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Preface

This book is based upon lecture notes, used and developed for the course
Analytical Finance I at Milardalen University in Sweden. The aim is to cover
the most essential elements of valuing derivatives on equity markets. This
will also include the maths needed to understand the theory behind the
pricing of the market instruments, that is, probability theory and stochastic
processes. We will include pricing with time-discrete models and models in
continuous time.

First, in Chap. 1 and 2 we give a short introduction to trading, risk and
arbitrage-free pricing, which is the platform for the rest of the book. Then a
number of different binomial models are discussed. Binomial models are impor-
tant, not only to understand arbitrage and martingales, but also they are widely
used to calculate the price and the Greeks for many types of derivative. Binomial
models are used in trading software to handle and value several kinds of
derivative, especially Bermudan and American type options. We also discuss
how to increase accuracy when using binomial models. We continue with an
introduction to numerical methods to solve partial differential equations (PDEs)
and Monte Carlo simulations.

In Chap. 3, an introduction to probability theory and stochastic integration
is given. Thereafter we are ready to study continuous finance and partial
differential equations, which is used to model many financial derivatives. We
focus on the Black—Scholes equation in particular. In the continuous time
model, there are no solutions to American options, since they can be exercised
during the entire lifetime of the contracts. Therefore we have no well-defined
boundary condition. Since most exchange-traded options with stocks as
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underlying are of American type, we still need to use descrete models, such as
the binomial model.

We will also discuss a number of generalizations relating to Black—Scholes,
such as stochastic volatility and time-dependent parameters. We also discuss a
number of analytical approximations for American options.

A short introduction to Poisson processes is also given. Then we study
diffusion processes in general, martingale representation and the Girsanov
theorem. Before finishing off with a general guide to pricing via Black—Scholes
we also give an introduction to exotic options such as weather derivatives and
volatility models.

As we will see, many kinds of financial instrument can be valued via a
discounted expected payoff of a contingent claim in the future. We will denote
this expectation E[X(7)] where X(7) is the so-called contingent claim at time
T. This future value must then be discounted with a risk-free interest rate, 7, to
give the present value of the claim. If we use continuous compounding we can
write the present value of the contingent claim as

X(1) = e "TEX(T)).

In the equation above, 7'is the maturity time and 7 the present time.

Example: 1f you buy a call option on an underlying (stock) with maturity
T"and strike price K, you will have the right, but not the obligation, to buy the
stock at time 7, to the price K. If §(2) represents the stock price at time ¢, the
contingent claim can be expressed as X(7) = max{S(7) — K, 0}. This means
that the present value is given by

X(1) = e TUEX(T)) = e T Elmax{S(T) ~ K. 0}].

The max function indicates a price of zero if K > S(7). With this condition
you can buy the underlying stock at a lower (same) price on the market, so the
option is worthless.

By solving this expectation value we will see that this can be given
(in continuous time) as the Black—Scholes—Merton formula. But generally
we have a solution as

X(r) =5(0y0,(S(T) > K) — e " KQ,(S(T) > K),

where Q;(S(7) > K) and Qx(S(7) > K) make up the risk neutral probability
for the underlying price to reach the strike price X in different “reference
systems”. This can be simplified to the Black—Scholes—Merton formula as
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X(1) =SO0)N(dy) —e " TIKN(d).

Here d; and d, are given (derived) variables. N(x) is the standard normal
distribution with mean 0 and variance 1, so V(d,) represent the probability for
the stock to reach the strike price K. The variables 4; and &, will depend on the
initial stock price, the strike price, interest rate, maturity time and volatility.
The volatility is a measure of how much the stock price may vary in a specific
period in time. Normally we use 252 days, since this is an approximation of
the number of trading days in a year.

Also remark that by buying a call option (i.e., going long in the option
contract), as in the example above, we do not take any risk. The reason is that
we cannot lose more money than what we invested. This is because we have the
right, but not the obligation, to fulfil the contract. The seller, on the other hand,
takes the risk, since he/she has to sell the underlying stock at price X So if he/she
doesn’t own the underlying stock he/she might have to buy the stock at a very
high price and then sell it at a much lower price, the option strike price K.
Therefore, a seller of a call option, who have the obligation to sell the underlying
stock to the holder, takes a risky position if the stock price becomes higher than
the option strike price.
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1

Trading Financial Instruments

Financial instruments can be traded on an exchange or over the counter
(OTC). Exchange trades securities are standardized instruments. A clearing-
house in connection to a marketplace clears most securities. In such a way the
clearinghouse is counterparty to both the seller and the buyer.

1.1 Clearing and Settlement

Clearing is the process of settling a trade including the deposit of any necessary
collateral with the clearing organization and exchange of any necessary cash
and paperwork. The term clearing usually implies that the clearing organiza-
tion becomes a party in contracts, rather than merely putting other parties in
contact with each other. For example, A wishes to sell to B. In practice, A sells
to C, the clearinghouse, and B buys from C.

Settlement is used to refer to the completion of any required payment
between two parties to fulfil an obligation. Settlement also refers to the process
by which a trade is entered onto the books and records of all the parties to the
transaction including brokers or dealers, a clearinghouse, and any other
financial institution with a stake in the trade.

How settlement and clearing take place depends on what kinds of instru-
ment are traded and the type of trade process, for example at an exchange or
over the counter.

© The Author(s) 2017 1
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Fig. 1.1 The flows in a typical trade between two parties who place their orders to
an exchange

1.1.1 Exchange Traded Securities

In Fig. 1.1 we illustrate a typical trade with exchange-traded instruments.

As seen in Fig. 1.1 the two parties are anonymous to each other. The trade-

flow follow includes the following steps:

N —

. The buyers place their orders in the market.
. The sellers place their orders in the market. Orders are offers to either buy

or sell a particular security at a specified price.

. Buy orders are matched with suitable sell orders. This may be done

electronically or by traders making agreements verbally in a trading pit

. When a trade has been agreed, confirmations are sent to each party,

confirming the details of the trade

. At the same time as sending confirmation to each party, the exchange

notifies the depository of the transaction

. Delivery vs. payment. The depository sends instructions for money to be

transferred from one account to another. This may be in the form of
SWIFT transfers between accounts held at banks or the depository may
have its own money holding accounts. As this transaction is confirmed,
ownership of the securities is transferred.
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Table 1.1 Service providers on some exchanges

Exchange services Depository services Connected bank accounts
NasdaqOMX VPC VPC RIX account and other
(Sweden) (Vardepappercetralen) accounts connected to the
Central Banks RIX clearing
system
London Stock CREST CREST and other accounts
Exchange
EUREX EUREX EUREX

7. Payments are made simultaneously with
8. Delivery of the securities. The credit risk has then been minimized.

In Table 1.1 we show the different service providers at the Sweden Stock
and Derivative Exchange, at London Stock Exchange and at EUREX.

A depository is an organization that acts as a custodian of securities on behalf
of account holders. When Party 1 buys a security from Party 2, instead of
physically transferring the securities, the depository simply moves ownership
from one account to another. This is similar to the way a bank transfers money
from one account to another without physically moving any cash.

1.1.2 Exchange-Traded Derivatives

In Fig. 1.2 we illustrate a typical trade with exchange-traded derivatives.
As seen in Fig. 1.2 the trade-flow follow of exchange-traded derivatives
includes the following steps:

The buyers place their order in the market.
. The sellers place their order in the market. Orders are offers to either buy or
sell a particular derivative at a specified price.
3. Buy orders are matched with suitable sell orders. This may be done
electronically or by traders making agreements verbally in a trading pit.
4. When a trade has been agreed, the exchange will confirm a separate

N —

agreement with each party.

With exchange-traded derivatives, credit risks occur for each party; for the
buyer or seller of the derivative there is a risk that the exchange could default
on its obligations. As the exchange does not take a trading position but merely
acts as an intermediary this risk is very small.
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Fig. 1.2 The flows in a typical derivative trade between two parties on an
exchange

For the exchange there is a risk that each party to a trade could default on its
obligations. To minimize this risk, margining agreements are used. An initial
margin agreement requires that the counterparty deposit collateral in the form
of cash or securities with the exchange (or sometimes a third party). The size of
the margin is usually related to the total size of the counterparty’s obligations
(or potential obligations) to the exchange. A variation margin agreement
requires cash payments to be made, typically at the end of each day so that
outstanding long and short positions are marked to the market. This means
that, as the market price of a derivative varies, payments are made to reflect
that day’s gain or loss and prevent any debt or credit building up over time.

The management of margin payments and all other administration is
handled by the exchange or a clearinghouse used by the exchange. Other
administrative tasks include:

* Exercise/assignment
When for example an option buyer exercises their option, this action must
be assigned to the seller of a matching option. The selection of counterparty
is made (at random) by the exchange.

* Expiry
When derivatives expire, margining agreements and procedures must be
terminated.

* New contracts
The exchange is responsible for defining new contracts.
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Fig. 1.3 The flows in a typical trade between two parties on an exchange

1.1.3 OTC-Traded Securities

In Fig. 1.3 we illustrate a typical trade on OTC-traded securities.
As seen in Fig. 1.3 the trade-flow follow of OTC-traded securities include
the following steps:

1. Buyers and sellers negotiate a trade over the telephone. Conversations are
tape recorded to resolve any possible disputes as to what was agreed.

2. When a trade has been agreed, both parties send a confirmation to the
depository of

— The instrument traded, usually defined by a standard code such as ISIN
code or VKN number or similar

— The quantity

— The agreed price

Dates are usually determined by the choice of instrument according to
convention.

3. The depository checks that confirmations from both parties carry the same
information and then arrange for delivery versus payment.

4. The payment is made.

5. Ownership of the securities is transferred at the same time as payment
is made.
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There are several trading codes. The most common is the International
Securities Identification Number (ISIN) which uniquely identifies a security.
Securities for which ISINs are issued include bonds, commercial paper, debt
securities, futures, shares, options, warrants and other derivatives. The ISIN
code is a 12-character alpha-numerical code that consists of three parts, a
two-letter country code, a nine-character alpha-numeric national security
identifier, and a single check digit. International securities cleared through
Clearstream or Euroclear, which are worldwide, use XS as the country code.

In the United Kingdom and Ireland, SEDOL, which stands for Stock
Exchange Daily Official List, are used for clearing purposes. The numbers
are assigned by the London Stock Exchange on request by the security issuer.
SEDOL: are also part of the security’s ISIN. The SEDOL Masterfile (SMF)
provides reference data on millions of global multi-asset securities each
uniquely identified at the market level.

A CUSIP is a nine-character alphanumeric code that identifies a North
American financial security for the purposes of clearing and settlement. The
CUSIP system is owned by the American Bankers Association, and is operated
by S&P Capital 1Q.

The Wertpapierkennnummer (WKN, WPKN, WPK or simply Wert), is a
German securities identification code. It comprises six digits or capital letters
(excluding I and O) and no check digit. WKNs may become obsolete in the
future, since they may be replaced by ISING.

1.1.4 OTC-Traded Derivatives

In Fig. 1.4 we illustrate a typical trade on OTC-traded derivatives.
As seen in Fig. 1.4 the trade-flow follow of OTC-traded derivatives include
the following steps:

1. Buyers and sellers negotiate a trade over the telephone. Conversations are
tape recorded to resolve any possible disputes as to what was agreed.

2. When a trade has been agreed, the parties must confirm their agreement in
writing. This process will begin typically with a signed contract based on a
standard contract, for example one set up by the International Swaps and
Derivatives Association (ISDA) (see http://www.isda.org/).

3. All payments and administration (including daily mark to market payments
in some cases) must be managed by each party. This may involve a
considerable amount of work and may continue for 10-25 years in some
cases.
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Fig. 1.4 The flows in a typical trade between two parties on OTC derivatives

Payments are usually made in the form of SWIFT transfers. SWIFT stands for
the Society for Worldwide Interbank Financial Telecommunications. It is a
messaging network that financial institutions use to securely transmit infor-
mation and instructions through a standardized system of codes.

With OTC derivatives there is a bilateral credit risk. If one party should
default, there is little to protect the other party. Various methods exist to
reduce the amount of credit exposure, such as netting agreements.

The principle of netting agreements is that when a party fails to honor its
obligations due to bankruptcy, then any losses you incur as a result can be
offset by any obligations you have toward that party, within the terms of the
agreement. This means that two parties can do many trades with each other,
but the total credit liability is related to the net position of one party to the
other instead of the total credit amount of the defaulting party. Standard
agreements to facilitate this are prepared by ISDA, for example.

1.2 About Risk

We will not discuss financial risk in general in this book, but, since we will
calculate different risk measures used on the market we will briefly describe the
most common risks in the perspective of a bank or another financial institu-
tion. Risk can be divided into several main classes:

Market Risk refers to the risk that changes in interest rates, exchange rates
and equity prices will lead to a decline in the value of a bank’s net assets,
including derivatives.

Liquidity Risk refers to the risk that a bank cannot fulfil its payment
commitments on any given date without significantly raising the cost. Most
institutions face two types of liquidity risk. The first relates to the depth of
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markets for specific products and the second to funding the financial trading
activities. When dealing with OTC market, risks may also rise from the early
termination of contracts.

Currency Risk refers to the risk that the value of the assets, liabilities and
derivatives may fluctuate due to changes in exchange rates.

Interest Rate Risk refers to the risk that the value of the assets, liabilities and
interest-related derivatives may be negatively affected by changes in interest
levels.

Equity Price Risk refers to the risk that the value the holdings of equities and
equity-related derivatives may be affected negatively as a consequence of
changes in prices for equities.

Credit Risk is defined as the risk that the counterparty fails to meet the
contractual obligations and the risk that collateral will not cover the claim.
Credit risk also arises when dealing in financial instruments, but this is often
called counterparty risk. The risk arises as an effect of the possible failure by the
counterparty in a financial transaction to meet its obligations. This risk is often
expressed as the current market value of the contract adjusted with an add-on
for future potential movements in the underlying risk factors. Therefore,
counterparty risk usually refers to trading activities. Connected to counter-
party risk is also sovereign risk, which is the risk that a government action will
interfere with repayment of a loan or security. This is measured by the past
performance of the nation and present default rate and political, social and
economic conditions. Credit risk also includes concentration risk, which refers,
for example, to large exposures or concentrations in the credit portfolio to
certain regions or industries.

Correlation Risk refers to the probability of loss from a disparity between the
estimated and actual correlation between assets, currencies, derivatives, instru-
ments or markets.

Model Risk refers to the possibility of loss due to errors in mathematical
models, often models of derivatives. Since these models contain parameters
such as volatility, we can also speak of parameter risk, volatility risk and so forth.

Operational Risk refers to the risk of losses resulting from inadequate or
failed internal processes or routines, human error, incorrect systems or external
events.

Legal or Compliance risk refers to the risk of legal consequences, major
economic damage or the loss of reputation that a bank could suffer due to
failure to comply with laws, regulations or other external policies and instruc-
tions. This also includes internal rules such as ethical guidelines that govern
how the group conducts its operations.
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1.2.1 Risk and Randomness

Before looking at the mathematics of risk we should understand the difference
between risk, randomness and uncertainty. When measuring risk we often use
probabilistic concepts. But this requires having a distribution for the random-
ness in investments, a probability density function, for example. With enough
data or suitable model we may have a good idea of the distribution of returns.
However, without the data, or when embarking into unknown territory, we
may be completely in the dark as so the probabilities. This is especially true
when looking at scenarios that are incredibly rare or have never even happened
before. For example, we may have a good idea of the results of an alien
invasion—after all, many scenarios have been explored in the movies—but
what is the probability of this happening? When you do not know the
probabilities then you have uncertainty.
We have two situations of how to use probabilities:

1. Where the probabilities that specific events will occur in the future are
measurable and known—that is, where we have randomness but with

known probabilities. This can be further divided:

i. A priori risk, such as the outcome of the roll of a dice, tossing coins, etc.
ii. Estimable risk, where the probabilities can be estimated through statis-
tical analysis of the past, for example, the probability of a one-day fall of

10 % or more in a stock index.

2. With uncertainty the probabilities of future events cannot be estimated or
calculated.

In finance we tend to concentrate on risk with probabilities that we are able to
estimate. We then have all the tools of statistics and probability for quantifying
various aspects of that risk. In some financial models we do attempt to address
the uncertain, for example the uncertain volatility. Here volatility is uncertain,
is allowed to lie within a specified range, but the probability of volatility having
any value is not given. Instead of working with probabilities we now work with
worst-case scenarios. Uncertainty is therefore more associated with the idea of
stress-testing portfolios.

A starting point for a mathematical definition of risk is simply standard
deviation. This is essential because of the results of the central limit theorem: if
you add up a large number of investments what matters as far as the statistical
properties of the portfolio are concerned are just the expected return and the
standard deviation of individual investments, and the resulting portfolio
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returns are normally distributed. As the normal distribution is symmetrical
about the mean, the potential downside can be measured in terms of the
standard deviation.

However, this is only meaningful if the conditions for the central limit
theorem are satisfied. For example, if we only have a small number of
investments, or if the investments are correlated, or if they don’t have finite
variance, then standard deviation may not be relevant.

In the following, when we say risk we mean the risk in volatility terms—that
is, the change in the underlying stock when we calculate the value of a
derivative.

1.3 Credit and Counterparty Risk

Credit risk managers try to estimate the likelihood of default by the borrower
or counterparty due to a default, losses in loans, bonds or other obligations that
will not be repaid on time or in full. The counterparty can also fail to perform
an obligation to the institution trades in OTC derivatives.

The likelihood of this happening is measured through the repayment
record/default rate of the borrowing entity, determination of market condi-
tions, default rate, for example.

With loans or bonds, the amount of the total risk is determined by the
outstanding balance that the counterparty has yet to repay. However, the
credit risk of derivatives is measured as the sum of the current replacement cost
of a position plus an estimate of the firm’s potential future exposure from the
instrument due to market moves and what it may cost to replace the position
in the future.

Senior managers must establish how the firm calculates replacement cost.
The Basel Committee indicates that it prefers the current mark-to-market
price to determine the cost of current replacement. An alternative approach
would be to determine the present value of future payments under current
market conditions.

The measurement of potential future exposure is more subjective as it is
primarily a function of the time remaining to maturity and the expected
volatility of the asset underlying the contract. The Basel Committee for
Banking Supervision indicates that it prefers multiplying the notional principal
of a transaction by an appropriate add-on factor/percentage to determine the
potential replacement value of the contract (simply percentages of the notional
value of the financial instrument).
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Senior management may also determine whether this potential exposure
should be measured by using simulation (or other modelling techniques such
as Monte Carlo, probability analysis or option valuation models). By model-
ling the volatility of the underlying stock price it is possible to estimate an
expected exposure.

Credit risk limits are part of a well-designed limit system. They should be
established for all counterparties with whom an institution conducts business,
and no dealings can begin before the counterparty’s credit limit is approved.
The credit limit for counterparty must be aggregated globally and across all
products (i.e. loans, securities, derivatives) so that a firm is aware of its
aggregated exposure to each counterparty. Procedures for authorizing credit
limit excesses must be established and serious breaches reported to the super-
visory board. These limits should be reviewed and revised regularly. Credit
officers should also monitor the usage of credit risk by each counterparty
against its limits.

Once a counterparty exceeds the credit exposure limits, no additional deals
are allowed until the exposure with that counterparty is reduced to an amount
within the established limit.

Senior managers should try to reduce counterparty risks by putting in place
master netting as well as collateral agreements. Under a master netting agree-
ment, losses associated with one transaction with a counterparty are offset
against gains associated with another transaction so that the exposure is limited
to the net of all gains and losses related to the transactions covered by the
agreement.

The Basle Committee for Banking Supervision estimates that netting
reduces current (gross) replacement value on average by 50 % per counter-
party. However, board members, senior management and line personnel must
be aware that netting agreements are not yet legally enforceable in several
European and Asian countries, a factor which they must take into consider-
ation in their daily dealings with counterparties in these countries; not doing so
will engender a false sense of security. The forms of collateral generally
accepted are cash and government bonds.

Another type of counterparty risk is pre-settlement risk. This is the risk that a
counterparty will default on a forward or derivative contract prior to settle-
ment. The specific event leading to default can range from disavowal of a
transaction, default of a trading counterparty before the credit of a clearing-
house is substituted for the counterparty’s credit, or something akin to Herstart
risk, where one party settles and the other defaults on settlement.
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1.4 Settlement Risk

Settlement risk is related to credit risk and is defined as the risk that an
expected settlement payment on an obligation will not be made on time due
to bankruptcy, inability or time zone differential. A common example involves
bilateral obligations in which one party makes a required settlement payment
and the counterparty does not.

Settlement risk provides an important motivation to develop netting
arrangements and other safeguards. When related to currency transactions,
the term Herstatt risk is sometimes used. This is the risk that one party to a
currency swap will default after the other side has met its obligation, usually
due to a difference in time zones. The settlement of different currencies in
different markets and time zones from the moment the sold currency becomes
irrevocable until the purchased currency receipt is confirmed. The two parties
are paid separately in local payment systems and may be in different time
zones, resulting in a lag time of three days and mounting exposure that may
exceed a party’s capital. The risk is reduced by improved reconciliation and
netting agreements.

The Herstatt risk is named after an incident in Bankhaus Herstatt, a private
German bank on June 26, 1974. The bank was then closed by German
financial regulators (Bundesaufsichtsamt fiir das Kreditwesen) who ordered it
into liquidation after the close of the interbank payments system in Germany.

Prior to the announcement of Herstatt’s closure, several of its
counterparties had irrevocably paid approximately $620 million in Deutsche
Marks to Herstatt. Upon the termination of Herstatt’s at 10.30 a.m.
New York time, 3.30 p.m. in Frankfurt, Herstatt’s New York correspondent
bank suspended outgoing US dollar payments from Herstatt’s account.

This action left Herstatt’s counterparty banks exposed for the full value of
the Deutsche Mark deliveries made. Moreover, banks which had entered into
forward trades with Herstatt not yet due for settlement lost money in replacing
the contracts in the market, and others had deposits with Herstatt.

1.5 Market Risk

Some of the risks above can be aggregated into a more general risk, the market
risk. Market risk deals with all kinds of change in market data that affect prices
of assets contained in a portfolio. This includes stock, bond, commodity and
other prices. It also includes market data such as interest rates and exchange
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rates, volatilities and liquidity. Such changes in prices can destroy a financial
institution’s capital base.

Market risk is different from an asset’s mark-to-market calculation, which is
the current value of the financial instruments. Market risk represents what we
could lose if prices or volatility change in the future. Therefore, we need to
measure the market risks in portfolio of financial instruments. For active
portfolios we need to calculate their exposure on a daily basis, while those
with small portfolios could be analysed less frequently.

The total market risk can be measured as the potential gain or loss in a
portfolio that is associated with price movements of given probability over a
specified time horizon. This is the Value-at-Risk (VaR) approach. VaR can be
measured by different models, as we will discuss in Chapter 2. The chosen
model is a decision taken by the board of directors on the advice of senior
managers and depends on requirements from the supervisory authorities.

Interest rate risk is related to market risk and arises from changes in interest
rates. This will result in financial losses related to asset/liability management. It
is measured by past and present interest rates and market volatility. It is
controlled by hedging the assets and liabilities by swaps, futures and options,
and accurately makes changes in possible future scenarios.

Foreign exchange risk is also a part of market risk. This is the risk that changes
in the foreign exchange rate will cause assets to fall in value or that foreign
exchange denominated liabilities will rise in expense. It is measured by
marking-to-market the value of the asset, or increase of the liability. This is
done by actual movement of the exchange rate between the currency of the
asset/liability and the currency of the booked or pending asset or liability. It is
controlled by hedging the assets and liabilities by swaps, futures or options that
can changes possible future scenarios.

1.6 Model Risk

Model risk is a topic of great, and growing, interest in the risk management
arena. Financial institutions are obviously concerned about the possibility of
direct losses arising from mismarked complex instruments. They are becoming
even more concerned about the implications that evidence of model risk
mismanagement can have on their reputation, and their perceived ability to
control their business.

In July 2009, the Basel Committee on Banking Supervision issued a
directive requiring that financial institutions have to quantify their model
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risk. The committee further stated that two types of risk must be taken into
account:

The model risk associated with using a possibly incorrect valuation, and the risk
associated with using unobservable calibration parameters.

On the surface, this seems to be a simple adjustment to the market risk
framework, adding model risk to other sources of risk that have already been
identified within Basel II. In fact, quantifying model risk is much more
complex because the source of risk (using an inadequate model) is much
harder to characterize.

Financial assets can be divided into two categories. In the first category, we
find the assets for which a price can be directly observed in the financial
marketplace. These are the liquid assets for which there are either organized
markets (e.g. futures exchanges) or a liquid OTC market (e.g. interest rate
swaps). For the vast majority of assets, however, price cannot be directly
observed, but needs to be inferred from observable prices of related instru-
ments. This is typically the case for financial derivatives whose price is related
to various features of the primary assets, depending on a model. This process is
known as marking-to-model, and involves both a mathematical algorithm and
subjective components, thus exposing the process to estimation error.

There are several distinct possible meanings for the expression model risk.
The most common one refers to the risk that, after observing a set of prices for
the underlying and hedging instruments, different but identically calibrated
models might produce different prices for the same exotic product.

Since, presumably, at most one model can be “true”, this would expose the
trader to the risk of using a mis-specified model. Sidenius (2000) did a research
of model risk in the interest-rate area where he found that significantly
different prices were obtained for exotic instruments after the underlying
bonds and (a subset of) the underlying plain-vanilla options were correctly
priced.

These are interesting questions, and they are the most relevant ones from
the trader’s perspective. Selling optionality too cheaply is likely to cause an
irregular but steady bleeding of money out of the book.

The most relevant question is, if the price of a product cannot be frequently
and reliably observed in the market, how can we give a price to it between
observation times in such a way as to minimize the risk that its book-and-
records value might be proven to be wrong?

In pricing models, model risk is defined as:
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The risk arising from the use of a model which cannot accurately evaluate market
prices.

In risk measurement models, model risk is defined as:
The risk of not accurately estimating the probability of future losses.
Rebonato (2001) uses the following definition:

Model risk is the risk of occurrence of a significant difference between the mark-
to-model value of a complex and/or illiquid instrument, and the price at which
the same instrument is revealed to have traded in the market.

If reliable prices for all instruments were observable at all times, model risk in
valuation would not exist. On the other hand, if different models are used, the
hedging will differ. An example of this is when rates get close to zero or below,
the standard Black model for swaptions, caps and floors cannot be used. Then,
a model with normal distributed forward rates must be used to allow zero or
negative interest rates.

Sources of model risk in pricing models include:

* use of wrong assumptions,

* errors in estimations of parameters,

e errors resulting from discretization, and
* errors in market data.

Sources of model risk in risk measurement models include:

o the difference between assumed and actual distribution', and
* errors in the logical framework of the model.

Derman (1996) refers to the following types of model risk:

* inapplicability of modelling,

° incorrect model,

e correct model but incorrect solution,
* correct model but inappropriate use.

! For instance, the Black—Scholes model assumes that underlying asset prices fluctuate according to a
lognormal process, whereas actual market price fluctuations do not necessarily follow this process.
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* badly approximated solutions,
* software and hardware bugs,
e unstable data.

Complex financial products require sophisticated financial engineering capa-
bilities for proper risk control, including accurate valuation, hedging, and risk
measurement.

Model risk has often been associated with complex derivatives products, but
a deeply out-of-the money call and an illiquid corporate bond can both present
substantial model risk. What both these instruments have in common is that
the value at which they would trade in the market cannot be readily ascertained
via screen quotes, intelligence of market transactions or broker quotes.

Model risk arises not because of a discrepancy between the model value and
the “true” value of an instrument (whatever that might mean), but because of a
discrepancy between the model value and the value that must be recorded for
accounting purposes.

Model validation is usually meant to be the review of the assumptions and
of the implementation of the model used by the front office for pricing deals,
and by finance to mark their value.

The absence of computational mistakes is clearly a requirement for a valid
valuation methodology. Rejecting a model because ‘it does not allow for
stochastic volatility’ or because ‘it neglects the stochastic nature of
discounting’ can be totally inappropriate, from a risk perspective. If we require
that a product should be marked to market, using a more sophisticated model
can be misguided.

From risk perspective the first and foremost task in model risk management
is identification of the model (“right” or “wrong” as it may be) currently used
by the market in order to arrive at the observed traded prices. In order to carry
out this task, it is very important to be able to use reverse-engineering to match
observed prices using a variety of models in order to “guess” which model is
currently most likely to be used in order to arrive at the observed traded prices.
In order to carry out this task we will need a variety of properly calibrated
valuation models, and information about as many traded prices as possible.

The next important task is to surmise how today’s accepted pricing meth-
odology might change in the future. Notice that the expression ‘pricing
methodology’ makes reference not just to the model, but also to the valuation
of the underlying instruments, to its calibration, and possibly, to its numerical
implementation. We should not assume that this dynamic process of change
should necessarily take place in an evolutionary sense towards better and more
realistic models and more liquid and efficient markets. An interesting question
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could be: “How would the price of a complex instrument change if a particular
hedging instrument (say, a very-long-dated FX option) were no longer avail-
able tomorrow?”

1.6.1 Some Examples of Model Risk Failure
Index Swaps

Index swaps are swap transactions in which floating interest rates are based on
indices other than LIBOR. It is therefore necessary to manage the position and
the risks in line with the relevant index. This requires a full understanding of
various types of indices, as well as the structure of index swap markets.

A certain financial institution accumulated a substantial position in a special
type of index swaps. At the time, the market participants were using several
types of models for the valuation of this index swap. One financial institution
began trading in this product using what was recognized at the time as the
leading mainstream model. As the market for this index swap shrank, some
participants left the market. Thereafter, another model, which was being used
by some of the remaining participants, became the dominant model in the
market.

While maintaining a very large position in this swap index, this financial
institution fell behind in research of the most dominant pricing model for this
product in the market. Consequently, it failed to recognize that a switch had
been made in the dominant model until adjusting its position. As a result, it
registered losses amounting to several billions when it finally adopted the new
model and made the necessary adjustments in its current price valuations.

Caps

Caps are generally an OTC product with relatively high liquidity. The broker
screen displays the implied volatility for each strike price and time period as
calculated for cap prices using the Black model. The volatility exhibits a certain
skew structures by strike prices and by time periods. To calculate the current
price of any given cap, the volatility corresponding to the time period and
strike price of the cap is first estimated (interpolated) on the basis of the skew,
which is normally observed in the market.

A certain Japanese financial institution was engaged in German cap trans-
actions. At the time, the number of time periods and strike prices for which
volatility could be confirmed on the screen was relatively small compared with
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yen caps. The estimation of volatility was particularly difficult for caps with
significant differences between market interest rates and strike interest rates.

The financial institution was using the Black model as its internal pricing
model for caps. This institution uses the broker-screen volatility of the closest
strike price as the volatility of far-out strikes. Some cap dealers attempted to
capitalize on the inevitable difference between market prices and valuation
prices by trading aggressively in far-out strikes. This strategy generated internal
valuation profits.

The financial institution fell behind in improving its pricing model and
failed to minimize the gap between market prices and valuation prices.
Continued cap dealer transactions under an unimproved model resulted in
the accumulation of substantial internal valuation profits. However, when the
internal pricing model was finally revised, the financial institution reported
several tens of billion in losses.

