 ALTERNATIVE
APPROACHES	TO	PROBABILITY

	

Before	 we	 introduce	 the	 formal	 definitions,	 we	 provide	 a	 brief	 outline	 of	 the
historical	development	of	probability	theory	and	the	alternative	approaches	since
probability	is,	by	no	means,	unique	in	its	interpretation.	We	will	describe	the	two
most	common	approaches:	relative	frequencies	and	axiomatic	system.
	



Probability	as	Relative	Frequencies

	

The	relative	frequencies	approach	to	probability	was	conceived	by	Richard	von
Mises	 in	 1928	 and	 as	 the	 name	 suggests	 formulates	 probability	 as	 the	 relative
frequencies	f(xi)	introduced	in	Chapter	2.	This	initial	idea	was	extended	by	Hans
Reichenbach.	Given	large	samples,	it	was	understood	that	f(xi)	was	equal	to	the
true	 probability	 of	 value	 xi.	 For	 example,	 if	 f(xi)	 is	 small,	 then	 the	 true
probability	of	value	xi	occurring	should	be	small,	in	general.	However,	f(xi)	itself
is	 subject	 to	uncertainty.	Thus,	 the	 relative	 frequencies	might	deviate	 from	 the
corresponding	 probabilities.	 For	 example,	 if	 the	 sample	 is	 not	 large	 enough,
whatever	large	may	be,	then,	it	is	likely	that	we	obtain	a	rare	set	of	observations
and	draw	the	wrong	conclusion	with	respect	to	the	underlying	probabilities.

	
This	point	can	be	illustrated	with	a	simple	example.	Consider	throwing	a	six-

sided	dice	12	times.74	Intuitively,	one	would	expect	the	numbers	1	through	6	to
occur	twice,	each	since	this	would	correspond	to	the	theoretical	probabilities	of
1/6	 for	each	number.	But	 since	so	many	different	outcomes	of	 this	experiment
are	very	likely	possible,	one	might	observe	relative	frequencies	of	these	numbers
different	 from	 1/6.	 So,	 based	 on	 the	 relative	 frequencies,	 one	might	 draw	 the
wrong	 conclusion	 with	 respect	 to	 the	 true	 underlying	 probabilities	 of	 the
according	values.	However,	if	we	increase	the	repetitions	from	12	to	1,000,	for
example,	with	a	high	degree	of	certainty,	the	relative	frequency	of	each	number
will	be	pretty	close	to	1/6.
	 The	 reasoning	 of	 von	 Mises	 and	 Reichenbach	 was	 that	 since	 extreme
observations	are	unlikely	given	a	reasonable	sample	size,	the	relative	frequencies
will	portray	the	true	probabilities	with	a	high	degree	of	accuracy.	In	other	words,
probability	 statements	 based	 on	 relative	 frequencies	 were	 justifiable	 since,	 in
practice,	highly	unlikely	events	could	be	ruled	out.

	
In	 the	 context	 of	 our	 dice	 example,	 they	 would	 consider	 as	 unlikely	 that

certain	 numbers	 appeared	 significantly	more	 often	 than	 others	 if	 the	 series	 of
repetitions	 is,	 say,	 1,000.	 But	 still,	 who	 could	 guarantee	 that	 we	 do	 not



accidentally	end	up	throwing	300	1s,	300	2s,	400	3s,	and	nothing	else?
	 We	 see	 that	 von	Mises’	 approach	becomes	 relevant,	 again,	 in	 the	 context	of
estimating	and	hypothesis	testing.	For	now,	however,	we	will	not	pay	any	further
attention	to	it	but	turn	to	the	alternative	approach	to	probability	theory.
	



Axiomatic	System

	

Introduced	by	Andrei	N.	Kolmogorov	in	1933,	the	axiomatic	system	abstracted
probability	from	relative	frequencies	as	obtained	from	observations	and	instead
treated	 probability	 as	 purely	 mathematical.	 The	 variables	 were	 no	 longer
understood	as	the	quantities	that	could	be	observed	but	rather	as	some	theoretical
entities	“behind	the	scenes.”	Strict	rules	were	set	up	that	controlled	the	behavior
of	 the	 variables	 with	 respect	 to	 their	 likelihood	 of	 assuming	 values	 from	 a
predetermined	 set.	 So,	 for	 example,	 consider	 the	price	 of	 a	 stock,	 say	General
Electric	(GE).	GE’s	stock	price	as	a	variable	is	not	what	you	can	observe	but	a
theoretical	 quantity	 obeying	 a	 particular	 system	 of	 probabilities.	 What	 you
observe	is	merely	realizations	of	the	stock	price	with	no	implication	on	the	true
probability	 of	 the	 values	 since	 the	 latter	 is	 given	 and	 does	 not	 change	 from
sample	 to	 sample.	 The	 relative	 frequencies,	 however,	 are	 subject	 to	 change
depending	on	the	sample.

	
We	 illustrate	 the	 need	 for	 an	 axiomatic	 system	 due	 to	 the	 dependence	 of

relative	frequencies	on	samples	using	our	dice	example.	Consider	the	chance	of
occurrence	 of	 the	 number	 1.	 Based	 on	 intuition,	 since	 there	 are	 six	 different
“numbers	of	dots”	on	a	dice,	 the	number	1	should	have	a	chance	of	1/6,	right?
Suppose	we	obtain	the	information	based	on	two	samples	of	12	repetitions	each,
that	is,	n1	=	n2	=	12.	In	the	following	table,	we	report	the	absolute	frequencies,
ai,	 representing	 how	many	 times	 the	 individual	 numbers	 of	 dots	 1	 through	 6
were	observed.
	

	
Absolute	Frequencies	ai

Number	of	Dots Sample	1 Sample	2
14 1

2 1 1



3 3 1
4 0 1
5 1 1
6 3 7

Total 12 12
	

	

That	is,	in	sample	1,	1	dot	was	observed	4	times	while,	in	sample	2,	1	dot	was
observed	only	once,	and	so	on.
	 From	the	above	observations,	we	obtain	the	following	relative	frequencies
	

	
Relative	Frequencies	f(xi)

Number	of	Dots Sample	1 Sample	2
1 0.3333 0.0833
2 0.0833 0.0833
3 0.2500 0.0833
4 0.0000 0.0833
5 0.0833 0.0833
6 0.2500 0.5833

Total 1.0000 1.0000
	

	

That	is,	in	sample	1,	1	dot	was	observed	33.33%	of	the	time	while	in	sample	2,	1
dot	was	observed	8.33%	of	the	time,	and	so	on.	We	see	that	both	samples	lead	to
completely	different	results	about	the	relative	frequencies	for	the	number	of	dots.
But,	as	we	will	see,	the	theoretical	probability	is	1/6	=	0.1667,	for	each	value	1
through	6.	So,	returning	to	our	original	question	of	the	chance	of	occurrence	of	1
dot,	the	answer	is	still	1/6	=	0.1667.

	



In	finance,	the	problem	arising	with	this	concept	of	probability	is	that,	despite
the	 knowledge	 of	 the	 axiomatic	 system,	 we	 do	 not	 know	 for	 sure	 what	 the
theoretical	probability	is	for	each	value.	We	can	only	obtain	a	certain	degree	of
certainty	as	to	what	it	approximately	might	be.	This	insight	must	be	gained	from
estimation	based	on	samples	and,	thus,	from	the	related	relative	frequencies.	So,
it	might	 appear	 reasonable	 to	 use	 as	many	 observations	 as	 possible.	However,
even	 if	we	 try	 to	 counteract	 the	 sample-dependence	 of	 relative	 frequencies	 by
using	a	large	number	of	observations,	there	might	be	a	change	in	the	underlying
probabilities	exerting	additional	influence	on	the	sample	outcome.	For	example,
during	 the	period	of	a	bull	market,	 the	probabilities	associated	with	an	upward
movement	 of	 some	 stock	 price	 might	 be	 higher	 than	 under	 a	 bear	 market
scenario.
	 Despite	this	shortcoming,	the	concept	of	probability	as	an	abstract	quantity	as
formulated	by	Kolmogorov	has	become	the	standard	 in	probability	 theory	and,
hence,	we	will	resort	to	it	in	Part	Two	of	the	book.
	



SET	OPERATIONS	AND	PRELIMINARIES

	

Before	 proceeding	 to	 the	 formal	 definition	 of	 probability,	 randomness,	 and
random	variables	we	need	to	introduce	some	terminology.
	



Set	Operations

	

A	 set	 is	 a	 combination	 of	 elements.	 usually,	 we	 denote	 a	 set	 by	 some	 capital
(upper-case)	 letter,	e.g.	S,	while	 the	elements	are	denoted	by	 lower-case	 letters
such	as	a,	b,	c,	…	or	a1,	a2,	….	To	 indicate	 that	a	set	S	consists	of	exactly	 the
elements	a,	b,	c,	we	write	S	=	{a,b,c}.	If	we	want	to	say	that	element	a	belongs
to	S,	the	notation	used	is	that	a	∈	S	where	∈	means	“belongs	to.”	If,	instead,	a
does	not	belong	to	S,	 then	the	notation	used	is	a	∉	S	where	∉	means	does	not
belong	to.
	 A	type	of	set	such	as	S	=	{a,b,c}	is	said	to	be	countable	since	we	can	actually
count	 the	 individual	 elements	a,	 b,	 and	 c.	 A	 set	might	 also	 consist	 of	 all	 real
numbers	inside	of	and	including	some	bounds,	say	a	and	b.	Then,	the	set	is	equal
to	the	interval	from	a	to	b,	which	would	be	expressed	in	mathematical	notation
as	S	=	[a,b].	If	either	one	bound	or	both	do	not	belong	to	the	set,	then	this	would
be	written	 as	 either	 S	 =	 (a,b],	S	 =	 [a,b),	 or	S	 =	 (a,b),	 respectively,	where	 the
parentheses	denote	that	the	value	is	excluded.	An	interval	is	an	uncountable	set
since,	in	contrast	to	a	countable	set	S	=	{a,b,c},	we	cannot	count	the	elements	of
an	interval.75
	 We	now	present	the	operators	used	in	the	context	of	sets.	The	first	is	equality
denoted	by	=	and	 intuitively	 stating	 that	 two	sets	are	equal,	 that	 is,	S1	 =	S2,	 if
they	consist	of	the	same	elements.	If	a	set	S	consists	of	no	elements,	it	is	referred
to	as	an	empty	set	and	is	denoted	by	S	=	Ø.	If	the	elements	of	S1	are	all	contained
in	S2,	the	notation	used	is	S1	⊂	S2	or	S1	⊆	S2.	In	the	first	case,	S2	also	contains
additional	elements	not	 in	S1	while,	 in	 the	 second	case,	 the	 sets	might	 also	be
equal.	For	example,	let	S1	=	{a,b}	and	S2	=	{a,b,c},	then	S1	⊂	S2.	The	operator
⊆	would	indicate	that	S2	consists	of,	at	least,	a	and	b.	Or,	let	M1	=	[0,1]	and	M2
=	[0.5,1],	then	M2	⊂	M1.

	
If	we	want	to	join	a	couple	of	sets,	we	use	the	union	operator	denoted	by	∪.

For	example,	let	S1	=	{a,b}	and	S2	=	{b,c,d},	then	the	union	would	be	S1	∪	S2	=
{a,b,c,d}.	Or,	let	M1	=	[0,1]	and	M2	=	[0.5,1],	then	M2	∪	M1	=	[0,1]	=	M1.76	If



we	join	n	sets	S1,	S2,	…,	Sn	with	n	≥	2,	we	denote	the	union	by	 .
	 The	opposite	operator	to	the	union	is	the	difference	denoted	by	the	“\”	symbol.
If	we	take	the	difference	between	set	S1	and	set	S2,	that	is,	S1\S2,	we	discard	from
S1	all	the	elements	that	are	common	to	both,	S1	and	set	S2.	For	example,	let	S1=
{a,b}	and	S2={b,c,d},	then	S1\S2={a}.

	
To	indicate	 that	we	want	 to	single	out	elements	 that	are	contained	in	several

sets	simultaneously,	then	we	use	the	intersection	operator	∩.	For	example,	with
the	previous	sets,	the	intersection	would	be	S1	∩	S2	=	{b}.	Or,	let	M1	=	[0,1]	and
M2	 =	 [0.5,1],	 then	M1	 ∩	M2	 =	 [0.5,1]	 =	M2.77	 Instead	 of	 the	 ∩	 symbol,	 one
sometimes	writes	S1S2	to	indicate	intersection.
	 If	 two	 sets	 contain	 no	 common	 elements	 (i.e.,	 the	 intersection	 is	 the	 empty
set),	then	the	sets	are	said	to	be	pairwise	disjoint.	For	example,	the	sets	S1={a,b}
and	S2={c,d}	are	pairwise	disjoint	since	S1	∩	S2	=	Ø.	Or,	let	M1	=	[0,0.5)	and	M2
=	[0.5,	1],	then	M1	∩	M2	=	Ø.	If	we	intersect	n	sets	S1,	S2,	…,	Sn	with	n	≥	2,	we
denote	the	intersection	by	 	.

	
The	complement	to	some	set	S	is	denoted	 .	It	is	defined	as	S	∩	 	=	∅	and

S	∪	S	=	Ω	.	That	is,	the	complement	S	is	the	remainder	of	Ω	that	is	not	contained
in	S.
	



Right-Continuous	and	Nondecreasing	Functions

	

Next	we	introduce	two	concepts	of	functions	that	should	be	understood	in	order
to	 appreciate	 probability	 theory:	 right-continuous	 function	 and	 nondecreasing
function.
	 A	function	f	is	right-continuous	at	x̃	if	the	limit	from	the	right	of	the	function
values	coincides	with	 the	actual	value	of	 f	at	x̃	 .	Formally,	 that	 is	 limx>x	͂ f(x)	=
f(x͂)	 .	We	illustrate	this	in	Figure	8.1.	At	the	abscissae	x1	and	x2,	 the	 function	 f
jumps	to	f(x1)	and	f(x2)	respectively.78	After	each	jump,	the	function	remains	at
the	new	level,	for	some	time.	Hence,	approaching	x1	from	the	right,	that	is,	for
higher	x-values,	 the	 function	 f	 approaches	 f(x1)	 smoothly.	This	 is	 not	 the	 case
when	approaching	x1	from	the	left	since	f	jumps	at	x1	and,	hence,	deviates	from
the	left-hand	limit.	The	same	reasoning	applies	to	f	at	abscissa	x2.	A	function	is
said	to	be	a	right-continuous	function	if	it	is	right-continuous	at	every	value	on
the	x-axis.
	FIGURE	 8.1	 Demonstration	 of	 Right-Continuity	 of	 Some	 Hypothetical
Function	f	at	Values	x1and	x2
	



FIGURE	8.2	Hypothetical	Nondecreasing	Function	f
	

A	function	f	is	said	to	be	a	nondecreasing	function	if	it	never	assumes	a	value
smaller	than	any	value	to	the	left.	We	demonstrate	this	using	Figure	8.2.	We	see
that	while,	in	the	different	sections	A,	B,	and	C,	f	might	grow	at	different	rates,	it
never	 decreases.	 Even	 for	 x-values	 in	 section	 B,	 f	 has	 zero	 and	 thus	 a
nonnegative	slope.

	
An	example	of	a	right-continuous	and	nondecreasing	function	is	the	empirical

relative	cumulative	distribution	function,	 	(x),	introduced	in	Chapter	2.
	



Outcome,	Space,	and	Events

	

Before	 we	 dive	 into	 the	 theory,	 we	 will	 use	 examples	 that	 help	 illustrate	 the
concept	behind	the	definitions	that	follow	later	in	this	section.
	 Let	us	first	consider,	again	the	number	of	dots	of	a	dice.	If	we	throw	it	once,
we	observe	a	certain	value,	that	is,	a	realization	of	the	abstract	number	of	dots,
say	 4.	 This	 is	 a	 one	 particular	 outcome	 of	 the	 random	 experiment.	 We	 will
denote	the	outcomes	by	ω	and	a	particular	outcome	i	will	be	denoted	by	ωi.	We
might	just	as	well	have	realized	2,	for	example,	which	would	represent	another
outcome.	All	feasible	outcomes,	in	this	experiment,	are	given	by

ω1	=	1	ω2	=	2	ω3=	3	ω4	=	4	ω5	=	5	ω6=	6
		

	 The	set	of	all	 feasible	outcomes	 is	called	space	 and	 is	denoted	by	Ω.	 In	our
example,	Ω	=	{ω1,	ω2,	ω3,	ω4,	ω5,	ω6}.

	
Suppose	 that	 we	 are	 not	 interested	 in	 the	 exact	 number	 of	 points	 but	 care

about	whether	we	obtain	an	odd	or	an	even	number,	instead.	That	is,	we	want	to
know	whether	 the	outcome	is	 from	A	=	{ω1,ω3,ω5}—that	 is,	 the	set	of	all	odd
numbers—or	B	=	{ω2,ω4,ω6}—the	set	of	all	even	numbers.	The	sets	A	and	B	are
both	contained	 in	Ω;	 that	 is,	 both	 sets	 are	 subsets	 of	Ω.	Any	 subsets	 of	Ω	 are
called	events.	So,	we	are	 interested	 in	 the	events	“odd”	and	“even”	number	of
dots.	 When	 individual	 outcomes	 are	 treated	 as	 events,	 they	 are	 sometimes
referred	to	as	elementary	events	or	atoms.
	 All	 possible	 subsets	 of	Ω	 are	 given	 by	 the	 so-called	power	 set	 2Ω	 of	Ω.	A
power	set	of	Ω	is	a	set	containing	all	possible	subsets	of	Ω	including	the	empty
set	Ø	and	Ω,	itself.79
	 For	our	dice	example,	the	power	set	is	given	in	Table	8.1.	With	the	aid	of	this
power	set,	we	are	able	to	describe	all	possible	events	such	as	number	of	dots	less
than	3	(i.e.,	{ω1,ω2})	or	the	number	of	dots	either	1	or	greater	than	or	equal	to	4



(i.e.,	{ω1,ω4,ω5,ω6}).
	TABLE	8.1	The	Power	Set	of	the	Example	Number	of	Dots	of	a	Dice
	

The	 power	 set	 has	 an	 additional	 pleasant	 feature.	 It	 contains	 any	 union	 of
arbitrarily	many	 events	 as	well	 as	 any	 intersection	 of	 arbitrarily	many	 events.
Because	 of	 this,	we	 say	 that	 2Ω	 is	closed	under	 countable	 unions	 and	 closed
under	countable	intersections.	unions	are	employed	to	express	that	at	least	one
of	the	events	has	to	occur.	We	use	intersections	when	we	want	to	express	that	the
events	 have	 to	 occur	 simultaneously.	 The	 power	 set	 also	 contains	 the
complements	to	all	events.

	
As	we	will	later	see,	all	these	properties	of	the	power	set	are	features	of	a	σ-

algebra,	often	denoted	by	A.
	 Now	consider	an	example	were	the	space	Ω	is	no	longer	countable.	Suppose
that	 we	 are	 analyzing	 the	 daily	 logarithmic	 returns	 for	 a	 common	 stock	 or
common	stock	index.	Theoretically,	any	real	number	is	a	feasible	outcome	for	a
particular	day’s	return.80	So,	events	are	characterized	by	singular	values	as	well
as	 closed	 or	 open	 intervals	 on	 the	 real	 line.81	 For	 example,	 we	 might	 be
interested	 in	 the	event	E	 that	 the	S&P	500	stock	 index	 return	 is	“at	 least	1%.”
using	 the	notation	 introduced	earlier,	 this	would	be	 expressed	as	 the	half-open
interval	 E	 =	 [0.01,∞).82	 This	 event	 consists	 of	 the	 uncountable	 union	 of	 all
outcomes	between	0.01	and	∞.	Now,	as	 the	 sets	containing	all	 feasible	events,
we	might	take,	again,	the	power	set	of	the	real	numbers,	that	is,	2Ω	with	Ω	=	(-
∞,∞)=	R.83	But,	for	theoretical	reasons	beyond	the	scope	of	this	text,	that	might
cause	trouble.

	



Instead,	 we	 take	 a	 different	 approach.	 To	 design	 our	 set	 of	 events	 of	 the
uncountable	 space	 Ω,	 we	 begin	 with	 the	 inclusion	 of	 the	 events	 “any	 real
number,”	which	is	the	space	Ω,	itself,	and	“no	number	at	all,”	which	is	the	empty
set	Ø.	Next,	we	include	all	events	of	the	form	“less	than	or	equal	to	a”,	for	any
real	number	a,	that	is,	we	consider	all	half-open	intervals	(-∞,a],	for	any	a	∈	R.
Now,	for	each	of	these	(-∞,a],	we	add	its	complement	(-∞,a]	=	Ω\(-∞,a]	=	(a,∞),
which	expresses	the	event	“greater	than	a.”	So	far,	our	set	of	events	contains	Ø,
Ω,	 all	 sets	 (-∞,a],	 and	 all	 the	 sets	 (a,∞).	 Furthermore,	we	 include	 all	 possible
unions	and	intersections	of	everything	already	in	the	set	of	events	as	well	as	of
the	resulting	unions	and	intersections	themselves.	84	By	doing	this,	we	guarantee
that	 any	event	of	practical	 relevance	of	 an	uncountable	 space	 is	 considered	by
our	set	of	events.
	 With	 this	 procedure,	 we	 construct	 the	 Borel	 σ-algebra,	 B.	 This	 is	 the
collection	of	events	we	will	use	any	time	we	deal	with	real	numbers.

	
The	events	from	the	respective	σ-algebra	of	the	two	examples	can	be	assigned

probabilities	in	a	unique	way	as	we	will	see.
	



The	Measurable	Space

	

Let	us	now	express	 the	 ideas	 from	 the	previous	examples	 in	a	 formal	way.	To
describe	a	random	experiment,	we	need	to	formulate

1.	Outcomes	ω
2.	Space	Ω
3.	σ-algebra	A

Definition	1—Space:	The	space	Ω	contains	all	outcomes.	Depending	on	the
outcomes	ω,	the	space	Ω	is	either	countable	or	uncountable.
	Definition	2—σ-algebra:	The	σ-algebra	A	is	the	collection	of	events
(subsets	of	Ω)	with	the	following	properties:

a.	Ω	∈	A	and	Ø	∈	A.
b.	If	event	E	∈	A	then	Ē	∈	A.
c.	If	the	countable	sequence	of	events	E	∞	and	 	sequence

of	events	E1,	E2,	E3,	…∈	A	then	 	∈	A	and	
	Definition	3—Borel	σ-algebra:	The	σ-algebra	formed	by	Ø,	Ω	=	R,
intervals	(∞,a]	for	some	real	a,	and	countable	unions	and	intersections	of
these	intervals	is	called	a	Borel	σ-algebra	and	denoted	by	B.
		

	 Note	that	we	can	have	several	σ-algebrae	for	some	space	Ω.	Depending	on	the
events	we	are	 interested	 in,	we	can	 think	of	 a	σ-algebra	A	 that	 contains	 fewer
elements	than	2Ω	(i.e.,	countable	Ω),	or	the	Borel	σ-algebra	(i.e.,	uncountable	Ω).
For	 example,	 we	might	 think	 of	 A	 =	 {Ø,	 Ω},	 that	 is,	 we	 only	 want	 to	 know
whether	 any	 outcome	 occurs	 or	 nothing	 at	 all.85	 It	 is	 easy	 to	 verify	 that	 this
simple	A	fulfills	all	requirements	a,	b,	and	c	of	Definition	2.
	

Definition	4—Measurable	space:	The	tuple	(Ω,A)	with	A	being	a	σ-algebra
of	Ω	is	a	measurable	space.	86
		

Given	a	measureable	space,	we	have	enough	to	describe	a	random	experiment.
All	 that	 is	 left	 is	 to	assign	probabilities	 to	 the	 individual	events.	We	will	do	so



next.
	



PROBABILITY	MEASURE

	

We	start	with	a	brief	discussion	of	what	we	expect	of	a	probability	or	probability
measure,	that	is,	the	following	properties:

Property	1:	A	probability	measure	should	assign	each	event	E	from	our	σ-
algebra	a	nonnegative	value	corresponding	to	the	chance	of	this	event
occurring.
	Property	2:	The	chance	that	the	empty	set	occurs	should	be	zero	since,	by
definition,	it	is	the	improbable	event	of	“no	value.”
	Property	3:	The	event	that	“any	value”	might	occur	(i.e.,	Ω)	should	be	1	or,
equivalently,	100%	since	some	outcome	has	to	be	observable.

	
Property	4:	If	we	have	two	or	more	events	that	have	nothing	to	do	with	one
another	that	are	pairwise	disjoint	or	mutually	exclusive,	and	create	a	new
event	by	uniting	them,	the	probability	of	the	resulting	union	should	equal
the	sum	of	the	probabilities	of	the	individual	events.
		

	 To	illustrate,	let:
•	The	first	event	state	that	the	S&P	500	log	return	is	“maximally	5%,”

that	is,	E1	=	(-∞,0.05].
•	The	second	event	state	that	the	S&P	500	log	return	is	“at	least	10%,”

that	is,	E2	=	[0.10,∞).
Then,	the	probability	of	the	S&P	log	return	either	being	no	greater	 than	5%	or
no	less	than	10%	should	be	equal	to	the	probability	of	E1	plus	the	probability	of
E2.
	 Let’s	 proceed	 a	 little	 more	 formally.	 Let	 (Ω,A)	 be	 a	 measurable	 space.
Moreover,	consider	the	following	definition.
	

Definition	5—Probability	measure:	A	function	P	on	the	σ-algebra	A	of	Ω	is
called	a	probability	measure	if	it	satisfies:



a.	P(Ø)=0	and	P(Ω)=1.
b.	For	a	countable	sequence	of	events	E1,	E2,…	in	A	that	are

pairwise	disjoint	(i.e.,	Ei	∩	Ej	=	Ø…,	i	≠	j),	we	have87

		
Then	we	have	everything	we	need	to	model	randomness	and	chance,	 that	 is,

we	have	the	space	Ω,	the	σ-algebra	A	of	Ω,	and	the	probability	measure	P.	This
triplet	(Ω,A,P)	forms	the	so	called	probability	space.
	 At	 this	 point,	we	 introduce	 the	 notion	 of	P-almost	surely	 (P-a.s.)	 occurring
events.	It	is	imaginable	that	even	though	P(Ω)	=	1,	not	all	of	the	outcomes	in	Ω
contribute	positive	probability.	The	entire	positive	probability	may	be	contained
in	 a	 subset	 of	 Ω	 while	 the	 remaining	 outcomes	 form	 the	 unlikely	 event	 with
respect	to	the	probability	measure	P.	The	event	accounting	for	the	entire	positive
probability	with	respect	to	P	is	called	the	certain	event	with	respect	to	P.88	If	we
denote	this	event	by	Eas,	then	we	have	P(Eas)	=	1	yielding	P(Ω\Eas)	=	0.
	 There	are	certain	peculiarities	of	P	 depending	on	whether	Ω	 is	 countable	or
not.	 It	 is	 essential	 to	 analyze	 these	 two	 alternatives	 since	 this	 distinction	 has
important	implications	for	the	determination	of	the	probability	of	certain	events.
Here	is	why.
	 Suppose,	first,	that	Ω	is	countable.	Then,	we	are	able	to	assign	the	event	{ωi}
associated	 with	 an	 individual	 outcome,	 ωi,	 a	 nonnegative	 probability	 pi	 =
P({ωi}),	 for	 all	 ωi	∈	 Ω	 .	Moreover,	 the	 probability	 of	 any	 event	E	 in	 the	 σ-
algebra	 A	 can	 be	 computed	 by	 adding	 the	 probabilities	 of	 all	 outcomes
associated	with	E.	That	is,

P(E)	=	∑	ωi	∈	E	pi
		

	In	particular,	we	have

P(Ω)	=	∑ωi	∈Ω	pi	=	1
		

	 Let	us	resume	the	six-sided	dice	tossing	experiment.	The	probability	of	each
number	of	dots	1	through	6	is	1/6	or	formally,



P({ω1})=	P({ω2})=	....=	P({ω6})=1/6
	

or	equivalently,

p1	=	p2	=	…	=	p6	=	1/6
		

	 Suppose,	instead,	we	have	Ω	=	R.	That	is,	Ω	is	uncountable	and	our	σ-algebra
is	given	by	the	Borel	σ-algebra,	B.	To	give	the	probability	of	the	events	E	in	B,
we	need	an	additional	device,	given	in	the	next	definition.
	

Definition	6—Distribution	function:	A	function	F	is	a	distribution	function
of	the	probability	measure	P	if	it	satisfies	the	following	properties:

a.	F	is	right-continuous.
b.	F	is	nondecreasing.
c.	 	=	0	and	 	=	1	.
d.	For	any	x	∈	R,	we	have	F(x)	=	P((-∞,x]).

		
It	 follows	 that,	 for	 any	 interval	 (x,y],	 we	 compute	 the	 associated	 probability
according	to
(8.1)
	

	 So,	 in	 this	 case	we	have	 a	 function	F	 uniquely	 related	 to	P	 from	which	we
derive	 the	 probability	 of	 any	 event	 in	B.	Note	 that	 in	 general	F	 is	 only	 right-
continuous,	 that	 is	 the	 limit	of	F(y),	when	y	>	x	and	y	 >	x,	 is	 exactly	F(x).	 At
point	 x	 we	might	 have	 a	 jump	 of	 the	 distribution	F(x).	 The	 size	 of	 this	 jump
equals	P({x}).	This	distribution	function	can	be	 interpreted	 in	a	similar	way	 to
the	relative	empirical	cumulative	distribution	function	 	(x)	in	Chapter	2.	That
is,	we	state	the	probability	of	our	quantity	of	interest	being	less	than	or	equal	to
x.
	 To	illustrate,	the	probability	of	the	S&P	500	log	return	being,	at	most	1%,	E	=
(-∞,0.01],	is	given	by	FS&P	500(0.01)	=	P((-∞,0.01]),89	while	the	probability	of	it
being	between	-1	and	1%	is

FS&P	500(0.01)	-	FS&P	500(-0.01)	=	P((-0.01,0.01])
		

	



RANDOM	VARIABLE

	

Now	 time	has	come	 to	 introduce	 the	concept	of	 a	random	variable.	When	we
refer	 to	 some	quantity	as	being	a	 random	variable,	we	want	 to	express	 that	 its
value	 is	 subject	 to	 uncertainty,	 or	 randomness.	 Technically,	 the	 variable	 of
interest	 is	 said	 to	 be	 stochastic.	 In	 contrast	 to	 a	 deterministic	 quantity	 whose
value	 can	 be	 determined	with	 certainty,	 the	 value	 of	 a	 random	 variable	 is	 not
known	 until	 we	 can	 observe	 a	 realized	 outcome	 of	 the	 random	 experiment.
However,	 since	 we	 know	 the	 probability	 space	 (Ω,A,P),	 we	 are	 aware	 of	 the
possible	values	it	can	assume.

	
One	 way	 we	 can	 think	 of	 a	 random	 variable	 denoted	 by	 X	 is	 as	 follows.

Suppose	we	have	a	random	experiment	where	some	outcome	ω	from	the	space	Ω
occurs.	Then,	depending	on	this	ω,	 the	random	variable	X	assumes	some	value
X(ω)	=	x,	where	ω	can	be	understood	as	input	to	X.	What	we	observe,	finally,	is
the	value	x,	which	 is	 only	 a	 consequence	 of	 the	 outcome	ω	 of	 the	 underlying
random	experiment.
	 For	 example,	 we	 can	 think	 of	 the	 price	 of	 a	 30-year	 Treasury	 bond	 as	 a
random	variable	assuming	values	at	random.	However,	expressed	in	a	somewhat
simple	fashion,	the	30-year	Treasury	bond	depends	completely	on	the	prevailing
market	interest	rate	(or	yield)	and,	hence,	is	a	function	of	it.	So,	the	underlying
random	 experiment	 concerns	 the	 prevailing	 market	 interest	 rate	 with	 some
outcome	ω	while	the	price	of	the	Treasury	bond,	in	turn,	is	merely	a	function	of
ω.

	
Consequently,	a	random	variable	is	a	function	that	is	completely	deterministic

and	 depends	 on	 the	 outcome	 ω	 of	 some	 random	 experiment.	 In	 most
applications,	random	variables	have	values	that	are	real	numbers.
	 So,	 we	 understand	 random	 variables	 as	 functions	 from	 some	 space	 into	 an
image	or	state	 space.	We	need	 to	become	a	 little	more	formal	at	 this	point.	To
proceed,	we	will	introduce	a	certain	type	of	function,	the	measurable	function,
in	the	following



Definition	7—Measureable	function:	Let	(Ω,A)	and	(Ω’,A’)	be	two
measurable	spaces.	That	is	Ω,	Ω’	are	spaces	and	A,	A’	their	σ-algebrae,
respectively.	A	function	X:	Ω	→	Ω’	is	A-A’-measurable	if,	for	any	set	E’	∈
A’,	we	have90

X-1(E’)	∈	A
		

	
In	words,	 this	means	 that	 a	 function	 from	 one	 space	 to	 another	 is	measurable
if	 the	origin	with	respect	 to	 this	function	of	each	image	in	 the	σ-algebra	of	 the
state	space	can	be	traced	in	the	σ-algebra	of	the	domain	space.
	 We	illustrate	this	in	Figure	7.3.	Function	X	creates	 images	in	Ω’	by	mapping
outcomes	ω	 from	Ω	with	 values	X(ω)	 =	 x	 in	Ω’.	 In	 reverse	 fashion,	 for	 each
event	E’	in	the	state	space	with	σ-algebra	A’,	X-1	finds	the	corresponding	origin
of	E’	in	σ-algebra	A	of	the	probability	space.

	
Now,	we	define	a	random	variable	X	as	a	measurable	function.	That	means	for

each	event	in	the	state	space	σ-algebra,	A’,	we	have	a	corresponding	event	in	the
σ-algebra	of	the	domain	space,	A.
	 To	illustrate	this,	let	us	consider	the	example	with	the	dice.	Now	we	will	treat
the	“number	of	points”	as	a	random	variable	X.	The	possible	outcome	values	of
X	 are	given	by	 the	 state	 space	Ω’,	namely,	Ω’	=	{1,2,3,4,5,6}.91	The	origin	or
domain	space	is	given	by	the	set	of	outcomes	Ω	=	{ω1,	ω2,	ω3,	ω4,	ω5,	ω6}.	Now,
we	 can	 think	 of	 our	 random	 variable	 X	 as	 the	 function	 X:	 Ω→Ω’	 with	 the
particular	map	X(ωi)	=	i	with	i	=	1,2,…,6.
	FIGURE	 7.3	 Relationship	 between	 Image	 E’	 and	 X-1(E’)	 through	 the
Measurable	Function	X
	





Random	Variables	on	a	Countable	Space

	

We	will	distinguish	between	 random	variables	on	a	countable	 space	and	on	an
uncountable	space.	We	begin	with	the	countable	case.

	
The	random	variable	X	 is	a	function	mapping	the	countable	space	Ω	into	the

state	 space	Ω’.	 The	 state	 space	Ω’	 contains	 all	 outcomes	 or	 values	 that	X	 can
obtain.92	Thus,	all	outcomes	in	Ω’	are	countable	images	of	the	outcomes	ω	in	Ω.
Between	the	elements	of	the	two	spaces,	we	have	the	following	relationship.
	

Let	x	be	some	outcome	value	of	X	in	Ω’.	Then,	the	corresponding	outcomes
from	the	domain	space	Ω	are	determined	by	the	set

X	−1	({x})	=	{ω	:	X	(ω	)	=	x}
		

		
In	words,	we	look	for	all	outcomes	ω	that	are	mapped	to	the	outcome	value	x.
	 For	events,	in	general,	we	have	the	relationship

X	−1	(	E’	)	=	{ω	:	X	(ω	)	∈	E’}
	

which	is	the	set	of	all	outcomes	ω	in	the	domain	space	that	are	mapped	by	X	 to
the	event	E’	in	the	state	space.	That	leads	us	to	the	following	definition:

Definition	8—Random	variable	on	a	countable	space:	Let	(Ω,A)	and
(Ω’,A’)	be	two	measurable	spaces	with	countable	Ω	and	Ω’.	Then	the
mapping	X:	Ω→Ω’	is	a	random	variable	on	a	countable	space	if,	for	any
event	E’	∈	A’	composed	of	outcomes	x	∈	Ω’,	we	have
(8.2)
	

	 	
	



We	can	illustrate	this	with	the	following	example	from	finance	referred	to	as
the	 “binomial	 stock	 price	model.”	The	 random	variable	 of	 interest	will	 be	 the
price	of	some	stock.	We	will	denote	the	price	of	the	stock	by	S.	Suppose	at	the
beginning	 of	 period	 t,	 the	 price	 of	 the	 stock	 is	 $20	 (i.e.,	 St	 =	 $20).	 At	 the
beginning	of	 the	following	period,	 t	+	1,	 the	stock	price	 is	either	St+1	=	$18	or
St+1	=	$22.	We	model	this	in	the	following	way.
	 Let:

•	 (Ω,A)	 and	 (Ω’,A’)	 be	 two	 measurable	 spaces	 with	 Ω’={$18,$22},
(i.e.,	 the	 state	 space	 of	 the	 period	 t	 +	 1	 stocks	 price)	 and	 A	 (i.e.,	 the
corresponding	σ-algebra	of	all	events	with	respect	to	the	stock	price	in	t	+
1).

•	 Ω	 be	 the	 space	 consisting	 of	 the	 outcomes	 of	 some	 random
experiment	completely	influencing	the	t	+	1	stock	price.

•	A	be	the	corresponding	σ-algebra	of	Ω	with	all	events	 in	 the	origin
space.

	 Now,	we	can	determine	the	origin	of	the	event	that

St+1	=	$18	by	Edown	=	{ω	:	S	(ω	)	=	$18}
	

and

St+1	=	$22	by	Eup	=	{ω	:	S	(ω	)	=	$22}
	

Thus,	we	have	partitioned	Ω	 into	 the	 two	events,	Edown	and	Eup,	 related	 to	 the
two	period	t	+	1	stock	prices.	With	the	probability	measure	P	on	Ω,	we	have	the
probability	space	(Ω,A,P).	Consequently,	due	 to	equation	(8.2),	we	 are	 able	 to
compute	the	probability	PS($18)	=	P(Edown)	and	PS($22)	=	P(Eup),	respectively.
	 We	will	 delve	 into	 this,	 including	 several	 examples	 in	Chapter	 9,	where	we
cover	discrete	random	variables.
	



Random	Variables	on	an	Uncountable	Space

	

Now	 let’s	 look	 at	 the	 case	 when	 the	 probability	 space	 (Ω,A,P)	 is	 no	 longer
countable.	Recall	the	particular	way	in	which	events	are	assigned	probabilities	in
this	case.

	
While	for	a	countable	space	any	outcome	ω	can	have	positive	probability,	that

is,	pω	>	0,	this	is	not	the	case	for	individual	outcomes	of	an	uncountable	space.
On	an	uncountable	space,	we	can	have	the	case	that	only	events	associated	with
intervals	 have	 positive	 probability.	 These	 probabilities	 are	 determined	 by
distribution	function	F(x)	=	P(X	≤	x)	=	P(X	<	x)	according	to	equation	(8.1).
	 This	brings	us	to	the	following	definition:

Definition	9—Random	variable	on	a	general	possibly	uncountable	space:
Let	(Ω,A)	and	(Ω’,A’)	be	two	measurable	spaces	with,	at	least,	Ω
uncountable.	The	map	X:	Ω→Ω’	is	a	random	variable	on	the	uncountable
space	(Ω,A,P)	if	it	is	measurable.	That	is,	if,	for	any	E’	∈	A’,	we	have

X-1(E’)	∈	A
	

probability	from	(Ω,A,P)	on	(Ω’,A’)	by

PX	(	E’	)	=	P	({ω	:	X	(ω	)	∈	E’})	=	P	(	X	−1	(	E’	))	=	P	(	X	∈	E’	)
		

		
	We	call	this	the	probability	law	or	distribution	of	X.	Typically,	the	probability	of
X	∈	E’	is	written	using	the	following	notation:

PX(E’)	=	P(X	∈	E’)
		

	 Very	 often,	 we	 have	 the	 random	 variable	 X	 assume	 values	 that	 are	 real
numbers	 (i.e.,	 Ω’	 =	 R	 and	 B’	 =	 B).	 Then,	 the	 events	 in	 the	 state	 space	 are



characterized	 by	 countable	 unions	 and	 intersections	 of	 the	 intervals	 (-∞,a]
corresponding	to	the	events	{X	≤	a},	for	real	numbers	a.	In	this	case,	we	require
that	to	be	a	random	variable,	X	satisfies

{ω	:	X	(ω	)	≤	a}	=	X	−1	((	∞,	a	]	)	∈	B
	

for	any	real	a.
	 To	illustrate,	let’s	use	a	call	option	on	a	stock.	Suppose	in	period	t	we	purchase
a	call	option	on	a	certain	stock	expiring	in	the	next	period	T	=	t	+	1.	The	strike
price,	denoted	by	K,	is	$50.	Then	as	the	buyer	of	the	call	option,	in	t	+	1	we	are
entitled	 to	 purchase	 the	 stock	 for	 $50	 no	matter	what	 the	market	 price	 of	 the
stock	(St+1)	might	be.	The	value	of	the	call	option	at	time	t	+	1,	which	we	denote
by	Ct+1,	depends	on	the	market	price	of	 the	stock	at	 t	+	1	 relative	 to	 the	strike
price	(K).	Specifically,

•	If	St	+1	is	less	than	K,	then	the	value	of	the	option	is	zero,	that	is,	Ct	+1
=	0

•	If	St	+1	is	greater	than	K,	then	the	value	of	the	option	is	equal	to	St	+1	-
K

	 Let	(Ω,A,P)	be	the	probability	space	with	the	stock	price	in	t	+	1;	that	is,	St+1
=	 s	 representing	 the	 uncountable	 real-valued	 outcomes.	 So,	 we	 have	 the
uncountable	probability	space	(Ω,A,P)	=	(R,B,P).	Assume	that	the	price	at	t	+	1
can	take	any	nonnegative	value.	Assume	further	that	the	probability	of	exactly	s
is	zero	(i.e.,	P(St+1	=	s)	=	0),	that	is,	the	distribution	function	of	the	price	at	T	=	1
is	continuous.	Let	the	value	of	the	call	option	in	T	=	t	+	1,	Ct+1,	be	our	random
variable	mapping	from	Ω	to	Ω’.	Since	the	possible	values	of	the	call	option	at	t
+	 1	 are	 real	 numbers,	 the	 state	 space	 is	 uncountable	 as	well.	Hence,	we	 have
(Ω’,A’)	=	(R,B).	Ct+1,	to	be	a	random	variable,	is	a	B-B’-measurable	function.
	 Now,	 the	 probability	 of	 the	 call	 becoming	 worthless	 is	 determined	 by	 the
event	in	the	origin	space	that	the	stock	price	falls	below	K.	Formally,	that	equals

PCt	+1	(0)	=	P	(Ct	+1	≤	0)	=	P	(	St	+1	≤	K	)	=	P	((	−∞,	K	]	)
	

since	 the	 corresponding	 event	 in	A	 to	 a	 0	 value	 for	 the	 call	 option	 is	 (-∞,K].
Equivalently, .	Any	positive	value	c	of	Ct+1	is	associated	({0}	)=	(
with	zero	probability	since	we	have



PCt	+1	(c	)	=	P	(Ct	+1	=	c	)	=	P	(	St	+1	=	c	+	K	)	=	0
	

due	to	the	relationship	Ct+1	=	St+1	-	K	for	St+1	>	K.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Elements	
Countable	
uncountable	
Empty	set	
union	operator	
Intersection	operator	
Pairwise	disjoint	
Complement	
Right	continuous	function	
Nondecreasing	function	
Space	
Subsets	
Events	
Elementary	events	
Atoms	
Power	set	
Closed	under	countable	unions	
Closed	under	countable	intersections	
σ-algebra	
Borel	σ-algebra	
Measurable	space	
Probability	measure	
Mutually	exclusive	
Probability	space	
P-almost	surely	(P-a.s.)	
unlikely	
Certain	event	with	respect	to	P	
Distribution	function	
Random	variable	
Stochastic	
Measurable	function	



Random	variable	on	a	countable	space	
Random	variable	on	an	uncountable	space	
Probability	law
	



CHAPTER	9
	

Discrete	Probability	Distributions
	

In	this	chapter,	we	learn	about	random	variables	on	a	countable	space	and	their
distributions.	As	measures	of	location	and	spread,	we	introduce	their	mean	and
variance.	 The	 random	 variables	 on	 the	 countable	 space	 will	 be	 referred	 to	 as
discrete	 random	 variables.	 We	 present	 the	 most	 important	 discrete	 random
variables	 used	 in	 finance	 and	 their	 probability	 distribution	 (also	 called
probability	law):

•	Bernoulli
•	Binomial
•	Hypergeometric
•	Multinomial
•	Poisson
•	Discrete	uniform

	 The	 operators	 used	 for	 these	 distributions	 will	 be	 derived	 and	 explained	 in
Appendix	 C	 of	 this	 book.	 Operators	 are	 concise	 expressions	 that	 represent
particular,	 sometimes	 lengthy,	 mathematical	 operations.	 The	 appendix	 to	 this
chapter	provides	a	summary	of	the	discrete	distributions	covered.
	



DISCRETE	LAW

	

In	order	to	understand	the	distributions	discussed	in	this	chapter,	we	will	explain
the	 general	 concept	 of	 a	 discrete	 law.	 Based	 on	 the	 knowledge	 of	 countable
probability	spaces,	we	introduce	the	random	variable	on	the	countable	space	as
the	discrete	random	variable.	To	fully	comprehend	the	discrete	random	variable,
it	is	necessary	to	become	familiar	with	the	process	of	assigning	probabilities	to
events	 in	 the	countable	case.	Furthermore,	 the	cumulative	distribution	 function
will	be	presented	as	an	important	representative	of	probability.	It	 is	essential	to
understand	 the	mean	 and	variance	parameters.	Wherever	 appropriate,	we	draw
analogies	to	descriptive	statistics	for	a	facilitation	of	the	learning	process.
	



Random	Variable	on	the	Countable	Space

	

Recall	 that	 the	 probability	 space	 (Ω,A,P)	 where	 Ω	 is	 a	 countable	 space.	 The
probability	of	any	event	E	is	given	by

with	the	pi	being	the	probabilities	of	the	individual	outcomes	ωi	in	the	event	E.
Remember	that	the	random	variable	X	is	the	mapping	from	Ω	into	Ω’	such	that
the	state	space	Ω’	is	countable.93	Thus,	we	found	out	that	the	probability	of	any
event	E’	in	the	state	space	has	probability

since	E’	is	associated	with	the	set

{ωi	:	X(ωi)	∈	E’}
	

through	X.	The	probability	of	each	 individual	outcome	of	X	yields	 the	discrete
probability	law	of	X.	It	is	given	by	P	(	X	=	xi	)	=	piX	,	for	all	xi	∈	Ω’.
Only	 for	 individual	 discrete	 values	 x	 is	 the	 probability	 pX	 positive.	 This	 is

similar	to	the	empirical	frequency	distribution	with	positive	relative	frequency	fi
at	certain	observed	values.	If	we	sort	the	xi	∈	Ω	in	ascending	order,	analogous	to
the	empirical	relative	cumulative	frequency	distribution

we	obtain	the	discrete	cumulative	distribution	(cdf)	of	X,

That	is,	we	express	the	probability	that	X	assumes	a	value	no	greater	than	x.
Suppose	we	want	 to	know	 the	probability	of	obtaining	at	most	3	dots	when

throwing	 a	 dice.	 That	 is,	 we	 are	 interested	 in	 the	 cdf	 of	 the	 random	 variable
number	of	dots,	at	the	value	x	=	3.	We	obtain	it	by

FX	(3)	=	p1	+	p2	+	p3	=	1/3+1/3+1/3	=	0.5



	
where	the	pi	denote	the	respective	probabilities	of	the	number	of	dots	less	than
or	equal	to	3.	A	graph	of	the	cdf	is	shown	in	Figure	9.1.
	FIGURE	9.1	Cumulative	Distribution	Function	of	Number	of	Dots	Appearing
from	Tossing	a	Dice
	



Mean	and	Variance

	

In	 Chapter	 3,	 we	 introduced	 the	 sample	 mean	 and	 variance.	 While	 these	 are
sample	dependent	statistics,	 the	notion	of	a	parameter	 for	 the	entire	population
had	 been	 conveyed	 as	 well.	 Here	 we	 present	 the	 mean	 and	 variance	 of	 the
distribution	as	parameters	where	the	probability	space	can	be	understood	as	the
analog	to	the	population.

	
To	illustrate,	we	use	the	random	variable	number	of	dots	obtained	by	tossing	a

dice.	 Since	 we	 treat	 the	 numbers	 as	 numeric	 values,	 we	 are	 able	 to	 perform
transformations	and	computations	with	them.	By	throwing	a	dice	several	times,
we	would	be	able	to	compute	a	sample	average	based	on	the	respective	outcome.
So,	 a	 question	 could	 be:	 What	 number	 is	 theoretically	 expected?	 In	 our
discussion	below,	we	see	how	to	answer	that	question.
	

Mean

	
The	mean	 is	 the	population	 equivalent	 to	 the	 sample	 average	of	 a	 quantitative
variable.	 In	 order	 to	 compute	 the	 sample	 average,	we	 sum	up	 all	 observations
and	 divide	 the	 resulting	 value	 by	 the	 number	 of	 observations,	 which	 we	 will
denote	 by	n.	 Alternatively,	 we	 sum	 over	 all	 values	 weighted	 by	 their	 relative
frequencies.
	 This	brings	us	 to	 the	mean	of	a	 random	variable.	For	 the	mean	of	a	 random
variable,	 we	 compute	 the	 accumulation	 of	 the	 outcomes	 weighted	 by	 their
respective	probabilities;	that	is,
(9.1)
	

given	 that	equation	(9.1)	 is	 finite.94	 If	 the	mean	 is	 not	 finite,	 then	 the	mean	 is
said	to	not	exist.	The	mean	equals	the	expected	value	of	the	random	variable	X.



However,	as	we	will	see	in	the	following	examples,	the	mean	does	not	actually
have	to	be	equal	to	one	of	the	possible	outcomes.
For	the	number	of	dots	on	the	dice	example,	the	expected	value	is

	So,	on	average,	one	can	expect	a	value	of	3.5	for	the	random	variable,	despite
the	fact	this	is	not	an	obtainable	number	of	dots.	How	can	we	interpret	this?	If
we	were	to	repeat	the	dice	tossing	many	times,	record	for	each	toss	the	number
of	dots	observed,	then,	if	we	averaged	over	all	numbers	obtained,	we	would	end
up	with	an	average	very	close	if	not	identical	to	3.5.
	 Let’s	move	from	the	dice	tossing	example	to	look	at	the	binomial	stock	price
model	that	we	introduced	in	the	previous	chapter.	With	the	stock	price	S	at	 the
end	 of	 period	 1	 being	 either	 S1	 =	 $18	 or	 S1	 =	 $22,	 we	 have	 only	 these	 two
outcomes	with	positive	probability	each.	We	denote	 the	probability	measure	of
the	stock	price	at	the	end	of	period	1	by	PS(·).	At	the	beginning	of	the	period,	we
assume	the	stock	price	to	be	S0	=	$20.	Furthermore,	suppose	that	up-and	down-
movements	are	equally	likely;	that	is,	PS(18)	=	½	and	PS(22)	=	½.	So	we	obtain

E(S)	=	½	·	$18	+	½	·	$22	=	$20
	

This	 means	 on	 average,	 the	 stock	 price	 will	 remain	 unchanged	 even	 though
$20	is	itself	not	an	obtainable	outcome.
	 We	 can	 think	 of	 it	 this	way.	 Suppose,	we	 observed	 some	 stock	 over	 a	 very
long	 period	 of	 time	 and	 the	 probabilities	 for	 up-and	 down-movements	 did	 not
change.	 Furthermore	 suppose	 that	 each	 time	 the	 stock	 price	 was	 $20	 at	 the
beginning	of	some	period,	we	recorded	the	respective	end-of-period	price.	Then,
we	would	finally	end	up	with	an	average	of	these	end-of-period	stock	prices	very
close	to	if	not	equal	to	$20.
	

Variance

	
Just	like	in	the	realm	of	descriptive	statistics,	we	are	interested	in	the	dispersion
or	spread	of	the	data.	For	this,	we	introduce	the	variance	as	a	measure.	While	in
Part	One	we	analyzed	the	sample	variance,	in	this	chapter	our	interest	is	focused



on	the	variance	as	a	parameter	of	the	random	variable’s	distribution.

	
Recall,	 that	a	sample	measure	of	spread	gives	us	 information	on	the	average

deviation	of	observations	from	their	sample	mean.	With	the	help	of	the	variance,
we	 intend	 to	 determine	 the	 magnitude	 we	 have	 to	 theoretically	 expect	 of	 the
squared	 deviation	 of	 the	 outcome	 from	 the	 mean.	 Again,	 we	 use	 squares	 to
eliminate	 the	 effect	 from	 the	 signs	 of	 the	 deviations	 as	 well	 as	 to	 emphasize
larger	 deviations	 compared	 to	 smaller	 ones,	 just	 as	 we	 have	 done	 with	 the
sample	variance.
	 For	 the	 computation	 of	 the	 expected	 value	 of	 the	 squared	 deviations,	 we
weight	 the	 individual	 squared	differences	of	 the	outcomes	 from	 the	mean	with
the	probability	of	the	respective	outcome.	So,	formally,	we	define	the	variance	of
some	random	variable	X	to	be
(9.2)
	

	For	example,	for	the	number	of	dots	obtained	from	tossing	a	dice,	we	obtain
the	variance

Thus,	 on	 average,	 we	 have	 to	 expect	 a	 squared	 deviation	 from	 the	 mean	 by
roughly	2.9.

Standard	Deviation

	
We	 know	 from	 Part	 One	 there	 is	 a	 problem	 in	 interpreting	 the	 variance.	 A
squared	 quantity	 is	 difficult	 to	 relate	 to	 the	 original	 random	 variable.	 For	 this
reason,	 just	 as	 we	 have	 done	 with	 descriptive	 statistics,	 we	 use	 the	 standard
deviation,	which	is	simply	the	square	root	of	the	variance.	Formally,	the	standard
deviation	is	given	by



	 The	standard	deviation	appeals	 to	 intuition	because	 it	 is	a	quantity	 that	 is	of
the	same	scale	as	the	random	variable	X.	In	addition,	it	helps	in	assessing	where
the	probability	law	assigns	its	probability	mass.	A	rule	of	thumb	is	that	at	least
75%	of	 the	probability	mass	 is	assigned	 to	a	vicinity	of	 the	mean	 that	extends
two	standard	deviations	in	each	direction.	Furthermore,	this	rule	states	that	in	at
least	89%	of	 the	 times	a	value	will	occur	 that	 lies	 in	a	vicinity	of	 the	mean	of
three	standard	deviations	in	each	direction.
	 For	 the	 number	 of	 dots	 obtained	 from	 tossing	 a	 dice,	 since	 the	 variance	 is
2.9167,	the	standard	deviation	is

	In	Figure	9.2,	we	display	all	possible	outcomes	1	through	6	indicated	by	the	○
symbol,	including	the	mean	of	E(X)	=	3.5.	We	extend	a	vicinity	about	the	mean
of	 length	σX	 =	 1.7078	 ,	 indicated	 by	 the	 “+”	 symbol,	 to	 graphically	 relate	 the
magnitude	of	the	standard	deviation	to	the	possible	values	of	X.
	



BERNOULLI	DISTRIBUTION

	

In	 the	 remainder	 of	 this	 chapter,	 we	 introduce	 the	 most	 common	 discrete
distributions	 used	 in	 finance.	 We	 begin	 with	 the	 simplest	 one,	 the	Bernoulli
distribution.
	 Suppose,	we	have	a	random	variable	X	with	two	possible	outcomes.	That	 is,
we	 have	 the	 state	 space	 Ω’	 =	 {x1,x2}.	 The	 distribution	 of	 X	 is	 given	 by	 the
probability	for	the	two	outcomes,	that	is,

=p	and	 =	1-p
		

	 		 Now,	to	express	the	random	experiment	of	drawing	a	value	for	X,	all	we	need
to	 know	 is	 the	 two	 possible	 values	 in	 the	 state	 space	 and	 parameter	 p
representing	the	probability	of	x1.	This	situation	is	represented	concisely	by	the
Bernoulli	 distribution.	 This	 distribution	 is	 denoted	 B(p)	 where	 p	 is	 the
probability	parameter.
	 Formally,	 the	Bernoulli	 distribution	 is	 associated	with	 random	variables	 that
assume	the	values	x1	=	1	and	x2	=	0,	or	Ω’	=	{0,1}.	That	is	why	this	distribution
is	 sometimes	 referred	 to	 as	 the	 “zero-one	 distribution.”	 One	 usually	 sets	 the
parameter	p	equal	to	the	probability	of	x1	such	that

p	=	P(X	=	x1)	=	P(X	=	1)
		

	 The	mean	of	a	Bernoulli	distributed	random	variable	is
(9.3)
	

and	the	variance	is
(9.4)
	



FIGURE	9.2	Relation	Between	Standard	Deviation	 (σ	=	1.7078)	and	Scale	of
Possible	Outcomes	1,	2,	…,	6	Indicated	by	the	○	Symbol
	

The	 Bernoulli	 random	 variable	 is	 commonly	 used	 when	 one	 models	 the
random	 experiment	 where	 some	 quantity	 either	 satisfies	 a	 certain	 criterion	 or
not.	For	example,	it	is	employed	when	it	is	of	interest	whether	an	item	is	intact
or	broke.	 In	 such	applications,	we	assign	 the	outcome	“success”	 the	numerical
value	1	and	the	outcome	“failure”	the	numerical	value	0,	for	example.	Then,	we
model	 the	 random	 variable	 X	 describing	 the	 state	 of	 the	 item	 as	 Bernoulli
distributed.
	 Consider	 the	outcomes	when	 flipping	a	coin:	head	or	 tail.	Now	we	set	head
equal	 to	 the	numerical	value	0	and	 tail	 equal	 to	1.	We	 take	X	 as	 the	Bernoulli
distributed	 random	variable	 describing	 the	 side	 of	 the	 coin	 that	 is	 up	 after	 the
toss.	What	should	be	considered	a	 fair	coin?	It	would	be	one	where	 in	50%	of
the	tosses,	head	should	be	realized	and	in	the	remaining	50%	of	the	tosses,	tail
should	realized.	So,	a	fair	coin	yields

p	=	1	-	p	=	0.5
		

	 According	to	equation	(9.3),	the	mean	is	then	E(X)	=	0.5	while,	according	to
equation	(9.4),	the	variance	is	Var(X)	=	0.25.	Here,	the	mean	does	not	represent	a
possible	 value	x	 from	 the	 state	 space	Ω’.	We	 can	 interpret	 it	 in	 the	 following
way:	Since	0.5	is	halfway	between	one	outcome	(0)	and	the	other	outcome	(1),



the	coin	is	fair	because	the	mean	is	not	inclined	to	either	outcome.
	 As	 another	 example,	 we	 will	 take	 a	 look	 at	 credit	 risk	 modeling	 by
considering	 the	 risk	 of	 default	 of	 a	 corporation.	 Default	 occurs	 when	 the
corporation	 is	 no	 longer	 able	 to	 meet	 its	 debt	 obligations,	 A	 priori,	 default
occurring	during	some	period	is	uncertain	and,	hence,	is	treated	as	random.	Here
we	 view	 the	 corporation’s	 failure	 within	 the	 next	 year	 as	 a	 Bernoulli	 random
variable	X.	When	the	corporation	defaults,	X	=	0	and	in	the	case	of	survival	X	=
1.	For	example,	a	corporation	may	default	within	the	next	year	with	probability

P	(	X	=	0)	=	1	−	p	=	1	−	e	−0.04	=	0.0392
	

and	survive	with	probability

P	(	X	=	1)	=	p	=	e	−0.04	=	0.9608
	

The	 reason	 we	 used	 the	 exponential	 function	 in	 this	 situation	 for	 the
probability	 distribution	 will	 be	 understood	 once	 we	 introduce	 the	 exponential
distribution	in	Chapter	11.
	 We	can,	of	course,	extend	 the	prerequisites	of	 the	Bernoulli	distribution	 to	a
more	general	case,	That	is,	we	may	choose	values	for	the	two	outcomes,	x1	and
x2	of	the	random	variable	X	different	from	0	and	1.	Then,	we	set	the	parameter	p
equal	to	either	one	of	the	probabilities	P(X	=	x1)	or	P(X	=	x2).	The	distribution
yields	mean

E	(	X	)	=	x1	⋅	p	+	x2	⋅	(1	−	p)
	

and	variance

Var	(	X	)	=	(	x1	−	E	(	X	))2	⋅	p	+	(	x2	−	E	(	X	))2	⋅	(1	−	p)
	

where	we	set	p	=	P(X	=	x1).
	 We	illustrate	this	generalization	of	the	Bernoulli	distribution	in	the	case	of	the
binomial	 stock	 price	model.	Again,	we	 denote	 the	 random	 stock	 price	 at	 time
period	1	by	S1.	Recall	 that	 the	state	space	Ω’	=	{$18,	$22}	containing	 the	 two
possible	values	for	S1.	The	probability	of	S1	assuming	value	$18	can	be	set	to



P	(	S1	=	$18)	=	p
	

so	that

P	(	S1	=	$22)	=	1	−	p
	

Hence,	 we	 have	 an	 analogous	 situation	 to	 a	 Bernoulli	 random	 experiment,
however,	with	Ω’	=	{$18,$22}	instead	of	Ω’	=	{0,1}.
	 Suppose,	that

P(S1	=	$18)	=	p	=	0.4	and	P(S1	=	$22)	=	1	-	p	=	0.6
		

	Then	the	mean	is

E	(	S1	)	=	0.4	⋅	$18	+	0.6	⋅	$22	=	$20.4
	

and	the	variance

Var	(	S1	)	=	($18	−	$20.4)2	⋅	0.4	+	($22	−	$20.4)2	⋅	0.6	=	($3.84)2
		

	



BINOMIAL	DISTRIBUTION

	

Suppose	 that	 we	 are	 no	 longer	 interested	 in	 whether	 merely	 one	 single	 item
satisfies	a	particular	requirement	such	as	success	or	failure.	Instead,	we	want	to
know	 the	 number	 of	 items	 satisfying	 this	 requirement	 in	 a	 sample	 of	n	 items.
That	is,	we	form	the	sum	over	all	items	in	the	sample	by	adding	1	for	each	item
that	 is	 success	 and	 0	 otherwise.	 For	 example,	 it	 could	 be	 the	 number	 of
corporations	that	satisfy	their	debt	obligation	in	the	current	year	from	a	sample
of	 30	 bond	 issues	 held	 in	 a	 portfolio.	 In	 this	 case,	 a	 corporation	 would	 be
assigned	1	 if	 it	 satisfied	 its	debt	obligation	and	0	 if	 it	 did	not.	We	would	 then
sum	up	over	all	30	bond	issues	in	the	portfolio.

	
Now,	one	might	realize	that	this	is	the	linking	of	n	single	Bernoulli	trials.	In

other	 words,	 we	 perform	 a	 random	 experiment	 with	 n	 “independent”	 and
identically	 distributed	 Bernoulli	 random	 variables,	 which	 we	 denote	 by	 B(p).
Note	 that	 we	 introduced	 two	 important	 assumptions:	 independent	 random
variables	 and	 identically	 distributed	 random	 variables.	 Independent	 random
variables	 or	 independence	 is	 an	 important	 statistical	 concept	 that	 requires	 a
formal	 definition.	We	will	 provide	one	but	 not	 until	Chapter	 14.	However,	 for
now	we	will	 simply	 relate	 independence	 to	 an	 intuitive	 interpretation	 such	 as
uninfluenced	by	another	factor	or	factors.	So	in	the	Bernoulli	trials,	we	assume
independence,	 which	 means	 that	 the	 outcome	 of	 a	 certain	 item	 does	 not
influence	the	outcome	of	any	others.	By	identical	distribution	we	mean	that	the
two	random	variables’	distributions	are	the	same.	In	our	context,	it	implies	that
for	each	item,	we	have	the	same	B(p)	distribution.
	 This	experiment	is	as	if	one	draws	an	item	from	a	bin	and	replaces	it	into	the
bin	before	drawing	the	next	item.	Thus,	this	experiment	is	sometimes	referred	to
as	drawing	with	replacement.	All	we	need	 to	know	 is	 the	number	of	 trials,	n,
and	 the	 parameter	p	 related	 to	 each	 single	 drawing.	 The	 resulting	 sum	 of	 the
Bernoulli	 random	 variables	 is	 distributed	 as	 a	 binomial	 distribution	 with
parameters	n	and	p	and	denoted	by	B(n,p).

	
Let	X	be	distributed	B(n,p).	Then,	the	random	variable	X	assumes	values	in	the



state	 space	Ω’	 =	 {0,1,2,…,n}.	 In	words,	 the	 total	X	 is	 equal	 to	 the	 number	 of
items	satisfying	the	particular	requirement	(i.e.,	having	a	value	of	1).	X	has	some
integer	value	i	of	at	least	0	and	at	most	n.
	 To	determine	the	probability	of	X	being	equal	to	i,	we	first	need	to	answer	the
following	question:	How	many	different	 samples	of	 size	n	 are	 there	 to	yield	 a
total	 of	 i	 hits	 (i.e.,	 realizations	 of	 the	 outcome	 i)?	 The	 notation	 to	 represent
realizing	i	hits	out	of	a	sample	of	size	n	is
(9.5)
	

The	 expression	 in	 equation	 (9.5)	 is	 called	 the	 binomial	 coefficient	 and	 is
explained	in	Appendix	C	of	this	book.
Since	 in	 each	 sample	 the	 n	 individual	 B(p)	 distributed	 items	 are	 drawn

independently,	the	probability	of	the	sum	over	these	n	items	is	the	product	of	the
probabilities	of	the	outcomes	of	the	individual	items.95	We	 illustrate	 this	 in	 the
next	example.
	 Suppose,	we	flip	a	fair	coin	10	times	(i.e.,	n	=	10)	and	denote	by	Yi	the	result
of	the	i-th	trial.	We	denote	by	Yi	=	1	that	the	i-th	trial	produced	head	and	by	Yi	=
0	that	it	produced	tail.	Assume,	we	obtain	the	following	result

So,	we	 observe	X	 =	 5	 times	 head.	 For	 this	 particular	 result	 that	 yields	X	 =	 5,
the	probability	is

Since	we	are	dealing	with	a	fair	coin	(i.e.,	p	=	0.5),	the	above	probability	is

P	(Y1	=	1,	Y2	=	1,	…	,	Y10	=	0)	=	0.55	⋅	0.55	=	0.510	≈	0.0010
		

	With

different	samples	leading	to	X	=	5,	we	compute	the	probability	for	this	value	of



the	total	as

So,	in	roughly	one	fourth	of	all	samples	of	n	=	10	independent	coin	tosses,	we
obtain	a	total	of	X	=	5	1s	or	heads.

	
From	the	example,	we	see	that	the	exponent	for	p	is	equal	to	the	value	of	the

total	X	(i.e.,	i	=	5),	and	the	exponent	for	1	-	p	is	equal	to	n	-	i	=	5.
	 Let	p	be	the	parameter	from	the	related	Bernoulli	distribution	(i.e.,	P(X	=	1)	=
p).	The	probability	of	the	B(n,p)	random	variable	X	being	equal	to	some	i	∈	Ω’	is
given	by
(9.6)
	

	For	a	particular	selection	of	parameters,	the	probability	distribution	at	certain
values	can	be	found	in	the	four	tables	in	the	appendix	to	this	chapter.
	 The	mean	of	a	B(n,p)	random	variable	is
(9.7)
	

and	its	variance	is
(9.8)
	

Below	we	will	apply	what	we	have	 just	 learned	 to	be	 the	binomial	stock	price
model	and	two	other	applications.



Application	to	the	Binomial	Stock	Price	Model

	

Let’s	 extend	 the	 binomial	 stock	 price	 model	 in	 the	 sense	 that	 we	 link	 T
successive	periods	during	which	the	stock	price	evolves.96	In	each	period	(t,	t	+
1],	 the	price	either	 increases	or	decreases	by	10%.	For	now,	 it	 is	not	 important
how	we	obtained	10%.	However,	 intituively	 the	10%	can	be	 thought	of	 as	 the
volatility	of	the	stock	price	S.	Thus,	the	corresponding	factor	by	which	the	price
will	 change	 from	 the	 previous	 period	 is	 0.9	 (down	 movement)	 and	 1.1	 (up
movement).	Based	on	 this	 assumption	 about	 the	price	movement	 for	 the	 stock
each	period,	at	the	end	of	the	period	(t,	t	+	1],	the	stock	price	is

St	+1	=	St	⋅	Yt	+1
	

where	 the	 random	 variable	 Yt+1	 assumes	 a	 value	 from	 {0.9,	 1.1},	 with	 0.9
representing	 a	 price	 decrease	 of	 10%	 and	 1.1	 a	 price	 increase	 of	 10%.
Consequently,	in	the	case	of	Yt+1	=	1.1,	we	have

St+1	=	St	⋅	1.1
	

while,	in	case	of	Yt+1	=	0.9,	we	have

St+1	=	St	⋅	0.9
		

	 For	 purposes	 of	 this	 illustration,	 let’s	 assume	 the	 following	probabilities	 for
the	down	movement	and	up	movement,	respectively,

P	(Yt	+1	=	1.1)	=	p	=	0.6
	

and

P	(Yt	+1	=	0.9)	=	1	−	p	=	0.4
		

	



After	T	periods,	we	have	a	 random	total	of	X	 up	movements;	 that	 is,	 for	 all
periods	(0,1],	(1,2],	…	,	and	(T	-	1,T],	we	increment	X	by	1	if	the	period	related
factor	Yt+1	=	1.1,	t	=	0,	1,	…,	T	-	1.	So,	the	result	is	some	x	∈	{1,2,…,T}.	The
total	 number	 of	 up	 movements,	 X,	 is	 a	 binomial	 distributed	 B(T,p)	 random
variable	on	the	probability	space	(Ω’,A’,PX	)	where

1.	The	state	space	is	Ω’	=	{1,2,…,T}.
2.	σ-algebra	A’	is	given	by	the	power	set	2Ω’	of	Ω’.
3.	PX	is	denoted	by	the	binomial	probability	distribution	given	by

with	p	=	0.6.
Consequently,	according	to	equations	(9.7)	and	(9.8),	we	have

E	(	X	)	=	2	⋅	0.6	=	1.2
	

and

Var	(	X	)	=	2	⋅	0.6	⋅	0.4	=	0.48
		

	 By	definition	of	ST	 and	X,	we	 know	 that	 the	 evolution	 of	 the	 stock	 price	 is
such	that

ST	=	S0	⋅	1.1X	⋅	0.9T	−	X
		

	 Let	us	next	consider	a	random	variable	that	is	not	binomial	itself,	but	related
to	 a	 binomial	 random	 variable.	 Now,	 instead	 of	 considering	 the	 B(T,p)
distributed	total	X,	we	could	introduce	as	a	random	variable,	the	stock	price	at	T
(i.e.,	ST).	using	an	illustration,	we	will	derive	the	stock	price	independently	of	X
and,	 then,	 emphasize	 the	 relationship	 between	ST	 and	X.	Note	 that	ST	 is	 not	 a
binomial	random	variable.
	 Let	us	set	T	=	2.	We	may	start	with	an	initial	stock	price	of	S0	=	$20.	At	the
end	of	the	first	period,	that	is,	(0,1],	we	have

S1	=	S0	⋅	Y1
	



either	equal	to

S1	=	$20	⋅	1.1	=	$22
	

or

S1	=	$20	⋅	0.9	=	$18
		

	At	the	end	of	the	second	period,	that	is,	(1,2],	we	have

S2	=	S1	⋅	Y2	=	$22	⋅	1.1	=	$24.20
	

or

S2	=	S1	⋅	Y2	=	$22	⋅	0.9	=	$19.80
		

	In	the	case	where	S1	=	$22,	and

S2	=	S1	⋅	Y2	=	$18	⋅	1.1	=	$19.80
	

or

S2	=	S1	⋅	Y2	=	$18	⋅	0.9	=	$16.20
	

in	the	case	where	S1	=	$18.
	 That	is,	at	 time	 t	+	1	=	T	=	2,	we	have	three	possible	values	for	S2,	namely,
$24.20,	 $19.80,	 and	 $16.20.	 Hence,	 we	 have	 a	 new	 state	 space	 that	 we	 will
denote	by	ΩS’	=	{$16.2,	$19.8,	$24.2}.	Note	that	S2	=	$19.80	can	be	achieved	in
two	 different	 ways:	 (1)	 S1	 =	 S0	 ·	 1.1	 ·	 0.9	 and	 (2)	 S1	 =	 S0	 ·	 0.9	 ·	 1.1.	 The
evolution	of	this	pricing	process,	between	time	0	and	T	=	2,	can	be	demonstrated
using	the	binomial	tree	given	in	Figure	9.3.

	
As	σ-algebra,	we	use	A	=	2Ω’	S,	which	is	the	power	set	of	the	state	space	ΩS’.

It	 includes	 events	 such	 as,	 for	 example,	 “stock	 price	 in	T	 =	 2	 no	 greater	 than
$19.80,”	defined	as	E’	=	{S2	≤	$19.80}.



	 The	probability	distribution	of	S2	is	given	by	the	following

	

FIGURE	9.3	Binomial	Stock	Price	Model	with	Two	Periods
	

We	now	have	the	complete	probability	space	of	the	random	variable	S2.	One
can	see	the	connection	between	S2	and	X	by	the	congruency	of	the	probabilities
of	the	individual	outcomes,	that	is,

P(S2	=	$24.20)	=	P(X	=	2)
	P(S2	=	$19.80)	=	P(X	=	1)
	P(S2	=	$16.20)	=	P(X	=	0)
		

	 From	this,	we	derive,	again,	the	relationship



S2	=	S0	⋅	1.1X	⋅	0.92−X
	

Thus,	 even	 though	S2,	 or,	 generally	ST,	 is	 not	 a	 distributed	 binomial	 itself,	 its
probability	 distribution	 can	 be	 derived	 from	 the	 related	 binomial	 random
variable	X.97
	



Application	to	the	Binomial	Interest	Rate	Model

	

We	next	consider	a	binomial	interest	rate	model	of	short	rates,	that	is,	one-period
interest	 rates.	Starting	 in	 t	=	0,	 the	 short	 rate	 evolves	over	 the	 subsequent	 two
periods	as	depicted	in	Figure	9.4.	In	t	=	0,	we	have	r0	=	4%,	which	is	the	short
rate	 for	period	1.	For	 the	 following	period,	period	2,	 the	 short	 rate	 is	 r1	 while
finally,	 r2	 is	 valid	 for	 period	 3,	 from	 t	 =	 2	 through	 t	 =	 3.	 Both	 r1	 and	 r2	 are
unknown	in	advance	and	assume	values	at	random.
	FIGURE	9.4	Binomial	Interest	Rate	Model
	

As	we	see,	in	each	of	the	successive	periods,	the	short	rate	either	increases	or
decreases	 by	 1%	 (i.e.,	 100	 basis	 points).	 Each	movement	 is	 assumed	 to	 occur
with	a	probability	of	50%.	So,	in	period	i,	i	=	1,	2,	the	change	in	interest	rate,	Δri
,	has	P	(	Δri	=	1%)	=	p	=	0.5	for	an	up-movement	and	P	(	Δri	=	−1%)	=	1	−	p	=
0.5	 for	 a	 down-movement.	 For	 each	 period,	 we	 may	 model	 the	 interest	 rate
change	by	some	Bernoulli	random	variable	where	X1	denotes	the	random	change
in	period	1	and	X2	that	of	period	2.	The	Xi	=	1	in	case	of	an	up-movement	and	Xi
=	0	otherwise.	The	sum	of	both	(i.e.,	Y	(	=	X	1)	+	X	)	2	is	a	binomially	distributed



random	variable,	precisely	Y	~	B	2,	0.5	,	thus,	assuming	values	0,	1,	or	2.
	 To	be	able	to	interpret	the	outcome	of	Y	in	terms	of	interest	rate	changes,	we
perform	the	following	transformations.	A	value	of	Xi	=	1	yields	Δri	=	1%	while
Xi	=	0	 translates	 into	Δri	=	−1%	 .	Hence,	 the	 relationship	between	Y	 and	 r2	 is
such	that	when	Y	=	0,	implying	two	down-movements	in	a	row,	r2	=	r0	−	2%	=
2%	.	When	Y	=	1,	 implying	one	up-and	down-movement	each,	r2	=	r0	+	1%	−
1%	=	4%	.	And	finally,	Y	=	2	corresponds	to	two	up-movements	such	that	r2	=	r0
+	2%	=	6%	.	So,	we	obtain	the	probability	distribution:
	

	
r2 P(r	2)
2% 0.5

0
·	0.5

2

4% 0.5
1
	⋅	0.5

1
	=	0.5

6% 0.5
2
	⋅	0.5

0
	=	0.25

	

	



Application	to	the	Binomial	Default	Distribution	Model

	

Here	 we	 introduce	 a	 very	 simple	 version	 of	 the	 correlated	 binomial	 default
distribution	model.	 Suppose	we	 have	 a	 portfolio	 of	N	 assets	 that	 may	 default
independently	of	each	other	within	the	next	period.	The	portfolio	is	homogenous
in	 the	sense	 that	all	assets	are	 identically	 likely	 to	default.	Hence,	we	have	 the
common	value	p	as	each	asset’s	probability	to	default.	The	assets	are	conceived
as	Bernoulli	random	variables	Xi,	i	=	1,	2,	…	,	N	.	If	asset	i	defaults,	Xi	=	0	and
Xi	=	1,	otherwise.	So,	the	total	of	defaulted	assets	is	a	binomial	random	variable
Y	with	Y	=	X	1+	X2	+	…	+	XN	~	B	(	N,	p).
	 For	 now,	 we	 are	 unable	 to	 fully	 present	 the	 model	 since	 the	 notion	 of
correlation	 and	 dependence	 between	 random	 variables	 will	 not	 be	 introduced
until	later	in	this	book.
	



HYPERGEOMETRIC	DISTRIBUTION

	

Recall	that	the	prerequisites	to	obtain	a	binomial	B(n,p)	random	variable	X	is	that
we	have	n	 identically	 distributed	 random	variables	Yi	 ,	 all	 following	 the	 same
Bernoulli	 law	B(p)	 of	 which	 the	 sum	 is	 the	 binomial	 random	 variable	X.	 We
referred	 to	 this	 type	 of	 random	 experiment	 as	 “drawing	with	 replacement”	 so
that	 for	 the	 sequence	 of	 individual	 drawings	 Yi	 ,	 we	 always	 have	 the	 same
conditions.

	
Suppose	 instead	 that	we	 do	 not	 “replace.”	Let’s	 consider	 the	 distribution	 of

“drawing	without	replacement.”	This	is	best	illustrated	with	an	urn	containing	N
balls,	K	of	which	are	black	and	N	-	K	are	white.	So,	for	the	initial	drawing,	we
have	the	chance	of	drawing	a	black	ball	equal	to	K/N,	while	we	have	the	chance
of	drawing	a	white	ball	equal	 to	(N	-	K)/N.	Suppose,	 the	first	drawing	yields	a
black	ball.	Since	we	do	not	replace	it,	the	condition	before	the	second	drawing	is
such	 that	we	 have	 (K	 -	 1)	 black	 balls	 and	 still	 (N	 -	K)	white	 balls.	 Since	 the
number	of	black	balls	has	been	reduced	by	one	and	the	number	of	white	balls	is
unchanged,	the	chance	of	drawing	a	black	ball	has	been	reduced	compared	to	the
chance	 of	 drawing	 a	 white	 ball;	 the	 total	 is	 also	 reduced	 by	 one.	 Hence,	 the
condition	 is	 different	 from	 the	 first	 drawing.	 It	would	 be	 similar	 if	 instead	we
had	drawn	a	white	ball	in	the	first	drawing,	however,	with	the	adverse	effect	on
the	chance	to	draw	a	white	ball	in	the	second	drawing.
	 Now	 suppose	 in	 the	 second	 drawing	 another	 black	 ball	 is	 selected.	 The
chances	are	increasingly	adverse	against	drawing	another	black	ball,	in	the	third
trial.	This	changing	environment	would	be	impossible	in	the	binomial	model	of
identical	conditions	in	each	trial.

	
Even	 if	we	 had	 drawn	 first	 a	 black	 ball	 and	 then	 a	white	 ball,	 the	 chances

would	not	be	the	same	as	at	the	outset	of	the	experiment	before	any	balls	were
drawn	 because	 the	 total	 is	 now	 reduced	 to	 N	 -	 2	 balls.	 So,	 the	 chance	 of
obtaining	a	black	ball	is	now	(K	-	1)/(N	-	2),	and	that	of	obtaining	a	white	ball	is
(N	-	K	-	1)/(N	-	2).	Mathematically,	this	is	not	the	same	as	the	original	K/N	and
(N	-	K)/(N).	Hence,	the	conditions	are	altering	from	one	drawing	(or	trial)	to	the



next.
	 Suppose	 now	 that	we	 are	 interested	 in	 the	 sum	X	 of	 black	 balls	 drawn	 in	 a
total	of	n	 trials.	Let’s	 look	at	 this	situation.	We	begin	our	 reasoning	with	some
illustration	given	specific	values,	that	is,

N	=	10	
K	=	4	
n	=	5	
k	=	3
		

	FIGURE	9.5	Drawing	n	=	5	Balls	without	Replacement
	

The	urn	containing	 the	black	and	white	balls	 is	depicted	 in	Figure	9.5.	Let’s
first	 compute	 the	number	of	 different	 outcomes	we	have	 to	 consider	when	we
draw	n	 =	 5	 out	 of	N	 =	 10	 balls	 regardless	 of	 any	 color.	We	 have	 10	 different
options	to	draw	the	first	ball;	that	is,	b1	through	w6	in	Figure	9.5.	After	the	first
ball	has	been	drawn,	without	replacement	the	second	ball	can	be	drawn	from	the
urn	consisting	of	the	remaining	nine	balls.	After	that,	the	third	ball	is	one	out	of
the	remaining	eight,	and	so	on	until	five	balls	have	been	successively	removed.
In	total,	we	have

10×9×8×7×6=10!/5!=30,240
	

alternative	ways	 to	withdraw	 the	 five	 balls.98	 For	 example,	 we	may	 draw	 b4,
b2,	b1,	w3,	and	w6.	However,	this	is	the	same	as	w6,	w3,	b4,	b2,	and	b1	or	any
other	combination	of	these	five	balls.	Since	we	do	not	care	about	the	exact	order
of	the	balls	drawn,	we	have	to	account	for	that	in	that	we	divide	the	total	number



of	possibilities	(i.e.,	30,240)	by	the	number	of	possible	combinations	of	the	very
same	balls	drawn.	The	latter	is	equal	to

5×4×3×2×1=	5!=120
	

Thus,	we	have	30,240/120	=	252	different	nonredundant	outcomes	 if	we	draw
five	out	of	10	balls.	Alternatively,	this	can	be	written	as
(9.9)
	

	Consequently,	 the	chance	of	obtaining	exactly	 this	 set	of	balls	 (i.e.,	{b1,	b2,
b4,	w3,	w6})	in	any	order	is	given	by	the	inverse	of	equation	(9.9)	which	is
(9.10)
	

	Now	recall	that	we	are	interested	in	the	chance	of	obtaining	a	certain	number	k
of	black	balls	in	our	sample.	So,	we	have	to	narrow	down	the	number	of	possible
outcomes	given	by	equation	(9.9)	to	all	samples	of	size	5	that	yield	that	number
k	which,	here,	is	equal	to	3.	How	do	we	do	this?
	 We	have	a	selection	of	four	black	balls	(i.e.,	b1,	b2,	b3,	and	b4)	to	draw	from.
That	gives	us	a	total	of	4	×	3	×	2	=	4	!	=	24	different	possibilities	to	recover	k	=	3
black	balls	out	of	the	urn	consisting	of	four	balls.	Again,	we	do	not	care	about
the	exact	order	in	which	we	draw	the	black	balls.	To	us,	it	is	the	same	whether
we	select	them,	for	example,	in	the	order	b1	-	b2	-	b4	or	b2	-	b4	-	b1,	as	long	as
we	obtain	the	set	{b1,	b2,	b4}.	So,	we	correct	for	this	by	dividing	the	total	of	24
by	the	number	of	combinations	to	order	these	particular	black	balls;	that	is,

3×2×1=3!=6
		

	 Hence,	the	number	of	combinations	of	drawing	k	=	3	black	balls	out	of	four	is

24/6	=	4!/3!	=	4
		

	 Next	we	need	to	consider	the	previous	number	of	possibilities	of	drawing	k	=



3	black	balls	 in	combination	with	drawing	n	 -	k	=	2	white	balls.	We	apply	 the
same	 reasoning	 as	 before	 to	 obtain	 two	white	 balls	 from	 the	 collection	 of	 six
(i.e.,	{w1,	w2,	w3,	w4,	w5,	w6}).	That	gives	us	6	×	5	2	=	6!2!	=	15	nonredundant
options	to	recover	two	white	balls,	in	our	example.
	 In	total,	we	have

different	 possibilities	 to	 obtain	 three	 black	 and	 two	white	 balls	 in	 a	 sample	 of
five	balls.	All	 these	60	 samples	have	 the	 same	 implication	 for	us	 (i.e.,	k	 =	 3).
Combining	 these	 60	 possibilities	 with	 a	 probability	 of	 0.004	 as	 given	 by
equation	(9.10),	we	obtain	as	the	probability	for	a	sum	of	k	=	3	black	balls	in	a
sample	of	n	=	5

60/252	=	0.2381
		

Formally,	we	have

	Then,	for	our	example,	the	probability	distribution	of	X	is99

(9.11)
	

	Let’s	advance	from	the	special	conditions	of	the	example	to	the	general	case;
that	is,	(1)	at	the	beginning,	some	nonnegative	integer	N	of	black	and	white	balls
combined,	(2)	the	overall	number	of	black	balls	0	≤	K	≤	N,	(3)	the	sample	size	0
≤	n	≤	N,	and	(4)	the	number	0	≤	k	≤	n	of	black	balls	in	the	sample.
	 In	equation	(9.11),	we	have	the	probability	of	k	black	balls	in	the	sample	of	n
=	5	balls.	We	dissect	equation	(9.9)	into	three	parts:	the	denominator	and	the	two
parts	forming	the	product	 in	 the	numerator.	The	denominator	gives	the	number
of	possibilities	 to	draw	a	sample	of	n	=	5	balls	out	of	N	=	10	balls,	 no	matter
what	the	combination	of	black	and	white.	In	other	words,	we	choose	n	=	5	out	of



N	 =	 10.	 The	 resulting	 number	 is	 given	 by	 the	 binomial	 coefficient.	 We	 can
extend	this	to	choosing	a	general	sample	of	n	drawings	out	of	a	population	of	an
arbitrary	number	of	N	balls.	Analogous	to	equation	(9.11),	the	resulting	number
of	possible	samples	of	length	n	(i.e.,	n	drawings)	is	then	given	by
(9.12)
	

	Next,	suppose	we	have	k	black	balls	in	this	sample.	We	have	to	consider	that
in	equation	(9.11),	we	chose	k	black	balls	from	a	population	of	K	=	4	yielding	as
the	number	of	possibilities	for	this	the	binomial	coefficient	on	the	left-hand	side
in	 the	numerator.	Now	we	generalize	 this	by	 replacing	K	=	4	by	some	general
number	of	black	balls	(K	≤	N)	in	the	population.	The	resulting	number	of	choices
for	choosing	k	out	of	the	overall	K	black	balls	is	then,
(9.13)
	

	And,	 finally,	 we	 have	 to	 draw	 the	 remaining	 n	 -	 k	 balls,	 which	 have	 to	 be
white,	from	the	population	of	N	-	K	white	balls.	This	gives	us
(9.14)
	

different	nonredundant	choices	for	choosing	n	-	k	white	balls	out	of	N	-	K.
Finally,	all	we	need	to	do	is	to	combine	equations	(9.12),	(9.13),	and	(9.14)	in

the	same	fashion	as	equation	(9.11).	By	doing	so,	we	obtain
(9.15)
	

as	 the	probability	 to	obtain	a	 total	of	X	=	k	black	balls	 in	 the	sample	of	 length
n	without	replacement.
Importantly,	 here,	we	 start	 out	with	N	 balls	 of	which	K	 are	 black	 and,	 after

each	trial,	we	do	not	replace	the	ball	drawn,	so	that	the	population	is	different	for
each	 trial.	 The	 resulting	 random	 variable	 is	 hypergeometric	 distributed	 with



parameters	 (N,K,n);	 that	 is,	Hyp	 (N,K,n),	 and	 probability	 distribution	 equation
(9.15).
	 The	mean	of	a	random	variable	X	following	a	hypergeometric	probability	law
is	given	by

and	the	variance	of	this	X	~	Hyp(N,K,n)	is	given	by

The	 hypergeometric	 and	 the	 binomial	 distributions	 are	 similar,	 though,	 not
equivalent.	 However,	 if	 the	 population	 size	 N	 is	 large,	 the	 hypergeometric
distribution	 is	 often	 approximated	 by	 the	 binomial	 distribution	 with	 equation
(9.6)	causing	only	little	deviation	from	the	true	probabilities	equation	(9.15).
	



Application

	

Let’s	see	how	the	hypergeometric	distribution	has	been	used	applied	in	a	Federal
Reserve	 Bank	 of	 Cleveland	 study	 to	 assess	 whether	 U.S.	 exchange-rate
intervention	resulted	in	a	desired	depreciation	of	the	dollar.100
	 Consider	 the	 following	 scenario.	 The	 U.S.	 dollar	 is	 appreciating	 against	 a
certain	 foreign	 currency.	 This	 might	 hurt	 U.S.	 exports	 to	 the	 country	 whose
sovereign	 issues	 the	 particular	 foreign	 currency.	 In	 response,	 the	U.S.	 Federal
Reserve	might	 be	 inclined	 to	 intervene	 by	 purchasing	 that	 foreign	 currency	 to
help	 depreciate	 the	 U.S.	 dollar	 through	 the	 increased	 demand	 for	 foreign
currency	 relative	 to	 the	 dollar.	 This	 strategy,	 however,	 may	 not	 necessarily
produce	 the	 desired	 effect.	 That	 is,	 the	 dollar	 might	 continue	 to	 appreciate
relative	to	the	foreign	currency.	Let’s	let	an	intervention	by	the	Federal	Reserve
be	 defined	 as	 the	 purchase	 of	 that	 foreign	 currency.	 Suppose	 that	 we	 let	 the
random	 variable	 X	 be	 number	 of	 interventions	 that	 lead	 to	 success	 (i.e.,
depreciation	 of	 the	 dollar).	 Given	 certain	 conditions	 beyond	 the	 scope	 of	 this
book,	the	random	variable	X	is	approximately	distributed	hypergeometric.
	 This	can	be	understood	by	the	following	slightly	simplified	presentation.	Let
the	number	of	 total	observations	be	N	days	of	which	K	 is	 the	 number	 of	 days
with	a	dollar	depreciation	(with	or	without	intervention),	and	N	-	K	is	the	number
of	 days	 where	 the	 dollar	 appreciated	 or	 remained	 unchanged.	 The	 number	 of
days	the	Federal	Reserve	intervenes	is	given	by	n.	Furthermore,	let	k	equal	 the
number	 of	 days	 the	 interventions	 are	 successful	 so	 that	n	 -	k	 accounts	 for	 the
unsuccessful	 interventions.	The	Federal	Reserve	could	 technically	 intervene	on
all	N	days	that	would	yield	a	total	of	K	successes	and	N	-	K	 failures.	However,
the	 actual	 number	 of	 occasions	 n	 on	 which	 there	 are	 interventions	 might	 be
smaller.	The	n	interventions	can	be	treated	as	a	sample	of	length	n	taken	from	the
total	of	N	days	without	replacement.

	
The	 model	 can	 best	 be	 understood	 as	 follows.	 The	 observed	 dollar

appreciations,	persistence,	or	depreciations	are	given	observations.	The	Federal
Reserve	can	merely	decide	to	intervene	or	not.	Consequently,	if	it	took	action	on
a	 day	with	 depreciation,	 it	 would	 be	 considered	 a	 success	 and	 the	 number	 of



successes	available	for	future	attempts	would,	 therefore,	be	diminished	by	one.
If,	 on	 the	 other	 hand,	 the	 Federal	Reserve	 decided	 to	 intervene	 on	 a	 day	with
appreciation	 or	 persistence,	 it	 would	 incur	 a	 failure	 that	 would	 reduce	 the
number	 of	 available	 failures	 left	 by	 one.	 The	 N	 -	 n	 days	 there	 are	 no
interventions	are	treated	as	not	belonging	to	the	sample.
	 The	 randomness	 is	 in	 the	 selection	 of	 the	 days	 on	which	 to	 intervene.	 The
entire	process	can	be	illustrated	by	a	chain	with	N	tags	attached	to	it	containing
either	 a	 +	 or	 -	 symbol.	 Each	 tag	 represents	 one	 day.	 A	 +	 corresponds	 to	 an
appreciation	 or	 persistence	 of	 the	 dollar	 on	 the	 associated	 day,	 whilea-to	 a
depreciation.	We	assume	that	we	do	not	know	the	symbol	behind	each	tag	at	this
point.

	
In	total,	we	have	K	tags	with	a	+	and	N	-	n	witha-tag.	At	random,	we	flip	n	of

these	 tags,	 which	 is	 equivalent	 to	 the	 Federal	 Reserve	 taking	 action	 on	 the
respective	 days.	 upon	 turning	 the	 respective	 tag	 upside	 right,	 the	 contained
symbol	 reveals	 immediately	 whether	 the	 associated	 intervention	 resulted	 in	 a
success	or	not.
	 Suppose,	we	have	N	=	3,072	total	observations	of	which	K	=	1,546	represents
the	number	of	days	with	a	dollar	depreciation,	while	on	N	-	K	=	1,508	days	the
dollar	 either	 became	more	 valuable	 or	 remained	 steady	 relative	 to	 the	 foreign
currency.

	
Again,	 let	 X	 be	 the	 hypergeometric	 random	 variable	 describing	 successful

interventions.	On	n	=	138	days,	the	Federal	Reserve	saw	reason	to	intervene,	that
is,	purchase	 foreign	currency	 to	help	bring	down	 the	value	of	 the	dollar	which
was	 successful	 on	 k	 =	 51	 days	 and	 unsuccessful	 on	 the	 remaining	n	 -	 k	 =	 87
days.	Concisely,	the	values	are	given	by	N	=	3,072,	K	=	1,546,	N	-	K	=	1,508,	n	=
138,	k	=	51,	and	n	-	k	=	87.
	 So,	 the	 probability	 for	 this	 particular	 outcome	 k	 =	 51	 for	 the	 number	 of
successes	X	given	n	=	138	trials	is

which	is	an	extremely	small	probability.
Suppose	 we	 state	 the	 simplifying	 hypothesis	 that	 the	 Federal	 Reserve	 is



overall	 successful	 if	 most	 of	 the	 dollar	 depreciations	 have	 been	 the	 result	 of
interventions	(i.e.,	purchase	of	foreign	currency).	Then,	this	outcome	with	n	=	51
successful	 interventions	 given	 a	 total	 of	 N	 -	 K	 depreciations	 shows	 that	 the
decline	 of	 the	 dollar	 relative	 to	 the	 foreign	 currency	 might	 be	 the	 result	 of
something	other	than	a	Federal	Reserve	intervention.	Hence,	the	Federal	Reserve
intervention	 might	 be	 too	 vague	 a	 forecast	 of	 a	 downward	 movement	 of	 the
dollar	relative	to	the	foreign	currency.
	



MULTINOMIAL	DISTRIBUTION

	

For	our	next	distribution,	the	multinomial	distribution,	we	return	to	the	realm	of
drawing	 with	 replacement	 so	 that	 for	 each	 trial,	 there	 are	 exactly	 the	 same
conditions.	That	 is,	we	are	dealing	with	independent	and	identically	distributed
random	variables.101	However,	unlike	the	binomial	distribution,	let’s	change	the
population	 so	 that	 we	 have	 not	 only	 two	 different	 possible	 outcomes	 for	 one
drawing,	but	a	third	or	possibly	more	outcomes.
	 We	extend	 the	 illustration	where	we	used	an	urn	containing	black	and	white
balls.	 In	our	 extension,	we	have	a	 total	of	N	 balls	with	 three	 colors:	Kw	 white
balls,	Kb	black	balls,	and	Kr	=	N	-	Kw	-	Kb	red	balls.	The	probability	of	each	of
these	colors	is	denoted	by

P(Y	=	white)	=	pw
	P(Y	=	black)	=	pb
	P(Y	=	red)	=	pr
	

with	 each	 of	 these	 probabilities	 representing	 the	 population	 share	 of	 the
respective	 color:	 pi	 =	 Ki/N,	 for	 i	 =	 white,	 black,	 and	 red.	 Since	 all	 shares
combined	have	to	account	for	all	N,	we	set

pr	=	1	−	pb	−	pw
		

	 For	purposes	of	this	illustration,	let	pw	=	pb	=	0.3	and	pr	=	0.4.	Suppose	that	in
a	sample	of	n	=	10	 trials,	we	obtain	 the	following	result:	nw	=	3	white,	nb	=	4
black,	 and	nr	 =	n	 -	nw	 -	nb	 =	 3	 red.	 Furthermore,	 suppose	 that	 the	 balls	were
drawn	in	the	following	order

where	 the	 random	 variable	Yi	 represents	 the	 outcome	 of	 the	 i-th	 trial.102	 This



particular	sample	occurs	with	probability

The	 last	 equality	 indicates	 that	 the	 order	 of	 appearance	 of	 the	 individual
values,	once	again,	does	not	matter.
We	introduce	the	random	variable	X	representing	the	number	of	the	individual

colors	occurring	in	the	sample.	That	is,	X	consists	of	the	three	components	Xw‚
Xb,	and	Xr	or,	alternatively,	X	=	(Xw,	Xb,	Xr).	Analogous	to	the	binomial	case	of
two	 colors,	 we	 are	 not	 interested	 in	 the	 order	 of	 appearance,	 but	 only	 in	 the
respective	numbers	of	 occurrences	of	 the	different	 colors	 (i.e.,	nw,	nb,	 and	nr).
Note	 that	 several	different	 sample	outcomes	may	 lead	 to	X	=	 (nw,	nb,	 nr).	 The
total	number	of	different	nonredundant	samples	with	nw,	nb,	and	nr	 is	given	by
the	multinomial	coefficient	 introduced	in	Appendix	C	of	 this	book,	which	here
yields

	Hence,	the	probability	for	this	value	of	X	=	(kw,	kb,	kr)	=	(3,4,3)	is	then

	In	 general,	 the	 probability	 distribution	 of	 a	 multinomial	 random	 variable	X
with	k	components	X1,	X2,	…,	Xk	is	given	by
(9.16)
	

where,	for	j	=	1,2,	…	,	k,	nj	denotes	the	outcome	of	component	j	and	the	pj	the
corresponding	probability.
The	means	of	the	k	components	X1	through	Xk	are	given	by



and	their	respective	variances	by



Multinomial	Stock	Price	Model

	

We	 can	 use	 the	 multinomial	 distribution	 to	 extend	 the	 binomial	 stock	 price
model	described	earlier.	Suppose,	we	are	given	a	stock	with	price	S0,	in	t	=	0.	In
t	=	1,	the	stock	can	have	either	price

	 Let	 the	 three	 possible	 outcomes	 be	 a	 10%	 increase	 in	 price	 (u	 =	 1.1),	 no
change	in	price	(l	=	1.0),	and	a	10%	decline	in	price	(d	=	0.9).	That	is,	the	price
either	 goes	 up	 by	 some	 factor,	 remains	 steady,	 of	 drops	 by	 some	 factor.
Therefore,

	Thus,	we	have	three	different	outcomes	of	the	price	change	in	the	first	period.
Suppose,	 the	 price	 change	 behaved	 the	 same	 in	 the	 second	period,	 from	 t	 =	 1
until	t	=	2.	So,	we	have

at	time	t	=	2	depending	on

Let’s	denote	the	random	price	change	in	the	first	period	by	Y1	while	the	price
change	in	the	second	period	by	the	random	variable	Y2.	So,	it	is	obvious	that	Y1
and	Y2	independently	assume	some	value	in	the	set	{u,l,d}	=	{1.1,1.0,0.9}.	After
two	periods	(i.e.,	in	t	=	2),	the	stock	price	is



Note	 that	 the	 random	 variable	 S2	 is	 not	 multinomially	 distributed	 itself.
However,	 as	 we	 will	 see,	 it	 is	 immediately	 linked	 to	 a	 multinomial	 random
variable.
Since	the	initial	stock	price	S0	is	given,	the	random	variable	of	interest	is	the

product	 Y1	 ·	 Y2,	 which	 is	 in	 a	 one-to-one	 relationship	 with	 the	 multinomial
random	 variable	 X	 =	 (nu,	 nl,	 nd)	 (i.e.,	 the	 number	 of	 up-,	 zero-,	 and	 down-
movements,	 respectively).	 The	 state	 space	 of	 Y1	 ·	 Y2	 is	 given	 by
{uu,ul,ud,ll,ld,dd}.	This	corresponds	to	the	state	space	of	X,	which	is	given	by

Ω’	=	{(2,	0,	0)	,	(0,	2,	0)	,	(0,	0,	2)	,	(1,1,	0)	,	(1,	0,1)	,	(0,1,1)}
		

	 Note	that	since	Y1	·	Y2	is	a	product,	we	do	not	consider,	for	example,	(Y1	=	u,
Y2	=	d)	and	(Y1	=	d,	Y2	=	u)	separately.	With

P(Yi	=	u)	=	pu	=	0.25
	P(Yi	=	l)	=	pl	=	0.50
	P(Yi	=	d)	=	pd	=	0.25
	

the	 corresponding	 probability	 distribution	 of	 X	 is	 given	 in	 the	 first	 two
columns	of	Table	9.1.	We	use	the	multinomial	coefficient

where

n	=	the	number	of	periods	
nu	=	the	number	of	up-movements	
nl	=	number	of	zero	movements	
nd	=	number	of	down-movements
		

Now,	if	S0	=	$20,	then	we	obtain	the	probability	distribution	of	the	stock	price
in	t	=	2	as	shown	in	columns	2	and	3	in	Table	9.1.	Note	that	the	probabilities	of
the	 values	 of	 S2	 are	 associated	 with	 the	 corresponding	 price	 changes	 X	 and,



hence,	 listed	on	 the	same	 lines	of	Table	9.1.	 It	 is	 now	possible	 to	 evaluate	 the
probability	 of	 events	 such	 as,	 “a	 stock	price	S2	 of,	 at	most,	 $22,”	 from	 the	 σ-
algebra	A’	of	the	multinomial	probability	space	of	X.	This	is	given	by

P	(	S2	≤	$22)	
=	P	(	S2	=	$16.2)	+	P	(	S2	=	$18)	+	P	(	S2	=	$19.8)	+	P	(	S2	=	$20)	+	P	(	S2
=	$22)	
=	0.25	+	0.125	+	0.25	+	0.25	+	0.0625	
=	1	−	P	(	S2	=	$24.2)	
=	0.9375
	

where	 the	 third	 line	 is	 the	result	of	 the	fact	 that	 the	sum	of	 the	probabilities	of
all	 disjoint	 events	 has	 to	 add	 up	 to	 one.	 That	 follows	 since	 any	 event	 and	 its
complement	account	for	the	entire	state	space	Ω’.
	TABLE	9.1	Probability	Distribution	of	the	Two-Period	Stock	Price	Model
	

	
X	=	(nu,	nl,	nd) P(X	=	·	)	· S2	=

(2,0,0) S0	⋅	u2	=	20	⋅1.12	=	24.2

(1,1,0) S0	⋅	u	⋅	l	=	20	⋅1.1⋅1.0	=	22

(1,0,1) S0	⋅	u	⋅	d	=	20	⋅1.1⋅	0.9	=	19.8

(0,2,0) S0	⋅	l	⋅	l	=	20	⋅1.02	=	20

(0,1,1) S0⋅l⋅d	=	20⋅1.0⋅0.9	=	18

(0,0,2) S0	⋅d2	=	20⋅0.92	=	16.2

In	the	first	and	second	columns,	we	have	the	probability	distribution	of	the	two
period	stock	price	changes	X	=	Y1	·	Y2	in	the	multinomial	stock	price	model.	In
the	third	column,	we	have	the	probability	distribution	of	the	stock	price	S2.

	



	

FIGURE	9.6	Multinomial	Stock	Price	Model:	Stock	Price	S2,	in	t	=	2
	

In	Figure	9.6,	we	can	see	the	evolution	of	 the	stock	price	along	the	different
paths.
	 From	equation	(9.1),	the	expected	stock	price	in	t	=	2	is	computed	as

So,	on	average,	the	stock	price	will	evolve	into	S2	=	$21.14	(rounded).



POISSON	DISTRIBUTION

	

To	 introduce	our	next	distribution,	consider	 the	following	situation.	A	property
and	 casualty	 insurer	 underwrites	 a	 particular	 type	 of	 risk,	 say,	 automotive
damage.	Overall,	the	insurer	is	interested	in	the	total	annual	dollar	amount	of	the
claims	 from	 all	 policies	 underwritten.	 The	 total	 is	 the	 sum	 of	 the	 individual
claims	 of	 different	 amounts.	 The	 insurer	 has	 to	 have	 enough	 equity	 as	 risk
guarantee.	In	a	simplified	way,	the	sufficient	amount	is	given	by	the	number	of
casualties	N	times	the	average	amount	per	claim.

	
In	this	situation,	the	insurer’s	interest	is	in	the	total	number	of	claims	N	within

one	year.	Note	 that	 there	may	be	multiple	claims	per	policy.	This	number	N	 is
random	because	the	insurer	does	not	know	its	exact	value	at	the	beginning	of	the
year.	 The	 insurer	 knows,	 however,	 that	 the	 minimum	 number	 of	 casualties
possible	 is	 zero.	 Theoretically,	 although	 it	 is	 unlikely,	 there	may	 be	 infinitely
many	claims	originating	from	the	year	of	interest.
	 So	far,	we	have	considered	the	number	of	claims	over	the	period	of	one	year.
It	 could	 be	 of	 interest	 to	 the	 insurer,	 however,	 to	 know	 the	 behavior	 of	 the
random	variable	N	over	a	period	of	different	length,	say	five	years,	Or,	even,	the
number	 of	 casualties	 related	 to	 one	 month	 could	 be	 of	 interest.	 It	 might	 be
reasonable	to	assume	that	there	will	probably	be	fewer	claims	in	one	month	than
in	one	year	or	five	years.

	
The	number	of	 claims,	N,	 as	 a	 random	variable	 should	 follow	 a	 probability

law	that	accounts	for	the	length	of	the	period	under	analysis.	In	other	words,	the
insurers	want	 to	 assure	 that	 the	 probability	 distribution	 of	N	 gives	 credit	 to	N
being	proportional	 to	 the	 length	of	 the	period	 in	 the	 sense	 that	 if	 a	period	 is	n
times	 as	 long	 as	 another,	 then	 the	 number	 of	 claims	 expected	 over	 the	 longer
period	should	be	n	times	as	large	as	well.
	 As	 a	 candidate	 that	 satisfies	 these	 requirements,	 we	 introduce	 the	 Poisson
distribution	with	parameter	λ	and	formally	expressed	as	Poi(λ).	We	define	that
the	parameter	is	a	positive	real	number	(i.e.,	λ	>	0).	A	Poisson	random	variable	N



—that	 is,	 X	 ~	 Poi(λ)—assumes	 nonnegative	 integer	 values.	 Formally,	N	 is	 a
function	mapping	the	space	of	outcomes,	Ω,	into	the	state	space

Ω’	=	{0,	1,	2,	…}
	

which	is	the	set	N	of	the	nonnegative	integer	numbers.
	 The	 probability	 measure	 of	 a	 Poisson	 random	 variable	 N	 for	 nonnegative
integers	k	=	0,1,2,	…	is	defined	as
(9.17)
	

where	e	=	2.7183	is	the	Euler	constant.	Here,	we	have	unit	period	length.
The	mean	of	a	Poisson	random	variable	with	parameter	λ	is

E(N)=λ
	

while	its	variance	is	given	by
(9.18)
	

So,	 both	 parameters,	 mean	 and	 variance,	 of	 N	 ~	 Poi(λ)	 are	 given	 by	 the
parameter	λ.
For	a	period	of	general	length	t,	equation	(9.17)	becomes

(9.19)
	

	We	 can	 see	 that	 the	 new	 parameter	 is	 now	 λt,	 accounting	 for	 the	 time
proportionality	of	the	distribution	of	N,	that	is,	N	=	N(t)	is	the	number	of	jumps
of	size	1	in	the	interval	(0,t).	The	mean	changes	to
(9.20)
	

and	analogous	to	the	variance	given	by	(9.18)	is	now
(9.21)
	



We	can	see	by	equation	(9.20)	that	the	average	number	of	occurrences	is	the
average	per	unit	of	time,	λ,	times	the	length	of	the	period,	t,	in	units	of	time.	The
same	holds	for	the	variance	given	by	equation	(9.21).
	 The	 Poisson	 distribution	 serves	 as	 an	 approximation	 of	 the	 hypergeometric
distribution	 when	 certain	 conditions	 are	 met	 regarding	 sample	 size	 and
probability	distribution.103
	



Application	to	Credit	Risk	Modeling	for	a	Bond	Portfolio

	

The	Poisson	distribution	is	typically	used	in	finance	for	credit	risk	modeling.	For
example,	suppose	we	have	a	pool	of	100	bonds	issued	by	different	corporations.
By	experience	or	empirical	evidence,	we	may	know	that	each	quarter	of	a	year
the	 expected	 number	 to	 default	 is	 two;	 that	 is,	 λ	 =	 2.	 Moreover,	 from	 prior
research,	we	can	approximate	 the	distribution	of	N	by	 the	Poisson	distribution,
even	though,	theoretically,	the	Poisson	distribution	admits	values	k	greater	 than
100.	What	 is	 the	number	of	bonds	 to	default	within	 the	next	year,	on	average?
According	 to	equation	(9.3),	since	 the	mean	 is	Equarter(N)	=	λ	=	2,	per	quarter,
the	mean	per	year	(t	=	4)	is

Eyear	(	N	)	=	λt	=	2	⋅	4	=	8
		

	 By	equation	(9.20),	the	variance	is	8,	from	equation	(9.19),	the	probability	of,
at	most,	10	bonds	to	default	is	given	by
	



DISCRETE	UNIFORM	DISTRIBUTION

	

Consider	a	probability	space	(Ω’,A’,P)	where	the	state	space	is	a	finite	set	of,	say
n,	 outcomes,	 that	 is,	Ω’	 =	 {x1,	 x2,	…	 ,	 xn}.	 The	 σ-algebra	 A’	 is	 given	 by	 the
power	set	of	Ω’.

	
So	far	we	have	explained	how	drawings	from	this	Ω’	may	be	modeled	by	the

multinomial	distribution.	In	the	multinomial	distribution,	the	probability	of	each
outcome	may	be	different.	However,	suppose	that	the	for	our	random	variable	X,
we	have	a	constant	P(X	=	xj)	=1/n,	for	all	j	=	1,	2,	….,	n.	Since	all	values	xj	have
the	same	probability	(i.e.,	 they	are	equally	 likely),	 the	distribution	 is	called	 the
discrete	uniform	distribution.	We	denote	this	distribution	by	X	~	DUΩ’.	We	use
the	specification	Ω’	to	indicate	that	X	is	a	random	variable	on	this	particular	state
space.
	 The	mean	of	a	discrete,	uniformly	distributed	random	variable	X	on	the	state
space	Ω’	=	{x1,	x2,	…	,	xn}	is	given	by
(9.22)
	

Note	 that	 equation	 (9.22)	 is	 equal	 to	 the	 arithmetic	 mean	 given	 by	 equation
(3.2)	in	Chapter	3.	The	variance	is

with	E(X)	from	equation	(9.22).
A	special	case	of	a	discrete	uniform	probability	space	is	given	when	Ω’	=	{1,2,

…	,n}.	The	resulting	mean,	according	to	equation	(9.22),	is	then,
(9.23)
	



For	 this	 special	 case	 of	 discrete	 uniform	 distribution	 of	 a	 random	 variable	X,
we	use	the	notation	X	~	DU	(n)	with	parameter	n.
Let’s	once	more	consider	the	outcome	of	a	toss	of	a	dice.	The	random	variable

number	of	dots,	X,	assumes	one	of	the	numerical	outcomes	1,	2,	3,	4,	5,	6	each
with	 a	 probability	 of	 1/6.	 Hence,	 we	 have	 a	 uniformly	 distributed	 discrete
random	 variable	X	 with	 the	 state	 space	 Ω’	 =	 {1,2,3,4,5,6}.	 Consequently,	 we
express	this	as	X	~	DU	(6).
	 Next,	we	want	to	consider	several	independent	trials,	say	n	=	10,	of	throwing
the	dice.	By	n1‚	n2,	n3,	n4,	n5,	and	n6,	we	denote	the	number	of	occurrence	of	the
values	1,	2,	3,	4,	5,	and	6,	respectively.	With	constant	probability	p1	=	p2	=	…	=
p6	=	1/6,	we	have	a	discrete	uniform	distribution,	that	is,	X	~	DU	(6).	Thus,	the
probability	of	obtaining	n1	=	1,	n2	=	2,	n3	=	1,	n4	=	3,	n5	=	1,	and	n6	=	2,	 for
example,	is

	



Application	to	the	Multinomial	Stock	Price	Model

	

Let	us	resume	the	stock	price	model	where	in	t	=	0	we	have	a	given	stock	price,
say	S0	=	$20,	where	there	are	three	possible	outcomes	at	the	end	of	the	period.	In
the	first	period,	the	stock	price	either	increases	to

remains	the	same	at

or	decreases	to

each	with	probability	1/3.	Again,	we	introduce	the	random	variable	Y	assuming
the	values	u	=	1.1,	 l	 =	 1.0,	 and	d	 =	 0.9	 and,	 thus,	 representing	 the	 percentage
change	of	the	stock	price	between	t	=	0	and	t	+	1	=	1.	The	stock	price	in	t	+	1	=	1
is	given	by	the	random	variable	S1	on	the	corresponding	state	space

Suppose,	we	have	n	=	10	successive	periods	in	each	of	which	the	stock	price
changes	 by	 the	 factors	 u,	 l,	 or	 d.	 Let	 the	 multinomial	 random	 variable	 X	 =
(X1,X2,X3)	 represent	 the	 total	of	up-,	zero-,	and	down-movements,	 respectively.
Suppose,	 after	 these	 n	 periods,	 we	 have	 nu	 =	 3	 up-movements,	 nl	 =	 3	 zero-
movements,	 and	 nd	 =	 4	 down-movements.	 According	 to	 equation	 (9.16),	 the
corresponding	probability	is

	This	probability	corresponds	to	a	stock	price	in	t	=	10	of

S10	=	S0	⋅	u3	⋅	l3	⋅	d4	=	$20	⋅	1.13	⋅	1	⋅	0.94	=	$17.47
		

	 This	stock	price	is	a	random	variable	given	by



S10	=	S0	⋅	Y1	⋅	Y2	⋅…⋅Y10
	

where	 the	 Yi	 are	 the	 corresponding	 relative	 changes	 (i.e.,	 factors)	 in	 the
periods	i	=	1,	2,	.	.	.,	10.	Note	that	S10	is	not	uniformly	distributed	even	though	it
is	 a	 function	 of	 the	 random	 variables	 Y1,	 Y2,	 .	 .	 .,	 Y10	 because	 its	 possible
outcomes	do	not	have	identical	probability.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Discrete	random	variables	
Probability	distribution	
Probability	law	
Discrete	law	
Discrete	cumulative	distribution	(cdf)	
Variance	
Standard	deviation	
Bernoulli	distribution	
Drawing	with	replacement	
Binomial	distribution	
Binomial	coefficient	
Binomial	tree	
Hypergeometric	distribution	
Multinomial	distribution	
Poisson	distribution	
Discrete	uniform	distribution
	APPENDIX	List	of	Discrete	Distributios
	



B(n,p),	Binomial	Probability	Distribution

	



B(n,p),	Binomial	Probability	Distribution

	

B(n,p),	Binomial	Probability	Distribution
	



B(n,p),	Binomial	Probability	Distribution

	



Poi(λ),	Poisson	Probability	Distribution
	
P(X	=	k)	=	 	for	Several	Values	of	Parameter	λ.
	





CHAPTER	10
	

Continuous	Probability	Distributions
	

In	this	chapter,	we	introduce	the	concept	of	continuous	probability	distributions.
We	present	 the	 continuous	 distribution	 function	with	 its	 corresponding	density
function,	 a	 function	 unique	 to	 continuous	 probability	 laws.	 In	 the	 chapter,
parameters	 of	 location	 and	 scale	 such	 as	 the	 mean	 and	 higher	 moments—
variance	and	skewness—are	defined	for	the	first	time	even	though	they	will	be
discussed	more	thoroughly	in	Chapter	13.
	 The	more	 commonly	 used	 distributions	 with	 appealing	 statistical	 properties
that	 are	 used	 in	 finance	 will	 be	 presented	 in	 Chapter	 11.	 In	 Chapter	 12,	 we
discuss	the	distributions	that	unlike	the	ones	discussed	in	Chapter	11	are	capable
of	dealing	with	extreme	events.
	



