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Preface 

Theoretical computer science is the mathematical study of models of 
computation. As such, it originated in the 1930s, well before the existence 
of modern computers, in the work of the logicians Church, Godel, Kleene, 
Post, and Turing. This early work has had a profound influence on the 
practical and theoretical development of computer science. Not only has 
the Turing machine model proved basic for theory, but the work of these 
pioneers presaged many aspects of computational practice that are now 
commonplace and whose intellectual antecedents are typically unknown to 
users. Included among these are the existence in principle of all-purpose 
(or universal) digital computers, the concept of a program as a list of 
instructions in a formal language, the possibility of interpretive programs, 
the duality between software and hardware, and the representation of 
languages by formal structures. based on productions. While the spotlight 
in computer science has tended to fall on the truly breathtaking technolog­
ical advances that have been taking place, important work in the founda­
tions of the subject has continued as well. It is our purpose in writing this 
book to provide an introduction to the various aspects of theoretical 
computer science for undergraduate and graduate students that is suffi­
ciently comprehensive that the professional literature of treatises and 
research papers will become accessible to our readers. 

We are dealing with a very young field that is still finding itself. 
Computer scientists have by no means been unanimous in judging which 

xiii 
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parts of the subject will turn out to have enduring significance. In this 
situation, fraught with peril for authors, we have attempted to select topics 
that have already achieved a polished classic form, and that we believe will 
play an important role in future research. 

In this second edition, we have included new material on the subject of 
programming language semantics, which we believe to be established as an 
important topic in theoretical computer science. Some of the material on 
computability theory that had been scattered in the first edition has been 
brought together, and a few topics that were deemed to be of only 
peripheral interest to our intended audience have been eliminated. Nu­
merous exercises have also been added. We were particularly pleased to be 
able to include the answer to a question that had to be listed as open in 
the first edition. Namely, we present Neil Immerman's surprisingly 
straightforward proof of the fact that the class of languages accepted by 
linear bounded automata is closed under complementation. 

We have assumed that many of our readers will have had little experi­
ence with mathematical proof, but that almost all of them have had 
substantial programming experience. Thus the first chapter contains an 
introduction to the use of proofs in mathematics in addition to the usual 
explanation of terminology and notation. We then proceed to take advan­
tage of the reader's background by developing computability theory in the 
context of an extremely simple abstract programming language. By system­
atic use of a macro expansion technique, the surprising power of the 
language is demonstrated. This culminates in a universal program, which is 
written in all detail on a single page. By a series of simulations, we then 
obtain the equivalence of various different formulations of computability, 
including Turing's. Our point of view with respect to these simulations is 
that it should not be the reader's responsibility, at this stage, to fill in the 
details of vaguely sketched arguments, but rather that it is our responsibil­
ity as authors to arrange matters so that the simulations can be exhibited 
simply, clearly, and completely. 

This material, in various preliminary forms, has been used with under­
graduate and graduate students at New York University, Brooklyn College, 
The Scuola Matematica lnteruniversitaria-Perugia, The University of Cal­
ifornia-Berkeley, The University of California-Santa Barbara, Worcester 
Polytechnic Institute, and Yale University. 

Although it has been our practice to cover the material from the second 
part of the book on formal languages after the first part, the chapters on 
regular and on context-free languages can be read immediately after 
Chapter 1. The Chomsky-Schiitzenberger representation theorem for con­
text-free languages in used to develop their relation to pushdown au­
tomata in a way that we believe is clarifying. Part 3 is an exposition of the 
aspects of logic that we think are important for computer science and can 
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also be read immediately following Chapter 1. Each of the chapters of Part 
4 introduces an important theory of computational complexity, concluding 
with the theory of NP-completeness. Part 5, which is new to the second 
edition, uses recursion equations to expand upon the notion of computabil­
ity developed in Part 1, with an emphasis on the techniques of formal 
semantics, both denotational and operational. Rooted in the early work of 
Godel, Herbrand, Kleene, and others, Part 5 introduces ideas from the 
modern fields of functional programming languages, denotational seman­
tics, and term rewriting systems. 

Because many of the chapters are independent of one another, this book 
can be used in various ways. There is more than enough material for a 
full-year course at the graduate level on theory of computation. We have 
used the unstarred sections of Chapters 1-6 and Chapter 9 in a successful 
one-semester junior-level course, Introduction to Theory of Computation, 
at New York University. A course on finite automata and forma/languages 
could be based on Chapters 1, 9, and 10. A semester or quarter course on 
logic for computer scientists could be based on selections from Parts 1 and 
3. Part 5 could be used for a third semester on the theory of computation 
or an introduction to programming language semantics. Many other ar­
rangements and courses are possible, as should be apparent from the 
dependency graph, which follows the Acknowledgments. It is our hope, 
however, that this book will help readers to see theoretical computer 
science not as a fragmented list of discrete topics, but rather as a unified 
subject drawing on powerful mathematical methods and on intuitions 
derived from experience with computing technology to give valuable in­
sights into a vital new area of human knowledge. 

Note to the Reader 

Many readers will wish to begin with Chapter 2, using the material of 
Chapter 1 for reference as required. Readers who enjoy skipping around 
will find the dependency graph useful. 

Sections marked with an asterisk (*) may be skipped without loss of 
continuity. The relationship of these sections to later material is given in 
the dependency graph. 

Exercises marked with an asterisk either introduce new material, refer 
to earlier material in ways not indicated in the dependency graph, or 
simply are considered more difficult than unmarked exercises. 

A reference to Theorem 8.1 is to Theorem 8.1 of the chapter in which 
the reference is made. When a reference is to a theorem in another 
chapter, the chapter is specified. The same system is used in referring to 
numbered formulas and to exercises. 
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1 

Preliminaries 

1. Sets and n-tuples 

We shall often be dealing with sets of objects of some definite kind. 
Thinking of a collection of entities as a set simply amounts to a decision to 
regard the whole collection as a single object. We shall use the word class 
as synonymous with set. In particular we write N for the set of natural 
numbers 0, 1, 2, 3,. . . . In this book the word number will always mean 
natural number except in contexts where the contrary is explicitly stated. 

We write 

aES 

to mean that a belongs to S or, equivalently, is a member of the set S, and 

aftS 

to mean that a does not belong to S. It is useful to speak of the empty set, 
written 0, which has no members. The equation R = S, where R and S 
are sets, means that R and S are identical as sets, that is, that they have 
exactly the same members. We write R ~Sand speak of Rasa subset of 
S to mean that every element of R is also an element of S. Thus, R = S if 
and only if R ~ S and S ~ R. Note also that for any set R, 0 ~ R and 
R ~ R. We write R c S to indicate that R ~ S but R =/= S. In this case R 

1 



2 Chapter 1 Preliminaries 

is called a proper subset of S. If R and S are sets, we write R uS for the 
union of R and S, which is the collection of all objects which are members 
of either R or S or both. R n S, the intersection of R and S, is the set of 
all objects that belong to both R and S. R - S, the set of all objects that 
belong to R and do not belong to S, is the difference between R and S. S 
may contain objects not in R. Thus R - S = R- (R n S). Often we will 
be working in contexts where all sets being considered are subsets of some 
fixed set D (sometimes called a domain or a universe). In such a case we 
write S for D - S, and call S the complement of S. Most frequently we 
shall be writing S for N- S. The De Morgan identities 

R us= R. n s, 
RnS=RuS 

are very useful; they are easy to check and any reader not already familiar 
with them should do so. We write 

for the set cons1stmg of the n objects a1 , a 2 , ••• , an. Sets that can be 
written in this form as well as the empty set are called finite. Sets that are 
not finite, e.g., N, are called infinite. It should be carefully noted that a 
and {a} are not the same thing. In particular, a E S is true if and only if 
{a} ~ S. Since two sets are equal if and only if they have the same 
members, it follows that, for example, {a, b, c} = {a, c, b} = {b, a, c}. That 
is, the order in which we may choose to write the members of a set is 
irrelevant. Where order is important, we speak instead of an n-tuple or a 
list. We write n-tuples using parentheses rather than curly braces: 

(al , ... ,an). 

Naturally, the elements making up an n-tuple need not be distinct. Thus 
(4, 1, 4, 2) is a 4-tuple. A 2-tuple is called an ordered pair, and a 3-tuple is 
called an ordered triple. Unlike the case for sets of one object, we do not 
distinguish between the object a and the l-tuple (a). The crucial property of 
n-tuples is 

if and only if 

... , and 

If S 1 , S2 , .•• , Sn are given sets, then we write S 1 X S2 X · · · X Sn for the 
set of all n-tuples (a I' az' ... ' an) such that al E sl' az E Sz' ... ' an E sn. 
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S1 X S2 X ••· X Sn is sometimes called the Cartesian product of 
S1 , S2 , ••• , Sn. In case S1 = S2 = = Sn = S we write sn for the Carte­
sian product S1 X S2 X · · · X Sn. 

2. Functions 

Functions play an important role in virtually every branch of pure and 
applied mathematics. We may define a function simply as a set f, all of 
whose members are ordered pairs and that has the special property 

(a, b) E f and (a, c) E f implies b = c. 

However, intuitively it is more helpful to think of the pairs listed as the 
rows of a table. For f a function, one writes f(a) = b to mean that 
(a, b) E f; the definition of function ensures that for each a there can be 
at most one such b. The set of all a such that (a, b) E f for some b is 
called the domain of f. The set of all f(a) for a in the domain of f is 
called the range of f. 

As an example, let f be the set of ordered pairs (n, n2 ) for n EN. 
Then, for each n EN, f(n) = n2• The domain off is N. The range off is 
the set of perfect squares. 

Functions f are often specified by algorithms that provide procedures 
for obtaining f(a) from a. This method of specifying functions is particu­
larly important in computer science. However, as we shall see in Chapter 
4, it is quite possible to possess an algorithm that specifies a function 
without being able to tell which elements belong to its domain. This makes 
the notion of a so-called partial function play a central role in computabil­
ity theory. A partial function on a set S is simply a function whose domain 
is a subset of S. An example of a partial function on N is given by g(n) 
= In, where the domain of g is the set of perfect squares. If f is a partial 
function on S and a E S, then we write f(a)J, and say that f(a) is defined 
to indicate that a is in the domain of f; if a is not in the domain of f, we 
write f(a)j and say that f(a) is undefined. If a partial function on S has 
the domain S, then it is called total. Finally, we should mention that the 
empty set 0 is itself a function. Considered as a partial function on some 
set S, it is nowhere defined. 

For a partial function f on a Cartesian product S1 X S2 X ··· X Sn, we 
write f(a 1 , ••• , an) rather than f((a 1 , ••• , an)). A partial function f on a 
set sn is called an n-ary partial function on S, or a function of n variables 
on S. We use unary and binary for 1-ary and 2-ary, respectively. For n-ary 
partial functions, we often write f(x 1 , ••• , xn) instead of f as a way of 
showing explicitly that f is n-ary. 
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Sometimes it is useful to work with particular kinds of functions. A 
function f is one-one if, for all x, y in the domain of J, f(x) = f(y) 
implies x = y. Stated differently, if x =/= y then f(x) =/= f(y). If the range of 
f is the set S, then we say that f is an onto function with respect to S, or 
simply that f is onto S. For example, f(n) = n2 is one-one, and f is onto 
the set of perfect squares, but it is not onto N. 

We will sometimes refer to the idea of closure. If S is a set and f is a 
partial function on S, then S is closed under f if the range of f is a subset 
of S. For example, N is closed under f(n) = nZ, but it is not closed under 
h(n) = ..;n (where h is a total function on N). 

3. Alphabets and Strings 

An alphabet is simply some finite nonempty set A of objects called 
symbols. An n-tuple of symbols of A is called a word or a string on A. 
Instead of writing a word as (a 1 , a2 , ••• , an) we write simply a1 a2 • •• an. If 
u = a1a2 ••• an, then we say that n is the length of u and write lui = n. 
We allow a unique null word, written 0, of length 0. (The reason for using 
the same symbol for the number zero and the null word will become clear 
in Chapter 5.) The set of all words on the alphabet A is written A*. Any 
subset of A* is called a language on A or a language with alphabet A. We 
do not distinguish between a symbol a E A and the ~d of length 1 
consisting of that symbol. If u, v E A*, then we write u v for the word 
obtained by placing the string v after the string u. For example, if 
A = {a, b, c}, u = bab, and v = caa, then 

uv = babcaa and vu = caabab. 

Where no confusion can result, we write uv instead of ;;u. It is obvious 
that, for all u, 

uO = Ou = u, 

and that, for all u, v, w, 

u(vw) = (uv)w. 

Also, if either uv = uw or vu = wu, then v = w. 
If u is a string, and n E N, n > 0, we write 

ulnJ = uu ... u. ------­n 

We also write ul01 = 0. We use the square brackets to avoid confusion with 
numerical exponentiation. 
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If u E A*, we write uR for u written backward; i.e., if u = a1a2 ••• an, 
for al' ... ' an E A, then uR =an ... azat. Clearly, oR = 0 and (uv)R = 
vRuR for u, v E A*. 

4. Predicates 

By a predicate or a Boolean-valued function on a set S we mean a total 
function P on S such that for each a E S, either 

P(a) =TRUE or P(a) = FALSE, 

where TRUE and FALSE are a pair of distinct objects called truth values. 
We often say P(a) is true for P(a) =TRUE, and P(a) is false for 
P(a) = FALSE. For our purposes it is useful to identify the truth values 
with specific numbers, so we set 

TRUE= 1 and FALSE= 0. 

Thus, a predicate is a special kind of function with values in N. Predicates 
on a set S are usually specified by expressions which become statements, 
either true or false, when variables in the expression are replaced by 
symbols designating fixed elements of S. Thus the expression 

x<S 

specifies a predicate on N, namely, 

P(x) = {~ if x=0,1,2,3,4 
otherwise. 

Three basic operations on truth values are defined by the tables in Table 
4.1. Thus if P and Q are predicates on a set S, there are also the 
predicates -P, P & Q, P v Q. -Pis true just when Pis false; P & Q is 
true when both P and Q are true, otherwise it is false; P v Q is true when 
either P or Q or both are true, otherwise it is false. Given a predicate P 

Table 4.1 

p -p p q p&q pVq 

0 1 1 1 
0 0 1 0 1 

0 0 1 
0 0 0 0 
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on a set S, there is a corresponding subset R of S, namely, the set of all 
elements a E S for which P(a) = 1. We write 

R ={a E SIP(a)}. 

Conversely, given a subset R of a given set S, the expression 

xER 

defines a predicate on S, namely, the predicate defined by 

Of course, in this case, 

P(x) = {~ if X E R 
if X ft. R. 

R = {x E SIP(x)}. 

The predicate P is called the characteristic function of the set R. The close 
connection between sets and predicates is such that one can readily 
translate back and forth between discourse involving one of these notions 
and discourse involving the other. Thus we have 

{x E s I P(x) & Q(x)} = {x E s I P(x)} n {xEs I Q(x)}, 

{xES I P(x) v Q(x)} ={xES I P(x)} u {xES I Q(x)}, 

{xES I -P(x)} = S- {xES I P(x)}. 

To indicate that two expressions containing variables define the same 
predicate we place the symbol = between them. Thus, 

X < 5 =X = 0 V X = 1 V X = 2 V X = 3 V X = 4. 

The De Morgan identities from Section 1 can be expressed as follows in 
terms of predicates on a set S: 

P(x) & Q(x) =- (- P(x) v - Q(x)), 

P(x) v Q(x) =- (- P(x) & - Q(x)). 

5. Quantifiers 

In this section we will be concerned exclusively with predicates on Nm (or 
what is the same thing, m-ary predicates on N) for different values of m. 
Here and later we omit the phrase "on N" when the meaning is clear. 
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Thus, let P(t, x 1 , ••• , xn) be an (n + 1)-ary predicate. Consider the predi­
cate Q(y, x1 , ••• , xn) defined by 

Q(y,x 1 , ••• ,xn) -P(O,x 1 , ••• ,xn) V P(l,x 1 , ••• ,xn) 

V ··· V P(y,x1 , ••• ,xn). 

Thus the predicate Q(y, x1 , ••• , xn) is true just in case there is a value of 
t ~ y such that P(t, x1 , ••• , xn) is true. We write this predicate Q as 

The expression "(3 t), y" is called a bounded existential quantifier. Similarly, 
we write (Vt), YP{t, x1 , ••• , xn) for the predicate 

P(O, XI' ••• ' xn) & P(l, XI' ••• ' xn) & ... & P(y, XI' .•• ' xn). 

This predicate is true just in case P(t, x1 , ••• , xn) is true for all t ~ y. 
The expression "(Vt), y" is called a bounded universal quantifier. We also 
write (3t) < YP(t, x1 , ••• , xn) for the predicate that is true just in 
case P(t, x1 , ••• , xn) is true for at least one value of t < y and 
(V t) < Y P(t, x 1 , ••• , x n) for the predicate that is true just in case 
P(t, x 1 , ••• , xn) is true for all values oft < y. 

We write 

for the predicate which is true if there exists some t E N for which 
P(t, XI' ••• ' xn) is true. Similarly, (Vt)P(t, XI' ••• ' xn) is true if 
P(t, XI' ••• ' xn) is true for all t EN. 

The following generalized De Morgan identities are sometimes useful: 

-(3t),YP(t,x1 , ••• ,xn)- (Vt),Y -P(t,Xp···•xn), 

-(3t)P(t,x1 , ••• ,xn)- (Vt) -P(t,x1 , ••• ,xn). 

The reader may easily verify the following examples: 

(3y)(x + y = 4) - x ~ 4, 

(3y)(x + y = 4)- (3y), 4(x + y = 4), 

(Vy){xy = 0) -X= 0, 

(3y),z(X + y = 4)- (x + z ~ 4& X~ 4). 
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6. Proof by Contradiction 

In this book we will be calling many of the assertions we make theorems 
(or corollaries or lemmas) and providing proofs that they are correct. Why 
are proofs necessary? The following example should help in answering this 
question. 

Recall that a number is called a prime if it has exactly two distinct 
divisors, itself and 1. Thus 2, 17, and 41 are primes, but 0, 1, 4, and 15 are 
not. Consider the following assertion: 

n2 - n + 41 is prime for all n EN. 

This assertion is in fact false. Namely, for n = 41 the expression becomes 

412 - 41 + 41 = 412 ' 

which is certainly not a prime. However, the assertion is true (readers with 
access to a computer can easily check this!) for all n ~ 40. This example 
shows that inferring a result about all members of an infinite set (such as 
N) from even a large finite number of instances can be very dangerous. A 
proof is intended to overcome this obstacle. 

A proof begins with some initial statements and uses logical reasoning to 
infer additional statements. (In Chapters 12 and 13 we shall see how the 
notion of logical reasoning can be made precise; but in fact, our use of 
logical reasoning will be in an informal intuitive style.) When the initial 
statements with which a proof begins are already accepted as correct, then 
any of the additional statements inferred can also be accepted as correct. 
But proofs often cannot be carried out in this simple-minded pattern. In 
this and the next section we will discuss more complex proof patterns. 

In a proof by contradiction, one begins by supposing that the assertion 
we wish to prove is false. Then we can feel free to use the negation of what 
we are trying to prove as one of the initial statements in constructing a 
proof. In a proof by contradiction we look for a pair of statements 
developed in the course of the proof which contradict one another. Since 
both cannot be true, we have to conclude that our original supposition was 
wrong and therefore that our desired conclusion is correct. 

We give two examples here of proof by contradiction. There will be 
many in the course of the book. Our first example is quite famous. We 
recall that every number is either even (i.e., = 2n for some n E N) or odd 
(i.e., = 2n + 1 for some n EN). Moreover, if m is even, m = 2n, then 
m 2 = 4n2 = 2 · 2n2 is even, while if m is odd, m = 2n + 1, then m 2 = 
4n 2 + 4n + 1 = 2(2n2 + 2n) + 1 is odd. We wish to prove that the 
equation 

2 = (mjn)2 (6.1) 
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has no solution for m, n EN (that is, that fi is not a "rational" number). 
We suppose that our equation has a solution and proceed to derive a 
contradiction. Given our supposition that (6.1) has a solution, it must have 
a solution in which m and n are not both even numbers. This is true 
because if m and n are both even, we can repeatedly "cancel" 2 from 
numerator and denominator until at least one of them is odd. On the 
other hand, we shall prove that for every solution of (6.1) m and n must 
both be even. The contradiction will show that our supposition was false, 
i.e., that (6.1) has no solution. 

It remains to show that in every solution of (6.1), m and n are both 
even. We can rewrite (6.1) as 

m 2 = 2n2 , 

which shows that m2 is even. As we saw above this implies that m is even, 
say m = 2k. Thus, m2 = 4k 2 = 2n 2, or n 2 = 2k 2• Thus, n 2 is even and 
hence n is even. • 

Note the symbol •, which means "the proof is now complete." 
Our second example involves strings as discussed in Section 3. 

Theorem 6.1. Let x E {a, b}* such that xa = ax. Then x = a[nJ for some 
n EN. 

Proof. Suppose that xa = ax but x contains the letter b. Then we can 
write x = a[nlbu, where we have explicitly shown the first (i.e., leftmost) 
occurrence of b in x. Then 

Thus, 
bua = abu. 

But this is impossible, since the same string cannot have its first symbol be 
both b and a. This contradiction proves the theorem. • 

Exercises 

1. Prove that the equation ( p 1 q )2 = 3 has no solution for p, q E N. 

2. Prove that if x E {a, b}* and abx = xab, then x = (ab)[nJ for some 
n EN. 

7. Mathematicallnduction 

Mathematical induction furnishes an important technique for proving 
statements of the form (Vn)P(n), where P is a predicate on N. One 
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proceeds by proving a pair of auxiliary statements, namely, 

P(O) 

and 

(Vn)(/f P(n) then P(n + 1)). (7.1) 

Once we have succeeded in proving these auxiliary statements we can 
regard (Vn)P(n) as also proved. The justification for this is as follows. 

From the second auxiliary statement we can infer each of the infinite set 
of statements: 

If P(O) then P(l), 

If P(l) then P(2), 

If P(2) then P(3), .... 

Since we have proved P(O), we can infer P(l). Having now proven P(l) we 
can get P(2), etc. Thus, we see that P(n) is true for all n and hence 
(Vn)P(n) is true. 

Why is this helpful? Because sometimes it is much easier to prove (7.1) 
than to prove (Vn)P(n) in some other way. In proving this second auxiliary 
proposition one typically considers some fixed but arbitrary value k of n 
and shows that if we assume P(k) we can prove P(k + 1). P(/.,) is then 
called the induction hypothesis. This methodology enables us to use P(k) as 
one of the initial statements in the proof we are constructing. 

There are some paradoxical things about proofs by mathematical induc­
tion. One is that considered superficially, it seems like an example of 
circular reasoning. One seems to be assuming P(k) for an arbitrary k, 
which is exactly what one is supposed to be engaged in proving. Of course, 
one is not really assuming (Vn)P(n). One is assuming P(k) for some 
particular k in order to show that P(k + 1) follows. 

It is also paradoxical that in using induction (we shall often omit the 
word mathematical), it is sometimes easier to prove statements by first 
making them "stronger." We can put this schematically as follows. We 
wish to prove (Vn)P(n). Instead we decide to prove the stronger assertion 
(VnXP(n) & Q(n)) (which of course implies the original statement). Prov­
ing the stronger statement by induction requires that we prove 

P(O) & Q(O) 

and 

(Vn)[If P(n) & Q(n) then P(n + 1) & Q(n + 1)]. 

In proving this second auxiliary statement, we may take P(k)& Q(k) as 
our induction hypothesis. Thus, although strengthening the statement to 
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be proved gives us more to prove, it also gives us a stronger induction 
hypothesis and, therefore, more to work with. The technique of deliber­
ately strengthening what is to be proven for the purpose of making proofs 
by induction easier is called induction loading. 

It is time for an example of a proof by induction. The following is useful 
in doing one of the exercises in Chapter 6. 

Theorem 7.1. For all n EN we have L/~ 0(2i + 1) = (n + 1)2• 

Proof. For n = 0, our theorem states simply that 1 = 12, which is true. 
Suppose the result known for n = k. That is, our induction hypothesis is 

Then 

k 

E (2i + 1) = <k + 1/. 
i~O 

k+ I k 

E (2i + 1) = E (2i + o + 2(k + 1) + 1 
i~O i~O 

= (k + 1)2 + 2(k + 1) + 1 

= (k + 2)2• 

But this is the desired result for n = k + 1. • 
Another form of mathematical induction that is often very useful is 

called course-of-values induction or sometimes complete induction. In the 
case of course-of-values induction we prove the single auxiliary statement 

('Vn)[Jf (Vm)m < nP(m) then P(n)], (7.2) 

and then conclude that (Vn)P(n) is true. A potentially confusing aspect of 
course-of-values induction is the apparent lack of an initial statement 
P(O). But in fact there is no such lack. The case n = 0 of (7.2) is 

If ('Vm)m < 0 P(m) then P(O). 

But the "induction hypothesis" (Vm)m < 0 P(m) is entirely vacuous because 
there is nom EN such that m < 0. So in proving (7.2) for n = 0 we really 
are just proving P(O). In practice it is sometimes possible to give a single 
proof of (7.2) that works for all n including n = 0. But often the case 
n = 0 has to be handled separately. 

To see why course-of-values induction works, consider that, in the light 
of what we have said about the n = 0 case, (7.2) leads to the following 
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infinite set of statements: 

P(O), 

If P(O) then P(l), 

If P(O) & P(l) then P(2), 

If P(O) & P(l) & P(2) then P(3), 

Here is an example of a theorem proved by course-of-values induction. 

Theorem 7.2. There is no string x E {a, b}* such that ax= xb. 

Proof. Consider the following predicate: If x E {a, b}* and lxl = n, then 
ax =/= xb. We will show that this is true for all n E N. So we assume it true 
for all m < k for some given k and show that it follows for k. This proof 
will be by contradiction. Thus, suppose that lxl = k and ax= xb. The 
equation implies that a is the first and b the last symbol in x. So, we can 
write x = aub. Then 

aaub = aubb, 
i.e., 

au= ub. 

But lui < lxl. Hence by the induction hypothesis au =/= ub. This contradic­
tion proves the theorem. • 

Proofs by course-of-values induction can always be rewritten so as to 
involve reference to the principle that if some predicate is true for some 
element of N, then there must be a least element of N for which it is true. 
Here is the proof of Theorem 7.2 given in this style. 

Proof. Suppose there is a string x E {a, b}* such that ax = xb. Then 
there must be a string satisfying this equation of minimum length. Let x 
be such a string. Then ax= xb, but, if lui < lxl, then au =/= ub. However, 
ax= xb implies that x = aub, so that au = ub and lui < lxl. This contra­
diction proves the theorem. • 

Exercises 

1. Prove by mathematical induction that E7~ 1 i = n(n + 1)/2. 

2. Here is a "proof' by mathematical induction that if x, y EN, then 
x = y. What is wrong? 
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Let 

max( x, y) = {; 

for x, y E N. Consider the predicate 

if X ~y 

otherwise 

(Vx)(Vy)[/f max(x, y) = n, thenx = y]. 

13 

For n = 0, this is clearly true. Assume the result for n = k, and let 
max(x, y) = k + 1. Let x 1 = x- 1, y 1 = y- 1. Then max(x1 , y1) = k. 
By the induction hypothesis, x 1 = y 1 and therefore x = x 1 + 1 = 
Y1 + 1 = Y· 

3. Here· is another incorrect proof that purports to use mathematical 
induction to prove that all flowers have the same color! What is 
wrong? 

Consider the following predicate: If S is a set of flowers containing 
exactly n elements, then all the flowers in S have the same color. The 
predicate is clearly true if n = 1. We suppose it true for n = k and 
prove the result for n = k + 1. Thus, let S be a set of k + 1 flowers. If 
we remove one flower from S we get a set of k flowers. Therefore, by 
the induction hypothesis they all have the same color. Now return the 
flower removed from S and remove another. Again by our induction 
hypothesis the remaining flowers all have the same color. But now 
both of the flowers removed have been shown to have the same color 
as the rest. Thus, all the flowers in S have the same color. 

4. Show that there are no strings x, y E {a, b}* such that xay = ybx. 

5. Give a "one-line" proof of Theorem 7.2 that does not use mathemati­
cal induction. 
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Computability 
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Programs and 
Computable Functions 

1. A Programming Language 

Our development of computability theory will be based on a specific 
programming language ..:7. We will use certain letters as variables whose 
values are numbers. (In this book the word number will always mean 
nonnegative integer, unless the contrary is specifically stated.) In particu­
lar, the letters 

XI Xz X3 ... 

will be called the input variables of ..:7, the letter Y will be called the 
output variable of ..:7, and the letters 

ZI Zz z3 
will be called the local variables of ..:7. The subscript 1 is often omitted; i.e., 
X stands for X 1 and Z for Z 1• Unlike the programming languages in 
actual use, there is no upper limit on the values these variables can 
assume. Thus from the outset, ..:7 must be regarded as a purely theoretical 
entity. Nevertheless, readers having programming experience will find 
working with ..:7 very easy. 

In ..:7 we will be able to write "instructions" of various sorts; a 
"program" of ..:7 will then consist of a list (i.e., a finite sequence) of 

17 
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Instruction 

V+- V+ 1 
V+- V-I 

Chapter 2 Programs and Computable Functions 

Table 1.1 

Interpretation 

Increase by I the value of the variable V. 
If the value of V is 0, leave it unchanged; otherwise decrease by I the 

value of V. 
IF V * 0 GOTO L If the value of V is nonzero, perform the instruction with label L next; 

otherwise proceed to the next instruction in the list. 

instructions. For example, for each variable V there will be an instruction: 

V+--V+1 

A simple example of a program of .9' is 

X+--X+ 1 
X+--X+1 

"Execution" of this program has the effect of increasing the value of X by 
2. In addition to variables, we will need "labels." In .9' these are 

AI Bl CI DI El Az Bz Cz Dz Ez A3 .... 

Once again the subscript 1 can be omitted. We give in Table 1.1 a 
complete list of our instructions. In this list V stands for any variable and 
L stands for any label. 

These instructions will be called the increment, decrement, and condi­
tional branch instructions, respectively. 

We will use the special convention that the output variable Y and the 
local variables Z; initially have the value 0. We will sometimes indicate the 
value of a variable by writing it in lowercase italics. Thus x 5 is the value of 
Xs. 

Instructions may or may not have labels. When an instruction is labeled, 
the label is written to its left in square brackets. For example, 

[B] Z+--Z-1 

In order to base computability theory on the language .9', we will 
require formal definitions. But before we supply these, it is instructive to 
work informally with programs of .9'. 

2. Some Examples of Programs 

(a) Our first example is the program 

[A] X+--X-1 
Y+--Y+1 
IF X =/= 0 GOTO A 



2. Some Examples of Programs 19 

If the initial value x of X is not 0, the effect of this program is to copy x 
into Y and to decrement the value of X down to 0. (By our conventions 
the initial value of Y is 0.) If x = 0, then the program halts with Y having 
the value 1. We will say that this program computes the function 

f(x) = {~ if X= 0 
otherwise. 

This program halts when it executes the third instruction of the program 
with X having the value 0. In this case the condition X -=!= 0 is not fulfilled 
and therefore the branch is not taken. When an attempt is made to move 
on to the nonexistent fourth instruction, the program halts. A program will 
also halt if an instruction labeled L is to be executed, but there is no 
instruction in the program with that label. In this case, we usually will use 
the letter E (for "exit") as the label which labels no instruction. 

(b) Although the preceding program is a perfectly well-defined pro­
gram of our language .9', we may think of it as having arisen in an attempt 
to write a program that copies the value of X into Y, and therefore 
containing a "bug" because it does not handle 0 correctly. The following 
slightly more complicated example remedies this situation. 

[A] IF X-=!= 0 GOTO B 
Z+-Z+1 
IF Z -=1= 0 GOTO E 

[B] X+-- X- 1 
Y+-Y+1 
Z+-Z+1 
IF Z-=!= OGOTOA 

As we can easily convince ourselves, this program does copy the value of 
X into Y for all initial values of X. Thus, we say that it computes the 
function f(x) = x. At first glance.Z's role in the computation may not be 
obvious. It is used simply to allow us to code an unconditional branch. That 
is, the program segment 

Z+-Z+1 
IF Z-=!= 0 GOTO L 

(2.1) 

has the effect (ignoring the effect on the value of Z) of an instruction 

GOTOL 

such as is available in most programming languages. To see that this is true 
we note that the first instruction of the segment guarantees that Z has a 
nonzero value. Thus the condition Z -=!= 0 is always true and hence the next 
instruction performed will be the instruction labeled L. Now GOTO L is 
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not an instruction in our language .9", but since we will frequently have use 
for such an instruction, we can use it as an abbreviation for the program 
segment (2.1). Such an abbreviating pseudoinstruction will be called a 
macro and the program or program segment which it abbreviates will be 
called its macro expansion. 

The use of these terms is obviously motivated by similarities with the 
notion of a macro instruction occurring in many programming languages. 
At this point we will not discuss how to ensure that the variables local to 
the macro definition are distinct from the variables used in the main 
program. Instead, we will manually replace any such duplicate variable 
uses with unused variables. This will be illustrated in the "expanded" 
multiplication program in (e). In Section 5 this matter will be dealt with in 
a formal manner. 

(c) Note that although the program of (b) does copy the value of X 
into Y, in the process the value of X is "destroyed" and the program 
terminates with X having the value 0. Of course, typically, programmers 
want to be able to copy the value of one variable into another without the 
original being "zeroed out." This is accomplished in the next program. 
(Note that we use our macro instruction GOTO L several times to shorten 
the program. Of course, if challenged, we could produce a legal program of 
.9" by replacing each GOTO L by a macro expansion. These macro 
expansions would have to use a local variable other than Z so as not to 
interfere with the value of Z in the main program.) 

[A] If X -=F 0 GOTO B 
GOTOC 

[B] X+-- X- 1 
Y+-Y+1 
Z+-Z+1 
GOTOA 

[C] IF Z -=F 0 GOTO D 
GOTOE 

[D] Z +-- Z- 1 
X+-X+ 1 
GOTOC 

In the first loop, this program copies the value of X into both Y and Z, 
while in the second loop, the value of X is restored. When the program 
terminates, both X and Y contain X's original value and z = 0. 

We wish to use this program to justify the introduction of a macro which 
we will write 

V+- V' 



2. Some Examples of Programs 21 

the execution of which will replace the contents of the variable V by the 
contents of the variable V' while leaving the contents of V' unaltered. 
Now, this program (c) functions correctly as a copying program only under 
our assumption that the variables Y and Z are initialized to the value 0. 
Thus, we can use the program as the basis of a macro expansion of 
V +--- V' only if we can arrange matters so as to be sure that the corre­
sponding variables have the value 0 whenever the macro expansion is 
entered. To solve this problem we introduce the macro 

V+---0 

which will have the effect of setting the contents of V equal to 0. The 
corresponding macro expansion is simply 

[L] V +--- V- 1 
IF V =F 0 GOTO L 

where, of course, the label L is to be chosen to be different from any of 
the labels in the main program. We can now write the macro expansion of 
V +--- V' by letting the macro V +--- 0 precede the program which results 
when X is replaced by V' and Y is replaced by V in program (c). The 
result is as follows: 

V+---0 
[A] IF V' =F 0 GOTO B 

GOTOC 
[B] V' +--- V' - 1 

V+-V+1 
Z+-Z+1 
GOTOA 

[C] IF Z =F 0 GOTO D 
GOTOE 

[D] Z +--- Z- 1 
V' +--- V' + 1 
GOTOC 

With respect to this macro expansion the following should be noted: 

1. It is unnecessary (although of course it would be harmless) to include 
a Z +--- 0 macro at the beginning of the expansion because, as has 
already been remarked, program (c) terminates with z = 0. 

2. When inserting the expansion in an actual program, the variable Z 
will have to be replaced by a local variable which does not occur in 
the main program. 
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3. Likewise the labels A, B, C, D will have to be replaced by labels 
which do not occur in the main program. 

4. Finally, the label E in the macro expansion must be replaced by a 
label L such that the instruction which follows the macro in the main 
program (if there is one) begins [L]. 

(d) A program with two inputs that computes the function 

is as follows: 

f(xi ,xz) =xi +xz 

Y+-XI 
Z +-X2 

[ B] IF Z =F 0 GOTO A 
GOTOE 

[A] Z +-- Z- 1 
Y+-Y+1 
GOTOB 

Again, if challenged we would supply macro expansions for "Y +-- XI" 
and "Z +-- X2" as well as for the two unconditional branches. Note that Z 
is used to preserve the value of X2 • 

(e) We now present a program that multiplies, i.e. that computes 
f(xpx 2 ) =xi ·x2 • Since multiplication can be regarded as repeated addi­
tion, we are led to the "program" 

Zz +-- Xz 
[B] IF Z 2 =F 0 GOTO A 

GOTOE 
[A] Z 2 +-- Z 2 -• 1 

zi +--xi+ Y 
Y+- zi 
GOTOB 

Of course, the "instruction" ZI +--XI + y is not permitted in the lan­
guage .9'. What we have in mind is that since we already have an addition 
program, we can replace the macro ZI +--XI + Y by a program for 
computing it, which we will call its macro expansion. At first glance, one 
might wonder why the pair of instructions 

zi +--xi+ Y 

Y+- zi 
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was used in this program rather than the single instruction 

v~x1 + Y 

since we simply want to replace the current value of Y by the sum of its 
value and x1 • The sum program in (d) computes Y = X 1 + X2 • If we were 
to use that as a template, we would have to replace X 2 in the program by 
Y. Now if we tried to use Y also as the variable being assigned, the macro 
expansion would be as follows: 

v~x1 
z~v 

[B] IF Z =F 0 GOTO A 
GOTOE 

[A] Z ~ Z- 1 
v~ Y+ 1 
GOTOB 

What does this program actually compute? It should not be difficult to see 
that instead of computing x 1 + y as desired, this program computes 2x 1 • 

Since X 1 is to be added over and over again, it is important that X 1 not be 
destroyed by the addition program. Here is the multiplication program, 
showing the macro expansion of Z 1 ~ X 1 + Y: 

Zz ~xz 
[B] IF Z2 =F 0 GOTO A 

GOTOE 
[A] Z2 ~ Z2 - 1 

zl ~x~ 
z3 ~ Y 

[Bz] IF Z3 =F 0 GOTO A 2 Macro Expansion of 
GOTO £ 2 zl ~x~ + Y 

[Az] Z3 ~ Z3 - 1 
Z 1 ~ Z 1 + 1 
GOTO B2 

[Ez] v~z1 
GOTOB 

Note the following: 

1:- The local variable Z 1 in the addition program in (d) must be replaced 
by another local variable (we have used Z 3 ) because Z 1 (the other 
name for Z) is also used as a local variable in the multiplication 
program. 
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2. The labels A, B, E are used in the multiplication program and hence 
cannot be used in the macro expansion. We have used A 2 , B2 , £ 2 

instead. 
3. The instruction GOTO £ 2 terminates the addition. Hence, it is 

necessary that the instruction immediately following the macro ex­
pansion be labeled £ 2 • 

In the future we will often omit such details in connection with macro 
expansions. All that is important is that our infinite supply of variables and 
labels guarantees that the needed changes can always be made. 

(f) For our final example, we take the program 

Y+-X1 

Z +-X2 

[C] IF Z =fo 0 GOTO A 
GOTOE 

[A] IF Y =fo 0 GOTO B 
GOTOA 

[B] Y +- Y- 1 
Z+-Z-1 
GOTOC 

If we begin with X 1 = 5, X 2 = 2, the program first sets Y = 5 and Z = 2. 
Successively the program sets Y = 4, Z = 1 and Y = 3, Z = 0. Thus, the 
computation terminates with Y = 3 = 5 - 2. Clearly, if we begin with 
X 1 = m, X 2 = n, where m ~ n, the program will terminate with Y = 
m -n. 

What happens if we begin with a value of X 1 less than the value of X 2 , 

e.g., X 1 = 2, X 2 = 5? The program sets Y = 2 and Z = 5 and successively 
sets Y = 1, Z = 4 and Y = 0, Z = 3. At this point the computation enters 
the "loop": 

[A] IF Y =fo 0 GOTO B 
GOTOA 

Since y = 0, there is no way out of this loop and the computation will 
continue "forever." Thus, if we begin with X 1 = m, X 2 = n, where m < n, 
the computation will never terminate. In this case (and in similar cases) we 
will say that the program computes the partial function 

if x 1 ~ Xz 

if x1 <x2 • 

(Partial functions are discussed in Chapter 1, Section 2.) 
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Exercises 

1. Write a program in Y (using macros freely) that computes the 
function f(x) = 3x. 

2. Write a program in Y that solves Exercise 1 using no macros. 

3. Let f(x) = 1 if x is even; f(x) = 0 if x is odd. Write a program in Y 
that computes f. 

4. Let f(x) = 1 if x is even; f(x) undefined if x is odd. Write a program 
in Y that computes f. 

5. Let f(x 1 , x2 ) = 1 if x1 = x 2 ; f(x 1 , x2 ) = 0 if x 1 =I= x 2 • Without using 
macros, write a program in Y that computes f. 

6. Let f(x) be the greatest number n such that n 2 ~ x. Write a program 
in Y that computes f. 

7. Let gcd(x 1 , x2 ) be the greatest common divisor of x1 and x 2 • Write a 
program in Y that computes gcd. 

3. Syntax 

We are now ready to be mercilessly precise about the language Y. Some 
of the description recapitulates the preceding discussion. 

The symbols 

are called input variables, 

zl Zz z3 ... 

are called local variables, and Y is called the output variable of Y. The 
symbols 

AI Bl Cl Dl £1 Az Bz ... 

are called labels of Y. (As already indicated, in practice the subscript 1 is 
often omitted.) A statement is one of the following: 

v~ V+ 1 
v~ v-1 
v~ v 
IF V =I= 0 GOTO L 

where V may be any variable and L may be any label. 
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Note that we have included among the statements of Y the "dummy" 
commands V ~ V. Since execution of these commands leaves all values 
unchanged, they have no effect on what a program computes. They are 
included for reasons that will not be made clear until much later. But their 
inclusion is certainly quite harmless. 

Next, an instmction is either a statement (in which case it is also called 
an unlabeled instruction) or [L] followed by a statement (in which case the 
instruction is said to have L as its label or to be labeled L). A program is 
a list (i.e., a finite sequence) of instructions. The length of this list is called 
the length of the program. It is useful to include the empty program of 
length 0, which of course contains no instructions. 

As we have seen informally, in the course of a computation, the 
variables of a program assume different numerical values. This suggests 
the following definition: 

A state of a program .9' is a list of equations of the form V = m, where V 
is a variable and m is a number, including an equation for each variable 
that occurs in 9' and including no two equations with the same variable. 
As an example, let .9' be the program of (b) from Section 2, which contains 
the variables X Y Z. The list 

X= 4, Y= 3, z = 3 

is thus a state of .9'. (The definition of state does not require that the state 
can actually be "attained" from some initial state.) The list 

X2 = 5, Y= 4, z =4 

is also a state of .9'. (Recall that X is another name for X 1 and note that 
the definition permits inclusion of equations involving variables not actu­
ally occurring in .9'.) The list 

X= 3, Z=3 

is not a state of .9' since no equation in Y occurs. Likewise, the list 

X= 3, X=4, Y= 2, z = 2 

is not a state of .9': there are two equations in X. 
Let u be a state of .9' and let V be a variable that occurs in u. The 

value of Vat u is then the (unique) number q such that the equation 
V = q is one of the equations making up u. For example, the value of X 
at the state 

X= 4, Y= 3, Z=3 

is 4. 
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Suppose we have a program 9' and a state u of 9'. In order to say what 
happens "next," we also need to know which instruction of 9' is about to 
be executed. We therefore define a snapshot or instantaneous description 
of a program 9' of length n to be a pair (i, u) where 1 ~ i ~ n + 1, and u 
is a state of 9'. (Intuitively the number i indicates that it is the ith 
instruction which is about to be executed; i = n + 1 corresponds to a 
"stop" instruction.) 

If s = (i, u) is a snapshot of 9' and V is a variable of 9', then the value 
of Vats just means the value of V at u. 

A snapshot (i, u) of a program 9' of length n is called terminal if 
i = n + 1. If (i, u) is a nonterminal snapshot of 9', we define the successor 
of (i, u) to be the snapshot (j, T) defined as follows: 

Case 1. The ith instruction of 9' is V ~ V + 1 and u contains the 
equation V = m. Then j = i + 1 and T is obtained from u by 
replacing the equation V = m by V = m + 1 (i.e., the value of V 
at T ism+ 1). 

Case 2. The ith instruction of 9' is V ~ V- 1 and u contains the 
equation V = m. Then j = i + 1 and T is obtained from u by 
replacing the equation V = m by V = m - 1 if m -=!= 0; if m = 0, 
T = U. 

Case 3. The ith instruction of 9' is V ~ V. Then T = u and j = i + 1. 
Case 4. The ith instruction of 9' is IF V-=!= 0 GOTO L. Then T = u, and 

there are two subcases: 
Case 4a. u contains the equation V = 0. Then j = i + 1. 
Case 4b. u contains the equation V = m where m -=1= 0. Then, if there is 

an instruction of 9' labeled L, j is the least number such that 
the jth instruction of 9' is labeled L. Otherwise, j = n + 1. 

For an example, we return to the program of (b), Section 2. Let u be 
the state 

X= 4, Y= 0, Z=O 

and let us compute the successor of the snapshots (i, u) for various values 
of i. 

For i = 1, the successor is (4, u) where u is as above. For i = 2, the 
successor is (3, T ), where T consists of the equations 

X=4, Y= 0, Z=l. 

For i = 7, the successor is (8, u ). This is a terminal snapshot. 
A computation of a program 9' is defined to be a sequence (i.e., a list) 

s1 ,s2 , ••• ,sk of snapshots of 9' such that s;+t is the successor of s; for 
i = 1, 2, ... , k - 1 and sk is terminal. 
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Note that we have not forbidden a program to contain more than one 
instruction having the same label. However, our definition of successor of 
a snapshot, in effect, interprets a branch instruction as always referring to 
the first statement in the program having the label in question. Thus, for 
example, the program 

[A] X+--- X- 1 
IF X =1= 0 GOTO A 

[A] X+--- X+ 1 

is equivalent to the program 

Exercises 

[A] X+--- X- 1 
IF X =1= 0 GOTO A 
X+-X+ 1 

1. Let .9 be the program of (b), Section 2. Write out a computation of .9 
beginning with the snapshot (1, u ), where u consists of the equations 
X = 2, Y = 0, Z = 0. 

2. Give a program .9 such that for every computation s1, ... , sk of .9, 
k = 5. 

3. Give a program .9 such that for any n ~ 0 and every computation 
s1 = (1, u ), s2 , ••• , sk of .9 that has the equation X= n in u, k = 
2n + 1. 

4. Computable Functions 

We have been speaking of the function computed by a program .9. It is 
now time to make this notion precise. 

One would expect a program that computes a function of m variables to 
contain the input variables X 1 , X2 , ••• , Xm, and the output variable Y, 
and to have all other variables (if any) in the program be local. Although 
this has been and will continue to be our practice, it is convenient not to 
make it a formal requirement. According to the definitions we are going to 
present, any program .9 of the language Y can be used to compute a 
function of one variable, a function of two variables, and, in general, for 
each m ~ 1, a function of m variables. 

Thus, let .9 be any program in the language Y and let r 1 , ••• , r m be m 
given numbers. We form the state u of .9 which consists of the equations 

... ' Y=O 



4. Computable Functions 29 

together with the equations V = 0 for each variable V in go other than 
X1 , ••• , Xm, Y. We will call this the initial state, and the snapshot (1, u ), 
the initial snapshot. 

Case 1. There is a computation s 1 , s 2 , ••• , s k of go beginning with the initial 
snapshot. Then we write r/J~m>(r 1 ,r2 , ••• ,rm) for the value of the 
variable Y at the (terminal) snapshot sk. 

Case 2. There is no such computation; i.e., there is an infinite sequence 
s1 ,s2 ,s3 , ••• beginning with the initial snapshot where each si+l 

is the successor of s;. In this case r/J~m>(r 1 , ••• , r m) is undefined. 

Let us reexamine the examples in Section 2 from the point of view of 
this definition. We begin with the program of (b). For this program go, we 
have 

1/J~l)(x) = x 

for all x. For this one example, we give a detailed treatment. The following 
list of snapshots is a computation of go: 

(1,{X = r, Y= O,Z = 0}), 
(4, {X= r, Y = 0, Z = 0}), 
(5, {X= r- 1, Y = 0, Z = 0}), 
(6, {X= r- 1, Y = 1, Z = 0}), 
(7, {X= r- 1, Y = 1, Z = 1}), 
(1, {X= r- 1, Y = 1, Z = 1}), 

(1, {X= 0, Y = r, Z = r}), 
(2, {X= 0, Y = r, Z = r}), 

(3, {X= 0, Y = r, Z = r + 1}), 
(8, {X= 0, Y = r, Z = r + 1}). 

We have included a copy of go showing line numbers: 

[A] 

[B] 

IF X =1= 0 GOTO B 
z ~z + 1 
IF Z =I= 0 GOTO E 
x~x-1 

Y~ Y+ 1 
z ~z + 1 
IF Z =/= 0 GOTO A 

(1) 

(2) 

(3) 

(4) 
(5) 

(6) 

{7) 
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For other examples of Section 2 we have 

{ 1 if r = 0 (a) 1/J(I >(r) = r 
otherwise, 

(b), (c) 1/1°>(r) = r, 
(d) 1/1<2>(r1 , r2 ) = r1 + r2 , 

(e) 1/1<2>(r1 , r2) = r1 • r2 , 

(D 1/1<2l(rl, rz) = { r; - rz 
if r1 ~ r2 

if r1 < r2 • 

Of course in several cases the programs written in Section 2 are abbrevia­
tions, and we are assuming that the appropriate macro expansions have 
been provided. 

As indicated, we are permitting each program to be used with any 
number of inputs. If the program has n input variables, but only m < n 
are specified, then according to the definition, the remaining input vari­
ables are assigned the value 0 and the computation proceeds. If on the 
other hand, m values are specified where m > n the extra input values are 
ignored. For example, referring again to the examples from Section 2, we 
have 

(c) t/J.!J>(r1 , r 2 ) = r1 , 

{d) tfJ.~,I>(r 1 ) = r 1 + 0 = ·rl> 

t/I.J1>(rl 'rz' r3) = rl + rz. 

For any program .9J and any positive integer m, the function 
t/J.~m>(x 1 , ••• , xm) is said to be computed by .9. A given partial function g 
(of one or more variables) is said to be partially computable if it is 
computed by some program. That is, g is partially computable if there is a 
program .9J such that 

g(rl ,. .. ,rm) = 1/J.~m>(rl , ... ,rm) 

for all r 1 , ••• , r m • Here this 'equation must be understood to mean not only 
that both sides have the same value when they are defined, but also that 
when either side of the equation is undefined, the other is also. 

As explained in Chapter 1, a given function g of m variables is called 
total if g(r1 , ••• , rm) is defined for all r1 , ••• , rm. A function is said to be 
computable if it is both partially computable and total. 

Partially computable functions are also called partial recursive, and 
computable functions, i.e., functions that are both total and partial recur­
sive, are called recursive. The reason for this terminology is largely histori­
cal and will be discussed later. 

Our examples from Section 2 give us a short list of partially computable 
functions, namely: x, x + y, x · y, and x - y. Of these, all except the last 
one are total and hence computable. 
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Computability theory (also called recursion theory) studies the class of 
partially computable functions. In order to justify the name, we need some 
evidence that for every function which one can claim to be "computable" 
on intuitive grounds, there really is a program of the language Y which 
computes it. Such evidence will be developed as we go along. 

We close this section with one final example of a program of .Y: 

[A] X+-- X+ 1 
IF X* 0 GOTO A 

For this program 9', I/J.~1 >(x) is undefined for all x. So, the nowhere 
defined function (see Chapter 1, Section 2) must be included in the class of 
partially computable functions. 

Exercises 

1. Let 9' be the program 

IF Xi= OGOTOA 
[A] X+-- X+ 1 

IF Xi= OGOTO A 
[A] Y +-- Y + 1 

What is 1/J.~IJ(x )? 

2. The same as Exercise 1 for the program 

[ B] IF X * 0 GOTO A 
Z+-Z+1 
IF Z * OGOTO B 

[A] X+-X 

3. The same as Exercise 1 for the empty program. 

4. Let 9' be the program 

Y+-XI 
[A] IFX2 =0GOTO£ 

Y+-Y+1 
Y+-Y+1 
X 2 +-- X 2 - 1 
GOTOA 

What is I/J.!)>(r1)? l/l}}>(r1 , r2 )? I/Jj}>(r1 , r2 , r3 )? 

5. Show that for every partially computable function f(x 1 , ••• , xn), there 
is a number m ~ 0 such that f is computed by infinitely many 
programs of length m. 
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6. (a) For every number k ~ 0, let fk be the constant function fk(x) = 
k. Show that for every k, fk is computable. 

(b) Let us call an ..9P program a straightline program if it contains no 
(labeled or unlabeled) instruction of the form IF V =F 0 GOTO 
L. Show by h.duction on the length of programs that if the length 
of a straightline program .9 is k, then 1/J.J.I)(x) ~ k for all x. 

(c) Show that, if .9 is a straightline program that computes fk, then 
the length of .9 is at least k. 

(d) Show that no straightline Y program computes the function 
f(x) = x + 1. Conclude that the class of functions computable by 
straightline Y programs is contained in but is not equal to the 
class of computable functions. 

7. Let us call an Y program .9 forward-branching if the following 
condition holds for each occurrence in .9 of a (labeled or unlabeled) 
instruction of the form IF V =F 0 GOTO L. If IF V =F 0 GOTO L is 
the ith instruction of .9, then either L does not appear as the label of 
an instruction in .9, or else, if j is the least number such that L is the 
label of the jth instruction in .9, then i < j. Show that a function is 
computed by some forward-branching program if and only if it is 
computed by some straightline program (see Exercise 6). 

8. Let us call a unary function f(x) partially n-computable if it is com­
puted by some Y program .9 such that .9 has no more than n 
instructions, every variable in .9 is among X, Y, Z 1 , ••• , Zn, and every 
label in .9 is among A 1 , ••• , An, E. 
(a) Show that if a unary function is computed by a program with no 

more than n instructions, then it is partially n-computable. 
(b) Show that for every n ~ 0, there are only finitely many distinct 

partially n-computable unary functions. 
(c) Show that for every n ~ 0, there are only finitely many distinct 

unary functions computed by Y programs of length no greater 
than n. 

(d) Conclude that for every n ~ 0, there is a partially computable 
unary function which is not computed by any Y program of 
length less than n. 

5. More about Macros 

In Section 2 we gave some examples of computable functions (i.e., x + y, 
x · y) giving rise to corresponding macros. Now we consider this process in 
general. 
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Let f(x 1 , ••• , xn) be some partially computable function computed by 
the program .9J. We shall assume that the variables that occur in .9J are all 
included in the list Y, XI' ... ' xn' zl' ... ' zk and that the labels that 
occur in .9J are all included in the list E, A 1 , ••• , A 1• We also assume that 
for each instruction of .9J of the form 

IF V =I= 0 GOTO A; 

there is in .9J an instruction labeled A; . (In other words, E is the only 
"exit" label.) It is obvious that, if .9J does not originally meet these 
conditions, it will after minor changes in notation. We write 

gJ =.9J(Y, XI, ... , xn ,zl , ... ,zk; E, AI, ... , At) 

in order that we can represent programs obtained from .9J by replacing the 
variables and labels by others. In particular, we will write 

f2' m = .9J( Zm , Z m + 1 , ••• , Zm + n , Zm + n + 1 , ••• , Z m + n + k ; 

for each given value of m. Now we want to be able to use macros like 

in our programs, where V1 , ••• , V,, W can be any variables whatever. (In 
particular, W might be one of V1 , ••• , V, .) We will take such a macro to be 
an abbreviation of the following expansion: 

zm +- 0 
zm+l +-VI 

Zm+z +- Vz 

zm+n +- v, 
Zm+n+ I +- 0 
zm+n+2 +- 0 

Here it is understood that the number m is chosen so large that none of 
the variables or labels used in t2' m occur in the main program of which the 
expansion is a part. Notice that the expansion sets the variables corre­
sponding to the output and local variables of .9J equal to 0 and those 
corresponding to X 1 , ••• , Xn equal to the values of V1 , ••• , V,, respec­
tively. Setting the variables equal to 0 is necessary (even though they are 
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all local variables automatically initialized to 0) because the expansion may 
be part of a loop in the main program; in this case, at the second and 
subsequent times through the loop the local variables will have whatever 
values they acquired the previous time around, and so will need to be 
reset. Note that when t2'm terminates, the value of Zm is f(V1 , ••• , V,), so 
that W finally does get the value f(V1 , ••• , V,). 

If f(V1 , ••• , V,) is undefined, the program t2'm will never terminate. Thus 
if f is not total, and the macro 

w +--- f( VI ' ... ' v,) 

is encountered in a program where V1 , ••• , V, have values for which f is 
not defined, the main program will never terminate. 

Here is an example: 

This program computes the function f(x 1 , x2 , x 3), where 

if X 1 ~ Xz 

if X 1 < Xz. 

In particular, f(2, 5, 6) is undefined, although (2 - 5) + 6 = 3 is positive. 
The computation never gets past the attempt to compute 2- 5. 

So far we have augmented our language .9 to permit the use of macros 
which allow assignment statements of the form 

W +--- f(VI, ... , V,), 

where f is any partially computable function. Nonetheless there is avail­
able only one highly restrictive conditional branch statement, namely, 

IF V =F 0 GOTO L 

We will now see how to augment our language to include macros of the 
form 

IF P(V1 , ••• , V,) GOTO L 

where P(x1 , ••• , xn) is a computable predicate. Here we are making use of 
the convention, introduced in Chapter 1, that 

TRUE= 1, FALSE= 0. 
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Hence predicates are just total functions whose values are always either 0 
or 1. And therefore, it makes perfect sense to say that some given 
predicate is or is not computable. 

Let P(x1 , ••• , xn) be any computable predicate. Then the appropriate 
macro expansion of 

is simply 

IF P(V1 , ••• , V,) GOTO L 

Z +-- P(V1 , ••• , V,) 
IF Z =I= 0 GOTO L 

Note that P is a computable function and hence we have already shown 
how to expand the first instruction. The second instruction, being one of 
the basic instructions in the language .Y, needs no further expansion. 

A simple example of this general kind of conditional branch statement 
which we will use frequently is 

IF V= OGOTO L 

To see that this is legitimate we need only check that the. predicate P(x ), 
defined by P(x) =TRUE if x = 0 and P(x) =FALSE otherwise, is 
computable. Since TRUE= 1 and FALSE= 0, the following program 
does the job: 

IF X =I= 0 GOTO E 
Y+-Y+1 

The use of macros has the effect of enabling us to write much shorter 
programs than would be possible restricting ourselves to instructions of the 
original language .Y. The original "assignment" statements V +-- V + 1, 
V +-- V - 1 are now augmented by general assignment statements of the 
form W +-- f(V1 , ••• , V,) for any partially computable function f. Also, the 
original conditional branch statements IF V =/= 0 GOTO L are now aug­
mented by general conditional branch statements of the form IF 
P(V1 , ••• , V,) GOTO L for any computable predicate P. The fact that any 
function which can be computed using these general instructions could 
already have been computed by a program of our original language Y 
(since the general instructions are merely abbreviations of programs of .Y) 
is powerful evidence of the generality of our notion of computability. 

Our next task will be to develop techniques that will make it easy to see 
that various particular functions are computable. 
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Exercises 

1. (a) Use the process described in this section to expand the program 
in example (d) of Section 2. 

(b) What is the length of the .9' program expanded from example 
(e) by this process? 

2. Replace the instructions 

in example (e) of Section 2 with the instruction Y +--- X 1 + Y, and 
expand the result by the process described in this section. If 9' is the 
resulting .9' program, what is I/I.J}>(r1 , r 2)? 

3. Let f(x), g(x) be computable functions and let h(x) = f(g(x)). Show 
that h is computable. 

4. Show by constructing a program that the predicate x 1 ~ x 2 is com­
putable. 

5. Let P(x) be a computable predicate. Show that the function f 
defined by 

is partially computable. 

if P(x1 + x2 ) 

otherwise 

6. Let P(x) be a computable predicate. Show that 

EXp(r) = { ~ if there are at least r numbers n such that P(n) = 1 
otherwise 

is partially computable. 

7. Let 7T be a computable permutation (i.e., one-one, onto function) of 
N, and let 7T- 1 be the inverse of 7T, i.e., 

7T-l(y) =X if and only if 7T(X) = y. 

Show that 7T- 1 is computable. 

8. Let f(x) be a partially computable but not total function, let M be a 
finite set of numbers such that f(m)j for all m EM, and let g(x) be 
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an arbitrary partially computable function. Show that 

{
g(x) 

h(x) = f(x) 

is partially computable. 

if X EM 

otherwise 

37 

9. Let .9"+ be a programming language that extends .9" by permitting 
instructions of the form V ~ k, for any k ~ 0. These instructions 
have the obvious effect of setting the value of V to k. Show that a 
function is partially computable by some .9"+ program if and only if it 
is partially computable. 

10. Let .9"' be a programming language defined like .9" except that its 
(labeled and unlabeled) instructions are of the three types 

v~v· 

v~ V+ 1 
If V =!= V' GOTO L 

These instructions are given the obvious meaning. Show that a 
function is partially computable in .9"' if and only if it is partially 
computable. 
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Primitive Recursive Functions 

1. Composition 

We want to combine computable functions in such a way that the output 
of one becomes an input to another. In the simplest case we combine 
functions f and g to obtain the function 

h(x) = f(g(x)). 

More generally, for functions of several variables: 

Definition. Let f be a function of k variables and let g 1 , ••• , gk be 
functions of n variables. Let 

h(xl ' ... ' xn) = f(gl(xl ' ... ' xn), ... ' gk(xl ' ... ' xn)). 

Then h is said to be obtained from f and g1, ... , gk by composition. 

Of course, the functions J, g 1 , ••• , gk need not be total. h(x1 , ••• , xn) 
will be defined when all of z1 = g1(x1, ... , xn), ... , zk = gk(x1, ... , xn) are 
defined and also f(z1, ... , zk) is defined. 

Using macros it is very easy to prove 

Theorem 1.1. If h is obtained from the (partially) computable functions 
f, g1, ... , gk by composition, then h is (partially) computable. 

39 
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The word partially is placed in parentheses in order to assert the 
correctness of the statement with the word included or omitted in both 
places. 

Proof. The following program obviously computes h: 

Z1 ~ gl(Xl , ... , Xn) 

Zk ~gk(X1, ... ,Xn) 

Y ~ f(Zl, · · ·, Zk) 

Iff, g1 , ••• , gk are not only partially computable but are also total, then 
so is h. • 

By Section 4 of Chapter 2, we know that x, x + y, x · y, and x- y are 
partially computable. So by Theorem 1.1 we see that 2x = x + x and 
4x 2 = (2x) · (2x) are computable. So are 4x2 + 2x and 4x 2 - 2x. Note 
that 4x2 - 2x is total, although it is obtained from the nontotal function 
x - y by composition with 4x2 and 2x. 

2. Recursion 

Suppose k is some fixed number and 

h(O) = k, 

h(t + 1) = g(t, h(t)), 
(2.1) 

where g is some given total function of two variables. Then h is said to be 
obtained from g by primitive recursion, or simply recursion. 1 

Theorem 2.1. Let h be obtained from g as in (2.1), and let g be 
computable. Then h is also computable. 

Proof. We first note that the constant function f(x) = k is computable; 
in fact, it is computed by the program 

y ~ y + 1} 
Y~ Y+ 1 

k lines 

Y~ Y+ 1 

1 Primitive recursion, characterized by Equations (2.1) and (2.2), is just one specialized 
form of recursion, but it is the only one we will be concerned with in this chapter, so we will 
refer to it simply as recursion. We will consider more general forms of recursion in Part 5. 



2. Recursion 41 

Hence we have available the macro Y +-- k. The following is a program 
that computes h(x): 

Y+-k 

[A] IFX=OGOTOE 

Y +-- g(Z, Y) 

Z+-Z+1 

X+--X-1 

GOTOA 

To see that this program does what it is supposed to do, note that, if Y 
has the value h(z) before executing the instruction labeled A, then it has 
the value g(z, h(z)) = h(z + 1) after executing the instruction Y +­
g(Z, Y). Since Y is initialized to k = h(O), Y successively takes on the 
values h(O), h(l), ... , h(x) and then terminates. • 

A slightly more complicated kind of recursion is involved when we have 

(2.2) 
h(x1 , ••• ,xn,t + 1) =g(t,h(x1 , ••• ,xn,t),x1 , ••• ,xn). 

Here the function h of n + 1 variables is said to be obtained by primitive 
recursion, or simply recursion, from the total functions f (of n variables) 
and g (of n + 2 variables). The recursion (2.2) is just like (2.1) except that 
parameters x 1 , ••• , xn are involved. Again we have 

Theorem 2.2. Let h be obtained from f and g as in (2.2) and let f, g be 
computable. Then h is also computable. 

Proof. The proof is almost the same as for Theorem 2.1. The following 
program computes h(x1 , ••• , xn, xn+ 1): 

Y +-- f(Xl, · · ·, Xn) 

[A] IF Xn+l = 0 GOTO E 

Y +-- g(Z, Y, X 1 , ••• , Xn) 

Z+-Z+1 

GOTOA • 
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3. PRC Classes 

So far we have considered the operations of composition and recursion. 
Now we need some functions on which to get started. These will be 

and the projection functions 

s(x) =x + 1, 

n(x) = 0, 

1 :::;; i:::;; n. 

[For example, u~(x 1 , x 2 , x 3 , x4 ) = x 3 .] The functions s, n, and u? are 
called the initial functions. 

Definition. A class of total functions ~ is called a PRC2 class if 

1. the initial functions belong to ~. 
2. a function obtained from functions belonging to ~ by either composi­

tion or recursion also belongs to ~-

Then we have 

Theorem 3.1. The class of computable functions is a PRC class. 

Proof. By Theorems 1.1, 2.1, and 2.2, we need only verify that the initial 
functions are computable. 

Now this is obvious; s(x) = x + 1 is computed by 

n(x) is computed by the empty program, and u?(x 1 , ••• , xn) is computed 
by the program 

• 
Definition. A function is called primitive recursive if it can be obtained 
from the initial functions by a finite number of applications of composition 
and recursion. 

It is obvious from this definition that 

2 This is an abbreviation for "primitive recursively closed." 



3. PRC Classes 43 

Corollary 3.2. The class of primitive recursive functions is a PRC class. 

Actually we can say more: 

Theorem 3.3. A function is primitive recursive if and only if it belongs to 
every PRC class. 

Proof. If a function belongs to every PRC class, then, in particular, by 
Corollary 3.2, it belongs to the class of primitive recursive functions. 

Conversely let a function f be a primitive recursive function and let ~ 
be some PRC class. We want to show that f belongs to '??. Since f is a 
primitive recursive function, there is a list / 1 , f 2 , ••• , fn of functions such 
that fn = f and each /; in the list is either an initial function or can be 
obtained from preceding functions in the list by composition or recursion. 
Now the initial functions certainly belong to the PRC class ~- Moreover 
the result of applying composition or recursion to functions in ~ is again a 
function belonging to '??.Hence each function in the list / 1 , ••• , fn belongs 
to ~- Since fn = J, f belongs to ~- • 

Corollary 3.4. Every primitive recursive function is computable. 

Proof. By the theorem just proved, every primitive recursive function 
belongs to the PRC class of computable functions. • 

In Chapter 4 we shall show how to obtain a computable function that is 
not primitive recursive. Hence it will follow that the set of primitive 
recursive functions is a proper subset of the set of computable functions. 

Exercises 

1. Let ~be a PRC class, and let g1 , g2 , g3 , g4 belong to '??.Show that if 

hz(x) = g2(x, x, x), and 

h3(w, x, y, z) = h1(giw, y), z, gi2, g4(y, z))), 

then h 2 , h 2 , h 3 also belong to '??. 

2. Show that the class of all total functions is a PRC class. 

3. Let n > 0 be some given number, and let '?? be a class of total 
functions of no more than n variables. Show that ~ is not a PRC 
class. 
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4. Let ~ be a PRC class, let h belong to ~' and let 

f(x) = h(g(x)) and 

g(x) = h(f(x)). 

Show that f belongs to %' if and only if g belongs to %'. 

5. Prove Corollary 3.4 directly from Theorems 1.1, 2.1, 2.2, and the proof 
of Theorem 3.1. 

4. Some Primitive Recursive Functions 

We proceed to make a short list of primitive recursive functions. Being 
primitive recursive, they are also computable. 

J. X+ y 

To see that this is primitive recursive, we have to show how to obtain this 
function from the initial functions using only the operations of composi­
tion and recursion. 

If we write f(x, y) = x + y, we have the recursion equations 

f(x,O) =x, 

f(x,y + 1) =f(x,y) + 1. 

We can rewrite these equations as 

f(x,O) = ul(x), 

f(x,y + 1) =g(y,f(x,y),x), 

where g(x 1 , x2 , x 3 ) = s(u~(x 1 , x2 , x3)). The functions ul(x), u~(x 1 , x2 , x 3), 

and s(x) are primitive recursive functions; in fact they are initial functions. 
Also, g(x 1 , x2 , x 3 ) is a primitive recursive function, since it is obtained by 
composition of primitive recursive functions. Thus, the preceding is a valid 
application of the operation of recursion to primitive recursive functions. 
Hence f(x, y) = x + y is primitive recursive. 

Of course we already knew that x + y was a computable function. So we 
have only obtained the additional information that it is in fact primitive 
recursive. 

2. x·y 

The recursion equations for h(x, y) = x · y are 

h(x, 0) = 0, 
h(x,y + 1) = h(x,y) +x. 
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This can be rewritten 

h(x,O) = n(x) 

h(x, y + 1) = g(y, h(x, y), x). 

Here, n(x) is the zero function, 

f(x 1 , x 2 ) is x1 + x2 , and u~(x 1 , x 2 , x3 ), u~(x 1 , x 2 , x3 ) are projection func­
tions, Notice that the functions n(x), u~(x 1 , x 2 , x3), and u~(x 1 , x 2 , x3) are 
all primitive recursive functions, since they are all initial functions. We 
have- just shown that f(x 1 , x 2 ) = x1 + x 2 is primitive recursive, so 
g(x1 , x 2 , x 3 ) is a primitive recursive function since it is obtained from 
primitive recursive functions by composition. Finally, we conclude that 

h(x,y) =x·y 

is primitive recursive. 

3. x! 

The recursion equations are 

0!= 1, 

(x + l)!=x!·s(x). 

More precisely, x! = h(x ), where 

h(O) = 1, 

h(t + 1) =g(t,h(t)), 

and 

Finally, g is primitive recursive because 

and multiplication is already known to be primitive recursive. 
In the examples that follow, we leave it to the reader to check that the 

recursion equations can be put in the precise form called for by the 
definition of the operation of recursion. 
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4. xY 

The recursion equations are 

x 0 = 1, 

xy+l =xY·x. 

Note that these equations assign the value 1 to the "indeterminate" 0°. 

5. p(x) 

The predecessor function p(x) is defined as follows: 

{
X- 1 

p(x) = 0 
if X =fo 0 
if X= 0. 

It corresponds to the instruction in our programming language X ~ X - 1. 
The recursion equations for p(x) are simply 

p(O) = 0, 

p(t + 1) = t. 

Hence, p(x) is primitive recursive. 

6. X _:_ y 

The function x ..:... y is defined as follows: 

• {X- y x-y= 
0 

if X ~y 

if X < y. 

This function should not be confused with the function x - y, which is 
undefined if x < y. In particular, x ..:... y is total, while x - y is not. 

We show that x ..:... y is primitive recursive by displaying the recursion 
equations: 

x-=-O=x, 

x -=-(t + 1) = p(x..:... t). 

7. lx- yl 

The function lx - yl is defined as the absolute value of the difference 
between x and y. It can be expressed simply as 

lx- yl = (x-=- y) + (y -=-x) 

and thus is primitive recursive. 
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8. a(x) 

The function a(x) is defined as 

a(x) = {~ if X= 0 
if X-=/= 0. 

a(x) is primitive recursive since 

a(x) = 1 ..:... x. 

Or we can simply write the recursion equations: 

Exercises 

a(O) = 1, 

a(t + 1) = 0. 
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l. Give a detailed argument that xY, p(x), and x ..:... y are primitive 
recursive. 

2. Show that for each k, the function f(x) = k is primitive recursive. 

3. Prove that if f(x) and g(x) are primitive recursive functions, so is 
f(x) + g(x). 

4. Without using x + y as a macro, apply the constructions in the 
proofs of Theorems 1.1, 2.2, and 3.1 to give an .9' program that 
computes x · y. 

5. For any unary function f(x), the nth iteration off, written r, is 

r<x) = f( ... f(x) ... ), 

where f is composed with itself n times on the right side of the 
equation. (Note that r(x) = x.) Let l/n, x) = r(x). Show that iff 
is primitive recursive, then l 1 is also primitive recursive. 

6.* (a) Let E(x) = 0 if x is even, E(x) = 1 if x is odd. Show that 
E(x) is primitive recursive. 

(b) Let H(x) = xj2 if x is even, (x- 0/2 if x is odd. Show that 
H(x) is primitive recursive. 

7.* Let f{O) = 0, /(1) = 1, /(2) = 22 , /(3) = 333 = 327 , etc. In general, 
f(n) is written as a stack n high, of n's as exponents. Show that f is 
primitive recursive. 
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8. * Let k be some fixed number, let f be a function such that f(x + 1) 
< x + 1 for all x, and let 

h(O) = k 

h(t + 1) = g(h(f(t + 1))). 

Show that iff and g belong to some PRC class %',then so does h. 
[Hint: Define f'(x) = min,< xf'(x) = 0. See Exercise 5 for the 
definition of f'(x).] -

9.* Let g(x) be a primitive recursive function and let f(O, x) = g(x), 
f(n + 1, x) = f(n, f(n, x)). Prove that f(n, x) is primitive recursive. 

10. * Let COMP be the class of functions obtained from the initial 
functions by a finite sequence of compositions. 
(a) Show that for every function f(x 1 , ••• , xn) in COMP, either 

f(x 1 , ••• , xn) = k for some constant k, or f(x 1 , ••• , xn) = 
X; + k for some 1 :::;; i :::;; n and some constant k. 

(b) An n-ary function f is monotone if for all n-tuples (x 1 , ••• , xn), 
(y 1 , ••• , Yn) such that X; :::;; Y;, 1 :::;; i :::;; n, f(x 1 , ••• , xn) :::;; 
f(y 1 , ••• , Yn). Show that every function in COMP is monotone. 

(c) Show that COMP is a proper subset of the class of primitive 
recursive functions. 

(d) Show that the class of functions computed by straightline .9' 
programs is a proper subset of COMP. [See Exercise 4.6 in 
Chapter 2 for the definition of straightline programs.] 

11. * Let 9' 1 be the class of all functions obtained from the initial 
functions by any finite number of compositions and no more than 
one recursion (in any order). 
(a) Let f(x 1 , ••• , xn) belong to COMP. [See Exercise 10 for the 

definition of COMP.] Show that there is a k > 0 such that 
f(x 1 , ••• ,xn):::;; max{x 1 , ••• ,xn} + k. 

(b) Let 

h(o) = c 

h(t + 1) = g(t, h(t)), 

where c is some given number and g belongs to COMP. Show 
that there is a k > 0 such that h(t) :::;; tk + c. 

(c) Let 

h(x1 , ••• ,xn,O) =f(x 1 , ••• ,xn) 

h(x1 , ••• ,xn ,t + 1) = g(t,h(x 1 , ••• ,xn ,t),x1 , ••• ,xn), 
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where f, g belong to COMP. Show that there are k, I> 0 such 
that h(x1 , ••• ,xn,t):::;; tk + max{x1 , ••• ,xn} +I. 

(d) Let f(xp ... , xn) belong to 9'1 • Show that there are k, I> 0 
such that f(x 1 , ••• , xn) :::;; max{x1 , ••• , xn} · k + I. 

(e) Show that 9'1 is a proper subset of the class of primitive 
recursive functions. 

5. Primitive Recursive Predicates 

We recall from Chapter 1, Section 4, that predicates or Boolean-valued 
functions are simply total functions whose values are 0 or 1. (We have 
identified 1 with TRUE and 0 with FALSE.) Thus we can speak without 
further ado of primitive recursive predicates. 

We continue· our list of primitive recursive functions, including some 
that are predicates. 

9. X= y 

The predicate x = y is defined as 1 if the values of x and y are the same 
and 0 otherwise. Thus we wish to show that the function 

d(x,y)={~ if X= y 
if X =/= y 

is primitive recursive. This follows immediately from the equation 

d(x, y) = a(lx- yl ). 

JO. X :o;;y 

This predicate is simply the primitive recursive function a(x ..:... y ). 

Theorem 5.1. Let ~be a PRC class. If P, Q are predicates that belong to 
%',then so are -P, P v Q, and P & Q.3 

Proof. Since -P = a(P), it follows that -P belongs to ~. (a was 
defined in Section 4, item 8.) 

3 See Chapter 1, Section 4. 
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Also, we have 
p & Q =P·Q, 

so that P & Q belongs to ~. 
Finally, the De Morgan law 

P v Q <=> -(-P& -Q) 

shows, using what we have already done, that P v Q belongs to 'lf. • 

A result like Theorem 5.1 which refers to PRC classes can be applied to 
the two classes we have shown to be PRC. That is, taking ~ to be the class 
of all primitive recursive functions, we have 

Corollary 5.2. If P, Q are primitive recursive predicates, then so are -P, 
P v Q, and P & Q. 

Similarly taking '(? to be the class of all computable functions, we have 

Corollary 5.3. If P, Q are computable predicates, then so are - P, 
P v Q, and P & Q. 

As a simple example we have 

11. x<y 

We can write 

or more simply 

X <y <=>X :s;y & -(x =y), 

x <y <=> -(y ::s;x). 

Theorem 5.4 (Definition by Cases). Let 'lf be a PRC class. Let the 
functions g, h and the predicate P belong to ~.Let 

(
g(x1 , ••• , xn) if P(x1 , ... , xn) 

/(xi' ... ' xn) = h( ) . x1 , ••• , xn otherwise. 

Then f belongs to ~. 

This will be recognized as a version of the familiar "if ... then ... , 
else ... " statement. 

Proof. The result is obvious because 

/(xi' ... ' xn) 

= g(x1 , ••• , xn) · P(x1 , ••• , xn) + h(x1 , ••• , xn) · a(P(x1 , ••• , xn)) . 

• 
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Corollary 5.5. Let I&' be a PRC class, let n-ary functions g 1 , ••• , gm, h 
and predicates P1 , ••• , Pm belong to ~'and let 

P;(x 1 , ••• ,xn)& lj(x1 , ••• ,xn) = 0 

for all 1 5. i < j 5. m and all x 1 , ••• , x n • If 

then f also belongs to I&'. 

gm(xl ' ... ' xn) 

h(x1 , ••• ,xn) 

if Pm(x1 , ••• , xn) 

otherwise, 

Proof. We argue by induction on m. The case for m = 1 is given by 
Theorem 5.4, so let 

Then 

gm+ I( XI' ... ' xn) 

h(x1 , ••• ,xn) 

gm(xl ' ... ' xn) 

h'(xl ' ... ' xn) 

if pm+l(xl, ... ,xn) 

otherwise, 

if pm + l(xl ' ... ' xn) 

otherwise. 

if Pm(Xp ... ' xn) 

otherwise, 

and h' belongs to ~ by Theorem 5.4, so f belongs to ~ by the induction 
hypothesis. • 

Exercise 

1. Let us call a predicate trivial if it is always TRUE or always FALSE. 
Show that no nontrivial predicates belong to COMP (see Exercise 4.10 
for the definition of COMP.) 
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6. Iterated Operations and Bounded Quantifiers 

Theorem 6.1. Let 'iff be a PRC class. If f(t, x1 , ••• , xn) belongs to 'iff, 
then so do the functions 

y 

g(y,x1 , ... ,xn) = "[.J(t,x 1 , ... ,xn) 
t=O 

and 
y 

h(y,xl, ... ,xn) = 0J(t,xl, ... ,xn). 
t=O 

A common error is to attempt to prove this by using mathematical 
induction on y. A little reflection reveals that such an argument by 
induction shows that 

all belong to 'iff, but not that the function g(y, x 1 , ••• , xn), one of whose 
arguments is y, belongs to 'iff. 

We proceed with the correct proof. 

Proof. We note the recursion equations 

g(O, X]' ... ' xn) = f(O, X]' ... ' xn), 

g ( t + 1, X 1 , ... , X n) = g ( t, X 1 , ... , X n) + j( t + 1, X 1 , ... , X n), 

and recall that since + is primitive recursive, it belongs to 'iff. 
Similarly, 

h(O, X]' ••• ' xn) = f(O, X]' ... ' xn), 

h(t + 1,x1 , ... ,x) = h(t,x1 , ... ,xn) ·f(t + 1,x1 , ... ,xn). • 

Sometimes we will want to begin the summation (or product) at 1 
instead of 0. That is, we will want to consider 

or 

y 

g(y,xl, ... ,xn) = "[.f(t,xl, ... ,xn) 
t= I 

y 

h(y,x1 , ... ,x) = 0f(t,x 1 , ... ,xn). 
t= I 
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Then the initial recursion equations can be taken to be 

g(O,x1 , ••• ,xn) = 0, 

h(O,x 1 , ••• ,xn) = 1, 
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with the equations for g(t + 1, x 1 , ••• , xn) and h(t + 1, x 1 , ••• , xn) as in 
the preceding proof. Note that we are implicitly defining a vacuous sum to 
be 0 and a vacuous product to be 1. With this understanding we have 
proved 

Corollary 6.2. If f(t, x 1 , ••• , xn) belongs to the PRC class ~'then so do 
the functions 

and 

y 

g(y,x1 , ••• ,xn) = L:J(t,x1 , ••• ,xn) 
t= I 

y 

h(y,x, ... ,xn) = 0f(t,x1 , ••• ,xn). 
/=I 

We have 

Theorem 6.3. If the predicate P(t, x 1 , ••• , x n) belongs to some PRC class 
'lf, then so do the predicates4 

and 

Proof. We need only observe that 

and 

(Vt),YP(t,x 1 , ••• ,xn) = [nP(t,x 1 , ••• ,xn>] = 1 
/=0 

(3t),YP(t,x 1 , ••• ,xn) <=> [EP(t,x 1 , ••• ,xn)] *0. • 
/=0 

Actually for the universal quantifier it would even have been correct to 
write the equation 

y 

(Vt),YP(t,x 1 , ••• ,xn) = 0P(t,x1 , ••• ,xn). 
/=0 

4 See Chapter 1, Section 5. 
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Sometimes in applying Theorem 6.3 we want to use the quantifier 

or 

That the theorem is still valid is clear from the relations 

(3t)<yP(t,x 1 , ••• ,xn) <=> (3t),Y[t =I= y & P(t,x 1 , ••• ,xn)], 

(Vt)<yP(t,x 1 , ••• ,xn) = (Vt),Y[t = y V P(t,x 1 , ••• ,xn)]. 

We continue our list of examples. 

12. ylx 

This is the predicate "y is a divisor of x." For example, 

3112 is true 

while 

3113 is false. 

The predicate is primitive recursive since 

ylx = (3t),x(y·t =x). 

13. Prime(x) 

The predicate "x is a prime" is primitive recursive since 

Prime(x) =x > 1&(\lt),xlt = 1 v t =x v- (tlx)}. 

(A number is a prime if it is greater than 1 and it has no divisors other 
than 1 and itself.) 

Exercises 

1. Let f(x) = 2x if x is a perfect square; f(x) = 2x + 1 otherwise. Show 
that f is primitive recursive. 

2. Let u(x) be the sum of the divisors of x if x =I= 0; u(O) = 0 [e.g., 
u(6) = 1 + 2 + 3 + 6 = 12]. Show that u(x) is primitive recursive. 

3. Let 7T(x) be the number of primes that are ~ x. Show that 7T(x) is 
primitive recursive. 

4. Let SQSM(x) be true if x is the sum of two perfect squares; false 
otherwise. Show that SQSM(x) is primitive recursive. 
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5. Let 'lf be a PRC class, let P(t, x 1 , ••• , xn) be a predicate in 'lf, and let 

g(y,z,x1 , ••• ,xn) = (\ft)y:s;r:s;zP(t,Xp···,xn)and 

h(y,z,x1 , ••• ,xn) = (3t)y:s;r:s;zP(t,Xp···,xn), 

(where (Vt)y:s;t:s;zP(t,x 1 , ••• ,xn) and (3t)y:s;r:s;zP(t,x 1 , ••• ,xn) mean 
that P(t, x 1 , ••• , xn) is true for all t (respectively, for some t) from y 
to z). Show that g, h also belong to 'lf. 

6. Let RP(x, y) be true if x andy are relatively prime (i.e., their greatest 
common divisor is 1). Show that RP(x, y) is primitive recursive. 

7. Give a sequence of compositions and recursions that shows explicitly 
that Prime(x) is primitive recursive. 

7. Minimalization 

Let P(t, x 1 , ••• , xn) belong to some given PRC class 'lf. Then by Theorem 
6.1, the function 

y u 

g(y,xl, ... ,xn) = E na(P(t,Xp•••,xn)) 
u=Ot=O 

also belongs to 'lf. (Recall that the primitive recursive function a was 
defined in Section 4.) Let us analyze this function g. Suppose for definite­
ness that for some value of t0 :::;; y, 

for t < t0 , 

but 

P(to' XI' ... ' xn) = 1, 

i.e., that t0 is the least value oft :::;; y for which P(t, x 1 , ••• , xn) is true. Then 

Hence, 

if u < t0 

if u ~ t0 • 

g(y,xl , ... ,xn) = L 1 =to, 
u<t0 

so that g(y, x 1 , ••• , xn) is the least value oft for which P(t, x, ... , xn) is 
true. Now, we define 

if (3t):s;yP(t,x 1 , ••• ,xn) 

otherwise. 
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Thus, min,, YP(t, x 1 , ••• , xn) is the least value of t :::;; y for which 
P(t, x 1 , ••• , xn) is true, if such exists; otherwise it assumes the (default) value 
0. Using Theorems 5.4 and 6.3, we have 

Theorem 7.1. If P(t, x 1 , ••• , xn) belongs to some PRC class '?? and 
f(y, XI' ••• ' xn) = min, :5 YP(t, XI' ••• ' xn), then f also belongs to ~-

The operation "min 1 , y" is called bounded minimalization. 
Continuing our list: 

14. lx I y J 

lxjy J is the "integer part" of the quotient xjy. For example, l7 /2J = 3 
and l2/3J = 0. The equation 

lxjyj = min[(t + 1) ·y > x] 
1:5X 

shows that lxjy J is primitive recursive. Note that according to this equa­
tion, we are taking lx/OJ = 0. 

15. R(x,y) 

R(x, y) is the remainder when x is divided by y. Since 

x R(x,y) 
- = lxjyj + --
y y 

we can write 

R(x,y) =x ..:..(y·lxjyJ), 

so that R(x, y) is primitive recursive. [Note that R(x, 0) = x.] 

16. Pn 

Here, for n > 0, Pn is the nth prime number (in order of size). So that Pn 
be a total function, we set Po = 0. Thus, Po = 0, p 1 = 2, p 2 = 3, p 3 = 5, 
etc. 

Consider the recursion equations 

Po= 0, 

Pn+ 1 = min [Prime(t) & t > Pn]. 
I:Spn! +I 

To see that these equations are correct we must verify the inequality 

(7.1) 
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To do so note that for 0 < i ~ n we have 

(pn)!+1 1 
----=K+ -, 

Pi Pi 

where K is an integer. Hence (pn)! + 1 is not divisible by any of the 
primes p 1 , p 2 , ••• , Pn. So, either (pn)! + 1 is itself a prime or it is divisible 
by a prime > Pn. In either case there is a prime q such that Pn < q ~ 
(pn)! + 1, which gives the inequality (7.1). (This argument is just Euclid's 
proof that there are infinitely many primes.) 

Before we can confidently assert that Pn is a primitive recursive func­
tion, we need to justify the interleaving of the recursion equations with 
bounded minimalization. To do so, we first define the primitive recursive 
function 

h(y,z) = min[Prime(t)& t > y]. 
I:SZ 

Then we set 

k(x) = h(x, x! + 1), 

another primitive recursive function. Finally, our recursion equations 
reduce to 

Po= 0, 

Pn+ 1 = k(pn), 

so that we can conclude finally that Pn is a primitive recursive function. 
It is worth noting that by using our various theorems (and appropriate 

macro expansions) we could now obtain explicitly a program of ..:7 which 
actually computes Pn . Of course the program obtained in this way would 
be extremely inefficient. 

Now we want to discuss minimalization when there is no bound. We 
write 

minP(x1 , ••• , xn, y) 
y 

for the least value of y for which the predicate P is true if there is one. If 
there is no value of y for which P( x 1 , • • • , x n , y) is true, then 
miny P(x1 , ••• , xn, y) is undefined. (Note carefully the difference with 
bounded minimalization.) Thus unbounded minimalization of a predicate 
can easily produce a function which is not total. For example, 

x- y = min [y + z = x] 
z 
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is undefined for x < y. Now, as we shall see later, there are primitive 
recursive predicates P(x, y) such that miny P(x, y) is a total function 
which is not primitive recursive. However, we can prove 

Theorem 7.2. If P(x1 , ... ,xn,y) is a computable predicate and if 

g(xl ' ... ' xn) = minP(xl ' ... ' Xn 'y), 
y 

then g is a partially computable function. 

Proof. The following program obviously computes g: 

Exercises 

[A] IFP(Xt, ... ,Xn,Y)GOTOE 

Y+-Y+1 
GOTOA • 

1. Let h(x) be the integer n such that n :::;; fix < n + 1. Show that h(x) 
is primitive recursive. 

2. Do the same when h(x) is the integer n such that 

n :::;; (1 + fi)x < n + 1. 

3. p is called a larger twin prime if p and p - 2 are both primes. (5, 7, 13, 
19 are larger twin primes.) Let T(O) = 0, T(n) = the nth larger twin 
prime. It is widely believed, but has not been proved, that there are 
infinitely many larger twin primes. Assuming that this is true prove 
that T(n) is computable. 

4. Let u(n) be the nth number in order of size which is the sum of two 
squares. Show that u(n) is primitive recursive. 

5. Let R(x, t) be a primitive recursive predicate. Let 

g(x,y) =max R(x,t), 
1:5.y 

i.e., g(x, y) is the largest value of-t :::;; y for which R(x, t) is true; if 
there is none, g(x, y) = 0. Prove that g(x, y) is primitive recursive. 

6. Let gcd(x, y) be the greatest common divisor of x and y. Show that 
gcd(x, y) is primitive recursive. 

7. Let lcm(x, y) be the least common multiple of x and y. Show that 
lcm(x, y) is primitive recursive. 
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8. Give a computable predicate P(x1 , ••• , xn, y) such that the function 
min Y P(x 1 , ••• , x n, y) is not computable. 

9.* A function is elementary if it can be obtained from the functions s, n, 
u), + , ..:... by a finite sequence of applications of composition, bounded 
summation, and bounded product. (By application of bounded summa­
tion we mean obtaining the function r.r-o f(t, x 1 , ••• , xn) from 
f(t, x 1 , ••• , xn), and similarly for bounded product.) 

(a) Show that every elementary function is primitive recursive. 

(b) Show that x · y, xY, and x! are elementary. 

(c) Show that if n + 1-ary predicates P and Q are elementary, then 
so are - P, P V Q, P & Q, ('Vt), YP(t, x 1 , ••• , xn), 

(3t),; YP(t, x, ' ... ' xn), and min,,; YP(t, x,' ... ' xn). 

(d) Show that Prime(x) is elementary. 

(e) Let the binary function exp/x) be defined 

exp0(x) = x 

expy+ ,(x) = 2exp,(x). 

Show that for every elementary function f(x 1 , ••• , xn), there is a 
constant k such that f(x 1 , ••• , xn) ~ expk(max{x1 , ••• , xn}). [Hint: 
Show that for every n there is an m ~ n such that x · expn(x) ~ 
expm(x) for all x.] 

(f) Show that exp/x) is not elementary. Conclude that the class of 
elementary functions is a proper subset of the class of primitive 
recursive functions. 

8. Pairing Functions and Godel Numbers 

In this section we shall study two convenient coding devices which use 
primitive recursive functions. The first is for coding pairs of numbers by 
single numbers, and the second is for coding lists of numbers. 

We define the primitive recursive function 

(x, y) = 2x(2y + 1) ..:... 1. 

Note that 2x(2y + 1) -=1= 0 so 

(x,y) + 1 = 2x(2y + 1). 

If z is any given number, there is a unique solution x, y to the equation 

(x,y)=z, (8.1) 
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namely, x is the largest number such that 2x I (z + 1), and y is then the 
solution of the equation 

2y + 1 = (z + l)j2x; 

this last equation has a (unique) solution because (z + 1)/2x must be odd. 
(The twos have been "divided out.") Equation (8.1) thus defines functions 

x = /(z), y = r(z). 

Since Eq. (8.1) implies that x, y < z + 1 we have 

/(z) :::;; z, r(z) :::;; z. 

Hence we can write 

/{z) = min [(3y), z(z = (x, y))], 
X$Z 

r(z) = min[(3x)<z(z = (x,y))], 
y,;;z -

so that /(z), r{z) are primitive recursive functions. 
The definition of /(z), r(z) can be expressed by the statement 

(x,y) = z =x = /(z)& y = r(z). 

We summarize the properties of the functions (x,y), /(z), and r(z) in 

Theorem 8.1 (Pairing Function Theorem). The functions (x, y ), /(z), and 
r(z) have the following properties: 

1. they are primitive recursive; 
2. l((x,y)) =x,r((x,y)) =y; 
3. (/{z), r(z)) = z; 
4. /(z), r(z):::;; z. 

We next obtain primitive recursive functions that encode and decode 
arbitrary finite sequences of numbers. The method we use, first employed 
by Godel, depends on the prime power decomposition of integers. 

We define the Godel number of the sequence (a 1 , ••• , an) to be the 
number 

n 

[al, ···,an] = 0Pf'. 
i=l 

Thus, the Godel number of the sequence (3, 1, 5, 4, 6) is 

[3, 1,5,4,6] = 23 .31 • 55 .74 ·116 • 

For each fixed n, the function [a1 , ••• , an] is clearly primitive recursive. 
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Godel numbering satisfies the following uniqueness property: 

Theorem 8.2. If [a 1 , ••• , an] = [b 1 , ••• , bn], then 

i=1, ... ,n. 

This result is an immediate consequence of the uniqueness of the 
factorization of integers into primes, sometimes referred to as the unique 
factorization theorem or the fundamental theorem of arithmetic. (For a 
proof, see any elementary number theory textbook.) 

However, note that 

(8.2) 

because p~ + 1 = 1. This same result obviously holds for any finite number 
of zeros adjoined to the right end of a sequence. In particular, since 

1 = 2° = 2°3° = 2°3°5° = ... ' 

it is natural to regard 1 as the Godel number of the "empty" sequence of 
length 0, and it is useful to do so. 

If one adjoins 0 to the left end of a sequence, the Godel number of the 
new sequence will not be the same as the Godel number of the original 
sequence. For example, 

[2, 3] = 22 • 33 = 108, 

and 

[2,3,0] = 22 .33 • 5°= 108, 

but 

[0,2,3] = 2°.32 • 53 = 1125. 

We will now define a primitive recursive function (x); so that if 

X = [a 1 , ••• , an], 

then (x); =a;. We set 

(x); = min(-pf+ 1 lx). 
t,;x 

Note that (x)0 = 0, and (0); = 0 for all i. 
We shall also use the primitive recursive function 

Lt(x) = min{(x);-=!= O&(Vj)sx(j ::5; i v (x)j = 0)). 
i,;x 

(Lt stands for "length.") Thus, if x = 20 = 22 ·51 = [2, 0, 1], then (x)3 = 1, 
but (x)4 = (x)5 = ... = (x)20 = 0. So, Lt(20) = 3. Also, Lt(O) = Lt(l) = 0. 
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If x > 1, and Lt(x) = n, then Pn divides x but no prime greater than Pn 
divides x. Note that Lt([a1 , ••• , an]) = n if and only if an =I= 0. 

We summarize the key properties of these primitive recursive functions. 

Theorem 8.3 (Sequence Number Theorem). 

{
a. 

a. ([a]' ... ' an])i = o' 
if 1 ~ i ~ n 

otherwise. 
b. [(x) 1 , ••• ,(x)n] =x if n ~ Lt(x). 

Our main application of these coding techniques is given in the next 
chapter. The following exercises indicate that they can also be used to 
show that PRC classes are closed under various interesting and useful 
forms of recursion. 

Exercises 

1. Let f(x 1 , ••• , xn) be a function of n variables, and let f'(x) be a unary 
function defined so that f'([xl' ... ' xn]) = f(xl' ... ' xn) for all 
x 1 , ••• , xn. Show that f' is partially computable if and only if f is 
partially computable. 

2. Define Sort([x1 , ••• , xn]) = [y 1 , ••• , Yn], where y 1 , ••• , Yn is a permu­
tation of x1 , ••• , xn such that y1 ~ y2 ~ ••• ~ Yn. Show that Sort(x) is 
primitive recursive. 

3. Let F(O) = 0, F(l) = 1, F(n + 2) = F(n + 1) + F(n). [F(n) is the 
nth so-called Fibonacci number.] Prove that F(n) is primitive recur­
sive. 

4. (Simultaneous Recursion) Let 

h 1(x,O) =f1(x), 

h 2(x,O) =f2(x), 

h1(x, t + 1) = g1(x, h 1(x, t), h 2(x, t)), 

hz{x, t + 1) = gz(x, h 1(x, t), hz{x, t)). 

Prove that if / 1 , / 2 , g 1 , g 2 all belong to some PRC class ~, then h 1 , h 2 

do also. 

5.* (Course-of-Values Recursion) 
(a) For f(n) any function, we write 

j{O) = 1,j{n) = [f(O),f(l), ... ,f(n- 1)] if n =I= 0. 
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Let 

f(n) = g(n,j(n)) 

for all n. Show that if g is primitive recursive so is f. 
(b) Let 

f(O) = 1, f(l) = 4, /(2) = 6, 

f(x + 3) = f(x) + f(x + 1)2 + f(x + 2)3 • 

Show that f(x) is primitive recursive. 
(c) Let 

h(O) = 3 
X 

h(x + 1) = L, h(t). 
t=O 

Show that h is primitive recursive. 

6.* (Unnested Double Recursion) Let 

f(O,y) =gl(y) 

f(x + 1,0) =gz(x) 

f(x + 1,y + 1) = h(x,y,f(x,y + 1),/(x + 1,y)). 
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Show that if g 1 , g2 , and hall belong to some PRC class I&', then f also 
belongs to ~-





4 

A Universal Program 

1. Coding Programs by Numbers 

We are going to associate with each program 9' of the language .9' a 
number, which we write #(9'), in such a way that the program can be 
retrieved from its number. To begin with we arrange the variables in order 
as follows: 

Y XI zi X 2 Z 2 X 3 Z3 •••• 

Next we do the same for the labels: 

AI BI CI DI EI Az Bz Cz Dz Ez A3 ... . 

We write #(V), #(L) for the position of a given variable or label in the 
appropriate ordering. Thus #(X2 ) = 4, #(ZI) = #(Z) = 3, #(E)= 5, 
#(B2 ) = 7. 

Now let I be an instruction (labeled or unlabeled) of the language .9'. 
Then we write 

#(/) =(a, (b, c)) 

where 

1. if I is unlabeled, then a = 0; if I is labeled L, then a = #(L); 
2. if the variable V is mentioned in I, then c = #(V) - 1; 

65 



66 Chapter 4 A Universal Program 

3. if the statement in I is 

v~v or v~ V+ 1 or v~ v-1, 

then b = 0 or 1 or 2, respectively; 
4. if the statement in I is 

IF V-=!= 0 GOTO L' 

then b = #(L') + 2. 

Some examples: 
The number of the unlabeled instruction X ~ X + 1 is 

(0,(1,1)) = (0,5) = 10, 

whereas the number of the instruction 

[A] x~x+ 1 

is 

(1,(1,1)) = (1,5) = 21. 