LCTM

Long-term capital management (LCTM) was a hedge fund in Greenwich, Con-
necticut that used absolute-return trading strategies combined with high
financial leverage to accumulated a credit spread position, which combined
emerging bonds, loans and other instruments. The position was structured to
generate profits as spreads narrowed. LTCM suffered huge losses as a result of
the sudden increase in spreads following the Russian crisis in 1998.

Various reasons have been given for these huge losses. For instance, LTCM
was unable to hedge or cancel its transactions because its liquidity had dried up
in the market. On this point, it has been said that LTCM had not taken
liquidity into account when building its model. Others have pointed to
internal problems in LTCM’s risk measurement model. Specifically, problems
with wrong assumptions concerning the distribution of underlying asset prices
and errors in data used in estimating the distribution of underlying asset prices
have been pointed out. Both would lead to fatal errors in risk measurement.

1.6.2 Measurement of Model Risk

If we try to get any kind of measure for model risk to be formulated in a
mathematical perspective, we can use the analogy with the VaR method for
computing market risk. The calculation of VaR involves two steps:
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¢ The identification of the market risk factors and the estimation of the
dynamic of these risk factors (the classical VaR framework assumes a
multivariate log-normal distribution for asset prices).

* The definition of a risk measure, for example the 99.5 % confidence
interval for a 10-day holding period.

What would be the equivalent when considering model risk? In this case, the
risk factors include the risk of model mis-specification (leaving out important
sources of risk, mis-specifying the dynamic of the risk factors), and the risk of
improper calibration, even though the chosen model may be perfectly cali-
brated to a set of liquid instruments.

The second step involves defining a reasonable family of models over which
the risk should be assessed. The family of models is restricted to the models
that can be precisely calibrated to a set of liquid instruments. This constraint
alone still defines such a large set of models than further restrictions need to be
applied. Intuitively, one needs to define a meaningful notion of “distance”
between models, in order to define a normalized measure of model risk.

Let 7 be a set of liquid instruments, with H,c; being the corresponding
payoffs, and Cjc; the mid-market prices, with C; € [C ibid, C ,-‘“k] . Let Q be a set
of models, consistent with the market prices of benchmark instruments

QeQ = E2[H)| e [CP,C], Viel

Define next the upper and lower price bounds over the family of models, for
a payoff X

7X)= sup EY%[X], z(X)= inf EY%[X]

j:l,.”,n j=1,,,,,n
The risk measure is finally the range of values caused by model uncertainty:
o = w(X) — (X)

The crucial aspect of this procedure is the definition of a suitable set, Q.
There are many ways of defining it:

* Choose a class of models, and construct a set of models by varying some
unobservable parameters, while ensuring that each model calibrates to the
set of benchmark instruments.
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¢ Select several types of model (local volatility, stochastic volatility, etc.), and
calibrate each model to the same set of benchmark instruments.

It is clear that the variability of models forming the set Q, needs to be
normalized. In the same way as one computes “99.5 % VaR for a 10 day
holding period”, one needs a normalizing factor to qualify model risk. In other
words, one needs to define the aforementioned notion of “distance” between
models.
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Time-Discrete Models

2.1 Pricing via Arbitrage

To study arbitrage-free pricing, we start with a simple financial market
containing two instruments, a money—market account instrument (in some
literature referred as a bond) B and another security S. The other security can
be a stock (equity) or some kind of derivative, such as an option. We want to
study a portfolio (B, S) today (at time #= 0) and at a future time # The money-
market account has the following simple property

BO)=1, B()=1+r.

This means that the value of the money-market account instrument today is
1 (in some currency) and at the future time # the value is given by 1 + 7, where
r is the risk-free interest rate. An important property of the money-market
account is that the interest rate is the same for borrowing as for lending.

On this market, two events may occur at time # @; and ®,. We say that we
have a sample space Q with two possible outcomes Q = {w;, @,}. On event w,
the price of the security § will be $;(#) and on @, the price of § will become
S»(#). For simplicity, no other outcomes (events) exist.

We then have the following situation in matrix representation’

This is only an abstract representation of the situation with two events that might be true in the future.
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<§$>‘<§% i%><$>‘

As we know, the only outcome for Bat time #is B(#) = 1 + r, which simplify the

first equation
(So) = (54 5) (o)

The first equation can be written as
1=B0)=1+rw +(1+rw =q,+q,

where we have defined ¢; and g,. Since the sum of ¢; and ¢, is equal to 1, we
can interpret them as they were probabilities. We do not allow them to be less
than zero. The second equation can then be written

1
q - S1(t) +———q, - Sa2(?)

S(0) = $1(0) -1 + $2(0) - w2 = T

1+r
[q1 - S1(t) + g5 - Sa(1)].

1+7r

We then say that under the probability measure Q= (q,,q,), the value of
S today (at time # = 0) is given by the discounted expected payoff. We write
this as

Remarks

1. These probabilities have nothing to do with the real probability for the
outcome in Q. Therefore, we call these probabilities, risk-adjusted
probabilities.

2. If we have other securities, also depending on the same outcome, they
should also be given by the same expression. The reason is that the
probabilities are given by the risk-free interest rate and the sample space Q.

If we had used the true (objective) probabilities, 2 for the outcomes {w;, w5},
then
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1

S(O)<1+r

E"IS(1)].

The reason is that those probabilities are not risk-free. If we are willing to buy a
stock, which is riskier than the money-market account (which pays a risk-free
interest rate) we must be compensated for the higher risk. We say that we have
a risk premium p to go into the position of S:

1

= mE"’[s(z)].

5(0)

This is the reason why we buy equities instead of putting the same amount of
money into a risk-free money-market account. We take the risk, since we hope
we will get a better payoff. The expected payoff increases with the level of risk.
Options have better payoff than stocks, since they are more risky.

2.2 Martingales

Expressions such as the expectation value above will be frequently used in this
course, especially when dealing with martingales. A martingale with respect to
a given probability measure Q, is defined by

EQX( 4+ 9)l1] = X (1)

for all s > 0. Z, is the information set that affects the value of the stochastic
t
process X. In other words, this expectation value is saying:

Standing at a time 1, with a stochastic process X, under a given probability measure
Q and a given information set 1, (with information known up to time 1), the
calculated expected future value of X(¢+5) (where s > 0) is equal to X(2).

This is the same value for X as the value today. A martingale is said to represent
a fair game.

Example 2.1

If we are tossing a coin, we will get a head or a tail. Suppose we win one cash unit
on head, and lose one on tail. This is a fair game since the probability to win
money when the number of tosses — oo is zero. We will lose as much as we win.
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Example 2.2

We can also construct a martingale measure, that is, a fair game, by making a
deal where two parties make an agreement. Say that John said to Lisa that he will
give her $100 if it rains tomorrow. He asks Lisa how much she is willing to pay for
this agreement (contract). Suppose Lisa is willing to pay $45 and John wants $55.
If they finally compromise and agree that Lisa will pay John $50, and then, after
making some additional restrictions in the agreement, such as it has to rain in
their home town and at least 1 mm,they have an agreement. Now, both John and
Lisa feels that they are risk neutral and both believe that it will rain tomorrow
with a probability of 50 %. Then, the risk-neutral (martingale) probability to rain
next day is 50 %. Remark that this has nothing to do with the real (objective)
probability.

The conclusion of this example is that, as soon we know the (possible) price
(or prices), the risk-neutral probabilities are known. We can also state that, as
soon as we know the risk-neutral probability measure, we also know the
possible prices. This will be clear when we study the binomial model below.

When we build binomial models in finance we are creating a situation like
tossing a coin, where the stock price goes up if we get a head and down if we get a
tail. The only difference is that the probabilities for heads and tails are not the same.
Such financial processes are therefore not martingale. But, as we will see, such a
process can be transformed into a martingale by changing the probability measure.

If we have

EP[X(t+5)|I]) < X(2),

where 7, is the information-set at time #, we say that X is a super-martingale

and if
EP[X(t+5)|I]] > X (1)

Xis said to be a sub-martingale. 1f we return to the expression

1
14+7r

500) = E°[S(1)].

the process S is martingale, but since » > 0
E"[S()]

is a sub-martingale because of
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1

E"IS(0) > o

E[S(1)].

Here P represents the objective probability measure. This is a fundamental
concept in finance. We can transform the process for the stock price to a
martingale, just by multiplying with the discounting factor 1/(1 + 7). This
means, under the probability measure Q and with the discounting factor
1/(1 + 7) the process of S is martingale. As we will see later, the process above
can be transformed to a martingale in two ways; by changing the probability
measure or by multiplying with a discount factor.

2.3 The Central Limit Theorem

We will now study the game of tossing a coin and calculate the possible
outcomes. Let heads be the outcome # (winning one cash unit) and tails,
d (losing one cash unit). We study the total outcome of tossing 1, 2, 4, 8,
16 and 32 rimes.

After tossing the coin twice we have the possible outcomes: {uu, ud, du, dd}
giving the total profit {2, 0, 0, —2}. Since we have equal probabilities we can
plot the possible payofts in this game. In Fig. 2.1 we see the outcome of 1 and
2 tosses in Fig. 2.2 we see the outcome of 4 and 8 tosses and in Fig. 2.3 we see
the outcome of 16 and 32 tosses.

As we can observe, the coin-tossing game seems to lead in the limit to the
normal distribution. If we change the probabilities, we will in the limit reach a

1 0.6
08 o 05 l
06 1 04 -+
4 L 2 03 +
+ L 4 L 4
04 02 1
02 e 0.1 4
0 T T 0 T T
-2 -1 0 1 2 4 -2 0 2 4

Fig.2.1 When tossing the coin one time we have two outcomes, —1 or 1, both with
probability 1/2. When tossing the coin two times we have three outcomes, —2 with
probability 1/4, outcome 0 with probability 1/2
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Fig. 2.2 When tossing the coin four and eight times we have five and nine

different outcomes with the probability distributions as above

025 0.15 &
02 &>
0.15 Mg i " i
21 T .
N ol e *|e
‘ 1 0.05 ¢
0.05 i | " o | @
< o o,
0 [ ooe® | ®oee R R
20 10 0 10 20 35 15

Fig. 2.3 When tossing the coin 16 and 32 times we have 17 and 33 different
outcomes with the probability distributions as above

normal distribution with a mean not at zero. If we have three different out-
comes with different probabilities, we still reach a normal distribution.

In general, the central limit theorem states that, given certain conditions,
the arithmetic mean of a sufficiently large number of iterates of independent
random variables, each with a well-defined expected value and well-defined
variance, will be approximately normally distributed, regardless of the under-
lying distribution.

We will see in Sect. 2.5 that when we create a tree model, called the
binomial model, the solution when making infinite number of infinitesimal
small steps will converge to a normal distributed model in continuous time.



2 Time-Discrete Models 27
2.4 A Simple Random Walk

Before we start to study stochastic processes we will study a simple random
walk. In a random walk we can take a step forwards or a step backwards
dependent on some random event, Z= {—1, +1}. On fix time intervals we can
take a step forwards (Z= +1) with probability p or a step backwards
(Z= —1) at probability g=1— p. During an arbitrary time interval, the
given displacement (£[Z]) and its variance (Var(2)) are given by

EZ] =(+1)p+(-1)g=p—q
Var(z) = E[Z?] — (E[2])’ = (+1)p+(-1D)¢-(p—q =1-(p—q)
= (p+q) —(p—q) =4pq

We are now interested in the position, X, of the process after 7 such steps. The
outcome of this event obeys the Markov properties, namely that every event is
independent of earlier events, and so we can scale up the displacement by a
linear factor

EX,] ={(+Dp + (=1)g} = n(p — q)
Var(X,) = 4npq,

where

With the Markov property, we can put the expectation inside the summation

S| - e

EX)] =E

We now ask for the probability distribution P(X,) to reach the position X,
after 7 steps. This position can be reached by many different paths, but we
have to take fsteps forwards and & steps backwards, so we have X, = f— 4. The
probability to reach this point is given by p/4” and to get the probability to get
here, we have to multiply with the number of different paths. Then
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n n+Xn n—Xn

2

where

The binomial distribution is given by

m =)o

Var() n-p-q

so we see that we have a binomial distribution. A diffusion process is a Brownian
motion and behaves like such a random walk with p =¢g(=1%) in the
continuous limit. To see this, let’s assume that our walker takes steps of length
r between each time interval z Since p = g his expected position at the next
time is his current position (see martingale property) and the variance of his
displacement is 7. To go to the continuous time limit we split the time
interval # into 7 subintervals of length 7 and between each subinterval we
allow the walker to take steps of & 7’ with equal probability. After a time # the
position of the walker is found by summing the 7 independent identical
random variables Z. According to the central limit theorem, as 7 gets large
the probability distribution of the positions will begin to resemble a Gaussian
distribution with zero mean and variance 7r'? (Fig. 2.4).

p=05 1 s
d_—"""____f *r Y
sl —0
e— —r et VY \
g=0.5 ""L_... \
= =
t f=nz

Fig. 2.4 In the continuous limit, a random walk with equal probabilities converges
to a Gaussian probability distribution
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To prevent the walker from having an infinite or a zero variance as 7 goes to
infinity our only possible choice for 7’ which also preserves the characteristics
of our original random walker is to set

Hence if time gets rescaled by factor 7 then the space is rescaled by y/nand this
preserves the physical properties of walker. The continuous probability distri-
bution P(x, 7) of being at position x at time #, given that P(x, 0) =1 evolves
according to a parabolic partial differential equation called the Fokker—Planck
equation. However, since p = ¢ there is no drift term and this equation reduces
to the Diffusion equation

OP(x,1) _ o O°P(x,1)

ot oxr

where D is called the diffusion constant given by

D =

t

2.5 The Binomial Model

We will now discuss the most common model for American options. These
options have nothing to do with USA, the country or the continent. American
options are options that allows the holder to exercise at any time of the option
life-time. European options can only be exercised at maturity. There are also
options, especially in the interest rate theory, that can be exercised on specific
days. This kind of option is said to be of Bermudan type. We will also study
so-called Asian options. These are of European type, but the final value at
maturity depends not on the final underlying price, but instead on the average
price during a time-period.

2.5.1 Background and Theory

Consider a financial market during one period in time, from 7 =0 to t = 1
with two possible investments (or two different securities), B and S. Here
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B represents a deterministic money-market account (or in some literature, a
bond) with the price process

{B(O) =1

B(l)=1+r

where 7 represent the interest rate. S is considered to be a stock with a
stochastic price process given by

S(0)=s
S(1) = u-s withprobabilityp,
~ | d-s withprobability p,

At time # = 1 the stock can reach two possible value #-s where # > 1 ord-s
where d < 1. In other words, the stock price can either increase or decrease
with probability p, and p, respectively. Here p,, + p,=1.

Furthermore, we suppose that we can buy (going longin S) or sell (going short
in §) the stock and we can invest (put money, i.e., go long in B) or lend
(borrow money, i.e., go short in B) in the money-market account. The interest
rate for saving and lending money from the money-market account is for
simplicity the same, 7.

Now, we write S(£) =75 where Z is a stochastic variable and consider a
portfolio h on the (B, S)-market, as a vector /= (x, ) € R* where x is the
number of money-market securities and y the number of stocks. x and y may
take any number, including negative and fractions where negative values
represent short positions. We also suppose that the market is 100 % liquid,
that is, we can trade whenever we want.

Definition 2.3 The value process of the portfolio 4 is defined as
V(t,h) =x-B(t)+y-S(t); t=0,1
ie.

V(0,h) =x+y-s
{V(l,h):x.(1+i‘)+y-s-2'
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Definition 2.4 An Arbitrage portfolio of b is defined as

V(0,h) =0
V(1,h) >0 with probability 1°

This means that we can borrow money at time # = 0 and buy the stock, or
we can sell the stock and put the money in the money-market account. The
total value of our portfolio 4 is then at time = 0 is equal zero. If for sure (with
probability 1) our portfolio at time 7= 1 have a value greater than zero we have
made arbitrage.

The portfolio in the binomial model above is free of arbitrage if and only if
d <1+ r<u. The reason for this is that; If < % < 1 + r we can go short in the
stock and invest in the risk-free interest rate. If on the other hand, 1 + 7 <d<
we can go short in the risk-free interest rate and invest in the stock. In both
situations we will make arbitrage.

From now on we denote the objective (true or market) probabilities as P =
(pw ps) and the risk-free (martingale) probabilities as Q= (g, q,). If the

portfolio is risk-free we must have probabilities such as

l+r=u-q,+d-q;; q,+q,=1

We say that we have a probability measure Q defined as

JOZ=u)=q,
Q'{Q(Z:d):%
We then have
S BOIS(1)] = S(0) g, +d-5(0) )
1
5(0) = 1 E2IS (1)

This is called the risk-neutral valuation formula. Q is called the risk-neutral
probability measure or the martingale measure. 1f we use continuous
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compounded interest rate for a security with maturity 7, we use the following
approximation

1 —r(T—
T

and get the following general pricing formula for all kinds of securities under
the money-market account as a numeraire

S(t) = e "T=0 . E2[S(T))].

In later chapters we will return to the meaning if this.
On a multi-period market we have

By=1
B, = (1 + r)Bn

and
S() =S
Sn+l = Z,Sn -

Definition 2.5 A portfolio strategy h:{h,= (x5, y); t=0,1,2..,T} is a sto-

chastic process with a value process

V[h — .X[Bt + ytS[.

Definition 2.6 A portfolio in discrete time is said to be self-financing if

XB: +y,S: = x-1B: +y,_1 St

Definition 2.7 A portfolio in continuous time is said to be self-financing if

th - .XdBt + de[.

Consider a one-period binomial model (Fig. 2.5).
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( usS ()

u

G

Fig. 2.5 In the on-step binomial model, the stock price may take two different
prices, uS or dS. A derivative on the stock, e.g., a call option can therefore also take
two different values, ®(u) or ®(d)

d(d)

In the Black—Scholes world, the stock prices § follow a stochastic process
(the same as for a Geometrical Brownian Motion, GBM):

dS = uSdt + oSdw,

where 1 and ¢ are constants, which represents the drift and the wvolarility
respectively. A binomial model is characterized by the constants # and 4,
describing how much the price can increase or decrease in each step in time
and the probabilities that the price goes up and down. Since volatility measures
the changes of the price with respect to time, # and 4 are functions of the
volatility. The simplest model used is the Cox—Ross—Rubinstein model. In their
model, the factors # and 4 is given by

u= eV
d=e oV

Here dr is the time interval between observations of the prices and ¢ the
volatility of the underlying security. We will understand these formulas after
defining the Wiener process dW above.

From Example 2.2 we can conclude that as soon as we know the volatility
we also know the possible prices, or as soon the prices are known, we know the
volatility. Therefore there exist a one-to-one relationship between the volatility
and the prices. We also call the volatility, estimated from known prices,
implied volatility.

With continuous compounding of interest rate » we have
So=e""(q, u-So+qyd So)=e" g, u-s+qu-d-s),

where the risk-neutral probabilities are given by
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QM+Qd:1
g utqe-d=e™
then
1 ~ a—d
quzu_d.[e'df—d] u—d qdzl_qu

Here we have defined « as ¢

d<a<u.

. To have an arbitrage-free market we must have

2.5.2 The Risk-Free Probability

One should ask what kind of information is offered from risk-neutral proba-
bility and where we can find this measure in the real world.

The first question leads to an equivalent definition of risk-neutral probabil-
ity. A risk-neutral probability is the probability of a future event or state that
both trading parties in the market agree upon.

Let us return to Example 2.2 where John and Lisa made an agreement based
upon the likelihood or not of rain tomorrow. Both agreed that the probability
of the event that it will rain tomorrow is 50 %, otherwise they wouldn’t have
reached that agreement and signed the contract. So this price reflects the
common beliefs of both parties towards the probability that the event happens.
50 % is the risk-neutral probability of the event that happens. It is not a
historical or statistical prediction of any kind. Nor is it a true probability.
Simply pug, it is just a belief that is shared between the two trading parties in
the market.

For the simple example mentioned above, once the price is established, the
risk-neutral measure is also determined. Whenever you have a pricing problem
in which the event is measurable under this measure, you have to use this
measure to avoid arbitrage. If you don’t, it’s as if you are simply giving out
another price for the same event at the same time, which is an obvious
arbitrage opportunity.

A more complicated example is the Black—Scholes world, in which we
assume the stock follows a Brownian motion. In this setting, the stock price
itself is enough to reveal the common belief between the trading parties
towards the stock return distribution. The argument is similar to Example
2.2. And as a result, we have the famous Black—Scholes formula for European
options. In the real world, the stock dynamics is not a Brownian motion, so the
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price given by Black—Scholes formula is just a reference price to the risk-free
interest rate.

A more accurate information source for risk-neutral probability is the
market prices of the stock options. In practice, people use options prices to
get the risk-neutral measure and further price more complicated contingent
claims, such as exotic options.

2.5.3 The Replicated Portfolio

Let us use @(») to denote the value of the option if the stock price increases
and ®(d) to denote the option value if the stock price decreases. Also let x be
the amount of money in our money-market account and y the number of
stocks in our portfolio. We then have from the value process two equations
with two unknowns, x and y,

{(1+1‘)-x+uSO'y—<l)(u)
(1+7)-x+dSo-y=®(d)’

We can solve this system of equations to find the replicated (balanced) portfolio
in each node in the binomial tree:

1 u-®d)—d-Ou)
X_1+I u—d
1 ®D(u) —d(d
y_S_O u—d

This proves that the binomial model is complete since we can always replicate
the option value with the money-market account and the value if the stock (see
Definition 2.9 below). The price II[X, 0] of a contingent claim, X, is then, at
time # = 0 given by

1

H[X,O]:x+y~S0: 1+I‘

{9.®(u) + q,P(d)} = E°[S)],

1
1+r
where the risk-neutral probabilities is given as

(1+r)—d u—(l—i—r)‘

W="y"a =" "4
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Here we have used simple compounding of the interest rate. With continuous
compounding we write this for a single period of time as

M[X, 0] = x +y - So = ¢ {q,®(u) + ¢,@(d)} = e "E°[S],

where

Definition 2.8 A contingent claim (a financial derivative) is a stochastic vari-
able X= F(Z), where Z is a stochastic variable that is driving the stock price.

We interpret the contingent claim as a contract that generates X cash units
at maturity. In other words, a contingent claim is a security (a financial
instrument) whose value is dependent on the outcome of another underlying
instrument.

Definition 2.9 A given contingent claim X is said to be reachable it there
exist a portfolio 4 so that V(h, 1) =X with probability one. (Ih |V = X,
with prob.1) Then, 4 is called a hedging portfolio or a replicating portfolio that
generates X.

Definition 2.10 If all contingent claims are reachable, the market is said to be
complete.

We have seen that the binomial model is complete, since we can replicate all
contracts using the money-market account and the stock. The reason for
completeness is that we have two securities, which solve the two equations.
We can handle many periods in the binomial tree just because we can
rebalance the tree with help of intermediate trading. For the same reason, a
general market is complete if the number of securities is equal to the number of
possible outcomes.

This can be stated as the following theorem.

Theorem 2.11 The Meta Theorem. If we let N be the number of underlying
securities on the market (excluding the risk-free) and K the number of random
sources. Then

(1) The market is free of arbitrage if N < K.
(2) The market is complete of N> K.
(3) The market is complete and free of arbitrage if N= K.
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Theorem 2.12 If the market is free of arbitrage there exists one (or many)

martingale probability measure(s).

Theorem 2.13 If a martingale measure exists, the market is free of arbitrage.

Remember, a martingale is a fair game.

Example 2.14

Consider a European call option with the strike price K, (dS<K<uS). The

contingent claim X is then, at maturity given by

uS—K if Z=u
X:{o if Z=d"

Expressed in option prices this is ®(u) = uS — K and ®(d)=0.

Example 2.15
Consider an American call option with the following data.
Current stock price So=100
Volatility =20 %
Risk-free interest rate r=5 %
Strike K=110
Time to maturity s=20 % T=180 days

Using a single iteration At=180/365220.5 year we get (a =e" *:

u=1.152
d = 0.868
a = 1.025

g = 0.553 (Fig. 2.6)

(continued)
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Example 2.15 (continued)

Node B
$=115.20
C=5.20
Node 4 ]
S =100.00 Time T
C=2.80
Node C
5=186.80
C=0.00

Fig. 2.6 In a one-step binomial model for an American call option, the stock
price may take two different prices

The option value (fair value) in node A is then given by:

C =max(Sy — K,e "™ (qCp + (1 — q)C¢))
= max (100 — 110,e7%%593(0.553 - 5.20 + (1 — 0.553) - 0))
=2.80

2.6 Modern Pricing Theory Based on
Risk-Neutral Valuation

There are different kinds of investor; those who like to trade in a risk-neutral
world and those who like to trade in a risk-averse world. As we have seen, in a
risk-neutral world, prices are based on expected values of future payoffs. In a
risk-averse world, investors choose the security with less risk if they have the
same expected return. This leads to a risk-return trade-off.

We can illustrate this on a market where the interest rate is 10 % as
(Fig. 2.7):

We use the risk-neutral valuation to value contingent claims. Contingent
claims are securities which prices depends on the outcome from other sources.
Bonds depend on interest rates and equity options depend on the outcome of
the underlying equity. The pricing tool is always arbitrage conditions.
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Risk Neutral Risk Averse
30 30
%Qolo %QD|°
23.64 20
200/0 '?Oo/o
10 10

Fig. 2.7 A one-step binomial model in a risk-neutral and a risk averse world. The
value 23.64 is calculated as (30 x 0.8 + 10 x 0.20)/1.10 = 23.64. A higher risk aversion
leads to a lower price

Stock Contingent Claim
20 15
g
20 v
200/
% 10 0

Fig. 2.8 A one-step binomial model for an underlying stock and an option

In arbitrage theory, equivalent securities (or portfolio of securities) should
sell at equivalent prices. If not, arbitrage possibilities can be made from
misaligned market prices. The no arbitrage requirement, lead to the law of
one price. Therefore, we use the concept of arbitrage for pricing contingent
claims.

We illustrate in Fig. 2.8 a simple arbitrage strategy for a contingent claim of
a stock with an interest rate of 10 %.

Consider the portfolio by buying 0.75 shares the stock and sell one
option. On an up movement, we get for the total portfolio, a value
30 x0.75—15=7.50 and on a down movement 10 x 0.75 —0=7.50.
Therefore the strategy has a risk-less payoff of 7.50 in one period. But, since
the risk-free security returns 10 %, arbitrage theory forces the return to be the
same. Therefore the following must hold

(20 x 0.75 — V) x 1.10 = 7.50.

This gives an option price V; equal to 8.18, see Fig. 2.9. We then observe that
the probability of the move in stock price where not used in the valuation of
the option. But we can calculate the implied probabilities from the option
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8.18

Fig. 2.9 The arbitrage-free price of the option let us calculate the risk-neutral
probabilities

30
Sr
20
10

Fig. 2.10 The arbitrage-free price of the option gives the risk-neutral probabilities
where p = 0.6. As we see, we have a relationship between the prices and
probabilities

price. We therefore pretend that there are only risk-neutral probabilities. Then
we have:

The risk-neutral probabilities can now be used to value a7y contingent
claim of this stock. The risk-neutral probabilities are given by (Fig. 2.10)

15 —8.18 0—8.18
8.18 8.18

>(1—p):10 %.

From 30p+ 10(1 — p) =30 x 0.60 + 10 x 0.40 =22 we also observe that in
the risk-neutral world, also the return on the stock is 10 %.

We now introduce the market price of (volatility) risk. The market price of
risk is defined as the extra compensation (per risk units) needed to take the
higher risk. The stock and the option have the same source of risk, but the risk
exposure is higher for the contingent claim. If we require, as in Fig. 2.9 that
return of the stock, we get 30 X 0.8 + 10 x 0.2=26. That is an expected
return of 30 %. The risk (volatility) is given by u =33 = eViT = ¢° je,
o = In(1.5) =40.5%.

Similarly, the option payoff we get is 15 % 0.8+ 0 x 0.2 =12. That is an
expected return of 12/8.18 =46.67%. Since the sharp ratio, market price of
risk per volatility unit must be the same we must have
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E[r]—rf_30%—10%_46.67%—10%_05
c 40 % N 73.33 % -

1=

where we have calculated the volatility for the option. We summarize this in

Table 2.1.

Table 2.1 The stock and the option have difference return and risk

Security Exp. Return Risk (o)
Stock 30% 40%
Contingent Claim 46.67% 73.33%

The conclusions of this are:

* Risk-neutral valuation is useful for contingent pricing

e For the real-world returns (what we observe) we have to include the market
price of risk

e Shifting to the risk-neutral world will eliminate the extra return for
accepting risk. This is usually a lower return

Al securities’ returns are identical in the risk-neutral world and equal to the
risk-free interest rate

* All securities that depend on the same underlying return earn the same risk
premium, per unit of risk

2.6.1 An Example of Arbitrage

If the conclusions above do not hold, we can have a free lunch by making
arbitrage. We always want to buy at a low and sell at a high price. Suppose we
have a stock at 100 CU (cash units) and we want to buy an option with strike
110. We suppose that #=1.2 and , g, =¢,=0.5 and »=0. This gives us
So= 100, uSy = 120, A4Sy = 80 and

®(u) = max(uSp — X,0) =10
®(d) = max(dSy — X,0) = 0.

The option value at #= 0 is then g 4= 0.8 iven by (0.5 * 10+40.5 * 0) = 5 since
r=0.

Now, suppose someone on the market is trading the option for 8 CU (with
the same price for bid and ask). We then take a short position in the option,
invest 5 in shares and borrow 20 at the risk-free interest rate. We can then put
3 CU in our pocket to use for a free lunch.
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At time =0 8 sell the option
20 borrow from the bank
—25 invest in a % of a stock

This gives us 3 CU in our pocket.

If the stock price increases to 120, we can sell the shares to the price of
Y4 x 120 = 30, pay back the loan, 20 and pay the buyer 10 for the option

At time =1: —10 pay the buyer of the option
—20 pay back to the bank
30 sell the ¥ of a stock

If the stock price decreases to 80, we can sell the shares to the price of 4 x 80 = 20
and pay back the loan, 20 to the bank. The option is worth nothing.

At time = 1: 20 pay back to the bank
20 sell the % of a stock

We still have our free lunch.

Suppose, on the other hand, that someone is trading the option at 3. Then
we take a long position in the option, go short in the share, receiving

V4 x 100 = 25 and put 20 at the bank. We then have 2 CU for the free lunch.

At time =0: —3 buy in the option
—20 put money into the bank
25 sell a ¥ of a stock

This gives us 2 cash units in our pocket.

If the stock price increases, we will get 10 for the option, take the money
from the bank and buy back the shares at 30.

At time =1: 10 payoff from the option
20 take back the money from the bank
—30 buy back the % of a stock

If the shares decrease, the option is worth nothing. We then take the money
from the bank and buy the shares.

At time =1: 20 take back the money from the bank
—20 buy back the % of a stock
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Remark We buy one option and want to hedge the change in the option value
by A number of stocks where A is calculated as

A = (C(u) = C(d))/(S(u) = S(d)) = (10 = 0)/(120 — 80) = 10/40 =y

2.7 More on Binomial Models

Before we describe some other binomial models, we will discuss some general
principles on building such models. First we define a growth factor g. This factor is
the risk-free interest rate if we use the underlying instrument to value options and
zero if we use the underlying forward/future in the valuation. The reason is the
relation between the forward price F and the stock price S: F=S-¢”.
Furthermore, we can use the stochastic process for the stock price or its
natural logarithm. For this reason we introduce the following variables

S,’ Si
X = Stl and Y:ln< Stl)’

where §;=8() and S,, ; = S(z+ Dr). If we study a change in the stock price
with the stochastic variable Y, we have the first order momentum in the
normal distribution and if we use X we have a lognormal momentum. In the
Black—Scholes world we have a price processes where:

S(r) = So - e(r7) 140Viz) where z(t) ~ N(0,1).