CONTINUOUS	PROBABILITY	DISTRIBUTION	DESCRIBED

	

Suppose	we	are	interested	in	outcomes	that	are	no	longer	countable.	Examples	of
such	outcomes	 in	 finance	are	daily	 logarithmic	 stock	 returns,	bond	yields,	 and
exchange	rates.	Technically,	without	limitations	caused	by	rounding	to	a	certain
number	 of	 digits,	 we	 could	 imagine	 that	 any	 real	 number	 could	 provide	 a
feasible	outcome	for	the	daily	logarithmic	return	of	some	stock.	That	is,	the	set
of	 feasible	 values	 that	 the	 outcomes	 are	 drawn	 from	 (i.e.,	 the	 space	 Ω)	 is
uncountable.	 The	 events	 are	 described	 by	 continuous	 intervals	 such	 as,	 for
example,	 (-0.05,	 0.05],	which,	 referring	 to	 our	 example	with	daily	 logarithmic
returns,	would	represent	the	event	that	the	return	at	a	given	observation	is	more
than	-5%	and	at	most	5%.104
	 In	 the	 context	 of	 continuous	 probability	 distributions,	 we	 have	 the	 real
numbers	R	as	the	uncountable	space	Ω.	The	set	of	events	is	given	by	the	Borel
σ-algebra	 B,	 which,	 as	 we	 recall	 from	 Chapter	 8,	 is	 based	 on	 the	 half-open
intervals	 of	 the	 form	 (-∞,a],	 for	 any	 real	a.	 The	 space	R	 and	 the	 σ-algebra	B
form	 the	measurable	space	 (R,B),	which	we	 are	 to	 deal	with,	 throughout	 this
chapter.
	



DISTRIBUTION	FUNCTION

	

To	be	able	to	assign	a	probability	to	an	event	in	a	unique	way,	in	the	context	of
continuous	 distributions	we	 introduce	 as	 a	 device	 the	 continuous	 distribution
function	F(a),	which	expresses	the	probability	that	some	event	of	the	sort	(-∞,a]
occurs	 (i.e.,	 that	 a	 number	 is	 realized	 that	 is	 at	 most	 a).105	 As	 with	 discrete
random	variables,	this	function	is	also	referred	to	as	the	cumulative	distribution
function	(cdf)	since	it	aggregates	the	probability	up	to	a	certain	value.
	 To	relate	to	our	previous	example	of	daily	logarithmic	returns,	the	distribution
function	 evaluated	 at	 say	 0.05,	 that	 is	F(0.05),	 states	 the	 probability	 of	 some
return	of	at	most	5%.106
	 For	values	x	approaching	-∞,	F	tends	to	zero,	while	for	values	x	approaching
∞,	 F	 goes	 to	 1.	 In	 between,	 F	 is	 monotonically	 increasing	 and	 right-
continuous.107	More	concisely,	we	list	these	properties	below:

The	 behavior	 in	 the	 extremes—that	 is	 when	 x	 goes	 to	 either	 -∞	 or	 ∞—is
provided	by	properties	1	and	2,	respectively.	Property	3	states	that	F	 should	be
monotonically	increasing	(i.e.,	never	become	less	for	increasing	values).	Finally,
property	4	guarantees	that	F	is	right-continuous.
Let	us	consider	in	detail	the	case	when	F(x)	is	a	continuous	distribution,	that

is,	 the	 distribution	 has	 no	 jumps.	 The	 continuous	 probability	 distribution
function	 F	 is	 associated	 with	 the	 probability	 measure	 P	 through	 the
relationship108

F	(	a	)	=	P	((	−∞,	a	])
	

that	is,	that	values	up	to	a	occur,	and
(10.1)
	



	Therefore,	from	equation	(10.1)	we	can	see	that	the	probability	of	some	event
related	 to	 an	 interval	 is	 given	 by	 the	 difference	 between	 the	 value	 of	F	 at	 the
upper	bound	b	of	the	interval	minus	the	value	of	F	at	the	lower	bound	a.	That	is,
the	entire	probability	that	an	outcome	of	at	most	a	occurs	is	subtracted	from	the
greater	event	that	an	outcome	of	at	most	b	occurs.	using	set	operations,	we	can
express	this	as

(a,	b]	=	(−∞,	b]	\	(−∞,	a]
		

	 For	example	as	we	have	 seen,	 the	event	of	 a	daily	 return	of	more	 than	 -5%
and,	 at	most,	 5%	 is	 given	by	 (-0.05,	 0.05].	So,	 the	probability	 associated	with
this	event	is	given	by	P((-0.05,	0.05])	=	F(0.05)	-	F(-0.05).
	 In	 contrast	 to	 a	 discrete	 probability	 distribution,	 a	 continuous	 probability
distribution	 always	 assigns	 zero	 probability	 to	 countable	 events	 such	 as
individual	outcomes	ai	or	unions	thereof	such	as

	That	is,

P	({ai	})	=	0	,	for	all	ai
		

	(10.2)
	

From	equation	(10.2),	we	can	apply	the	left-hand	side	of	equation	(10.1)	also
to	events	of	the	form	(a,b)	to	obtain
(10.3)
	

Thus,	 it	 is	 irrelevant	whether	we	 state	 the	 probability	 of	 the	 daily	 logarithmic
return	being	more	than	-5%	and	at	most	5%,	or	the	probability	of	the	logarithmic
return	being	more	 than	 -5%	and	 less	 than	5%.	They	 are	 the	 same	because	 the
probability	 of	 achieving	 a	 return	 of	 exactly	 5%	 is	 zero.	 With	 a	 space	 Ω
consisting	of	uncountably	many	possible	values	such	as	the	set	of	real	numbers,
for	 example,	 each	 individual	 outcome	 is	 unlikely	 to	 occur.	 So,	 from	 a



probabilistic	point	of	view,	one	should	never	bet	on	an	exact	return	or,	associated
with	it,	one	particular	stock	price.
Since	 countable	 sets	 produce	 zero	 probability	 from	a	 continuous	 probability

measure,	they	belong	to	the	so	called	P-null	sets.	All	events	associated	with	P-
null	sets	are	unlikely	events.
	 So,	 how	 do	we	 assign	 probabilities	 to	 events	 in	 a	 continuous	 environment?
The	answer	is	given	by	equation	(10.3).	That,	however,	presumes	knowledge	of
the	distribution	function	F.	The	next	task	is	to	define	the	continuous	distribution
function	F	more	specifically	as	explained	next.109
	



DENSITY	FUNCTION

	

The	continuous	distribution	 function	F	 of	 a	 probability	measure	P	 on	 (R,B)	 is
defined	as	follows
(10.4)
	

where	f(t)	is	the	density	function	of	the	probability	measure	P.
We	 interpret	 equation	 (10.4)	 as	 follows.	 Since,	 at	 any	 real	 value	 x	 the

distribution	function	uniquely	equals	the	probability	that	an	outcome	of	at	most	x
is	realized,	that	is,	F(x)	=	P((-∞,x]),	equation	(10.4)	states	that	this	probability	is
obtained	by	integrating	some	function	f	over	the	interval	from	-∞	up	to	the	value
x.
	 What	is	the	interpretation	of	this	function	f?	The	function	f	is	the	marginal	rate
of	 growth	 of	 the	 distribution	 function	F	 at	 some	 point	 x.	We	 know	 that	 with
continuous	 distribution	 functions,	 the	 probability	 of	 exactly	 a	 value	 of	 x
occurring	 is	 zero.	However,	 the	 probability	 of	 observing	 a	 value	 inside	 of	 the
interval	between	x	and	some	very	small	step	to	the	right	Δx	(i.e.,	[x,	x	+	Δx))	 is
not	necessarily	zero.	Between	x	and	x	+	Δx,	the	distribution	function	F	increases
by	exactly	this	probability;	that	is,	the	increment	is
(10.5)
	

	Now,	if	we	divide	F	(	x	+	Δx)	−	F	(	x)	from	equation	(10.5)	by	the	width	of	the
interval,	Δx,	we	obtain	the	average	probability	or	average	increment	of	F	per	unit
step	on	this	interval.	If	we	reduce	the	step	size	Δx	to	an	infinitesimally	small	step
∂x,	 this	 average	 approaches	 the	marginal	 rate	 of	 growth	 of	F	 at	 x,	 which	we
denote	f;	that	is,110

(10.6)
	

	At	 this	 point,	 let	 us	 recall	 the	 histogram	with	 relative	 frequency	 density	 for



class	data	as	explained	in	Chapter	4.	Over	each	class,	the	height	of	the	histogram
is	given	by	 the	density	of	 the	 class	divided	by	 the	width	of	 the	 corresponding
class.	Equation	(10.6)	is	somewhat	similar	if	we	think	of	it	this	way.	We	divide
the	probability	that	some	realization	should	be	inside	of	the	small	interval.	And,
by	letting	the	interval	shrink	to	width	zero,	we	obtain	the	marginal	rate	of	growth
or,	equivalently,	the	derivative	of	F.111	Hence,	we	call	 f	 the	probability	density
function	or	simply	the	density	function.	Commonly,	it	is	abbreviated	as	pdf.
	 Now,	when	we	refocus	on	equation	(10.4),	we	see	that	the	probability	of	some
occurrence	of	at	most	x	is	given	by	integration	of	the	density	function	f	over	the
interval	 (-∞,x].	 Again,	 there	 is	 an	 analogy	 to	 the	 histogram.	 The	 relative
frequency	of	some	class	is	given	by	the	density	multiplied	by	the	corresponding
class	 width.	 With	 continuous	 probability	 distributions,	 at	 each	 value	 t,	 we
multiply	the	corresponding	density	f(t)	by	the	infinitesimally	small	interval	width
dt.	 Finally,	we	 integrate	 all	 values	 of	 f	 (weighted	 by	dt)	 up	 to	 x	 to	 obtain	 the
probability	for	(-∞,x].	This,	again,	is	similar	to	histograms:	in	order	to	obtain	the
cumulative	relative	frequency	at	some	value	x,	we	compute	the	area	covered	by
the	histogram	up	to	value	x.112
	 In	 Figure	 10.1,	 we	 compare	 the	 histogram	 and	 the	 probability	 density
function.	The	histogram	with	density	h	is	indicated	by	the	dotted	lines	while	the
density	function	f	is	given	by	the	solid	line.	We	can	now	see	how	the	probability
P((-∞,x*])	is	derived	through	integrating	the	marginal	rate	f	over	the	interval	(-
∞,x*]	with	respect	to	the	values	t.	The	resulting	total	probability	is	then	given	by
the	 area	A1	 of	 the	 example	 in	 Figure	 10.1.113	 This	 is	 analogous	 to	 class	 data
where	we	would	 tally	 the	areas	of	 the	 rectangles	whose	upper	bounds	are	 less
than	x*	 and	 the	part	of	 the	area	of	 the	 rectangle	containing	x*	 up	 to	 the	dash-
dotted	vertical	line.
	



Requirements	on	the	Density	Function

	

Given	the	uncountable	space	R	(i.e.,	the	real	numbers)	and	the	corresponding	set
of	events	given	by	 the	Borel	σ-algebra	B,	we	can	give	a	more	 rigorous	 formal
definition	of	the	density	function.	The	density	function	f	of	probability	measure
P	 on	 the	 measurable	 space	 (R,B)	 with	 distribution	 function	 F	 is	 a	 Borel-
measurable	 function	 f	 satisfying	 Area	 A1	 represents	 probability	 P((-∞,x*])
derived	through	integration	of	f(t)	with	respect	to	t	between	-∞	and	x*.
(10.7)
	

with	f	(t	)	≥	0,	for	all	t	∈	R	and

Recall	that	by	the	requirement	of	Borel-measurability	described	in	Chapter	8,
we	simply	assure	that	the	real-valued	images	generated	by	f	have	their	origins	in
the	 Borel	 σ-algebra	 B.	 Informally,	 for	 any	 value	 y	 =	 f(t),	 we	 can	 trace	 the
corresponding	origin(s)	 t	 in	B	 that	 is	 (are)	mapped	 to	y	 through	 the	function	 f.
Otherwise,	we	might	 incur	problems	computing	 the	 integral	 in	 equation	(10.7)
for	reasons	that	are	beyond	the	scope	of	this	chapter.114
	 From	definition	of	the	density	function	given	by	equation	(10.7),	we	see	that	it
is	 reasonable	 that	 f	 be	a	 function	 that	 exclusively	assumes	nonnegative	values.
Although	we	have	not	mentioned	this	so	far,	it	is	immediately	intuitive	since	f	is
the	marginal	rate	of	growth	of	the	continuous	distribution	function	F.	At	each	t,
f(t)	·	dt	represents	the	limit	probability	that	a	value	inside	of	the	interval	(t,	t	+
dt]	 should	 occur,	 which	 can	 never	 be	 negative.	 Moreover,	 we	 require	 the
integration	 of	 f	 over	 the	 entire	 domain	 from	 -∞	 to	 ∞	 to	 yield	 1,	 which	 is
intuitively	reasonable	since	this	integral	gives	the	probability	that	any	real	value
occurs.
	FIGURE	10.2	Graphical	Interpretation	of	the	Equality	A	=	∫f(x)dx	=	1
	



The	requirement

implies	 the	 graphical	 interpretation	 that	 the	 area	 enclosed	 between	 the	 graph
of	 f	over	 the	entire	 interval	 (-∞,	∞)	and	 the	horizontal	axis	equals	one.	This	 is
displayed	 in	 Figure	 10.2	 by	 the	 shaded	 area	 A.	 For	 example,	 to	 visualize
graphically	what	is	meant	by

in	equation	(10.7),	we	 can	 use	 Figure	 10.1.	 Suppose	 the	 value	 x	 were	 located
at	 the	 intersection	 of	 the	 vertical	 dash-dotted	 line	 and	 the	 horizontal	 axis	 (i.e.,
x*).	Then,	the	shaded	area	A1	represents	the	value	of	the	integral	and,	therefore,
the	probability	of	occurrence	of	a	value	of	at	most	x.	To	interpret

graphically,	look	at	Figure	10.3.	The	area	representing	the	value	of	 the	 interval
is	indicated	by	A.	So,	the	probability	of	some	occurrence	of	at	least	a	and	at	most
b	is	given	by	A.	Here	again,	the	resemblance	to	the	histogram	becomes	obvious
in	that	we	divide	one	area	above	some	class,	for	example,	by	the	total	area,	and
this	ratio	equates	the	according	relative	frequency.
For	the	sake	of	completeness,	it	should	be	mentioned	without	indulging	in	the

reasoning	 behind	 it	 that	 there	 are	 probability	measures	P	 on	 (R,B)	 even	 with
continuous	distribution	functions	that	do	not	have	density	functions	as	defined	in
equation	(10.7).	But,	 in	 our	 context,	we	will	 only	 regard	 probability	measures



with	continuous	distribution	functions	with	associated	density	functions	so	 that
the	equalities	of	equation	(10.7)	are	fulfilled.
	FIGURE	10.3	Graphical	Interpretation	of	A	=	∫	f	(x)dx	a
	

Sometimes,	alternative	representations	equivalent	to	equation	(10.7)	are	used.
Typically,	the	following	expressions	are	used
(10.8a)
	

	(10.8b)
	

(10.8c)
	

(10.8d)
	

Note	 that	 in	 the	 first	 two	equalities,	 (10.8a)	and	 (10.8b),	 the	 indicator	 function
1(a,b	]	 is	used.	The	indicator	function	is	explained	in	Appendix	A.	The	last	 two
equalities,	(10.8c)	and	(10.8d),	can	be	used	even	if	 there	is	no	density	function
and,	 therefore,	 are	 of	 a	 more	 general	 form.	We	 will,	 however,	 predominantly
apply	the	representation	given	by	equation	(10.7)	and	occasionally	resort	 to	 the
last	two	forms	above.



We	introduce	the	term	support	at	this	point	to	refer	to	the	part	of	the	real	line
where	the	density	is	truly	positive,	that	is,	all	those	x	where	f(x)	>	0.
	



CONTINUOUS	RANDOM	VARIABLE

	

So	 far,	 we	 have	 only	 considered	 continuous	 probability	 distributions	 and
densities.	We	yet	have	to	introduce	the	quantity	of	greatest	interest	to	us	in	this
chapter,	 the	 continuous	 random	 variable.	 For	 example,	 stock	 returns,	 bond
yields,	and	exchange	rates	are	usually	modeled	as	continuous	random	variables.

	
Informally	 stated,	 a	 continuous	 random	 variable	 assumes	 certain	 values

governed	 by	 a	 probability	 law	 uniquely	 linked	 to	 a	 continuous	 distribution
function	 F.	 Consequently,	 it	 has	 a	 density	 function	 associated	 with	 its
distribution.	 Often,	 the	 random	 variable	 is	 merely	 described	 by	 its	 density
function	rather	than	the	probability	law	or	the	distribution	function.
	 By	convention,	 let	us	 indicate	 the	random	variables	by	capital	 letters.	Recall
from	Chapter	8	that	any	random	variable,	and	in	particular	a	continuous	random
variable	X,	is	a	measurable	function.	Let	us	assume	that	X	is	a	function	from	the
probability	space	Ω	=	ℝ	into	the	state	space	Ω’	=	R.	That	 is,	origin	and	 image
space	 coincide.115	 The	 corresponding	 σ-algebrae	 containing	 events	 of	 the
elementary	outcomes	ω	and	the	events	in	the	image	space	X(ω),	respectively,	are
both	given	by	the	Borel	σ-algebra	B.	Now	we	can	be	more	specific	by	requiring
the	continuous	random	variable	X	to	be	a	B	-	B-measurable	real-valued	function.
That	implies,	for	example,	that	any	event	X	∈	(a,b],	which	is	in	B,	has	its	origin
X-1((a,b])	 in	B	as	well.	Measurability	 is	 important	when	we	want	 to	derive	 the
probability	of	events	in	the	state	space	such	as	X	∈	(a,b]	from	original	events	in
the	 probability	 space	 such	 as	 X-1((a,b]).	 At	 this	 point,	 one	 should	 not	 be
concerned	 that	 the	 theory	 is	 somewhat	overwhelming.	 It	will	become	easier	 to
understand	once	we	move	to	the	examples.
	



COMPUTING	 PROBABILITIES	 FROM	 THE	 DENSITY
FUNCTION

	

The	 relationship	 between	 the	 continuous	 random	 variable	X	 and	 its	 density	 is
given	by	the	following.116	Suppose	X	has	density	f,	then	the	probability	of	some
event	X	≤	x	or	X	∈	(a,b]	is	computed	as
(10.9)
	

which	is	equivalent	to	F(x)	and	F(b)	-	F(a)	respectively,	because	of	the	one-to-
one	relationship	between	the	density	f	and	the	distribution	function	F	of	X.
As	 explained	 earlier,	 using	 indicator	 functions,	 equations	 (10.9)	 could	 be

alternatively	written	as

	In	the	following,	we	will	introduce	parameters	of	location	and	spread	such	as
the	 mean	 and	 the	 variance,	 for	 example.117	 In	 contrast	 to	 the	 data-dependent
statistics,	 parameters	 of	 random	 variables	 never	 change.	 Some	 probability
distributions	can	be	sufficiently	described	by	their	parameters.	They	are	referred
to	 as	 parametric	 distributions.	 For	 example,	 for	 the	 normal	 distribution	 we
introduce	 shortly,	 it	 is	 sufficient	 to	know	 the	parameters	mean	and	variance	 to
completely	determine	the	corresponding	distribution	function.	That	is,	the	shape
of	parametric	distributions	is	governed	only	by	the	respective	parameters.
	



LOCATION	PARAMETERS

	

The	most	important	location	parameter	is	the	mean	that	is	also	referred	to	as	the
first	moment.	It	is	the	only	location	parameter	presented	in	this	chapter.	Others
will	be	introduced	in	Chapter	13.
	 Analogous	 to	 the	 discrete	 case,	 the	 mean	 can	 be	 thought	 of	 as	 an	 average
value.	It	is	the	number	that	one	would	have	to	expect	for	some	random	variable
X	with	given	density	function	f.	The	mean	is	defined	as	follows:	Let	X	be	a	real-
valued	random	variable	on	the	space	Ω	=	R	with	Borel	σ-algebra	B.	The	mean	is
given	by
(10.10)
	

in	 case	 the	 integral	 on	 the	 right-hand	 side	 of	 equation	 (10.10)	 exists	 (i.e.,	 is
finite).	Typically,	the	mean	parameter	is	denoted	as	µ.
In	equation	(10.10)	 that	 defines	 the	mean,	we	weight	 each	 possible	 value	 x

that	 the	 random	variable	X	might	 assume	by	 the	product	 of	 the	density	 at	 this
value,	f(x),	and	step	size	dx.	Recall	that	the	product	f(x)	·	dx	can	be	thought	of	as
the	limiting	probability	of	attaining	the	value	x.	Finally,	the	mean	is	given	as	the
integral	 over	 these	 weighted	 values.	 Thus,	 equation	 (10.10)	 is	 similarly
understood	 as	 the	definition	of	 the	mean	of	 a	 discrete	 random	variable	where,
instead	of	integrated,	the	probability-weighted	values	are	summed.
	



DISPERSION	PARAMETERS

	

We	 turn	 our	 focus	 towards	 measures	 of	 spread	 or,	 in	 other	 words,	 dispersion
measures.	 Again,	 as	 with	 the	 previously	 introduced	 measures	 of	 location,	 in
probability	 theory	 the	 dispersion	 measures	 are	 universally	 given	 parameters.
Here,	we	 introduce	 the	moments	 of	 higher	 order,	 variance,	 standard	deviation,
and	the	skewness	parameters.
	



Moments	of	Higher	Order

	

It	might	sometimes	be	necessary	 to	compute	moments	of	higher	order.	As	we
already	know	from	descriptive	statistics,	the	mean	is	the	moment	of	order	one.118
However,	 one	might	 not	 be	 interested	 in	 the	 expected	 value	 of	 some	 quantity
itself	but	of	its	square.	If	we	treat	this	quantity	as	a	continuous	random	variable,
we	compute	what	is	the	second	moment.
	 Let	X	 be	 a	 real-valued	 random	 variable	 on	 the	 space	Ω	 =	 R	with	 Borel	 σ-
algebra	B.	The	moment	of	order	k	is	given	by	the	expression
(10.11)
	

in	 case	 the	 integral	 on	 the	 right-hand	 side	 of	 equation	 (10.11)	 exists	 (i.e.,	 is
finite).
From	equation	(10.11),	we	learn	that	higher-order	moments	are	equivalent	to

simply	computing	the	mean	of	X	taken	to	the	k-th	power.
	

Variance

	
The	variance	involves	computing	the	expected	squared	deviation	from	the	mean
E(X)	=	μ	of	some	random	variable	X.	For	a	continuous	random	variable	X,	 the
variance	 is	 defined	 as	 follows:	Let	X	 be	 a	 real-valued	 random	variable	 on	 the
space	Ω	=	R	with	Borel	σ-algebra	B,	then	the	variance	is
(10.12)
	

in	 case	 the	 integral	 on	 the	 right-hand	 side	 of	 equation	 (10.12)	 exists	 (i.e.,	 is
finite).	Often,	the	variance	in	equation	(10.12)	is	denoted	by	the	symbol	σ2.
In	equation	(10.12),	at	each	value	x,	we	square	 the	deviation	 from	 the	mean



and	weight	it	by	the	density	at	x	times	the	step	size	dx.	The	latter	product,	again,
can	be	viewed	as	the	limiting	probability	of	the	random	variable	X	assuming	the
value	 x.	 The	 square	 inflates	 large	 deviations	 even	 more	 compared	 to	 smaller
ones.	For	some	random	variable	to	have	a	small	variance,	it	is	essential	to	have	a
quickly	vanishing	density	in	the	parts	where	the	deviations	(x	-	μ)	become	large.

	
All	 distributions	 that	we	 discuss	 in	 this	 chapter	 and	 the	 two	 that	 follow	 are

parametric	distributions.	For	some	of	them,	it	is	enough	to	know	the	mean	µ	and
variance	 σ2	 and	 consequently,	 we	 will	 resort	 to	 these	 two	 parameters	 often.
Historically,	the	variance	has	often	been	given	the	role	of	risk	measure	in	context
of	 portfolio	 theory.	 Suppose	 we	 have	 two	 random	 variables	 R1	 and	 R2
representing	the	returns	of	two	stocks,	S1	and	S2,	with	equal	means	µR1	and	µR2	,

respectively,	so	that	µR1	=	µR2	.	Moreover,	let	R1	and	R2	have	variances	 and	

respectively,	with	 .	Then,	omitting	further	theory,	at	this	moment,	we
prefer	 S1	 to	 S2	 because	 of	 the	 S1’s	 smaller	 variance.	 We	 demonstrate	 this	 in
Figure	10.4.	 The	 dashed	 line	 represents	 the	 graph	 of	 the	 first	 density	 function
while	the	second	one	is	depicted	by	the	solid	line.	Both	density	functions	yield
the	 same	 mean	 (i.e.,	 μ1	 =	 μ2).	 However,	 the	 variance	 from	 the	 first	 density
function,	given	by	the	dashed	graph,	is	smaller	than	that	of	the	solid	graph	(i.e.,	

).	 Thus,	 using	 variance	 as	 the	 risk	 measure	 and	 resorting	 to	 density
functions	 that	 can	 be	 sufficiently	 described	 by	 the	mean	 and	variance,	we	 can
state	 that	density	function	for	S1	 (dashed	graph)	 is	preferable.	We	can	interpret
the	figure	as	follows.
	FIGURE	10.4	Two	Denisity	Functions	Yielding	Common	Means,	µ1	=	µ2	,	but
Different	Variances,	
	



Since	the	variance	of	the	distribution	with	the	dashed	density	graph	is	smaller,
the	 probability	mass	 is	 less	 dispersed	 over	 all	 x	 values.	 Hence,	 the	 density	 is
more	condensed	about	the	center	and	more	quickly	vanishing	in	the	extreme	left
and	 right	 ends,	 the	 so-called	 tails.	 On	 the	 other	 hand,	 the	 second	 distribution
with	the	solid	density	graph	has	a	larger	variance,	which	can	be	verified	by	the
overall	flatter	and	more	expanded	density	function.	About	the	center,	it	is	lower
and	 less	 compressed	 than	 the	 dashed	 density	 graph,	 implying	 that	 the	 second
distribution	 assigns	 less	 probability	 to	 events	 immediately	 near	 the	 center.
However,	the	density	function	of	the	second	distribution	decays	more	slowly	in
the	 tails	 than	 the	 first,	 which	 means	 that	 under	 the	 governance	 of	 the	 latter,
extreme	events	are	less	likely	than	under	the	second	probability	law.
	

Standard	Deviation

	
The	 parameter	 related	 to	 the	 variance	 is	 the	 standard	 deviation.	 As	we	 know
from	descriptive	statistics	described	earlier	in	this	book,	the	standard	deviation	is
the	positive	square	root	of	 the	variance.	That	 is,	 let	X	be	a	 real-valued	random
variable	on	the	space	Ω	=	R	with	Borel	σ-algebra	B.	Furthermore,	 let	 its	mean
and	 variance	 be	 given	 by	 µ	 and	 σ2,	 respectively.	 The	 standard	 deviation	 is
defined	as



	 For	 example,	 in	 the	 context	 of	 stock	 returns,	 one	 often	 expresses	 using	 the
standard	 deviation	 the	 return’s	 fluctuation	 around	 its	 mean.	 The	 standard
deviation	is	often	more	appealing	than	the	variance	since	the	latter	uses	squares,
which	 are	 a	 different	 scale	 from	 the	 original	 values	 of	 X.	 Even	 though
mathematically	 not	 quite	 correct,	 the	 standard	 deviation,	 denoted	 by	 σ,	 is
commonly	interpreted	as	the	average	deviation	from	the	mean.
	

Skewness

	
Consider	the	density	function	portrayed	in	Figure	10.5.	The	figure	is	obviously
symmetric	 about	 some	 location	 parameter	µ	 in	 the	 sense	 that	 f(-x	 -	 μ)	 =	 f(x	 -
μ).119	 Suppose	 instead	 that	we	 encounter	 a	 density	 function	 f	 of	 some	 random
variable	X	that	is	depicted	in	Figure	10.6.	This	figure	is	not	symmetric	about	any
location	parameter.	Consequently,	some	quantity	stating	the	extent	to	which	the
density	function	is	deviating	from	symmetry	is	needed.	This	is	accomplished	by
a	 parameter	 referred	 to	 as	 skewness.	 This	 parameter	 measures	 the	 degree	 to
which	the	density	function	leans	to	either	one	side,	if	at	all.
	FIGURE	10.5	Example	of	Some	Symmetric	Density	Function	f(x)
	

FIGURE	10.6	Example	of	Some	Asymmetric	Density	Function	f(x)



	

Let	X	 be	 a	 real-valued	 random	 variable	 on	 the	 space	Ω	 =	ℝ	 with	 Borel	 σ-
algebra	B,	variance	σ2,	and	mean	μ	=	E(X).	The	skewness	parameter,	denoted	by
γ,	is	given	by

The	 skewness	 measure	 given	 above	 is	 referred	 to	 as	 the	 Pearson	 skewness
measure.	Negative	values	 indicate	skewness	 to	 the	 left	 (i.e.,	 left	skewed)	while
skewness	to	the	right	is	given	by	positive	values	(i.e.,	right	skewed).
The	design	of	the	skewness	parameter	follows	the	following	reasoning.	In	the

numerator,	 we	 measure	 the	 distance	 from	 every	 value	 x	 to	 the	 mean	E(X)	 of
random	variable	X.	 To	 overweight	 larger	 deviations,	we	 take	 them	 to	 a	 higher
power	than	one.	In	contrast	to	the	variance	where	we	use	squares,	in	the	case	of
skewness	 we	 take	 the	 third	 power	 since	 three	 is	 an	 odd	 number	 and	 thereby
preserves	 both	 the	 signs	 and	 directions	 of	 the	 deviations.	 Due	 to	 this	 sign
preservation,	 symmetric	 density	 functions	 yield	 zero	 skewness	 since	 all
deviations	 to	 the	 left	 of	 the	 mean	 cancel	 their	 counterparts	 to	 the	 right.	 To
standardize	the	deviations,	we	scale	them	by	dividing	by	the	standard	deviation,
also	 taken	 to	 the	 third	power.	So,	 the	skewness	parameter	 is	not	 influenced	by
the	 standard	 deviation	 of	 the	 distributions.	 If	 we	 did	 not	 scale	 the	 skewness
parameter	in	this	way,	distribution	functions	with	density	functions	having	large
variances	would	always	produce	larger	skewness	even	though	the	density	is	not
really	tilted	more	pronouncedly	than	some	similar	density	with	smaller	variance.
	



We	graphically	 illustrate	 the	 skewness	parameter	 γ	 in	Figure	10.6,	 for	 some
density	function	f(x).	A	density	function	f	that	assumes	positive	values	f(x)	only
for	positive	real	values	(i.e.,	x	>	0)	but	zero	for	x	≤	0	is	shown	in	the	figure.	The
random	 variable	 X	 with	 density	 function	 f	 has	 mean	 μ	 =	 1.65.	 Its	 standard
deviation	is	computed	as	σ	=	0.957.	The	value	of	the	skewness	parameter	is	γ	=
0.7224,	indicating	a	positive	skewness.	The	sign	of	the	skewness	parameter	can
be	easily	verified	by	analyzing	the	density	graph.	The	density	peaks	just	a	little
to	the	right	of	the	leftmost	value	x	=	0.	Towards	the	left	tail,	the	density	decays
abruptly	and	vanishes	at	zero.	Towards	the	right	tail,	things	look	very	different	in
that	 f	 decays	 very	 slowly	 approaching	 a	 level	 of	 f	 =	 0	 as	 x	 goes	 to	 positive
infinity.120
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Continuous	intervals	
Continuous	probability	distributions	
Measurable	space	
Continuous	distribution	function	
Cumulative	distribution	function	(cdf)	
Monotonically	
Monotonically	increasing	and	right	continuous	
P-null	sets	
Density	function	
Marginal	rate	of	growth	
Derivative	of	F	
Probability	density	function	or	density	function	(pdf)	
Density	function	of	f	
Support	
Continuous	random	variable	
Measurable	function	
State	space	
Parametric	distributions	
Mean	
First	moment	
Moments	of	higher	order	
Second	moment	
Moment	of	order	k	
Variance	
Tails	
Standard	deviation	
Skewness	
Pearson	skewness	
Left	skewed	
Right	skewed
	



CHAPTER	11
	

Continuous	Probability	Distributions	with	Appealing	Statistical
Properties

	

In	 the	 preceding	 chapter,	we	 introduced	 the	 concept	 of	 continuous	 probability
distributions.	In	this	chapter,	we	discuss	the	more	commonly	used	distributions
with	 appealing	 statistical	 properties	 that	 are	 used	 in	 finance.	 The	 distributions
discussed	are	the	normal	distribution,	the	chi-square	distribution,	the	Student’s	t-
distribution,	the	Fisher’s	F-distribution,	the	exponential	distribution,	the	gamma
distribution	(including	the	special	Erlang	distribution),	the	beta	distribution,	and
the	lognormal	distribution.	Many	of	the	distributions	enjoy	widespread	attention
in	 finance,	 or	 statistical	 applications	 in	 general,	 due	 to	 their	 well-known
characteristics	or	mathematical	simplicity.	However,	as	we	emphasize,	the	use	of
some	of	them	might	be	ill-suited	to	replicate	the	real-world	behavior	of	financial
returns.
	



NORMAL	DISTRIBUTION

	

The	first	distribution	we	discuss	is	the	normal	distribution.	It	is	the	distribution
most	commonly	used	 in	 finance	despite	 its	many	 limitations.	This	distribution,
also	referred	to	as	the	Gaussian	distribution	(named	after	the	mathematician	and
physicist	 C.	 F.	 Gauss),	 is	 characterized	 by	 the	 two	 parameters:	 mean	 (µ)	 and
standard	deviation	(σ).	The	distribution	is	denoted	by	N(μ,σ2).	When	μ	=	0	and
σ2	=	1,	then	we	obtain	the	standard	normal	distribution.
	 For	x	∈	R,	the	density	function	for	the	normal	distribution	is	given	by
(11.1)
	

The	 density	 in	 equation	 (11.1)	 is	 always	 positive.	 Hence,	 we	 have	 support
(i.e.,	positive	density)	on	the	entire	real	line.	Furthermore,	the	density	function	is
symmetric	about	µ.	A	plot	of	the	density	function	for	several	parameter	values	is
given	in	Figure	11.1.	As	can	be	seen,	the	value	of	µ	results	in	a	horizontal	shift
from	 0	 while	 σ	 inflates	 or	 deflates	 the	 graph.	 A	 characteristic	 of	 the	 normal
distribution	is	that	the	densities	are	bell	shaped.
FIGURE	11.1	Normal	Density	Function	for	Various	Parameter	Values
	



A	problem	 is	 that	 the	distribution	 function	 cannot	 be	 solved	 for	 analytically
and	 therefore	has	 to	be	approximated	numerically.	 In	 the	particular	case	of	 the
standard	 normal	 distribution,	 the	 values	 are	 tabulated.	 Standard	 statistical
software	provides	the	values	for	the	standard	normal	distribution	as	well	as	most
of	the	distributions	presented	in	this	chapter.	The	standard	normal	distribution	is
commonly	denoted	by	the	Greek	letter	Φ	such	that	we	have	Φ	(	x)	=	F	(	x)	=	P	(
X	≤	x)	,	for	some	standard	normal	random	variable	X.	In	Figure	11.2,	graphs	of
the	distribution	function	are	given	for	three	different	sets	of	parameters.
	



Properties	of	the	Normal	Distribution

	

The	 normal	 distribution	 provides	 one	 of	 the	 most	 important	 classes	 of
probability	 distributions	due	 to	 two	 appealing	properties	 that	 generally	 are	 not
shared	by	all	distributions:
FIGURE	11.2	Normal	Distribution	Function	for	Various	Parameter	Values
	

	
Property	1.	The	distribution	is	location-scale	invariant.

	
Property	2.	The	distribution	is	stable	under	summation.
		

Property	 1,	 the	 location-scale	 invariance	 property,	 guarantees	 that	 we	 may
multiply	 X	 by	 b	 and	 add	 a	 where	 a	 and	 b	 are	 any	 real	 numbers.	 Then,	 the
resulting	a	+	b	⋅	X	is,	again,	normally	distributed,	more	precisely,	N	(	a	+	µ,	bσ	).
Consequently,	a	normal	random	variable	will	still	be	normally	distributed	if	we
change	the	units	of	measurement.	The	change	into	a	+	b	⋅	X	can	be	interpreted	as
observing	the	same	X,	however,	measured	in	a	different	scale.	In	particular,	if	a



and	b	are	such	that	the	mean	and	variance	of	the	resulting	a	+	b	⋅	X	are	0	and	1,
respectively,	then	a	+	b	⋅	X	is	called	the	standardization	o	f	X.

	
Property	 2,	 stability	 under	 summation,	 ensures	 that	 the	 sum	 of	 an	 arbitrary

number	 n	 of	 normal	 random	 variables,	 X1,	 X2,	 …,	 Xn	 is,	 again,	 normally
distributed	 provided	 that	 the	 random	 variables	 behave	 independently	 of	 each
other.	This	is	important	for	aggregating	quantities.
	 These	properties	are	illustrated	later	in	the	chapter.

	
Furthermore,	the	normal	distribution	is	often	mentioned	in	the	context	of	the

central	 limit	 theorem.	 It	 states	 that	 a	 sum	 of	 random	 variables	 with	 identical
distributions	 and	 being	 independent	 of	 each	 other,	 results	 in	 a	 normal	 random
variable.121	We	restate	this	formally	as	follows:
	 Let	X1,	X2,	…,	Xn	be	identically	distributed	random	variables	with	mean	E	(	Xi
)	=	µ	and	Var	(	Xi	)	=	σ	2	and	do	not	influence	the	outcome	of	each	other	(i.e.,	are
independent).	Then,	we	have
(11.2)
	

as	 the	 number	 n	 approaches	 infinity.	 The	D	 above	 the	 convergence	 arrow	 in
equation	 (11.2)	 indicates	 that	 the	 distribution	 function	 of	 the	 left	 expression
convergences	to	the	standard	normal	distribution.
Generally,	 for	 n	 =	 30	 in	 equation	 (11.2),	 we	 consider	 equality	 of	 the

distributions;	 that	 is,	 the	 left-hand	 side	 is	N(0,1)	 distributed.	 In	 certain	 cases,
depending	on	the	distribution	of	the	Xi	and	the	corresponding	parameter	values,
n	<	30	justifies	the	use	of	the	standard	normal	distribution	for	the	left-hand	side
of	equation	(11.2).	 If	 the	Xi	 are	Bernoulli	 random	variables,	 that	 is,	Xi	 ~	B(p),
with	 parameter	 p	 such	 that	 n	 ·	 p	 ≥	 5,	 then	 we	 also	 assume	 equality	 in	 the
distributions	 in	equation	(11.2).	Depending	on	p,	 this	can	mean	 that	n	 is	much
smaller	than	30.

	
These	properties	make	the	normal	distribution	the	most	popular	distribution	in

finance.	But	 this	popularity	is	somewhat	contentious,	however,	for	reasons	that



will	be	given	as	we	progress	in	this	and	the	following	chapters.
	 The	last	property	we	will	discuss	of	the	normal	distribution	that	is	shared	with
some	other	distributions	is	the	bell	shape	of	the	density	function.	This	particular
shape	helps	in	roughly	assessing	the	dispersion	of	the	distribution	due	to	a	rule
of	thumb	commonly	referred	to	as	the	empirical	rule.	Due	to	this	rule,	we	have

P	(	X	∈	[µ	±	σ]	)	=	F	(µ	+	σ	)	−	F	(µ−σ)	≈	68%
	 P(X	∈[µ	±	2σ])	=	F	(µ	+	2σ)	−	F	(µ	−	2σ)	≈	95%
	 P(X	∈[µ	±	3σ])	=	F	(µ	+	3σ)	−	F	(µ	−	3σ)	≈	100%
		

	 The	above	states	that	approximately	68%	of	the	probability	is	given	to	values
that	 lie	 in	 an	 interval	 one	 standard	 deviation	 σ	 about	 the	mean	µ.	About	 95%
probability	is	given	to	values	within	2σ	to	the	mean,	while	nearly	all	probability
is	assigned	to	values	within	3σ	from	the	mean.
	 By	 comparison,	 the	 so	 called	Chebychev	 inequalities	 valid	 for	 any	 type	 of
distribution—so	not	necessarily	bell-shaped—yield

P	(	X	∈	[µ	±	σ])	≈	0%
	 P	(	X	∈	[µ	±	2σ	]	)	≈	75%
	 P	(	X	∈	[µ	±	3σ	]	)	≈	89%
	

which	 provides	 a	much	 coarser	 assessment	 than	 the	 empirical	 rule	 as	 we	 can
see,	 for	 example,	by	 the	assessed	0%	of	data	 contained	 inside	of	one	 standard
deviation	about	the	mean.
	



Applications	to	Stock	Returns

	

Applying	Properties	1	and	2	to	Stock	Returns

	
With	 respect	 to	Property	 1,	 consider	 an	 example	 of	 normally	 distributed	 stock
returns	 r	 with	 mean	 µ.	 If	 µ	 is	 nonzero,	 this	 means	 that	 the	 returns	 are	 a
combination	 of	 a	 constant	µ	 and	 random	 behavior	 centered	 about	 zero.	 If	 we
were	 only	 interested	 in	 the	 latter,	 we	 would	 subtract	 µ	 from	 the	 returns	 and
thereby	 obtain	 a	 new	 random	 variable	 r̃	 =	r	 −	 µ	 ,	 which	 is	 again	 normally
distributed.

	
With	 respect	 to	 Property	 2,	 we	 give	 two	 examples.	 First,	 let	 us	 present	 the

effect	 of	 aggregation	 over	 time.	We	 consider	 daily	 stock	 returns	 that,	 by	 our
assumption,	 follow	a	normal	 law.	By	adding	 the	 returns	 from	each	 trading	day
during	a	particular	week,	we	obtain	the	week’s	return	as	rw	=	rMo	+	rTu	+	…	+	rFr
where	rMo,	rTu,	…	rFr	are	the	returns	from	Monday	through	Friday.	The	weekly
return	rw	is	normally	distributed	as	well.	The	second	example	applies	to	portfolio
returns.	Consider	a	portfolio	consisting	of	n	different	stocks,	each	with	normally
distributed	 returns.	 We	 denote	 the	 corresponding	 returns	 by	 R1	 through	 Rn.
Furthermore,	in	the	portfolio	we	weight	each	stock	i	with	wi,	for	i	=	1,	2,	…,	n.
The	resulting	portfolio	 return	Rp	=	w1R1	+	w2R2	+	…	+	wnRn	 is	 also	a	normal
random	variable.
	

Using	the	Normal	Distribution	to	Approximate	the	Binomial
Distribution

	
Again	we	consider	the	binomial	stock	price	model	from	Chapter	9.	At	time	t	=	0,



the	stock	price	was	S0	=	$20.	At	time	t	=	1,	the	stock	price	was	either	up	or	down
by	10%	so	that	the	resulting	price	was	either	S0	=	$18	or	S0	=	$22.
	Both	up-and	down-movement	occurred	with	probability	P($18)	=	P($22)	=	0.5.
Now	we	extend	the	model	to	an	arbitrary	number	of	n	days.	Suppose	each	day	i,
i	=	1,	2,	…,	n,	the	stock	price	developed	in	the	same	manner	as	on	the	first	day.
That	is,	the	price	is	either	up	10%	with	50%	probability	or	down	10%	with	the
same	probability.	If	on	day	i	the	price	is	up,	we	denote	this	by	Xi	=	1	and	Xi	=	0	if
the	 price	 is	 down.	 The	Xi	 are,	 hence,	B(0.5)	 random	 variables.	 After,	 say,	 50
days,	 we	 have	 a	 total	 of	 Y	 =	X1	 +	X2	 +	…	 +	 X50	 up	 movements.	 Note	 that
because	of	 the	 assumed	 independence	of	 the	Xi,	 that	Y	 is	 a	B(50,	 0.5)	 random
variable	with	mean	n	·	p	=	25	and	variance	n	·	p	·	(1	-	p)	=	12.5.	Let	us	introduce

	 From	 the	 comments	 regarding	 equation	 (11.2),	 we	 can	 assume	 that	 Z50	 is
approximately	 N(25,12.5)	 distributed.	 So,	 the	 probability	 of	 at	 most	 15	 up-
movements,	for	example,	is	given	by	P(Y	≤	15)	=	Φ((15	−	25)	/	√12.5)	=	0.23%.
By	comparison,	 the	probability	of	no	more	than	five	up-movements	 is	equal	 to
P(Y	≤	5)	=	Φ((5	−	25)	/√12.5)	≈	0%.
	

Normal	Distribution	for	Logarithmic	Returns

	
As	another	example,	 let	X	be	some	random	variable	representing	a	quantitative
daily	market	dynamic	such	as	new	information	about	 the	economy.	A	dynamic
can	 be	 understood	 as	 some	 driving	 force	 governing	 the	 development	 of	 other
variables.	We	assume	that	it	is	normally	distributed	with	mean	E(X)	=	μ	=	0	and
variance	Var(X)	=	σ2	 =	 0.2.	 Formally,	we	would	write	X	 ~	N	 (0,	 0.2).	 So,	 on
average,	the	value	of	the	daily	dynamic	will	be	zero	with	a	standard	deviation	of
√0.2	 .	 In	addition,	we	introduce	a	stock	price	S	as	a	random	variable,	which	is
equal	to	S0	at	the	beginning.
	 After	 one	 day,	 the	 stock	 price	 is	 modeled	 to	 depend	 on	 the	 dynamic	 X	 as
follows

S1	=	S0	⋅	e	X



	
where	S1	 is	 the	 stock	 price	 after	 one	 day.	The	 exponent	X	 in	 this	 presentation
is	 referred	 to	 as	 a	 logarithmic	 return	 in	 contrast	 to	 a	multiplicative	 return	R
obtained	from	the	formula	R	=	S1/S0	-	1.	So,	for	example,	if	X	=	0.01,	S1	is	equal
to	e	0.01	⋅	S0.	That	is	almost	equal	to	1.01	⋅	S0	,	which	corresponds	to	an	increase
of	1%	relative	to	S0	.122	The	probability	of	X	being,	for	instance,	no	greater	than
0.01	after	one	day	is	given	by3

Consequently,	 after	 one	 day,	 the	 stock	 price	 increases,	 at	 most,	 by	 1%	 with
51%	probability,	that	is,	P(S1	≤	1.01	⋅	S0	)	≈	0.51.
Next,	 suppose	 we	 are	 interested	 in	 a	 five-day	 outlook	 where	 the	 daily

dynamics	Xi,	 i	=	1,	2,	…,	5	of	each	of	 the	following	consecutive	five	days	are
distributed	identically	as	X	and	independent	of	each	other.	Since	the	dynamic	is
modeled	 to	 equal	 exactly	 the	 continuously	 compounded	 return—that	 is
logarithmic	returns—we	refer	to	X	as	the	return	in	this	chapter.	For	the	resulting
five-day	returns,	we	introduce	the	random	variable	Y	=	X1	+	X2	+	…	+	X5	as	the
linear	 combination	 of	 the	 five	 individual	 daily	 returns.	 We	 know	 that	 Y	 is
normally	 distributed	 from	 Property	 2.	 More	 precisely,	 Y	 ~	 N	 (0,1).	 So,	 on
average,	the	return	tends	in	neither	direction,	but	the	volatility	measured	by	the
standard	 deviation	 is	 now	 √5	 ≈	 2.24	 times	 that	 of	 the	 daily	 return	 X.
Consequently,	the	probability	of	Y	not	exceeding	a	value	of	0.01	is	now,

	We	see	that	the	fivefold	variance	results	in	a	greater	likelihood	to	exceed	the
threshold	0.01,	that	is,

P	(Y	>	0.01)	=	1	−	P	(Y	≤	0.01)	≈	0.50	>	0.49	≈	P	(	X	>	0.01)
		

	We	model	the	stock	price	after	five	days	as

S5	=	S0	⋅	eY	=	S	0	⋅	e	X1	+	X2	+…+	X5

		
	So,	 after	 five	days,	 the	probability	 for	 the	 stock	price	 to	have	 increased	by	no



more	than	1%	relative	to	S0	is	equal	to

P	(	S5	≤	e0.01	⋅	S0	)	=	P	(	S5	≤	1.01	⋅	S0	)	≈	0.50
		

	 There	are	two	reasons	why	in	finance	logarithmic	returns	are	commonly	used.
First,	 logarithmic	 returns	are	often	easier	 to	handle	 than	multiplicative	 returns.
Second,	if	we	consider	returns	that	are	attributed	to	ever	shorter	periods	of	time
(e.g.,	 from	 yearly	 to	 monthly	 to	 weekly	 to	 daily	 and	 so	 on),	 the	 resulting
compounded	 return	 after	 some	 fixed	 amount	 of	 time	 can	 be	 expressed	 as	 a
logarithmic	return.	The	theory	behind	this	can	be	obtained	from	any	introductory
book	on	calculus.
	



CHI-SQUARE	DISTRIBUTION

	

Our	next	distribution	is	the	chi-square	distribution.	Let	Z	be	a	standard	normal
random	variable,	in	brief	Z	~	N	(0,1),	and	let	X	=	Z2.	Then	X	is	distributed	chi-
square	with	one	degree	of	freedom.	We	denote	this	as	X	~	χ2(1).	The	degrees	of
freedom	 indicate	 how	many	 independently	 behaving	 standard	 normal	 random
variables	the	resulting	variable	is	composed	of.	Here	X	is	just	composed	of	one,
namely	Z,	and	therefore	has	one	degree	of	freedom.

	
Because	Z	is	squared,	the	chi-square	distributed	random	variable	assumes	only

nonnegative	 values;	 that	 is,	 the	 support	 is	 on	 the	 nonnegative	 real	 numbers.	 It
has	mean	E(X)	=	1	and	variance	Var(X)	=	2.
	 In	 general,	 the	 chi-square	 distribution	 is	 characterized	 by	 the	 degrees	 of
freedom	n,	 which	 assume	 the	 values	 1,	 2,	….	 Let	 X1,	X2,	 …,	 Xn	 be	 n	 χ2(1)
distributed	 random	variables	 that	 are	 all	 independent	 of	 each	other.	Then	 their
sum,	S,	is
(11.3)
	

	In	words,	the	sum	is	again	distributed	chi-square	but	this	time	with	n	degrees
of	freedom.	The	corresponding	mean	is	E(X)	=	n,	and	the	variance	equals	Var(X)
=	2	·	n.	So,	the	mean	and	variance	are	directly	related	to	the	degrees	of	freedom.
	 From	the	relationship	in	equation	(11.3),	we	see	 that	 the	degrees	of	 freedom
equal	the	number	of	independent	χ2(1)	distributed	Xi	in	the	sum.	If	we	have	X1	~
χ2(n1)	and	X2	~	χ2(n2),	it	follows	that
(11.4)
	

	From	property	(11.4),	we	have	 that	chi-square	distributions	have	Property	2;
that	is,	they	are	stable	under	summation	in	the	sense	that	the	sum	of	any	two	chi-



squared	distributed	random	variables	is	itself	chi-square	distributed.
	FIGURE	 11.3	 Density	 Functions	 of	 Chi-Square	 Distributions	 for	 Various
Degrees	of	Freedom	n
	

The	chi-square	density	function	with	n	degrees	of	freedom	is	given	by

for	 n	 =	 1,	 2,	…	 where	 Γ(·)	 is	 the	 gamma	 function.	 The	 gamma	 function	 is
explained	in	Appendix	A.	Figure	11.3	shows	a	 few	examples	of	 the	chi-square
density	function	with	varying	degrees	of	freedom.	As	can	be	observed,	the	chi-
square	distribution	is	skewed	to	the	right.
We	will	 revisit	 this	 distribution	 in	 the	 context	 of	 estimation	 of	 the	 variance

parameter	σ2	 in	Part	Three	of	 this	book	where	we	cover	 inductive	statistics	for
estimating	parameters	and	hypothesis	testing.
	



Application	to	Modeling	Short-Term	Interest	Rates

	

As	 an	 example	 of	 an	 application	 of	 the	 chi-square	 distribution,	 we	 present	 a
simplified	model	of	 short-term	 interest	 rates,	 that	 is,	 so-called	short	rates.	The
short	rate	given	by	rt,	at	any	time	t,	is	assumed	to	be	a	nonnegative	continuous
random	 variable.	 Furthermore,	 we	 let	 the	 short	 rate	 be	 composed	 of	 d
independent	dynamics	X1,	X2,	…,	Xd	according	to

where	 d	 is	 some	 positive	 integer	 number.	 In	 addition,	 each	 Xi	 is	 given	 as	 a
standard	normal	 random	variable	 independent	of	all	other	dynamics.	Then,	 the
resulting	short	rate	rt	is	chi-square	distributed	with	d	degrees	of	freedom,	that	is,
rt	~	χ2(d).
If	we	 let	 d	 =	 2	 (i.e.,	 there	 are	 two	 dynamics	 governing	 the	 short	 rate),	 the

probability	of	a	short	rate	between	0	and	1%	is	0.5%.	That	is,	we	have	to	expect
that	on	five	out	of	1,000	days,	we	will	have	a	short	rate	assuming	some	value	in
the	interval	(0,0.01].	If,	in	addition,	we	had	one	more	dynamic	included	such	that
rt	~	 χ2(3),	 then,	 the	 same	 interval	 would	 have	 probability	 P(rt	∈	 (0,0.01])	 ≈
0.03%,	which	is	close	to	being	an	unlikely	event.	We	see	that	the	more	dynamics
are	involved,	the	less	probable	small	interest	rates	such	as	1%	or	less	become.
	 It	 should	be	 realized,	however,	 that	 this	 is	merely	an	approach	 to	model	 the
short	rate	statistically	and	not	an	economic	model	explaining	the	factors	driving
the	short	rate.
	



STUDENT’S	t-DISTRIBUTION

	

An	 important	 continuous	probability	distribution	when	 the	population	variance
of	a	distribution	 is	unknown	 is	 the	Student’s	 t-distribution	 (also	 referred	 to	 as
the	t-distribution	and	Student’s	distribution.123
	 The	t-distribution	is	a	mixture	of	 the	normal	and	chi-square	distributions.	To
derive	the	distribution,	let	X	be	distributed	standard	normal,	that	is,	X	~	N(0,1),
and	 S	 be	 chi-square	 distributed	with	 n	 degrees	 of	 freedom,	 that	 is,	 S	 ~	 χ2(n).
Furthermore,	if	X	and	Y	are	independent	of	each	other	(which	is	to	be	understood
as	not	influencing	the	outcome	of	the	other),	then
(11.5)
	

In	 words,	 equation	 (11.5)	 states	 that	 the	 resulting	 random	 variable	 Z	 is
Student’s	 t-distributed	with	n	 degrees	 of	 freedom.	The	 degrees	 of	 freedom	are
inherited	from	the	chi-square	distribution	of	S.
How	 can	 we	 interpret	 equation	 (11.5)?	 Suppose	 we	 have	 a	 population	 of

normally	distributed	values	with	zero	mean.	The	corresponding	normal	random
variable	may	be	denoted	as	X.	If	one	also	knows	the	standard	deviation	of	X,

with	X/σ,	we	obtain	a	standard	normal	random	variable.
However,	if	σ	is	not	known,	we	have	to	use,	for	example,

instead	 where 	 are	 n	 random	 variables	 identically	 distributed	 as	 X.
Moreover,	X1,	X2,	…,	Xn	 have	 to	 assume	 values	 independently	 of	 each	 other.
Then,	the	distribution	of

is	the	t-distribution	with	n	degrees	of	freedom,	that	is,



By	dividing	by	σ	or	S/n,	we	generate	rescaled	random	variables	that	follow	a
standardized	distribution.	Quantities	similar	to	X	/ 	play	an	important	role	in
parameter	estimation.	(We	encounter	them	in	Chapters	17	through	19.)
	 The	density	function	is	defined	as
(11.6)
	

where	 the	 gamma	 function	 Γ	 is	 incorporated	 again.	 The	 density	 function	 is
symmetric	and	has	support	(i.e.,	is	positive)	on	all	R.
Basically,	 the	 Student’s	 t-distribution	 has	 a	 similar	 shape	 to	 the	 normal

distribution,	 but	 thicker	 tails.	 For	 large	 degrees	 of	 freedom	n,	 the	 Student’s	 t-
distribution	does	not	 significantly	differ	 from	 the	 standard	normal	distribution.
As	a	matter	of	fact,	for	n	≥	100,	it	is	practically	indistinguishable	from	N(0,1).

	
Figure	 11.4	 shows	 the	 Student’s	 t-density	 function	 for	 various	 degrees	 of

freedom	plotted	against	the	standard	normal	density	function.	The	same	is	done
for	the	distribution	function	in	Figure	11.5.
	FIGURE	 11.4	 Density	 Function	 of	 the	 t-Distribution	 for	 Various	 Degrees	 of
Freedom	n	Compared	to	the	Standard	Normal	Density	Function	(N(0,1))
	

FIGURE	11.5	Distribution	Function	of	the	t-Distribution	for	Various	Degrees	of



Freedom	n	Compared	to	the	Standard	Normal	Density	Function	(N(0,1))
	

In	 general,	 the	 lower	 the	 degrees	 of	 freedom,	 the	 heavier	 the	 tails	 of	 the
distribution,	 making	 extreme	 outcomes	 much	 more	 likely	 than	 for	 greater
degrees	of	freedom	or,	in	the	limit,	the	normal	distribution.	This	can	be	seen	by
the	 distribution	 function	 that	we	 depicted	 in	 Figure	 11.5	 for	n	 =	 1	 and	n	 =	 5
against	 the	 standard	 normal	 cumulative	 distribution	 function	 (cdf).	 For	 lower
degrees	 of	 freedom	 such	 as	 n	 =	 1,	 the	 solid	 curve	 starts	 to	 rise	 earlier	 and
approach	1	later	than	for	higher	degrees	of	freedom	such	as	n	=	5	or	the	N(0,1)
case.

	
This	can	be	understood	as	follows.	When	we	rescale	X	by	dividing	by	√S/n	as

in	equation	(11.5),	 the	 resulting	X	 /	√S	 /	n	obviously	 inherits	 randomness	from
both	X	and	S.	Now,	when	S	is	composed	of	few	Xi,	only,	say	n	=	3,	such	that	X	/
√	S	/	n	has	three	degrees	of	freedom,	there	is	a	lot	of	dispersion	from	S	relative	to
the	standard	normal	distribution.	By	including	more	independent	N(0,1)	random
variables	Xi	such	that	the	degrees	of	freedom	increase,	S	becomes	less	dispersed.
Thus,	 much	 uncertainty	 relative	 to	 the	 standard	 normal	 distribution	 stemming
from	the	denominator	in	X	/ 	vanishes.	The	share	of	randomness	in	X	/
originating	 from	 X	 alone	 prevails	 such	 that	 the	 normal	 characteristics
preponderate.	 Finally,	 as	 n	 goes	 to	 infinity,	 we	 have	 something	 that	 is	 nearly
standard	normally	distributed.
	 The	mean	of	the	Student’s	t	random	variable	is	zero,	that	is	E(X)	=	0,	while	the
variance	is	a	function	of	the	degrees	of	freedom	n	as	follows



	For	n	=	1	and	2,	there	is	no	finite	variance.	Distributions	with	such	small	degrees
of	 freedom	 generate	 extreme	 movements	 quite	 frequently	 relative	 to	 higher
degrees	of	freedom.	Precisely	for	this	reason,	stock	price	returns	are	often	found
to	be	modeled	quite	well	using	distributions	with	small	degrees	of	 freedom,	or
alternatively,	large	variances.
	



Application	to	Stock	Returns

	

Let	 us	 resume	 the	 example	 at	 the	 end	 of	 the	 presentation	 of	 the	 normal
distribution.	We	consider,	once	again,	 the	5-day	 return	Y	with	 standard	normal
distribution.	Suppose	that	now	we	do	not	know	the	variance.	For	this	reason,	at
any	point	in	time	t,	we	rescale	the	observations	of	Y	by

where	the	 	the	five	independent	weekly	returns	immediately	prior	to	Y
The	resulting	rescaled	weekly	returns

then	are	 t(5)	distributed.	The	probability	of	Y	 not	 exceeding	a	value	of	0.01	 is
now

P	(Y	≤	0.01)	=	F	(0.01)	=	0.5083
	

where	F	 is	 the	 cumulative	 distribution	 function	 of	 the	 Student’s	 t-distribution
with	 five	 degrees	 of	 freedom.	 under	 the	N(0,1),	 this	probability	was	 about	 the
same.
Again,	we	model	 the	 stock	price	after	 five	days	as	S5	=	S0	 ⋅	eY	where	S0	 is

today’s	price.	As	we	know,	when	Y	≤	0.01,	then	S5	≤	S0	·	e0.01	=	S0	·	1.01.	Again,
it	follows	that	the	stock	price	increases	by	at	most	1%	with	probability	of	about
0.51.	So	far	there	is	not	much	difference	here	between	the	standard	normal	and
the	t(5)	distribution.
	 Let’s	analyze	the	stock	of	American	International	Group	(AIG),	in	September
2008.	During	one	week,	that	is,	five	trading	days,	the	stock	lost	about	67%	of	its
value.	That	corresponds	to	a	value	of	the	5-day	return	of	Y	=	-1.0986	because	of
eY	 =	 e-1.0986	 =	 0.3333	 =	 1	 -	 0.6667.	 In	 the	 N(0,1)	 model,	 a	 decline	 of	 this
magnitude	or	even	worse	would	occur	with	probability

P	(Y	≤	−1.0986)	=	Φ	(	−1.0986)	=	13.6%



	
while	under	the	t(5)	assumption,	we	would	obtain

P	(Y	≤	−1.0986)	=	F	(	−1.0986)	=	16.1%
	

This	 is	 2.5%	more	 likely	 in	 the	 t(5)	model.	 So,	 stock	 price	 returns	 exhibiting
extreme	movements	such	as	that	of	the	AIG	stock	price	should	not	be	modeled
using	the	normal	distribution.
	



F-DISTRIBUTION

	

Our	 next	 distribution	 is	 the	F-distribution.	 It	 is	 defined	 as	 follows.	 Let	 X	 ~
X2(n1)	and	Y	~	X2	(n2).
	 Furthermore,	assuming	X	and	Y	to	be	independent,	then	the	ratio
(11.7)
	

has	 an	 F-distribution	 with	 n1	 and	 n2	 degrees	 of	 freedom	 inherited	 from	 the
underlying	 chi-square	 distributions	 of	 X	 and	 Y,	 respectively.	 We	 see	 that	 the
random	 variable	 in	 equation	 (11.7)	 assumes	 nonnegative	 values	 only	 because
neither	X	nor	Y	are	ever	negative.	Hence,	the	support	is	on	the	nonnegative	real
numbers.	Also	 like	 the	 chi-square	 distribution,	 the	F-distribution	 is	 skewed	 to
the	right.
FIGURE	 11.6	 Density	 Function	 of	 the	F-Distribution	 for	 Various	 Degrees	 of
Freedom	n1	and	n2
	



The	F-distribution	 has	 a	 rather	 complicated	 looking	 density	 function	 of	 the
form
(11.8)
	

	Figure	 11.6	 displays	 the	 density	 function	 (11.8)	 for	 various	 degrees	 of
freedom.	 As	 the	 degrees	 of	 freedom	 n	 and	 n	 increase,	 the	 function	 graph
becomes	more	peaked	and	less	asymmetric	while	the	tails	lose	mass.
The	mean	is	given	by

(11.9)
	

while	the	variance	equals
(11.10)
	

Note	that	according	to	equation	(11.9),	the	mean	is	not	affected	by	the	degrees
of	 freedom	 n1	 of	 the	 first	 chi-square	 random	 variable,	 while	 the	 variance	 in
equation	 (11.10)	 is	 influenced	 by	 the	 degrees	 of	 freedom	 of	 both	 random
variables.
	



EXPONENTIAL	DISTRIBUTION

	

The	 exponential	 distribution	 is	 characterized	 by	 the	 positive	 real-valued
parameter	 λ.	 In	 brief,	 we	 use	 the	 notation	 Exp(λ).	 An	 exponential	 random
variable	assumes	nonnegative	values	only.	The	density	defined	for	λ	>	0	by

is	right	skewed.	Figure	11.7	presents	the	density	function	for	various	parameter
values	λ.
The	distribution	function	is	obtained	by	simple	integration	as

F	(	x)	=	1	−	e	−λx
	

For	 identical	 parameter	 values	 as	 in	 Figure	 11.7,	 we	 have	 plots	 of	 the
exponential	distribution	function	shown	in	Figure	11.8.
	 For	 this	 distribution,	 both	 the	 mean	 and	 variance	 are	 relatively	 simple
functions	of	the	parameter.	That	is,	for	the	mean

and	for	the	variance

FIGURE	11.7	Exponential	Density	Function	for	Various	Parameter	Values	λ
	



FIGURE	 11.8	 Distribution	 Function	 F(x)	 of	 the	 Exponential	 Distribution	 for
Various	Parameter	Values	λ
	

There	 is	an	 inverse	relationship	between	the	exponential	distribution	and	the
Poisson	 distribution	 (discussed	 in	 Chapter	 9).	 Suppose	 we	 have	 a	 Poisson
random	variable	N	with	parameter	λ,	i.e.,	N	~	Poi(λ),	counting	the	occurrences	of
some	event	within	a	time	frame	of	length	T.	Furthermore,	let	X1,	X2,	…	be	 the
Exp(λ)	distributed	interarrival	times	between	the	individual	occurrences.	That	is
between	time	zero	and	the	first	event,	X1	units	of	time	have	passed,	between	the
first	event	and	the	second,	X2	units	of	time	have	elapsed,	and	so	on.	Now,	over
these	T	units	of	time,	we	expect	T	·	λ	=	T	·	E(N)	events	to	occur.	Alternatively,



we	 have	 an	 average	 of	T/(T	 ·	 λ)	 =	 1/λ	 =	E(X)	 units	 of	 time	 to	 wait	 between
occurrences.
	 Suppose	that	by	time	T	we	have	counted	exactly	n	events.	Then	 the	accrued
time	τ	elapsed	when	the	event	occurs	for	the	nth	time	is	obtained	by	the	sum	of
all	 individual	interarrival	 times	X1,	X2,	…,	Xn,	which	cannot	be	greater	 than	T.
Formally
	(11.11)
	

A	result	of	this	relationship	is

	 The	exponential	distribution	is	commonly	referred	to	as	a	distribution	with	a
“no	memory”	property	in	the	context	of	life-span	that	ends	due	to	some	break.

	
That	means	that	there	is	no	difference	in	the	probability	between	the	following

two	events.	Event	one	states	that	the	object	will	live	for	the	first	τ	units	of	time
after	 the	 object’s	 creation	while	 event	 two	 states	 that	 the	 object	 will	 continue
living	 for	 the	next	 τ	units	of	 time	after	 it	has	already	 survived	 some	 t	units	of
time.	 In	 other	words,	 if	 some	 interarrival	 time	 or	 survival	 time	 (i.e.,	 the	 time
between	certain	occurrences)	is	Exp(λ)	distributed,	one	starts	all	over	waiting	at
any	 given	 time	 t	 provided	 that	 the	 break	 has	 not	 occurred,	 yet.124	 So,	 for
example,	 let	 the	 time	 until	 the	 next	 default	 of	 one	 of	 several	 corporate	 bonds
held	 in	 some	 portfolio	 be	 given	 as	 an	 exponential	 random	 variable.	 Then	 the
probability	of	the	first	bond	defaulting	in	no	more	than	t	units	of	time	given	that
none	 have	 defaulted	 so	 far	 is	 the	 same	 as	 the	 probability	 of	 the	 nth	 bond
defaulting	 after	 at	 most	 t	 units	 of	 time	 given	 that	 n	 -	 1	 bonds	 have	 already
defaulted.	That	is,	we	only	care	about	the	probability	distribution	of	the	time	of
occurrence	 of	 the	 next	 default	 regardless	 of	 how	 many	 bonds	 have	 already
defaulted.
	 Finally,	an	additional	property	of	the	exponential	distribution	is	its	relationship
to	 the	 chi-square	 distribution.	 Let	 X	 be	 Exp(λ).	 Then	 X	 is	 also	 chi-square
distributed	with	two	degrees	of	freedom,	that	is,	X	~	χ2(2).
	



Applications	in	Finance

	

In	 applications	 in	 finance,	 the	 parameter	 λ	 often	 has	 the	meaning	 of	 a	default
rate,	default	intensity,	or	hazard	rate.	This	can	be	understood	by	observing	the
ratio
(11.12)
	

which	expresses	the	probability	of	the	event	of	interest	such	as	default	of	some
company	occurring	between	time	t	and	t	+	dt	given	that	it	has	not	happened	by
time	t,	relative	to	the	length	of	the	horizon,	dt.	Now,	let	the	length	of	the	interval,
dt,	approach	zero,	and	this	ratio	in	equation	(11.12)	will	have	λ	as	its	limit.
The	 exponential	 distribution	 is	 often	 used	 in	 credit	 risk	 models	 where	 the

number	of	defaulting	bonds	or	loans	in	some	portfolio	over	some	period	of	time
is	 represented	 by	 a	 Poisson	 random	 variable	 and	 the	 random	 times	 between
successive	 defaults	 by	 exponentially	 distributed	 random	 variables.	 In	 general,
then,	the	time	until	the	nth	default	is	given	by	the	sum	in	equation	(11.11).
	 Consider,	 for	 example,	 a	 portfolio	 of	 bonds.	 Moreover,	 we	 consider	 the
number	 of	 defaults	 in	 this	 portfolio	 in	 one	 year	 to	 be	 some	 Poisson	 random
variable	with	parameter	λ	=	5,	that	is,	we	expect	five	defaults	per	year.	The	same
parameter,	 then,	represents	 the	default	 intensity	of	 the	exponentially	distributed
time	between	two	successive	defaults,	that	is,	τ	~	Exp(5),	so	that	on	average,	we
have	to	wait	E(τ)	=	1/5	of	a	year	or	2.4	months.	For	example,	the	probability	of
less	 than	 three	months	 (i.e.,	 1/4	 of	 a	 year)	 between	 two	 successive	 defaults	 is
given	by

P	(	τ	≤	0.25)	=	1	−	e	−5⋅0.25	=	0.7135
	

or	roughly	71%.	Now,	the	probability	of	no	default	in	any	given	year	is	then

P	(	τ	>	1)	=	e	−5⋅1	=	0.0067
	



or	0.67%.
	



RECTANGULAR	DISTRIBUTION

	

The	 simplest	 continuous	 distribution	 we	 are	 going	 to	 introduce	 is	 the
rectangular	 distribution.	 Often,	 it	 is	 used	 to	 generate	 simulations	 of	 random
outcomes	 of	 experiments	 via	 transformation.125	 If	 a	 random	 variable	 X	 is
rectangular	 distributed,	 we	 denote	 this	 by	X	 ~	Re(a,b)	where	a	 and	 b	 are	 the
parameters	of	the	distribution.
	 The	support	is	on	the	real	interval	[a,b].	The	density	function	is	given	by
(11.13)
	

We	see	that	this	density	function	is	always	constant,	either	zero	or	between	the
bounds	a	and	b,	equal	to	the	inverse	of	the	interval	width.	Figure	11.9	displays
the	density	function	(11.13)	for	some	general	parameters	a	and	b.
Through	integration,	the	distribution	function	follows	in	the	form

(11.14)
	

	The	mean	is	equal	to

and	the	variance	is

In	Figure	11.10,	we	have	 the	distribution	function	given	by	equation	(11.14)
with	some	general	parameters	a	and	b.	By	analyzing	the	plot,	we	can	see	that	the
distribution	function	is	not	differentiable	at	a	or	b,	since	the	derivatives	of	F	do



not	exist	for	these	values.	At	any	other	real	value	x,	the	derivative	exists	(being
0)	and	is	continuous.	We	say	in	the	latter	case	that	f	is	smooth	there.
	FIGURE	11.9	Density	Function	of	a	Re(a,b)	Distribution
	

FIGURE	11.10	Distribution	Function	of	a	Re(a,b)	Distribution
	



GAMMA	DISTRIBUTION

	

Next	 we	 introduce	 the	 gamma	 distribution	 for	 positive,	 real-valued	 random
variables.	 Characterized	 by	 two	 parameters,	 λ	 and	 c,	 this	 distribution	 class
embraces	 several	 special	 cases.	 It	 is	 skewed	 to	 the	 right	 with	 support	 on	 the
positive	real	line.	We	denote	that	a	random	variable	X	is	gamma	distributed	with
parameter	 λ	 and	 c	 by	 writing	 X	 ~	 Ga(λ,c)	 where	 λ	 and	 c	 are	 positive	 real
numbers.
	FIGURE	11.11	Density	Function	of	a	Gamma	Distribution	Ga(λ,b)
	

The	density	function	is	given	by
(11.15)
	

with	gamma	function	Γ.	A	plot	of	the	density	function	from	equation	(11.15)	 is
provided	in	Figure	11.11.	The	distribution	function	is



The	mean	is

with	variance



Erlang	Distribution

	

A	special	case	is	the	Erlang	distribution,	which	arises	for	natural	number	values
of	the	parameter	c,	that	is,	c	∈	N.	The	intuition	behind	it	is	as	follows.	Suppose
we	have	c	exponential	random	variables	with	the	same	parameter	λ,	that	is,	X1,
X2,	…,	Xc	~	Exp(λ)	all	being	independent	of	each	other.	Then	the	sum	of	these

is	distributed	Ga(λ,c)	such	that	the	resulting	distribution	function	is

So,	when	we	add	the	identically	Exp(λ)	distributed	interarrival	times	until	the	c
th	default,	for	example,	the	resulting	combined	waiting	time	is	Erlang	distributed
with	parameters	c	and	λ.
	



BETA	DISTRIBUTION

	

The	beta	distribution	is	characterized	by	the	two	parameters	c	and	d	that	are	any
positive	real	numbers.	We	abbreviate	this	distribution	by	Be(c,d).	It	has	a	density
function	with	 support	on	 the	 interval	 [0,1],	 that	 is,	only	 for	x	∈	 [0,1]	does	 the
density	function	assume	positive	values.	In	the	context	of	credit	risk	modeling,	it
commonly	serves	as	an	approximation	for	generating	random	defaults	when	the
true	underlying	probabilities	of	default	of	certain	companies	are	unknown	.126
	 The	density	function	is	defined	by

where	 B(c,d)	 denotes	 the	 beta	 function	 with	 parameters	 c	 and	 d.	 It	 is
introduced	 in	Appendix	A.	The	density	 function	may	assume	various	different
shapes	depending	on	c	and	d.	For	a	few	exemplary	values,	we	present	the	plots
in	 Figure	 11.12.	 As	we	 can	 see,	 for	 c	 =	 d,	 the	 density	 function	 is	 symmetric
about	x	=	0.5.
FIGURE	11.12	Density	Function	of	a	Beta	Distribution	Be(c,d)
	



LOGNORMAL	DISTRIBUTION

	

Another	 important	 distribution	 in	 finance	 is	 the	 lognormal	 distribution.	 It	 is
connected	 to	 the	normal	distribution	via	 the	 following	 relationship.	Let	Y	 be	 a
normal	random	variable	with	mean	µ	and	variance	σ2.	Then	the	random	variable

X	=	eY
	

is	 lognormally	 distributed	 with	 parameters	µ	 and	 σ2.	 In	 brief,	 we	 denote	 this
distribution	by	X	~	Ln(μ,σ2).
	 Since	 the	 exponential	 function	 eY	 =	 exp(Y)	 only	 yields	 positive	 values,	 the
support	of	the	lognormal	distribution	is	on	the	positive	half	of	the	real	line,	only,
as	will	be	seen	by	its	density	function	given	by
(11.16)
	

which	 looks	 strikingly	 similar	 to	 the	 normal	 density	 function	 given	 by	 (11.2).
Figure	11.13	depicts	the	density	function	for	several	parameter	values.
This	density	function	results	in	the	lognormal	distribution	function

where	 Φ(·)	 is	 the	 distribution	 function	 of	 the	 standard	 normal	 distribution.127
A	plot	of	the	distribution	function	for	different	parameter	values	can	be	found	in
Figure	11.14.
Mean	and	variance	of	a	lognormal	random	variable	are

(11.17)
	

and



(11.18)
	

FIGURE	 11.13	 Density	 Function	 of	 the	 LogNormal	 Distribution	 for	 Various
Values	of	μ	and	σ2
	



Application	to	Modeling	Asset	Returns

	

The	 reason	 for	 the	 popularity	 of	 the	 lognormal	 distribution	 is	 that	 logarithmic
asset	returns	r	have	been	historically	modeled	as	normally	distributed	such	that
the	related	asset	prices	are	modeled	by	a	 lognormal	distribution.	That	 is,	 let	Pt
denote	 today’s	 asset	 price	 and,	 furthermore,	 let	 the	 daily	 return	 r	 be	N(μ,σ2).
Then	in	a	simplified	fashion,	 tomorrow’s	price	 is	given	by	Pt+1	=	Pt	 ·	er	while
the	percentage	change	between	the	two	prices,	er,	is	lognormally	distributed,	that
is,	Ln(μ,σ2).
	 The	lognormal	distribution	is	closed	under	special	operations	as	well.	If	we	let
the	 n	 random	 variables	 X1,	 …,	 Xn	 be	 lognormally	 distributed	 each	 with
parameters	 μ	 and	 σ2	 and	 uninfluenced	 by	 each	 other,	 then	 multiplying	 all	 of
these	and	taking	the	nth	root	we	have	that

where	the	product	sign	is	defined	as128

FIGURE	11.14	Distribution	Function	of	the	LogNormal	Distribution	for	Various
Parameter	Values	μ	and	σ2
	



As	 an	 example,	 we	 consider	 a	 very	 simplified	 stock	 price	model.	 Let	 S0	 =
$100	be	today’s	stock	price	of	some	company.	We	model	tomorrow’s	price	S1	as
driven	 by	 the	 1-day	 dynamic	 X	 from	 the	 previous	 example	 of	 the	 normal
distribution.	In	particular,	the	model	is

S1	=	S0	⋅	e	X
		

	 By	 some	slight	manipulation	of	 the	above	equation,	we	 see	 that	 the	 ratio	of
tomorrow’s	price	over	today’s	price

follows	 a	 lognormal	 distribution	 with	 parameters	 µ	 and	 σ,	 that	 is,	 S1/S0	 ~
LN(μ,σ2).	We	may	now	be	interested	in	the	probability	that	tomorrow’s	price	is
greater	than	$120;	that	is,

P	(	S1	>	120)	=	P	(	S0	e	X	>	120)	=	P	(100	⋅	e	X	>	120)
		

This	corresponds	to



where	 in	 the	 third	 equation	 on	 the	 right-hand	 side,	 we	 have	 applied	 the
lognormal	cumulative	probability	distribution	function	F.	So,	in	roughly	18%	of
the	 scenarios,	 tomorrow’s	 stock	 price	 S1	 will	 exceed	 the	 price	 of	 today,	 S0	 =
$100,	by	at	least	20%.	From	equation	(11.17),	the	mean	of	the	ratio	is

implying	 that	 we	 have	 to	 expect	 tomorrow’s	 stock	 price	 to	 be	 roughly	 10%
greater	than	today,	even	though	the	dynamic	X	itself	has	an	expected	value	of	0.
Finally,	equation	(11.18)	yields	the	variance

which	is	only	slightly	larger	than	that	of	the	dynamic	X	itself.
The	 statistical	 concepts	 learned	 to	 this	 point	 can	 be	 used	 for	 pricing	 certain

types	 of	 derivative	 instruments.	 In	 Appendix	 D,	 we	 present	 an	 explicit
computation	for	the	price	formula	for	a	certain	derivative	instrument	when	stock
prices	are	assumed	to	be	lognormally	distributed.	More	specifically,	we	present
the	price	of	a	European	call	option	and	the	link	to	an	important	pricing	model	in
finance	known	as	the	Black-Scholes	option	pricing	model.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Normal	distribution	
Gaussian	distribution	
Standard	normal	distribution	
Location-scale	invariant	
Stable	under	summation	
Standardization	of	X	
Central	limit	theorem	
Empirical	rule	
Chebychev	inequalities	
Logarithmic	return	
Multiplicative	return	
Chi-square	distribution	
Degrees	of	freedom	
Gamma	function	
Short	rates	
Student’s	t-distribution	(t-distribution,	Student’s	distribution)	
F-distribution	
Exponential	distribution	
Interarrival	time	
Survival	time	
Default	rate	
Default	intensity	
Hazard	rate	
Rectangular	distribution	
Gamma	distribution	
Erlang	distribution	
Beta	distribution	
Beta	function	
Lognormal	distribution
	



CHAPTER	12
	

Continuous	Probability	Distributions	Dealing	with	Extreme
Events

	

In	 this	 chapter,	we	 present	 a	 collection	 of	 continuous	 probability	 distributions
that	 are	 used	 in	 finance	 in	 the	 context	 of	 modeling	 extreme	 events.	While	 in
Chapter	11	the	distributions	discussed	were	appealing	in	nature	because	of	their
mathematical	 simplicity,	 the	 ones	 introduced	 here	 are	 sometimes	 rather
complicated,	using	parameters	that	are	not	necessarily	intuitive.	However,	due	to
the	 observed	 behavior	 of	many	 quantities	 in	 finance,	 there	 is	 a	 need	 for	more
flexible	distributions	compared	to	keeping	models	mathematically	simple.
	 While	 the	 Student’s	 t-distribution	 discussed	 in	 Chapter	 11	 is	 able	 to	mimic
some	 behavior	 inherent	 in	 financial	 data	 such	 as	 so-called	heavy	 tails	 (which
means	that	a	lot	of	the	probability	mass	is	attributed	to	extreme	values),	it	fails	to
capture	 other	 observed	 behavior	 such	 as	 skewness.	 Hence,	 we	 decided	 not	 to
include	it	in	this	chapter.

	
In	this	chapter,	we	will	present	the	generalized	extreme	value	distribution,	the

generalized	Pareto	distribution,	the	normal	inverse	Gaussian	distribution,	and	the
α-stable	distribution	 together	with	 their	parameters	of	 location	and	spread.	The
presentation	 of	 each	 distribution	 is	 accompanied	 by	 some	 illustration	 to	 help
render	the	theory	more	appealing.
	



GENERALIZED	EXTREME	VALUE	DISTRIBUTION

	

Sometimes	 it	 is	 of	 interest	 to	 analyze	 the	 probability	 distribution	 of	 extreme
values	of	some	random	variable	rather	than	the	entire	distribution.	This	occurs	in
risk	management	 (including	 operational	 risk,	 credit	 risk,	 and	market	 risk)	 and
risk	control	in	portfolio	management.	For	example,	a	portfolio	manager	may	be
interested	in	the	maximum	loss	a	portfolio	might	incur	with	a	certain	probability.
For	this	purpose,	generalized	extreme	value	 (GEV)	distributions	are	designed.
They	 are	 characterized	 by	 the	 real-valued	 parameter	 ξ.	 Thus,	 the	 abbreviated
appellation	for	this	distribution	is	GEV(ξ).

	
Technically,	one	considers	a	series	of	identically	distributed	random	variables

X1,	X2,	…,	Xn,	which	are	 independent	of	each	other	so	 that	each	one’s	value	 is
unaffected	by	the	others’	outcomes.	Now,	the	GEV	distributions	become	relevant
if	we	 let	 the	 length	of	 the	 series	n	 become	 ever	 larger	 and	 consider	 its	 largest
value,	that	is,	the	maximum.
	 The	distribution	is	not	applied	to	the	data	immediately	but,	instead,	to	the	so-
called	standardized	data.	Basically,	when	standardizing	data	x,	one	reduces	the
data	 by	 some	 constant	 real	 parameter	 a	 and	 divides	 it	 by	 some	 positive
parameter	 b	 so	 that	 one	 obtains	 the	 quantity	 (x	 -	 a)/b.129	 The	 parameters	 are
usually	 chosen	 such	 that	 this	 standardized	 quantity	 has	 zero	 mean	 and	 unit
variance.	We	have	to	point	out	that	neither	variance	nor	mean	have	to	exist	for
all	probability	distributions.

	
Extreme	 value	 theory,	 a	 branch	 of	 statistics	 that	 focuses	 solely	 on	 the

extremes	(tails)	of	a	distribution,	distinguishes	between	 three	different	 types	of
generalized	 extreme	 value	 distributions:	 Gumbel	 distribution,	 Fréchet
distribution,	and	Weibull	distribution.130	The	 three	 types	 are	 related	 in	 that	we
obtain	 one	 type	 from	 another	 by	 simply	 varying	 the	 value	 of	 the	 parameter	 ξ.
This	makes	GEV	distributions	extremely	pleasant	for	handling	financial	data.
	 For	the	Gumbel	distribution,	the	general	parameter	is	zero	(i.e.,	ξ	=	0)	and	its
density	function	is



f	(	x)	=	e	−	x	exp	{−	e	−	x	}
	

A	 plot	 of	 this	 density	 is	 given	 by	 the	 dashed	 graph	 in	 Figure	 12.1	 that
corresponds	to	ξ	=	0.	The	distribution	function	of	the	Gumbel	distribution	is	then

F	(	x)	=	exp	{−e	−x	}
	

Again,	 for	 ξ	 =	 0,	 we	 have	 the	 distribution	 function	 displayed	 by	 the	 dashed
graph	in	Figure	12.2.
	 The	second	GEV(ξ)	distribution	is	the	Fréchet	distribution,	which	is	given	for
ξ	>	0	and	has	density

with	corresponding	distribution	function

Note	that	the	prerequisite	1	+	ξ	x	>	0	has	to	be	met.	For	a	parameter	value	of	ξ	=
0.5,	 an	example	of	 the	density	and	distribution	 function	 is	given	by	 the	dotted
graphs	in	Figures	12.1	and	12.3,	respectively.
	FIGURE	12.1	GEV(ξ)	Density	Function	for	Various	Parameter	Values
	

FIGURE	12.2	GEV(ξ)	Distribution	Function	for	Various	Parameter	Values
	



Finally,	 the	Weibull	 distribution	 corresponds	 to	 ξ	 <	 0.	 It	 has	 the	 density
function

	A	 plot	 of	 this	 distribution	 can	 be	 seen	 in	 Figure	 12.1,	 with	 ξ	 =	 -0.5	 (solid
graphs).	 Again,	 1	 +	 ξ	 x	 >	 0	 has	 to	 be	 met.	 It	 is	 remarkable	 that	 the	 density
function	graph	vanishes	in	a	finite	right	end	point,	 that	is,	becomes	zero.	Thus,
the	support	is	on	(-∞,-1/ξ).	The	corresponding	distribution	function	is

a	graph	of	which	is	depicted	in	Figure	11.2	for	ξ	=	-0.5	(solid	line).
FIGURE	 12.3	 Generalized	 Pareto	 Density	 Function	 for	 Various	 Parameter
Values
	



Notice	 that	 the	 extreme	 parts	 of	 the	 density	 function	 (i.e.,	 the	 tails)	 of	 the
Fréchet	 distribution	 vanish	 more	 slowly	 than	 that	 of	 the	 Gumbel	 distribution.
Consequently,	a	Fréchet	 type	distribution	should	be	applied	when	dealing	with
scenarios	of	extremes.
	



GENERALIZED	PARETO	DISTRIBUTION

	

A	distribution	often	employed	to	model	large	values,	such	as	price	changes	well
beyond	the	typical	change,	is	the	generalized	Pareto	distribution	or,	as	we	will
often	refer	to	it	here,	simply	Pareto	distribution.	This	distribution	serves	as	 the
distribution	of	the	so	called	“peaks	over	thresholds,”	which	are	values	exceeding
certain	benchmarks	or	loss	severity.

	
For	example,	consider	n	random	variables	X1,	X2,	…,	Xn	that	are	all	identically

distributed	 and	 independent	 of	 each	 other.	 Slightly	 idealized,	 they	 might
represent	 the	 returns	 of	 some	 stock	 on	 n	 different	 observation	 days.	 As	 the
number	of	observations	n	increases,	suppose	that	their	maximum	observed	return
follows	 the	 distribution	 law	 of	 a	 GEV	 distribution	 with	 parameter	 ξ.
Furthermore,	 let	u	be	some	sufficiently	 large	 threshold	 return.	Suppose	 that	on
day	 i,	 the	 return	 exceeded	 this	 threshold.	 Then,	 given	 the	 exceedance,	 the
amount	return	Xi	surpassed	u	by,	that	is,	Xi	-	u,	is	a	generalized	Pareto	distributed
random	variable.
	 The	following	density	function	characterizes	the	Pareto	distribution

with	β	>	0	and	1	+	(ξ	x)/β	>	0.	Hence,	the	distribution	is	right	skewed	since	the
support	is	only	on	the	positive	real	line.	The	corresponding	distribution	function
is	given	by

As	we	 can	 see,	 the	Pareto	distribution	 is	 characterized	by	 two	parameters	 β
and	ξ.	In	brief,	the	distribution	is	denoted	by	Pa(β,ξ).	The	parameter	β	serves	as
a	scale	parameter	while	 the	parameter	ξ	 is	 responsible	 for	 the	overall	 shape	as
becomes	obvious	by	the	density	plots	in	Figure	12.3.	The	distribution	function	is
displayed,	in	Figure	12.4,	for	a	selection	of	parameter	values.



	 For	β	<	1,	the	mean	is

E	(	X	)	=	β/1	−	ξ
	

When	 β	 becomes	 very	 small	 approaching	 zero,	 then	 the	 distribution	 results	 in
the	exponential	distribution	with	parameter	λ	=	1/β.
	 The	 Pareto	 distribution	 is	 commonly	 used	 to	 represent	 the	 tails	 of	 other
distributions.	For	example,	while	in	neighborhoods	about	the	mean,	the	normal
distribution	might	serve	well	to	model	financial	returns,	for	the	tails	(i.e.,	the	end
parts	 of	 the	density	 curve),	 however,	 one	might	 be	better	 advised	 to	 apply	 the
Pareto	 distribution.	 The	 reason	 is	 that	 the	 normal	 distribution	may	 not	 assign
sufficient	probability	to	more	pronounced	price	changes	measured	in	log-returns.
On	 the	 other	 hand,	 if	 one	 wishes	 to	 model	 behavior	 that	 attributes	 less
probability	 to	 extreme	 values	 than	 the	 normal	 distribution	 would	 suggest	 this
could	be	 accomplished	by	 the	Pareto	distribution	 as	well.	The	 reason	why	 the
class	of	the	Pareto	distributions	provides	a	prime	candidate	for	these	tasks	is	due
to	the	fact	that	it	allows	for	a	great	variety	of	different	shapes	one	can	smoothly
obtain	by	altering	the	parameter	values.
	FIGURE	12.4	Generalized	Pareto	Distribution	Function	for	Various	Parameter
Values
	



NORMAL	INVERSE	GAUSSIAN	DISTRIBUTION

	

Another	 candidate	 for	 the	modeling	 of	 financial	 returns	 is	 the	normal	 inverse
Gaussian	distribution.	It	is	considered	suitable	since	it	assigns	a	large	amount	of
probability	mass	to	the	tails.	This	reflects	the	inherent	risks	in	financial	returns
that	 are	 neglected	 by	 the	 normal	 distribution	 since	 it	 models	 asset	 returns
behaving	 more	 moderately.	 But	 in	 recent	 history,	 we	 have	 experienced	 more
extreme	 shocks	 than	 the	 normal	 distribution	 would	 have	 suggested	 with
reasonable	probability.
	 The	distribution	 is	characterized	by	 four	parameters,	a,	b,	c,	and	d.	 In	 brief,
the	 distribution	 is	 denoted	 by	 NIG(a,b,μ,δ).	 For	 real	 values	 x,	 the	 density
function	is	given	by

where	K1	is	the	so-called	Bessel	function	of	the	third	kind,	which	is	described
in	Appendix	A.	In	Figure	12.5,	we	display	the	density	function	for	a	selection	of
parameter	values.
The	distribution	function	is,	as	in	the	normal	distribution	case,	not	analytically

presentable.	 It	 has	 to	 be	 determined	 with	 the	 help	 of	 numerical	 methods.	We
display	 the	 distribution	 function	 for	 a	 selection	 of	 parameter	 values,	 in	 Figure
12.6.
	 The	parameters	have	the	following	interpretation.	Parameter	a	determines	the
overall	shape	of	the	density	while	b	controls	skewness.	The	location	or	position
of	 the	 density	 function	 is	 governed	 via	 parameter	 µ	 and	 δ	 is	 responsible	 for
scaling.	These	parameters	have	values	according	to	the	following

a	>	0
	0	≤	b	<	a
	μ	∈	R
	δ	>	0
	



	
	FIGURE	12.5	Normal	Inverse	Gaussian	Density	Function	for	Various	Parameter
Values
	

FIGURE	 12.6	 Normal	 Inverse	 Gaussian	 Distribution	 Function	 for	 Various
Parameter	Values
	

The	mean	of	a	NIG	random	variable	is

and	the	variance	is





Normal	Distribution	versus	Normal	Inverse	Gaussian	Distribution

	

Due	 to	 a	 relationship	 to	 the	normal	distribution	 that	 is	 beyond	 the	 scope	here,
there	are	some	common	features	between	the	normal	and	NIG	distributions.
	 The	scaling	property	of	the	NIG	distribution	guarantees	that	any	NIG	random
variable	 multiplied	 by	 some	 real	 constant	 is	 again	 a	 NIG	 random	 variable.
Formally,	for	some	k	∈	R	and	X	~	NIG(a,b,μ,δ),	we	have	that
(12.1)
	

Amongst	 others,	 the	 result	 in	 equation	 (12.1)	 implies	 that	 the	 factor	 k	 shifts
the	 density	 function	 by	 the	 k-fold	 of	 the	 original	 position.	Moreover,	 we	 can
reduce	skewness	in	that	we	inflate	X	by	some	factor	k.
Also,	 the	 NIG	 distribution	 is	 summation	 stable	 such	 that,	 under	 certain

prerequisites	concerning	the	parameters,	independent	NIG	random	variables	are
again	NIG.	More	precisely,	if	we	have	the	random	variables	X1	~	NIG(a,b,μ1,δ1)
and	X2	~	NIG(a,b,μ2,δ2),	the	sum	is	X1	+	X2	~	NIG(a,b,μ1	+	μ2,δ1	+	δ2).	So,	we
see	that	only	location	and	scale	are	affected	by	summation.
	



α-STABLE	DISTRIBUTION

	

The	final	distribution	we	introduce	is	the	class	of	α-stable	distributions.	Often,
these	 distributions	 are	 simply	 referred	 to	 as	 stable	 distributions.	 While	 many
models	in	finance	have	been	modeled	historically	using	the	normal	distribution
based	 on	 its	 pleasant	 tractability,	 concerns	 have	 been	 raised	 that	 it
underestimates	the	danger	of	downturns	of	extreme	magnitude	inherent	in	stock
markets.	The	sudden	declines	of	stock	prices	experienced	during	several	crises
since	 the	 late	1980s—October	19,	1987	 (“Black	Monday”),	 July	1997	 (“Asian
currency	 crisis”),	 1998-1999	 (“Russian	 ruble	 crisis”),	 2001	 (“Dot-Com
Bubble”),	 and	 July	 2007	 and	 following	 (“Subprime	 mortgage	 crisis”)—are
examples	 that	 call	 for	 distributional	 alternatives	 accounting	 for	 extreme	 price
shocks	more	 adequately	 than	 the	 normal	 distribution.	 This	may	 be	 even	more
necessary	considering	that	financial	crashes	with	serious	price	movements	might
become	 even	 more	 frequent	 in	 time	 given	 the	 major	 events	 that	 transpired
throughout	 the	global	 financial	markets	 in	2008.	The	 immense	 threat	 radiating
from	heavy	tails	in	stock	return	distributions	made	industry	professionals	aware
of	the	urgency	to	take	them	serious	and	reflect	them	in	their	models.

	
Many	 distributional	 alternatives	 providing	 more	 realistic	 chances	 to	 severe

price	movements	have	been	presented	earlier,	such	as	the	Student’s	t	in	Chapter
11	or	GEV	distributions	earlier	in	this	chapter,	for	example.	In	the	early	1960s,
Benoit	Mandelbrot	suggested	as	a	distribution	for	commodity	price	changes	the
class	 of	 stable	 distributions.	 The	 reason	 is	 that,	 through	 their	 particular
parameterization,	they	are	capable	of	modeling	moderate	scenarios	as	supported
by	the	normal	distribution	as	well	as	extreme	ones	beyond	the	scope	of	most	of
the	distributions	that	we	have	presented	in	this	chapter.
	 The	stable	distribution	is	characterized	by	the	four	parameters	α,	β,	σ,	and	μ.
In	brief,	we	denote	the	α-stable	distribution	by	S(α,β,σ,μ).	Parameter	α	is	the	so
called	tail	index	or	characteristic	exponent.	It	determines	how	much	probability
is	 assigned	 around	 the	 center	 and	 the	 tails	 of	 the	 distribution.	 The	 lower	 the
value	α,	the	more	pointed	about	the	center	is	the	density	and	the	heavier	are	the
tails.	These	two	features	are	referred	to	as	excess	kurtosis	relative	to	the	normal
distribution.	This	can	be	visualized	graphically	as	we	have	done	in	Figure	12.7



where	 we	 compare	 the	 normal	 density	 to	 an	 α-stable	 density	 with	 a	 low	 α	 =
1.5.131	The	density	graphs	are	obtained	from	fitting	the	distributions	to	the	same
sample	data	of	arbitrarily	generated	numbers.	The	parameter	α	 is	related	to	 the
parameter	 ξ	 of	 the	 Pareto	 distribution	 resulting	 in	 the	 tails	 of	 the	 density
functions	 of	 α-stable	 random	 variables	 to	 vanish	 at	 a	 rate	 proportional	 to	 the
Pareto	tail.
	 The	tails	of	the	Pareto	as	well	as	the	α-stable	distribution	decay	at	a	rate	with
fixed	 power	 α,	 x-α	 (i.e.,	 power	 law),	 which	 is	 in	 contrast	 to	 the	 normal
distribution	whose	tails	decay	at	an	exponential	rate	(i.e.,	roughly	e	−	x2	 /	2).	We
illustrate	 the	 effect	 focusing	 on	 the	 probability	 of	 exceeding	 some	 value	 x
somewhere	 in	 the	upper	 tail,	 say	x	=	3.	Moreover,	we	choose	 the	parameter	of
stability	 to	 be	α	=	 1.5.	 under	 the	 normal	 law,	 the	 probability	 of	 exceedance	 is
roughly	 e−32	 /2	 =	 0.011	while	 under	 the	 power	 law	 it	 is	 about	 3-1.5	 =	 0.1925.
Next,	we	let	 the	benchmark	x	become	gradually	 larger.	Then	 the	probability	of
assuming	a	value	at	least	twice	or	four	times	as	large	(i.e.,	2x	or	4x)	is	roughly

or

for	 the	 normal	 distribution.	 In	 contrast,	 under	 the	 power	 law,	 the	 same
exceedance	probabilities	would	be	(2	×	3)-1.5	=	0.068	or	(4	×	3)-1.5	≈	0.024.	This
is	a	much	slower	rate	than	under	the	normal	distribution.	Note	that	the	value	of	x
=	 3	 plays	 no	 role	 for	 the	 power	 tails	 while	 the	 exceedance	 probability	 of	 the
normal	distribution	decays	the	faster	the	further	out	we	are	in	the	tails	(i.e.,	the
larger	 is	 x).	 The	 same	 reasoning	 applies	 to	 the	 lower	 tails	 considering	 the
probability	of	falling	below	a	benchmark	x	rather	than	exceeding	it.
FIGURE	12.7	 Comparison	 of	 the	Normal	 (Dash-Dotted)	 and	 α-Stable	 (Solid)
Density	Functions
	



The	 parameter	 β	 indicates	 skewness	 where	 negative	 values	 represent	 left
skewness	while	positive	values	 indicate	 right	 skewness.	The	scale	parameter	σ
has	 a	 similar	 interpretation	 as	 the	 standard	 deviation.	 Finally,	 the	 parameter	µ
indicates	 location	 of	 the	 distribution.	 Its	 interpretability	 depends	 on	 the
parameter	α.	If	the	latter	is	between	1	and	2,	then	µ	is	equal	to	the	mean.
	 Possible	values	of	the	parameters	are	listed	below:
	

	
α (0,2]
β [-1,1]
σ (0,∞)
μ R

	

Depending	 on	 the	 parameters	 α	 and	 β,	 the	 distribution	 has	 either	 support	 on
the	entire	real	line	or	only	the	part	extending	to	the	right	of	some	location.
In	 general,	 the	 density	 function	 is	 not	 explicitly	 presentable.	 Instead,	 the

distribution	 of	 the	 α-stable	 random	 variable	 is	 given	 by	 its	 characteristic



function.132	The	characteristic	function	is	given	by
(12.2)
	

	The	 density,	 then,	 has	 to	 be	 retrieved	 by	 an	 inverse	 transform	 to	 the
characteristic	 function.	 Numerical	 procedures	 are	 employed	 for	 this	 task	 to
approximate	 the	 necessary	 computations.	 The	 characteristic	 function	 (12.2)	 is
presented	here	more	for	the	sake	of	completeness	rather	than	necessity.	So,	one
should	not	be	discouraged	if	it	appears	overwhelmingly	complex.

	
In	 Figures	 12.8	 and	 12.9,	 we	 present	 the	 density	 function	 for	 varying

parameter	β	and	α,	respectively.	Note	in	Figure	12.9	that	for	a	β=	1,	the	density
is	positive	only	on	a	half-line	towards	the	right	as	α	approaches	its	upper-bound
value	of	2.
	FIGURE	12.8	Stable	Density	Function	for	Various	Values	of	β
	

FIGURE	12.9	Stable	Density	Function	(totally	right-skewed)	for	Various	Values
of	α
	



Only	in	the	case	of	an	α	of	0.5,	1,	or	2,	can	the	functional	form	of	the	density
be	stated.	For	our	purpose	here,	only	the	case	α	=	2	is	of	interest	Because	for	this
special	case,	the	stable	distribution	represents	the	normal	distribution.	Then,	the
parameter	 β	 ceases	 to	 have	 any	 meaning	 since	 the	 normal	 distribution	 is	 not
asymmetric.

	
A	 feature	 of	 the	 stable	 distributions	 is	 that	 moments	 such	 as	 the	mean,	 for

example,	exist	only	up	to	the	power	α.133	So,	except	for	the	normal	case	(where
α	=	2),	there	exists	no	finite	variance.	It	becomes	even	more	extreme	when	α	is
equal	 to	 1	 or	 less	 such	 that	 not	 even	 the	 mean	 exists	 any	 more.	 The	 non-
existence	of	the	variance	is	a	major	drawback	when	applying	stable	distributions
to	financial	data.	This	is	one	reason	why	the	use	of	this	family	of	distribution	in
finance	is	still	contended.
	 This	 class	 of	 distributions	 owes	 its	 name	 to	 the	 stability	 property	 that	 we
described	earlier	for	the	normal	distribution	(Property	2)	in	the	previous	chapter:
The	weighted	sum	of	an	arbitrary	number	of	α-stable	random	variables	with	the
same	parameters	is,	again,	α-stable	distributed.	More	formally,	let	X1,	…,	Xn	be
identically	distributed	and	independent	of	each	other.	Then,	assume	that	for	any
n	∈	N,	 there	 exists	 a	 positive	 constant	an	 and	 a	 real	 constant	bn	 such	 that	 the
normalized	sum	Y(n)
(12.3)
	



converges	 in	 distribution	 to	 a	 random	variable	X,	 then	 this	 random	variable	X
must	 be	 stable	 with	 some	 parameters	 α,	 β,	 σ,	 and	 μ.	 Again,	 recall	 that
convergence	 in	 distribution	means	 that	 the	 the	 distribution	 function	 of	Y(n)	 in
equation	(12.3)	converges	 to	 the	distribution	function	on	 the	right-hand	side	of
equation	(12.3).
In	 the	 context	 of	 financial	 returns,	 this	 means	 that	 monthly	 returns	 can	 be

treated	as	the	sum	of	weekly	returns	and,	again,	weekly	returns	themselves	can
be	understood	as	the	sum	of	daily	returns.	According	to	equation	(12.3),	they	are
equally	distributed	up	to	rescaling	by	the	parameters	an	and	bn.

	
From	the	presentation	of	the	normal	distribution,	we	know	that	it	serves	as	a

limit	 distribution	 of	 a	 sum	 of	 identically	 distributed	 random	 variables	 that	 are
independent	 and	 have	 finite	 variance.	 In	 particular,	 the	 sum	 converges	 in
distribution	to	the	standard	normal	distribution	once	the	random	variables	have
been	 summed	 and	 transformed	 appropriately.	 The	 prerequisite,	 however,	 was
that	 the	 variance	 exists.	Now,	we	 can	 drop	 the	 requirement	 for	 finite	 variance
and	 only	 ask	 for	 independence	 and	 identical	 distributions	 to	 arrive	 at	 the
generalized	 central	 limit	 theorem	 expressed	 by	 equation	 (12.3).	 The	 data
transformed	 in	 a	 similar	 fashion	 as	 on	 the	 left-hand	 side	 of	 equation	(11.2)	 in
Chapter	11	will	have	a	distribution	 that	 follows	a	stable	distribution	 law	as	 the
number	n	becomes	very	large.	Thus,	the	class	of	α-stable	distributions	provides	a
greater	set	of	limit	distributions	than	the	normal	distribution	containing	the	latter
as	a	special	case.	Theoretically,	this	justifies	the	use	of	α-stable	distributions	as
the	 choice	 for	modeling	 asset	 returns	 when	we	 consider	 the	 returns	 to	 be	 the
resulting	sum	of	many	independent	shocks.
	 Let	us	resume	the	previous	example	with	the	random	dynamic	and	the	related
stock	price	evolution.	Suppose,	now,	that	the	10-day	dynamic	was	Sα	distributed.
We	denote	 the	 according	 random	variable	 by	V10.	We	 select	 a	 fairly	moderate
stable	parameter	of	α	=	1.8.	A	value	in	this	vicinity	is	commonly	estimated	for
daily	and	even	weekly	stock	returns.	The	skewness	and	location	parameters	are
both	set	to	zero,	that	is,	β	=	μ	=	0.	The	scale	is	σ	=	1,	so	that	if	the	distribution
was	normal,	that	is,	α	=	2,	the	variance	would	be	2	and,	hence,	consistent	with
the	previous	distributions.	Note,	however,	that	for	α	=	1.8,	the	variance	does	not
exist.	Here	the	probability	of	the	dynamic’s	exceedance	of	the	lower	threshold	of
1	is
(12.4)
	



compared	 to	 0.2398	 and	 0.1870	 in	 the	 normal	 and	 Student’s	 t	 cases,
respectively.	Again,	the	probability	in	(12.4)	corresponds	to	the	event	that	in	10
days,	the	stock	price	will	be	greater	than	$271.	So,	it	is	more	likely	than	in	the
normal	and	Student’s	t	model.
For	the	higher	threshold	of	3.5,	we	obtain

P	(V10	>	3.5)	=	0.0181
	

compared	 to	 0.0067	 and	 0.0124	 from	 the	 normal	 and	 Student’s	 t	 cases,
respectively.	This	event	corresponds	to	a	stock	price	beyond	$3,312,	which	is	an
immense	 increase.	 under	 the	 normal	 distribution	 assumption,	 this	 event	 is
virtually	 unlikely.	 It	 would	 happen	 in	 less	 than	 1%	 of	 the	 10-day	 periods.
However,	 under	 the	 stable	 as	 well	 as	 the	 Student’s	 t	 assumption,	 this	 could
happen	in	1.81%	or	1.24%	of	the	scenarios,	which	is	 three	times	or	double	the
probability,	 respectively.	 Just	 for	 comparison,	 let	 us	 assume	 α	 =	 1.6,	which	 is
more	common	during	a	rough	market	climate.	The	dynamic	would	now	exceed
the	threshold	of	1	with	probability

P	(V10	>	1)	=	0.2428
	

which	fits	in	with	the	other	distribution.	For	3.5,	we	have
(12.5)
	

which	 is	 equal	 to	 five	 times	 the	 probability	 under	 the	 normal	 distribution	 and
almost	 three	 times	 the	 probability	 under	 the	 Student-t-distribution	 assumption.
For	 this	 threshold,	 the	 same	 probability	 as	 in	 equation	 (12.5)	 could	 only	 be
achieved	with	a	variance	of	σ2	=	4,	which	would	give	the	overall	distribution	a
different	shape.	In	the	Student’s	t	case,	the	degree	of	freedom	parameter	would
have	to	be	less	than	3	such	that	now	the	variance	would	not	exist	any	longer.
For	the	stable	parameters	chosen,	the	same	results	are	obtained	when	the	sign

of	the	returns	is	negative	and	losses	are	considered.	For	example,	P(V10	<	-3.5)	=
0.0315	 corresponds	 to	 the	 probability	 of	 obtaining	 a	 stock	 price	 of	 $3	 or	 less.
This	 scenario	would	 only	 be	 given	 0.67%	probability	 in	 a	 normal	 distribution
model.	With	 respect	 to	 large	portfolios	 such	as	 those	managed	by	 large	banks,
negative	 returns	 deserve	much	more	 attention	 since	 losses	 of	 great	magnitude



result	in	widespread	damages	to	industries	beyond	the	financial	industry.

	
As	 another	 example,	 let’s	 look	 at	 what	 happened	 to	 the	 stock	 price	 of

American	International	Group	(AIG)	in	September	2008.	On	one	single	day,	the
stock	lost	60%	of	its	value.	That	corresponds	to	a	return	of	about	−0.94.134	If	we
choose	a	normal	distribution	with	μ	=	0	and	σ2	=	0.0012	for	the	daily	returns,	a
drop	 in	 price	 of	 this	 magnitude	 or	 less	 has	 near	 zero	 probability.	 The
distributional	 parameters	 were	 chosen	 to	 best	 mimic	 the	 behavior	 of	 the	 AIG
returns.	By	comparison,	if	we	take	an	α-stable	distribution	with	α	=	1.6,	β	=	0,	μ
=	0,	and	σ	=	0.001	where	these	parameters	were	selected	to	fit	the	AIG	returns,
we	obtain	 the	probability	 for	 a	 decline	of	 at	 least	 this	 size	of	 0.00003,	 that	 is,
0.003%.	 So	 even	 with	 this	 distribution,	 an	 event	 of	 this	 impact	 is	 almost
negligible.	 As	 a	 consequence,	 we	 have	 to	 chose	 a	 lower	 parameter	 α	 for	 the
stable	distribution.	That	brings	 to	 light	 the	 immense	 risk	 inherent	 in	 the	 return
distributions	when	they	are	truly	α-stable.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Heavy	tails	
Generalized	extreme	value	distributions	
Standardized	data	
Extreme	value	theory	
Gumbel	distribution	
Fréchet	distribution	
Weibull	distribution
	Generalized	Pareto	distribution	
Normal	inverse	Gaussian	distribution	
Bessel	function	of	the	third	kind	
Scaling	property	
α-stable	distributions	
Stable	distributions	
Tail	index	
Characteristic	exponent	
Excess	kurtosis	
Power	law	
Skewness	
Scale	
Location	
Stability	property	
Generalized	central	limit	theorem
	



CHAPTER	13
	

Parameters	of	Location	and	Scale	of	Random	Variables
	

In	the	previous	four	chapters,	we	presented	discrete	and	continuous	probability
distributions.	It	is	common	to	summarize	distributions	by	various	measures.	The
most	important	of	these	measures	are	the	parameters	of	location	and	scale.	While
some	 of	 these	 parameters	 have	 been	 mentioned	 in	 the	 context	 of	 certain
probability	distributions	in	the	previous	chapters,	we	introduce	them	here	as	well
as	additional	ones.
	 In	this	chapter,	we	present	as	parameters	of	location	quantiles,	the	mode,	and
the	 mean.	 The	 mean	 is	 introduced	 in	 the	 context	 of	 the	 moments	 of	 a
distribution.	Quantiles	 help	 in	 assessing	where	 some	 random	variable	 assumes
values	with	a	specified	probability.	In	particular,	such	quantiles	are	given	by	the
lower	and	upper	quartiles	as	well	as	the	median.	In	the	context	of	portfolio	risk,
the	 so-called	 value-at-risk	 measure	 is	 used.	 As	 we	 will	 see,	 this	 measure	 is
defined	as	the	minimum	loss	some	portfolio	incurs	with	specified	probability.

	
As	 parameters	 of	 scale,	 we	 introduce	 moments	 of	 higher	 order:	 variance

together	with	the	standard	deviation,	skewness,	and	kurtosis.	The	variance	is	the
so-called	second	central	moment	and	the	related	standard	deviation	are	the	most
commonly	used	risk	measures	in	the	context	of	portfolio	returns.	However,	their
use	 can	 sometimes	 be	misleading	 because,	 as	was	 noted	 in	 Chapter	 11,	 some
distributions	 particularly	 suited	 to	model	 financial	 asset	 returns	 have	 no	 finite
variance.	The	skewness	will	be	introduced	as	a	parameter	of	scale	that	helps	in
determining	 whether	 some	 probability	 distribution	 is	 asymmetric.	 As	 we	 will
see,	most	financial	asset	returns	are	skewed.	The	kurtosis	offers	insight	into	the
assignment	of	probability	mass	in	the	tails	of	the	distribution	as	well	as	about	the
mode.	 Excess	 kurtosis,	 which	 describes	 non-normality	 of	 the	 probability
distribution	 in	 the	 sense	of	heavier	 tails	 as	well	 as	 a	more	 accentuated	density
function	about	the	mode	relative	to	the	normal	distribution,	is	presented	since	it
is	 commonly	used	 in	describing	 financial	 asset	 returns.	 In	 the	appendix	 to	 this
chapter,	 we	 list	 all	 parameters	 introduced	 here	 for	 the	 continuous	 distribution
functions	introduced	in	Chapters	11	and	12.



	



PARAMETERS	OF	LOCATION

	

In	 general,	 location	 parameters	 give	 information	 on	 the	 positioning	 of	 the
distribution	on	the	real	line,	Ω=R.	For	example,	the	information	can	be	about	the
smallest	 or	 the	 largest	 values	 possible	 or	 the	 value	 that	 is	 expected	 before	 the
drawing	for	a	certain	random	variable.
	



Quantiles

	

Quantiles	 are	 parameters	 of	 location	 that	 account	 for	 a	 certain	 quantity	 of
probability.	An	alternative	term	for	quantile	is	percentile.	usually,	quantiles	are
given	with	 respect	 to	 a	 value	α	 being	 some	 real	 number	 between	0	 and	1	 and
denoted	 by	 α-quantile.	 The	 α	 indicates	 the	 proportion	 of	 probability	 that	 is
assigned	 to	 the	 values	 that	 are	 equal	 to	 the	 α-quantile	 or	 less.	 The	 α-quantile
denoted	as	qα	is	equal	to	the	value	x	where	the	distribution	function	F(x)	assumes
or	exceeds	the	value	α	for	the	first	time.
	 Formally,	we	define	a	quantile	as
(13.1)
	

where	inf	is	short	for	infimum	meaning	lowest	bound.135

In	 this	 sense	of	equation	(13.1),	 the	quantiles	 can	be	 interpreted	as	obtained
through	an	inverse	function	F-1	to	the	cumulative	distribution	function	F.	That	is,
for	any	level	of	probability	α,	the	inverse	F-1	yields	the	α-quantile	through	qα	=
F-1(α).

	
Note	that	when	X	is	a	discrete	random	variable,	it	can	be	that	the	distribution

function	 is	 exactly	 equal	 to	 α	 (i.e.,	 F(x)	 =	 α)	 for	 several	 values	 of	 x.	 So,
according	to	the	definition	of	a	quantile	given	by	equation	(13.1),	qα	 should	be
equal	to	the	smallest	such	x.	However,	by	similar	reasoning	as	in	the	discussion
of	 the	 quantile	 statistic	 presented	 in	 Chapter	 3,	 the	 quantile	 qα	 is	 sometimes
defined	 as	 any	 value	 of	 the	 interval	 between	 this	 smallest	 x	 and	 the	 smallest
value	for	which	F(x)	>	α.
	 For	 particular	 values	 of	 α,	 we	 have	 special	 names	 for	 the	 corresponding
quantiles.	For	α	=	0.25,	q0.25	is	called	the	lower	quartile;	for	α	=	0.5,	q0.5	is	the
median;	 and	 for	 α	 =	 0.75,	q0.75	 is	 called	 the	upper	 quartile.	 The	median,	 for
example,	 is	 the	 value	 for	 which,	 theoretically,	 half	 the	 realizations	 will	 not
exceed	that	value	while	the	other	half	will	not	fall	below	that	very	same	value.