Note that for any given number q there is a unique instruction I with 
#(/) = q. We first calculate l(q). If l(q) = 0, I is unlabeled; otherwise I 
has the l(q )th label in our list. To find the variable mentioned in I, we 
compute i = r(r(q)) + 1 and locate the ith variable V in our list. Then, 
the statement in I will be 

v~ v if l(r(q)) = 0, 
v~ V+ 1 if l(r(q)) = 1, 
v~ v-1 if l(r(q)) = 2, 
IF V-=t= OGOTO L if j = l(r(q)) - 2 > 0 

and L is the jth label in our list. 
Finally, let a program go consist of the instructions I1 , I 2 , ••• , Ik. Then 

we set 

(1.1) 

Since Godel numbers tend to be very large, the number of even rather 
simple programs usually will be quite enormous. We content ourselves 
with a simple example: 

[A] x~x+ 1 
IF X -=I= OGOTOA 
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The reader will recognize this as the example given in Chapter 2 of a 
program that computes the nowhere defined function. Calling these in­
structions / 1 and / 2 , respectively, we have seen that #(/1) = 21. Since / 2 

is unlabeled, 

#(/2 ) = (0, (3, 1)) = (0,23) = 46. 

Thus, finally, the number of this short program is 

221 • 346 - 1. 

Note that the number of the unlabeled instruction Y ~ Y is 

(0,(0,0)) = (0,0) = 0. 

Thus, by the ambiguity in Godel numbers [recall Eq. (8.2), Chapter 3], the 
number of a program will be unchanged if an unlabeled Y ~ Y is tacked 
onto its end. Of course this is a harmless ambiguity; the longer program 
computes exactly what the shorter one does. However, we remove even 
this ambiguity by adding to our official definition of program of .9 the 
harmless stipulation that the final instruction in a program is not permitted to 
be the unlabeled statement Y ~ Y. 

With this last stipulation each number determines a unique program. As 
an example, let us determine the program whose number is 199. We have 

199 + 1 = 200 = 23 • 3°. 52 = [3, 0, 2]. 

Thus, if #(.9) = 199, .9 consists of 3 instructions, the second of which is 
the unlabeled statement Y ~ Y. We have 

and 

Thus, the program is 

3 = (2,0) = (2,(0,0)) 

2 = (0,1) = (0,(1,0)). 

[B]Y ~ Y 
Y~Y 

Y~ Y+ 1 

a not very interesting program that computes the function y = 1. 
Note also that the empty program has the number 1 - 1 = 0. 

Exercises 

1. Compute #(.9) for .9 the programs of Exercises 4.1, 4.2, Chapter 2. 

2. Find .9 such that #(.9) = 575. 
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2. The Halting Problem 

In this section we want to discuss a predicate HALT(x, y), which we now 
define. For given y, let go be the program such that #(go)= y. Then 
HALT(x, y) is true if 1/J~I)(x) is defined and false if 1/J.J.'>(x) is undefined. To 
put it succinctly: 

HALT(x,y)- program number y eventually halts on input x. 

We now prove the remarkable: 

Theorem 2.1. HALT(x, y) is not a computable predicate. 

Proof. Suppose that HALT(x, y) were computable. Then we could con­
struct the program go: 

[A] IF HALT(X, X) GOTO A 

(Of course go is to be the macro expansion of this program.) It is quite 
clear that go has been constructed so that 

1/l.JP( x) = { ~ndefined if 
if 

HALT(x,x) 
- HALT(x, x). 

Let #(go)= y0 • Then using the definition of the HALT predicate, 

HALT(x,y0)- -HALT(x,x). 

Since this equivalence is true for all x, we can set x = y0 : 

HALT(y0 , y0 ) -- HALT(y0 , y0 ). 

But this is a contradiction. • 
To begin with, this theorem provides us with an example of a function 

that is not computable by any program in the language ..:7. But we would 
like to go further; we would like to conclude the following: 

There is no algorithm that, given a program of ..:7 and an input to 
that program, can determine whether or not the given program will 
eventually halt on the given input. 

In this form the result is called the unsolvability of the halting problem. We 
reason as follows: if there were such an algorithm, we could use it to check 
the truth or falsity of HALT(x, y) for given x, y by first obtaining program 
tff with #(fff) = y and then checking whether tff eventually halts on input 
x. But we have reason to believe that any algorithm for computing on 
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numbers can be carried out by a program of .9. Hence this would contradict 
the fact that HALT(x, y) is not computable. 

The last italicized assertion is a form of what has come to be called 
Church's thesis. We have already accumulated some evidence for it, and we 
will see more later. But, since the word algorithm has no general definition 
separated from a particular language, Church's thesis cannot be proved as 
a mathematical theorem. 

In fact, we will use Church's thesis freely in asserting the nonexistence 
of algorithms whenever we have shown that some problem cannot be 
solved by a program of .9. 

In the light of Church's thesis, Theorem 2.1 tells us that there really is 
no algorithm for testing a given program and input to determine whether it 
will ever halt. Anyone who finds it surprising that no algorithm exists for 
such a "simple" problem should be made to realize that it is easy to 
construct relatively short programs (of .9) such that nobody is in a position 
to tell whether they will ever halt. For example, consider the assertion 
from number theory that every even number ~ 4 is the sum of two prime 
numbers. This assertion, known as Goldbach's conjecture, is clearly true for 
small even numbers: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, etc. It is easy to 
write a program .9' of .9 that will search for a counterexample to 
Goldbach's conjecture, that is, an even number n ~ 4 that is not the sum 
of two primes. Note that the test that a given even number n is a 
counterexample only requires checking the primitive recursive predicate 

- (3x),; n(3y),;n[Prime(x) & Prime(y) & X+ y = n]. 

The statement that .9' never halts is equivalent to Goldbach's conjecture. 
Since the conjecture is still open after 250 years, nobody knows whether 
this program .9' will eventually halt. 

Exercises 

1. Show that HALT(x, x) is not computable. 

2. Let HALT(x, y) be defined 

HALT(x, y) <=>program number y never halts on input x. 

Show that HALT(x, y) is not computable. 

3. Let HALT1(x) be defined HALT1(x) <=> HALT(l(x), r(x)). Show that 
HALT1(x) is not computable. 
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4. Prove or disprove: If f(x 1, •.. , xn) is a total function such that for 
some constant k, f(xl> ..• , xn) 5. k for all x 1 , ••• , xn, then f is 
computable. 

5. Suppose we claim that .9 is a program that computes HALT(x, x). 
Give a counterexample that shows the claim to be false. That is, give 
an input x for which .9 gives the wrong answer. 

6. Let 

f(x) = {~ if Goldbach's conjecture is true 
otherwise. 

Show that f(x) is primitive recursive. 

3. Universality 

The negative character of the results in the previous section might lead 
one to believe that it is not possible to compute in a useful way with 
numbers of programs. But, as we shall soon see, this belief is not justified. 

For each n > 0, we define 

cl>(n)(XI ' ••• ' Xn 'y) = 1/J.J.n>(xl ' ... ' Xn), 

One of the key tools in computability theory is 

where #(.9) = y. 

Theorem 3.1 (Universality Theorem). For each n > 0, the function 
ci><n>(x1 , ••• , xn, y) is partially computable. 

We shall prove this theorem by showing how to construct, for each 
n > 0, a program ~n which computes ci><n>. That is, we shall have for each 
n > 0, 

The programs ~n are called universal. For example, ~1 can be used to 
compute any partially computable function of one variable, namely, if f(x) 
is computed by a program .9 and y = #(.9), then f(x) = ci>(I>(x, y) = 

1/J~>(x, y). The program ~n will work very much like an interpreter. It 
must keep track of the current snapshot in a computation and by "decod­
ing" the number of the program being interpreted, decide what to do next 
and then do it. 

In writing the programs ~n we shall freely use macros corresponding to 
functions that we know to be primitive recursive using the methods of 
Chapter 3. We shall also freely ignore the rules concerning which letters 
may be used to represent variables or labels of Y. 
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In considering the state of a computation we can assume that all 
variables which are not given values have the value 0. With this under­
standing, we can code the state in which the ith variable in our list has the 
value a; and all variables after the mth have the value 0, by the Godel 
number [a1 , ••• , am]. For example, the state 

Y= 0, 

is coded by the number 

[0, 2, 0, 1] = 32 • 7 = 63. 

Notice in particular that the input variables are those whose position in 
our list is an even number. 

Now in the universal programs, we shall allocate storage as follows: 

K will be the number such that the Kth instruction is about to be 
executed; 

S will store the current state coded in the manner just explained. 

We proceed to give the program ~n for computing 

y = <t><n>cx, ' ... ' xn 'xn+ ,). 

We begin by exhibiting ~n in sections, explaining what each part does. 
Finally, we shall put the pieces together. We begin: 

Z +-- Xn+ I+ 1 
n 

s +-- n (pz;)x, 
i=! 

K+--1 

If X11 + 1 = #(.9), where .9 consists of the instructions / 1 , ••• , Im, then Z 
gets the value [#(/1), ••• , #(/m)] [see Eq. (1.1)]. S is initialized as 
[0, X, , 0, X 2 , ••• , 0, Xn ], which gives the first n input variables their appro­
priate values and gives all other variables the value 0. K, the instruction 
counter, is given the initial value 1 (so that the computation can begin with 
the first instruction). Next, 

[C] IF K = Lt(Z) + 1 v K = 0 GOTO F 

If the computation has ended, GOTO F, where the proper value will be 
output. (The significance of K = 0 will be explained later.) Otherwise, the 
current instruction must be decoded and executed: 

U +-- r((Z)K) 

p +-- Pr(U)+ I 
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(Z)K = (a, (b, c)) is the number of the Kth instruction. Thus, U = (b, c) 
is the code for the statement about to be executed. The variable mentioned 
in the Kth instruction is the (c + 1)th, i.e., the (r(U) + l)th, in our list. 
Thus, its current value is stored as the exponent to which P divides S: 

IF l(U) = 0 GOTO N 

IF l(U) = 1 GOTO A 

IF - ( P I S) GOTO N 

IF l(U) = 2 GOTO M 

If l(U) = 0, the instruction is a dummy V ~ V and the computation need 
do nothing to S. If l(U) = 1, the instruction is of the form V ~ V + 1, so 
that 1 has to be added to the exponent on P in the prime power 
factorization of S. The computation executes a GOTO A (for Add). If 
l(U) =/= 0, 1, then the current instruction is either of the form V ~ V- 1 
or IF V =/= 0 GOTO L. In either case, if P is not a divisor of S, i.e., if the 
current value of Vis 0, the computation need do nothing to S. If PIS and 
l(U) = 2, then the computation executes a GOTO M (for Minus), so that 
1 can be subtracted from the exponent to which P divides S. To continue, 

K ~ min [/((Z);) + 2 = l(U)] 
i :s; Lt(Z) 

GOTOC 

If l(U) > 2 and PIS, the current instruction is of the form IF V =/= 0 
GOTO L where V has a nonzero value and L is the label whose position 
in our list is l(U) - 2. Accordingly the next instruction should be the first 
with this label. That is, K should get as its value the least i for which 
l((Z)) = l(U) - 2. If there is no instruction with the appropriate label, K 
gets the value 0, which will lead to termination the next time through the 
main loop. In either case the GOTO C causes a "jump" to the beginning 
of the loop for the next instruction (if any) to be processed. Continuing, 

[M] S ~ lS/PJ 
GOTON 

[A] s~S·P 

[N] K~K+1 

GOTOC 

1 is subtracted or added to the value of the variable mentioned in the 
current instruction by dividing or multiplying S by P, respectively. The 



3. Universality 

Z <-Xn+l + 1 
n 

s <--- n (pz;)x, 

K<---1 
[C] IF K = Lt(Z) + 1 v K = 0 GOTO F 

U <--- r((Z)K) 

p <--- Pr(U)+ I 

IF /(U) = 0 GOTO N 
IF /(U) = 1 GOTO A 

IF -(PIS) GOTO N 
IF /(U) = 2 GOTO M 

K <--- min [/((Z);) + 2 = /(U)] 
i,; Lt(Z) 

GOTOC 

[M] S <--- lS/PJ 
GOTON 

[A] S <--- S ·P 

[N] K <--- K +I 

GOTOC 
[F] Y <--- (5)1 

Figure 3.1. Program V", which computes Y = <t><">(X1 , ••• , X", Xn+ 1). 
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instruction counter is increased by 1 and the computation returns to 
process the next instruction. To conclude the program, 

[F] Y +- (S) 1 

On termination, the value of Y for the program being simulated is stored 
as the exponent on p/ = 2) in S. We have now completed our description 
of Wn and we put the pieces together in Fig. 3.1. 

For each n > 0, the sequence 

enumerates all partially computable functions of n variables. When we 
want to emphasize this aspect of the situation we write 

It is often convenient to omit the superscript when n = 1, writing 

<PyCx) = <P(x,y) = <f>Ol(x,y). 
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A simple modification of the programs :il'n would enable us to prove that 
the predicates 

STP<n>(x1 , ••• , xn, y, t) = Program number y halts after tor fewer 
steps on inputs x 1 , ••• , xn 

= There is a computation of program y of 
length :::;; t + 1, beginning with inputs 
x1 , ••• ,xn 

are computable. We simply need to add a counter to determine when we 
have simulated t steps. However, we can prove a stronger result. 

Theorem 3.2 (Step-Counter Theorem). For each n > 0, the predicate 
STP<n>(x1 , •• :, xn, y, t) is primitive recursive. 

Proof. The idea is to provide numeric versions of the notions of snapshot 
and successor snapshot and to show that the necessary functions are 
primitive recursive. We use the same representation of program states that 
we used in defining the universal programs, and if z represents state u, 
then (i, z) represents the snapshot (i, u ). 

We begin with some functions for extracting the components of the ith 
instruction of program number y: 

LABEL(i, y) = l((y + 1);) 

VAR(i,y) = r(r((y + 1);)) + 1 

INSTR(i, y) = l(r((y + 1);)) 

LABEL'(i, y) = l(r((y + 1);))..:... 2 

Next we define some predicates that indicate, for program y and the 
snapshot represented by x, which kind of action is to be performed next. 

SKIP(x, y) = [INSTR(/(x), y) = 0 & l(x):::;; Lt(y + 1)] 

V [INSTR(/(x), y) ~ 2 & -{PvAR(I(x),y) I r(x))] 

INCR(x,y) = INSTR(/(x),y) = 1 

DECR(x, y) = INSTR(/(x), y) = 2 &pvAR(I(x),y) I r(x) 

BRANCH(x,y) = INSTR(/(x),y) > 2&pvAR(I(x),y)lr(x) 

& (3i), Lt(y+ 1>LABEL(i, y) = LABEL'(/(x), y) 
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Now we can define SUCC(x, y), which, for program number y, gives the 
representative of the successor to the snapshot represented by x. 

SUCC(x,y) = 

We also need 

(/(x) + 1, r(x)) 

(/(x) + 1, r(x) · PvAR(I(x),y)) 
(/(x) + 1, lr(x)/PvAR(I(x),y)J) 
(min;, Lt(y + 1>[LABEL(i, y) = LABEL' 

(Lt(y + 1) + 1, r(x)) 

n 

INIT<n>(x1 , ••• , xn) = (1, 0 (p2;)x'), 
i=l 

if SKIP( x, y) 

if INCR(x, y) 
if DECR(x, y) 
(/(x),y)], r(x)) 

if BRANCH(x, y) 
otherwise. 

which gives the representation of the initial snapshot for inputs x 1 , ••• , xn, 
and 

TERM(x,y) <=>l(x) > Lt(y + 1), 

which tests whether x represents a terminal snapshot for program y. 
Putting these together we can define a primitive recursive function that 

gives the numbers of the successive snapshots produced by a given pro­
gram. 

SNAP<n>(x 1 , ••• , xn, y, 0) = INIT<n>(x1 , ••• , xn) 

SNAP<n>(x1 , ••• , xn, y, i + 1) = SUCC(SNAP<n>(x1 , ••• , xn, y, i), y) 

Thus, 

STP<n>(x1 , ••• , Xn, y, t) <=> TERM(SNAP<n>(x1 , ••• , Xn, y, t), y), 

and it is clear that STP<n>(x1 , ••• , xn, y, t) is primitive recursive. • 

By using the technique of the above proof, we can obtain the following 
important result. 

Theorem 3.3 (Normal Form Theorem). Let f(x 1 , ••• , xn) be a partially 
computable function. Then there is a primitive recursive predicate 
R(x1 , ••• , xn, y) such that 
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Proof. Let Yo be the number of a program that computes f(x 1 , ••• , xn). 
We shall prove the following equation, which clearly implies the desired 
result: 

where R(x1 , ••• , xn, z) is the predicate 

STP<n>(x1 , ••• , Xn, Yo, r(z)) 

& (r(SNAP<n>(x 1 , ••• , xn, Yo, r(z))))I 

= /(z). 

(3.1) 

First consider the case when the righthand side of this equation is 
defined. Then, in particular, there exists a number z such that 

STP<n>(x1 , ••• ,xn,Yo,r(z)) 

and (r(SNAP<n>(x1 , ••• , xn, Yo, r(z))))I 

= /(z). 

For any such z, the computation by the program with number y0 has 
reached a terminal snapshot in r(z) or fewer steps and /(z) is the value 
held in the output variable Y, i.e., /(z) = f(x 1 , ••• , xn). 

If, on the other hand, the right side is undefined, it must be the case that 
STP<n>(x 1 , ••• ,xn,Yo,t) is false for all values oft, i.e., f(x 1 , ••• ,xn)j . 

• 
The normal form theorem leads to another characterization of the class 

of partially computable functions. 

Theorem 3.4. A function is partially computable if and only if it can be 
obtained from the initial functions by a finite number of applications of 
composition, recursion, and minimalization. 

Proof. That every function which can be so obtained is partially com­
putable is an immediate consequence of Theorems 1.1, 2.1, 2.2, 3.1, and 7.2 
in Chapter 3. Note that a partially computable predicate is necessarily 
computable, so Theorem 7.2 covers all applications of minimalization to a 
predicate obtained as described in the theorem. 

Conversely, we can use the normal form theorem to write any given 
partially computable function in the form 

t( minR(x 1 , •.• , xn, y) ), 
y 

where R is a primitive recursive predicate and so is obtained from the 
initial functions by a finite number of applications of composition and 
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recursion. Finally, our given function is obtained from R by one use of 
minimalization and then by composition with the primitive recursive func­
~nL • 

When miny R(x1 , ••• , xn, y) is a total function [that is, when for each 
x 1 , ••• , xn there is at least one y for which R(x 1 , ••• , xn, y) is true], we say 
that we are applying the operation of proper minimalization to R. Now, if 

t( minR(x 1 , ••• , xn, y)) 
y 

is total, then miny R(x1 , ••• , xn, y) must be total. Hence we have 

Theorem 3.5. A function is computable if and only if it can be obtained 
from the initial functions by a finite number of applications of composi­
tion, recursion, and proper minimalization. 

Exercises 

1. Show that for each u, there are infinitely many different numbers v 
such that for all x, <l>ix) = ci>v(x). 

2. (a) Let 

if ci>(x, xH 

otherwise. 

Show that H 1(x) is partially computable. 
(b) Let A = {a 1 , ••• , an} be a finite set such that <I>( a;, a) j for 

1 ::; i ::; n, and let 

if ci>(x, xH 

if X EA 
otherwise. 

Show that H 2(x) is partially computable. 
(c) Give an infinite set B such that ci>(b, b) j for all b E B and such 

that 

is partially computable. 

ifcl>(x,x)~ 

if X E B 
otherwise 
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(d) Give an infinite set C such that cl>(c, c)j for all c E C and such 
that 

is not partially computable. 

if cl>(x, x)J, 

if X E C 
otherwise 

3. Give a program .9J such that H,9 (x1 , x2 ), defined 

H,9 (x1 , x2 ) = program .9J eventually halts on inputs x1 , x 2 

is not computable. 

4. Let f(x 1 , ••• , xn) be computed by program .9, and suppose that for 
some primitive recursive function g(x1 , ••• , xn), 

is true for all x 1 , ••• , xn. Show that f(x 1 , ••• , xn) is primitive recursive. 

5.* Give a primitive recursive function counter(x) such that if ci>n is a 
computable predicate, then 

cl>/counter(n)) =- HALT(counter(n),counter(n)). 

That is, counter(n) is a counterexample to the possibility that ci>n 
computes HALT(x, x). [Compare this exercise with Exercise 2.5.] 

6. * Give an upper bound on the length of the shortest ..:7 program that 
computes the function ci>Y(x). 

4. Recursively Enumerable Sets 

The close relation between predicates and sets, as described in Chapter 1, 
lets us use the language of sets in talking about solvable and unsolvable 
problems. For example, the predicate HALT(x, y) is the characteristic 
function of the set {(x, y) E N 2 I HALT(x, y)}. To say that a set B, where 
B ~ Nm, belongs to some class of functions means that the characteristic 
function P(x1 , ••• , xm) of B belongs to the class in question. Thus, in 
particular, to say that the set B is computable or recursive is just to say 
that P(x1 , ••• , xm) is a computable function. Likewise, B is a primitive 
recursive set if P(x1 , ••• , xm) is a primitive recursive predicate. 
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We have, for example, 

Theorem 4.1. Let the sets B, C belong to some PRC class %'. Then so do 
the sets B u C, B n C, B. 
Proof. This is an immediate consequence of Theorem 5.1, Chapter 3 . 

• 
As long as the Godel numbering functions [x 1 , ••• , xn] and (x); are 

availaole, we can restrict our attention to subsets of N. We have, for 
example, 

Theorem 4.2. Let %' be a PRC class, and let B be a subset of Nm, 
m ~ 1. Then B belongs to %' if and only if 

B' = {[x 1 , ••• ,xm] ENI(x 1 , ••• ,xm) EB} 

belongs to %'. 

Proof. If Pix1 , ••• , xm) is the characteristic function of B, then 

is the characteristic function of B', and PB' clearly belongs to ~ if P8 

belongs to %'. On the other hand, if PB'(x) is the characteristic function of 
B', then 

is the characteristic function of B, and P8 clearly belongs to ~ if PB' 
belongs to ~- • 

It immediately follows, for example, that {[x, y] E N I HAL T(x, y )} is 
not a computable set. 

Definition. The set B c N is called recursively enumerable if there is a 
partially computable function g(x) such that 

B={xENig(xH}. (4.1) 

The term recursively enumerable is usually abbreviated r.e. A set is 
recursively enumerable just when it is the domain of a partially com­
putable function. If .9' is a program that computes the function g in (4.1), 
then B is simply the set of all inputs to .9' for which .9' eventually halts. If 
we think of .9' as providing an algorithm for testing for membership in B, 
we see that for numbers that do belong to B, the algorithm will provide a 
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"yes" answer; but for numbers that do not, the algorithm will never 
terminate. If we invoke Church's thesis, r.e. sets B may be thought of 
intuitively as sets for which there exist algorithms related to B as in the 
previous sentence, but without stipulating that the algorithms be expressed 
by programs of the language .9'. Such algorithms, sometimes called semi­
decision procedures, provide a kind of "approximation" to solving the 
problem of testing membership in B. 

We have 

Theorem 4.3. If B is a recursive set, then B is r.e. 

Proof. Consider the program .9: 

[A] IF - (X E B) GOTO A 

Since B is recursive, the predicate x E B is computable and .9 can be 
expanded to a program of .9'. Let .9 compute the function h(x). Then, 
clearly, 

B = {x E N I h(x H}. • 
If B and B are both r.e., we have a pair of algorithms that will terminate 

in case a given input is or is not in B, respectively. We can think of 
combining these two algorithms to obtain a single algorithm that will 
always terminate and that will tell us whether a given input belongs to B. 
This combined algorithm might work by "running" the two separate 
algorithms for longer and longer times until one of them terminates. This 
method of combining algorithms is called dovetailing, and the step-counter 
theorem enables us to use it in a rigorous manner. 

Theorem 4.4. The set B is recursive if and only if B and B are both r.e. 

Proof. If B is recursive, then by Theorem 4.1 so is ii, and hence by 
Theorem 4.3, they are both r.e. 

Conversely, if B and Bare both r.e., we may write 

B = {x EN I g(x) ~}, 

ii = {x ENih(xH}, 

where g and h are both partially computable. Let g be computed by 
program .9 and h be computed by program tff, and let p = #(.9), 
q = #(tff). Then the program that follows computes B. (That is, the 
program computes the characteristic function of B.) 
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[A] IF STP(l>(X, p, T) GOTO C 

IF STP<l)( X, q, T) GOTO E 

T~ T+ 1 
GOTOA 

[C] Y~1 

Theorem 4.5. If B and C are r.e. sets so are B u C and B n C. 

Proof. Let 

B = {x EN I g(x) ~}, 

C = {x EN I h(x) ~ }, 

81 

• 

where g and h are both partially computable. Let f(x) be the function 
computed by the program 

y ~ g(X) 

Y ~ h(X) 

Then f(x) is defined if and only if g(x) and h(x) are both defined. Hence 

B n C = {x EN I f(x) ~}, 

so that B n C is also r.e. 
To obtain the result for B u C we must use dovetailing again. Let g and 

h be computed by programs 9' and t2', respectively, and let #(9') = p, 
#(t2') = q. Let k(x) be the function computed by the program 

[A] IF STP(l>(X, p, T) GOTO E 

IF STP(l>(x, q, T) GOTO E 

T~ T+ 1 
GOTOA' 

Then k(x) is defined just in case either g(x) or h(x) is defined. That is, 

B u C = {x EN I k(xH}. 

Definition. We write 

W, = {x EN I <l>(x, nH}. 

Then we have 

• 

Theorem 4.6 (Enumeration Theorem). A set B is r.e. if and only if there 
is an n for which B = W, . 
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Proof. This is an immediate consequence of the definition of <l>(x, n) . 

• 
The theorem gets its name from the fact that the sequence 

is an enumeration of all r.e. sets. 
We define 

K = {n EN In E W,}. 

Now, 

n E W, <=> <l>(n, n) t <=> HALT(n, n). 

Thus, K is the set of all numbers n such that program number n 
eventually halts on input n. We have 

Theorem 4.7. K is r.e. but not recursive. 

Proof. Since K = {n E N I <l>(n, n) t} and (by the universality 
theorem-Theorem 3.1), <l>(n, n) is certainly partially computable, K is 
clearly r.e. If K were also r.e., by the enumeration theorem we would have 

K=W; 

for some i. Then 

i E K <=> i E W; <=> i E K, 

which is a contradiction. • 
Actually the proof of Theorem 2.1 already shows not only that 

HALT(x, z) is not computable, but also that HALT(x, x) is not com­
putable, i.e., that K is not a recursive set. (This was Exercise 2.1.) 

We conclude this section with some alternative ways of characterizing 
r.e. sets. 

Theorem 4.8. Let B be an r.e. set. Then there is a primitive recursive 
predicate R(x, t) such that B = {x EN l(3t)R(x, t)}. 

Proof. Let B = W,. Then B = {x EN l(3t)STP<0 (x, n, t)}, and STPO> is 
primitive recursive by Theorem 3.2. • 

Theorem 4.9. Let S be a nonempty r.e. set. Then there is a primitive 
recursive function f(u) such that S = {f(n) I n E N} = {f(O), f(l), 
f(2), ... } . That is, S is the range of f. 
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Proof. By Theorem 4.8 

S = {xI (3t)R(x, t)}, 

where R is a primitive recursive predicate. Let x 0 be some fixed member 
of S (for example, the smallest). Let 

f(u) = {/(u) 
Xo 

if R(l(u), r(u)) 
otherwise. 

Then by Theorem 5.4 in Chapter 3, f is primitive recursive. Each value 
f(u) is in S, since x 0 is automatically in S, while if R(l(u), r(u)) is true, 
then certainly (3t)R(l(u), t) is true, which implies that f(u) = l(u) E S. 
Conversely, if x E S, then R(x, t0 ) is true for some t0 . Then 

f((x, t 0 )) = l((x, t 0 )) = x, 

so that x = f(u) for u = (x, t 0 ). • 
Theorem 4.10. Let f(x) be a partially computable function and let 
S = {f(x)l f(xH}. (That is, Sis the range of f.) Then Sis r.e. 

Proof. Let 

Since 

g(x) = { ~ if XES 

otherwise. 

S = {xI g(x)!}, 

it suffices to show that g(x) is partially computable. Let .9 be a program 
that computes f and let #(.9) = p. Then the following program computes 
g(x): 

[A] IF- STPO)(Z, p, T) GOTO B 

V ~ f(Z) 

IF V=XGOTOE 
[B] Z ~ Z + 1 

IF Z ~ T GOTO A 
T~ T+ 1 
z~o 

GOTOA 

Note that in this program the macro expansion of V ~ f(Z) will be 
entered only when the step-counter test has already guaranteed that f is 
defined. • 
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Combining Theorems 4.9 and 4.10, we have 

Theorem 4.11. Suppose that S -=!= 0. Then the following statements are 
all equivalent: 

1. S is r.e.; 
2. S is the range of a primitive recursive function; 
3. S is the range of a recursive function; 
4. S is the range of a partial recursive function. 

Proof. By Theorem 4.9, (1) implies (2). Obviously, (2) implies (3), and (3) 
implies (4). By Theorem 4.10, (4) implies (1). Hence all four statements are 
equivalent. • 

Theorem 4.11 provides the motivation for the term recursively enumer­
able. In fact, such a set (if it is nonempty) is enumerated by a recursive 
function. 

Exercises 

1. Let B be a subset of Nm, m > 1. We say that B is r.e. if B = 
{(x1 , ... , xm) E Nm I g(xto ... , xm)H for some partially computable 
function g(x 1 , ••• , xm). Let 

Show that B' is r.e. if and only if B is r.e. 

2. Let K0 = {(x, y) I x E Wj}. Show that K0 is r.e. 

3. Let f be an n-ary partial function. The graph of f, denoted gr(f), is 
the set {[x1 , ••• , xn ,f(x1 , ••• , xn)] I f(x 1 , ••• , xn)J, }. 
(a) Let W be a PRC class. Prove that if f belongs to W then gr(f) 

belongs to W. 
(b) Prove that if gr (f) is recursive then f is partially computable. 
(c) Prove that the recursiveness of gr(f) does not necessarily imply 

that f is computable. 

4. Let B = {f(n) In EN}, where f is a strictly increasing computable 
function [i.e., f(n + 1) > f(n) for all n]. Prove that B is recursive. 

5. Show that every infinite r.e. set has an infinite recursive subset. : 

6. Prove that an infinite set A is r.e. if and only if A = {f(n) In EN} 
for some one-one computable function f(x). 
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7. Let A, B be sets. Prove or disprove: 
(a) If A u B is r.e., then A and B are both r.e. 
(b) If A ~ B and B is r.e., then A is r.e. 
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8. Show that there is no computable function f(x) such that f(x) = 
<l>(x, x) + 1 whenever <l>(x, xH. 

9. (a) Let g(x), h(x) be partially computable functions. Show there is 
a partially computable function f(x) such that f(xH for pre­
cisely those values of x for which either g(xH or h(x)J, (or 
both) and such that when f(xH, either f(x) = g(x) or f(x) = 
h(x). 

(b) Can f be found fulfilling all the requirements of (a) but such 
that in addition f(x) = g(x) whenever g(xH? Proof? 

10. (a) Let A= {y l(3t)P(t,y)}, where P is a computable predicate. 
Show that A is r.e. 

(b) Let B={yl(3t1)···(3tn)Q(tl> ... ,tn,y)}, where Q is a com­
putable predicate. Show that B is r.e. 

11. Give a computable predicate R(x, y) such that {y I(Vt)R(t, y)} is not 
r.e. 

5. The Parameter Theorem 

The parameter theorem (which has also been called the iteration theorem 
and the s-m-n theorem) is an important technical result that relates the 
various functions cf><n>(x 1 , x2 , ••• , xn, y) for different values of n. 

Theorem 5.1 (Parameter Theorem). For each n, m > 0, there is a primi­
tive recursive function S;:.(u 1 , Uz, ... , Un, y) such that 

cf>(m+n>(xl ' ... ' Xm 'Ul ' ... ' Un 'y) = cf>(m)(XI ' ••• ' Xm 's;:.(ul ' ... ' Un 'y)). 

(5.1) 

Suppose that values for variables u 1 , ••• , un are fixed and we have in 
mind some particular value of y. Then the left side of (5.1) is a partially 
computable function of the m arguments x 1 , ••• , x m • Letting q be the 
number of a program that computes this function of m variables, we have 
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The parameter theorem tells us that not only does there exist such a 
number q, but that it can be obtained from u1 , ••• , un, y in a computable 
(in fact, primitive recursive) way. 

Proof. The proof is by mathematical induction on n. 
For n = 1, we need to show that there is a primitive recursive function 

S~(u, y) such that 

ci><m+ 1>(x1 , ••• , Xm, u, y) = ci><m>(x1 , ••• , Xm, S~(u, y)). 

Here S~(u, y) must be the number of a program which, given m inputs 
x1 , ••• , xm, computes the same value as program number y does when 
given the m + 1 inputs x1 , ••• , xm, u. Let .9 be the program such that 
#(.9) = y. Then S~(u, y) can be taken to be the number of a program 
which first gives the variable Xm+ I the value U and then proceeds tO carry 
OUt fiJ. Xm+ 1 Will be given the value U by the program 

~m+l ~ Xm+l + 1} 
. u 

xm+l ~ xm+l + 1 

The number of the unlabeled instruction 

is 

(0, (1, 2m + 1)) = 16m+ 10. 

So we may take 

a primitive recursive function. Here the numbers of the instructions of .9J 
which appear as exponents in the prime power factorization of y + 1 have 
been shifted to the primes Pu+I•Pu+Z•···•Pu+Lt(y+l>· 

To complete the proof, suppose the result known for n = k. Then we 
have 
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using first the result for n = 1 and then the induction hypothesis. But now, 
if we define 

s!+ 1(ul ' ... ' uk 'uk+ I' y) = S!(ul ' ... ' uk 's~+k(uk+ I' y)), 

we have the desired result. • 
We next give a sample application of the parameter theorem. It is 

desired to find a computable function g(u, v) such that 

<1>/ <1>/x)) = <l>g(u, ,>(x). 

We have by the meaning of the notation that 

<1>/<1>/x)) = <l>(<l>(x, v), u) 

is a partially computable function of x, u, v. Hence, we have 

<l>u(<l>,.(x)) = <t><3>(x, u, v, z0 ) 

for some number z0 • By the parameter theorem, 

<t><3>(x, u, v, z0 ) = <l>(x, Sf(u, v, z0 )) = <l>s[(u,,·,zix). 

Exercises 

1. Given a partially computable function f(x, y ), find a primitive recur­
sive function g(u, v) such that 

2. Show that there is a primitive recursive function g(u, v, w) such that 

<1>(3>(u, v, w, z) = <l>g(u,v,w)(z). 

3. Let us call a partially computable function g(x) extendable if there is a 
computable function f(x) such that f(x) = g(x) for all x for which 
g(xH. Show that there is no algorithm for determining of a given z 
whether or not <l>z(x) is extendable. [Hint: Exercise 8 of Section 4 
shows that <l>(x, x) + 1 is not extendable. Find an extendable function 
k(x) such that the function 

h(x t) = { <l>(x, x) + 1 
' k(x) 

is partially computable.] 

if <l>(t,t).!. 

otherwise 
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4.* A programming system is an enumeration S = {cf>in> I i EN, n > 0} of 
the partially computable functions. That is, for each partially com­
putable function f(x 1 , ••• , xn) there is an i such that f is cf>in>. 
(a) A programming system S is universal if for each n > 0, the 

function qr<n>, defined 

qr<n>(xl ' ... ' Xn 'i) = cf>in>(xl ' ... ' Xn), 

is partially computable. That is, S is universal if a version of the 
universality theorem holds for S. Obviously, 

{ <l>}n> I i E N, n > 0} 

is a universal programming system. Prove that a programming 
system S is universal if and only if for each n > 0 there is a 
computable function fn such that cf>in> = <I>J:<~> for all i. 

(b) A universal programming system S is acceptable if for each 
n, m > 0 there is a computable function s::,(u 1 , ••• , un, y) such 
that 

qr<m+n>(xl ' ... ' Xm 'Ut ' •.• ' Un 'y) 

= qr<m>(xl ' ... ' Xm 's::,(ul ' ... ' Un 'y)). 

That is, S is acceptable if a version of the parameter theorem 
holds for S. Again, {<I>?> I i EN, n > 0} is obviously an acceptable 
programming system. Prove that S is acceptable if and only if for 
each n > 0 there is a computable function gn such that <l>fn> = 
cf>t(;> for all i. 

6. Diagonalization and Reducibility 

So far we have seen very few examples of nonrecursive sets. We now 
discuss two general techniques for proving that given sets are not recursive 
or even that they are not r.e. The first method, diagonalization, turns on 
the demonstration of two assertions of the following sort: 

1. A certain set A can be enumerated in a suitable fashion. 
2. It is possible, with the help of the enumeration, to define an object b 

that is different from every object in the enumeration, i.e., b $.A. 

We sometimes say that b is defined by diagonalizing over A. In some 
diagonalization arguments the goal is simply to find some b $.A. We will 
give an example of such an argument later in the chapter. The arguments 
we will consider in this section have an additional twist: the definition of b 
is such that b must belong to A, contradicting the assertion that we began 
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with an enumeration of all of the elements in A. The end of the 
argument, then, is to draw some conclusion from this contradiction. 

For example, the proof given for Theorem 2.1 is a diagonalization 
argument that the predicate HALT(x, y), or equivalently, the set 

{(x,y) E N 2 IHALT(x,y)}, 

is not computable. The set A in this case is the class of unary partially 
computable functions, and assertion 1 follows from the fact that .9 
programs can be coded as numbers. For each n, let .9-'n be the program 
with number n. Then all unary partially computable functions occur 
among I/I.J.1l, 1/1})/, ... . We began by assuming that HALT(x, y) is com­
putable, and we wrote a program 9' that computes I/J.J.1>. The heart of the 
proof consisted of showing that I/J.J.1> does not appear among I/J.J.1l, 1/J.J.?, .... 
In particular, we wrote 9' so that for every x, I/J.J.1>(x),l. if and only if 
,/,(1)( ) . 
'1'.9' x x i , I.e., 

HALT(x, #(9')) <=>- HALT(x, x), 

so I/J.J.1> differs from each function I/J.J.1l, 1/J.J.?,... on at least one input 
value. That is, n is a counterexample to the possibility that I/J.J.1> is I/J.J.1>, 
since 1/J.~>(n) ~ if and only if 1/J})>(n) i. Now we have the unary partialiy 
computable function 1/J})> that is ~ot among I/J.J.1l, <PJ):, ... , so assertion 2 is 
satisfied, giving us a contradiction. In the proof of Theorem 2.1 the 
contradiction was expressed a bit differently: Because I/J.J.1> is partially 
computable, it must appear among I/J.J.1l, 1/J.J.?, ... , and, in particular, it 
must be I/J.J.1] ~ , since 9'#(.9') is 9' by definition, but we have the counterex­
ample I/J.J.1>(#(9')),l. if and only if I/J.J.1> (#(.9-'))j, i.e., 

#(~) 

HALT(#(9'), #(9')) <=>- HALT(#(9'), #(9')). 

Since we know assertion 1 to be true, and since assertion 2 depended on 
the assumption that HALT(x, y) is computable, HALT(x, y) cannot be 
computable. 

To present the situation more graphically, we can represent the values 
of each function I/J.J.1l, I/J.J.1/, ••• by the infinite array 

,,,(1)(1) '1'.9'o 
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Each row represents one function. It is along the diagonal of this array 
that we have arranged to find the counterexamples, which explains the 
origin of the term diagonalization. 

We can use a similar argument to give an example of a non-r.e. set. Let 
TOT be the set of all numbers p such that p is the number of a program 
that computes a total function f(x) of one variable. That is, 

TOT= {zEN I (Vx)<l>(x, z) ~ }. 

Since 

<l>(x,zH =x E ~' 

TOT is simply the set of numbers z such that ~ is the set of all 
nonnegative integers. 

We have 

Theorem 6.1. TOT is not r.e. 

Proof. Suppose that TOT were r.e. Since TOT =I= 0, by Theorem 4.9 
there is a computable function g(x) such that TOT = {g(O), g(1), g(2), ... }. 
Let 

h(x) = <l>(x, g(x)) + 1. 

Since each value g(x) is the number of a program that computes a total 
function, <l>(u, g(x)H for all x, u and hence, in particular, h(xH for all x. 
Thus h is itself a computable function. Let h be computed by program 9', 
and let p = #(9'). Then p E TOT, so that p = g(i) for some i. Then 

h(i) = <l>(i, g(i)) + 1 by definition of h 

= <l>(i, p) + 1 since p = g(i) 

= h(i) + 1 since h is computed by 9', 

which is a contradiction. • 
Note that in the proof of Theorem 6.1, the set A is TOT itself, and this 

time assertion 1 was taken as an assumption, while assertion 2 is shown to 
be true. Theorem 6.1 helps to explain why we base the study of com­
putability on partial functions rather than total functions. By Church's 
thesis, Theorem 6.1 implies that there is no algorithm to determine if an .9 
program computes a total function. 

Once some set such as K has been shown to be nonrecursive, we can 
use that set to give other examples of nonrecursive sets by way of the 
reducibility method. 



6. Diagonalization and Reducibility 91 

Definition. Let A, B be sets. A is many-one reducible to B, written 
A ~m B, if there is a computable function f such that 

A= {x EN I f(x) E B}. 

That is, x E A if and only if f(x) E B. (The word many-one simply refers 
to the fact that we do not require f to be one-one.) 

If A ~m B, then in a sense testing membership in A is "no harder 
than" testing membership in B. In particular, to test x E A, we can 
compute f(x) and then test f(x) E B. 

Theorem 6.2. Suppose A ~m B. 

1. If B is recursive, then A is recursive. 
2. If B is r.e., then A is r.e. 

Proof. Let A = {x EN I f(x) E B}, where f is computable, and let Pix) 
be the characteristic function of B. Then 

A = {x EN I P8 (f(x))}, 

and if B is recursive then P8 (f(x)), the characteristic function of A, is 
computable. 

Now suppose that B is r.e. Then B = {x E N I g(x)!} for some partially 
computable function g, and A= {x EN I g(f(x))!}. But g(f(x)) is par­
tially computable, so A is r.e. • 

We generally use Theorem 6.2 in the form: If A is not recursive (r.e.), 
then B is not recursive (respectively, not r.e.). For example, let 

K0 is clearly r.e. However, we can show by reducing K to K 0 , that is, by 
showing that K ~m K 0 , that K 0 is not recursive: x E K if and only if 
(x, x) E K 0 , and the function f(x) = (x, x) is computable. In fact, it is 
easy to show that every r.e. set is many-one reducible to K0 : if A is r.e., 
then 

A={xENig(x)!} for some partially computable g 

= {x EN I <l>(x, z0H} for some z0 

= {x EN I (x, z0 ) E K 0}. 
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Definition. A set A is m-complete if 

1. A is r.e., and 
2. for every r.e. set B, B ~m A. 

So K 0 is m-complete. We can also show that K is m-complete. First we 
show that K 0 ~m K. This argument is somewhat more involved because 
K 0 seems, at first glance, to contain more information than K. K 0 

represents the halting behavior of all partially computable functions on all 
inputs, while K represents only the halting behavior of partially com­
putable functions on a single argument. We wish to take a pair (n, q) and 
transform it to a number f( ( n, q)) of a single program such that 

<l>q(nH if and only if <l>f((n,q))(f( (n, q ))H, 

i.e., such that (n,q) E K 0 if and only if f((n,q)) E K. The parameter 
theorem turns out to be very useful here. Let .9' be the program 

y ~ <f>O>(l(Xz), r(Xz)) 

and let p = #(.9'). Then r/J.'Jl'(x 1 , x 2 ) = <t>0>(l(x2 ), r(x 2 )), and 

I/J.'Jl'(x1 ,x2 ) = <t><2>(x1 ,x2 ,p) = <t>0 >(x 1 ,Sf(x2 ,p)) 

by the parameter theorem, so for any pair (n, q ), 

<t>(l>(n, q) = I/J.'Jl'(x 1 , (n, q)) = <l>~~~(n,q),p)(x 1 ). (6.1) 

Now, (6.1) holds for all values of x1 , so, in particular, 

<t>(l>(n, q) = <t>f/~(n,q),p)(Sf((n, q), p)), 

and therefore 

<f>O>(n, q) t if and only if <l>~~~(n, q), P>(Sf ( (n, q), p)) t, 

i.e., 

(n,q) EK0 ifandonlyif Sf((n,q),p) EK. 

With p held constant Sf(x, p) is a computable unary function, so K 0 ~m K. 
To complete the argument that K is m-complete we need 

Theorem 6.3. If A ~m Band B ~m C, then A ~m C. 

Proof. Let A = {x E N I f(x) E B} and B = {x EN I g(x) E C}. Then 
A = {x EN I g(f(x)) E C}, and g(f(x)) is computable. • 
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As an immediate consequence we have 

Corollary 6.4. If A is m-complete, B is r.e., and A ~m B, then B is 
m-complete. 

Proof. If Cis r.e. then C ~m A, and A ~m B by assumption, so C ~m B . 

• 
Thus, K is m-complete. Informally, testing membership in an m-com­

plete set is "at least as difficult as" testing membership in any r.e. set. So 
an m-complete set is a good choice for showing by a reducibility argument 
that a given set is not computable. We expand on this subject in Chapter 8. 

Actually, we have shown both K ~m K 0 and K 0 ~m K, so in a sense, 
testing membership in K and testing membership in K 0 are "equally 
difficult" problems. 

Definition. A =m B means that A ~m B and B ~m A. 

In general, for sets A and B, if A =m B then testing membership in A 
has the "same difficulty as" testing membership in B. 

To summarize, we have proved 

Theorem 6.5. 

1. K and K 0 are m-complete. 
2. K =m K0 • 

We can also use reducibility arguments to show that certain sets are not 
r.e. Let 

EMPTY = {x E N I W., = 0}. 

Theorem 6.6. EMPTY is not r.e. 

Proof. We will show that K ~m EMPTY. K is not r.e., so by Theorem 
6.2, EMPTY is not r.e. Let .9 be the program 

y ~ <I>(Xz' Xz), 

and let p = #(.9) . .9 ignores its first argument, so for a given z, 

1/J.J}>(x, z)! for all x if and only if <l>(z, z)!. 

By the parameter theorem 

I/JJ.,Z>(x 1 , x2 ) = <t><2>(x 1 , x2 , p) = <I>(I>(x1 , Sf(x2 , p)), 



94 Chapter 4 A Universal Program 

so, for any z, 

z E K if and only if <I>( z, z) j 
if and only if 1/J.Ji>(x, z) j for all x 
ifandonlyif <J>O>(x,Sf(z,p))j for all x 

if and only if Ws/(z,p) = 0 
if and only if Sf(z,p) E EMPTY. 

f(z) = Sf(z, p) is computable, so K ::=;m EMPTY. 

Exercises 

1. Show that the proof of Theorem 4.7 is a diagonalization argument. 

• 

2. Prove by diagonalization that there is no enumeration / 0 , / 1 , / 2 , ••• 

of all total unary (not necessarily computable) functions on N. 

3. Let A = {x EN I <l>x(x)J, and <l>x(x) > x}. 
(a) Show that A is r.e. 
(b) Show by diagonalization that A is not recursive. 

4. Show how the diagonalization argument in the proof of Theorem 6.1 
fails for the set of all numbers p such that p is the number of a 
program that computes a partial function, i.e., the set N. 

5. Let A, B be sets of numbers. Prove 
(a) A ::=;m A. 

(b) A ::=;m B if and only if A ::=;m B. 
6. Prove that no m-complete set is recursive. 

7. Let A, B be m-complete. Show that A =m B. 

8. Prove that K :1, m K, i.e., K is not many-one reducible to K. 

9. For every number n, let An ={xI n E J.Ji.}. 
(a) Show that A; is r.e. but not recursive, for all i. 
(b) Show that A; =m Aj for all i,j. 

10. Define the predicate P(x) - <l>x(x) = 1. Show that P(x) is not 
computable. 

11. Define the predicate 

Q(x) - the variable Y assumes the value 1 sometime dur­
ing the computation of 1/Jg>(x), where #(!JO) = x. 
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Show that Q(x) is not computable. [Hint: Use the parameter theorem 
and a version of the universal program W1 .] 

12. Let INF = {x EN I Wr is infinite}. Show that INF =m TOTAL. 

13. Let FIN = {x EN I w. is finite}. Show that K :::;;m FIN. 

14.* Let 

MONOTONE = {y E N I <1>/x) is total and 

<1>/x) :::;; <1>/x + 1) for all x}. 

(a) Show by diagonalization that MONOTONE is not r.e. 
{b) Show that MONOTONE =m TOTAL. 

7. Rice's Theorem 

Using the reducibility method we can prove a theorem that gives us, at a 
single stroke, a wealth of interesting unsolvable problems concerning 
programs. 

Let f be some collection of partially computable functions of one 
variable. We may associate with f the set (usually called an index set) 

R r = {t E N I <1>1 E f}. 

Rr is a recursive set just in case the predicate g(t), defined g(t) = <1>1 E f, 
is computable. Consider the examples: 

1. f is the set of computable functions; 
2. r is the set of primitive recursive functions; 
3. f is the set of partially computable functions that are defined for all 

but a finite number of values of x. 

These examples make it plain that it would be interesting to be able to 
show that Rr is computable for various collections f. Invoking Church's 
thesis, we can say that R r is a recursive set just in case there is an 
algorithm that accepts programs go as input and returns the value TRUE 
or FALSE depending on whether or not the function tfJ}p,1 > does or does not 
belong to f. In fact, those who work with computer programs would be 
very pleased to possess algorithms that accept a program as input and 
which return as output some useful property of the partial function 
computed by that program. Alas, such algorithms are not to be found! This 
dismal conclusion follows from Rice's theorem. 
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Theorem 7.1 (Rice's Theorem). Let r be a collection of partially com­
putable functions of one variable. Let there be partially computable 
functions f(x), g(x) such that f(x) belongs to r but g(x) does not. Then 
R r is not recursive. 

Proof. Let h(x) be the function such that h(x)j for all x. We assume 
first that h(x) does not belong to f. Let q be the number of 

Z ~ <I>(X2 , X 2 ) 

y ~ f(Xl) 

Then, for any i, Sf (i, q) is the number of 

X 2 ~ i 

Now 

and 

Z ~ <I>(X2 , X 2 ) 

Y ~ f(Xl) 

i E K implies <l>(i,i)J, 

implies <l>s:u. q)(x) = f(x) for all x 

implies <l>s/(i,q) E f 
implies Sf (i, q) E R r , 

i $. K implies <l>(i' i)j 

implies <l>s/(i.q)(x) i for all x 

implies <l>s/u. q> = h 
implies <l>s/(i.q) $. r 
implies Sf(i,q) $. Rr, 

so K :::;; m R r . By Theorem 6.2, R r is not recursive. 
If h(x) does belong to r, then the same argument with r and f(x) 

replaced by f and g(x) shows that Rr is not recursive. But Rr = Rr, so, 
by Theorem 4.1, Rr is not recursive in this case either. • 

Corollary 7.2. There are no algorithms for testing a given program 9' of 
the language .9 to determine whether 1/Jj.l)(x) belongs to any of the classes 
described in Examples 1-3. 

Proof. In each case we only need find the required functions f(x), g(x) 
to show that Rr is not recursive. The corollary then follows by Church's 
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thesis. For 1, 2, or 3 we can take, for example, f(x) = uj(x) and g(x) = 
1 - x [so that g(x) is defined only for x = 0, 1]. • 

Exercises 

I. Show that Rice's theorem is false if the requirement for functions 
f(x ), g(x) is omitted. 

2. Show there is no algorithm to determine of a given program .9 in the 
language .9' whether rf1.9(x) = x 2 for all x. 

3. Show that there is no algorithm to determine of a pair of numbers u, v 
whether ci>u(x) = ci>v(x) for all x. 

4. Show that the set A = {x I cl>x is defined for at least one input} is r.e. 
but not recursive. 

5. Use Rice's theorem to show that the following sets are not recursive. 
[See Section 6 for the definitions of the sets.] 
(a) TOT; 
(b) EMPTY; 
(c) INF; 
(d) FIN; 
(e) MONOTONE; 
(f) {y E N I <~>;!) is a predicate}. 

6. Let f be a collection of partially computable functions of m variables, 
m > 1, and let R~m> = {t E N I ci>fm> E f}. State and prove a version of 
Rice's theorem for collections of partially computable functions of m 
variables, m > 1. 

7. Define the predicate 

PROPER(n) <=> minz [ cl>~2>(x, z) = 3] is an application of proper 
minimalization to the predicate <1>~2>( x, z) = 3. 

Show that PROPER(x) is not computable. 

8. Let f be a set of partially computable functions of one variable. Show 
that Rr is r.e. if and only if it is m-complete. 

*8. The Recursion Theorem 

In the proof that HALT(x, y) is not computable, we gave (assuming 
HALT(x, y) to be computable) a program .9 such that 

HALT(#(.9), #(.9)) <=>- HALT(#(.9), #(.9)). 
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We get a contradiction when we consider the behavior of the program .9 
on input #(.9). The phenomenon of a program acting on its own descrip­
tion is sometimes called self-reference, and it is the source of many 
fundamental results in computability theory. Indeed, the whole point of 
diagonalization in the proof of Theorem 2.1 is to get a contradictory 
self-reference. We turn now to a theorem which packages, so to speak, a 
general technique for obtaining self-referential behavior. It is one of the 
most important applications of the parameter theorem. 

Theorem 8.1 (Recursion Theorem). Let g(z, Xp ... 'xm) be a partially 
computable function of m + 1 variables. Then there is a number e such 
that 

Discussion. Let e = #(.9), so that l/l.~m>(x 1 , ••• , xm) = <l>~m>(x 1 , ••• , xm). 
The equality in the theorem says that the m-ary function rfJ}p,m>(x 1 , ••• , xm) 
is equal to g(z, x 1 , ••• , xm) when the first argument of g is held constant 
at e. That is, .9 is a program that, in effect, gets access to its own number, 
e, and computes the m-ary function g(e, x 1 , ••• , xm). Note that since 
x 1 , ••• , xm can be arbitrary values, e generally does not appear among the 
inputs to rfJ}p,m>(x 1 , .•• , xm), so .9 must somehow compute e. One might 
suppose that .9 might contain e copies of an instruction such as Z +­
Z + 1, that is, an expansion of the macro Z +-- e, but if .9 has at least e 
instructions, then certainly #(.9) > e. The solution is to write .9 so that it 
computes e without having e "built in" to the program. In particular, we 
build into .9 a "partial description" of .9, and then have .9 compute e 
from the partial description. Let t2' be the program 

z +-- S~(Xm+ I' xm+ I) 

Y+-g(Z,X1 , ••• ,Xm) 

We prefix #(t2') copies of the instruction xm +I +-- xm +I + 1 to get the 
program !Jll: 

z +-- S~(Xm+ I' xm+ I) 

Y+-g(Z,X1 , ••• ,Xm) 
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After the first #(f2') instructions are executed, Xm+ 1 holds the Value 
#{t2'), and S~(#(t2'), #(t2')), as defined in the proof of the parameter 
theorem, computes the number of the program consisting of #(t2') copies 
of Xm+l ~ Xm+l + 1 followed by program t2'. But that program is 9'1. So 
z ~ S~(Xm+ I' xm+ I) gives z the value #(!Jll), andy~ g(Z, XI' ... ' Xm) 
causes !Jll to output g(#(!Jll), x 1 , ••• , xm). We take e to be #(!Jll) and we 
have 

We now formalize this argument. 

Proof. Consider the partially computable function 

g(S~(v,v),x 1 , ••• ,xm) 

where S~ is the function that occurs in the parameter theorem. Then we 
have for some number z0 , 

g(S~(V, V), XI, ... , Xm) = cf>(m+ I)(XI, ... , Xm, V, Zo) 

= cf><m>(x1 , ••• , xm, S~(v, z0 )), 

where we have used the parameter theorem. Setting v = z0 and e = 
S~(z0 , z0 ), we have 

g(e,x 1 , ••• ,xm) = cf><m>(x 1 , ••• ,xm ,e)= <I>;m>(x1 , ••• ,xm). • 

We can use the recursion theorem to give another self-referential proof 
that HALT(x, y) is not computable. If HALT(x, y) were computable, then 

f(x,y) = { 6 if HALT(y, x) 

otherwise 

would be partially computable, so by the recursion theorem there would be 
a number e such that 

that is, 

<l>e(y) = f(e, y) = { 6 if HALT(y, e) 
otherwise, 

- HALT(y, e)<=> HALT(y, e). 

So HALT(x, y) is not computable. The self-reference occurs when <l>e 
computes e, tests HALT(y, e), and then does the opposite of what 
HALT(y, e) says it does. 
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One of the many uses of the recursion theorem is to allow us to write 
down definitions of functions that involve the program used to compute 
the function as part of its definition. For a simple example we give 

Corollary 8.2. There is a number e such that for all x 

<l>e(x) =e. 

Proof. We consider the computable function 

g(z, x) = uf(z, x) = z. 

Applying the recursion theorem we obtain a number e such that 

<l>e(x) = g(e, x) = e 

and we are done. • 
It is tempting to be a little metaphorical about this result. The program 

with number e "consumes" its "environment" (i.e., the input x) and 
outputs a "copy" of itself. That is, it is, in miniature, a self-reproducing 
organism. This program has often been cited in considerations of the 
comparison between living organisms and machines. 

For another example, let 

if t = 0 
otherwise, 

where g(x, y) is computable. It is clear that f(x, t) is partially computable, 
so by the recursion theorem there is a number e such that 

if t = 0 
otherwise. 

An easy induction argument on t shows that <l>e is a total, and therefore 
computable, function. Now, <l>e satisfies the equations 

<l>e(O) = k 

<l>e(t + 1) = g(t, <l>e(t)), 

that is, <l>e is obtained from g by primitive recursion of the form (2.1) in 
Chapter 3, so the recursion theorem gives us another proof of Theorem 2.1 
in Chapter 3. In fact, the recursion theorem can be used to justify 
definitions based on much more general forms of recursion, which explains 
how it came by its name.1 We give one more example, in which we wish to 

1 For more on this subject, see Part 5. 
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know if there are partially computable functions f, g that satisfy the 
equations 

f(O) = 1 

f(t + 1) = g(2t) + 1 

g(O) = 3 

g(2t + 2) = f(t) + 2. 

Let F(z, t) be the partially computable function 

if X= (0,0) 

(8.1) 

<l>z((1,2(r(x) _:_ 1))) + 1 
F(z,x) = 3 

{

1 
if (3y), x (x = (0, y + 1)) 

if X= (1,0) 

<l>z((O, l(r(x) ..:... 2)j2J)) + 2 if(3y),x(x = (1,2y + 2)). 

By the recursion theorem there is a number e such that 

<l>e(x) = F(e, x) 

{

1 
<l>e((1,2(r(x)..:... 1))) + 1 

= ~e((O, l (r(x) ..:... 2) j2J)) + 2 

if X= (0,0) 

if (3y), x (x = (0, y + 1)) 

if X= (1,0) 

if ( 3 Y) ,; x (X = ( 1, 2 Y + 2)) . 

Now, setting 

we have 

f(x) = <l>e((O,x)) and g(x) = <l>e((1,x)) 

f(O) = <l>e((O, 0)) = 1 

f(t + 1) = <l>e((O,t + 1)) = cf>e((1,2t)) + 1 =g(2t) + 1 

g(O) = <l>e((1,0)) = 3 

g(2t + 2) = cf>e((1,2t + 2)) = <l>e((O,t)) + 2 = f(t) + 2, 

so f, g satisfy (8.1). 
Another application of the recursion theorem is 

Theorem 8.3 (Fixed Point Theorem). Let f(z) be a computable function. 
Then there is a number e such that 

for all x. 
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Proof. Let g(z, x) = <l>f<z>(x), a partially computable function. By the 
recursion theorem, there is a number e such that 

<l>e(x) = g(e, x) = <l>f(e)(x). • 
Usually a number n is considered to be a fixed point of a function f(x) 

if f(n) = n. Clearly there are computable functions that have no fixed 
point in this sense, e.g., s(x). The fixed point theorem says that for every 
computable function f(x), there is a number e of a program that computes 
the same function as the program with number f(e). 

For example, let P(x) be a computable predicate, let g(x) be a com­
putable function, and let while(n) = #(~n), where ~n is the program 

X 2 +--- n 

Y+-X 
[A] IF - P(Y) GOTO E 

Y +--- <l>x2(g(Y)) 

It should be clear that while(x) is a computable, in fact primitive recursive, 
function, so by the fixed point theorem there is a number e such that 

<l>e(x) = <l>while(e)(x). 

It follows from the construction of while(e) that 

<l>e(x) = <l>while(e)(x) = { ~e(g(x)) if - P(x) 

otherwise. 

Moreover, 

so 

(
g(x) 

<l>e(g(x)) = <l>while(e)(g(x)) = <l>e(g(g(x))) 
if - P(g(x)) 

otherwise, 

<l>e(x) = <l>while(e)(x) = {;(x) 
<l>e(g(g(x))) 

if -P(x) 

if P(x) &-P(g(x)) 

otherwise, 
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and continuing in this fashion we get 

if - P(x) 
if P(x) & - P(g(x)) 

if P(x) & P(g(x)) & - P(g(g(x))) 

In other words, program e behaves like the pseudo-program 

Y+-X 

WHILE P(Y) DO 

y +--- g(Y) 

END 

We end this discussion of the recursion theorem by giving another proof 
of Rice's theorem. Let r, f(x), g(x) be as in the statement of Theorem 
7.1. 

Alternative Proof of Rice's Theorem.2 Suppose that Rr were computable. 
Let 

if t ERr 

otherwise. 

That is, Pr is the characteristic function of Rr. Let 

(
g(x) 

h(t,x)= ) 
f(x 

if t ERr 

otherwise. 

Then, since (as in the proof of Theorem 5.4, Chapter 3) 

h(t, x) = g(x) · Pr(t) + f(x) · a(Pr{t)), 

h(t, x) is partially computable. Thus, by the recursion theorem, there is a 
number e such that 

(
g(x) 

<l>e(x) = h(e, x) = f(x) 
if <l>e belongs to r 
otherwise. 

2 This elegant proof was called to our attention by John Case. 



104 Chapter 4 A Universal Program 

Does e belong to Rr? Recalling that f(x) belongs to f but g(x) does not, 
we have 

eERr implies <l>e(x) = g(x) 

implies <l>e is not in r 
implies e rt Rr. 

But likewise, 

eft Rr implies <l>e(x)= f(x) 

implies <l>e is in r 
implies e ERr. 

This contradiction proves the theorem. • 
Exercises 

1. Use the proof of Corollary 8.2 and the discussion preceding the proof 
of the recursion theorem to write a program .9J such that rf19 (x) = 
#(.9). 

2. Let A = {x EN I <l>x(x)J, and <l>x(x) > x}. Use the recursion theo­
rem to show that A is not recursive. 

3. Show that there is a number e such that W. = {e}. 

4. Show that there is a program .9J such that rf19 (x) ~ if and only if 
X= #(.9J). 

5. (a) Show that there is a partially computable function f that satis­
fies the equations 

What is /(2, 5)? 

f(x,O)=x+2 

f(x, 1) = 2 ·f(x,2x) 

f(x,2t + 2) = 3 ·f(x,2t) 

f(x,2t + 3) = 4 ·f(x,2t + 1). 

(b) Prove that f is total. 
(c) Prove that f is unique. (That is, only one function satisfies the 

given equations.) 

6. Give two distinct partially computable functions f, g that satisfy the 
equations 

/(0) = 2 g(O) =2 

f(2t + 2) = 3 ·f(2t) g(2t + 2) =3. g(2t). 

For the specific functions f, g that you give, what are f{l) and g{l)? 
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7. Let f(x) = x + 1. Use the proof of the fixed point theorem and the 
discussion preceding the proof of the recursion theorem to give a 
program !Jl! such that ci>#W>(x) = ci>f<HW»(x). What unary function 
does !Jl! compute? 

8. Give a function f(y) such that, for all y, f(y) > y and <1>/x) = 
ci>f(y>(x ). 

9. Give a function f(y) such that, for all y, if cl>/x) = ci>f<Y>(x), then 
<1>/x) is not total. 

10. Show that the function while(x) defined following the fixed point 
theorem is primitive recursive. [Hint: Use the parameter theorem.] 

11. (a) Prove that the recursion theorem can be strengthened to read: 
There are infinitely many numbers e such that 

cl>~m>(x 1 , ••• , Xm) = g(e, XI, ••• , Xm). 

(b) Prove that the fixed point theorem can be strengthened to read: 
There are infinitely many numbers e such that 

cl>f(e)(x) = cl>e(x). 

12. Prove the following version of the recursion theorem: There is a 
primitive recursive function self(x) such that for all z 

cl>self(z)(x) = <I>;2>(self(z), x). 

13. Prove the following version of the fixed point theorem: There is a 
primitive recursive function fix(u) such that for all x, u, 

cl>fix(u)(x) = cl><l>u(fix(u/x). 

14. * Let S be an acceptable programming system with universal functions 
qr<m>. Prove the following: For every partially computable function 
g(z, x 1 , ••• , xm) there is a number e such that 

qr;m>(x 1 , ••• , Xm) = g(e, X 1 , ••• , Xm). 

That is, a version of the recursion theorem holds for S. [See Exercise 
5.4 for the definition of acceptable programming systems.] 

*9. A Computable Function That Is Not 
Primitive Recursive 

In Chapter 3 we showed that all primitive recursive functions are com­
putable, but we did not settle the question of whether all computable 
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functions are pnmitiVe recursive. We shall deal with this matter by 
showing how to obtain a function h(x) that is computable but is not 
primitive recursive. Our method will be to construct a computable function 
cf>(t, x) that enumerates all of the unary primitive recursive functions. That 
is, it will be the case that 

1. for each fixed value t = t0 , the function cf>(t0 , x) will be primitive 
recursive; 

2. for each unary primitive recursive function f(x), there will be a 
number t0 such that f(x) = cf>(t0 , x). 

Once we have this function cf> at our disposal, we can diagonalize, 
obtaining the unary computable function cf>(x, x) + 1 which must be 
different from all primitive recursive functions. (If it were primitive recur­
sive, we would have 

cf>(x, x) + 1 = cf>(t0 , x) 

for some fixed t0 , and setting x = t0 would lead to a contradiction.) 
We will obtain our enumerating function by giving a new characteriza­

tion of the unary primitive recursive functions. However, we begin by 
showing how to reduce the number of parameters needed in the operation 
of primitive recursion which, as defined in Chapter 3 (Eq. (2.2)), proceeds 
from the total n-ary function f and the total n + 2-ary function g to yield 
the n + 1-ary function h such that 

h(x1, ... ,xn,O) =J(x1, ... ,xn) 

h(x1, ... ,xn,t+ 1) =g(t,h(x1, ... ,xn,t),x1, ... ,xn). 

If n > 1 we can reduce the number of parameters needed from n to n - 1 
by using the pairing functions. That is, let 

f<x1 , ... ,xn-1) = f(x1 , ... ,xn_z,l(xn-1),r(xn-1)), 

g(t,u,x1 , ... ,xn_ 1) =g(t,u,x1 , ... ,xn_ 2 ,l(xn_ 1),r(xn_ 1)), 

h(x1 , ... ,xn_ 1 ,t) = h(x1 , ... ,xn_ 2 ,l(xn_ 1),r(xn_ 1),t). 

Then, we have 

h(x1, ... ,xn-1•0) =f<x1, ... ,xn-1) 

h(x1 , ... ,xn_ 1 ,t + 1) =g(t,h(x1 , ... ,xn_ 1 ,t),x1 , ... ,xn_ 1). 

Finally, we can retrieve the original function h from the equation 

h(x1 , ... ,xn,t) = h(x1 , ... ,Xn_ 2 ,(xn_ 1 ,xn),t). 
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By iterating this process we can reduce the number of parameters to 1, 
that is, to recursions of the form 

h(x, 0) = f(x) 
(9.1) 

h(x,t + 1) =g(t,h(x,t),x) 

Recursions with no parameters, as in Eq. (2.1) in Chapter 3, can also 
readily be put into the form (9.1). Namely, to deal with 

t/J(O) = k 

1/J(t + 1) = fJ(t, 1/J(t)), 

we set f(x) = k (which can be obtained by k compositions with s(x) 
beginning with n(x)) and 

in the recursion (9.1). Then, t/J(t) = h(x, t) for all x. In particular, t/J(t) = 
h(ul(t), ul(t)). 

We can simplify recursions of the form (9.1) even further by using the 
pairing functions to combine arguments. Namely, we set 

h(x,t) = (h(x,t),(x,t)). 

Then, we have 

h(x,O) = (f(x),(x,O)) 

h(x,t + 1) = (h(x,t + 1),(x,t + 1)) 

= (g(t,h(x,t),x),(x,t + 1)) 

= g(h(x, t)), 

where 

g(u) = (g(r(r(u)),l(u),l(r(u)),(l(r(u)),r(r(u)) + 1)). 

Once again, the original function h can be retrieved from h; we can use 
the equation 

h(x, t) = l(h(x, t)). 

Now this reduction in the complexity of recursions was only possible 
using the pairing functions. Nevertheless, we can use it to get a simplified 
characterization of the class of primitive recursive functions by adding the 
pairing functions to our initial functions. We may state the result as a 
theorem. 
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Theorem 9.1. The primitive recursive functions are precisely the func­
tions obtainable from the initial functions 

s(x),n(x),l(z),r(z),(x,y) and u?, 1 ~ i ~ n 

using the operations of composition and primitive recursion of the particu­
lar form 

h(x, 0) = f(x) 

h(x,t + 1) =g(h(x,t)). 

The promised characterization of the unary primitive recursive functions 
is as follows. 

Theorem 9.2. The unary primitive recursive functions are precisely those 
obtained from the initial functions s(x) = x + 1, n(x) = 0, l(x), r(x) by 
applying the following three operations on unary functions: 

1. to go from f(x) and g(x) to f(g(x)); 
2. to go from f(x) and g(x) to (f(x), g(x)); 
3. to go from f(x) and g(x) to the function defined by the recursion 

h(O) = 0 

(t{~) 
h(t + I)~ g( {:I)) 

if t + 1 is odd, 

if t + 1 is even. 

Proof. Let us write PR for the set of all functions obtained from the 
initial functions listed in the theorem using operations 1 through 3. We 
will show that PR is precisely the set of unary primitive recursive functions. 

To see that all the functions in PR are primitive recursive, it is necessary 
only to consider operation 3. That is, we need to show that if f and g are 
primitive recursive, and h is obtained using operation 3, then h is also 
primitive recursive. What is different about operation 3 is that h(t + 1) is 
computed, not from h(t) but rather from h(t/2) or h((t + l)j2), depend­
ing on whether t is even or odd. To deal with this we make use of Godel 
numbering, setting 

h(O) = 0, 

h(n) = [h(O), ... , h(n - 1)] if n > 0. 
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We will show that iz is primitive recursive and then conclude that the same 
is true of h by using the equation3 

h(n) = (h(n + l))n+ t. 

Then (recalling that Pn is the nth prime number) we have 

h(n + 1) = h(n) · p:~n? 

( 
h(n) · P!~1 /ZJ> 

= h(n) · P!~~(n))l•/21) 
if n is odd, 

if n is even. 

Here, we have used ln/21 because it gives the correct value whether n is 
even or odd and because we know from Chapter 3 that it is primitive 
recursive. 

Next we will show that every unary primitive recursive function belongs 
to PR. For this purpose we will call a function g(x 1 , ••• , xn) satisfactory if 
it has the property that for any unary functions h1{t), ... , hn(t) that belong 
to PR, the function g(h 1(t), ... , hn(t)) also belongs to PR. Note that a 
unary function g(t) that is satisfactory must belong to PR because g(t) = 
g(ul(t)) and ul(t) = (/(t), r(t)) belongs to PR. Thus, we can obtain our 
desired result by proving that all primitive recursive functions are satisfac­
tory.4 

We shall use the characterization of the primitive recursive functions of 
Theorem 9.1. Among the initial functions, we need consider only the 
pairing function (x1 , x2 ) and the projection functions u? where 1 ~ i ~ n. 
If h 1(t) and h2{t) are in PR, then using operation 2 in the definition of PR, 
we see that (h 1(t), h2(t)) is also in PR. Hence, (x1 , x2 ) is satisfactory. And 
evidently, if h 1(t), ... , hn(t) belong to PR, then u?(h 1(t), ... , hn(t)), which 
is simply equal to h;(t), certainly belongs to PR, so u? is satisfactory. 

To deal with composition, let 

h(xl ' ... ' xn) = f(gl(xi ' ... ' xn), ... ' gk(xl ' ... ' xn)) 

where g 1 , ••• , gk and f are satisfactory. Let h 1(t), ... , hit) be given 
functions that belong to PR. Then, setting 

3 This is a general technique for dealing with recursive definitions for a given value in 
terms of smaller values, so-called course-of-value recursions. See Exercise 8.5 in Chapter 3. 

4 This is an example of what was called an induction loading device in Chapter 1. 
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for 1 ::::;; i ::::;; k we see that each §; belongs to PR. Hence 

belongs to PR, and so, h is satisfactory. 
Finally, let 

h(x, 0) = f(x) 

h(x,t + 1) =g(h(x,t)) 

where f and g are satisfactory. Let r/J(O) = 0 and let r/J(t + 1) = 
h(r(t), /(t)). Recalling that 

(a, b) = 2a(2b + 1)- 1, 

we consider two cases according to whether t + 1 = 2a(2b + 1) is even or 
odd. If t + 1 is even, then a > 0 and 

1/J(t + 1) = h(b, a) 

= g(h(b, a - 1)) 

= g(rfJ(2a-l(2b + 1))) 

= g(r/J((t + 1)/2)). 

On the other hand, if t + 1 is odd, then a = 0 and 

In other words, 

rfJ(O) = 0 

1/J(t + 1) = h(b, 0) 

= f(b) 

= f(t/2). 

if t + 1 is odd, 

if t + 1 is even. 

Now f and g are satisfactory, and, being unary, they are therefore in PR. 
Since 1/J is obtained from f and g using operation 3, 1/J also belongs to PR. 
To retrieve h from 1/J we can use h(x, y) = rfJ{(x, y) + 1). So, 

h(h 1(t), hz(t)) = r/J(s((h 1(t), hz(t)))) 
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from which we see that if h 1 and h 2 both belong to PR, then so does 
h(h1(t), h 2(t)). Hence h is satisfactory. • 

Now we are ready to define the function c/J(t, x), which we shall also 
write as cfJ/x ), that will enumerate the unary primitive recursive functions: 

cfJ/x) = 

X+ 1 
0 
l(x) 

r(x) 

cPt(n)( cPr(n)(x)) 

(c/JI(n/X), cPr(n)(x)) 

0 
cPt(n)((x - 1) /2) 

cPr(n)( cPr( X /2)) 

if t = 0 
if t = 1 
if t = 2 
if t = 3 

if t = 3n + 1, n > 0 

if t = 3n + 2, n > 0 

if t = 3n + 3, n > 0 and x = 0 
if t = 3n + 3, n > 0 and x is odd 

if t = 3n + 3, n > 0 and x is even 

Here cjJ0(x), c/J1(x), c/J2(x), c/J3(x) are the four initial functions. For t > 3, t 

is represented as 3n + i where n > 0 and i = 1, 2 or 3; the three 
operations of Theorem 9.2 are then dealt with for values of t with the 
corresponding value of i. The pairing functions are used to guarantee all 
functions obtained for any value of t are eventually used in applying each 
of the operations. It should be clear from the definition that c/J(t, x) is a 
total function and that it does enumerate all the unary primitive recursive 
functions. Although it is pretty clear that the definition provides an 
algorithm for computing the values of cjJ for any given inputs, for a 
rigorous proof more is needed. Fortunately, the recursion theorem makes 
it easy to provide such a proof. Namely, we set 

g(z, t, x) 

X+ 1 
0 
l(x) 

r(x) 

<t>?)(l(n), <t>Y)(r(n), x )) 

(<t>;2)(l(n), x), <t>Y)(r(n), x)) 

0 
<t>?)(l(n), lxj2J) 

<t>Y)(r(n), <t>?)(t, lxj2J)) 

if t = 0 
if t = 1 
if t = 2 
if t = 3 

if t = 3n + 1, n > 0 

if t = 3n + 2, n > 0 

if t = 3n + 3, n > 0 and x = 0 

if t = 3n + 3, n > 0 and x is odd 

if t = 3n + 3, n > 0 and x is even 
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Then, g(z, t, x) is partially computable, and by the recursion theorem, 
there is a number e such that 

g(e,t,x) = <t>?>(t,x). 

Then, since g(e, t, x) satisfies the definition of cf>(t, x) and that definition 
determines cf> uniquely as a total function, we must have 

cf>(t,x) =g(e,t,x), 

so that cf> is computable. 
The discussion at the beginning of this section now applies and we have 

our desired result. 

Theorem 9.3. The function cf>(x, x) + 1 is a computable function that is 
not primitive recursive. 

Exercises 

1. Show that cf>(t, x) is not primitive recursive. 

2. Give a direct proof that cf>(t, x) is computable by showing how to 
obtain an ..:7 program that computes cf>. [Hint: Use the pairing func­
tions to construct a stack for handling recursions.] 
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Calculations on Strings 

1. Numerical Representation of Strings 

So far we have been dealing exclusively with computations on numbers. 
Now we want to extend our point of view to include computations on 
strings of symbols on a given alphabet. In order to extend computability 
theory to strings on an alphabet A, we wish to associate numbers with 
elements of A* in a one-one manner. We now describe one convenient 
way of doing this: Let A be some given alphabet. Since A is a set, there is 
no order implied among the symbols. However, we will assume in this 
chapter that the elements of A have been placed in some definite order. In 
particular, when we write A = {s1 , ••• , sn}, we think of the sequence 
s1 , ••• , sn as corresponding to this given order. Now, let w = s. s. ··· 

lk lk- I 

S;1S;0 • Then we associate with w the integer 

(1.1) 

With w = 0, we associate the number 0. (It is for this reason that we use 
the same symbol for both.) For example, let A consist of the symbols 
a, b, c given in the order shown, and let w = baacb. Then, the correspond­
ing integer is 

X= 2 · 34 + 1 · 33 + 1 · 32 + 3 · 31 + 2 = 209. 

113 
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In order to see that the representation (1.1) is unique, we show how to 
retrieve the subscripts i0, i1, ... , ik from x assuming that x -=!= 0. We define 
the primitive recursive functions: 

R+(x y) = {R(x,y) 
' y 

+ { lxjy J 
Q(x,y)= lxjyj-=-1 

if - (y I x) 
otherwise, 

if - (y I x) 

otherwise, 

where the functions R(x, y) and l x jy J are as defined in Chapter 3, Sec­
tion 7. Then, as we shall easily show, for y -=1= 0, 

x R+(x,y) 
- = Q+(x,y) + ---
y y 

This equation expresses ordinary division with quotient and remainder: 

x R(x,y) 
- = lxjyJ + --
y y 

as long as y is not a divisor of x. If y is a divisor of x we have 

x y R+(x, y) 
- = lxjyJ = (lxjyJ..:... 1) +- = Q+(x,y) + ---
y y y 

Thus, what we are doing differs from ordinary division with remainders in 
that "remainders" are permitted to take on values between 1 and y rather 
than between 0 and y - 1. 

Now, let us set 

Thus, by (1.1) 

Therefore, 

u0 =x, 

u0 = ik ·nk + ik-t ·nk-t + ··· +i1 ·n + i0, 

ut = ik . nk- t + ik -1 . nk- z + ... +it ' 

m=0,1, ... ,k. 

(1.2) 

(1.3) 

(1.4) 
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Hence, for any number x satisfying (1.1), the string w can be retrieved. It 
is worth noting that this can be accomplished using primitive recursive 
functions. If we write 

g(O, n, x) = x, 

g(m + 1, n, x) = Q+(g(m, n, x), n), 

then 

g(m, n, x) = um (1.5) 

as defined by (1.2), where, of course, g is primitive recursive. Moreover, if 
we let h(m, n, x) = R+(g(m, n, x), n), then h is also primitive recursive, 
and by (1.4) 

im = h(m, n, x), m=0,1, ... ,k. (1.6) 

This method of representing strings by numbers is clearly related to the 
usual base n notation for numbers. To explore the connection, it is 
instructive to consider the alphabet 

1) = {1,2,3,4,5,6,7,8,9,)(} 

in the order shown. Then the number associated with the string 45 is 

4. 10 + 5 = 45. 

On the other hand, the number associated with 2)( is 

2. 10 + 10 = 30. 

(Perhaps we should read 2)( as "twenty-ten"!) Clearly a string on I> that 
does not include )( is simply the usual decimal notation for the number it 
represents. It is numbers whose decimal representation includes a 0 which 
now require an )(. 

Thus, in the general case of an alphabet A consisting of s1 , ••• , sn, 
ordered as shown, we see that we are simply using a base n representation 
in which the "digits" range from 1 to n instead of the usual 0 to n - 1. We 
are proceeding in this manner simply to avoid the lack of uniqueness of 
the usual base n representation: 

79 = 079 = 0079 = 00079 = etc. 

This lack of uniqueness is of course caused by the fact that leading zeros 
do not change the number being represented. 
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It is interesting to observe that the rules of elementary arithmetic 
(including the use of "carries") work perfectly well with our representa­
tion. Here are a few examples: 

1 7 
+1X3 

21 X 

29 
-1X 

9 

X5 
x2X 

X4X 
1XX 
3 1 4X 

which corresponds to 

which corresponds to 

which corresponds to 

17 
+203 

220 

29 
-20 

9 

105 
X30 
3150 

(Incidentally, this shows that the common belief that the modern rules of 
calculation required the introduction of a digit for 0 is unjustified.) Note in 
particular the following examples of adding 1: 

X1 
+ 1 

X2 

3X 
+ 1 

4 1 

3XX 
+ 1 

4 1 1 

73XX 
+ 1 

7 4 1 1 

49 
+ 1 

4X 

Adding 1 to X gives a result of 1 with a carry of 1. If the string ends in 
more than one X, the carry propagates. Subtracting 1 is similar, with a 
propagating carry produced by a string ending in 1: 

1X 
1 

1 9 

X1 
1 

9X 

7 1 1 
1 

6XX 

Now we return to the general case. Given the alphabet A consisting of 
s1 , ••• , sn in the order shown, the string w = s,. s,. · · · s,. s,. is called the 

k k- 1 I 0 

base n notation for the number x defined by (1.1). (0 is the base n notation 
for the null string 0 for every n.) Thus when n is fixed we can regard a 
partial function of one or more variables on A* as a function of the 
corresponding numbers. (That is, the numbers are just those which the 
given strings represent in base n notation.) It now makes perfect sense to 
speak of an m-ary partial function on A* with values in A* as being 
partially computable, or when it is total, as being computable. Similarly we 
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can say that an m-ary function on A* is primitive recursive. Note that for 
any alphabet A = {s1 , ••• , sn} with the symbols ordered as shown, s1 

denotes 1 in base n. Thus an m-ary predicate on A* is simply a total 
m-ary function on A* all of whose values are either s1 or 0. And it now 
makes sense as well to speak of an m-ary predicate on A* as being 
computable. 

As was stated in Chapter 1, for a given alphabet A, any subset of A* is 
called a language on A. Once again, by associating with the elements of 
A* the corresponding numbers, we can speak of a language on A as being 
r.e., or recursive, or primitive recursive. 

It is important to observe that whereas the usual base n notation using a 
0 digit works only for n ~ 2, the representation (1.1) is valid even for 
n = 1. For an alphabet consisting of the single symbol 1, the string 1rx1 of 
length x is the base 1 notation for the number L.f,::~ 1 · {1); = L.f,::~ 1 = x. 
That is, the base 1 (or unary) representation of the number x is simply a 
string of ones of length x. 

In thinking of numbers (that is, elements of N) as inputs to and outputs 
from programs written in our language ..:7, no particular representation of 
these numbers was specified or required. Numbers occur in the theory as 
purely abstract entities, just as they do in ordinary mathematics. However, 
when we wish to refer to particular numbers, we do so in the manner 
familiar to all of us, by writing their decimal representations. These 
representations are, of course, really strings on the alphabet that consists 
of the decimal digits: 

{0,1,2,3,4,5,6,7,8,9}. 

But it is essential to avoid confusing such strings with the numbers they 
represent. For this reason, for the remainder of this chapter we shall avoid 
the use of decimal digits as symbols in our alphabets. Thus, a string of 
decimal digits will always be meant to refer to a number. 

Now, let A be some fixed alphabet containing exactly n symbols, say 
A= {s 1 ,s2 , ••• ,sn}. For each m ~ 1, we define CONCAT~m) as follows: 

CONCAT~1 >(u) = u, 
(1.7) 

where 

z = CONCAT~m>(u 1 , ••• , um). 

Thus, for given strings u 1 , •.• , um E A*, CONCAT~m>(u 1 , ••• , um) is simply 
the string obtained by placing the strings u1 , ••• , um one after the other, 
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or, as is usually said, by concatenating them. We will usually omit the 
superscript, so that, for example we may write 

CONCATz{s2 s1 , s1s1s2 ) = s2 s1s1s1s2 • 

Likewise, 

CONCAT6(s2 s1 , s1s1s2 ) = s2 s1s1s1s2 • 

However, the string s2 s1 represents the number 5 in base 2 and the 
number 13 in base 6. Also, the string s1s1s2 represents the number 8 in 
base 2 and the number 44 in base 6. Finally, the string s2 s1s1s1s2 

represents 48 in base 2 and 2852 in base 6. If we wish to think of 
CONCAT as defining functions on N (as will be necessary, for example, in 
showing that the functions (1.7) are primitive recursive), then the example 
we have been considering becomes 

CONCAT2(5,8) = 48 and CONCAT6(13, 44) = 2852. 

The same example in base 10 gives 

CONCAT10 (21, 112) = 21112. 

Bearing this discussion in mind, we now proceed to give a list of primitive 
recursive functions (on A* or N, depending on one's point of view) that we 
will need later. 

1. f(u) = lui. This "length" function is most naturally understood as 
being defined on A* and taking values in N. For each x, the number 
L.J=o nj has the base n representation s\x+ 11; hence this number is 
the smallest number whose base n representation contains x + 1 
symbols. Thus, 

lui = min [ E nj > u]. 
x,;u j=O 

2. g(u, v) = CONCATn(u, v ). The primitive recursiveness of this func­
tion follows from the equation 

CONCATn(u, v) = u · nivi + v. 

3. CONCAT~m>(u 1 , ••• , um), as defined in (1.7), is primitive recursive 
for each m, n ~ 1. This follows at once from the previous example 
using composition. 

4. RTENDn(w) = h(O, n, w), where his as in (1.6). As a function of A*, 
RTENDn gives the rightmost symbol of a given word, as is clear from 
(1.3) and (1.6). 
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5. LTENDn(w) = h(lwl..:... 1, n, w). LTENDn gives the leftmost symbol 
of a given nonempty word. 

6. RTRUNCn(w) = g(l, n, w). RTRUNCn gives the result of removing 
the rightmost symbol from a given nonempty word, as is clear from 
(1.3) and (1.5). When we can omit reference to the base n, we often write 
w- for RTRUNCn(w). Note that o-= 0. 

7. LTRUNCn{w) = w -=-(LTENDn(w) · nlwl-'- 1). In the notation of (1.3), 
for a given nonempty word w, LTRUNCn(w) = w- ik · nk, i.e., 
LTRUNCn(w) is the result of removing the leftmost symbol from w. 

We will now use the list of primitive recursive functions that we have 
just given to prove the computability of a pair of functions that can be used 
in changing base. Thus, let 1 :::;; n < I. Let A c A, where A is an alphabet 
of n symbols and A is an alphabet of I symbols. Thus a string that belongs 
to A* also belongs to A*. For any x E N, let w be the word in A* that 
represents x in base n. Then, we write UPCHANGEn 1(x) for the number 
which w represents in base I. For example, referring to our previous 
example, we have UPCHANGE2 6(5) = 13, UPCHANGE2 6(8) = 44, UP­
CHANGE2,6(48) = 2852. Also' UPCHANGE2,10(5) =. 21 and UP­
CHANGE6 10(13) = 21. 

Next, for' x E N, let w be the string in A* which represents x in base I, 
and let w' be obtained from w by crossing out all of the symbols that 
belong to A- A. Then, w' E A*, and we write DOWNCHANGEn 1(x) 
for the number which w' represents in base n. For example, the string 
s2 s6 s 1 represents the number 109 in base 6. To obtain 
DOWNCHANGE2,6(109) we cross out the s6 , obtaining the string s2 s1, 

which represents 5 in base 2; thus DOWNCHANGE2 6(10) = 5. 
Although UPCHANGEn 1 and DOWNCHANGEn ~ are actually primi­

tive recursive functions, w~ will content ourselves with proving that they 
are computable: 

Theorem 1.1. Let 0 < n < I. Then the functions UPCHANGEn 1 and 
DOWNCHANGEn 1 are computable. ' 

Proof. We begin with UPCHANGEn 1• We write a program which ex­
tracts the successive symbols of the word that the given number represents 
in base n and uses them in computing the number that the given word 
represents in base 1: 

[A] IF X = 0 GOTO E 

Z - LTENDn(X) 

X- LTRUNCn(X) 

Y-I·Y+Z 
GOTOA 
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DOWNCHANGEn 1 is handled similarly. Our program will extract the 
successive symbols of the word that the given number represents in base /. 
However, these symbols will only be used if they belong to the smaller 
alphabet, i.e., if as numbers they are :::;; n: 

Exercises 

[A] IF X = 0 GOTO E 

Z +-- LTEND1(X) 

X+-- LTRUNC1(X) 

IF Z > n GOTO A 

Y+-n·Y+Z 

GOTOA • 

1. (a) Write the numbers 40 and 12 in base 3 notation using the "digits" 
{1, 2, 3}. 

(b) Work out the multiplication 40 · 12 = 480 in base 3. 
(c) Compute CONCATi12, 15) for n = 3, 5, and 10. Why is no 

calculation required in the last case? 
(d) Compute the following: UPCHANGE 3 7(15), UP-

CHANGE2, 7(15), UPCHANGE2, 10(15), DOWNCHANGE3, 7(15), 
DOWNCHANGE2, 7(15), DOWNCHANGE2, 10(20). 

2. Compute each of the following for n = 3. 
(a) CONCATp>(17, 32). 
(b) CONCAT~3>(17,32, 11). 
(c) RTENDn(23). 
(d) LTENDn(29). 
(e) RTRUNCn(19). 
(f) LTRUNCn(l8). 

3. Do the previous exercise for n = 4. 

4. Show that the function f whose value is the string formed of the 
symbols occurring in the odd-numbered places in the input [i.e., 
f(a 1a2a3 ••• an)= a1a3 ···]is computable. 

5. Let A = {s1 , ••• , sn}, and let P(x) be the predicate on N which is true 
just when the string in A* that represents x has an even number of 
symbols. Show that P(x) is primitive recursive. 
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6. If u * 0, let #(u, v) be the number of occurrences of u as a part of v 
[e.g., #(bab, ababab) = 2]. Also, let #(0, v) = 0. Prove that #(u, v) is 
primitive recursive. 

7. Show that UPCHANGEn,t and DOWNCHANGEn,t are primitive 
recursive. 

8. Show that when lui is calculated with respect to base n notation, 
lui ::; l!ogn uj + 1 for all u E N. 

2. A Programming Language for String Computations 

From the point of view of string computations, the language .9' seems 
quite artificial. For example, the instruction 

V+-V+1 

which is so basic for integers, seems entirely unnatural as a basic instruc­
tion for string calculations. Thus, for the alphabet {a, b, c}, applying this 
instruction to bacc produces bbaa because a carry is propagated. (This will 
perhaps seem more evident if, momentarily ignoring our promise to avoid 
the decimal digits as symbols in our alphabets, we use the alphabet {1, 2, 3} 
and write 

2133 + 1 = 2211.) 

We are now going to introduce, for each n > 0, a programming lan­
guage Y,, which is specifically designed for string calculations on an 
alphabet of n symbols. The languages Y, will be supplied with the same 
input, output, and local variables as .9', except that we now think of them 
as having values in the set A*, where A is an n symbol alphabet. Variables 
not otherwise initialized are to be initialized to 0. We use the same 
symbols as labels in Y, as in .9' and the same conventions regarding their 
use. The instruction types are shown in Table 2.1. 

The formal rules of syntax in Y, are entirely analogous to those for .9', 
and we omit them. Similarly, we use macro expansions quite freely. An 
m-ary partial function on A* which is computed by a program in Y, is 
said to be partially computable in Y, . If the function is total and partially 
computable in Y, , it is called computable in Y, . 

Although the instructions of Y, refer to strings, we can just as well 
think of them as referring to the numbers that the corresponding strings 
represent in base n. For example, the numerical effect of the instruction 
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Table 2.1 

Instruction Interpretation 

V<- uV 
for each symbol u in the alphabet A 

v.- v-

Place the symbol u to the left of the string which is 
the value of V. 

Delete the final symbol of the string which is the 
value of V. If the value of V is 0, leave it 
unchanged. 

If V ENDS u GOTO L 
for each symbol u in the alphabet A 
and each label L 

If the value of V ends in the symbol u, execute next 
the first instruction labeled L; otherwise proceed 
to the next instruction. 

in the n symbol alphabet {s1 , ••• , sn} ordered as shown is to replace the 
numerical value x by i · nlxl + x. Just as the instructions of .9' are natural 
as basic numerical operations, but complex as string operations, so the 
instructions of .57, are natural as basic string operations, but complex as 
numerical operations. 

We now give some macros for use in .57, with the corresponding 
expansions. 

1. The macro IF V -=!= 0 GOTO L has the expansion 

IF VENDS s1 GOTO L 

IF V ENDS s2 GOTO L 

IF V ENDS sn GOTO L 

2. The macro V ~ 0 has the expansion 

[A] v~ v-
IF V-=t= OGOTOA 

3. The macro GOTO L has the expansion 

IF Z ENDS s1 GOTO L 

4. The macro V' ~ V has the expansion shown in Fig. 2.1. 

The macro expansion of V' ~ V in .57, is quite similar to that in .9'. 
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Z+--0 
V' +-- 0 

[A] IF V ENDS s1 GOTO B1 

IF V ENDS s2 GOTO B2 

[C] 

IF VENDS sn GOTO Bn 
GOTOC 

V' +-- s-V' V+-v-} 
~;T6~A i = 1,2, ... ,n 

IF Z ENDS s1 GOTO D 1 

IF Z ENDS s2 GOTO D 2 

IF Z ENDS sn GOTO Dn 
GOTOE 

z +-- z- ) 
~;Tbc i = 1,2, ... ,n 

Figure 2.1. Macro expansion of V' +-- V in ~ . 

The block of instructions 

is usually written simply 

IF VENDS s1 GOTO B1 

IF VENDS s2 GOTO B2 

IF VENDS sn GOTO Bn 

IF V ENDS s; GOTO B; (1 .:5; i .:5; n) 

123 

Such a block of instructions is referred to as a filter for obvious reasons. 
Note that at the point in the computation when the first "GOTO C" is 
executed, V' and Z will both have the original value of V, whereas V will 
have the value 0. On exiting, Z has the value 0, while V' retains the 
original value of V and V has been restored to its original value. 

If f(x 1 , ••• , xm) is any function that is partially computable in .?,, we 
permit the use in .?, of macros of the form 

V ~ f(Vl , ... , Vm) 

The corresponding expansions are carried out in a manner entirely analo­
gous to that discussed in Chapter 2, Section 5. 

We conclude this section with two examples of functions that are 
computable in .?, for every n. The general results in the next section will 
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Carry 
pro~agates 

X~ Q 

x ends s11 

x ends s; 
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x~o 
TEST X END 

x ends s, 

Figure 2.2. Flow chart for computing x + 1 in 5';, . 

make it clear that these two examples are the only bit of programming in 
.9;, that we shall need to carry out explicitly. 

We want to show that the function x + 1 is computable in .9;,. We let 
our alphabet consist of the symbols s 1 , s2 , ••• , sn ordered as shown. The 
desired program is exhibited in Fig. 2.3; a flow chart that shows how the 
program works is shown in Fig. 2.2. 

Our final example is a program that computes x ..:... 1 base n. A flow 
chart is given in Fig. 2.4 and the actual program in .9;, is exhibited in Fig. 
2.5. The reader should check both of these programs with some examples. 

[B] IF X ENDS s; GOTO A; (1 ~ i ~ n) 

Y +--stY 

GOTOE 

[A;] x-x ) 
Y +-- s;+ 1Y 1 ~ i < n 

GOTOC 
[A.] x--x-

Y +--stY 

GOTOB 
[C] IF X ENDS s; GOTO D; (1 ~ i ~ n) 

GOTOE 

[D;l x-x ) 
Y +-- s;Y 1 ~ i ~ n 

GOTOC 

Figure 2.3. Program that computes x + 1 in 5';, . 
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Exercises 

x~o 

x ends s, 

TEST X 
f--....,....-~x-x­

x ends s1 

no yes 
I'Y~-J~~v~--~~x~=~o~]J-~-1END Carry IS L 

propagated 

Figure 2.4. Flow chart for computing x .:.. 1 in Y,. 0 

Carry is 
absorbed 

[B] IF X ENDS s; GOTO A; (1 !> i !> n) 

GOTOE 

[A;] x-x ) 
Y+-s;_ 1Y 1<i!>n 

GOTOC 
[A,] x ..... x-

IF X*- 0 GOTO C2 
GOTOE 

[C2l Y+- snY 

GOTOB 
[C] IF X ENDS s; GOTO D; (1 !> i !> n) 

GOTOE 

[D;] x-x ) 
Y+-s;Y 1!>i!>n 
GOTOC 

Figure 2.5. Program that computes x .:.. 1 in Y,. 0 
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1. Let A = {s1 , s2}o Write out the complete expansion of the macro 
X ~ Y in ..9"2 0 
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2. Write a program in .?, to compute the function f defined in Exercise 
1.4. 

3. Show that f(u, v) = "i7V is computable in .?, . ("i7V is the concatenation 
of u and v, defined in Chapter 1.) 

4. Let A = {s1 , ••• , sn}, and let P(x) be the predicate on A* which is 
true just when x has an even number of symbols. Show that P(x) is 
computable in .?, . 

5. Write a program in .?, to compute #(u, v) as defined in Exercise 1.6. 

6. Give an expansion in .?, for the macro V - Vu, which means: Place 
the symbol u to the right of the string that is the value of V. 

7. Show that f(x) = xR is computable in .?,. (xR is defined in Chapter 
1, Section 3.) 

8. Let A = {s1 , ••• , sn}, and let g(u) = w for all strings u in A*, where 
w is the base n notation for the number of symbols in u. Show that g 
is computable in .?, . 

9. Let A = {s1 , s2}, and let fJlJ be the .9"2 program 

Y-X+ 1 

Write out the computation of fJlJ for input x = s2s2 • 

10. Let A = {s1 , s2 , s3}, and let fJlJ be the .9"3 program 

Y-X-=-1 

Write out the computation of fJlJ for input x = s1s1 • 

11. (a) Show that Theorem 1.1 in Chapter 3 holds if we substitute 
"computable in .?," for "computable." 

(b) Show that Theorems 2.1 and 2.2 in Chapter 3 hold if we 
substitute "computable in .?," for "computable." 

(c) Show that if f(x 1 , ••• , xn) is primitive recursive, then it is 
computable in .?, . 

3. The Languages .9 and 9, 

We now want to compare the functions that can be computed in the 
various languages we have been considering, namely, .9" and the different 
.?, . For the purpose of making this comparison, we take the point of view 
that, in all of the languages, computations are "really" dealing with 
numbers, and that strings on an n letter alphabet are simply data objects 
being used to represent numbers (using base n of course). 
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We shall see that in fact all of these languages are equivalent. That is, a 
function f is partially computable if and only if it is partially computable 
in each .?, and therefore, also, f is partially computable in any one .?, if 
and only if it is partially computable in all of them. 

To begin with we have 

Theorem 3.1. A function is partially computable if and only if it is 
partially computable in ..9"1 • 

Proof. It is easy to see that the languages ..9" and ..9"1 are really the same. 
That is, the numerical effect of the instructions 

and v~ v-
in ..9"1 is the same as that of the corresponding instructions in ..9": 

V ~ V + 1 and V ~ V - 1. 

Furthermore, the condition "V ENDS st" in ..9"1 is equivalent to the 
condition V -=!= 0 in ..9". (Since s 1 is the only symbol, ending in s 1 is 
equivalent to being different from the null string.) • 

This theorem shows that results we obtain about the languages .?, can 
always be specialized to give results about ..9" by setting n = 1. 

