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Preface

This book is based upon lecture notes, used and developed for the course
Analytical Finance I at Mälardalen University in Sweden. The aim is to cover
the most essential elements of valuing derivatives on equity markets. This
will also include the maths needed to understand the theory behind the
pricing of the market instruments, that is, probability theory and stochastic
processes. We will include pricing with time-discrete models and models in
continuous time.
First, in Chap. 1 and 2 we give a short introduction to trading, risk and

arbitrage-free pricing, which is the platform for the rest of the book. Then a
number of different binomial models are discussed. Binomial models are impor-
tant, not only to understand arbitrage and martingales, but also they are widely
used to calculate the price and the Greeks for many types of derivative. Binomial
models are used in trading software to handle and value several kinds of
derivative, especially Bermudan and American type options. We also discuss
how to increase accuracy when using binomial models. We continue with an
introduction to numerical methods to solve partial differential equations (PDEs)
and Monte Carlo simulations.
In Chap. 3, an introduction to probability theory and stochastic integration

is given. Thereafter we are ready to study continuous finance and partial
differential equations, which is used to model many financial derivatives. We
focus on the Black–Scholes equation in particular. In the continuous time
model, there are no solutions to American options, since they can be exercised
during the entire lifetime of the contracts. Therefore we have no well-defined
boundary condition. Since most exchange-traded options with stocks as
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underlying are of American type, we still need to use descrete models, such as
the binomial model.
We will also discuss a number of generalizations relating to Black–Scholes,

such as stochastic volatility and time-dependent parameters. We also discuss a
number of analytical approximations for American options.
A short introduction to Poisson processes is also given. Then we study

diffusion processes in general, martingale representation and the Girsanov
theorem. Before finishing off with a general guide to pricing via Black–Scholes
we also give an introduction to exotic options such as weather derivatives and
volatility models.
As we will see, many kinds of financial instrument can be valued via a

discounted expected payoff of a contingent claim in the future. We will denote
this expectation E[X(T)] where X(T) is the so-called contingent claim at time
T. This future value must then be discounted with a risk-free interest rate, r, to
give the present value of the claim. If we use continuous compounding we can
write the present value of the contingent claim as

X tð Þ ¼ e�r T�tð ÞE X Tð Þ½ �:

In the equation above, T is the maturity time and t the present time.
Example: If you buy a call option on an underlying (stock) with maturity

T and strike price K, you will have the right, but not the obligation, to buy the
stock at time T, to the price K. If S(t) represents the stock price at time t, the
contingent claim can be expressed as X(T) ¼ max{S(T) – K, 0}. This means
that the present value is given by

X tð Þ ¼ e�r T�tð ÞE X Tð Þ½ � ¼ e�r T�tð ÞE max S Tð Þ � K, 0f g½ �:

The max function indicates a price of zero if K � S(T). With this condition
you can buy the underlying stock at a lower (same) price on the market, so the
option is worthless.
By solving this expectation value we will see that this can be given

(in continuous time) as the Black–Scholes–Merton formula. But generally
we have a solution as

X tð Þ ¼ S 0ð Þ:Q1 S Tð Þ > Kð Þ � e�r T�tð ÞK:Q2 S Tð Þ > Kð Þ;

where Q1(S(T) > K) and Q2(S(T) > K) make up the risk neutral probability
for the underlying price to reach the strike price K in different “reference
systems”. This can be simplified to the Black–Scholes–Merton formula as
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X tð Þ ¼ S 0ð Þ:N d1ð Þ � e�r T�tð ÞK:N d2ð Þ:

Here d1 and d2 are given (derived) variables. N(x) is the standard normal
distribution with mean 0 and variance 1, so N(d2) represent the probability for
the stock to reach the strike price K. The variables d1 and d2 will depend on the
initial stock price, the strike price, interest rate, maturity time and volatility.
The volatility is a measure of how much the stock price may vary in a specific
period in time. Normally we use 252 days, since this is an approximation of
the number of trading days in a year.
Also remark that by buying a call option (i.e., going long in the option

contract), as in the example above, we do not take any risk. The reason is that
we cannot lose more money than what we invested. This is because we have the
right, but not the obligation, to fulfil the contract. The seller, on the other hand,
takes the risk, since he/she has to sell the underlying stock at price K. So if he/she
doesn’t own the underlying stock he/she might have to buy the stock at a very
high price and then sell it at a much lower price, the option strike price K.
Therefore, a seller of a call option, who have the obligation to sell the underlying
stock to the holder, takes a risky position if the stock price becomes higher than
the option strike price.
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Notations

B(t) The value of the money market account at time t
r The risk-free interest rate
R A short notation of 1 + r
Ω A sample space
ωi Outcome i from a sample space Ω
S(t) Price of a security (financial instrument, equity, stock) at time t
F(t) The forward price of a security (financial instrument, equity, stock) at

time t
q The risk neutral (risk-free) probability of an increase in price
p The objective (real) probability or the risk-free probability of an decreasing

price
Q The risk neutral probability measure
P The objective (real) probability measure
EQ[.] The expectation value with respect to Q
VarQ[.] The variance with respect to Q
ρ The risk premium
X(t) A stochastic value/process
It The information set at time t
u The binomial “up” factor with risk-neutral probability pu or q
d The binomial “down” factor with risk-neutral probability pd or p
Z A stochastic variable
V(t) A value (process)
μ,α The drift in a stochastic process
σ The volatility in a stochastic process
t Time
T Time to maturity
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K The option strike price
λ The market price of (volatility) risk (the sharp ratio)
C A (call) option value
Δ The change in the option value w.r.t. the underlying price, S
Γ The change in the option Δ w.r.t. the underlying price, S
ν The change in the option value w.r.t. the volatility, σ
Θ The change in the option value w.r.t. time, t
ρ The change in the option value w.r.t. the interest rate, r
d1,d2 Coefficients (variables) in the Black–Scholes model
VaR Value-at-Risk
F A set or subsets to the sample space Ω
μ A finite measure on a measurable space
W(t) A Wiener process
N[μ, σ] A Normal distribution with mean μ and variance σ
τ A stopping time (usually for American options)
Lt A likelihood function of time t

xviii Notations



List of Figures

Fig. 1.1 The flows in a typical trade between two parties who place their
orders to an exchange 2

Fig. 1.2 The flows in a typical derivative trade between two parties on an
exchange 4

Fig. 1.3 The flows in a typical trade between two parties on an exchange 5
Fig. 1.4 The flows in a typical trade between two parties on OTC

derivatives 7
Fig. 2.1 When tossing the coin one time we have two outcomes, �1 or

1, both with probability 1/2. When tossing the coin two times we
have three outcomes, �2 with probability 1/4, outcome 0 with
probability 1/2 25

Fig. 2.2 When tossing the coin four and eight times we have five and nine
different outcomes with the probability distributions as above 26

Fig. 2.3 When tossing the coin 16 and 32 times we have 17 and
33 different outcomes with the probability distributions as above 26

Fig. 2.4 In the continuous limit, a random walk with equal probabilities
converges to a Gaussian probability distribution 28

Fig. 2.5 In the on-step binomial model, the stock price may take two
different prices, uS or dS. A derivative on the stock, e.g., a call
option can therefore also take two different values, Φ(u) or Φ(d ) 33

Fig. 2.6 In a one-step binomial model for an American call option, the
stock price may take two different prices 38

Fig. 2.7 A one-step binomial model in a risk-neutral and a risk averse world.
The value 23.64 is calculated as (30� 0.8 + 10� 0.20)/
1.10¼ 23.64. A higher risk aversion leads to a lower price 39

Fig. 2.8 A one-step binomial model for an underlying stock and an option 39

xix



Fig. 2.9 The arbitrage-free price of the option let us calculate the
risk-neutral probabilities 40

Fig. 2.10 The arbitrage-free price of the option gives the risk-neutral
probabilities where p ¼ 0.6. As we see, we have a relationship
between the prices and probabilities 40

Fig. 2.11 A demonstration of Black–Scholes smoothing or mollification to
increase the accuracy in the binomial model 49

Fig. 2.12 This illustrates how the price of a call option as function of the
underlying price behaves before maturity, where the price
converges to the shape of a hockey stick 50

Fig. 2.13 The CCR convergence with oscillations 51
Fig. 2.14 The CCR convergence with Black–Scholes smoothing 52
Fig. 2.15 The CCR convergence with Black–Scholes smoothing with

Richardson extrapolation. Note the increasing accuracy in the
option price 52

Fig. 2.16 The convergence using the Leisen–Reimer model 53
Fig. 2.17 The convergence using the Leisen–Reimer model with Richardson

extrapolation. As we see, we need to use five decimal places on the
y-axis 53

Fig. 2.18 Convergences in the different binomial models for a European call
option 54

Fig. 2.19 A closer look at convergences in the different binomial models for a
European call option 55

Fig. 2.20 How to implement a binomial model for an American put option 56
Fig. 2.21 The number of paths reaching the nodes at maturity in a

binomial tree 58
Fig. 2.22 The binomial tree, given the parameters s0¼ 100, u¼ 1.4, d¼ 0.8

and r¼ 10% 61
Fig. 2.23 The binomial tree for an asset-or-nothing call, given the parameters

s0¼ 80, u¼ 1.5, d¼ 0.5, r¼ 0%, and q¼ 0.5 63
Fig. 2.24 The integration schema can be illustrated like this 71
Fig. 2.25 The integration schema can be illustrated like this 72
Fig. 2.26 The Hopscotch schema can be illustrated like this. Here, for each

time, we always start with the explicit nodes. Thereafter it is
possible to calculate the values in the implicit nodes. We continue
backwards until the valuation time today 73

Fig. 2.27 100 Monte Carlo simulations of the stock price starting at 100 74
Fig. 2.28 A histogram of 10,000 Monte Carlo simulations 75
Fig. 2.29 A histogram of 1386 Monte Carlo simulations 80
Fig. 2.30 The histogram in Fig. 2.1.1 fitted to a normal distribution. The

mean is 0.0181 % and the standard deviation 2.6263 % 82

xx List of Figures



Fig. 2.31 The histogram from Fig. 2.30 illustrating the expected shortfall and
the 5 % worst case outcomes 87

Fig. 3.1 A binomial tree with parameters u¼ 2, d¼ 1/u¼ 0.5, S0 ¼ 4 and
qu ¼ qd ¼ 1=2 92

Fig. 3.2 A Brownian motion (Wiener process) illustrated as function of
time on different time-scales 129

Fig. 3.3 The log-normal probability distribution with σ2 ¼ 0.4, μ ¼ 0.16
and (t � t0) ¼ 1 132

Fig. 4.1 An associated diffusion process used to solve a parabolic PDE 147
Fig. 4.2 The volatility smile and skew as function of the strike price 178
Fig. 4.3 A typical volatility surface. On the axis we have the index level and

the strike price 181
Fig. 4.4 The historical VIX volatility S&P 500 (Source: CBOE) 183
Fig. 4.5 Black–Scholes and premium-included delta as function of strike 200
Fig. 4.6 The 3-month volatility of the Ericsson stock for a period of

400 days 213
Fig. 4.7 The call option price as function of the underlying stock price 216
Fig. 4.8 The call option price as function of the underlying stock price for

time to maturity 0.50, 0.25 and 0.10 year 217
Fig. 4.9 The put option price as function of the underlying stock price for

time to maturity 0.50, 0.25 and 0.10 year 217
Fig. 4.10 Here we see how the time value goes to zero for a call and a put

option when time goes to maturity 220
Fig. 4.11 Here we see how the value of the underlying stock must change in

time to keep the value of the call option constant when time goes to
maturity 221

Fig. 4.12 Delta for a call option price as function of the underlying stock
price for time to maturity 6 months, 1 month and 1 day. The fat
line represents the option with maturity in one day. We observe
that delta converge to a Heaviside step function near maturity 222

Fig. 4.13 Delta for a put option price as function of the underlying stock
price for time to maturity 6 months, 1 month and 1 day. The fat
line represents the option with maturity in 1 day 223

Fig. 4.14 Gamma as function of the underlying stock price for time to
maturity 6, 3 and 1 months. The fat line represents the option with
maturity in 1 month. We observe that Gamma tends to
concentrate near maturity 224

Fig. 4.15 Theta for a call option as function of the underlying stock price for
time to maturity 6, 3 and 1 months. The fat line represents the
option with maturity in 1 month 225

Fig. 4.16 Theta for a put option as function of the underlying stock price for
time to maturity 6, 3 and 1 months. The fat line represents the
option with maturity in 1 month 226

List of Figures xxi



Fig. 4.17 Vega as function of the underlying stock price for time to maturity
6, 3 and 1 months. The fat line represents the option with maturity
in 1 month 227

Fig. 4.18 Rho for a call option as function of the underlying stock price for
time to maturity 6, 3 and 1 months. The fat line represents the
option with maturity in 1 month 227

Fig. 4.19 Rho for a put option as function of the underlying stock price for
time to maturity 6, 3 and 1 months. The fat line represents the
option with maturity in 1 month 228

Fig. 4.20 The American option price vs. the European. Here S ¼ 100,
K ¼ 110, T ¼ 2 years, r ¼ 0.02 % and σ ¼ 40 % 229

Fig. 4.21 The exercise and free area of an American option 230
Fig. 4.22 A simulation of a standard Poisson process 240
Fig. 5.1 Illustration of the delta-gamma hedge of 1000 stocks 287
Fig. 5.2 Illustration of how the delta-gamma hedge of 1000 stocks is made

up by the two options and the stock itself. The fat line represents
the total portfolio shown in Fig. 5.1 287

Fig. 5.3 Illustration of the delta-gamma hedge of 1000 stocks with switched
option strikes 288

Fig. 5.4 Illustration of how the delta-gamma hedge of 1000 stocks is made
up by the two options and the stock itself. The fat line represents
the total portfolio shown in Fig. 5.3 288

Fig. 6.1 The payout (profit) of digital cash-or-nothing options 293
Fig. 6.2 The payout (profit) of an asset-or-nothing call and an asset or

nothing put option. The bumpy curve represents the put option. 296
Fig. 6.3 The value profile of an up and out call option with strike price

90 and a barrier level 100. 309
Fig. 6.4 The value profile of a pain vanilla call option and three different

barrier call options 310
Fig. 6.5 The value profile of a pain vanilla put option and three different

barrier put options 311
Fig. 6.6 Histogram of daily Stockholm temperature fluctuations

1756–2015 349
Fig. 8.1 The profit of a long and a short call option when the strike price

¼ 50 371
Fig. 8.2 The profit of a long and a short put option when the strike price

¼ 50 372
Fig. 8.3 The profit of a long and a short forward when the strike price ¼ 50 372
Fig. 8.4 Synthetic contracts where we show a synthetic long call, a synthetic

short call and a long forward/future 373
Fig. 8.5 Synthetic contracts where we show a synthetic long put, a synthetic

short call put a short forward/future 374

xxii List of Figures



Fig. 8.6 The intrinsic value of a call option with strike 100 is represented by
the thick line, the “hockey-stick”, while the thin-lined curves
represent the real value of the same option 6 months to maturity.
The difference between the real and intrinsic value is the time
value. Where the “hockey-stick” have a non-zero slope we are ITM.
At 100 we are ATM and below 100 OTM. The negative value
represents the premium payed for the option 377

Fig. 8.7 Same as Fig. 8.6 but for a put option. Where the “hockey-stick”
have a non-zero slope we are ITM. At 100 we are ATM and above
100 OTM 378

Fig. 8.8 The time-value decreases to zero at time to maturity 378
Fig. 8.9 The effect of the volatility for a long straddle build by a long call

and a long put option with the same strike 379
Fig. 8.10 A negative price-spread with call options. The thin line represent

the option value when you buy the option (at time t ¼ 0) and the
fat line the profit at maturity 384

Fig. 8.11 The negative price-spread with call options at maturity 385
Fig. 8.12 A negative price-spread with put options 385
Fig. 8.13 A time-spread with put options. The thin line represent the value

of the strategy when entering the trade (at time t ¼ 0). The fat line
is the value when the first (shortest to maturity) option expire 388

Fig. 8.14 The diagonal spread with put options at the fist maturity 389
Fig. 8.15 A time-spread with call options. The thin line represent the value of

the strategy when entering the trade (at time t ¼ 0). The fat line is
the value when the first (shortest to maturity) option expire 390

Fig. 8.16 The diagonal spread with call options at the fist maturity 391
Fig. 8.17 A put ratio spread with put options. The thin line represents the

value when the strategy is bought and the thick line the profit at
maturity 392

Fig. 8.18 The put ratio-spread with put options at maturity 392
Fig. 8.19 A negative back-spread with put options. The thin line represents

the value when the strategy is bought and the thick line the profit at
maturity 394

Fig. 8.20 The negative back-spread with put options at maturity 395
Fig. 8.21 A negative three-leg strategy with two call options and one put 396
Fig. 8.22 The negative three-leg strategy at maturity 397
Fig. 8.23 A protective put where we also owns the underlying 401
Fig. 8.24 The protective put at maturity, where we owns the underlying 402
Fig. 8.25 A positive price-spread with call options 404
Fig. 8.26 The positive price-spread with call options at maturity 405
Fig. 8.27 A positive price-spread with call options 406
Fig. 8.28 The positive price-spread with call options at maturity 407

List of Figures xxiii



Fig. 8.29 A positive time-spread with call options 408
Fig. 8.30 The positive time-spread with call options on the first option

maturity 409
Fig. 8.31 A positive time-spread with put options 409
Fig. 8.32 The positive time-spread with put options on the first option

maturity 410
Fig. 8.33 A ratio-spread with call options 412
Fig. 8.34 The ratio-spread with call options at maturity 412
Fig. 8.35 A positive back-spread with call options 414
Fig. 8.36 The positive back-spread with call options at maturity 414
Fig. 8.37 A synthetic long forward/future or stock made by a long call and a

short put option 416
Fig. 8.38 The synthetic long forward/future or stock made by a long call and

a short put option at maturity 417
Fig. 8.39 A synthetic long sloped forward/future or stock made by a long call

and a short put option 418
Fig. 8.40 The synthetic long sloped forward/future or stock made by a long

call and a short put option at maturity 419
Fig. 8.41 A strategy called a positive stair made by two call options and two

put option 421
Fig. 8.42 This is how we can make a positive stair using two call options and

two put options 421
Fig. 8.43 A ratio spread made by two call options. We buy one at 14 and sell

two at 18 423
Fig. 8.44 The ratio spread at maturity, made by two call options. We buy

one at 14 and sell two at 18 424
Fig. 8.45 A three-leg strategy made by one put and two call options 426
Fig. 8.46 The three-leg strategy at maturity made by one put and two call

options 426
Fig. 8.47 A three-leg strategy made by one call and two put options 428
Fig. 8.48 The three-leg strategy at maturity made by one call and two put

options 428
Fig. 8.49 A three-leg strategy made by one call, two puts and underlying 430
Fig. 8.50 The three-leg strategy from Fig. 8.49 broken down to illustrate the

time to maturity. As we can see, it’s made one sold call, two puts
and the underlying 431

Fig. 8.51 A short straddle made by selling a call and a put at ATM 434
Fig. 8.52 The short straddle made by a call and a put at maturity 434
Fig. 8.53 The short straddle made by selling two calls and holding the

underlying at maturity 435
Fig. 8.54 A short strangle made by selling a call and a put 437
Fig. 8.55 The short strangle made by a call and a put at maturity 437

xxiv List of Figures



Fig. 8.56 A long butterfly by call options 439
Fig. 8.57 A long butterfly by call options at maturity 439
Fig. 8.58 A calendar spread by call options 441
Fig. 8.59 The calendar spread by call options at maturity 441
Fig. 8.60 A long straddle made by buying a call and a put at ATM 445
Fig. 8.61 The long straddle at maturity 445
Fig. 8.62 The long straddle constructed by the underlying and two bought

put options at maturity 446
Fig. 8.63 A long strangle made by buying a call option at 17 and a put option

at 12 where the ATM price is 15 448
Fig. 8.64 A long strangle at maturity, made by buying a call option at 17 and

a put option at 12 where the ATM price is 15 449
Fig. 8.65 A short butterfly by call options 450
Fig. 8.66 A long butterfly by call options at maturity 450
Fig. 8.67 The VIX index and its relationship to the S&P 500 (Source:

CBOE) 453
Fig. 8.68 The VVIX index from beginning of 2007 and the end of 2015

(Source: CBOE) 455
Fig. 8.69 The volatility heat map on January 22, 2016 (Source: CBOE) 456
Fig. 8.70 The volatility smile changed shape to a skew in October 1987 457
Fig. 8.71 The log return of S&P 500 shows a fat tail that can’t be modelled

with a normal distribution 458
Fig. 8.72 The CBOE SKEW index for a period of 20 years 458

List of Figures xxv



List of Tables

Table 1.1 Service providers on some exchanges 3
Table 2.1 The stock and the option have difference return and risk 41
Table 4.1 Option market data showing bid and ask prices and their implied

volatilities for different strike 179
Table 4.2 Quotes of exchange rates 204
Table 4.3 Example of volatility quotation 206

xxvii



1
Trading Financial Instruments

Financial instruments can be traded on an exchange or over the counter
(OTC). Exchange trades securities are standardized instruments. A clearing-
house in connection to a marketplace clears most securities. In such a way the
clearinghouse is counterparty to both the seller and the buyer.

1.1 Clearing and Settlement

Clearing is the process of settling a trade including the deposit of any necessary
collateral with the clearing organization and exchange of any necessary cash
and paperwork. The term clearing usually implies that the clearing organiza-
tion becomes a party in contracts, rather than merely putting other parties in
contact with each other. For example, A wishes to sell to B. In practice, A sells
to C, the clearinghouse, and B buys from C.
Settlement is used to refer to the completion of any required payment

between two parties to fulfil an obligation. Settlement also refers to the process
by which a trade is entered onto the books and records of all the parties to the
transaction including brokers or dealers, a clearinghouse, and any other
financial institution with a stake in the trade.
How settlement and clearing take place depends on what kinds of instru-

ment are traded and the type of trade process, for example at an exchange or
over the counter.

1© The Author(s) 2017
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1.1.1 Exchange Traded Securities

In Fig. 1.1 we illustrate a typical trade with exchange-traded instruments.
As seen in Fig. 1.1 the two parties are anonymous to each other. The trade-

flow follow includes the following steps:

1. The buyers place their orders in the market.
2. The sellers place their orders in the market. Orders are offers to either buy

or sell a particular security at a specified price.
3. Buy orders are matched with suitable sell orders. This may be done

electronically or by traders making agreements verbally in a trading pit
4. When a trade has been agreed, confirmations are sent to each party,

confirming the details of the trade
5. At the same time as sending confirmation to each party, the exchange

notifies the depository of the transaction
6. Delivery vs. payment. The depository sends instructions for money to be

transferred from one account to another. This may be in the form of
SWIFT transfers between accounts held at banks or the depository may
have its own money holding accounts. As this transaction is confirmed,
ownership of the securities is transferred.

Fig. 1.1 The flows in a typical trade between two parties who place their orders to
an exchange

2 Analytical Finance: Volume I



7. Payments are made simultaneously with
8. Delivery of the securities. The credit risk has then been minimized.

In Table 1.1 we show the different service providers at the Sweden Stock
and Derivative Exchange, at London Stock Exchange and at EUREX.
A depository is an organization that acts as a custodian of securities on behalf

of account holders. When Party 1 buys a security from Party 2, instead of
physically transferring the securities, the depository simply moves ownership
from one account to another. This is similar to the way a bank transfers money
from one account to another without physically moving any cash.

1.1.2 Exchange-Traded Derivatives

In Fig. 1.2 we illustrate a typical trade with exchange-traded derivatives.
As seen in Fig. 1.2 the trade-flow follow of exchange-traded derivatives

includes the following steps:

1. The buyers place their order in the market.
2. The sellers place their order in the market. Orders are offers to either buy or

sell a particular derivative at a specified price.
3. Buy orders are matched with suitable sell orders. This may be done

electronically or by traders making agreements verbally in a trading pit.
4. When a trade has been agreed, the exchange will confirm a separate

agreement with each party.

With exchange-traded derivatives, credit risks occur for each party; for the
buyer or seller of the derivative there is a risk that the exchange could default
on its obligations. As the exchange does not take a trading position but merely
acts as an intermediary this risk is very small.

Table 1.1 Service providers on some exchanges

Exchange services Depository services Connected bank accounts

NasdaqOMX
(Sweden)

VPC
(Värdepappercetralen)

VPC RIX account and other
accounts connected to the
Central Banks RIX clearing
system

London Stock
Exchange

CREST CREST and other accounts

EUREX EUREX EUREX
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For the exchange there is a risk that each party to a trade could default on its
obligations. To minimize this risk, margining agreements are used. An initial
margin agreement requires that the counterparty deposit collateral in the form
of cash or securities with the exchange (or sometimes a third party). The size of
the margin is usually related to the total size of the counterparty’s obligations
(or potential obligations) to the exchange. A variation margin agreement
requires cash payments to be made, typically at the end of each day so that
outstanding long and short positions are marked to the market. This means
that, as the market price of a derivative varies, payments are made to reflect
that day’s gain or loss and prevent any debt or credit building up over time.
The management of margin payments and all other administration is

handled by the exchange or a clearinghouse used by the exchange. Other
administrative tasks include:

• Exercise/assignment
When for example an option buyer exercises their option, this action must
be assigned to the seller of a matching option. The selection of counterparty
is made (at random) by the exchange.

• Expiry
When derivatives expire, margining agreements and procedures must be
terminated.

• New contracts
The exchange is responsible for defining new contracts.

Fig. 1.2 The flows in a typical derivative trade between two parties on an
exchange
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1.1.3 OTC-Traded Securities

In Fig. 1.3 we illustrate a typical trade on OTC-traded securities.
As seen in Fig. 1.3 the trade-flow follow of OTC-traded securities include

the following steps:

1. Buyers and sellers negotiate a trade over the telephone. Conversations are
tape recorded to resolve any possible disputes as to what was agreed.

2. When a trade has been agreed, both parties send a confirmation to the
depository of

– The instrument traded, usually defined by a standard code such as ISIN
code or VKN number or similar

– The quantity
– The agreed price

Dates are usually determined by the choice of instrument according to
convention.

3. The depository checks that confirmations from both parties carry the same
information and then arrange for delivery versus payment.

4. The payment is made.
5. Ownership of the securities is transferred at the same time as payment

is made.

Fig. 1.3 The flows in a typical trade between two parties on an exchange
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There are several trading codes. The most common is the International
Securities Identification Number (ISIN) which uniquely identifies a security.
Securities for which ISINs are issued include bonds, commercial paper, debt
securities, futures, shares, options, warrants and other derivatives. The ISIN
code is a 12-character alpha-numerical code that consists of three parts, a
two-letter country code, a nine-character alpha-numeric national security
identifier, and a single check digit. International securities cleared through
Clearstream or Euroclear, which are worldwide, use XS as the country code.
In the United Kingdom and Ireland, SEDOL, which stands for Stock

Exchange Daily Official List, are used for clearing purposes. The numbers
are assigned by the London Stock Exchange on request by the security issuer.
SEDOLs are also part of the security’s ISIN. The SEDOL Masterfile (SMF)
provides reference data on millions of global multi-asset securities each
uniquely identified at the market level.
A CUSIP is a nine-character alphanumeric code that identifies a North

American financial security for the purposes of clearing and settlement. The
CUSIP system is owned by the American Bankers Association, and is operated
by S&P Capital IQ.
The Wertpapierkennnummer (WKN, WPKN, WPK or simply Wert), is a

German securities identification code. It comprises six digits or capital letters
(excluding I and O) and no check digit. WKNs may become obsolete in the
future, since they may be replaced by ISINs.

1.1.4 OTC-Traded Derivatives

In Fig. 1.4 we illustrate a typical trade on OTC-traded derivatives.
As seen in Fig. 1.4 the trade-flow follow of OTC-traded derivatives include

the following steps:

1. Buyers and sellers negotiate a trade over the telephone. Conversations are
tape recorded to resolve any possible disputes as to what was agreed.

2. When a trade has been agreed, the parties must confirm their agreement in
writing. This process will begin typically with a signed contract based on a
standard contract, for example one set up by the International Swaps and
Derivatives Association (ISDA) (see http://www.isda.org/).

3. All payments and administration (including daily mark to market payments
in some cases) must be managed by each party. This may involve a
considerable amount of work and may continue for 10–25 years in some
cases.
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Payments are usually made in the form of SWIFT transfers. SWIFT stands for
the Society for Worldwide Interbank Financial Telecommunications. It is a
messaging network that financial institutions use to securely transmit infor-
mation and instructions through a standardized system of codes.
With OTC derivatives there is a bilateral credit risk. If one party should

default, there is little to protect the other party. Various methods exist to
reduce the amount of credit exposure, such as netting agreements.
The principle of netting agreements is that when a party fails to honor its

obligations due to bankruptcy, then any losses you incur as a result can be
offset by any obligations you have toward that party, within the terms of the
agreement. This means that two parties can do many trades with each other,
but the total credit liability is related to the net position of one party to the
other instead of the total credit amount of the defaulting party. Standard
agreements to facilitate this are prepared by ISDA, for example.

1.2 About Risk

We will not discuss financial risk in general in this book, but, since we will
calculate different risk measures used on the market we will briefly describe the
most common risks in the perspective of a bank or another financial institu-
tion. Risk can be divided into several main classes:
Market Risk refers to the risk that changes in interest rates, exchange rates

and equity prices will lead to a decline in the value of a bank’s net assets,
including derivatives.
Liquidity Risk refers to the risk that a bank cannot fulfil its payment

commitments on any given date without significantly raising the cost. Most
institutions face two types of liquidity risk. The first relates to the depth of

Fig. 1.4 The flows in a typical trade between two parties on OTC derivatives
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markets for specific products and the second to funding the financial trading
activities. When dealing with OTC market, risks may also rise from the early
termination of contracts.
Currency Risk refers to the risk that the value of the assets, liabilities and

derivatives may fluctuate due to changes in exchange rates.
Interest Rate Risk refers to the risk that the value of the assets, liabilities and

interest-related derivatives may be negatively affected by changes in interest
levels.
Equity Price Risk refers to the risk that the value the holdings of equities and

equity-related derivatives may be affected negatively as a consequence of
changes in prices for equities.
Credit Risk is defined as the risk that the counterparty fails to meet the

contractual obligations and the risk that collateral will not cover the claim.
Credit risk also arises when dealing in financial instruments, but this is often
called counterparty risk. The risk arises as an effect of the possible failure by the
counterparty in a financial transaction to meet its obligations. This risk is often
expressed as the current market value of the contract adjusted with an add-on
for future potential movements in the underlying risk factors. Therefore,
counterparty risk usually refers to trading activities. Connected to counter-
party risk is also sovereign risk, which is the risk that a government action will
interfere with repayment of a loan or security. This is measured by the past
performance of the nation and present default rate and political, social and
economic conditions. Credit risk also includes concentration risk, which refers,
for example, to large exposures or concentrations in the credit portfolio to
certain regions or industries.
Correlation Risk refers to the probability of loss from a disparity between the

estimated and actual correlation between assets, currencies, derivatives, instru-
ments or markets.
Model Risk refers to the possibility of loss due to errors in mathematical

models, often models of derivatives. Since these models contain parameters
such as volatility, we can also speak of parameter risk, volatility risk and so forth.
Operational Risk refers to the risk of losses resulting from inadequate or

failed internal processes or routines, human error, incorrect systems or external
events.
Legal or Compliance risk refers to the risk of legal consequences, major

economic damage or the loss of reputation that a bank could suffer due to
failure to comply with laws, regulations or other external policies and instruc-
tions. This also includes internal rules such as ethical guidelines that govern
how the group conducts its operations.
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1.2.1 Risk and Randomness

Before looking at the mathematics of risk we should understand the difference
between risk, randomness and uncertainty. When measuring risk we often use
probabilistic concepts. But this requires having a distribution for the random-
ness in investments, a probability density function, for example. With enough
data or suitable model we may have a good idea of the distribution of returns.
However, without the data, or when embarking into unknown territory, we
may be completely in the dark as so the probabilities. This is especially true
when looking at scenarios that are incredibly rare or have never even happened
before. For example, we may have a good idea of the results of an alien
invasion—after all, many scenarios have been explored in the movies—but
what is the probability of this happening? When you do not know the
probabilities then you have uncertainty.
We have two situations of how to use probabilities:

1. Where the probabilities that specific events will occur in the future are
measurable and known—that is, where we have randomness but with
known probabilities. This can be further divided:

i. A priori risk, such as the outcome of the roll of a dice, tossing coins, etc.
ii. Estimable risk, where the probabilities can be estimated through statis-

tical analysis of the past, for example, the probability of a one-day fall of
10 % or more in a stock index.

2. With uncertainty the probabilities of future events cannot be estimated or
calculated.

In finance we tend to concentrate on risk with probabilities that we are able to
estimate. We then have all the tools of statistics and probability for quantifying
various aspects of that risk. In some financial models we do attempt to address
the uncertain, for example the uncertain volatility. Here volatility is uncertain,
is allowed to lie within a specified range, but the probability of volatility having
any value is not given. Instead of working with probabilities we now work with
worst-case scenarios. Uncertainty is therefore more associated with the idea of
stress-testing portfolios.
A starting point for a mathematical definition of risk is simply standard

deviation. This is essential because of the results of the central limit theorem: if
you add up a large number of investments what matters as far as the statistical
properties of the portfolio are concerned are just the expected return and the
standard deviation of individual investments, and the resulting portfolio
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returns are normally distributed. As the normal distribution is symmetrical
about the mean, the potential downside can be measured in terms of the
standard deviation.
However, this is only meaningful if the conditions for the central limit

theorem are satisfied. For example, if we only have a small number of
investments, or if the investments are correlated, or if they don’t have finite
variance, then standard deviation may not be relevant.
In the following, when we say risk we mean the risk in volatility terms—that

is, the change in the underlying stock when we calculate the value of a
derivative.

1.3 Credit and Counterparty Risk

Credit risk managers try to estimate the likelihood of default by the borrower
or counterparty due to a default, losses in loans, bonds or other obligations that
will not be repaid on time or in full. The counterparty can also fail to perform
an obligation to the institution trades in OTC derivatives.
The likelihood of this happening is measured through the repayment

record/default rate of the borrowing entity, determination of market condi-
tions, default rate, for example.
With loans or bonds, the amount of the total risk is determined by the

outstanding balance that the counterparty has yet to repay. However, the
credit risk of derivatives is measured as the sum of the current replacement cost
of a position plus an estimate of the firm’s potential future exposure from the
instrument due to market moves and what it may cost to replace the position
in the future.
Senior managers must establish how the firm calculates replacement cost.

The Basel Committee indicates that it prefers the current mark-to-market
price to determine the cost of current replacement. An alternative approach
would be to determine the present value of future payments under current
market conditions.
The measurement of potential future exposure is more subjective as it is

primarily a function of the time remaining to maturity and the expected
volatility of the asset underlying the contract. The Basel Committee for
Banking Supervision indicates that it prefers multiplying the notional principal
of a transaction by an appropriate add-on factor/percentage to determine the
potential replacement value of the contract (simply percentages of the notional
value of the financial instrument).
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Senior management may also determine whether this potential exposure
should be measured by using simulation (or other modelling techniques such
as Monte Carlo, probability analysis or option valuation models). By model-
ling the volatility of the underlying stock price it is possible to estimate an
expected exposure.
Credit risk limits are part of a well-designed limit system. They should be

established for all counterparties with whom an institution conducts business,
and no dealings can begin before the counterparty’s credit limit is approved.
The credit limit for counterparty must be aggregated globally and across all
products (i.e. loans, securities, derivatives) so that a firm is aware of its
aggregated exposure to each counterparty. Procedures for authorizing credit
limit excesses must be established and serious breaches reported to the super-
visory board. These limits should be reviewed and revised regularly. Credit
officers should also monitor the usage of credit risk by each counterparty
against its limits.
Once a counterparty exceeds the credit exposure limits, no additional deals

are allowed until the exposure with that counterparty is reduced to an amount
within the established limit.
Senior managers should try to reduce counterparty risks by putting in place

master netting as well as collateral agreements. Under a master netting agree-
ment, losses associated with one transaction with a counterparty are offset
against gains associated with another transaction so that the exposure is limited
to the net of all gains and losses related to the transactions covered by the
agreement.
The Basle Committee for Banking Supervision estimates that netting

reduces current (gross) replacement value on average by 50 % per counter-
party. However, board members, senior management and line personnel must
be aware that netting agreements are not yet legally enforceable in several
European and Asian countries, a factor which they must take into consider-
ation in their daily dealings with counterparties in these countries; not doing so
will engender a false sense of security. The forms of collateral generally
accepted are cash and government bonds.
Another type of counterparty risk is pre-settlement risk. This is the risk that a

counterparty will default on a forward or derivative contract prior to settle-
ment. The specific event leading to default can range from disavowal of a
transaction, default of a trading counterparty before the credit of a clearing-
house is substituted for the counterparty’s credit, or something akin toHerstatt
risk, where one party settles and the other defaults on settlement.
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1.4 Settlement Risk

Settlement risk is related to credit risk and is defined as the risk that an
expected settlement payment on an obligation will not be made on time due
to bankruptcy, inability or time zone differential. A common example involves
bilateral obligations in which one party makes a required settlement payment
and the counterparty does not.
Settlement risk provides an important motivation to develop netting

arrangements and other safeguards. When related to currency transactions,
the term Herstatt risk is sometimes used. This is the risk that one party to a
currency swap will default after the other side has met its obligation, usually
due to a difference in time zones. The settlement of different currencies in
different markets and time zones from the moment the sold currency becomes
irrevocable until the purchased currency receipt is confirmed. The two parties
are paid separately in local payment systems and may be in different time
zones, resulting in a lag time of three days and mounting exposure that may
exceed a party’s capital. The risk is reduced by improved reconciliation and
netting agreements.
The Herstatt risk is named after an incident in Bankhaus Herstatt, a private

German bank on June 26, 1974. The bank was then closed by German
financial regulators (Bundesaufsichtsamt für das Kreditwesen) who ordered it
into liquidation after the close of the interbank payments system in Germany.
Prior to the announcement of Herstatt’s closure, several of its

counterparties had irrevocably paid approximately $620 million in Deutsche
Marks to Herstatt. Upon the termination of Herstatt’s at 10.30 a.m.
New York time, 3.30 p.m. in Frankfurt, Herstatt’s New York correspondent
bank suspended outgoing US dollar payments from Herstatt’s account.
This action left Herstatt’s counterparty banks exposed for the full value of

the Deutsche Mark deliveries made. Moreover, banks which had entered into
forward trades with Herstatt not yet due for settlement lost money in replacing
the contracts in the market, and others had deposits with Herstatt.

1.5 Market Risk

Some of the risks above can be aggregated into a more general risk, the market
risk. Market risk deals with all kinds of change in market data that affect prices
of assets contained in a portfolio. This includes stock, bond, commodity and
other prices. It also includes market data such as interest rates and exchange
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rates, volatilities and liquidity. Such changes in prices can destroy a financial
institution’s capital base.
Market risk is different from an asset’s mark-to-market calculation, which is

the current value of the financial instruments. Market risk represents what we
could lose if prices or volatility change in the future. Therefore, we need to
measure the market risks in portfolio of financial instruments. For active
portfolios we need to calculate their exposure on a daily basis, while those
with small portfolios could be analysed less frequently.
The total market risk can be measured as the potential gain or loss in a

portfolio that is associated with price movements of given probability over a
specified time horizon. This is the Value-at-Risk (VaR) approach. VaR can be
measured by different models, as we will discuss in Chapter 2. The chosen
model is a decision taken by the board of directors on the advice of senior
managers and depends on requirements from the supervisory authorities.
Interest rate risk is related to market risk and arises from changes in interest

rates. This will result in financial losses related to asset/liability management. It
is measured by past and present interest rates and market volatility. It is
controlled by hedging the assets and liabilities by swaps, futures and options,
and accurately makes changes in possible future scenarios.
Foreign exchange risk is also a part of market risk. This is the risk that changes

in the foreign exchange rate will cause assets to fall in value or that foreign
exchange denominated liabilities will rise in expense. It is measured by
marking-to-market the value of the asset, or increase of the liability. This is
done by actual movement of the exchange rate between the currency of the
asset/liability and the currency of the booked or pending asset or liability. It is
controlled by hedging the assets and liabilities by swaps, futures or options that
can changes possible future scenarios.

1.6 Model Risk

Model risk is a topic of great, and growing, interest in the risk management
arena. Financial institutions are obviously concerned about the possibility of
direct losses arising from mismarked complex instruments. They are becoming
even more concerned about the implications that evidence of model risk
mismanagement can have on their reputation, and their perceived ability to
control their business.
In July 2009, the Basel Committee on Banking Supervision issued a

directive requiring that financial institutions have to quantify their model
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risk. The committee further stated that two types of risk must be taken into
account:

The model risk associated with using a possibly incorrect valuation, and the risk
associated with using unobservable calibration parameters.

On the surface, this seems to be a simple adjustment to the market risk
framework, adding model risk to other sources of risk that have already been
identified within Basel II. In fact, quantifying model risk is much more
complex because the source of risk (using an inadequate model) is much
harder to characterize.
Financial assets can be divided into two categories. In the first category, we

find the assets for which a price can be directly observed in the financial
marketplace. These are the liquid assets for which there are either organized
markets (e.g. futures exchanges) or a liquid OTC market (e.g. interest rate
swaps). For the vast majority of assets, however, price cannot be directly
observed, but needs to be inferred from observable prices of related instru-
ments. This is typically the case for financial derivatives whose price is related
to various features of the primary assets, depending on a model. This process is
known as marking-to-model, and involves both a mathematical algorithm and
subjective components, thus exposing the process to estimation error.
There are several distinct possible meanings for the expression model risk.

The most common one refers to the risk that, after observing a set of prices for
the underlying and hedging instruments, different but identically calibrated
models might produce different prices for the same exotic product.
Since, presumably, at most one model can be “true”, this would expose the

trader to the risk of using a mis-specified model. Sidenius (2000) did a research
of model risk in the interest-rate area where he found that significantly
different prices were obtained for exotic instruments after the underlying
bonds and (a subset of) the underlying plain-vanilla options were correctly
priced.
These are interesting questions, and they are the most relevant ones from

the trader’s perspective. Selling optionality too cheaply is likely to cause an
irregular but steady bleeding of money out of the book.
The most relevant question is, if the price of a product cannot be frequently

and reliably observed in the market, how can we give a price to it between
observation times in such a way as to minimize the risk that its book-and-
records value might be proven to be wrong?
In pricing models, model risk is defined as:
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The risk arising from the use of a model which cannot accurately evaluate market
prices.

In risk measurement models, model risk is defined as:

The risk of not accurately estimating the probability of future losses.

Rebonato (2001) uses the following definition:

Model risk is the risk of occurrence of a significant difference between the mark-
to-model value of a complex and/or illiquid instrument, and the price at which
the same instrument is revealed to have traded in the market.

If reliable prices for all instruments were observable at all times, model risk in
valuation would not exist. On the other hand, if different models are used, the
hedging will differ. An example of this is when rates get close to zero or below,
the standard Black model for swaptions, caps and floors cannot be used. Then,
a model with normal distributed forward rates must be used to allow zero or
negative interest rates.
Sources of model risk in pricing models include:

• use of wrong assumptions,
• errors in estimations of parameters,
• errors resulting from discretization, and
• errors in market data.

Sources of model risk in risk measurement models include:

• the difference between assumed and actual distribution1, and
• errors in the logical framework of the model.

Derman (1996) refers to the following types of model risk:

• inapplicability of modelling,
• incorrect model,
• correct model but incorrect solution,
• correct model but inappropriate use.

1 For instance, the Black–Scholes model assumes that underlying asset prices fluctuate according to a
lognormal process, whereas actual market price fluctuations do not necessarily follow this process.
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• badly approximated solutions,
• software and hardware bugs,
• unstable data.

Complex financial products require sophisticated financial engineering capa-
bilities for proper risk control, including accurate valuation, hedging, and risk
measurement.
Model risk has often been associated with complex derivatives products, but

a deeply out-of-the money call and an illiquid corporate bond can both present
substantial model risk. What both these instruments have in common is that
the value at which they would trade in the market cannot be readily ascertained
via screen quotes, intelligence of market transactions or broker quotes.
Model risk arises not because of a discrepancy between the model value and

the “true” value of an instrument (whatever that might mean), but because of a
discrepancy between the model value and the value that must be recorded for
accounting purposes.
Model validation is usually meant to be the review of the assumptions and

of the implementation of the model used by the front office for pricing deals,
and by finance to mark their value.
The absence of computational mistakes is clearly a requirement for a valid

valuation methodology. Rejecting a model because ‘it does not allow for
stochastic volatility’ or because ‘it neglects the stochastic nature of
discounting’ can be totally inappropriate, from a risk perspective. If we require
that a product should be marked to market, using a more sophisticated model
can be misguided.
From risk perspective the first and foremost task in model risk management

is identification of the model (“right” or “wrong” as it may be) currently used
by the market in order to arrive at the observed traded prices. In order to carry
out this task, it is very important to be able to use reverse-engineering to match
observed prices using a variety of models in order to “guess” which model is
currently most likely to be used in order to arrive at the observed traded prices.
In order to carry out this task we will need a variety of properly calibrated
valuation models, and information about as many traded prices as possible.
The next important task is to surmise how today’s accepted pricing meth-

odology might change in the future. Notice that the expression ‘pricing
methodology’ makes reference not just to the model, but also to the valuation
of the underlying instruments, to its calibration, and possibly, to its numerical
implementation. We should not assume that this dynamic process of change
should necessarily take place in an evolutionary sense towards better and more
realistic models and more liquid and efficient markets. An interesting question
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could be: “How would the price of a complex instrument change if a particular
hedging instrument (say, a very-long-dated FX option) were no longer avail-
able tomorrow?”

1.6.1 Some Examples of Model Risk Failure

Index Swaps

Index swaps are swap transactions in which floating interest rates are based on
indices other than LIBOR. It is therefore necessary to manage the position and
the risks in line with the relevant index. This requires a full understanding of
various types of indices, as well as the structure of index swap markets.
A certain financial institution accumulated a substantial position in a special

type of index swaps. At the time, the market participants were using several
types of models for the valuation of this index swap. One financial institution
began trading in this product using what was recognized at the time as the
leading mainstream model. As the market for this index swap shrank, some
participants left the market. Thereafter, another model, which was being used
by some of the remaining participants, became the dominant model in the
market.
While maintaining a very large position in this swap index, this financial

institution fell behind in research of the most dominant pricing model for this
product in the market. Consequently, it failed to recognize that a switch had
been made in the dominant model until adjusting its position. As a result, it
registered losses amounting to several billions when it finally adopted the new
model and made the necessary adjustments in its current price valuations.

Caps

Caps are generally an OTC product with relatively high liquidity. The broker
screen displays the implied volatility for each strike price and time period as
calculated for cap prices using the Black model. The volatility exhibits a certain
skew structures by strike prices and by time periods. To calculate the current
price of any given cap, the volatility corresponding to the time period and
strike price of the cap is first estimated (interpolated) on the basis of the skew,
which is normally observed in the market.
A certain Japanese financial institution was engaged in German cap trans-

actions. At the time, the number of time periods and strike prices for which
volatility could be confirmed on the screen was relatively small compared with
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yen caps. The estimation of volatility was particularly difficult for caps with
significant differences between market interest rates and strike interest rates.
The financial institution was using the Black model as its internal pricing

model for caps. This institution uses the broker-screen volatility of the closest
strike price as the volatility of far-out strikes. Some cap dealers attempted to
capitalize on the inevitable difference between market prices and valuation
prices by trading aggressively in far-out strikes. This strategy generated internal
valuation profits.
The financial institution fell behind in improving its pricing model and

failed to minimize the gap between market prices and valuation prices.
Continued cap dealer transactions under an unimproved model resulted in
the accumulation of substantial internal valuation profits. However, when the
internal pricing model was finally revised, the financial institution reported
several tens of billion in losses.

LCTM

Long-term capital management (LCTM)was a hedge fund inGreenwich, Con-
necticut that used absolute-return trading strategies combined with high
financial leverage to accumulated a credit spread position, which combined
emerging bonds, loans and other instruments. The position was structured to
generate profits as spreads narrowed. LTCM suffered huge losses as a result of
the sudden increase in spreads following the Russian crisis in 1998.
Various reasons have been given for these huge losses. For instance, LTCM

was unable to hedge or cancel its transactions because its liquidity had dried up
in the market. On this point, it has been said that LTCM had not taken
liquidity into account when building its model. Others have pointed to
internal problems in LTCM’s risk measurement model. Specifically, problems
with wrong assumptions concerning the distribution of underlying asset prices
and errors in data used in estimating the distribution of underlying asset prices
have been pointed out. Both would lead to fatal errors in risk measurement.

1.6.2 Measurement of Model Risk

If we try to get any kind of measure for model risk to be formulated in a
mathematical perspective, we can use the analogy with the VaR method for
computing market risk. The calculation of VaR involves two steps:
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• The identification of the market risk factors and the estimation of the
dynamic of these risk factors (the classical VaR framework assumes a
multivariate log-normal distribution for asset prices).

• The definition of a risk measure, for example the 99.5 % confidence
interval for a 10-day holding period.

What would be the equivalent when considering model risk? In this case, the
risk factors include the risk of model mis-specification (leaving out important
sources of risk, mis-specifying the dynamic of the risk factors), and the risk of
improper calibration, even though the chosen model may be perfectly cali-
brated to a set of liquid instruments.
The second step involves defining a reasonable family of models over which

the risk should be assessed. The family of models is restricted to the models
that can be precisely calibrated to a set of liquid instruments. This constraint
alone still defines such a large set of models than further restrictions need to be
applied. Intuitively, one needs to define a meaningful notion of “distance”
between models, in order to define a normalized measure of model risk.
Let I be a set of liquid instruments, with Hi2I being the corresponding

payoffs, and Ci2I the mid-market prices, withCi2 Cbid
i ;C ask

i

� �
. Let Ω be a set

of models, consistent with the market prices of benchmark instruments

Q2Ω ) EQ Hi½ �2 Cbid
i ;C ask

i

� �
, 8i2 I

Define next the upper and lower price bounds over the family of models, for
a payoff X

π Xð Þ ¼ sup
j¼1, :::, n

EQj X½ �, π Xð Þ ¼ inf
j¼1, :::, n

EQj X½ �

The risk measure is finally the range of values caused by model uncertainty:

μΩ ¼ π Xð Þ � π Xð Þ

The crucial aspect of this procedure is the definition of a suitable set, Ω.
There are many ways of defining it:

• Choose a class of models, and construct a set of models by varying some
unobservable parameters, while ensuring that each model calibrates to the
set of benchmark instruments.
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• Select several types of model (local volatility, stochastic volatility, etc.), and
calibrate each model to the same set of benchmark instruments.

It is clear that the variability of models forming the set Ω, needs to be
normalized. In the same way as one computes “99.5 % VaR for a 10 day
holding period”, one needs a normalizing factor to qualify model risk. In other
words, one needs to define the aforementioned notion of “distance” between
models.
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2
Time-Discrete Models

2.1 Pricing via Arbitrage

To study arbitrage-free pricing, we start with a simple financial market
containing two instruments, a money-market account instrument (in some
literature referred as a bond) B and another security S. The other security can
be a stock (equity) or some kind of derivative, such as an option. We want to
study a portfolio (B, S) today (at time t¼ 0) and at a future time t. The money-
market account has the following simple property

B 0ð Þ ¼ 1, B tð Þ ¼ 1þ r:

This means that the value of the money-market account instrument today is
1 (in some currency) and at the future time t, the value is given by 1 + r, where
r is the risk-free interest rate. An important property of the money-market
account is that the interest rate is the same for borrowing as for lending.
On this market, two events may occur at time t: ω1 and ω2. We say that we

have a sample space Ω with two possible outcomes Ω¼ {ω1,ω2}. On event ω1

the price of the security S will be S1(t) and on ω2 the price of S will become
S2(t). For simplicity, no other outcomes (events) exist.
We then have the following situation in matrix representation1

1This is only an abstract representation of the situation with two events that might be true in the future.
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B 0ð Þ
S 0ð Þ

� �
¼ B tð Þ B tð Þ

S1 tð Þ S2 tð Þ
� �

ω1

ω2

� �
:

As we know, the only outcome for B at time t is B(t)¼ 1 + r, which simplify the
first equation

B 0ð Þ
S 0ð Þ

� �
¼ 1þ r 1þ r

S1 tð Þ S2 tð Þ
� �

ω1

ω2

� �
:

The first equation can be written as

1 ¼ B 0ð Þ ¼ 1þ rð Þω1 þ 1þ rð Þω2 ¼ q1 þ q2,

where we have defined q1 and q2. Since the sum of q1 and q2 is equal to 1, we
can interpret them as they were probabilities. We do not allow them to be less
than zero. The second equation can then be written

S 0ð Þ ¼ S1 tð Þ � ω1 þ S2 tð Þ � ω2 ¼ 1

1þ r
q1 � S1 tð Þ þ 1

1þ r
q2 � S2 tð Þ

¼ 1

1þ r
q1 � S1 tð Þ þ q2 � S2 tð Þ½ �:

We then say that under the probability measure Q¼ (q1, q2), the value of
S today (at time t ¼ 0) is given by the discounted expected payoff. We write
this as

S 0ð Þ ¼ 1

1þ r
EQ S tð Þ½ �:

Remarks

1. These probabilities have nothing to do with the real probability for the
outcome in Ω. Therefore, we call these probabilities, risk-adjusted
probabilities.

2. If we have other securities, also depending on the same outcome, they
should also be given by the same expression. The reason is that the
probabilities are given by the risk-free interest rate and the sample space Ω.

If we had used the true (objective) probabilities, P for the outcomes {ω1,ω2},
then
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S 0ð Þ < 1

1þ r
EP S tð Þ½ �:

The reason is that those probabilities are not risk-free. If we are willing to buy a
stock, which is riskier than the money-market account (which pays a risk-free
interest rate) we must be compensated for the higher risk. We say that we have
a risk premium ρ to go into the position of S:

S 0ð Þ ¼ 1

1þ r þ ρ
EP S tð Þ½ �:

This is the reason why we buy equities instead of putting the same amount of
money into a risk-free money-market account. We take the risk, since we hope
we will get a better payoff. The expected payoff increases with the level of risk.
Options have better payoff than stocks, since they are more risky.

2.2 Martingales

Expressions such as the expectation value above will be frequently used in this
course, especially when dealing with martingales. A martingale with respect to
a given probability measure Q, is defined by

EQ X tþ sð ÞjIt½ � ¼ X tð Þ

for all s > 0. It is the information set that affects the value of the stochastic
process X. In other words, this expectation value is saying:

Standing at a time t, with a stochastic process X, under a given probability measure
Q and a given information set It, (with information known up to time t), the
calculated expected future value of X(t + s) (where s > 0) is equal to X(t).

This is the same value for X as the value today. A martingale is said to represent
a fair game.

Example 2.1

If we are tossing a coin, we will get a head or a tail. Suppose we win one cash unit
on head, and lose one on tail. This is a fair game since the probability to win
money when the number of tosses ! 1 is zero. We will lose as much as we win.
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Example 2.2

We can also construct a martingale measure, that is, a fair game, by making a
deal where two parties make an agreement. Say that John said to Lisa that he will
give her $100 if it rains tomorrow. He asks Lisa how much she is willing to pay for
this agreement (contract). Suppose Lisa is willing to pay $45 and John wants $55.
If they finally compromise and agree that Lisa will pay John $50, and then, after
making some additional restrictions in the agreement, such as it has to rain in
their home town and at least 1 mm,they have an agreement. Now, both John and
Lisa feels that they are risk neutral and both believe that it will rain tomorrow
with a probability of 50 %. Then, the risk-neutral (martingale) probability to rain
next day is 50 %. Remark that this has nothing to do with the real (objective)
probability.

The conclusion of this example is that, as soon we know the (possible) price
(or prices), the risk-neutral probabilities are known. We can also state that, as
soon as we know the risk-neutral probability measure, we also know the
possible prices. This will be clear when we study the binomial model below.
When we build binomial models in finance we are creating a situation like

tossing a coin, where the stock price goes up if we get a head and down if we get a
tail. The only difference is that the probabilities for heads and tails are not the same.
Such financial processes are therefore not martingale. But, as we will see, such a
process can be transformed into a martingale by changing the probability measure.
If we have

EP X tþ sð ÞjIt½ � � X tð Þ,

where It is the information-set at time t, we say that X is a super-martingale
and if

EP X tþ sð ÞjIt½ � � X tð Þ

X is said to be a sub-martingale. If we return to the expression

S 0ð Þ ¼ 1

1þ r
EQ S tð Þ½ �,

the process S is martingale, but since r > 0

EP S tð Þ½ �

is a sub-martingale because of
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EP S tð Þ½ � > 1

1þ r
EP S tð Þ½ �:

Here P represents the objective probability measure. This is a fundamental
concept in finance. We can transform the process for the stock price to a
martingale, just by multiplying with the discounting factor 1/(1 + r). This
means, under the probability measure Q and with the discounting factor
1/(1 + r) the process of S is martingale. As we will see later, the process above
can be transformed to a martingale in two ways; by changing the probability
measure or by multiplying with a discount factor.

2.3 The Central Limit Theorem

We will now study the game of tossing a coin and calculate the possible
outcomes. Let heads be the outcome u (winning one cash unit) and tails,
d (losing one cash unit). We study the total outcome of tossing 1, 2, 4, 8,
16 and 32 rimes.
After tossing the coin twice we have the possible outcomes: {uu, ud, du, dd}

giving the total profit {2, 0, 0, �2}. Since we have equal probabilities we can
plot the possible payoffs in this game. In Fig. 2.1 we see the outcome of 1 and
2 tosses in Fig. 2.2 we see the outcome of 4 and 8 tosses and in Fig. 2.3 we see
the outcome of 16 and 32 tosses.
As we can observe, the coin-tossing game seems to lead in the limit to the

normal distribution. If we change the probabilities, we will in the limit reach a

Fig. 2.1 When tossing the coin one timewe have two outcomes,�1 or 1, both with
probability 1/2. When tossing the coin two times we have three outcomes, �2 with
probability 1/4, outcome 0 with probability 1/2
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normal distribution with a mean not at zero. If we have three different out-
comes with different probabilities, we still reach a normal distribution.
In general, the central limit theorem states that, given certain conditions,

the arithmetic mean of a sufficiently large number of iterates of independent
random variables, each with a well-defined expected value and well-defined
variance, will be approximately normally distributed, regardless of the under-
lying distribution.
We will see in Sect. 2.5 that when we create a tree model, called the

binomial model, the solution when making infinite number of infinitesimal
small steps will converge to a normal distributed model in continuous time.

Fig. 2.2 When tossing the coin four and eight times we have five and nine
different outcomes with the probability distributions as above

Fig. 2.3 When tossing the coin 16 and 32 times we have 17 and 33 different
outcomes with the probability distributions as above
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2.4 A Simple Random Walk

Before we start to study stochastic processes we will study a simple random
walk. In a random walk we can take a step forwards or a step backwards
dependent on some random event, Z¼ {�1, +1}. On fix time intervals we can
take a step forwards (Z¼ + 1) with probability p or a step backwards
(Z¼ � 1) at probability q¼ 1� p. During an arbitrary time interval, the
given displacement (E[Z]) and its variance (Var(Z)) are given by

E Z½ � ¼ þ1ð Þpþ �1ð Þq ¼ p� q

Var Zð Þ ¼ E Z2
� �� E Z½ �ð Þ2 ¼ þ1ð Þ2pþ �1ð Þ2q� p� qð Þ2 ¼ 1� p� qð Þ2

¼ pþ qð Þ2 � p� qð Þ2 ¼ 4pq

We are now interested in the position, Xn of the process after n such steps. The
outcome of this event obeys the Markov properties, namely that every event is
independent of earlier events, and so we can scale up the displacement by a
linear factor

E Xn½ � ¼ þ1ð Þpþ �1ð Þqf g ¼ n p� qð Þ
Var Xnð Þ ¼ 4npq,

where

Xn ¼
Xn
i¼1

Zi:

With the Markov property, we can put the expectation inside the summation

E Xm
n

� � ¼ E
Xn
i¼1

Zm
i

" #
¼
Xn
i¼1

E Zm
i

� �
:

We now ask for the probability distribution P(Xn) to reach the position Xn
after n steps. This position can be reached by many different paths, but we
have to take f steps forwards and b steps backwards, so we have Xn¼ f� b. The
probability to reach this point is given by p fqb and to get the probability to get
here, we have to multiply with the number of different paths. Then
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P Xnð Þ ¼ f þ b
f

� �
� pf � qb ¼

n
nþ Xn

2

 !
� pnþXn

2 � qn�Xn
2 ,

where

n
m

� �
¼ n!

m! n� mð Þ!

The binomial distribution is given by

B n;mð Þ ¼ n

m

� �
pm � qn�m

E B½ � ¼ n � p
Var Bð Þ ¼ n � p � q

so we see that we have a binomial distribution. A diffusion process is a Brownian
motion and behaves like such a random walk with p ¼ q ¼ 1=2ð Þ in the
continuous limit. To see this, let’s assume that our walker takes steps of length
r between each time interval t. Since p ¼ q his expected position at the next
time is his current position (see martingale property) and the variance of his
displacement is r2. To go to the continuous time limit we split the time
interval t into n subintervals of length τ and between each subinterval we
allow the walker to take steps of� r 0 with equal probability. After a time t, the
position of the walker is found by summing the n independent identical
random variables Z. According to the central limit theorem, as n gets large
the probability distribution of the positions will begin to resemble a Gaussian
distribution with zero mean and variance nr 02 (Fig. 2.4).

Fig. 2.4 In the continuous limit, a random walk with equal probabilities converges
to a Gaussian probability distribution
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To prevent the walker from having an infinite or a zero variance as n goes to
infinity our only possible choice for r 0 which also preserves the characteristics
of our original random walker is to set

r0 ¼ rffiffiffi
n

p :

Hence if time gets rescaled by factor n then the space is rescaled by
ffiffiffi
n

p
and this

preserves the physical properties of walker. The continuous probability distri-
bution P(x, t) of being at position x at time t, given that P(x0, 0)¼ 1 evolves
according to a parabolic partial differential equation called the Fokker–Planck
equation. However, since p¼ q there is no drift term and this equation reduces
to the Diffusion equation

∂P x; tð Þ
∂t

¼ D
∂2

P x; tð Þ
∂x2

,

where D is called the diffusion constant given by

D ¼ 2 � r2
t

:

2.5 The Binomial Model

We will now discuss the most common model for American options. These
options have nothing to do with USA, the country or the continent. American
options are options that allows the holder to exercise at any time of the option
life-time. European options can only be exercised at maturity. There are also
options, especially in the interest rate theory, that can be exercised on specific
days. This kind of option is said to be of Bermudan type. We will also study
so-called Asian options. These are of European type, but the final value at
maturity depends not on the final underlying price, but instead on the average
price during a time-period.

2.5.1 Background and Theory

Consider a financial market during one period in time, from t ¼ 0 to t ¼ 1
with two possible investments (or two different securities), B and S. Here
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B represents a deterministic money-market account (or in some literature, a
bond) with the price process

B 0ð Þ ¼ 1

B 1ð Þ ¼ 1þ r

�

where r represent the interest rate. S is considered to be a stock with a
stochastic price process given by

S 0ð Þ ¼ s

S 1ð Þ ¼ u � s with probabilitypu
d � s with probabilitypd

�8<:
At time t ¼ 1 the stock can reach two possible value u � s where u > 1 or d � s
where d < 1. In other words, the stock price can either increase or decrease
with probability pu and pd respectively. Here pu + pd¼ 1.
Furthermore, we suppose that we can buy (going long in S) or sell (going short

in S) the stock and we can invest (put money, i.e., go long in B) or lend
(borrow money, i.e., go short in B) in the money-market account. The interest
rate for saving and lending money from the money-market account is for
simplicity the same, r.
Now, we write S(t)¼Z � s where Z is a stochastic variable and consider a

portfolio h on the (B, S)-market, as a vector h¼ (x, y)2R2 where x is the
number of money-market securities and y the number of stocks. x and y may
take any number, including negative and fractions where negative values
represent short positions. We also suppose that the market is 100 % liquid,
that is, we can trade whenever we want.

Definition 2.3 The value process of the portfolio h is defined as

V t; hð Þ ¼ x � B tð Þ þ y � S tð Þ; t ¼ 0, 1

i.e.

V 0; hð Þ ¼ xþ y � s
V 1; hð Þ ¼ x � 1þ rð Þ þ y � s � Z

�
:
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Definition 2.4 An Arbitrage portfolio of h is defined as

V 0; hð Þ ¼ 0

V 1; hð Þ > 0 with probability 1

�
:

This means that we can borrow money at time t ¼ 0 and buy the stock, or
we can sell the stock and put the money in the money-market account. The
total value of our portfolio h is then at time t¼ 0 is equal zero. If for sure (with
probability 1) our portfolio at time t¼ 1 have a value greater than zero we have
made arbitrage.
The portfolio in the binomial model above is free of arbitrage if and only if

d� 1 + r� u. The reason for this is that; If d� u� 1 + r we can go short in the
stock and invest in the risk-free interest rate. If on the other hand, 1 + r� d� u
we can go short in the risk-free interest rate and invest in the stock. In both
situations we will make arbitrage.
From now on we denote the objective (true or market) probabilities as P¼

(pu, pd) and the risk-free (martingale) probabilities as Q¼ (qu, qd). If the
portfolio is risk-free we must have probabilities such as

1þ r ¼ u � qu þ d � qd; qu þ qd ¼ 1

We say that we have a probability measure Q defined as

Q :
Q Z ¼ uð Þ ¼ qu
Q Z ¼ dð Þ ¼ qd

�

We then have

1

1þ r
EQ S 1ð Þ½ � ¼ 1

1þ r
u � S 0ð Þ � qu þ d � S 0ð Þ � qdð Þ

¼ 1

1þ r
� S 0ð Þ � 1þ rð Þ ¼ S 0ð Þ

i.e.

S 0ð Þ ¼ 1

1þ r
EQ S 1ð Þ½ �

This is called the risk-neutral valuation formula. Q is called the risk-neutral
probability measure or the martingale measure. If we use continuous
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compounded interest rate for a security with maturity T, we use the following
approximation

1

1þ rð ÞT�t
ffi e�r T�tð Þ

and get the following general pricing formula for all kinds of securities under
the money-market account as a numeraire

S tð Þ ¼ e�r T�tð Þ � EQ S Tð Þ½ �:

In later chapters we will return to the meaning if this.
On a multi-period market we have

B0 ¼ 1

Bnþ1 ¼ 1þ rð ÞBn

�

and

S0 ¼ s
Snþ1 ¼ ZnSn

�
:

Definition 2.5 A portfolio strategy h : {ht¼ (xt, yt); t¼ 0, 1, 2...,T } is a sto-
chastic process with a value process

Vt
h ¼ xtBt þ ytSt:

Definition 2.6 A portfolio in discrete time is said to be self-financing if

xtBt þ ytSt ¼ xt�1Bt þ yt�1St:

Definition 2.7 A portfolio in continuous time is said to be self-financing if

dVt ¼ xdBt þ ydSt:

Consider a one-period binomial model (Fig. 2.5).
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In the Black–Scholes world, the stock prices S follow a stochastic process
(the same as for a Geometrical Brownian Motion, GBM):

dS ¼ μSdtþ σSdW,

where μ and σ are constants, which represents the drift and the volatility
respectively. A binomial model is characterized by the constants u and d,
describing how much the price can increase or decrease in each step in time
and the probabilities that the price goes up and down. Since volatility measures
the changes of the price with respect to time, u and d are functions of the
volatility. The simplest model used is the Cox–Ross–Rubinstein model. In their
model, the factors u and d is given by

u ¼ eσ�
ffiffiffi
dt

p

d ¼ e�σ� ffiffiffidtp :

Here dt is the time interval between observations of the prices and σ the
volatility of the underlying security. We will understand these formulas after
defining the Wiener process dW above.
From Example 2.2 we can conclude that as soon as we know the volatility

we also know the possible prices, or as soon the prices are known, we know the
volatility. Therefore there exist a one-to-one relationship between the volatility
and the prices. We also call the volatility, estimated from known prices,
implied volatility.
With continuous compounding of interest rate r we have

S0 ¼ e�r�dt qu � u � S0 þ qd � d � S0ð Þ ¼ e�r�dt qu � u � sþ qd � d � sð Þ,

where the risk-neutral probabilities are given by

Fig. 2.5 In the on-step binomial model, the stock price may take two different
prices, uS or dS. A derivative on the stock, e.g., a call option can therefore also take
two different values, Φ(u) or Φ(d )
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qu þ qd ¼ 1

qu � uþ qd � d ¼ er�dt

�

then

qu ¼
1

u� d
� er�dt � d
� � ¼ a� d

u� d
qd ¼ 1� qu:

Here we have defined a as erdt. To have an arbitrage-free market we must have
d< a< u.

2.5.2 The Risk-Free Probability

One should ask what kind of information is offered from risk-neutral proba-
bility and where we can find this measure in the real world.
The first question leads to an equivalent definition of risk-neutral probabil-

ity. A risk-neutral probability is the probability of a future event or state that
both trading parties in the market agree upon.
Let us return to Example 2.2 where John and Lisa made an agreement based

upon the likelihood or not of rain tomorrow. Both agreed that the probability
of the event that it will rain tomorrow is 50 %, otherwise they wouldn’t have
reached that agreement and signed the contract. So this price reflects the
common beliefs of both parties towards the probability that the event happens.
50 % is the risk-neutral probability of the event that happens. It is not a
historical or statistical prediction of any kind. Nor is it a true probability.
Simply put, it is just a belief that is shared between the two trading parties in
the market.
For the simple example mentioned above, once the price is established, the

risk-neutral measure is also determined. Whenever you have a pricing problem
in which the event is measurable under this measure, you have to use this
measure to avoid arbitrage. If you don’t, it’s as if you are simply giving out
another price for the same event at the same time, which is an obvious
arbitrage opportunity.
A more complicated example is the Black–Scholes world, in which we

assume the stock follows a Brownian motion. In this setting, the stock price
itself is enough to reveal the common belief between the trading parties
towards the stock return distribution. The argument is similar to Example
2.2. And as a result, we have the famous Black–Scholes formula for European
options. In the real world, the stock dynamics is not a Brownian motion, so the
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price given by Black–Scholes formula is just a reference price to the risk-free
interest rate.
A more accurate information source for risk-neutral probability is the

market prices of the stock options. In practice, people use options prices to
get the risk-neutral measure and further price more complicated contingent
claims, such as exotic options.

2.5.3 The Replicated Portfolio

Let us use Φ(u) to denote the value of the option if the stock price increases
and Φ(d) to denote the option value if the stock price decreases. Also let x be
the amount of money in our money-market account and y the number of
stocks in our portfolio. We then have from the value process two equations
with two unknowns, x and y,

1þ rð Þ � xþ uS0 � y ¼ Φ uð Þ
1þ rð Þ � xþ dS0 � y ¼ Φ dð Þ

�
:

We can solve this system of equations to find the replicated (balanced) portfolio
in each node in the binomial tree:

x ¼ 1

1þ r

u �Φ dð Þ � d �Φ uð Þ
u� d

y ¼ 1

S0

Φ uð Þ �Φ dð Þ
u� d

8>><>>: :

This proves that the binomial model is complete since we can always replicate
the option value with the money-market account and the value if the stock (see
Definition 2.9 below). The price Π[X, 0] of a contingent claim, X, is then, at
time t ¼ 0 given by

Π X; 0½ � ¼ xþ y � S0 ¼ 1

1þ r
quΦ uð Þ þ qdΦ dð Þf g ¼ 1

1þ r
EQ S1½ �,

where the risk-neutral probabilities is given as

qu ¼
1þ rð Þ � d

u� d
, qd ¼

u� 1þ rð Þ
u� d

:
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Here we have used simple compounding of the interest rate. With continuous
compounding we write this for a single period of time as

Π X; 0½ � ¼ xþ y � S0 ¼ e�r quΦ uð Þ þ qdΦ dð Þf g ¼ e�rEQ S1½ �,

where

qu ¼
er � d

u� d
, qd ¼

u� er

u� d
:

Definition 2.8 A contingent claim (a financial derivative) is a stochastic vari-
able X¼ F(Z), where Z is a stochastic variable that is driving the stock price.

We interpret the contingent claim as a contract that generates X cash units
at maturity. In other words, a contingent claim is a security (a financial
instrument) whose value is dependent on the outcome of another underlying
instrument.

Definition 2.9 A given contingent claim X is said to be reachable if there
exist a portfolio h so that V(h, 1)¼X with probability one. ∃h j V h

1 ¼�
X;

with prob:1Þ Then, h is called a hedging portfolio or a replicating portfolio that
generates X.

Definition 2.10 If all contingent claims are reachable, the market is said to be
complete.

We have seen that the binomial model is complete, since we can replicate all
contracts using the money-market account and the stock. The reason for
completeness is that we have two securities, which solve the two equations.
We can handle many periods in the binomial tree just because we can
rebalance the tree with help of intermediate trading. For the same reason, a
general market is complete if the number of securities is equal to the number of
possible outcomes.
This can be stated as the following theorem.

Theorem 2.11 The Meta Theorem. If we let N be the number of underlying
securities on the market (excluding the risk-free) and K the number of random
sources. Then

(1) The market is free of arbitrage if N�K.
(2) The market is complete of N�K.
(3) The market is complete and free of arbitrage if N¼K.
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Theorem 2.12 If the market is free of arbitrage there exists one (or many)
martingale probability measure(s).

Theorem 2.13 If a martingale measure exists, the market is free of arbitrage.

Remember, a martingale is a fair game.

Example 2.14

Consider a European call option with the strike price K, (dS<K<uS). The
contingent claim X is then, at maturity given by

X ¼ uS� K if Z ¼ u
0 if Z ¼ d

�
:

Expressed in option prices this is F(u)¼uS�K and F(d )¼ 0.

Example 2.15

Consider an American call option with the following data.

Current stock price S0¼ 100
Volatility s¼20 %
Risk-free interest rate r¼ 5 %
Strike K¼ 110
Time to maturity s¼ 20 % T¼ 180 days

Using a single iteration Dt¼ 180/365ffi 0.5 year we get (a¼ er �Dt):
u ¼ 1.152
d ¼ 0.868
a ¼ 1.025
q ¼ 0.553 (Fig. 2.6)

(continued)
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Example 2.15 (continued)

Fig. 2.6 In a one-step binomial model for an American call option, the stock
price may take two different prices

The option value (fair value) in node A is then given by:

C ¼ max SA � K; e�rΔt qCB þ 1� qð ÞCCð Þð Þ
¼ max 100� 110; e�0:05�0:5 0:553 � 5:20þ 1� 0:553ð Þ � 0ð Þ� 	
¼ 2:80

2.6 Modern Pricing Theory Based on
Risk-Neutral Valuation

There are different kinds of investor; those who like to trade in a risk-neutral
world and those who like to trade in a risk-averse world. As we have seen, in a
risk-neutral world, prices are based on expected values of future payoffs. In a
risk-averse world, investors choose the security with less risk if they have the
same expected return. This leads to a risk-return trade-off.
We can illustrate this on a market where the interest rate is 10 % as

(Fig. 2.7):
We use the risk-neutral valuation to value contingent claims. Contingent

claims are securities which prices depends on the outcome from other sources.
Bonds depend on interest rates and equity options depend on the outcome of
the underlying equity. The pricing tool is always arbitrage conditions.
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In arbitrage theory, equivalent securities (or portfolio of securities) should
sell at equivalent prices. If not, arbitrage possibilities can be made from
misaligned market prices. The no arbitrage requirement, lead to the law of
one price. Therefore, we use the concept of arbitrage for pricing contingent
claims.
We illustrate in Fig. 2.8 a simple arbitrage strategy for a contingent claim of

a stock with an interest rate of 10 %.
Consider the portfolio by buying 0.75 shares the stock and sell one

option. On an up movement, we get for the total portfolio, a value
30	 0.75� 15¼ 7.50 and on a down movement 10	 0.75� 0¼ 7.50.
Therefore the strategy has a risk-less payoff of 7.50 in one period. But, since
the risk-free security returns 10 %, arbitrage theory forces the return to be the
same. Therefore the following must hold

20	 0:75� Vð Þ 	 1:10 ¼ 7:50:

This gives an option price V, equal to 8.18, see Fig. 2.9. We then observe that
the probability of the move in stock price where not used in the valuation of
the option. But we can calculate the implied probabilities from the option

Fig. 2.8 A one-step binomial model for an underlying stock and an option

Fig. 2.7 A one-step binomial model in a risk-neutral and a risk averse world. The
value 23.64 is calculated as (30	 0.8 + 10	 0.20)/1.10¼ 23.64. A higher risk aversion
leads to a lower price
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price. We therefore pretend that there are only risk-neutral probabilities. Then
we have:
The risk-neutral probabilities can now be used to value any contingent

claim of this stock. The risk-neutral probabilities are given by (Fig. 2.10)

15� 8:18

8:18
pþ 0� 8:18

8:18

� �
1� pð Þ ¼ 10 %:

From 30p + 10(1� p)¼ 30	 0.60 + 10	 0.40¼ 22 we also observe that in
the risk-neutral world, also the return on the stock is 10 %.
We now introduce the market price of (volatility) risk. The market price of

risk is defined as the extra compensation (per risk units) needed to take the
higher risk. The stock and the option have the same source of risk, but the risk
exposure is higher for the contingent claim. If we require, as in Fig. 2.9 that
return of the stock, we get 30	 0.8 + 10	 0.2¼ 26. That is an expected
return of 30 %. The risk (volatility) is given by u ¼ 30

20
¼ e

ffi
t

p �σ ¼ eσ i.e.,
σ¼ ln (1.5)¼ 40.5%.
Similarly, the option payoff we get is 15	 0.8 + 0	 0.2¼ 12. That is an

expected return of 12/8.18¼ 46.67%. Since the sharp ratio, market price of
risk per volatility unit must be the same we must have

Fig. 2.9 The arbitrage-free price of the option let us calculate the risk-neutral
probabilities

Fig. 2.10 The arbitrage-free price of the option gives the risk-neutral probabilities
where p ¼ 0.6. As we see, we have a relationship between the prices and
probabilities
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λ ¼ E r½ � � rf
σ

¼ 30 %� 10 %

40 %
¼ 46:67 %� 10 %

73:33 %
¼ 0:5,

where we have calculated the volatility for the option. We summarize this in
Table 2.1.

The conclusions of this are:

• Risk-neutral valuation is useful for contingent pricing
• For the real-world returns (what we observe) we have to include the market

price of risk
• Shifting to the risk-neutral world will eliminate the extra return for

accepting risk. This is usually a lower return
• All securities’ returns are identical in the risk-neutral world and equal to the

risk-free interest rate
• All securities that depend on the same underlying return earn the same risk

premium, per unit of risk

2.6.1 An Example of Arbitrage

If the conclusions above do not hold, we can have a free lunch by making
arbitrage. We always want to buy at a low and sell at a high price. Suppose we
have a stock at 100 CU (cash units) and we want to buy an option with strike
110. We suppose that u¼ 1.2 and , qu¼ qd¼ 0.5 and r¼ 0. This gives us
S0¼ 100, uS0¼ 120, dS0¼ 80 and

Φ uð Þ ¼ max uS0 � X; 0ð Þ ¼ 10

Φ dð Þ ¼ max dS0 � X; 0ð Þ ¼ 0:

The option value at t¼ 0 is then g d¼ 0.8 iven by (0.5 * 10þ0.5 * 0)¼ 5 since
r¼ 0.
Now, suppose someone on the market is trading the option for 8 CU (with

the same price for bid and ask). We then take a short position in the option,
invest 5 in shares and borrow 20 at the risk-free interest rate. We can then put
3 CU in our pocket to use for a free lunch.

Table 2.1 The stock and the option have difference return and risk

Security Exp. Return Risk (s)

Stock 30% 40%
Contingent Claim 46.67% 73.33%
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At time ¼ 0 : 8 sell the option

20 borrow from the bank

�25 invest in a ¼ of a stock

This gives us 3 CU in our pocket.

If the stock price increases to 120, we can sell the shares to the price of
¼ 	 120 ¼ 30, pay back the loan, 20 and pay the buyer 10 for the option

At time ¼ 1 : �10 pay the buyer of the option

�20 pay back to the bank

30 sell the ¼ of a stock

If the stock price decreases to 80, we can sell the shares to the price of ¼	 80¼ 20
and pay back the loan, 20 to the bank. The option is worth nothing.

At time ¼ 1 : 20 pay back to the bank

20 sell the ¼ of a stock

We still have our free lunch.

Suppose, on the other hand, that someone is trading the option at 3. Then
we take a long position in the option, go short in the share, receiving
¼	 100¼ 25 and put 20 at the bank. We then have 2 CU for the free lunch.

At time ¼ 0 : �3 buy in the option

�20 put money into the bank

25 sell a ¼ of a stock

This gives us 2 cash units in our pocket.

If the stock price increases, we will get 10 for the option, take the money
from the bank and buy back the shares at 30.

At time ¼ 1 : 10 payoff from the option

20 take back the money from the bank

�30 buy back the ¼ of a stock

If the shares decrease, the option is worth nothing. We then take the money
from the bank and buy the shares.

At time ¼ 1 : 20 take back the money from the bank

�20 buy back the ¼ of a stock
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Remark We buy one option and want to hedge the change in the option value
by Δ number of stocks where Δ is calculated as

Δ ¼ C uð Þ � C dð Þð Þ= S uð Þ � S dð Þð Þ ¼ 10� 0ð Þ= 120� 80ð Þ ¼ 10=40 ¼1 /

4
:

2.7 More on Binomial Models

Before we describe some other binomial models, we will discuss some general
principles on building such models. First we define a growth factor g. This factor is
the risk-free interest rate if we use the underlying instrument to value options and
zero if we use the underlying forward/future in the valuation. The reason is the
relation between the forward price F and the stock price S: F¼ S � erT.
Furthermore, we can use the stochastic process for the stock price or its

natural logarithm. For this reason we introduce the following variables

X ¼ Siþ1

Si
and Y ¼ ln

Siþ1

Si

� �
,

where Si¼ S(t) and Si + 1¼ S(t +Dt). If we study a change in the stock price
with the stochastic variable Y, we have the first order momentum in the
normal distribution and if we use X we have a lognormal momentum. In the
Black–Scholes world we have a price processes where:

S tð Þ ¼ S0 � e r�1
2
σ2ð Þ�tþσ

ffi
t

p �z tð Þ where z tð Þ 
 N 0; 1ð Þ:

This will be further explained in a later section. In the Black–Scholes world
X follow a Brownian motion with the following expectation values and
variances

E X½ � ¼ eg�Δt

Var Xð Þ ¼ E2 X½ � � eσ
2�Δt � 1


 �
¼ e2�g�Δt � eσ

2�Δt � 1

 �

and

E Y½ � ¼ g� 1

2
σ2

� �
� Δt:

Var Yð Þ ¼ σ2 � Δt

When we approximate the Brownian motion with a binomial process we get
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E X½ � ¼ q � uþ 1� qð Þ � d
E Y½ � ¼ q � lnuþ 1� qð Þ � lnd

and

Var Xð Þ ¼ q � u2 þ 1� qð Þ � d2 � E2 X½ �
Var Yð Þ ¼ q � lnuð Þ2 þ 1� qð Þ � lndð Þ2 � E2 Y½ �:

For different choices of q, u and d we get different binomial models.