	

Computation	of	Quantiles	for	Various	Distributions

	
We	 know	 from	 the	 definition	 in	 equation	 (13.1)	 that,	 for	 example,	 the	 0.2-
quantile	 of	 some	 distribution	 is	 the	 value	 q0.2	 where	 for	 the	 first	 time,	 the
distribution	function	F	 is	 no	 longer	 smaller	 than	0.2,	 that	 is,	F(q0.2)	≥	0.2	 and
F(x)	<	0.2	for	all	x	<	q0.2.	We	illustrate	this	in	Figure	13.1,	where	we	depict	the
cumulative	 distribution	 function	 of	 the	 discrete	 binomial	 B(5,0.5)	 distribution
introduced	in	Chapter	9.	The	level	of	α	=	0.2	is	given	by	the	horizontal	dashed
line.	Now,	the	first	 time	F(x)	assumes	a	value	on	or	above	 this	 line	 is	at	x	=	2
with	F(2)	=	0.5.	Hence,	 the	0.2-quantile	 is	q0.2	=	2	as	 indicated	by	 the	vertical
line	extending	from	F(2)	=	0.5	down	to	the	horizontal	axis.
	 If	for	this	B(5,0.5)	distribution	we	endeavor	 to	compute	 the	median,	we	find
that	 for	 all	 values	 in	 the	 interval	 [2,3),	 the	 distribution	 is	F(x)	 =	 0.5.	 By	 the
definition	for	a	quantile	given	by	equation	(13.1),	the	median	is	uniquely	given
as	q0.5	=	2	=	inf	{x	:	F(x)	≥	0.5}	.	However,	by	the	alternative	definition,
FIGURE	13.1	Determining	the	0.2-Quantile	q	of	the	B(5,0.5)	Distribution	as	the
x-Value	2	where	the	Distribution	Function	F	Exceeds	the	0.2	Level	(dashed	line)
for	the	First	Time
	

we	 have	 that	 all	 values	 in	 the	 interval	 [2,3]	 are	 the	 median,	 including	 x	 =	 3



where	F(x)	 >	 0.5	 for	 the	 first	 time.	 Consequently,	 the	median	 of	 the	B(5,0.5)
distribution	is	not	unique	when	the	alternative	definition	is	used.	There	are	other
discrete	probability	distributions	for	which	this	definition	yields	more	 than	one
median.
Next,	we	have	a	look	at	the	standard	normal	distribution	that	is	a	continuous

distribution	 described	 in	 Chapter	 11.	 In	 Figure	 13.2,	 we	 display	 the	 N(0,1)
cumulative	distribution	function.	Again,	we	obtain	the	0.2-quantile	as	the	value	x
where	the	distribution	function	F(x)	intersects	the	dashed	horizontal	line	at	level
α	=	0.2.	Alternatively,	we	can	determine	 the	0.2-quantile	by	 the	area	under	 the
probability	density	function	 f(x)	in	Figure	13.3	as	well.	At	q0.2	=	2,	 this	area	is
exactly	equal	to	0.2.
	

Value-at-Risk

	
Let’s	 look	 at	 how	 quantiles	 are	 related	 to	 an	 important	 risk	 measure	 used	 by
financial	institutions	called	value-at-risk	 (VaR).	Consider	a	portfolio	consisting
of	financial	assets.	Suppose	the	return	of	this	portfolio	is	given	by	rP.	Denoting
today’s	portfolio	value	by	P0,	the	value	of	the	portfolio	tomorrow	is	assumed	to
follow
FIGURE	13.2	Determining	the	0.2-Quantile	using	the	Cumulative	Distribution
Function
	



	
P1	=	P0	⋅	e	rP
	

As	 is	 the	 case	 for	 quantiles,	 in	 general,	 VaR	 is	 associated	 with	 some	 level	 α
Then,	VaRα	states	that	with	probability	1	-	α,	the	portfolio	manager	incurs	a	loss
of	VaRα	or	more.
FIGURE	 13.3	 Determining	 the	 0.2-Quantile	 of	 the	 Standard	 Normal
Distribution	with	the	Probability	Density	Function
	

Computing	the	VaR	of	Various	Distributions

	
Let	us	set	α	=	0.99.	Then	with	probability	0.01,	the	return	of	the	portfolio	will	be
equal	to	its	0.01-quantile	or	less.	Formally,	this	is	stated	as

P	(	rP	≤	VaR0.99	)	=	0.01
		

	 What	does	this	figure	mean	in	units	of	currency?	Let’s	use	some	numbers	to
make	 this	 concept	 clearer.	 Let	 the	 daily	 portfolio	 return	 follow	 the	 standard
normal	distribution	 (i.e.,	N(0,1)),	which	we	 introduced	 in	Chapter	 11.	The	 1%
quantile	for	this	distribution	is	equal	to	-2.3263.	Then,	we	have	VaR0.99	=	q0.01	=



-2.3263,	which	translates	into	a	relative	one-day	portfolio	loss	of	100%	−	P	=	1	-
exp(-2.3263)	=	1	-	0.0977	=	0.9023	where	P	is	the	next	day’s	portfolio	value	as	a
percentage	 of	 the	 original	 value.	 So,	 when	 the	 portfolio	 return	 is	 standard
normally	distributed,	the	VaR0.99	yields	a	portfolio	loss	of	over	90%	of	its	value.

	
By	comparison,	if	we	assume	that	the	returns	are	Student’s	t-distributed,	with,

for	 example,	 five	 degrees	 of	 freedom,	 the	 corresponding	 VaR	would	 now	 be	
	=	−3.3649.136	This	results	in	a	relative	one-day	portfolio	loss	of	100%	−	P

=	1	 -	exp(-3.3649)	=	1	 -	0.0346	=	0.9654,	which	 is	0.9654	−	0.9023	=	0.0631
more	 than	 in	 the	 standard	 normal	 case.	 Consequently,	 if	 the	 return	was	 really
Student’s	t-distributed,	we	would	be	exposed	to	a	loss	of	an	additional	6.31%	in
the	 1%	 worst	 cases	 in	 comparison	 to	 standard	 normal	 returns.	 So,	 if	 we
incorrectly	assumed	returns	followed	a	standard	normal	distribution	when	in	fact
the	 distribution	 followed	 a	 Student’s	 t-distribution,	 the	 99%	 VaR	 would
underestimate	 the	 potential	 for	 loss	 in	 our	 portfolio	 in	 the	 worst	 out	 of	 100
scenarios	significantly.
	 Suppose	 our	 portfolio	 P0	 was	 initially	 worth	 $1	 million.	 The	 additional
portfolio	value	at	stake	due	to	underestimation	as	a	result	of	applying	the	wrong
distribution	would	then	be	$1,000,000	×	0.0631=	$63,100.	In	other	words,	in	the
1%	worst	cases	possible,	we	have	to	expect,	at	least,	an	additional	$63,100	dollar
loss	 when	 returns	 are	 truly	 Student’s	 t-distributed	 but	 are	 assumed	 standard
normal.	This	type	of	modeling	risk	is	what	portfolio	managers	and	risk	managers
have	to	take	into	consideration.
	 Note	 that	 the	VaR	has	 limitations	 in	 the	 sense	we	 do	 not	 consider	what	 the
distribution	 looks	 like	 for	 values	 below	 qα.	 Consider,	 for	 example,	 two
hypothetical	portfolios	with	weekly	returns	 	and	 ,	 respectively.	Suppose,	
N(0,1)	while	 	N(0.965,	2).	So	the	return	of	portfolio	2	has	a	greater	volatility
as	indicated	by	the	larger	standard	deviation	(i.e.,	σ2	=	√2	>	σ1	=	1	),	while	its
return	has	a	positive	expected	value,	µ2	=	0.9635	compared	to	an	expected	value
of	0	for	the	return	of	portfolio	1.
	 But,	even	though	the	distributions	are	different,	their	VaRs	are	the	same,	that
is,	 	=	 	=	−2.3263	where	 	is	the	99%	VaR	of	portfolio	1	and	
of	portfolio	2.	We	illustrate	 this	 in	Figure	13.4,	where	we	depict	both	portfolio
return	density	functions	for	values	of	x	∈	[−3.5,	−2]	.	As	we	can	see	by	the	solid
line	 representing	 the	 cumulative	 distribution	 of	 the	 returns	 of	 portfolio	 2,	 it	 is



more	likely	for	portfolio	2	to	achieve	returns	strictly	less	than	-2.3263	than	for
portfolio	1,	even	 though	the	probability	for	each	portfolio	 to	obtain	a	return	of
-2.3263	 or	 less	 is	 identical,	 namely	 1%.	 This	 additional	 risk,	 however,	 in	 the
returns	of	port	folio	2	is	not	captured	in	the	 .	One	solution	to	this	problem	is
provided	by	the	expected	shortfall,	which	 is	defined	as	 the	expected	 loss	given
that	 the	 loss	 is	 worse	 than	 a	 certain	 benchmark.	 It	 builds	 on	 the	 concept	 of
conditional	probability	discussed	in	Chapter	15.
	FIGURE	 13.4	 Comparison	 of	 Left	 Tails	 of	 Two	 Normal	 Distributions	 with
Identical	VaR0.99
	



Mode

	

Let	 the	random	variable	X	 follow	some	probability	 law,	discrete	or	continuous.
Suppose	one	is	interested	in	the	value	that	occurs	with	the	highest	probability	if
X	 is	discrete	or	highest	density	function	value	for	a	continuous	X.	The	location
parameter	having	this	attribute	is	called	the	mode.

	
When	 there	 is	 only	 one	mode	 for	 a	 distribution,	we	 refer	 to	 the	 probability

distribution	as	unimodal.	This	 is	 illustrated	for	 the	standard	normal	distributon
in	Figure	13.5,	which	depicts	the	standard	normal	density	function.	Note	that	in
general	probability	distributions	with	bell-shaped	density	 functions	 such	as	 the
normal	distribution	are	unimodal.
	 As	an	example,	let	us	consider	standard	normally	distributed	portfolio	returns.
The	return	value	with	the	highest	density	value	is	rP	=	0	with	f(0)	=	0.3989.	For
all	other	values,	the	density	function	is	lower.
	 The	 mode	 does	 not	 need	 to	 be	 unique,	 as	 we	 will	 see	 in	 the	 following
example.	Let	X	be	some	B(5,0.5)	 random	variable.	 In	 the	 table	below,	we	give
the	corresponding	probability	distribution

The	modes	are	xm	=	2	and	xm	=	3	because	we	have	P(2)	=	P(3)	=	0.3125	and
P(x)	<	0.3125,	for	x	=	0,	1,	4,	and	5.
FIGURE	13.5	Mode	of	the	Standard	Normal	Distribution
	





Mean	(First	Moment)

	

Of	 all	 information	 given	 by	 location	 parameters	 about	 some	 distribution,	 the
mean	 reveals	 the	most	 important	 insight.	Although	we	 already	mentioned	 this
location	parameter	when	we	presented	discrete	and	continuous	distributions	here
we	provide	a	more	formal	presentation	within	the	context	of	location	parameters.
	 Mathematically,	the	mean	of	some	distribution	is	defined	as
(13.2)
	

if	the	corresponding	random	variable	is	discrete,	and
(13.3)
	

if	 the	 random	 variable	 is	 continuous	 with	 density	 function	 f(x).	 In	 equation
(13.2),	we	 summed	 over	 all	 possible	 values	 in	 the	 state	 space	Ω’	 that	 random
variable	X	can	assume.	In	equation	(13.3),	we	integrate	over	all	possible	values
weighted	by	the	respective	density	values.
The	mean	can	thus	be	interpreted	as	the	expected	value.	However,	we	have	to

make	 sure	 that	 the	 mean	 actually	 exists	 in	 the	 sense	 that	 equation	 (13.2)	 or
equation	(13.3)	are	finite	for	absolute	values.	That	is,	we	have	to	check	that
(13.4)
	

or
(13.5)
	

is	 satisfied,	 depending	 on	 whether	 the	 random	 variable	 is	 discrete	 or
continuous.	 The	 requirements	 equations	 (13.4)	 and	 (13.5)	 are	 referred	 to	 as
absolute	 convergence.	 This	 is	 an	 important	 criterion	 when	 modeling	 asset



returns	because	for	some	distributions	used	in	finance,	a	mean	may	not	exist.	For
example,	 in	Chapter	12,	we	discussed	the	α-stable	distribution	as	a	distribution
that	models	well	extreme	behavior.	Numerous	empirical	studies	have	found	that
this	 distribution	 better	 characterizes	 the	 return	 distribution	 of	 assets	 than	 the
normal	 distribution.	 For	 α-stable	 distributions	 with	 α	 ≤	 1,	 however,	 the	 mean
does	not	exist.
Whether	 the	 random	variable	 is	 discrete	 or	 continuous,	 the	mean	 represents

the	value	we	can	expect,	on	average.	Such	extreme	heavy-tailed	distributions	can
occur	when	considering	loss	distributions	in	financial	operational	risk.
	

Mean	of	the	Binomial	Distribution

	
For	example,	consider	again	the	binomial	stock	price	model	that	we	introduced
in	 Chapter	 9	 where	 the	 up-and	 down-movements	 were	 given	 by	 the	 binomial
random	variable	X	with	parameters	n	=	5	and	p	=	0.5,	that	is,	X	~	B(5,0.5).	Then
by	equation	(13.2),	the	mean	is	computed	as

which	is	the	result	of	the	shortcut	E(X)	=	n	⋅	p	as	we	know	from	equation	(9.7)	in
Chapter	9.	So	after	five	days,	we	have	to	expect	2.5	up-movements,	on	average.

Mean	of	the	Poisson	Distribution

	
As	another	example,	suppose	we	are	managing	an	insurance	company	that	deals
with	director	and	officer	liability	coverage.	By	experience,	we	might	know	that
the	number	of	claims	within	a	given	period	of	time,	say	one	year,	may	be	given
by	a	Poisson	random	variable	N	that	we	covered	in	Chapter	9.	The	parameter	of
the	Poisson	distribution	λ	is	assumed	here	to	be	equal	to	100.	Then,	the	mean	of
the	number	of	claims	per	year	is	given	to	be



where	 we	 used	 the	 fact	 that	 the	 last	 term	 in	 the	 third	 equality	 is	 exactly	 the
probability	 P(N	 ≤	 ∞)	 that	 naturally,	 equals	 one.	 This	 mean	 was	 already
introduced	 in	 the	 coverage	 of	 the	Poisson	distribution	 in	Chapter	 9.	Thus,	 our
insurance	company	will	have	to	expect	to	receive	100	claims	per	year.

Mean	of	the	Exponential	Distribution

	
As	an	example	of	a	continuous	random	variable,	let	us	consider	the	interarrival
time	τ	between	two	consecutive	claims	in	the	previous	example.	The	number	N
of	 claims	 inside	 of	 one	 year	 was	 previously	 modeled	 as	 a	 Poisson	 random
variable	 with	 parameter	 λ	 =	 100.	 We	 use	 this	 very	 same	 parameter	 for	 the
distribution	 of	 the	 interarrival	 time	 to	 express	 the	 connectivity	 between	 the
distribution	of	the	claims	and	the	time	we	have	to	wait	between	their	arrival	at
the	 insurance	 company.	 Thus,	 we	model	 τ	 as	 an	 exponential	 random	 variable
with	parameter	λ	=	100,	that	is,	τ	~	Exp	(100)	.	So,	according	to	equation	(13.3),
the	mean	is	computed	as

which	is	exactly	1/	λ	as	we	know	already	from	our	coverage	of	the	exponential
distribution	in	Chapter	11.137	So,	on	average,	we	have	to	wait	one	hundreds	of
one	year,	or	roughly	3.5	days,	between	the	arrival	of	two	successive	claims.
The	 time	 between	 successive	 defaults	 in	 a	 portfolio	 of	 bonds	 is	 also	 often

modeled	as	an	exponential	random	variable.	The	parameter	λ	is	interpreted	as	the
default	intensity,	that	is,	the	marginal	probability	of	default	within	a	vanishingly
small	 period	 of	 time.	 This	 procedure	 provides	 an	 approach	 in	 credit	 risk



management	to	model	prices	of	structured	credit	portfolios	called	collateralized
debt	obligations.
	

Mean	of	the	Normal	Distribution

	
Let’s	 compute	 the	 expected	 value	 of	 a	 stock	 price	 at	 time	 t	 =	 1.	 From	 the
perspective	of	time	t	=	0,	the	stock	price	at	time	t	=	1	is	given	by	a	function	of
the	random	return	r1	and	the	initial	stock	price	S0	according	to

S1	=	S0	⋅	
		

	 Moreover,	the	return	may	be	given	as	a	normal	random	variable	with	mean	µ
and	 variance	 σ2,	 that	 is,	 r1	 ~	 N(0,02).	 We	 know	 from	 Chapter	 11	 that	 if	 a
normally	distributed	random	variable	X	enters	as	the	exponent	of	an	exponential
function,	 the	 resulting	 random	 variable	 Y	 is	 lognormally	 distributed	 with	 the
same	parameters	as	X.	Consequently,	we	have	the	ratio

as	our	lognormally	distributed	random	variable.	More	precisely,

Thus	 by	 equation	 (13.3)	 and	 the	 presentation	 of	 the	 lognormal	 mean	 from
Chapter	11,	the	expected	value	of	the	ratio	is138
	

So,	on	average,	the	stock	price	in	t	=	1	will	be	10.52%	greater	than	in	t	=	0.
Suppose	the	initial	stock	price	was	$100.	This	translates	into	an	expected	stock
price	at	t	=	1	of

E	(	S1	)	=	S0	⋅	1.1052	=	$110.52
		

	



In	Figure	13.6	we	display	the	mean	of	this	N(0,2)	distributed	return	relative	to
its	density	function.	We	also	present	the	quartiles	as	well	as	the	median	for	this
return	in	the	figure.
	



PARAMETERS	OF	SCALE

	

While	 location	parameters	reveal	 information	about	 the	position	of	parts	of	 the
distribution,	 scale	 parameters	 indicate	 how	 dispersed	 the	 probability	 mass	 is
relative	 to	 certain	 values	 or	 location	 parameters	 and	 whether	 it	 is	 distributed
asymmetrically	about	certain	location	parameters.
	FIGURE	13.6	Mean,	Median,	Mode,	 and	Quartiles	of	 the	N(0,02)	Distributed
One-Day	Stock	Price	Return
	



Moments	of	Higher	Order

	

In	 the	previous	 section,	we	 introduced	 the	mean	as	 the	 first	moment.	Here	we
introduce	 a	 more	 general	 version,	 the	 k-th	 moment	 or	 moment	 of	 order	 k
measuring	the	dispersion	relative	to	zero.	It	is	defined	as
(13.6)
	

for	discrete	distributions,	that	is,	on	countable	sets,	and	as
(13.7)
	

for	continuous	distributions.	As	with	 the	mean,	we	have	 to	guarantee	 first	 that
equations	 (13.6)	 and	 (13.7)	 converge	 absolutely.	 That	 is,	 we	 need	 to	 check
whether
(13.8)
	

or,	alternatively,
(13.9)
	

are	met.
Moments	of	higher	order	than	the	mean	are	helpful	in	assessing	the	influence

of	extreme	values	on	the	distribution.	For	example,	if	k	=	2,	that	is,	the	so-called
second	moment,	not	only	are	the	signs	of	the	values	ignored,	but	all	values	are
squared	as	a	particular	measure	of	scale.	This	has	the	effect	that,	relative	to	small
values	such	as	between	-1	and	1,	large	values	become	even	more	pronounced.
	

Second	Moment	of	the	Poisson	Distribution



	
As	an	example,	consider	the	number	N	of	firms	whose	issues	are	held	in	a	bond
portfolio	defaulting	within	one	year.	Since	we	do	not	know	the	exact	number	at
the	beginning	of	the	year,	we	model	it	as	a	Poisson	distributed	random	variable.
Note	 that	 the	 Poisson	 distribution	 is	 only	 an	 approximation	 since,	 technically,
any	nonnegative	integer	number	is	feasible	as	an	outcome	under	the	Poisson	law,
while	we	only	have	a	finite	number	of	firms	in	our	portfolio.
	 We	decide	to	set	the	parameter	equal	to	λ	=	5.	So,	on	average,	we	expect	five
companies	 to	 default	 within	 one	 year.	With	 absolute	 convergence	 in	 equation
(13.8)	 is	 fulfilled	for	k	=	2,	 the	 second	moment	can	be	computed	according	 to
equation	(13.6)	as139

	So,	30	is	the	expected	number	of	square	defaults	per	year.
	 We	can	derive	from	the	second	equality	that	the	second	moment	of	a	Poisson
random	variable	with	parameter	λ	is	equal	to	E(N	2	 )	=	λ	+	λ	2	 .	While	this	by
itself	 has	 no	 interpretable	 meaning,	 it	 will	 be	 helpful,	 as	 we	 will	 see,	 in	 the
computation	 of	 the	 variance,	 which	 we	 are	 going	 to	 introduce	 as	 a	 scale
parameter	shortly.
	

Second	Moment	of	the	LogNormal	Distribution

	
As	another	illustration,	let	us	again	consider	the	stock	price	model	presented	in
the	illustration	of	the	mean	earlier	in	this	chapter.	The	stock	price	return	r1	from	t
=	 0	 to	 t	 =	 1	 was	 given	 by	 a	 normal	 random	 variable	 with	 mean	 μ	 =	 0	 and
variance	 σ2	 =	 0.2.	 Then,	 the	 ratio	 of	 tomorrow’s	 stock	 price	 to	 today’s	 (i.e.,
S1/S0)	 is	 lognormally	 distributed	 with	 the	 same	 parameters	 as	 r1.	 The	 second
moment	of	S1/S0	is140

	We	see	by	the	second	equality	 that	 the	second	moment	of	a	 lognormal	random



variable	Y	with	parameters	μ	and	σ2	is	given	by	E(Y2	)	=	exp(µ	−	σ2	).
	

Nonexistence	of	the	Second	Moment	of	the	α-Stable	Distribution

	
Now	suppose	that	the	one-day	return	r1	is	not	normally	distributed	but,	instead,
distributed	α-stable	with	parameters	α	=	1.8,	β	=	0,	σ	=	1,	and	μ	=	0.141
	For	r1,	 the	condition	of	absolute	convergence	(13.9)	with	k	=	2	is	not	fulfilled.
Thus,	the	return	does	not	have	a	second	moment.	The	same	is	true	for	the	ratio
S1/S0.	 We	 see	 that,	 under	 the	 assumption	 of	 an	 α-stable	 distribution,	 extreme
movements	are	considered	 so	common	 that	higher	moments	explode	while	 for
the	 normal	 distribution,	 moments	 of	 all	 orders	 exist.	 This	 demonstrates	 the
importance	of	 the	 right	 choice	of	 distribution	when	modeling	 stock	 returns.	 In
particular	 daily	 or,	 even	 more	 so,	 intra-daily	 returns,	 exhibit	 many	 large
movements	that	need	to	be	taken	care	of	by	the	right	choice	of	a	distribution.
	



Variance

	

In	our	discussion	of	 the	variance,	skewness,	and	kurtosis,	we	will	make	use	of
the	following	definition	of	the	central	moment	of	order	k.
	 Moments	of	some	random	variable	X	of	any	order	that	are	centered	about	the
mean	µ	rather	than	zero	are	referred	to	as	central	moments,	and	computed	as
(13.10)
	

provided	that	this	expression	is	finite.
Earlier	 the	 second	moment	was	 presented	 as	 a	 particular	measure	 of	 spread

about	 zero.	 Here,	 we	 introduce	 a	 slightly	 different	 measure	 which	 is	 directly
related	to	the	second	moment:	the	variance,	abbreviated	Var.142	In	contrast	to	the
second	moment,	however,	it	is	computed	relative	to	the	mean.	It	is	referred	to	as
the	second	central	moment	with	k	equal	to	2	in	definition	(13.10).	Formally,	the
variance	 is	 defined	 as	 the	 expected	 value	 of	 the	 squared	 deviations	 from	 the
mean.
	 In	the	case	of	a	discrete	random	variable	X	with	mean	E(X)	=	μ,	we	have
(13.11)
	

while	when	X	is	a	continuous	random	variable,	the	definition	is	given	by
(13.12)
	

One	can	show	that	both	equations	(13.11)	and	(13.12)	can	be	represented	in	a
version	 using	 the	 second	 moment	 and	 the	 mean	 that	 in	 general,	 simplifies
computations.	This	alternative	representation	is
(13.13)
	



which	 is	 valid	 for	 both	 discrete	 and	 continuous	 random	variables.	 Sometimes,
in	 particular	 if	 the	 mean	 and	 second	 moment	 are	 already	 known,	 it	 is	 more
convenient	 to	 use	 version	 (13.13)	 rather	 than	 having	 to	 explicitly	 compute
equations	(13.11)	or	(13.12).

Variance	of	the	Poisson	Distribution

	
As	an	illustration,	we	consider	the	random	number	N	of	firms	whose	bonds	are
held	in	a	portfolio	defaulting	within	one	year.	Again,	we	model	the	distribution
of	N	using	the	Poisson	distribution	with	parameter	λ	=	5	such	that	we	expect	five
firms	to	default	within	one	average	year.	However,	 in	each	individual	year,	 the
actual	 number	 of	 defaults	 may	 vary	 significantly	 from	 five.	 This	 we	measure
using	the	variance.	According	to	equation	(13.11),	it	is	computed	as143

	We	see	that	the	variance	of	a	Poisson	distribution	is,	as	well	as	the	mean,	equal
to	parameter	λ.	With	E(N2)	=	25	and	E(N)	=	5,	we	can	conveniently	compute	the
variance	 as	 Var(N)	 =	 E(N2)	 -	 (E(N))2	 =	 30	 -	 25	 =	 5,	 according	 to	 equation
(13.13).
	

Variance	of	the	Exponential	Distribution

	
In	 our	 next	 illustration,	 let’s	 return	 to	 the	 insurance	 company	 example	 and
consider	 the	 exponentially	 distributed	 time	 τ	 between	 two	 successive	 claims



reported.	Recall	that	τ	was	distributed	τ	~	Exp	(100)	;	that	is,	we	have	to	expect
to	wait	 1/100	of	 a	 year,	 or	 roughly	3.5	days,	 between	one	 and	 the	next	 claim.
Equation	(13.12)	yields	the	variance	as

	 We	can	see	that	the	variance	of	an	exponential	random	variable	is	equal	to	1/
λ2.144
	

Variance	of	the	Normal	Distribution	and	α-Stable	Distribution

	
Now,	let	us	recall	the	normally	distributed	one-day	stock	return	r1	from	previous
examples.	 The	 mean	 of	 the	 distribution	 is	 given	 by	 μ	 =	 0	 while	 its	 variance
equals	σ2	=	0.2.	So,	we	are	done	since	the	variance	is	already	provided	by	one	of
the	parameters.	The	variance	of	the	corresponding	lognormally	distributed	ratio
of	tomorrow’s	stock	price	to	today’s	(i.e.,	S1/S0)	is145

Var	(	S1	/	S0	)	=	e	2⋅0+0.2	(	e	0.2	−	1)	=	0.2704
		

	 If,	on	the	other	hand,	the	return	was	α-stable	distributed	with	α	=	1.8,	β	=	0,	σ
=	1,	and	μ	=	0,	the	variance	does	neither	exist	for	the	return	nor	the	stock	price
ratio	since	the	respective	second	moments	are	infinite,	as	was	mentioned	already.
	



Standard	Deviation

	

Instead	of	the	variance,	one	often	uses	the	standard	deviation,	often	abbreviated
as	std.	dev.	and	in	equations	denoted	by	σ,	which	is	simply	the	square	root	of	the
variance,	that	is,

	In	many	cases,	the	standard	deviation	is	more	appealing	than	the	variance	since
the	 latter	uses	 squares	and,	hence,	yields	a	value	 that	 is	differently	scaled	 than
the	 original	 data.	 By	 taking	 the	 square	 root,	 the	 resulting	 quantity	 (i.e.,	 the
standard	deviation)	is	in	alignment	with	the	scale	of	the	data.
	 At	this	point,	let	us	recall	the	Chebychev	inequality,	discussed	in	Chapter	11,
that	states	that	the	probability	of	any	random	variable	X	deviating	by	more	than	c
units	from	its	mean	µ	is	less	than	or	equal	to	the	ratio	of	its	variance	to	c2.	From
this	inequality,	we	have	that
	

	
P	(|X	−µ≤σ|)	>
0

Roughly	0%	of	the	data	are	within	one	standard	deviation	about
the	mean.

P	(|X	−µ≤2-σ|)

>
More	than	75%	of	the	data	are	within	two	standard	deviations
about	the	mean.

P	(|X	−µ≤3-σ|)

>
More	than	89%	of	the	data	are	within	three	standard	deviations
about	the	mean.

	

	

This,	however,	is	a	very	coarse	estimate	since	it	has	to	apply	for	any	type	of
distribution.	A	more	refined	guidance	derived	from	the	normal	distribution	can
be	given	if	the	distribution	is	symmetric	about	the	median	and	unimodal.	Then,



by	the	following	empirical	rule	of	thumb,	we	have
	

	
P	(|X	−µ≤σ|)	≈
0.683

Roughly	68%	of	the	data	are	within	one	standard	deviation
about	the	mean.

P	(|X	−µ≤2	⋅	σ|)	≈
0.955

More	than	96%	of	the	data	are	within	two	standard
deviations	about	the	mean.

P	(|X	−µ≤3	⋅	σ|)	≈
0.997

About	all	of	the	data	are	within	three	standard	deviations
about	the	mean.

	

	

With	our	previous	one-day	stock	price	return,	which	we	assumed	to	follow	the
N(0,0.2)	 law,	we	 have	 to	 expect	 that	 on	 68	 out	 of	 100	 days	we	 have	 a	 return
between	−	√0.2	=	−0.4472	and	√0.2	=	0.4472	 .	Furthermore,	 in	96	out	of	100
days,	we	have	to	expect	the	return	to	be	inside	of	the	interval

and	 virtually	 no	 day	 will	 experience	 a	 return	 below	 −3	 ⋅	 √0.2	 =	 −1.3416	 or
above	3	⋅	√0.2	=	1.3416	.	We	demonstrate	this	in	Figure	13.7.
This	translates	to	the	following	bounds	for	the	stock	price	ratio	S1/S0
	

	
[0.6394,	1.5639] in	68%,
[0.4088,	2.4459] in	95%,	and
[0.2614,	3.8253] in	100%	of	the	cases,

	

which,	setting	S0	=	$100,	corresponds	 to	bounds	for	 tomorrow’s	stock	price	of



	
[$63.94,$156.39] in	68%,
[$40.88,$244.59] in	95%,	and
[$26.14,$382.53] in	100%	of	the	cases.

	

	

FIGURE	13.7	Rule	of	Thumb	for	N(0,0.2)	One-Day	Return	rt
	

FIGURE	13.8	Bounds	for	S1/S0	Derived	via	Distribution	of	One-Day	Return	(∗)
and	by	Erroneously	Applying	Empirical	Rule	to	Distribution	of	S1/S0	(+)
	



Note	that	we	cannot	apply	the	rule	of	thumb	immediately	to	the	lognormally
distributed	 S1/S0	 since	 the	 lognormal	 distribution	 is	 not	 symmetric	 about	 its
median.	 This	 can	 be	 seen	 in	 Figure	 13.8	 where	 we	 display	 the	 Ln(0,0.2)
probability	density	function	of	S1/S0.	We	compare	 the	bounds	derived	from	the
empirical	 rule	 for	 r1	 (indicated	 by	 the	 asterisk	 *)	 and	 the	 bounds	 obtained	 by
erroneously	applying	the	empirical	rule	to	the	lognormal	S1/S0	(indicated	by	the
plus	sign	+	).
	



Skewness

	

The	empirical	 rule	was	applicable	only	 to	bell-shaped	densities	 such	as	 that	of
the	normal	distribution.	A	necessary	prerequisite	was	given	by	the	symmetry	of
the	distribution.
	 How	can	we	objectively	measure	whether	some	distribution	is	symmetric	and,
if	 not,	 to	what	 extent	 it	 deviates	 from	 symmetry?	The	 answer	 is	 given	 by	 the
skewness	 parameter.	 It	measures	 the	 ratio	 of	 the	 third	 central	moment	 to	 the
standard	deviation	to	the	third	power	where,	according	to	definition	(13.10),	the
third	 central	 moment	 of	 some	 random	 variable	 X	 with	 mean	 µ	 and	 standard
deviation	σ	is	given	by

E	((	X	−	µ	)3	)
	

such	that	the	skewness	is	formally	defined	as
(13.14)
	

	Since,	 in	 contrast	 to	 the	 standard	 deviation,	 the	 third	 central	 moment	 is
sensitive	 to	 the	 signs	of	 the	deviations	 (x	 -	 μ),	 the	 skewness	 parameter	σ3	 can
assume	any	real	value.	We	distinguish	between	three	different	sets	of	values	for
σ3:	 less	 than	zero,	zero,	and	greater	 than	zero.	The	particular	kind	of	skewness
that	some	distribution	displays	is	given	below:

	

Skewness	of	Normal	and	Exponential	Distributions

	
Since	the	density	function	of	the	normal	distribution	is	symmetric,	its	skewness



is	zero.
	 As	 another	 example,	 consider	 the	 exponentially	 distributed	 time	 τ	 between
two	 successive	 failures	 of	 firms	 in	 our	 bond	 portfolio	 illustration	 where	 we
assumed	parameter	λ	=	5,	that	is,	τ	~	Exp(5).	The	computation	of	the	skewness
yields	σ3	=	2	>	0	such	that	the	exponential	distribution	is	right-skewed.	Note	that
the	mode	of	τ	is	m	=	0,	the	median	is	q0.5	=	0.1386,	and	the	mean	equals	E(τ)	=
0.2.	Hence,	the	numeric	order	of	these	three	location	parameters	is	m	<	q0.5	<	E
(τ)	 .	We	 display	 this	 in	 Figure	 13.9.	 This	 is	 always	 the	 case	 for	 right-skewed
distributions	 with	 one	 mode,	 only	 (i.e.,	 unimodal	 distributions).	 The	 exact
opposite	numerical	order	is	true	for	left-skewed	distributions	with	one	mode.146
	

Skewness	of	GE	Daily	Returns

	
As	 another	 illustration	of	 the	 skewness	 in	 stock	 returns,	 let’s	 look	 at	 the	 daily
returns	 of	 the	 General	 Electric	 (GE)	 stock.	 It	 is	 commonly	 found	 that	 daily
financial	data	exhibit	skewness,	in	particular,	negative	skewness.	We	will	verify
this	 using	 the	 daily	 7,300	 observations	 from	 April	 24,	 1980	 until	 March	 30,
2009.	We	display	the	returns	in	Figure	13.10.	As	we	can	see,	the	returns	roughly
assume	values	between	-0.20	and	0.20	in	that	period.
	FIGURE	13.9	Location	Parameters	of	Right-Skewed	Exp(5)	Distribution
	



To	compute	the	skewness	as	given	by	equation	(13.14),	we	need	knowledge	of
the	 probability	 distribution.	 Since	 due	 to	 its	 symmetry	 the	 normal	 distribution
cannot	capture	skewness	in	any	direction,	we	have	to	resort	to	some	probability
distribution	whose	parameters	allow	for	asymmetry.	Let	us	assume	that	the	daily
GE	 returns	 are	 normal	 inverse	 Gaussian	 (NIG)	 distributed.	 From	 Chapter	 12
where	we	discuss	 this	distribution,	we	know	that	 the	NIG	 distribution	has	 four
parameters,	 (a,b,μ,δ).	 For	 the	 GE	 data,	 we	 have	 a	 =	 31.52,	 b	 =	 -0.7743,	 μ	 =
0.0006,	and	δ	=	0.0097	obtained	from	estimation.
	 Now,	 the	 skewness	 in	 equation	 (13.14)	 for	 a	 NIG	 random	 variable	 can	 be
specified	as

Thus	with	 the	parameter	values	given,	 this	skewness	 is	approximately	equal	 to
−0.1330.	Hence,	we	observe	left-skewed	returns.
FIGURE	13.10	GE	Daily	Returns	Between	April	24,	1980	and	March	30,	2009
	



Kurtosis

	

Many	 probability	 distributions	 appear	 fairly	 similar	 to	 the	 normal	 distribution,
particularly	if	we	look	at	the	probability	density	function.	However,	they	are	not
the	 same.	 They	 might	 distinguish	 themselves	 from	 the	 normal	 distribution	 in
very	significant	aspects.

	
Just	as	the	existence	of	positive	or	negative	skewness	found	in	some	data	is	a

reason	to	look	for	alternatives	to	the	normal	distribution,	there	may	also	be	other
characteristics	 inherent	 in	 the	 data	 that	 render	 the	 normal	 distribution
inappropriate.	The	reason	could	be	that	there	is	too	much	mass	in	the	tails	of	the
distribution	of	 the	data	 relative	 to	 the	normal	distribution,	 referred	 to	as	heavy
tails,	 as	 well	 as	 an	 extremely	 accentuated	 peak	 of	 the	 density	 function	 at	 the
mode.	That	is,	we	have	to	look	at	the	kurtosis	of	the	distribution	of	the	data.
	 These	 parts	 of	 the	 distribution	 just	mentioned	 (i.e.,	 the	mass	 in	 the	 tails)	 as
well	as	the	shape	of	the	distribution	near	its	mode,	are	governed	by	the	kurtosis
parameter.	For	a	 random	variable	X	with	mean	µ	 and	variance	σ2,	 the	kurtosis
parameter,	denoted	by	κ,	is	defined	as
(13.15)
	

The	 expression	 in	 the	 numerator	 is	 referred	 to	 as	 the	 fourth	 central	 moment
according	 to	 equation	 (13.10),	 while	 the	 denominator	 consists	 of	 the	 squared
variance.
For	 the	 normal	 distribution	with	 any	 parameter	µ	 and	σ2,	 the	 kurtosis	 from

equation	(13.15)	 is	 equal	 to	 3.	When	 a	 distribution	 has	 heavier	 tails	 and	more
probability	 is	 assigned	 to	 the	 area	 about	 the	 mode	 relative	 to	 the	 normal
distribution,	 then	 κ	 >	 3	 and	 we	 speak	 of	 a	 leptokurtic	 distribution.	 Since	 its
kurtosis	is	greater	than	that	of	the	normal	distribution,	we	say	that	it	has	excess
kurtosis	 computed	 as	 κEx	 =	 κ	 −	 3	 .	 If,	 on	 the	 other	 hand,	 the	 distribution	 has
kurtosis	κ	<	3	,	then	we	speak	of	the	distribution	as	being	platykurtic.	Typically,



a	 platykurtic	 distribution	 has	 less	 mass	 in	 the	 tails	 and	 a	 not-so-pronounced
density	 peak	 about	 the	 mode	 relative	 to	 the	 normal	 distribution.	 When	 the
distribution	has	similar	behavior	in	these	parts	of	the	distribution,	then	we	say	it
is	mesokurtic	and	it	has	kurtosis	κ	=	3.
	



Kurtosis	of	the	GE	Daily	Returns

	

As	an	illustration,	let	us	continue	with	the	analysis	of	the	7,300	GE	daily	returns
between	 April	 24,	 1900	 and	 March	 30,	 2009.	 For	 the	 NIG	 distribution,	 the
kurtosis	from	equation	(13.15)	can	be	specified	as

	With	 the	parameters	given	previously	when	we	 illustrated	 skewness	 calculated
for	 the	 GE	 daily	 returns,	 the	 kurtosis	 is	 equal	 to	 κ	 =	 12.8003,	 which	 is	 well
above	3.	Thus,	using	the	NIG	distribution,	the	parameter	values	suggest	that	the
GE	daily	returns	are	leptokurtic;	that	is,	they	are	heavy	tailed	with	a	high	peak	at
the	mode.

	
For	comparison,	we	also	choose	 the	normal	distribution	as	an	alternative	for

the	 returns.	 When	 the	 GE	 daily	 returns	 are	 modeled	 as	 a	 normal	 random
variable,	 the	parameters	 are	given	as	μ	=	0.0003	and	σ2	=	0.0003.	We	display
both,	the	NIG	(solid)	and	normal	(dashed)	density	functions	in	Figure	13.11.147
Note	 how	 the	 leptokurtosis	 of	 the	 NIG	 is	 distinctly	 higher	 than	 that	 for	 the
normal	 distribution.	 In	 addition,	 the	 heaviness	 of	 the	NIG	 tails	 relative	 to	 the
normal	 distribution	 can	 be	 seen	 in	 Figure	 13.12	 where	 we	 compare	 the
respective	left,	that	is,	negative,	tails.
	FIGURE	 13.11	 Modeling	 GE	 Daily	 Returns	 with	 the	 Normal	 and	 the	 NIG
Distribution
	



Finally,	 the	 two	 distributional	 alternatives	 are	 compared	 with	 the	 empirical
data	given	by	the	histogram	(gray)	 in	Figure	13.13.148	As	we	can	see,	 the	NIG
density	curve	(solid)	reflects	the	features	of	the	histogram	better	than	the	normal
density	(dashed).
	FIGURE	13.12	Comparison	of	the	Left	Tails	of	the	GE	Daily	Returns:	Normal
Distribution	versus	NIG	Distribution
	

FIGURE	 13.13	 Comparison	 of	 Normal	 and	 NIG	 Alternative	 Relative	 to
Empirical	Data	(histogram)
	





CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Quantiles	
Percentile	
Infimum	(inf)	
Lower	quartile	
upper	quartile	
Value-at-risk	(VaR)	
Expected	shortfall	
Mode	
unimodal	
Mean	
Expected	Value	
Absolute	convergence	
Scale	parameters	
k-th	moment	(moment	of	order	k)	
Second	moment	
Central	moment	of	order	k	
Central	moments	
Second	central	moment	
Standard	deviation	
Skewness	
Third	central	moment	
Heavy	tails	
Kurtosis	
Fourth	central	moment	
Leptokurtic	
Excess	kurtosis	
Platykurtic	
Mesokurtic
	APPENDIX:	 PARAMETERS	 FOR	 VARIOUS	 DISTRIBUTION
FUNCTIONS
	







CHAPTER	14
	

Joint	Probability	Distributions
	

In	previous	chapters,	we	explained	the	properties	of	a	probability	distribution	of
a	 single	 random	 variable;	 that	 is,	 the	 properties	 of	 a	 univariate	 distribution.
univariate	 distributions	 allow	 us	 to	 analyze	 the	 random	behavior	 of	 individual
assets,	for	example.	In	this	chapter,	we	move	from	the	probability	distribution	of
a	single	random	variable	(univariate	distribution)	to	the	probability	law	of	two	or
more	random	variables,	which	we	call	a	multivariate	distribution.	understanding
multivariate	distributions	is	important	in	financial	applications	such	as	portfolio
selection	 theory,	 factor	modeling,	 and	 credit	 risk	modeling,	where	 the	 random
behavior	 of	 more	 than	 one	 quantity	 needs	 to	 be	 modeled	 simultaneously.	 For
example,	 Markowitz	 portfolio	 theory	 builds	 on	 multivariate	 randomness	 of
assets	in	a	portfolio.
	 We	 begin	 this	 chapter	 by	 introducing	 the	 concept	 of	 joint	 events	 and	 joint
probability	distributions	with	the	joint	density	function.	For	the	latter,	we	present
the	 contour	 lines	 of	 constant	 density.	 From	 there,	we	 proceed	 to	 the	marginal
probability	 distribution,	 followed	 by	 the	 immensely	 important	 definition	 of
stochastic	dependence.	As	common	measures	of	joint	random	behavior,	we	will
give	 the	 covariance	 and	 correlation	 parameters	 along	with	 their	 corresponding
matrices.

	
In	 particular,	we	 present	 as	 continuous	 distributions	 the	multivariate	 normal

and	multivariate	Student’s	 t-distribution,	as	well	 the	elliptical	distributions.	All
of	these	distributions	play	an	important	role	in	financial	modeling.	In	Chapter	16
we	will	learn	that	the	dependence	structure	of	a	distribution	function	is	given	by
a	 concept	 called	 a	 copula	 and	 introduce	 the	 tail	 dependence	 that	 provides	 an
important	 device	 in	 assessing	 the	 probability	 of	 joint	 extreme	 movements	 of
different	stock	returns,	for	example.	Wherever	necessary	in	this	chapter,	we	will
make	a	distinction	between	discrete	and	continuous	cases.
	



HIGHER	DIMENSIONAL	RANDOM	VARIABLES

	

In	the	theory	of	finance,	it	is	often	necessary	to	analyze	several	random	variables
simultaneously.	 For	 example,	 if	 we	 only	 invest	 in	 the	 stock	 of	 one	 particular
company,	it	will	be	sufficient	to	model	the	probability	distribution	of	that	stock’s
return	 exclusively.	 However,	 as	 soon	 as	 we	 compose	 a	 portfolio	 of	 stocks	 of
several	 companies,	 it	 will	 very	 likely	 not	 be	 enough	 to	 analyze	 the	 return
distribution	of	 each	 stock	 individually.	The	 reason	 is	 that	 the	 return	of	 a	 stock
might	 influence	 the	 return	 of	 another	 stock,	 a	 feature	 that	 is	 neglected	 if	 we
consider	 stock	 returns	 in	 isolation.	So,	when	managing	a	portfolio,	we	need	 to
orchestrate	the	component	stock	returns	jointly.
	



Discrete	Case

	

Let’s	begin	by	introducing	discrete	probability	distributions.	Let	X	be	a	discrete
random	variable	consisting	of,	say,	k	components	so	that	we	can	write	X	as
(14.1)
	

where	in	equation	(14.1)	each	of	the	components	X1,	X2,	…,	Xk	can	be	treated	as
a	 univariate	 random	 variable.	 Because	 of	 its	 multidimensionality,	 the	 random
variable	X	 is	 also	 referred	 to	 as	 random	 vector.	 The	 random	 vector	 assumes
values	which	we	denote	by	the	k-tuple	(x1,	x2,	…,	xk).149

For	discrete	random	vectors,	the	space	Ω	can	be	viewed	as	the	countable	set	of
all	outcomes	(x1,	x2,	…,	xk)	where	the	x1,	x2,	…,	xk	are	real	numbers.150	The	σ-
algebra	 A	 (Ω)	 introduced	 in	 Chapter	 8	 then	 consists	 of	 sets	 formed	 by	 the
outcome	k-tuples	(x1,	x2,	…,	xk).
	 For	 example,	 suppose	 we	 have	 two	 assets.	 Let	 us	 assume	 that	 asset	 one,
denoted	by	A1,	can	only	take	on	one	of	 the	following	three	values	next	period:
$90,	$100,	or	$110.	Suppose	asset	two,	denoted	by	A2,	can	take	on	only	one	of
the	following	two	values	next	period:	$80	or	$120.	So,	the	space	containing	all
outcome	pairs	(x1,	x2)	is	given	by

Ω	=	{(90,	80	),	(	100,80	),	(	110,80	),	(90,120	),	(	100,120	),	(	110,120)}
		

	 The	first	component,	x1,	of	each	pair	 represents	 the	value	of	A1	next	period,
while	 the	 second	 component,	 x2,	 represents	 the	 value	 of	A2	 next	 period.	 The
corresponding	 σ-algebra	 with	 the	 combined	 events	 is	 then	 formed	 from	 these
elements	of	Ω	.	For	example,	such	a	combined	event	B	could	be	that	A1	is	either
equal	 to	 $90	 or	 $100	 and	 A2	 =	 $120.	 This	 event	 B	 is	 given	 by	 the	 element
{(90,120),	(100,120)}	of	the	σ-algebra.
	



Continuous	Case

	

In	contrast	to	the	discrete	case	just	described,	we	now	assume	the	components	of
the	 random	 vector	X	 to	 be	 random	 variables	 with	 values	 in	 uncountable	 sets.
That	is,	X	is	now	continuous.	Consequently,	the	k-dimensional	random	vector	X
is	associated	with	outcomes	in	an	uncountable	set	Ω	of	k-dimensional	elements.
The	values	given	by	the	k-tuple	(x1,	x2,	…,	xk)	are	now	such	 that	each	of	 the	k
components	xi	is	a	real	number.

	
The	corresponding	σ-algebra	A	(Ω)	 is	 slightly	difficult	 to	set	up.	We	can	no

longer	simply	take	all	possible	outcome	tuples	and	combine	them	arbitrarily.	As
discussed	in	Chapter	8	as	a	main	example	of	Ω	being	an	uncountable	set,	we	can
take	the	k-dimensional	σ-algebra	of	the	Borel	sets,	B	k,	instead,	which	contains,
for	 example,	 all	 real	 numbers,	 all	 sorts	of	open	and	half-open	 intervals	of	 real
numbers,	and	all	unions	and	intersections	of	them.
	 For	 example,	 let	 us	 now	 model	 the	 two	 previous	 assets	 A1	 and	 A2	 as
continuous	 random	 variables.	 That	 is,	 both	 A1	 and	 A2	 assume	 values	 in
uncountable	 sets	 such	 that	 the	 resulting	 combination,	 that	 is,	 the	pair	 (A1,	A2),
takes	 on	 values	 (x1,	 x2)	 in	 an	 uncountable	 set	 Ω	 itself.	 Suppose	 the	 possible
values	for	A1	were	in	the	range	[90,110];	that	is	A1	could	have	any	price	between
$90	and	$110.	For	A2,	 let	us	 take	 the	 range	 [80,120],	 that	 is,	A2	 has	 any	value
between	$80	and	$120.	Thus,	the	space	containing	all	outcomes	for	the	random
vector	(A1,	A2)	is	now	formally	given	by151

Ω	=	{(	x1	,	x2	)|	x1	∈	[90,110]	and	x2	∈	[80,120]}
		

	 As	 the	set	of	events,	we	have	 the	σ-algebra	of	 the	2-dimensional	Borel	sets,
this	is,	Bk.	For	example,	“A1	between	$93.50	and	$100	and	A2	less	than	$112.50”
corresponds	to



{(	x1	,	x2	)|	x1	∈	[93.50,100]	and	x2	∈(	−∞,112.50]}
	

or	“A1	equal	to	$90	and	A2	at	least	$60”	corresponds	to

{(90,	x2	)|x2	∈	[60,	∞	)}
	

could	be	such	events	from	that	σ-algebra.
	



JOINT	PROBABILITY	DISTRIBUTION

	

Now	let’s	 introduce	 the	probability	distribution	 for	 random	vectors	such	as	 the
previously	introduced	X.	Since	the	randomness	of	each	component	of	X	has	to	be
captured	in	relation	to	all	other	components,	we	end	up	treating	the	components’
random	behavior	jointly	with	the	multivariate	or	joint	probability	distribution.
	



Discrete	Case

	

We	begin	with	the	analysis	of	joint	probability	distributions	in	the	discrete	case.
Suppose	Ω	was	our	countable	set	composed	of	the	k-dimensional	outcomes	(x1,
…,	xk).	Each	particular	outcome	is	assigned	a	probability	between	0	and	1	such
that	we	can	express	by

P	(X	=	(	x1	,…,	xk	))
	

the	probability	that	random	vector	X	is	equal	to	(x1,	…,xk).	In	the	discrete	case,	it
is	easy	to	give	the	probability	that	X	assumes	a	value	in	set	B	where	B	is	in	the	σ-
algebra.	Since	B	consists	of	outcomes,	the	probability	of	B,	that	is,	P(B)	=	P	(X
∈	B)	 ,	 is	 computed	by	 simply	 collecting	 all	 outcomes	 that	 are	 contained	 in	B.
Since	 outcomes	 are	 mutually	 exclusive,	 we	 then	 add	 the	 probabilities	 of	 the
respective	outcomes	and	obtain	the	probability	of	B.	More	formally,	we	express
this	probability	in	the	form

	 Suppose	we	are	interested	in	the	joint	event	that	each	component	Xi	of	random
vector	 X	 was	 less	 than	 or	 equal	 to	 some	 respective	 value	 ai.	 This	 can	 be
expressed	by	the	event
(14.2)
	

	We	 know	 from	 previous	 chapters	 that	 the	 probability	 of	 some	 univariate
random	variable	Y	assuming	values	less	than	or	equal	to	a,	P	(Y	≤	a)	,	is	given	by
the	distribution	function	of	Y	evaluated	at	a,	that	is,	FY(a).	A	similar	approach	is
feasible	for	events	of	the	form	(14.2)	in	that	we	introduce	the	joint	distribution
function	 for	 discrete	 random	 variables.	 Formally,	 the	 joint	 cumulative
distribution	function	(cdf)	is	given	by152
	(14.3)



	

Since	 the	 form	 in	 equation	 (14.3)	 is	 rather	 complicated,	 we	 introduce
shorthand	notation.	The	outcomes	are	abbreviated	by	x	=	(x1,	…,	xk).	Then,	event
B	from	(14.2)	can	be	rewritten	in	the	form	B	=	{x	≤	a},	where	a	 represents	 the
tuple	 (a1,	…,	 ak).	 So,	 we	 can	write	 the	 cdf	 from	 equation	 (14.3)	 in	 the	 more
appealing	form
(14.4)
	

	To	 illustrate	 the	 importance	 of	 understanding	 joint	 probability	 distributions,
we	 use	 as	 a	 very	 simple	 example	 the	 two	 assets	 A1	 and	A2	 from	 our	 earlier
example.	For	convenience,	below	we	relist	the	values	each	asset	can	assume:
	

	
A1 $90 $100 $110

	

and

	
A2 $80 $120

	

	

	
As	pointed	out	 earlier,	 if	we	 formed	 a	 portfolio	 out	 of	 these	 two	 assets,	 the

mere	knowledge	of	 the	values	each	asset	can	separately	assume	is	not	enough.
We	need	 to	know	their	 joint	behavior.	For	example,	certain	values	of	A1	might



never	 occur	with	 certain	 other	 values	 of	A2.	As	 an	 extreme	 case,	 consider	 the
joint	probability	distribution	given	by	the	following	2-by-3	table:
	

	
A1 $90 $100 $110

A2
$80 0.05 0.45
$120 0.5

	

	

	
That	is,	we	have	only	three	different	possible	scenarios.	With	5%	probability,

A1	will	have	a	value	of	$100	while	simultaneously	A2	will	have	a	value	of	$80.
In	another	45%	of	the	cases,	the	value	of	A1	will	be	equal	to	$110	while,	at	the
same	time,	that	of	A2	will	be	$80	again.	And,	finally,	with	50%	probability,	we
have	a	value	for	A1	of	$90	while,	at	 the	same	 time,	A2	 is	worth	$120.	Besides
these	 three	 combinations,	 there	 are	 no	 value	 pairs	 for	A1	 and	A2	 with	 positive
probability.
	



Continuous	Case

	

As	 in	 the	 univariate	 case,	 when	 the	 probability	 distribution	 is	 continuous,	 a
single	 value	 for	 x	 =	 (x1,	 x2,	…,	 xn)	 occurs	with	 probability	 zero.	Only	 events
corresponding	to	sets	of	the	form
(14.5)
	

can	have	positive	probability.	The	set	A	in	equation	(14.5)	comprises	all	values
whose	 first	 component	 lies	 between	 a1	 and	 b1,	 whose	 second	 component	 is
between	a2	and	b2,	and	so	forth.	Set	A,	thus,	generates	a	k-dimensional	volume
with	edge	lengths	b1	-	a1	through	bk	-	ak	that	all	need	to	be	greater	than	zero	for
the	volume	to	have	positive	probability.153

If	 a	 random	 variable	 X	 has	 a	 continuous	 probability	 law,	 we	 define	 the
probability	of	an	event	represented	by	the	form	of	A	as
(14.6)
	

	That	 is,	 we	 obtain	P(A)	 by	 integrating	 the	 joint	 or	multivariate	 probability
density	 function	 (pdf)	 fX	 of	 X	 over	 the	 values	 in	 A.154	 Analogous	 to	 the
univariate	 case	 presented	 in	 Chapter	 10,	 the	 joint	 probability	 density	 function
represents	 the	 rate	 of	 probability	 increment	 at	 some	 value	 (x1,	 x2,	 …,	 xk)	 by
taking	 infinitesimally	 small	 positive	 steps	 dx1	 through	 dxk	 in	 the	 respective
components.
	 A	brief	 comment	on	notation	 is	 in	order.	 In	 equation	(14.6)	we	 should	have
actually	written	k	integrals	explicitly	because	we	are	integrating	with	respect	to	k
random	components,	x1	through	xk.	For	simplicity,	however,	we	omit	the	explicit
presentation	 and	 merely	 indicate	 them	 by	 the	 “...”	 symbols.	 Moreover,	 the
multiple	integral	in	equation	(14.6)	can	also	be	written	in	the	short	version



where	we	represent	the	k-tuples	(x1,	…,	xk)	in	the	abbreviated	notation	x.
For	the	probability	of	the	particular	event	that	all	components	are	less	than	or

equal	 to	 some	 respective	 bound,	 we	 introduce	 the	 joint	 cdf	 of	 multivariate
continuous	random	variables.	Let	B	denote	such	an	event,	which	can	be	formally
expressed	as
(14.7)
	

or,	in	brief,	B	=	{x	≤	b}.	Then,	we	can	state	the	probability	of	this	event	B	as
(14.8)
	

where	in	 the	first	equality	of	equation	(14.8),	we	used	 the	representation	given
by	equation	(14.6).	The	second	equality	in	equation	(14.8)	accounts	for	the	fact
that	the	probability	of	this	event	is	given	by	the	cumulative	distribution	function
FX	 evaluated	 at	 (b1	 ,	 b2	 ,	…,	 bk	 ).	 So,	 equation	 (14.8)	 can	 be	 regarded	 as	 a
definition	 of	 the	 joint	 (or	 multivariate)	 k	 cumulative	 distribution	 function	 of
some	continuous	random	variable	X.
To	illustrate,	consider	the	two-dimensional	case	(i.e.,	k	=	2).	Suppose	we	have

two	 stocks,	 S1	 and	 S2,	 whose	 daily	 returns	 can	 be	 modeled	 jointly	 by	 a	 two-
dimensional	random	variable	r	=	(r1,r2)	where	component	r1	denotes	the	return
of	S1	and	r2	that	of	S2.	The	space	of	r	may	be	given	by	the	two-dimensional	real
numbers	(i.e.,	Ω	=	R2)	such	that	the	events	for	r	are	contained	in	the	σ-algebra
A(Ω)	=	B2.	Suppose	next	that	we	are	interested	in	the	probability	that	r1	assumes
some	 value	 between	 0	 and	 0.1	 while	 r2	 is	 between	 -0.5	 and	 0.5.	 This	 event
corresponds	to	the	set
(14.9)
	

	According	 to	 equation	 (14.6),	 we	 obtain	 as	 probability	 of	A	 from	 equation
(14.9)	the	integral
(14.10)
	



where	fr	 is	 the	 joint	probability	density	 function	of	 the	random	return	vector	r.
We	demonstrate	this	graphically	in	Figure	14.1.	With	the	grid	surface	(mesh),	we
outline	 the	 two-dimensional	 joint	 pdf	 between	 -0.5	 and	 1	 on	 the	 r1-axis	 and
between	-1	and	1	on	the	r2-axis.	The	volume	representing	P(A)	generated	by	the
integral	(14.10)	is	encompassed	by	the	dash-dotted	lines	on	the	r1	-	r2	-plane,	the
vertical	dashed	lines,	and	the	fr(r1,r2)	values,	indicated	by	the	shaded	surface	for
r1	 values	 between	 0	 and	 1	 and	 r2	 values	 between	 -0.5	 and	 0.5.	 For	 the	 return
density	function,	not	presented	here	in	detail,	the	probability	in	integral	(14.10)
is	0.1887.155

FIGURE	14.1	Extract	of	the	Two-Dimensional	pdf	fr	of	the	Returns	Vector	r
	

Note	that	the	volume	under	the	entire	joint	density	function	is	equal	to	1	since
this	represents	the	probability

that	 the	 component	 random	 returns	 of	 r	 assume	 any	 value.	 This	 equals	 the
probability	of	the	event	B	of	the	form	(14.7)	with	bi	going	to	infinity.

Contour	Lines

	



With	multivariate	probability	distributions	it	is	sometimes	useful	to	compare	the
so-called	 contour	 lines	 or	 isolines	 of	 their	 respective	 density	 functions.	 A
contour	line	is	the	set	of	all	outcomes	(x1,	…,	xk)	such	that	the	density	function	fX
equals	some	constant;	that	is,
(14.11)
	

	FIGURE	 14.2	 Probability	 Density	 Function	 fr	 of	 Random	 Return	 Vector	 r
Displayed	on	2-Dimensional	Subset	[-3,3]	of	Space	Ω	=	R2
	

With	 the	 density	 function	 fr	 of	 the	 multivariate	 random	 return	 vector	 r,
depicted	 in	 Figure	 14.2,	 we	 illustrate	 the	 meaning	 of	 equation	 (14.11)	 for	 a
selection	of	contour	lines	in	Figure	14.3.	The	contour	lines	correspond	to	the	10
different	values	for	c	given	in	the	legend.	Beginning	with	the	inner	lines	which
represent	higher	pdf	values	for	c,	we	obtain	lower	levels	for	c	of	the	pdf	as	we
gradually	proceed	to	the	outer	contour	lines.	The	maximum	level	of	c	(0.3979)	is
assumed	 at	 the	 singular	 joint	 return	 of	 r	 =	 (0,0),	which	 is	 not	 depicted	 in	 the
figure.
	



MARGINAL	DISTRIBUTIONS

	

In	 the	 previous	 two	 sections,	 we	 analyzed	 the	 joint	 random	 behavior	 of	 the
components	 of	 some	 random	 vector,	 which	was	 either	 discrete	 or	 continuous.
Here	 we	 will	 consider	 how	 to	 retrieve	 the	 probability	 distributions	 of	 the
individual	 components	 from	 the	 joint	 probability	 distribution.	 That	 is,	 we
determine	the	marginal	probability	distribution	in	order	to	treat	each	component
random	variable	isolated	from	the	others.
	FIGURE	14.3	Contour	Lines	of	Joint	Probability	Density	Function	of	Random
Return	Vector	r
	



Discrete	Case

	

In	 the	 case	 of	 a	 discrete	 random	 vector,	 the	marginal	 probability	 of	 a	 certain
component	random	variable	Xi	assuming	some	value	xi	is	obtained	by	summing
up	the	probabilities	of	all	values	of	x	where	in	component	i	 the	value	xi	occurs.
For	example,	in	order	to	obtain	the	probability	that	component	i	of	some	random
vector	X	=	(X1,	X2,	…,	Xk)	is	equal	to	0,	we	compute	the	marginal	probability	of
this	event	according	to
(14.12)
	

where	 in	equation	(14.12)	we	 sum	over	 all	 those	outcomes	x	 =	 (x1,	x2,	…,	xk)
whose	i-th	component	is	equal	to	0.
As	an	illustration,	suppose	we	know	the	joint	distribution	of	 the	returns	of	a

collection	of	assets	such	as	A1	and	A2	from	our	earlier	example,	and	we	are	also
interested	in	the	individual	probability	distributions	of	each	asset’s	return.	That
is,	we	endeavor	to	obtain	the	marginal	probability	distributions	of	A1	and	A2.	For
convenience,	we	reproduce	the	previous	distribution	table	here
	

	
A1 $90 $100 $110

A2
$80 0.05 0.45
$120 0.5

	

	

Let	 us	 begin	 with	 the	marginal	 distribution	 of	A1.	 Computing	 the	marginal



probabilities	 of	 A1	 assuming	 the	 values	 $90,	 $100,	 and	 $110	 analogously	 to
equation	(14.12),	we	obtain156

We	see	that	the	sum	of	the	marginal	probabilities	of	all	possible	values	of	A1	is
equal	to	1.
We	see	 that	 in	50%	of	all	 scenarios,	A1	has	a	value	of	$90.	Further,	 it	has	a

value	of	$100	in	5%	of	the	scenarios,	while	in	45%	of	all	scenarios,	it	is	worth
$90.	The	mean	of	A1	is	simply	computed	as	E(A1)	=	0.5	×	$90	+	0.05	×	$100	+
0.45	×	$110	=	$99.50.	Similarly,	for	A2,	we	have

So,	 in	half	 the	 scenarios,	A2	 is	worth	$80	while	 its	value	 is	$120,	 in	 the	other
50%	of	all	scenarios.	The	mean	is	E(A2)	=	0.5	×	$80	+	0.5	×	$120	=	$100.
Note	that	we	always	have	to	check	that	for	each	random	variable	the	marginal

probabilities	add	up	to	one,	which	is	the	case	here.

	
The	change	in	perspective	becomes	obvious	now	when	we	compare	joint	and

marginal	 distributions.	 Suppose	 a	 portfolio	 manager	 wanted	 to	 know	 the
probability	that	portfolio	consisting	of	10,000	shares	of	each	of	A1	and	A2	being
worth	at	 least	$2,200,000.	 Individually,	A1	has	a	value	greater	 than	or	equal	 to
$100	in	50%	of	all	cases	while	A2	is	worth	$120	in	50%	of	the	cases.
	 Does	that	mean	that	the	portfolio	is	worth	at	least	10,000	×	$100	+	10,000	×
$120	=	$2,200,000	in	50%	of	 the	cases?	To	correctly	answer	 this	question,	we
need	to	consider	all	possible	scenarios	with	their	respective	probability	as	given
by	the	joint	probability	distribution	and	not	the	marginal	distributions.	There	are
three	different	scenarios,	namely	scenario	1:	A1	=	$100,	A2	=	$80,	scenario	2:	A1
=	$110,	A2	=	$80,	and	scenario	3:	A1	=	$90,	A2	=	$120.	So,	with	a	5%	chance,
we	have	a	portfolio	value	of	$1,800,000,	with	a	45%	chance	a	portfolio	value	of
$1,900,000,	and	with	a	50%	chance	 the	portfolio	value	 is	equal	 to	$2,100,000.



We	see	that	the	portfolio	is	never	worth	$2,200,000	or	more.	This	is	due	to	the
particular	 joint	 probability	 distribution	 that	 assigns	 much	 probability	 to	 value
pairs	where	when	one	stock	is	priced	high	while	the	other	stock	assumes	a	lower
value.	 On	 average,	 the	 portfolio	 will	 be	 worth	 0.05	 ×	 $1,800,000	 +	 0.5	 ×
$2,100,000	=	$1,995,000.	This	is	exactly	10,000	times	E(A1)	+	E(A2),	which	is
an	immediate	result	from	the	fact	that	the	mean	of	a	sum	is	equal	to	the	sum	of
the	means.
	



Continuous	Case

	

For	continuous	random	vectors,	 the	concept	behind	the	marginal	distribution	 is
similar	 to	 the	discrete	case.	Let	 the	 i-th	component	be	 the	one	whose	marginal
distribution	we	endeavor	to	compute	at,	say,	0.	Then,	as	in	the	discrete	case,	we
need	to	aggregate	all	outcomes	x	=	(x1,	x2,	…,	xk)	where	 the	 i-th	component	 is
held	constant	at	0.	However,	remember	that	we	do	not	have	positive	probability
for	individual	outcomes.	Hence,	we	cannot	simply	add	up	the	probability	as	we
have	 done	 with	 discrete	 random	 variables	 as	 in	 equation	 (14.12).	 Instead,	 we
need	to	resort	to	the	joint	density	function.	Since	the	components	of	a	continuous
random	 vector	 are	 continuous	 themselves,	 the	 marginal	 distributions	 will	 be
defined	by	the	respective	marginal	density	functions.
	 The	 marginal	 density	 function	 fXi	 of	 component	 Xi	 at	 some	 value	 a	 is
obtained	by	integrating	the	joint	density	function	fX	over	all	values	x	with	the	i-th
component	equal	to	a.	That	is,
(14.13)
	

	In	definition	(14.13)	of	the	marginal	density	function,	we	have	k	-	1	integrals
since	we	do	not	integrate	with	respect	to	the	i-th	component.	Definition	(14.13)
can	be	alternatively	written	in	a	brief	representation	as

	We	 illustrate	 the	 concept	 of	 the	 marginal	 density	 function	 fx1of	 the	 first
component	X1	graphically	for	some	two-dimensional	random	vector	X	=	(X1,	X2)
in	Figure	14.4.	 In	 the	 figure,	 the	gray	 shaded	area	 equals	 the	marginal	density
function	evaluated	at	x	=	0,	that	is,	f	 (0).	The	shaded	area	can	be	thought	of	as
being	 the	 cut	 obtained	 by	 cutting	 through	 the	 volume	 under	 the	 joint	 density
surface	along	the	line	whose	x1	value	is	kept	constant	at	x1	=	0.
	 As	 an	 example,	 recall	 the	 random	 return	 vector	 r	 =	 (r1,r2)	 from	 an	 earlier



illustration	 in	 this	 chapter.	 Suppose	 we	 wanted	 to	 analyze	 the	 second	 asset’s
return,	r2,	separately	from	the	other.	From	the	joint	distribution—which	we	need
not	know	in	detail	here—we	obtain	from	equation	(14.13)	 the	marginal	density
of	r2
(14.14)
	

	FIGURE	14.4	Marginal	Density	Function	 fx1	 of	Component	Random	Variable
X1,	Evaluated	at	x1	=	0
	

What	is	the	probability	then	that	r2	 is	negative?	We	simply	have	to	integrate
the	marginal	density	function	in	equation	(14.14)	over	r2	from	-∞	to	0.	That	is,
we	compute

which	 is	 equal	 to	 the	 cumulative	 distribution	 function	 of	 r2,	 evaluated	 at	 0.
With	the	particular	multivariate	probability	distribution	of	r,	 this	happens	 to	be
the	standard	normal	cumulative	distribution	function	at	0,	that	is,	Φ(0)	=	0.5.	So
in	50%	of	the	scenarios,	r2	will	be	negative.



DEPENDENCE

	

Let	us	consider	the	k-dimensional	random	vector	X	=	(X1,	X2,	…,	Xk).	Then	each
of	 the	 components	 of	X	 is	 a	 random	 variable	 assuming	 real	 numbered	 values.
The	 joint	 probability	 distribution	 may	 have	 the	 following	 influence	 on	 the
component	 random	 variables.	 Although	 individually	 the	 components	 may
assume	 any	 value,	 jointly	 certain	 combinations	 of	 values	 may	 never	 occur.
Furthermore,	certain	values	of	some	particular	component,	say	j,	may	only	occur
with	 certain	 values	 of	 the	 other	 combinations.	 If	 this	 should	be	 true,	 for	 some
random	vector,	we	say	 that	 its	components	are	dependent.	 If,	 in	contrast,	 each
component	 assumes	 values	 at	 random	 and	 is	 unaffected	 by	 the	 other
components,	then	we	say	that	they	are	independent.
	



Discrete	Case

	

A	 formal	 definition	 of	 independence	 of	 any	 two	 discrete	 random	 variables	Xi
and	Xj	is	given	by
(14.15)
	

for	all	values	a,b	∈	R.	That	is,	we	have	to	check	that	equation	(14.15)	is	satisfied
for	any	Xi	value	a	in	combination	with	any	Xj	value	b.	In	case	we	should	find	a
pair	(a,b)	that	violates	equation	(14.15),	then	Xi	and	Xj	are	dependent.
Note	that	here	independence	is	only	defined	for	two	random	variables.	If	we

want	to	validate	the	independence	of	more	than	two	random	variables,	we	have
to	prove	the	fulfillment	of	equation	(14.15)	for	any	pair,	as	well	as	of	the	analog
extension	of	equation	(14.15)	for	any	triple	of	these	random	variables,	any	set	of
four,	and	so	on.	That	is,	we	have	to	validate

	Recall	 that	 in	the	example	with	the	discrete	asset	random	vector	A	=	 (A1,A2)
that	 a	 portfolio	 value	 of	 $2,100,000	 could	 not	 be	 achieved.	This	was	 the	 case
even	 though	 the	marginal	distributions	permitted	 the	 isolated	values	A1	=	$110
and	 A2	 =	 $120	 such	 that	 $2,100,000	 might	 be	 obtained	 or	 even	 exceeded.
However,	 these	 combinations	 of	 A1	 and	 A2	 to	 realize	 $2,100,000,	 such	 as
($110,$120),	 for	 example,	 were	 assigned	 zero	 probability	 by	 the	 joint
distribution	such	that	they	never	happen.	Let	us	validate	the	condition	(14.15)	for
our	two	assets	taking	the	value	pair	($110,$120).157	The	probability	of	this	event
is	P($110,$120)	=	0	according	to	the	joint	probability	table	given	earlier	in	this
chapter.	The	respective	marginal	probabilities	are	P(A1	=	$110)	=	0.45	and	P(A2



=	$120)	=	0.5.	Thus,	we	have	P($110,$120)	=	0	≠	0.45	·	0.5	=	P(A1	=	$110)	 ·
P(A2	=	$120),	and,	consequently	the	asset	values	are	dependent.
	



Continuous	Case

	

For	 the	analysis	of	dependence	of	 two	continuous	 random	variables	Xi	 and	Xj,
we	perform	a	 similar	 task	 as	we	have	done	 in	 equation	(14.15)	 in	 the	 discrete
case.	 However,	 since	 the	 random	 variables	 are	 continuous,	 the	 probability	 of
single	values	is	always	zero.	So,	we	have	to	use	the	joint	and	marginal	density
functions.	In	the	continuous	case,	independence	is	defined	as
(14.16)
	

where	fXi,	Xj	is	the	joint	density	function	of	Xi	and	Xj.
158	Again,	if	we	find	a	pair

(a,b)	 such	 that	 condition	 (14.16)	 is	 not	 met,	 we	 know	 that	 Xi	 and	 Xj,	 are
dependent.
We	 can	 extend	 the	 condition	 (14.16)	 to	 a	 k-dimensional	 generalization	 that,

when	 X1,	 X2,	 …,	 Xk	 are	 independent,	 their	 joint	 density	 function	 has	 the
following	appearance
(14.17)
	

	So	 if	we	 can	write	 the	 joint	 density	 function	 as	 the	product	 of	 the	marginal
density	functions,	as	done	on	the	right	side	of	equation	(14.17),	we	conclude	that
the	k	random	variables	are	independent.
	 At	 this	 point,	 let’s	 introduce	 the	 concept	 of	 convolution.	 Technically,	 the
convolution	of	two	functions	f	and	g	is	the	integral

for	 any	 real	 number	 z.	 That	 is,	 it	 is	 the	 product	 of	 two	 functions	 f	 and	 g
integrated	over	 all	 real	 numbers	 such	 that	 for	 each	value	x,	 f	 is	 evaluated	 at	 x
and,	simultaneously,	g	 is	evaluated	at	 the	difference	z	 -	x.	Now,	 let’s	 think	of	 f
and	g	as	the	density	functions	of	some	independent	continuous	random	variables
X	and	Y,	for	example.	Then,	the	convolution	integral	h	yields	the	density	of	the



sum	 Z	 =	 X	 +	 Y.	 If	 we	 want	 to	 add	 a	 third	 independent	 continuous	 random
variable,	say	U,	with	density	function	p,	then	the	resulting	sum	U	+	X	+	Y	=	U	+
Z	is	itself	a	continuous	random	variable	with	density	function

In	 this	 fashion,	we	can	keep	adding	additional	 independent	continuous	random
variables	and	always	obtain	the	density	function	of	the	resulting	sum	through	the
convolution	of	the	respective	marginal	density	functions.
Thus,	 let	 X1,	 X2,	 …,	 Xn	 be	 n	 independent	 and	 identically	 distributed

continuous	random	variables	such	that	their	joint	density	function	is	of	the	form
(14.17).	Then,	the	distribution	of	the	sum	X1	+	X2	+	…	+	Xn	is	itself	continuous
and	 its	 density	 function	 is	 also	 obtained	 through	 convolution	 of	 the	 marginal
density	functions	from	equation	(14.17).
	 Let	 us	 turn	 to	 our	 previous	 illustration	 of	 stock	 returns.	 Recall	 the	 random
vector	r	 consisting	of	 the	 two	 random	returns	r1	and	r2.159	Without	 going	 into
details,	 we	 state	 here	 that	 the	 two	 marginal	 distributions	 are	 normal	 with
parameters	µ1	=0, 	=0.25	and	µ2=0, 	=	1,	respectively.	That	is,	we	have	r1	~	N
(0,0.25)	with	density	function

and	r2	~	N	(0,1)	with	density	function

The	joint	density	of	the	returns	is
(14.18)
	

	 Let	us	validate	condition	(14.16)	at	the	joint	value	(0,0),	 that	is,	both	returns
are	equal	to	zero.	Multiplication	of	the	two	marginal	densities	evaluated	at	zero
(a	=	0	and	b	=	0)	yields

while	 the	 joint	 density	 in	 equation	 (14.18),	 evaluated	 at	 (0,0)	 yields	 0.4974.
Since	 0.6366	 ≠	 0.4974,	we	 conclude	 that	 the	 two	 returns	 are	 dependent.	 This



dependence	 can	 be	 detected	when	 analyzing	 the	 contour	 lines	 in	 Figure	 14.3.
The	 lines	 form	ellipses	 revealing	 the	dependence	 in	 the	direction	of	 the	 longer
radius.	 Had	 they	 been	 perfectly	 circular,	 the	 returns	 would	 have	 been
independent.



COVARIANCE	AND	CORRELATION

	

In	the	previous	section,	we	learned	that	dependence	of	two	random	variables	can
be	 validated	 using	 either	 equation	 (14.15)	 for	 discrete	 random	 variables	 or
equation	(14.16)	for	continuous	random	variables.	There	is	an	alternative	method
—one	 of	 the	most	 commonly	 used	 techniques	 for	 this	 purpose—we	 introduce
here.	It	builds	on	the	reasoning	of	the	previous	section	and	includes	the	expected
joint	 deviation	 from	 the	 respective	 means	 by	 the	 two	 random	 variables.	 This
measure	is	called	the	covariance.

	
Let	 us	 denote	 the	 covariance	 of	 the	 two	 random	 variables	 X	 and	 Y	 as

Cov(X,Y).	If	the	value	of	the	covariance	is	different	from	zero,	then	we	know	that
the	two	random	variables	are	dependent.	If	it	is	equal	to	zero,	on	the	other	hand,
we	 cannot	 state	 that	 they	 are	 independent.	 However,	 we	 can	 draw	 a	 slightly
weaker	conclusion,	namely,	that	the	two	random	variables	are	uncorrelated.	The
opposite	of	this	would	be	that	the	random	variables	are	correlated	that,	in	turn,
corresponds	to	a	covariance	different	from	zero.
	 We	summarize	this	concept	below:
	

	
X,Y

Cov(X,Y)	=	0 uncorrelated
Cov(X,Y)	≠	0 Correlated,	dependent

	

	



Discrete	Case

	

When	the	joint	probability	distribution	is	discrete,	the	covariance	is	defined	as
(14.19)
	

where	E(X)	is	the	mean	of	X	and	E(Y)	is	the	mean	of	Y.	The	double	summation
in	 equation	 (14.19)	 indicates	 that	 we	 compute	 the	 sum	 of	 joint	 deviations
multiplied	by	 their	 respective	probability	over	all	combinations	of	 the	values	x
and	y.	For	the	sake	of	formal	correctness,	we	have	to	mention	that	the	covariance
is	only	defined	if	the	expression	on	the	right	side	of	equation	(14.19)	is	finite.
For	example,	using	our	previous	example	of	two	assets	whose	values	A1	and

A2	were	 found	 to	 be	 dependent,	we	want	 to	 validate	 this	 using	 the	 covariance
measure	 given	 by	 equation	 (14.19).	 We	 know	 that	 the	 mean	 of	 A1,	 E(A1),	 is
$99.5	and	that	of	A2,	E(A2),	is	$100.	Then,	we	obtain	as	the	covariance160

which	 is	 different	 from	 zero	 and	 therefore	 supports	 our	 previous	 finding	 of
dependence	between	the	two	random	variables.



Continuous	Case

	

In	the	continuous	case,	the	covariance	is	also	a	measure	of	joint	deviation	from
the	respective	means.	In	contrast	to	the	definition	in	equation	(14.19),	we	use	the
double	 integral	 of	 the	 joint	 density	 fX,Y	 rather	 than	 the	 double	 summation	 of
probabilities.	So,	the	covariance	of	two	continuous	random	variables	is	defined
as
(14.20)
	

in	that	we	integrate	the	joint	fX,Y	over	x	and	y	from	-∞	to	∞.
In	the	discrete	as	well	as	continuous	case,	the	right	sides	of	equations	(14.19)

and	(14.20),	respectively,	have	to	be	finite	for	the	covariance	to	exist.
	 We	will	 illustrate	 equation	 (14.20)	 using	 the	 example	 of	 the	 random	 return
vector	r.	The	covariance	is	computed	as

One	 should	 not	 worry	 if	 these	 integrals	 seem	 too	 difficult	 to	 compute.	 Most
statistical	 software	 packages	 provide	 the	 computation	 of	 the	 covariance	 as	 a
standard	task.



Aspects	of	the	Covariance	and	Covariance	Matrix

	

Now	 we	 explain	 what	 happens	 to	 the	 covariance	 if	 we	 change	 the	 random
variables	 to	 a	 different	 scale.	 Also,	 we	 will	 introduce	 the	 covariance	 matrix
containing	the	covariances	of	any	two	components	of	a	random	vector.
	

Covariance	of	Transformed	Random	Variables

	
Note	that	if	one	computes	the	covariance	of	a	random	variable	X	with	itself,	we
obtain	the	variance	of	X,	that	is,	Cov(X,X)	=	Var(X).	Moreover,	the	covariance	is
symmetric	 in	 the	 sense	 that	 a	 permutation	 of	 X	 and	 Y	 has	 no	 effect,	 that	 is,
Cov(Y,X)	=	Cov(X,Y).

	
If	we	add	a	constant	to	either	X	or	Y,	or	both,	the	resulting	covariance	is	not

affected	by	this,	that	is,	Cov(X	+	a,Y	+	b)	=	Cov(X,Y).	For	this	reason,	we	can	say
that	the	covariance	is	invariant	with	respect	to	linear	shifts.	The	multiplication	of
either	one	of	 the	 two	random	variables	 is	 reflected	 in	 the	covariance,	however.
That	 is	 by	 multiplying	X	 by	 some	 constant	 a	 and	 Y	 by	 some	 constant	 b,	 the
covariance	changes	to	Cov(aX,bY)	=	a	·	b	·	Cov(X,Y).
	 For	example,	consider	a	portfolio	P	consisting	of	several	 risky	assets.	When
we	add	a	position	 in	a	 risk-free	asset	C	 to	our	portfolio,	 the	resulting	portfolio
return,	RP,	 is	 consequently	 composed	 of	 some	 risky	 return	R	 and	 the	 risk-free
interest	 rate	Rf	 (that	 is,	Rf	 is	 a	 constant).	Now,	 in	 case	we	want	 to	 analyze	 the
joint	random	behavior	of	the	overall	return	of	this	portfolio,	RP	=	R	+	Rf,	with	the
return	of	some	other	portfolio,	R ,	we	compute	their	covariance,	which	is	equal
to

Due	 to	 the	 linear	 shift	 invariance	 of	 the	 covariance,	 the	 risk-free	 part	 of	 the
portfolio	 plays	 no	 role	 in	 the	 computation	 of	 the	 covariance	 of	 these	 two



portfolios.
If,	 instead	of	 adding	a	 risk-free	position,	we	doubled	our	 risky	position,	 the

resulting	portfolio	return	RP	=	2R	and	the	other	portfolio	 	would	have	(RP, )
Cov	(2R,	 )	covariance	given	by	Cov	(RP )	=	Cov	(2R, )	.	So,	by	doubling	our
risky	position	in	the	first	portfolio,	we	have	doubled	the	covariance	as	well.
	

Covariance	Matrix

	
Suppose	we	have	a	vector	X	consisting	of	the	k	components	X1,	X2,	…,	Xk.	Now,
any	 component	 Xi	 with	 any	 other	 component	 has	 a	 covariance,	 which	 we
denoted	by	Cov(Xi,Xj).	The	covariance	matrix,	usually	denoted	by	the	symbol	Σ,
contains	the	covariances	of	all	possible	pairs	of	components	as	shown	below:
(14.21)
	

	 The	presentation	of	the	covariance	matrix	given	by	form	(14.21)	is	somewhat
tedious.	Instead	of	Cov(Xi,Xj)	and	Var(Xi),	we	use	the	parameter	notation	with	σij
and	σi	,	respectively.	Thus,	we	can	alternatively	present	the	covariance	matrix	in
the	form

	Due	to	the	symmetry	of	the	covariance,	that	is,	σij	=	σji	,	the	covariance	matrix
is	 symmetric.	 This	means	 that	 transposing	 the	 covariance	matrix	 yields	 itself.
That	 attribute	 of	 the	 covariance	 matrix	 will	 facilitate	 the	 estimation	 of	 the
variances	and	covariances.	Rather	than	having	to	estimate	k	×	k	=	k2	parameters,
only	k	×	(k+1)/2	parameters	need	be	estimated.
	 In	 our	 previous	 example	 with	 the	 two-dimensional	 returns,	 we	 have	 the



following	covariance	matrix

	



Correlation

	

As	 we	 just	 explained,	 the	 covariance	 is	 sensitive	 to	 changes	 in	 the	 units	 of
measurement	of	the	random	variables.	As	a	matter	of	fact,	we	could	increase	the
covariance	a-fold	 by	 transforming	X	 into	 a	 ·	X.	 Hence,	 the	 covariance	 is	 not
bounded	 by	 some	 value.	 This	 is	 not	 satisfactory	 since	 this	 scale	 dependence
makes	it	difficult	to	compare	covariances	of	pairs	of	random	variables	measured
in	different	units	or	scales.	For	example,	if	we	change	from	daily	to	say	weekly
returns,	this	change	of	units	will	be	noticed	in	the	covariance.
	 For	this	reason,	we	need	to	scale	the	covariance	somehow	so	that	effects	such
as	 multiplication	 of	 a	 random	 variable	 by	 some	 constant	 do	 not	 affect	 the
measure	used	to	quantify	dependence.	This	scaling	is	accomplished	by	dividing
the	covariance	by	the	standard	deviations	of	both	random	variables.	That	is,	the
correlation	coefficient161	of	 two	random	variables	X	and	Y,	 denoted	by	ρX,Y	 is
defined	as
(14.22)
	

	We	 expressed	 the	 standard	 deviations	 as	 the	 square	 roots	 of	 the	 respective
variances	 	and	 	Note	that	the	correlation	coefficient	is	equal	to	one,	that	is,
ρX,X	=	1,	for	the	correlation	between	the	random	variable	X	with	itself.	This	can
be	 seen	 from	 (14.22)	 by	 inserting	 	 for	 the	 covariance	 in	 the	 numerator,	 and
having	 	 ,	 in	 the	 denominator.	 Moreover,	 the	 correlation	 coefficient	 is
symmetric.	This	 is	due	 to	definition	 (14.22)	and	 the	 fact	 that	 the	covariance	 is
symmetric.
	 The	 correlation	 coefficient	 given	 by	 (14.22)	 can	 take	 on	 real	 values	 in	 the
range	 of	 -1	 and	 1	 only.	 When	 its	 value	 is	 negative,	 we	 say	 that	 the	 random
variables	X	and	Y	are	negatively	correlated,	while	they	are	positively	correlated
in	the	case	of	a	positive	correlation	coefficient.	When	the	correlation	is	zero,	due
to	a	zero	covariance,	we	 refer	 to	X	and	Y	as	uncorrelated.	We	 summarize	 this
below:



	
−1	≤	ρX	,Y	≤	1
−1≤	ρX,Y	<	0 X	and	Y	negatively	correlated
ρX,Y	=	0 X	and	Y	uncorrelated
0	<	ρX	,Y	≤	1 X	and	Y	positively	correlated

	

	

	 As	 with	 the	 covariances	 of	 a	 k-dimensional	 random	 vector,	 we	 list	 the
correlation	coefficients	of	all	pairwise	combinations	of	the	k	components	in	a	k-
by-k	matrix

	This	matrix,	referred	to	as	the	correlation	coefficient	matrix	and	denoted	by	Γ,	is
also	symmetric	since	the	correlation	coefficients	are	symmetric.
	 For	 example,	 suppose	 we	 have	 a	 portfolio	 consisting	 of	 two	 assets	 whose
prices	are	denominated	in	different	currencies,	say	asset	A	in	U.S.	dollars	($)	and
asset	B	 in	 euros	 (€).	 Furthermore,	 suppose	 the	 exchange	 rate	 was	 constant	 at
$1.30	 per	 €1.	 Consequently,	 asset	 B	 always	 moves	 1.3	 times	 as	 much	 when
translated	 into	 the	 equivalent	 amount	 of	 dollars	 then	when	measured	 in	 euros.
The	covariance	of	A	and	B	when	expressed	in	their	respective	local	currencies	is
Cov(A,B).	When	translating	B	 into	the	dollar	equivalent,	we	obtain	Cov(A,1.3	 ·
B)	=	1.3	×	Cov(A,B).	So,	instead	we	should	compute	the	correlation	of	the	two.
Suppose	the	variance	of	A	in	dollars	is	 	and	that	of	B	in	euros	is	 	According
to	 the	 transformation	 rules	 of	 the	 variance	 that	 we	 covered	 in	 Chapter	 3	 and
which	 also	 apply	 to	 the	 variance	 parameter	 of	 probability	 distributions,	 the
variance	of	B	 can	be	 expressed	 as	 (1.3)2	 ×	 	when	 asset	B	 is	 given	 in	 dollar
units.	Consequently,	the	correlation	coefficient	of	A	and	B	measured	in	dollars	is
computed	as



which	is	the	same	as	when	B	is	denominated	in	euros.
As	 another	 example,	 let’s	 continue	 our	 previous	 analysis	 of	 the	 continuous

return	vector	r.	With	the	respective	standard	deviations	of	the	component	returns
and	their	covariance	given	as	σ	=	0.5,	σ	=	1,	and	σ	=	0.3,	respectively,	we	obtain
the	correlation	coefficient	as

which	indicates	a	clear	positive	correlation	between	r1	and	r2.



Criticism	of	the	Correlation	and	Covariance	as	a	Measure	of	Joint
Randomness

	

As	useful	and	important	a	measure	that	correlation	and	covariance	are,	they	are
not	free	from	criticism	as	a	sufficient	measure	of	joint	randomness.	Very	often,
the	 pairwise	 correlations	 or	 covariances	 are	 parameters	 of	 the	 multivariate
distribution	characterizing	part	of	the	joint	random	behavior	of	the	components.
However,	 the	 covariance	 is	 unable	 to	 capture	 certain	 aspects.	 For	 example,
financial	 returns	 reveal	 dependencies	with	 respect	 to	 joint	 extreme	movements
even	though	their	covariances	may	be	zero.	This	is	particularly	dangerous	for	a
portfolio	 manager	 who	 only	 focuses	 on	 the	 covariance	 and	 ignores	 the	 other
forms	 of	 dependence.	 There	 exist,	 however,	 devices	 shedding	 light	 on	 these
aspects	neglected	by	the	covariance.

	
One	 such	 device	 will	 be	 introduced	 in	 Chapter	 16	 as	 a	 measure	 of	 tail-

dependence	 .	 The	 positive	 left-tail-dependence	 between	 the	 random	 returns	 of
two	assets	expresses	 the	probability	of	one	return	performing	very	badly	given
that	 the	other	already	performs	poorly.	Despite	 the	fact	 that	 the	correlation	can
be	 very	 close	 to	 1	 (but	 not	 1,	 say,	 0.9),	 extreme	 losses	 or	 returns	 can	 be
practically	 independent.	 In	 other	 words,	 the	 correlation	 is	 not	 a	 meaningful
measure	 if	 we	 are	 interested	 in	 the	 dependence	 between	 extreme	 losses	 or
returns.
	



SELECTION	OF	MULTIVARIATE	DISTRIBUTIONS

	

In	 this	 section,	 we	 introduce	 a	 few	 of	 the	 most	 common	 multivariate
distributions	used	in	finance.
	



Multivariate	Normal	Distribution

	

In	 finance,	 it	 is	 common	 to	 assume	 that	 the	 random	 variables	 are	 normally
distributed.	 The	 joint	 distribution	 is	 then	 referred	 to	 as	 a	multivariate	 normal
distribution.	To	get	a	first	impression	of	multivariate	distributions,	Figures	14.2
and	14.4	 show	 the	 surfaces	and	Figure	14.3	 a	 contour	plot	 of	 the	bivariate	 (2-
dimensional)	 normal	 probability	 density	 functions	 with	 standard	 normal
marginals.	We	are	going	 to	explain	how	such	a	distribution	can	be	constructed
from	 the	univariate	normal	distribution	 and	how	an	 explicit	 expression	 for	 the
density	function	can	be	obtained.

	
Mathematically,	the	joint	distribution	of	a	random	vector	X	=	(X1,	X2,	…,	Xk)

is	said	to	be	a	multivariate	normal	distribution	if,	for	any	real	numbered	weights
a1,	a2,	…,	ak,	the	linear	combination	of	the	form	a1X1	+	a2X2	+	…	+	akXk	of	its
components	is	also	a	normally	distributed	random	variable.
	 This	is	very	important	in	the	field	of	portfolio	optimization.	Let	the	X1,	X2,	…,
and	Xk	 represent	assets	contained	in	the	portfolio.	Then,	 the	resulting	portfolio,
as	a	linear	combination	of	them,	is	itself	normally	distributed.
	

Properties	of	Multivariate	Normal	Distribution

	
There	are	important	properties	of	the	multivariate	normal	distribution.	To	explain
them,	we	will	 discuss	 the	 special	 case	where	 there	 are	 two	 random	 variables.
This	case	 is	 referred	 to	as	a	bivariate	normal	 distribution.	The	 two	properties
are:

Property	1:	If	X	and	Y	have	a	bivariate	normal	distribution,	then	for	some
constants	a,	b	∈	R	,	Z	=	aX	+	bY	is	normally	distributed	with	an	expected
value	equal	to
(14.23)



	

		
where	µX	and	µY	are	the	expected	values	of	X	and	Y.	The	variance	of	Z	is

with	 	and	 	being	the	respective	variances.
Hence,	the	resulting	variance	is	not	simply	the	weighted	sum	of	the	marginal

variances	but	of	the	covariance	as	well.	So,	if	the	latter	is	greater	than	zero,	the
variance	of	Z,	 ,	becomes	larger	than	a2	 	+	b2	 	by	exactly	2abσX,Y	If,	on	the
other	 hand,	 the	 covariance	 is	 negative,	 then	 	 is	 less	 than	 a2	 σ 	 +b2	 	 by
2abσX,Y	 .	These	 effects	 call	 for	 the	 strategy	of	diversification	 in	 a	 portfolio	 in
order	 to	 reduce	 	 and,	 consequently,	 are	 immensely	 important	 for	 a	 portfolio
manager	to	understand.
	

Property	2:	If	X	and	Y	have	a	bivariate	(2-dimensional)	normal	distributions
and	the	covariance	between	the	two	variables	is	zero,	then	the	two	variables
are	independent.
		

Note	that,	from	our	prior	discussion,	 the	covariance	is	always	zero	when	the
random	variables	 are	 independent;	 however,	 in	 general,	 the	 converse	 does	 not
hold.	 So,	 Property	 2	 of	 the	 multivariate	 normal	 distribution	 is	 an	 immensely
powerful	 statement.	 It	 is	 another	 reason	 for	 the	 widespread	 popularity	 of	 the
normal	distribution	in	finance.
	

Density	Function	of	a	General	Multivariate	Normal	Distribution

	
If	 we	 want	 to	 characterize	 the	 density	 function	 of	 a	 univariate	 normal
distribution,	we	have	to	specify	the	mean	µ	and	the	variance	σ2.	In	the	bivariate
setting,	 in	 addition	 to	 both	means	 (µX	 and	µY)	 and	variances	 (σ 	 and	 ),	 we
need	the	correlation	parameter	ρX	,Y	which	determines	the	dependence	structure.
	 The	 density	 function	 of	 a	 general	 multivariate	 normal	 distribution	 of	 the
random	vector	X	=	(X1,	X2,	…,	Xk)	is	defined	by



where	Σ	is	the	covariance	matrix	of	X,	Σ	its	determinant,	μ	=	(μ1,	μ2,	…,	μk)	 is
the	vector	of	all	k	means,	and	(x	 -	μ)T	 denotes	 the	 transpose	of	 the	vector	 (x	 -
μ).162	It	is	necessary	that	|Σ|	>	0	,	which	also	ensures	that	the	inverse	matrix	Σ-1
exists.
Now,	if	X	is	a	multivariate	normal	random	vector,	we	state	that	in	brief	as

X	~	N	(µ,Σ)
		

	 Note	that	if	Σ	=	0	,	the	density	function	fX	does	not	exist	but	we	can	still	state
the	 probability	 distribution	 through	 its	 characteristic	 function.	 Recall	 from
Chapter	12	and	Appendix	A	that	the	characteristic	function	of	the	probability	law
P	of	some	random	variable	X	evaluated	at	any	real	number	t	is	defined	as

where	 E(·)	 denotes	 the	 expected	 value	 with	 respect	 to	 P.	 The	 number	 e	 is
roughly	equal	to	2.7183	while	i	is	the	so-called	imaginary	number	defined	as	i=

	such	that	i2	=	-1.	In	other	words,	the	characteristic	function	is	the	expected
value	 of	 the	 random	 variable	 eitX.163	 Any	 and,	 in	 particular,	 any	 continuous
probability	 distribution	 has	 a	 unique	 characteristic	 function	 even	 if	 the
probability	 density	 function	 does	 not	 exist.	 The	 characteristic	 function	 of	 the
multivariate	normal	distribution	is	given	by

where	µT	and	tT	denote	the	vector	transpose	of	µ	and	t,	respectively.
As	a	first	illustration,	refer	to	Figures	14.2	and	14.4.	In	Figure	14.2,	we	found

the	joint	density	function	of	a	bivariate	normal	distribution	with	mean	vector	μ	=
(0,0)	and	covariance	matrix

	This	was	 the	distribution	of	 the	 return	vector	r.	 In	Figure	14.4,	we	display	 the
density	function	of	a	random	vector	X	with

X	~	N	(µ,	Σ	)
	



with	μ	=	(0,0),	again,	and

which	 corresponds	 to	 independent	 univariate	 standard	 normal	 component
random	 variables	 X1	 and	 X2.	 In	 Figure	 14.5,	 we	 depict	 the	 corresponding
cumulative	distribution	function.

Application	to	Portfolio	Selection

	
For	our	next	 illustration,	we	turn	to	portfolio	optimization.	Suppose	a	portfolio
manager	manages	a	portfolio	consisting	of	n	stocks	whose	daily	returns	R1,	R2,
…,	Rn	are	jointly	normally	distributed	with	corresponding	mean	vector	μ	=	(μ1,
μ2,	…,	μn)	and	covariance	matrix	Σ.	Here	we	define	the	daily	return	of	stock	i	as
the	relative	change	in	price	between	today	(t	=	0)	and	tomorrow	(t	=	1),	that	is,

	FIGURE	14.5	Bivariate	Normal	Distribution	with	Mean	Vector	 μ	=	 (0,0)	 and
Covariance	Matrix
	



For	each	stock	 i,	we	denote	the	number	of	shares	by	Ni	 such	 that,	 today,	 the
portfolio	is	worth

P0,PF	=	N1P0,1	+	N2P0,2	…	+	Nn	P0.n
		

	 Let	(ω1,	ω2,	…,	ωn)	denote	the	relative	weights	of	the	n	stocks	in	the	portfolio,
then	the	contribution	of	stock	i	to	the	portfolio	value	is

ωi	⋅	P0,PF	=	Ni	⋅	P0,i	,	for	i	=	1,	2,	…,	n
		

	So,	we	can	represent	the	portfolio	value	of	today	as

P0,PF	=	ω1P0,PF	+	ω2P0,PF	…	+	ωn	P0.PF
		

	 Tomorrow,	the	same	portfolio	will	be	worth	the	random	value

P1,PF	=	ω1	P1,PF	+	ω2P1,PF	…	+	ωnP1.PF
	

which	is	equal	to

ω1P0,PF	R1	+	ω	2P0,PF	R2	+	…	+	ω	n	P0.PF	Rn
		

	Therefore,	the	portfolio	return	can	be	computed	as	follows

	 From	equation	(14.23)	of	Property	1,	we	know	that	 this	portfolio	 return	 is	a
normal	random	variable	as	well,	with	mean

µPF	=	ω1µ1	+	ω2µ2	…	+	ωnµn
	

and	variance

	The	expression	i	≠	j	below	the	sum	of	the	covariances	on	the	right	side	indicates
that	 the	 summation	 is	 carried	 out	 for	 all	 indexes	 i	 and	 j	 such	 that	 i	 and	 j	 are



unequal.

	
Now,	it	may	be	the	objective	of	the	portfolio	manager	to	maximize	the	return

of	 the	 portfolio	 given	 that	 the	 variance	 remains	 at	 a	 particular	 level.	 In	 other
words,	the	portfolio	manager	seeks	to	find	the	optimal	weights	(ω1,	ω2,	…,	ωk)
such	that	μPF	is	maximized	for	a	given	level	of	risk	as	measured	by	the	portfolio
variance.	We	will	 denote	 the	 risk	 level	 by	C,	 that	 is,	 =	C	 .	 Conversely,	 the
objective	could	be	to	achieve	a	given	portfolio	return,	that	is,	µPF	=	E,	with	the
minimum	variance	possible.	Again,	the	portfolio	manager	accomplishes	this	task
by	finding	the	optimal	portfolio	weights	suitable	for	this	problem.
	 The	set	of	pairs	of	the	respective	minimum	variances	for	any	portfolio	return
level	μPF	for	some	bivariate	return	vector	r	=	(r1,	r2),	where	now	E(r1)	≠	E(r2),	is
depicted	in	Figure	14.6.164	The	covariance	matrix	is	still,

as	 we	 know	 it	 already	 from	 some	 previous	 example.	 The	 region	 bounded	 by
the	parabola	is	the	set	of	all	possible	portfolios	that	can	be	created	and	is	referred
to	as	the	set	of	feasible	portfolios.	The	set	of	minimum-variance	portfolios	lies
on	 the	 parabola	 composed	 of	 the	 solid	 and	 dashed	 curves.	 The	 solid	 curve	 is
referred	 to	 as	 efficient	 frontier.	 The	 point	 (i.e.,	 portfolio)	 where	 the	 portfolio
variance	 is	 the	 lowest	 is	 called	 the	 global	 minimum	 variance	 portfolio	 and
denoted	by	MVP.	 In	our	example	 the	MVP	is	 located	here	 roughly	 at	 ( )=
(0.25,-0.02).	Inside	of	the	parabola,	we	find	all	feasible	portfolios	that	yield	the
desired	given	expected	portfolio	return	but	fail	to	accomplish	this	with	the	least
variance	 possible.	 That	 is,	 for	 the	 set	 of	 feasible	 portfolios	 there	 are	 certain
portfolios	 that	 dominate	 other	 portfolios.	 This	 means	 either	 that	 for	 a	 given
portfolio	 variance,	 the	 expected	 portfolio	 return	 is	 greater	 or	 that	 for	 a	 given
expected	portfolio	return,	 the	portfolio	variance	is	smaller.	Note	that	we	had	to
alter	the	expected	return	vector	E(r)	=	µ	since,	with	(μ1,	μ2)	=	(0,0),	we	would
not	have	been	able	to	achieve	any	expected	portfolio	return	other	than	µPF	=	0.
FIGURE	14.6	Global	Minimum-Variance	Portfolio,	Set	of	Feasible	Portfolios,
and	Efficient	Frontier	for	the	Bivariate	Asset	Returns	Case
	



This	 framework	 was	 first	 introduced	 in	 1952	 by	 Harry	 Markowitz	 and	 is
popularly	known	as	Markowitz	 portfolio	 selection	 or	mean-variance	 portfolio
optimization.165
	



Multivariate	t-Distribution

	

In	Chapter	11,	we	discussed	the	Student’s	t-distribution.	Here	we	will	look	at	the
multivariate	t-distribution.

	
Let	 X	 be	 a	 k	 dimensional	 random	 variable	 following	 a	 multivariate	 t

probability	law.	Then,	its	distribution	is	characterized	by	a	mean	vector	μ	=(μ1,
μ2,	…,	μk)	and	a	k-by-k	matrix	Σ.	Furthermore,	the	distribution	is	governed	by	a
degrees	of	freedom	parameter	v,	which	controls	the	decay	of	the	pdf	in	the	tails.
Low	values	of	v,	 such	as	3,	4,	or	5,	put	a	much	 larger	share	of	 the	probability
mass	 in	 the	 extreme	 parts,	 that	 is,	 tails,	 relative	 to	 the	 multivariate	 normal
distribution.	 On	 the	 other	 hand,	 for	 higher	 values	 of	 v,	 such	 as	 10,	 the
multivariate	 t-distribution	 becomes	 more	 similar	 to	 the	 multivariate	 normal
distribution,	 while	 for	 v	 >	 100,	 it	 is	 almost	 indistinguishable	 from	 the
multivariate	normal	distribution.
	 The	density	is	given	by

where

Γ(⋅)	denotes	the	gamma	function.166
	Σ	is	the	determinant	of	Σ.
	Σ−1	is	the	inverse	of	Σ.167
		

Again,	it	is	necessary	that	Σ	>	0,	which	also	ensures	that	the	inverse	matrix	Σ
−1	exists.

	
Note	that,	here,	Σ	is	not	exactly	the	covariance	matrix.	To	obtain	it,	assuming

ν	 is	greater	 than	2,	we	have	 to	multiply	Σ	by	v/v	 -	 2.	However,	Σ	exhibits	 the



same	correlation	structure	as	 the	covariance	matrix	since	 it	 is	only	changed	by
some	constant	factor.
	 For	a	bivariate	example,	with	μ	=	(0,0)	and

which	 corresponds	 to	 the	 covariance	 parameters	 in	 a	 prior	 illustration	 on	 the
bivariate	normal	distribution,	we	display	the	corresponding	joint	density	function
as	well	as	a	contour	plot	in	Figures	14.7	and	14.8,	respectively.	The	degrees	of
freedom	are	given	by	v	=	10	so	that	the	distribution	is	still	sufficiently	different
from	the	bivariate	normal	distribution.
Focusing	 on	 Figure	 14.7,	 we	 observe	 that	 the	 peak	 height	 of	 0.4974	 in	 the

center	is	much	higher	than	that	of	the	bivariate	normal	alternative	whose	height
of	 0.3979	 is	 generated	 by	 the	 same	means	 and	 covariance	matrix	 depicted	 in
Figure	14.2.	Moreover,	we	see	that	the	density	decays	more	slowly	in	the	tails,	in
diagonal	direction,	than	for	the	normal	case.

	
These	two	findings	are	further	emphasized	by	the	contour	lines	in	Figure	14.8.

Note	 that	 while	 their	 shape	 is	 very	 similar	 to	 that	 of	 the	 normal	 distribution
depicted	 in	 Figure	 14.3,	 they	 are	 characterized	 by	 much	 higher	 values	 in	 the
center,	as	well	as	a	slower	decent	in	the	outer	parts.	We	see	that	the	multivariate
t-distribution	 is	more	 capable	 of	modeling	 random	 vectors	whose	 components
are	characterized	by	more	risk	of	extreme	joint	movements.	The	implication	for
a	 portfolio	 manager	 or	 a	 risk	 manager	 is	 that	 the	 appropriateness	 of	 the
multivariate	 normal	 distribution	 should	 be	 validated	 for	 the	 assets	 under
management.	If	it	seems	unfit,	a	portfolio	manager	or	risk	manager	should	seek
for	an	alternative	distribution	such	as	the	multivariate	t-distribution.
	FIGURE	14.7	Density	Plot	of	the	Bivariate	Student’s	t-Distribution	on	[-3,3]	×
[-3,3]
	



FIGURE	14.8	Contour	Lines	of	of	the	Bivariate	Student’s	t	Density	Function
	



Elliptical	Distributions

	

A	generalization	of	the	multivariate	normal	distribution	is	given	by	the	class	of
elliptical	 distributions.	 We	 briefly	 discuss	 the	 class	 of	 elliptical	 distributions
here.	 It	 is	 reasonable	 to	 introduce	 this	 class	 of	 distributions	 because	 elliptical
distributions	 are	 easy	 to	 handle	 due	 to	 their	 simple	 structure.	 Elliptical
distributions	are	characterized	by	a	location	parameter	µ,	which	corresponds	 to
the	mean	vector,	in	the	normal	case,	and	a	dispersion	parameter	Σ,	which	fulfills
a	 similar	 duty	 as	 the	 covariance	 matrix	 in	 the	 normal	 case.	 Basically,	 an
elliptically	distributed	random	vector	is	generated	by	using	a	so-called	spherical
random	vector,	which	might	be	shifted	and	whose	components	are	individually
rescaled.

	
Simply	speaking,	a	k-dimensional	random	vector	X	with	density	function	 f	 is

called	spherically	distributed	 if	all	the	contour	sets	are	spherical.	In	the	special
case	when	k	=	2,	the	density	function	can	be	plotted	and	the	contour	lines	look
like	circles.	In	three	dimensions,	the	sets	would	have	the	shape	of	a	ball.
	 Analogously,	a	k-dimensional	random	vector	X	with	density	function	f	is	said
to	be	elliptically	distributed	 if	all	 contours	are	ellipsoids.	This	 results	 from	 the
individual	rescaling	of	 the	components	of	 the	spherical	random	vector	whereas
the	center	of	the	ellipsoid	is	determined	by	the	shift.

	
When	k	=	2,	the	ellipsoids	appear	as	ellipses.	As	an	example,	we	can	look	at

the	 contour	 plots	 in	 Figures	 14.3	 and	 14.8.	 Representatives	 of	 elliptical
distributions	 include	 all	 multivariate	 normal	 distributions,	 multivariate	 t-
distributions,	 logistic	 distributions,	 Laplace	 distributions,	 and	 a	 part	 of	 the
multivariate	 stable	 distributions.	 Because	 of	 their	 complexity,	 we	 have	 not
described	the	last	three	distributions.
	

Properties	of	the	Elliptical	Class



	
Here	we	state	some	of	the	properties	of	the	elliptical	class	without	mathematical
rigor.168
	 Let	us	begin	with	the	first	property	of	closure	under	linear	transformations	.
If	 X	 is	 a	 d-dimensional	 elliptical	 random	 variable	 and	 we	 shift	 it	 by	 some
constant	 vector	 b	 and	 then	 multiply	 it	 by	 some	 matrix	 B	 with	 l	 rows	 and	 d
columns,	then	the	resulting	random	variable	Y=	b+BX	 is	elliptically	distributed.
Moreover,	parameters	of	this	distribution	are	easily	derived	from	those	of	X.	This
property	allows	us	to	construct	any	elliptical	random	variable	from	another	one.
	 The	second	property	guarantees	closure	of	the	class	of	elliptical	distributions
with	 respect	 to	 dimension.	 If	 once	 again	X	 denotes	 a	 d-dimensional	 elliptical
random	 vector,	 then	 any	 of	 the	 d	 components	 Xi	 are	 elliptical	 as	 well	 with
location	 parameters	 given	 by	 the	 components	 of	 the	 location	 parameter	 of	X.
Moreover,	 their	 scale	 parameters	 are	 given	 by	 the	 diagonal	 elements	 of	 the
covariance	matrix	Σ	of	X.

	
The	third	property,	which	may	be	considered	the	most	essential	one	of	those

presented	 here	 for	 purposes	 of	 application	 to	 portfolio	 theory,	 is	 the	 closure
under	convolution.	Namely,	 let	X	 and	Y	 be	 two	 independent	 elliptical	 random
variables,	 then	 their	 sum	 will	 also	 be	 elliptical.	 Hence,	 taking	 several	 assets
whose	 returns	 are	 independent	 and	 elliptically	 distributed,	 any	 portfolio
comprised	of	those	assets	has	elliptically	distributed	returns	as	well.	As	another
application,	 consider	 the	observations	of	 some	 series	of	 asset	 returns.	On	each
observation	date,	the	return	may	be	modeled	as	elliptical	random	variables.	Over
some	period	of	time	then,	the	aggregated	returns	will	also	be	elliptical.
	 In	general,	elliptical	distributions	provide	a	rich	class	of	distributions	that	can
display	 important	 features	 such	 as	 heavy-tails	 of	 marginal	 distributions,	 for
example,	 as	 well	 as	 tail-dependence	 both	 of	 which	 have	 been	 observed	 to	 be
exhibited	by	asset	returns	in	real-world	financial	markets.	However,	due	to	their
simple	structure,	a	common	criticism	is	that	elliptical	distributions	are	confined
to	 symmetric	 distributions	 and	 whose	 dependence	 structure	 depends	 on	 the
correlation	or	covariance	matrix.

	
As	we	will	see	in	Chapter	16	where	we	describe	the	concept	of	a	copula,	by

using	a	copula	one	is	able	to	account	for	tail-dependence	and	asymmetry,	which
one	 fails	 to	 achieve	 if	 one	 models	 dependence	 with	 the	 use	 of	 only	 the



covariance	matrix.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Multivariate	distribution	
Random	vector	
Multivariate	probability	distribution	
Joint	probability	distribution	
Joint	cumulative	distribution	function	
Volume	
Joint	probability	density	function	
Multivariate	probability	density	function	
Contour	lines	
Isolines	
Marginal	probability	distribution	
Marginal	density	function	
Dependent	
Independent	
Independence	
Convolution	
Covariance	
uncorrelated	
Corrleated	
Covariance	matrix	
Correlation	coefficient	
Negatively	correlated	
Positively	correlated	
Correlation	coefficient	matrix	
Tail	dependence	
Multivariate	normal	distribution	
Bivariate	normal	distribution	
Diversification	
Imaginary	number	
Feasible	portfolios	
Efficient	frontier	



Global	minimum	variance	portfolio	
Markowitz	portfolio	selection	
Mean-variance	portfolio	optimization	
Multivariate	t	distribution	
Elliptical	distributions	
Spherically	distributed	
Closure	under	linear	transformations	
Closure	under	convolution
	



CHAPTER	15
	

Conditional	Probability	and	Bayes’	Rule
	

In	Chapter	8	we	explained	that	one	interpretation	of	the	probability	of	an	event	is
that	it	is	the	relative	frequency	of	that	event	when	an	experiment	is	repeated	or
observed	a	very	large	number	of	times.	Here	are	three	examples:	(1)	a	mortgage
company	observed	that	over	the	past	10	years,	8%	of	borrowers	are	delinquent	in
making	 their	 monthly	 mortgage	 payments;	 (2)	 the	 risk	 manager	 of	 a	 bank
observed	that	over	the	past	12	years,	5%	of	corporate	loans	defaulted;	and	(3)	an
asset	management	firm	has	observed	that	over	the	past	eight	years,	in	20%	of	the
months	the	managers	of	its	stock	portfolios	underperformed	a	client’s	benchmark
by	more	 than	 50	 basis	 points.	 For	 these	 examples,	 suppose	 that	 the	 following
information	 is	 available:	 (1)	 during	 recessionary	 periods,	 the	mortgage	 service
company	 observes	 that	 15%	 of	 borrowers	 are	 delinquent	 in	 making	 their
monthly	 mortgage	 payment,	 (2)	 the	 risk	 manager	 of	 the	 bank	 observes	 that
during	 recessionary	 periods,	 11%	 of	 corporate	 loans	 defaulted,	 and	 (3)	 during
periods	of	a	declining	stock	market,	the	asset	management	firm	observes	that	in
30%	 of	 the	 months	 its	 stock	 portfolio	 managers	 underperformed	 a	 client’s
benchmark	by	more	than	50	basis	points.

	
These	 three	 hypothetical	 examples	 suggest	 that	 taking	 into	 account	 the

available	 additional	 knowledge	 (economic	 recession	 in	 our	 first	 two	 examples
and	a	declining	stock	market	 in	 the	 third	example)	could	result	 in	revised	(and
more	 accurate)	 probabilities	 about	 the	 events	 of	 interest	 to	 us.	 We	 call	 these
revised	probabilities	conditional	probabilities	and	discuss	them	in	more	detail	in
this	chapter.
	

This	chapter	is	coauthored	with	Biliana	Bagasheva.
		



CONDITIONAL	PROBABILITY

	

Let’s	consider	the	experiment	of	tossing	a	fair	dice.	We	are	now	able	to	compute
easily	probabilities	such	as	the	probability	of	observing	an	odd	number	(1/3)	and
the	probability	of	obtaining	a	number	greater	than	3	(1/2).	These	“stand-alone”
probabilities	 are	 called	 unconditional	 probabilities	 or	marginal	 probabilities
since	to	determine	them	we	do	not	consider	any	other	information	apart	from	the
experiment	“tossing	a	die.”
	 Suppose	now	we	know	that	an	even	number	came	up	at	a	particular	throw	of
the	die.	Given	this	knowledge,	what	is	the	probability	of	obtaining	the	number	2
at	 that	 throw?	While	 to	most	 the	 answer	would	 come	 in	 an	 almost	 automatic
fashion,	spelling	out	 the	 reasoning	behind	 it	 is	 instructive	 in	understanding	 the
mechanism	of	computing	conditional	probabilities.	If	an	even	number	has	come
up	on	a	die,	that	number	must	be	either	2	or	4	or	6.	Since	the	die	is	fair	and	the
desired	number	2	is	one	of	these	possibilities,	it	must	be	true	that	its	probability
is	1/3.
	 Let’s	define	the	following	events:

Event	A	=	{The	number	2	shows	up}.
	 	
	

Event	B	=	{An	even	number	shows	up}	=	{2,4,6}.
		Let’s	denote	the	sample	space	(the	collection	of	all	possible	outcomes)	by	Ω

and	write	it	as

Ω={1;	2;	3;	4;	5;	6}
		

	 The	Venn	diagram	in	Figure	15.1	further	helps	to	illustrate	the	experiment	and
the	events	in	question.
	 As	we	know	from	Chapter	8,	the	unconditional	probability	of	A	is	given	by



	Substituting	in	the	values	for	those	probabilities,	we	obtain

	 The	knowledge	that	event	B	occurred	serves	to	restrict	the	sample	space,	Ω,	to
only	the	three	outcomes	representing	even	numbers.	We	can	“forget”	about	 the
remaining	 three	 outcomes	 representing	 odd	 numbers.	 The	 conditional
probability	of	A	given	B	is	written	as	P(A|B)	and	computed	as

	Notice	 that	A’s	 probability	 is	 updated	 substantially	 (from	1/6	 to	 1/3)	when	 the
information	that	B	occurred	is	taken	into	account.
	FIGURE	15.1	Venn	Diagram	for	the	Experiment	“Tossing	a	Dice”
	

Although	 in	 simple	 experiments	 we	 can	 always	 use	 tools	 such	 as	 Venn
diagrams	 to	help	us	determine	 the	conditional	probability	of	an	event,	 in	more
abstract	 problems	 that	 is	 not	 possible	 and	 we	 need	 a	 general	 formula	 for
conditional	probability.
	