Next we shall prove 

Theorem 3.2. If a function is partially computable, then it is also partially 
computable in .?, for each n. 

Proof. Let the function f be computed by a program .9 in the language 
..9". We translate .9 into a program in .?, by replacing each instruction of 
.9 by a macro in .?, as follows. 

We replace each instruction V ~ V + 1 by the macro V ~ V + 1, each 
instruction V ~ V - 1 by the macro V ~ V ..:... 1, and each instruction IF 
V -=!= 0 GOTO L by the macro IF V -=1= 0 GOTO L. Here we are using the 
fact, proved at the end of the preceding section, that x + 1 and x ..:... 1 are 
both computable in base n, and hence can each be used to define a macro 
in .?,. 

It is then obvious that the new program computes in .?, the same 
function f that .9 computes in ..9". • 

This is the first of many proofs by the method of simulation: a program 
in one language is "simulated" step by step by a corresponding program in 
a different language. 

We could now prove directly that if a function is partially computable in 
.?, for any particular n, then it is in fact partially computable in our 
original sense. But it will be easier to delay doing so since the result will be 
an automatic consequence of our work on Post-Turing programs. 
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Exercises 

1. Give a pnm1t1ve recursive function b1(n, x) such that any partial 
function computed by an .9 program with x instructions is computed 
by some .57,. program with no more than bln, x) instructions. 

2. Give a primitive recursive function b~m>(n, x 1 , ••• , xm, y) such that any 
partial function f(x 1 , ••• , xm) computed by an .9 program in y steps 
on inputs x 1 , ••• , xm is computed by some .57,. program in no more 
than b~m>(n, x 1 , ••• , xm, y) steps. [Hint: Note that after y steps no 
variable holds a value larger than max{x 1 , ••• , xm} + y.] 

3. Let n be some fixed number > 0, and let #(9') be a numbering 
scheme for .57,. programs defined exactly like the numbering scheme 
for .9 programs given in Chapter 4, except that #(I) = (a, ( b, c)), 
where 

{ 

0 if the statement in I is V ~ v­
i if the statement in I is V ~ s;V 

b= 
#(L') · n + i 

if the statement in I is IF V ENDS s; GOTO L'. 

(a) Define 

HALTn(x, y) =.57,. program y eventually halts on input x. 

Show that the predicate HALTn(x, y) is not computable in.?,.. 
(b) Define the universal function <l>~m) for m-ary functions partially 

computable in .57,. as follows: 

(Of course, 1/J.J.m> is the m-ary partial function computed by the 
.57,. program 9'.) Show that for each m > 0, the function 
<l>~m>(x 1 , ••• , xm, y) is partially computable in .57,.. 

(c)* State and prove a version of the parameter theorem for .57,. . 
(d)* State and prove a version of the recursion theorem for .57,. . 
(e)* Show that .57,. is an acceptable programming system. [See Exer­

cise 5.4 in Chapter 4 for the definition of acceptable programming 
systems.] 

4. * Give an upper bound on the length of the shortest .9] program which 
computes the function <l>yCx) defined in Chapter 4. [See Exercise 3.6 in 
Chapter 4.] 
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4. Post- Turing Programs 

In this section, we will study yet another programming language for string 
manipulation, the Post-Turing language :T. Unlike.'?,., the language :T has 
no variables. All of the information being processed is placed on one linear 
tape. We can conveniently think of the tape as ruled into squares each of 
which can carry a single symbol (see Fig. 4.1). The tape is thought of as 
infinite in both directions. Each step of a computation is sensitive to just 
one symbol on the tape, the symbol on the square being "scanned." We 
can think of the tape passing through a device (like a tape recorder), or we 
can think of the computer as a tapehead that moves along the tape and is 
at each moment on one definite square (or we might say "tile"). With this 
simple scheme, there are not many steps we can imagine. The symbol 
being scanned can be altered. (That is, a new symbol can be "printed" in 
its place.) Or which instruction of a program is to be executed next can 
depend on which symbol is currently being scanned. Or, finally, the head 
can move one square to the left or right of the square presently scanned. 
We are led to the language shown in Table 4.1. 

Although the formulation of :T we have presented is closer in spirit to 
that originally given by Emil Post, it was Turing's analysis of the computa­
tion process that has made this formulation seem so appropriate. This 
language has played a fundamental role in theoretical computer science. 

Turing's analysis was obtained by abstracting from the process carried 
out by a human being engaged in calculating according to a mechanical 
deterministic algorithm. Turing reasoned that there was no loss of general­
ity in assuming that the person used a linear paper (like the paper tape in 
an old-fashioned adding machine or a printing calculator) instead of 
two-dimensional sheets of paper. Such a calculator is then engaged in 
observing symbols and writing symbols. Again without loss of generality, 
we can assume that only one symbol at a time is observed, since any finite 
group of symbols can be regarded as a single "megasymbol." Finally, we 
can assume that when the calculator shifts attention it is to an immediately 
adjacent symbol. For, to look, say, three symbols to the left is equivalent to 
moving one symbol to the left three successive times. And now we have 
arrived at precisely the Post-Turing language. 

In order to speak of a function being computed by a Post-Turing 
program, we will need to deal with input and output. Let us suppose that 

Figure 4.1 
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Table 4.1 

Instruction Interpretation 

PRINT a Replace the symbol on the square being scanned by a. 
IF a GOTO L GOTO the first instruction labeled L if the symbol currently scanned is a; 

otherwise, continue to the next instruction. 
RIGHT 
LEFT 

Scan the square immediately to the right of the square presently scanned. 
Scan the square immediately to the left of the square presently scanned. 

we are dealing with string functions on the alphabet A = {s1 , s2 , ••• , sn}. 
We will use an additional symbol, written s0 , which we call the blank and 
use as a punctuation mark. Often we write B for the blank instead of s0 • All 
of our computations will be arranged so that all but a finite number of 
squares on the tape are blank, i.e., contain the symbol B. We show the 
contents of a tape by exhibiting a finite section containing all of the 
nonblank squares. We indicate the square currently being scanned by an 
arrow pointing up, just below the scanned square. 

For example we can write 

to indicate that the tape consists of s 1 s 2 Bs2 s 1 with blank squares to the 
left and right, and that the square currently scanned contains the s2 

furthest to the right. We speak of a tape configuration as consisting of the 
tape contents together with a specification of one square as being currently 
scanned. 

Now, to compute a partial function f(x 1 , ••• , xm) of m variables on A*, 
we need to place the m strings x 1 , ••• , xm on the tape initially. We do this 
using the initial tape configuration: 

That is, the inputs are separated by single blanks, and the symbol initially 
scanned is the blank immediately to the left of x 1 . Here are a few 
examples: 

1. n = 1, so the alphabet is {s1}. We want to compute a function 
f(x 1 , x 2 ) and the initial values are x 1 = s1s1 , x 2 = s1 • Then the tape 
configuration initially will be 

B s1 s1 B s1• 

i 
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Of course, there are infinitely many blank squares to the left and 
right of the finite section we have shown: 

... B B B B s1 s1 B s1 B B B 

i 

2. n = 2, x1 = s1 s2 , x2 = s2s1 , x3 = s2s2 • Then the tape configuration 
is initially 

B s1 s2 B s2 s1 B s2 s2 • 

i 

3. n = 2, x1 = 0, x2 = s2s1, x3 = s2 • Then the tape configuration is 
initially 

B B s2 s1 B s2 • 

i 

4. n = 2, x1 = s1s2 , x2 = s2s1, x3 = 0. Then the tape configuration is 
initially 

Note that there is no way to distinguish this initial tape configuration from 
that for which there are only two inputs x1 = s1s2 and x2 = s2s1 • In other 
words, with this method of placing inputs on the tape, the number of 
arguments must be provided externally. It cannot be read from the tape. 

A simple example of a Post-Turing program is given in Fig. 4.2. 
Beginning with input x, this program outputs s2s1x. More explicitly, 

beginning with a tape configuration 

B x 

i 

this program halts with the tape configuration 

B s2 s1 x. 

i 

Figure 4.2 

PRINT s1 

LEFf 
PRINT s2 

LEFf 
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[A) 
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RIGHT 
IF s 1 GOTO A 
IF s2 GOTOA 
IF s3 GOTOA 
PRINTs 1 

RIGHT 
PRINT s1 

[C) LEFT 
IF s1 GOTO C 
IF s2 GOTOC 
IF s3 GOTO C 

Figure 4.3 

Next, for a slightly more complicated example, we consider Fig. 4.3. 
Here we are assuming that the alphabet is {s1 , s2 , s3}. Let x be a string on 
this alphabet. Beginning with a tape configuration 

B X 

i 

this program halts with the tape configuration 

B x s1 s 1• 

i 

The computation proceeds by first moving right until the blank to the right 
of x is located. The symbol s 1 is then printed twice and then the 
computation proceeds by moving left until the blank to the left of x is 
again located. 

Figure 4.4 exhibits another example, this time with the alphabet {s1 , s2}. 

The effect of this program is to "erase" all of the occurrences of s2 in the 
input string, that is to replace each s2 by B. For the purpose of reading 
output values off the tape, these additional Bs are ignored. Thus, if f(x) is 
the function which this last program computes, we have, for example, 

f(szslsz) = S1, 

f(slszsl) = slsl' 

f(O) = 0. 

Of course, the initial tape configuration 

B s1 s2 s1 
i 
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[C) RIGHT 
IF B GOTO E 

IF s2 GOTO A 
IF s 1 GOTO C 

[A) PRINT B 

IF B GOTO C 

Figure 4.4 

[A) RIGHT 
IF B GOTO E 

PRINT M 
[B) RIGHT 

IF s1 GOTO B 
[C) RIGHT 

IF s1 GOTO C 
PRINT s1 

[D) LEFT 
IF s1 GOTO D 
IF B GOTOD 
PRINT s1 

IF s1 GOTO A 

Figure4.5 

leads to the final tape configuration 

B s1 B s1 B 

i 

but the blanks are ignored in reading the output. 
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For our final example we are computing a string function on the 
alphabet {s1}. However, the program uses three symbols, B, s1 , and M. 
The symbol M is a marker to keep track of a symbol being copied. The 
program is given in Fig. 4.5. Beginning with the tape configuration 

B u 
i 

where u is a string in which only the symbol s 1 occurs, this program will 
terminate with the tape configuration 

B u Bu. 

i 
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(Thus we can say that this program computes the function 2x using unary 
notation.) The computation proceeds by replacing each successive s1 

(going from left to right) by the marker M and then copying the s 1 on the 
right. 

We conclude this section with some definitions. Let f(x 1 , ••• , xm) be an 
m-ary partial function on the alphabet {s1 , ••• , sn}. Then the program .9 in 
the Post-Turing language :T is said to compute f if when started in the 
tape configuration 

it eventually halts if and only if f(x 1 , ••• , xm) is defined and if, on halting, 
the string f(x 1 , ••• , xm) can be read off the tape by ignoring all symbols 
other than s1 , ••• , sn. (That is, any "markers" left on the tape as well as 
blanks are to be ignored.) Note that we are thus permitting .9 to contain 
instructions that mention symbols other than s1 , ••• , sn. 

The program .9 will be said to compute f strictly if two additional 
conditions are met: 

1. no instruction in .9 mentions any symbol other than s0 , s1 , ••• , sn; 
2. whenever .9 halts, the tape configuration is of the form 

... BBBByBB 

i 

where the string y contains no blanks. 

... ' 

Thus when .9 computes f strictly, the output is available in a consecu­
tive block of squares on the tape. 

Exercises 

1. Write out the computation performed by the Post-Turing program in 
Fig. 4.4 on input string s1s2 s2 s1 • Do the same for input s1s2 s3s1 • 

2. Write out the computation performed by the Post-Turing program in 
Fig. 4.5 on input string s 1 s 1 Bs 1 s 1 s 1 • Do the same for input 
s1s1Bs1Bs1s1 • 

3. For each of the following functions, construct a Post-Turing program 
that computes the function strictly. 

(a) f(u, v) = ;;v. 
(b) the predicate P(x) given in Exercise 2.4. 
(c) the function f(x) = xR (see Exercise 2.7). 
(d) the function #(u, v) given in Exercise 1.6. 
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4. For each of the following functions, construct a Post-Turing program 
using only the symbols s0 , s1 that computes the function in base 1 
strictly. 
(a) f(x,y) =x + y. 
(b) f(x) = 2x. 
(c) f(x, y) = x..:... y. 
(d) f(x, y) = 2x + y ..:... 1. 

5. Construct a Post-Turing program using only the symbols s0 , s1 , s2 

that computes the function s(x) = x + 1 in base 2 strictly. 

5. Simulation of Y, in !T 

In this section we will prove 

Theorem 5.1. If f(x 1 , ••• , xm) is partially computable in Y,., then there is 
a Post-Turing program that computes f strictly. 

Let .9 be a program in Y,. which computes f. We assume that in 
addition to the input variables X 1 , ••• , Xm and the output variable Y, .9 
uses the local variables zl ' ... ' zk. Thus, altogether .9 uses m + k + 1 
variables: 

We set I = m + k + 1 and write these variables, in the same order, as 

VI , ... ,Jii. 
We shall construct a Post-Turing program t!l that simulates .9 step by 

step. Since all of the information available to t!l will be on the tape, we 
must allocate space on the tape to contain the values of the variables 
V1 , ••• , Vi. Our scheme is simply that at the beginning of each simulated 
step, the tape configuration will be as follows: 

B x 1 B x2 B ... B xm B z1 B ... B zk B y, 
t 

where x 1 , x 2 , ••• , xm, z1 , ••• , zk, y are the current values computed for 
the variables XI' Xz' ... ' xm' zl' ... ' zk' Y. This scheme is especially 
convenient in that the initial tape configuration 

B x 1 B x2 B . .. B Xm 

i 

is already in the correct form, since the remaining variables are initialized 
to be 0. So we must show how to program the effect of each instruction 
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type of s-:, in the language :T. Various macros in Ywill be useful in doing 
this, and we now present them. 

The macro 

has the expansion 

The macro 

has the expansion 

Similarly the macro 

has the expansion 

The macro 

has the expansion 

GOTOL 

IF s0 GOTO L 

IF s1 GOTO L 

IF sn GOTO L 

RIGHT TO NEXT BLANK 

[A] RIGHT 
IF B GOTO E 
GOTOA 

LEFT TO NEXT BLANK 

[A] LEFT 
IF B GOTO E 
GOTOA 

MOVE BLOCK RIGHT 

[C] LEFT 
IF s0 GOTO A 0 

IF s1 GOTOA 1 

IF sn GOTO An 

RIGHT } 
PRINTs; . _ 
LEFT 1- 1,2, ... ,n 

GOTOC 
RIGHT 
PRINT B 
LEFT 
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The effect of the macro MOVE BLOCK RIGHT beginning with a tape 
configuration 

B .___I --------' i 

in which the string in the rectangular box contains no blanks, is to 
terminate with the tape configuration 

B B I 
i ~-----------~ 

Finally we will use the macro 

whose expansion is 

ERASE A BLOCK 

[A] RIGHT 

IF B GOTO E 

PRINT B 

GOTOA 

This program causes the head to move to the right, with everything erased 
between the square at which it begins and the first blank to its right. 

We adopt the convention that a number ~ 0 in square brackets after 
the name of a macro indicates that the macro is to be repeated that 
number of times. For example, 

is short for 

RIGHT TO NEXT BLANK [3] 

RIGHT TO NEXT BLANK 

RIGHT TO NEXT BLANK 

RIGHT TO NEXT BLANK 

We are now ready to show how to simulate the three instruction types in 
the language~ by Post-Turing programs. We begin with 

In order to place the symbol s; to the left of the jth variable on the tape, 
the values of the variables Vj, ... , V[ must all be moved over one square to 
the right to make room. After the s; has been inserted, we must remember 
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to go back to the blank at the left of the value of V1 in order to be ready 
for the next simulated instruction. The program is 

RIGHT TO NEXT BLANK [I] 
MOVE BLOCK RIGHT[/ - j + 1] 
RIGHT 
PRINTs; 
LEFf TO NEXT BLANK Ul 

Next we must show how to simulate 

The complication is that if the value of l-j is the null word, we want it left 
unchanged. So we move to the blank immediately to the right of the value 
of l-j. By moving one square to the left we can detect whether the value of 
l-j is null (if it is, there are two consecutive blanks). Here is the program: 

RIGHT TO NEXT BLANK [j] 
LEFf 
IF B GOTO C 
MOVE BLOCK RIGHT [j] 
RIGHT 
GOTOE 

[ C] LEFf TO NEXT BLANK [j - 1] 

The final instruction type in .57, is 

IF l-j ENDS s; GOTO L 

and the corresponding Post-Turing program is 

RIGHT TO NEXT BLANK [j] 
LEFf 
IF s; GOTO C 
GOTOD 

[ C] LEFf TO NEXT BLANK [j] 
GOTOL 

[D] RIGHT 
LEFf TO NEXT BLANK [j] 

This completes the simulation of the three instruction types of .57, . 
Thus, given our program .9 in the language .57,, we can compile a 
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corresponding program of :T. When this corresponding program termi­
nates, the tape configuration will be 

.. . B B B x 1 B . .. B xm B z1 B .. . B zk B y B B B ... , 

i 

where the values between blanks are those of the variables of .9 on its 
termination. However, we wish only y to remain as output. Hence to 
obtain our program ~ in the language :T we put at the end of the 
compiled Post-Turing program the following: 

ERASE A BLOCK [/- 1] 

After this last has been executed, all but the last block will have been 
erased and the tape configuration will be 

... BBBByBBB .... 

i 

Thus, the output is in precisely the form required for us to be able to 
assert that our Post-Turing program computes f strictly. 

Exercises 

1. (a) Use the construction in the proof of Theorem 5.1 to give a 
Post-Turing program that computes the function f(x) computed 
by the .9"2 program 

[A] IF X ENDS s1 GOTO B 
x~x-

IF X*- OGOTO A 
GOTOE 

[B] Y ~ s1Y 
x~x­

GOTOA 

(b) Do the same as (a) for f(x 1 , x2 ). 

2. Answer question l(a) with the instruction [ B] Y ~ s 1 Y replaced by [ B] 
Y~Y+l. 

3. Give a primitive recursive function b1(n, x, z) such that any partial 
function computed by an .9;, program that has x instructions and that 
uses only variables among X to ... , X 1 , Z 1 , ... , Z k , Y is computed 
strictly by a Post-Turing program with no more than b1(n, x, I+ k + 1) 
instructions. 
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4. Give a primitive recursive function b~m>(n, x 1 , ••• , xm, y, z) such that 
any partial function computed by an .?,. program in y steps on input 
XI' 0 0 0' Xm' using only variables among XI' 0 0 0' XI, zl' 0 0 0' zk' Y, is 
computed strictly by some Post-Turing program in no more than 
b~m>(n, x 1 , ••• , xm, y, I + k + 1) steps. [Hint: Note that after y steps 
no variable holds a value larger than max{x1 , ••• , xm} + y.] 

5. * Give an upper bound on the length of the shortest Post-Turing 
program that computes <1>/x). [See Exercise 3.4.] 

6. Simulation of .:Tin Y 

In this section we will prove 

Theorem 6.1. If there is a Post-Turing program that computes the partial 
function f(x 1 , ••• , xm), then f is partially computable. 

What this theorem asserts is that if the m-ary partial function f on A* 
is computed by a program of :T, then there is a program of .9 that 
computes f (regarded as an m-ary partial function on the base n numeri­
cal values of the strings). Before giving the proof we observe some of the 
consequences of this theorem. As shown in Fig. 6.1, the theorem completes 
a "circle" of implications. Thus all of the conditions in the figure are 
equivalent. To summarize: 

Theorem 6.2. Let f be an m-ary partial function on A*, where A is an 
alphabet of n symbols. Then the following conditions are all equivalent: 

1. f is partially computable; 
2. f is partially computable in .?,. ; 

Figure 6.1 
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3. f is computed strictly by a Post-Turing program; 
4. f is computed by a Post-Turing program. 

The equivalence of so many different notions of computability consti­
tutes important evidence for the correctness of our identification of 
intuitive computability with these notions, i.e., for the correctness of 
Church's thesis. 

Shifting our point of view to that of an m-ary partial function on N, we 
have 

Corollary 6.3. For any n, I ~ 1, an m-ary partial function f on N is 
partially computable in .9;, if and only if it is also partially computable in 
S'f. 
Proof. Each of these conditions is equivalent to the function f being 
partially computable. • 

By considering the language ..9"1 we have 

Corollary 6.4. Every partially computable function is computed strictly by 
some Post-Turing program that uses only the symbols s0 , s1 • 

Now we return to the proof of Theorem 6.1. Let .9 be a Post-Turing 
program that computes f. We want to construct a program ~ in the 
language ..9" that computes f. ~ will consist of three sections: 

BEGINNING 
MIDDLE 
END 

The MIDDLE section will simulate .9 in a step-by-step "interpretive" 
manner. The task of BEGINNING is to arrange the input to ~ in the 
appropriate format for MIDDLE, and the task of END is to extract the 
output. 

Let us suppose that f is an m-ary partial function on A*, where 
A = {sp ... , sn}. The Post-Turing program .9 will also use the blank B 
and perhaps additional symbols (we are not assuming that the computation 
is strict!) sn+ 1 , ••• , s,. We write the symbols that .9 uses in the order 

s1 , ••• ,sn,sn+ 1 , ••• ,s,,B. 

The program ~ will simulate .9 by using the numbers that strings on this 
alphabet represent in base r + 1 as "codes" for the corresponding strings. 
Note that as we have arranged the symbols, the blank B represents the 
number r + 1. For this reason we will write the blank ass,+ 1 instead of s0 • 

The tape configuration at a given stage in the computation by .9 will be 
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kept track of by ~ using three numbers stored in the variables L, H, and 
R. The value of H will be the numerical value of the symbol currently 
being scanned by the head. The value of L will be a number which 
represents in base r + 1 a string of symbols w such that the tape contents 
to the left of the head consists of infinitely many blanks followed by w. The 
value of R represents in a similar manner the string of symbols to the right 
of the head. For example, consider the tape configuration 

. . . B B B B s2 s1 B s3 s1 s2 B B B ... . 

i 

Here r = 3, so we will use the base 4. Then we would have 

We might have 

H= 3. 

L = 2 · 42 + 1 · 4 + 4 = 40, 

R = 1· 4 + 2 = 6. 

An alternative representation could show some of the blanks on the left or 
right explicitly. For example, recalling that B represents r + 1 = 4, 

L = 4 · 43 + 2 · 42 + 1 · 4 + 4 = 296, 

R = 1 · 43 + 2 · 42 + 4 · 4 + 4 = 116. 

Now it is easy to simulate the instruction types of ::T by programs of .9. 
An instruction PRINTs; is simulated by 

H <r- i 

An instruction IF s; GOTO L is simulated by 

IF H = iGOTOL 

An instruction RIGHT is simulated by 

L <r- CONCAT,+ 1(L, H) 
H <r- LTEND,+ 1(R) 
R <r- LTRUNC,+ 1(R) 
IF R =1= 0 GOTO E 
R<r-r+1 
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Similarly an instruction LEFf is simulated by 

R +-- CONCAT,+ 1(H, R) 
H +-- RTEND,+ 1(L) 
L +-- RTRUNC,+ 1(L) 
IF L * 0 GOTO E 
L+-r+l 
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Now the section MIDDLE of tff can be assembled simply by replacing 
each instruction of go by its simulation. 

In writing BEGINNING and END we must deal with the fact that f is 
an m-ary function on {sl' ... ' sn}*. Thus the initial values of XI' ... ' xm 
for tff will be numbers that represent the input strings in base n. Theorem 
1.1 will enable us to change base as required. The section BEGINNING 
has the task of calculating the initial values of L, H, R, that is, the values 
corresponding to the tape configuration 

where the numbers x 1 , ••• , xm are represented in base n notation. Thus 
the section BEGINNING of tff can simply be taken to be 

L +-r+l 
H +-r+l 
Z 1 +-- UPCHANGEn r+ 1(X1) 

Z 2 +-- UPCHANGEn. r+ I(Xz) 

Zm +-- UPCHANGEn,r+ 1(Xm) 
R +-- CONCAT,+ 1(Z1,r + l,Z2 ,r + l, ... ,r + l,Zm) 

Finally, the section END of tff can be taken simply to be 

Z +-- CONCAT,+ 1(L, H, R) 

Y +-- DOWNCHANGEn r+ I(Z) 

We have now completed the description of the program tff that simu-
lates !JO, and our proof is complete. • 

Exercises 

I. Use the construction in the proof of Theorem 6.1 to give an .9 
program that computes the same unary function as the Post-Turing 
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2. For any Post-Turing program .9, let #(.9) be #(t!!), where t!! is the 
.9 program obtained for .9 in the proof of Theorem 6.1, and let 
HALT~x, y) be defined 

HALTg-(x, y) - y is the number of a Post-Turing program 

that eventually halts on input x. 

Show that HALT~x, y) is not a computable predicate. 

3. * Show that the Post-Turing programs, under an appropriate ordering 
.90 , .91 , ••• , are an acceptable programming system. [See Exercise 5.4 
in Chapter 4 for the definition of acceptable programming systems.] 
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Turing Machines 

1. Internal States 

Now we turn to a variant of the Post-Turing language that is closer to 
Turing's original formulation. Instead of thinking of a list of instructions, 
we imagine a device capable of various internal states. The device is, at any 
particular instant, scanning a square on a linear tape just like the one used 
by Post-Turing programs. The combination of the current internal state 
with the symbol on the square currently scanned is then supposed to 
determine the next "action" of the device. As suggested by Turing's 
analysis of the computation process (see Chapter 5, Section 4), we can take 
the next action to be either "printing" a symbol on the scanned square or 
moving one square to the right or left. Finally, the device must be 
permitted to enter a new state. 

We use the symbols q1 , q2 , q3 ,. • • to represent states and we write 
s0 , s1 , s2 , ••• to represent symbols that can appear on the tape, where as 
usual s0 = B is the "blank." By a quadruple we mean an expression of one 
of the following forms consisting of four symbols: 

1. q; sj sk ql, 
2. q; sj R ql, 
3. q; sj L ql. 

145 
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We intend a quadruple of type 1 to signify that in state q; scanning symbol 
sj, the device will print sk and go into state q1• Similarly, a quadruple of 
type 2 signifies that in state q; scanning sj the device will move one square 
to the right and then go into state q1• Finally, a quadruple of type 3 is like 
one of type 2 except that the motion is to the left. 

We now define a Turing machine to be a finite set of quadruples, no two 
of which begin with the same pair q;sj. Actually, any finite set of quadru­
ples is called a nondeterministic Turing machine. But for the present we will 
deal only with deterministic Turing machines, which satisfy the additional 
"consistency" condition forbidding two quadruples of a given machine to 
begin with the same pair q;sj, thereby guaranteeing that at any stage a 
Turing machine is capable of only one action. Nondeterministic Turing 
machines are discussed in Section 5. 

The alphabet of a given Turing machine L consists of all of the symbols 
s; wliich occur in quadruples of L except s0 • 

We stipulate that a Turing machine always begins in state q1 • Moreover, 
a Turing machine will halt if it is in state q; scanning sj and there is no 
quadruple of the machine which begins q;sj. With these understandings, and 
using the same conventions concerning input and output that were em­
ployed in connection with Post-Turing programs, it should be clear what it 
means to say that some given Turing machine L computes a partial 
function f on A* for a given alphabet A. 

Just as for Post-Turing programs, we may speak of a Turing machine L 
that computes a function strictly, namely: assuming that L computes f 
where f is a partial function on A*, we say that L computes f strictly if 

1. the alphabet of L is a subset of A; 
2. whenever L halts, the final configuration has the form 

By 

i 
qi 

where y contains no blanks. 

Writing s0 = B, s1 = 1 consider the Turing machine with alphabet {1}: 

ql B R qz 

qz 1 R qz 

qz B 1 q3 

q3 1 R q3 
q3 B 1 ql. 
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Table 1.1 

State 

Symbol 

B 

We can check the computation: 

8111, 8111, ... ,8111B, 81111, 81111B, 811111 
i i i i i i 
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The computation halts because there is no quadruple beginning q1l. 
Clearly, this Turing machine computes (but not strictly) the function 
f(x) = x + 2, where we are using unary (base 1) notation. The steps of the 
computation, which explicitly exhibit the state of the machine, the string of 
symbols on the tape, as well as the individual square on the tape being 
scanned, are called configurations. 

It is sometimes helpful to exhibit a Turing machine by giving a state 
versus symbol table. Thus, for example the preceding Turing machine 
could be represented as shown in Table 1.1. 

Another useful representation is by a state transition diagram. The 
Turing machine being discussed thus could be represented by the diagram 
shown in Fig. 1.1. 

We now prove 

Theorem 1.1. Any partial function that can be computed by a Post­
Turing program can be computed by a Turing machine using the same 
alphabet. 

1/R 

1/R 

Figure 1.1 
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Proof. Let .9 be a given Post-Turing program consisting of the instruc­
tions Ip ... ,IK, and let s0 ,sp···,sn be a list that includes all of the 
symbols mentioned in .9. We shall construct a Turing machine L that 
simulates .9. 

The idea is that L will be in state q; precisely when .9 is about to 
execute instruction I;. Thus, if I; is "PRINT sk ,"then we place in L all of 
the quadruples 

j = 0, 1, ... , n. 

If I; is "RIGHT," then we place in L all of the quadruples 

j = 0, 1, ... , n. 

If I; is "LEFT," then we place in L all of the quadruples 

j = 0, 1, ... , n. 

Finally, if I; is "IF sk GOTO L," let m be the least number such that Im is 
labeled L if there is an instruction of .9 labeled L; otherwise let 
m = K + 1. We place in L the quadruple 

as well as all of the quadruples: 

j=0,1, ... ,n; j=l=k. 

It is clear that the actions of L correspond precisely to the instructions 
of .9, so we are done. • 

Using Corollary 6.4 from Chapter 5 and the proof of Theorem 1.1, we 
have 

Theorem 1.2. Let f be an m-ary partially computable function on A* for 
a given alphabet A. Then there is a Turing machine L that computes f 
strictly. 

It is particularly interesting to apply this theorem to the case A = {1}. 
Thus, if f(x 1 , ••• , xm) is any partially computable function on N, there is a 
Turing machine that computes f using only the symbols B and 1. The 
initial configuration corresponding to inputs x 1 , ••• , x m is 

B 1[xd B . . . B 1[xmJ 

i 
q, 
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and the final configuration when f(xl> ... , xmH will be 

B l[f(x, , ... ,Xm)l, 

i 
qK+! 

Next we shall consider a variant notion of Turing machines: machines 
that consist of quintuples instead of quadruples. There are two kinds of 
quintuples: 

q; sj sk R qt' 

q; sj sk L qt. 

The first quintuple signifies that when the machine is in state q; scanning 
sj it will print sk and then move one square to the right and go into state 
q1• And naturally, the second quintuple is the same, except that the motion 
is to the left. A finite set of quintuples no two of which begin with the 
same pair q;sj is called a quintuple Turing machine. We can easily prove 

Theorem 1.3. Any partial function that can be computed by a Turing 
machine can be computed by a quintuple Turing machine using the same 
alphabet. 

Proof. Let L be a Turing machine with states q1 , ••• , qK and alphabet 
{s1 , ••• , sn}. We construct a quintuple Turing machine L to simulate L. 
The states of L will be q1 , ••• , qK, qK+ 1 , ••• , qzK· 

For each quadruple of L of_!he form q; sj R q1 we place the correspond-
ing quintuple q; sj sj R q1 in .L. Similarly, for_each quadruple q; sj L q1 in 
L, we place the quintuple q; sj sj L q1 in .L. And, for each quadruple 
q; sj sk q1 !!_I L, we place in L the quintuple q; sj sk RqK+t· Finally we 
place in L all quintuples of the form 

i=l, ... ,K; j=O,l, ... ,n. 

Quadruples requiring motion are simulated easily by quintuples. But a 
quadruple requiring a "print" necessitates using a quintuple which causes 
a motion after the "print" has taken place. The final list of quintuples 
undoes the effect of this unwanted motion. The extra states qK+ 1 , ••• , q2K 
serve to "remember" that we have gone a square too far to the right. • 

Finally, we will complete another circle by proving 

Theorem 1.4. Any partial function that can be computed by a quintuple 
Turing machine can be computed by a Post-Turing program using the 
same alphabet. 
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Combining Theorems 1.1, 1.3, and 1.4, we will have 

Corollary 1.5. For a given partial function f, the following are equivalent: 

1. f can be computed by a Post-Turing program; 
2. f can be computed by a Turing machine; 
3. f can be computed by a quintuple Turing machine. 

Proof of Theorem 1.4. Let L be a given quintuple Turing machine with 
states q1 , ••• , qK and alphabet {s1 , ••• , sn}. We associate with each state qi 
a label A; and with each pair qisj a label B;j· Each label A; is to be 
placed next to the first instruction in the filter: 

[A;] IF s0 GOTO B;o 
IF s 1 GOTO B;1 

If L contains the quintuple qi sj sk Rq1, then we introduce the block of 
instructions 

[B;j] PRINT sk 
RIGHT 
GOTOA 1 

Similarly, if L contains the quintuple q; sj sk L q1, then we introduce the 
block of instructions: 

[B;) PRINT sk 
LEFT 
GOTOA 1 

Finally, if there is no quintuple in L beginning qisj, we introduce the 
block 

[Bij] GOTO E 

Then we can easily construct a Post-Turing program that simulates L 
simply by putting all of these blocks and filters one under the other. The 
order is irrelevant except for one restriction: The filter labeled A 1 must 
begin the program. The entire program is listed in Figure 1.2. • 



1. Internal States 

Exercises 

[Ad IF s0 GOTO 8 10 

IF sn GOTO B,n 
IF s0 GOTO B20 

IF sn GOTO Bzn 

IF Sn GOTO BKn 
[B; 111 ] PRINT sk, 

RIGHT 
GOTOA 1, 

[B;2h] PRINT sk 2 

Figure 1.2 

1. Let T be the Turing machine consisting of the quadruples 

ql B R qz 

qz 1 R q3 

q3 B R q4 

q4 1 B ql 
q4 B R q4. 
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For each integer x, let g(x) be the number of occurrences of 1 on the 
tape when and if T halts when started with the read-write head one 
square to the left of the initial 1, with input 1[xJ. What is the function 
g(x)? 

2. Write out the quadruples constituting a Turing machine that com­
putes the function 

f(x) = {~ if x is a perfect square 
otherwise 

in base 1. Exhibit the state transition diagram for your machine. 

3. Give precise definitions of configuration, computation, and Turing 
machine L computes the function f. (Compare Chapter 2, Section 3.) 
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4. For each of the following functions, construct a Turing machine that 
computes the function strictly. 

(a) f(u, v) = ;7;. 
(b) P(x) = x has an even number of symbols. 
(c) f(x) given in Exercise 1.4 in Chapter 5. 
(d) f(x) = xR. [xR is defined in Chapter 1, Section 3.] 
(e) #(u, v) given in Exercise 1.6 in Chapter 5. 

5. Construct Turing machines for Exercise 4.4 in Chapter 5. 

6. Construct a Turing machine for Exercise 4.5 in Chapter 5. 

7. Using the construction in the proof of Theorem 1.1, transform the 
Post-Turing program in Figure 4.4 of Chapter 5 into an equivalent 
Turing machine. 

8. Using the construction in the proof of Theorem 1.3, transform the 
Turing machine in Table 1.1 into an equivalent quintuple Turing 
machine. 

9. Construct a quintuple Turing machine that computes f(x, y) = x ..:... y 
in base 1 strictly. 

10. * Show that any partially computable function can be computed by a 
quintuple Turing machine with two states. [Hint: A quintuple Turing 
machine L with n states and m symbols (including s0 ) can be 
simulated by a quintuple Turing machine L' with two states and 
4mn + m symbols. The 4mn new symbols represent the current state 
and currently scanned symbol of L, as well as additional bookkeep­
ing information. Transferring this stored information to an adjacent 
square can be done by a "loop" that moves the tape head back and 
forth.] 

2. A Universal Turing Machine 

Let us now recall the partially computable function <l>(x, z) from Chapter 
4. For fixed z, <l>(x, z) is the unary partial function computed by the 
program whose number is z. Let L be a Turing machine (in either 
quadruple or quintuple form) that computes this function with alphabet 
{1}. For reasons that we will explain, it is appropriate to call this machine 
L universal. 

Let g(x) be any partially computable function of one variable and let z0 

be the number of some program in the language Y that computes g. Then 
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if we begin with a configuration 

(where x and z0 are written as blocks of ones, i.e., in unary notation), and 
let L proceed to compute, L will compute ci>(x, z0), i.e., g(x). Thus, L 
can be used to compute any partially computable function of one variable. 

L provides a suggestive model of an all-purpose computer, in which 
data and programs are stored together in a single "memory." We can think 
of z0 as a coded version of the program for computing g and x as the 
input to that program. Turing's construction of a universal computer in 
1936 provided reason to believe that, at least in principle, an all-purpose 
computer would be possible, and was thus an anticipation of the modern 
digital computer. 

Exercises 

1.* (a) Define a numbering #(L) of Turing machines like the number-
ing #(.9) of Y programs given in Chapter 4. 

(b) Prove a version of the parameter theorem for Turing machines. 
(c) Prove a version of the recursion theorem for Turing machines. 
(d) Show that there is a Turing machine L that prints #(L) when 

started with any input tape. 
(e) Show that Turing machines are an acceptable programming sys­

tem. [Acceptable programming systems are defined in Exercise 
5.4 in Chapter 4.] 

2. * Give an upper bound on the size of the smallest universal Turing 
machine. [See Exercise 5.5 in Chapter 5.] 

3. The Languages Accepted by Turing Machines 

Given a Turing machine L with alphabet A = {s1 , ... , sn}, a word u E A* 
is said to be accepted by L if when L begins with the configuration 



154 Chapter 6 Turing Machines 

it will eventually halt. The set of all words u E A* that L accepts is called 
the language accepted by L. An important problem in the theory of 
computation involves characterizing the languages accepted by various 
kinds of computing devices. It is easy for us to solve this problem for 
Turing machines. 

Theorem 3.1. A language is accepted by some Turing machine if and only 
if the language is r.e. 

Proof. Let L be the language accepted by a Turing machine L with 
alphabet A. Let g(x) be the unary function on A* that L computes. 
Then g 4s a partially computable function (by Corollary 1.5 and by 
Theorem 6.2 in Chapter 5). Now, 

L = {x EA*Ig(xH}. (3.1) 

Hence L is r.e. 
Conversely, let L be r.e. Then there is a partially computable function 

g(x) such that (3.1) holds. Using Theorem 1.2, let L be a Turing machine 
with alphabet {s1 , ••• , sn} that computes g(x) strictly. Then L accepts L. 

Naturally Theorem 3.1 is also true for quintuple Turing machines. 
Let us consider the special case A = {1}. Then we have 

• 

Theorem 3.2. A set U of numbers is r.e. if and only if there is a Turing 
machine L with alphabet {1} that accepts 1[xJ if and only if x E U. 

Proof. This follows immediately from Theorem 3.1 and the fact that the 
base 1 representation of the number x is the string 1[xJ. • 

This is an appropriate place to consider some annoying ambiguities in 
our notation of r.e. language. Thus, for example, consider the language 

L 0 = {a[nll n > 0}, 

on the alphabet {a, b}. According to our definitions, to say that L 0 is an 
r.e. language is to say that the set of numbers which the strings in L 0 

represent in base 2 is an r.e. set of numbers. But, this set of numbers is not 
determined until an order is specified for the letters of the alphabet. If we take 
a, b in the order shown, then the set of numbers which represent strings in 
L 0 is clearly 

Q1 = {2n - 11 n > 0}, 
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while if we take the letters in the order b, a, the set of numbers which 
represents strings in L 0 is 

Now, although there is no difficulty whatever in showing that Q1 and Q2 

are both r.e. sets, it is nevertheless a thoroughly unsatisfactory state of 
affairs to be forced to be concerned with such matters in asserting that L 0 

is an r.e.language. Here Theorem 3.1 comes to our rescue. The notion of a 
given string being accepted by a Turing machine does not involve imposing 
any order on the symbols of the alphabet. Hence, Theorem 3.1 implies 
immediately that whether a particular language on a given alphabet is r.e. 
is independent of how the symbols of the alphabet are ordered. The same is 
clearly true of a language L on a given alphabet A being recursive since 
this is equivalent to L and A* - L both being r.e. 

Another ambiguity arises from the fact that a particular language may 
be considered with respect to more than one alphabet. Thus, let A be an 
n-letter alphabet and let A be an m-letter alphabet containing A, so that 
m > n. Then a language L on the alphabet A is simply some subset of 
A*, so that Lis also a language on the larger alphabet A. Thus, depending 
on whether we are thinking of L as a language on A or as a language on 
A, we will have to read the strings in L as being the notation for integers 
in base n or in base m, respectively. Hence, we are led to the unpleasant 
possibility that whether L is r.e. might actually depend on which alphabet 
we are considering. As an example, we may take A = {a} and A= {a, b}, 
and consider the language L 0 above, where 

L cA* cA*. 0- -

We have already seen that our original definition of L 0's being r.e. as a 
language on the alphabet A amounts to requiring that the set of numbers 
Q1 or Q2 (depending on the order of the symbols a, b) be r.e. However, if 
we take our alphabet to be A, then the relevant set of numbers is 

Q3 = {n E N I n > 0}. 

We remove all such ambiguities by proving 

Theorem 3.3. Let A k A where A and A are alphabets and let L k A*. 
Then L is an r.e. language on the alphabet A if and only if L is an r.e. 
language on A. 
Proof. Let L be r.e. on A and let L be a Turing machine with alphabet 
A that accepts L. Without loss of generality, we can assume that L begins 
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by moving right until it finds a blank and then returns to its original 
position. Let L be obtained from L by adjoining to it the quadruples 
q s s q for each symbol s E A - A, and each state q of L. Thus L will 
enter an "infinite loop" if it ever encounters a symbol in A -A. Since L 
has alphabet A and accepts the language L, we conclude from Theorem 
3.1 that L is an r.e. language on A. 

Conversely, let L be r.e. as a language on A, and let L be a Turing 
machine with alphabet A that accepts L. Let g(x) be the function on A* 
that L computes. (The symbols belonging to A - A thus serve as 
"markers.") Since L ~A*, we have 

L = {x EA*Ig(xH}. 

Since g(x) is partially computable, it follows that L is an r.e. language on 
A. • 

Corollary 3.4. Let A, A, L be as in Theorem 3.3. Then L is a recursive 
language on A if and only if L is a recursive language on A. 
Proof. First let L be a recursive language on A. Then Land A* - L are 
r.e. languages on A and therefore on A. Moreover, since 

A* - L =(A* -A*) u (A* - L), 

and since A* -A* is r.e., as the reader can easily show (see Exercise 6), it 
follows from Theorem 4.5 in Chapter 4 that A* - L is r.e. Hence, L is a 
recursive language on A. 

Conversely, if L is a recursive language on A, then L and A* - L are 
r.e. languages on A and therefore L is an r.e. language on A. Moreover, 
since 

A* - L =(A* - L) n A*, 
and since A* is obviously r.e. (as a language on A and therefore on A), it 
follows from Theorem 4.5 in Chapter 4 that A* - L is an r.e. language on 
A and hence on A. Thus, Lis a recursive language on A. • 

Exercises 

1. Write out the quadruples constituting a Turing machine that accepts 
the language consisting of all words on the alphabet {a, b} of the form 
a[iJba[il. 

2. Give a Turing machine that accepts {l[ilBl[j]Bl[i+j] I i, j EN}. 

3. Give a Turing machine that accepts {w E {a, b}* I w = wR}. 
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4. Show that there is a Turing machine that accepts the language 
{llxlBliYll <1>/x) J,}. 

5. Show that there is no Turing machine that accepts the language 
{l!Yll <1>/x)t for all x EN}. 

6. Complete the proof of Corollary 3.4 by showing that A* -A* is an r.e. 
language. 

4. The Halting Problem for Turing Machines 

We can use the results of the previous section to obtain a sharpened form 
of the unsolvability of the halting problem. 

By the halting problem for a fixed given Turing machine L we mean 
the problem of finding an algorithm to determine whether L will eventually 
halt starting with a given configuration. We have 

Theorem 4.1. There is a Turing machine .% with alphabet {1} that has an 
unsolvable halting problem. 

Proof. Take for the set U in Theorem 3.2, some r.e. set that is not 
recursive (e.g., the set K from Chapter 4). Let .% be the corresponding 
Turing machine. Thus .% accepts a string of ones if and only if its length 
belongs to U. Hence, x E U if and only if .% eventually halts when started 
with the configuration 

B l[x] 

i 
ql 

Thus, if there were an algorithm for solving the halting problem for Jr, it 
could be used to test a given number x for membership in U. Since U is 
not recursive, such an algorithm is impossible. • 

This is really a stronger result than was obtained in Chapter 4. What we 
can prove about Turing machines just using Theorem 2.1 in Chapter 4 is 
that there is no algorithm that can be used, given a Turing machine and an 
initial configuration, to determine whether the Turing machine will ever 
halt. Our present result gives a fixed Turing machine whose halting 
problem is unsolvable. Actually, this result could also have been easily 
obtained from the earlier one by using a universal Turing machine. 

Next, we show how the unsolvability of the halting problem can be used 
to obtain another unsolvable problem concerning Turing machines. We 
begin with a Turing machine .% with alphabet {1} that has an unsolvable 
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halting problem. Let the states of.% be q1 , ••• , qk. We will construct a 
Turing machine .% by adjoining to the quadruples of .% the following 
quadruples: 

q; B B qk+l 

for i = 1, 2, ... , k for which no quadruple of.% begins q;B, and 

q; 1 1 qk+ I 

for i = 1, 2, ... , k when no quadruple of.% begins q; 1. Thus, .% eventually 
halts beginning with a given configuration if and only if .% eventually is in 
state qk+ 1 • We conclude 

Theorem 4.2. There is a Turing machine .% with alphabet {1} and a state 
qm such that there is no algorithm that can determine whether.% will ever 
arrive at state qm when it begins at a given configuration. 

Exercises 

1. Prove that there is a Turing machine .L such that there is no 
algorithm that can determine of a given configuration whether .L will 
eventually halt with a completely blank tape when started with the 
given tape configuration. 

2. Prove that there is a Turing machine .L with alphabet {s1 , s2} such 
that there is no algorithm that can determine whether .L starting with 
a given configuration will ever print the symbol s2 • 

3. Let .L0 , .L1 , • • • be a list of all Turing machines, and let /; be the 
unary partial function computed by L;, i = 0, 1, .... Suppose g(x) is a 
total function such that for all x ~ 0 and all 0 :::;; i :::;; x, if /;CxH then 
/;(x) < g(x). Show that g(x) is not computable. 

4. Jill and Jack have been working as programmers for a year. They are 
discussing their work. We listen in: 

JACK: We are working on a wonderful program, AUTOCHECK. 
AUTOCHECK will accept Pascal programs as inputs and will return 
the values OK or LOOPS depending on whether the given program 
is or is not free of infinite loops. 

JILL: Big deal! We have a mad mathematician in our firm who has 
developed an algorithm so complicated that no program can be 
written to execute it no matter how much space and time is allowed. 

Comment on and criticize Jack and Jill's statements. 
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5. Nondeterministic Turing Machines 

As already mentioned, a nondeterministic Turing machine is simply an 
arbitrary finite set of quadruples. Thus, what we have been calling a Turing 
machine is simply a special kind of nondeterministic Turing machine. 
For emphasis, we will sometimes refer to ordinary Turing machines as 
deterministic. 

A configuration 

is called terminal with respect to a given nondeterministic Turing machine 
(and the machine is said to halt) if it contains no quadruple beginning 
q; sj. (This, of course, is exactly the same as for deterministic Turing 
machines.) We use the symbol I- (borrowed from logic) placed between a 
pair of configurations to indicate that the transition from the configuration 
on the left to the one on the right is permitted by one of the quadruples of 
the machine under consideration. 

As an example, consider the nondeterministic Turing machine given by 
the quadruples 

ql B R qz 

qz 1 R q3 

qz B B q4 

q3 1 R qz 

q3 B B q3 

q4 B R q4 
q4 B B q5 

Then we have 

B 1 1 1 li-B 1 1 111--B 1 1 111--B1 1111--B11 1 1 
i i i i i 
ql qz q3 qz q3 

I- B 1 1 1 1 B BI-B 1 1 1 1 B. 
i i 
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So far the computation has been entirely determined; however, at this 
point the nondeterminism plays a role. We have 

B 1 1 1 1 BI-B 1 1 1 1 B, 

i i 
q4 

at which the machine halts. But we also have 

B 1111 BI-B 1111 BBI--B 1111 BBBI--

i i i 

Let A = {s 1 , ... , s n} be a given alphabet and let u E A*. Then the 
nondeterministic Turing machine L is said to accept u if there exists a 
sequence of configurations y 1 , y 2 , ••• , 'Ym such that y 1 is the configuration 

'Ym is terminal with respect to L, and y 1 I- y2 I- y 3 I- · · · I- 'Ym. In this 
case, the sequence y 1 , y 2 , ••• , 'Ym is called an accepting computation by L 
for u. If A is the alphabet of L, then the language accepted by L is the set 
of all u E A* that are accepted by L. 

Of course, for deterministic Turing machines, this definition gives noth­
ing new. However, it is important to keep in mind the distinctive feature of 
acceptance by nondeterministic Turing machines. It is perfectly possible to 
have an infinite sequence 

'Y1 I- 'Yz I- 'Y3 1-­

of configurations, where y 1 is 

s0 u 
i 
ql 

even though u is accepted by L. It is only necessary that there be some 
sequence of transitions leading to a terminal configuration. One some­
times expresses this by saying, "The machine is always permitted to guess 
the correct next step." 

Thus in the example given above, taking the alphabet A = {1}, we have 
that L accepts 1111. In fact the language accepted by L is {l[Znl}. (See 
Exercise 3.) 
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Since a Turing machine is also a nondeterministic Turing machine, 
Theorem 3.1 can be weakened to give 

Theorem 5.1. For every r.e. language L, there is a nondeterministic 
Turing machine L that accepts L. 

The converse is also true: the language accepted by a nondeterministic 
Turing machine must be r.e. By Church's thesis, it is clear that this should 
be true. It is only necessary to "run" a nondeterministic Turing machine 

L on a given input u, following all alternatives at each step, and giving the 
value (say) 0, if termination is reached along any branch. This defines a 
function that is intuitively partially computable and whose domain is the 
language accepted by L. However, a detailed proof along these lines 
would be rather messy. 

Fortunately the converse of Theorem 5.1 will be an easy consequence of 
the methods we will develop in the next chapter. 

Exercises 

1. Explain why nondeterministic Turing machines are unsuitable for 
defining functions. 

2. Let L be the set of all words on the alphabet {a, b} that contain at 
least two consecutive occurrences of b. Construct a nondeterministic 
Turing machine that never moves left and accepts L. 

3. Show that the nondeterministic Tudng machine L used as an exam­
ple in this section accepts the set {ll2nl}. 

4. Let 

L 1 = {w E {a, b}* I w has an even number of a's}, 

L2 ={wE {a, b}* I w has an odd number of b's}. 

(a) Give deterministic Turing machines L 1 , L 2 that accept L 1 , L 2 , 

respectively, and combine them to get a nondeterministic Turing 
machine that accepts L 1 u L 2 • 

(b) Give a deterministic Turing machine that accepts L 1 U L 2 • 

5. Give a nondeterministic Turing machine that accepts {llnJI n is prime}. 

6. If we replace "the first instruction labeled L" by "some instruction 
labeled L" in the interpretation of Post-Turing instructions of the 
form IF u GOTO L, then we get nondeterministic Post-Turing pro­
grams. Show that a language is accepted by a nondeterministic Post-
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Turing program if and only if it is accepted by a nondeterministic 
Turing machine (where acceptance of a language by a Post-Turing 
program is defined just like acceptance by a Turing machine). 

6. Variations on the Turing Machine Theme 

So far we have three somewhat different formulations of Turing's concep­
tion of computation: the Post-Turing programming language, Turing 
machines as made up of quadruples, and quintuple Turing machines. The 
proof that these formulations are equivalent was quite simple. This is true 
in part because all three involved a single tapehead on a single two-way 
infinite tape. But it is easy to imagine other arrangements. In fact, Turing's 
original formulation was in terms of a tape that was infinite in only one 
direction, that is, with a first or leftmost square (see Fig. 6.1). We can also 
think of permitting several tapes, each of which can be one-way or two-way 
infinite and each with its own tapehead. There might even be several 
tapeheads per tape. As one would expect, programs can be shorter when 
several tapes are available. But, if we believe Church's thesis, we certainly 
would expect all of these formulations to be equivalent. In this section we 
will indicate briefly how this equivalence can be demonstrated. 

Let us begin by considering one-way infinite tapes. To make matters 
definite, we assume that we are representing a Turing machine as a set of 
quadruples. It is necessary to make a decision about the effect of a 
quadruple q; si L qk in case the tapehead is already at the left end of the 
tape. There are various possibilities, and it really does not matter very 
much which we adopt. For definiteness we assume that an instruction to 
move left will be interpreted as a halt in case the tapehead is already at 
the leftmost square. Now it is pretty obvious that anything that a Turing 
machine could do on a one-way infinite tape could also be done on a 
two-way infinite tape, and we leave details to the reader. 

How can we see that any partially computable function can be computed 
by a Turing machine on a one-way infinite tape? One way is by simply 
examining the proof of Theorem 5.1 in Chapter 5, which shows how a 

Figure 6.1. Two-way infinite versus one-way infinite tape. 
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\ 1111111 u 

Figure 6.2 

computation in any of the languages .9';, can be simulated by a program in 
the Post-Turing language ::T. In fact, the program tff in the language :T 
which is constructed to simulate a given program fJlJ in the language .9';, 
has the particular property that when tff is executed, the tapehead never 
moves to the left of the square initially scanned. Hence, the program tff 
would work exactly as well on a one-way infinite tape whose leftmost 
square is initially scanned. And, it is an easy matter, as in the proof of 
Theorem 1.1, to convert tff into a Turing machine. 

Although this is an entirely convincing argument, we would like to 
mention another approach which is interesting in its own right, namely, we 
directly face the question, how can the information contained in a two-way 
infinite tape be handled by a Turing machine with one tapehead on a 
one-way infinite tape? The intuitive idea is to think of a two-way infinite 
tape as being "hinged" so it can be folded as in Fig. 6.2. Thus our two-way 
infinite tape can be represented by a one-way infinite tape with two 
"tracks," an "upper" and a "lower." Moreover, by adding enough symbols 
to the alphabet, we can code each pair consisting of an upper and a lower 
symbol by a single symbol. 

Thus, let us begin with a Turing machine L with alphabet A = 
{s1 , ••• ,sn} and states qp···•qK. Let L compute a unary 1 partial func­
tion g on A~, where A 0 ~A. Thus the input configuration when L is 
computing g(x) for x E A~ will be 

1 The restriction to unary functions is, of course, not essential. 
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We will construct a Turing machine L that computes g on a one-way 
infinite tape. The initial configuration for .L will be 

# B X 

i 
ql 

where # is a special symbol that will occupy the leftmost square on the 
tape for most of the computation. The alphabet of L will be 

Au{#} u {bj IO 5o i,j 5o n}, 
where we think of the symbol bj as indicatin[ that s; is on the upper track 
and sj is on the lower track. The states of L are q1 , q2 , q3, q4 , q5 , and 

{ij;,t/;li = 1,2, ... ,K} 

as well as certain additional states. 
We can think of the quadruples constituting Las made up of three 

sections: BEGINNING, MIDDLE, and END. BEGINNING serves to copy 
the input on the upper track putting blanks on the corresponding lower 
track of each square. BEGINNING consists of the quadruples 

ql B R qz 

qz S; R qz i = l,2, ... ,n, 

qz B L q3 

q3 S; b; 
0 q3 i = O,l,2, ... ,n, 

q3 bi 
0 L q3 i = O,l,2, ... ,n, 

q3 # R iit . 

Thus, starting with the configuration 

# B s2 s1 s3 

i 
ql 

BEGINNING will halt in the configuration 

# bg b~ bA b~ B. 

i 
ql 

Note that bg is different from s0 =B. MIDDLE will consist of quadruples 
corresponding to those of L as well as additional quadruples as indicated 
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Table 6.1 

Quadruple of .If Quadruple of .L 

(a) q; si sk qt li; bi m 
bk 

m lit m = 0, l, ... ,n 

ii; b~ 
l bf:' iit m = 0, l, ... ,n 

(b) qi si R qt li; bi m R lit m = 0, l, ... ,n 

ii; b~ 
l 

L iit m = 0, l, ... ,n 

(c) q; si L qt li; bi m L lit m = O,l, ... ,n 

ii; b~ 
l 

R iit m = 0, l, ... ,n 

(d) li; B bo 
0 li; i = 1,2, ... , K 

ii; B bo 
0 li; i = l,2, ... ,K 

(e) li; # R ii; i = l,2, ... ,K 

ii; # R li; i = l,2, ... ,K 

in Table 6.1. The states ii;, ij; correspond to actions on the upper track and 
lower track, respectively. Note in (b) and (c) that on the lower track left 
and right are reversed. The quadruples in (d) replace single blanks B by 
double blanks bg as needed. The quadruples (e) arrange for switchover 
from the upper to the lower track. It should be clear that MIDDLE 
simulates L. 

END has the task of translating the output into a word on the original 
alphabet A. This task is complicated by the fact that the output is split 
between the two tracks. To begin with, END contains the following 
quadruples: 

ii; bj bj 
q4) 

whenever L contains no quadruple m m 
iji bm b~ q4 beginning q;sj, for m = 0, 1, ... , n; 0 ~ i, j ~ n, 

1 1 

q4 b! 
1 

L q4' 
q4 # B q5. 

For each initial configuration for which L halts, the effect of BEGIN­
NING, MIDDLE, and this part of END is to ultimately produce a 
configuration of the form 

B b!t b!z b!k 
1I 1z 1k • 

i 
q5 

The remaining task of END is to convert the tape contents into 
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[D] RIGHT TO NEXT BLANK 
MOVE BLOCK RIGHT 
RIGHT 

[C] RIGHT 
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IF bj GOTO A} (0 ~ i,j ~ n) 

IF B GOTOF 
GOTOC 

[A}] PRINTs; (0 < i ~ n,O ~j ~ n) 

GOTOBi 
[AJI PRINT# (0 ~j ~ n) 

GOTOBi 
[B) LEFTTONEXTBLANK (0 <j ~ n) 

PRINT si 

GOTOD 
[B0 ] LEFT TO NEXT BLANK 

PRINT# 
GOTOD 

[F] LEFT 
IF si GOTO F (0 < j ~ n) 

IF# GOTOG 
IF B GOTOE 

[G] PRINT B 

GOTOF 

Figure6.3 

Instead of giving quadruples for accomplishing this, we exhibit a program 
in the Post-Turing language :T, so that we can make use of some of the 
macros available in that language. Of course, this program can easily be 
translated into a set of quadruples using the method of proof of Theorem 
1.1. Because our macros for :T were designed for use with "blocks" of 
symbols containing no blanks, we will use # instead of s0 = B in carrying 
out our translation. One final pass will be needed to replace each # by B. 
The program is given in Fig. 6.3. 

Each bJ is processed going from left to right. bJ is replaced by s; (or by 
# if i = 0) and si (or # if j = 0) is printed on the left. The "MOVE 
BLOCK RIGHT" macro is used to make room on the tape for printing the 
successive symbols from the "lower" track. As an example let us apply the 
program of Fig. 6.3 to the configuration 
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B bf b\1 b/1 

i 
B B 

i 
B B 

B B 

B s1 

i 
B # 

i 
B B 

b2 
I 

bll 
I 

b2 
I 

bll 
I 

i 
s2 bll 

I 

i 
s2 bo 

I 

sl s2 

sl s2 

sl sl 

# sl 

b/1 B 

bl 
0 B 

bl 
0 B 

bl 
0 B 

bll 
I b/1 

i 
# b/1 

s2 # 

sl s2 

Figure6.4 
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D 

c 

A2 
I 

Bl 

D 

B Ao 
I 

B D 

sl B D 

# sl B F 

i 
B E 

In Fig. 6.4 we show various stages in the computation; in each case the 
tape configuration is followed by the label on the next instruction to be 
executed. 

The technique of thinking of the tape of a Turing machine as decom­
posed into a number of parallel tracks has numerous uses. (It will appear 
again in Chapter 11.) For the moment we note that it can be used to 
simulate the behavior of a multitape Turing machine by an ordinary 
Turing machine. For, in the first place a second track can be used to show 
the position of a tapehead on a one-tape machine as in the example shown 
in Fig. 6.5; the 1 under the s3 shows the position of the head. In an entirely 
similar manner the contents of k tapes and the position of the tapehead 
on each can be represented as a single tape with 2k tracks. Using this 
representation, it is easy to see how to simulate any computation by a 
k-tape Turing machine using only one tape. The same result can also be 
obtained indirectly using the method of proof of Theorem 6.1 in Chapter 5 
to show that any function computed by a k-tape Turing machine is 
partially computable. 
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.. ·I 8 I s, I 53 1 8 I s, I 8 I· .. 

i 

8 s, SJ 8 s, 8 

8 8 I 8 8 8 

Figure 6.5 

Exercises 

1. Give a formal description of a Turing machine that uses three tapes: 
one with a "read only" head for input, one with a "write only" head 
for output, and one for "working." Give an appropriate definition of 
computability by such machines and prove the equivalence with com­
putability by ordinary Turing machines. 

2. Do the same for a Turing machine with input tape, output tape, and k 
working tapes for any k ~ 1. 

3. Let the Post-Turing language be augmented by the instructions UP, 
DOWN so that it can deal with computations on a two-dimensional 
"tape" infinite in all four directions. Supply an appropriate definition 
of what it means to compute a function by a program in this language, 
and prove that any function computed by such a program is partially 
computable. 

4. Adapt the construction in this section so that it works for binary 
functions. 
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Processes and Grammars 

1. Semi-Thue Processes 

In this chapter we will see how the methods of computability theory can be 
used to deal with combinatorial problems involving substitution of one 
substring for another in a string. 

Definition. Given a pair of words g, g on some alphabet, the expression 

g~g 

is called a semi-Thue production or simply a production. The term rewrite 
rule is also used. 

Thue is from Axel Thue, a Norwegian mathematician, and is pro­
nounced too-ay. 

If P is the semi-Thue production g ~ g, then we write 

to mean that there are (possibly null) words r, s such that 

u = rgs and v = rgs. 

(In other words, v is obtained from u by a replacement of g by g.) 

169 
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Definition. A semi-Thue process is a finite set of semi-Thue productions. 

If n is a semi-Thue process, we write 

to mean that 

u=v n 

u=v p 

for some production P which belongs to n. Finally, we write 

if there is a sequence 

. 
u=v 

II 

u = u = u = ... = u = v. 
I n 2 II n n 

The sequence u 1 , u2 , ••• , un is then called a derivation of v from u. In 
particular (taking n = 1) 

u * u. 

When no ambiguity results we often omit the explicit reference to n, 
writing simply u = v and u ~ v. 

Here is a simple example: We let n = {ab ~ aa, ba ~ bb}. Then we 
have 

aba = abb = aab = aaa. 

Thus, 

aba ~ aaa, 

and the sequence of words aba, abb, aab, aaa is a derivation of aaa from 
aba. 

Exercises 

1. Let n be the semi-Thue process with the production ba ~ ab. 
(a) Give two different derivations of aaabbb from abbaba. 

(b) Give the set of all words in {a, b}* from which aabb can be 
derived. 

(c) Give the set of all words which can be derived from bbaa. 

2. Let n be the semi-Thue process with productions ba ~ ab and 
ab ~ ba. Show that for all words u, v E {a, b}*, u 'fr v if and only if 

v * u. 
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3. Give a semi-Thue process n such that 1[xJ =if 1[Yl if and only if lx- yl 
is even. 

4. Let A= {l,2,bLbi,bf.bLc1 ,c2 ,d1 ,d2}. Give a semi-Thue process 
ll SUCh that bi1 • • • bin ~ W E {1 2}* for all words bi 1 • •• bin where 

JJ Jn n ' ' lJ ln ' 
i 1 ••• in, j 1 ••• jn are binary representations of numbers and i 1 ••• in + 
j 1 ••• jn = w. [Hint: The symbols c1 , c2 are used to remember the need 
to carry 1, and d1 , d2 are used to remember the need to carry 2.] 

2. Simulation of Nondeterministic Turing Machines by 
Semi-Thue Processes 

Let us begin with a nondeterministic Turing machine L with alphabet 
{s1 , ••• , sK}, and states q1 , q2, ... , qn. We shall show how to simulate L 
by a semi-Thue process !.(L) on the alphabet 

Each stage in a computation by L is specified completely by the current 
configuration. We shall code each such stage by a word on the alphabet of 
!.{.L). For example, the configuration 

i 
q4 

will be represented by the single word 

(2.1) 

Note that h is used as a beginning and end marker, and the symbol q4 

indicates the state of L and is placed immediately to the left of the 
scanned square. A word like (2.1) will be called a Post word. Of course, the 
same configuration can be represented by infinitely many Post words 
because any number of additional blanks may be shown on the left or 
right. For example, 

is a Post word representing the same configuration that (2.1) does. 
In general, a word huqivh, where 0 ~ i ~ n + 1, is called a Post word if 

u and v are words on the subalphabet {s0 , s1 , ••• , sK}. We shall show how 
to associate suitable semi-Thue productions with each quadruple of L; 
the productions simulate the effect of that quadruple on Post words. 
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1. For each quadruple of L of the form q; sj sk q1 we place in I(L) 
the production 

2. For each quadruple of L of the form q; sj R q1 we place in I(L) the 
productions 

q;sjsk ~ sjqlsk' 

q;sjh ~ sjq1s0h. 

k=O,l, ... ,K, 

3. For each quadruple of L of the form q; sj L q1 we place in I(L) the 
productions 

skqisj ~ qlsksj' 

hq;sj ~ hq1s0sj. 

k=O,l, ... ,K, 

To see how these productions simulate the behavior of L, suppose L is 
in configuration 

This configuration is represented by the Post word 

hs2 q4 s1s0 s3 h. 

Now suppose L contains the quadruple 

q4 si s3 qs. 

Then I(L) contains the production 

so that 

The Post word on the right then corresponds to the configuration immedi­
ately following application of the above quadruple. Now suppose that L 
contains the quadruple 
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(Of course, if L is a deterministic Turing machine, it cannot contain both 
of these quadruples.) Then I(L) contains the production 

q4s1so ~ slq3so' 

so that 

Finally if L contains the quadruple 

q4 sl Lqz, 

then I(L) contains the production 

Szq4sl ~ qzSzSJ' 

so that 

The productions involving h are to take care of cases where motion to 
the right or left would go past the part of the tape included in the Post 
word, so that an additional blank must be added. For example, if the 
configuration is 

and L contains the quadruple 

q4 sJ R q3' 

then I(L) contains the production 

q4slh ~ slq3soh 

and we have 

so that the needed blank on the right has been inserted. The reader will 
readily verify that blanks on the left are similarly supplied when needed. 

We now complete the specification of I(L): 

4. Whenever q;sp = 1, ... , n; j = 0, 1, ... , K) are not the first two 
symbols of a quadruple of L, we place in I(L) the production 

Thus, qn + 1 serves as a "halt" state. 
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5. Finally, we place in !.(L) the productions 

We have 

qn+lsi~qn+l' 

qn+lh ~ qoh 

s;qo ~ qo' 

i=0,1, ... ,K, 

i=0,1, ... ,K. 

Theorem 2.1. Let L be a deterministic Turing machine, and let w be a 
Post word on the alphabet of !.(L). Then 

1. there is at most one word z such that w = z, and 
I.<L> 

2. if there is a word z satisfying (1), then z is a Post word. 

Proof. We have w = huq;vh. 
If 1 5. i 5. n, then 

a. if v = 0 no production of !.(L) applies to w; 
b. if v begins with the symbol si and there is a (necessarily unique) 

quadruple of L which begins q;si, then there is a uniquely applica­
ble production of !.(L) and the result of applying it will be a Post 
word; 

c. if v begins with the symbol si and there is no quadruple of L which 
begins q; si, then the one applicable production of !.(L) is 

qisj ~ qn+lsj, 

which yields another Post word when applied to w. 

If i = n + 1, then 

a. if v = 0, the only applicable production of !.(L) is 

qn+lh ~ qoh, 

which yields a Post word; 
b. if v begins with the symbol si, the only applicable production of 

!.(L) is 

which again yields a Post word. 

Finally, if i = 0, then 

a. if u = 0, no production of !.(L) can be applied; 
b. if u ends with si, the only applicable production of !.(L) is 

sjqo ~ qo' 

which yields a Post word. • 
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Our next result makes precise the sense in which I(L) simulates L. 

Theorem 2.2. Let L be a nondeterministic Turing machine. Then, for 
each string u on the alphabet of L, L accepts u if and only if 

Proof. Let the alphabet of L be s 1 , ••• , s K. First let us suppose that L 
accepts u. Then, if L begins in the configuration 

s0 u 
i 
ql 

it will eventually reach a state qi scanning a symbol sk where no quadruple 
of L begins q; sk. Then we will have (for appropriate words v, w on the 
alphabet of L) 

Next suppose that L does not accept u. Then, beginning with configu­
ration 

L will never halt. Let 

and suppose that 

w =w =w =···=w 
I I.(L) 2 I.( A) 3 I.(L) !.(L) m • 

Then each wj, 1 .:5; j .:5; m, must contain a symbol qi with 1 .:5; i .:5; n. Hence 
there can be no derivation of a Post word containing q0 from w1 , and so, 
in particular, there is no derivation of hq0 h from w1 • • 

Definition. The inverse of the production g -+ g is the production g -+ g. 

For example, the inverse of the production ab -+ aa is the production 
aa -+ ab. 
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Let us write O(L) for the semi-Thue process which consists of the 
inverses of all the productions of !.(L). Then an immediate consequence 
of Theorem 2.2 is 

Theorem 2.3. Let L be a nondeterministic Turing machine. Then for 
each string u in the alphabet of L, L accepts u if and only if 

Exercises 

1. (a) Give !.(L), where L is the Turing machine in Table 1.1 of 
Chapter 6. 

(b) Give a derivation that shows that hq1s0lllh = hq0h. 
'i.(.#f) 

(c) Describe {u I hq0 h ~ hq1s0 uh}. 
n<L> 

2. Give a semi-Thue process n such that, for all words u, v E {1, 2}*, 
hq1s0us0vh 'if w E {1, 2}*, where u + v = w in binary notation. 

3. Show that for any partially computable function f(x), there is a 
semi-Thue process n such that for all x EN, l[xJ 'if l[Yl if and only if 
Y = f(x). 

3. Unsolvable Word Problems 

Definition. The word problem for a semi-Thue process n is the problem 
of determining for any given pair u, v of words on the alphabet of n 
whether u 'if v. 

We shall prove 

Theorem 3.1. There is a Turing machine L such that the word problem 
is unsolvable for both the semi-Thue processes !.(L) and O(L). 

Proof. By Theorem 3.1 in Chapter 6, there is a Turing machine L (in 
fact, deterministic) that accepts a nonrecursive language. Suppose first that 
the word problem for !.(L) were solvable. Then there would be an 

algorithm for testing given words v, w to determine whether v ~ w. By 
'i.(.#f) 

Theorem 2.2, we could use this algorithm to determine whether L will 
accept a given word u by testing whether 
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We would thus have an algorithm for testing a given word u to see 
whether L will accept it. But such an algorithm cannot exist since the 
language accepted by L is not a recursive set. 

Finally, an algorithm that solved the word problem for O(L) would also 
solve the word problem for !.(L), since 

v ~ w 
I.<L> 

if and only if w ~ v. 
n<L> • 

Definition. A semi-Thue process is called a Thue process if the inverse of 
each production in the process is also in the process. 

The fact that Thue processes are in fact "two-way" processes is a 
curious coincidence. 

We write g- g to combine the production g ~ g and its inverse 
g~g. 

For each Turing machine L, we write 

0(L) = !.(L) U O(L), 

so that 0(L) is a Thue process. We have 

Theorem 3.2 (Post's Lemma). Let L be a deterministic Turing machine. 
Let u be a word on the alphabet of L such that 

Then 

Proof. Let the sequence 

be a derivation in 0(L). Since w1 is a Post word, and each production of 
0(L) transforms Post words into Post words, we can conclude that the 
entire derivation consists of Post words. We need to show how to eliminate 
use of productions belonging to O(L) from this derivation. So let us 
assume that the last time in the derivation that a production of O(L) was 
used was in getting from W; to W; + 1 • That is, we assume 

w.~w.l· 
1 lHL> t+ ' 

W. I = W· 2 ~ WI= hqoh. 
t+ I.<L> t+ I.<L> 
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Now, O(L) consists of inverses of productions of !.(L); hence we must 
have 

Moreover, we must have i + 1 < I because no production of !.(L) can be 
applied to w1 = hq0h. Now, w;+ 1 is a Post word and 

By Theorem 2.1, we conclude that w;+ 2 = w;. Thus the transition from W; 

to W;+ 1 and then back to W;+ 2 = W; is clearly an unnecessary detour. That 
is, the sequence 

W 1 , W 2 , ••• , W;, W;+ 3 , ••• , W1 

from which W;+ 1, W;+2 have been omitted is a derivation in E>(L). 
We have shown that any derivation that uses a production belonging to 

O(L) can be shortened. Continuing this procedure, we eventually obtain a 
derivation using only productions of !.(L). • 

Theorem 3.3 (Post-Markov). If the deterministic Turing machine L 
accepts a nonrecursive set, then the word problem for the Thue process 
E>(L) is unsolvable. 

Proof. Let u be a word on the alphabet of L. Then we have, using 
Theorems 2.2 and 3.2, 

L accepts u 

if and only if 

if and only if 

Hence, an algorithm for solving the word problem for E>(L) could be used 
to determine whether or not L will accept u, which is impossible. • 

Now we consider semi-Thue processes on an alphabet of two symbols. 

Theorem 3.4. There is a semi-Thue process on the alphabet {a, b} whose 
word problem is unsolvable. Moreover, for each production g ~ h of this 
semi-Thue process, g, h =/= 0. 
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Proof. Let us begin with a semi-Thue process n on the alphabet A = 
{a1 , ••• , an} and with productions 

i = 1,2, ... ,m, 

whose word problem is unsolvable. We also assume that for each i = 
1, 2, ... , m, g; =/= 0 and g; =/= 0. This is legitimate because this condition is 
satisfied by the productions of I(L). 

We write 

a'. = balilb 
J ' 

j=1,2, ... ,n, 

where there is a string of a's of length j between the two b's. Finally, for 
any word w =/= 0 in A*, 

w =a. a. ···a. 
lt 12 lk ' 

we write 

w' =a'. a'. ··· a' . . 
lt h lk 

In addition we let 0' = 0. Then, we consider the semi-Thue process ll' on 
the alphabet {a, b} whose productions are 

i = 1,2, ... ,m. 

We have 

Lemma 1. If u rt v, then u' ~ v'. 

Proof. We have u = rg;s, v = rg;s. Hence u' = r'gis', v' = r'gis', so 

that u' ~ v'. • 
Lemma 2. If u' ~ w, then for some v E A* we have w = v' and u Ji v. 

Proof. We have u' = pg/q, w = pg/q. Now, since g; =/= 0, g/ begins and 
ends with the letter b. Hence each of p and q either begins and ends with 
b or is 0, so that p = r', q = s'. Then, u = rg;s. Let v = rg;s. Then 
w = v' and u rt v. • 

Lemma 3. u 'fr v if and only if u' ~ v'. 

Proof. If U = Ul rf Uz rf ··· rf Un = V, then by Lemma 1 

U'- u' =u' = - lw zw =u'- v' n' n - • 
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Conversely, if 

U , = w = = ... = w = v' 
I n' Wz n' II' n ' 

then by Lemma 2, for each W; there is a string u; E A* such that W; = u~. 
Thus, 

u' u' u' = =Iff zw 

By Lemma 2 once again, 

=u'- v' []' n- . 

so that u 'if v. • 

Proof of Theorem 3.4 Concluded. By Lemma 3, if the word problem for TI' 
were solvable, the word problem for TI would also be solvable. Hence, the 
word problem for n, is unsolvable. • 

In the preceding proof it is clear that if the semi-Thue process TI with 
which we begin is actually a Thue process, then TI' will be a Thue process 
on {a, b}. We conclude 

Theorem 3.5. There is a Thue process on the alphabet {a, b} whose word 
problem is unsolvable. Moreover, for each production g ----) h of this Thue 
process, g, h =I= 0. 

Exercises 

1. Let TI be the semi-Thue process with productions cde ----) ce, d ----) cde. 
Use the construction in the proof of Theorem 3.4 to get a semi-Thue 
process TI' with productions on {a, b} such that u =if v if and only if 
u' ~ v' for all words u, v E {c, d, e}*. 

2. A semi-Thue system is defined to be a pair (u 0 , TI), where TI is a 
semi-Thue process and u0 is a given word on the alphabet of TI. A 
word w is called a theorem of (u 0 , TI) if u0 'if w. Show that there is a 
semi-Thue system for which no algorithm exists to determine whether 
a given string is a theorem of the system. 

3. Let TI be a semi-Thue process containing only one production. Show 
that n has a solvable word problem. 

4.* Give an upper bound on the size of the smallest semi-Thue process 
with an undecidable word problem. [See Exercise 2.2 in Chapter 6.] 
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4. Post's Correspondence Problem 

The Post correspondence problem first appeared in a paper by Emil Post 
in 1946. It was only much later that this problem was seen to have 
important applications in the theory of formal languages. 

Our treatment of the Post correspondence problem is a simplification of 
a proof due to Floyd, itself much simpler than Post's original work. 

The correspondence problem may conveniently be thought of as a 
solitaire game played with special sets of dominoes. Each domino has a 
word (on some given alphabet) appearing on each half. A typical domino is 
shown in Fig. 4.1. A Post correspondence system is simply a finite set of 
dominoes of this kind. Figure 4.2 gives a simple example of a Post 
correspondence system using three dominoes and the alphabet {a, b}. Each 
move in the solitaire game defined by a particular Post correspondence 
system consists of simply placing one of the dominoes of the system to the 
right of the dominoes laid down on previous moves. The key fact is that 
the dominoes are not used up by being played, so that each one can be used 
any number of times. The way to "win" the game is to reach a situation 
where the very same word appears on the top halves as on the bottom 
halves of the dominoes when we read across from left to right. Figure 4.3 
shows how to win the game defined by the dominoes of Fig. 4.2. (Note that 
one of the dominoes is used twice.) The word aabbbb which appears across 
both the top halves and bottom halves is called a solution of the given Post 
correspondence system. Thus a Post correspondence system possesses a 
solution if and only if it is possible to win the game defined by that system. 

huuh 

huhuu 

Figure 4.1 

DGD 
G~G 

Figure4.2 

DDGG 
G G ~ ~ 

Figure 4.3 
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We shall prove 

Theorem 4.1. There is no algorithm that can test a given Post correspon­
dence system to determine whether it has a solution. 

Proof. Using Theorem 3.4, we begin with a semi-Thue process n on the 
alphabet {a, b} whose word problem is unsolvable. We modify n in the 
following trivial way: we add to the productions of n the two productions 

a ---+a, b---+ b. 

Naturally this addition has no effect on whether 

for given words u, v. However, it does guarantee that whenever u =if v, 
there is a derivation 

where m is an odd number. This is because with the added productions we 
have 

U; fiU; 

for each i, so that any step in a derivation (e.g., the first) can be repeated if 
necessary to change the length of the derivation from an even to an odd 
number. 

Let u and v be any given words on the alphabet {a, b}. We shall 
construct a Post correspondence system Pu,v (which depends on n as well 
as on the words u and v) such that Pu,v has a solution if and only if u =if v. 
Once we have obtained this Pu v we are through. For, if there were an 
algorithm for testing given Post' correspondence systems for possessing a 
solution, this algorithm could be applied in particular to Pu v and therefore 
to determine whether u =if v; since n has an unsolvable' word problem, 
this is impossible. 

We proceed to show how to construct Pu,v. Let the productions of ll 
(including the two we have just added) be g; ---+ h;, i = 1, 2, ... , n. The 
alphabet of Pu, v consists of the eight symbols 

abtib[] * *· 
For any word w on {a, b}, we write w for the word on {a, b} obtained by 
placing "- " on top of each symbol of w. Pu v is then to consist of the 
2n + 4 dominoes shown in Fig. 4.4. Note th~t because n contains the 
productions a ---+ a and b ---+ b, Pu, v contains the four dominoes 
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Bc;JDQJ~CIJ 
liJDDGQJG 

i =I, 2, ... ,n 

Figure 4.4 
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Therefore, it is clear that in our play it is legitimate to use dominoes of the 
form 

where p is any word on {a, b}, since any such dominoes can be assembled 
by lining up single dominoes selected appropriately from the previous four. 

We proceed to show that Pu,v has a solution if and only if u 'if v. 
First suppose that u 'if v. Let 

where m is an odd number. Thus, for each i, 1 :::;; i < m, we can write 

where the transition from U; to U;+ 1 is via the j;th production of II. Then 
we claim that the word 

(4.1) 

is a solution of Pu v. To see this, let us begin to play by laying down the 
dominoes: ' 

At this stage, the word on top is 

while the word on the bottom is 
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We can continue to play as follows: 

Now the word on top is 

and the word on the bottom is 

Recalling that m is an odd number we see that we can win by continuing 
as follows: 

BC!J ... []c;J~ 
00 [JBEJ 

lfm I 

tj,. I 

for, at this point the word both on top and on bottom is (4.1). 
Conversely suppose that Pu,u has a solution w. Examining Fig. 4.4, we 

see that the only possible way to win involves playing 

and 

first and last, respectively. This is because none of the other dominoes in 
Pu, u have tops and bottoms which begin (or end) with the same symbol. 
Thus, w must begin with [ and end with ]. Let us write w = [z ]y, where z 
contains no ]. (Of course it is quite possible that y = 0.) Since the only 
domino containing ] contains it on the far right on top and on bottom, we 
see that [z] itself is already a solution to Pu , . We work with this solution. 
So far we know that the game looks like this: 

B ... CD 
EJ B 

so that the solution [z] looks like this: 

[u*···*v]. 
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Continuing from the left we see that the play must go 

CJ 
0 

185 

where g; g; ··· g; = u. (This is necessary in order for the bottom to 
I 2 k 

"catch up" with the u * which is already on top.) Writing u = u1 and 
u2 = h;1h;2 ... h;k we see that u1 =fr u 2 and that the solution has the form 

[ u1 * u2 * .. · * v]. 
Now we see how the play must continue: 

where of cou~se u2 = gj1gh ... gh. Again, writing u3 = hj1hh ... hh we 
have that u 2 Ii u 3 and that the solution has the form 

[ u 1 * u2 * u3 * .. · * v]. 
Continuing, it is clear that the solution can be written 

where 

so that u =fr v. • 
Exercises 

1. Let II be the semi-Thue process with productions aba ----) a, b ----) aba, 
and let u = bb, v = aaaaaa. Describe the Post correspondence system 
Pu,t· and give a solution to Pu,c. 

2. Find a solution to the Post correspondence problem defined by the 
dominoes 

6 
G 
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3. Find an algorithm for Post correspondence problems whose alphabet 
consists of just one symbol. 

5. Grammars 

A phrase-structure grammar or simply a grammar is just a semi-Thue 
process in which the letters of the alphabet are separated into two disjoint 
sets called the variables and the terminals, with one of the variables singled 
out as the start symbol. It is customary (but, of course, not necessary) to 
use lower case letters for terminals, capital letters for variables, and in 
particular the letter S for the start symbol. 

Let r be a grammar with start symbol S and let r, T be the sets of 
variables and terminals of f, respectively. Then we define 

L(f) = {u E T* I S ~ u}, 

and call L(f) the language generated by r. Our purpose in this section is to 
characterize languages which can be generated by grammars. 

We first prove 

Theorem 5.1. Let U be a language accepted by a nondeterministic Turing 
machine. Then there is a grammar r such that U = L(f). 

Proof. Let U ~ T* and let L be a nondeterministic Turing machine that 
accepts U. We will construct f by modifying the semi-Thue process .O(L) 
from Section 2. Let L have the states q1 , ••• , qn. Then we recall that the 
alphabet of .O(L) [which is the same as that of l(L)] consists of 
s0 , q0 , q1 , q2 , ••• , qn, qn + 1 , h in addition to the letters of the alphabet of 
L. We let the terminals of f be just the letters of T, and the variables of f 
be the symbols from the alphabet of .O(L) not in T, together with the two 
additional symbols S and q. S is to be the start symbol of f. The 
productions of f are then the productions of .O(L) together with the 
productions 

qs ---+ sq for each sET 

qh ---+ 0. 
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Now, let L accept u E T*. Then, using Theorem 2.3, we have 

S t hq0 h 7' hq1s0uh t quh 7' uqh t u, 

so that u E L(f). 
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Conversely, let u E L(f). Then u E T* and S f u. Examining the list 
of productions of r, we see that we must in fact have 

S t hq0 h 7' vqhz 1' vz = u. 

Proceeding further, we see that the symbol q could only be introduced 
using the production 

Hence, our derivation must have the form 

S 1' hq0 h 7 xhq1s0 yhz 1' xqyhz 7 xyqhz 1' xyz = u, 

where of course xy = v. Thus, there is a derivation of xhq1 s0 yhz from 
hq0 h in f. Moreover, this must actually be a derivation in O(L) since the 
added productions are clearly inapplicable. Moreover, the productions of 
O(L) always lead from Post words to Post words. Hence, xhq1s0 yhz must 
be a Post word. That is, x = z = 0 and u = xyz = y. We conclude that 

Thus by Theorem 2.3, L accepts u. • 
Now, let us begin with a grammar r and see what we can say about 

L(f). Thus, let the alphabet of f be 

where T = {sl '0 0 0' sn} is the set of terminals, VI' 0 0 0' vk are the variables, 
and S = V1 is the start symbol. Let us order the alphabet of r as shown. 
Thus strings on this alphabet are notations for integers in the base n + k. 
We have 

Lemma 1. The predicate u ==> v is primitive recursive. 
r 

Proof. Let the productions f be g; ~ h;, i = 1, 2, ... , I. We write, for 
i = 1, 2, ... , I, 

PROD;(u, v) = (3r, s),Ju = CONCAT(r,g;, s) & v = CONCAT(r, h;, s)]. 
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Since, by Chapter 5, Section 1, CON CAT is primitive recursive, each of the 
predicates PROD; is primitive recursive. But 

u =f v = PROD 1(u,v) v PROD2(u,v) v ··· v PROD1(u,v), 

and the result follows. • 
We write DERIV(u, y) to mean that for some m, y = [u 1 , ••• , um, 1], 

where the sequence Ut' 0 0 0' um is a derivation of u from s in r. (The "1" 
has been added to avoid complications in case um = u = 0.) Then, since 
the value of S in base n + k is n + 1 [because S = V1 is the (n + l)th 
symbol in our alphabet], we have 

DERIV(u,y) = (3m),r(m + 1 = Lt(y) & (y) 1 = n + 1 

&(y)m =u &(y)m+l = 1 

&('t/j)<m{j = 0 V [(y)j (:> (y)j+t]}). 

Using Lemma 1, we have proved 

Lemma 2. DERIV(u, y) is primitive recursive. 

Also, by definition of DERIV(u, y ), we have for every word u on the 
alphabet of r 

S 'f u = (3y)DERIV(u, y). (5.1) 

Finally, (5.1) shows that 

S ~ u = minDERIV(u,y)!. 
r Y 

Hence, by Lemma 2 and Theorem 7.2 in Chapter 3, we see that {u IS ~ u} 
. B r ts r.e. ut 

L(f) = T* n {u IS =f u} (5.2) 

(where T is the alphabet of terminals of f), so that L(f) is the intersec­
tion of two r.e. sets and hence is r.e. Combining this result with Theorem 
5.1 in Chapter 6 and Theorem 5.1 in this chapter, we have 

Theorem 5.2. A language U is r.e. if and only if there is a grammar r 
such that U = L(f). 
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We now are able to obtain easily the promised converse to Theorem 5.1 
in Chapter 6. In fact putting Theorem 3.1 in Chapter 6 and Theorems 5.1 
and 5.2 in this chapter all together, we have 

Theorem 5.3. Let L be a given language. Then the following conditions 
are all equivalent: 

1. L is r.e.; 
2. L is accepted by a deterministic Turing machine; 
3. L is accepted by a nondeterministic Turing machine; 
4. there is a grammar f such that L = L(f). 

Theorem 5.3 involves some of the main concerns of theoretical com­
puter science: on the one hand, the relation between grammars, the 
languages they generate, and the devices that accept them; on the other 
hand, the relation, for various devices, between determinism and nondeter­
minism. 

We will conclude this section by obtaining a result that will be needed in 
Chapter 11, but can easily be proved at this point. 

Definition. A grammar f is called context-sensitive if for each production 
g---+ h of r we have lgl ~ lhl. 

Lemma 3. If r is context-sensitive, then 

is recursive. 

Proof. It will suffice to obtain a recursive bound for y in formula (5.1). 
Since 

for any derivation u1 , ••• , urn of u from S in the context-sensitive gram­
mar r, we must have 

u 1 ,u2 , ••• ,um ~g(u), 

where g(u) is the smallest number which represents a string of length 
lui + 1 in base n + k. Now, since g(u) is simply the value in base n + k of 
a string consisting of lui + 1 repetitions of 1, we have 

lui 
g(u) = L (n + k)i, 

i=O 
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which is primitive recursive because lui is primitive recursive. Next, note 
that we may assume that the derivation 

S = U 1 ==> u2 ==> • • • ==> Um = U 

contains no repetitions. This is because given a sequence of steps 

z = U; ==> ui+l ==> ••• ==> ui+t = z, 

we could simply eliminate the steps u; + 1 , ... , u; + 1• Hence the length m of 
the derivation is bounded by the total number of distinct strings of length 
::5; lui on our alphabet of n + k symbols. But this number is just g{u). 
Hence, 

m 

[u1, ... ,um,l] = 0Pt;·Pm+l :5;h(u), 
i=l 

where we have written h(u) for the primitive recursive function defined by 

Finally, we have 

g(u) 

h(u) = n pf<u>. Pg(u)+ I . 
i=l 

S 'if u <=> (3y)sh<u>DERIV(u,y), 

which gives the result. • 
Theorem 5.4. If f is a context-sensitive grammar, then L{f) is recursive. 

Proof. We will use Lemma 3 and Eq. (5.2). Since T* is a recursive set, the 
result follows at once. • 

Exercises 

1. For each of the following languages L, give a grammar f such that 
L = L(f). 
(a) L = {alnlblnJ In E N}. 

(b) L = {alnlblmll n ::5; m}. 

(c) L = {wwR I w E {a, b}*}. 

2. Use the construction in the proof of Theorem 5.1 to give a grammar f 
such that L(f) = {llmlBllnJBllm +nJI m, n ~ 0}. 

3. Write down the proof of Theorem 5.2. 
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4. (a) Let f have the variables S, B, C, the terminals a, b, c and the 
productions 

S ~ aSBC, 

CB ~ BC, 

S ~aBC, 

bB ~ bb, 

aB ~ ab, bC ~ be, 

cC ~ cc. 

Prove that for each n -=/= 0, alnlblnlclnJ E L(f). 
(b)* Prove that L(f) = {alnlblnlclnJ In -=/= 0}. 

6. Some Unsolvable Problems Concerning Grammars 

How much information can we hope to obtain about L(f) by a computa­
tion that uses the grammar f as input? Not much at all, as we shall see. 

Let L be a Turing machine and let u be some given word on the 
alphabet of L. We shall construct a grammar fu as follows: 

The variables of ru are the entire alphabet of !.(L) together with S 
(the start symbol) and V. There is just one terminal, namely, a. The 
productions of ru are all of the productions of !.(L) together with 

S ~ hq1s0uh 

hq0 h ~ V 

v~av 

v~a. 

Then it follows at once from Theorems 2.1 and 2.2 that S 'f:> V if and only 
if L accepts u. Thus we have " 

Lemma. If L accepts u, then L(f) = {alii I i -=1= 0}. If L does not accept 
u, then L(fu) = 0. 

Now we can select L so that the language it accepts is not recursive. 
Then there is no algorithm for determining for given u whether L accepts 
u. But the lemma obviously implies the equivalences 

L accepts u = L(f)-=!= 0 

= L(f) is infinite 

<=>aEL(f). 
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We have obtained 

Theorem 6.1. There is no algorithm to determine of a given grammar f 
whether 

1. L(f) = 0, 
2. L(f) is infinite, or 
3. v0 E L(f) for a fixed word v0 • 

We can also prove 

Theorem 6.2. There is no algorithm for determining of a given pair f, ~ 
of grammars whether 

1. L(~) ~ L(f), 
2. L(~) = L(f). 

Proof. Let ~ be the grammar with the single variable S, the single 
terminal a, and the productions 

S ---+ aS 

S---+ a. 

Then L(~) = {a[ill i -=/= 0}. Thus we have by the previous lemma 

L accepts u - L(~) = L(fu) - L(~) ~ L(fu). 

The result follows at once. 

Exercise 

• 

1. Show that there is no algorithm to determine of a given grammar f 
whether 
(a) L(f) contains at least one word with exactly three symbols; 
(b) v0 is the shortest word in L(f) for some given word v0 ; 

(c) L(f) =A* for some given alphabet A. 

*7. Normal Processes 

Given a pair of words g and g we write 

gz ---+ zg 
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to indicate a kind of transformation on strings called a normal production. 
If P is the normal production gz ~ zg we write 

if for some string z we have 

u =gz, v =zg. 

That is, v can be obtained from u by crossing off g from the left of u and 
adjoining g to the right. A normal process is simply a finite set of normal 
productions. If 11 is a normal process, we write 

U'7V 

to mean that 

U=;1V 

for some production P in 11. Finally, we write 

u~v 

to mean that there is a sequence (called a derivation) 

The word problem for 11 is the problem of determining of two given words 
u, v whether u ~ v. 

Let TI be a semi-Thue process on the alphabet {a, b} with an unsolvable 
word problem. We shall show how to simulate TI by a normal process 11 on 
the alphabet {a, b, ii, b}. As earlier, if u E {a, b}*, we write u for the word 
on {ii, b} obtained by placing - above each letter in u. Let the produc­
tions of TI be 

Then the productions of 11 will be 

g;z ~ zh; 

az ~ zii 

bz ~zb 
iiz ~ za 

bz ~ zb. 

i = l,2, ... ,n. 

i = 1,2, ... , n 

A word on {a, b, ii, b} is called proper if it can be written in one of the 
forms uv or uv, where u, v are words on {a, b}. We say that two words are 
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associates if there is a derivation of one from the other using only the last 
four productions of 11. A word on {a, b} of length n has 2n associates, all of 
which are proper. For example, the associates of baab are as follows: 

~=~=~=~=~=~=~=~=~. 

Generally for u, v E {a, b}*, the proper words uv and uv are associates of 
each other and also of the word vu. In fact, vu is the unique word on {a, b} 
which is an associate of uv. Thus, a word is proper just in case it is an 
associate of a word on {a, b}. 

Lemma 1. If u If v, then u ~ v. 

Proof. We have u = pg;q, v = ph;q for some i. Then 

Lemma 2. If u if v, then u ~ v. 

Proof. Immediate from Lemma 1. 

• 

• 
Lemma 3. Let u be proper and let u 7 v. Then there are words r, s on 
{a, b} that are associates of u, v, respectively, such that r if s. 
Proof. If v is an associate of u, then u and v are both associates of some 
word r on {a, b}, and the result follows because r 'if r. 

If v is not an associate of u, the production used to obtain v from u 
must be one of the g;z ~ zh;. Since u is proper, we have u = g;elfi, where 
p, q are words on {a, b}. Then v = qph;. Thus, setting 

r = pg;q, 

the result follows because r If s. • 
Lemma 4. Let u be proper and let u ~ v. Then there are words r, s on 
{a, b} that are associates of u, v, respectively, such that r =if s. 
Proof. By induction on the length of the derivation in 11 of v from u. The 
result is obvious if the derivation has length 1. Suppose the result is known 
for derivations of length m, and let 

By the induction hypothesis, there are words r, z on {a, b} that are 
associates of u, um, respectively, such that r 'if z. By Lemma 3, um + 1 is an 
associate of a words on {a, b} such that z =if s. Thus, r =if s. • 
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Lemma 5. Let u, v be words on {a, b}. Then u ~ v if and only if u fr v. 

Proof. By Lemma 2 we know that u fr v implies u ~ v. Conversely, if 
u ~ v, by Lemma 4, r fr s, where r, s are words on {a, b} that are 
associates of u, v, respectively. But since u, v are already words on {a, b}, 
we have r = u, s = v, so that u fr v. • 

Since n was chosen to have an unsolvable word problem, it is now clear 
that v has an unsolvable word problem. For, by Lemma 5, if we had an 
algorithm for deciding whether u ~ v, we could use it to decide whether 
u fr v. 

We have proved 

Theorem 7.1. There is a normal process on a four-letter alphabet with an 
unsolvable word problem. 

Exercise 

1. Show that there is a normal process with an unsolvable word problem 
whose alphabet contains only two letters. 
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Classifying Unsolvable Problems 

1. Using Oracles 

Once one gets used to the fact that there are explicit problems, such as the 
halting problem, that have no algorithmic solution, one is led to consider 
questions such as the following. 

Suppose we were given a "black box" or, as one says, an oracle, which 
somehow can tell us whether a given Turing machine with given input 
eventually halts. (Of course, by Church's thesis, the behavior of such an 
"oracle" cannot be characterized by an algorithm.) Then it is natural to 
consider a kind of program that is allowed to ask questions of our oracle 
and to use the answers in its further computation. Which noncomputable 
functions will now become computable? 

In this chapter we will see how to give a precise answer to such 
questions. To begin with, we shall have to modify the programming 
language Y introduced in Chapter 2, to permit the use of "oracles." 
Specifically, we change the definition of "statement" (in Chapter 2, Section 
3) to allow statements of the form V +-- O(V) instead of V +-- V. The 
modified version of Y thus contains four kinds of statement: increment, 
decrement, conditional branch, and this new kind of statement which we 
call an oracle statement. The definitions of instruction, program, state, 
snapshot, and terminal snapshot remain exactly as in Chapter 2. 

197 
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We now let G be some partial function on N with values in N, and we 
shall think of G as an oracle. Let .9J be a program of length n and let 
(i, u) be a nonterminal snapshot of .9, i.e., i :::;; n. We define the snapshot 
(j, T) to be the G-successor of (i, u) exactly as in the definition of 
successor in Chapter 2, Section 3, except that Case 3 is now replaced by 

Case 3. The ith instruction of .9J is V +-- O(V) and u contains the equation 
V = m. If G(m)J,, then j = i + 1 and T is obtained from u by 
replacing the equation V = m by V = G(m). If G(m) i, then 
(i, u) has no successor. 

Thus, when G(m) J,, execution of this oracle statement has the intuitive 
effect of answering the computer's question "G(m) = ?". When G(m)j, 
an "out-of-bounds" condition is recognized, and the computer halts with­
out reaching a terminal snapshot. Of course, when G is total, every 
nonterminal snapshot has a successor. 

A G-computation is defined just like computation except that the word 
successor is replaced by G-successor. A number m that is replaced by 
G(m) in the course of a G-computation (under Case 3) is called an oracle 
query of the G-computation. We define 1/J.J.~ {;(r 1 , r 2 , ••• , r m) exactly as we 
defined I/J.J.m>(r1 , r2 , ••• , r m) in Chapter 2, Section 4, except that the word 
computation is replaced by G-computation. 

Now, let G be a total function. Then, the partial function 
I/J.J.~{;(x 1 , ••• , xm) is said to be G-computed by .9. A partial function f is 
said to be partially G-computable or G-partial recursive if there is a 
program that G-computes it. A partially G-computable function that is 
total is called G-computable or G-recursive. Note that we have not defined 
partially G-computable unless G is a total function. 

We have a few almost obvious theorems. 

Theorem 1.1. If f is partially computable, then f is partially G-computa­
ble for all total functions G. 