This will be further explained in a later section. In the Black—Scholes world
X follow a Brownian motion with the following expectation values and
variances

E[X] = e
Var(X) = EZ[X} : (e"z'm - 1) = e, (e"z'm — 1)

and
1,
Var(Y) = o* - At

When we approximate the Brownian motion with a binomial process we get
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EX]=q-u+(1-¢q)-d
=q-lnu+(1—-gq)- Ind

and
Var(X) = q - 1> + (1 — q) - d* — E*[X]
Var(Y) = q - (Inu)* + (1 — q) - (Ind)* — E2[Y].

For different choices of ¢, » and d we get different binomial models.

2.7.1 Normal Distribution with g = %
With Y= In (S;, /S, and g="2 we get

E[Y]=q-lnu+ (1 —q)-Ind = <g—%02) - At
Var(Y) = E[Y?] — E*[Y] = ¢ - (Inu)* + (1 — q) - (Ind)* — E2[Y] = o® At
(g-20%)-Artov/Ai

e
e(g—%az)-At—a\/E.

Q=
I

2.7.2 Normal Distribution with u = 1/d
With Y= In(S;,1/S,) and = 1/d we get

E[Y] = <g - %ﬁ) - At
Var(Y) = 6> At

o2-Ar+ (g—%oz)zArz

2.7.3 Log-Normal Distribution with g =%

With X=3;, /S, and g =" we get
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EX]=q-u+(l1—p)-d=es™

Var(Y) = E[Y?] = E2lY] = q - + (1 = q) - & — E?[Y] = e8¢ (e7& - 1)
= eg'A’{l N 1)}

d= eg'A’{l —/(eoA — 1)}.

2.7.4 Log-Normal Distribution with u = 1/d

With X=3;,1/S; and u=1/d we get

E[X] = e
Var(Y) = e>84! (e"zA’ - 1)
esA —d
(A
U= %e—g.m <e(2»g+o’2)~At I 1) 1 \/%e—Q-g-At (e(Z-g+52)-At 4 1>2 _1

2.7.5 Mixed Normal/Log-Normal Distribution

With X=3;,1/S;and Y= In(S;, 1/S,) we get

where ¢ is solved numerically by the equation

q-eaz\/¥+(1—q)-e”2\/%:e§m.
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2.7.6 The Cox-Ross—-Rubinstein Model

This is perhaps the most common model

u=e"Vh

dzl/u:e“"m
_er-At_d

=" —a

2.7.7 The Second Order Cox-Ross—Rubinstein

This model is a variant of the model above and gives almost the same result.

a2+b2—|—1—|—\/(a2—|—b2+1)2—4a2
2a

u =
d=1/u

a = er-AI
b2 —a?- (eaz-At _ 1)

where

2.7.8 The Jarrow-Rudd Model

Also this model is a minor modification to the CCR with almost the same
behavior.

U=e (1‘7%02) At+o-/Ar
d — o) ar-aVE

where



2 Time-Discrete Models 47

For this model we have the following expectation and variance

i 1
E[ln(SSflﬂ =q-Inu+(1—-q) Ind = (;» —502>AT

E[{n()}] = - G +(1-0)- (na? = a7,

2.7.9 The Tian Model

If we also use the second order moments for the normal distribution we get
this model with somewhat better accuracy:

M-V

U= V+1+VVZ42V -3
M -

d:TV [V4+1—-VV242V -3

where

2.7.10 The Tigori Model

In this model we model the logarithm of the stock price and define # as dx and

d as —dx. Instead of multiplying with # and & we add dx and —dx

dx = \/GZAI + (r— %0'2)2 - (Ar)?

11 1 ,\dx
= — —|r — = e
P=575\""2° |ar
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2.7.11 The Leisen-Reimer Model

One of the latest binomial models is the Leisen—Reimer model. This model
has an advantage against the other models. The model has quadratic conver-
gency in the number of time steps, at least for European options and American
call options, while the other models have a linear convergence. Therefore the
accuracy is much better. Furthermore, since there are no (or small) oscillations
in this model, we can use Richardson extrapolation to increase the accuracy
even more. The Richardson extrapolation is, however, not always
recommended for American put options (depending on the strike), since the
early exercise will modify the tree in such a way that the extrapolation doesn’t
give any extra accuracy. First we define

1
ln<%> + <r+§02> (T —1)
B ovT —t
d,=d; —ovT —t,

where we recognize d; and d, from Black—Scholes equations. We then
introduce:

p :B(d27N)
p=B(d+0c-VT—1,N),

where B is the inverse of the binomial distribution and /N the number of time
steps. We use the Peizer—Pratt method to invert the binomial distribution
+%o=n—(j+"%),n=2j+1]

11 z \? +1
4 2 Y\ e

1

:B = —
p = B(z,n) 5 F

= i%l
|
Sl

&
I
Q
—
| ‘
hS]
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Remark With the inverse as above, we must have an odd number of time
steps.

2.7.12 Black-Scholes Smoothing

There exists a method to get less oscillation in many models. Without
oscillations we can use Richardson extrapolation Sect. 2.7.18 to get a more
accurate result in price. The convergence is still linear before the extrapolation.
The method is called Black—Scholes smoothing. We use the Black—Scholes
formula discussed in Sect. 4.3 to calculate the values in three of the nodes,
closest to the strike price (marked with an arrow), at the last time step, as in the
Fig. 2.11.

The reason that the Black—Scholes smoothing (also called mollification for
dealing with ill-posed problems) minimizes the oscillations is that we get a
much smoother distribution one step from maturity.

At maturity, the option value converges as to a “hockey stick”—that is, we
can approximate the call option with a function:

Nodes to
smooth

Fig. 2.11 A demonstration of Black-Scholes smoothing or mollification to increase
the accuracy in the binomial model



50 Analytical Finance: Volume |

Fig. 2.12 This illustrates how the price of a call option as function of the underly-
ing price behaves before maturity, where the price converges to the shape of a
hockey stick

_JO ifx<0O
YT x if x>0’

This function has a “knee” in x = 0. But, using the Black—Scholes formula at
the last nodes, we add the time value and get a nice smooth curve (Fig 2.12).

When we build trees of different sizes we have no singularity in the curve, as
we have if we use the two lines.

2.7.13 Pegging the Strike

Another method to get rid of the oscillations in the solutions in the binomial
model is to “peg” the strike. If we start with the Cox—Ross—Rubinstein model

u=e"Vh

d=1/u= e oVl
_er-At —d

CA—

and replace the factors, # and 4 to

U — eoVArHAHN(K/S)
d= l/u _ efa~\/E+Az<1n(K/s)
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we will dramatically reduce the oscillations since we always hit the strike in the
tree. This gives a “sloped” tree and a result on which we can apply Richardson
extrapolation to increase the accuracy even more.

To compare the models above, we will study the following American call
option.

¢ Underlying price: 100

e Strike price: 110

¢ Time to maturity 183 days
¢ Risk-free interest rate 2%

e Volatility: 40 %

¢ Number of time step [25, 250]

The Black—Scholes value is 7.836944. CCR gives the result as in Fig. 2.13.

If we apply Black—Scholes smoothing we get the result as in Fig. 2.14.

If we also use Richardson extrapolation we finally get the result as in
Fig. 2.15.

In Figs. 2.16 and 2.17 we see the Leisen—Reimer model without and with
Richardson extrapolation respectively.

Convergence of Cox-Ross-Rubenstein American Call

792 - T | i i i | i i |
1 | I I 1 | ] ] |
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ta ” ” e . & i ; . H 3 ‘.
1 I 1 1 | 1 ] 1
| I 1 | I I |
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1 ] ] 1 I ] 1 1
I | 1 I ] ] ]
HMHH”“ HHHHLE A R N N
o 7.86 MU D 4 I I 1 1 i
3 Hf 1 ] j i | |
m 1 f
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S 784 IHHMI ______ “|u ] b0 | I “ll || il LYY SN
/] 1 I 1 I ] 1 ]
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i i i i H | i i |
1 | i i H | i i |
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Number of Nodes

Fig. 2.13 The CCR convergence with oscillations
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Convergence of Cox-Ross-Rubenstein BS American Call
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Fig. 2.14 The CCR convergence with Black-Scholes smoothing

Convergence of Cox-Ross-Rubenstein BS RE American Call
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Fig. 2.15 The CCR convergence with Black-Scholes smoothing with Richardson

extrapolation. Note the increasing accuracy in the option price
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Convergence of Leisen-Reimer American Call

]
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Fig. 2.16 The convergence using the Leisen—Reimer model

Convergence of Leisen-Reimer RE American Call
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Fig.2.17 The convergence using the Leisen—-Reimer model with Richardson extrap-

olation. As we see, we need to use five decimal places on the y-axis
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Note that how the number of decimals increases on the option value axis
when we succeed to increase the accuracy of the option price.

Let’s study an American put option to see how good the different binomial
models will converge. We also use only odd nodes to minimize the oscillations
due to jumps between odd and even numbers of nodes. In Fig. 2.18 we use the
Cox—Ross—Rubinstein model (CCR), CCR with Black—Scholes smoothing
(CRR+BS), CCR with Richardson extrapolation (CRR+BS+RE). We also
using the method of pegging the strike price (PEG, PEG+BS and PEG+BS
+RE). Finally, we use the Leisen—Reimer model, with and without Richardson
extrapolation (LR and LR+RE).

In Fig. 2.19 we zoom in to see how the best binomial models behave. As we
can see, the Cox—Ross—Rubinstein and the model with pegging the strike are
very accurate when we combine Black—Scholes smoothing and Richardson
extrapolation. The Leisen—Reimer model behaves very well both with and
without Richardson extrapolation.

When we use the Richardson extrapolation we assume an error of second
order. So we use two calculations for each value. This means that when we use

16.84

1682 f~——Ff——""""TNMN"—"—"T"T"t-——"7"-7-7--+"-"—--"—-—-

16.80
)
= 16.78
‘E e CRR
=
2 = CRR+BS
§ 16.76 o

===CCR+BS+RE

G = PEG+B5S

e PEG+BS-RE
16.72

= LR4+RE

16.70 T T
25 75 125 175 225
Number of nodes

Fig. 2.18 Convergences in the different binomial models for a European call
option
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Fig. 2.19 A closer look at convergences in the different binomial models for a
European call option

a calculation with /V nodes, we also use the value by using N/2 nodes to
eliminate the error to second order. Richardson extrapolation is explained in
Sect. 2.7.17.

2.7.14 Binomial Model: The Numerical Algorithm

We will now briefly describe the algorithm for the binomial model. In the tree
below, we study a bought American put option with strike K and a current
stock price Sp.

The calculations of the option price, Cy can be made as follows:

1. Start at the end of the tree (at time 7). The lowest node has the value:
So - d" where Nis the number of time-steps. Set the boundary condition in
these nodes with respect to the option type (see Sect. 2.7.15).

2. For the remaining nodes at the same time, move upwards and calculate the
price by multiplying with #/d and use the same boundary condition.
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Sy-1
Sy-ut | €5 =max(K~S,-4".0)
S,- 1 £ G S,-ut-d
Sy-12* Ci; So-1’-d C; ,=max(K-5,-u*-d,0)
Se-u || Cy So-1?-d | /| Cos So-1 -d*
S l/lca | S-u-adl|l| G, | So-ut-d? | /| €y =max(K~S,-47-d%,0)
o Y RO H B2 o 25 V[ Sou-d? || Coa \ Sy-u?-dP
Co |‘| S-d* |/] G | So-w-d® || €, =max(K-S5,-u*-d" 0)
Cio Y| So-d’ "l Caa Y| S,-u-d?
Cio Y S-dt || €y =max(K-S,-u-d*,0)
i \ 5;-d°
C; o =max (K —5,-d’,0)

Fig. 2.20 How to implement a binomial model for an American put option

3. Go backwards in the tree and calculate all possible stock prices as in
Fig. 2.20. Then calculate the option values C; ;. For an American option
this is done as

Cy,4 = max{K — Sou*, e (q, - Cs;s + ¢4 Cs4)}
C4,3 = max{K — Sou3d, e*"'A’(qu : C5,4 + q4 - C5’3)}
Cir= max{K —So-u?-d* e Mg, Cs3+qy- Cs,z)} .

Cs0 =max{K — So-d*,e"(q, - Cs.1 +q4-Cs.0)}

Since the option is of American type, and therefore can be exercised at any
time, we need to calculate both the intrinsic and the discounted values. The
intrinsic value is given by the strike price minus the stock value. If we instead
have a European option, we do not need to calculate the intrinsic value, since
we do not have the right to exercise. Therefore, we just have to calculate the
discounted values

Caa=e¢"%(q,-Cs5+q, Csa)
Caz=e"%(q,-Cs4+q,-Cs3) ,

Cao=e¢"2%(q,-Cs1+q, Cso)

The American option will always have a value greater or equal the
corresponding European option. The reason is that the American option is
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more flexible since it can be exercised at any time during the lifetime. When
we are finished, the price of the option is given by Cj. The Greeks—that is, the

hedge parameters—can be calculated using the values in the binomial trees:

A Cii—Cio _oc
 So-u—So-d ~ 0§
Cro—Coi G =Gy ,
So-u*—So-u-d Sy-u-d—Sy-d* (_5_6‘)
I 3@
5'(50'”2—S0'd2) aS

Co1 —Co oC
o=-—2_=0 =—).
2- At ( 5[)

F:

To calculate Vega and Rho, we have to build two new trees where we use
another volatility and risk-free interest rate, respectively. We can then use

~ Co(o) — Co(c + Ao) _E
- Ac - Oo
~ Co(r) = Co(r + Ar) B a_C
p= " == )-
The hedge parameters in continuous time are defined by the partial derivatives
oP o’P oP oP oP
A_ﬁ’ F—W, G)_ﬁ’ U—E and p_E

We use the hedge parameters to calculate the sensitivities in the option price
with respect to the underlying price, the time to maturity, the volatility and the
risk-free interest rate. With good accuracy it is also possible to build trees with
different initial stock prices.

2.7.15 Boundary Conditions

At maturity we use the following conditions, depending on the option type:

X(T) = max(S(T) — K,0) Bought call option.
X(T) = —max(S(T) — K,0) = min(K — S(T),0) Sold call option.
X(T) = max(K — S(T),0) Bought put option.
X(T) = —max(K — S(T),0) = min(S(T) — K,0) Soldputoption.
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2.7.16 More on Probabilities in the Binomial Model

When we build the Cox—Ross—Rubinstein tree, we use

u= eV
d=e oV’

The maximum stock price in the tree at maturity therefore becomes

Smax = So - " = S - "V,

Similarly, the lowest stock price is given by
Smin = S0 - d" = Sp - & "V,
We also have the maximum and minimum probabilities at time to maturity
q(Smax) = ¢, resp. q(Smin) = 4g-

The number of paths reaching the nodes at maturity is shown in the Fig. 2.21.
This can be used to calculate the probability to reach a certain stock price.

If we let IV represent the time-node and 7 the nodes for the level of the price
then we can denote nodes in the tree by (/V, 7). We can now calculate the
number of paths reaching a specific node by

595 | path

4, 4
5 5.4 5 paths

2. 4,3
1,1 SN SH3 10 paths

0,0 2.1 )
1,0 30 5,7 10 paths

240 4,1
3,0 5,1 5 paths

4,0
5,0 | path

t=0 t=1 t=2 t=3 t=4 ¢t=5

Fig. 2.21 The number of paths reaching the nodes at maturity in a binomial tree
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(3) =

The numbers of paths which reach node (5, 3) are given by

5\_ 5" _ 12345 45
3) 3120 (1-2-3)-(1-2) 2 7

The 10 paths to reach node (5, 3) can be expressed using up (%) and down (<)
as {uuudd, undud, wuddu, uduud, wdudu, udduu, dunud, duudy, duduu and
dduuu}. The probability of reaching the node is:

(5N oo fe 11,5 (5)_10
P<3>Qu qd{lfquqdz}z 3 *32

We can use this to calculate the probability to get a profit (reaching the strike
price) from our option, just by adding the probability for the nodes, which

have a positive value (is in-the-money)
N
NY i N

In the limit when the number of time-steps goes to infinity, the probabilities
will, according to the Central Limit Theorem, converge to a normal
distribution.

2.7.17 Cox-Ross-Rubinstein Formula

From the above discussion we see that, for a European call option, we can write
the price, with continuous interest rate as:

N
C(¢,N,S,K) = e’N""A’Z (lj>qi(l - q)Nflmax(u"dN*"S - K,0),
i=0

where

N-/‘-At_d
 u—d
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We see that we don’t need to sum from 7 = 0, since many of the low values will

be zero due to max(#’d” ~ 'S — K, 0). We can find the low index #, from

o i N—ig e e
max(uldN—IS _K, 0) _jud'S—K if i> lo
0 else

We can find 7, by taking the logarithm and using u = 1/d = €° ov/Al

In(K/S) + o/AT
N Zax/ﬁ ’

We then get

N
C=C(q,N,S,K)=e Ny <zlv )qi(l — )V ('d"'S - K).
i=ig

So

s oot o

1=l 1=l

N N
:S-Zb(i,N,q-u-ef’"At) —efN""A’K-Zb(i,N,q)

=iy =iy

=S-®(ig.N.q-u-e ") —e " TK-®(ig.N,q)

where @ (4, 7, g) is the binomial probability distribution. In the above calcu-
lations we have used that

q.u.efl“Af_’_(l_q).d'efl“A[:1

To find the formula for a put option, we can use the put-call parity (see Sect.

4.5).

P=e¢"TK-(1-®(io,N,q)) —S- (1 = ®(io,N,q-u-e "))
=e"TK-®N —ig+1,N,1 —q) =S -®N —ig+ 1,N, 1 —q-u-e "2

The formulas for call and put options above can be compared by the famous
Black—Scholes—Merton formula in continuous time. We will discuss the
continuous time and Black—Scholes in Chap. 4.
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Example 2.16

Compute the price of an American put option with strike price K=100 and
exercise time T=2 years, using a binomial tree with two trading dates t; =0 and
t,=1 (your portfolio at time t3=2 is the same as your portfolio at time t,=1)
and parameters s =100, u=1.4, d=0.8, r=10%, and p=0.75.

Solution

First of all, we have to calculate the risk neutral probabilities. With a simple
discounting the probability for an increasing price is given by

1+r—d

q:qu:ﬁzo.s and g;=1-¢q,=05.

Using them we obtain the binomial tree as in Fig. 2.22, where the value of the
stock is written in the nodes and the value of the option in the adjacent boxes.
The value 20 adjacent to the node with stock price 80 is obtained as max{exercise
value, discounted binomial value}

. 1 1
C = max{100 — 80, — 04— 36)} = max{20, 16.36} = 20.

1+o.10'(2 2

Thus, an early exercise of the option is optimal in this node. The total price of the
option is then given by

1 1 1
— 1 -1 — = — . 2 = . = 9.09.
C max{ 00 OO’1+0.10 (2 0+2 0)} max{0, 9.09} =9.09

Fig. 2.22 The binomial tree, given the parameters so=100, u=1.4, d=0.8
and r=10%

(continued)
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Remark 2.17

We never use the objective probability, p = 0.75. In a risk-neutral world we use
the risk-neutral martingale probabilities.

Remark 2.18

As soon as we know the volatility of a specific model, the possible prices are
known. In the binomial model, u and d are given by the volatility. In this example
u and d were explicitly given. As soon we know the possible prices, we also know
the probability distribution, here given by g, and gq4. This means that there is a
one-to-one relationship between the volatilities and the prices. We will discuss
this in more detail later.

The price of the American option is thus 9.09. The corresponding price of a
European put with the same parameters as above, is given by

1

1 1
CE=———  (=.0+--1636) =7.44.
14010 \2 2

This price is lower than the American option since we cannot make an early
exercise.

Example 2.19

Compute the price of an European binary asset-or-nothing call option with strike
price K= 120 and exercise time T=2 years, using a binomial tree with two trading
dates t; =0 and t; = 1 (your portfolio at time t3 =2 is the same as your portfolio at
time t, =1 ) with parameters s, =80,

u=1.5,d=0.5 r=0%, and g=0.5.

Solution

An asset-or-nothing call means that, if we reach the strike, we will get the asset—
that is, no payments are made for the underlying asset as it is for a plain vanilla
call option where we have the right to buy the underlying asset at the strike
price. We use the tree in Fig. 2.23.

We get the price of the option as 45.

We can use the values in the tree to calculate the replicating portfolio. At t=0
the following must hold:

X+y-120 =90
{ X+y-40=0

This means that the value process for the replicating portfolio, consisting of the
money-market account (B) and the underlying asset must be equal to the option
value. In other words, regardless if the stock price increase or decrease, the value
of the portfolio should equal the value of the option. This yields that x= —45
and y=9/8. We can also use the formula we derived in Sect. 2.5.3:

(continued)



2 Time-Discrete Models 63

Remark 2.17 (continued)
1 u-®d)—d -®u) 115-0-0.5-90

- —_ — 45
A u—d 1 15-05
1O -®@d) 1 9-0 9

Y78 u—d  8015-05 8

The same calculations can be made to find the replicated portfolio in all the
nodes, e.g., where S=120

11.5-0—0.5-180
X=7"1s5-05 ~ °
1.180-0 3

Y =12015-05 2

N
w 180

o

Pl _’_/“‘"-/-
B
T “"‘*-hh___ﬁ_\

— e pa—
e

Oua ) [

s -

5‘“"'“'\_,“_ P /‘/‘-'"‘
X
.
M_H_H(_

Fig. 2.23 The binomial tree for an asset-or-nothing call, given the
parameters so=80, u=1.5, d=0.5, r=0%, and g=0.5

2.7.18 Richardson Extrapolation

For those who have not been studying Richardson extrapolation in numerical
analysis, we will here give a short introduction. Suppose we have a numerical
method with a known error of order p (i.e., error ~ /' where 5 is small value
representing the accuracy in some measurement, e.g. in time, Az):

F=F(h)+O0()=F(h)+c-h+0(W).

If we study two such values of 4, (b1, h,) giving
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F:F(h1)+c-h{’+0<hf“)
F:F(h2)+c~h§+0<h§“)

it is possible to eliminate the constant ¢ by multiplying the first equation with
hY and the second wit 4{ and then subtract them

(hy — hY)F = hYF (hy) — h{F(h) + O (k).

We then have
WF(hy) — hF(hy)
F = 2 1 hp+1 .
= o)
In that way, we have increased the accuracy from order O(#) to O(/* h.

Typically, we have /; =/ and h, = h/2:

o _ (W2VF(h) — WF(h/2) _2°F(h/2) — F(k)
k= (h/2)) — W B ”—1 '

Example 2.20

Suppose we want to find an approximation of the derivative of the function f
(x) = e *sin (x) at the point x= 1.0 by using a centred divided difference formula
and Richardson extrapolation. If we use h=0.5 and h=0.25, we get

e~ (1:0405) . 4jn (1.0 + 0.5) — e=(19-95) . 5in (1.0 — 0.5)
2.0-05

= —0.068215072

and

e~ (14025 . in (1 + 0.25) — e~ (=92 . sin (1 — 0.25)

= —0.100189411
2025 0.100189

Neither of these approximations is near the correct answer, —0.11079376,
however, using one step of Richardson extrapolation we get

4.(—0.100189411) — (—0.068215072)
3

= —0.110847524.

This value is much closer to the correct value.
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2.8 Finite Difference Methods

We will now discuss how to find a numerical solution to partial differential
equations (PDEs). In particular, we will consider parabolic boundary value
problems of the Black—Scholes type

oC 12280 oc

This equation can be solved by numerical methods, and we will here discuss
some of the most common techniques. Anyone who knows how to numeri-
cally approximate derivatives and has some experience in, for example,
Microsoft Excel can easily solve the partial differential equation above. If we
let x= In (S) we can rewrite the PDE above by the use of the chain rule:

oC _dCox 1dC
2S  0x0S Sox

az_CiGE) __lac 192c _ _La_c+13<18_0>

082  0S\S ox S20x SoxoS S2 0x  SOx\S ox
19Cc 10

TS ox o

We then get

oc 1 ,9°C 1 .0C oc
3 2% a0 2% g =95 rC

SO

oc_1,9c o
- E a ) +o a —rC,
where v = r—§—Y:0°. By doing this we have removed the explicit dependen-
cies of S and thereby get the coefficients independent of the stock price (see the
coefficients p,, p,, and p, below).
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2.8.1 Derivative Approximations

Mathematically, the partial derivative of a function flx, y) with respect to y is
defined by

5f(x,y) _ hmf<xay+Ay) _f<x7)7) )

ay Ay—o Ay

This can be is approximated with

of (x,y) L fxy+Ay) —f(x,y)
dy Ay ’

where Ay represent a small change in the variable y. The above approximation
is called a forward difference since the difference is in the forward direction.
Similarly, the backward difference is defined by

af(xvy) Ef(xvy) _f(xay_ Ay)
oy Ay

A central difference is therefore given by

of (x,y) _flx,y+Ay) —f(x,y — Ay)
oy 2Ay

A more stable central difference scheme is

of(x,y) flx,y+Ay/2) —flx,y — Ay/2)
oy Ay

To find a difference scheme for the second order derivative we use:

O’f(x,y) 0 [fey+Ay/2) flxy—Ay/2)

0y2 Oy Oy Oy

fy+Ay) =2 f(x,y) +f(x,y — Ay)
(Ay)?

(oS

By substituting these into a partial differential equation we get a scheme to
solve it. We will now study three different schemas that are widely used in
practice.
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The Explicit Finite Difference Method

If we use the following approximations of the derivatives,

0C  Cipiji1 — Cisnjo

ox 2 Ax
@ _ Cit1,j+1 —2-Ciz1,j + Ciyr,j—1
ox? Ax? ’

which are called backward differences, we can then write the Black—Scholes

PDE as

Civtj=Cij 1 5Cup1 =2 Cisrj+ Cinijm

At 2 Ax?

Cit1,j01 —C
2 Ax

i+1,j-1
+v- —r-Ciyj

Here i is the time index and j the price index. With some rearrangement we
have

1

Cij=—
T 4 At

(pu . Ci+1,j+1 —i—pm : Ci+1,j +Pd . Ci+],j71),

where

(2
Pu=735 A | Ax

2

o

1 o’ v
= A (-2,
Pa=73 (Ax2 Ax)

and where 1/(1 +7Dx) is the discount factor or an approximation of ¢~
One can show that this method is equivalent to using a trinomial tree
(see Sect. 4.12.5). For stability and convergence reasons it has been shown
that we should use Ax and At such as

Ax > oV3 - At

rAr
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As we can see, the result from this method is explicitly given because we know
the value (the claim) at the boundary where the option expires. Then, we
perform the calculation backwards in time until the valuation date. Since the
time dependence (7) only depends on future dates (i+1) we can explicitly
calculate the change, node by node backward in time.

The Implicit Finite Difference Method

If we instead use the following approximations of the derivatives

oc _ Cijy1 —Cij

Ox 2 Ax
0’C _ Cijr1 —2-Cij+Cij
0x2 Ax? ’

which are called forward differences, the stability and convergence will increase
considerably. But, for each time-step we now have to solve a system of
equations. The Black—Scholes PDE with forward differences is given by

2 Cijr1 —2-Cij+Cijj Cijr1 — Ciji

o - +uv- —i"C,'_H,j

Ci1,—Cij 1
At 2 Ax? 2 Ax

With some rearrangement, we have:
Pu-Cijer +pp - Cij+pg-Cij1 = Cisrj,
where
1 o> v
=—.At- | — I
Pu=75 <Ax2 * Ax)

62
pmzl—i-At-E—i-r-At

1 o’ v
NI AL
Pa=73 <Ax2 Ax>
Using the boundary conditions

Cin,—Cin., =4u
Cl‘,fNHl - Ci,*Nj = )’LA
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we have a system with 2/V; + 1 equations. The boundary conditions depend on
the type of option. For a call option we have

Av = Sin; — SiNg,
AL=0
and for a put option
Ay =0

AL = Si-N; = Si, Ny
The corresponding system of equations can be expressed as

1 -1 0 .. .. .. 0 Cin, Au

Pu Pm Pa O .. .. O Cin, Civi,N,
0 Pu Pm Pa 0 0 Ci,N/-,z Ci+1’Nj*2
0O .. 0 p, pPn Ps O Ci, N, Cit1.N;.2
0 .. .. 0 p, Pn Pa Ci, N, Cit1.N;,
o ... .. .. 0 1 =1]|GCi-N | | AL i

As we can see above, in this model the future depends on the past. We don’t
know the history but we know the value of the option (claim) in the future.
This is given by the boundary condition. Therefore, we have to solve this
system of equation for all time-steps.

The Crank—Nicholson Method

If we combine the forward and backward differences we can get an even better
method, the famous Crank—Nicholson method,

At 2 2Ax?

(Civ1j01=Ciy1j1)+(Cijr1—Cij1) Cit1,+Cij
+u- P (et An R
4.-Ax 2

_C,-H,‘,-—C,",-:LGZ_ ((Ci+1,j+l—2~Ci+l,j+ci+11j1)+(Cixj+l—2~ci,j+ci,j1))

With some rearrangement we have

PuCijit + Py Cij+pa-Cijor = —py - Civ1js1 — (P —2) - Ciz1j +pa
“Cit1,j-15

where
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Finally, we can calculate the Greeks as

A= 0C __ Cojr1 — Coji
0S  So,j+1 — So,j-1

<Co,j+1 - Co,j> (Co,j - COJ—1>
X _
r=9C _ \Soi—So, So.j = S0,j-1

0s® %(So,jﬂ — So,j-1)
ocC N Cl,j — C(),j
=%~ &
via_C% C(o) — C(6 + Ao)
Oo Ac
0C _C(r)—C(r+ Ar)
P=or T Ar '

The accuracy in the method above is O(Ax+ Az), O(Ax* + A and OAx*
+ (A#2)* respectively. The integration schemas can be illustrated as in the
Fig. 2.24.

As we can see in Fig. 2.24, in the explicit method we use the information at
time 7 to calculate the value at #— Az In the implicit method the information
passes in the opposite direction so we need to solve a system of equations to
find the values in all nodes at time # If we use Crank—Nicholson we combine
the implicit and the explicit method.

The Hopscotch Method

When we solve a partial differential equation, we always create some kind of
grid. In the grid shown in Fig. 2.25. we illustrate how we represent the stock
price as function of time. At maturity we have the boundary condition
representing the contingent claim. The other two, parallel to the time axis
represent the minimum and maximum stock price.
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Implicit method Mixed method Explict method

® Q Q ® @ @]
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' o}
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®
@
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o [ ] o o @ @
t- At t t- At t t- At t

Fig. 2.24 The integration schema can be illustrated like this

S r 3
¢
Boundary
Ay
EBoundary
Boundaty =
£

Fig. 2.25 The integration schema can be illustrated like this

Al
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If we combine the forward- and backward differences and place the nodes as
in Fig. 2.26, we don’t have to solve the equations simultaneously as we have to
do in the implicit and Crank—Nicholson method. In the Hopscotch model, we
start by calculating the explicit nodes, denoted by E for the time before
maturity. This is every second node. We then continue with the implicit
nodes, denoted by I, who can be calculated by the known explicit nodes and
the nodes in the next time step. We continue like this backwards in time and
by shifting the explicit and implicit nodes as in Fig. 2.26. By mixing the nodes
in this way, we can get almost the same accuracy as the Crank—Nicholson
method without having to solve a complete system of equation.