Formula	for	Conditional	Probability

	

The	 conditional	 probability	 that	 event	 A	 occurs	 given	 that	 event	 B	 occurs	 is
computed	 as	 the	 ratio	 of	 the	 probability	 that	 both	 A	 and	 B	 occurred	 to	 the
probability	of	B,
(15.1)
	

Of	 course,	 we	 assume	 that	 B	 can	 occur,	 that	 is,	 P(B)≠0.	 Recall	 that	 A	 ∩	 B
denotes	the	intersection	between	A	and	B	(the	event	that	A	and	B	occur	together).
Consider	 again	 Figure	 15.1.	 The	 event	 A	 in	 fact	 also	 represents	 the

intersection	between	A	and	B.
	 To	illustrate	using	the	formula	in	equation	(15.1),	 let’s	consider	a	new	event,
C,	and	define	it	as

C=	{A	number	greater	than	3	shows	up}.
		

	 To	 compute	 the	 conditional	 probability	 P(C|B),	 we	 find	 the	 intersection
between	B	and	C	as

C	∩	B	=	{4,6}
	

and	substituting	into	equation	(15.1)	obtain
	

Illustration:	Computing	the	Conditional	Probability

	



“Which	stocks	are	cheap?”	is	a	question	upon	which	anyone	with	an	interest	in
stock	 market	 investing	 has	 pondered.	 One	 of	 the	 indicators	 most	 commonly
employed	 to	 value	 stocks	 is	 the	 price/earnings	 (P/E)	 ratio.	 The	 potential	 out-
(under)performance	 of	 a	 stock	 may	 be	 assessed	 on	 the	 basis	 of	 its	 P/E	 ratio
relative	to	the	average	industry	(or	broad	market)	P/E	ratio.	Consider	an	example
in	 which	 over	 a	 period	 of	 five	 years	 data	 were	 collected	 for	 the	 relative
performance	and	P/E	ratios	of	companies	in	a	specific	industry.
	TABLE	15.1	P/E	Ratios	and	Stocks’	Relative	Performance
	

	
P/E	Ratio	Relative	to	Industry

Average
Performance	Relative	to	Industry
Index Low Average High Total

underperforming 6% 11% 8% 25%
Equally	performing 11% 19% 5% 35%
Outperforming 21% 15% 4% 40%
Total 38% 45% 17% 100%

	

	

Consider	 the	 data	 in	Table	15.1.	 The	 entries	 in	 the	 central	 part	 of	 the	 table
(excluding	the	last	row	and	rightmost	column)	represent	joint	probabilities.	For
example,	 the	 probability	 that	 a	 company	 in	 the	 industry	 has	 a	 P/E	 ratio	 lower
than	 the	 industry	 average	 and	 at	 the	 same	 time	outperforms	 the	 industry	 stock
index	is	6%.169	Based	on	the	hypothetical	data	in	the	Table	15.1,	if	a	company	is
a	 candidate	 for	 an	 investment	 portfolio,	 what	 is	 the	 probability	 that	 it	 will
outperform	the	industry	index	given	that	its	P/E	ratio	is	the	same	as	the	industry
average?	To	answer	this	question,	 let’s	denote	by	A	 the	event	that	a	company’s
P/E	ratio	 is	equal	 to	 the	 industry	average	and	by	B	 the	event	 that	a	company’s
stock	outperforms	the	industry	index.	The	probability	of	A	can	be	found	as

P(A)=	0.11	+	0.19	+	0.15	=	0.45	or	45%
		



	 Companies	with	 average	 P/E	 ratios	 and	 performance	 better	 than	 that	 of	 the
index	make	up	15%	of	the	companies	in	the	industry	according	to	the	data	in	the
Table	15.1.	That	is,

P(A	∩	B)=	0.15	or	15%
		

	 using	 these	 values	 and	 applying	 the	 formula	 in	 equation	 (15.1),	 we	 can
compute	 the	 conditional	 probability	 that	 a	 company	 outperforms	 the	 industry
index	given	that	its	average	P/E	ratio	is	equal	to	the	average	industry	P/E	ratio:

	Notice	 that	 the	 unconditional	 probability	 that	 a	 company	 outperforms	 the
industry	index	is	40%.	Taking	into	account	the	additional	information	about	the
company’s	P/E	ratio	modified	the	probability	that	its	stock	outperforms	the	index
to	33%.

	
We	 can	 observe	 that	 the	 restricted	 sample	 space	 in	 this	 illustration	 is

represented	by	the	middle	column	of	Table	15.1.
	 Suppose	 that	 an	 investment	 analyst	 contemplates	 whether	 an	 exceptionally
good	 cotton	 harvest	 in	 South	Asia	would	 have	 an	 effect	 on	 the	 probability	 of
outperformance	of	 a	 stock	 in	 the	U.S.	high-tech	 industry.	 In	 all	 likelihood,	 the
state	of	the	cotton	crop	would	not	have	an	effect	on	the	probability	of	the	high
tech	 stock	 performance.	 Such	 events	 are	 called	 “independent	 events.”	 We
provide	a	formal	way	to	check	for	statistical	independence	of	events	in	the	next
section.
	



INDEPENDENT	EVENTS

	

Two	events,	A	and	B,	are	called	independent	events	 if	 the	occurrence	of	one	of
them	does	not	affect	the	probability	that	the	other	one	occurs.	We	express	this	in
terms	of	the	conditional	probabilities	in	the	following	ways:
(15.2)
	

using	equation	(15.2),	 together	with	a	simple	manipulation	of	 the	expression	in
equation	 (15.1),	 provides	 an	 alternative	 definition	 of	 events’	 independence.	 A
and	 B	 are	 independent	 if	 the	 product	 of	 their	 (unconditional)	 probabilities	 is
equal	to	their	joint	probability,
(15.3)
	

Note	that	equation	(15.3)	is	true	even	if	P(A)=	0,	or/and	P(B)=	0.	From	now	on,
we	will	assume	 that	both	P(A)>	0	and	P(B)>	0,	 so	 then	all	 three	definitions	 in
equations	(15.2)	and	(15.3)	are	equivalent.
Events	 for	 which	 the	 expressions	 above	 do	 not	 hold	 are	 called	 dependent

events.	Consequently,	 to	check	whether	 two	events	 are	 independent	or	not,	we
simply	need	to	see	if	the	conditional	probabilities	are	equal	to	the	unconditional
probabilities.	It	is	sufficient	to	perform	the	check	for	one	of	the	events.
	 Consider	for	example	the	experiment	of	throwing	the	same	fair	coin	twice	and
define	 the	 events	 A	 =	 {Head	 on	 first	 toss}	 and	 B	 =	 {Head	 on	 second	 toss}.
Clearly,

P(A)	=	P(B)	=	1/2
		

	It	is	also	obvious	that

P(B|A)=	P(Head	on	second	toss	|	Head	on	first	toss)	=	1/2
		

	Since	we	have	that	P(B)=	P(B|A),	events	A	and	B	are	independent.



	 As	another	example,	suppose	that	there	are	two	black	balls	and	a	white	ball	in
an	 urn	 and	we	draw	 two	balls	 at	 random,	without	 replacement.170	Define	A	 =
{White	ball	on	first	draw}	and	B	=	{White	ball	on	second	draw}.	The	probability
of	A	is	P(A)=	1/3.	The	probability	of	B	(in	the	absence	of	any	condition)	is	also
1/3	since	all	balls	have	an	equal	chance	of	being	selected.	To	find	the	conditional
probability	of	B	given	A,	consider	the	number	and	color	of	balls	left	 in	the	urn
after	a	white	one	is	selected:	two	black	balls	remain	and	it	is	impossible	to	draw
a	white	one.	Therefore,	we	have

P(B|A)=	0
	

Since	 P(B)is	 not	 equal	 to	 P(B|A),	 we	 can	 conclude	 that	 events	 A	 and	 B	 are
dependent.
	



MULTIPLICATIVE	RULE	OF	PROBABILITY

	

We	can	use	 the	discussion	of	conditional	probability	above	 to	derive	a	rule	for
the	probability	of	an	intersection	of	two	events,	the	so-called	joint	probability	.
	 Recall	that	the	formula	for	the	probability	of	an	event	A	conditional	on	event
B	is	given	by

	Multiplying	both	sides	by	P(B),	we	obtain	a	formula	for	the	probability	of	the
intersection	of	A	and	B,	called	the	Multiplicative	Rule	of	Probability,
(15.4)
	

	Equivalently,	we	can	write

P(A	∩	B)=	P(B|A)P(A)
		

	 Let’s	consider	an	example	for	applying	the	Multiplicative	Rule	of	Probability.
	



Illustration:	The	Multiplicative	Rule	of	Probability

	

The	importance	of	electronic	trading	on	the	foreign-exchange	(FX)	markets	has
increased	 dramatically	 since	 the	 first	 electronic	 markets	 (electronic
communication	 networks	 or	ECNs)	 appeared	 in	 the	 late	 1990s.	 In	 2006,	more
than	 half	 of	 the	 total	 traded	 FX	 volume	 was	 executed	 through	 electronic
trading.171	 Some	 advantages	 that	 ECNs	 provide	 to	 market	 participants	 are
increased	 speed	of	 trade	execution,	 lower	 transaction	costs,	 access	 to	a	greater
number	 and	 variety	 of	 market	 players,	 opportunity	 for	 clients	 to	 observe	 the
whole	order	book,	etc.	The	growth	of	algorithmic	trading	strategies	is	related	to
the	expansion	of	electronic	trading.	An	algorithmic	trading	strategy,	in	general,
relies	 on	 a	 computer	 program	 to	 execute	 trades	 based	 on	 a	 set	 of	 rules
determined	in	advance,	in	order	to	minimize	transaction	costs.	Depending	on	the
complexity	 of	 those	 rules,	 such	 computer	 programs	 are	 capable	 of	 firing	 and
executing	multiple	trade	orders	per	second.	Even	at	that	speed,	it	is	not	unlikely
that	 by	 the	 time	 a	 trade	 order	 reaches	 the	 ECN,	 the	 price	 of	 the	 financial
instrument	has	changed,	so	that	a	market	order	either	gets	filled	at	an	unintended
price	or	fails	altogether.	This	phenomenon	is	referred	to	as	“execution	slippage.”
Naturally,	 execution	 slippage	 entails	 a	 cost	 that	 both	 market	 participants	 and
ECNs	are	eager	to	minimize.

	
Suppose	 we	 have	 estimated	 that,	 for	 a	 given	 FX	 market	 participant	 and	 a

given	 ECN,	 there	 is	 a	 50%	 chance	 that	 the	 trade	 execution	 time	 is	 500
milliseconds.	 Given	 the	 execution	 time	 of	 500	 milliseconds,	 there	 is	 a	 30%
chance	of	execution	slippage.
	 On	 a	 given	 day,	 the	 execution	 of	 a	 trade	 for	 the	 FX	 market	 participant	 is
observed	 at	 random.	What	 is	 the	 probability	 that	 the	 execution	 time	was	 500
milliseconds	and	that	slippage	occurred?
	 Let’s	define	the	following	events	of	interest:

Event	A	=	{Trade	execution	time	is	500	milliseconds}.
	 	



	
Event	B	=	{Execution	slippage	occurs}.
		The	following	two	probabilities	are	provided	in	the	information	above:

P(A)	=	0.5	and	P(B|A)	=	0.3
		

	 Now,	applying	the	Multiplicative	Rule	of	Probability,	we	can	compute	that	the
probability	that	the	execution	time	was	500	milliseconds	and	slippage	occurred
is

	



Multiplicative	Rule	of	Probability	for	Independent	Events

	

Recall	that	for	two	independent	events	A	and	B	it	is	true	that	P(A|B)	=	P(A).	The
Multiplicative	 Rule	 of	 Probability	 is	 modified	 in	 the	 following	 way	 for
independent	events:
(15.5)
	

	The	modification	of	the	Multiplicative	Rule	of	Probability	gives	us	another	way
to	check	for	the	independence	of	two	events:	the	events	are	independent	if	their
joint	probability	is	equal	to	the	product	of	their	unconditional	probabilities.

	
Recall	 that	 in	Chapter	 8	we	 discussed	 the	 case	where	 two	 events	 could	 not

occur	together	and	called	those	events	“mutually	exclusive.”	The	probability	of
the	 intersection	 of	 mutually	 exclusive	 events	 is	 0.	 What	 is	 the	 relationship
between	mutually	exclusive	events	and	independent	events?
	 Let	 A	 and	 B	 be	 two	 mutually	 exclusive	 events.	 They	 are	 generally	 not
independent	events	if	A	occurs,	the	probability	of	B	occurring	is	zero,	so	that	P
(A	∩	B)	≠	P(A)P(B).	The	exception	is	when	P(A)=	0	and/or	P(B)=	0.	Then,	P(A
∩	B)	=	0	(this	can	be	easily	seen	by	rearranging	equation	(15.1))	and

P(A	∩	B)	=	P(A)P(B)
	

so	that	A	and	B	are	independent.
	



Law	of	Total	Probability

	

In	Chapter	8,	we	expressed	the	probability	of	an	event	as	the	following	sum:

P(A)	=	P(A	∩	B)	+	P(A	∩	Bc)
	

where	Bc	denotes	the	complement	of	event	B.
	 using	the	Multiplicative	Rule	of	Probability,	we	can	rewrite	the	probability	of
A	as
(15.6)
	

	The	expression	above	is	known	as	the	Law	of	Total	Probability.	Let’s	see	how	it
is	applied	in	the	following	illustration.
	



Illustration:	The	Law	of	Total	Probability

	

Typically,	corporate	bonds	are	assigned	a	credit	rating	based	on	their	credit	risk.
These	ratings	are	assigned	by	specialized	companies	called	rating	agencies	and
the	three	major	ones	include	Moody’s	Investors	Service,	Standard	&	Poor’s,	and
Fitch	 Ratings.	 Rating	 agencies	 assign	 a	 letter	 to	 a	 bond	 issue	 to	 describe	 its
credit	risk.	For	example,	the	letter	classification	used	by	Standard	&	Poor’s	and
Fitch	is	AAA,	AA,	A,	BBB,	BB,	B,	CCC,	and	D.	Moody’s	uses	the	classification
Aaa,	Aa,	A,	Baa,	Ba,	B,	Caa,	Ca,	C.	In	both	classifications,	credit	risk	increases
from	 lowest	 to	 highest.	 The	 letters	 D	 and	 C	 mean	 that	 the	 bond	 issue	 is	 in
payment	default.	Bonds	with	ratings	AAA	to	BBB	(Aaa	to	Baa)	are	considered
investment-grade	bonds.	Bonds	with	lower	ratings	are	speculative-grade	bonds,
also	commonly	referred	to	as	high-yield	bonds	or	junk	bonds.
	TABLE	15.2	Credit	Migration	Table
	

	
In	5th	Year

At	Issuance Investment	Grade Speculative	Grade In	Default
Investment	Grade 94.7% 5% 0.3%
Speculative	Grade 1.2% 87.5% 11.3%
In	Default 0% 0% 0%

	

	

Credit	 ratings	 can	 change	 during	 the	 lives	 of	 bond	 issues.	 Credit	 risk
specialists	use	the	so-called	“credit	migration	tables”	to	describe	the	probabilities
that	bond	issues’	ratings	change	in	a	given	period.
	 Suppose	 that	a	 team	of	corporate	bond	analysts	at	a	 large	asset	management
firm	follow	1,000	corporate	names	and	have	compiled	the	following	information
for	 those	corporate	names.	At	 the	 time	of	 issuance,	335	of	 them	were	assigned



speculative-grade	rating	and	665	of	them	were	assigned	investment-grade	rating.
Over	a	five-year	period,

•	A	company	with	an	 investment-grade	rating	at	 the	 time	of	 issuance
has	 a	 5%	 chance	 of	 downgrade	 to	 speculative-grade	 rating	 and	 a	 0.03%
chance	of	default	(i.e.,	failure	to	pay	coupons	and/or	principal)	on	its	bond
issue.

•	A	 company	with	 a	 speculative-grade	 rating	 at	 the	 time	 of	 issuance
has	 an	 11.3%	 chance	 of	 default	 and	 a	 1.2%	 chance	 of	 upgrade	 to
investment-grade	rating.

	 A	simplified	credit	migration	table	summarizing	that	information	is	provided
in	 Table	 15.2.	 Notice	 that	 the	 entries	 in	 the	 table	 represent	 conditional
probabilities,	so	that,	for	example,

P(Default|Investment	grade	at	issuance)	=	0.003
	P(upgrade|Speculative	grade	at	issuance)	=	0.012
	

and	 so	 on.172	 What	 is	 the	 probability	 that	 a	 company	 defaults	 within	 a	 five-
year	period?
	 Let’s	define	the	events:

Event	A	=	{The	company	has	speculative-grade	rating	at	time	of	issuance}.

	
Event	B	=	{The	company	defaults	within	a	five-year	period}.
		

	 The	credit	migration	table	in	Table	15.2	provides	the	conditional	probabilities

P(B|A)	0.113	and	P(B|Ac)=	0.003
		

	The	 unconditional	 probability	 that	 a	 company	 is	 assigned	 a	 speculative-grade
rating	at	time	of	issuance	is	given	by

while	the	unconditional	probability	that	a	company	is	assigned	a	nonspeculative-
grade	rating	(that	is,	investment-grade	rating	in	our	example)	at	time	of	issuance
is	computed	as



Now,	 we	 can	 readily	 substitute	 into	 the	 expression	 for	 the	 Law	 of	 Total
Probability	and	find	 that	 the	chance	 that	a	company	among	the	1,000	followed
by	the	team	of	bond	analysts	defaults	within	a	five-year	period.
	



The	Law	of	Total	Probability	for	More	than	Two	Events

	

The	expression	for	the	Law	of	Total	Probability	in	equation	(15.6)	can	easily	be
generalized	to	the	case	of	K	events:

	 The	only	“catch”	 is	 that	we	need	 to	 take	care	 that	 the	events	B1,	B2,	…,	BK
exhaust	 the	 sample	 space	 (their	 probabilities	 sum	 up	 to	 1)	 and	 are	 mutually
exclusive.	(In	the	two-event	case,	B	and	Bc	clearly	fulfil	these	requirements.)
	



BAYES’	RULE

	

Bayes’	rule,	named	after	 the	eighteenth-century	British	mathematician	Thomas
Bayes,	 provides	 a	 method	 for	 expressing	 an	 unknown	 conditional	 probability
P(B|A)	with	 the	help	of	 the	known	conditional	probability	P(A|B).	Bayes’	 rule,
for	events	A	and	B,	is	given	by	the	following	expression

	 Another	formulation	of	Bayes’	rule	is	by	using	the	Law	of	Total	Probability	in
the	denominator	in	place	of	P(A).	Doing	so,	we	obtain

	Generalized	to	K	events,	Bayes’	rule	is	written	as

where	 the	subscript	 i	denotes	 the	 i-th	event	and	 i	=	1,	2,	…,	K.	 using	 the	Law
of	Total	Probability,	we	have



Illustration:	Application	of	Bayes’	Rule

	

The	hedge	fund	industry	has	experienced	exceptional	growth,	with	assets	under
management	 more	 than	 doubling	 between	 2005	 and	 2007.	 According	 to
HedgeFund.net,	 the	 total	 assets	 under	management	 of	 hedge	 funds	 (excluding
funds	of	hedge	funds),	as	of	the	second	half	of	2007,	are	estimated	to	be	about
$2.7	trillion.173	Hedge	funds	vary	by	 the	 types	of	 investment	strategies	(styles)
they	 employ.	 Some	 of	 the	 strategies	 with	 greatest	 proportion	 of	 assets	 under
management	allocated	to	them	are	long/short	equity,	arbitrage,	global	macro,	and
event	driven.

	
Consider	a	manager	of	an	event-driven	hedge	fund.	This	 type	of	hedge	fund

strategy	 is	 focused	 on	 investing	 in	 financial	 instruments	 of	 companies
undergoing	(expected	to	undergo)	some	event,	for	example,	bankruptcy,	merger,
etc.	 Suppose	 that	 the	 goal	 of	 the	 manager	 is	 to	 identify	 companies	 that	 may
become	acquisition	targets	for	other	companies.	The	manager	is	aware	of	some
empirical	 evidence	 that	 companies	 with	 a	 very	 high	 value	 of	 a	 particular
indicator—the	ratio	of	stock	price	to	free	cash	flow	per	share	(PFCF)—are	likely
to	become	acquisition	targets	and	wants	to	test	this	hypothesis.
	 The	hedge	 fund	manager	gathers	 the	 following	data	 about	 the	 companies	of
interest

•	The	probability	that	a	company	becomes	an	acquisition	target	during
the	course	of	an	year	is	40%.

•	75%	of	the	companies	that	became	acquisition	targets	had	values	of
PFCF	more	than	three	times	the	industry	average.

•	Only	35%	of	the	companies	that	were	not	targeted	for	acquisition	had
PFCF	higher	than	three	times	the	industry	average.

	 Suppose	 that	 a	 given	 company	 has	 a	 PFCF	 higher	 than	 three	 times	 the
industry	 average.	What	 is	 the	 chance	 that	 this	 company	 becomes	 a	 target	 for
acquisition	during	the	course	of	the	year?	Let’s	define	the	following	events:

Event	A	=	{The	company	becomes	an	acquisition	target	during	the	year}.
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Event	B	=	{The	company’s	PFCF	is	more	than	three	times	the	industry
average}.
		From	 the	 information	 provided	 in	 the	 problem,	 we	 can	 determine	 the

following	probabilities:

P(A)=	0.4
	 P(B|A)=	0.75
	 P(B|Ac)=	0.35
	

We	 need	 to	 find	 the	 conditional	 probability	 that	 a	 company	 becomes	 an
acquisition	 target	 given	 that	 it	 has	 a	 PFCF	 exceeding	 the	 industry	 average	 by
more	than	three	times,	that	is,	P(A|B).
	 Since	the	conditional	probabilities	P(B|A)	and	P(B|Ac)	are	known,	we	can	find
P(A|B)	by	applying	Bayes’	rule,

	In	 the	 second	 line	 above,	 0.6	 is	 the	 probability	 that	 a	 company	 does	 not
become	an	acquisition	target	in	a	given	year,	which	we	find	by	subtracting	P(A)
from	1.	When	we	incorporate	the	evidence	that	a	company	has	a	high	PFCF,	we
obtain	a	higher	probability	of	acquisition	 than	when	 that	 evidence	 is	not	 taken
into	 account.	 The	 probability	 of	 acquisition	 is	 thus	 “updated.”	 The	 updated
probability	 is	 more	 accurate	 since	 it	 is	 based	 on	 a	 larger	 base	 of	 available
knowledge.
	



CONDITIONAL	PARAMETERS

	

Let	us	consider	again	the	three	scenarios	from	the	beginning	of	this	chapter.	We
may	ask	the	following	additional	questions	about	them,	respectively:

•	During	recessionary	periods,	what	is	the	expected	number	of	clients
of	 the	 mortgage	 company	 that	 are	 delinquent	 in	 making	 their	 monthly
mortgage	payments?

•	During	recessionary	periods,	what	is	the	variability	in	the	number	of
corporate	loans	that	default?

•	 During	 periods	 of	 declining	 stock	 market,	 what	 is	 the	 expected
number	 of	 managers	 of	 stock	 portfolios	 that	 underperform	 their	 clients’
benchmarks	by	more	than	50	basis	points?

	The	questions	point	to	the	definition	of	parameters	given	the	realization	of	some
random	variable.	We	call	 those	parameters	conditional	parameters	 and	 in	 this
section	we	focus	on	three	of	them:	the	conditional	expectation,	 the	conditional
variance,	and	the	conditional	value-at-risk.
	



Conditional	Expectation

	

From	Chapter	13,	we	are	already	familiar	with	 the	concept	of	expectation	of	a
random	variable.	All	the	following	variables	have	unconditional	expectations:

•	State	of	the	economy.
•	State	of	the	stock	market.
•	 Number	 of	 clients	 who	 are	 delinquent	 in	 making	 their	 monthly

payments.
•	Number	of	corporate	loans	that	default.
•	 Number	 of	 portfolio	 managers	 that	 underperform	 clients’

benchmarks.
	 These	 are	 the	 expected	 states	 of	 the	 economy	 or	 the	 stock	 market	 and	 the
expected	 numbers	 of	 delinquent	 clients	 or	 defaulted	 corporate	 loans	 or
underperforming	managers.
	 In	the	three	questions	above,	we	are	in	fact	considering	scenarios	based	on	the
realizations	of	the	state	of	the	economy	variable	and	the	state	of	the	stock	market
variable.	If	the	state	of	the	economy	is	“recession,”	for	example,	we	do	not	know
what	the	number	of	delinquent	clients	or	the	number	of	defaulted	corporate	loans
are.	Since	 they	are	random	variables	on	 the	restricted	space	of	“recession,”	we
can	 compute	 their	 expected	 values,	 that	 is,	 their	 conditional	 expectations,
conditional	on	the	realized	scenario.
	 In	the	discrete	setting	(for	instance,	the	three	examples	above),	where	both	the
conditioning	variable	and	the	variable	whose	expectation	we	are	interested	in	are
discrete,	 the	 conditional	 expectation	 can	 be	 computed	 using	 the	 definition	 of
conditional	 probability.	 In	 particular,	 the	 conditional	 expectation	 of	 a	 random
variable	X,	 given	 the	 event	B,	 is	 equal	 to	 the	 unconditional	 expectation	 of	 the
variable	X	set	to	zero	outside	of	B	and	divided	by	the	probability	of	B:

The	 term	 IB(X)	 is	 the	 indicator	 function	of	 the	set	B.	 It	 is	equal	 to	1	whenever
X	is	in	set	B	and	0	when	X	is	in	the	complementary	set	Bc.	That	is,	the	indicator
function	helps	 isolate	 those	values	of	X	 that	correspond	to	 the	realization	of	B.



As	an	example,	consider	again	the	first	of	the	three	questions	in	the	beginning	of
the	section.	We	have

As	another	example,	suppose	we	consider	the	return	on	a	stock	portfolio	ABC
tomorrow	 and	 the	 value	 of	 the	 S&P	 500	 equity	 index	 tomorrow.	We	may	 be
interested	 in	 computing	 the	 expected	 return	on	portfolio	ABC	 tomorrow	 if	we
know	S&P	500’s	value	tomorrow.	Let	us	assume	that	the	returns	of	the	S&P	500
are	discrete	variables	so	that	the	probability	that	returns	assume	a	given	value	are
finite.	We	would	then	have:

	Note	 that	 if	 the	 returns	 of	 the	 S&P	 500	 were	 continuous	 variables,	 the
denominator	 in	 the	 previous	 expression	 would	 be	 zero.	 In	 order	 to	 define
conditional	 expectations	 for	 continuous	variables,	we	need	a	more	general	 and
abstract	definition	of	conditional	expectation	as	outlined	here.	Formally,	suppose
that	 the	 random	 variable	 X	 is	 defined	 on	 the	 probability	 space	 (Ω,	 A,	 P).174
Further,	suppose	that	G	is	a	subset	of	A	and	is	a	sub-σ-algebra	of	A.	G	fulfills	all
the	requirements	on	a	σ-algebra	we	are	already	familiar	with.	It	corresponds,	for
instance,	 to	 the	 subspaces	 defined	 by	 the	 variables	 “state	 of	 the	 economy”	 or
“state	 of	 the	 stock	 market”	 in	 the	 examples	 above.	 Then,	 the	 conditional
expectation	of	X	given	G,	denoted	by	E(X|G),	is	defined	as	any	random	variable
measurable	with	respect	to	G	such	that	its	expectation	on	any	set	of	G	is	equal	to
the	 expectation	 of	 X	 on	 the	 same	 set.	 The	 conditional	 expectation	 states	 that
under	the	condition	that	an	event	in	G	has	occurred	we	would	expect	X	to	take	a
value	E(X|G).
	



Conditional	Variance

	

The	conditional	variance	can	be	understood	 in	a	way	completely	analogous	 to
the	 conditional	 expectation.	 The	 condition	 (for	 example,	 realization	 of	 a
scenario)	only	serves	to	restrict	the	sample	space.	The	conditional	variance	is	a
function	 that	 assigns,	 for	 each	 realization	 of	 the	 condition,	 the	 variance	 of	 the
random	variable	on	the	restricted	space.	That	is,	for	X	defined	on	the	probability
space	(Ω,	A,	P),	 the	conditional	variance	 is	a	random	variable	measurable	with
respect	to	the	sub-σ-algebra,	G,	and	denoted	as	var[X|G]	such	that	its	variance	on
each	set	of	G	is	equal	to	the	variance	of	X	on	the	same	set.	For	example,	with	the
question	“During	recessionary	periods,	what	 is	 the	variability	 in	 the	number	of
corporate	loans	that	default?,”	we	are	looking	to	compute

var[Number	of	default	corporate	loans	|	State	of	the	economy	=	Recession]
		

	 using	 the	 definition	 of	 variance	 from	 Chapter	 13,	 we	 could	 equivalently
express	var[X|G]	in	terms	of	conditional	expectations,

var[X|G]	=	E[X2|G]	+	E[X|G]2
		

	



Expected	Tail	Loss

	

In	 Chapter	 13,	 we	 explained	 that	 the	 value-at-risk	 (VaR)	 is	 one	 risk	 measure
employed	 in	 financial	 risk	measurement	 and	management.	VaR	 is	 a	 feature	 of
the	unconditional	distribution	of	 financial	 losses	 (negative	 returns).	Recall	 that
the	 99%	VaR	of	 the	 loss	 distribution,	 for	 instance,	 is	 the	 loss	 value	 such	 that,
with	a	1%	chance,	the	financial	asset	will	have	a	loss	bigger	than	99%	VaR	over
the	given	period.
	 The	VaR	risk	measure	provides	us	with	only	a	threshold.	What	loss	could	we
expect	 if	 the	 99%	 VaR	 level	 is	 broken?	 To	 answer	 this	 question,	 we	 must
compute	the	expectation	of	losses	conditional	on	the	99%	VaR	being	exceeded:

E[-Rt	|-Rt	>	99%	VaR]
	

where	Rt	 denotes	 the	 return	 on	 a	 financial	 asset	 at	 time	 t	 and	 -Rt—the	 loss	 at
time	 t.	 In	 the	 general	 case	 of	 VaR(1-α)100%,	 the	 conditional	 expectation	 above
takes	the	form

E[-Rt	|	-Rt	>	VaR(1-α)100%]
	

and	 is	 known	 as	 the	 (1	 -	 α)100%	 expected	 tail	 loss	 (ETL)	 or	 conditional
value-at-risk	(CVaR)	if	the	return	Rt	has	density.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Conditional	probabilities	
unconditional	probabilities	
Marginal	probabilities	
Independent	events	
Dependent	events	
Joint	probability	
Multiplicative	Rule	of	Probability	
Law	of	Total	Probability	
Bayes’	rule	
Conditional	parameters	
Conditional	expectations	
Conditional	variance	
Expected	tail	loss	
Conditional	value-at-risk
	



CHAPTER	16
	

Copula	and	Dependence	Measures
	

In	previous	chapters	of	 this	book,	we	 introduced	multivariate	distributions	 that
had	 distribution	 functions	 that	 could	 be	 presented	 as	 functions	 of	 their
parameters	 and	 the	 values	 x	 of	 the	 state	 space;	 in	 other	words,	 they	 could	 be
given	in	closed	form.175	In	particular,	we	learned	about	the	multivariate	normal
and	multivariate	t-distributions.	What	these	two	distributions	have	in	common	is
that	 their	 dependence	 structure	 is	 characterized	 by	 the	 covariance	 matrix	 that
only	considers	the	linear	dependence	of	the	components	of	the	random	vectors.
However,	 this	 may	 be	 too	 inflexible	 for	 practical	 applications	 in	 finance	 that
have	to	deal	with	all	the	features	of	joint	behavior	exhibited	by	financial	returns.

	
Portfolio	 managers	 and	 risk	 managers	 have	 found	 that	 not	 only	 do	 asset

returns	 exhibit	 heavy	 tails	 and	 a	 tendency	 to	 simultaneously	 assume	 extreme
values,	 but	 assets	 exhibit	 complicated	 dependence	 structures	 beyond	 anything
that	could	be	handled	by	the	distributions	described	in	previous	chapters	of	this
book.	For	example,	a	portfolio	manager	may	know	for	a	portfolio	consisting	of
bonds	 and	 loans	 the	 constituents’	 marginal	 behavior	 such	 as	 probability	 of
default	of	 the	 individual	holdings.	However,	 their	aggregate	 risk	 structure	may
be	unknown	to	the	portfolio	manager.
	 In	this	chapter,	in	response	to	the	problems	just	mentioned,	we	introduce	the
copula	 as	 an	 alternative	 approach	 to	 multivariate	 distributions	 that	 takes	 us
beyond	the	strict	structure	imposed	by	the	distribution	functions	that	analytically
have	a	closed	form.	As	we	will	see,	the	copula	provides	access	to	a	much	richer
class	of	multivariate	distributions.

	
For	a	 random	vector	of	general	dimension	d,	we	will	 show	how	a	copula	 is

constructed	and	list	the	most	important	specifications	and	properties	of	a	copula.
In	 particular,	 these	will	 be	 the	 copula	 density,	 increments	 of	 a	 copula,	 copula
bounds,	 and	 invariance	 of	 the	 copula	 under	 strictly	 monotonically	 increasing
transformations.	 Furthermore,	 we	 introduce	 the	 simulation	 of	 financial	 return



data	using	the	copula.	We	will	then	focus	on	the	special	case	of	two	dimensions,
repeating	 all	 theory	 we	 introduced	 for	 d	 =	 2.	 Additionally,	 we	 will	 introduce
alternative	 dependence	 measures.	 These	 will	 include	 the	 rank	 correlation
measures	 such	 as	 Spearman’s	 rho	 as	 well	 as	 tail	 dependence.	 For	 all	 the
theoretical	 concepts	 we	 present,	 we	 will	 provide	 illustrations	 to	 aid	 in
understanding	the	concepts.
	 As	we	stated	elsewhere	in	this	book,	we	may	not	always	apply	the	strictest	of
mathematical	 rigor	 as	 we	 present	 the	 theoretical	 concepts	 in	 this	 chapter,	 but
instead	prefer	an	intuitive	approach	occasionally	making	a	statement	that	may	be
mathematically	ambiguous.
	



COPULA

	

We	 will	 begin	 by	 presenting	 the	 definition	 of	 the	 copula	 including	 its	 most
important	properties.	We	first	 introduce	the	general	set-up	of	d	dimensions	and
then	focus	on	the	particular	case	of	d	=	2.
	 Let	 X	 =	 (X1,	 X2,	 …,	 Xd)	 be	 a	 random	 vector	 such	 as	 a	 cross-sectional
collection	 of	 asset	 returns	 where	 each	 of	 the	 components	 Xi	 has	 a	 marginal
distribution	function	denoted	Fi(xi).	Now,	since	the	Xi	are	random	variables,	the
Fi(Xi)	are	also	random	depending	on	the	outcome	of	Xi.	Recall	from	Chapter	13
that	 the	 α-quantile,	 qα,	 of	 some	 probability	 distribution	 is	 the	 value	 that	 the
random	 variable	 does	 not	 exceed	 with	 probability	 α.	 With	 the	 quantiles
determined	through	the	inverse	of	the	distribution	function,	Fi	−1	,	such	that	qα=
F−1	 (α)	 ,	 there	 is	 a	 relationship	between	a	 random	variable	 and	 its	distribution
function.176
	 The	 dependence	 structure	 between	 a	 finite	 number	 of	 random	 variables	 is
determined	by	 their	 joint	distribution	 function.	Moreover,	 the	 joint	distribution
function	determines	the	marginal	distributions	as	well.	Thus	the	joint	distribution
function	explains	the	entire	probability	structure	of	a	vector	of	random	variables.
Next	we	will	show	that	the	joint	distribution	function	is	uniquely	determined	by
the	so-called	copula	and	the	marginal	distribution	functions.
	



Construction	of	the	Copula

	

For	a	random	vector	X	=	(X1,	X2,	…,	Xd),	the	joint	distribution	function	F	can	be
expressed	as

where	the	Fi	are	the	not	necessarily	identical	marginal	distribution	functions	of
the	components	Xi	and	C	is	a	function	on	d-dimensional	unit	cube,	and	is	called
the	copula	of	the	random	vector	X,	or	copula	of	the	joint	distribution	function	F.
It	can	be	shown	that	the	random	variables	Ui	=	Fi	(Xi)	are	uniformly	distributed
on	 the	 unit	 interval	 [0,1]	 at	 least	 for	 strictly	 increasing	 continuous	distribution
functions	Fi.
The	 following	 theorem,	 known	 as	 Sklar’s	 Theorem,	 establishes	 the

relationship	between	(i)	the	joint	multivariate	distribution	of	a	random	vector	X,
and	 (ii)	 the	 copula	 function	 C	 and	 set	 of	 d-univariate	 marginal	 distribution
functions	of	X.
	 Let	F	be	the	joint	distribution	function	of	the	random	vector	X	=	(X1,	X2,	…,
Xd).	 Moreover,	 let	 Fi	 denote	 the	 distribution	 functions	 of	 the	 components	Xi.
Then,	through	a	copula	function

C	:	[0,1]d	→	[0,1]
	

the	joint	distribution	function	F	can	be	represented	as
(16.1)
	

for	-∞	≤	xi	≤	∞,	i	=	1,	2,	…,	d.
So	by	equation	(16.1),	we	see	 that	any	multivariate	distribution	function	can

be	 written	 as	 a	 function	 C	 that	 maps	 the	 set	 of	 d-dimensional	 real	 numbers



between	 0	 and	 1	 into	 the	 interval	 [0,1].	 That	 is,	 the	 joint	 distribution	 of	 the
random	 vector	 X	 is	 determined	 by	 the	 marginal	 distribution	 functions	 of	 its
components—assuming	values	between	0	and	1—coupled	through	C.	Thus,	any
joint	 distribution	 can	 be	 decomposed	 into	 marginal	 probability	 laws	 and	 its
dependence	structure.

	
Conversely,	Sklar’s	Theorem	guarantees	that	with	any	copula	C	and	arbitrary

marginal	 distribution	 functions	 Fi	 ,	 we	 always	 obtain	 some	 joint	 distribution
function	F	of	a	random	vector	X=	(X1,	X2,	…,	Xd).
	



Specifications	of	the	Copula

	

Now	let’s	look	at	what	functions	qualify	as	a	copula.	We	specify	the	copula	by
the	following	definition.
	 The	copula	is	a	function
(16.2)
	

such	 that,	 for	 any	 d-tuple	 u=(u,	 u,…,	 u)	 ∈	 [0,1]	 d	 ,	 the	 following	 three
requirements	hold

Requirement	1:	C(u1,	u2,	…,	ud)	is	increasing	in	each	component	ui.
	Requirement	2:	C(1,	…,	1,	ui,	1,	…,	1)	=	ui	for	all	i	=	1,	2,	…,	d.d
	Requirement	3:	For	any	two	points	u	=	(u1,u2,…,ud	)	∈[0,1]d	and	v	=	(	v1,	v2

,	…	,	vd	)	∈[0,1]d	,	such	that	v	is	at	least	as	great	as	u	in	each	component
(i.e.,	ui	≤	vi,	for	i	=	1,	2,	…,	d),	we	have

	 	
where	 the	 j-th	 component	 of	 z	 is	 either	 z1,j	 =	uj	 or	 z2,j	 =	 vj	 depending	 on	 the
index	ij.
Let’s	 discuss	 the	 meaning	 of	 these	 three	 requirements.	 Requirement	 1	 is	 a

consequence	 of	 the	 fact	 that	 an	 increase	 in	 the	 value	 ui	 of	 the	 marginal
distribution	Fi	should	not	lead	to	a	reduction	of	the	joint	distribution	C.	This	is
because	an	increase	in	ui	corresponds	to	an	increase	of	the	set	of	values	that	Xi
can	assume	that,	by	the	general	definition	of	a	probability	measure	explained	in
Chapter	8,	leads	to	no	reduction	of	the	joint	distribution	of	X	=	(X1,	X2,	…,	Xd).
For	 requirement	 2,	 because	 by	 construction	 the	 Ui	 ∈[0,1]	 are	 uniformly
distributed,	the	probability	of	any	of	the	Ui	assuming	a	value	between	0	and	ui	is



exactly	ui.	And,	since	C	(1,	…	,1,	ui	,1,	…	,1)	represents	the	probability	that	Ui	∈
[0,	ui	]	while	all	remaining	components	assume	any	feasible	value	(i.e.,	in	[0,1]),
the	 joint	probability	 is	equal	 to	ui.	Requirement	3	 is	 a	 little	more	complicated.
Basically,	it	guarantees	that	the	copula	as	a	distribution	function	never	assigns	a
negative	probability	 to	any	event.	Combining	requirements	1,	2,	and	3,	we	see
that	 a	 copula	 function	 can	 be	 any	 distribution	 function	 whose	 marginal
distribution	functions	are	uniform	on	[0,1].	We	demonstrate	 this	 in	more	detail
for	the	two-dimensional	(i.e.,	d	=	2)	case	a	little	later	in	this	chapter.

	
The	 copula	 is	 not	 always	 unique,	 however.	 Only	 when	 the	 marginal

distributions	 are	 continuous	 is	 it	 unique.	 In	 contrast,	 if	 some	 marginal
distributions	of	the	random	vector	are	discrete,	then	a	unique	copula	of	the	joint
distribution	 does	 not	 exist.	 Consequently,	 several	 functions	 fulfilling	 the	 three
requirements	above	qualify	as	the	function	C	on	the	right-hand	side	of	equation
(16.1).
	



Properties	of	the	Copula

	

The	 four	 essential	 properties	 of	 a	 copula	 are	 copula	 density,	 increments	 of	 the
copula,	 bounds	 of	 the	 copula,	 and	 invariance	 under	 strictly	 monotonically
increasing	 transformations.	We	describe	 these	properties	below.	Some	of	 these
properties,	as	we	will	point	out,	only	apply	to	continuous	random	vectors.
	

Copula	Density

	
Just	 like	 for	 a	 multivariate	 distribution	 function	 of	 a	 random	 vector	 with
continuous	 components	 described	 in	 Chapter	 14,	 we	 can	 compute	 the	 density
function	of	a	copula.	It	is	defined	as

	 The	 copula	 density	 function	 may	 not	 always	 exist.	 However,	 for	 the
commonly	 used	 Gaussian	 copula	 and	 t-copula	 that	 we	 discuss	 later	 in	 this
chapter,	they	do	exist.
	

Increments	of	the	Copula

	
If	we	 compute	 the	 derivative	 of	 a	 copula	with	 respect	 to	 component	ui	 at	 any
point	such	that	u,…,ui-1,	ui+1,…,ud	∈[0,1]	and	u	∈(0,1),	we	would	obtain
	

This	 reveals	 that	 the	 copula	 never	 decreases	 if	 we	 increment	 any	 arbitrary
component.	This	property	is	consistent	with	requirement	3	above.
	



Bounds	of	the	Copula

	
We	know	 that	 the	 copula	 assumes	values	between	0	 and	1	 to	 represent	 a	 joint
distribution	function.	However,	it	is	not	totally	unrestrained.	There	exists	a	set	of
bounds	 that	 any	 copula	 is	 always	 restricted	 by.	 These	 bounds	 are	 called	 the
Fréchet	lower	bound)	and	Fréchet	upper	bound.	So,	let	C	be	any	copula	and	u
=	u1	,u2	,…,ud	∈[0,1]d	,	then	we	have	the	restrictions	177
	

While	the	Fréchet	lower	bound	is	a	little	more	complicated	to	understand	and
just	 taken	 as	 given	 here,	 the	 reasoning	 behind	 the	 Fréchet	 upper	 bound	 is	 as
follows.	By	 requirement	 2	 of	 the	 definition	 of	 the	 copula,	 the	 copula	 is	 never
greater	 than	 ui	 when	 all	 other	 components	 equal	 1.	 Now,	 letting	 the	 other
components	 assume	 values	 strictly	 less	 than	 1,	 then	 the	 copula	 can	 definitely
never	exceed	ui.	Moreover,	since	this	reasoning	applies	to	all	ui,	i	=	1,	2,	…,	d,
simultaneously,	 the	 copula	 can	 never	 be	 greater	 than	 the	 minimum	 of	 these
components	(i.e.,	min	{ui}).
	

Invariance	under	Strictly	Monotonically	Increasing
Transformations

	
A	 very	 important	 property	 whose	 use	 will	 often	 be	 essential	 in	 the	 examples
presented	 later	 is	 that	 the	 copula	 is	 invariant	 under	 a	 strictly	 monotonically
increasing	transformation	that	we	may	denote	as	T	where	T(y)	>	T(x)	whenever	y
>	x.178	Invariance	means	that	the	copula	is	still	the	same	whether	we	consider	the
random	variables	X1,	X2,	…,	Xd	 themselves	or	strictly	monotonically	increasing
transformations	 T(X1),	 T(X2),	 …,	 T(Xd)	 of	 them	 because	 their	 dependence
structures	are	the	same.	And	since	the	dependence	structure	remains	unaffected
by	this	type	of	transformation,	it	is	immaterial	for	the	copula	whether	we	use	the
original	random	variables	Xi	or	standardized	versions	of	them	such	as



	This	 is	 helpful	 because	 it	 is	 often	 easier	 to	work	with	 the	 joint	 distribution	 of
standardized	random	variables.
	Independence	Copula	Our	first	example	of	a	copula	is	a	very	simple	one.	It	is	the
copula	that	represents	the	joint	distribution	function	of	some	random	vector	Y	=
(Y1,	 Y2,	 …,	 Yd)	 with	 independent	 (continuous)	 components.	 Because	 of	 this
characteristic,	 it	 is	 called	 an	 independence	 copula.	 Its	 construction	 is	 very
simple.	For	u	=	(	u1,	u2	,	…	,	ud	)	∈	[0,1]	,	it	is	defined	as

where	Fi	−1	denotes	the	inverse	of	the	marginal	distribution	function	F	of	random
variable	Yi,	for	each	i	=	1,	2,	…,	d.
Next,	 we	 give	 two	 examples	 of	 copulas	 for	 which	 the	 exact	 multivariate

distribution	is	known.
	Gaussian	 Copula	 In	 this	 illustration,	 we	 present	 the	 copula	 of	 multivariate
normal	random	vectors.	Let	the	random	vector	Y	=	(Y1,	Y2,	…,	Yd)	have	the	joint
distribution	N	(µ,Σ	)	where	µ	denotes	the	vector	of	means	and	Σ	the	covariance
matrix	 of	 the	 components	 of	 Y.	 Moreover,	 let	 X=(X,	 X,…,	 X	 )~	N(0,Γ)	 be	 a
vector	of	multivariate	normally	distributed	 random	variables,	 as	well,	but	with
zero	 mean	 and	 Γ	 denoting	 the	 correlation	 matrix	 of	 Y.	 Then,	 because	 each
component	of	X	is	a	standardized	transform	of	the	corresponding	component	of
Y,	that	is,

the	copulae	of	X	and	Y	coincide.179	Hence,
(16.3)
	

which	shows	that	 	is	the	copula	of	both	N(µ,	Σ	)	and	N(0,	Γ).
Here,	we	used	Fi	 to	denote	the	normal	marginal	distribution	functions	of	the



Yi,	 while	 Φ	 denotes	 the	 standard	 normal	 distribution	 functions	 of	 the	 Xi.
Accordingly,	Fi−1	(ui)	is	the	ui-quantile	of	the	corresponding	normal	distribution
of	Yi	just	as	Φ−1	(	ui	)	represents	the	standard	normal	ui-quantile	of	Xi.	Finally,
ΦΓ	 denotes	 the	 joint	 distribution	 function	 of	 the	N(0,Γ)	 distribution.	 From	 the
third	 line	 in	 (16.3),	 we	 conclude	 that	 the	 Gaussian	 copula	 	 is	 completely
specified	by	the	correlation	matrix	Γ.	Graphical	illustrations	will	follow	later	in
this	chapter	dedicated	to	the	case	where	d	=	2.

	
t-Copula	 Here	 we	 establish	 the	 copula	 of	 the	 d-dimensional	 multivariate	 t-
distribution	 function.	 We	 use	 td	 (ν,µ,Σ)	 for	 this	 distribution	 where	 ν	 are	 the
degrees	of	freedom,	µ	the	vector	of	means,	and	Σ	the	dispersion	matrix.	Let	Y=
(Y1,	Y2,	…,	Yd)	be	the	td(ν,	µ,	Σ)	distributed	random	vector,	then	the	parameters
indicating	 the	 degrees	 of	 freedom	 are	 identical	 for	 all	 d	 components	 of	 the
random	vector	Y.
	 Due	to	the	invariance	of	the	copula	with	respect	to	transformation,	it	makes	no
difference	 whether	 we	 analyze	 the	 dependence	 structure	 of	 a	 td	 (ν,	 µ,	 Σ)
distributed	 random	 vector	 or	 a	 td	 (ν,	 0,	 P)	 one	 (i.e.,	 a	 standardized	 t	 random
vector	that	has	zero	mean	and	dispersion	matrix	P	that	is	the	correlation	matrix
associated	with	Σ).	The	corresponding	copula,	t-copula,	is	given	by
(16.4)
	

where

	denotes	the	respective	ui-quantiles	of	the	marginal	Student’s	t-
distributions	(denoted	by	t(ν))	with	distribution	functions	tν.

	
F	is	the	distribution	function	of	td	(ν,	0,	P).



	|P|	is	the	determinant	of	the	correlation	matrix	P.
	y	=	(y1,	y2,	…,	yd)T	is	the	vector	of	integration	variables.180

		
We	will	present	illustrations	for	the	special	case	where	d	=	2	later	in	the	chapter.
	



Simulation	of	Financial	Returns	Using	the	Copula

	

Copulae	 and	 in	 particular	 the	 converse	 of	 Sklar’s	 theorem	 (i.e.,	 deriving	 a
multivariate	 distribution	 function	 from	 some	 given	 copula	 and	 univariate
(marginal)	distribution	functions)	enjoy	intense	use	in	the	modeling	of	financial
risk	where	the	dependence	structure	in	the	form	of	the	copula	is	known	but	the
joint	distribution	may	not	be	known.

	
With	 this	 procedure	 that	 we	 now	 introduce,	 we	 can	 simulate	 behavior	 of

aggregated	risk	such	as	the	returns	of	a	portfolio	of	stocks.
	 Let	Y=	(Y1,	Y2,	…,	Yd)	be	the	random	vector	of	interest	such	as	a	set	of	some
financial	returns	with	copula	C.	In	the	first	step,	we	generate	the	realizations	ui	∈
[0,1]	of	the	random	variables	Ui	representing	the	marginal	distribution	functions
of	 the	 d	 returns	 Yi	 from	 the	 given	 copula	C.	 This	 can	 be	 done	 by	 using	 the
realizations	xi	of	d	 random	variables	Xi	with	marginal	distribution	 functions	Fi
and	 joint	 distribution	 function	 F	 specified	 by	 the	 very	 same	 copula	 C	 and
transforming	them	through	ui=	Fi(xi).181

	 In	 the	 second	 step,	we	 produce	 the	 realizations	yi	 for	 the	Yi.	We	 denote	 the
respective	 marginal	 distribution	 function	 of	 Yi	 by	 FY,i	 with	 its	 inverse	
yielding	the	Ui-quantile.	The	yi	are	now	easily	obtained	by	simply	entering	 the
realizations	ui	from	the	first	step	into	the	transformation

and	we	are	done.
We	illustrate	this	procedure	for	the	two-dimensional	case	as	an	example	later.

	



The	Copula	for	Two	Dimensions

	

We	 now	 examine	 the	 particular	 case	 where	 d	 =	 2	 in	 order	 to	 get	 a	 better
understanding	 of	 the	 theory	 presented	 thus	 far.	 The	 reduction	 to	 only	 two
dimensions	often	appeals	more	to	intuition	than	the	general	case.
	 In	the	case	where	d	=	2,	the	function	in	equation	(16.2)	becomes

C:	[0,1]	2	→	[0,1]
	

showing	 that	 the	 two-dimensional	 copula	 maps	 the	 values	 of	 two	 marginal
distribution	functions	into	the	state	space	between	0	and	1.
	 Suppose	we	have	two	random	variables,	say	X	and	X2,	then	we	can	give	their
bivariate	distribution	function	F	by

F(x1	,	x2)=C(F1(	x1	),	F2(x2))
	

for	any	pair	of	real	numbers	(x1,	x2).
	 From	the	definition	of	the	copula,	we	have	in	the	particular	case	of	d	=	2	that

1.	For	any	value	u	∈[0,1],	that	is,	any	value	that	a	distribution	function
may	assume,	the	following	hold:
(16.5)

	

and
(16.6)

	

	Equation	(16.5)	 can	 be	 interpreted	 as	 the	 probability	 that	 one	 component
assumes	 some	 value	 below	 the	 lowest	 value	 that	 it	 can	 possibly	 assume,
which	is	unlikely,	while	the	other	has	a	value	of,	at	most,	its	corresponding
u-quantile,	 qu.182	 Equation	 (16.6)	 is	 the	 probability	 of	 one	 component
assuming	 any	 value	 at	 all,	 while	 the	 other	 is	 less	 than	 or	 equal	 to	 its	 u-



quantile,	 qu.	 So,	 the	 only	 component	 relevant	 for	 the	 computation	 of	 the
probability	in	equation	(16.6)	is	the	one	that	is	less	than	or	equal	to	qu.

	2.	For	any	two	points	u	=	(u1,	u2)	and	v	=	(v1,	v2)	in	[0,1]2	such	that	the
first	 is	smaller	 than	 the	second	 in	both	components	 (i.e.,	u1	≤	v1	and	u2	≤
v2),	we	have
(16.7)

	

That	 is,	we	 require	 of	 the	 copula	 that	 for	 it	 to	 be	 a	 bivariate	 distribution
function,	 it	 needs	 to	 produce	 nonnegative	 probability	 for	 any	 rectangular
event	bounded	by	the	points	u	and	v.

	We	 illustrate	 the	 second	 property	 in	 Figure	16.1.	Throughout	 the	 following,
we	have	to	keep	in	mind	that	the	marginal	distribution	functions	F1	and	F2	of	the
random	variables	X1	and	X2	are	treated	as	random	variables,	say	U	and	V,	with
joint	distribution	given	by	the	copula	C(U,V).	Moreover,	we	will	make	extensive
use	 of	 the	 relationship	 between	 these	 latter	 random	 variables	 and	 the
corresponding	 quantiles	 qU=	 F1−1	 (U)	 and	 qV	 =	 F2−1	 (V)	 of	 X1	 and	 X2,
respectively.

	
As	we	can	see	from	Figure	16.1,	the	rectangular	event—we	call	it	E—is	given

by	the	shaded	area	that	lies	inside	of	the	four	points	(u1,	u2),	(u1,	v2),	(v1,	u2),	and
(v1,	 v2).	 Now,	 E	 represents	 the	 event	 that	 random	 variable	U	 assumes	 some
values	 between	 u1	 and	 v1	 while	 V	 is	 between	 u2	 and	 v2.	 To	 compute	 the
probability	 of	 E,	 we	 proceed	 in	 three	 steps.	 First,	 we	 compute	 C(v1,	 v2)
representing	 the	probability	 of	U	 (i.e.,	 the	 first	 random	 component)	 being	 less
than	or	equal	 to	v1	 and	 simultaneously	V	 (i.e.,	 the	 second	 random	component)
being	 less	 than	 or	 equal	 to	 v2,	which	 corresponds	 to	 the	 prob	 ability	P(X1≤
(v1),X2≤ 	(v2)).
	FIGURE	16.1	Event	 of	Rectangular	Shape	 (shaded	 area)	Formed	by	 the	Four
Points	(u1,u2),	(u1,v2),	(v1,u2),	and	(v1,v2)
	



Since	we	 are	 considering	more	 than	E,	 in	 the	 second	 step,	 we	 subtract	 the
probability	C(u1,	v2)	of	the	event	of	U	being	at	most	u1	and	V	being	no	more	than
v2,	which	 is	 indicated	 in	Figure	16.1	 by	 the	 area	 bounded	 by	 the	 dashed	 lines
with	top-right	corner	(u1,	v2)	and	open	to	the	left	and	beneath.	This	is	equivalent

to	subtracting	the	probability	P(X1	≤	 	(u1),	X2	≤	 	(v2))	from	P(X1	≤	 	 (v1),

X2	≤	 (v2))Also,	we	subtract	C(v1,u2),	that	is,	the	probability	of	the	event	that	U
and	V	have	values	no	greater	than	v1	and	u2,	respectively,	indicated	by	the	area
with	 dash-dotted	 bounds,	 top-right	 corner	 (v1,u2),	 and	 open	 to	 the	 left	 and
beneath.	This	amounts	to	reducing	the	probability	P(X1	≤	 	(v1),	X2	≤	 	 (v2))
minus	P(X1	≤	 	(u1),	X2	≤	 	(v2))	additionally	by	P(X1	≤	 	(v1),	X2	≤	 	(u2)).
	 As	 a	 result,	we	have	 twice	 reduced	 the	probability	 from	 step	1	by	C(u1,u2),
which	is	 the	probability	of	 the	event	of	U	and	V	being	 less	 than	or	equal	 to	u1
and	u2,	respectively.	In	Figure	16.1,	 this	event	 is	 the	area	with	 top-right	corner
(u1,u2),	dashed	upper	bound,	dash-dotted	 right	bound,	and	open	 to	 the	 left	and
below.	 So,	 in	 the	 third	 step,	 we	 need	 to	 add	 C(u1,u2)	 corresponding	 to	 the
probability	P(X1	P(X1	≤	 	(v1),	X2	≤	F2(u2))	≤	 	(u2))	to	obtain	the	probability
of	the	event	E.	To	see	that	this	is	nonnegative	and	consequently	a	probability,	we
need	to	realize	that	we	have	simultaneously	computed	the	probability

P( (u1)	≤	X1	≤	 	(v1),	 	(u2)	≤	X2	≤	 	(v2))
	

=	P(X1	≤	 	(v1),	X2	≤	 	(v2))−P(X1	≤	 	(u1),	X2	≤	 	(v2))



	
-P(X1	≤	 	(v1),	X2	≤	 	(u2))	+	P(X1	≤	 	(u1),X2	≤	 	(u2))
	

=FX( (v1), 	(v2))	-	FX	( (u1)	 	(v2))
	

-FX 	(v1), 	(u2))+FX( 	(u1), 	(u2))
	

of	 the	shaded	event	 in	Figure	16.2	 that,	by	definition	of	a	probability	measure,
can	 never	 become	 negative.	 Consequently,	 postulation	 (16.7)	 follows	 for	 the
two-dimensional	case.	Here,	FX	 represents	 the	 joint	distribution	function	of	 the
random	variables	X1	and	X2.
	FIGURE	16.2	Event	 (shaded	area)	Corresponding	 to	 the	Event	E	 from	Figure
16.1
	

The	reason	we	concentrated	on	the	rectangular	events	in	requirement	(16.7)	is
that	 one	 can	 approximate	 any	 kind	 of	 event	 for	 bivariate	 distributions	 from
rectangles.

	
In	 the	 following,	 we	 present	 the	 two-dimensional	 cases	 of	 the	 previous

examples.
	

Gaussian	Copula	(d	=	2)

	
In	the	particular	case	of	d	=	2,	we	concretize	the	Gaussian	copula	from	equation



(16.3)	as

	FIGURE	16.3	Gaussian	Copula	(d	=	2)	for	ρ	=	0
	

Note	that	for	the	computation	of	the	copula,	we	integrate	the	bivariate	normal
density	function	with	correlation	matrix

where	ρ	denotes	the	correlation	coefficient	between	X1	and	X2.
We	 illustrate	 this	 copula	 for	 the	 cases	 where	 ρ	 =	 0	 (Figure	 16.3),	 ρ	 =	 0.5

(Figure	 16.4),	 and	 ρ	 =	 0.95	 (Figure	 16.5).	 By	 doing	 so,	 we	 increase	 the
relationship	 between	 the	 two	 random	 variables	 from	 independence	 to	 near
perfect	 dependence.	At	 first	 glance,	 all	 three	 figures	 appear	 virtually	 identical.
However,	careful	examination	indicates	that	in	Figure	16.3,	the	copula	is	a	very
smooth	 surface	 slightly	 protruding	 above	 the	 diagonal	 from	 u	 =	 (0,0)	 to	 u	 =
(1,1).	In	contrast,	in	Figure	16.5,	the	copula	looks	like	two	adjoining	flanks	of	a
pyramid	with	a	sharp	edge	where	they	meet.	Figure	16.4	provides	something	in
between	the	two	shapes.
	FIGURE	16.4	Gaussian	Copula	(d	=	2)	for	ρ	=	0.5
	



FIGURE	16.5	Gaussian	Copula	(d	=	2)	for	ρ	=	0.95
	

FIGURE	16.6	Contour	Plots	of	the	Gaussian	Copula	(d	=	2)	for	ρ	=	0
	



Now,	 if	we	 look	 at	 the	 contour	 lines	 of	 the	 copula	 depicted	 in	Figures	 16.6
through	 16.8	 for	 the	 same	 cases	 of	 correlation,	 the	 difference	 becomes	 easily
visible.	While	in	the	case	of	independence	(ρ	=	0),	the	lines	change	from	circular
to	straight	 for	 increasing	 levels	c	 of	 the	copula	 (i.e.,	going	 from	bottom-left	 to
top-right),	 the	 graphic	 in	 Figure	 16.8	 representing	 almost	 perfect	 dependence
looks	 much	 different.	 The	 contour	 lines	 there	 are	 almost	 everywhere	 straight
with	accentuated	edges	along	the	diagonal	from	u	=	(0,0)	to	u	=	(1,1).	In	the	case
of	mediocre	 dependence	 illustrated	 in	 Figure	 16.7,	we	 have	more	 pronounced
curves	than	in	Figure	16.6,	but	not	as	extreme	as	in	Figure	16.8.
	

t-Copula	(d	=	2)

	
Let’s	 establish	 the	 two-dimensional	 illustration	 of	 the	 ticopula	 from	 equation
(16.4).	We	concretize	the	copula	as

with	the	correlation	matrix

for	 the	correlation	coefficients	ρ	=	0,	ρ	=	0.5,	and	ρ	=	0.95	as	 in	 the	Gaussian



copula	example.183	Moreover,	we	choose	as	degrees	of	freedom	ν	=	5	to	obtain	a
t-distribution	 much	 heavier	 (or	 thicker)	 tailed	 than	 the	 normal	 distribution.184
The	 copula	 plots	 are	 depicted	 in	 Figures	 16.9	 through	 16.11.	We	 see	 that	 the
situation	is	similar	to	the	Gaussian	copula	case	with	the	copula	gradually	turning
into	the	shape	of	two	adjoining	pyramid	flanks	as	the	correlation	increases.
FIGURE	16.7	Contour	Plots	of	the	Gaussian	Copula	(d	=	2)	for	ρ	=	0.5
	

FIGURE	16.8	Contour	Plots	of	the	Gaussian	Copula	(d	=	2)	for	ρ	=	0.95
	

FIGURE	16.9	The	t-Copula	(d	=	2)	for	ρ	=	0	and	ν	=	5
	



For	a	more	detailed	analysis	of	the	behavior	of	the	 t-copula,	 let’s	 look	at	 the
contour	plots	displayed	in	Figures	16.12	through	16.14	where	we	plot	 the	 lines
of	 the	 same	 levels	 c	 as	 in	 the	 prior	 example.	 At	 first	 glance,	 they	 appear	 to
replicate	 the	 structure	 of	 the	 contour	 lines	 of	 the	 Gaussian	 copula.	 However,
there	is	a	noticeable	difference	that	is	most	pronounced	for	the	correlation	values
of	ρ	=	0	(Figure	16.12)	and	ρ	=	0.5	(Figure	16.13).	For	the	lowest	three	levels	c,
the	 contour	 lines	 of	 the	 t-distribution	 are	 much	 closer	 to	 the	 horizontal	 and
vertical	 axes	 than	 in	 the	 Gaussian	 case,	 indicating	 that	 there	 is	 a	 greater
probability	of	t-distributed	random	variables	simultaneously	assuming	very	low
values.	 The	 analogue	 case	 is	 true	 for	 the	 contour	 lines	 close	 to	 the	 top-right
corner	 of	 the	 figures	 (i.e.,	 near	 u	 =	 (1,1)),	 suggesting	 that	 there	 is	 also	 more
probability	 mass	 attributed	 by	 the	 t-distribution	 to	 the	 joint	 extreme	 positive
values.
	FIGURE	16.10	The	t-Copula	(d	=	2)	for	ρ	=	0.5	and	ν	=	5
	



FIGURE	16.11	The	t-Copula	(d	=	2)	for	ρ	=	0.95	and	ν	=	5
	

FIGURE	16.12	Contour	Plots	of	the	t-Copula	(d	=	2)	for	ρ	=	0	and	ν	=	5
	



FIGURE	16.13	Contour	Plots	of	the	t-Copula	(d	=	2)	for	ρ	=	0.5	and	ν	=	5
	

FIGURE	16.14	Contour	Plots	of	the	t-Copula	(d	=	2)	for	ρ	=	0.95	and	ν	=	5
	



That	 leads	 to	 the	conclusion	 that	 if	 financial	asset	 returns	are	 found	 to	be	 t-
distributed	 rather	 than	 normal,	 one	 has	 to	 be	 aware	 of	 the	 higher	 risk	 of	 the
returns	 assuming	 extreme	 values	 simultaneously	 of	 identical	 sign	 if	 the
correlation	is	nonnegative.

	
We	will	revisit	this	issue	later	in	this	chapter	when	we	cover	tail-dependence.

	

Gumbel	Copula	and	Clayton	Copula

	
We	briefly	establish	without	much	discussion	two	commonly	used	copulae	that
are	of	some	particular	design	rather	than	representing	known	distributions	such
as	the	copulae	presented	in	Gaussian	and	t-copulae.
	 The	so-called	Gumbel	copula,	named	in	honor	of	Emil	Julius	Gumbel	(1891-
1966),	 a	 German	 mathematician,	 is	 characterized	 by	 the	 parameter	 θ.	 With
parameter	values	1	≤	θ	<	∞,	it	is	defined	as

	When	θ	=	1,	then	we	obtain	the	independence	copula.
	 The	Clayton	 copula,	 named	 after	 David	 Clayton,	 a	 British	 statistician,	 is
defined	as



	For	its	parameter	θ,	we	have	the	values	0	<	θ	<	∞.

	
The	 Gumbel	 and	 Clayton	 copulae	 belong	 to	 the	 class	 of	 Archimedean

copulae	meeting	certain	requirements	that	we	will	not	discuss.
	



Simulation	with	the	Gaussian	Copula	(d	=	2)

	

Let’s	 illustrate	 the	 simulation	procedure	 for	 the	 case	d	=	2	using	 the	Gaussian

copula	 	from	equation	(16.3)	and	two	alternative	sets	of	marginal	distributions
for	Y1	and	Y2.	The	first	set	 is	given	by	 identical	normal	distributions	with	zero
mean	 and	 variance	 2	 for	 both	 components,	 that	 is,	 Yi	 ~	N(0,2)’i	 =	 1,	 2.	 The
second	 set	 is	 given	 by	 identical	 Student’s	 t-distributions,	 also	with	 zero	mean
and	 variance	 2,	 and	 with	 ν	 =	 4	 degrees	 of	 freedom.	 For	 both	 marginal
distributions,	we	set	the	correlation	matrix	equal	to

	
In	 step	 one,	we	 generate	n	 =	 1,000	 realizations	u(i)	 =	 	∈[0,1]2	 of	 the

random	 vector	 U	 =	 (U1,	 U2)	 with	 copula	 185	 This	 can	 be	 achieved	 by

generating	 1,000	 drawings	 x(i)	 =	 ( )	 of	 a	 multivariate	 normally	 distributed
random	 vector	 X=	 (X1,	 X2)	 with	 identical	 correlation	 matrix	 Γ,	 and	 then

transforming	them	by	 	and	 186	The	realizations	u(1),	u(2),	…,	u(n)
are	displayed	in	Figure	16.15.
	
In	step	two,	we	transform	these	u(i)	 into	realizations	y(i)	=	( )	 through	 the

relationships	 	 and	 	 using	 the	 respective	 normal	 or,
alternatively,	Student’s	t	inverses.	Since	the	two	marginal	distribution	functions
of	Y1	and	Y2	are	modeled	identically	for	both	distributional	choices,	respectively,

we	have	 	which	we	denote	by	 	for	simplicity.
	
FIGURE	16.15	1,000	Generated	Values	u(i)	=	 	∈[0,1]2	from	the	Gaussian
Copula	with	ρ	=	0.5
	



First,	we	use	 the	N(0,2)	as	marginal	distribution	 functions.	We	display	 these
values	y(i)	in	Figure	16.16.	Next,	we	obtain	 the	marginal	Student’s	 t-distributed
realizations	 that	 we	 depict	 in	 Figure	 16.17.	 In	 connection	 with	 both	 types	 of
marginal	 distributions,	 we	 use	 the	 same	 Gaussian	 copula	 and	 identical
correlations.

	
Comparing	 Figures	 16.16	 and	 16.17,	 we	 see	 that	 the	 Gaussian	 copula

generates	data	 that	appear	 to	be	dispersed	about	an	ascending	diagonal,	 for	 the
marginal	normal	as	well	as	Student’s	t-distributions.	However,	if	we	compare	the
quantiles	of	 the	marginal	distributions,	we	see	 that	 the	Student’s	 t-distributions
with	ν	=	4	generate	values	that	are	scattered	over	a	larger	area	than	in	the	case	of
the	normal	distribution.
	 It	should	be	clear	that	it	is	essential	to	consider	both	components	of	the	joint
distribution	(i.e.,	the	dependence	structure	as	well	as	the	marginal	distributions)
since	variation	in	either	one	can	lead	to	completely	different	results.
	

Simulating	GE	and	IBM	Data	Through	Estimated	Copulae

	
In	this	 illustration,	we	will	present	 the	simulation	of	stock	returns.	As	data,	we
choose	the	daily	returns	of	the	stocks	of	the	companies	General	Electric	(GE)	as
well	 as	 International	 Business	 Machines	 (IBM)	 between	 April	 24,	 1980	 and



March	30,	2009.	This	accounts	for	7,300	observations.187
	
FIGURE	 16.16	 1,000	 Generated	 N(0,2)	 Observations	 y(i)	 =	 	 from
Gaussian	Copula	with	ρ	=	0.5
	

FIGURE	16.17	1,000	Generated	Student’s	t	Observations	y(i)	=	 	with	Four
Degrees	of	Freedom	from	Gaussian	Copula	with	ρ	=	0.5
	

FIGURE	16.18	Bivariate	Observations	of	the	Daily	Returns	of	GE	and	IBM
	



We	illustrate	 the	 joint	observations	 in	 the	scatterplot	shown	as	Figure	16.18.
As	we	can	see,	the	bulk	of	the	observations	lie	in	the	bottom-left	corner	centered
about	the	point	(0,0).	Moreover,	it	looks	like	that	when	the	return	of	GE,	XGE,	is
low,	 then	 the	 return	 of	 IBM,	XIBM,	 is	 low,	 as	 well.	 The	 same	 holds	 for	 high
returns.	 In	 general,	 XGE	 and	 XIBM	 seem	 to	 be	 roughly	 located	 around	 an
ascending	straight	line.	However,	as	we	can	see,	there	are	a	few	observations	of
extreme	 movements	 in	 one	 component	 while	 the	 other	 component	 behaves
modestly.

	
Now,	 we	 sort	 this	 data	 by	 computing	 the	 marginal	 empirical	 relative

cumulative	 frequency	 distributions	 for	 both	 returns.188	 We	 obtain	 along	 the
horizontal	axis	the	observations	 	for	the	GE	returns	and	along	the	vertical	axis
the	observations	 	for	the	IBM	returns.	This	is	depicted	in	Figure	16.19.
	 We	 see	 that	 most	 observations	 are	 near	 the	 point	 (0,0)	 in	 the	 bottom-left
corner	of	the	lower-left	quadrant	or	near	the	point	(1,1)	in	the	top-right	corner	of
the	upper-right	quadrant.	A	great	portion	of	 the	data	seems	to	scatter	about	 the
diagonal	from	the	lower-left	quadrant	to	the	upper-right	one.	This	is	in	line	with
the	observed	simultaneous	movements	predominantly	in	the	same	direction	(i.e.,
either	up	or	down)	of	the	returns.189
	
From	 these	 observations	 	 of	 the	 empirical	 cumulative	 relative

frequency	distribution,	we	estimate	the	respective	copula.	However,	we	will	not
pay	any	attention	to	the	estimation	techniques	here	and	simply	take	the	results	as



given.	We	fit	the	data	to	both	the	Gaussian	copula	and	t-copula.
	FIGURE	16.19	 Joint	Observations	 	of	 the	Empirical	Cumulative	Relative
Frequency	Distributions	of	the	Daily	Returns	of	GE	and	IBM
	

From	both	estimations,	we	obtain	roughly	the	correlation	matrix

	Moreover,	for	the	t-copula,	we	compute	an	estimate	of	the	degrees	of	freedom	of
slightly	less	than	4.	For	simplicity,	however,	we	set	this	parameter	ν	=	4.
	
With	 these	 two	 estimated	 copulae,	 	 and	 	 we	 next	 generate	 1,000

observations	(u1,u2)	each	for	the	normal	and	Student’s	t-distribution	functions	of
both	the	GE	and	IBM	returns.	These	observations	are	depicted	in	Figures	16.20
and	16.21,	respectively.190
	FIGURE	 16.20	 1,000	 Generated	 Values	 of	 the	Marginal	 Normal	 Distribution
Functions	of	GE	and	IBM	Daily	Returns	through	the	Gaussian	Copula
	



In	 the	final	step,	we	 transform	these	(u1,u2)	 into	 the	respective	distribution’s
quantiles.	That	is,	for	the	Gaussian	copula,	we	compute	returns	for	GE	and	IBM
xGE	=	 	(u1)	and	xIBM	=	 	(u2),	respectively.	Here,	 	denotes	the	inverse	of
the	estimated	normal	distribution	of	the	GE	returns	while	 	is	that	of	the	IBM
returns.	 The	 generated	Gaussian	 returns	 are	 shown	 in	 Figure	16.22.	 For	 the	 t-
copula	with	marginal	Student’s	t-distributions	with	four	degrees	of	freedom,	we
obtain	 the	 returns	 analogously	by	xGE	 =	 (u2	 )	 and	 xIBM	 =	FIBM	 (u2	 ),	 where
here	both	FGE	and	 	represent	the	inverse	function	of	the	t(4)	distribution.	The
generated	Student’s	t	returns	are	displayed	in	Figure	16.23.

	
While	both	Figures	16.22	and	16.23	seem	to	copy	the	behavior	of	the	center

part	of	the	scatterplot	in	Figure	16.18	quite	well,	only	the	t-copula	with	Student’s
t	marginal	returns	seems	to	capture	the	behavior	in	the	extreme	parts	as	can	be
seen	by	the	one	observation	with	a	return	of	−0.2	for	GE.
	FIGURE	16.21	1,000	Generated	Values	of	the	Marginal	Student’s	t-Distribution
Functions	of	GE	and	IBM	Daily	Returns	through	the	t-Copula
	



FIGURE	16.22	1,000	Generated	Returns	of	GE	and	IBM	Daily	Returns	through
the	Gaussian	Copula	with	Marginal	Normal	Distribution	Functions
	

FIGURE	16.23	1,000	Generated	Returns	of	GE	and	IBM	Daily	Returns	through
the	t-Copula	with	Marginal	Student’s	t-Distribution	Functions
	





ALTERNATIVE	DEPENDENCE	MEASURES

	

In	 this	 section,	 we	 introduce	 alternative	 dependence	 measures	 covering	 more
aspects	 than	 the	 linear	 dependence	 captured	 by	 the	 correlation.	 As	 with	 the
correlation	 or	 covariance,	 these	 alternative	 measures	 are	 only	 defined	 for
pairwise	 dependence.	 Any	 assessment	 of	 dependence	 between	 more	 than	 two
random	variables	is	not	feasible.
	



Rank	Correlation	Measures

	

Rank	correlation	measures	express	 the	correlation	between	 the	order	statistics
X(i)	and	Y(i)	of	drawings	of	two	random	variables	X	and	Y,	respectively.	The	i-th
order	statistic	such	as	X(i),	for	example,	is	defined	as	the	i-th	smallest	value	of	a
set	 of	 values	X1,	X2,	…,	Xn	 where	 each	 of	 the	 drawings	Xi	 is	 an	 independent
random	 variable	 identically	 distributed	 as	 X.	 And	 since	 the	 Xi	 are	 random
variables,	 so	 is	X(i).	 So,	what	we	 are	 interested	 in	 is	 the	 joint	 behavior	 of	 the
ordering	 of	 the	 components	 of	 the	 pairs	 (X,Y).	 Possible	 scenarios	 are	 that	 (1)
when	X	assumes	either	large	or	small	values,	Y	will	do	the	same,	or	(2)	the	exact
opposite,	 that	 is,	 Y	 will	 always	 tend	 to	 the	 other	 extreme	 as	X,	 or	 (3)	 Y	 will
assume	any	values	completely	uninfluenced	by	the	values	of	X.

	
Suppose	that	C	is	the	copula	of	the	joint	distribution	of	X	and	Y,	then	the	rank

correlation	only	depends	on	this	copula	while	the	linear	correlation	measured	by
the	 coefficient	 ρ	 is	 also	 influenced	 by	 the	 exact	 specifications	 of	 the	marginal
distributions	of	X	and	Y.	The	reason	 is	 that	 for	 the	rank	correlation,	we	do	not
need	 the	 exact	 values	 of	 the	 X1,	 X2,	 …,	 Xn	 and	 Y1,	 Y2,	 …,	 Yn	 but	 only	 the
relationship	between	the	ranks	of	the	components	Xi	and	Yi	of	the	pairs	(Xi,Yi).
	 For	example,	let	Xi	be	the	fifth	smallest	value	of	the	n	drawings	X1,	X2,	…,Xn
while	Yi	 is	 the	smallest	of	all	drawings	Y1,	Y2,	…,	Yn.191	Then,	 the	pair	 (Xi,Yi)
turns	into	(5,1).	In	other	words,	we	have	rank	5	in	the	first	component	and	rank	1
in	 the	 second	 component.	That	 is,	we	 first	 rank	 the	values	of	 each	 component
and	then	replace	the	values	by	their	ranks.

	
The	 rank	 coefficients	 are	 helpful	 to	 find	 a	 suitable	 copula	 for	 given	 two-

dimensional	data	and	specify	the	copula	parameters.
	

Spearman’s	Rho



	
The	rank	correlation	Spearman’s	rho	is	defined	as	follows.	Let	X	and	Y	be	two
random	 variables	 with	 respective	 marginal	 distribution	 functions	 FX	 and	 FY.
Then,	 Spearman’s	 rho	 is	 the	 rank	 correlation	 of	X	 and	 Y	 given	 by	 the	 linear
correlation	of	FX	and	FY	and	denoted	by	ρS(X,Y).	Formally,	this	is
(16.8)
	

where	ρ	denotes	the	linear	correlation	coefficient	defined	in	Chapter	14.
The	rank	correlation	measure	is	symmetric,	that	is,	we	have	ρS(X,Y)	=	ρS(Y,X).

Finally,	 as	 with	 the	 correlation	 coefficient,	 ρS(X,Y)	 =	 0	 when	 the	 random
variables	X	and	Y	are	independent	with	the	converse	relationship	not	holding	in
general.	Later	we	will	give	an	example	of	the	Spearman’s	rho.

	
Of	 the	most	 commonly	 used	 rank	 correlation	measures,	we	 only	 introduced

this	one.	However,	we	encourage	 the	 interested	reader	 to	 refer	 to	books	on	 the
copula	to	become	acquainted	with	other	ones	such	as	Kendall’s	tau.
	



Tail	Dependence

	

In	 finance,	 particularly	 risk	management,	 it	 is	 important	 to	 have	 a	measure	 of
dependence	 that	 only	 focuses	 on	 the	 behavior	 of	 two	 random	 variables	 with
respect	to	the	extreme	parts	of	the	state	space,	that	is,	either	very	small	or	very
large	 values	 for	 both	 random	 variables.	 Any	 such	measure	 is	 referred	 to	 as	 a
measure	 of	 tail	 dependence.	We	 begin	 by	 defining	 a	 lower-tail	 and	 upper-tail
dependence	measure.
	 The	lower-tail	dependence	is	defined	as	follows.	Let	X	and	Y	be	two	random
variables	 with	 marginal	 distribution	 functions	 FX	 and	 FY	 ,	 respectively.
Moreover,	 let	 	 and	 	 denote	 the	 corresponding	 inverse	 functions.	 Then	 the
lower	tail	dependence	is	measured	by
(16.9)
	

where	u	↓	0	indicates	that	u	approaches	0	from	above.192

We	can	alternatively	replace	the	roles	of	X	and	Y	in	equation	(16.9)	to	obtain

as	an	equivalent	expression.
The	 lower-tail	 dependence	 expresses	 the	 probability	 of	 one	 component

assuming	very	small	values	given	that	the	other	component	is	already	very	low.
For	 example,	 the	measure	 of	 lower-tail	 dependence	 is	 helpful	 in	 assessing	 the
probability	of	a	bond	held	in	a	portfolio	defaulting	given	that	another	bond	in	the
portfolio	has	already	defaulted.
	 The	 other	 important	 measure	 of	 tail	 dependence	 is	 given	 by	 the	 following
definition.	The	upper-tail	dependence	is	defined	as	follows.	Let	X	and	Y	be	two
random	variables	with	marginal	 distribution	 functions	FX	 and	FY,	 respectively.
Moreover,	 let	 	 and	 	 denote	 the	 corresponding	 inverse	 functions.	 Then	 the
upper	tail	dependence	is	measured	by
(16.10)
	



where	u	↑	1	indicates	that	u	approaches	1	from	below.
As	with	the	lower	tail	dependence,	equation	(16.10)	could	have	alternatively

been	written	as

	The	upper	tail	dependence	is	the	analog	of	the	lower-tail	dependence.	That	is,
by	 equation	 (16.10)	 we	 measure	 to	 what	 extent	 it	 is	 probable	 that	 a	 random
variable	 assumes	 very	 high	 values	 given	 that	 some	 other	 random	 variable
already	is	very	large.	For	example,	a	portfolio	manager	may	bet	on	a	bull	stock
market	 and	 only	 add	 those	 stocks	 into	 his	 portfolio	 that	 have	 high	 upper	 tail
dependence.	So	when	one	stock	increases	in	price,	the	others	in	the	portfolio	are
very	likely	to	do	so	as	well,	yielding	a	much	higher	portfolio	return	than	a	well-
diversified	 portfolio	 or	 even	 a	 portfolio	 consisting	 of	 positively	 correlated
stocks.

	
Tail	 dependence	 is	 a	 feature	 that	 only	 some	 multivariate	 distributions	 can

exhibit	as	we	will	see	in	the	following	two	examples.
	

Tail	Dependence	of	a	Gaussian	Copula

	
In	this	illustration,	we	examine	the	joint	tail	behavior	of	a	bivariate	distribution
function	with	Gaussian	copula.	Furthermore,	let	we	the	marginal	distributions	be
standard	normal	such	that	the	components	of	the	random	vector	are	X	~	N(0,1)
and	Y	~	N(0,1).193	Leaving	out	several	difficult	intermediate	steps,	we	state	that
the	asymptotic	tail	dependence	of	the	Gaussian	copula	can	be	computed	as
(16.11)
	

which	is	true	only	for	0	≤	ρ	<	1.194	The	result	in	equation	(16.11)	does	not	hold



when	X	and	Y	 are	perfectly	positively	 correlated	 (i.e.,	 ρ	=	1).	 In	 that	 case,	 the
random	variables	 are	 obviously	 tail	 dependent	 because	 one	 component	 always
perfectly	mimics	the	other	one.
For	reason	of	symmetry	of	the	jointly	normally	distributed	random	variables,

the	upper	coefficient	of	tail	dependence	coincides	with	that	in	equation	(16.11),
that	is,	 	(X,	Y)	=	0	.

	
So,	 we	 see	 that	 jointly	 normally	 distributed	 random	 variables	 have	 no	 tail

dependence	 unless	 they	 are	 perfectly	 correlated.	 Since	 empirically,	 tail
dependence	 is	 commonly	 observed	 in	 stock	 returns,	 the	Gaussian	 copula	with
normal	marginal	distributions	seems	somewhat	dangerous	to	use	because	it	may
neglect	 the	potential	 joint	movements	of	 large	stock	price	changes,	particularly
since	the	correlation	between	stocks	is	commonly	found	to	be	less	than	1.
	

Tail	Dependence	of	t-Copula

	
In	 this	 illustration,	 we	 will	 establish	 the	 joint	 tail	 behavior	 of	 two	 random
variables	X	and	Y	with	marginal	t(ν)	distributions	(i.e.,	Student’s	t	with	ν	degrees
of	freedom)	and	whose	joint	distribution	is	governed	by	a	t-copula.	Furthermore,
as	in	the	Gaussian	copula	example,	we	let	ρ	denote	the	correlation	coefficient	of
X	 and	 Y.	 Then,	 omitting	 the	 difficult	 intermediate	 steps,	 we	 obtain	 for	 the
coefficient	of	lower	tail	dependence

which	equals	τlt	=	0	if	ρ	=	-1,	τlt	=	1	if	ρ	=	1,	and	τlt	>	0	if	ρ	∈	(−1,1).195	In	other
words,	 if	 the	 random	variables	are	perfectly	negatively	correlated,	 they	are	not
lower-tail	dependent.	The	reason	is	 that,	 in	that	case,	 the	two	random	variables
can	never	move	in	the	same	direction.	However,	if	the	two	random	variables	are
perfectly	 positively	 correlated,	 their	 coefficient	 of	 lower-tail	 dependence	 is	 1.
That	 is	 identical	 to	 the	 behavior	 of	 the	 Gaussian	 copula.	 Finally,	 if	 the	 two
random	 variables	 are	 somewhat	 correlated	 but	 not	 perfectly,	 they	 have	 some
lower-tail	dependence.
Without	going	into	detail,	we	state	that	the	lower-tail	dependence	increases	for

smaller	 degrees	 of	 freedom	 (i.e.,	 the	 more	 the	 multivariate	 t	 differs	 from	 the



normal	 distribution).	 Moreover,	 the	 lower-tail	 dependence	 increases	 with
increasing	linear	correlation.

	
Since	 a	 joint	 distribution	 with	 the	 t-copula	 is	 symmetric,	 upper	 and	 lower

coefficients	of	tail	dependence	coincide	(i.e.,	 ).
	 To	 illustrate	 the	 difference	 between	 the	 normal	 and	 t-distributions,	 we
compare	1,000	generated	bivariate	Gaussian	data	in	Figure	16.24	with	the	same
number	of	generated	bivariate	t	data	in	Figure	16.25.	The	Gaussian	as	well	as	the
t	 data	 sets	 are	 almost	 perfectly	 correlated	 (ρ	 =	 0.99).	 We	 see	 that	 while	 the
observations	 of	 both	 sets	 of	 data	 are	 scattered	 about	 lines	with	 approximately
identical	slopes,	the	bivariate	t	data	spread	further	into	the	extreme	parts	of	the
state	space.	To	see	this,	we	have	to	be	aware	that	the	Gaussian	data	cover	only
the	denser	middle	part	of	the	 t	data;	 this	is	about	the	range	from	−3.3	to	3.3	in
both	components.	The	t	data	set	has	most	of	its	observations	located	in	the	same
area.	However,	as	we	can	see,	there	are	some	observations	located	on	the	more
extreme	 extension	 of	 the	 imaginary	 diagonal.	 For	 example,	 the	 point	 in	 the
lower-left	corner	of	Figure	16.25	represents	the	observation	(-7.5,	-8.5),	which	is
well	below	−3.3	in	both	components.
	FIGURE	 16.24	 Tail	 Dependence	 of	 Two	 Normally	 Distributed	 Random
Variables	with	ρ	=	0.99
	

FIGURE	 16.25	 Tail	 Dependence	 of	 Two	 Student’s	 t-Distributed	 Random
Variables	with	ρ	=	0.99
	



Spearman’s	Rho	and	Tail	Dependence	of	GE	and	IBM	Data

	
In	this	example,	we	illustrate	the	rank	correlation	coefficient	Spearman’s	rho	as
well	as	the	coefficients	of	tail	dependence	using	the	daily	returns	of	GE	and	IBM
observed	between	April	24,	1980	and	March	30,	2009	(n	=	7,300	observations).

	
First	let’s	have	a	look	at	the	joint	observations	in	Figure	16.18	again.	We	see

that	 there	 seems	 to	be	 some	positive	 correlation	 revealed	by	 the	data	 scattered
about	 the	ascending	diagonal.	To	verify	 this,	we	compute	 the	 linear	correlation
coefficient	that	 is	ρ	(XGE,XIBM)	≈	0.46	.	Next,	we	compute	the	rank	correlation
coefficient	given	by	Spearman’s	rho,	ρS	(XGE,	XIBM)	=	0.44,	which	is	in	line	with
the	assumption	that	there	is	dependence	between	the	two	returns	no	matter	what
their	respective	marginal	distributions	might	be.
	 Finally,	if	we	fit	a	Gaussian	copula	to	the	data,	we	obtain	zero	tail	dependence
by	construction	of	the	coefficient	of	tail	dependence	in	that	case.	However,	if	we
decide	 to	 use	 the	 t-copula,	 instead,	 with	 the	 correlation	 coefficient	 of
approximately	 0.44,	 we	 obtain	 lower	 and	 upper	 tail	 dependence	 of	 	 (XGE,
XIBM)=	 	(XGE,XIBM	)	=	0.23.	We	see	that	joint	movements	of	these	returns	are	to
be	expected	in	the	lower-left	part	(i.e.,	extreme	negative	joint	returns)	as	well	as
the	upper-right	part	(i.e.,	extreme	positive	joint	returns)	of	the	state	space.



	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Sklar’s	Theorem	
Gaussian	copula	
t-copula	
Fréchet	lower	bound	
Fréchet	upper	bound	
Independence	copula	
Gumbel	copula	
Clayton	copula	
Archimedean	copulae	
Rank	correlation	measures	
Spearman’s	rho	
Kendall’s	tau	
Measure	of	tail	dependence	
Lower-tail	dependence	
upper-tail	dependence
	



PART	Three
	

Inductive	Statistics
	



CHAPTER	17
	

Point	Estimators
	

Information	shapes	a	portfolio	manager’s	or	trader’s	perception	of	the	true	state
of	the	environment	such	as,	for	example,	the	distribution	of	the	portfolio	return
and	its	volatility	or	the	probability	of	default	of	a	bond	issue	held	in	a	portfolio.
A	manager	 needs	 to	 gain	 information	 on	 population	 parameters	 to	make	well-
founded	decisions.

	
Since	 it	 is	 generally	 infeasible	 or	 simply	 too	 involved	 to	 analyze	 the	 entire

population	 in	 order	 to	 obtain	 full	 certainty	 as	 to	 the	 true	 environment—for
example,	we	cannot	observe	a	portfolio	 for	an	 infinite	number	of	years	 to	 find
out	about	the	expected	value	of	its	return—we	need	to	rely	on	a	small	sample	to
retrieve	information	about	the	population	parameters.	To	obtain	insight	about	the
true	but	unknown	parameter	value,	we	draw	a	sample	from	which	we	compute
statistics	or	estimates	for	the	parameter.
	 In	this	chapter,	we	will	learn	about	samples,	statistics,	and	estimators.	Some	of
these	 concepts	we	 already	 covered	 in	 Chapter	 3.	 In	 particular,	we	 present	 the
linear	estimator,	explain	quality	criteria	(such	as	the	bias,	mean-square	error,	and
standard	 error)	 and	 the	 large-sample	 criteria.	 In	 the	 context	 of	 large-sample
criteria,	we	present	the	idea	behind	consistency,	for	which	we	need	the	definition
of	 convergence	 in	probability	 and	 the	 law	of	 large	numbers.	As	another	 large-
sample	criterion,	we	introduce	the	unbiased	efficiency,	explaining	the	best	linear
unbiased	 estimator	 or,	 alternatively,	 the	 minimum	 variance	 linear	 unbiased
estimator.	We	then	discuss	the	maximum	likelihood	estimation	technique,	one	of
the	most	powerful	tools	in	the	context	of	parameter	estimation.	The	Cramér-Rao
lower	 bounds	 for	 the	 estimator	 variance	 will	 be	 introduced.	We	 conclude	 the
chapter	with	a	discussion	of	the	exponential	family	of	distributions	and	sufficient
statistics.
	



SAMPLE,	STATISTIC,	AND	ESTIMATOR

	

The	probability	distributions	that	we	introduced	so	far	in	this	book	all	depend	on
one	or	more	parameters.	In	this	chapter,	we	will	refer	to	simply	the	parameter	θ,
which	will	have	one	or	several	components	such	as	the	parameter	θ	=	(μ,σ2)	of
the	normal	distribution,	for	example.	The	set	of	parameters	is	given	by	Θ,	which
will	be	called	the	parameter	space.

	
The	 general	 problem	 that	 we	 will	 address	 in	 this	 chapter	 is	 the	 process	 of

gaining	information	on	the	true	population	parameter	such	as,	for	example,	 the
mean	of	some	portfolio	returns.	Since	we	do	not	actually	know	the	true	value	of
θ,	we	merely	are	aware	of	the	fact	that	is	has	to	be	in	Θ.	For	example,	the	normal
distribution	has	the	parameter	θ	=	(μ,σ2)	where	the	first	component,	the	mean	µ,
can	technically	be	any	real	number	between	minus	and	plus	infinity	(i.e.,	R).	The
second	component,	the	variance	σ2,	is	any	positive	real	number	(i.e.,	ℝ++).	And
since	 the	values	of	 the	 two	parameter	components	can	be	combined	arbitrarily,
which	we	express	by	the	×	symbol,	we	finally	write	the	parameter	space	in	the
form	Θ	=	ℝ	×	ℝ++.
	



Sample

	

Let	 Y	 be	 some	 random	 variable	 with	 a	 probability	 distribution	 that	 is
characterized	 by	 parameter	 θ.	 To	 obtain	 the	 information	 about	 this	 population
parameter,	we	draw	a	sample	from	the	population	of	Y.	A	sample	is	the	total	of	n
drawings	X1,	X2,	…,	Xn	from	the	entire	population.	Note	that	until	the	drawings
from	 the	 population	 have	 been	 made,	 the	 Xi	 are	 still	 random.	 The	 actually
observed	values	(i.e.,	realizations)	of	the	n	drawings	are	denoted	by	x1,	x2,	…,	xn.
Whenever	no	 ambiguity	will	 arise,	we	denote	 the	vectors	 (X1,	X2,	…,	Xn)	 and
(x1,	x2,	…,	xn)	by	the	short	hand	notation	X	and	x,	respectively.

	
To	 facilitate	 the	 reasoning	behind	 this,	 let	us	 consider	 the	value	of	 the	Dow

Jones	Industrial	Average	(DJIA)	as	some	random	variable.	To	obtain	a	sample	of
the	DJIA,	we	will	“draw”	two	values.	More	specifically,	we	plan	to	observe	its
closing	value	on	two	days	in	the	future,	say	June	12,	2009	and	January	8,	2010.
Prior	to	these	two	dates,	say	on	January	2,	2009,	we	are	still	uncertain	as	to	value
of	the	DJIA	on	June	12,	2009	and	January	8,	2010.	So,	the	value	on	each	of	these
two	future	dates	is	random.	Then,	on	June	12,	2009,	we	observe	that	the	DJIA’s
closing	value	 is	8,799.26,	while	on	January	8,	2010	it	 is	10,618.19.	Now,	after
January	8,	2010,	these	two	values	are	realizations	of	 the	DJIA	and	not	random
any	more.
	 Let	 us	 return	 to	 the	 theory.	 Once	 we	 have	 realizations	 of	 the	 sample,	 any
further	decision	will	 then	be	based	solely	on	 the	sample.	However,	we	have	 to
bear	in	mind	that	a	sample	provides	only	incomplete	information	since	it	will	be
impractical	 or	 impossible	 to	 analyze	 the	 entire	 population.	 This	 process	 of
deriving	 a	 conclusion	 concerning	 information	 about	 a	 population’s	 parameters
from	a	sample	is	referred	to	as	statistical	inference	or,	simply,	inference.

	
Formally,	we	denote	the	set	of	all	possible	sample	values	for	samples	of	given

length	n	(which	is	also	called	the	sample	size)	by	X	.	The	sample	space	is	similar
to	the	space	Ω	containing	all	outcomes	which	we	introduced	in	Chapter	8.
	



Sampling	Techniques

	

There	 are	 two	 types	 of	 sampling	 methods:	 with	 replacement	 and	 without
replacement.	For	example,	the	binomial	distribution	described	in	Chapter	9	is	the
distribution	of	 random	sampling	with	 replacement	of	a	 random	variable	 that	 is
either	 0	 or	 1.	 The	 analogue	 case	 without	 replacement	 is	 represented	 by	 the
hypergeometric	distribution	 that	we	discussed	 in	Chapter	9,	as	well.	We	prefer
sampling	 with	 replacement	 since	 this	 corresponds	 to	 independent	 draws	 such
that	the	Xi	are	independent	and	identically	distributed	(i.i.d.).
	 Throughout	this	chapter,	we	will	assume	that	individual	draws	are	performed
independently	and	under	 identical	conditions	(i.e.,	 the	X1,	X2,	…,	Xn	are	 i.i.d.).
Then,	the	corresponding	sample	space	is

X	=	Ω	×	Ω	×…×	Ω	=	Ωn
	

which	 is	 simply	 the	 space	 of	 the	 n-fold	 repetition	 of	 independent	 drawings
from	the	space	Ω.	For	instance,	if	we	draw	each	of	the	n	individual	Xi	from	the
real	numbers	(i.e.,	Ω	=	R),	then	the	entire	sample	is	drawn	from	X	=	ℝ×ℝ×…
×ℝ=	ℝn.
	 As	explained	in	Chapter	14,	we	know	that	the	joint	probability	distribution	of
independent	 random	 variables	 is	 obtained	 by	 multiplication	 of	 the	 marginal
distributions.	That	is,	if	the	Xi,	i	=	1,	2,	…,	n,	are	discrete	random	variables,	the
joint	probability	distribution	will	look	like
(17.1)
	

whereas,	 if	 the	 Xi,	 i	 =	 1,	 2,	 …,	 n,	 are	 continuous,	 the	 joint	 density	 will	 be
given	as
(17.2)
	

with	 fY	 denoting	 the	 identical	 marginal	 density	 functions	 of	 the	Xi	 since	 they



are	all	distributed	as	Y.



Illustrations	of	Drawing	with	Replacement

	

As	 an	 illustration,	 consider	 the	 situation	 faced	 by	 a	 property	 and	 casualty
insurance	company	for	claims	involving	losses	due	to	fires.	Suppose	the	number
of	claims	against	the	company	has	been	modeled	as	a	Poisson	random	variable
introduced	in	Chapter	9.	The	company	management	may	be	uncertain	as	to	the
true	value	of	the	parameter	λ.	For	this	reason,	a	sample	(X1,	X2,	…,	X10)	of	 the
number	of	claims	of	the	last	10	years	is	taken.	The	observations	are	given	below:

	 For	 any	 general	 value	 of	 the	 parameter	 λ,	 the	 probability	 of	 this	 sample	 is
given	by
	

As	another	example,	consider	the	daily	stock	returns	of	General	Electric	(GE)
modeled	 by	 the	 continuous	 random	 variable	X.196	 The	 returns	 on	 10	 different
days	 (X1,	X2,	…,	X10)	 can	 be	 considered	 a	 sample	 of	 i.i.d.	 draws.	 In	 reality,
however,	 stock	 returns	 are	 seldom	 independent.	 If,	 on	 the	 other	 hand,	 the
observations	are	not	made	on	10	consecutive	days	but	with	larger	gaps	between
them,	 it	 is	 fairly	 reasonable	 to	 assume	 independence.	 Furthermore,	 the	 stock
returns	are	modeled	as	normal	 (or	Gaussian)	 random	variables.	We	know	from
Chapter	11	that	the	normal	distribution	is	characterized	by	the	parameter	(μ,σ2).
Now	 we	 may	 have	 observed	 for	 GE	 the	 sample	 from	 Table	 17.1.	 The	 joint
density,	 according	 to	 equation	 (17.2)	 and	 the	 density	 of	 equation	 (11.1)	 in
Chapter	11,	follows	as



for	general	values	of	µ	and	σ2.
TABLE	 17.1	 Eleven	 Observations	 of	 the	 GE	 Stock	 Price	 from	 the	 NYSE
Producing	10	Observations	of	the	Return.

	
Source:	Data	obtained	from	finance.yahoo.
	

	
Date Observed	Stock	Price Observed	Return

Jan.	16,	2009 P0 $13.96
Jan.	23,	2009 P1 $12.03 X1 -0.1488
Jan.	30,	2009 P2 $12.13 X2 0.0083
Feb.	6,	2009 P3 $11.10 X3 -0.0887
Feb.	13,	2009 P4 $11.44 X4 0.0302
Feb.	20,	2009 P5 $9.38 X5 -0.1985
Feb.	27,	2009 P6 $8.51 X6 -0.0973
Mar.	6,	2009 P7 $7.06 X7 -0.1868
Mar.	13,	2009 P8 $9.62 X8 0.3094
Mar.	20,	2009 P9 $9.54 X9 -0.0084
Mar.	27,	2009 P10 $10.78 X10 0.1222

	

	



Statistic

	

In	our	discussion	here,	certain	terms	and	concepts	we	repeat	from	Chapter	3.	In
particular,	 we	 will	 point	 out	 the	 distinction	 between	 statistic	 and	 population
parameter.	 In	 the	 context	 of	 estimation,	 the	 population	 parameter	 is	 inferred
with	 the	 aid	 of	 the	 statistic.	As	we	know,	 a	 statistic	 assumes	 some	value	That
holds	 for	 a	 specific	 sample	 only,	 while	 the	 parameter	 prevails	 in	 the	 entire
population.
	 The	 statistic,	 in	most	 cases,	 provides	 a	 single	 number	 as	 an	 estimate	 of	 the
population	parameter	generated	 from	 the	n-dimensional	 sample.	 If	 the	 true	but
unknown	parameter	consists	of,	say,	k	components,	 the	statistic	will	provide	at
least	k	numbers,	that	is	at	least	one	for	each	component.197	We	need	to	be	aware
of	 the	fact	 that	 the	statistic	will	most	 likely	not	equal	 the	population	parameter
due	to	the	random	nature	of	the	sample	from	which	its	value	originates
	 Technically,	 the	 statistic	 is	 a	 function	 of	 the	 sample	 (X1,	 X2,	 …,	 Xn).	 We
denote	this	function	by	t.	Since	the	sample	is	random,	so	is	t	and,	consequently,
any	quantity	 that	 is	derived	from	it.	As	a	random	variable,	 t	 is	a	function	from
the	set	of	sample	values	X	into	the	k-dimensional	space	of	real	numbers:
(17.3)
	

where	in	most	cases,	k	=	1	as	just	mentioned.
Even	 more	 technically,	 for	 the	 random	 variable	 t,	 we	 demand	 that	 it	 is

measurable	 with	 respect	 to	 the	 two	 sets	 of	 possible	 events:	 one	 in	 the	 origin
space	and	the	other	in	the	state	space.	That	is,	t	has	to	be	A(X)−Bk	-measurable
where	A(X)	 is	 the	 σ-algebra	 of	 the	 sample	 space	X	 (origin)	 and	 Bk	 is	 the	 k-
dimensional	 Borel	 σ-algebra.	 This	 simply	 means	 that	 any	 k-dimensional	 real
value	 of	 t	 has	 its	 origin	 in	 the	 set	 of	 events	 A(X).198	 We	 need	 to	 postulate
measurability	so	 that	we	can	assign	a	probability	 to	any	values	of	 the	 function
t(x1,	x2,	…,	xn).	For	 the	remainder	of	 this	chapter,	we	assume	that	 the	statistics
introduced	will	 rely	on	functions	 t	 that	all	meet	 this	 requirement	and,	 thus,	we
will	avoid	any	further	discussion	on	measurability.



	
Whenever	 it	 is	 necessary	 to	 express	 the	 dependence	 of	 statistic	 t	 on	 the

outcome	of	the	sample	(x),	we	write	the	statistic	as	the	function	t(x).	Otherwise,
we	simply	refer	to	the	function	t	without	explicit	argument.
	 The	statistic	t	as	a	random	variable	inherits	its	theoretical	distribution	from	the
underlying	random	variables	(i.e.,	the	random	draws	X1,	X2,	…,	Xn).	If	we	vary
the	sample	size	n,	the	distribution	of	the	statistics	will,	in	most	cases,	change	as
well.	This	distribution	expressing	in	particular	the	dependence	on	n	is	called	the
sampling	distribution	of	t.	Naturally,	the	sampling	distribution	exhibits	features
of	the	underlying	population	distribution	of	the	random	variable.

	
We	will	provide	an	illustration	of	a	sampling	distribution	in	the	next	section.

	



Estimator

	

The	 easiest	way	 to	 obtain	 a	 number	 for	 the	 population	 parameter	would	 be	 to
simply	guess.	But	this	method	lacks	any	foundation	since	it	is	based	on	nothing
but	 luck;	 in	 the	 best	 case,	 a	 guess	 might	 be	 justified	 by	 some	 experience.
However,	 this	 approach	 is	 hardly	 analytical.	 Instead,	 we	 should	 use	 the
information	obtained	from	the	sample,	or	better,	the	statistic.
	 When	 we	 are	 interested	 in	 the	 estimation	 of	 a	 particular	 parameter	 θ,	 we
typically	 do	 not	 refer	 to	 the	 estimation	 function	 as	 statistic	 but	 rather	 as
estimator	and	denote	it	by
	(17.4)
	

As	 we	 see,	 in	 equation	 (17.4)	 the	 estimator	 is	 a	 function	 from	 the	 sample
space	X	mapping	 into	 the	parameter	 space	Θ.	We	use	 the	 set	Θ	as	 state	 space
rather	than	the	more	general	set	of	the	k-dimensional	real	numbers.	We	make	this
distinction	 between	 Θ	 and	 ℝk	 in	 order	 to	 emphasize	 that	 the	 estimator
particularly	provides	values	for	the	parameter	of	interest,	θ,	even	if	the	parameter
space	is	all	k-dimensional	real	numbers	(i.e.,	Θ	=	Rk)	.

	
The	 estimator	 can	 be	 understood	 as	 some	 instruction	 of	 how	 to	 process	 the

sample	to	obtain	a	valid	representative	of	the	parameter	θ.	The	exact	structure	of
the	estimator	is	predetermined	before	the	sample	is	realized.	After	the	estimator
has	been	defined,	we	simply	need	to	enter	the	sample	values	accordingly.
	 Due	 to	 the	 estimator’s	 dependence	 on	 the	 random	 sample,	 the	 estimator	 is
itself	 random.	 A	 particular	 value	 of	 the	 estimator	 based	 on	 the	 realization	 of
some	sample	is	called	an	estimate.	For	example,	if	we	realize	1,000	samples	of
given	 length	 n,	 we	 obtain	 1,000	 individual	 estimates	 i	 ,	 i	 =	 1,	 2,	…,	 1,000.
Sorting	 them	 by	 value—and	 possibly	 arranging	 them	 into	 classes—we	 can
compute	 the	 distribution	 function	 of	 these	 realizations,	which	 is	 similar	 to	 the
empirical	cumulative	distribution	function	introduced	in	Chapter	2.	Technically,
this	distribution	function	is	not	the	same	as	the	theoretical	sampling	distribution



for	this	estimator	for	given	sample	length	n	introduced	earlier.	For	increasing	n,
however,	 the	distribution	of	 the	 realized	estimates	will	gradually	become	more
and	more	similar	in	appearance	to	the	sampling	distribution.

	
Sometimes	 the	 distinction	 between	 statistics	 and	 estimators	 is	 non-existent.

We	 admit	 that	 the	 presentation	 of	 much	 of	 this	 chapter’s	 content	 is	 feasible
without	 it.	 However,	 the	 treatment	 of	 sufficient	 statistics	 and	 exponential
families	 explained	 later	 in	 this	 chapter	will	 be	 facilitated	when	we	 are	 a	 little
more	rigorous	here.
	



Estimator	for	the	Mean

	

As	an	illustration,	we	consider	normally	distributed	returns	Y	with	parameters	µ
and	σ2.	To	obtain	an	estimate	 for	 the	parameter	component	µ,	we	compute	 the
familiar	sample	mean

from	the	n	independent	draws	Xi.	Here	let	n	=	10.	Now,	since	Y	~	N	(µ,	σ	2	)	,	the
sample	mean	is	theoretically	distributed

by	 Properties	 1	 and	 2	 described	 in	 Chapter	 11.	 The	 corresponding	 density
function	graph	is	displayed	in	Figure	17.1	by	the	solid	line.	It	follows	that	 it	 is
tighter	than	the	density	function	of	the	original	random	variable	Y	given	by	the
dashed	line	due	to	the	fact	that	the	standard	deviation	is	shrunk	by	the	factor	√
10	 =	 3.1623	 compared	 to	 that	 of	 Y.	 Note	 that	 the	 values	 −1,	 0,	 and	 1	 are
indicated	in	Figure	17.1,	for	a	better	orientation,	even	though	any	numbers	could
be	used	since	the	parameter	(μ,σ2)	is	supposed	to	be	unknown.
FIGURE	 17.1	 Sampling	 Distribution	 Density	 Function	 of	 the	 Sample	 Mean	

	(solid)	and	of	the	Normal	Random	Variable	Y	(dashed)
	



Now,	from	the	same	normal	distribution	as	Y,	we	generate	730	samples	of	size
n	=	10	and	compute	for	each	the	sample	mean	to	obtain	 .	For	display
purposes,	 the	 sample	 means	 are	 gathered	 in	 100	 equidistant	 classes.	 The
resulting	histogram	 is	given	 in	Figure	17.2.	We	 see	 that	 the	distribution	of	 the
sample	 means	 copy	 quite	 well	 the	 appearance	 of	 the	 theoretical	 sample
distribution	 density	 function	 in	 Figure	17.1.	 This	 should	 not	 be	 too	 surprising
since	we	artificially	generated	the	data.
	FIGURE	 17.2	 Histogram	 of	 730	 Generated	 Sample	 Means	 x̅	 for	 Normally
Distributed	Samples	of	Size	n	=	10
	



We	 also	 sampled	 from	 real	 data.	We	 observe	 the	 daily	 stock	 returns	 of	GE
between	April	24,	1980	and	March	30,	2009.	This	yields	7,300	observed	returns.
We	partitioned	the	entire	data	series	into	730	samples	of	size	10	and	for	each	we
computed	the	sample	mean.	As	with	the	artificially	generated	sample	means,	the
resulting	sample	mean	values	of	the	observed	return	data	are	classified	into	100
equidistant	classes,	which	are	displayed	 in	Figure	17.3.	 If	GE	daily	 returns	are
truly	normally	distributed,	then	this	plot	would	be	a	consequence	of	the	sampling
distribution	of	the	Gaussian	sample	means.	Even	though	we	are	not	exactly	sure
what	 the	 exact	 distribution	 of	 the	GE	 returns	 is	 like,	 it	 seems	 that	 the	 sample
means	follow	a	Gaussian	law.	This	appears	to	be	the	result	of	the	Central	Limit
Theorem	discussed	in	Chapter	11.
	FIGURE	 17.3	 Histogram	 of	 Sample	 Means	 x	 =	 1/10 	 of	 GE	 Daily
Return	Data	Observed	Between	April	24,	1980	and	March	30,	2009
	Source:	Data	obtained	from	finance.yahoo.
	



Linear	Estimators

	

We	turn	to	a	special	type	of	estimator,	the	linear	estimator.	Suppose	we	have	a
sample	of	size	n	such	that	X	=	(X1,	X2,	…,	Xn).	The	linear	estimator	then	has	the
following	form

where	 each	 draw	 Xi	 is	 weighted	 by	 some	 real	 ai,	 for	 i	 =	 1,	 2,	 …,	 n.	 By
construction,	the	linear	estimator	weights	each	draw	Xi	by	some	weight	ai	.	The
usual	constraints	on	the	ai	is	that	they	sum	to	1,	that	is,

A	particular	version	of	the	linear	estimator	is	the	sample	mean	where	all	ai	=	1/n.

	
Let’s	look	at	a	particular	distribution	of	the	Xi	,	the	normal	distribution.	As	we

know	from	Chapter	11,	 this	distribution	can	be	expressed	in	closed	form	under
linear	affine	transformation	by	Properties	1	and	2.	That	is,	by	adding	several	Xi
and	 multiplying	 the	 resulting	 sum	 by	 some	 constant,	 we	 once	 again	 obtain	 a
normal	 random	variable.	Thus,	 any	 linear	 estimator	will	 be	normal.	This	 is	 an
extremely	attractive	feature	of	the	linear	estimator.
	 Even	if	the	underlying	distribution	is	not	the	normal	distribution,	according	to
the	Central	Limit	Theorem	 as	 explained	 in	Chapter	 11,	 the	 sample	mean	 (i.e.,
when	ai	 =	 1/n)	 will	 be	 approximately	 normally	 distributed	 as	 the	 sample	 size
increases.	This	result	facilitates	parameter	estimation	for	most	distributions.

	
What	sample	size	n	is	sufficient?	If	the	population	distribution	is	symmetric,	it

will	 not	 require	 a	 large	 sample	 size,	 often	 less	 than	 10.	 If,	 however,	 the
population	distribution	is	not	symmetric,	we	will	need	larger	samples.	In	general,
an	n	between	25	and	30	suffices.	One	is	on	the	safe	side	when	n	exceeds	30.
	 The	Central	Limit	Theorem	requires	that	certain	conditions	on	the	population



distribution	 are	met	 such	 as	 finiteness	 of	 the	 variance.	 If	 the	 variance	 or	 even
mean	 do	 not	 exist,	 another	 theorem,	 the	 so-called	Generalized	 Central	 Limit
Theorem,	 can	 be	 applied	 under	 certain	 conditions.	 (See	 equation	 (12.3)	 in
Chapter	12.)	However,	these	conditions	are	beyond	the	scope	of	this	book.	But
we	will	 give	 one	 example.	 The	 class	 of	 α-stable	 distributions	 provides	 such	 a
limiting	distribution,	that	is,	one	that	certain	estimators	of	the	form

will	 approximately	 follow	 as	 n	 increases.	We	 note	 this	 distribution	 because	 it
is	 one	 that	 has	 been	 suggested	 by	 financial	 economists	 as	 a	 more	 general
alternative	to	the	Gaussian	distribution	to	describe	returns	on	financial	assets.



Estimating	the	Parameter	p	of	the	Bernoulli	Distribution

	

As	our	 first	 illustration	of	 the	 linear	 estimator,	we	consider	 the	binomial	 stock
price	 model,	 which	 appeared	 in	 several	 examples	 in	 earlier	 chapters.	 As	 we
know,	 tomorrow’s	 stock	 price	 is	 either	 up	 by	 some	 constant	 proportion	 with
probability	p,	or	down	by	some	other	constant	proportion	with	probability	 (1	 -
p).	 The	 relative	 change	 in	 price	 between	 today	 and	 tomorrow	 is	 related	 to	 a
Bernoulli	random	variable	Y,	which	is	equal	to	1	when	the	stock	price	moves	up
and	 0	 when	 the	 stock	 goes	 down.	 To	 obtain	 an	 estimate	 of	 the	 parameter	 p,
which	is	equivalent	to	the	expected	value	p	=	E(Y),	we	use	the	sample	mean,	that
is,

	 Now,	if	we	have	several	samples	each	yielding	an	observation	of	the	sample
mean,	we	know	that	as	the	sample	size	increases,	the	means	will	approximately
follow	a	normal	distribution	with	parameter	(μ,σ2).	We	can	take	advantage	of	the
fact	that	eventually	µ	=	p	because	the	expected	values	of	the	sample	means,	E(x̄)
=	p,	 and	 the	mean	 µ	 of	 the	 limiting	 normal	 distribution	 have	 to	 coincide.	 So,
even	though	the	exact	value	of	(μ,σ2)	is	unknown	to	us,	we	can	simply	observe
the	distribution	of	 the	 sample	means	and	 try	 to	 find	 the	 location	of	 the	 center.
Another	 justification	 for	 this	 approach	 is	 given	by	 the	 so-called	Law	of	Large
Numbers	that	is	presented	a	little	later	in	this	chapter.
	FIGURE	 17.4	 Histogram	 of	 the	 Sample	 Means	 of	 a	 Bernoulli	 Population
Contrasted	 with	 the	 Limiting	 Normal	 Distribution	 Indicated	 by	 the	 Density
Function	(Dashed)
	



We	demonstrate	 this	 by	 drawing	 1,000	Bernoulli	 samples	 of	 size	n	 =	 1,000
with	parameter	p	=	0.5.	The	corresponding	sample	means	are	classified	into	30
equidistant	classes.	The	histogram	of	the	distribution	is	depicted	in	Figure	17.4.
The	dashed	line	in	the	figure	represents	the	limiting	normal	density	function	with
μ	 =	 0.5.	 Note	 that	 this	 would	 have	worked	with	 any	 other	 value	 of	 p,	 which
accounts	for	the	generalized	label	of	the	horizontal	axis	in	the	figure.
	