Proof. Clearly, we can assume that f is computed by a program .9J 
containing no statements of the form' V +-- V. Now this program .9J is also 

1 Unlabeled statements V +- V can just be deleted, and 

can be replaced by 

[L] V+-V 

[L] V+- V+ 1 

V+-V-1. 
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a program in the new revised sense; moreover, a computation of 9' is the 
same thing as a G-computation of 9' since 9' contains no oracle state­
ments. Hence 1/JJ-~6 = 1/JJ.m> for all G. • 

We write I for the identity function /(x) = x. (Thus, I= ulJ 

Theorem 1.2. f is partially computable if and only if f is partially 
/-computable. 

Proof. If f is partially computable, then by Theorem 1.1 it is certainly 
partially /-computable. Conversely, let 9' /-compute f. Let 9'' be ob­
tained from 9' by replacing each oracle statement V +--- O(V) by V +--- V. 
Then, 9'' is a program in the original sense and 9'' computes f. • 

Theorem 1.3. Let G be a total function. Then G is G-computable. 

Proof. The following program2 clearly G-computes G: 

X+--- O(X) 

Y+-X • 

Theorem 1.4. The class of G-computable functions is a PRC class. 

Proof. Exactly like the proof of Theorem 3.1 in Chapter 3. • 

This last proof illustrates a situation, which turns out to be quite typical, 
in which the proof of an earlier theorem can be used virtually intact to 
prove a theorem relative to an "oracle" G. One speaks of a relativized 
theorem and of relativizing a proof. It is a matter of taste how much detail 
to provide in such a case. 

Theorem 1.5. Let F be partially G-computable and let G be H-computa­
ble. Then F is partially H-computable. 

Proof. Let 9' be a program which G-computes F. Let 9'' be obtained 
from 9' by replacing each oracle statement V +--- O(V) by a macro 
expansion obtained from some program which H-computes G. Then 
clearly, 9'' H-computes F. • 

Theorem 1.6. Let G be any computable function. Then a function F is 
partially computable if and only if it is partially G-computable. 

2 Of course, we can freely use macro expansions, as explained in Chapter 2. 
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Proof. Theorem 1.1 gives the result in one direction. For the converse, let 
F be partially G-computable. By Theorem 1.2, G is /-computable. Hence, 
by Theorem 1.5, F is partially /-computable and so, by Theorem 1.2 again, 
F is partially computable. • 

It is useful to be able to work with "oracles" that are functions of more 
than one variable. We introduce this notion by using a familiar coding 
device from Chapter 3, Section 8. 

Definition. Let f be a total n-ary function on N, n > 1. Then we say 
that g is (partially) !-computable to mean that g is (partially) G-computa­
ble, where 

G(x) = f((x) 1 , ••• , (x)n). (1.1) 

Theorem 1.7. Let f be a total n-ary function on N. Then f is /-computa­
ble. 

Proof. Let G be defined by (1.1). Then 

f(xl ' ... ' xn) = G([xl ' ... ' xn]). 

Hence the following program G-computes f: 

Z ~ O(Z) 

y~z • 
Since predicates are also total functions we can speak of a function 

being (partially) P-computable, where P is a predicate. Also, we speak of a 
function being (partially) A-computable when A ~ N; as usual, we simply 
identify A with the predicate that is its characteristic function. 

Exercises 

1. Provide a suitable definition of computability by a Post-Turing pro­
gram relative to an oracle and prove an appropriate equivalence 
theorem. 

2. For a given total function G from N to N, define the class Rec(G) to 
be the class of functions obtained from G and the initial functions of 
Chapter 3 using composition, recursion, and minimalization. Prove 
that every function in Rec(G) is partially G-computable. 
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2. Relativization of Universality 

We now proceed to relativize the development in Chapter 4. As in Chapter 
4, Section 1, we define an instruction number #(I) = (a, ( b, c)) for all 
instructions /. The only difference is that b = 0 now indicates an oracle 
staLement instead of one of the form V ~ V. For 9' a program, we now 
define #(9') as before. As indicated in Chapter 4, in order to avoid 
ambiguity we must not permit a program ending in the instruction whose 
number is 0. This instruction is now the unlabeled statement Y ~ O(Y). 
Hence, for complete rigor, if we wish to end a program with Y ~ O(Y), we 
will have to provide the statement with a spurious label. 

We define <t>g'>(xp ... ,xn,y) to be t/J.J.~b(x 1 , ... ,xn) where 9' is the 
unique program such that #(9') = y. We also write <l>c(x, y) for <I>g>(x, y). 
We have 

Theorem 2.1 (Relativized Universality Theorem). Let G be total. Then 
the function <l>g'>(x 1 , ••• , xn, y) is partially G-computable. 

Proof. The proof of this theorem is essentially contained in the program 
of Fig. 2.1. The daggers (*) indicate the changes from the unrelativized 
universal program in Fig. 3.1 in Chapter 4. As in that case, what we have is 
essentially an interpretative program. The new element is of course the 
interpretation of oracle statements. This occurs in the following program 
segment which, not surprisingly, itself contains an oracle statement: 

[0] W ~ (S)r(U)+ 1 

B~w 

B ~ O(B) 
S~lSjPwj·P 8 

The program segment works as follows. First, W and B are both set to the 
current value of the variable in the oracle statement being interpreted. 
Then an oracle statement gives B a new value which is G of the old value. 
Finally, this new value is stored as an exponent on the appropriate prime 
in the number S. The remainder of the program works exactly as in the 
unrelativized case. • 

Let G be any partial function on N with values in N. Then we define 
the relativized step-counter predicate by 

STP~n>(x 1 , ••• , xn, y, t) = there is a G-computation of program number 
y of length ~ t + 1 beginning with inputs 
xl , . .. ,xn. 
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z +- x.+ 1 + 1 
n 

s +- n (p2;)x, 
i=l 

K+-1 

[C] IF K = Lt(Z) + 1 v K = 0 GOTO F 

U +- r((Z)K) 

p +- Pr(U)+ I 
IF l(U) = 0 GOTO 0 (:j:) 

IF l(U) = 1 GOTO A 

IF -(PIS) GOTO N 

IF l(U) = 2 GOTO M 

K+- min [l((Z);) + 2 = l(U)] 
i,;Lt(Z) 

GOTOC 

[0] W +- (S)r(U)+ 1 (:j:) 

B +- W (:j:) 

B+-O(B) (:j:) 

S +-[S/Pwj ·P8 (:j:) 

GOTON (:j:) 

[M] S +-[S/PJ 

GOTON 

[A] S+-S·P 

[N] K+-K+ 1 

GOTOC 

[F] y +- (S)I 

Figure 2.1. Program that G-computes CI>h">(xl ' ... ' x.' x.+ I). 

As in the unrelativized case, we have 

Theorem 2.2 (Relativized Step-Counter Theorem). For any total function 
G, the predicates STP~">(xp ... , x., y, t) are G-computable. 

In Chapter 4 we proved that the unrelativized predicates STP<•> are 
primitive recursive, but we do not need such a sharp result here. Instead, 
we modify the program in Fig. 2.1 by adding a variable Q that functions as 
a step counter. Then each time through the main loop, Q is increased by 1, 
so that the program will "know" when a given number of steps has been 
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Z <-- Xn+ 1 + 1 
n 

s --- . n (p2i)x; 
•=1 

K<--1 

[C] Q=Q+1 (*) 

IF Q > Xn+Z + 1 GOTO E (*) 

IF K = Lt(Z) + 1 v K = 0 GOTO F 

U <-- r((Z)K) 

p <-- Pr(U)+ I 

IF l(U) = 0 GOTO 0 (:j:) 

IF /(U) = 1 GOTO A 

IF -(PIS) GOTO N 

IF /(U) = 2 GOTO M 

K<- min [l((Z);) + 2 = l(U)] 
islt(Z) 

GOTOC 

[O] W <-- (S)r(U)+ I (:j:) 

B <-- W (:j:) 

B <-- O(B) (:j:) 

S <-[SjPwj·P8 (:j:) 

GOTON (:j:) 

[M] S <-[S/PJ 

GOTON 

[A] S<-S·P 

[N] K<-K+ 1 

GOTOC 

[F] Y<--1 (*) 

Figure 2.2. Program that G-computes STPhnl(X1 , ••• , Xn, Xn+ 1 , Xn+ 2 ). 

exceeded. The program is given in Fig. 2.2. The asterisks (*) indicate 
changes from the relativized universal program and the daggers (:j:), as 
before, indicate the changes made in relativizing. 

We shall now consider certain partial functions with finite domains, and 
use numbers as codes for them. For every u E N we define 

{u}(i) = { ~(u))i+ I fori < l(u) 

fori ~ l(u). 
(2.1) 
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Thus, if /(u) = 0, then {u} = 0, the nowhere defined function. Also, if 

u = (k,[a0 ,a1 , ••• ,ak_ 1]), 

then {u}(x) =ax for x = 0, 1, ... , k - 1 and {u}(x)j for x :2: k. 

Theorem 2.3. The predicate 

P (X 1 , ••• , X n , Y, I, U) <=> STI{W( X 1 , ••• , X n , Y, I) 

is computable. 

Proof. We will transform the program in Fig. 2.2 into one that computes 
P(x 1 , ••• ,xn,xn+l•xn+z•Xn+ 3 ). We need only replace the single oracle 
statement B ~ 0( B) by instructions that operate on X n + 3 to obtain the 
required information about {xn+ 3}. This involves first testing for 
{x n + 3}(b),!., where b is the value of the variable B. If {x n + 3}(b) i, compu­
tation should halt with output 0, because there is no computation in this 
case. Otherwise B should be given the value {xn+ 3}(b). Thus, by (2.1), it 
suffices to replace the oracle statement B ~ O(B) in the program in Fig. 
2.2 by the following pair of instructions: 

IF l(Xn+3):::;; B GOTO E 

• 
Now, let G be a total function. Then, we define 

u-<G 

to mean that {u}(i) = G(i) for 0 :::;; i < /(u). [Of course, by (2.1), {u}(i)j for 
i ;;::: /(u).] For a number u such that u -< G, values of G can be retrieved 
by using the equations 

G(i) = (r(u))i+ 1 , i = 0, 1, ... ,/(u)- 1. 

We can use the predicate STI{~j>(x 1 , ••• , xn, y, t) to obtain an important 
result that isolates the noncomputability of the relativized step-counter 
predicate in a way that will prove helpful. The simple observation on which 
this result capitalizes is that any G-computation can contain only finitely 
many oracle queries. 

Theorem 2.4 (Finiteness Theorem). Let G be a total function. Then, we 
have 
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Proof. First suppose that STPbn>(x1 , ••• , xn, y, t) is true for some given 
values of x 1 , ••• , xn, y, t, and let go be the program with #(go)= y. Let 
s 1 , s 2 , ••• , s k be a G-computation of go where s 1 is the initial snapshot 
corresponding to the input values x 1 , x2 , ••• , xn and where k:::;; t + 1. Let 
M be the largest value of an oracle query of this G-computation, and let 
u = (M + 1,[G(O),G(l), ... ,G(M)]). Thus, u-< G and {u}(m) = G(m) 
for all m :::;; M. Hence, s1, s2 , ••• , sk is likewise a {u}-computation of go_ 
Since k :::;; t + 1, STI(~j>(x 1 , ••• , xn, y, t) is true. 

Conversely, let us be given u -< G such that STI(~j>(x 1 , ••• , xn, y, t) is 
true, and let #(go)= y, Let s1, s2 , ••• , sk be a {u}-computation of go 
where s1 is the initial snapshot corresponding to the input values 
x 1 , x2 , ••• , xn and where k :::;; t + 1. For each m that is an oracle query of 
this {u}-computation, we must have {u}(m) J,, since otherwise one of the 
snapshots in this {u}-computation would be nonterminal and yet not have a 
successor. Since u -< G, we must have {u}(m) = G(m) for all such m. 
Hence s1, s2 , ••• , sk is likewise a G-computation of go_ Since k :::;; t + 1, 
STPtn>(x1 , ••• , xn, y, t) is true. • 

To conclude this section we turn to the parameter theorem (Theorem 
5.1 in Chapter 4). 

Theorem 2.5 (Relativized and Strengthened Parameter Theorem). For 
each n, m > 0, there is a primitive recursive function s;:.(u 1 , ••• , un, y) 
such that for every total function G: 

<t>&m+nl(x1 , ••• , Xm, U1 , ••• , Un, y) = <t>&m>(x 1 , ••• , Xm, S;:.(ul, ... , Un, y)). 

(2.2) 

Moreover, the functions s;:. have the property: 

Proof. The functions s;:. are defined exactly as in the proof of Theorem 
5.1 in Chapter 4. We briefly give the proof again in a slightly different way. 
Thus, let #(go) = y; then the function S~(u, y) is defined to be the 
number of the program .9 obtained from go by preceding it by the 
statement 

xm+l ~xm+l + 1 

repeated u times. Since .9 on inputs x1, ... , xm will do exactly what go 
would have done on inputs x 1 , ••• , x m , u we have 
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the desired result for n = 1. To complete the proof, we define s::, for 
n > 1 by the recursion 

It is now easy to prove by induction on n that if #(9') = y, then 
s::,(ul' ... ' un 'y) = #(.9), where .9 is obtained from 9' by preceding it 
by the following program consisting of un + ··· +u1 statements. 

~m+n +-- xm+n + 1} 
. u 
• n 

xm+n +-- xm+n + 1 

Hence, .9 on inputs x 1 , ••• , x m will do exactly what 9' would have done 
on inputs x1 , ••• , xm, u1 , ••• , un. Thus, we obtain (2.2). 

Finally, let 

s::,(ul ' ... ' un 'y) = s::,(ul ' ... ' un 'y) = #(.9), 

and let y = #(9'). Then, .9 consists of a list of increment statements 
followed by 9', and for 1 :::;; i :::;; n, U; and u; are both simply the number of 
times the statement 

xm+i +-- xm+i + 1 

occurs in .9 preceding 9'. Thus, U; = u;. 

Exercises 

1. (a) Show that the functions s::, do not have the property: 

• 

(b) Can the definition of s::, be modified so the parameter theorem 
continues to hold, but so the condition of (a) holds as well? How? 

2. Prove the converse of Exercise 1.2. 
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3. Reducibility 

If A and B are sets such that A is B-recursive, we also say that A is 
Turing-reducible to B and we write A ~, B. We have 

Theorem 3.1. A ~, A. If A ~, B and B ~, C, then A ~,C. 

Proof. The first statement follows at once from Theorem 1.3 and the 
second from Theorem 1.5. • 

Any relation on the subsets of N for which Theorem 3.1 is true is called 
a reducibility. Many reducibilities have been studied. For example, we 
introduced many-one reducibility in Chapter 4. We can also define a 
restricted form of many-one reducibility. 

Definition. We write A ~ 1 Band say that A is one-one reducible to B if 
there is a one-one recursive function f (i.e., f(x) = f(y) implies x = y) 
such that 

A= {x EN I f(x) E B}. 

Theorem 3.2. A ~ 1 B implies A ~m B implies A ~, B. 

Proof. The first implication is immediate. For the second implication, let 
A = {x EN I f(x) E B}, where f is recursive. Then the following program 
B-computes A: 

X~ f(X) 

X~ O(X) 
v~x 

Theorem 3.3. ~ 1 and ~m are both reducibilities. 
• 

Proof. Clearly A = {x EN I /(x) E A}, where I is the identity function. 
Hence A ~ 1 A and therefore A ~m A. 

Let A ~m B and B ~m C, and let 

A = {x EN I f(x) E B}, 

where J, g are recursive. Then 

B = {x E N I g(x) E C}, 

A= {x ENig(f(x)) E C}, 

so that A ~me. If, moreover, f and g are one-one and h(x) = g(f(x)), 
then h is also one-one, because 

h(x) = h(y) implies g(f(x)) = g(f(y)) 

implies f(x) = f(y) 

implies x = y. • 
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Thus, we have three examples, :::;; 1, ::;;m, and :::;;~' of reducibilities. 
Polynomial-time reducibility, ::;;P , which we will study in Chapter 15, is 
another example. (In fact, historically, polynomial-time reducibility was 
suggested by many-one reducibility.) There are a number of simple 
properties that all reducibilities share. To work some of these out, let us 
write ::;;Q to represent an arbitrary reducibility. By replacing Q by 1, m, t 
(or even p) we specialize to the particular reducibilities we have been 
studying. We write A $, QB to indicate that it is not the case that 
A ::;;Q B. 

Definition. A =Q B means that A ::;;Q Band B ::;;Q A. 

Theorem 3.4. For any reducibility ::;;Q: 

A =Q A, 

A =Q B implies B =Q A, 

A =Q B and B =Q C implies A =Q C. 

Proof. Immediate from the definition. • 
Definition. Let W be a collection of subsets of N and let ::;;Q be a 
reducibility. W is called Q-closed if it has the property 

A E Wand B ::;;Q A implies B E W. 

Also, a set A E W is called Q-complete for W if for every B E W we have 
B ::;;Q A. 

NP-completeness, which will be studied in Chapter 15, is, in the present 
terminology, polynomial-time completeness for NP. Completeness of a set 
A is often proved by showing that a set already known to be complete can 
be reduced to A. 

Theorem 3.5. Let A be Q-complete for W, let BE W, and let A ::;;Q B. 
Then B is Q-complete for W. 

Proof. Let C E W. Then C ::;;Q A. Hence C ::;;Q B. • 

If W is a collection of subsets of N, we write 

co-W = {A ~ N I A E W}. 

Theorem 3.6. Let co-W be Q-closed, let A be Q-complete for W, and let 
A E co-W. Then we have W = co-W. 
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Proof. Let BE W. Then, since A is Q-complete for W, B ~Q A. Since 
A E co-W and co-W is Q-closed, BE co-W. This proves that W ~co-W. 

Next let B E co-W. Then ii E W. By what has already been shown, 
ii E co-W. Hence B E W. This proves that co-W ~ W. • 

As we shall see, Theorem 3.6 is quite useful. Our applications will be to 
the case of one-one and many-one reducibility. For this purpose, it is 
useful to note 

Theorem 3.7. If A ~m B, then A ~m B. Likewise if A ~, B, then 
A~, ii. 
Proof. If A = {x E Nlf(x) E B}, then clearly A= {x E Nlf(x) E B} . 

• 
Corollary 3.8. If W ism-closed or 1-closed, then so is co-W. 

Proof. Let BE co-W, A ~m B. By the theorem, A ~m B. Since BE W 
and W ism-closed, A E W. Hence A E co-W. Similarly for ~, . • 

For a concrete example, we may take W to be the collection of r.e. 
subsets of N. (For notation, the reader should review Chapter 4, Section 
4.) We have 

Theorem 3.9. K is 1-complete for the class of r.e. sets. 

Proof. Let A be any r.e. set. We must show that A ~, K. Since A is r.e., 
we have 

A = {x EN I f(xH}, 

where f is a partially computable function. Let g(t, x) = f(x) for all t, x. 
Thus, g is also partially computable. Using the (unrelativized) universality 
and parameter theorems, we have for a suitable number e: 

Hence, 

g(t,x) = ci><2>(t,x,e) = ci>(t,Sf(x,e)). 

A = {x EN I f(x) ~} 

= {x EN I g(Sf(x, e), x) ~} 

= {x EN I ci>(Sf(x, e), Sf(x, e)H} 

= {x EN I Sf(x,e) E K}. 

Thus, A ~m K. But, by the strengthened version of the parameter theo­
rem (Theorem 2.5), Sf(x, e) is actually one-one. Hence, A ~, K. • 
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The class of r.e. sets is easily seen to be m-closed. Thus, let f be partial­
ly computable, let A = {x EN I f(x) ~ }, and let B = {x EN I g(x) E A}, 
where g is computable. Then 

B = {x EN I f(g(x))t}, 

so that B is r.e. Applying Theorems 3.2, 3.6, and 3.9 and Corollary 3.8, we 
obtain the not very interesting conclusion: 

If Kis r.e., then the complement of every r.e. set is r.e. 

Since we know that K is in fact not r.e., this does us no good. However, 
Corollary 3.8 and Theorem 3.6 together with the fact that there is an r.e. 
set (e.g., K) whose complement is not r.e. permits us to conclude 

Theorem 3.10. If A is m-complete for the class of r.e. sets, then A is not 
r.e., so that A is not recursive. 

We conclude this section with a simple but important construction. For 
A, B ~ N we write 

A E9 B = {2x I x E A} u {2x + 11 x E B}. 

Intuitively, A E9 B contains the information in both A and B and nothing 
else. This suggests the truth of the following simple result. 

Theorem 3.11. A ~. A E9 B, B ~. A E9 B. If A ~. C and B ~. C, then 
A E9 B ~.C. 

Proof. The following program (A E9 B)-computes A: 

x~2x 

X~ O(X) 

Y~x 

If the first instruction is replaced by X~ 2X + 1, the program (A E9 B)­
computes B. 

Finally, let CA, C8 be the characteristic functions of A and B, respec­
tively. Assuming that A and B are both C-computable, there must be 
programs that C-compute the functions CA and C8 , respectively. Hence, 
we may use macros 
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in programs that have C available as oracle. Thus, the following program 
C-computes A E9 B: 

Exercises 

IF21 X GOTO D 
X+-- l(X _:_ 1)/2J 
Y +-- CiX) 
GOTOE 

[D] X+-- lX/2J 
Y +-- CiX) 

• 

1. Let U = {x EN ll(x) E W,.<x>}. Show that U is 1-complete for the 
class of r.e. sets. 

2. Let K :::;; 1 A and let 

C = {x EKI<I>/x) ~A E9A}. 

Prove that A :::;; 1 C, C :::;;1 A, but C ~ m A. 

3. Prove that Theorem 3.11 holds with :::;; 1 replaced by ::;;m • 

4. Let FIN = {x E N I W., is finite}. Prove that K :::;; 1 FIN. 

5. Prove that if B, li-=/= 0, then for every recursive set A, A :::;;m B. 

4. Sets r.e. Relative to an Oracle 

If G is a total function (of one or more arguments) we say that a set 
B ~ N is G-recursively enumerable (abbreviated G-r.e.) if there is a par­
tially G-computable function g such that 

B = {x E N I g(x) ~}. 

By Theorem 1.6, r.e. sets are then simply sets that are G-r.e. for some 
computable function G. 

It is easy to relativize the proofs in Chapter 4, Section 4, using, in 
particular, the relativized step-counter theorem. We give some of the 
results and leave the details to the reader. 

Theorem 4.1. If B is a G-recursive set, then B is G-r.e. 
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Theorem 4.2. The set B is G-recursive if and only if B and li are both 
G-r.e. 

Theorem 4.3. If B and C are G-r.e. sets, so are B u C and B n C. 

Next, we obtain 

Theorem 4.4. The set A is G-r.e. if and only if there is a G-computable 
predicate Q (x, t) such that 

A= {x EN l(3t)Q(x,t)}. (4.1) 

Proof. First let A be G-r.e. Then, there is a partially G-computable 
function h such that 

A = {x E N I h(x H}. 
Writing h(x) = <I>G(x, z0 ), we have 

A = {x EN I (3t)STPi}>(x, z0 , t)}, 

which gives the result in one direction. 
Conversely, let (4.1) hold, where Q is a G-computable predicate. Let 

h(x) be the partial function which is G-computed by the following pro­
gram: 

Then clearly, 

so that A is G-r.e. 

[B] Z +--- Q(X, Y) 
Y+-Y+1 
IF Z = OGOTO B 

A = {x E N I h(x) ~}, 

• 
Corollary 4.5. The set A is G-r.e. if and only if there is a G-recursive set 
B such that 

A= {x EN l(3y)((x,y) E B)}. 

Proof. If B is G-recursive, then the predicate ( x, y) E B is G-computa­
ble (by Theorem 1.4) and hence, by the theorem, A is G-r.e. 

Conversely, if A is G-r.e., we have a G-computable predicate Q such 
that (4.1) holds. Letting B = {z EN I Q(/(z), r(z))}, B is (again by Theo­
rem 1.4) G-recursive and 

A= {x EN l(3y)((x,y) E B)}. • 
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For any unary function G, we write 

w,c = {x ENI<I>c(x,n)J,}. 

(Thus W, = Wj.) For the remainder of this section, G will be a unary total 
function. We have at once 

Theorem 4.6 (Relativized Enumeration Theorem). A set B is G-r.e. if 
and only if there is an n for which B = w,c . 

We define 

G' = {n E N I n E w,c}. 

(Thus, K = /'.) G' is called the jump of G. We have 

Theorem 4.7. G' is G-r.e. but not G-recursive. 

This is just the relativization of Theorem 4.7, in Chapter 4, and the 
proof of that theorem relativizes easily. However, we include the details 
because of the importance of the result. 

Proof of Theorem 4. 7. Since 

G' = {n EN I <l>c(n, n)J,}, 

the relativized universality theorem shows that G' is G-r.e. If G' were also 
G-r.e., we would have G' = w;c for some i EN. Then 

i E G' <=> i E we <=> i E G' 
I ' 

a contradiction. • 
Our next result is essentially a relativization of Theorem 3.9. 

Theorem 4.8. The following assertions are all equivalent: 

a. A .:5; 1 G'; 
b. A .:5;m G'; 
c. A is G-r.e. 

Proof. It is obvious that assertion a implies b. To see that b implies c, let 
h be a recursive function such that 

x E A if and only if h(x) E G'. 

Then 

x E A if and only if <l>c(h(x), h(x)) L 

so that A is G-r.e. 
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Finally, to see that c implies a, let A be G-r.e., so that we can write 

A= {x EN I f{x),l.}, 

where f is partially G-computable. Let g(t, x) = f(x) for all t, x. By the 
relativized universality and parameter theorems, we have, for some num­
ber e, 

Hence, 

g(t, x) = ct>g>(t, x, e)= cl>c(t, S/(x, e)). 

A= {x EN I f(x),l.} 

= {x EN I g(S/(x, e), x),l.} 

= {x EN I <l>c(S/(x, e), Sf(x, e)),!.} 

= {x EN I S/(x,e) E G'}. 

Since, by Theorem 2.5, Sf(x, e) is one-one, we have A ~ 1 G'. • 
Theorem 4.9. IfF and G are total unary functions and F is G-recursive, 
then F' ~ 1 G'. 

Proof. By Theorem 4.7, F' is F-r.e. That is, we can write 

F' = {x ENIJ(x),l.}, 

where f is partially F-computable. By Theorem 1.5, f is also partially 
G-computable. Hence F' is G-r.e. By Theorem 4.8, F' ~ 1 G'. • 

By iterating the jump operation, we can obtain a hierarchy of problems 
each of which is "more unsolvable" than the preceding one. 

We write c<n> for the jump iterated n times. That is, we define 

We have 

G<O> = G, 

c<n+l> = (G<n>)'. 

Theorem 4.10. 0<n+ I) is 0<n>-r.e. but not 0<n>-recursive. 

Proof. Immediate from Theorem 4.7. • 
It should be noted that, by Theorem 4.9, K =1 0', since I and 0 are 

both recursive and K = I'. Later we shall see that much more can be said 
along these lines. 
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Exercise 

1. Show that there are sets A, B, C such that A is B-r.e. and B is C-r.e., 
but A is not C-r.e. 

5. The Arithmetic Hierarchy 

The arithmetic hierarchy, which we will study in this section, is one of the 
principle tools used in classifying unsolvable problems. 

Definition. I 0 is the class of recursive sets. For each n E N, In+ 1 is the 
class of sets which are A-r.e. for some set A that belongs to In. For all n, 
nn =co-In, an= Inn nn. 

Note that I 1 is the class of r.e. sets and that I 0 = ll 0 = a0 = d 1 is the 
class of recursive sets. 

Theorem 5.1. In~ In+l> lln ~ lln+l· 

Proof. For any set A E In, A is A -r.e. and hence A E In+ 1 . The rest 
follows by taking complements. • 

Theorem 5.2. 0<n> E In. 

Proof. By induction. For n = 0 the result is obvious. The inductive step 
follows at once from Theorem 4.10. • 

Theorem 5.3. A E In+ 1 if and only if A is 0<n>-r.e. 

Proof. If A is 0<n>-r.e., it follows at once from Theorem 5.2 that 
A E In+ I' 

We prove the converse by induction. If A E l 1 , then A is r.e., so, of 
course, A is 0-r.e. Assume the result known for n = k and let A E Ik+ 2 . 

Then A is B-r.e. for some B E Ik+ 1 . By the induction hypothesis, B is 
0<k>-r.e. By Theorem 4.8, A :::;; 1 B' and B :o;; 1 0<k+ 1). By Theorem 4.9, 
B' :o;; 10<k+Z>. Hence A :o;; 1 0<k+Z>, and by Theorem 4.8 again, A is 0<k+ I)_ 

~ . 
Corollary 5.4. For n ~ 1 the following are all equivalent: 

A< 0(n). 
-1 ' 
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Proof. This follows at once from Theorems 4.8 and 5.3. 

Corollary 5.5. For n ~ 1, 0<n> is 1-complete for !.n. 

Proof. Immediate from Theorem 5.2 and Corollary 5.4. 

• 

• 
Corollary 5.6. For n ~ 1, !.n and lln are both m-closed and hence 
1-closed. 

Proof. Let A E !.n, B :::;;m A. Then using Corollary 5.4 twice, B :::;; m 0<n>, 
and hence B E !,n. This proves that !,n is m-closed. The result for nn is 
now immediate from Corollary 3.8. • 

Theorem 5.7. A E An+ 1 if and only if A :::;;1 0<n>. 

Proof. Immediate from Theorems 4.2 and 5.3. • 
In particular, since K =1 0' (actually K =1 0'), A2 consists of all sets 

that are K-recursive, that is, sets for which there are algorithms that can 
decide membership by making use of an oracle for the halting problem. 

Theorem 5.8. !,n u nn ~ An+ I. 

Proof. For n = 0, the inclusion becomes an equality, so we assume 
n ~ 1. If A E In, then by Corollary 5.4, A :::;;10<n>, so by Theorem 5.7, 
A E An+ I" If A E nn, then A ::;;10(n). But clearly A :::;;1 A(for example, 
by Theorem 1.4). Hence A :::;; 1 0<n> and by Theorem 5.7, A E An+t· • 

Theorem 5.9. For n ~ 1, 0<n> E In - An. 

Proof. By Theorem 4.10, 0<n> is not 0<n -!>-recursive. • 
Theorem 5.10 (Kieene's Hierarchy Theorem). We have for n ~ 1 

1. An c !.n, An c lln; 
2. Inc In+t• nn c nn+t; 
3. In u nn c An+t· 

Proof. 

1. By definition An ~ !.n, An ~ lln. By Theorem 5.9, 0<n> E In - An, 
and so 0(n)E nn -An. Thus the inclusions are proper. 

2. By Theorem 5.1 we need show only that the inclusions are proper. 
B 0 (n+l) ~ If0(n+l) ~ b Th 580(n+l) A ut E "'-n+l" E "'-n• ~orem . , E an+!• 
contradicting Theorem 5.9. Likewise 0<n+t>E lln+t- lln. 
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3. By Theorem 5.8, we need show only that the inclusion is proper. Let 
An = 0(n) (B 0(n). We shall show that An E An+ I -(In u lln). By 
Theorem 3.11 (with C = 0<n>), we have An ::5; 1 0<n>. Hence An E 
An+ 1 • Also, 

0(n) = {x EN l2x E An}, 

0(n)= {x ENI2x + 1 EAn}. 

Hence 0<n> ::5; 1 An, 0<n> ::5; 1 An. Suppose that An E In. Then, by 

Corollary 5.6, 0<n>E In, so that 0<n> E An, contradicting Theorem 
5.9. Likewise if An E nn' then 0(n) E nn and hence 0(n) E An . 

• 
Since we have now seen that for all n ~ 1, In =I= co-In, and since we 

know that for n ~ 1, In and lln are each m-closed, we may apply 
Theorem 3.6 to obtain the following extremely useful result. 

Theorem 5.11. If A ism-complete for In, then A f/=. lln. Likewise, if A 
is m-complete for lln, then A f/=. In. 

6. Post's Theorem 

In order to make use of the arithmetic hierarchy, we will employ an 
alternative characterization of the classes In, nn involving strings of 
quantifiers. This alternative formulation is most naturally expressed in 
terms of predicates rather than sets. Hence we will use the following 
terminology. 

We first associate with each predicate P(x1 , ••• , x.) the set 

A= {x ENIP((x)1 , ••• ,(x).}}. 

Then we say that P is In or that P is a In predicate to mean that 
A E In. Likewise, we say that p is nn or An if A E nn or A E An' 
respectively. Notice that we continue to regard In and nn as consisting of 
subsets of N, and we will not speak of a predicate as being a member of 
In or nn. 

Our terminology involves a slight anomaly for unary predicates. We have 
just defined P(x) to be In (or lln) if the set A = {x EN I P((x)1)} 

belongs to In (or lln), whereas it would be more natural to speak of P(x) 
as being In (or lln) depending on whether B = {x EN I P(x)} belongs to 
In (or lln). Fortunately, there is really no conflict, for we have 
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Theorem 6.1. Let B = {x EN I P(x)}. Then P(x) is In if and only if 
B E In 0 Likewise for nn, An 0 

Proof. For n = 0, the result is obvious, so assume that n ~ 1. P(x) is In 
(or lln, or An) if and only if the set A = {x EN I P({x)1)} belongs to In 
(or lln or An). Now, 

A = {x E N I (x)1 E B}, 

and 

B={xENI2xEA}. 

Thus A =m B. By Corollary 5.6, this gives the result. 

Theorem 6.2. Let P(x 1 , ••• , x 5 ) be a In predicate and let 

Q(tl , ... ,tk) = P{fl(tl , ... ,tk), ... ,f.{tl , ... ,tk)), 

• 

where f 1 , ••• , fs are computable functions. Then Q is also In. Likewise 
for nn 0 

Proof. Let 

A = {x EN I P((x)1, ... , (x).)}, 

B ={tEN I Q((t)l , ... ,(t)k)}. 

We shall prove that B ~m A. It will thus follow that if A E In (or lln), 
then B E In (or lln), giving the desired result. 

We have 

t E B = Q((t)1 , ... ,(t)k) 

- p ( f1 ( ( t) 1 , ... , ( t) k), ... , fs ( ( t) 1 , ... , ( t) k)) 

- [ fl ( ( t) I ' 0 0 0 ' ( t) k)' 0 0 0 ,f. ( ( t) I ' 0 0 0 ' ( t) k)] E A' 

so that B ~m A. • 
Theorem 6.3. A predicate P is In (or lln) if and only if - P is lln (or 
In)• 

Proof. A = {x EN I P((x)1, ... , (x).)} implies 

A= {x EN I -P((x)1 ,oo.,(x).)}. • 
Theorem 6.4. Let P(x 1 ,. 00, x.), Q(xp 00., x,) be In (or lln). Then the 
predicates P & Q and P V Q are likewise In (or lln). 
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Proof. For n = 0, the result is obvious. Assume that n ~ 1 and let 

A = {x EN I P((x) 1 , ••• , (x).)}, 

B = {x EN I Q((x)1 , ••• , (x)s)}, 

C = {x EN I P((x) 1 , ••• , (x)s) & Q((x) 1 , ••• , (x).)}, 

D = {x EN I P((x) 1 , ••• ,(x)s) V Q((x) 1 , ••• ,(x),)}. 
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Thus, C =An Band D =AU B. If P and Q are In, then A, BE In. 
Thus, by Theorem 5.3, A and B are both 0<n -1)-r.e. By Theorem 4.3, C 
and D are likewise 0<n- 1>-r.e., and so P & Q and P V Q are In. 

If p and Q are nn' then A, B E nn so that A, jj E In 0 By Theorems 
4.3 and 5.3, An B = (A U B) E In and AU ii = (A n B) E In . Hence 
D,C E nn, so that both p v Q and p & Q are nn. • 

Theorem 6.5. Let Q(x1 , ••• , xs, y) be In, n ~ 1, and let 

P(x 1 , ••• ,xs) = (3y)Q(x1 , ••• ,x.,y). 

Then P is also In. 

Proof. Let 

A = {x EN I Q((x)1 , ••• , (x)s, (x)s+ 1)}, 

B = {x EN I P((x) 1 , ••• ,(x),)}. 

We are given that A E In, i.e., that A is 0<n -I>-r.e., and we must show 
that B is likewise 0<n- 1 >-r.e. 

By Theorem 4.4, we may write 

A= {x EN l(3t)R(x,t)}, 

where R is 0<n -I>_recursive. Hence, 

Thus, 

Q(x 1 , ••• ,x.,y) = [x 1 , ••• ,xs,y] EA 

= (3t)R([x1 , ••• ,xs,y],t). 

x E B = P((x)1, ••• ,(x)s) 

= (3y)Q((x) 1 , ••• , (x)s, y) 

= (3y)(3t)R([(x)1 , ••• ,(x)..,y],t) 

= (3z)R([(x) 1 , ••• , (x) .. , /(z)], r(z)). 

By Theorems 1.4 and 4.4, B is 0<n -1)-r.e. • 
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Theorem 6.6. Let Q (x 1 , ••• , xs, y) be lln, n ~ 1, and let 

P(x1 , ••• ,xs)- (Vy)Q(x 1 , ••• ,xs,y). 

Then P is also lln. 

Proof. -P(x1 , ••• ,x,)- (3y) -Q(xp····x.,y). 
from Theorems 6.3 and 6.5. 

The result follows 

• 
The main result of this section is 

Theorem 6. 7 (Post's Theorem). A predicate P(x 1 , ••• , x,) is In+ 1 if and 
only if there is a ll n predicate Q(x 1 , ••• , X s, y) SUCh that 

P(x1 , ••• ,x)- (3y)Q(x 1 , ••• ,xs,y). (6.1) 

Proof. If (6.1) holds, with Q a nn predicate, it is easy to see that P must 
be In+ 1 • By Theorem 5.8, Q is certainly itself In+ 1 , and therefore, by 
Theorem 6.5, P is In+ 1 • 

The converse is somewhat more difficult. Let us temporarily introduce 
the following terminology: we will say that a predicate P(x1 , ••• , xs) is 
3n+ I if it can be expressed in the form (6.1), where Q is nn. Then Post's 
theorem just says that the In+ 1 and the 3 n + 1 predicates are the same. We 
have already seen that all 3n+ 1 predicates are In+ 1 • 

Lemma 1. If a predicate is In ' then it is 3 n + I. 

Proof. For n = 0, the result is obvious. Let n ~ 1, and let P(x 1 , ••• , xs) 
be In. Let 

A= {x EN I P((x) 1 , ••• ,(x),)}. 

Then A is eJ<n-J>_r.e., so by Theorem 4.4, 

A= {x EN l(3t)R(x,t)}, 

where R is 0<n -!>-recursive. Thus 

P(x1 , ••• ,xs)- (3t)R([x1 , ••• ,xs],t). 

It remains to show that R([x1 , ••• , xs], t) is lln. But in fact, by Theorem 
1.4, R([x 1 , ••• , xs], t) is 0n- 1-recursive, so that it is actually an and hence 
certainly nn. • 

Lemma 2. If a predicate is nn' then it is 3 n + 1• 

Proof. If P(x1 , ••• , x) is nn, we need only set 

Q(x 1 , ••• ,xs,y)- P(x1 , ••• ,x), 
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so that, of course, 

P(x1 , ••• ,x) = (3y)Q(x1 , ••• ,x.,y). 

Since 

{x EN I Q((x) 1 , ••• ,(x).,(x)s+ 1 )} = {x EN I P((x) 1 , ••• ,(x)5 )}, 

the predicate Q is also nn' which gives the result. 

Lemma 3. If P(x1 , ••• , x., z) is 3n+ 1 and 

Q(x 1 , ••• ,X5 ) = (3z)P(x1 , ••• ,x.,z), 

then Q is 3 n + I. 

Proof.· We may write 

P(x 1 ,ooo,X5 ,z) = (3y)R(x 1 ,ooo,X5 ,z,y), 

where R is nn o Then 

Q(x1 ,ooo,X5 ) = (3z)(3y)R(x1 ,ooo,X5 ,z,y) 

= (3t)R(x1 , o o o, X 5 , l(t), r(t)), 

which is 3 n + I by Theorem 6o2o 

Lemma 4. If P and Q are 3n+1, then so are P & Q and P V Qo 

Proof. Let us write 

P(x1 ,ooo,x) = (3y)R(x 1 ,ooo,x.,y), 

Q(x1 ,ooo,X5 ) = (3z)S(x1 ,ooo,x.,z), 

where RandS are nn o Then 

and 

P(x 1 ,ooo,x)& Q(x1 ,ooo,X5 )=(3y)(3z)[R(x1 ,ooo,X5 ,y) 

&S(x1 ,ooo,X5 ,z)] 

P(x1 ,ooo,X5 ) V Q(x1 ,ooo,x) = (3y)(3z)[R(x1 ,ooo,x.,y) 

VS(x1 ,ooo,X5 ,z)]o 

221 

• 

• 

The result follows from Theorem 6.4 and Lemmas 2 and 30 • 

Lemma 5. If P(x1 , 0 0 0, x., t) is 3n+ 1 and 

Q(x1 ,ooo,X5 ,y) = ('Vt):>.yP(x 1 ,ooo,x.,t), 

then Q is 3 n + I o 
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Proof. Let 

P(x 1 , ••• ,x.,t) <=> (3z)R(x 1 , ••• ,xs,t,z), 

where R is lln. Thus, 

Q(x 1 , ••• ,xs,y) <=> (Vt),/3z)R(x1 , ••• ,x.,t,z) 

<=> (3u)(Vt),YR(x1 , ••• ,x.,t,(u)1+1), 

where we are using the Godel number u = [z0 , z1 , ••• , zy] to encode the 
sequence of values of z corresponding to t = 0, 1, ... , y. Thus, 

Q(x1 , ••• ,xs,y) <=> (3u)(Vt)[t > y V R(x1 , ••• ,xs,t,(u)1+ 1)] 

<=> (3u)S(x1 , ••• , xs, y, u), 

where S is lln. For n = 0, we have used Theorem 6.3 from Chapter 3; and 
for n > 0, we have used the fact that the predicate t > y is recursive (and 
hence certainly lln), and Theorems 6.2, 6.4, and 6.6. • 

We now recall from Section 2 that u -< G means that 

{u}(i) = G(i) for 0:::;; i < l(u). 

Lemma 6. Let R(x) be In . Then the predicate u -< R is 3 n +I. 

Proof. We have 

u-< R <=> (Vi)<l(u){[(r(u))i+ 1 = 1 & R(i)] V [(r(u))i+l = 0&- R(i)]} 

<=>l(u) = 0 V (3z)(z + 1 = /(u)&(Vi),z{[(r(u));+l = 1& R(i)] 

v[(r(u))i+l = 0&- R(i)]}). 

Thus, using Lemmas 1-5 and the fact that the predicate - R(i) is lln, we 
have the result. • 

Proof of Theorem 6. 7 (Post's Theorem) Concluded. Let P(x 1 , ••• , x,) be any 
In+ 1 predicate. Let 

A= {x EN I P((x)1 , ••• ,(x)s)}. 

Then A E In+ 1 , which means that A is B-r.e. for some set B E In. Let 
R(x) be the characteristic function of B, so that by Theorem 6.1, R is In. 
Since A is B-r.e., we are able to write 

A = {x EN I f(x}t}, 
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where f is partially B-computable. Let f be B-computed by a program 
with number y0 . Then, using Theorem 2.4 (the finiteness theorem), we 
have 

x EA = (3t)STPk1>(x,y0 ,t) 

= (3t)(3u){u -< R & STI(W(x, Yo, t)}. 
Thus, 

P(x 1 , ••• ,x,) = (3t)(3u){u-< R &STI(W([x 1 , ••• ,xs],y0 ,t)}. 

Therefore by Theorem 2.3 and Lemmas 3, 4, and 6, P is 3 n + 1• • 

Now that we know that being In+ 1 and 3n+ 1 are the same, we may 
rewrite Lemma 5 as 

Corollary 6.8. If P(x 1 , ••• , x s, t) is In and 

Q(x 1 , ••• ,xs,y) = ('Vt)5,yP(x 1 , ••• ,x.,t), 

then Q is also In. 

Also, we can easily obtain the following results. 

Corollary 6.9. A predicate P(x I ' ... ' X s) is n n + I if and only if there is a 
In predicate Q (x 1 , ••• , x s, y) such that 

P(x1 , ••• , x) = ('Vy)Q(x 1 , ••• , x., y). 

Proof. Immediate from Post's theorem and Theorem 6.3. • 
Corollary 6.10. If P(x I' ... ' Xs' t) is nn' and 

Q(x 1 , ••• ,x,y) = (3t) 5 YP(x 1 , ••• ,xs,t), 

then Q is also nn. 
Proof. Immediate from Corollary 6.8 and Theorem 6.3. • 

We are now in a position to survey the situation. We call a predicate 
P(x1 , ••• , xs) arithmetic if there is a recursive predicate R(x1 , ••• , xs, 
y 1 , ••• , Yn) such that 

P(xl , ... ,x,) = (Qiyi)(QzJ2) ··· (QnYn)R(xl , ... ,xs,YI , ... ,yn), 

(6.2) 

where each of Q 1 , ••• , Qn is either the symbol 3 or the symbol V. We say 
that the Q; are alternating if for 1 ~ i < n when Q; is 3, then Q; + 1 is V 
and vice versa. Then we have 
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Theorem 6.11. 

a. Every predicate that is !.n or lln for any n is arithmetic. 
b. Every arithmetic predicate is !.n for some n (and also lln for some 

n). 
c. A predicate is !.n (or lln) if and only if it can be represented in the 

form (6.2) with Q1 = 3 (or Q1 = 'V) and the Q; alternating. 

Proof. Since !.0 and ll 0 predicates are just recursive, they are arithmetic. 
Proceeding by induction, if we know, for some particular n, that all !.n and 
lln predicates are arithmetic, then Theorem 6.7 and Corollary 6.9 show 
that the Same is true for !_n+ 1 and fin+ 1 predicateS. This proveS a. 

For b we proceed by induction on n, the number of quantifiers. For 
n = 0, we have a !.0 (and a ll 0 ) predicate. If the result is known for n = k, 
then it follows for n = k + 1 using Theorems 6.5-6.7 and Corollary 6.9. 

Finally, cis easily proved by mathematical induction using Theorem 6.7 
and Corollary 6.9. • 

7. Classifying Some Unsolvable Problems 

We will now see how to apply the arithmetic hierarchy. We begin with the 
set 

TOT= {zEN I ('Vx)<l>(x, zH}, 
which consists of all numbers of programs which compute total functions. 
This set was discussed in Chapter 4, Section 6, where it was shown that 
TOT is not r.e. Without relying on this previous discussion, we shall obtain 
much sharper information about TOT. 

We begin by observing that 

TOT= {zEN I ('Vx)(3t)STP(I>(x, z, t)}, 

so that TOT E ll 2 • We shall prove 

Theorem 7.1. TOT is 1-complete for ll 2 • Therefore, TOT rt !.2 . 

Proof. The second assertion follows from the first by Theorem 5.11. 
Since we know that TOT E n 2' it remains to show that for any A E n2' 

we have A ~1 TOT. For A E ll 2 , we can write 

A ={wEN I ('Vx)(3y)R(x, y, w)}, 

where R is recursive. Let 

h(x, w) = minR(x, y, w), 
y 
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so that h is partially computable. Let h be computed by a program with 
number e. Thus, 

(3y)R(x,y,w) = h(x,wH = <f><2>(x,w,eH = <l>(x,Sf(w,e))J, 

where we have used the parameter theorem. Hence, 

w EA = (Vx)(3y)R(x,y,w) 

= (Vx)[ <l>(x, Sf(w, e)H] 

= Sf(w, e) E TOT. 

Since, by Theorem 2.5, Sf(w, e) is one-one, we can conclude that 

A .:5; 1TOT. 

As a second simple example we consider 

INF = {z E N I JJi is infinite}. 

We have 

z E INF = (Vx)(3y).(y > x & y E JJi). 
Now 

y E Ui- (3t)STP(l>(y, z, t), 

• 

and hence the predicate y E JJi is !.1 . Using Theorems 6.4 and 6.5, 
(3y) (y > x & y E ~) is also !.1 , and finally INF E II2 . We shall show 
that INF is also 1-complete for II 2 • By Theorem 3.5, it suffices to show 
that TOT .:5; 1 INF since we already know that TOT is 1-complete for II 2 • 

To do this we shall obtain a recursive one-one function f(x) such that 

~ = N implies Uf<x> = N 

and 

~ =I= N implies Uf<x> is finite. 

Having done this we will be through since we will have 

x E TOT= f(x) E INF, 

and therefore, 

TOT .:5; 1 INF. 

(7.1) 

The intuitive idea behind the construction of f is that program number 
f(x) will "accept" a given input z if and only if program number x 
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"accepts" successively inputs 0, 1, ... , z. We can write this intuitive idea in 
the form of an equation as follows: 

Uf(x) ={zEN I ('Vk),. z(k E J¥,)}. 

Now it is a routine matter to use the parameter theorem to obtain f. We 
first note that, by Corollary 6.8, the predicate ('V k), z (k E W) is !.1 . 

Hence, as earlier, there is a number e such that 

('Vk),z(k E J¥,) <=> ci><2>(z,x,eH 

<=> cl>(z, Sf(x, e)H 

<=> z E WS/(x,e). 

Thus the desired function f(x) is simply Sf(x, e), which is one-one, as we 
know from Theorem 2.5. 

This completes the proof that INF is 1-complete for ll 2 . Hence also, 
INF ft. !.2 • 

The following notation will be useful. 

Definition. Let A, B, C ~ N. Then we write A :::;;m (B, C) to mean that 
there is a recursive function f such that 

x E A implies f(x) E B 

and 

x E A implies f(x) E C. 

Iff is one-one we write A :::;;1 (B, C). 

Thus A :::;; 1 B is simply the assertion: A :::;; 1 (B, B). 
It will be useful to note that by (7.1), we have actually proved 

TOT :::;; 1 (TOT,INF). (7.2) 

Now, we have 

Theorem 7.2. If A :::;; 1 (B, C), B ~ D, and C n D = 0, then A :::;; 1 D. 

Proof. We have a recursive one-one function f such that 

x E A implies f(x) E B implies f(x) ED 

and 

x E A implies f(x) E C implies f(x) E 75. • 
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Our final example will classify a I 3 set, and is considerably more 
difficult than either of those considered so far. 

Theorem 7 .3. Let 

COF = {x EN I J.V.. is finite}. 

Then COF is 1-complete for I 3 • 

Lemma 1. COF E I 3 • 

Proof. 

COF = {x EN I (3n)(Vk)(k ~ n v k E J.V..)}. 

Since the predicate in parentheses is I 1 , the result follows from Theorem 
6.11. • 

We introduce the notation 

n»i. = {m EN I STP(ll(m, x, n)}. 

Intuitively, n»i- is the set of numbers that program number x "accepts" in 
~ n steps. Clearly, 

We also define 

n»i.' = {m <rIm EnJ.V..}. 

We write L(n, x) to mean that 

Clearly L(n, x) is a recursive predicate. We write 

R(x,n)- (Vr)s/r E J.V..) V [L(n,x)&(3k)<n(k !tnJ.V..)]. 

Since R(x, n) is I 1 we can use the parameter theorem, as in the previous 
example, to find a recursive one-one function g(x) such that 

~<xJ = {n I R(x, n)}. 

Lemma 2. If x E TOT, then g(x) E TOT. If x It INF, then g(x) E 
COF- TOT. 

Proof. If x E TOT, then J.V.. = N, so that (Vr)<n(r E J.V..) is true for all 
rz. Hence R(x, n) is true for all n, i.e., ~<xJ = N-and g(x) E TOT. 
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Now let x f/=. INF, i.e., J¥, is finite. Therefore, there is a number n0 such 
that for all n > n0 , we have 

and 

Thus, for n > n0 , 

i.e., L(n, x) is true. Thus, n > n0 implies that R(x, n) is true, i.e., that 
n E ~<x>. We have shown that all sufficiently large integers belong to 
~<x>· Hence g(x) E COF. It remains to show that g(x) f/=. TOT. 

Let s be the least number not in J¥,. We consider two cases. 

Case 1. sf/=. ~<x>· Then surely g(x) f/=. TOT. 
Case 2. s E ~<x>· That is, R(x,s) is true. But (Vr) 55(r E J¥,) must be 

false because s f/=. J¥,. Hence L(s,x) must be true and (3k) < 5(k f/=. 5 J¥,). 
Now this number k is less than s, which is the least number not in J¥,. 
Hence k E J¥,. Since k f/=. 5J¥,, 

(7.3) 

Now we claim that this number n f/=. ~<x>, which will show that in this 
case also g(x) f/=. TOT. Thus, suppose that n E ~<x>, i.e., that R(x, n) 
is true. Since sf/=. J¥, and n ~ s, the condition (Vr)<n(r E J¥,) must 
be false. Thus we would have to have L(n, x), i.e., n+~J¥,n =nJ¥,n. But 
by (7.3), k < s ::; n, kEn+ 1J¥,, and k f/=.nJ¥,. This is a contradiction . 

• 
Lemma 3. TOT ::; 1 (TOT, COF - TOT). 

Proof. Let f be the recursive one-one function satisfying (7.1) and let g 
be as above. Let h(x) = g(f(x)). Then using Lemma 2 and (7.1), we have 

x E TOT implies f(x) E TOT implies h(x) E TOT, 
x f/=. TOT implies f(x) f/=. INF implies h(x) E COF- TOT. • 

Now let A E !.3 • We wish to show that A ::::; 1 COF. By Post's theorem, 
we can write 

x E A - (3n)B(x, n), 

where B is ll 2 • Using the pairing functions, let 

C = {t EN I (3n) 5 t(t)B(r(t ), n)}. 
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Thus, C E TI 2 • Theorem 7.1, C :o:; 1 TOT. Hence, using Lemma 3, C :o:; 1 

(TOT, COF - TOT). Let 8 be a recursive one-one function such that 

t E C implies O(t) E TOT, 

t $. C implies O(t) E COF- TOT. 
(7.4) 

Consider the l 1 predicate r(z) E We((i(z),x))' Using the parameter theo­
rem as usual, we can write this in the form z E WrJ!(x>, where 1/J is a 
one-one recursive function. Thus, 

Wofr(x) = {(k,m)lm E We((k,x))}. (7.5) 

The theorem then follows at once from 

Lemma 4. x E A if and only if 1/J(x) E COF. 

Proof. Let x EA. Then B(x, n) is true for some least value of n. Hence, 
for all k ~ n, we have (k, x) E C. By (7.4), O((k, x)) E TOT for all 
k ~ n. Since n is the least value for which B(x, n) is true, B(x, k) is false 
fork< n. Hence, fork< n, (k, x) $.C. Thus, by (7.4), O((k, x)) E COF 
- TOT. To recapitulate, 

k > n implies O((k, x)) E TOT, 
and (7.6) 

k < n implies O((k,x)) E COF- TOT. 

Thus, by (7.5) we see that for k ~ n, (k, m) E Wofr(x) for all m. For each 
k < n, We( (k, x» contains all but a finite set of m. Thus, altogether, Wofr(x) 

can omit at most finitely many integers, i.e., 1/J(x) E COF. 
Now, let x $.A. Then, B(x, n) is false for all n. Therefore, (k, x) $. C 

for all k. By (7.4), 

O((k,x)) E COF- TOT forall kEN, 

and thus certainly, 

O((k, x)) $.TOT for all kEN. 

That is, for every k E N, there exists m such that m $. We( (k, x))• i.e., by 
(7.5), such that (k,m) $. Wofr(x>· Thus, ~(x> is infinite, and hence 1/J(x) $. 
COF. • 

Exercises 

1. Show that the following sets belong to l 3 • 

(a) {x E N I there is a recursive function f such that <l>x ~ f}. 
(b) { (x, y) I x EN & y EN & W. - w;, is finite}. 
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2. (a) Prove that for each m, n there is a predicate U(x 1 , ••• , xm, y) 
which is In, such that for every In predicate P(x1 , ••• , xm) there 
is a number Yo with 

P(x1 , ••• ,xm) <=> U(x 1 , ••• ,xm,Yo). 

(b) State and prove a similar result for nn. 

3. Use the previous exercise to prove that for each n, nn - In -=t= 0. 

8. Rice's Theorem Revisited 

In Chapter 4, we gave a proof of Rice's theorem (Theorem 7.1) using the 
original parameter theorem. We get a somewhat stronger result using the 
strengthened form of the parameter theorem. 

Definition. Let r be a set of partially computable functions of one 
variable. As in Chapter 4, Section 7, we write 

Rr ={tEN I <I>, En. 

We call r nontrivial if r -=1= 0 and there is at least one partially com­
putable function g(x) such that g $. r. 

Theorem 8.1 (Strengthened Form of Rice's Theorem). Let f be a nontriv­
ial collection of partially computable functions of one variable. Then, 
K ::5; 1 Rr or K ::5; 1 Rr, so that Rr is not recursive. 

Thus not only is Rr nonrecursive, but the halting problem can be 
"solved" using Rr as an oracle. Actually, the first proof of Rice's theorem 
already shows that either K ::5;m Rr or K ::5;m Rr. We give essentially the 
same proof here, using the strengthened form of the parameter theorem to 
upgrade the result to one-one reducibility. 

Proof. We recall (Chapter 1, Section 2) that 0 is a partially computable 
function, namely, the nowhere defined function. 

Case 1. 0 ft. r. Since r is nontrivial, it contains at least one function, 
say f. Since f E r and 0 ft. r, f -=1= 0; f must be defined for at least 
one value. Let 

Since 

!l(x, t) = { ~{t) if X E K 
if X $. K. 

xEK=<I>(x,xH, 
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it is clear that 0. is partially computable. Using the parameter 
theorem in its strengthened form, we can write 

O.(x, t) = <l>g(x)(t), 

where g is a one-one recursive function. Then we have 

x E K implies <l>g(x) = f implies g(x) ERr; 

x ft K implies <l>g(x) = 0 implies g(x) ft Rr. 

Thus, K ~ 1 Rr. 
Case 2. 0 E f. Now let A be the class of all partially computable 

functions not in f. Thus, Rr = RtJ. and 0 ft A. By Case 1, K ~ 1 RtJ., 
and hence by Theorem 3.7, K ~ 1 Rr. • 

Exercises 

1. State and prove a relativized version of Rice's theorem. 

2. (a) Develop a code for partial functions from N to N with finite 
domains, writing fn for the nth such function. 

(b) Prove the Rice-Shapiro theorem: Rr is r.e. if and only if f = 0 
or there is a recursive function t(x) such that 

r = {g I (3x)(g ;;2ft<x)}. 

9. Recursive Permutations 

Definition. A one-one recursive function f whose domain and range are 
both N is called a recursive permutation. 

With each recursive permutation f we may associate its inverse r I: 
r 1(t) = min(t = f(x)). 

X 

Then, r I is clearly likewise a recursive permutation. 

Definition. Let A, B ~ N. Then A and B are said to be recursively 
isomorphic, written A = B, if there is a recursive permutation f such that 
x E A if and only if f(x) E B. 

Since a recursive permutation provides what is essentially a mere change 
of notation, recursively isomorphic sets may be thought of as containing 
the same "information" presented in different notation. 
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It is obvious that A = B implies A =1 B. Remarkably, the converse 
statement is also true. 

Theorem 9.1 (Myhill). If A =1 B, then A = B. 

In our proof of this theorem we shall need to code sequences of ordered 
pairs of numbers. We shall speak of the code of the sequence 

(a! 'bJ)' ... ' (an 'bn) 

of pairs of elements of N meaning the number 

(9.1) 

Thus, the numbers a;, b; can be retrieved from the code u by using the 
relations 

a;= /((r(u));)) 

b; = r((r(u));) 
i = 1,2, ... ,/(u). 

Note that every natural number is the code of a unique finite (possibly 
empty) sequence of ordered pairs. 

We say that the finite sequence (9.1) associates A and B, where A, B ~ N, 
if 

1. a; =/= aj for 1 :::;; i < j :::;; n; 
2. b; =/= bj for 1 :::;; i < j :::;; n; 
3. for each i, 1 :::;; i :::;; n, either a; E A and b; E B or a; f/=. A and b; f/=. B. 

We shall prove the 

Lemma. Let A :::;;1 B. Then there is a computable function k(u, v) such 
that if u codes the sequence (9.1) that associates A and B and a f/=. 
{a1 , a 2 , ••• , an}, then there is a b such that k(u, a) codes the sequence 

(a1 ,b1 ), ••• ,(an ,bn),(a,b) 

that also associates A and B. 

Proof. Let f be a recursive one-one function such that 

x E A if and only if f(x) E B. 

(9.2) 

(9.3) 

We provide an algorithm for computing b from u and a. k(u, a) can then 
be set equal to the code of (9.2), i.e. 

k(u,a) = (/(u) + 1,r(u) ·pA~'>~>1 ). 
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The numbers f(a 1 ), f(a 2 ), ••• , f(an), f(a) are all distinct, because f is 
one-one. Hence, at least one of these n + 1 numbers does not belong to 
the set {b1 , b2 , ••• , bn}. Our algorithm for obtaining b begins by computing 
f(a). If f(a) ft {b1 , b2 , ••• , bn}, we set b = f(a). Otherwise, f(a) = b; for 
some i and we try f(a), because 

a E A <=> f(a) = b; E B <=>a; E a; E A <=> f(a) E B. 

If f(a) ft {b1 , b2 , ••• , bn}, we set b = f(a;). Otherwise, if f(a) = bj, we 
continue the process, trying f(aj). By 1 and 2, none of the a; and b; 
obtained in this way duplicate previous ones. Thus, by our earlier remark 
the process must terminate in a value b. Using (9.3), we see that either 
a E A and b E B or a ft A and b ft B. • 

Proof of Theorem 9.1. Since A ~ 1 B, by the Lemma there is a computable 
function k(u, v) such that if u codes (9.1) that associates A and B and 
a ft {a1 , a2 , ••• , an}, then for some b, k(u, a) codes the sequence (9.2) that 
also associates A and B. But since B ~ 1 A, we can also apply the Lemma 
to obtain a computable function k(u, v) such that if u codes (9.1) that 
associates A and B and b ft {bp b2 , ••• , bn}, then for some a, k(u, b) 
codes the sequence (9.2) that likewise associates A and B. 

We let v(O) = 0, which codes the empty sequence. (Note that the empty 
sequence does associate A and B.) We let 

{ 
v(2x) 

v(2x + 1) = 

k(v(2x), x) 

if x is one of the left components 

ofthe sequence coded by v(2x) 

otherwise; 

if x is one of the right components 
{ 

v(2x + 1) 

v(2x + 2) = 
k(v(2x + 1),x) 

of the sequence coded by v(2x + 1) 

otherwise. 

Thus, we have 

1. v is a computable function. 
2. For each x, v(x) codes a sequence that associates A and B. 
3. The sequence coded by v(x + 1) is identical to, or is an extension of, 

the sequence coded by v(x). 
4. For each a EN, there is an x such that a pair (a, b) occurs in the 

sequence coded by v(x). (In fact, we can take x = 2a + 1.) 
5. For each b E N, there is an x such that a pair (a, b) occurs in the 

sequence coded by v{x). (In fact, we can take x = 2b + 2.) 
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We now define the function f by setting f(a) to be the number b such 
that the pair (a, b) appears in the sequence coded by some v(x). b is 
uniquely determined because all the v(x) code sequences that associate A 
and B. f is clearly computable. In fact, 

f(a) = mjn(3i)s/(v(Za+l))[(r(v(2a + 1))); =(a, b)]. 

By 5, the range off is N; thus f is a recursive permutation and hence, 
A =B. • 

Exercises 

1. Prove that K = U, where U is defined in Exercise 3.1. 

2. Prove that 
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Regular Languages 

1. Finite Automata 

Computability theory, discussed in Part 1, is the theory of computation 
obtained when limitations of space and time are deliberately ignored. In 
automata theory, which we study in this chapter, computation is studied in 
a context in which bounds on space and time are entirely relevant. The 
point of view of computability theory is exemplified in the behavior of a 
Turing machine (Chapter 6) in which a read-write head moves back and 
forth on an infinite tape, with no preset limit on the number of steps 
required to reach termination.1 At the opposite pole, one can imagine a 
device which moves from left to right on a finite input tape, and it is just 
such devices, the so-called finite automata, that we will now study. Since a 
finite automaton will have only one opportunity to scan each square in its 
motion from left to right, nothing is to be gained by permitting the device 
to "print" new symbols on its tape. 

Unlike modern computers, whose action is controlled in part by an 
internally stored list of instructions called a program, the computing 

1 The present chapter does not depend on familiarity with the material in Chapters 2-8. 
Any exercises that refer to earlier material are marked with an •. 
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Table 1.1 

6 a b 

q, q2 q4 
q2 q2 q3 
q3 q4 q3 
q4 q4 q4 

devices we will consider in this chapter have no such programs and no 
internal memory for storing either programs or partial results. In addition, 
since, as we just indicated, a finite automaton is permitted only a single 
pass over the tape, there is no external memory available. Instead, there 
are internal states that control the automaton's behavior and also function 
as memory in the sense of being able to retain some information about 
what has been read from the input tape up to a given point. 

Thus, a finite automaton can be thought of as a very limited computing 
device which, after reading a string of symbols on the input tape, either 
accepts the input or rejects it, depending upon the state the machine is in 
when it has finished reading the tape. 

The machine begins by reading the leftmost symbol on the tape, in a 
specified state called the initial state (the automaton is in this state 
whenever it is initially "turned on"). If at a given time, the machine is in a 
state qi reading a given symbol sj on the input tape, the device moves one 
square to the right on the tape and enters a state qk. The current state of 
the automaton plus the symbol on the tape being read completely deter­
mine the automaton's next state. 

Definition. A finite automaton Lon the alphabee A = {s1 , ••• , sn} with 
states Q = {q1 , ••• , qm} is given by a function 8 that maps each pair 
(q;, sj), 1 ::; i ::; m, 1 ::; j ::; n, into a state qk, together with a set F ~ Q. 
One of the states, usually q1 , is singled out and called the initial state. The 
states belonging to the set F are called the final or accepting states, 8 is 
called the transition function. 

We can represent the function 8 using a state versus symbol table. An 
example is given in Table 1.1, where the alphabet is {a, b}, F = {q3}, and q1 

2 For an introduction to alphabets and strings, see Chapter 1, Section 3. 
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is the initial state. It is easy to check that for the tapes 

I a I a I h h I b I 

I h I u I h I a I 

I u I a I b I a I 

I a I b I h I b I 
the automaton will terminate in states q3 , q4 , q4 , and q3 , respectively. We 
shall say that the automaton accepts the strings aabbb and abbb (because 
q3 E F), while it rejects the strings baba and aaba (because q4 fl. F), i.e., 
that it accepts the first and fourth of the preceding tapes and rejects the 
second and third. 

To proceed more formally, let L be a finite automaton with transition 
function 8, initial state q1 , and accepting states F. If q; is any state of L 
and u E A*, where A is the alphabet of L, we shall write l)*(q;, u) for the 
state which L will enter if it begins in state qi at the left end of the string 
u and moves across u until the entire string has been processed. A formal 
definition by recursion is 

l>*(q;,O) = q;, 

l>*(q;.usj) = t>(t>*(q;,u),sj)· 

Obviously, l>*(q;, sj) = l>(q;, s/ Then we say that L accepts a word u 
provided that 8*(q1 , u) E F. L rejects u means that 8*(q1 , u) E Q -F. 
Finally, the language accepted by L, written L(L), is the set of all u E A* 
accepted by L: 

L(L) = {u E A* l8*(q1 , u) E F}. 

A language is called regular if there exists a finite automaton that accepts 
it. 

It is important to realize that the notion of regular language does not 
depend on the particular alphabet. That is, if L s;;; A* and A s;;; B, then 
there is an automaton on the alphabet A that accepts L if and only if 
there is one on the alphabet B that accepts L. That is, an automaton with 
alphabet B can be contracted to one on the alphabet A by simply 
restricting the transition function 8 to A; clearly this will have no effect 
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on which elements of A* are accepted. Likewise, an automaton L with 
alphabet A can be expanded to one with alphabet B by introducing a new 
"trap" state q and decreeing 

8(q;, b)= q for all states q; of Land all bE B- A, 

8 ( q, b) = q for all b E B. 

Leaving the set of accepting states unchanged (so that q is not an 
accepting state), we see that the expanded automaton accepts the same 
language as L. 

Returning to the automaton given by Table 1.1 with F = {q3}, it is easy 
to see that the language it accepts is 

{aln]b[m) In, m > 0}. (1.1) 

Thus we have shown that (1.1) is a regular language. 
We conclude this section by mentioning another way to represent the 

transition function 8. We can draw a graph in which each state is 
represented by a vertex. Then, the fact that 8(q;, sj) = qk is represented by 
drawing an arrow from vertex q; to vertex qk and labeling it sj. The 
diagram thus obtained is called the state transition diagram for the given 
automaton. The state transition diagram for the transition function of 
Table 1.1 is shown in Fig. 1.1. · 

Exercises 

1. In each of the following examples, an alphabet A and a language L 
are indicated with L ~A*. In each case show that L is regular by 
constructing a finite automaton L that accepts L. 

b 

Figure 1.1 
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(a) A = {1}; L = {ll6kl11 k ~ 0}. 

(b) A = {a, b}; L consists of all words whose final four symbols form 
the string bbab. 

(c) A = {a, b}; L consists of all words whose final five symbols 
include two a's and three b's. 

(d) A = {0, 1}; L consists of all strings that, when considered as 
binary numbers, have a value which is an integral multiple of 5. 

L is to be a binary addition checker in the sense that it accepts 
strings of binary triples 

such that c1c2 ••• en is the sum of a1a2 ••• an and b 1b 2 ••• bn 
when each is ,treated as a binary number. 

(f) A ={a, b, c}. A palindrome is a word such that w = wR. That is, 
it reads the same backward and forward. L consists of all 
palindromes of length less than or equal to 6. 

(g) A ={a, b}; L consists of all strings s1s2 ••• sn such that sn-z =b. 
(Note that L contains no strings of length less than 3.) 

(h) A = {a, b}; L consists of all words in which three a's occur 
consecutively. 

(i) A = {a, b}; L consists of all words in which three a's do not 
occur consecutively. 

2. (a) Suppose that the variable names in your favorite programming 
language are words w on the alphabet {A, ... , Z, 0, ... , 9} such 
that 1 :::;; lwl :::;; 8 and such that the first symbol of w belongs to 
{A, ... , Z}. Give a finite automaton that accepts the language 
consisting of these variable names. 

(b) Now, remove the restriction lwl :::;; 8 and give a finite automaton 
that accepts this extended language. 

3. Describe the language accepted by each of the following finite au­
tomata. In each case the initial state is q1 • 
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(a) 

81 a b c 

q1 qz q3 q4 

qz qz q4 q5 

q3 q4 q3 q5 

q4 q4 q4 q4 

q5 q4 q4 q5 

(b) 82 = 81, F2 = {q4}. 

(c) 

83 a b c 

q1 qz qz q1 

qz q3 qz q1 

q3 q1 q3 qz 

4. Let A = {s1 , ••• , sn}. How many finite automata are there on A with 
exactly m states, m > 0? 

5. Show that there is a regular language that is not accepted by any finite 
automaton with just one accepting state. 

6. For any regular language L, define rank(L) = the least number n 
such that L is accepted by some finite automaton with n states. Prove 
that for every n > 0 there is a regular language L with rank(L) = n. 

7. Prove or disprove the following: If L 1 , L 2 are regular languages such 
that L 1 ~ L 2 , then rank(L1) :::;; rank(L 2). 

8.* Let L be a finite automaton on the alphabet A = {s1 , ••• , sn} with 
states Q = {q1 , ••• , qm}, transition function 8, initial state q1 , and 
accepting states F. Give a Turing machine L' that accepts L(L). 

2. Nondeterministic Finite Automata 

Next we modify the definition of a finite automaton to permit transitions at 
each stage to either zero, one, or more than one states. Formally, we 
accomplish this by altering the definition of a finite automaton in the 
previous section by making the values of the transition function 8 be sets 
of states, i.e., sets of elements of Q (rather than members of Q). The devices 
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Table 2.1 

6 a b 

ql {ql, q2} {ql, q3} 

q2 {q4} 0 
q3 0 {q4} 

q4 {q4} {q4} 

so obtained are called nondeterministic finite automata (ndfa), and some­
times ordinary finite automata are then called deterministic finite automata 
(dfa). An ndfa on a given alphabet A with set of states Q is specified by 
giving such a transition function l> [which maps each pair (q;, si) into a 
possibly empty subset of Q] and a fixed subset F of Q. For an ndfa, we 
define 

l) *(q; '0) = {q;}, 

l>*(q;, us) = U l>(q, si). 
qE li*(qi, u) 

Thus, in calculating l>*(q;, u), one accumulates all states that the automa­
ton can enter when it reaches the right end of u, beginning at the left end 
of u in state q;. An ndfa L with initial state q1 accepts u E A* if 
l>*(q1 , u) n F =I= 0, i.e., if at least one of the states at which L ultimately 
arrives belongs to F. Finally, L(L), the language accepted by L, is the set 
of all strings accepted by L. 

An example is given in Table 2.1 and Figure 2.1. Here F = {q4}. It is not 
difficult to see that this ndfa accepts a string on the alphabet {a, b} just in 
case at least one of the symbols has two successive occurrences in the 
string. 

In state q1 , if the next character read is an a, then there are two 
possibilities. It might be that this a is the first of the desired pair of a's. In 
that case we would want to remember that we had found one a and hence 

Figure2.1 
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enter state q2 to record that fact. On the other hand, it might be that the 
symbol following this a will be a b. Then this a is of no help in attaining 
the desired goal and hence we would remain in q 1 • Since we are not able 
to look ahead in the string, we cannot at this point determine which role 
the current a is playing and so the automaton "simultaneously" hypothe­
sizes both possibilities. If the next character read is b, then since there is 
no transition from q2 reading b, the choice has been resolved and the 
automaton will be in state q1 • If instead, the character following the first a 
is another a, then since q2 E S(q1 , a) and q4 E S(q2 , a), and on any input 
the automaton once in state q4 remains in q4 , the input string will be 
accepted because q4 is an accepting state. A similar analysis can be made 
if a b is read when the automaton is in state q1 • 

Strictly speaking, a dfa is not just a special kind of ndfa, although it is 
frequently thought of as such. This is because for a dfa, O{q, s) is a state, 
whereas for an ndfa it is a set of states. But it is natural to identify the dfa 

L with transition function S, with the closely related ndfa .ii whose 
transition function 8 is given by 

8(q, s) = {S(q, s)}, 

and which has the same final states as L. Obviously L(L) = L(.ii). 
The main theorem on nondeterministic finite automata is 

Theorem 2.1. A language is accepted by an ndfa if and only if it is 
regular. Equivalently, a language is accepted by an ndfa if and only if it is 
accepted by a dfa. 

Proof. As we have just seen, a language accepted by a dfa is also 
accepted by an ndfa. Conversely, let L = L(L), where L is an ndfa with 
transition function S, set of states Q = {q1 , ••• , qm}, and set of final states 
F. We will construct a dfa L such that L{L) = L(L) = L. The idea of 
the construction is that the individual states of L will be sets of states 
of L. 

Thus, we proceed to specify the dfa L on the same alphabet as L. The 
states of L are just the zm sets of states (including 0) of L. We write 
these as Q = {Q1 , Q2 , ••• , Q2m}, where in particular Q 1 = {q1} is to be the 
initial state of L. The set .'7 of final states of L is given by 

.'7= {Q; I Q; n F =1= 0}. 

The transition function 8 of L is then defined by 

8(Q;, s) = U S(q, s). 
qEQi 
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Now, we have 

Lemma 1. Let R ~ Q. Then 

s( U Q;,s) = U 8(Q;,s). 
Q;ER Q;ER 

Proof. Let UQ,e R Q; = Q. Then by definition, 

B(Q, s) = U 8(q, s) 
qEQ 

= U U 8(q,s) 
Q;ER qEQ; 

= U B(Q;,s). 
Q,eR 

Lemma 2. For any string u, 

B*(Q;, u) = U 8*(q, u). 
qEQ; 

Proof. The proof is by induction on lui. If lui = 0, then u = 0 and 

B*(Q;,O)=Q;= u {q}= u 8*(q,O). 
qEQ; qeQ, 
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• 

If lui = I + 1 and the result is known for lui = I, we write u = us, where 
lui =I, and observe that, using Lemma 1 and the induction hypothesis, 

B*(Q;,u) = B*(Q;,us) 

= 8(8*(Q;,u),s) 

=B{ U 8*(q,u),s) 
qeQ, 

= U B(8*(q,u),s) 
qeQ, 

= u U 8(r,s) 
qeQ, rE6*(q,v) 

= U 8*(q, us) 
qeQ, 

= U 8*(q, u). • 
qeQ, 
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Lemma 3. L(L) = L(L). 

Proof. u E L(L) if and only if B*(Q1 , u) E !T. But, by Lemma 2, 

Hence, 

B*(Q1, u) = B*({q1}, u) = 8*(q1, u). 

u E L(L) if and only if 8*(q1, u) E Y 
if and only if 8*(q1, u) n F =F 0 
if and only if u E L(L). • 

Proof of Theorem 2.1 Concluded. Theorem 2.1 is an immediate conse­
quence of Lemma 3. • 

Note that this proof is constructive. Not only have we shown that if a 
language is accepted by some ndfa, it is also accepted by some dfa, but we 
have also provided, within the proof, an algorithm for carrying out the 
conversion. This is important because, although it is frequently easier to 
design an ndfa than a dfa to accept a particular language, actual machines 
that are built are deterministic. 

Exercises 

1. Describe the language accepted by each of the following ndfas. In each 
case the initial state is q1 • 

(a) 

81 a b c 

ql {ql 'qz' q3} 0 0 

qz 0 {q4} 0 F1 = {q4}. 

q3 0 0 {q4} 

q4 0 0 0 

(b) 8z = 81, Fz = {ql, qz, q3}. 
(c) 

83 a b 

ql {qz} 0 
F3 = {qz}. 

qz 0 {ql 'q3} 

q3 {ql 'q3} 0 
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2. For each dfa L in Exercise 1.3, transform L into an ndfa L' which 
accepts L(L). Then transform L' into a dfa L" by way of the 
construction in the proof of Theorem 2.1. 

3. Let L be a dfa with a single accepting state. Consider the ndfa L' 
formed by reversing the roles of the initial and accepting states and 
reversing the direction of the arrows of all transitions in the transition 
diagram. Describe L(L') in terms of L(L). 

4. Prove that, given any ndfa L 1 , there exists an ndfa L 2 with exactly 
one accepting state such that 

5. (a) The construction in the proof of Theorem 2.1 shows that any 
regular language accepted by an ndfa with n states is accepted by 
some dfa with 2 n states. Show that there is a regular language 
that is accepted by an ndfa with two states, not accepted by any 
ndfa with fewer than two states, and accepted by a dfa with two 
states. 

(b) Show that there is a regular language that is accepted by an ndfa 
with two states and not accepted by any dfa with fewer than four 
states. 

(c) Show that there is a regular language that is accepted by an ndfa 
with three states and not accepted by any dfa with fewer than 
eight states. 

3. Additional Examples 

We first give two simple examples of finite automata and their associated 
regular languages. 

For our first example we consider a unary even parity checker. That is, 
we want to design a finite automaton over the alphabet {1} such that the 
machine terminates in an accepting state if and only if the input string 
contains an even number of ones. Intuitively then, the machine must 
contain two states which "remember" whether an even or an odd number 
of ones have been encountered so far. When the automaton begins, no 
ones, and hence an even number of ones, have been read; hence the initial 
state q1 will represent the even parity state, and q2 , the odd parity state. 
Furthermore, since we want to accept words containing an even number of 
ones, q 1 will be an accepting state. 
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1 0 F~{,,) 
1 

Figure 3.1 

Thus the finite automaton to perform the required task is as shown in 
Fig. 3.1, and the language it accepts is 

We next consider a slightly more complicated example. Suppose we wish 
to design a finite automaton that will function as a 25t,Z candy vending 
machine. The alphabet consists of the three symbols n, d, and q (repre­
senting nickel, dime, and quarter, respectively-no pennies, please!). If 
more than 251Z is deposited, no change is returned and no credit is given 
for the overage. Intuitively, the states keep track of the amount of money 
deposited so far. The automaton is exhibited in Fig. 3.2, with each state 
labeled to indicate its role. The state labeled 0 is the initial state. Note that 
the state labeled d is a "dead" state; i.e., once that state is entered it may 
never be left. Whenever sufficient money has been inserted so that the 
automaton has entered the 25t,Z (accepting) state, any additional coins will 
send the machine into this dead state, which may be thought of as a coin 
return state. Presumably when in the accepting state, a button can be 
pressed to select your candy and the machine is reset to 0. 

Unlike the previous example, the language accepted by this finite 
automaton is a finite set. It consists of the following combinations of 
nickels, dimes, and quarters: {nnnnn, nnnnd, nnnnq, nnnd, nnnq, nndn, 
nndd,nndq, nnq,ndnn, ndnd, ndnq,ndd, ndq,nq,dnnn,dnnd,dnnq,dnd, 
dnq, ddn, ddd, ddq, dq, q}. 

q 

d 

q 

F = {25) 

Figure3.2 
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a 

a b 

Figure3.3 

Suppose we wish to design an automaton on the alphabet {a, b} that 
accepts all and only strings which end in bab or aaba. A real-world analog 
of this problem might arise in a demographic study in which people of 
certain ethnic groups are to be identified by checking to see if their family 
name ends in certain strings of letters. 

It is easy to design the desired ndfa: see Fig. 3.3. 
As our final example, we discuss a slightly more complicated version of 

the first example considered in Section 1: 

An ndfa L such that L(L) = L is shown in Fig. 3.4. 
These two examples of ndfas illustrate an important characteristic of 

such machines: not only is it permissible to have many alternative transi­
tions for a given state-symbol pair, but frequently there are no transitions 
for a given pair. In a sense, this means that whereas for a dfa one has to 
describe what happens for any string whether or not that string is a word 
in the language, for an ndfa one need only describe the behavior of the 
automaton for words in the language. 

a b 

Figure3.4 

4. Closure Properties 

We will be able to prove that the class of regular languages is closed under 
a large number of operations. It will be helpful that, by the equivalence 
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theorems of the previous two sections, we can use deterministic or nonde­
terministic finite automata to suit our convenience. 

Definition. A dfa is called nonrestarting if there is no pair q, s for which 

8(q,s) =q1 , 

where q1 is the initial state. 

Theorem 4.1. There is an algorithm that will transform a given dfa L 
into a nonrestarting dfa L such that L(L) = L(L). 

Proof. Let Q = {q1 , q2 , ••• , qn} be the set of states of L, q1 the initial 
state, F the set of accepting states, and 8 the transition function. We 
construct L with the set of states Q = Q U {qn+ 1}, initial state q1 , and 
transition function 8 defined by 

_ (8(q,s) 
8(q, s) = 

qn+l 

8(qn+ I> s) = 8(q1 , s). 

if q E Q and 8(q, s) =/= q1 

if q E Q and 8(q, s) = q1 , 

Thus, there is no transition into state q1 for L. The set of accepting states 
F of L is defined by 

F-- (F 
- F U {qn+l} 

To see that L(L) = L(L) as required, one need only observe that L 
follows the same transitions as L except that whenever L reenters q1 , L 
enters qn+I· • 

Theorem 4.2. If L and L are regular languages, then so is L u L. 

Proof. Without loss of generality, by Theorem 4.1, let L, L be non­
restarting dfas that accept L and L, respectively, with Q, q1 , F, 8 and 
Q, ij1 , F, 8 the set of states, initial state, set of accepting states, and 
transition function of L and L, respectively. We also assume that L and 
L have no states in common, i.e., Q n Q = 0. Furthermore, by the 
discussion in Section 1, we can assume that the alphabets of L and L are 
the same, say, A. We define the ndfa L with states Q, initial state q1 , set 
of accepting states F, and transition function 8 as follows: 
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(That is, L contains a new initial state q1 and all states of L and L 
except their initial states.) 

F = f F u ~ u {ql} - {ql 'ql} 

\FuF 

if q1 E F or q1 E F 
otherwise. 

The transition function of L is defined as follows for s E A: 

v _ ( {8(q, s)} 
8(q, s)- { B(q, s)} 

if q E Q- {q1} 

if q E Q- {q1} 

S(q1 ,s) = {8(q1 ,s)} U {8(q1 ,s)}. 

Thus, since Q n Q = 0 and L and L are nonrestarting, once a first 
transition has been selected, the automaton L is locked into one of the 
two automata Land L. Hence L(L) = L u L. • 

Theorem 4.3. Let L ~ A* be a regular language. Then A* - L is 
regular. 

Proof. Let L be a dfa that accepts L. Let L have alphabet A, set of 
states Q, and set of accepting states F. Let L be exactly like L except 
that it accepts precisely when L rejects. That is, the set of accepting states 
of .ii is Q -F. Then .ii clearly accepts A* - L. • 

Theorem 4.4. If L 1 and L 2 are regular languages, then so is L 1 n L 2 • 

Proof. Let L 1 , L 2 ~A*. Then we have the De Morgan identity: 

L 1 n L 2 =A* - ((A* - L 1) U (A* - L 2 )). 

Theorems 4.2 and 4.3 then give the result. 

Theorem 4.5. 0 and {0} are regular languages. 

• 

Proof. 0 is clearly the language accepted by any automaton whose set of 
accepting states is empty. Next, the automaton with states q1 , q2 , alphabet 
{a}, accepting states F = {q1}, and transition function 8(q1 , a) = 8(q2 , a) 
= q2 clearly accepts {0}, as does any nonrestarting dfa on any alphabet 
provided F = {q1}. • 

Theorem 4.6. Let u E A*. Then {u} is a regular language. 

Proof. For u = 0, we already know this from Theorem 4.5. Otherwise let 
u = a1a2 ... a1a1+ t> where a1 , a2 , ... , a1, a1+ 1 EA. Let L be the ndfa 
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with states qpq2 , ••• ,q1+ 2 , initial state q1 , accepting state q1+ 2 , and 
transition function 8 given by 

8(q;, a;) = {qi+ 1}, 

8(q;,a)=0 

Then L(L) = {u}. 

i=1, ... ,/+1, 

for a E A - {a;}. 

Corollary 4.7. Every finite subset of A* is regular. 

• 

Proof. We have already seen that 0 is regular. If L = {u 1 , ••• , un}, where 
u1 , ••• , un E A*, we note that 

L = {u 1} U {u 2} U ··· U {un}, 

and apply Theorems 4.2 and 4.6. 

Exercises 

• 

1. Let A = {a, b}, let L 1 ~A* consist of all words with at least two 
occurrences of a, and let L 2 ~A* consist of all words with at least two 
occurrences of b. For each of the following languages L, give an ndfa 
that accepts L. 
(a) L = L 1 U L 2 • 

(b) L =A* - L 1 • 

(c) L =A* - L 2 • 

(d) L = L 1 n L 2 • 

2. Use the constructions in the proofs of Theorem 4.6 and Corollary 4.7 
to give an ndfa that accepts the language {ab, ac, ad}. 

3. (a) Let L, L' be regular languages. Prove that L - L' is regular. 
(b) Let L, L' be languages such that L is regular, L u L' is regular, 

and L n L' = 0. Prove that L' is regular. 

4. Let L 1 , L 2 be regular languages with rank(L 1) = n 1 and rank(L 2 ) = 
n2 • [See Exercise 1.6 for the definition of rank.] 

{a) Use Theorems 4.1, 4.2, and 2.1 to give an upper bound on 
rank(L 1 U L 2 ). 

(b) Use Theorems 4.1, 4.2, 4.3, 4.4, and 2.1 to give an upper bound on 
rank(L 1 n L 2 ). 

5.* Let A 1 , A 2 be alphabets, and let f be a function from A1 to subsets 
of A~. f is a substitution on A 1 if f(O) = {0} and, for all nonnull words 
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a1 ••• an EAr, where a1 , ••• , an E A 1 , f(a 1 ••• an) = f(a 1) ••• f(an) = 
{u1, ... , unlu; E f(a;), 1 :::;; i:::;; n}. For L ~At, f(L) = Uwe L f(w). 

(a) Let A 1 ={a, b}, A2 = {c, d, e}, let f be the substitution on A 1 

such that f(a) = {cc,O} and f(b) ={wE A~ I w ends in e}, and 
let L = {a[mlb[nJI m, n ~ 0}. What is f(L)? 

(b) Let A 1 , A 2 be alphabets, let f be a substitution on A 1 such that 
f(a) ~A~ is a regular language for all a E A 1 , and let L be a 
regular language on A 1 • Prove that f(L) is a regular language on 
Az. 

(c) Let A1 , A2 be alphabets, and let g be a function from Ar to 
A~. g is a homomorphism on A 1 if g(O) = 0 and, for all nonnull 
words al ... an EAr' where al' ... ' an E AI' g(al ... an) = 
g(a 1)··· g(an). For L ~Ar, g(L) = {g(w)l wE L}. Use (b) to 
show that if g is a homomorphism on A 1 and L ~ Aj is regular, 
then g(L) is regular. 

5. Kleene's Theorem 

In this section we will see how the class of regular languages can be 
characterized as the class of all languages obtained from finite languages 
using a few operations. 

Definition. Let L 1 , L 2 ~A*. Then, we write 

Definition. Let L ~A*. Then we write 

With respect to this last definition, note that 

1. 0 E L * automatically because n = 0 is allowed; 
2. for A* the present notation is consistent with what we have been 

using. 

Theorem 5.1. If L, L are regular languages, then L · L is a regular 
language. 

Proof. Let L and L be dfas that accept L and L, respectively, with 
Q, q1 , F, l> and Q, ij 1 , F, 8 the set of states, initial state, set of accepting 
states, and transition function, respectively. Assume that L and L have 
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no states in common, i.e., Q n Q = 0. By our discussion in Section 1, we 
can assume without loss of generality that the alphabets of L and L are 
the same. Consider the ndfa L formed by "gluing together" ./1 and L in 
the following way. The set Q of states of Lis Q u Q, and the initial state 
is q1 • We will define the transition function 8 of L in such a way that the 
transitions of L will contain all transitions of ./1 and L. In addition 
8(q, s) will contain B(q1 , s) for every q E F. Thus, any time a symbol of 
the input string causes ./1 to enter an accepting state, L can either 
continue by treating the next symbol of the input as being from the word 
of L or as the first symbol of the word of L. Formally we define 8 as 
follows: 

{

{8(q, s)} for q E Q- F 

8(q, s) = {8(q, s)} U { B(ij1 , s)} for q E F 

{ B(q, s)} for q E Q. 

Thus, L begins by behaving exactly like ./1. However, just when ./1 has 
accepted a word and would make a transition from an accepting state, L 
may proceed as if it were L making a transition from ij1 • 

Finally, if 0 E L we set F = F u F, and if 0 ~ L we set F =F. Clearly, 
L · L = L(L), so that L · L is a regular language. • 

Theorem 5.2. If L is a regular language, then so is L *. 

Proof. Let ./1 be a nonrestarting dfa that accepts L with alphabet A, set 
of states Q, initial state q1 , accepting states F, and transition function 8. 
We construct the ndfa L with the same states and initial state as ./1, 
and accepting state q1 • The transition function 8 is defined as follows: 

- ({S(q,s)} 
8(q, s) = {8(q, s)} u {qt} 

if 8(q, s) ~ F 

if 8(q, s) E F. 

That is, whenever ./1 would enter an accepting state, L will enter either 
the corresponding accepting state or the initial state. Clearly L * = L(L), 
so that L * is a regular language. • 

Theorem 5.3 (K.leene's Theorem). A language is regular if and only if it 
can be obtained from finite languages by applying the three operators 
u, ·, * a finite number of times. 

The characterization of regular languages that Kleene's theorem gives 
resembles the definition of the primitive recursive functions and the 
characterization of the partially computable functions of Theorem 3.5 in 
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Chapter 4. In each case one begins with some initial objects and applies 
certain operations a finite number of times. 

Proof. Every finite language is regular by Corollary 4.7, and if L = 
L 1 U L 2 or L = L 1 • L 2 or L = Lj, where L 1 and L 2 are regular, then L 
is regular by Theorems 4.2, 5.1, and 5.2, respectively. Therefore, by 
induction on the number of applications of u , ·, and *, any language 
obtained from finite languages by applying these operators a finite number 
of times is regular. 

On the other hand, let L be a regular language, L = L(L), where L is 
a dfa with states q1 , ••• , qn. As usual, q1 is the initial state, F is the set of 
accepting states, 8 is the transition function, and A = {s1 , ••• , sK} is the 
alphabet. We define the sets RL, i, j > 0, k ~ 0, as follows: 

R~.j = {x E A* l8*(q;, x) = qj and L passes through no state 

q1 with I > k as it moves across x}. 

More formally, RL is the set of words x = s;1S; 2 ••• s;,s;,+ 1 such that we 
can write 

8(qi' S;l) = qjl' 

8(qjl 's;) = qh' 

8(qj,_ I 's;) = qj,' 

8(qj,,si,+l) = qj, 

where j 1 , j 2 , ••• , j, ::; k. Now, we observe that 

since for a word of length 1, L passes directly from state qi into state qj 
while in processing any word of length > 1, L will pass through some 
intermediate state q1, I~ 1. Thus R?,j is a finite set. Furthermore, we have 

R~,j 1 = R~.j u [ R~.k+l. CRLI,k+l)* ·RLI,j]• (5.1) 

This rather imposing formula really states something quite simple: The set 
Rtj 1 contains all the elements of RL and in addition contains strings x, 
such that L in scanning x passes through the state qk+ 1 (but through 
none with larger subscript) some finite number of times. Such a string can 
be decomposed into a left end, which L enters in state qi and leaves in 
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state qk+ 1 (passing only through states with subscripts less than k + 1 in 
the process), followed by some finite number of pieces each of which L 
enters and leaves in state qk+ 1 (passing only through q1 with I ~ k), 
and a right end which L enters in state qk+ 1 and leaves in state qi 

(again passing only through states with subscript ~ k in between). Now 
we have 

Lemma. Each RL can be obtained from finite languages by a finite 
number of applications of the operations u, ·, *. 

Proof. We prove by induction on k that for all i, j, the set RL has the 
desired property. For k = 0 this is obvious, since RL is finite. 

Assuming the result known fork, (5.1) yields the result fork+ 1. • 

Proof of Kleene's Theorem Concluded. We note that 

thus, the result follows at once from the lemma. • 
Kleene's theorem makes it possible to give names to regular languages 

in a particularly simple way. Let us begin with an alphabet A = 

{s1 , s2 , ••• , sk}. Then we define the corresponding alphabet: 

A= {s 1 ,s2 , ••• ,sk,0,0, U, · ,*,(,)}. 

The class of regular expressions on the alphabet A is then defined to be the 
subset of A* determined by the following: 

1. 0, 0, s 1 , ••• , s k are regular expressions. 
2. If a and {3 are regular expressions, then so is (a U {3 ). 
3. If a and {3 are regular expressions, then so is (a · {3 ). 
4. If a is a regular expression, then so is a*. 
5. No expression is regular unless it can be generated using a finite 

number of applications of 1-4. 

Here are a few examples of regular expressions on the alphabet A = 
{a, b, c}: 

(a · (h* u c*)) 
(0 U (a ·h)*) 
(c* · h*). 
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For each regular expression y, we define a corresponding regular 
language ( y) by recursion according to the following "semantic" rules: 3 

(s;) = {s;}, 

(0) = {0}, 

(0) = 0, 

((aU /3)) =(a) U ( {3), 

((a· {3)) =(a)· ( {3), 

(a*)= (a)*. 

When ( y) = L, we say that the regular expression y represents L. Thus, 

We have 

((a· (b* U c*))) = {ablnll n;;;:: 0} U {aclmll m;;;:: 0}, 

((O u (a ·b)*)) = ((a ·b)*) = {(ab)1n11 n ;;;:: 0}, 

((c* · b*)) = {clmlb[nJim,n;;;:: 0}. 

Theorem 5.4. For every finite subset L of A*, there is a regular expres­
sion y on A such that ( y) = L. 

Proof. If L = 0, then L = (0). If L = {0}, then L = (0). If L = {x}, 
where x = S; 1 S; 2 • • • s;,. then 

L = ((s. · (s. · (s. ··· s.) ··· ))). 'J '2 'J lJ 

This gives the result for languages L consisting of 0 or 1 element. 
Assuming the result known for languages of k elements, let L have k + 1 
elements. Then we can write 

L = L 1 U {x}, 

where x E A* and L 1 contains k elements. By the induction hypothesis, 
there is a regular expression a such that (a) = L 1 • By the one-element 
case already considered, there is a regular expression {3 such that ( {3 ) = 
{x}. Then we have 

( (aU {3)) = (a) U ( {3) = L 1 U {x} = L. • 
3 For more on this subject see Part 5. 
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Theorem 5.5 (K.leene's Theorem-Second Version). A language L ~A* 
is regular if and only if there is a regular expression y on A such that 
(y)=L. 

Proof. For any regular expression y, the regular language ( y) is built up 
from finite languages by applying u, ·, * a finite number of times, so ( y) 
is regular by Kleene's theorem. 

On the other hand, let L be a regular language. If L is finite then, by 
Theorem 5.4, there is a regular expression y such that ( y) = L. Other­
wise, by Kleene's theorem, L can be obtained from certain finite language 
by a finite number of applications of the operations u, · , *. By beginning 
with regular expressions representing these finite languages, we can build 
up a regular expression representing L by simply indicating each use of 
the operations u, ·, * by writing U, ·, *, respectively, and punctuating 
with (and). • 

Exercises 

1. (a) For each language L described in Exercise 1.1, give a regular 
expression a such that L = ( a ) . 

(b) For each dfa L described in Exercise 1.3, give a regular expres­
sion a such that L(L) = (a). 

(c) For each ndfa L described in Exercise 2.1, give a regular 
expression a such that L(L) = (a). 

2. For regular expressions a, {3, let us write a = {3 to mean that 
(a) = ( {3 ). For a, {3, y given regular expressions, prove the follow­
ing identities. 
(a) (a U a) = a. 
(b) ((a· (3) U (a· y)) =(a· ( {3 U y)). 

(c) (( {3 • a) U ( y · a)) = (( {3 U y) · a). 
(d) (a*· a*)= a*. 
(e) (a· a*)= (a*· a). 

(f) a** =a*. 
(g) (O U (a· a*))= a*. 
(h) ((a· (3)* ·a)= (a· ( {3 ·a)*). 

(i) ( a U {3 )* = ( a * · {3 * )* = ( a * U {3 * )*. 
3. Using the identities of Exercise 2 prove that 

((abb)*(ba)*(b Uaa)) = (abb)*((O U (b(ab)*a))b U (ba)*(aa)). 
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(Note that parentheses and the symbol "·" have been omitted to 
facilitate reading.) 

4. Let a, {3 be given regular expressions such that 0 f/:. ( a ) . Consider 
the equation in the "unknown" regular expression ~: 

~ = (/3 u a. a)). 

Prove that this equation has the solution 

~=({3·a*) 

and that the solution is unique in the sense that if ~ 1 also satisfies the 
equation, then ~ = ~ 1 • 

5. Let L = {x E {a, b}* I x =/= 0 and bb is not a substring of x}. 
(a) Show that L is regular by constructing a dfa L such that 

L = L(L). 

(b) Find a regular expression y such that L = ( y ). 

6. Let L = (((a · a) u (a · a · a))*). Find a dfa L that accepts L. 

7. Describe an algorithm that, given any regular expression a, produces 
an ndfa L that accepts ( a ) . 

8. Let L 1 , L 2 be regular languages with rank(L 1) = n 1 and rank(L 2 ) = 
n2 • [See Exercise 1.6 for the definition of rank.] 
(a) Use Theorem 5.1 to give an upper bound on rank(L 1 • L 2 ). 

(b) Use Theorem 5.2 to give an upper bound on rank(L~ ). 

9. LetA={s1 , ••• ,sn}. 
(a) Give a function b 1 such that rank(( a ) ) :::;; b 1( a) for all regular 

expressions a on A. 
(b) Define the size of a regular expression on A as follows. 

size(0) = 1 
size(O) = 1 
size(s;} = 1 i = 1, ... , n 
size(( a U {3 )) =size( a) + size( {3) + 1 
size(( a · {3 )) =size( a) + size( {3) + 1 
size(a*) =size(a) + 1 

Give a numeric function b2 such that rank(( a)) :::;; b2(size( a)) 
for all regular expressions a on A. 

(c)* Verify that b2 is primitive recursive. 

10.* Let A = {s1 , ••• , sn}, let a, {3 be regular expressions on A, and let 
Pa, Pf3 be primitive recursive predicates such that for all w E A*, 
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Pa(w) = 1 if and only if wE (a) and P/w) = 1 if and only if 
WE ( {3 ). 