2.7.1 Normal Distribution with q ¼ ½

With Y¼ ln (Si + 1/Si) and q¼½ we get

E Y½ � ¼ q � lnuþ 1� qð Þ � lnd ¼ g� 1

2
σ2

� �
� Δt

Var Yð Þ ¼ E Y2
� �� E2 Y½ � ¼ q � lnuð Þ2 þ 1� qð Þ � lndð Þ2 � E2 Y½ � ¼ σ2Δt

u ¼ e g�1
2
σ2ð Þ�Δtþσ

ffiffiffiffi
Δt

p

d ¼ e g�1
2
σ2ð Þ�Δt�σ

ffiffiffiffi
Δt

p
:

2.7.2 Normal Distribution with u ¼ 1/d

With Y¼ ln (Si + 1/Si) and u¼ 1/d we get

E Y½ � ¼ g� 1

2
σ2

� �
� Δt

Var Yð Þ ¼ σ2Δt

q ¼ 1

2
þ

g� 1

2
σ2

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ g� 1

2
σ2

� 	2q
u ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2�Δtþ g�1

2
σ2ð Þ2�Δt2

q
:

2.7.3 Log-Normal Distribution with q ¼ ½

With X¼ Si + 1/Si and q¼½ we get
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E X½ � ¼ q � uþ 1� pð Þ � d ¼ eg�Δt

Var Yð Þ ¼ E Y2
� �� E2 Y½ � ¼ q � u2 þ 1� qð Þ � d2 � E2 Y½ � ¼ e2�g�Δt eσ

2Δt � 1

 �

u ¼ eg�Δt 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ2�Δt � 1ð Þ

pn o
d ¼ eg�Δt 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ2�Δt � 1ð Þ

pn o
:

2.7.4 Log-Normal Distribution with u ¼ 1/d

With X¼ Si + 1/Si and u¼ 1/d we get

E X½ � ¼ eg�Δt

Var Yð Þ ¼ e2�g�Δt eσ
2Δt � 1


 �
q ¼ eg�Δt � d

u� d

u ¼ 1

2
e�g�Δt e 2�gþσ2ð Þ�Δt þ 1


 �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
e�2�g�Δt e 2�gþσ2ð Þ�Δt þ 1


 �2
� 1

r
:

2.7.5 Mixed Normal/Log-Normal Distribution

With X¼ Si + 1/Si and Y¼ ln (Si + 1/Si) we get

E X½ � ¼ eg�Δt

E Y½ � ¼ g� 1

2
σ2

� �
� Δt

Var Yð Þ ¼ σ2 � Δt
u ¼ e g�1

2
σ2ð Þ�Δt � eσ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
q�1ð ÞΔtp

d ¼ e g�1
2
σ2ð Þ�Δt � e�σ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1

qð ÞΔtp
,

where q is solved numerically by the equation

q � eσ2
ffiffiffiffiffi
1�q
q

p
þ 1� qð Þ � eσ2

ffiffiffiffiffi
q

1�q

p
¼ e

σ2

2
Δt:
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2.7.6 The Cox–Ross–Rubinstein Model

This is perhaps the most common model�
u ¼ eσ�

ffiffiffiffi
Δt

p

d ¼ 1=u ¼ e�σ� ffiffiffiffiΔtp

q ¼ er�Δt � d

u� d
:

2.7.7 The Second Order Cox–Ross–Rubinstein

This model is a variant of the model above and gives almost the same result.

u ¼
a2 þ b2 þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2 þ 1Þ2 � 4a2

q
2a

d ¼ 1=u

8><>: (
a ¼ er�Δt

b2 ¼ a2 � ðeσ2�Δt � 1Þ

where

q ¼ er�Δt � d

u� d
:

2.7.8 The Jarrow–Rudd Model

Also this model is a minor modification to the CCR with almost the same
behavior.

u ¼ e r�1
2
σ2ð Þ�Δtþσ� ffiffiffiffiΔtp

d ¼ e r�1
2
σ2ð Þ�Δt�σ� ffiffiffiffiΔtp

�

where
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q ¼ er�Δt � d

u� d

For this model we have the following expectation and variance

E ln
Siþ1

Si

� �� 

¼ q � lnuþ 1� qð Þ � lnd ¼ r � 1

2
σ2

� �
ΔT

E ln Siþ1

Si


 �n o2
� 


¼ q � lnuð Þ2 þ 1� qð Þ � lndð Þ2 ¼ σ2ΔT:

2.7.9 The Tian Model

If we also use the second order moments for the normal distribution we get
this model with somewhat better accuracy:

u ¼ M � V
2

½V þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 2V � 3

p
�

d ¼ M � V
2

½V þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 2V � 3

p
�

8><>:
where �

M ¼ er�Δt

V ¼ eσ
2�Δt

q ¼ er�Δt � d

u� d
:

2.7.10 The Tigori Model

In this model we model the logarithm of the stock price and define u as dx and
d as �dx. Instead of multiplying with u and d we add dx and �dx

dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Δtþ r � 1

2
σ2

� 	2 � Δtð Þ2
q

p ¼ 1

2
þ 1

2
r � 1

2
σ2

� �
dx

Δt

8><>:
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2.7.11 The Leisen–Reimer Model

One of the latest binomial models is the Leisen–Reimer model. This model
has an advantage against the other models. The model has quadratic conver-
gency in the number of time steps, at least for European options and American
call options, while the other models have a linear convergence. Therefore the
accuracy is much better. Furthermore, since there are no (or small) oscillations
in this model, we can use Richardson extrapolation to increase the accuracy
even more. The Richardson extrapolation is, however, not always
recommended for American put options (depending on the strike), since the
early exercise will modify the tree in such a way that the extrapolation doesn’t
give any extra accuracy. First we define

a ¼ er�Δt

d1 ¼
ln

S

K

� �
þ r þ 1

2
σ2

� �
� T � tð Þ

σ
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p

d2 ¼ d1 � σ
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
,

where we recognize d1 and d2 from Black–Scholes equations. We then
introduce:

p ¼ B d2;Nð Þ
p ¼ B d2 þ σ � ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

;N
� 	

,

where B is the inverse of the binomial distribution and N the number of time
steps. We use the Peizer–Pratt method to invert the binomial distribution
[j +½¼ n – ( j +½), n¼ 2j + 1]

p ¼ B z; nð Þ ¼ 1

2
� 1

4
� 1

4
� exp � z

nþ 1=3

� �2

� nþ 1

6

� �( )" #1
2

,

where the sign is the sign of z. We get

u ¼ a � p
p

d ¼ a � 1� p

1� p

8>><>>:
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Remark With the inverse as above, we must have an odd number of time
steps.

2.7.12 Black–Scholes Smoothing

There exists a method to get less oscillation in many models. Without
oscillations we can use Richardson extrapolation Sect. 2.7.18 to get a more
accurate result in price. The convergence is still linear before the extrapolation.
The method is called Black–Scholes smoothing. We use the Black–Scholes
formula discussed in Sect. 4.3 to calculate the values in three of the nodes,
closest to the strike price (marked with an arrow), at the last time step, as in the
Fig. 2.11.
The reason that the Black–Scholes smoothing (also called mollification for

dealing with ill-posed problems) minimizes the oscillations is that we get a
much smoother distribution one step from maturity.
At maturity, the option value converges as to a “hockey stick”—that is, we

can approximate the call option with a function:

Fig. 2.11 A demonstration of Black–Scholes smoothing or mollification to increase
the accuracy in the binomial model
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y ¼
�
0 if x < 0

x if x � 0
:

This function has a “knee” in x ¼ 0. But, using the Black–Scholes formula at
the last nodes, we add the time value and get a nice smooth curve (Fig 2.12).
When we build trees of different sizes we have no singularity in the curve, as

we have if we use the two lines.

2.7.13 Pegging the Strike

Another method to get rid of the oscillations in the solutions in the binomial
model is to “peg” the strike. If we start with the Cox–Ross–Rubinstein model�

u ¼ eσ�
ffiffiffiffi
Δt

p

d ¼ 1=u ¼ e�σ� ffiffiffiffiΔtp

q ¼ er�Δt � d

u� d

and replace the factors, u and d to

u ¼ eσ�
ffiffiffiffi
Δt

p þΔt�lnðK=SÞ

d ¼ 1=u ¼ e�σ� ffiffiffiffiΔtp þΔt�lnðK=SÞ

�

Fig. 2.12 This illustrates how the price of a call option as function of the underly-
ing price behaves before maturity, where the price converges to the shape of a
hockey stick
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we will dramatically reduce the oscillations since we always hit the strike in the
tree. This gives a “sloped” tree and a result on which we can apply Richardson
extrapolation to increase the accuracy even more.
To compare the models above, we will study the following American call

option.

• Underlying price: 100
• Strike price: 110
• Time to maturity 183 days
• Risk-free interest rate 2 %
• Volatility: 40 %
• Number of time step [25, 250]

The Black–Scholes value is 7.836944. CCR gives the result as in Fig. 2.13.
If we apply Black–Scholes smoothing we get the result as in Fig. 2.14.
If we also use Richardson extrapolation we finally get the result as in

Fig. 2.15.
In Figs. 2.16 and 2.17 we see the Leisen–Reimer model without and with

Richardson extrapolation respectively.

Fig. 2.13 The CCR convergence with oscillations
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Fig. 2.14 The CCR convergence with Black–Scholes smoothing

Fig. 2.15 The CCR convergence with Black–Scholes smoothing with Richardson
extrapolation. Note the increasing accuracy in the option price
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Fig. 2.16 The convergence using the Leisen–Reimer model

Fig. 2.17 The convergence using the Leisen–Reimer model with Richardson extrap-
olation. As we see, we need to use five decimal places on the y-axis
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Note that how the number of decimals increases on the option value axis
when we succeed to increase the accuracy of the option price.
Let’s study an American put option to see how good the different binomial

models will converge. We also use only odd nodes to minimize the oscillations
due to jumps between odd and even numbers of nodes. In Fig. 2.18 we use the
Cox–Ross–Rubinstein model (CCR), CCR with Black–Scholes smoothing
(CRR+BS), CCR with Richardson extrapolation (CRR+BS+RE). We also
using the method of pegging the strike price (PEG, PEG+BS and PEG+BS
+RE). Finally, we use the Leisen–Reimer model, with and without Richardson
extrapolation (LR and LR+RE).
In Fig. 2.19 we zoom in to see how the best binomial models behave. As we

can see, the Cox–Ross–Rubinstein and the model with pegging the strike are
very accurate when we combine Black–Scholes smoothing and Richardson
extrapolation. The Leisen–Reimer model behaves very well both with and
without Richardson extrapolation.
When we use the Richardson extrapolation we assume an error of second

order. So we use two calculations for each value. This means that when we use

Fig. 2.18 Convergences in the different binomial models for a European call
option
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a calculation with N nodes, we also use the value by using N/2 nodes to
eliminate the error to second order. Richardson extrapolation is explained in
Sect. 2.7.17.

2.7.14 Binomial Model: The Numerical Algorithm

We will now briefly describe the algorithm for the binomial model. In the tree
below, we study a bought American put option with strike K and a current
stock price S0.
The calculations of the option price, C0 can be made as follows:

1. Start at the end of the tree (at time T). The lowest node has the value:
S0 � dN where N is the number of time-steps. Set the boundary condition in
these nodes with respect to the option type (see Sect. 2.7.15).

2. For the remaining nodes at the same time, move upwards and calculate the
price by multiplying with u/d and use the same boundary condition.

Fig. 2.19 A closer look at convergences in the different binomial models for a
European call option

2 Time-Discrete Models 55



3. Go backwards in the tree and calculate all possible stock prices as in
Fig. 2.20. Then calculate the option values Ci , j. For an American option
this is done as

C4,4 ¼ max K � S0u
4; e�r�Δt qu � C5,5 þ qd � C5,4ð Þ� �

C4,3 ¼ max K � S0u
3d; e�r�Δt qu � C5,4 þ qd � C5,3ð Þ� �

C4,2 ¼ max K � S0 � u2 � d2; e�r�Δt qu � C5,3 þ qd � C5,2ð Þ� �
� � �� � �� � �

C4,0 ¼ max K � S0 � d4; e�r�Δt qu � C5,1 þ qd � C5,0ð Þ� � :

Since the option is of American type, and therefore can be exercised at any
time, we need to calculate both the intrinsic and the discounted values. The
intrinsic value is given by the strike price minus the stock value. If we instead
have a European option, we do not need to calculate the intrinsic value, since
we do not have the right to exercise. Therefore, we just have to calculate the
discounted values

C4,4 ¼ e�r�Δt � qu � C5,5 þ qd � C5,4ð Þ
C4,3 ¼ e�r�Δt � qu � C5,4 þ qd � C5,3ð Þ

� � �� � �� � �
C4,0 ¼ e�r�Δt � qu � C5,1 þ qd � C5,0ð Þ

:

The American option will always have a value greater or equal the
corresponding European option. The reason is that the American option is

Fig. 2.20 How to implement a binomial model for an American put option

56 Analytical Finance: Volume I



more flexible since it can be exercised at any time during the lifetime. When
we are finished, the price of the option is given by C0. The Greeks—that is, the
hedge parameters—can be calculated using the values in the binomial trees:

Δ ¼ C1,1 � C1,0

S0 � u� S0 � d ¼ ∂C
∂S

� �

Γ ¼
C2,2 � C2,1

S0 � u2 � S0 � u � d � C2,1 � C2,0

S0 � u � d � S0 � d2
1

2
� S0 � u2 � S0 � d2
� 	 ¼ ∂2

C

∂S2

 !

Θ ¼ C2,1 � C0

2 � Δt ¼ ∂C
∂t

� �
:

To calculate Vega and Rho, we have to build two new trees where we use
another volatility and risk-free interest rate, respectively. We can then use

υ ¼ C0 σð Þ � C0 σ þ Δσð Þ
Δσ

¼ ∂C
∂σ

� �
ρ ¼ C0 rð Þ � C0 r þ Δrð Þ

Δr
¼ ∂C

∂r

� �
:

The hedge parameters in continuous time are defined by the partial derivatives

Δ ¼ ∂P
∂S

, Γ ¼ ∂2
P

∂S2
, Θ ¼ ∂P

∂T
, υ ¼ ∂P

∂σ
and ρ ¼ ∂P

∂r
:

We use the hedge parameters to calculate the sensitivities in the option price
with respect to the underlying price, the time to maturity, the volatility and the
risk-free interest rate. With good accuracy it is also possible to build trees with
different initial stock prices.

2.7.15 Boundary Conditions

At maturity we use the following conditions, depending on the option type:

X Tð Þ ¼ max S Tð Þ � K; 0ð Þ Bought call option:
X Tð Þ ¼ �max S Tð Þ � K; 0ð Þ ¼ min K � S Tð Þ; 0ð Þ Sold call option:
X Tð Þ ¼ max K � S Tð Þ; 0ð Þ Boughtputoption:
X Tð Þ ¼ �max K � S Tð Þ; 0ð Þ ¼ min S Tð Þ � K; 0ð Þ Soldputoption:
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2.7.16 More on Probabilities in the Binomial Model

When we build the Cox–Ross–Rubinstein tree, we use

u ¼ eσ�
ffiffiffi
dt

p

d ¼ e�σ� ffiffiffidtp :

The maximum stock price in the tree at maturity therefore becomes

Smax ¼ S0 � un ¼ S0 � en�σ�
ffiffiffi
dt

p
:

Similarly, the lowest stock price is given by

Smin ¼ S0 � dn ¼ S0 � e�n�σ� ffiffiffidtp
:

We also have the maximum and minimum probabilities at time to maturity

q Smaxð Þ ¼ qn
u resp: q Sminð Þ ¼ qn

d :

The number of paths reaching the nodes at maturity is shown in the Fig. 2.21.
This can be used to calculate the probability to reach a certain stock price.
If we let N represent the time-node and n the nodes for the level of the price

then we can denote nodes in the tree by (N, n). We can now calculate the
number of paths reaching a specific node by

Fig. 2.21 The number of paths reaching the nodes at maturity in a binomial tree
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N
n

� �
¼ N!

n! N � nð Þ!

The numbers of paths which reach node (5, 3) are given by

5

3

� �
¼ 5!

3!2!
¼ 1 � 2 � 3 � 4 � 5

1 � 2 � 3ð Þ � 1 � 2ð Þ ¼
4 � 5
2

¼ 10:

The 10 paths to reach node (5, 3) can be expressed using up (u) and down (d)
as {uuudd, uudud, uuddu, uduud, ududu, udduu, duuud, duudu, duduu and
dduuu}. The probability of reaching the node is:

P ¼ 5

3

� �
q3u � q2d ¼ if qu ¼ qd ¼

1

2

� �
¼ 2�5 � 5

3

� �
¼ 10

32
:

We can use this to calculate the probability to get a profit (reaching the strike
price) from our option, just by adding the probability for the nodes, which
have a positive value (is in-the-money)

P nð Þ ¼
XN
i¼n

N
i

� �
qi
u � qN�i

d :

In the limit when the number of time-steps goes to infinity, the probabilities
will, according to the Central Limit Theorem, converge to a normal
distribution.

2.7.17 Cox–Ross–Rubinstein Formula

From the above discussion we see that, for a European call option, we can write
the price, with continuous interest rate as:

C q;N; S;Kð Þ ¼ e�N�r�ΔtXN
i¼0

N
i

� �
qi 1� qð ÞN�i

max uidN�iS� K; 0
� 	

,

where

q ¼ eN�r�Δt � d

u� d
:
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We see that we don’t need to sum from i¼ 0, since many of the low values will
be zero due to max(uidN� iS�K, 0). We can find the low index i0 from

max uidN�iS� K; 0
� 	 ¼ uidN�iS� K if i � i0

0 else

�
:

We can find i0 by taking the logarithm and using u ¼ 1=d ¼ eσ
ffiffiffiffi
Δt

p

i0 ¼ ln K=Sð Þ þ σ
ffiffiffiffiffiffiffi
ΔT

p

2σ
ffiffiffiffiffiffiffi
ΔT

p :

We then get

C ¼ C q;N; S;Kð Þ ¼ e�N�r�ΔtXN
i¼i0

N
i

� �
qi 1� qð ÞN�i uidN�iS� K

� 	
:

So

C¼S�
XN
i¼i0

�
N

i

�
ðq�u�e�r�ΔtÞi�ð1�qÞ�d�e�r�Δt	N�i�e�N�r�ΔtK �

XN
i¼i0

�
N

i

�
qið1�qÞN�i

¼S�
XN
i¼i0

bði,N,q�u�e�r�ΔtÞ�e�N�r�ΔtK �
XN
i¼i0

bði,N,qÞ

¼S�Φði0,N,q�u�e�r�ΔtÞ�e�r�TK �Φði0,N,qÞ

where Φ(i, n, q) is the binomial probability distribution. In the above calcu-
lations we have used that

q � u � e�r�Δt þ 1� qð Þ � d � e�r�Δt ¼ 1

To find the formula for a put option, we can use the put-call parity (see Sect.
4.5).

P ¼ e�r�TK � �1�Φði0,N, qÞ
	� S � �1�Φði0,N, q � u � e�r�ΔtÞ	

¼ e�r�TK �ΦðN � i0 þ 1,N, 1� qÞ � S �ΦðN � i0 þ 1,N, 1� q � u � e�r�ΔtÞ

The formulas for call and put options above can be compared by the famous
Black–Scholes–Merton formula in continuous time. We will discuss the
continuous time and Black–Scholes in Chap. 4.
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Example 2.16

Compute the price of an American put option with strike price K¼ 100 and
exercise time T¼ 2 years, using a binomial tree with two trading dates t1¼ 0 and
t2¼ 1 (your portfolio at time t3¼ 2 is the same as your portfolio at time t2¼ 1 )
and parameters s0¼ 100, u¼ 1.4, d¼ 0.8, r¼ 10%, and p¼ 0.75.

Solution

First of all, we have to calculate the risk neutral probabilities. With a simple
discounting the probability for an increasing price is given by

q ¼ qu ¼
1þ r � d

u� d
¼ 0:5 and qd ¼ 1� qu ¼ 0:5 :

Using them we obtain the binomial tree as in Fig. 2.22, where the value of the
stock is written in the nodes and the value of the option in the adjacent boxes.
The value 20 adjacent to the node with stock price 80 is obtained as max{exercise
value, discounted binomial value}

C
0 ¼ max 100� 80;

1

1þ 0:10
� 1

2
� 0þ 1

2
� 36

� �� �
¼ max 20; 16:36f g ¼ 20:

Thus, an early exercise of the option is optimal in this node. The total price of the
option is then given by

C ¼ max 100� 100;
1

1þ 0:10
� 1

2
� 0þ 1

2
� 20

� �� �
¼ max 0; 9:09f g ¼ 9:09:

Fig. 2.22 The binomial tree, given the parameters s0¼ 100, u¼ 1.4, d¼ 0.8
and r¼ 10%

(continued)
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Remark 2.17

We never use the objective probability, p ¼ 0.75. In a risk-neutral world we use
the risk-neutral martingale probabilities.

Remark 2.18

As soon as we know the volatility of a specific model, the possible prices are
known. In the binomial model, u and d are given by the volatility. In this example
u and d were explicitly given. As soon we know the possible prices, we also know
the probability distribution, here given by qu and qd. This means that there is a
one-to-one relationship between the volatilities and the prices. We will discuss
this in more detail later.

The price of the American option is thus 9.09. The corresponding price of a
European put with the same parameters as above, is given by

CE ¼ 1

1þ 0:10
� 1

2
� 0þ 1

2
� 16:36

� �
¼ 7:44:

This price is lower than the American option since we cannot make an early
exercise.

Example 2.19

Compute the price of an European binary asset-or-nothing call option with strike
price K¼ 120 and exercise time T¼ 2 years, using a binomial tree with two trading
dates t1¼ 0 and t2¼ 1 (your portfolio at time t3¼ 2 is the same as your portfolio at
time t2¼ 1 ) with parameters s0¼ 80,

u¼ 1.5, d¼ 0.5, r¼ 0%, and q¼ 0.5.

Solution

An asset-or-nothing call means that, if we reach the strike, we will get the asset—
that is, no payments are made for the underlying asset as it is for a plain vanilla
call option where we have the right to buy the underlying asset at the strike
price. We use the tree in Fig. 2.23.

We get the price of the option as 45.
We can use the values in the tree to calculate the replicating portfolio. At t¼ 0

the following must hold:

x þ y � 120 ¼ 90
x þ y � 40 ¼ 0

�
:

This means that the value process for the replicating portfolio, consisting of the
money-market account (B) and the underlying asset must be equal to the option
value. In other words, regardless if the stock price increase or decrease, the value
of the portfolio should equal the value of the option. This yields that x¼ � 45
and y¼ 9/8. We can also use the formula we derived in Sect. 2.5.3:

(continued)
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Remark 2.17 (continued)

x ¼ 1

1þ r

u �Φ dð Þ � d �Φ uð Þ
u� d

¼ 1

1

1:5 � 0� 0:5 � 90
1:5� 0:5

¼ �45

y ¼ 1

S0

Φ uð Þ �Φ dð Þ
u� d

¼ 1

80

90� 0

1:5� 0:5
¼ 9

8

8>><>>: :

The same calculations can be made to find the replicated portfolio in all the
nodes, e.g., where S¼ 120

x ¼ 1

1

1:5 � 0� 0:5 � 180
1:5� 0:5

¼ �90

y ¼ 1

120

180� 0

1:5� 0:5
¼ 3

2

8>><>>: :

Fig. 2.23 The binomial tree for an asset-or-nothing call, given the
parameters s0¼ 80, u¼ 1.5, d¼ 0.5, r¼ 0%, and q¼ 0.5

2.7.18 Richardson Extrapolation

For those who have not been studying Richardson extrapolation in numerical
analysis, we will here give a short introduction. Suppose we have a numerical
method with a known error of order p (i.e., error ~ hp where h is small value
representing the accuracy in some measurement, e.g. in time, Δt):

F ¼ F hð Þ þ O hpð Þ ¼ F hð Þ þ c � hp þ O hpþ1
� 	

:

If we study two such values of h, (h1, h2) giving
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F ¼ F h1ð Þ þ c � hp
1 þ O hpþ1

1


 �
F ¼ F h2ð Þ þ c � hp

2 þ O hpþ1
2


 �
8<:

it is possible to eliminate the constant c by multiplying the first equation with
hp
2 and the second wit hp

1 and then subtract them

hp
2 � hp

1

� 	
F ¼ hp

2F h1ð Þ � hp
1F h2ð Þ þ O h2pþ1

� 	
:

We then have

F ¼ hp
2F h1ð Þ � hp

1F h2ð Þ
hp
2 � hp

1

þ O hpþ1
� 	

:

In that way, we have increased the accuracy from order O(hp) to O(hp + 1).
Typically, we have h1¼ h and h2¼ h/2:

FR ¼ h=2ð ÞpF hð Þ � hpF h=2ð Þ
h=2ð Þp � hp

¼ 2pF h=2ð Þ � F hð Þ
2p � 1

:

Example 2.20

Suppose we want to find an approximation of the derivative of the function f
(x)¼ e�x sin (x) at the point x¼ 1.0 by using a centred divided difference formula
and Richardson extrapolation. If we use h¼ 0.5 and h¼ 0.25, we get

e� 1;0þ0:5ð Þ � sin 1:0þ 0:5ð Þ � e� 1:0�0:5ð Þ � sin 1:0� 0:5ð Þ
2:0 � 0:5 ¼ �0:068215072

and

e� 1þ0:25ð Þ � sin 1þ 0:25ð Þ � e� 1�0:25ð Þ � sin 1� 0:25ð Þ
2 � 0:25 ¼ �0:100189411

Neither of these approximations is near the correct answer, �0.11079376,
however, using one step of Richardson extrapolation we get

4 � �0:100189411ð Þ � �0:068215072ð Þ
3

¼ �0:110847524:

This value is much closer to the correct value.
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2.8 Finite Difference Methods

We will now discuss how to find a numerical solution to partial differential
equations (PDEs). In particular, we will consider parabolic boundary value
problems of the Black–Scholes type

�∂C
∂t

¼ 1

2
S2σ2

∂2
C

∂S2
þ r � δð ÞS∂C

∂S
� rC:

This equation can be solved by numerical methods, and we will here discuss
some of the most common techniques. Anyone who knows how to numeri-
cally approximate derivatives and has some experience in, for example,
Microsoft Excel can easily solve the partial differential equation above. If we
let x¼ ln (S) we can rewrite the PDE above by the use of the chain rule:

∂C
∂S

¼ ∂C
∂x

∂x
∂S

¼ 1

S

∂C
∂x

∂2
C

∂S2
¼ ∂

∂S
1

S

∂C
∂x

� �
¼ � 1

S2
∂C
∂x

þ 1

S

∂
∂x

∂C
∂S

¼ � 1

S2
∂C
∂x

þ 1

S

∂
∂x

1

S

∂C
∂x

� �
¼ � 1

S2
∂C
∂x

þ 1

S2
∂2

C

∂x2

We then get

�∂C
∂t

¼ 1

2
σ2

∂2
C

∂x2
� 1

2
σ2

∂C
∂x

þ r � δð Þ∂C
∂x

� rC

so

�∂C
∂t

¼ 1

2
σ2

∂2
C

∂x2
þ υ

∂C
∂x

� rC,

where ν¼ r – δ –½σ2. By doing this we have removed the explicit dependen-
cies of S and thereby get the coefficients independent of the stock price (see the
coefficients pu, pm and pd below).
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2.8.1 Derivative Approximations

Mathematically, the partial derivative of a function f(x, y) with respect to y is
defined by

∂f x; yð Þ
∂y

¼ lim
Δy!o

f x; yþ Δyð Þ � f x; yð Þ
Δy

:

This can be is approximated with

∂f x; yð Þ
∂y

ffi f x; yþ Δyð Þ � f x; yð Þ
Δy

,

where Δy represent a small change in the variable y. The above approximation
is called a forward difference since the difference is in the forward direction.
Similarly, the backward difference is defined by

∂f x; yð Þ
∂y

ffi f x; yð Þ � f x; y� Δyð Þ
Δy

:

A central difference is therefore given by

∂f x; yð Þ
∂y

ffi f x; yþ Δyð Þ � f x; y� Δyð Þ
2Δy

:

A more stable central difference scheme is

∂f x; yð Þ
∂y

ffi f x; yþ Δy=2ð Þ � f x; y� Δy=2ð Þ
Δy

:

To find a difference scheme for the second order derivative we use:

∂2
f ðx, yÞ
∂y2

¼ ∂
∂y

f ðx, yþ Δy=2Þ
∂y

� f ðx, y� Δy=2Þ
∂y

� 

ffi f ðx, yþ ΔyÞ � 2 � f ðx, yÞ þ f ðx, y� ΔyÞ

ðΔyÞ2

By substituting these into a partial differential equation we get a scheme to
solve it. We will now study three different schemas that are widely used in
practice.
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The Explicit Finite Difference Method

If we use the following approximations of the derivatives,

∂C
∂x

¼ Ciþ1, jþ1 � Ciþ1, j�1

2 � Δx
∂2

C

∂x2
¼ Ciþ1, jþ1 � 2 � Ciþ1, j þ Ciþ1, j�1

Δx2
,

which are called backward differences, we can then write the Black–Scholes
PDE as

�Ciþ1, j � Ci, j

Δt
¼ 1

2
σ2

Ciþ1, jþ1 � 2 � Ciþ1, j þ Ciþ1, j�1

Δx2

þν � Ciþ1, jþ1 � Ciþ1, j�1

2 � Δx � r � Ciþ1, j

Here i is the time index and j the price index. With some rearrangement we
have

Ci, j ¼ 1

1þ r � Δt pu � Ciþ1, jþ1 þ pm � Ciþ1, j þ pd � Ciþ1, j�1

� 	
,

where

pu ¼
1

2
� Δt � σ2

Δx2
þ ν

Δx

� �
pm ¼ 1� Δt � σ2

Δx2

pd ¼
1

2
� Δt � σ2

Δx2
� ν

Δx

� �
,

and where 1/(1 + rDt) is the discount factor or an approximation of e�rΔt.
One can show that this method is equivalent to using a trinomial tree
(see Sect. 4.12.5). For stability and convergence reasons it has been shown
that we should use Δx and Δt such as

Δx � σ
ffiffiffiffiffiffiffiffiffiffiffi
3 � Δt

p
:
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As we can see, the result from this method is explicitly given because we know
the value (the claim) at the boundary where the option expires. Then, we
perform the calculation backwards in time until the valuation date. Since the
time dependence (i) only depends on future dates (i + 1) we can explicitly
calculate the change, node by node backward in time.

The Implicit Finite Difference Method

If we instead use the following approximations of the derivatives

∂C
∂x

¼ Ci, jþ1 � Ci, j�1

2 � Δx
∂2

C

∂x2
¼ Ci, jþ1 � 2 � Ci, j þ Ci, j�1

Δx2
,

which are called forward differences, the stability and convergence will increase
considerably. But, for each time-step we now have to solve a system of
equations. The Black–Scholes PDE with forward differences is given by

�Ciþ1, j � Ci, j

Δt
¼ 1

2
� σ2 � Ci, jþ1 � 2 � Ci, j þ Ci, j�1

Δx2
þ ν � Ci, jþ1 � Ci, j�1

2 � Δx � r � Ciþ1, j

With some rearrangement, we have:

pu � Ci, jþ1 þ pm � Ci, j þ pd � Ci, j�1 ¼ Ciþ1, j,

where

pu ¼
1

2
� Δt � σ2

Δx2
þ ν

Δx

� �
pm ¼ 1þ Δt � σ2

Δx2
þ r � Δt

pd ¼
1

2
� Δt � σ2

Δx2
� ν

Δx

� �
:

Using the boundary conditions

Ci,Nj
� Ci,Nj�1

¼ λU
Ci,�Njþ1

� Ci,�Nj
¼ λL,
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we have a system with 2Nj + 1 equations. The boundary conditions depend on
the type of option. For a call option we have

λU ¼ Si,Nj
� Si,Nj�1

λL ¼ 0

and for a put option

λU ¼ 0

λL ¼ Si,�Nj
� Si,�Njþ1

:

The corresponding system of equations can be expressed as

1 �1 0 ::: ::: ::: 0

pu pm pd 0 ::: ::: 0

0 pu pm pd 0 ::: 0

::: ::: ::: ::: ::: ::: :::
0 ::: 0 pu pm pd 0

0 ::: ::: 0 pu pm pd
0 ::: ::: ::: 0 1 �1

2666666664

3777777775

Ci,Nj

Ci,Nj�1

Ci,Nj�2

:::
Ci,�Njþ2

Ci,�Njþ1

Ci,�Nj

2666666664

3777777775
¼

λU
Ciþ1,Nj�1

Ciþ1,Nj�2

:::
Ciþ1,Njþ2

Ciþ1,Njþ1

λL

2666666664

3777777775
:

As we can see above, in this model the future depends on the past. We don’t
know the history but we know the value of the option (claim) in the future.
This is given by the boundary condition. Therefore, we have to solve this
system of equation for all time-steps.

The Crank–Nicholson Method

If we combine the forward and backward differences we can get an even better
method, the famous Crank–Nicholson method,

�Ciþ1,j�Ci,j

Δt
¼1

2
�σ2 � ðCiþ1,jþ1�2�Ciþ1,jþCiþ1,j�1ÞþðCi,jþ1�2�Ci,jþCi,j�1Þ

2Δx2

� �
þν� ðCiþ1,jþ1�Ciþ1,j�1ÞþðCi,jþ1�Ci,j�1Þ

4�Δx
� �

�r� Ciþ1,jþCi,j

2

� �

With some rearrangement we have

pu � Ci, jþ1 þ pm � Ci, j þ pd � Ci, j�1 ¼ �pu � Ciþ1, jþ1 � pm � 2ð Þ � Ciþ1, j þ pd
� Ciþ1, j�1,

where
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pu ¼ �1

4
� Δt � σ2

Δx2
þ ν

Δx

� �
pm ¼ 1þ Δt � σ2

2 � Δx2 þ
r � Δt
2

pd ¼ �1

4
� Δt � σ2

Δx2
� ν

Δx

� �
:

Finally, we can calculate the Greeks as

Δ ¼ ∂C
∂S

� C0, jþ1 � C0, j�1

S0, jþ1 � S0, j�1

Γ ¼ ∂2
C

∂S2
�

C0, jþ1 � C0, j

S0, jþ1 � S0, j

� �
� C0, j � C0, j�1

S0, j � S0, j�1

� �
1

2
S0, jþ1 � S0, j�1

� 	
Θ ¼ ∂C

∂t
� C1, j � C0, j

Δt

υ ¼ ∂C
∂σ

� C σð Þ � C σ þ Δσð Þ
Δσ

ρ ¼ ∂C
∂r

� C rð Þ � C r þ Δrð Þ
Δr

:

The accuracy in the method above is O(Δx +Δt), O(Δx2 +Δt) and OΔx2

+ (Δt/2)2 respectively. The integration schemas can be illustrated as in the
Fig. 2.24.
As we can see in Fig. 2.24, in the explicit method we use the information at

time t to calculate the value at t�Δt. In the implicit method the information
passes in the opposite direction so we need to solve a system of equations to
find the values in all nodes at time t. If we use Crank–Nicholson we combine
the implicit and the explicit method.

The Hopscotch Method

When we solve a partial differential equation, we always create some kind of
grid. In the grid shown in Fig. 2.25. we illustrate how we represent the stock
price as function of time. At maturity we have the boundary condition
representing the contingent claim. The other two, parallel to the time axis
represent the minimum and maximum stock price.
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Fig. 2.24 The integration schema can be illustrated like this

Fig. 2.25 The integration schema can be illustrated like this
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If we combine the forward- and backward differences and place the nodes as
in Fig. 2.26, we don’t have to solve the equations simultaneously as we have to
do in the implicit and Crank–Nicholson method. In the Hopscotch model, we
start by calculating the explicit nodes, denoted by E for the time before
maturity. This is every second node. We then continue with the implicit
nodes, denoted by I, who can be calculated by the known explicit nodes and
the nodes in the next time step. We continue like this backwards in time and
by shifting the explicit and implicit nodes as in Fig. 2.26. By mixing the nodes
in this way, we can get almost the same accuracy as the Crank–Nicholson
method without having to solve a complete system of equation.

2.8.2 Some Words About Monte Carlo Simulations

In many situations, Monte Carlo simulations can be very useful to price
financial instruments. This is especially useful for complex derivatives when
no closed form solutions exist. Monte Carlo simulations can also be used when
there are many random factors, such as stochastic volatility, stochastic interest
rate and more realistic price processes with jumps or for complex boundaries.
The disadvantage is the need of extensive and time-consuming calculations,
which needs a lot of computer power.

Fig. 2.26 The Hopscotch schema can be illustrated like this. Here, for each time, we
always start with the explicit nodes. Thereafter it is possible to calculate the values
in the implicit nodes. We continue backwards until the valuation time today
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We will first introduce Monte Carlo simulations and then show how we can
increase the accuracy by control variates and by quasi-random numbers. Con-
sider a plain vanilla European call option in the Black–Scholes world with
continuous compounding, with a constant risk-free interest rate r. The stock
price is following a stochastic process given by

dSt ¼ rStdtþ σStdzt:

For simplicity, we will study the natural logarithm of the stock price, xt¼ ln
(St) which gives the following dynamics

dxt ¼ νdtþ σdzt

ν ¼ r � 1

2
σ2:

This process can be simulated as

xtþΔt ¼ xt þ νΔtþ σ ztþΔt � ztð Þ,

where the random increment in z is normally distributed with mean zero at
variance Δt. Then we can simulate the random process given by

ffiffiffiffiffi
Δt

p � εwhere
ε is normally distributed random numbers. We then have

Sti ¼ exp xtið Þ
xti ¼ xti�1

þ νΔtþ σ
ffiffiffiffiffi
Δt

p � ε:

In the Fig. 2.27 we show 100 simulations of the stock price during a half of a
year divided into 126 trading days. (We suppose there are 252 trading days per
year.) At the starting time, the stock price is 100, the volatility 40 % and the
risk-free interest rate 2 %. We use Monte Carlo simulation to calculate the
price of a European call option with strike price K ¼ 110.
A histogram of the stock price at maturity is shown in Fig. 2.28. We observe

a typical log-normal distribution. From this histogram we can also calculate
the probability that the stock price will be above the strike at maturity. This is
done by counting the number of paths ending above K and divide with the
total number of simulations.
For each scenario, we calculate the profit of the call options as max(ST –

K, 0). To find the theoretical option value we then calculate the mean value of
the discounted payoff
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C0 ¼ exp �rTð Þ1
N

XN
i¼1

max ST, i � K; 0ð Þ

where K is the strike price of the option. If we make 10 simulations with
10,000 simulations each we get: [7.944, 7.705, 7.373, 7.896, 7.535, 7.781,
7.871, 8.232, 7.991 and 7.953]. As we can see, the simulated values vary very
much, also with as many as 10,000 simulations. The average value is 7.828
which can be compared with the Black–Scholes value, 7.836944. As we see
with 100,000 simulations, we still have an error of 0.009 or 0.11 %. With one
million simulations we get 7.78786, an error of 0.6 %. This was even higher
than the previous 100,000 simulations. So the error is very random itself.
The standard deviation (SD) of the simulations is given by

Fig. 2.27 100 Monte Carlo simulations of the stock price starting at 100
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SD ¼ 1

N � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

CT, ið Þ2 � 1

N

XN
i¼1

CT, i

 !2

� exp �2rTð Þ

vuut
and the standard error (SE) is then calculated as

SE ¼ SDffiffiffiffi
N

p :

Unfortunately, as we have seen, one has to make many simulations to get
reasonable accuracy on the option price, usually millions of simulations. But
with a different technique, we can increase the accuracy.
In general, when we simulate a portfolio of many instruments, we sum all

the expected cash flows, discounted to a present value using the appropriate
interest rates. Let si denote the discounted cash flow for the i:th path. We have
that

Fig. 2.28 A histogram of 10,000 Monte Carlo simulations
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si ¼
Xn
k¼1

exp �rktkð ÞCFk:

If we do n such Monte Carlo simulation and average the results we have

bS ¼ 1

n

Xn
k¼1

sk

The central limit theorem states that Ŝwill converge to the true expected value
E(s) as n!1. It is important to realize that Ŝ only is an approximation of E(s)
for any finite n. The central limit theorem states that the averaged mean Ŝexhibits
a standard error of size

σffiffiffi
n

p :

The standard error is a measure of the insecurity in the estimate of the
instruments value. From the size of it we can draw two conclusions. First,
we can improve the accuracy of our simulation by performing more simula-
tions. Second, since the error decreases as O(1/ √ n), it is possible that many
simulations are needed to provide high accuracy.

Variance Reduction: Control Variates

To increase the accuracy we can study a hedged portfolio of both the stock and
the option. This will, in general, give us a much better accuracy of the option
price. By creating a hypothetical stock with a perfect negative correlation to the
first stock, we have

dSt, 1 ¼ rSt, 1dtþ σSt, 1dzt
dSt, 2 ¼ rSt, 2dt� σSt, 2dzt

with option prices

CT, j ¼ max 0; S � exp νT � σ
ffiffiffi
T

p
εi


 �
� X


 �
and
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C�
T, j ¼ max 0; S � exp νT þ σ

ffiffiffi
T

p
εi


 �
� X


 �
:

Both of these should of course have exactly the same value, so we can use the
mean value of both. This technique is called variance reduction with opposite
variation. To increase the variance even more we can study a delta-hedged
position.
The variance without control variance is about 15–25. This is increased,

first to 10–15 and with delta hedging to 3–4. If we combine the techniques we
can go below 3 and if we also use gamma-hedge we can increase the accuracy
even more.
Also the use of random number is of great importance. The best result is

given by using quasi-random numbers. They give a better coverage than real
random numbers. Therefore they give a better result. (For more details of
generating random numbers, see Clewlow and Strickland [2000].)
The use of Monte Carlo methods does not easily handle the pricing of

American options due to their early exercise characteristic. Simulation of
option prices tends to employ a backwards induction technique, which will
tend to overestimate the price of an option. Various algorithms have been put
forward to price American options using backwards induction, but many
algorithms are computationally intensive adn do not converge readily. A
number of authors, including Broadie and Glasserman (1997) and Fu et al.
(2000), have suggested that the most flexible and easily implemented proce-
dure is the simulated tree algorithm, but it too has drawbacks, with the
primary one being exponential growth in computational with the number of
exercise opportunities.
Variance reductions can sometimes also be used to get a better result in the

binomial model. Then the more accurate result for an American put option is
given by

Cam ¼ Cbin
am � Cbin

eur þ Cbs
eur:

The idea is that, for a European option, Black–Scholes gives the exact result
and that the difference between the binomial approximation for the European
and the exact value is the same for the American option:

Cbin
am � Cam ¼ Cbin

eur � Cbs
eur:
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2.9 Value-at-Risk (VaR)

One of the most popular and traditional measure of risk is volatility. The main
problem with volatility, however, is that it does not make allowance for the
direction of an investment’s movement. A stock can be volatile because it
suddenly jumps higher. For investors, risk is about the odds of losing money,
and VaR is based on that common-sense fact. By assuming investors care
about the odds of a really big loss, VaR answers the questions “What is my
worst-case scenario?” or “How much could I lose in a really bad month?”
A VaR statistic has three components:

1. The time horizon (period) to be analysed. This may be related to the time
period over which a financial institution is committed to holding its
portfolio, or to the time required to liquidate the assets. Typical periods
using VaR are 1 day, 10 days or 1 year. A 10-day period is used to compute
capital requirements under the European Capital Adequacy Directive
(CAD) and the Basel II Accords for market risk, whereas a 1-year period
is used for credit risk. A problem by using a long time horizon is that the
portfolio is not the same in the beginning as at the end of the period.

2. The confidence level in which the VaR would not be expected to exceed the
maximum loss. Commonly used confidence levels are 99 % and 95 %.
Confidence levels are not indications of probabilities.

3. The loss amount or loss in percentage.

Keep these three parts in mind as we give some examples of variations of the
questions that VAR answers:

• What is the most I can—with a 95 % or 99 % level of confidence—expect
to lose in dollars over the next month?

• What is the maximum percentage I can—with 95 % or 99 % confidence—
expect to lose over the next year?

Institutional investors use VaR to evaluate portfolio risk, but for illustration we
will use it to evaluate the risk of a single index.
Three methods are used to calculate VaR: the historical method, the

variance-covariance method and using Monte Carlo simulation.
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2.9.1 Historical VaR Method

The historical method is the simplest and most transparent method of calcu-
lation. This involves running the current portfolio across a set of historical
price changes to yield a distribution of changes in portfolio value, and com-
puting a percentile (the VaR).
The benefits of this method are its simplicity to implement, and the fact that

it does not assume a normal distribution of asset returns. Drawbacks are the
requirement for a large market database and the computationally intensive
calculation. By using historical data, we can evaluate VaR as

VaR ¼ MV � σh �
ffiffiffi
d

p
� 2:3263,

whereMV is the market value of the portfolio, σh the historical volatility of the
portfolio and d number of days. The value 2.3263 is a given value used to
calculate the level of certainty of 99 %. It can be calculated solving

1ffiffiffiffiffi
2π

p
Z1
�x

e�z2=2dz ¼ 0:99:

By using Excel you can find the value of x as “¼NORMSINV(99 %)”. In a
calculation with a certainty of 95 % we solve

1ffiffiffiffiffi
2π

p
Z1
�x

e�z2=2dz ¼ 0:95:

The value of x will then be ¼1.6449 (¼NORMSINV(95 %) by using Excel).
In the Fig. 2.29 we calculate the daily return of almost 1,400 points and put

them in a histogram that compares the frequency of return “buckets”. For
example, at the highest point of the histogram (the highest bar), there were
more than 250 days when the daily return was between 0 % and 1 %. At the
far right, you can barely see a tiny bar at 13 %; this represents the one single
day within a period of several years when the daily return was 12.4 %.
Notice the red bars (the leftmost 6 bars between �10 % and �5 %) that

compose the “left tail” of the histogram. These are the lowest 5 % of daily
returns. The worst are always the “left tail”. The red bars run from daily losses
of 5–10 %. Because these are the worst 5 % of all daily returns, we can say with
95 % confidence that the worst daily loss will not exceed 4 %. Put in another
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way, we expect with 95 % confidence that our gain will exceed �4 %. That is
VaR in a nutshell. Let’s rephrase the statistic into both percentage and cash
terms:

• With 95 % confidence, we expect that our worst daily loss will not exceed
4 %.

• If we invest 100, we are 95 % confident that our worst daily loss will not
exceed 4 (100 	 �4 %).

You can see that VaR makes a probabilistic estimate. If we want to increase our
confidence, we need only to “move to the left” on the same histogram, to
where the first two red bars, at �8 % and �7 % represent the worst 1 % of
daily returns:

• With 99 % confidence, we expect that the worst daily loss will not exceed
7 %.

• Or, if we invest 100, we are 99 % confident that our worst daily loss will
not exceed 7.

Fig. 2.29 A histogram of 1386 Monte Carlo simulations
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2.9.2 The Variance–Covariance Method

This method assumes that stock returns are normally distributed. In other
words, it requires that we estimate only two factors - an expected (or average)
return and a standard deviation - which allow us to plot a normal distribution
curve. Here we plot the normal curve against the same actual return data:
The idea behind the variance–covariance method is similar to the ideas

behind the historical method, except that we use the familiar curve instead of
actual data. The advantage of the normal curve is that we automatically know
where the worst 5 % and 1 % lie on the curve. They are a function of our
desired confidence and the standard deviation.
The curve in Fig. 2.30 is based on the actual daily standard deviation of the

index, which is 2.6263 %. The average daily return happened to be fairly close
to zero, so we will assume an average return of zero for illustrative purposes.
Here are the results of plugging the actual standard deviation into the formulas
above.

Confidence # of s Calculation Equals

95 % (high) 1.65 	 s 1.65 	 2.64 % 4.36 %
99 % (very high) 2.33 	 s 2.33 	 2.64 % 6.16 %

We calculate the 99 % VaR as

μp ¼
XN
i¼1

ωiμi

σp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωTΣω

p

VaR99% ¼ �MV μp � 2:3263 � σp
� 	

,

where

ωi¼Vi/Vp is the return on asset i in the portfolio.
Σ the covariance matrix of the N assets.
μi the expected return of asset i, i.e., the mean return.
μp the expected return of the portfolio i.e., the mean.
MV the market value of the portfolio today.
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The benefits of the variance–covariance model are the use of a more
compact and maintainable data set, which can often be bought from third
parties, and the speed of calculation using optimized linear algebra libraries.
Drawbacks include the assumption that the portfolio is composed of assets
whose delta is linear and the assumption of a normal distribution of asset
returns (i.e., market price returns).

2.9.3 Monte Carlo Simulation

The third method involves developing models for future price returns of all
financial instruments in the portfolio and running multiple hypothetical
scenarios through the models. This is done via Monte Carlo simulations that
randomly simulate scenarios generated from historical time series. The result
can be arranged into a histogram with monthly returns.
To summarize, we ran 100 hypothetical scenarios of monthly returns.

Among them, two outcomes were between �15 % and �20 %; and three
were between�20 % and 25 %. That means the worst five outcomes were less
than �15 %. The Monte Carlo simulation therefore leads to the following
VaR conclusion, with 95 % confidence we do not expect to lose more than
15 % during any given month.

Fig. 2.30 The histogram in Fig. 2.30 fitted to a normal distribution. The mean is
0.0181 % and the standard deviation 2.6263 %
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2.9.4 Exponential Weighted VaR

The yearly volatility is calculated as the square root of 252 (the approximate
number of trading days on a year) times the standard deviation

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1
�
Xn
i¼1

xi � xð Þ2:
s

Here xi is the logarithmic return on day i and x the average return during the
time period. In this formula, all the returns are equally weighted. If we use an
exponential weight, we can rescale the volatility in such a way that the return of
the most nearby return in the history becomes more important than those in
the far past. We then use the formula

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λð Þ �

Xn
i¼1

λn�i � xi � xð Þ2
s

,

where λ is a decay factor. The value of λ is usually between 0.94 and 0.99.
Recall the formulas for mean, variance, co-variance, skewness and kurtosis:

μ ¼ E xi½ �
σ ¼ E xi � μð Þ2

h i
σij ¼ E xi � μið Þ xj � μj

� 	� �
s ¼ E xi � μð Þ3

h i
=σ3

k ¼ E xi � μð Þ4
h i

=σ4:

Skewness measures the asymmetry of the distribution and is zero for the
normal distribution, but non-zero for the lognormal distribution. The kurtosis
measures the flatness of the distribution, k ¼ 3 for the normal distribution.

2.9.5 Value-at-Risk for Bonds

The value of a bond can be expressed (quoted) in the interest rate yield-to-
maturity, (P¼ P( y)). With a simple Taylor expansion we may write
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Pt yð Þ � P0 þ dPt

dy
� Δyþ 1

2

d2Pt

dy2
� Δy2,

giving

ΔPt � �P0 � Dmod � Δyþ 1

2
P0 � Cnvx � Δy2,

where we have defined the modified duration and the convexity of the bond. If
we now define the change in yield as Y¼Δy/y0 we have

ΔPt

P0

� � � Dmod � Y � y0 þ
1

2
P0 � Cnvx � Y � y0ð Þ2 ¼ �δ � y0 þ

1

2
γ � y20,

where we have defined δ and γ. This model is called the delta-gamma model. If
we put gamma (γ) to zero, we call that model, the delta model. If the changes in
the interest rate are normal distributed Y
N(0,σ2), then ΔPt/P0
N(0, δ2σ2).
If MV is the market value P0 at t ¼ 0, then

VaR ¼ MV � δ � σh �
ffiffiffi
d

p
� 2:3263 ¼ Dmod � y0 � σh �

ffiffiffi
d

p
� 2:3263:

2.9.6 Portfolio VaR

By using the co-variance between two instruments 1 and 2

σ1,2 ¼ 1

T � 1

XT
t¼1

ΔP1, t � μ1ð Þ ΔP2, t � μ2ð Þ

and the correlation

ρ1,2 ¼
σ1,2
σ1σ2

we can calculate the VaR of a portfolio of the two assets as

VaRp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VaR1ð Þ2 þ VaR2ð Þ2 þ 2 � ρ1,2 � VaR1 � VaR2

q
:

We see that lower correlation gives better diversification. This formula can be
generalized for any number of assets.
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Since VaR is not normally linear, we cannot use the superposition principle
for VaR, especially when using derivatives. Therefore a bank starts by calcu-
lating the VaR at the lowest lever on each trading desks. Then the different
trading desks are aggregated into groups, trading on similar markets or
instruments. This VaR again aggregates step by step up to the top level in
the bank. For each level, the VaR is needed to be simulated as a new part or
portfolio.

2.9.7 Conditional Value-at-Risk: Expected Shortfall

Expected shortfall (ES) is an alternative to Value-at-Risk, which is often
criticized as not presenting a full picture of the risks a company faces. The
“expected shortfall at q% level” is the expected return on the portfolio in the
worst q% of the cases. Expected shortfall is also known as conditional Value-at-
Risk (CVaR) or expected tail loss (ETL).
As we have seen, VaR is defined as the loss level that will not be exceeded

with a certain confidence level during a certain period of time. For example, if
a bank’s 10-day 99 % VaR is $3 million, there is considered to be only a 1 %
chance that losses will exceed $3 million in 10 days. One problem with VaR is
that, when used in an attempt to limit the risks taken by a trader, it can lead to
undesirable results.
The VaR can be expressed as

VaRα Xð Þ ¼ �inf x : P X � xð Þ � αf g,

where 0< a< 1 is the quantile of the distribution of the random variable X.
The ES can be expressed as

ESα Xð Þ ¼ �E XjX � �VaRα Xð Þ½ �:

The meanings of these risk measures are obvious: VaR is a threshold which is
fallen short of in α � 100% of all cases; ES is the expectation (i.e. the mean) of
the losses under the condition that this threshold has already been fallen short
of. The change of the sign is a matter of interpretation to neutralize losses. Risk
capital has to be positive.
Suppose a bank tells a trader that the 1-day 99 % VaR of the trader’s

portfolio must be kept at less than $10 million. There is a danger that the
trader will construct a portfolio where there is a 99 % chance that the daily loss
is less than $10 million and a 1 % chance that it is $50 million. The trader is
satisfying the risk limits imposed by the bank, but is clearly taking an
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unacceptable risk. Most traders would, of course, not behave in this way—but
some might.
CVaR is a measure that produces better incentives for traders than VaR

itself. Where VaR asks the question “how bad can things get?”, CVaR asks “if
things do get bad, what is our expected loss?”
CVaR, like VaR, is a function of two parameters; N, the time horizon in

days and q%, the confidence level. It is the expected loss during an N-day
period, conditional that the loss is greater than the qth percentile of the loss
distribution. For example, with q ¼ 99 and N ¼ 10, the expected shortfall is
the average amount that is lost over a 10-day period, assuming that the loss is
greater than the 99th percentile of the loss distribution. We illustrate the
expected shortfall in Fig. 2.31. The expected shortfall is the expectation i.e. the
mean of the losses under the condition that we make a loss.

2.9.8 Properties of the Risk Measures

A risk measure that is used for specifying capital requirements can be thought
of as the amount of cash (or capital) that must be added to a position to make

Fig. 2.31 The histogram from Fig. 2.30 illustrating the expected shortfall and the
5 % worst case outcomes
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its risk acceptable to regulators. Artzner et al. (1999) have proposed a number
of properties that such a risk measure should have. These are

1. Monotonicity
If a portfolio has lower returns than another portfolio for every state of the
world, its risk measure should be greater.

2. Translation invariance
If we add an amount of cash C to a portfolio, its risk measure should go
down by C.

3. Homogeneity
Changing the size of a portfolio by a factor λ while keeping the relative
amounts of different items in the portfolio the same should result in the risk
measure being multiplied by λ.

4. Sub-additivity
The risk measure for two portfolios after they have been merged should be
no greater than the sum of their risk measures before they were merged.

The first three conditions are straightforward given that the risk measure is
the amount of cash needed to be added to the portfolio to make its risk
acceptable. The fourth condition states that diversification helps to reduce the
risks. When two risks are aggregated, the total of the risk measures
corresponding to the risks should either decrease or stay the same.
VaR satisfies the first three conditions, but it does not always satisfy the

fourth, as will now be illustrated.
Consider two $10 million one-year loans, each of which has a 1.25 %

chance of defaulting. If a default occurs on one of the loans, the recovery of the
loan principal is uncertain, with all recoveries between 0 % and 100 % being
equally likely. If the loan does not default, a profit of $200,000 is made. To
simplify matters, we suppose that if one loan defaults it is certain that the other
loan will not default2. For a single loan, the one-year 99 % VaR is $2 million.
This is because there is a 1.25 % chance of a loss occurring and conditional on
a loss, there is an 80 % chance that the loss is greater than $2 million. The
unconditional probability that the loss is greater than $2 million is 80 % of
1.25 %, or 1 %.
Consider next the portfolio of two loans. Each loan defaults 1.25 % of the

time and they never default together. There is therefore a 2.5 % probability

2 This is to simplify the calculations. If the loans default independently of each other so that two defaults
can occur, the numbers are very slightly different, but the VaR of the portfolio is still greater than the sum
of the VaRs of the individual loans.
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that a default will occur. The VaR in this case turns out to be $5.8 million.
This is because there is a 2.5 % chance of one of the loans defaulting and
conditional on this event, there is a 40 % chance that the loss on the loan that
defaults is greater than $6 million. The unconditional probability that the loss
on the defaulting loan is greater than $6 million is therefore 40 % of 2.5 %, or
1 %. A profit of $200,000 is made on the other loan, showing that the VAR is
$5.8 million.
The total VaR of the loans considered separately is $2 million + $2 mil-

lion ¼ $4 million. The total VaR after they have been combined in the
portfolio is $1.8 million greater, at $5.8 million. This is in spite of the fact
that there are very attractive diversification benefits from combining the loans
in a single portfolio.

2.9.9 Coherent Risk Measures

Risk measures satisfying all four of the conditions in Sect. 2.9.8 are referred to
as coherent. The example illustrates that VaR is not always coherent. It does
not satisfy the sub-additivity condition. This is not just a theoretical issue. Risk
managers sometimes find that, when they have a portfolio in multiple curren-
cies, the total VaR goes up rather than down as expected.
In contrast, it can be shown that the CVaR3 (expected shortfall) measure is

coherent. Consider again the earlier example. The VaR for a single loan is $2
million. The expected shortfall from a single loan when the time horizon is one
year and the confidence level is 99 % is, therefore, the expected loss on the
loan, conditional on a loss greater than $2 million. Given that losses are
uniformly distributed between zero and $10 million, this is halfway between
$2 million and $10 million, or $6 million.
The VaR for a portfolio consisting of the two loans was calculated as $5.8

million. The expected shortfall from the portfolio is, therefore, the expected
loss on the portfolio, conditional on the loss being greater than $5.8 million.
When a loan defaults, the other (by assumption) does not and outcomes are
uniformly distributed between a gain of $200,000 and a loss of $9.8 million.
The expected loss, given that we are in the part of the distribution between
$5.8 million and $9.8 million, is $7.8 million. This is therefore the expected
shortfall on the portfolio. Because $6 million + $6 million > $7.8 million, the
expected shortfall does satisfy the sub-additivity condition for the example.

3 Sometimes CVaR is the acronym for Credit VaR.
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A risk measure can be characterized by the weights it assigns to quantiles of
the loss distribution. VaR gives a 100 % weighting to the qth quantile and zero
to other quantiles. Expected shortfall gives equal weight to all quantiles greater
than the qth quantile and zero weight to all quantiles below the qth quantile.
We can define what is known as a spectral risk measure by making other
assumptions about the weights assigned to quantiles. A general result is that
a spectral risk measure is coherent (that is, it satisfies the sub-additivity
condition) if the weight assigned to the pth quantile of the loss distribution
is a non-decreasing function of p. Expected shortfall satisfies this condition.
VaR, however, does not because the weights assigned to quantiles greater than
q are less than the weight assigned to the qth quantile.

2.9.10 Regulations

Regulators make extensive use of VaR and its importance as a risk measure is
therefore unlikely to diminish. However, expected shortfall has a number of
advantages over VaR. This has led many financial institutions to use it as a risk
measure internally.
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3
Introduction to Probability Theory

3.1 Introduction

The study of financial engineering, risk modelling and the valuation of
financial instruments requires knowledge in basic statistics and probability
theory. We will here provide a short introduction to the basic concepts. Since
the main focus of this book is not on statistics and probability theory, we give
only the theorems and definitions needed for further reading in financial
engineering.

3.2 A Binomial Model

So far we have been studying the binomial model where the price can grow
with a factor u from one time to another, or decrease with a factor d during the
same time. A stochastic variable, such as tossing a coin, decides whether u or
d should be used with some probabilities. We will study such a tree with the
following properties:
u¼ 2) d¼ 1/u¼ 0.5, S0¼ 4 and qu ¼ qd ¼ 1=2 where S2(uu)¼ u2S0,

S2(ud)¼ udS0 etc. (Fig. 3.1).
If we are tossing a coin once, twice and three times, we get a sample space Ω

given by
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Ω1 ¼ u; df g ¼ ω1f g,
Ω2 ¼ uu; ud; du; ddf g ¼ ω2f g,
Ω3 ¼ uuu; uud; udu; duu; udd; dud; ddu; dddf g ¼ ω3f g:

Here, Ωi represent the sample space after i tossings. We also introduce
the interest rate r, such as for one period in time 1 CU (cash unit) will grow
to (1 + r) 1 CU¼ 1 R CU.Using the no-arbitrage condition we know that the
factor R must be in the interval d�R� u because if R> u nobody would be
interested in buying the stock and if R< d then r< 0, which is unrealistic.
We say that the model above is free of arbitrage if and only if d�R� u.

Example 3.1

Let’s study a European call option with strike K at t¼ 1. On maturity, the value is
given by

V1 oð Þ ¼ S1 oð Þ � Kð Þþ � max S1 oð Þ � K ; 0ð Þ:

We are now looking for the arbitrage-free price. The two possible outcomes, with
u and d are given by

V1 oð Þ ¼ uS0 � Kð Þþ if o1 ¼ u
dS0 � Kð Þþ if o1 ¼ d:

�

To hedge a short position of the option we have to buy D0 stocks. This means that
at time t ¼ 0 we have sell the option, giving us V0 cash units. But we also buy D0

stocks at the price of S0. We then have (V0�D0S0) cash units to put in our money-
market account. If the sign is negative, that means we have to borrow this
amount at a rate of r. The value process gives us two possible values on maturity

V1 uð Þ ¼ D0 � S1 uð Þ þ R � V0 � D0 � S0ð Þ
V1 dð Þ ¼ D0 � S1 dð Þ þ R � V0 � D0 � S0ð Þ:

We can therefore solve D0 to get

(continued)

Fig. 3.1 Abinomial treewith parameters u¼ 2, d¼ 1/u¼ 0.5, S0¼ 4 and qu ¼ qd ¼ 1=2
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Example 3.1 (continued)

Δ0 ¼ V1 uð Þ � V1 dð Þ
S1 uð Þ � S1 dð Þ ! ∂V

∂S
:

By inserting D0 into the equation above, we find the price of the option at t ¼ 0

V0 ¼ 1

R

R� d

u� d
V1 uð Þ � R� u

u� d
V1 dð Þ

� �
¼ 1

R
qu � V1 uð Þ þ qd � V1 dð Þf g ¼ 1

R
EQ V1½ �

Here we have also defined qu and qd as the risk-neutral probabilities as

qu ¼
R� d

u� d
and qu ¼ � R� u

u� d
:

We also let the expression

P X½ � ¼ 1

R
EQ X½ �

represent the arbitrage free price on the option on the contingent claim X with
respect to the risk-neutral probability measure Q, the martingale measure.
Similarly, we get

V1 uð Þ ¼ 1

R
qu � V2 uuð Þ þ qd � V2 udð Þf g; D1 uð Þ ¼ V2 uuð Þ � V2 udð Þ

S2 uuð Þ � S2 udð Þ
V1 dð Þ ¼ 1

R
qu � V2 duð Þ þ qd � V2 ddð Þf g; D1 dð Þ ¼ V2 duð Þ � V2 ddð Þ

S2 duð Þ � S2 ddð Þ :

3.3 Finite Probability Spaces

Let F be the set of all subsets to the sample space Ω (where ∅, {ddd}, {uuu,
uud, udu, ddd}, Ω are examples of some) where ∅ is the empty set. We
define a probability measure P by a function mappingF into the interval [0, 1]
with P(Ω)¼ 1 where

P [1
k¼1

Ak

� �
¼
X1
k¼1

P Akð Þ:

Here A1, A2,. . . is a sequence of disjoint sets in F . A probability measures has
the following interpretation: let A be a subset ofF and imagine thatΩ is the set
of all possible outcomes of some random experiment. Then there is a certain
probability between 0 and 1 that when the experiment is performed, the
outcome will lie in the set A. We think of P(A) as this probability. From
now we will use Pu ¼ 1/3 and Pd ¼ 2/3.
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Example 3.2

The probability to get ahead (i.e., a u) in the first toss when we are tossing the
coin three times, is given by

P uuu; uud; udu; uddf g ¼ 1

3

� �3

þ 2

3

1

3

� �2

þ 2

3

1

3

� �2

þ 1

3

2

3

� �2

¼ 1

3
:

Definition 3.3 A σ-algebra is a collectionF of subsets inΩ with the following
properties

∅2F
A2F ) AC2F
A1, A2:::: is a sequence of subspaces to F ) [

k
Ak2 F

8<
:

It is essential to understand that, in probabilistic terms, the σ-algebra can be
interpreted as containing all relevant information about a random variable.

Example 3.4

Some important s-algebras to O above is

F 0 ¼ f∅,Og
F 1 ¼ f∅,O, fuuu, uud, udu, uddg, fduu, dud, ddu, dddgg
F 2 ¼ f∅,O, fuuu, uudg, fudu, uddg, fduu, dudg, fddu, dddgg and all unions of theseg
F 3 ¼ F ¼ the set of all subsets of O:

We say that F3 is finer than F 2, which is finer than F 1.

If we introduce the terms Au¼ {uuu, uud, udu, udd}¼ {u* *} ,Ad¼ {d * *},
Auu¼ {uu*} etc., we can write

F 1 ¼ f∅,Ω,Au,Adg
F 2 ¼ f∅,Ω,Au,Ad ,Auu,Aud ,Adu,Add ,AuuUAdu,AuuUAdd ,AudUAdu,

AudUAdd ,Auu
c,Aud

c,Adu
c,Add

cg

We can illustrate F 2 as
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where the circle represent the full set Ω.

Definition 3.5 A pair (X,F) where X is a set andF a σ-algebra on X is called a
measurable space. The sub-spaces that exist in F are called F -measurable sets.
In particular, if a random variable Y is a function of X , (Y¼Φ(X)), then Y is

said to be FX-measurable.

Definition 3.6 A finite measure μ on a measurable space is a function such as

μ Að Þ � 0,

μ ∅ð Þ ¼ 0,

If Ak2F 8 k ¼ 1, 2, ::: and Ai \ Aj ¼ ∅ for i 6¼ j, then

μ [1
k¼1

Ak

� �
¼
X1
k¼1

μ Akð Þ

Definition 3.7 A filtrationF1 ¼ F ¼ {Ft; t� 0} is a sequence of σ-algebras
F 0, F 1, . . .., F n such that F t contains all sets in Ft�1:

F t � F 8 t � 0

s � t ) F s2F t

�
:

We say that the σ-algebra is generated byF t. A finite probability space (Ω,F t, P)
with the filtration of σ-algebras is sometimes called σ-fields. We also have

F 0 ¼ Ω;∅f g � F 1 � F 2::: � F T :

We say that each σ-algebra F i when 0 � i � T, are generated by partitions. Since
F i�1 � F i it follows that the partition generating F i is finer than that which
generatesF i�1. The elements of a partition are sometimes called cells or atoms since
they make up larger objects in the σ-algebras that they generate, just as atoms creates
a molecule. Since the partition that creates F i is finer than that those who create
Fi�1 it is clear that the set of partition at time i�1make a split to construct the set of
the partition at time i. The way in which sets in a partition split to form sets of a new
partition turns out to be quite important, so we define the splitting index S(E) of a
cell E in a partition to be the number of cells that it splits into the new partition.
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Definition 3.8 X is F -adapted if Xt is F t-measurable for all t � 0.

Definition 3.9 A function f: X ! R is said to be F –measurable, if for each
interval I the set f �1(I) is F–measurable, i.e.

x2Xj f xð Þ2 If g2F :

Definition 3.10 A stochastic variable X is a mapping of Ω on R such as

X : Ω ! R so that X isF -measurable:

Example 3.11

Consider again, the binomial tree above. A mirror under S2 on [4, 27] is given by

o2OjS2 oð Þ2 4; 27½ �f g ¼ o2Oj4 � S2 oð Þ � 27f g ¼ Ac
dd :

This is all nodes except S2(dd) ¼ 1. The complete list of subset on Owith mirrors of
sets in R is Ø, O, Auu, AudUAdu, Add + all unions of these. They form a s-algebra
generated by S2: s(S2).

The symbol F X
t represent the information generated by X on the time

interval [0, t], that is, the changes of X on this interval. We base this on the
observation of the trajectory {X(s) : 0� s� t}.
If a specific event A occur in this interval, then A2F X

t . If the value of a
stochastic variable Z can be determined by observation of the trajectory of X,
then we write Z2F X

t . Furthermore, if a stochastic process Y2F X
t we say that

Y is adapted to the filtration F X
t

� �
t�0

. Remark, X is always adapted to the

natural filtration FX ¼ F X
t ; t � 0

� �
Definition 3.12 A stochastic process can be considered as a discrete set of time-
indexed random variables Xnf g1n¼1 or, as in continuous time, a continuous set
{Xt}t> 0. In many situations we consider such a process, containing a drift μ
and diffusion σ

X tþ Δtð Þ � X tð Þ ¼ μ t;X tð Þ½ �Δtþ σ t;X tð Þ½ �Z tð Þ:

Sometimes this is interpreted as a random process (a random walk) upon a
deterministic drift. In the continuous limit the random process becomes a
Wiener process.
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Definition 3.13 A stochastic process {W(t); t � 0} is called a Wiener process if

1. W(0) ¼ 0
2. (W(u)�W(t)) and (W(s)�W(r)) is independent (we say that W has inde-

pendent increments) r � s � t � u.
3. W(t)�W(s) is normal distributed N 0;

ffiffiffiffiffiffiffiffiffiffi
t� s

p	 
 8 s < t.
4. W(t) has continuous trajectories.

A normal distributed process N[μ, σ] has the mean value given as μ and the
variance σ. A very important property of a Wiener process (also called a
Brownian motion) is (dW)2 ¼ dt.

From a random process Xn we can construct a continuous process by linear
interpolation between the distinct points

Y tð Þ ¼ Xi þ t� ndtð Þ Xiþ1 � Xið Þ,

where idt � t � (i + 1) dt. This process has the following properties:

1. Y(t) is said to have the Markov property if given Y(t) and s> t Y(s) is
independent of Y(u) for all u < t.

2. E[Y(T)] ¼ 0
3. E[Y(T)2] ¼ T

If we define a Wiener process as X tð Þ ¼ lim
dt!0

Y tð Þ with X(0) ¼ 0 it follows

from the central limit theorem that the probability distribution of the incre-
ments X(t + a)�X(t) are normal distributed around 0 with the variance a.
Furthermore, the Markov property gives

ðT
0

dX tð Þ2 ¼ lim
dt!0

Xn
i¼1

Xi � Xi�1ð Þ2
( )* +

¼ lim
dt!0

Xnð Þ2
� �

¼ T ¼
ðT
0

dt

or

dX tð Þ2 ¼ dt:

Here the brackets hxi mean the mean value of x. We also have that

Et X tþ að Þ � X tð Þ½ � ¼ 0,

where Et is the expected value at time t, which gives the martingale property
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Et X tþ að Þ½ � ¼ Et X tð Þ½ �

such as

Es X tð Þ½ � ¼ Es Et X tð Þ½ �½ �,
Es X tð ÞX tð Þ½ � ¼ min t; sð Þ ¼ s: for s � t:

In the risk-neutral valuation we use in continuous time a risk-free money-
market account and where the stock is following the process:

dS tð Þ ¼ α tð ÞS tð Þdtþ σ tð ÞS tð ÞdW tð Þ

HereW(t) is a Wiener process on (Ω,F , P) with filtrationF(t) and where α(t),
σ(t) and the interest rate r(t) are adapted to F (t).

Definition 3.14 A σ-algebra generated by X is the complete list of all sets

ω2ΩjX ωð Þ2Af g,

where A � R.
Let G be a sub σ-algebra of F . We then say that X is G-measurable if all sets

in σ(X) 2 G.

Definition 3.15 Given (Ω,F , P, X). If A � R we define the distribution
measure as

μX Að Þ ¼ P X2Að Þ:

Example 3.16

F r o m t h e b i n o m i a l t r e e ; mS2 ∅ð Þ ¼ P ∅ð Þ ¼ 0, mS2 Rð Þ ¼ P Oð Þ ¼ 1
mS2 0; 3½ � ¼ P S2 ¼ 1ð Þ ¼ P Addð Þ ¼ 2=3ð Þ2. The distribution measure of S2 place the
mass (1/3)2¼1/9 on S2 ¼ 16, the mass 2*(1/3)*(2/3) ¼ 4/9 on S2 ¼ 4 and (2/3)2 ¼ 4/9
on S2 ¼ 1. Hereby we have the following distribution function on S2

FS2 xð Þ ¼ P S2 � xð Þ ¼
0 x < 1
4=9 1 � x < 4
4=9 4 � x < 16
1 x � 16:

8>><
>>:
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Remark 3.17 A stochastic variable can have many distributions since they
depend on the choice of probabilities. For the same reason, different random
variables can have the same distribution function.

Definition 3.18 2X is defined as the set of all subsets of X in Ω, i.e. as

2X ¼ AjA � Xf g:

Remark 3.19 2X is a set which elements are subsets of X. We illustrate this
with the following example:

X ¼ f1, 2, 3g ) 2X ¼ f∅,X, f1g,f2g,f3g,f1, 2g,f1, 3g,f2, 3gg:

A partition P on Ω, can be written as P ¼ Ai; i ¼ 1; 2; . . . ; kf g:

Example 3.20

We can create partitions of O ¼ [0, 1], P1 ¼ {A1, A2, A3, A4}, P2 ¼ {B1, B2, B3} as
A1 ¼ [0, 1/3), A2 ¼ [1/3, 1/2), A3 ¼ [1/2, 3/4), A4 ¼ [3/4, 1] and B1 ¼ [0, 1/3),
B2 ¼ [1/3, 3/4), B3 ¼ [3/4, 1].

Definition 3.21 A partition S says to be finer than another partition P if all
components in P are a union of components in S.

Definition 3.22 If P is a partition of Ω and f: Ω ! R is a given map. Then,
we say that the function f is P –measurable if P is finer than σ( f ).

Theorem 3.23 If f is P –measurable, then f is σ{P }-measurable.
This is obvious since P � σ{P }. We interpret this as the function f is

constant on each of the components of P.
We now have:

1. P is generating a natural σ-algebra σ{P }.
2. Given σ{P} we can recreateP via A 2P if and only if A 6¼Ø, and A 2 σ{P }

and no subset of A belong to σ{P }.
3. S is finer than P , σ{P }� σ{S}.
4. f is P-measurable , f is σ{P }-measurable.
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We interpret F � G as G contains more information than F .

Definition 3.24 σ{X} is the smallest σ-algebra such that X is F–measurable.

Definition 3.25 If a Wiener processW, is adapted to a filtrationF and ifW(t)
� W(s) is independent of F s we call W a F -Wiener process.
Consider the stochastic differential equation (SDE)

dX tð Þ ¼ μ t;X tð Þ½ �dtþ σ t;X tð Þ½ �dW tð Þ
X 0ð Þ ¼ x,

�

where μ(t, x) and σ(t, x) is given, continuous and Lipschitz in x. The Lipschitz
condition says that there exists a constant L such as for all μ and σ:

μ t; xð Þ � μ t; yð Þ

 � L



x� y


 8t, x, y

σ t; xð Þ � σ t; yð Þ

 � L



x� y


 8t, x, y

Then we are able to solve the SDE by integration

X tð Þ ¼ xþ
ðt
o

μ s;X sð Þ½ �dsþ
ðt
o

σ s;X sð Þ½ �dW sð Þ

Here the last integral is not a Reiman–Stjeltsin integral since W has infinite
variation.

Definition 3.26 The expectation value (or mean value) of X given (Ω,F , P) is
in the discrete case given by

E X½ � ¼
X
ω2Ω

X ωð ÞP ωf g

and

E X½ � ¼
ð
Ω

X ωð ÞdP ωf g

in the continuous case.
For a finite set X¼ {x1, x2, . . . , xn} we can partition Ω into subsets

{Xi¼ x1} , . . . , {Xi¼ xn}, and then write
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E X½ � ¼
Xn
k¼1

X
ω2 Xk¼xkf g

X ωð Þ � P ωf g ¼
Xn
k¼1

xk
X
ω

P ωf g

¼
Xn
k¼1

xkP Xk ¼ xkð Þ ¼
Xn
k¼1

xkμX xkf g

Therefore we can sum over either Ω or R.

Example 3.27

Calculate E[S3] in the binomial tree

E½S3� ¼ S2ðuuuÞPfuuug þ S2ðuudÞPfuudg þ S2ðuduÞPfudug
þ S2ðuddÞPfuddg þ S2ðduuÞPfduug þ S2ðdduÞPfddug
þ S2ðdudÞPfdudg þ S2ðdddÞPfdddg
¼ 16 � PðAuuÞ þ 4 � PðAud [ AduÞ þ PðAddÞ
¼ 16 � PfS2 ¼ 16g þ 4 � PfS2 ¼ 4g þ PfS2 ¼ 1g
¼ 16 � mS2f16g þ 4 � mS2f4g þ mS2f1g ¼ 16 � 1

9
þ 4 � 4

9
þ 4

9
¼ 36

9
¼ 4

Definition 3.28 The Tower property. Let X be a random variable on (Ω,F , P)
and let H � G be any two σ-algebras on P, then

E E XjG½ �jH½ � ¼ E XjH½ �:

Definition 3.29 The Variance of X is defined as

Var X½ � ¼
ð
Ω

X ωð Þ � E X½ �½ �2dP ωf g

Var½X� ¼
X
ω¼Ω

�
XðωÞ � E½XðωÞ�

�2
Pfωg ¼

Xn
k¼1

�
xk � E½XðωÞ�

�2
μXðxkÞ ¼

¼ E

��
XðωÞ � E

	
XðωÞ
�2� ¼ E

h
X2ðωÞ

i
�
�
E
	
XðωÞ
�2
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Definition 3.30 An indicator function I : R ! R is defined by

IA xð Þ ¼ 0 x=2A
1 x2A

�

where A is called a set indicated by IA.

Definition 3.31 A function h is called simple if we can write

h xð Þ ¼
Xn
k¼1

ckIk xð Þ

Definition 3.32 Let f: X ! R be non-negative and measurable. Then, the
integral of f is defined byð

X

f xð Þdμ xð Þ ¼ sup
φ

ð
X

φ xð Þdμ xð Þ,

where the supremum is taken over all simple functions φ � f.

Definition 3.33 A measurable function f is said to be integrable ifð
X

f xð Þj jdμ xð Þ < 1

We write this as f 2L1 X;F ; μð Þ. For an integrable function f, the integral on
f on X is defined byð

X

f xð Þdμ xð Þ ¼
ð
X

fþ xð Þdμ xð Þ �
ð
X

f� xð Þdμ xð Þ:

If A is a measurable set, the integral of f on A is defined byð
A

f xð Þdμ xð Þ ¼
ð
X

IA xð Þf xð Þdμ xð Þ:
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3.3.1 Introduction to Integration Theory

Definition 3.34 A Borel algebra B(R) is defined as the smallest σ-algebra that
contains all open intervals on R. The subsets in B are called Borel sets. All sets
we can think of and all writable sets on R 2B, e.g.

a;1ð Þ ¼ [1
n¼1

a; aþ nð Þ �1; að Þ ¼ [1
n¼1

a� n; að Þ
a;1½ Þ ¼ [1

n¼1
a; aþ n½ � �1; að � ¼ [1

n¼1
a� n; a½ �

�1; að Þ [ b;1ð Þ a; b½ � ¼ �1; að Þ [ b;1ð Þð Þc

a; bð � ¼ �1; bð � \ a;1ð Þ af g ¼ \1
n¼1

a� 1

n
; aþ 1

n

� �

are Borel sets. This means e.g. that all sets with infinitely number of real
numbers is a Borel set; e.g. A ¼ {a1, a2, . . ., an} is a Borel set

A ¼ [n
k¼1

akf g:

Therefore, all irrational numbers are a Borel set since these are complement to
all real numbers.

Definition 3.35 A measure on (R,B(R)) is a function μ, which mapsB on the
interval [0, 1] with

μ ∅ð Þ ¼ 0

μ
� [1
k¼1

Ak

� ¼X1
k¼1

μ Akð Þ:

8<
:

Definition 3.36 A function f : R ! B(R) is called Borel measurable if

x2Bjf xð Þ2Af g2B Rð Þ:

To define measures of un-countable sets we have to generalize the concept of
integration and introduce Lebesgue-integrals (see the literature about integra-
tion theory). We will only need selected definitions, as given below.

3 Introduction to Probability Theory 103



Definition 3.37 Some Lebesgue integralsð
R

IAdμ0 ¼ μ0 Að Þ:

For a simple function we have

h xð Þ ¼
Xn
k¼1

ckIk xð Þ )ð
R

hdμ0 ¼
Xn
k¼1

ck

ð
R

IAdμ0 ¼
Xn
k¼1

ckμ0 Að Þ:

For a simple function h(x)� f(x) 8 x2R)
ð
R

fdμ0 ¼ sup

ð
R

hdμ0

8<
:

9=
;:

If this is 6¼ 1 it is called f-integrable.ð
R

fdμ0 ¼
ð
R

fþdμ0 �
ð
R

f�dμ0,

where f +(x)¼ max {f(x), 0} and f �(x)¼ max {�f (x), 0}.ð
A

fdμ0 ¼
ð
R

IAfdμ0,

where IA is an indicator function to A.

3.3.2 Probability Spaces

Definition 3.38 A probability space is defined by (Ω, F , P), where

• Ω is a non-empty set, called sample space, which contains all possible
outcomes of some random experiment.

• F is a σ-algebra of all subsets of Ω.
• P is a probability measure on (Ω,F ) which assigns to each set A 2 F a

number P(A) ¼ [0, 1], which represent the probability that the outcome of
the random experiment lies in A.
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Definition 3.39 Given (Ω,F , P) and a stochastic variable X. If X is an
indicator function (e.g., X(ω)¼ IA(ω)¼ 1 if ω 2 A and 0 otherwise) thenð

Ω

XdP ¼ P Að Þ:

If X is simple, we have

ð
Ω

XdP ¼
Xn
k¼1

ck

ð
Ω

IAk
dP ¼

Xn
k¼1

ckP Akð Þ
ð
A

XdP ¼
ð
Ω

X � IAdP

Definition 3.40 The expectation value for a stochastic variable is given by

E X½ � ¼
ð
Ω

X � IAdP ¼
ð
Ω

X ωð Þ � dP ωð Þ:

Definition 3.41 If X is a positive stochastic variable, then

E X½ � ¼
ð1
0

P X � tð Þdt:

Definition 3.42 φ is a density function on R if φ > 0 and
ð
Ω
φ � dμ0 ¼ 1. The

associated probability measure is given by

P Að Þ ¼
ð
A

φ � dμ08A2F Rð Þ:

Here φ is called the Radon–Nikodym derivative with respect to μ0 and

φ ¼ dP

dμ0
:
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3.3.3 Independence

Definition 3.43 A 2 F and B 2 F is independent if P(A\B) ¼ P(A)P(B).