2.8.2 Some Words About Monte Carlo Simulations

In many situations, Monte Carlo simulations can be very useful to price
financial instruments. This is especially useful for complex derivatives when
no closed form solutions exist. Monte Carlo simulations can also be used when
there are many random factors, such as stochastic volatility, stochastic interest
rate and more realistic price processes with jumps or for complex boundaries.
The disadvantage is the need of extensive and time-consuming calculations,
which needs a lot of computer power.

S
rF 3 -
ce Boundary  ____

I BT ETETE T E
EIEIGETITETITE I E Bounday
I EIEIETIETIE.]I ,
BT ETETIEBIETE |®
I EIEIETIETIE.]I

T F ETET EILIETHE

I EIEIETIETITE.!]I

2 T ET BIEIL®RTE

Eomdm ——
£

Fig. 2.26 The Hopscotch schema can be illustrated like this. Here, for each time, we
always start with the explicit nodes. Thereafter it is possible to calculate the values
in the implicit nodes. We continue backwards until the valuation time today
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We will first introduce Monte Carlo simulations and then show how we can
increase the accuracy by control variates and by quasi-random numbers. Con-
sider a plain vanilla European call option in the Black—Scholes world with
continuous compounding, with a constant risk-free interest rate 7 The stock
price is following a stochastic process given by

dS; = rSidt + 6S.dz;.

For simplicity, we will study the natural logarithm of the stock price, x,= In
(S,) which gives the following dynamics

dx, = vdt + odz,
1

v=r——=o".

2

This process can be simulated as

Xepar = X + VAL + 6(Zpar — Z1)s

where the random increment in z is normally distributed with mean zero at

variance Az. Then we can simulate the random process given by v/ At - £ where
e is normally distributed random numbers. We then have

Sfi = exp(x,,,)
X, =X, + VAt + oV AL - €.

In the Fig. 2.27 we show 100 simulations of the stock price during a half of a
year divided into 126 trading days. (We suppose there are 252 trading days per
year.) At the starting time, the stock price is 100, the volatility 40 % and the
risk-free interest rate 2 %. We use Monte Carlo simulation to calculate the
price of a European call option with strike price K = 110.

A histogram of the stock price at maturity is shown in Fig. 2.28. We observe
a typical log-normal distribution. From this histogram we can also calculate
the probability that the stock price will be above the strike at maturity. This is
done by counting the number of paths ending above K and divide with the
total number of simulations.

For each scenario, we calculate the profit of the call options as max(S7—
K, 0). To find the theoretical option value we then calculate the mean value of

the discounted payoff
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Monte-Carlo simulation

200

150

Stock price

100 &8

Fig. 2.27 100 Monte Carlo simulations of the stock price starting at 100

1
Co = exp(—rT)NZ max(Sy,; — K, 0)

i=1

where K is the strike price of the option. If we make 10 simulations with
10,000 simulations each we get: [7.944, 7.705, 7.373, 7.896, 7.535, 7.781,
7.871, 8.232,7.991 and 7.953]. As we can see, the simulated values vary very
much, also with as many as 10,000 simulations. The average value is 7.828
which can be compared with the Black—Scholes value, 7.836944. As we see
with 100,000 simulations, we still have an error of 0.009 or 0.11 %. With one
million simulations we get 7.78786, an error of 0.6 %. This was even higher
than the previous 100,000 simulations. So the error is very random itself.
The standard deviation (SD) of the simulations is given by
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o Monte~CarI9 histogram

300 |

200}

100 |

0 T

50 100 150 200 250
Stock price at maturity

Fig. 2.28 A histogram of 10,000 Monte Carlo simulations

2

N N
1
f— 2__ . . —_
SD = ;(CT,,) N ;CT,, exp(—21T)

and the standard error (SE) is then calculated as

SD
SE = .
VN

Unfortunately, as we have seen, one has to make many simulations to get
reasonable accuracy on the option price, usually millions of simulations. But
with a different technique, we can increase the accuracy.

In general, when we simulate a portfolio of many instruments, we sum all
the expected cash flows, discounted to a present value using the appropriate
interest rates. Let s; denote the discounted cash flow for the 7:th path. We have
that



76 Analytical Finance: Volume |

S; = Z exp(—rty)CFy.

k=1

If we do 7 such Monte Carlo simulation and average the results we have

n

S\:%ZS](

k=1

The central limit theorem states that Swill converge to the true expected value
E(s) as n— oc. It is important to realize that Sonly is an approximation of £(s)
for any finite 7. The central limit theorem states that the averaged mean Sexhibits
a standard error of size

o

N

The standard error is a measure of the insecurity in the estimate of the
instruments value. From the size of it we can draw two conclusions. First,
we can improve the accuracy of our simulation by performing more simula-
tions. Second, since the error decreases as O(1/ n), it is possible that many
simulations are needed to provide high accuracy.

Variance Reduction: Control Variates

To increase the accuracy we can study a hedged portfolio of both the stock and
the option. This will, in general, give us a much better accuracy of the option
price. By creating a hypothetical stock with a perfect negative correlation to the
first stock, we have

dS, 1 =rS;1dt + 6S,,1dz,
dS,,z = I‘S,’zdt — O'S[,de,

with option prices

Cr,;= max(O,S . exp(uT — 6\/7&) —X)

and
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Cy; = max (O,S . exp(yT + aﬁei) — X).

Both of these should of course have exactly the same value, so we can use the
mean value of both. This technique is called variance reduction with opposite
variation. To increase the variance even more we can study a delta-hedged
position.

The variance without control variance is about 15-25. This is increased,
first to 10-15 and with delta hedging to 3—4. If we combine the techniques we
can go below 3 and if we also use gamma-hedge we can increase the accuracy
even more.

Also the use of random number is of great importance. The best result is
given by using quasi-random numbers. They give a better coverage than real
random numbers. Therefore they give a better result. (For more details of
generating random numbers, see Clewlow and Strickland [2000].)

The use of Monte Carlo methods does not easily handle the pricing of
American options due to their early exercise characteristic. Simulation of
option prices tends to employ a backwards induction technique, which will
tend to overestimate the price of an option. Various algorithms have been put
forward to price American options using backwards induction, but many
algorithms are computationally intensive adn do not converge readily. A
number of authors, including Broadie and Glasserman (1997) and Fu et al.
(2000), have suggested that the most flexible and easily implemented proce-
dure is the simulated tree algorithm, but it too has drawbacks, with the
primary one being exponential growth in computational with the number of
exercise opportunities.

Variance reductions can sometimes also be used to get a better result in the
binomial model. Then the more accurate result for an American put option is
given by

Cam = Cit = Clhit +-C5..
The idea is that, for a European option, Black—Scholes gives the exact result
and that the difference between the binomial approximation for the European
and the exact value is the same for the American option:

C;?’i: o Cam — Cbin o Cbs

eur eur”
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2.9 Value-at-Risk (VaR)

One of the most popular and traditional measure of risk is volatility. The main
problem with volatility, however, is that it does not make allowance for the
direction of an investment’s movement. A stock can be volatile because it
suddenly jumps higher. For investors, risk is about the odds of losing money,
and VaR is based on that common-sense fact. By assuming investors care
about the odds of a really big loss, VaR answers the questions “What is my
worst-case scenario?” or “How much could I lose in a really bad month?”
A VaR statistic has three components:

1. The time horizon (period) to be analysed. This may be related to the time
period over which a financial institution is committed to holding its
portfolio, or to the time required to liquidate the assets. Typical periods
using VaR are 1 day, 10 days or 1 year. A 10-day period is used to compute
capital requirements under the European Capital Adequacy Directive
(CAD) and the Basel II Accords for market risk, whereas a 1-year period
is used for credit risk. A problem by using a long time horizon is that the
portfolio is not the same in the beginning as at the end of the period.

2. The confidence level in which the VaR would not be expected to exceed the
maximum loss. Commonly used confidence levels are 99 % and 95 %.
Confidence levels are not indications of probabilities.

3. The loss amount or loss in percentage.

Keep these three parts in mind as we give some examples of variations of the
questions that VAR answers:

* What is the most I can—with a 95 % or 99 % level of confidence—expect
to lose in dollars over the next month?

* What is the maximum percentage I can—with 95 % or 99 % confidence—
expect to lose over the next year?

Institutional investors use VaR to evaluate portfolio risk, but for illustration we
will use it to evaluate the risk of a single index.

Three methods are used to calculate VaR: the historical method, the
variance-covariance method and using Monte Carlo simulation.
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2.9.1 Historical VaR Method

The historical method is the simplest and most transparent method of calcu-
lation. This involves running the current portfolio across a set of historical
price changes to yield a distribution of changes in portfolio value, and com-
puting a percentile (the VaR).

The benefits of this method are its simplicity to implement, and the fact that
it does not assume a normal distribution of asset returns. Drawbacks are the
requirement for a large market database and the computationally intensive
calculation. By using historical data, we can evaluate VaR as

VaR = MV - o), - Vd - 2.3263,

where MV'is the market value of the portfolio, 6, the historical volatility of the
portfolio and & number of days. The value 2.3263 is a given value used to
calculate the level of certainty of 99 %. It can be calculated solving

17
—z2/2 3.
— e dz = 0.99.
V2 /

By using Excel you can find the value of x as “=NORMSINV(99 %)”. In a

calculation with a certainty of 95 % we solve

1 i 2
—z/2 _
— e dz = 0.95.
V2 /

The value of x will then be =1.6449 (=NORMSINV(95 %) by using Excel).
In the Fig. 2.29 we calculate the daily return of almost 1,400 points and put
them in a histogram that compares the frequency of return “buckets”. For
example, at the highest point of the histogram (the highest bar), there were
more than 250 days when the daily return was between 0 % and 1 %. At the
far right, you can barely see a tiny bar at 13 %; this represents the one single
day within a period of several years when the daily return was 12.4 %.
Notice the red bars (the leftmost 6 bars between —10 % and —5 %) that
compose the “left tail” of the histogram. These are the lowest 5 % of daily
returns. The worst are always the “left tail”. The red bars run from daily losses
0f 5-10 %. Because these are the worst 5 % of all daily returns, we can say with
95 % confidence that the worst daily loss will not exceed 4 %. Put in another
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Fig. 2.29 A histogram of 1386 Monte Carlo simulations

way, we expect with 95 % confidence that our gain will exceed —4 %. That is
VaR in a nutshell. Let’s rephrase the statistic into both percentage and cash
terms:

* With 95 % confidence, we expect that our worst daily loss will not exceed
4 %.
 If we invest 100, we are 95 % confident that our worst daily loss will not

exceed 4 (100 X —4 %).

You can see that VaR makes a probabilistic estimate. If we want to increase our
confidence, we need only to “move to the left” on the same histogram, to
where the first two red bars, at —8 % and —7 % represent the worst 1 % of
daily returns:

* With 99 % confidence, we expect that the worst daily loss will not exceed
7 %.

* Or, if we invest 100, we are 99 % confident that our worst daily loss will
not exceed 7.
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2.9.2 The Variance-Covariance Method

This method assumes that stock returns are normally distributed. In other
words, it requires that we estimate only two factors - an expected (or average)
return and a standard deviation - which allow us to plot a normal distribution
curve. Here we plot the normal curve against the same actual return data:

The idea behind the variance—covariance method is similar to the ideas
behind the historical method, except that we use the familiar curve instead of
actual data. The advantage of the normal curve is that we automatically know
where the worst 5 % and 1 % lie on the curve. They are a function of our
desired confidence and the standard deviation.

The curve in Fig. 2.30 is based on the actual daily standard deviation of the
index, which is 2.6263 %. The average daily return happened to be fairly close
to zero, so we will assume an average return of zero for illustrative purposes.
Here are the results of plugging the actual standard deviation into the formulas

above.

Confidence #ofo Calculation Equals
95 % (high) 1.65 x o 1.65 x 2.64 % 436 %
99 % (very high) 233 x0c 233 x 2.64 % 6.16 %

We calculate the 99 % VaR as

N
gy =Y o,
i=1

6, = VO Z®
VaRggy, = =MV (u, — 2.3263 - 5,),

where

w;= V]V, is the return on asset 7 in the portfolio.

)y the covariance matrix of the /V assets.
u; the expected return of asset 7, i.e., the mean return.
Ky the expected return of the portfolio i.e., the mean.

MV the market value of the portfolio today.
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Fig. 2.30 The histogram in Fig. 2.30 fitted to a normal distribution. The mean is
0.0181 % and the standard deviation 2.6263 %

The benefits of the variance—covariance model are the use of a more
compact and maintainable data set, which can often be bought from third
parties, and the speed of calculation using optimized linear algebra libraries.
Drawbacks include the assumption that the portfolio is composed of assets
whose delta is linear and the assumption of a normal distribution of asset
returns (i.e., market price returns).

2.9.3 Monte Carlo Simulation

The third method involves developing models for future price returns of all
financial instruments in the portfolio and running multiple hypothetical
scenarios through the models. This is done via Monte Carlo simulations that
randomly simulate scenarios generated from historical time series. The result
can be arranged into a histogram with monthly returns.

To summarize, we ran 100 hypothetical scenarios of monthly returns.
Among them, two outcomes were between —15 % and —20 %; and three
were between —20 % and 25 %. That means the worst five outcomes were less
than —15 %. The Monte Carlo simulation therefore leads to the following
VaR conclusion, with 95 % confidence we do not expect to lose more than
15 % during any given month.
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2.9.4 Exponential Weighted VaR

The yearly volatility is calculated as the square root of 252 (the approximate
number of trading days on a year) times the standard deviation

6_\/n11'§:(x"_x)2'

Here x; is the logarithmic return on day 7 and X the average return during the
time period. In this formula, all the returns are equally weighted. If we use an
exponential weight, we can rescale the volatility in such a way that the return of
the most nearby return in the history becomes more important than those in
the far past. We then use the formula

o V(l ) )

i=1

where A is a decay factor. The value of 1 is usually between 0.94 and 0.99.

Recall the formulas for mean, variance, co-variance, skewness and kurtosis:

Skewness measures the asymmetry of the distribution and is zero for the
normal distribution, but non-zero for the lognormal distribution. The kurtosis
measures the flatness of the distribution, # = 3 for the normal distribution.

2.9.5 Value-at-Risk for Bonds

The value of a bond can be expressed (quoted) in the interest rate yield-to-
maturity, (P= P(y)). With a simple Taylor expansion we may write
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dP 1 d&°P
Pf(y) %P0+7;Ay+§ dyzt.Ayz’

giving
1
AP, =~ —Pg - Dyoq + Ay + EPO -Cnvx - Ayz,

where we have defined the modified duration and the convexity of the bond. If
we now define the change in yield as Y'= Ay/y, we have
AP, 1

1
— A = Dmoa ¥ -y +5Po - Crvx - (Y - 3y)° = =8 yo + 57 - ¥,
Py 2 2

where we have defined ¢ and y. This model is called the delta-gamma model. If
we put gamma (y) to zero, we call that model, the delta model. If the changes in
the interest rate are normal distributed ¥~ MO0, 6?), then AP/Py~ N0, 5°67).
If MV is the market value P, at # = 0, then

VaR =MV -8 -0y - Vd - 2.3263 = Dypoa - yo - o4 - Vd - 2.3263.

2.9.6 Portfolio VaR

By using the co-variance between two instruments 1 and 2

1 T
01,2 = mZ(APL[ _ﬂl)(APQ,t _IuZ)

t=1

and the correlation

01,2

P12 =
0102

we can calculate the VaR of a portfolio of the two assets as

VaR, = \/(VaRl)2 + (VaRy)> +2 - py 5 - VaR, - VaR,.

We see that lower correlation gives better diversification. This formula can be
generalized for any number of assets.



2 Time-Discrete Models 85

Since VaR is not normally linear, we cannot use the superposition principle
for VaR, especially when using derivatives. Therefore a bank starts by calcu-
lating the VaR at the lowest lever on each trading desks. Then the different
trading desks are aggregated into groups, trading on similar markets or
instruments. This VaR again aggregates step by step up to the top level in
the bank. For each level, the VaR is needed to be simulated as a new part or
portfolio.

2.9.7 Conditional Value-at-Risk: Expected Shortfall

Expected shortfall (ES) is an alternative to Value-at-Risk, which is often
criticized as not presenting a full picture of the risks a company faces. The
“expected shortfall at g% level” is the expected return on the portfolio in the
worst g% of the cases. Expected shortfall is also known as conditional Value-at-
Risk (CVaR) or expected tail loss (ETL).

As we have seen, VaR is defined as the loss level that will not be exceeded
with a certain confidence level during a certain period of time. For example, if
a bank’s 10-day 99 % VaR is $3 million, there is considered to be only a 1 %
chance that losses will exceed $3 million in 10 days. One problem with VaR is
that, when used in an attempt to limit the risks taken by a trader, it can lead to
undesirable results.

The VaR can be expressed as

VaR,(X) = —inf{x : P(X < x) > a},

where 0 <2 <1 is the quantile of the distribution of the random variable X.
The ES can be expressed as

ES,(X) = —E[X|X < —VaR4(X)].

The meanings of these risk measures are obvious: VaR is a threshold which is
fallen short of in @ - 100% of all cases; ES is the expectation (i.e. the mean) of
the losses under the condition that this threshold has already been fallen short
of. The change of the sign is a matter of interpretation to neutralize losses. Risk
capital has to be positive.

Suppose a bank tells a trader that the 1-day 99 % VaR of the trader’s
portfolio must be kept at less than $10 million. There is a danger that the
trader will construct a portfolio where there is a 99 % chance that the daily loss
is less than $10 million and a 1 % chance that it is $50 million. The trader is
satisfying the risk limits imposed by the bank, but is clearly taking an
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unacceptable risk. Most traders would, of course, not behave in this way—but
some might.

CVaR is a measure that produces better incentives for traders than VaR
itself. Where VaR asks the question “how bad can things get?”, CVaR asks “if
things do get bad, what is our expected loss?”

CVaR, like VaR, is a function of two parameters; /N, the time horizon in
days and ¢%, the confidence level. It is the expected loss during an N-day
period, conditional that the loss is greater than the gth percentile of the loss
distribution. For example, with ¢ = 99 and /V = 10, the expected shortfall is
the average amount that is lost over a 10-day period, assuming that the loss is
greater than the 99th percentile of the loss distribution. We illustrate the
expected shortfall in Fig. 2.31. The expected shortfall is the expectation i.e. the

mean of the losses under the condition that we make a loss.

2.9.8 Properties of the Risk Measures

A risk measure that is used for specifying capital requirements can be thought
of as the amount of cash (or capital) that must be added to a position to make
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Fig. 2.31 The histogram from Fig. 2.30 illustrating the expected shortfall and the
5 % worst case outcomes
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its risk acceptable to regulators. Artzner et al. (1999) have proposed a number
of properties that such a risk measure should have. These are

1. Monotonicity
If a portfolio has lower returns than another portfolio for every state of the
world, its risk measure should be greater.

2. Translation invariance
If we add an amount of cash C to a portfolio, its risk measure should go
down by C.

3. Homogeneity
Changing the size of a portfolio by a factor 4 while keeping the relative
amounts of different items in the portfolio the same should result in the risk
measure being multiplied by A.

4. Sub-additivity
The risk measure for two portfolios after they have been merged should be
no greater than the sum of their risk measures before they were merged.

The first three conditions are straightforward given that the risk measure is
the amount of cash needed to be added to the portfolio to make its risk
acceptable. The fourth condition states that diversification helps to reduce the
risks. When two risks are aggregated, the total of the risk measures
corresponding to the risks should either decrease or stay the same.

VaR satisfies the first three conditions, but it does not always satisfy the
fourth, as will now be illustrated.

Consider two $10 million one-year loans, each of which has a 1.25 %
chance of defaulting. If a default occurs on one of the loans, the recovery of the
loan principal is uncertain, with all recoveries between 0 % and 100 % being
equally likely. If the loan does not default, a profit of $200,000 is made. To
simplify matters, we suppose that if one loan defaults it is certain that the other
loan will not default®. For a single loan, the one-year 99 % VaR is $2 million.
This is because there is a 1.25 % chance of a loss occurring and conditional on
a loss, there is an 80 % chance that the loss is greater than $2 million. The
unconditional probability that the loss is greater than $2 million is 80 % of
1.25 %, or 1 %.

Consider next the portfolio of two loans. Each loan defaults 1.25 % of the
time and they never default together. There is therefore a 2.5 % probability

*This is to simplify the calculations. If the loans default independently of each other so that two defaults
can occur, the numbers are very slightly different, but the VaR of the portfolio is still greater than the sum
of the VaRs of the individual loans.
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that a default will occur. The VaR in this case turns out to be $5.8 million.
This is because there is a 2.5 % chance of one of the loans defaulting and
conditional on this event, there is a 40 % chance that the loss on the loan that
defaults is greater than $6 million. The unconditional probability that the loss
on the defaulting loan is greater than $6 million is therefore 40 % of 2.5 %, or
1 %. A profit of $200,000 is made on the other loan, showing that the VAR is
$5.8 million.

The total VaR of the loans considered separately is $2 million + $2 mil-
lion = $4 million. The total VaR after they have been combined in the
portfolio is $1.8 million greater, at $5.8 million. This is in spite of the fact
that there are very attractive diversification benefits from combining the loans
in a single portfolio.

2.9.9 Coherent Risk Measures

Risk measures satisfying all four of the conditions in Sect. 2.9.8 are referred to
as coherent. The example illustrates that VaR is not always coherent. It does
not satisfy the sub-additivity condition. This is not just a theoretical issue. Risk
managers sometimes find that, when they have a portfolio in multiple curren-
cies, the total VaR goes up rather than down as expected.

In contrast, it can be shown that the CVaR® (expected shortfall) measure is
coherent. Consider again the earlier example. The VaR for a single loan is $2
million. The expected shortfall from a single loan when the time horizon is one
year and the confidence level is 99 % is, therefore, the expected loss on the
loan, conditional on a loss greater than $2 million. Given that losses are
uniformly distributed between zero and $10 million, this is halfway between
$2 million and $10 million, or $6 million.

The VaR for a portfolio consisting of the two loans was calculated as $5.8
million. The expected shortfall from the portfolio is, therefore, the expected
loss on the portfolio, conditional on the loss being greater than $5.8 million.
When a loan defaults, the other (by assumption) does not and outcomes are
uniformly distributed between a gain of $200,000 and a loss of $9.8 million.
The expected loss, given that we are in the part of the distribution between
$5.8 million and $9.8 million, is $7.8 million. This is therefore the expected
shortfall on the portfolio. Because $6 million + $6 million > $7.8 million, the
expected shortfall does satisfy the sub-additivity condition for the example.

? Sometimes CVaR is the acronym for Credit VaR.
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A risk measure can be characterized by the weights it assigns to quantiles of
the loss distribution. VaR gives a 100 % weighting to the gth quantile and zero
to other quantiles. Expected shortfall gives equal weight to all quantiles greater
than the gth quantile and zero weight to all quantiles below the gth quantile.
We can define what is known as a spectral risk measure by making other
assumptions about the weights assigned to quantiles. A general result is that
a spectral risk measure is coherent (that is, it satisfies the sub-additivity
condition) if the weight assigned to the pth quantile of the loss distribution
is a non-decreasing function of p. Expected shortfall satisfies this condition.
VaR, however, does not because the weights assigned to quantiles greater than
q are less than the weight assigned to the gth quantile.

2.9.10 Regulations

Regulators make extensive use of VaR and its importance as a risk measure is
therefore unlikely to diminish. However, expected shortfall has a number of
advantages over VaR. This has led many financial institutions to use it as a risk
measure internally.
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Introduction to Probability Theory

3.1 Introduction

The study of financial engineering, risk modelling and the valuation of
financial instruments requires knowledge in basic statistics and probability
theory. We will here provide a short introduction to the basic concepts. Since
the main focus of this book is not on statistics and probability theory, we give
only the theorems and definitions needed for further reading in financial
engineering.

3.2 A Binomial Model

So far we have been studying the binomial model where the price can grow
with a factor # from one time to another, or decrease with a factor 4 during the
same time. A stochastic variable, such as tossing a coin, decides whether # or
d should be used with some probabilities. We will study such a tree with the
following properties:

u=2=d=1/u=0.5, Sy=4 and q, = q, = 1/2 where S,(uu) = u’S,,
Sy (ud) = udS, etc. (Fig. 3.1).

If we are tossing a coin once, twice and three times, we get a sample space Q
given by

© The Author(s) 2017 91
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+ Sy(uu) =16
1 S](u) =8
Sy=4 * Sy(ud)=4
; Sy(du)=4
¢ Sy(d)=2
© Sy(dd)=1

Fig. 3.1 A binomial tree with parametersu=2, d=1u=0.5Sy=4and ¢, = ¢, = 1/2

Q = {ud}={w},
Q = {uu,ud,du,dd} = {w,},
Qs = {wwuwu,uud, udu,duu, udd, dud,ddu, ddd} = {ws}.

Here, Q; represent the sample space after 7 tossings. We also introduce
the interest rate 7, such as for one period in time 1 CU (cash unit) will grow
to (1+71 CU=1 R CU. Using the no-arbitrage condition we know that the
factor R must be in the interval 4 < R <u because if R > u nobody would be
interested in buying the stock and if R < d then r < 0, which is unrealistic.
We say that the model above is free of arbitrage if and only if /<R <.

Example 3.1
Let’s study a European call option with strike K at t= 1. On maturity, the value is
given by

Vi(0) = (S1(w) — K)" = max (S;(w) — K, 0).

We are now looking for the arbitrage-free price. The two possible outcomes, with
u and d are given by

[ WS —K)* if or=u
Vi{w) = { (dSo — K)* if o =d.

To hedge a short position of the option we have to buy Aq stocks. This means that
at time t = 0 we have sell the option, giving us V, cash units. But we also buy Aq
stocks at the price of So. We then have (Vo — AgSo) cash units to put in our money-
market account. If the sign is negative, that means we have to borrow this
amount at a rate of r. The value process gives us two possible values on maturity

V](U)=A0-$1(U)+R-(V07A0-50)
Vi(d) =Ag - S1(d) +R- (Vo — Ao - So).

We can therefore solve A, to get

(continued)
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Example 3.1 (continued)
Vl(u) — Vl(d) 8V

M=gw=s@ ~ o5

By inserting A, into the equation above, we find the price of the option at t = 0

VQZ%{Z:ZW(U)—Z:;W(L)’)} :%{qu.v1(u)+qd.v1(d)} :lREQ[V1]

Here we have also defined q, and qq as the risk-neutral probabilities as

R—d R—u

Qw=,—gada=-—1—,

We also let the expression
[X] = —EQ[X]

represent the arbitrage free price on the option on the contingent claim X with
respect to the risk-neutral probability measure Q, the martingale measure.
Similarly, we get

Vi) = 3180 Valw) 400 Vel M) = et — ]
Vi(d) = gl Vald) 4 ag - Valed)}s Ai(e) = (0= e

3.3 Finite Probability Spaces

Let F be the set of all subsets to the sample space Q (where O, {ddd}, {uuu,
uud, udu, ddd}, Q are examples of some) where @ is the empty set. We

define a probability measure P by a function mapping F into the interval [0, 1]
with P(Q) = 1 where

<u Ak) ZP (Ap).

Here A;, A,,. . . is a sequence of disjoint sets in F. A probability measures has
the following interpretation: let A be a subset of  and imagine that € is the set
of all possible outcomes of some random experiment. Then there is a certain
probability between 0 and 1 that when the experiment is performed, the
outcome will lie in the set 4. We think of P(A) as this probability. From
now we will use P, = 1/3 and P, = 2/3.
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Example 3.2

The probability to get ahead (i.e., a u) in the first toss when we are tossing the
coin three times, is given by

1N 21\ 2/1\* 1/2\° 1
P{uuu, uud, udu, udd} = (5) +§(§) +§(§) +§(§> =3

Definition 3.3 A c-algebra is a collection F of subsets in © with the following
properties

QDeF
AeF = AecF
Ay, Ap.... isasequence of subspaces to F = %JA,CE F

It is essential to understand that, in probabilistic terms, the c-algebra can be
interpreted as containing all relevant information about a random variable.

Example 3.4

Some important c-algebras to Q above is

Fo=1{92,Q}

Fr ={9,9Q, {uuu, uud, udu, udd}, {duu, dud, ddu, ddd } }

Fr ={9,9Q, {uuu, uud}, {udu, udd}, {duu, dud}, {ddu, ddd}} and all unions of these}
F3 = F = the set of all subsets of Q.

We say that F3 is finer than F,, which is finer than 7.

If we introduce the terms A, = {uun, uud, udu, uddy = {u**} , A= {d**},
A, = {uu*} etc., we can write

F1={D,QA,As}
f—Z = {@, QIAWAdlAuu/AudlAdurAddlAuuUAdulAuuUAddrAudUAdul

AudUAdd/ AMIICI Alldcl AdMC/ AddC}

We can illustrate F5 as
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OV =P oDVGEE

where the circle represent the full set Q.

Definition 3.5 A pair (X, F) where Xis a set and F a 6-algebra on Xis called a
measurable space. The sub-spaces that exist in F are called F-measurable sets.

In particular, if a random variable Yis a function of X, (Y= ®(X)), then Yis
said to be F*-measurable.

Definition 3.6 A finite measure pu on a measurable space is a function such as

u(A) =0,
u(Q) =0,
If Axe FVYk=1,2,...and A; N A; = Dfori # j, then

U (:gl Ak) = ;:#(Ak)

Definition 3.7 A filtration Fo = F = {F; t > 0} is a sequence of c-algebras
Fo, F1, - .., F, such that F, contains all sets in F,_;:

F,CF V>0
s<t = F,eF,’

We say that the c-algebra is generated by F ,. A finite probability space (2, F, P)
with the filtration of c-algebras is sometimes called 6-frelds. We also have

Fo=1{Q,@}C F\ C Fr. C Fr.

We say that each c-algebra F; when 0 < 7 < T, are generated by partitions. Since
Fi—1 € F; it follows that the partition generating F'; is finer than that which
generates ;1. The elements of a partition are sometimes called cells or atoms since
they make up larger objects in the -algebras that they generate, just as atoms creates
a molecule. Since the partition that creates F, is finer than that those who create
JF ;1 itis clear that the set of partition at time i— 1 make a sp/it to construct the set of
the partition at time 7. The way in which sets in a partition split to form sets of a new
partition turns out to be quite important, so we define the splitting index S(E) of a
cell £ in a partition to be the number of cells that it splits into the new partition.
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Definition 3.8 X is F-adapted if X, is F ~measurable for all # > 0.

Definition 3.9 A function £ X — R is said to be F —measurable, if for each
interval / the set f (1) is F—measurable, i.e.

{xeX|f(x)el}eF.

Definition 3.10 A stochastic variable X is a mapping of € on R such as

X : Q — R so that X is F-measurable.

Example 3.11

Consider again, the binomial tree above. A mirror under S, on [4, 27] is given by
{weQ|S(w)e[4,27]} = {weQl4 < Sy(w) <27} = A,

This is all nodes except S,(dd) = 1. The complete list of subset on Q with mirrors of
sets in Ris @, Q, Auu, AugUAqu Agg + all unions of these. They form a o-algebra
generated by Sy: a(S5).