(a) Give a primitive recursive predicate P< au 13 > such that 
P( a u 13 >( w) = 1 if and only if w E ( ( a U {3 ) ) . 

(b) Give a primitive recursive predicate P<a·fJ> such that P(a·fJ>(w) 
= 1 if and only if w E ( ( a · {3 ) ) . 

(c) Give a primitive recursive predicate Pa* such that Pa.(w) = 1 if 
and only if w E (a*). 

{d) Use parts (a), (b), and (c) to show that for all regular expressions 
y on A, there is a primitive recursive predicate P-y such that 
P/ w) = 1 if and only if w E ( y). 

6. The Pumping Lemma and Its Applications 

We will make use of the following basic combinatorial fact: 

Pigeon-Hole Principle. If (n + 1) objects are distributed among n 
sets, then at least one of the sets must contain at least two objects. 

We will use this pigeon-hole principle to prove the following result. 

Theorem 6.1 (Pumping Lemma). Let L = L(L), where L is a dfa with 
n states. Let x E L, where lxl ~ n. Then we can write x = uvw, where 
v =1= 0 and uvlilw E L for all i = 0, 1, 2, 3, .... 

Proof. Since x consists of at least n symbols, L must go through at least 
n state transitions as it scans x. Including the initial state, this requires at 
least n + 1 (not necessarily distinct) states. But since there are only n 
states in all, we conclude (here is the pigeon-hole principle!) that L must 
be in at least one state more than once. Let q be a state in which L finds 
itself at least twice. Then we can write x = uvw, where 

l>*(ql 'u) = q, 

l>*(q,v)=q, 

l>*(q, w) E F. 

That is, L arrives in state q for the first time after scanning the last 
(right-hand) symbol of u and then again after scanning the last symbol of 
v. Since this "loop" can be repeated any number of times, it is clear that 

8*(q 1 , uvlilw) = 8*(q 1 , uvw) E F. 

Hence uvlilw E L. • 
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Theorem 6.2. Let L be a dfa with n states. Then, if L(L) -=1= 0, there is 
a string x E L(L) such that lxl < n. 

Proof. Let x be a string in L(L) of the shortest possible length. Suppose 
lxl;;:::: n. By the pumping lemma, x = uvw, where v -=1= 0 and uw E L(L). 
Since luwl < lxl, this is a contradiction. Thus lxl < n. • 

This theorem furnishes an algorithm for testing a given dfa L to see 
whether the language it accepts is empty. We need only "run" L on all 
strings of length less than the number of states of L. If none is accepted, 
we will be able to conclude that L(L) = 0. 

Next we turn to infinite regular languages. If L = L(L) is infinite, then 
L must surely contain words having length greater than the number of 
states of L. Hence from the pumping lemma, we can conclude 

Theorem 6.3. If L is an infinite regular language, then there are words 
u,v, w, such that v -=1= 0 and uvlilw E L for i = 0, 1, 2, 3, .... 

This theorem is useful in showing that certain languages are not regular. 
However, for infinite regular languages we can say even more. 

Theorem 6.4. Let L be a dfa with n states. Then L(L) is infinite if and 
only if L(L) contains a string x such that n ~ lxl < 2n. 

Proof. First let x E L(L) with n ~ lxl < 2n. By the pumping lemma, we 
can write x = uvw, where v -=1= 0 and uvlilw E L(L) for all i. But then 
L(L) is infinite. 

Conversely, let L(L) be infinite. Then L(L) must contain strings of 
length ;;:::: 2n. Let x E L(L), where x has the shortest possible length 
;;:::: 2n. We write x = x 1x 2 , where lx11 = n. Thus lx21 :2::: n. Then using the 
pigeon-hole principle as in the proof of the pumping lemma, we can write 
x 1 = uvw, where 

l>*(ql 'u) = q, 

l>*(q, v) = q with 1 ~ lvl ~ n, 

l>*(q, wx2 ) E F. 

Thus uwx2 E L(L). But 

luwx21 :2::: lx21 :2::: n, 

and luwx21 < lxl, and since x was a shortest word of L(L) with length at 
least 2n, we have 

n ~ luwx21 < 2n. • 
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This theorem furnishes an algorithm for testing a given dfa L to 
determine whether L(L) is finite. We need only run Lon all strings x 
such that n :::;; lxl < 2n, where L has n states. L(L) is infinite just in 
case L accepts at least one of these strings. 

For another example of an algorithm, let L 1 , L 2 be dfas on the 
alphabet A and let us seek to determine whether L(L1) ~ L(L2 ). Using 
the methods of proof of Theorems 4.2-4.4, we can obtain a dfa L such 
that 

L(L) = L(L1) n [A* - L(L2 )]. 

Then L(L1) ~ L(L2 ) if and only if L(L) = 0. Since Theorem 6.2 
enables us to test algorithmically whether L(L) = 0, we have an algo­
rithm by means of which we can determine whether L(L1) ~ L(L2 ). 

Moreover, since L(L1) = L(L2 ) just when L(L1) ~ L(L2 ) and L(L2 ) ~ 
L(L1), we also have an algorithm for testing whether L(L1) = L(L2). 

The pumping lemma also furnishes a technique for showing that given 
languages are not regular. For example, let L = {a[n1b[n11 n > 0}, and 
suppose that L = L(L), where L is a dfa with m states. We get a 
contradiction by showing that there is a word x E L, with lxl ~ m, such 
that there is no way of writing x = uvw, with v =I= 0, so that {uv[i1w I i ~ 0} 
~ L. Let x = a[11b[11, where 2/ ~ m, and let a[11b[11 = uvw. Then either 
v = al1d or v = a[1db[121 or v = b[12 1, with /1 ,/2 :::;; I, and in each case 
uvvw rt L, contradicting the pumping lemma, so there can be no such dfa 
L, and L is not regular. 

This example and the exercises at the end of Section 7 show that finite 
automata are incapable of doing more than a limited amount of counting. 

Exercises 

1. Given a word w and a dfa L, a test to determine if w E L(L) is a 
membership test. 
(a) Let L 1 , L 2 be arbitrary dfas on alphabet A = {s1 , ••• , sn}, where 

L 1 has m 1 states and L 2 has m2 states. Give an upper bound 
f(m 1 , m2 ) on the number of membership tests necessary to 
determine if L(L1) = L(L2). 

(b)* Verify that f is primitive recursive. 

2. (a) Describe an algorithm that, for any regular expressions a and {3, 
determines if ( a ) = ( {3 ) . 

(b) Give a function g(x, y) such that the algorithm in part (a) 
requires at most g(size( a), size( {3 )) membership tests. [See Exer­
cise 5.9 for the definition of size( a).] 

(c)* Verify that g is primitive recursive. 
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7. The Myhill- Nerode Theorem 

We conclude this chapter by giving another characterization of the regular 
languages on an alphabet A. We begin with a pair of definitions. 

Definition. Let L ~A*, where A is an alphabet. For strings x,y EA*, 
we write x =L y to mean that for every w E A* we have xw E L if and 
only if yw E L. 

It is obvious that = L has the following properties. 

X =LX. 

If X ==. L y, then y ==. L X. 

If X ==. L y and y ==. L Z, then X ==. L Z. 

(Relations having these three properties are known as equivalence rela­
tions.) 

It is also obvious that 

If x =L y, then for all wE A*, xw =L yw. 

Definition. Let L ~A*, where A is an alphabet. Let S ~A*. Then S is 
called a spanning set for L if 

1. S is finite, and 
2. for every x E A*, there is a y E S such that x =L y. 

Then we can prove 

Theorem 7.1 (Myhili-Nerode). A language is regular if and only if it has 
a spanning set. 

Proof. First let L be regular. Then L = L(L), where L is a dfa with set 
of states Q, initial state q1 , and transition function 8. Let us call a state 
q E Q reachable if there exists y E A* such that 

8*(ql,y)=q. (7.1) 

For each reachable state q, we select one particular string y that satisfies 
(7.1) and we write it as Yq. Thus, 

8*(q1, yq) = q 

for every reachable state q. We set 

S = {Yq I q is reachable}. 

S is clearly finite. To show that S is a spanning set for L, we let x E A* 
and show how to find y E S such that x =L y. In fact, let 8*(q1, x) = q, 
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and set y = Yq. Thus, y E S and l>*(q 1 , y) = q. Now for every w E A*, 

l>*(q 1 ,xw) = l>*(q,w) = l>*(q1 ,yw). 

Hence, l>*(q1 , xw) E F if and only if l>*(q1 , yw) E F; i.e., xw E L if and 
only if yw E L. Thus, x =L y. 

Conversely, let L ~A* and let S ~A* be a spanning set for L. We 
show how to construct a dfa ./1 such that L(./1) = L. We define the set of 
states of ./1 to be Q = {qx I x E S}, where we have associated a state qx 
with each element x E S. Since S is a spanning set for L, there is an 
x 0 E S such that 0 =L x 0 ; we take qxo to be the initial state of ./1. We let 
the final states of ./1 be 

F= {qyly EL}. 

Finally, for a E A, we set l>(qx, a)= qy, where yES and xa =L y. Then 
we claim that for all w E A*, 

where xw =L y. 

We prove this claim by induction on lwl. For lwl = 0, we have w = 0. 
Moreover, l>*(qx,O) = qx and xO = x =L x. Suppose our claim is known 
for all words w such that lwl = k, and consider w E A* with lwl = k + 1. 
Then w = ua, where lui = k and a EA. We have 

l>*(qx, w) = l>(l>*(qx, u), a) = l>(qy, a) = qz, 

where, using the induction hypothesis, xu =L y and, by definition of l>, 
ya =L z. Then xw = xua =L ya =L z, which proves the claim. Now, we 
have 

L(./1) = {wE A* ll>*(qx 11 , w) E F}. 

Let l>*(qxo• w) = qy. Then by the way x0 was defined and our claim, 

W ::L XoW ::L y. 

Thus, w E L if and only if y E L, which in turn is true if and only if 
qY E F, i.e., if and only if w E L(./1). Hence L = L(./1). • 

Like the pumping lemma, the Myhill-Nerode theorem furnishes a 
technique for showing that a given language is not regular. For example, 
let L = {alnlblnJ I n > 0} again, and let n 1 , n2 be distinct numbers > 0. 
Then alnJib(nJI ELand aln 21blnJI $. L, so alnJI ;f:.L aln 21, and since =L is an 
equivalence relation, there can be no word w such that alnd =L w and 
aln 2J =L w. But if there were a spanning set S = {w 1 , ••• , wm} for L, then 
by the pigeon-hole principle, there would have to be at least two distinct 
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words among {a, aa, ... , alm + 11}, say alii and alii, and some wk E S such 
that alii =L wk and alii =L wk, which is impossible. Therefore L has no 
spanning set, and by the Myhill-Nerode theorem, L is not regular. 

Exercises 

1. (a) For each language L described in Exercise 1.1, give a spanning 
set for L. 

(b) For each dfa L described in Exercise 1.3, give a spanning set 
for L(L). 

(c) For each ndfa L described in Exercise 2.1, give a spanning set 
for L(L). 

2. Prove that there is no dfa that accepts exactly the set of all words that 
are palindromes over a given alphabet containing at least two sym­
bols. (For a definition of palindrome, see Exercise l.lf.) 

3. u is called an initial segment of a word w if there is a word v such 
that w = uv. Let L be a regular language. Prove that the language 
consisting of all initial segments of words of L is a regular language. 

4. Let L be a regular language and L' the language consisting of all 
words w such that both wand w ·ware words in L. Prove that L' is 
regular. 

5. Prove the following statement, if it is true, or give a counterexample: 
Every language that is a subset of a regular language is regular. 

6. Prove that each of the following is not a regular language. 
(a) The language on the alphabet {a, b} consisting of all strings in 

which the number of occurrences of b is greater than the 
number of occurrences of a. 

(b) The language L over the alphabet {., 0, 1, ... , 9}, consisting of all 
strings that are initial segments of the infinite decimal expansion 
of 7T. [L = {3, 3., 3.1, 3.14, 3.141, 3.1415, ... }.] 

(c) The language L over the alphabet {a, b} consisting of all strings 
that are initial segments of the infinite string 

babaabaaabaaaab ... 

7. Let L = {alilbUI I i =I= j}. Show that L is not regular. 

8. Let L = {alnlbl2nl In > 0}. Show that L is not regular. 

9. Let L = {alnlblmJ I 0 < n ~ m}. Show that L is not regular. 

10. Let L = {alPI I p is a prime number}. Show that L is not regular. 
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11. Let L be a finite automaton with alphabet A, set of states Q = 

{q1 , ••• , qn}, initial state q 1 , and transition function 8. Let 
a 1 , a2 , a3 , ••• be an infinite sequence of symbols of A. We can think 
of these symbols as being "fed" to L in the given order producing a 
sequence of states r1 , r2 , r3 , ••• , where r1 is just the initial state q1 

and r;+ 1 = 8(r;, a), i = 1, 2, 3, .... Suppose there are integers p, k 
such that 

for all i ~ k. 

Prove that there are integers /, s such that s :::;; np and 

ri+s = r; for all i ~I. 

[Hint: Use the pigeon-hole principle.] 

12. (a) Let L be a regular language, and let S be a spanning set for L. 
S is a minimal spanning set for L if there is no spanning set for 
L that has fewer elements than S, and S is independent if there 
is no pairs, S 1 of distinct elements of S such that s =L S 1

• Prove 
that S is minimal if and only if it is independent. 

(b) Let L be a regular language, and let S, S 1 be spanning sets for 
L. S and S 1 are isomorphic if there is a one-one function f 
from S onto S 1 such that s =L f(s) for all s E S. Prove that if S 
and S 1 are both minimal, then they are isomorphic. 

(c) A dfa L is a minimal dfa for a regular language L if L = L(L) 
and if there is no dfa .4'1 with fewer states than L such that 
L(L1 ) = L(L). Let L be a regular language, let L be a dfa 
that accepts L, and let S be a spanning set for L constructed 
from L as in the proof of Theorem 7.1. Prove that if L is a 
minimal dfa for L then S is a minimal spanning set for L. Why 
is the converse to this statement false? 

(d) Let L be a regular language, let S be a spanning set for L, and 
let L be the dfa constructed from S as in the proof of Theorem 
7.1. Prove that S is a minimal spanning set for L if and only if 

L is a minimal dfa for L. 
(e) Let L and L 1 be dfas on alphabet A with states Q and Q1 , 

initial states q1 and q;, accepting states F and F 1
, and transi­

tion functions 8 and 8 1 • L and .4'1 are isomorphic if there is a 
one-one function g from Q onto Q1 such that g(q1) = q;, q E F 
if and only if g(q) E F 1 , and 8 1(g(q), s) = g(8(q, s)) for all 
q E Q and s EA. (Informally, Land L 1 are identical but for 
a renaming of the states.) Prove that, if L and L 1 are 
both minimal dfas for some regular language L, then they are 
isomorphic. 
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13. Let L 1 , L 2 be languages on some alphabet A. The right quotient of 
L 1 by L 2 , denoted L 1/L 2 , is {x l.xy E L 1 for some y E L 2}. Prove 
that if L 1 and L 2 are regular, then L 1/L 2 is regular. 

14. Let L = {alPlblmll p is a prime number, m > 0} U {alnll n ;::: 0}. 
(a) Show that L is not regular. [Hint: See Exercise 4.3 and Exer­

cises 10 and 13 above.] 
(b) Explain why the pumping lemma alone is not sufficient to show 

that L is not regular. 
(c) State and prove a stronger version of the pumping lemma which 

is sufficient to show that L is not regular. 
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Context-Free Languages 

1. Context-Free Grammars and Their Derivation Trees 

Let 'F, T be a pair of disjoint alphabets. A context-free production on 'F, T 
is an expression 

x~h 

where X E 'F and h E ('FU T)*. The elements of 'Fare called variables, 
and the elements of T are called terminals. If P stands for the production 
X~ hand u, v E ('FU T)*, we write 

U=JV 

to mean that there are words p, q E ('FU T)* such that u = pXq and 
v = phq. In other words, v results from u by replacing the variable X by 
the word h. Productions X~ 0 are called null productions. A context-free 
grammar r with variables 'F and terminals T consists of a finite set of 
context-free productions on 'F, T together with a designated symbol 
S E 'F called the start symbol. Collectively, the set 'FU T is called the 
alphabet of r. If none of the productions of r is a null production, r is 
called a positive context-free grammar.' 

1 Those who have read Chapter 7 should note that every positive context-free grammar is a 
context-sensitive grammar in the sense defined there. For the moment we are not assuming 
familiarity with Chapter 7. However, the threads will all be brought together in the next 
chapter. 

269 
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If r is a context-free grammar with variables 'F and terminals T, and if 
u,v E ('FUT)*, we write 

u=pv 

to mean that u =;tv for some production P of r. We write 

u'?v 

to mean there is a sequence u1 , ••• , um where u = u1 , um = v, and 

for 1 ~ i < m. 

The sequence u1 , ••• , um is called a derivation of v from u in f. The 
number m is called the length of the derivation. 2 The symbol r below the 
==> may be omitted when no ambiguity results. Finally, we define 

L(f) = {u E T* IS ~ u}. 

L(f) is called the language generated by f. A language L ~ T* is called 
context-free If there is a context-free grammar r such that L = L(f). 

A simple example of a context-free grammar r is given by 'F= {S}, 
T = {a, b}, and the productions 

S ---+ aSb, S ---+ ab. 

Here we clearly have 

L(f) = {a[n)b[nll n > 0}; 

thus, this language is context-free. We showed in Chapter 9, Section 6, that 
L(f) is not regular. Later we shall see that every regular language is 
context-free. For the meanwhile we have proved 

Theorem 1.1. The language L = {a[nlb[nll n > 0} is context-free but not 
regular. 

We now wish to discuss the relation between context-free grammars in 
general and positive context-free grammars. It is obvious that if r is a 
positive context-free grammar, then 0 f/=. L(f). We shall show that except 
for this limitation, everything that can be done using context-free gram­
mars can be done with positive context-free grammars. This will require 
some messy technicalities, but working out the details now will simplify 
matters later. 

2 Some authors use the number m - 1 as the length of the derivation. 
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Definition. We define the kernel of a given context-free grammar f, 
written ker (f), to be the set of variables V of f such that V =f 0. 

As an example consider the context-free grammar f 0 with productions 

s~XYIT, s ~ax, x~o. v~ o. 
Then ker(f0 ) ={X, Y, S}. This example suggests an algorithm for locating 
the elements of ker(f) for a given context-free grammar f. We let 

~~ = {VI V ~ 0 is a production of f}, 

r;+ I = r; u {VI v ~a is a production of r, where a E r;*}. 

Thus for f 0, ~u = {X, Y}, 'Y1 ={X, Y, S}, and r; = 'Y1 for all i > 1. S is 
in 'Yl because XYIT E 'Yo* . In the general case it is clear, because r has 
only finitely many variables, that a stage k will eventually be reached for 
which ~+ 1 = ~ and that then r; = 'Yk for all i > k. We have 

Lemma I. If 'Yk = 'Yk+ 1 , then ker(f) = 'Yk. 

Proof. It is clear that r; ~ ker (f) for all i. Conversely, we show that if 
V E ker(f), then V E 'Yk. We prove this by induction on the length of a 
derivation of 0 from V in f. If there is such a derivation of length 2, then 
V t 0, so that V ~ 0 is a production of f and V E 'Y0. Let us assume the 
result for all derivations of length < r and let V = a 1 = a 2 = ··· = 
a,_ 1 = a, = 0 be a derivation of length r in f. The words a 1 , a 2 , ••• , a,_ 1 

must consist entirely of variables, since terminals cannot be eliminated by 
context-free productions. Let a 2 = V1 V2 • • • V,. Then we have V; =f 0, 
i = 1, 2, ... , s, by derivations of length < r. By the induction hypothesis, 
each v; E 'Yk . Since f contains the production V ~ V1 V2 • • • V, , and 
a 2 E ~* , we have V E 'Yk + 1 = 'Yk . • 

Lemma 2. There is an algorithm that will transform a given context-free 
grammar f into a positive context-free grammar f such that L(f) = L(f) 
or L(f) = L(f) u {0}. 

Proof. We begin by computing ker (f). Then we obtain f by first adding 
all productions that can be obtained from the productions of f by deleting 
from their righthand sides one or more variables belonging to ker (f) and 
by then deleting all productions (old and new) of the form V ~ 0. (In our 
example, f 0 would have the productions S ~ XYIT, S ~ aX, S ~ a, 
S ~ Yl'X, S ~ XIT, S ~ XYY, S ~ XY, S ~ YY, S ~ IT, S ~ XX, 
S ~X, S ~ Y.) We shall show that L(f) = L(f) or L(f) = L(f) u {0}. 
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Let v ~ f3t f3z ... f3s be a production of r that is not a production of 
r, where {31 , {32, ..• , f3s E ( ~u T), and where this production was ob­
tained from a production of r of the form 

V ~ Uo f3t Ut f3z ••. f3sus' 

with u0,u1,u2, ... ,U5 E (ker(f))*. [Of course, u0,u5 might be 0. But 
since 0 E (ker (f))*, this creates no difficulty.] Now, 

U; =f 0, i = 0,1,2, ... ,s, 

so that 

V t Uo f3tUI f3z ••• Us-1 f3sus =f f3t f3z ..• f3s · 

Thus, the effect of this new production of f can be simulated in f. This 
proves that L(f} ~ L(f). 

It remains to show that if v E L(f) and v -=!= 0, then v E L(f}. Let T be 
the set of terminals of r (and also of f). We shall prove by induction the 
stronger assertion: 

For any variable V, ifV =f w-=/= 0 forw E T*, then V=j? w. 

If in fact V t ~, then r contains the production V ~ w which is also a 
production of r. Otherwise we may write 

V t w0V1w1V2w2 ••• V.ws 'f w, 

where Vto····V. are variables and w0 ,w1 ,w2 , ••• ,W5 are (possible null) 
words on the terminals. Then w can be written 

where 

i = 1, 2, ... ' s. 

Since each V; must have a shorter derivation from V; than w has from V, 
we may proceed inductively by assuming that for each V; which is not 0, 

V;:; V;. On the other hand, if V; = 0, then V; E ker(f). We set 
r 

vo = {0 
I V; 

if V; = 0 
otherwise. 

Then v ~ WoV~w IV~w 2 ••• V~ws is one of the productions of r. Hence 
we have 
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We can now easily prove 

Theorem 1.2. A language L is context-free if and only if there is a 
positive context-free grammar r such that 

L = L(f) or L = L(f) U {0}. (1.1) 

Moreover, there is an algorithm that will transform a context-free gram­
mar A for which L = L(A) into a positive context-free grammar f that 
satisfies (1.1). 

Proof. If L is context-free with L = L(A) for a context-free grammar A, 
then we can use the algorithm of Lemma 2 to construct a positive 
context-free grammar f such that L = L(f) or L = L(f) u {0}. 

Conversely, if f is a positive context-free grammar and L = L(f), there 
is nothing to prove since a positive context-free grammar is already a 
context-free grammar. If L = L(f) u {0}, let S be the start symbol of f 
and let f be the context-free grammar obtained from f by introducing S 
as a new start symbol and adding the productions 

S-+ S, 

Clearly, L(f) = L(f) u {0}. 

s-+ 0. 

• 
Now, let f be a positive context-free grammar with alphabet T u 'Y, 

where T consists of the terminals and r is the set of variables. We will 
make use of trees consisting of a finite number of points called nodes or 
vertices, each of which is labeled by a letter of the alphabet, i.e., an 
element of T u r. Certain vertices will have other nodes as immediate 
successors, and the immediate successors of a given node are to be in some 
definite order. It is helpful (though of course not part of the formal 
development) to think of the immediate successors of a given node as 
being physically below the given node and arranged from left to right in 
their given order. Nodes are to be connected by line segments to their 
immediate successors. There is to be exactly one node which is not an 
immediate successor; this node is called the root. Each node other than 
the root is to be the immediate successor of precisely one node, its 
predecessor. Nodes which have no immediate successors are called leaves. 

A tree is called a f -tree if it satisfies the following conditions: 

1. the root is labeled by a variable; 
2. each vertex which is not a leaf is labeled by a variable; 
3. if a vertex is labeled X and its immediate successors are labeled 

a 1 , a 2 , ••• , ak (reading from left to right), then X-+ a 1 a 2 ••• ak is 
a production of r. 
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Let !T be a f-tree, and let 11 be a vertex of !T which is labeled by the 
variable X. Then we shall speak of the subtree !Tv of !T determined by 11.The 
vertices of !Tv are 11, its immediate successors in !T, their immediate 
successors, and so on. The vertices of !Tv are labeled exactly as they are in 
!T. (In particular, the root of !Tv is 11 which is labeled X.) Clearly, !Tv is 
itself a f-tree. 

If !Tis a f-tree, we write (!T) for the word that consists of the labels of 
the leaves of !T reading from left to right (a vertex to the left of a given 
node is regarded as also being to the left of each of its immediate 
successors). If the root of !T is labeled by the start symbol S of r and if 
w = (!T), then !Tis called a derivation tree for win r. Thus the tree shown 
in Fig. 1.1 is a derivation tree for a14lbl31 in the grammar shown in the same 
figure. 

Theorem 1.3. If f is a positive context-free grammar, and S =f w, then 
there is a derivation tree for w in r. 
Proof. Our proof is by induction on the length of a derivation of w from 
s in r. If this length is 1, then w = s and the required derivation tree 
consists of a single vertex labeled S (being both root and leaf). 

Now let w have a derivation from S of length r + 1, where the result is 
known for derivations of length r. Then we have S ~ v = w with v, w E 

('YU T)*, where the induction hypothesis applies to the derivation S ~ v. 
Thus, we may assume that we have a derivation tree for v. Now since 
v = w, we must have v = x.Xy and w = xa1 ··· aky, where r contains the 
production X~ a 1 ... ak. Then the derivation tree for v can be extended 
to yield a derivation tree for w simply by giving k immediate successors to 
the node labeled X, labeled a 1, ... , ak from left to right. • 

Before considering the converse of Theorem 1.3, it will be helpful to 
consider the following derivations of a14lbPl from S with respect to the 
grammar indicated in Fig. 1.1: 

1. S = aXbY = a12l)(by = a13l)(by = a14lbY = a14lbi21Y = a14lbPl 

2. S = aXbY = aiZJ)(by = a12l)(bi2Jy = aPl)(b[2Jy = aPl)(bi3J = a14lbPl 

3. S = aXbY = aXb121Y = aXb131 = a12l)(bl31 = a13l)(bPl = a14lbl31. 

Now, if the proof of Theorem 1.3 is applied to these three derivations, the 
very same derivation tree is obtained-namely, the one shown in Fig. 1.1. 
This shows that there does not exist a one-one correspondence between 
derivations and derivation trees, but that rather, several derivations may 
give rise to the same tree. Hence, there is no unique derivation which we 
can hope to be able to read off a given derivation tree. 
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S .... aXbY 

X-+aX y .... bY 
x .... a y .... b 

Figure 1.1. A derivation tree for af4lbf31 in the indicated grammar. 

Definition. We write u = 1 v (in f) if u = xXy and v = xzy, where X~ z 
is a production of f and X E T*. If, instead, X E (T U W")* but y E T*, 
we write u =,v. 

Thus, when u = 1 v, it is the leftmost variable in u for which a substitu­
tion is made, whereas when u =, v, it is the rightmost variable in u. A 
derivation 

is called a leftmost derivation, and then we write u1 ;;,.1 un. Similarly, a 
derivation 

is called a rightmost derivation, and we write u1 ;;,., un. In the preceding 
examples of derivations of al4lbl31 from S in the grammar of Fig. 1.1, 1 is 
leftmost, 3 is rightmost, and 2 is neither. 

Now we shall see how, given a derivation tree :T for a word w E T*, we 
can obtain a leftmost derivation of w from S and a rightmost derivation of w 
from S. Let the word which consists of the labels of the immediate 
successors of the root of :T(reading from left to right) be v0 X 1v1X 2 ••• 

X,v,, where Vo, VI, ... ' v, E T*, XI' Xz, ... ' X, E r, and XI' Xz, ... ' X, 
label the vertices v1 , ••• , v,, which are immediate successors of the root of 
::T. (Of course, some of the V; may be 0.) Then S ~ v0 X 1v1X 2 ••• X,v, is 
one of the productions of f. Now it is possible that the immediate 
successors of the root of :Tare all leaves; this is precisely the case where 
w = v0 and r = 0. If this is the case, then we have S = 1 wand S =, w, so 
that we do have a leftmost as well as a rightmost derivation of w from S. 
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d, ·~--, 
a I X b I y 

!all ! !b/! ~ 1/1 I I I I I I I I 
Ia X 1 I b I 
I I I I I 
I 1 I I 
I I I 
1 a I I I ._ ____ j ....._ ___ ...... 

Figure 1.2. Decomposition of the tree of Fig. 1.1 as in the proof of the existence of leftmost 
and rightmost derivations. 

Otherwise, i.e., for r > 0, we consider the trees 9j =:Tv', i = 1, 2, ... , r. 
Here 9i has its root II; labeled X; and is made up of the part of :T 
consisting of II;, its immediate successors, their immediate successors, etc. 
(see Fig. 1.2). Let f; be the grammar whose productions and alphabet are 
the same as for r but which has start symbol X;. Then 9j is a derivation 
tree in f;. Let 9j be a derivation tree for w; in f;. Then, clearly, 

w = v0w1v1w2v2 ••• w,v,. 

Moreover, since each 9j contains fewer vertices than :T, we may assume 
inductively that for i = 1, 2, ... , r 

Hence we have 

and 

and 

S = 1 v0 X 1v1X 2 ••• X,v, 
~1 v0w1v1X 2 ••• X,v, 
~1 v0w1v1w2 ••• X,v, 

S =,v0 X 1v1X 2 ••• X,v, 
~,v0X1v 1 X2 ••• w,v, 

~,v0X1v 1 w2 ••• w,v, 
~,v0w 1v 1w2 ••• w,v, = w. 
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So we have shown how to obtain a leftmost and a rightmost derivation of 
w from sin r. 

Now, Theorem 1.3 tells us that if w E L(f), there is a derivation tree 
for w in r. And we have just seen that if there is a derivation tree for w in 
r, then there are both leftmost and rightmost derivations of w from s in 
r [so that, in particular, w E L(f)]. Putting all of this information together 
we have 

Theorem 1.4. Let f be a positive context-free grammar with start symbol 
S and terminals T. Let w E T*. Then the following conditions are equiva­
lent: 

1. wE L(f); 
2. there is a derivation tree for w in f; 
3. there is a leftmost derivation of w from S in f; 
4. there is a rightmost derivation of w from s in r 0 

Definition. A positive context-free grammar is called branching if it has 
no productions of the form X ~ Y, where X and Y are variables. 

For a derivation tree in a branching grammar r, each vertex that is not 
a leaf cannot be the only immediate successor of its predecessor. Since we 
shall find it useful to work with branching grammars, we prove 

Theorem 1.5. There is an algorithm that transforms a given positive 
context-free grammar r into a branching context-free grammar a such 
that L(a) = L(f). 

Proof. Let 'F be the set of variables of f. First suppose that r contains 
productions 

... , (1.2) 

where k ~ 1 and X 1 , X 2 , ••• , Xk E 'F. Then, we can eliminate the pro­
ductions (1.2) and replace each variable X; in the remaining productions 
of r by the new variable X. (If one of X 1 , ••• , Xk is the start symbol, then 
X must now be the start symbol.) Obviously the language generated is not 
changed by this transformation. 

Thus, we need consider only the case where no "cycles" like (1.2) occur 
in f. If r is not branching, it must contain a production X~ Y such that 
f contains no productions of the form Y ~ Z. We eliminate the produc­
tion X~ Y, but add tor productions X~ x for each word x E ('FU T)* 
for which y ~X is a production of r. Again the language generated is 
unchanged, but the number of productions that r contains of the form 
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U ~ V has been decreased. Iterating this process we arrive at a grammar 
a containing no productions of the form U ~ V, which is therefore of the 
required form. • 

A path in a f-tree :Tis a sequence a 1 , a 2 , ••• , ak of vertices of :T such 
that ai+ 1 is an immediate successor of a; for i = 1, 2, ... , k - 1. All of 
the vertices on the path are called descendants of a 1 • 

A particularly interesting situation arises when two different vertices 
a, {3 lie on the same path in the derivation tree :T and are labeled by the 
same variable X. In such a case one of the vertices is a descendant of the 
other, say, {3 is a descendant of a. yfJ is then not only a subtree of :T but 
also of :Ta. [In fact, ('Ta)f3 = :Tf3.] We wish to consider two important 

Original tree !7 
(<>,/l are labeled by the same variable) 

f pruned !/spliced 

Figure 1.3 
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operations on the derivation tree :T which can be performed in this case. 
The first operation, which we call prnning, is to remove the subtree :Ta 
from the vertex a and to graft the subtree g-f3 in its place. The second 
operation, which we call splicing, is to remove the subtree g-f3 from the 
vertex {3 and to graft an exact copy of :Ta in its place. (See Fig. 1.3.) 
Because a and {3 are labeled by the same variable, the trees obtained by 
prnning and splicing are themselves derivation trees. 

Let y; and .57. be trees obtained from a derivation tree :T in a branching 
grammar by pruning and splicing, respectively, where a and {3 are as 
before. We have (:T) = r 1(:Ta)r2 for words r 1 , r2 and (:Ta) = q1(:Tf3 )q2 

for words q1 , q2 • Since a, {3 are distinct vertices, and since the grammar is 
branching, q1 and q2 cannot both be 0. (That is, q1q2 =I= 0.) Also, 

<y;> = r 1(:Tf3)r2 and (.57.)= r1 q\2l(:T13 )q~2lr2 • (1.3) 

Since q1q2 =I= 0, we have I(:Tf3)1 < I(:Ta)l and hence I(:TP)I < I(:T)I. From 
this last inequality and Theorem 1.4, we can easily infer 

Theorem 1.6. Let f be a branching context-free grammar, let u E L(f), 
and let u have a derivation tree :T in r that has two different vertices on 
the same path labeled by the same variable. Then there is a word 
v E L(f) such that lvl < lui. 

Proof. Since u = (:T), we need only take v = <y;>. • 
Exercises 

1. Find a context-free grammar generating the set of arithmetic state­
ments of Pascal (or FORTRAN). 

2. Consider the grammar r with start symbol S and productions 

S---+ XXYY 

X---+ a 

X---+ XX 

y---+ b. 

y---+ yy 

Show that f generates the same language as the grammar of Fig. 1.1. 

3. Show that 0 is a context-free language. 

4. Give three languages that are context-free but not regular. Justify your 
answer. 

5. Give a context-free grammar r such that ker {f) = 'r.j and ~ =I= 
ker(f), i = 1,2,3. 
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6. Let r be a context-free grammar with productions XI ~ al ' ... ' 

xn ~ an. We define the width of r as Ei~ I I a;l. 
(a) Give a function f(w) such that for any context-free grammar f 

with width w, there is a positive context-free grammar r such 
that L(f) = L(f) or L(f) = L(f) U {0} and f has no more than 
f( w) productions. 

(b) Give a grammar f with width w for which any such f has at least 
f( w) /2 productions. 

7. (a) Let f be the grammar in Exercise 2. Give two different deriva­
tion trees for aaabb. From each tree obtain a leftmost and a 
rightmost derivation of aaabb from S. 

(b) Let f' be the grammar in Fig. 1.1. Prove that for every wE L(f'), 
there is a unique derivation tree for W in r I • 

8. Let r be the grammar with productions 

s~vw 

s~w 

v~bx 

v~b 

w~aw x~s 

w~x x~w 

w~Y 

and start symbol S. Use the construction in the proof of Theorem 1.5 
to give a branching context-free grammar a such that L(a) = L(f). 
Can any of the resulting productions be eliminated from a? 

2. Regular Grammars 

We shall now see that regular languages are generated by context-free 
grammars of an especially simple form. 

Definition. A context-free grammar is called regular if each of its produc­
tions has one of the two forms 

U ~ aV or U ~a, 

where U, V are variables and a is a terminal. 

Then we have 

Theorem 2.1. If L is a regular language, then there is a regular grammar 
r such that either L = L(f) or L = L(f) u {0}. 

Proof. Let L = L(.L), where L is a dfa with states q1 , ••• , qm, alphabet 
{s1 , ••• , sn}, transition function 8, and set of accepting states F. We 
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construct a grammar f With variables q1, ... , qm, terminals s1, ... , Sn, and 
start symbol q1 • The productions are 

1. q; ---+ s,qj whenever 8(q;, s,) = qj, and 
2. q; ---+ s, whenever 8(q;, s,) E F. 

Clearly the grammar f is regular. We shall show that L(f) is just L - {0}. 
First, suppose u E L, u -=!= 0; let u = s,. s,. ··· s,. s,. . Thus, 8*(q1, u) E 

I 2 I I+ I 

F, so that we have 

8(q1,s.)=q., 8(q.,s.)=q., ... , 8(q1.,s,. )=q,. EF. (2.1) 
't l1 1J 12 12 I 1+1 /+1 

Hence, the grammar f contains the productions 

q1. ---+ S; • (2.2) 
I I+ I 

Thus, we have in f 

ql ==> S;,qj, 

==> S;,S;2qh 
(2.3) 

==> S;,S;2 ... S;lqh 

==> S; 1S;2 ··· S;1S;1+ 1 = U, 

so that u E L(f). 
Conversely, suppose that u E L(f), u = s,. s,. ··· s,. s,. . Then there is a 

I 2 I I+ 1 

derivation of u from q1 in r, which must be of the form (2.3). Hence, the 
productions listed in (2.2) must belong to r, and finally, the transitions 
(2.1) must hold in .L. Thus, u E L(L). • 

Theorem 2.2. Let r be a regular grammar. Then L(f) is a regular 
language. 

Proof. Let r have the variables VI ' Vz ' ... ' VK' where s = VI is the start 
symbol, and the terminals sl' ... ' sn. Since r is assumed to be regular, its 
productions are of the form V; ---+ s,l-j and V; ---+ s,. We shall construct an 
ndfa L which accepts precisely L(f). 

The states of L will be V1 , V2 , ••• , VK and an additional state W. V1 will 
be the initial state and W will be the only accepting state, i.e., F = {W}. 
Let 

81(V;, s,) = {J.j IV; ---+ s,l-j is a production of r}, 

if V; ---+ s, is a production of r 
otherwise. 
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Then we take as the transition function 8 of L 

8(V;, s,) = 81(V;, s,) U !52(V;, s,). 

This completes the specification of L. 
Now let u = s,. s, . ... s,. s,. E L(f). Thus, we must have 

I 2 I I+ I 

V1 = S· V = S· S· V ~ S· S· ... S· V = S· S· ... S· S· (2.4) 
't 11 '' 'z Jz 't 'z '' lt '' 'z '' 't+l' 

where r contains the productions 

Thus, 

VI ~ S;ll-}1 ' 

V ~s. V, 
11 'z Jz 

l-fl- I ~ S;ll-}1' 

l-}1 ~ S;l+ I • 

l-}1 E 8(V1 , s;), 
l-}2 E S( l-}1 , s;), 

V1. E ll(V1. , s,. ), 
I 1- I I 

WE 8(V1., S; ). 
I I+ I 

Thus, WE 8*(V1 , u) and u E L(.L). 

(2.5) 

(2.6) 

Conversely, if u = s,. s, . ... s; s; is accepted by L, then there must be 
I 2 I I+ 1 

a sequence of transitions of the form (2.6). Hence, the productions of (2.5) 
must all belong to f, so that there is a derivation of the form (2.4) of u 
from V1• • 

In order to combine Theorems 2.1 and 2.2 in a single equivalence, it is 
necessary to show only that if L is a regular language, then so is L u {0}. 
But this follows at once from Theorems 4.2 and 4.5 in Chapter 9. 

Combining Theorems 2.1 and 2.2 with this discussion, we have 

Theorem 2.3. A language L is regular if and only if there is a regular 
grammar f such that either L = L(f) or L = L(f) u {0}. 

Since regular grammars are context-free grammars, we have 

Corollary 2.4. Every regular language is context-free. 

The converse of Corollary 2.4 is not true, however, as we have already 
observed in Theorem 1.1. 
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There are more extensive classes of context-free grammars which can be 
shown to generate only regular languages. A particularly important exam­
ple for us (see Section 7) is the class of right-linear grammars. 

Definition. A context-free grammar is called right-linear if each of its 
productions has one of the two forms 

u~xv or u~x, (2.7) 

where U, V are variables and x =1= 0 is a word consisting entirely of 
terminals. 

Thus a regular grammar is just a right-linear grammar in which lxl = 1 
for each string x in (2.7). We have 

Theorem 2.5. Let f be a right-linear grammar. Then L(f) is regular. 

Proof. Given a right-linear grammar r, we construct a regular grammar 
r as follows. 

We replace each production of f of the form 

by the productions 

n > 1, 

Zn-2 ~ an-lzn-1' 
Zn-1 ~ anV, 

where Z 1 , ••• , Zn _ 1 are new variables. Also, we replace each production 

n > 1, 

by a list of productions similar to the preceding list except that instead of 
the last production we have 

Zn-l~an. 

It is obvious that f is regular and that L(f) = L{f). • 
Exercises 

1. (a) For each regular language L described in Exercise 1.1 of Chapter 
9, give a regular grammar r such that L(f) = L - {0}. 
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(b) For each dfa L in Exercise 1.3 of Chapter 9, give a regular 
grammar f such that L(f) = L(L) - {0}. 

(c) For each ndfa L in Exercise 2.1 of Chapter 9, give a regular 
grammar f such that L(f) = L(L) - {0}. 

2. Let r be the grammar with productions 

S ----+ aS X ----+ bX 
S ----+ aX X ----+ bZ 
S ----+ aY Y----+ eX 

Z ----+ aZ 
Z ----+ bZ 
Z ----+ cZ 

Z ----+ a 
z ----+ b 
z ----+ c 

Y~cz 

and start symbol S. Give an ndfa L such that L(L) = L(f). 

3. Let f be the grammar with productions 

and start symbol S. 

S ----+aX 
S ----+ bY 
X----+ aZ 
X----+ bX 

Y---+aY 
Y----+ bZ 

Z ----+ aS 
Z ----+ bS 
Z ----+ a 
Z---+b 

(a) Use the construction in the proof of Theorem 2.2 to give an ndfa 
L with five states such that L(L) = L(f). 

(b) Transform L into a dfa L' with four states such that L(L') = 

L(f). 

4. Prove that for every regular language L, there is a regular grammar r 
with start symbol S such that L = L(f) or L = L(f) U {0} and such 
that every w E L(f) has exactly one derivation from S in f. 

5. Prove that for every n ;::: 1, there is a regular language generated by 
no regular grammar with fewer than n variables. 

6. (a) Write a context-free grammar to generate all and only regular 
expressions over the alphabet {a, b}. 

(b) Can a regular grammar generate this language? Support your 
answer. 

7. A grammar f is self-embedding if there is a variable X such that 

X=f vXw, where v,w E (W"U T)*- {0}. 

Let L be a context-free language. Prove that L is regular if and only if 
there is a non-self-embedding context-free grammar f such that 
L(f) = L. 
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8. For a language L, the reverse of L, denoted LR, is {wR I wE L}. 
(a) Let f be a regular grammar and let L = L(f). Show that there is 

an ndfa which accepts L R. 

(b) Conclude from (a) that a language L is regular if and only if L R 

is regular. 
(c) Let r be a grammar such that all productions are of the form 

U ~ Vs or U ~ s, where U, V are variables and s is a terminal. 
Show that L(f) is regular. 

(d) A grammar is left-linear if each of its productions is of the form 
U ~ Vx or U ~ x, where U, V are variables and x is a word 
consisting entirely of terminals. Prove that a language L is 
regular if and only if there is a left-linear grammar r such that 
L = L(f) or L = L(f) U {0}. 

3. Chomsky Normal Form 

Although context-free grammars are extremely simply, there are even 
simpler special classes of context-free grammars that suffice to give all 
context-free languages. Such classes are called normal forms. 

Definition. A context-free grammar f with variables 'F and terminals T 
is in Chomsky normal form if each of its productions has one of the two 
forms 

x~ yz or x~a, 

where X, Y, Z E 'F and a E T. 

Then we can prove 

Theorem 3.1. There is an algorithm that transforms a given positive 
context-free grammar r into a Chomsky normal form grammar A such 
that L(f) = L(A). 

Proof. Using Theorem 1.5, we begin with a branching context-free gram­
mar r with variables 'F and terminals T. We continue by "disguising" the 
terminals as variables. That is, for each a E T we introduce a new variable 
X a. Then we modify r by replacing each production X ~ X for which X is 
not a single terminal by X ~ x 1 , where x 1 is obtained from x by replacing 
each terminal a by the corresponding new variable X a. In addition all of 
the productions Xa ~ a are added. Clearly the grammar thus obtained 
generates the same language as r and has all of its productions in one of 
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the two forms 

x~a, 
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k ';:::. 2, (3.1) 

(3.2) 

where X, X 1 , ••• , Xk are variables and a is a terminal. To obtain a 
Chomsky normal form grammar we need to eliminate all of the produc­
tions of type (3.1) for which k > 2. We can do this by introducing the new 
variables Z 1 , Z 2 , ••• , Zk_ 2 and replacing (3.1) by the productions 

x~x1Z1 

zl ~x2z2 

zk-3 ~ xk-2zk-2 

zk-2 ~ xk-lxk · 

Thus we obtain a grammar in Chomsky normal form that generates L(f) . 

• 
As an example, let us convert the grammar of Fig. 1.1 to Chomsky 

normal form .. 

Step 1. Eliminate productions of the form X 1 ~ X2 : there are no such 
productions so we skip this step. 

Step 2. Disguise the terminals as variables: the grammar now consists 
of the productions 

Step 3. Obtain Chomsky normal form by replacing the production 
s ~ xaxxby by the productions 

S ~xaz1 , 

Z1 ~xz2 , 

Z2 ~ XbY. 

The final Chomsky normal form grammar thus obtained consists of the 
productions 
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Exercises 

l. (a) Find context-free grammars f 1, f 2 such that 

L(f1) = {a[ilbln I i ~ j > 0} 

L(f2 ) = {al2 ilblill i > 0}. 

287 

(b) Find Chomsky normal form grammars that generate the same 
languages. 

2. Let T = {!, p, q} be the set of terminals for the grammar f: 

s ~p, s ~ q, s ~! ss. 
Find a Chomsky normal form grammar that generates L(f). 

3.* A context-free grammar is said to be in Greibach normal form if every 
production of the grammar is of the form 

k ~ 0, 

where a E T and X, Y1, Y2 , ••• , Yk E 'F. Show that there is an algo­
rithm that transforms any positive context-free grammar into one in 
Greibach normal form that generates the same language. 

4.* Show that there is an algorithm that transforms any positive context­
free grammar into a grammar that generates the same language for 
which every production is of the form 

or 

A, B, C E 'F, a E T. 

A ~a, 

A ~aB, 

A~ aBC, 

4. Bar-Hillel's Pumping Lemma 

An important application of Chomsky normal form is in the proof of the 
following key theorem, which is an analog for context-free languages of the 
pumping lemma for regular languages. 

Theorem 4.1 (Bar-Hillel's Pumping Lemma). Let f be a Chomsky nor­
mal form grammar with exactly n variables, and let L = L(f). Then, for 
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every x E L for which lxl > 2n, we have x = r1q1rq2r2 , where 

1. lq1rq2l:::;; 2\ 
2. qlq2 =I= 0; 
3. for all i ~ 0, r1 q\ilrq~ilr2 E L. 

Lemma. Let S 'f u, where f is a Chomsky normal form grammar. 
Suppose that :T is a derivation tree for u in r and that no path in :T 
contains more than k nodes. Then lui:::;; 2k- 2• 

Proof. First, suppose that :T has just one leaf labeled by a terminal a. 
Then u = a, and :T has just two nodes, which are labeled S and a, 
respectively. Thus, no path in :T contains more than two nodes and 
lui= 1 :::;; 22 - 2• 

Otherwise, since r is in Chomsky normal form, the root of :T must have 
exactly two immediate successors a, {3 in :T labeled by variables, say, X 
andY, respectively. (In this case, r contains the productionS ~ XY.) Now 
we will consider the two trees 9'1 = :Ta and 92 = yfJ whose roots are 
labeled X and Y, respectively. (See Fig. 4.1.) 

In each of 9'1 and 92 the longest path must contain :::;; k - 1 nodes. 
Proceeding inductively, we may assume that each of 9'1, 92 have :::;; 2k-J 

leaves. Hence, 

• 
Proof of Theorem 4.1. Let x E L, where lxl > 2n, and let :T be a deriva­
tion tree for X in f. Let a 1 , a 2 , ••• , am be a path in :fwhere m is as large 
as possible. Then m ~ n + 2. (For, if m :::;; n + 1, by the lemma, lxl :::;; 2n - 1.) 

'----------------
1-

1 

s 

L--------------J 
Figure4.l 
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s 

Figure 4.2 

am is a leaf (otherwise we could get a longer path) and so is labeled by a 
terminal. a 1 , a 2 , ••• , am_ 1 are all labeled by variables. Let us write 

'Yi = am+i-n-2' i = 1,2, ... ,n + 2 

so that the sequence of vertices y 1 , y2 , ••• , 'Yn + 2 is simply the path 
consisting of the vertices 

where 'Yn + 2 = am is labeled by a terminal, and y 1 , ••• , 'Yn + 1 are labeled by 
variables. Since there are only n variables in the alphabet of r, the 
pigeon-hole principle guarantees that there is a variable X that labels two 
different vertices: a = 'Y; and {3 = 'Yj, i < j. (See Fig. 4.2.) Hence, the 
discussion of pruning and splicing at the end of Section 1 can be applied. 
We let the words q1q2 , r1 , r2 be defined as in that discussion and set 
r = (:713 ). Then [recalling (1.3)] we have 

(Y;;) = r 1rr2, 

(.9;) = r,q\2lrq~2lr2, 

((.9;).) = r,qplrq~lr2. 
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Since pruning and splicing a derivation tree in f yields a new derivation 
tree in r, we see that all of these words belong to L(f). If, in addition, we 
iterate the splicing operation, we see that all of the words r 1 q\ilrq¥lr 2 , 

i ~ 0, belong to L(f). 
Finally, we note that the path 'Y;, ... , 'Yn + 2 in !701 consists of ~ n + 2 

nodes and that no path in !701 can be longer. (This is true simply because if 
there were a path in !701 consisting of more than n + 3 - i vertices, it 
could be extended backward through a = 'Y; to yield a path in :T consist­
ing of more than m vertices.) Hence by the lemma 

• 
As an example of the uses of Bar-Hillel's pumping lemma, we show that 

the language L = {a[n]b(nlc[nll n > 0} is not context-free. 
Suppose that L is context-free with L = L(f), where f is a Chomsky 

normal form grammar with n variables. Choose k so large that la[klb[klc[kll 
> 2n (i.e., choose k > 2n /3). Then we would have a[klb[klc[kJ = r 1q1rq2r2 , 

where, setting 

we have X; E L for i = 0, 1, 2, 3, .... In particular, 

Since the elements of L consist of a block of a's, followed by a block of 
b's, followed by a block of c's, we see that q1 and q2 must each contain 
only one of these letters. Thus, one of the three letters occurs neither in q1 

nor in q2 • But since as i = 2, 3, 4, 5, ... , X; contains more and more copies 
of q1 and q2 and since q1q2 =I= 0, it is impossible for X; to have the same 
number of occurrences of a, b, and c. This contradiction shows that L is 
not context-free. 

We have proved 

Theorem 4.2. The language L = {a[n]b(nlc[nlln > 0} is not context-free. 

Exercises 

1. Show that {a[illi is a prime number} is not context-free. 

2. Show that {a[i2 lli > 0} is not context-free. 

3. Show that a context-free language on a one-letter alphabet is regular. 
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5. Closure Properties 

We now consider for context-free languages, some of the closure proper­
ties previously discussed for regular languages. 

Theorem 5.1. If L 1 , L 2 are context-free languages, then so is L 1 u L 2 • 

Proof. Let L 1 = L(f1), L 2 = L(f2 ), where f 1 , f 2 are context-free gram­
mars with disjoint sets of variables 7 1 and 7 2 , and start symbols S1 , 

S2 , respectively. Let r be the context-free grammar with variables 
~ u 7 2 u {S} and start symbol S. The productions of f are those of f 1 

and f 2 , together with the two additional productions S ~ S 1 , S ~ S2 • 

Then obviously L(f) = L(f1) U L(f2 ), so that L 1 U L 2 = L(f). • 

Surprisingly enough, the class of context-free languages is not closed 
under intersection. In fact, let f 1 be the context-free grammar whose 
productions are 

S ~ Sc, S ~ Xc, X ~ aXb, X ~ ab. 

Then clearly, 

L 1 = L(f1) = {alnlb[nlclmJ In, m > 0}. 

Now, let f 2 be the grammar whose productions are 

S ~ aS, S ~ aX, X ~ bXc, X ~ be. 

Then 

L 2 =L(f2 ) = {almJb[nJc[nJin,m > 0}. 

Thus, L 1 and L 2 are context-free languages. But 

Ll n Lz = {aln)b[nJctnJ I n > 0}' 

which, by Theorem 4.2, is not context-free. We have proved 

Theorem 5.2. There are context-free languages L 1 and L 2 such that 
L 1 n L 2 is not context-free. 

Corollary 5.3. There is a context-free language L ~A* such that A*- L 
is not context-free. 

Proof. Suppose otherwise, i.e., for every context-free language L ~A*, 
A* - L is also context-free. Then the De Morgan identity 

L 1 n L 2 =A* -((A* - L 1) n (A* - L 2 )) 

together with Theorem 5.1 would contradict Theorem 5.2. • 
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Although, as we have just seen, the intersection of context-free lan­
guages need not be context-free, the situation is different if one of the two 
languages is regular. 

Theorem 5.4. If R is a regular language and L is a context-free language, 
then R n L is context-free. 

Proof. Let A be an alphabet such that L, R s;;;A*. Let L = L(f) or 
L(f) u {0}, where r is a positive context-free grammar with variables 'J/, 
terminals A and start symbol S. Finally, let L be a dfa that accepts R 
with states Q, initial state q1 E Q, accepting states F s;;; Q, and transition 
function 8. Now, for each symbol u E A u 'J/ and each ordered pair 
p, q E Q, we introduce a new symbol uPq. We shall construct a positive 
context-free grammar f whose terminals are just the elements of A (i.e., 
the terminals of f) and whose set of variables consists of a start symbol S 
together with all of the new symbols uPq for u E A u 'J/ and p, q E Q. 
(Ncte that for a E A, a is a terminal, but aPq is a variable for each 
p, q E Q.) The productions of f are as follows: 

1. S ~ SM for all q E F. 
2. XPq ~ uf'1u{1' 2 ••• un'n-lq for all productions X~ ul Uz ... un of 

f and all p,r1,r2, ... ,rn-l•q E Q. 
3. aPq ~ a for all a E A and all p, q E Q such that 8(p, a) = q. 

We shall now prove that L(f) = L(f) n R. Since f is clearly a positive 
context-free grammar, and since R n L = L(t} or R n L = L(f) u {0}, 
the theorem follows from Theorem 1.2. 

First let u = a 1a 2 ··· an E L(f) n R. Since u E L(f), we have 

Using productions 1 and 2 of f, we have 

(5.1) 

where q2, q3, ... , qn are arbitrary states of L and qn + 1 is any state in F. 
(q1 is of course the initial state.) But since u E L(.L), we can choose the 
states q2,q3, ... ,qn+l so that 

i = l,2, ... ,n, (5.2) 

and qn+ 1 E F. In this case, not only does (5.1) hold, but also the produc­
tions 

i = l,2, ... ,n, (5.3) 
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all belong to f. Hence, finally, 

Conversely, let S ~ u E A*. We shall need the following 
r 

293 

Lemma. Let uPq ~ u E A*. Then, 8*(p, u) = q. Moreover, if u is a 
r 

variable, then u =f u. 

Since S f Sq,q ? u where q E F, we can use the Lemma to conclude 

that 8*(q1 , u) = q, and S =f u. Hence, u E R n L(f). Theorem 5.4 then 
follows immediately. • 

It remains to prove the Lemma. 

Proof of Lemma. The proof is by induction on the length of a derivation of 
u from uPq in f. If that length is 2, we must have u E A, u = u. Then, 
8*(p, u) = 8(p, u) = q. Otherwise we can write 

where we have written r 0 = p and rn = q. Thus, we have 

i = l,2, ... ,n, (5.4) 

where u = u1u2 ... un. Clearly, the induction hypothesis can be applied to 
the derivations in (5.4) so that 8*(r;_ 1 , u) = r;, i = 1, 2, ... , n. Hence 
8*(p, u) = rn = q. Also, if u; is a variable, the induction hypothesis will 
give u; =f u;, while otherwise u; E A and u; = u;. Finally, 

must be a production of f. Hence, we have 

• 
Let A, P be alphabets such that P ~A. For each letter a E A, let us 

write 

if a E P 
if a E A- P. 
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In other words, Erp{x) is the word that results from x when all the 
symbols in it that are part of the alphabet P are "erased." If L ~A*, we 
also write 

Erp(L) = {Erp(x) I x E L}. 

Finally, if r is any context-free grammar with terminals T and if P ~ T, 
we write Erp{f) for the context-free grammar with terminals T- P, the 
same variables and start symbol as r, and productions 

for each production X~ v of r. [Note that even if r is a positive 
context-free grammar, Erp{f) may not be positive; that is, it is possible 
that Erp(v) = 0 even if v -=1= 0.] We have 

Theorem 5.5. If r is a context-free grammar and f' = Erp{f), then 
L(f) = Erp{L(f)).3 

Proof. Let S be the start symbol off and f'. Suppose that w E L(f). We 
have 

S =WI t Wz ••• t Wm = W. 

Let V; = Erp(w), i = 1, 2, ... , m. Then clearly, 

s = vl =:> Vz ... =:> vm = Erp(w), 
r r 

so that Erp(w) E L{f'). This proves that L{f');;2 Erp(L(f)). 

To complete the proof it will suffice to show that whenever X ~ v E 
r 

(T- P)*, there is a word wET* such that X =f wand v = Erp(w)._We 
do this by induction on the length of a derivation of v from X in r. If 
X f v, then X~ v is a production of f', so that X~ w is a production of 

r for some w with Erp{w) = v. Proceeding inductively, let there be a 
derivation of v from X in f' of length k > 2, where the result is known 

3 Readers familiar with the terminology may enjoy noting that this theorem states that the 
"operators" Land Erp commute. 
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for all derivations of length < k. Then, we can write 

where u0 , u1 , ••• , us E (T- P)* and V1 , V2 , ••• , V. are variables. Thus, 
there are words u0, u1 , ••• , usE T* such that u; = Erp(u;), i = 0, 1, ... , s, 
and 

is a production of r. Also we can write 

where 

i = 1, ... ' s. (5.5) 

Since (5.5).clearly involves derivations of length < k, the induction hypoth­
esis applies, and we can conclude that there are words V; E T*, i = 
1, 2, ... , s, such that v; = Er p(v) and V; =f v;, i = 1, 2, ... , s. Hence, we 
have 

But 

which completes the proof. • 
Corollary 5.6. If L ~A* is a context-free language and P ~A, then 
Erp(L) is also a context-free language. 

Proof. Let L = L(f), where f is a context-free grammar, and let f = 
Erp(f). Then, by Theorem 5.5, Erp(L) = L(f), so that Erp(L) is context­
free. • 

Exercises 

1. For each of the following, give languages L 1 , L 2 on alphabet {a, b} 
such that 
(a) L 1 , L 2 are context-free but not regular, and L 1 U L 2 is regular; 
(b) L 1 , L 2 are context-free, L 1 =/= L 2 , and L 1 U L 2 is not regular; 
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(c) L 1 , L 2 are context-free but not regular, L 1 n L 2 =/= 0, and L 1 n L 2 

is regular; 
(d) L 1 , L 2 are context-free but not regular, L 1 =/= L 2 , and L 1 n L 2 is 

context-free but not regular. 

2. Let L, L' be context-free languages. Prove the following. 
(a) L · L' is context-free. 
(b) L* is context-free. 
(c) L R = {wR I w E L} is context-free. 

3. Give languages R, L 1 , L 2 on alphabet {a, b} such that R is regular, 
L 1 , L 2 are context-free but not regular, and 
(a) R n L 1 is regular; 
(b) R n L 2 is not regular. 

4. Give a context-free language L on alphabet A ={a, b} such that L is 
not regular and A* - L is context-free. 

5. Let R = {almlblnJ I m ~ 0, n > 0}, L = {alnlblnJ I n > 0}. Use the con­
struction in the proof of Theorem 5.4 to give a grammar f such that 
L(f) = R n L. 

6. Give alphabets A, P such that P =/= 0, P ~A, P =/=A, and give lan­
guages L 1 , L 2 ~A* such that 
(a) L 1 is not context-free and Erp(L 1) is regular; 
(b) L 2 is context-free and Erp(L2 ) is not regular. 

7. Prove that if L ~ A* is regular and P ~ A, then Er p( L) is also 
regular. 

8. Let A 1 , A 2 be alphabets, let L ~ Aj be context-free, let f be a 
substitution on A 1 such that f(a) ~A~ is context-free for all a E A 1 , 

and let g be a homomorphism from Aj to A~ . [See Exercise 4.5 in 
Chapter 9 for the definitions of substitution and homomorphism.] 
(a) Prove that f(L) is context-free. 
(b) Prove that g(L) is context-free. 

9. Let A 1 = {a1 , ••• , an}, let L ~ Aj be context-free, and let R ~ Aj be 
regular. 
(a) Let A 2 = {a'1 , ••• , a~}, where A 1 n A 2 = 0, and let f be a 

substitution on A 1 such that f(a;) ={a;, a~}, 1 ~ i ~ n. Show 
that A~ · R n f(L) is context-free. [See Exercise 8.] 

(b) Let g be the homomorphism on A 1 U A 2 such that g(a;) = 0 
and g(a:) =a;, 1 ~ i ~ n. Show that g(A~ · R n f(L)) is 
context-free. 
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(c) Show that g(A~ ·R nf(L)) = LjR, the right quotient of L by 
R. [See Exercise 7.13 in Chapter 9 for the definition of right 
quotient.] 

{d) Conclude that if L is context-free and R is regular, then L/R is 
context-free. 

*6. Solvable and Unsolvable Problems4 

Let f be a context-free grammar with terminals T and start symbol S, let 
u E T*, and let us consider the problem of determining whether u E L(f). 
First let u = 0. Then we can use the algorithms provided in Section 1 to 
compute ker (f). Since 0 E L(f) if and only if S E ker (f), we can answer 
the question in this case. For u =/= 0, we use Theorems 1.2 and 3.1 to 
obtain a Chomsky normal form grammar a such that u E L(f) if and only 
if u E L(a). To test whether u E L(a), we use the following: 

Lemma. Let a be a Chomsky normal form grammar with terminals T. 
Let V be a variable of a and let 

v =i> u E T*. 

Then there is a derivation of u from V in a of length 2lul. 

Proof. The proof is by induction on lui. If lui = 1, then u is a terminal 
and a must contain a production V ~ u, so that we have a derivation of u 
from V of length 2. 

Now, let V =:f u, where lui > 1, and let us assume the result known for 
all strings of length < lui. Recalling the definition of a Chomsky normal 
form grammar, we see that 

V=XY~u. 

Thus, we must have X~ v, Y ~ w, u = vw where I vi, lwl <lui. By the 
induction hypothesis we have derivations 

X= a 1 = a 2 = 

Y = {31 = f3z = 

Hence, we can write the derivation 

= a21vl = V, 

= f3zlwl = w. 

V=XY= a1Y= a2Y= ··· = a 21v1Y= v{31 = v{32 = ··· = v{321 w 1, 

4 The • does not refer to the material through Theorem 6.4. 
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where v/321w 1 = vw = u. But this derivation is of length 2lvl + 2lwl = 2lul, 
which completes the proof. • 

Now to test u E L(/l), we simply write out all derivations from S of 
length 2lul. We have u E L(/l) if and only if at least one of these 
derivations terminates in the string u. 

We have proved 

Theorem 6.1.5 There is an algorithm that will test a given context-free 
grammar r and a given word u to determine whether u E L(f). 

Next we wish to consider the question of whether a given context-free 
grammar generates the empty language 0. Let r be a given context-free 
grammar. We first check as previously to decide whether 0 E L(f). If 
0 E L(f), we know that L(f) =/= 0. Otherwise we us Theorems 1.2 and 1.5 
to obtain a branching context-free grammar f such that L(f) = L(f). Let 
f have n variables and set of terminals T. Suppose that L(f) =I= 0. Let 
u E L(f), where u has the shortest possible length of any word in L(f). 
Then in any derivation tree for u in f, each path contains fewer than n + 2 
nodes. This is because, if there were a path containing at least n + 2 
nodes, at least n + 1 of them would be labeled by variables, and by the 
pigeon-hole principle, Theorem 1.6 would apply and yield a word v E L(f) 
with lvl <lui. Thus, we conclude that 

L(f) =/= 0 if and only if there is a derivation tree Yin f of a word 
u E T* such that each path in Y contains fewer than n + 2 nodes. 

It is a straightforward matter (at least in principle) to write out 
explicitly all derivation trees in f in which no path has length ~ n + 2. To 
test whether L(f) =/= 0, it suffices to note whether there is such a tree Y 
for which (Y) E T*. Thus we have 

Theorem 6.2. There is an algorithm to test a given context-free grammar 
f to determine whether L(f) = 0. 

Next we seek an algorithm to test whether L(f) is finite or infinite for a 
given context-free grammar f. Such an algorithm can easily be obtained 
from the following. 

5 This result follows at once from Theorem 5.4 in Chapter 7; but the algorithm given here 
is of some independent interest. 
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Theorem 6.3. Let r be a Chomsky normal form grammar with exactly n 
variables. Then L(f) is infinite if and only if there is a word x E L(f) 
such that 

2n < lxl ~ 2n+ 1• 

Proof. If there is a word X E L(f) with lxl > 2n, then by Bar-Hillel's 
pumping lemma, L(f) is infinite. 

Conversely, let L(f) be infinite. Let u be a word of shortest possible 
length such that u E L(f) and lui > 2n+ 1. By Bar-Hillel's pumping lemma, 
we have u = r1q1rqzrz where q1q2 =/= 0, lq1rqzl ~ 2n and X= r1rrz E L(f). 
Now, 

lxl ~ lr1r21 = lui - lq1rqzl > 2n. 

Since lxl <lui, the manner in which we chose u guarantees that lxl ~ 2n+ 1 . 
• 

Theorem 6.4. There is an algorithm to test a given context-free grammar 
f to determine whether L(f) is finite or infinite. 

Proof. Given context-free grammar r with terminals T, we use the 
algorithms of Theorems 1.2 and 3.1 to construct a Chomsky normal form 
grammar Ll with L(f) = L(Ll) or L(Ll) u {0}. Let Ll have n variables and 
let I= 2n. Then we simply use Theorem 6.1 to test each word u E T* for 
which I <lui ~ 21 to see whether u E L(f). L(f) is infinite if and only if 
at least one of these words u does belong to L(f). • 

Remarkably enough, there are also some very simple unsolvable prob­
lems related to context-free grammars.6 The easiest way to obtain these 
results is to associate a pair of context-free grammars with each Post 
correspondence system. 

Thus, suppose we are given the finite set of dominoes: 

~ 
[2] 

i = 1, 2, ... , n, where u;, V; E A* for some given alphabet A. We introduce 
n new symbols C1, Cz, ••• , Cn and define two context-free grammars fl, f2, 
both of which have as their terminals A u {c I> c 2 ' ... ' c n}. r I has the 

6 The remainder of this section depends on Chapter 7. Readers who have not covered this 
material should move on to Section 7. 



300 Chapter 1 0 Context-Free Languages 

single variable S1 , its start symbol, and f 2 has S2 as its only variable and 
start symbol. The productions of f 1 are 

i = 1, 2, ... , n, 

and those of r2 are 

i = 1,2, ... ,n. 

Now, the given Post correspondence system has a solution if and only if we 
can have 

U· U· ••• U· = V· V· ••• V· 
1t 12 1m 1t 12 1m 

for some sequence i 1 , i2 , ••• , im. Moreover, 

L(f1) = {u. U· ••• U· C· ••• C· C·} 
lt lz lm lm lz lt 

and 

L(f2 ) = {V·V· ••• V· C· ••• C· C· }. 
11 12 1m 1m lz 't 

Thus, we have 

Theorem 6.5. L(f1) n L(f2 ) =F 0 if and only if the given Post correspon­
dence problem has a solution. 

Using Theorem 4.1 in Chapter 7, we conclude 

Theorem 6.6. There is no algorithm to test a given pair of context-free 
grammars f 1 , f 2 to determine whether L{f1) n L(f2 ) = 0. 

Another important unsolvability result about context-free grammars 
concerns ambiguity. 

Definition. A context-free grammar f is called ambiguous if there is a 
word u E L(f) that has two different leftmost derivations in f. If f is not 
ambiguous, it is said to be unambiguous. 

Theorem 6.7. There is no algorithm to test a given context-free grammar 
to determine whether it is ambiguous. 

Proof. Once again we begin with a Post correspondence system, and form 
the two context-free grammars rl' r2 used in proving Theorem 6.5. rl and 
f 2 are obviously both unambiguous. Now let r have start symbol Sand all 
of the productions of f 1 and f 2 , together with S ~ S1 and S ~ S2 • Then, 
since the first step of a derivation from s in r involves an irreversible 
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commitment to either rl or r2' r will be ambiguous just in case 
L(f1) n L(f2 ) =/= 0. By Theorem 6.5 this will be the case if and only if the 
given Post correspondence system has a solution. The result now follows 
again from Theorem 4.1 in Chapter 7. • 

Another unsolvability result is given in Exercise 8.16. 

Exercises 

l. Let f 1 be the grammar with productions S ~aS, S ~a, and let f 2 be 
the grammar with productions S ~ SS, S ~a. 
(a) How many derivation trees are there for a161 in f 1? In f 2? 
(b) How many derivations of a141 from S are there in f 1? In f 2? 
{c) How many leftmost derivations of a161 from S are there in f 1? In 

rz? 

2. Write a context-free grammar r such that 

L(r) = {alilb[jlclkJ I i = j v j = k}. 

This language is an example of an inherently ambiguous language, i.e., a 
language such that every grammar that generates it is ambiguous. 
Explain why this language is inherently ambiguous. 

3. Give an unambiguous context-free grammar that generates the same 
language as the ambiguous grammar 

7. Bracket Languages 

S ~aB 

S ~Ab 

A ~aAB 

B~ABb 

A ~a 

B ~b. 

Let A be some finite set. Although we think of A as an alphabet, we will 
also wish to permit A = 0. Let B be the alphabet we get from A by 
adjoining the 2n new symbols l , 1, i = 1, 2, ... , n, where n is some given 
positive integer. We will write PARiA) for the language consisting of all 
strings in B* that are correctly "paired," thinking of each pair l , 1 as 
matching left and right brackets. More precisely, PARn(A) = L(f0 ), where 
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f 0 is the context-free grammar with the single variable S, terminals B, and 
the productions 

1. S ---+ a for all a E A, 
2. s ---+ isL i = 1, 2, ... , n. 
3. s ---+ ss' s ---+ 0. 

The languages PARn(A) are called bracket languages. 
Let us consider the example A = {a, b, c}, n = 2. For ease of reading we 

will use the symbol ( for ~ , ) for ~ , [ for ~ , and ] for ~ . Then 
cb[(ab)c](a[b]c) E PAR 2(A), as the reader should easily verify. Also, 
{)[] E PARz{A), since we have 

S = SS ~ (S)[S] ~ ()[ ]. 

Bracket languages have the following properties. 

Theorem 7.1. PARn{A) is a context-free language such that 

a. A* ~ PARn(A); 
b. if x, y E PARn(A), so is xy; 
c. if x E PARn(A), so is ~x), for i = 1, 2, ... , n; 
d. if x E PARn(A) and x f/:. A*, then we can write x = u/v/w, for 

some i = 1, 2, ... , n, where u E A* and v, w E PARn(A). 

Proof. Since PARn(A) = L(f0) where f 0 is a context-free grammar, 
PARn(A) must be context-free. Property a follows at once on considering 
the productions 1 and 3. Forb, let S ~ x, S ~ y. Then using the produc­
tions 3, we have 

s = ss ~xy. 

For c, let S ~ x. Then using the productions 2, we have 

s = .<s.> ~.<x.> 
l l l l. 

To prove d, note first that we can assume lxl > 1 because otherwise 
x E A*. Then, a derivation of x from S must begin by using a production 
containing Son the right. We proceed by induction assuming the result for 
all strings of length < lxl. There are two cases. 

Case 1. S =/S/ ~/v/ = x, where S ~ v; the result then follows 
(without using the induction hypothesis) with u = w = 0. 

Case 2. S = SS ~ rs = x where S ~ r, S ~ s, and r =/= 0, s =/= 0. Clearly, 
lrl, lsi< lxl. If rEA*, then lsi> 1 and we can use the induction 
hypothesis to write s = ulv/w, where u E A* and v, w E 
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PARn(A), and the desired result follows since ru E A*. Other­
wise, we can use the induction hypothesis to write r = u~v/w 
where u E A* and v, w E PARn(A), so that the result follows 
since ws E PARn(A) by b. • 

Historically, the special case A = 0 has played an important role in 
studying context-free languages. The language PARn(0) is called the Dyck 
language of order n and is usually written Dn. 

Now let us begin with a Chomsky normal form grammar r, with 
terminals T and productions 

i = 1,2, ... ,n, (7.1) 

in addition to certain productions of the form V ~a with a E T. We will 
construct a new grammar rs which we call the separator of r. The 
terminals of rs are the symbols of T together with 2n new symbols ~ 'L 
i = 1, 2, ... , n. Thus a pair of "brackets" has been added for each of the 
productions (7.1). 

The productions of fs are 

i = 1,2, ... ,n, 

as well as all of the productions of r of the form V ~ a with a E T. 
As an example, let f have the productions 

s~XY, s ~rr, Y~zz, 

x~a, z~a. 

Then r is ambiguous as we can see from the leftmost derivations: 

S = XY = aY = aZZ = aaZ = aaa, 

S = IT = ZZX = aZX = aaX = aaa. 

The productions of fs can be written 

S ~ (X)Y, S ~ [Y]X, Y ~ {Z}Z, 

x~a, z~a, 

using ( ), [ ], and {} in place of the numbered brackets. The two derivations 
just given then become 

S = (X)Y = (a)Y = (a){Z}Z = (a){a}Z = (a){a}a, 

S = [Y]X = [{Z}Z]X = [{a}Z]X = [{a}a]X = [{a}a]a. 

fs thus separates the two derivations in f. The bracketing in the words 
(a){a}a, [{a}a]a enables their respective derivation trees to be recovered. 
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If we write P for the set of brackets ~ , l, i = 1, 2, ... , n, then clearly 
f = Erp(f.). Hence by Theorem 5.5, 

Theorem 7.2. Erp(L(f.)) = L(f). 

We also will prove 

Lemma 1. L(r:.) ~ PARn(T). 

Proof. We show that if X'{:: w E (T uP)* for any variable X, then 

w E PARn(T). The proof is by induction on the length of a derivation of w 
from X in r .. If this length is 2, then w is a single terminal and the result 
is clear. Otherwise we can write 

where Y; ~ u and Z; ~ v. By the induction hypothesis, u, v E PARn(T). 
Is rs 

By band c of Theorem 7.1, so is w. • 

Now let a be the grammar whose variables, start symbol, and terminals 
are those of r. and whose productions are as follows: 

1. all productions v---+ a from r (or equivalently r.) with a E T, 
2. all productions X; ---+ ~ Y;, i = 1, 2, ... , n, 
3. all productions V---+ a)Z;, i = 1, 2, ... , n, for which V---+ a is a pro-

duction of f with a E T. 

We have 

Lemma 2. L(a) is regular. 

Proof. Since a is obviously right-linear, the result follows at once from 
Theorem 2.5. • 

Lemma 3. L(f.) ~ L(a). 

Proof. We show that if X'{:: u E (T u P)* then X 'i> u. If u has a 

derivation of length 2, then u E T, and X ---+ u is a production of r. and 
of f and therefore also of a. Thus X =i> u. 

Proceeding by induction, let 

X = X ==> .< y.>z. ~ < v>w = u 
l rs l ll I fs l I ' 
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where the induction hypothesis applies to Y; 'f;: v and to Z; 'f;: wo Thus, 

Y; 'i> v and Z; 'i> Wo Let v = za, a E To (See Exercise 30) Then, examining 
the productions of the grammar A, we see that we must have 

Y ~zV=za = v, 
I 4 4 

where V ~a is a production of fo But then we have 

• 
Lemma 4. L(A) n PARn(T) ~ L(fJ 

Proof. Let X 'i> u, where u E PARn(T)o We shall prove that X it Uo 

The proof is by induction on the total number of occurrences of the 
symbols~,] in u. If this number is 0, then, examining the productions of A, 
we see that u E T and the production X ~ u is in A and hence in r. 0 

Thus X it Uo 

Now let X 'i> u, where u contains occurrences of the bracket symbols 
~ , 1 and where the result is known for words v containing fewer occur­
rences of these symbols than Uo Examining the productions of A, we see 
that our derivation of u from X must begin with one of the productions 20 
(If the derivation began with a production of the form 1, then u would be 
a terminal. If the derivation began with a production of the form 3, then 
u = a~w for some word w, which is impossible by Theorem 7o1do) There­
fore u =~z, for some word z and some i = 1, 2, 0 0 0, no By Theorem 7o1d, 
u =~v]w, where v, w E PARn(T)o In our derivation of u in A, the symbol] 
can only arise from the use of one of the productions of the form 3, say, 
V ~ a)Z;, where a E T and V ~ a is a production of fo Then v must end 
in a, so that we can write v = ua, where 

X X <y • <-v <- >z • < > = ;=;; i 'f;V =;;vai ;'f;V;W 

and Z; 'i> Wo Moreover, since V ~a is a production of f, it is also one of 
the productions of A of the form 1. Therefore, we have in A 

y; =i> vv=; ua = vo 

Since v and w must each contain fewer occurrences of~ , l than u, we have 
by the induction hypothesis 

y; 'f v, 
s 

Z; it wo 
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Hence, 

• 
We are now ready to state 

Theorem 7.3. Let r be a grammar in Chomsky normal form with termi­
nals T. Then there is a regular language R such that 

Proof. Let a be defined as above and let R = L(a). The result then 
follows at once from Lemmas 1-4. • 

Theorem 7.4 (Chomsky-Schiitzenherger Representation Theorem). A 
language L ~ T* is context-free if and only if there is a regular language 
R and a number n such that 

L = Erp(R n PARn(T)), 

where P = <Lll i = 1,2, ... ,n}. 

(7.2) 

Proof. It is clear by Theorems 7.2 and 7.3 that for every grammar r in 
Chomsky normal form, L = L(r) satisfies (7.2). For an arbitrary context­
free language L, by Theorems 1.2 and 3.1, there is a Chomsky normal 
form grammar r such that 

L = L(r) or L = L(r) U {0}. 

If 

then 

L(r) U {0} = Erp((R U {0}) n PARn(T)) 

since, by Theorem 7.1a, 0 E PARn(T). But, by Theorems 4.2 and 4.5 in 
Chapter 9, R u {0} is a regular language. 

It remains only to show that any language L that satisfies (7.2) must be 
context-free. But since, by Theorem 7.1, PARn(T) is context-free, this 
result follows at once from Theorem 5.4 and Corollary 5.6. • 

The Chomsky-Schiitzenberger theorem is usually expressed in terms of 
the Dyck languages Dn = PARn(0). Since our form of the theorem is 
equivalent to the more usual form, we will give only a very brief sketch of 
the proof of the usual form. It is necessary to go back to the construction 
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of r .. Each element a of T is now thought of as a "left bracket" and is 
supplied with a "twin" a' to act as its corresponding right bracket. A new 
grammar f 1 is then defined to have the same productions X; ~ ~ Y;~, 
i = 1, 2, ... 'n, as r. but to have productions 

v~aa' 

for each production V ~a of r. Then clearly, L(f1) can be obtained from 
L(f.) by simply replacing all occurrences of letters a E T in words of 
L(f.) by aa'. By replacing a by aa' in productions of the forms 1 and 3 of 
a, we obtain a right linear grammar a' such that 

where T' = {a, a' I a E T}. But in fact L(f1) ~ Dm, where m = n + k and 
there are k letters in T. Thus, 

L(f1 ) = L(a') n Dm. 

Finally letting Q = <L 11 i = 1, 2, ... , n} u {a' I a E T}, we have 

L(f) = ErQ(L(f1)) = ErQ(L(a') n Dm). 

Thus, we get 

Theorem 7.5. A language L is context-free if and only if there is a 
regular language R, an alphabet Q, and an integer m such that 

Exercises 

1. Let A be a finite set of symbols, n a positive integer, and PARn(A) = 
L(f0 ), where f 0 is the grammar given in the definition of PARn(A). 
Show that f 0 is ambiguous. [See Section 6 for the definition of 
ambiguous grammars.] 

2. Let r be the grammar with productions 

and start symbol S. 
(a) Give r .. 

s~xz 

s~XY z~sY 

(b) Give a, as defined following Lemma 1, for r. 
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{c) Show that L{f5 ) -=/= PAR3({a, b}). 

(d) Show that L(f.) -=1= L(A.). 

Chapter 1 0 Context-Free Languages 

3. Let f be a grammar in Chomsky normal form with variables 'Y and 
terminals T, and let T u P be the terminals of fs. Prove that for all 

V E 'Y and all w such that V ~ w, w = us for some v E ('YU T uP)* rs 
and some s E 'YU T. 

4. Let f be a regular grammar, and let f' be the Chomsky normal form 
grammar derived from r by the construction in the proof of Theorem 
3.1. Prove that L{r:) is regular. 

8. Pushdown Automata 

We are now ready to discuss the question of what kind of automaton is 
needed for accepting context-free languages. We take our cue from 
Theorem 7.2, and begin by trying to construct an appropriate automaton 
for recognizing L{f5 ), where f is a given Chomsky normal form grammar. 
We know that L{f5 ) = R n PARn(T), where R is a regular language. 
Thus R is accepted by a finite automaton. The problem we need to solve is 
this: what additional facilities does this finite automaton require in order 
to check that some given word belongs to PARn(T)? Those familiar with 
"stacks" and their uses will see at once that what is needed is a "pushdown 
stack" as an auxiliary storage device. Such a device behaves in a last­
in-first-out manner. At each step in a computation with a pushdown stack 
one or both of a pair of operations can be performed: 

1. The symbol at the "top" of the stack may be read and discarded. 
(This operation is called popping the stack.) 

2. A new symbol may be "pushed" onto the stack. 

A stack can be used to identify a string as belonging to PARn(T) as 
follows: For each pair ~ , f, i = 1, 2, ... , n, a special symbol 1; is introduced. 
Now, as our automaton moves from left to right over a string, it pushes 1; 
onto the stack whenever it sees ~ , and it pops the stack, eliminating a 1;, 
whenever it sees f . Such an automaton will successfully scan the entire 
string and terminate with an empty stack just in case the string belongs to 
PARn(T). 

To move toward making these ideas precise, let T be a given alphabet 
and let P = {Lf I i = 1, 2, ... , n}. Let .n = {11 ,Jl' ... ,Jn}, where we have 
introduced a single symbol 1; for each pair ; , f, 1 ~ i ~ n. Let u E 

(T uP)*, say, u = c1c2 ••• ck, where c1 , c2 , ••• , ck E T UP. We define a 
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sequence yiu) of elements of 0.* as follows: 

y 1(u) = 0 

if cj E T 

if C· =( 
J I 

if c.=> and -v.(u) =1.a 
) i I J I ' 
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for j = 1, 2, ... , k. Note that if cj = l, 'Yj+ 1(u) will be undefined unless 'Yj 
begins with the symbol 1; for the very same value of i. Of course, if a 
particular y,(u) is undefined, all yiu) with j > r will also be undefined. 

Definition. We say that the word u E (T u P)* is balanced if yj(u) is 
defined for 1 ::; j ::; lui + 1 and 'Yiul+ 1(u) = 0. 

The heuristic considerations with which we began suggest 

Theorem 8.1. Let T be an alphabet and let 

P = {l, ll i = 1, 2, ... , n}, TnP= 0. 

Let u E (T UP)*, let 0. = {11, 12 , ... , 1n}. Then u E PARn(T) if and only 
if u is balanced. 

The proof is via a series of easy lemmas. 

Lemma 1. If u E T * , then u is balanced. 

Proof. Clearly yiu) = 0 for 1 ::; j ::; lui + 1 in this case. • 
Lemma 2. If u and v are balanced, so is uv. 

Proof. Clearly yiuv) = yj(u) for 1 ::; j ::; lui + 1. Since 'Yiul+ 1(u) = 0 = 
'Y!u!+l(uv) = y 1(v), we have 'Y!u!+iuv) = yiv) for 1 ::;j::; lvl + 1. Hence, 
'Y!uv!+ l(uv) = 'Yiul+lvl+ l(uv) = 'Yivl+ l(v) = 0. • 

Lemma 3. Let v =/u/. Then u is balanced if and only if v is balanced. 

Proof. We have y 1(v) = 0, y 2(v) = 1;, 'Yj+ 1(v) = yiu)1;, j = 1,2, ... , 
lvl- 1. In particular, y1, 1(v) = y1u1+ 2(v) = 'Y!u!+l(u)1;. Thus, if u is bal­
anced, then 'Yiul+ 1(u) = 0, so that y 101(v) = 1; and 'Yivl+ 1(v) = 0. Con­
versely, if v is balanced, 'Yivl+ 1(v) = 0, so that y 1v1(v) must be 1; and 
'Y1u1+ l(u) = 0. • 

Lemma 4. If u is balanced and uv is balanced, then v is balanced. 
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Proof. y/uv) = y/u) for 1 ::::;; j ::::;; lui + 1. Since Yiui+ 1(u) = 0, we have 
Y1u1+/uv) = yi(v) for 1 ::::;;j::::;; lvl + 1. Finally, 

0 = Yiuvi+l(uv) = Yiui+lvi+l(uv) = Ylvi+l(v). • 
Lemma 5. If u E PARn(T), then u is balanced. 

Proof. The proof is by induction on the total number of occurrences of 
the symbols ~ , f in u. If this number is 0, then u E T*, so by Lemma 1, u is 
balanced. 

Proceeding by induction, let u have k > 0 occurrences of the symbols 
~ , f, where the result is known for all strings with fewer than k occurrences 
of these symbols. Then, by Theorem 7.1d, we can write u = vlw[z, where 
v, w, z E PARn(T). By the induction hypothesis, v, w, z are all balanced, 
and by Lemmas 2 and 3, u is therefore balanced. • 

Lemma 6. If u is balanced, then u E PARn(T). 

Proof. If u E T*, the result follows from Theorem 7.1a. Otherwise, we 
can write u = xy, where x E T * and the initial symbol of y is in P. By the 
definition of yj(u), we will have yj(u) = 0 for 1 ::::;; j ::::;; lxl + 1. Therefore, 
the initial symbol of y cannot be one of the f. Thus we can write u = x~z, 
and Ylxi+ 2(u) = 1;. Since u is balanced, Y[ui+ 1(u) = 0, and we can let k be 
the least integer > lxl + 1 for which Yk(u) = 0. Then yk_ 1(u) = 1; and the 
(k - l)th symbol of u must be f. Thus u = x~vJw, where k = lxl + I vi + 3. 
Thus 0 = Yixi+ivl+ 3(u) = Yixi+ivi+ 3(x~v[). Hence x~v[ is balanced. By 
Lemma 4, w is balanced. Since x E T*, x is balanced, and by Lemma 4 
again, / v/ is balanced. By Lemma 3, v is balanced. Since x E T*, x E 

PARn(T). Since I vi, lwl <lui, we can assume by mathematical induction 
that it is already known that v, w E PARn(T). By band c of Theorem 7.1, 
we conclude that u E PARn(T). • 

Theorem 8.1 is an immediate consequence of Lemmas 5 and 6. 
We now give a precise definition of pushdown automata. We begin with 

a finite set of states Q = {q1 , ••• , qm}, q1 being the initial state, a subset 
F ~ Q of final, or accepting, states, a tape alphabet A, and a pushdown 
alphabet .0. (We usually use lowercase letters for elements of A and 
capital letters for elements of .0.) We assume that the symbol 0 does not 
belong to either A or .0 and write A= A u {0), :0: = .0 u {0}. A transition 
is a quintuple of the form 

q;aU: Vqi 

where a E A and U, V E :0:. Intuitively, if a E A and U, V E .n, this is to 
read: "In state q; scanning a, with U on top of the stack, move one square 
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to the right, 'pop' the stack removing U, 'push' V onto the stack, and enter 
state qj ." If a = 0, motion to the right does not take place and the stack 
action can occur regardless of what symbol is actually being scanned. 
Similarly, U = 0 indicates that nothing is to be popped and V = 0 that 
nothing is to be pushed. A pushdown automaton is specified by a finite set 
of transitions. The distinct transitions q;aU:Vqj, q;bW:Xqk are called 
incompatible if one of the following is the case: 

1. a = b and U = W; 
2. a = b and U or W is 0; 
3. U = W and a or b is 0; 
4. a or b is 0 and U or W is 0. 

A pushdown automaton is deterministic if it has no pair of incompatible 
transitions. 

Let u E A* and let L be a pushdown automaton. Then a u-configura­
tion for L is a triple A = (k, q;, a), where 1 :s; k :s; lui + 1, q; is a state of 
L, and a E .0*. [Intuitively, the u-configuration (k, q;, a) stands for the 
situation in which u is written on .L's tape, Lis scanning the kth symbol 
of u-or, if k =lui + 1, has completed scanning u-and a is the string of 
symbols on the pushdown stack.] We speak of q; as the state at configura­
tion A and of a as the stack contents at configuration A. If a = 0, we say 
the stack is empty at A. For a pair of u-configurations, we write 

u: (k,q;,a) r-,(l,qj,{3) 

if L contains a transition q;aU:Vqj, where a= Uy, {3 = Vy for some 
y E .0*, and either 

1. I = k and a = 0, or 
2. I= k + 1 and the kth symbol of u is a. 

Note that the equation a = Uy is to be read simply a = y in case U = 0; 
likewise for {3 = Vy. 

A sequence A1 , A2 , ••• , Am of u-configurations is called a u-computa-
tion by L if 

1. A1 = (1, q, 0) for some q E Q, 
2. Am =(lui+ 1, p, y) for some p E Q and y E .0*, and 
3. u: A; r-, Ai+l for 1 :s; i < m. 

This u-computation is called accepting if the state at A1 is the initial state 
q1 , the state pat Am is in F, and the stack at Am is empty. We say that L 
accepts the string u E A* if there is an accepting u-computation by .L. We 
write L(L) for the set of strings accepted by L, and we call L(.L) the 
language accepted by L. 
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Acceptance can alternatively be defined either by requiring only that the 
state at Am is in F or only that y = 0. It is not difficult to prove that the 
class of languages accepted by pushdown automata is not changed by 
either of these alternatives. (See Exercise 8.) 

A few examples should provide readers with some intuition for working 
with pushdown automata. 

Example L 1 Tape alphabet= {a, b}, pushdown alphabet ={A}, Q = 
{q1 , q2}, F = {q2}. The transitions are 

q1a0: Aq1 

q1bA: Oq2 

q2 bA:Oq2 • 

The reader should verify that L(L1) = {alnlblnll n > 0}. 

Example L 2 Tape alphabet= {a, b, c}, pushdown alphabet= {A, B}, 
Q = {q1 , q2}, F = {q2}. The transitions are 

q1a0: Aq1 

q1b0: Bq1 

q 1c0: Oq2 

qzaA:Oqz 

q2 bB: Oq2 • 

Here, L(L2) = {ucuR I u E {a, b}*}. 

Example L 3 Tape alphabet = {a, b}, pushdown alphabet = {A, B}, Q = 
{q, 'qz}, F = {qz}, 

q1a0: Aq1 

q1b0: Bq1 

q1aA: Oq2 

q1bB: Oq2 

qzaA: Oqz 

q2 bB: Oq2 • 

In this case, L(L3) = {uuR I u E {a, b}*, u =F 0}. Note that while L 1 , L 2 
are deterministic, L 3 is a nondeterministic pushdown automaton. Does 
there exist a deterministic pushdown automaton that accepts L(L3 )? Why 
not? 
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L(L1), L(L2 ), and L(L3) are all context-free languages. We begin our 
investigation of the relationship between context-free languages and push­
down automata with the following theorem. 

Theorem 8.2. Let f be a Chomsky normal form grammar with separator 
r. . Then there is a deterministic pushdown automaton L such that 
L(L) = L(f.). 

Proof. Let T be the set ofterminals of r. By Theorem 7.3, for suitable n, 

L(f.) = R n PARn(T), 

where R is a regular language. Let P = {~, ll i = 1, 2, ... , n}. Let .10 be a 
dfa with alphabet T u P that accepts R. Let Q = {q1 , ••• , qm} be the 
states of .10 , q 1 the initial state, F ~ Q the accepting states, and l> the 
transition function. We construct a pushdown automaton L with tape 
alphabet T u P and the same states, initial state, and accepting states as 

L 0 , Lis to have the pushdown alphabet !1 = {11 , ••• , In}. The transitions 
of L are as follows for all q E Q: 

a. for each a E T, qaO: Op, where p = l>(q, a); 
b. fori= 1,2, ... ,n,qf0: l;p;, where P; = l>(q,~); 
c. for i = 1, 2, ... , n, qJ 1;: Op;, where P; = l>(q, ]). 

Since the second entry in these transitions is never 0, we see that for any 
u E (T uP)*, a u-computation must be of length lui + 1. It is also clear 
that no two of the transitions in a -c are incompatible; thus, L is 
deterministic. 

Now, let u E L(f.), u = c1c2 ••• cK, where c1 , c2 , ... , cK E (T UP). 
Since u E R, the dfa L 0 accepts u. Thus, there is a sequence 
p 1, p 2 , ••. , PK+ 1 E Q such that p 1 = q1, PK+ 1 E F, and l>(p;, c;) =Pi+ 1 , 

i = 1, 2, ... , K. Since u E PARn(T), by Theorem 8.1, u is balanced, so that 
yiu) is defined for j = 1, 2, ... , K + 1 and 'YK + 1(u) = 0. We let 

Iii= (j,pi,yi(u)), j = 1,2, ... ,K+ 1. 

To see that the sequence !l.1 , !l. 2 , ••• , !l. K + 1 is an accepting u-computation 
by L, it remains only to check that 

j=1,2, ... ,K. 

But this clear from the definition of yiu). 
Conversely, let L accept u = c1c2 ••• cK. Thus, let !l.1 , !l. 2 , ••• , !l.K+ 1 be 

an accepting u-computation by L. Let 

j = 1,2, ... ,K+ 1. 
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Since 

j = 1,2, ... ,K, 

and y 1 = 0, we see that yi satisfies the defining recursion for yi(u) and 
hence, 'Yj = r/u) for j = 1, 2, ... ' K + 1. Since 'YK +I = 0, u is balanced 
and hence u E PARn(T). Finally, we have p 1 = qp PK+ 1 E F, and 
8(pi, ci) =Pi+ 1. Therefore the dfa L 0 accepts u, and u E R. • 

We call a pushdown automaton atomic (whether or not it is determinis-
tic) if all of its transitions are of one of the forms 

i. paO: Oq, 
ii. pOU: Oq, 

iii. pOO: Vq. 

Thus, at each step in a computation an atomic pushdown automaton can 
read the tape and move right, or pop a symbol off the stack or push a 
symbol on the stack. But, unlike pushdown automata in general, it cannot 
perform more than one of these actions in a single step. 

Let L be a given atomic pushdown automaton with tape alphabet T 
and pushdown alphabet .n = {11 , 12 , ••• , Jn}. We set 

P = {L fl i = 1, 2, ... , n} 

and show how to use the "brackets" to define a kind of "record" of a 
computation by L. Let a1 , a2 , ••• , am be a (not necessarily accepting) 
v-computation by L, where v = c1c2 ••• cK and ck E T, k = 1,2, ... ,K, 
and where a; = U;, P;, y;), i = 1, 2, ... , m. We set 

WI= 0 

if 'Yi+l = Y; } 

if 'Yi+ I = Jj'Yi 

if 'Y; = Jj'Yi+ I 

1 ~ i < m. 

[Note that 'Yi+I = Y; is equivalent to /i+I =I;+ 1 and is the case when a 
transition Of form i is used in getting from a; to ai+ I; the remaining twO 
cases occur when transitions of the form iii or ii, respectively, are used.] 
Now let w = wm, so that Erp(w) = v and m = lwl + 1. This word w is 
called the record of the given v-computation a1 , ••• , am by L. From w we 
can read off not only the word v but also the sequence of "pushes" and 
"pops" as they occur. In particular, w;, 1 < i ~ m, indicates how L goes 
from ai-l to a;. 
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Now we want to modify the pushdown automaton L of Theorem 8.2 so 
that it will accept L(f) instead of L(f.). In doing so we will have to give 
up determinism. The intuitive idea is to use nondeterminism by permitting 
our modified pushdown automaton to "guess" the location of the "brac­
kets" /, /. Thus, continuing to use the notation of the proof of Theorem 
8.2, we define a pushdown automaton .ii with the same states, initial state, 
accepting states, and pushdown alphabet as L. However, the tape alpha­
bet of .ii will be T (rather than T u P). The transitions of .ii are, for all 
qEQ: 

a. for each a E T, qaO: Op, where p = 8(q, a) [i.e., the same as the 
transitions a of L]; 

b. fori= 1,2, ... ,n, qOO: l;p;, where P; = 8(q,~); 
c. for i = 1, 2, ... , n, qOl;: Ojj; where P; = 8(q, ]). 

Depending on the transition function 8, .ii can certainly be nondetermin­
istic. We shall prove that L(L) = L(f). Note that .ii is atomic (although 
Lis not). 

First, let v E L(f). Then, since Er/L(f.)) = L(f), there is a word 
wE L(f.) such that Er/w) = v. By Theorem 8.2, wE L(L). Let 
a1 , a 2 , ••• , am be an accepting w-computation by L (where in fact 
m = lwl + 1). Let 

i = 1,2, ... ,m. 

Let n; = 1 if w: a; 1-_, ai+ I via a transition belonging to group a; 
otherwise n; = 0,1 :::;; i < m. Let 

11 = 1, 

1:::;; i < m. 

Finally let 

i = 1,2, ... ,m. 

Then, as is easily checked, 

1:::;; i < m. 

Since xm = (I vi + 1, q, 0) with q E F, we have v E L(L). 
Conversely, let v E L(L). Let XI' x2' ... ' xm be an accepting v­

computation by .L, where we may write 

i = 1,2, ... ,m. 
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Using the fact that L is atomic, we can let w be the record of this 
computation in the sense defined earlier so that Er p( w) = v and m = 
lwl + 1. We write 

!l.; = (i,p;,y), 

and easily observe that 

w: fi; I-.I fii+ I' 

i = 1,2, ... ,m, 

i = 1,2, ... ,m. 

[In effect, whenever L pushes 1; onto its stack, ~ is inserted into w; and 
whenever L pops 1;, ~ is inserted into w. This makes the transitions b, c of 
L behave on w just the way the corresponding transitions of L behave 
on v.] Since Pm E F and 'Ym = 0, !l. 1 , !l. 2 , ••• , lim is an accepting w-compu­
tation by L. Thus, by Theorem 8.2, wE L(f.). Hence v E L(f). 

We have shown that L(f) = L(L). Hence we have proved 

Theorem 8.3. Let f be a Chomsky normal form grammar. Then there is 
a pushdown automaton L such that L(L) = L(f). 

Now let L be any context-free language. By Theorems 1.2 and 3.1 there 
is a Chomsky normal form grammar r such that L = L(f) or L(f) u {0}. 
In the former case, we have shown how to obtain a pushdown automaton 
L such that L = L(L). For the latter case we first modify the dfa L 0 

used in the proof of Theorem 8.2 so that it is nonrestarting. We know that 
this can be done without changing the regular language that L 0 accepts by 
Theorem 4.1 in Chapter 9. By carrying out the construction of a pushdown 
automaton L for which L(L) = L(f) using the modified version of 

L 0 , L will have the property that none of its transitions has q1 as its final 
symbol. That is, L will never return to its initial state. Thus, if we define 
L' to be exactly like L except for having as its set of accepting states 

F' = F u {q1}, 

we see that L(L') = L(L) u {0} = L(f) u {0}. Thus we have proved 

Theorem 8.4. For every context-free language L, there is a pushdown 
automaton L such that L = L(L). 