Definition 3.44 G and H is independent σ-algebras if P(A\B) ¼ P(A)P(B) 8
A 2 G and B 2 H.

Definition 3.45 X and Y are independent stochastic variables if they generate
independent σ-algebras.

Example 3.46

Let P{HH} ¼ p2, P{HT} ¼ P{TH} ¼ qp, P{TT} ¼ q2 and define A ¼ {HH, HT} and
B ¼ {HT, TH} ) A\B ¼ {HT}. A and B is independent if P{HT} ¼ P{HH, HT}P{HT, TH}
) qp ¼ P(A)P(B) ¼ (p2 + qp)*2qp ¼ p*2qp ¼ 2qp2 ) p ¼ q ¼ ½.

Example 3.47

If G ¼ {Ø, O, {HH, HT}, {TH, TT}} and H ¼ {Ø, O, {HH, TH}, {HT, TT}}. If we now let
A ¼ {HH, HT} and B ¼ {HH, TH} we have P(A)P(B) ¼ (p2 + qp)(p2 + qp) ¼ p2, P
(A\B) ¼ P{HH} ¼ p2

3.3.4 Conditioned Expectations

Study the binomial model
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where every Sk is a stochastic process on Ω ¼ {uuu, uud, udu, duu, udd, dud,
ddu, ddd}. F ¼ P(Ω) is a σ-algebra and (Ω,F ) a measurable space. Every Sk is
then a measurable function Ω ! R.

Definition 3.48 The conditioned expectation of A given B is defined by

P AjBð Þ ¼ P A \ Bð Þ
P Bð Þ :

Definition 3.49 Suppose that we know the outcome ω 2 B where B is
measurable and P(B) > 0 then we define the expectation value of X condi-
tioned B as

E XjB½ � ¼ 1

P Bð Þ
ð
Ω

X ωð ÞdP ωð Þ:

Example 3.50

Let us calculate S1 given S2: E[S1 | S2]. We know this is a stochastic variable

Y : Y oð Þ ¼ E S1jS2 ¼ y½ � where y ¼ S2 oð Þ:

Here E[S1 | S2] has the following properties
* It is independent of o.
* If S2 is known then E[S1 | S2] is known. Specifically, we have
– If o ¼ uuu or o ¼ uud) S2(o)¼u2S0 ) without knowing o we know S1(o)¼uS0

E S1jS2½ � uuuð Þ ¼ E S1jS2½ � uudð Þ ¼ uS0:

Similarly, if o ¼ dd* we get

E S1jS2½ � dddð Þ ¼ E S1jS2½ � dduð Þ ¼ dS0

– If o ¼ A ¼{udu, udd, duu, dud} ) S2(o)¼udS0 ) but we don’t know if
S1(o)¼uS0 or S1(o)¼dS0. Therefore, we take the average value

P Að Þ ¼ p2qþ pq2 þ p2qþ pq2 ¼ pþ q ¼ 1f g ¼ 2pq:

Furthermore, we have

ð
A

S1dP ¼ p2quS0 þ pq2 uS0 þ p2qdS0 þ pq2dS0 ¼ pq uþ dð ÞS0:

For o 2 A we define

(continued)
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Example 3.50 (continued)

E S1jS2½ � ωð Þ ¼

ð
A

S1dP

P Að Þ ¼ 1

2
uþ dð Þ � S0:

Then

ð
A

E S1jS2½ �dP ¼
ð
A

S1dP

To summarize, we can write

E S1jS2½ � oð Þ ¼ g S2 oð Þð Þ,

where

g xð Þ ¼
u � S0 if x ¼ u2S0
1

2
uþ dð Þ � S0 if x ¼ udS0

d � S0 if x ¼ d2S0:

8><
>:

In other words E[S1 | S2] is random only in the dependence of S2. We can also write
E[S1|S2 ¼ x] ¼ g(x), where g is the function defined above. The random variable E
[S1 | S2] has two fundamental properties

* E[S1 | S2] is s(S2)-measurable
* For all sets A 2 s(S2)

ð
A

E S1jS2½ �dP ¼
ð
A

S1dP:

Some important properties of expectation values:

E[E[X|G]]¼ E[X]

E[X|G]¼X if X is G-measurable
E[X|G]� 0 if X � 0
E[a1X1 + a2X2|G]¼ a1E[X1|G] +a2E[X2|G] 0
E[f(X)|G]�f(E[X |G]) f : R!R, E |[f(X)]|�1 Jensen’s unlikeness
E[E[X|G]|H]¼ E[X|H] if H is a sub-s-algebra on G.
E[ZX|G]¼ ZE[X|G] if Z is G-measurable.
E[X|G]¼ E[X] if X is independent of G.
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3.3.5 Martingales

We have mentioned before that a martingale describes a fair game, where the
profit in average will be zero even if the gambler is allowed to use previous
results on a new stake. A stochastic process {Xt} is a martingale if the condi-
tional expectation value of Xt is given by: E[Xt | Xu ; u � s] ¼ Xs for all s < t.
For a general definition we need

• A probability space (Ω, F , P).
• A filtration, i.e. a sequence of σ-algebrasF0	 F1	 . . .	 Fn	 F. (Finer

and finer sets.)
• A stochastic process X ¼ {xk} with random variables x0, x1, . . ..

Definition 3.51 The process X is martingale (MG) if:

(i) X is F–adapted (X is generated by F ).
(ii) E[|X(t)|] < 1 8 t � 0.
(iii) E[X(t)| F s] ¼ X(s) 8 s � t (the martingale property)

The meaning that X is F–adapted is that all xk are Fk-measurable. In other
words, if we know the information inFk then we know the value of xk. If we in
(iii) use � or � instead of ¼ we have a super-martingale and a sub-martingale
respectively.

Lemma 3.52 If X is a martingale, then

E ΔXnjF n�1½ � ¼ 0 8 n > 0, ΔXn ¼ Xn � Xn�1:

Example 3.53

Let Y be anF-measurable stochastic variable on (O,F , P,F) and define X : Xt ¼ E[Y|
F t], t � 0. Then X is martingale because (s < t):

E Xt jF s½ � ¼ E E YjF t½ �jF s½ � ¼ E YjF s½ � ¼ Xs:

Theorem 3.54 Under the risk-neutral measure Q: (p, q), the discounted stock

price 1þ rð Þ�kSk;F k

n on

k¼0
from the binomial model is martingale.
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Proof:

EQ

�
ð1þ rÞ�ðkþ1ÞSkþ1jFk

�
¼ ð1þ rÞ�ðkþ1Þðp � uþ q � dÞSk

¼
�

1
1þr

�kþ1
u � ð1þ r � dÞ

u� d
þ d � ðu� 1� rÞ

u� d

� �
Sk

¼
�

1
1þr

�kþ1 ð1þ rÞðu� dÞ
u� d

Sk

¼ ð1þ rÞ�kSk

Definition 3.55 A martingale is said to be quadratic integrable if

sup
0�t�1

E X2 tð Þ	 

< 1:

The class of these martingales has the following notation: M2(Ω, F , P, F ).

3.3.6 Markov Processes

We start by studying a European lookback option with values S0 ¼ 4, u ¼ 2,
d ¼ ½, p ¼ q ¼ ½ and r ¼ ¼ with a strike price K ¼ 5 with a two-period
binomial model.

The value of the lookback option is given by:

V2 ¼ max
0�t�2

Sk � 5; 0ð Þ:

We study the evolution backwards to calculate the value, thereby the name
lookback. We have: Vuu ¼ (16 � 5) ¼ 11, Vud ¼ (8 � 5) ¼ 3, Vdu ¼ 0 and
Vdd ¼ 0. (Remark Vud 6¼ Vdu). By travelling backwards in the tree we get

110 Analytical Finance: Volume I



Vu ¼ 1

1þ r
pVuu þ qVud½ � ¼ 4

5

1

2
� 11þ 1

2
� 3

� �
¼ 5:60

Vd ¼ 0

V ¼ 4

5
� 1
2
� 5:60 ¼ 2:24

with

Δt�1 ¼ Vt uð Þ � Vt dð Þ
St uð Þ � St dð Þ

we get Δ0 ¼ (5.6 � 0.0)/(8� 2) ¼ 0.93, Δ1(u) ¼ (11.0 � 3.0)/
(16 � 4) ¼ 0.67 and Δ1(d) ¼ 0. If we now sell one option at X0 ¼ 2.24
and hedge us with Δ0 shares we get:

X1 uð Þ ¼ Δ0S1 uð Þ þ 1þ rð Þ X0 � Δ0S0ð Þ
¼ 0:93 � 8þ 1þ 0:25ð Þ 2:24� 0:93 � 4ð Þ
¼ 5:60

X1ðdÞ ¼ Δ0S1ðdÞ þ ð1þ rÞðX0 � Δ0S0Þ
¼ 0:93 � 2þ ð1þ 0:25Þð2:24� 0:93 � 4Þ
¼ 0

X2ðuuÞ ¼ Δ1ðuÞS2ðuuÞ þ ð1þ rÞðX1ðuÞ � Δ1ðuÞS1ðuÞÞ
¼ 0:67 � 16þ ð1þ 0:25Þð5:60� 0:67 � 8Þ
¼ 11:0

X2ðudÞ ¼ Δ1ðuÞS2ðudÞ þ ð1þ rÞðX1ðuÞ � Δ1ðuÞS1ðuÞÞ
¼ 0:67 � 4þ ð1þ 0:25Þð5:60� 0:67 � 8Þ
¼ 3:0

An ordinary European call option with the same data as above

V2 ¼ Sk � 5ð Þþ

gives Vuu ¼ 11, Vud ¼ Vdu ¼ 0 and Vdd ¼ 0. (Remark Since we cannot
exercise before maturity, Vud ¼ Vdu). Further
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Vu ¼ 1

1þ r
pVuu þ qVud½ � ¼ 4

5

1

2
� 11þ 1

2
� 0

� �
¼ 4:40

Vd ¼ 0

V ¼ 4

5
� 1
2
� 4:40 ¼ 1:76

with

Δt�1 ¼ Vt uð Þ � Vt dð Þ
St uð Þ � St dð Þ

we get Δ0 ¼ (4.4 � 0.0)/(8 � 2) ¼ 0.733, Δ1(u) ¼ (11.0 � 0.0)/
(16 � 4) ¼ 0.917 and Δ1(d) ¼ 0. If we now sell one option at X0 ¼ 1.76
and hedge us with Δ0 shares we get

X1 uð Þ ¼ Δ0S1 uð Þ þ 1þ rð Þ X0 � Δ0S0ð Þ
¼ 0:733 � 8þ 1þ 0:25ð Þ 1:76� 0:733 � 4ð Þ
¼ 4:40

X1 dð Þ ¼ Δ0S1 dð Þ þ 1þ rð Þ X0 � Δ0S0ð Þ
¼ 0:743 � 2þ 1þ 0:25ð Þ 1:76� 0:733 � 4ð Þ
¼ 0

A general problem we have is that, for a model with n periods, we have Ω 2n

elements giving 2n equations. For a three-month option we have 66 trading
days and with a period length of one day we get 266 
 7*1019 equations. The
solution is, and we can solve it in three ways:

1. By simulations and averaging.
2. Approximate in continuous time. This gives a PDE-theory.
3. Using a Markov structure.

What we are doing in the binomial model is exactly 3.) above. Instead or four
values at n ¼ 2 (Vuu, Vud, Vdu and Vdd) we have three, because of Vud ¼ Vdu.
This gives us n + 1 equations instead of 2n.

Definition 3.56 Let (Ω, F , P) be a probability space with filtration {ℱt}t� 0.
An adapted process (Xt) is said to be a Markov process with respect to the
filtration (ℱt) if

E f Xtð ÞjF s½ � ¼ E f Xtð ÞjXs½ � for all t � s � 0:
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for every bounded real-valued Borel function f defined on Rd.
In other words this means that if we are studying a path, described by a

geometrical Brownian motion (GBM) from 0 to t0 and want to estimate the
value of f(X(t1)), the only relevant information is the value of X(t0).

Example 3.57

The stock price in the binomial model is a Markov process.

Theorem 3.58 A Wiener process is a Markov process and

P W tð Þ2BjW sð Þð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π t� sð Þp ð

B

exp � x�W sð Þð Þ2
2 t� sð Þ

( )
dx:

3.3.7 Stopping Times and American Options

In a Markov model for a European contract with a value process Vn¼ g(Sn) we
define the backward recursion as

Vn xð Þ ¼ g xð Þ
Vk xð Þ ¼ 1

1þ r
pVkþ1 uxð Þ þ qVkþ1 dxð Þð Þ:

(

Here Vk(Sk) is the value of the option at time k and

Δk ¼ Vkþ1 uSkð Þ � Vkþ1 dSkð Þ
u� dð ÞSk , k ¼ 0, 1, . . . , n� 1 :

We will now study the binomial model for American contracts. In each node,
k the holder can use his right to exercise the option and get g(Sk). Therefore,
the portfolio is given a value process satisfying Xk � g(Sk) 8 k. We then get

Vn xð Þ ¼ g xð Þ
Vk xð Þ ¼ max

1

1þ r
pVkþ1 uxð Þ þ qVkþ1 dxð Þð Þ; g xð Þ

� �
:

8<
:
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Let us study again, the two-period binomial tree, now for an American put
option med with S0 ¼ 4, u ¼ 2, d ¼ ½, p ¼ q ¼ ½ and r ¼ ¼ with a strike
price K ¼ 5.

At maturity we have the value

V2 ¼ 5� Skð Þþ:

We now have Vuu ¼ 0, Vud ¼ Vdu ¼ 1 and Vdd ¼ 4 and the tree gives the
values

Vu ¼ max

(
1

1þ r
½pVuu þ qVud�, ð5� 8Þþ

)
¼ max

(
4

5

1

2
� 0þ 1

2
� 1

� �
, 0

)
¼ 0:40

Vd ¼ max

(
1

1þ r
½pVud þ qVdd�, ð5� 2Þþ

)
¼ max

(
4

5

1

2
� 1þ 1

2
� 4

� �
, 3

)
¼ 3:00

V ¼ max

(
1

1þ r
½pVu þ qVd�, ð5� 4Þþ

)
¼ max

(
4

5

1

2
� 0, 4þ 1

2
� 3

� �
,1

)
¼ 1:36:

Since

Δk�1 ¼ Vk uð Þ � Vk dð Þ
Sk uð Þ � Sk dð Þ

we find Δ0 ¼ (0.40 � 3.00)/(8 � 2) ¼ �0.43. So we start to go short in the
option and get 1.36. Then we hedge the position with Δ0 stocks. For k¼ 1 we
get (X1(d) ¼ Vd, X1(u) ¼ Vu)

1 ¼ Vdu ¼ S2 duð ÞΔ1 dð Þ þ 1þ rð Þ X1 dð Þ � Δ1 dð ÞS1 dð Þð Þ
¼ 4 � Δ1 þ 5

4
3� 2 � Δ1ð Þ ¼> Δ1 4� 2:5ð Þ ¼ 1� 3:75

¼ �2:75 ¼> Δ1 ¼ �1:83

and
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4 ¼ Vdd ¼ S2 ddð ÞΔ1 dð Þ þ 1þ rð Þ X1 dð Þ � Δ1 dð ÞS1 dð Þð Þ

¼ 1 � Δ1 þ 5

4
3� 2 � Δ1ð Þ ¼> Δ1 1� 2:5ð Þ ¼ 4� 3:75 ¼ 0:25 ¼> Δ1

¼ �0:16

We have bought Δ1 stocks (if Δ1 > 0). The money we have left, that is,
(X1 � Δ1S1) earns interest rate r, giving us

1þ rð Þ X1 � Δ1S1ð Þ:

If this was a European option X1(d) ¼ S1(d) ¼ 2 and Δ1 were equal (¼ �1)

Vu ¼ 1

1þ r
pVuu þ qVud½ � ¼ 4

5

1

2
� 0þ 1

2
� 1

� �
¼ 0:40

Vd ¼ 1

1þ r
pVud þ qVdd½ � ¼ 4

5

1

2
� 1þ 1

2
� 4

� �
¼ 2

V ¼ 1

1þ r
pVu þ qVd½ � ¼ 4

5

1

2
� 0; 4þ 1

2
� 2

� �
¼ 0, 96

so

1 ¼ Vdu ¼ S2 duð ÞΔ1 dð Þ þ 1þ rð Þ X1 dð Þ � Δ1 dð ÞS1 dð Þð Þ

¼ 4 � Δ1 þ 5

4
2� 2 � Δ1ð Þ ¼> Δ1 4� 2:5ð Þ ¼ 1� 2:5 ¼ �1:5 ¼> Δ1 ¼ �1:0

The value of a hedged portfolio with an American option is given by

Xkþ1 ¼ Skþ1Δk þð1þ rÞðXk �ΔkSk �CkÞ
¼ ð1þ rÞXk þΔk

�
Skþ1 �ð1þ rÞSk � ð1þ rÞCk

�
,

where Ck is the part that we can consume at time t ¼ k.
Properties:

• The discounted portfolio value is a super-martingale.
• The value satisfy Xk � g(Sk), k ¼ 0, 1, . . ., n.
• The value process is the process with the lowest value with these

properties.
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Question: When do we consume?
Answer: If

E 1þ rð Þ� kþ1ð ÞVkþ1 Skþ1ð ÞjF k

h i
< 1þ rð Þ�kVk Skð Þ

We have

1

1þ r
E Vkþ1 Skþ1ð ÞjF k½ � < Vk Skð Þ

If the holder of the option doesn’t exercise, then we can consume and close the
gap between the values. In that case, when Xk ¼ Vk(Sk) for all values of k and
where

Vn xð Þ ¼ g xð Þ
Vk xð Þ ¼ max

1

1þ r
pVkþ1 uxð Þ þ qVkþ1 dxð Þð Þ; g xð Þ

� �
:

8<
:

In the previous example where, V1(S1(u))¼ 3, V2(S2(ud))¼ 1, V2(S2(uu))¼ 4,
we get

1

1þ r
E V2 S2ð ÞjF 1½ � ¼ 4

5

1

2
� 1þ 1

2
� 4

� �
¼ 2:

If the holder doesn’t exercise at t ¼ 1 we can consume one cash unit and
hedge as

Δk ¼ Vkþ1 uSkð Þ � Vkþ1 dSkð Þ
u� dð ÞSk :

As we can see, from the holder’s point of view, it is optimal to exercise when
Vk(Sk) ¼ g(Sk). I.e., at the intrinsic and not the discounted value.

Definition 3.59 Given the probability space (Ω, F , P) and the filtration
F kf gn

k¼0 of F we define the stopping time as a stochastic variable τ : Ω ! {0,
1, . . ., n} [ {1} such as
{ω 2 Ω; τ(ω) ¼ k} 2 F k 8 k ¼ 0, 1, . . ., n, 1.
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Example 3.60

We define (from the tree above) the stopping time

t oð Þ ¼ min kjVk Skð Þ ¼ 5� Skð Þþ� �
:

This stopping time is the time when the option value for the first time is equal to
the instantaneous (intrinsic) value. This time is the optimal time to exercise the
option. A stopping time is characterized by the fact that at every time t < t we
can decide if t has occurred or not, based on the information we really have at
time t. In our binomial model we have

t oð Þ ¼ 1 if o ¼ Ad

2 if o ¼ Au

� o : t oð Þ ¼ 0f g ¼ ∅2F 0

o : t oð Þ ¼ 1f g ¼ Ad2F 1

o : t oð Þ ¼ 2f g ¼ Au2F 2:

Definition 3.61 Let τ be a stopping time. We say that a set A 	 Ω is
determined by time τ provided that

A \ ωjτ ωð Þ ¼ kf g2F k, 8k :

The collection of sets determined by τ is an σ-algebra, which we denote byFτ.

Example 3.62

For the binominal model above, we have

t(o) ¼ min{k | Vk(Sk) ¼ (5 � Sk)
+}

i.e.,

t oð Þ ¼ 1 if o ¼ Ad

2 if o ¼ Au

�

The set {ud} is determined at the time t, but the set {du} is not. Indeed,

udf g \ ojt oð Þ ¼ 0f g ¼ ∅2F 0

udf g \ o : t oð Þ ¼ 1f g ¼ ∅2F 1

udf g \ o : t oð Þ ¼ 2f g ¼ udf g2F 2

but

fdug \ fo : tðoÞ ¼ 1g ¼ fdug=2F 1

The atoms of F t are {ud}, {uu}, Ad ¼ {du, dd}.
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3.3.8 The Radon–Nikodym Derivative

In mathematics, the Radon–Nikodym theorem below is a result in the
functional analysis. In finance the Radon–Nikodym derivative is used to
change measures. In Chap. 5 we will study this in detail.

Theorem 3.63 Let P and Q being two probability measures on (Ω, F ). Suppose
that for each A 2 F with P(A) ¼ 0, and also Q(A) ¼ 0, then we say that Q is
absolute continuous with respect to P. Furthermore, then there exists a stochastic
variable Z (� 0) such that

Q Að Þ ¼
ð
Ω

ZdP Að Þ:

We name Z as the Radon-Nikodym derivative of Q with respect to P.
It follows trivially from the definition of the derivative that, when P and

Q are probability measures over the probability space Ω and X is a random
variable. Then

EQ X½ � ¼
ð
Ω

XdQ ¼
ð
Ω

X
dQ

dP
dP ¼ EP dQ

dP
X

� �
:

If P at the same time is absolute continuous with respect to Q we say that
P and Q are equivalent. I.e., if and only if Q(A)¼ 0 exactly when P(A)¼ 0 we
have

EQ X½ � ¼ EP XZ½ � 8X
EP Y½ � ¼ EQ Y

1

Z

� �
8Y:

Example 3.64

Let O ¼ {uu, ud , du , dd } , P (u ) ¼ 1 /3 , P (d ) ¼ 2 /3 and Q (u )
¼ Q(d ) ¼ 1/2. Define Z(o) as Q(o)/P(o). Then

Z(uu) ¼ (1/2)2/(1/3)2 ¼ 9/4, Z(ud) ¼ 9/8, Z(du) ¼ 9/8 and Z(dd) ¼ 9/16.
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As we have said before, in financial analysis, the Radon–Nikodym derivative
is used to change measures. If we have a sample space Ω, with market
probabilities P and if Q is the risk-neutral probability distribution, then we
can find a transformation between P and Q with the help of the Radon–
Nikodym derivative. If P(ω) > 0 and Q(ω) > 0 for all ω 2 Ω, P and Q are
equivalent. We write this as Q � P. If P and Q are absolute continuous we
write this as Q << P.
Two measures are equivalent if they have the same sample space and the

same set of “possibilities”. Note the use of the word possibilities instead of
probabilities. The two measures can have different probabilities for each
outcome but must agree on what is possible.
Another way to formulate the Radon–Nikodym is using two different

measures, μ and ν on (Ω, X). Absolute continuity means that μ << ν and
equivalence means that μ � ν. If ν � μ, i.e. they have exactly the same empty
measure Ø, then we write the Radon–Nikodym derivative as

f ¼ dv

dμ
, dv xð Þ ¼ f xð Þ � dμ xð Þ

With this definition we can always find f, also on point sets (as we just did in
Example 3.64).

f nð Þ ¼ ν nð Þ=μ nð Þ if μ nð Þ 6¼ 0

0 else

�
:

Remark If we make a σ-algebra finer and finer we may lose the absolute
continuity. Suppose we have a given probability spaces (Ω, F , P), with a
filtration F ¼ {F } on the interval [0, T]. Then, if LT � 0 is a F -measurable
stochastic variable we can find a new measure Q on (Ω, FT) via

dQ ¼ LTdP

where Q will be a probability measure if EP[LT] ¼ 1ð
Ω

dQ ¼
ð
Ω

LTdP ¼ EP LT½ � ¼ 1:
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Definition 3.65 Zk says to be a P-martingale if

Zk ¼ EP ZjF k½ � k ¼ 0, 1, . . . , n
EP Zkþ1jF k½ � ¼ EP EP ZjF kþ1½ �jF k

	 
 ¼ EP ZjF k½ � ¼ Zk:

Lemma 3.66 If X is F k-measurable and 0 � j � k, then

EQ XjF j

	 
 ¼ 1

Zj
EP XZkjF j

	 

:

Theorem 3.67 L (as above) is a (F , P)-martingale.
Proof: We have to show that Lt ¼ EP[LT | F t] for all t � T orð

F

LtdP ¼
ð
F

LTdP for all F 2F t

ð
F

LtdP ¼ F2F tf g ¼ Qt Fð Þ ¼ QT Fð Þ ¼ F2F t � F Tf g ¼
ð
F

LTdP:

A risk-neutral measure is a probability measure Q equivalent to the real proba-
bilities P (Q ~ P) under which all tradable assets are martingales after discounting.

Theorem 3.68 Given a probability space (Ω, F , P), X 2 L1(Ω, F , P) and a
probability measure Q on (Ω,F ) where Q << P and L ¼ dQ

dP. If G is a σ-algebra
such as G � F then

EQ XjG½ � ¼ EP LXjG½ �
EP LjG½ �

Proof: We will show that

EQ XjG½ �EP LjG½ � ¼ EP LXjG½ �

It is enough to show

120 Analytical Finance: Volume I



ð
G

EQ XjG½ �EP LjG½ �dP ¼
ð
G

LXdP

,ð
G

EP LEQ XjG½ �jG	 

dP ¼

ð
G

LXdP

,

ð
G

LEQ XjG½ �dP ¼
ð
G

LXdP

) LdP ¼ dQf g )ð
G

EQ XjG½ �dQ ¼
ð
G

XdQ

ð
G

LXdP:

3.4 Properties of Normal and Log-Normal
Distributions

When we will study the Black–Scholes model, which is a continuous time
model, the normal and log-normal distributions will be used. Therefore, we
will now give the most important properties of them.
If the density function φ is given by

φ xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � x� mð Þ2
2σ2

( )
¼ N

0 x� m

σ

� �

we say that x has a Gaussian (or normal) distribution, with mean m and
variance σ2. In this case we say that x is an N(m, σ2) random variable.
If X is an N(m, σ2)-random variable, then

E Xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ð1

�1
x � exp � x� mð Þ2

2σ2

( )
dx ¼ m

which is called the 1st moment of the probability distribution. The second
moment gives the variance
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Var Xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ð1

�1
x� mð Þ2 � exp � x� mð Þ2

2σ2

( )
dx ¼ σ2:

The 3rd and 4th moments are given by

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ð1

�1
x� mð Þ3 � exp � x� mð Þ2

2σ2

( )
dx ¼ 0

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ð1

�1
x� mð Þ4 � exp � x� mð Þ2

2σ2

( )
dx ¼ 3σ4

They are called the skewness and the kurtosis (or flatness). We note that if x is
N(m, σ2), then x ¼ mþ ffiffiffiffiffi

Δt
p

ξ where ξ is a standard Gaussian variable with
mean zero and variance 1; i.e., ξ is N(0, 1).
If x ¼ lny the probability density function of y is called a log-normal

distribution and is given by

φ yð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
y
exp � lny� mð Þ2

2σ2

( )
y > 0 :

This can be seen from y ¼ ex and x � N(m, σ2) and

PY yð Þ ¼ P ex � yð Þ ¼ P x � ln yð Þð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ðln yð Þ

�1
exp � x� mð Þ2

2σ2

( )
dx

¼
ðln yð Þ

�1
φ xð Þdx ¼ Φ ln yð Þð Þ � Φ �1ð Þ:

If we take the derivative with respect to y we get

∂PY

∂y
¼ ∂Φ ln yð Þð Þ

∂y
¼ ∂ln yð Þ

∂y
∂Φ ln yð Þð Þ
∂ ln yð Þð Þ ¼ 1

y
φ ln yð Þð Þ:

Theorem 3.69 If X is a Gaussian (normal) process with mean m and variance σ2,
i.e., X � N(m, σ2) and γ 2 R we have
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E e�γX
	 
 ¼ exp �γmþ 1

2
γ2σ2

� �
:

Proof: Per definition and manipulation with the exponent we have

E e�γX½ � ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ð1

�1
e�γxe�

x�mð Þ2
2σ2 dx ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p

ð1
�1

e�
1
2σ2 2γxσ

2 þ x2 � 2xmþ m2½ �dx

¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ð1

�1
e�

1
2σ2 x

2 � 2 m� γσ2ð Þxþ m2½ �dx

¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ð1

�1
e
� 1
2σ2 x� m� γσ2ð Þð Þ2 þ 2mγσ2 � γ2σ4
h i

dx

¼ e�γmþ 1
2
γ2σ2 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p

ð1
�1

e
� 1
2σ2 x� m� γσ2½ �ð Þ2
h i

dx

¼ e�γmþ 1
2
γ2σ2

where the last equality is due to the fact that the function

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e
1

2σ2
x� m�γσ2½ �ð Þ2

	 


is a probability density function, namely the density function for an
N(m � γσ2, σ2) distributed random variable.
Using Theorem 3.69., we can easily compute the mean and the variance of

the lognormal distributed random variable Y ¼ eX. The mean is (let γ ¼ �1)

E Y½ � ¼ E eX
	 
 ¼ exp mþ 1

2
σ2

� �
:

With γ ¼ �2 we get

E Y2
	 
 ¼ E e2X

	 
 ¼ e2 mþσ2ð Þ

so that the variance of Y is
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Var Y½ � ¼ E Y2
	 
� E Y½ �ð Þ2 ¼ e2 mþσ2ð Þ � e2mþσ2 ¼ e2mþσ2 eσ

2 � 1
� �

:

The next theorem provides an expression of the truncated mean of a lognormal
distributed random variable, i.e. the mean of the part of the distribution that
lies above some level. We define the indicator function I{Y >K} to be equal to
1 if the outcome of the random variable Y is greater than the constant K and
equal to 0 otherwise.

Theorem 3.70 If X ¼ ln Y ~ N(m, σ2) and K > 0, then we have

E Y � I Y>Kf g
	 
 ¼ emþ

1
2
σ2N

m� lnK

σ
þ σ

� �
¼ E Y½ �N m� lnK

σ
þ σ

� �

Proof: Because Y > K , X > lnK, it follows from the definition of the
expectation of a random variable that

E Y � I Y>Kf g
	 
 ¼ E eX � I X>lnKf g

	 
 ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ð1
lnK

exe�
x�mð Þ2
2σ2 dx

¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
ð1
lnK

e�
x� mþσ2ð Þð Þ2

2σ2 e
2mσ2þσ4

2σ2 dx ¼ emþ
1
2
σ2
ð1
lnK

f X xð Þdx

where

f X xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
x� mþσ2ð Þð Þ2

2σ2

is a probability density function for an N(m + σ2, σ2) distributed random
variable. The calculation

ð1
lnK

f X xð Þdx ¼ P X > lnKð Þ ¼ P
X � mþ σ2½ �

σ
>

lnK � mþ σ2½ �
σ

� �

¼ P �X � mþ σ2½ �
σ

< � lnK � mþ σ2½ �
σ

� �

¼ N � lnK � mþ σ2½ �
σ

� �
¼ N

m� lnK

σ
þ σ

� �

completes the proof.
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Theorem 3.71 If X ¼ lnY ~ N(m, σ2) and K > 0, then we have

E max Y � K; 0f g½ � ¼ emþ
1
2
σ2N

m� lnK

σ
þ σ

� �
� KN

m� lnK

σ

� �

¼ E Y½ �N m� lnK

σ
þ σ

� �
� KN

m� lnK

σ

� �

Proof: Note that

E max Y � K; 0f g½ � ¼ E Y � Kð ÞI Y>Kf g
	 
 ¼ E Y � I Y>Kf g

	 
� K � P Y > Kð Þ

The first term is known from Theorem 3.70. The second term can be
rewritten as

P Y > Kð Þ ¼ P X > lnKð Þ ¼ P
X � m

σ
>

lnK � m

σ

� �

¼ P �X � m

σ
< � lnK � m

σ

� �
¼ N � lnK � m

σ

� �

¼ N
m� lnK

σ

� �
:

The claim now follows immediately.

3.5 The Itô Lemma

One of the most important formulas in the financial analysis is the Lemma by
Itô. The Lemma states how to differentiate functions of stochastic processes.
To understand Itô’s formula in its most simple form, we start with a Taylor
expansion to the lowest orders for a function of two variables: F(t, X)

dF ¼ ∂F
∂t

dtþ ∂F
∂X

dX þ 1

2

∂2
F

∂t2
dtð Þ2 þ 1

2

∂2
F

∂X2
dXð Þ2 þ ∂2

F

∂t∂X
dtdX þ . . . :

where X is described by the stochastic process given by

dX ¼ μ � dtþ σ � dW:

Here μ represent a deterministic drift and σ the volatility. W is a Wiener
process with the property (dW)2 ¼ dt. Thus, to the lowest order we get
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dXð Þ2 ¼ μ2 � dtð Þ2 þ σ2 � dWð Þ2 þ 2 � μ � σ � dt � dW ! σ2 � dt:

In the lowest order, we ignore dtdw and dtdt. To the lowest order of dF, we
then have

dF ¼ ∂F
∂t

þ μ
∂F
∂X

þ 1

2
σ2

∂2
F

∂X2

 !
dtþ σ

∂F
∂X

dW

which is the Itô’s formula. In finance, this is the most useful expression of Itô.
Sometimes the Itô’s Lemma is expressed as

dF Xð Þ ¼ ∂F Xð Þ
∂X

dX þ 1

2

∂2
F Xð Þ
∂X2

dt:

But mathematically, a more meaningful form of Itô’s Lemma is the integral
version:

F X tð Þð Þ ¼ F X 0ð Þð Þ þ
ðt
0

∂F
∂X

X τð Þf gdX τð Þ þ 1

2

ðt
0

∂2
F

∂X2
X τð Þf gdτ

This is because we have a solid definition of the integrals. The first integral is
called the Itô integral and the second is a Riemann integral. This means that in
stochastic calculus we have to use

df ¼ ∂f
∂t

dtþ ∂f
∂x

dxþ 1

2

∂2
f

∂X2
dxð Þ2

to lowest order differentiation of f(x(t), t) instead of

df ¼ ∂f
∂t

dtþ ∂f
∂x

dx

as in ordinary calculus. A generalization of Itô can be written as

dF X1; . . .Xn; tð Þ ¼ ∂F
∂t

dtþ
Xn
i¼1

∂F
∂Xi

dXi þ 1

2

Xn
i, j¼1

∂2
F

∂Xi∂Xj
σiσjdt:
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Example 3.72

Itô calculus is used in all calculations where we calculate differentials of stochastic
processes where the uncertainty is modelled with a Wiener function. In particular
we have

dðWnÞ ¼ ∂
∂W

ðWnÞdW þ 1

2

∂2

∂W2
ðWnÞðdWÞ2

¼ nWn�1dW þ 1

2
nðn� 1ÞWn�2dt,

especially

d W2
� � ¼ 2WdW þ dt

so that

ðt
s

W uð ÞdW uð Þ ¼ W2 tð Þ �W2 sð Þ
2

� t � s

2
:

Example 3.73

Let

F t;Wð Þ ¼ exp lW tð Þ � l2

2
t

� �
:

Then

dF ¼ ∂F
∂t

dt þ ∂F
∂W

dW þ 1

2

∂2
F

∂W2
ðdWÞ2

¼ � l2

2
explWðtÞ � l2

2
tgdt þ lexplWðtÞ � l2

2
tgdW

þ l2

2
explWðtÞ � l2

2
tgdt

¼ lexplWðtÞ � l2

2
tgdW ¼ lFðt,WÞdW

This shows that the solution to the stochastic differential equation

(continued)
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Example 3.73 (continued)
dX ¼ λXdW
X 0ð Þ ¼ 1:

�

Is given by

X tð Þ ¼ exp lX tð Þ � l2

2
t

� �
:

3.5.1 Brownian Motion

When studying lattices-models of random processes, one naturally wonders
whether these processes go to a limit as the step size is taken to be finer and
finer. Or, more to the point, if we use lattices to model asset prices, does the
model make sense in the limit that the step size goes to zero? To answer this
question we now advance to continuous random processes.
We are aiming to develop models based on stochastic differential equations

dS ¼ a t; Sð Þdtþ b t; Sð ÞdW

for the asset price S(t), where the a(t, S)dt term accounts for “deterministic
motions”, and the other term b(t, S)dW accounts for “random motions”.
The first step in developing such models is to decide what we should use for

W(t), the random part of the model. No matter how we sub-divide it, the curve
W(t) should still be random and composed of pieces with identical statistical
properties, because stock prices appear random on even very fine time scales.
In Fig. 3.2 we simulate for a year, 10 observations per day, a stock with initial
price 30.00 with a volatility of 40 % and a risk-free interest rate 2 %.More
formally, we wishW(t) to have the following properties: First,W(t) must have
independent increments. For any date τ and for any Δτ > 0, the value of
ΔW ¼ W(τ + Δτ) � W(τ) is independent ofW(t) for all t � τ. So increments
of Brownian motion are independent of everything that has happened on or
before the current date τ. In particular, ΔW1 �W(t2) �W(t1) and ΔW2 �W
(t3) � W(t4) are independent whenever the two intervals t1 � t � t2 and
t3 � t� t4 don’t overlap. Said in another way,W(t)�W(τ) for t> τ does not
depend on how one got to W(τ). As we shall see, this is a very powerful
simplifying assumption.
Second, increments ΔW � W(t2) � W(t1) is Gaussian random variables

with mean 0 and variance Δt � t2 � t1. We then have
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ΔW � W t2ð Þ �W t1ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t1

p
ξ

where ξ is N(0, 1), that is, ξ is a Gaussian random variable with mean zero
and variance 1. The reason we want ΔW to have mean zero is because we want
it to represent the random part of the asset price movements. Any non-zero
mean would represent a deterministic piece which we could put in the drift
term a(t, S)dt.

Fig. 3.2 A Brownian motion (Wiener process) illustrated as function of time on
different time-scales
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The fact that ΔW is Gaussian with variance Δt follows directly from our
desire to haveW(t) to be sub-dividable into finer and finer intervals, each with
identical statistical properties. To show this, consider

ΔW ¼ W t1ð Þ �W t0ð Þ �W t0ð Þ �
Xn�1

k¼0

W τkþ1ð Þ �W τkð Þ½ �, τk ¼ t0 þ k

n
t1 � t0ð Þ ,

where each δWk�W(τk+1)�W(τk) are independent random variables (by the
independent increment assumption) with identical distributions. Since the
variables are independent, the variances can be written

Var ΔW½ � ¼
Xn�1

k¼0

Var W τkþ1ð Þ �W τkð Þ½ � ¼ n � Var W t1ð Þ �W t0ð Þ½ �

Let v( y) ¼ Var[W(t + y) � W(t)]. We have shown that

v t1 � t0ð Þ ¼ n � v t1 � t0
n

� �

for any t1, t0 and n, i.e., for any Δt > 0 and any n, we have v(nΔt) ¼ nv(Δt).
This is a functional equation, and it shouldn’t be surprising that the

only reasonable solutions are linear: v(Δt) ¼ αΔt for some constant α.
Brownian motion is normalized so that this constant is 1, i.e., Var
[ΔW] � Var[W(t1) � W(t0)] ¼ t1 � t0 for all t0, t1.
ThusΔW is the sum of n independent, identically distributed variables with

mean 0 and variance (t1 � t0)/n. As we take n!1, the central limit theorem
guarantees that ΔW is Gaussian with mean zero and variance t1 � t0.
Brownian motion has the following properties. Of these, the first two are

part of the definition of Brownian motion, and the other three are derived
below:

i. The increments ΔW are independent of the present and past values ofW(t).
In particular, increments of non-overlapping intervals are independent

ΔW ¼ W(t2) � W(t1) is independent of W(t) for all t � t1.
ΔW ¼ W(t2) � W(t1) is independent of ΔW ¼ W(t4) � W(t3) if (t1, t2) \

(t3, t4) ¼ ∅.

ii. ΔW ¼ W(t + Δt) � W(t) is Gaussian with mean zero and variance
ffiffiffiffiffi
Δt

p
.

Said another way, ΔW ¼ W tþ Δtð Þ �W tð Þ ¼ ffiffiffiffiffi
Δt

p
ξ, where ξ is N(0, 1),

a Gaussian variable with mean 0 and variance 1.
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iii. W(t) is a continuous random process. This is easily proven, since for any
δ > 0,

prob W tþ Δtð Þ �W tð Þj j > δf g ¼ prob ξj j > δffiffiffiffiffi
Δt

p
� �

!
Δt!0

0:

This is the definition of a continuous stochastic process.

iv. W(t) is almost surely nowhere differentiable. This is again easily shown.

For any K > 0, we argue that

prob
W tþ Δtð Þ �W tð Þ

Δt










 < K

� �
¼ prob ξj j > K

ffiffiffiffiffi
Δt

pn o
!

Δt!0
0:

So the probability that the slope is bounded is zero as Δt ! 0.

v. The continuity and non-differentiability followed directly from the scaling

ofΔW. SinceΔW ¼ ffiffiffiffiffi
Δt

p
ξ, where ξ isN(0, 1), we can writeΔW�O(

ffiffiffiffiffi
Δt

p
),

or more succinctly dW � O(
ffiffiffiffiffi
Δt

p
).

Later we shall prove a much more stunning result, the quadratic property of
Brownian motion, (dW)2 ¼ dt. Note that the right side dt is not stochastic,
which means that (dW)2 is dt with certainty. This property is the key to
deriving Itô’s lemma, the backwards Kolmogorov equation, Feynman–Kač
equation and many of the other day-to-day tools used in pricing. Before we can
show this result, we need to define what we mean by differentials like dW
and dt.

Black–Scholes

We have seen that the stock prices S(t) follow a stochastic process, given
as a Brownian motion described by the following stochastic differential
equation

dS tð Þ ¼ α � S tð Þ � dtþ σ � S tð Þ � dW
S 0ð Þ ¼ s

�
:

This can easily be solved by letting Z(t) ¼ ln{S(t)} and with use of the Itô
lemma
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dZ tð Þ ¼ 1

S tð ÞdS tð Þ � 1

2

1

S tð Þ2 dS tð Þð Þ2

¼ 1

S tð Þ α � S tð Þdtþ σ � S tð ÞdW tð Þð Þ � 1

2

1

S tð Þ2σ
2S tð Þ2dt

¼ α� 1

2
σ2

� �
dtþ σ � dW tð Þ

Z 0ð Þ ¼ ln sð Þ

Integration gives

Z tð Þ � Z 0ð Þ ¼ α� 1

2
σ2

� �
tþ σ �W tð Þ:

Thus

S tð Þ ¼ s � e α�1
2
σ2ð Þtþσ�W tð Þf g:

Fig. 3.3 The log-normal probability distribution with σ2 ¼ 0.4, μ ¼ 0.16 and
(t � t0) ¼ 1
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Since W(t) – W(t0) is normal distributed with mean zero and variance
(t – t0), i.e.,
N[0, (t – t0)] we know that Z must be normal distributed as:

Z � N α� σ2

2

� �
t� t0ð Þ; σ2 t� t0ð Þ

� �
:

Therefore, S(t)/S(t0) follows a log-normal distribution (μ ¼ α)

g S tð Þð Þ ¼ 1

σS tð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π t� t0ð Þp exp � ln S tð Þ=S t0ð Þf g � μ� σ2=2ð Þ t� t0ð Þð Þ2

2σ2 t� t0ð Þ

( )
:

A typical log-normal probability distribution for S(t)/S(t0) are shown in
Fig. 3.3.

3.6 Stochastic Integration

To understand stochastic integration we will start by studying the integralR
g(s)dW(s). We will do this in a few simple steps:

1. Split the interval [0, t] into equal parts 0 ¼ t0 < t1. . .<tn ¼ t.
2. For each outcome ω define an integral

In ωð Þ ¼
X

g ξk;ωð Þ W tkþ1;ωð Þ �W
�
tk;ω

�	 


3. Let n!1 and hope for In! I.

Let g ¼ W and study the integral
R
W(s)dW(s) by defining An and Bn:

An ¼
Xn
k¼1

W tkð Þ W tkþ1ð Þ �W tkð Þ½ � ξk ¼ tk

Bn ¼
Xn
k¼1

W tkþ1ð Þ W tkþ1ð Þ �W tkð Þ½ � ξk ¼ tkþ1

8>>><
>>>:

We then get
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An ¼ lim
n!1

Xn
k¼1

W tkð Þ W tkþ1ð Þ �W tkð Þ½ �

¼ 1

2
lim
n!1

Xn
k¼1

W tkþ1ð Þ þW tkð Þ � W tkþ1ð Þ �W tkð Þð Þ½ �
� W tkþ1ð Þ �W tkð Þð Þ
¼ 1

2
lim
n!1

Xn
k¼1

W tkþ1ð Þ þW tkð Þð Þ � W tkþ1ð Þ �W tkð Þð Þ½ �

�1

2
lim
n!1

Xn
k¼1

W tkþ1ð Þ �W tkð Þð Þ2 ¼ 1

2
lim
n!1

Xn
k¼1

W2 tkþ1ð Þ �W2 tkð Þ	 

�1

2
lim
n!1

Xn
k¼1

W tkþ1ð Þ �W tkð Þð Þ2 ¼ 1

2
W2 tð Þ � 1

2
t

Bn ¼ lim
n!1

Xn
k¼1

W tkþ1ð Þ W tkþ1ð Þ �W tkð Þ½ �

¼ 1

2
lim
n!1

Xn
k¼1

W tkþ1ð Þ þW tkð Þ þ W tkþ1ð Þ �W tkð Þð Þ½ �
� W tkþ1ð Þ �W tkð Þð Þ

¼ 1

2
lim
n!1

Xn
k¼1

W tkþ1ð Þ þW tkð Þð Þ W tkþ1ð Þ �W tkð Þð Þ½ �

þ1

2
lim
n!1

Xn
k¼1

W tkþ1ð Þ �W tkð Þð Þ2 ¼ 1

2
lim
n!1

Xn
k¼1

W2 tkþ1ð Þ �W2 tkð Þ	 

þ1

2
lim
n!1

Xn
k¼1

W tkþ1ð Þ �W tkð Þð Þ2 ¼ 1

2
W2 tð Þ þ 1

2
t

I.e.

An þ Bn ¼ W2 tð Þ
Bn � An ¼

Xn�1

k¼0

ΔWkð Þ2 ¼ Sn

8><
>:

where lim
n!1 Sn tð Þ ¼ t. By letting Bn � An ! t ) An ! A and Bn ! B where

A ¼ W2 tð Þ
2

� t

2

B ¼ W2 tð Þ
2

þ t

2

8><
>:

We then observe that ξk effects the integral concept and
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ð t

0

W sð ÞdW sð Þ ¼ W2 tð Þ
2

� t

2
This is called the forward� orð Þ the

Itô� integral andð t

0

W sð ÞdW sð Þ ¼ W2 tð Þ
2

þ t

2
this the backward integral:

8>>>><
>>>>:

From this we learn a few things.

1. Since Wiener trajectories have unlimited variations, we cannot define
integrals as

In ωð Þ ¼
X

g ξk;ωð Þ W tkþ1;ωð Þ �W
�
tk;ω

�	 


2. In any case, there seems to be a hope to define integrals as a limit value in L2.
3. The choice of ξk will critical decide the value we get. Different choices of ξk

will give us integral definitions with different properties.

We will use the Itô stochastic integral for an important reason; In all natural
cases unknown future events cannot affect the present. This means that the
value of a function G(t) is non-anticipating in that it cannot be used to predict
the future increment in dX. This is of course equivalent to saying that G(t) is a
martingale since what we mean is exactly that

Es G tð Þ½ � ¼ G sð Þ f€or s � t:

We only know what is the present value of G(t), which corresponds to that at
the beginning-integrating interval. For this reason it is more appropriate to use
the Itô integral. It is important also to note that integrating a non-anticipative
function with respect to dt or dX is itself non-anticipating. So for G(t) ¼ X(t)
the Itô integral becomes

ðT
0

X sð ÞdX sð Þ 

Xn
i¼1

Xi�1 Xi � Xi�1ð Þ

I.e.
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I ¼
Xn
i¼1

Xi Xi � Xi�1ð Þ �
Xn
i¼1

Xi � Xi�1ð Þ2

¼
Xn
i¼1

X2
i � X2

i�1

� �� I �
Xn
i¼1

Xi � Xi�1ð Þ2

So

2 � I ¼ X Tð Þ2 � T

or

ðT
0

X sð ÞdX sð Þ ¼ X Tð Þ2 � T

2
:

3.6.1 Proof of (dW)2 ¼ dt

We will now make a proof of the important property of the Wiener process
(dW)2 ¼ dt. Like any other differential, this differential is defined in terms of
its integral

ðt1
t0

dWð Þ2 � lim
n!1

Xn�1

k¼0

W tkþ1ð Þ �W tkð Þ½ �2

where tk ¼ t0 + k(t1 � t0)/n. Since

W tkþ1ð Þ �W tkð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tkþ1 � tk

p
ξk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t1 � t0

n

r
ξk

we have

ðt1
t0

dWð Þ2 � lim
n!1

t1 � t0
n

Xn�1

k¼0

ξ2k

where ξ0, ξ1, . . . ξn�1 are independent N(0, 1) variables. Clearly the mean
of the sum is
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E
t1 � t0

n

Xn�1

k¼0

ξ2k

" #
¼ t1 � t0

n

Xn�1

k¼0

E ξ2k
	 
 ¼ t1 � t0:

Since the ξ’s are independent, the variance of the sum is

Var
t1 � t0

n

Xn�1

k¼0

ξ2k

" #
¼ t1 � t0ð Þ2

n2

Xn�1

k¼0

Var ξ2k
	 
 ¼ t1 � t0ð Þ2

n2

Xn�1

k¼0

E ξ2k � 1
� �2h i

:

For unit Gaussian variables, E[(ξk
2 � 1)2] ¼ 2, so the variance of the sum

works out to

Var
t1 � t0

n

Xn�1

k¼0

ξk
2

" #
¼ 2

n
t1 � t0ð Þ2:

Thus

ðt1
t0

dWð Þ2 � lim
n!1 Sn

where the sum Sn has mean t1 � t0 and variance O(1/n). We conclude that in
the limit n ! 1, this integral is t1 � t0 with certainty. Thus

ðt1
t0

dWð Þ2 ¼ t1 � t0

for any t0 and t1. Since differentials are defined only in terms of their integrals,
we can re-write this as

dWð Þ2 ¼ dt:

The other quadratic differentials are zero: (dt)2 ¼ 0 and dWdt ¼ 0. To show
this, let us write out their integrals. First,

ðt1
t0

�
dt
�
2 ¼ lim

n!1

Xn�1

k¼0

tkþ1 � tk½ �2 ¼ lim
n!1

1

n
t1 � t0½ �2 ¼ 0

and
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ðt1
t0

dtdW ¼ lim
n!1

Xn�1

k¼0

tkþ1 � tkð Þ W tkþ1ð Þ �W tkð Þ½ � ¼ lim
n!1

Xn�1

k¼0

tkþ1 � tkð Þ3=2ξk

¼ lim
n!1

1

n3=2
t1 � t0½ �3=2

Xn�1

k¼0

ξk ¼ lim
n!1

t1 � t0½ �3=2
n

ξ

Since means and variances of independent variables are additive, clearly the
sum of the ξk gives a Gaussian variable with mean 0 and variance n. ξ is as
usual a
N(0, 1) variable. Clearly this is zero in the limit.
Putting this together with our preceding results gives the so-called box

algebra

dWð Þ2 ¼ dt, dWdt ¼ 0, dtð Þ2 ¼ 0 :

Of course, all higher powers are also zero

dWð Þk ¼ 0 for k > 2,

dWð Þkdt ¼ 0 for k > 1,

dtð Þk ¼ 0 for k > 1:

3.6.2 Monte Carlo Simulations

Suppose we have some variable, an asset price perhaps, which we model by an
Itô process

dX ¼ a t;Xð Þdtþ b t;Xð ÞdW:

Commonly the value of a financial instrument will turn out to be the expected
value of some payoff at the expiry date T,

V ¼ E
	
P
�
X Tð Þ
:

The Monte Carlo method is the most direct method of calculating such
expected values. Recall that the Itô process above is equivalent to stating that
X(t) is the limit as n ! 1 of X(τn), where
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X tj
� � ¼ X t0ð Þ

þ lim
n!1

Xj�1

k¼0

a tk;X tkð Þð Þ tkþ1 � tkð Þ þ
Xj�1

k¼0

b tk;X tkð Þð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tkþ1 � tk

p
ξk

( )

for j ¼ 0, 1, . . . , n � 1. Here τk ¼ t0 + k(T � t0)/n and ξ0, ξ1, . . . , ξn�1 are
independent N[0, 1] variables. For the MC method, we first discretize in time,
picking τ0, τ1, . . . , τn ¼ T . We then pick the n independent N[0, 1] variables
ξ0, ξ1, . . . , ξn�1. Substituting these above gives a possible path (also called a
realization) or the asset price X(t). Were the asset to follow this path, the
financial instrument would yield P(X(T )) ¼ P1. Repeating this procedure for
newly selected random variables ξ0, ξ1, . . . , ξn�1 yields a second possible path
and payoff P2. Repeating this many times and averaging over the outcomes
then gives the option price

V � E P X Yð Þð Þ½ � ¼ 1

N

XN
k¼1

Pk

The Monte Carlo (MC) method’s key advantage is that it is very flexible. For
example, suppose we have a path dependent financial instruments, whose
payoffs depend on, say the maximum, minimum or average value of X(t)
between t0 and T. Since MC simulates the entire path, the value of these
options is no harder to determine that the value of a European option.
The weakness of MC is that it is slow and computationally expensive. In

fact, let σ be the standard deviation of the payoff

σ2 ¼ Var
�
P
�
X Tð Þ� 
 Var Pkf g:

The last equality is only an approximation due to our time discretization in
the MC method. Since the random variables on each path are chosen inde-
pendently, the variances on different paths add. So we have

Var
1

N

XN
k¼1

Pk

( )
¼ 1

N2
Var

XN
k¼1

Pk

( )
¼ 1

N
Var Pkf g ¼ σ2

N
:

The typical error in the MC evaluation is the standard deviation σ=
ffiffiffiffi
N

p
. So

quite generally the error in the MC method goes down like 1=
ffiffiffiffi
N

p
. In other

words, to reduce the error by a factor of 10, one needs to do 100 times as many
paths.
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3.6.3 Integration by Itô’s Lemma

Itô’s formula can also be used when we need to integrate stochastic processes.
This integral is called the Itô integral. A Wiener trajectory is a continuous
function of time, but not differentiable in any point. To find the integral we
therefore try to do the following

1. Divide the interval [0, t] in equal parts 0 ¼ t0 < t1 < . . . < tn ¼ t.
2. Define for each outcomeω: In(ω) ¼ Σg(ξk)[W(tk+1, ω) � W(tk, ω)].
3. Sum and let n ! 1 hoping that In ! I.

Example 3.74

Calculate the integral
ðt
0

W sð ÞdW sð Þ where W is a Wiener process. Let Z(t) ¼ W2(t)
and use Itô formula

dZ tð Þ ¼ ∂Z
∂W

dW þ 1

2

∂2
Z

∂W2
dWð Þ2

¼ 2 �W tð Þ � dW tð Þ þ 1

2
� 2 � dW tð Þð Þ2 ¼ 2 �W tð Þ � dW tð Þ þ dt

Integration gives: W2 tð Þ ¼ t þ 2 �
ðt
0

W sð ÞdW sð Þ, i.e.

ðt
0

W sð ÞdW sð Þ ¼ 1

2
W2 tð Þ � t

2
:

Therefore

ðT
0

X tð ÞdX tð Þ ¼ X Tð Þ2 � T

2
:

An alternative is to use Itô’s integral formula

ðT
0

dF ¼
ðT
0

∂F
∂t

dtþ
ðT
0

∂F
∂X

dX þ 1

2

ðT
0

∂2
F

∂X
dt

and letting ∂F
∂X ¼ X, e.g. F ¼ X2/2

(continued)
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Example 3.74 (continued)ðT
0

∂F
∂X

dX ¼
ðT
0

X tð ÞdX tð Þ ¼
ðT
0

dF�
ðT
0

∂F
∂t

dt � 1

2

ðT
0

∂2
F

∂X2
dt ¼

¼ X Tð Þ2
2

� 0� T

2
¼ X Tð Þ2 � T

2

Similarly, if we let ∂F
∂X ¼ X2, e.g. F ¼ X3/3 we can show that

ðT
0

X tð Þ2dX tð Þ ¼ X Tð Þ3
3

�
ðT
0

X tð Þdt

and with ∂F
∂X ¼ t, e.g. dF ¼ d(X(t)t) we can show

TX Tð Þ ¼
ðT
0

t � dX tð Þ þ
ðT
0

X tð Þdt

since

TX Tð Þ ¼
ðT
0

∂F
∂t

dt þ
ðT
0

∂F
∂X

dX þ 1

2

ðT
0

∂2
F

∂X2
dt ¼

ðT
0

X tð Þdt þ
ðT
0

t � dX tð Þ þ 0:

Example 3.75

Calculate the expectation value E[W4(t)].
Let Z(t) ¼ W4(t) and X(t) ¼ W(t) e.g. dX(t) ¼ dW(t) (we have no drift but only a

diffusion ¼ 1):

dZ ¼ d W4
� � ¼ 4 �W3dW þ 1

2
� 12 �W2 dWð Þ2 ¼ 6 �W2dt þ 4 �W3dW:

Integration gives

W4 Tð Þ ¼ 6

ðT
0

W2 sð Þdsþ 4

ðT
0

W3 sð ÞdW sð Þ:

If we take the expectation value we get

(continued)
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Example 3.75 (continued)

E W4 Tð Þ	 
 ¼ 6

ðT
0

E W2 sð Þ	 

dsþ 4 � E

ðT
0

W3 sð ÞdW sð Þ
2
4

3
5 ¼ 6

ðT
0

sds ¼ 3 � T2

since the expectation value of a stochastic integral is zero by definition.

Definition 3.76 Let L2[a, b] represent the class of processes g satisfying:
g is F -adapted and

ðt
0

E g sð Þ½ �2
n o

ds < 1:

For each choice of a � b we will now define the integral

ðb
a

g sð ÞdW sð Þ

for any g in L2[a, b]. For simplicity we suppose g is a simple function. Then,
there exist values a and b such as a ¼ t0 < t1 < . . . < tn ¼ b and

g sð Þ ¼ g tkð Þ8s2	tk , tkþ1

�
g tkð Þ2Ftk k ¼ 0, 1, . . . , n

Then

ðb
a

g sð ÞdW sð Þ ¼
X
k

g tkð Þ W tkþ1ð Þ �W tkð Þ½ �:

Remark We use forward differences.

Theorem 3.77 If g and h are simple F -adapted processes, which have quadratic
defined integral, also let α, β 2 R. Then
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E

ðb
a

g sð ÞdW sð Þ
2
4

3
5 ¼ 0

E

ðb
a

g sð ÞdW sð Þ
0
@

1
A

2
2
64

3
75 ¼

ðb
a

E g2 sð Þ½ �ds

E

ðb
a

g sð ÞdW sð Þ
0
@

1
A ðb

a

h sð ÞdW sð Þ
0
@

1
A

2
4

3
5 ¼

ðb
a

E g sð Þh sð Þ½ �ds

ðb
a

g sð ÞdW sð Þ is F t-measurable

E

ðb
a

g sð ÞdW sð Þ

F a

2
4

3
5 ¼ 0

ðb
a

αg sð Þ þ βh sð Þ½ �dW sð Þ ¼ α

ðb
a

g sð ÞdW sð Þ þ β

ðb
a

h sð ÞdW sð Þ

3 Introduction to Probability Theory 143



4
Continuous Time Models

4.1 Classifications of Partial Differential
Equations

Before we begin the study of partial differential equations (PDEs) we will
explain how to classify them. A general quadratic surface can be described by
the expression

Ax2 þ Bxyþ Cy2 þ Dxþ Eyþ F ¼ 0:

Depending on the values of the constants (A, B, C, D, E and F), different
geometrical objects will be represented:

A ¼ C, B ¼ 0: ) a Circle,
B2 � 4AC < 0: ) an Ellipse,
B2 � 4AC ¼ 0: ) a Parabola and
B2 � 4AC > 0: ) a Hyperbola

Similarly, we classify second order partial differential equations by the
expression

A
∂2

F x; yð Þ
∂x2

þ B
∂2

F x; yð Þ
∂x∂y

þ C
∂2

F x; yð Þ
∂y2

þD
∂F x; yð Þ

∂x
þ E

∂F x; yð Þ
∂y

þ F x; yð Þ ¼ 0:

This means that if B2 � 4AC ¼ 0 we call this a parabolic partial differential
equation. As we will see, in the Black–Scholes PDE, x will represent the
underlying (stock) price and y the time. Furthermore, B ¼ C ¼ 0, so this is a
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parabolic PDE. If we let y becomes time and x a space variable, the PDE class is of
great importance to how information evolves in time. A parabolic PDE is a
so-called diffusion equation. In diffusion processes the information about the his-
tory is rubbed out. In physics, a typical diffusion equation is the heat equation.
With a given temperature, we can estimate the equilibrium temperature in the
future. But we cannot say anything about the previous temperature distribution.

Example 4.1

If we measure the temperature in each point in a room, you can use this
measurement as an initial condition with a diffusion equation to solve the
temperature distribution in a later time. But you can’t solve the diffusion equation
backwards in time to find the temperature distribution in the room an hour ago.

Example 4.2

If B ¼ D ¼ E ¼ 0 we get a simple elliptical (circle) PDE describing a wave. The
information will not be rubbed out in this case. This is because the information
will move with a certain velocity given a growing circle in time, giving a growing
cone, as time evolves. An equation as this can be solved backwards in time as
well. Furthermore, the boundary condition only has to be given on a circle itself
or even a point, since the information travels with a constant velocity.

4.2 Parabolic PDEs

We will now show how to solve partial differential equation of parabolic type
by using stochastic processes. In physics this kind of PDEs are called diffusion
equations. We therefore start by considering the following Cauchy problem on
the interval [0, T]:

∂F
∂t

t; xð Þ þ μ t; xð Þ∂F
∂x

t; xð Þ þ 1

2
σ2 t; xð Þ∂

2
F

∂x2
t; xð Þ ¼ 0

F T; xð Þ ¼ ϕ xð Þ

8<: :

Instead of using traditional analytical methods, such as the Fourier method, we
will find F(t, x) in term of an associated diffusion process. Therefore,
we suppose that there is a solution where we fix t and x as in Fig. 4.1 and let
X(t) solve the stochastic differential equation

dX tð Þ ¼ μ t;X tð Þð Þdtþ σ t;X tð Þð ÞdW tð Þ
X Tð Þ ¼ x

�
:
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If we start by applying the Itô formula on the function F(t, X), we get

dF ¼ ∂F
∂t

þ μ
∂F
∂x

þ 1

2
σ2

∂2
F

∂x2

 !
dtþ σ

∂F
∂x

dW ¼ σ
∂F
∂x

dW,

where the bracket itself is zero, due to the PDE. In other words, the
bracket (..)dt vanishes since this is by definition equal to zero. If we
integrate this, we get

ϕ xð Þ ¼ F T;X Tð Þð Þ ¼ F t;X tð Þð Þ þ
ðT
t

σ s;X sð Þð Þ∂F
∂x

s;X sð Þð ÞdW sð Þ:

By taking the expectation value and let X ¼ x, we get

F t; xð Þ ¼ EQ
t,x ϕ X Tð Þð Þ½ �:

This formula is called the Feynman–Kač representation. Observe that the
expectation of the stochastic integral is zero by definition. This is one of the
properties of the Wiener process, since it is a noise where the integration of
the expected value is zero.

Fig. 4.1 An associated diffusion process used to solve a parabolic PDE

4 Continuous Time Models 147



Example 4.3

Consider the heat equation

Ft þ 1

2
s2Fxx ¼ 0

F T ; xð Þ ¼ x2

(
’

where the drift and volatility is given by m(t, x)¼ 0 and s(t, x)¼ s and the
boundary condition f(x)¼ x2. The process is therefore given by

dX sð Þ ¼ s � dW sð Þ
X tð Þ ¼ x

�
:

We start by applying the Itô formula on the function F(t, X):

dF ¼ ∂F
∂t

þ 1

2
s2

∂2
F

∂x2

 !
dt þ s

∂F
∂x

dW ¼ s
∂F
∂x

dW:

If we integrate and take the expectation value, we end up with the Feynman–Kač
representation

F t; xð Þ ¼ E Q
t,x X2

T

� �
:

Now, let Z¼X2 and use the Itô formula on Z

dZ ¼ ∂Z
∂X

dX þ 1

2

∂2
Z

∂X2
dXð Þ2 ¼ 2 � XtdX þ 1

2
� 2 � dXð Þ2 ¼ s2dt þ 2 � s � XdW:

Integration gives

Z Tð Þ � Z tð Þ ¼
ðT
t

s2dsþ
ðT
t

2 � s � XdW ¼ s2 T � tð Þ þ 2 � s
ðT
t

XdW:

Finally, we take the expectation value and get

E Z Tð Þ½ � ¼ E Z tð Þ½ � þ s2 T ; tð Þ þ 2s
ðT
t

E X½ �dW ¼ x2 þ s2 T � tð Þ:

We therefore have the following solution to our PDE

F t; xð Þ ¼ x2 þ s2 T � tð Þ:

We can also find the solution by using dX¼ s �dW and XT¼ x+s[WT�Wt]

F t; xð Þ ¼ E Q
t,x X2

T

� � ¼ Var XT½ � þ E Q
t,x XT½ �� �2 ¼ s2 T � tð Þ þ x2:
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In general, we can solve the following partial differential equation

∂F
∂t

t; xð Þ þ μ t; xð Þ∂F
∂x

t; xð Þ þ 1

2
σ2 t; xð Þ∂

2
F

∂x2
t; xð Þ ¼ rF t; xð Þ

F T; xð Þ ¼ ϕ xð Þ

8><>:
by starting with dX(t)¼ μdt + σdW and using the Itô formula on F(t, X) we
then gets (as always)

dF ¼ ∂F
∂t

þ μ
∂F
∂x

þ 1

2
σ2

∂2
F

∂x2

 !
dtþ σ

∂F
∂x

dW

and therefore

dF ¼ rFdtþ σ
∂F
∂x

dW:

If we integrate this from t to T and taking the expectation value (so that the
stochastic part vanishes) we get the Feynman–Kač formula

F t; xð Þ ¼ e�r T�tð ÞEQ ϕ xð Þ½ �:

For details of how to solve stochastic differential equations such as the
one above, see example 4.5. We observe that the right-hand side of the PDE
(rF(t, x)) gives a discount factor in front of the expectation value. This is due to
the integrating factor we get when solving the stochastic differential equation.

Example 4.4

Solve the following partial differential equation

∂F
∂t

t; xð Þ þ 1

2
s2x2

∂2
F

∂x2
t; xð Þ ¼ 0

F T ; xð Þ ¼ x2

8><>: :

Suppose F(t, X) solves the PDE, where dX ¼ sXdW and X(0) ¼ x. Using Itô we get

dF ¼ ∂F
∂t

dt þ ∂F
dX

dX þ 1

2

∂2
F

∂X2
dXð Þ2 ¼ Ft þ 1

2
x2s2FXX

� �
dt þ sXFXdW

¼ sXFXdW

Integration gives

(continued)
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Example 4.4 (continued)

X2 ¼ F T ; X Tð Þð Þ ¼ F t; X tð Þð Þ þ s
ðT
t

x
∂F
∂X

dW sð Þ

If we now take the expectation value we get the Feynman–Kač formula

F t; xð Þ ¼ E Q
t,x X2

T

� �
:

As always, to calculate such an expectation, we need the dynamics of Z ¼ X2 and
use the Itô Lemma. We then get

dZ ¼ 2 � XtdX þ 1

2
� 2 � dXð Þ2s2X2dt þ 2sX2dW ¼ s2Zdt þ 2sZdW

Z 0ð Þ ¼ X2 0ð Þ ¼ x2

(
:

We now integrate

Z Tð Þ ¼ Z tð Þ þ s2
ðT
t

Zdsþ 2s
ðT
t

ZdW

and by taking the expectation value, we get the following integral equation.

E Z½ � ¼ x2 þ s2
ðT
t

E Z½ �ds:

This is an integral equation and the easiest way to solve this is to convert it to a
differential equation. The standard technique to solve this equation is to is, first
to definem ¼ E[Z] and then take the derivative with respect to time. We then get
the following ordinary differential equation1

dm

dt
¼ �s2m

m Tð Þ ¼ x2

(

This gives the solution to the partial differential equation

F t; xð Þ ¼ m ¼ x2es
2 T�tð Þ:

1Remark: d
dt σ2

ðT
t

E Z½ �ds
8<:

9=; ¼ d
dt σ2

ðT
t

m sð Þds
8<:

9=; ¼ σ2 ddt M Tð Þ �M tð Þf g ¼ �σ2m tð Þ where M(t) is a

primitive function to m(t)
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The general solution to

∂F
∂t

t; xð Þ þ μ t; xð Þ∂F
∂x

t; xð Þ þ 1

2
σ2 t; xð Þ∂

2
F

∂x2
t; xð Þ � r tð ÞF t; xð Þ þ k t; xð Þ ¼ 0

F T; xð Þ ¼ Φ xð Þ

8<:
can be found by letting F(t, X) to be a solution where

dX sð Þ ¼ μ s;X sð Þð Þdsþ σ s;X sð Þð ÞdW sð Þ
X tð Þ ¼ x

�

If we use the Itô formula on F(t, X) we get

dF ¼ ∂F
∂t

þ μ
∂F
∂x

þ 1

2
σ2

∂2
F

∂x2

 !
dtþ σ

∂F
∂x

dW

¼ r tð ÞF t;Xð Þ � k t;Xð Þf gdtþ σ
∂F
∂x

t;Xð ÞdW
:

By taking the expectation value and integrate we have

F t; x tð Þð Þ

¼ EQ
t,x Φ XTð Þexp �

ðT
t

r sð Þds
8<:

9=;þ
ðT
t

exp �
ðT
t

r uð Þdu
8<:

9=;k s;X sð Þð Þds
24 35:

Example 4.5

An SDE like

dX ¼ mXdt þ sdW
X 0ð Þ ¼ x

�
can be solved as

X tð Þ ¼ xemt þ semt
ðt
0

e�msdW sð Þ ¼ xemt þ s
ðt
0

em t�sð ÞdW sð Þ

by remembering the technique of solving the following ODE with integrating
factor

(continued)
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Example 4.5 (continued)
_x þ f xð Þ � x ¼ g xð Þ
)
eF xð Þ _x þ eF xð Þf xð Þ � x ¼ eF xð Þg xð Þ
)
d

dt
xeF xð Þ
	 


¼ eF xð Þg xð Þ
)

x ¼ e�F xð Þ
ðt
0

eF xð Þg xð Þdt

where F(x) is the primitive function to f(x). From this we learn to use Itô on Y ¼ e
-mtX

dY ¼ d Xe�mtð Þ ¼ ∂Y
∂t

dt þ ∂Y
∂X

dX þ 1

2

∂2
Y

∂X2
dX2
� �

¼ �mXe�mtdt þ e�mt mXdt þ sdWf g þ 0 ¼ se�mtdW

:

By integrating we get

Y tð Þ ¼ Y 0ð Þ ¼ s
ðt
0

e�msdW sð Þ ) e�mtX tð Þ � x ¼ s
ðt
0

e�msdW sð Þ

Finally

X tð Þ ¼ xemt þ s
ðt
0

em t�sð ÞdW sð Þ:

4.2.1 A Classical Result

We will now derive a classical result, the transition probabilities to a stochastic
differential equation. The transition probability gives the probability to go
from one state to another. Let X be the solution to

dX tð Þ ¼ μ t;X tð Þð Þdtþ σ t;X tð Þð ÞdW tð Þ:

First, define A via
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Afð Þ s; yð Þ ¼ μ s; yð Þ∂f
∂y

s; yð Þ þ 1

2
σ2 s; yð Þ∂

2
f

∂y2
s; yð Þ

and consider the boundary value problem given by

∂u
∂s

þ Au

� �
s; yð Þ ¼ 0 s; yð Þ2 0;Tð Þ � R

u T; yð Þ ¼ IB yð Þ

8<:
where the indicator function IB( y) is defined such as it is one if y 2 B and zero
otherwise. We then get

u s; yð Þ ¼ Es,y IB XTð Þ½ � ¼ P XT2BjXS ¼ yð Þ:

We then have the following theorem.

Theorem 4.6 The transition probabilities P(s, y; t, B) ¼ P(XT 2 B| Xs ¼ y) is
given by the solution to the Kolmogorov backward equation

∂u
∂s

þ Au

� �
s; yð Þ ¼ 0 s; yð Þ2 0;Tð Þ � R

u T; yð Þ ¼ IB yð Þ

8<:
Theorem 4.7 Suppose that P(s, y; t, dx) have the density p(s, y; t, x)dx. Then

∂
∂s

þ A

� �
p s; y; t; xð Þ ¼ 0 s; yð Þ2 0; Tð Þ � R

p s; y; t; xð Þ ! δX when s ! t

8<:
The backward equation comes from the fact that A is acting on the backward
variables (s, y). We will also derive a forward equation. Consider an arbitrary
infinite differentiable “test-function” on (s, T) � R and use Itô

h T;XTð Þ ¼ h s;Xsð Þ þ
ðT
s

∂h
∂t

þ Ah

� �
t;Xtð Þdtþ

ðT
s

∂h
∂x

t;Xtð ÞdWt:

Then take the expectation value and suppose h(T, x) ¼ h(s, x) ¼ 0
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ð1
�1

ðT
s

p s; y; t; xð Þ ∂
∂t

þ A

� �
h t; xð Þdxdt ¼ 0

Partial integration in x and t gives

ð1
�1

ðT
s

h t; xð Þ ∂
∂t

� A*

� �
p s; y; t; xð Þdxdt ¼ 0

where

A*f
� �

t; xð Þ ¼ � ∂
∂x

μ t; xð Þf �t; x�� �þ 1

2

∂2

∂x2
σ2 t; xð Þf �t; x�� �

This gives the Fokker–Planck equation

∂
∂s

þ A

� �
pðs, y; t, xÞ ¼ 0 ðs, yÞ2ð0, TÞ � R

pðs, y; t, xÞ ! δX when s ! t

8<:

4.3 The Black–Scholes–Merton Model

We will now derive one of the most famous results in finance, the Black–
Scholes partial differential equation. Myron Scholes and Robert C. Merton
won the Nobel Prize in Economics in 1997. In 1973 Myron Scholes and
Fischer Black ({ 1995) published their paper “The Pricing of Options and
Corporate Liabilities” in the Journal of Political Economy. Robert C. Merton
was the first to publish a paper expanding the mathematical understanding of
the options pricing model, and coined the term “Black–Scholes options
pricing model”.

4.3.1 Modeling Asset Prices

The future price of most assets can be expected to have both deterministic and
random components. A popular model for the deterministic piece is exponen-
tial growth,

154 Analytical Finance: Volume I



dS tð Þ ¼ μ t; Sð Þ � S tð Þdt:

In a small time interval, S(t + dt) ¼ S{1 + μ(t, S)dt}, i.e. the asset’s rate of
return is given by μ(t, S)dt for a short time interval dt. If μ(t, S) is constant,
μ(t, S) ¼ μ0, then S(t) ¼ S(0)exp{μ0t}.
The random part of the price process is commonly modeled in terms of a

Brownian motion,

dS tð Þ ¼ σ t; Sð Þ � S tð ÞdW tð Þ:

Over a short time interval, S(t + dt) ¼ S(t) + σ(t, S)S√dtξ, where ξ is Gaussian
with mean 0 and variance 1. The Brownian motion increases the variance of
the price by σ2(t, S)S2dt in a short time interval dt. This means that the ratio of
the standard deviation to the asset price itself is proportional to the volatility
σ(t, S)

StdDev S tþ dtð Þf g
S tð Þ ¼ σ t; Sð Þ

ffiffiffiffi
dt

p
:

The standard Black–Scholes’s model uses constant drift μ(t, S) ¼ α and
constant σ

dS tð Þ ¼ α � S tð Þdtþ σ � S tð ÞdW tð Þ

To derive the Black–Scholes PDE, we will study a market with two investment
possibilities, a risk-free money-market account B that pays a constant interest
rate r and a stock S. The price of the stock is characterized of a constant drift α
and a stochastic term σSdW. The stochastic term is given by a geometric
Brownian motion, (a Wiener process) where σ is called the volatility. The
market is given by (

dBðtÞ ¼ r � BðtÞdt
Bð0Þ ¼ 1

) BðtÞ ¼ en(
dSðtÞ ¼ α � SðtÞdtþ σ � SðtÞdWðtÞ
Sð0Þ ¼ s

:

The initial condition of the money-market account is 1 and the initial stock
price is s. The Wiener process is normal distributed and (dW(t))2¼ dt. We will
construct a portfolio h of the bond and the stock: h ¼ (h0, h1), where h holds
the number of each instrument. h is then a stochastic process itself and the
value process of the portfolio is defined as
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V tð Þ ¼ h0 tð Þ � B tð Þ þ h1 tð Þ � S tð Þ

The portfolio is said to be self-financed if

dVðtÞ ¼ h0ðtÞ � dBðtÞ þ h1ðtÞ � dSðtÞ
¼ h0ðtÞ � r � BðtÞdtþ h1ðtÞ � α � SðtÞdtþ h1ðtÞ � σ � SðtÞdWðtÞ
¼ fh0ðtÞ � r � BðtÞ þ h1ðtÞ � α � SðtÞgdtþ h1ðtÞ � σ � SðtÞdWðtÞ

We start by defining a relative portfolio u ¼ (u0, u1) by

u0 tð Þ ¼ h0 tð Þ � B tð Þ
V tð Þ , u1 tð Þ ¼ h1 tð Þ � S tð Þ

V tð Þ , u0 tð Þ þ u1 tð Þ ¼ 1:

The self-financed value process in terms of the relative portfolio is

dV tð Þ ¼ V tð Þ � r � u0 tð Þ þ α � u1 tð Þ� �
dtþ V tð Þ � σ � u1 tð ÞdW tð Þ:

Suppose that V(t) ¼ V(t, S(t)). The Itô lemma gives

dV ¼ ∂V
∂t

dtþ ∂V
∂S

dSþ 1

2

∂2
V

∂S2
ðdSÞ2

¼ ∂V
∂t

dtþ ∂V
∂S

ðα � SðtÞdtþ σ � SðtÞdWðtÞÞ þ 1

2
σ2 � S2ðtÞ∂

2
V

∂S2
dt

¼ ∂V
∂t

þ α � SðtÞ � ∂V
∂S

þ 1

2
σ2 � S2ðtÞ∂

2
V

∂S2

( )
dtþ σ � SðtÞ � ∂V

∂S
dWðtÞ

To make this similar to dV(t) in our first expression, we multiply with V(t) and
use the notation ∂V

∂t ¼ Vt, ∂V∂S ¼ Vs etc. Then

dV tð Þ ¼ V
Vt þ α � S � Vs þ 1

2
σ2 � S2 � Vss

V

� �
dtþ V

σ � S � Vs

V
dW:

We now compare the terms end immediately see that

u1 ¼ S � Vs

V

so we get
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dV tð Þ ¼ V
Vt þ 1

2
σ2 � S2 � Vss

V � r � r þ α � u1
� �

dtþ V � σ � u1dW:

By studying the remaining terms, we also see that

u0 ¼ Vt þ 1
2
σ2 � S2 � Vss

V � r :

Since u0(t) + u1(t)¼ 1 we finally get the result

∂V
∂t

þ rS
∂V
∂S

þ 1

2
σ2S2

∂2
V

∂S2
¼ rV:

This is the Black–Scholes partial differential equation.

Remark The equation is independent of α. In a risk-neutral world we can
explain the terms in the PDE as

∂V
∂t ¼ Y The change of value with respect to time.

rS ∂V
∂S ¼ rS � D The change of value with respect to the underlying.

1
2s

2S2 ∂2
V

∂S2
¼ 1

2s
2S2G The change of value with respect to volatility.

rV The expected change of value of the derivative security.

4.3.2 An Alternative Approach to Black–Scholes

The Black–Scholes PDE can also be derived as follows. We now start with a
capital of X0 and receive at each time t, Δ(t) shares in a stock, modelled by a
Brownian motion:

dS tð Þ ¼ α � S tð Þdtþ σ � S tð ÞdW tð Þ:

The investor is financing the investment with a loan with interest rate r. The
capital at time t is given by

dX tð Þ ¼ Δ tð ÞdS tð Þ þ r X tð Þ � Δ tð ÞS tð Þ½ �dt
¼ Δ tð Þ αS tð Þdtþ σS tð ÞdW tð Þ½ � þ r X tð Þ � Δ tð ÞS tð Þ½ �dt
¼ rX tð Þ þ α� rð ÞΔ tð ÞS tð Þ½ �dtþ σΔ tð ÞS tð ÞdW tð Þ

4 Continuous Time Models 157



where we have invested in Δ(t) shares and earning interest rate on the
remaining capital. The factor (α� r) is called the risk-premium. Consider
now, also a European option paying an amount of g(S(T)) at time T and let F
(t, S(t)) represent the value at time t. Then

dF ¼ ∂F
∂t

dtþ ∂F
∂S

dSþ 1

2

∂2
F

∂S2
ðdSÞ2

¼ Ft þ μ � S � Fs þ 1

2
σ2 � S2Fss

� �
dtþ σ � S � FsdW

If X(t) ¼ F(t, S(t)) we get a delta-hedge Δ(t) ¼ Fs(t, S(t)) and

dF ¼ Ft þ α � S � Fs þ 1

2
σ2 � S2Fss

� �
dtþ σ � S � Δ � dW

¼ Ft þ α � S � Fs þ 1

2
σ2 � S2Fss

� �
dt� ½rFþ ðα� rÞΔS�dt

Ft þ αSΔþ 1

2
σ2S2Fss ¼ rFþ Δ α� rð ÞS

Then α vanish and

Ft þ rSFs þ 1

2
σ2S2Fss � rF ¼ 0

FT ¼ g S Tð Þð Þ

(

4.3.3 Alternative Approach Using Risk Neutrality

The following alternative using risk neutrality argument to deriving the Black–
Scholes equation was put forward by Cox and Ross in 1976, which does not
involve delta hedging. Here we shall explore exactly this argument and make a
direct comparison to the delta-hedging technique. The concept of risk neu-
trality is one associated with an investment that has zero risk to asset price
movement which must therefore, due to arbitrage consideration, earn the same
rate as the risk-free return (e.g. as the money-market account).
The pricing dynamics of the underlying asset can be described by a geo-

metric random walk of the form

dS ¼ αSdtþ σSdX:

158 Analytical Finance: Volume I



Further to this, we know that our call option C satisfies Itô’s lemma

dC ¼ ∂C
∂t

þ αS
∂C
∂S

þ 1

2
σ2S2

∂2
C

∂S2

 !
dtþ σS

∂C
∂S

dX

and we wish to express this in terms of a geometric random walk for the option
as

dC ¼ αcCdtþ σcCdX:

Therefore

αc ¼ 1

C

∂C
∂t

þ αS
∂C
∂S

þ 1

2
σ2S2

∂2
C

∂S2

 !

and

σc ¼ σS

C

∂C
∂S

in order to satisfy this requirement. Rearranging our expression gives us

∂C
∂t

þ αS
∂C
∂S

þ 1

2
σ2S2

∂2
C

∂S2
þ σS

∂C
∂S

� αcC ¼ 0:

This resembles precisely the Black–Scholes equation if we let αc¼ r. In many
literatures you will find something along the lines of “we replace μ by r to take
a risk neutral preference”. This is not as straightforward as it is made to sound;
in fact, the process of assuming the growth parameters to be equivalent to a
risk-free investment is a subtle point and needs to be further expanded upon.
You can construct a portfolio consisting of options and assets that is

instantaneously risk-less by holding σcC units of asset and short selling σS
units of options with a value

Π ¼ σcCS� σCS ¼ σc � σð ÞCS:

[Notice that this is different to delta hedging when one owns an option short
and Δ units of the asset.] Π is now written as a function of 4 variables,
3 stochastic S, C, σc and time t. Therefore, Π � Π(S, C, σc, t). To differentiate
this we require Itô’s lemma for many variables. All cross-terms in involving ‘t’
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vanish to slightly simplify matters, and we expand only to the second order for
all other variables except t. Therefore,

dΠ ¼ ∂Π
∂t

dtþ ∂Π
∂S

dSþ ∂Π
∂C

dCþ ∂Π
∂σc

dσc þ 1

2

∂2Π
∂S2

dS2 þ 1

2

∂2Π
∂C2

dC2

þ 1

2

∂2Π
∂σc2

dσc
2 þ ∂2Π

∂S∂C
dSdCþ ∂2Π

∂S∂σc
dSdσc þ ∂2Π

∂C∂σc
dCdσc:

After some very lengthy and tedious algebra this reduces to the much shorter
expression

dΠ ¼ αcσc � ασð ÞCSdt:

From simple arbitrage consideration this must earn the same as a risk-less
interest rate dΠ¼ rΠdt since the structure of the portfolio is such that the risk
is eliminated. Using this and our expressions above, we arrive at the expression

αcσc � ασ ¼ r σc � σð Þ

or

αc � r

σc
¼ α� r

σ
:

The interpretation of this equation has great financial significance. It says that
the ratio extra rate return over a risk free investment of option and asset with
their respective volatilities is fixed. This ratio is often termed themarket price of
risk, where the risk is measured in the volatility. Here we have shown that an
option and the underlying asset have the same ratio within a risk-neutral world
framework. From this equation we can interpret what we already know—the
bigger the returns, the greater the risk. By using the expression of market price
of risk and substituting it into our expression for αc and σc above we recover
the Black–Scholes equation

∂C
∂t

þ r � S � ∂C
∂S

þ 1

2
σ2S2 � ∂

2
C

∂S2
� r � C ¼ 0:

So we have not simply taken the equation above with αc¼ α¼ r, but done
something more subtle. This choice means that this ratio of market price of
risk can be satisfied for any set of values for σc and σ. This is what makes the
Black–Scholes model attractive. Furthermore, it sets a simple yet well-defined
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universal standard as desired as in any field. By letting α¼ r is different to
saying that in reality no investment can grow faster than the rate r, but simply
to set a fair price for our derivative we must let the two be equivalent.
Here we have derived the Black–Scholes equation without performing a

delta hedge as is most often presented in common literature. Delta-hedging is a
more refined and sophisticated extension to the risk neutrality argument.