Estimating	the	Parameter	λ	of	Poisson	Distribution

	

FIGURE	 17.5	 Histogram	 of	 the	 Sample	 Means	 of	 a	 Poisson	 Population
Contrasted	 with	 the	 Limiting	 Normal	 Distribution	 Indicated	 by	 the	 Density
Function	(dashed)
	

The	 next	 illustration	 follows	 the	 idea	 of	 some	 previous	 examples	 where	 the
number	of	claims	of	some	property	and	casualty	insurance	company	is	modeled
as	 a	 Poisson	 random	 variable	N.	 Suppose	 that	 we	 were	 ignorant	 of	 the	 exact
value	of	the	parameter	λ.	We	know	from	Chapter	9	that	the	expected	value	of	N
is	given	by	E(N)	 =	 λ.	As	 estimator	 of	 this	 parameter	we,	 once	 again,	 take	 the
sample	mean,

whose	expected	value	is

E(X)	=	E(1/n[X1	+	X2	+	…	+	Xn])	=	λ
	

as	 well,	 where	 the	 individual	 draws	 Xi	 are	 also	 Poisson	 distributed	 with
parameter	λ.	We	illustrate	the	distribution	of	1,000	sample	means	of	the	Poisson
samples	 of	 size	 n	 =	 1,000	 in	 Figure	 17.5.	We	 see	 that	 the	 distribution	 of	 the



sample	means	 fits	 the	 limiting	normal	distribution	with	μ	=	λ	quite	well.	Note
that	 the	 exact	 sample	 distribution	 of	 the	 sample	means	 for	 finite	 n	 is	 not	 yet
normal.	More	precisely,	the	sum

is	Poisson	distributed	with	parameter	nλ.	The	sample	mean

is	no	longer	Poisson	distributed	because	of	the	division	by	n,	but	it	is	not	truly
Gaussian	either.



Linear	Estimator	with	Lags

	

As	our	third	illustration,	we	present	a	linear	estimator	whose	coefficients	ai	are
not	equal.	To	be	quite	different	from	the	sample	mean,	we	choose	a1	=	1	and	a2
=	a3	=	…	=	an	=	0.	That	is,	we	only	consider	the	first	draw	X1	and	discard	 the
remaining	ones,	X2,	…,	Xn.	The	estimator	is	then	 	=	X1.	Since	we	are	only	using
one	 value	 out	 of	 the	 sample,	 the	 distribution	 of	 	 will	 always	 look	 like	 the
distribution	of	 the	random	variable	Y	 from	which	we	are	obtaining	our	 sample
because	a	larger	sample	size	has	obviously	no	effect	on	 θ̂.	An	estimator	of	 this
type	 is	 definitely	 questionable	 when	 we	 maintain	 the	 assumption	 of
independence	between	draws,	as	we	are	doing	in	this	chapter.	Its	use,	however,
may	become	justifiable	when	there	is	dependence	between	a	certain	number	of
successive	 draws,	 which	 we	 can	 exclude	 by	 introducing	 the	 lag	 of	 size	 n
between	observations,	such	that	we	virtually	observe	only	every	nth	value.	Daily
stock	 returns,	 for	 example,	 often	 reveal	 so-called	 serial	 dependence;	 that	 is,
there	is	dependence	between	successive	returns	up	to	a	certain	lag.	If	that	lag	is,
say	 10,	 we	 can	 be	 certain	 that	 today’s	 return	 still	 has	 some	 influence	 on	 the
following	nine	returns	while	it	fails	to	do	so	with	respect	to	the	return	in	10	days.
	



QUALITY	CRITERIA	OF	ESTIMATORS

	

The	question	related	to	each	estimation	problem	should	be	what	estimator	would
be	 best	 suited	 for	 the	 problem	 at	 hand.	 Estimators	 suitable	 for	 the	 very	 same
parameters	 can	 vary	 quite	 remarkably	 when	 it	 comes	 to	 quality	 of	 their
estimation.	Here	we	will	explain	some	of	the	most	commonly	employed	quality
criteria.
	



Bias

	

An	 important	 consideration	 in	 the	 selection	 of	 an	 estimator	 is	 the	 average
behavior	of	that	estimator	over	all	possible	scenarios.	Depending	on	the	sample
outcome,	the	estimator	may	not	equal	the	parameter	value	and,	instead,	be	quite
remote	from	it.	This	is	a	natural	consequence	of	the	variability	of	the	underlying
sample.	 However,	 the	 average	 value	 of	 the	 estimator	 is	 something	 we	 can
control.
	 Let	us	begin	by	considering	the	sampling	error	that	is	the	difference	between
the	 estimate	 and	 the	 population	 parameter.	This	 distance	 is	 random	due	 to	 the
uncertainty	 associated	with	 each	 individual	 draw.	 For	 the	 parameter	 θ	 and	 the
estimator	 ̂,	we	define	the	sample	error	as	( 	−	θ).	Now,	a	most	often	preferred
estimator	should	yield	an	expected	sample	error	of	zero.	This	expected	value	is
defined	as
(17.5)
	

and	 referred	 to	as	bias.	 (We	assume	 in	 this	 chapter	 that	 the	estimators	 and	 the
elements	of	 the	sample	have	finite	variance,	and	in	particular	 the	expression	in
equation	(17.5)	is	well-defined.)	If	the	expression	in	equation	(17.5)	is	different
from	zero,	the	estimator	is	said	to	be	a	biased	estimator	while	it	is	an	unbiased
estimator	if	the	expected	value	in	equation	(17.5)	is	zero.
The	 subscript	 θ	 in	 equation	 (17.5)	 indicates	 that	 the	 expected	 value	 is

computed	based	on	 the	distribution	with	parameter	θ	whose	value	 is	unknown.
Technically,	 however,	 the	 computation	 of	 the	 expected	 value	 is	 feasible	 for	 a
general	θ.
	 For	 example,	 the	 linear	 estimator	 θ̂	 =	X1	 is	 an	 unbiased	 estimator	 for	mean
E(Y)	=	θ	since

Eθ	( )	=	Eθ	(	X1	)	=	θ
		



	However,	 for	many	 other	 reasons	 such	 as	 not	 utilizing	 the	 information	 in	 the
remaining	sample	(i.e.,	X2,	…,	Xn),	it	may	not	be	a	very	reasonable	estimator.
	 On	the	other	hand,	the	constant	estimator	 	=	c	where	c	is	any	value	no	matter
what	is	the	outcome	of	the	sample	is	not	an	unbiased	estimator.	Its	bias	is	given
by

Eθ	( ̂	−	θ)	=	Eθ	(c	−	θ)	=	c	−	θ
	

which	 can	 become	 arbitrarily	 large	 depending	 on	 the	 value	 of	 θ.	 It	 is	 zero,
however,	if	the	true	value	of	θ	happens	to	be	c.
	



Bias	of	the	Sample	Mean

	

In	this	illustration,	we	analyze	the	sample	mean.	Whenever	a	population	mean	µ
(i.e.,	the	expected	value)	has	to	be	estimated,	a	natural	estimator	of	choice	is	the
sample	mean.	Let	us	examine	its	bias.	According	to	equation	(17.5),	the	bias	is
given	as
	

So,	we	see	that	the	sample	mean	is	an	unbiased	estimator,	which	provides	a	lot
of	support	for	its	widespread	use	regardless	of	the	probability	distribution.	199
	



Bias	of	the	Sample	Variance

	

In	the	next	illustration,	let	the	parameter	to	be	estimated	be	the	variance	σ2.	For
the	estimation,	we	use	the	sample	variance	given	by

introduced	 in	Chapter	3	assuming	 that	we	do	not	know	the	population	mean	µ
and	 therefore	have	 to	 replace	 it	with	 the	sample	mean,	as	done	for	s2.	Without
presenting	all	the	intermediate	steps,	its	bias	is	computed	as

So,	we	see	that	the	sample	variance	s2	is	slightly	biased	downward.	The	bias	is
−1/n	⋅σ2	,	which	is	increasing	in	the	population	variance	σ2.	However,	note	that
it	is	almost	negligible	when	the	sample	size	n	is	large.
	 If	 instead	 of	 the	 sample	 variance,	 consider	 the	 following	 estimator	 that	was
also	introduced	in	Chapter	3:

	We	would	obtain	an	unbiased	estimator	of	the	population	variance	since

	Because	 s*2	 is	 unbiased,	 it	 is	 referred	 to	 as	 the	 bias-corrected	 (or	 simply
corrected)	sample	variance.

	
We	compare	these	two	variance	estimators	with	our	daily	return	observations

for	GE	between	April	24,	1980	and	March	30,	2009.	First,	the	sample	variance
s2	=	0.0003100.	In	contrast,	the	bias-corrected	sample	variance	s*2	=	0.0003101.
We	 see	 that	 the	 difference	 is	 negligible.	 Second,	 the	 theoretical	 bias	 of	 the



sample	variance	is	=	−1/7300⋅σ2	=	−0.0001⋅σ2	.	For	this	sample	size,	it	does	not
make	 any	practical	 difference	whether	we	use	 the	 sample	 variance	 or	 the	 bias
corrected	sample	variance.
	 As	another	example,	consider	the	variance	estimator

when	the	population	mean	µ	is	known.	Its	mean	is

and,	 hence,	 it	 is	 an	 unbiased	 estimator	 for	 the	 population	 variance,	 σ2,	 which
follows	from	the	computations

Note	that	in	the	fifth	line,	we	used	the	equality	Var	(Xi)	=	E	( 	−	µ2	.
	



Mean-Square	Error

	

As	just	explained,	bias	as	a	quality	criterion	tells	us	about	the	expected	deviation
of	the	estimator	from	the	parameter.	However,	the	bias	fails	to	inform	us	about
the	 variability	 or	 spread	 of	 the	 estimator.	 For	 a	 reliable	 inference	 for	 the
parameter	value,	we	should	prefer	an	estimator	with	rather	small	variability	or,	in
other	words,	high	precision.
	 Assume	once	more	 that	we	 repeatedly,	 say	m	 times,	 draw	 samples	 of	 given
size	n.	using	estimator	 θ̂	 for	each	of	 these	samples,	we	compute	 the	respective
estimate	 	of	parameter	θ,	where	 t	=	1,	 2,	…,	m.	From	 these	m	 estimates,	we
then	 obtain	 an	 empirical	 distribution	 of	 the	 estimates	 including	 an	 empirical
spread	given	by	the	sample	distribution	of	the	estimates

where	θ̂	is	the	sample	mean	of	all	estimates	 .
We	know	that	with	increasing	sample	length	n,	the	empirical	distribution	will

eventually	 look	 like	 the	 normal	 distribution	 for	 most	 estimators.	 However,
regardless	 of	 any	 empirical	 distribution	 of	 estimates,	 an	 estimator	 has	 a
theoretical	 sampling	 distribution	 for	 each	 sample	 size	 n.	 So,	 the	 random
estimator	 is,	 as	 a	 random	 variable,	 distributed	 by	 the	 law	 of	 the	 sampling
distribution.	The	empirical	and	the	sampling	distribution	will	look	more	alike	the
larger	is	n.	The	sampling	distribution	provides	us	with	a	theo	retical	measure	of
spread	 of	 the	 estimator,	 namely,	 its	 variance,	 Varθ,n	 ( )	 where	 the	 subscript
indicates	 that	 it	 is	 valid	 only	 for	 samples	 of	 size	 n.	 The	 square	 root	 of	 the
variance,

is	 called	 the	 standard	error	 (S.E.).	 This	 is	 a	measure	 that	 can	 often	 be	 found
listed	 together	with	 the	observed	estimate.	 In	 the	remainder	of	 this	chapter,	we
will	 drop	 the	 subscript	n	wherever	 unambiguous	 since	 this	 dependence	 on	 the
sample	size	will	be	obvious.
To	completely	eliminate	the	variance,	one	could	simply	take	a	constant	θ̂	=	c



as	 the	 estimator	 for	 some	 parameter.	 However,	 this	 not	 reasonable	 since	 it	 is
insensitive	to	sample	information	and	thus	remains	unchanged	for	whatever	the
true	 parameter	 value	 θ	 may	 be.	 Hence,	 we	 stated	 the	 bias	 as	 an	 ultimately
preferable	quality	criterion.	Yet,	a	bias	of	zero	may	be	too	restrictive	a	criterion
if	 an	 estimator	 θ̂	 is	 only	 slightly	 biased	 but	 has	 a	 favorably	 small	 variance
compared	 to	 all	 possible	 alternatives,	 biased	 or	 unbiased.	 So,	 we	 need	 some
quality	criterion	accounting	for	both	bias	and	variance.
	 That	criterion	can	be	satisfied	by	using	the	mean-square	error	(MSE).	Taking
squares	rather	than	the	loss	itself	incurred	by	the	deviation,	the	MSE	is	defined
as	the	expected	square	loss
(17.6)
	

where	the	subscript	θ	indicates	that	the	mean	depends	on	the	true	but	unknown
parameter	value.	The	MSE	 in	equation	(17.6)	 permits	 the	 following	 alternative
representation
(17.7)
	

The	 second	 term	on	 the	 right-hand	 side	of	 equation	(17.7)	 is	 the	 squared	bias.
So,	we	 see	 that	 the	mean-square	 error	 is	 decomposed	 into	 the	 variance	 of	 the
estimator	and	a	transform	(i.e.,	square)	of	the	bias.	If	the	transform	is	zero	(i.e.,
the	estimator	is	unbiased),	the	mean-square	error	equals	the	estimator	variance.

	
It	 is	interesting	to	note	that	MSE-minimal	estimators	are	not	available	for	all

parameters.	That	is,	we	may	have	to	face	a	trade-off	between	reducing	either	the
bias	 or	 the	 variance	 over	 a	 set	 of	 possible	 estimators.	 As	 a	 consequence,	 we
simply	 try	 to	 find	 a	 minimum-variance	 estimator	 of	 all	 unbiased	 estimators,
which	is	called	the	minimum-variance	unbiased	estimator.	We	do	this	because
in	many	applications,	unbiasedness	has	priority	over	precision.
	



Mean-Square	Error	of	the	Sample	Mean

	

As	 an	 illustration,	we	 consider	 the	 population	mean	µ,	 which	we	 endeavor	 to
estimate	with	the	sample	mean	 .	Since	we	know	that	it	is	unbiased,	its	MSE	is
simply	the	variance;	that	is,	MSE	(X)	=	Varµ	(X).	Now	suppose	that	we	analyze
the	observations	of	a	normally	distributed	stock	return	Y	with	parameter	(µ,	σ	2	)
.	 Given	 a	 sample	 of	 size	 n,	 the	 sampling	 distribution	 of	 	 is	 the	 normal
distribution	N	 (µ,	σ2	 /n	 ).	More	 specifically,	we	 consider	 a	 sample	of	 size	n	 =
1,000	observed	between	April	11,	2005	and	March	30,	2009	of	the	returns	of	the
stock	 of	 GE	 from	 our	 earlier	 example.	 The	 sample	 mean	 for	 this	 period	 is
computed	to	be	 	=	−0.0014.	Now,	if	the	true	distribution	parameter	was	μ	=	0
(i.e.,	we	had	a	mean	return	of	zero	and	a	variance	of	σ2	=	0.0003),	the	sampling
distribution	of	the	sample	mean	is	given	by	N(0,σ2/1000)	=	N	(0,	0.0000003).

	
In	 Figure	 17.6	 we	 illustrate	 the	 position	 of	 =	 −0.0014	 relative	 to	 the

population	 mean	 µ	 and	 the	 bounds	 given	 by	 one	 standard	 error	 of	 0.000548
about	µ.	With	the	given	return	distribution,	this	observation	of	the	sample	mean
is	not	all	 that	common	 in	 the	sense	 that	a	value	of	 -0.0014	or	 less	occurs	only
with	probability	 0.53%	 (i.e.,	P	 ( 	 ≤	−0.0014)	=	 0.0053).	Now,	 if	we	were	 not
certain	 as	 to	 the	 true	 population	 parameters	 μ	 =	 0	 and	 σ2	 =	 0.0003,	with	 this
observation	one	might	doubt	these	parameter	values.	This	last	statement	will	be
discussed	in	Chapter	19	where	we	discuss	hypothesis	testing.
	FIGURE	17.6	 Sample	Mean	 	 =	 −0.0014	 of	 the	GE	Return	Data.	 Population
Mean	μ	=	0	and	Standard	Error	S.E.(θ)	=	0.000548	are	Shown	for	Comparison
	





Mean-Square	Error	of	the	Variance	Estimator

	

Let	us	now	consider	the	estimation	of	the	population	variance	σ2.	As	we	know,
the	sample	variance	is	biased	so	that	the	second	term	in	equation	(17.7)	will	not
be	negative.	To	be	exact,	with	variance200

and	bias

the	MSE	will	be	equal	to

If,	instead,	we	had	used	the	bias	corrected	sample	variance	s	*2	,	the	last	term
would	vanish.	However,	the	variance	term

is	slightly	larger	than	that	of	the	sample	variance.
We	can	see	that	 there	 is	a	 trade-off	between	variance	(or	standard	error)	and

bias.	 With	 our	 GE	 return	 sample	 data	 observed	 between	 April	 11,	 2005	 and
March	 30,	 2009,	 n	 is	 equal	 to	 1,000.	 Furthermore,	 the	 sample	 variance	 is
MSE(s2)	 =	 2.4656	 ×	 10-11,	 whereas	MSE(s*2)	 =	 2.4661	 ×	 10-11,	 such	 that	 the
mean-square	 error	 of	 the	 bias-corrected	 sample	 variance	 is	 0.02%	 larger	 than
that	of	sample	variance.	So,	despite	the	bias,	we	can	use	the	sample	variance	in
this	situation.
	



LARGE	SAMPLE	CRITERIA

	

The	treatment	of	the	estimators	thus	far	has	not	included	their	possible	change	in
behavior	as	the	sample	size	n	varies.	This	 is	an	 important	aspect	of	estimation,
however.	For	example,	it	is	possible	that	an	estimator	that	is	biased	for	any	given
finite	 n,	 gradually	 loses	 its	 bias	 as	 n	 increases.	 Here	 we	 will	 analyze	 the
estimators	as	the	sample	size	approaches	infinity.	In	technical	terms,	we	focus	on
the	so-called	large-sample	or	asymptotic	properties	of	estimators.
	



Consistency

	

Some	 estimators	 display	 stochastic	 behavior	 that	 changes	 as	 we	 increase	 the
sample	 size.	 It	 may	 be	 that	 their	 exact	 distribution	 including	 parameters	 is
unknown	as	long	as	the	number	of	draws	n	is	small	or,	to	be	precise,	finite.	This
renders	the	evaluation	of	the	quality	of	certain	estimators	difficult.	For	example,
it	may	 be	 impossible	 to	 give	 the	 exact	 bias	 of	 some	 estimator	 for	 finite	n,	 in
contrast	to	when	n	approaches	infinity.

	
If	 we	 are	 concerned	 about	 some	 estimator’s	 properties,	 we	may	 reasonably

have	to	remain	undecided	about	the	selection	of	the	most	suitable	estimator	for
the	 estimation	 problem	 we	 are	 facing.	 In	 the	 fortunate	 cases,	 the	 uncertainty
regarding	an	estimator’s	quality	may	vanish	as	n	goes	to	infinity,	so	that	we	can
base	conclusions	concerning	 its	applicability	 for	certain	estimation	 tasks	on	 its
large-sample	properties.
	 The	Central	Limit	Theorem	plays	a	crucial	role	in	assessing	the	properties	of
estimators.	This	 is	because	normalized	sums	 turn	 into	standard	normal	 random
variables,	which	provide	us	with	tractable	quantities.	The	asymptotic	properties
of	 normalized	 sums	may	 facilitate	 deriving	 the	 large	 sample	 behavior	 of	more
complicated	estimators.
	

Convergence	in	Probability

	
At	 this	 point,	 we	 need	 to	 think	 about	 a	 rather	 technical	 concept	 that	 involves
controlling	 the	 behavior	 of	 estimators	 in	 the	 limit.	 Here	 we	 will	 analyze	 an
estimator’s	 convergence	 characteristics.	 That	 means	 we	 consider	 whether	 the
distribution	of	 an	 estimator	 approaches	 some	particular	probability	distribution
as	the	sample	sizes	increase.	To	proceed,	we	state	the	following	definition

Convergence	in	probability:	We	say	that	a	random	variable	such	as	an



estimator	built	on	a	sample	of	size	n,	 ,	converges	in	probability	to	some
constant	c	if
(17.8)
	

holds	for	any	ε	>	0.
	

	 The	property	(17.8)	states	that	as	the	sample	size	becomes	arbitrarily	large,	the
probability	that	our	estimator	will	assume	a	value	that	is	more	than	ε	away	from
c	will	become	increasingly	negligible,	even	as	ε	becomes	smaller.	Instead	of	the
rather	 lengthy	 form	 of	 equation	 (17.8),	 we	 usually	 state	 that	 	 converges	 in
probability	to	c	more	briefly	as
(17.9)
	

	
Here,	we	introduce	the	index	n	to	the	estimator	 	to	indicate	that	it	depends

on	the	sample	size	n.	Convergence	in	probability	does	not	mean	that	an	estimator
will	 eventually	 be	 equal	 to	 c,	 and	 hence	 constant	 itself,	 but	 the	 chance	 of	 a
deviation	from	it	will	become	increasingly	unlikely.

	
Suppose	now	that	we	draw	several	samples	of	size	n.	Let	the	number	of	these

different	samples	be	N.	Consequently,	we	obtain	N	estimates	 	where	
	 is	 estimated	 on	 the	 first	 sample,	 	 on	 the	 second,	 and	 so	 on.	 utilizing	 the

prior	definition,	we	formulate	the	following	law.
	

Law	of	large	Numbers:	Let	X(1)=	( 	),X(2)	=	( 	 and
X(N)	=	(	and	 	)	be	a	series	of	N	independent	samples	of	size	n.
For	each	of	these	samples,	we	apply	the	estimator	 	such	that	we	obtain	N
independent	and	identically	distributed	as	 	random	variables	 	,	 ̂	,…,	
	.	Further,	let	E	 denote	expected	value	of	 	and	 .

Because	they	are	identically	distributed,	then	it	holds	that201
	(17.10)
	



	
The	 law	given	by	equation	(17.10)	 states	 that	 the	average	over	all	 estimates

obtained	 from	 the	 different	 samples	 (i.e.,	 their	 sample	 mean)	 will	 eventually
approach	their	expected	value	or	population	mean.	According	to	equation	(17.8),
large	 deviations	 from	 	will	 become	 ever	 less	 likely	 the	more	 samples	we
draw.	So,	we	can	say	with	a	high	probability	that	if	N	is	large,	the	sample	mean

will	 be	 near	 its	 expected	 value.	 This	 is	 a	 valuable	 property	 since	 when	 we
have	drawn	many	samples,	we	can	assert	that	it	will	be	highly	unlikely	that	the
average	of	the	observed	estimates	such	as

for	 example,	 will	 be	 a	 realization	 of	 some	 distribution	 with	 very	 remote
parameter	E	( 	)	=	µ.
An	important	aspect	of	the	convergence	in	probability	becomes	obvious	now.

Even	 if	 the	 expected	 value	 of	 	 is	 not	 equal	 to	 θ	 (i.e.,	 	 is	 biased	 for	 finite
sample	lengths	n),	it	can	still	be	that	plim	 	=	θ.	That	is,	the	expected	value	
may	gradually	become	closer	to	and	eventually	indistinguishable	from	θ,	as	the
sample	 size	n	 increases.	 To	 account	 for	 these	 and	 all	 unbiased	 estimators,	we
introduce	the	next	definition.
	

Consistency:	An	estimator	 	is	a	consistent	estimator	for	θ	if	it	converges
in	probability	to	θ,	as	given	by	equation	(17.9),	that	is,
	(17.11)
	

	
The	consistency	of	an	estimator	is	an	important	property	since	we	can	rely	on

the	consistent	estimator	to	systematically	give	sound	results	with	respect	to	the
true	parameter.	This	means	that	if	we	increase	the	sample	size	n,	we	will	obtain
estimates	that	will	deviate	from	the	parameter	θ	only	in	rare	cases.
	



Consistency	of	the	Sample	Mean	of	Normally	Distributed	Data

	

As	our	 first	 illustration,	 consider	 the	 sample	mean	 	of	 samples	of	a	normally
distributed	random	variable	Y,	with	Y	~	N	(µ,	σ	2	),	to	infer	upon	the	parameter
component	µ.	As	 used	 throughout	 the	 chapter,	 the	 sample	 size	 is	n.	Then,	 the
probability	 of	 the	 sample	 mean	 deviating	 from	 µ	 by	 any	 given	 amount	 ε	 is
computed	as
	

We	show	this	by	the	following	computations.
	

Next,	 let’s	 consider	 the	 daily	 return	 data	 from	GE	 that	we	 previously	 used,
which	was	distributed	N(0,0.0003).	Proceeding	with	sample	sizes	of	n	=	10,	100,
1,000,	and	7,300,	we	have	the	following	series	of	probabilities:	2Φ	(	−ε	⋅	117.83)
,	2Φ	(	−ε	⋅	372.60)	,	2Φ	(	−ε	⋅	1178.30)	,	and	2Φ	(	−ε	⋅	3183.50)	for	P	(|X̅	−	µ|	>
ε	)	,	each	depending	on	the	value	of	ε.	For	ε	→	0,	we	display	the	corresponding



probabilities	in	Figure	17.7.	As	can	be	seen	from	the	solid	graph,	for	n	=	10	the
probability	P(|X̅	 −	 µ|>ε)	 rises	 to	 1	 quite	 steadily.	 In	 contrast,	 for	 large	 sample
sizes	 such	as	N	=	7,300,	 the	dotted	graph	 is	 close	 to	0,	 even	 for	very	 small	 ε,
while	it	abruptly	jumps	to	1	as	ε	≈	0.	So,	we	see	that,	 theoretically,	the	sample
mean	actually	does	converge	to	its	expected	value	(i.e.,	the	population	mean	μ	=
0).	We	compare	this	to	the	observed	sample	means	of	GE	return	data	for	sample
sizes	n	=	10,	100,	and	1,000	in	Figure	17.8.	The	period	of	observation	is	April
24,	 1980	 through	March	 30,	 2009,	 providing	 7,300	 daily	 observations.	 In	 all
three	cases,	30	equidistant	classes	are	used.	The	histogram	with	 the	 largest	bin
size	is	related	to	the	two	histograms	with	the	smaller	bin	sizes.	It	is	wider	than
the	visible	range	in	this	graphic	(i.e.,	[-0.02,0.02]).	The	narrower	but	higher	bins
belong	 to	 the	 histogram	 for	 n	 =	 100,	 whereas	 the	 tightest	 and	 highest	 bins,
virtually	appearing	as	lines,	are	from	the	histogram	corresponding	to	n	=	1,000.
We	 notice	 a	 convergence	 that	 is	 consistent	 with	 the	 theoretical	 convergence
visualized	in	Figure	17.7.
	
FIGURE	17.7	Visualization	of	lim	P	θ ̂	 −µ│>ε	 as	n	 Increases	 from	10	 to

7,300.	Here	μ	=	0	and	
	

FIGURE	17.8	Comparison	of	Histograms	of	GE	Sample	Means	as	Sample	Size
Increases	from	n	=	10	to	n	=	100	to	n	=	1,000
	





Consistency	of	the	Variance	Estimator

	

For	our	next	illustration,	we	present	an	example	of	some	estimator	that	is	biased
for	 finite	 samples,	 but	 is	 consistent	 for	 the	 population	 parameter.	 Suppose	 the
parameter	to	be	estimated	is	the	population	variance	σ2,	which	has	to	be	inferred
upon	 without	 knowledge	 of	 the	 population	 mean.	 Instead	 of	 the	 unbiased
corrected	sample	variance,	we	simply	use	the	sample	variance	s2.	First,	we	will
show	that	as	n	→	∞	,	the	bias	disappears.	Let	us	look	at	the	finite	sample	mean
of	s2.
	 As	we	know	from	some	previous	example,	its	expected	value	is

revealing	 that	 it	 is	 slightly	 biased	downward.	However,	 as	n	→	∞	 ,	 the	 factor
(n	 -	 1)/n	 approaches	 1,	 so	 that	 for	 infinitely	 large	 samples,	 the	 mean	 of	 the
sample	 variance	 is	 actually	 σ2.	 Next,	 with	 the	 estimator’s	 expected	 value	 for
some	finite	n	and	its	variance	of

by	virtue	of	the	Chebyshev	inequality,202	we	can	state	that	for	any	ε	>	0	that

This	proves	that	eventually	any	arbitrarily	small	deviation	from	E(s2	)	=	[(n	−
1)/n]	 ⋅	 σ	 2	 becomes	 unlikely.	And	 since	 [(n	 −	 1)/	n]	 ⋅	 σ	 2	 becomes	 arbitrarily
close	to	σ2	as	n	goes	to	infinity,	the	variance	estimator	s2	will	most	likely	be	very
close	 to	 the	 parameter	 σ2.	 Thus,	 we	 have	 proven	 consistency	 of	 the	 sample
variance	s2	for	σ2.

	
For	 comparison,	 we	 also	 check	 the	 behavior	 of	 the	 sample	 mean	 for	 our

empirical	daily	GE	return	data	observed	between	April	24,	1980	and	March	30,
2009.	For	sample	sizes	of	n	=	10,	100,	and	1,000,	we	display	the	histograms	of



the	corresponding	distributions	of	 the	 sample	variances	 in	Figures	17.9,	17.10,
and	17.11,	respectively.	By	looking	at	the	range	in	each	figure,	we	can	see	that
the	 variability	 of	 the	 sample	 variances	 about	 the	 population	 parameter	 σ2	 =
0.0003	decreases	as	n	increases.
	FIGURE	17.9	Histogram	of	the	Sample	Variances	s2,	for	Sample	Size	n	=	10,	of
the	 Observed	 GE	 Daily	 Return	 Data	 Between	 April	 20,	 1980	 and	March	 30,
2009
	

FIGURE	17.10	Histogram	of	the	Sample	Variances	s2,	for	Sample	Size	n	=	100,
of	the	Observed	GE	Daily	Return	Data	Between	April	20,	1980	and	March	30,
2009
	



FIGURE	 17.11	 Histogram	 of	 the	 Sample	 Variances	 s2,	 for	 Sample	 Size	 n	 =
1,000,	 of	 the	 Observed	 GE	 Daily	 Return	 Data	 Between	 April	 20,	 1980	 and
March	30,	2009
	



Unbiased	Efficiency

	

In	 the	 previous	 discussions	 in	 this	 section,	 we	 tried	 to	 determine	 where	 the
estimator	tends	to.	This	analysis,	however,	left	unanswered	the	question	of	how
fast	 does	 the	 estimator	 get	 there.	 For	 this	 purpose,	we	 introduce	 the	 notion	 of
unbiased	efficiency.
	 Let	us	suppose	that	two	estimators	 and	 	are	unbiased	for	some	parameter	θ.
Then,	 we	 say	 that	 θ̂	 is	 a	 more	efficient	 estimator	 than	 *	 if	 it	 has	 a	 smaller
variance;	that	is,
(17.12)
	

for	 any	 value	 of	 the	 parameter	 θ	 .	 Consequently,	 no	 matter	 what	 the	 true
parameter	value	is,	the	standard	error	of	θ̂	is	always	smaller	than	that	of	 	Since
they	are	assumed	to	be	both	unbiased,	the	first	should	be	preferred.
If	the	parameter	consists	of	more	than	one	component	(i.e.,	k	>	1	such	that	the

parameter	space	Θ	⊂	ℝk	),	then	the	definition	of	efficiency	in	equation	(17.12)
needs	 to	 be	 extended	 to	 an	 expression	 that	 uses	 the	 covariance	matrix	 of	 the
estimators	rather	than	only	the	variances.

	
Recall	from	Chapter	14	that	the	covariance	matrix	of	some	random	variable	X

=	 (X1,	 X2,	 …,	 Xn)	 has	 the	 variances	 of	 the	 respective	 random	 variable
components	 in	 the	 diagonal	 cells,	 Var(Xi	 ),	 whereas	 the	 off-diagonal	 entries
consist	of	the	covariances	of	components	i	and	j,	Cov(Xi	,	Xj	).
	
Let	 	and	 	denote	the	covariance	matrices	of	 	and	 	respectively.	For

efficiency	 of	 	 over	 	 we	 postulate	 that	 	 be	 a	 positive-semidefinite
matrix.203
	



Efficiency	of	the	Sample	Mean

	

In	this	example,	we	consider	two	alternative	estimators,	 	and	 	=	X1	,	for
population	mean	µ.	That	 is,	our	first	estimator	 is	 the	sample	mean	whereas	the
second	 estimator	 is	 the	 first	 draw	 in	 our	 sample	 of	 size	 n.	 Even	 though	 the
second	estimator	wastes	a	lot	of	 information	conveyed	by	the	sample,	 it	 is	still
unbiased	for	µ.	However,	the	variance	of	the	first	estimator,	 	=	σ	2	/n	 ,	 is
much	smaller	than	that	of	the	second	estimator,	 	=	σ	2,	and	we	have	that	
is	more	efficient	than	 	because	of

	− 	Var	(θ̂1	)	=	σ	2	−	σ	2	/n	>	0
	

no	matter	what	the	true	value	of	σ2.	So,	we	should	definitely	prefer	the	sample
mean.
	



Efficiency	of	the	Bias	Corrected	Sample	Variance

	

For	 our	 next	 example,	 let	 us	 estimate	 the	 parameter	 θ	 =	 (µ,	 σ	 2	 )	 of	 the
probability	distribution	of	a	normal	random	variable	using	a	sample	of	length	n.
Suppose	that	we	have	two	alternative	estimators,	namely	 	where	,	S2	 is
the	sample	variance,	and	 	where	s*²	is	 the	corrected	sample	variance.
Because	 of	 the	 fact	 that	 the	 random	 variable	 is	 normally	 distributed,	we	 state
without	 proof	 that	 the	 components	 of	 	 and	 	 are	 independent.	 That	 is,	 	 is
independent	of	s2	while	 	 is	 independent	of	s*2	 .	So,	we	obtain	as	 covariance
matrices

and

Note	 that	 the	 off-diagonal	 cells	 are	 zero	 in	 each	 matrix	 because	 of	 the
independence	of	the	components	of	the	respective	estimators	due	to	the	normal
distribution	of	the	sample.	The	difference	 	always	yields	the	positive-
semidefinite	matrix

	
Hence,	 this	 shows	 that	 	 is	more	 efficient	 than	 .	So,	 based	on	 the	 slightly

smaller	 variability,	 we	 should	 always	 prefer	 estimator	 even	 though	 the



estimator	s2	is	slightly	biased	for	finite	sample	size	n.
	



Linear	Unbiased	Estimators

	

A	 particular	 sort	 of	 estimators	 are	 linear	 unbiased	 estimators.	 We	 introduce
them	 separately	 from	 the	 linear	 estimators	 here	 because	 they	 often	 display
appealing	statistical	features.
	 In	general,	linear	unbiased	estimators	are	of	the	form

	To	meet	 the	 condition	 of	 zero	 bias,	 the	weights	ai	 have	 to	 add	 to	one.	Due	 to
their	lack	of	bias,	the	MSE	in	(17.7)	will	only	consist	of	the	variance	part.	With
sample	size	n,	their	variances	can	be	easily	computed	as

where	 	denotes	 the	common	variance	of	each	drawing.	This	variance	can	be
minimized	 with	 respect	 to	 the	 coefficients	 ai	 and	 we	 obtain	 the	 best	 linear
unbiased	 estimator	 (BLUE)	 or	minimum	 variance	 linear	 unbiased	 estimator
(MVLUE).	We	have	to	be	aware,	however,	 that	we	are	not	always	able	 to	find
such	an	estimator	for	each	parameter.
An	example	of	a	BLUE	is	given	by	the	sample	mean	 	.	We	know	that	all	the

ai	 =	 1/n	 .	 This	 not	 only	 guarantees	 that	 the	 sample	 mean	 is	 unbiased	 for	 the
population	mean	µ,	but	it	also	provides	for	the	smallest	variance	of	all	unbiased
linear	 estimators.	 Therefore,	 the	 sample	 mean	 is	 efficient	 among	 all	 linear
estimators.	By	comparison,	the	first	draw	is	also	unbiased.	However,	its	variance
is	n	times	greater	than	that	of	the	sample	mean.
	



MAXIMUM	LIKEHOOD	ESTIMATOR

	

The	 method	 we	 discuss	 next	 provides	 one	 of	 the	 most	 essential	 tools	 for
parameter	estimation.	Due	to	its	structure,	it	is	very	intuitive.
	 Suppose	the	distribution	(discrete	or	continuous)	of	some	random	variable	Y	is
characterized	by	the	parameter	θ	.	As	usual,	we	draw	a	random	sample	of	length
n,	 that	 is,	 X	 =	 (X1,	 X2,	 …,	 Xn),	 where	 each	 Xi	 is	 drawn	 independently	 and
distributed	identically	as	Y.	That	is,	in	brief	notation,	the	individual	drawings	Xi
are	i.i.d.	So,	the	joint	probability	distribution	of	the	random	sample	X	is	given	by
equation	(17.1)	in	the	case	of	discrete	random	variables.	If	the	random	variable
is	continuous,	the	joint	density	function	of	the	sample	will	be	given	by	equation
(17.2)	where	all	fXi	and	fY	are	identical;	that	is,

(17.13)
	

Here	we	 say	 the	 random	 variable	 is	 continuous,	meaning	 that	 it	 is	 not	 only	 a
continuous	distribution	function,	but	also	has	a	density.
To	indicate	that	the	distribution	of	the	sample	X	is	governed	by	the	parameter

θ,	 we	 rewrite	 equations	 (17.1)	 and	 (17.13),	 respectively,	 as	 the	 so-called
likelihood	functions,	that	is,
	(17.14)
	

Note	that	as	presented	in	equation	(17.14),	the	likelihood	function	is	a	function
only	 of	 the	 parameter	 θ,	 while	 the	 observed	 sample	 value	 x	 is	 treated	 as	 a
constant.
	 usually	 instead	 of	 the	 likelihood	 function,	 we	 use	 the	 natural	 logarithm,
denoted	by	ln,	such	that	equation	(17.14)	turns	into	the	log-likelihood	function	,
abbreviated	by	lx(θ)	;	that	is,
(17.15)



	

	FIGURE	 17.12	 Natural	 Logarithm	 (ln)	 as	 a	 Strictly	 Monotonic	 Function
Preserves	the	Location	of	the	Maximum	of	the	Density	Function	f
	

The	log-likelihood	function	is,	in	many	cases,	easier	to	set	up.	We	can	do	this
transformation	 since	 the	 natural	 logarithm	 is	 a	 strictly	 monotonic	 increasing
function	 and	 as	 such	 preserves	 the	 position	 of	 optima	 and	 maxima	 in
particular.204	We	illustrate	this	in	Figure	17.12.

	
Suppose	we	observe	a	particular	value	x	=	(x1,	x2,	…,	xn)	in	our	sample.	The

question	 we	 now	 ask	 is:	Which	 parameter	 values	 make	 the	 observation	 most
plausible?	Formally,	that	means	we	need	to	determine	the	very	parameter	value
that	maximizes	the	probability	of	the	realized	sample	value	x,	or	density	function
at	x	if	the	distribution	is	continuous.
	 Our	 task	 is	 now,	 regardless	 of	 whether	 the	 distribution	 is	 discrete	 or
continuous,	 is	 to	maximize	 the	 log-likelihood	function	 lX	 (θ)	given	 in	equation
(17.15)	with	respect	to	all	possible	values	of	θ.	We	have	to	keep	in	mind	that	we
do	not	know	the	true	value	of	θ	and	that	the	value	we	then	determine	is	only	an
estimate.
	 We	obtain	 the	maximum	value	via	 the	 first	 derivatives	of	 the	 log-likelihood
function	 with	 respect	 to	 θ,	 ∂lX	 (θ)/∂θ	 ,	 which	 we	 set	 equal	 to	 zero	 as	 the
necessary	condition.	Thus,	we	solve	for205



(17.16)
	

	This	 estimator	 is	 referred	 to	 as	 the	 maximum	 likelihood	 estimator	 (MLE),
denoted	 by	 ,	 because	 it	 yields	 the	 parameter	 value	 with	 the	 greatest
likelihood	 (probability	 if	 discrete,	 and	 density	 function	 if	 continuous)	 of	 the
given	observation	x.	The	estimate	obtained	using	the	MLE	is	referred	to	as	 the
maximum	likelihood	estimate.

	
The	MLE	method	 is	 extremely	 attractive	 since	 it	 often	 produces	 estimators

that	are	consistent	such	as	equation	(17.11),	asymptotically	normally	distributed,
and	asymptotically	efficient,	which	means	that,	as	the	sample	size	increases,	the
estimators	derived	become	unbiased	and	have	the	smallest	variance.	For	this	to
be	 true,	 certain	 regularity	 conditions	 regarding	 the	 derivatives	 of	 the	 log-
likelihood	function	have	to	be	satisfied.
	



MLE	of	the	Parameter	λ	of	the	Poisson	Distribution

	

We	consider	the	parameter	λ	of	the	Poisson	distribution	for	this	example.	From
the	sample	of	size	n	with	observation	x	=	(x1,	x2,	…,	xn),	we	obtain	the	likelihood
function

from	which	we	compute	the	log-likelihood	function

Differentiating	with	respect	to	λ	and	setting	equal	to	zero	gives

	So,	we	see	that	the	MLE	of	the	Poisson	parameter	λ	equals	the	sample	mean.
	 Let’s	return	to	the	example	for	the	property	and	casualty	insurance	company
we	discussed	in	Chapter	9.	We	assumed	that	the	number	of	claims	received	per
year	could	be	modeled	as	a	Poisson	random	variable	Y	~	Poi	(	λ	)	.	As	before,	we
are	uncertain	as	to	the	true	value	of	the	parameter	λ.	For	this	reason,	we	have	a
look	at	 the	sample	containing	 the	number	of	claims	of	each	of	 the	previous	10
years,	which	is	displayed	below	for	convenience:



	With	 these	 data,	 we	 obtain	 the	 estimate	 λ̂MLE	 =	 519,750	 .	 Because	 the
parameter	λ	equals	the	expected	value	of	the	Poisson	random	variable,	we	have
to	expect	519,750	claims	per	year.
	 As	another	illustration	of	the	MLE	of	the	Poisson	parameter	λ,	we	consider	a
portfolio	 consisting	 of	 risky	 bonds	 of,	 say	 100	 different	 companies.	 We	 are
interested	in	the	number	of	defaults	expected	to	occur	within	the	next	year.	For
simplicity,	we	assume	 that	each	of	 these	companies	may	default	 independently
with	 identical	 probability	 p.	 So,	 technically,	 the	 default	 of	 a	 company	 is	 a
Bernoulli	 random	 variable	 assuming	 value	 1	 in	 case	 of	 default	 and	 zero
otherwise,	such	that	the	overall	number	of	defaults	is	binomial,	B(100,	p).	Since
the	 number	 of	 companies,	 100,	 is	 large,	 we	 can	 approximate	 the	 binomial
distribution	 with	 the	 Poisson	 distribution.206	 Now,	 the	 unknown	 parameter	 λ,
which	 equals	 the	 population	 mean	 of	 the	 Poisson	 random	 variable	 Y	 has	 to
inferred	from	some	sample.207	Suppose	that	from	the	last	20	years,	we	observe
the	following	annual	defaults:

	With	these	data,	we	compute	as	parameter	estimate	λ̂	MLE	=	3.15	.	So,	we	have	to
expect	3.15,	or	roughly	3	companies	to	default	within	the	next	year.
	



MLE	of	the	Parameter	λ	of	the	Exponential	Distribution

	

In	our	next	illustration,	we	consider	continuous	random	variables.	Suppose	that
we	are	interested	in	the	previous	bond	portfolio.	The	number	of	defaults	per	year
was	given	as	a	Poisson	random	variable.	Then,	the	time	between	two	successive
defaults	follows	an	exponential	law;	that	is,	the	interarrival	time	can	be	modeled
as	the	random	variable	Y	~	Exp	(	λ	)	with	rate	λ.	We	know	that	the	expected	time
between	two	successive	defaults	is	given	by	E	(Y	)	=	1/λ	,	expressing	the	inverse
relationship	between	 the	number	of	defaults	and	 the	 time	between	 them.	Since
the	parameters	λ	 from	both	 the	exponential	and	Poisson	distributions	coincide,
we	might	 just	 use	 the	 estimate	obtained	 from	 the	previous	 example.	However,
suppose	 instead	 that	we	decide	 to	estimate	 the	parameter	via	 the	MLE	method
under	the	exponential	assumption	explicitly.
	 From	 a	 sample	 observation	 x	 =	 (x1,	 x2,	 …,	 xn)	 of	 an	 exponential	 random
variable,	we	obtain	the	likelihood	function

from	which	we	compute	the	log-likelihood	function

Computing	 the	 derivative	 of	 the	 above	 with	 respect	 to	 λ	 and	 setting	 the
derivative	equal	to	zero,	we	obtain

Note	 that	 this	MLE	 has	 a	 bias	 of	 1/(n	 -	 1),	 which,	 as	 n	 goes	 to	 infinity,	will
vanish.	Now,	with	our	bond	portfolio	data	from	the	previous	example,	we	obtain
the	interarrival	times:



	 A	problem	arose	from	x9	and	x17	being	the	interarrival	times	of	years	without
default.	We	solved	this	by	replacing	the	numbers	of	default	in	those	two	years	by
the	sample	average	(i.e.,	3.15	defaults	per	year).	So,	we	compute	the	maximum
likelihood	estimate	as	 	=	2.1991	.208	With	this	estimate,	we	have	to	expect	to
wait	1 =	12.1991	=	0.4547	years,	or	a	little	over	five	months,	between	two
successive	defaults.	Note	that	1 =	 	is	an	unbiased	estimator	of	E(Y)	=	1λ,
which	itself,	however,	is	not	a	parameter	of	the	distribution.
	



MLE	of	the	Parameter	Components	of	the	Normal	Distribution

	

For	our	next	example,	we	assume	that	the	daily	GE	stock	return	can	be	modeled
as	a	normally	distributed	random	variable	Y.	Suppose	that	we	do	not	know	the
true	value	of	one	of	 the	components	of	 the	parameter	(µ,	σ2).	With	 the	normal
density	 function	of	Y,	 fY	 introduced	 in	Chapter	11,	we	obtain	as	 the	 likelihood
function	of	the	sample

	

Taking	the	natural	logarithm,	we	obtain	the	log-likelihood	function

	If	µ	 is	 the	unknown	component,	we	obtain	as	 the	 first	derivative	of	 the	 log-
likelihood	function	with	respect	to	µ209

such	that

turns	out	to	be	the	MLE	for	µ.	Note	that	 it	exactly	equals	 the	sample	mean.	If,
instead,	we	wanted	to	estimate	σ2	when	µ	is	known,	we	obtain	the	derivative



and,	from	there,	the	maximum	likelihood	estimate	is	found	to	be

which,	as	we	know,	is	unbiased	for	the	population	variance	σ2	if	µ	is	known.
If	no	component	of	the	parameter	θ	=	(µ,	σ	2	)	is	known,	we	obtain	the	same

estimator	 for	 the	 mean	 µ	 (i.e.,	 ).	 However,	 the	 variance	 is	 estimated	 by	 the
sample	variance

which	is	biased	for	σ2.
With	 the	 daily	 GE	 stock	 return	 data	 observed	 between	 April	 24,	 1980	 and

March	30,	2009,	we	obtain	the	maximum	likelihood	estimates	 =	0.00029	and	s2
=	0.00031,	respectively,	assuming	both	parameter	components	are	unknown.
	



Cramér-Rao	Lower	Bound

	

In	our	discussion	of	the	concept	of	consistency	of	an	estimator,	we	learned	that	it
is	 desirable	 to	 have	 an	 estimator	 that	 ultimately	 attains	 a	 value	 near	 the	 true
parameter	 with	 high	 probability.	 The	 quantity	 of	 interest	 is	 precision	 with
precision	 expressed	 in	 terms	 of	 the	 estimator’s	 variance.	 If	 the	 estimator	 is
efficient,	 we	 know	 that	 its	 variance	 shrinks	 and,	 equivalently,	 its	 precision
increases	most	rapidly.
	 Here,	we	will	concentrate	on	the	fact	that	in	certain	cases	there	is	a	minimum
bound,	 which	 we	 will	 introduce	 as	 the	 Cramér-Rao	 lower	 bound,	 that	 no
estimator	 variance	 will	 ever	 fall	 below.	 The	 distance	 of	 some	 estimator’s
variance	 from	 the	 respective	 lower	 bound	 can	 be	 understood	 as	 a	 quality
criterion.	The	Cramér-Rao	lower	bound	is	based	on	the	second	derivative	of	log-
likelihood	function	lX(θ)	with	respect	to	the	parameter	θ,	that	is,	∂2	lX	(θ)/∂θ2	.
	 In	our	previous	examples	of	 the	maximum	 likelihood	estimation,	we	 treated
the	 log-likelihood	 function	as	a	 function	of	 the	parameter	values	θ	 for	 a	given
sample	observation	x.	Now,	 if	 instead	of	 the	 realization	x,	we	 take	 the	 random
sample	X,	 the	 log-likelihood	 function	 is	 a	 function	 of	 the	 parameter	 and	 the
random	sample.	So,	in	general,	the	log-likelihood	function	is	itself	random.	As	a
consequence,	so	is	its	second	derivative	∂2	lX	(θ)/∂θ2	.
	 For	any	parameter	value	θ,	we	can	compute	the	expected	value	of	∂2	lx(θ)/∂θ2
,	 that	is,	E	 (	∂2	 lX	 (θ)/∂θ2	 ),	over	all	possible	outcomes	x	of	 the	sample	X.	The
negative	 of	 this	 expected	 value	 of	 the	 second	 derivative	 we	 refer	 to	 as	 the
information	number,	denoted	as	II(θ),	which	is	given	by
(17.17)
	

	Let	 θ̂	 be	 an	unbiased	 estimator	 for	 θ.	Without	 proof,	we	 state	 the	 important
result	 that	 its	 variance	 is	 at	 least	 as	 large	 as	 the	 inverse	 of	 the	 information
number	in	equation	(17.17);	that	is,
(17.18)



	

	If	the	parameter	θ	consists	of,	say,	k	>	1	components,	we	can	state	the	variance
bounds	in	the	multivariate	situation.	The	second	derivatives	of	the	log-likelihood
function	 lX	 (θ)	with	 respect	 to	 the	parameter	θ	are	now	forming	a	matrix.	This
results	from	the	fact	that	lX	(θ)	first	has	to	be	differentiated	with	respect	to	every
component	 θi,i	 =	 1,2,…,k	 and	 these	 derivatives	 have	 to	 be	 differentiated	with
respect	to	every	component	again.	Thus,	we	need	to	compute	k	×	k	partial	second
derivatives.	This	matrix	of	all	second	derivatives	looks	like
(17.19)
	

where	 the	 ∂2	 lX	 (θ)/∂θ2	 ∂θ2	 ∂θ2	 ∂θi	 ∂θj	 in	 equation	 (17.19)	 denote	 the
derivatives	with	respect	to	the	i-th	and	j-th	components	of	θ.
We	restate	that	since	X	is	random,	so	is	the	log-likelihood	function	and	all	its

derivatives.	Consequently,	matrix	J	is	also	random.	The	negative	expected	value
of	J	is	the	information	matrix	I(θ)	=	−E(J)	,	which	contains	the	expected	values
of	 all	 elements	 of	 J.	 With	 Var( )	 being	 the	 covariance	 matrix	 of	 some	 k-
dimensional	unbiased	estimator	θ̂	,	the	difference
(17.20)
	

which	 is	a	matrix	 itself,	 is	always	positive-semidefinite.	The	expression	 [I	 (θ)]
−11	denotes	the	matrix	inverse	of	I	(θ)	as	a	generalization	of	equation	(17.18).
If	the	difference	matrix	in	(17.20)	is	zero	in	some	components,	the	estimator	θ̂

is	efficient	in	these	components	with	respect	to	any	other	unbiased	estimator	and,
hence,	always	preferable.	If	the	bound	is	not	attained	for	some	components	and,
hence,	 the	 difference	 (17.20)	 contains	 elements	 greater	 than	 zero,	 we	 do	 not



know,	however,	if	there	might	be	an	estimator	more	efficient	than	the	one	we	are
using.
	



Cramér-Rao	Bound	of	the	MLE	of	Parameter	λ	of	the	Exponential
Distribution

	

As	an	 illustration,	consider	once	again	 the	bond	portfolio	example.	Suppose	as
before	that	the	time	between	two	successive	defaults	of	firms,	Y,	is	Exp	(λ).	As
we	 know,	 the	 log-likelihood	 function	 of	 the	 exponential	 distribution	 with
parameter	λ	for	a	sample	X	is

such	that	the	second	derivative	turns	out	to	be

Then	the	expected	value	is

E(−n/λ2	)	=	−	n/λ2
	

since	 it	 is	 constant	 for	 any	 value	 of	 λ.	 Now,	 for	 some	 unbiased	 estimator	 λ,
according	 to	 equation	 (17.18),	 the	 variance	 is	 at	 least	 λ2	 /	 n.	 Obviously,	 the
variance	bound	approaches	zero,	such	that	efficient	unbiased	estimators—if	they
should	 exist—can	 have	 arbitrarily	 small	 variance	 for	 ever	 larger	 sample	 sizes.
With	 20	 observations,	we	 have	n	 =	 20	 and,	 consequently,	 the	 variance	 of	 our
estimator	is,	at	least,	λ2/20.
	
We	know	 that	 the	maximum	likelihood	estimator	 	=	1 	 is	 approximately

unbiased	as	the	sample	size	goes	to	infinity.	So,	we	can	apply	the	lower	bounds
approximately.	Therefore,	with	the	given	lower	bound,	the	standard	error	will	be
at	least	SE	(	 	)	=	λ .	With	approximate	normality	of	the	estimator,	roughly
68%	of	the	estimates	fall	inside	of	an	interval	extending	at	least	λ	/	 	in	each
direction	 from	λ.	 If	 the	 true	parameter	 value	λ	 is	 equal	 to	3,	 then	 this	 interval
approximately	 contains	 the	 smaller	 interval	 [2.33,3.67].	 As	 the	 sample	 size
increases,	the	standard	error	3 	of	 will	vanish	so	that	its	precision	increases
and	hardly	any	estimate	will	deviate	from	λ	=	3	by	much.



	
What	this	means	is	that	if	we	have	an	unbiased	estimator,	we	should	check	its

variance	 first	and	see	whether	 it	attains	 the	 lower	bounds	exactly.	 In	 that	case,
we	 should	 use	 it.	However,	 even	 though	 the	MLE	 is	 not	 exactly	 unbiased,	 its
bias	becomes	more	negligible	the	larger	the	sample	and	its	variance	approaches
the	 decreasing	 lower	 bound	 arbitrarily	 closely.	 As	 can	 be	 shown,	 the	MLE	 is
closest	 to	 the	 lower	bound	among	most	estimators	 that	are	only	slightly	biased
such	as	the	MLE.
	



Cramér-Rao	Bounds	of	the	MLE	of	the	Parameters	of	the	Normal
Distribution

	

For	our	next	illustration,	we	provide	an	illustration	of	a	2-dimensional	parameter.
Consider	a	normally	distributed	stock	return	whose	parameters	µ	and	σ2	we	wish
to	 infer	 based	 on	 some	 sample	 of	 size	 n.	 With	 the	 respective	 second
derivatives210

we	obtain
(17.21)
	

as	the	inverse	of	the	information	matrix.
Suppose	 further	 that	 we	 use	 the	 unbiased	 estimator	 with	 the	 respective

components

	Then,	we	obtain	as	the	covariance	matrix
(17.22)
	

such	 that	 the	 difference	 between	 equations	 (17.21)	 and	 (17.22)	 becomes	 the
positive-semidefinite	matrix	given	by



(17.23)
	

Note	 that	 in	 equation	(17.23)	 there	 is	 only	 one	 element	 different	 from	 zero,
namely	 that	 for	 the	 variance	 estimator.	 This	 indicates	 that	 	 is	 an	 efficient
estimator	 since	 it	 meets	 its	 bound	 given	 by	 the	 top-left	 element	 in	 equation
(17.21),	whereas	s	*2	is	not.	So	there	might	be	a	more	efficient	estimator	than	s*2
.	However,	as	the	sample	size	n	increases,	the	variance	becomes	arbitrarily	close
to	the	lower	bound,	rendering	the	difference	an	unbiased	estimator	attaining	the
bound	and	s	*2	meaningless.
	



EXPONENTIAL	FAMILY	AND	SUFFICIENCY

	

Next	we	will	derive	a	method	to	retrieve	statistics	 that	reveal	positive	features,
which	 will	 become	 valuable	 particularly	 in	 the	 context	 of	 testing.	 Estimators
based	 on	 these	 statistics	 often	 fulfill	 many	 of	 the	 quality	 criteria	 discussed
before.
	



Exponential	Family

	

Let	Y	 be	 some	 random	 variable	with	 its	 probability	 distribution	 depending	 on
some	parameter	θ	consisting	of	one	or	more	components.	If	Y	is	continuous,	the
cumulative	distribution	function	Y	and	density	function	f(y)	vary	with	θ.211
	 Now,	 suppose	we	have	a	 sample	X	 =	 (X1,	X2,	…,	Xn)	 of	n	 independent	 and
identical	draws	from	the	population	of	Y.	According	to	equation	(17.15),	the	log-
likelihood	function	 (X)	of	this	sample	itself	depends	on	the	parameter	θ.	If	we
can	present	this	log-likelihood	function	in	the	form
(17.24)
	

we	say	that	it	is	an	exponential	family	of	distributions.
From	equation	(17.24),	we	see	that	the	likelihood	function	has	a	term,	namely

a	(X	),	that	is	a	function	of	the	sample	only,	and	one	that	is	a	function	merely	of
the	 parameter,	 b	 (θ).	 The	 property	 of	 exponential	 families	 to	 allow	 for	 this
separation	often	facilitates	further	use	of	the	log-likelihood	function	since	these
terms	can	be	discarded	under	certain	conditions.
	



Exponential	Family	of	the	Poisson	Distribution

	

We	 consider	 for	 our	 first	 illustration	 a	 Poisson	 random	 variable	 such	 as	 the
number	 of	 defaults	 per	 year	 in	 a	 portfolio	 of	 risky	 bonds.	 The	 log-likelihood
function	can	now	be	represented	as

so	that	we	obtain	for	the	exponential	family



Exponential	Family	of	the	Exponential	Distribution

	

Consider	 for	 our	 next	 illustration	 an	 exponential	 random	 variable	 such	 as	 the
interarrival	 time	between	 two	successive	defaults	 in	a	bond	portfolio.	With	 the
corresponding	log-likelihood	function

we	obtain	the	exponential	family	with



Exponential	Family	of	the	Normal	Distribution

	

As	our	final	illustration,	we	give	the	coefficients	of	the	exponential	family	of	the
normal	distribution.	With	the	log-likelihood	function

we	obtain

We	 see	 that	we	 have	 a	 parameter	with	 two	 components	 since	we	 have	 two
statistics	of	X,	namely	c1(X)	and	c2	(X)	.
	



Sufficiency

	

Let’s	focus	more	on	the	statistics	rather	than	the	estimator,	even	though	the	two
are	closely	related.	In	equation	(17.3),	we	defined	the	statistic	as	a	function	that
maps	 the	 samples	 to	 a	 k-dimensional	 real	 number.	 The	 dimension	 k	 usually
coincides	with	the	number	of	components	of	the	parameter	θ	and	the	cases	where
this	is	not	true	will	not	be	considered	here.

	
Our	 focus	 is	 on	 how	 the	 statistic	 processes	 the	 information	 given	 in	 the

sample.	 A	 statistic	 ought	 to	 maintain	 relevant	 information	 in	 a	 sample	 and
dispose	 of	 any	 information	 not	 helpful	 in	 inference	 about	 the	 parameter.	 For
example,	two	samples	with	observed	values	x	and	x*,	that	are	just	per-	(x1*,	x2*
x3*)	mutations	of	each	other	such	as	(x1,	x2,	x3)	=	(0.5,	0,	-1)	and	x1,x2,x3)	I	=	(
−1,	0.5,	0)	should	yield	the	same	value	of	the	statistic	t.	For	example,	we	should
obtain	t(0.5,	0,	−1)	=	t(	−1,	0.5,	0)	and	our	decision	with	respect	to	the	unknown
parameter	 value	 is	 identical	 in	 both	 cases.	 That	 is,	 the	 statistic	 reduces	 the
information	contained	in	the	sample	to	the	part	sufficient	for	the	estimation.
	 To	verify	whether	a	statistic	is	sufficient,	we	resort	 to	the	following	theorem
by	Neyman	and	Fisher

Factorization	Theorem:	Let	Y	be	a	random	variable	with	probability
distribution	governed	by	parameter	θ	of	one	or	more	components.
Moreover,	we	have	a	sample	X	=	(X1,	X2,	…,	Xn)	of	size	n	where	each	of	the
Xi	is	independently	drawn	from	the	population	of	Y	and	thus	identically
distributed	as	Y.	The	statistic	t	is	said	to	be	sufficient	if	we	can	factorize	the
probability	of	X=	x(Y	discrete)	or	density	function	of	X	evaluated	at	the
observation	x(Y	continuous)	into	two	terms	according	to
(17.25)
	

	 	



That	is,	due	to	the	sufficiency	of	t,	we	can	find	a	function	of	the	parameter	and
the	statistic,	g,	and	a	function	of	the	sample	value,	h.
Suppose	 that	 for	 some	observation	x,	 t(x)	=	c	where	c	 is	 some	 real	 number.

The	factorization	of	equation	(17.25)	can	then	be	interpreted	as	follows.	If	Y	is	a
discrete	random	variable,	the	probability	of	the	sample	X	assuming	value	x	can
be	 decomposed	 into	 the	 product	 of	 the	 probability	 g(θ,	 t(x))	 that	 the	 statistic
assumes	 value	 c	 where	 θ	 is	 the	 true	 parameter	 value,	 and	 the	 conditional
probability	 h(x)	 that	X	 =	 x	 given	 the	 value	 c	 of	 the	 statistic	 and	 parameter	 θ.
Now,	 when	 t	 is	 sufficient,	 the	 latter	 probability	 should	 not	 depend	 on	 the
parameter	 θ	 anymore	 since	 t	 was	 able	 to	 retrieve	 all	 essential	 information
concerning	θ	already,	and	the	only	additional	information	that	is	still	contained
in	 x	 compared	 to	 t(x)	 is	 irrelevant	 for	 the	 estimation	 of	 θ.	 Consequently,	 the
function	h	should	only	be	a	function	of	x.
	 In	many	 cases,	 the	 only	 additional	 information	 conveyed	 by	 x	 concerns	 the
order	 of	 appearance	 of	 the	 successively	 drawn	 values	 xi.	 Then,	 the	 function	 h
merely	assigns	probability	 to	 the	observed	order	of	appearance	(i.e.,	x1,	x2,	…,
xn)	relative	to	any	order	of	appearance	of	the	xi.

	
Estimators	based	on	sufficient	statistics	often	exhibit	positive	features	such	as

being	 unbiased,	 yield	minimal	 variance,	 have	 known	 probability	 distributions,
and	lead	to	optimal	tests.
	 The	importance	of	the	representation	of	the	exponential	family	of	distributions
may	 now	 be	 apparent.	 If	 we	 can	 give	 the	 exponential	 family	 of	 some
distribution,	 then	 the	Ci(X),	 i	 =	 1,	 2,	 …,	 k	 in	 representation	 (17.24)	 are	 the
sufficient	statistics	for	the	respective	parameter	θ.
	



Sufficient	Statistic	for	the	Parameter	λ	of	the	Poisson	Distribution

	

To	 illustrate,	 consider	 a	 Poisson	 random	 sample.	 A	 sufficient	 statistic	 for	 the
parameter	λ	is	then	given	by

as	 we	 see	 by	 its	 exponential	 family.	 An	 estimator	 for	 λ	 using	 this	 sufficient
statistic	is	the	well-known	sample	mean	 .
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CHAPTER	18
	

Confidence	Intervals
	

Portfolio	 managers	 and	 risk	 managers	 must	 monitor	 the	 behavior	 of	 certain
random	 variables	 such	 as	 the	 daily	 returns	 of	 the	 stocks	 contained	 in	 the
portfolio	 or	 the	 default	 rate	 of	 bonds	 comprising	 the	 bond	 portfolio	 under
management.	 In	 both	 cases,	 we	 need	 to	 know	 the	 population	 parameters
characterizing	 the	 respective	 random	 variable’s	 probability	 distribution.
However,	in	most	realistic	situations,	this	information	will	not	be	available.

	
In	the	previous	chapter,	we	dealt	with	this	problem	by	estimating	the	unknown

parameter	with	a	point	estimator	to	obtain	a	single	number	from	the	information
provided	by	a	 sample.	 It	will	be	highly	unlikely,	however,	 that	 this	estimate—
obtained	from	a	finite	sample—will	be	exactly	equal	to	the	population	parameter
value	 even	 if	 the	 estimator	 is	 consistent—a	 notion	 introduced	 in	 the	 previous
chapter.	 The	 reason	 is	 that	 estimates	most	 likely	 vary	 from	 sample	 to	 sample.
However,	for	any	realization,	we	do	not	know	by	how	much	the	estimate	will	be
off.
	 To	 overcome	 this	 uncertainty,	 one	might	 think	 of	 computing	 an	 interval	 or,
depending	on	the	dimensionality	of	the	parameter,	an	area	that	contains	the	true
parameter	with	high	probability.	That	 is,	we	 concentrate	 in	 this	 chapter	on	 the
construction	of	confidence	intervals.

	
We	begin	with	the	presentation	of	the	confidence	level.	This	will	be	essential

in	 order	 to	 understand	 the	 confidence	 interval	 that	 will	 be	 introduced
subsequently.	 We	 then	 present	 the	 probability	 of	 error	 in	 the	 context	 of
confidence	intervals,	which	is	related	to	the	confidence	level.	In	this	chapter,	we
identify	the	most	commonly	used	confidence	intervals.
	



CONFIDENCE	LEVEL	AND	CONFIDENCE	INTERVAL

	

We	begin	with	the	one-dimensional	parameter	θ.	As	in	the	previous	chapter,	we
will	let	Θ	denote	the	parameter	space;	that	is,	it	is	the	set	containing	all	possible
values	for	 the	parameter	of	 interest.	So,	for	 the	one-dimensional	parameter,	 the
parameter	space	is	a	subset	of	the	real	numbers	(i.e.,	Θ	⊆	R).	For	example,	the
parameter	 θ	 of	 the	 exponential	 distribution,	 denoted	Exp(θ),	 is	 a	 real	 number
greater	than	zero.

	
In	Chapter	 17,	we	 inferred	 the	 unknown	parameter	with	 a	 single	 estimate	 θ̂

∈Θ	.	The	likelihood	of	the	estimate	exactly	reproducing	the	true	parameter	value
may	be	negligible.	Instead,	by	estimating	an	interval,	which	we	may	denote	by
Iθ,	we	use	a	greater	portion	of	the	parameter	space,	that	is,	Iθ	⊂	Θ,	and	not	just	a
single	number.	This	may	increase	the	likelihood	that	the	true	parameter	is	one	of
the	many	values	included	in	the	interval.
	 If,	as	one	extreme	case,	we	select	as	an	interval	the	entire	parameter	space,	the
true	parameter	will	definitely	lie	inside	of	it.	Instead,	if	we	choose	our	interval	to
consist	 of	 one	 value	 only,	 the	 probability	 of	 this	 interval	 containing	 the	 true
value	approaches	zero	and	we	end	up	with	the	same	situation	as	with	the	point
estimator.	 So,	 there	 is	 a	 trade-off	 between	 a	 high	 probability	 of	 the	 interval	 Iθ
containing	 the	 true	parameter	value,	 achieved	 through	 increasing	 the	 interval’s
width,	and	the	precision	gained	by	a	very	narrow	interval.

	
As	 in	 Chapter	 17,	 we	 should	 use	 the	 information	 provided	 by	 the	 sample.

Hence,	it	should	be	reasonable	that	the	interval	bounds	depend	on	the	sample	in
some	 way.	 Then	 technically	 each	 interval	 bound	 is	 a	 function	 that	 maps	 the
sample	space,	denoted	by	X,	into	the	parameter	space	since	the	sample	is	some
outcome	in	the	sample	space	and	the	interval	bound	transforms	the	sample	into	a
value	in	the	parameter	space	representing	the	minimum	or	maximum	parameter
value	suggested	by	the	interval.
	 Formally,	let	l:	X	→	Θ	denote	the	lower	bound	and	u:	X	→	Θ	the	upper	bound
of	the	interval,	respectively.	Then,	for	some	particular	sample	outcome	x	=	(x1,



x2,	.	.	.,	xn),	the	interval	is	given	by	[l(x),	u(x)].	Naturally,	the	bounds	should	be
constructed	such	that	the	lower	bound	is	never	greater	than	the	upper	bound	for
any	 sample	 outcome	 x;	 that	 is,	 it	 is	 reasonable	 to	 require	 always	 that	 l(x)	 ≤
u(x).212
	 As	mentioned,	the	interval	depends	on	the	sample	X	=	(X1,	X2,	 .	 .	 .,	Xn),	and
since	 the	 sample	 is	 random,	 the	 interval	 [l(X),	 u(X)]	 is	 also	 random.	We	 can
derive	the	probability	of	the	interval	lying	beyond	the	true	parameter	(i.e.,	either
completely	 below	 or	 above)	 from	 the	 sample	 distribution.	 These	 two	 possible
errors	occur	exactly	if	either	u(x)	<	θ	orθ<l(x).
	 Our	objective	is	then	to	construct	an	interval	so	as	to	minimize	the	probability
of	these	errors	occurring.	That	is,

P(θ	∉[l(X),	u(X)])	=	P(θ	<	l(X))	+	P(u(X)	<	θ)
		

	Suppose	we	want	this	probability	of	error	to	be	equal	to	α.	For	example,	we	may
select	α	=	0.05	such	that	 in	5%	of	all	outcomes,	 the	true	parameter	will	not	be
covered	by	the	interval.	Let

pl	=	P	(θ	<	l	(	X	))	and	pu	=	P	(	u	(	X	)	<	θ)
		

	Then,	it	must	be	that

P	(θ	∉	[l	(	X	),	u	(	X	)]	)	=	pl	+	pu	=	α
		

	 Now	 let’s	 provide	 two	 important	 definitions:	 a	 confidence	 level	 and
confidence	interval.
	



Definition	of	a	Confidence	Level

	

For	some	parameter	θ,	let	the	probability	of	the	interval	not	containing	the	true
parameter	value	be	given	by	the	probability	of	error	α.	Then,	with	probability	1	-
α,	the	true	parameter	is	covered	by	the	interval	[l(X),	u(X)].	The	probability

P	(θ	∈	[l	(	X	)	,	u	(	X	)]	)	=	1	−	α
	

is	called	confidence	level.
	 It	may	not	be	possible	to	find	bounds	to	obtain	a	confidence	level	exactly.	We,
then,	simply	postulate	for	the	confidence	level	1	-	α	that

P	(θ	∈	[l	(	X	)	,	u	(	X	)])	≥	1	−	α
	

is	satisfied,	no	matter	what	the	value	θ	may	be.
	



Definition	and	Interpretation	of	a	Confidence	Interval

	

Given	 the	 definition	 of	 the	 confidence	 level,	we	 can	 refer	 to	 an	 interval	 [l(X),
u(X)]	as	1	-	α	confidence	interval	if

P	(θ	∈	[l	(	X	)	,	u	(	X	)]	)	=	1	−	α
	

holds	no	matter	what	 is	 the	 true	but	unknown	parameter	value	θ.	 (Note	 that	 if
equality	cannot	be	exactly	achieved,	we	take	the	smallest	interval	for	which	the
probability	is	greater	than	1	-	α.)
	 The	interpretation	of	the	confidence	interval	 is	 that	 if	we	draw	an	increasing
number	 of	 samples	 of	 constant	 size	 n	 and	 compute	 an	 interval,	 from	 each
sample,	1	-	α	of	all	intervals	will	eventually	contain	the	true	parameter	value	θ.

	
As	 we	 will	 see	 in	 the	 examples,	 the	 bounds	 of	 the	 confidence	 interval	 are

often	determined	by	some	standardized	 random	variable	composed	of	both	 the
parameter	 and	 point	 estimator,	 and	whose	 distribution	 is	 known.	 Furthermore,
for	a	symmetric	density	function	such	as	that	of	the	normal	distribution,	it	can	be
shown	that	with	given	α,	 the	confidence	 interval	 is	 the	 tightest	 if	we	have	pl	=
α/2	and	pu	=	α/2	with	pl	and	pu	as	defined	before.	That	corresponds	to	bounds	l
and	u	with	distributions	that	are	symmetric	to	each	other	with	respect	to	the	the
true	parameter	θ.	This	is	an	important	property	of	a	confidence	interval	since	we
seek	to	obtain	the	maximum	precision	possible	for	a	particular	confidence	level.
	 Often	 in	discussions	of	 confidence	 intervals	 the	 statement	 is	made	 that	with
probability	 1	 -	 α,	 the	 parameter	 falls	 inside	 of	 the	 confidence	 interval	 and	 is
outside	with	probability	α.	This	interpretation	can	be	misleading	in	that	one	may
assume	that	the	parameter	is	a	random	variable.	Recall	that	only	the	confidence
interval	bounds	are	random.	The	position	of	the	confidence	interval	depends	on
the	outcome	x.	By	design,	as	we	have	just	shown,	the	interval	is	such	that	in	(1	-
α)	×	100%	of	all	outcomes,	 the	 interval	contains	 the	 true	parameter	and	in	α	×
100%,	it	does	not	cover	the	true	parameter	value.

	



The	parameter	 is	 invariant,	 only	 the	 interval	 is	 random.	We	 illustrate	 this	 in
Figure	 18.1.	 In	 the	 graphic,	 we	 display	 the	 confidence	 intervals	 [l(1),	 u(1)]
through	[l(5),	u(5)]	as	results	of	the	five	sample	realizations	x(1)	=	(	x(1)	1	,	xn	(1)	,
…,	xn	(1)	)	through	x	(1)	=	(	x1	(5)	,	xn	(5)	,…,	xn	.	(5)	)	As	we	can	see,	only	the
first	 two	 confidence	 intervals,	 that	 is,	 [l(1),	 u(1)]	 and	 [l(2),	 u(2)],	 contain	 the
parameter	θ.	The	remaining	three	are	either	above	or	below	θ.
	



CONFIDENCE	INTERVAL	FOR	THE	MEAN	OF	A	NORMAL
RANDOM	VARIABLE

	

Let	 us	 begin	with	 the	 normal	 random	 variable	Y	 with	 known	 variance	 σ2	 but
whose	 mean	 µ	 is	 unknown.	 For	 the	 inference	 process,	 we	 draw	 a	 sample	 of
independent	X1	,	X2	,	.	.	.,	Xn	observations	that	are	all	identically	distributed	as	Y.
Now,	 a	 sufficient	 and	 unbiased	 estimator	 for	µ	 is	 given	 by	 the	 sample	mean,
which	is	distributed	as

	If	we	standardize	the	sample	mean,	we	obtain	the	standard	normally	distributed
random	variable

	FIGURE	 18.1	 Five	 Realizations	 of	 Confidence	 Intervals	 of	 Equal	 Width	 for
Parameter	θ
	

For	this	Z,	it	is	true	that



where	 q	 and	 q	 are	 the	 α/2	 and	 1	 -	 α/2	 quantiles	 of	 the	 standard	 normal
distribution,	 respectively.	 Due	 to	 the	 symmetry	 of	 the	 standard	 normal
distribution,	 the	 third	 equation	 follows	 and	 we	 have	 the	 identity	 qα/2	 =	 q1-α/2
from	which	we	obtain	the	second-to-the-last	equation	above.	The	resulting	1	-	α
confidence	interval	for	µ	is	then	given	as
(18.1)
	

For	example,	suppose	we	are	interested	in	a	1	-	α	=	0.95	confidence	interval
for	 the	mean	 parameter	µ	 of	 the	 daily	 stock	 returns	 of	 General	 Electric	 (GE)
observed	between	April	24,	1980	and	March	30,	2009	(7,300	observations)	with
known	 variance	 σ213	 =	 0.00031.213	 The	 proper	 quantiles	 to	 use	 are	 q0.025	 =	 -
q0.975	=	-1.96	and	q0.975	=	1.96.	The	sample	mean	of	the	n	=	7,300	observations
is	x	=	0.0003	.	Consequently,	the	confidence	interval	can	be	specified	as

CI1:	I0.95	=	[-0.0001,	0.0007]
		

	We	have	labeled	this	confidence	interval	CI1	so	that	we	can	refer	to	it	later	when
we	construct	other	confidence	intervals.

	
CI1	tells	us	that	for	any	parameter	value	inside	of	it,	a	sample	mean	of	0.0003

of	 the	 daily	 GE	 stock	 returns	 is	 reasonably	 close	 such	 that	 it	 is	 a	 plausible
realization	 at	 the	 0.95	 confidence	 level.	Note	 that	 the	width	 of	 this	 interval	 is
0.0008.
	 Suppose	we	had	only	used	1,000	observations	rather	than	7,300	observations



and	 everything	 else	 is	 the	 same.	 Then,	 the	 corresponding	 confidence	 interval
would	be

CI2:	I0.95	=	[-0.0008,	0.0014]
	

CI2	 has	 a	width	 of	 0.0022,	making	 it	wider	 than	CI1	 by	 a	 factor	 of	 2.75.	We
see	that	increasing	the	sample	size	reduces	the	interval	width,	leading	to	higher
precision	given	that	everything	else	remains	unchanged	including	the	confidence
level.	This	is	a	result	of	the	consistency	of	the	sample	mean.
	 Note	that	if	the	data	are	not	truly	normal,	we	can	still	apply	equation	(18.1)	for
µ	if	σ213	is	known.	This	is	the	result	of	the	Central	Limit	Theorem	discussed	in
Chapter	 11.	 If	we	drop	 the	 assumption	of	 normally	distributed	daily	GE	 stock
returns,	we	 still	 use	 the	 same	confidence	 interval	 since	 the	 sample	 size	of	n	 =
7,300	is	sufficiently	large	to	justify	the	use	of	the	normal	distribution.
	 Now	let’s	construct	an	asymmetric	confidence	interval	for	the	same	data	as	in
the	 previous	 illustration.	 Suppose	 we	 preferred	 to	 obtain	 the	 interval’s	 lower
bound	by

because	of	 the	requirement	P(µ	<	 l(X))	=	α/4.	Consequently,	we	obtain	P	 (µ	 <
u(X))	=	1	−	3α/	4	resulting	in	an	upper	bound	of

Again,	 α	 =	 0.05,	 so	 that	 we	 obtain	 q0.0125=	 -2.2414,and	 q0.9625=	 1.7805.	 The
confidence	 interval	 is	 now	 equal	 to	 [-0.00070.000660],	 yielding	 a	 width	 of
0.00083,	which	is	slightly	larger	than	0.0008.	This	is	due	to	the	fact	that,	for	any
given	confidence	level	and	random	variable	with	symmetric	density	function	and
unimodal	 distribution,	 the	 confidence	 interval	 is	 the	 smallest	 when	 the
probability	of	error	is	attributed	symmetrically	(i.e.,	when	the	probability	of	the
interval	 being	 located	 below	 the	 parameter	 value	 is	 the	 same	 as	 that	 of	 the
interval	being	positioned	beyond	the	parameter	value).



CONFIDENCE	INTERVAL	FOR	THE	MEAN	OF	A	NORMAL
RANDOM	VARIABLE	WITH	UNKNOWN	VARIANCE

	

Let’s	once	again	construct	a	confidence	interval	for	a	normal	random	variable	Y
but	this	time	we	assume	that	the	variance	(σ2)	is	unknown	as	well.	As	before,	we
draw	a	sample	of	size	n	from	which	the	sample	mean	x̄	is	computed.	We	obtain
the	new	standardized	random	variable	by	(1)	subtracting	the	mean	parameter	µ,
even	 though	unknown,	 (2)	multiplying	 this	difference	by	√n	 ,	 and	 (3)	dividing
the	result	by	the	square	root	of	the	bias	corrected	sample	variance	from	Chapter
17.	That	is,	the	new	standardized	random	variable	is
(18.2)
	

where

is	the	biased	corrected	sample	variance.
The	new	standardized	random	variable	given	by	equation	(18.2)	is	Student’s	t-

distributed	with	n	−	1	degrees	of	freedom.214	Therefore,	we	can	state	that
(18.3)
	

	The	quantities

t 	(	n	−	1)	and	t 	(	n	−	1)	t 	(n-1)	and	t 	(n-1)
	

are	 the	 α/2-and	 1	 -	 α/2-quantites	 of	 the	 Student’s	 t-distribution	 with	 n	 -	 1
degrees	of	freedom,	respectively.	using	the	definition	(18.2)	 in	equation	(18.3),
as	follows



where	 we	 have	 taken	 advantage	 of	 the	 symmetry	 of	 the	 Student’s	 t-
distribution,	 in	 the	 third	 and	 fifth	 equations	 above,	 we	 obtain	 as	 the	 1	 -	 α
confidence	interval	for	the	mean	parameter	µ
(18.4)
	

Let’s	 return	 to	our	 illustration	 involving	 the	daily	GE	stock	 returns	between
April	24,	1980	and	March	30,	2009.	We	assumed	 the	daily	stock	 returns	 to	be
normally	distributed.	Once	again	let’s	select	a	confidence	level	of	1	-	α	=	0.95.
Therefore,	the	corresponding	quantiles	of	the	Student’s	t-distribution	with	7,299
degrees	of	freedom	are	given	as

t 	(	n	−	1)	=	−1.9603	and	t 	(	n	−	1)	=	1.9603	t (n-1)	=	-1.9603	and	t
(n-1)	=	1.9603

		
	Given	the	sample	mean	of	0.0003	computed	earlier,	the	0.95	confidence	interval
becomes

CI3:	I0.95	=	[-0.00017,	0.0007]
		

	 The	width	of	this	interval	is	equal	to	0.00083	and	is	basically	as	wide	as	that
obtained	 in	CI1	 in	 the	previous	 illustration	when	 the	variance	was	known.	For
7,299	 degrees	 of	 freedom,	 the	 Student’s	 t-distribution	 is	 virtually
indistinguishable	 from	 the	 standard	 normal	 distribution	 and,	 hence,	 their
confidence	intervals	coincide.



	
Recall	 that	 the	 degrees	 of	 freedom	 express	 the	 number	 of	 independent

drawings	 of	 the	 sample	 of	 size	 n	 we	 have	 left	 for	 the	 estimation	 of	 the	 bias-
corrected	sample	variance	s*2	 after	 the	 independence	of	one	variable	 is	 lost	 in
the	 computation	 of	 x̄.	 So,	 technically,	 the	 confidence	 interval	 given	 by	CI3	 is
slightly	 wider	 than	 CI1	 when	 σ2	 is	 known.	 This	 is	 due	 to	 the	 additional
uncertainty	stemming	from	the	estimation	of	s*2.	However,	the	difference	as	we
can	see	from	our	two	illustrations	is	small	(given	the	precision	of	five	digits).
	



CONFIDENCE	 INTERVAL	 FOR	 THE	 VARIANCE	 OF	 A
NORMAL	RANDOM	VARIABLE

	

In	 our	 next	 illustration,	 we	 construct	 a	 confidence	 interval	 for	 the	 variance
parameter	σ2	of	a	normal	random	variable	Y	given	that	the	mean	parameter	µ	is
known	to	be	0.0003.	Again,	we	consider	drawing	a	sample	X	=	(X1,	X2,	...,	Xn)	to
base	our	 inference	on.	Recall	 from	Chapter	11	 that	 if	 the	 random	variables	X1,
X2,	 ...,	Xn	 are	 independently	 and	 identically	 distributed	 as	 the	 normal	 random
variable	Y,	that	is,	Xi	~	N	(µ,	σ	2	),	then	the	sum
(18.5)
	

	 That	 is,	 the	 sum	of	 the	 squared	 standard	normal	observations	 follows	a	 chi-
square	distribution	with	n	degrees	of	freedom.	Note	that	for	equation	(18.5)	we
used	the	variance	σ2	even	though	it	is	unknown.	In	Figure	18.2,	we	display	the
probability	density	function	as	well	as	the	α/2-and	1	-	α/2-quantiles,

x² (n)	and	x² 	(n)	x² 	(	n	)	and	x² (	n	)
	

of	 the	 distribution	 of	 equation	 (18.5).	 The	 corresponding	 tail	 probabilities	 of
α/2	on	either	end	of	the	density	function	are	indicated	by	the	gray	shaded	areas.
	 We	can	now	see	that	the	density	function	of	the	random	variable	in	equation
(18.5)	 is	 skewed	 to	 the	 right.	 Consequently,	 it	 is	 not	 a	 mandatory	 step	 to
construct	a	confidence	 interval	such	 that	 the	probability	of	error	α	 is	attributed
symmetrically,	as	was	the	case	in	our	the	previous	illustrations,	in	order	to	obtain
the	smallest	confidence	intervals	for	a	given	confidence	level	of	1	-	α.	In	general,
the	smallest	confidence	interval	for	σ2	given	a	confidence	level	1	-	α	will	result
in	an	asymmetric	attribution	of	the	probability	of	error.	Thus,	the	probability	that
the	interval	will	be	located	below	the	parameter	will	not	equal	that	of	the	interval
overestimating	the	parameter.	However,	it	is	standard	to	construct	the	confidence
intervals	 analogous	 to	 the	 case	 where	 the	 standardized	 random	 variable	 has	 a



symmetric	unimodal	distribution	(i.e.,	 symmetric	distribution	of	 the	probability
of	 error)	because	 it	 is	 intuitively	appealing.	So,	we	begin	with	 the	 situation	of
equal	tails	as	displayed	in	Figure	18.2.	That	 is,	we	consider	 the	values	 that	 the
random	variable

either	falls	short	of	or	exceeds	with	probability	α/2	each.	This	yields

where	 in	 the	 second	 equation	 we	 simply	 inverted	 the	 inequalities.	 Thus,	 we
obtain	 as	 1	 -	 α	 confidence	 interval	 for	 the	 variance	 parameter	 σ2	 of	 a	 normal
random	variable
(18.6)
	

FIGURE	 18.2	 Position	 of	 α/2	 and	 1	 -	 α/2-Quantiles	 of	 the	 Chi-Square
Distribution	with	n	Degrees	of	Freedom	of	the	Random	Variable

	



With	 our	 normally	 distributed	 daily	 GE	 stock	 returns	 from	 the	 previous
examples,	the	random	variable

is	chi-square	distributed	with	7,300	degrees	of	freedom.	Moreover,

Setting	 1	 -	 α	 =	 0.95,	 we	 have	 χ20.025	 (7300)	 =	 7065.1	 and	 χ²0.975	 (7300)	 =
7538.7,	 and	consequently	 from	equation	(18.6),	we	 obtain	 the	 0.95	 confidence
interval	for	σ2	by

CI4:	I0.95	=	[0.00030,	0.00032]
		

So,	given	the	mean	parameter	μ	=	0.0003,	for	any	variance	parameter	between
0.00030	and	0.00032	for	the	daily	GE	stock	returns,	the	observed

is	 a	 plausible	 result	 at	 the	 1	 -	 α	 confidence	 level.	Note	 that	 the	 value	 of	 σ2	=
0.0003—or,	 using	 five	 digits,	 σ2	 =	 0.00031—we	 assumed	 known	 in	 previous
illustrations,	is	included	by	this	interval.215



CONFIDENCE	 INTERVAL	 FOR	 THE	 VARIANCE	 OF	 A
NORMAL	RANDOM	VARIABLE	WITH	UNKNOWN	MEAN

	

For	our	next	 illustration,	 let	us	again	consider	 the	construction	of	a	confidence
interval	for	the	variance	parameter	σ2	of	a	normal	random	variable,	but	this	time
we	assume	that	the	mean	parameter	µ	is	not	known.	We	can	use	the	same	data	as
before.	However,	instead	of	equation	(18.5),	we	use
(18.7)
	

	 The	random	variable	given	by	equation	(18.7)	has	one	degree	of	freedom	less
due	 to	 the	computation	of	 the	sample	mean	X	as	estimator	 for	µ.	Besides	 that,
however,	this	standardized	random	variable	resembles	the	one	used	for	the	case
of	known	µ	given	by	equation	(18.5).	Therefore,	we	use	 the	same	construction
for	 the	 confidence	 interval	 for	 σ2	 as	 when	µ	 is	 known.	 The	 α/2-and	 1	 -	 α/2-
quantiles,	of	course,	have	to	be	taken	from	the	chi-square	distribution	with	n	-	1
degrees	of	freedom.	Then,	the	1	-	α/2	confidence	interval	becomes
(18.8)
	

	Suppose	once	again	we	are	interested	in	a	confidence	interval	for	the	variance
parameter	 σ2	 of	 the	 normally	 distributed	 daily	GE	 stock	 returns.	 Let	 us	 again
select	 as	 the	 confidence	 level	 1	 -	 α	 =	 0.95	 such	 that	 α/2	 =	 0.025.	 The
corresponding	quantiles	are	given	by

respectively.	With

we	obtain	from	equation	(18.8)	the	0.95	confidence	interval



CI5:	I0.95	=	[0.00030,	0.00032]
	

which	equals	that	given	by	CI4,	at	least	when	rounded	to	five	digits.	This	is	to
be	 expected	 since	 the	 χ2(n	 -	 1)	 and	 χ2(n)	 distributions	 are	 very	 similar.216
Moreover,	 we	 know	 that	 x̄	 is	 a	 consistent	 estimator	 for	µ	 and,	 for	 7,300
observations,	most	likely	very	close	to	µ.	Thus,	the	two	confidence	intervals	are
virtually	constructed	from	the	same	data.
TABLE	18.1	Confidence	Intervals	for	the	Parameters	of	a	Normal	Distribution
	

A	 summary	 of	 the	 confidence	 intervals	 for	 the	 parameters	 of	 a	 normal
distribution	is	given	by	Table	18.1.
	



CONFIDENCE	 INTERVAL	 FOR	 THE	 PARAMETER	 P	 OF	 A
BINOMIAL	DISTRIBUTION

	

In	our	next	illustration,	we	revisit	the	binomial	stock	price	model	we	introduced
in	Chapters	8	and	9.	Recall	that,	in	period	t	+	1,	the	stock	price	St	ei-S	µt+1	d	ther
goes	 up	 to	 Sµt+1	 or	 down	 to	 Sdt+1	 .	 The	 Bernoulli	 random	 variable	 Y	 ~	B(p)
expresses	whether	an	up-movement,	that	is,	Y	=	1,	or	a	down-movement,	that	is,
Y	=	0,	has	occurred.217
	 Suppose	the	parameter	p	that	expresses	the	probability	of	an	up-movement	is
unknown.	 Therefore,	 we	 draw	 a	 sample	 (X1,	 X2,	 ...,	 Xn)	 of	 n	 independent
Bernoulli	random	variables	with	parameter	p.	So	if	the	stock	price	moves	up	in
period	i	we	have	Xi	=	1,	but	 if	 the	stock	price	moves	down	in	 the	same	period
then,	Xi	=	0.	As	an	estimator	for	p,	we	have	the	unbiased	sample	mean	x̄.
	 Since	 Xi	 ~	 B(p),	 the	 mean	 and	 variance	 are	 equal	 to	 p	 and	 p	 ·	 (1	 -	 p),
respectively.	Furthermore,	the	sufficient	statistic

is	B(n,p)	distributed	such	that	it	has	mean	n	·	p	and	variance	n	 ·	p	 ·	 (1	 -	p).218
Then,	the	mean	and	variance	of

are	p	and

respectively.
For	 a	 sample	 size	 n	 sufficiently	 large,	 by	 the	 Central	 Limit	 Theorem,	 the

sample	mean	x̄	is	approximately	normally	distributed;	in	particular,

Since	 the	parameter	p	 is	unknown,	 so	 is	 the	variance	and	 therefore	we	 instead
use	the	estimator



where	 	is	used	as	an	estimator	for	p.219	The	random	variable

that	we	will	 use	 is	 approximately	 standard	 normally	 distributed.	Analogous	 to
equation	 (18.1),	 the	 appropriate	 (1	 -	 α)-confidence	 interval	 for	 the	 mean
parameter	p	is	given	by
(18.9)
	

Note	that	we	do	not	use	the	confidence	interval	given	by	equation	(18.4)	 for
the	mean	parameter	of	normal	random	variables	when	the	variance	is	unknown.
The	reason	is	that	even	for	large	sample	sizes,	 	is	only	approximately	normally
distributed	while,	theoretically,	equation	(18.4)	is	designed	for	random	variables
following	 the	 normal	 law	 exactly.	 Ignoring	 this	 would	 lead	 to	 additional
imprecision.
	 Now,	suppose	we	had	observed	x	=	(1,	1,	1,	0,	0,	1,	0,	0,	0,	1)	such	that	n	=	10.
Then,	x̅	=	0.5	and

	Consequently,	from	equation	(18.9),	we	obtain	the	0.95	confidence	interval

CI6:	I0.95	=	[0.1901,	0.8099]
		

	As	 a	 consequence,	 any	 value	 between	 0.1901	 and	 0.8099	 provides	 a	 plausible
population	parameter	p	to	generate	the	sample	x	at	the	0.95	confidence	level.
	



CONFIDENCE	INTERVAL	FOR	THE	PARAMETER	λ	OF	AN
EXPONENTIAL	DISTRIBUTION

	

Now	consider	an	exponential	 random	variable	Y	with	parameter	λ,	 that	 is,	Y	~
Exp(λ).220	For	the	construction	of	a	confidence	interval	for	parameter	λ,	 it	will
be	 helpful	 to	 look	 for	 a	 standardized	 random	variable	 as	we	 have	 done	 in	 the
previous	 illustrations.	 Multiplying	 the	 random	 variable	 Y	 by	 the	 parameter	 λ
yields	a	standard	exponential	random	variable

λ	·	Y	~	Exp(1)
		

	This	is	true	since

	 Next,	we	obtain	a	sample	X	=	(X1,	X2,	.	.	.,	Xn)	of	n	independent	and	identical
drawings	 from	an	Exp(λ)	 distribution.	Then,	 theλ·Xi	 are	n	 independent	Exp(1)
random	variables	and,	thus,

	That	 is,	 by	 summation	 of	 the	 n	 independent	 standard	 exponential	 random
variables,	we	have	 created	 an	Erlang	 random	variable	with	parameter	 (1,n).221
For	the	construction	of	the	confidence	interval,	we	have	to	bear	in	mind	that	the
Erlang	distribution	(1)	has	positive	density	only	on	the	nonnegative	real	numbers
and	 (2)	 is	 skewed	 to	 the	 right.	 So,	 by	 convention,	 we	 design	 the	 confidence
interval	 such	 that	 the	 probability	 of	 error	 is	 divided	 equally	 between	 the
probability	of	the	interval	being	below	the	parameter	as	well	as	the	probability	of
the	interval	exceeding	it.	That	is,	we	created	the	probability	of	error	from	equal
tails.222	Therefore,	from



we	obtain	as	1	-	α	confidence	interval
(18.10)
	

where

(n)	and	 (n)
		 	

are	the	α/2	and	1	-	α/2-quantiles	of	the	Erlang	distribution,	respectively.
Suppose	 we	 are	 interested	 in	 the	 interarrival	 times	 between	 defaults	 in	 the

bond	portfolio	we	analyzed	in	Chapter	9.	The	(corrected)	sample	is	reproduced
below	where	we	have	displayed	the	average	interarrival	times	(in	years)	between
two	successive	defaults	for	the	last	20	years:

	If	we	let	1	−	α	=	0.95,	then	we	have	e0.025(20)	=	0.5064	and
	

Moreover,	we	compute

	 using	equation	(18.10),	we	obtain	as	the	0.95	confidence	interval	for	λ

CI7:	I0.95	=	[0.0557,	8.1119]
		

	So,	for	any	parameter	value	λ	between	0.0557	and	8.1119,	the	outcome	9.0950



of	our	statistic

is	 not	 too	 extreme	 at	 the	 0.95	 confidence	 level.	 Notice	 that	 the	 maximum
likelihood	estimate	 =	2.1991	from	Chapter	17	lies	inside	the	interval.



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Confidence	level	
Confidence	interval	
Equal	tails
	



CHAPTER	19
	

Hypothesis	Testing
	

Thus	far	in	this	book,	inference	on	some	unknown	parameter	meant	that	we	had
no	knowledge	of	its	value	and	therefore	we	had	to	obtain	an	estimate.	This	could
either	 be	 a	 single	 point	 estimate	 or	 an	 entire	 confidence	 interval.	 However,
sometimes,	one	already	has	 some	 idea	of	 the	value	a	parameter	might	have	or
used	 to	 have.	 Thus,	 it	 might	 not	 be	 important	 for	 a	 portfolio	 manager,	 risk
manager,	 or	 financial	 manager	 to	 obtain	 a	 particular	 single	 value	 or	 range	 of
values	for	the	parameter,	but	instead	gain	sufficient	information	to	conclude	that
the	 parameter	more	 likely	 either	 belongs	 to	 a	 particular	 part	 of	 the	 parameter
space	or	not.	So,	instead	we	need	to	obtain	information	to	verify	whether	some
assumption	concerning	the	parameter	can	be	supported	or	has	to	be	rejected.

	
This	brings	us	to	the	field	of	hypothesis	testing.	Next	to	parameter	estimation

that	we	covered	in	Chapters	17	and	18,	it	constitutes	the	other	important	part	of
statistical	 inference;	 that	 is,	 the	 procedure	 for	 gaining	 information	 about	 some
parameter.	To	see	its	importance,	consider,	for	example,	a	portfolio	manager	who
might	 have	 in	mind	 a	 historical	 value	 such	 as	 the	 expected	 value	 of	 the	 daily
return	 of	 the	 portfolio	 under	 management	 and	 seeks	 to	 verify	 whether	 the
expected	value	can	be	supported.	It	might	be	that	if	 the	parameter	belongs	to	a
particular	set	of	values,	the	portfolio	manager	incurs	extensive	losses.
	 In	 this	chapter,	we	 learn	how	 to	perform	hypothesis	 testing.	To	do	 this,	 it	 is
essential	to	express	the	competing	statements	about	the	value	of	a	parameter	as
hypotheses.	To	 test	 for	 these,	we	develop	a	 test	statistic	 for	which	we	set	up	a
decision	rule.	For	a	specific	sample,	this	test	statistic	then	either	assumes	a	value
in	the	acceptance	region	or	the	rejection	region,	regions	that	we	describe	in	this
chapter.	Furthermore,	we	see	the	two	error	types	one	can	incur	when	testing.	We
see	that	the	hypothesis	test	structure	allows	one	to	control	the	probability	of	error
through	what	we	see	 to	be	 the	 test	 size	or	 significance	 level.	We	discover	 that
each	observation	has	a	certain	p-value	expressing	 its	significance.	As	a	quality
criterion	 of	 a	 test,	 we	 introduce	 the	 power	 from	 which	 the	 uniformly	 most
powerful	 test	 can	 be	 defined.	 Furthermore,	 we	 learn	 what	 is	 meant	 by	 an



unbiased	 test—unbiasedness	 provides	 another	 important	 quality	 criterion—as
well	as	whether	a	test	is	consistent.	We	conclude	with	a	set	of	examples	intended
to	illustrate	the	issues	discussed	in	the	chapter.
	



HYPOTHESES

	

Before	being	able	to	test	anything,	we	need	to	express	clearly	what	we	intend	to
achieve	 with	 the	 help	 of	 the	 test.	 For	 this	 task,	 it	 is	 essential	 that	 we
unambiguously	 formulate	 the	 possible	 outcomes	 of	 the	 test.	 In	 the	 realm	 of
hypothesis	 testing,	 we	 have	 two	 competing	 statements	 to	 decide	 upon.	 These
statements	are	the	hypotheses	of	the	test.
	



Setting	Up	the	Hypotheses

	

Since	in	statistical	inference	we	intend	to	gain	information	about	some	unknown
parameter	θ,	the	possible	results	of	the	test	should	refer	to	the	parameter	space	Θ
containing	 all	 possible	 values	 that	 θ	 can	 assume.	More	 precisely,	 to	 form	 the
hypotheses,	we	divide	the	parameter	space	into	two	disjoint	sets	Θ0	and	Θ1	such
that	Θ	=	Θ0	∪	Θ1.	We	assume	that	the	unknown	parameter	is	either	in	Θ0	or	Θ1
since	it	cannot	simultaneously	be	in	both.	usually,	the	two	alternative	parameter
sets	 either	 divide	 the	 parameter	 space	 into	 two	 disjoint	 intervals	 or	 regions
(depending	 on	 the	 dimensionality	 of	 the	 parameter),	 or	 they	 contrast	 a	 single
value	with	any	other	value	from	the	parameter	space.

	
Now,	with	each	of	 the	 two	subsets	Θ0	and	Θ1,	we	associate	a	hypothesis.	 In

the	 following	 two	 definitions,	 we	 present	 the	 most	 commonly	 applied
denominations	for	the	hypotheses.
	

Null	hypothesis:	The	null	hypothesis,	denoted	by	H0,	states	that	the
parameter	θ	is	in	Θ0.
		

The	null	hypothesis	may	be	interpreted	as	the	assumption	to	be	maintained	if	we
do	not	find	ample	evidence	against	it.

	

Alternative	hypothesis:	The	alternative	hypothesis,	denoted	by	H1,	is	the
statement	that	the	parameter	θ	is	in	Θ1.
		

We	have	to	be	aware	that	only	one	hypothesis	can	hold	and,	hence,	the	outcome
of	our	 test	 should	only	 support	 one.	We	will	 return	 to	 this	 later	 in	 the	 chapter
when	we	discuss	the	test	in	more	detail.
	FIGURE	19.1	Null	Hypothesis	H0:	λ	≤	1	versus	Alternative	Hypothesis	H1:	λ	>
1	for	Parameter	λ	of	the	Exponential	Distribution



	

When	we	 test	 for	 a	 parameter	 or	 a	 single	 parameter	 component,	we	 usually
encounter	the	following	two	constructions	of	hypothesis	tests.

	
In	the	first	construction,	we	split	the	parameter	space	Θ	into	a	lower	half	up	to

some	boundary	value	θ̃	and	an	upper	half	extending	beyond	this	boundary	value.
Then,	we	 set	 the	 lower	half	 either	 equal	 to	Θ0	 or	Θ1.	Consequently,	 the	upper
half	 becomes	 the	 counterpart	Θ1	 or	Θ0,	 respectively.	The	 boundary	 value	 θ̃	 is
usually	added	to	Θ0	;	that	is,	it	is	the	set	valid	under	the	null	hypothesis.	Such	a
test	is	referred	to	as	a	one-tailed	test.
	 In	 the	 second	 construction,	 we	 test	 whether	 some	 parameter	 is	 equal	 to	 a
particular	value	or	not.	Accordingly,	 the	parameter	space	 is	once	again	divided
into	two	sets	Θ0	and	Θ1.	But	this	time,	Θ0	consists	of	only	one	value	(i.e.,	Θ	=	θ̃)
while	 the	 set	 Θ1,	 corresponding	 to	 the	 alternative	 hypothesis,	 is	 equal	 to	 the
parameter	space	less	the	value	belonging	to	the	null	hypothesis	(i.e.,	Θ1	=	Θ\θ̃).
This	version	of	a	hypothesis	test	is	termed	a	two-tailed	test.

	
At	 this	 point,	 let’s	 consider	 as	 an	 example	 the	 exponential	 distribution	with

parameter	 λ.	 We	 know	 that	 the	 parameter	 space	 is	 the	 set	 of	 positive	 real
numbers	(i.e.,	Θ	=	(0,∞)).	Suppose	we	were	interested	in	whether	λ	is,	at	most,	1
or	greater.	So,	our	corresponding	sets	should	be	Θ0	=	(0,1]	and	Θ1	=	(1,∞)	with
associated	 hypotheses	 H0:	 λ	 ≤	 1	 and	 H1:	 λ	 >	 1,	 respectively.223	 This	 is	 an
example	of	a	one-tailed	test.	We	demonstrate	this	in	Figure	19.1.
	



Decision	Rule

	

The	task	of	hypothesis	testing	is	to	make	a	decision	about	these	hypotheses.	So,
we	either	cannot	reject	the	null	hypothesis	and,	consequently,	have	to	reject	the
alternative	hypothesis,	or	we	reject	the	null	hypothesis	and	decide	in	favor	of	the
alternative	hypothesis.

	
A	hypothesis	test	is	designed	such	that	the	null	hypothesis	is	maintained	until

evidence	provided	by	the	sample	is	so	strong	that	we	have	to	decide	against	it.
This	leads	us	to	the	two	common	ways	of	using	the	test.
	 With	the	first	application,	we	simply	want	to	find	out	whether	a	situation	that
we	deemed	correct	actually	is	true.	Thus,	the	situation	under	the	null	hypothesis
is	considered	the	status	quo	or	the	experience	that	is	held	on	to	until	the	support
given	by	the	sample	in	favor	of	the	alternative	hypothesis	is	too	strong	to	sustain
the	null	hypothesis	any	longer.

	
The	 alternative	 use	 of	 the	 hypothesis	 test	 is	 to	 try	 to	 promote	 a	 concept

formulated	by	the	alternative	hypothesis	by	finding	sufficient	evidence	in	favor
of	 it,	 rendering	 it	 the	 more	 credible	 of	 the	 two	 hypotheses.	 In	 this	 second
approach,	 the	 aim	 of	 the	 tester	 is	 to	 reject	 the	 null	 hypothesis	 because	 the
situation	under	the	alternative	hypothesis	is	more	favorable.
	 In	 the	 realm	 of	 hypothesis	 testing,	 the	 decision	 is	 generally	 regarded	 as	 the
process	 of	 following	 certain	 rules.	 We	 denote	 our	 decision	 rule	 by	 δ.	 The
decision	 δ	 is	 designed	 to	 either	 assume	 value	 d0	 or	 value	 d1.	 Depending	 on
which	way	we	are	using	the	test,	the	meaning	of	these	two	values	is	as	follows.
In	 the	 first	 case,	 the	 value	 d0	 expresses	 that	 we	 hold	 on	 to	 H0	 while	 the
contrarian	value	d1	expresses	that	we	reject	H0.	In	the	second	case,	we	interpret
d0	 as	 being	 undecided	with	 respect	 to	H0	 and	H1	 and	 that	 proof	 is	 not	 strong
enough	in	favor	of	H1.	On	the	other	hand,	by	d1,	we	indicate	that	we	reject	H0	in
favor	of	H1.



	
In	general,	d1	can	be	interpreted	as	the	result	we	obtain	from	the	decision	rule

when	the	sample	outcome	is	highly	unreasonable	under	the	null	hypothesis.
	 So,	what	makes	us	come	up	with	either	d0	or	d1?	As	in	the	previous	chapters,
we	 infer	 by	 first	 drawing	 a	 sample	 of	 some	 size	n,	X	 =	 (X1,	X2,	…,	Xn).	 Our
decision	 then	 should	 be	 based	 on	 this	 sample.	 That	 is,	 it	 would	 be	 wise	 to
include	 in	 our	 decision	 rule	 the	 sample	 X	 such	 that	 the	 decision	 becomes	 a
function	of	 the	sample,	 (i.e.,	δ(X)).	Then,	δ(X)	 is	 a	 random	variable	due	 to	 the
randomness	of	X.	A	reasonable	step	would	be	to	link	our	test	δ(X)	to	a	statistic,
denoted	by	t(X),	that	itself	is	related	or	equal	to	an	estimator	θ̂	for	the	parameter
of	interest	θ.	Such	estimators	have	been	introduced	in	Chapter	17.

	
From	 now	 on,	 we	 will	 assume	 that	 our	 test	 rule	 δ	 is	 synonymous	 with

checking	whether	the	statistic	t(X)	is	assuming	certain	values	or	not	from	which
we	derive	decision	d0	or	d1.
	

Acceptance	and	Rejection	Region

	
As	we	 know	 from	Chapter	 17,	 by	 drawing	 a	 sample	X,	 we	 select	 a	 particular
value	x	from	the	sample	space	X.224	Depending	on	this	realization	x,	the	statistic
t(x)	either	 leads	 to	 rejection	of	 the	null	hypothesis	 (i.e.,	δ(x)	=	d0),	 or	not	 (i.e.,
δ(x)	=	d1).

	
To	 determine	when	we	 have	 to	make	 a	 decision	d0	 or,	 alternatively,	d1,	 we

split	 the	 state	 space	Δ	of	 t(X)	 into	 two	 disjoint	 sets	 that	we	 denote	 by	ΔA	 and
ΔC.225	The	set	ΔA	is	referred	to	as	the	acceptance	region	while	ΔC	is	the	critical
region	or	rejection	region.
	 When	 the	 outcome	 of	 the	 sample	 x	 is	 in	 ΔA,	 we	 do	 not	 reject	 the	 null
hypothesis	(i.e.,	the	result	of	the	test	is	δ(x)	=	d0).	If,	on	the	other	hand,	x	should
be	some	value	in	ΔC,	 the	result	of	 the	 test	 is	now	the	contrary	(i.e.,	δ(x)	=	d1),
such	that	we	decide	in	favor	of	the	alternative	hypothesis.
	



ERROR	TYPES

	

We	have	 to	be	aware	 that	no	matter	how	we	design	our	 test,	we	are	at	 risk	of
committing	an	error	by	making	the	wrong	decision.	Given	the	two	hypotheses,
H0	 and	 H1,	 and	 the	 two	 possible	 decisions,	 d0	 and	 d1,	 we	 can	 commit	 two
possible	errors.	These	errors	are	discussed	next.
	



Type	I	and	Type	II	Error

	

The	 two	 possible	 errors	 we	 can	 incur	 are	 characterized	 by	 unintentionally
deciding	against	the	true	hypothesis.	Each	error	related	to	a	particular	hypothesis
is	referred	to	using	the	following	standard	terminology.

	

Type	I	error:	The	error	resulting	from	rejection	of	the	null	hypothesis	(H0)
(i.e.,	δ(X)	=	d1)	given	that	it	is	actually	true	(i.e.,	θ	∈	Θ0)	is	referred	to	as	a
type	I	error.
		
	Type	II	error:	The	error	resulting	from	not	rejecting	the	null	hypothesis	(H0)
(i.e.,	δ(X)	=	d0)	even	though	the	alternative	hypothesis	(H1)	holds	(i.e.,	θ	∈
Θ1)	is	referred	to	as	a	type	II	error.
	

In	the	following	table,	we	show	all	four	possible	outcomes	from	a	hypothesis
test	depending	on	the	respective	hypothesis:
	

	
H0: H0:	θ	in	Θ	θ0 H1:	θ	in	Θ1

Decision
d	d0 Correct Type	II	error
d1 Type	I	error Correct

	

	

	
So,	 we	 see	 that	 in	 two	 cases,	 we	make	 the	 correct	 decision.	 The	 first	 case

occurs	 if	we	do	not	 reject	 the	null	hypothesis	 (i.e.,	δ(X)	=	d0)	when	 it	 actually



holds.	The	second	case	occurs	if	we	correctly	decide	against	the	null	hypothesis
(i.e.,	δ(X)	=	d1),	when	it	is	not	true	and,	consequently,	the	alternative	hypothesis
holds.	unfortunately,	however,	we	do	not	know	whether	we	commit	an	error	or
not	when	we	are	testing.	We	do	have	some	control,	though,	as	to	the	probability
of	error	given	a	certain	hypothesis	as	we	explain	next.
	



Test	Size

	

We	 just	 learned	 that	 depending	 on	 which	 hypothesis	 is	 true,	 we	 can	 commit
either	a	type	I	or	a	type	II	error.	Now,	we	will	concentrate	on	the	corresponding
probabilities	of	incurring	these	errors.
	

Test	size:	The	test	size	is	the	probability	of	committing	a	type	I	error.	This
probability	is	denoted	by	PI(δ)	for	test	δ.226

		
We	 illustrate	 this	 in	 Figure	 19.2,	 where	 we	 display	 the	 density	 function

f(t(X),Θ0)	 of	 the	 test	 statistic	 t(X)	 under	 the	 null	 hypothesis.	 The	 horizontal	 axis
along	which	 t(X)	 assumes	values	 is	 subdivided	 into	 the	 acceptance	ΔA	 and	 the
critical	region	ΔC.	The	probability	of	 this	statistic	having	a	value	in	the	critical
region	is	indicated	by	the	shaded	area.

	
Since,	 in	 general,	 the	 set	 Θ0	 belonging	 to	 the	 null	 hypothesis	 consists	 of

several	values	(e.g.,	Θ0	⊂	Θ)	the	probability	of	committing	a	type	I	error,	PI(δ),
may	vary	for	each	parameter	value	θ	in	Θ0.	By	convention,	we	set	the	test	size
equal	 to	 the	PI(δ)	 computed	at	 that	value	θ	 in	Θ0	 for	which	 this	 probability	 is
maximal.227	We	 illustrate	 this	 for	 some	arbitrary	 test	 in	Figure	19.3,	where	we
depict	the	graph	of	the	probability	of	rejection	of	the	null	hypothesis	depending
on	the	parameter	value	θ.	Over	 the	set	Θ0,	as	 indicated	by	 the	solid	 line	 in	 the
figure,	this	is	equal	to	the	probability	of	a	type	I	error	while,	over	Θ1,	this	is	the
probability	of	a	correct	decision	(i.e.,	d1).	The	latter	is	given	by	the	dashed	line.
	FIGURE	 19.2	 Determining	 the	 Size	 PI(δ)	 of	 Some	 Test	 δ	 via	 the	 Density
Function	of	the	Test	Statistic	t(X)
	



FIGURE	19.3	Determining	the	Test	Size	α	by	Maximizing	the	Probability	of	a
Type	 I	 Error	 over	 the	 Set	 Θ0	 of	 Possible	 Parameter	 Values	 under	 the	 Null
Hypothesis
	

Analogously	to	the	probability	PI(δ),	we	denote	the	probability	of	committing
a	type	II	error	as	PII(δ).

	
Deriving	the	wrong	decision	can	lead	to	undesirable	results.	That	is,	the	errors

related	to	a	test	may	come	at	some	cost.	To	handle	the	problem,	the	hypotheses
are	generally	chosen	such	that	the	type	I	error	is	more	harmful	to	us,	no	matter
what	we	use	the	test	for.	Consequently,	we	attempt	to	avoid	this	type	of	error	by



trying	to	reduce	the	associated	probability	or,	equivalently,	the	test	size.
	 Fortunately,	 the	 test	 size	 is	 something	we	have	control	over.	We	can	 simply
reduce	PI(δ)	through	selection	of	an	arbitrarily	large	acceptance	region	ΔA.	In	the
most	 extreme	 case,	 we	 set	 ΔA	 equal	 to	 the	 entire	 state	 space	 of	 δ	 so	 that,
virtually,	we	never	reject	the	null	hypothesis.	However,	by	inflating	ΔA,	we	have
to	reduce	ΔC	,	which	generally	results	in	an	increase	in	the	probability	PII(d0)	of
a	 type	 II	 error	 because	 now	 it	 becomes	more	 likely	 for	X	 to	 fall	 into	 ΔA	 also
when	θ	 is	 in	Θ1	 (i.e.,	 under	 the	 alternative	 hypothesis).	 Thus,	we	 are	 facing	 a
trade-off	between	the	probability	of	a	type	I	error	and	a	type	II	error.	A	common
agreement	 is	 to	 limit	 the	 probability	 of	 occurrence	 of	 a	 type	 I	 error	 to	 a
levelα∈[0,1]	(i.e.,	some	real	number	between	zero	and	one).	This	α	is	referred	to
as	the	significance	level.	Frequently,	values	of	α	=	0.01	or	α	=	0.05	are	found.
	 Formally,	the	postulate	for	the	test	is	PI(δ)	≤	α.	So,	when	the	null	hypothesis	is
true,	 in	 at	 most	 α	 of	 all	 outcomes,	 we	 will	 obtain	 a	 sample	 value	 x	 in	 ΔC.
Consequently,	in	at	most	α	of	the	test	runs,	the	test	result	will	erroneously	be	d1
(i.e.,	 we	 decide	 against	 the	 null	 hypothesis).	We	 can	 express	 this	 formally	 as
follows
	(19.1)
	

The	first	line	in	equation	(19.1)	expresses	that	the	probability	of	a	type	I	error
is	 supposed	 to	 be	 α,	 at	 most.	 In	 the	 second	 line,	 we	 highlight	 that	 this	 error
occurs	 exactly	 when	 we	 decide	 against	 the	 null	 hypothesis,	 even	 though	 it	 is
true.	And,	 in	 the	 third	 line,	we	 point	 out	 that	 this,	 again,	 results	 from	 the	 test
statistic	t	assuming	a	value	in	ΔC.	Hence,	all	three	lines	are	equivalent.	Note	that
in	 the	 second	 and	 third	 lines	 of	 equation	 (19.1),	 we	 indicate	 that	 the	 null
hypothesis	holds	(i.e.,	the	parameter	is	in	Θ0),	by	using	the	subscript	θ0	with	the
probability	measure.
	



The	p-Value

	

Suppose	 we	 had	 drawn	 some	 sample	 x	 and	 computed	 the	 value	 t(x)	 of	 the
statistic	from	it.	It	might	be	of	interest	to	find	out	how	significant	this	test	result
is	or,	in	other	words,	at	which	significance	level	this	value	t(x)	would	still	lead	to
decision	d0	 (i.e.,	 no	 rejection	 of	 the	 null	 hypothesis),	 while	 any	 value	 greater
than	t(x)	would	result	in	its	rejection	(i.e.,	d1).	This	concept	brings	us	to	the	next
definition.
	

p-value:	Suppose	we	have	a	sample	realization	given	by	x	=	(x1,	x2,	…,	xn).
Furthermore,	let	δ(X)	be	any	test	with	test	statistic	t(X)	such	that	the	test
statistic	evaluated	at	x,	t(x),	is	the	value	of	the	acceptance	region	ΔA	closest
to	the	rejection	region	ΔC.	The	p-value	determines	the	probability,	under	the
null	hypothesis,	that	in	any	trial	X	the	test	statistic	t(X)	assumes	a	value	in
the	rejection	region	ΔC;	that	is,

p	=	Pθ0	(t	(	X	)	∈	ΔC	)	=	Pθ0	(δ	(	X	)	=	d1	)
		

		
We	 can	 interpret	 the	 p-value	 as	 follows.	 Suppose	 we	 obtained	 a	 sample

outcome	 x	 such	 that	 the	 test	 statistics	 assumed	 the	 corresponding	 value	 t(x).
Now,	we	want	 to	 know	what	 is	 the	 probability,	 given	 that	 the	 null	 hypothesis
holds,	 that	 the	 test	 statistic	 might	 become	 even	 more	 extreme	 than	 t(x).	 This
probability	is	equal	to	the	p-value.