The symbol F¥ represent the information generated by X on the time
interval [0, #], that is, the changes of X on this interval. We base this on the
observation of the trajectory {X(s): 0 <s<14.

If a specific event A occur in this interval, then A€ F [X . If the value of a
stochastic variable Z can be determined by observation of the trajectory of X,
then we write Z€ F tX . Furthermore, if a stochastic process Y € F ,X we say that
Y is adapted to the filtration {F X } ~o- Remark, X is always adapted to the

natural filtration FX = {F Xit>0}

Definition 3.12 A stochastic process can be considered as a discrete set of time-
indexed random variables {X n}f; | or, as in continuous time, a continuous set
{X}};~ 0. In many situations we consider such a process, containing a drift y

and diffusion &
X(t+ A1) — X(¢) = pu[t, X()] At + o[t, X (2))Z(2).
Sometimes this is interpreted as a random process (a random walk) upon a

deterministic drift. In the continuous limit the random process becomes a
Wiener process.
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Definition 3.13 A stochastic process {W(#); £ > 0} is called a Wiener process if

1. W(0) =0

2. (W(w)—W(2)) and (Wl(s)—W(7)) is independent (we say that W has inde-
pendent increments) 7 < s < # < u.

3. W(r)— WAs) is normal distributed N [O, Vit — S] Vs<t

4. W(#) has continuous trajectories.

A normal distributed process N[y, o] has the mean value given as y and the
variance 0. A very important property of a Wiener process (also called a
Brownian motion) is (dW)? = dt.

From a random process X, we can construct a continuous process by linear
interpolation between the distinct points

Y(t) = X,' + (f - ndt)(X,-_H —X,'),

where idt < r < (i + I) dr. This process has the following properties:

1. Y(#) is said to have the Markov property if given Y(z) and s> ¥(s) is
independent of Y(#) for all # < =

2. EI(N] =0

3. D)1 =T

If we define a Wiener process as X (1) = ;irr%) Y (¢) with X(0) = 0 it follows
[—

from the central limit theorem that the probability distribution of the incre-
ments X(¢ + 2)—X(¢) are normal distributed around 0 with the variance 4.
Furthermore, the Markov property gives

de(z)2 = <}}%{z(xi —Xi1)2}> = <}3‘l% (X,7)2> =T= JTdt
0 - 0

or
dX(1)* = dt.

Here the brackets (x) mean the mean value of x. We also have that

E[X(t+a) — X(1)] =0,

where E, is the expected value at time # which gives the martingale property
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such as

,8) =s. for s <t

In the risk-neutral valuation we use in continuous time a risk-free money-
market account and where the stock is following the process:

dS(t) = a(t)S(t)dt + o(1)S(t)dW (1)

Here WA(#) is a Wiener process on (Q, F, P) with filtration F(#) and where a(2),
o(#) and the interest rate () are adapted to F (7).

Definition 3.14 A c-algebra generated by X is the complete list of all sets
{weQX(w)€A},

where A C R.
Let G be a sub c-algebra of F. We then say that X is G-measurable if all sets
inc(X) € G.

Definition 3.15 Given (Q,F, P, X). If A C R we define the distribution

measure as

uy(A) = P(XEA).

Example 3.16

From the binomial tree; u,(9)=P()=0, us(R)=PQ) =1
115,[0,3] = P(S; = 1) = P(Adg) = (2/3)*. The distribution measure of S, place the
mass (1/3)°>=1/9 on S, = 16, the mass 2*(1/3)*(2/3) = 4/9 on S, = 4 and (2/3)* = 4/9

on S, = 1. Hereby we have the following distribution function on S,

0 x <1
4/9 1<x<4
4/9 4<x<16
1 x < 16.

Fs,(x) =P(S2 < x) =
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Remark 3.17 A stochastic variable can have many distributions since they
depend on the choice of probabilities. For the same reason, different random
variables can have the same distribution function.

Definition 3.18 2% is defined as the set of all subsets of Xin Q, i.e. as

2% = {A|A C X}.

Remark 3.19 2% is a set which elements are subsets of X. We illustrate this
with the following example:

X =1{1,2,3} = 2¥ = {@,X, {11,{2}.{3L.{1,2}.{1,3}.{2,3} ).

A partition P on Q, can be written as P = {A;,i = 1,2,... k}.

Example 3.20

We can create partitions of Q = [0, 1], P; = {A1, Ay, A3, Ay}, P> = {By, By, B3} as
A, = [0, 173), A, = [1/3, 1/2), A3 = [1/2, 3/4), A, = [3/4, 1] and B, = [0, 1/3),
B, — [1/3, 3/4), B; = [3/4, 1].

Definition 3.21 A partition S says to be finer than another partition P if all
components in P are a union of components in S.

Definition 3.22 If P is a partition of Q and f- Q — R is a given map. Then,
we say that the function fis P —measurable it P is finer than o(f).

Theorem 3.23 If fis P —measurable, then fis 6{P }-measurable.

This is obvious since P C o{P }. We interpret this as the function fis
constant on each of the components of P.

We now have:

1. P is generating a natural c-algebra 6{P }.

2. Given o{P} we can recreate Pvia A € Pif and only if A # @, and 4 € 6{P}
and no subset of 4 belong to o{P }.

3. S is finer than P < ofP }C o{S}.

4. fis P-measurable < fis 6{P }-measurable.
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We interpret 7 C G as G contains more information than F.
Definition 3.24 6{X} is the smallest 6-algebra such that X is F—measurable.

Definition 3.25 If a Wiener process W, is adapted to a filtration F and if W(z)
— WAs) is independent of F, we call Wa F-Wiener process.
Consider the stochastic differential equation (SDE)

{ dx(t) = ult,X(1)]dt + o[t, X (£)]dW (1)
X(0) = x,

where u(# x) and 6(2, x) is given, continuous and Lipschitz in x. The Lipschitz
condition says that there exists a constant L such as for all 4 and o:

’/l(t,)()-/l(l‘,yﬂ §L|X—y| Vt,x,y
‘a(t,x) —o(t, y)‘ < L’x - y| Vi, x,y

Then we are able to solve the SDE by integration

X(t)=x+ J,u[s,X(s)]ds + Ja[s,X(s)]dW(s)

o o

Here the last integral is not a Reiman—Stjeltsin integral since W has infinite
variation.

Definition 3.26 The expectation value (or mean value) of X given (Q,F, P) is

in the discrete case given by

EX] = X(o)P{w}

weQ

and

EX] = JX(a))dP{w}

in the continuous case.
For a finite set X={xy,x, ...,x,} we can partition Q into subsets
{X;=x1}, ... ,{X;=x,}, and then write
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EX|=> Y X(w).P{w}:ikaP{w}
k=1

k=1lw E{X;\:X/(}
7

0 n
=Y P(Xe =x¢) = Y v {xe}
pa k=1

w

Therefore we can sum over either Q or R.

Example 3.27

Calculate E[S3] in the binomial tree

E[S3] = Sy (uuu)P{uuu} + S;(uud)P{uud} + S, (udu)P{udu}
+ Sy (udd)P{udd} + S, (duu)P{duu} + S,(ddu)P{ddu}
+ S;(dud)P{dud} + S,(ddd)P{ddd}
=16-P(Aw) +4 - P(Aug U Adgu) + P(Add)
16 P{Sy = 16} + 4 - P{S, = 4} + P{S, = 1}
4 4 36

1
= 16'#52{16}4‘4'#52{4}+Hsz{1}:16'§+4'§+§:g:4
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Definition 3.28 The Tower property. Let X be a random variable on (Q,F, P)

and let H C @ be any two c-algebras on P, then
E[E[X|G][H] = E[X|H].

Definition 3.29 The Variance of X is defined as

Var[X] = J[X(a)) — E[X|PdP{w)

Var[X]
=0

[ X(w) —E[X(a))])z] :E{Xz(a))} - (E[X(co)])2

1)

I
oy

(0~ E0)) Pl = 3 (s~ EX@0)]) ) =
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Definition 3.30 An indicator function I : R — R is defined by
Ia(x) = { 0 x¢d

1 x€A
where A is called @ set indicated by 1,.

Definition 3.31 A function 4 is callednsz'mp/e if we can write

h(x) =Y culi(x)
k=1

Definition 3.32 Let £ X — R be non-negative and measurable. Then, the
integral of fis defined by

[ o) = sup [oyanco).

[
X X

where the supremum is taken over all simple functions ¢ < f.

Definition 3.33 A measurable function f'is said to be integrable if

JV(X)Idu(X) <o

X

We write this as f € L' (X, F, ). For an integrable function £ the integral on
fon Xis defined by

[ edut = [7*@aut) - [£- it

X X X

If A is a measurable set, the integral of fon A is defined by

[ Fdut = [1aranco.

A X
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3.3.1 Introduction to Integration Theory
Definition 3.34 A Borel algebra B(R) is defined as the smallest c-algebra that

contains all open intervals on R. The subsets in B are called Borel sets. All sets
we can think of and all writable sets on R € B, e.g.

(a,00) = nole (a,a+ n) (—o00,a) = nOL:jl(a —n,a)
[a,00) = El [a,a + n] (—o00,a] = no:le la — n,d]
(—00,a) U (b, ) [a,b] = ((—00,a) U (b,00))"

(a,b] = (—00,b] N (a,00) {a} = ﬁl (a B %’a +%>

are Borel sets. This means e.g. that all sets with infinitely number of real
numbers is a Borel set; e.g. A = {4y, a5, ..., a,} is a Borel set

A _ n ay
Y {ar}

Therefore, all irrational numbers are a Borel set since these are complement to
all real numbers.

Definition 3.35 A measure on (R, B(R)) is a function y, which maps B on the
interval [0, oo] with

Definition 3.36 A function f: R — B(R) is called Borel measurable it
{xeB|f(x)eA} e B(R).
To define measures of un-countable sets we have to generalize the concept of

integration and introduce Lebesgue-integrals (see the literature about integra-
tion theory). We will only need selected definitions, as given below.
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Definition 3.37 Some Lebesgue integrals

JIAdMO = Ho(A).
R

For a simple function we have
h(x) =Y cidi(x) =
k=1
[ o = > ey = > ().
2 =1 k=1

For a simple function A(x) < flx) Vx € R=

lfdﬂo - sup{l g }

If this is # oo it is called fintegrable.

[ = [ 7o = | -

R R R
where f"(x) = max {f{x), 0} and /™ (x) = max {—f(x), 0}.
[ g = [

A R

where I is an indicator function to A.

3.3.2 Probability Spaces

Definition 3.38 A probability space is defined by (Q, F, P), where

* Q is a non-empty set, called sample space, which contains all possible
outcomes of some random experiment.

* F is a c-algebra of all subsets of Q.

* Pis a probability measure on (2, F) which assigns to each set 4 € F a
number P(A4) = [0, 1], which represent the probability that the outcome of
the random experiment lies in A.
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Definition 3.39 Given (2, F, P) and a stochastic variable X. If X is an
indicator function (e.g., X(@) = I4(@w) =1 if @ € A and 0 otherwise) then

JXdP = P(A).

Q

If X is simple, we have

JXdP = chJIAAdP = cP(Ar)
k=1 k=1
Q

Q
JXdP :JX - [4dP

A Q

Definition 3.40 The expectation value for a stochastic variable is given by

E[X] = JX 14dP = JX(a)) - dP(w).

Q Q

Definition 3.41 If X is a positive stochastic variable, then
E[X] = JP(X > 1\
0

Definition 3.42 ¢ is a density function on Rif ¢ > 0 andJ @ -duy =1.The
Q

associated probability measure is given by
P(A) = J @ - dugVA€ F(R).
A

Here ¢ is called the Radon—Nikodym derivative with respect to pi and

dpP
Q=
dpy
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3.3.3 Independence
Definition 3.43 A € F and B € F is independent it P(ANB) = P(A)P(B).

Definition 3.44 G and 'H is independent o-algebras it P(ANB) = P(A)P(B) V
A€ Gand B€ H.

Definition 3.45 X and Y are independent stochastic variables if they generate
independent c-algebras.

Example 3.46

Let P{HH} = p?, P{HT} = P{TH} = qp, P{TT} = ¢° and define A = {HH, HT} and
B = {HT, TH} = ANB = {HT}. A and B is independent if P{HT} = P{HH, HT}P{HT, TH}
= gp = P(A)P(B) = (p” + qp)*2qp = p*2qp = 2qp° = p = q = .

Example 3.47
If G ={0, Q, {HH, HT}, {TH, TT}} and H = {@, Q, {HH, TH}, {HT, TT}}. If we now let

A = {HH, HT} and B = {HH, TH} we have P(A)P(B) = (p° + gp)(p® + qp) = p> P
(ANB) = P{HH} = p?
3.3.4 Conditioned Expectations

Study the binomial model

Ssuu)=u’Sy @;=u

Sh )= S,
=t Sstuud)=u*dSy ws=d
Si)=uS, Ss(udu)=1u*dSy w5=u
r=u Ss(dut)=1dSy w3=u
/ Sotud)=udSs
So an=d
Sa(d)=duS,
an=u Sstudd)=ud?Sp ws=d
Sid)=ds, Ss(dud)=ud®Sp ws=d
wr=d Ss(ddu)=ud? Sy ws=u
Sadd)=d? S

an=d Ssddd)=u’Sy ws=d
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where every Sy is a stochastic process on Q = {uuu, uud, udu, duu, udd, dud,
ddu, dddy. F = P(Q) is a 6-algebra and (Q,F) a measurable space. Every Sy is
then a measurable function Q — R.

Definition 3.48 The conditioned expectation of A given B is defined by

P(ANB)

PAIB) =15

Definition 3.49 Suppose that we know the outcome @ € B where B is
measurable and P(B) > 0 then we define the expectation value of X condi-
tioned B as

E[X|B] = %JX(w)dP(w).
Q

Example 3.50
Let us calculate Sy given S: E[S; | S2]. We know this is a stochastic variable
Y :Y(w) = E[$1]S2 = y] where y = S, ().
Here E[S; | S2] has the following properties
* It is independent of w.
* If S, is known then E[S; | S2] is known. Specifically, we have
—If w = uuu or » = uud = S,(w)=u?S, = without knowing » we know S;(w)=uS,
E[S1]S;](uuu) = E[S1|S3](uud) = uSo.
Similarly, if o = dd* we get

- If o = A ={udu, udd, duu, dud} = S5(w)=uS, = but we don’t know if
S1(w)=uSy or Si(w)=dS,. Therefore, we take the average value

P(A) = p’q+pa* +p*q+pq’ = {p+q =1} = 2pq.

Furthermore, we have

J51 dP = p?quSy + pq* uSo + p*qdSo + pq*dSo = pq(u + d)So.
A

For w € A we define

(continued)
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Example 3.50 (continued)

E[S1]S2)(w) =2
Then

JE[S1 IS,]dP = Js1 dp
A A

To summarize, we can write

E[$1]S2](w) = g(S2(@)),

where
u-So if x = u?Sy
g(x) = %(u +d)-So if x =udSy
d-So if x = d>Sp.

In other words E[S | S,] is random only in the dependence of S,. We can also write
E[54]S2 = x] = g(x), where g is the function defined above. The random variable E
[S1 | S2] has two fundamental properties

* E[Sq | S2] is o(S;)-measurable

* For all sets A € o(S5)

JE[& 1S5]dP — J51 .
A

A

Some important properties of expectation values:

E[E[X| Gl =E[X]

EX|Gl=X if X is G-measurable
E[X|G]1>0 ifX>0

E[a1X1+82X2| G]:a1E[X1|G]+azE[X2| G] 0

E[¢(X)|G]1 > ¢(E[X|G]D) ¢ : R—R, E|l¢p()]| <o Jensen’s unlikeness

E[E[X] G]| H] = E[X| H] if H is a sub-c-algebra on G.
E[ZX]| G] = ZE[X| G] if Zis G-measurable.

E[X] G] = E[X] if X is independent of G.
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3.3.5 Martingales

We have mentioned before that a martingale describes a fair game, where the

profit in average will be zero even if the gambler is allowed to use previous

results on a new stake. A stochastic process {X}} is a martingale if the condi-

tional expectation value of X; is given by: E[X, | X, ; u < s] = X forall s < %
For a general definition we need

* A probability space (R, F, P).

* Afiltration, i.e. a sequence of 6-algebras 7o C F; C ... C F, C F. (Finer
and finer sets.)

* A stochastic process X = {x;} with random variables xp, x1, . . ..

Definition 3.51 The process X is martingale (MG) if:

(i) X is F—adapted (X is generated by F).
(i) E[IXMl < oVt > 0.
(iii) EIX(@)| Fsl=X(s) Vs <t (the martingale property)

The meaning that X is F—adapted is that all x; are F)-measurable. In other
words, if we know the information in . then we know the value of x;. If we in
(iii) use < or > instead of = we have a super-martingale and a sub-martingale
respectively.

Lemma 3.52 If X is a martingale, then

E[AXn|-7:n—1] =0Vn>0 AX,, =X, —X,_1.

Example 3.53

Let Y be an F-measurable stochastic variable on (Q, F, P, ) and define X : X; = E[Y|
Fil, t > 0. Then X is martingale because (s < 1):

E[Xr|~7:s] = E[E[Y|-7:t]|~7:s] = E[Y|~7:S] =X;.

Theorem 3.54 Under the risk-neutral measure Q: (p,q), the discounted stock
price {(1 +r)7ks, F k}kfo from the binomial model is martingale.
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Proof.

E2|(1+ r)<k+1>sk+1|Fk] =(1+r) "% Dp utq-d)S;

1 k+1<u.(1+r—d)+d'(u—1_r)>Sk

L+ u—d u—d
V) ) —d)
= (&) s
:(1_’_’,)4{51]{

Definition 3.55 A martingale is said to be guadratic integrable it

sup E[X*(1)] < .

0<r<o0

The class of these martingales has the following notation: M(Q, F, P, F).

3.3.6 Markov Processes

We start by studying a European lookback option with values So = 4, » = 2,
d=" p=q="and r = % with a strike price K = 5 with a two-period

binomial model.

+ Sy(uu) =16
1 S](u) =8
Sy=4 © Sy(ud)=4
; Sy(du)=4
CS(d)=2
© Sy(dd)=1

The value of the lookback option is given by:

V2 = élgl?.gxz (Sk — 5,0).

We study the evolution backwards to calculate the value, thereby the name
lookback. We have: V,,, = (16 —5)=11,V,,= (8 —5) =3, V,;,, =0 and
V1= 0. (Remark V,, # V,,). By travelling backwards in the tree we get
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1 4(1 1
Vy=—{pViu + qVud] = =4 =-11+--3% =560
1+FLP + qVudl 5{ + }

2 2
Vyi=0
4 1
=—-.-—-560=2.24
Vv 53 5.60
with

A — Vi(u) — Vi(d)
1= oo
Si(u) — Si(d)

we get Ay = (5.6 — 0.0)/(8— 2) = 0.93, Ay(w) = (11.0 — 3.0)/
(16 — 4) = 0.67 and A(d) = 0. If we now sell one option at Xy = 2.24
and hedge us with A, shares we get:

Xi(u) = AoSi(u)+ (1+r)(Xo— A0So)
= 0.93-8+(1+0.25)(2.24-0.93-4)
= 5.60

X](d) = A()Sl(d) + (1 + r)(X() — AQSO)
—0.93-2+ (1+0.25)(2.24 — 0.93 - 4)
=0

Xo(uu) = Ay (u)So(uu) + (1 + ) (X1 (u) — Ay (u)S; (u))
= 0.67- 16+ (1 +0.25)(5.60 — 0.67 - 8)
=11.0

Xo(ud) = Ay (u)Sa(ud) + (1 + 1) (X1 (u) — Ay (u)S1(u))
—0.67 -4+ (1 +0.25)(5.60 — 0.67 - 8)
=30
An ordinary European call option with the same data as above
Vy=(S—5)"

gives V,,, = 11, V,y = V,, = 0 and V,; = 0. (Remark Since we cannot
exercise before maturity, V,,;, = V). Further
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1 411 1
V. =107 +r&7\/uu+q\/ud} —5[2‘ 11+2'0] =4.40
Va=0
4 1
V==-=-440=1.76
52
with
A _V,(u)—V,(d)
-1 = o oo
Si(u) — Si(d)

we get Ay = (44 — 0.0)/(8 — 2) = 0.733, A(w) = (11.0 — 0.0)/
(16 — 4) = 0.917 and A(d) = 0. If we now sell one option at Xy = 1.76
and hedge us with A, shares we get

Xi(u) = AoSi(u)+ (14 r)(Xo— AoSo)
— 0.733-8 4 (1+0.25)(1.76 — 0.733 - 4)
= 440

Xl(d) = AOSl(d)+(1+r)(X0—AOSO)
— 0.743-2+ (1+0.25)(1.76 — 0.733 - 4)
= 0

A general problem we have is that, for a model with 7 periods, we have Q 2"
elements giving 2" equations. For a three-month option we have 66 trading
days and with a period length of one day we get 2°° &~ 7*10"° equations. The
solution is, and we can solve it in three ways:

1. By simulations and averaging.

2. Approximate in continuous time. This gives a PDE-theory.
3. Using a Markov structure.

What we are doing in the binomial model is exactly 3.) above. Instead or four
values at n = 2 (V,,,, Vo V4, and V) we have three, because of V,; = V,.
This gives us 7 + 1 equations instead of 2".

Definition 3.56 Let (Q, F, P) be a probability space with filtration {#}, > o.
An adapted process (X)) is said to be a Markov process with respect to the
filtration (%) if

E[f(X,)|Fs] = E[f(X,)|X,] forallt>s>0.
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for every bounded real-valued Borel function fdefined on R,
In other words this means that if we are studying a path, described by a

geometrical Brownian motion (GBM) from 0 to 7 and want to estimate the
value of f{X(#1)), the only relevant information is the value of X(z,).

Example 3.57

The stock price in the binomial model is a Markov process.

Theorem 3.58 A Wiener process is a Markov process and

_ s 2
P(W (1) €BIW(s)) h(IZ_S)JeXP{_(Xz(;K(s)))}dx,

3.3.7 Stopping Times and American Options

In a Markov model for a European contract with a value process V,, = g(S,,) we
define the backward recursion as

Val(x) =
{ Vi(x) =

Here V() is the value of the option at time 4 and

L(pvkﬂ (ux) + qVis1 (dx)).

g(x)
147

A — Vie1 (uSk) — Vi1 (dSk)
k (u - d)Sk

, k=0,1,...,n—1.

We will now study the binomial model for American contracts. In each node,
k the holder can use his right to exercise the option and get g(S;). Therefore,
the portfolio is given a value process satisfying X > ¢(S;) V £ We then get

{ Va(x) = g(x)

1
Vi(x) = max

1+

OVear() + qVica @), 09}
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Let us study again, the two-period binomial tree, now for an American put

option med with So = 4, u =2, d =Y, p = g = 2 and r = V4 with a strike
price K = 5.

+ Sy(uu) =16
1 S](u) =8
- ' Sy(ud)=4
. Sy(du)=4
CS(d)=2
! sy(dd)=1
At maturity we have the value
Vo=(5-S)".

We now have V,, = 0, V,;,= V,;, =1 and V,; = 4 and the tree gives the
values

1 . a1
= uu ud|» —_ = el Bl _'1 y = .4
1% max{1+erV +qVua), (5—8) } max{5 [2 0+2 ] 0} 0.40

1 41 1
Vd = max{m[pvud + (]Vdd], (5 - 2)+} = maX{§|:§ -1 +§ . 4:| ,3} =3.00

1 411 1
— u s _4 + = — = ,4 — ,1 :1 .
% max{1+rh9V +qV4),(5—-4) } rnax{s[2 0 +3 3} } 36

Since

Vk<l/t) — Vk(d)

B =5 ) — eld)

we find Ay = (0.40 — 3.00)/(8 — 2) = —0.43. So we start to go short in the
option and get 1.36. Then we hedge the position with A stocks. For £ =1 we
get X d) =V Xi(w) =V,)
1 =V =S(du)Ai(d) + (1 +7r)(Xi(d) — A (d)S1(d))
— 4 A1 +3(3 -2 A1) => Ay(4-2.5) = 1375
=-275=>A;=-1.83

and
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4 =V =S2(dd)A;(d) + (1 4+ r)(X1(d) — A1 (d)S1(d))
=1-A +§(3—2-A1) =>Ai(1 =2.5)=4-375=0.25=> A
=-0.16

We have bought A; stocks (if A; > 0). The money we have left, that is,
(X7 — A,S)) earns interest rate 7, giving us

(1 + I”)(X] — A]Sl).

If this was a European option X;(d) = 851(d) = 2 and A, were equal (= —1)

V, = Vi + qVid] = H oL =040
u*l_i_ uu qVud 502 D) — U.
411 1
VdZ—LDVud-FC]Vdd]_g[— 1+§ 4}
411 1
V:— Vi Vv -0,4 =0,96
1+r PVi+qVa = 5[ +2 }

1= Vdu = Sz(du)Al(d) + (1 + r)(Xl(d) — Al(d)Sl(d))

5
=4 A +72-2-8)=> A (4-25)=1-25=-15=> A =10

The value of a hedged portfolio with an American option is given by

Xir1 = Skt A + (1 +7)(Xi — AeSi — Cy)
= (141X, +Ak(Sk+1 (A +nS—(1 —|—r)Ck>,

where Cj, is the part that we can consume at time # = 4.

Properties:

* The discounted portfolio value is a super-martingale.

* The value satisfy X;, > ¢(S), #=0,1,..., n

* The value process is the process with the lowest value with these
properties.
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Question: When do we consume?

Answer: If
E[(14+ 1) Wi (SenlF] < (1407 Vi(s)

We have

1
T EV et (See)lF] < Vi(S1)

If the holder of the option doesn’t exercise, then we can consume and close the
gap between the values. In that case, when X), = V() for all values of # and
where

1
1+r

V() = (o)
Vi) = max{ (OV i1 () + Vi <dx>>,g<x>}.

In the previous example where, V1 (81(%)) = 3, V5(S:(ud)) =1, V5(S:(un)) = 4,

we gCt

1 471 1
i:7ﬂwmmfd_§kw+§4]_z

If the holder doesn’t exercise at # = 1 we can consume one cash unit and

hedge as

_ Viep1 (uSk) — Vi1 (dSi)

A
k (u— d)S;

As we can see, from the holder’s point of view, it is optimal to exercise when
Vi(Se) = g(Sp). Le., at the intrinsic and not the discounted value.

Definition 3.59 Given the probability space (©, F, P) and the filtration
{Fr}i_o of F we define the stopping time as a stochastic variable 7 : Q — {0,
1, ..., n} U {oo} such as

fweQtw)=kHec F,VYE=0,1,..., n oo.
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Example 3.60
We define (from the tree above) the stopping time

t(w) = min{k|Vk(Sk) = (5 —Sk)" }.
This stopping time is the time when the option value for the first time is equal to
the instantaneous (intrinsic) value. This time is the optimal time to exercise the
option. A stopping time is characterized by the fact that at every time t < = we

can decide if  has occurred or not, based on the information we really have at
time t. In our binomial model we have

{w:1(0) =0} = TeF,

1 if(/):Ad
(w) = v {w:1(w) =1} =AgeF
{2 ifow = Ay {w:r(w):Z}:A:e}';,

Definition 3.61 Let 7 be a stopping time. We say that a set A C Q is
determined by time T provided that

An{o|t(w) =k} eFy, Vk.

The collection of sets determined by 7 is an c-algebra, which we denote by F..

Example 3.62
For the binominal model above, we have

7(w) = minfk | Vi(Sk) = (5 — S}
i.e.,

o 1 ifu):Ad
’(“’)*{2 if o= A,

The set {ud} is determined at the time 1, but the set {du} is not. Indeed,
{ud} N{o|t(w) =0} = DeFo
{ud} n{w : 7(w) =1} = DeF;
{ud} N{w : 1(w) =2} = {ud} e F;

but

{du} N {o: t(0) = 1} = {du}¢ F;

The atoms of F, are {ud}, {uu}, Ay = {du, dd}.
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3.3.8 The Radon-Nikodym Derivative

In mathematics, the Radon—-Nikodym theorem below is a result in the
functional analysis. In finance the Radon—Nikodym derivative is used to
change measures. In Chap. 5 we will study this in detail.

Theorem 3.63 Let P and Q being two probability measures on (Q, F). Suppose
that for each A € F with P(A) = 0, and also Q(A) = 0, then we say that Q is
absolute continuous with respect to P. Furthermore, then there exists a stochastic
variable Z (> 0) such that

0(A) = JZdP(A).

Q

We name Z as the Radon-Nikodym derivative of Q with respect to P.
It follows trivially from the definition of the derivative that, when P and

Q are probability measures over the probability space Q and X is a random
variable. Then

E2[X] = JXdQ = JX%dP =EFf {%X].
Q Q

If P at the same time is absolute continuous with respect to Q we say that
Pand Q are equivalent. Le., if and only if Q(A4) = 0 exactly when P(A) = 0 we
have

E?[X] = EP[XZ] VX
EP[Y] = E¢ {Y%] VY.

Example 3.64

Let Q = {uu, ud, du, dd}, P(u) = 1/3, P(d) = 2/3 and Q(u)
= Q(d) = 1/2. Define Z(») as Q(w)/P(w). Then

Z(uu) = (1/2)*/(1/3)*> = 9/4, Z(ud) = 9/8, Z(du) = 9/8 and Z(dd) = 9/16.
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As we have said before, in financial analysis, the Radon—Nikodym derivative
is used to change measures. If we have a sample space Q, with market
probabilities P and if Q is the risk-neutral probability distribution, then we
can find a transformation between P and Q with the help of the Radon—
Nikodym derivative. If (@) > 0 and Q(w) > 0 for all w € Q, P and Q are
equivalent. We write this as Q ~ P. If P and Q are absolute continuous we
write this as Q << P.

Two measures are equivalent if they have the same sample space and the
same set of “possibilities”. Note the use of the word possibilities instead of
probabilities. The two measures can have different probabilities for each
outcome but must agree on what is possible.

Another way to formulate the Radon—-Nikodym is using two different
measures, ¢ and v on (©, X). Absolute continuity means that 4 << v and
equivalence means that g ~ v. If v ~ y, i.e. they have exactly the same empty
measure ), then we write the Radon—Nikodym derivative as

dv

f=gp © P =f) - dux)

With this definition we can always find £ also on point sets (as we just did in
Example 3.64).

fn) = {U(n)/ﬂ(n) if p(n) £0

0 else

Remark If we make a c-algebra finer and finer we may lose the absolute
continuity. Suppose we have a given probability spaces (Q, F, P), with a
filtration F = {F7} on the interval [0, 7]. Then, if L7 > 0 is a F-measurable

stochastic variable we can find a new measure Q on (Q, F ;) via

dQ = LydP
where Q will be a probability measure if £°[L;] = 1

JdQ = JLTdP =EP[L;] = 1.
Q Q
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Definition 3.65 Z, says to be a P-martingale if
Zy =EPZ|F] k=0,1,....n
EP[Zii1|Fi] = EP [EP[Z|Fiin]|Fi] = EP[Z|1FA) = Zi
Lemma 3.66 If X is Fj-measurable and 0 < j < k, then
1
E°[X|F)] = —-E" [XZ| F).

Z;

Theorem 3.67 L (as above) is a (F, P)-martingale.
Proof: We have to show that L, = EP[LT| F,forall t < Tor

JL dP = JLTdP for all F € F,

F
JL,dP (FEF) = O,(F) = 04(F) = {FEF, C Fr} = JLTdP.
F F

A risk-neutral measure is a probability measure Q equivalent to the real proba-
bilities P (Q ~ P) under which all tradable assets are martingales after discounting.