4.3.4 Forwards and Futures

Forwards and futures are traded on equities, equity indices, bonds, currencies
and commodities. No initial payments are made and both of the parties are
obligated to fulfil the contract at maturity. But few contracts will reach
delivery. Most of the contracts are closed out by buying or selling the opposite
before maturity. Futures are exchange traded and usually daily settled. Both
parties take an equally risk by taking their position and margin requirements is
claimed by the clearinghouse or the exchange.
The price, F is given by

F ¼ 1þ Rð Þ � S ¼ S � er�t

Here R is the simple interest rate and r the continuous compounding rate. If
the underlying pays a known income (cash flow) with present value D, the
price is given by

F ¼ 1þ Rð Þ � S� Dð Þ ¼ S� Dð Þ � er�t

If there are future incomes in yield q (interest rate) the price is given by

F ¼ 1þ R� qð Þ � S ¼ S � e r�qð Þ�t

A forward in another currency rf the price is

F ¼ 1þ R� rf
� � � S ¼ S � e r�rfð Þ�t:

Example 4.8

Futures are very common contracts in the interest rate market and Treasury bills
are short-term instruments issued by the government. Bills are usually quoted as

(continued)
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Example 4.8 (continued)

percentage of a nominal amount, so at par they have the price as 100. Suppose
we have a 6-month Treasury bill. The value is then given by

V ¼ 100 � ef �t

where the price is given as percentage of the nominal amount, f is the forward
rate. If we are three months from delivery of a 90 days’ future contract with
interest rate 5 %, the price is given by

F ¼ 100 � e�0:05�90=365 ¼ 98:7578

The value of the Treasury bill is, with the same interest rate

V6 ¼ 100 � e�0:05�182=365 ¼ 97:5377

This is a corresponding return on yearly basis of

F=V6 � 1½ � � 4 ¼ 5:0 %:

Suppose there is another Treasury bill T3 with 3 months to maturity and with a
rate of 4 % and a value of

T3 ¼ 100 � e�0:04�91=365 ¼ 99:0077:

The corresponding return on yearly basis is

V3=V6 � 1½ � � 4 ¼ 6:02%:

Therefore, if the interest rate of the 6 months Treasury bill is above 5 % the last
90 days, it is better to hold the bill instead of the future.

Example 4.9

How can we make arbitrage using the instruments above?

Answer-1: Arbitrage with only Treasury bills

1. Sell short the 3-month bill at 99.0077, with the value 100 after 3 months.
2. Buy 99.0077/97.5377 ¼ 1.01507 of the six the month’s bill at 97.5377. This gives

a net investment of 0.
3. After 3 months we pay back 100 for the 3-month bill.
4. Receive (9.0077/97.5377)*100 for the 6-month bill.
5. This corresponds to 101.507 or a yearly interest rate of 6.028 %.

Answer-2: Arbitrage with the future

(continued)
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Example 4.9 (continued)

1. Sell short the future with the value 98.7578 after 3 months.
2. Buy the 6-month bill at 97.5377. This gives a net investment of 97.5377.
3. Deliver the bill to the buyer after 6 months and receive 98.7578.
4. The result corresponds to (98.7578/97.5377) * 100 * 101.25 or 5.098 %.

As we have shown, we can earn 5 % when the interest rate is 4 %. To do this
without taking a risk, we can use a repo (repurchase agreement) on the Treasury
bill at 4 %.

Black–Scholes with a Forward as Underlying

If we have a forward or future as underlying instead of a stock we can transform
the Black–Scholes PDE to get a new PDE with the Black-76 formula as
solution. The relation between the stock, S and the forward, F is given by

F tð Þ ¼ S tð Þer T�tð Þ:

We start with the Black–Scholes PDE

∂V S; tð Þ
∂t

þ r � S S; tð Þ � ∂V S; tð Þ
∂S

þ 1

2
σ2S2 S; tð Þ � ∂

2
V S; tð Þ
∂S2

� r � V S; tð Þ ¼ 0

and use the following substitutions

∂
∂S

¼ ∂F
∂S

∂
∂F

¼ erðT�tÞ ∂
∂F

∂2

∂S2
¼ ∂

∂S
∂F
∂S

∂
∂F

� �
¼ ∂2

F

∂S2
∂
∂F

þ ∂F
∂S

∂
∂S

∂
∂F

� �
¼ 0þ erðT�tÞ ∂F

∂S
∂
∂F

	 
2
¼ e2rðT�tÞ ∂2

∂F2

∂
∂t

¼ ∂
∂t

þ ∂F
∂t

∂
∂F

¼ ∂
∂t

� rF
∂
∂F

The result is

∂V F; tð Þ
∂t

þ 1

2
σ2F2 � ∂

2
V F; tð Þ
∂F2

� r � V F; tð Þ ¼ 0:
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4.3.5 Simplified Expression of Black–Scholes

Sometimes, the Black–Scholes equation (and also the Term-Structure equa-
tion in interest rate theory where S is replaced by r) is written as

L tð ÞV tð Þ ¼ r � V tð Þ,

where the evolution operator L(t) is given by

L tð Þ ¼ ∂
∂t

þ μ tð Þ � ∂
∂S

þ 1

2
σ2 tð Þ � ∂

2

∂S2
:

4.3.6 The Solution to Black–Scholes

Now, we will solve the Black–Scholes PDE for a European call option with
strike price K. We write the Black–Scholes partial differential equation with a
call option as our contingent claim (boundary condition) as

Ft þ rSFs þ 1

2
σ2S2Fss � rF ¼ 0

FT ¼ max ST � K; 0ð Þ

(
:

As usually, we suppose that F(t, St) is a solution to the PDE above where

dS tð Þ ¼ α � S tð Þ � dtþ σ � S tð Þ � dW tð Þ
S tð Þ ¼ St

�

Itô gives with α ¼ r

dF ¼ ∂F
∂t

dtþ ∂F
∂S

dSþ 1

2

∂2
F

∂S2
ðdSÞ2

¼ Ftdtþ Fsðr � Sdtþ σ � SdWÞ þ 1

2
σ2 � S2FssðdWÞ2

¼ Ft þ r � SðtÞ � Fs þ 1

2
σ2 � S2Fss

� �
dtþ σ � S � FsdW

¼ rFdtþ σ � S � FsdW:

If we integrate and take the expectation value, the stochastic part vanishes and
we get the Feynmann–Kač formula
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F t; Sð Þ ¼ e�r T�tð ÞEQ
t, s max ST � K; 0f g½ �

We here need ST, given by the stochastic differential equation

dS tð Þ ¼ r � S tð Þ � dtþ σ � S tð Þ � dW tð Þ
S tð Þ ¼ St

�
:

To find a solution we set Z(t) ¼ ln{S(t)}. From Itô Lemma we then get

dZ ¼ ∂Z
∂t

dtþ ∂Z
∂S

dSþ 1

2

∂2
Z

∂S2
dSð Þ2 ¼

¼ 1

S
r � Sdtþ σ � SdWð Þ � 1

2

1

S2
σ2 � S2dt ¼ r � 1

2
σ2

� �
dtþ σ � dW:

Integration from t to T gives

ZT ¼ lnSt þ r � 1

2
σ2

� �
T � tð Þ þ σ WT �Wtð Þ

I.e.

ST ¼ St � exp r � 1

2
σ2

� �
T � tð Þ þ σ WT �Wtð Þ

� �
¼ St � ey:

The probability distribution of Z is therefore aN[(r� σ2/2)(T� t), σ2(T� t)]-
distribution, where the probability density function g(S) is given by

g STð Þ ¼ 1

σST
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π T � tð Þp exp � ln ST=Stf g � r � σ2=2ð Þ T � tð Þð Þ2

2σ2 T � tð Þ

( )
:

The price of the call option is now given by

Π XjF½ � ¼ e�r T�tð ÞEQ
t, s max ST � K; 0f g½ �:

First, we define the following variables, to simplify the calculations

er ¼ r � 1

2
σ2, τ ¼ T � t v ¼ WT �Wt ¼

ffiffiffi
τ

p
z:

Then

ST ¼ St � exp erτ þ σ
ffiffiffi
τ

p
z

� � ¼ St � ey
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and

g STð Þ ¼ 1

σST
ffiffiffiffiffiffiffiffi
2πτ

p exp � ln ST=Stf g � erτð Þ2
2σ2τ

( )
¼ 1

σST
ffiffiffiffiffiffiffiffi
2πτ

p exp � y� erτð Þ2
2σ2τ

( )
:

By the above definitions we have

y ¼ er � τ þ σ � ffiffiffi
τ

p
z ) z ¼ y� er � τ

σ � ffiffiffi
τ

p

and

g STð Þ ¼ 1

σST
ffiffiffiffiffiffiffiffi
2πτ

p exp � z2

2

� �
¼ 1

σST
ffiffiffi
τ

p N
0
zð Þ:

For the call option we have

Φ ¼ max St � ey � K; 0f g
St � ey0 � K ¼ 0 ) y0 ¼ ln

K

St

� �
z0 ¼ ln K=Stf g � r̃ � τ

σ � ffiffiffi
τ

p :

Here we have defined y0 as the value of y where St � ey�K¼ 0. This also
gives the value z0 and we can now start to integrate to get the price of the
call option

Π ¼ e�r�τ
ð1

�1
ΦðSÞ � gðSÞdS ¼ dS ¼ ∂S

∂y
dy ¼ Stdy

� �

¼ e�r�τ
ð1

�1
St �ΦðyÞ � gðyÞdy ¼ dy ¼ ∂y

∂z
dz ¼ σ

ffiffiffi
τ

p
dz

� �

¼ e�r�τ
ð1

�1
ΦðzÞ � φðzÞdz

¼ e�r�τ
ð1

�1
maxfSt � er̃ �τþσ� ffiffiτp

z � K, 0gφðzÞdz

where

φ zð Þ ¼ 1ffiffiffiffiffi
2π

p e�z2=2:
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A normally distributed density function N(μ, σ) is given by

φ zð Þ ¼ 1ffiffiffiffiffiffiffiffi
2πσ

p exp �1

2

z� μ

σ

	 
2� �

and a log-normal distribution by

φ zð Þ ¼ 1

z
ffiffiffiffiffiffiffiffi
2πσ

p exp �1

2

ln zð Þ � μ

σ

� �2
( )

Now we can continue to integrate

Π ¼ e�r�τ
ð1
z0

St � er̃ �τþσ� ffiffiτp
z � K

	 

φ zð Þdz ¼

¼ St � e�r�τ
ð1
z0

er̃ �τþσ� ffiffiτp
zφ zð Þdz� K � e�r�τ

ð1
z0

φ zð Þdz ¼A� B

B ¼ K � e�r�τN �z0ð Þ

A ¼ St � e�r�τffiffiffiffiffi
2π

p � er�τ
ð1
z0

e�
1
2
σ2τ þ σ � ffiffiffi

τ
p

z� z2=2dz

¼ Stffiffiffiffiffi
2π

p
ð1
z0

e� z�σ� ffiffiτpð Þ2=2dz ¼ St � N �z0 þ σ � ffiffiffi
τ

p� �
:

Finally, we can write this as

Π ¼ St � N �z0 þ σ � ffiffiffiffiffiffiffiffiffiffiffi
T � t

p� �� K � e�r� T�tð ÞN �z0ð Þ ¼
¼ St � N d1ð Þ � K � e�r� T�tð ÞN d2ð Þ

where

d1 ¼ ln St=Kf g þ r þ σ2=2ð Þ T � tð Þ
σ � ffiffiffiffiffiffiffiffiffiffiffi

T � t
p , d2 ¼ d1 � σ �

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
:

Here we have used the symmetry N(�x)¼ 1�N(x). Then by integration from
x to 1 gives the same result as integrating from�1 to�x. To see that
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1ffiffiffiffiffi
2π

p
ð1
z0

e� z�σ� ffiffiτpð Þ2=2dz ¼N �z0 þ σ � ffiffiffi
τ

p� �

we also use that

1ffiffiffiffiffi
2π

p e� z�σ� ffiffiτpð Þ2=2

is a Gaussian function centred at z ¼ σ � ffiffiffi
τ

p
. If we like to have this centred at

z ¼ 0 we translate the curve and the integral becomes

1ffiffiffiffiffi
2π

p
ð1
z0

e� z�σ� ffiffiτpð Þ2=2dz ¼ 1ffiffiffiffiffi
2π

p
ð1

z0�σ
ffiffi
τ

p
e�z2=2dz ¼ 1ffiffiffiffiffi

2π
p

ð�z0þσ
ffiffi
τ

p

�1
e�z2=2dz

¼N �z0 þ σ � ffiffiffi
τ

pð Þ:

4.3.7 The Solution to Black–Scholes

There are many other European options with different payoffs at maturity. By
repeating the above arguments we can show that also these options are
solutions of the same PDE, the Black–Scholes partial differential equation,
with their specific boundary conditions for the payoff at maturity. A European
put option gives the holder the right to sell the asset at the strike price K at the
maturity date. The appropriate boundary condition for such put option is

V T; sð Þ ¼ K � s½ �þat t ¼ T Europeanputð Þ:

A digit call option gives the holder a payout of 1, if the asset price is above the
strike K at maturity date. A digital put option gives the holder a payout of 1, if
the asset price is below the strike. For these options

V T; sð Þ ¼ 0 if s < K
1 if s � K

�
at t ¼ T digital callð Þ

V T; sð Þ ¼ 1 if s < K
0 if s � K

�
at t ¼ T digital putð Þ:

Similarly, power calls and power puts gives the holder a payout given by

168 Analytical Finance: Volume I



V T; sð Þ ¼ s� K½ �þ� �2
at t ¼ T power callð Þ

V T; sð Þ ¼ K � s½ �þ� �2
at t ¼ T power putð Þ :

A convexity options gives the holder the payoff

V T; sð Þ ¼ s� Kf g2 at t ¼ T convexity optionð Þ:

4.3.8 A Green’s Function Approach

A Green’s function, G(x, s), of a linear differential operator L ¼ L(x) acting on
distributions over a subset of the Euclidean space Rn, at a point s, is any solution of

LG x; sð Þ ¼ δ x� sð Þ ð4:1Þ

where δ is the Dirac delta function. This property of a Green’s function can be
exploited to solve differential equations of the form

Lu xð Þ ¼ f xð Þ ð4:2Þ

If the kernel of L is non-trivial, then the Green’s function is not unique. However,
in practice, some combination of symmetry, boundary conditions and/or other
externally imposed criteria will give a unique Green’s function. Moreover,
Green’s functions in general are distributions, not necessarily proper functions.
Loosely speaking, if such a function G can be found for the operator L, then

if we multiply the equation (4.1) for the Green’s function by f(s), and then
perform integration in the s variable, we obtainð

LG x; sð Þf sð Þds ¼
ð
δ x� sð Þf sð Þds ¼ f xð Þ:

The right-hand side is now given by the equation (4.2) above to be equal to Lu
(x), thus

Lu xð Þ ¼
ð
LG x; sð Þf sð Þds

Because the operator L¼ L(x) is linear and acts on the variable x alone (not on
the variable of integration s), we can take the operator L outside of the
integration on the right-hand side, obtaining;
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Lu xð Þ ¼ L

ð
G x; sð Þf sð Þds

� �
:

This suggests;

u xð Þ ¼
ð
G x; sð Þf sð Þds ð4:3Þ

Thus, we can obtain the function u(x) through knowledge of the Green’s
function in equation (4.1), and the source term on the right-hand side in equation
(4.2). This process has resulted from the linearity of the operator L.
In other words, the solution of equation (4.2), u(x), can be determined by

the integration given in equation (4.3). Although f(x) is known, this integra-
tion cannot be performed unless G is also known. The problem now lies in
finding the Green’s function G that satisfies equation (4.1). For this reason,
the Green’s function is also sometimes called the fundamental solution
associated to the operator L.

Green Functions and Black–Scholes

One solution to Black–Scholes equation is

V
0
S; tð Þ ¼ e�r T�tð Þ

σS
0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π T � tð Þp exp � ln S=S
0� �þ r � σ2=2ð Þ T � tð Þ� �2

2σ2 T � tð Þ

( )

for any S0. You can verify this by substituting back into the equation. This
solution is special because as t ! T it becomes zero everywhere except at
S ¼ S0. In this limit the function becomes what is known as a Dirac delta
function. This function is as we see zero everywhere, except in one point where
it is infinite in such a way that the integral is one. Since Black–Scholes is a
linear function we can multiply with a constant to get another solution. We
can also add functions with different S0, as the one above and still have a
solution. We therefore have that also

e�r T�tð Þ

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π T � tð Þp ð1

0

exp � ln S=S
0� �þ r � σ2=2ð Þ T � tð Þ� �2

2σ2 T � tð Þ

( )
f S

0
	 
dS

S
0
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is a solution for any function f(S0). If we choose the arbitrary function f(S0) to
be the payoff function then this expression becomes the solution of the
problem

V S; tð Þ ¼ e�r T�tð Þ

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π T � tð Þp ð1

0

exp � ln S=S0f g þ r � σ2=2ð Þ T � tð Þð Þ2
2σ2 T � tð Þ

( )
f S

0
	 
dS

S
0 :

The function V 0(S, t) is called the Green’s function.

4.3.9 Transformation of Black–Scholes

The Black–Scholes equation can be transformed to a simple diffusion equa-
tion. This is done by a change of variables. If we write

V S; tð Þ ¼ U x; τð Þ � exp αxþ βτf g

where

α ¼ �1

2

2r

σ2
� 1

� �
, β ¼ �1

4

2r

σ2
þ 1

� �2

, S ¼ ex, t ¼ T � 2τ

σ2

Then U satisfies the following equation

∂U
∂τ

¼ ∂U2

∂x2

This can be useful when we want to find simple numerical schemes.

4.3.10 A Martingale Approach

In a martingale approach to find the price for a European call option we start
with the terminal value

E CT½ � ¼ ST � Kð Þþ ¼ max ST � K; 0ð Þ:

In a risk-neutral world, the expected value at maturity is this terminal value
discounted with the risk free rate r, i.e.
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Ct ¼ er T�tð ÞCT ¼ er T�tð ÞE max ST � K; 0ð Þ½ �:

Therefore, we have to consider the expectation value. For any random variable
X that can lie in the interval [0,1] with a probability density function p(X), its
expected value is given by

E X½ � ¼
ð1
0

xp xð Þdx:

As we know, (ln(ST) | St) is a normal random variable with mean α(T�t) and
variance σ2(T�t) and ST a lognormal random variable where
E ST½ � ¼ E eln STð Þ� �

. Let XT ¼ ln{ST}, then E eXT jSt½ � is given by

E eXT jSt
� � ¼ St

ð1
0

exp xð Þdx:

We can also take the expectation of X with respect to another probability
density function, say q(x). Call this expectation EQ[X] where

EQ X½ � ¼
ð1
0

xq xð Þdx:

Then E[ST] is given by

EQ ST½ � ¼
ð1
0

exq xð Þdx:

Now, if X ¼ (X�K)+

EQ X½ � ¼
ð1
K

xq xð Þdx
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so that

EQ max ST � K; 0ð Þ½ � ¼
ð1

ln Kð Þ

eln xð Þ � K
h i

q xð Þdx

¼
ð1

ln Kð Þ

eln xð Þq xð Þdx� K

ð1
ln Kð Þ

q xð Þdx

where q xð Þ � N r T; tð Þ � σ2=2; σ
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p� �
. By calculating this integral we

get the same result as above, the Black–Scholes formula.

4.3.11 Delta for a European Call Option

To calculate the Greeks (the hedge parameters) we have to take derivatives of
integrals. The easiest way is to think like

d

dx

ðf xð Þ

o

g yð Þdy ¼ d

dx
G yð Þ½ �f xð Þ

0 ¼ df xð Þ
dx

� g f xð Þð Þ:

Using Black–Scholes formula for a call option is given by

C ¼ S � N d1ð Þ � X � e�rT � N d2ð Þ

where

d1 ¼ ln S=Xð Þ þ r þ σ2=2ð Þ � T
σ � ffiffiffi

T
p , d2 ¼ d1 � σ �

ffiffiffi
T

p

∂d1
∂S

¼ ∂d2
∂S

¼ 1

S � σ � ffiffiffi
T

p

i.e.
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Δ ¼ ∂C
∂S

¼ ∂
∂S

S � N d1ð Þ½ � � X � e�rT � ∂
∂S

N d2ð Þ

¼ N d1ð Þ þ S � N0
d1ð Þ � ∂d1

∂S
� X � e�rT � N0

d2ð Þ � ∂d2
∂S

¼ N d1ð Þ þ S � N0 d1ð Þ � 1

S � σ � ffiffiffi
T

p � X � e�rT � N0
d2ð Þ � 1

S � σ � ffiffiffi
T

p

¼ N d1ð Þ þ 1

S � σ � ffiffiffi
T

p S � N 0
d1ð Þ � X � e�rT � N 0

d2ð Þ
h i

But

X � e�rT � N 0
d2ð Þ ¼ X � e�rT � N0

d1 � σ � ffiffiffi
T

p� �
¼ X � e�rT � N 0

d1ð Þ � ed1�σ�
ffiffiffi
T

p
� e�σ2�T=2

¼ X � e�rT � N 0
d1ð Þ � e�σ2�T=2 � S

X
� erT � eσ2�T=2

¼ S � N 0
d1ð Þ

Finally, we get

Δ ¼ N d1ð Þ:

This is also what we expect if we look at the formula

C ¼ S � N d1ð Þ � X � e�rT � N d2ð Þ:

Other hedge parameters can be calculated similarly.

4.3.12 Black–Scholes and Time-Dependent Parameters

We can generalize Black–Scholes by letting the parameters become time-
dependent. Suppose that the interest rate and volatility are time dependent.
We then replace; r ! r(t) and σ ! σ(t). We can also introduce a time
dependent dividend yield q ! q(t). The Black–Scholes equation then takes
the form

∂F t; Sð Þ
∂t

þ r tð Þ � q tð Þð ÞS tð Þ∂F t; Sð Þ
∂S

þ 1

2
σ2 tð ÞS2 tð Þ∂

2
F t; Sð Þ
∂S2

� r tð ÞF t; Sð Þ ¼ 0:
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If we now introduce new variables

S tð Þ ¼ S tð Þeα tð Þ, F t; Sð Þ ¼ F t; Sð Þeβ tð Þ, τ ¼ γ tð Þ

to eliminate the time dependence we get the new equation

_γ tð Þ ∂F
∂τ

þ r tð Þ � q tð Þ þ _α tð Þð ÞS tð Þ ∂F
∂S

þ 1

2
σ2 tð ÞS2 tð Þ ∂

2
F

∂S
2
� r tð Þ þ _β tð Þ� �

F ¼ 0

where the dots denotes time derivatives. To eliminate the time-dependent
terms we now choose

α tð Þ ¼
ðT
t

r τð Þ � q τð Þð Þdτ,

β tð Þ ¼
ðT
t

r τð Þdτ

and

γ tð Þ ¼
ðT
t

σ2 τð Þdτ:

Now, we get the following equation

∂F
∂τ

þ 1

2
S
2
tð Þ∂

2
F

∂S
2
¼ 0

This means that a solution to the PDE in the original variables is

F t; Sð Þ ¼ e�β tð ÞF γ tð Þ; S tð Þeα tð Þ
	 


If we let FBS represents any solution to Black–Scholes with time-independent
parameters we have
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FBS ¼ e�rc T�tð ÞFBS σ2c T � tð Þ; Se� rcþqcð Þ T�tð Þ
	 


where

rc ¼ 1

T � t

ðT
t

r τð Þdτ,

qc ¼
1

T � t

ðT
t

q τð Þdτ,

σ2c ¼
1

T � t

ðT
t

σ2 τð Þdτ:

To make everything clear, her`e is the formula for a European call option with
time-dependent parameters:

C ¼ S exp �
ðT
t

q τð Þdτ
8<:

9=;N d1ð Þ � Kexp �
ðT
t

r τð Þdτ
8<:

9=;N d2ð Þ

where

d1 ¼
ln S

K

� �þ ÐT
t

r τð Þ � q τð Þð Þdτ þ 1
2

ðT
t

σ2 τð Þdτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT
t

σ2 τð Þdτ

vuuut
and

d2 ¼
ln S

K

� �þ ÐT
t

r τð Þ � q τð Þð Þdτ � 1
2

ðT
t

σ2 τð Þdτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT
t

σ2 τð Þdτ

vuuut
:
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4.4 Volatility

In the Black–Scholes model, the volatility of the underlying asset is the only
non-directly observable variable. For this reason, it is necessary to devise some
method where by one can estimate (efficiently) and possibly anticipate the
volatility. By using market prices, we can implicitly calculate the volatilities
when we know the market prices. This method has an advantage over direct
estimations based on historical price changes, since it reflects how much
volatility the market currently assumes within the Black–Scholes framework.
Quite often, the implied volatility is found to give rise to a skew, smile or frown,
see Fig. 4.2 depending upon the asset or market.
One problem with using the implied volatility is that whilst it takes into

account the current view of the market, it does not give us any insight into
possible future changes in volatility. Given that the value of an option is
primarily driven by the volatility, making predictions is a valuable tool from a
practitioner’s perspective. To achieve this, we turn back our attention to
historical price movements. The historical volatility is defined via the standard
deviation of the movements in price. Suppose we have n observations: ai: a0, a1,
. . ., an-1. If we define ui ¼ ln(ai/ai-1) we can calculate the standard deviation:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1
�
Xn
i¼1

u2i �
1

n � n� 1ð Þ
Xn
i¼1

ui

 !2
vuut

The volatility is then given as s
ffiffiffi
d

p
, where d is the number of trading days in a

year (�250).

4.4.1 The Volatility Surface

In many situations, we need to use a volatility surface. We can find such a
surface by a least square method from implied volatilities. We need one such
surface for the call options and another for the put options. By using a bid/ask
volatility spread and the mid volatilities, we can also find a bid surface and an
ask surface.
The calibration process is then:

1. Calculates the implied mid volatilities from option prices.
2. Calibrates the two volatility surfaces (call and put) to the implied mid

volatilities.
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3. Applies a spread to extract bid and ask volatility surfaces. (Use larger spread
for less liquid option series.)

The prices to use are either last paid, a bid/ask pair or a parity price, in that
order of priority. We have to check that the implied volatility is not too low or
not too high. Typical market data are shown in Table 4.1.
For option series with market prices, the mid volatility is calculated as the

average of the implied bid and ask volatilities. The mid volatility for
OMXS309V400 is for example (47.1 + 51.1)/2 ¼ 49.1 %.
For option series with parity prices the mid volatility is given as the mid

volatility of the option series with opposite option type adjusted with the
average difference of the call and put mid volatilities of the option series that
has market prices in both the call and the put options.
In this example the option series with strike prices 700, 710 and 720 have

market prices in both the call and the put options. These option series show a
slightly higher mid volatility for the put options compared to the call options
and the average of the difference in mid volatility equals 1/3
(1.7 % + 1.0 % + 1.2 %) ¼ 1.28 %.
The mid volatility for OMXS309V850 is therefore given by (30.1 + 32.0)/

2 + 1.28 ¼ 32.22 % and the mid volatility for OMXS309J400
49.1�1.28 ¼ 47.82 %.
Option series with no prices will get a mid-volatility from the calibrated

volatility surfaces.

Fig. 4.2 The volatility smile and skew as function of the strike price
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The Method of Least Square

The concept of volatility surfaces implies that the mid volatility can be seen as a
function of time to maturity T and strike price, X, i.e. σ¼ σ(T,X). If we
assume that the volatility surfaces are given by a 3rd degree polynomial surface
we have

σ T;Xð Þ ¼ c0 þ c1T þ c2T
2 þ c3T

3 þ c4X þ c5X
2 þ c6X

3 þ c7TX þ c8T
2X

þ c9TX
2:

The problem is to find the coefficients ck. If they are found, then the implied
volatility can be calculated for any given time to expiration and strike price.
The mid volatilities from the option series with market prices and parity prices
provide several points. There are totally 10 unknown coefficients, ck, for a 3rd
degree polynomial surface. The minimum number of data points in order to
calculate the coefficients are therefore 10. If there are market prices and parity
prices corresponding to more than 10 data points these add up to an over
determined system of linear equations. In this case there is no exact solution
but there is a way to mathematically estimate the best approximation to the
coefficients. This is called the method of least squares.
The set of data points can be converted into a linear system of equations

using the equation above. The linear system of equations can be expressed as a
matrix multiplication A.c ¼ z where A is a matrix containing the times to
expiration and the strike prices, c is a vector containing the unknown coeffi-
cients and z is a vector containing the mid volatilities.

A ¼
1 T1 T2

1 T3
1 X1 X2

1 X3
1 T1X1 T2

1X1 T1X
2
1

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
1 Tk T2

k T3
k Xk X2

k X3
k TkXk T2

kXk TkX
2
k

24 35
c ¼

c0
⋮
c9

24 35 z ¼
σ0
⋮
σ9

24 35
We then do the simple algebra

A � c ¼ z ) ATA � c ¼ AT � z ) c ¼ ATA
� ��1 � AT � z:

In Fig. 4.3 we see a typical volatility surface for European options on a stock index.
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The volatility for the options with no prices are calculated from the surface.
Volatility for series outside the surface can be found by (flat) interpolation.

Example 4.10

We have the following points (x, y): (1, 1), (2, 3) and (3, 2) and we would like to
find the equation of the line that fits these points with the least square.

We have then the following system of equations

1 ¼ k � 1þm
2 ¼ k � 3þm
3 ¼ k � 2þm

8<: ,
1 1
3 1
2 1

0@ 1A k
m

� �
¼

1
2
3

0@ 1A , Ac ¼ y:

By using

A � c ¼ y ) ATA � c ¼ AT � y ) c ¼ ATA
� ��1 � AT � y

(continued)

Fig. 4.3 A typical volatility surface. On the axis we have the index level and the
strike price
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Example 4.10 (continued)

we have

k
m

� �
¼ 1 3 2

1 1 1

� � 1 1
3 1
2 1

0@ 1A24 35�1

1 3 2
1 1 1

� � 1
2
3

0@ 1A
¼ 14 6

6 3

� ��1
13
6

� �
¼ 1

14 � 3� 6 � 6
3 �6
�6 14

� �
13
6

� �

¼ 1

6

3
6

� �
¼ 1=2

1

� �
i.e.,

y ¼ 1=2x þ 1:

4.4.2 Volatility Models

According to the classical Black–Scholes options pricing model, all options
based on the same underlying sharing a constant implied volatility under the
assumption of a geometric Brownian motion process. But if this model is used
to back-test the market-traded option, we can observe that different contracts
produce significantly different implied volatilities. Options’ implied volatilities
actually vary with the different time to maturity. This is the term structure of
implied volatility. For a given time to maturity, implied volatilities for different
strikes are not the same either. This is the implied volatility skew and is often
referred as the volatility smile. All these market evidences imply that the option
market expects the future volatility of the underlying asset will not be a
constant.
In Fig. 4.4 we show the S&P 500 and the VIX volatility index over several

years (data provided by the Chicago Board of Option Exchange, www.cboe.
com). S&P (Standard & Poor’s) 500 is an American stock market index based
on the market capitalizations of 500 large companies having common stock
listed on the NYSE or NASDAQ. The S&P 500 index components and their
weightings are determined by S&P Dow Jones Indices. It differs from other
US stock market indices, such as the Dow Jones Industrial Average or the
Nasdaq Composite index, because of its diverse constituency and weighting
methodology. It is one of the most commonly followed equity indices, and many
consider it one of the best representations of the US stock market, and a bellwether
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for the US economy. The CBOEVolatility Index® (VIX® Index) is a key measure
of market expectations of near-term volatility conveyed by S&P 500 stock index
option prices. Since its introduction in 1993, VIX has been considered by many to
be the world’s premier barometer of investor sentiment and market volatility. As
we can see in Fig. 4.4, the volatility increases when the market falls. The VIX
Index is therefore sometimes referred as a “market fear index”.
When we see the behaviour of the volatility, we realize that a stochastic

volatility model is more reasonable for option pricing. It can explain the basic
shapes of the smile patterns and allow for more realistic theories of the term
structure of implied volatility. A particular case is that volatility can be described
with a GARCH model (see Sect. 4.4.4). In GARCH models, the variance is
written as a function of past returns, but with exponentially smoothing and a
certain time-decay factor. One more important feature of GARCH is that the
constant term in the recursive equation allows GARCH to capture the notion
that the volatility is mean reverting and allows the model to be used for
forecasting volatility.

Fig. 4.4 The historical VIX volatility S&P 500 (Source: CBOE)
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Autocorrelation Structures

We take a slight detour to introduce the definition of the autocorrelation
function. The correlation function between two time series, X and Y, is given
by the expression

Corr X;Yð Þ ¼ X � μXð Þ Y � μYð Þh i
σXσY

where μ and σ are the mean and variance estimates of X and Y respectively, and
<. . .> denotes the mean value of the expression inside the brackets. The
autocorrelation function is calculated by setting Y ¼ X(t + δ), where δ is some
forward time lag of the time series X. Hence, the autocorrelation function may
be expressed as

Corr δð Þ ¼ X tð ÞX tþ δð Þh i
σX2

:

The autocorrelation function is an average measure of the correlations that
exist within a time series. The form of this volatility autocorrelation has been
empirically suggested to be either exponentially decaying, or exhibiting long-
range memory (power-law decay).

4.4.3 ARCH Models

An autoregressive conditional heteroskedasticity (ARCH(m)) model was intro-
duced by Engle (1982) to model the volatility of UK inflation. As the name
suggests, the model has the following properties:

1. Autoregression—Uses previous estimates of volatility to calculate subse-
quent (future) values. Hence volatility values are closely related.

2. Heteroscedasticity—The probability distributions of the volatility varies
with the current value.

In order to introduce ARCH processes, let us assume that we have a time series
of asset price quotes Pi for each time step i. We calculate the fractional change
in the price of the asset between time step i and i + 1 using
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xi ¼ Pi � Pi�1

Pi�1

:

Furthermore, we are required to determine the long-running historical vola-
tility (e.g. over several years) denoted by S. The volatility fluctuates about some
long-running mean volatility, therefore, it seems reasonable to incorporate this
quantity in the ARCH model. Formally, an ARCH(m) process may be
expressed mathematically as

σ2n ¼ γSþ
Xm
i¼1

αixn�i
2

where

γ � 0, αi � 0, γ þ
Xm
i¼1

αi ¼ 1and m is the number of observa-

tions of xn�i used to determine σn. The most common ARCH(m) model is the
ARCH(1) model where

σ2n ¼ γSþ αxn�1
2 ¼ γSþ 1� γð Þxn�1

2:

4.4.4 GARCH Models

Bollerslev (1986) later proposed a more generalized form of the ARCH(m)
model appropriately termed the GARCH(p, q) (General-ARCH) model. The
GARCH( p, q) model may be written as

σ2n ¼ γSþ
Xp
i¼1

αixn�i
2 þ

Xq
j¼1

βjσn�j
2:

The p and q denote the number of past observations of xn�i and σn�j,
respectively, used to estimate σn. The simplest GARCH(p, q) model is
GARCH(1,1) given by:
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σtþ1
2 ¼ κϑþ 1� κð Þ 1� λð Þy2t þ λσt2

� �
yt ¼

log
St
St�1

� �
� rt � 1

2
σt

2

� �
Δtffiffiffiffiffi

Δt
p

8>><>>: :

The equation gives the evolution of the variance as the weighted average with
weights κ and 1� κ, of two parts, one being the constant ϑ and the other
being a weighted average of y2t andσ

2
t . Whatever the variance might be at time

i, the variance of yj at any date j far into the future, computed without
knowing the intervening yi + 1, yi + 2,. . ., will be approximately the constant ϑ.
The constant ϑ is called the unconditional variance, whereas σ2t is the
conditional variance of yt.
To understand the unconditional variance, it is useful to consider the

variance forecasting equation. Specifically, we can calculate Ei σ2iþn

� �
, which

is the estimate made at date i of the variance of yi + n; we estimate the variance
without having observed yi + 1 , . . . , yi + n� 1. Note that by definition
Ei y

2
iþ1

� � ¼ σ2iþ1, so the above equation implies

Ei σ
2
iþ2

� � ¼ κϑþ 1� κð Þ 1� λð ÞEi y
2
iþ1

� �þ λσiþ1
2

� � ¼ κϑþ 1� κð Þσiþ1
2:

Likewise,

Ei σ
2
iþ3

� � ¼ κϑþ 1� κð ÞEi σ
2
iþ2

� � ¼ κϑ 1þ 1� κð Þð Þ þ 1� κð Þ2σiþ1
2:

This generalizes to

Ei σ
2
iþn

� � ¼ κϑ 1þ 1� κð Þ þ � � � þ 1� κð Þn�2
	 


þ 1� κð Þn�1σiþ1
2:

Thus, there is decay at rate κ in the importance of the current volatility σi + 1
2

for forecasting the future volatility. Furthermore, as n !1, the geometric
series1 + (1� κ) + � � � + (1� κ)n� 2 converges to 1/κ, so, as n!1 we obtain

Ei σ
2
iþn

� �! ϑ:

This means that our best estimate of the conditional variance, at some date far
in the future, is approximately the unconditional variance ϑ.
The most interesting feature of the volatility equation is that large returns in

absolute value lead to an increase in the variance and hence are likely to be
followed by more large returns. This is the “volatility clustering”, which is
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observable in actual markets. This feature also implies that the distribution of
the returns will be “fat-tailed”. This means that the probability of the extreme
returns is higher than under a normal distribution with the same standard
deviation. It is agreed that daily and weekly returns in most markets have this
‘fat-tailed’ property.
The constants are determined by finding the maximum probability distri-

bution of the observed changes in the daily closing prices.

4.4.5 EWMA

The exponentially weighted moving average model (EWMA) is a special case
of the GARCH(1,1) model where γ ¼ 0. Thus

σ2n ¼ αxn�1
2 þ βσn�1

2 ¼ αxn�1
2 þ 1� αð Þσn�1

2:

The EWMA model differs from ARCH and GARCH models since it does not
mean-revert. The preference between these different models is dependent
upon many factors. For example, the asset class, the forecasting time frame,
and the efficiency with which the weighting parameters may be calibrated to
the time series. Whilst the maximum likelihood estimator method may be the
most obvious method to select for calibration with empirical data, more
efficient algorithms have also been put forward.
Since these volatility forecasting models were introduced, there have been

many alternatives/modifications proposed to these models to better their use in
volatility forecasting.

4.5 Parity Relations

To study parity relations we introduce the following notation:

c(t, S, K, T, r, s) the price on a European call option.
p(t, S, K, T, r, s) the price on a European put option.
S the value of the underlying stock.
B ¼ 1 the value of one cash unit.
CK(S) ¼ (S�K)+ the call option value.
PK(S) ¼ (K�S)+ the put option value.

Let T be the time to maturity and consider different T-contracts X:
Φ(S) ¼ X. If
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Φ ¼ α � Sþ β � Bþ
Xn
i¼1

γiCKi

the price is given by:

Πt Φ½ � ¼ α � Πt S½ � þ β � Πt B½ � þ
Xn
i¼1

γi � Πt CKi
½ � ¼

¼ α � St þ β � e�r T�tð Þ þ
Xn
i¼1

γi � c t; St;Ki;T; r; σð Þ:

For each Φ we can construct a replicating portfolio with constant shares over
time. The result is only interesting if there exist a class of such contract
functions Φ, given by linear combinations of the base functions. This is the
case in reality.
The put call parity is obtained from the fact that

max K � ST, 0f g ¼ K � ST þmax ST � K; 0f g:

If we denote by C(t, S(t)) the price at time t for a European call option with
strike price K and exercise time T written on the stock, and by P(t, S(t)) the
corresponding put option. Then

P t; S tð Þð Þ ¼ e�r T�tð ÞEQ max K � ST ; 0f gjF t½ �
¼ e�r T�tð ÞEQ K � ST þmax ST � K; 0f gjF t½ �
¼ e�r T�tð ÞK � ertEQ ST

erT
jF t

� �
þ e�r T�tð ÞEQ max ST � K; 0f gjF t½ �

¼ e�r T�tð ÞK � ert
St
ert

þ C t; S tð Þð Þ

where we used the martingale property that the discounted stock price is
martingale. This gives the put call parity

P t; S tð Þð Þ ¼ Ke�r T�tð Þ þ C t; S tð Þð Þ � St:

For American options, the put call parity is given by

S� K 	 CA � PA 	 S� Ke�rT :

We leave the proof to the reader.
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4.6 A Practical Guide to Pricing

In the previous chapters we have described a number of techniques to price
derivatives. In this section we will study in detail two similar problems and see
how to price these contracts. With these examples in mind the reader should
get the needed understanding to be able to solve various problems by her own.
We will value two simple and similar contracts where the pay-out function

at maturity T is given by

Φ Xð Þ ¼ S2 Tð Þ

and

ΦðXÞ ¼ S2ðTÞ if SðTÞ > K
0 else

�

where K is a given strike price and S the price of an underlying stock.

4.6.1 Method 1, Without Using the Solution to S

We start with the first problem and define a new variable Zt as

Zt ¼ S2t 
 S2 tð Þ:

If we use Itô on Zt we find

dZt ¼ ∂Zt

∂S
dSþ 1

2

∂2
Zt

∂S2
dSð Þ2 ¼ 2StdSþ 1

2
� 2 dSð Þ2:

We know that the stock prices in Black–Scholes world follow a stochastic
process given as a geometrical Brownian motion (GBM)

dS ¼ rSdtþ σSdW
S 0ð Þ ¼ s

�

driven by the risk-free interest rate r. If we substitute this expression into dZ we
get
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dZt ¼ 2StðrStdtþ σStdWtÞ þ 1

2
� 2ðσStÞ2dt ¼ ð2r þ σ2ÞS2t dtþ 2σS2t dWt

¼ ð2r þ σ2ÞZtdtþ 2σZtdWt

where σ is the volatility and Wt a Wiener process. We have also used the
property of the Wiener process that (dW)2 ¼ dt. If we integrate and take
expectation value we find

EQ

ðt
0

dZu

24 35 ¼ 2r þ σ2
� �

EQ

ðt
0

Zudu

24 35þ 2σEQ

ðt
0

ZudWu

24 35:
The last integral will vanish due to the property of increments of the Wiener
process. We then get

EQ Zt½ � � EQ Z0½ � ¼ 2r þ σ2
� �ðt

0

EQ Zu½ �du:

We also know that EQ[Z0] is a constant given by S0
2. If we let EQ[Zt]¼mt and

take the derivative with respect to t, we find

dm tð Þ
dt

¼ 2r þ σ2
� �

m tð Þ
m 0ð Þ ¼ S2 0ð Þ

8<: :

This, simple ordinary differential equation can be solved. The solution is

m tð Þ ¼ S2 0ð Þe 2rþσ2ð Þt ¼ EQ Zt½ � ¼ EQ S2 tð Þ� �
:

The price of the contract is then given as the discounted value

Π 0; Sð Þ ¼ e�rTEQ S2 Tð Þ� � ¼ e�rTS20e
2rþσ2ð ÞT ¼ S20e

rþσ2ð ÞT :

4.6.2 Method 2, by Using the Solution to S

If we use the solution to the Brownian motion of the stock price
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St ¼ S0 � exp r � 1

2
σ2

� �
tþ σWt

� �

we have

S2t ¼ S20 � exp 2r � σ2
� �

tþ 2σWt

� �
:

By taking the expectation value we get

EQ S2t
� � ¼ EQ S20

� � � EQ e 2r�σ2ð Þth i
� EQ e2σWt

� � ¼ S20e
2r�σ2ð Þt � EQ e2σWt

� �
:

Now we can calculate the expectation value by integration. We know that the
Wiener process is normal distributed N[0, 1], so that e2σW is normal distrib-
uted N[0, t] giving

EQ e2σWt
� � ¼ ð1

�1
e2σ

ffi
t

p
z 1ffiffiffiffiffi

2π
p e�z2=2dz ¼ e2σ

2tffiffiffiffiffi
2π

p
ð1

�1
e� z�2σ

ffi
t

pð Þ2=2dz ¼ e2σ
2t

I.e.,

EQ S2t
� � ¼ S20e

2r�σ2ð Þte2σ2t ¼ S20e
2rþσ2ð Þt

giving

Π 0; Sð Þ ¼ e�rTEQ S2 Tð Þ� � ¼ e�rTS20e
2rþσ2ð ÞT ¼ S20e

rþσ2ð ÞT :

The Expectation of W via an ODE

Another method to calculate

EQ e2σWt
� �

is, by the use of Itô. We then introduce a new variable Zt given by Zt ¼ e2σw.
We then get
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dZt ¼ ∂Zt

∂Wt
dWt

þ 1

2

∂2
Zt

∂Wt
2
dWtð Þ2 ¼ 2σZtdWt þ 1

2
� 4σ2Ztdt ¼ 2σ2Ztdtþ 2σZtdWt:

Integration gives

ðt
0

dZu ¼ 2σ2
ðt
0

Zuduþ 2σ

ðt
0

ZudWu:

Taking expectation value, the last integral vanish and

EQ Zt½ � � EQ Z0½ � ¼ 2σ2
ðt
0

EQ Zu½ �du:

If we let EQ[Zt] ¼ mt and take the derivative with respect to t, we find

dm tð Þ
dt

¼ 2σ2m tð Þ
m 0ð Þ ¼ 1

(
:

This, simple ordinary differential equation can be solving, giving

m tð Þ ¼ e2σ
2t

and we get the same result as above.

EQ S2t
� � ¼ S20e

2r�σ2ð Þte2σ2t ¼ S20e
2rþσ2ð Þt

i.e.,

Π 0; Sð Þ ¼ e�rTEQ S2 Tð Þ� � ¼ e�rTS20e
2rþσ2ð ÞT ¼ S20e

rþσ2ð ÞT :
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4.6.3 Introducing the Strike

If we introduce the strike, we have to integrate the probability distribution.
Since we have done the same several times we start with the solution to the
Brownian motion

St ¼ S0exp r � 1

2
σ2

� �
tþ σWt

� �
¼ S0 � ey:

First, we define the following variables

er ¼ r � 1

2
σ2, σWt ¼ σ

ffiffi
t

p
z:

Then we have

St ¼ S0 � exp ertþ σ
ffiffi
t

p
z

� � ¼ S0 � ey

and

ST
2 ¼ S0

2 � exp 2erT þ 2σ
ffiffiffi
T

p
z

n o
¼ S0

2 � e2y:

By the above definitions we have

y ¼ erT þ σ
ffiffiffi
T

p
z ) z ¼ y� erT

σ
ffiffiffi
T

p :

The strike gives the integration boundary

ST > K ) S0e
y > K ) y0 ¼ ln

K

S0

� �
z0 ¼ y0 � erT

σ � ffiffiffi
T

p ¼ ln K=S0f g � erT
σ � ffiffiffi

T
p :

The probability distribution of S is a N[(r � σ2/2)t, σ2t]-distribution, where
the probability density function g(S) is given by
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g Sð Þ¼ 1

σS
ffiffiffiffiffiffiffiffi
2πT

p exp � ln S=S0f g�erTð Þ2
2σ2T

( )
¼ 1

σS
ffiffiffiffiffiffiffiffi
2πT

p exp � y�erTð Þ2
2σ2T

( )
¼ 1

σS
ffiffiffiffiffiffiffiffi
2πT

p exp � z2

2T

� �
:

We can now start to integrate to get the price of the call option

Π ¼ e�r�T
ð1

�1
Φ Sð Þ � g Sð ÞdS ¼ dS ¼ ∂S

∂y
dy ¼ Sdy

� �

¼ e�r�T
ð1
y0

S �Φ yð Þ � g yð Þdy ¼ dy ¼ ∂y
∂z

dz ¼ σ
ffiffiffi
T

p
dz

� �

¼ e�rT

ð1
z0

Φ zð Þφ zð Þdz ¼ S0
2e�rT

ð1
z0

e2er Tþ2
ffiffiffi
T

p
zφ zð Þdz

¼ S0
2e�rTffiffiffiffiffi
2π

p
ð1
z0

e2erTþ2σ
ffiffiffi
T

p
z�z2=2dz

¼ S0
2e�rTe 2r�σ2ð ÞTffiffiffiffiffi

2π
p

ð1
z0

e2σ
ffiffiffi
T

p
z�z2=2dz

¼ S0
2e r�σ2ð ÞTffiffiffiffiffi

2π
p e2σ

2T

ð1
z0

e� z�2σ
ffiffiffi
T

pð Þ2=2dz

¼ S0
2e rþσ2ð ÞTN �z0 þ 2σ

ffiffiffi
T

ph i
¼ S0

2e rþσ2ð ÞTN d½ �

where

d ¼ ln S0=Kf g þ r � σ2=2ð ÞT
σ
ffiffiffi
T

p þ 2σ
ffiffiffi
T

p
¼ ln S0=Kf g þ r þ 3σ2=2ð ÞT

σ
ffiffiffi
T

p :
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4.6.4 The General Problem, a Summary

As we have seen we can use two methods to calculate the price of a derivative.
We can use the probabilistic method with the following schema:

1. Use Itô formula on the contract function to find the dynamics.
2. Integrate this expression and take the expectation value. The stochastic part

will then vanish.
3. Introduce a new variable for the expectation value (m above).
4. Take derivative of this variable with respect to time. This gives an ordinary

differential equation.
5. Solve the ODE above.
6. Discount the ODE solution with the risk free interest rate r, to a present

value.
7. Done!

The second method is to use the analytical approach and integrate. Then we
are using the following schema

1. Express the contract function in term of the solution to the GBM for the
stock price.

2. Introduce the simplified variables and find the integration limits depending
on the conditions (strike).

3. Write down the integrals and change the integrating variables as above.
4. Rewrite the integral as:

I ¼ f r;T;σ...ð Þffiffiffiffi
2π

p
ð1
z0

exp � z� mð Þ2
2

( )
dz

5. The integral is now equal to:
I¼ f(r,T, σ. . .) �N[�z0 +m]

6. Discount the integral solution with the risk free interest rate r, to a present
value.

7. Done!

The relation between the two methods is given by the Feynman–Kač
representation
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F t; xð Þ ¼ e�r T�tð ÞEQ
t,x ϕ X Tð Þð Þ½ �:

4.6.5 A General Approach for Pricing European Call
Options

The payoff of a European call options is given by

CT ¼ max ST � K; 0ð Þ ¼ ST � Kð ÞI ST>Kf g

where ST is the stock price at maturity, K the strike price and I ST>Kf g a
indicator function equal to 1 if ST> K and 0 else. We then have the arbitrage
free price as

Ct ¼ e�r T�tð ÞEQ max ST � K; 0ð Þ½ �
¼ e�r T�tð ÞEQ ST � K; 0ð ÞI ST>Kf g

� �
¼ e�r T�tð Þ EQ STI ST>Kf gjF t

� �� K � EQ I ST>Kf g
� �� �

¼ e�r T�tð Þ EQ STI ST>Kf gjF t

� �� K � Q ST > Kð Þ� �
whereQ(ST> K) is the probability that the option is in-the-money at maturity.
If we change the measure (numeraire) we can rewrite the first term as

e�r T�tð ÞEQ STI ST>Kf gjF t

� � ¼ StE
eQ I ST>Kf gjF t

� � ¼ SteQ ST > Kð Þ:

Therefore

Ct ¼ St � eQ ST > Kð Þ � e�r T�tð ÞK � Q ST > Kð Þ:

Remark Both of the probabilities in this formula are that the option expire
in-the-money. The difference is that we are calculating the probabilities under
different probability measures.

Since we know the expression for the stock price:

ST ¼ St exp r � 1

2
σ2

� �
T � tð Þ þ σ WT �Wtð Þ

� �
¼ St exp erτ þ σ

ffiffiffi
τ

p
z

� �
:

The normal processes are given by:
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Q : N erτ; 1½ �eQ : N erτ; σ2τ½ �

since we have to use

ST > K ) St exp erτ þ σ
ffiffiffi
τ

p
z

� �
> K ) z0 ¼ ln K=Stf g � erτ

σ
ffiffiffi
τ

p

to calculate the expectation on St above. Here z0 is the value of z where we hit
the strike K, so

Q ST > Kð Þ ¼ N �z0½ �

and

eQ ST > Kð Þ ¼ N �z0 þ σ
ffiffiffi
τ

p� �
:

Finally, we get the Black–Scholes formula

Ct ¼ St � N d1½ � � e�r T�tð ÞK � N d2½ �,

where

d1 ¼ ln S=Kf g þ r þ σ2=2ð Þ T � tð Þ
σ � ffiffiffiffiffiffiffiffiffiffiffi

T � t
p , d2 ¼ d1 � σ �

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
:

4.7 Currency Options and the
Garman–Kohlhagen Model

In 1983 Garman and Kohlhagen extended the Black–Scholes model to cope
with the presence of two interest rates, one for each currency. These also called
foreign exchange option or FX options.
Suppose that rd is the risk-free interest rate to expiry of the domestic

currency and rf is the foreign currency risk-free interest rate where the domestic
currency is the currency in which we obtain the value of the option. The
formula also requires that FX rates—both strike and current spot—be quoted
in terms of “units of domestic currency per unit of foreign currency”.
We consider the model geometric Brownian motion:
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dSt ¼ rd � rf
� �

St þ σStdWt

for the underlying exchange rate quoted in FOR-DOM (foreign-domestic),
which means that one unit of the foreign currency costs FOR-DOM units of
the domestic currency. In the case of EUR-USD with a spot of 1.2000, this
means that the price of one EUR is 1.2000 USD. The notion of foreign and
domestic does not refer to the location of the trading entity, but only to this
quotation convention. We denote the (continuous) foreign interest rate by rf
and the (continuous) domestic interest rate by rd . In an equity scenario, rf
would represent a continuous dividend rate. The volatility is denoted by σ, and
Wt is a standard Brownian motion.
Applying Itô’s rule to ln St yields the following solution for the process St

St ¼ St exp rd � rf � 1

2
σ2

� �
tþ σ �Wt

� �
:

which shows that St is log-normally distributed, more precisely, ln St is normal
with mean ln S0 + (rd � rf�½σ2)t and variance σ2t.
The payoff for a vanilla option (European put or call) is given by

Φ ¼ ε ST � Kð Þ½ �þ,

where the contractual parameters are the strike K, the expiration time T and
the type ε, a binary variable which takes the value +1 in the case of a call and
�1 in the case of a put.
In the Black–Scholes model the value of the payoff F at time t it the spot x is

denoted by V(t, x) and can be computed either as the solution to the Black
Scholes partial differential equation

∂V
∂t

þ rd � rf
� �

x
∂V
∂x

þ 1

2
σ2x2

∂2
V

∂x2
� rdV ¼ 0

V T; xð Þ ¼ F:

Or equivalently by the Feynman–Kač theorem as the discounted expected
value of the payoff function

V x;K; t;T; σ; rd; rf ; ε
� � ¼ e�rd � T�tð ÞE FjF t½ �:

Then the domestic currency value of a call option into the foreign currency is
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V0 ¼ ε � e�rd �Td f � N ε � d1ð Þ � K � N ε � d2ð Þf g,

where

d1 ¼
ln S0=Kf g þ rd � rf

� � � Td þ σ2 � Te=2

σ � ffiffiffiffiffi
Te

p , d2 ¼ d1 � σ �
ffiffiffiffiffi
Te

p
and

f the forward price of the underlying ¼ E[ST | St ¼ x] ¼ x.exp{(rd�rf)Td}
x spot FX rate denoted in domestic units per unit of foreign currency, i.e., the

price of the underlying.
K strike using the same quotation as the spot rate
Te time from today until expiry of the option
Td time from spot until delivery of the option
rd domestic interest rate corresponding with period Td
rf foreign interest rate corresponding with period Td
s volatility corresponding with strike K and period Te
e 1 for a call,�1 for a put
N(.) cumulative normal distribution.

Hence V0 is the value of the option expressed in domestic currency on a
notional of one unit of foreign currency.
The forward price f is the strike, which makes the time zero value of the

forward contract

F ¼ ST � f

equal to zero. The situation rd> rf is called contango, and the situation rd< rf is
called backwardation.
The Black–Scholes delta also called spot delta of the option is equal to

ΔBS ¼ ∂V
∂x

¼ ε � e�rf �TdN ε � d1ð Þ:

The dual delta is defined by

Δdual
BS ¼ �ε � e�rd �TdN ε � d2ð Þ:

In all currency markets, except the EuroDollar market, the premium in the
foreign currency is included in the delta. This “premium-included” delta has
to be calculated as follows
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Δp ¼ ΔBS � V

x
¼ ε � K

x
e�rd �TdN ε � d1ð Þ

The logic of this premium-included delta can be illustrated with an exam-
ple. Consider a bank that sells a call on the foreign currency. This option can
be delta hedged with an amount of delta of the foreign currency. However, the
bank will only have to buy an amount equal to the premium-included delta
when it receives the premium in foreign currency.
It can be observed from the above formula that the premium-included delta

for a call is not strictly decreasing in strike like the Black–Scholes call delta.
Therefore, a premium-included call delta can correspond to two possible strike
prices (see the Fig. 4.5).
For emerging markets (EM) and for maturities of more than 2 years, it is

usual for forward deltas to be quoted. These are defined as follows

ΔF
BS ¼ erf �TdΔBS and

ΔF
P ¼ erf �TdΔP

Fig. 4.5 Black–Scholes and premium-included delta as function of strike
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The ATM strike refers to the strike of a zero delta straddle, that is, the strike for
which the call delta is equal to the put delta. This strike can be calculated
analytically.

4.7.1 Symmetry Relations

For FX options, the put call parity is given by

V x;K; t;T; σ; rd; rf ;þ1
� �� V x;K; t;T; σ; rd; rf ;�1

� �
¼ x � e�rf T�tð Þ � Ke�rd T�tð Þ:

We also have a put call delta parity given by

∂V x;K; t;T; σ; rd; rf ;þ1
� �

∂x
� ∂V x;K; t;T; σ; rd; rf ;�1

� �
∂x

¼ e�rf T�tð Þ:

In particular, we learn that the absolute value of a put delta and a call delta do
not exactly add up to one, but only to a positive number e�rf T�tð Þ. They add
up to one approximately if either the time to expiration T�t is short or if the
foreign interest rate rf is close to zero.
Whereas the choice K¼ f produces identical values for call and put, we seek

the delta-symmetric strike K* which produces absolutely identical deltas (spot,
forward or driftless). This condition implies d1 ¼ 0 and thus

K* ¼ f � eσ2

2
T

in which case the absolute delta is e�rf T�tð Þ=2. In particular, we learn, that
always K*> f , i.e., there can’t be a put and a call with identical values and
deltas. Note that the strike K* is usually chosen as the middle strike when
trading a straddle or a butterfly. Similarly, the dual-delta-symmetric strike

K* ¼ f � eσ2

2
T

can be derived from the condition d2 ¼ 0.
If we wish to measure the value of the underlying in a different unit we can

use an obviously effect the option pricing formula:

aV x;K; t; T; σ; rd; rf ; ε
� � ¼ V ax; aK; t; T; σ; rd; rf ; ε

� �
; a > 0

Differentiating both sides with respect to a and then setting a ¼ 1 yields
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V ¼ x � ∂V
∂x

þ K � ∂V
∂K

:

This space-homogeneity is the reason behind the simplicity of the delta formu-
las, whose tedious computation can be saved this way.
We can perform a similar computation for the time-affected parameters and

obtain the obvious equation

V x;K; t; T; σ; rd; rf ; ε
� � ¼ V x;K;

t

a
;
T

a
;
ffiffiffi
a

p
σ; ard; arf ; ε

� �
; a > 0:

Differentiating both sides with respect to a and then setting a ¼ 1 yields

0 ¼ T � tð Þ � ∂V
∂t

þ 1

2
σ � ∂V

∂σ
þ rd � ∂V∂rd þ rf � ∂V∂rf :

By the put call symmetry we understand the relationship

V x;K; t; T; σ; rd; rf ;þ1
� � ¼ K

f
V x;

f 2

K
; t; T; σ; rd; rf ;�1

� �
:

The strike of the put and the strike of the call result in a geometric mean equal
to the forward f . The forward can be interpreted as a geometric mirror reflecting
a call into a certain number of puts. Note that for ATM options (K ¼ f ) the
put call symmetry coincides with the special case of the put call parity where
the call and the put have the same value.
Direct computation shows that the rates symmetry

∂V
∂rd

þ ∂V
∂rf

¼ � T � tð Þ � V

holds for vanilla options. This relationship, in fact, holds for all European
options and a wide class of path-dependent options.
One can also directly verify the relationship the foreign-domestic symmetry

1

x
� V x;K; t; T; σ; rd; rf ; ε
� � ¼ K � V 1

x
;
1

K
; t; T; σ; rd; rf ;�ε

� �
:

This equality can be viewed as one of the faces of put call symmetry. The
reason is that the value of an option can be computed both in a domestic as
well as in a foreign scenario. We consider the example of St modelling
the exchange rate of EUR/USD. In New York, the call option (ST�K )+ costs
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V(x, K, t, T, σ, rusd, reur, 1) USD and hence V(x, K, t, T, σ, rusd, reur, 1)/x EUR.
This EUR-call option can also be viewed as a USD-put option with payoff K
(1/K�1/ST)

+. This option costs K.V(1/x, 1/K, t, T, σ, reur, rusd, �1) EUR in
Frankfurt, because St and 1/St have the same volatility. Of course, the
New York value and the Frankfurt value must agree, which leads to the
equation above. This symmetry is just one possible result based on change of
numeraire.

4.7.2 Volatility and Quotation

The quotation of FX options is a constantly confusing issue, so let us clarify
this here. The exchange rate means how much of the domestic currency is
needed to buy one unit of foreign currency. For example, if we take EUR/USD
as an exchange rate, then the default quotation is EUR–USD, where USD is
the domestic currency and EUR the foreign currency. The term domestic is in
no way related to the location of the trader or any country. It merely means the
numeraire currency. The terms domestic, numeraire or base currency are syno-
nyms as are foreign and underlying.
EUR/USD can also be quoted in either EUR–USD, which then means how

many USD are needed to buy one EUR, or in USD–EUR, which then means
how many EUR are needed to buy one USD. There are certain market
standard quotations listed in Table 4.2.
We call one million a buck, one billion a yard. This is because a billion is

called “milliarde” in French, German and other languages. For the British
pound one million is also often called a quid.
Certain currency pairs have names. For instance, GBP/USD is called cable,

because the exchange rate information used to be sent through a cable in the
Atlantic ocean between America and England. EUR/JPY is called the cross,
because it is the cross rate of the more liquidly traded USD/JPY and EUR/USD.
Certain currencies also have names: for example, the New Zealand dollar

(NZD) is called a kiwi, the Australian dollar (AUD) is called Aussie, and the
Scandinavian currencies (DKR, NOK and SEK) are called Scandies.
Exchange rates are generally quoted up to five relevant figures, e.g. in EUR–

USDwe could observe a quote of 1.2375. The last digit ‘5’ is called the pip, the
middle digit ‘3’ is called the big figure, as exchange rates are often displayed in
trading floors and the big figure, which is displayed in bigger size, is the most
relevant information. The digits left to the big figure are known anyway, the
pips right of the big figure are often negligible. To make it clear, a rise of USD–
JPY 108.25 by 20 pips will be 108.45 and a rise by 2 big figures will be 110.25.
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4.7.3 Delta and Premium Convention

The spot delta of a European option without premium is well known. It will
be called raw spot delta δraw now. It can be quoted in either of the two
currencies involved. The relationship is

δreverceraw ¼ �δraw � S
K
:

The delta is used to buy or sell spot in the corresponding amount in order to
hedge the option up to first order.
For consistency, the premium needs to be incorporated into the delta hedge,

since a premium in foreign currency will already hedge part of the option’s
delta risk. To make this clear, let us consider EUR–USD. In the standard
arbitrage theory, V(x) denotes the value or premium in USD of an option with
1 EUR notional, if the spot is at x, and the raw delta Vx denotes the number of
EUR to buy for the delta hedge. Therefore, xVx is the number of USD to sell.
If now the premium is paid in EUR rather than in USD, then we already have
Vx EUR, and the number of EUR to buy has to be reduced by this amount,
i.e. if EUR is the premium currency, we need to buy Vx�V/x EUR for the delta
hedge or equivalently sell xVx � V USD.
The entire FX quotation story becomes generally a mess, because we need to

first sort out which currency is domestic, which is foreign, what the notional
currency of the option is, and what is the premium currency. Unfortunately, this
is not symmetrical, since the counterpart might have another notion of domestic
currency for a given currency pair. Hence in the professional interbank market
there is one notion of delta per currency pair. Normally it is the left hand side
delta of the Fenics screen (http://www.gfigroup.com/gfifenics.aspx) if the option is
traded in left hand side premium, which is normally the standard and right-hand
side delta if it is traded with right-hand side premium, e.g. EUR/USD lhs,
USD/JPY lhs, EUR/JPY lhs, AUD/USD rhs, etc. Since OTM options are traded
most of time the difference is not huge and hence does not create a huge spot risk.

Table 4.2 Quotes of exchange rates

Currency pair Default quotation Sample quote

GBP/USD GPB-USD 1.8000
GBP/CHF GBP-CHF 2.2500
EUR/USD EUR-USD 1.2000
EUR/GBP EUR-GBP 0.6900
EUR/JPY EUR-JPY 135.00
EUR/CHF EUR-CHF 1.5500
USD/JPY USD-JPY 108.00
USD/CHF USD-CHF 1.2800
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Additionally, the standard delta per currency pair [left hand side delta in
Fenics for most cases] is used to quote options in volatility. This has to be
specified by currency.
This standard interbank notion must be adapted to the real delta-risk of the

bank for an automated trading system. For currencies where the risk–free
currency of the bank is the base currency of the currency it is clear that the
delta is the raw delta of the option and for risky premium this premium must
be included. In the opposite case the risky premium and the market value must
be taken into account for the base currency premium, so that these offset each
other. And for premium in underlying currency of the contract the market
value needs to be taken into account. In that way the delta hedge is invariant
with respect to the risky currency notion of the bank—for example, the delta is
the same for a USD-based bank and a EUR-based bank.

Examples 4.11

Consider two Examples in the Tables below to compare the various versions of
deltas that are used in practice.

1y EUR call USD put strike K = 0.9090 for a EUR-based bank

Delta ccy Prem ccy Fenics Formula Delta

%EUR EUR lhs dnow� P 44.72
%EUR USR rhs dnow� 49.15
%USD EUR rhs [flip F4] �(dnow� P)S/K �44.72
%USD USD lhs [flip F4] �(dnow)S/K �49.15

Market data: spot S = 0.9090, volatility s = 12 %, EUR rate rf = 3.96 %, USD rate
rd = 3.57 %. The raw delta is 49.15 % EUR and the value is 4.427 % EUR.

1y EUR call USD put strike K = 0.7000 for a EUR-based bank

Delta ccy Prem ccy Fenics Formula Delta

%EUR EUR lhs dnow� P 72.94
%EUR USD rhs dnow� 94.82
%USD EUR rhs [flip F4] �(dnow� P)S/K �94.72
%USD USD lhs [flip F4] �(dnow)S/K �123.13

Market data: spot S = 0.9090, volatility s = 12 %, EUR rate rf = 3.96 %, USD rate
rd = 3.57 %. The raw delta is 94.82 % EUR and the value is 21.88 % EUR.

Volatility

The only unobserved input on the market is the volatility. We can also invert
the relation and calculate which so-called implied volatility that should be used
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to result in a certain price. If all Black–Scholes assumptions would hold, the
implied volatility would be the same for all European vanilla options on a
specific underlying FX rate. In reality we will find different implied volatilities
for different strikes and maturities. In fact, all assumptions of the standard
Black–Scholes model that do not hold express them in the so-called implied
volatility surface. Thus, the Black–Scholes model effectively acts as a quotation
convention.
In the Table 4.3 we give an example of how in the FX market implied

volatilities are quoted.
We see above “Vols” the volatilities to be used for ATM options of various

maturities. Furthermore, we encounter in this quotation strangles (STR) and
risk reversals (RR). A strangle is a long position in an out-of-the-money
(OTM) call and an OTM put. A strangle is a bet on a large move of the
underlying either upwards or downwards. Note that where the ATM indicates
the level of the smile, the STR can be regarded as a measure of the curvature or
convexity of the volatility smile. A risk reversal is a combination of a long
OTM call and a short OTM put. A RR can be seen as a measure of skewness,
namely the slope of the smile. When RRs are positive, the market favours the
foreign currency.
The implied volatilities correspond to 25-delta and ATM options. Delta is

the sensitivity of the option to the spot FX rate and is always between 0 % and
100 % of the notional. It can be shown that an ATM option has a delta around
50 %. A 25-delta call (put) corresponds to an option with a strike above
(below) the strike of an ATM option.
A 25-delta RR quote is the difference between the volatility of a 25-delta call

and a 25-delta put. A 25-delta STR is equal to the average volatility of a
25-delta call and put minus the ATM volatility. Therefore, the volatility of a
25-delta call and put can be obtained from these quotes as follows:

Table 4.3 Example of volatility quotation

Vols 25 Delta strangles 25 Delta Risk Revs

1W 8.08
1M 8.18 0.19 0.59
3M 8.26 0.21 0.52
6M 8.38
1Y 8.48 0.22 0.41
2Y 8.67
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σC, 25 ¼ σATM þ STR25 þ 1

2
RR25

σP, 25 ¼ σATM þ STR25 � 1

2
RR25:

Usually quotes also exist for 10-delta RRs and STRs, although these options
are not as liquid.
To derive the value for European vanilla options for other deltas one needs

to interpolate between and extrapolate outside the available quotes. But inter-
and extrapolation is also required for the derivation of prices for European
style-derived products, such as European digitals. European digitals pay out a
fixed amount if the spot at maturity ends above (or below) the strike and
otherwise nothing.
Linear interpolation cannot be used for volatilities instead the following

formula can be used:

σ tð Þ ¼ σ t1ð Þ þ
ffiffi
t

p � ffiffiffiffi
t1

pffiffiffiffi
t2

p � ffiffiffi
tt

p σ t2ð Þ � σ t1ð Þð Þ; t1 	 t 	 t2

Another interpolation is the linear total variance method for the implied
volatility. If we consider local volatility to be a function of time, ε(t), then
the implied volatility for time T is given by

σ2 Tð Þ ¼ 1

T

ðT
0

ε2 tð Þdt

Let T0 < T < T1. Then

σ2 Tð Þ ¼ 1

T

ðT0

0

ε2 tð Þdtþ
ðT
T0

ε2 tð Þdt

264
375 ¼ 1

T
T0σ

2 T0ð Þ þ
ðT
T0

ε2 tð Þdt

264
375:

The question that remains is how we should approximate the last term inside
the parentheses in the above equation. A reasonable guess is that it should be
set equal to
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T � T0

T1 � T0

� �ðT1

T0

ε2 tð Þdt:

Intuitively, this is the proportion of the area under the local volatility curve
from T0 to T1 that goes up to T. Therefore, we may write

σ2ðTÞ ¼ 1

T
T0σ

2ðT0Þ þ T � T0

T1 � T0

� �ðT1

T0

ε2ðtÞdt

264
375

¼ 1

T
T0σ

2ðT0Þ þ T � T0

T1 � T0

� ��ðT1

0

ε2ðtÞdt�
ðT0

0

ε2ðtÞdt
�24 35

¼ 1

T
T0σ

2ðT0Þ þ T � T0

T1 � T0

� �	
T1 � σ2ðT1Þ � T2 � σ2ðT0Þ


� �

So

σt ¼ 1ffiffi
t

p T1σ
2
1 þ

t� T1

T2 � T1

� �
T2σ

2
2 � T1σ

2
1

� �� �1=2
:

4.7.4 Volatility in Terms of Delta

In the FX market implied volatilities are quoted in terms of delta. There are
various definitions of delta. Hence, for the correct interpretation of the implied
volatility quotes it is important to know what definition is used.
The mapping σ ! Δ¼ ε.exp{�rf(T�t)}N(ε.d1) is not one-to-one. The two

solutions are given by

σ�¼ 1ffiffiffiffiffiffiffiffiffi
T�t

p
�
ε�N�1 ε�Δ�erf T�tð Þ

	 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1 ε�Δ�erf T�tð Þ� �� �2�σ

ffiffiffiffiffiffiffiffiffi
T�t

p
� d1�d2ð Þ

q �
:

Thus using only the delta to retrieve the volatility of an option is not advisable.
The determination of the volatility and the delta for a given strike is an

iterative process involving the determination of the delta for the option using
ATM volatilities in a first step and then using the determined volatility to
redetermine the delta and to continuously iterate the delta and volatility until
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the volatility does not change more than ¼ 0.001 % between iterations. More
precisely, one can perform the following algorithm. Let the given strike be K.

1. Choose σ0 ¼ ATM volatility from the volatility matrix.
2. Calculate Δn+1 ¼ Δ(Call(K, σn)).
3. Take σn+1 ¼ σ(Δn+1) from the volatility matrix, possibly via a suitable

interpolation.
4. If |σn+1 � σn| < ε, then quit, otherwise continue with step 2.

4.7.5 Options on Commodities

Commodity options are also handled in a similar way to FX options. Here,
instead of a foreign interest rate, we have a cost of carry. In holding a
commodity we have the carry of cost, cc, and the Black–Scholes is given by

∂F
∂t

þ r þ ccð ÞS∂F
∂S

þ 1

2
σ2S2

∂2
F

∂S2
� rF ¼ 0:

The cost of carry or carrying charge can be considered as a cost of storing the
physical commodity, such as grain or metals, over a period of time. The
carrying charge includes insurance, storage and interest on the invested
funds as well as other incidental costs.
In the interest rate futures markets, it refers to the differential between the

yield on a cash instrument and the cost of the funds necessary to buy the
instrument.
For a long position, the cost of carry is the cost of interest paid on a margin

account.
For a short position, the cost of carry is the cost of paying dividends, or

rather the opportunity cost; the cost of purchasing a particular security rather
than an alternative.
For most investments, the cost of carry generally refers to the risk-free

interest rate that could be earned by investing currency in a theoretically safe
investment vehicle such as a money-market account minus any future cash
flows that are expected from holding an equivalent instrument with the same
risk (generally expressed in percentage terms and called the convenience yield).
Storage costs (generally expressed as a percentage of the spot price) should be
added to the cost of carry for physical commodities such as corn, wheat,
or gold.
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4.7.6 Black–Scholes and Stochastic Volatility

Suppose that the volatility follows a stochastic process. This is a very realistic
model, which can be seen by studying the dynamic of historical prices. With a
stochastic volatility we will now try to derive a modified Black–Scholes
differential equation. We start with the following model

dS ¼ μ � Sdtþ σ � SdW1

dσ ¼ p S; σ; tð Þdtþ q S; σ; tð ÞdW2:

As we see, we have two Wiener processes. We define a correlation so that
dW1dW2 ¼ ρdt, where ρ is a measure of the correlation between the two
processes.
The question we want to answer is the following: with known functions

p and q, is it possible to create a risk-free portfolio? To get an answer we will try
to hedge an option C(S, t) in some portfolio. We can’t hedge against σ since
there is no offer on volatility on the market. For this reason we try to hedge
against another option Ĉ (S, t) on the same underlying. We start with a
portfolio Π

Π ¼ C� ΔS� bΔbC
and use the Itô formula

dC ¼ ∂C
∂t

dtþ ∂C
∂S

dSþ 1

2

∂2
C

∂S2
dS2 þ ∂C

∂σ
dσ þ 1

2

∂2
C

∂σ2
dσ2 þ ∂2

C

∂S∂σ
dSdσ

¼ Ctdtþ μSCsdtþ σSCsdW1 þ 1

2
σ2S2Cssdtþ pCσdt

þ qCσdW2 þ 1

2
q2Cσσdtþ σpqCsσdt

¼ Ct þ μSCs þ 1

2
σ2S2Css þ pCσ þ 1

2
q2Cσσ þ σρqCsσ

� �
dt

þ σSCsdW1 þ qCσdW2:

From out stochastic differential equations we have to the lowest order

dS2 ¼ σ2S2dt
dσ2 ¼ q2dt
dSdσ ¼ σρqSdt:

If we substitute these into the expression for dC and a similar for dĈ we will
find, via
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dΠ ¼ dC� ΔdS� bΔdbC
to be able to eliminate the randomness from the Wiener processes we have to
make the choice

σSCsdW1 þ qCσdW2 � ΔσSdW1 � bΔσSbCsdW1 þ bΔqbCσdW2 ¼ 0

i.e., bΔbCσ ¼ Cσ

CS � Δ� bΔbCS ¼ 0: *ð Þ

With use of the arbitrage condition on Π and to equalize this investment with
an investment in the risk-free interest rate r, we found

dΠ ¼ rΠdt ¼ r C� ΔS� bΔbC	 

dt ¼ dC� ΔdS� bΔdbC

¼ dC� ΔrSdt� bΔdbC
) r C� bΔbC	 


dt ¼ dC� bΔdbC
) r C� bΔbC	 

¼ Ct þ μSCs þ 1

2
σ2S2Css þ pCσ þ 1

2
q2Cσσ þ σρqCsσ

� bΔ bCt þ μSbCs þ 1

2
σ2S2bCss þ pbCσ þ 1

2
q2bCσσ þ σρqbCsσ

� �
:

Rearranging and using the expressions (*) we can eliminate the terms Cσ and
CS, then

Ct þ 1

2
σ2S2Css þ 1

2
q2Cσσ þ σρqCsσ � rC

¼ bΔ bCt þ 1

2
σ2S2bCss þ 1

2
q2bCσσ þ σρqbCsσ � rbC� �

:

This is a risk-neutral partial differential equation with derivatives on C and Ĉ.
If we define a differential operator D such as

Df ¼ 1

f σ
f t þ

σ2S2f SS
2

þ ρσqSf Sσ þ
q2f σσ
2

� rf

� �
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and use bΔbCσ ¼ Cσ we can express this byDC¼DC
^
. This means, that we only

have derivatives on each of the option on each side of the equation. This
means, since the options can have different strike prices and different times to
maturity, the equation is independent of the contracts. We can therefore put
this equal to a function in the independent variables S, σ and t. Finally, for
some arbitrary function λ(S, σ, t) we have

DC ¼ � p� λqð Þ:

Here p�λq is called the risk-neutral drift of the volatility and the function λ is
called the market price of volatility.

4.7.7 The Black–Scholes Formulas

The Black–Scholes model was first developed for European options on
non-dividend paying stocks. The model has subsequently been extended to
cope with American options and other underlings. The basic assumptions
remain the same but the valuation methodology gets more complicated.
The Black–Scholes model is widely used also for the pricing of option

elements in interest rate OTC instruments. Clearly, some of the basic assump-
tions are highly unrealistic, and have to be modified. These modifications will
be described for the instruments where the Black–Scholes model can be used.
The basic assumptions in the Black–Scholes world are:

• The underlying is a log-normally distributed stochastic variable
• The volatility of the underlying is constant
• Interest rates are constant
• There are no transaction costs in any capital markets
• Borrowing and lending can be done at constant interest rate
• There is continuous trading in all instruments.