	
If	t(x)	is	a	value	pretty	close	to	the	median	of	the	distribution	of	t(X),	then	the

chance	 of	 obtaining	 a	 more	 extreme	 value,	 which	 refutes	 the	 null	 hypothesis
more	strongly	might	be	fairly	feasible.	Then,	the	p-value	will	be	large.	However,
if,	instead,	the	value	t(x)	is	so	extreme	that	the	chances	will	be	minimal	under	the
null	hypothesis	that,	in	some	other	test	run	we	obtain	a	value	t(X)	even	more	in
favor	of	the	alternative	hypothesis,	this	will	correspond	to	a	very	low	p-value.	If
p	is	less	than	some	given	significance	level	α,	we	reject	the	null	hypothesis	and



we	say	that	the	test	result	is	significant.
	 We	 demonstrate	 the	meaning	 of	 the	 p-value	 in	 Figure	 19.4.	 The	 horizontal
axis	provides	the	state	space	of	possible	values	for	the	statistic	t(X).	The	figure
displays	 the	 probability,	 given	 that	 the	 null	 hypothesis	 holds,	 of	 this	 t(X)
assuming	a	value	greater	than	c,	for	each	c	of	 the	state	space,	and	in	particular
also	at	t(x)	(i.e.,	the	statistic	evaluated	at	the	observation	x).	We	can	see	that,	by
definition,	the	value	t(x)	is	the	boundary	between	the	acceptance	region	and	the
critical	 region,	 with	 t(x)	 itself	 belonging	 to	 the	 acceptance	 region.	 In	 that
particular	 instance,	we	happened	to	choose	a	 test	with	ΔA	=	(-∞,t(x)]	and	ΔC	=
(t(x),∞).
	FIGURE	 19.4	 Illustration	 of	 the	 p-Value	 for	 Some	 Test	 δ	 with	 Acceptance
Region	ΔA	=	(-∞,t(x)	and	Critical	Region	ΔC	=	(t(x),∞)
	



QUALITY	CRITERIA	OF	A	TEST

	

So	far,	we	have	learned	how	to	construct	a	test	for	a	given	problem.	In	general,
we	 formulate	 the	 two	 competing	 hypotheses	 and	 look	 for	 an	 appropriate	 test
statistic	to	base	our	decision	rule	on	and	we	are	then	done.	However,	in	general,
there	 is	 no	unique	 test	 for	 any	given	pair	 of	hypotheses.	That	 is,	we	may	 find
tests	 that	 are	more	 suitable	 than	 others	 for	 our	 endeavor.	 How	 can	we	 define
what	 we	 mean	 by	 “suitable”?	 To	 answer	 this	 question,	 we	 will	 discuss	 the
following	quality	criteria.
	



Power	of	a	Test

	

Previously,	we	were	introduced	to	the	size	of	a	test	that	may	be	equal	to	α.	As	we
know,	 this	 value	 controls	 the	 probability	 of	 committing	 a	 type	 I	 error.	 So	 far,
however,	we	may	have	several	tests	meeting	a	required	test	size	α.	The	criterion
selecting	 the	most	 suitable	ones	among	 them	 involves	 the	 type	 II	 error.	Recall
that	the	type	II	error	describes	the	failure	of	rejection	of	the	null	hypothesis	when
it	 actually	 is	 wrong.	 So,	 for	 parameter	 valuesθ∈Θ1,	 our	 test	 should	 produce
decision	d1	with	as	high	a	probability	as	possible	 in	order	 to	yield	as	 small	 as
possible	a	probability	of	a	type	II	error,	PII(d0).	In	the	following	definition,	we
present	a	criterion	that	accounts	for	this	ability	of	a	test.

Power	of	a	test	The	power	of	a	test	is	the	probability	of	rejecting	the	null
hypothesis	when	it	is	actually	wrong	(i.e.,	when	the	alternative	hypothesis
holds).	Formally,	this	is	written	as	P	θ1	(δ	(	X	)	=	d1	).228

		
	FIGURE	19.5	The	Solid	Line	of	the	Probability	P(δ(X)	=	d1),	over	the	Set	Θ1,
Indicates	the	Power	of	the	Test	δ
	

For	 illustrational	 purposes,	 we	 focus	 on	 Figure	 19.5	 where	 we	 depict	 the



parameter-dependent	probability	P(δ(X)	=	d1)	of	some	arbitrary	 test	δ,	over	 the
parameter	 space	 Θ.	 The	 solid	 part	 of	 the	 figure,	 computed	 over	 the	 set	 Θ1,
represents	 the	 power	 of	 the	 test.	As	we	 can	 see,	 here,	 the	 power	 increases	 for
parameter	 values	 further	 away	 from	Θ0	 (i.e.,	 increasing	 θ).	 If	 the	 power	were
rising	more	steeply,	the	test	would	become	more	powerful.	This	brings	us	to	the
next	concept.
	

Uniformly	Most	Powerful	Test

	
In	the	following,	let	us	only	consider	tests	of	size	α.	That	is,	none	of	these	tests
incurs	a	type	I	error	with	greater	probability	than	α.	For	each	of	these	tests,	we
determine	the	respective	power	function	(i.e.,	the	probability	of	rejecting	the	null
hypothesis,	P(δ(X)	=	d1),	computed	for	all	values	θ	in	the	set	Θ1	corresponding
to	the	alternative	hypothesis.
	 Recall	 that	we	can	either	obtain	d0	or	d1	 as	a	 test	 result,	no	matter	what	 the
value	of	the	parameter	may	truly	be.	Since	d0	and	d1	are	mutually	exclusive,	we
have	the	relation

P(δ(X)	=	d0)	+	P(δ(X)	=	d1)	=	1
		

	 Now,	for	any	parameter	value	θ	from	Θ1,	this	means	that	the	power	of	the	test
and	 the	probability	of	committing	a	 type	 II	error,	PII(δ(X)),	 add	up	 to	one.	We
illustrate	this	in	Figure	19.6.	The	dashed	lines	indicate	the	probability	PII(δ(X)),
respectively,	at	the	corresponding	parameter	values	θ,	while	the	dash-dotted	lines
represent	the	power	for	given	θ	∈	Θ1.	As	we	can	see,	the	power	gradually	takes
over	much	of	the	probability	mass	from	the	type	II	error	probability	the	greater
the	parameter	values.

	
Suppose	 of	 all	 the	 tests	 with	 significance	 level	 α,	 we	 had	 one	 δ*,	 which

always	had	greater	power	than	any	of	the	others.	Then	it	would	be	reasonable	to
prefer	this	test	to	all	the	others	since	we	have	the	smallest	chance	of	incurring	a
type	II	error.	This	leads	to	the	following	concept.
	



FIGURE	19.6	Decomposition	1	=	PII	(δ	)	+	Pθ1	(δ	(	X	)	=	d1	),	over	Θ1
	

Uniformly	most	powerful	(UMP)	test	of	size	α:	A	test	δ*	of	size	α	is
uniformly	most	powerful,	if	of	all	the	tests	δ	of	size	α,	this	test	δ*	has
greatest	power	for	any	θ	∈	Θ1.
		

Formally,	this	is

PII	(δ	*(	X	)	)	≤	PII	(δ	(	X	))	,	θ	∈	Θ1
	

of	all	tests	with

PI	(δ	)	≤	α
		

	 We	 illustrate	 this	definition	 in	Figure	19.7	for	some	arbitrary	 tests	of	size	α.
As	we	can	see,	the	test	δ*	has	power	always	greater	than	the	alternatives	δ1	and
δ2.	Consequently,	of	all	the	choices,	δ*	is	the	most	powerful	test	in	this	example.
	FIGURE	19.7	uniformly	Most	Powerful	Test	δ*	 in	Comparison	 to	 the	Tests	of
Size	α,	δ1	and	δ2
	





Unbiased	Test

	

We	know	that	when	a	test	is	of	size	α,	the	probability	of	it	causing	a	type	I	error
is	never	greater	than	α.	And	when	the	design	of	the	test	is	reasonable,	the	power
of	the	test	should	increase	quickly	once	we	are	considering	parameter	values	in
Θ1.	In	both	cases	(i.e.,	when	we	compute	the	probability	of	a	type	I	error	for	θ	∈
Θ0,	as	well	as	when	we	compute	the	power,	for	θ	∈	Θ1),	we	are	dealing	with	the
probability	to	reject	the	null	hypothesis	(i.e.,	P(δ(X)	=	d1)).	In	case	P(δ(X)	=	d1)
should	 be	 smaller	 than	 α,	 then	 for	 certain	 parameter	 valuesθ	∈	 Θ1	 it	 is	 more
likely	 to	 accept	 the	null	 hypothesis	when	 it	 is	wrong	 than	when	 it	 holds.	This
certainly	does	not	 appear	useful	 and	we	 should	 try	 to	avoid	 it	when	designing
our	test.	This	concept	is	treated	in	the	following	definition.
	

Unbiased	test:	A	test	of	size	α	is	unbiased	if	the	probability	of	a	type	II
error	is	never	greater	than	1	-	α;	formally,

PII(δ(X))	≤	1	-	α	for	anyθ	∈	Θ1
		

		
So	if	a	test	is	unbiased,	we	reject	the	null	hypothesis	when	it	is	in	fact	false	in	at
least	α	of	the	cases.	Consequently,	the	power	of	this	test	is	at	least	α	for	all	θ	∈
Θ1.	We	demonstrate	 this	 in	Figure	19.8	where	we	 depict	 a	 biased	 test.	As	 the
figure	demonstrates,	 the	probability	of	rejecting	the	null	hypothesis	falls	below
the	significance	level	α	for	the	highest	parameter	values.
	



Consistent	Test

	

Up	 to	 his	 point,	 we	 have	 required	 of	 a	 good	 test	 to	 produce	 as	 few	 errors	 as
possible.	We	attempt	to	produce	this	ability	by	first	limiting	its	test	size	by	some
level	α	and	then	looking	for	the	highest	power	available	given	that	significance
level	α.

	
By	construction,	each	of	our	tests	δ(X)	is	based	on	some	test	statistic	t(X).	For

this	 test	 statistic,	we	 construct	 an	 acceptance	 as	well	 as	 a	 critical	 region	 such
that,	given	certain	parameter	values,	the	test	statistic	would	fall	into	either	one	of
these	 critical	 regions	 with	 limited	 probability.	 It	 may	 be	 possible	 that	 the
behavior	 of	 these	 test	 statistics	 changes	 as	we	 increase	 the	 sample	 size	n.	For
example,	 it	 may	 be	 desirable	 to	 have	 a	 test	 of	 size	 α	 that	 has	 vanishing
probability	for	a	type	II	error.
	 From	now	on,	we	will	 consider	 certain	 tests	 that	 are	 based	on	 test	 statistics
that	 fall	 into	 their	 respective	 critical	 regions	 ΔC	 with	 increasing	 probability,
under	 the	alternative	hypothesis,	 as	 the	number	of	 sample	drawings	n	 tends	 to
infinity.	 That	 is,	 these	 tests	 reject	 the	 null	 hypothesis	more	 and	more	 reliably
when	they	actually	should	(i.e.,	θ	∈	Θ1)	for	ever	larger	samples.	In	the	optimal
situation,	 these	 tests	 reject	 the	 null	 hypothesis	 (i.e.,	 δ(X)	 =	 d1)	 with	 100%
certainty	 when	 the	 alternative	 hypothesis	 holds.	 This	 brings	 us	 to	 the	 next
definition.
	FIGURE	19.8	Graph	of	the	Probability	to	Reject	the	Null	Hypothesis	for	Some
Biased	Test	δ
	



Consistent	test:	A	test	of	size	α	is	consistent	if	its	power	grows	to	one	for
increasing	sample	size;	that	is,

		
Recall	 that	 in	 Chapter	 17	 we	 introduced	 the	 consistent	 estimator	 that	 had	 the
positive	feature	that	it	varied	about	its	expected	value	with	vanishing	probability.
So,	 with	 increasing	 probability,	 it	 assumed	 values	 arbitrarily	 close	 to	 this
expected	value	such	that	eventually	it	would	become	virtually	indistinguishable
from	 it.	The	use	of	 such	a	statistic	 for	 the	 test	 leads	 to	 the	 following	desirable
characteristic:	 The	 test	 statistic	 will	 cease	 to	 assume	 values	 that	 are	 extreme
under	 the	respective	hypothesis	such	that	 it	will	basically	always	end	up	in	 the
acceptance	 region	when	 the	 null	 hypothesis	 holds,	 and	 in	 the	 rejection	 region
under	the	alternative	hypothesis.
	FIGURE	19.9	P(δ(X)	=	d1)	 for	 a	Consistent	Test,	 for	n	 =	 10	 (solid),	n	 =	 100
(dash-dotted),	and	n	=	1,000	(dashed)
	



We	demonstrate	the	consistency	criterion	in	Figure	19.9	where	we	display	the
probability	P(δ(X)	=	d1)	that	equals	the	power	over	Θ1	for	three	different	sample
sizes,	n	=	10,	n	=	100,	and	n	=	1,000.	For	n	=	10,	the	probability	is	depicted	by
the	solid	line,	while	for	n	=	100	and	n	=	1,000,	the	probabilities	are	displayed	by
the	 dash-dotted	 and	 the	 dashed	 line,	 respectively.	 The	 power	 can	 be	 seen	 to
become	greater	and	gradually	close	to	1	for	increasing	sample	size.
	



EXAMPLES

	

In	 this	 concluding	 section	 of	 the	 chapter,	we	 provide	 examples	 that	 apply	 the
concepts	introduced	in	the	chapter.
	



Simple	Test	for	Parameter	λ	of	the	Poisson	Distribution

	

As	our	first	example,	let	us	consider	a	portfolio	consisting	of	risky	bonds	where
the	number	of	defaulting	bonds	within	one	year	is	modeled	as	a	Poisson	random
variable.	 In	 the	 past,	 the	 parameter	 λ	 has	 been	 assumed	 to	 be	 λ0	 =	 1,	 which
accounts	for	the	null	hypothesis	H0.	Because	of	perceived	higher	risk,	the	bond
portfolio	 manager	 may	 have	 reason	 to	 believe	 that	 the	 true	 parameter	 might
instead	be	λ1	=	2,	representing	the	alternative	hypothesis	H1.
	 The	corresponding	test	 is	now	designed	as	follows.	Let	us	draw	a	sample	of
size	n,	X	=	(X1,	X2,	…,	Xn).	Next,	we	compute	the	probability	of	the	observation
x	 =	 (x1,	 x2,	 …,	 xn),	 first	 using	 λ0	 and	 then	 λ1.	 We	 indicate	 the	 respective
probabilities	as	Pλ0	 (	X	=	x)	and	Pλ1	 (X	=	x).	Now,	 if	 λ1	 is	 the	 true	parameter,
then,	 in	most	 drawings,	we	 should	 obtain	 an	 outcome	 x	 that	 is	more	 likely	 to
occur	under	λ1	than	under	λ0	.	For	these	outcomes,	it	follows	that	the	probability
Pλ1	(	X	=	x)	is	greater	than	Pλ0	(	X	=	x).	Consequently,	the	ratio
(19.2)
	

should	be	 large	 for	 these	outcomes	 and	only	 in	 a	 few	outcomes,	 the	 ratio	will
be	smaller.	On	the	other	hand,	if	λ0	is	the	true	parameter,	then	for	most	outcomes
the	 ratio	 (19.2)	 will	 assume	 small	 values	 since	 these	 outcomes	 will	 be	 more
likely	under	the	null	hypothesis	 than	under	the	alternative	hypothesis,	resulting
in	a	greater	probability	Pλ0	(	X	=	x)	relative	to	Pλ1	(	X	=	x).
Depending	on	our	desired	significance	level	α,	we	will	accept	values	for	 the

ratio	 (19.2)	 less	 than	 or	 equal	 to	 some	 number	 k	 before	 we	 reject	 the	 null
hypothesis.	That	is,	we	let	the	probability	of	the	sample,	evaluated	at	λ1,	be	up	to
k	 times	 as	 large	 as	when	 evaluated	 at	 λ0.	 The	 benchmark	 k	 is	 chosen	 so	 that,
under	 the	null	hypothesis	(i.e.,	when	λ	is	 true),	ρ	(	X,	λ	0	 ,	λ1	 )	exceeds	k	with
probability	α	at	most.	We	see	that	the	ratio	itself	is	random.
	 Now	 let	 us	 insert	 the	 probability	 of	 the	 Poisson	 law	 into	 equation	 (19.2)



considering	 independence	 of	 the	 individual	 drawings.	 Then	 for	 any	 sample	X,
the	ratio	turns	into
(19.3)
	

where	 in	 the	 second	 line	 of	 equation	 (19.3)	we	 have	 simply	 applied	 the	 rules
for	 exponents	 when	 multiplying	 identical	 values.	 This	 ratio	 is	 required	 to	 be
greater	than	k	for	the	test	to	reject	the	null	hypothesis.	Instead	of	using	the	rather
complicated	 form	of	 equation	(19.3)	 for	 the	 test,	we	 can	 transform	 the	 second
line	using	the	natural	logarithm	to	obtain	the	following	equivalent	test	rule	that
may	be	simpler	to	compute

Note	 that	 here	 we	 have	 to	 pay	 attention	 to	 whether	 λ1	 >	 λ0	 or	 λ1	 <	 λ0	 since
these	two	alternatives	lead	to	opposite	directions	of	the	inequality.
Suppose	we	wish	to	have	a	test	of	size	α	=	0.05.	Then	we	have	to	find	k	such

that	the	sum

either	 exceeds	 the	 boundary	 (if	 λ1	 >	 λ0)	 or	 falls	 below	 it	 (if	 λ1	 <	 λ0)	 with
probability	of	at	most	0.05	when	the	null	hypothesis	holds.	So,	for	λ1	>	λ0,	 the
boundary	has	to	be	equal	to	the	95%	quantile	of	the	distribution	of

while	 for	 λ1	 <	 λ0,	 we	 are	 looking	 for	 the	 5%	 quantile.	 Since	 under	 the	 null
hypothesis	 the	number	of	defaults,	Y,	 is	Poisson	distributed	with	parameter	λ0,
the	sum	is

As	 a	 sample,	 we	 refer	 to	 the	 observations	 of	 the	 bond	 portfolio	 used	 in
Chapter	17	that	we	produce	below
	



Since	λ1	=	2	>	λ0	=	1	and	n	=	20,	the	boundary	becomes	ln	k	+	20/0.6931.	In
particular,	for	λ0	=	1,	the	boundary	is	ln	k	+	l20/0.6931	=	28	because	of

which	corresponds	to	k	=	0.4249.229

Together	with	our	hypotheses,	we	finally	formulate	the	test	as

since	we	have	λ1	>	λ0.	Consequently,	our	acceptance	region	and	critical	 region
are	ΔA	and	ΔC,	respectively.
Summing	up	x1,	x2,	…,	x20	for	the	20	observations,	we	obtain

for	 our	 test	 statistic	 and,	 hence,	 reject	 the	 null	 hypothesis	 of	 H0:	 λ0	 =	 1	 in
favor	of	H1:	λ1	=	2.
The	design	of	the	test	with	the	probability	ratio	ρ(X,	λ0,	λ1)	for	any	probability

distribution	is	known	as	the	Neyman-Pearson	test.	This	test	 is	UMP	as	well	as
consistent.	Therefore,	 it	 is	 a	very	powerful	 test	 for	 the	 simple	 testing	 situation
where	there	are	two	single	competing	parameter	values,	λ0	and	λ1.
	



One-Tailed	Test	for	Parameter	λ	of	Exponential	Distribution

	

Let	us	again	consider	 the	previous	bond	portfolio.	As	we	know,	 the	number	of
defaults	per	year	can	be	modeled	by	a	Poisson	random	variable.	Then,	the	time
between	two	successive	defaults	is	given	by	an	exponential	random	variable	that
we	denote	by	Y.	The	portfolio	manager	would	like	to	believe	that	the	default	rate
given	by	parameter	λ	is	low	such	that	the	average	time	between	defaults	is	large.
From	experience,	suppose	that	the	portfolio	manager	knows	that	values	for	λ	of
less	than	1	are	favorable	for	the	bond	portfolio	while	larger	values	would	impose
additional	risk.	So,	we	can	formulate	the	two	hypotheses	as	H0:	λ	≥	1	and	H1:	λ
<	1.230	Here,	the	portfolio	manager	would	like	to	test	if	H0	is	wrong.
	 For	the	test,	which	we	will	design	to	have	size	α	=	0.05,	we	draw	a	sample	of
size	n,	X	=	(X1,	X2,	…,	Xn).	Since	Y	 is	exponentially	distributed	with	parameter
λ,	 the	 sum	 of	 the	 Xi	 is	 Erlang	 distributed	 with	 parameter	 (λ,n),	 which,	 as
mentioned	in	Chapter	11,	is	a	particular	form	of	the	gamma	distribution.	Here	we
will	use	it	as	the	test	statistic

which	represents	 the	combined	waiting	 time	between	successive	defaults	of	all
n	 years.	Now,	 if	 the	 null	 hypothesis	 holds	 (i.e.,	 λ	∈	 [1,∞)),	 then,	 only	 in	 rare
instances	should	we	realize	large	values	for	t(X),	such	that	an	observed	value	t(x)
beyond	 some	 threshold	 should	 lead	 to	 rejection	 of	 the	 null	 hypothesis.	As	 the
threshold,	we	take	the	95%	quantile	of	the	Ga(1,n)	distribution.	Why	did	we	take
λ	=	1?	Let	us	have	a	look	at	Figure	19.10.	We	see	that	for	this	particular	situation
of	 an	 Erlang	 distributed	 statistic,	 the	 probability	 of	 falsely	 rejecting	 the	 null
hypothesis	 (i.e.,	 committing	 a	 type	 I	 error)	 is	 the	 greatest	 when	 λ	 =	 1	 for
allλ∈Θ0.	 Therefore,	 by	 computing	 the	 critical	 region	 ΔC,	 for	 λ	 =	 1	 it	 is
guaranteed	that	the	statistic	t(X)	will	assume	a	value	in	ΔC	with	probability	α	or
less.
FIGURE	19.10	Probability	of	Rejecting	the	Null	Hypothesis	Computed	over	the
Parameter	Space	of	λ	of	the	Exponential	Distribution
	



As	a	sample,	we	refer	to	the	20	observations	of	interarrival	times	of	the	bond
portfolio	given	in	Chapter	17	and	reproduced	below:

	

For	λ	=	1	and	n	=	20,	the	threshold	is	c	=	27.88,	which	is	the	0.95-quantile	of
the	Ga(1,20)	distribution.	So,	we	have	ΔA	=	[0,27.88]	as	well	as	ΔC	=	(27.88,∞).
Then,	we	can	formulate	our	test	as

	With	the	given	sample,	the	statistic	is	t(x)	=	9.095.	Thus,	we	cannot	reject	the
null	 hypothesis,	 which	 corresponds	 to	 the	 higher	 risk	 of	 default	 in	 our	 bond
portfolio.
	



One-Tailed	Test	for	μ	of	the	Normal	Distribution	When	σ2	Is	Known

	

Suppose	we	are	interested	in	whether	there	is	strong	evidence	that	 the	mean	of
the	 daily	 returns	 Y	 of	 the	 Standard	 and	 Poor’s	 500	 (S&P	 500)	 index	 has
increased	 fromaμ=	 0.0003	 to	 some	 higher	 value.	 As	 holder	 of	 assets	 that	 are
positively	 correlated	 with	 the	 S&P	 500	 index,	 higher	 returns	 would	 be	 more
favorable	to	us	than	smaller	ones.	So,	an	increase	in	the	mean	return	would	be
positive	in	this	respect.	Hence,	our	hypotheses	are	H0:	μ	≤	0.0003	and	H1:	μ	>
0.0003.
	 To	infer,	we	draw	some	sample	X	=	(X1,	X2,	…,	Xn).	Since	the	daily	return	Y	is
N(μ,σ2)	distributed	with	some	known	variance	σ2,	the	sum

is	N(nμ,nσ2)	 distributed,	 assuming	 independence	 of	 the	 individual	 drawings.
Consequently,	the	standardized	statistic
(19.4)
	

is	a	standard	normal	random	variable.	Let	our	test	size	be	α	=	0.05.	We	should
look	 for	 a	 benchmark	 that	 t(X)	 from	 equation	 (19.4)	 exceeds	 with	 probability
0.05	 under	 the	 null	 hypothesis.	 This	 is	 given	 by	 the	 standard	 normal	 95%
quantile,	q0.95	=	1.6449.	So,	we	test	whether
(19.5)
	

is	fulfilled	or	not.	We	can	rewrite	the	condition	(19.5)	as
(19.6)
	

Thus,	instead	of	using	the	statistic	(19.5),	we	can	use	the	sample	mean	of	our



observations	to	test	for	condition	(19.6).	The	statistic	of	interest	for	us	is	now	τ
(X	).

	
To	evaluate	equation	(19.6),	under	the	null	hypothesis,	which	value	μ	∈	(-∞,

0.0003]	 should	 we	 actually	 use?	 Look	 at	 Figure	 19.11	 where	 we	 display	 the
probability	P( 	≤	c	)	for	varying	values	of	µ	and	some	arbitrary	real	number	c.
As	we	can	see,	the	probability	of	exceeding	c	increases	for	larger	values	of	µ	as
we	might	have	expected.	So,	if	we	compute	the	test	boundary	at	μ	=	0.0003,	we
guarantee	that	 the	boundary	is	exceeded	with	maximum	probability	of	0.05	for
any	μ	∈	(-∞,0.0003].
	FIGURE	19.11	 Probability	 of	P( 	>	c	 )	 Computed	 over	 the	Entire	 Parameter
Space
	

As	a	sample,	we	 take	 the	daily	 returns	of	 the	S&P	500	 index	between	April
24,	1980	and	March	30,	2009.	This	sample	accounts	for	n	=	7,300	observations.
Suppose	we	knew	that	the	variance	was	σ2	=	0.00013.	Then,	our	test	boundary
computed	for	μ	=	0.0003	becomes	0.00049.	So,	we	have	ΔA	=	(-∞,0.00049]	and
ΔC	=	(0.00049,∞).	Consequently,	our	test	is	given	as

	For	this	sample,	we	obtain	0.00027,	which	yields	d0.	Hence,	we	cannot	reject	the
null	hypothesis.	Note	that	this	test	is	UMP.



	



One-Tailed	Test	for	σ2	of	the	Normal	Distribution	When	μ	Is	Known

	

Suppose	 that	 a	 portfolio	 manager	 is	 interested	 in	 whether	 the	 variance	 of	 the
daily	returns	of	the	S&P	500	index	is	0.00015	or	actually	larger.	Since	a	smaller
variance	 is	more	 favorable	 for	 the	portfolio	manager	 than	a	 larger	one	and	 the
harm	from	not	realizing	the	variance	actually	is	 larger,	we	select	as	hypotheses
H0:	σ2	∈	 [0.00015,∞)	 and	H1:	σ2	∈	 (0,0.00015).	 In	 the	 following,	we	 assume
that	we	can	model	the	daily	returns	by	the	normal	random	variable	Y	for	which
we	assume	μ	=	0	is	known.
	 Drawing	a	 sample	X	 =	 (X1,	X2,	…,	Xn),	we	 know	 from	Chapter	 17	 that	 the
statistic	for	the	variance	estimator	is	given	by
(19.7)
	

If	 the	 true	 variance	 σ2	 is	 large,	 then	 the	 random	 variable	 in	 equation	 (19.7)
should	 tend	 to	 be	 large	 as	 well.	 If,	 instead,	 σ2	 is	 small,	 then	 the	 very	 same
random	variable	should	predominantly	assume	small	values.
What	 is	 large	 and	 what	 is	 small?	 Given	 an	 arbitrary	 test	 size	 α	 and	 the

relationship	between	the	hypotheses,	then	under	the	null	hypothesis	of	large	σ2,
the	random	variable

should	 fall	 below	 some	 boundary	 k	 with	 probability	 α	 and	 assume	 values
equal	to	or	above	k	with	probability	1	-	α.	Since	we	do	not	know	the	distribution
of	equation	(19.7),	we	have	some	difficulty	finding	the	corresponding	boundary.
However	dividing	equation	(19.7)	by	the	variance,	 though	unknown,	we	obtain
the	random	variable
(19.8)
	



which,	 as	we	 know	 from	Chapter	 11,	 is	 chi-square	 distributed	with	 n	 degrees
of	 freedom.	 So,	 we	 simply	 have	 to	 find	 the	 value	 c	 that,	 under	 the	 null
hypothesis,	(19.8)	falls	below	with	probability	α	(i.e.,	the	5%	quantile	of	the	chi-
square	distribution)	with	n	degrees	of	freedom.
As	our	sample,	 let’s	use	 the	data	 from	the	previous	example	with	n	 =	 7,300

observations.	 Furthermore,	 we	 set	 the	 test	 size	 equal	 to	 α	 =	 0.05.	 So,	 as	 a
benchmark	we	 are	 looking	 for	 the	 95%	 quantile	 of	 the	 chi-square	 distribution
given	a	test	size	0.05.	The	resulting	boundary	is	X2

0.95	(7,300)	=	7,499.
	 Returning	 to	 our	 test	 statistic	 t(X),	we	 can	derive	 the	 benchmark,	 or	 critical
level	k,	by

which	 t(X)	 needs	 to	 fall	 below	 in	 order	 to	 yield	 d1	 (i.e.,	 reject	 the	 null
hypothesis).	To	compute	this	k	=	σ2	 	(7,300),	given	the	null	hypothesis	holds,
which	of	the	σ2	∈	[0.00015,∞)	should	we	use?	We	see	that	k	becomes	smallest
for	 σ2	 =	 0.00015.	 So,	 for	 any	 σ2	 greater	 than	 0.00015,	 the	 probability	 for
equation	 (19.7)	 to	 fall	 below	 this	 value	 should	 be	 smaller	 than	 α	 =	 0.05.	We
illustrate	this	in	Figure	19.12.	Conversely,	k	is	smallest	for	σ2	=	0.00015.	Thus,
our	threshold	is	σ2	 	 (7300)	=	1.1250.	Hence,	 the	acceptance	region	is	ΔA	=
[1.1250,∞)	with	critical	region	equal	to	ΔC	=	(-∞,1.1250).
Now	let	us	formulate	the	test	as

	With	our	given	observations,	we	obtain	 t(X)	=	0.9559.	Thus,	we	can	 reject	 the
null	hypothesis	of	a	variance	greater	than	0.00015.

	
This	test	just	presented	is	UMP	for	the	given	hypotheses.

	
FIGURE	19.12	 Probability	 of	 	Exceeding	Some	Benchmark	c	 for
Various	Parameter	Values	σ2
	





Two-Tailed	Test	for	the	Parameter	μ	of	the	Normal	Distribution	When	σ2	Is
Known

	

In	 this	 example,	 we	 demonstrate	 how	 we	 can	 test	 the	 hypothesis	 that	 the
parameter	µ	assumes	some	particular	value	μ0	against	the	alternative	hypothesis
that	μ0	≠	μ0(H1).
	 Suppose,	 again,	 that	 a	 portfolio	 manager	 is	 interested	 in	 whether	 the	 daily
returns	of	 the	S&P	500	index	have	zero	mean	or	not.	As	before,	we	model	 the
daily	return	as	the	normal	random	variable	Y	with	known	variance	σ2.	To	be	able
to	 infer	upon	 the	unknown	µ,	we	draw	a	 sample	X	 =	 (X1,	X2,	…,	Xn).	As	 test
statistic,	we	take	the	random	variable
(19.9)
	

which	 is	 standard	 normal	 under	 the	 null	 hypothesis.	 So,	 if	 the	 true	 parameter
is	μ0,	the	random	variable	(19.9)	should	not	deviate	much	from	zero.
How	do	we	determine	how	much	it	must	deviate	to	reject	the	null	hypothesis?

First,	 let	 us	 set	 the	 test	 size	 equal	 to	 α	 =	 0.05.	 Since	 t(X)	 ~	N(0,1),	 then	 t(X)
assumes	 values	 outside	 of	 the	 interval	 [-1.6449,1.6449]	 with	 5%	 probability
since	 -1.6449	 and	 1.6449	 are	 the	 2.5%	 and	 97.5%	 quantiles	 of	 the	 standard
normal	 distribution,	 respectively.	 So,	 the	 acceptance	 region	 is	 ΔA	 =
[-1.6449,1.6449]	 and,	 consequently,	 the	 critical	 region	 is	ΔC	=	 (-∞,-1.6449)	∪
(1.6449,∞).
	 With	 our	 daily	 return	 data	 from	 the	 previous	 example,	 and	 n	 =	 7,300	 and
assuming	σ2	=	0.00015	to	be	know,	we	have	the	test

	



From	the	data,	we	compute

and,	hence,	 can	 reject	 the	null	hypothesis	of	 zero	mean	 for	 the	daily	S&P	500
index	return.
This	test	for	the	given	hypotheses	is	UMP,	unbiased,	and	consistent.

	



Equal	Tails	Test	for	the	Parameter	σ2	of	the	Normal	Distribution	When	μ	Is
Known

	

In	 this	 illustration,	 we	 seek	 to	 infer	 the	 variance	 parameter	 σ2	 of	 a	 normal
random	variable	with	mean	parameter	µ	assumed	known.	The	hypotheses	are	as
follows.	The	null	hypothesis	states	that	the	variance	has	a	certain	value	while	the
alternative	 hypothesis	 represents	 the	 opinion	 that	 the	 variance	 is	 anything	 but
this	value.

	
Once	more,	 let	 us	 focus	on	 the	daily	S&P	500	 index	 return	modeled	by	 the

normal	random	variable	Y.	Moreover,	suppose,	again,	that	the	mean	parameter	μ
=	 0.	 Furthermore,	 let	 us	 assume	 that	 the	 portfolio	manager	 believed	 that	 σ2	 =
0.00015.	 However,	 the	 risk	 manager	 responsible	 for	 the	 portfolio	 has	 found
reason	 to	 believe	 that	 the	 real	 value	 is	 different	 from	 0.00015.	 The	 portfolio
management	team	is	indifferent	to	any	value	and	simply	wishes	to	find	out	what
is	true.	So,	the	hypotheses	are	H0:	σ2	=	0.00015	and	H1:	σ2	≠	0.00015.	Suppose,
α	=	0.05	is	chosen	as	in	the	previous	examples.
	 Having	 drawn	 the	 sample	X	 =	 (X1,	X2,	 …,	 Xn),	 we	 can	 again	 use	 the	 test
statistic

Since	μ	=	0,	this	simplifies	to
(19.10)
	

which	will	be	our	test	statistic	henceforth.
What	 result	 should	now	 lead	 to	 rejection	of	 the	null	hypothesis	 (i.e.,	d1)?	 If

t(X)	 from	 equation	 (19.10)	 either	 assumes	 very	 small	 values	 or	 becomes	 very
large,	the	result	should	refute	the	null	hypothesis.	Suppose	we	designed	the	test
so	 it	 would	 have	 size	 α.	 Thus,	we	 should	 determine	 a	 lower	 bound	 cl	 and	 an



upper	 bound	 cu	 that,	 when	 the	 null	 hypothesis	 holds,	 t(X)	 lies	 between	 these
bounds	with	 probability	 1	 -	 α.	To	determine	 these	 bounds,	 recall	 that	 dividing
t(X)	 by	 its	 variance	 σ2,	 though	 unknown,	 results	 in	 a	 chi-square	 distributed
random	variable

with	n	 degrees	 of	 freedom.	Since	 the	 chi-square	distribution	 is	 not	 symmetric,
we	 artificially	 set	 the	 bounds	 so	 that	 under	 the	 null	 hypothesis,	 t(X)	may	 fall
short	 of	 the	 lower	 bound	 with	 probability	 α/2	 and	 with	 probability	 α/2,	 t(X)
might	exceed	the	upper	bound.	In	Figure	19.13,	we	display	this	for	a	probability
of	a	type	I	error	of	5%.	So,	we	have
(19.11)
	

This	probability	in	equation	(19.11)	translates	into	the	equivalent	relationship
(19.12)
	

	The	bounds	used	in	equation	(19.12)	have	to	be	computed	using	the	value	for
σ2	 under	 the	null	 hypothesis	 (i.e.,	 0.00015).	Since	our	 sample	 is	of	 length	n	=
7,300,	the	corresponding	quantiles	are	 	(7,300)=7,065and	(7,300)	=	7,	539	.
Finally,	from	(19.12),	we	obtain

	

FIGURE	19.13	Partitioning	of	Test	Size	α	=	0.05	of	Equal-Tails	Test
	



Hence,	the	corresponding	acceptance	region	is	ΔA	=	[1.0598,1.1308]	while	the
critical	region	is	the	composed	set	ΔC	=	(-∞,1.0598)	∪	(1.1308,∞).	Our	test	δ(X)
is	then

	
With

computed	from	our	sample	data,	we	make	the	decision	d	and,	hence,	reject	 the
null	hypothesis	of	σ2	=	0.00015.	Since	the	sum	fall1s	below	the	lower	bound	of
the	acceptance	region,	the	true	variance	is	probably	smaller.



Test	for	Equality	of	Means

	

Suppose	a	portfolio	manager	 is	 interested	 in	whether	 the	daily	stock	returns	of
General	Electric	(GE)	and	International	Business	Machines	(IBM)	had	identical
means.	By	YGE	 and	YIBM,	 let	 us	 denote	 the	 random	 variables	 representing	 the
daily	 stock	 returns	 of	 GE	 and	 IBM,	 respectively.	 Both	 are	 assumed	 to	 be
normally	distributed	with	known	variances	 	and	 ,such	that	N(µGE, )	and
N(µIBM	 , ).	 Furthermore,	we	 conjecture	 that	 the	 expected	values	 of	 both	 are
equal	(i.e.,	μGE	=	μIBM).
	 With	 this,	 we	 formulate	 our	 null	 hypothesis.	 Consequently,	 the	 alternative
hypothesis	 states	 that	 the	 two	means	 are	 not	 equal.	 So,	 we	 formally	 state	 the
testing	hypotheses	as

H0:	μGE	=	μIBM	versus	H1:	μGE	≠	μIBM
		

	 Next	 we	 approach	 the	 construction	 of	 a	 suitable	 test	 statistic.	 For	 this,	 we
draw	two	independent	samples,	one	from	each	stock	return.	Let

denote	the	GE	sample	of	independent	drawings	and

that	 of	 the	 IBM	 stock	 return.	We	do	 not	 require	 that	 the	 two	 samples	 have	 to
be	of	equal	length.	This	means	nGE	and	nIBM	can	be	different.
We	now	compute	 the	difference	XGE	 −	XIBM	 of	 the	 two	 sample	means,	XGE

and	XIBM	.	This	difference	is	a	normal	random	variable	with	mean	µ	GE	−	µ	IBM.
Now,	if	we	subtract	from	XGE	−	XIBM	 ,	 the	theoretical	mean	µ	GE	−	µ	 IBM	 ,	 the
resulting	random	variable
(19.13)
	

is	 normal	 with	 zero	 mean.	 Because	 of	 the	 independence	 of	 the	 two	 samples,



XGE	and	XIBM,	the	variance	of	the	random	variable	equation	(19.13)	is
(19.14)
	

Dividing	equation	(19.13)	by	the	standard	deviation	equal	to	the	square	root	of
equation	(19.14),	we	obtain	the	test	statistic
(19.15)
	

which	 is	 a	 standard	 normal	 random	 variable.	 under	 the	 null	 hypothesis	 of
equal	means,	we	have	μGE	-	μIBM	=	0	such	that	equation	(19.15)	becomes

which	follows	the	same	probability	law	as	equation	(19.15).
Consequently,	we	can	formulate	 the	 test	as	follows.	For	a	given	significance

level	α,	we	reject	the	null	hypothesis	if	the	test	statistic	t0	either	falls	below	the
α/2-quantile	of	the	standard	normal	distribution	or	exceeds	the	corresponding	1	-
α/2-quantile.	 In	any	other	case,	we	cannot	 reject	 the	null	hypothesis.	Formally,
this	test	is	given	by
(19.16)
	

where	 qα/2	 and	 q1-α/2	 denote	 the	 α/2-and	 1	 -	 α/2-quantile	 of	 the	 standard
normal	 distribution,	 respectively.	 With	 a	 significance	 level	 α	 =	 0.05,	 the	 test
given	by	(19.16)	becomes



So,	 the	 acceptance	 region	 of	 our	 test	 is	 ΔA	 =	 [-1.9600,1.9600]	 while	 the
corresponding	rejection	region	is	ΔC	=	R\[-1.9600,1.9600]	(i.e.,	any	real	number
that	does	not	belong	to	the	acceptance	region).

	
For	 our	 test,	 we	 examine	 the	 daily	 GE	 and	 IBM	 returns	 observed	 between

April	 24,	 1980	 and	March	 30,	 2009	 such	 that	 nGE	 =	 nIBM	 =	 7,300.	 The	 two
sample	 means	 are	 XGE	 =	 0.00029	 and	 XIBM	 =	 0.00027.	 Suppose	 the
corresponding	known	variances	are	 	=	0.00027	and	 	0.00032.	Then,	from
equation	(19.15),	the	test	statistic	is	equal	to	t0(XGE,XIBM)	=	0.0816,	which	leads
to	decision	d0;	that	is,	we	cannot	reject	the	null	hypothesis	of	equal	means.
	 Note	that	even	if	the	daily	returns	were	not	normally	distributed,	by	the	central
limit	theorem,	we	could	still	apply	equation	(19.15)	for	these	hypotheses.
	 In	the	following,	we	maintain	the	situation

H0:	μGE	=	μIBM	versus	H1:	μGE	≠	μIBM
	

except	 that	 the	 variances	 of	 the	 daily	 stock	 returns	 of	 GE	 and	 IBM	 are
assumed	to	be	equal,	albeit	unknown.	So,	 if	 their	means	are	not	equal,	 the	one
with	the	lesser	mean	is	dominated	by	the	other	return	with	the	higher	mean	and
identical	variance.231
	 To	derive	a	suitable	test	statistic,	we	refer	to	equation	(19.15)	with	the	means
cancelling	 each	other	where	we	have	 to	 replace	 the	 individual	 variances,	σ2GE
and	 σ2IBM,	 by	 a	 single	 variance	 σ2	 to	 express	 equality	 of	 the	 two	 individual
stocks,	that	is,
(19.17)
	

	As	we	know,	this	statistic	is	a	standard	normal	random	variable	under	the	null
hypothesis	of	equal	means.	We	could	use	it	if	we	knew	σ.	However,	the	latter	is
assumed	unknown,	and	we	have	to	again	infer	from	our	samples	XGE	and	XIBM.
using	 the	 respective	 sample	 means,	 we	 can	 compute	 the	 two	 intermediate
statistics



(19.18)
	

and
(19.19)
	

which	are	chi-square	distributed	with	nGE	 -	1	and	nIBM	 -	1	degrees	of	freedom,
respectively.232	 Adding	 equations	 (19.18)	 and	 (19.19),	 we	 obtain	 a	 chi-square
distributed	random	variable	with	nGE	+	nIBM	-	2	degrees	of	freedom,
(19.20)
	

Dividing	 the	 statistic	 in	 equation	 (19.17)	 by	 the	 square	 root	 of	 the	 ratio	 of
statistic	(19.20)	and	its	degrees	of	freedom,	we	obtain	the	new	test	statistic
(19.21)
	

	In	equation	(19.21),	we	took	advantage	of	 the	fact	 that	 the	variance	 terms	in
the	 numerator	 and	 denominator	 cancel	 each	 other	 out.	 The	 statistic	 τ0	 is
Student’s	 t-distributed	with	nGE	 +	nIBM	 -	 2	 degrees	 of	 freedom	 under	 the	 null
hypothesis	of	equal	means.
	 Now	 the	 test	 is	 formulated	as	 follows.	Given	 significance	 level	α,	we	 reject
the	null	hypothesis	if	the	test	statistic	τ0	either	falls	below	the	α/2-quantile	of	the
Student’s	t-distribution	or	exceeds	the	corresponding	1	-	α/2-quantile.	Any	other
case	does	not	lead	to	rejection	of	the	null	hypothesis.	Formally,	this	test	is
(19.22)
	



where

t	α/2(	nGE	+	nIBM	−	2)	and	t1-α/2(	nGE	+	nIBM	−	2)
	

denote	 the	α/2-and	1	 -	α/2-quantile	of	 the	Student’s	 t-distribution,	 respectively,
with	nGE	+	nIBM	-	2	degrees	of	freedom.
With	a	significance	level	α	=	0.05,	the	test	statistic	given	by	equation	(19.22)

becomes
(19.23)
	

	The	test	has	as	acceptance	region	ΔA	=	[-1.9601,1.9601]	with	rejection	region
equal	 to	ΔC	=	R\[-1.9601,1.9601]	 (i.e.,	 all	 real	numbers	except	 for	 the	 interval
[-1.9601,1.9601]).
	 With	nGE	=	nIBM	=	7,300	observations	each	from	the	period	between	April	14,
1980	 and	March	 30,	 2009,	we	 obtain	 the	 corresponding	 sample	means	XGE	 =
0.00029	and	XIBM	=	0.00027.	With	these	data,	we	are	ready	to	compute	the	test
statistic	(19.21)	as

τ0	(	XGE	,	X	IBM	)	=	0.0816
	

such	 that,	 according	 to	 (19.23),	 the	 decision	 is,	 again,	d0	 such	 that	we	 cannot
reject	the	null	hypothesis	of	equal	means.
	 Note	 that	 for	 a	 large	 number	 of	 observations	 used	 in	 the	 test,	 the	 two	 test
statistics	 (19.15)	 and	 (19.21)	 are	 almost	 the	 same	 and	 with	 almost	 identical
acceptance	regions.	So,	the	tests	are	virtually	equivalent.
	



Two-Tailed	Kolmogorov-Smirnov	Test	for	Equality	of	Distribution

	

Suppose	we	were	interested	in	whether	the	assumption	of	a	certain	distribution
for	the	random	variable	of	interest	is	justifiable	or	not.	For	this	particular	testing
situation,	we	 formulate	 the	 hypotheses	 as	 “random	 variable	Y	 has	 distribution
function	F0”	(H0)	and	“random	variable	Y	does	not	have	distribution	function	F0
(H1)	or	vice	versa	depending	on	our	objectives.
	 Suppose	that	we	draw	our	sample	X	=	(X1,	X2,	…,	Xn)	as	usual.	From	this,	we
compute	the	empirical	cumulative	relative	frequency	distribution	function	 (x)
as	explained	in	Chapter	2.	To	simplify	the	terminology,	we	will	refer	to	 	(x)	as
the	 empirical	 distribution	 function.	 This	 function	 will	 be	 compared	 to	 the
distribution	assumed	under	the	null	hypothesis,	which	we	will	denote	by	F0(x).
By	 comparing,	 we	 mean	 that	 we	 will	 compute	 the	 absolute	 value	 of	 the
difference	 	(x)	−	F0	(x)	(i.e.,	∣ (x)	−	F0	(x)∣)	at	each	real	number	x	between
the	minimum	observation	X(1)	and	the	maximum	observation	 233	Of	all	such
obtained	quantities	 	(x)	−	F0	(x)∣,	we	select	the	supremum
	(19.24)
	

FIGURE	19.14	Computing	the	Two-Tailed	Kolmogorov-Smirnov	Distance
	



What	does	expression	(19.24)	mean?	Look	at	Figure	19.14	where	we	depict	an
arbitrary	 theoretical	distribution	F0	 (dotted	curve)	plotted	against	 the	 empirical

counterpart,	 	 for	 the	order	statistics	x(1)	 through	x(5).	At	each	ordered	value
x(i),	we	compute	the	distance	between	the	empirical	distribution	function	and	the
hypothesized	 distribution	 function.	 These	 distances	 are	 indicated	 by	 the	 solid
vertical	 lines.	 In	 the	 figure	 they	are	D2,	D5,	and	D7.	Note	 that	 at	 each	 ordered
value	x(i),	the	empirical	distribution	function	jumps	and,	hence,	assumes	the	next
higher	 value	 that	we	 indicate	 in	 the	 figure	 by	 the	 solid	 dot	 at	 each	 level.	 The
empirical	distribution	function	is	right-continuous	but	not	 left-continuous.	As	a
result,	between	ordered	val	ues	x(i)	and	the	next	one,	x(i+1),	 	remains	constant
and	 keeps	 this	 level	 as	 a	 limit	 as	 x	 approaches	x(i+1)	 from	 the	 left.	 This	 limit,
however,	is	not	the	same	as	the	function	value	 	(x(i+1))	since,	as	explained,	it	is
already	assuming	the	next	higher	level	at	x(i+1)	x(i+1).	Nonetheless,	at	each	x(i+1),
we	still	compute	the	distance	between	the	hypothesized	value	F0	(x(i+1))	and	the
left	 side	 limit	 	 (x(i)).	 In	 the	 figure,we	 indicate	 this	 by	 the	 dash-dotted	 lines
accounting	 for	 the	 distances	 D1,	 D3,	 D4,	 and	 D6.	 For	 this	 illustration,	 the
maximum	 distance	 is	 D2	 (solid	 vertical	 lines).	 If	 we	 include	 the	 distances
computed	 using	 limits	 as	 well	 (i.e.,	 the	 dash-dotted	 lines),	 we	 obtain	 the
supremum.	The	supremum	may	be	greater	than	the	maximum	as	is	the	case	here
because	D4	is	greater	than	D2,	the	maximum.
	



This	may	have	just	been	a	little	too	much	mathematics	for	one’s	liking.	But	do
not	get	frustrated	since	we	only	have	to	remember	to	compute	distances	between
the	 empirical	 distribution	 function	 levels	 on	 either	 end,	 and	 the	 hypothesized
distribution	 function	 values	 at	 these	 positions.	 From	 these	 distances,	 we
determine	 the	 largest	 one—our	 supremum—which	 was	 D4,	 in	 the	 previous
illustration,	 and	 compare	 it	 to	 quantiles	 of	 the	 distribution	 of	 the	 so-called
Kolmogorov-Smirnov	 (KS)	 statistic.234	 To	 look	 up	 whether	 the	 result	 is
significant	enough	to	reject	the	null	hypothesis,	we	need	the	significance	level	α,
the	number	of	observations	n,	and	the	specification	two-tailed	or	two-sided	since
the	KS	distribution	can	also	be	determined	for	one-tailed	tests.
	 Let	us	use	the	S&P	500	daily	return	data	with	n	=	7,300	observations	from	the
previous	 examples	 and	 set	 the	 test	 size	 equal	 to	 α	 =	 0.05.	We	 know	 that	 μ	 =
0.00015	and	σ2	=	0.00013.	We	now	compute	the	empirical	distribution	function
of	the	standardized	observations,	that	is,

	Suppose	 that	 the	 portfolio	 manager	 used	 to	 believe	 that	 these	 observations
were	 generated	 from	 a	 standard	 normal	 population	 but	 now	wants	 to	 verify	 if
this	is	in	fact	the	case	by	means	of	a	hypothesis	test.	Then	the	test	is	given	by235

	With	our	data,	we	obtain	as	the	supremum	a	value	of

such	 that	 we	 have	 to	 reject	 the	 null	 hypothesis	 (d1)	 of	 a	 standard	 normally
distributed	 daily	 return	 of	 the	 S&P	 500	 index.	 The	 computed	 value	 0.4906	 is
highly	significant	since	the	p-value	is	virtually	0.



Likelihood	Ratio	Test

	

Now	let’s	consider	a	particular	testing	situation	by	assuming	some	model	where
certain	 parameter	 components	 are	 set	 equal	 to	 zero.	We	 refer	 to	 this	model	 as
being	a	restricted	model.	Alternatively,	these	particular	parameter	components	of
interest	 may	 be	 different	 from	 zero.	 The	 first	 case	 (i.e.,	 the	 restricted	 model)
represents	 the	 null	 hypothesis	 while	 the	 more	 general	 model	 represents	 the
alternative	hypothesis.	Since	the	model	given	by	the	null	hypothesis	is	a	special
case	 of	 the	 more	 general	 model	 of	 the	 alternative	 hypothesis,	 we	 say	 the
competing	models	are	nested	models.
	 The	 testing	 procedure	 is	 then	 as	 follows.	 Of	 course,	 we	 need	 to	 base	 our
inference	on	some	sample	X	=	(X1,	X2,	…,	Xn).	The	null	hypothesis	is	rejected	if
the	 likelihood	 function	 with	 the	 parametrization	 under	 the	 null	 hypothesis	 is
significantly	 lower	 than	 the	 likelihood	 function	 as	 given	 by	 the	 alternative
hypothesis,	both	evaluated	for	the	same	sample	X.236
	 How	 do	 we	 determine	 if	 the	 likelihood	 under	 the	 null	 hypothesis	 is
significantly	lower?	This	leads	to	the	introduction	of	a	new	test	statistic,	the	so-
called	likelihood	ratio.	It	is	defined	as
(19.25)
	

where	LX(θ0)	 denotes	 the	 likelihood	 function	 of	 the	 restricted	model	 as	 given
by	the	null	hypothesis	and	LX(θ1)	the	likelihood	function	of	the	general	model.
If	 we	 have	 a	 realization	 x	 =	 (x1,	 x2,	…,	 xn)	 such	 that	 the	 ratio	 in	 equation

(19.25)	is	smaller	than	1,	this	could	indicate	that	the	restriction	is	inaccurate	and
we	should	prefer	the	alternative,	the	more	general	model.	It	then	appears	that	the
parameter	 components	 held	 constant	 at	 zero	 under	 the	 null	 hypothesis	may,	 in
truth,	have	different	values.
	 Since	the	likelihood	ratio	of	equation	(19.25)	depends	on	the	random	sample
X,	it	is	random	itself.	In	particular,	if	the	sample	size	n	becomes	ever	larger	such
that	 we	 are	 in	 the	 realm	 of	 large	 sample	 behavior,	 then	 the	 test	 statistic	 -2	 ·



ln(ρ(X))	obtained	from	the	likelihood	ratio	ρ(X)	in	equation	(19.25)	is	chi-square
distributed	with	degrees	of	freedom	equal	to	the	number	of	restricted	parameter
components	under	the	null	hypothesis.	That	is,	formally,
(19.26)
	

where	the	degrees	of	freedom	k	indicate	the	number	of	restricted	parameters.
A	mistake	often	encountered	 is	 that	different	models	 are	 tested	against	 each

other	that	are	based	on	completely	different	parameters	and,	hence,	not	nested.	In
that	case,	the	test	statistic	ρ(X)	is	no	longer	chi-square	distributed	and,	generally,
becomes	virtually	meaningless.
	 Now,	 suppose	 we	 wanted	 to	 test	 whether	 the	 daily	 S&P	 500	 return	 Y	 is
normally	distributed	with	mean	μ	=	0	and	variance	σ2	=	1	(H0)	or	rather	with	a
general	value	 for	σ2.	 In	 the	 following,	we	 therefore	have	 to	use	 the	 likelihood
function	for	the	normal	distribution	introduced	in	Chapter	17.	So	under	the	null
hypothesis,	we	have	to	compute	the	likelihood	function	inserting	μ	=	0	and	σ2	=
1	such	that	we	obtain

	On	the	other	hand,	under	the	alternative	hypothesis,	we	have	to	compute	the
likelihood	function	with	µ	set	equal	to	0	and	the	maximum	likelihood	estimator

replacing	the	unknown	σ2.	This	yields

and,	consequently,	we	obtain	as	the	test	statistic	from	equation	(19.26)
(19.27)
	

This	 statistic	 is	 chi-square	 distributed	with	 one	 degree	 of	 freedom	 since	 the
difference	in	the	number	of	unrestricted	parameters	between	the	two	hypotheses



is	 one.	Computing	 equation	(19.27)	 for	 the	 7,300	 daily	 S&P	 500	 index	 return
observations	we	have	been	using	 in	previous	examples,	we	obtain	such	a	 large
value	 for	 the	 statistic,	 it	 is	 beyond	 any	 significance	 level.	 Hence,	 we	 have	 to
reject	the	null	hypothesis	of	σ2	=	1	given	μ	=	0.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(INORDER	OF
PRESENTATION)

	

Hypothesis	testing	
Test	statistic	
Decision	rule	
Hypotheses	
Null	hypothesis	
Alternative	hypothesis	
One-tailed	test	
Two-tailed	test	
Acceptance	region	
Critical	rejection	region	(rejection	region)	
Type	I	error	
Type	II	error	
Test	size	
Statistically	significant	
p-value	
Power	of	a	test	
uniformly	most	powerful	
unbiased	test	
Consistent	test	
Neyman-Pearson	test	
Supremum	
Kolmogorov-Smirnov	(KS)	statistic	
Restricted	model	
Nested	model	
Likelihood	ratio
	



PART	Four
	

Multivariate	Linear	Regression	Analysis
	



CHAPTER	20
	

Estimates	and	Diagnostics	for	Multivariate	Linear	Regression
Analysis

	

It	is	often	the	case	in	finance	that	we	find	it	necessary	to	analyze	more	than	one
variable	 simultaneously.	 In	 Chapter	 5,	 for	 example,	 we	 considered	 the
association	between	two	variables	through	correlation	in	order	to	express	linear
dependence	 and	 in	 Chapter	 6	 explained	 how	 to	 estimate	 a	 linear	 dependence
between	 two	variables	 using	 the	 linear	 regression	method.	When	 there	 is	 only
one	 independent	 variable,	 the	 regression	 model	 is	 said	 to	 be	 a	 simple	 linear
regression	or	a	univariate	regression.

	
univariate	modeling	in	many	cases	is	not	sufficient	to	deal	with	real	problems

in	finance.	The	behavior	of	a	certain	variable	of	interest	sometimes	needs	to	be
explained	 by	 two	 or	 more	 variables.	 For	 example,	 suppose	 that	 we	 want	 to
determine	 the	 financial	 or	 macroeconomic	 variables	 that	 affect	 the	 monthly
return	 on	 the	 Standard	 &	 Poor’s	 500	 (S&P	 500)	 index.	 Let’s	 suppose	 that
economic	 and	 financial	 theory	 suggest	 that	 there	 are	 10	 such	 explanatory
variables.	Thus	we	have	a	multivariate	setting	of	11	dimensions—the	return	on
the	S&P	500	and	the	10	explanatory	variables.
	 In	 this	chapter	and	 in	 the	next,	we	explain	 the	multivariate	 linear	 regression
model	 (also	 called	 the	 multiple	 linear	 regression	 model)	 to	 explain	 the	 linear
relationship	between	several	independent	variables	and	some	dependent	variable
we	observe.	As	in	the	univariate	case	(i.e.,	simple	linear	regression)	discussed	in
Chapter	6,	 the	 relationship	between	 the	variables	of	 interest	may	not	be	 linear.
However,	that	can	be	handled	by	a	suitable	transformation	of	the	variables.

	
Because	 the	 regression	model	 is	 evaluated	 by	 goodness-of-fit	measures,	we

will	have	 to	draw	on	 topics	 from	probability	 theory,	parameter	estimation,	and
hypothesis	testing	that	we	have	explained	in	Parts	Two	and	Three.	In	particular,
we	 will	 use	 the	 normal	 distribution,	 t-statistic,	 and	 F-statistic.	 Moreover,	 at
certain	 points	 in	 this	 chapter,	 it	 will	 be	 necessary	 to	 understand	 some	 matrix



algebra.	All	the	needed	essentials	for	this	topic	are	presented	in	the	Appendix	B.
	



THE	MULTIVARIATE	LINEAR	REGRESSION	MODEL

	

The	multivariate	linear	regression	model	for	the	population	is	of	the	form
(20.1)
	

where	we	have

	
β0 =	Constant	intercept.
β1,	…,	βk =	Regression	coefficients	of	k	independent	variables.
ε =	Model	error.

	

	

In	vector	notation,	given	samples	of	dependent	and	independent	variables,	we
can	represent	equation	(20.1)	as
(20.2)
	

where	 y	 is	 an	 n	 ×	 1	 column	 vector	 consisting	 of	 the	 n	 observations	 of	 the
dependent	variable,	that	is,
(20.3)
	

X	 is	 a	 n	 ×	 (k	 +	 1)	 matrix	 consisting	 of	 n	 observations	 of	 each	 of	 the	 k
independent	variables	and	a	column	of	ones	to	account	for	the	vertical	intercepts
β0	such	that
(20.4)



	

	The	(k	+	1)	regression	coefficients	including	intercept	are	given	by	the	k	+	1
column	vector
	(20.5)
	

Each	observation’s	residual	is	represented	in	the	column	vector	ε
(20.6)
	

	The	 regression	 coefficient	 of	 each	 independent	 variable	 given	 in	 equation
(20.5)	represents	the	average	change	in	the	dependent	variable	per	unit	change	in
the	independent	variable	with	the	other	independent	variables	held	constant.
	



ASSUMPTIONS	 OF	 THE	 MULTIVARIATE	 LINEAR
REGRESSION	MODEL

	

For	 the	 multivariate	 linear	 regression	 model,	 we	 make	 the	 following	 three
assumptions	about	the	error	terms:

Assumption	1.	The	regression	errors	are	normally	distributed	with	zero
mean.

	
Assumption	2:	The	variance	of	the	regression	errors	( 	)	is	constant.
	Assumption	3.	The	error	terms	from	different	points	in	time	are	independent
such	that	εt	≠	εt+d	for	any	d	≠	0	are	independent	for	all	t.
		

	Formally,	we	can	restate	the	above	assumptions	in	a	concise	way	as

	Furthermore,	the	residuals	are	assumed	to	be	uncorrelated	with	the	independent
variables.	 In	Chapter	22,	we	briefly	describe	how	to	deal	with	situations	when
these	assumptions	are	violated.
	



ESTIMATION	OF	THE	MODEL	PARAMETERS

	

Since	the	model	is	not	generally	known	for	the	population,	we	need	to	estimate	it
from	some	sample.	Thus,	the	estimated	regression	is
(20.7)
	

	 The	matrix	notation	analogue	of	equation	(20.7)	is
(20.8)
	

which	 is	 similar	 to	 equation	 (20.2)	 except	 the	 model’s	 parameters	 and	 error
terms	are	replaced	by	their	corresponding	estimates,	b	and	e	.
The	independent	variables	x1,	…,	xk	are	thought	to	form	a	space	of	dimension

k.	Then,	with	the	y-values,	we	have	an	additional	dimension	such	that	our	total
dimensionality	 is	 k	 +	 1.	 The	 estimated	 model	 generates	 values	 on	 a	 k-
multidimensional	hyperplane,	which	expresses	the	functional	linear	relationship
between	 the	dependent	and	 independent	variables.	The	estimated	hyperplane	 is
called	 a	 regression	 hyperplane.	 In	 the	 univariate	 case,	 this	 is	 simply	 the
regression	 line	 of	 the	 ŷ-estimates	 stemming	 from	 the	 one	 single	 independent
variable	x.237
	 Each	 of	 the	 k	 coefficients	 determines	 the	 slope	 in	 the	 direction	 of	 the
corresponding	independent	variable.	 In	 the	direction	of	 the	k+1st	dimension	of
the	y	values,	we	extend	the	estimated	errors,	e	=	y	−	ŷ	 .	At	each	y	value,	 these
errors	 denote	 the	 distance	 between	 the	 hyperplane	 and	 the	 observation	 of	 the
corresponding	y	value.
	 To	demonstrate	 this,	we	 consider	 some	variable	y.	 Suppose,	we	 also	 have	 a
two-dimensional	variable	x	with	independent	components	x1	and	x2.	Hence,	we
have	a	 three-dimensional	 space	as	 shown	 in	Figure	20.1.	For	y,	we	 have	 three
observations,	y1,	y2,	and	y3.	The	hyperplane	 for	 equation	(20.7)	 formed	 by	 the
regression	 is	 indicated	 by	 the	 gray	 plane.	 The	 intercept	b0	 is	 indicated	 by	 the
dashed	arrow	while	the	slopes	in	the	directions	of	x1	and	x2	are	indicated	by	the



arrows	b1	 and	 b2,	 respectively.238	 Now,	 we	 extend	 vertical	 lines	 between	 the
hyperplane	and	the	observations,	e1,	e2,	and	e3,	to	show	by	how	much	we	have
missed	approximating	the	observations	with	the	hyperplane.
	 Generally,	 with	 the	 ordinary	 least	 squares	 regression	 method	 described	 in
Chapter	 6,	 the	 estimates	 are,	 again,	 such	 that	 Σ(y	 −	 ŷ)238	 is	 minimized	 with
respect	 to	 the	 regression	 coefficients.	 For	 the	 computation	 of	 the	 regression
estimates,	we	need	to	indulge	somewhat	in	matrix	computation.	If	we	write	the
minimization	problem	in	matrix	notation,	finding	the	vector	β	that	minimizes	the
squared	errors	looks	like239

	FIGURE	20.1	Vector	Hyperplane	and	Residuals
	

Differential	 calculus	 and	 matrix	 algebra	 lead	 to	 the	 optimal	 regression
coefficient	estimates	and	estimated	residuals	given	by
(20.9)
	

and
(20.10)
	



where	b	in	equation	(20.9)	and	e	in	equation	(20.10)	are	 (k	+	1)	×	1	and	n	×	1
column	 vectors,	 respectively.	 One	 should	 not	 worry	 however	 if	 this	 appears
rather	 complicated	 and	 very	 theoretical.	 Most	 statistical	 software	 have	 these
computations	 implemented	and	one	has	 to	 just	 insert	 the	data	 for	 the	variables
and	select	some	least	squares	regression	routine	to	produce	the	desired	estimates
according	to	equation	(20.9).



DESIGNING	THE	MODEL

	

Athough	in	Chapter	6	we	introduced	the	simple	linear	regression	model,	we	did
not	 detail	 the	 general	 steps	 necessary	 for	 the	 design	 of	 the	 regression	 and	 its
evaluation.	This	building	process	consists	of	three	steps:

1.	Specification
2.	Fitting/estimating
3.	Diagnosis

	 In	the	specification	step,	we	need	to	determine	the	dependent	and	independent
variables.	We	have	 to	make	 sure	 that	we	do	not	 include	 independent	variables
that	seem	to	have	nothing	to	do	with	the	dependent	variable.	More	than	likely,	in
dealing	 with	 a	 dependent	 variable	 that	 is	 a	 financial	 variable,	 financial	 and
economic	theory	will	provide	a	guide	to	what	the	relevant	independent	variables
might	be.	Then,	after	the	variables	have	been	identified,	we	have	to	gather	data
for	 all	 the	 variables.	 Thus,	 we	 obtain	 the	 vector	 y	 and	 the	matrix	X.	 Without
defending	it	theoretically	here,	it	is	true	that	the	larger	the	sample,	the	better	the
quality	of	the	estimation.	Theoretically,	the	sample	size	n	should	at	least	be	one
larger	 than	the	number	of	 independent	variables	k.	A	rule	of	 thumb	is,	at	 least,
four	times	k.
	 The	 fitting	 or	 estimation	 step	 consists	 of	 constructing	 the	 functional	 linear
relationship	expressed	by	the	model.	That	is,	we	need	to	compute	the	correlation
coefficients	 for	 the	 regression	 coefficients.	 We	 perform	 this	 even	 for	 the
independent	variables	to	test	for	possible	interaction	between	them	as	explained
later	in	the	next	chapter.	The	estimation,	then,	yields	so-called	point	estimates	of
the	dependent	variable	for	given	values	of	the	independent	variables.240
	 Once	we	have	obtained	the	estimates	for	equation	(20.9),	we	can	move	on	to
evaluating	the	quality	of	the	regression	with	respect	to	the	given	data.	This	is	the
diagnosis	step.
	



DIAGNOSTIC	CHECK	AND	MODEL	SIGNIFICANCE

	

As	 just	 explained,	 diagnosing	 the	 quality	 of	 some	 model	 is	 essential	 in	 the
building	 process.	 Thus	 we	 need	 to	 set	 forth	 criteria	 for	 determining	 model
quality.	If,	according	to	some	criteria	the	fit	is	determined	to	be	insufficient,	we
might	have	to	redesign	the	model	by	including	different	independent	variables.
	 We	 know	 from	 Chapter	 6	 the	 goodness-of-fit	 measure	 is	 the	 coefficient	 of
determination	(denoted	by	R2).	We	will	use	that	measure	here	as	well.	As	with
the	 univariate	 regression,	 the	 coefficient	 of	 determination	 measures	 the
percentage	 of	 variation	 in	 the	 dependent	 variable	 explained	 by	 all	 of	 the
independent	 variables	 employed	 in	 the	 regression.	 The	R2	 of	 the	 multivariate
linear	regression	is	referred	to	as	the	multiple	coefficient	of	determination	.	We
reproduce	its	definition	from	Chapter	6	below:
(20.11)
	

where

SSR	=	sum	of	squares	explained	by	the	regression	model
	SST	=	total	sum	of	squares
		

Following	 the	 initial	 assessment,	 one	 needs	 to	 verify	 the	 model	 by
determining	 its	 statistical	 significance.241	 To	 do	 so,	 we	 compute	 the	 overall
model’s	 significance	 and	 also	 the	 significance	 of	 the	 individual	 regression
coefficients.	The	 estimated	 regression	 errors	 play	 an	 important	 role	 as	well.	 If
the	 standard	 deviation	 of	 the	 regression	 errors	 is	 found	 to	 be	 too	 large,	 the	 fit
could	be	improved	by	an	alternative.	The	reason	is	that	too	much	of	the	variance
of	 the	 dependent	 y	 is	 put	 into	 the	 residual	 variance	 s2.	 Some	 of	 this	 residual
variance	may,	in	fact,	be	the	result	of	variation	in	some	independent	variable	not
considered	in	the	model	so	far.	And	a	final	aspect	is	testing	for	the	interaction	of
the	independent	variables	that	we	discuss	in	the	next	chapter.
	



Testing	for	the	Significance	of	the	Model

	

To	 test	 whether	 the	 entire	 model	 is	 significant,	 we	 consider	 two	 alternative
hypotheses.	 The	 first,	 our	 null	 hypothesis	 H0,	 states	 that	 all	 regression
coefficients	 are	 equal	 to	 zero,	 which	 means	 that	 none	 of	 the	 independent
variables	play	any	 role.	The	alternative	hypothesis	H1,	 states	 that,	 at	 least,	one
coefficient	is	different	from	zero.	More	formally,

H0	:	β0	=	β1	=	…	=	βk	=	0
	H1	:	βj	≠	0	for	at	least	one	j	∈{1,	2,…,	k}
		

	 In	 case	 of	 a	 true	 null	 hypothesis,	 the	 linear	 model	 with	 the	 independent
variables	 we	 have	 chosen	 does	 not	 describe	 the	 behavior	 of	 the	 dependent
variable.	To	 perform	 the	 test,	we	 carry	 out	 an	analysis	 of	 variance	 (ANOVA)
test.	In	this	context,	we	compute	the	F-statistic	defined	by
(20.12)
	

where	SSR	was	defined	above	and

SSE	=	unexplained	sum	of	squares
		

SSE	was	defined	 in	Chapter	6	but	 in	 the	multivariate	case	ŷ	 is	given	by	(20.7)
and	the	error	terms	by	(20.10).
The	degrees	of	freedom	of	the	SSR	equal	the	number	of	independent	variables,

dn	=	k,	while	the	degrees	of	freedom	of	the	SSE	are	dd	=	n	-	k	-	1.242	The	MSR
and	MSE	 are	 the	mean	 squares	 of	 regression	 and	mean	 squared	 of	 errors,
respectively,	 obtained	 by	 dividing	 the	 sum	 of	 squared	 deviations	 by	 their
respective	degrees	of	freedom.	All	results	necessary	for	the	ANOVA	are	shown
in	Table	20.1.



	 If	the	statistic	is	found	significant	at	some	predetermined	level	(i.e.,	PF	<	α),
the	model	does	explain	some	variation	of	the	dependent	variable	y.243
	TABLE	20.1	ANOVA	Component	Pattern
	

We	ought	to	be	careful	not	to	overdo	it;	that	is,	we	should	not	create	a	model
more	complicated	than	necessary.	A	good	guideline	is	to	use	the	simplest	model
suitable.	Complicated	and	refined	models	tend	to	be	inflexible	and	fail	to	work
with	 different	 samples.	 In	 most	 cases,	 they	 are	 poor	 models	 for	 forecasting
purposes.	So,	the	best	R2	is	not	necessarily	an	indicator	of	the	most	useful	model.
The	 reason	 is	 that	 one	 can	 artificially	 increase	 R2	 by	 including	 additional
independent	variables	into	the	regression.	But	 the	resulting	seemingly	better	fit
may	 be	 misleading.	 One	 will	 not	 know	 the	 true	 quality	 of	 the	 model	 if	 one
evaluates	it	by	applying	it	to	the	same	data	used	for	the	fit.	However,	often	if	one
uses	the	fitted	model	for	a	different	set	of	data,	 the	weakness	of	 the	over-fitted
model	becomes	obvious.
	 It	 is	for	 this	reason	a	redefined	version	of	 the	coefficient	of	determination	is
needed	and	is	called	the	adjusted	R-squared	(or	adjusted	R2)	given	by
	(20.13)
	

This	 adjusted	 goodness-of-fit	 measure	 incorporates	 the	 number	 of
observations,	 n,	 as	 well	 as	 the	 number	 of	 independent	 variables,	 k,	 plus	 the
constant	 term	 in	 the	 denominator	 (n	 -	 k	 -	 1).	 For	 as	 long	 as	 the	 number	 of
observations	 is	 very	 large	 compared	 to	 k,	 R2	 and	 are	 approximately	 the
same.244	However,	if	the	number	k	of	independent	variables	included	increases,
the	 drops	noticeably	compared	 to	 the	original	R2.One	 can	 interpret	 this	 new
measure	of	fit	as	penalizing	excessive	use	of	independent	variables.	Instead,	one
should	set	up	the	model	as	parsimonious	as	possible.	To	take	most	advantage	of
the	 set	 of	 possible	 independent	 variables,	 one	 should	 consider	 those	 that
contribute	 a	maximum	of	 explanatory	 variation	 to	 the	 regression.	That	 is,	 one



has	to	balance	the	cost	of	additional	independent	variables	and	reduction	in	the
adjusted	R2.
	



Testing	for	the	Significance	of	the	Independent	Variables

	

Suppose	we	have	found	that	the	model	is	significant.	Now,	we	turn	to	the	test	of
significance	 for	 individual	 independent	 variables.	 Formally,	 for	 each	 of	 the	 k
independent	variables,	we	test

H0	:	βj	=	0	0	H1	:	βj	≠	0
	

conditional	on	the	other	independent	variables	already	included	in	the	regression
model.
	 The	appropriate	test	would	be	the	t-test	given	by
(20.14)
	

with	n	−	k	−	1	degrees	of	 freedom.	The	value	bj	 is	 the	sample	estimate	of	 the
j-th	regression	coefficient	and	 	is	the	standard	error	of	the	coefficient	estimate.
The	standard	error	of	each	coefficient	is	determined	by	the	following	estimate

of	the	variance	matrix	of	the	entire	vector	β	given	by
(20.15)
	

which	 is	 a	 matrix	 multiplied	 by	 the	 univariate	 standard	 error	 of	 the
regression	,	s2.	The	latter	is	given	by
(20.16)
	

SSE	was	previously	defined	and	the	degrees	of	freedom	are	determined	by	the
number	of	observations,	n,	minus	the	number	of	independent	parameters,	k,	and
minus	one	degree	of	freedom	lost	on	the	constant	term.	Hence,	we	obtain	n−	k	−
1	degrees	of	freedom.	The	j-th	diagonal	element	of	equation	(20.15),	then,	is	the
standard	error	of	the	j-th	regression	coefficient	used	in	equation	(20.14).245	This



test	statistic	in	equation	(20.14)	needs	to	be	compared	to	the	critical	values	of	the
tabulated	 t-distribution	 with	 n	 -	 k	 -	 1	 degrees	 of	 freedom	 at	 some	 particular
significance	 level	α,	 say	0.05.	So,	 if	 the	 test	 statistic	should	exceed	 the	critical
value	 then	 the	 independent	 variable	 is	 said	 to	 be	 statistically	 significant.
Equivalently,	the	p-value	of	equation	(20.14)	would	then	be	less	than	α.
	



The	F-Test	for	Inclusion	of	Additional	Variables

	

Suppose	we	have	k	-	1	independent	variables	in	the	regression.	The	goodness-of-
fit	 is	given	by	 .	 If	we	want	 to	check	whether	 it	 is	appropriate	 to	add	another
independent	variable	to	the	regression	model,	we	need	a	test	statistic	measuring
the	 improvement	 in	 the	 goodness-of-fit	 due	 to	 the	 additional	 variable.	 Let	R2
denote	 the	 goodness-of-fit	 of	 the	 regression	 after	 the	 additional	 independent
variable	 has	 been	 included	 into	 the	 regression.	 Then	 the	 improvement	 in	 the
explanatory	power	is	given	by	R2	−	 	,	which	is	chi-square	distributed	with	one
degree	of	freedom.	Because	1	-	R2	is	chi-square	distributed	with	n	-	k	-	1	degrees
of	freedom,	the	statistic
(20.17)
	

is	F-distributed	with	1	and	n	-	k	-	1	degrees	of	freedom	under	the	null	hypothesis
that	the	true	model	consists	of	k	-	1	independent	variables	only.246



APPLICATIONS	TO	FINANCE

	

We	conclude	this	chapter	with	two	real-world	finance	problems:
•	Estimation	of	empirical	duration
•	Predicting	the	10-year	Treasury	yield

	



Estimation	of	Empirical	Duration

	

A	commonly	used	measure	of	 the	 interest-rate	 sensitivity	of	 a	 financial	 asset’s
value	 is	 its	duration.	For	example,	 if	a	 financial	asset	has	a	duration	of	5,	 this
means	that	the	financial	asset’s	value	or	price	will	change	by	roughly	5%	for	a
100	 basis	 point	 change	 in	 interest	 rates.	 The	 direction	 of	 the	 change	 is
determined	by	 the	sign	of	 the	duration.	Specifically,	 if	 the	duration	 is	positive,
the	price	will	decline	when	the	relevant	interest	rate	increases	but	will	increase	if
the	 relevant	 interest	 rate	 declines.	 If	 the	 duration	 is	 negative,	 the	 price	 will
increase	if	the	relevant	interest	rate	increases	and	fall	if	the	relevant	interest	rate
decreases.

	
So	suppose	that	a	common	stock	selling	at	a	price	of	$80	has	a	duration	of	+5

and	that	 the	relevant	 interest	rate	 that	affects	 the	value	of	 the	common	stock	is
currently	6%.	This	means	that	if	that	relevant	interest	rate	increases	by	100	basis
points	 (from	 6%	 to	 7%),	 the	 price	 of	 the	 financial	 asset	will	 decrease	 by	 5%.
Since	the	current	price	 is	$80,	 the	price	will	decline	by	about	$4.	On	the	other
hand,	 if	 the	 relevant	 interest	 rate	 decreases	 from	 6%	 to	 5%	 (a	 decline	 of	 100
basis	points),	the	price	will	increase	by	roughly	5%	to	$84.
	 Duration	 can	 be	 estimated	 by	 using	 a	 valuation	 model	 or	 empirically	 by
estimating	from	historical	returns	the	sensitivity	of	the	asset’s	value	to	changes
in	interest	rates.	When	duration	is	measured	in	the	latter	way,	it	is	referred	to	as
empirical	 duration.	 Since	 it	 is	 estimated	 using	 regression	 analysis,	 it	 is
sometimes	referred	to	as	regression-based	duration.
	 The	dependent	 variable	 in	 the	 regression	model	 is	 the	 percentage	 change	 in
the	value	of	the	asset.	We	will	not	use	in	our	illustration	individual	assets.	Rather
we	 will	 use	 sectors	 of	 the	 financial	 market	 and	 refer	 to	 them	 as	 assets.
Effectively,	 these	sectors	can	be	viewed	as	portfolios	 that	are	comprised	of	 the
components	of	the	index	representing	the	sector.	The	assets	we	will	estimate	the
duration	 for	 are	 the	 (1)	 electric	 utility	 sector	 of	 the	 S&P	 500	 index,	 (2)
commercial	bank	sector	of	the	S&P	500	index,	and	(3)	Lehman	U.S.	Aggregate
Bond	Index.247	For	each	of	these	indexes	the	dependent	variable	is	the	monthly
return	in	the	value	of	the	index.	The	time	period	covered	is	from	October	1989	to



November	 2003	 (170	 observations)	 and	 the	 monthly	 return	 observations	 are
given	in	the	last	three	columns	of	Table	20.2.248
	 Let’s	begin	with	just	one	independent	variable,	an	interest	rate	index.	We	will
use	 the	monthly	 change	 in	 the	 U.S.	 Treasury	 yield	 index	 as	measured	 by	 the
Lehman	Treasury	Index	as	the	relevant	interest	rate	variable.	The	monthly	values
are	given	in	the	second	column	of	Table	20.2.	Notice	that	the	data	are	reported	as
the	percentage	difference	between	two	months.	So,	if	in	one	month	the	value	of
the	Treasury	yield	index	is	7.20%	and	in	the	next	month	it	 is	7.70%,	the	value
for	 the	 observation	 is	 0.50%.	 In	 finance,	 a	 basis	 point	 is	 equal	 to	 0.0001	 or
0.01%	 so	 that	 0.50%	 is	 equal	 to	 50	 basis	 points.	A	 100	 basis	 point	 change	 in
interest	rates	is	1%	or	1.00.	We’ll	need	to	understand	this	in	order	to	interpret	the
regression	results.
	 The	simple	linear	regression	model	(i.e.,	the	univariate	case)	is

y	=	b0	+	b1x1	+	e
	

where

y	=	the	monthly	return	of	an	index.

	
x1	=	the	monthly	change	in	the	Treasury	yield.
		

	 The	 estimated	 regression	 coefficient	 b1	 is	 the	 empirical	 duration.	 To
understand	why,	 if	we	substitute	for	100	basis	points	 in	 the	above	equation	for
the	monthly	change	 in	 the	Treasury	yield,	 the	 regression	coefficient	b1	 tells	us
that	 the	estimated	change	 in	 the	monthly	 return	of	an	 index	will	be	b1.	This	 is
precisely	 the	 definition	 of	 empirical	 duration:	 the	 approximate	 change	 in	 the
value	of	an	asset	for	a	100	basis	point	change	in	interest	rates.

	
The	estimated	regression	coefficient	and	other	diagnostic	values	are	reported

in	Table	20.3.	Notice	 that	 negative	values	 for	 the	 estimated	 empirical	 duration
are	 reported.	 In	 practice,	 however,	 the	 duration	 is	 quoted	 as	 a	 positive	 value.
Let’s	look	at	the	results	for	all	three	assets.
	TABLE	20.2	Data	for	Empirical	Duration	Illustration
	



TABLE	 20.3	 Estimation	 of	 Regression	 Parameters	 for	 Empirical	 Duration—
Simple	Linear	Regression
	



For	 the	 Electric	 utility	 sector,	 the	 estimated	 regression	 coefficient	 for	 b1	 is
-4.5329	 suggesting	 that	 for	 a	 100	 basis	 point	 change	 in	 Treasury	 yields,	 the
percentage	 change	 in	 the	 value	 of	 the	 stocks	 comprising	 this	 sector	 will	 be
roughly	 4.53%.	 Moreover,	 as	 expected	 the	 change	 will	 be	 in	 the	 opposite
direction	to	the	change	in	interest	rates—when	interest	rates	increase	(decrease)
the	 value	 of	 this	 sector	 decreases	 (increases).	 The	 regression	 coefficient	 is
statistically	significant	at	the	1%	level	as	can	be	seen	from	the	t-statistic	and	p-
value.	The	R2	for	this	regression	is	6.5%.	Thus	although	statistically	significant,
this	 regression	 only	 explains	 6.5%	 of	 the	 variation	 is	 the	 movement	 of	 the
Electric	utility	sector,	suggesting	that	there	are	other	variables	that	have	not	been
considered.

	
Moving	 on	 to	 the	 Commercial	 Bank	 sector,	 the	 estimated	 regression

coefficient	is	not	statistically	significant	at	any	reasonable	level	of	significance.
The	regression	explains	only	1%	of	the	variation	in	the	movement	of	the	stocks
in	this	sector.
	 Finally,	the	Lehman	U.S.	Aggregate	Bond	Index	is,	not	unexpectedly,	highly
statistically	 significant	 explaining	 almost	 92%	 of	 the	movement	 in	 this	 index.
The	 reason	 is	 obvious.	 This	 is	 a	 bond	 index	 that	 includes	 all	 bonds	 including
Treasury	securities.
	 Now	 let’s	move	on	 to	 add	another	 independent	variable	 that	moves	us	 from
the	 univariate	 case	 to	 the	 multivariate	 linear	 regression	 case.	 The	 new
independent	 variable	we	 shall	 add	 is	 the	 return	 on	 the	Standard	&	Poor’s	 500
Stock	Index	(S&P	500	hereafter).	The	observations	are	given	in	Table	20.2.	So,



in	 this	 illustration	 we	 have	 k	 =	 2.	 The	 multivariate	 linear	 regression	 to	 be
estimated	is

y	=	b0	+	b1x1	+	b2x2	+	e
	

where

y	=	the	monthly	return	of	an	index
	x1	=	the	monthly	change	in	the	Treasury	yield
	x2	=	the	monthly	return	on	the	S&P	500
		

	 In	a	simple	linear	regression	involving	only	x2	and	y,	the	estimated	regression
coefficient	b2	would	be	the	beta	of	the	asset.	In	the	multivariate	linear	regression
model	 above,	b2	 is	 the	 asset	 beta	 taking	 into	 account	 changes	 in	 the	Treasury
yield.

	
The	 regression	 results	 including	 the	 diagnostic	 statistics	 are	 shown	 in	Table

20.4.	Looking	first	at	the	independent	variable	x1,	we	reach	the	same	conclusion
as	to	its	significance	for	all	three	assets	as	in	the	univariate	case.	Note	also	that
the	estimated	value	of	the	regression	coefficients	are	not	much	different	than	in
the	 univariate	 case.	As	 for	 our	 new	 independent	 variable,	 x2,	we	 see	 that	 it	 is
statistically	significant	at	the	1%	level	of	significance	for	all	three	asset	indexes.
While	we	 can	 perform	 statistical	 tests	 discussed	 earlier	 for	 the	 contribution	 of
adding	the	new	independent	variable,	for	the	two	stock	sectors,	the	contribution
to	 explaining	 the	 movement	 in	 the	 return	 in	 the	 sector	 indexes	 are	 clearly
significant.	The	R2	for	the	Electric	utility	sector	increased	from	around	7%	in	the
univariate	 case	 to	 13%	 in	 the	multivariate	 linear	 regression	 case.	The	 increase
was	obviously	more	dramatic	for	the	Commercial	Bank	sector,	the	R2	increasing
from	1%	to	49%.
	 Next	we	analyze	 the	 regression	of	 the	Lehman	U.S.	Aggregate	Bond	 Index.
Using	 only	 one	 independent	 variable,	 we	 have	 =	 91.77%.	 If	 we	 include	 the
additional	 independent	variable,	we	obtain	 the	 improved	R2	=	93.12%.	For	 the
augmented	regression,	we	compute	with	n	=	170	and	k	=	2	the	adjusted	R2	as



	

Let’s	 apply	 the	F-test	 to	 Lehman	 U.S.	 Aggregate	 Bond	 Index	 to	 see	 if	 the
addition	 of	 the	 new	 independent	 variable	 increasing	 the	 R2	 from	 91.77%	 to
93.12%	is	statistically	significant.	From	(20.17),	we	have

	This	 value	 is	 highly	 significant	with	 a	p-value	 of	 virtually	 zero.	Hence,	 the
inclusion	of	the	additional	variable	is	statistically	reasonable.
	



Predicting	the	10-Year	Treasury	Yield249

	

The	U.S.	Treasury	securities	market	is	the	world’s	most	liquid	bond	market.	The
U.S.	 Department	 of	 the	 Treasury	 issues	 two	 types	 of	 securities:	 zerocoupon
securities	 and	 coupon	 securities.	 Securities	 issued	 with	 one	 year	 or	 less	 to
maturity	 are	 called	 Treasury	 bills;	 they	 are	 issued	 as	 zerocoupon	 instruments.
Treasury	 securities	with	more	 than	one	year	 to	maturity	 are	 issued	 as	 coupon-
bearing	securities.	Treasury	securities	from	more	than	one	year	up	to	10	years	of
maturity	are	called	Treasury	notes;	Treasury	securities	with	a	maturity	in	excess
of	10	years	are	called	Treasury	bonds.	The	U.S.	Treasury	auctions	securities	of
specified	maturities	 on	 a	 regular	 calendar	 basis.	 The	Treasury	 currently	 issues
30-year	Treasury	bonds	but	had	stopped	issuance	of	them	from	October	2001	to
January	2006.

	
An	 important	Treasury	note	 is	 the	10-year	Treasury	note.	 In	 this	 illustration,

we	 try	 to	 forecast	 this	 rate	 based	 on	 two	 independent	 variables	 suggested	 by
economic	 theory.	A	well-known	 theory	of	 interest	 rates,	known	as	 the	Fisher’s
Law,	 is	 that	 the	 interest	 rate	 in	any	economy	consists	of	 two	components.	The
first	is	the	expected	rate	of	inflation.	The	second	is	the	real	rate	of	interest.	We
use	regression	analysis	 to	produce	a	model	 to	forecast	 the	yield	on	the	10-year
Treasury	 note	 (simply,	 the	 10-year	 Treasury	 yield)—the	 dependent	 variable—
and	the	expected	rate	of	inflation	(simply,	expected	inflation)	and	the	real	rate	of
interest	(simply,	real	rate).
	 The	 10-year	 Treasury	 yield	 is	 observable,	 but	we	 need	 a	 proxy	 for	 the	 two
independent	 variables	 (i.e.,	 the	 expected	 rate	 of	 inflation	 and	 the	 real	 rate	 of
interest)	 because	 they	 are	 not	 observable	 at	 the	 time	 of	 the	 forecast.	 Keep	 in
mind	 that	 since	we	are	 forecasting,	we	do	not	use	as	our	 independent	variable
information	that	is	unavailable	at	the	time	of	the	forecast.	Consequently,	we	need
a	proxy	available	at	the	time	of	the	forecast.

	
The	 inflation	 rate	 is	 available	 from	 the	 U.S.	 Department	 of	 Commerce.

However,	 we	 need	 a	 proxy	 for	 expected	 inflation.	 We	 can	 use	 some	 type	 of



average	of	 past	 inflation	 as	 a	 proxy.	 In	 our	model,	we	use	 a	 five-year	moving
average.	 There	 are	more	 sophisticated	methodologies	 for	 calculating	 expected
inflation,	 but	 the	 five-year	moving	 average	 is	 sufficient	 for	 our	 illustration.250
For	 the	 real	 rate,	we	use	 the	 rate	on	 three-month	certificates	of	deposit	 (CDs).
Again,	we	use	a	five-year	moving	average.
	 The	monthly	data	 for	 the	 three	variables	 from	November	1965	 to	December
2005	 (482	observations)	are	provided	 in	Table	20.5.	The	 regression	 results	 are
reported	 in	 Table	 20.6.	 As	 can	 be	 seen,	 the	 regression	 coefficients	 of	 both
independent	variables	are	positive	(as	would	be	predicted	by	economic	 theory)
and	highly	significant.	The	R2	and	adjusted	R2	 are	0.90	and	0.83,	 respectively.
The	ANOVA	table	is	also	shown	in	the	table.	The	results	suggest	a	good	fit	for
forecasting	the	10-year	rate.
	TABLE	20.5	Monthly	Data	for	10-Year	Treasury	Yield,	Expected	Inflation,	and
Real	Rate:	November	1965-December	2005
	











TABLE	20.6	Results	of	Regression	for	Forecasting	10-Year	Treasury	Yield
	





CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Simple	linear	regression	
univariate	regression	
Multivariate	linear	regression	model	
Hyperplane	
Regression	hyperplane	
Multiple	coefficient	of	determination	
Analysis	of	variance	(ANOVA)	test	
Mean	squares	of	regression	
Mean	squared	of	errors	
Adjusted	R-squared	(or	adjusted	R2)	
Standard	error	of	the	coefficient	estimate	
Standard	error	of	the	regression	
Duration	
Empirical	duration	
Regression-based	duration
	



CHAPTER	21
	

Designing	and	Building	a	Multivariate	Linear	Regression	Model
	

In	 this	chapter	we	continue	with	our	coverage	of	multivariate	 linear	 regression
analysis.	 The	 three	 topics	 covered	 in	 this	 chapter	 are	 the	 problem	 of
multicollinearity,	 incorporating	 dummy	 variables	 into	 a	 regression	model,	 and
model	building	techniques	using	stepwise	regression	analysis.
	



THE	PROBLEM	OF	MULTICOLLINEARITY

	

When	discussing	the	suitability	of	a	model,	an	important	issue	is	the	structure	or
interaction	of	the	independent	variables.	This	is	referred	to	as	multicollinearity	.
Tests	for	 the	presence	of	multicollinearity	must	be	performed	after	 the	model’s
significance	has	been	determined	and	all	significant	independent	variables	to	be
used	in	the	final	regression	have	been	determined.	Investigation	for	the	presence
of	multicollinearity	 involves	 the	 correlation	between	 the	 independent	 variables
and	the	dependent	variable.

	
A	good	deal	of	 intuition	 is	helpful	 in	assessing	 if	 the	 regression	coefficients

make	any	sense.	For	example,	one	by	one,	select	each	independent	variable	and
let	all	other	independent	variables	be	equal	to	zero.	Now,	estimate	a	regression
merely	 with	 this	 particular	 independent	 variable	 and	 see	 if	 the	 regression
coefficient	 of	 this	 variable	 seems	 unreasonable	 because	 if	 its	 sign	 is
counterintuitive	or	its	value	appears	too	small	or	large,	one	may	want	to	consider
removing	 that	 independent	 variable	 from	 the	 regression.	The	 reason	may	 very
well	be	attributable	 to	multicollinearity.	Technically,	multicollinearity	 is	caused
by	 independent	 variables	 in	 the	 regression	 model	 that	 contain	 common
information.	The	 independent	 variables	 are	 highly	 intercorrelated;	 that	 is,	 they
have	 too	 much	 linear	 dependence.	 Hence	 the	 presence	 of	 multicollinear
independent	 variables	 prevents	 us	 from	 obtaining	 insight	 into	 the	 true
contribution	to	the	regression	from	each	independent	variable.
	 Formally,	 multicollinearity	 coincides	 with	 the	 following	 mathematical
statement
(21.1)
	

	Equation	(21.1)	can	be	 interpreted	as	X	not	consisting	of	vectors	Xi,	 i	=	1,	…,
k	that	jointly	can	reproduce	any	vector	in	the	k-dimensional	real	numbers,	Rk.
In	 a	 very	 extreme	 case,	 two	 or	 more	 variables	 may	 be	 perfectly	 correlated

(i.e.,	their	pairwise	correlations	are	equal	to	one),	which	would	imply	that	some
vectors	 of	 observations	 of	 these	 variables	 are	 merely	 linear	 combinations	 of



others.	 The	 result	 of	 this	would	 be	 that	 some	 variables	 are	 fully	 explained	 by
others	and,	thus,	provide	no	additional	information.	This	is	a	very	extreme	case,
however.	 In	 most	 problems	 in	 finance,	 the	 independent	 data	 vectors	 are	 not
perfectly	 correlated	 but	 may	 be	 correlated	 to	 a	 high	 degree.	 In	 any	 case,	 the
result	is	that,	roughly	speaking,	the	regression	estimation	procedure	is	confused
by	 this	 ambiguity	 of	 data	 information	 such	 that	 it	 cannot	 produce	 distinct
regression	coefficients	for	the	variables	involved.	The	βi,	i	=	1,	…,	k	cannot	be
identified;	 hence,	 an	 infinite	 number	 of	 possible	 values	 for	 the	 regression
coefficients	 can	 serve	 as	 a	 solution.	This	 can	 be	 very	 frustrating	 in	 building	 a
reliable	regression	model.
	 We	 can	 demonstrate	 the	 problem	 with	 an	 example.	 Consider	 a	 regression
model	 with	 three	 independent	 variables—X1,	 X2,	 and	 X3.	 Also	 assume	 the
following	regarding	these	three	independent	variables

X1	=	2X2	=	4X3
	

such	 that	 there	 is,	 effectively,	 just	 one	 independent	 variable,	 either	X1,	X2,	 or
X3.	Now,	suppose	all	three	independent	variables	are	erroneously	used	to	model
the	following	regression

Just	 to	pick	one	possibility	of	ambiguity,	 the	 same	effect	 is	 achieved	by	either
increasing	β1	by,	for	example,	0.25	or	by	increasing	β3	by	1,	and	so	forth.	In	this
example,	the	rank	would	just	be	1.	This	is	also	intuitive	since,	generally,	the	rank
of	(XTX)-1	indicates	the	number	of	truly	independent	sources.251



Procedures	for	Mitigating	Multicollinearity

	

While	it	is	quite	impossible	to	provide	a	general	rule	to	eliminate	the	problem	of
multicollinearity,	there	are	some	techniques	that	can	be	employed	to	mitigate	the
problem.

	
Multicollinearity	might	be	present	if	there	appears	to	be	a	mismatch	between

the	 sign	 of	 the	 correlation	 coefficient	 and	 the	 regression	 coefficient	 of	 that
particular	 independent	 variable.	 So,	 the	 first	 place	 to	 always	 check	 is	 the
correlation	coefficient	for	each	independent	variable	and	the	dependent	variable.
	 Other	indicators	of	multicollinearity	are:

1.	 The	 sensitivity	 of	 regression	 coefficients	 to	 the	 inclusion	 of
additional	independent	variables.

2.	 Changes	 from	 significance	 to	 insignificance	 of	 already	 included
independent	variables	after	new	ones	have	been	added.

3.	An	increase	in	the	model’s	standard	error	of	the	regression.
A	 consequence	 of	 the	 above	 is	 that	 the	 regression	 coefficient	 estimates	 vary
dramatically	as	a	result	of	only	minor	changes	in	the	data	X.
	 A	 remedy	 most	 commonly	 suggested	 is	 to	 try	 to	 single	 out	 independent
variables	 that	 are	 likely	 to	cause	 the	problems.	This	can	be	done	by	excluding
those	 independent	 variable	 so	 identified	 from	 the	 regression	model.	 It	may	 be
possible	to	include	other	independent	variables,	 instead,	 that	provide	additional
information.

	
In	 general,	 due	 to	 multicollinearity,	 the	 standard	 error	 of	 the	 regression

increases,	 rendering	 the	 t-ratios	 of	 many	 independent	 variables	 too	 small	 to
indicate	 significance	 despite	 the	 fact	 that	 the	 regression	model,	 itself	 is	 highly
significant.
	 To	find	out	whether	the	variance	error	of	the	regession	is	too	large,	we	present
a	 commonly	 employed	 tool.	 We	 measure	 multicollinearity	 by	 computing	 the
impact	 of	 the	 correlation	 between	 some	 independent	 variables	 and	 the	 j-th
independent	 variable.	 Therefore,	 we	 need	 to	 regress	 the	 j-th	 variable	 on	 the



remaining	k−1	variables.	The	resulting	regression	would	look	like

	Then	we	 obtain	 the	 coefficient	 of	 determination	 of	 this	 regression,	 .	 This,
again,	 is	 used	 to	 divide	 the	 original	 variance	 of	 the	 j-th	 regression	 coefficient
estimate	by	a	correction	term.	Formally,	this	correction	term,	called	the	variance
inflation	factor	(VIF),	is	given	by
	(21.2)
	

So,	 if	 there	 is	no	correlation	present	between	 independent	variable	 j	and	 the
other	independent	variables,	the	variance	of	bj	will	remain	the	same	and	the	t-test
results	 will	 be	 unchanged.	 On	 the	 contrary,	 in	 the	 case	 of	 more	 intense
correlation,	 the	 variance	 will	 increase	 and	 most	 likely	 reject	 variable	 xj	 as
significant	for	the	overall	regression.
	 Consequently,	 prediction	 for	 the	 j-th	 regression	 coefficient	 becomes	 less
precise	 since	 its	 confidence	 interval	 increases	 due	 to	 equation	 (21.2).252	 We
know	from	the	theory	of	estimation	in	Chapter	18	that	the	confidence	interval	for
the	regression	coefficient	at	the	level	α	is	given	by
(21.3)
	

where	 tα/2	 is	 the	critical	value	at	 level	α	of	 the	 t-distribution	with	n−k	 degrees
of	freedom.	This	means	that	with	probability	1−α,	the	true	coefficient	is	inside	of
this	interval.253	Naturally,	the	result	of	some	VIF	>	1	leads	to	a	widening	of	the
confidence	interval	given	by	equation	(21.3).
As	a	rule	of	thumb,	a	benchmark	for	the	VIF	is	often	given	as	10.	A	VIF	that

exceeds	 10	 indicates	 a	 severe	 impact	 due	 to	 multicollinearity	 and	 the
independent	variable	is	best	removed	from	the	regression.
	



INCORPORATING	DUMMY	VARIABLES	AS	INDEPENDENT
VARIABLES

	

So	 far,	we	 have	 considered	 quantitative	 data	 only.	There	might	 be	 a	 reason	 to
perform	 some	 regression	 that	 includes	 some	 independent	 variables	 that	 are
qualitative.	For	example,	one	may	wish	to	determine	whether	the	industry	sector
has	 some	 influence	 on	 the	 performance	 of	 stocks	 in	 general.	 The	 independent
variable	 of	 interest	 entering	 the	 regression	 model	 would	 be	 one	 that	 assumes
integer	(code)	values,	one	for	each	sector	taken	into	consideration.	The	solution
is	provided	by	the	inclusion	of	so-called	dummy	variables.

	
These	dummy	variables	are	designed	such	that	they	either	assume	the	value	1

or	0;	 for	 that	 reason	 they	are	 referred	 to	as	binary	variables.254	The	value	1	 is
used	if	some	case	is	true	(e.g.,	the	company	analyzed	belongs	to	a	certain	sector)
and	 0	 else.	 Hence,	 the	 dummy	 variable	 shifts	 the	 regression	 line	 by	 some
constant	such	that	we	actually	work	with	two	parallel	lines.
	 Should	 the	 independent	 variable	 of	 interest	 assume	 several	 values,	 for
example,	 seven	 industry	 sectors,	 we	 would	 then	 need	 dummy	 variables
accounting	for	all	the	different	possibilities.	To	be	precise,	it	will	be	necessary,	in
this	example,	to	include	six	different	dummy	variables.	The	resulting	regression
—if	we	only	consider	industry	sectors	in	the	regression	model—will	look	like
(21.4)
	

with

y	=	return	on	the	stock	of	some	company
	x1,	…,	x6	=	industry	sectors	1	through	6
		

Note	that	there	are	only	six	industry	sectors	accounted	for.	The	seventh	is	left
out	 as	 an	 explicit	 variable.	 However,	 the	 unique	 case	 of	 x1	 =	…	 =	 x6	 =	 0	 is
equivalent	to	the	company	belonging	to	the	seventh	sector.	So,	the	sector	values



are	mutually	exclusive	(i.e.,	a	company	cannot	belong	to	more	than	one	industry
sector).

	
We	 can,	 alternatively,	 decide	 to	 model	 the	 regression	 without	 a	 constant

intercept.	In	our	example	with	industry	sectors,	this	means	we	have	to	use	seven
dummy	 variables.	 However,	 we	 cannot	 have	 a	 constant	 and	 the	 number	 of
dummy	variables	equal	to	the	number	of	different	values	the	variables	of	interest
can	assume.	 In	our	example,	we	could	not	have	a	constant	 intercept	and	seven
dummy	 variables.	 The	 reason	 for	 this	 is	 what	 is	 referred	 to	 as	 the	 dummy
variable	 trap.	 Our	 data	 matrix	 X	 would	 contain	 redundant	 (i.e.,	 linearly
dependent	data	vectors),	which	means	perfect	multicollinearity.	In	that	case,	we
could	not	compute	the	regression	coefficients.
	 Another	 case	where	 dummy	 variables	 are	 commonly	 employed	 is	when	we
want	to	discern	if	some	data	originated	from	some	particular	period	or	not.	We
set	the	variable	equal	to	one	if	the	date	of	the	observation	is	within	that	period,
and	zero	elsewhere.	Consider	again	the	simple	regression	model
(21.5)
	

	Suppose	 we	 can	 divide	 our	 data	 into	 two	 groups.	 For	 each	 group,	 its	 own
functional	 relationship	 between	 the	 independent	 and	 the	 dependent	 variables
appears	 reasonable.	 So	 since	 the	 regression	 equations	 for	 both	 are	 potentially
different	 from	 one	 another,	 we	 use	 a	 dummy	 variable	 as	 an	 indicator	 of	 the
group.	The	effect	is	that	we	can	switch	between	one	and	the	other	model.
	 How	do	we	obtain	the	two	models?	Consider	that	equation	(21.5)	is	only	true
for	one	group.	For	the	second	group,	equation	(21.5)	changes	to	another	simple
regression	model	with	different	regression	coefficients.	This	new	regression	line
is	assembled	from	what	is	already	there,	namely	equation	(21.5),	plus	something
that	is	unique	to	the	second	group,	which	is
	(21.6)
	

Combining	equations	(21.5)	and	(21.6)	and	incorporating	the	“switch”	dummy
variable	to	discern	between	the	two	groups,	the	resulting	regression	line	is	of	the
form
	



(21.7)
	

Now,	 it	 can	be	easily	 seen	how	equation	(21.7)	 functions.	 If	we	have	group
one,	 the	 dummy	variable	 is	 set	 to	x2	 =	 0.	On	 the	 other	 hand,	 if	we	 happen	 to
observe	 the	 dependent	 variable	 y	 of	 the	 second	 group,	 we	 switch	 to	 the
alternative	model	by	setting	x2	=	1,	and,	hence,	the	additional	terms	kick	in.

	
We	will	refer	to	the	additional	terms	as	common	terms	compared	to	equation

(21.5).	The	entire	model	(21.6)	is	a	composite	model.	The	model	is	estimated	in
the	usual	fashion	by	additionally	indicating	which	group	the	data	from	X	came
from.
	 The	more	 general	 version	 of	 the	 regression	model	 (21.7)	would	 permit	 any
type	 of	 variable	 for	 x2.	 We	 restrict	 ourselves	 to	 dummy	 variables	 for	 the
composite	model.	Here,	we	can	see	how	helpful	the	composite	model	can	be	in
differentiating	time	series	with	respect	to	certain	periods.

	
The	t-statistic	applied	to	the	regression	coefficients	of	dummy	variables	offer

a	 set	 of	 important	 tests	 to	 judge	 which	 independent	 variables	 are	 significant.
There	is	also	an	F-test	that	can	be	used	to	test	the	significance	of	all	the	dummy
variables	 in	 the	 regression.	 This	 test,	 known	 as	 the	 Chow	 test,255	 involves
running	a	regression	with	and	without	that	variable	and	an	F-test	to	gauge	if	all
the	dummy	variables	are	collectively	 irrelevant.	We	will	not	present	 the	Chow
test	here.
	



Application	to	Testing	the	Mutual	Fund	Characteristic	Lines	in	Different
Market	Environments

	

In	Chapter	6,	we	calculated	the	characteristic	line	of	two	large-cap	mutual	funds.
Let’s	 now	 perform	 a	 simple	 application	 of	 the	 use	 of	 dummy	 variables	 by
determining	 if	 the	 slope	 (beta)	 of	 the	 two	mutual	 funds	 is	 different	 in	 a	 rising
stock	market	 (“up	market”)	and	a	declining	stock	market	 (“down	market”).	To
test	this,	we	can	write	the	following	multiple	regression	model:

yt	=	b0	+	b1xt	+	b2(Dtxt)	+	et
	

where	Dt	is	the	dummy	variable	that	can	take	on	a	value	of	1	or	0.	We	will	let

Dt	=	1	if	period	t	is	classified	as	an	up	market
	Dt	=	0	if	period	t	is	classified	as	a	down	market
		

	 The	 regression	 coefficient	 for	 the	 dummy	 variable	 is	 b2.	 If	 that	 regression
coefficient	is	statistically	significant,	then	for	the	mutual	fund:

•	In	an	up	market	beta	is	equal	to	b1	+	b2.
•	In	a	down	market	beta	is	equal	to	b1.

If	 b2	 is	 not	 statistically	 significant,	 then	 there	 is	 no	 difference	 in	 beta	 for	 up
and	down	markets,	both	being	equal	to	b1.
	 In	 our	 illustration,	 we	 have	 to	 define	what	 we	mean	 by	 an	 up	 and	 a	 down
market.	We	will	define	an	up	market	precisely	as	one	where	the	average	excess
return	 (market	 return	 over	 the	 risk-free	 rate	 or	 (rM	 -	 rft))	 for	 the	 prior	 three
months	is	greater	than	zero.	Then

Dt	=	1	if	the	average	(rMt	-	rft)	for	the	prior	three	months	>	0
	Dt	=	0	otherwise
		



	The	independent	variable	will	then	be

Dtxt	=	xt	if	(rM	-	rft)	for	the	prior	three	months	>	0
	Dtxt	=	0	otherwise
		

	 We	use	the	S&P	500	Stock	Index	as	a	proxy	for	the	market	returns	and	the	90-
day	 Treasury	 rate	 as	 a	 proxy	 for	 the	 risk-free	 rate.	 The	 data	 are	 presented	 in
Table	21.1,	which	shows	each	observation	for	the	variable	Dtxt.
	TABLE	 21.1	 Data	 for	 Estimating	 Mutual	 Fund	 Characteristic	 Line	 with	 a
Dummy	Variable
	







TABLE	21.2	Regression	Results	 for	 the	Mutual	Fund	Characteristic	Line	with
Dummy	Variable
	



The	regression	results	for	the	two	mutual	funds	are	shown	in	Table	21.2.	The
adjusted	R2	 is	 0.93	 and	0.83	 for	mutual	 funds	A	and	B,	 respectively.	For	both
funds,	b2	 is	 statistically	 significantly	different	 from	zero.	Hence,	 for	 these	 two
mutual	funds,	there	is	a	difference	in	the	beta	for	up	and	down	markets.256	From
the	results	reported	in	Table	21.2,	we	would	find	that:
	

	
Mutual	Fund	A Mutual	Fund	B

Beta	down	market	b1 0.75 0.75
Beta	p	market	(=	b1	+	b2) 0.93	(=	0.75	+	0.18) 0.88	(=	0.75	+	0.13)

	

	



Application	to	Predicting	High-Yield	Corporate	Bond	Spreads

	

As	a	second	application	of	the	use	of	dummy	variables,	we	estimate	a	model	to
predict	 corporate	 bond	 spreads.	 A	 bond	 spread	 is	 the	 difference	 between	 the
yield	 on	 two	 bonds.	 Typically,	 in	 the	 corporate	 bond	 market	 participants	 are
interested	 in	 the	difference	between	 the	yield	spread	between	a	corporate	bond
and	 an	 otherwise	 comparable	 (i.e.,	 maturity	 or	 duration)	 U.S.	 Treasury	 bond.
Managers	 of	 institutional	 bond	 portfolios	 formulate	 their	 investment	 strategy
based	on	expected	changes	in	corporate	bond	spreads.

	
The	model	presented	in	this	illustration	was	developed	by	Fridson	Vision.257

The	unit	of	observation	is	a	corporate	bond	issuer	at	a	given	point	in	time.	The
bonds	 in	 the	 study	 are	 all	 high-yield	 corporate	 bonds.	A	high-yield	 bond,	 also
called	a	noninvestment	grade	bond	or	junk	bond,	is	one	that	has	a	credit	rating
below	Ba	(referred	 to	as	being	minimum	investment	grade)	as	assigned	by	 the
rating	agencies.	Within	the	high-yield	bond	sector	of	the	corporate	bond	market
there	are	different	degrees	of	credit	risk.	Specifically,	there	are	bonds	classified
as	 low	 grade,	 very	 speculative	 grade,	 substantial	 risk,	 very	 poor	 quality,	 and
default	(or	imminent	default).
	 The	multivariate	regression	equation	to	be	estimated	is

y	=	b0	+	b1x1	+	b2x2	+	b3x3	+	e
	

where

y	=	yield	spread	(in	basis	points)	for	the	bond	issue	of	a	company258
	x1	=	coupon	rate	for	the	bond	of	a	company,	expressed	without	considering

percentage	sign	(i.e.,	7.5%	=	7.5)
	x2	=	coverage	ratio	that	is	found	by	dividing	the	earnings	before	interest,

taxes,	depreciation	and	amortization	(EBITDA)	by	interest	expense	for	the
company	issuing	the	bond
	



x3	=	logarithm	of	earnings	(earnings	before	interest	and	taxes,	EBIT,	in
millions	of	dollars)	for	company	issuing	the	bond
		

	 Financial	 theory	would	 suggest	 the	 following	 sign	 for	 each	of	 the	 estimated
regression	coefficients:

•	The	higher	 the	coupon	rate	(x1),	 the	greater	 the	issuer’s	default	risk
and	 hence	 the	 larger	 the	 spread.	 Therefore,	 a	 positive	 coefficient	 for	 the
coupon	rate	is	expected.

•	A	coverage	ratio	 (x2)	 is	a	measure	of	a	company’s	ability	 to	satisfy
fixed	obligations,	such	as	interest,	principal	repayment,	and	lease	payments.
There	 are	 various	 coverage	 ratios.	 The	 one	 used	 in	 this	 illustration	 is	 the
ratio	 of	 the	 (EBITDA)	 divided	 by	 interest	 expense.	 Since	 the	 higher	 the
coverage	ratio	the	lower	the	default	risk,	an	inverse	relationship	is	expected
between	the	spread	and	the	coverage	ratio;	that	is,	the	estimated	coefficient
for	the	coverage	ratio	is	expected	to	be	negative.

•	 There	 are	 various	 measures	 of	 earnings	 reported	 in	 financial
statements.	 Earnings	 (x3)	 in	 this	 illustration	 is	 defined	 as	 the	 trailing	 12-
months	 earnings	 before	 interest	 and	 taxes	 (EBIT).	 Holding	 other	 factors
constant,	 it	 is	expected	 that	 the	 larger	 the	EBIT,	 the	 lower	 the	default	 risk
and	therefore	an	inverse	relationship	(negative	coefficient)	is	expected.

	 We	use	100	observations	at	 two	different	dates,	June	6,	2005	and	November
28,	2005.	For	both	dates	there	are	the	same	100	bond	issues	in	the	sample.	Our
purpose	 is	 to	 investigate	 two	 important	 empirical	 questions	 that	 a	 portfolio
manager	may	have.	First,	we	 test	whether	 there	 is	 a	difference	between	bonds
classified	 as	 low	 grade	 and	 speculative	 grade,	 on	 the	 one	 hand,	 and	 bonds
classified	as	substantial	risk,	very	poor	quality,	and	default	(or	imminent	default)
on	 the	other.	Corporate	bonds	 that	 fall	 into	 the	 latter	category	have	a	 rating	of
CCC+	 or	 below.	 Second,	 we	 test	 whether	 there	 is	 a	 structural	 shift	 in	 the
corporate	 high-yield	 corporate	 bond	 market	 between	 June	 6,	 2005	 and
November	28,	2005.
	 We	organize	the	data	in	matrix	form	as	usual.	Data	are	shown	in	Table	21.3.
The	table	is	divided	into	two	panels,	one	for	each	date.	The	first	column	of	the
table	 indicates	 the	 corporate	 bond	 issue	 identified	 by	 number.	 The	 second
column	and	seventh	column	show	the	yield	spread	for	November	28,	2005	and
June	 6,	 2005,	 respectively.	Look	now	 at	 the	 third	 and	 eighth	 columns.	This	 is
where	we	begin	to	use	the	dummy	variable.	Since	we	are	interested	in	testing	if
there	 is	a	differential	 impact	on	the	yield	spread	between	the	two	categories	of



high-yield	bonds,	there	is	a	zero	or	one	in	these	two	columns	depending	on	if	the
bond	 issue	 has	 a	 credit	 rating	 of	 CCC+	 and	 below,	 in	 which	 case	 a	 one	 is
assigned,	and	zero	otherwise.
	TABLE	21.3	Regression	Data	for	the	Bond	Spread	Application:	11/28/2005	and
06/06/2005
	





Let’s	first	estimate	the	regression	equation	for	the	fully	pooled	data,	that	is,	all
data	without	any	distinction	by	credit	rating	and	date.	That	is,	there	are	200	data
points	 consisting	 of	 100	 observation	 for	 each	 of	 the	 two	 dates.	 The	 estimated
regression	 coefficients	 for	 the	 model	 and	 their	 corresponding	 t-statistics	 are
shown	in	Table	21.4.	The	R2	for	the	regression	is	0.57.	The	coefficients	for	the
three	independent	variables	are	statistically	significant	and	each	has	the	expected
sign.	However,	the	intercept	term	is	not	statistically	significant.
	 Let’s	 now	 test	 if	 there	 is	 a	 difference	 in	 the	 yield	 spread	 based	 on	 the	 two
categories	 of	 high-yield	 bonds.	 It	 should	 be	 emphasized	 that	 this	 is	 only	 an



exercise	to	show	the	application	of	regression	analysis	using	dummy	variables.
The	 conclusions	we	 reach	 are	 not	meaningful	 from	 a	 statistical	 point	 of	 view
given	the	small	size	of	the	database.	The	regression	model	we	want	to	estimate	is

where	D1	 is	 the	 dummy	 variable	 that	 takes	 on	 the	 value	 of	 one	 if	 the	 bond
issue	has	a	credit	rating	of	CCC+	and	below,	and	zero	otherwise.
There	 are	 now	 seven	 variables	 and	 eight	 parameters	 to	 estimate.	 The

regression	 coefficients	 for	 the	 dummy	 variables	 are	 b1,	 b3,	 b5,	 and	 b7.	 The
estimated	regression	coefficients	for	the	model	and	the	t-statistics	are	shown	in
Table	21.5.	The	R2	for	the	regression	is	0.73.	From	the	table	we	see	that	none	of
the	regression	coefficients	for	the	dummy	variables	are	statistically	significant	at
the	10%	level.
	TABLE	21.4	Regression	Results	for	High-Yield	Corporate	Bond	Spreads
	

TABLE	21.5	Regression	Results	 for	High-Yield	Corporate	Bond	Spread	using
Dummy	Variables	for	Credit	Rating	Classification
	

Now	let’s	use	dummy	variables	 to	 test	 if	 there	 is	a	 regime	shift	between	 the
two	dates.	This	is	a	common	use	for	dummy	variables	in	practice.	To	this	end	we
create	a	new	dummy	variable	that	has	the	value	zero	for	the	first	date	11/28/05
and	one	for	the	second	date	6/6/05.	The	regression	model	to	be	estimated	is	then



where	 D2	 is	 a	 dummy	 variable	 that	 takes	 on	 the	 value	 of	 zero	 if	 the
observation	 is	on	November	28,	2005	and	one	 if	 the	observation	 is	on	 June	6,
2005.	Again,	there	are	four	dummy	variables:	b1,	b3,	b5,	and	b7.
The	 estimated	 model	 regression	 coefficients	 and	 t-statistics	 are	 reported	 in

Table	21.6.	The	R2	for	the	regression	is	0.71.	Notice	that	only	one	of	the	dummy
variable	 regression	 coefficients	 is	 statistically	 significant	 at	 the	 10%	 level,	b3.
This	suggests	 that	market	participants	reassessed	the	impact	of	 the	coupon	rate
(x1)	 on	 the	 yield	 spread.	 The	 estimated	 regression	 coefficient	 for	 x1	 on
November	28,	2005	was	33.25	(b2)	whereas	on	June	6,	2005	it	was	61.29	(b2	+
b3	=	33.25	+	28.14).
	