Theorem 3.68 Given a probability space (Q, F, P), X € L'(Q, F, P) and a
probability measure Q on (,F) where Q << P and L = %. IfG is a o-algebra
such as G C F then

E°[X|G) =

Proof: We will show that
EC[X|GIE"[L|G) = EP[LX|G)

It is enough to show
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—_—

E2[X|GIEP[L|G)dP = JLXdP

ﬁ@

—

G
E"[LE?[X|G]|G|dP = JLXdP
G

ﬁ@

—

LEC[X|G|dP = JLXdP

G G

= {LdP =d0} =
JEQ[X\g]dQ = JXdQJLXdP.
G G G

3.4 Properties of Normal and Log-Normal
Distributions

When we will study the Black—Scholes model, which is a continuous time
model, the normal and log-normal distributions will be used. Therefore, we
will now give the most important properties of them.

If the density function ¢ is given by

R e B

we say that x has a Gaussian (or normal) distribution, with mean 7 and
variance ¢~. In this case we say that x is an N(m, ¢°) random variable.
If Xis an N(m, 62)—random variable, then

T (x —m)*
E(X):mjmexp{— 52 }dx:m

—00

which is called the 1st moment of the probability distribution. The second
moment gives the variance
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1
V2n0?

Var(X) =

|
g =2
=
I
g
(3]
[¢]
>4
o
—
|
=
NI
Q, 3
e
H/_/
ISY
\
Q
[39)

The 3rd and 4th moments are given by
1

i om?l,
WJ (x—m)? -exp{— ¥ }dx—O
1 J (x —m)*- eXp{— (Xz_m)z}dx =30*

V2no? 0?

They are called the skewness and the kurtosis (or flatness). We note that if x is
N(m, c° ), then x = m + \/Eé where £ is a standard Gaussian variable with
mean zero and variance 1; i.e., £ is MV(0, 1).

If x = Iny the probability density function of y is called a log-normal
distribution and is given by

1 (Iny — m)?
= expy —————— >0.
(/’(y) \/Q?T;Zy p{ 262 y

This can be seen from y = ¢" and x ~ N(m, o°) and

| In(y) (x— )2
Py =Pl <y =Pl = | e"p{_ E }dx
In(y) -
_ J o(x)dx = d(In(y)) — B(—o0).

If we take the derivative with respect to y we get

0Py 0®(In(y)) _dln(y) d®(In(y)) 1
oy oy 9y omnp) y o)

Theorem 3.69 If X is a Gaussian (normal) process with mean m and variance 67,
i.e, X ~ N(m, 6°) andy € R we have
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—rX 1,5
E[ey]:exp —ym—l—iya .

Proof: Per definition and manipulation with the exponent we have

o0 o0

Ele™] = ! e e %dx = J e—ﬁpyxaz +x* = 2um mz]dx
2762 V2ro?

—00 —00
0

-

= L [ Ay,
o~ J

- §

b= (m = 16) + 2my0? — |
e dx

V2n6?

0 2
—ym+ %7252 1 J —#[(X - [l’}’l - YGZ]) i|

e
V2r6?
o0

—ym+ %}/20'2

= €
= e

where the last equality is due to the fact that the function

L sl lmre])’]

V2ro?

is a probability density function, namely the density function for an
Nim — }/(72 . o) distributed random variable.

Using Theorem 3.69., we can easily compute the mean and the variance of
the lognormal distributed random variable ¥ = ¢*. The mean is (let y = —1)

E[Y] = E[eX] = exp{m+%o'2}.
With y = —2 we get

E[Yz} _ E[e2X] _ e2(m+02)

so that the variance of Yis
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Var[Y} — E[YZ} o (E[Y])Z — e2(m+52) . 62m+62 _ 62m+62 (652 . 1)

The next theorem provides an expression of the truncated mean of a lognormal
distributed random variable, i.e. the mean of the part of the distribution that
lies above some level. We define the indicator function /iy - g to be equal to
1 if the outcome of the random variable Y is greater than the constant K and
equal to 0 otherwise.

Theorem 3.70 If X =InY - N(m, 6°) and K > 0, then we have

| — InK — InK
E[Y Iyogy] = "N (m + a) — E[Y]N (m + a>
o o

Proof: Because Y > K, X > InK, it follows from the definition of the

expectation of a random variable that

1 N (x—m)?
B lin] = B o] == [ 7 ax
N
2no S
o0 2 o0
R e R
= \/27:7J€ 2 e 22 dyx=e""2° fo(x)dx
InK InK
where
1 (x=(m+e?))*
Fr) = e

V2ro?

is a probability density function for an N(m + 6%, ¢°) distributed random
variable. The calculation

fo(x)dx = P(X > InK) _P<X_ m+ %] InK — [m+62]>

o o
Ink
_ b X —[m+o <_1nK—[m+a2]>
o o
InK — [m + ¢?] m — InK
o o

completes the proof.
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Theorem 3.71 If X = InY - N(m, 6°) and K > 0, then we have

1.2 —InK — InK
Emax{Y —K,0)] = e N2 5) —gn(2T 0
(o2 o
— InK — InK
= E[Y]N(m +o>—KN<m )
(2 o

Proof: Note that
Elmax{Y —K,0}] = E[(Y — K)I{y>x}] = E[Y - I{y>xy] —K - P(Y > K)

The first term is known from Theorem 3.70. The second term can be
rewritten as

P(Y > K) :P(X>an):P<X_m>an6_m>

_p _X—m<_an—m> _N<_an—m>
c c c

)

The claim now follows immediately.

3.5 The Ité Lemma

One of the most important formulas in the financial analysis is the Lemma by
It6. The Lemma states how to differentiate functions of stochastic processes.
To understand [td’s formula in its most simple form, we start with a Taylor
expansion to the lowest orders for a function of two variables: F(z, X)

2 2
10°F 0°F

EW(dX)2+mdth+....

OF OF 1 0°F
F=_— dX -2
d di+ == dX +5 =

5t ax (dr)” +

where X is described by the stochastic process given by

dX =y -dt+oc-aw.

Here p represent a deterministic drift and o the volatility. W is a Wiener
process with the property (dW)” = dr. Thus, to the lowest order we get
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(dX)? =2 - (di)? + 6% (dW)* +2-p-o-di-dW — & - dt.

In the lowest order, we ignore ditdw and didr. To the lowest order of dF, we
then have

oF OF ,O°F OF
dFf = dt dw
<a +”ax+2 aX2> toox
which is the It6’s formula. In finance, this is the most useful expression of Ito.
Sometimes the [t6’s Lemma is expressed as

MalX+ O°F ()dt.

1
FX) =% 2 ox?

But mathematically, a more meaningful form of It6’s Lemma is the integral
version:

FX(0) = FXO) + | 35 (X)X + j 2 x(o)s

(=]

This is because we have a solid definition of the integrals. The first integral is
called the It6 integral and the second is a Riemann integral. This means that in
stochastic calculus we have to use

of  of 10

df =5 di+ = dvt

0x 2 0X2 ()’

to lowest order differentiation of f{x(?), 7) instead of

df = —fdt+a—fd

as in ordinary calculus. A generalization of It6 can be written as

2

0°F
dF (Xy,...Xp,t) = at dt+z 22 X, aXU,O'jdt.
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Example 3.72

Itd calculus is used in all calculations where we calculate differentials of stochastic
processes where the uncertainty is modelled with a Wiener function. In particular
we have

dwn) = aiw(wn)dw + % a?/vz (W")(dw)?

1
= nW"dW + En(n — 1)W" 24t

especially
d(W?) = 2WdW + dt
so that
J 204\ _ N2 .
JW(u)dW(u) WO W) _t=s
2 2
Example 3.73
Let
AZ
F(t,W) = exp{ﬂ.W(r) - ?t},
Then
OF OF 1 0%F 5
dF = S dt+ 5 dW 5= (dW)

2 5 2
=— ?expiW(t) - ?t}dt + AexpiW(t) — L?t}dW

72 2
A
4 %expiW(t) - ?t}dt

2
= JexpAW(t) — %t}dW = AF(t, W)dwW

This shows that the solution to the stochastic differential equation

(continued)
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Example 3.73 (continued)
dX = AXdw
X(0) = 1.

Is given by

X(t) = exp{/lX(t) —%zt}.

3.5.1 Brownian Motion

When studying lattices-models of random processes, one naturally wonders
whether these processes go to a limit as the step size is taken to be finer and
finer. Or, more to the point, if we use lattices to model asset prices, does the
model make sense in the limit that the step size goes to zero? To answer this
question we now advance to continuous random processes.

We are aiming to develop models based on stochastic differential equations

ds = a(t,S)dt + b(t,S)dW

for the asset price S(#), where the a(, S)dt term accounts for “deterministic
motions”, and the other term &(¢, S)dW accounts for “random motions”.

The first step in developing such models is to decide what we should use for
WA#), the random part of the model. No matter how we sub-divide it, the curve
WA#) should still be random and composed of pieces with identical statistical
properties, because stock prices appear random on even very fine time scales.
In Fig. 3.2 we simulate for a year, 10 observations per day, a stock with initial
price 30.00 with a volatility of 40 % and a risk-free interest rate 2 %.More
formally, we wish W(#) to have the following properties: First, W(#) must have
independent increments. For any date T and for any Az > 0, the value of
AW = W(z + Ar) — W(z) is independent of W(#) for all # < 7. So increments
of Brownian motion are independent of everything that has happened on or
before the current date 7. In particular, AW, = W(5,) — W(#1) and AW, = W
(13) — WAzy) are independent whenever the two intervals #; < r < £, and
3 < t < #; don’t overlap. Said in another way, W(z) — WAz) for # > 7 does not
depend on how one got to WA(z). As we shall see, this is a very powerful
simplifying assumption.

Second, increments AW = WA(z,) — WA#) is Gaussian random variables
with mean 0 and variance At = t, — ;. We then have
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Fig. 3.2 A Brownian motion (Wiener process) illustrated as function of time on
different time-scales

AW = W(n) — W(t) = i —he

where & is N0, 1), that is, £ is a Gaussian random variable with mean zero
and variance 1. The reason we want A W to have mean zero is because we want
it to represent the random part of the asset price movements. Any non-zero
mean would represent a deterministic piece which we could put in the drift

term a(t, S)dt.
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The fact that AW is Gaussian with variance Az follows directly from our
desire to have W(#) to be sub-dividable into finer and finer intervals, each with
identical statistical properties. To show this, consider

=
—_

AW = W([l) — W(l()) — W([()) = [W(Tk-H) — W(‘L'k)}, Ty =ty + %(fl — t()) s
0

bl
Il

where each dW), = W(z,,;) — W(z,) are independent random variables (by the
independent increment assumption) with identical distributions. Since the
variables are independent, the variances can be written

n—1
Var[AW] = Z VarW(tis1) — W(tk)] = n - Var[W(t;) — W(1)]
=0

Let v(y) = Var[W(z + y) — W(#)]. We have shown that
V(l‘] — to) =n- V(m)

n

for any #, 75 and #, i.e., for any Az > 0 and any 7, we have v(nAz) = nv(Az).

This is a functional equation, and it shouldn’t be surprising that the
only reasonable solutions are linear: v(A7) = aAr for some constant a.
Brownian motion is normalized so that this constant is 1, ie., Var
[AW] = Var[W(#)) — Wlty)] = £, — ¢, for all 2, #,.

Thus AWis the sum of 7 independent, identically distributed variables with
mean 0 and variance (#; — #y)/n. As we take 7 — 00, the central limit theorem
guarantees that AW is Gaussian with mean zero and variance #; — 7.

Brownian motion has the following properties. Of these, the first two are
part of the definition of Brownian motion, and the other three are derived
below:

i. The increments A Ware independent of the present and past values of W(z).
In particular, increments of non-overlapping intervals are independent

AW = Wl(r,) — Wl#) is independent of W(z) for all < #,.
AW = W(r,) — W(#) is independent of AW = W(zg) — Wig) if (11, 1) N
(13, 1z) = Q.
ii. AW = W(z + A — W(2) is Gaussian with mean zero and variance /A
Said another way, AW = W(t + At) — W(t) = V/AtE, where & is N0, 1),

a Gaussian variable with mean 0 and variance 1.
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iii. WA is a continuous random process. This is easily proven, since for any
5 >0,

o
prob{|W(r + At) — W(1)| > 6} = prob{|§ > E} AZOO.

This is the definition of a continuous stochastic process.

iv. W() is almost surely nowhere differentiable. This is again easily shown.

For any K > 0, we argue that

prob{ ‘W(r + AAt), —W(r)

< K} = prob{|§| > K\/E} A—>00.
—

So the probability that the slope is bounded is zero as Az — 0.

v. The continuity and non-differentiability followed directly from the scaling

of AW. Since AW = v/ At&, where & is M0, 1), we can write AW~ O/ A,
or more succinctly 4W ~ O(v/ Af).

Later we shall prove a much more stunning result, the quadratic property of
Brownian motion, (d\W)z = dr. Note that the right side 4 is not stochastic,
which means that (4W)* is d¢ with certainty. This property is the key to
deriving It6’s lemma, the backwards Kolmogorov equation, Feynman—Ka¢
equation and many of the other day-to-day tools used in pricing. Before we can
show this result, we need to define what we mean by differentials like 4W

and 4.

Black—Scholes

We have seen that the stock prices S(#) follow a stochastic process, given
as a Brownian motion described by the following stochastic differential
equation

{dS(t) =a-S(t)-di+o-S(t)-dW
S0)=s '

This can easily be solved by letting Z(z) = In{S(?)} and with use of the It6

lemma
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1 11 s
dz(t) = —dS(t) ———=(dS(¢t
0 = G0~ 35S0
1 11 )
= —(a-SOdt+o-SE)dW (7)) — o*S(1)*dt
1
= |a- 562>dl +o-dW(z)
Z(0) = In(s)
Integration gives
Z(t)—Z(O)z(a——02>t+a-W(I).
Thus
5(0) = 5 - llateyromo}
Log-normal Distribution for S/§,
1 T | I I T I
| | | | | |
0’9- —————————— - s, e e . i s . s . s s
| | |
0s -t f b
| | |
07 1————t-- et
JNYS - I -
2e] | | | |
30.5-—————-—-—-——————-ﬂ————-ﬁ———-—-} —————— o ———— ]
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| | |
03 - : . : _:__
| | |
02 +———fe e SRR TR TN SRS ——
| |
o1 fo i I
0 i '. t ll | ] ;
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S'So

Fig. 3.3 The log-normal probability distribution with 6> = 0.4, » = 0.16 and
(t—t) =1
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Since W{(#) — WA%,) is normal distributed with mean zero and variance

(t — Z-0)) i.C.,
N[0, (¢ — ty)] we know that Z must be normal distributed as:

2
z ~N[(a—7> (t—t9),0°(t — t0)].
Therefore, S(#)/S(%o) follows a log-normal distribution (¢ = a)

_ ! o {80)/S(t0)} — (0 — 0?/2)(t — 1))’
6S(t)\/2x(t — 19) P 262(t — 1) '

A typical log-normal probability distribution for S$(2)/S(#,) are shown in
Fig. 3.3.

3.6 Stochastic Integration

To understand stochastic integration we will start by studying the integral
Jg(s)dW/(s). We will do this in a few simple steps:

1. Split the interval [0, 7] into equal parts 0 = 75 < #...<t, = &
2. For each outcome @ define an integral

= Zg(ékvw) (W (try1,0) = W (1, @) ]
3. Let n— o0 and hope for 7, — L.
Let ¢ = Wand study the integral [W(s)dW(s) by defining A4, and B,:
A, = ZW W) = W) &=

B, = ZW te ) W (tesr) = W()] & =t

We then get
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A, = lim ZW 1) W (te1) — W(t)]

n—o0

== hm Z (W (tis1) + W(te) — (W(terr) — W (k)]

n—»oo

(W(tm) W(u))
= —nlggo Z (1) + W(t) = (W(tsr) = W(n))]

_% lggo ZI(VV(IICJA) W(tk))2 - %nlggo knl [W (tk+l) -W (lk)]
3 Jim Zn:(W<tk+l> W(t))’ = sz(t) - %t

B, = lim iW(tkH)[W(ka) — W(t)]

n—oo

= —HILH;C Z (k1) + W(te) + (W (ter) — W(tr))]
X(W(lk+1) W(fk))
= —nlgrolo Z tk+1 +W fk))(W(tk+1) - W<tk)>]

1
+E ILm 2 (W([k+1> W LILIO Z; tk+1 lk)]
1 n 1, 1
+— lim (W(lk+1) — W([k)) =-W (t) + =t
2 n—o0 — 2 2
Le.
A, + B, = W3(1)
n—1
B, — Ay =) (AW’ =5,
k=0

where lim S,(7) = t. By letting B, — A, — t = A, — A and B, — B where

n—oo
2
A:W(t)_£
22() i
W=(t) ¢
B= -
2 +2

We then observe that & effects the integral concept and
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! W2(t) ot
J W(s)dW (s) = 2( )_ 3 This is called (the forward — or) the
0

It6 — integral and

t 2
J W (s)dW(s) = Wz(‘)
0

t
+ 3 this the backward integral.

From this we learn a few things.

1. Since Wiener trajectories have unlimited variations, we cannot define
integrals as

]n(a)) = Zg(gkva)) [W(t/H'l?a)) - W(tk’w)]

2. In any case, there seems to be a hope to define integrals as a limit value in L*.
3. The choice of &, will critical decide the value we get. Different choices of &,

will give us integral definitions with different properties.

We will use the Itd stochastic integral for an important reason; In all natural
cases unknown future events cannot affect the present. This means that the
value of a function G(#) is non-anticipating in that it cannot be used to predict
the future increment in X. This is of course equivalent to saying that G(2) is a
martingale since what we mean is exactly that

EJG(1)] = G(s) for s<t.

We only know what is the present value of G(#), which corresponds to that at
the beginning-integrating interval. For this reason it is more appropriate to use
the It6 integral. It is important also to note that integrating a non-anticipative
function with respect to dr or dX is itself non-anticipating. So for G(#) = X(#)
the It6 integral becomes

i=1

JX(S)dX(S) ~ iX,-_l(Xi —X,'_l)

I.e.
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So
2-1=X(T* =T
or
JX(s)dX(s) _X (T); -
0

3.6.1 Proof of (dW)? = dt

We will now make a proof of the important property of the Wiener process
(dW)?* = dy. Like any other differential, this differential is defined in terms of
its integral

13
| n—1

[ @wy? = fim Y ) - W
fo k=0

where t, = ty + k(#; — t,)/n. Since

h—1o

W(tir1) = W(t) = Vi — iy = Sk

we have

151

2 . 1 — o &4 )
g 8

n k=0

fo

where &, &1, ... £, are independent V(0, 1) variables. Clearly the mean
of the sum is
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E

t — to n—1 — 10 n—1
D &)= Elg]=n-n
= =0

Since the &’s are independent, the variance of the sum is

2 n—1 )2 n—1

g

E[(&-1)].

k=0

For unit Gaussian variables, E[(£,° — 1)?] = 2, so the variance of the sum
works out to

Var

ll—f025k1 ntl—to)-

Thus
n

(dW)* = lim S,

n—oo
fo

where the sum S, has mean #; — ¢, and variance O(1/7). We conclude that in
the limit » — o0, this integral is #; — £, with certainty. Thus

|

J(dW)2 =t —1

o

for any #; and 7. Since differentials are defined only in terms of their integrals,
we can re-write this as

(dW)* = dr.

The other quadratic differentials are zero: (d$)* = 0 and dWdr = 0. To show

this, let us write out their integrals. First,

t
| n—1

1
J (di)* = lim > [ — 4> = lim ~ [1y — 1] = 0
n—o0 =0 n—oon

fo

and
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i —1 n—1

szdw = lim Z et — )W (1) = W) = lim D (neer — 1)
k

o =0
1 3/2
lim [t1 — to]
= lim —t — o) —_—

Since means and variances of independent variables are additive, clearly the
sum of the &, gives a Gaussian variable with mean 0 and variance 7. & is as
usual a

N(0, 1) variable. Clearly this is zero in the limit.

Putting this together with our preceding results gives the so-called box
algebra

(W) =dt, dWdt=0, (dr)*>=0.

Of course, all higher powers are also zero

@w)* =0 for k>2,
(AW)*dt =0 for k>1,
(dr)* =0 for k> 1.

3.6.2 Monte Carlo Simulations

Suppose we have some variable, an asset price perhaps, which we model by an
Itd process

dX = a(t,X)dt + b(t,X)dW.

Commonly the value of a financial instrument will turn out to be the expected

value of some payoff at the expiry date 7,
V =E[P(X(T)].
The Monte Carlo method is the most direct method of calculating such

expected values. Recall that the Itd process above is equivalent to stating that
X(?) is the limit as # — oo of X(r,,), where
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X(4) = X(to)

Jj—1 Jj—1
+nlgglc {Za e, X (1)) (k1 — 1) +kz=; (6, X (8)) V1 — t k}

k=0

forj=0,1,...,n— 1. Heret, = o + k(T — tp)/nand &y, &, ..., &, are
independent N[0, 1] variables. For the MC method, we first discretize in time,
picking ¢, 71, ..., 7, = T". We then pick the 7 independent V[0, 1] variables
Eo &15 - .. » &, 1. Substituting these above gives a possible path (also called a
realization) or the asset price X(z). Were the asset to follow this path, the
financial instrument would yield P(X(7")) = P;. Repeating this procedure for
newly selected random variables &g, &, ..., &, yields a second possible path
and payoff P,. Repeating this many times and averaging over the outcomes
then gives the option price

N
V= BP0 = Py
k=1

The Monte Carlo (MC) method’s key advantage is that it is very flexible. For
example, suppose we have a path dependent financial instruments, whose
payoffs depend on, say the maximum, minimum or average value of X(z)
between 7, and 7. Since MC simulates the entire path, the value of these
options is no harder to determine that the value of a European option.

The weakness of MC is that it is slow and computationally expensive. In
fact, let o be the standard deviation of the payoff

6> = Var{P(X(T)} ~ Var{P;}.

The last equality is only an approximation due to our time discretization in
the MC method. Since the random variables on each path are chosen inde-
pendently, the variances on different paths add. So we have

2

Var{ ZPk} {Zpk} 7fVa,{pk}_7

The typical error in the MC evaluation is the standard deviation &/+/N. So
quite generally the error in the MC method goes down like 1/+/N. In other
words, to reduce the error by a factor of 10, one needs to do 100 times as many

paths.
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3.6.3 Integration by It6’s Lemma

[t6’s formula can also be used when we need to integrate stochastic processes.
This integral is called the /#6 integral. A Wiener trajectory is a continuous
function of time, but not differentiable in any point. To find the integral we
therefore try to do the following

1. Divide the interval [0, #] in equal parts 0 =7 < 11 < ... <, =1
2. Define for each outcomew: I(w) = Zg(&) [Wty,1, @) — Wit )]
3. Sum and let  — oo hoping that 7, — 1.

Example 3.74 .

Calculate the integral JW(s)dW(s) where W is a Wiener process. Let Z(t) = WA(t)
and use It6 formula |

0z 10° 5
az(t) = de VAL (c11W)
= 2-W(t) - dW(t) +5-2- (dw(t))® = 2 - W(t) - dW(t) + dt
t
Integration gives: W2(t) =t +2- JW(s)dW(s), i.e.

0
J W(s)dW(s) — %Wz(t) -

Therefore

0 X(T? =T
JX(t)dX(t) 0=

0
An alternative is to use It6’s integral formula
i oF oF 1 [0%F
JdF—J—dH j—dx+ J dt

0 oxX 2) ox
0 0 0

and letting &£ = X, e.g. F = X%/2

(continued)
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Example 3.74 (continued)

TaF T T 1
S O L [
0
T X(T)Y-T

5. 9

=21 =

Similarly, if we let &£ = X?, e.g. F = X°/3 we can show that

T 3 T
JX(t)ZdX(t) X (_P - JX(t)dt
0 0

and with &£ = t, e.g. dF = d(X(1)t) we can show

TX(T) = jt -dX(t) + JX(t)dt
0

(=)

since
TOF  [OF . 1[3F | i
TX(T) Jadt+JadX+7Jaxz dt JX(t)dt+Jt-dX(t)+O.
0 0 0 0 0
Example 3.75

Calculate the expectation value E[W*(8)].

141

Let Z(t) = WA(t) and X(t) = W(t) e.g. dX(t) = dW(t) (we have no drift but only a

diffusion = 1):
1
dZ=d(W') =4 Wdw +--12. W2(dW)? = 6 - W2dt + 4 - W3dW.

Integration gives

T T
WHT) = 6J W2 (s)ds + 4[ W3 (s)dW(s).
0 0

If we take the expectation value we get

(continued)
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Example 3.75 (continued)
T

T T
E[W4(T)] = 6[E[W2(s)}ds +4-E U w? (s)dW(s)] = 6J sds=3-T°
0

since the expectation value of a stochastic integral is zero by definition.

Definition 3.76 Let L*[4, 4] represent the class of processes g satisfying:
g is F-adapted and

t
JE{[g(s)]z}ds < 00.
0
For each choice of 2 < & we will now define the integral

b
[ stsram s

for any g in L*[4, &]. For simplicity we suppose g is a simple function. Then,
there exist values zand bsuchasa =t <, < ... < t,= b and

Then

Remark We use forward differences.

Theorem 3.77 If g and b are simple F -adapted processes, which have quadratic
defined integral, also let o, p € R. Then
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b
Jg (s)dW (s) is F ~-measurable

b
E Ug(s)dW(s)U—'a —0

a

b

j[ag<s> + Bh(s)]dW (s) = ajg<s>dw<s> +ﬂJh(S)dW(S)

a

143



4

Continuous Time Models

4.1 Classifications of Partial Differential
Equations

Before we begin the study of partial differential equations (PDEs) we will
explain how to classify them. A general quadratic surface can be described by
the expression

Ax* + Bxy + Cy* + Dx+Ey+F = 0.

Depending on the values of the constants (4, B, C, D, E and F), different

geometrical objects will be represented:

A=CB=0: = a Circle,

B’ —4AC<O0: = an Ellipse,

B? — 4AC=0: = a Parabola and
B? — 4AC > 0: = a Hyperbola

Similarly, we classify second order partial differential equations by the
expression

0°F(x,y) 0*F(x,y) 0°F(x,y) OF (x,y) OF (x,y)
A ) ) ) ) ) —
o2 5 0x0y +C 0y? +D ox E Oy +Fxy)=0.

This means that if B> — 44AC = 0 we call this a parabolic partial differential
equation. As we will see, in the Black—Scholes PDE, x will represent the
underlying (stock) price and y the time. Furthermore, B = C = 0, so this is a

© The Author(s) 2017 145
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parabolic PDE. If we let y becomes time and x a space variable, the PDE class is of
great importance to how information evolves in time. A parabolic PDE is a
so-called diffusion equation. In diffusion processes the information about the his-
tory is rubbed out. In physics, a typical diffusion equation is the heat equation.
With a given temperature, we can estimate the equilibrium temperature in the
future. But we cannot say anything about the previous temperature distribution.

Example 4.1

If we measure the temperature in each point in a room, you can use this
measurement as an initial condition with a diffusion equation to solve the
temperature distribution in a later time. But you can’t solve the diffusion equation
backwards in time to find the temperature distribution in the room an hour ago.

Example 4.2

If B=D = E = 0 we get a simple elliptical (circle) PDE describing a wave. The
information will not be rubbed out in this case. This is because the information
will move with a certain velocity given a growing circle in time, giving a growing
cone, as time evolves. An equation as this can be solved backwards in time as
well. Furthermore, the boundary condition only has to be given on a circle itself
or even a point, since the information travels with a constant velocity.

4.2 Parabolic PDEs

We will now show how to solve partial differential equation of parabolic type
by using stochastic processes. In physics this kind of PDEs are called diffusion
equations. We therefore start by considering the following Cauchy problem on
the interval [0, 7]:

OF OF 1 0°F
E(%X) +u(t,x)a(t,x) +502(t,x)ﬁ(t,x) =0,
F(T,x) = ¢(x)

Instead of using traditional analytical methods, such as the Fourier method, we
will find Az x) in term of an associated diffusion process. Therefore,
we suppose that there is a solution where we fix 7 and x as in Fig. 4.1 and let
X(#) solve the stochastic differential equation

{ dx(t) = u(t,X(2))dt + o(t, X (1))dW (1)
X(T)=x
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Fig. 4.1 An associated diffusion process used to solve a parabolic PDE

If we start by applying the It6 formula on the function Az, X), we get

_(oF  OF 1 ,0°F OF  OF

where the bracket itself is zero, due to the PDE. In other words, the
bracket (..)dt vanishes since this is by definition equal to zero. If we
integrate this, we get

d(x) = F(T,X(T)) = F(1,X()) + Ja(s,X(s)) % (5, X(5))dW(s).

t
By taking the expectation value and let X = x, we get

F(1,x) = E2[(X(T))].

This formula is called the Feynman—Kaé representation. Observe that the
expectation of the stochastic integral is zero by definition. This is one of the
properties of the Wiener process, since it is a noise where the integration of
the expected value is zero.
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Example 4.3

Consider the heat equation
1 2
{Fr+20' FXX =0,
F(T,x) = x?

where the drift and volatility is given by u(t,x)=0 and o(t,x)=0 and the
boundary condition $(x) =x2. The process is therefore given by

dX(s) = o - dW(s)
{X(t) =X ’

We start by applying the It6 formula on the function F(t, X):

OF 1 ,0°F OF OF
dF = (aﬁ az)dt+ o5 dW =g dw.

If we integrate and take the expectation value, we end up with the Feynman-Kac¢
representation

F(t,x) = ES [X3].
Now, let Z=X? and use the Ité formula on Z

0z . 192 1 ,
dz ZTxarXJFEW(arx) =2 XedX +2-2- (dX)? = 6’dt + 20 - XdW.

Integration gives

T T T
Z(T) - Z(t) = JozdS+J2 o - XdW = o*(T —t) +2- aJXdW.

t t t
Finally, we take the expectation value and get

;
E[Z(T)] = E[Z(D)] + o*(T, 1) + ZJJE[X]dW =x>+ (T -1).

t

We therefore have the following solution to our PDE
F(t,x) = x* 4+ 0*(T —t).
We can also find the solution by using dX=¢-dW and X7=x+ a[Wr— W]

F(t,x) = EQ [X2] = Var[X7] + {EQX7]}" = X(T — 1) + %2
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In general, we can solve the following partial differential equation

2

aaf(tx)+/4(tx)gF(t x)+1 (m)?( ¥) = 1 (2, )
F(T,x) = ¢(x)

by starting with dX(#) = udt+ 6dW and using the 1t6 formula on F(z, X) we
then gets (as always)

OF OF 1252 OF
dF_<at+ 5ot 30 az)dH—aadW

and therefore

F
dF = rFdt + oa—dW.
Ox

If we integrate this from 7 to 7 and taking the expectation value (so that the
stochastic part vanishes) we get the Feynman—Ka¢ formula

F(t,) = e T E2[g()].

For details of how to solve stochastic differential equations such as the
one above, see example 4.5. We observe that the right-hand side of the PDE
(rF(#, x)) gives a discount factor in front of the expectation value. This is due to
the integrating factor we get when solving the stochastic differential equation.