The most important unobservable parameter in the Black–Scholes model
(and in other option models) is the volatility. If it is possible to make a good
estimation of the volatility, the model can be used for almost all types of
options. The problem is to relate the volatility given for one type of instrument
or maturity to other instruments and maturities.
When pricing bond options, the volatility for the underlying bond must be

given and when pricing caps, the volatility for the forward is needed.
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To see the difficulty to estimate the volatility we plot in the Fig. 4.6 the
3-month volatility for the Ericsson stock for a time period 400 days. The data
are taken from Nasdaq 2015-10-28.
The graph shows the 3-month volatility as function of time. This volatility

should be an estimate of the volatility for an option with 3 months to maturity.
As we can see, the value can be any between 50 % and 95 %. It can increase
and decrease very fast.
A general formulation of the Black–Scholes formula for European options

can then be written as

Pcall ¼ Se�qTN d1ð Þ � Ke�rTN d2ð Þ
Pput ¼ Ke�rTN �d2ð Þ � Se�qTN �d1ð Þ

where

d1 ¼
ln S

K

� �þ r � qþ σ2

2

	 

T

σ � ffiffiffi
T

p , d2 ¼ d1 � σ �
ffiffiffi
T

p
:

Pcall ¼ The value of a call option
Pput ¼ The value of a put option
S ¼ The price of the underlying security
K ¼ The strike price

Fig. 4.6 The 3-month volatility of the Ericsson stock for a period of 400 days
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r ¼ The risk-free interest rate (typically a Treasury bond with the
same maturity)
q ¼ The dividend yield [%],
T ¼ The time to maturity
σ ¼ The volatility

N xð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2 � πp

ð x
�1

e�y2=2dy

N
0
xð Þ ¼ 1ffiffiffiffiffiffiffiffiffi

2 � πp e�y2=2:

Mostly, q ¼ 0. A simple approximation (6-digit accuracy) of the normal
distribution is given by

N xð Þ ¼ 1� N
0
xð Þ a1yþ a2y

2 þ a3y
3 þ a4y

4 þ a5y
5

� �
; fo

::
r x � 0

N xð Þ ¼ 1� N �xð Þ; fo
::
r x < 0

where

y ¼ 1

1þ γx
γ ¼ 0:2316419
a1 ¼ 0:319381530
a2 ¼ �0:356563782
a3 ¼ 1:781477937
a4 ¼ �1:821255978
a5 ¼ 1:330274429:

Generally, the Black–Scholes formula for a European call options can be
written as

Pcall ¼ S� PV Dð Þf g � N x1ð Þ � PV Kð Þ � N x2ð Þ,

where

x1 ¼
ln

S�PV Dð Þ
PV Kð Þ

	 

σ � ffiffiffi

T
p þ 1

2
σ
ffiffiffi
T

p
, x2 ¼

ln
S�PV Dð Þ
PV Kð Þ

	 

σ � ffiffiffi

T
p � 1

2
σ
ffiffiffi
T

p

where PV is the present value and D the dividends of the stock prior to
maturity. If we think in terms of risk neutrality, then we can write the value
of a call option as
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Pcall ¼ PV Pcallð Þ ¼ PV E ST jST > K½ � � Kf g � P ST > Kð Þð Þ
¼ e�rT E ST jST > K½ � � Kf g � P ST > Kð Þð Þ:

Or, in other words, the value of a call option is its present value, which is the
expected stock price at maturity conditioned that the stock price is above the
strike price, minus the strike and times the probability that the stock price at
maturity is above the strike.
Another way to express the Black–Scholes formula for a call option is as

Pcall ¼ e�rT Se r�qð ÞTN d1ð Þ � KN d2ð Þ
h i

:

In terms of the Black–Scholes formula, N(d2) can be interpreted as the
probability that the call option will be in the money at maturity (Prob(ST >
K)). We also observe that S � e(r� q)T is the expected future price of the
underlying, which is the same as for a future in the underlying. This is the
no arbitrage condition so the term S � e(r� q)T �N(d1) is the value of the
expected terminal stock price conditional upon the call option being in the
money at expiration times the probability that the call will be in the money at
expiration. The term KN(d2) is the value of the cost of exercising the option at
expiration, times the probability that the call will be in the money at expira-
tion. Finally, we have the factor e�rT, which discounts the values to a present
value. So the Black–Scholes formula for call option has a fairly simple inter-
pretation. The call price is simply the discounted expected value of the cash
flows at expiration.
If q ¼ 0 we can write d1 as

d1 ¼
ln S

K

� �þ r þ σ2

2

	 

T

σ � ffiffiffi
T

p ¼ ln S=Ke�rTð Þ
σ � ffiffiffi

T
p þ 1

2
σ
ffiffiffi
T

p
:

Here S/Ke�rT is a measure of the moneyness of the option, that is, the distance
between the exercise price and the stock price and σ

ffiffiffi
T

p
the time adjusted

volatility, that is, the volatility of the return on the underlying asset between
now and maturity.
In Fig. 4.7 we show the relationship between the call value and the spot

price where the initial stock price and the strike is 100, the discount rate equal
2 %, the volatility 40 % and time to maturity 6 months. It is important to
notice the time value in relation to the intrinsic value. For the call option the
time value is always greater than zero, but for a put option the time value can
be greater than zero or less than zero.
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In Fig. 4.8 we show the same relationship as in Fig. 4.7 for three different
maturities, 0.50, 0.25 and 0.10 years. As we see, for shorter maturities we get
closer to the intrinsic value with is represented as the “hockey-stick”.
In Fig. 4.9 we show the same relationship as in Fig. 4.7 for three different

maturities, 0.50, 0.25 and 0.10 years. As we see, for shorter maturities we get
closer to the intrinsic value with is represented as the “hockey-stick”.

4.7.8 Digital Options

For digital options the Black–Scholes formulas can be simplified

Pcall ¼ e�rTKN dð Þ
Pput ¼ e�rTKN �dð Þ

where

d ¼
ln S

K

� �þ r þ σ2

2

	 

T

σ � ffiffiffi
T

p :

Fig. 4.7 The call option price as function of the underlying stock price
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Fig. 4.8 The call option price as function of the underlying stock price for time to
maturity 0.50, 0.25 and 0.10 year

Fig. 4.9 The put option price as function of the underlying stock price for time to
maturity 0.50, 0.25 and 0.10 year
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Digital options, (sometimes called binary options) as these above is called cash-
or-nothing since they pay a given amount, the strike, if the underlying price
reach a certain level. Another digital option is the asset-or-nothing where the
price is given by

Pcall ¼ SN dð Þ

and

Pput ¼ SN �dð Þ:

As we see, an asset-or-nothing in combination of a cash-or-nothing are the two
terms of the Black–Scholes formula.
There also exist American types of digitals. Reiner and Rubinstein derived

formula for such options in 1991.

4.7.9 Black-76 and Options on Forwards and Futures

For options on forwards and futures the Black–Scholes formula is reduced to
the Black-76 formula

Pcall ¼ e�r T�tð Þ F � N d1ð Þ � K � N d2ð Þð Þ
Pput ¼ e�r T�tð Þ K � N �d2ð Þ � F � N �d1ð Þð Þ

where

d2 ¼ ln F=Kð Þ � σ2=2ð ÞT
σ
ffiffiffi
T

p ¼ d1 � σ
ffiffiffi
T

p
:c

This is derived directly from Black–Scholes model with

F ¼ er T�tð Þ � S

As we can see here, since the only terms including the rate is the discounting,
an American put option on a Forward/Future is never optimal to exercise. The
Black formula is also used fir interest rates derivatives. Therefore, we see
Black’s formula as an extension to Black–Scholes.
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4.7.10 The Hedge Parameters

The hedge parameters, or the Greeks, measure the sensitivities of the option
prices with respect to the dependent variables. These describes the change in
the option value if any of the variables S, T, r or σ is changing when all the
others remain the same. The hedge parameters are defined by the partial
derivatives

Δ ¼ ∂P
∂S

, Γ ¼ ∂2
P

∂S2
, Θ ¼ ∂P

∂T
, υ ¼ ∂P

∂σ
and ρ ¼ ∂P

∂r
:

To hedge a holding of the underlying we use the value of Δ (delta hedge), to
calculate the optimal number of options (or vice versa). The Black–Scholes Δ
is given by

Δ ¼ N d1ð Þ foracall option

Δ ¼ N d1ð Þ � 1½ � foraputoption
:

As we can see, Δ for call options is in the interval [0, 1] and for put options is
negative, [�1, 0]. If Δ ¼ �1/2 the options are ATM.

4.7.11 Some Graphs

In Fig. 4.10a we show the values of call- and put options as function of the
underlying stock price. In Fig. 4.11b we show how the values of the under-
lying have to grow to keep the value if the call options until maturity. We will
now also show how the Greeks vary in the same situations. We use as before,
the values K ¼ S ¼ 100, T ¼ 0.5 years, r ¼ 2 % and σ ¼ 40 %.

Delta

Delta, measures the sensitivity to changes in the option price with respect to
the underlying stock price. This can also be represented by the derivative of the
option price with respect to the underlying stock price. As we have seen, delta
is given by Δ¼N(d1) for a call- and Δ¼ [N(d1)� 1] for a put option. In
Figs. 4.12 and 4.13 we show the relationship between delta for a call and a put
option respectively. The initial stock price and strike is 100, the discount rate
is 2 %, the volatility 40 %. The time to maturity are shown as 6 months,
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1 month and 1day. For the call option delta is in the interval [0, 1] and for the
put [�1, 0].

Gamma

Gamma, measures the sensitivity to changes in the option price with respect to
delta. This can also be represented by the second order derivative of the option
price with respect to the underlying stock price. As we have seen, gamma is
given by

Γ ¼ e�d21=2

S � σ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � π � T � tð Þp

Sometime, a Greek speed is used to measure the third order sensitivity to price.
The speed is the third derivative of the value function with respect to the
underlying price

Fig. 4.10 Here we see how the time value goes to zero for a call and a put option
when time goes to maturity
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γ ¼ ∂3
P

∂S3
:

The change in price, ΔΠ in a Δ-neutral portfolio is given by

ΔΠ ¼ Θ � Δtþ 1

2
Γ ΔSð Þ2:

In Fig. 4.14 we see gamma for three different times to maturities, 6, 3 and
1 months.

Theta

Theta Θ, measure the sensitivity to the passage of time, and is given by the
derivative of the option value with respect to the amount of time to expiry, and
is given by

Fig. 4.11 Here we see how the value of the underlying stock must change in time
to keep the value of the call option constant when time goes to maturity
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Θcall ¼�S � e�d21=2 � σ � e�qðT�tÞ

2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � π � ðT� tÞp þ q � S �Nðd1Þ � e�qðT�tÞ � r �X �Nðd2Þ � e�rðT�tÞ

Θput ¼�S � e�d21=2 � σ � e�qðT�tÞ

2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � π � ðT� tÞp � q � S �Nð�d1Þ � e�qðT�tÞ þ r �X �Nð�d2Þ � e�rðT�tÞ:

In Figs. 4.15 and 4.16 we show theta for a call- and a put option respectively as
function of the underlying stock price for three different maturities, 6, 3 and
1 months. We use S ¼ K ¼ 100, r ¼ 0.02 % and volatility 40 %.

Vega

Vega ν, which is not a Greek letter (ν, nu is used instead), measure the
sensitivity to volatility. The vega is the derivative of the option value with
respect to the volatility of the underlying. The term kappa, κ, is sometimes

Fig. 4.12 Delta for a call option price as function of the underlying stock price for
time to maturity 6 months, 1 month and 1 day. The fat line represents the option
with maturity in one day. We observe that delta converge to a Heaviside step
function near maturity
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used instead of vega, and some trading firms have also used the term tau, τ is
given by:

ν ¼ S

ffiffiffiffiffiffiffiffiffiffiffi
T � t

2 � π

r
� e�d21=2 � e�q� T�tð Þ

In Fig. 4.17 we show vega as function of the underlying stock price for three
different maturities, 6, 3 and 1 months. We use S¼ K¼ 100, r¼ 0.02 % and
volatility 40 %.

Rho

Rho ρ, measure the sensitivity to the applicable interest rate. The ρ is the
derivative of the option value with respect to the risk free rate is given by:

ρcall ¼ T � tð Þ � X � e�r� T�tð ÞN d2ð Þ
ρput ¼ � T � tð Þ � X � e�r� T�tð ÞN �d2ð Þ .

Fig. 4.13 Delta for a put option price as function of the underlying stock price for
time to maturity 6 months, 1 month and 1 day. The fat line represents the option
with maturity in 1 day
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In Figs. 4.18 and 4.19 we show rho for a call and a put option respectively as
function of the underlying stock price for three different maturities, 6, 3 and
1 months. We use S ¼ K ¼ 100, r ¼ 0.02 % and volatility 40 %.

Other Greeks

There are also some less commonly used Greeks. Lambda λ is the percentage
change in option value per change in the underlying price, or the logarithmic
derivative

λ ¼ 1

P

∂P
∂S

:

The vega gamma or volga measures second order sensitivity to implied volatil-
ity. This is the second derivative of the option value with respect to the
volatility of the underlying

Fig. 4.14 Gamma as function of the underlying stock price for time tomaturity 6, 3
and 1 months. The fat line represents the option with maturity in 1 month. We
observe that Gamma tends to concentrate near maturity
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ϑ ¼ ∂2
P

∂σ2
¼ S � N 0

d1ð Þ d1d2
σ

¼ ν
d1d2
σ

:

Vannameasures the cross-sensitivity of the option value with respect to change
in the underlying price and the volatility

∂2
P

∂S∂σ
¼ �N

0
d1ð Þd2

σ
¼ ν

S
1� d1

σ
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
� �

:

Vanna can also be interpreted as the sensitivity of delta to a unit change in
volatility. The delta decay, or charm, measures the time decay of delta

∂Δ
∂T

¼ ∂2
V

∂S∂T
:

This can be important when hedging a position over a weekend. For a call
option the charm is given by

Fig. 4.15 Theta for a call option as function of the underlying stock price for time
to maturity 6, 3 and 1 months. The fat line represents the option with maturity in
1 month
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∂ΔC

∂T
¼ N

0
d1ð Þ 2 � r � t� d2 � σ � ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

2 � T � tð Þ � σ � ffiffiffiffiffiffiffiffiffiffiffi
T � t

p :

For a put option, the charm is given by

∂ΔP

∂T
¼ �N

0
d1ð Þ 2 � r � t� d2 � σ � ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

2 � T � tð Þ � σ � ffiffiffiffiffiffiffiffiffiffiffi
T � t

p :

The colour measures the sensitivity of the charm, or delta decay to the under-
lying asset price. It is the third derivative of the option value, twice to
underlying asset price and once to time

∂3
V

∂S2∂T
¼ N

0
d1ð Þ

2S � T � tð Þ � σ ffiffiffiffiffiffiffiffiffiffiffi
T � t

p 1� 2r � T � tð Þ � d2 � σ
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p

2 T � tð Þ � σ ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
" #

For further information about Greeks, see Espen Garder Haug (1997).

Fig. 4.16 Theta for a put option as function of the underlying stock price for time
to maturity 6, 3 and 1 months. The fat line represents the option with maturity in
1 month
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Fig. 4.17 Vega as function of the underlying stock price for time to maturity 6, 3
and 1 months. The fat line represents the option with maturity in 1 month

Fig. 4.18 Rho for a call option as function of the underlying stock price for time to
maturity 6, 3 and 1 months. The fat line represents the option with maturity in
1 month
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4.7.12 American Versus European Options

As we have seen, we have been able to solve the Black–Scholes PDE for
European options. One may ask why we can’t find a solution for American
contracts as well. The answer is hidden in the boundary condition, which is
not well defined at maturity. Since we are allowed to exercise the American
option any time during the option lifetime, we have a floating boundary
condition. For the same reason we cannot find a put call parity for an
American option. There exist a number of approximations, but any general
closed form solution does not exist.
The possibility of early exercise gives the American option a higher price

than a European. This is called the early exercise premium. The difference in
price can be seen in Fig. 4.20 where we compare an American put option with
a European, where S¼ 100, K¼ 110, T¼ 2 years, r¼ 0.02 % and σ ¼ 40 %.
Notice that the cost for the American put is more than its European

counterpart when in-the-money, and the two curves tend to fall on top of
one another when out-of-the-money. This is because the early exercise pre-
mium tends to zero the more out-of-the-money it gets since the option is
unlikely to be exercised early. Therefore, a deep out-of-the-money American
and put option have almost the same value.

Fig. 4.19 Rho for a put option as function of the underlying stock price for time to
maturity 6, 3 and 1 months. The fat line represents the option with maturity in
1 month
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So,the freedom to exercise an American option whenever the holder wishes
introduces a boundary problem to solving the Black–Scholes equation as done
before for vanillas.
There are several factors to consider on an early exercise decision. First, the

early exercise premium is lost if exercised early. Secondly, early exercise leads to
a loss or gain in time value of the asset depending on if a put or call. Therefore,
one immediately sees that early exercise on an America call option tends to be
less favourable, whereas for an American put it is more likely (assuming r >
0 here). However, a holder of an American put options on dividend paying
assets generally prefers not be exercised early since the dividend payments are
lost if the asset is sold early. For a discrete dividend-paying asset, a decision on
early exercise is also influenced by the size of the dividend payments. One may
exercise an American call option early if the dividend payments are higher than
initially forecasted, if not exercised the ex-div value may fall below the expec-
tation price due the loss in asset value through the payouts. All these factors
have an influence on early exercise of an American option, and the decision on
when to exercise seems almost a subjective one.
The contract holder will ideally, of course, only exercise the option prior to

the expiry date if the present payoff at time t exceeds the discounted

Fig. 4.20 The American option price vs. the European. Here S ¼ 100, K ¼ 110,
T ¼ 2 years, r ¼ 0.02 % and σ ¼ 40 %
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expectation of the possible future values of the option from time t to T. So only
if what the option-holder gets out of exercising early exceeds the markets’ view
of the expected future return in keeping the option alive will early exercising
result. Otherwise, he/she will continue to hold on to the option. At every time
t there will be a region of values of S whereby it is best to exercise the option,
the exercise region and a complimentary region whereby it is best to keep the
option, the free region. There will also be a particular value S*(t) which defines
the optimal exercise boundary separating the two regions. We have already
stated what factors can determine this boundary. (Fig. 4.21).
With a simple arbitrage analysis we can examine this problem more closely.

Consider a non-dividend paying American call option worth C(S, t) at time
t on an underlying stock S(t) and strike value K. We buy this together with a
bond guaranteed to pay K at time the same maturity time T of the option.
Let’s further consider the case that when the option is exercised early and
the owner is forced to keep the underlying up to maturity. Prior to maturity if
S(t)>K we may be tempted to exercises. However, by exercising at time
t the value of our portfolio is S(t)�K +Ke�r(T� t) which is less than S(t), and
thus by keeping this to time T we would be left with S(T). Instead, if we wait to
expiry our portfolio valuemay be worthmax[S�K ,0]+K¼max[S(T), K]. Clearly,
in this case it is best to keep the option alive up to maturity. Of course S(t)
may well be greater than max[S(T ), K], and we are not forced to keep it up
to time T, but can cash its value in. However, in this case it would be better
to sell the option and cash in its value as an insurance at time t worth more
than S(t).
If we own an American call option and our intention is to buy the

underlying stock, there is no profit in an early exercise. The reason is that
the price we have to pay, the strike price, is constant. If we wait to exercise at

Fig. 4.21 The exercise and free area of an American option
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expiration we can earn interest on the money we will use to buy the
underlying.

4.7.13 American Call Options with No Dividends

For the reasons above we can price American calls with on a non-dividend
paying stock because of a key attribute; that it is never beneficial to exercise the
option prior to expiry. The detailed reasons behind this won’t be considered
here, but two primary reasons exist;

1. Firstly, holding the call option instead of exercising it and holding the stock
is an insurance factor. An adverse stock movement (fall) would result in
losses for the stockholder, but holding the call would enable the holder of
the call to insure against any falls.

2. Secondly, there is the concept of time value of money. Paying the strike
price earlier rather than later means that the holder of option loses out on
the time value the money can achieve for the remainder of the option.

The attribute of non-exercise means that the American option can be priced
via the standard Black–Scholes European call option formula and forcing
dividends to 0.

The Perpetual American Put

There is an interesting American put option that merits study in detail. This is
the perpetual American put option. This option will never expire, which why
it is called perpetual. The payoff is given by max{X�S, 0} and we want to
calculate the value of this option. Since the option never expires the value is
independent of time and therefore dependent only on the underlying price.
We also note that since this is an American option the option value can never
go below the early exercise payoff. This is because of the non-arbitrage
condition. Since the option is independent of time, it has to satisfy

1

2
σ2S2

d2F Sð Þ
dS2

þ rS
dF Sð Þ
dS

� rF Sð Þ ¼ 0:

This is an ODE, which easily can be solved. First we make a change in
variables by setting V(S) ¼ F(ln(S)) ¼ F( y). The derivatives are then
changed as
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dF

dS
¼ dV

dy

dy

dS
¼ 1

S

dV

dy

 1

S
V

0

d2F

dS2
¼ d

dS

1

S

dV

dy

� �
¼ � 1

S2
V

0 þ 1

S

d

dy

dF

dS
¼ 1

S2
V

00 � V
0

	 

:

We then have the following linear ODE

1

2
σ2V

00 þ r � 1

2
σ2

� �
V

0 � rV ¼ 0

or

V
00 þ 2r

σ2
� 1

� �
V

0 � 2r

σ2
V ¼ 0:

If we make the ansatz V¼C � eλy we get a second order polynomial in λ

λ2 þ 2r

σ2
� 1

� �
λ� 2r

σ2
V ¼ 0

with two solutions (1 and�2r/σ) . Therefore we can write the general solution
in terms of S as

F Sð Þ ¼ aSþ bS�2r=σ2

where a and b are arbitrary constants. Here we have used that

V yð Þeeλ�y ¼ eλ�lnS ¼ e lnsð Þλ ¼ Sλ:

The first part of this solution is the asset itself, and we know that the asset
itself satisfies the Black–Scholes equation. If we can find a and b, we have
found the solution for the perpetual American put. The coefficient a must be
zero as S ! 1 the value of the option must become zero. If S is to low, we
will immediately exercise the option, receiving X�S. (Common sense tell us
not to exercise if S > X.) Suppose that we decide to exercise if S ¼ S*. How do
we choose S*? We then have that F(S*) ¼ X�S*. If it is less, we have an
arbitrage opportunity, if it is more we will not exercise. Therefore
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F S*
� � ¼ b S*

� ��2r=σ2 ¼ X � S*:

But since both b and S* are unknown, we need one more equation. If we
eliminate b we have

F Sð Þ ¼ X � S*
� � S

S*

� ��2r=σ2

:

We are now going to choose S* to maximize the option value at any time
before exercise. In other words, what choice of S* makes F as large as possible?
We find this by differentiating with respect to S* and setting the resulting
expression equal to zero

∂

∂S*
X � S*
� � S

S*

� ��2r=σ2

¼ 1

S*
S

S*

� ��2r=σ2

�S* þ 2r

σ2
X � S*
� �� �

¼ 0:

We find that when

S* ¼ X

1þ σ2
2r

it is optimal to exercise.

A Further Theoretical View

We will now end the discussion with a mathematical view of American
options. We suppose we have a market free of arbitrage, with a risk-free
security B with the deterministic interest rate r. We also have an n-dimensional
equity-price vector S. The equity prices are supposed to be given by a given
filtration F and all equities are prices by a martingale measure Q. Now, let the
function

Φ : Rþ � Rn ! R

and a fix time T be given.

Definition 4.12 An American contract on Φ with maturity T is a contract with
the following properties: the holder of a contract has the possibility at any time
in the interval [0, T] exercise the contract. If the holder exercise at time t, he
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receivesΦ(t, S(t)) cash units. If the holder not exercise under the interval [0, T)
the holder receives Φ(t, S(T)) at time T. The decision by the holder to exercise
at time t or not is only based upon the information known at the time t, i.e., on
Ft. We denote such a contract with the symbol ΦA,T (or sometimes only ΦA).

The most common American contract is the American call and put options
with n ¼ 1 given by the well-known expressions

Φ t; xð Þ ¼ max x� K; 0½ �
Φ t; xð Þ ¼ max K � x; 0½ �

�
:

The American contract has a decision problem, namely whether or not we
shall exercise. This is related to stopping times in such a way that the holder
can choose a stochastic stopping time τ to exercise and haveΦ(τ, S(τ)) in cash.
To hold an American contract is equivalent to holding a family of con-

sumption plans

ΦA ¼ Aτ; 0 	 τ 	 Tf g

where τ is a stopping time and Aτ is defined by

Aτ tð Þ ¼ 0, 0 	 t < τ
Φ τ; S τð Þð Þ τ 	 t 	 T

�
:

Our question is how to price the contract ΦA. If we suppose we are at time
t ¼ 0 and have chosen the exercise strategyτ. The price is then given by

π0 A
τ½ � ¼ EQ e�rτ �Φ τ; S τð Þð Þ½ �:

But, on an effective market, no one will pay more than

sup
0	τ	T

EQ e�rτ �Φ τ; S τð Þð Þ½ �

for the contract. We can then define the following price process.

Definition 4.13 The price process for the American contract ΦA is given by

πt ΦA½ � ¼ sup
t	τ	T

EQ e�r τ�tð Þ �Φ τ; S τð Þð ÞjF t

h i
0 	 t 	 T :
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This is an abstract price and gives us no information at all of the value of the
contract.
In a wider perspective the American contracts is a special case of the class of

optimal stopping-time problems. The problem is to calculate

max
0	τ	T

EQ X τð Þ½ �

where τ vary over the class of stopping times. In continuous time this is a
difficult problem.
There is at least one simple problem that can be solved: Consider an

American call option with no dividends. Suppose we are at time t ¼ 0, then

X tð Þ ¼ e�rt �max S tð Þ � K; 0½ � ¼ max e�rt � S tð Þ � e�rt � K; 0½ �

where we want to solve the problem

max
0	τ	T

EQ X τð Þ½ �

where Q is a martingale measure, i.e., Q makes the following process a
martingale

Z tð Þ ¼ e�rtS tð Þ:

The second term (e-rtK) is deterministic so we can write

X tð Þ ¼ f T tð Þð Þ

where y(t)¼ e-rtS(t)� e-rtK is a sub-martingale and f( y)¼max[y, 0]. Therefore
we have proven that the price of an American call option and a European call
option is the same.

4.8 Analytical Pricing Formulas for American
Options

During the last years there have emerged a number of analytical models for
American options. These methods are all approximations in some since. We
will here present some of the most common analytical models for American
contracts.
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4.8.1 The Roll–Geske–Whaley Model

This is a model for a call option with a single dividend. Such American call
option can be considered to be a series of call options which expire at the
ex-dividend dates, and this case becomes a compound option or (an option on
an option) with a closed-form solution as follows:

CD ¼ S0 � D1e
�rt1ð ÞN b1ð Þ þ S0 � D1e

�rt1ð ÞM a1;�b1;�
ffiffiffiffiffiffiffiffiffi
t1=T

p	 

� Xe�rTM a2;�b2;�

ffiffiffiffiffiffiffiffiffi
t1=T

p	 

� X � D1ð Þe�rt1N b2ð Þ,

With the variables defined as

a1 ¼ log S0 � D1e
�rt1ð Þ=X½ � þ r þ σ2=2ð Þ T

σ
ffiffiffi
T

p ,

a2 ¼ a1 � σ
ffiffiffi
T

p
,

b1 ¼ log S0 � D1e
�rt1ð Þ=S∗½ � þ r þ σ2=2ð Þ t1

σ
ffiffiffiffi
t1

p ,

b2 ¼ b1 � σ
ffiffiffiffi
t1

p
,

where M(a, b, ρ) is the bivariate cumulative normal distribution function and
S* is the critical stock price for which the following equation is satisfied

c S∗ð Þ ¼ S∗ þ D1 � X,

where c(S∗) is the price given by Black–Scholes and T� t1 time to maturity.
The critical stock price can be solved iteratively via the Bisectional method.

4.8.2 The Barone–Adesi–Whaley Model

Barone–Adesi–Whaley model gave a quadratic approximation to price Amer-
ican options, and the pricing of the option is essentially a European option
with adjusted for an early exercise premium. If St< S*:

Ct ¼ ct þ A2

St

S*

� �q2

and else
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Ct ¼ St � X:

The European option is valued using the Black–Scholes formula. Defining the
variables as

A2 ¼
S* 1� eσ T�tð ÞN d1ð Þ� �

q2

where

q2 ¼
1� nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ2 � 4k

q
2

and

n ¼ 2 r � δð Þ
σ2

and k ¼ 2r

σ2 1� e�r T�tð Þð Þ

The critical value of S* is defined as

S* � X ¼ ct S
*;X; T � t

� �þ 1� e�σ T�tð ÞN d1ð Þ
n o

� S
*

q2

and can be solved using the Newton–Raphson method and specifying appro-
priate seed values. For corresponding put values, we have a set of formulas to
determine the value of an American put. If St > S**

Pt ¼ pt þ A1

St

S**

� �q1

and else

Ct ¼ St � X

where the variables are defined as

A1 ¼
S** 1� eσ T�tð ÞN �d1ð Þ� �

q1

where
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q1 ¼
1� n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ2 þ 4k

q
2

n and k being the same as for a call. This approximation is suitable and fast for
practical pricing of American options and gives a very close value when
compared with closed form Black-76 (see Haug 1997).

4.8.3 The Bjerksund, Stensland Model

The Bjerksund–Stensland approximation assumes that the exercise is initiated
to a corresponding “flat” boundary, making use of a trigger price. This
approximation is computational inexpensive and the method is fast, with
evidence indicating that the approximation may be more accurate in pricing
long dated options than the Barone–Adesi–Whaley model

C ¼ αS� αϕ S; T; β; I; Ið Þ þ ϕ S; T; 1; I; Ið Þ
� ϕ S; T; 1;X; Ið Þ � Xϕ S; T; 0; I; Ið Þ þ Xϕ S;T; 0;X; Ið Þ

where

α ¼ I � Xð ÞIβ

β ¼ 1

2
� r � D

σ2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�D
σ2 � 1

2

� �2 þ 2
r

σ2

	 
r
:

The function ф is given as

ϕ S; T; γ;H; Ið Þ ¼ eλSγ N dð Þ � I

S

� �κ

N d � 2ln I=Sð Þ
σ
ffiffiffi
T

p
� �� �

where

λ ¼ γ r � Dð Þ � r þ 1

2
γ γ � 1ð Þσ2

� �
T

d ¼ ln S=Hð Þ þ r � Dþ γ � 0:5ð Þσ2ð Þ T

σ
ffiffiffi
T

p

κ ¼ 2 r � Dð Þ
σ2

þ 2γ � 1ð Þ

:

The trigger price I is given as the following

238 Analytical Finance: Volume I



I ¼ B0 þ B1 � B0ð Þ � 1� ef
� �

f ¼ � T r � Dð Þ þ 2σ
ffiffiffi
T

p� � � B0

B1 � B0

� �
B1 ¼ β

β � 1
� X

B0 ¼ X �max 1;
r

D

n o
:

To price an American put, we consider the Bjerksund–Stensland approxima-
tion for the call option and apply put call parity in the form of

P S;X; T; r; r � D; σð Þ ¼ C S;X;T;D;D� r; σð Þ

4.8.4 The Geske–Johnson Model

Geske & Johnson (1984) give an accurate approximation for an American put
option by considering it as a series of Bermudan options, with the value of the
American option given when the number of exercise dates for the Bermudan
option tends to infinity or an infinite series of multivariate normal terms.

4.8.5 Trinomial Trees by Boyle

The trinomial tree is similar to the binomial method in that it employs a
lattice-type method for pricing options. The exceptions are that the trinomial
method arises at an accurate value faster than its binomial counterpart due to
the use of a 3-proned path compared to the 2-proned path seen with binomial
trees. The probabilities of the price going up at the next time period are given
as

pu ¼ e r�Dð Þ� T�tð Þ=2�e�σ
ffiffiffiffiffiffiffiffiffi
T�tð Þ=2

p

eσ
ffiffiffiffiffiffiffiffiffi
T�tð Þ=2

p
�e�σ

ffiffiffiffiffiffiffiffiffi
T�tð Þ=2

p
	 
2

pd ¼ eσ
ffiffiffiffiffiffiffiffiffi
T�tð Þ=2

p
�e r�Dð Þ� T�tð Þ=2

eσ
ffiffiffiffiffiffiffiffiffi
T�tð Þ=2

p
�e�σ

ffiffiffiffiffiffiffiffiffi
T�tð Þ=2

p
	 
2

pm ¼ 1� pd � pu:

The respective American call and put can now be priced via backwards
inductioncall
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Ci, j ¼ max
S � umax 0;j�1ð Þ � dmax 0;i�jð Þ � X,
e�r T�tð Þ pu � Ciþ1, jþ2 þ pm � Ciþ1, jþ1 þ pd � Ciþ1, j

� �� �

Put

Pi, j ¼ max
X � S � umax 0;j�1ð Þ � dmax 0;i�jð Þ,
e�r T�tð Þ pu � Piþ1, jþ2 þ pm � Piþ1, jþ1 þ pd � Piþ1, j

� �� �
:

4.9 Poisson Processes and Jump Diffusion

A Poisson process is a pure jump process: a process that changes instanta-
neously from one value to another at random times. The following is a
simulation of a standard Poisson process (where the jump sizes are restricted
to 1) (Fig. 4.22).
The model for such a process extends from the discrete time Poisson

distribution. This states that the number of Poissonly distributed events (N)
in a time interval (0,T] is distributed according to

Fig. 4.22 A simulation of a standard Poisson process
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P N ¼ xð Þ ¼ λTð Þxe�λT

x!
; x ¼ 1, 2, . . . , 1:

Here, the number of events corresponds to the number of jumps and λ is the
intensity of the Poisson process; a measure of the ‘frequency’ of jumps, often
scaled to units of per unit time. The Poisson process is a discrete probability
distribution and has been successfully used to model the arrival times of certain
events, or the occurrences of certain events, over a pre-defined period. The
difference from most discrete distributions is that the number of occurrences
can in theory (and with non-zero probability) be infinite.
Of particular relevance to finance (default modelling) is the waiting time

between the arrivals of each event/jump. This is given by the exponential
distribution and we will often be interested in the first arrival time τ. Although
the Poisson distribution is a discrete one, the inter-arrival and first arrival times
are continuous exponentially distributed random variables. The PDF is

P τð Þ ¼ λe�λT :

The probability of the first jump occurring in the time interval (0,s] is then

P τ < sð Þ ¼
ðs
0

λe�λTdt ¼ 1� e�λs:

It is important to note that the Poisson process is consistent with the Poisson
distribution for,

P N ¼ 0ð Þ ¼ λTð Þ0e�λs

0!
¼ e�λs ¼ P τ > sð Þ:

An important property of the Poisson process is the Markov property. Stated
briefly, this is the “loss in memory” property where the distribution of the
Poisson process in the future is independent of the past. For e.g. at time 0 the
probability of not observing a jump over a time horizon T is simply exp(�λT)
from the derivation above. Now assume that we return to the process after a
time s and the process is still at 0 (i.e. no jump has yet occurred). The
probability of not observing a jump for a further time T (i.e. no jump until
time I) given that no jump has occurred until time s is
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P τ > T þ sjτ > sð Þ ¼ P τ > T þ sð Þ
P τ > sð Þ ¼ e�λs:

Using the expressions derived earlier this probability is just the same as the
time 0 probability of not observing a jump over a time horizon T. This
illustrates the Markov property—the fact that the process has not jumped
until time s (whatever s might be) does not dictate the probability of future
jumps.
How is a Poisson process mathematically characterized? Quite simply, the

value of a standard Poisson process after a time T has elapsed is simply:

N Tð Þ ¼ N 0ð Þ þ
X
s<T

N sð Þ � N s�ð Þ½ �:

The expression looks more daunting than it is. N(0) is simply the initial
condition (set to zero in a standard Poisson process). The latter term is the
mathematical expression for “the number of jumps in the time interval (0,T]”.
Since the process jumps finitely in infinitesimal time, the time s corresponds to
an infinitesimal time step before time s, and where a jump is observed [N(s)�
N(s�)] is 1; otherwise it is 0. In its more useful form, the process can also be
expressed as dN(t) which models the change in the Poisson process over a time
step dt. Using the Markov property the value of dN(t) at any time t does not
depend on the history of the Poisson process. Furthermore,

P τ < dtð Þ ¼ 1� e�λdt ¼ 1� λdtþ 1

2
λdtð Þ2 � � � � � λdt

because dt is very small. Thus, dN(t) can be thought of as a random variable
that increases by 1 over a time step dt with probability λdt and is zero with
probability 1�λdt.

4.9.1 Jump Diffusion

If X is a stochastic diffusion process that can jump as well then it is called jump
diffusion

dX ¼ A t;Xð Þdtþ B t;Xð ÞdW þ C t;Xð ÞdN:

The first two terms are the usual drift and white noise that have been used
extensively to model stock prices in finance. The last term introduces the
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possibility of a jump occurring. dN constitutes a standard Poisson process; over
a time interval dt a jump of size 1 can be observed with probability λdt. The
scaling by C(x,t) allows the jump size to vary.
Such models are becoming increasingly important in modelling stocks as

they result in distributions with ‘fatter tails’ than the standard Ito processes.
They are also being used to model energy and power prices where the jump
behavior is very often observed. The key for mathematical finance is to now
derive the SDE for a function F(X). The key is to consider the process X as the
sum of 2 processes:

dXc ¼ A t;Xð Þdtþ B t;Xð ÞdW
dY ¼ C t;Xð ÞdN:

Then, to consider the Taylor series expansion of F(x) by first considering the
contribution from the continuous process and then the jump process,

dF ¼ dF

dX
dXc þ 1

2

d2F

dX2
dXcð Þ2 þ F X þ C t;Xð Þð Þ � F Xð Þ½ �dN:

The last term arises from the jump component. [x + C(x,t)] denotes the value
of the process x just after a jump. The majority of the times the last term is zero
because dN ¼ 0. Only in those cases when a jump occurs the last term is
non-zero and the jump in x is also observed in the function F.
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5
Black–Scholes – Diffusion Models

To better understand the Black–Scholes world and to be able to handle more
complex instruments, we will now continue with diffusion processes and some
theorems. We will in this chapter explain the concept of changing measure and
relative pricing. By changing measure we can value any securities relative to a
given security. In most cases we value relative the money-market account.

5.1 Martingale Representation

Theorem 5.1 Let W be a Wiener process on [0, 1] and M a martingale such as

(i) M is F W
t -adapted

(ii) E[M2(t)] < 1 8 t 2 [0, T].

Then, there exist a F W
t -adapted process g such as

E

ðT
0

g sð ÞdW sð Þ
24 35 < 1 ð5:1Þ

M Tð Þ ¼ M 0ð Þ þ
ðT
0

g sð ÞdW sð Þ ð5:2Þ

We can also write equation (5.2) as a differential
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dM tð Þ ¼ g tð ÞdW tð Þ:

The martingale representation theorem (Theorem 5.1) is an abstract existence
result. It guarantees the existence of the process g(t) but it does not tell us what the
process looks likes. g(t) will in the following section be a very important function
used in the method of changing measure, i.e., in the relative pricing theory.

5.2 Girsanov Transformation

Consider a stochastic binomial process S with p¼ 0.75 and q¼ 0.25. Here p is
the probability that the underlying stock price increase and q the probability it
will decrease. We ask ourselves if such a process is a fair game. Obviously is this
not the case and for that reason is the process S in the continuous limit not a
martingale. However, in the continuous limit we can model the stochastic
process as

dS ¼ μdtþ σdX

μ ¼ E S½ � ¼ þ1ð Þ � pþ �1ð Þ � q ¼ 0:5

σ2 ¼ E S2
� �� E S½ �ð Þ2 ¼ þ1ð Þ2 � pþ �1ð Þ2 � q� p� qð Þ2

¼ 1� p� qð Þ2 ¼ pþ qð Þ2 � p� qð Þ2 ¼ 4pq ¼ 0:75

This is possible since the fluctuation of the original process is normal distrib-
uted and only the first two moments are of importance. This means that with
known μ and σ we can imitate S with a fair game via a normal distributed
process dX. But, for this a transformation is needed. Therefore, let dW be
another normal process such as

dX ¼ dW þ γdt:

Obviously, the process dW is not a fair game with respect to the process dX,
but with a shift γ the process will be a fair game in another reference system.
For each unique outcome in dX there exists a unique outcome in dW and vice
versa. We can then write

dS ¼ μdtþ σ dW þ γdtð Þ:

When we change a Weiner process like this, we say that we are making a
Girsanov transformation. If we now choose γ ¼ �(μ/σ) we get dS ¼ σdW.
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This means that we have removed the drift by a transformation so that dS is a
martingale under a new probability measure. Now, dS is a fair game with
respect to the process following the deterministic evolution (μ/σ)t. The same
argument can be used for the log-normal process whereby dS/S becomes
martingale with respect to dW:

dS ¼ σSdW:

Now, dS is a fair game with respect to the process following the deterministic
evolution e(μ/σ)t.
In purely financial terms, we will see that if S(t) represents the value on a

security at the time t, dS is not a fair game. The reason is that μ/σ is the
expected payoff with respect to the risk we take. But, if we discount with the
risk-free interest rate we will get a fair game. We therefore have to choose

γ ¼ � μ� r

σ
:

This is called the market price of (volatility) risk or the sharp ratio and is
interpreted as the minimum extra payoff needed to take the extra risk in
terms of the volatility.

Lemma 5.2 Let g be a F -adapted process with

P

ðT
0

g2 tð Þdt < 1
0@ 1A ¼ 1

then

dL tð Þ ¼ g tð ÞL tð ÞdW tð Þ
L 0ð Þ ¼ 1

�

have a unique solution L > 0

L tð Þ ¼ exp

ðt
0

g sð ÞdW sð Þ � 1

2

ðt
0

g2 sð Þds
8<:

9=;
The proof is left to the reader. Use the Itô formula.
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If we now define a market via Z ¼ (S/B), where B is the money-market
account with a unique martingale measure Q. This means that we define a
market where we study any security S relative B. We write

Q Að Þ ¼
ð
Ω

ZdP Að Þ:

If we apply the Itô formula on Z we get

dZ tð Þ ¼ ∂Z
∂S

dSþ ∂Z
∂B

dB

¼ 1

B tð Þ μ tð ÞS tð Þdtþ σ tð ÞS tð ÞdW tð Þf g � S tð Þ
B2 tð Þ r tð ÞB tð Þdt

¼ μ tð Þ � r tð Þf gZ tð Þdtþ σ tð ÞZ tð ÞdW tð Þ:

With a Girsanov transformation dW(t)¼ g(t)dt + dV(t) we get

dZðtÞ ¼ fμðtÞ � rðtÞgZðtÞdtþ σðtÞZðtÞfgðtÞdtþ dVðtÞg
¼ fμðtÞ � rðtÞ þ σðtÞgðtÞgZðtÞdtþ σðtÞZðtÞdVðtÞ:

Here we define the likelihood function L(t)

dL tð Þ ¼ g tð ÞL tð ÞdW tð Þ
L 0ð Þ ¼ 1

�

with the solution

L tð Þ ¼ exp

ðt
0

g sð ÞdW sð Þ � 1

2

ðt
0

g2 sð Þds
8<:

9=;:

Note that L is a Radon–Nikodym derivative. We call the function g(t) the
Girsanov kernel. g(t) is given by

g tð Þ ¼ r tð Þ � μ tð Þ
σ tð Þ :

We call the quotient, as above

μ tð Þ � r tð Þ
σ tð Þ
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the market price of risk or risk premium per unit risk or the sharp ratio. The
numerator μ(t)� r(t) is called the risk premium of the stock and denotes the
excess rate return over the risk-free rate of return on the market. μ(t) is then the
expected return of the stock. We can now give the Girsanov theorem.

Theorem 5.3 (The Girsanov theorem) Suppose that we are given a probability
space (Ω, F , P), where P is the market probability measure. Let X be a (F , P)-
Wiener process (a Brownian motion) and letF (t) be the filtration generated by this
Wiener process. Also let L and g be as above (g(t) is adapted to F (t). Furthermore,
suppose that E[L(T)] ¼ 1 and define Q via dQ ¼ L(T)dP on F (t). Then:

W tð Þ ¼ X tð Þ �
ðt
0

g sð Þds

is a (F , Q)-Wiener process (Brownian motion under Q).

Interpretation X is a Q-Wiener process with the drift g.
One important point about Girsanov’s theorem is its converse that every

equivalent measure is given by a drift change. This implies that in the Black–
Scholes world there is only one equivalent risk-neutral measure. If this were
not the case there would be multiple arbitrage-free prices.

Theorem 5.4 (The reverse of Girsanov theorem) Given (Ω, F , P), X and
suppose Q<< P onF X

T , then there exist a unique {F X
t }-adapted process g such as:

dQ tð Þ ¼ L tð ÞdP tð Þ

where L is given by

dL tð Þ ¼ g tð ÞL tð ÞdW tð Þ
L 0ð Þ ¼ 1

�

5.2.1 The Market Price of Risk

In classical economic theory, no rational person would invest in a risky asset
unless they expect to beat the return from holding a risk-free asset. Typically,
risk is measured by standard deviation of returns, or volatility. The market
price of risk for a stock is measured by the ratio of expected return in excess of
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the risk-free interest rate divided by the standard deviation of return. Interest-
ingly, this quantity is not affected by leverage. If you borrow at the risk-free
interest rate to invest in a risky asset both the expected return and the risk
increase, such that the market price of risk is unchanged. This ratio, when
suitably annualized, is also the Sharpe ratio.
If a stock has a certain value for its market price of risk then an obvious

question to ask is what is the market price of risk for an option on that stock?
In the famous Black–Scholes world in which volatility is deterministic and you
can hedge continuously and costless, then the market price of risk for the
option is the same as that for the underlying equity. This is related to the
concept of a complete market in which options are redundant because they can
be replicated by stock and cash.
In derivatives theory we often try to model quantities as stochastic, that is,

random. Randomness leads to risk, and risk makes us ask how to value risk,
that is, how much return should we expect for taking risk. By far the most
important determinant of the role of this market price of risk is the answer to
the question “is the quantity you are modelling traded directly in the market?”
If the quantity is traded directly, the obvious example being a stock, then

the market price of risk does not appear in the Black–Scholes option-pricing
model. This is because you can hedge away the risk in an option position by
dynamically buying and selling the underlying asset. This is the basis of risk-
neutral valuation. Hedging eliminates exposure to the direct that the asset is
going and also to its market price of risk. You will see this if you look at the
Black–Scholes equation. There, the only parameter taken from the stock
random walk is its volatility, there is no appearance of either its growth rate
or its price of risk.
On the other hand, if the modelled quantity is not directly traded then

there will be an explicit reference in the option-pricing model to the market
price of risk. This is because you cannot hedge away associated risk. And
because you cannot hedge the risk you must know how much extra return is
needed to compensate for taking this unhedgeable risk. Indeed, the market
price of risk will typically appear in classical option-pricing models any time
you cannot hedge perfectly. So expect it to appear in the following
situations:

• When you have a stochastic model for a quantity that is not traded.
examples: stochastic volatility; interest rates (this is a subtle one, the spot
rate is not traded); risk of default.

• When you cannot hedge. Examples: jump models; default models; trans-
action costs.
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When you model stochastically a quantity that is not traded then the
equation governing the pricing of derivatives is usually of diffusion form,
with the market price of risk appearing in the “drift” term with respect to
the non-traded quantity. To make this clear, here is a general example.
Suppose that the price of an option depends on the value of a quantity of a

substance called sepofan. Sepofan is not traded but either the option’s payoff
depends on the value of sepofan, or the value of sepofan plays a role in the
dynamics of the underlying asset. We model the value of sepofan as

dS ¼ μdtþ σdW:

The market price of sepofan risk is λ. In the classical option-pricing models we
will end up with an equation for an option with the following term

:::þ μ� λσð Þ∂V
∂s

þ ::: ¼ 0,

where the . . . represent all the other terms that one usually gets in a Black–
Scholes-type of equation. Observe the expected change in the value of sepofan,
μ, has been adjusted to allow for the market price of sepofan risk. We call this
the risk-adjusted or risk-neutral drift. Conveniently, because the governing
equation is still of diffusive type we can continue to use Monte Carlo
simulation methods for pricing. Just remember to simulate the risk-neutral
random walk

dS ¼ μ� σλð Þdtþ σdV

and not the real one.
You can imagine estimating the real drift and volatility for any observable

financial quantity simply by looking at a time series of the value of that
quantity. But how can you estimate its market price of risk? Market price
can you estimate its market price of risk? Market price of risk is only observable
through option prices. This is the point at which practice and elegant theory
start to part company. Market price of risk sounds like a way of calmly
assessing required extra value to allow for risk. Unfortunately, there is nothing
calm about the way that markets react to risk. For example, it is quite simple to
relate the slope of the yield curve to the market price of interest rate risk. But
evidence from this suggests that market price of risk is itself random, and
should perhaps also be modelled stochastically.
Note that when you calibrate a model to market prices of options you are

often effectively calibrating the market price of risk. But that will typically be
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just a snapshot at one point in time. If the market price of risk is random,
reflecting peoples shifting attitudes from fear to greed and back again, then you
are assuming fixed something, which is very mobile, and calibration will
not work.
There are some models in which the market price of risk does not appear

because they typically involve using some form of utility theory approach to
find a person’s own price for an instrument rather than the market’s.

5.2.2 Black–Scholes and the Z-economy

Given a probability space (Ω, F , P, W, F ) and chose a fix time T* and let
F ¼ {F t; 0� t�T *} to be the natural filtration, F t¼ σ{Ws; s� t}. In the
Black–Scholes world, let’s study a bond B and a stock S

dB tð Þ ¼ r � B tð Þdt
B 0ð Þ ¼ 1

�
) B tð Þ ¼ ert

dS tð Þ ¼ α � S tð Þdtþ σ � S tð ÞdW tð Þ
S 0ð Þ ¼ s

�

where r, α, and σ are constants, σ > 0.

Lemma 5.5 X is martingale if and only if dX(t) ¼ g(t)dW(t).
Now, we want to change probability measure so that Black–Scholes

becomes martingale. We therefore introduce the Z-economy via Z(t)¼ (Z0

(t),Z1(t)) so that

Z tð Þ ¼ 1

B tð Þ B tð Þ; S tð Þð Þ ¼ 1;
S tð Þ
B tð Þ

� �

is martingale. We want S(t)/B(t)� e�rtS(t) to be martingale. Therefore, we
need to find the dynamics under Q for Z1. Itô gives

dZ1ðtÞ ¼ ∂Z1ðtÞ
∂t

dtþ ∂Z1ðtÞ
∂S

dS ¼ �r � e�rtSðtÞdtþ e�rtdSðtÞ
¼ ðα� rÞZ1ðtÞdtþ σZ1ðtÞdWðtÞ

First, we have to find a Girsanov transformation so that dZ1(t) is martingale.
Let dQ ¼ LTdP on FT*, LT is called a likelihood process. We have
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dL tð Þ ¼ g tð ÞL tð ÞdW tð Þ
L 0ð Þ ¼ 1

�

The Girsanov theorem gives

dW tð Þ ¼ g tð Þdtþ dv tð Þ

where v(t) is a Q-Wiener process where the dynamics of Q for Z1(t) is given by

dZ1 tð Þ ¼ α� rð ÞZ1 tð Þdtþ σZ1 tð Þ g tð Þdtþ dv tð Þð Þ
¼ α� r þ σg tð Þð ÞZ1 tð Þdtþ σZ1 tð Þdv tð Þ:

This dynamic is martingale if (α � r + σg(t)) ¼ 0, i.e. if g(t) ¼ (r � α)/σ. The
function g(t) is called the Girsanov kernel. To sum up, under the martingale
measure Q we have a Z-economy with the dynamic given by

dZ0 tð Þ ¼ 0

dZ1 tð Þ ¼ σZ1 tð Þdv tð Þ
�

Z1 tð Þ ¼ e�rtS tð Þ ) dS tð Þ ¼ r � S tð Þdtþ σS tð Þdv tð Þ

We can easily prove this as

S tð Þ ¼ ertZ1 tð Þ

dSðtÞ ¼ ∂SðtÞ
∂t

dtþ ∂SðtÞ
∂Z1ðtÞ dZ

1ðtÞ ¼ rertZ1ðtÞdtþ ertZ1ðtÞσdvðtÞ
¼ rSðtÞdtþ σSðtÞdvðtÞ

which, as before, is independent of α.
If we define a likelihood process L via

dLt ¼ r � α

σ
LtdWt

we get

L tð Þ ¼ exp

ðt
0

r � α

σ
dW sð Þ � 1

2

ðt
0

r � α

σ

� �2

ds

8<:
9=;

¼ exp
r � α

σ
W tð Þ � 1

2

r � α

σ

� �2

t

� 	
and
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dWt ¼ r � α

σ
dtþ dvt:

When we change measure, and as above, use B(t) as numeraire, we value all
other instruments in our economy in terms of the numeraire, B(t). In a general
economy we can use any security Si as the numeraire and value all other
instruments with respect Si. This means that we discount all other securities
with Si. Si itself has the value 1 at all times and is then used as a risk-free asset
(rate, rate of return). The numeraire asset defines the unit in which other prices
are measured. We can then find the processes so that all prices will become
martingaled with respect to Si.

Definition 5.6 A probability measure Q is said to be a martingale measure if

(i) Q � P,
(ii) Under Q the Z1-dynamic is given by: dZ1

t ¼ σZ1
t dvt

where vt is a (Q, F )-wiener process.

Definition 5.7 A portfolio strategy is a stochastic process h ¼ (h0, h1) such as
h is
{F t}-adapted and integrable.

Definition 5.8 The S-value process is given by: V s(t) ¼ h0(t)B(t) + h1(t)S(t).

Definition 5.9 The Z-value process is given by: V z(t) ¼ h0(t) + h1(t)Z1(t).

Definition 5.10 S is self-financed if: dV s(t) ¼ h0(t)dB(t) + h1(t)dS(t).
This can also be written as

VS tð Þ ¼ h0 0ð Þ � VS 0ð Þ þ
ðT
0

h1 uð ÞdS uð Þ:

Definition 5.11 Z is self-financed if: dV z(t)¼ h1(t)dZ1(t).
This can also be written as

VZ tð Þ ¼ VZ 0ð Þ þ
ðt
0

h1 uð ÞdZ uð Þ:
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Definition 5.12 A contingent T-claim is a stochastic variable X, which is
F t-measurable and integrable.

Definition 5.13 S is said to be S-reachable if dV s(t, h) ¼ X.

Definition 5.14 Z is said to be Z- reachable if dV z(t, h) ¼ X.

Theorem 5.15 Black–Scholes is free of arbitrage.
Proof

X ¼ Vz T; hð Þ ¼
ðT
0

h1 tð ÞdZ1 tð Þ ¼
ðT
0

h1 tð Þ � σ � Z1 tð Þdv tð Þ

EQ X½ � ¼ EQ

ðT
0

h1 tð Þ � σ � Z1 tð Þdv tð Þ
24 35 ¼ 0 since v tð Þ is Q-martingale:

Since P and Q are equivalent measures (P � Q) this also holds in the
S economy. To have an arbitrage possibility we must have EQ[X] > 0 but
we see from the above that EQ[X] ¼ 0.

Theorem 5.16 Black–Scholes is complete, i.e. all contingent claims are reachable.
Proof:We study the Z-economy. For a given X show that there is a portfolio

h such as

Vz tð Þ ¼ h0 tð Þ þ h1 tð ÞZ1 tð Þ ¼ X
dVz tð Þ ¼ h1 tð ÞdZ1 tð Þ ¼ h1 tð ÞσZ1 tð Þdv tð Þ

on the probability measure Q where v(t) is a Q-Wiener process. We know that
if such a portfolio exists, the value process above is Q-martingale. If we use the
martingale representation theorem

M tð Þ ¼ M 0ð Þ þ
ðt
0

g sð Þdv sð Þ ) dM tð Þ ¼ g tð Þdv tð Þ

and define a portfolio strategy as

h0 tð Þ ¼ M tð Þ � h1 tð ÞZ1 tð Þ
h1 tð Þ ¼ g tð Þ

σ � Z1 tð Þ

8<:
Then we get that
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M tð Þ ¼ h0 tð Þ þ h1 tð ÞZ1 tð Þ ¼ VZ tð Þ

and

dVZ tð Þ ¼ h1 tð Þ � dZ1 tð Þ ¼ h1 tð Þ � σ � Z1 tð Þ � dv tð Þ ¼ g tð Þ � dv tð Þ ¼ dM tð Þ:

Therefore, the portfolio is self-financed and X is Z-reachable which gives us
that the model is complete.

Theorem 5.17 In the Black–Scholes model, the martingale measure is given by Q
where Q � P and

1. Derivative prices are given by:

Π tð Þ ¼ e�r� T�tð ÞEQ
r, t Π Tð ÞjF t½ �

2. The dynamics of Q is given by:

dΠt ¼ rΠtdtþ σΠΠtdvt

where vt is Q-martingale.

3.
Π tð Þ
B tð Þ is martingale.

The relation between the classical PDE solving theory in finance and the
probabilistic financial theory is given by the Feynman–Kač representation
given by condition (1).

Example 5.18

Consider a model for two countries. We then have a domestic and a foreign
market. The domestic and foreign interest rates, rd and rf, are assumed to be
given real numbers. Consequently, the domestic and foreign savings accounts
satisfy

Bd
t ¼ erdt B f

t ¼ erf t

where Bd and Bf are denominated in units of domestic and foreign currency,
respectively. The exchange rate process X, which is used to convert foreign
payoffs into domestic currency, is modelled by the following stochastic
differential equation under the objective measure P

(continued)
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Example 5.18 (continued)

dX ¼ mXXdt þ sXXdW

where mx and sx are assumed to be constants and W is a P-Wiener process. A
domestic martingale measure,Qd, is a measure which is equivalent to the objective
measure P andwhichmakes all a priori given price process, expressed in units of the
domestic currency and discounted using the domestic risk-free rate, martingales.
We assume that if we buy the foreign currency this is immediately invested in a
foreign bank account. All markets are assumed to be frictionless. We will first
determine the Qd-dynamics of the process X. Under Qd the process Z defined by

Zt ¼ XtB
f
t

Bd
t

should then be a martingale. Itô’s formula gives the following dynamics for
Z under P

dZt ¼ ∂Zt

B f
t

dB f
t þ

∂Zt

Bd
t

dBd
t þ ∂Zt

Xt
dXt ¼ Xt

Bd
t

dB f
t �

XtB
f
t

Bd
t


 �2 dBd
t þ Bf

t

Bd
t

dXt

¼ rf � rd þ mXð ÞZdt þ sXZdW

Now, make a Girsanov transformation

dW ¼ g tð Þdt þ dWd

and let

dQd ¼ LtdP onF t

where

dL ¼ gLdW
L 0ð Þ ¼ 1:

�
We then get

dZt ¼ rf � rd þ mXð ÞZdt þ sXZ g tð Þdt þ dWd

 �

¼ rf � rd þ mX þ sXg tð Þð ÞZdt þ sXZdWd :

So we make the following choice for the Girsanov kernel g(t), which makes the
process martingale

g ¼ rd � mX � rf
sX

:

By using the Girsanov theorem we can then see that Z is a martingale under the
new measure Qd. Again using the Girsanov theorem we find that the Qd-
dynamics of X are

(continued)
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Example 5.18 (continued)

dX ¼ mXXdt þ sXXdW ¼ mXXdt þ sXX
rd � mX � rf

sX
dt þ dWd

� �
¼ rd � rfð ÞXdt þ sXXdWd

where Wd is a Qd-Wiener process.

If we now take the viewpoint of a foreign-based investor, that is an investor
who consistently denominates his/her profits and losses in units of foreign
currency. A foreign martingale measure, Q f, is a measure which is equivalent to
the objective measure P and which makes all a priori given price process,
expressed in units of foreign currency and discounted using the foreign risk-free
rate, martingales. We now find the Girsanov transformation between Qd and Q f.

First we need the exchange rate process Y, which is used to convert domestic
payoffs into foreign currency. This process is given by Y ¼ 1/X Using Ito’s formula
we obtain the following dynamics under Qd

dY ¼ ∂Y
∂X

dX þ 1

2

∂2
Y

∂X2
dXð Þ2 ¼ � 1

X2
dX þ 1

2

2

X3
dXð Þ2

¼ rf � rd þ s2X

 �

Ydt � sXYdWd:

Under Q f the process z defined by

Bt ¼
YBd

t

B f
t

should be a martingale. Itô’s formula gives the following dynamics for z under Qd

dBt ¼
∂Bt
∂Bd

t

dBd
t þ ∂Bt

∂Bf
t

dBf
t þ

∂Bt
∂Yt

dYt ¼ Yt

Bf
t

dBd
t � YtB

d
t

B f
t


 �2 dBf
t þ

Bd
t

B f
t

dYt

¼ s2XBtdt � sXBtdW
d :

We now make a new Girsanov transformation

dWd ¼ h tð Þdt þ dWf

and let

dQf ¼ Lt � dQd onF t

where

dL ¼ ht � Lt � dWd

L 0ð Þ ¼ 1:

�

(continued)
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Example 5.18 (continued)

We get

dςt ¼ σ2X � ςt � dt� σX � ςt � h tð Þ � dtþ dWf

 �

¼ ςt � σ2X � σX � h tð Þ
 �
dt� σX � ςt � dWf

and

h ¼ sX :

By using the Girsanov theorem we can then see that z is a martingale under the
new measure Q f.

The domestic (foreign) market is said to be risk-neutral if the domestic
(foreign) martingale measure is equal to the objective measure P. In order for the
two martingale measures to be equal (which they have to be if they are both to
be equal to P) the likelihood process Lmust be identically equal to one (recall that
dQ f ¼ Lt

.dQd on F t). Since we have that

Lt ¼ exp

ðt
0

h sð ÞdWd sð Þ � 1

2

ðt
0

h2 sð Þds
8<:

9=; ¼ exp sXW d
t � 1

2
s2X t

� 	

we see that L ¼ 1 requires sx ¼ 0 and we get that the two measures are equal if
the exchange rate is deterministic. In order for Qd to be equal to P we find, using
the same technique as above, that we must have mx ¼ rd � rf

Lt ¼ exp

ðt
0

rd � rf � mX
sX

dW sð Þ � 1

2

ðt
0

rd � rf � mX
sX

� �2

ds

8<:
9=;

¼ exp
rd � rf � mX

sX
Wt � 1

2

rd � rf � mX
sX

� �2

t

( )

and dXt¼ (rd� rf)Xtdt.

5.2.3 Siegel’s Exchange Rate Paradox

Let us again study a market with two currencies, a domestic rate, rd and a
foreign rate, rf. The exchange rate is given by X(t). The process for the
exchange rate is given by

dX tð Þ ¼ X tð Þ rd tð Þ � rf tð Þ
 �
dtþ σ tð Þρ tð ÞX tð ÞdWd tð Þ:
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In the formula above the mean rate of change for the exchange rate X(t) is
rd(t) � rf (t) under the domestic risk-neutral measure. We also introduced a
correlation factor ρ(t).
From the foreign perspective, the exchange rate is 1/X(t), and one should

expect the mean rate of change of 1/X(t) to be rf (t) � rd(t). This turns out not
to be as straightforward as one might expect because of the convexity of the
function f(x) ¼ 1/x.

Example 5.19

Let the exchange rate from EUR to USD be 0.9. Then 1 EUR ¼ 1.1111 USD. If the
dollar price of euro falls by 5 %, 1 EUR becomes 0.95 � 1.1111 ¼ 1.0556 dollars.
This is an exchange rate of 1/1.0556 ¼ 0.9474 EUR for each USD. The change from
0.9 to 0.9474 EUR for each USD is a change of 5.26 % ( ¼ 1/0.95 � 1) increase of
EUR to USD, not 5 %. To understand why, let’s study the inverse, f xð Þ ¼ 1

x so that
f
0
xð Þ ¼ � 1

x2 and f
00
xð Þ ¼ 2

x3. We then obtain by Itô

d
1

X

� �
¼ df Xð Þ ¼ f

0
Xð ÞdX þ 1

2
f
00
Xð Þ dXð Þ2

¼ 1

X
rf � rdð Þdt � sdWd

� �þ 1

X
s2 dWd

 �2

¼ 1

X tð Þ rf � rd þ s2

 �

dt � sdWd
� �

The mean rate of change under the domestic risk-neutral measure is rf � rd + s2

not rf � rd. If we also include the correlation above, we also observe that the
correlation r(t) ¼ �1. However, the asymmetry introduced by the convexity of f
(x) ¼ 1/x is resolved if we switch to the foreign risk-neutral measure, which is the
appropriate one for derivative security-pricing in the foreign currency. First, recall
the relationship

dWf tð Þ ¼ �s tð Þdt þ dWd tð Þ ) dWd tð Þ ¼ s tð Þdt þ dWf tð Þ:

In terms of Wf(t), we may write

d
1

X

� �
¼ 1

X
rf � rdð Þdt � sdWf

� �
:

Under the foreign risk-neutral measure, the mean rate of change for 1/X is rf – rd,
as expect. Under the actual probability measure P, however, the asymmetry
remains. By studying

dX tð Þ ¼ m tð ÞX tð Þdt þ s tð ÞX tð ÞdW tð Þ

we get

(continued)
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Example 5.19 (continued)

d
1

X tð Þ
� �

¼ 1

X tð Þ
� �

�μ tð Þ þ σ2 tð Þ
 �
dt� 1

X tð Þ σ tð ÞdW tð Þ

and we observe that both X and 1/X have the same volatility. But, their mean
rates are not the negative of each other.

5.2.4 Maximum Likelihood Estimation

In this section we give a brief introduction to maximum likelihood
(ML) estimation for Itô processes. This is outside the main scope of this
book, but since ML theory is such an important topic and we have already
developed most of the necessary machinery, we include it here. We need the
concept of a statistical model.

Definition 5.20 A dynamic statistical model over a finite time interval [0, T]
consists of the following objects:

• A measurable space (Ω, F ).
• A flow of information on the space, formalized by a filtrationF ¼ F tf gt>0

• An indexed family of probability measures {Pα; α 2 A}, defined on the space
(Ω, F ), where A is some index set and where all measures are assumed to be
absolutely continuous on F t with respect to some base measure Pαo.

In most concrete applications (see examples below) the parameter α will be
a, real number or a finite dimensional vector—that is, A will be the real line or
some finite dimensional Euclidian space. The filtration will typically be
generated by some observation process X.
The interpretation of all this is that the probability distribution is governed

by some measure Pα, but we do not know which. However, we do have access
to a flow of information over time, and this is formalized by the filtration
above, so at time t we have the information contained in Ft. Our problem is to
try to estimate αt of α, based upon the information contained in Ft, that is,
based on the observations over the time interval [0, T]. The last requirement is
formalized by requiring that the estimation process should be adapted on F ,
i.e., that αt2Ft.
One of the most common techniques used in this context is that of finding,

for each t. the ML estimate of α. Formally the procedure works as follows.
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• Compute, for each a the corresponding likelihood process L(α) defined by

Lt αð Þ ¼ dPα

dPα0
on F t

• For each fixed t, find the value of α which maximizes the likelihood ratio
Lt(α).

• The optimal α is denoted by bαt and is called the ML estimate of α based the
information gathered over [0, t].

As the simplest possible example let us consider the problem of estimating
the constant but unknown drift of a scalar Wiener process. In elementary
terms we could naively formulate the model by saying that we can observe a
process X with dynamics given by

dXt ¼ αdtþ dWt

X0 ¼ 0:

�

HereW is assumed to beWiener under some given measure P and the drift α is
some unknown real number. Since this example is so simple, we do in fact
have an obvious candidate for the estimator process, namely

bαt ¼ Xt

t
:

In a naive formulation like this, we have a single underlying Wiener processW,
under a single given probability measure P, and we see that for different
choices of α we have different X-processes. In order to apply the ML tech-
niques we must reformulate our problem, so that we instead have a single X-
process and a family of measures. This is done as follows:

• Fix a process X which is Wiener under some probability measure P0. In
other words: under P0, the process X has the dynamics

dXt ¼ 0 � dtþ dW0
t

where W 0 is P 0-Wiener.

• We assume that the information flow is the one generated by observations
of X, so we define the filtration by settingF t ¼ F X

t . For every real number
α, we then define a Girsanov transformation to a new measure Pα by
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defining the likelihood process L(α) through

dLt ¼ αLt αð ÞdXt

L0 αð Þ ¼ 1

�

• From Girsanov’s theorem it now follows immediately that we can write d
W0

t ¼ αdtþ dW α
t whereW

α
t is a P α-Wiener process. Thus X will have the

P α-dynamics

dXt ¼ αdtþ dW α
t :

We now have a statistical model along the general lines above, and we notice
that, as opposed to the case in the naive formulation, we have a single process
X, but the driving Wiener processes are different for different values of α.
To obtain the ML estimation process for α, we need to compute the

likelihood process explicitly, i.e. we have to solve Lt. This is easily done and

Lt αð Þ ¼ exp αXt � 1

2
α2t

� 	

We may of course maximize ln[Lt(α)] instead of maximize Lt(α) so our
problem is to maximize (over α) the expression

αXt � 1

2
α2t:

This trivial quadratic optimization problem can be solved by setting the α
derivative equal to zero, and we obtain the optimal a as

bαt ¼ Xt

t
Thus we see that in this example the ML estimator actually coincides with our
naive guess above. The point of using the ML technique is of course that in a
more complicated situation we may have no naive candidate, whereas the ML
technique in principle is always applicable.

Example 5.21 Let W be a standard Wiener process on (Q, F , P0) where the
filtration is the one generated by W. Fix a time interval [0, T ]. Under the
measure P0, the process X has the dynamics
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dXt ¼ σ
ffiffiffiffiffi
Xt

p
dWt

where σ is a known constant.
Define, for each real number α, a Girsanov transformation such that the

measure P0 is transformed into a measure Pα, such that X under Pα solves the
equation

dX ¼ αXdtþ σ
ffiffiffiffi
X

p
dWα,

where W α is a Pα-Wiener process. Our task is to give a precise description of
this measure transformation, by specifying the dynamics of the corresponding
likelihood process Lα, where

Lα
t ¼ dPα

dP0

, on F t:

A Girsanov transformation with the Girsanov kernel

gt ¼
α

σ

ffiffiffiffiffi
Xt

p
will change the dynamics of X in the desired way. The dynamics of the
likelihood process Lα are given by

dLα
t ¼ α

σ

ffiffiffiffiffi
Xt

p
Lα
t dWt

Lα
0 ¼ 1:

(

The likelihood process is thus given by

L tð Þ ¼ exp

ðt
0

α

σ

ffiffiffiffiffi
Xs

p
dWs � 1

2

ðt
0

α2

σ2
Xsds

8<:
9=;:

Next, determine, for every t �. T, the maximum likelihood estimator bα tð Þ for
the parameter α, based on observations of X over the interval [0, t], i.e. the
value of α that maximizes Lα. Note that the answer shall be expressed in terms
of the process X, and simplified as far as possible.
You obtain the same estimate if you maximize the logarithm of the likeli-

hood function. The maximum likelihood estimate is thus given as the solution
to the following problem
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max

α

ðt
0

α

σ

ffiffiffiffiffi
Xs

p
dWs � 1

2

ðt
0

α2

σ2
Xsds

8<:
9=;:

Since we want the answer to be expressed in terms of X we write this as

max

α
α

σ2

ðt
0

dXs � 1

2

ðt
0

α2

σ2
Xsds

8<:
9=; ¼ max

α
α

σ2
Xt � X0ð Þ � 1

2

ðt
0

α2

σ2
Xsds

8<:
9=;

Since the objective function is concave in a the maximum will be obtained in a
point where the derivative with respect to α is zero. This yields

bαt ¼ Xt � X0ð t

0

Xsds

:

5.2.5 Complete Markets

A slightly more mathematical, but yet still quite easily understood description
of a complete market is to say a complete market is one for which there exist
the same number of linearly independent securities as there are states of the
world in the future.
Consider, for example, the binomial model in which there are two states of

the world at the next time-step, and there are also two securities, cash and the
stock. That is a complete market. Now, after two time-steps there will be three
possible states of the world, assuming the binomial model recombines so that
an up-down move gets you to the same place as down-up. You might think
that you therefore need three securities for a complete market. This is not the
case because after the first time-step you get to change the quantity of stock
you are holding: this is where the dynamic part of the replication comes in.
In a complete market you can replicate derivatives with the simpler instru-

ments. But you can also turn this on its head so that you can hedge the
derivative with the underlying instruments to make a risk-free instrument. In
the binomial model you can replicate an option from stock to make cash. Same
idea, same equations, just move terms to be on different sides of the
“equals” sign.
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As well as resulting in replication of derivatives, or the ability to hedge them,
complete markets also have models. In this model you specify the probability
of the stock rising (and hence falling because the probabilities must add to
one). It turns out that this probability does not affect the price of the option.
This is a simple consequence of complete markets, since you can hedge the
option with the stock, you don’t care what the probabilities are. People can
therefore disagree on the probability of a stock rising or falling but still agree on
the value of an option, as long as they share the same view on the stock’s
volatility.
In probabilistic terms we say that in a complete market there is a unique

martingale measure, but for an incomplete market there is no unique martin-
gale measure. The interpretation of this is that even though options are risky
instruments we don’t have to specify our own degree of risk aversion in order
to price them.
Enough of complete markets: where can we find incomplete markets? The

answer is “everywhere”. In practice all markets are incomplete because of real-
world effects that violate the assumptions of the simple model.
Take volatility as an example. As long as we have a log-normal equity

random walk, no transaction costs, continuous hedging, perfectly divisible
assets and so on, and constant volatility, then we have a complete market. If
that volatility is a known time-dependent function, then the market is still
complete. It is even still complete if the volatility is a known function of stock
price. But as soon as that volatility becomes random the market is no longer
complete. This is because there are now more states of the world than there are
linearly independent securities. In reality, we don’t know what volatility will
be in the future, so markets are incomplete.
We also get incomplete markets if the underlying security follows a jump

diffusion process. Again we have more possible states than there are underlying
securities.
Another common reason for getting incompleteness is if the underlying or

one of the variables governing the behaviour of the underlying is random.
Options on such acts cannot be hedged since these actions aren’t traded.
We still have to price contracts, even in the incomplete markets, so what can

we do? There are two main ideas here. One is to price the actuarial way, the
other is to try to make all option prices consistent with each other.
The actuarial way is to look at pricing in some average sense. Even if you

can’t hedge the risk from each option it doesn’t necessarily matter in the long
run. Because in that long run you will have made many hundreds or thousands
of option trades, so all that really matters is what the average price of each
contract should be, even if it is risky. To some extent this relies on results from

266 Analytical Finance: Volume I



the central limit theorem. This is called the actuarial approach because it is
how the insurance business works. You can’t hedge the lifespan of individual
policyholders but you can work out what will happen to hundreds or thou-
sands of them on average using actuarial tables.
The other way of pricing is to make options consistent with each other. This

is commonly used when we have stochastic volatility models, for example, and
is also often seen in fixed-income derivatives pricing. Let’s work with the
stochastic volatility model to start with. Suppose we have a log-normal random
walk with stochastic volatility. This means we have two sources of randomness
(stock and volatility) but only one quantity with which to hedge (stock).
That’s like saying that there are more states of the world than underlying
securities, hence incompleteness. Well, we know we can hedge the stock price
risk with the stock, leaving us with only one source of risk that we can get rid
of. That’s like saying there is one extra degree of freedom in states of the world
than there are securities.
Whenever you have risk that you can’t get rid of you have to ask how that

risk should be valued. The more risk, the more return you expect to make in
excess of the risk-free rate. This introduces the idea of the market price of risk.
Technically this case introduces the market price of volatility risk. This
measures the excess expected return in relation to unhedgeable risk. Now all
options on this stock with the random volatility have the same sort of
unhedgeable risk—some may have more or less risk than others but they are
all exposed to volatility risk. The end result is a pricing model which explicitly
contains this market price of risk parameter. This ensures that the prices of all
options are consistent with each other via this “universal parameter”. Another
interpretation is that you price options in terms of the prices of other options.
And yet it is possible to have an efficient, arbitrage-free market for which

there is no unique price enforced by the market. This can happen when there is
no unique way to replicate the asset cash flows. If it is not possible to replicate
the asset, it becomes harder for arbitrageurs to guarantee risk-less profits by
trading at a proposed valuation price.

5.2.6 A Multidimensional Diffusion Model

Given (Ω, F, P, W, F ), where W is a k-dimensional Wiener process and F
¼ F tj0 � t � Tf g the natural filtration, generated by W, i.e.
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F t ¼ σ Wsjs � tf g

The model consists of an (N + 1)-dimensional, strict positive price process
S with the dynamics

dS0t ¼ rS0t dt
S00 ¼ 1

�

dSi
t ¼ αiS

i
t dtþ Si

t

Xk
j¼1

σijdW
j
t

S i
0 ¼ si

8><>: ,

where αi and σij are adapted processes and i ¼ 1, ..., N. We write this as

dS*t ¼ D S*t

 �

αdtþ D S*t

 �

σdWt

where D(x) is a diagonal matrix with the components x in the diagonal and

α ¼
α1
⋮
αN

24 35, W ¼
W1

⋮
WN

24 35, σ ¼
σ11 ::: σ1N
⋮ ⋱ ⋮
σN1 ::: σNN

24 35:
To investigate the conditions of arbitrage and the completeness of this econ-
omy, we define the discounted price process as

Zt ¼ e�rtSt:

Using Itô’s formula, we get

dZ0
t ¼ 0

dZ i
t ¼ Z i

t αi � rð Þdtþ Z i
tσidWi

�

or on vector form

dZ*
t ¼ D Z*

t


 �
α� r1Nð Þdtþ D Z*

t


 �
σdWt:

We start to investigate the arbitrage free conditions with a Girsanov transfor-
mation that makes the drift term to disappear. With a Radon–Nikodym
derivative LT
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LT ¼ exp

ðT
0

g
0
tdWt � 1

2

ðT
0

gtk k2dt
8<:

9=;
where g is a k-dimensional process and ‘ means transposing. If EP[LT] ¼ 1,
we can change measure via

dQ ¼ LTdP

where Girsanov theorem gives, under Q: dWt ¼ gtdt + dvt, where vt is a
k-dimensional (Q, F )-wiener process. We then have

dZ*
t ¼ D Z*

t


 �
α� r1N þ σgð Þdtþ D Z*

t


 �
σdvt:

We therefore must have

σg ¼ r1N � α:

The problem now, is to find the process g such as EP[LT] ¼ 1.

Definition 5.22 A probability measure Q is said to be a martingale measure if

1. Q � P,
2. Under Q the Z*-dynamic is given by

dZ*
t ¼ D Z*

t


 �
σdvt

where vt is a (Q, F)-Wiener process. The class of martingale measures
denotes P.

Lemma 5.23 Let α and σ be given and suppose that

1. The matrix σ(t, ω) has RANG N for all t
2. There exist a c > 0 such as λ(t, ω) 	 c for all (t, ω), where λ is the smallest

singular value of σ.

Then P 6¼∅. Under Q we can write
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dS*t ¼ D S*t

 �

r1Ndtþ D S*t

 �

σdvt
dZ*

t ¼ D Z*
t


 �
σdvt

�

where vt is a (Q, F)-wiener process and Q a martingale measure.
We now want to show that, if P 6¼∅, then the economy is free of arbitrage.

Therefore, we choose a Q 2 P and keep Q fixed. We define the class H of
possible portfolio strategies and the set K of all conditioned contracts. It is
impotent to notice that the definition depends on the specific choice of Q, and
sometimes we therefore write H(Q) and K Qð Þ.

Definition 5.24 Fix a Q 2 P. A portfolio strategy is a process h ¼ (h0, hl,...,hN)
¼ (h, h*), such that

h is F tf g-adapted,ðT
0

h0t


 

dt < 1,

EQ

ðT
0

h*D Z*

 �

σ
�� ��2dt

24 35 < 1

For a given portfolio strategy h, the value processes VS(h) and VZ(h) are given
by

V S
t hð Þ ¼ htSt ¼ h0S0 þ h*t S

*
t

V Z
t hð Þ ¼ htZt ¼ h0 þ h*t Z

*
t

�

A given portfolio strategy h is said to be self-financed if

V S
t hð Þ ¼ V S

0 hð Þ þ
ðT
0

hudSu

i.e., if

dV S
t hð Þ ¼ htdSt:

The class of self-financed portfolio strategies is denoted by H. A conditioned
contract is a stochastic variable X such as
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X isF T-measurable

EQ X2
� �

< 1:

The set of all such contracts are denoted by K and with Kþ we denote those
X2K such as P(X 	 0) ¼ 1, and P(X > 0) > 0.
A conditioned contract X is said to be S and Z reachable if there exist a self-

financed strategy h such as

V S
T hð Þ ¼ X on P

V Z
T hð Þ ¼ X on Q

respectively.
First we want to know the relation between the S and the Z economy.

Therefore, we need the following lemma:

Lemma 5.25

(i) For each portfolio strategy, we have

V S
t hð Þ ¼ ertV Z

t hð Þ, V Z
t hð Þ ¼ e�rtV S

t hð Þ

(ii) The contract X is S reachable if and only if e-rtX is Z reachable.
(iii) The portfolio strategy h is self-financing if and only if

dV z
t hð Þ ¼ h*t dZ

*
t

(iv) If h2H, then VZ(h) is a quadratic integrable Q-martingale.

Definition 5.26 A strategy h2H is said to be an arbitrage strategy if

V S
0 hð Þ ¼ 0 and V S

T hð Þ2Kþ:

Theorem 5.27 Suppose P 6¼∅. Then, the model is free of arbitrage so that there
will not exist any arbitrage strategies in H(Q) for any Q 2 P.
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Theorem 5.28 Suppose P 6¼ ∅ and that the matrix process σ(t, ω) have
the rang k for all t and P. Then, the model is complete so that for any Q 2 P all
X2K Qð Þ is S-reachable.
From above we see that the condition of freedom of arbitrage and com-

pleteness acts on opposite directions. To have freedom of arbitrage, the matrix
σ must have at least as many rows as columns—that is, there must be at least as
many driving Wiener processes as underlying equities. This means that if we
specify the stochastic base for the economy in terms of k given Wiener
processes, the freedom of arbitrage generically demands at maximum
k equities. This is natural since each equity can offer potentially arbitrage
possibilities.
Completeness, on the other hand, demands σ to have at least as many

columns as the number of rows—that is, there must be as many equities as
driving Wiener processes. This is naturally since any new equity gives a new
possibility to realize a contingent claim in terms of a self-financed portfolio
strategy. This gives the following theorem:

Theorem 5.29 Suppose

(i) k ¼ N
(ii) The matrix process σ(t, ω) is invertible for all t and P.
(iii) There exist a c > 0 such as |λ(t, ω)| 	 c for all t and P where λ(t, ω) is the

smallest eigenvalue for σ(t, ω).

Then

(a) P consists of exactly one measure Q.
(b) The economy is free of arbitrage.
(c) The economy is complete.

We can now summarize the general model as

(i) If P ¼ Q there will not exist any definable prices. Especially, it is not
possible to value a specific contract X from a generating portfolio since
different portfolios which generates X can have different value processes.

(ii) If P 6¼ ∅ then it is possible, for all Q 2 P to define a price process πQ on
K Qð Þ via:

πQ X; t½ � ¼ e�r T�tð ÞEQ XjF t½ � X2K Qð Þ
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(iii) For any fixed X, πQ[X, t] can take different values for different choices of
Q 2 P. In other words, there are no any unique price of X, but the price
process πQ[X, t] tell us the possible prices for X if we not have any
arbitrage possibilities in the economy.

(iv) For a reachable X for all Q 2 P, the πQ[X] will be independent of which
Q 2 P we choose. Furthermore

πQ X; t½ � ¼ V S
t hð Þ

for each h that generates X.

(v) In a complete model there exist exactly one martingale measureQ and each
contract X have a unique price as above.

5.3 Securities Paying Dividends

Many securities pay some kind of dividends. Forwards or futures on indices
usually pay a dividend that can be modelled as a continuous compounded
dividend. Stock pays discrete types of dividends, typically once a year. When
valuing derivatives we need to consider dividends, since this will affect the
prices of the underlyings and this way changes the values of the derivatives
as well.

5.3.1 Black–Scholes with Continuous Dividend Yield

The simplest generalization of the Black–Scholes model is to consider options
when the underlying asset will pay out dividends during the lifetime. If we
assume that the asset will pay a continuous dividend yield, q, then in time t,
the asset receives an amount qSdt. Then the change of the portfolio value is
given by

dΠ ¼ ∂F
∂t

dtþ ∂F
∂S

dSþ 1

2
σ2S2

∂2
F

∂S2
dt� ΔdS� qΔSdt

The Black–Scholes PDE is then given as

∂F
∂t

þ r � qð ÞS∂F
∂S

þ 1

2
σ2S2

∂2
F

∂S2
� rF ¼ 0
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Then, the Black–Scholes formula with dividends is given as

Pcall ¼ Se�qTN d1ð Þ � Ke�rTN d2ð Þ
Pput ¼ Ke�rTN �d2ð Þ � Se�qTN �d1ð Þ

where

d1 ¼
ln S

K


 �þ r � qþ σ2

2

� �
T

σ � ffiffiffi
T

p , d2 ¼ d1 � σ �
ffiffiffi
T

p
:

5.3.2 Securities with General Dividends

In this section we will study a market with N + 1 securities where the price of
security i, at time t, is given by Si(t), i ¼ 0,..., N. Security number zero is
supposed to be the risk-free one, that is, B(t) ¼ S0(t):

dB tð Þ ¼ r tð ÞB tð Þdt

where r is the short rate. We suppose all processes are defined on a probability
space (Ω, F , P, F ) where all processes have stochastic differentials.
We also suppose that we have, another process Di for each i ¼ l,...,N. We

interpret Di(t) as the total dividend generated by security number i on the
interval [0, t]. More precisely if we hold the security i under the period (s, t] we
receive, during this time Di(t) � Di(s) cash units. Note that the security 0 (B)
doesn’t pay any dividends. We can therefore specify the market by a 2(N + l)-
dimensional matrix process

S tð Þ;D tð Þ½ � ¼
S0 tð Þ D0 tð Þ
S1 tð Þ D1 tð Þ
⋮ ⋮

SN tð Þ DN tð Þ

2664
3775 ¼

B tð Þ 0

S1 tð Þ D1 tð Þ
⋮ ⋮

SN tð Þ DN tð Þ

2664
3775:

Remark: If we allow jumps in prices or in dividends, we must decide how to
interpret S(t). Since S(t) is a continuous function we have two possible choices;
Either S(t) is the price before or after the dividend. The choice will be of
importance when we will define a self-financed portfolio. We will choose S(t)
to be price after the dividend since this is the most common in the literature.
This problem does not exist if all trajectories are continuous.