MODEL	BUILDING	TECHNIQUES

	

We	now	 turn	 our	 attention	 to	 the	model	 building	 process	 in	 the	 sense	 that	we
attempt	 to	 find	 the	 independent	 variables	 that	 best	 explain	 the	 variation	 in	 the
dependent	 variable	 y.	 At	 the	 outset,	 we	 do	 not	 know	 how	 many	 and	 which
independent	 variables	 to	 use.	 Increasing	 the	 number	 of	 independent	 variables
does	 not	 always	 improve	 regressions.	 The	 econometric	 theorem	 known	 as
Pyrrho’s	 lemma	 relates	 to	 the	 number	 of	 independent	 variables.259	 Pyrrho’s
lemma	 states	 that	 by	 adding	 one	 special	 independent	 variable	 to	 a	 linear
regression,	 it	 is	 possible	 to	 arbitrarily	 change	 the	 size	 and	 sign	 of	 regression
coefficients	as	well	as	to	obtain	an	arbitrary	goodness	of	fit.	This	tells	us	that	if
we	add	independent	variables	without	a	proper	design	and	testing	methodology,
we	risk	obtaining	spurious	results.
	TABLE	21.6	Regression	Results	 for	High-Yield	Corporate	Bond	Spread	using
Dummy	Variables	for	Time
	

The	implications	are	especially	important	for	those	financial	models	that	seek
to	 forecast	 prices,	 returns,	 or	 rates	 based	 on	 regressions	 over	 economic	 or
fundamental	 variables.	With	 modern	 computers,	 by	 trial	 and	 error,	 one	 might
find	a	complex	structure	of	regressions	that	give	very	good	results	in-sample	but
have	no	real	forecasting	power.
	 There	 are	 three	 methods	 that	 are	 used	 for	 the	 purpose	 of	 determining	 the
suitable	 independent	variables	 to	be	included	in	a	final	regression	model.	They
are	260

1.	Stepwise	inclusion	method



2.	Stepwise	exclusion	method
3.	Standard	stepwise	regression	method

	We	explain	each	next.
	



Stepwise	Inclusion	Method

	

In	 the	 stepwise	 inclusion	method	 we	 begin	 by	 selecting	 a	 single	 independent
variable.	It	should	be	the	one	most	highly	correlated	(positive	or	negative)	with
the	 dependent	 variable.261	 After	 inclusion	 of	 this	 independent	 variable,	 we
perform	an	F-test	 to	determine	whether	 this	 independent	variable	 is	 significant
for	the	regression.	If	not,	then	there	will	be	no	independent	variable	from	the	set
of	possible	choices	that	will	significantly	explain	the	variation	in	the	dependent
variable	y.	Thus,	we	will	have	to	look	for	a	different	set	of	variables.
	 If,	on	the	other	hand,	this	independent	variable,	say	x1,	is	significant,	we	retain
x1	 and	consider	 the	next	 independent	variable	 that	best	 explains	 the	 remaining
variation	in	y.	We	require	that	this	additional	independent	variable,	say	x2,	be	the
one	with	the	highest	coefficient	of	partial	determination	.	This	is	a	measure	of
the	goodness-of-fit	given	that	the	first	x1	is	already	in	the	regression.	It	is	defined
to	be	 the	 ratio	of	 the	 remaining	variation	explained	by	 the	second	 independent
variable	to	the	total	of	unexplained	variation	before	x2	was	 included.	Formally,
we	have
(21.9)
	

where

SSE1	=	the	variation	left	unexplained	by	x1
	SSE2	=	the	variation	left	unexplained	after	both,	x1	and	x2	have	been

included
		

This	is	equivalent	to	requiring	that	the	additional	variable	is	to	be	the	one	that
provides	the	largest	coefficient	of	determination	once	included	in	the	regression.
After	the	inclusion,	an	F-test	with
(21.10)
	



is	conducted	to	determine	the	significance	of	the	additional	variable.
The	 addition	 of	 independent	 variables	 included	 in	 some	 set	 of	 candidate

independent	 variables	 is	 continued	 until	 either	 all	 independent	 variables	 are	 in
the	regression	or	the	additional	contribution	to	explain	the	remaining	variation	in
y	is	not	significant	any	more.	Hence,	as	a	generalization	to	equation	(21.10),	we
compute

F	=	(SSEi	−	SSEi+1	)	/	(SSEi	)	×	(n−	i−1)
	

after	 the	 inclusion	 of	 the	 i	 +	 1st	 variable	 and	 keep	 it	 included	 only	 if	 F	 is
found	 to	be	 significant.	Accordingly,	SSEi	 denotes	 the	 sum	of	 square	 residuals
with	 i	 variables	 included	while	SSEi+1	 is	 the	 corresponding	 quantity	 for	 i	 +	 1
included	variables.
	



Stepwise	Exclusion	Method

	

The	 stepwise	 exclusion	 method	 mechanically	 is	 basically	 the	 opposite	 of	 the
stepwise	inclusion	method.	That	is,	one	includes	all	independent	variables	at	the
beginning.	One	after	another	of	the	insignificant	variables	are	eliminated	until	all
insignificant	 independent	 variables	 have	 been	 removed.	 The	 result	 constitutes
the	 final	 regression	 model.	 In	 other	 words,	 we	 include	 all	 k	 independent
variables	into	the	regression	at	first.	Then	we	consider	all	variables	for	exclusion
on	a	stepwise	removal	basis.
	 For	each	independent	variable,	we	compute
(21.11)
	

to	 find	 the	 ones	 where	 F	 is	 insignificant.	 The	 one	 that	 yields	 the	 least
significant	 value	 F	 is	 discarded.	 We	 proceed	 stepwise	 by	 alternatively
considering	all	remaining	variables	for	exclusion	and,	likewise,	compute	the	F-
test	statistic	given	by	equation	(21.11)	 for	 the	new	change	 in	 the	coefficient	of
partial	determination.
In	general,	at	each	step	i,	we	compute

(21.12)
	

to	evaluate	 the	coefficient	of	partial	determination	 lost	due	 to	discarding	 the	 i-
th	independent	variable.262	If	no	variable	with	an	insignificant	F-test	statistic	can
be	found,	we	terminate	the	elimination	process.



Standard	Stepwise	Regression	Method

	

The	 standard	 stepwise	 regression	 method	 involves	 introducing	 independent
variables	based	on	significance	and	explanatory	power	and	possibly	eliminating
some	 that	 have	been	 included	 at	 previous	 steps.	The	 reason	 for	 elimination	of
any	such	independent	variables	is	that	they	have	now	become	insignificant	after
the	new	independent	variables	have	entered	the	model.	Therefore,	we	check	the
significance	of	all	coefficient	statistics	according	to	equation	(20.14)	in	Chapter
20.	This	methodology	provides	a	good	means	for	eliminating	the	influence	from
possible	multicollinearity	discussed	earlier.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Multicollinearity	
Variance	inflation	factor	
Dummy	variables	
Binary	variables	
Dummy	variable	trap	
Common	terms	
Composite	model	
Chow	test	
Pyrrho’s	lemma	
Stepwise	inclusion	method	
Coefficient	of	partial	determination	
Stepwise	exclusion	method	
Standard	stepwise	regression	method
	



CHAPTER	22
	

Testing	the	Assumptions	of	the	Multivariate	Linear	Regression
Model

	

As	explained	in	Chapter	20,	after	we	have	come	up	with	some	regression	model,
we	have	to	perform	a	diagnosis	check.	The	question	that	must	be	asked	is:	How
well	does	 the	model	fit	 the	data?	This	 is	addressed	using	diagnosis	checks	 that
include	the	coefficient	of	determination,	R2	as	well	as	 ,	and	the	standard	error
or	 square	 root	of	 the	mean-square	error	 (MSE)	of	 the	 regression.	 In	particular,
the	 diagnosis	 checks	 analyze	 whether	 the	 linear	 relationship	 between	 the
dependent	and	independent	variables	is	justifiable	from	a	statistical	perspective.

	
As	we	 also	 explained	 in	 Chapter	 20,	 there	 are	 several	 assumptions	 that	 are

made	 when	 using	 the	 general	 multivariate	 linear	 regression	 model.	 The	 first
assumption	 is	 the	 independence	 of	 the	 independent	 variables	 used	 in	 the
regression	model.	This	 is	 the	problem	of	multicollinearity	 that	we	discussed	 in
Chapter	21	where	we	briefly	described	how	to	test	and	correct	for	this	problem.
The	second	assumption	is	that	the	model	is	in	fact	linear.	The	third	assumption
has	to	do	with	assumptions	about	 the	statistical	properties	of	 the	error	 term	for
the	general	multivariate	linear	regression	model.	Furthermore,	we	assumed	that
the	residuals	are	uncorrelated	with	the	independent	variables.	In	this	chapter,	we
look	at	the	assumptions	regarding	the	linearity	of	the	model	and	the	assumptions
about	 the	 error	 term.	 We	 discuss	 the	 implications	 of	 the	 violation	 of	 these
assumptions,	 some	 tests	 used	 to	 detect	 violations,	 and	 provide	 a	 brief
explanation	of	how	to	deal	with	any	violations.
	 It	 is	 important	 to	understand	 that	 in	 the	 area	of	 economics,	 these	 topics	 fall
into	 the	 realm	 of	 the	 field	 of	 econometrics	 and	 textbooks	 are	 devoted	 to	 the
treatment	 of	 regression	 analysis	 in	 the	 presence	 of	 the	 violations	 of	 these
assumptions.	For	this	reason,	we	only	provide	the	basics.
	



TESTS	FOR	LINEARITY

	

To	test	for	linearity,	a	common	approach	is	to	plot	the	regression	residuals	on	the
vertical	axis	and	values	of	the	independent	variable	on	the	horizontal	axis.	This
graphical	 analysis	 is	 performed	 for	 each	 independent	 variable.	 What	 we	 are
looking	for	is	a	random	scattering	of	the	residuals	around	zero.	If	this	should	be
the	 case,	 the	model	 assumption	with	 respect	 to	 the	 residuals	 is	 correct.	 If	 not,
however,	 then	there	seems	to	be	some	systematic	behavior	in	the	residuals	that
depends	on	the	values	of	the	independent	variables.	The	explanation	is	that	the
relationship	between	the	independent	and	dependent	variables	is	not	linear.
	 The	problem	of	a	nonlinear	functional	form	can	be	dealt	with	by	transforming
the	independent	variables	or	making	some	other	adjustment	to	the	variables.	For
example,	 suppose	 that	 we	 are	 trying	 to	 estimate	 the	 relationship	 between	 a
stock’s	 return	 as	 a	 function	of	 the	 return	on	 a	broad-based	 stock	market	 index
such	as	 the	S&P	500	Index.	Letting	y	denote	 the	 return	on	 the	stock	and	x	 the
return	 on	 the	 S&P	 500	 Index,	 then	 we	 might	 assume	 the	 following	 bivariate
regression	model:
(22.1)
	

where	e	is	the	error	term.
We	have	made	 the	assumption	 that	 the	functional	 form	of	 the	relationship	 is

linear.	Suppose	that	we	find	that	a	better	fit	appears	to	be	that	the	return	on	the
stock	is	related	to	the	return	on	the	broad-based	market	index	as
(22.2)
	

If	 we	 let	 x	 =	 x1	 and	 x2	 =	 x2	 and	 we	 adjust	 our	 table	 of	 observations
accordingly,	then	we	can	rewrite	equation	(22.2)	as
(22.3)
	

The	model	 given	 by	 equation	 (22.3)	 is	 now	 a	 linear	 regression	model	 despite



the	fact	that	the	functional	form	of	the	relationship	between	y	and	x	is	nonlinear.
That	 is,	we	are	able	 to	modify	 the	functional	form	to	create	a	 linear	regression
model.
Let’s	 see	 how	 a	 simple	 transformation	 can	work	 as	 explained	 in	Chapter	 6.

Suppose	that	the	true	relationship	of	interest	is	exponential,	that	is,
(22.4)
	

Taking	the	natural	logarithms	of	both	sides	of	equation	(22.4)	will	result	in
(22.5)
	

which	is	again	linear.
Now	consider	that	the	fit	in	equation	(22.5)	is	not	exact;	that	is,	there	is	some

random	deviation	by	some	residual.	Then	we	obtain
(22.6)
	

If	we	let	z	=	ln	y	and	adjust	 the	 table	of	observations	for	y	accordingly	and	let
λ	=	ln	β,	we	can	then	rewrite	equation	(22.6)	as
(22.7)
	

This	 regression	model	 is	now	linear	with	 the	parameters	 to	be	estimated	being
λ	and	α.
Now	 we	 transform	 equation	 (22.7)	 back	 into	 the	 shape	 of	 equation	 (22.4)

ending	up	with
(22.8)
	

where	 in	 equation	(22.8)	 the	 deviation	 is	multiplicative	 rather	 than	 additive	 as
would	be	the	case	in	a	linear	model.	This	would	be	a	possible	explanation	of	the
nonlinear	function	relationship	observed	for	the	residuals.
However,	not	every	functional	form	that	one	might	be	interested	in	estimating

can	be	transformed	or	modified	so	as	to	create	a	linear	regression.	For	example,
consider	the	following	relationship:
(22.9)



	

	Admittedly,	this	is	an	odd	looking	functional	form.	What	is	important	here	is
that	the	regression	parameters	to	be	estimated	(b1	and	b2)	cannot	be	transformed
to	 create	 a	 linear	 regression	 model.	 A	 regression	 such	 as	 equation	 (22.9)	 is
referred	to	a	nonlinear	regression	and	the	estimation	of	nonlinear	regressions	is
far	more	complex	than	that	of	a	linear	regression	because	they	have	no	closed-
form	formulas	for	 the	parameters	 to	be	estimated.	Instead,	nonlinear	regression
estimation	techniques	require	the	use	of	optimization	techniques	to	identify	the
parameters	that	best	fit	the	model.	Researchers	in	disciplines	such	as	biology	and
physics	often	have	to	deal	with	nonlinear	regressions.
	



ASSUMED	 STATISTICAL	 PROPERTIES	 ABOUT	 THE
ERROR	TERM

	

The	 third	 assumption	 about	 the	 general	 linear	 model	 concerns	 the	 three
assumptions	about	the	error	term	that	we	listed	in	Chapter	20	and	repeat	below:

Assumption	1.	The	regression	errors	are	normally	distributed	with	zero
mean.
	 	
	
Assumption	2:	The	variance	of	the	regression	errors	( 	)	is	constant.
		
	Assumption	3.	The	error	terms	from	different	points	in	time	are	independent
such	that	εt	are	independent	variables	for	all	t.
	Assumption	1	states	that	the	probability	distribution	for	the	error	term	is	that	it

is	 normally	distributed.	Assumption	2	 says	 that	 the	variance	of	 the	probability
distribution	 for	 the	 error	 term	 does	 not	 depend	 on	 the	 level	 of	 any	 of	 the
independent	 variables.	 That	 is,	 the	 variance	 of	 the	 error	 term	 is	 constant
regardless	of	the	level	of	the	independent	variable.	If	this	assumption	holds,	the
error	 terms	are	said	 to	be	homoskedastic	 (also	spelled	homoscedastic	 ).	 If	 this
assumption	 is	 violated,	 the	 variance	 of	 the	 error	 term	 is	 said	 to	 be
heteroskedastic	 (also	 spelled	 heteroscedastic).	 Assumption	 3	 says	 that	 there
should	not	be	any	statistically	significant	correlation	between	adjacent	residuals.
The	correlation	between	error	terms	is	referred	to	as	autocorrelation.	Recall	that
we	 also	 assume	 that	 the	 residuals	 are	 uncorrelated	 with	 the	 independent
variables.
	



TESTS	 FOR	 THE	 RESIDUALS	 BEING	 NORMALLY
DISTRIBUTED

	

An	 assumption	 of	 the	 general	 linear	 regression	model	 is	 that	 the	 residuals	 are
normally	distributed.	The	implications	of	the	violation	of	this	assumption	are:

1.	The	regression	model	is	misspecified.
2.	 The	 estimates	 of	 the	 regression	 coefficients	 are	 also	 not	 normally

distributed.
3.	The	estimates	of	the	regression	coefficients	although	still	best	linear

unbiased	estimators,263	they	are	no	longer	efficient	estimators.
	 From	the	second	implication	above	we	can	see	that	violation	of	the	normality
assumption	 makes	 hypothesis	 testing	 suspect.	 More	 specifically,	 if	 the
assumption	is	violated,	the	t-tests	explained	in	Chapter	20	will	not	be	applicable.
	 Typically	the	following	three	methodologies	are	used	to	test	for	normality	of
the	 error	 terms	 (1)	 chi-square	 statistic,	 (2)	 Jarque-Bera	 test	 statistic,	 and	 (3)
analysis	of	standardized	residuals.
	



Chi-Square	Statistic

	

The	chi-square	statistic	is	defined	as
(22.10)
	

where	 some	 interval	 along	 the	 real	 numbers	 is	 divided	 into	 k	 segments	 of
possibly	equal	size.
The	pi	indicate	which	percentage	of	all	n	values	of	the	sample	should	fall	into

the	 i-th	 segment	 if	 the	 data	 were	 truly	 normally	 distributed.264	 Hence,	 the
theoretical	number	of	values	that	should	be	inside	of	segment	i	is	n	·	pi.	The	ni
are	 the	 values	 of	 the	 sample	 that	 actually	 fall	 into	 that	 segment	 i.	 The	 test
statistic	given	by	equation	(22.10)	is	approximately	chi-square	distributed	with	k
-	1	degrees	of	freedom.	As	such,	it	can	be	compared	to	the	critical	values	of	the
chi-square	distribution	at	arbitrary	α-levels.265	If	the	critical	values	are	surpassed
or,	 equivalently,	 the	 p-value266	 of	 the	 statistic	 is	 less	 than	 α,	 then	 the	 normal
distribution	has	to	be	rejected	for	the	residuals.
	



Jarque-Bera	Test	Statistic

	

The	Jarque-Bera	test	statistic	is	not	quite	simple	to	compute	manually,	but	most
computer	software	packages	have	it	installed.	Formally,	it	is
(22.11)
	

with
(22.12)
	

(22.13)
	

for	a	sample	of	size	n.
The	 expression	 in	 equation	 (22.12)	 is	 the	 skewness	 statistic	 of	 some

distribution,	 and	 equation	(22.13)	 is	 the	 kurtosis.	As	 explained	 in	 Chapter	 13,
kurtosis	 measures	 the	 peakedness	 of	 the	 probability	 density	 function	 of	 some
distribution	 around	 the	 median	 compared	 to	 the	 normal	 distribution.	 Also,
kurtosis	 estimates,	 relative	 to	 the	 normal	 distribution,	 the	 behavior	 in	 the
extreme	parts	of	the	distribution	(i.e.,	the	tails	of	the	distribution).	For	a	normal
distribution,	K	=	3.	A	value	for	K	that	is	less	than	3	indicates	a	so-called	light-
tailed	distribution	 in	 that	 it	 assigns	 less	weight	 to	 the	 tails.	 The	 opposite	 is	 a
value	for	K	that	exceeds	3	and	is	referred	to	as	a	heavy-tailed	distribution.	The
test	statistics	given	by	equation	(22.11)	 is	 approximately	distributed	 chi-square
with	two	degrees	of	freedom.
	



Analysis	of	Standardized	Residuals

	

Another	means	of	determining	the	appropriateness	of	the	normal	distribution	are
the	standardized	residuals.	Once	computed,	they	can	be	graphically	analyzed	in
histograms.	 Formally,	 each	 standardized	 residual	 at	 the	 i-th	 observation	 is
computed	according	to
(22.14)
	

where	se	 is	the	estimated	standard	error	(as	defined	in	Chapter	20)	and	n	 is	 the
sample	size.	This	is	done	in	most	statistical	software.
If	the	histogram	appears	skewed	or	simply	not	similar	to	a	normal	distribution,

the	 linearity	 assumption	 is	 very	 likely	 to	be	 incorrect.	Additionally,	 one	might
compare	 these	 standardized	 residuals	 with	 the	 normal	 distribution	 by	 plotting
them	against	 their	 theoretical	normal	counterparts	 in	a	normal	probability	plot.
There	 is	 a	 standard	 routine	 in	 most	 statistical	 software	 that	 performs	 this
analysis.	We	introduced	the	probability	plot	 in	Chapter	4.	 If	 the	pairs	 lie	along
the	 line	 running	 through	 the	 sample	quartiles,	 the	 regression	 residuals	 seem	 to
follow	a	normal	distribution	and,	thus,	the	assumptions	of	the	regression	model
stated	in	Chapter	20	are	met.
	



TESTS	FOR	CONSTANT	VARIANCE	OF	THE	ERROR	TERM
(HOMOSKEDASTICITY)

	

The	second	test	regarding	the	residuals	in	a	linear	regression	analysis	is	that	the
variance	 of	 all	 squared	 error	 terms	 is	 the	 same.	 As	 we	 noted	 earlier,	 this
assumption	 of	 constant	 variance	 is	 referred	 to	 as	 homoskedasticity.	 However,
many	 time	series	data	exhibit	heteroskedasticity,	where	 the	error	 terms	may	be
expected	to	be	larger	for	some	observations	or	periods	of	the	data	than	for	others.
	 There	 are	 several	 tests	 that	 have	 been	 used	 to	 detect	 the	 presence	 of
heteroskedasticity.	These	include	the

•	White’s	generalized	heteroskedasticity	test
•	Park	test
•	Glejser	Test
•	Goldfeld-Quandt	test
•	Breusch-Pagan-Godfrey	Test	(Lagrangian	multiplier	test)

	These	 tests	 are	 described	 in	 books	 on	 econometrics	 and	will	 not	 be	 described
here.
	



Modeling	to	Account	for	Heteroskedasticity

	

Once	 heteroskedasticity	 is	 detected,	 the	 issue	 is	 then	 how	 to	 construct	models
that	 accommodate	 this	 feature	of	 the	 residual	 variance	 so	 that	 valid	 regression
coefficient	estimates	and	models	are	obtained	for	the	variance	of	the	error	term.
There	are	two	methodologies	used	for	dealing	with	heteroskedasticity:	weighted
least	 squares	 estimation	 technique	 and	 autoregressive	 conditional
heteroskedastic	models.
	

Weighted	Least	Squares	Estimation	Technique

	
A	potential	 solution	 for	 correcting	 the	problem	of	heteroskedasticity	 is	 to	 give
less	weight	to	the	observations	coming	from	the	population	with	larger	variances
and	 more	 weight	 to	 the	 observations	 coming	 from	 observations	 with	 higher
variance.	 This	 is	 the	 basic	 notion	 of	 the	 weighted	 least	 squares	 (WLS)
technique.
	 To	 see	 how	 the	WLS	 technique	 can	 be	 used,	 let’s	 consider	 the	 case	 of	 the
bivariate	regression	given	by
(22.15)
	

	Let’s	now	make	the	somewhat	bold	assumption	that	the	variance	of	the	error
term	for	each	time	period	is	known.	Denoting	this	variance	by	 	(dropping	the
subscript	 ε	 for	 the	 error	 term),	 then	we	 can	 deflate	 the	 terms	 in	 the	 bivariate
linear	 regression	 given	 by	 equation	 (22.15)	 by	 the	 assumed	 known	 standard
deviation	of	the	error	term	as	follows:
(22.16)
	

	



We	have	transformed	all	the	variables	in	the	bivariate	regression,	including	the
original	 error	 term.	 It	 can	 be	 demonstrated	 that	 the	 regression	 with	 the
transformed	 variables	 as	 shown	 in	 equation	 (22.16)	 no	 longer	 has
heteroskedasticity.	That	is,	the	variance	of	the	error	term	in	equation	(22.16),	εt	/
σt,	is	homoskedastic.

	
Equation	 (22.16)	 can	 be	 estimated	 using	 ordinary	 least	 squares	 by	 simply

adjusting	 the	 table	 of	 observations	 so	 that	 the	 variables	 are	 deflated	 by	 the
known	 σt.	 When	 this	 is	 done,	 the	 estimates	 are	 referred	 to	 as	weighted	 least
squares	estimators.
	 We	simplified	the	illustration	by	assuming	that	the	variance	of	the	error	term
is	known.	Obviously,	this	is	an	extremely	aggressive	assumption.	In	practice,	the
true	value	for	 the	variance	of	 the	error	 term	is	unknown.	Other	 less	aggressive
assumptions	 are	made	 but	 nonetheless	 are	 still	 assumptions.	 For	 example,	 the
variance	of	the	error	term	can	be	assumed	to	be	proportional	to	one	of	the	values
of	 the	 independent	 variables.	 In	 any	 case,	 the	WLS	estimator	 requires	 that	we
make	some	assumption	about	the	variance	of	the	error	term	and	then	transform
the	value	of	the	variables	accordingly	in	order	to	apply	the	WLS	technique.
	

Advanced	Modeling	to	Account	for	Heteroskedasticity

	
Autoregressive	 conditional	 heteroskedasticity	 (ARCH)	 model	 and	 its
generalization,	 the	 generalized	 autoregressive	 conditional	 heteroskedasticity
(GARCH)	model,267	 have	 proven	 to	 be	 very	 useful	 in	 finance	 to	 model	 the
residual	 variance	when	 the	 dependent	 variable	 is	 the	 return	 on	 an	 asset	 or	 an
exchange	rate.	understanding	the	behavior	of	the	variance	of	the	return	process	is
important	 for	 forecasting	 as	well	 as	 pricing	 option-type	 derivative	 instruments
since	the	variance	is	a	proxy	for	risk.

	
A	widely	observed	phenomenon	 regarding	 asset	 returns	 in	 financial	markets

suggests	 that	 they	 exhibit	 volatility	 clustering.	 This	 refers	 to	 the	 tendency	 of
large	 changes	 in	 asset	 returns	 (either	 positive	 or	 negative)	 to	 be	 followed	 by
large	 changes,	 and	 small	 changes	 in	 asset	 returns	 to	 be	 followed	 by	 small
changes.	 Hence,	 there	 is	 temporal	 dependence	 in	 asset	 returns.268	 ARCH	 and



GARCH	models	can	accommodate	volatility	clustering.
	 While	ARCH	and	GARCH	models	do	not	answer	the	question	of	what	causes
heteroskedasticity	 in	 the	 data,	 they	 do	 model	 the	 underlying	 time-varying
behavior	 so	 that	 forecasting	models	 can	 be	 developed.	As	 it	 turns	 out,	ARCH
and	GARCH	models	allow	for	not	only	volatility	clustering	but	also	heavy	tails.
The	 ARCH	 model	 is	 one	 of	 the	 pivotal	 developments	 in	 the	 field	 of
econometrics	and	seems	to	be	purposely	built	for	applications	in	finance.269	This
model	was	introduced	by	Engle	(1982)	and	subsequently	extended	by	Bollerslev
(1987).	Since	then	other	researchers	have	developed	variants	of	the	initial	ARCH
and	 GARCH	models.	 All	 of	 these	 models	 have	 a	 common	 goal	 of	 modeling
time-varying	 volatility,	 but	 at	 the	 same	 time	 they	 allow	 extensions	 to	 capture
more	detailed	features	of	financial	time	series.270
	 Below	we	give	a	brief	description	of	this	model	for	time	series	data.	Let’s	start
with	the	simplest	ARCH	model,
(22.17)
	

where

	
=	variance	of	the	error	term	at	time	t	271

xM =	mean	of	x
(xt−1	−	xM) =	deviation	from	the	mean	at	time	t	−	1

	

and	a	and	b	are	parameters	to	be	estimated	using	regression	analysis.272

Equation	(22.17)	states	that	the	estimate	of	the	variance	at	time	t	depends	on
how	 much	 the	 observation	 at	 time	 t	 −	 1	 deviates	 from	 the	 mean	 of	 the
independent	 variable.	 Thus,	 the	 variance	 on	 time	 t	 is	 “conditional”	 on	 the
deviation	of	the	observation	at	time	t	−	1.	The	reason	for	squaring	the	deviation
is	that	it	is	the	magnitude,	not	the	direction,	of	the	deviation	that	is	important.	By
using	 the	 deviation	 at	 time	 t	 −	 1,	 recent	 information	 (as	 measured	 by	 the
deviation)	is	being	considered	in	the	model.



	 The	 ARCH	 model	 can	 be	 generalized	 in	 two	 ways.	 First,	 information	 for
periods	 prior	 to	 t	 -	 1	 can	 be	 included	 into	 the	 model	 by	 using	 the	 squared
deviations	for	several	time	periods.	For	example,	suppose	three	prior	periods	are
used.	Then	equation	(22.17)	can	be	generalized	to
(22.18)
	

where	a,	b1,	b2,	and	b3	are	parameters	to	be	estimated	statistically.273

A	second	way	to	generalize	 the	ARCH	model	 is	 to	 include	not	only	squared
deviations	 from	 prior	 time	 periods	 as	 a	 random	 variable	 that	 the	 variance	 is
conditional	on	but	also	the	estimated	variance	for	prior	time	periods.	This	is	the
GARCH	 model	 described	 earlier.	 For	 example,	 the	 following	 equation
generalizes	 equation	 (22.17)	 for	 the	 case	 where	 the	 variance	 at	 time	 t	 is
conditional	on	the	deviation	squared	at	time	t	−1	and	the	variance	at	time	t	−1
(22.19)
	

where	a,	b,	and	c	are	parameters	to	be	estimated.
Suppose	that	the	variance	at	time	t	is	assumed	to	be	conditional	on	three	prior

periods	 of	 squared	 deviations	 and	 two	 prior	 time	 period	 variances,	 then	 the
GARCH	model	is
(22.20)
	

where	the	parameters	to	be	estimated	are	a,	the	b’s	(i	=	1,	2,	3),	and	c’s	 (j	=	1,
2).	 In	 accordance	 with	 literature,	 we	 can	 write	 this	 as	 GARCH(2,3)	 where	 2
indicates	the	number	of	prior	time	period	variances	and	3	refelects	the	number	of
prior	periods	of	squard	deviations.
As	 noted	 earlier,	 there	 have	 been	 further	 extensions	 of	 ARCH	 models.

However,	these	extensions	are	beyond	the	scope	of	this	chapter.
	



ABSENCE	OF	AUTOCORRELATION	OF	THE	RESIDUALS

	

Assumption	3	is	that	there	is	no	correlation	between	the	residual	terms.	Simply
put,	 this	means	 that	 there	 should	not	be	any	 statistically	 significant	 correlation
between	 adjacent	 residuals.	 In	 time	 series	 analysis,	 this	 means	 no	 significant
correlation	between	two	consecutive	time	periods.

	
The	correlation	of	the	residuals	is	critical	from	the	point	of	view	of	estimation.

Autocorrelation	of	 residuals	 is	quite	 common	 in	 financial	data	where	 there	are
quantities	that	are	time	series.	A	time	series	is	said	to	be	autocorrelated	if	each
term	 is	 correlated	 with	 its	 predecessor	 so	 that	 the	 variance	 of	 each	 term	 is
partially	explained	by	regressing	each	term	on	its	predecessor.
	 Autocorrelation,	 which	 is	 also	 referred	 to	 as	 serial	 correlation	 and	 lagged
correlation	in	time	series	analysis,	like	any	correlation,	can	range	from	−1	to	+1.
Its	 computation	 is	 straightforward	 since	 it	 is	 simply	 a	 correlation	 using	 the
residual	pairs	et	and	et-1	as	the	observations.	The	formula	is
(22.21)
	

where	 ρauto	 means	 the	 estimated	 autocorrelation	 and	 et	 is	 the	 computed
residual	or	error	term	for	the	t-th	observation.
A	positive	 autocorrelation	 means	 that	 if	 a	 residual	 t	 is	 positive	 (negative),

then	 the	 residual	 that	 follows,	 t	 +	 1,	 tends	 to	 be	 positive	 (negative).	 Positive
autocorrelation	is	said	to	exhibit	persistence.	A	negative	autocorrelation	means
that	a	positive	(negative)	residual	t	tends	to	be	followed	by	a	negative	(positive)
residual	t	+	1.

	
The	 presence	 of	 significant	 autocorrelation	 in	 a	 time	 series	means	 that,	 in	 a

probabilistic	sense,	the	series	is	predictable	because	future	values	are	correlated
with	 current	 and	past	 values.	 From	an	 estimation	perspective,	 the	 existence	 of



autocorrelation	 complicates	 hypothesis	 testing	 of	 the	 regression	 coefficients.
This	is	because	although	the	regression	coefficient	estimates	are	unbiased,	they
are	not	best	linear	unbiased	estimates.	Hence,	the	variances	may	be	significantly
underestimated	and	the	resulting	hypothesis	test	questionable.
	



Detecting	Autocorrelation

	

How	do	we	detect	the	autocorrelation	of	residuals?	Suppose	that	we	believe	that
there	is	a	reasonable	linear	relationship	between	two	variables,	for	instance	stock
returns	 and	 some	 fundamental	 variable.	 We	 then	 perform	 a	 linear	 regression
between	 the	 two	 variables	 and	 estimate	 regression	 parameters	 using	 the	 OLS
method.	 After	 estimating	 the	 regression	 parameters,	 we	 can	 compute	 the
sequence	 of	 residuals.	 At	 this	 point,	 we	 can	 apply	 statistical	 tests.	 There	 are
several	tests	for	autocorrelation	of	residuals	that	can	be	used.	Two	such	tests	are
the	 Durbin-Watson	 test	 and	 the	 Dickey-Fuller	 test.	 We	 discuss	 only	 the	 first
below.
	 The	 most	 popular	 test	 is	 the	 Durbin-Watson	 test,	 or	 more	 specifically,	 the
Durbin-Watson	d-statistic	computed	as
(22.22)
	

The	 denominator	 of	 the	 test	 is	 simply	 the	 sum	 of	 the	 squares	 of	 the	 error
terms;	the	numerator	is	the	squared	difference	of	the	successive	residuals.
It	can	be	shown	that	if	the	sample	size	is	large,	then	the	Durbin-Watson	d	test

statistic	given	by	formula	(22.22)	is	approximately	related	to	the	autocorrelation
given	by	formula	(22.21)	as
(22.23)
	

Since	ρauto	can	vary	between	−1	and	1,	 this	means	that	d	can	vary	from	0	 to	4
as	shown:

	
Value	of	ρauto Interpretation	of	ρauto Approximate	value	of	d



−1 Perfect	negative	autocorrelation 4
0 No	autocorrelation 2
1 Perfect	positive	autocorrelation 0

	

	

	
From	the	above	table	we	see	that	if	d	is	close	to	2	there	is	no	autocorrelation.

A	d	 value	 less	 than	 2	 means	 there	 is	 potentially	 positive	 autocorrelation;	 the
closer	the	value	to	0	the	greater	the	likelihood	of	positive	autocorrelation.	There
is	potentially	negative	autocorrelation	if	the	computed	d	exceeds	2	and	the	closer
the	value	is	to	4,	the	greater	the	likelihood	of	negative	autocorrelation.
	 In	previous	hypothesis	 tests	discussed	 in	 this	book,	we	 stated	 that	 there	 is	 a
critical	 value	 that	 a	 test	 statistic	 had	 to	 exceed	 in	 order	 to	 reject	 the	 null
hypothesis.	 In	 the	 case	 of	 the	 Durbin-Watson	 d	 statistic,	 there	 is	 not	 a	 single
critical	value	but	two	critical	values,	which	are	denoted	by	dL	and	dU.	Moreover,
there	 are	 ranges	 for	 the	 value	 of	d	 where	 no	 decision	 can	 be	made	 about	 the
presence	of	autocorrelation.	The	general	decision	rule	given	the	null	hypothesis
and	the	computed	value	for	d	is	summarized	in	the	following	table:
	

	
Null	hypothesis Range	for	computed	dDecision	rule
No	positive	autocorrelation 0	<	d	<	dL Reject	the	null	hypothesis
No	positive	autocorrelation dL	≤	d	≤	dU No	decision
No	negative	autocorrelation 4	−	dL	<	d	<	4 Reject	the	null	hypothesis
No	negative	autocorrelation 4	-	dU	≤	d	≤	4	-	dL No	decision
No	autocorrelation dU	<	d	<	4	-	dU Accept	the	null	hypothesis

	

	

	
Where	 does	 one	 obtain	 the	 critical	 values	 dL	 and	dU?	 There	 are	 tables	 that



report	those	values	for	the	5%	and	1%	levels	of	significance.	The	critical	values
also	depend	on	the	sample	size	and	the	number	of	independent	variables	in	the
multivariate	regression.274
	 For	example,	suppose	that	there	are	12	independent	variables	in	a	regression,
there	are	200	observations,	and	that	the	significance	level	selected	is	5%.	Then
according	to	the	Durbin-Watson	critical	value	table,	the	critical	values	are

dL	=	1.643	and	dU	=	1.896
		

	Then	the	tests	in	the	previous	table	can	be	written	as:
	

	
Null	hypothesis Range	for	computed	dDecision	rule
No	positive	autocorrelation 0	<	d	<	1.643 Reject	the	null	hypothesis
No	positive	autocorrelation 1.643	≤	d	≤	1.896 No	decision
No	negative	autocorrelation 2.357	<	d	<	4 Reject	the	null	hypothesis
No	negative	autocorrelation 2.104	≤	d	≤	2.357 No	decision
No	autocorrelation 1.896	<	d	<	2.104 Accept	the	null	hypothesis

	

	



Modeling	in	the	Presence	of	Autocorrelation

	

If	 residuals	 are	 autocorrelated,	 the	 regression	 coefficient	 can	 still	 be	 estimated
without	bias	using	the	formula	given	by	equation	(20.9)	in	Chapter	20.	However,
this	estimate	will	not	be	optimal	in	the	sense	that	there	are	other	estimators	with
lower	variance	of	 the	sampling	distribution.	Fortunately,	 there	 is	a	way	 to	deal
with	 this	 problem.	 There	 is	 an	 optimal	 linear	 unbiased	 estimator	 called	 the
Aitken’s	 generalized	 least	 squares	 (GLS)	 estimator	 that	 can	 be	 used.	 The
discussion	about	this	estimator	is	beyond	the	scope	of	this	chapter.

	
The	principle	underlying	the	use	of	such	estimators	is	that	in	the	presence	of

correlation	of	residuals,	it	is	common	practice	to	replace	the	standard	regression
models	 with	 models	 that	 explicitly	 capture	 autocorrelations	 and	 produce
uncorrelated	residuals.	The	key	idea	here	 is	 that	autocorrelated	residuals	signal
that	 the	 modeling	 exercise	 has	 not	 been	 completed.	 That	 is,	 if	 residuals	 are
autocorrelated,	 this	 signifies	 that	 the	 residuals	 at	 a	 generic	 time	 t	 can	 be
predicted	from	residuals	at	an	earlier	time.
	



Autoregressive	Moving	Average	Models

	

There	are	models	for	dealing	with	the	problem	of	autocorrelation	in	time	series
data.	These	models	are	called	autoregressive	moving	average	(ARMA)	models.
Although	financial	time	series	typically	exhibit	structures	that	are	more	complex
than	 those	 provided	 by	ARMA	models,	 these	models	 are	 a	 starting	 point	 and
often	serve	as	a	benchmark	to	compare	more	complex	approaches.

	
There	are	two	components	to	an	ARMA	model:	(1)	autoregressive	process	and

(2)	moving	average	process.
	 An	autoregressive	process	(AR)	of	order	p,	or	briefly	an	AR(p)	process,	is	a
process	 where	 realization	 of	 the	 dependent	 variable	 in	 a	 time	 series,	 yt,	 is	 a
weighted	sum	of	past	p	realizations	of	the	dependent	variable	(i.e.,	yt-1,	yt-2,	…,
yt-p)	plus	a	disturbance	term	that	is	denoted	by	εt.	The	process	can	be	represented
as
(22.24)
	

	Equation	(22.24)	 is	 referred	 to	 as	 a	p-th	 order	 difference	 equation.	 In	 Chapter
7	we	introduced	the	case	of	an	autoregressive	process	of	order	1,	AR(1).
A	moving	average	(MA)	process	of	order	q,	in	short,	an	MA(q)	process,	is	the

weighted	 sum	of	 the	 preceding	q	 lagged	 disturbances	 plus	 a	 contemporaneous
disturbance	term;	that	is,
(22.25)
	

usually,	and	without	loss	of	generality,	we	assume	that	b0	=	1.
The	AR	and	MA	processes	just	discussed	can	be	regarded	as	special	cases	of	a

mixed	autoregressive	moving	average	(ARMA)	process,	in	short,	an	ARMA(p,q)
process,	 given	 by	 combining	 the	 AR(p)	 given	 by	 equation	 (22.24)	 and	 the
MA(q)	given	by	equation	(22.25)	assuming	b0	is	equal	to	1.	That	is,



(22.26)
	

	The	advantage	of	the	ARMA	process	relative	to	AR	and	MA	processes	is	that
it	 gives	 rise	 to	 a	 more	 parsimonious	 model	 with	 relatively	 few	 unknown
parameters.	 Instead	 of	 capturing	 the	 complex	 structure	 of	 time	 series	 with	 a
relatively	high-order	AR	or	MA	model,	 the	ARMA	model	which	combines	 the
AR	and	MA	presentation	forms	can	be	used.
	



CONCEPTS	EXPLAINED	IN	THIS	CHAPTER	(IN	ORDER	OF
PRESENTATION)

	

Nonlinear	regression	
Homoskedastic	(homoscedastic)	
Heteroskedastic	(heteroscedastic)	
Autocorrelation	
Chi-square	statistic	
Jarque-Bera	test	statistic	
Light-tailed	distribution	
Heavy-tailed	distribution	
Weighted	least	squares	technique	
Weighted	least	squares	estimators	
Autoregressive	conditional	heteroskedasticity	model	
Generalized	autoregressive	conditional	heteroskedasticity	model	
Volatility	clustering	
Serial	correlation	
Lagged	correlation	
Positive	autocorrelation	
Negative	autocorrelation	
Durbin-Watson	d	statistic	
Aitken’s	generalized	least	squares	estimator	
Autoregressive	moving	average	models	
Autoregressive	process	of	order	p	
Moving	average	process	of	order	q
	



APPENDIX	A
	

Important	Functions	and	Their	Features
	

In	this	appendix,	we	review	the	functions	that	are	used	in	some	of	the	chapters	in
this	 book.	 In	 particular,	we	 introduce	 the	 concept	 of	 continuous	 functions,	 the
indicator	 function,	 the	 derivative	 of	 a	 function,	 monotonic	 functions,	 and	 the
integral.	 Moreover,	 as	 special	 functions,	 we	 get	 to	 know	 the	 factorial,	 the
gamma,	 beta,	 and	 Bessel	 functions	 as	 well	 as	 the	 characteristic	 function	 of
random	variables,



CONTINUOUS	FUNCTION

	
In	this	section,	we	introduce	general	continuous	functions.



General	Idea

	
Let	 f(x)	 be	 a	 continuous	 function	 for	 some	 real-valued	variable	x.	The	general
idea	behind	 continuity	 is	 that	 the	graph	of	 f(x)	 does	 not	 exhibit	 gaps.	 In	 other
words,	f(x)	can	be	thought	of	as	being	seamless.	We	illustrate	this	in	Figure	A.1.
For	 increasing	 x,	 from	 x	 =	 0	 to	 x	 =	 2,	 we	 can	 move	 along	 the	 graph	 of	 f(x)
without	 ever	 having	 to	 jump.	 In	 the	 figure,	 the	 graph	 is	 generated	 by	 the	 two
functions	f(x)	=	x2	for	x	∈	[0,1),	and	f(x)	=	ln(x)	+	1	for	x	∈	[1,	2).275
A	function	f(x)	is	discontinuous	if	we	have	to	jump	when	we	move	along	the

graph	 of	 the	 function.	 For	 example,	 consider	 the	 graph	 in	 Figure	 A.2.
Approaching	x	=	1	from	the	left,	we	have	to	jump	from	f(x)	=	1	to	f(1)	=	0.	Thus,
the	function	f	is	discontinuous	at	x	=	1.	Here,	f	is	given	by	f(x)	=	x2	for	x	∈	[0,1),
and	f(x)	=	ln(x)	for	x	∈	[1,	2).
FIGURE	A.1	Continuous	Function	f(x)

FIGURE	A.2	Discontinuous	Function	f(x)





Formal	Derivation

	
For	a	formal	treatment	of	continuity,	we	first	concentrate	on	the	behavior	of	f	at	a
particular	value	x*.
We	say	that	that	a	function	f(x)	is	continuous	at	x*	if,	for	any	positive	distance

δ,	we	obtain	a	related	distance	ε(δ)	such	that

f(x*	-	δ)	≤	f(x)	≤	f(x*	+	δ),	for	all	x	∈(x*	−	ε(δ),x*	+	ε(δ))
		

FIGURE	A.3	Continuity	Criterion

What	does	that	mean?	We	use	Figure	A.3	to	illustrate.276	At	x*,	we	have	 the
value	 f(x*).	 Now,	 we	 select	 a	 neighborhood	 around	 f(x*)	 of	 some	 arbitrary
distance	δ	as	indicated	by	the	dashed	horizontal	lines	through	f(x*	-	δ)	and	f(x*	+
δ),	respectively.	From	the	intersections	of	these	horizontal	lines	and	the	function
graph	(solid	line),	we	extend	two	vertical	dash-dotted	lines	down	to	the	x-axis	so
that	 we	 obtain	 the	 two	 values	 xL	 and	 xU,	 respectively.	 Now,	 we	 measure	 the
distance	between	xL	and	x*	and	also	the	distance	between	xU	and	x*.	The	smaller
of	 the	 two	 yields	 the	 distance	 ε(δ).	With	 this	 distance	 ε(δ)	 on	 the	 x-axis,	 we
obtain	 the	 environment	 (x*	 -	 ε(δ),	 x*+	 ε(δ))	 about	 x*.277	 The	 environment	 is



indicated	by	the	dashed	lines	extending	vertically	above	x*	-	ε(δ)	and	x*	+	ε(δ),
respectively.	We	require	that	all	x	that	lie	in	(x*	−	ε(δ),x*	+	ε(δ))	yield	values	f(x)
inside	of	the	environment	[	f(x*	−	δ),f(x*	+	δ)].	We	can	see	by	Figure	A.3	that	this
is	satisfied.
Let	 us	 repeat	 this	 procedure	 for	 a	 smaller	 distance	 δ.	 We	 obtain	 new

environments	[f(x*	-	δ),	 f(x*	+	δ)]	and	(x*	-	ε(δ),	x*	+	ε(δ)).	 If,	 for	all	x	in	(x*	 -
ε(δ),	x*+	ε(δ)),	the	f(x)	are	inside	of	[f(x*	-	δ),	f(x*	+	δ),	again,	then	we	can	take
an	 even	 smaller	 δ.	We	 continue	 this	 for	 successively	 smaller	 values	 of	 δ	 just
short	of	becoming	0	or	until	 the	condition	on	the	 f(x)	is	no	longer	satisfied.	As
we	can	easily	see	in	Figure	A.3,	we	could	go	on	forever	and	the	condition	on	the
f(x)	would	always	be	satisfied.	Hence,	the	graph	of	f	is	seamless	or	continuous	at
x.
Finally,	we	say	that	the	function	f	is	continuous	if	it	is	continuous	at	all	x	 for

which	f	is	defined,	that	is,	in	the	domain	of	f.278	In	Figure	A.3,	the	interval	-1	≤	x
≤	1	is	depicted.279	Without	formal	proof,	we	see	that	the	function	f	is	continuous,
at	all	single	x	between	-1	and	1,	and,	thus,	f	is	continuous	on	this	interval.



INDICATOR	FUNCTION

	
The	indicator	function	acts	like	a	switch.	Often,	it	is	denoted	by	where	A	is	the
event	of	interest	and	X	is	a	random	variable.	So,	1A(X)	is	1	if	the	event	A	is	true,
that	 is,	 if	 X	 assumes	 a	 value	 in	 A.	 Otherwise,	 1A(X)	 is	 0.	 Formally,	 this	 is
expressed	as

usually,	 indicator	 functions	 are	 applied	 if	 we	 are	 interested	 in	 whether	 a
certain	event	has	occurred	or	not.	For	example,	in	a	simple	way,	the	value	V	of	a
company	may	be	described	by	a	real	numbered	random	variable	X	on	Ω	=	R	with
a	particular	probability	distribution	P.	Now,	the	value	V	of	the	company	may	be
equal	to	X	as	long	as	X	is	greater	than	0.	In	the	case	where	X	assumes	a	negative
value	or	0,	 then	V	 is	automatically	0,	 that	 is,	 the	company	 is	bankrupt.	So,	 the
event	 of	 interest	 is	 A	 =	 [0,	 ∞),	 that	 is,	 we	 want	 to	 know	 whether	 X	 is	 still
positive.	using	the	indicator	function	this	can	be	expressed	as

FIGURE	A.4	The	Company	Value	V	as	a	Function	of	the	Random	Variable	X
using	the	Indicator	Function	1[0,∞)(X)	·	X



Finally,	the	company	value	can	be	given	as

The	company	value	V	as	a	function	is	depicted	in	Figure	A.4.	We	can	clearly
detect	the	kink	at	x	=	0	where	the	indicator	function	becomes	1	and,	hence,	V	=
X.



DERIVATIVES

	
Suppose	we	have	some	continuous	function	f	with	the	graph	given	by	the	solid
line	in	Figure	A.5.	We	now	might	be	interested	in	the	growth	rate	of
FIGURE	A.5	 Function	 f	 (solid)	 with	 Derivatives	 f’(x)	 at	 x,	 for	 0	 <	 x	 <	 0.5
(dashed),	x	=	1	(dash-dotted),	and	x	=	1.571	(dotted)

f	at	some	position	x.	That	is,	we	might	want	to	know	by	how	much	f	increases	or
decreases	when	we	move	from	some	x	by	a	step	of	a	given	size,	say	Δx,	to	the
right.	This	difference	in	f,	we	denote	by	Δf.280
Let	us	next	have	a	 look	at	 the	graphs	given	by	the	solid	lines	in	Figure	A.6.

These	represent	the	graphs	of	f	and	g.	The	important	difference	between	f	and	g
is	that,	while	g	is	linear,	f	is	not,	as	can	be	seen	by	f	’s	curvature.
We	begin	the	analysis	of	the	graphs’	slopes	with	function	g	on	the	top	right	of

the	figure.	Let	us	 focus	on	 the	point	 (x+,	g(x+))	given	by	 the	solid	circle	at	 the
lower	 end	 of	 graph	 g.	 Now,	 when	 we	 move	 to	 the	 right	 by	 Δx4	 along	 the
horizontal	 dashed	 line,	 the	 corresponding	 increase	 in	 g	 is	 given	 by	 Δy4,	 as
indicated	by	the	vertical	dashed	line.	If,	on	the	other	hand,	we	moved	to	the	right
by	 the	 longer	 distance,	 Δx5,	 the	 according	 increment	 of	 g	 would	 be	 given	 by
Δy5.281	Since	g	is	linear,	it	has	constant	slope	everywhere	and,	hence,	also	at	the



point	 (x+,	 f(x+)).	 We	 denote	 that	 slope	 by	 s4.	 This	 implies	 that	 the	 ratios
representing	the	relative	increments	(i.e.,	the	slopes)	have	to	be	equal.	That	is

FIGURE	A.6	Functions	f	and	g	with	Slopes	Measured	at	 the	Points	 (x*,	 f(x*))
and	(x+,	g(x+))	Indicated	by	the	•	Symbol

Next,	we	focus	on	the	graph	of	f	on	the	lower	left	of	Figure	A.6.	Suppose	we
measured	the	slope	of	f	at	the	point	(x*,	f(x*)).	If	we	extended	a	step	along	the
dashed	line	to	the	right	by	Δx1,	the	corresponding	increment	in	f	would	be	Δy1,
as	 indicated	by	 the	 leftmost	 vertical	 dashed	 line.	 If	we	moved,	 instead,	 by	 the
longer	Δx2	 to	 the	right,	 the	corresponding	increment	 in	 f	would	be	Δy2.	And,	a
horizontal	increment	of	Δx3	would	result	in	an	increase	of	f	by	Δy3.
In	contrast	to	the	graph	of	g,	the	graph	of	f	does	not	exhibit	the	property	of	a

constant	 increment	 Δy	 in	 f	 per	 unit	 step	 Δx	 to	 the	 right.	 That	 is,	 there	 is	 no
constant	slope	of	 f,	which	results	 in	 the	fact	 that	 the	 three	ratios	of	 the	relative
increase	of	f	are	different.	To	be	precise,	we	have

as	 can	 be	 seen	 in	 Figure	 A.6.	 So,	 the	 shorter	 our	 step	 Δx	 to	 the	 right,	 the
steeper	the	slopes	of	the	thin	solid	lines	through	(x*,	f(x*))	and	the	corresponding
points	 on	 the	 curve,	 (x*+Δx1,	 f(x*+Δx1)),	 (x*+Δx2,	 f(x*+Δx2)),	 and	 (x*+Δx2,
f(x*+Δx2)),	 respectively.	 That	 means	 that,	 the	 smaller	 the	 increment	 Δx,	 the
higher	the	relative	increment	Δy	of	f.	So,	finally,	if	we	moved	only	a	minuscule



step	 to	 the	 right	 from	 (x*,	 f(x*)),	 we	would	 obtain	 the	 steepest	 thin	 line	 and,
consequently,	the	highest	relative	increase	in	f	given	by
(A.1)

By	letting	Δx	approach	0,	we	obtain	the	marginal	increment,	in	case	the	limit
of	(A.1)	exists	(i.e.,	if	the	ratio	has	a	finite	limit).	Formally,

This	marginal	 increment	s(x)	 is	different,	 at	 any	point	on	 the	graph	of	 f,	 while
we	have	seen	that	it	is	constant	for	all	points	on	the	graph	of	g.



Construction	of	the	Derivative

	
The	 limit	 analysis	 of	 marginal	 increments	 now	 brings	 us	 to	 the	 notion	 of	 a
derivative	 that	we	 discuss	 next.	Earlier	we	 introduced	 the	 limit	 growth	 rate	 of
some	continuous	function	at	some	point	(x0,	f(x0)).	To	represent	the	slope	of	the
line	through	(x0,	f(x0))	and	(x0+Δx,	f(x0+Δx)),	we	define	the	difference	quotient
(A.2)

If	we	let	Δx	→	0,	we	obtain	the	limit	of	the	difference	quotient	(A.2).	If	this
limit	is	not	finite,	then	we	say	that	it	does	not	exist.	Suppose,	we	were	not	only
interested	 in	 the	behavior	of	 f	when	moving	Δx	 to	 the	right	but	also	wanted	 to
analyze	the	reaction	by	f	to	a	step	Δx	to	the	left.	We	would	then	obtain	two	limits
of	(A.2).	The	first	with	Δx+	>	0	(i.e.,	a	step	to	the	right)	would	be	the	upper	limit
LU

and	the	second	with	Δx̄<	0	(i.e.,	a	step	to	the	left),	would	be	the	lower	limit	LL

If	LU	and	LL	are	equal,	LU	=	LL	=	L,	 then	 f	 is	said	 to	be	differentiable	at	x0.
The	 limit	 L	 is	 the	 derivative	 of	 f.	 We	 commonly	 write	 the	 derivative	 in	 the
fashion
(A.3)

On	 the	 right	 side	 of	 (A.3),	we	have	 replaced	 f(x)	 by	 the	variable	y	 as	we	will
often	do,	for	convenience.	If	the	derivative	(A.3)	exists	for	all	x,	then	f	is	said	to
be	differentiable.
Let	 us	 now	 return	 to	 Figure	 A.5.	 Recall	 that	 the	 graph	 of	 the	 continuous

function	f	is	given	by	the	solid	line.	We	start	at	x	=	-1.	Since	f	is	not	continuous
at	x	=	-1,	we	omit	this	end	point	(1,1)	from	our	analysis.	For	-1	<	x	<	0,	we	have



that	 f	 is	constant	with	slope	s	=	 -1.	Consequently,	 the	derivative	 f’(x)	=	 -1,	 for
these	x.
At	x	=	0,	we	observe	that	f	is	linear	to	the	left,	with	f’(x)	=	-1	and	that	it	is	also

linear	to	the	right,	however,	with	f’(x)	=	1,	for	0	<	x	<	0.5.	So,	at	x	=	0,	LU	=	1
while	LL	=	-1.	Since	here	LU	≠	LL,	the	derivative	of	f	does	not	exist	at	x	=	0.
For	0	<	x	<	0.5,	we	have	the	constant	derivative	f’(x)	=	1.	The	corresponding

slope	of	1	through	(0,0)	and	(0.5,0.5)	is	indicated	by	the	dashed	line.	At	x	=	0.5,
the	left	side	limit	LL	=	1	while	the	right	side	limit	LU	=	0.8776.282	Hence,	the	two
limits	are	not	equal	and,	consequently,	f	is	not	differentiable	at	x	=	0.5.
Without	formal	proof,	we	state	that	f	is	differentiable	for	all	0.5	<	x	<	2.	For

example,	at	x	=	1,	LL	=	LU	=	0.5403	and,	thus,	the	derivative	f	’(0.5)	=	0.5403.
The	dash-dotted	 line	 indicating	 this	 derivative	 is	 called	 the	 tangent	 of	 f	 at	x	=
0.5.283	As	another	example,	we	select	x	=	1.571	where	 f	assumes	its	maximum
value.	Here,	the	derivative	f’(0)	=	0	and,	hence,	the	tangent	at	x	=	1.571	is	flat	as
indicated	by	the	horizontal	dotted	line.284



MONOTONIC	FUNCTION

	
Suppose	we	have	some	function	f(x)	for	real-valued	x.	For	example,	the	graph	of
f	may	look	like	that	in	Figure	A.5.	We	see	that	on	the	interval	[0,1],	the	graph	is
increasing	from	f(0)	=	0	to	f(1)	=	1.	For	1	≤	x	≤	2,	the	graph	remains	at	the	level
f(1)	 =	 1	 like	 a	 platform.	And,	 finally,	 between	 x	 =	 2	 and	 x	 =	 3,	 the	 graph	 is
increasing,	again,	from	f(2)	=	1	to	f(3)	=	2.
In	contrast,	we	may	have	another	function,	g(x).	Its	graph	is	given	by	Figure

A.6.	It	looks	somewhat	similar	to	the	graph	in	Figure	A.5,	however,	without	the
platform.	The	graph	of	g	never	remains	at	a	level,	but	increases	constantly.	Even
for	the	smallest	increments	from	one	value	of	x,	say	x1,	to	the	next	higher,	say	x2,
there	is	always	an	upward	slope	in	the	graph.
Both	 functions,	 f	 and	 g,	 never	 decrease.	 The	 distinction	 is	 that	 f	 is

monotonically	 increasing	 since	 the	graph	can	 remain	 at	 some	 level,	while	g	 is
strictly	monotonic	 increasing	 since	 its	 graph	never	 remains	 at	 any	 level.	 If	we
can	differentiate	f	and	g,	we	can	express	this	in	terms	of	the	derivatives	of	f	and
g.	 Let	 f’	 be	 the	 derivative	 of	 f	 and	g’	 the	 derivative	 of	 g.	 Then,	 we	 have	 the
following	 definitions	 of	 continuity	 for	 continuous	 functions	 with	 existing
derivatives:

Monotonically	increasing	functions:	A	continuous	function	f	with	derivative
f’	is	monotonically	increasing	if	its	derivative	f’	≥	0.
Strictly	monotonic	increasing	functions:	A	continuous	function	g	with
derivative	g’	is	strictly	monotonic	increasing	if	its	derivative	g’	>	0.

	
Analogously,	a	 function	 f(x)	 is	monotonically	decreasing	 if	 it	behaves	 in	 the

opposite	manner.	 That	 is,	 f	 never	 increases	when	moving	 from	 some	 x	 to	 any
higher	value	x1	>	x.	When	f	is	continuous	with	derivative	f’,	then	we	say	that	f	is
monotonically	decreasing	if	f’(x)	≤	0	and	that	it	is	strictly	monotonic	increasing
if	 f’(x)	 <	 0	 for	 all	 x.	 For	 these	 two	 cases,	 illustrations	 are	 given	 by	mirroring
Figures	A.7	and	A.8	against	their	vertical	axes,	respectively.



INTEGRAL

	
Here	 we	 derive	 the	 concept	 of	 integration	 necessary	 to	 understand	 the
probability	 density	 and	 continuous	 distribution	 function.	 The	 integral	 of	 some
function	over	some	set	of	values	represents	the	area	between	the	function	values
and	the	horizontal	axis.	To	sketch	 the	 idea,	we	start	with	an	 intuitive	graphical
illustration.
We	 begin	 by	 analyzing	 the	 area	 A	 between	 the	 graph	 (solid	 line)	 of	 the

function	 f(t)	 and	 the	 horizontal	 axis	 between	 t	 =	 0	 and	 t	 =	 T	 in	 Figure	 A.9.
Looking	 at	 the	 graph,	 it	 appears	 quite	 complicate	 to	 compute	 this	 area	 A	 in
comparison	to,	for	example,	the	area	of	a	rectangle	where	we	would	only	need	to
know	its	width	and	length.	However,	we	can	approximate	this	area	by	rectangles
as	will	be	done	next.
FIGURE	A.7	Monotonically	Increasing	Function	f

FIGURE	A.8	Strictly	Monotonic	Increasing	Function	g



FIGURE	 A.9	 Approximation	 of	 the	 Area	 A	 between	 Graph	 of	 f(t)	 and	 the
Horizontal	axis,	for	0	≤	t	≤	T



Approximation	of	the	Area	through	Rectangles

	
Let’s	approximate	the	area	A	under	the	function	graph	in	Figure	A.9	as	follows.
As	 a	 first	 step,	 we	 dissect	 the	 interval	 between	 0	 and	 T	 into	 n	 equidistant
intervals	of	length	Δt	=	ti+1	-	ti	for	i	=	0,	1,	…,	n	-	1.	For	each	such	interval,	we
consider	 the	 function	 value	 f(ti+1)	 at	 the	 rightmost	 point,	 ti+1.	 To	 obtain	 an
estimate	of	the	area	under	the	graph	for	the	respective	interval,	we	multiply	the
value	f(ti+1)	at	ti+1	by	the	interval	width	Δt	yielding	A(ti	+1	)	=	Δt	⋅	f(ti	+1	)	,	which
equals	the	area	of	the	rectangle	above	interval	i	+	1	as	displayed	in	Figure	A.9.
Finally,	we	add	up	the	areas	A(t1),	A(t2),	…,	A(T)	of	all	rectangles	resulting	in	the
desired	estimate	of	the	area	A
(A.4)

We	repeat	the	just	described	procedure	for	decreasing	interval	widths	Δt.

Integral	as	the	Limiting	Area

	
To	derive	the	perfect	approximation	of	the	area	under	the	curve,	in	Figure	A.9,
we	let	the	interval	width	Δt	gradually	vanish	until	it	almost	equals	0	proceeding
as	before.	We	denote	 this	 infinitesimally	 small	width	by	 the	step	 rate	dt.	Now,
the	difference	between	the	function	values	at	either	end,	that	is,	f(ti)	and	f(ti+1),	of
the	 interval	 i	 +	 1	 will	 be	 nearly	 indistinguishable	 since	 ti	 and	 ti+1	 almost
coincide.	Hence,	 the	 corresponding	 rectangle	with	 area	A(ti+1)	will	 turn	 into	 a
dash	with	infinitesimally	small	base	dt.
Summation	as	in	equation	(A.4)	of	the	areas	of	the	dashes	becomes	infeasible.

For	this	purpose,	the	integral	has	been	introduced	as	the	limit	of	(A.4)	as	Δt	→
0.285	It	is	denoted	by
(A.5)



where	 the	 limits	 0	 and	T	 indicate	 which	 interval	 the	 integration	 is	 performed
on.	In	our	case,	the	integration	variable	is	t	while	the	function	f(t)	 is	called	 the
integrand.	In	words,	equation	(A.5)	is	the	integral	of	the	function	f(t)	over	t	from
0	to	T.	It	is	immaterial	how	we	denote	the	integration	variable.	The	same	result
as	in	equation	(A.5)	would	result	if	we	wrote

instead.	The	important	factors	are	the	integrand	and	the	integral	limits.
Note	 that	 instead	of	using	 the	 function	values	of	 the	 right	boundaries	of	 the

intervals	f(ti+1)	in	equation	(A.4),	referred	to	as	the	right-point	rule,	we	might	as
well	have	taken	the	function	values	of	the	left	boundaries	f(ti),	referred	to	as	the
left-point	rule,	which	would	have	led	to	the	same	integral.	Moreover,	we	might
have	taken	the	function	f(0.5	⋅	(ti+1	+	ti	))	values	evaluated	at	the	mid-points	of
the	 intervals	 and	 still	 obtained	 the	 same	 interval.	 This	 latter	 procedure	 is	 the
called	the	mid-point	rule.
If	we	keep	0	as	 the	 lower	 limit	of	 the	 integral	 in	equation	(A.5)	and	vary	T,

then	equation	(A.5)	becomes	a	 function	of	 the	variable	T.	We	may	denote	 this
function	by
(A.6)



Relationship	Between	Integral	and	Derivative

	
In	equation	(A.6)	 the	relationship	between	 f(t)	and	F(T)	 is	as	 follows.	Suppose
we	compute	the	derivative	of	F(T)	with	respect	to	T.286	The	result	is
(A.7)

Hence,	from	equation	(A.7)	we	see	that	the	marginal	increment	of	the	integral	at
any	point	 (i.e.,	 its	derivative)	 is	exactly	equal	 to	 the	 integrand	evaluated	at	 the
according	value.287
The	implication	of	 this	discussion	for	probability	 theory	 is	as	follows.	Let	P

be	a	continuous	probability	measure	with	probability	distribution	function	F	and
(probability)	density	function	f.	There	is	the	unique	link	between	 f	and	P	given
through
(A.8)

Formally,	 the	 integration	 of	 f	 over	 x	 is	 always	 from	 -∞	 to	 ∞,	 even	 if	 the
support	 is	 not	 on	 the	 entire	 real	 line.	 This	 is	 no	 problem,	 however,	 since	 the
density	is	zero	outside	the	support	and,	hence,	integration	over	those	parts	yields
0	contribution	to	the	integral.	For	example,	suppose	that	some	density	function
were
(A.9)

where	 h(x)	 is	 just	 some	 function	 such	 that	 f	 satisfies	 the	 requirements	 for	 a
density	function.	That	is,	the	support	is	only	on	the	positive	part	of	the	real	line.
Substituting	 the	 function	 from	 equation	 (A.9)	 into	 equation	 (A.8)	 yields	 the
equality
(A.10)



SOME	FUNCTIONS

	
Here	 we	 introduce	 some	 functions	 needed	 in	 probability	 theory	 to	 describe
probability	 distributions	 of	 random	 variables:	 factorials,	 gamma	 function,	 beta
function,	Bessel	function	of	the	third	kind,	and	characteristic	function	While	the
first	 four	are	 functions	of	very	special	shape,	 the	characteristic	 function	 is	of	a
more	 general	 structure.	 It	 is	 the	 function	 characterizing	 the	 probability
distribution	 of	 some	 random	 variable	 and,	 hence,	 is	 of	 unique	 form	 for	 each
random	variable.



Factorial

	
Let	k	∈	N	(i.e.,	k	=	1,	2,	…).	Then	the	factorial	of	this	natural	number	k,	denoted
by	the	symbol	!,	is	given	by
(A.11)

A	factorial	is	the	product	of	this	number	and	all	natural	numbers	smaller	than
k	 including	 1.	 By	 definition,	 the	 factorial	 of	 zero	 is	 one	 (i.e.,	 0!	 ≡	 1).	 For
example,	the	factorial	of	3	is	3!	=	3	·	2	·	1	=	6.



Gamma	Function

	
The	gamma	function	for	nonnegative	values	x	is	defined	by
(A.12)

The	gamma	function	has	the	following	properties.	If	the	x	correspond	with	a
natural	 number	n	∈	N	 (i.e.,	n	 =	 1,	 2,	…),	 then	we	 have	 that	 equation	 (A.12)
equals	the	factorial	given	by	equation	(A.11)	of	n	-	1.	Formally,	this	is

Γ(	n	)=(n	−	1)!	=	(n	−	1)	⋅	(n	−	2)⋅…	⋅	1
	

Furthermore,	for	any	x	≥	0,	it	holds	that	Γ(x+1)	=	xΓ	(	x)	.
In	Figure	A.10,	we	 have	 displayed	 part	 of	 the	 gamma	 function	 for	x	 values

between	0.1	and	5.	Note	that,	for	either	x→	0	or	x→	∞,	Γ	(	x)	goes	to	infinity.



Beta	Function

	
The	beta	function	with	parameters	c	and	d	is	defined	as

where	Γ	is	the	gamma	function	from	equation	(A.12).
FIGURE	A.10	Gamma	Function	Γ(x)



Bessel	Function	of	the	Third	Kind

	
The	Bessel	function	of	the	third	kind	is	defined	as

This	function	is	often	a	component	of	other,	more	complex	functions	such	as
the	density	function	of	the	NIG	distribution.



Characteristic	Function

	
Before	 advancing	 to	 introduce	 the	 characteristic	 function,	 we	 briefly	 explain
complex	numbers.
Suppose	we	were	to	take	the	square	root	of	the	number	-1,	that	is,	√−1.	So	far,

our	calculus	has	no	solution	for	 this	since	 the	square	root	of	negative	numbers
has	not	yet	been	 introduced.	However,	by	 introducing	 the	 imaginary	number	 i,
which	is	defined	as

we	 can	 solve	 square	 roots	 of	 any	 real	 number.	 Now,	 we	 can	 represent	 any
number	as	the	combination	of	a	real	(Re)	part	a	plus	some	units	b	of	i,	which	we
refer	to	as	the	imaginary	(Im)	part.	Then,	any	number	z	will	look	like
(A.13)

The	 number	 given	 by	 equation	 (A.13)	 is	 a	 complex	 number.	 The	 set	 of
complex	numbers	is	symbolized	by	C.	This	set	contains	the	real	numbers	that	are
those	complex	numbers	with	b	=	0.	Graphically,	we	can	represent	 the	complex
numbers	on	a	two-dimensional	space	as	given	in	Figure	A.11.
Now,	we	can	introduce	the	characteristic	function	as	some	function	φ	mapping

real	numbers	into	the	complex	numbers.	Formally,	we	write	 this	as	φ	:	R→	C.
Suppose	 we	 have	 some	 random	 variable	 X	 with	 density	 function	 f.	 The
characteristic	function	is	then	defined	as
(A.14)

FIGURE	A.11	Graphical	Representation	of	the	Complex	Number	z	=	0.8	+	0.9i



which	 transforms	 the	density	 f	 into	 some	complex	number	at	 any	 real	position
t.	Equation	(A.14)	is	commonly	referred	to	as	the	Fourier	transformation	of	the
density.
The	relationship	between	the	characteristic	function	ϕ	and	the	density	function

f	 of	 some	 random	 variable	 is	 unique.	 So,	 when	 we	 state	 either	 one,	 the
probability	 distribution	 of	 the	 corresponding	 random	 variable	 is	 unmistakably
determined.



APPENDIX	B
	

Fundamentals	of	Matrix	Operations	and	Concepts
	

For	several	topics	in	this	book,	we	used	principles,	concepts,	and	results	from	the
field	of	matrix	algebra.	In	this	appendix,	we	provide	a	review	of	matrix	algebra.



THE	NOTION	OF	VECTOR	AND	MATRIX

	
Consider	a	data	series	x	=	{x1,	x2,	…,	xn}	of	size	n.	 Instead	of	 the	complicated
notation	using	commas	between	the	individual	observations,	we	could	write	the
n	observations	in	terms	of	vector	notation	as	follows
(B.1)

where	the	left	side	in	equation	(B.1)	denotes	x	as	a	column	vector	while	the	right
side	denotes	it	as	a	row	vector.	Both	vectors	are	of	length	n	(coordinates)	since
all	observations	have	to	be	accounted	for.	Note	that	the	right	(row)	vector	is	the
transpose	of	 the	 left	 (column)	vector	and	vice	versa.	The	 transpose	 is	obtained
by	 simply	 turning	 the	 vector	 by	 90	 degrees,	 which	 is	 indicated	 by	 the	 upper
index	T.	 We	 could	 have	 defined	 x	 as	 a	 row	 vector	 instead	 and	 the	 transpose
would	then	be	the	column	vector.	By	doing	so,	we	shift	the	dimensionality	of	the
vectors.	The	column	vector	is	often	indicated	by	the	size	n	×	1	meaning	n	 rows
and	1	column.	A	row	vector	is	indicated	by	size	1	×	n	meaning	just	one	row	and
n	columns.
Suppose	there	is	a	second	series	of	observations	of	the	same	length	n	as	x,	say

y	=	(y1,	y2,	…,	yn).	This	second	series	of	observation	could	be	written	as	a	vector.
However,	x	and	y	could	both	be	written	as	vectors	and	combined	in	a	construct
called	matrix	A	of	the	form
(B.2)

Since	 both	 vectors	 are	 entities	 of	 their	 own	 of	 dimension	 one,	 the	 combined
result	in	matrix	A	is	of	dimension	two.	To	be	precise,	A	is	an	n	×	2	matrix	with	n
coordinates	 in	 each	 of	 the	 two	 columns.	 The	matrix	 is	 thus	 of	 size	n	 ×	 2.	 Its
transpose	would	naturally	be	of	size	2	×	n.



MATRIX	MULTIPLICATION

	
Now	 consider	 a	 third	 column	 vector	 of	 length	 n,	 say	 z.	 Moreover,	 it	 is
hypothetically	assumed	that	each	component	zi	is	equal	to	a	linear	combination
of	the	corresponding	components	of	the	vectors	x	and	y.	That	is,	for	each	i,	we
obtain
(B.3)

which	presents	vector	z	as	the	result	of	the	weighted	sum	of	the	vectors	x	and	y.
The	weight	for	x	is	β1	and	the	weight	for	y	is	β2.	In	other	words,	each	component
of	 the	 vectors	 x	 and	 y	 is	 weighted	 by	 the	 corresponding	 factor	 β1	 and	 β2,
respectively,	before	summation.	Since	we	perform	equation	(B.3)	for	each	i	=	1,
…,	n,	we	obtain	the	equation	system
(B.4)

The	 above	 can	 be	 written	 in	 a	more	 compact	 way	 using	 vector	 and	matrix
notation	by
(B.5)

where	z	 is	 the	 column	vector	 consisting	of	 all	 the	 components	on	 the	 left	 side
of	the	equations	in	equation	(B.4).	We	have	combined	the	two	column	vectors	x
and	y	in	the	matrix	(x	y).	This	is	multiplied	by	the	column	vector	β	=	(β1	β2	)T	 .
Note	that	the	(x	y)	 is	of	size	n	×	2	and	β	 is	of	size	2	×	1.	Since	 the	number	of
columns	 of	 (x	 y)	 (i.e.,	 two)	 matches	 the	 number	 of	 rows	 of	 β,	 this	 works.
Equation	(B.5)	is	the	result	of	matrix	multiplication,	which	is	only	feasible	if	the
number	of	columns	of	the	matrix	on	the	left	matches	the	number	of	rows	of	the
matrix	on	the	right.288
Matrix	 multiplication	 is	 defined	 as	 follows.	 Given	 the	 m	 ×	 n	 rectangular

matrix	X	=	{xij}	and	the	n	×	p	matrix	Y	=	{yrq},	the	product	Z	=	{ziq}	is	the	m	×	p



matrix:

For	example,	suppose	we	want	to	multiply	(x	y)	by	the	2	×	2	matrix	(a	b)	where
a	and	b	both	are	2×1	vectors.	The	result	is	the	n	×	2	matrix
(B.6)

Note	 that	 each	of	 the	 two	 column	vectors	 in	 the	matrix	on	 the	 right	 side	of
equation	 (B.6)	 is	 of	 the	 form	 equation	 (B.4).	 We	 could	 extend	 the	 matrix
containing	the	vectors	a	and	b	by	inserting	a	third	2	×	1	vector,	say	c,	such	that
the	resulting	matrix	(a	b	c)	is	2	×	3.	The	matrix	product	of	multiplying	(x	y)	and
(a	b	c)	yields	a	n	×	3	matrix	with	one	additional	column	vector	compared	to	the
matrix	on	the	right	side	of	equation	(B.6).	Analogously,	we	could	create	any	n	×
k	 matrix	 for	 some	 positive	 integer	 k.	 Remember,	 we	 can	 multiply	 any	 two
matrices	A	and	B	to	yield	AB	provided	A	has	the	same	number	of	columns	as	B
has	rows.



PARTICULAR	MATRICES

	
When	we	have	a	matrix	of	size	n	×	n	(i.e.,	both	the	number	of	columns	and	rows
are	 the	 same),	 the	matrix	 is	 a	 square	 and	 referred	 to	 as	 a	 square	matrix.	 For
example,	consider	the	3	×	3	matrix	A	given	by
(B.7)

The	 diagonal	 elements	 aii,	 i	 =	 1,	…,	 n	 have	 the	 particular	 property	 that	 they
remain	at	their	positions	after	transposing	the	matrix.289
We	consider	a	particular	case	of	equation	(B.7)	next.	That	 is,	we	have	 three

particular	column	vectors	 (or,	 analogously,	 row	vectors)	of	a	 special	 form.	For
example,	let	the	first	column	vector	of	A	 	=	(a11	a21	a31)T	(1	0	0)T,	the	second
column	 vector	 of	 	 =	 (a12	 a22	 a32)T	 =	 (0	 1	 0)T,	 and	 the	 third	

.Each	vector	takes	one	step	in	its	particular	direction	and
none	in	the	direction	of	any	of	the	other	two.	That	is,	they	move	orthogonally	to
one	another	along	the	coordinate	axis.	This	is	shown	in	Figure	B.1.
FIGURE	B.1	Direction	of	3	×	3	Matrix	A	with	Column	Vectors	a1,	a2,	and	a3

As	 can	 be	 seen	 in	 the	 figure,	 together	 a1,	 a2,	 and	 a3	 reach	 into	 all	 three



dimensions	 spanned	by	 the	 coordinate	 axes.	They	 are	 basically	 equivalent.	By
linearly	combining	these	three,	any	vector	in	this	three-dimensional	space	can	be
generated.	Say,	we	want	to	“walk”	in	the	direction	of	b	=	(1	2	3)	,	that	is,	we	step
one	unit	in	the	direction	of	a1,	two	units	in	the	direction	of	a2,	and	three	units	in
the	direction	of	a3.	In	Figure	B.2	it	is	demonstrated	what	vector	b	looks	like.	It	is
indicated	 by	 the	 solid	 dash-dotted	 line	 while	 the	 individual	 steps	 in	 each
direction	are	given	by	the	thin-dashed	lines.	More	formally,	we	could	recover	b
by	finding	a	column	vector	β	=	(β1	β2	β3	)T	to	multiply	from	the	left	by	A	 such
that
(B.8)

is	solved.
FIGURE	B.2	Vector	b	as	a	Linear	Composition	of	the	Vectors	a1,	a2,	and	a3

Now,	for	each	i	=	1,	2,	3,	the	components	of	b	are	given	by	bi	=	ai1β1	+	ai2β2	+
ai3β3.	So	we	can	retrieve	as	the	solution	β	=	(1	2	3)T	 .	The	analogy	to	equation
(B.4)	 is	 obvious.	 It	 is	 well-known	 that	 there	 exists	 a	 unique	 β	 as	 solution	 to
equation	(B.8)	since	the	vectors	of	A	span	the	whole	three-dimensional	space	of
real	 numbers	 (i.e.,	R290).	 There	 is	 no	 redundant	 information	 in	 the	 vectors.	 In
that	 case,	A	 is	 said	 to	 have	 full	rank.290	 That	 is,	 the	 rank	 of	 the	 square	n	 ×	n
matrix	 is	 equivalent	 to	 either	 the	 number	 of	 rows	 or	 the	 number	 of	 columns,
which	 are	 the	 same.	 If	 matrix	 A	 were	 composed	 of	 vectors	 that	 contained
redundant	components,	 its	 rank	would	be	 less	 than	 three.	For	example,	 look	at
matrix	C	given	by



(B.9)

Redundant	components	are	 the	 result	of	 the	 fact	 that,	 in	 the	case	of	a	n	 ×	n
matrix,	 less	 than	 n	 vectors	 are	 enough	 to	 yield	 the	 remaining	 vectors	 of	 the
matrix	 through	 linear	 combinations.	 For	 example,	with	matrix	C,	we	 have	 the
case	that	only	one	vector	is	enough	to	create	the	other	two.	To	see	this,	suppose
we	take	vector	c1,	then	c2	is	two	times	c1,	and	c3	is	three	times	c1.	So,	any	two
vectors	of	C	 are	 always	 the	multiples	of	 a	 third	vector	of	C.	When	we	have	a
look	at	the	rank	of	C,	which	is	definitely	less	than	three,	we	consider	that	a	rank
of	a	matrix	is	an	indicator	of	what	shape	is	set	up	by	the	component	vectors	of	a
n	×	n	matrix.291	For	example,	the	vectors	of	C	are	all	along	a	line	in	R3.	Since	a
line	is	a	one-dimensional	structure,	its	rank	is	one.	On	the	other	hand,	the	vectors
of	A	set	up	cubes	in	R3.	Cubes	have	dimension	three	and,	hence,	A	uses	all	of	R3
(i.e.,	A	has	rank	three).
The	form	of	the	vectors	a1,	a2,	and	a3	is	a	special	one.292	One	could	turn	all	of

them	 simultaneously	 by	 the	 same	 angle	 but	 they	 would	 still	 remain	 pairwise
orthogonal.	For	example,	suppose	we	tilted	them	such	that	the	resulting	column
vectors	would	be
(B.10)

They	are	shown	in	Figure	B.3.	As	can	be	seen,	they	still	span	the	entire	space
of	the	three-dimensional	real	numbers.	That	is,	they	are	pairwise	orthogonal.	A
way	of	 testing	pairwise	orthogonality	 of	 two	vectors	 is	 to	 compute	 their	 inner
product.	The	inner	product	requires	that	the	two	vectors,	a	and	b,	are	both	of	the
same	length,	say	n.293	The	inner	product	then	is	defined	as
(B.11)

where	both	a	 and	b	 are	 column	vectors	 such	 that	aT	 is	 in	 row	vector	 form.	 If
not,	 then	 they	have	 to	be	appropriately	 transposed	such	 that	 in	equation	(B.11)
after	the	first	equality	sign,	the	left	vector	is	a	row	vector,	and	the	vector	on	the
right	is	column	vector.
For	orthogonal	vectors,	the	inner	product	is	zero.	Now,	with	our	example,	all

inner	products	of	the	component	vectors	of	A*	are	zero.	So	are,	consequently,	the



inner	products	of	the	matrix	A.
Now	consider	 again	equation	(B.8)	with	matrix	A	 such	 that	 it	 has	 full	 rank,

which	in	our	example	is	equal	to	three.	The	unique	vector	β	can	be
FIGURE	B.3	Turned	Vectors	 and	 the	R	3

recovered	by	multiplying	b	by	 the	 inverse	of	A	 (i.e.,	A-1)	 from	the	 left.	This	 is
formally	represented	as
(B.12)

The	inverse	of	some	full	rank	n	×	n	matrix	A	is	defined	by
(B.13)

where	In,n	 is	the	n	×	n	identity	matrix.	 It	 is	defined	by	all	ones	on	the	diagonal
and	zeros	else.	Thus,	the	identity	matrix	is294
(B.14)

The	 identity	 matrix	 has	 the	 neutrality	 property.	 That	 is,	 any	 properly	 sized
matrix	 multiplied	 by	 the	 identity	 matrix	 from	 either	 left	 or	 right	 remains
unchanged.
We	avoid	the	algebraic	derivation	of	the	inverse	since	it	is	beyond	the	scope	of

this	 book	 and	 would	 distract	 unnecessarily.	 Besides,	 most	 business	 statistics
software	is	capable	of	computing	the	matrix	inverse	without	requiring	the	user	to



know	how	it	is	exactly	performed.
In	our	example,	the	inverse	of	A	is	given	by	the	identity	matrix

(B.15)

since	A	 already	 is	 equal	 to	 the	 identity	matrix.	The	 inverse	of	A*,	 however,	 is
not	of	such	simple	form.	It	is	given	by
(B.16)

The	 last	particular	matrix	 form	 is	 that	of	 the	symmetric	matrix.	This	 type	of
matrix	is	a	square	n	×	n	matrix	with	the	feature	that	the	transpose	of	it	is	itself.
Formally,	let	S	be	some	symmetric	n	×	n	matrix,	then
(B.17)

For	example,	we	have	S	given	by
(B.18)

S	is	symmetric	since	its	transpose	is
(B.19)

Next,	we	shall	discuss	the	determinant,	the	eigenvalue,	and	the	eigenvectors	of
a	 square	matrix,	 say	A.	 These	 give	 insight	 into	 important	 features	 of	 a	matrix
without	having	to	know	all	its	components.



Determinant	of	a	Matrix

	
Geometrically,	 the	determinant	 of	 the	matrix	A	 computes—or	determines—the
area	or	volume	enclosed	by	the	vectors	of	A.	The	determinant	is	usually	denoted
by	either	det(A)	or	|A|.
Suppose	A	is	a	3	×	3	matrix,	then	we	have	three	vectors	setting	up	something

cubic,	a	parallelepiped,295	that	is,	the	case	when	A	is	full	rank	(i.e.,	three).	If	it	is
short	 rank,	 however,	 the	 construct	 designed	 by	 the	 three	 vectors	 is	 not	 three
dimensional	 since	 the	 vectors	 of	A	 do	 not	 span	 the	 entire	R3.	 They	 are	 then
linearly	dependent.	At	least	one	dimension	is	lost	of	the	parallelepiped.	So,	it	is
two	 dimensional,	 at	most,	 depending	 on	 the	 vectors	 of	A.	 The	 entire	 volume,
hence,	 is	zero	since	we	have	zero	extension	 in	at	 least	one	dimension.	A	more
rigorous	understanding	of	the	theory	behind	it,	however,	is	not	necessary.
Since	 it	may	not	hurt	 to	have	at	 least	seen	 the	algorithm	according	 to	which

the	determinant	of	a	matrix	is	computed,	we	will	present	it	here	in	as	informal	a
way	as	possible.	 It	 is	helpful	 to	consider	 that	 the	algorithm	 is	 such	 that,	 in	 the
end,	 only	 determinants	 of	 2	 ×	 2	 matrices	 are	 computed	 and	 summed	 up	 in	 a
particular	fashion	to	result	in	the	determinant	of	the	matrix	of	interest,	again	say
A.	Now,	for	any	2	×	2	matrix,	say	M,	the	determinant	is	computed	according	to
(B.20)

The	algorithm	for	the	computation	of	the	determinant	of	an	n	×	n	matrix	with
n	greater	 than	two	is	a	sequential	summation	of	 the	determinants	of	a	series	of
matrices	contained	 in	 the	original	matrix	A.	Before	starting	 the	summation,	we
assign	imaginary	signs	to	each	matrix	component	ɑij	in	the	following	way.	If	i+j
is	even,	then	in	the	summation,	aij	is	multiplied	by	the	unaltered	sign	(i.e.,	1).	If,
on	the	other	hand,	i+j	should	be	uneven,	then	aij	is	multiplied	by	−1.	Formally,
this	 is	 achieved	 by	 assigning	 signs	 according	 to	 (−1)i+j.	 We	 compute	 these
imaginary	signs	for	all	components	of	A.
This	done	as	follows.	In	step	1,	we	select	the	first	row	(i.e.,	i	=	1).	Within	row

one,	we	 select	 the	 first	 column	 (i.e.,	 j	=	 1)	 such	 that	we	 have	 singled	 out	 the
component	a11.	Now	we	create	a	new	matrix,	say	 out	of	A	in	that	we	discard
row	one	and	column	one.	The	first	component	of	the	overall	sum	is	then



(B.21)

where	 	 is	 the	determinant	of	 the	matrix	obtained	by	discarding	 row	one	and
column	one	from	matrix	A.296	Still	in	step	1,	we	move	one	further	along	row	one
to	select	column	two	(i.e.,	j	=	2).	At	this	intermediate	step,	we	single	out	a12	and
generate	 the	 determinant	 of	 the	matrix	 obtained	 by	 discarding	 row	 one	 and
column	two	from	matrix	A.	We	obtainthe	second	term	of	the	overall	sum	by
(B.22)

In	step	1,	we	continue	in	this	fashion	through	all	columns	while	remaining	in
row	one.	After	we	have	arrived	at	column	n,	we	move	one	row	further.	That	is	in
step	2,	we	remain	in	row	two	while	successively	selecting	one	row	after	another
from	one	 through	n.	We	proceed	 as	 in	 step	 1	 column-by-column	 to	 obtain	 the
terms	 that	 are	 contributing	 to	 the	 overall	 sum.	 Finally,	 we	 perform	 these
equivalent	steps	until	step	n	where	we	concentrate	on	row	n.	In	general,	in	step	i
and	for	each	column	j,	we	contribute	the	term
(B.23)

to	 the	 overall	 sum	yielding	 the	 desired	 determinant	 |A|at	 least	 formally.	 If	 the	
just	generated	are	2	×	2	matrices,	we	can	compute	the	 according	to	(B.20),

sum	up,	and	we	are	done.297	If	not,	however,	we	will	have	to	carry	through	the
procedure	for	each	individual	matrix	 	just	as	for	matrix	A.	We	keep	doing	this
recursively	 until	 by	 discarding	 rows	 and	 columns,	 we	 finally	 obtain	 2	 ×	 2
matrices.
We	 will	 demonstrate	 this	 by	 some	 fairly	 simple	 example	 employing	 the

following	matrix
(B.24)

We	begin	by	setting	up	 the	matrix	of	 imaginary	signs	 that	we	will	call	S	 for
reference.	This	yields
(B.25)



which	we	will	only	keep	 for	a	 look-up	 reference.	Now,	 in	step	1,	we	 focus	on
row	 one.	 We,	 then	 begin	 with	 column	 one	 to	 obtain	 the	 first	 term	 of	 the
determinant	 of	 equation	(B.24).	According	 to	 the	 algorithm	we	 just	 explained,
this	results	in
(B.26)

The	second	through	fourth	terms	are,	respectively,

and
(B.27)

Now	we	see	that	none	of	the	reduced	matrices	 are	2	×	2.	Hence,	we	have	to
repeat	the	procedure	for	each	of	the	determinants	 For	through	 or	through
,	we	keep	in	mind	as	a	reference	the	new	imaginary	sign	matrix	298

(B.28)

From	equation	(B.26),	we	obtain
(B.29)

where	we	have	taken	advantage	of	the	fact	that	the	new	reduced	matrices	are	2



×	2,	which	 thereby	 enables	 us	 to	 compute	 them	 according	 to	 equation	(B.20).
Without	explicit	display	of	the	computations,	we	list	the	results	for	the	remaining
reduced	matrices
(B.30)

Our	 next	 task	 is	 to	 perform	 the	 recursion	 by	 entering	 equations	 (B.29)	 and
(B.30)	 into	 equations	 (B.26)	 and	 (B.27),	 respectively.	 This	 finally	 yields	 the
determinant	of	the	original	matrix	A
(B.31)

Since	the	determinant	is	equal	to	zero,	we	know	that	A	is	not	full	rank.	Hence,
its	component	vectors	do	not	span	the	entire	four-dimensional	reals	(i.e.,	R4).	As
a	consequence,	A	does	not	have	an	inverse	A-1.



Eigenvalues	and	Eigenvectors

	
We	 now	 turn	 our	 attention	 to	 the	 eigenvalues	 and	 eigenvectors	 of	 square
matrices.299	We	 limit	our	 focus	 to	 those	matrices	 that	are	also	symmetric	as	 in
equation	(B.17).	Before	providing	a	formal	definition,	we	give	a	hint	as	to	what
is	the	intuition	behind	all	this.
An	 eigenvector	 has	 the	 feature	 that	 one	 obtains	 the	 same	 result	 from	 either

multiplying	 the	 matrix	 from	 the	 right	 by	 the	 eigenvector	 or	 multiplying	 the
corresponding	 eigenvalue	 by	 that	 very	 same	 eigenvector.300	 Formally,	 for	 a
square	n	×	n	matrix	A,	we	derive	the	eigenvectors,	β1,	…,	βn,	from	the	equation
(B.32)

where	 the	 β	 are	 obviously	 column	 vectors.	 We	 have	 n	 eigenvectors	 and,
technically,	 the	 same	 number	 of	 eigenvalues	 λ	 since	 each	 eigenvector	 has	 a
corresponding	 eigenvalue.	While	 the	 eigenvectors	 are	 distinct	 and	 orthogonal,
the	n	 eigenvalues	 need	 not	 be.	 If	 the	 value	 of	 some	 eigenvalue	 occurs	 several
times,	 then	 this	 eigenvalue	 is	 of	 certain	 multiplicity.	 For	 example,	 if	 three
eigenvalues	corresponding	 to	 three	distinct	 eigenvectors	have	 the	value,	 say	2,
then	2	is	eigenvalues	of	multiplicity	three.
For	 the	 derivation	 of	 the	 eigenvectors	 and	 eigenvalues	 solving	 equation

(B.32),	we	rewrite	the	equality	to	obtain
(B.33)

where	 in	 the	 second	 row	 we	 have	 used	 the	 fact	 that	 multiplication	 by	 the
identity	matrix	of	appropriate	dimension	yields	the	original	matrix	or	vector.301
From	equation	(B.33),	we	see	that	when	β	is	not	a	zero	vector,	(A	−	λΙ	n,n	)	needs
to	contain	linearly	dependent	component	vectors.302	Otherwise,	multiplying	′(A
−	λΙ	n,n	 )	from	the	right	by	β	would	never	yield	zero.	Thus,	 if	(A−λΙn,n)β=0	for
some	nontrivial	β,	(A−λΙn,n)	 is	not	 full	 rank	and	 its	determinant	has	 to	be	zero.
We	show	now	how	this	insight	will	facilitate	our	retrieving	of	eigenvectors	and
eigenvalues	by	setting	up	the	equality	for	the	determinant



(B.34)

Since	we	know	how	 to	 compute	 the	determinant	 according	 to	 the	 algorithm
described	 earlier,	we	will	 obtain	 a	 polynomial	 in	 λ	 of	 degree	n	 from	equation
(B.34)	 that	will	produce	all	n	eigenvalues.303	Once	 the	 eigenvalues	 are	 known
including	their	multiplicity,	then	the	corresponding	eigenvectors	can	be	obtained
by	 solving	 the	 equations	 system	 in	 equation	 (B.33)	 for	 each	 value	 λ.	 For
symmetric	matrices,	 the	 eigenvectors	 β	 produced	 are	 orthogonal,	meaning	 that
for	i	and	j	with	i	≠	j,	we	have
(B.35)

Moreover,	we	transform	them	such	that	they	are	standardized.	Hence	we	have
(B.36)

which	 is	 equivalent	 to	 equation	 (B.13).	 This	 is	 a	 very	 important	 result	 since
we	are	interested	predominantly	in	symmetric	matrices	in	this	book.



POSITIVE	SEMIDEFINITE	MATRICES

	
In	Chapter	17	where	we	explain	point	estimates,	we	use	the	concept	of	a	positive
definite	 matrix.	 We	 discuss	 that	 concept	 in	 this	 concluding	 section	 of	 the
appendix.
As	we	already	know,	an	n	×	n	matrix	A	of	the	form

—that	 is,	 a	 matrix	 with	 as	 many	 columns	 as	 rows—is	 a	 square	 matrix.	 This
matrix	A	is	positive-semidefinite	if	for	any	n-dimensional	vector	x,	which	is	not
all	zeroes,	the	following	is	true
(B.37)

where	 ω	 T	 denotes	 the	 vector	 transpose	 of	 vector	 ω.	 In	 other	 words,	 in
equation	(B.37),	we	 postulate	 that	 for	 a	 positive-semidefinite	matrix	A,	 all	 so-
called	quadratic	forms

result	in	nonnegative	numbers.



APPENDIX	C
	

Binomial	and	Multinomial	Coefficients
	

In	 this	 appendix,	 we	 explain	 the	 concept	 of	 the	 binomial	 and	 multinomial
coefficients	used	in	discrete	probability	distributions	described	in	Chapter	9.



BINOMIAL	COEFFICIENT

	
The	binomial	coefficient	is	defined	as
(C.1)

for	 some	 nonnegative	 integers	 k	 and	 n	 with	 0	 ≤	 k	 ≤	 n.	 For	 the	 binomial
coefficient,	 we	 use	 the	 factorial	 operator	 denoted	 by	 the	 “!”	 symbol.	 As
explained	in	Appendix	A,	a	factorial	is	defined	in	the	set	of	natural	numbers	N
that	is	k	=	1,	2,	3,	…	as

k!	=	k	⋅	(k	−	1)	⋅	(k	−	2)	⋅…	⋅	1
	
For	k	=	0,	we	define	0!	≡	1.



Derivation	of	the	Binomial	Coefficient

	
In	the	context	of	 the	binomial	distribution	described	in	Chapter	9,	we	form	the
sum	X	of	n	independent	and	identically	distributed	Bernoulli	random	variables	Yi
with	parameter	p	or,	formally,	 i	=	1,2,…,n.304	The	random	variable	is	then
distributed	 binomial	with	 parameters	n	 and	p	 -	X	 ~	B(n,p).	 Since	 the	 random
variables	Yi	have	either	value	0	or	1,	the	resulting	binomial	random	variable	(i.e.,
the	sum	X)	assumes	some	integer	value	between	0	and	n.	Let	X	=	k	for	0	≤	k	≤	n.
Depending	 on	 the	 exact	 value	 k,	 there	may	 be	 several	 alternatives	 to	 obtain	 k
since,	for	the	sum	X,	it	is	irrelevant	in	which	order	the	individual	values	of	the	Yi
appear.

Special	Case	n	=	3

	
We	 illustrate	 the	special	case	where	n	=	3	using	a	B(3,0.4)	 random	variable	X;
that	is,	X	is	the	sum	of	three	independent	B(0.4)	distributed	random	variables	Y1,
Y2,	and	Y3.	All	possible	values	for	X	are	contained	in	the	state	space	Ω’	=	{0,	1,
2,	3}.	As	we	will	see,	some	of	these	k	∈	Ω’	can	be	obtained	in	different	ways.
We	start	with	k	=	0.	This	value	can	only	be	obtained	when	all	Yi	are	0,	for	i	=

1,	2,	3.	So,	there	is	only	one	possibility.
Next	we	consider	k	=	1.	A	sum	of	X	=	1	can	be	the	result	of	one	Yi	=	1	while

the	remaining	two	Yi	are	0.	We	have	three	possibilities	for	Yi	=	1	since	it	could	be
either	the	first,	the	second,	or	the	third	of	the	Bernoulli	random	variables.	Then
we	place	the	first	0.	For	this,	we	have	two	possibilities	since	we	have	two	Yi	left
that	are	not	equal	to	1.	Next,	we	place	the	second	0,	which	we	have	to	assign	to
the	remaining	Yi.	As	an	intermediate	result,	we	have	3	·	2	·	1	=	6	possibilities.
However,	we	do	not	need	 to	differentiate	between	 the	 two	0	values	because	 it
does	not	matter	which	of	 the	zeros	 is	 assigned	 first	 and	which	 second.	So,	we
divide	the	total	number	of	options	by	the	number	of	possibilities	to	place	the	0
values	(i.e.,	2).	The	resulting	number	of	possible	ways	to	end	up	with	X	=	1	is
(C.2)



For	reasons	we	will	make	clear	later,	we	introduced	the	middle	term	in	equation
(C.2).
Let	us	illustrate	this	graphically.	In	Figure	C.1,	a	black	ball	represents	a	value

Yi	=	1	at	the	i-th	drawing	while	the	white	numbered	circles	represent	a	value	of
Yi	=	0	at	the	respective	i-th	drawing	with	i	matching	the	number	in	the	circle.
Now	let	k	=	2.	To	yield	the	sum	X	=	2,	we	need	two	Yi	=	1	and	one	Yi	=	0.	So,

we	have	three	different	positions	to	place	the	0,	while	the	remaining	two	Yi	have
to	 be	 equal	 to	 1	 automatically.	Analogous	 to	 the	 prior	 case,	X	 =	 1,	we	 do	 not
need	to	differentiate	between	the	two	1	values,	once	the	0	is	positioned.
FIGURE	C.1	Three	Different	Ways	to	Obtain	a	Total	of	X	=	 =1

TABLE	C.1	Different	Choices	to	Obtain	X	=	k	when	n	=	3

Finally,	let	k	=	3.	This	is	accomplished	by	all	three	Yi	=	1.	So,	there	is	only	one
possibility	to	obtain	X	=	3.
We	summarize	these	results	in	Table	C.1.

Special	Case	n	=	4

	
We	extend	the	prior	case	to	the	case	where	the	random	variable	X	is	the	sum	of
four	 Bernoulli	 distributed	 random	 variables—that	 is,	 i	 =	 1,	 2,	 3,	 4	 —



assuming	 either	 value	 0	 or	 1	 for	 each.	 The	 resulting	 sum	X	 is	 then	 binomial
distributed	B(4,	p)	assuming	values	k	in	the	state	space	Ω’	=	{0,1,2,3,4}.	Again,
we	will	analyze	how	the	individual	values	of	the	sum	X	can	be	obtained.
To	begin,	let	us	consider	the	case	k	=	0.	As	in	the	prior	case	n	=	3,	we	have

only	one	possibility	(i.e.,	all	four	Yi	equal	to	0,	that	is,	Y1	=	Y2	=	Y3	=	Y4	=	0).
This	can	be	seen	from	the	following.	Technically,	we	have	four	positions	to	place
the	first	0.	Then,	we	have	three	choices	to	place	the	second	0.	For	the	third	0,	we
have	two	positions	available,	and	one	for	the	last	0.	In	total,	we	have

4×3×2×1=	24

But	 due	 to	 the	 fact	 that	 we	 do	 not	 care	 about	 the	 order	 of	 the	 0	 values,	 we
divide	by	the	total	number	of	options	(i.e.,	24)	and	then	obtain

Next,	we	derive	a	sum	of	k	=	1.	This	can	be	obtained	in	four	different	ways.
The	 reasoning	 is	 similar	 to	 that	 in	 the	 case	 k	 =	 1	 for	 n	 =	 3.	 We	 have	 four
positions	 to	 place	 the	 1.	 Once	 the	 1	 is	 placed,	 the	 remaining	 Yi	 have	 to	 be
automatically	 equal	 to	0.	Again,	 the	order	of	placing	 the	0	values	 is	 irrelevant
which	eliminates	the	redundant	options	through	division	of	the	total	number	by	3
×	2	×	1	=	6.	Technically,	we	have

For	a	sum	X	equal	to	k	=	2,	we	have	four	different	positions	to	place	the	first
1.	Then,	we	have	three	positions	left	to	place	the	second	1.	This	yields	4	×	3	=	12
different	options.	However,	we	do	not	care	which	one	of	the	1	values	is	placed
first	since,	again,	their	order	is	irrelevant.	So,	we	divide	the	total	number	by	2	to
indicate	that	the	order	of	the	two	1	values	is	unimportant.	Next,	we	place	the	first
0,	which	offers	us	two	possible	positions	for	the	remaining	Yi	that	are	not	equal
to	1	already.	For	this,	we	have	two	options.	In	total,	we	then	have

possibilities.	 Then,	 the	 second	 0	 is	 placed	 on	 the	 remaining	 Yi.	 So,	 there	 is
only	one	choice	for	this	0.	Because	we	do	not	care	about	the	order	of	placement
of	the	2	values,	we	divide	by	2.	The	resulting	number	of	different	ways	to	yield	a
sum	X	of	k	=	2	is



which	is	illustrated	in	Figures	C.2	through	C.7.
A	sum	of	X	equal	to	k	=	3	is	achieved	by	three	1	values	and	one	0	value.	So,

since	 the	 order	 of	 the	 1	 values	 is	 irrelevant	 due	 to	 the	 previous	 reasoning,	we
only	care	about	where	to	place	the	0	value.	We	have	four	possibilities,	that	is,

Finally,	to	obtain	k	=	4,	we	only	have	one	possible	way	to	do	so,	as	in	the	case
where	k	=	0.	Mathematically,	this	is

FIGURE	C.2	Four	Different	Ways	to	Obtain	Y1	=	Y2	=	1

FIGURE	C.3	Four	Different	Ways	to	Obtain	Y1	=	Y3	=	1

FIGURE	C.4	Four	Different	Ways	to	Obtain	Y1	=	Y4	=	1



FIGURE	C.5	Four	Different	Ways	to	Obtain	Y2	=	Y3	=	1

FIGURE	C.6	Four	Different	Ways	to	Obtain	Y2	=	Y4	=	1

FIGURE	C.7	Four	Different	Ways	to	Obtain	Y3	=	Y4	=	1

We	summarize	the	results	in	Table	C.2.



General	Case

	
Now	we	generalize	for	any	n	∈	N	(i.e.,	some	nonnegative	integer	number).	The
binomial	random	variable	X	is	hence	the	B(n,p)	distributed	sum	of	n	independent
and	identically	distributed	random	variables	Yi.
From	the	two	special	cases	(i.e.,	n	=	3	and	n	=	4),	it	seems	like	to	obtain	the

number	of	choices	for	some	0	≤	k	≤	n,	we	have	n!	in	the	numerator	to	account	for
all	 the	 possibilities	 to	 assign	 the	 individual	 n	 values	 to	 the	Yi,	 no	matter	 how
many	1	values	and	0	values	we	have.	In	the	denominator	we	correct	for	the	fact
that	the	order	of	the	1	values	and	0	values,	is	irrelevant.	That	is,	we	divide	by	the
number	of	different	orders	to	place	the	1	values	on	the	Yi	that	are	equal	to	1,	and
also	by	the	number	of	different	orders	to	assign	the	0	values	to	the	Yi	being	equal
to	0.	Therefore,	we	have	n!	in	the	numerator	and	k!	×	(n	-	k)!	in	the	denominator.
The	result	is	illustrated	in	Table	C.3.
TABLE	C.2	Different	Choices	to	Obtain	X	=	k	when	n	=	4

TABLE	C.3	Different	Choices	to	Obtain	X	=	k	for	General	n



MULTINOMIAL	COEFFICIENT

	
The	multinomial	coefficient	is	defined	as
(C.3)

for	n1	+	n2	+	…	+	nk	=	n.305

Assume	we	have	some	population	of	balls	with	k	different	colors.	Suppose	n
times	we	draw	some	ball	and	return	it	to	the	population	such	that	for	each	trial
(i.e.,	drawing),	we	have	the	identical	conditions.	Hence,	the	individual	trials	are
independent	of	each	other.	Let	Yi	denote	the	color	obtained	in	the	i-th	trial	for	i	=
1,	2,	…,	n.
How	many	different	possible	samples	of	length	n	are	there?	Let	us	think	of	the

drawings	in	a	different	way.	That	is,	we	draw	one	ball	after	another	disregarding
color	and	assign	the	drawn	ball	to	the	trials	Y1	through	Yn	in	an	arbitrary	fashion.
First,	we	draw	a	 ball	with	 any	of	 the	k	 colors	 and	 assign	 it	 to	 one	 of	 the	n

trials,	Yi.	Next,	we	draw	the	second	ball	and	assign	it	to	one	of	the	remaining	n	-
1	possible	trials	i	as	outcome	of	Yi.	This	yields

n	×	(	n	−	1)

different	possibilities.	The	third	ball	drawn	is	assigned	to	the	n	-	2	trials	left	so
that	we	have

n	×	(	n	−	1)	×	(	n	−	2)

possibilities,	 in	 total.	 This	 is	 continued	 until	 we	 draw	 the	 nth	 (i.e.,	 the	 last),
color,	which	can	only	be	placed	in	the	last	remaining	trial	Yi	.	In	total	this	yields

n	×	(	n	−	1)	×	(	n	−	2)	×…×	2	×	1	=	n	!

different	possibilities	of	drawing	n	balls.
The	second	question	is	how	many	different	possibilities	are	there	to	obtain	a



sample	 with	 the	 number	 of	 occurrences	 n1,	 n2,	 …,	 and	 nk	 of	 the	 respective
colors.	Let	red	be	one	of	these	colors	and	suppose	we	have	a	sample	with	a	total
of	nr	 =	 3	 red	 balls	 from	 trials	 2,	 4,	 and	 7	 so	 that	 Y2	 =	 Y4	 =	 Y7	 =	 red.	 The
assignment	of	red	to	these	three	trials	yields

3!	=	3	×	2	×	1	=	6
	

different	 orders	 of	 assignment.	 Now,	we	 are	 indifferent	 with	 respect	 to	which
of	the	Y2,	Y4,	and	Y7	was	assigned	red	first,	second,	and	third.	Thus,	we	divide
the	total	number	n!	of	different	samples	by	nr!	=	3!	to	obtain	only	nonredundant
results	 with	 respect	 to	 a	 red	 ball.	 We	 proceed	 in	 the	 same	 fashion	 for	 the
remaining	 colors	 and,	 finally,	 obtain	 for	 the	 total	 number	 of	 nonredundant
samples	containing	n1	of	color	1,	n2	of	color	2,	…,	and	nk	of	color	k

which	is	exactly	equation	(C.3).



APPENDIX	D
	

Application	of	the	LogNormal	Distribution	to	the	Pricing	of	Call
Options

	

In	 Chapter	 11,	 we	 described	 the	 lognormal	 distribution	 and	 applied	 it	 to	 the
return	 distribution	 for	 a	 stock’s	 price.	 In	 this	 appendix,	 we	 illustrate	 the
application	 of	 this	 distribution	 to	 price	 a	 derivative	 instrument.	 More
specifically,	we	illustrate	an	application	to	the	pricing	of	a	European	call	option.



CALL	OPTIONS

	
A	 call	 option	 is	 a	 contract	 that	 entitles	 the	 holder	 to	 purchase	 some	 specified
amount	of	a	certain	asset	at	a	predetermined	price	some	time	in	the	future.	The
predetermined	price	is	called	the	strike	price	or	exercise	price.	The	date	when	the
option	expires	is	called	the	expiration	date	or	maturity	date.	A	call	option	has	an
exercise	style	that	means	when	the	option	can	be	exercised	by	the	holder	of	the
option.	 If	 the	 call	 option	 can	 be	 exercised	 any	 time	 up	 to	 and	 including	 the
maturity	date,	it	is	called	an	American	call	option.	If	it	can	only	be	exercised	on
the	maturity	date,	it	is	referred	to	as	a	European	call	option.	A	call	option	is	said
to	be	a	Bermuda	call	option	 if	 it	 exercised	on	designated	dates	 throughout	 the
option’s	life.	In	this	appendix,	our	focus	is	on	European	call	options.
The	 underlying	 asset	 for	 a	 call	 option	 can	 be	 a	 stock,	 bond,	 or	 any	 other

financial	 instrument.	Our	focus	in	 this	appendix	is	a	European	call	option	on	a
stock.	We	will	assume	that	the	stock	in	this	illustration	is	stock	A.
The	buyer	of	an	option	must	pay	the	seller	(or	writer)	of	 that	option	a	price.

That	price	is	referred	to	as	the	option	price	or	option	premium.	All	that	the	seller
of	the	option	can	gain	is	the	option	price.	In	contrast,	the	buyer	of	a	call	option
benefits	from	a	favorable	price	movement	for	the	underlying	stock.



DERIVING	THE	PRICE	OF	A	EUROPEAN	CALL	OPTION

	
As	 just	 explained,	 a	 call	 option	 (which	we	 simply	 refer	 to	 as	 call	 hereafter)	 is
only	 valid	 for	 a	 certain	 specified	 period	 of	 time.	At	 the	 end	 of	 this	 period,	 it
expires.	Let	this	time	of	expiration	be	denoted	by	t	=	τ	and	is	what	we	referred	to
as	 the	 maturity	 date	 or	 simply	 maturity.	 The	 maturity	 τ	 is	 usually	 given	 as
fraction	 of	 one	 year	 (which	 is	 assumed	 to	 have	 360	 days).306	 So	 if	 the	 option
expires	in	say	30	days	and	the	stock	returns	are	measured	daily,	then	τ	=	30/360.
The	strike	price	is	denoted	as	K.	Let	the	stock	price	at	time	t	=	0	be	equal	to	S0
and	at	any	time	T	in	the	future	ST	.
Furthermore,	 in	 our	 model	 world,	 we	 assume	 today’s	 (i.e.,	 t	 =	 0)	 value	 of

some	payment	X	in	the	future,	say	at	t	=	T,	is	equal	to	X	⋅	e	−	rf	⋅T	which	 is	 less
than	X	 if	 rf	 and	T	 are	 positive,	 where	 rf	 is	 the	 risk-free	 interest	 rate	 over	 the
relevant	time	period.	In	other	words,	the	future	payment	is	discounted	at	the	risk-
free	 rate.	Here,	we	use	 compounded	 interest	with	 the	 constant	 risk-free	 rate	 rf
which	 implies	 that	 interest	 is	 paid	 continuously	 and	 each	 payment	 of	 interest
itself	is	immediately	being	paid	interest	on.307
At	maturity	t	=	τ,	the	call	is	worth

Cτ	(	Sτ	)	=	(	Sτ	−	K,	0)+

where	 the	 expression	 on	 the	 right	 side	 is	 the	 abbreviated	 notation	 for	 the
maximum	of	Sτ	-	K	and	0.308

To	 understand	 this	 final	 value,	 consider	 that	 the	 option	 provides	 the	 option
buyer	with	the	right—but	not	the	obligation—to	purchase	one	unit	of	stock	A	at
time	 τ.	 So,	 when	 the	 stock	 price	 at	 τ,	 Sτ,	 is	 no	 greater	 than	K,	 the	 option	 is
worthless	because	we	can	purchase	a	unit	of	stock	A	for	only	Sτ	on	 the	market
instead	of	having	to	pay	K.	And,	hence,	the	option	provides	a	worthless	right	in
that	case.	If,	however,	the	stock	A’s	price	at	maturity	should	be	greater	than	the
strike	price	 (i.e.,	Sτ	>	K),	 then	 the	option	buyer	 saves	Sτ	 -	K	 by	exercising	 the
option	 instead	of	purchasing	 stock	A	 in	 the	market.	Consequently,	 in	 that	 case
the	call	should	be	worth	exactly	that	difference	Sτ	-	K	at	maturity.