We will end this section by proving the converse of this result. Thus we 
must begin with a pushdown automaton and prove that the language it 
accepts is context-free. As a first step toward this goal, we will show that 
we can limit our considerations to atomic pushdown automata. 

Theorem 8.5. Let L be a pushdown automaton. Then there is an atomic 
pushdown automaton L such that L(L) = L(L). 
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Proof. For each transition 

paU: Vq 

of L for which a, U, V =/= 0, we introduce two new states r, s and let L 
have the transitions 

paO: Or, 

rOU: Os, 
sOO: Vq. 

If exactly one of a, U, V is 0, then only two transitions are needed for L. 
Finally, for each transition pOO: Oq, we introduce a new state t and replace 
pOO: Oq with the transitions pOO: Jt, tOJ: Oq, where J is an arbitrary 
symbol of the pushdown alphabet (or a new symbol if the pushdown 
alphabet of L is empty). Otherwise, L is exactly like L. Clearly, 
L(L) = L(L). • 

Theorem 8.6. For every pushdown automaton L, L(L) is a context-free 
language. 

Proof. Without loss of generality, by using Theorem 8.5 we can assume 
that L is atomic. Let L have states Q = {qt, ... , qm}, initial state qt, 
final states F, tape alphabet T, and pushdown alphabet !1 = {Jt, ... , Jn}. 
Let P = {~,]I i = 1, ... , n}. Let L ~ (T u P)* consist of the records of 
every accepting u-computation by L, and let R = L(L0 ), where L 0 is the 
ndfa with alphabet T u P, the same states, initial state, and accepting 
states as L, and transition function 8 defined as follows. For each q E Q, 

l>(q, a) = {p E Q I L has the transition qaO: Op} for a E T, 

t>( q .~) = {p E Q I L has the transition qOO: lip}, i = 1, ... , n, 

t>( q ,/) = {p E Q I L has the transition qOJi: Op}, i = 1, ... , n. 

Let w E L be the record of an accepting u-computation at' ... ' am' 
where ai = (li, Pi• y;), i = 1, ... , m. An easy induction on i shows that 
PiE 8*{qt,w;), i = 1, ... ,m, so, in particular, Pm E l>*{qt,w), which im­
plies wE R, since Pm must be an accepting state. Moreover, another easy 
induction on i shows that 'Yi(w) = 'Yi• i = 1, ... , m, which implies that 
yi(w) is defined for 1::; i::; lwl + 1 and 'Yiwl+t(w) = 'Yiwl+t = 0 (since 
at, ... , am is accepting), i.e., w is balanced. Therefore, by Theorem 8.1, 
wE R n PARn(T), and soL~ R n PARn(T). 

On the other hand, let w = ct ... c, be a balanced word in R, i.e., 
wE R n PARn(T), let u = dt ... d. be Erp{w), and let Pt····•Pr+t be 
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some sequence of states such that p 1 = q1 ,p,+ 1 E F, and Pi+ IE 8(p;,c;) 
for i = 1, ... , r. We claim that 

where 

if C; E T 
otherwise, 

is an accepting u-computation by L and that w is its record. Clearly, we 
have (/1 , p 1 , y1(w)) = (1, q1 , 0), 1,+ 1 =lui + 1, Pr+ 1 E F, and 'Yr+ 1(w) = 0 
(since w is balanced), so we just need to show that 

(8.2) 

fori= 1,.,.,r. For arbitrary i = 1, ... ,r, if 'Y;+ 1(w) = Y;(w), then c; E T, 
so Pi+! E 8(p;,c;), and L has the transition P;C;O:Opi+l" Now, a simple 
induction on i shows that Erp(c1 ••• c;_ 1) = d1 ••• d1 _ 1, i = 1, ... , r + 1 
(where c1 ••• c0 represents 0), from which we can sho~ 

if c; E T then d 1 = c; , 
I 

i = 1, ... , r. 

In particular, for any i = 1, ... , r, if c; E T, then 

Erp(c1 ••• c;) = Erp(c 1 ••• c;_ 1)c; = d 1 ••• d1;_ 1c;, 

so c; must be d1 since c; is not deleted when Erp is applied to w. 
Therefore, L has'the transition p;d10:0pi+l and li+ 1 =I;+ 1, so (8.2) is 
satisfied. If, instead, 'Yi+ 1(w) = Jjyi(~) for some j = 1, ... , n, then c; =j, 
so Pi+! E 8(p;,j) and L has the transition p;OO: Jjpi+J· Moreover, 
cj ft. T, so I;+ 1 = I;, and (8.2) is satisfied in this case as well. Finally, if 
Y;(w) =lj'Yi+l(w) for some j = 1, ... ,n, then c; =],so Pi+l E 8(p;,]) 
and L has the transition P;Olj:Opi+l" Moreover, li+ 1 = 1;, so again (8.2) 
is satisfied. Therefore, (8.1) is an accepting u-computation by L. If we set 
W; = c1 ••• c;_ 1 , i = 1, ... , r + 1, then an induction on i shows that w is 
indeed the record of (8.1), so w E L, and we have R n PARiT) ~ L. 
Therefore, L = R n PARn{T), and 

L(L) = Erp(R n PARn(T)). 

Finally, by Theorems 5.4 and 7.1 and Corollary 5.6, L(L) is context-free . 

• 
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Exercises 

1. Let T be an alphabet, P = {}, / I i = 1, ... , n}, w = a1 ··· am E 

PARn(T). Intefers j, k, where 1 5. j < k 5. m, are matched in w if 
w = a1 ··· aj-tiaj+t ··· ak_ 1]ak+t ···am, for some 1 5. i 5. n, and if 
aj+ I ... ak-1 is balanced. Let r be a Chomsky normal form gram­
mar. 
(a) Let w =l x E L(f.). Prove that there is exactly one k, 1 < k 5. 

lwl, such that 1 and k are matched in w. 
(b) Show that r. is unambiguous. [See Section 6 for the definition of 

ambiguous grammars.] 

2. (a) For pushdown automaton L 1 in the examples, give the accept­
ing u1-computation for u1 = aabb. 

(b) For pushdown automaton L 2 in the examples and u 2 = abcbba, 
give the longest sequence A1 = (1, qp 0), A2 , ••• , Am of u2-con­
figurations that satisfies condition 3 in the definition of u-com­
putations. 

(c) For pushdown automaton L 3 in the examples, give all possible 
u3-computations, accepting or not, for u 3 = aaaa. 

3. For each of the following languages L, give a pushdown automaton 
that accepts L. 
(a) {alnlbl2nll n > 0}. 

(b) {alnlblmll 0 < n 5, m}. 

(c) {alnlblmJI n =/= m}. 

(d) {alnlblmlalnll m, n > 0} U {alnlclnll n > 0}. 

4. Let L be the pushdown automaton with Q = {q1}, F = {q1}, and 
transitions 

What is L(L)? 

q1a0: Aq1 q1aB: Oq1 
q1b0: Bq1 q1bA: Oq1. 

5. Let L be the pushdown automaton with Q = {q1 , q2 , q3 , q4 , q5}, 

F = {q5}, and transitions 

q100: Zq2 

q2a0: Aq2 

q2 bA:Oq3 

q2 bZ:Oq4 

q3 bA: Oq3 

q3bZ: Oq4 

q3a0: Oq4 

q30Z: Oq5 

q4 a0: Oq4 

q4 b0: Oq4 

q40A:Oq4 

q40Z:Oq4 • 
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(a) What is L(.L)? 

(b) Prove that for every u E {a, b}*, there is a u-computation by L. 

6. Show that every regular language accepted by a (deterministic) finite 
automaton with n states is accepted by a (deterministic) pushdown 
automaton with n states and an empty pushdown alphabet. 

7. Show that every regular language R is accepted by a pushdown 
automaton with at most two states, and if 0 E R then R is accepted 
by a pushdown automaton with one state. 

8. Let L be a pushdown automaton with initial state q1 , accepting 
states F, and tape alphabet A, let u E A*, and let a1 = 
(1, q1 , 0), ... , am = (lui + 1, p, y) be a u-computation by L. We say 
that L accepts u by final state if p E F, and that L accepts u by empty 
stack if y = 0. T(L) = {u E A* I L accepts u by final state}, and 
N(L) = {u E A* I L accepts u by empty stack}. 
(a) Let .L1 , .L2 , L 3 be the pushdown automata from the examples. 

Give T(.ff;), N(.ff;), i = 1, 2, 3. 
(b) Prove that a language L is context-free if and only if L = T(L) 

for some pushdown automaton L. 

(c) Prove that a language L is context-free if and only if L = N(L) 
for some pushdown automaton L. 

9. Let L be a pushdown automaton with tape alphabet A, and let 
u E A*. An infinite sequence al' a2, .•• of u-configurations for Lis 
an infinite u-computation by L if for some n and some x such that 
u = xy for some y, each finite sequence al' •.. ' an' ... ' an +m' m ~ 0, 
is an x-computation by L. It is an accepting infinite u-computation if 
a 1 , ••• , ak is an accepting u-computation by L for some k. 

(a) Give a pushdown automaton L 1 and word u1 such that there is 
a nonaccepting infinite u-computation by L 1 • 

(b) Give a pushdown automaton .L2 and word u2 such that there is 
an accepting infinite u2-computation (/1 , P1> y 1 ), (/2 , p 2 , y 2), ... 

by .L2 where, for some k, p1 is an accepting state for all I~ k. 
(c) Give a pushdown automaton L 3 and word u3 such that there is 

an accepting infinite u3-computation (/1 , p 1 , y 1 ), (/2 , p 2 , y 2), ... 

by .L3 where there is no k such that p1 is an accepting state for 
all I ~ k. 

10. Give the incompatible pairs among the following transitions. In each 
case, give the condition(s) 1, 2, 3, or 4 by which the pair is incompati­
ble. 
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qiaJI: Oqi 
qibJI: Oqi 
qiaJI: Oqz 

qiaO: lzqi 
q1011: Oqi 

qiblz: liqi 
qiOO: Jiqi 
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11. LetT= {a, b}, P = {~, ~ ,~,~}, 0. = {11 , 12}. We will write(,),[,] for 
~,~,~,~,respectively. Give Y;(w), 1 :::;; i:::;; lwl + 1, for each of the 
following. 
(a) w = a(b[ba]a)b[a]. 

(b) w = (ab[ab)a]. 

{c) w = a[b ]]a. 

(d) w = (a([b ]a). 

12. Let f be the grammar with productions S ~ SS, S ~a. 

(a) Use the construction in the proof of Theorem 8.2 to give a 
deterministic pushdown automaton that accepts L(f.). 

{b) Use the construction in the proof of Theorem 8.3 to give a 
pushdown automaton that accepts L(f). 

13. (a) For pushdown automata L 1 , L 2 , L 3 in the examples, use the 
construction in the proof of Theorem 8.5 to give atomic push­
down automata ~ , L 2 , L 3 • 

(b) Answer Exercise 2 for ~ , .ii2 , ~. 

14. Let L be the pushdown automaton with Q = {q1 , q2}, initial state 
q1 , F = {q2}, tape alphabet {a, b}, pushdown alphabet {A}, and transi­
tions 

q1a0: Oq1 

q 1b0: Oq2 

q 100: Aq1 

q 10A: Oq1 

q2 a0: Oq1 

q2 b0: Oq2 

q20A: Oq2 

q200: Aq2 • 

Use the constructions in Theorems 8.6 and 5.4 to give a context-free 
grammar f such that L(f) = L(L). 

15. Let us call a generalized pushdown automaton a device that functions 
just like a pushdown automaton except that it can write any finite 
sequence of symbols on the stack in a single step. Show that, for every 
generalized pushdown automaton L, there is a pushdown automaton 
.ii such that L(L) = L(.ii). 

16.* Let 
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be a set of dominoes on the alphabet A. Let B = {c1, ... , ck} be an 
alphabet such that A n B = 0. Let c $. A u B. Let 

R = {ycyR I y E A*B*}, 

L 1 = {u.u. ··· u.c.c. ···c. c.} 
lt l2 ln ln 'n-1 l2 lt' 

L 2 = {u. V· ••• V· C· C· ••• C· C·} 
11 12 1n 1n 1n-l 12 11' 

sp = {yczR I y E Ll 'z E Lz}. 

Recall that by Theorem 6.5, the Post correspondence problem P has 
a solution if and only if L 1 n L 2 * 0. 
(a) Show that the Post correspondence problem P has no solution 

if and only if R n S P = 0. 
(b) Show that (A u B u {c})* - R and (A u B u {c})* - Sp are 

both context-free. [Hint: Construct pushdown automata.] 
(c) From (a) and (b) show how to conclude that there is no algo­

rithm that can determine for a given context-free grammar r 
with terminals T whether L(f) u {0} = T*. 

(d) Now show that there is no algorithm that can determine for a 
given context-free grammar rl and regular grammar r2 whether 

(i) L(f1) = L(f2 ), 

(ii) L(f1) ~ L(f2 ). 

17.* Let L be a pushdown automaton with Q = {q1 , ••• , qm}, tape alpha­
bet A = {a1 , ••• , an}, and pushdown alphabet .0 = {11 , ••• , 11}, and 
let p,p' E Q,1,1' En. A sequence (l,p!,'YJ), ... ,(1,pk,yk) ofO­
configurations for L is a reaching sequence by L from (p, J) to 
(p',1') if p 1 = p, y 1 = 1, Pk = p', 'Yk = 1'8 for some 8 E .0*, IY;I > 0 
for 1 :::;; i:::;; k, and 0: (l,p;, y;) I-..,. (1, Pi+ 1 , 'Yi+ 1)for 1 :::;; i < k. (p, J) 
is a looping pair of L if there is a reaching sequence by L from 
(p, J) to (p, J). 

(a) Prove that if L has a u-computation a 1 , ••• , ak =(lui + 1 , 
p, 1y) for some looping pair (p, J) of L, then L has an 
infinite uw-computation for every w E A*. [See Exercise 9 for 
the definition of infinite u-computations.] 

(b) Prove that if (p, J) is a looping pair for L, then there is a 
reaching sequence a1 = (1, p, 1), ... , ak = (1, p, 18) by L from 
(p, J) to (p, J) such that 181:::;; lm [Hint: Consider the pigeon­
hole principle and the proofs of the pumping lemmas.] 
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(c) Prove that if ( p, J) is a looping pair of L, then there is a 
reaching sequence A1 , ••• , Ak by L from (p, J) to (p, J) with 
k ~ m(l + l)lm + 1. 

(d) Give an algorithm that will determine, for a pushdown automa­
ton Land pair (p, 1), whether or not (p, J) is a looping pair of 
L. 

(e) Prove that if L has an infinite u-computation, for some u E A*, 
then L has a looping pair. 

(f) Suppose now that ,(( is deterministic. Prove that there is a 
deterministic pushdown automaton L' such that 
(i) there is no infinite u-computation by L' for any u E A*; 

(ii) there is a u-computation by L' for every u E A*, and 
(iii) T(L') = T(L). [See Exercise 8 for the definition of 

T(L).] 

(g) A language L is a deterministic context-free language if L = T(L) 
for some deterministic pushdown automaton L. Prove that if 
L ~A* is a deterministic context-free language, then A* - L is 
also a deterministic context-free language. 

(h) Show that {alilbUlclkll i =1= j or j =1= k} is a context-free language 
which is not deterministic. 

(i) Show that there is an algorithm that can determine for a given 
deterministic pushdown automaton L and dfa L' whether 
T(L) = L(L'). 

9. Compilers and Formal Languages 

A compiler is a program that takes as input a program (known as the 
source program) written in a high-level language such as COBOL, FOR­
TRAN, or Pascal and translates it into an equivalent program (known as 
the object program) in a low-level language such as an assembly language 
or a machine language. Just as in Chapters 2 and 5 we found it easier to 
write programs with the aid of macros, most programmers find program­
ming in a high-level language faster, easier, and less tedious than in a 
low-level language. Thus the need for compilers. 

The translation process is divided into a sequence of phases, of which 
the first two are of particular interest to us. Lexical analysis, which is the 
first phase of the compilation process, consists of dividing the characters of 
the source program into groups called tokens. Tokens are the logical units 
of an instruction and include keywords such as IF, THEN, and DO, 
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operators such as + and * , predicates such as > , variable names, labels, 
constants, and punctuation symbols such as ( and ; . 

The reason that the lexical analysis phase of compilation is of interest to 
us is that it represents an application of the theory of finite automata and 
regular expressions. The lexical analyzer must identify tokens, determine 
types, and store this information into a symbol table for later use. Typi­
cally, compiler writers use nondeterministic finite automata to design these 
token recognizers. For example, the following is an ndfa that recognizes 
unsigned integer constants. 

Digit 

Anything but a digit 

Similarly, a nondeterministic finite automaton that recognizes variable 
names might look like this: 

Letter 
Digit 

Anything but a 
letter or a digit 

We end our brief discussion of lexical analysis by noting that it is not 
always a simple task to properly determine the division into tokens. For 
example, in FORTRAN, the statements 

DO 10 I= 1.11 

and 

DO 10 I= 1,11 

look very similar but are in fact totally unrelated instructions. The first is 
an assignment statement that assigns to a variable named D0101 (em­
bedded blanks are ignored in FORTRAN) the value 1.11. The second is a 
DO loop that indicates that the body is to be performed 11 times. It is 
not until the "." or "," is encountered that the statement type can be 
determined. 

At the completion of the lexical analysis phase of compilation, tokens 
have been identified, their types determined, and when appropriate, the 
value entered in the symbol table. At this point, the second phase of 
compilation, known as syntactic analysis or parsing, begins. It is in this 
second phase that context-free grammars play a central role. 
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For programming languages that are context-free, the parsing problem 
amounts to determining for a given context-free grammar f and word w 

1. whether w E L(f), and 
2. if wE L(f), how w could have been generated. 

Intuitively, the parsing phase of the compilation process consists of the 
construction of derivation or parse trees whose leaves are the tokens 
identified by the lexical analyzer. 

Thus, for example, if our grammar included the productions 

S ---+ while-statement 

S ---+ assignment-statement 

while-statement ---+ while cond do S 

cond ---+ cond v cond 

cond ---+ rei 

rei ---+ exp pred exp 

exp ---+ exp + exp 

exp ---+ var 

exp ---+ canst 

pred ---+ > 

pred ---+ = 

assignment-statement ---+ var +--- exp 

then the parse tree for the statement 

while x > y v z = 2 do w +--- x + 4 

is given by Fig. 9.1. 
The parsing is usually accomplished by simulating the behavior of a 

pushdown automaton that accepts L(f) either starting from the root of 
the tree or the leaves of the tree. In the former case, this is known as 
top-down parsing and in the latter case, bottom-up parsing. 

Most programming languages are for the most part context-free. (A 
major exception is the coordination of declarations and uses.) A common 
technique involves the definition of a superset of the programming lan­
guage which can be accepted by a deterministic pushdown automaton. This 
is desirable since there are particularly fast algorithms for parsing gram­
mars associated with deterministic pushdown automata. 
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s 
I 

while-statement 

while------:/ ~S 
/1~ I 

'T v T 7T~ 
rei rei var(w) - exp 

/I~ /1~ /I~ 
TpfTTprT T+T 

var(x) > var(v) var(z) const (2) var(x) const(4) 

Figure 9.1 

Exercise 

1. Give a context-free grammar for generating valid Pascal arithmetic 
expressions over the alphabet {a, b, +, -, *, ;, j, (,)}, where variable 
names are elements of {a, b}* of length at least 1. Is the grammar 
ambiguous? What are the implications of this? 
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Context-Sensitive Languages 

1. The Chomsky Hierarchy 

We are now going to place our work in the context of Noam Chomsky's 
hierarchy of grammars and languages. An arbitrary (phrase structure) 
grammar (recall Chapter 7, Section 5) is called a type 0 grammar. A 
context-sensitive grammar (recall Chapter 7, Section 5) is called a type 1 
grammar. A positive context-free grammar (recall Chapter 10, Section 1) is 
called a type 2 grammar, and a regular grammar (recall Chapter 10, Section 
2) is called a type 3 grammar. The inclusions suggested by the numbering 
obviously hold: every regular grammar is context-free, and every positive 
context-free grammar is context-sensitive. (Of course, grammars contain­
ing productions of the form V---+ 0 cannot be context-sensitive.) 

For each type of grammar, there is a corresponding class of languages: 

r regular 1 r 31 . context- ee 2 A language L IS fo . . or of type 1 context -sensltwe 
r.e. 0 

[
regular l 

. . . ositive context- ee 
1f and only 1f there IS a p t t .t. fo grammar r con ex -sensl we 

phrase structure 

327 
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such that 

L = L(f) or L = L(f) U {0}. 

For regular languages this statement is just Theorem 2.3 in Chapter 10. 
For context-free languages, it is Theorem 1.2 in Chapter 10. For context­
sensitive languages we take it as a definition. For r.e. languages it is 
Theorem 5.2 in Chapter 7, and the special reference to {0} is not needed. 
We have 

Theorem 1.1. Every regular language is context-free. Every context-free 
language is context-sensitive. Every context-sensitive language is recursive. 

Proof. The first two statements follow simply from the corresponding 
inclusions among the types of grammar. The third follows at once from 
Theorem 5.4 in Chapter 7. • 

We would like to show that the inclusions of Theorem 1.1 are proper, 
that is, that none of the four classes mentioned in the theorem is identical 
to any of the others. We have seen in Theorem 1.1 in Chapter 10, that the 
language L = {alnlblnlln > 0} is context-free but not regular. Similarly, we 
saw in Theorem 4.2 in Chapter 10 that the language {alnlblnlclnlln > 0} is 
not context-free, while Exercise 5.4 in Chapter 7 shows that it is context­
sensitive. This takes care of the first two inclusions of Theorem 1.1. The 
following theorem takes care of the remaining one. 

Theorem 1.2. There is a recursive language on the alphabet {1} that is not 
context -sensitive. 

Proof. We first code each context-sensitive grammar f with terminal 
alphabet {1} by a string on the five-letter alphabet A = {1, V, b, ~ , /}. 
We do this simply by replacing each variable by a distinct string of the 
form Vbln, using the arrow"~ " as usual between the left and right sides 
of productions, and using the slash "/" to separate productions. (Of 
course, not every string on this alphabet is actually the code for a 
context-sensitive grammar.) Now, the strings that code context-sensitive 
grammars may be placed in alphabetic order (or equivalently, in numerical 
order, regarding each string on A as the base 5 notation for an integer, as 
in Chapter 5). We let L; be the context-sensitive language generated by 
the ith context-sensitive grammar in this enumeration, i = 1, 2, 3, .... 
Then we set 

This is, of course, a typical diagonal construction, and we easily show that 
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L is not context-sensitive. For, if L = L,. , then 
() 

if and only if 1[inl f/:. L. 
'" 

if and only if 1[iol f/:. L. 

To see that L is recursive we note that there is an algorithm which given 
i will return a context-sensitive grammar f; that generates L;. Then 1[il 

can be tested for membership in L; using the algorithm developed in the 
proof of Theorem 5.4 in Chapter 7. • 

For each class of languages corresponding to types 0, 1, 2, 3, we are 
concerned with questions of the following kinds: What can we determine 
algorithmically about a language from a grammar which generates it? 
What kinds of device will accept precisely the languages belonging to the 
class? Under what operations are the classes closed? We have been 
dealing with these questions for languages of types 0, 2, and 3. Now, we 
will see what can be said about languages of type 1, i.e., context-sensitive 
languages. We begin by considering the question of closure under union. 
We will need the 

Lemma. There is an algorithm that will transform a given context­
sensitive grammar r into a context-sensitive grammar A such that the left 
sides of the productions of A contain no terminals and L(f) = L(A). 

Proof. We "disguise" the terminals as variables as in the proof of 
Theorem 3.1 in Chapter 10, except that now we need to replace the 
terminals on both the left and right sides of the productions. The resulting 
grammar, A, consists of productions of the form X 1 ••• Xm ~ Y1 ••• Yn, 
m ~ n, and Xa ~ a, where X 1 , ••• , Xm, Y1 , ••• , Y,, Xa are variables and a 
is a terminal. Clearly, L(A) = L(f). • 

Theorem 1.3. If L 1 , L 2 are context-sensitive languages, then so is 
L 1 u L 2 • 

Proof. Assume L 1 = L{f1) or L{f1) U {0}, L 2 = L(f2 ) or L(f2 ) U {0}, 
where rl and r2 are context-sensitive grammars with disjoint sets of 
variables of the form obtained in the Lemma. We construct f from f 1 and 
f 2 exactly as in the proof of Theorem 5.1 in Chapter 10, so that r is also 
context-sensitive and L(f) = L{f1) u L(f2). Clearly, L 1 U L 2 = L{f) or 
L(f) u {0}. • 

Exercises 

1. Show that {w E {a, b, c}*lw has an equal number of a's, b's, c's} is 
context-sensitive. 
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2. Let r be the grammar with productions 

S---+ AXYp 
AX---+ AaA 
AX---+ AbB 
AX---+ AccC 

Aa ---+ aA 
Ab ---+ bA 
Ba ---+ aB 
Bb ---+ bB 
Ca ---+ aC 
Cb ---+ bC 

AY---+ XYa 
BY---+ XYb 
CY---+ cc 
aX---+ Xa 
bX---+ Xb, 

where 'F= {S, X, Y, A, B,C} and T ={A, p, a, b, c}. What is L(f)? 

3. Show that {wwlw E {a, b}*} is context-sensitive. 

4. Apply the construction in the proof of the Lemma to the grammar in 
Exercise 2. 

5. Show that the proof of Theorem 1.3 fails if we do not assume that f 1 , 

r2 conform to the conditions of the Lemma. 

6. (a) Let r be a context-sensitive grammar. Show that there is a 
context-sensitive grammar f' such that L(f') = L(f) and such 
that, for every production u ---+ v in r, lui ::; 2 and lvl ::; 2. 

(b) Prove that a language L is context-sensitive if and only if it is 
generated by a grammar f, with variables 'F and terminals T, 
such that every production in f has the form uVw ---+ uvw, where 
U, WE ('FU T)*, V E 'F, and V E ('FU T)* - {0}. [Note: This 
explains the origin of the term context-sensitive.] 

2. Linear Bounded Automata 

We are now going to deal with the question: which devices accept context­
sensitive languages? We define a linear bounded automaton on the alpha­
bet C = {s1 , s2 , ••• , sn} to be a nondeterministic Turing machine Lon the 
alphabet C u {A, p} such that the only quadruples L contains beginning 
q A or q p are of the forms q A R p and q p L p, respectively, such that L 
has a final state, written ij, where no quadruple of L begins ij, and finally 
such that for every quadruple q a b p in L, we have b -=1= A, p. Thus, when 
scanning A, L can move only right, and when scanning p, L can move 
only left, and the symbols A, p can never be printed in the course of a 
computation. Thus, the effect of the additional symbols A and p is simply 
to prevent the machine from moving beyond the confines of the given 
string on the tape. Because of this we can code a configuration of L by a 
triple (i, q, Awp), where 0 ::; i ::; lwl + 1; i gives the position of the tape­
head (i.e., of the scanned square), q is the current state; and Awp is the 
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Quadruple in L 

qabp 
qaRp 
qaLp 

Table 2.1 

Corresponding transition 

(lul,q,uav) 1--_.,. <lul,p,ubv) 
(lul,q,uav) 1--_.,. (lui+ l,p,uav) 
(lui, q, uav) I-..,. (lui - 1, p, uav) 
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tape contents, w E (C u {s0})*. (Recall that s0 is the blank.) As usual, for 
configurations y, 8 we write y 1-...,. 8 to mean that one of the quadruples 
of L permits the transition from y to 8, and write y ;. ...,. 8 to mean that 
there is a sequence of configurations y = y 1 , y2 , ••• , 'Yk = 8 such that 
'Y; 1-...,. 'Y;+ 1 for 1 :::;; i < k. Table 2.1 shows which transitions are permitted 
by each quadruple in L (here a E C u {s0 , A, p}, b E C u {s0}). (Of 
course, for a = A, p, only quadruples of the second and third kind, 
respectively, can occur in L.) 

L is said to accept a string w E C * if 

(l,q1 ,Awp) ;...,{i,ij,Aw'p), 

where q1 is the initial state of Land, of course, ij is the final state. (Note 
carefully that unlike the situation for Turing machines, a configuration will 
be regarded as "accepting" only if L is in its final state ij.) If A k C, we 
write LiL) for the set of all w E A* that are accepted by L. The main 
theorem is 

Theorem 2.1 (Landweber-Kuroda). The language L k A* is context­
sensitive if and only if there is a linear bounded automaton L such that 
L =LiL). 

We begin with 

Lemma 1. There is an algorithm that transforms any given context­
sensitive grammar f with terminals T into a linear bounded automaton L 
such that L(f) = LT(L). 

Proof. Let 'F be the set of variables of r, and let S E 'F be the start 
symbol. The alphabet of L will be T U 'F. Let the productions of f be 
u; ~ V;, i = 1,2, ... ,m, where 

u. = a<iJa<il ··· a<il and v. = f3U>'f3U> ... {3(i) • (2.1) 
I I 2 k; I I 2 I; ' 

afil, a~il, ... , akil, f3fi>, f3ii>, ... , f3F> E T U 'F, 
I I 

and k; :::;; I;. Then we set 

aU> =aU> = 
k;+l k;+2 
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That is, we fill out the left side of each production with blanks. Since L is 
operating nondeterministically, it can seek the word V; on the tape and 
replace it by U;, thus undoing the work of the production. It will help in 
following the construction of the automaton L if we think of it as 
operating in one of these four phases: initialization, searching, production 
undoing, and termination. The states of .I will be the initial state q 1 , the 
search state u, the return state ii, the undomg states pji>, qji> for 1 :::;; i :::;; m 
and 1 :::;; j :::;; I; [I; is as defined in Eqs. (2.1)], and the termination states T, 7. 

Phase 1 (Initialization) We place in L the quadruples 

Thus in Phase 1, L operating nondeterministically "decides" to enter 
either the search or the termination phase. 

Phase 2 (Search) We place in L the quadruples 

(T a R (T a=/=p 

(T p L (T 

(T f3fi) f3fi) p~i) 1:::;; i:::;; m 

(T a L (j a =/= ,\ 
(T ,\ R ql. 

In Phase 2, L moves right along the tape searching for one of the initial 
symbols f3fi> of the right side of a production. Finding one, L may enter 
an undoing state. If L encounters the right end marker p while still in 
state u, it enters the return state ii and goes back to the beginning. 

Phase 3 (Production Undoing) We place in L the quadruples, for 
1 :::;; j < I;, 1 :::;; i :::;; m, 

py> 13P> a~i) 
1 

qy> 

qji> a~i) 
1 

R pU> j+l 
p(i) 

I; 
f3(i) 

I; 
aU> 

I; 
(T 

together with the quadruples 

py> So R p\i) 
1 • 

When operating in Phase 3, L has the opportunity to replace the right 
side of one of the productions on the tape by the left side (ignoring any 
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blanks that might have been introduced by previous replacements). If L 
succeeds, it can enter the return state u, return to the left, and begin 
again. 

Phase 4 (Termination) We place in L the quadruples 

T So R T 

T s R T 
T So R T 

T p L ij. 

Thus if Lever returns to state q1 with the tape contents 

i,j ~ 0 

(where, of course, S is the start symbol of f), then L will have the 
opportunity to move all the way to the right in this phase and to enter the 
final state ij. 

Thus, L will accept a word w E T* just in case there is a derivation of 
w from sin r. • 

Lemma 2. If L ~A* is a context-sensitive language, then there is a linear 
bounded automaton L such that L = LiL). 

Proof. We have L = L(f) or L(f) u {0} for a context-sensitive grammar 
f. In the first case, L can be obtained as in Lemma 1. In the second case, 
we modify the automaton L of Lemma 1 by adding the quadruple 
q1 p L ij. The modified automaton accepts 0 as well as the strings that L 
accepts. • 

Now, we wish to discuss the converse situation: we are given a linear 
bounded automaton L and alphabet A and wish to obtain a context­
sensitive grammar r such that L(f) = LiL) - {0}. The construction will 
be similar to the simulation, in Chapter 7, of a Turing machine by a 
semi-Thue process. However, the coding must be tighter because all the 
productions need to be non-length-decreasing. 

Let L be the given linear bounded automaton with alphabet C where 
A ~ C, initial state q1 , and final state ij. To begin with, we will only 
consider words u E C* for which lui ~ 2; such words can be written awb, 
where w E C*, a, b E C. We wish to code a configuration (i, q, Aawbp) of 

L by a word of length lawbl = lwl + 2. To help us in doing this, we will use 
five variants on each letter a E C: 

a Ia al a a. 
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The interpretation of these markings is 

r a: a on the left end of the word; 
al: a on the right end of the word; 
a: a on the left end, but the symbol being scanned is A, one square to 

the left of a; 
a: a on the right end, but the symbol being scanned is p, one square to 

the right of a. 

Finally, the current state will ordinarily be indicated by a subscript on the 
scanned symbol. If however, the scanned symbol is A or p, the subscript 
will be on the adjacent symbol, marked, as just indicated, by an arrow. 
Thus, if L has n states we introduce 3(n + 1) + 2n symbols for each 
a E c. (Note that a and a always have a subscript.) The examples in Table 
2.2 should make matters plain. Of course, this encoding only works for 
words Awp for which lwl ~ 2. 

Now we will construct a semi-Thue process !. such that given configura­
tions y,"l> of Land their codes y, 8, respectively, we shall have 

y 1-..,. 8 if and only if y ? 8. 

As for Turing machines, we define !. by introducing suitable productions 
corresponding to each quadruple of L. The correspondence is shown in 
Table 2.3, where we have written C for C U {s0}. 

Now, since these productions simulate the behavior of L in an obvious 
and direct manner, we see that L will accept the string aub, u E C*, 
a, bE C, just in case there is a derivation, from the initial word laq,ubl 
using these productions, of a word containing ij as a subscript. To put this 
result in a more manageable form, we add to the alphabet of !. the symbol 
S and add to !. the "cleanup" productions 

aS~ S, Sa~ S, (2.2) 

where a can be any one of a, Ia, al, a, or a, for any a E c. Since these 
productions will transform the codes for configurations with the final state 

Table 2.2 

Configuration 

(3, q, Aababcp) 
(1, q, Aababcp) 

(5, q, Aababcp) 

(0, q, Aababcp) 

(6, q, Aababcp) 

Code 

1abaqbcl 
raqbabcl 
1ababc! 

iiqbabcl 

1 abab~ 
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Table 2.3 

Quadruple of L Productions of ~ 

q a b p, a,b e C 

q a R p, aeC 
all be C 

qARp all a e C 

q aLp, aeC 
all be C 

qpLp all a e C 

q into the single symbol S, and since there is no other way to obtain the 
single symbol S using the productions of I, we have 

Lemma 3. L accepts the string aub, a, b E C, u E C*, if and only if 

Now let .n be the semi-Thue process whose productions are the inverses 
of the productions of I. (See Chapter 7, Section 2.) Then we have 

Lemma 4. L accepts the string aub, a, b E C, u E C*, if and only if 

Now we are ready to define a context-sensitive grammar f. Let the 
terminals of r be the members of A, let the variables of r be 

1. the symbols from the alphabet of .n that do not belong to A, and 
2. symbols a0 for each a EA. 
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Finally, the productions of f are the productions of !1 together with 

1::~: ::o} for all a, bE A. 

a0bl ~ ab 

(2.3) 

It is easy to check that f is in fact context-sensitive. [Of course, the 
productions (2.2) must be read from right to left, since it is the inverses of 
(2.2) that appear in f.] Moreover, using Lemma 4 and (2.3), we have 

Lemma 5. Let w E A*. Then w E L(f) if and only if lwl ~ 2 and 
w ELiL). 

Now let L be a given linear bounded automaton, A a given alphabet, 
and let f be the context-sensitive grammar just constructed. Then, by 
Lemma 5, we have 

LA(L) = L(f) U L 0 , 

where L 0 is the set of words w E A* accepted by L such that lwl < 2. But 
L 0 is finite, hence (Corollary 4.7 in Chapter 9) L 0 is a regular language, 
and so is certainly context-sensitive. Finally, using Theorem 1.3, we see 
that LiL) is context-sensitive. This, together with Lemma 2, completes 
the proof of Theorem 2.1. • 

Exercises 

1. Let L be the linear bounded automaton with initial state q1, final 
state ij, and quadruples 

q, a R qz qz b R q, 
q, b R q3 qz c R q, 
q, c R q, q3 a R q, 
q, p L ij q3 c R q,. 

What is L(L)? 

2. Give a deterministic linear bounded automaton L that accepts 
{w E {a, b, c}* I w has an equal number of a's, b's, c's}. 

3. Give a linear bounded automaton L that accepts {ww I wE {a, b}*}. 

4. Let L be the linear bounded automaton with initial state q1 , final 
state ij, and quadruples 
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(a) Use the construction in the proof of Theorem 2.1 to give a 
grammar f such that L(f) = L(L). 

(b) Give a derivation of aabb in r. 
5. Let r be the grammar with start symbol S and productions S ~ aSb, 

S ~ ab. 

(a) Use the construction in the proof of Theorem 2.1 to give a linear 
bounded automaton L such that L(L) = L(f). 

(b) Give an accepting computation by L for input aabb. 

6. Prove that every context-free language is accepted by a deterministic 
linear bounded automaton. 

7. Show that there is an algorithm to test a given linear bounded 
automaton L and word w to determine whether or not L will 
eventually halt on input w. That is, the halting problem is solvable for 
linear bounded automata. [Hint: Consider the pigeon-hole principle.] 

3. Closure Properties 

We have already seen that the context-sensitive languages are closed 
under union (Theorem 1.3), and now we consider intersection. Here, 
although the context-free languages are not closed under intersection 
(Theorem 5.2 in Chapter 10), we can prove 

Theorem 3.1. If L 1 and L 2 are context-sensitive languages, then so is 
L 1 nL2 • 

Proof. Let L 1 = LiL1), L 2 = LiL2 ), where L 1 , L 2 are linear 
bounded automata. The idea of the proof is to test a string w for 
membership in L 1 n L 2 by first seeing whether L 1 will also accept w and 
then, if L 1 does, to see whether L 2 will also accept w. The difficulty is 
that L 1 may destroy the input w in the process of testing it. If we were 
working with Turing machines, we would be able to deal with this kind of 
problem by saving a copy of the input on a part of the tape that remained 
undisturbed. Since linear bounded automata have no extra space, the 
problem must be solved another way. The solution uses an important idea: 
we think of our tape as consisting of a number of separate "tracks," in this 
case two tracks. We will construct a linear bounded automaton L that will 
work as follows: 

1. L will copy the input so it appears on both the upper and the lower 
track of the tape; 
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2. L will simulate L 1 working on the upper track only; 
3. if L 1 has accepted, L will then simulate L 2 working on the lower 

track (on which the original input remains undisturbed). 

Thus, let us assume that L 1 and L 2 both have the alphabet C = 
{s1 , s2 , ••• , sn}. (Of course, in addition they may use the symbols A, p, s0 .) 

L will be a linear bounded automaton using, in addition, the symbols 
bj, 0 :o:; i, j :o:; n. We think of the presence of the symbol bj as indicating 
that s; is on the "upper track" while sj is on the "lower track" at the 
indicated position. Finally we assume that q1 is the initial state of L 1 , that 
q is its final state, and that q2 is the initial state of L 2 • We also assume 
that the sets of states of L 1 and L 2 are disjoint. L is to have initial state 
q0 and have the same final state as L 2 • L is to contain the following 
quadruples (for 0 :o:; i :o:; n ): 

(1) Initialization: 

qo S; bi 
I 

q 
q bi 

I R qo 

qo p L q 
q bi 

I 
L q 

q A R ql. 

Here q, q are not among the states of L 1 and L 2 . These quadruples 
cause L to copy the input on both "tracks" and then to return to the 
leftmost symbol of the input. 

(2) For each quadruple of L 1 , the corresponding quadruples, obtained 
by replacing each s; by bj, j = 0, 1, ... , n, are to be in L. These quadru­
ples cause L to simulate L 1 operating on the "upper" track. In addition, 

L is to have the quadruples for 0 :o:; i, j :o:; n: 

q bi 
1 

R q 
q p L p 
p bi 

1 sj p 
p sj L p 
p A R qz. 

Here again p does not occur among the states of L 1 , L 2 • These quadru­
ples cause L to restore the "lower" track and then to enter the initial 
state of L 2 scanning the leftmost input symbol. 
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(3) Finally, L is to contain all the quadruples of L 2 • 

Since it is plain that 

the proof is complete. 
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• 
As an application, we obtain an unsolvability result about context­

sensitive grammars. 

Theorem 3.2. There is no algorithm for determining of a given context­
sensitive grammar r whether L(f) = 0. 

Proof. Suppose there were such an algorithm. We can show that there 
would then be an algorithm for determining of two given context-free 
grammars f 1 , f 2 whether L(f1) n L(f2 ) = 0, thus contradicting Theorem 
6.6 in Chapter 10. For, since f 1 , f 2 are context-sensitive, the constructive 
nature of the proofs of Theorems 2.1 and 3.1 will enable us to obtain a 
context-sensitive grammar f with L(f) = L(f1) n L(f2 ). • 

We turn now to a question about context-sensitive languages that was 
one of the outstanding open problems in theoretical computer science for 
over two decades. In 1964 Kuroda raised the question: Are the context­
sensitive languages closed under complementation? It remained unsettled 
until 1987, when Neil Immerman showed that the answer is yes. What is 
particularly interesting is that, after more than twenty years, the solution 
turned out to be surprisingly straightforward. 

We will show that if L ~A* is accepted by a linear bounded automaton, 
then so is A* - L. Suppose that L is accepted by the linear bounded 
automaton L with alphabet {s1 , ••• ,sn_ 1} and states {q1, ... ,qk}. (We 
take qk to be ij, and we will sometimes write A, pas sn, sn+ 1 , respectively.) 
We want to find another linear bounded automaton ./Y which accepts when 
L rejects and vice versa. This would be easy if L were deterministic, but 
suppose L is nondeterministic. If w rt L then every computation by L on 
input Awp is nonaccepting, so if we constructed ./Y to simulate L and 
enter the final state ij precisely when L halts in a state other than ij, then 
every halting computation by ./Y would enter ij and ./Y would accept w (if it 
has at least one halting computation). However, if w E L, then L could 
still have some computations which halt in some state other than ij, in 
which case ./Y would still accept w. Thus, we need ./Y to accept only when 
every computation of L fails to end in state ij. 

The problem is that it is not at all clear how to construct ./Y so that a 
single computation by ./Y can correctly gather information about every 
computation by L. We could deterministically simulate L, using a stack 
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to remember "branch points." However, L has I Awpl· k · nlwl distinct 
configurations with I Awpl tape squares, so a nonlooping computation by L 
on input Awp could run for as many as I Awpl· k · nlwl - 1 steps, and each 
step could require adding more information to the stack. There is no way, 
then, that such a stack can be stored in lwl tape squares, even using 
multiple tracks as in the proof of Theorem 3.1. Actually, there are 
simulation techniques that are much more efficient in terms of space, but 
none are known that are sufficiently parsimonious for our purposes here. 

The solution discovered by Immerman is to store sufficient information 
about the possible computations by counting configurations. The largest 
value that needs to be stored is I Awpl· k · nlwl, which for any w -=1= 0 can be 
represented in base n notation by a string of length 

~ logn IAwpl + logn k + lwl + 1 ~ c ·lwl 

for some constant c. (We can ignore the case w = 0 since the decision to 
accept or reject 0 can be built explicitly into the quadruples of .#".) The 
important thing is that c does not depend on w, so we can construct ./Y to 
maintain each such counter on c tracks, regardless of the length of the 
input. In fact, it will be convenient to consider the c tracks holding a 
counter as a single track with c "subtracks." 

The other objects we need to represent are configurations. If the initial 
configuration is (1, q1 , Awp), then it is clear that we can represent on a 
single track any configuration (i, q, Axp) where lxl = lwl. For example, we 
could add to the alphabet of some track new symbols sf, 0 ~ i ~ n + 1 
and 1 ~ j ~ k. Then sf in square I on this track represents L in state qj 
scanning square I (on its own tape) holding symbol s;. Not every string on 
the alphabet 

represents a configuration of L, but it is clear that the representations of 
all configurations of L with IAwpl tape squares can be written one after 
another, say, in ascending numerical order, on some track. We will call the 
ith configuration in this enumeration C;. Of these configurations, some 
may never occur in any computation by Lon input Awp. We say that a 
configuration (i, q, Axp) is reachable from w if (1, q1 , Awp) ~..,. (i, q, Axp). 

We describe the behavior of ./Y by means of two nondeterministic 
procedures, the COUNT phase and the TEST phase. Although these are 
written in an informal high-level notation, it should be clear that ./Y can be 
constructed to carry them out, using no more than IAwpl tape squares. We 
begin with the TEST phase, described in Figure 3.1, where we will see the 
importance of being able to count the reachable configurations. Suppose 
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COUNTER+-- 0 
fori= 1 to IAwpl·k ·nlwl 

CONFIG +-- C; 
nondeterministic ally simulate some computation by .If 

on Awp until it reaches CON FIG or terminates 

if CONFIG has been reached then 

if CONFJG is accepting 
then enter q' and halt 

else COUNTER +-- COUNTER + 1 
end for 

if COUNTER = r then enter ij and halt 

else enter q' and halt 

Figure 3.1. The TEST phase of f. 
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we have a tape with w on track 1 and r on track 2, where r is the number 
of configurations reachable from w. We will write this tape as Aw jrp. The 
TEST phase needs four tracks in addition to tracks 1 and 2. Two are 
needed for variables i and COUNTER, which hold numbers ~ IAwpl· k · 
nlwl, one is needed for CONFIG, which holds representations of configu­
rations with I Awpl tape squares, and a fourth is needed to simulate 
computations by L on input Awp. It is clear that each track is large 
enough for its purpose. Let q' be some non final state of .IY. 

Claim 1. Executing the TEST phase, .#' accepts w jr if and only if L 
rejects w. 

If L accepts w, there are at most r - 1 nonaccepting reachable 
configurations, so any computation by.#' will either 

• run forever simulating some computation by L; 
• simulate some computation by L that halts in state ij, or 
• end with COUNTER < r. 

Therefore, no computation by.#' ends in state ij, and.#' rejects w jr. If L 
rejects w then .#' can "guess" computations by L that reach every 
reachable configuration. None of these is accepting, so .#' finishes with 
COUNTER = r and accepts w jr. This proves Claim 1. 

Finally, we need to show that .#' can correctly compute r prior to 
entering the TEST phase. It might seem that .#'could simply guess r and 
then continue with the TEST phase. The problem is that, if .#' incorrectly 
guesses some r' < r, then some computation by.#' in the TEST phase 
might end with COUNTER= r' and accept w when it should reject it. 
Therefore, it is not enough that some computation by.#' reach the TEST 
phase with the correct value of r. We must ensure that every computation 
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i<--0 
COUNTER<-- 0 
NEW-COUNTER <-- I 

[Main] if NEW _COUNTER = COUNTER then 

delete all but tracks 1 and 2 from tape 

goto TEST phase 

i<-i+l 
COUNTER <-- NEW _COUNTER 
NEW _COUNTER <-- 0 
forj =I to IAwplokonlwl 

t<--0 

CONFIGI <-- Ci 
for I = I to I Awpl 0 k 0 nlwl 

CONFIG2 <-- C1 

nondeterministically simulate some computation 

by ./ton Awp until it reaches CONFIG2 or 

until i steps have been executed 

if CONFIG2 has been reached then 

end for 

t<-t+l 

if CONFIG2 = CONFIGI or 

CONFIG2 f-_, CON FIG I then 

NEW _COUNTER <-- NEW _COUNTER + 1 
leave inner loop 

if I > I Awpl o k 0 nlwl and t < COUNTER then 

enter q' and halt 

end for 

goto Main 

Figure 3.2. The COUNT phase of AI'. 

by ./Y that gets as far as the TEST phase must do so with the correct value 
of r. We will now show that this can be done. 

For all i ~ 0, let ri be the number of configurations of L that can be 
reached from (1, q1 , Awp) in no more than i steps. Then there is some i 0 

such that rio = rio+ 1 = r. We will argue by induction that each r;, for 
1 ::::; i ::::; i 0 , is correctly computed by the COUNT phase, given in Figure 
3.2. The input is the initial tape Awp. We also need tracks to hold variables 
NEW_COUNTER, COUNTER, i, j, l, t, CONFIG1, and CONFIG2, and 
a track to use in simulating computations by .4. Again it is clear that 
sufficient space is available. We stipulate that NEW_COUNTER, which 
will eventually hold r, should be stored on track 2. 

Claim 2. For i ~ 0, any computation by ./Y on Awp that completes i 
executions of the main loop has the correct value of ri in NEW _COUN­
TER. 
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The claim is obvious for i = 0, so we assume it is true for some i ~ 0 
and show that it is true for i + 1. Suppose some computation completes 
i + 1 executions of the main loop. Then throughout the i + 1st execution 
of the main loop, COUNTER = r; by the induction hypothesis (since 
COUNTER is set to NEW_COUNTER at the beginning of the loop). 
CONFIGl ranges over all configurations with IAwpl tape squares, and for 
each value of CONFIGl we want NEW_COUNTER to be incremented 
just in case CONFIGl is reachable within i + 1 steps. Now, for each value 
of CONFIGl, the inner for loop1 ends either with I ~ IAwpl· k · nlwl, 
meaning that the current CONFIGl has been found to be reachable 
within i + 1 steps, or with I > I Awpl· k · nlwl and t = COUNTER, mean­
ing that all r; of the configurations reachable within i steps have been 
found and none of them leads to CONFIGl in 0 or 1 steps, i.e., CONFIGl 
is not reachable within i + 1 steps. In the first case NEW _COUNTER is 
incremented and in the second case it is not, so the claim is true for i + 1. 

To conclude we simply note that at least one computation by .AI' on Awp 
will correctly guess the appropriate computations by L to simulate and 
will execute the main loop i0 + 1 times, leaving r on track 2. Any such 
computation will then go on to execute the TEST phase, and, by Claim 1, 

.AI' will accept w if and only if L rejects w. Therefore, by Theorem 2.1 we 
have proved 

Theorem 3.3. If L ~A* is context-sensitive, then so is A* - L. 

We conclude this chapter by mentioning another major problem con­
cerning context-sensitive languages that remains open: is every context­
sensitive language accepted by a deterministic linear bounded automaton? 

Exercises 

1. Let L, L' be context-sensitive languages. Prove the following. 
(a) L · L' is context-sensitive. 
(b) L* is context-sensitive. 
(c) L R = {wR I w E L} is context-sensitive. 

2. Let L ~A* be an r.e. language. Show that there is a context-sensitive 
language L' ~(A U {c})* such that for all w E A*, we have 

wEL if and only if wc[il E L' for some i ~ 0. 

1 We are assuming here that when a loop of the form fori = 1 to n runs to completion, it 
leaves i = n + 1. 
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3. Show that for every r.e. language L there is a context-sensitive 
grammar r such that the grammar obtained from r by adding a single 
production of the form V ~ 0 generates L. [Hint: Use Exercise 2 and 
take c to be the variable V.] 

4. Give alphabets A, P and a context-sensitive language L ~A* such 
that Er p(L) is not context-sensitive. 

5. Let A 1 , A 2 be alphabets and let L ~Aj be context-sensitive. Let f 
be a substitution on A 1 such that for each a E A,f(a) ~A~ is 
context-sensitive and 0 $. f(a). Let g be a homomorphism from Aj to 
A~ such that g(a) =I= 0 for all a EA. [See Exercise 4.5 in Chapter 9 for 
the definitions of substitution and homomorphism.] 
(a) Prove that f(L) is context-sensitive. 
(b) Prove that g(L) is context-sensitive. 
(c) Give a context-sensitive language L' and homomorphism h such 

that h(L') is not context-sensitive. 



Part 3 

Logic 
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Propositional Calculus 

1. Formulas and Assignments 

Let A be some given alphabet and let Sit' ~ A*. Let B = A u {--,, 1\ , V , 
::::>, ~, (, )}, where we assume that these additional symbols are not 
already in A. --,, 1\, V, ::::> , ~ are called (propositional) connectives. 
Then by a propositional formula over Sit' we mean any element of B* which 
either belongs to Sit' or is obtainable from elements of Sit' by repeated 
applications of the following operations on B*: 

1. transform a into --, a; 

2. transform a and {3 into (a 1\ {3 ); 
3. transform a and {3 into ( a V {3 ); 
4. transform a and {3 into ( a ::::> {3 ); 
5. transform a and {3 into (a ~ {3 ). 

When the meaning is clear from the context, propositional formulas over Sit' 
will be called .J!t'-formulas or even just formulas for short. In this context 
the elements of Sit' (which are automatically .Jit'-formulas) are called atoms. 

To make matters concrete we can take A = {p, q, r, s, 1}, and let 

Sit'= {pl[il, qlliJ, rlliJ, s11;1li E N}. 

In this case the atoms are called propositional variables. We can think of 
the suffix 11;1 as a subscript and write P; = pl1;1, q; = ql1;1, etc. Here are a 

347 
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few examples of formulas: 

((-,p:::>q):::>p), 

((((p Aq) =>r) A ((p1 Aq1) :::>r1)) :::> -,s), 

(((pi V •Pz) V PJ) A (-,pi V PJ)). 

Although the special case of propositional variables really suffices for 
studying propositional formulas, it is useful in order to include later 
applications, to allow the more general case of an arbitrary language of 
atoms. (In fact our assumption that the atoms form a language is not really 
necessary.) 

By an assignment on a given set of atoms .91 we mean a function v which 
maps each atom into the set {FALSE, TRUE} = {0, 1}, where (recall Chap­
ter 1, Section 4), as usual, we are identifying FALSE with 0 and TRUE 
with 1. Thus for each atom a we will have v( a) = 0 or v( a) = 1. Given 
an assignment v on a set of atoms .91, we now show how to define a value 
yv E {0, 1} for each .91-formula y. The definition is by recursion and 
proceeds as follows: 

1. if a is an atom, then av = v( a); . {1 if {3v=O 
2. If y = -, {3, then yv = O if {3v = 1; 

3. (a A {3 )v = 1 if av .= {3 v = 1 
0 otherwise; 
0 if a v = {3 v = 0 4. (a V f3)v = 
1 otherwise; 
0 if av = 1 and {3 v = 0 

5. (a :::> {3 )v = 1 
otherwise; 

6. (a ++ {3 )v = { 01 if a v = {3 v 
otherwise. 

A set .n of .91-formulas is said to be truth-functionally satisfiable, or just 
satisfiable for short, if there is an assignment v on .91 such that a v = 1 for 
all a E 0; otherwise .n is said to be (truth-functionally) unsatisfiable. If 
.n = {y} consists of a single formula, then we say that y is (truth-function­
ally) satisfiable if .n is; y is (truth-functionally) unsatisfiable if .n is 
unsatisfiable. y is called a tautology if yv = 1 for all assignments v. It is 
obvious that 

Theorem 1.1. y is tautology if and only if -, y is unsatisfiable. 

We agree to write a = {3 for .91-formulas a, {3 to mean that for every 
assignment v on .91, a v = {3 v. This convention amounts to thinking of an 

.91-formula as naming a mapping from {0, l}n into {0, 1} for some n EN, so 
that two .91-formulas are regarded as the same if they determine the same 



1. Formulas and Assignments 349 

Table 1.1 

a f3 -,a (--,aVf3) (a:>f3) (f3:>a) (a++f3) 

0 1 1 
0 1 1 1 1 0 0 
1 0 0 0 0 0 
0 0 

mappings. [Thus, in high school algebra one writes x 2 - 1 = (x- 1) 
X (x + 1), although x 2 - 1 and (x - 1){x + 1) are quite different as 
expressions, because they determine the same mappings on numbers.] With 
this understanding, we are able to eliminate some of the connectives in 
favor of others in a systematic manner. In particular, the equations 

(a :l {3) = (-, a V {3), 

(a++ {3) =((a :l {3) 1\ ({3 :l a)) 

(1.1) 

(1.2) 

enable us to limit ourselves to the connectives -,, 1\, V. The truth of 
these two equations is easily verified by examining the "truth" tables in 
Table 1.1, which show all four possibilities for the pair a", {3 ". 

With our use of the equal sign, all tautologies are equal to one another 
and likewise all unsatisfiable formulas are equal to one another. Since the 
equations 

a" = 1 for all v , {3 " = 0 for all v 

determine a to be a tautology and {3 to be unsatisfiable, it is natural to 
write 1 for any .W-formula which is a tautology and 0 for any .W-formula 
which is unsatisfiable. Thus a = 1 means that a is a tautology, and a = 0 
means that a is unsatisfiable. 

The system of .W-formulas, under the operations -,, 1\, V and involving 
the "constants" 0, 1 obeys algebraic laws, some of which are analogous to 
laws satisfied by the real numbers under the operations -, ·, +; but there 
are some striking differences as well. Specifically, we have, for all .W­
formulas a, {3, y 

(aAl)=a 

(a/\-,a)=O 

(a/\0)=0 

(aAa)=a 

absorption: 

(aVO)=a 

contradiction; excluded middle: 

(av--,a)=l 

(avl)=l 

idempotency: 
(aVa)=a 
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commutativity: 

(a/\f3)=(f3/\a) (aVf3)=(f3Va) 

associativity: 

(a 1\ ( f3/\ y )) = ((a 1\ f3) 1\ y) (a V ( f3 V y )) = ((a V f3) V y) 

distributivity: 

(a 1\ ( f3 V y )) = ((a 1\ f3) V (a 1\ y )) (a V ( f3/\ y )) = ((a V f3) 1\ (a V y )) 

De Morgan laws: 

-,(a/\f3)=(-,av -,f3) -,(aV/3)=(-,a/\ -,f3) 

double negation: 

These equations, which are easily checked using truth tables, are the basis 
of the so-called Boolean algebra. In each row, the equations on the left 
and right can be obtained from one another by simply interchanging all 
occurrences of" V" with "A" and of "0" with "1." This is a special case of 
a general principle. The truth tables in Table 1.2 show that if we think of 0 
as representing "TRUE," and 1, "FALSE" (instead of the other way 
around), the tables for "A" and "V" will simply be interchanged. Thus a 
being from another planet watching us doing propositional calculus might 
be able to guess that that was in fact what we were doing. But this being 
would have no way to tell which truth value we were representing by 0 and 
which by 1, and therefore could not say which of the two connectives 
represents "and" and which "or." Therefore we have the 

General Principle of Duality: Any correct statement involving A, V 
and 0, 1, can be translated into another correct statement in which 
0 and 1 have been interchanged and A and V have been inter­
changed. 

Of course, in carrying out the translation, notions defined in terms of 0, 
1, A, and V must be replaced by their duals. For example, the dual of "a 
is a tautology" is "a is unsatisfiable." (The first is "a" = 1 for all v"; the 

a f3 

1 
0 1 
1 0 
0 0 

Table 1.2 

(aAf3) 

1 
0 

0 
0 

(a V {3) 

1 
0 
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second is "a'' = 0 for all v".) Thus the dual of the correct statement 

if a is a tautology, so is (a V {3) 

is the equally correct statement 

if a is unsatisfiable, so is (a 1\ {3) . 
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Returning to our list of algebraic laws, we note that in particular the 
operations 1\ and V are commutative and associative. We take advantage 
of this associativity to write simply 

A a;= (a1 1\ a 2 1\ ··· 1\ ak) 
isk 

V a;= (a 1 V a 2 V ··· V ak) 
isk 

without bothering to specify any particular grouping of the indicated 
formulas. We freely omit parentheses that are not necessary to avoid 
ambiguity. 

Exercises 

1. For each of the following formulas tell whether it is (i) satisfiable, (ii) a 
tautology, (iii) unsatisfiable. 
(a) (( p :J ( q :J r)) :J (( p :J q) :J ( p :J r))). 
(b) ((p :J (q :J r)) ++ ((p 1\ q) :J r)). 
(c) (p 1\ ..,q). 
(d) ((p v q) :J p). 
(e) (( ..,(p :J q) :J (p 1\.., q)). 

2. Apply the general principle of duality to each of the following true 
statements: 
(a) (p V .., p) is a tautology. 
(b) (p :J (q :J p)) is a tautology. 

3. Prove that if a and {3 are formulas, then a = {3 if and only if the 
formula (a ++ {3) is a tautology. 

4. Verify the laws of absorption, contradiction, etc. given in this section. 

5. Let .N be a set of atoms, and define 

.w() =.W' 

.W:,+ 1 =.W' U {..,a, (a 1\ {3), 

(a V {3), (a :J {3), (a++ {3) I a, {3 E.J¥;,}. 

Show by induction on n that for all a E .w;, , the number of left 
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parentheses equals the number of right parentheses. Conclude that 
any propositional formula over .91 has an equal number of left and 
right parentheses. 

6. Let .91, .91' be sets of atoms such that .91 c;;;, .91', and let v, v' be 
assignments on .91, .91', respectively, such that v( a) = v '(a) for all 
atoms a in .91. Define .w;. , n ~ 0, as in Exercise 5, and show by 
induction on n that v( a) = v '(a) for all formulas a E .w;.. Conclude 
that v( a) = v '(a) for all propositional formulas over .91. 

2. Tautologicallnference 

Let y 1 , y 2 , ••• , 'Yn, y be .91-formulas. Then we write 

'Y1 ''Yz' · · ·' 'Yn I= 'Y 

and call y a tautological consequence of the premises y 1 , ••• , 'Yn if for every 
assignment v on .91 for which yf = y~ = · · · = 'Ynv = 1, we have also 
yv = 1. This relation of tautological consequence is the most important 
concept in the propositional calculus. However, we can easily prove 

Theorem 2.1. The relation y 1 , y2 , ••• , 'Yn I= y is equivalent to each of the 
following: 

1. the formula (( y 1 A y 2 A •·• A 'Yn) :::> y) is a tautology; 
2. the formula ( y 1 A y2 A ··· A 'Yn A -, y) is unsatisfiable. 

Proof. (( y 1 A y2 A ··· A y) :::> y) is not a tautology just in case for 
some assignment v, ( y 1 A y 2 A · ·· A y)v = 1 but yv = 0. That is, just in 
case for some assignment v, yf = 'Yz = · · · = y,:' = 1 but yv = 0, which 
means simply that it is not the case that y 1 , y 2 , ••• , 'Yn I= y. Likewise 

( y 1 A y2 A · · · A 'Yn A -, y) 

is satisfiable if and only if for some assignment v, yf = y~ = ··· = y,:' = 
(-, 'Y )v = 1, i.e., yf = 'Y~ = · · · = 'Ynv = 1, but 'Yv = 0. • 

Thus the problem of tautological inference is reduced to testing a 
formula for satisfiability, or for being a tautology. Of course, in principle, 
such a test can be carried out by simply constructing a truth table. 
However, a truth table for a formula containing n different atoms will 
require 2 n rows. Hence, truth table construction may be quite unfeasible 
even for formulas of modest size. 
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Consider the example 

((p 1\ q) :::>(r 1\ s)),((pt 1\ qt) =>rt),((rt 1\ s) =>st),p,q,qt ,ptl=st. 

(2.1) 

Since there are eight atoms, a truth table would contain 28 = 256 rows. In 
this example we can reason directly. If v makes all the premises TRUE, 
then (p 1\ q)" = (p 1 1\ q1)" = 1. Therefore, (r 1\ s)" = rr = 1, and in 
particular s" = 1. Thus, (r 1 1\ s)" = 1 and finally, sr = 1. We will use 
Theorem 2.1 to develop more systematic methods for doing such problems. 

Exercises 

1. Which of the following are correct? 
(a) (p :::>q), PI= q. 

(b) (p :::> q ), q I= p. 

(c) (p :::>q), ..,q I= •P· 
(d) (p:::>(q:::>r)),(..,svp),ql=(s:::>r). 

2. Apply Theorem 2.1 to Exercise 1. 

3. Prove or disprove each of the following. 
(a) a, {3 I= y if and only if a I= ( {3 :::> y ). 

(b) a I= {3 and {3 I= a if and only if a = {3. 

(c) if a I= {3 or a I= y then a I= ( {3 V y ). 

(d) if a I= {3 or a I= y then a I= ( {3 1\ y ). 

(e) if a I= {3 and a I= y then a I= ( {3 1\ y ). 
(f) if a I= {3 and a I= y then a I= ( {3 V y ). 

(g) if a I= .., a then .., a is a tautology. 
(h) if a, {3 I= y then a I= y or {3 I= y. 

(i) if a I= y then a, {3 I= y. 

(j) if a I= ( {3 V y) then a I= {3 or a I= y. 

4. (a) Show that if a is unsatisfiable then a 1= {3 for any formula (3. 

(b) Show that if {3 is a tautology then a I= {3 for any formula a. 

3. Normal Forms 

We will now describe some algebraic procedures for simplifying .91'­
formulas: 

(I) ELIMINATE :::> AND - . 
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Simply use Eq. (1.2) for each occurrence of ++ • After all such occur­
rences have been eliminated, use Eq. (1.1) for each occurrence of :::> . 

Assuming (I) accomplished, we move on to 

(II) MOVE -, INWARD. 

For any occurrence of -, that is not immediately to the left of an atom 
either 

1. the occurrence immediately precedes another -,, in which case the 
pair -, -, can be eliminated using the law of double negation; or 

2. the occurrence immediately precedes an ..W-formula of the form 
(a A {3) or (a V {3 ), in which case one of the De Morgan laws can 
be applied to move the -, inside the parentheses. 

After (II) has been applied some finite number of times, a formula will 
be obtained to which (II) can no longer be applied. Such a formula must 
have each -, immediately preceding an atom. 

As an example of the use of (I) and (II) consider the formula 

(((p ++ q) :::> (r :::> s)) A (q :::> -,(pAr))). (3.1) 

Eliminating ++ gives 

((((p :::>q) A (q :::>p)) :::> (r :::>s)) A (q :::>-,(pAr))). 

Eliminate :::> : 

( -, (( -, p V q) A ( -, q V p)) V ( -, r V s)) A ( -, q V -, ( p A r)). (3 .2) 

Move -, inward: 

(-,(-,p V q) V -,(-,q V p) V (-,r V s)) A (-,q V -,p V -,r). 

Move -, inward: 

((p A -,q) V (q A -,p) V -,r V s) A ( -,q V -,p V -,r). (3.3) 

A formula A is called a literal if either A is an atom or A is -,a, where 
a is an atom. Note that if A = -,a, for a an atom, then -,A = -,-,a= a. 
For a an atom it is convenient to write a for -,a. 

With this notation (3.3) becomes 

((p A ij) V (q Ajj) V r V s) A (ij V jj V r). (3.4) 

The distributive laws can be used to carry out further simplification, 
analogous to "multiplying out" in elementary algebra. However, the fact 
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that there are two distributive laws available is a complication because the 
"multiplying out" can proceed in two directions. As we shall see, each 
direction gives rise to a specific so-called normal form. 

A handy technique that makes use of the reader's facility with elemen­
tary algebra is to actually replace the symbols A, V by + , · and then 
calculate as in ordinary algebra. Since there are two distributive laws 
available, correct results will be obtained either by replacing A by + and 
V by · or vice versa. Thus, writing · for A (and even omitting the · as in 
elementary algebra) and + for v, (3.4) can be written 

(pq + qjj + r + s) · (q + p + r) 

= pqq + pqp + pqr + qjjq + qjjp + qjjr + rq + rp + ,.,. 

+ sq + sp + sr 

= pq + o + pqr + o + qp + qjjr + rq 

+ rp + r + sq + sp + sr 

= (p A q) V (p A q A r) V (q A p) V (q A p A r) 

V (r A q) V (r A p) V r V (s A q) V (s A p) V (s A r), (3 .5) 

where we have used the principles of contradiction and absorption. Alter­
natively, writing + for A and · for V, (3.4) can be written 

(p + q)(q + p)rs + qpr 

= (pq + pp + qq + qp)rs + qpr 

= (pq + 1 + 1 + qp)rs + qpr 

= pqrs + qprs + qpr 

= (p v q v r v s) A (q v p v r v s) A (q v p v r). (3.6) 

Let A; be a sequence of distinct literals, 1 :::;; i :::;; n. Then the formula 
V;, n A; is called an V -clause and the formula /\;, n A; is called an 
A-clause. A pair of literals A, A' are called mates if A' = -,A. We have 

Theorem 3.1. Let A; be a literal for 1 :::;; i :::;; n. Then the following are 
equivalent: 

1. vi :5 n A; is a tautology; 
2. /\;, n A; is unsatisfiable; 
3. some pair A;, Ai, 1 :::;; i, j :::;; n, is a pair of mates. 
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Proof. If \ = -, A;, then obviously, V;, n A; is a tautology and A; 5, n A; 
is unsatisfiable. If, on the other hand, the A; contain no pair of mates, then 
there are assignments v, w such that v(A) = 1, w(A) = 0 for 1 ~ i ~ n. 
Then (Vi5.n A;)w = 0, (A;5,n A;)''= 1, so that Vi5.n A; is not a tautology 
and A; 5, n A; is satisfiable. • 

Let K;, 1 ~ i ~ n, be a sequence of distinct V -clauses. Then the 
.J¥'-formula A;< n K; is said to be in conjunctive normal form (CNF). Dually, 
if K;, 1 ~ i ~ n, is a sequence of distinct A -clauses, then the .J¥'-formula 
V; 5. n K; is in disjunctive normal form (DNF). Note that (3.6) is in CNF and 
(3.5) is in DNF. We say that (3.6) is a CNF of (3.1) and that (3.5) is a DNF 
of (3.1). It should be clear that the procedures we have been describing 
will yield a CNF and a DNF for each .w'-formula. Thus we have 

Theorem 3.2. There is an algorithm which will transform any given 
.w'-formula a into a formula {3 in CNF such that {3 = a. There is a similar 
(in fact, dual) algorithm for DNF. 

Because of Theorem 2.1, the following result is of particular importance. 

Theorem 3.3. A formula in CNF is a tautology if and only if each of its 
V -clauses is a tautology. Dually, a formula in DNF is unsatisfiable if and 
only if each of its A -clauses is unsatisfiable. 

Proof. Let a = A; 5,n K;, where each K; is an V -clause. If each K; is a 
tautology, then for any assignment v we have K;" = 1 for 1 ~ i ~ n, so that 
a" = 1; hence a is a tautology. If some K; is not a tautology, then there is 
an assignment v such that K;" = 0; hence a" = 0 and a is not a tautology. 

The proof for DNF is similar. Alternatively, we can invoke the general 
principle of duality. • 

Let us try to use these methods in applying Theorem 2.1 to example 
(2.1). First, using Theorem 2.1(1), we wish to know whether the following 
formula is a tautology: 

((((p Aq):::) (r As))A((p1 Aq1) :::)r 1) 

A((r 1 As) :::)s1) Ap A q A q1 Ap 1) :::)s1). 

Use of (I) yields 

(-,((-,(p Aq) V (r As)) A (-,(p1 Aq1) Vr1) 

A(-,(r 1 As) Vs 1) Ap Aq Aq1 Ap 1) Vs1). 

Use of (II) gives 

(-, (-, (p A q) V (r As)) V-, (-, (p 1 A q1) V r 1) 

V -,(-,(r1 As) Vs 1) V -,pV -,qV -,q1 V -,p1 Vs 1). 
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Use of (II) again yields 

One final use of (II) gives 

((p A q A ( ....,r V ....,s))V(p1 A q1 A ....,r 1) 

V(r 1 As A ....,s1) v .pv ....,qv •q1 V •P1 Vs1).(3.7) 

To apply Theorem 3.3, it is necessary to find a CNF of (3. 7). So we replace 
A by + and V by ·: 

and see that the CNF of (3.7) will consist of 27 clauses. Here are three 
"typical" clauses from this CNF: 

(p V p 1 V r 1 V p Vii V ii1 V p1 V s 1) 

(r v s v q1 v r 1 v p vii v ii1 v p1 V s1) 

(q v r1 v s1 v p vii v ii1 v p1 v s 1). 

Each of these clauses contains a pair of literals that are mates: p, p in the 
first (and also p 1 , p1); q1 , ii1 in the second; and q, ii in the third (also 
s1 , s1). The same will be true for the remaining 24 clauses. But this is 
clearly not the basis for a very efficient algorithm. What if we try Theorem 
2.1(2) on the same example? Then we need to show that the following 
formula is unsatisfiable: 

Using (I) we obtain 

((...., (p A q) V (r As)) A (...., (p1 A q1) V r 1) 

A(....,(r 1 As) Vs1) Ap Aq Aq1 Ap1 A ....,s1). 

(3.9) 
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Using (II) we obtain 

((-, p V -, q V (r As)) A (-, p 1 V -, q1 V r 1) 

A(-,r 1 v -,sVs1) ApAqAq1 Ap 1 A -,s 1). 
(3.10) 

To find a DNF formula equal to this we replace A by · and V by +, 
obtaining 

(p + ij + rs)(p 1 + ij1 + r 1)(r 1 + s + s1)pqq1p 1s1 • 

But this is exactly the same as (3.8) except that each literal has been 
replaced by its mate! Once again we face essentially the same 27 clauses. 

Suppose we seek a formula in CNF equal to (3.10) instead of a formula 
in DNF. We need only replace A by + and V by·: 

In this manner, we get a formula in which almost all "multiplying out" has 
already occurred. The CNF is simply 

(p V ij V r)A(p V ij V s)A(p1 V ij1 V r 1) 
(3.11) 

It consists of nine short, easily obtained clauses. 
A moment's reflection will show that this situation is entirely typical. 

Because the formula of Theorem 2.1(2) has the form 

(yl A Yz A··· A Yn A -,y), 

we can get a CNF formula simply by obtaining a CNF for each of the 
(ordinarily short) formulas y 1 , y2 , ••• , Yn,-, y. However, to obtain a DNF, 
which according to Theorem 3.3 is what we really want, we will have to 
multiply out (n + 1) polynomials. If, say, each of y 1 , ••• , Yn, -, y is an 
V -clause consisting of k literals, then the DNF will consist of kn+ 1 

A -clauses. And the general principle of duality guarantees (as we have 
already seen in our particular example) that the same discouraging arith­
metic will emerge should we attempt instead to use Theorem 2.1(1). In this 
case a DNF will generally be easy to get, whereas a CNF (which is what we 
really want) will require a good deal of computing time. 

These considerations lead to the following problem: 

Satisfiability Problem. Find an efficient algorithm for testing an .w'­
formula in CNF to determine whether it is truth-functionally satisfiable. 
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This problem has been of central importance in theoretical computer 
science, not only for the reasons already given, but also for others that will 
emerge in Chapter 15. 

Exercises 

l. Find CNF and DNF formulas equal to each of the following. 
(a) ((p A (q V r)) V (q A (p V r))). 

2. 

(b) ((-,pV(pA -,q))A(rV(-,pAq))). 
(c) (p :::> (q ++ r)). 

Find a DNF formula that has the truth table 

p q r 

1 1 1 0 
0 1 1 1 
1 0 1 1 
0 0 1 1 
1 1 0 0 
0 1 0 1 
1 0 0 0 
0 0 0 0 

[Hint: The second row of the table corresponds to the A -clause 
(-, p A q A r ). Each row for which the value is 1 similarly determines 
an A -clause.] 

3. Show how to generalize Exercise 2 to obtain a DNF formula corre­
sponding to any given truth table. 

4. Describe a dual of the method of Exercise 3 which, for any formula a, 
gives a DNF formula {3 such that a= -, {3. Then show how to turn 
-, {3 into a CNF formula y such that a = y. Apply the method to the 
truth table in Exercise 2. [Hint: Each row in the truth table for which 
the value is 0 corresponds to an A -clause which should not be true.] 

5. Let .91 = {p, q, r}. 

(a) Give a DNF formula a over .91 such that a'· = 1 for exactly three 
assignments v on .91. 

(b) Give a CNF formula {3 over .91 such that {3 '' = 1 for exactly three 
assignments v on .91. 
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6. (a) Let a be 

(p A q A r)V(p A q A --,r)V(p A --,q A r) 

V(p A --,q A --,r). 

Give DNF formulas {3, y, S with 3,2, 1 A-clauses, respectively, 
such that a = {3 = y = S. 

(b) Let a be 

(p V q V r)A(p V q V --,r)A(p V --,q V r) 

A(p V --,q V --,r). 

Give CNF formulas {3, y, S with 3, 2, 1 V -clauses, respectively, 
such that a = {3 = y = S. 

7. Give a CNF formula a with two v -clauses such that a =/= {3 for all 
CNF formulas {3 with one V -clause. 

8. Use a normal form to show the correctness of the inference 

(p:>q),(rv --,q),--,(pAr) F= •P· 

4. The Davis- Putnam Rules 

In order to make it easier to state algorithms for manipulating formulas in 
CNF, it will be helpful to give a simple representation of such formulas as 
sets. From now on we use the word clause to mean V -clause. We 
represent the clause K = V j, m Aj as the set K = {AN ~ m}, and we 
represent the formula a = /\; < n K;, where each K; is a clause, as the set 
a = {K;Ii ~ n}. In so doing we lose the order of the clauses and the order 
of the literals in each clause; however, by the commutative laws, this does 
not matter. 

It is helpful to speak of the empty set of literals as the empty clause, 
written 0, and of the empty set of clauses as the empty formula, written 
simply 0. Since it is certainly true, although vacuously so, that there is an 
assignment (in fact any assignment will do) which makes every clause 
belonging to the empty formula true, it is natural and appropriate to agree 
that the empty formula 0 is satisfiable (in fact, it is a tautology). On the 
other hand, there is no assignment which makes some literal belonging to 
the empty clause o true (because there are no such literals). Thus, we 
should regard the empty clause o as being unsatisfiable. Hence any 
formula a such that 0 E a will be unsatisfiable as well. 
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We will give some rules for manipulating formulas in CNF that are 
helpful in designing algorithms for testing such formulas for satisfiability. 
By Theorem 3.1, a clause K is a tautology if and only if A,-, A E K for 
some literal A. Now, if K E a and K is a tautologous clause, then a is 
satisfiable if and only if a - {K} is. Hence, we can assume that the sets of 
clauses with which we deal contain no clauses which are tautologies. The 
following terminology is helpful: a clause K = {A}, consisting of a single 
literal, is called a unit. If a is a set of clauses and A is a literal, then a 
clause K is called A-positive if A E K, K is called A-negative if -,A E K, 
and K is called A-neutral if K is neither A-positive nor A-negative. Since 
tautologous clauses have been excluded, no clause can be both A-positive 
and A-negative. We write a: for the set of A-positive clauses of a, a; 
for the set of A-negative clauses of a, and a~ for the set of A-neutral 
clauses of a. Thus for every literal A, we have the decomposition a = 
a: u a; u a~. Finally, we write 

POSA(a) =a~ U {K- {A}IK E a:}, 

NEGA(a) =a~ U {K- {-, A}IK E a;}. 

Our main result is 

Theorem 4.1 (Splitting Rule). Let a be a formula in CNF, and let A be 
a literal. Then a is satisfiable if and only if at least one of the pair 
POSA(a) and NEGA(a) is satisfiable. 

Proof. First let a be satisfiable, say au = 1. Thus Ku = 1 for all K E a. 
That is, for each K E a, there is a literal JL E K such that JLu = 1. Now, 
we must have either Au = 1 or Au = 0. Suppose first that Au = 0. We know 
that for each K E a: , there is a literal JL E K such that JLu = 1. Thus this 
JL is not A. Thus, for K E a:, (K- {A})D = 1. Hence, in this case, 
POSA(a)u = 1. If, instead, Au = 1, we can argue similarly that for each 
K E a;, (K- {-, A})u = 1 and hence that NEGA(a)u = 1. 

Conversely, let POSA(a)u = 1 for some assignment v. Then we define 
the assignment w by stipulating that 

for all literals JL =1= A, -, A. 

Now, if K E a~, then Kw = Ku = 1; if K E a:, then Kw = (K- {A})w = 
(K- {A})u = 1; finally, if K E a;, then Kw = 1 because (-, A)w = 1. Thus, 
aw = 1. 

If, instead, NEGA(a)u = 1 for some assignment v, we define w by 

for all literals JL =I= A, -, A. 
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Then if K E a~, we have Kw = Kv = 1; if K E a;:, then Kw = 

(K- {--, A})w = (K- {--, A})v = 1; finally, if K E a;, then Kw = 1 because 
Aw = 1. Thus again aw = 1. • 

This theorem has the virtue of eliminating one literal, but at the price of 
considering two formulas instead of one. For this reason, it is of particular 
interest to find special cases in which we do not need to consider both 
POSA(a) and NEGA(a). 

Thus, suppose that a;:= 0. Then NEGA(a) = a~J ~ POSA(a). Hence, 
in this case, for any assignment v we have POS A (a)" = 1 implies 
NEGA(a)v = 1. Therefore, we conclude 

Corollary 4.2 (Pure Literal Rule). If a;:= 0, then a is satisfiable if 
and only if NEGA(a) = a~ is satisfiable. 

For another useful special case, suppose that the unit clause {A} E a. 
Then, since {A} - {A} = D , we conclude that D E POS A (a). Hence, 
POS A (a) is unsatisfiable, and we have 

Corollary 4.3 (Unit Rule). If {A} E a, then a is satisfiable if and only if 
NEGA(a) is satisfiable. 

To illustrate this last corollary by an example, let a be (3.11), which is a 
CNF of (3.9). Using the set representation, 

a= {{jj,q,r},{jj,q,s},{jj1 ,q1 ,r1},{r1 ,s,s1},{p},{q},{q1},{p1},{s1}}. 

(4.1) 

Thus, there are nine clauses, of which five are units. Using the unit clause 
{p}, Corollary 4.3 tells us that a is satisfiable if and only if NEG,(a) is. 
That is, we need to test for satisfiability the set of clauses 

Using the unit rule again, this time choosing the unit clause {q}, we reduce 
to 

Using the unit clause {s}, we get 
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Successive uses of the unit clauses {q1}, {p1}, {81} yield 

{{r}, {jj1 , r 1}, {r 1 , s 1}, {p1}, {s1}}; 

{{r}, {r 1}, {r1 , s 1}, {s1}}; 

{{r}, {r1}, {r1}}. 
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This last, containing the unit clauses {r1} and {r1}, is clearly unsatisfiable. 
Or, alternatively, applying the unit rule one last time, we obtain 

which is unsatisfiable because it contains the empty clause D. 
So we have shown by this computation that (4.1), and therefore (3.9), is 

unsatisfiable. And by Theorem 2.1, we then can conclude (once again) that 
the tautological inference (2.1) is valid. 

A slight variant of this computation would begin by applying Corollary 
4.2, the pure literal rule, to (4.1), using the literal r. This has the effect of 
simply deleting the first clause. The rest of the computation might then go 
as previously, but with the initial clause deleted at each stage. 

For another example, recall (3.6), which was obtained as a CNF of (3.1). 
Written as a set of clauses this becomes 

{3 = {{p,q,r,s},{ij,p,r,s},{ij,p,r}}. (4.2) 

Here the pure literal rule can be applied using either of the literals r, s. 
Thus, we have that {3 is satisfiable if and only if {3,0 is satisfiable, if and 
only if {3.0 is satisfiable. And we have 

f3.o = {{ij,jj,r}}. 

From the first we see at once that {3 is satisfiable; if we wish to use the 
second, we can note by inspection that ( f3.0 )v = 1, where v(q) = v(p) = 
v(r) = 0, or we can use the pure literal rule a second time (using any of 
the three available literals) and once again arrive at the empty formula 0. 

We next turn to an example that has no unit clauses and to which the 
pure literal rule is not applicable: 

a= {{ij,p},{r,p},{jj,ij},{jj,s},{q,r},{q,s}}. 

Thus we are led to use the splitting rule forming, say, 

POS/a) = {{ij},{r},{q,r},{q,s}}, 

NEG/ a) = {{ij}, {s}, {q, r}, {q, s}}. 
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Applying the pure literal rule once and then the unit rule twice to 
POS,(a), we obtain successively 

{{q}, {r}, {q, r}}, {{r}, {r}}, { o}, 

so that POS,(a) is unsatisfiable. Doing the same to NEG,(a) we obtain 
successively 

{{q}, {s}, {q, s}}, {{s},{s}}, { o}, 

so that NEG,(a) is likewise unsatisfiable. By Theorem 4.1, we can thus 
conclude that a is unsatisfiable. 

These examples suggest a rather systematic recursive procedure (some­
times known as the Davis-Putnam procedure) for testing a given formula 
a in CNF for satisfiability. The procedure as we shall describe it will not 
be completely deterministic; there will be situations in which one of a 
number of literals is to be selected. We will write the recursive procedure 
using two variables, y for a set of clauses and Y for a stack of sets of 
clauses. We write TOP(.Y) for the set of clauses at the top of the stack .Y, 
POP(.Y) for Y after TOP(.Y) has been removed, PUSH( {3,.9) for the 
stack obtained by putting {3 on the top of Y, and 0 for the empty stack. 
The procedure is as follows: 

y~ a; Y~ 0; 
while y =I= 0 and ( 0 $. y or Y =I= 0) 

if 0 E 'Y 
then y ~ TOP(.Y); Y ~ POP(.Y); 
else if 'YA- = 0 

then y ~ y~; 
else if {A} E y 

then y ~ NEG"( y ); 
else Y~ PUSH(NEGA(y),.Y); y ~ POSA(y); 

end while 
if y = 0 then return SATISFIABLE 

else return UNSATISFIABLE 

Thus, this procedure will terminate returning SATISFIABLE whenever 
y is the empty formula 0, whether or not the stack Y is empty. (This is all 
right because the original formula will be satisfiable if any one of the 
formulas obtained by repeated uses of the splitting rule is satisfiable, and, 
of course, 0 is satisfiable.) The procedure will terminate returning UN­
SATISFIABLE if o E y and Y = 0. (Here, y is unsatisfiable, and no 
formulas remain in Y as the result of uses of the splitting rule.) If neither 
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of these termination conditions is satisfied, the algorithm will first test for 
o E y. If o E y, it rejects (since y is unsatisfiable) and "pops" the stack. 
Otherwise it attempts to apply first the pure literal rule and then the unit 
rule. If both attempts fail, it chooses (nondeterministically) some literal A, 
takes POSi y) as the new formula to work on, and "pushes" NEGA( y) 
onto the stack for future reference. 

It is not difficult to see that the algorithm just given must always 
terminate. Let us say that a set of clauses a reduces to a set of clauses {3 if 
for each clause K in {3 there is a clause "K in a such that K ~ "K. Then, at 
the beginning of each pass through the while loop, y is a set of clauses to 
which a reduces and the stack consists of a list of sets of clauses to each 
of which a reduces. Since, for a given a, there are only a finite number of 
distinct configurations of this kind, and none can be repeated, the algo­
rithm must eventually terminate. 

Exercises 

1. Let a be {{p, q, r}, {p, q}, {jj, r}}. For A = p, q, r, jj, q, r, give a;, a;, 
a~, POSA(a), NEGA(a). Which of these sets are necessarily equal? 

2. Use the Davis-Putnam rules to show the correctness of the inference 
in Exercise 3.8. 

3. Use the Davis-Putnam rules to show the correctness of the following 
inference. 

If John went swimming, then he lost his glasses and did not go to the 
movies. If John ate too much meat and did not go to the movies, then 
he will suffer indigestion. Therefore, if John ate too much meat and 
went swimming, then he will suffer indigestion. 

4. Test the following set of clauses for satisfiability: 

{p, q, r, s} 

{jj, q, r} 

{i'' s} 
{q, r} 
{p, s}. 

5. Modify the Davis-Putnam procedure so that when the answer is 
SATISFIABLE on input a, it returns an assignment v such that 
a''= 1. 
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6. How many distinct computations can be performed by the 
Davis-Putnam procedure on input {{p, q, r}, {p, q}, {jj, r}}? 

7. Let a be a CNF formula with n distinct atoms. 
(a) What is the maximum number of formulas that can be on the 

stack in the Davis-Putnam procedure at any given time? 
(b) Suppose that a is satisfiable. Show that if the Davis-Putnam 

procedure always makes the right choice of A at each stage, the 
while loop executes no more than n times. 

(c) How many times must the while loop execute on input 

{{p, q}, {p, q}, {jj, q}, {jj, q}}? 

On input 

{{p, q, r}, {p, q, r}, {p, q, r}, {p, q, r}, 

{jj, q, r}, {jj, q, r}, {jj, q, r}, {jj, q, r}}? 

5. Minimal Unsatisfiability and Subsumption 

We begin with 

Theorem 5.1. Let the clauses K 1 , Kz satisfy K 1 c Kz. Then if a is a 
formula in CNF such that K 1 , Kz E a, then a is satisfiable if and only if 
a - {K2} is satisfiable. 

Proof. Clearly, if a is satisfiable, so is a - {K2}. 

Conversely, if (a - {K2})V = 1, then Kf = 1, so that also Kf = 1. Hence, 
av = 1. • 

Thus, if in fact K1, Kz E a and K 1 c K2 , we may simply drop K2 and test 
a - {K2} for satisfiability. The operation of dropping K2 in such a case is 
called subsumption. Unfortunately, there is no efficient algorithm known 
for testing a large set of clauses for the possibility of applying subsumption. 

Definition. A finite set of clauses a is called minimally unsatisfiable if 

1. a is unsatisfiable, and 
2. for all {3 c a, {3 is satisfiable. 

Definition. A finite set of clauses a is said to be linked if whenever 
A E K 1 and K 1 E a, there is a clause K 2 E a such that ..., A E K 2 . That is, 
each literal in a clause of a has a mate in another clause of a. 
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Then it is very easy to prove 

Theorem 5.2. Let a be minimally unsatisfiable. Then 

1. for no K1 , K2 E a can we have K1 c K2 , and 
2. a is linked. 

Proof. Condition 1 is an immediate consequence of Theorem 5.1. To 
verify 2, suppose that a is minimally unsatisfiable but not linked. Then, 
there is a literal A in a clause K E a such that the literal -, A occurs in 
none of the clauses of a, i.e., a;= 0. Thus, by the pure literal rule, a~ is 
unsatisfiable. But since a~ c a, this is a contradiction. • 

Exercise 

1. Give a minimally unsatisfiable CNF formula with four clauses. 

6. Resolution 

Let K1 , K2 be clauses such that A E K1 and -,A E K2 • Then we write 

resA(K1 , K2 ) = (K1 -{A}) U (K2 - {-,A}). 

The clause resA(K1 , K2 ) is then called the resolvent of K1 , K2 with respect to 
the literal A. The operation of forming resolvents has been the basis of a 
very large number of computer programs designed to perform logical 
deductions. We have 

Theorem 6.1. Let A be an atom and let K1 , K2 be clauses such that 
A E K1, -,A E K2 . Then 

Proof. Let v be an assignment such that Kf = K~ = 1. Now if Au = 1, 
then (K2 - {-, AW = 1, while if Au= 0, then (K1 - {A})V = 1. In either 
case, therefore, resA(K1 , K2 )u = 1. • 

Let a be a finite set of clauses. A sequence of clauses K1 , K2 , ••• , Kn = K 

is called a resolution derivation of K from a if for each i, 1 :;;; i :;;; n, either 
K; E a or there are j, k < i and a literal A such that K; = resA(Ki, Kk). A 
resolution derivation of D from a is called a resolution refutation of a. We 
define 
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We have 

Theorem 6.2. Let a be a formula in CNF and let A be a literal. Then a 
is satisfiable if and only if RES/a) is satisfiable. 

Proof. First let a" = 1. Then if K E a1, we have also K E a, so that 
K" = 1. Furthermore, if K = resA(K1 , K2 ), with K1 E a;, Kz E a;, then 
Kf = 1, Kf = 1, so that, by Theorem 6.1, K" = 1. Since for all K E 

RESA(a), we have K" = 1, it follows that RESA(a)" = 1. 
Conversely, let RESA(a)" = 1. We claim that either POSA(a)" = 1 or 

NEGA(a)" = 1. For, suppose that POSA(a)" = 0. Since a1 ~ RESA(a), we 
have (a1)" = 1. So for some K1 E a;, we must have (K1 - {A})V = 0. 
However, for all Kz E a; and this K1 , we must have resA(K 1 , K2 )" = 
[(K1 - {A}) U (K2 - {-, A})]D = 1. Thus, for all K2 E a; we have (K2 -

{-, A})V = 1, i.e., NEG A( a)"= 1. This proves our claim that either POSA(a) 
or NEGA(a) must be satisfiable. By Theorem 4.1, i.e., the splitting rule, a 
is satisfiable. • 

Theorem 6.2 suggests another procedure for testing a formula a in CNF 
for satisfiability. As with the Davis-Putnam rules, seek a literal of a to 
which the pure literal or unit rule can be applied. If none is to be found, 
choose a literal A of a and compute RESA(a). Continue recursively. 

As with the Davis-Putnam procedure, this procedure must eventually 
terminate in { D} or 0; this is because the number of literals is successively 
diminished. This procedure has the advantage of not requiring a stack of 
formulas, but the disadvantage that the problem may get considerably 
larger because of the use of the RESA(a) operation. Unfortunately, the 
present procedure is also called the Davis-Putnam procedure in the 
literature. To add to the confusion, it seems that computer implementa­
tions of the "Davis-Putnam procedure" have been almost exclusively of 
the procedure introduced in Section 4, whereas theoretical analyses of the 
computational complexity of the "Davis-Putnam procedure" have tended 
to deal with the procedure we have just introduced. 

Theorem 6.3. Let a be a formula in CNF and suppose that there is a 
resolution derivation of the clause K from a. Then a'· = 1 implies 
K" = 1. 

Proof. Let K1 , K2 , ••• , Kn = K be a resolution derivation of K from a. 

We shall prove that K;" = 1 for 1 :::;; i :::;; n, which will prove the result. To 
prove this by induction, we assume that K}' = 1 for all j < i. (Of course for 
the case i = 1, this induction hypothesis is true vacuously.) Now, there are 
two cases. If K; E a, then K;" = 1. Otherwise K; = resA(Kj, Kk), where 
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j, k < i. Hence, by the induction hypothesis, Kj' = Kf: = 1. So by Theorem 
6.1, Kt = 1. • 

Theorem 6.4 (Ground Resolution Theorem). The formula a in CNF is 
unsatisfiable if and only if there is a resolution refutation of a. 

Proof. First let there be a resolution refutation of a, but suppose that 
nevertheless au = 1. Then, by Theorem 6.3, ov = 1, which is impossible. 

Conversely, let a be unsatisfiable. Let A1 , A2 , ••• , Ak be a list of all the 
atoms that occur in a. Let 

a 0 =a, i = 1,2, ... ,k. 

Clearly each a; contains only the atoms Aj for which i < j .:5; k. Hence ak 

contains no atoms at all, and must be either 0 or {0}. On the other hand, 
by Theorem 6.2, we have that a; is unsatisfiable for 0 .:5; i .:5; k. Hence 
ak = { 0}. Now, let the sequence K 1 , Kz, ••• , Km of clauses consist, first, of 
all of the clauses of a 0 = a, then, all of the clauses of a 1 , and so on 
through all of the clauses of ak. But this last means that Km = 0. 
Moreover, it is clear from the definition of the RESA operation that 
K 1 , Kz, ••• , Km is a resolution derivation. • 

To illustrate the ground resolution theorem, we apply it to (4.1) to show, 
once again, that (3.9) is unsatisfiable. Here then is a resolution refutation 
of the formula a of (4.1): 

{jj, q, s}, {i1, s, s1}, {jj, q, i 1 , s1}, {p}, {q, i 1 , s1}, {q}, {i1, s1}, 

{sl}, {it}, {jjl 'iit 'rl}, {jjl 'fit}, {ql}, {jjl}, {pi}, 0. 

Exercises 

1. (a) Use the resolution method to answer Exercise 1.1. 
(b) Do the same for Exercise 2.1. 

2. Give a resolution refutation that shows the correctness of the infer­
ence of Exercise 3.8. 

3. Do the same for the inference of Exercise 4.3. 

4. Let a 0 , ••• , an be CNF formulas, and let {3 be a DNF formula 
V;, m /3;. Show that a 0 , ••• , an I= {3 if and only if there is a resolu­
tion refutation of U;, n a; U {..., /3; I i .:5; m}. 
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5. Let A be an atom and let K1 , K2 be clauses such that A E K1 , 

-, A E K2 . Prove or disprove the following. 
(a) reSA(K1 , K2 ) I= (K1 V K2 ). 

(b) resA(K1 , K2) I= K1 or resA(K" K2) I= K2 • 

(c) resA(K1 , K2 ) I= (K1 A K2 ). 

(d) ifresA(K1 ,K2)isvalid,then (K1 A K2 ) is valid. 

6. Let a be a formula in CNF and let A be a literal. Prove or disprove 
that a is valid if and only if RESA(a) is valid. 

7. The Compactness Theorem 

Now, we will prove a theorem relating infinite sets of .W-formulas to their 
finite subsets. 

Definition. A set !1 of .W-formulas is called finitely satisfiable if for every 
finite set a ~ n, the set a is truth-functionally satisfiable. 

We have 

Theorem 7.1. Let !1 be finitely satisfiable and let a be an .W-formula. 
Then either !1 u {a} or !1 u {-, a} is finitely satisfiable. 

Proof. Suppose to the contrary that !1 is finitely satisfiable but that 
neither !1 u {a} nor !1 u {-,a} is finitely satisfiable. Then there are finite 
sets a,' .:12 ~ n such that a, u {a} and .:12 u {-,a} are both truth­
functionally unsatisfiable. But .:11 u .:1 2 is a finite subset of !1 and hence 
there must be an assignment v such that for each {3 E .:1 1 u .:1 2 , we have 
{3v = 1. Now, either av = 1 or av = 0. In the first case .:1 1 u {a} is 
satisfiable, and in the second case .:1 2 u {-, a} is satisfiable. This is a 
contradiction. • 

Now we will need to use a general property of infinite languages. 

Enumeration Principle. Let L be an infinite subset of A*, where 
A is an alphabet (and therefore is finite). Then there is an infinite 
sequence or enumeration w 0 , w 1 , w 2 , • • • which consists of all the 
words in L each listed exactly once. 

The truth of this enumeration principle can be seen in many ways. One is 
simply to imagine the elements of L written in order of increasing length, 
and to order words of the same length among themselves like the entries 
in a dictionary. Alternatively, one can regard the strings on A as notations 
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for numbers in some base (as in Chapter 5) and arrange the elements of L 
in numerical order. (Actually, as it is not difficult to see, these two 
methods yield the same enumeration.) Of course, no claim is made that 
there is an algorithm for computing W; from i. Such an algorithm can only 
exist if the language L is r.e. 

Now, let a 0 , a 1 , a 2 , ••• be an enumeration of the set of all .sat-formulas. 
(By the enumeration principle, such an enumeration must exist.) Let .n be 
a given finitely satisfiable set of .sat-formulas. We define the sequence 

no= n 

(
nn u {an} 

.On+l = .On U {--,an} 

if this set is finitely satisfiable 

otherwise. 

By Theorem 7.1, we have 

Lemma 1. Each .On is finitely satisfiable. 

Let 0 = U~~o .On. Then, we have 

Lemma 2. n is finitely satisfiable. 

Proof. Let us be given a finite set A ~ n. For each 'Y E A, 'Y E nn for 
some n. Hence A ~ .Om, where m is the maximum of those n. By Lemma 
1, A is truth-functionally satisfiable. • 

Lemma 3. For each .sat-formula a either a En or --,a E n, but not 
both. 

Proof. Let a= an. Then a E nn+l or--, a E nn+l' so that a or--, a 
belongs tO 0. If a,--, a E 0, then by Lemma 2, the finite set {a,--, a} 
would have to be truth-functionally satisfiable. But this is impossible. • 

Now we define an assignment v by letting v( A) = 1 if A E 0 and 
v(A) = 0 if Aft 0 for every atom A. We have 

Lemma 4. For each .sat-formula a, au = 1 if and only if a E 0. 
Proof. As we already know, it suffices to restrict ourselves to formulas 
using the connectives --,, V, A. And, in fact, the De Morgan relation 

(/31 V f3z) = --, ( --, /31 A --, f3z) 

shows that we can restrict ourselves even further, to the connectives --,, A. 
So, we assume that a is an .sat-formula expressed in terms of the connec­
tives --,, A. Our proof will be by induction on the total number of 
occurrences of these connectives in a. 
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If this total number is 0, then a is an atom, and the result follows 
from our definition of v. Otherwise we must have either a= -, {3 or a= 
( {3 A y ), where by the induction hypothesis we can assume the desired 
result for {3 and y. 