274 Analytical Finance: Volume I



We will now analyse self-financed portfolios by using B(t) as the numeraire
process and make the step from the S(t) economy to the Z(t) economy. Then
we can define martingale measures, self-financed portfolios, contingent claims,
for example.

Definition 5.30 On a given market [S, D] the gain process is defined as:

G tð Þ ¼ S tð Þ þ D tð Þ

The Z-market [Z, DZ]is defined as:

Z tð Þ ¼ S tð Þ
B tð Þ

DZ tð Þ ¼
ðt
0

1

B sð ÞdD sð Þ

8>>>><>>>>:
i.e.,

dDz tð Þ ¼ 1

B tð Þ dD tð Þ

and the Z-gain process GZ is defined as

GZ tð Þ ¼ Z tð Þ þ DZ tð Þ:

We said that the price S(t) and the dividend dD(t) at time t are discounted with
the deflator B(t).

Definition 5.31 A probability measure Q is said to be a martingale measure
for the market [S, D] if

(i) Q � P,
(ii) GZ is a squared integrable Q-martingale.

The set of martingale measures are denoted by P.
As usual, we now need to show that, if P 6¼∅, then the economy is free of

arbitrage. Therefore, we need to define the class of self-financed portfolio
strategies, the class of contingent claims and the concept of free of arbitrage.
We will define these on a market with a fixed martingale measure.
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Definition 5.32 For a fixedQ 2 P, a self-financed portfolio strategy, is a process
h ¼ (h0, h*) ¼ (h0, h1, ..., hN) (a row-vector) such as

(i) h is F -predictable,
(ii) The process VZ(h) defined by

V Z
t hð Þ ¼

def
htZt ¼

XN
i¼0

hi
t Z

i
t

is squared integrable, i.e., EQ V Z
t hð Þ� �

< 1, 8t 	 0. The process VZ(h) is
called the Z-value process, while the S-value process V(h) is defined by

Vt hð Þ ¼
def

htSt ¼
XN
i¼0

hi
t S

i
t :

A portfolio strategy h is said to be self-financed if

Vt hð Þ ¼ V0 hð Þ þ
ðt
0

h sð ÞdG sð Þ

i.e., if

dVt hð Þ ¼ htdGt:

The class of all self-financed portfolios are denoted by H.

Remark The condition (i) above is only critical if the processes contain jumps.
Otherwise we only need to have left-continuous and adapted processes.

Definition 5.33 For a fixed martingale measure Q, a contingent claim is a
stochastic process X such as

X2F T

EQ X2
� �

< 1

The set of all contingent claims are denoted by K(Q). With K+ we denote
those X 2 K such as
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P X 	 0ð Þ ¼ 1andP X > 0ð Þ > 0:

A contingent claim is said to be reachable (in S and Z respectively) if there exist
a self-financed strategy h such as

V S
T hð Þ ¼ X

V Z
T hð Þ ¼ X:

The relationship between the S- and the Z-market is given by Lemma 5.34.

Lemma 5.34

(i) For each portfolio strategy h we have:

V S
T hð Þ ¼ B Tð Þ � V Z

T hð Þ ¼ V Z
T hð Þ � exp

ðT
0

r sð Þds
8<:

9=;
V Z
T hð Þ ¼ B Tð Þ�1 � V S

T hð Þ ¼ V S
T hð Þ � exp �

ðT
0

r sð Þds
8<:

9=;

8>>>>>>><>>>>>>>:
(ii) The contract X is S-reachable if and only if the contract B(T)-1X is

Z-reachable.
(iii) The portfolio strategy h is self-financed if and only if

dV Z
t hð Þ ¼ htdG

Z
t ¼ h*t dG

Z*
t

(iv) If h¼H(Q), then VZ(h) becomes a squared integrable Q-martingale.

Definition 5.35 For a fixed martingale measure Q a self-financed portfolio
h2H(Q) is said to be an arbitrage strategy if

V S
0 hð Þ ¼ 0, and V S

T hð Þ2Kþ Qð Þ:

Theorem 5.36 Suppose P 6¼ ∅. Then, the market is free of arbitrage, in the
meaning that there will not exist for any Q 2 P any arbitrage strategies in H (Q).
We now have tools to price contingent claims in our economy. Therefore,

suppose that P 6¼ ∅ on the market [S, D] and choose a martingale measure
Q (there can be many) and consider a contingent T-claim X (this means that
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the delivery should be at time t ¼ T). The arbitrage free price of X is then
given by

πt X;Q½ � ¼ EQ X � exp �
ðT
t

r sð Þds
8<:

9=;jF t

24 35
πZ is then a Q-martingale and by the theorem it follows that the [S, D]-market
adjoint with the pair of price and dividend (π, 0) is free of arbitrage.

Theorem 5.37 With Q and X as above, Then

(i) The market [S, D] adjoint with (π, 0), where π is defined as above is free of
arbitrage.

(ii) Different choices of Q 2 P will generically give different price processes.
(iii) If a given contract is reachable all martingale measures will give the same

price process.
(iv) Especially, for each Q 2 P and for each pair [Si, Di]:

Si tð Þ ¼ EQ Si Tð Þ � exp �
ðT
t

r sð Þds
8<:

9=;þ
ðT
t

exp �
ðs
t

r uð Þdu
8<:

9=;dDi sð Þ

F t

24 35
Consider a given market consisting of one risky asset with price process S(t)
and cumulative dividend process D(t) and a risk-free asset B(t), with dynamics

dB tð Þ ¼ r � B tð Þdt
B 0ð Þ ¼ 1

�

where r denotes a stochastic interest rate.
Now consider a fixed contingent T-claim X. A futures contract on X with

time of delivery T is a financial asset with price process Π and dividend process
D with the following properties:

D tð Þ ¼ F t;T;Xð Þ
F T; T;Xð Þ ¼ X
Π tð Þ ¼ 0for0 � t � T:

Here F(t, T, X) denotes the futures price process. Note that F(t, T, X) is
determined at time t. Recall that if Q is a martingale measure for this model,
then the normalized gain process of any price-dividend pair [Π , D] is a Q-
martingale. Thus we have that
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GZ tð Þ ¼ Π tð Þ
B tð Þ þ

ðt
0

1

B sð Þ dD sð Þ

is a Q-martingale. Now use that Π(t) ¼ 0, and that D(t)¼ F(t,T,X) along
with the martingale representation Theorem to obtain that

dGZ tð Þ ¼ dF t; T;Xð Þ
B tð Þ ¼ h tð ÞdV tð Þ

for some adapted process h and the Q-Wiener process V generating the
filtration. From this we see that

dF t; T;Xð Þ ¼ B tð Þh tð ÞdV tð Þ,

which means that the futures price process is a Q-martingale. Using the
martingale property of the futures price process and the boundary condition
F(T, T, X) ¼ X, we have that the futures prices are given by

F t;T;Xð Þ ¼ EQ XjF t½ �

Now, consider a Black–Scholes model with a constant continuous dividend
yield, i.e. where B, S and D satisfy

dBt ¼ rBtdt
dSt ¼ αStdtþ σStdWt

dDt ¼ δStdt

8<: ,

where r, α, σ and δ are assumed to be constants and W denotes a P-Wiener
process. To give an explicit formula for the futures price for the case when
X ¼ S(T), we recall that for this model the Q-dynamics of S are given by

dS tð Þ ¼ r � δð ÞS tð Þdtþ σS tð ÞdV tð Þ,

where V denotes a Q-Wiener process. This follows from the fact that the
normalized gain process

GZ tð Þ ¼ S tð Þ
B tð Þ þ

ðt
0

δS uð Þ
B uð Þ du

is a Q-martingale. Integrating this we obtain
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S uð Þ ¼ S tð Þ þ
ðu
t

r � δð ÞS τð Þdτ þ
ðu
t

σS τð ÞdV τð Þ:

Now take the conditional expectation with respect to F t

E SujF t½ � ¼ St þ
ðu
t

r � δð ÞE SτjF t½ �dτ þ 0:

Let mu¼E[Su|F t] and take derivatives with respect to u

_mu ¼ r � δð Þmu

mt ¼ St

�
:

Solving the ODE above we get

mu ¼ Ste
r�δð Þ u�tð Þ:

The futures price for this case is therefore

F t; T;Xð Þ ¼ S tð Þe r�δð Þ T�tð Þ:

If we suppose that the constant δ ¼ 0. The gain process G of an asset
with price process Π and dividend process D is given by G(t)¼Π(t) +D(t) ,
and a portfolio containing h of these assets is self-financing if its corresponding
value process satisfies dV(t, h) ¼ h(t)dG(t). If we denote by P the price of the
self-financing portfolio we have that dP(t)¼ 1(dΠ(t) + dD(t))¼ dF(t,T,X)
where we have used that dΠ(t)¼ 0 (since Π(t) ¼ 0 for 0 � t � T) and that
D(t) ¼ F(t, T, X). Integrating this we have that P(t) ¼ P(0) + F(t, T, X) � F
(0, T, X) or, using the expression for the futures price from the previous
exercise (with δ ¼ 0) P(t) ¼ P(0) + S(t)er(T � t) � S(0)erT. With a slight abuse
of notation we now let P(t, x) ¼ P0 + s.er(T � t) � S0e

rT denote the pricing
function of the portfolio. It is now easy to compute Δ. We have

Δ ¼ ∂P
∂s

¼ er T�tð Þ:
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5.3.3 Black–Scholes with Continuous Dividends

We will now see how we can use this on Black–Scholes with continuous
dividends. The theory with discrete dividends is a little more complex and will
not be discussed here. But in practice you can use the Black–Scholes formulas
and subtract the present values (discounted by the risk-free interest rate) of the
individual dividends.
As usual, we start with a market consisting of two securities, B and S with

the given P-dynamics

dB tð Þ ¼ r � B tð Þdt
dS tð Þ ¼ α � S tð Þdtþ σ � S tð ÞdW tð Þ

�
,

where r, α, and σ are deterministic constants, σ > 0. We now suppose that we
to S also have a dividend process:

dD tð Þ ¼ δ � S tð Þdtþ γ � S tð ÞdW tð Þ,

where δ, and γ are deterministic constants. We begin to look for a martingale
measure and investigate what we will get from a Girsanov transformation:

L tð Þ ¼ dQ

dP
,

where

dL tð Þ ¼ h tð ÞL tð ÞdW tð Þ
L 0ð Þ ¼ 1

�
:

Girsanov’s Theorem gives us the following dynamics under Q, where V(t) is a
Q-Wiener process.

dS tð Þ ¼ αþ σ � hð ÞS tð Þdtþ σ � S tð ÞdV tð Þ
dD tð Þ ¼ δþ γ � hð ÞS tð Þdtþ γ � S tð ÞdV tð Þ

�
:

The Z-dynamics can be shown to be given by

dZ tð Þ ¼ αþ σ � h� rð ÞZ tð Þdtþ σ � Z tð ÞdV tð Þ
dDZ tð Þ ¼ δþ γ � hð ÞZ tð Þdtþ γ � Z tð ÞdV tð Þ

�
,

so that the gain process of Z, GZ have the dynamics given by
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dGZ tð Þ ¼ αþ σ � h� r þ δþ γ � hð ÞZ tð Þdtþ σ þ γð ÞZ tð ÞdV tð Þ:

Therefore, if GZ is a Q-martingale we have to choose the Girsanov kernel
h such as

αþ σ � h� r þ δþ γ � h ¼ 0

i.e.,

h ¼ r � α� δ

σ þ γ
:

Therefore, we have shown the following result:

Theorem 5.38 Given a financial market

dB tð Þ ¼ r � B tð Þdt
dS tð Þ ¼ α � S tð Þdtþ σ � S tð ÞdW tð Þ
dD tð Þ ¼ δ � S tð Þdtþ γ � S tð ÞdW tð Þ

8<:
(i) This market is free of arbitrage and has a unique martingale measure given by

L tð Þ ¼ dQ

dP
,

where

dL tð Þ ¼ h tð ÞL tð ÞdW tð Þ
L 0ð Þ ¼ 1

�

and

h ¼ r � α� δ

σ þ γ

(ii) The arbitrage-free price of a T-contract X is given by

πt X½ � ¼ EQ XjF t½ �
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(iii) The dynamics of [S, D] under Q is given by

dS tð Þ ¼ αþ σ � r � α� δ

σ þ γ

� �
S tð Þdtþ σ � S tð ÞdV

dD tð Þ ¼ δþ γ � r � α� δ

σ þ γ

� �
S tð Þdtþ γ � S tð ÞdV

8>><>>:
(iv) If γ ¼ 0 the dynamics of [S, D] under Q is given by

dS tð Þ ¼ r � δð ÞS tð Þdtþ σ � S tð ÞdV
dD tð Þ ¼ δS tð Þdt

�

(v) If γ ¼ 0 and X can be written as X¼ Φ(S(T)), then the arbitrage-free is given
by

πt X½ � ¼ F t; S tð Þð Þ,

where F(t, S(t)) is the solution to the following partial differential equation

Ft t; Sð Þ þ r � δð ÞSFS t; Sð Þ þ 1

2
σ2S2FSS t; Sð Þ � rF t; Sð Þ ¼ 0

F T; Sð Þ ¼ Φ Sð Þ

(
:

With (v) above, the price can be written as

F t; Sð Þ ¼ e�r T�tð Þ
ð1

�1
Φ s � exp r � δ� 1

2
σ2

� �
T � tð Þ þ σy

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p� 	� �
φ yð Þdy

where φ is the density function of an N(0, 1) distribution.
A European call option on S with maturity T and strike K is given by:

C t; sð Þ ¼ s � e�δ T�tð ÞN d1 t; sð Þ½ � � Ke�r T�tð ÞN d2 t; sð Þ½ �

where

d1 ¼ 1

σ
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p ln
s

K

� �
þ r � δþ 1

2
σ2

� �
T � tð Þ

� 	
d2 ¼ d1 � σ

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p

8<:
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5.4 Hedging

An important concept when dealing with finance is hedging. When you are
dealing with derivatives—for example, selling a call option— the counterparty
might exercise the option. If and when the counterparty exercises the option
you have the obligation to deliver the underlying stock. This can be very
expensive if you need to buy the underlying stock at a high price and sell it at a
much lower price. One of your possibilities is to hedge the option position by
buying the underlying stock before or when you enter the option contract.
This is the simplest kind of hedging, called delta-hedging. The name come
from the fact that you can use the option delta to calculate the number of
stocks you need to buy to be hedged. Since delta might vary during the option
life time you can need to rebalance your portfolio by buying or selling more
stocks.

5.4.1 Delta-Hedging

We will now in detail study how to hedge using delta. Suppose that we take a
short position in European call options on 100,000 stocks in ACME Inc.
Suppose we have

S ¼ 365,

X ¼ 370,

σ ¼ 20%,

r ¼ 2%and

T � t ¼ 0:25year:

Via Black–Scholes formula, we get the option price 13.09497 so the total value
is 1,309,497. As we will see, we are exposed for a risk.
First, suppose we have a naked position, e.g. we have no ownership in the

underlying stock.
Study two cases:

1. At maturity, the stock price is < 370, (the option has no value) so we make
a profit of 1,309,497.

2. At maturity, the stock price is 395 so we have to buy 100,000 stocks for
395 cash units each and then sell them at a price of 370. The cost will be
100,000(395 � 370) ¼ 2.5 million, so we lose 1,190,503.
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Next, suppose we have a covered position, i.e. we buy the stock at 365 each.
Study two cases:

1. At maturity, the stock price is 360, so we lose 500,000 selling the stocks,
but get a total profit of 1,024,738. If the stock price goes below 350 we will
make a negative profit totally.

2. At maturity, the stock price is 380. We sell the stocks at 380 each and make
a total profit of 2,024,738.

We will now see how we can protect ourselves with a hedge. We will therefore
calculate the number of stocks we have to buy, to hedge the options. If F(t, S)
is the option value, Nc, the number of options and Ns the number of stocks,
the total portfolio value is given by:

V ¼ �NcF t; Sð Þ þ NsS

With a delta-hedge

∂V
∂S

¼ 0 ) Ns ¼ Nc � ∂F∂S ¼ Nc � Δ ¼ Nc � N d1½ �

d1 ¼ 1

σ
ffiffiffiffiffi
Δt

p ln
S

K

� �
þ r þ 1

2
σ2

� �
Δt

� 	
¼ �0:03606::::

This gives N[d1] ¼ 0.485619, so we need Ns ¼ 48,562 stocks to hedge the
options.

5.4.2 Delta-gamma-Hedging

If we also want to be Γ-neutral (i.e. have Γ ¼ 0) we have to user a second
option in our hedge. Remember that gamma is given by

Γ ¼ N
0
d1½ �

Sσ
ffiffiffiffiffi
Δt

p

for both call and put options. Suppose there exist a put option p, at strike price
of 355 cash units. Then our portfolio is

V ¼ NpFp t; Sð Þ � NcFc t; Sð Þ þ NsS

and
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∂V
∂S

¼ ∂2
V

∂S2
¼ 0 ) Δp ¼ Δc � 1

� � )
Ns ¼ Nc � Δc � Np � Δp

0 ¼ Nc � Γc � Np � Γp

�
:

If we also want to remove the sensitivity in Δ, we also must have Γ ¼ 0. Since
Γ ¼ 0 for stocks we have to use one more option. Given a portfolio Π with a
stock S and two derivatives, F and G. We want to choose XF and XG so that the
total portfolio becomes both Δ- and Γ-neutral:

Np ¼ 100,000 � Γc

Γp

Ns ¼ 100,000 � Δc � 100,000Δp � Γc

Γp

:

8>><>>:
Giving

Np ¼ 107,328

Ns ¼ �20,901

�

Example 5.39

At the writing moment the stock price of some share is 35. Now, we want to
hedge 1000 stocks of this share. On the market there exist options with strikes
30 and 37. The risk-free interest rate is estimated to 4.5 % and the time to
maturity of the options is 102 days. The volatility is estimated to 37.5 %. If we use
the formulas above on a call option with strike 30 and a put option with strike
37, we will find that if we buy 548 put options and go short in 847 call options we
will hedge our 1000 stocks. In Fig. 5.1 we illustrate the total portfolio value when
the stock price varies between 10 and 70. As we can see, the hedge is very good in
a region between 28 and 42. We also observe that we earn 3150 in the hedge.

If we in detail see how the hedge works, we can plot all three instruments in
the same graph. This is shown in Fig. 5.2.

If we switch the two options in the strike and use a call option with strike
37 and a put option with strike 30. The total portfolio value looks like the curve in
Fig. 5.3. In this hedge we earn 1417. We have to sell 1386 call options and buy
2142 put options.

If we in detail see how this hedge works, we can plot all three instruments in
the same graph. This is shown in Fig. 5.4.
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Fig. 5.1 Illustration of the delta-gamma hedge of 1000 stocks

Fig. 5.2 Illustration of how the delta-gamma hedge of 1000 stocks is made up
by the two options and the stock itself. The fat line represents the total portfolio
shown in Fig. 5.1
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Fig. 5.3 Illustration of the delta-gamma hedge of 1000 stocks with switched
option strikes

Fig. 5.4 Illustration of how the delta-gamma hedge of 1000 stocks is made up
by the two options and the stock itself. The fat line represents the total portfolio
shown in Fig. 5.3
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6
Exotic Options

A standard option has some well-defined properties:

Type Call or put
Style European, Bermudan or American
Strike A given price X
Expiry date The time of maturity
Settlement type Physical or cash delivery
Underlying Stock, currency, index, etc.

For exotic options one or some of the above properties are defined differently
or additional properties are added. Exotic options can be constructed in many
different ways. To understand how to construct these kinds of option we give
an overview of some common types:

• Cash-or-nothing options
• Knock-out and knock-in options
• Barrier options
• Lookback options
• Asian options
• Chooser options
• Options on two underlyings
• Options on options
• Currency options
• Forward options

289© The Author(s) 2017
J.R.M. Röman, Analytical Finance: Volume I,
DOI 10.1007/978-3-319-34027-2_6



6.1 Contract for Difference: CFD

Before we explore exotic options we describe a new instrument that has been
very popular, the contract for difference (CFD).
A contract for difference is a contract between two parties, typically

described as “buyer” and “seller”, stipulating that the seller will pay to the
buyer the difference between the current value of an asset and its value at
contract time. If the difference is negative, then the buyer pays the seller. For
example, when applied to equities, such a contract is an equity derivative that
allows investors to speculate on share price movements without the need for
ownership of the underlying shares.
Contracts for difference allow investors to take long or short positions, and

unlike futures contracts they have no fixed expiry date, standardized contract
or contract size.
Investors in CFDs are required to maintain a certain amount of margin as

defined by the brokerage or market maker (usually ranging from 1% to 30 %).
One advantage to investors is that they don’t have to pay collateral for the full
notional value. Therefore, a given quantity of capital can control a larger
position, amplifying the potential for profit or loss. On the other hand, a
leveraged position in a volatile CFD can expose the buyer to a margin call in a
downturn, which often leads to losing a substantial part of the assets.
As with many leveraged products, the maximum exposure is not limited to

the initial investment since it is possible to lose more than one put in. These
risks are typically mitigated through the use of stop orders and other risk-
reduction strategies. For the most risk-averse, guaranteed stop loss orders are
available at a certain cost.

6.1.1 History

CFDs were originally developed in the early 1990s in London. Based on equity
swaps, they had the additional benefit of being traded on margin and being
exempt from stamp duty, a UK tax.
They were initially used by hedge fund and institutional investors to hedge

their exposure to stocks on the London Stock Exchange in a cost-effective way.
In the late 1990s CFDs were first introduced to retail investors. They were

popular with a number of UK companies, whose offerings were typically
characterized by innovative online trading platforms that made it easy to see
live prices and trade in real time.
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It was around the year 2000 that retail investors realized that the real benefit
of trading CFDs was not the exemption from stamp tax but the ability to trade
on leverage on any underlying instrument. This was the start of the growth
phase in the use of CFDs. The CFD providers quickly responded and
expanded their product offering from London Stock Exchange (LSE) shares
only to include indexes, global stocks, commodities, treasuries and currencies.
Trading index CFDs, such as those based on the major global indexes
(e.g. Dow Jones, NASDAQ, S&P 500, FTSE, DAX, and CAC) quickly
became the most popular type of CFD to be traded.
Around 2001 a number of the CFD providers realized that CFDs have the

same economic effect as financial spread betting except that the tax regime was
different, making it in effect tax free for clients.
Up until this point CFDs were always traded over the counter (OTC);

however, on 5 November 2007 the Australian Securities Exchange (ASX)
listed exchange-traded CFDs on the top 50 Australian stocks, 8 FX pairs,
key global indices and some commodities.

Example 6.1

The easiest way to show the use the leverage of a CFD is as follows: if you had
$1750 to invest, and wished to purchase a stock at $35 and sell at $37, a standard
trade would look as follows

BUY: 50 � $35 ¼ $1750
SELL: 50 � $37 ¼ $1850
PROFIT ¼ $100 or 5.7 %
Using a CDS, the above example reads as follows:
BUY: 1000 � $35 ¼ $1750 (5 % deposit) + $33,250 (95 % borrowed funds)
SELL: 1000 � $37 ¼ $37,000
PROFIT ¼ $2000 or 114 %
As you can see, the profit received after using leveragewas far greater thanwithout.

It is important to note, that losses are also magnified when using leverage.

6.1.2 Risk

Due to the dynamic nature of the stock markets and increased leveraged
possible with CFDs (up to 500 fold) it is important that traders regularly
calculate their risk, position sizes and the return required to cover CFD loss
and overnight financing costs to manage their moving portfolio and changing
risk. With the leveraging of CFDs it is possible to lose a lot more money than
your account size should positions go against you.
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CFDs allow a trader to go short or long on any position using margin. There
are always two types of margin (see the appendix) with a CFD trade

1. Initial margin, which is normally 5–30 % for shares and 1 % for indices
and FX.

2. A daily margin, which is then “marked to market”.

Variation margin is applied to positions if they move against a client. The
daily margin can therefore have either a negative or positive effect on a CFD
trader’s cash balance. But initial margin will always be deducted from a
customer’s account and replaced once the trade is covered.
Another dimension of CFD risk is counterparty risk; a factor in most

OTC-traded derivatives. Counterparty risk is associated with the financial
stability or solvency of the counterparty to a contract. In the context of
CFD contracts, if the counterparty to a contract fails to meet their financial
obligations, the CFD may have little or no value regardless of the underlying
instrument. Exchange-traded contracts traded through a clearinghouse have
less or no counterparty risk.

6.2 Binary Options/Digital Options

Binary options, sometimes also known as “rebate” options, are vanilla put
and call options conditioned by something else other than just the price and
the expiration date. They refer to conditional scenarios that, if they come
true, either validate or invalidate the option. The trader fixes the amount of
the desired payout he/she will get if their conditional scenario proves to be
right. The price of the option or premium represents a percentage of that
payout.
Accordingly, digital options are less expensive than one-touch options with

the same strike and expiration date. Digital premiums can be half the price of
no-touch options premiums with the exact same strike price and expiration
dates, but the trader has to weigh the advantage of lower cost against the risk
price will settle even 1 pip below the target at expiration.
Traders often combine various option types to build their option trading

strategies. By associating different option types, some traders manage to
minimize the risk they are taking. Some even claim to have found infallible
methods. Others see it as a simple hedging instrument and use it to secure their
funds.
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6.2.1 Cash-or-Nothing Options

There are two kind of digital option: cash-or-nothing options and asset-or-
nothing options. These options have as most of the others, a strike price and
a given time to maturity.
A cash-or-nothing digital option pays a fixed amount of cash if they expire

in the money, no matter how deeply, otherwise nothing. They are also known
as binary options, all-or-nothing options or bet options.
Cash-or-nothing digitals differ from conventional options since their payoff

does not depend on the extent to which the option is in-the-money (ITM),
only on whether it is ITM. So digitals are a bet on the market reaching a
certain level, with a cash payout if the bet is won. Otherwise the payout is zero.
In Fig. 6.1 we illustrate the profile of digital options. The step function
represents the call option at maturity and the other curves the call- and the
put options with the following parameters; S¼K¼ 70, T¼ 0.5, r¼ 2.0% and
σ ¼ 40 %.
Digitals are not only traded as standalone products, they are also often

found embedded in structured securities.

Fig. 6.1 The payout (profit) of digital cash-or-nothing options
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6.2.2 Pricing

Mathematically, European-style digitals are easier to price than conventional
options. The price for a cash-or-nothing option, is as we have seen given as one
part of the Black–Scholes formula

Pcall ¼ e�rTK � N dð Þ
Pput ¼ e�rTK � N �dð Þ,

where

d ¼
ln

S

K

� �
þ r þ σ2

2

� �
T

σ � ffiffiffi
T

p :

The price of an asset-or-nothing option is given by

Pcall ¼ S � N dð Þ

and

Pput ¼ S � N �dð Þ:

What makes the digital option exotic is its risk profile, in particular the
behaviour of its delta.
The stepped expiry payoff of a digital option means that the delta of an

ATM option converges to infinity as it approaches expiry, while the delta of an
OTM or ITM option converges to zero. A close-to-the-money digital
approaching expiry becomes almost impossible to delta-hedge. Option traders
are therefore careful to

• Limit the amounts of digitals they carry in their books
• Build significant safety margins into their pricing, to allow for the addi-

tional risks—a good example of the difference between theoretical pricing,
based on a mathematical model, and actual pricing based on the potential
costs of hedging the risks in practice

An exotic option is a contract whose “Greeks” behave differently from those
of a conventional option. Whereas a conventional long call position is always
theta-negative and vega-positive, the equivalent position in a digital may be
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positive or negative in theta and vega, depending on whether it is OTM or
ITM. In practice, digitals are sometimes priced off (and hedged with) conven-
tional call or put spreads. The expiry payoff of the digital call cannot be
replicated exactly using conventional options.

Example 6.2

The solution of a digital call with strike K¼ S(0) can be found as

Φ STð Þ ¼ 1 ST > K ¼ S 0ð Þ
0 else

�
¼ 1I s>Kf g

C t; sð Þ ¼ e�r T�tð ÞEQ 1 ST>Kf g
� �

¼ e�r T�tð ÞEQ 1 S0exp r�σ2=2ð Þ T�tð Þþσ WT�Wtð Þf g>Kf g
� �

¼ Kffiffiffiffiffi
2π

p
ðd2

�1
e�x2=2dx ¼ K � N d2½ �:

6.2.3 Supershare Options

A supershare option is a type of binary option. In a common binary option the
payout is a fixed amount if the underlying price is greater than (or less than)
the strike.
In a supershare option, there is a lower and upper boundary. If the

underlying at expiry is between these boundaries the payoff is

Payoff ¼ Underlying=Lower Boundary

If the underlying security price is outside these boundaries the payoff is zero.
The supershare option (introduced by Håkansson 1976), entitles the holder to
a payoff of 0 if XL> S>XH and S/XL otherwise.

P ¼ e�rT

XL
N d1ð Þ � N d2ð Þ½ �

where

d1 ¼
ln

S

XL

� �
þ r þ σ2

2

� �
T

σ �
ffiffiffi
T

p ; d2 ¼
ln

S

XH

� �
þ r þ σ2

2

� �
T

σ �
ffiffiffi
T

p :
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Simply put, the digital price is given by the present value of the fixed payout
multiplied with the probability of reaching the strike.

6.2.4 Other Digital Options

There are two other kinds of digital options, American digitals and asset or
nothing. The American-style digital, like all American options, has a market
price that may not be lower than its intrinsic value, so the option’s price rises
even more steeply than the European equivalent as it approaches the strike.
Moreover, the option has no time value when it is ITM and should be
exercised immediately.
The asset-or-nothing digital call gives the holder the right to buy the

underlying asset at a specified discount to the strike, while the asset-or-nothing
digital put gives the holder the right to sell the underlying asset at a premium
to the strike.
In Fig. 6.2 we illustrate the profile of an asset-or-nothing option with the

following parameters; S ¼ K ¼ 70, T ¼ 0.5, r ¼ 2.0 % and σ ¼ 40 %.

Fig. 6.2 The payout (profit) of an asset-or-nothing call and an asset or nothing put
option. The bumpy curve represents the put option.
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Reiner and Rubenstein derived a formula for American digitals in 1991.
Sometimes they are called one-touch binary/digital or binary-at-hit. The value
of a call option of the type one-touch-down digital is given by

Pone touch down ¼ K � H

S

� �μþλ

N zð Þ þ H

S

� �μ�λ

N z� 2 � λ � σ
ffiffiffi
T

p� 	" #

and a one-touch-up digital by

Pone touch up ¼ K � H

S

� �μþλ

N �zð Þ þ H

S

� �μ�λ

N 2 � λ � σ
ffiffiffi
T

p
� z

� 	" #

where the barrier is given by H and

z ¼
ln

H

S

� �
σ

ffiffiffi
T

p þ λσ
ffiffiffi
T

p

μ ¼
r � 1

2
σ2

σ2

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 2r

σ2

r
:

In Haug’s book The Complete Guide to Option Pricing Formulas a huge family
of digital barrier options are given as well as other exotics.

6.2.5 Gap Options

Gap options are a combination of a conventional option and a cash-or-nothing
digital. A gap option is the right to buy, for a call, or the right to sell, for a put,
an asset at time T> 0 for a price G> 0 if the asset exceeds, for the call, or falls
below a price X > 0. It is straightforward to write down the price for a gap
call as

Cg S; T;G;Xð Þ ¼ e�rTEQ S Tð Þ � GjS Tð Þ > X½ �:

We can evaluate this conditional expectation directly without much trouble,
but there is a better way. A gap call can be written as a portfolio with a usual
call and a digital call. To see this we rewrite the above equation as
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Cg S;T;G;Xð Þ ¼ e�rT EQ S Tð Þ � X jS Tð Þ > X½ � � EQ G� X jS Tð Þ > X½ �
 �
:

A put gap can be decomposed in a similar way as

Pg S; T;G;Xð Þ ¼ e�rT EQ X � GjS Tð Þ < X½ � � EQ X � S Tð ÞjS Tð Þ < X½ �
 �
:

Thus, we have

Cg S; T;G;Xð Þ ¼ C S;T;Xð Þ � G� Xð ÞCd S;T;Xð Þ:

and

Pg S;T;G;Xð Þ ¼ X � Gð ÞPd S; T;Xð Þ � P S; T;Xð Þ:

6.2.6 Collars

A collar is an option to buy an asset at strike price X> 0, but the total payoff is
capped at Z>X. The claim at time T is given by min ((S(T)�X)+, (S(T)�Z)+ ),
which equals ((S(T)�X)+� (S(T)�Z)+ ). Thus, a collar can be priced as

Cc S; T;X; Zð Þ ¼ C S; T;Xð Þ � C S; T; Zð Þ:

6.3 Barrier Options: Knock-out and Knock-in
Options

The payoff of a conventional option depends only on the price of the
underlying relative to the strike at the time of exercise, but there are
so-called path-dependent options whose payoffs also depend on the history of
the underlying price—that is, where the market has been before expiry. One
important class of this type is the barrier option.
There are two general classes of so-called barrier options:; in-options and

out-options. With in-options the buyer gets an option that becomes active if
and when the underlying hit a given barrier value. If the underlying never
reaches this value, the option will expire without a value.
An out-option is an option, which is active from the beginning, but

becomes inactive, that is, expires immediately if the underlying hits the barrier
value.
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It is possible to combine both types. If we have a down-and-out-call option
and a down-and-in-call option and the underlying hit the barrier, the down-
and-out becomes inactive while the down-and-in becomes active. Therefore,
this combination is an exact replication of a plain vanilla European call option.
As we will see below, it is possible to create many kind of barrier options on

all kind of markets. All such barrier options can be either call or put options.

6.3.1 One-touch Options

When buying a one-touch currency option traders set that if the currency trades
at a specified rate or trigger, then he/she will receive a profit whose amount he
has decided upon. He thus knows in advance the extent of his potential profit
and loss, the premium.
Let’s say that the EUR/USD pair is trading at 1.2900. A trader could buy a

1.3000 one-touch option expiring in two days for 45 % of payout. In this case
a trader would pay $45 and if price reached 1.3000 he would receive $100, or a
122 % return on his trade ($100 payout—$45 premium ¼ $55;
$55/$45 ¼ 122 %).
Timing is especially critical with exotic options. You must know the exact

time of expiration, and each broker may have different cut-off conventions.
Typically, exotic options are timed against the New York cut-off, which is
10 a.m. ET. However, some brokers will set the cut-off time at 24:00 GMT
(4 a.m. ET), so confirm the time before making a trade.
One-touch options are suited for conditions when you have a strong

opinion about the direction of a currency pair and you are convinced the
move will happen soon. A one-touch option with a far-away target (perhaps
200 pips away) and a very short time span (24–48 hours) will have a very high
reward–risk ratio (typically 3:1 or less) precisely because the payout on such a
trade will be rare.

6.3.2 No-touch Options

A no-touch currency option is profitable if the price of a currency pair does not
reach the target by a specified time. For example, a 10-day no-touch option of
GBP/USD at 1.9200 when the pound is trading at 1.9100 may be priced at
40 % of payout. This means you will pay $40 and receive $100 after 10 days if
price does not decline to 1.9100.
A no-touch option offers better payout odds when the strike price is closer

to the market price and the expiration date is farther away because the chances
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the currency will not touch the strike price diminish considerably the longer
the trader has to wait.
One interesting property of the no-touch is the fact the underlying currency

pair does not have to move in the trader’s direction (that is, away from the
strike price) in order to produce a profit. The currency pair simply has to stay
relatively stationary in order for the trader to collect a payout.

6.3.3 Double One-touch Options

With this type of option, traders choose two triggers and set the profit they will
make if either one is hit. Usually, double-one-touch options are used when
traders expect highly volatile market conditions but don’t know what direction
the market will take. In this sense, double one touch options are similar to long
straddle or strangle options.
The double one-touch option allows you to select two strike-price barriers and

provides a payout if either one is touched. If the euro/US dollar (EUR/USD)
spot was trading at 1.3000, you could buy a double one-touch with 1.2900
and 1.3100 strikes expiring 48 hours forward. If EUR/USD either rose to
1.3100 or declined to 1.2900, you would make a profit. The double one-touch
is similar to a standard long strangle or straddle option trade in that it is a good
tool to use when you have no strong opinion about direction but you expect
volatility to explode.

6.3.4 Double No-touch Options

Double no-touch options are the opposite of the double one-touch options.
Traders buy them when they expect a range-bound market with a relatively
low volatility. In general, this type of option is profitable during the periods of
consolidation that usually follow significant market moves.
This type of option is useful for a trader who believes that the price of an

underlying asset will remain range bound over a certain period of time. Double
no-touch options are growing in popularity among traders in the forex
markets.
Large trend moves are often followed by periods of consolidation; the

double no-touch can be a profitable trade to use in these cases. Assume the
EUR/USD makes a strong up move from 1.2400 to 1.3400 over several
weeks, but price then pauses and starts to weaken a bit. A trader could buy a
double no-touch from 1.3200 to 1.3600 with expiration in a week. If the
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market remains within these boundaries, the trader will walk away with a
profit.
One-touch and no-touch options are highly time-sensitive. A one-touch

will be significantly cheaper the less time there is to expiration because the odds
of reaching the target will be greatly reduced, while a no-touch will be priced in
opposite fashion because the chances of not touching the target will diminish
the more time is left on the contract.
However, the double one-touch and double no-touch options will have the

same pricing parameters in terms of time but will vary greatly with respect to
the width of the barriers. Double one-touch options, for example, will become
progressively more expensive as the barriers narrow.
Recent pricing in double one-touch options in the US dollar/Japanese yen

rate (USD/JPY) with 10 days to expiration and the spot rate trading at 104.75
were as follows: For strike barriers between 103.50 and 105.50 (meaning price
had to hit either one of those points for the option to pay out), price was an
eye-popping 95 % of payout, offering the trader only a potential 5-percent
gain against a 95 % loss.
Expanding the boundaries to 102.50 and 106.50 reduced the premium to

only 41 % of payout. Conversely, the double no-touch options would have the
exact opposite properties, offering much higher payouts as the strike prices
narrowed.

6.3.5 American Double No-touch FX Options

An American double-no-touch option will provide option buyers with an oppor-
tunity to earn a potential payoff if the upper barrier and the lower barrier have
not been traded anytime during the observation period. Otherwise, such
option will lapse. This option enables option buyer, who is willing to pay a
premium upfront and has a range trading view over the currency pair anytime
during the observation period, to earn a potential payoff.

6.3.6 American No-touch FX Option

An American No-touch option will provide option buyer with an opportunity to
earn a potential payoff if the no-touch-up strike or no-touch-down strike has
not been traded anytime during the observation period. Otherwise, such
option will lapse. This option enables option buyer, who is willing to pay a
premium upfront and believes that the pre-determined no-touch strike will
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not be traded anytime during the observation period, to earn a potential
payoff.

6.3.7 American One-touch FX Option

An American one-touch option will provide option buyer with an opportunity
to earn a potential payoff if the one-touch-up strike or one-touch-down strike
has been traded anytime during the observation period. Otherwise, such
option will lapse. This option enables option buyer, who is willing to pay a
premium upfront and believes that the pre-determined one-touch strike will
be traded anytime during the observation period, to earn a potential payoff.

6.3.8 European Digital FX Option

Unlike vanilla option, this type of option has a fixed payoff profile, instead of a
linear payoff profile. Whether the investor is repaid with the fixed amount will
depend on whether the pre-determined conditions have been satisfied before
and at expiry.

6.3.9 American Double No-touch FX Option

An American double-no-touch option will provide option buyer with an oppor-
tunity to earn a potential payoff if the upper barrier and the lower barrier have
not been traded anytime during the observation period. Otherwise, such
option will lapse. This option enables option buyer, who is willing to pay a
premium upfront and has a range trading view over the currency pair anytime
during the observation period, to earn a potential payoff.

6.3.10 American No-touch FX Option

An American no-touch option will provide option buyer with an opportunity to
earn a potential payoff if the no-touch-up strike or no-touch-down strike has
not been traded anytime during the observation period. Otherwise, such
option will lapse. This option enables option buyer, who is willing to pay a
premium upfront and believes that the pre-determined no-touch strike will
not be traded anytime during the observation period, to earn a potential
payoff.
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6.3.11 American One-touch FX Option

An American one-touch option will provide option buyer with an opportunity
to earn a potential payoff if the one-touch-up strike or one-touch-down strike
has been traded anytime during the observation period. Otherwise, such
option will lapse. This option enables option buyer, who is willing to pay a
premium upfront and believes that the pre-determined one-touch strike will
be traded anytime during the observation period, to earn a potential payoff.

6.3.12 European Digital FX Option

Unlike vanilla option, this type of option has a fixed payoff profile, instead of a
linear payoff profile. Whether the investor is repaid with the fixed amount will
depend on whether the pre-determined conditions have been satisfied before
and at expiry.

6.3.13 American Double No-touch Structured FX Option

This structured option enables investors who hold a range of trading views
over the linked currency to earn an extra return if the exchange rate trades
within the pre-set range during the observation period.

6.3.14 American Knock-in FX Option

An American knock-in option is an option that will become operative if the spot
rate is larger than the upper in-strike, or if the spot rate is smaller than the
lower in-strike any time during the observation period. Otherwise, the Amer-
ican knock-in option will lapse. This option enables “buyer”, who believes the
in-strike will be traded during the observation period, to buy the option at a
cheaper cost; or “seller”, whose view is in opposite, to earn premium from
option sold.

6.3.15 American Knock-out FX Option

An American knock-out option is an option that will lapse if the spot rate is
larger than the upper out-strike or if the spot rate is smaller than the lower
out-strike anytime during the tenor of the option. Otherwise, the American
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knock-out option shall operate in the manner of a normal vanilla option. this
option enables “buyer”, who believes the out-strike will never be traded during
the observation period, to buy the option at a cheaper cost; or “seller”, whose
view is in opposite, to earn premium from option sold.

6.3.16 Bonus Knock-out FX Option

A bonus knock-out option enables an investor who holds a bearish view over,
say, USD to sell USD call against other major currencies and earn bonus
Payout through incorporation of a bonus-strike. Once the bonus-strike has
ever been traded during the observation period, the investor will receive the
bonus Payout while the option will be terminated simultaneously.

6.3.17 European Knock-in FX Option

A European knock-in option is an option that will become operative if the fixing
rate is larger than the upper in-strike, or if the fixing rate is smaller than the
lower in-strike upon fixing time. Otherwise, the European knock-in option
will never exist. This option enables “buyer”, who believes the in-strike will be
traded upon fixing time, to buy the option at a cheaper cost; or “seller”, who
believes the in-strike will not be traded upon fixing time, to earn premium
from option sold.

6.3.18 European Knock-out FX Option

A European knock-out option is an option that will lapse if the fixing rate is
larger than the upper out-strike or if the fixing rate is smaller than the lower
out-strike upon fixing time. Otherwise, the European knock-out option shall
operate in the manner of a normal vanilla option. This option enables “buyer”,
who believes the Out-Strike will not be traded upon fixing time, to buy the
option at a cheaper cost; or “seller”, who believes the out-strike will be traded
upon fixing time, to earn premium from option sold.

6.3.19 Knock-in with Knock-out FX Option

It is a combination of both knock-in and knock-out option. The option will
only be activated if the knock-in level is traded. However, the option can be
terminated at any time if the knock-out level trades.
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6.3.20 Window Barrier Knock-in FX Option

A window barrier knock-in option is a modified version of normal knock-in
option, in which the knock-in mechanism is only valid for a specified period of
the option tenor. The active period, during which the knock-in mechanism is
operative, can be set at the front end (front knock in) or the rear end (rear
knock in) of the option tenor. in case where the knock-in level has been
triggered during the active period, the option shall become a normal vanilla
option and remain in full force up to maturity whereby investor will be
exposed to unlimited risks. This option is suitable for investor who wants to
earn premium and believes that the knock-in strike will never be traded during
the active period.

6.3.21 Window Barrier Knock-out FX Option

A window barrier knock-out option is a modified version of normal knock-out
option, in which the knock-out mechanism is only valid for a specified period
of the option tenor. The active period, during which the knock-out mecha-
nism is operative, can be set at the front end (front knock out) or the rear end
(rear knock out) of the option tenor. In case where the knock-out level has
never been triggered during the active period, the option shall become a
normal vanilla option and remain in full force up to maturity whereby
investors will be exposed to unlimited risks. This option is suitable for investor
who wants to earn premium and believes that the knock-out strike will be
traded during the active period.

6.3.22 Analytical Formulas

Some barrier options have analytically solutions. An “in” barrier option
becomes a plain vanilla option if the asset price has been below the barrier
level H for a down-and-in option or if the asset price has been above H for an
up-and-in option. An “out” barrier option is an option that equals a plain
vanilla option as long as the asset price has always been above H for an down-
and-out option or below H for an up-and out option. When some barrier
options are knocked out, they pay a rebate K at maturity.
The payoff of an in-barrier in combination with an out-barrier of the same

type is equivalent to a plain vanilla option and a cash payout equal to the
rebate, K.
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Rubenstein and Reimer summarized in 1991 the formulas below, where X is
the strike and

η ¼ 1 if Down

� 1 if Up

�
ϕ ¼ 1 if Call

� 1 if Put

�
x1 ¼ ln S=Xð Þ

σ
ffiffiffi
T

p þ 1þ μð Þσ
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T

p
, x2 ¼ ln S=Hð Þ

σ
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p þ 1þ μð Þσ
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T

p
,
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The prices of call barriers are given by

Type X < H X > H

Down-and-in S > H A � B + D + E C + E
Up-and-in S < H B � C + D + E A + E
Down-and-out S > H B � D + F A � C + F
Up-and-out S < H A � B + C � D + F F
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The prices of Put barriers are given by

Type X < H X > H

Down-and-in: S > H A + E B � C + D + E
Up-and-in: S < H C + E A � B + D + E
Down-and-out: S > H F A � B + C � D + F
Up-and-out: S < H A � C + F B � D + F

There are also many structural variations possible, for example:

• Some contracts have more than one barrier—e.g. a double knock-out
knocks out if either a higher or a lower barrier is reached

• Some barrier options knock in or out depending on the performance of a
different market. An example of this type is the soft call provision embedded
in many euro convertible bonds, which gives the issuer the right to call the
bond if the underlying shares reach a specified threshold level.

Some barrier contracts as we see above, also includes a rebate clause.

6.3.23 Some Applications of Barrier Options

Unless the rebates are very large, barrier options are typically cheaper than
otherwise equivalent conventional options (since a barrier option can never
perform better) and this is their main appeal to investors.
Barrier options are one of the most widely traded classes of exotic option.

Knock-outs are more popular than knock-ins, perhaps because investors are
reluctant to pay for something, which does not yet exist and may never exist.
The most common flavours are down-and-out calls and up-and-out puts. These
have the same payoff as the regular options, except that if the options go
sufficiently OTM to hit the barrier they immediately expire worthless.

Example 6.3

Hedging with Up-and-out Puts
Consider the following situation: an equity investor remains fundamentally bull-
ish, although short term he perceives some risk of a temporary market setback, if
the forthcoming trade figures prove disappointing. The investor would like to
protect his equity portfolio with conventional index options, but finds their
premium cost prohibitive.

(continued)
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Example 6.3 (continued)

Solution

Up-and-out puts might be a lower-cost alternative in this scenario: if the markets
continued to rally the puts might cease to exist, but then the risk of a market
setback might have receded too.

Example 6.4

A Touch Options
Consider the following contract

Type Call spread
Strike 100
Touch level 120
Exercise date 3 months

This touch option, also known as a capped or exploding spread option, works
like this:

• If the touch level is reached at any time during the life of the contract, the
holder is entitled to the difference between the touch level and the strike,
even if the underlying price subsequently pulls back. The locked-in spread may
be paid immediately or deferred until the option’s final expiry.

• If the touch level is not reached, then the option pays at expiry the difference
between the underlying price and the strike (if positive), just like a conven-
tional call spread.

This structure is a combination of two exotic options:

• An up-and-out call with a strike of 100 and an out level of 120

• An American style binary put, with a strike of 120 and a cash payout of 20.

6.3.24 Pricing Barrier Options

Barrier options may be priced using binomial models, Monte Carlo simula-
tions or special versions of the standard Black–Scholes–Merton model, such as
for the down-and-out put option above. Other variants can be found in
Haug’s book.
As with digital options, what is exotic about these contracts is the behaviour

of their Greeks, especially delta. In Fig. 6.3 we illustrate the risk profile of an
up-and-out call with a strike of 90 and an out level barrier of 100.
Initially, the price of the up-and-out call rises as the option moves into the

money. However, as the out level is approached it begins to lose value. The
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position is delta-positive, if the call is OTM, but delta-negative closer to the
out level. Moreover, the value of delta becomes very large close to the out level.
For a trader such potentially large swings in delta become impossible to

hedge dynamically, so it is wise to

• Build a significant profit margin into the quoted option premium
• Never take on very large positions in such options

Whereas a conventional bought call option is always theta-negative and
vega-positive, as you will see in the exercise in the next section, the equivalent
position in this barrier call option may be positive or negative in theta and
vega, depending on how close the underlying price is to the out level.
In Fig. 6.4 we show four different options, three different barrier options

and a plain vanilla Black–Scholes call. The vanilla option has the same values as
the up-and-in call option. The down-and-out call has the same value as the
vanilla option at maturity.
The strike of the call options is 90 and the barrier level is 100. The option’s

price rises as it moves OTM and the in level be approached. In fact, until the in
barrier is reached the position is delta-negative and the profile looks more like

Fig. 6.3 The value profile of an up and out call option with strike price 90 and a
barrier level 100.
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that of a put than a call. Once the barrier is hit, the option becomes a
conventional call and its delta swings dramatically too positive.
Therefore, a trader delta-hedging a short position in this option starts off

initially with a short position in the underlying but may have to turn the hedge
very quickly into a long position, if the barrier is hit. Again, it is wise not to
take on sizeable positions in such options as it may be very difficult, in practice,
to turn the hedge around so quickly.
Not all barrier options have malignant barriers. For an up-and-in call, the

“graduation” from a barrier option into a conventional one, as the in-level is
hit, results in a much smaller change in delta, as both the strike and the
in-barrier pull the option’s price in the same direction. This is an example of a
so-called benign barrier.
In Fig. 6.5 we show the corresponding put options with strike 90 and the

barrier level at 100.
As well as the additional risks involved, which may be significant, there are

two contractual issues that anyone trading barrier options must consider
carefully.

• How frequently will the barrier be tested: hourly, daily or monthly? A
barrier that is tested monthly is less risky than one that is tested hourly, as it

Fig. 6.4 The value profile of a pain vanilla call option and three different barrier
call options
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is possible that the underlying price may move through the barrier but
retrace before the next look-up date.

• What is the reference market price against which the barrier will be tested:
the price quoted by one market maker, an official market price or a broad
market index? Obviously, testing the barrier against an official price or
broad index makes the contract less vulnerable to temporary market dis-
tortions or abuse.

6.4 Lookback Options

A floating strike lookback call option gives the holder the right to buy the
underlying security to the lowest observed value Smin, during the option lifetime.

Pcall ¼ SN a1ð Þ � Smine
�rTN a2ð Þ

þ Se�rT σ
2

2r

S

Smin

� �� 2r
σ2

N �a1 þ 2r

σ

ffiffiffi
T

p� �
� e�rTN �a1ð Þ

24 35

Fig. 6.5 The value profile of a pain vanilla put option and three different barrier
put options

6 Exotic Options 311



a1 ¼
ln

S

Smin

� �
þ r þ σ2

2

� �
T

σ � ffiffiffi
T

p , a2 ¼ a1 � σ �
ffiffiffi
T

p
:

Similarly, the holder of a floating strike lookback put options have the right to
sell the underlying security to the highest observed price Smax, during the
lifetime of the option.

Pput ¼ Smaxe
�rTN �b2ð Þ � SN �b1ð Þ

þ Se�rT σ
2

2r
� S

Smax

� �� 2r
σ2

N b1 � 2r

σ

ffiffiffi
T

p� �
þ erTN b1ð Þ

24 35

b1 ¼
ln

S

Smax

� �
þ r þ σ2

2

� �
T

σ � ffiffiffi
T

p , b2 ¼ b1 � σ �
ffiffiffi
T

p
:

A fixed strike lookback call option gives the holder the maximum difference
between the price and the strike during a given period. Other types of
lookback option can also be constructed (see Haug).

6.5 Asian Options

Asian options are especially popular on the currency and commodity markets.
An average value option is less volatile than the underlying itself. Therefore,
the price of an average-rate option is lower than a plain vanilla option. Options
based on an average value are more stable and they are more difficult to be
manipulated in price by the underlying.
Asian options come in two basic flavours:

• Average price options: at expiry the option pays the difference between the
strike and an average of the underlying price achieved during a specified
averaging period in the option’s term

• Average strike options: the strike of the option is an average of the underlying
price over the specified averaging period, and at expiry the option pays the
difference between this strike and the underlying market price.

Of the two, the average price option is by far the most common.
Average price options are frequently found embedded in principal-protected

notes. They offer another way of protecting the investors against a last-minute
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fall in the market, just before the option’s expiry, which could disproportion-
ately reduce any interim gains achieved.
A typical contract can have the following parameters:

Type Call
Style European
Underlying An equity index
Strike 5000 (¼ ATM cash)
Expiry 5 years
Expiry
payoff

The seller shall pay the difference between the strike and the arithmetic
average of the index level achieved during the final 6 months of the
option’s term (the averaging period)

The benefit of this option for the buyer is that any last-minute market setback
is averaged up. The drawback is that any last-minute market advance would
likewise be averaged down.
Average price options also appeal to investors in thinly traded markets, since

manipulation of the underlying price close to the expiry date will have little
effect on the average.
The terms of an Asian option must specify

• The averaging period—e.g. the last six months, the entire term of the
option or the closing prices at month-ends

• The sampling frequency—e.g. the daily, weekly or monthly closing prices
during the averaging period

• The averaging method—e.g. a simple arithmetical average, a geometric
average or some weighted average

6.5.1 A Mean Value Option

We will construct an exotic European option where the holder at the day of
maturity T2 receives

X ¼ 1

T2 � T1

ðT2

T1

S uð Þdu,

where T1 is a fix time < T2. Calculate the arbitrage-free price. We know that

dS tð Þ ¼ r � S tð Þ � dtþ σ � S tð Þ � dW
S Tð Þ ¼ s

�
:
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If we integrate this we will get

S tð Þ ¼ sþ r

ðt
0

S uð Þ � duþ σ

ðt
0

S uð Þ � dW uð Þ:

The price is given by

Π X jF½ � ¼ e�r T2�tð ÞEQ
t, s

1

T2 � T1

ðT2

T1

S uð Þdu

264
375 ¼ e�r T2�tð Þ

T2 � T1

ðT2

T1

EQ
t, s S uð Þ½ �du:

We then calculate the expectation value of S(t)

E S tð Þ½ � ¼ sþ r

ðt
0

E S uð Þ½ � � duþ 0:

Let E[S(t)]¼m and take the derivative with respect to time

_m tð Þ ¼ r � m tð Þ
m 0ð Þ ¼ s:

�

The solution is given by

m tð Þ ¼ E S tð Þ½ � ¼ sert

This means that the price is given by

Π XjF½ � ¼ s � e�r T2�tð Þ

T2 � T1

ðT2

T1

er u�tð Þdu ¼ s=r

T2 � T1

� 1� e�r T2�T1ð Þ
� 	

:

6.5.2 Pricing Asian Options

There are three main approaches to pricing Asian options:

• European-style options based on geometric averages can be priced by
adapting the analytical models. This is because if the underlying price is
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assumed to be log-normally distributed then its geometric average is also
log-normal. The formulas below are given by Kemna and Vorst (1990):

Pcall ¼ S � N d1ð Þ � Ke�rTN d2ð Þ
Pput ¼ Ke�rTN �d2ð Þ � S � N �d1ð Þ

where

d1 ¼
ln

S

K

� �
þ r þ σ2A

2

� �
T

σA �
ffiffiffi
T

p , d2 ¼ d1 � σA �
ffiffiffi
T

p

b ¼ 1

2
r � σ2

6

� �

and the adjusted volatility is given by

σA ¼ σffiffiffi
3

p

• There is no equivalent solution for options based on arithmetic averages,
because even if the underlying price is log-normally distributed, the arith-
metic average is not. However, various analytic approximations have been
developed which work reasonably well. A weak approximation by Turnbull
and Wakeman is given in Haug.

• Any Asian option, no matter what its style or averaging method, may be
priced by Monte Carlo simulation, but this is computationally much more
intensive.

The volatility of an average is always less than that of the price itself, and the
longer the averaging period the lower is its volatility.
Whatever pricing method is used, average price options come out very

much cheaper than conventional ones. Comparing the price curves with
different average curve one can observe that the option price sensitivity to
spikes in the underlying market is reduced, hence also its price.
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6.6 Chooser Options

A simple chooser option gives the holder the right to choose if the option will
become a call or a put option after a certain time t1. This is also known as
U-choose option. The strike price K, is the same for both options and also the
maturity T2. In addition to all the standard terms of a conventional option, the
chooser includes a clause that specifies the choose date—the date by which the
buyer must tell the seller whether the option is to be a call or a put. After this
date the option becomes a conventional call or put. A complex chooser option
was introduced by Rubenstein (1991), where the strike was not the same for
the call and the put options.

P ¼ SN dð Þ � Ke�rT2N d � σ
ffiffiffiffiffi
T2

p
 �� SN �yð Þ þ Ke�rT2N �y� σ
ffiffiffiffi
t1

p
 �

d ¼
ln

S

K

� �
þ r þ σ2

2

� �
T2

σ � ffiffiffiffiffi
T2

p , y ¼
ln

S

K

� �
þ rT2 þ σ2

2
t1

σ � ffiffiffiffi
t1

p

Like straddles, choosers are attractive to investors who expect higher price
volatility but do not yet have a view on future market direction. However:

• With a straddle the investor retains the right to call or put the underlying
right up to the expiry date

• With a chooser the investor loses one of these rights after the choose date

The chooser should therefore be cheaper than the straddle—and this is one of
its attractions—unless of course the chooser date is the same as the expiry date!
Consider a call that expires at time T1 with the strike price X1 and a put that

expires at T2 with strike X2. Both T1 and T2 are greater than T, the expiration
time of the chooser option. At time T, the claim of the chooser option is max
{C (S,T1�T,X1), P (S,T2�T,X2)}.
Consider the special case where T1 ¼ T2 ¼ τ and X1 ¼ X2 ¼ X, the solution

is greatly simplified. Applying the put call parity, we can rewrite the claim at
T as

Φ Tð Þ ¼ max C S; τ � T;Xð Þ;C
S; τ � T;X
�þ Xe�r τ�Tð Þ � S Tð Þ� 


¼ C S; τ � T;Xð Þ þ Xe�r τ�Tð Þ � S Tð Þ� �þ
:

This is equivalent to the claim of a portfolio consisting of a call and a put. Thus
the price of the chooser option is given by
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CO S; T;Xð Þ ¼ C S; τ � T;Xð Þ þ P S;T;Xe�r τ�Tð Þ
� 	

:

For the general case where T1 6¼ T2 or X1 6¼ X2, the composition is a little bit
more complicated. Let S* be the solution S to C(S,T1�T,X1)¼ P(S,T2�T,
X2). When S(T) > S*, the put becomes worthless and the value of the chooser
option becomes that of the call. When S(T) < S*, the call option becomes
worthless and the value of the chooser option becomes that of the put. Hence,
the claim of the chooser option at time T can be written as

Φ Tð Þ ¼ C S; T1 � T;X1ð Þ½ �þ þ P S; T2 � T;X2ð Þ½ �þ,

which implies that the claim of a chooser option at time T can be replicated
with a call on call and a call on put, each with a zero strike price. Thus, the
price of a general chooser is

CO S;T1; T2;X1;X2ð Þ ¼ CC S; T; T1; 0;X1ð Þ þ CP S;T;T2; 0;X2ð Þ:

By our definition, the chooser meets the criteria of an exotic, in that the option
type is not defined on the contract’s effective date (when the premium
becomes payable) but sometime later.

Example 6.5

An investment bank issues a simple chooser on the following terms

Style: European
Strike: 100 (¼ ATM forward)
Expiry: 3 months
Choose date: 1 month

The investor has 1 month to decide whether the option is to be a call or a put.
His/her decision will be based on which of the two options has a higher market
value by the choose date. That will depend on whether the underlying price is
higher or lower than 100 at that time.

The investor in a chooser gains nothing by choosing before the last possible
chooses date, and therefore will delay his/her decision until then.
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6.6.1 A Hedging Programme

If a bank is selling this chooser, they may hedge its risk as follows:

• Buy a conventional 3-month ATM European call
• Buy a 1-month ATM European put

Consider two possible scenarios on the last choose date

• Scenario 1: the underlying price rises above 100. Conventional
European100 calls are therefore more valuable than the equivalent puts,
so the investor chooses his/her option to be a call.
At that point the 1 month put in the bank’s hedge book expires OTM,

leaving just the longer dated call, which mirrors exactly the investor’s
choice.

• Scenario 2: the underlying price falls below 100. Conventional 100 -
European calls are therefore less valuable than the equivalent puts, so the
investor chooses his/her option to be a put.
At that point the 1 month put in the bank’s hedge book expires ITM,

creating a short position in the underlying. The combination short the
underlying and long the calls gives the bank a synthetic long put position in
its hedge book, which again mirrors exactly the investor’s choice!

Thus, the simple chooser may be priced as a combination of a conventional
call and a conventional put, both with the same strike but different expiry
dates. It is cheaper than the straddle because one of the options has a shorter
expiry than the other.

6.7 Forward Options

In a forward option, the strike is set at some specified future date, rather than
on the effective date (i.e. when the premium is payable). This is also known as
a forward-start options or delayed-start options. The actual strike will not be
known until the future effective date, but the contract does specify what the
strike will be in relation to the underlying market at the time—e.g. ATM, or
10 % OTM. In other words, the contract specifies the option’s future parity
ratio (¼ spot/strike) at the outset.
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Example 6.6

Cliquets Options or Ratchets
Forward starting options are found in structures known as resetting options,
moving strike options or cliquets. Cliquet is French for ratchet and, as the name
suggests, the structure locks in any gains achieved as a result of favorable market
movements by resetting the strike up or down at regular intervals in line with the
market. Like ladder structures and Asian options, cliquets are sometimes embed-
ded in principal-protected notes to protect investors against possible last-minute
market.

Initially, such an option is struck at a current index level, but in the next year,
when the market is finishes down at another level, the strike is moved to this new
level. In year 2 we look at the market closing price and calculate the profit or loss.
We continue like this until the maturity of the contract.

Normally, the Cliquet performed significantly better than an equivalent con-
ventional call in the same scenario.

The Cliquet structure is made up of:

• A conventional European ATM call
• A series of forward-start ATM calls, each of which becomes effective on an

anniversary date and expires a year later

Payment on the Cliquet, if any, is typically made at each reset date, but it may
be deferred until the maturity of the whole structure.

6.7.1 Pricing Forward Starting Options

The buyer of a forward option pays a premium today for an option whose
strike will be determined at some future date. How do you price an option
whose strike you do not yet know?
Conceptually, there is a trick to pricing such options, which relies on the

fact that the option’s parity ratio is specified in advance.
For a given parity ratio, an option’s premium is proportional to the

underlying spot price (and strike).
In other words, other things being equal, if you double both the spot and

the strike while keeping the parity ratio constant, then the option price doubles
as well. This makes the profit/loss on a forward option position proportional to
the underlying price and suggests a simple programme for hedging its risks
until the effective date. As the example below illustrates, once you know how
to hedge the derivative then you know how to price it!
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Usually, forward-start options are at-the-money when issued. More gener-
ally, it is assumed that the strike price of a forward-start option expiring at time
τ equals αS(T), where α> 0 is a constant and T< [0, τ) is the issue time of the
option. This special property allows us to write the Black–Scholes formula for
such a European call at time T as

C S Tð Þ; τ � T; αS Tð Þð Þ ¼ S Tð ÞΛ

where

Λ ¼ N
�lnαþ r þ σ2=2ð Þ τ � Tð Þ

σ
ffiffiffiffiffiffiffiffiffiffiffi
τ � T

p
� �

� αe�r τ�Tð ÞN
�lnαþ r � σ2=2ð Þ τ � Tð Þ

σ
ffiffiffiffiffiffiffiffiffiffiffi
τ � T

p
� �

Since Λ is a constant independent of the asset price, the pricing problem is
obviously equivalent to the pricing of a futures contract at time t. The Future-
Spot price parity implies

Cf S;T; τ;Xð Þ ¼ Λ � EQ S Tð ÞjF 0½ � ¼ exp rTð Þ � Λ:

European forward-start puts can be priced in the same way.

Example 6.7

A client asks you to quote for the following contract

Type Call
Style European
Strike ATM
Expiry 1 year
Effective date 6 months

At the time, the breakeven price for a conventional 1 year ATM call (effective
spot) is 3.50, for an implied volatility of 10%.

Solution:
Assuming that in 6 months’ time the 1-year ATM call will still be trading at 10%

implied, then the forward optionmay also be quoted at 3.50 on a breakeven basis.
The hedging programme is as follows: if the client buys the contract at the quoted
price, then the trader hedges her risks by applying the entire premium received to
fund a long position in the underlying.

The Outcome:
Scenario 1: the underlying price rose 50% so on the effective date the option’s

strike is set at 150. At this point, if the 1-year ATM call trades with 10% volatility,
then its premium price will also be 50 % higher—i.e., 5.25.

(continued)

320 Analytical Finance: Volume I



Example 6.7 (continued)

In this scenario the client made a profit of 1.75 on the trade (¼ 5.25 – 3.50) and
the trader’s option position will show a corresponding loss. However, the trader
spent 3.50 to buy the underlying when it was trading at 100 and now the hedge is
worth 50 % more—a gain of 1.50 that covers exactly the losses made on the
option!

Scenario 2: the underlying price fell 50 % so on the effective date the option’s
strike is set at 50. If the 1-year ATM call trades with 10 % volatility, then its
premium price would also be 50 % lower—i.e., 1.75.

In this scenario the client made a loss of 1.75 on the trade (¼ 1.75 – 3.50) and the
trader’s option position will show a corresponding gain. However, the trader
spent 3.50 to buy the underlying when it was trading at 100 and now the hedge
is worth 50 % less—a loss of 1.50 that matches exactly the gains made on the
option!

On the effective date the option’s strike is set and the trader replaces this static
hedge with a conventional dynamic delta-hedging programme.

In 1990 Rubenstein presented the following formulas for forward start options
with time to maturity T, that starts at-the-money or proportionally in- or out-of-
the-money after a known elapsed time t in the future. The strike is set equal to a
positive constant α times the asset price S after the known time t. If α is less than
unity, the call (put) will start 1—α % in-the-money (out-of-the-money); if α is
unity, the option will start it-the-money; and if α is larger than unity, the call
(put) will start α—1 percentage out-of-the money (in-the-money). The forward
start option pricing formula where b is the cost of carry rate is then given by

Pcall ¼ S N d1ð Þ � αe�r T�tð ÞN d2ð Þ
h i

Pput ¼ S � αe�r T�tð ÞN �d2ð Þ � N �d1ð Þ
h i

where

d1 ¼
ln

1

α

� �
þ r þ σ2

2

� �
T � tð Þ

σ � ffiffiffiffiffiffiffiffiffiffiffi
T � t

p , d2 ¼ d1 � σ �
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
:

6.7.2 Ratchet Options

A ratchet option, sometimes called a moving strike option or Cliquet option,
consists of a series of forward starting options where the strike price for the
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next exercise date is set equal to a positive constant times the asset price as of
the previous exercise date. For instance, a one-year ratchet call option with
quarterly payments will normally have four payments (exercise dates) equal to
the difference between the asset price and the strike price fixed at the previous
exercise date. The strike price of the first option is usually set equal to the asset
price of today. A ratchet option can be priced as the sum of forward starting
options.

Pcall ¼
Xn
i¼1

S � N d1ð Þ � αe�r Ti�tið ÞN d2ð Þ
h i

where n is the number of settlements, ti is the time to the forward start or strike
fixing, and Ti is the time to maturity of the forward starting option. A ratchet
put is similar to a sum of forward starting puts.

6.7.3 Estimating Forward Volatility

Conceptually, a forward option may be priced as if it was a conventional (spot-
start) contract. What makes the forward option exotic is the fact that the trader
does not know, on the trade date, whether the option she is pricing will be
trading with the same implied volatility as the conventional option does today.
In our example we assumed that this was indeed the case, but the chances are
that it will not. So the main risk with forward options is getting the assumed
volatility wrong; there may be significant vega risk in pricing these contracts.
It is possible to estimate the forward-forward volatilities implied in the

volatility curve, just as we can derive forward yields from the yield curve.
Example 6.8 illustrates how to estimate the forward volatility implied in a

pair of market implied volatilities for conventional options.

Example 6.8

Suppose we observe the following two points on the volatility curve for ATM
European options

6 months (s0x6) 10 %
18 months (s0x18) 12 %

What is the implied 6 � 18 months’ volatility (σ6�18)?

(continued)
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Example 6.8 (continued)

We can apply the same technique that is used for calculating portfolio risk by
noting that a 0� 18 position in the underlying asset is in fact a combination of two
elements:

A 0� 6 month position

A 6� 18 month position in the same asset

The flat return (R) on this position over the period 0 � 18 is the sum of the
annualized returns on the individual positions, each one pro-rated by its holding
period

R ¼ 1:5� R0�18 ¼ 0:5� R0�6 þ 1:0� R6�18

where

R0�18 ¼ Annualized return over the period 0� 18

R0�6 ¼ Annualized return on 0� 6 position

R6�18 ¼ Annualized return on 6� 18 position:

Therefore

R0�18 ¼ 0:5

1:5
R0�6 þ 1:0

1:5
R6�18:

This now looks like a standard two-asset portfolio, where the return on the
portfolio is a weighted sum of the returns on the individual assets. The risk on
such a portfolio is related to the risks of its constituent assets by the expression

σ20�18 ¼
0:5

1:5
σ0�6

� �2

þ 2 � 0:5
1:5

� 1:0
1:5

σ0�6,6�18 þ 1:0

1:5
σ6�18

� �2

,

where

σ0�6,6�18 ¼ Covariance of returns between the two0assets0:

Assuming, as the option pricing models do, that the return on the underlying is
log-normally distributed, this implies that σ0�6,6�18 ¼ 0 and we calculate
σ6�18 ¼ 17.292 %.

It is also possible, to an extent, to lock into a forward volatility level through a
package of conventional options. The trader in our example above could hedge
her vega risk with a combination of:

An ATM calendar spread:

(continued)
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Example 6.8 (continued)

– Long an 18-month ATM call

– Short a 6-month ATM call

An ATM butterfly spread:

– Long a 6-month ATM straddle

– Short a 6-month strangle

The strikes of the strangle are set so that the net position is as far as possible
neutral in all the Greeks until the expiry of the short-dated options. Unless the
underlying market has moved significantly during this time, any losses on the
forward-start option, arising from getting its volatility wrong, should be largely
offset by gains in the remaining long-dated call, and vice versa.

Neither of these techniques for estimating (or hedging) forward volatility is
fail-safe, so the trader must be careful to price sufficient profit margin into this
product to cover the additional vega risk.

6.8 Compound Options: Options on Options

The buyer of a compound option pays an initial premium for the right to pay a
second set premium by a certain future date for the ownership of a call or a put
with an agreed strike and expiry. These options are also known as instalment
options.
Compound options are options on options—that is, the ‘underlying’ is

another option. There are four types:

• Call on a call
• Call on a put
• Put on a call
• Put on a put

A model to price options on options was first given by Geske (1977). The
model was enlarged and discussed by Hodges (1979), Selby (1987), and
Rubenstein (1991).
Compound options give buyers two main benefits

• More geared exposure to changes in the underlying asset price (or to
changes in volatility) than conventional options

• The flexibility to pay for the rights to the underlying asset “in instalments”
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Example 6.9

An investment client is considering buying a 12-month ATM call on an asset which
is currently trading at 100, but finds the cost of a conventional option, at 3.61, too
high in the current market.

Solution:
The bank offers the client the following contract:

Type Call on a call
Strike of underlying option 100.00
Expiry of underlying option 1 year from today
Strike of compound option 2.68
Expiry of compound option 6 months
Price 1.84

Analysis:
The contract gives the buyer the right to purchase a 6-month 100 call in

6 months’ time for an eventual premium of 2.68. Thus, the client pays:
1.84 to buy the call on the call.

• A further 2.68 in 6 months, if the call on the call is exercised, i.e. if the 6-month
100 call trades higher than 2.68 at the time.

• A further 100.00 in 12 months, if the underlying call is exercised, i.e. if the
underlying asset trades higher than 100 at the time.

With the compound option, the right to acquire the underlying asset at 100 in
12months’ time could cost the client up to 4.52 (¼ 1.84 + 2.68), which is potentially
more than the cost of the conventional 12-month call. However, the second
instalment could cost less than 2.68, if the underlying call trades cheaper at the
time, so the net cost could turn out less than 3.61.

Compound options are also used in the context of contract tenders or
corporate acquisitions, where the outcome of the bid is uncertain. Banks
providing the bidder with floating rate financing facilities often require the
company to place an interest rate cap on this debt, to ensure that if the bid is
successful the company will be able to maintain adequate interest cover on its
additional debt.
However, for the bidder the purchase of a cap may prove to be an

unnecessary expense, if the bid were to fail. A more cash-efficient solution is
to buy a caption—a call on a cap—for a fraction of the cost.
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6.8.1 Pricing Compound Options

Compound options may be priced using modified versions of the analytic,
where the volatility of the underlying option price is derived from that of the
underlying asset price. A model for pricing options on options was first
published by Geske (1977). It was later extended and discussed by Geske
(1979), Hodges and Selby (1987), Rubinstein (1991) and others.

6.8.2 A Call on a Call

The payoff is given by: [BS(S, K1, T2)� K2, 0]
+, where K1 is the strike price of

the underlying option, K2 the strike price of the option on the option, and BS
(S, K, T) is the Black–Scholes call option formula with strike K and time to
maturity T.

Pcall ¼ S �M z1; y1; ρð Þ � K1e
�rT2M z2; y2; ρð Þ � K2e

�rtN y2ð Þ

where

y1 ¼
ln

S

I

� �
þ r þ σ2

2

� �
t1

σ � ffiffiffiffi
t1

p , y2 ¼ y1 � σ � ffiffiffiffi
t1

p

z1 ¼
ln

S

K1

� �
þ r þ σ2

2

� �
T2

σ � ffiffiffiffiffi
T2

p , z2 ¼ z1 � σ � ffiffiffiffiffi
T2

p

ρ ¼
ffiffiffiffiffi
t1
T2

r

where T2 is the time to maturity on the underlying option, and t1 is the time to
maturity on the option on the option. M is the cumulative bivariate normal
distribution and I a critical value given by solving: BS(I, K1, T2 � t1) ¼ X2.
Similar formulas are given in Haug for put on call, call on put and put on put.

6.9 Multi-asset Options

Multi-asset options are options whose payoffs at exercise depend on the
performance of more than one underlying market.
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There are two major varieties of multi-asset option:

• Basket options: the underlying is a portfolio of different assets, typically in
the same class, in pre-defined amounts. Equity index options are basket
options, but many OTC basket options are specially designed for investors
seeking exposure to specific market sectors—e.g. a basket of technology
stocks.

• Outperformance options: also known as an exchange option or a spread option,
this gives the holder the right to receive one asset (A1) in exchange for
another asset (A2) according to a specified conversion ratio, or the right to
receive the amount by which the price of one asset exceeds that of another.
A typical payoff might be

Exercise payoff ¼ max A1 � A2; 0f g,

where A1 and A2 are the market values of the two underlying assets on the
exercise date.
The payoff depends on the amount by which A1 exceeds A2, if positive,
irrespective of whether both asset prices have moved up or down. This is
equivalent to an option to exchange the lower-valued asset for the higher-
valued one, or to go long the higher-valued asset and pay for it by going
short the lower-valued one—that is, an option to enter into a spread
position.

• Better of options: also known as a rainbow option, this entitles the holder to
receive the gain on the best performing of two or more assets. A typical
payoff might be

Φ Tð Þ ¼ max A1;A2;A3; � � �An; 0f g

where A1 ... An are the gains in the prices of the n assets represented in an
n-colored rainbow, typically expressed in percentage terms.
Here the payoff is based on the performance of the best-performing asset, if
positive, rather than on its performance relative to the other assets, as in the
spread option.

• Correlation option – the option pays the difference between the price of an
asset (A1) and a strike (K1), provided the price of a related asset (A2) is
higher (or lower) than a certain level (K2).
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Φcall Tð Þ ¼ max A1 � K1; 0f g ifA2 > K2, otherwise 0

Φput Tð Þ� ¼ max K1 � A1; 0f g ifA2 > K2, otherwise 0

6.9.1 Pricing Multi-asset Options

All the options described in this section may be priced using derivations of the
analytical models, or by Monte Carlo simulation. A number of multi-asset
options are given in Haug.

6.10 Basket Options

With a basket option, the underlying is a portfolio of assets. Where the basket
options are widely traded—e.g. index options—the volatility of the basket is
already implied in the quoted premium prices, but where this is not the case it
must be derived from the volatilities and correlations of the constituent assets
using the standard portfolio risk.

6.10.1 Rainbow Options

Rainbow options refer to a family of options on the minimum or the maxi-
mum of two or more risky assets. Consider two assets

dS1 tð Þ ¼ S1 tð Þμ1 tð Þdtþ S1 tð Þσ1 tð ÞdW1 tð Þ
dS2 tð Þ ¼ S2 tð Þμ2 tð Þdtþ S2 tð Þσ2 tð Þρ tð ÞdW1 tð Þ þ S2 tð Þσ2 tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ tð Þ2

q
dW2 tð Þ

(

where σ1, σ2 and ρ are all deterministic processes, while processes μ1 and μ2 are
predictable. The two standard Brownian motions W1 and W2 are indepen-
dent, so the correlation coefficient between d ln S1(t) and d ln S2(t) is ρ(t). The
two assets also generate continuous yields at deterministic rate processes θ1 and
θ2, respectively. A call on the minimum of these two assets for a strike price
X > 0 can be priced as
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Cmin S1; S2; T;Xð Þ ¼ e�rTEQ min


S1 Tð Þ; S2 Tð Þ�� X


 �þh i
¼ e�rTEQ S1 Tð ÞjS2 Tð Þ > X and S2 Tð Þ > S1 Tð Þ½ �

þ e�rTEQ S2 Tð ÞjS1 Tð Þ > X and S1 Tð Þ > S2 Tð Þ½ �
� e�rTX � EQ 1jS1 Tð Þ > X or S2 Tð Þ > X½ �:

The arbitrage-free condition is equivalent to the existence of an equivalent
measure Q, so that

S1 Tð Þ ¼ S1 0ð Þexp rT �
ðT
0

θ1 sð Þds� 1

2

ðT
0

σ1 sð Þ2dsþ
ðT
0

σ1 sð ÞdW1 sð Þ
8<:

9=;
S2 Tð Þ ¼ S2 0ð Þexp rT �

ðT
0

θ2 sð Þds� 1

2

ðT
0

σ2 sð Þ2ds
8<:

9=;
� exp

ðT
0

σ2 sð Þρ sð ÞdW1 sð Þ þ
ðT
0

σ2 sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ sð Þ2

q
dW2 sð Þ

8<:
9=;:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
The covariance matrix for [ln S1(T) ln S2(T)]’ is

σ21 ρσ1σ2
ρσ1σ2 σ22

� �
:

Noticing that the variance of ln S2(t) – ln S1(t) is

σ2 ¼ σ21 þ σ22 � 2ρσ1σ2,

that the correlation coefficient between ln S1(t) and ln S2(t) – ln S1(t) is
(ρσ2� σ1)/σ, and that the correlation coefficient between ln S2(t) and ln
S1(t) – ln S2(t) is (ρσ1� σ2)/σ, we evaluate the conditional expectation:
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Cmin S1; S2; T;Xð Þ ¼ S1exp �
ðT
0

θ1 sð Þds
0@ 1ANbiv

h1; h3; ρσ2 � σ1
σ

� 	

þ S2exp �
ðT
0

θ2 sð Þds
0@ 1ANbiv h2; h4;

ρσ1 � σ2
σ

� 	
� e�rTX � Nbiv h1 � σ1

ffiffiffi
T

p
; h3 � σ2

ffiffiffi
T

p
; ρ


 �
where

h1 ¼
ln S1=Xð Þ �

ð T

0

θ1 sð Þdsþ r þ σ21=2

 �

T

σ1
ffiffiffi
T

p

h2 ¼
ln S2=Xð Þ �

ð T

0

θ2 sð Þdsþ r þ σ22=2

 �

T

σ2
ffiffiffi
T

p

h3 ¼
ln S2=S1ð Þ þ

ð T

0

θ1 sð Þ � θ2 sð Þð Þdsþ r � σ2=2ð ÞT
σ

ffiffiffi
T

p

h4 ¼
ln S1=S2ð Þ þ

ð T

0

θ2 sð Þ � θ1 sð Þð Þdsþ r � σ2=2ð ÞT
σ

ffiffiffi
T

p :

The key is to realize Cmin(S1, S2, T, 0) ¼ min(S1, S2) because the asset prices
are always positive. Now let us turn attention to options on the maximum. Its
claim at T can be written as

K Tð Þ ¼ max S1 Tð Þ; S2 Tð Þð Þ � Xð Þþ

¼ S1 Tð Þ � Xð Þ þ S2 Tð Þ � Xð Þ � min S1 Tð Þ; S2 Tð Þð Þ � Xð Þ½ �þ

¼ S1 Tð Þ � Xð Þþ þ S2 Tð Þ � Xð Þþ � min S1 Tð Þ; S2 Tð Þð Þ � Xð Þþ:

The last equality follows because the third term must cancel out one of the first
two terms. Hence, a call on the maximum is equivalent to a long position in
two regular calls and a short position in a call on minimum. Its price can be
valued as
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Cmax S1; S2; T;Xð Þ ¼ C S1; T;Xð Þ þ C S2; T;Xð Þ � Cmin S1; S2; T;Xð Þ:

Similarly, the claim of a put on maximum at time T is

K Tð Þ ¼ X �max S1 Tð Þ; S2 Tð Þð Þð Þþ

¼ X � S1 Tð Þð Þ þ X � S2 Tð Þð Þ � X �min S1 Tð Þ; S2 Tð Þð Þð Þ½ �þ

¼ X � S1 Tð Þð Þþ þ X � S2 Tð Þð Þþ � X �min S1 Tð Þ; S2 Tð Þð Þð Þþ:

Hence, a put on the maximum is equivalent to a long position in two regular
puts and a short position in a put on minimum. Its price can be valued as

Pmax S1; S2; T;Xð Þ ¼ P S1; T;Xð Þ þ P S2; T;Xð Þ � Pmin S1; S2; T;Xð Þ:

Rainbow options are typically

• More expensive than conventional ATM options on any one of the assets
represented, because with a rainbow there is a higher probability that at
least one of the assets will perform well

• More expensive than a basket option on the same assets, because the
performance of the worst-performing assets is included in the value of the
basket, whereas it is excluded from the rainbow’s payoff

• Cheaper than a portfolio of ATM calls on each of the assets, because only
the best-performing asset is considered in the rainbow; the other ones are
eliminated from the payoff calculation, even if they perform well

The higher the correlation between the assets the lower is the price of the
rainbow option.
High positive correlation means that if the best-performing asset performed

well, then the other assets are also likely to have performed well. Since only the
best-performing asset is considered in the payoff calculation, the opportunity
cost of exercising into this asset is higher. Put a different way, with negative
correlation it is more likely that at least one of the assets will perform well,
whereas with positive correlation it is more likely that none of the assets will
perform.
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Example 6.10

A 20/20 Option: Rainbow options are particularly useful as asset allocation tools,
ensuring that the investor always ends up in the best-performing asset or sector.