Example 4.4

Solve the following partial differential equation

2,;( )+102xza—(t x)=0

F(T,x) = x*

Suppose F(t, X) solves the PDE, where dX = cXdW and X(0) = x. Using It6 we get

_ OF OF 10°F ) (P
dF = Edt —dX+EW(dX) = (Fr-‘rEX [ FXX dt+O'XdeW
= oXFxdW

Integration gives

(continued)
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Example 4.4 (continued)

;
X2 = F(T,X(T)) = F(t,X(t)) + j X OF aw (s

t

If we now take the expectation value we get the Feynman-Kac formula
F(t,x) = ES [X3].
As always, to calculate such an expectation, we need the dynamics of Z = X2 and
use the It6 Lemma. We then get
1
{ dZ =2 XidX + 5 -2 (dX)’6*XCdt + 20X°dW = 6*Zdt + 20ZdW
Z(0) = X?(0) = x?
We now integrate

T T
Z(T) = Z(t) + oZJst + ZJJZdW
t t

and by taking the expectation value, we get the following integral equation.

EZl =x* + JZJE[Z]ds.

This is an integral equation and the easiest way to solve this is to convert it to a
differential equation. The standard technique to solve this equation is to is, first
to define m = E[Z] and then take the derivative with respect to time. We then get
the following ordinary differential equation’

dm 20
S ——
(4
m(T) = x?
This gives the solution to the partial differential equation

F(t,x) =m = x2” T,

T T

! Remark: ¢ UZJAE[Z]dS _d UZJ m(s)ds S = 624 {M(T) — M(t)} = —o?m(r) where M() is a

S

dt
t t
primitive function to ()
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The general solution to

2
% (6,%) + u(t, %) g—’; (t:0) +5 L) ? (6,) — r(O)F (2, %) + k(t, ) = O
F(T,x) = ®(x)

can be found by letting F(z, X) to be a solution where

{ dX(s) = u(s,X(s))ds + o(s,X(s))dW (s)
X(r) =

If we use the It6 formula on F(z, X) we get

_ (oF, OF 1,0F OF
dFF = (E—F a +2 az)dl+ﬁaxdW

= {r()F(t,X) — k(¢,X) }dr + 02_1: (t,X)dW

By taking the expectation value and integrate we have
F(t,x(1))
T T T
= E,% |:€D(XT)exp —Jr(s)ds + Jexp —jr(u)du k(s,X(s))ds:| .
t t

t

Example 4.5
An SDE like

dX = pXdt + odW
X(0) =x

can be solved as
t t
X(t) = xe" + ae"tJe*”SdW(s) — xelt + a.[ 5 dw(s)
0 0
by remembering the technique of solving the following ODE with integrating

factor

(continued)
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Example 4.5 (continued)
x +f(x) -x=g(x)

=

FWx + e MFf(x) . x = efMg(x)
—

d (F0) — F

E(xe ) =e ¥g(x)

=

t
X = e‘F(X>jeF(X)g(x)dt
0

where F(x) is the primitive function to f(x). From this we learn to use It on Y = e
—,utX

oy oy 10%y
= —Hy — — —— (dx?
dy d(Xe=Ht) St ax X+ 5550 (ax?)
= —uXe Mdt + e M{uXdt + cdW} + 0 = ce "dW

By integrating we get
t t
Y(t)=Y(0) = a[ e’ dW(s) = e X(t)—x= G'J e "“dw(s)
0 0
Finally

t
X(t) = xe' + oj = dw (s).
0

4.2.1 A Classical Result

We will now derive a classical result, the transition probabilities to a stochastic
differential equation. The transition probability gives the probability to go
from one state to another. Let X be the solution to

dX(t) = p(t,X(1))dt + o (1, X(1))dW (z).

First, define A via
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2
(A1)(5.3) = wls:) S (5) +30260) S 69

and consider the boundary value problem given by

{ (%—FAu) (5,y) =0 (5,9)€(0,T) xR
u(T,y) =1Is(y)

where the indicator function /5(y) is defined such as it is one if y € B and zero
otherwise. We then get

u(s,y) = E;,[Ig(Xr)] = P(Xr €B|Xs =y).
We then have the following theorem.

Theorem 4.6 The transition probabilities Ps, y; t, B) = P(X7 € B| X, = y) is
given by the solution to the Kolmogorov backward equation

{ (%—I—Au) (5,y) =0 (s,y)€(0,T) xR
u(T,y) = Ip(y)

Theorem 4.7 Suppose that P(s, y; t, dx) have the density p(s, y; t, x)dx. Then

{ <%+A>p(s,y;z,x) —0 (5,5)€(0,T) xR

p(s,y;t,x) — 6x whens — ¢

The backward equation comes from the fact that A4 is acting on the backward
variables (s, y). We will also derive a forward equation. Consider an arbitrary
infinite differentiable “test-function” on (s, 7) X R and use It6

T T
h(T,Xr) = h(s,X;) + J <% +Ah> (t,X,)dt + J %(r,x,)dw,.

Then take the expectation value and suppose /(7 x) = h(s, x) =0
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oo T
J Jp S, Y51, X) ( +A>h(t,x)dxdt—

Partial integration in x and # gives

oo T
J Jhtx (——A >p(s y;t,x)dxdt =0

where

2

(Af)(t,x) = — % [u(t,xf (1,x)] +% % [ (1,21 (1)

This gives the Fokker—Planck equation

{ (%+A>p(s,y;t,x) =0 (s7y)€(0,T) % R

p(s,y;t,x) — 8x when s — ¢

4.3 The Black-Scholes—-Merton Model

We will now derive one of the most famous results in finance, the Black—
Scholes partial differential equation. Myron Scholes and Robert C. Merton
won the Nobel Prize in Economics in 1997. In 1973 Myron Scholes and
Fischer Black (T 1995) published their paper “The Pricing of Options and
Corporate Liabilities” in the Journal of Political Economy. Robert C. Merton
was the first to publish a paper expanding the mathematical understanding of
the options pricing model, and coined the term “Black—Scholes options
pricing model”.

4.3.1 Modeling Asset Prices

The future price of most assets can be expected to have both deterministic and
random components. A popular model for the deterministic piece is exponen-

tial growth,
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dS(t) = u(t,S) - S(t)dt.

In a small time interval, S(z + df) = S{1 + u(t, S)dt}, i.e. the asset’s rate of
return is given by u(z S)dr for a short time interval dz. If u(z S) is constant,
u(s, S) = pg, then S() = S(0)expipot}.

The random part of the price process is commonly modeled in terms of a
Brownian motion,

ds(t) = 6(1,S) - S(1)dW (7).

Opver a short time interval, S(z + df) = S(¢) + o(2, S)S\/dtf, where & is Gaussian
with mean 0 and variance 1. The Brownian motion increases the variance of
the price by 6°(¢, §)S°d# in a short time interval z. This means that the ratio of
the standard deviation to the asset price itself is proportional to the volatility

o(s, )

StdDev{S(t+dt)}
S) = o(1,S)Vdt.

The standard Black—Scholes’s model uses constant drift u(z, S) = a and
constant ¢

ds(t) = a-S(t)dt + o - S(t)dW(r)

To derive the Black—Scholes PDE, we will study a market with two investment
possibilities, a risk-free money-market account B that pays a constant interest
rate 7 and a stock S. The price of the stock is characterized of a constant drift
and a stochastic term 6S4W. The stochastic term is given by a geometric
Brownian motion, (a Wiener process) where ¢ is called the volatility. The
market is given by

fimo—r-m0a ..

ds(t) = a- S(t)dt + o - S(H)aW ()
{ S(0)=s

The initial condition of the money-market account is 1 and the initial stock
price is s. The Wiener process is normal distributed and (4 W(9)? = dr. We will
construct a portfolio 4 of the bond and the stock: / = (#°, b'), where b holds
the number of each instrument. /4 is then a stochastic process itself and the
value process of the portfolio is defined as
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V(t) = K(¢) - B(t) + h'(z) - S(¢)
The portfolio is said to be selffinanced if
dv(r)=h(r) -d ( ) + k(1) - dS(1)

h°
RO(t) -1 (t)dt +h'(t) - a- S(O)dt + h'(1) - o - S(t)dW (1)
{h O(Z) B(t) +h'(t) - a-S(t)}dt + h'(t) - 6 - S(¢)aW ()

We start by defining a relative portfolio z = (4, «”) by

R (0)-s0)

0 uO(t) +u'(r) = 1.

The self-financed value process in terms of the relative portfolio is
dv(t)y=Vv(e) {r-u’(t)+a-u'(t)}dt+ V(1) - o - u' ()dW (t).
Suppose that V() = Wz S5(2). The It6 lemma gives

oV ov 10*v

dV =S odi+5cdS 5= (dS)?
aavd [+ aa‘; (- S()dt + o - S(E)AW (1)) + % 2. () gs‘;d
- {aa‘t/m.S() %% 2 52()2;‘;}01;“ S(1) - %dW()
To make this similar to dV(t) in our first expression, we multiply with V(#) and
use the notation &% Vt, =V, etc. Then
dv(r) = V{V’ e V“‘VJ’%“Z il V“}dr+ v"'SV' Vs aw.

We now compare the terms end immediately see that

Ml_S'VS
Vv

so we get



4 Continuous Time Models 157

V,+1 2'S2'Vw
dV(t)IV{ d 2(; “-r—i—a-ul}dt—l—V~a-uldW.
T

By studying the remaining terms, we also see that

1.2 2
MOZVI_FEG'S 'V
V.r

Since #°(H) + ' () = 1 we finally get the result

v
0S8?

ov rSa—V

122
FTREAF TR

=rV.
This is the Black—Scholes partial differential equation.

Remark The equation is independent of a. In a risk-neutral world we can
explain the terms in the PDE as

8_\{ e The change of value with respect to time.

,5% =rS-A The change of value with respect to the underlying.
%0252 is\z/ — %02521" The change of value with respect to volatility.

rv The expected change of value of the derivative security.

4.3.2 An Alternative Approach to Black-Scholes

The Black—Scholes PDE can also be derived as follows. We now start with a
capital of X, and receive at each time % A(#) shares in a stock, modelled by a
Brownian motion:

ds(t) = a-S(t)dt + o - S(t)dW(t).

The investor is financing the investment with a loan with interest rate 7 The
capital at time 7 is given by

dX(1) = A(1)dS(r) + r[X(¢) — At
= A(1)[aS(1)dt + oS(7) W(z)
= [rX(1) + (a — r)A(1)S(1)]d

S(n)lar
r[X(1) — A(0)S(0)]dr
oA (1)S(1)dW (1)

N‘_‘
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where we have invested in A(#) shares and earning interest rate on the
remaining capital. The factor (@ —7) is called the risk-premium. Consider
now, also a European option paying an amount of g(5(7)) at time 7 and let #
(t, S(2) represent the value at time # Then

OF OF 10°F
dF = Edl—Fa—SdS—FEa—SZ

1
= {F,+;4-S~FS+§52-Ssts}dH—a-&Fde

(ds)?

If X(z) = F(z S(2)) we get a delta-hedge A(x) = F(# S(2)) and

1
dF = {F,+aoS-FAY+502~SZF”}dt+aoSoA~dW

1
= {F, +a-S-F —I—Edz -Ssts}dt — [rF + (a — r)AS]dt

1
F; + aSA + EGZSZFSS = 1F + Ala—r1)S
Then « vanish and

1
{Ft +rSF, + 502321% —rF=0
Fr =g(S(T))

4.3.3 Alternative Approach Using Risk Neutrality

The following alternative using risk neutrality argument to deriving the Black—
Scholes equation was put forward by Cox and Ross in 1976, which does not
involve delta hedging. Here we shall explore exactly this argument and make a
direct comparison to the delta-hedging technique. The concept of risk neu-
trality is one associated with an investment that has zero risk to asset price
movement which must therefore, due to arbitrage consideration, earn the same
rate as the risk-free return (e.g. as the money-market account).

The pricing dynamics of the underlying asset can be described by a geo-
metric random walk of the form

dS = aSdt + oSdX.
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Further to this, we know that our call option C satisfies [t6’s lemma

_ (3¢, 0C , 1,00C oC
dC_<a oS =< +50°S asZ)dt+aS§dX

and we wish to express this in terms of a geometric random walk for the option
as

dC = a.Cdt + 6.CdX.

Therefore
(3, 3 1,,0%C
““‘E(a “©os T asz>
and
aS ocC
°«=Cos

in order to satisfy this requirement. Rearranging our expression gives us

oc  oC 1 ,,0°C .oC
a (XSa—S EO'S aS2+ SaS a(C 0.

This resembles precisely the Black—Scholes equation if we ler o, = r. In many
literatures you will find something along the lines of “we replace p by 7 to take
a risk neutral preference”. This is not as straightforward as it is made to sound;
in fact, the process of assuming the growth parameters to be equivalent to a
risk-free investment is a subtle point and needs to be further expanded upon.

You can construct a portfolio consisting of options and assets that is
instantaneously risk-less by holding ¢.C units of asset and short selling 6§
units of options with a value

IM=06.CS—0CS = (0. —0)CS.

[Notice that this is different to delta hedging when one owns an option short
and A units of the asset.] Il is now written as a function of 4 variables,
3 stochastic S, C, o, and time ¢ Therefore, I1 ~ I1(S, C, o, ). To differentiate

this we require It6’s lemma for many variables. All cross-terms in involving 7
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vanish to slightly simplify matters, and we expand only to the second order for
all other variables except 7. Therefore,

) ) on on 1o°’m ., 19°m, ,
dl‘[_EdH—a dS+aC dC + 5 ~do. 4555 dS +§Wdc
10’ , , oM o o'
+§50L-2 do.” + aSaCdeC +—5585¢. dSdo. + 3Cao. dCdaC

After some very lengthy and tedious algebra this reduces to the much shorter
expression

dll = (a.6, — ac)CSdt.
From simple arbitrage consideration this must earn the same as a risk-less

interest rate dI1 = 7I1dk since the structure of the portfolio is such that the risk
is eliminated. Using this and our expressions above, we arrive at the expression

a0, —ac =r(o. — o)

or

ac—r a-—r

o, o

The interpretation of this equation has great financial significance. It says that
the ratio extra rate return over a risk free investment of option and asset with
their respective volatilities is fixed. This ratio is often termed the market price of
risk, where the risk is measured in the volatility. Here we have shown that an
option and the underlying asset have the same ratio within a risk-neutral world
framework. From this equation we can interpret what we already know—the
bigger the returns, the greater the risk. By using the expression of market price
of risk and substituting it into our expression for @, and o, above we recover
the Black—Scholes equation

oc, g0 1228C L

So we have not simply taken the equation above with a,=a =7, but done
something more subtle. This choice means that this ratio of market price of
risk can be satisfied for any set of values for 6, and ¢. This is what makes the
Black—Scholes model attractive. Furthermore, it sets a simple yet well-defined
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universal standard as desired as in any field. By letting a =7 is different to
saying that in reality no investment can grow faster than the rate 7, but simply
to set a fair price for our derivative we must let the two be equivalent.

Here we have derived the Black—Scholes equation without performing a
delta hedge as is most often presented in common literature. Delta-hedging is a
more refined and sophisticated extension to the risk neutrality argument.

4.3.4 Forwards and Futures

Forwards and futures are traded on equities, equity indices, bonds, currencies
and commodities. No initial payments are made and both of the parties are
obligated to fulfil the contract at maturity. But few contracts will reach
delivery. Most of the contracts are closed out by buying or selling the opposite
before maturity. Futures are exchange traded and usually daily settled. Both
parties take an equally risk by taking their position and margin requirements is
claimed by the clearinghouse or the exchange.
The price, F is given by

F=(1+4R)-S=5-¢"

Here R is the simple interest rate and 7 the continuous compounding rate. If
the underlying pays a known income (cash flow) with present value D, the
price is given by

F=(1+R)-(S-D)=(8-D)-¢"
If there are future incomes in yield ¢ (interest rate) the price is given by
F=(1 +R_q).S:S.e(rfq)»t
A forward in another currency rfthe price is

F=(1+R-r)-S=5-el1)",

Example 4.8

Futures are very common contracts in the interest rate market and Treasury bills
are short-term instruments issued by the government. Bills are usually quoted as

(continued)
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Example 4.8 (continued)

percentage of a nominal amount, so at par they have the price as 100. Suppose
we have a 6-month Treasury bill. The value is then given by

V =100-¢"

where the price is given as percentage of the nominal amount, f is the forward
rate. If we are three months from delivery of a 90 days’ future contract with
interest rate 5 %, the price is given by

F =100 - e 005%/365 _ 98 7578
The value of the Treasury bill is, with the same interest rate

Ve = 100 - e 005182/365 _ 97 5377
This is a corresponding return on yearly basis of

[F/Ve—1]-4=50 %.

Suppose there is another Treasury bill T3 with 3 months to maturity and with a
rate of 4 % and a value of

T3 = 100 - e 0491/365 — 99 0077.
The corresponding return on yearly basis is
[V3/Ve —1]-4 = 6.02%.

Therefore, if the interest rate of the 6 months Treasury bill is above 5 % the last
90 days, it is better to hold the bill instead of the future.

Example 4.9

How can we make arbitrage using the instruments above?
Answer-1: Arbitrage with only Treasury bills

1. Sell short the 3-month bill at 99.0077, with the value 100 after 3 months.

2. Buy 99.0077/97.5377 = 1.01507 of the six the month’s bill at 97.5377. This gives
a net investment of 0.

. After 3 months we pay back 100 for the 3-month bill.

. Receive (9.0077/97.5377)*100 for the 6-month bill.

5. This corresponds to 101.507 or a yearly interest rate of 6.028 %.

H W

Answer-2: Arbitrage with the future

(continued)
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Example 4.9 (continued)

1. Sell short the future with the value 98.7578 after 3 months.
2. Buy the 6-month bill at 97.5377. This gives a net investment of 97.5377.
3. Deliver the bill to the buyer after 6 months and receive 98.7578.
4. The result corresponds to (98.7578/97.5377) * 100 * 101.25 or 5.098 %.

As we have shown, we can earn 5 % when the interest rate is 4 %. To do this
without taking a risk, we can use a repo (repurchase agreement) on the Treasury
bill at 4 %.

Black—Scholes with a Forward as Underlying

If we have a forward or future as underlying instead of a stock we can transform
the Black—Scholes PDE to get a new PDE with the Black-76 formula as
solution. The relation between the stock, S and the forward, F is given by

F(r) = S(t)e"T.
We start with the Black—Scholes PDE

ov(S,1)
ot

ov(S,1)
oS

V(S
0S?

1
+r-S(S,1) - —|—§62S2(S,t) r-V(S,t) =0

and use the following substitutions

0 OFD g0

2s T osorF ¢ OF

C_0(0r0) TrE 000 (D) g el oy
o2 os\0soF) ~ os?oF "osos\or) ~ " "¢

@
0_0 oF0 _0 .0
ot 0t 0roF ot | oF

The result is

OV(F,1) 1 , , O°V(F,1)
o T2 e

—r-V(F,t)=0.
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4.3.5 Simplified Expression of Black-Scholes

Sometimes, the Black—Scholes equation (and also the Term-Structure equa-
tion in interest rate theory where § is replaced by 7) is written as

LV (t)=r-V(1),
where the evolution operator L(¢) is given by

0 0 1, 0

E(Z):a—t‘f‘ﬂ() 35 "2° (1) - ek

4.3.6 The Solution to Black-Scholes

Now, we will solve the Black—Scholes PDE for a European call option with
strike price K. We write the Black—Scholes partial differential equation with a
call option as our contingent claim (boundary condition) as

1,0
F,—l—rSFs—i—ia SFy—1rF=0
Fr = max(Sy — K, 0)

As usually, we suppose that F(z §,) is a solution to the PDE above where

ds(ty=a-S(t)-dt+o-S(t) - dW(r)
{ S(r) =S,

[t6 gives with a = 7

OF OF . 10°F
dF = =-di + =cdS + 2882(dS)

1
= Fdt + Fs(r - Sdt + o SdW) + 5 6% - S*F s (dW)?

1
= {F, +r-S(t) - Fy +§o2 : SZFSS}dt—i— c-S-FdW
—rFdt +0¢-S-FdW.

If we integrate and take the expectation value, the stochastic part vanishes and
we get the Feynmann—Ka¢ formula



4 Continuous Time Models 165
F(t,S) = eI~ ’>EQ ~[max{Sr — K, 0}]

We here need S7; given by the stochastic differential equation

{ as(t)y=r-S(t)-dt+o-S(t) - dW(z)
S(t) =S, ‘

To find a solution we set Z(#) = In{S(#)}. From It6 Lemma we then get

oz oz 10°Z
dz == di +anS+28S2

1
S(r Sdt + o - SdW) —

(dS)’ =
M - 8%dr = L dt +o-dW
2S20' r 20' (o2 W,

Integration from ¢ to 7 gives
Zr = InS, + <r - %&) (T—1)+c(Wp —W,)
Le.
Sr=3S,- exp{ (r —%02> (T—t)+oc(Wr — Wt)} =5-¢e.

The probability distribution of Z is therefore a N[(r — /(T — 9, 62T — 9)]-
distribution, where the probability density function g(5) is given by

1 o] (n{S1/S} = (r = o?/2)(T 1))’
oS1/22(T —1) P 26%(T — 1) '

The price of the call option is now given by

8(Sr) =

[X|F] = e~ ’)EQ [max{Sr — K, 0}].
First, we define the following variables, to simplify the calculations
F=r——o°, t=T—1t v=Wr—-W,=/1z.

Then

Sy = St-exp{}’r—i—a rz} =S,-e
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and

1 In{Sr/S;} — 7z)* 1 —7r)?
8(81) = JST\/ZEeXp{_< : é02}r ) } - GST\/%exp{— (yZGZT) }

By the above definitions we have

y=T-1+06-\1z = =

and

(51) 1 . { 22} 1 N @)
=———&exps——, =—=N (2).
§or oStV2nt P 2 USTﬁ

For the call option we have
® = max{S, - ¢’ — K,0}
Si-e—K=0 =y, zln{SE}
t
In{K/S;} -7z
Zo — —G - \/E .
Here we have defined y, as the value of y where S,-¢ — K=0. This also

gives the value zy and we can now start to integrate to get the price of the
call option

M=c" | &) g(S)dS = {dS = g—idy = S,dy}
ol Oy
=e T | S @(y) - g()dy = g dy = 5"dz = o\/1dz

=e "7 | ®(z2) - p(2)dz

=e "7 | max{S$, - ¢ ToVE _ K 0}p(2)dz

where
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A normally distributed density function Ny, o) is given by

o) = V;T_aexp{—;(zj,”)z}

and a log-normal distribution by

o(e) = égl’{;(l(i_”)}

Now we can continue to integrate

In= e"'TT (S, el TreVE K)(p(z)dz =
0

o0

=58 e”Jef VTG (2)dz — K - e‘”j(p(z)dz =A—B
20

z0
B=K-e""N(—z)

o0
A= Si-e emje%cfz‘r +o-\12— 22/2dz
V2rx

o0

20

S J (o2
= e VoV Icdz =8, - N(—zp + 06 - /7).
2 N(=0+a-vF)

Z0

Finally, we can write this as

N=S8 N(-z0+0- VT —1) —K-e"IIN(—z) =
=58,-N(d\) —K - e "T=IN(d,)

where

In{S,/K */2)(T —
dlzn{Sf/ }+(HTL0/)( f), dy=d, —6-VT —1.
c- —1

Here we have used the symmetry N(—x) = 1—MN(x). Then by integration from
x to 00 gives the same result as integrating from—o00 to—x. To see that
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J e*(zfa-\/?)zﬂdz :N(—Zo +0- \/E)
0

9=
8

we also use that

L o
V2

is a Gaussian function centred at z = ¢ - /7. If we like to have this centred at
z = 0 we translate the curve and the integral becomes

1 00 { 00 1 —z0+0\/T
—(z—0v7) /2 _ J —2/2 5 J —2)2
— e dz =—— e dz =—— e dz
Vi ZEJ V2 \/_ V2
20 20—0\/T —0

=N(—z0+ 0 - /7).

4.3.7 The Solution to Black-Scholes

There are many other European options with different payoffs at maturity. By
repeating the above arguments we can show that also these options are
solutions of the same PDE, the Black—Scholes partial differential equation,
with their specific boundary conditions for the payoff at maturity. A European
put option gives the holder the right to sell the asset at the strike price Kat the
maturity date. The appropriate boundary condition for such put option is

V(T,s) = [K —s]"att =T (Europeanput).

A digit call option gives the holder a payout of 1, if the asset price is above the
strike K at maturity date. A digital put option gives the holder a payout of 1, if
the asset price is below the strike. For these options

V(T,s) = {(1) g :: ; [I§ at t=T (digital call)
V(T,s) = {(1) ii ": ilé at t=T (digital put).

Similarly, power calls and power puts gives the holder a payout given by



4 Continuous Time Models 169

V(T,s) ={[s— K]+}2 at t=T (power call)
V(T,s) = {[K - s]+}2 at t=T (power put)-

A convexity options gives the holder the payoff

V(T,s)={s—K}* att=T (convexity option).

4.3.8 A Green’s Function Approach

A Green’s function, G{x, s), of a linear differential operator L = L(x) acting on
distributions over a subset of the Euclidean space R”, at a point s, is any solution of

LG(x,s) = 6(x —s) (4.1)

where 8 is the Dirac delta function. This property of a Green’s function can be
exploited to solve differential equations of the form

Lu(x) = f(x) (4.2)

If the kernel of L is non-trivial, then the Green’s function is not unique. However,
in practice, some combination of symmetry, boundary conditions and/or other
externally imposed criteria will give a unique Green’s function. Moreover,
Green’s functions in general are distributions, not necessarily proper functions.

Loosely speaking, if such a function G can be found for the operator Z, then
if we multiply the equation (4.1) for the Green’s function by fs), and then
perform integration in the s variable, we obtain

JLG(x, $)f (s)ds = Jé(x —9)f (s)ds = f(x).

The right-hand side is now given by the equation (4.2) above to be equal to L
(x), thus

Lu(x) = JLG(x, $)f (s)ds

Because the operator L = L(x) is linear and acts on the variable x alone (not on
the variable of integration s5), we can take the operator L outside of the
integration on the right-hand side, obtaining;
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Lu(x) =L <J G(x, s)f(s)ds> .
This suggests;
uto) = |Gl (43)

Thus, we can obtain the function #(x) through knowledge of the Green’s
function in equation (4.1), and the source term on the right-hand side in equation
(4.2). This process has resulted from the linearity of the operator L.

In other words, the solution of equation (4.2), #(x), can be determined by
the integration given in equation (4.3). Although f(x) is known, this integra-
tion cannot be performed unless G is also known. The problem now lies in
finding the Green’s function G that satisfies equation (4.1). For this reason,
the Green’s function is also sometimes called the fundamental solution
associated to the operator L.

Green Functions and Black—Scholes

One solution to Black—Scholes equation is

—r(T—t ! » 2
e exp{_(ln{S/S}+(;—02/2)(T—t))}

Visn=g 22T — 1) 262(T — 1)

for any §'. You can verify this by substituting back into the equation. This
solution is special because as # — 7 it becomes zero everywhere except at
S = 8. In this limit the function becomes what is known as a Dirac delta
function. This function is as we see zero everywhere, except in one point where
it is infinite in such a way that the integral is one. Since Black—Scholes is a
linear function we can multiply with a constant to get another solution. We
can also add functions with different ', as the one above and still have a
solution. We therefore have that also

o { (In{S/S'} + (r — 0?/2)(T — t))2} N\ dS
—— | exp< — S
o2 —1) J 26%(T — 1) ( )

S
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is a solution for any function AY). If we choose the arbitrary function AS') to
be the payoff function then this expression becomes the solution of the
problem

e n{S/S’ r—o’ 1) ,
VD) = Jexp{_“ {8/8'} + (r = o*/2)(T ~ 1)) }f(5>ds
0

ETD 2027 - s

S
The function V'(S, ) is called the Green’s function.

4.3.9 Transformation of Black-Scholes

The Black—Scholes equation can be transformed to a simple diffusion equa-
tion. This is done by a change of variables. If we write

V(S,1) = U(x,7) - exp{ax + pr}

where

1/2r 1/2r 2 , 27
a:_§<;_l>’ ﬁ:_1<;+1> 5 S:el7 = _;

Then U satisfies the following equation

ou oU?
o o0

This can be useful when we want to find simple numerical schemes.

4.3.10 A Martingale Approach

In a martingale approach to find the price for a European call option we start
with the terminal value

E[Cr] = (St — K)" = max(S7 — K, 0).

In a risk-neutral world, the expected value at maturity is this terminal value
discounted with the risk free rate 7, i.e.
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C, =T 0Cr = & TDE[max(Sr — K, 0)].
Therefore, we have to consider the expectation value. For any random variable

Xthat can lie in the interval [0, co] with a probability density function p(X), its
expected value is given by

EX] = pr(x)dx.
0

As we know, (In(S7) | §,) is a normal random variable with mean a(7—#) and
variance ¢2(7—#) and Sy a lognormal random variable where

E[S7] = E[e"57)]. Let X7 = In{S}, then E[¢X7|S,] is given by

E[eX"|SJ = S,J e p(x)dx.
0

We can also take the expectation of X with respect to another probability
density function, say ¢(x). Call this expectation EX] where

E2[X] = qu(x)dx.
0

Then E[S7] is given by

E9[S] = Jexq(x)dx.
0

Now, if X = (X—K)*

E2[X] = | xq(x)dx

RNe——m



4 Continuous Time Models 173

so that

E2[max (St — K,0)] = T [eln(x) — K]q(x)dx

= J "Wg(x)dx — K J q(x)dx
In(K) In(K)

where ¢(x) ~ N[r(T,1) — 6*/2,61/T —t]. By calculating this integral we
get the same result as above, the Black—Scholes formula.
4.3.11 Delta for a European Call Option

To calculate the Greeks (the hedge parameters) we have to take derivatives of
integrals. The easiest way is to think like

)
& | emas = Si6oi = L2 g

o

Using Black—Scholes formula for a call option is given by
C=S8-N(d)—X-e"-N(dy)
where
g ImS/X)+(r+ 6?/2)-T

1 0'~\/T ’
odi  0dy 1

0S  0S S-6-T

d2:d|—6'\/f

i.e.
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oC 0 o g 0
:a_sz_as[s N(d)] =X e - 52N (da)
— ' 0d, T S 0dy
—N(d1)+S'N(d1)'ﬁ—X~e N(dz)g
1 , 1
=Nd)+S-N(d) ——=—-X-¢" N (d) ———
@)+ @) S-0-VT ‘ (2) S-6-\VT

1

=N+ T

[s N(d)—X-eT-N (dz)}

XN (@) = XN (4 o V)
=X.-e'T ~N/(d1) . ediroVT | p=0>T/2
=X.e'T ~N/(a’1) e T/2 ; T . o T)2
=S-N'(d)

Finally, we get
A =N(dy).
This is also what we expect if we look at the formula
C=S8-N(d)—X e N(d,).

Other hedge parameters can be calculated similarly.

4.3.12 Black-Scholes and Time-Dependent Parameters

We can generalize Black—Scholes by letting the parameters become time-
dependent. Suppose that the interest rate and volatility are time dependent.
We then replace; » — 7(z) and 6 — o(z). We can also introduce a time
dependent dividend yield ¢ — ¢(#). The Black—Scholes equation then takes

the form

P (o1 — gopst) L1 L 00 TEED i) =0
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If we now introduce new variables
S(1) = S(0)e™,  F(1,8) = F(1,8)’, 7 =y(1)

to eliminate the time dependence we get the new equation

PO+ () 400 + )50 o
s OF .
502050 agf —(r) + BW)F =0

where the dots denotes time derivatives. To eliminate the time-dependent
terms we now choose

and
y(t) = Jaz(r)dr.