Suppose	we	are	interested	in	the	value	of	the	call	at	some	point	in	time	prior	to
expiration.	 However,	 we	 do	 not	 know	 what	 the	 stock	 price	 Sτ	 will	 be.
Consequently,	 the	 entire	 terminal	 value	 of	 Cτ(Sτ)	 =	 (Sτ	 -	 K,0)+	 is	 treated	 as
random	 prior	 to	 expiration.	 However,	 we	 can	 compute	 the	 expected	 value	 of
Cτ(Sτ),	that	is,	E((Sτ	-	K,0)+),	if	the	distribution	of	the	stock	price	at	maturity	is
known.	Now,	suppose	we	are	at	 t	=	0.	Then	 today	 this	E((Sτ	 -	K,0)+)	 is	worth
simply	 ×	E((Sτ	−	K,	0)	+).
In	our	model,	we	assume	that	the	terminal	price	for	stock	A,	Sτ,	is	given	as

(D.1)

where	Wτ	 is	 a	 N(0,σ2τ)	 random	 variable	 such	 that	 the	 exponent	 in	 equation
(D.1)	becomes	a	random	variable	with	mean	(rf	-	1/2σ2)τ	and	variance	σ2τ.	The
exponent	is	referred	to	as	the	stock	price	dynamic	and	the	parameter	σ	is	referred
to	as	the	stock	price	volatility.
Consequently,	the	price	of	the	call	is	computed	as

(D.2)

such	 that	 we	 compute	 the	 expected	 value	 over	 all	 real	 numbers	 -∞	 ≤	 s	 ≤	 ∞
even	though	Sτ	may	only	assume	positive	values.	The	function	fS(s)	in	equation
(D.2)	denotes	the	probability	density	function	of	Sτ	evaluated	at	the	outcome	s	of
Sτ.
We	 can	 explicitly	 compute	 the	 maximum	 operator	 in	 equation	 (D.2)	 and

obtain

which,	 because	we	 can	 split	 the	 integral	 of	 (Sτ	 -	K)	 into	 two	 integrals	with	Sτ
and	−K,	respectively,	simplifies	to

and,	because	K	is	constant,	can	be	reduced	further,	to
(D.3)



Since	 we	 know	 that	 the	 exponent	 in	 equation	 (D.1)	 is	 a	 normal	 random
variable,	 the	 ratio	 Sτ/S0	 becomes	 lognormal	 with	 the	 same	 parameters	 as	 the
exponent,	that	is,

Sτ	/	S0	~	Ln	(	(	rf	−1/2σ	2	)	τ,σ	2	τ)
	
To	compute	P(Sτ	>	K)	in	equation	(D.3)	we	consider	that	Sτ	>	K	exactly	when

Sτ/S0	>	K/S0.	This	again	 is	equivalent	 to	 ln(Sτ/S0)	>	 ln(K/S0)	where,	on	 the	 left
side	 of	 the	 inequality,	 is	 exactly	 the	 exponent	 in	 equation	 (D.1),	 which	 is
normally	distributed.309	Thus,	the	standardized	random	variable
(D.4)

is	greater	than

if	and	only	if	Sτ	>	K,	which,	consequently,	occurs	with	probability310

(D.5)

Now,	let	us	turn	to	the	computation	of	the	integral,	in	equation	(D.3).	Recall
that	Y	 =	Sτ/S0	 is	 lognormally	 distributed,	 so	 that	 using	 the	 rule	 for	 change	 of
integration	variables	we	can	express	the	density	of	Sτ	=	Y	·	S0	by

so	that	the	integral,	in	equation	(D.3),	changes	to



(D.6)

where	 in	 the	 last	 step	 we	 substituted	 the	 integration	 variable	 s	 with	 y	 =	 s/S0.
Note	that	we	have	to	consider	the	altered	integral	limits	in	equation	(D.6)	since
our	new	random	variable	is	Y	=	Sτ/S0.	Due	to	the	lognormal	distribution	of	Y,	we
can	further	specify	the	integral	as

We,	 next,	 introduce	 the	 additional	 helper	 random	 variable	 Z	 =	 ln	 Y.
Reapplying	 equation	 (D.4)	 and	 using	 the	 rule	 for	 the	 change	 of	 integration
variables,	we	obtain
(D.7)

With	the	intermediate	steps



the	exponent	of	equation	(D.7)	can	be	simplified	according	to

Inserting	this	exponent	into	equation	(D.7),	we	obtain

The	 integral	 is	 equal	 to	 the	 probability	 P(Z	 >	 ln(K/S0))	 of	 some	 normally
distributed	random	variable	Z	with	mean	(rf	+	1/2σ2)τ	and	variance	σ2τ.	Hence
through	standardization	of	Z,	equation	(D.7)	becomes311
(D.8)

Inserting	equations	(D.5)	and	 (D.8)	 into	equation	(D.3),	we	 obtain	 the	well-



known	Black-Scholes	option	pricing	formula	for	European	call	options312
(D.9)

From	 this	 formula,	 all	 sorts	of	 sensitivities	of	 the	option	can	be	determined.
That	is	by	differentiating	with	respect	to	some	parameter	such	as,	for	example,
today’s	stock	price,	we	obtain	the	amount	by	which	the	call	price	will	change	if
the	parameter	 is	adjusted	by	some	small	unit	amount.	These	sensitivities,	often
referred	to	as	Greeks	since	they	are	denoted	by	Greek	symbols,	are	beyond	the
scope	of	our	book,	however.



ILLUSTRATION

	
In	the	following,	let	us	assume	that	today	the	stock	price	of	interest	is	$100	(i.e.,
S0	=	$100).	Furthermore,	we	consider	a	European	call	option	with	strike	price	K
=	 $90	 and	 expiration	 in	 30	 days	 (i.e.,	 τ	 =	 30/360	 =	 0.0833).	 Moreover,	 the
variance	parameter	in	equation	(D.5)	of	the	daily	stock	price	return	is	assumed	to
be	20%	(i.e.,	σ2	=	0.2).	Finally,	suppose	 that	 the	compounded	risk-free	 interest
rate	of	is	1%	(i.e.,	rf	=	0.01).	Then,	we	have	everything	to	compute	the	price	of
the	 call	 option	 following	 the	 Black-Scholes	 option	 pricing	 formula	 given	 by
equation	(D.9)	as	follows:

In	 this	 illustration,	 we	 did	 not	 explicitly	 state	 the	 technical	 assumptions
allowing	the	call	option	price	at	any	time	to	equal	its	discounted	expected	value
at	 maturity	 because	 they	 are	 beyond	 the	 scope	 of	 this	 book.	 Standard	 option
textbooks	provide	all	of	the	details.
The	 pedagogical	 aspect	 of	 the	 illustration	 in	 this	 appendix	 is	 the

demonstration	 of	 the	 interplay	 of	 the	 normal	 and	 lognormal	 distributions.
Furthermore,	 we	 chose	 this	 illustration	 with	 its	 continued	 use	 of	 quantiles	 to
familiarize	the	reader	with	the	one-to-one	relationship	between	quantiles	and	the
related	probabilities.	For	example,	 in	equation	(D.3),	we	bound	 the	 integral	by
the	P(Sτ	≤	K)-quantile	K	of	 the	probability	distribution	of	Sτ.313	Then,	we	 saw
how	 quantiles	 changed	 as	we	 replace	 one	 random	 variable	with	 another.	 This
was	displayed,	 for	example,	 in	 the	second	equation	of	equation	(D.6)	where	K
was	 the	P(Sτ	 ≤	K)-quantile	 of	Sτ,	which	 translated	 into	 the	P(Sτ	 ≤	K)-quantile
K/S0	of	the	new	random	variable	Y	=	Sτ/S0.
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	Algorithmic	trading	strategies,	growth
	Alpha-levels	(α-levels),	chi-square	distribution
	Alpha-percentile	(α-percentile)
	 concept
	 obtaining
	 value
	Alpha-quantile	(α-quantile)
	 denotation
	Alpha-stable	density	functions	(α-stable	density	functions),	comparison
	Alpha-stable	distribution	(α-stable	distribution)
	 assumption
	 decay
	 second	moment,	non-existence
	 variance
	Alpha-stable	random	variables,	parameters
	Alternative	hypothesis



	 null	hypothesis,	contrast
	 representation
	American	call	option
	American	International	Group	(AIG),	stock	price
	Analysis	of	variance	(ANOVA)
	 component	pattern
	AR.	See	Autoregressive	process
	ARCH.	See	Autoregressive	conditional	heteroskedasticity
	Area	approximation.	See	Integral
	 rectangles,	usage
	Arithmetic	mean
	ARMA.	See	Autoregressive	moving	average
	Asian	currency	crisis
	Asset	returns
	 cross-sectional	collection
	 heavy	tails
	 joint	distribution
	 modeling,	lognormal	distribution	application
	Assets
	 dependence
	 structures,	complexity
	 duration	estimate
	 portfolio
	Asymmetric	confidence	interval,	construction
	Asymmetric	density	function
	Asymmetry,	modeling	capability
	Atoms
	Augmented	regression
	Autocorrelation.	See	also	Negative	autocorrelation;	Positive	autocorrelation
	 detection
	 presence,	modeling
	Autoregressive	conditional	heteroskedasticity	(ARCH)	model
	 generalization
	Autoregressive	moving	average	(ARMA)	models
	Autoregressive	of	order	one
	Autoregressive	process	(AR)	of	order	p



	Axiomatic	system
	



	
Bar	chart
	 usage
	Bayes,	Thomas
	Bayes’	formula
	Bayes’	rule
	 application
	Bell-shaped	curve,	real-life	distribution
	Bell-shaped	density
	Bell-shaped	yield
	Benchmark,	derivation
	Berkshire	Hathway
	 pie	charts,	comparison
	 revenues,	third	quarter	(pie	chart)
	 third	quarter	reports
	 third	quarter	revenues
	 bar	charts
	 pie	chart
	Bermuda	call	option
	Bernoulli	distributed	random	variable,	mean/variance
	Bernoulli	distribution
	 generalization
	 p	parameter,	estimation
	 random	variables,	relationship
	Bernoulli	population,	sample	mean	(histogram)
	Bernoulli	random	variables
	 distribution
	Bernoulli	samples,	examination
	Bernoulli	trials,	link
	Bessel	function	of	the	third	kind
	 defining
	Best	linear	unbiased	estimator	(BLUE)
	Beta	distribution
	



distribution	function
	Beta	factor
	Beta	function
	Bias.	See	also	Sample	mean;	Sample	variance;	Squared	bias
	 determination
	 examination
	Bias	corrected	sample	variance
	 efficiency
	 usage
	Bias-corrected	sample	variance
	Biased	estimator
	Binary	variables
	Binomial	coefficient
	 definition
	 derivation
	 general	case
	 n=3,	special	case
	 n=4,	special	case
	 usage
	Binomial	default	distribution	model,	application
	Binomial	distribution
	 approximation
	 normal	distribution,	usage
	 mean
	 P	parameter,	confidence	interval
	Binomial	interest	rate	model,	binomial	distribution	application
	Binomial	probability	distribution
	 example
	Binomial	stock	price	model
	 application
	 Bernoulli	distribution,	generalization
	 extension,	multinomial	distribution	(usage)
	 periods,	example
	Binomial	tree
	Biometrics
	Biometry



	Biostatistics
	Bivariate	distribution	function
	Bivariate	normal	density	function,	correlation	matrix	integration
	Bivariate	normal	distributions	(2-dimensional
	 normal	distributions)
	 joint	density	function
	 mean	vector,	example
	Bivariate	regression
	 model
	Bivariate	student’s	t	density	function,	contour	lines
	Bivariate	student’s	t	distribution,	density	plot
	Bivariate	variables,	correlation/dependence	(relationship)
	Black	Monday
	Black-Scholes	option	pricing
	 formula
	 model
	 reliance
	BLUE.	See	Best	linear	unbiased	estimator
	Bond	default,	probability
	Bond	portfolio
	 credit	risk	modeling,	Poisson	distribution	application
	 data
	 defaults,	time
	 observations
	Bond	spread	application,	regression	data-559t
	Borel-measurability,	requirement
	Borel-measurable	function
	Borel	σ-algebra
	 construction
	 definition
	 origins
	Box	plot
	 counterclockwise	movement
	 display
	 generation,	procedure
	Breusch-Pagan-Godfrey	test	(Lagrangian	multiplier	test)



	British	Pound-USD	Exchange	Rate,	returns	(contrast)
	Broad-based	market	index
	



	
Call	options
	 illustration
	 predetermined	price
	 price	dependence
	 pricing,	lognormal	distribution	(application)
	 value
	Capital	Asset	Pricing	Model	(CAPM)
	Casualties,	number
	Ceiling	function
	Center
	 measures
	 examination
	Central	Limit	Theorem
	 requirement
	Central	moment.	See	also	Fourth	central	moment;	Second	central	moment;	Third
central	moment
	Central	moment	of	order	k
	Central	tendency,	measures
	Certain	event	with	respect	to	P
	Characteristic	exponent
	Characteristic	function
	Characteristic	line
	 goodness-of-fit	measure
	Cheapest	to	deliver	(CTD)
	Chebychev	inequalities
	Chi-square	density	function,	degrees	of	function
	Chi-square	distributed
	 degrees	of	freedom
	 n-k-1	degrees	of	freedom
	 random	variable
	Chi-square	distribution
	 asymmetry
	 degrees	of	freedom



	 density	functions
	 statistic
	Chi-square	statistic
	Chi-square	test	statistic
	Chow	test
	Circle,	size/area
	Class	bounds,	frequency	distributions	(determination)
	Class	data
	 quantiles,	computation
	 relative	frequency	density
	Classified	data
	 interaction
	 IQR,	defining
	 median
	 determination
	 retrieval,	interpolation	method	(usage)
	Class	of	incident
	Clayton,	David
	Clayton	copula
	Closed	under	countable	unions
	Closed	under	uncountable	unions
	Closure	under	convolution
	Closure	under	linear	transformations
	Coefficient	estimate,	standard	error
	Coefficient	of	determination	(R2)
	 correlation	coefficient,	relationship
	 definition
	Coefficient	of	partial	determination
	Coefficient	of	variation
	Collateralized	debt	obligations
	Column	vector
	 matrix,	comparison
	 usage.	See	Matrix
	Common	stock,	sale	price	(example)
	Common	terms
	



Company	value,	random	variable	function
	Complement
	Completeness,	data	class	criteria
	Complex	numbers
	 graphical	representation
	 representation,	two-dimensional	space
	 set,	symbolization
	Complex	values,	random	variable	assumption
	Component	random	variable,	marginal	density	function
	Component	returns,	standard	deviations
	Component	variable,	value	set
	Component	vectors.	See	Linearly	dependent	component	vectors
	Composite	model
	Conditional	distribution
	Conditional	expectation
	Conditional	frequencies
	 distribution
	Conditional	parameters
	Conditional	population	variance
	Conditional	probability.	See	also	Unconditional	probabilities
	 computation
	 illustration
	 determination
	 expression
	 formula
	 knowledge
	Conditional	relative	frequency
	Conditional	statistics
	Conditional	value-at-risk
	Conditional	variance
	Conditioning	variable,	discrete	setting
	Confidence	interval
	 concept
	 construction
	 definition/interpretation
	 obtaining



	 realizations
	Confidence	level
	 definition
	Consistency	criterion,	demonstration
	Consistent	test
	 definition
	 illustration
	Constant	derivative
	Constant	estimator
	Constant	intercept
	Constant	risk-free	rate,	implication
	Constant	variance,	tests
	Contingency	 coefficient.	 See	 also	 Corrected	 contingency	 coefficient;	 Pearson
contingency	coefficient
	Continuity	criterion
	Continuous	distribution	function
	 growth,	marginal	rate
	Continuous	function
	 continuity
	 illustration
	Continuously	compounded	return
	Continuous	probability	distributions
	 description
	 discrete	probability	distribution,	contrast
	 extreme	events
	 statistical	properties
	Continuous	random	variables
	 covariance
	 density	function
	 values,	assumption
	Continuous	random	vector,	components
	Continuous	variable
	Contour	lines
	 example
	Contours,	ellipsoids	(comparison)
	Convergence	characteristics



	Convergence	in	probability
	 expected	value
	Convolution
	 concept
	 integral	(h),	impact
	Copula	(copulae).	See	also	Gaussian
	 copula;	Independence;	t	copula
	 bivariate	distribution	function
	 bounds
	 computation
	 construction
	 contour	lines
	 density
	 estimation,	usage
	 expression
	 function
	 increments
	 invariance
	 plots
	 properties
	 specifications
	 two	dimensions
	 usage
	Corporate	bond	issuer,	observation	unit
	Corporate	bond	market,	high-yield	bond	sector
	Corporation,	default
	Corrected	contingency	coefficient
	Corrected	sample	variance
	 obtaining
	Correlated	random	variables
	Correlation
	 covariance,	relationship
	 criticism
	 measure,	insufficiency
	 role
	 statistical	measure



	Correlation	coefficient
	 absolute	value
	 coefficient	of	determination,	relationship
	 denotation
	 matrix
	Correlation	matrix
	 bivariate	normal	density	function,	integration
	 denotation
	 setting
	Countable	additivity
	Countable	sets,	distinction
	Countable	space
	 mapping
	 random	variables
	 definition
	Coupon	rate
	Coupon	securities
	Covariance.	See	also	Transformed	random	variables
	 aspects
	 change
	 computation
	 continuous	case
	 correlation,	relationship
	 criticism
	 discrete	case
	 linear	shift	invariance
	 matrix	of	X
	 measure
	 scaling
	 symmetry
	 weighted	sum
	Covariance	matrix
	 aspects
	 correlation	structure
	 obtaining
	 presentation



	 value
	Coverage	ratio
	Cramér-Rao	lower	bounds
	Credit	migration	tables
	 illustration
	Credit	ratings
	Credit	risk	management	approach
	Credit	risk	modeling
	 Poisson	distribution,	application
	Critical	region
	Cross	hedging
	Cross	sectional	data,	time	series	(relationship)
	Cumulative	distribution	function.	See	Joint	cumulative	distribution	function
	 example
	 usage
	 values	assumption
	Cumulative	frequency	distribution
	 evaluation
	 formal	presentation
	Cumulative	probability	distribution	function
	Cumulative	relative	frequency
	 computation
	 distribution
	Cyclical	terms,	randomness
	



	
Data.	See	Absolute	data;	Rank	data
	 accumulated	frequencies,	computation
	 analysis
	 center/location
	 class	centers,	usage
	 collection,	process
	 comparison,	problem
	 counting
	 distribution,	kurtosis
	 graphical	representation
	 information,	examination
	 interval	scale
	 levels
	 lower	class	bound,	value	selection
	 measurement
	 median	computation
	 ordered	array,	usage
	 points,	distance
	 range,	usage
	 ratio	scale
	 reduction	methodologies
	 requirements
	 scale
	 scatter	plot
	 sorting
	 standardization
	 transformation
	 types
	Data	classes
	 frequency	density
	 frequency	distribution,	determination
	 range,	obtaining
	



Data	classification
	 formal	procedure
	 procedures,	example
	 reasons
	 Sturge’s	rule,	usage
	Data-dependent	statistics
	Data	level	qualification
	Datasets.	See	Multimodal	dataset;	Unimodel	dataset
	 comparability
	 minimum/maximum
	 size
	 symmetry
	 variation
	DAX
	 closing	values,	plot
	 index	values
	d-dimensional	elliptical	random	variable
	Debt	obligations,	credit	ratings
	Decision	rule
	Decomposition
	 form
	Default	intensity
	Default	number,	null	hypothesis	(impact)
	Default	probabilities
	Default	rate
	Degrees	of	freedom
	 estimate,	computation
	 indication
	 parameter
	 reduction
	Delta
	Density,	Fourier	transformation
	Density	function
	 contour	lines
	 definition
	 display



	 example
	 histogram,	comparison
	 means,	yield
	 presentation
	 requirements
	 stability
	 symmetry
	 usage
	Dependence
	 alternative	measures
	 continuous	case
	 discrete	case
	 measures
	 structures
	 detection
	 determination
	 zero	covariance,	concept
	Dependent	components
	Dependent	variable
	Derivative
	 computation
	 construction
	 function,	illustration
	 gains/losses
	 integral,	relationship
	 setting
	Derivative	instruments,	valuation
	Descriptive	statistics
	Determinants
	 computation
	Deutsche	Bank,	absolute	deviation
	Diagnostic	statistics,	usage
	Difference	equations
	 components
	 usage
	Difference	quotient



	Differentiable,	term	(usage)
	Differential	calculus,	usage
	Discontinuous	function
	 illustration
	Discrete	cumulative	distribution
	Discrete	distributions,	list
	Discrete	law
	Discrete	probability	distributions
	 continuous	probability	distribution,	contrast
	 examples
	 usage
	Discrete	random	variables
	Discrete	random	vectors
	 marginal	probability
	Discrete	uniform	distribution
	 independent	trials,	consideration
	 mean/variance
	Discrete	variables
	Dispersion	matrix
	Dispersion	parameters
	Distributed	random	vector,	dependence	structure
	Distribution
	 Chebychev	inequalities
	 connectivity
	 decays
	 equality.	See	Equality	of	distribution
	 exponential	family
	 mean,	definition
	 skewness	statistic
	 symmetry,	objective	measurement
	 tails
	 VaR	computation
	 yields
	Distribution	function
	 definition
	 example



	 mean/variance
	 parameters
	 value,	assumption
	Distribution	of	X
	Disturbance	terms
	 linear	functional	relationship
	 randomness
	Diversification,	strategy
	Dividend	payments,	variable
	Dot-com	bubble
	Dow	Jones	Global	Titans	50	Index	(DJGTI)
	 list-26t
	 relative	frequencies,	comparison
	Dow	Jones	Industrial	Average	(DJIA)
	 components
	 industry	subsectors,	frequency	distribution
	 list
	 component	stocks	analysis
	 relative	frequencies,	comparison
	 stocks
	 empirical	relative	cumulative	frequency	distribution
	 share	price	order
	 value
	 consideration
	 realizations
	Down	market	beta
	Down	movement
	 binomial	random	variable,	impact
	 occurrence
	Drawing	with	replacement
	d-tuple,	requirements
	Dummy	variables
	 design
	 incorporation,	independent	variable	role
	 trap
	 usage.	See	also	High-yield	corporate	bond	spreads;	Mutual	fund	characteristic



lines
	 value
	Dummy	variables,	usage
	Duration.	See	also	Empirical	duration;	Regression-based	duration
	Durbin-Watson	critical	value	table
	Durbin-Watson	d	statistic
	Durbin-Watson	test
	



	
Earnings
	 logarithm
	 measures
	Earnings	before	interest,	taxes,	depreciation	and	amortization	(EBITDA)
	Earnings	before	interest	and	taxes	(EBIT)
	Econometrics
	Efficient	estimator
	Efficient	frontier
	Eigenvalue
	 multiplicity
	Eigenvector
	 derivation
	Electronic	communication	networks	(ECNs)
	Electronic	trading,	importance
	Elementary	events/atoms
	Elements
	 combination
	 marginal	distributions
	Elliptical	class,	properties
	Elliptical	distributions
	 closure,	guarantees
	Empirical	cumulative	frequency
	 distribution
	 function,	computation
	Empirical	cumulative	relative	frequency	distribution
	 joint	observations
	Empirical	duration
	 data
	 estimated	regression	coefficient,	relationship
	 estimation
	 regression	parameters,	estimation
	 multivariate	linear	regression,	usage
	



simple	linear	regression,	usage
	Empirical	relative	cumulative	frequency	distribution
	Empirical	returns/theoretical	distributions	(comparison),	box	plots	(usage)
	Empirical	rule
	Engineering,	risk	analysis
	Engle,	Robert
	Equality,	denotation
	Equality	of	distribution,	two-tailed	Kolmogorov-Smirnov	test	(usage)
	Equality	of	means,	test
	Equal	means,	null	hypothesis
	 rejection,	impossibility
	Equal	tails
	 probability	of	errors,	creation
	Equal	tails	test
	 test	size	partition
	 usage.	See	Normal	distribution
	Equation	system
	Equidistance,	data	class	criteria
	Equivalent	test	rule
	Erlang	distributed	statistic
	Erlang	distribution
	 α	quantiles
	Erlang	random	variable,	creation
	Error	correction
	 model
	Error	probability,	asymmetric	distribution
	Error	terms
	 constant	variance,	tests
	 distribution
	 standard	deviation
	 statistical	properties,	assumption
	Error	types
	Estimate
	 empirical	distribution
	 population	parameter,	contrast
	Estimators.	See	also	Biased	estimator;	Point	estimators



	 asymptotic	properties
	 basis,	statistics	(impact)
	 consistency
	 convergence	characteristics
	 denotation
	 expected	value
	 large-sample	properties
	 properties
	 assessment,	Central	Limit	Theorem	(usage)
	 quality	criteria
	 random	sample	dependence
	 understanding
	 usage
	 variance,	Cramér-Rao	lower	bounds
	Euler	constant
	Euro-British	pound	exchange	rate	returns
	European	banks
	 investment	banking	revenue	ranking
	 revenue,	sample	standard	deviation	(obtaining)
	European	call	option
	 Black-Scholes	option	pricing	formula
	 expected	value,	computation
	 maximum	operator,	computation
	 price,	derivation
	 standardized	random	variable
	 stock	terminal	price
	EUR-USD	exchange	rate
	 daily	logarithmic	returns,	box	plot
	 QQ	plot,	contrast
	 returns,	box	plot
	Event-driven	hedge	fund
	Events.	See	also	Independent	events
	 correspondence
	 defining
	 marginal	probability
	 no	value



	 origin,	determination
	 probability
	 obtaining
	 rectangular	shape
	Excess	kurtosis
	Excess	return
	Execution	slippage
	Execution	time
	Exemplary	datasets,	usage
	Exemplary	histograms
	Exercise	price
	Expected	inflation,	monthly	data
	Expected	shortfall
	Expected	tail	loss
	Expected	value,	interpretation
	Exponential	data,	linear	relationship
	Exponential	density	function
	Exponential	distribution
	 characterization
	 exponential	family
	 λ	parameter
	 confidence	interval
	 one-tailed	test
	 λ	parameter,	MLE	(impact)
	 Cramér-Rao	bound
	 mean
	 no	memory	property
	 parameter	space,	computation
	 Poisson	distribution,	inverse	relationship
	 skewness
	 variance
	Exponential	 family.	 See	 also	 Exponential	 distribution;	 Normal	 distribution;
Poisson	distribution
	Exponential	function,	value	yield
	Exponential	functional	relationship,	linear	squares	regression	fit
	Exponential	random	variable,	observation



	Extreme	events,	continuous	probability	distributions
	Extreme	value	distribution.	See	Generalized	extreme	value	distribution
	Extreme	value	theory
	



	
Factorial
	 operator,	usage
	Factorization	theorem
	Fan,	Fianqing
	F-distribution
	 density	function
	Feasible	portfolios
	Federal	Reserve,	intervention
	Finance
	 correlation
	 exponential	distribution	application
	 multivariate	linear	regression	model	application
	 probability/statistics	dependence
	 regression	analysis	applications
	Financial	asset	returns,	modeling
	Financial	econometrics
	Financial	quantities,	research
	Financial	returns
	 modeling
	 simulation,	copula	(usage)
	First	derivatives,	usage
	First	moment
	Fisher’s	F	distribution
	Fisher’s	Law
	Fitch	Ratings
	 credit	ratings
	Foreign	exchange	(FX)	markets,	electronic	trading	(importance)
	Formal	derivation
	Forward	price
	 innovation
	Fourier	transformation.	See	Density
	Fourth	central	moment
	



Franklin	Templeton	Investment	Funds-month
	 returns
	 ordered	array-38t
	Fréchet	distribution
	Fréchet	lower	bound
	Fréchet	type	distribution,	application
	Fréchet	upper	bound
	Freedman-Diaconis	rule
	 application
	 distribution,	fineness
	Frequencies
	 accumulation
	 formal	presentation
	Frequency	density
	Frequency	distributions.	See	also	Empirical	cumulative	frequency
	Frequency	histogram
	Frisch,	Ragnar
	F-statistic
	 computation
	F-test
	 application.	See	Lehman	U.S.	Aggregate	Bond	Index
	 inclusion
	 usage
	Full	rank
	Full	rank	n	×	n	matrix,	inverse	(definition)
	Fully	pooled	data,	regression	equation	(estimation)
	Function
	 decrease,	absence
	 features
	 formal	expression
	 integral
	 slopes,	measurement
	Functional	relationship,	assumption
	Fund	returns.	classes
	 centers
	 Freedman-Diaconis	rule,	usage



	 Sturge’s	rule,	usage
	



	
Gamma	function
	 density	function
	 illustration
	 mean/variance
	 nonnegative	values
	GARCH.	See	Generalized	autoregressive	conditional	heteroskedasticity
	Gauss,	C.F.
	Gauss	copula,	specification
	Gaussian	copula
	 concretizing
	 contour	lines
	 d=2	example
	 contour	plots
	 illustrations
	 d=2	simulation
	 data,	fit
	 degrees	of	freedom
	 example
	 marginal	normal	distribution	functions
	 returns,	computation
	 tail	dependence
	 usage
	 values,	generation
	Gaussian	distribution
	Gaussian	random	variables
	General	Electric	(GE)
	 daily	return	data
	 consideration
	 sample	means,	histogram
	 sample	variance,	histogram-443f
	 daily	returns
	 bivariate	observations
	



empirical	cumulative	relative	frequency	distribution,	joint	observations
	 generated	returns-406f
	 non-normal	distribution,	Central	Limit	Theorem	(impact)
	 daily	stock	returns
	 distribution
	 mean	parameter,	confidence	interval
	 data
	 simulation,	estimated	copulae	(usage)
	 Spearman’s	rho
	 tail	dependence
	 marginal	normal	distribution	functions,	generated	values
	 marginal	student’s	t	distribution	functions,	generated	values
	 monthly	returns
	 return	data
	 observation
	 sample	mean
	 returns
	 conditional	frequency	data
	 conditional	sample	variances
	 examination
	 usage
	 sample	means,	historgrams	(comparison)
	 stock	price
	 observations
	 variable
	 stock	returns
	 conditional	sample	means
	 indifference	table
	 marginal	relative	frequencies
	General	Electric	(GE)	daily	returns
	 kurtosis
	 left	tails,	comparison
	 modeling
	 skewness
	Generalized	autoregressive	conditional	heteroskedasticity	(GARCH)	model
	Generalized	central	limit	theorem



	 application
	Generalized	extreme	value	(GEV)
	 density	function
	 distribution
	 function
	Generalized	Pareto	distribution
	 function,	parameter	values
	General	multivariate	normal	distribution,	density	function
	Glejser	test
	Global	minimum-variance	portfolio
	Global	minimum-variance	portfolio	(global	MVP)	denotation
	GLS.	See	Aitken’s	generalized	least	squares
	Goldfeld-Quandt	test
	Goodness-of-fit	denotation.	See	Regression
	Goodness-of-fit	measures.	See	also
	 Adjusted	goodness-of-fit	measure
	 coefficient	of	determination,	relationship
	 improvement
	 usage
	Granger,	Clive
	Growth,	marginal	rate
	Gumbel,	Emil	Julius
	Gumbel	copula
	Gumbel	distribution
	 distribution	function
	



	
Half-open	intervals
	Hazard	rate
	Heavy-tailed	distribution
	Heavy	tails
	 modeling	capability
	 presence
	Hedge	funds
	 data
	Hedge	ratio,	refinement
	Hedging.	See	Cross	hedging
	 instrument
	 shorting	amount
	 usage,	decision
	 regression	analysis,	application
	Heteroscedastic	error	term
	Heteroskedasticity
	 advanced	modeling
	 modeling
	Higher	dimensional	random	variables
	 continuous	case
	 discrete	case
	Higher	order,	moments.	See	Moments	of	higher	order
	High-yield	bond
	High-yield	corporate	bond	spreads
	 prediction
	 regression	results
	 credit	rating	classification,	dummy	variable	(usage)
	 time,	dummy	variables	(usage)
	Histogram.	See	Exemplary	histograms;	Frequency
	 histogram
	 absolute	frequency	density,	inclusion
	 density	function,	comparison
	



skew
	Homoskedastic	error	term
	Homoskedasticity
	Hypergeometric	distribution
	 application
	 approximation,	Poisson	distribution	(usage)
	 random	variable
	 representation
	Hyperplane.	See	also	Regression;	Vector	hyperplane
	Hypothesis	(hypotheses)
	 setup
	 test
	 alternative	use
	 size
	 testing
	 examples
	



	
IBM
	 daily	returns
	 bivariate	observations
	 empirical	cumulative	relative	frequency	distribution,	joint	observations
	 generated	returns-406f
	 non-normal	distribution,	Central	Limit	Theorem	(impact)
	 data
	 simulation,	estimated	copulae	(usage)
	 Spearman’s	rho
	 tail	dependence
	 marginal	normal	distribution	functions,	generated	values
	 marginal	student’s	t	distribution	functions,	generated	values
	 returns,	examination
	 stock	return
	Identically	distributed	Bernoulli	random	variables
	Identity	matrix
	Imaginary	number
	Imaginary	signs,	matrix	(setup)
	Incident	class
	Independence
	 assumption
	 copula
	 obtaining
	 definition
	 discussion
	 formal	definition
	Independent	components
	Independent	distributed	random	variables
	Independent	drawings,	n-fold	repetition	space
	Independent	events
	 probability,	multiplicative	rule
	Independent	random	variable,	distribution
	



Independent	standard	exponential	random	variables,	summation
	Independent	variable
	 calculation
	 covariance
	 determination
	 role
	 significance,	testing
	 space	formation
	 usage,	excess
	Indicator	function
	 expression
	 usage
	Indifference	table
	Inductive	statistics
	Industry	Classification	Benchmark	(ICB),	usage
	Inferences.	See	also	Statistical	inference	making
	Infinitum	(lowest	bound)
	Inflation
	 monthly	data.	See	Expected	inflation
	 rate,	information	(availability)
	Influence,	concept
	Information	matrix
	 inverse
	Inner	product
	 computation
	 definition
	Insurance	premiums	earned
	Integral
	 area	approximation
	 computation
	 derivative,	relationship
	 left-point	rule
	 limiting	area	role
	 right-point	rule
	Interarrival	times
	 distribution



	 observation
	Interest
	 independent	variable
	 random	variable
	Interest	rate
	 changes
	 index,	independent	variable
	Intermediate	statistics,	computation
	Interpolation	method,	usage
	Interquartile	range	(IQR)
	 computation
	 data	representation
	 defining
	Intersection	operator,	usage
	Interval	scale
	Invariance.	See	Strictly	monotonically	increasing	transformations
	Investment	banking	revenue
	 data,	standardized	values
	 ranking
	Investment-grade	bonds,	consideration
	IQR.	See	Interquartile	range
	Irregular	term
	 coefficient
	Isolines
	



	
Jarque-Bera	test	statistic
	Joint	behavior,	knowledge
	Joint	cumulative	distribution	function
	Joint	density	function
	 expression
	Joint	distribution
	 copula
	 function,	display
	 governance
	 marginal	distribution,	comparison
	 reduction,	absence
	Joint	frequencies
	 average	squared	deviations,	measurement
	 payoff	table
	Jointly	normally	distributed	random	variables,	tail	dependence	(absence)
	Joint	probability
	Joint	probability	density	function
	 contour	lines
	Joint	probability	distributions
	 continuous	case
	 discrete	case
	 understanding,	importance
	Joint	random	behavior,	measures
	Joint	randomness	(measure),	correlation/covariance	(criticism)
	j-th	independent	variable
	Junk	bond
	



	
k	components,	pairwise	combinations
	k-dimensional	elements
	k-dimensional	generalization
	k-dimensional	random	variable
	k-dimensional	random	vector
	 covariances
	 density	function
	k-dimensional	real	numbers,	general	set
	k-dimensional	volume,	generation
	Kendall’s	tau
	K	events,	Bayes’	rule
	k	independent	variables
	 regression	coefficients
	 test
	Kolmogorov,	Andrei	N.
	Kolmogorov-Smirnov	(KS)	statistic
	Kolmogorov-Smirnov	(KS)	test
	 application
	 usage.	See	Two-tailed	Kolmogorov-Smirnov	test
	k-th	moment
	k-tuple
	 representation
	Kurtosis.	See	also	General	Electric	excess
	



	
Lag,	size
	Lagged	correlation
	Lagrangian	multiplier	test
	Lambda	(λ)	parameter
	 one-tailed	test
	 test
	Large	capitalization	mutual	funds,	characteristic	line	estimation	(data)
	Large	capitalization	stock	funds
	Large	sample	criteria
	 consistency
	Law	of	Large	Numbers
	Least	squares
	 provision
	 regression	fit,	exponential	relationship	values
	 result
	Left-continuous	empirical	distribution
	Left-point	rule
	Left-skewed	data,	indication
	Left	skewed	indication
	Left-skewed	returns
	Left	tails,	comparison
	Lehman	U.S.	Aggregate	Bond	Index
	 asset	duration	estimate
	 F-test,	application
	 regression,	analysis
	Leptokurtic	distribution
	Light-tailed	distribution
	Likelihood	functions
	 computation
	 obtaining
	Likelihood	ratio
	 random	sample	dependence
	



test
	Limiting	distribution
	Limiting	normal	distribution
	 Poisson	population,	contrast
	Limit	probability
	Linear	estimators
	 lags,	inclusion
	Linear	functional	relationship
	Linearity,	tests
	Linearly	dependent	component	vectors
	Linear	regression.	See	also	Simple	linear	regression	creation
	Linear	transformation
	 measures
	 sensitivity
	Linear	unbiased	estimators
	Location
	 measures
	 examination
	Location	parameters.	See	also	Right-skewed	distribution	mode,	relationship
	Location-scale	invariance	property
	Location-scale	invariant
	Logarithmic	return
	 normal	distribution
	 probability
	 usage
	Log-likelihood	function
	 computation
	 first	derivatives
	 obtaining
	 usage
	 obtaining
	 setup
	Lognormal	distribution
	 application.	See	Call	options
	 asymmetry
	 closure



	 density	function
	 impact
	 second	moment
	Lognormal	distribution,	density	function
	Lognormally	distributed	random	variable
	Lognormal	mean,	presentation
	Lognormal	random	variable,	mean/variance
	Long-term	corporate	bond,	risk	manager	hedge	position
	Long-term	interest	rates,	short-term	interest	rates	(correlation)
	Look-up	reference
	Lower	limit
	 defining
	Lower	quartile
	Lower	tail	dependence
	 coefficient
	 expression
	 measure
	λ	parameter,	estimation
	



	
MA.	See	Moving	average
	Marginal	density	function
	 concept,	illustration
	 denotation
	 integration
	 value
	Marginal	distributions.	See	also
	 Elements
	 continuous	case
	 discrete	case
	 function
	 heavy	tails
	 joint	distribution,	comparison
	 values
	Marginal	increment
	 limit	analysis
	Marginal	probabilities
	Marginal	probability	distribution
	 obtaining
	Marginal	rate	of	growth
	Marginal	variances,	weighted	sum
	Market	capitalization
	Market	environments,	mutual	fund	characteristic	lines	(testing)
	Market	excess	return
	Markowitz	portfolio	selection
	 theory
	Matrix	(matrices).	See	also	Square
	 matrix
	 algebra,	usage
	 determinant
	 determination
	 direction	(3	×	3	matrix),	column	vectors	(usage)
	



display
	 examination
	 extension
	 full	rank	n	×	n	matrix,	inverse	(definition)
	 inverse
	 algebraic	derivation,	avoidance
	 multiplication
	 feasibility
	 n	×	n	matrix
	Matrix	(Cont.)
	 component	vectors
	 determinant,	computation
	 operations/concepts,	fundamentals
	 reduction
	 sizing
	 2	×	2	matrices,	determinants
	Matrix	notation
	 analogue
	 usage.	See	Minimization	problem
	Maximum	likelihood	estimate
	 determination
	Maximum	likelihood	estimator	(MLE)
	 examples
	 illustration
	 reference
	 sample	size
	Maximum	operator,	computation
	Mean	absolute	deviation	(MAD)
	 analysis
	 computation
	 contrast
	 definition
	 standard	deviation,	comparison
	Mean	(μ).	See	also	Weighted	mean
	 computation,	original	data	(usage)
	 defining.	See	Sample	mean



	 estimator
	 example
	 expected	value	interpretation
	 first	moment
	 interpretation
	Mean	parameter,	confidence	interval
	Mean	squared	of	errors	(MSE)
	Mean-square	error	(MSE)
	 MSE-minimal	estimators,	unavailability
	 square	root
	Mean	squares	of	regression	(MSR)
	Mean-variance	portfolio	optimization
	Measurable	function
	 definition
	 relationship
	Measurable	space
	 definition
	 formation
	Measurement	level
	Measures,	summary
	Median
	 ambiguity,	avoidance
	 calculation
	 determination,	linear	interpolation	(usage)
	 example
	 feature
	 percentiles
	Minimization	problem,	matrix	notation	(usage)
	Minimum-variance	estimator,	discovery
	Minimum	variance	linear	unbiased	estimator	(MVLUE)
	Minimum	variance	portfolio	(MVP)
	Minimum-variance	unbiased	estimator
	Mode	(M)
	 class,	determination
	 distribution	shape
	 example



	Moment	of	order	k
	Moments	of	higher	order
	Monotonically	increasing	function
	 illustration
	Monotonically	increasing	value
	Monotonic	function
	Monthly	return	data,	usage
	Moody’s	Investors	Service
	 credit	ratings
	Moving	average	(MA).	See	Autoregressive	moving
	 average
	 method
	Moving	average	(MA)	process	of	order	q
	MSE.	See	Mean	squared	of	errors;	Mean-square	error
	MSR.	See	Mean	squares	of	regression
	Multicollinearity.	See	Near	multicollinearity
	 indicators
	 mathematical	statement
	 problem
	 procedures,	mitigation
	Multimodal	dataset
	Multinomial	coefficient
	Multinomial	distribution
	Multinomial	random	variable,	probability	distribution
	Multinomial	stock	price	model
	 discrete	uniform	distribution	application
	 example
	Multiple	events,	total	probability	(law)
	Multiplicative	return	(R)
	Multiplicative	rule.	See	Probability
	Multiplicity
	Multivariate	distribution	function,	expression
	Multivariate	distributions
	 application
	 introduction
	 selection



	Multivariate	linear	distribution
	 models,	building	process
	Multivariate	linear	regression
	 analysis,	estimates/diagnostics
	 usage
	Multivariate	linear	regression	model
	 assumptions
	 testing
	 construction
	 techniques
	 dependent	variable,	impact
	 design
	 diagnosis
	 diagnostic	check
	 error	term
	 fitting/estimating
	 independent	variables,	consideration
	 parameters,	estimation
	 significance
	 testing
	 specification
	 standard	stepwise	regression	model
	 steps
	 stepwise	exclusion	method
	 stepwise	inclusion	method
	Multivariate	normal	distribution
	 characteristic	function
	 properties
	Multivariate	normally	distributed	random	vector
	Multivariate	normal	random	vector
	Multivariate	probability	density	function
	Multivariate	probability	distributions
	Multivariate	random	return	vector,	density	function
	Multivariate	t	distributions
	Municipal	bond	futures,	availability
	Mutual	exclusiveness,	data	class	criteria



	Mutual	fund	characteristic	lines
	 estimation	data,	dummy	variable	(usage)
	 regression	results,	dummy	variable	(usage)
	Mutual	fund	characteristic	lines,	testing
	Mutually	exclusive	events
	MVLUE.	See	Minimum	variance	linear	unbiased	estimator
	



	
Natural	logarithm,	usage
	Near	multicollinearity
	Negative	autocorrelation
	Negatively	correlated	random	variables
	Nested	models
	Neutrality	property
	New	York	Stock	Exchange	(NYSE)	stocks,	categorization
	Neyman-Pearson	test
	NIG	distribution
	 normal	distribution,	contrast
	 scaling	property
	NIG	random	variables
	 scaling
	 skewness
	NIG	tails
	No	default	probability
	No	memory	property
	Nominally	scaled	data
	Nondecreasing	function
	 hypothesis
	Nonemptyness,	data	class	criteria
	Noninvestment	grade	bond	(junk	bond)
	Nonlinear	regression
	Nonlinear	relationship,	linear	regression
	Nonnegative	integer
	 usage
	 value,	assumption
	Nonnegative	probability
	Nonnegative	real	numbers
	Nonnegative	values
	 assumption
	 gamma	function
	



Nonredundant	choices,	usage
	Nonredundant	options,	usage
	Nonredundant	outcomes
	Nonredundant	samples
	Nonspeculative-grade	rating,	unconditional	probability
	Normal	distribution
	 assumption
	 exponential	family
	 finance	usage
	 mean
	 NIG	distribution,	contrast
	 normal	inverse	Gaussian	distribution,	contrast
	 parameter	components,	MLE
	 parameter	μ
	 equal	tails	test,	usage
	 one-tailed	test,	usage
	 two-tailed	test,	usage
	 parameters
	 confidence	intervals
	 MLE,	Cramér-Rao	bounds
	 properties
	 skewness
	 t	distribution,	difference
	 usage
	 variance	(σ2)
	 one-tailed	test,	usage
	Normal	inverse	Gaussian	density	function,	parameter	values
	Normal	inverse	Gaussian	distribution
	 function
	 normal	distribution,	contrast
	 parameter	values
	Normalized	sums,	asymptotic	properties
	Normally	distributed	data,	sample	mean	(consistency)
	Normally	distributed	random	variables,	tail	dependence
	Normally	distributed	stock	return
	Normal	random	variable



	 mean,	confidence	interval
	 unknown	variance
	 variance,	confidence	interval
	Null	hypothesis.	See	also	Equal	means;	True	null	hypothesis
	 acceptance
	 accounting
	 alternative	hypothesis,	contrast
	 autocorrelation,	relationship
	 avoidance
	 formulation
	 probability,	value
	 rejection
	 impossibility
	 probability
	 test	statistic,	impact
	n	×	n	matrix.	See	Matrix
	



	
Observation	pairs,	scatter	plot
	Observed	values,	frequency
	Off-diagonal	cells,	zero	level
	Ogive	diagrams
	One-day	stock	price	return
	 distribution,	bounds
	 rule	of	thumb
	One-dimensional	probability	distributions
	One-tailed	test.	See	also	Exponential	distribution	usage.	See	Normal	distribution
	Open	classes
	Open	intervals
	Optimality,	determination
	Ordered	array,	length	equality
	Ordinally	scaled	data
	Ordinary	least	squares	(OLS)
	 method,	usage
	 regression	method
	 usage
	Outcomes
	 influence
	 likelihood,	null	hypothesis	(impact)
	 occurrence
	 probability
	 realization
	Outliers
	Over-the-counter	(OTC)	business,	data	inaccessibility
	



	
Pairwise	disjoint
	Parallelepiped	(three-dimensional	space)
	Parameters
	 components,	MLE
	 definition
	 estimation
	 invariance
	 statistics,	contrast
	Parameters	of	location.	See	Location	parameters
	Parameters	of	scale.	See	Scale	parameter
	Parameter	space
	 computation
	 interval,	selection
	 probability	computation
	Parameter	values
	 benchmark
	 normal	density	function
	 normal	distribution	function
	Parametric	distributions
	Pareto	distribution
	 β/ξ	parameters
	 density	function	characterization
	Pareto	tails
	Park	test
	Partial	determination,	coefficient.	See	Coefficient	of	partial	determination
	Partial	integration	method
	Path-dependence
	Payoff	table
	Pearson	contingency	coefficient
	Pearson	skewness
	 definition
	Percentage	returns,	empirical	distribution
	



Percentage	stock	price	returns,	empirical	distribution
	 even	number	companies
	Percentile
	Performance	measure	estimates,	results	(estimation)
	Pie	charts
	Platykurtic	distribution
	P-null	sets
	Point	estimators
	Poisson	distributed	random	variable
	Poisson	distribution
	 delta	parameter
	 exponential	distribution,	inverse	relationship
	 exponential	family
	 λ	parameter
	 estimation
	 MLE
	 sufficient	statistic
	 test
	 mean
	 parameter
	 probability,	insertion
	 second	moment
	 variance
	Poisson	parameter,	MLE	(illustration)
	Poisson	population,	limiting	normal	distribution	(contrast)
	Poisson	probability	distribution
	Poisson	random	variable
	 mean/variance
	 modeling
	Population
	 alpha-percentile
	 mean
	 knowledge
	 multivariate	linear	regression	model
	 standard	deviation,	definition
	Population	parameter



	 estimate,	contrast
	 generation,	n-dimensional	sample	(usage)
	 information
	 statistic,	contrast
	Population	variance
	 computation
	 definition
	 estimator	replacement
	 examination
	 unbiased	estimator,	obtaining
	Portfolio
	 assets,	currency	denomination
	 diversification
	 return
	 computation
	 mean/variance
	 selection,	multivariate	distribution	application
	 theory,	risk	measure	(role)
	 value,	representation
	Positive	autocorrelation
	Positive	semidefinite	matrices
	Positive-semidefinite	matrices
	Power	law
	Power	of	a	test
	 definition
	 probability	line
	Power	set,	example
	Power	tails
	p	parameter,	estimation
	Price/earnings	(P/E)	ratio
	 list
	Price	process
	 efficiency
	 time	series	application
	Probabilistic	dependence
	Probability



	 alternative	approaches,	historical	development
	 computation
	 density	function,	usage
	 concept,	problem
	 congruency
	 convergence
	 determination
	 double	summation
	 expression
	 law
	 mass
	 models
	 multiplicative	rule
	 application
	 illustration
	 plot
	 relative	frequencies
	 statistics,	contrast
	 studying
	 theory
	 concepts
	 university	course,	offering
	Probability	density
	 function
	 understanding
	Probability	distributions
	 continuousness
	 moments
	 obtaining
	 values
	Probability	measure
	 continuous	distribution	function
	 definition
	 density	function
	Probability	of	error
	 creation



	Probability	space
	 random	variable,	definition
	Probability-weighted	values,	sum
	Procter	&	Gamble	(P&G)
	 par	value
	 trading	day,	yield/yield	change-152t
	Psychometrics
	p-value
	 illustration
	 reduction
	Pyrrho’s	lemma
	



	
Quadratic	forms
	Qualitative	data
	 usage
	Quality	criteria
	Quality	grades,	consideration
	Quantile-quantile	plot	(QQ	plot)
	Quantiles.	See	also	0.25	quantile;
	 0.75	quantile
	 one-to-one	relationship
	Quantitative	variable
	Quartiles
	 computation
	 example
	Queue	theory
	



	
Radius,	attributed	meaning
	Randomness,	inheritance
	Random	return	vector
	 joint	probability	density	function,	contour	lines
	 probability	density	function
	Random	sample,	joint	probability	distribution
	Random	shock
	Random	variables.	See	also	Continuous	random
	 variables;	Higher	dimensional	random	variables
	 Bernoulli	distribution,	relationship
	 boundary	k
	 company	value	function
	 consideration
	 correlation	coefficient
	 countable	space
	 definition
	 density	function
	 skew
	 deterministic	function
	 distribution
	 exponential	distribution
	 independence,	definition
	 linear	transform
	 link,	correlation	inadequacy
	 location,	parameters
	 mean
	 value
	 measurability
	 measurable	function
	 moments
	 multiplication
	 n	degrees	of	freedom	(chi-square	distribution),	α-quantiles	(position)
	



negative	correlation
	 obtaining
	 outcomes
	 parameters
	 positive	correlation
	 probability	law
	 relationship
	 scale,	parameters
	 uncorrelation
	 uncountable	space
	 usage
	 values,	assumption
	 variance
	 definition
	Random	vectors
	 density	function
	 joint	distribution
	 function
	 multivariate	distribution	function
	 probability
	Random	walk
	Range
	 obtaining
	 variation	measure
	Rank	correlation	measures
	 symmetry
	Rank	data
	Ratio	scale
	Real	numbers
	 open/half-open	intervals
	 three-dimensional	space
	Real	rate,	monthly	data
	Real-valued	parameter	(λ)
	Real-valued	random	variable	usage
	Real-valued	random	variables	gamma	distribution
	Real-valued	variable,	continuous	function



	Recession,	restricted	space
	Rectangular	distribution
	Rectangular	event
	Redundant	components
	Regime	shift,	occurrence
	Regression
	 analysis
	 finance	applications
	 hedging	application
	 equations,	examination
	 errors
	 goodness-of-fit	denotation
	 hyperplane
	 method.	See	Standard	stepwise	regression	method
	 modeling
	 theory
	Regression-based	duration
	Regression	coefficients
	 estimates,	distribution
	 estimation
	 unbiased	estimates
	Regression	model
	 distributional	assumptions
	 estimation
	 evaluation	goodness-of-fit	measures,	usage
	 extension
	 industry	sectors,	consideration
	 misspecification
	Regressor
	Reichenbach,	Hans
	Rejection	region
	Relative	frequency
	 comparison
	 computation
	 density
	 histogram,	usage



	 dependence
	 distributions,	usage
	 probability,	relationship
	 usage
	Replacements
	Rescaled	random	variables,	generation
	Rescaling	effect
	Residuals
	 analysis.	See	Standardized	residuals
	 autocorrelation,	absence
	 correlation,	importance
	 distribution
	 observation
	 tests
	Residual	term
	Restricted	model
	Retransformation
	Return
	 alternative	set
	 attributes
	 data,	sample
	 density	function
	 joint	distribution
	 standard	deviations
	 vector,	two-dimensional	pdf
	 0.25	percentile
	 0.30	percentile
	Rho.	See	Spearman’s	rho
	Right-continuity,	demonstration
	Right-continuous	empirical	distribution
	Right-continuous	function
	Right-continuous	value
	Right-point	rule
	Right-skewed	distribution,	location	parameters
	Right	skewed	indication
	Risk	analysis



	Risk-free	asset,	excess
	Risk-free	interest	rate
	 composition
	Risk-free	position,	addition
	Risk-free	rate
	 implication.	See	Constant	risk-free	rate
	 market	return,	relationship
	Risk-free	return
	Risk	management,	variables	consideration
	Risk	manager,	hedge	position
	Risk	measures
	 role
	Risky	assets
	Rounded	monthly	GE	stock	returns,	marginal	relative	frequencies
	Row	vector
	 form
	R-squared	(R2).	See	Adjusted	R-squared
	Russian	ruble	crisis
	



	
Sample
	 criteria.	See	Large	sample	criteria
	 length,	increase
	Sample	mean
	 analysis
	 bias
	 computation
	 defining
	 efficiency
	 histogram
	 mean-square	error
	 sampling	distribution	density	function
	 standardization
	Sample	outcome,	impact
	Sample	size
	 Central	Limit	Theorem,	impact
	 sufficiency
	Sample	skewness,	definition
	Sample	standard	deviation,	definition
	Sample	variance
	 bias
	 definition
	 histogram
	 obtaining.	See	Corrected	sample	variance
	Sampling	distribution
	 density	function
	Sampling	error
	Sampling	techniques
	Scale	parameter	(σ)
	Scaling	invariant
	Scaling	property
	Seasonal	components
	



Second	central	moment
	Second	 moment.	 See	 also	 Lognormal	 distribution;	 Poisson	 distribution	 non-
existence.	See	Alpha-stable	distribution
	Securities,	types
	Security,	return
	Seller,	option	payment
	Serial	correlation
	Serial	dependence
	Set	countability
	Set	operations
	Set	value,	assumption
	Shorthand	notation,	usage
	Short	hedge
	Short	rates
	 dynamics
	Short-term	interest	rates
	 modeling,	application
	Short-term	interest	rates,	long-term	interest	rates	(correlation)
	Sigma	algebra	(σ-algebra)
	 definition
	Significance	level
	 determination
	Simple	linear	regression
	 model
	 regression	parameter	estimation
	Simultaneous	movements,	observation
	Skewness.	See	also
	 Exponential	distribution;	General	Electric;
	 Normal	distribution
	 computation
	 probability	distribution,	knowledge
	 definition.	See	also	Pearson	skewness;	Sample	skewness
	 formal	definition
	 indication
	 parameter	β,	impact
	 parameter



	 statistic
	Sklar’s	Theorem
	Slippage,	occurrence
	Space	(Ω).	See	also	Countable	space;
	 Measurable	space;	Uncountable	space
	 mapping
	 occurrence
	Spearman’s	rho
	Special	Erlang	distribution
	Speculative-grade	rating
	 unconditional	probability
	Spherical	distribution
	Spread	measures
	Spurious	regression
	Squared	bias
	Squared	deviations,	variance	(impact)
	Square	matrix
	 eigenvalues/eigenvectors
	SSE.	See	Sum	of	squares	errors;	Unexplained	sum	of	squares
	SSR.	See	Sum	of	squares	explained	by	the	regression
	SST.	See	Total	sum	of	squares
	Stability	property
	Stable	distributions
	 characterization
	Stand-alone	probabilities
	Standard	deviation	(std.	dev.)
	 definition.	See	Population	standard	deviation;	Sample	standard	deviation
	 outcomes,	relationship
	 usage
	 variance,	contrast
	Standard	error	of	the	coefficient	estimate
	Standard	 error	 of	 the	 regression.	 See	 also	 Univariate	 standard	 error	 of	 the
regression
	Standard	error	(S.E.)
	Standardization
	Standardization	of	X



	Standardized	data
	Standardized	random	variable,	value
	Standardized	residuals,	analysis
	Standardized	transform
	Standard	normal	distribution
	 distribution	function
	 mode
	 α	quantile
	 returns,	contrast
	 0.2	quantile,	determination
	Standard	normal	population,	observations
	Standard	&	Poor’s	500	(S&P500)
	 daily	returns,	distribution	test
	 equity	index,	value
	Standard	&	Poor’s	500	(S&P500)	index
	 asset	correlation
	 commercial	bank	sector,	asset	duration	estimate
	 daily	returns
	 zero	mean,	determination
	 electric	utility	sector,	asset	duration	estimate
	 prices
	 stem	and	leaf	diagram
	 returns
	 examination
	 time	series	application
	Standard	&	Poor’s	500	(S&P500)	logarithmic
	 returns
	 class	data
	 daily	returns	(2006)
	 frequency	densities
	 probability
	Standard	&	Poor’s	500	(S&P500)	returns
	 empirical	cumulative	relative	frequency	distribution
	 QQ	plot,	contrast
	Standard	&	Poor’s	500	(S&P500)	stock	index,
	 534-536



	 closing	prices,	consideration
	 daily	logarithmic	returns
	 daily	returns
	 logarithmic	returns,	box	plot
	 marginal	relative	distributions
	 monthly	returns
	 prices,	changes	(vertical	extension)
	 usage
	 values/changes
	Standard	&	Poor’s	500	(S&P500)	stock	index	returns
	 box	plot
	 classes
	 conditional
	 empirical	cumulative	relative	frequency	distributions
	Standard	&	Poor’s	(S&P)
	 credit	ratings
	 assignation
	 empirical	distribution
	 index,	cross	sectional	data	(obtaining)
	 ratings
	 attributes
	 empirical	distribution
	 even	number	companies
	Standard	stepwise	regression	method
	State	space	(Ω’)
	 probability
	Statistic
	 definition
	 degrees	of	freedom	ratio
	 empirical	data
	 parameters,	contrast
	 population	parameter,	contrast
	 probability,	contrast
	 university	course,	offering
	Statistical	independence
	Statistical	inference



	Statistical	noise
	Statistical	physics
	Statistical	significance,	determination
	Stem	and	leaf	diagram
	Stepwise	exclusion	method
	Stepwise	inclusion	method
	Stepwise	regression,	usage
	Stochastic	terms
	Stochastic	variable
	Stock	price
	 changes,	joint	movements
	 dynamic
	 evolution
	 expected	value,	relationship
	 pricing	process,	evolution
	 probability
	 correspondence
	 random	variable
	 ratio
	 bounds
	 variation
	 volatility
	 parameter
	Stock	price	to	free	cash	flow	per	share	(PFCF),
	 ratio
	 Stock	returnillustration
	 modeling
	 properties,	application
	 regression,	application
	 regression	model,	application
	 skewness,	example
	 student’s	t	distribution	application
	Stocks
	 characteristic	line
	 index	futures,	availability
	 logarithmic	return



	 performance
	 portfolio
	 benchmark
	 consideration
	 relative	performance
	Strictly	monotonically	increasing	transformations,	invariance
	Strictly	monotonic	function	preserves,	natural	logarithm
	Strictly	monotonic	increasing	function
	 illustration
	Strike	price	(exercise	price)
	Student’s	t	distributed
	 n-1	degrees	of	freedom
	 statistic
	Student’s	t	distributed	random	variables,	tail	dependence
	Student’s	t	distribution
	 assumption
	 cumulative	distribution	function
	 degrees	of	freedom
	 density	function
	 α-quantiles,	n-1	degrees	of	freedom
	 returns
	 shape
	Student’s	t	observations,	generation
	Student’s	t	random	variable,	mean
	Sturge’s	rule
	 usage
	Subprime	mortgage	crisis
	Subsets
	Sufficiency
	Sufficient	statistic
	 distribution
	Summation,	infeasibility
	Sum	of	squares	errors	(SSE)
	Sum	of	squares	explained	by	the	regression	(SSR)
	Support,	term
	Supremum



	 comparison
	 selection
	Survival	time
	Symmetric	confidence	intervals,	advantages
	Symmetric	density	function
	 zero	skewness
	Symmetric	matrix
	Symmetric	n	×	n	matrix
	



	
Tail	dependence
	 absence
	 measure
	Tail	index
	Tails
	t	copula
	 d=2	example
	 contour	plots-398f
	 illustration-396f
	 degrees	of	freedom,	estimate	(computation)
	 joint	distribution
	 tail	dependence
	t	distribution.	See	also	Multivariate	t
	 distributions
	 density	function
	 normal	distribution,	contrast
	 obtaining
	 probability	mass,	attribution
	t-distribution,	tabulation
	10-year	Treasury	note
	10-year	Treasury	yield
	 forecasting,	regression	results
	 monthly	data
	 prediction
	Test	power.	See	Power	of	a	test
	Test	quality	criteria
	Test	size
	 determination
	 partitioning
	 value
	Test	statistic
	 basis
	



computation
	 density	function
	 obtaining
	 usage
	Theoretical	distributions/empirical	distributions	(comparison),	box	plots	(usage)
	Third	central	moment
	30%	quantile	(determination),	histogram	(usage)
	Three-dimensional	real	numbers,	span
	Time
	 deterministic	functions
	 variance
	Time	series
	 analysis
	 serial	correlation/lagged	correlation
	 cross	sectional	data,	relationship
	 data
	 model,	description
	 decomposition
	 components
	 definition
	 obtaining
	 representation,	difference	equations	(usage)
	Tinbergen,	Jan
	Total	probability,	law
	 illustration
	 multiple	events
	Total	sum	of	squares	(SST)
	Transformed	data
	 median	computation
	 range,	computation
	Transformed	random	variables,	covariance
	Treasury	bill	futures,	availability
	Treasury	bond	futures,	availability
	Treasury	yield
	 changes
	 prediction.	See	10-year	Treasury	yield



	True	null	hypothesis
	t-statistic
	 application
	t-test
	 n-k-1	degrees	of	freedom
	 results
	Turned	vectors
	2-dimensional	normal	distributions
	Two-dimensional	copulas
	 maps
	Two-dimensional	random	variable,	usage
	Two-dimensional	space,	complex	number	representation
	Two-dimensional	variable
	Two-period	stock	price	model,	probability	distribution
	Two-tailed	Kolmogorov-Smirnov	distance,	computation
	Two-tailed	Kolmogorov-Smirnov	test,	usage.	See	Equality	of	distribution
	Two-tailed	test
	 usage.	See	Normal	distribution
	Type	I	errors
	Type	II	errors
	 probability
	



	
UMP	test.	See	Uniformly	most	powerful	test
	Unbiased	efficiency
	Unbiased	estimator
	 obtaining
	Unbiased	test
	Unconditional	probabilities
	 product
	Uncorrelated	random	variables
	Uncorrelated	variables,	regression
	Uncountable	real-valued	outcomes
	Uncountable	sets
	 distinction
	Uncountable	space
	 random	variables
	Unexplained	sum	of	squares	(SSE)
	 degrees	of	freedom,	determination
	Uniformly	most	powerful	(UMP)	test
	 size	α
	 comparison
	Unimodal	dataset
	Univariate	data
	Univariate	distributions
	Univariate	normal	distribution,	density	function
	Univariate	probability	distributions
	Univariate	random	variable,	probability
	Univariate	regression
	Univariate	standard	error	of	the	regression	(s2)
	Unknown	mean	(normal	random	variable),	variance	(confidence	interval)
	Unknown	variance	(normal	random	variable),	mean	(confidence	interval)
	Up	market	beta
	Up	movement
	 binomial	random	variable,	impact



	 occurrence
	Upper	limit
	 defining
	Upper	quartile
	Upper	tail	dependence
	u-quantile
	U.S.	dollar,	appreciation
	U.S.	Treasury	bond,	comparison
	



	
Value-at-risk	(VaR)
	 computation
	 equivalence
	 measure
	Variables
	 inclusion,	F-test	(usage)
	 linear	functional	relationship
	Variance	inflation	factor	(VIF)
	Variance	(σ2).	See
	 also	Analysis	of	variance
	 contrast
	 definition.	See	Population	variance;	Sample	variance
	 elimination
	 estimator
	 comparison
	 consistency
	 mean-square	error
	 knowledge
	 non-existence
	 one-tailed	test
	 parameter,	estimation
	 proxy	risk
	 reduction
	 square	root
	 standard	deviation,	comparison
	 yield
	Variation.	See	also	Coefficient	of	variation
	 measures
	 examination
	Vector.	See	also	Column	vector;	Row
	 vector;	Turned	vectors
	 dimensionality



	 linear	composition
	 three-dimensional	space
	Vector	hyperplane
	Vector	notation,	usage
	Venn	diagram
	 example
	VIF.	See	Variance	inflation	factor
	Volatility	clustering
	von	Mises,	Richard
	



	
Waiting	time
	Weibull	distribution
	Weighted	least	squares	(WLS)	estimation	technique
	Weighted	least	squares	(WLS)	estimators
	Weighted	mean
	 mean,	form
	Whisker	ends
	White’s	generalized	heteroskedasticity	test
	WLS.	See	Weighted	least	squares
	Writer,	option	payment
	



	
Yield	beta
	Yield	spread,	difference	(test)
	



	
0.2	quantile
	 determination
	0.25	quantile
	0.75	quantile
	Zerocoupon	securities
	Zero	covariance,	concept
	Zero-one	distribution
	



1
Instead	of	attribute,	we	will	most	of	the	time	use	the	term	“variable.”
	2

Market	 capitalization	 is	 the	 total	 market	 value	 of	 the	 common	 stock	 of	 a
company.	It	is	obtained	by	multiplying	the	number	of	shares	outstanding	by	the
market	price	per	share.
	3

The	 information	 can	 be	 found	 at
http://www.dj.com/TheCompany/FactSheets.htmas	of	December	12,	2006.
	4

The	 information	 can	 be	 found	 at
http://www.dj.com/TheCompany/FactSheets.htmas	of	December	12,	2006.
	5

A	 function	 is	 the	 formal	 way	 of	 expressing	 how	 some	 quantity	 y	 changes
depending	 on	 the	 value	 of	 some	 other	 quantity	 x.	 This	 leads	 to	 the	 brief
functional	representation	of	this	relationship	such	as	y	=	f(x).
	6

Naturally,	 the	 precision	 given	 by	 the	 number	 of	 digits	 rounded	 may	 result	 in
higher	occurrences	of	certain	values.
	7

The	term	“percentile”	is	used	interchangeably	with	quantile.
	8

Note	that	the	IQR	cannot	be	computed	for	nominal	or	categorial	data	in	a	natural
way.
	9

One	can	easily	check	that	the	four	requirements	for	the	classes	are	again	met.
	10

The	 notation	 [x1,x2)	 is	 the	 short	 way	 of	 stating	 that	 we	 have	 selected	 all	 real
numbers	 between	 x	 and	 x	 but	 not	 including	 the	 latter	 one	 as	 indicated	 by	 the
parenthesis	 (“)”)	 rather	 than	 the	 bracket	 (“]”).	 This	 is	 a	 so-called	 half-open
interval	 in	contrast	 to	an	open	interval	 indicated	by	all	parentheses	or	a	closed
interval	 as	 indicated	 by	 all	 brackets.	 Parentheses	 indicate	 exclusion	 while
brackets	indicate	inclusion	of	the	respective	bounds.
	11

http://www.dj.com/TheCompany/FactSheets.htm
http://www.dj.com/TheCompany/FactSheets.htm


This	 type	 of	 assumed	 behavior	will	 be	 defined	 in	 Chapter	 11	when	we	 cover
continuous	rectangular	probability	distributions	as	a	uniform	distribution	of	data.
	12

Commonly,	the	size	or	magnitude	of	a	set	S	is	denoted	by	|S|.	So,	if	S	=	{x1,	.	.	.,
x100},	|S|	=	100.
	13

As	we	will	see	in	subsequent	chapters,	 the	median	of	a	distribution	can	be	one
single	value	as	well	as	a	set	of	values.
	14

In	a	similar	context	in	probability	theory,	we	will	define	the	median	as	the	set	of
values	between	x(n/2)	and	x(n/2	+	1).	*
	15

The	term	arithmetic	mean	is	the	formal	expression	for	equally	weighted	average.
	16

Hence,	 the	 percentiles	 corresponding	 to	 some	 share	 α	 are	 more	 specifically
called	 α-percentiles,	 expressing	 the	 partitioning	 with	 respect	 to	 this	 particular
share.
	17

In	the	following,	we	will	present	 the	 theory	in	 the	sample	case	only.	The	ideas
are	analogous	in	the	population	setting.
	18

The	computation	of	the	quartiles	is	left	as	an	exercise	for	the	reader.
	19

The	reference	value	is	usually	a	measure	of	the	center.
	20

The	absolute	value	of	x,	denoted	|x|,	is	the	positive	value	of	x	neglecting	its	sign.
For	example,	if	x	=	-5,	then	|x|	=	|-5|	=	5	=	|5|.
	21

Precision	is	three	decimals.	However,	we	will	not	write	down	unnecessary	zeros.
	22

The	corresponding	population	variance	 is	defined	analogously	with	 the	sample
size	n	replaced	by	the	population	size	N.
	23



In	this	example,	we	round	to	one	decimal	place.
	24

To	be	more	precise,	this	is	only	one	of	Pearson’s	skewness	coefficients.	Another
one	not	represented	here	employs	the	mode	instead	of	the	mean.
	25

This	 is	 the	 result	of	Chebychev’s	Theorem	 that	 is	 introduced	 in	 the	context	of
probability	theory	in	Chapter	11.
	26

This	sort	of	transformation	is	monotone.	If	a	is	positive,	then	it	is	even	direction
preserving.
	27

The	 transformation	 of	 the	 sample	 variance	 is	 analogous	 with	 the	 population
replaced	with	the	sample	mean.
	28

Proportionality	of	the	quantities	X	and	Y	indicates	that	X	is	some	real	multiple	of
Y.
	29

The	size	or	area	of	a	circle	is	given	by	r2	×	π	where	π	is	a	constant	roughly	equal
to	3.14.	This	 is	 the	 reason	why	 the	 radius	enters	 into	 the	 formula	as	a	 squared
term.	 Consequently,	 the	 ratio	 of	 two	 areas	 is	 equal	 to	 the	 ratio	 of	 the	 two
individual	 radii	 squared.	 The	 square	 root	 of	 the	 ratio	 expresses	 the
proportionality	between	the	two	radii.
	30

Recall	the	discussion	from	Chapter	3	on	whether	we	deal	with	a	population	with
all	possible	values	 from	 the	value	 set	or	 just	 a	 sample	with	 a	 certain	 selection
from	the	value	set.
	31

Alternatively,	we	might	have	extended	the	bar	below	the	horizontal	axis.
	32

Recall	 that	 the	 bar	 chart	 is	 intended	 for	 use	 with	 qualitative	 data	 while	 the
histogram	is	for	use	with	class	data.	Thus,	they	are	used	for	different	purposes.
With	quantitative	data	and	constant	class	width,	the	histogram	can	be	used	as	a
bar	chart	where,	in	that	case,	the	height	represents	plain	frequencies	rather	than
frequency	densities.
	



33
Note	 that	 for	 intermediate	 classes,	 the	 upper	 and	 lower	 bounds	 of	 adjacent
classes	coincide.
	34

The	dashed	 line	extending	 to	 the	right	at	 the	return	value	0.0174	indicates	 that
the	empirical	cumulative	relative	frequency	distribution	remains	constant	at	one
since	all	observations	have	been	accounted	for.
	35

Remember	 that,	 in	 contrast,	 the	 empirical	 cumulative	 distribution	 functions
increase	by	jumps	only.
	36

Even	 though	 quantiles	 were	 shown	 to	 exist	 for	 ordinal-scale	 data,	 the
computation	of	the	IQR	is	infeasible.
	37

In	 contrast	 to	 Figures	 4.14	 and	 4.15,	 the	 whisker	 ends	 are	 not	 indicated
pronouncedly.	The	 reason	 is	elegance.	Note	 that	 the	boxes	are	 in	gray	color	 to
quickly	draw	attention	to	these	central	50%	of	the	data.
	38

As	 the	 name	 of	 the	 diagram	 suggests,	 one	 would	 assume	 that	 the	 sample
percentiles	of	 the	 two	data	 sets	are	matched.	However,	 since	both	 result	 in	 the
same	diagram,	the	data	array	cells	are	matched	for	convenience,	as	done	here.
	39

The	normal	distribution	will	be	discussed	in	Chapter	11.
	40

The	word	variable	will	be	used	often	instead	of	feature	or	characteristic.	It	has
the	 same	 meaning,	 however,	 indicating	 the	 variable	 nature	 of	 the	 observed
values.
	41

In	this	chapter’s	context,	a	variable	consists	of	two	components	that,	in	turn,	are
one-dimensional	variables.
	42

This	 is	 reasonable	whenever	 the	 components	 assume	 certain	 values	more	 than
once.
	43



Note	the	index	refers	to	both	components.
	44

The	 (-)	 sign	 indicates	 negative	 returns	 and	 the	 (+)	 sign	 indicates	 nonnegative
returns.	Note	that,	in	contrast	to	the	original	bivariate	returns,	the	new	variable	is
not	 quantitative	 since	 its	 second	 component	 is	 merely	 a	 coded	 nominal	 or,	 at
best,	rank	scale	variable.
	45

The	returns	are	listed	in	Table	5.2.
	46

Note	that,	for	simplicity,	we	formed	the	same	classes	for	both	variables	despite
the	 fact	 that	 the	 individual	 ranges	 of	 the	 two	 components	 are	 different.
Moreover,	the	rules	for	univariate	classes	(as	discussed	in	Chapter	2)	would	have
suggested	 no	more	 than	 10	 classes	 in	 each	 dimension.	However,	we	 prefer	 to
distinguish	 more	 thoroughly	 to	 reveal	 more	 of	 the	 bivariate	 return	 structure
inherent	in	the	data.
	47

As	a	matter	of	fact,	in	Figure	5.3,	we	have	y	=	0.3	+	1.2x.	In	Figure	5.4,	we	have
y	=	0,2	+	x3.
	48

We	will	 give	 definitions	 and	 demonstrate	 the	 issue	 of	 conditional	 frequencies
using	 relative	 frequencies	 only.	 The	 definitions	 and	 intuition	 can	 easily	 be
extended	 to	 the	 use	 of	 absolute	 frequencies	 by	 replacing	 respective	 quantities
where	necessary.
	49

Note	 that	 in	 our	 examples	 we	 will	 consistently	 use	 the	 incorrect	 notation	 f
despite	the	fact	that	we	are	dealing	with	empirical	frequencies	throughout.
	50

This	holds	provided	that	fy(w)	>	0.
	51

The	definition	for	absolute	frequencies	is	analogous	with	the	relative	frequencies
replaced	 by	 the	 absolute	 frequencies	 and	 the	 entire	 expression	 divided	 by	 the
number	of	observations	n.
	52

The	reason	is	founded	in	the	fact	that	the	terms	in	the	sum	of	the	covariance	can



cancel	out	each	other	even	though	the	variables	are	not	independent.
	53

Some	 statistics	 are	 robust	 against	 certain	 untypical	 behavior	 in	 samples	 with
respect	to	the	population.	That	is,	they	capture	the	“true”	relationships	quite	well
regardless	of	single	outliers	or	extreme	values	of	any	type.	However,	this	general
sensitivity	cannot	be	neglected	a	priori	(i.e.,	in	advance).
	54

We	refer	to	the	simple	linear	regression	as	a	univariate	regression	because	there
is	only	one	 independent	variable	whereas	a	multivariate	regression	(the	subject
of	 Part	 Four	 of	 this	 book)	 as	 a	 regression	 with	 more	 than	 one	 independent
variable.	 In	 the	 regression	 literature,	 however,	 a	 simple	 linear	 regression	 is
sometimes	referred	to	as	a	“bivariate	regression”	because	there	are	two	variables,
one	dependent	and	one	independent.	In	this	book	we	will	use	the	term	univariate
regression.
	55

If	 the	errors	do	not	seem	to	comply	with	the	i.i.d.	requirement,	 then	something
would	 appear	 to	be	wrong	with	 the	model.	Moreover,	 in	 that	 case	 a	 lot	 of	 the
estimation	results	would	be	faulty.
	56

The	normal	distribution	is	a	symmetric	distribution	of	continuous	variables	with
values	on	the	entire	real	line.
	57

Although	 several	 authors	 are	 credited	 with	 the	 concept	 of	 least	 squares
regression,	it	was	originally	conceived	by	C.F.	Gauss.
	58

For	 functional	 relationships	 higher	 than	 of	 linear	 order,	 there	 is	 often	 no
analytical	 solution.	The	optima	have	 to	be	determined	numerically	or	by	some
trial	and	error	algorithms.
	59

The	 notation	 in	 books	 explaining	 the	R2	 differs.	 In	 some	 books,	 SSR	 denotes
sum	of	squares	of	the	residuals	(where	R	represents	residuals,	i.e.,	the	errors)	and
SSE	denotes	sum	of	sum	of	squares	explained	by	the	regression	(where	E	stands
for	 explained).	 Notice	 that	 the	 notation	 is	 just	 the	 opposite	 of	 what	 we	 used
above.
	60



Note	that	the	average	means	of	y	and	ŷ	are	the	same	(i.e.,	they	are	both	equal	to	ȳ
).
	61

The	slope	has	to	different	from	zero,	however,	since	in	that	case,	there	would	be
no	variation	in	the	y-values.	As	a	consequence,	any	change	in	value	in	x	would
have	no	implication	on	y.
	62

As	noted	earlier,	for	functional	relationships	higher	than	of	linear	order,	there	is
often	no	analytical	solution,	the	optima	having	to	be	determined	numerically	or
by	some	trial-and-error	algorithms.
	63

The	data	were	provided	by	Raman	Vardharaj.	The	 true	 funds	names	cannot	be
revealed.
	64

This	example	is	taken	from	Fabozzi	(2008).
	65

The	number	of	dates	n	may	theoretically	be	infinite.	We	will	restrict	ourselves	to
finite	lengths.
	66

The	case	where	all	four	components	of	the	time	series	are	modeled	as	stochastic
quantities	is	not	considered	here.
	67

Order	1	indicates	that	the	value	of	the	immediately	prior	period	is	incorporated
into	the	present	period’s	value.
	68

The	concept	of	correlation	was	introduced	in	Chapter	5.
	69

See,	for	example,	Enders	(1995).
	70

In	 Parts	 Two	 and	 Three	 of	 this	 book	 we	 will	 introduce	 an	 additional	 price
process	using	logarithmic	returns.
	71

Here	 the	 price	 of	 some	 security	 at	 time	 t,	St,	 ought	 not	 be	 confused	with	 the
seasonal	component	in	equation	(7.1).



	72
Note	 that	 since	 the	 ε	 assumes	 values	 on	 the	 entire	 real	 number	 line,	 the	 stock
price	 could	 potentially	 become	 negative.	 To	 avoid	 this	 problem,	 logarithmic
returns	are	modeled	according	to	equation	(7.4)	rather	than	stock	prices.
	73

Note	 that	we	employ	expected	values	 conditional	on	 time	 t	 to	express	 that	we
base	our	forecast	on	all	information	available	at	time	t.	The	expected	value—or
mean—as	 a	 parameter	 of	 a	 random	variable	will	 be	 introduced	 in	Chapter	 13.
The	conditional	expected	value	will	be	introduced	in	Chapter	15.
	74

There	is	always	the	confusion	about	whether	a	single	dice	should	be	referred	to
as	a	“die.”	 In	 the	united	Kingdom,	die	 is	used;	 in	 the	united	States,	dice	 is	 the
accepted	term.
	75

Suppose	we	have	the	interval	[1,2],	that	is	all	real	numbers	between	1	and	2.	We
cannot	count	all	numbers	inside	of	this	interval	since,	for	any	two	numbers	such
as,	for	example,	1	and	1.001,	1.0001,	or	even	1.000001,	there	is	always	infinitely
many	more	numbers	that	lie	between	them.
	76

Note	that	in	a	set	we	do	not	consider	an	element	more	than	once.
	77

Note	 that	 we	 can	 even	 join	 an	 infinite	 number	 of	 sets	 since	 the	 union	 is
countable,	that	is,	 	.	The	same	is	true	for	intersections	with	 	.
	78

By	abscissa	we	mean	a	value	on	the	horizontal	x-axis.
	79

For	 example,	 let	 Ω	 ={1,2,3},	 then	 the	 power	 set	 2Ω	 =	 {Ø,{1},{2},{3},{1,2},
{1,3},{2,3},	 Ω}.	 That	 is,	 we	 have	 included	 all	 possible	 combinations	 of	 the
original	elements	of	Ω.
	80

Let	 us	 assume,	 for	 now,	 that	 we	 are	 not	 restricted	 to	 a	 few	 digits	 due	 to
measurement	constraints	or	quotes	conventions	in	the	stock	market.	Instead,	we
consider	being	able	to	measure	the	returns	to	any	degree	of	precision.
	81



By	real	 line,	we	refer	 to	all	real	numbers	between	minus	infinity	(-∞)	and	plus
infinity	(∞).	We	think	of	them	as	being	arrayed	on	a	line	such	as	the	horizontal
axis	of	a	graph.
	82

By	convention,	we	never	include	∞	since	it	is	not	a	real	number.
	83

The	symbol	R	is	just	a	mathematical	abbreviation	for	the	real	numbers.
	84

For	example,	through	the	intersection	of	(-∞,2]	and	(1,∞),	we	obtain	(1,2]	while
the	 intersection	 of	 (-∞,4]	 and	 (3,∞)	 yields	 (3,4].	 These	 resulting	 intervals,	 in
turn,	yield	the	union	(1,2]	∪	 (3,4],	which	we	wish	to	have	in	our	set	of	events
also.
	85

The	empty	set	is	interpreted	as	the	improbable	event.
	86

A	 tuple	 is	 the	 combination	 of	 several	 components.	 For	 example,	 when	 we
combine	two	values	a	and	b,	the	resulting	tuple	is	(a,b),	which	we	know	to	be	a
pair.	If	we	combine	three	values	a,	b,	and	c,	the	resulting	tuple	(a,b,c)	is	known
as	a	triplet.
	87

This	property	is	referred	to	as	countable	additivity.
	88

We	 have	 to	 specify	 with	 respect	 to	 which	 probability	 measure	 this	 event	 is
almost	surely.	If	it	is	obvious,	however,	as	is	the	case	in	this	book,	we	omit	this
specification.
	89

We	 use	 the	 index	 in	 FS&P	 500	 to	 emphasize	 that	 this	 distribution	 function	 is
unique	to	the	probability	of	events	related	to	the	S&P	500	log	returns.
	90

Instead	of	A-A’-measurable,	we	will,	henceforth,	use	simply	measureable	since,
in	our	statements,	it	is	clear	which	σ-algebrae	are	being	referred	to.
	91

Note	that	we	do	not	define	the	outcomes	of	number	of	dots	as	nominal	or	even
rank	data	anymore,	but	as	numbers.	That	is	1	is	1,	2	is	2,	and	so	on.



	92
Theoretically,	Ω’	 does	 not	 have	 to	 be	 countable,	 that	 is	 it	 could	 contain	more
elements	that	X	can	assume	values.	But	we	restrict	ourselves	to	countable	state
spaces	Ω’	consisting	of	exactly	all	the	values	of	X.
	93

We	denote	random	variables	by	capital	letters,	such	as	X,	whereas	the	outcomes
are	denoted	by	small	letters,	such	as	xi.
	94

Often,	the	mean	is	denoted	as	the	parameter	µ.
	95

The	 definition	 of	 independence	 in	 probability	 theory	 will	 not	 be	 given	 until
Chapter	14.	However,	the	concept	is	similar	to	that	introduced	in	Chapter	5	for
relative	frequencies.
	96

The	entire	time	span	of	length	T	is	subdivided	into	the	adjacent	period	segments
(0,1],	(1,2],	…,	(T	-	1,	T].
	97

Note	 that	 the	 successive	 prices	 S1,	 …,	 ST	 depend	 on	 their	 respective
predecessors.	They	are	said	to	be	path-dependent.	Only	the	changes,	or	factors	Yt
+1,	for	each	period	are	independent.
	98

The	factorial	operator	!	is	introduced	in	Appendix	A.
	99

Note	that	we	cannot	draw	more	than	four	black	balls	from	b1,	b2,	b3,	and	b4.
	100

This	application	draws	from	Humpage	(1998).
	101

Once	again	we	note	that	we	are	still	short	of	a	formal	definition	of	independence
in	 the	 context	 of	 probability	 theory.	 We	 use	 the	 term	 in	 the	 sense	 of
“uninfluenced	by.”
	102

We	denote	w	=	white,	b	=	black,	and	r	=	red.
	103



Suppose	we	 are	 analyzing	 the	 random	 experiment	 of	 sampling	n	 balls	 from	 a
pool	of	K	black	and	N	-	K	white	balls,	without	replacement.	Then,	the	conditions
are:	 (1)	 a	 sample	 size	n	 ≥	 30;	 2)	 a	 probability	 of	 black	K/N	 ≤	 0.1;	 and	 (3)	 a
sample	size	ratio	n/N	≤	0.1.
	104

For	 those	 unfamiliar	 with	 continuity	 in	 a	mathematical	 sense,	 we	 recommend
reading	Appendix	A	first.
	105

Formally,	an	outcome	ω	∈	Ω	is	realized	that	lies	inside	of	the	interval	(-∞,a].
	106

The	 distribution	 function	 F	 is	 also	 referred	 to	 as	 the	 cumulative	 probability
distribution	function	 (often	 abbreviated	 cdf)	 expressing	 that	 the	 probability	 is
given	for	the	accumulation	of	all	outcomes	less	than	or	equal	to	a	certain	value.
	107

For	the	definition	of	monotonically	increasing,	see	Appendix	A.
	108

For	 the	 requirements	 on	 a	 probability	 measure	 on	 an	 uncountable	 space,	 in
particular,	see	the	definition	of	the	probability	measure	in	Chapter	8.
	109

The	concept	of	integration	is	explained	in	Appendix	A.
	110

The	expression	∂F(x)	is	equivalent	to	the	increment	F(x	+	Δx)	-	F(x)	as	Δx	goes
to	zero.
	111

We	assume	that	F	is	continuous	and	that	the	derivative	of	F	exists.	In	Appendix
A,	we	explain	the	principles	of	derivatives.
	112

See	 Chapter	 4	 for	 an	 explanation	 of	 the	 relationship	 between	 histograms	 and
cumulative	relative	frequency	distributions.
	113

Here	we	can	see	that	 integration	can	be	intuitively	thought	of	as	summation	of
infinitely	many	values	f(t)	multiplied	by	the	infinitesimally	small	interval	widths
dt.
	114



The	concept	of	an	integral	is	discussed	in	Appendix	A.
	115

For	a	definition	of	these	terms,	see	Chapter	8.
	116

Sometimes	 the	 density	 of	X	 is	 explicitly	 indexed	 fX.	We	 will	 not	 do	 so	 here,
however,	except	where	we	believe	by	not	doing	so	will	 lead	 to	confusion.	The
same	holds	for	its	distribution	function	F.
	117

In	Chapter	13,	they	will	be	treated	more	thoroughly.
	118

Alternatively,	 we	 often	 say	 the	 first	 moment.	 For	 the	 higher	 orders	 k,	 we
consequently	might	refer	to	the	k-th	moment.
	119

We	will	go	further	into	detail	on	location	parameters	in	Chapter	13.
	120

The	graph	is	depicted	for	x	∈	[0,3.3].
	121

There	 exist	 generalizations	 such	 that	 the	 distributions	 need	 no	 longer	 be
identical.	However,	this	is	beyond	the	scope	of	this	chapter.
	122

For	values	near	0,	the	logarithmic	return	X	is	virtually	equal	to	the	multiplicative
return	R.	Rounding	to	two	decimals,	they	are	both	equal	to	0.01	here.	3For	some
computer	software,	the	probability	will	be	given	as	0.5	due	to	rounding.
	123

This	distribution	was	derived	by	William	Gosset	 in	1908	who	wrote	under	 the
pseudonym	Student	because	his	employer,	Guinness	Brewery	in	Dublin,	did	not
allow	him	to	publish	under	his	own	name.
	124

Technically,	 these	 considerations	 as	 well	 as	 the	 following	 equation	 (11.12),
require	 the	 understanding	 of	 the	 notion	 conditional	 distributions	 that	 is
introduced	in	Chapter	15.	Here	it	will	suffice	to	apply	pure	intuition.
	125

Any	distribution	function	F	can	be	 treated	as	a	rectangular	random	variable	on
[0,1].	Through	the	corresponding	quantiles	of	F	(to	be	introduced	in	Chapter	13),



we	obtain	a	realization	of	the	distribution	F.
	126

We	will	introduce	quantiles	in	Chapter	13.	Quantiles	are	essential	for	generating
realizations	of	probability	distributions.
	127

This	 is	 the	 result	 of	 the	 one-to-one	 relationship	 between	 the	 values	 of	 a
lognormal	and	a	standard	normal	random	variable.
	128

If	one	multiplies	some	number	x	several	times	by	itself,	say	n	times,	to	obtain	the
nth	power	of	x,	that	is,xn,	one	applies	the	nth	root	to	retrieve	x	again,	that	is	n	√xn
=	x.
	129

Standardization	is	a	linear	transform	of	the	random	variable	such	that	its	location
parameter	becomes	zero	and	its	scale	one.
	130

In	 the	 extreme	 value	 theory	 literature,	 these	 distributions	 are	 referred	 to
respectively	as	Type	I,	Type	II,	and	Type	III.
	131

The	 parameters	 for	 the	 normal	 distribution	 are	 μ	 =	 0.14	 and	 σ	 =	 4.23.	 The
parameters	for	the	stable	distribution	are	α	=	1.5,	β	=	0,	σ	=	1,	and	μ	=	0.	Note
that	symbols	common	to	both	distributions	have	different	meanings.
	132

See	Appendix	A	for	an	introduction	of	the	characteristic	function.
	133

Recall	that	a	moment	exists	when	the	according	integral	of	the	absolute	values	is
finite.
	134

One	has	to	keep	in	mind	that	we	are	analyzing	logarithmic	returns.
	135

Technically,	in	contrast	to	the	minimum,	which	is	the	smallest	value	that	can	be
assumed,	the	infimum	is	some	limiting	value	that	need	not	be	assumed.	Here,	we
will	 interpret	 the	notation	inf{x:	F(x)	≥	α}	as	 the	smallest	value	x	 that	satisfies
F(x)	≥	α.
	136



The	Student’s	t-distribution	is	covered	in	Chapter	11.
	137

We	 solved	 this	 integral	 in	 the	 first	 equality	by	 the	 so-called	method	of	partial
integration	that	is	explained	in	any	introductory	calculus	textbook.
	138

The	actual	 computation	of	 the	 integral	 in	 the	 first	 equality	 requires	knowledge
beyond	the	scope	assumed	in	this	book.
	139

The	mathematical	steps	to	arrive	at	the	second	equality	are	too	advanced	for	this
text	and,	hence,	not	necessary	to	be	presented	here.
	140

The	explicit	computation	of	this	integral	is	beyond	the	scope	of	this	text.
	141

The	α-stable	distribution	is	explained	in	Chapter	12.
	142

Do	not	confuse	Var	for	variance	with	VaR,	which	stands	for	value-at-risk.
	143

For	 the	 interested	 reader,	 we	 have	 included	 some	 of	 the	 intermediate
calculations.	They	are,	however,	not	essential	to	understand	the	theory
	144

In	the	second	last	equation	of	the	above	calculations,	we	used	partial	integration.
Note	 that	 this	 is	only	addressed	to	 the	reader	 interested	in	 the	calculation	steps
and	not	essential	for	the	further	theory.
	145

The	explicit	computation	is	beyond	the	scope	of	this	text.	Note	that	the	formula
of	 the	 variance	 is	 stated	 in	 Chapter	 12,	 in	 the	 presentation	 of	 the	 lognormal
distribution.
	146

Note	 that	 distributions	 can	 have	 more	 than	 one	 mode,	 such	 as	 the	 rectangle
distribution.
	147

For	the	computation	of	the	NIG	density	function,	we	greatly	appreciate	the	open-
source	 MATLAB	 code	 provided	 by	 Dr.	 Ralf	 Werner,	 Allianz,	 Group	 Risk
Controlling,	Risk	Methodology,	Koeniginstr.	28,	D-80802	Muenchen.



	148
The	histogram	of	empirical	data	is	explained	in	Chapter	4.
	149

If	k	=	2,	a	tuple	is	referred	to	as	a	pair	while	for	k	=	3,	a	tuple	is	called	a	triple.
	150

More	 generally,	we	 could	write	 (ω1,	…,	ωk)	 to	 indicate	 elementary	 events	 or,
equivalently,	 outcomes.	 But	 since	 we	 are	 only	 dealing	 with	 real	 numbers	 as
outcomes,	we	use	the	notation	(x1,	…,	xk),	which	are	the	values	that	the	random
vector	X	can	assume.
	151

A	set	of	the	form	{(x1,	x2)|	x1	∈	A	and	x2	∈	B	}is	 to	be	understood	as	any	pair
where	the	first	component	is	in	set	A	and	the	second	component	in	set	B.
	152

In	words,	the	notation	(x1,	…,	xk):	x1	≤	a1,	…,	xk	≤	ak	using	the	colon	means	“all
k-tuples	(x1,…,	xk)	such	that	x1	≤	a1,	…,	xk	≤	ak.”
	153

In	the	case	of	k	=	2,	the	volume	is	an	area.
	154

Instead	of	probability	density	function,	we	will	often	simply	refer	to	it	as	density
function.
	155

The	probability	distribution	of	this	return	vector	is	given	by	the	two-dimensional
normal	distribution	to	be	introduced	later	in	the	chapter.
	156

Analogous	 to	 equation	 (14.12),	 we	 mean	 that	 we	 respectively	 sum	 the
probabilities	of	all	events	where	instead	of	using	x1	=	0	in	equation	(14.12),	A1	=
$90,	$100,	or	$110.
	157

The	first	component	of	the	pair	is	the	A1	value	and	the	second	the	A2	value.
	158

The	 joint	 density	 function	 fXi,	 Xj	 can	 be	 retrieved	 from	 the	 k-dimensional	 joint
density	fX	by	integration	over	all	components	from	-∞	to	∞.



	159
A	two-dimensional	random	vector	is	referred	to	as	a	bivariate	random	variable.
	160

For	simplicity,	we	omit	the	dollar	sign	in	the	computation.
	161

More	 specifically,	 this	 correlation	 coefficient	 is	 referred	 to	 as	 the	 Pearson
product	 moment	 correlation	 coefficient	 in	 honor	 of	 Karl	 Pearson,	 the
mathematician/statistician	who	derived	the	formula.
	162

For	a	discussion	vector	transpose	and	determinant,	see	Appendix	B.
	163

The	random	variable	eitX	assumes	complex	values.	Recall	from	Appendix	A	that
complex	 numbers	 that	 contain	 real	 numbers	 are	 always	 of	 the	 form	 a	 +	 i	 ·	 b
where	a	and	b	are	real	numbers	and	i	is	the	imaginary	number.
	164

Here,	we	chose	the	fictitious	expected	asset	returns	μ1	=	0.10	and	μ2	=	1.60.
	165

The	 original	 theory	 was	 presented	 in	 Markowitz	 (1952)	 and	 extended	 in
Markowtiz	(1959).
	166

We	explain	the	gamma	function	in	Appendix	A.
	167

The	inverse	A-1	of	some	matrix	A	is	defined	by	A⋅A−1	=	Ik×k,	that	is,	their	product
yields	 the	 k-dimensional	 identity	 matrix.	 In	 other	 words,	 the	 inverse	 and	 the
original	matrix	have	the	exact	inverse	effect.
	168

A	 complete	 listing	 of	 these	 properties	 can	 be	 found	 in	 a	 standard	 textbook	 on
multivariate	risk	modeling.
	169

Table	15.1	is	an	example	of	a	contingency	table.
	170

Recall	 also	 our	 discussion	 of	 the	 hypergeometric	 distribution	 in	 Chapter	 9,
applicable	to	situations	of	sampling	without	replacement.



	171
See,	 for	 example,	 the	 survey	 report	 of	Greenwich	Associates	 at	 http://www.e-
forex.net/Files/surveyreportsPDFs/Greenwich.pdf.
	172

In	 practice,	 credit	 migration	 tables	 contain	 conditional	 probabilities	 for	 all
possible	transitions	among	all	credit	ratings	over	a	much	shorter	period	of	time,
usually	a	year.
	173

“The	2008	Hedge	Fund	Asset	Flows	&	Trends	Report,”	HedgeFund.net.
	174

We	defined	probability	space	in	Chapter	8.
	175

An	exception	 is	 the	class	of	α-stable	distributions	 introduced	in	Chapter	12	for
which	we	could	neither	present	the	density	nor	distribution	function,	in	general.
	176

This	relationship	is	unique	at	least	for	continuous	random	variables.	However,	as
we	know	from	Chapter	13,	there	might	be	several	quantiles	for	a	certain	level	α
for	a	discrete	random	variable.
	177

The	function	max	{x,y}	is	equal	to	x	if	x	≥	y	and	equal	to	y	in	any	other	case.	The
function	min	{x,y}	is	equal	to	x	if	y	≥	x	and	equal	to	y	in	any	other	case.
	178

Monotonically	 increasing	 functions	 were	 introduced	 in	 Appendix	 A.	 Strictly
monotonically	increasing	functions	are	such	that	they	never	remain	at	a	level	but
always	have	positive	 slope.	The	horizontal	 line,	 for	 example,	 is	monotonically
increasing,	however,	it	is	not	strictly	monotonically	increasing.
	179

For	more	 than	 one	 copula,	 we	 use	 copulae	 even	 though	 in	 the	 literature,	 one
often	encounters	the	use	of	copulas.
	180

See	Chapter	11	for	the	univariate	Student’s	t-distribution.
	181

Of	course,	this	approach	works	only	if	the	marginal	distributions	are	known.
	182

http://www.e-forex.net/Files/surveyreportsPDFs/Greenwich.pdf
http://HedgeFund.net


For	continuous	random	variables,	equation	(16.5)	is	the	case	of	one	component
assuming	 a	 value	 below	 its	 support.	 The	 term	 “support”	 was	 introduced	 in
Chapter	10.
	183

Note	 that	we	 used	 P	 instead	 of	 Γ	 since	 here	 the	 latter	 is	 used	 for	 the	 gamma
function	introduced	in	Appendix	A.
	184

For	a	discussion	on	tail	behavior	of	a	distribution,	see	Chapter	12.
	185

The	superscript	(i)	indicates	the	i-th	drawing.
	186

The	symbol	Φ	denotes	the	standard	normal	distribution	function	of	the	random
components.
	187

The	data	were	obtained	from	http://finance.yahoo.com.
	188

The	 empirical	 relative	 cumulative	 frequency	 distribution	 was	 introduced	 in
Chapter	2.
	189

Note	 the	 cross	 dissecting	 the	 plane	 into	 quadrants	 going	 through	 the	 points
(0,0.5),	(0.5,0),	(1,0.5),	and	(0.5,1).	The	many	observations	(u1,u2)	forming	this
cross-shaped	array	are	associated	with	the	many	observed	return	pairs	virtually
zero	in	one—that	is,	either	GE	or	IBM—or	both	components.
	190

For	 the	 generated	 Student’s	 t	 data,	we	 scaled	 the	 values	 slightly	 to	match	 the
range	of	the	observed	returns.	With	only	four	degrees	of	freedom,	very	extreme
values	become	too	frequent	compared	to	the	original	data.
	191

using	order	statistics	notation,	we	write	X(5)	and	Y(1).
	192

The	probability	P(A|B)	is	called	the	conditional	probability	of	event	A	given	the
event	B.	This	concept	is	explained	in	Chapter	15.
	193

Note	that	because	of	the	invariance	of	the	copula	with	respect	to	standardization,

http://finance.yahoo.com


the	Gaussian	copula	is	identical	for	any	choice	of	parameter	values	of	the	normal
marginal	distributions.
	194

Here	 ρ	 denotes	 the	 correlation	 coefficient	 of	X	 and	Y,	 Φ	 the	 standard	 normal
distribution	function,	and	Φ-1	its	inverse	function.
	195

Here,	tν+1(x)	denotes	the	Student’s	t-distribution	function	evaluated	at	x.
	196

As	 we	 have	 previously	 done,	 the	 stock	 returns	 we	 refer	 to	 are	 actually
logarithmic,	 or	 log-returns,	 obtained	 from	 continuous	 compounding.	 They	 are
computed	as	Xt	=	 ln(Pt)	 -	 ln(Pt-1)	where	 the	Pt	and	Pt-1	 are	 the	 stock	prices	of
today	 and	 yesterday,	 respectively,	 and	 ln	 denotes	 the	 natural	 logarithms	 or
logarithm	to	the	base	e	=	2.7183.
	197

In	most	 (if	 not	 in	 all)	 cases	we	will	 encounter,	 the	 statistics	will	 then	 provide
exactly	k	numbers,	that	is,	one	number	for	each	parameter	component.
	198

For	a	discussion	on	measurabilty,	see	Chapter	8.
	199

The	third	line	follows	since	the	Xi	are	identically	distributed	with	mean	µ.
	200

The	variance	is	given	here	without	further	details	of	its	derivation.
	201

Formally,	 equation	 (17.10)	 is	 referred	 to	 as	 the	 weak	 law	 of	 large	 numbers.
Moreover,	for	the	law	to	hold,	we	need	to	assure	that	the	 	have	identical	finite
variance.	Then	by	virtue	of	 the	Chebychev	 inequality	discussed	below,	we	can
derive	equation	(17.10).
	202

See	Chapter	11.
	203

The	definition	of	positive-semidefinite	matrices	is	given	in	Appendix	B.
	204

For	a	discussion	on	monotonicity,	see	Appendix	A.



	205
Technically,	 after	 we	 have	 found	 the	 parameter	 value	 θ̂	 that	 solves	equation
(17.16),	we	also	have	to	compute	the	second	derivative	evaluated	at	θ̂	and	make
sure	that	it	is	negative	for	the	value	to	be	a	maximum.	We	will	assume	that	this	is
always	the	case	in	our	discussion.
	206

We	 know	 from	 Chapter	 9	 that	 the	 Poisson	 distribution	 approximates	 the
hypergeometric	distribution,	which,	in	turn,	is	an	approximation	of	the	binomial
distribution	for	large	n.
	207

Recall	 that	 the	 parameter	 100·p	 of	 the	 binomial	 distribution	 also	 equals	 the
population	mean	of	Y	and,	hence,	λ.
	208

Note	that	because	of	the	data	replacement,	the	estimates	here	and	in	the	previous
example	for	the	Poisson	distribution	diverge	noticeably.
	209

Here	we	do	not	need	to	differentiate	with	respect	to	σ2	since	it	is	assumed	to	be
known.
	210

Note	 that	 from	 the	 last	 row	 of	 the	 table,	 the	 order	 of	 differentiating	 is	 not
essential.	Consequently,	J	is	actually	a	symmetric	matrix.
	211

In	literature,	to	express	this	dependence	explicitly,	one	occasionally	finds	that	the
probability	 measure	 as	 well	 the	 cumulative	 distribution	 function	 and	 density
function	carry	the	subscript	θ	so	that	the	notations	Pθ(Y	=	y),	Fθ(y),	and	f	θ(y)	are
used	instead.
	212

It	suffices	to	only	require	that	this	holds	P-almost	surely.	For	the	introduction	of
P-almost	sure	events,	see	Chapter	8.
	213

We	assume	here	that	the	daily	GE	stock	return	Y	follows	a	normal	distribution.
	214

The	Student’s	t-distribution	is	introduced	in	Chapter	11.
	215



Note	that	the	interval	bounds	are	rounded.	The	exact	interval	is	slightly	larger.
	216

As	a	matter	of	fact,	for	these	large	degrees	of	freedom,	the	distributions	are	very
close	to	a	normal	distribution.
	217

The	Bernoulli	distribution	is	introduced	in	Chapter	9.
	218

The	binomial	distribution	is	introduced	in	Chapter	9.
	219

This	estimator	 is	biased,	however,	 for	 finite	n,	 in	contrast	 to	 the	bias-corrected
sample	variance	used	previously.
	220

This	distribution	is	introduced	in	Chapter	11.
	221

The	Erlang	distribution	is	introduced	in	Chapter	11.
	222

Note	that	this	design	is	not	a	natural	consequence	of	minimization	of	the	width
of	the	confidence	interval	given	a	specific	confidence	level.
	223

Note	 that	 λ	 has	 to	 be	 greater	 than	 zero	 since	we	 test	 for	 the	 parameter	 of	 the
exponential	distribution.
	224

This	was	introduced	in	Chapter	17.
	225

Recall	from	Chapter	8	that	the	state	space	is	the	particular	set	a	random	variable
assumes	values	in.
	226

The	probability	PI(δ)	could	alternatively	be	written	as	PΘ0	(	d1	)	to	indicate	that
we	erroneously	reject	the	null	hypothesis	even	though	H0	holds.
	227

Theoretically,	this	may	not	be	possible	for	any	test.
	228



The	index	θ1	of	the	probability	is	a	measure	value	P	indicates	that	the	alternative
hypothesis	holds	(i.e.,	the	true	parameter	is	a	value	in	Θ1).
	229

Here	we	have	used	the	0.95-quantile	of	the	Poisson	distribution	with	parameter
20.
	230

We	have	to	keep	in	mind,	though,	that	λ	has	to	be	some	positive	real	number.
	231

Mean-variance	portfolio	optimization	is	explained	in	Chapter	14.
	232

Note	that	in	theory	we	can	compute	these	random	variables	even	though	we	do
not	know	the	variance	σ2.
	233

An	index	 in	parentheses	 indicates	order	statistics	 (i.e.,	 the	 random	variable	X(i)
indicates	the	i-th	smallest	value	in	the	sample).
	234

Tables	with	 values	 for	 the	KS	 distribution	 can	 be	 found	 in	 textbooks	 on	 non-
parametric	 estimation.	 Moreover,	 most	 statistical	 standard	 software	 packages
include	the	KS	test.
	235

For	samples	as	large	as	the	one	used,	0.0159	is	merely	an	approximation	and	the
exact	test	boundary	may	be	slightly	different.
	236

The	likelihood	function	was	introduced	in	Chapter	17.
	237

In	general,	 the	hyperplane	 formed	by	 the	 linear	combination	of	 the	x	 values	 is
always	one	dimension	less	than	the	overall	dimensionality.
	238

The	 arrow	 b0	 is	 dashed	 to	 indicate	 that	 it	 extends	 from	 our	 point	 of	 view
vertically	from	the	point	(0,0,0)	behind	the	hyperplane.
	239

Make	 sure	 you	 are	 familiar	 with	 the	 concept	 of	 transpose	 and	matrix	 inverse
from	Appendix	B.	When	we	 use	 the	matrix	 inverse,	we	 implicitly	 assume	 the



matrix	of	interest	to	be	full	rank,	a	requirement	for	the	inversion	of	a	matrix.
	240

This	 is	 in	 contrast	 to	 a	 range	 or	 interval	 of	 values	 as	 given	 by	 a	 confidence
interval.	For	an	explicit	 treatment	of	point	estimators	and	confidence	 intervals,
see	Chapters	17	and	18.
	241

Statistical	significance	of	some	test	statistic	value	is	explained	in	Chapter	19.
	242

In	total,	the	SST	is	chi-square	distributed	with	n	-	1	degrees	of	freedom.	The	chi-
square	distribution	is	covered	in	Chapter	11.
	243

Alternatively,	one	can	check	whether	the	test	statistic	is	greater	than	the	critical
value,	that	is,	F	>	Fα.
	244

For	instance,	inserting	k	=	1	into	(20.13)	we	obtain

which,	for	large	n,	is	only	slightly	less	than	R2.
245

Typically	one	does	not	have	to	worry	about	all	 these	rather	mathematical	steps
because	 statistical	 software	 performs	 these	 calculations.	 The	 interpretation	 of
that	output	must	be	understood.
	246

The	chi-square	and	the	F-distribution	are	covered	in	Chapter	11.
	247

The	 Lehman	 U.S.	 Aggregate	 Bond	 Index	 is	 now	 the	 Barclays	 Capital	 U.S.
Aggregate	Bond	Index.
	248

The	data	for	this	illustration	were	supplied	by	David	Wright	of	Northern	Illinois
university.
	249

We	 are	 grateful	 to	 Robert	 Scott	 of	 the	 Bank	 for	 International	 Settlement	 for
suggesting	this	illustration	and	for	providing	the	data.
	250



For	 example,	 one	 can	 use	 an	 exponential	 smoothing	 of	 actual	 inflation,	 a
methodology	 used	 by	 the	 Organisation	 for	 Economic	 Co-operation	 and
Development	(OECD).
	251

One	speaks	of	“near	multicollinearity”	if	the	rank	is	less	than	k.
	252

The	 concept	 of	 the	 confidence	 interval	 is	 explained	 in	 Chapter	 18.	 The
confidence	 level	 is	 often	 chosen	 1	 -	 α	 =	 0.99	 or	 1	 -	 α	 =	 0.95	 such	 that	 the
parameter	is	inside	of	the	interval	with	0.95	or	0.99	probability,	respectively.
	253

This	is	based	on	the	assumptions	stated	in	the	context	of	estimation.
	254

Since	they	only	assume	two	different	values,	they	are	also	sometimes	referred	to
as	dichotomous	variables.
	255

See	Chow	(1960).
	256

We	 actually	 selected	 funds	 that	 had	 this	 characteristic	 so	 one	 should	 not	 infer
that	all	mutual	funds	exhibit	this	characteristic.
	257

The	model	 is	described	 in	“Focus	 Issues	Methodology,”	Leverage	World	 (May
30,	2003).	The	data	 for	 this	 illustration	were	provided	by	Greg	Braylovskiy	of
Fridson-Vision.	 The	 firm	 uses	 about	 650	 companies	 in	 its	 analysis.	 Only	 100
observations	were	used	in	this	illustration.
	258

This	dependent	variable	is	not	measured	by	the	typical	nominal	spread	but	by	the
option-adjusted	 spread.	This	 spread	measure	adjusts	 for	any	embedded	options
in	a	bond	such	as	a	bond	being	callable.
	259

Dijkstra	(1995).
	260

See,	for	example,	Rachev	et	al.	(2007).
	261

The	 absolute	 value	 of	 the	 correlation	 coefficient	 should	 be	 used	 since	we	 are



only	interested	in	the	extent	of	linear	dependence,	not	the	direction.
	262

The	 SSEk-i+1	 is	 the	 sum	 of	 square	 residuals	 before	 independent	 variable	 i	 is
discarded.	 After	 the	 i-th	 independent	 variable	 has	 been	 removed,	 the	 sum	 of
square	residuals	of	the	regression	with	the	remaining	k	−	i	variables	is	given	by
SSEk-i.
	263

See	Chapter	17	for	what	is	meant	by	best	linear	unbiased	estimators.
	264

Standardized	residuals	would	be	compared	with	the	standard	normal	distribution,
N(0,1).
	265

The	chi-square	distribution	is	covered	in	Chapter	11.
	266

The	p-value	is	explained	in	Chapter	19.
	267

The	 term	 “conditional”	 in	 the	 title	 of	 the	 two	models	means	 that	 the	 variance
depends	on	or	is	conditional	on	the	value	of	the	random	variable.
	268

This	 pattern	 in	 the	 volatility	 of	 asset	 returns	was	 first	 reported	 by	Mandelbrot
(1963).
	269

See	Bollerslev	(2001).
	270

In	 addition	 to	 ARCH/GARCH	models,	 there	 are	 other	 models	 that	 deal	 with
time-varying	 volatility,	 such	 as	 stochastic-volatility	models,	 which	 are	 beyond
the	scope	of	this	introductory	chapter.
	271

For	convenience,	we	have	dropped	the	error	term	subscript.
	272

This	 simplest	 ARCH	 model	 is	 commonly	 referred	 to	 as	 ARCH(1)	 since	 it
incorporates	exactly	one	 lag-term	(i.e.,	 the	squared	deviation	 from	the	mean	at
time	t	-	1).
	



273
Since	here	we	use	 the	squared	deviations	from	three	 immediately	prior	periods
(i.e.,	lag	terms),	that	is	commonly	denoted	as	ARCH(3).
	274

See	Savin	and	White	(1977).
	275

The	function	f(x)	=	ln	(x)	is	the	natural	logarithm.	It	is	the	inverse	function	to	the
exponential	 function	 g(x)	 =	 ex	 where	 e	 =	 2.7183	 is	 the	 Euler	 constant.	 The
inverse	has	the	effect	that	f(g(x))	=	ln(ex)	=	x,	that	is,	ln	and	e	cancel	each	other
out.
276

The	function	is	f(x)	=	sin(x)	with	x*	=	0.2.
277

Note	that	xL	=	x*-	ε	since	the	distance	between	xL	and	x*	is	the	shorter	one.
278

Note	 that	 only	 the	 dδomain	 of	 f	 is	 of	 interest.	 For	 example,	 the	 square	 root
function	f(x)	=√x	is	only	defined	for	x	≤	0.	Thus,	we	do	not	care	about	whether	f
is	continuous	for	any	x	other	than	x	≤	0.
279

For	a	better	overview,	we	omitted	the	individual	x-ticks	between	-1	and	1,	on	the
horizontal	axis.
280

This	Δ	symbol	is	called	delta.
281

This	vertical	increment	Δy5	is	also	indicated	by	a	vertical	dashed	line.
282

This	 value	 of	 cos(0.5)	=	0.8776	 is	 a	 result	 from	calculus.	We	will	 not	 go	 into
detail	here.
283

In	Figure	A.5,	the	arrow	indexed	f’(1)	points	at	this	tangent.
284

In	Figure	A.5,	the	arrow	indexed	f’(1.571)	points	at	this	tangent.
285

Conditions	under	which	these	limits	exist	are	omitted,	here.
286

We	assume	that	F(T)	is	differentiable,	for	T	>	0.
287



This	need	not	generally	be	true.	But	in	most	cases	and	particularly	those	we	will
be	dealing	with,	this	statement	is	valid.
288

Here	we	have	implicitly	used	the	fact	that	a	vector	is	a	particular	matrix.
289

In	equation	(B.7),	we	presented	the	indexes	of	the	matrix	components	as	follows.
The	first	index	number	indicates	the	row	while	the	second	index	value	indicates
the	column.	Together	they	yield	the	position	in	the	matrix.
290

This	holds	for	any	n	×	n	matrix	with	the	same	features	as	A,	however	in	Rn.
291

We	consider	only	square	matrices;	that	is,	n	×	n	matrices	for	rank	determination.
292

That	is	true	for	all	vectors	of	a	full	rank	matrix.
293

That	is,	they	both	have	to	have	the	same	number	of	components.
294

When	the	dimension	n	is	obvious,	we	simply	write	I.
295

A	parallelepiped	is	 in	three-dimensional	space	such	as	a	prism	and	the	sides	of
the	prism	form	parallelograms.
296

The	indexes	of	 are	to	be	understood	as	follows:	We	are	in	step	i	generating	the
determinant	of	the	matrix	 obtained	from	A	by	discarding	row	i	and	column	j.
297

The	expressions	(−1)	i	+	j	 	are	commonly	referred	to	as	the	minors	of	A.
298

The	same	matrix	S1	is	used	for	 through	 since	they	are	all	3	×	3	matrices.
299

The	word	eigen	is	a	German	word	that	literally	means	“own”	in	English,	but	as	a
prefix	in	this	sense	it	is	better	translated	as	characteristic	or	unique.	Eigenvalues
and	eigenvectors	are	also	referred	to	as	characteristic	values	and	vectors.
300

Without	explicit	mentioning,	we	limit	ourselves	to	right	eigenvectors	since	they
will	suffice	in	the	context	of	this	book.
301

The	⇔	sign	indicates	equivalence	of	expressions.
302



The	solution	β	=	(0,	…,	0)	is	called	a	trivial	solution.
303

A	polynomial	in	x	of	degree	n	is	of	the	form	anxn	+	an-1xn-1	+	…	+	a1x	+	c.
304

By	“	xi	i~id	”,	we	indicate	that	the	random	variables	Xi,	i	=1,2,	…,	n,	follow	the
same	 distribution	 law,	 pairwise	 independently.	 A	 formal	 definition	 of
independence	in	the	context	of	probability	theory	is	explained	in	Chapter	9.	Here
we	refer	to	independence	as	having	the	meaning	“uninfluenced	by.”
305

Sometimes,	 the	 multinominal	 coefficient	 is	 referred	 to	 as	 the	 polynomial
coefficient.
306

Sometimes,	one	finds	that	a	year	is	assumed	to	have	250	days,	only,	instead	of
360	if	the	weekends	are	disregarded.
307

The	 continuously	 compounded	 interest	 r	 translates	 into	 an	 annual	 interest
payment	R	according	to	R	=	e360⋅rf	−	1.
308

Recall	that,	for	Sτ	>	K,	the	maximum	is	Sτ	-	K	and	0,	else.
309

The	ln	denotes	the	logarithm	to	the	base	e	=	2.718.
310

The	use	of	the	standard	normal	cumulative	distribution	function	in	the	last	 two
of	 the	 following	 equations	 results	 from	 the	 fact	 that	 the	 random	 variable	 in
equation	(D.4)	is	standard	normal.	The	last	equation	results	from	the	symmetry
property	of	 the	normal	distribution	explained	 in	Chapter	11	and	computational
rules	for	the	logarithm.
311

Again,	the	last	of	the	following	equations	results	from	the	symmetry	property	of
the	normal	distribution	and	computational	rules	of	the	logarithm.
312

This	 formula	 is	 named	 after	 its	 developers	 Fischer	 Black	 and	Myron	 Scholes
who	 were	 awarded	 the	 1977	 Nobel	 Prize	 in	 Economic	 Science,	 along	 with
Robert	Merton,	 for	 their	work	 in	option	pricing	 theory.	See	Black	and	Scholes
(1973).
313

We	used	the	identity	P(X	>	q)	=	1	-	P(X	≤	q)	for	any	quantile	q	of	a	continuous
random	variable	X.
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