Situation:
A fund manager believes that US and some European equity markets have

considerable upside potential, although there are also risks of possible setbacks.
Themanager would like to profit from this anticipated scenario but the rules of

the fund do not allow him to gear up the fund by placing bets on all markets at the
same time. An investment bank offers the investor the following contract

Expiry 12 months
Expiry payoff 0.75 x MAX { %Rise on S&P, %Rise on DAX, %Rise on FTSE, 0 }

Analysis:
This is a 3-coloured rainbow with a strike of zero. It is similar in spirit to a

lookback, in that it allows the holder to capture best performance with hindsight.
The difference is that with the rainbow the choice is about the best-performing
asset class, whereas with the lookback it is about the best market timing. As with
lookbacks, you can expect this option to be quite expensive.

6.11 Correlation Options

Correlation options are cheaper than conventional options, as the requirement
that both assets must pass through the strike impose an additional risk to the
holder. Indeed, this is one of their main appeals to investors.
The higher the correlation between the assets the lower is the price of the

rainbow option.

6.12 Exchange Options

Compare the payoff of a conventional call with that of an exchange option

• When an investor exercises a conventional call she receives the underlying
asset (A1) in exchange for payment of the strike, K which has a fixed cash
value

Φcall Tð Þ ¼ max A1 � K; 0f g

• When the investor exercises an exchange option she receives one of the
assets (A1) in exchange for payment in another asset (A2):
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ΦExchange Tð Þ ¼ max A1 � A2; 0f g

So the strike in an exchange option (A2) is also a variable, with an uncertain
future value.
Here we are dealing with an option whose strike is uncertain. We can now

use the same method as we did with forward options
For a given parity ratio, the options premium is proportional to the

underlying spot price and strike, K.
In other words, other things being equal, if you double both the spot and

the strike while keeping the parity ratio constant, then the option price doubles
as well. This makes it possible to transform the standard option pricing
formula as follows

Πcall tð Þ ¼ F A1;K;T; σ; rvield, rfunding

 � ¼ K F A1=K; T; σ; rvield, rfunding


 �
Applying this transformation to an exchange option, where K ¼ A2, we have:

Πexchange tð Þ ¼ Π t;A2ð Þ Πcall t;A1=A2 K ¼ 1ð Þ

Now we can use a standard option pricing model to price a call on the variable
A1/A2 with a strike of 1. The volatility of A1/A2 is the same as that of the
original spread position—long A1 and short A2—and is estimated from the
volatilities and correlation of these two assets.

6.13 Currency-linked Options

Currency-linked options are options on foreign currency assets whose payoffs
and risks are linked in some way to the performance of the rate of exchange, as
well as to the performance of the underlying assets.
There are three main types of currency-linked contract:

• Options on foreign currency assets struck in local currency where the strike is
fixed in the local currency and at expiry the option pays the difference
between the strike and the value of the foreign asset converted into the local
currency at the spot FX rate prevailing at the time. If we take as an example
a call on EUR-denominated assets payable in USD
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Φcall Tð Þ ¼ max EUR Asset price� Spot FX rate� Strike; 0f g

where Spot FX rate is in USD per EUR 1.

• Currency-protected options also known as quantity-adjusted options, quantos
or fixed exchange rate options, these are options on foreign currency assets
which pay the intrinsic value in the local currency at a rate of exchange that
is fixed on the trade date. Again, if we take as an example a call on EUR
assets payable in USD

Φcall Tð Þ ¼ max EURAsset price� EURStrike; 0f g � FixedFXrate
¼ max EURAsset price� FixedFXrate� Strike; 0f g

• Asset-linked FX options an FX option whose contract value is linked to the
price of a foreign currency asset at expiry. Taking a EUR call / USD put
payable in USD as an example:

Φcall Tð Þ ¼ EURAsset pricexmax SpotFX rate� FXStrike; 0f g

Quantos are especially attractive to international investors who prefer to
separate their asset allocation decisions from their currency decisions, effec-
tively making currency a separate asset class.

Example 6.11

A US investor would like to buy a call on the Nikkei but is concerned that the gains
made on the Japanese equities could be severely reduced by a weaker yen. This FX
exposure could be hedged with forward FX contracts, but the hedge would be
imperfect because the exact amount of FX cover required will depend on the
performance of the underlying equities, which is uncertain.

An investment bank offers the client the following contract

Type Call
Style European
Underlying Nikkei 225 index
Strike 21,250 (¼ ATM cash)
Expiry 3 months
Payoff USD 100 per index point

Outcome: At the option’s expiry the Nikkei is at 21,750 and the option expires
500 index points in the money. The investor receives a payout of USD 50,000
(¼ 500 x 100) irrespective of the USD/JPY exchange rate at the time.

Analysis: The seller of the quanto absorbs the currency risk, in addition to its
exposure to the underlying market (in this case short a call), and this additional
risk must be factored into the price.
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For pricing, a number of models are given in Haug.

6.13.1 Fixed Domestic Strike Options

An option on a foreign asset, struck in the local currency is essentially an
option on a basket consisting of

• A specified amount of the foreign asset
• An FX position in the same amount (long the foreign currency)

Therefore, to price this option we can apply the same technique that we apply
to pricing any basket option (multi-asset option). The payoff will depend on

• The performance of the foreign asset
• The rate of exchange prevailing when the option expires
• The correlation between the two

The higher the correlation between the exchange rate and the price of the
foreign asset, the higher is the cost of this option.

6.14 Pay-later Options

A pay-later option is the right to buy (for a call) or sell (for a put) an asset at
time T > 0 for a strike price X > 0 with the following features:

• The premium for this option is paid only on the exercise,
• The option must be exercised if the asset price is above (for a call) or below

(for a put) X.

The price of a pay-later call can be written as

Cpc S;T;Xð Þ ¼ e�rTEQ S Tð Þ � X � Xcð ÞjS Tð Þ > X½ �
¼ e�rTEQ S Tð Þ � Xð ÞjS Tð Þ > X½ � �Xce

�rTEQ 1jS Tð Þ > X½ �
¼ C S; T;Xð Þ � Xc � Cd S; T;Xð Þ

where Xc is the premium of the option. Thus, a pay-later call is a combination
of a long position in a usual call and a short position in a digital call. Since it is
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costless to get such an option, its price must be zero. This results in the exact
value

Xc ¼ C S;T;Xð Þ
Cd S; T;Xð Þ

which remains constant throughout the life of the option. Accordingly, the
price of a pay-later put is

Pp S; T;Xð Þ ¼ P S; T;Xð Þ � Xp � Pd S; T;Xð Þ

where the value of Xp can be solved by setting Pp(S,T,X)¼ 0:

Xp ¼ P S; T;Xð Þ
Pd S;T;Xð Þ :

6.15 Extensible Options

An extensible option grants the holder the right to extend the option to a later
expiration time with a new strike price. Consider a call with a strike price
X1 > 0 and maturity T1 > 0 when the holder can extend the option to time
T2 > 0 with a new strike price X2 > 0 by paying a premium A > 0. The claim
of this option at time T1 is

K T1ð Þ ¼ max 0;C


S T1ð Þ;T2 � T1;X2

�� A; S T1ð Þ � X1


 �
¼ max C



S T1ð Þ; T2 � T1;X2

�� A

 �þ

; S T1ð Þ � X1ð Þþ
� 	

:

This is a compound rainbow option. The first asset is a compound option
while the second is a standard call. It is straightforward to price this call as

Cc S;T1; T2;X1;X2;Að Þ ¼ Cmax CC S; T1;T2;X2;Að Þ;C
S; T1;X1

�
; T1; 0


 �
A put with a strike price X1 and maturity T1 when the holder can extend the
option to time T2 with a new strike price X2 by paying a premium A can
similarly be priced as
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Pc S; T1; T2;X1;X2;Að Þ ¼ Pmax PP S; T1; T2;X2;Að Þ;P
S; T1;X1

�
; T1; 0


 �
:

6.16 Quantos

Quantos are a family of contingent claims whose payoff are defined with
respect to the value of some foreign asset in their own currency, but
denominated in the domestic currency. The price of a foreign asset follows a
diffusion process

dS tð Þ ¼ S tð ÞμS tð Þdtþ S tð ÞσS tð ÞdW1 tð Þ:

The exchange rate follows another diffusion process

dC tð Þ ¼ C tð ÞμC tð Þdtþ C tð ÞσC tð ÞdW1 tð Þ þ C tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2 tð Þ

p
σC tð ÞdW2 tð Þ,

whereW1 andW2 are two independent standard Brownian motions, σs, σc and
ρ are all deterministic processes, while μs and μc are both predictable. Thus, the
correlation between dlnC(t) and dlnS(t) is ρ(t). Moreover, the asset S is
associated with a proportional dividend process θ. Let r and rf be the domestic
and the foreign deterministic interest rate processes, respectively.
In the domestic market, foreign assets are not directly tradable, but the

foreign currency and the foreign asset value in the domestic market are. To
eliminate the arbitrage opportunity

Y1 tð Þ
Y2 tð Þ

� �
¼ exp �

ðT
0

r sð Þds
0@ 1A exp

ð T

0

rf sð Þds
� �

C tð Þ

exp

ð T

0

θ sð Þds
� �

S tð ÞC tð Þ

2664
3775

has to be martingale under the risk-neutral measure Q. Starting with

dY1 tð Þ ¼ Y1 tð Þ μC tð Þ � r tð Þ þ rf tð Þ
 �
dtþ Y1 tð ÞσC tð ÞdW1 tð Þ

þ Y1 tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2 tð Þ

p
σC tð ÞdW2 tð Þ

dY2 tð Þ¼Y2 tð Þ μC tð ÞþμS tð Þ�r tð Þþθ tð Þð ÞdtþY2 tð Þ σS tð Þþρ tð ÞσC tð Þð ÞdW1 tð Þ
þY2 tð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ρ2 tð Þp
σC tð ÞdW2 tð Þ

we have
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dC tð Þ ¼ C tð Þ r tð Þ � rf tð Þ
 �
dtþ C tð Þρ tð ÞσC tð Þd eW1 tð Þ

þ C tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2 tð Þ

p
σC tð Þd eW2 tð Þ

dS tð Þ ¼ S tð Þ r tð Þ � θ tð Þ � ρ tð ÞσS tð ÞσC tð Þð Þdtþ S tð ÞσS tð Þd eW1 tð Þ

under the martingale measure Q. The foreign asset at time T under the
measure Q becomes

S Tð Þ ¼ S 0ð Þexp �
ðT
0

θ sð Þdsþ
ðT
0

σS sð ÞdW1 sð Þ
0@ 1A

� exp

ðT
0

rf sð Þds�
ðT
0

ρ sð ÞσS sð ÞσC sð Þds� 1

2

ðT
0

σ2S sð Þds
0@ 1A:

Without loss of generality, it is assumed that C(0) ¼ 1. It follows

S 0ð Þ ¼ 1

B Tð ÞE
Q C Tð ÞS Tð ÞjF 0½ �:

Since interest rates are deterministic, forward constraints are equivalent to
futures contracts. Compared with the future spot price parity for domestic
securities, a quanto forward or futures price can be written as

f ¼ F ¼ exp �
ðT
0

θ sð Þds
0@ 1AEQ S Tð ÞjF 0½ � ¼ S exp rf � σ2CS


 �
T �

ðT
0

θ sð Þds
0@ 1A,

where rf is the foreign interest rate. Depending on the sign of the covariance,
the quanto futures price can be either greater or less than the standard futures
price. It is correlated to the exchange process because the replicating portfolio
involves the foreign currency and the foreign asset.
Next we turn into a digital call. Its price can be written as

Cd S;C;T;Xð Þ ¼ e�rTPr S Tð Þ > X½ � ¼ e�rTN dð Þ

d ¼
ln S=Xð Þ �

ð T

0

θ sð Þdsþ rf � σ2CS � σ2S=2

 �

T

σS
ffiffiffi
T

p :

A quanto call is no more complicated. It can be priced as
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Cq S;C; T;Xð Þ ¼ e�rTEQ S Tð Þ � Xð Þþ� �
¼ Sexp �

ðT
0

θ sð Þds
0@ 1A� e rf�r�σ2CSð ÞTN d � σS

ffiffiffi
T

p� 	
� Xe�rTN dð Þ:

As we seen, the quanto option is designed to eliminate the FX risk to the
buyer, so its payoff depends only on the performance of the foreign asset.
However, the counterparty selling the quanto has to absorb the currency risk,
so in pricing this option they must take into account not only the volatility of
the exchange rate but also the correlation between it and the foreign asset price.
The higher the correlation between the exchange rate and the price of the

foreign asset:

• The lower is the cost of the quanto call
• The higher is the cost of the quanto put

If there is a tendency for the EUR to strengthen every time the asset price rises
(i.e. positive correlation) then the volatility of EUR asset price � fixed FX is
lower than the volatility of EUR asset price � spot FX:

• The buyer of the quanto call foregoes the potential currency gain (if the
underlying asset price rises) so the quanto call is cheaper

• The buyer of the quanto put is protected against currency losses (if the
underlying price falls and the FX rate weakens) so the quanto put is more
expensive

The opposite is the case for the investor buying these options when the
correlation between the FX rate and the asset price is negative: the quanto call
is more expensive and the quanto put is cheaper.
The seller of a quanto option must dynamically hedge her FX risk by

carrying an outright FX position.
Whether the hedging FX position for the quanto seller should be long or

short the foreign currency depends on the type of option sold (i.e. call or put).
As we have seen, currency-linked options are directly or indirectly subject to

correlation risk. Pricing these options therefore requires careful estimation of
the correlation between the underlying index and the rate of exchange. As with
any other multi-asset option, these correlations can be quite unpredictable and
this is what makes currency-linked options exotic.
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6.17 Structured Products

Structured capital market products, including ever-new ones, have become
increasingly complex in recent years. For market participants to be able to
evaluate and control the risks involved, they must be well grounded in the
intricacies of these innovative instruments as well as in adequate valuation
techniques.
Structured products refer to combinations of individual financial instru-

ments, such as bonds, stocks and derivatives. At first glance, most of these
composite products are very similar to plain vanilla coupon bonds.
Structured products tend to involve periodical “interest payments” and

redemption at maturity. What sets them apart from bonds is that both interest
payments and redemption amounts depend in a rather complicated fashion on
the movement of stock prices, indices, exchange rates or future interest rates.
Since structured products are made up of simpler components, we usually

break them down into their integral parts when we need to value them or assess
their risk profile and any hedging strategies. This should facilitate the analysis
and pricing of the individual components. While this is indeed true in many
cases, replication need not automatically entail a considerable simplification.
We will here give a few structured products to give an idea of how to treat

them in different situations. For the purpose of valuation, structured products
are generally replicated with simpler instruments. The portfolio of these
simpler products must have the same payoff profile as the structured product
and, given the (assumed) absence of arbitrage opportunities in financial
markets, must thus also have the same market value. The merits of this
approach are that, first, simple valuation rules can be used to calculate fair
market prices for the simpler products. Second, risk control is more efficient
since the replicated parts either are directly tradable or may be hedged more
easily.
It is not possible to break all products down into simple components. In

cases where the structured product has to be depicted as a combination of
instruments which are themselves complex in nature and thus difficult to value
and to hedge on the capital market, numerical procedures have to be employed
in order to value the products and assess the risks involved.

6.17.1 Capped Call Option

In principal, the redemption amount for capital-guaranteed bonds with
embedded call options can be infinitely high. The issues described in this
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section place a cap, expressed as a percentage of the instrument’s face value, on
the redemption amount. The bearer only participates in the relative perfor-
mance of the underlying asset up to a certain maximum value. A capped call is
the combination of a long position in a call option C1 with a low strike price X1
and a short position in a call option C2 with a higher strike price X2: As soon as
the value of the underlying asset reaches the upper limit X2, the holder of
option C2 will exercise his/her right and claim any further increase in the value
of the underlying asset.
The issuer promises a redemption amount proportionate to the change in

the underlying asset price. In cases where the price of the underlying asset
decreases, the issuer guarantees a minimum redemption amount. At the same
time, the issuer limits the investor’s participation in the instruments perfor-
mance by stipulating an upper limit (i.e., the cap).

Example 6.12

A guarantee certificate
Maturity: 15 December 2016 to 13 December 2020 (4 years)
Redemption rate: The redemption rate expressed as a percentage of the face

value is proportionate to the change in the underlying asset price (ST/S0) expressed
as

T ¼ N: 100%þmin 9%;max 0%; ST � S0ð Þ=S0ð Þð Þð Þ
where

S0 Closing price of XY stock on 15 December 2016
ST Closing price of XY stock on 13 December 2020
Issue price: 100 %
Denomination: EUR 1000
If the price of the underlying asset increases between the issue date and the

maturity date, then the investor will participate up to a rate of a ¼ 9 %.
In order to replicate these products, it is necessary to express the formula for

calculating the redemption amount in a different manner.

Π ¼ N � 1þmin a;max
ST � S0

S0
; 0

� �� �� �
¼ N þ N �max

ST � S0
S0

; 0

� �
� N �max

ST � S0
S0

� a; 0

� �
¼ N þ N

S0
�max ST � S0; 0ð Þ � N

S0
�max ST � 1� að Þ � S0; 0ð Þ:

The capital-guaranteed products with an embedded European capped call
option can be broken down into a portfolio consisting of a zero coupon bond

(continued)
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Example 6.12 (continued)

with face value N, a long position of a European call option with a strike price of
S0, and a short position in a European call option with a strike price of (1 + a).S0.

The face values of the zero coupon bonds is the coupon payments and the
guaranteed redemption amount of the bond. Note that cashflows typically do not
take place until the maturity date. The strike price of the long option is S0, while
that of the short option is (1 + a).S0:

Assuming a principal of 1000, we can replicate this instrument with the pur-
chase of a zero coupon bond which reaches maturity on 13 December 2016, and
has a face value of EUR 1000, the purchase of 1000/S0 European call options on the
underlying asset with a strike price of S0, expiring on 13 December 2018 the sale of
1000/ S0 European call options on the underlying asset with a strike price of 1.09.2,
expiring on 13 December 2020.

6.17.2 Currency Basket Bonds with Caps and Floors

Currency basket bonds are zero coupon bonds whose redemption amount is
notionally paid out in several currencies. The redemption amount is spread
evenly across the reference currencies and paid out at the respective exchange
rate applicable on the redemption date.
Defined caps and floors generally apply to the entire redemption amount,

not to the individual currencies.

Example 6.13

A Quattro Bond

Maturity 22 October 2017, to 21 April 2022 (4.5 years)
Total principal EUR 14,534,567
Base currency EUR
Coupons None
Redemption 22 April 2022
Redemption rate see below
Denomination EUR 726.73

Redemption: In order to calculate the redemption rate, 25 % of a bank bond is
translated into EUR, 25 % into SEK, 25 % into GBP and 25 % into NOK at the
Vienna exchange official middle exchange rate on 20 October 2017. Toward the
end of the bonds term, the amounts in each currency are multiplied by a redemp-
tion factor of 1.2631 and the resulting amounts are translated into EUR at the
Vienna exchange’s official middle exchange rate on 18 April 2022. The redemp-
tion rate must be between 110 % and 139 % of the bonds face value.

(continued)

342 Analytical Finance: Volume I



Example 6.13 (continued)

The Quattro bonds redemption amount depends on a portfolio of currencies
whose development cannot be considered independently of one another. As the
interest on the principal depends on the joint development of the various curren-
cies and the cap and floor is defined for the entire portfolio, the instrument can
only be valued using basket options.

The formula calculating the return on the principal invested can be rearranged
as follows

r ¼ max min 0:25 � 1:2631 � 1þ rSEK þ rGBP þ rNOKð Þ; 1:39ð Þ; 1:1ð Þ

r ¼ 1:2631 � 3
4

þ 1:2631 � 3
4

�

max min
rSEK
3

þ rGBP
3

þ rNOK
3

;
1:39 � 4
1:2631

� 1

3

� �
;
1:1 � 4
1:2631

� 1

3

� �
At maturity, the bond is redeemed at a rate of at least 110 %. This minimum
redemption amount can be replicated with a zero coupon bond with a face value
equaling 110 % of the bond face value.

If the exchange rates develop in the bearer’s favour, he/she will then partici-
pate in the positive performance of the three reference currencies. This payoff
profile is equivalent to a call option on the currency basket with a strike price of

1:1 � 4
1:2631

� 1

3
¼ 0:828

As the underlying asset of the option, the currency basket has a standardized
initial value of 1; its value at time T is calculated using the formula

1þ 1

3
rSEK þ rGBP þ rNOKð Þ

as the arithmetic mean of the changes in the component exchange rates in the
currency basket.

The redemption rate cap of 139 % limits the payoff of the call on the currency
basket. This cap is equivalent to the sale of a call option on the currency basket
with a strike price of

1:39 � 4
1:2631 � 3�

1

3
¼ 1:134

The face value of the zero coupon bond is equal to the minimum redemption
amount.

(continued)
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Example 6.13 (continued)

Assuming a face value of EUR 100, we can replicate this instrument with the
purchase of a zero coupon bond with a face value of 110 and a 4.5-year maturity,
the purchase of k call options on a currency basket consisting of 1/3 SEK, GBP and
NOK, strike price 0.828, expiration in 4.5 years and the sale of k call options on a
currency basket consisting of 1/3 SEK, GBP and NOK, strike price 1.134, expiration
in 4.5 years where

k ¼ 1:2631 � 3
4

� 100

The zero coupon bonds are valued using the relevant spot interest rate. Options
on currency baskets present the problem of that a sum (or the average) of
log-normally distributed time series is not itself log-normally distributed. Basket
options can be valued with Monte Carlo simulation assuming correlated Brownian
motions.

6.17.3 A Quanto Asian Multi-basket Digital Option

We will here present an example of a structured product. Such a product is
created by financial engineers. The Asian multi-digital consists of several Asian
digital options with strike prices Xi equal to the initial underlying prices Si(t0).
The payoff is digital and depends on the number of Asian prices being above
their strike prices.
The price is given by

Π 0ð Þ ¼ e�rTEQ Φ Tð Þ½ �

where the contingent claim with maturity T is given by

Φ Tð Þ ¼ 1 if
Xd
i¼1

Hi � K

0 else

8><>:
where

Hi ¼ 1 if Ai � Si t0ð Þ
0 else

�

344 Analytical Finance: Volume I



Ai ¼ 1

N

XN
j¼1

Si tj

 �

What we have is a basket of d assets, Si, i¼ 1, 2,. . . d. We start by calculate the
average underlying price (Asian price) Ai for each asset for N reset days, tj,
j¼ 1, 2,. . . N. The average price makes the instruments Asian. We then make
a test if the assets reach the strike. If asset i reach the strike, (Hi ¼ 1, the digital
payoff of asset i) it will pay 1 unit of cash. This makes the instrument digital.
At the end, we count how many of these assets reach the strike. If the number
of such assets is greater than K, the option will pay 1 cash unit. That’s make
the option multi-digital.
To find the price we calculate the discounted expected payoff with respect

to the martingale measure Q.
An instrument as this has to be evaluated by Monte Carlo simulations. The

same situation appears for all instruments that cannot be replicated into
known instruments with a closed form solution.

6.18 Summary of Exotic Instruments

The following table summarizes the exotic options covered. For details, see
appropriate sections.

Name Structure Variations/combinations

Chooser Buyer can decide whether it is a call or a
put by a certain date

Simple chooser
Complex chooser

Digital Buyer receives a fixed cash payout on
exercise

Cash-or-nothing
Asset-or-nothing

Barrier Option either knocks out or knocks in if a
certain market level is reached

Double barrier
Ladder
Touch spread

Lookback Buyer receives the best performance
achieved by the market during the
option’s life

Lookback price
Lookback strike

Asian Buyer receives difference between strike
and an average of market prices (Asian
price), or strike is calculated as an aver-
age of market prices (Asian strike)

Arithmetic averages
Geometric averages
Different averaging periods

Forward Strike is set on a specified future date Cliquet
Basket Pays difference between a strike and the

price of a basket of financial
instruments

Equity index options
OTC baskets Options on
foreign assets struck in local
currency

(continued )

6 Exotic Options 345



Name Structure Variations/combinations

Rainbow Payment based on the best-performing
of any number of assets

Two or more colors

Exchange Buyer has the right to exchange units of
one asset for units of another asset

Convertible bonds
Spread options

Correlation If the option is ITM, payout is contingent
on the price of another asset also hav-
ing reached a certain level

Quanto Option on a foreign currency asset,
where payout is in the local currency at
a fixed rate of exchange

Compound Buyer has the right to exercise into
another pre-defined option contract

6.19 Something About Weather Derivatives

To give an example of completely different kinds of derivative, we will look at
so-called weather derivatives. The weather has an enormous impact on busi-
nesses, for example, energy producing companies, farmers, travel agents and
wine producers. The weather affects each of these industries in different ways.
For example, a warm winter will reduce the profits of an energy producer,
whereas a warm summer will produce better grapes wine producers. In some
situations, “bad” weather can result in companies making a loss. For this
reason, a number of companies have started trading derivatives to hedge
against losses due to weather events, just as one hedge against any price changes
on an asset by acquiring an option. Essentially, this makes a weather derivative
rather similar to weather insurance.
A weather derivative is exactly as it says—a derivative written on the

weather. These can be either swaps, futures or options (most commonly in
the form of swaps between two companies). So how can the weather be treated
as an underlying asset? Well, the weather is not strictly speaking a physical
asset, but just something to base the pricing of the derivatives upon.
The first transactions on weather derivatives took place in the US in winter

1997, after the strongest El Ni~no event on record. (The El Ni~no phenomena
have worldwide implications on the weather.) The significant coverage of this
phenomenon by the American press meant companies decided to hedge
against losses due to unseasonable weather. European companies soon
followed, however, the weather derivatives market in the USA is still worth
some 10 times more and that of its European counterpart. This makes the euro
market rather illiquid.
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Initially, it was the energy sector that began trading in the weather deriva-
tives market. By September 1999, with the increase of investors outside the
energy sector, the Chicago Mercantile Exchange (CME) started an electronic
market for the trading of weather derivatives.
A weather derivative can be written on many different parameters, such as,

temperature, rain and snowfall measured at some mutually agreed weather
station (e.g. Heathrow, London). Energy producer even have models for the
quality of the snow, to calculate how much water it will give when it melt. The
most common parameter is the temperature.
To develop a temperature index we start by defining first the temperature

on day i,

Ti ¼ Tmax
i þ Tmin

i

2

whereTmax
i andTmin

i are the maximum and minimum temperatures (in degrees
Celsius) recorded at a particular station, respectively. This will allow us to
define the heating degree-days, HDDi , and the cooling degree-days, CDDi ,

HDDi ¼ max 18� Ti; 0f g� � �and

and

CDDi ¼ max Ti � 18; 0f g

respectively. Here 18 � C is here used as a reference point, since it is believed
that if the temperature is above (or below) 18 � C people will turn on their air
conditioning (or heating) and cool down (or heat up) their homes, thus a
cooling (or heating) day. Most temperature based derivatives as based on the
accumulation of HDDs or CDDs over some period, usually one month or a
winter/summer period. Then the contracts can be written on the form (from
the above expressions):

S ¼ kmax Hn� K; 0f g

where k is the amount of money paid out per degree day index
(a proportionality constant), known as the tick size.
This makes the pricing of a weather derivative rather like a weather fore-

casting game, the party with the best forecast better off since they can price
their derivatives more appropriately.
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6.19.1 Modelling Temperature

Modelling the temperature’s statistical behaviour in terms of a stochastic
process is an essential for temperature-derivative pricing. However, methods
used to predict the temperature vary widely.
So why choose weather derivatives over insurance contracts?
The main difference between a weather derivative and contract insurance is

that the holder of an insurance contract has to prove that he/she has suffered
financial loss as a result of the weather in order to be compensated. (This is
mainly for extreme events such as typhoons and hurricanes). Weather deriv-
ative payouts depends solely on the outcome of the weather, regardless of how
it affects the holder’s profits. Therefore, the weather derivatives market is
rapidly growing.
When modelling the temperature in whether derivatives the process is

described by a fractional Brownian motion (FBM). These processes are
known as fractional Ornstein–Uhlenback-processes. Since the temperature
varies periodically like sin(ωt + φ) where t denotes the time, measured in
days, and ω ¼ 2π/365 the period of oscillation neglecting leap years. The
phase function ω is necessary if we let t ¼ 1, 2, . . .be the first, second, and so
on, days of the year—since the seasonal cycle is out of phase with the western
calendar. Another trend that is often seen on some datasets of temperature is a
slight annual increase in mean temperature. Reasons for this can be the global
warming trend, or, urbanization near big cities, with cities growing in size
causing a net warming of the surroundings. This trend is much weaker than
that of the seasonal cycle, so, to first approximation on an approximate this to a
polynomial expression dominated by the linear term. Using this and the
seasonal cycle, one can write the mean temperature, as a function of time:

Tm
t ¼ Aþ Btþ C sin ωtþ φð Þ

where the parameters A, B, C and φ are constants. So far we have just a
deterministic model for the mean temperature. However, we know that
temperature is a stochastic process. Naturally, as one does very often in
financial mathematics, a Wiener process (Wt, t� 0), is put forward as a first
approximation to the stochastic part of the model. In Fig. 6.6 we show the
daily changes of the temperature in Stockholm, Sweden since 1 January 17561.
We see that it agrees pretty well to a sum of two Gaussian distributions.

1 See http://www.smhi.se/klimatdata/meteorologi/temperatur/stockholms-temperaturserie-1.2847. From
1756 to 1875 the thermometer was hung in the free air outside a north-facing window on the second floor
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Thus, the “noise” term in our stochastic differential equation (SDE) will be
of the form σtWt, where σt is the time varying standard deviation. Sometimes
the standard deviation is found to be approximately constant for each month,
so σt is chosen from a set given by each month of the year. This deals with our
stochastic term. Now the deterministic part – already found for the mean daily
temperature Tm

t . We present the following form for the change in temperature

dTt ¼ a Tm
t � Tt


 �
dtþ σtdWt

The Tm
t � Tt


 �
term comes from the mean reversion property of temperature.

i.e. cannot deviate away from the mean temperature on long time scales.
Constant a (real and positive) determines the speed of mean reversion. A
better physical explanation for this may be found in the thermodynamic
conditions of the system (atmosphere), though this is not trivial to see. This

Fig. 6.6 Histogram of daily Stockholm temperature fluctuations 1756–2015

of the old astronomical observatory building in Stockholm. From 1876 to 1960 the thermometer was
placed outside a north-facing window on the first floor of the old astronomical observatory building in
Stockholm. From 1961 to summer 2006 the thermometer was placed in a SMHI-screen (Stevenson-type
screen) about ten meters north-east of the former position. Since summer 2006, a platinum resistance
thermometer in a modern cylindrical screen close to the SMHI-screen replaced the mercury thermometer
in the SMHI-screen.
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equation describes an Ornstein-Uhlenback processes, and is found to agree
well with empirical data. The only problem with our SDE so far is that the
long-term mean is not the same as Tm

t (this can be shown when solving the
SDE). By adding the differential of the mean Tm

t ,

dTm
t

dt
¼ Bþ C cos φþ ωtð Þ

to the deterministic drift term the solution of the SDE gives our desired long-
term mean Tm

t . Thus,

dTt ¼ dTm
t

dt
þ a Tm

t � Tt


 �� �
dtþ σtdWt t � 0:

The solution is

Tt ¼ Tt � Tm
0


 �
e�a t�t0ð Þ þ Tm

t þ
ðt
t0

e�a t�τð ÞστdWτ

where

Tm
t ¼ Aþ Btþ C sin ωtþ φð Þ

We have now developed a physically representable stochastic model of tem-
perature, which can be used to price temperature derivatives.
Recently, modelling wind has become of importance since it is predicted

that within five years 10 % of the UK energy will be produced by this
renewable source. The problem with measuring wind is that, unlike temper-
ature, local variations are very large.
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7
Pricing Using Deflators

7.1 Introduction to Deflators

We will now discuss the use of deflators for the valuation of financial contracts
that can be used on many kind of contract, insurance policies and pension
plans. Many such contracts contain option features. For example, several life
insurance policies contain rate of return guarantees. Pension funds typically
aim for full indexation of the benefits to price inflation, but in scenarios where
inflation is extremely high or the funding ratio is low, indexation can be
reduced or skipped altogether. This type of payout is difficult to value with
standard present value calculations, as it is not obvious which discount rate to
use. However, the payout of the contract depends on some underlying variable
like the stock price or the inflation rate. We can therefore see such contracts as
contingent claims, or derivatives.
Starting with the path-breaking work of Black and Scholes (1973), a large

literature on the valuation of derivatives has emerged. The key observation in
the Black and Scholes analysis is that the derivative can be hedged by a position
in the underlying instrument. The resulting cash position is risk-free and
therefore should earn the risk-free rate of interest. Working out this argument
formally leads to the risk-neutral valuation (RNV) method used in the previ-
ous sections. The RNV method calculates the price of the derivative as the
expected payoff of the derivative in a risk-neutral world, discounted at the risk-
free rate. In that risk-neutral world, the expected return on the stock is set
equal to the risk-free rate.
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RNV is a very convenient and powerful method for the valuation of
derivatives where the underlying value is a traded asset. It is less trivial to
apply the method when the underlying determinant if the contingent claim is
not a financial instrument, though. An important example of such a claim is an
indexed pension benefit, whose payout depends on the price level or the
inflation rate. The price level is not the price of a traded asset, so we cannot
do as if the “return” on the price level equals the risk-free rate. For such claims,
a valuation method known as deflators is useful.
We will now explain the concept of deflators by a few very simple examples,

starting with the stock price model of Black and Scholes (BS). We will show
how to construct a deflator for the BS model and how to use it to calculate the
value of stock options. Then we will turn to inflation contingent claims like
pension contracts, and show how to construct a deflator for such claims.

7.1.1 The Black–Scholes Deflator

Consider a simple one-period model (think of the period as one year). The
price of the stock at the beginning of the period is S0, and S denotes the
stochastic price at the end of the period. In the Black-Scholes model, stock
prices follow a lognormal distribution. Formally, the returns on the stock are
generated by

ln
S

S0

� �
¼ μ� 1

2
σ2

� �
tþ σ � ε ffiffi

t
p

,

where ε is a standard normal random variable with mean zero and variance
equal to one. The parameter μ equals the expected return, E[S/S0]¼ μ, and σ
is the standard deviation of returns. A parameter that will play an important
role in this section is the market price of risk or the sharp ratio (sometimes
sharp quote) of the stock, defined as the risk premium (expected return minus
the risk-free interest rate, r), divided by the standard deviation of the return

λ ¼ μ� r

σ
:

For the valuation of derivatives of the stock price, risk-neutral valuation is the
most common approach in the options literature, but here we will present the
valuation of derivatives using the deflator method.
The deflator is a stochastic discount factor, that is, a discount factor that

varies with the random variables driving the stock returns. We have already
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almost derived the expression of the Black–Scholes deflator when we used the
Girsanov transformation between the observable market probabilities, P, and
risk-neutral probability measure, Q. The Girsanov kernel g(t) that took us
from P to Q was the market price of volatility risk, that is, g(t)¼ λ.
We then used that dQ(t)¼ L(t)dP, where

dL tð Þ ¼ g tð ÞL tð ÞdW tð Þ
L 0ð Þ ¼ 1

�

With the known solution to L(t) (using Itô on ln(L))

L tð Þ ¼ exp

ðt
0

g sð ÞdX sð Þ � 1

2

ðt
0

g2 sð Þds
8<
:

9=
;

we get

L tð Þ ¼ exp

ðt
0

r � μ

σ
dW sð Þ � 1

2

ðt
0

r � μ

σ

� �2

ds

8<
:

9=
;

¼ exp
r � μ

σ
W tð Þ � 1

2

r � μ

σ

� �2

t

� �
¼ exp �λ �W tð Þ � 1

2
λ2t

� �

which we can express like

L tð Þ ¼ �λ � ε ffiffi
t

p � 1

2
λ2t

� �
:

This means that the discount factor e�rt in Q can, in P be expressed as

D ¼ exp � r þ 1

2
λ2

� �
t� λ � ε ffiffi

t
p� �

:

This is our definition of the Black–Scholes deflator. As we can see, 1/D is a
stochastic process with a normal distribution

N
r þ λ2

2
; λ2 T � tð Þ

	 

:

If we do not use continuous compounding, we can approximate the deflator
(using a second order Taylor approximation) by
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D ¼ 1

1þ r

� �
1

1þ λ � εþ λ2

� �
:

The deflator is the product of the risk-free discount factor and a stochastic
term, which depends on the shocks to the stock price.
The deflator can be used to calculate the value of derivatives of the stock

price as follows. Denote the payoff of the derivative by X, which will be a
function of the stock price at the end of the period X¼ f (S). The value of the
derivative is then given by the expectation of the product of the deflator D and
the payoff X:

X0 ¼ E DX½ � ¼ E Df Sð Þ½ �:

For an interpretation, let’s assume that the risk premium on the stocks is
positive. The deflator then takes low values in states with a high stock return
(high ε), and vice versa. One could also say that in states with low stock
returns, the implicit discount rate for payoffs is low. Payoffs in “bad” states of
the world, namely states where the stock price is low, will therefore have a
relatively high value. Derivatives that mainly pays off in “bad” states of the
world, such as put options, will therefore be relatively expensive compared to
their expected payoff. On the other hand, assets that pay off when the stock
returns are high, such as call options, will be less valuable.
We now discuss two important properties of the deflator. First, the defla-

tor’s expectation is equal to the risk-free discount rate

E D½ � ¼ E exp �rt� 1

2
λ2t� λε

ffiffi
t

p� �	 

¼ exp �rtð ÞE exp �1

2
λ2t� λε

ffiffi
t

p� �	 


¼ E exp �1

2
λ2t

� �	 

E exp �λε

ffiffi
t

p� �
 �
exp �rtð Þ

¼ exp �1

2
λ2t

� �
exp

1

2
λ2t

� �
exp �rtð Þ

¼ exp �rtð Þ

where we have used the theorem: For X�N(m, σ2) and γ2R we have

E e�γX

 � ¼ exp �γmþ 1

2
γ2σ2

� �

that is, since ε is N[0, 1] we get
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E e�γε
ffi
t

ph i
¼ exp

1

2
γ2t

� �
:

A risk-less cash flow, say F dollars, will therefore be valued by the standard
present value formula

PV Fð Þ ¼ E DF½ � ¼ E D½ �F ¼ exp �rtð ÞF:

Another interesting special case is the stock itself. Working out the return
equation we find the stock price at the end of the year,

S ¼ S0exp μ� 1

2
σ2

� �
tþ σ � ε ffiffi

t
p� �

:

It is then easy to show that the deflated value of the end-of-period stock price
equals the current price, E[DS]¼ S0.
To prove this, we do the following calculation

E DS½ � ¼ E exp �rt� λε
ffiffi
t

p � 1

2
λ2t

� �
S0 exp μ� 1

2
σ2

� �
tþ σε

ffiffi
t

p� �	 


¼ S0E exp μ� rð Þ � 1

2
σ2 þ λ2

� �� �
tþ σ � λf gε ffiffi

t
p� �	 


¼ S0 exp μ� rð Þ � 1

2
σ2 þ λ2

� �þ 1

2
σ � λf g2

� �
t

� �
¼ S0 exp μ� r � σλð Þtf g ¼ S0

This shows that the deflator prices the (stochastic) stock payoff itself correctly.
Another important example is a call option with exercise price K. The value of
this option is given by

C0 ¼ E D�max S� K; 0ð Þ½ �:

Working out this expectation can be done analytically, and will give the
famous Black–Scholes option pricing formula. For less trivial payoffs, the
expectation E[DX] can be approximated using Monte Carlo simulation.

7.1.2 Deflators for Inflation Linked Claims

We now turn to the construction of a deflator for price index (or inflation)
linked claims. Although the price level or inflation are not assets traded on a
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financial market, one can use index linked bonds (ILB’s) to hedge claims that
depend on changes in the price level. Specifically, let there be an (zero coupon)
ILB, with a notional value. The payoff of this bond is exp(π), where π is the
inflation. Assume that inflation is stochastic with distribution

π ¼ πe þ σπη

where πe is expected inflation, assumed to be known in advance, and σπη is the
unexpected inflation. The random shock η has a normal distribution with
mean zero and variance one. The zero-time price of this bond is equal to exp
(�r) where r is the real interest rate, assumed to be known and constant.
Hence, the nominal return on ILB is r + π, and its expected return is
r þ πe þ 1=2 σ2π . The market price of inflation risk is defined as the Sharpe
ratio of the ILB return

λπ ¼
r þ πe þ 1

2
σ2π � r

σπ
,

where r is the nominal risk-free interest rate. The deflator is now defined in the
same way as before

D ¼ exp � r þ 1

2
λ2π

� �
t� λπη

ffiffi
t

p� �
:

The valuation formula for inflation linked claims with payoff X¼ g(π) is

X0 ¼ E DX½ � ¼ E Dg πð Þ½ �:

So far, this repeats the analysis of the Black–Scholes deflator, but with the
index-linked bond (ILB) as the underlying asset. There is one crucial differ-
ence, though. Whereas it is natural to assume that stocks have a positive risk
premium and hence a positive Sharpe ratio, the expected return on ILBs is
quite low, and can be lower than the (nominal) risk-free interest rate, that is,
r > r þ πe þ 1=2 σ2π. This will happen when investors are prepared to pay a
premium to hedge against inflation risk. This will drive up prices of ILBs and
hence give low real interest rates. The market price of inflation risk is therefore
negative, λπ< 0. This means that payoffs in high inflation states will be
relatively valuable, and payoffs in low inflation states are less valuable.
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7.1.3 Extensions

In the above discussed what deflators are and how they can be used for the
valuation of contingent claims such as options and pension benefits. We
discussed two specific examples, a deflator for stock price derivatives and a
deflator for inflation contingent claims. A third important example are interest
rate dependent claims, like portfolios of fixed income securities or the liabilities
of insurance companies with embedded interest rate options.
Two extensions of the examples are relevant in practice. First, the examples

above construct the deflator from the Sharpe ratio of traded asset prices. For
risks that are not traded on financial markets, one can still construct a deflator
of the form

D ¼ exp � r þ 1

2
λ2ξ

� �
t� λξξ

ffiffi
t

p� �
,

where ξ is the shock to the risk factor. The difference with the previous case is
that the value of λξ cannot be derived from the expected return on traded
assets, but has to be fixed exogenously.
A second extension of the examples is the valuation of more complex payoff

structures that depend on multiple risk factors simultaneously. An example is a
pension benefit that depends both on inflation and on the returns on the
pension fund’s investments. It is possible, and actually quite easy, to build a
deflator for multiple risks. Essentially, this can be done by multiplying the
deflator for each individual risk factor. For example, consider a payoff that is
contingent on both the stock price and the inflation rate, X¼ h(S, π). The
present value of this claim can be calculated as X0¼ E[DSDπX], where DS and
Dπ are the deflators for stock contingent claims and inflation contingent
claims, respectively.

7.1.4 Monte Carlo Simulation

The valuation of complex contingent claims cannot be done with analytical
methods. Typically, Monte Carlo simulation is used. For the Black–Scholes
deflator, this works in the following steps:

1. Generate N values ε(i) from the standard normal distribution, and calculate
the associated values of the stock price
S ið Þ ¼ S0 exp μ� 1

2
σ2

� �
tþ σε ið Þ ffiffi

t
p� �
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the derivative payoff
X (i)¼ f (S (i)),
and the deflator
D ið Þ ¼ exp � r þ 1

2
λ2

� �þ λε ið Þ ffiffi
t

p� �
:

2. Average the deflated payoff of the derivative over all N simulations

bX0 ¼ 1
N

XN
i¼1

D ið ÞX ið Þ:

For many simulations (large values of N), this estimate converges to the true
value of the contingent claim.

7.1.5 Deflators and State Prices

As we have seen before, the fair value (present value) of a (simple) contract
cannot be expressed as the discounted expected value of the future cash-flow

PV ¼ 1

1þ rð ÞT E CF Tð Þ½ �:

There are two main techniques to find the value of the cash flow above:

• A change of probability measure.
• A change in the discounting factor.

The change in the probability measure is the risk-neutral method, where we
calculate the expectation value under a risk-neutral measure

PV ¼ 1

1þ rð ÞT E
Q CF Tð Þ½ �:

You then have to find the risk-free probability measureQ. See the binomial model.
The second method, where we make a change in the discounting factor, we

can still use the real probability measure P but the discounting factor has to be
changed and becomes stochastic

PV ¼ EP D Tð Þ � CF Tð Þ½ �:

The stochastic discount function is the deflator. We will begin to study a
simple, single period market model with one risk-free assed S0 and d risky
assets Si defined on a probability space Ω
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S0 1ð Þ ¼ 1þ rð ÞS0 0ð Þ
Si 1ð Þ ¼ Si 1;ω1ð Þ; Si

�
1;ω2

�
; :::; Si

�
1;ωN

�� �
Ω ¼ ω1;ω2; :::;ωNf g with pj ¼ P ωif gð Þ

where r is the risk-free interest rate, i ¼ 1, 2, . . ., d and j ¼ 1, 2, . . ., N.
First we introduce (define) the state prices Ψj:

Theorem 7.1 If the market is free of arbitrage, there exist a random variable Ψ
such as for any asset

Si 0ð Þ ¼
XN
j¼1

ΨjSi 1;ωj

� �
with Ψj ¼ Ψ ωj

� �
> 0

For the risk-free asset (i ¼ 0) we then have

Ψ ¼
XN
j¼1

Ψj ¼ 1

1þ r
:

We can then create an artificial risk-neutral measure by

qj ¼ Q ω ¼ ωj

� � ¼ Ψj

Ψ
¼ 1þ rð ÞΨj

with the properties

1. 0� qj� 1

2.
XN
j¼1

qj ¼ 1

3. For any asset, the mean return is given by the risk-free rate

Si 0ð Þ ¼ 1
1þr

XN
j¼1

qjS 1;ωj

� �
We now define the deflator.

Definition 7.2 The deflator is a random variable D

Dj ¼ D ωj

� � ¼ Ψj

pj

with the properties
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1.
XN
j¼1

pjDj ¼ E D½ � ¼ 1
1þr

2. Si 0ð Þ ¼
XN
j¼1

pjDjSi 1;ωj

� �
:

We can generalize this to any contingent claim, X on the market with cash
flows X(1, j) in scenario j as

1. Using state prices Ψj

X 0ð Þ ¼
XN
j¼1

Ψj � X 1;ωj

� �
2. Using the risk-neutral measure Q

X 0ð Þ ¼ 1
1þr

XN
j¼1

qj � X 1;ωj

� � ¼ 1
1þr E

Q X 1ð Þ½ �

3. Using the deflator D

X 0ð Þ ¼
XN
j¼1

pjDjX 1;ωj

� � ¼ EP D � X 1ð Þ½ �

State-price securities (also called Arrow–Debreu securities) are also used in the
fixed income theory, where we use them to create binomial interest rate trees
with forward induction, (see the Black–Derman–Toy model). A state-price
security is a contract that will pay one unit of currency if a particular state is
reached at a particular time in the future. In all models where we hope to
replicate the market dynamics, we have to calibrate the model.

We will now consider a multi-period discrete model where t¼ {0, 1, . . . ,T}

S0 tð Þ ¼ 1þ rð ÞtS0 0ð Þ
Si tð Þ ¼ Si t;ω1ð Þ; Si

�
t;ω2

�
; :::; Si

�
t;ωN

�� �
Ω ¼ ω1;ω2; :::;ωNf g with pj ¼ P ωif gð Þ

with state prices

Si 0ð Þ ¼
XN
j¼1

Ψj tð Þ � Si t;ωj

� �
with Ψj tð Þ ¼ Ψ ωj; t

� �
> 0

and deflator
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Dj tð Þ ¼ D ωj; t
� � ¼ Ψj tð Þ

pj
:

We can then price a replicable financial contract (contingent claim) X on this
market by the generating successive stochastic cash flows:{cf (t,ω)}|t¼ 1 , . . . ,
T ;ω2Ω}. The initial value can then be written as

X 0ð Þ ¼
XT
t¼1

XN
j¼1

cf t;ωj

� �
Ψj tð Þ

or

X 0ð Þ ¼
XT
t¼1

1

1þ rð Þt
XN
j¼1

qj � cf t;ωj

� �

or

X 0ð Þ ¼
XT
t¼1

XN
j¼1

pj � cf t;ωj

� �
Dj tð Þ ¼

XT
t¼1

E D tð Þ � cf tð Þ½ �:

Example 7.3

An economy is currently in state A, and can evolve to future states over the next
2 years as shown in the picture below:

You are also given the corresponding price evolution for two securities in the
economy.

(continued)
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Example 7.3 (continued)

The annual effective risk-free rates of interest at the given states are

State A B C

Rate 5.128% 2.439% 7.143%

Using this information to:

(a) Define state price deflators and briefly discuss how to value a future cash

Flow CT at a time t in the future using deflators, where t < T.

(b) Describe advantages and disadvantages of risk-neutral valuation versus
deflators.

(c) Calculate the state price vectors for states D, E, F and G.

(d) Calculate the state price deflators for states A, B, D, and E.

(e) Verify the value of 11 for Security 1 in state B using state price deflators.

Solution:

A state price deflator is defined as the ratio of the state price to the state
probability, D(s)¼c(s)/p(s). The valuation of cash flows can be accomplished as:
Value of CT at time t is

Et DTCT½ �
DT

Advantages of risk-neutral valuation

– State-independent discount factor, using the risk-free rate.

– Expected returns at the risk-free rate can be calculated for any asset.

(continued)
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Example 7.3 (continued)

Disadvantages of risk-neutral valuation

– Difficult to understand conceptually (e.g., martingale measures).

– Complicated to implement multiple-currency models.

State price vectors
State A
The system

11C1 þ 8C2 ¼ 9
12C1 þ 5C2 ¼ 8

�
gives

C1 ¼ 0:4634
C2 ¼ 0:4878

�

State B
The system

12C1 þ 9C2 ¼ 11
14C1 þ 7C2 ¼ 12

�
gives

C1 ¼ 0:7381
C2 ¼ 0:2381

�

State C
The system

9C1 þ 7C2 ¼ 8
6C1 þ 3C2 ¼ 5

�
gives

C1 ¼ 0:7333
C2 ¼ 0:2000

�

State-price vector for D ¼ (0.4634)(0.7381) ¼ 0.3420
State-price vector for E ¼ (0.4634)(0.2381) ¼ 0.1103
State-price vector for F ¼ (0.4878)(0.7333) ¼ 0.3577
State-price vector for G ¼ (0.4878)(0.2000) ¼ 0.0976
To solve for the deflators we first need to calculate probabilities at the various

nodes

Deflators
State A
The system

C1 ¼ p1
1þ rð Þ

C2 ¼ p2
1þ rð Þ

8><
>: gives

p1 ¼ C1 1þ rð Þ ¼ 0:4634 � 1:05128 ¼ 0:4872
p2 ¼ C2 1þ rð Þ ¼ 0:4878 � 1:05128 ¼ 0:5128

�

(continued)
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Example 7.3 (continued)

State B
The system

p1 ¼ Ψ1 1þ rð Þ ¼ 0:7381 � 1:02439 ¼ 0:7561
p2 ¼ Ψ2 1þ rð Þ ¼ 0:2381 � 1:02439 ¼ 0:7561

�

State C
The system

p1 ¼ C1 1þ rð Þ ¼ 0:7333 � 1:07143 ¼ 0:7857
p2 ¼ C2 1þ rð Þ ¼ 0:2000 � 1:07143 ¼ 0:2143

�

We now calculate the state price deflators as

D Að Þ ¼ 1 this isaproperty of deflatorsð Þ
D Bð Þ ¼ 0:4634

0:4872
¼ 0:9511

D Dð Þ ¼ 0:3420

0:4872� 0:7561ð Þ ¼ 0:9284

D Eð Þ ¼ 0:1103

0:4872� 0:2439ð Þ ¼ 0:9282

The value of security 1 in state B as calculated using the state price deflators

Value ¼ 0:9284 � 0:7561þ 0:9282 � 0:2439
0:9511

¼ 11:00
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8
Strategies with Options

8.1 Introduction

Before we begin to study strategies using derivatives, we will rehearse the
concepts of options and forwards and study the market on the Swedish stock
and derivative exchange.
A long position in an option means we have bought the option. In other

words, we hold or own the option. A short or a written position means that we
have sold the option. If we are long an option, we have the right, but not the
obligation to by (for a call) or sell (for a put) the underlying stock to the given
strike price. For a long position in an option we take no risk since we cannot
lose more money than we invested. If we take a short position on the other
hand, we take a risk since we have the obligation to sell (for a call) or buy (for a
put) the underlying stock at the given strike price. If we don’t own the stock in
a short position we might need to buy the stock at a high price on the market
to sell the stock to the holder of the option.
Options on stocks are usually of American type, which means they can be

exercised at any time for the option lifetime. When exercised there will be a
physical delivery of the underlying stock. Options on stock indices on the
other hand, is said to be of European style. They can only be exercised at
maturity of the contract. They are also cash settled since we cannot deliver an
index, since this is just a fictive underlying.
A normal option contract on equities contains 100 stocks. To go into this

contract the buyer pays an initial price (the option value) to the writer (seller)
of the option. On an exchange, such as Nasdaq in Stockholm, the
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clearinghouse is the counterparty to both the buyer and the seller. The
clearinghouse then guarantees the delivery to the buyer. Therefore the buyer
does not take a risk to enter an option contract. The writer of the option, on
the other hand, takes a risk. It’s always risky to go short in a position. The
clearinghouse eliminates its own risk as far as possible by requiring the writer to
pay an initial margin requirement. This margin requirement is recalculated by
the clearinghouse every night. If the price of the underlying changes in a
negative direction for the writer, he/she is told by the clearinghouse to increase
the margin requirement. Nasdaq has its own system called RIVA (RIsk
VAluation) to calculate this margin requirement. The writer can use other
securities to secure his/her margins. Typically, 90 % of the value of a treasury
bond can be used, or 80 % of the value of a corporate bond, or 50–70 % of the
value of an equity. Moreover, cash on a bank account can be used as margin.
Both the buyer and the seller pay a courtage to their broker or bank and a part
of this is paid to the clearinghouse exchange.
The buyer of the call options has no obligation. The writer, on the other

hand, has the obligation to sell the underlying asset to the buyer if the buyer
wishes to exercise the option. If the writer does not own the underlying, he/she
might have to buy the underlyings at a very high price and then sell them to
the option holder at a low price. Hereby the writer takes the risk.
A contract of a put option is very similar. The buyer of a put option has the

right, but not the obligation, to sell the underlying asset at a given price.
A long position means that you have bought a security. Then you are the

holder and you hold the contract. A short position means that you have sold or
written the security.

8.1.1 Characterization of Stock Options

A stock option (equity option) is characterized by an identity on the underlying
security (e.g. a share in Volvo), a contract size (normally 100 shares), a time to
maturity (6 month for short and 2 years for long) and a strike price. Series with
new strikes are created each day if necessary. These series are created so that
there is always a numbers of options, in-the-money (ITM), some out-of-the-
money (OTM) and one at or close to at-the-money (ATM). Therefore, there is
always at least a specific number of strike prices for each time to maturity. On
the Swedish derivative exchange, the maturity is always on the third Friday in
the month. At most there are five different maturities, three short and two
long. All stock options on the Swedish exchange market are of American type.
These options, as we will see, can be exercised at any time during the option
lifetime.
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8.1.2 Characterization of Forwards on Equities

A forward on a stock (on the Swedish exchange) is characterized by an identity
on the underlying security (e.g. a share in Volvo), a contract size (normally
100 shares), a time to maturity (at most two years) and a forward price. The
price to enter a forward contract is zero. In such a contract, both the buyer and
the seller have an obligation to fulfil the trade at maturity. In this way both
parties take a risk. On the Swedish derivative exchange the maturity is always
on the third Friday in respective month.
Exchange traded forwards, as these in Sweden, are unique. Usually forwards

are traded OTC, but, as we will see, thanks to the exchange traded forwards it
is possible to build any strategy without going short or long in the underlying
asset. Other exchanges usually trade futures. The difference between a forward
and a future is that there are daily settlements in future contracts, that is,
transfer of money between the two counterparties who have agreed on the
contract, to buy or sell the underlying equity at the maturity of the contract.

8.1.3 Characterization of Options on the OMXS30 Index

An option on the OMXS30 index (the Swedish stock index at Nasdaq) is
characterized by an identity, the 30 most actively traded assets on the OMX
Stockholm Exchange, an index level, a time to maturity (6 months for short and
2 years for long) and a strike price. Since there is no deliverable underlying,
these options are cash settled. This means that, if the option is ITM at maturity,
a cash amount is calculated from the index level and transferred to the holder
of the option. If the option is OTM it is worthless and no money will change
owner. Since there is no deliverable underlying, these options are of
European type.
Series with new strikes are created each day if necessary. These series are

created so that there is always some option ITM, some OTM and one at or
close to ATM. Therefore, there are always at least a specific number of strike
prices for each time to maturity. On the Swedish derivative exchange the
maturity is always on the fourth Friday in respective month. At most, there are
five different maturities, three short and two long. All index options on the
Swedish exchange market are of European type.
The assets in the index are weighted in such way that the most traded have

more impact on the index level. Usually, Ericsson is the dominating asset in
the index and the composition of the OMXS30 index is revised twice a year.
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The value of index options is that they can be used to hedge a complex
portfolio if it can be considered as well diversified and with a beta value similar
to the OMXS30 index. They can also be used for speculation on the entire
market.
As we know, European options cannot be exercised during their lifetime.

However, a holder of an index option can sell the option at any time or buy the
opposite position and in such way net his position.
OMX have a marketplace and a clearinghouse. The customers on this

market are brokers, speculators, traders and market-makers. Market-makers
have an obligation to set prices on both call- and put options and futures for
some underlyings. The spread between the ask and bid prices must be in a
certain level. Due to this obligation, the market-maker will be given lower
transaction costs.
On other exchanges, similar contracts are traded as at Nasdaq in Sweden.

8.1.4 Standardized Names on Options and Forwards

Short names of options are built by the name, expiry and the strike price.
Example: Let us use the Swedish stock Ericsson as the underlying. Then,
ERIC6J45 is a call option with expiry in October (remember, the third Friday)
2016 with strike price 45 SEK (also 450 or 4.50 SEK is possible, but the
current market price will tell us the strike). The letter J tells us that this is
an October call. In the table below, we see how the letters are used. The
corresponding RIC-name on Reuters for the same option is: LMEb450J6.ST

Month| J F M A M J J A S O N D

-----+-------------------------

Call | A B C D E F G H I J K L

Put | M N O P Q R S T U V W X (also for forwards)

In addition, a corresponding name standard for forwards exists. Example:
ERIC6B is a forward on Ericsson with expiry in February 2016. The
corresponding RIC-code on Reuters is: LMEbG6.ST. Reuter uses the follow-
ing rule for the months

Jan ¼ F, Feb ¼ G, Mar ¼ H, Apr ¼ J,

May ¼ K, Jun ¼ M, Jul ¼ N, Aug ¼ Q,

Sep ¼ U, Oct ¼ V, Nov ¼ W, Dec ¼ Z.
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8.1.5 Alternatives When Trading Options

As a holder or a seller of options, you have alternative choices if the price of the
underlying asset changes.
A holder (buyer) of an American option has the possibility to

1. Exercise the option, i.e., to buy (or sell) the underlying asset to the option
strike price.

2. Net the position, i.e., to sell the option before maturity. This is the most
common alternative.

3. Let the option die at maturity if the option is OTM.

The seller of an American option has the possibility to

1. Keep the option until maturity (and wait for the holder to exercise).
2. Net the position by buying a similar position to the current market

price.

Remark! As a seller, you must consider the possibility to be exercised at any
time if the option has a real value. Therefore, it is extremely important to
follow the market and act thereafter.

8.1.6 Alternatives with Forwards

The seller of a forward can.

1. Deliver the underlying asset (a forward on a stock), or close the position
(a forward on index) at maturity or

2. Net the position by buying the forward in the same series before maturity.

8.1.7 Ranking the Trades

Since many orders can exist at the same time in the order book on the
exchange, orders have to be ranked. Orders with the highest rank will be
exercised first. The orders are ranked as

1. Price; lowest ask- (to buy) and highest bid (to sell) price.
2. FIFO – first in first out.
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8.1.8 The Reason for Buying Call Options

There are several reason for and advantages in trading options instead of the
underlying asset:

1. To get a better lever, i.e., to make a better profit for every cash unit invested,
compared with buying the underlying asset.

2. The risk is lower when buying the option compared with the underlying
asset. If the price on the underlying decreases, you can only loose the
invested capital, not the corresponding decrease of the underlying asset.

3. Avoiding tying up your capital. You can make other investments until you
want to buy the underlying asset.

4. To plan to buy the underlying asset in the future.
5. If you want to sell the underlying asset but still want to earn money if the

price increases.

8.1.9 The Reason for Selling Call Options

Reasons for selling call options can be:

1. To get a profit on a neutral or falling market.
2. To increase your profit on a neutral or a weak increasing market.
3. To be compensated on a decrease in the market.
4. To fix a certain ask price in the future.

8.1.10 The Reason for Buying Put Options

The reason for buying put options might be:

1. To get a profit on a falling market.
2. To protect an income from the underlying if the prices on the market

will fall.
3. To lower the risk by owning the underlying asset.

8.1.11 The Reason for Selling Put Options

The reason for selling put options might be:

1. To get a profit on a neutral or weak market.
2. If you plan to buy the underlying asset in the future
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8.1.12 The Reason for Buying Forwards or Futures

The reason for buying forwards and futures might be:

1. To tie up less capital than when buying the underlying asset.
2. To fix a price for the underlying asset in the future.

8.1.13 The Reason for Selling Forwards

The reason for selling forwards or futures contracts might be:

1. To get a profit on decreasing market.
2. To lock in a profit on the underlying asset.
3. To get a lower risk in a long position on the underlying asset.

8.1.14 Market Belief: Decision

If you want to learn to trade options and forwards/futures, you have to know
about the existing base positions, which are illustrated in Figs. 8.1, 8.2 and 8.3.
With these positions, you can create many different strategies by making
combinations of different instruments. We will study these strategies in detail
in the following sections in this chapter.

Fig. 8.1 The profit of a long and a short call option when the strike price ¼ 50
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8.1.15 Synthetic Contracts

To understand the trading strategies we first have to understand synthetic
contracts. By using combination of the standardized contracts above, we can
create so-called synthetic contracts. The profit–loss curve of such contracts
shows the same features as single standardized contracts. With such contracts,
you also have the possibility to create arbitrage, if one of the components
is mis-priced. The price of a synthetic contract must be equal to the
corresponding standard contract otherwise; you can buy one of them and
sell the other to get a free lunch. You should have in mind to buy at a low and
sell at a high price.

Fig. 8.2 The profit of a long and a short put option when the strike price ¼ 50

Fig. 8.3 The profit of a long and a short forward when the strike price ¼ 50
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Most of the time you cannot make arbitrage with the use of synthetic
contracts. The reason is that you have to pay transaction costs. However, a
market-maker with lower transaction costs may have this option. If the
possibility arises in the market, a market-maker will close this possibility in a
very short time.
The synthetic combinations are

Bought Call ¼ Bought Forward + Bought Put

Sold Call ¼ Sold Forward + Sold Put

Bought Forward ¼ Bought Call + Sold Put

Bought Put ¼ Sold Forward + Bought Call

Sold Put ¼ Bought Forward + Sold Call

Sold Forward ¼ Sold Call + Bought Put

We illustrate these contracts in Figs. 8.4 and 8.5.

8.1.16 CFD: An Alternative to Shares

As discussed in Sect. 6.1 a CFD or contract for difference, is a derivative with a
stock or an index as the underlying instrument. A CFD is an agreement

Fig. 8.4 Synthetic contracts where we show a synthetic long call, a synthetic short
call and a long forward/future
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between two parties to exchange the difference between the initial market price
and the market price at the CFD maturity. Usually, one of the counterparties
is a financial institute. CFD are sometimes used as an alternative to buy the
stock.

Example

If the initial market price of an underlying stock is 360, the price of the CFD is
almost 360. Then, if at maturity, the price of the stock is 380 you will be paid
20 (380–360). The big advantage of a CFD is that you can go short in such a trade
and get a profit on a decrease without lending money, as would be the case if you
short sale in the underlying stock instead.

CFDs, like future contracts, are also traded on commodities and in
currencies.
Other advantages are the liquidity. You do not have to worry about this, as

for options. Is also easier to buy a CFD than a stock if you do not want to own
the underlying.
In some countries, the CFD has become very popular, where taxes on

derivatives and stocks are different. The reason is that, when trading a CFD, no
shares actually change ownership. But the tax situations differs between
countries.

Fig. 8.5 Synthetic contracts where we show a synthetic long put, a synthetic short
call put a short forward/future
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8.2 Strategies

By making combinations with different options, it is possible to create an
infinite number of strategies. Your choice of strategy depends on how you, as
an investor or speculator, believes that market conditions will change. In this
section we will study some of the most common option strategies. With an
option strategy, it is possible:

• To a lower initial cost, establish positions on the market.
• Get a better payoff on a given market belief.
• Get a lower risk with wrong market belief.
• To follow up a position on a wrong market belief.

When trading options, it is important to have a plain strategy from the
beginning. Thereafter you have to continuously follow market changes to be
able to follow up the strategy and to realize the profit when possible. A
common mistake made by amateurs and beginners is to hold their positions
for too long a time. Often, it is better to sell a call option to realize the profit,
and then buy a new option at a higher strike price with later maturity (if you
believe in a continuous increase in the underlying price).
We will use the following symbols to classify the strategies:

�1, 0, 1 The slope of the payoff curve as function of the underlying stock
* If the position includes a long position in the underlying
+, � The slope of the payoff if this is not piecewise linear

We will study four different market conditions: increasing (bullish),
decreasing (bearish), neutral and volatile. The reason is that they are used on
different market conditions.
One common myth is that the terms “bull market” and “bear market” are

derived from the way those animals attack a foe, because bears attack by
swiping their paws downward and bulls toss their horns upward. This may
be a useful way to remember which is which, but it is not the true origin of the
terms.
Long ago, “bear skin jobbers” were infamous for selling bears skins that they

did not own—that is,the bears had not yet been caught. This term eventually
was used to describe speculators who sell shares that they do not own but who
hoped to buy them after a price drop and then deliver the shares to the owner.
Obviously, these “bears” were hoping the market would go down.
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Because bull and bear baiting were once popular sports, “bulls” came to be
seen as the opposite of “bears”. The bulls were those people who bought in the
expectation that a stock price would rise, not fall.
Cartoonist Thomas Nast popularized the Bull and Bear as symbols for the

market’s movement. However, perhaps the final word on bulls and bears is the
old Wall Street adage: bulls make money, bears make money, and pigs are
slaughtered. Do not get greedy!

8.2.1 Basic Option Theory

In-, At- and Out-of-the-Money

A call option is ITM when the underlying price is higher than the option’s
exercise price, and is OTM when the underlying price is lower than the
option’s exercise price. A put option is ITM when the underlying price is
lower than the option’s exercise price, and is OTM when the underlying price
is higher than the option’s exercise price. An option is ATM when the
underlying price is equal to the option’s exercise price. In practice, the option
with the exercise price nearest to the prevailing underlying price is called the
ATM option.

Intrinsic and Time Value

The option price, or premium, can be considered as the sum of two specific
elements: intrinsic value and time value—that is, real value ¼ intrinsic value +
time value.
The intrinsic value of an option is the amount an option holder can realize

by exercising the option immediately. Intrinsic value is always positive or zero.
An OTM option has zero intrinsic value.
Intrinsic value of ITM call option¼ underlying product price – strike price.

Intrinsic value f ITM put option ¼ strike price – underlying product price.
The time value of an option is the value over and above intrinsic value that

the market places on the option. It can be considered as the value of the
continuing exposure to the movement in the underlying product price that the
option provides. The price that the market puts on this time value depends on
a number of factors: time to expiry, volatility of the underlying product price,
risk free interest rates and expected dividends (Figs. 8.6 and 8.7).
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Time to Maturity and the Time-Value

Time has value, since the longer the option has to go until expiry, the more
opportunity there is for the underlying price to move to a level such that the
option becomes ITM. Generally, the longer the time to expiry, the higher the
option’s time value. As expiry approaches, the value of an option tends to zero,
and the rate of time decay accelerates.
Figure 8.8 shows how the time-value changes with time until the options

maturity.

Volatility

The volatility of an option is a measure of the spread of the price movements of
the underlying instrument. The more volatile the underlying instrument, the

Fig. 8.6 The intrinsic value of a call option with strike 100 is represented by the
thick line, the “hockey-stick”, while the thin-lined curves represent the real value of
the same option 6 months to maturity. The difference between the real and
intrinsic value is the time value. Where the “hockey-stick” have a non-zero slope
we are ITM. At 100 we are ATM and below 100 OTM. The negative value represents
the premium payed for the option
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greater the time value of the option will be. This will mean greater uncertainty
for the option seller who will charge a high premium to compensate. Option
prices increase as volatility rises and decrease as volatility falls.
In Fig. 8.9 we show the effect of a volatility on a long straddle. Here,

the strike is 100 in both the call and the put option, the risk-free interest
rate is 2.0 %, time to maturity 3 month and the volatility 30 % and 50 %.
Higher volatility gives the highest price. The thick line is the profit at
maturity.

Time-value

Time to maturity

Fig. 8.8 The time-value decreases to zero at time to maturity

Fig. 8.7 Same as Fig. 8.6 but for a put option. Where the “hockey-stick” have a
non-zero slope we are ITM. At 100 we are ATM and above 100 OTM

378 Analytical Finance: Volume I



Option Sensitivity

Throughout this chapter, the strategy examples refer to market sensitivities of
the options involved. These sensitivities are commonly referred to as the
“Greeks” and these are defined below.
Delta measures the change in the option price for a given change in the

price of the underlying and thus enables exposure to the underlying to be
determined. The delta is between 0 and +1 for calls and between 0 and 1 for
puts, (thus a call option with a delta of 0.5 will increase in price by one tick for
every two tick increase in the underlying).
Gamma measures the change in delta for a given change in the underlying.

(E.g. if a call option has a delta of 0.5 and a gamma of 0.05, this indicates that
the new delta will be 0.55 if the underlying price moves up by one full point
and 0.45 if the underlying price moves down by one full point).
Theta measures the effect of time decay on an option. As time passes,

options will lose time value and the theta indicates the extent of this decay.
Both call and put options are wasting assets and therefore have a negative theta.
Note that the decay of options is non-linear in that the rate of decay will

Fig. 8.9 The effect of the volatility for a long straddle build by a long call and a
long put option with the same strike
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accelerate as the option approaches expiry. As can be seen on the slope in
Fig. 8.8, the theta will reach its highest value immediately before expiry.
Vega measures the effect that a change in implied volatility has on an

option’s price. Both calls and puts will tend to increase in value as volatility
increases, as this raises the probability that the option will move ITM. Both
calls and puts will thus possess a positive vega.
Rho measures the effect that a change in the risk-free interest rate has on an

option’s price.

Put Call Parity

Of particular importance with regard to arbitrage trades is the concept of put
call parity. This is the relationship, which exists between calls and puts. It
states that the value of a call (put) can be derived from the value of a put (call)
with the same exercise price, maturity date and underlying price. Hence, for
options on futures:

C ¼ Pþ F� X

where:
C ¼ call price
P ¼ put price
F ¼ futures price
X ¼ exercise price
This assumes there are no carrying costs for options. A put call parity price

for premium up front options can be found by slightly modifying this formula.
Arbitrage trades are based on the relationships that exist between certain
positions using options and futures. Referred to as synthetic positions, they
are derived from put call parity and, by using this relationship, it is possible to
perform arbitrage between synthetic positions and their outright equivalent.

8.3 A Decreasing Markets

A decreasing market is also called baisse or a bearish market. In this section we
will discuss some of the strategies for situations when you believe that the
underlying price will decrease.
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8.3.1 Long Put [�1 0]

Market Belief
You believe on a decreasing market price of the stock or index.

Construction
Purchase a near-the-money or an ATM put option on the stock. The stock/
index 5 days volatility should be low to neutral when compared with its
100 day volatility. You profit if the stock goes up beyond your break-even
price. Probability should always be greater than 50 %. The more bearish you
are the more OTM (lower strike) should be the option you buy.

Profit
The profit is almost unlimited on a default. The profit increases as stock falls.
At expiration, break-even point will be option exercise price a less premium
paid. For each point below break-even, profit increases by additional point.

Break-Even
The strike price of the option minus the initial premium.

Losses
Limited to the amount paid for option. Maximum loss is realized if the stock
ends above option strike price. For each point below the strike, loss decreases
by additional point.

Margin Requirement
None.

Comments
This position is a wasting asset. As time passes, value of position erodes toward
expiration value. If the volatility increases, erosion slows, if the volatility
decreases, erosion speeds up.

Trading Reasons

1. To get a profit on a decreasing market.
2. To protect a profit in the underlying stock.
3. To reduce the risk if owning the underlying stock.
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Follow Up
On an increase:

• Create a positive or negative price-spread (see the price-spread below).
• Shift to a higher strike price. In that way you can realize the so far earned

profit.
• Buy a forward. Then you take a risk, but you can buy the underlying for a

low cost. This follow up requires being under guard.

On a decrease:

• Create a price-spread on a higher level.
• Create a ratio spread (see ratio spread below).
• Create a sloping synthetic position (see below).

8.3.2 Short (Written) Call [0 �1]

Market Belief
You believe the market will trend down or sideways for a period of 30 days or
similar.

Construction
You sell (short) a far OTM call option. The strike price should be above the
expected range of the stock during that time period. The stock/index 5 days
volatility should be generally high or at least neutral when compared with its
100 day volatility. The probability of profit should be greater than 80 %.

Profit
Limited to the initial premium if the underlying price is below the strike price
at maturity.

Break-Even
The option strike price minus the initial premium.

Losses
Unlimited if the underlying price increases to infinity.
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Margin Requirement
Always required.

Comments
If the underlying price remains constant, the option value decreases with time
due to the time value. You can also use this feature if you already own the
underlying stock and you feel it will not move significantly for a period of time
and want to earn some extra money by selling a covered call.

Trading Reasons

1. To get a profit on a falling or neutral market.
2. To increase the profit on a weakly increasing market.
3. To get compensation in a decrease in the underlying price.
4. To fix a satisfactory underlying price to sell the underlying.

Follow Up
On an increase:

• Create a price-spread, positive or negative.
• Create a time-spread.

On a decrease:

• Roll to a higher strike price – eventually, also issue a put option.
• Buy the underlying or a forward/future contract.
• Roll to a higher strike price with longer maturity.

8.3.3 Negative Price Spread [0 �1 0]

A negative price-spread is also called a bear spread or a basis spread.

Market Belief
You think the stock will go down somewhat or at least is a bit more likely to fall
than to rise. This is a good position if you want to be in the stock but are
unsure of bearish expectations. This is one of the most popular bearish
strategy. This is also a conservative strategy when you believe more on a
decrease than an increase.
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Construction

1. A call option is bought with a higher strike and another call is sold with a
lower strike, producing a net credit.

2. A put option is bought with a higher strike price and another put option is
sold with the lower strike, producing a net debit.

In Fig. 8.12 we have constructed the positive price-spread using two call
options. Both options have a maturity of 6 months, a volatility of 40 % and
discounted with a risk-free interest rate of 2 %. We suppose that the initial
stock price is 15 and we buy an option with strike price 20 and go short in
another call option at strike 10. In Fig. 8.10 we illustrate the initial payoff and
the payoff at maturity.
In Fig. 8.11 we see the payout at maturity of the same strategy as in

Fig. 8.10.
In Fig. 8.12 we have constructed the positive price-spread using two put

options. Both options have a maturity of 6 months, a volatility of 400 % and
discounted with a risk-free interest rate of 2 %. We suppose that the initial
stock price is 15 and we buy an option with strike price 18 and go short in
another put option at strike 12.

Fig. 8.10 A negative price-spread with call options. The thin line represent the
option value when you buy the option (at time t ¼ 0) and the fat line the profit at
maturity
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Fig. 8.11 The negative price-spread with call options at maturity

Fig. 8.12 A negative price-spread with put options
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Profit
The total profit is limited, reaching maximum if stock ends at or below the
lower strike at maturity. If a put spread used, the payoff is given as the
difference between the strikes minus the initial debit. With the call spread in
Fig. 8.10, the initial credit is given as 5.207� 0.418¼ 4.789 where the values
are calculated using Black–Scholes formula.

Break-Even
The strike price for the long option minus the initial premium.

Losses
Maximum, if stock at expiration is at or above the higher strike price. For a put
spread, the maximum loss is the net initial debit. For a call spread, it is the
difference between strikes minus the initial credit.

Margin Requirement
Here we have the possibility to offset the margin requirement.

Comments
The time value has only a small influence since the position is balanced. As we
can see in the figures, the maximum loss is limited but also the profit. The
maximum loss decreases on the cost of the maximum profit. If a negative price-
spread succeeds and if you believe on a further decrease, the position can be
“rolled” similarly as for a positive price-spread. On an increase, you can sell the
long position. You can also issue more put options. This position requires less
changes in the underlying price then a long put option and have a lower break-
even. Normally, such a strategy has a maximum profit between 75 % and
150 %.

Trading Reasons

1. To give a higher probability to a profit than a long put option.
2. This strategy requires smaller changes in the underlying price than a long

put option.
3. One can buy more contracts than on a naked put option.

Follow Up
On a decrease
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• Roll the price-spread to a lower strike price

On an increase

• Issue more put options and create a ratio spread or a ladder.
• Issue a call option to compensate for the initial cost and create a three-

legged position.

Due to a low initial cost, only a small change in the underlying is needed to get
a profit. The maximum profit of is reached if the underlying price is below lower
strike. If the position is taken together with a long position in the underlying,
then the negative price-spread is a strategy to reduce the risk on a price decrease.

8.3.4 Negative Time-Spread [+�]

Market Belief
This spread is used when you are bearish on the stock/index over the next
several months. The investor believes in a weak initial market, but with a
strong decrease in the future. This strategy is also called a negative time-spread.

Construction
You buy a put option at near the money (or ATM) with a long maturity and
sell put options with a lower strike with a shorter time to maturity.

Profit
You profit in two ways

1. The premium received for the sale of the put with near expiration and
2. From the downward movement of the stock price over the specified longer

expiration.

Losses
Limited to the difference in strike price +/� the initial profit/cost.

Margin Requirement
Yes, but this is limited due to off-setting.

Comments
It is possible that the issued option will be exercised. Initially the sale of the put
reduces the cost of the spread, but each month you sell another put generating
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monthly income until the price of the stock gets close to the strike of the
purchased put. Once the stock price has reached near the strike price of the
long term purchased put, you continue to profit from the stock/index’s price
decrease without the need of selling more puts. Your potential profit is
unlimited, but your risk is limited and will vary during the time the spread
is in effect. Since the spread is continually adjusted over time, an accurate
probability of profit cannot be determined prior to placing the trade. Margin
requirements vary depending on the distance between strike prices. The rapid
time decay of the closer expiration put sold and the slower time decay of the
farther expiration put is your friend with this trade.

In Fig. 8.13 we illustrate a time-spread with two put options with strike
prices at 15 for the sold option with maturity in a year and a bought put option
at strike 13 with 6-month maturity. The initial stock price is 15. The risk-free
interest rate is 2 % and the volatility 60.0 %.
Figure 8.14 illustrate the situation when we reach the first option maturity

and still have a half of a year to the second option maturity.

Fig. 8.13 A time-spread with put options. The thin line represent the value of the
strategy when entering the trade (at time t ¼ 0). The fat line is the value when the
first (shortest to maturity) option expire
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A negative time-spread can also be made by call options. In Fig. 8.15 we
illustrate a time-spread with two call options with strike prices at 17 for the
bought option with maturity in a year and a sold put option at strike 14 with
maturity six month. The initial stock price is 15. The risk-free interest rate is
2 % and the volatility 40 %.
Figure 8.16 illustrate the situation when we reach the first option maturity

and still have a half of a year to the second option maturity.

8.3.5 Ratio-Spread with Put Options [1 �1 0]

Market Belief
This spread is used in the same way as a long put. You should be very bearish
on the stock/index and the expected range of the stock during the particular
time period should extend significantly beyond the break-even points of the
position.

Fig. 8.14 The diagonal spread with put options at the fist maturity
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Construction
You buy one of the higher strike put options that are near the current price and
sell two put at a lower strike price than those purchased. This ratio (buy 2; sell
1) reduces the cost of the two puts purchased, often to the point or a free trade.

Profit
Limited. The difference between the strike prices plus/minus the net profit/
cost for the options. The maximum profit is reached on the lower strike price.

Losses
Unlimited. The strategy gives losses on a big decrease in underlying price.

Margin Requirement
Always needed.

Fig. 8.15 A time-spread with call options. The thin line represent the value of the
strategy when entering the trade (at time t ¼ 0). The fat line is the value when the
first (shortest to maturity) option expire
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Comments
Your break-even has two different points and you will lose money if the
options expire at any point between the two break-even prices. You can also
use a 3:2 ratio (buy 3; sell 2) which will reduce the cost further or increase the
credit received, but the break-even points will be extended even further
requiring an even greater move in the stock price for a profit. The probability
of profit should be greater than 40 % and rarely will exceed 60 %.The strategy
requires massive coverage.

In Fig. 8.17 we illustrate a put ratio spread with two put options. Here we
buy one at strike 16 and sell two at strike 10. The initial stock price is 15, the
risk-free interest rate 2 % and the volatility 40 %. Fig. 8.18 illustrate the same
situation at maturity.

8.3.6 Negative Back-Spread [�1 1 0]

Back-spreads is a common name when you have more long options than short
options. If you buy one more option, you will get a ladder or a stair which we
will study in a later section.

Fig. 8.16 The diagonal spread with call options at the fist maturity
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Fig. 8.17 A put ratio spread with put options. The thin line represents the value
when the strategy is bought and the thick line the profit at maturity

Fig. 8.18 The put ratio-spread with put options at maturity
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Market Belief
The investor believes in a decrease of the underlying but wants a good
protection for an increasing market.

Construction
Issue put options with a high strike and buy twice as many options with a
lower strike at the same maturity.

Profit
Unlimited.

Losses
Limited to the difference between the strike prices plus possible costs or minus
possible profits.

Break-Even
The lower strike price plus the difference between the strike prices plus
possible losses or minus possible profits.

Margin Requirement
Very restricted.