Case 1. a = -, {3 
Then, using Lemma 3, 

Case 2. a = ( {3 A y) 

a'' = 1 if and only if (3'' =/= 1 

if and Only if {3 I' $_ n 
if and only if a E fl. 

If a'' = 1, then {3'' = y'' = 1, so by the induction hypothesis, {3, y E 

0. If a ft. 0, then by Lemma 3, -, a E 0. But the finite set { {3, y, -, a} 
is not satisfiable, contradicting Lemma 2. Thus, a E fl. 

Conversely, if a En, then neither -, {3 nor -, 'Y can belong to n, 
because the finite sets {a, -, {3}, {a, -, y} are not satisfiable. Thus, by 
Lemma 3, {3, 'Y E n. By the induction hypothesis {3 I' = y'' = 1. Therefore, 
a''= 1. • 

Now, since n ~ n, we see that a''= 1 for each a En. Hence, n is 
truth-functionally satisfiable. Since we began with an arbitrary finitely 
satisfiable set of ..w'-formulas n, we have proved 

Theorem 7.2 (Compactness Theorem for Propositional Calculus). Let 0. 
be a finitely satisfiable set of ..w'-formulas. Then n is truth-functionally 
satisfiable. 

Exercises 

1. Is the set of clauses 

{(p; V •P;+ 1)Ii = 1,2,3, ... } 

satisfiable? Why? 

2. The same for the set 

3.* Let us be given a plane map containing infinitely many countries. 
Suppose there is no way to color this map with k colors so that 
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adjacent countries are colored with different colors. Prove that there is 
a finite submap for which the same is true. 

4. * Let r be a (not necessarily finite) set of .W-formulas, and let a be an 
.W-formula. We can generalize the notion of tautological consequence 
by writing r I= a to mean this: for every assignment v on .W such that 
y" = 1 for all 'Y E f, we also have a" = 1. 

(a) Show that f I= a if and only if y 1 , ••• , 'Yn I= a for some y 1 , ••• , 'Yn 
E r. 

(b) Show that if r is an r.e. set, then {a I r 1= a} is also r.e. 
(c) Give an r.e. set r such that {a I r 1= a} is not recursive. 
(d) Let r be an r.e. set of .W-formulas such that for some .W-formula 

a, both r 1= a and r 1= ..., a. Show that {a I r 1= a} is recursive. 
(e) Let r be an r.e. set of .W-formulas such that for every .W-formula 

a, either r 1= a or r 1= ..., a but not both. Show that {a I r 1= a} 
is recursive. 





13 

Quantification Theory 

1. The Language of Predicate Logic 

Although a considerable part of logical inference is contained in the 
propositional calculus, it is only with the introduction of the apparatus of 
quantifiers that one can encompass the full scope of logical deduction as it 
occurs in mathematics, and in science generally. We begin with an alpha­
bet called a vocabulary consisting of two kinds of symbols, relation symbols 
and function symbols. Let W be a vocabulary. For each symbol t E W, we 
assume there is an integer 8(t) called the degree oft. For t a function 
symbol, 8(t) ~ 0, while for t a relation symbol, 8(t) > 0. A function 
symbol t whose degree is 0 is also called a constant symbol. We assume 
that W contains at least one relation symbol. (What we are calling a 
vocabulary is often called a language in the literature of mathematical 
logic. Obviously this terminology is not suitable for a book on theoretical 
computer science.) In addition to W we shall use the alphabet 

Q = { ..., ' " ' v ' :::> ' +-+ 'v' 3' (' ) ' X' y' z' u' v' w' I' ,} ' 
where the boldface comma, is one of the symbols that belong to Q. The 
words that belong to the language 

{xlliJ' yllil' zllil' ullil' vllil' wllill i E N} 

375 
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are called variables. Again we think of strings of the form l[i1, i > 0, as 
subscripts, e.g., writing x 5 for xlllll. By a W-tenn (or when the vocabu­
lary W is understood, simply a tenn) we mean an element of (Q U W)* 
that either is a constant symbol c E W or a variable, or is obtained from 
constant symbols and variables by repeated application of the operation on 
(Q U W)* that transforms ~-t 1 , f.tz, ... , 1-tn into 

f(~-tJ '1-tz' · · ·' 1-tn ), 

where f is a function symbol in W and S(f) = n > 0. 
An atomic W-fonnula is an element of (Q U W)* of the form 

r ( f.t 1 ' f.tz ' · · · • 1-tn) , 

where r E W is a relation symbol, S(r) = n, and ~-t 1 , f.tz, ... , 1-tn are terms. 
Finally, a W-fonnula (or simply a fonnula) is either an atomic W-formula 
or is obtained from atomic W-formulas by repeated application of the 
following operations on (Q U W)*: 

1. transform a into -, a; 
2. transform a and f3 into (a A f3 ); 
3. transform a and f3 into (a V f3 ); 
4. transform a and f3 into (a ::> f3 ); 
5. transform a and f3 into (a - f3 ); 
6. transform a into ( V b) a, where b is a variable; 
7. transform a into ( 3 b) a, where b is a variable. 

If b is a variable, the expressions 

(Vb) and (3b) 

are called universal quantifiers and existential quantifiers, respectively. 
Let b be a variable, let A be a formula or a term, and suppose that we 

have the decomposition A = rbs, where the leftmost symbol of s is not I. 
(This means that b is not part of a longer variable. In fact, because A is a 
formula or a term, s will have to begin either with , or with ).) Then we say 
that the variable b occurs in A. If more than one such decomposition is 
possible for a given variable b we speak, in an obvious sense, of the first 
occu"ence of b in A, the second occu"ence of b in A, etc., reading from left 
to right. 

Next suppose that a is a formula and that we have the decomposition 

a= r(Vb)f3s or a= r(3b)f3s, 

where f3 is itself a fonnula. Then the occu"ence of b in the quantifiers 
shown, as well as all occu"ences of bin {3, are called bound occu"ences of b 
in a. Any occurrence of b in a that is not bound is called a free 
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occu"ence of b in a. A W-formula a containing no free occurrences of 
variables is called a W-sentence, or simply a sentence. Any occurrence of a 
variable in a term is considered to be a free occu"ence. 

Thus, in the formula 

(r(x) :J (3y)s(u,y)), 

x and u each have one occurrence, and it is free; y has two occurrences, 
and they are both bound. The formula 

(Vx)(3u)(r(x) :J (3y)s(u,y)) 

is a sentence. 

Exercises 

1. Let W = {0, s, <}, where 0, s are function symbols with 8(0) = 0, 
8(s) = 1, and < is a relation symbol with 8( <) = 2. Describe the set 
of W-terms and the set of atomic W-formulas. 

2. {a) Define the height of a W-term t, denoted Ht (t ), as follows: 

Ht( x) = 1 for all variables x 
Ht(c) = 1 for all constant symbols c 

Ht{f(tp···,tn)) = max{Ht(t) 11 -5:, i -5:, n} + 1. 

Show by induction on height that all W-terms have an equal 
number of left and right parentheses. 

{b) Do the same for W-formulas. 

2. Semantics 

In analogy with the propositional calculus, we wish to associate the truth 
values, 1 and 0, with sentences. To do this for a given sentence a will 
require an "interpretation" of the function and relation symbols in a. 

By an interpretation I of a vocabulary W, we mean a nonempty set D, 
called the domain of I, together with the following: 

1. an element c1 of D, for each constant symbol c E W; 
2. a function f 1 from D 8<f> into 1 D, for each function symbol fEW for 

which 8(/) > 0; and 
3. a function r1 from D 8<r> into {0, 1}, for each relation symbol r E W. 

1 Recall from Chapter 1, Section 1, that D" is the set of n-tuples of elements of D. 
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Let A be a term or a formula and let b 1 , b2 , • •• , bn be a list of distinct 
variables which includes all the variables that have free occu"ences in A. 
Then, we write A = A(b 1 , ••• , bn) as a declaration of our intention to 
regard b 1 , ••• , bn as acting like parameters taking on values. In such a 
case, if t 1 , ••• , tn are terms containing no occurrences of variables that 
have bound occurrences in A, we write A(t1 , ••• , tn) for the term or 
formula obtained from A by simultaneously replacing b 1 by t1 , b2 by 
12 , ••• , bn by In. 

Now let t be a W-term, t = t(b 1 , b2 , ••• , bn), and let I be an interpreta­
tion of W, with domain D. Then we shall define a value t 1[d1 , d 2 , ••• , dn] 
ED for all d 1 , d 2 , ••• , dn ED. For the case n = 0, we write simply t 1• We 
define this notion recursively as follows: 

1. If t = t(b 1 , b2 , ••• , bn) and t is a variable, then t must be b; for some 
i, 1 :;;; i:;;; n, and we define t 1[d 1 , d 2 , ••• , dn] = d;; 

2. If t = t(b 1 , b2 , ••• , bn) and t is a constant symbol c in W, then we 
define t 1[d 1 ,d2 , ••• ,dn] = c1 ; 

3. If t = t(b 1 , b 2 , ••• , bn) = g(t 1 , t 2 , ••• , tm), where g is a function sym­
bol in W, 8(g) = m > 0, then we first set I; = t;(b1 , b2 , ••• , bn), 
i = 1, 2, ... , m, and we let S; = t/[d1 , d 2 , ••• , dn], i = 1, 2, ... , m. Fi­
nally, we define 

Continuing, if a is a W-formula, a= a(b 1 , b2 , ••• , bn), and I is an 
interpretation of W with domain D, we shall define a va1J.1e 
a 1[d1 , d 2 , ••• , dn] E {0, 1}, for all d 1 , d 2 , ••• , dn ED. Again, in the partic­
ular case n = 0 (which can happen only if a is a sentence), we simply 
write a 1• The recursive definition is as follows: 

1. If a = a(b1 , b2 , ••• , bn) = r(t1 , t 2 , ••• , tm), where r is a relation sym­
bol in W, 8(r) = m, then we first set I; = t;(b 1 , b2 , ••• , bn), i = 
1, 2, ... , m, and then let s; = t/[d1 , d 2 , ••• , dn], i = 1, 2, ... , m. Fi­
nally, we define a 1[dpd2 , ••• ,dn] = r1(sps2 , ••• ,sm). 

In 2-6 which follow, let {3 = {3(b 1 , ••• , bn), y = y(b 1 , ••• , bn), where we 
assume that {3 1[d1 , ••• , dn] = k, y 1[d1 , ••• , dn] =I with k, IE {0, 1}, are 
already defined for all d 1 , d 2 , ••• , dn ED: 

2. If a is --, {3, a = a(b 1 , ••• , bn), then we define 

if k = 0 
if k = 1. 
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3. If a is ( {3 A y ), a = a(bl> ... , bn), then we define 

if k =I= 1 
otherwise. 

4. If a is ( {3 V y ), a = a(bp ... , bn), then we define 

if k =I= 0 
otherwise. 

5. If a is ( {3 :::> y ), a = a(b 1 , ••• , bn), then we define 
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if k = 1 and I = 0 
otherwise. 

6. If a is ( {3 ~ y ), a = a(b 1 , ••• , bn), then we define 

{ 1 if k =I 
a'[d1 , ••• ,dn] = 0 otherwise. 

In 7 and 8 let {3 = {3(b 1 , ••• , bn, b), where we assume that 
{3 1[d1 , ••• , dn, e] is already defined for all d1 , ••• , dn, e ED: 

7. If a is (V b) {3, a = a(bl> ... , bn), then we define 

if {3 1[d1 , ••• ,dn,e] = 1 for all e ED 

otherwise. 

8. If a is ( 3b) {3, a = a(b 1 , ••• , bn), then we define 

if {3 1[d1 , ••• ,dn,e] = 1 for some e ED 

otherwise. 

It is important to be aware of the entirely nonconstructive nature of 7 
and 8 of this definition. When the set D is infinite, the definition provides 
no algorithm for carrying out the required searches. and, indeed, in many 
important cases no such algorithm exists. 

Let us consider some simple examples. 

EXAMPLE 1. W = {c, r, s}, where c is a constant symbol, and rand s are 
relation symbols, 8(r) = 3, 8(s) = 2. Let I have the domain D = 
{0, 1, 2, 3, ... , }, let c1 = 0, and let 

if x+y=z 
otherwise, 

s/x,y) = {~ if X ::; y 
otherwise. 
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If a is the sentence 

(Vx)(Vy)(Vz)(r(x,y,z) :::>s(x,z)), 

then it is easy to see that a 1 = 1. For if u, v, w E D and r1(u, v, w) = 1, 
then u + v = w, so that u:::;; w and therefore s1(u, w) = 1. So if y = 
y(x, y, z) is the formula (r(x, y, z) :::> s(x, z)), then y 1[u, v, w] = 1. 

On the other hand, if {3 is the sentence 

(Vx)(3y)r(x, y, c), 

then {3 1 = 0. This is because r1(1, v, 0) = 0 for all v ED. Therefore 

r(x,y,c)1[1,v] = 0 

for all v ED. Thus, (3y)r(x,y,c)1[1] = 0, and therefore, finally, {3 1 = 0. 

EXAMPLE 2. W, a, {3 are as in Example 1. I has the domain 

{ ... , -3, -2, -1,0, 1,2,3, ... ,}, 

the set of all integers. c 1 , r1 , s 1 are defined as in Example 1. In this case, it 
is easy to see that a 1 = 0 and {3 1 = 1. 

An interpretation I of the vocabulary W is called a model of a W­
sentence a if a 1 = 1; I is called a model of the set .n of W-sentences if I 
is a model of each a E n. n is said to be satisfiable if it has at least one 
model. An individual W-sentence a is called satisfiable if {a} is satisfiable, 
i.e., if a has a model. a is called valid if every interpretation of W is a 
model of a. 

If a = a(b 1 , ••• , bn), {3 = {3(b 1 , ••• , bn) are W-formulas, we write a = {3 
to mean that a and {3 are semantically equivalent, that is, 

for all interpretations I of W and all d1 , ••• , dn ED, the domain of I. 
Then, as is readily verified, all of the equations from Section 1 of Chapter 
12 hold true as well in the present context. We also note the quantifica­
tional De Morgan laws: 

..., (Vb)a = (3b)..., a;..., (3b)a = (Vb)..., a. (2.1) 

Again, as in the case of the propositional calculus, we may eliminate the 
connectives :::> and ++ by using appropriate equations from Chapter 12, 
Section 1. Once again, there is a "general principle of duality," but we 
omit the details. 
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Now, let {3 = {3(b 1 , ••• , bn, b), and let the variable a have no occur­
rences in {3. Then it is quite obvious that 

(3b){3(b 1 , ••• , bn, b) = (3a){3(b 1 , ••• , bn, a), 

(Vb){3(b 1 , ••• ,bn,b) = (Va){3(b 1 , ••• ,bn,a). 

Continuing to assume that a has no occurrences in {3, we have 

Exercises 

((Va)a A {3) = (Va)(a A {3), 

((3a )a A {3) = (3a )(a A {3), 

((Va)a V {3) = (Va)(a V {3), 

((3a)a V {3) = (3a)(a V {3). 

(2.2) 

(2.3) 

1. Let W be as in Example 1. For each of the following W-sentences give 
an interpretation that is a model of the sentence as well as one that is 
not. 
(a) (Vx)(3y)(Vz)(s(x,c) :::>r(x,y,z)). 
(b) (3y)(Vx)(Vz)(s(x,c) :::>r(x,y,z)). 
(c) (Vx)(Vy)(s(x, y) :::> s(y, x)). 

2. Give an interpretation that is a model of (a) in Exercise 1 but not of 
(b). 

3. Let W = {ca, cb, cat, eq}, let interpretation I have domain {a, b}*, and 
let ca1 =a, cb1 = b, cat1(u,v) = 17V, and 

if u = v 
otherwise. 

For each of the following formulas a, calculate a 1• 

(a) (Vx)(3y)eq(cat(ca,x),y). 
(b) ( 3y )(Vx )eq(cat(ca, x ), y ). 
(c) (Vx)(3y)eq(cat(x,y),x). 
(d) (Vx)( 3y )(eq(cat(ca, y ), x) v eq(cat(cb, y ), x)). 
(e) (3x)eq(cat(ca, x), cat(x, cb)). 

4. For each of the following formulas, tell whether it is (i) satisfiable, (ii) 
valid, (iii) unsatisfiable. 
(a) ((3x)p(x) A (Vy)--,p(y)). 
(b) (Vx)(3y)r(f(a),b). 
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(c) ((Vx)(3y)r(x,y) :J (3y)(Vx)r(x,y)). 
(d) ((3y)(Vx)r(x,y) :J (Vx)(3y)r(x,y)). 
(e) (3x)(Vy) < (x,y). 
(f) ((3x)p(x) :J (3x)(Vy)p(x)). 

5. Let W = {0, s, +, eq}, let interpretation I have domain N, and let 
01 = 0, s 1 be the successor function, +1 be the addition function, and 
eq1 be equality (as in Exercise 3). For each of the following sets S, give 
a formula a such that 

(a) S = N. 

(b) S = {(x, y, z) E N 3 I x + y = z}. 

(c) S = {(x, y) E N 2 I x ~ y}. 

(d) S = {(x, y, z) E N 3 I z ..:. y = x}. 

(e) S = {x EN I x is even}. 

6. For a set of sentences .n, let Mod(!l) be the collection of all models of 
.n. Prove that 

3. Logical Consequence 

We are now ready to use the semantics just developed to define the notion 
of logical consequence. Let W be a vocabulary, let r be a set ofW-sentences, 
and let y be a W-sentence. Then we write 

fl=y 

and call y a logical consequence of the premises r if every model of r is 
also a model of y. If r = { y1 , ••• , Yn}, then we omit the braces { , }, and 
write simply 

'Y1 'Yz' · · ·' Yn I= Y · 

Note that y 1 , y 2 , ••• , Yn I= y if and only if for every interpretation I of W 
for which 

y{ = y£ = ··· = Yn1 = 1, 

we also have y 1 = 1. (Intuitively, we may think of the various interpreta­
tions as "possible worlds." Then our definition amounts to saying that y is 
a logical consequence of some premises if y is true in every possible world 
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in which the premises are all true.) As in the case of the propositional 
calculus, logical consequence can be determined by considering a single 
sentence. The proof of the corresponding theorem is virtually identical to 
that of Theorem 2.1 in Chapter 12 and is omitted. 

Theorem 3.1. The relation y 1 , y 2 , ••• , 'Yn I= y is equivalent to each of the 
following: 

1. the sentence (( y 1 1\ •· · 1\ y) :::) y) is valid; 
2. the sentence ( y 1 1\ · · · 1\ 'Yn 1\ ..., y) is unsatisfiable. 

Once again we are led to a problem of satisfiability. We will focus our 
efforts on computational methods for demonstrating the unsatisfiability of 
a given sentence. We begin by showing how to obtain a suitable normal 
form for any given sentence. 

As in Chapter 12, Section 3, we begin with the procedures 

(I) ELIMINATE :::) and - . 
(II) MOVE ..., INWARD. 

Procedure (I) is carried out exactly as in Chapter 12. For (II), we also need 
to use the quantificational De Morgan laws (2.1). Ultimately all ...,swill 
come to immediately precede relation symbols. 

(III) RENAME VARIABLES. 

Rename bound variables as necessary to ensure that no variables occur 
in two different quantifiers, using (2.2). Thus, the sentence 

((Vx)(Vy )r(x, y) V ((Vx)s(x) 1\ (3y )s( y)) 

might become 

(Vx)(Vy)r(x,y) V ((Vu)s(u) 1\ (3v)s(v)). 

(IV) PULL QUANTIFIERS 

Using (2.3), bring all quantifiers to the left of the sentence. Where possible, 
do so with existential quantifiers preceding universal quantifiers. Thus, to 
continue our example, we would get successively 

(Vx)(Vy)r(x, y) V (3v)((Vu)s(u) 1\ s(v)) 

= (3v)((Vx)(Vy)r(x, y) V ((Vu)s(u) 1\ s(v))) 

= (3v)(Vx)(Vy)(Vu)(r(x, y) V (s(u) 1\ s(v))). 

After applying (IV) as many times as possible, we obtain a sentence 
consisting of a string of quantifiers followed by a formula containing no 
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quantifiers. Such a sentence is called a prenex sentence. A prenex sentence 
is also said to be in prenex normal form. 

Let y be a sentence of the form 

where n ~ 0, and a = a(b1 , b2 , • •• , bn , b). Let g be a function symbol 
which is not in a with 8(g) = n. If necessary, we enlarge the vocabulary W 
to include this new symbol g. Then we write 

Ys is called the Skolemization of y. [In the case n = 0, g is a constant 
symbol and the term 

g(bl 'bz ' ... ' bn) 

is to be simply understood as standing for g.] Skolemization is important 
because of the following theorem. 

Theorem 3.2. Let y be a W-sentence and let 'Ys be its Skolemization. 
Then 

1. every model of 'Ys is a model of y; 
2. if y has a model, then so does Ys ; 
3. y is satisfiable if and only if 'Ys is satisfiable. 

Proof. Condition 3 obviously follows from 1 and 2. 
To prove 1, let a, y be as previously and let 

Let I be a model of 'Ys so that y/ = 1, and let the domain of I be D. 
Then, if d1 , ••• , dn are arbitrary elements of D, we have f3 1[d 1 , ••• , dn] = 
1. Let e = g1(d1 , ... , dn). Thus a 1[d1 , ... , dn, e] = 1, so that 

Hence finally, y 1 = 1. 
To prove 2, let y 1 = 1, where I has the domain D. Again let d1 , ••• , dn 

be any elements of D. Then, writing f3 for the formula (3b)a, so that we 
may write f3 = f3(bp ... , bn), we have f3 1[dp ... , dn] = 1. Thus, there is 
an element e E D such that a 1[d1 , ••• , dn, e] = 1. Hence, we have shown 
that for each d1 , ••• , dn ED, there is at least one element e ED such 
that a 1[d1 , ... , dn, e] = 1. Thus, we may extend the interpretation I to 
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the new function symbol g by defining g1(d 1 , ••• , dn) to be such an 
element 2 e, for each d 1 , ••• , dn ED. Thus, for all d 1 , d2 , ••• , dn ED, we 
have 

13 1[dl ' ... ' dn] = aJ[dl ' ... ' dn 'g/dl ' ... ' dn)] = 1. 

Hence, finally, y/ = 1. • 
Since Theorem 3.2 shows that the leftmost existential quantifier in a 

prenex formula may be eliminated without affecting satisfiability, we can, 
by iterated Skolemization, obtain a sentence containing no existential 
quantifiers. We write this 

(V) ELIMINATE EXISTENTIAL QUANTIFIERS. 

In the example discussed under (IV), this would yield simply 

(Vx)(Vy)(Vu)(r(x,y) V (s(u) 1\ s(c))), (3.1) 

where c is a constant symbol. 
For another example consider the sentence 

(Vx)(3u)(Vy )(Vz)(3v )r(x, y, z, u, v), 

where r is a relation symbol, 8(r) = 5. Then two Skolemizations yield 

(Vx)(Vy )(Vz)r(x, y, z, g(x), h(x, y, z)). (3.2) 

A sentence a is called universal if it has the form ( V b 1 )( V b2 ) • • • ( V bn )y, 
where the formula y contains no quantifiers. We may summarize the 
procedure (1)-(V) in 

Theorem 3.3. There is an algorithm that will transform any given sen­
tence 13 into a universal sentence a such that 13 is satisfiable if and only if 
a is satisfiable. Moreover, any model of a is also a model of 13. 

In connection with our procedure (1)-(V) consider the example 

((Vx)(3y)r(x,y) 1\ (Vu)(3v)s(u,v)), 

where r and s are relation symbols. By varying the order in which the 
quantifiers are pulled, we can obtain the prenex sentences 

1. (Vx)(3y)(Vu)(3v)(r(x,y) As(u,v)), 
2. (Vu)(3v)(Vx)(3y)(r(x,y) 1\ s(u,v)), 

2 Here we are using a nonconstructive set-theoretic principle known as the axiom of 
choice. 
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3. (Vx)(Vu)(3y)(3v)(r(x,y) As(u,v)). 

Skolemizations will then yield the corresponding universal sentences: 

1. (Vx)(Vu)(r(x, g(x)) A s(u, h(x, u))), 
2. (Vu)(Vx)(r(x, g(u, x)) A s(u, h(u))), 
3. (Vx)(Vu)(r(x, g(x, u)) A s(u, h(x, u))). 

But, for this example, one would expect that y should "depend" only on x 
and v only on u. In other words, we would expect to be able to use a 
universal sentence such as 

4. (Vx)(Vu)(r(x, g(x)) A s(u, h(u))). 

As we shall see, it is important to be able to justify such simplifications. 
Proceeding generally, let y be a sentence of the form 

where n ~ 0 and a= a(b 1 , b 2 , ••• , bn, b). Let g be a function symbol 
which does not occur in y with 8(g) = n. Then we write 

'Ys is called a generalized Skolemization of y. Then we have the following 
generalization of Theorem 3.2. 

Theorem 3.4. Let y be a W-sentence and let 'Ys be a generalized 
Skolemization of y. Then we have 1-3 of Theorem 3.2. 

Proof. Again we need verify only 1 and 2. Let a, y, 8 be as above. To 
prove 1, let I be a model of 'Ys with domain D. Let {3 be defined as in the 
proof of Theorem 3.2. Then 8 1 = 1 and (Vb 1) ••• (Vbn)f3 1 = 1. As in the 
proof of Theorem 3.2, we conclude that 

and so y 1 = 1. 
Conversely, let y 1 = 1, where I has domain D. Then 8 1 = 1 and 

Precisely as in the proof of Theorem 3.2, we can extend the interpretation 
I to the symbol g in such a way that 

Hence, y/ = 1. • 
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Henceforth we will consider the steps (IV) PULL QUANTIFIERS and 
(V) ELIMINATE EXISTENTIAL QUANTIFIERS to permit the use of 
generalized Skolemizations. Moreover, as we have seen, Theorem 3.3 
remains correct if the universal sentence is obtained using generalized 
Skolemizations. 

Exercises 

1. Consider the inference 

(Vx)(p(x) :J (Vy)(s(y,x) :Ju(x))), 

(3x)(p(x) A (3y )(s( y, x) A h( y, x))) 

F= (3x)(3y)(u(x) Ah(y,x) As(y,x)). 

(a) Find a universal sentence whose unsatisfiability is equivalent to 
the correctness of this inference. Can you do this so that Skolem­
ization introduces only constant symbols? 

(b) Using (a), show that the inference is correct. 

2. (a) Using generalized Skolemization find a universal sentence whose 
unsatisfiability is equivalent to the correctness of the inference 

(3x)(Vy)r(x, y) F= (Vy)(3x)r(x, y). 

(b) Show that the inference is correct. 

3. The same as Exercise 2(a) for the inference 

(Vx)(Vy)(Vz)(Vu)(V V )(Vw)((P(x, y, u) A P( y, z, v) A P(x, v, w)) 

:J P(u, z, w)), 

(Vx)(Vy)(3z)P(z, x, y), 

(Vx)(Vy)(3z)P(x, z, y) F= (3x)(Vy)P( y, x, y). 

4. Prove Theorem 3.1. 

5. For each sentence a in Exercise 2.1, perform the following. 
(a) Transform a into a prenex normal form sentence. 
(b) Give the Skolemization 'Ys of y. 

{c) Give a model I of a. 

(d) Extend I to a model of 'Ys • 

6. Let y be a W-sentence, for some vocabulary W, and let 'Ys be its 
Skolemization. Prove or disprove each of the following statements. 
(a) If y is valid then 'Ys is valid. 
(b) If 'Ys is valid then y is valid. 
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7. Let W be a vocabulary, r a set ofW-sentences, and a, {3 W-sentences. 
Prove each of the following statements. 
(a) (Deduction Theorem) f u {a} 1= {3 if and only if f 1= ( a :::> {3 ) . 

(b) (Contraposition) r u {a} I= ..., {3 if and only if r u { {3} 1= ..., a. 
(c) (Reductio ad absurdum) r u {a} 1= ( {3 A -, {3) if and only if 

r I= ..., a. 

4. Herbrand's Theorem 

We have seen that the problem of logical inference is reducible to the 
problem of satisfiability, which in turn is reducible to the problem of 
satisfiability of universal sentences. In this section, we will prove Herbrand's 
theorem, which can be used together with algorithms for truth-functional 
satisfiability (discussed in Chapter 12) to develop procedures for this 
purpose. 

Let a be a universal W-sentence for some vocabulary W, where we 
assume that a contains all the symbols in W. If a contains at least one 
constant symbol, we call the set of all constant symbols in a the constant 
set of a. If a contains no constant symbols, we let a be some new constant 
symbol, which we add toW, and we call {a} the constant set of a. Then the 
language which consists of all W-terms containing no variables is called the 
Herbrand universe of a. The set J/1' of atomic W-formulas containing no 
variables is called the atom set of a. We will work with the set of 
propositional formulas over J/1', i.e., of J/1'-formulas in the sense of Chapter 
12, Section 1. Each of these J/1'-formulas is also a W-sentence that contains no 
quantifiers. 

Returning to the universal sentence (3.1), we see that its constant set is 
{c}, its Herbrand universe is likewise {c}, and its atom set is {r(c, c), s(c)}. 

Next, examining the universal sentence (3.2), its constant set is {a}, but 
its Herbrand universe is infinite: 

H = {a, g(a), h(a, a, a), g(g(a)), g(h(a, a, a)), h(a, a, g(a)), ... }. 

Its atom set is likewise infinite: 

Theorem 4.1. Let ~ = ~(b 1 , b2 , ••• , bn) be a W-formula containing no 
quantifiers, so that the sentence 
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is universal. Let H be the Herbrand universe of y and let Sit' be its atom 
set. Then, y is satisfiable if and only if the set 

(4.1) 

of .Jit'-formulas is truth-functionally satisfiable. 

Proof. First let y be satisfiable, say, y 1 = 1, and let D be the domain of 
I. We now define an assignment v on Sit'. Let r be a relation symbol of W, 
S(r) = m, so that r(t1 , ••• , tm) E Sit' for all t 1 , ... , tm E H. Then we define 

v(r(tp···•tm)) = r1(t[, ... ,t~). 

We have 

Lemma 1. For all .Jit'-formulas a, a 1 =a". 

Proof. As in Chapter 12, we may assume that a contains only the 
connectives --,, A. Proceeding by induction, we see that if a is an atom, 
the result is obvious from our definition of v. Thus, we may suppose that 
a = --, {3 or a = ( {3 A y ), where the result is known for {3 or, for {3 and 
y, respectively. 

In the first case, we have 

if and only if 

if and only if 
if and only if 

Similarly, in the second case 

if and only if 
if and only if 
if and only if 

{31 = 0 

{3" = 0 
av = 1. 

{3/=y/=1 

{3v = 'Yv = 1 
au= 1. • 

Returning to the proof of the theorem, we wish to show that for all 
a En, au= 1. By Lemma 1, it will suffice to show that a 1 = 1 for 
a En. Now, since y 1 = 1, we have 

But clearly, for t 1 , ... , tn E H, 

We conclude that 0. is truth-functionally satisfiable. 
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Conversely, let us be given an assignment v on .W' such that av = 1 for 
all a E .n. We shall use v to construct an interpretation I of W. The 
domain of I is simply the Herbrand universe H. Furthermore, 

1. If c E W is a constant symbol, then c 1 = c. (That is, a constant 
symbol is interpreted as itself.) 

2. Iff E W is a function symbol, 8(/) = n > 0, and t 1 , t2, ... , tn E H, 
then 

fJ(t 1 ,t2 , ... ,tn) =J(tpt2 , ... ,tn) E H. 

(Note carefully the use of boldface.) 
3. If r E W is a relation symbol, 8(r) = n, and t 1 , t 2 , ... , tn E H, then 

r1(t 1 , t 2 , ... , tn) = v(r(t 1 , t 2 , ... , tn)). 

(Note that the assignment v is only used in 3.) We have 

Lemma 2. For every t E H, t 1 = t. 

Proof. Immediate from 1 and 2. • 
Lemma 3. For every W-formula a= a(b1 , ••• , bn) containing no quanti­
fiers, and all t 1 , ... , tn E H, we have 

a 1[tl , ... ,tn] = v(a(tl , ... ,tn}). 

Proof. If a is an atom, the result follows at once from 3 and Lemma 2. 
For the general case it now follows because the same recursive rules are 
used for the propositional connectives, whether we are evaluating interpre­
tations or assignments. • 

Returning to the proof of the theorem, we wish to show that y 1 = 1. For 
this, recalling that H is the domain of I, it suffices to show that 

for all t 1 , ... , tn E H. 

By Lemma 3, this amounts to showing that 

for all t 1 , ... , tn E H. 

But this last is precisely what we have assumed about v. • 
The usefulness of the theorem we have just proved results from combin­

ing it with the compactness theorem (Theorem 7.2 in Chapter 12). 

Theorem 4.2 (Herbrand's Theorem). Let '' y, H, .W', and .n be as in 
Theorem 4.1. Then y is unsatisfiable if and only if there is a truth-
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functionally unsatisfiable W-formula of the form A13 e I {3 for some finite 
subset I of n. 
Proof. If there is a truth-functionally unsatisfiable .sat-formula A13 e I {3, 
where I ~ n, then for every assignment v on .sat, there is some {3 E I 
such that {3 v = 0. Hence I, and therefore also .n, is not truth-functionally 
satisfiable; hence by Theorem 4.1, y is unsatisfiable. 

Conversely, if y is unsatisfiable, then by Theorem 4.1, .n is not truth­
functionally satisfiable. Thus, by the compactness theorem (Theorem 7.2 in 
Chapter 12), n is not finitely satisfiable; i.e., there is a finite set I ~ .n 
such that I is not truth-functionally satisfiable. Then, the sentence 
A 13 e I {3 is truth-functionally unsatisfiable. • 

This theorem leads at once to a family of procedures for demonstrating 
the unsatisfiability of a universal sentence y. Write n = U~ ~ 0 In , where 
I 0 = 0, In ~ In+ 1 , the In are all finite, and where there is an algorithm 
that transforms each In into In+ 1 • (This can easily be managed, e.g., by 
simply writing the elements of .n as an infinite sequence.) Then we have 
the procedure 

n+---0 

WHILE 1\ {3 IS TRUTH-FUNCTIONALLY SATISFIABLE DO 
{3E"i.n 

n+-n+1 
END 

If y is unsatisfiable, the procedure will eventually terminate; otherwise it 
will continue forever. The test for truth-functional satisfiability of A13 e I" {3 
can be performed using the methods of Chapter 12, e.g., the Davis-Putnam 
rules. Using this discussion, we are able to conclude 

Theorem 4.3. For every vocabulary W the set of unsatisfiable sentences is 
recursively enumerable. Likewise the set of valid sentences is r.e. 

Proof. Given a sentence a, we apply our algorithms to obtain a universal 
sentence y that is satisfiable if and only if a is. We then apply the 
preceding procedure based on Herbrand's theorem. It will ultimately halt 
if and only if a is unsatisfiable. This procedure shows that the set of 
unsatisfiable sentences is r.e. 

Since a sentence a is valid if and only if --, a is unsatisfiable, the same 
procedure shows that the set of valid sentences is r.e. • 

One might have hoped that the set of unsatisfiable W-sentences would 
in fact be recursive. But as we shall see later (Theorem 8.1), this is not the 
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case. Thus, as we shall see, we cannot hope for an algorithm that, 
beginning with sentences y 1 , y2 , ••• , Yn, y as input, will return YES if 
y 1 , y 2 , ••• , Yn I= y, and NO otherwise. The best we can hope for is a 
general procedure that will halt and return YES whenever the given 
logical inference is correct, but that may fail to terminate otherwise. And 
in fact, using Theorem 3.1 and an algorithm of the kind used in the proof 
of Theorem 4.3, we obtain just such a procedure. 

Now let us consider what is involved in testing the truth-functional 
satisfiability of 1\ 13 E I {3, where I is a finite subset of the set .n defined in 
(4.1). If we wish to use the methods developed in Chapter 12, we need to 
obtain a CNF of 1\ 13 E I {3. But, if for each {3 E I, we have a CNF formula 
{3 ° such that {3 = {3 °, then 1\ 13 E 'i {3 ° is clearly a CNF of 1\ f3 E 'i {3. This 
fact makes CNF useful in this context. 

In fact we can go further. We can apply the algorithms of Chapter 12, 
Section 3, to obtain CNF formulas directly for~= ~(b 1 , ••• , bn). When we 
do this we are in effect enlarging the set of formulas to which we apply the 
methods of Chapter 12, by allowing atoms that contain variables. Each 
formula can then be thought of as representing all of the W-formulas 
obtained by replacing each variable by an element of the Herbrand 
universe H. In this context formulas containing no variables are called 
ground formulas. We also speak of ground literals, ground clauses, etc. 

If the CNF formula obtained in this manner from ~(b 1 , ••• , bn) is given 
by the set of clauses 

(4.2) 

then each {3 E I will have a CNF 

where t 1 , ••• , t n are suitable elements of H. Hence, there will be a CNF of 
1\ f3 E 'i {3 representable in the form 

{K;(t{, ... ,tDii = 1, ... ,r,j = 1, ... ,s}, (4.3) 

where t{, ... , t~ E H, j = 1, 2, ... , s. Thus, what we are seeking is an 
unsatisfiable set of clauses of the form ( 4.3). Of course, such a set can be 
unsatisfiable without being minimally unsatisfiable in the sense of Chapter 
12, Section 5. In fact, there is no reason to expect a minimally unsatisfiable 
set of clauses which contains, say, K 1(t1 , ••• , tn) to also contain 
K 2(t1 , ••• , tn). Thus, we are led to treat the clauses in the set (4.2) 
independently of one another, seeking substitutions of elements of H for 
the variables b1 , ••• , bn so as to obtain a truth-functionally inconsistent set 
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R of clauses. Each of the clauses in (4.2) can give rise by substitution to 
one or more of the clauses of R. 

Let us consider some examples. 

EXAMPLE 1. Consider this famous inference: All men are mortal; Socrates 
is a man; therefore, Socrates is mortal. An appropriate vocabulary would be 
{m, t, s}, where m, t are relation symbols of degree 1 (which we think of as 
standing for the properties of being a man, and of being mortal, respec­
tively), and s is a constant symbol (which we think of as naming Socrates). 
The inference becomes 

(Vx)(m(x) :::> t(x)), m(s) 1= t(s). 

Thus, we wish to prove the unsatisfiability of the sentence 

((Vx)(m(x) :::> t(x)) A m(s) A ..., t(s)). 

Going to prenex form, we see that no Skolemization is needed: 

(Vx)((-,m(x) Vt(x)) Am(s) A -,t(s)). 

The Herbrand universe is just {s}. In this simple case, Herbrand's theorem 
tells us that we have to prove the truth-functional unsatisfiability of 

((..., m(s) V t(s)) A m(s) A ..., t(s)); 

that is, we are led directly to a ground formula in CNF. Using the set 
representation of Chapter 12, Section 4, we are dealing with the set of 
clauses 

{ {m(s), t(s )}, {m(s )} , {t(s )} } . 

Using the Davis-Putnam rules (or, in this case equivalently, resolution), 
we obtain successively 

{{t(s)}, {t(s)}}, and { D}; 

hence the original inference was valid. 

EXAMPLE 2. Another inference: Every shark eats a tadpole; all large white 
fish are sharks; some large white fish live in deep water; any tadpole eaten by a 
deep water fish is miserable; therefore, some tadpoles are miserable. 

Our vocabulary is {s, b, t, r, m, e}, where all of these are relation symbols 
of degree 1, except e, which is a relation symbol of degree 2. e(x, y) is to 
represent "x eats y." s stands for the property of being a shark, b of being a 
large white fish, t of being a tadpole, r of living in deep water, and m of 
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being miserable. The inference translates as 

(Vx)(s(x) :::> ( 3y)(t( y) t\ e(x,y))), 

(Vx)(b(x) :::> s(x)), 
(3x)(b(x) t\ r(x)), 

(Vx)(Vy)((r(x) At(y) t\e(x,y)) =>m(y)) F= (3y)(t(y) Am(y)). 

Thus, we need to demonstrate the unsatisfiability of the sentence 

( (Vx)(s(x) :::> (3y )(t( y) t\ e(x, y))) 

t\ (Vx)(b(x) =>s(x)) 
t\ (3x)(b(x) t\ r(x)) 
A(Vx)(Vy)((r(x) At(y) Ae(x,y)) =>m(y)) 

t\ -, (3y )(t( y) t\ m( y))). 
We proceed as follows. 

I. ELIMINATE :::> : 

((Vx)(-,s(x) V (3y)(t(y) Ae(x,y))) 

t\ ( V X)( -, b( X) V s( X)) 

A(3x)(b(x) t\ r(x)) 

t\ (Vx)(Vy )(-, (r(x) t\ t( y) t\ e(x, y)) V m( y)) 

t\-, (3y)(t( y) t\ m( y))). 

II. MOVE ..., INWARD: 

((Vx)(-, s(x) V (3y)(t( y) t\ e(x, y))) 

A(Vx)(-, b(x) V s(x)) 

A(3x)(b(x) t\ r(x)) 

A(Vx)(Vy)(-,r(x) V -,t(y) V --.e(x,y) V m(y)) 

A(Vy)(-,t(y) V --.m(y))). 

III. RENAME VARIABLES; 

((Vx )(-, s(x) V (3y1 )(t( y1) t\ e(x, y 1 ))) 

A(Vz)(-, b(z) v s(z)) 

t\ ( 3u)( b(u) t\ r(u)) 

A(Vv)(Vw)( --.r(v) V --.t(w) V -,e(v,w) V m(w)) 

A(Vy)(-,t(y) V -,m(y))). 
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IV. PULL QUANTIFIERS (trying to pull existential quantifiers first): 

( 3u)(Vx)( 3y 1 )(Vz)(Vv )(Vw )(Vy) 

((..., s(x) V (t( y 1) A e(x,y1))) 

A (..., b(z) v s(z)) 

Ab(u) A r(u) 

A(...,r(v) V ...,t(w) V ...,e(v,w) V m(w)) 

A(...,t(y) V ...,m(y))). 

V. ELIMINATE EXISTENTIAL QUANTIFIERS: 

(Vx)(Vz)(Vv )(Vw )(Vy) 

( (..., s(x) V (t(g(x)) 

A e(x,g(x)))) 

A (..., b(z) v s(z)) 

A b(c) A r(c) 

A(...,r(v) V ...,t(w) V ...,e(v,w) V m(w)) 

A(...,t(y) V ...,m(y))). 

Thus we are led to the clauses 

{s(x), t(g(x) )}, 

{s(x), e(x, g(x) )}, 

(b(z), s(z)}, 

{b(c)}, 

{r(c )}, 

{r(v), t(w), e(v, w), m(w)}, 

{t( y), m( y)}. 

The Herbrand universe is 

H = {c,g(c),g(g(c)), ... }. 

To find substitutions for the variables in H, we have recourse to Theorem 
5.2 (2) in Chapter 12. To search for a minimally unsatisfiable set of ground 
clauses, we should seek substitutions that will lead to every literal having a 
mate (in another clause). By inspection, we are led to the substitution 

X= C, z = c, v = c, w = g(c), y = g(c). 
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We thus obtain the set of ground clauses 

{s(c),t(g(c))}, 

{s(c), e(c, g(c))}, 

{b(c), s(c)}, 

{b(c)}, 

{r(c )}, 

{f(c), i(g(c)), e(c, g(c)), m(g(c))}, 

{i(g(c)), m(g(c))}. 

Although this set of clauses is linked, we must still test for satisfiability. 
Using the Davis-Putnam rules we obtain, first using the unit rule on 
{b(c )}, 

{s(c), t(g(c) )}, 

{S(c), e(c, g(c) )}, 

{s(c)}, 

{r(c )}, 

{f(c), i(g(c)), e(c, g(c)), m(g(c))}, 

{i(g(c)), m(g(c))}. 

Using the unit rule on {s( c)} and then on {r( c)} gives 

{t(g(c) )}, 

{e(c, g(c))}, 

{i(g(c)), e(c, g(c)), m(g(c))}, 

{i(g(c)), m(g(c))}. 

Using the unit rule on {t(g(c))} and then on {e(c, g(c))} gives 

{m(g(c))}, 

{m(g(c))}. 

Finally, we obtain the set of clauses consisting of the empty clause: 

D. 

In Examples 1 and 2 each clause of (4.2) gave rise to just one clause in 
the truth-functionally unsatisfiable set of clauses obtained. That is, we 
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obtain a truth-functionally unsatisfiable set of clauses of the form (4.3) 
with s = 1. Our next example will be a little more complicated. 

EXAMPLE 3. We consider the inference 

(Vx)(3y)(r(x, y) V r( y, x)), 

(Vx)(Vy)(r(x, y) :J r( y, y)) I= (3z)r(z, z). 

Thus, we wish to demonstrate the unsatisfiability of the sentence 

(Vx)(3y )(r(x, y) V r( y, x)) 

A (Vx)(Vy )(r(x, y) :J r(y, y)) A -, (3z)r(z, z). 

We proceed as follows: 

I, II, III. ELIMINATE :J; MOVE -, INWARD; RENAME VARI­
ABLES: 

(Vx)(3y )(r(x, y) V r( y, x)) 

A(Vu)(Vv)(-,r(u,v) V r(v,v)) A (Vz)-,r(z,z). 

IV. PULL QUANTIFIERS: 

(Vx)(3y)(Vu)(Vv)(Vz)( (r(x, y) V r( y, x)) 

A(-,r(u,v) V r(v,v)) A -,r(z,z)). 

V. ELIMINATE EXISTENTIAL QUANTIFIERS: 

(Vx)(Vu)(Vv)(Vz)( (r(x, g(x)) V r(g(x), x)) 

A(-,r(u,v) V r(v,v)) A -,r(z,z)). 

We thus obtain the set of clauses 

{r(x, g(x)), r(g(x), x)}, 

{r(u,v),r(v,v)}, 

{f(z,z)}. 

The Herbrand universe is 

H = {a,g(a),g(g(a)), ... }. 

How can we find a mate for r(x, g(x))? Not by using r(z, z)-whichever 
element t E H we substitute for x, r(x,g(x)) will become r(t,g(t)), 
which cannot be obtained from r(z, z) by replacing z by any element of H. 
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Thus the only potential mate for r(x, g(x)) is r(u, v ). We tentatively set 
u = x, v = g(x) so that the second clause becomes 

{r(x, g(x) ), r(g(x), g(x) )} . 

But now, r(u, v) is also the only available potential mate for r(g(x), x). 
Thus, we are led to also substitute v = x, u = g(x) in the second clause, 
obtaining 

{;:(g(x), x), r(x, x)}. 

Both r(g(x), g(x)) and r(x, x) can be matched with r(z, z) to produce 
mates. We thus arrive at the set of clauses 

{r(x, g(x)), r(g(x), x)}, 

{r(x, g(x)), r(g(x), g(x))}, 

{;:(g(x), x), r(x, x)}, 

{r(x, x)}, 

{r(g(x), g(x) )} . 

Now we can replace x by any element of H to obtain a linked set of 
ground clauses. For example, we can set x =a; but any other substitution 
for x will do. Actually, it is just as easy to work with the nonground clauses 
as listed, since the propositional calculus processing is quite independent 
of which element of H we substitute for x. In fact after four applications of 
the unit rule (or of resolution) we obtain D, which shows that the original 
inference was correct. 

Exercises 

1. Describe the Herbrand universe and the atom set of the universal 
sentence obtained in Exercise 3.1. 

2. Do the same for Exercise 3.2. 

3. Do the same for Exercise 3.3. 

4. Let W = {c, J, p}, where c is a constant symbol, f is a function symbol 
with 8(/) = 1, and p is a relation symbol with 8(p) = 1. Show that 
{( 3x) p(x ), -, p(c ), -, p(f(c) ), -, p(f(f(c)) ), ... } is satisfiable. 
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5. Unification 

We continue our consideration of Example 3 of the previous section. Let 
us analyze what was involved in attempting to "mate" our literals. Suppose 
we want to mate r(x, g(x)) with r(z, z). The first step is to observe that 
both literals have the same relation symbol r, and that r is negated in one 
and only one of the two literals. Next we were led to the equations 

X= Z, g(x) = z. 

The first equation is easily satisfied by setting x = z. But then the sec­
ond equation becomes g( z) = z, and clearly no substitution from the 
Herbrand universe can satisfy this equation. Thus, we were led to consider 
instead the pair of literals r(x, g(x) ), r(u, v ). The equations we need to 
solve are then 

X= U, g(x) = v. 

Again we satisfy the first equation by letting x = u; the second equation 
becomes g(u) = v, which can be satisfied by letting v = g(u). So the 
literals become r(u, g(u)) and r(u, g(u)). 

This example illustrates the so-called unification algorithm for finding 
substitutions which will transform given literals r( A1 , ••• , An), 
;:( p., 1 , ••• , p.,) into mates of one another. The procedure involves compar­
ing two terms p.,, A and distinguishing four cases: 

1. One of p.,, A (say, p.,) is a variable and A does not contain this 
variable. Then replace p., by A throughout. 

2. One of p.,, A (say, p.,) is a variable, A =F p.,, but A contains p.,. Then 
report: NOT UNIFIABLE. 

3. p.,, A both begin with function symbols, but not with the same function 
symbol. Again report: NOT UNIFIABLE. 

4. p.,, A begin with the same function symbol, say 

Then use this same procedure recursively on the pairs 

VI = 1J1 ' Vz = 7Jz' "·' 
In applying the unification algorithm to 

we begin with the pairs of terms 

... ' 
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and apply the preceding procedure to each. Naturally, substitutions called 
for by step 1 must be made in all of the terms before proceeding. 

To see that the process always terminates, it is necessary to note only 
that whenever step 1 is applied, the total number of variables present 
decreases. 

EXAMPLE Let us attempt to unify 

r(g(x), y, g(g(z))) with r(u, g(u), g(v) ). 

We are led to the equations 

g(x) = u, y = g(u), g(g(z)) =g(v). 

The first equation leads to letting 

u = g(x), 

and the remaining equations then become 

y = g(g(x)) and g(g(z)) =g(v). 

The second is satisfied by letting 

y = g(g(x)), 

which does not affect the third equation. The third equation leads recur­
sively to 

g(z) = v, 

which is satisfied by simply setting v equal to the left side of this equation. 
The final result is 

r(g(x), g(g(x)), g(g(z))), r(g(x), g(g(x)), g(g(z))). 

Numerous systematic procedures for showing sentences to be unsatisfi­
able based on the unification algorithm have been studied. These proce­
dures work directly with clauses containing variables and do not require 
that substitutions from the Herbrand universe actually be carried out. In 
particular, there are linked conjunct procedures that are based on searches 
for a linked set of clauses, followed by a test for truth-functional unsatisfi­
ability. However, most computer implemented procedures have been based 
on resolution. In these procedures, when a pair of literals have been mated 
by an appropriate substitution, they are immediately eliminated by resolu­
tion. We illustrate the use of resolution on Examples 2 and 3 of the 
previous section. 
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Beginning with the clauses of Example 2, applying the unification 
algorithm to the pair of literals s(z ), s(x ), and then using resolution, we 
get 

Next, unifying 

{b(x), t(g(x) )}, 

{b(x), e(x, g(x))}, 

{b(c)}, 

{r(c)}, 

{;:(v), i(w), e(v, w), m(w)}, 

{t(y),m(y)}. 

e(x, g(x)) and e(v, w) 

and using resolution, we get 

{b(x), t(g(x) )}, 

{b(c)}, 

{r(c )}, 

{b(x), r(x), i(g(x) ), m(g(x) )}, 

{i( y), m( y)}. 

Another stage of unification and resolution yields 

and then 

Finally, we get 

{t(g(c) )} , 

{r(c )}, 

{r(c), i(g(c)), m(g(c))}, 

{i( y), m( y)}, 

{r(c)}, 

{r(c), m(g(c) )}, 

{m(g(c))}. 

{r(c )}, 

{r(c)}, 

and, then, to complete the proof, 

D. 
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The combination of unification with resolution can be thought of as a 
single step constituting a kind of generalized resolution. Thus, resolution 
in the sense of Chapter 12, that is, resolution involving only ground 
clauses, will now be called ground resolution, while the unmodified word 
resolution will be used to represent this more general operation. In the 
ground case we used the notation resiK 1 , K2 ) for the resolvent of K 1 , K2 

with respect to the literal A, namely, 

(K 1 - {A}) U (K2 - {...,A}). 

In the general case, let A E Kz, ..., f.L E Kz, where the unification algorithm 
can be successfully applied to A and ..., f.L· Thus, there are substitutions for 
the variables which yield new clauses i( 1 , i<2 such that if the substitutions 
transform A into A, they also transform ..., f.L into ..., i Then we write 

Let a be a finite set of clauses. Then a sequence of clauses K 1 , Kz, ... , Kn 

is called a resolution deri~·ation of Kn = K from a if for each i, 1 :::;; i :::;; n, 
either K; E 'a or there are j, k < i and literals A, f.L such that K; = 
res"·~-'(Kj, Kk). As in Chapter 12, a resolution derivation of o from a is 
called a resolution refutation of a. The key theorem is 

Theorem 5.1 (J. A. Robinson's General Resolution Theorem). Let { = 
{(b 1 , ••• , bn) be a W-formula containing no quantifiers, and let { be in 
CNF. Let 

Then, the sentence y is unsatisfiable if and only if there is a resolution 
refutation of the clauses of {. 

We shall not prove this theorem here, but will content ourselves with 
showing how it applies to Example 3 of the previous section. The clauses 
were 

1. {r(x, g(x)), r(g(x), x)} 
2. {f(u, v ), r(v, v )} 
3. {f(z, z)}. 

A resolution refutation is obtained as follows: 

4. {r(g(x),x),r(g(x),g(x))} (resolving 1 and 2); 
5. {r(x, x), r(g(x), g(x))} (resolving 2 and 4); 
6. {r( g( x ), g( x) )} (resolving 3 and 5); 
7. o (resolving 3 and 6). 
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Exercises 

1. Indicate which of the following pairs of terms are unifiable. 
(a) x, g(y ). 

(b) x,g(x). 

(c) f(x),g(y). 
(d) f(x,h(a)),f(g(y),h(y)). 

(e) f(x,x),f(g(y),a). 
(f) f(x, y, z),f(g(w, w), g(x, x), g(y, y)). 
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2. Prove the correctness of the inferences of Exercises 3.1-3.3 by obtain­
ing minimally unsatisfiable sets of clauses. 

3. Prove the correctness of the inferences of Exercises 3.1-3.3 by obtain­
ing resolution refutations. 

4. (a) Prove that the problem of the validity of the sentence 

(3x)(3y)(Vz)((r(x, y) :J (r(y, z) A r(z, z))) 

A((r(x,y) As(x,y)) :J (s(x,z) As(z,z)))) 

leads to the list of clauses 

{r(x, y)}, 

{s(x, y), r(y, h(x, y)), r(h(x, y), h(x, y))}, 

{r(y, h(x, y) ), r(h(x, y ), h(x, y))' 

s(x, h(x, y)), s(h(x, y), h(x, y))}. 

[Hint: Use Theorem 5.1 in Chapter 12.] 
(b) Prove the validity of the sentence in (a) by giving a resolution 

refutation. 

5. * A conventional notation for describing a substitution is 
{x 1/t 1 , ••• , xn!tn}, where x 1 , ••• , xn are distinct variables and t 1 , ••• , tn 
are terms. If A is a term or a formula and (} is a substitution, then A8 
denotes the result of simultaneously replacing each occurrence of X; 

in A by t;, 1 ::; i ::; n. A unifier of two terms or formulas A, JL is a 
substitution (} such that A(J and JL8 are identical. Modify the unifica­
tion algorithm so that if A, JL are unifiable, it returns a unifier of A, JL. 
Apply the modified algorithm to Exercise 1. 

6.* An V -clause with at most one literal that is not negated is called a 
Hom clause. Horn clauses are the basis of logic programming languages 
such as Pro log. Horn clauses of the form A or ( -, A1 V · · · V -, An V 
A), where the latter is sometimes written ( A1 A · · · A An :J A), are 



404 Chapter 13 Quantification Theory 

called program clauses, and a Hom program is a set (or conjunction) of 
program clauses. The input to a Horn program 9' is a clause of the 
form ( -, A1 V · · · V -, "-n ), called a goal clause, and the output is a 
substitution (}, called an answer substitution, such that 

(Vx1) ••• (Vx1)9' I= (Vy1) ••• (Vyk)[(A1 A··· A "-n)O], 

where x 1 , ••• , x1 are all of the variables which occur free in 9' and 
y 1 , ••• , Yk are all of the variables which occur free in (A1 A··· A A)O. 
(If there is no such answer substitution then the program can either 
stop and return NO or it can run forever.) If ( A1 A · · · A A)O has no 
free variable occurrences, then (} is a ground answer substitution. 
(a) Let (} be a substitution such that ( A1 V · · · V "-n )O has no free 

variable occurrences. Show that (} is a ground answer substitution 
if and only if 

(Vx1) ••• (Vx1)[9' U {(-, A1 V ··· V -, "-n)O}] 

is unsatisfiable. 
(b) Let 9' be the Horn program with clauses 

{edge(a, b), edge(b, c), edge(x, y) :::) connected(x, y ), 

edge(x, y) A connected( y, z) :::) connected(x, z)}. 

For each of the following goal clauses, use resolution and the 
modified unification algorithm from Exercise 5 to find all possible 
answer substitutions. 

(i) -,edge( a, y). 
(ii) -,edge(x, a). 
(iii) -,edge(x,y). 
(iv) -, connected(b, y ). 
(v) -, connected(a, y ). 

6. Compactness and Countability 

In this section we give two applications of the circle of ideas surrounding 
Herbrand's theorem that are extremely important in mathematical logic. It 
will be interesting to see if they have a role to play in the application of 
logic to computer science. 

Theorem 6.1 (Compactness Theorem for Predicate Logic). Let 0. be a 
set of W-sentences each finite subset of which is satisfiable. Then n is 
satisfiable. 
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Proof. If n is finite, there is nothing to prove. If n is infinite, we can use 
the enumeration principle from Chapter 12, Section 7, to obtain an 
enumeration {30 , {3 1 , {32 , • • • of the elements of !1. Let us write 

'Yn = A {3;' n = 0, 1,2, .... 
isn 

Let steps {1)-(V) of Section 3 be applied to each of {30 , {3 1 , {32 ,. • • to 
obtain universal sentences 

a; = (Vb~;>) ··· (Vb~~)~;(b~i>, ... , b~~ ). 

Then by Theorem 3.3, for each i, a; is satisfiable if and only if {3; is 
satisfiable, and moreover any model of a; is also a model of {3;. Now let us 
apply the same steps {1)-(V) to the sentence 'Yn. We see that if we use 
generalized Skolemization we can do this in such a way that the universal 
sentence l)n we obtain, corresponding to 'Yn in the sense of Theorem 3.3, 
consists of universal quantifiers followed by the formula 

i:5.n 

Now, by hypothesis, each 'Yn is satisfiable. Hence, by Theorem 3.3, so is 
each l>n. For each n, let Hn be the Herbrand universe of l>n. Thus, 

Ho ~ Ht ~Hz .... 

Let H = UnEN Hn. By Theorem 4.1, the sets 

"" - { A Y (1U> l(i))ll(i) 1U> E H . - 0 1 } .:.,n - i~~ ~i t , ••• , m, 1 , ••• , m, n , l - , , ... , n 

are truth-functionally satisfiable. We wish to show that the set 

r = ui{tl '0 0 0' 1m) I It' lz' 0 0 0 E u} 
is itself truth-functionally satisfiable. By the compactness theorem for 
propositional calculus (Theorem 7.2 in Chapter 12) it suffices to prove this 
for every finite subset A of r. But for any finite subset A of r, there is a 
largest value of the subscript i which occurs, and all the lj which occur are 
in some Hk. Let I be the larger of this subscript k and this largest value of 
i. Then A is itself a subset of 

AI= {~;(1 1 , ••• ,1m) I 11 ,12 , ••• E H1 ,0:::;; i:::;; 1}. 

Moreover, since I 1 is truth-functionally satisfiable, so is A1, and therefore 
A. This shows that f is truth-functionally satisfiable. 
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Now, let .W' be the set of all atoms which occur in the formulas that 
belong to f. Let v be an assignment on .W' such that {3'' = 1 for all {3 E f. 
Then we use v to construct an interpretation I of W with domain H 
precisely as in the proof of Theorem 4.1. Then Lemmas 2 and 3 of that 
proof hold and precisely as in that case we have 

t/[t1 , ••• , tm) = 1 for all t 1 , ••• , tm; E Hand i EN. 

Hence, a/ = 1 for all i E N. Since any model of a; is also a model of {3;, 
we have {3/ = 1 for all i E N. Thus, I is a model of n. • 

Now let us begin with a set 0. of W-sentences which has a model I. 
Then of course I is a model of every finite subset of n. Thus, the method 
of proof of the previous theorem can be applied to 0.. Of course, this 
would be pointless if our aim were merely to obtain a model of 0.; we 
already have a model I of 0.. But the method of proof of Theorem 6.1 
gives us a model of 0. whose domain H is a language on an alphabet. Thus, 
we have proved 

Theorem 6.2 (Skolem-Lowenheim Theorem). Let 0. be a satisfiable set 
ofW-sentences. Then n has a model whose domain is a language on some 
alphabet. 

What makes this important and interesting is that any language satisfies 
the enumeration principle of Chapter 12, Section 7. Infinite sets that 
possess an enumeration are called countably infinite. This brings us to the 
usual form of the Skolem-LOwenheim theorem. 

Corollary 6.3. Let 0. be a satisfiable set of W-sentences. Then 0. has a 
model whose domain is countably infinite. 

Many infinite sets that occur in mathematics are not countable. In fact, 
the diagonal method, which was used in obtaining unsolvability results in 
Part 1 of this book, was originally developed by Cantor to prove that the 
set of real numbers is not countable. What the Skolem-LOwenheim 
theorem shows is that no set of sentences can characterize an infinite 
uncountable set in the sense of excluding countable models. 

We close this section with another useful form of the compactness 
theorem. 

Theorem 6.4. If f I= y, then there is a finite subset a of f such that 
a t= Y· 

Proof. Since every model of r is a model of y, the set r u {--, y} has no 
models; that is, it is not satisfiable. Thus, by Theorem 6.1, there is a finite 
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subset a of f such that a u {-, y} is unsatisfiable. Thus every model of a 
is a model of y, i.e., a 1= y. • 

Exercises 

1. Let nl' !lz be sets of sentences such that nl u n2 is unsatisfiable. 
Prove that there is a sentence a such that !l 1 I= a, and !l2 1= -, a. 

2. Show that if a set n of sentences has models with arbitrarily large 
finite domains, then it has a model with an infinite domain. [Hint: 
Show that n u {(3xl) ... (3x)/\is;i<j$n X; =F xj In EN} is satisfi­
able.] 

3. Let W be the vocabulary {0, c, s, >},where 0, care constant symbols, s 
is a function symbol with 8(s) = 1, and > is a relation symbol with 
8( >) = 2. Use the compactness theorem to show that the set of 
sentences {c > 0, c > s( 0 ), c > s( s( 0) ), ... } is satisfiable. 

*7. Godel's Incompleteness Theorem 

Let f be a recursive set of W-sentences for some given vocabulary W. We 
think of f as being considered for use as a set of "axioms" for some part 
of mathematics. The requirement that f be recursive is natural, because, 
by Church's thesis, it simply amounts to requiring that there be some 
algorithmic method of determining whether or not an alleged "axiom" 
really is one. Often f will be finite. We define T r = {y If I= y} and call 
T r the axiomatizable theory on W whose axioms are the sentences belong­
ing to the set f. Of course, it is quite possible to have different sets of 
axioms which define the same theory. 

If T is an axiomatizable theory, we write 

I-T 'Y 

(read: "T proves y") to mean that y E T. We also write lf-T y to mean 
that y f/:. T. The most important fact about axiomatizable theories is given 
by the following theorem. 

Theorem 7.1. An axiomatizable theory is r.e. 

Proof. By Theorems 3.1 and 6.4, y E T r if and only if 

( y 1 A y2 A · ·· A Yn A -, y) 
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is unsatisfiable for some 'Y!' 'Yz' ..• ' 'Yn E r. Since r is recursive, it is 
certainly r.e. Thus, by Theorem 4.11 in Chapter 4, there is a recursive 
function g on N whose range is f. For a given sentence y, let 

c5(n, y) = (g(O) A g(l) A ··· A g(n) A ..., y) 

for all n EN. Clearly, c5(n, y) is a recursive function of n and y. 
Moreover, the sentence y belongs to T r if and only if there is an n E N 
such that c5(n, y) is unsatisfiable. But by Theorem 4.3, the set of unsatisfi­
able W-sentences is r.e. Hence there is a partially computable function h 
which is defined for a given input if and only if that input is an unsatisfi­
able W-sentence. Let h be computed by program .9 and let p = #(.9). 
Then the following "dovetailing" program halts if and only if the input y 
belongs to T r, thereby showing that T r is r.e.: 

[A] Z+--15(/(T),y) 
T+-T+1 
IF- STP(l>(z, p, r(T)) GOTO A • 

We shall see in the next section that there is a f such that T r is not 
recursive. 

Now let W be some vocabulary intended for use in expressing properties 
of the natural numbers. By a numeral system for W, we mean a recursive 
function 11 on N such that for each n E N, 11(n) is a W-term containing no 
variables, and such that for all n, m E N, n =1= m implies 11(n) =1= 11(m). 
When 11 can be understood from the context, we write n for 11(n). n is 
called the numeral corresponding to n and may be thought of as a notation 
for n using the vocabulary W. A popular choice is 

n = S(S( ··· S(O)) ··· ), 

where S is a function symbol of degree 1, 0 is a constant symbol, and the 
number of occurrences of S is n. 

Let a= a(b) be a W-formula and letT be an axiomatizable theory on 
W. Then, given a numeral system for W, we can associate with a the set 

U = {n EN 11--T a(n)}. (7.1) 

In this case, we say that the formula a represents the set U in T. If we begin 
with a set U ~ N, we can ask the question: is there a W-formula a which 
represents U in T? We have 

Theorem 7.2. If there is a formula a which represents the set U in an 
axiomatizable theory T, then U is r.e. 
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Proof. Let T be an axiomatizable theory, and let a represent U in T. By 
Theorem 7.1, we know that there is a program 9! that will halt for given 
input y if and only if I-T y. Given n E N, we need only compute a(n) 
[which we can do because v(n) = n is recursive], and feed it as input to 9!. 
The new program thus defined halts for given input n E N if and only if 
I-T a(n). By (7.1), U is r.e. • 

In fact, there are many axiomatizable theories in which all r.e. sets are 
representable. To see the negative force of Theorem 7.2, we rewrite it as 
follows. 

Corollary 7.3. Let T be an axiomatizable theory. Then if U ~ N is not 
r.e., there is no formula which represents U in T. 

This corollary is a form of Godel's incompleteness theorem. To obtain a 
more striking form of the theorem, let us say that the formula a quasi­
represents the set U in T if 

{n EN li-T a(n)} ~ U. (7.2) 

We can think of such a formula a as intended to express the proposition 
"n E U" using the vocabulary W. Comparing (7.1) and (7.2) and consider­
ing Corollary 7.3, we have 

Corollary 7.4. Let T be an axiomatizable theory and let U ~ N be a set 
that is not r.e. Let the formula a quasi-represent U in T. Then, there is a 
number n0 such that n0 E U but lf-T a(n0 ). 

As we can say loosely, the sentence a(n0 ) is "true" but not provable. 
Corollary 7.4 is another form of Godel's incompleteness theorem. We 
conclude with our final version. 

Theorem 7.5. Let T be an axiomatizable theory, and let S be an r.e. set 
that is not recursive. Let a = a( x) be a formula such that a represents S 
in T, and -, a quasi-represents S in T. Then there is a number n0 such 
that lf-T a(fi0 ) and lf-T -, a(n0 ). 

Proof. We take U = S in Corollary 7.4 to obtain a number n 0 such that 
n0 E S, but lf-T -, a(n0 ). Since n0 $ S and a represents S in T, we must 
also have lf-T a(n0 ). • 

In this last case, it is usual to say that a(n0 ) is undecidable in T. 

Exercises 

1. Let r be an r.e. set of W-sentences for some vocabulary W. Show that 
{y I r 1= y} is r.e. 
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2. Let T be an axiomatizable theory on some vocabulary W. T is consis­
tent if there is no W-sentence a such that both I-T a and I-T -, a, 
and T is inconsistent otherwise. 

(a) Show that if T is inconsistent then I-T a for all W-sentences a. 
(b) Show that if there is a formula which represents some nonrecur-

sive set in T, then T is consistent. 
(c) Show that if T is consistent and the formula a represents some 

r.e. set U in T, then -, a quasi-represents fJ in T. 

3. An axiomatizable theory T on vocabulary W is complete if for all 
W-sentences a, either I-T a or I-T -,a. Show that if Tis complete 
then it is recursive. [See also Exercise 2.] 

4. An axiomatizable theory T on some vocabulary W is w-consistent if the 
following holds for all W-formulas a(b ): If I-T -, a(n) for all n E N, 
then lf-T (3x)a(x). Show that if T is w-consistent then it is consis­
tent. [See Exercise 2 for the definition of consistency.] 

5. A function f(x 1 , ••• , xn) is representable in an axiomatizable theory T 
if there is a formula a(b 1 , ••• , bn, b) such that if f(m 1 , ••• , mn) = k 
then 

I-T a(m 1 , ... ,mn,lc) and 1--T(Vy)(a(m 1 , ... ,mn,y) :::>y =k). 

We say that a represents f(x 1 , ••• , xn) in T. Let T be a consistent 
axiomatizable theory [see Exercise 2] such that I-T 0 =/= 1 and such 
that every primitive recursive function is representable in T. 

(a) Let a(x, y, t, z) represent the function STP(I)(x, y, t) in T, and 
for every r.e. set wm' let f3m(x) be the formula ( 3t )a(x, m, t, 1). 
Show that if n E wm then I-T f3m(n). 

(b) Show that if n ft wm then I-T -, a(n, m, i, 1) for all t EN. 

(c) Show that if T is w-consistent then n ft Wm implies lf-T f3m(n). 
[See Exercise 4.] 

(d) Conclude that if T is an w-consistent axiomatizable theory in 
which every primitive recursive function is representable and if 
I-T 0 =/= 1, then T has an undecidable sentence. 

*8. Unsolvability of the Satisfiability Problem in 
Predicate Logic 

In 1928, the great mathematician David Hilbert called the problem of 
finding an algorithm for testing a given sentence to determine whether it is 
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satisfiable "the main problem of mathematical logic." This was because 
experience had shown that all of the inferences in mathematics could be 
expressed within the logic of quantifiers. Thus, an algorithm meeting 
Hilbert's requirements would have provided, in principle, algorithmic 
solutions to all the problems in mathematics. So, when unsolvable prob­
lems were discovered in the 1930s, it was only to be expected that Hilbert's 
satisfiability problem would also turn out to be unsolvable. 

Theorem 8.1 (Church-Turing). There is a vocabulary W such that 
there is no algorithm for testing a given W-sentence to determine whether 
it is satisfiable. 

Proof. Our plan will be to translate the word problem for a Thue process 
into predicate logic in such a way that a solution to Hilbert's satisfiability 
problem would also yield a solution to the word problem for the given 
process. 

Thus, using Theorem 3.5 in Chapter 7, let n be a Thue process on the 
alphabet {a, b} with an unsolvable word problem. Let n have the produc­
tions g; ~ h;, i = 1, 2, ... , K, together with their inverses, where we may 
assume that for each i, g;, h; =/= 0 (recall Theorem 3.5 in Chapter 7). We 
introduce the vocabulary W = {a, b, •, ~}, where a, b are constant symbols, 
• is a function symbol, and ~ is a relation symbol, with 8( •) = 8( ~) = 2. 
We will make use of the interpretation I with domain {a, b}* - {0} which 
is defined as follows: 

if and only if u if v. 

For ease of reading, we shall write • and ~ in "infix" position. Thus, 
we shall write, for example, 

((x •a) ~y) instead of ~ (•(x,a), y). 

For each word w E {a, b}* - {0}, we now define a W-term w# as 
follows: 

a#= a, b# = b, 
(8.1) 

(ua)# = (u#•a), (ub)# = (u# •b). 
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We have 

Lemma 1. For every word w E {a, b}* - {0}, we have (w#)1 = w. 

Proof. The proof is by an easy induction on lwl, using (8.1) and the 
definition of the interpretation /. • 

Let f be the set of W-sentences obtained by prefixing the appropriate 
universal quantifiers to each W-formula in the following list: 

1. (x=x), 
2. ((x=y):::>(y=x)), 
3. (((x =y) 1\ (y = z)) :::> (x = z)), 
4. (((x = y) 1\ (u = v)) :::> ((x • u) = (y • v))), 
5. (((x•y)•z) = (x•(y•z))), 
5 + i. (gt = ht}, 1 :::;; i :::;; K. 

We have 

Lemma 2. The interpretation I is a model of the set of sentences r. 
Proof. The sentences of r all express in logical notation basic facts about 
concatenation of strings and about derivations in Thue processes. Detailed 
verification is left to the reader. • 

Lemma 3. If r I= (u# = v#), then u * v. 

Proof. By the definition of logical inference and Lemma 2, we have 
(u# = v#)I = 1. Hence 

• 
We next wish to establish the converse of Lemma 3. For this it will 

suffice to show that if u 'if v, then the sentence 

A a 1\ ..., (u# = v#) 
aEf 

is unsatisfiable (recall Theorem 3.1). The Herbrand universe is 

H = {a,b,a•a,a•b,b•a,b•b,a• (a•a), ... }. 

Let us call a W-sentence a a Herbrand instance of a W-formula {3 if a can 
be obtained from {3 by replacing each of its free variables by an element 
of H. a is said to be rooted if it is a tautological consequence of the 
sentences 5 + i together with Herbrand instances of the formulas listed in 
1-5. Obviously, if the sentence {3 is rooted, then r I= {3. 
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Lemma 4. If w = uv, where u -=!= 0 and v-=!= 0, then 

(w* ~ (u* • v*)) (8.2) 

is rooted. 

Proof. The proof is by induction on I vi. If I vi = 1, we can assume without 
loss of generality that v = a. But in this case, the sentence (8.2) is a 
Herbrand instance of formula 1. 

Supposing the result known for v, we need to establish it for va and vb. 
We give the proof for va, that for vb being similar. So let w = uv, where 
we can assume that (8.2) is rooted. We need to show that the sentence 

((wa)* ~ (u* •(va)*)) 

is likewise rooted. By (8.1) this amounts to showing that 

((w* •a) ~ (u* • (v* •a))) 

is rooted. But this follows from the induction hypothesis, noting that the 
following sentences are rooted. (For each of these sentences, the number 
of the corresponding formula of which it is a Herbrand instance is given.) 

(a ~ a) (1) 

(((w* ~ (u* • v*)) 1\ (a~ a)):::> ((w* •a) ~ ((u* • v*) •a))) (4) 

(((u* • v*) •a) ~ (u* • (v* •a))) (5) 

((((w* •a) ~ ((u* • v*) •a)) 1\ (((u* • v*) •a) ~ (u* • (v* •a))))) 

:::> (((w* •a) ~ (u* • (v* •a)))). (3) 

• 
Lemma 5. If u rr v, then (u* ~ v*) is rooted. 

Proof. For some i, 1 ::; i ::; K, we have either u = pg;q, v = ph;q, or 
u = ph;q, v = pg;q, where p, q E {a, b}*. We may assume that in fact 
u = pg;q, v = ph;q, because in the other case we could use the following 
Herbrand instance of formula 2: 

((v* ~ u*) :::> (u* ~ v*)). 

The proof now divides into three cases. 

Case I. p = q = 0. Then the sentence (u* ~ v*) is just 5 + i and is 
therefore in r. 
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Case II. p = 0, q =1= 0. Using 5 + i and the following Herbrand in­
stance of formula 4: 

we see that the sentence 

is rooted. Using Lemma 4 and Herbrand instances of formulas 2 and 3 
we obtain the result. 

Case III. p, q =I= 0. Using Case II, the sentence ((g;q)# ~ (h;q)#) is 
rooted. Using the Herbrand instance of formula 4: 

(((p# ~p#) A ((g;q)# ~ (h;q)#)) 

::) ((p# •(g;q)#) ~ (p# •(h;q)#))), 

we see that 

is rooted. The result now follows using Lemma 4 and Herbrand 
instances of formulas 2 and 3. • 

Lemma 6. If u 'fr v, then (u# ~ v#) is rooted. 

Proof. The proof is by induction on the length of a derivation of v from 
u. If this length is 1, then v = u, and we may use a Herbrand instance of 
formula 1. To complete the proof, we may assume that u 'fr w If v, where 
it is known that (u# ~ w#) is rooted. By Lemma 5, (w# ~ v#) is rooted. 
We then get the result by using the following Herbrand instance of 
formula 3: 

• 
Combining Lemmas 3 and 6, we obtain 

Lemma 7. u 'fr v if and only if r 1= (u# ~ v#). 

Now it is easy to complete the proof of our theorem. If we possessed an 
algorithm for testing a given W-sentence for satisfiability, we could use it 
to test the sentence 

A a A -,(u# ~ v#) 
aEf 
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and therefore, by Theorem 3.1, to test the correctness of the logical 
inference r 1= (u# ~ v#). This would in turn lead to an algorithm for 
solving the word problem for n, which we know is unsolvable. • 

A final remark: We really have been working with the axiomatizable 
theory Tr. Thus what Lemma 7 states is just that 

(8.3) 

Hence we conclude that the theory T r is not recursive. [If it were, we 
could use (8.3) to solve the word problem for n.] Thus we have proved 

Theorem 8.2. There are axiomatizable theories that are not recursive. 

Exercises 

1. Prove Lemma 2. 

2. Let W be the vocabulary used in this section. Show that for every 
deterministic Turing machine L there is a finite set f of W-sentences 
and a computable function f(x) such that for any string w, L accepts 
w if and only if r I= f( w ). [Hint: See Theorems 3.3 and 3.4 in Chapter 
7.] 
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Abstract Complexity 

1. The Blum Axioms 

In this chapter we will develop an abstract theory of the amount of 
resources needed to carry out computations. In practical terms resources 
can be measured in various ways: storage space used, time, some weighted 
average of central processor time and peripheral processor time, some 
combinations of space and time used, or even monetary cost. The theo­
rems proved in this chapter are quite independent of which of these 
"measures" we use. We shall work with two very simple assumptions 
known as the Blum axioms after Manuel Blum, who introduced them in his 
doctoral dissertation. These assumptions are satisfied by any of the "mea­
sures" mentioned above (if given precise definitions in any natural man­
ner) as well as by many others. 

Definition. A 2-ary partial function C on N is called a complexity 
measure if it satisfies the Blum axioms: 

1. C(x,i)J, if and only if <l>;(x)J,; 
2. The predicate C(x, i) ::5; y is recursive. (This predicate is of course 

false if C(x, i) i .) 

We write C;(x) = C(x, i). We think of C;(x) as the complexity of the 
computation that occurs when the program whose number is i is fed the 

419 
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input x. It is not very difficult to see that various natural ways of 
measuring complexity of computation do satisfy the Blum axioms. What is 
remarkable is that some very interesting and quite nontrivial results can be 
derived from such meager assumptions. 

Let us examine some examples of proposed complexity measures: 

1. C;(x) =the number of steps in a computation by program number ion 
input x. The first axiom is clearly satisfied; the second follows from the 
computability of the step-counter predicate STP(I). 

2. M;(x) =the largest value assumed by any variable in program number i 
when this program is given input x, if <l>;(x)!; M;(x)j otherwise. The 
definition forces the first axiom to be true. The truth of the second 
axiom is a more subtle matter. The key observation is that, for a 
given program, there are only finitely many different snapshots1 in 
which all variables have values less than or equal to a given number 
y. Hence, given numbers i, x, y we can test the condition M;(x) ::::; y 
by "running" program number i on the input x until one of the 
following occurs: 

I. A snapshot is reached in which some variable has a value > y. 
Then we return the value FALSE. 

II. The computation halts with all variables having values ::::; y. Then 
we return the value TRUE. 

III. The same snapshot is reached twice. (By the pigeon-hole principle 
this must happen eventually if neither I nor II occurs.) Then, 
recognizing that the computation is in an "infinite" loop and so 
will never terminate, we return the value FALSE. (The reader 
should note that this algorithm in no way contradicts the unsolv­
ability of the halting problem. Case I can include both halting 
and nonhalting computations.) 

We will make important use of this "maximum-space" complexity 
measure, and we reserve the notation M;(x) for it. 

3. C;(x) = <l>;(x). Although the first Blum axiom is satisfied, the second 
is certainly not; namely, choose i so that 

<1>/x) = { ~ for xES 
otherwise, 

where S is any given r.e. nonrecursive set. Then the condition 
<l>;(x) ::::; 0 is equivalent to x E S and hence is not recursive. 

1 The definition of snapshot is in Chapter 2, Section 3. 
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If P(x) is any predicate on N, we write 

P(x) a.e., 

and say that P(x) is true almost everywhere, to mean that there exists 
m0 EN such that P(x) is true for all x > m 0 • Equivalently, P(x) is true 
for all but a finite set of numbers. We may think of a partial function on N 
as a total function with values in the set N u {oo}. That is, we write 
g(x) = oo to mean that g(x)j. We extend the meaning of < so that 
n < oo for all n EN. x ~ y continues to mean x < y or x = y, so that 
n ~ oo for n E N but also oo ~ oo. 

The second Blum axiom can be written in the equivalent forms: 

2'. The predicate C;(x) = y is recursive. 
2". The predicate C;(x) < y is recursive. 

To see that 2, 2' and 2" are all equivalent we note that 

C;(x) = y <=> (C;(x) ~ y & - (C;(x) ~ y ...:...1)) v (y = 0 & C;(x) ~ y), 

so that 2 implies 2'. 2' implies 2" because 

C;(x) < y <=> (3z)</C;(x) = z). 

Finally, 2" implies 2 because 

C;(x) ~y <=> C;(x) <y + 1. 

Let us call a recursive function r(x) a scaling factor if 

1. r is increasing, i.e., r(x + 1) ~ r(x), and 
2. limx--.oo r(x) = oo, i.e. r assumes arbitrarily large values. 

Condition 1 is obviously equivalent to the statement: x ~ y implies 
r(x) ~ r(y). Then we have 

Theorem 1.1. Let C;(x) be a complexity measure and let r(x) be a scaling 
factor. Let D;(x) = r(C;(x)). Then D;(x) is a complexity measure. 

Proof. It is clear that D satisfies the first Blum axiom. To test D;(x) ~ y, 
note that if y < r(O) then D;(x) = r(C;(x)) ~ r(O) > y. Otherwise, find the 
number t for which 

r(O) ~ r(l) ~ r(2) ~ ··· ~ r(t) ~ y < r(t + 1). 

We claim that D;(x) ~ y if and only if C;(x) ~ t. It remains only to verify 
this claim. If C;(x) ~ t, then 

D;(x) = r(C;(x)) ~ r(t) ~ y. 
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Otherwise, if t + 1 :::;; C;(x), then 

y < r(t + 1) :::;; r(C;(x)) = D;(x). • 
This theorem is hardly surprising. Naturally, if C;(x) is a plausible 

complexity measure, we would expect 2c,<x> to be one as well. What is 
surprising is that any pair of complexity measures are related to each other 
in a manner not so different from C and D in Theorem 1.1. 

Theorem 1.2 (Recursive Relatedness Theorem). Let C and D be arbi­
trary complexity measures. Then there is a recursive function r(x, y) such 
that r(x, y) < r(x, y + 1), and for all i 

C;(x) :::;; r(x, D;(x)) a.e. 

and (1.1) 

D;(x):::;; r(x,C;(x)) a.e. 

[where we let r(x,oo) = oo for all x]. 

Proof. Note that by the first Blum axiom 

C;(x),l. if and only if 

<l>;(x),l. if and only if D;(x),l.. 

By the second Blum axiom (in the form 2'), the predicate 

C;(x) = y v D;(x) = y 

is recursive. Hence the function h defined as follows is recursive: 

hC ) = { max(C;(x), D;(x)) 
l, X, y O 

if C;(x) = y v D;(x) = y 

otherwise. 

Let 

r(x,y) =y + maxj,;xmaxz,;yh(j,x,z), 

so that r(x, y) is recursive. Then 

r(x,y + 1) = (y + 1) + maxj,;xmaxz,;y+l h(j,x,z) 

> y + max j, x max z, Y h(j, x, z) 

= r(x, y) 
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since maximizing over a larger set of numbers cannot result in a smaller 
outcome. Moreover, using this same principle, and assuming that x ~ i, 

r(x,D;(x)) ~ maxj,xmaxzsD;(x>h(j,x,z) 

Thus, the inequality 

~ h(i, x, D;(x)) (since x ~ i) 

= max(C;(x), D;(x)) 

~ C;(x). 

holds for all x ~ i and hence almost everywhere. Since the definition of h is 
symmetric in C and D, the same argument shows that 

a.e. • 
As we shall see, one use of the recursive relatedness theorem is in 

enabling us to proceed, in some cases, from the knowledge that a theorem 
is true for one particular complexity measure to the truth of that theorem 
for all complexity measures. 

Exercises 

1. Which of the following are complexity measures? 
(a) C;(x) = 0 for all i, x. (That is, all computation is "free.") 

(b) C;(x)={M0 ;(x) for ift.A 
for i E A, 

where A is some given finite set such that <I>; is total for all 
i EA. (That is, the programs whose numbers belong to A can 
be run "free.") 

(c) C;(x) = 2ct>;(x>. 

C( ) _ {M;(x) if i is even 
(d) ; x - the number of steps in computing <l>;(x) if i is odd. 
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2. Prove that if C is a complexity measure and 

D-(x) = { C;(x) 
I 0 

for i It A 

for i E A, 

where A is as in Exercise l(b), then D is a complexity measure. 

3. Let C;(x) be the number of steps in the computation on input x by .9' 
program .9, where #(.9) = i. For some fixed n > 0, let D;(x) be the 
number of steps in the computation on input x by ~ program .9', 
where #(.9) = i and .9' is constructed from .9J as in Section 3 of 
Chapter 5, by treating each .9' instruction as a macro in ~ . 
(a) Show that D is a complexity measure. 
(b) Give a function r(x, y) that satisfies the recursive relatedness 

theorem for C and D. [See Exercise 3.2 in Chapter 5.] 

4. Let C be a complexity measure. 
(a) Show that for every i, C;(x) is partially computable. 
(b) Show that if cl>;(x) is total, then C;(x) is computable. 

5. Let C be a complexity measure. Show that the predicate P(i), 
defined 

P(i) <=> (Vx)(3y E N)C;(x) :::;; y, 

is not computable. 

6. Let C be an arbitrary complexity measure. Show that there is a 
recursive function t such that 

<l>;(x) :::;; t(x, C;(x)) a.e. 

[Hint: Use the complexity measure M;(x) and the recursive related­
ness theorem.] 

7. Can the result of the previous problem be improved so that t is a 
unary recursive function such that 

<l>;(x) :::;; t(C;(x)) a.e.? 

Prove that your answer is correct. 

8. (a) Let C be the complexity measure in Example 1. Show that for 
any computable function f(x) there is a program number i such 
that cl>;(x) = 0 and C;(x) > f(x) for all x. Conclude that there 
are arbitrarily (with respect to computable lower bounds) slow .9' 
programs that compute constant functions. 
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(b) Let D be an arbitrary complexity measure. Show that for any 
computable function f(x) there is a program number i such that 
<l>;(x) = 0 for all x and D;(x) > f(x) a.e. [Hint: Use (a) and the 
recursive relatedness theorem.] 

9. Let C be a complexity measure. Show that there is no computable 
function g(x,y) such that for all i, x, if <l>;(x),l. then C;(x):::;; 
g(x, <l>;(x)). Compare with Exercise 6. [Hint: Use Exercise 8.] 

10. Let C be a complexity measure. Show that for any computable 
function f(x) there is a computable function g(x) such that g(x) :::;; 1 
for all x and such that for any i, if <I>; = g then C;(x) > f(x) for 
infinitely many x. Conclude that there are arbitrarily (with respect to 
computable lower bounds) complex "small" computable functions. 
[Hint: Define 

g(x) = ( ~ if cl(x)(x) :::;; f(x) and <1>/(x)(x) * 1 

otherwise.] 

11. Let C be a complexity measure. Show that for any computable 
function f(x) there is a computable function g(x) such that g(x) :::;; x 
for all x and such that for any i, if <I>; = g then C;(x) > f(x) for all 
x > i. Compare with Exercise 10. 

2. The Gap Theorem 

In this section Cis some given fixed complexity measure. Suppose that t(x) 
is a complexity bound. That is, assume that we are restricted to computa­
tions for which C;(x) :::;; t(x) whenever <l>;(x),l.. Then, in response to our 
complaints, the bound is increased enormously to g(t(x)), where g is some 
recursive, rapidly increasing function, e.g., g(x) = 2x or 

.2} g(x) = 22 . · x or 

Then, we can carry out far more computations. Right? Wrong! If the 
original function t(x) is sufficiently tricky, it is possible that for every i, 
there are only finitely many values of x for which 

C;(x) :::;; g(t(x)), but not C;(x):::;; t(x). 

This surprising assertion is a consequence of the gap theorem. 
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Theorem 2.1 (Gap Theorem). Let g(x, y) be any recursive function 
such that g(x, y) > y. Then, there is a recursive function t(x) such that if 
x > i and C;(x) < g(x, t(x)), then C;(x) ~ t(x). (See Fig. 2.1.) 

Proof. Consider the predicate 

P(x,y) +-+ ('vi)<x(C;(x) ~y v g(x,y) ~ C;(x)). 

By the second Blum axiom, the predicate C;(x) ~ y is computable. So is 
the predicate 

g(x,y) ~ C;(x) =- (3z)<g(x.Jz = C;(x)). 

Hence, P(x, y) is also recursive. We define 

t(x) = minY P(x,y), (2.1) 

so that t is a partially computable function. We will show that t is total. 
Let x be a given number. Consider the set Q = {C;(x) I i < x & <l>;(x)! }. 

Let Yo = 0 if Q = 0 and let y0 be the largest element of Q otherwise. We 

Figure 2.1. For x > i, C;(x) cannot enter the "gap." 
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claim that P(x, y0 ) is true. To see this, choose i < x. Then if <l>;(x),!., then 
C;(x)J, and therefore C;(x) :::;; Yo. If, on the other hand, <l>;(x)j then 
C;(x) i. Since g(x, y 0 ),l., the predicate g(x, y0 ) :::;; C;(x) is true. Thus, we 
have P(x, y0 ). We have shown that for every x EN there is a number y 
such that P(x, y). Thus, t(x) defined by (2.1) is total and therefore 
recursive. 

Now let x > i and C;(x) < g(x, t(x)). Since P(x, t(x)) is true, and i < x, 
we have C;(x):::;; t(x) v g(x, t(x)):::;; C;(x). But C;(x) < g(x, t(x)). Hence 
C;(x) :::;; t(x). • 

In their fine book, Machtey and Young (see "Suggestions for Further 
Reading") give an amusing interpretation of the gap theorem. Let us 
imagine two computers, one of which is very much faster than the other. 
We think of each computer equipped with a reasonably efficient inter­
preter for our programming language .9' so that we can speak of running a 
program qf .9' on one or another of the computers. Let C;(x) be the 
computation time of the slow computer running program number i on 
input x. Similarly for D;(x) and the fast computer. Clearly, C and D 
satisfy the Blum axioms. By the recursive relatedness theorem, there is a 
recursive function r satisfying (1.1). If we let g(x, y) = r(x, y) + y + 1, 
then we have g(x, y) > y, g(x, y + 1) > g(x, y) and 

C;(x):::;; r(x, D;(x)) < g(x, D;(x)) a.e. 

Now let t(x) satisfy the gap theorem for the complexity measure C with 
respect to this function g. And consider a program .9J with number i such 
that D;(x) :::;; t(x) a.e. That is, for sufficiently large inputs x, .9J runs on 
the fast machine in time bounded by t(x). Then on the slow computer, .9J 
will run in time 

C;(x) < g(x, D;(x)) :::;; g(x, t(x)) a.e. 

But now the gap theorem comes into play to assure us that 

C;(x) :::;; t(x) a.e. 

Conclusion: Any program that runs in time t(x) on the fast computer also 
runs in time t(x) (for sufficiently large x) on the slow computer! 

Exercises 

1. Let C be a complexity measure. Does the gap theorem imply that 
there is no program number i such that lxl 2 :::;; C;(x):::;; lxl 3 a.e.? 
Explain. 
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2. Let C be a complexity measure. We will say that a total function f(x) 
is C-constructible if there is a program number i such that C;(x) = f(x) 
for all x. Prove or disprove that every computable function is C-con­
structible. 

3. Preliminary Form of the Speedup Theorem 

Computer scientists often seek programs that will obtain a desired result 
using minimum resources. The speedup theorem, which is the deepest 
theorem in this chapter, tells us that it is possible for there to be no best 
program for this purpose. Roughly speaking, the theorem states that there 
exists a recursive function that is so badly behaved that for every program 
to compute it, there is another program that computes the same function 
but which uses much less resources. The proof of the speedup theorem is 
quite intricate. In this section we will prove a preliminary version. Then in 
the next section we will use this preliminary version to obtain the full 
speedup theorem. The proof of the speedup theorem will use the parame­
ter theorem and the recursion theorem from Chapter 4 (Theorems 5.1 and 
8.1). 

We define a particular complexity measure M;(x) as follows. If <l>;(x)j, 
then M;(x)j. If <l>;(x)L then M;(x) is the largest value assumed by any 
variable in program number i when computing with input x. Thus M;(x) is 
just the complexity measure in Example 2 of Section 1. We will also work 
with MF>(x 1 , x2 ), which is defined exactly like M;(x) except that program 
number i is given the pair of inputs x 1 , x 2 • M;(x) and MF>(x 1 , x2 ) are 
related by 

Theorem 3.1. MF>(x, y) = Ms/(y,i)(x), where S/ is the function defined in 
the parameter theorem. 

Proof. Let i = #(.90 ). Then, examining the proof of Theorem 5.1 in 
Chapter 4, we see that S/(y, i) = #(.9), where .9 is a program consisting 
of y copies of the instruction X 2 +-- X 2 + 1 followed by the program .90 • 

The result is now obvious. • 

Our preliminary form of the speedup theorem is as follows. 

Theorem 3.2. Let g(x, y) be any given recursive function. Then there is a 
recursive function f(x) such that f(x) ::; x and, whenever <I>; = f, there is 
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a j such that 

ci>i(x) = f(x) a.e. (3.1) 

and 

a.e. (3.2) 

Discussion. To see the force of the theorem take g(x, y) = 2Y. Then, 
given <I>; = f, there is a j satisfying (3.1) such that 

i.e., 

M/x) :::;; log2 M;{x) a.e. 

Thus program number j computes f a.e. and uses far less resources than 
program number i. In Section 4 we shall improve this preliminary version 
of the speedup theorem by eliminating the "a.e." condition in (3.1) and by 
obtaining (3.2) for an arbitrary complexity measure, not merely for M. 

The proof of Theorem 3.2 will use a diagonal argument, but one far 
more complex than we have encountered so far. Let us recall how a simple 
diagonal argument works. When we write 

K = {n E N I n ft W,} 

we know that K is not r.e. because it differs from each r.e. set W; with 
respect to the number i, namely, i E W; if and only if i ft K. More 
generally, a diagonal argument constructs an object that is guaranteed not 
to belong to a given class by systematically ensuring that the object differs 
in some way from each member of the class. More intricate diagonal 
arguments often are carried out in an infinite sequence of stages; at each 
stage one seeks to ensure that the object being constructed is different 
from some particular member of the class. The proof of the speedup 
theorem is of this character. 

Proof of Theorem 3.2. We will proceed through "stages" x = 0, 1, 2, 3, .... 
At each stage x and for certain n, w EN, we will define a set C(n, w, x) ~ 
N. We think of the members of C(n, w, x) as numbers of programs which 
are cancelled at stage x with respect to n and w. C(n, w, x) is defined 
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recursively by the equation 

C(n,w,x)={iENiw:o;;i<x&i$. UC(n,w,y) 
y<x (3.3) 

&M;(x) <g(x,M~2>(x,i + 1))}. 
We think of Cas a 3-ary partial function on N. (The fact that the values of 
C are finite subsets of N instead of numbers is of no importance. 
Naturally, if we wished, we could use some coding device to represent each 
finite subset of N by a particular number.) The three conditions in (3.3) 
connected by & are to be tested in order with the understanding that if the 
first or second condition is false, the succeeding conditions are simply not 
tested. Thus we have 

W ~X implies C(n, w, x) = 0 for all n. (3.4) 

Moreover, we have obviously 

Lemma 1. If C(n, w, y) ~ for all y < x and Mp>(x, i + 1) ~ for all i such 
that w:::;; i < x, then C(n, w, xH. 

Indeed, when the conditions of Lemma 1 are satisfied, we can explicitly 
compute C(n, w, x) given knowledge of C(n, w, y) for y < x. Now clearly, 
when the conditions of Lemma 1 are not satisfied, C(n, w, x)j. Thus (3.3) 
can be used to give an algorithm for computing C and we may conclude 
that C is a partially computable function. 

Lemma 2. If i E C(n, w, x), then M;(xH and cl>;(xH. 

Proof. The truth of the condition 

M;(x) < g(x, M~2>(x, i + 1)) 

implies that M;(x) ~,and by the Blum axioms, this implies cl>;(x) ~. • 

We shall now define a 3-ary partially computable function k on N such 
that if C(n, w, xH, then for each i E C(n, w, x), we will have k(x, w, n) -=!= 

cl>;(x). k is computed by using the following procedure: 

Compute C(n, w, x). If this computation terminates, compute cl>;(x) 
for each i E C(n, w, x). [By Lemma 2, each such ct>;(xH .] Finally, 
set k(x, w, n) equal to the least number which is not a member of the 
finite set 

{cl>;(x)li E C(n,w,x)}. 
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It is to this function k that we apply the recursion theorem. Thus, we 
obtain a number e such that 

<1>~2>(x, w) = k(x, w, e). (3.5) 

Lemma 3. If x ::::; w, then k(x, w, e) = 0. 

Proof. Let x::::; w. By (3.4), C(e, w, x) = 0. Hence, by definition, k(x, w, e) 
is the least number which does not belong to 0, namely, 0. • 

Lemma 4. If k(x, w, e)!, then k(x, w, e) ::::; x. 

Proof. The largest possible value for k(x, w, e) would be obtained if the 
values <l>;(x) for i E C(e, w, x) were all different and were consecutive 
numbers beginning with 0. In this "worst" case, there would be as many 
values of <l>;(x) as in the set C(e, w, x). But, 

C(e, w, x) ~ {i EN I w::::; i < x} 

~ {0, 1, 2, ... , X - 1}. 

Thus, all the values of <l>;(x) would be < x and hence k(x, w, e) ::::; x. • 

Lemma 5. Let x > w. Suppose that 

<t>?>(x, w + 1)!, <1>~2>(x, w + 2H, ... , <t>?>(x, x) ~ (3.6) 

and 

<t>?><o, w)!. <1>?>(1, w)!. ... , <1>~ 2>(x - 1, w H. (3.7) 

Then, <1>~2>(x,w)!, i.e., k(x,w,eH. 

The reader is referred to Fig. 3.1 in connection with this lemma. In 
effect, Lemma 5 states that if <1>~2 > is defined along both the horizontal and 
vertical "pincers" shown pointing at (x, w ), then it must also be defined at 
(x, w). 

Proof of Lemma 5. By (3.7), <1>~ 2>(y, w H for all y < x. By definition 
of k(y,w,e) = <t>?>(y,w), we have that C(e,w,y)! for all y <x. By 
(3.6), <1>~2>(x, i + 1)~ for all i such that w::::; i < x. Hence, likewise, 
M?>(x, i + 1)~ for these i. By Lemma 1, C(e, w, xH. But now, by defini­
tion of k, k(x, w, eH. • 

Lemma 6. <1>?> is total. 

Proof. We shall prove by induction on x the assertion 

For all w, (3.8) 



432 Chapter 14 Abstract Complexity 

X 

Figure 3.1. Horizontal and vertical "pincers" pointing at (x, w ). (Sec Lemma 5.) 

By Lemma 3, we have 

<1>~2>(0, w) = k(O, w, e) = 0, 

which gives the result for x = 0. Suppose that x > 0, and it is known that 

ci>~Z>(y' W) J, 

for all y < x and all w. We shall show that (3.8) then follows. 
By Lemma 3, (3.8) holds for all w ~ x. Thus, we need show only that 

(3.8) holds for w < x. That is, it suffices to show that 

ci>~2>(x, x - 1) J, ... , ci>~2>(x, O)J,. 