Now, we get the following equation

OF 1., OF

E—i_is (I)E 0

This means that a solution to the PDE in the original variables is

F(1,8) = e-ﬂ(f>F(y(z),S(z)ea<f>)

If we let Fgg represents any solution to Black—Scholes with time-independent
parameters we have
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Fps = e < T=0Fp (0? (T —1), Se_(""w“)(T_’))

where
T
1
e = T——[ I”(T)d’l',
t
T
1
de=7_, q(z)dr,
t
T
o 1 o (7)dr.
¢ T—t

To make everything clear, her'e is the formula for a European call option with
time-dependent parameters:

T T

C =Sexp —Jq(r)dt N(d,) — Kexp —Jr(r)dt N(d>)

where
T
In{3} + tf (r(z) — q(z))dzr -l-éjaz(r)dr
dy = d
T
J02(T)dr
and
; T
ln{%} + ;f (r(r) — q(z))dz — %Jaz(r)dr
dy = 4
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4.4 \Volatility

In the Black—Scholes model, the volatility of the underlying asset is the only
non-directly observable variable. For this reason, it is necessary to devise some
method where by one can estimate (efficiently) and possibly anticipate the
volatility. By using market prices, we can implicitly calculate the volatilities
when we know the market prices. This method has an advantage over direct
estimations based on historical price changes, since it reflects how much
volatility the market currently assumes within the Black—Scholes framework.
Quite often, the implied volatility is found to give rise to a skew, smile or frown,
see Fig. 4.2 depending upon the asset or market.

One problem with using the implied volatility is that whilst it takes into
account the current view of the market, it does not give us any insight into
possible future changes in volatility. Given that the value of an option is
primarily driven by the volatility, making predictions is a valuable tool from a
practitioner’s perspective. To achieve this, we turn back our attention to
historical price movements. The historical volatility is defined via the standard
deviation of the movements in price. Suppose we have 7 observations: a;: 4y, a;,

.. 4, ;. If we define u; = In(a/a; ;) we can calculate the standard deviation:

n—l Zz n—l (Z”>

The volatility is then given as sv/d, where d is the number of trading days in a
year (=250).

4.4.1 The Volatility Surface

In many situations, we need to use a volatility surface. We can find such a
surface by a least square method from implied volatilities. We need one such
surface for the call options and another for the put options. By using a bid/ask
volatility spread and the mid volatilities, we can also find a bid surface and an
ask surface.

The calibration process is then:

1. Calculates the implied mid volatilities from option prices.
2. Calibrates the two volatility surfaces (call and put) to the implied mid
volatilities.
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Smile and Skew
- o
= EE \
— et —
= O
=35 i ol ST

strike strike

Fig. 4.2 The volatility smile and skew as function of the strike price

3. Applies a spread to extract bid and ask volatility surfaces. (Use larger spread
for less liquid option series.)

The prices to use are either last paid, a bid/ask pair or a parity price, in that
order of priority. We have to check that the implied volatility is not too low or
not too high. Typical market data are shown in Table 4.1.

For option series with market prices, the mid volatility is calculated as the
average of the implied bid and ask volatilities. The mid volatility for
OMXS309V400 is for example (47.1 + 51.1)/2 = 49.1 %.

For option series with parity prices the mid volatility is given as the mid
volatility of the option series with opposite option type adjusted with the
average difference of the call and put mid volatilities of the option series that
has market prices in both the call and the put options.

In this example the option series with strike prices 700, 710 and 720 have
market prices in both the call and the put options. These option series show a
slightly higher mid volatility for the put options compared to the call options
and the average of the difference in mid voladlity equals 1/3
(1.7 % + 1.0 % + 1.2 %) = 1.28 %.

The mid volatility for OMXS309V850 is therefore given by (30.1 + 32.0)/
2 + 128 = 3222 % and the mid voladlity for OMXS309J400
49.1—1.28 = 47.82 %.

Option series with no prices will get a mid-volatility from the calibrated
volatility surfaces.
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The Method of Least Square

The concept of volatility surfaces implies that the mid volatility can be seen as a
function of time to maturity 7 and strike price, X, i.e. 6 =0(7,X). If we
assume that the volatility surfaces are given by a 3rd degree polynomial surface
we have

o(T,X) = co+ 1T + c2T* 4+ c3T? + eaX + ¢sX* + c6X° + c7TX + csT*X
+ coTX?.

The problem is to find the coefficients ¢;. If they are found, then the implied
volatility can be calculated for any given time to expiration and strike price.
The mid volatilities from the option series with market prices and parity prices
provide several points. There are totally 10 unknown coefficients, ¢, for a 3rd
degree polynomial surface. The minimum number of data points in order to
calculate the coefficients are therefore 10. If there are market prices and parity
prices corresponding to more than 10 data points these add up to an over
determined system of linear equations. In this case there is no exact solution
but there is a way to mathematically estimate the best approximation to the
coefficients. This is called the method of least squares.

The set of data points can be converted into a linear system of equations
using the equation above. The linear system of equations can be expressed as a
matrix multiplication A¢ = z where A is a matrix containing the times to
expiration and the strike prices, ¢ is a vector containing the unknown coeffi-
cients and z is a vector containing the mid volatilities.

1 1, T3 13 Xy X7 X3 T\X, T:X, T\X;

A= | o ) ) )
1 T T? T; Xi Xi X; TuXu T:Xp TiX;

Co (o)

CcC = : zZ = :

Co 09

We then do the simple algebra
Acc=z = ATA-c=AT-z = c=(ATA)" AT =

In Fig. 4.3 we see a typical volatility surface for European options on a stock index.
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Fig. 4.3 A typical volatility surface. On the axis we have the index level and the

strike price

The volatility for the options with no prices are calculated from the surface.
Volatility for series outside the surface can be found by (flat) interpolation.

Example 4.10

We have the following points (x, y): (1, 1), (2, 3) and (3, 2) and we would like to
find the equation of the line that fits these points with the least square.
We have then the following system of equations

1=k-1+m 11 K 1
2=k-3+m & 3 1 (m>: 2 & Ac=y.
3=k-2+m 2 1 3

Acc=y = AA.c=AT.y = c=(AA) " Ay

By using

(continued)
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Example 4.10 (continued)

we have

@ -leaE ) 6ol
D) e ()

y="x+1.

4.4.2 Volatility Models

According to the classical Black—Scholes options pricing model, all options
based on the same underlying sharing a constant implied volatility under the
assumption of a geometric Brownian motion process. But if this model is used
to back-test the market-traded option, we can observe that different contracts
produce significantly different implied volatilities. Options’ implied volatilities
actually vary with the different time to maturity. This is the term structure of
implied volatility. For a given time to maturity, implied volatilities for different
strikes are not the same either. This is the implied volatility skew and is often
referred as the volatility smile. All these market evidences imply that the option
market expects the future volatility of the underlying asset will not be a
constant.

In Fig. 4.4 we show the S&P 500 and the VIX volatility index over several
years (data provided by the Chicago Board of Option Exchange, www.cboe.
com). S&P (Standard & Poor’s) 500 is an American stock market index based
on the market capitalizations of 500 large companies having common stock
listed on the NYSE or NASDAQ. The S&P 500 index components and their
weightings are determined by S&P Dow Jones Indices. It differs from other
US stock market indices, such as the Dow Jones Industrial Average or the
Nasdaq Composite index, because of its diverse constituency and weighting
methodology. It is one of the most commonly followed equity indices, and many
consider it one of the best representations of the US stock market, and a bellwether


http://www.cboe.com
http://www.cboe.com
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S&P 500® (SPXM) and VIX
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Fig. 4.4 The historical VIX volatility S&P 500 (Source: CBOE)

for the US economy. The CBOE Volatility Index™ (VIX® Index) is a key measure
of market expectations of near-term volatility conveyed by S&P 500 stock index
option prices. Since its introduction in 1993, VIX has been considered by many to
be the world’s premier barometer of investor sentiment and market volatility. As
we can see in Fig. 4.4, the volatility increases when the market falls. The VIX
Index is therefore sometimes referred as a “market fear index”.

When we see the behaviour of the volatility, we realize that a stochastic
volatility model is more reasonable for option pricing. It can explain the basic
shapes of the smile patterns and allow for more realistic theories of the term
structure of implied volatility. A particular case is that volatility can be described
with a GARCH model (see Sect. 4.4.4). In GARCH models, the variance is
written as a function of past returns, but with exponentially smoothing and a
certain time-decay factor. One more important feature of GARCH is that the
constant term in the recursive equation allows GARCH to capture the notion
that the volatility is mean reverting and allows the model to be used for
forecasting volatility.
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Autocorrelation Structures

We take a slight detour to introduce the definition of the awutocorrelation
Sfunction. The correlation function between two time series, X and Y, is given
by the expression

<(X - ﬂx)(Y - #Y)>

Corr(X,Y) =

where pt and o are the mean and variance estimates of X and Y respectively, and
<...> denotes the mean value of the expression inside the brackets. The
autocorrelation function is calculated by setting Y= X(# + ), where 6 is some
forward time lag of the time series X. Hence, the autocorrelation function may
be expressed as

X(OX(:+8)

Corr(8) = 5

ox

The autocorrelation function is an average measure of the correlations that
exist within a time series. The form of this volatility autocorrelation has been
empirically suggested to be either exponentially decaying, or exhibiting long-
range memory (power-law decay).

4.4.3 ARCH Models

An autoregressive conditional heteroskedasticity (ARCH(m)) model was intro-
duced by Engle (1982) to model the volatility of UK inflation. As the name
suggests, the model has the following properties:

1. Autoregression—Uses previous estimates of volatility to calculate subse-
quent (future) values. Hence volatility values are closely related.

2. Heteroscedasticity—The probability distributions of the volatility varies
with the current value.

In order to introduce ARCH processes, let us assume that we have a time series
of asset price quotes P; for each time step 7. We calculate the fractional change
in the price of the asset between time step 7 and 7 + 1 using



4 Continuous Time Models 185

XA:Pi*Pifl
I Py

Furthermore, we are required to determine the long-running historical vola-
tility (e.g. over several years) denoted by S. The volatility fluctuates about some
long-running mean volatility, therefore, it seems reasonable to incorporate this
quantity in the ARCH model. Formally, an ARCH(m) process may be

expressed mathematically as

m
2 E 2
Gn = yS + aixnfi

i=1

where

y >0, a; >0, 7+ Z a; = land m is the number of observa-
i=1
tions of x,,_; used to determine o,,. The most common ARCH(m) model is the
ARCH(1) model where

2 =yS+ax, 2 =S+ (1 —y)x,1°

4.44 GARCH Models

Bollerslev (1986) later proposed a more generalized form of the ARCH ()
model appropriately termed the GARCH(p, 9) (General-ARCH) model. The
GARCH(p, g) model may be written as

P q
2 2 2
o, =yS+ E oAixX,_ i~ + g Bion—j"
i=1 =1

The p and g denote the number of past observations of x,_; and o,_;
respectively, used to estimate 6, The simplest GARCH(p, ¢) model is
GARCH(1,1) given by:
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o1’ =k9+ (1 —x)((1 = A)y? + 40/)

S, 1,
log(—=) — (r, — =0 At
oel(gs) - ()

yt_ \/E

The equation gives the evolution of the variance as the weighted average with
weights k and 1 — &, of two parts, one being the constant 9 and the other
being a weighted average of y> and 62. Whatever the variance might be at time
i, the variance of y; at any date j far into the future, computed without
knowing the intervening y;, 1, y;, 2,- - ., will be approximately the constant 9.
The constant 9 is called the unconditional variance, whereas 6[2 is the
conditional variance of y,.

To understand the unconditional variance, it is useful to consider the
variance forecasting equation. Specifically, we can calculate E;[07,,], which
is the estimate made at date 7 of the variance of y;, ,; we estimate the variance
without having observed y;,1, ..., 7;,,_1. Note that by definition
E;[y},] = 6%, so the above equation implies

Ei[o},] =x8+ (1 —x)((1 = DE;i[y7,] + 46i11%) = k8 + (1 — K)oir1”.
Likewise,
Ei[o?.5] = k9 + (1 —x)Ei[o7.,] = k(1 + (1 —k)) + (1 — k)62
This generalizes to

Eo2,] = K19(1 Sl —K) 4 (1= K)"—Q) F (1= )" "o

. . . . 2
Thus, there is decay at rate « in the importance of the current volatility o;,
for forecasting the future volatility. Furthermore, as #» —o00, the geometric
. _) .
series] + (1 —x) + - -+ + (1 — k)"~ ~ converges to 1/k, so, as n—00 we obtain

E; [0'12+n] — 9.

This means that our best estimate of the conditional variance, at some date far
in the future, is approximately the unconditional variance 9.

The most interesting feature of the volatility equation is that large returns in
absolute value lead to an increase in the variance and hence are likely to be
followed by more large returns. This is the “volatility clustering”, which is
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observable in actual markets. This feature also implies that the distribution of
the returns will be “fat-tailed”. This means that the probability of the extreme
returns is higher than under a normal distribution with the same standard
deviation. It is agreed that daily and weekly returns in most markets have this
‘fat-tailed” property.

The constants are determined by finding the maximum probability distri-
bution of the observed changes in the daily closing prices.

44.5 EWMA

The exponentially weighted moving average model (EWMA) is a special case
of the GARCH(1,1) model where y = 0. Thus

2 2 2 2 2
0, = 0Xy—1” + Pop-1” = ax,1” + (1 — a)o,1~.

The EWMA model differs from ARCH and GARCH models since it does 7oz
mean-revert. The preference between these different models is dependent
upon many factors. For example, the asset class, the forecasting time frame,
and the efficiency with which the weighting parameters may be calibrated to
the time series. Whilst the maximum likelihood estimator method may be the
most obvious method to select for calibration with empirical data, more
efficient algorithms have also been put forward.

Since these volatility forecasting models were introduced, there have been
many alternatives/modifications proposed to these models to better their use in
volatility forecasting.

4.5 Parity Relations

To study parity relations we introduce the following notation:

«t S K T,ro) the price on a European call option.
pt S, K T, r,o0) the price on a European put option.
S the value of the underlying stock.
B=1 the value of one cash unit.

Ck(S) = (S—K)* the call option value.

Pi(S) = (K-S5)* the put option value.

Let 7 be the time to maturity and consider different 7-contracts X:
DS) =X If
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<I>:a-S+ﬂ-B+Zy,-CK,.

i=1

the price is given by:

0] = a-TL[S] 4 - TL{B] + 7, -TL[C) =

n

=a- Sf +ﬂ ' e—r(T—t) + 27’ ’ C(tv SlaKivTa r, G)'

i=1

For each @ we can construct a replicating portfolio with constant shares over
time. The result is only interesting if there exist a class of such contract
functions ®, given by linear combinations of the base functions. This is the
case in reality.

The put call parity is obtained from the fact that

max{K — Sy, 0} = K — Sy + max{Sy — K, 0}.

If we denote by C(z, S(#)) the price at time # for a European call option with
strike price K and exercise time 7 written on the stock, and by P(z, S(2)) the
corresponding put option. Then

P(t,5(t)) = e " T EC[max{K — Sy, 0}|F/]
e "TDEC[K — St + max{Sr — K, 0}|F/]

= e "T-0K — ¢"E9 |:S_7]:|ft:| + e " T-DE2max{Sr — K,0}|F,]
e’

S
— ,—r(T— rtt
= el ’)K—e‘;-l-C(t,S(t))

where we used the martingale property that the discounted stock price is
martingale. This gives the put call parity

P(1,8(1)) = Ke "I 4 C(1,58(1)) = S..
For American options, the put call parity is given by
S—K<Cy—Py<S—Ke.

We leave the proof to the reader.
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4.6 A Practical Guide to Pricing

In the previous chapters we have described a number of techniques to price
derivatives. In this section we will study in detail two similar problems and see
how to price these contracts. With these examples in mind the reader should
get the needed understanding to be able to solve various problems by her own.

We will value two simple and similar contracts where the pay-out function
at maturity 7 is given by

@(X) = S*(T)
and

_ [SHT) if S(T)>K
®X) = { 0 else

where K is a given strike price and § the price of an underlying stock.

4.6.1 Method 1, Without Using the Solution to S

We start with the first problem and define a new variable Z, as

Z, =S*=81).
If we use It6 on Z, we find
0z, . 10°Z . ., 1 2
dZ, = —dS + - —= (dS)" = 25,dS + = - 2(dS)".
1=3g S+2852(S) S,S+2 (dS)

We know that the stock prices in Black—Scholes world follow a stochastic
process given as a geometrical Brownian motion (GBM)

dS = rSdt + 6SdW
S(0)=s

driven by the risk-free interest rate 7. If we substitute this expression into 4Z we

get
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1
dZ, = 28,(rS,dt + oS, dW,) + 3 2(6S;)?dt = (2r + 6%)S*dt + 2682dW,
where o is the volatility and W, a Wiener process. We have also used the

property of the Wiener process that (dW)> = dr. If we integrate and take

expectation value we find

E? [j dZu] = (2r +0*)E? H Zudu] + 20E°

0 0

t
JZuqu .
0

The last integral will vanish due to the property of increments of the Wiener
process. We then get

E9[Z) - E%Z)) = (2r+ 0o )JEQ[ZL,]du.

We also know that E9[Z,] is a constant given by S Ifwe let E9Z] = m, and
take the derivative with respect to # we find

dm(t)
{ o = (2r + 62)m<t) .

m(0) = $%(0)
This, simple ordinary differential equation can be solved. The solution is
m(t) = $2(0)e( ) = E[z,] = E2[$2(1)].
The price of the contract is then given as the discounted value

11(0,S) = e " TEC[S*(T)] = e/ 752 +)T = §2¢(r+)T.

4.6.2 Method 2, by Using the Solution to S

If we use the solution to the Brownian motion of the stock price
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1
S, =S - exp{ (r — 5(;2>t+ GW,}

§? =82 exp{(2r — 0'2)t + 20'W,}.

we have

By taking the expectation value we get

E© [Stz] Y [S%] . E© |:e(2r—o'2>t:| . E© [ezgw,] _ S%e(zr—z#)t . E2 [ezaw,]_

Now we can calculate the expectation value by integration. We know that the
Wiener process is normal distributed V[0, 1], so that °V is normal distrib-
uted N[0, 7] giving

T 1 2 6202[ T 2 2
EQ[o2W] — J 626\/& e 220y — J ef(zfzmﬁ) 124y — 20t
"] T T
ILe.,
E2 [Srz] _ S%e(z'h - )t 2621 Sz (2r+0)1
giving

1(0,8) = ¢ TE? [SZ(T)] = ef"TS(z)e(z’”’"z)T - Sée(rﬂrz)T'

The Expectation of Wvia an ODE

Another method to calculate
2d [ eZoW,]

is, by the use of Itd. We then introduce a new variable Z, given by Z, = ¢°“.

We then get
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oz
dZ; - Tujdwt
t

Ll 0°Z,

1
> 3w 2 (dW,)* = 26Z,dW, + 5 46°Z,dt = 26°Z,dt + 26Z,dW,.
t

Integration gives

t t t
szu = 2o2jzudu + 25J Z,dW,,.
0 0 0

Taking expectation value, the last integral vanish and

E2|Z] — E2[Zo) = ZUZJEQ Z,)du.
0

If we let EYZ) = m, and take the derivative with respect to £, we find

{d”;f) —25%m(r)
m(0) =1

This, simple ordinary differential equation can be solving, giving
m(t) =e
and we get the same result as above.
EQ [S,Z] _ S(Q)e(zz~—n2)zezazr _ S%e(21'+62)t
ie.,

11(0,S) = e "TEC[S*(T)] = e Ts2e(>+)T = §20(r+)T.
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4.6.3 Introducing the Strike
If we introduce the strike, we have to integrate the probability distribution.

Since we have done the same several times we start with the solution to the
Brownian motion

1
S, = Sgexp{ <r — 562>l+ GW,} =8y-¢e.

First, we define the following variables

- 1,
r:r—io, oW; =ovV1tz.

Then we have
S;=3S8p - exp{?t + 0'\/52} =Sy-¢e
and
Sp? = So? - exp{Z?T n 2aﬁz} =S - e
By the above definitions we have

y=rT+oVTz = z=

The strike gives the integration boundary

K
Sr>K = S >K = yo—ln{S—}
0
Yo —1T _ In{K/So} —7T

T o VT 6T

20

The probability distribution of S is a N[(r — 6°/2), 6”#-distribution, where
the probability density function ¢(S) is given by
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<1n{S/so}—’fT>2} 1 {_(y—mz}

S)= expy — = ex —_—
8() oS\ 2xT P 20T oS\ 2nT P 20°T

1 { 22}
=————expy —=— (-
oSVAT P\ T2r

We can now start to integrate to get the price of the call option

n =e'7 J D(S) - g(S)dS = {dS = g—idy = de}

_ e"TJS LD (y) - g(y)dy {dy _ %dz - aﬁdz}

Yo

- e"‘TJ(I)(Z)(p(z)dz = nge_"TJeﬁT”ﬁzgo(z)dz
20 0

_ SoZe'T J€27T+2a\/—zz2/2dz
V2

2
er‘ﬁz z /Zdz

B SOZe(rfaz)T

V2r

— S026<I'+02)TN |:_ 0 + 26\/?i|

,(272{7\/T)2/2dz

_ SOZe(rJro-z)TN[d]

where

_ In{So/K} + (r —6*/2)T  In{So/K} + (r +362/2)T
d= i +26VT = T .
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4.6.4 The General Problem, a Summary

As we have seen we can use two methods to calculate the price of a derivative.
We can use the probabilistic method with the following schema:

1.

Use It6 formula on the contract function to find the dynamics.

2. Integrate this expression and take the expectation value. The stochastic part

B~

N

will then vanish.

. Introduce a new variable for the expectation value (72 above).
. Take derivative of this variable with respect to time. This gives an ordinary

differential equation.

. Solve the ODE above.

. Discount the ODE solution with the risk free interest rate 7, to a present

value.

. Done!

The second method is to use the analytical approach and integrate. Then we

are using the following schema

. Express the contract function in term of the solution to the GBM for the

stock price.

. Introduce the simplified variables and find the integration limits depending

on the conditions (strike).

. Write down the integrals and change the integrating variables as above.
. Rewrite the integral as:

T 2
I:‘WT;:")JG:XP _% dz

20

. The integral is now equal to:

I=£r,T,0...)- Nl—z+m]

. Discount the integral solution with the risk free interest rate 7, to a present

value.

. Done!

The relation between the two methods is given by the Feynman—Ka¢

representation
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F(t,x) = e "TEL [p(X(T))].

4.6.5 A General Approach for Pricing European Call
Options

The payoft of a European call options is given by

CT = max(ST - K, 0) = (ST - K)I{ST>K}

where Sz is the stock price at maturity, K the strike price and Iyg5,~k} a
indicator function equal to 1 if S7> K'and 0 else. We then have the arbitrage
free price as

C, = e " TV ECmax(Sr — K, 0)]
_ efza 9EC[(Sr — K, O {5,k
T (EQ[Spl s, -ky | F1] —

—r(T—=1) (E [STI{ST>K}|}—f]

Q[I{ST>K}D

K -FE
K-Q(Sr >K))

where Q(S§7> K) is the probability that the option is in-the-money at maturity.
If we change the measure (numeraire) we can rewrite the first term as

o~ (T g0 [STI{ST>K}|~7:t] = S,E2 [I{ST>K}|.7-",] = S,é(ST > K).
Therefore

C,=S,-00r>K)— e’ TIK-0(Sr > K).

Remark Both of the probabilities in this formula are that the option expire
in-the-money. The difference is that we are calculating the probabilities under
different probability measures.

Since we know the expression for the stock price:
1 ~
Sr =S, exp{ (r — 502> (T—t)+oc(Wr — Wt)} =S, exp{rr + oﬁz}.

The normal processes are given by:
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Q: Nirg, 1]

Q: N[z, 6%

since we have to use

_ In{K/S,} — e
S K = S a > K = =
> : exp{Ft + o\/1z} Z0 o

to calculate the expectation on S, above. Here 2 is the value of z where we hit
the strike K] so

Q(ST > K) = N[—Z()]

and

Q(ST > K) ZN[—Z() + O'\/E]
Finally, we get the Black—Scholes formula
C, =S, -Nld] — e "T-IK - N|dy),

where

2 —
dl_ln{S/K}+(r-;G/2)(T D d—di -6 VT L
o- —1

4.7 Currency Options and the
Garman-Kohlhagen Model

In 1983 Garman and Kohlhagen extended the Black—Scholes model to cope
with the presence of two interest rates, one for each currency. These also called
foreign exchange option or FX options.

Suppose that 7, is the risk-free interest rate to expiry of the domestic
currency and ryis the foreign currency risk-free interest rate where the domestic
currency is the currency in which we obtain the value of the option. The
formula also requires that FX rates—both strike and current spot—be quoted
in terms of “units of domestic currency per unit of foreign currency”.

We consider the model geometric Brownian motion:
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dS[ = (rd - rf)S[ + GS[dWl

for the underlying exchange rate quoted in FOR-DOM (foreign-domestic),
which means that one unit of the foreign currency costs FOR-DOM units of
the domestic currency. In the case of EUR-USD with a spot of 1.2000, this
means that the price of one EUR is 1.2000 USD. The notion of foreign and
domestic does not refer to the location of the trading entity, but only to this
quotation convention. We denote the (continuous) foreign interest rate by 7,
and the (continuous) domestic interest rate by 7, . In an equity scenario, 7,
would represent a continuous dividend rate. The volatility is denoted by ¢, and
W, is a standard Brownian motion.
Applying Itd’s rule to In S, yields the following solution for the process S,

1
S =S, exp{ (rd — Iy —§”2>I+G-W,}.

which shows that S, is log-normally distributed, more precisely, In S, is normal
with mean In Sy + (r; — rf—l/zaz)t and variance 6°%.
The payoft for a vanilla option (European put or call) is given by

® = [e(Sr — K)]".

where the contractual parameters are the strike K the expiration time 7 and
the type €, a binary variable which takes the value +1 in the case of a call and
—1 in the case of a put.

In the Black—Scholes model the value of the payoff Fat time t it the spot x is
denoted by W(# x) and can be computed either as the solution to the Black
Scholes partial differential equation

oV oV 1,,0°V
E+(rd—rf)xa—|—§ax W—rdV:O
V(T,x) =F.

Or equivalently by the Feynman—Ka¢ theorem as the discounted expected
value of the payoff function

V(x, K. t,T,0,rq,1y¢, e) = e_"”'<T_’>E[F|.7-",}.

Then the domestic currency value of a call option into the foreign currency is
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Vo=e-e"Ti{f N(e-d)) —K-N(e-dy)},

where

n{So/KY + (rg —rs) - Ty + 62T, /2
g, = MSo/K} (rda';f;_ RO T2 o T,

and

f the forward price of the underlying = E[S7| S; = x] = x'exp{(rg—rA T4}

spot FX rate denoted in domestic units per unit of foreign currency, i.e., the
price of the underlying.

K strike using the same quotation as the spot rate

Te time from today until expiry of the option

Ty time from spot until delivery of the option

ry domestic interest rate corresponding with period Ty

re foreign interest rate corresponding with period T4

a volatility corresponding with strike K and period T,

€ 1 for a call,—1 for a put

N(.) cumulative normal distribution.

Hence V} is the value of the option expressed in domestic currency on a
notional of one unit of foreign currency.

The forward price f'is the strike, which makes the time zero value of the
forward contract

F=8—f
equal to zero. The situation 7> r¢is called contango, and the situation 7,< r¢is

called backwardation.
The Black—Scholes delta also called spot delta of the option is equal to

ov 4
= — =g —rrTa .
ABS Ox E-€ N(&‘ dl)
The dual delta is defined by
Al — g . o7 TaN (g - dy).

In all currency markets, except the EuroDollar market, the premium in the
foreign currency is included in the delta. This “premium-included” delta has
to be calculated as follows
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Delta as function of strike

14 ,
1.2
1 i
57 L1 . (T, 5. "W W / 1
z 08 i ——Delta Call (BS)
= !
0.6 | =—Delta Put (BS) |
Delta Call (P) ‘
04 | ——Delta Put (P) |
0.2
B : -
0.75 0.95 1.15 1.35 1.55 1.75

Strike price

Fig. 4.5 Black-Scholes and premium-included delta as function of strike

Vv K
Ay, =Aps——=¢-—e "TN(e-dy)
X x

The logic of this premium-included delta can be illustrated with an exam-
ple. Consider a bank that sells a call on the foreign currency. This option can
be delta hedged with an amount of delta of the foreign currency. However, the
bank will only have to buy an amount equal to the premium-included delta
when it receives the premium in foreign currency.

It can be observed from the above formula that the premium-included delta
for a call is not strictly decreasing in strike like the Black—Scholes call delta.
Therefore, a premium-included call delta can correspond to two possible strike
prices (see the Fig. 4.5).

For emerging markets (EM) and for maturities of more than 2 years, it is
usual for forward deltas to be quoted. These are defined as follows

Afgg = etTiApy  and
AFP — erf~T,1AP
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The ATM strike refers to the strike of a zero delta straddle, that is, the strike for
which the call delta is equal to the put delta. This strike can be calculated
analytically.

4.7.1 Symmetry Relations

For EX options, the put call parity is given by

V(x7 K,t,T,0,rq,r1y, —|—1) — V(x,K, t,T,o,rq,ry, —1)

—x- efrf(Tfl) _ Kefrd(Tfl).

We also have a put call delta parity given by

oV (x,K,t,T,0,rq,rs,+1) OV (x,K,1,T,0,r4,17,—1)
0x B ox

— o r(T=1)

In particular, we learn that the absolute value of a put delta and a call delta do
not exactly add up to one, but only to a positive number e~7T=")_ They add
up to one approximately if either the time to expiration 7—¢ is short or if the
foreign interest rate 7¢is close to zero.

Whereas the choice K= fproduces identical values for call and put, we seek
the delta-symmerric strike K which produces absolutely identical deltas (spot,
forward or driftless). This condition implies #; = 0 and thus

K*:f.eéT

in which case the absolute delta is ¢’7'™) /2, In particular, we learn, that
always K> f, i.e., there can’t be a put and a call with identical values and
deltas. Note that the strike X is usually chosen as the middle strike when
trading a straddle or a butterfly. Similarly, the dual-delta-symmetric strike

# o2
K :f . eTT
can be derived from the condition 4, = 0.

If we wish to measure the value of the underlying in a different unit we can
use an obviously effect the option pricing formula:

aV(x,K, t,T,o, rd,rﬂe) = V(ax7 ak 1, T, o, rd,rf,g); a>0

Differentiating both sides with respect to  and then setting @ = 1 yields
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oV
Ox

v

V= .
o oK

+K

This space-homogeneity is the reason behind the simplicity of the delta formu-
las, whose tedious computation can be saved this way.

We can perform a similar computation for the time-affected parameters and
obtain the obvious equation

t T
V(x,K,t, T, o, rd,rf,e) = V(x, K,—,— ao, ard,ar*f,e’); a>0.
aa '

Differentiating both sides with respect to # and then setting @ = 1 yields

ov. 1 oV ov ov
OZ(T—t)E+§0%+I'da—m+l’fa—’}(

By the put 