Trade Reasons

1. To get a lower loss on an increase, compared with buying a put option.
2. To get a lower loss on an increase, compared with a three-leg position.

Follow Up
On an increase:

• Issue a put option to a lower strike price and buy back the issued option.
• Buy the underlying forward.

On a decrease:

• Issue put options on a lower strike price and call options on a higher strike.
• Issue put options on a lower strike price with later maturity.

In Fig. 8.19 we illustrate a negative back-spread with two put options. Here
we buy two at strike 15 and sell one at strike 20. The initial stock price is
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15, the risk-free interest rate 2 % and the volatility 40 %. Figure 8.20
illustrates the same situation at maturity.

8.3.7 A Negative Three-Leg Position [�1 0 �1 0]

Market Belief
The investor believes in a strong decrease of the underlying, but wants at the
same time a good protection on a decrease of the underlying price.

Construction
Buy a put option with a low strike price and a call option at a high strike. Then
sell a call options with a strike in the middle (near at-the-money) of the other
two strikes.

Profit
Unlimited.

Losses
Limited. The maximum loss is the difference between the strike prices on the
call options plus a possible initial cost or minus a possible initial profit.

Fig. 8.19 A negative back-spread with put options. The thin line represents the
value when the strategy is bought and the thick line the profit at maturity
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Break-Even
Upwards: The put option strike price minus the possible cost.
Downwards: The lower strike price on the call option plus the possible initial

income.

Margin Requirement
Limited.

Trade Reasons

1. The position gives a lower cost than to buy a put option and have a lower
Break-even.

2. The position gives no loss with a limited decrease as the back-spread above.

Follow Up
On profit:

• Issue put option on a lower level and use the income to close the negative
price-spread.

Fig. 8.20 The negative back-spread with put options at maturity
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• Roll the owned put option to a lower strike price and use the profit to close
negative price-spread.

On losses:

• Sell the owned call option and roll the issued option to a higher strike price.
• Sell the owned put option and create a price-spread on a lower level.

In Fig. 8.21 we illustrate a put negative three-leg strategy where we have
bought a put option at strike 10 and a call option at strike 20. Then we sell a
call option at ATM, strike 15. The initial stock price is 15, the risk-free interest
rate 2 % and the volatility 40 %. Figure 8.22 illustrate the same situation at
maturity.

8.4 An Increasing Market

An increasing market is also called Hausse or a bullish market. In this section
we will discuss some of the strategies for situations when you believe that the
underlying price will increase.

Fig. 8.21 A negative three-leg strategy with two call options and one put
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8.4.1 Long Call/Bought Call [0 1]

Market Belief
You are very bullish on the stock. The more bullish you are, the higher the
strike should be. No other position gives you so much leveraged advantage
with limited downside risk.

Construction
You purchase a near-the-money or ATM call option. The stock/index 5-day
volatility should be low to neutral when compared with its 100 day volatility.
Probability should always be greater than 50 %.

Profit
The profit increases as stock rises. At expiration, break-even point will be
option strike a plus premium paid. For each point above break-even, profit
increases by an additional point.

Break-Even
Strike price plus the premium.

Fig. 8.22 The negative three-leg strategy at maturity
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Losses
The loss is limited to the premium paid. Maximum loss realized if the stock
ends below A. For each point above A, loss decreases by additional point.

Margin Requirement
None.

Comments
This position is a wasting asset. As time passes, value of position erodes toward
expiration value. If volatility increases, erosion slows; if volatility decreases,
erosion speeds up.

Trade Reasons

1. To get a better lever.
2. To get a lower risk compared with buying the underlying.
3. To avoid tying up capital.
4. To insure a future bought of the underlying stock.
5. To sell stocks and still make a profit on a continuous increase of the

underlying.

Follow Up
On an increase:

• Create a price-spread, positive or negative
• Shift to a higher strike price. Then we lock-in the earned profit.
• Sell a forward. You then take a risk, but you can buy the underlying to a

favorable price.

On a decrease:

• Create a price-spread on lower level.
• Create a ratio spread.
• Create a sloping synthetic position.

8.4.2 Sold Put Option/Short Put [1 0]

Market Belief
You are certainly sure that the price will not fall.
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Construction
Sell a put option and sell to a lower strike option if you are only somewhat
convinced. Sell higher strike options if you are very confident the stock will
stagnate or rise. If you doubt that the stock will stagnate, sell ATM options for
maximum profit.

Profit
Limited to the premium received from sale. Maximum profit realized if stock
settles at or above a.

Break-Even
At expiration, break-even point is strike price a less premium received.

Losses
Increases as stock falls. At expiration, losses increase by one point for each
point stock is below break-even. Because the risk is open-ended, this position
must be watched closely.

Margin Requirement
Always.

Comments
This position is a growing asset. As time passes, value of position increases as
option loses its time value. Maximum rate of increasing profits occurs if the
option is at-the-money.

Trade Reasons

1. To get a profit on a neutral and/or a weakly increasing market.
2. If you plan to buy the underlying.

Follow Up
On an increase

• Create a positive or negative price-spread.
• Create a time-spread (calendar spread).

On a decrease

• Roll the position to a lower strike price (maybe also issue a call option).
• Sell short (without ownership) the underlying or sell a forward contract.
• Roll the position to a lower strike price with later maturity.
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8.4.3 Put Hedge, Protective Put or Synthetic Call [0 1]

Market Belief
You are very bullish on the stock. The more bullish you are, the higher the
strike should be. No other position gives you so much leveraged advantage
with limited downside risk. You can also protect an ownership for a possible
decrease in price and to look-in the earned profit. At the same time, you can
keep the underlying and get a continuous profit on a price increase.

Construction
You purchase a near-the-money or an ATM put option. The stock/index
5 days’ volatility should be low to neutral when compared with its 100 day
volatility. You profit if the stock goes down beyond your break-even price.
Probability of profit should always be greater than 50 %.

Profit
Increases as stock rises. At expiration, break-even point will be option strike a
plus premium paid. For each point above break-even, profit increases by an
additional point.

Break-Even
The underlying price minus the initial premium

Losses
The losses are limited to the paid premium. Maximum loss realized if the stock
ends below a. For each point above a, loss decreases by additional point

Margin Requirement
None.

Comments
This position is a wasting asset. As time passes, value of position erodes toward
expiration value. If volatility increases, erosion slows; if volatility decreases,
erosion speeds up. You can use delta to calculate the number of options needed
to become delta-neutral. If you buy the options at-the-money, delta ¼ 0.5.
Then you should buy twice as many options to become delta-neutral. On price
changes, you can issue call options with higher strike price.

Trade Reasons
To protect (hedge) the owned stocks. In that way you lock the profit, you have
and decrease the risk by owning the underlying.
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Follow Up
On profits

• Issue a call option on a higher level to compensate for the cost.
• Issue a call option and move the put option to a higher strike price to lock

the earned profit.

On losses

• Issue a call option to compensate the cost. This is called a fence (¼ a
positive price-spread). If you believe on a price turn, sell the put option and
buy more stocks at the new lower price level.

In Fig. 8.23 we illustrate a protective put. Here we own the stock or buy the
forward (future) and buy a put option at ATM strike, that is, at 15. The initial
stock price is 15, the risk-free interest rate 2 % and the volatility 40 %.
Fig. 8.24 illustrate the same situation at maturity.

Fig. 8.23 A protective put where we also owns the underlying
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8.4.4 Positive Price Spread/Bull Spread [0 1 0]

Market Belief
You think the stock will go up somewhat or at least is a bit more likely to rise
than to fall. This is a good position if you want to be in the stock but are
unsure of bullish expectations, and the most popular bullish strategy. It is also
a conservative strategy to believe more in an increase than a decrease. (Limited
positive.)

Construction

1. Call option is bought (usually an ATM) with a strike price of a and another
call option sold with a higher strike producing a net debit.

2. Put option is bought with a lower strike and another put sold with a higher
strike producing a net credit.

Profit
Limited, reaching maximum if stock ends at or above the higher strike b at
expiration. If call spread used, difference between strikes minus initial debit. If
put spread used, net initial credit. You get the maximum profit when the

Fig. 8.24 The protective put at maturity, where we owns the underlying
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underlying price is above the higher strike price, b. The maximum profit varies
between 75 % and 150 % on the initial cost.

Break-Even
Strike price of the bought option plus the premium.

Losses
Maximum loss if stock at expiration is at or below a. If call spread used,
maximum loss is net initial debit. If put spread, difference between strikes
minus initial credit. You get the maximum when the underlying price is below
the lower strike price, a.

Margin Requirement
Possibility to off-set the margin requirement.

Comments
The time value has no influence since the position is in balance. As we can see
in the Figures, the maximum loss is limited as well as the profit. The maximum
loss is decreased on the cost of the maximum profit. At the same time, the total
profit will be better than with a single call option. This is due to the premium
for the sold call option. If a positive price-spread succeeds and if you believe on
a further increase, it is possible to roll the position by buying back the issued
put option and buy a new one with higher strike. On a decrease you can sell de
ownership. Remark! always buy cheaply and sell expensively.

Trading Reasons

1. To get a maximum yield on our market belief.
2. To get a higher probability for a profit compared with buying a single call

option.
3. It is easier to follow up this position than a single call option.

Follow Up
On an increase

• Roll the price-spread to a higher strike.

On a decrease

• Issue more call options and create a ratio spread or a ladder.
• Issue put options to compensate for the initial cost.
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In Fig. 8.25 we illustrate a positive price-spread with call options. Here we
buy a call option at 10 and sell another on at 20. The initial stock price is
15, the risk-free interest rate 2 % and the volatility 40 %. Figure 8.26 illustrate
the same situation at maturity.

8.4.5 A Fence [0 1 0 *]

Market Belief
The investor is almost sure that the market will increase, but not how much.
Therefore he wants to minimize the risk for a possible decrease.

Construction
Issue a call option and buy a put option. The investor owns the underlying.

Profit
The strike price of the call option minus the underlying price plus possible
profit or minus the cost.

Break-Even
The stock price plus cost or minus the profit.

Fig. 8.25 A positive price-spread with call options
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Losses
Limited; the stock price minus the strike price of the put option plus cost or
minus the profit.

Margin Requirement
Possibility to off-set the margin requirement.

Trade Reasons

1. To lower the risk when you own the underlying.
2. To lock-in profits in the underlying.

Follow Up
On an increase:

• Sell the put option and roll the call option to a higher strike price.
• Roll the call option to a higher strike price and with later maturity.

On a decrease:

• Roll the issued call option to a lower strike price.

Fig. 8.26 The positive price-spread with call options at maturity
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• If you believe on a turn on the market, sell the put option with profit and
buy more of the underlying stocks to the new and lower price.

In Fig. 8.27 we illustrate a fench made by buying a put option with a strike
10 and a call with a strike 20 and at the same time holding the underlying
stock or forward/future. The initial stock price is 15, the risk-free interest rate
2 % and the volatility 40 %. Figure 8.28 illustrate the same situation at
maturity.

8.4.6 Positive Time Spread [- +]

Market Belief
This spread is used when you are bullish on the stock/index over the next few
months.

Construction
You purchase a call option with a low strike and a long maturity and sell
another call option with a higher strike with shorter time to maturity.

Fig. 8.27 A positive price-spread with call options
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Profit
You profit in two ways;

1. the premium received for the sale of the call with near expiration and
2. from the upward movement of the stock price over the specified longer

expiration.

Losses
Limited to the difference in strike prices +/� the initial cost/profit.

Margin Requirement
Yes, but with possible off-setting.

Comments
There is a risk that the issued option will be exercised. Initially the sale of the
call reduces the cost of the spread, but each month you sell another call
generating monthly income until the price of the stock gets close to the strike
of the purchased call. Once the stock price has reached near the strike price of
the long term purchased call you continue to profit from the stock/index’s
price increase without the need of selling more calls. Your potential profit is

Fig. 8.28 The positive price-spread with call options at maturity
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unlimited, but your risk is limited and will vary during the time the spread is in
effect. Since the spread is continually adjusted over time an accurate probabil-
ity of profit cannot be determined prior to placing the trade. Margin require-
ments vary depending on the distance between strike prices. The rapid time
decay of the closer expiration call sold and the slower time decay of the farther
expiration call are your friend with this trade.

In Fig. 8.29 we illustrate a positive time-spread with two call options. We
use a bought call option at strike 14 and maturity in a year and a sold call
option at strike 16 with maturity in 6 months. The underlying price is 15, the
volatility 40 % and the risk-free rate 2.0 %.
In Fig. 8.30 we illustrate the strategy after 6 months when the first option

gains maturity.
This strategy can also be made by put options. In Fig. 8.31 we illustrate a

positive time-spread with two put options. We use a sold put option at strike
14 and maturity in a year and a bought put option at strike 16 with maturity in
6 months. The underlying price is 15, the volatility 60 % and the risk-free rate
2.0 %.
In Fig. 8.32 we illustrate the strategy after 6 months when the first option

gains maturity.

Fig. 8.29 A positive time-spread with call options
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Fig. 8.30 The positive time-spread with call options on the first option maturity

Fig. 8.31 A positive time-spread with put options
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8.4.7 Ratio Spread with Underlying’s [1 2 0]

Market Belief
The investor believes in a limited increase in the underlying price.

Construction
Buy a call options with a low strike price and sell twice as many call options
with a higher strike with the same maturity. You also buy the forward/future or
own the underlying security.

Profit
Limited. The maximum profit is reached when the underlying price is above
the upper strike price: The strike price of the issued call option minus the
underlying price plus the difference between the strike prices plus possible
profits or minus possible costs.

Losses
Losses are limited to the initial cost, that is, the underlying price plus costs or
minus profits.

Fig. 8.32 The positive time-spread with put options on the first option maturity
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Break-Even
The break-even is reached at the underlying price plus the cost or minus
profits.

Margin Requirement
Very limited since you own the underlying.

Trade Reasons

1. To get a better yield if the underlying reach the target price.
2. To get a profit on a neutral market.

Comments
This is a strategy if, at low risk, you want to increase your yield on owned
stocks, in a neutral or weak increasing market. Over time, the yield is better
than only an ownership in the stocks.

Follow Up
On an increase:

• Roll one of the issued call options to a higher strike price.
• Roll the call options to a higher strike price with later maturity.
• Buy more stocks or forwards.

On a decrease:

• Sell the owned call option.
• Sell the underlying.

In Fig. 8.33 we illustrate a ratio spread where we also own the underlying
stock. The ration spread is made by buying a call option with a strike 10 and a
sell two call options at 20. At the same time we own the underlying stock or
forward/future. The initial stock price is 15, the risk-free interest rate 2 % and
the volatility 60 %. Figure 8.34 illustrate the same situation at maturity.

8.4.8 Positive Back Spread [0 �1 1]

Back spreads is the common name when you hold more options than you is
short. If you buy one more leg you get a ladder or a stair (see below).
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Fig. 8.33 A ratio-spread with call options

Fig. 8.34 The ratio-spread with call options at maturity
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Market Belief
The investor believes in an increase of the underlying price, but wants a very
good protection against a falling market.

Construction
Issue call options and buy twice as many with a higher strike price and same
maturity

Profit
Unlimited.

Losses
Losses are limited to the difference between the strike prices plus possible cost
or minus possible profit.

Break-Even
The break-even is the higher strike price plus the difference between the strike
prices plus possible cost or minus possible profits.

Margin Requirement
Very limited.

Trade Reasons
Gives lower losses on a decrease compared with bought call options and a
three-leg position.

Follow Up
On an increase:

• Issue to a higher strike price and buy back the issued call option.
• Sell the underlying forward.

On a decrease:

• Issue call options on a higher strike price and put options on a lower price.
• Issue call options on higher strike prices with later maturity.

In Fig. 8.35 we illustrate a positive back-spread with call options with strikes
10 and 20. The initial stock price is 15, the risk-free interest rate 2 % and the
volatility 40 %. Figure 8.36 illustrate the same positive back-spread at
maturity.
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Fig. 8.35 A positive back-spread with call options

Fig. 8.36 The positive back-spread with call options at maturity
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8.4.9 Long Synthetic Forward [1]

Market Belief
The investor believes in a strong increase of the underlying, but wants a more
flexible position than buying the forward.

Construction
Issue a put option and buy a call option with same strike price.

Profit
Unlimited.

Losses
Unlimited: Strike price plus possible cost or minus possible income.

Break-Even
Strike price plus initial cost or minus initial income.

Margin Requirement
Always needed.

Trade Reasons

1. To create the same position as buying the underlying, but with a much
lower cost.

2. This requires smaller movements than a long call option.
3. Gives higher potential yield than a long call option.

Follow Up
On an increase:

• Issue a call option to a higher strike price and use the income to buy back
the issued put option.

• Lock-in the profit selling the forward.
• Roll the call option to a higher strike price and buy back the issued put

option.
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On a decrease:

• Roll the issued put option to a lower strike price and maybe sell the owned
call option.

• Roll the issued put option to a lower strike price with later maturity.
• Sell the owned call option and create a price-spread on a lower level.

In Fig. 8.37 we create long forward/future or stock by buying a call option
and selling a put option ATM. The initial stock price is 15, the risk-free
interest rate 2 % and the volatility 40 %. Figure 8.38 illustrate the same
position at maturity.

8.4.10 Long Sloping Synthetic Forward [1 0 1]

Market Belief
The investor believes in a strong increase in the underlying price, but wants a
more flexible position than buying the forward.

Fig. 8.37 A synthetic long forward/future or stock made by a long call and a short
put option
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Construction
Issue put options to a lower strike price and buy a call option with a higher
strike price.

Profit
Unlimited.

Losses
Unlimited, put options strike price plus initial costs or minus initial income.

Break-Even
The strike price of the call option plus initial cost or the strike price of the put
option minus initial income.

Margin Requirement
Always needed.

Trade Reasons

1. Lower risk than for a synthetic forward.
2. Higher potential than a positive stair.

Fig. 8.38 The synthetic long forward/future or stock made by a long call and a
short put option at maturity
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Follow Up
On an increase:

• Issue a call option to a higher strike price and use the income to buy back
the issued put option.

• Lock-in the earned profit by selling the forward.
• Roll the call option to a higher strike price and buy back the issued put

option.

On a decrease:

• Roll the issued put option to a lower strike price and eventually sell the
owned call option.

• Roll the issued put option to a lower strike price with later maturity.
• Sell the owned call options and create a price-spread on a lower level.

In Fig. 8.39 we create long sloping forward/future or stock by buying a call
option at 16 and selling a put option at 13. The initial stock price is 15, the

Fig. 8.39 A synthetic long sloped forward/future or stock made by a long call and a
short put option
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risk-free interest rate 2 % and the volatility 40 %. Figure 8.40 illustrate the
same position at maturity.

8.4.11 Positive Stair [0 1 0 1 0]

Market Belief
The investor believes in an increase in the underlying price but want to be
protected against a decrease.

Construction
Create two positive price-spreads, one with call options and another with put
options.

Profit
Limited to the difference in the strike price of the call options minus initial cost
or plus the initial profit.

Fig. 8.40 The synthetic long sloped forward/future or stock made by a long call
and a short put option at maturity
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Losses
Limited to the difference in the strike price of the put options plus the initial
cost or minus the initial profit.

Break-Even
The lower call option strike price plus the initial cost or minus the initial profit.

Margin Requirement
Limited.

Trade Reasons

1. To get a lower risk than a synthetic forward or a sloped synthetic forward.
2. Lower cost than a positive price-spread.

Follow Up
On an increase:

• Roll the price-spread to a higher strike price.
• Sell the owned put option and move the issued call option to a higher strike

price.

On a decrease:

• Issue more call options and create a ratio spread or a ladder.
• Sell the owned call options and roll the issued put option to a lower strike

price with later maturity.

In Fig. 8.41 we have created a positive stair by buying a call option at 14 and
selling another call option at 16. We also buy a put option at 10 and selling
another put option at 12. The initial stock price is 15, the risk-free interest rate
2 % and the volatility 40 %. Figure 8.42 illustrate the same position at
maturity.

8.4.12 A Ratio Spread with Call Options [0 1 �1]

Market Belief
This spread is used under the same conditions as a long call or the bull call
debit spread. You should be very bullish on the stock/index and the expected
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Fig. 8.41 A strategy called a positive stair made by two call options and two put
option

Fig. 8.42 This is how we can make a positive stair using two call options and two
put options
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range of the stock during the particular time period should extend significantly
beyond the break-even points of the position.

Construction
You buy two of the higher strike call options that are near the current price and
sone) reduces the cost of the two calls purchased often to the point or a free
trade or credit to put on the spread and has unlimited profit potential, but the
risk can be higher since you will be responsible for the difference in strike
prices plus any premium paid or less any credit received.

Profit
Limited. The difference between the strike prices plus/minus the net profits/
costs for the options. You get the maximum profit at the higher strike price.

Losses
Unlimited. The strategy gives a loss if there is a large increase in the underlying
price.

Break-Even
As a result your break-even has two different points and you will lose money if
the options expire at any point between the two break-even prices.

Margin Requirement
Always needed.

Trade Reasons

1. The strategy has lower cost than a bought price-spread.
2. The strategy gives only losses if there is a large increase in the underlying

price.
3. There is a high probability to get a profit.

Comments
The strategy requires a careful follow-up. You can also use a 3:2 ratio (buy
three, sell two) which will reduce the cost further or increase the credit
received, but the break-even points will be extended even further requiring
an even greater move in the stock price for a profit. The probability of profit
should be greater than 40 % and rarely will exceed 60 %.
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Follow Up
On an increase:

• Buy a call option with higher strike price.
• Move one of the issued call the options to a higher strike price and create a

ladder.
• Buy the underlying forward if and when the prices pass the upper strike

price.

On a decrease:

• Sell the owned call option.
• Sell the owned call option and buy back one of the issued call options.

In Fig. 8.43 we have created a ratio spread by buying a call option at 14 and
selling two call options at 18. The initial stock price is 15, the risk-free interest
rate 2 % and the volatility 40 %. Figure 8.44 illustrate the same position at
maturity.

Fig. 8.43 A ratio spread made by two call options. We buy one at 14 and sell two
at 18
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8.4.13 Positive Three-Leg Positions [1 0 1 0] and [0 1 0 1]

Market Belief
The investor believes in a strong increase in the underlying price, but at the
same time needs a good protection on a decrease.

Construction
Sell put options with a low strike price, buy call options at a mid-strike and sell
call options with a high strike price.

Profit
Limited to the difference in strike prices of the call options minus initial cost or
plus possible profit.

Losses
Unlimited. The strike price of the put options plus initial cost.

Break-Even
The lower strike price on the put option plus possible cost.

Fig. 8.44 The ratio spread at maturity, made by two call options. We buy one at
14 and sell two at 18
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Margin Requirement
Always needed.

Trade Reasons

1. The strategy gives no risk on the positive side as for the ratio spread.
2. The strategy gives lower price than a price-spread.
3. The strategy gives higher probability for a profit than a long call option.

Follow Up
On a profit:

• Move the put option to a higher strike price and use the income to move
the issued call option to a higher strike price.

• Roll the price-spread to a higher strike price.

On losses:

• Roll the issued put option to a lower strike price and (maybe) sell the owned
call option.

• Move the issued put option to a lower strike price with later maturity.
• Issue more call options and create a ratio spread or ladder.

In Fig. 8.45 we have created a three-leg strategy by selling a put option at
10, buying a call at 15 and selling another call options at 20. The initial stock
price is 15, the risk-free interest rate 2 % and the volatility 40 %. Figure 8.46
illustrate the same position at maturity.
Another way to create a positive three-leg strategy is by using two put

options and one call.

Market Belief
The investor believes in a strong increase in the underlying price, but at the
same time needs a good protection on a decrease.

Construction
Issue put options and buy put options with a lower strike and use the income
to buy call options.

Profit
Unlimited.

8 Strategies with Options 425



Fig. 8.45 A three-leg strategy made by one put and two call options

Fig. 8.46 The three-leg strategy at maturity made by one put and two call options
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Losses
Limited. Maximum loss is the difference between the strike prices of the put
options plus a possible net cost or minus a possible net profit.

Break-Even

Upwards: The strike price of the call options plus possible cost.
Downwards: The upper strike price on the put option minus possible income.

Margin Requirement
Limited.

Trade Reasons

1. The position gives a lower cost a bought call option and therefore a lower
break-even.

2. The position gives no losses on limited increase as the back spread above.

Follow Up
With profit:

• Issue a call option on a higher price and use the income to close the positive
price-spread.

• Roll the owned call option to a higher strike price and use the income to
close the positive price-spread.

On losses:

• Sell the owned put option and roll the issued to a lower strike price.
• Sell the owned call option and create a price-spread on a lower level.

In Fig. 8.47 we have created a three-leg strategy by buying a put option at
10, and selling another at 15 and buying a call options at 20. The initial stock
price is 15, the risk-free interest rate 2 % and the volatility 40 %. Figure 8.48
illustrate the same position at maturity.
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Fig. 8.47 A three-leg strategy made by one call and two put options

Fig. 8.48 The three-leg strategy at maturity made by one call and two put options
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8.4.14 Positive Three-Leg Position with Ownership
[1 0 1 0 *]

Market Belief
The investor believes in a limited increase of the underlying price but wants a
good protection against a decrease.

Construction
Buy the underlying, issue a call option, buy put option and issue a put option
on a lower strike.

Profit
Limited. The strike price of the call option minus the stock price minus initial
cost or + initial income.

Losses
Unlimited.

Break-Even
Upwards: The underlying price plus initial cost.
Downwards: The underlying price minus initial income.

Margin Requirement
Very limited since you own the underlying.

Comments
If you start with a covered call protected with a long put option and thereafter
want to get a better yield with issuing a put option on a low level, then you are
in the following situation.

Trade Reasons

• To lower the risk of buying the underlying.
• With a low underlying price and when you are uncertain if the bottom is

reached.
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Follow Up
At profit:

• Sell the put option and move the call option to a higher price.
• Move the call option to a higher strike price with later maturity.

At losses:

• Sell the issued options.
• Move the issued put option to a lower strike price with later maturity.
• If you believes in a turn in price; sell the put option and buy more stocks on

this low level.

In Fig. 8.49 we have created a three-leg strategy where we also own the
underlying stock or forward/future. We sell a put option at 10, buying another
at 15 and sell a call at 20. The initial stock price is 15, the risk-free interest rate
2 % and the volatility 40 %. Figure 8.50 illustrate the same position at
maturity.

Fig. 8.49 A three-leg strategy made by one call, two puts and underlying
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8.5 Neutral Markets

In a neutral market we believe on small changes in underlying prices, i.e., low
volatilities. We will now present some useful strategies under such market
conditions

8.5.1 A Short Straddle [1 �1]

Market Belief
This spread is used when you believe that the stock/index will stay essentially
unchanged with minimal price movement up or down in the near future. I.e.,
the investor believes in a market with low volatility.

Construction

1. Sell a put option and a call option with same strike price and maturity,
2. Buy the underlying and sell twice as many call options.

Fig. 8.50 The three-leg strategy from Fig.8.49 broken down to illustrate the time
to maturity. As we can see, it’s made one sold call, two puts and the underlying
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Profit

1. Limited to the premium, if the options are bought ATM.
2. The strike price minus the underlying price plus the premium.

Break-Even

1. b: the strike price minus the premium or
2. c: the strike price plus the premium.

Losses
Unlimited.

Margin Requirement
Always needed and high.

Comments
You profit if the price movement over the specified time period is less than the
premium received from the sale of the call and put. The rapid time decay in the
last month prior to expiration is your friend in this trade. The 5-day volatility
should be higher than the 100-day volatility. Expiration should generally be
less than 30 days of when the trade is placed. Probability of profit is generally
less than 50 %. However, high margin requirements generally require having a
larger trading account.

Trade Reasons
To get a payoff in a neutral market.

Follow Up
On increase (without ownership):

• Buy a call option with a lower strike price as protection.
• Buy a forward if the underlying increases above the upper level.

On decrease (without ownership):

• Buy a put option with lower strike price as protection.
• Sell a forward if the underlying decreases below the upper level.
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Neutral (without ownership):

• Buy a call option with higher strike price and a put option with lower strike
price. In that case you can lock the earned profit.

• If you can buy the call- and the put option with same strike price with later
maturity you can lock the earned profit

At a profit (with ownership):

• Buy the same amount of call options to a higher strike price.
• Buy the same amount of call options to the same strike price with later

maturity.

At a loss (with ownership):

• On an increase: buy more stocks or forwards.
• On an increase: buy call options with higher strike price.
• On a decrease: move the issued call options to a lower strike price.
• On a decrease: buy put options.

In Fig. 8.51 we have created a short straddle by selling a put and a call
ATM, i.e., at strikes 15. The initial stock price is 15, the risk-free interest rate
2 % and the volatility 40 %. Figure 8.52 illustrate the same position at
maturity. In Fig. 8.53 we make the same kind of strategy when we own the
stock (or forward/future). Then we just sell two call options.

8.5.2 Short Strangle [1 0 �1]

If we take the straddle in Sect. 8.6.1 and spread the strikes apart, we create a
strangle.

Market Belief
This spread is used when you believe that the price of the stock/index will stay
within a specific range in the near future, that is, the investor believes in market
with relative low volatility.

Construction
Sell a put option with a low strike price and a call option with a higher strike.
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Fig. 8.52 The short straddle made by a call and a put at maturity

Fig. 8.51 A short straddle made by selling a call and a put at ATM
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Profit
You profit if the price movement over the specified time period stays within
the range between the two strike prices or does not extend beyond either strike
price more than the premium received from the sale of the call and put.

Break-Even
The point where the lower strike price minus the premium is reached and the
point where the higher strike price plus the premium is reached.

Losses
Unlimited.

Margin Requirement
Always needed.

Comments
The rapid time decay in the last month prior to expiration is your friend in this
trade. The 5-day volatility generally should be higher than the 100-day
volatility. Expiration should generally be less than 30 days of when the trade

Fig. 8.53 The short straddle made by selling two calls and holding the underlying
at maturity
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is placed. Probability of profit is generally greater than 50 %. This is a very
high probability trade to profit if entered correctly. However, high margin
requirements generally require having a larger trading account.

Trade Reasons
To get a profit in a neutral or almost neutral market.

Follow Up
On an increase:

• Buy call options with lower strike price as protection.
• Buy the forward if the underlying reaches the level for the upward break-

even.

On a decrease:

• Buy put options with lower strike price as protection.
• Sell the forward if the underlying falls below the lower level of break-even.

On neutral:

• If you are able to buy a call option with higher strike price and a put option
with lower strike price so that the net profit is greater than the difference in
strike price, then you have locked-in a profit.

• Buy call- and put option with same strike price with later maturity to lock-
in the profit.

In Fig. 8.54 we have created a short strangle by selling a put and a call at
strikes 12 and 17 respectively. The initial stock price is 15, the risk-free interest
rate 2 % and the volatility 40 %. Figure 8.55 illustrate the same position at
maturity.

8.5.3 A Long Butterfly [0 1 �1 0]

Market Belief
You believe that the stock price will fluctuate in a narrow range.
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Fig. 8.55 The short strangle made by a call and a put at maturity

Fig. 8.54 A short strangle made by selling a call and a put
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Construction
Call option with low strike bought and two call options with medium strike
sold and call option with high strike bought. The same position can be created
with puts.

Profit
Limited, reaching maximum at a high strike.

Break-Even
If call version used, downside break-even ¼ low strike – net cost of spread,
upside break-even is at high strike + net cost of spread.

Losses
Maximum loss realized if stock ends below low strike or above high strike and
limited to net credit paid. For each point above low strike or below high strike,
loss decreases by additional point.

Margin Requirement
Low.

Comments
This position can be difficult to buy and sell during a short time period. This
position is a combined asset. As time passes, value of position increases/erodes
toward expiration value. If volatility increases, increase/erosion slows; if vola-
tility decreases, increase/erosion speeds up.

Trade Reasons
To get an income on a neutral or weak market with a minimized risk for losses.
In Fig. 8.56 we have created a long butterfly with call options. We made this

by buying call options at 12 and 18 and selling two call options ATM, 15. The
initial stock price is 15, the risk-free interest rate 2 % and the volatility 40 %.
Figure 8.57 illustrate the same position at maturity.

8.5.4 A Neutral Time Spread or Calendar Spread

Market Belief
The investor believes in an initial week market with a strong increase in the
future.
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Fig. 8.57 A long butterfly by call options at maturity

Fig. 8.56 A long butterfly by call options
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Construction
Issue a call option with short time to maturity and buy another call option with
the same strike price with later maturity. If the investor believes in the opposite
then he/she can make the reverse strategy with put options.

Profit
Big, if the long option still is alive when the short one has expired. If the
position are closed when the issued option have the maturity, the maximum
profit is reached ATM.

Losses
Limited to the difference in the strike price plus the premium.

Margin Requirement
Yes, but limited.

Comments
The risk is that the issued option will be exercised. Commonly, ATM options
are used. This strategy has a larger possible loss compared with a diagonal time-
spread if the underlying price decreases, but less during an increase. The
strategy is initializes when the shorter option has a month or less to maturity.

In Fig. 8.58 we have created a neutral time-spread, also called a calendar-
spread using two call options. We have bought one with maturity one year and
sold another with maturity g month. Both options have the strike given by 16.
The initial stock price is 15, the risk-free interest rate 2 % and the volatility
40 %. Figure 8.59 illustrate the same strategy at maturity.

8.5.5 Covered Call or Synthetic Sold Put Option [1 0 *]

Market Belief
You are sure that the price of the stock you hold will not fall. Sell lower strike
options if you are only somewhat convinced; sell higher strike options if you
are confident stock will rise. If you think stock will stagnate, sell ATM options
for maximum profit.

Construction
Issue call options. The number is calculated by delta.
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Fig. 8.59 The calendar spread by call options at maturity

Fig. 8.58 A calendar spread by call options
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Profit
Limited to the strike minus the market price plus the premium received. The
maximum profit is the strike price minus the underlying price plus the
premium.

Break-Even
Initial value minus the premium.

Losses
Similar to that incurred with ordinary stock ownership, only partially off-set by
the option premium received. Main loss could be the opportunity loss if the
market rises strongly.

Margin Requirement
Always needed.

Trade Reasons

1. To be compensated for an increase of the underlying.
2. To get an extra yield on a neutral market.

Follow Up
On profit:

• Move the call option to a higher strike price.
• Move the call option to a higher strike price with later maturity.
• Buy more stocks or forwards.

On losses:

• Move the call option to a lower strike price.
• Move the call option to a lower strike price with later maturity.
• Buy a put option.

Comments
This position is a growing asset. As time passes, value of position increases as
the option loses its time value. Maximum rate of increasing profits occurs if
option is at-the-money.
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Warning: As an investor this can be dangerous since the issued option might
be exercised, and you might not be allowed to sell the underlying stocks.

8.6 Volatile Markets

8.6.1 Long Straddle [�1 1]

Market Belief
You firmly believe that the stock moves far enough in either direction in the
short-term. Buy higher/lower strike options if the position can encounter
different probabilities of bullish or bearish movements of the stock; buy
ATM options if those probabilities are almost equal.

Construction
Call option and put option are bought with the same strike, usually
at-the-money, or buy the underlying and twice as many put options.

Profit
Increases as the stock rises or falls. At expiration, break-even points will be
option exercise price +/� prices paid for options. For each point above upside
break-even or below downside break-even, profit increases by an additional
point.

Losses
Limited to the amount paid for options. Maximum loss realized if stock ends
at option exercise. For each point above or below a, loss decreases by additional
point.

Break-Even
The strike price minus the premium and the strike price plus the premium.

Margin Requirement
None

Comments
This position is a wasting asset. As time passes, value of position erodes toward
expiration value. If volatility increases, erosion slows; if volatility decreases,
erosion speeds up.
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Trade Reasons
To get an income on a volatile market

Follow Up
On an increase (without ownership):

• Issue a call options with higher strike price and sell the owned put option.
• Sell the forward and the owned put option

On a decrease (without ownership):

• Issue a put option with higher strike price and sell the owned call option.
• Buy the forward and sell the call option

On a neutral market (without ownership):

• Issue a call options with a higher strike and a put options with a lower strike.
• Issue call- and put options with lower time to maturity.

On a profit (with ownership):

• On a decrease: sell half of the put options and buy more stocks on the new
and low price.

• On an increase: issue a call option on a higher strike, sell the owned put
options and buy half as many new on a higher strike price

On losses (with ownership) example:

• Issue 20 contracts of put options on a lower strike price and 10 contracts of
call options to a higher strike than the underlying price.

• Issue 20 contracts of put options with same strike price with later maturity.

In Fig. 8.60 we have created a long strangle by buying a put and a call at
strikes 15. The initial stock price is 15, the risk-free interest rate 2 % and the
volatility 40 %. Figure 8.61 illustrate the same position at maturity. In
Fig. 8.62 we have made the same strategy by holding the underlying and
buy twice as many put options.
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Fig. 8.60 A long straddle made by buying a call and a put at ATM

Fig. 8.61 The long straddle at maturity
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8.6.2 Long Strangle [�1 1 0]

Market Belief
You strongly believe the stock will move far enough from the predefined range.
This strategy is similar to the buy straddle but the premium paid here is less.
Buy higher/lower strike options if the position can encounter different prob-
abilities of bullish or bearish movements of the stock; buy ATM options if
those probabilities are almost equal.

Construction
Put option is bought with a low strike and a call option is bought with a high
strike.

Profit
Unlimited and increases as stock rises above the high or falls below the low
strike. At expiration, break-even points will be the option exercise price for the
low strike minus the prices paid for the options and option exercise price at the
high strike plus the prices paid for options. For each point above upside break-
even or below downside break-even, the profit increases by an additional
point.

Fig. 8.62 The long straddle constructed by the underlying and two bought put
options at maturity
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Break-Even
The point where the lower strike minus the premium is reached or where the
higher strike plus the premium is reached.

Losses
Limited to amount paid for options. Maximum loss realized if stock ends
between a and b. For each point above b or below a, loss decreases by
additional point.

Margin Requirement
None.

Comments
This position is a wasting asset. As time passes, value of position erodes toward
expiration value. If volatility increases, erosion slows; if volatility decreases,
erosion speeds up.

Trade Reasons

• To get a profit on a big change in price independent of the direction.
• To get a lower cost than buying a straddle.

Follow Up
On an increase:

• Issue a call option with higher a strike price and sell the owned put option.
• Sell the forward and the owned put option.

On a decrease:

• Issue a put option with a higher strike price and sell the owned call option.
• Buy the forward and the owned call option

On a neutral market:

• Issue a call option with higher strike price and a put option with a lower
strike.

• Issue a call- and a put option with lower time to maturity.
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In Fig. 8.63 we have created a long strangle by buying a put and a call at
strikes 12 and 17 respectively. The initial stock price is 15, the risk-free interest
rate 2 % and the volatility 40 %. Figure 8.64 illustrate the same position at
maturity.

8.6.3 Short Butterfly [0 �1 1 0]

Market Belief
You believe that the stock price will move substantially.

Construction
Call option with low strike sold and two call options with medium strike
bought and call option with high strike sold. The same position can be created
with puts.

Profit
Limited to the initial credit received.

Fig. 8.63 A long strangle made by buying a call option at 17 and a put option at
12 where the ATM price is 15
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Losses
Limited to the difference between the lower and middle strikes minus the
initial spread credit.

Margin Requirement
Low.

Comments
It can be difficult to realize and sell the position on a short time period. This
position is a combined asset. As time passes, value of position increases/erodes
toward expiration value. If volatility increases, increase/erosion slows; if vola-
tility decreases, increase/erosion speeds up.

Trade Reasons
To get an income on volatile market to a low cost.

In Fig. 8.65 we have created a long butterfly with call options. We made
this by selling call options at 12 and 18 and buying two call options ATM, 15.
The initial stock price is 15, the risk-free interest rate 2 % and the volatility
40 %. Figure 8.66 illustrate the same position at maturity.

Fig. 8.64 A long strangle at maturity, made by buying a call option at 17 and a put
option at 12 where the ATM price is 15
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Fig. 8.66 A long butterfly by call options at maturity

Fig. 8.65 A short butterfly by call options
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8.7 Using Market Indexes in Pricing

As we know, in the Black–Scholes world we have a number of variables
(or parameters) that we need to know to be able to calculate prices of stock
options. These are:

• the initial stock price,
• the contracted strike price,
• time to maturity,
• the risk-free interest rate and
• the stock (or the implied) volatility.

The most important of these is volatility.

• The strike price is fixed if we don’t have some kind of exotic option where
the strike might change during the option’s lifetime.

• The initial stock price is known, but the future value depends on the
changes in the stock price during the lifetime of the option.

• The time to maturity is known if we don’t have an exotic option where the
maturity time may change.

This leave us with two parameters:

• the risk-free interest rate, that might change during the lifetime and
• volatility.

In the Black–Scholes formulas, the interest rate is used in the calculation of
d1 and d2 and used to discount the strike price to a present value. Since
lifetimes of options most of the time is short, less than a year, the option price
will not change very much on changes of the interest rate. This can be seen by
simulations or by calculating the rho, ρ i.e., the derivative of the option price
with respect to the interest rate r.
This leave us with the most important variable of them all, volatility. The

volatility is the variable that will has the greatest impact on the option price,
except the underlying price. Also, the volatility is the variable that is the most
difficult to estimate.
Exchanges and clearing houses use implied volatility to calculate the margin

requirement, not the estimated historical stock volatility that is sometimes
used in the Black–Scholes model. The reason is that volatility varies with the
strike price. Options with strike prices far from the actual stock value—that is,
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OTM or ITM do not have the same liquidity as options with strike prices
near ATM.
We have also seen that the volatility is a measure of risk and is used to

calculate the sharp ratio or the market price of risk. Therefore we would like to
know the market belief on the volatility in general will be in the future. One
way to do so is to calculate implied volatilities or study a volatility index, such
as the CBOE, Volatility Index® (VIX® Index).

8.7.1 The CBOE VIX Index

The VIX Index was introduced in 1993 by Professor Robert E. Whaley in his
paper “Derivatives on Market Volatility: Hedging Tools Long Overdue,” in
1993 with two purposes in mind:

• to provide a benchmark of expected short-term market volatility
• to provide an index upon which futures and options contracts on volatility

could be written

The VIX Index is computed every 15 seconds throughout the trading day to
measure volatility. To compare with historical levels, values were computed
back to the beginning of January 1986. This was particularly important since
documenting the level of the market during the worst stock market crash since
the Great Depression, namely the October 1987 crash. This data can provide
useful benchmark information in during market turbulence in the future.
The CBOE also launched trading of VIX futures contracts at the CBOE

Futures Exchange (CFE) in 2004 and VIX options at CBOE in 2006.
To understand the VIX, it is important to realize that it is the forward-

looking, measure of volatility that the investors expect to see. It is not a
backward-looking measure. Conceptually, VIX is like a bond’s yield-to-matu-
rity, i.e., a discount rate that equates a bond’s price to the present market value
when re-investing the coupons at the same rate (the ytm). Yield-to-maturity
can also be interpreted as the expected future return of the bond over its
remaining lifetime. In a similar manner, VIX is implied by the current prices of
S&P 500 index options and represents expected future market volatility over
the next 30 calendar days.
The original VIX index was based on the prices of S&P 100 (ticker OEX),

not S&P 500 (ticker SPX), index option prices. In their early years, OEX
options were the most actively traded index options in the USA Also, the
original VIX was based on the prices of only eight ATM index calls and puts.
Over the years, index option trading in the USA changed in a fundamental
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way. The SPX option market later became the most active index. Other factors
included that the S&P 500 index is better known, futures contracts on S&P
500 are actively traded, and S&P 500 option contracts are European style
(while the options on OEX are American style), which makes them easier to
value. Also the trading motives of market participants changed. The index
option market became dominated by portfolio insurers, who routinely bought
and still buy, OTM and ATM index puts for insurance purposes. During the
first ten months of 2008, for example, the average daily volume of SPX puts
was over 70 % more than the SPX calls.
In September 2003, the CBOE changed the VIX calculation to account for

these fundamental changes. First, they began to use SPX rather than OEX
option prices. Second, they began to also include OTM options in the index
computation since OTM put prices, in particular, contain important infor-
mation regarding the demands for portfolio insurance. Including additional
option series also helps make the VIX less sensitive to any single option price
and hence less sensitive to manipulations.
In Fig. 8.67 we show how the VIX Index (i.e. volatility) changes with

respect to the S&P 500 index. The Standard & Poor’s 500 Index (S&P 500) is

Fig. 8.67 The VIX index and its relationship to the S&P 500 (Source: CBOE)
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designed to be a leading indicator of US equities. The index is based upon
500 large companies having common stock listed on the NYSE or NASDAQ.
The components and their weightings are determined by S&P Dow Jones
Indices. The index is one of the most followed equity indices, and many
consider it one of the best representations of the US stock market.
The components of the S&P 500 are selected by a committee. This is

similar to the Dow Jones Industrial Average. The committee selects the
companies in the S&P 500 so they are representative of the industries in the
United States economy. In order to be added to the index, a company must
satisfy some liquidity-based size requirements. The securities must be publicly
listed on either the NYSE or NASDAQ.
Sometimes known as the “fear gauge,” the VIX Index generally stays below

20 in a steady to normal market. When VIX is above 20, it suggests the market
is in distress and above 40 it’s more like a financial crisis. This is shown in
Fig. 8.67 where we can observe the financial crises in 2008–2009, in
mid-2010 and during the autumn of 2011.
When the volatility moves up or down, hedgers buy index put options on

the S&P 500 index as they are concerned about a potential drop in the market.
The more investors demand, the higher the price. VIX is therefore an indicator
that reflects the price of insurance on a portfolio.
The VIX index itself has a volatility index called VVIX. This index is an

indicator of the expected volatility of a 30-day forward price on VIX. CBOE
also calculates a term structure of VVIX for different VIX maturities. The
values on VVIX’s term structure is calculated from a portfolio of VIX options
using a similar algorithm used to calculate the VIX itself. Approximate fair
values of VIX futures prices and their standard deviations are derived from the
VVIX term structure.
Each VIX can be viewed as a fear gauge for its underlying asset. The CBOE

VIX Suite Heat Map highlights the daily variations of these. It uses a color
spectrum from green to red to indicate the VIX indices that had the smallest to
greatest percentage change from close to close. The latest CBOE VIX® Heat
Map can be found at: http://www.cboe.com/micro/vix-and-volatility.aspx
In Fig. 8.68 we show the VVIX Index between 2007 and 2015 and in

Fig. 8.69 we show the Volatility Heat Map for 2016-01-22 using the link
above.
Beside the VIX and VVIX indexes (and many other volatility indexes), there

are also a CBOE Skew Index called the Tail Index. Investors in the US stock
market found this index especial interesting after the crash in October 1987
when they changed their view of S&P 500 returns. Investors realized then that
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the returns of S&P 500, two or more standard deviations below the mean – is
significantly greater than under an ordinary lognormal distribution.
The CBOE SKEW Index is derived from the priced in the left tail of the

S&P 500, which explains the term Tail Index The left tail represent losses
while the right tail profits. Similar to VIX, the price of S&P 500 tail risk is
calculated from the prices of OTM options. SKEW typically ranges from
100 to 150. A SKEW value of 100 means that the perceived distribution of
S&P 500 log-returns is normal, and the probability of outlier returns is
therefore negligible. As SKEW rises above 100, the left tail of the distribution
acquires more weight, and the probabilities of outlier returns become more
significant. One can estimate these probabilities from the value of SKEW.
Since an increase in perceived tail risk increases the relative demand for low
strike puts, increases in SKEW also correspond to an overall steepening of the
curve of implied volatilities, familiar to option traders as the volatility skew.
As illustrated in Fig. 8.70, in October 1987 the smile lost its symmetry and

become biased towards the put side. The reason why the S&P 500 implied
volatilities no longer smiles is the fact that investors began to prize low strike
puts more than high strike calls. The standard deviation of returns is then
insufficient to characterize risk and the probability of returns two or three

Fig. 8.68 The VVIX index from beginning of 2007 and the end of 2015 (Source:
CBOE)
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standard deviations below the mean is not negligible, as it is under a normal
distribution.
Figure 8.71 confirms that the S&P 500 distribution is far from normal. It

carries “tail risk” where the frequency of outlier returns is greater than for a
normal distribution and the distribution has a negative skew. This means that
VIX, as a proxy for the standard deviation of the S&P 500 distribution, may
not fully capture the perceived risk of a cash or derivative investment in the
S&P 500 or in correlated assets. Similar to VIX, the SKEW is calculated from
the price of a tradable portfolio of OTM S&P 500 (SPXSM) options.
The SKEW is derived from the price of S&P 500 skewness. If we denoted

by S, the coefficient of statistical skewness:

S ¼ E
R � μ

σ

� �3
" #

where we calculate the present value if the 30-day log-return of the S&P
500 minus the mean divided by the volatility. Since S tends to be negative, it is
inconvenient to use it as an index. S is therefore transformed to SKEW by
SKEW ¼ 100 � 10S. With this definition, SKEW increases as S becomes
more negative and the tail risk increases.
The SKEW between 1990 and 2010 is shown in Fig. 8.72.

Fig. 8.70 The volatility smile changed shape to a skew in October 1987
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Fig. 8.71 The log return of S&P 500 shows a fat tail that can’t be modelled with a
normal distribution

Fig. 8.72 The CBOE SKEW index for a period of 20 years
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By using data such as the indexes above, traders can study the market view
of volatility, the most important parameter to value derivative contracts on the
stock market. The VIX calculation, step by step can be found in the White
Paper: The CBOE Volatility Index – VIX at: https://www.cboe.com/micro/
vix/part2.aspx.

8.8 Price Direction Matrix

Call +/� Put +/�
The value of the underlying decreases + �
The value of the underlying increases � +
Higher strike prices compared with a lower � +
Low strike prices compared with a higher + �
Long time to maturity + +
Short time to maturity � �
High volatility + +
Low volatility � �
High risk-free interest rate + �
Low risk-free interest rate � +
Dividends � +

As we can see above, the value of a long call option decrease if the interest
rate increases. The reason is the following; Say that if we buy the option
because we will buy the underlying in the future. Then we only have to pay an
initial cost for the option and we can put the rest of our money at the bank. If
the interest increases, then we get a better yield on the money on the bank.
Therefore, the total position increase in value and so do the option.

8.9 Strategy Matrix

Positive market Neutral market Negative market

Increasing
volatility

Buy call option
Positive price-spread
Back spread
Three leg position
Protective put

Long straddle
Long strangle
Short neutral
time-spread

Long put option
Negative price-
spread
Back spread
Three leg position

Neutral
volatility

Buy underl./forward
Buy synthetic
forward
Buy sloped synthetic
Forward

DON’T TRADE Short forward
Short synthetic
forward
Short sloped syn-
thetic forward

(continued )
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Positive market Neutral market Negative market

Decreasing
volatility

Issue put options
Positive price-spread
Covered call
Three leg position
Ratio spread

Short straddle
Short strangle
Long neutral
time-spread

Issue call option
Negative price-
spread
Three leg position
Ratio spread
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Appendix: Some Source Codes

In VBA, (Visual Basic for Application) the code for a European call option
with the binomial model can be written as:

Function eCall(S, K, T, r, sigma, n)

u ¼ Exp(sigma*((T/n)^0.5))

d ¼ 1/u

r ¼ Exp(r*(T/n))

rp_u ¼ (r - d)/(r*(u - d))

rp_d ¼ 1/r - rp_u

eCall ¼ 0

For i ¼ 0 To n

eCall ¼ eCall + Application.Combin(n, i)*rp_u^i*rp_d^(n - i)* _

Application.Max(S*u^i*d^(n - i) - K, 0)

Next i

End Function

A more general binomial model, which also handles American-type options,
is given below. This code is written in VBA and handles some of the binomial
models such as Cox–Ross–Rubenstein (with and without Black–Scholes
smoothing) and the Leisen–Reimer model. The model also calculates the
Greeks, delta, gamma and theta. To calculate rho and vega, two trees must
be made with two different interest rates and volatilities, respectively
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’ Input mBin ¼ Binomial model

’ mExe ¼ Put or Call (PUT_ or CALL_)

’ mTyp ¼ American or European

Function Binom(mBin As Long, mTyp As Long, mExe As Long, S As Double,

X As Double, T As Double, r As Double, v As Double, n As Long,

mDelta As Double, mGamma As Double, mTheta As Double)

Dim d1 As Double, d2 As Double, a As Double, b As Double

Dim aa As Double, vv As Double, U As Double, D As Double

Dim udd As Double, u_d As Double, p As Double, Dt As Double

Dim disc As Double, pe As Double, my As Double, m As Double

Dim q As Double, ermqdt As Double, pdash As Double, ans As Double

Dim idx As Long, i As Long, j As Long

Dim lSt1(0 To 2) As Double

Dim lC1(0 To 2) As Double

ReDim lSt(0 To n + 2) As Double

ReDim lC(0 To n + 2) As Double

d1 ¼ (Log(S / X) + (r + v * v / 2) * T) / (v * Sqr(T))

d2 ¼ d1 - v * Sqr(T)

Dt ¼ T / n

disc ¼ Exp(-r * Dt)

If (mBin ¼ CRR) Then

U ¼ Exp(v * Sqr(Dt))

D ¼ 1 / U

udd ¼ U / D

u_d ¼ U - D

p ¼ (1 / disc - D) / u_d

ElseIf (mBin ¼ PEG) Then

pe ¼ (Log(X / S)) / n

U ¼ Exp(pe + v * Sqr(Dt))

D ¼ Exp(pe - v * Sqr(Dt))

udd ¼ U / D

u_d ¼ U - D

p ¼ (1 / disc - D) / u_d

ElseIf (mBin ¼ JR) Then

’ Remark pu ¼ pd ¼ 0.5!

’ In this method the calc. of delta and gamma (rho+) is more

’ difficult since S0 <> S0*u*d. Use ORC method in this case!

my ¼ r - 0.5 * v * v

U ¼ Exp(my * Dt + v * Sqr(Dt))

D ¼ Exp(my * Dt - v * Sqr(Dt))

p ¼ 0.5

udd ¼ U / D

u_d ¼ U - D
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ElseIf (mBin ¼ TIAN) Then

m ¼ Exp(r * Dt)

vv ¼ Exp(v * v * Dt)

U ¼ 0.5 * m * vv * (1 + vv + Sqr(vv * vv + 2 * vv - 3))

D ¼ 0.5 * m * vv * (1 + vv - Sqr(vv * vv + 2 * vv - 3))

udd ¼ U / D

u_d ¼ U - D

p ¼ (1 / disc - D) / u_d

ElseIf (mBin ¼ LR) Then

q ¼ 0 ’ No yield

ermqdt ¼ Exp((r - q) * Dt)

d2 ¼ BSDTwo(S, X, r, q, T, v)

p ¼ PPNormInv(d2, n)

pdash ¼ PPNormInv(d2 + v * Sqr(T), n)

U ¼ ermqdt * pdash / p

D ¼ ermqdt * (1 - pdash) / (1 - p)

udd ¼ U / D

u_d ¼ U - D

End If

’ initialize stock prices at maturity log(a^b) ¼ b*log(a)

lSt(0) ¼ S * D ^ n

For i ¼ 1 To n

lSt(i) ¼ lSt(i - 1) * udd

Next i

’ initialize option prices at maturity n

For i ¼ 0 To n

lC(i) ¼ Max(0, bC(mExe, lSt(i), X))

Next i

idx ¼ find_opt_index(lSt, X, n)

’ step back through the tree

For j ¼ n - 1 To 2 Step -1

For i ¼ 0 To j

lC(i) ¼ disc * (p * lC(i + 1) + (1 - p) * lC(i))

lSt(i) ¼ lSt(i) / D

If (mTyp ¼ AMERICAN) Then

lC(i) ¼ Max(lC(i), bC(mExe, lSt(i), X))

End If

If (BS_Smoothing) Then

If (j ¼ n - 1) Then

If (i >¼ idx And i <¼ idx + 4) Then
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lC(i) ¼ GBlackScholes(mExe, lSt(i), X, T / n, r, r, v)

End If

End If

End If

Next i

Next j

’ save option value, used for calculating hedge parameters

mTheta ¼ lC(1) / Dt ’ For calculating Theta.

For i ¼ 0 To 1

lC1(i) ¼ disc * (p * lC(i + 1) + (1 - p) * lC(i))

lSt1(i) ¼ lSt(i) / D

If (mTyp ¼ AMERICAN) Then

lC1(i) ¼ Max(lC1(i), bC(mExe, lSt1(i), X))

End If

Next i

ans ¼ disc * (p * lC1(1) + (1 - p) * lC1(0))

If (mTyp ¼ AMERICAN) Then ans ¼ Max(ans, bC(mExe, S, X))

mGamma ¼ ((lC(2) - lC(1)) / (lSt(2) - lSt(1)) - _

(lC(1) - lC(0)) / (lSt(1) - lSt(0))) / (0.5 * (lSt(2) - lSt(0)))

mDelta ¼ (lC1(1) - lC1(0)) / (lSt1(1) - lSt1(0))

mTheta ¼ (mTheta - ans / Dt) / 2

If (mBin ¼ TIAN) Then mTheta ¼ mTheta / 2

Binom ¼ ans

End Function

To find the index closest to the strike for the Black–Scholes smoothing, we use
the following function:

Function find_opt_index(lSt() As Double, mX As Double, n As Long)

Dim idx As Long, i As Long

idx ¼ 0

For i ¼ 0 To n - 1

If (lSt(i) >¼ mX) Then Exit For

idx ¼ idx + 1

Next i

find_opt_index ¼ idx - 2

End Function
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The boundary for call and put, is given by:

Function bC(aIsCall As Long, S As Double, X As Double) As Double

If aIsCall Then

bC ¼ S - X

Else

bC ¼ X - S

End If

End Function

We also use two functions from the Black–Scholes model:

Function BSDTwo(S As Double, X As Double, r As Double, q As Double, _

T As Double, v As Double) As Double

BSDTwo ¼ (Log(S / X) + (r - q - 0.5 * v * v) * T) / (v * Sqr(T))

End Function

double BSDTwo(double S, double X, double r, double q, double T,

Function BlackScholes(mCall As Long, S As Double, X As Double, _

T As Double, r As Double, b As Double, _

v As Double) As Double

Dim d1 As Double, d2 As Double

d1 ¼ (Log(S / X) + (b + v * v / 2) * T) / (v * Sqr(T))

d2 ¼ d1 - v * Sqr(T)

If (mCall) Then

BlackScholes ¼ S*Exp((b - r) * T)*CND(d1) - X*Exp(-r*T)*CND(d2)

Else

BlackScholes ¼ X*Exp(-r*T)*CND(-d2) - S*Exp((b - r)*T)*CND(-d1)

End If

End Function

In the Leisen–Reimer model we use the Peizer–Pratt inversion formula:

Function PPNormInv(z As Double, n As Long) As Double

Dim c1 As Double

n ¼ 2 * Int(n / 2) + 1 ’ ¼¼ odd(n);

c1 ¼ Exp(-((z / (n + 1 / 3 + 0.1 / (n + 1))) * _

(z / (n + 1 / 3 + 0.1 / (n + 1)))) * (n + 1 / 6))

PPNormInv ¼ 0.5 + Sgn(z) * Sqr((0.25 * (1 - c1)))

End Function
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The function CND to calculate the cumulative normal eistribution is given
in VBA below. This function below gives the normal distribution function
with a maximum error of 10�8:

do Function CND(X As Double) As Double

Dim sign As Long

Dim x2, q0, q1, q2 As Double

If (X < 0) Then

X ¼ -X

sign ¼ -1

ElseIf (X > 0) Then

sign ¼ 1

Else ’ (x ¼ 0.0)

CND ¼ 0.5

Exit Function

End If

If (X > 20) Then

If (sign < 0) Then

CND ¼ 0

Else

CND ¼ 1

End If

Exit Function

End If

X ¼ X*0.707106781186547

x2 ¼ X*X

If (X < 0.46875) Then

q1 ¼ 3209.37758913847 + x2*(377.485237685302 + x2* _

(113.86415415105 + x2*(3.16112374387057 + x2* _

0.185777706184603)))

q2 ¼ 2844.23683343917 + x2*(1282.61652607737 + x2* _

(244.024637934444 + x2*(23.6012909523441 + x2)))

CND ¼ 0.5*(1 + sign*X*q1/q2)

ElseIf (X < 4) Then

q1 ¼ X*(8.88314979438838 + X*(0.56418849698867 + X* _

2.15311535474404E-08))

q1 ¼ X*(881.952221241769 + X*(298.6351381974 + X* _

(66.1191906371416 + q1)))

q1 ¼ 1230.339354798 + X*(2051.07837782607 + X*(1712.04761263407 _

+ q1))
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q2 ¼ X*(117.693950891312 + X * (15.7449261107098 + X))

q2 ¼ X*(3290.79923573346 + X*(1621.38957456669 + X* _

(537.18110186201 + q2)))

q2 ¼ 1230.33935480375 + X*(3439.36767414372 + X* _

(4362.61909014325 + q2))

CND ¼ 0.5*(1 + sign*(1 - Exp(-x2)*q1/q2))

Else

q0 ¼ 1/x2

q1 ¼ 6.58749161529838E-04 + q0*(1.60837851487423E-02 + q0* _

(0.125781726111229 + q0*(0.360344899949804 + q0* _

(0.305326634961232 + q0*1.63153871373021E-02))))

q2 ¼ 2.33520497626869E-03 + q0*(6.05183413124413E-02 + q0* _

(0.527905102951428 + q0*(1.87295284992346 + q0*´_

(2.56852019228982 + q0))))

CND ¼ 0.5*(1 + sign*(1 - Exp(-x2)/X*(0.564189583547756 - _

q0*q1/q2)))

End If

End Function

Function nd(X As Double) As Double

nd ¼ 1/Sqr(2*3.141592654)*Exp(-X*X/2)

End Function

Below we give an example of how to write a C++ program to solve option
prices with the Crank–Nicholson method. The model also calculates the
Greeks, delta, gamma and theta. To calculate rho and vega, two grids must
be made with two different interest rates and volatilities, respectively, The
function bC is the same as for the binomial model.

double CrNi(double S, double K, double T, double sig, double r,

int N, int Nj, double div, int mIsCall,

int mIsAmerican, double D, double &mDelta,

double &mGamma, double &mTheta)

{

double dt ¼ T/N;

double dx ¼ sig*sqrt(D*dt);

double nu ¼ r - div - 0.5*sig*sig;

double edx ¼ exp(dx);

double pu ¼ -0.25*dt*((sig/dx)*(sig/dx) + nu/dx);

double pm ¼ 1.0 + 0.5*dt*(sig/dx)*(sig/dx) + 0.5*r*dt;
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double pd ¼ -0.25*dt*((sig/dx)*(sig/dx) - nu/dx);

double *St, *C[2], lambda_U, lambda_L;

St ¼ new double [2*Nj + 3];

C[0] ¼ new double [2*Nj + 3];

C[1] ¼ new double [2*Nj + 3];

// Initialize the asset prices at maturity.

St[0] ¼ S*exp(-Nj*dx);

for (int j ¼ 1; j <¼ 2*Nj; j++) {

St[j] ¼ edx*St[j-1];

}

// Initialize the option values at maturity.

for (int j ¼ 0; j <¼ 2*Nj; j++)

C[0][j] ¼ max(0.0, bC(mIsCall, St[j], K));

// Compute derivative boundary condition

if (mIsCall) {

lambda_U ¼ St[2*Nj] - St[2*Nj-1];

lambda_L ¼ 0.0;

}

else {

lambda_L ¼ -(St[1] - St[0]);

lambda_U ¼ 0.0;

}

// Step backwards through the lattice

for (int i ¼ N - 1; i >¼ 0; i--) {

solve_CN(C, pu, pm, pd, lambda_L, lambda_U, Nj);

if (i ¼¼ 0) mTheta ¼ (C[0][Nj] - C[1][Nj])/dt;

// Apply early exercise condition

for (int j ¼ 0; j <¼ 2*Nj; j++) {

if (mIsAmerican)

C[0][j] ¼ max(C[1][j], bC(mIsCall, St[j], K));

else

C[0][j] ¼ C[1][j];

}

}
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mDelta ¼ (C[1][Nj+1] - C[1][Nj-1])/(St[Nj+1] - St[Nj-1]);

mGamma ¼ ((C[0][Nj+2] - C[0][Nj]) /(St[Nj+2] - St[Nj]) -

(C[0][Nj] - C[0][Nj-2])/(St[Nj] - St[Nj-2]))/

(0.5*(St[Nj+2] - St[Nj-2]));

return C[0][Nj];

}

double solve_CN(double **C, double pu, double pm, double pd,

double lambda_L, double lambda_U, int Nj)

{

double *pmp; // ¼ array();

double *pp; // ¼ array();

pp ¼ new double [2*Nj + 3];

pmp ¼ new double [2*Nj + 3];

// Substitute boundary condition at j ¼ -Nj into j ¼ -Nj + 1

pmp[1] ¼ pm + pd;

pp [1] ¼ -pu*C[0][2] - (pm - 2.0)*C[0][1] –

pd*C[0][0] + pd*lambda_L;

// Eliminate the upper diagonal

for (int j ¼ 2; j < 2*Nj; j++) {

pmp[j] ¼ pm - pu*pd/pmp[j-1];

pp [j] ¼ - pu*C[0][j+1] - (pm - 2.0)*C[0][j]

- pd*C[0][j-1] - pp[j-1]*pd/pmp[j-1];

}

// Use boundary condition at j ¼ Nj and equation at j ¼ Nj - 1

C[1][2*Nj] ¼ (pp[2*Nj-1] + pmp[2*Nj-1]*lambda_U)/

(pu + pmp[2*Nj-1]);

C[1][2*Nj-1] ¼ C[1][2*Nj] - lambda_U;

// Back substitution

for (int j ¼ 2*Nj - 2; j >¼ 1; j--)

C[1][j] ¼ (pp[j] - pu*C[1][j+1])/pmp[j];

C[1][0] ¼ C[1][1] - lambda_L;

delete [] pp;

delete [] pmp;

}

A VBA code for the Black–Scholes model (i.e., with continuous dividends)
and the Greeks are given below:
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Function BlackScholes(mCall As Integer, s As Double, x As Double, _

T As Double, r As Double, b As Double, _

v As Double) As Double

Dim d1 As Double, d2 As Double

d1 ¼ (Log(s/x) + (b + v*v/2)* T)/(v*Sqr(T))

d2 ¼ d1 - v * Sqr(T)

if (mCall) Then

if (T > 0.0)

BlackScholes ¼ s*Exp((b - r)*T)*CND(d1)

- x*Exp(-r * T)*CND(d2)

Else

BlackScholes ¼ WorksheetFunction.Max(s - x, 0)

Else

if (T > 0.0)

BlackScholes ¼ x*Exp(-r*T)*CND(-d2)

- s*Exp((b - r)*T)*CND(-d1)

Else

BlackScholes ¼ WorksheetFunction.Max(x - s, 0)

End Function

Function Delta(mCall As Integer, s As Double, x As Double, _

T As Double, r As Double, b As Double, _

v As Double) As Double

Dim d1 As Double

If (T > 0) Then

d1 ¼ (Log(s/x) + (b + v*v/2)*T)/(v*Sqr(T))

Else

d1 ¼ (Log(s/x) + (b + v*v/2)*T)/(v*Sqr(T))

If (mCall) Then

Delta ¼ Exp((b - r)*T)*CND(d1)

Else

Delta ¼ Exp((b - r)*T)*(CND(d1) - 1)

End If

End Function

Function Gamma(s As Double, x As Double, T As Double, _

r As Double, b As Double, v As Double) As Double

Dim d1 As Double

d1 ¼ (Log(s/x) + (b + v*v/2)*T)/(v*Sqr(T))

Gamma ¼ nd(d1)*Exp((b - r)*T)/(s*v*Sqr(T))

End Function
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Function Vega(s As Double, x As Double, T As Double, r As Double,_

b As Double, v As Double) As Double

Dim d1 As Double

d1 ¼ (Log(s/x) + (b + v*v/2)*T)/(v*Sqr(T))

Vega ¼ s*Exp((b - r)*T)*nd(d1)*Sqr(T)

End Function

Function Theta(mCall As Integer, s As Double, x As Double, _

T As Double, r As Double, b As Double, _

v As Double) As Double

Dim d1 As Double

Dim d2 As Double

d1 ¼ (Log(s/x) + (b + v*v/2)*T)/(v*Sqr(T))

d2 ¼ d1 - v*Sqr(T)

If (mCall) Then

Theta ¼ -s*Exp((b - r)*T)*nd(d1)*v/(2*Sqr(T)) – _

(b - r)*s*Exp((b - r)*T)*CND(d1) - r*x*Exp(-r*T)*CND(d2)

Else

Theta ¼ -s*Exp((r - b)*T)*nd(d1)*v/(2*Sqr(T)) + _

(b - r)*s*Exp((b - r)*T)*CND(-d1) + r*x*Exp(-r*T)*CND(-d2)

End If

End Function

Function Rho(mCall As Integer, s As Double, x As Double, _

T As Double, r As Double, b As Double, _

v As Double) As Double

Dim d1 As Double

Dim d2 As Double

d1 ¼ (Log(s/x) + (b + v*v/2)*T)/(v*Sqr(T))

d2 ¼ d1 - v*Sqr(T)

If (mCall) Then

If (b ¼ 0) Then

Rho ¼ -T*BlackScholes(1, s, x, T, r, b, v)

Else

Rho ¼ T*x*Exp(-r*T)*CND(d2)

End If

Else

If (b ¼ 0) Then

Rho ¼ -T*BlackScholes(0, s, x, T, r, b, v)

Else
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Rho ¼ -T*x*Exp(-r*T)*CND(-d2)

End If

End If

End Function

A VBA implementation of the RollGeske–Whaley model is given below

Public Const BIGNUM As Long ¼ 100000000

Public Const EPSILON As Double ¼ 0.00001

Function RollGeskeWhaley(s As Double, x As Double, v As Double, _

r As Double, T As Double, D As Double, _

TD As Double) As Double

Dim SX As Double, ci As Double, HighS As Double, LowS As Double

Dim a1 As Double, a2 As Double, b1 As Double, b2 As Double,

Dim c As Double, i As Double

SX ¼ s - D * Exp(-r * TD)

’ Not optimal to exercise.....

If (D <¼ x*(1 - Exp(-r*(T - TD)))) Then

RollGeskeWhaley ¼ BlackScholes(mCall, SX, x, T, r, r, v)

Exit Function

End If

ci ¼ BlackScholes(mCall, SX, x, T - TD, r, r, v)

HighS ¼ s

Do While ((ci - HighS - D + x) > 0 And (HighS < BIGNUM))

HighS ¼ 2*HighS

ci ¼ BlackScholes(mCall, HighS, x, T - TD, r, r, v)

Loop

If (HighS < BIGNUM) Then

RollGeskeWhaley ¼ BlackScholes(mCall, SX, x, T, r, r, v)

Exit Function

End If

LowS ¼ 0

i ¼ HighS * 0.5

ci ¼ BlackScholes(mCall, i, x, T - TD, r, r, v)

’ Find the critical Stock Price with Bisection.

Do While (Abs(ci - i - D + x) > EPSILON And _

(HighS - LowS) > EPSILON)
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If ((ci - i - D + x) < 0) Then

HighS ¼ i

Else

LowS ¼ i

End If

i ¼ (HighS + LowS)/2

ci ¼ BlackScholes(mCall, i, x, T - TD, r, r, v)

Loop

a1 ¼ (Log(SX/x) + (r + v*v/2)*T)/(v*Sqr(T))

a2 ¼ a1 - v*Sqr(T)

b1 ¼ (Log(SX/i) + (r + v*v/2)*TD)/(v*Sqr(TD))

b2 ¼ b1 - v*Sqr(TD)

c ¼ SX*(CND(b1) + M(a1, -b1, Sqr(TD / T))) - _

x*Exp(-r*T)*M(a2, -b2, -Sqr(TD/T)) – _

(x - D)*Exp(-r*TD)*CND(b2)

RollGeskeWhaley ¼ c

End Function

Where the function for the bivariate normal distribution is given below.
The bivariate normal distribution is defined as:

M x; y; λð Þ ¼ 1

2πσxσy
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� λ2
p exp

x� μxð Þ2
σ2x

� 2λ x� μxð Þ y� μy
� �

σxσy
þ y� μy
� �2

σ2y

( )

;

where μx and μy is the mean of x and y, σx and σy the standard deviations. The
correlation function λ is defined by

λ ¼ corr x; yð Þ ¼ σxy
σxσy

:

Hereby, the probability measure p(x, y) is given by

p x; yð Þ ¼
ð

x

�1

ð

y

�1
f ξ; ζ; λð Þdξdζ:

A VBA implementation is given below
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’ Calculates the Cumulative Probability in Bivariate Normal dist.

’ with |e(x)| < 1.0e-7

Function M(a As Double, b As Double, c As Double) As Double

Dim sa As Double, sb As Double, r1 As Double, r2 As Double

Dim D As Double

sa ¼ 1

sb ¼ 1

If (a <¼ 0 And b <¼ 0 And c <¼ 0) Then

M ¼ MM(a, b, c)

ElseIf (a*b*c <¼ 0) Then

If (b > 0 And c > 0) Then

M ¼ CND(a) - MM(a, -b, -c)

ElseIf (a > 0 And c > 0) Then

M ¼ CND(b) - MM(-a, b, -c)

ElseIf (a > 0 And b > 0) Then

M ¼ CND(a) + CND(b) - 1 - MM(-a, -b, c)

End If

Else

If (a < 0) Then sa ¼ -1

If (b < 0) Then sb ¼ -1

r1 ¼ (c*a - b)*sa/Sqr(a*a - 2*a*b*c + b*b)

r2 ¼ (c*b - a)*sb/Sqr(a*a - 2*a*b*c + b*b)

D ¼ (1 - sa*sb)/4

M ¼ MM(a, 0, r1) + MM(b, 0, r2) - D

End If

End Function

Function MM(a As Double, b As Double, c As Double) As Double

Dim aa As Double, bb As Double

Dim i As Integer, j As Integer

Dim am(4) As Double

Dim bm(4) As Double

am(0) ¼ 0.325303

am(1) ¼ 0.4211071

am(2) ¼ 0.1334425

am(3) ¼ 0.006374323

bm(0) ¼ 0.1337764

bm(1) ¼ 0.6243247

bm(2) ¼ 1.3425378

bm(3) ¼ 2.2626645
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MM ¼ 0

aa ¼ a/Sqr(2*(1 - c*c))

bb ¼ b/Sqr(2*(1 - c*c))

For i ¼ 0 To 4

For j ¼ 0 To 4

MM ¼ MM + am(i)*am(j)*f(bm(i), bm(j), aa, bb, c)

Next j

Next i

MM ¼ MM*Sqr(1 - c*c)/3.121592654

End Function

Function f(x As Double, y As Double, a As Double, b As Double, _

c As Double) As Double

f ¼ Exp(a*(2*x - a) + b*(2*y - b) + 2*c*(x - a)*(y - b))

End Function

A VBA implementation of Barone–Adesi–Whaley is given below:

Function BaroneAdesiWhaleyCall(s As Double, x As Double, _

v As Double, r As Double, _

T As Double, b As Double) As Double

Dim sk As Double, n As Double, K As Double, d1 As Double

Dim q2 As Double, a2 As Double

If (b >¼ r) Then

BaroneAdesiWhaleyCall ¼ BlackScholes(mCall, s, x, T, r, b, v)

Exit Function

End If

sk ¼ kc(x, T, r, b, v)

n ¼ 2*b/(v*v)

K ¼ 2*r/(v*v*(1 - Exp(-r*T)))

d1 ¼ (Log(sk/x) + (b + v*v/2)*T)/(v*Sqr(T))

q2 ¼ (-(n - 1) + Sqr((n - 1)*(n - 1) + 4*K))/2

a2 ¼ (sk/q2)*(1 - Exp((b - r)*T)*CND(d1))

If (s < sk) Then

BaroneAdesiWhaleyCall ¼ BlackScholes(mCall, s, x, T, r, b, v)_

+ a2*(s/sk) ^ q2

Exit Function

End If

BaroneAdesiWhaleyCall ¼ s - x

End Function
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Function BaroneAdesiWhaleyPut(s As Double, x As Double, _

v As Double, r As Double, _

T As Double, b As Double) As Double

Dim sk As Double, n As Double, K As Double, d1 As Double

Dim q1 As Double, a1 As Double

sk ¼ kp(x, T, r, b, v)

n ¼ 2*b/(v*v)

K ¼ 2*r/(v*v*(1 - Exp(-r*T)))

d1 ¼ (Log(sk/x) + (b + v*v/2)*T)/(v*Sqr(T))

q1 ¼ (-(n - 1) - Sqr((n - 1)*(n - 1) + 4*K))/2

a1 ¼ -(sk/q1)*(1 - Exp((b - r)*T)*CND(-d1))

If (s > sk) Then

BaroneAdesiWhaleyPut ¼ BlackScholes(mPUT, s, x, T, r, b, v) _

+ a1*(s/sk) ^ q1

Exit Function

End If

BaroneAdesiWhaleyPut ¼ x - s

End Function

Function kc(x As Double, T As Double, r As Double, b As Double, _

v As Double) As Double

’ Calculation of seed value, Si

Dim M As Double, q2u As Double, Su As Double, h2 As Double

Dim Si As Double, d1 As Double, q2 As Double, LHS As Double

Dim RHS As Double, bi As Double, E As Double, K As Double

M ¼ 2*r/(v*v)

q2u ¼ 1 + 2*M

Su ¼ x/(1 - 1/q2u)

h2 ¼ -(b*T + 2*v*Sqr(T))*x/(Su - x)

Si ¼ x + (Su - x)*(1 - Exp(h2))

If (T ¼ 0) Then T ¼ 0.000000001

K ¼ 2*r/(v*v*(1 - Exp(-r*T)))

d1 ¼ (Log(Si/x) + (b + v*v/2)*T)/(v*Sqr(T))

q2 ¼ 1 + 2*K

LHS ¼ Si - x

RHS ¼ BlackScholes(mCall, Si, x, T, r, b, v) + _

(1 - Exp((b - r)*T)*CND(d1))*Si/q2

bi ¼ Exp((b - r)*T)*CND(d1)*(1 - 1/q2)

bi ¼ bi + (1 - Exp((b - r)*T)*CND(d1)/(v*Sqr(T)))/q2

E ¼ 0.000001
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’ Newton-Raphson algorithm for finding critical price Si

Do While (Abs(LHS - RHS)/x > E)

Si ¼ (x + RHS - bi*Si)/(1 - bi)

d1 ¼ (Log(Si/x) + (b + v*v/2)*T)/(v*Sqr(T))

LHS ¼ Si - x

RHS ¼ BlackScholes(mCall, Si, x, T, r, b, v) + _

(1 - Exp((b - r)*T)*CND(d1))*Si/q2

bi ¼ Exp((b - r)*T)*CND(d1)*(1 - 1/q2)

bi ¼ bi + (1 - Exp((b - r)*T)*CND(d1)/(v*Sqr(T)))/q2

Loop

kc ¼ Si

End Function

Function kp(x As Double, T As Double, r As Double, b As Double, _

v As Double) As Double

’ Calculation of seed value, Si

Dim M As Double, q1u As Double, Su As Double, h1 As Double

Dim Si As Double, d1 As Double, q1 As Double, LHS As Double

Dim RHS As Double, bi As Double

Dim E As Double, K As Double, n As Double

n ¼ 2*b/(v*v)

M ¼ 2*r/(v*v)

q1u ¼ (-(n - 1) - Sqr((n - 1)*(n - 1) + 4*M))/2

Su ¼ x/(1 - 1/q1u)

h1 ¼ (b*T - 2*v*Sqr(T))*x/(x - Su)

Si ¼ Su + (x - Su)*Exp(h1)

If (T ¼ 0) Then T ¼ 0.000000001

K ¼ 2*r/(v*v*(1 - Exp(-r*T)))

d1 ¼ (Log(Si/x) + (b + v*v/2)*T)/(v*Sqr(T))

q1 ¼ (-(n - 1) - Sqr((n - 1)*(n - 1) + 4*K))/2

LHS ¼ x - Si

RHS ¼ BlackScholes(mPUT, Si, x, T, r, b, v) - _

(1 - Exp((b - r)*T)*CND(-d1))*Si/q1

bi ¼ -Exp((b - r)*T)*CND(-d1)*(1 - 1/q1)

bi ¼ bi - (1 + Exp((b - r)*T)*CND(-d1)/(v*Sqr(T)))/q1

E ¼ 0.000001

’ Newton Raphson algorithm for finding critical price Si

Do While (Abs(LHS - RHS)/x > E)

Si ¼ (x - RHS + bi*Si)/(1 + bi)

d1 ¼ (Log(Si/x) + (b + v*v/2)*T)/(v*Sqr(T))

LHS ¼ x - Si
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RHS ¼ BlackScholes(mPUT, Si, x, T, r, b, v) - _

(1 - Exp((b - r)*T)*CND(-d1))*Si/q1

bi ¼ -Exp((b - r)*T)*CND(-d1)*(1 - 1/q1)

bi ¼ bi - (1 + Exp((b - r)*T)*CND(-d1)/(v*Sqr(T)))/q1

Loop

kp ¼ Si

End Function

A VBA implementation of the Bjerksund-Stensland model is given below:

Function BjerksundStenslandCall(s As Double, x As Double, _

v As Double, r As Double, _

T As Double, b As Double) _

As Double

Dim Beta As Double, BInfinity As Double, B0 As Double

Dim ht As Double, i As Double

Dim alpha As Double, ss As Double

If (b >¼ r) Then // Never optimal to exersice before maturity

BjerksundStenslandCall ¼ BlackScholes(mCall, s, x, T, r, b, v)

Else

Beta ¼ (0.5 - b/(v*v)) + Sqr((b/(v*v) - 0.5)*(b/(v*v) - 0.5)_

+ 2*r/(v*v))

BInfinity ¼ Beta/(Beta - 1)*x

B0 ¼ Max(x, r/(r - b)*x)

ht ¼ -(b*T + 2*v*Sqr(T))*B0/(BInfinity - B0)

i ¼ B0 + (BInfinity - B0)*(1 - Exp(ht))

alpha ¼ (i - x)*(i ^ (-Beta))

If (s >¼ i) Then

BjerksundStenslandCall ¼ s - x

Exit Function

End If

ss ¼ alpha*(s^Beta) - alpha*phi(s, T, Beta, i, i, r, b, v)

ss ¼ ss + (phi(s, T, 1, i, i, r, b, v) _

- phi(s, T, 1, x, i, r, b, v))

ss ¼ ss - (x*phi(s, T, 0, i, i, r, b, v) _

- x*phi(s, T, 0, x, i, r, b, v))

BjerksundStenslandCall ¼ ss

End If

End Function

478 Appendix: Some Source Codes



Function BjerksundStenslandPut(s As Double, x As Double,

v As Double, r As Double, _

T As Double, b As Double) As Double

BjerksundStenslandPut ¼ _

BjerksundStenslandCall(x, s, v, r - b, T, -b)

End Function

Function phi(s As Double, T As Double, gamma As Double, _

h As Double,_i As Double, r As Double, b As Double,_

v As Double) As Double

Dim lambda As Double, D As Double, kappa As Double, f As Double

lambda ¼ (-r + gamma*b + 0.5*gamma*(gamma - 1)*(v*v))*T

D ¼ -(Log(s/h) + (b + (gamma - 0.5)*(v*v))*T)/(v*Sqr(T))

kappa ¼ 2*b/((v*v)) + (2*gamma - 1)

f ¼ CND(D) - ((i/s)^kappa)*CND(D - 2*Log(i/s)/(v*Sqr(T)))

phi ¼ Exp(lambda)*(s^gamma)*f

End Function
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asset-or-nothing options, 294, 296
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average strike options, 312

B
backwardation, 199
backward differences, 67, 69, 72
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