We will prove each of these in succession by using Lemma 5. That is, in 
Lemma 5, we successively set w = x - 1, x - 2, ... , 0. In each case (3.7) 
(the horizontal "pincer") is satisfied by the induction hypothesis. For 
w = x - 1, (3.6) requires only that cl>~2>(x, x)J,, and this last follows at 
once from Lemma 3. Thus by Lemma 5, ci>~2>(x, x - 1) J,. But this means 
that (3.6) is now satisfied with w = x - 2. Hence once again Lemma 5 
shows that cl>~2>(x, x - 2) J,. Continuing, we eventually obtain cl>~2>(x, 0) J, . 

• 
For the remainder of the proof of Theorem 3.1, we will use the notation 

lw = {i EN I i < w} = {0, 1, ... , W- 1}. 
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Lemma 7. C(n, w, x) = C(n, 0, x) - Iw. 

Proof. The proof is by induction on x. C(n, w, 0) = 0 for all n, w. Hence 
the result for x = 0 is trivially true. Suppose the result known for all y < x. 
We obtain the result for x as follows (noting {i E N I w ::; i < x} n lw = 0): 

C(n,w,x) = {i EN I w::; i <x & i $. U C(n,w,y) 
y<x 

& M;(x) < g(x, M~2>(x, i + 1))} 
= {iENiw::=;i<x & i$. U (C(n,O,y) -lw) 

y<x 

& M;(x) < g(x, M~2>(x, i + 1))} 
={iENiw::=;i<x&i$. UC(n,O,y) 

y<x 

& M;(x) < g(x, M~2>(x, i + 1))} 
={iENIO::=;i<x&i$. UC(n,O,y) 

y<x 

&M;(x) <g(x,M~2>(x,i + 1))} -lw 

= C(n,O,x)- lw. • 

Lemma 8. For each w E N, there is a number mw such that for all 
x > mw, we have 

<t><2>(x w) = <t><2>(x 0) 
e ' e ' · 

Proof. By (3.3) [the definition of C(n, w, x)], we have C(e, 0, x) n 
C(e, 0, y) = 0 for x -=!= y. [Numbers in C(e, 0, y) for y < x are automati­
cally excluded from C(e, 0, x).] Hence each number in Iw belongs to at 
most one of the sets C(e, 0, x). If we let mw be the largest such value of x, 
then for X> mw, 

C(e,O,x) n lw = 0. 

Hence, using Lemma 7, for X > mw' 

C(e,w,x) = C(e,O,x)- lw = C(e,O,x). 
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Hence, by the definition of the function k we have for X > mw' 

<I>;2>(x, w) = k(x, w, e)= k(x,O, e)= <t>?>(x,O). • 

Note that there is no claim being made that mw is a computable 
function of w, and indeed it is not! 

We are now ready to define the function f(x) whose existence is 
asserted in Theorem 3.2. We set 

f(x) = <I>;2>(x,O). 

Lemma 9. If <I>; = f and x > i, then 

g(x, M~2>(x, i + 1)) :::;; M;(x). 

Proof. Suppose otherwise. Choose the least value of x > i with 

g(x, M~2>(x, i + 1)) > M;(x). (3.9) 

Then we claim that for y < x, i $. C(e, 0, y ). This is because 

C(e,O,y) = {j EN I j <y & j $. U C(e,O,z) 
z<y 

&M/y) <g(y,M~2>(y,j + 1))}, 
so that, if i E C(e, 0, y), we would have i < y < x, and 

g(y, M~2>(y, i + 1)) > M;(y), 

contradicting the choice of x as the least number > i satisfying (3.9). 
Thus, we have 

i ft. U C(e,O,y). 
y<x 

Hence, 

iEC(e,O,x)={jENij<x&j$. UC(e,O,y) 
y<x 

& Mi(x) < g(x, M~2>(x,j + 1)) }· 

Now k(x, 0, e) was defined to be different from all <l>i(x) for which 
j E C(e, 0, x). Hence, k(x, 0, e) =/= <l>;(x). But 

k(x,O,e) = <1>~2>(x,O) =f(x) = <l>;(x), 

This contradiction completes the proof. 
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Proof of Theorem 3.2 Concluded. Let <I>; = f, and set j = Sf<i + 1, e). 
Then, by Theorem 3.1 and Lemma 9, we have for x > i, 

g( x, Mj(x)) = g(x, M;2>(x, i + 1)) 5o M;(x), 

which proves (3.2). Finally, using the parameter theorem (Theorem 5.1 in 
Chapter 4) and Lemma 8 we have for x > m;+ 1 , 

<1>/x) = <t>?>(x,i + 1) = <I>!2>(x,O) =f(x), 

which proves (3.1). 

4. The Speedup Theorem Concluded 

• 

We will begin by showing how to eliminate the a.e. from Eq. (3.1) in 
Theorem 3.2. The technique we will use is a general one; to change a 
condition 

<1>/x) = f(x) a.e. 

into an equation valid everywhere, we need only modify program number j 
to agree with f(x) at a finite number of values. We can do this by patching 
in a "table look-up" program. More precisely, we have 

Theorem 4.1. There is a recursive function t(u, w) such that 

<I> {x) - { <1>/x) 
t(u,w) - (r(w))x+ 1 

Mt(u,w)(x) = M/x) 

if x > l(w) 

if x 5o l(w), 

if x > l(w). 

Here, once again we are using the pairing functions and Godel numbers 
as coding devices (Chapter 3, Section 8). 

Proof. Let the numbers u, w be given. Let Pu be program number u of 
the language .Y, if this program begins with a labeled statement. Other­
wise let Pu be program number u modified by having its initial statement 
labeled by a label not otherwise occurring in the program. In either case 
let L be the label with which Pu begins. 

Let Qu w be a program of Y which computes the primitive recursive 
function (r(w))x+ 1 , which always terminates using a branch instruction, 
and which has no labels in common with Pu . Let V be a local variable that 
occurs neither in Pu nor in Qu w. Let t(u, w) be the number of the 
program indicated in Fig. 4.1. N~te that V- X is to be replaced by a 
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suitable macro expansion as in Chapter 2 and that there are /( w) state­
ments V +-- V - 1. Clearly this can all be done with t a recursive (even 
primitive recursive) function. 

Now, letx > l(w). Then after the /(w) decrement instructions V +-- V- 1 
have been executed, V will have the value x- l(w) > 0. Hence, the 
branch shown will be taken and program Pu will be executed. Hence, 
<l>,(u,w)(x) = <l>u(x). To compare the value of M,(u,w)(x) and Mu(x) we 
need to be concerned about the maximum value assumed by variables in 
the macro expansion of V +-- X. Examining this macro expansion as given 
in (c) in Chapter 2, Section 2, we see that the only possibility for a number 
> x to arise is in the case x = 0. This is because local variables need to be 
incremented to 1 in this macro expansion in order to force a branch to be 
taken.2 However, we are assuming x > l(w) ~ 0, so that x =/= 0. Hence, 
Mt(u,w)(x) = Mu(x). 

Finally, let x ~ l(w). Then after /(w) executions of V +-- V- 1, V has 
the value 0. Thus Qu,w is executed. Hence, <l>t(u,w)(x) = (r(w))x. • 

Now we can easily prove 

Theorem 4.2. Let g(x, y) be any given recursive function. Then there is a 
recursive f(x) such that f(x) ~ x and, whenever <I>; = f, there is a j such 
that 

<1>/x) = f(x) 

and 

g( x, M/x)) ~ M;(x) a.e. 

2 Actually, if each unconditional branch statement in program (c), Chapter 2, Section 2, 
is directly expanded, some of the local variables used in this expansion will reach values 
> 1. The simplest way to get around this is to place the single statement Z 2 +- Z2 + 1 at the 
beginning of this program and then to replace each of the four unconditional branch 
statements GOTO L by the corresponding conditional branch statement IF Z 2 * 0 GOTO L. 
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Proof. Let f be as in Theorem 3.2, and suppose <I>; =f. Then there is 
j EN such that (3.1) and (3.2) hold. Let <l>ix) = f(x) for x > x 0 • Let 

w = (x0 ,[f(O), ... ,f(x0 )]). 

Finally, let j = t(j, w). Then using Theorem 4.1, 

if X> X 0 

if X :::;; Xo, 

i.e., <l>j =f. Theorem 4.1 also implies that M;(x) =Mix) a.e. Hence, 
using t3.2), we have almost everywhere 

• 
Finally, we are ready to give the speedup theorem for arbitrary complex­

ity measures. 

Theorem 4.3 (Blum Speedup Theorem). Let g(x, y) be any given recur­
sive function and let C be any complexity measure. Then there is a 
recursive function f(x) such that f(x) :::;; x and whenever <I>; = f, there is a 
j such that 

and 

Proof. Using the recursive relatedness theorem (Theorem 1.2), there is a 
recursive function r(x, y) such that 

r(x, y) < r(x, y + 1), 

C;(x) :::;; r(x, M;(x)) a.e. 

M;(x) :::;; r(x, C;(x)) a.e. 

Let 

h(x, y) = L, g(x, z), 
zsy 

so that h is recursive, 

h(x,y) ~ g(x,y), 

and 

h(x, y + 1) ~ h(x, y). 
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Finally, let 

g(x,y) = r(x,h(x,r(x,y))). 

Now, we apply Theorem 4.2 using g as the given function g. Let f(x) be 
the recursive function obtained, so that f(x) ::; x. Let <I>; =f. Then there 
is a j such that <l>j = f and 

g( x, M/x)) ::; M;(x) a.e. 

Hence, we have, almost everywhere, 

r(x,g(x,C/x)))::; r(x,h(x,C/x))) 

::; r(x,h(x,r(x, M/x)))) 

=g(x,M/x)) 

::; M;(x)::; r(x,C;(x)). 

Now, if C;(x) < g(x, Cj(x)) for any value of x, we would have, for that 
value of x, 

Hence, we must have, almost everywhere, 

• 
Exercises 

1. Show that for all i E N there is a j such that <l>j(x) = M;(x) and 
<1>/x) = Mj(x) for all x. Conclude that every function M;(x) has an 
"optimal" program with respect to complexity measure M. 

2. Let L be the set of all strings that are syntactically correct Pascal 
programs, and let 

P(x) = {~ if X E L 
otherwise. 

Does the speedup theorem imply that there is no fastest .9 program 
that computes P(x)? Explain. 
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Polynomial-Time Computability 

1. Rates of Growth 

In this chapter we will be working with functions f such that f(n) EN for 
all sufficiently large n E N, but which may be undefined or have negative 
values for some finite number of values of n. We refer to such functions 
briefly, and slightly inaccurately, as functions from N to N. These func­
tions f will typically have the additional property 

lim f(n) = oo. (1.1) 
n-+oo 

Examples of such functions are n2 , 2n, and llog 2 nJ. It will be important for 
us to understand in what sense we can say that 2n grows faster than n2 and 
that n2 grows faster than Uog 2 nJ. Although in practice, the definitions we 
are about to give are of interest only for functions that satisfy (1.1), our 
definitions will not assume that this is the case. 

Definition. Let f, g be functions from N to N. Then, we say that 
f(n) = O(g(n)) if there are numbers c and n 0 such that f(n) :;;; cg(n) for 
all n ~ n 0 • If these conditions do not hold we say that f(n) =/= O(g(n)). 

If f(n) = O(g{n)) and g(n) = O{f(n)) we say that f and g have the 
same rate of growth. On the other hund, if f(n) = O(g(n)) but g(n) =/= 

O(f(n)), we say that g(n) grows faster than f(n). 

439 
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An example should help clarify these notions. We have 

n2 = 0(3n2 - 6n + 5) 
since 

1 1 

3n2 - 6n + 5 
----------~~-

3- 6/n + 5jn 2 3 

as n ~ oo, and therefore there is a number n 0 such that for all n ~ n0 , 

nz 

3n2 - 6n + 5 :::;; 1. 

Likewise 3n2 - 6n + 5 = O(n2 ), so that these two functions have the 
same rate of growth. 

Clearly, it is also true that 3n2 - 6n + 5 = O(n 3 ); however, 

n3 -=1= 0(3n2 - 6n + 5) 

because 

n3 1 
--=-------- = n . ~ oo 
3n2 - 6n + 5 3- 6/n + 5jn 2 

as n ~ oo. Thus, we can say that n3 grows faster than 3n2 - 6n + 5. 
More generally, we can prove 

Theorem 1.1. Let f, g be functions from N to N, and let 

. f(n) 
hm -( ) = {3, 

n->oo g n 
(1.2) 

where {3 is a positive real number. Then f(n) = O(g(n)) and g(n) = 
O(f(n)), so that f and g have the same rate of growth. 

If, on the other hand, 

f(n) 
lim -- = oo, 

n-+oo g(n) 
(1.3) 

then g(n) = O(f(n)) but f(n) -=!= O(g(n)), so that f(n) grows faster than 
g(n). 

Proof. If (1.2) holds, then there is a number n 0 such that for all n ~ n0 , 

f(n) 
g(n) :::;; {3 + 1. 
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Hence, f(n) = O(g(n)). Since (1.2) implies that 

g(n) 1 
lim--=-

n->"' f(n) {3' 

the same reasoning can be used to show that g(n) = O(f(n)). 
Next, (1.3) implies that 

. g(n) 
hm f( ) = 0. 

n---+00 n 

Therefore, there is a number n 0 such that n ~ n 0 implies 

g(n) 

f(n) ~ 1. 

441 

Hence, g(n) = O(f(n)). If we had also f(n) = O(g(n)), then for numbers 
c, n0 we should have for n ~ n 0 , 

f(n) 
g(n) ~ c; 

on the other hand, (1.3) implies that there is a number n 1 such that n ~ n1 

implies 
f(n) 

g(n) > c, 

which is a contradiction. • 
A polynomial is a function p from N to N that is defined by a formula 

of the form 

(1.4) 

where a0 , a 1 , ••• , a,_ 1 are integers, positive, negative, or zero, while a, is a 
positive integer. In this case the number r is called the degree of the 
polynomial p. The degree of a polynomial determines its rate of growth in 
the following precise sense. 

Theorem 1.2. Let p be a polynomial of degree r. Then p and n' have the 
same rate of growth. Moreover, p grows faster than nm if m < r, and nm 
grows faster than p if m > r. 

Proof. Letting p be as in (1.4), we have 

p(n) a0 a 1 
--=-+--+···+a ~a n' n' nr-I r r 
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as n ~ oo. Also, 

so that 

p(n) 
-- ~00 

nm 

p(n) p(n) 
__ = --·nr-m 

nm n' ' 

if r > m, and 
p(n) 
--~o 

nm 

The result then follows from Theorem 1.1. 

if r < m. 

• 
Next we shall see that exponential functions grow faster than any fixed 

power. 

Theorem 1.3. The function kn, with k > 1, grows faster than any polyno­
mial. 

Proof. It clearly suffices to prove that for any r E N, 

kn 
lim -, = oo. 

n-HXJ n 

One way to obtain this result is to use L'Hospital's rule from calculus; on 
differentiating the numerator and denominator of this fraction r times, a 
fraction is obtained whose numerator approaches infinity and whose de­
nominator is a constant (in fact, r!). To obtain the result directly, we first 
prove the following lemma. 

Lemma. Let g be a function from N to N such that 

g(n + 1) 

!~"" g(n) = {3 > 1. 

Then g(n) ~ oo as n ~ oo. 

Proof of Lemma. Let y be a number strictly between 1 and {3, for 
example, y = (1 + {3) ;2. Then there is a number n 0 such that n ~ n0 

implies 

Thus, for each m, 

g(n + 1) 

g(n) ~ 'Y· 

g(n 0 + m) ~ yg(n 0 + m - 1) ~ ··· ~ ymg(n 0 ). 

Since y m ~ oo as m ~ oo, the result follows. • 
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Proof of Theorem 1.3 Concluded. Setting 

we have 

g(n + 1) 

g(n) 

g(n) = kn jn', 

which, by the lemma, gives the result. 

Exercises 
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as n ~ oo, 

• 

1. Suppose we have a computer that executes 1 million instructions per 
second. 
(a) For each of the following functions f(x), give the length of the 

longest string that can be processed in one hour if f{lwl) instruc­
tions are required to process a string w: f(x) = x; f(x) = x 2 ; 

f(x) = x 4 ; f(x) = 2x. 

{b) For the same functions, approximately how long would it take to 
process w if lwl = 100? 

2. What is the least x EN such that 10000x2 :::;; 2x? 

3. For each of the following functions f(x), give a function g{x) such 
that some Turing machine on a two-symbol alphabet can calculate 
f(x) in O(g(lxl)) steps: f(x) = 2x; f(x) = x 2 ; f(x) = 2x; f(x) = 2<2 '>. 

4. (a) Show that if p(n) is defined by (1.4), then p(n) is positive for n 
sufficiently large, so that p is a function from N to N in the 
sense defined at the beginning of this chapter. 

(b) Show that if p(n) is as in (a) with r > 0, then p(n) ~ oo as 
n ~ oo. 

5. Show that n grows faster than llog2 nJ. 

6. Show that for any k ~ 1 and any polynomials p(x), q(x), there is a 
polynomial r(x) such that q(x) · kP<x> = 0(2'<x>). 

2. P versus NP 

Computability theory has enabled us to distinguish clearly and precisely 
between problems for which there are algorithms and those for which 
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there are none. However, there is a great deal of difference between 
solvability "in principle," with which computability theory deals, and solv­
ability "in practice," which is a matter of obtaining an algorithm that can 
be implemented to run using space and time resources likely to be 
available. It has become customary to speak of problems that are solvable, 
not only in principle but also in practice, as tractable; problems that may 
be solvable in principle but are not solvable in practice are then called 
intractable. 

The satisfiability problem, discussed in Chapter 12, is an example that is 
illuminating in this connection and will, in fact, play a central role in this 
chapter. The satisfiability problem is certainly solvable; in Chapter 12, we 
discussed algorithms for testing a given formula in CNF for satisfiability 
based on truth tables, on converting to DNF, on resolution, and on the 
Davis-Putnam rules. However, we cannot claim that the satisfiability 
problem is tractable on the basis of any of these algorithms or, for that 
matter, on the basis of any known algorithm. As we have seen, procedures 
based on truth tables or DNF require a number of steps which is an 
exponential function of the length of the expression representing a given 
formula in CNF. It is because of the rapid growth of the exponential 
function that these procedures can quickly exhaust available resources. 
Procedures based on resolution or on the Davis-Putnam rules can be 
designed that work well on "typical" formulas. However, no one has 
succeeded in designing such a procedure for which it can be proved that 
exponential behavior never arises, and it is widely believed (for reasons 
that will be indicated later) that every possible procedure for the satisfia­
bility problem behaves exponentially in some cases. Thus the satisfiability 
problem is regarded as a prime candidate for intractability, although the 
matter remains far from being settled. 

This association of intractability with the exponential function, coupled 
with the fact (Theorem 1.3) that an exponential function grows faster than 
any polynomial function, suggests that a problem be regarded as tractable 
if there is an algorithm that solves it which requires a number of steps 
bounded by some polynomial in the length of the input. 

To make these ideas precise, we have recourse to the Turing machine 
model of computation as developed in Chapter 6. In particular, we shall 
use the terms configuration and computation as in Chapter 6. 

Definition. A language L on an alphabet A is said to be polynomial-time 
decidable if there is a Turing machine L that accepts L, and a polynomial 
p(n), such that the number of steps in an accepting computation by L 
with input x is ::;; p(lxl). When the alphabet is understood, we write P for 
the class of polynomial-time decidable languages. 
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Definition. A total function f on A*, where A is an alphabet, is said to 
be polynomial-time computable if there is a Turing machine L that 
computes f, and a polynomial p(n), such that the number of steps in the 
computation by L with input x is :::;; p(lxl). 

With respect to both of these definitions, we note 

1. It suffices that there exist a polynomial p(n) such that the number of 
steps in the computation by L with input x is :::;; p(lxl) for all but a 
finite number of input strings x. For, in such a case, to include the finite 
number of omitted cases as well, we let c be the largest number of 
steps used by L in these cases, and replace p(n) by the polynomial 
p(n) +c. 

2. Using 1 and Theorem 1.2, it suffices that the number of steps be 
O(lxl') for some r E N. 

The discussion leading to these definitions suggests that in analogy with 
Church's thesis, we consider the 

Cook-Karp Thesis. The problem of determining membership of strings 
in a given language L is tractable if and only if L E P. 

The evidence supporting the Cook-Karp thesis is much weaker than 
that supporting Church's thesis. Nevertheless, it has gained wide accep­
tance. Later, we shall discuss some of the reasons for this. 

The following simple result is quite important. 

Theorem 2.1. Let L E P, let f be a polynomial-time computable func­
tion on A*, and let Q = {x E A* I f{x) E L}. Then Q E P. 

Proof. Let L accept L using a number of steps which is O(lxl'), and let 
.!Y compute f(x) in a number of steps which is O(lxls). A Turing machine 
!J1I that accepts Q is easily constructed that, in effect, first runs .!Y on x to 
compute f(x) and then runs Lon f(x) to determine whether f(x) E L. 
Since a Turing machine cannot print more symbols in the course of a 
computation then there are steps in that computation, we have 

lf(x)l:::;; lxl + p(lxl), where p(n) = O(ns). 

By Theorem 1.2, it follows that lf{x)l = O(lxls). Hence, the number of 
steps required by !J1I on input x is O(lxlsr). • 

Theorem 2.2. Let f, g be polynomial-time computable functions, and let 
h(x) = f(g(x)). Then h is polynomial-time computable. 

Proof. The proof is similar to that of the previous theorem. • 
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It has turned out to be extremely difficult to prove that specific lan­
guages do not belong to P, although there are many likely candidates. An 
important example is the satisfiability problem discussed in Chapter 12. To 
make matters definite, we assume a set of atoms .91' = {a2 , a 2 , ••• }, where 
subscripts are understood as in Section 1 of Chapter 12. We use the 
symbols 

for the atoms and their negations, simply using concatenation for disjunc­
tion. Finally, we use the symbol 1 to begin a clause. Then, any string on 
the alphabet C ={a, a, I, I} which begins 1 and in which 1 is never 
immediately followed by I, stands for a CNF formula (where in the interest 
of simplicity we are permitting empty and tautologous clauses and repeti­
tions of literals in a clause). Thus the CNF formula 

(p v q v r v s) A (ij v jJ v r v s) A (ij v jJ v r) 

from Chapter 12 could be written as 

Any string in C* which ends 1 or in which 1 is repeated represents a CNF 
formula which contains the empty clause, and hence is unsatisfiable. 

Now, we write SAT for the language consisting of all elements of C* 
that represent satisfiable CNF formulas. In spite of a great deal of 
attention to the question, it is still not known whether SAT E P. The 
starting point of the work on computational complexity that we discuss in 
this chapter is the observation that the situation changes entirely when we 
shift our attention from deterministic to nondeterministic computation. 
Nondeterministically one can discover very rapidly that a formula is 
satisfiable; it is necessary only that the satisfying assignment be "guessed." 
That is, instead of constructing an entire truth table, it suffices to construct 
a single row. To make these ideas precise, we have recourse to nondeter­
ministic Turing machines as discussed in Chapter 6, Section 5. 

Definition. A language L is said to belong to the class NP if there is a 
nondeterministic Turing machine L that accepts L, and a polynomial 
p(n), such that for each x E L, there is an accepting computation 
y 1 , y 2 , ••• , 'Ym by L for x with m :::;; p(lxl). 

We then have readily 

Theorem 2.3. P ~ NP. If L E NP, then L is recursive. 
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Proof. The first inclusion is obvious, since an ordinary Turing machine is 
a nondeterministic Turing machine. 

For the rest, let L E NP, let L be a nondeterministic Turing machine 
which accepts L, with corresponding polynomial p(n). We set y 1 to be the 
configuration 

Next, by examining the quadruples of L, we find all configurations y 2 

such that y 1 I- y 2 • Continuing in this manner, we determine all possible 
sequences y 1 , y 2 , ••• , 'Ym with m :;;; p(lxl) such that 

'Y1 I- 'Y2 I- · ·· I- 'Ym • 

Then, x E L if and only if at least one of these sequences is an accepting 
computation by L for x. This gives an algorithm for determining whether 
x E L, and so, invoking Church's thesis, we conclude that L is recursive. 
(Methods like those used in Chapter 7 could be used to prove that L is 
recursive without using Church's thesis.) • 

In line with our discussion of the satisfiability problem viewed nondeter­
ministically, we can prove 

Theorem 2.4. SATE NP. 

Proof. Without providing all the rather messy details, we indicate how to 
construct a nondeterministic Turing machine L that accepts SAT. 

L will begin by checking that a given input string x E C* really does 
represent a CNF formula. Such a check requires only verifying that x 
begins with the symbol 1 and that no 1 is immediately followed by I. This 
can clearly be accomplished by L in a single pass over x, and therefore it 
can be done in O(lxl) steps. 

The remainder of the computation will involve successive passes over 
the string x in which truth values are assigned to literals, and clauses thus 
satisfied are labeled as being such. When a clause has been satisfied, the 
symbol 1 that introduces it is replaced by ! (so the fact that a clause still 
begins 1 indicates that it has not yet been satisfied). Also, when a literal 
a llil is assigned the value 1, all occurrences of the literal a llil in clauses 
not yet satisfied will be replaced by cpllil (so that they will not be assigned 
the value 1 in a subsequent pass). Likewise, when the literal a llil is 
assigned the value 0, all occurrences of that literal in clauses not yet 
satisfied will be replaced by cpllil. 
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We will speak of L as being in one of two modes: search or update. 
After verifying that the input string x does represent a CNF formula, L 
enters search mode. In search mode, L begins by finding the first 
occurrence of 1 remaining in x, starting from the left. If no 1 remains, 
then the formula has been satisfied and the computation halts. Otherwise, 

L has found an 1 and seeks to satisfy the clause that it heads. L scans the 
clause, moving to the right. When the symbol a or a is encountered, L is 
scanning the first symbol of a literal a I Iii or a 11i1, as the case may be. L 
thus has the opportunity to satisfy the clause by making this literal true, 
assigning a llil the value 1 in the first case and 0 in the second. L 
nondeterministically decides whether to make this assignment. (This is the 
only respect in which L behaves nondeterministically.) If L does not 
make the assignment, then it continues its scan. If it reaches the end of the 
clause without having made an assignment, L enters an infinite loop. If L 
does make such an assignment, it enters update mode. 

In update mode, L begins by marking the newly assigned literal, 
replacing a by p, or a by p, respectively. L then moves left to the 1 that 
begins the clause and replaces it by !. Finally, L moves to the right end of 
x, and then scans from right to left, checking all literals in subsequent 
clauses to see whether they match the newly assigned literal. This can be 
done by checking each block of Is against the block that follows p (or p). 
For literals that have been made true by the new assignment, the clause 
containing them is marked as satisfied, by replacing the 1 at its head by !. 
For literals that have been made false, the a or a is replaced by cp. When 
the update is complete, L reenters search mode. 

This completes the description of how L operates. It remains to 
estimate the number of steps that L requires for a successful computa­
tion. The number of steps between L entering and leaving each of search 
and update mode is clearly O(lxl). Since this will happen no more than lxl 
times, we conclude that the time for the entire computation is O(lxl 2 ) • 

• 
It is natural to ask whether the inclusion P ~ NP is proper, i.e., whether 

there is a language L such that L E NP - P. As we shall see, using the 
notion of NP-completeness to be defined below, it can be shown that if 
there were such a language, then it would follow that SATE NP- P. 
Unfortunately, this remains an open question. 

Definition.1 Let L, Q be languages. Then we write 

Q ::;P L, 

1 For a general discussion of reducibility, see Chapter 8. 
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and say that Q is polynomial-time reducible to L, if there is a 
polynomial-time computable function f such that 

X E Q <=> f( X) E L. 

Theorem 2.5. Let R ::=;P Q and Q ::;P L. Then R ::=;P L. 

Proof. This follows at once from Theorem 2.2. • 
Definition. A language L is called NP-hard if for every Q E NP, we have 
Q ::;P L. L is called NP-complete if L E NP and L is NP-hard. 

The significance of NP-completeness can be appreciated from the fol­
lowing result. 

Theorem 2.6. If there is an NP-complete language L such that L E P, 
then NP = P. 

Proof. We need to show that if Q E NP, then Q E P. Let Q ~A*. Since 
L is NP-hard, there is a polynomial-time computable function f such that 

Q = {x E A* I f(x) E L}. 

The result now follows from Theorem 2.1. • 
Intuitively, one can thus think of the NP-complete languages as the 

"hardest" languages in NP. As we shall see in the next section, SAT is 
NP-complete. Thus, if it should turn out that SATE P, then every NP­
complete problem would also be in P. It is considerations like these that 
have led to the tentative conclusion that NP-complete problems should be 
regarded as being intractable. To date, however, although very many 
problems are known to be NP-complete, there is no language known to be 
in NP - P, and it thus remains possible that NP = P. 

Exercises 

1. Show that Theorem 2.1 still holds when Pis replaced by NP. 

2. Show that if 0 c L, M c A* for some alphabet A, and if L, ME P, 
then L ::=;P M. 

3. Show that L ::=;P M does not necessarily imply that M ::=;P L. 

4. Let L, ME P be languages on some alphabet A. Show that each of 
the following languages are in P: A* - L, L n M, L u M. 

5. Let L, ME NP be languages on some alphabet A. Show that each of 
the following languages are in NP: L n M, L u M. 
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6. Show that every regular language is polynomial-time decidable. [See 
Chapter 9.] 

7. Show that every context-free language is polynomial-time decidable. 
[See Chapter 10.] 

8. Give a language that is not polynomial-time decidable. 

9. Give a function that is not polynomial-time computable. 

10. Let A be an alphabet and set 

co-NP = {L ~A* I A*- L E NP}. 

Show that if there is a language L such that L is NP-complete and 
L E co-NP, then NP = co-NP. 

11. Show that Theorem 2.1 still holds when Pis replaced by NP. 

12. * Let f be a total function on N, and let A be an alphabet. A total 
unary function g(x) on A* is computed in DTIME(f) if it is 
computed by some Turing machine that always runs in ~ f(lxl) steps 
on input x. A language L ~A* belongs to DTIME (f) if L is 
accepted by some Turing machine that runs in ~ f(lxl) steps for 
every x E L. L belongs to NTIME (f) if L is accepted by some 
nondeterministic Turing machine that has an accepting computation 
with ~ f(l xI) steps for every x E L. For languages L, M ~A*, we 
will write L ~ 1 M to indicate that there is a function g computable 
in DTIME(f) such that x E L if and only if g(x) EM. 

(a) Show that P = Un~o DTIME(xn). 
(b) Show that NP = Un~o NTIME(xn). 
(c) Prove that if L E DTIME(x 2) and M ~~ L, where f(x) = x, 

then ME DTIME(4x 2 + x). 

(d) Prove that if L E NTIME(x 2 ) and M ~~ L, where f(x) = x, 
then ME NTIME(4x 2 + x). 

(e) Let f(x) = x 2 • Give a function g(x) such that if L E 

DTIME(x 2 ) and M ~r L, then ME DTIME(g). 
13. * A language L belongs to EXPTIME if there is a Turing machine L 

that accepts L and a polynomial p(n) such that for every x E L, L 
runs for no more than 2P<Ixl) steps. 
(a) Let ./Y be a nondeterministic Turing machine with k states. For 

a function f(x), what is the maximum number of distinct com­
putations that ./Y can carry out in ~ f(x) steps? 

(b) Show that NP ~ EXPTIME. [See Exercise 1.6.] 
14.* A language L belongs to PSPACE if there is a Turing machine L 

that accepts L and a polynomial p(n) such that for every x E L, L 
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scans at most p(lxD different squares on its tape. L belongs to 
NPSPACE if there is a nondeterministic Turing machine AI that 
accepts L and a polynomial q(n) such that for every x E L, AI has 
some accepting computation in which at most p(lxl) different tape 
squares are scanned. 

(a) Show that PSPACE = NPSPACE. 

(b) Show that NP ~ PSPACE. 

15.* (a) Let L be a Turing machine with states q1 , ••• , qk and alphabet 
{s1 , ••• , sn}. How many distinct configurations of L are there 
with m tape squares? 

(b) Show that PSPACE ~ EXPTIME. [Hint: Use the pigeon-hole 
principle. See the discussion in Section 1 of Chapter 14.] 

3. Cook's Theorem 

We now prove the main theorem of this chapter. 

Theorem 3.1 (Cook's Theorem). SAT is NP-complete. 

Proof. Since we know, by Theorem 2.4, that SATE NP, it remains to 
show that SAT is NP-hard. That is, we need to show that if L E NP, then 
L ::;;P SAT. Thus, let L E NP, and let L be a nondeterministic Turing 
machine that accepts L, with p(n) the polynomial that furnishes a bound 
on the number of steps L requires to accept an input string. Without loss 
of generality, we assume that p(n) ~ n for all n. We must show that there 
is a polynomial-time computable function that translates any input string 
u for L into a CNF formula 8u such that u is accepted by L if and only if 
8u is satisfiable. For a given input u, let t = p(lul). 

We know that if L accepts input u, it does so in :::;; t steps. Therefore, in 
order to determine whether L accepts u, we need only run it on u for at 
most t steps and check to see whether the final configuration is terminal. 
Since at each step of the computation, L can move at most one square to 
the left or right of the square currently being scanned, it follows that after 
t steps, the scanned square can be at most t squares to the left or t 
squares to the right of its original position. Since we have chosen the 
polynomial p(n) so that t ~ lui, for our present purposes it suffices to 
consider 2t + 1 squares of tape. Thus, since we are considering only t 
steps of the computation, we can completely exhibit all of the information 
on .L's tape, using a t by (2t + 1) array (see Fig. 3.1). 
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I' 2t + 1 

l Tape at step 1 

Tape at step 2 . 
l 

. . 
Tape at step t 

Figure3.l 

The first line of this array, corresponding to the initial tape contents, will 
then have the form 

where L begins in state q 1 scanning the (t + l)th symbol in this string, 
the s0 immediately preceding u. 

We will find it convenient, in this proof, to use the Turing machine 
model used in Theorem 4.2 in Chapter 6, in which acceptance of an input 
is by arrival in a unique accepting state qm. We assume, therefore, that L 
is a Turing machine of this type. Let the set of states of L be Q = 
{q1 , q2 , ••• , qm} and let the set of tape symbols be S = {s0 , s 1 , ..• , sJ It 
will simplify matters if we need to check only configuration number t to 
determine acceptance. Thus, we alter our definition of accepting computa­
tion to permit any number of repetitions of consecutive configurations; 
hence we may assume that our accepting computation consists of exactly t 
steps. 

We will define a CNF formula l>u that is satisfiable if and only if u is 
accepted by L. Our set of atoms (each of length O(t 2 )) will be 

.91= {Ph,j,k,ui,j,k 11 ~ h ~ m,O ~ i ~ r,1 ~j ~ 2t + 1,1 ~ k ~ t}. 

We first assume that u is accepted by L, so that we have an accepting 
computation by L for u. We assume that the above t by 2t + 1 array has 
been constructed correspondingly. We will construct the CNF formula l>u 
so that l>:; = 1, where v is the assignment on .91 defined by 

f 01 v( Ph,j,k) = \ 

v(u .. k)=\ 1 
'· ], 

0 

if L is in state qh scanning the jth position at the 
kth step of the computation 
otherwise, 

(3.1) 

if tape symbol s; is in the jth position of the kth 
row of the array 
otherwise. 
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In constructing 8u, we will find the following abbreviation useful: 

V{xe 11 ~ e ~ /} = A (--, Xe V --,X 1) A V Xe, 

l~e<f~l l~e~l 

where {xe 11 ~ e ~ /} is a set of formulas. Thus, 

V{xe 11 ~ e ~ I} (3.2) 

is a formula whose value is TRUE (i.e., 1) under a given assignment if and 
only if exactly one of the formulas x1 , x2 , ••• , x1 has the value TRUE 
under that assignment. In the particular case that x 1 , x 2 , ••• , x 1 are atoms, 
(3.2) is a CNF formula. We will need to calculate I V{xe 11 ~ e ~ I} I in this 
case. Formula (3.2) contains a clause consisting of two literals for each pair 
(e, f) with 1 ~ e < f ~ I, followed by a single clause of I literals. Since 
there are /{I - 1) /2 such pairs ( e, f), and since in our notation, with 1 
being used to separate clauses, each clause is of length 1 plus the number 
of its literals, we have 

( 
/{1 - 1) ) 

IV{xel1~e~l}l= 2 ·3+(/+1) ·O(t 2 )=0(/2t 2 ). 

Let us write 

where lui= z. 

We present a sequence of CNF formulas whose conjunction 8u (which is 
then also a CNF formula) may be thought of as simulating the behavior of 
Lin accepting u. Each of these formulas has the value TRUE under the 
assignment v. We precede each formula with an English sentence in 
quotes, which may be thought of as expressing a corresponding property of 
the accepting computation by L for u; each such sentence is intended to 
make it clear that the corresponding formula is indeed true under the 
assignment v. In some cases the formula as written will not be in CNF; in 
these cases the formula written is intended to stand for a formula in CNF 
obtained from it by using the methods of Chapter 12, Section 3. 

(1) "The initial configuration has tape contents corresponding to the 
first row of the array, with L in state q1 scanning the symbol s0 

immediately to the left of the first symbol of u." 

A Uo,j,l A A uui,t+j+l,l A A Uo,t+z+j+l,l A Pt,t+t,l· 
O<j~t+ I O<j~z O<j~t-z 

This expression is clearly of length O(t 3 ). 
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(2) "At each step of the computation there is a unique state and a 
unique scanned square." 

A V{Ph,j,kl1~h~m,1~j~2t+l}. 
1 ~k~t 

By the preceding remarks, the length of this expression is 0(15). 

(3) "Each entry of the array contains exactly one symbol." 

A A V{u;,j,k IO ~ i ~ r}. 
l~k~t l~j~21+1 

r is a constant, so that this expression is of length O(t4 ). 

(4) "Each configuration in the computation, after the first, is identical 
to the preceding configuration, or is obtained from it by applying one of 
the quadruples of L." 

This formula will be the most complicated. Let the quadruples of L be 
as follows: 

{q; s1· sk q1 I a= 1,2, ... ,a}, 
a a a u 

(3.3a) 

{ q;b sib R q1b I b = 1, 2, ... , b}, (3.3b) 

{q;, si, L q1, I c = 1, 2, ... , c}. (3.3c) 

To make the formula easier to understand, we write it in the form 

A A (NOTHEAD(j, k) VIDENT(j, k) 
I~ k < t I ~j ~ 21 +I 

VA(j, k) V B(j, k) V C(j, k)), 

where each of these five disjuncts will be explained below. It will turn out 
that each disjunct has length O(t 2 ); hence we may conclude that the 
length of the entire formula will be O(t 4). 

We define 

NOTHEAD(j, k) = V (u;,j,k 1\ ui,j,k+l) 1\ A -, Ph,j,k 

O~i~r I ~h~m 

so that NOTHEAD(j, k)v = 1 for given j, k if and only if L is not 
scanning the jth position at the kth step of the computation. 

Next we set 

IDENT(J·, k) = V V (p 1\ u: 1\ P 1\ u: ) h,j,k i,j,k h,j,k+l i,j,k+l ' 
l~h~m O~i~r 
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so that IDENT(j, k)v = 1 for given j, k if and only if L is scanning the 
jth position at both the kth and the (k + 1)th steps of the computation, 
and both the state and the symbol are the same in both of these configu­
rations. 

Next, 

A(j,k) = V (P;.,j.k 1\ Oj.,j.k 1\ uk.,j,k+l 1\ Pi.,j,k+l), 
lsasii 

where A(j, k)v = 1 if and only if the (k + 1)th step results from the kth 
by one of the quadruples of (3.3a). 

Similarly, we will define B(j, k) so that B(j, k)v = 1 if and only if the 
(k + 1)th step results from the kth by one of the quadruples of (3.3b). For 
j -=1= 2t + 1, we can define 

B(j,k) = V (p;b,j,k 1\ 0jb,j,k 1\ 0jb,j,k+l 1\ Pib,j+l,k+l). 
lsbsb 

This definition will not work for j = 2t + 1 because there are no atoms 
Ph,Zt + 2, k • But since the computation cannot proceed beyond the bound­
aries of our array, it suffices to take B(2t + 1, k) to be any unsatisfiable 
formula, e.g., the empty clause. 

Finally, we will define C(j, k) so that C(j, k)v = 1 if and only if the 
(k + 1)th step results from the kth by one of the quadruples of (3.3c). For 
j -=1= 1, we can define 

C(j, k) = V (p. · k 1\ U· · k 1\ U· · k I 1\ Pi · I k I)· led• led• led• + col- • + 
l:SC:SC 

This definition will not work for j = 1 because there are no atoms Ph, o, k. 

But since the computation cannot proceed beyond the boundaries of our 
array, it suffices to let C(l, k) be any unsatisfiable formula, e.g., the empty 
clause. 

(5) "The tth configuration is a terminal configuration." Equivalently, 
"At the tth step, L is in state qm ." 

V Pm,j,t• 
l,;;j,;;2t+l 

This expression is clearly of length O(t 3 ). 

Now, we take 8u to be simply the conjunction of the CNF formulas (1) 
through (5) above. It is clear from what has already been said that if L 
accepts u, then 8u is satisfiable; in fact, 8:; = 1. 
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Conversely, let v be an assignment such that 8:/ = 1. We will show that 
L accepts u. By (3), we see that for each 1 :::;; j :::;; 2t + 1, 1 :::;; k :::;; t, there 
is a unique i such that v(ui,j,k) = 1. Hence we can uniquely reconstruct 
our t by 2t + 1 array. By (2), for each row of the array there is a unique 
state qh and position j in the row such that v( Ph,j,k) = 1. Thus, each row 
can be made into a configuration of L so that (3.1) is satisfied. By (1), the 
configuration corresponding to the first row of the array is an initial 
configuration for L with input u. By (4), for each row of the array after 
the first, the corresponding configuration is identical to it or results from it 
using one of the quadruples of L. Finally, by (5) the entire sequence of 
configurations constitutes an accepting computation by L for u. Thus, u is 
accepted by .L. 

It remains to be shown that there is a polynomial-time computable 
function that maps each string u onto the corresponding CNF formula 8u . 
Now, the CNF formulas of (2)-(5) do not depend on u, and a Turing 
machine can easily be constructed to write these on a tape in a number of 
steps proportional to the length of the expression, which, as we have seen, 
is O{t 5 ), and hence polynomial in lui. It remains to consider (1), which is a 
conjunction of atoms. Some of these atoms do not depend directly on u; 
producing this part of (1) simply involves writing O(t3 ) symbols. The 
remaining atoms of (1) correspond in a one-one manner to the symbols 
making up u; they can obviously be produced by a Turing machine in a 
number of steps proportional to lui. This completes the proof. • 

Using Theorem 2.6, we have at once 

Corollary 3.2. P = NP if and only if SAT E P. 

Exercises 

1. Let L be the Turing machine with the single tuple q1 B a q2 , and let 
u be the string a. Give 8u for t = 1. 

2. For any set .Sit' of atoms, show that the set of all propositional DNF 
formulas over .Sit' that are not tautologies is NP-complete. 

3. For any set .Sit' of atoms, show that the set of all satisfiable proposi­
tional formulas over .Sit' is NP-complete. 

4. The HALF-SAT problem is this: given a propositional CNF formula y, 
determine if there is an assignment v on the atoms in yv = 1 and such 
that av = 1 for exactly half of the atoms a in y. [Hint: Show that 
SAT :::;;P HALF-SAT. Given a CNF formula y, create a new atom a' 
for each atom a in y and add clauses of the form {a, a'}, {a, a'}.] 
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4. Other NP-Complete Problems 

The principal technique for proving a problem to be NP-complete is given 
by the following result: 

Theorem 4.1. Let Q be an NP-complete problem, and let Q ~P L. Then 
L is NP-hard. 

Proof. Let R be any language such that R E NP. Since Q is NP-com­
plete, we have R ~P Q. By Theorem 2.5, R ~P L. Thus, L is NP-hard . 

• 
Corollary 4.2. Let Q be an NP-complete problem, let L E NP, and let 
Q ~P L. Then L is NP-complete. 

Thus, once it has been shown that a problem is NP-complete, it can be 
used to show that other problems are NP-complete. In this way many 
problems have been shown to be NP-complete. It is this fact that consti­
tutes the main evidence for regarding NP-complete problems as being 
intractable. Since the existence of a polynomial-time algorithm for even a 
single one of these problems would imply that there is a polynomial-time 
algorithm for every one of them, and, since it is argued that it is most 
unlikely that this could be the case without even one of these algorithms 
having been discovered, it is concluded that in all likelihood none of these 
problems have polynomial-time algorithms, and so they should all be 
regarded as intractable. 

We will present a very small sample of this work, showing that a few 
problems are NP-complete. We begin with a restricted form of the satisfi­
ability problem. 

The 3-SAT problem is to determine whether a formula in CNF in which 
no clause contains more than three literals is satisfiable. We show that 
3-SAT is NP-complete by showing that any CNF formula ~ can be 
transformed in polynomial time to a CNF formula ~ 1 containing at most 
three literals per clause such that ~ is satisfiable if and only if ~ 1 is 
satisfiable. 

Theorem 4.3. 3-SAT is NP-complete. 

Proof. Since 3-SAT is a special case of SAT, and SAT is in NP, it follows 
that 3-SAT is in NP. Let 

k ~ 4, (4.1) 

be any one of the clauses of ~ containing more than three literals. Let 
{31 , {32 , ••• , {3k _ 3 be atoms which do not appear in ~. We construct ~ 1 by 
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replacing (4.1) by the conjunction 

la1a2 f3Jia3{i1 f3zla4fiz f331 ··· lak_zfik-4f3k-31ak-1ak fik-3 · 

It is easy to see that ' is satisfiable if and only if C is satisfiable. 
Moreover, since the length of '' is bounded by a constant times the length 
of ', the transformation can be performed in linear time. • 

It is interesting that there are problems which superficially appear to be 
unrelated, but between which we can readily find a polynomial-time 
transformation. Our next example is known as the COMPLETE-SUB­
GRAPH problem. A graph G consists of a finite nonempty set of vertices 
V = {v 1 , ••• , vn} and a finite set of edges E. Each edge is a pair of vertices. 
The size of the graph is simply the number of vertices it contains. A 
subgraph of a graph G = (V, E) is a graph G' = (V', E') where V' ~ V, 
and E' ~E. A graph G = (V, E) is complete if there is an edge in E 
between every pair of distinct vertices in V. 

The COMPLETE-SUBGRAPH problem is this: given a graph and a 
number k, does the graph have a complete subgraph of size k? 

Theorem 4.4. COMPLETE-SUBGRAPH is NP-complete. 

Proof. We show informally that COMPLETE-SUBGRAPH is in NP. Let 
the number k and a list of the vertices and of the edges of the given graph 
be written on the tape of a Turing machine in any reasonable notation. 
The procedure begins by nondeterministically selecting a vertex and then 
decrementing k. By continuing this process until k has been decremented 
to 0, a list of k vertices is obtained. The procedure then tests [in time 
O(k 2)] whether the graph has a complete subgraph in those vertices. Since 

k :::;; n :::;; length of the string representing G on the tape, 

where G is the given graph, this shows that COMPLETE-SUBGRAPH E 

NP. 
To show that COMPLETE-SUBGRAPH is NP-hard, we show that 

SAT ::;;P COMPLETE-SUBGRAPH. Thus, we must show how to map 
each CNF formula y into a pair consisting of a number k and a graph G 
so that y is satisfiable if and only if G has a complete subgraph of size k. 
If y =I y 1 I y2 • • • I Yk is a CNF formula, where y 1 , y2 , ••• , Yk are clauses, 
then we take the number k to be simply the number of clauses in y and 
construct the graph G = (V, E), where 

V = { ( a, i) I a is a literal in y;}, 

E = {((a,i),({3,j))l a =F -,{3 and i =Fj}. 
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Thus we have a vertex for each occurrence of each literal in y. Edges join 
pairs of vertices that represent literals in different clauses provided one is 
not the negation of the other. This means that these literals can both be 
assigned the value "TRUE" at the same time. If y is satisfiable, there is 
some way to assign truth values to the atoms so that y evaluates to 
"TRUE." Thus at least one literal of each clause of y must be assigned 
the value "TRUE," and in G there will be an edge connecting each pair of 
"true literals." This means that the nodes of G corresponding to the "true 
literals" of y form a complete subgraph of size k. Conversely, if y contains 
a complete subgraph of size k, then since edges join pairs of literals in 
different clauses that can be true at the same time, there is a way to make 
each clause of y true at the same time. Thus y is satisfiable. Furthermore, 
G can clearly be obtained from y by a polynomial-time computable 
function. • 

A clique in a given graph is a maximal complete subgraph of that graph; 
that is, a clique is a complete subgraph of a given graph that is not a 
subgraph of any other complete subgraph of that graph. The MAX­
CLIQUE problem is to find the size of the largest clique in a given graph. 
Of course, in this form, MAX-CLIQUE is not a language but rather a 
function, and so it does not make sense in terms of our definitions to ask 
whether it is in NP. However, since removing a vertex and all edges 
containing it from a complete subgraph yields another complete subgraph, 
we see that any algorithm for the MAX-CLIQUE problem that could 
actually be implemented using reasonable resources could easily be trans­
formed into an equally usable algorithm for the COMPLETE-SUB­
GRAPH problem. Hence, to the extent that NP-completeness can be 
regarded as implying intractability, we are entitled to conclude that MAX­
CLIQUE is likewise intractable. 

We next consider a closely related graph-theoretic problem, known as 
VERTEX-COVER. A set S is a vertex cover for a graph G = (V, E) if 
S ~ V and for every (x, y) E E, either xES or yES. The VERTEX­
COVER problem is to determine for a given graph G and integer k 
whether G has a vertex cover of size k. 

Theorem 4.5. Let G = (V, E) be a graph and let 

E' = {(x,y) I x,y E V,x =I= y, and (x,y) $. E}. 

Let us consider the graph G' = (V, E') (sometimes called the complement 
graph of G). Then S ~ V is the set of vertices of a complete subgraph of 
G if and only if V- S is a vertex cover in G'. 



460 Chapter 15 Polynomial- Time Computability 

Proof. Let S be the set of vertices of a complete subgraph of G. Then, by 
definition, for any (x,y) E E', either x E V- S or y E V- S. Thus, 
V- Sis a vertex cover of G'. Conversely, if V- Sis a vertex cover of G', 
then for any (x, y) E E', either x E V- S or y E V- S. Thus no edge of 
G' connects two vertices in S. Thus for every u, v E S, u =/= v, we have 
(u, v) E E, and so S is the set of vertices '1f a complete subgraph of G . 

• 
Corollary 4.6. VERTEX-COVER is NP-complete. 

The SET-COVER problem is to determine for a family of sets a= 
{S1 , S2 , ••• , Sn}, and number k, whether there exists a subfamily r of a of 
size k, f = {Sm,, Sm 2 , ••• , Sm)• such that 

Corollary 4.7. SET-COVER is NP-complete. 

Proof. Let G = (V,E) be a graph with V= {v 1 ,v2 , ••• ,vn}. Fori= 
1, 2, ... , n, Jet 

S; = {Cv;,vj)l(v;,vj) EE} U {Cvj,v)l(v;,vj) EE}. 

Clearly r = {S;,, S;2 , ••• , S;) is a set cover for a = {S1 , S2 , ••• , Sn} if and 
only if {v;,, V;2 , ••• , v;) is a vertex cover for G. • 

Many hundreds of NP-complete problems have been identified in quite 
diverse areas. We conclude this section with a few more examples. For 
each we indicate in brackets the nature of some known proof of NP­
hardness. 

1. HAMILTONIAN-CIRCUIT (HC): given a graph G = (V, E) with k 
vertices, determine if there is an ordering v 1 , ••• , v k of the vertices in 
V such that (v;,V;+ 1) E E, 1:::;; i < k, and (vk,v 1) E E. [VERTEX­
COVER ::;;P HC.] 

2. 3-DIMENSIONAL-MATCHING(3DM): given a setS ~A X B XC, 
where A, B, Care disjoint finite sets each with q elements, determine 
if there is a subset M ~ S with q elements such that for any (a, b, c), 
(a', b', c') EM, a =/=a', b =/= b', and c =/= c'. [3SAT ::;;P 3DM.] 

3. PARTITION: given a set A = {a1 , ••• , an} of positive integers, deter­
mine if there is a subset S ~A such that LaESa= LaEA-sa. 
[3DM ::;;P PARTITION.] 

4. INTEGER-PROGRAMMING (IP): given a finite set 

X= {(Cx; , ... , x~), z;) 11:::;; i:::;; m}, 



4. Other NP-Complete Problems 461 

where all xj, Z; are integers, and given a tuple (c 1 , ••• , en) of integers 
and an integer b, determine if there is a tuple (y1 , ••• , Yn) of integers 
such that (xL ... , x~) · (y1 , ••• , Yn) :::;; Z;, 1 :::;; i :::;; n, and (c I> ••• , en) · 
(y1 , ••• , Yn) ~ b. (The dot product of any two n-tuples is defined 
(xl, ... , xn) · (y1, ... , Yn) = E?~ 1 X;· Y;·) [3SAT ::;;P IP.] 

5. QUADRATIC-DIOPHANTINE-EQUATIONS (ODE): given posi­
tive integers a, b, c, determine if there are positive integers x, y such 
that ax 2 + by = c. [3SAT ::;;P ODE.] 

6. STRAIGHTLINE-PROGRAM-INEQUIV ALENCE (SPI): given a 
set of variables {X1 , ••• , Xn}, two programs .9', ~ each being a 
sequence of assignments of the form 

V ~ IF W = X THEN Y ELSE Z, 

where V, W, X, Y, Z E {X1 , ... , Xn}, and given a set of values 
{v 1 , ••• , vm}, determine if there is an initial state 

{X1 = V; , ••• , Xn = V; }, 
I n 

where each V; E {v 1, ... , vm}, such that .9', ~ end with a different 
value for sam~ variable. [3SAT ::;;P SPI.] 

Exercises 

1. The CHROMATIC-NUMBER problem is to determine for a given 
graph G = (V, E) and integer k whether there is a function f from V 
to {1, 2, ... , k} such that if (x, y) E £, then f(x) =/= f(y ). {Intuitively, 
this problem amounts to determining whether or not it is possible to 
"color" the vertices of G using k colors in such a way that no two 
adjacent vertices are colored the same.) Show that CHROMATIC­
NUMBER is NP-complete. [Hint: Show 3-SAT ::;;P CHROMATIC­
NUMBER.] [Further hint: Assume y = jy1jy2 ••• I'Ym is a CNF 
formula such that no 'Y; contains more than three literals. Assume 
there are n atoms a 1 , a 2 , ••• , an that appear either negated or 
unnegated in y. Construct a graph G with 3n + m vertices such that 
G is n + 1 colorable if and only if y is satisfiable.] 

2. The 2-COLORABILITY problem is to determine whether a given 
graph can be colored using only two colors. Show that 2-COLORA­
BILITY is in P. 

3. The 2-SAT problem is to determine whether a CNF formula in which 
no clause contains more than two literals is satisfiable. It is known 
that 2-SAT E P. Show why a technique like the one used to show 
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3-SA T is NP-complete does not work for 2-SAT. Show that 2-SAT is 
in P. 

4. The EXACT-COVER problem is to determine for a finite family of 
sets A = {S1 , S2 , ••• , Sn} whether there exists a set cover r of A such 
that the elements of r are pairwise disjoint. Show that EXACT­
COVER is NP-complete. [Hint: Show that 

CHROMATIC-NUMBER ~P EXACT-COVER.] 

5. The SUBGRAPH-ISOMORPHISM (SI) problem is, given graphs 
G1 = (V1 , E1), G2 = (V2 , £ 2 ), to determine if there is a one-one 
function f from V1 to V2 such that (v;, vj) E £ 1 if and only if 
(f(v;),f(vj)) E £ 2• Show that SUBGRAPH-ISOMORPHISM is NP­
complete. [Hint: Show COMPLETE-SUBGRAPH ~P Sl.] 

6. The LONGEST-COMMON-SUBSEQUENCE (LCS) problem is, 
given an alphabet A, a set {w 1 , ••• , wn} of strings on A, and a positive 
integer k, to determine if there is a string y E A* with lyl ~ k such 
that, for 1 ~ i ~ n, W; = x 0y 1x 1y2 x 2 ••• y1x1 and y = y 1 , ••• , y1 for 
some x 0 , • •• , x 1 , y 1 , ••• , y1 E A*. Show that LCS is NP-complete. 
[Hint: Show VERTEX-COVER ~P LCS. Let G = (V, E) be a graph, 
where V = {v 1 , ••• , vn} and E = {(v;,, vj,), ... , (v;m, vj)}, where 
i1 ~ j 1, 1 ~ I ~ m. For each edge (v;,, vh), create the string 

WI= VI ••• V;1_ 1V;1+ 1 ••• VnVI ••• Vj,_,Vj,+J ••• Vn, 

and also create the string u = v 1 ••• vn. Show that G has a vertex 
cover of size k if and only if {w 1 , ••• , wm, u} has a common subse­
quence of size n - k.] 

7. The TRAVELING-VENDOR (TV) problem is, given a set C = 
{c 1 , ••• ,cn} of cities, a positive integer distance d(c;,cj) for each 
pair of cities, and a positive integer b, to determine if there is a 
Hamiltonian circuit (c;,, ... , c;) such that 

m-1 

L, d(c; ,c; ) + d(c; ,c;) ~b. 
J J+ 1 m 1 

j=l 

Show that TV is NP-complete. [Hint: show HC ~P TV.] 

8. The SUBSET-SUM problem is, given a set {a1 , ••• , an} of positive 
integers and positive integer b, to determine if there is a subset 
{b1 , ••• , bm} ~ {a1 , ••• , an} such that E?'~ 1 b; = b. Show that SUBSET­
SUM is NP-complete. [Hint: Show PARTITION ~P SUBSET-SUM.] 
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9. The KNAPSACK problem is, given a set S = {(s1 , v1), ••• , (sn, vn)} of 
pairs of positive integers, where s; is a size and V; is a value, 
1 ~ i ~ n, and given positive integers b, k, to determine if there is a 
subset A ~ S such that 

L s ~ b and L v ;;::: k. 
(s,l')EA (s,L')EA 

Show that KNAPSACK is NP-complete. [Hint: Show PARTITION 
~P KNAPSACK.] 

10. The MULTIPROCESSOR-SCHEDULING (MS) problem is, given a 
set T = {t1 , ••• , tn} of positive integers (task times) and positive 
integers m (number of processors) and d (deadline), to determine if 
there is a partition of T into disjoint sets T1 , ••• , Tm such that for 
1 ~ i ~ m, L:, E T t ~ d. Show that MS is NP-complete. [Hint: Show 
PARTITION ~P· MS.] 

11. The RECORD-ALLOCATION (RA) problem is, given a set L = 
{11 , ••• , In} of positive integers (record lengths) and positive integers t 
(track length) and k (number of tracks), to determine if there is a 
partition of L into disjoint sets L 1 , ••• , Lk such that for 1 ~ i ~ k, 
L:1E L I~ t. Show that RA is NP-complete. [Hint: Show PARTITION 
~p RA..l 

12. The TASK-SEQUENCING (TS) problem is, given a set 

{(tl ,dl ,pl), ... ,(tn ,dn ,pn)} 

of triples of positive integers (where for 1 ~ i ~ n, t; is the amount of 
time necessary to complete task i, d; is the deadline for task i, and P; 
is the penalty for failing to complete task i by its deadline) and given 
a positive integer b, to determine if there is a sequence (i1 , ••• , in) of 
tasks such that L; E L P; ~ b, where L ~ {1, ... , n} is the set of late 
tasks, i.e., those ij with L:!~ 1 t; > d; . Show that TS is NP-complete. 
[Hint: Show PARTITION ~P TS.] 1 
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Approximation Orderings 

1. Programming Language Semantics 

In Part 1 of this book we studied various classes of functions, principally 
the class of partially computable functions. In Part 5 we also investigate 
classes of functions but from a different perspective. One of the key results 
from Part 1 is that the partially computable functions can be defined by 
way of any number of substantially different formalisms. Once the equiva­
lence of ..:7 programs, Turing machines, etc., has been demonstrated, it 
becomes clear that the definition of partially computable functions in 
terms of ..:7 programs is an artifact of our particular exposition, and in 
results like Theorem 2.1 of Chapter 4 concerning the HALT predicate, the 
role of ..:7 programs recedes to the formal background. In direct propor­
tion to the accumulation of equivalent formal systems, the class of partially 
computable numeric functions takes on an independent, absolute status, 
and the status of each particular formal system declines. It is fair to say 
that computability is about a certain class of functions, however they are 
defined. 

On the more practical side of computer science, however, the formal 
description of functions has blossomed into the elaborate field of program­
ming languages, where we find thousands of formal systems far richer and 
more complex than any we describe in this book. The differences between 

467 
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the two fields are entirely appropriate. In the theory of computation, where 
we are interested in the abstract mathematical properties of functions and 
classes of functions, it is appropriate to eliminate all but the most essential 
components of our formal systems. In the areas of computer science that 
support the practice of solving problems, it is appropriate to elaborate a 
wide range of programming languages to support the needs of various 
problem domains, programming styles, and philosophies of language de­
sign. 

When the various programming languages are important in their own 
right, the business of associating a function to each program is more than a 
means to the end of defining a class of functions. It becomes the subject of 
programming language semantics. 

The issue came up already in Chapter 2 when we carefully defined a 
semantics for ..:7 programs, associating a partial function 1./1.9' with each 
program .9'. In the course of defining the semantics of ..:7 programs we 
defined the notion of a computation, which characterizes a mechanical 
process of deriving a numerical output value from an input value. In 
essence we ·have defined an abstract machine that stores the values of the 
X, Y, and Z variables and updates those values by performing various 
operations as specified by a program. A computation describes the se­
quence of states assumed by the machine in the process of deriving an 
output (if there is one), and the meaning of a program is characterized by 
all of the computations it performs, one for each possible input. This style 
of defining the meaning of programs is called operational semantics be­
cause it depends on the operation of some kind of machine. 

It is clear that programs and computations are very different sorts of 
objects. Computations are dynamic in nature; that is, they describe a 
process that evolves over time. Without the benefit of a semantics to give 
them meaning, programs are simply static sequences of syntactic symbols. 
Now, the goal of creating a semantics is to associate a function with a 
program, and at least from the perspective of set theory, a function is a 
static entity: it is simply a set of ordered pairs. We could argue, then, that 
it is a diversion to interpose the conceptual complication of computations 
between a program and its function. It would be more straightforward to 
define a function, by purely "mathematical" means, directly from the 
syntactic structure of the program. Of course, the concept of "purely 
'mathematical' means" is not precisely defined. In the present context it 
implies, at the very least, an absence of operational detail. Its connotation 
will become clearer as we proceed. This alternative to operational seman­
tics is called denotational semantics. 

The denotational approach might be preferable for its conceptual sim­
plicity, but we do not mean to imply that it is "better" than, or a 
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replacement for, an operational semantics. In a practical setting the two 
are complementary. A denotational semantics can provide a succinct 
description of the meaning of a programming language, abstracted from 
the level of pragmatic details, and an operational semantics approaches 
more closely an actual implementation. In the theoretical area of com­
putability, the operational style is crucial, preceding the denotational style 
both historically and conceptually. It is the mechanical nature of an 
operational semantics that gives sense to the term computable function. If 
computability theory is more about the class of partially computable 
functions than the particular formal systems for defining them, it is just as 
much about the concept of mechanical computation which is embodied in 
the operational semantics of .9' programs, Turing machines, Pascal, LISP, 
etc. 

The exposition given here of semantics, both operational and denota­
tional, has two goals. 

1. It should broaden and deepen the understanding of computable 
functions and computation. 

2. It is an introduction to some of the ideas found in the theoretical 
study of programming languages. 

There are two ways in which we will extend the theory of computable 
functions covered in Part 1. One is to expand the class of data objects that 
are directly covered by the theory. We have accounted for computable 
functions on the natural numbers and computable functions on strings 
over arbitrary finite alphabets, but the typical programming language 
offers a much greater variety of data types like lists, arrays, and in many 
cases, user-defined data types. Now, natural numbers and strings are both 
perfectly appropriate data types for a theory of computable functions 
because of their capacity for encoding more complex structures. We 
showed in Chapter 3, for example, how finite lists of numbers can be 
encoded as a single Godel number. So a theorem like the universality 
theorem in Chapter 4 implicitly tells us that there is a partially computable 
universal function for partially computable functions on lists of numbers. 
However, by explicitly admitting a richer assortment of data types, we can 
bring the theory closer to the actual practice of computation. 

In every model of computation we covered in Part 1, a function com­
puted by some program or machine was considered to be defined for a 
given input just when there was a finite computation for that input. Indeed, 
in Chapter 2 we defined a computation as a finite sequence of instanta­
neous descriptions. When a given input leads to an infinite sequence of 
instantaneous descriptions, we did not consider that sequence a computa­
tion, and so we did not consider the program to be doing any useful work 
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in this case. However, there are programs whose sole reason for being is 
the work they accomplish while they are running, rather than the output 
they produce at the end of a computation. For example, an operating 
system, the program that organizes the functioning of a computer, pro­
duces little useful output when it is terminated, and, in fact, it is designed 
to be able to run without ever terminating. The termination of an operat­
ing system might just as well indicate a failure rather than the successful 
completion of a computation. 

Our second extension, then, is to try to account for the work done in the 
course of a computation. Our perspective here is that instantaneous 
descriptions represent partial results that approximate the overall result of 
a computation. We will admit the possibility of infinite computations as 
well. In a sense, the result of an infinite computation is the computation 
itself, and each instantaneous description is a piece of the result, approxi­
mating the whole. Our data structures, therefore will come equipped with 
an ordering, an approximation ordering, which formalizes the notion of 
different partial results being more or less complete realizations of the 
total result. 

We will focus here on the equational style of function definition. In 
particular, we will work with equations like 

F(X) = H(G(X), X). (1.1) 

There are two kinds of variables in Eq. (1.1). X is intended to denote 
individuals, say, natural numbers, and F, G, and H denote functions. 
There is another important difference in our interpretation of these 
variables. In the equation 2x = x + x, with x ranging over the natural 
numbers, equality holds for all values of x, but the equation x 2 - 4 = 0 
calls for one or more particular values of x which make equality hold. In 
(1.1) X has the first interpretation, and F, G, and H have the second. 
That is, we are looking for functions f, g, and h that make f(X) = 
h(g(X), X) true for all values of X, in which case the assignment off, g, 
and h to variables F, G, and H constitutes a solution to (1.1). In 
equational programming we define functions by writing sets of equations 
to be satisfied. 

Normally equations are understood to be symmetric in their left and 
right sides, but the two sides of (1.1) have an important distinction. IfF is 
assigned a function there might be a number of assignments for G and H 
that solve (1.1), but assigning functions to G and H induces a unique value 
for F. In this sense we can interpret the right side as a function (some­
times called a higher order function) which takes any pair of functions g, h 
assigned to G and H and yields a unique function for F. We will make 
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essential use of such higher order functions in the denotational semantics 
of recursion equations. 

We need to consider the issue of partial functions. In the simple 
equation 

F(X) = G(X), (1.2) 

if F and G are interpreted as total functions f and g, then there is no 
ambiguity in the requirement that f(x) = g(x) for all values of x. Suppose, 
though, that f and g are defined 

f(x) =g(x) = {0 d f" d un e me 
if X> 0 
if X= 0. 

What should be the meaning of f(O) = g(O)? Previously we have inter­
preted equality to mean 

1. either both sides are defined or both sides are undefined, and 
2. when both sides are defined they have the same value. 

An alternative, which we will now adopt, is to extend the universe of 
objects with a new element that represents the property of being unde­
fined. For instance, we extend N to N .L = N u { .L N}, where .L N 

(pronounced "bottom") is different from all natural numbers. Now we can 
define 

L (x) = g .L (x) = { ~ N 
if X> 0 
if X= 0. 

f and g are not total functions, but f .L and g .L are, and f .L (x) = g .L (x) 
for all x EN. 

There are two distinct kinds of elements in N .L: numbers and .LN. We 
can compare them by saying that numbers are completely defined ele­
ments and .L N is the unique completely undefined element. This is a 
simple example of our notion of approximation. In a sense .L N is an 
approximation, a very weak one, to any natural number n. The idea is 
clearer, perhaps, in a richer set like Nl , where we can say that ( .L N , .L N , 

.L N) and (3, .L N , 5) both approximate (3, 7, 5), and that (3, .L N , 5) is a 
better approximation than ( .L N , .L N , .L N ). Thus, we can think of a 
sequence like ( . .L N , .L N , .L N ), (3, .L N , 5), (3, 7, 5) as a computation, 
where ( .L N , .L N , .L N) and (3, .L N , 5) are partial results leading to the 
final value (3, 7, 5). 

In this chapter we investigate the mathematical aspects of approxima­
tion orderings and functions defined on them. In the next chapter we apply 
these ideas to the semantics of recursion equations. 
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2. Partial Orders 

For a set D, a binary relation on D is any subset of D X D. If R is a binary 
relation on some set, we generally write a R b to mean (a, b) E R. If R is 
a binary relation on D and E ~ D, then the binary relation {(a, b) E EX 
E I aRb} on E is the restriction of R to E. 

Definition. Let D be a set and !;;;; a binary relation on D. !;;;; is a partial 
ordering of D if it has the properties of 

1. reflexivity: a !;;;; a for all a E D; 
2. antisymmetry: a !;;;; b and b !;;;; a implies a = b for all a, b E D; 
3. transitivity: a !;;;; b and b !;;;; c implies a !;;;; c for all a, b, c E D. 

If !;;;; is a partial ordering of D, then the pair (D, !;;;; ) is a partially ordered 
set, or simply a partial order. We will sometimes write a c b to mean 
a!;;;; band a-=!= b. 

It is easy to find examples of partial orders. (N, .:5; ), where .:5; is the 
usual ordering of N, is a partial order. (N _j_ , !;;;N ), where !;;;N is defined 

.l .l 

m !;;;N n if and only if m = ..L N or m = n, 
.l 

is also a partial order. Note that while 5 .:5; 7, for example, it is not true 
that 5 !;;;N 7. If D is a set, the power set of D, denoted !Jl!(D), is the set 
of all subs~ts of D. For any set D, it is easy to see that (!Jll(D), ~Y"<D>) is a 
partial order, where ~Y"(D) is the subset relation on the sets in !Jl!(D). 
Also, (D, =v) is a partial order for any set D, where =v is the equality 
relation on the elements of D. Although .:5; , !;;;N-' , ~Y"<N>, and =N are 
all partial orderings, they are quite different in structure. 

Definition. A partial ordering !;;;; of a set D is a linear ordering of D if 
for every a, bED, either a !;;;; b orb!;;;; a. (D, !;;;;) is a linearly ordered set, 
or simply a linear order. 

So, for example, (N, .:5;) is a linear order, but (N _j_, !;;;N ), (N, =N) and 
(!Jl!(N), ~9'(n)) are not. -' 

We will often find it useful to create new partial orders from given 
partial orders. 

Definition. Let (D 1, !;;;v, ), ••• , (Dn, !;;;D") be partial orders. Then 
!;;;D,x·. ·xD", the Cartesian product ordering on D1 X •·· X Dn determined 
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by !;;;D 1 , ••• , !;;;D" , is defined 

(d1 , ••• , dn) !;;;D 1 x .. ·xD (e1 , ••• , en) if and only if d; !;;;D e; for all1:::;; i:::;; n. 
n 1 

Theorem 2.1. If (D1 , !;;;D), ••• , (Dn, !;;;D) are partial orders, then (D1 X 

··· X Dn, !;;;D 1 x·. ·xD) is a partial order. 

Proof. We will write !;;;;; for !;;;D 1 x·. ·xD" and !;;;;; ; for !;;;D;, 1 :::;; i :::;; n. We 
need to show that !;;;;; is reflexive, symmetric, and transitive. For any 
(dp ... , dn) E D 1 X · · · X Dn, we have d; !;;;;;; d; by the reflexivity of !;;;;; ; , 

1 :::;; i :::;; n, so (d)' ... ' dn) !;;;;; (d)' ... ' dn). If (d)' ... ' dn) !;;;;; (e)' ... ' en) and 
(e1 , ••• , en) !;;;;; (d1 , ••• , dn), then, for 1 :::;; i :::;; n, d; !;;;;;; e; and e; !;;;;;; d;, which 
implies d; = e; by the antisymmetry of !;;;;; ; , so we have (d1 , ••• , dn) = 
(e1 , ••• , en). Finally, if (d1 , ••• , dn) !;;;;; (ep ... , en) and (e1 , ••• , en) !;;;;; 

(f1 , ••• ,fn), then, for 1:::;; i:::;; n, d; !;;;;;; e; and e; !;;;;;; f;, which implies 
d; !;;;;;; /; by the transitivity of !;;;;; ; , so we have (d1 , ••• , dn) !;;;;; (f1 , ••• ,fn) . 

• 
For example, (N1 , !;;;;; ) is a partial order, where !;;;;; is the Cartesian 

product ordering on N1 determined by !;;;N , ••• , !;;;N • 
L L 

Definition. Let D and E be sets. A function whose domain is D and 
whose range is a subset of E is a function from D into E. The set of all 
functions from D into E is denoted D ~E. If !;;;;;£ is a partial ordering of 
E, then !;;;D .... E , the function space ordering on D ~ E determined by !;;;;;£ , 

is defined 

f !;;;D .... E g if and only if f(d) !;;;E g(d)for all d ED. 

We sometimes write f: D ~ E to indicate that fED ~E. 

Theorem 2.2. If D is a set and (E, !;;;E) is a partial order, then (D ~ E, 
!;;;D .... E) is a partial order. 

Proof. We will write !;;;;; for !;;;D_,E. Let f, g, h be arbitrary functions in 
D ~ E. For any d E D, f(d) !;;;E f(d) by the reflexivity of !;;;E , so f!;;;;; f. If 
f!;;;;; g and g !;;;;; f, then for any d E D, f(d) !;;;E g(d) and g(d) !;;;E f(d), 
which implies by the antisymmetry of !;;;E that f(d) = g(d) for all d ED, 
i.e., f =g. If f!;;;;; g and g!;;;;; h, then for any dE D, f(d) !;;;E g(d) and 
g(d) !;;;E h(d), which implies by the transitivity of !;;;E that f(d) !;;;E h(d) 
for all d E D, i.e., f!;;;;; h. • 

For example, (N1 ~ N j_ , !;;;;; ) is a partial order, where !;;;;; is the 
function space ordering on N1 ~ N j_ determined by !;;;N • 

L 
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Definition. Let A be a set and let 9J be a function with domain A such 
that 9J(a) is a partial order for all a EA. We will write (Da, !;;;a) for 
9J(a). A 9J-choice function 1 is a function f with domain A such that 
f(a) E Da for all a EA. ch(9J) is the set of all 91-choice functions. The 
9J-choice function ordering !;;;;; ch(.!'*) is defined 

f !;;;ch(.!'*) g if and only if f(a) !;;;a g(a) for all a EA. 

For example, let A = {1, 2}, let 9J(i) = (Ni ~ N _]_ , !;;;N,_,N,) for i .= 1, 
2, and let f(i) = u; for i = 1, 2. That is, f(l) is the unary projection 
function, and f(2) is a binary projection function. (Recall that ul and uf 
are defined in Chapter 3.) Then f E ch(9J). 

Theorem 2.3. Let A be a set and 9J(a) a partial order for all a EA. 
Then (ch(9J), !;;;;; ch(.!'*)) is a partial order. 

Proof. The proof is identical to the proof of Theorem 2.2, except that 
instead of a single ordering !;;;;;£ , we have a different ordering !;;;;; a for each 
a EA. • 

Exercises 

1. Show that (N, I) is a partial order, where mIn is the predicate "m is a 
divisor of n" defined in Chapter 3. [Note that 0 I 0 is true.] Is it linear? 

2. Let (D, !;;;0 ) be a partial order, and let 

;;;J0 = {(x,y) ED xDiy !;;;0 x}. 

Show that (D, ;;;J0 ) is a partial order. 

3. Let (D, !;;;0 ) be a partial order, let E ~ D, and let !;;;;;£ be the 
restriction of !;;;0 to E. 
(a) Show that (£, !;;;E) is a partial order. 
(b) Show that if (D, !;;;0 ) is a linear order, then (£, ~) is a linear 

order. 

4. For which set(s) A is (A, 0) a partial order? 

1 When A is infinite, proving the existence of 9"-choice functions generally requires an 
axiom from set theory known as the axiom of choice. However, our treatment of denotational 
semantics will require only 9"-choice functions with a finite domain, so we need not be 
concerned with this issue. The interested reader should consult any introductory text on set 
theory, e.g., those mentioned in "Suggestions for Further Reading." 



3. Complete Partial Orders 475 

5. Let (D, !;;;D) be a partial order, and let d1 , ••• , dn E D be such that 
d 1 !;;;D d 2 ~ • • • !;;;D dn !;;;D d 1• Show that d 1 = d 2 = · · · = dn. 

6. (a) Show that there are three distinct partial orderings of {0, 1}. 
(b) Show that there are nineteen distinct partial orderings of {0, 1, 2}. 

7. Let D ={a, b, c}, !;;;D ={(a, a), (b, b), (c, c), (a, b), (a, c)}, E = {d, e}, 
and !;;;E = {(d,d),(e,e),(d,e)}. 
(a) What is (D X E, !;;;Dx E)? 
(b) What is (D ~ E, !;;;D-+E)? 

8. Let (D, !;;;D) be a partial order, and let 

Show that Cv is transitive and satisfies the property of asymmetry, 
namely, that x Cv y implies y ltv x, for all x, y ED. Is Cv reflex­
ive? 

9. Let D, E be finite sets with m, n elements, respectively. 
(a) Show by induction on m that D X E has m · n elements. 
(b) Show by induction on m that D ~ E has nm elements. 

10. Give linear orders (D, !;;;D) and(£, !;;;E) such that (D X E, !;;;DxE) 

and (D ~ E, !;;;D-+ E) are not linear orders. 

11. Give a linear order (D, !;;;D) with D =I= 0 such that (N X D, !;;;NxD) 

and (N ~ D, !;;;N-+D) are linear orders (where !;;;NxD is determined 
by ~ , the usual ordering on N, and !;;;D). Is (D X N, !;;;DxN) a 
linear order? (D ~ N, !;;;D-+ N )? 

12. Give distinct functions f, g EN~ ~ N j_ such that f !;;;N" -+ N g. 
L L 

13. Let 9J(i) = N~ ~ N j_ for all i EN, i =1= 0. Give distinct functions 
f, g E ch(9J) such that f !;;;ch(.91) g. 

3. Complete Partial Orders 

We will be particularly interested in partial orders that are rich in certain 
kinds of elements. 

Definition. Let (D, !;;;D) be a partial order, and let E ~D. An element 
e0 E E is the least element of E with respect to !;;;D if e0 !;;;D e for all 
e E £, and it is the greatest element of E with respect to !;;;D if e !;;;D e0 
for all e E £. 
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If (D, !;;;D) is a partial order and E ~ D, then E can have at most one 
least element: if e, e' are least elements of E, then e !;;;D e' and e' !;;;D e, 
so by antisymmetry e = e'. Similarly, E can have at most one greatest 
element. Therefore, we are justified in speaking about the least element of 
E and the greatest element of E. 

Definition. Let (D, !;;;D) be a partial order, and let E ~D. An element 
dE D is a lower bound of E in (D, ~)if d !;;;D e for all e E E, and.it is 
an upper bound of E in (D, !;;;D) if e !;;;D d for all e E E. Moreover, d is 
the least upper bound of E in (D, !;;;D) if it is the least element with respect 
to !;;;D of the set of all upper bounds of E in (D, !;;;D), and it is the greatest 
lower bound of E in (D, !;;;D) if it is the greatest element with respect to 
!;;;D of the set of all lower bounds of E in (D, !;;;D). If the least upper 
bound of E in (D, !;;;D) exists, it is denoted U(D, [;; o> E. If the greatest 
lower bound of E in (D, !;;;D) exists, it is denoted n(D, [;; ol E. 

Suppose (D, !;;;D) is a partial order and E ~D. Since the set of upper 
bounds of E in (D, !;;;D) can have at most one least element, it follows that 
E can have at most one least upper bound in (D, !;;;D). Similarly, E can 
have at most one greatest lower bound in (D, !;;;D). Note that U(D, [;; o> E, if 
it exists, is not necessarily an element of E, though if it is then it is the 
greatest element of E. A similar observation holds for n(D, [;; ol E. 

In our work on semantics we are interested primarily in least upper 
bounds. We will generally drop the subscript and write UE when it is 
apparent to which partial order we are referring. Occasionally we will write 
UvE. 

Partial orders can differ greatly in the existence of upper and lower 
bounds of their various subsets. Let A = {0, 1, 2} and let !;;;A be the usual 
ordering on {0, 1, 2}. Then every subset of A has one or more upper 
bounds and one least upper bound. For example, 1 and 2 are both upper 
bounds of {0, 1}, and 1 is the least upper bound. Note that 2 = n0 and 
0 = u 0. However, consider (N, ::; ). Every finite subset of N has a 
greatest element, and every nonempty subset of N has a finite set of lower 
bounds, so every nonempty subset of N has a greatest lower bound. Also, 
every nonempty subset of N has a least element, and every finite subset of 
N has a nonempty set of upper bounds, so every finite subset of N has a 
least upper bound. However, an infinite subset of N has no upper bounds. 
Note that nN0 does not exist. (Why?) 

A subset of a partial order can fail to have a least upper bound for one 
of two reasons. Either the set of upper bounds is empty, as in the case of 
an infinite subset of N, or it is nonempty but has no least element. For 
example, let (Q, ::; Q) be the ordered set of the rational numbers. Then 
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A = {q E Q I q 2 < 2} has plenty of upper bounds, but it has no rational 
least upper bound. On the other hand, A has a least upper bound in 
(R, ~a>. the ordered set of the real numbers. In fact, Ua A = fi. For a 
simpler example, consider (D, !;;;D), where D = {a, b, c, d} and 

!;;;D = {(a,a),(b,b),(c,c),(d,d),(a,c),(a,d),(b,c),(b,d)}. 

Here, c and d are both upper bounds of {a, b}, but {c, d} has no least 
element. 

If we have a sequence d0 , d 1 , d 2 , ••• that represents a finite or infinite 
computation, where d0 , d1 , d2 , • • • are elements in some partial order 
(D, ~ ), then we want (D, ~) to contain some element d which repre­
sents the result of that computation. The following definition formalizes 
this idea. 

Definition. Let (D, !;;;D) be a partial order. A chain in (D, !;;;D) is a 
nonempty set C ~ D such that c !;;;D c' or c' !;;;D c for every c, c' E C. 
(D, !;;;D) is a complete partial order, or cpo, if 

1. D has a least element with respect to ~ , and 
2. U(D, r;; o> C exists for every chain C in (D, !;;;D). 

The least element in a partial order (D, !;;;D) is generally written ..l v or 
..l , and called the bottom element of (D, !;;;D), or simply bottom of 
(D, !;;;D). Note that if (D, !;;;D) is a partial order, C is a chain in (D, !;;;D), 

and !;;;; c is the restriction of !;;;D to C, then (C, !;;;; c> is a linear order. 
Every nonempty subset of N is a chain in (N, ~ ), since (N, ~) is a 

linear order, and, as we showed previously, no infinite subset of N has a 
least upper bound in (N, ~),so (N, ~)is not a cpo. However, any set can 
be turned into a cpo, in the same way that we turned N into (N _]_ , !;;;N ). 

Let D be a set, let ..l v be some new object not in D, and let D _]_"= 
D U {..l vl· Then !;;;D , defined 

" 
d !;;;D e if and only if d = ..l v or d = e, 

" 
is 'the flat partial ordering of D _]_ . Every chain in (D _]_ , !;;;D ) is either 
{ ..l vl, or {d} for some d E D, or { ..l v , d} for some d E D, so 'every chain 
in (D _]_ , !;;;D ) has a least upper bound, and therefore (D _]_ , !;;;D ) is a cpo. 

" " We call (D _]_ , !;;;D ) the flat cpo on D. For example, (N _]_ , !;;;N ) is the flat 
cpo on N. " " 

We can generalize this discussion about flat cpos. 

Theorem 3.1. Let (D, !;;;D) be a partial order, and let C be a finite chain 
in (D, ~ ). Then u C exists and u C E C. 
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Proof. We argue by induction on the size of finite chains in (D, !;;;D). If 
C = {c}, then obviously UC =c. If C = {cp ... , en+ 1}, then C' = 
{c 1 , ••• , en} is also a chain, so UC' E C' by the induction hypothesis. Now, 
if cn+l !;;;D UC', then uc = UC' E c. Otherwise, UC' !;;;D cn+l• since 
C is a chain, SO U C = C n + 1 E C. • 

We immediately get 

Corollary 3.2. Let (D, ~;;;;D) be a partial order with a bottom element. If 
every chain in (D, ~;;;;D) is finite, then (D, ~;;;;D) is a cpo. 

Corollary 3.3. Every finite partial order with a bottom element is a .cpo. 

Power sets are another source of cpos. Let D be a set, and let 
g> ~fJIJ(D). Then the union of g>, denoted ug>, is defined 

ug> = {d E D I d E E for some E E g>}. 

It is a basic mathematical fact that u g> exists. 

Theorem 3.4. Let D be a set. Then (fJIJ(D), ~.'JD<D>) is a cpo. 

Proof. We have already noted that (fJIJ(D), ~9'(DJ) is a partial order. For 
any set E EfJIJ(D), 0 ~ E, so 0 is the bottom element of(fJIJ(D), ~9'(Dl). 
Let g> ~fJIJ(D). It is clear that ug> EfJIJ(D), and we claim that ug> = ug>. 

For any E E g>, we have E ~ ug>, so ug> is an upper bound of g> in 
(fJIJ(D), ~9'<D>). Let A EfJIJ(D) be any upper bound of g>. Then for any 
d E ug>, d E E for some E E g>, and E ~A, so d EA. Therefore, 
ug> ~A, which implies ug> = ug>. This argument holds, in particular, 
when g> is a chain, so (fJIJ(D), ~9'(Dl) is a cpo. • 

Note that in the proof of Theorem 3.4, we actually showed that every 
subset of fJIJ(D) has a least upper bound. (See Exercise 20 for more on this 
point.) 

The constructions of Section 2 can also be used to construct cpos with a 
richer structure than flat cpos. Let D 1 , ••• , Dn be sets, and let D = 
D 1 X ··· X Dn. We define the projection functions ~ 1: D ___.. D 1 , ••• , 

~ n: D ___.. Dn as follows. For 1 :::;; i :::;; n, 

Note that if D; = N, for all 1 :::;; i :::;; n, then ~ j is the function u'j from 
Chapter 3, where 1 :::;; j :::;; n. We will write (d 1 , ••• , dnH i instead of 
~ i(d1 , ••• , dn). If E ~ D, we write E ~ i to denote {e ~ i I e E E}. 
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Theorem 3.5. Let (D, !;;;1 ), ... , (Dn, !;;;;, ) be partial orders, and let E ~ 
D 1 X ··· X Dn. Then UE exists if and only if U(E t 1), ... , U (E t n) 
exist, and if uE exists, then UE = (U(E t 1), ... , u (E t n)). 

Proof. We will write !;;;;; for !;;;D,x·. ·xD •• Suppose UE exists, and let 
UE = (e 1 , ••• ,en). Then e; ED;, 1:::;; i:::;; n, and we claim that e; = 
U(E t i). For 1 :::;; i :::;; n, if e E E t i, then there is some element 

(e1 , •.. ,e;_ 1 ,e,ei+ 1 , ... ,en) E E, 

and (el, ... , e;_ p e, ei+ p ... , en) !;;;;; (ep ... , en) implies e !;;;;;; e;, SO e; is an 
upper bound of E t i. Let d be any upper bound of E t i. Then for any 
(e1 , ... , en) E E, ei !;;;i ei for 1 :::;; j :::;; n, j =/= i, and e; !;;;;;; d, so 
(e1 , ••• , d, ... , en) is an upper bound of E. But (e1 , ••• , en) is the least 
upper bound of E, so (e1 , ••• , en) !;;;;; (e 1 , ••• , d, ... , en), and, in particular, 
e; !;;;;;; d, so e; = U(E t i). Therefore, U(E t i) exists, 1 :::;; i :::;; n, and UE 
= (e 1 , ••• ,en) = (u(E U), ... , U (E t n)). 

Now, suppose U(E t 1), ... , U (E t n) exist. Then ( U(E t 1), ... , 
U(E t n)) is an element of D 1 X ··· X Dn, and we claim that it is UE. If 
(e1 , ... , en) E E, then for 1 :::;; i :::;; n, e; E E t i, which implies e; !;;;;;; 
U (E t i), so (e 1 , ••• , en) !;;;;; (U(E t 1), ... , U(E t n)). Therefore, 
(u(E U), ... , U(E t n)) is an upper bound of E. Let (d1 , ••• , dn) be any 
upper bound of E. For 1 :::;; i :::;; n, if e E E t i then there is some 
(e1 , •.• ,e, ... ,en) E £,and (e 1 , ... ,e, ... ,en)!;;;;; (d 1 , ••• ,dn) implies e !;;;;;; 
d;, so d; is an upper bound of E t i. But then U(E t i) !;;;;;; d;, 1 :::;; i:::;; n, 
which implies (U(E t 1), ... , U (E t n))!;;;;; (d 1 , ••• , dn), so 
(U(EU), ... ,U(Etn))= U£. • 

Theorem 3.6. If (D1, !;;;1 ), ••• , (Dn,!;;;;,) are cpos, then (D1 X •·· X Dn, 
!;;;0 , x·. -xo) is a cpo. 

Pr(Joj. We will write D for D 1 X ·•· X Dn and !;;;;; for !;;;D,x· ··xD •• 

(D, !;;;;;) is a partial order by Theorem 2.1. Let ..l; be the bottom element 
of (D;, !;;;;;;), 1 :::;; i :::;; n. Then (..l 1 , ••• , ..l n) !;;;;; (d1 , ••• , dn) for all 
(d1 , ... , dn) E D, so (D, !;;;;; ) has a bottom element. 

Now, let C be a chain in (D, !;;;;; ). We must show that u C exists. For 
1 :::;; i :::;; n, if e;, c; E C t i, then there are e, e' E C such that e; = e t i 
and c; = e' t i. Since C is a chain, either e !;;;;; e' or e' !;;;;; e, which implies 
that either e; !;;;;;; c; or c; !;;;;;; e;. Therefore C t i is a chain in cpo (D;, ~ ), so 
U(C t i) exists, 1 :::;; i:::;; n, and by Theorem 3.5, UC exists. • 

We can prove a similar result for function space orderings. If sr ~ D ~ E 
for some sets D, E, then for any d ED we write Y(d) to denote the set 
{f(d) If E .7}. 
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Theorem 3.7. Let D be a set and (£, !;;;E) a partial order, and let 
:T~ D ~E. Then U.<T exists if and only if U(.<T(d)) exists for all dE D, 
and if U.<T exists then ( u.<T)(d) = u (.<T(d)) for all d E D. 

Proof. We will write !;;;; for !:;;;0 _, E • Suppose U.<T exists, and let d E D. 
Then (U.<T)(d) is an element of E, and we claim (U.<T)(d) = U(ff(d)). 
For any f E .9T, f !;;;; U.<T implies f(d) !;;;E ( U.<T) (d), so ( U.<T) (d) is an 
upper bound of :T(d). Let e be any upper bound of :T(d), and let 
fe: D ~ E be defined 

if X= d 
otherwise. 

Then for any f E .9T, f(x) !;;;E ( U.<T) (x) = fe(x) for x E D such that x -=!= d, 
and f(d) !;;;E e = fe(d), so fe is an upper bound of .'T. But then U.<T!;;;; fe, 
and, in particular, ( U.<T)(d) !;;;E fe(d) = e, so ( U.<T)(d) = U (.<T(d)). 

Now, suppose U(.<T(d)) exists for all dE D. Then the function 

g(d) = U(.<T(d)) for all dE D 

belongs to D ~ E, and we claim that g = U.'T. If f E .9T, then for any 
d E D, f(d) E .<T(d), which implies f(d) !;;;E U (.<T(d)) = g(d), so f!;;;; g. 
Therefore, g is an upper bound of .'T. Let h be any upper bound of .'T. For 
any d ED, if e E .<T(d), then e = f(d) for some f E .9T, and f!;;;; h implies 
e = f(d) !;;;E h(d), so h(d) is an upper bound of :T(d). But then g(d) = 
U(.<T(d)) !;;;E h(d) for all d ED, which implies g!;;;; h, so g = U.'T. • 

Theorem 3.8. If D is a set and(£, !;;;E) a cpa, then (D ~ E, !;;;0 _,E) is a 
cpa. 

Proof. We will write !;;;; for !;;;0 _,E. (D ~ E, !;;;;) is a partial order by 
Theorem 2.2. Define the constant function ..l0 .... E (d) = ..lEfor all d ED, 
where ..l E is the bottom element of (£, !;;;E). Then ..l0 .... E !;;;; f for all 
fED ~ E, so (D ~ E, !;;;;) has a bottom element. 

Now, let :T be a chain in (D ~ E, !;;;; ). Then :T(d) is a chain in (£, !;;;E) 

for any d E D, since, for any f(d), g(d) E .<T(d), f!;;;; g implies f(d) !;;;E 

g(d) and g !;;;; f implies g(d) !;;;E f(d). Therefore u (.<T(d)) exists for all 
dE D, since(£, !;;;E) is a cpa, and by Theorem 3.7, U.<Texists. • 

The proofs of the following two theorems are almost identical to the 
proofs of Theorem 3. 7 and Theorem 3.8. 

Theorem 3.9. Let A be a set, let 9'(a) be a partial order for each a E A, 
and let :T~ ch(D). Then U.<T exists if and only if U(.<T(a)) exists for all 
a E A, and if U.<Texists, then (U.<T)(a) = U(.<T(a)) for all a EA. 
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Theorem 3.10. Let A be a set and let g'(a) be a cpo for each a EA. 
Then (ch{g'), ~h(.'B >) is a cpo. 

The iteration of our operations for constructing partial orders quickly 
gives us partial orders of considerable complexity. Theorems 3.6, 3.8, and 
3.10 tell us that if we start with cpos, we end up with cpos. For example, 

is the cpo of functions that transform binary functions in N~ ~ N .L into 
unary functions in N .L ~ N .L • Functions that operate on other functions 
are sometimes called higher order functions. For example ldv .... v= (D ~D) 
~ (D ~D), defined ldv .... v<f) = f, is an easily described higher order 
function. One way of defining a higher order function F is to give a 
definition of the function F(f) for every function f in the domain of F. 
For example, 

Idv .... v<f) (d) = f(d) for all d ED. 

Note that ldv .... v<f)(d) is to be interpreted as Odv .... v(f)){d). Similarly, 
when we write an expression such as f(g)(h)(d), we mean ((f(g))(h))(d). 
Another example is the composition operator o: (E ~ F) X (D ~ E) ~ 
(D ~F), for some sets D, E, F, where, for any f: E ~ F and g: D ~ E, 
o (f, g) is defined 

o {f, g )(d) = f(g(d)) for all dE D. 

( o(f, g) is usually written f o g.) We will make frequent use of this sort of 
definition in the next chapter. 

One way to show that a partial order (E, !;;;E) is a cpo is to build it up 
explicitly by the constructions we have described. Another is to show that 
it is contained in another partial order (D, !;;;D) known to be a cpo and 
that the least upper bounds of all chains in (E, !;;;E) belong to E. 

Theorem 3.11. Let (D, !;;;D) be a cpo, let E ~ D, and let !;;;E be the 
restriction of ~ to E. If 

1. E has a least element with respect to ~ and 
2. Uv C E E for all chains C in (E, !;;;E), 

then (E, ~)is a cpo and UE C = Uv C for all chains C in (E, !;;;E). 

Proof. E has a least element by assumption, so we only need to show that 
every chain C in (E, !;;;E) has a least upper bound in (E, ~ ), i.e., that 
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UE C exists. If C is a chain in (£, !;;;E), then it is also a chain in (D, !;;;D), 
and we know that UD C exists. We claim that UD C is UE C. For any 
c E C, we have c !;;;D UDC, which implies c !;;;E UDC, since c and UD C 
are both in E. Therefore, UD Cis an upper bound of C in(£, !;;;£).Let e 
be any upper bound of C in (£, !;;;E). Then for all c E C, c !;;;E e implies 
c !;;;D e, so e is an upper bound of C in (D, !;;;D). Therefore, UD C !;;;D e, 
which implies UD C !;;;E e since UD C and e are both in £, so UD C = 
UEC. • 

We give one application of Theorem 3.11 here and another in the next 
section. The following construction gives us a way of turning an arbitrary 
partial order into a cpo. 

Definition. Let (D, !;;;D) be a partial order. A set E ~ D is downward 
closed if for all e E E and all d E D, if d !;;;D e, then d E £. E is directed 
if for all c, d E £, there is some e E E such that c !;;;D e and d !;;;D e. An 
ideal of (D, !;;;D) is a nonempty, downward closed, directed subset of D. 
The set of all ideals of (D, !;;;D) is denoted id(D, !;;;D). The ordering 
~id(D, ~;;D> is ~.9'(D) restricted to id(D, !;;;D). 

We will write id(D) when the ordering !;;;D is understood. 

Theorem 3.12. Let (D, !;;;D) be a partial order with a bottom element. 
Then (id(D), ~id(D>) is a cpo. 

Proof. It is easy to check that (id( D), ~ id(D)) is a partial order. An ideal is 
nonempty by definition, so _i D E I for any ideal I, since I is downward 
closed. Moreover, { _i D} is an ideal, and { _i D} ~ I for any ideal I, so { _i D} 
is the bottom element of (id(D), ~id(D)). Now, let J be a chain in 
(id(D), ~id(D)). It is obvious that id(D) ~g>(D), so by Theorem 3.11 we 
need to show only that U .9'(d)J E id(D), i.e., that UJ is an ideal. J is a 
nonempty set of nonempty sets, so UJ is nonempty. Let e E UJ, d E D, 
and d !;;;D e. Then e E I for some I EJ, which implies dE I since I is an 
ideal. Therefore, d E UJ, so UJ is downward closed. Now, if c, d E UJ, 
then c E I1 and d E I2 for some I1 , I2 E J, which implies c, d E I1 U I2 • 

But I1 U I2 E J, since I1 ~ I2 implies I1 U I2 = I2 and I2 ~ I1 implies 
I1 U I2 = I1 • Therefore, there is an e E I1 U I2 such that c !;;;D e and 
d !;;;D e, since I1 U I2 is directed, and I1 U I2 ~ UJ, so e E UJ. So UJ 
is directed, and it is an ideal. • 

Let (D, !;;;D) be a partial order. For each e ED, the principal ideal 
generated bye, denoted pid(e), is the set {d E DId !;;;D e}. It is easy to see 
that pid(e) is an ideal of (D, !;;;D). The set of principal ideals of (D, !;;;D), 
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denoted pid(D), is {pid(d) I d ED}, and ~pid(Dl is the restriction of ~.9'(D) 
to pid(D). We can think of the partial order (pid(D), ~pid<D>) as a "copy" 
of (D, !;;;D) in (id(D), ~id<D>), and any chain C in (D, !;;;D) has a "copy" 
{pid(c)l c E C} in (id(D), ~id(Dl). Going from (D, !;;;D) to (id(D), ~id(Dl), 
then, has the effect of guaranteeing the existence of a least upper bound in 
(id(D), ~id(D>) for each ("copy" of a) chain in (D, !;;;D). For this reason, 
(id(D), ~id<D>) is called the ideal completion of (D, !;;;D). For more on this 
subject, see Exercise 19. 

Exercises 

1. Give an example of a partial order that is not a cpo. 

2. Give an example of a cpo in which not every chain has a greatest 
lower bound. 

3. Let w be some object not in N. Give a binary relation !;;; such that 
(N u {w}, ~ u !;;;) is a cpo (where ~ is the usual ordering of N). 

4. Let (D, !;;;D) be a cpo, let C be a chain in (D, !;;;D), and let d E D. 
Show that if c !;;;D d for all c E C, then u C !;;;D d. 

5. Let (D, !;;;D) be a cpo, and let C1 u C2 be a chain in (D, !;;;D), where 
C1 ,C2 ~D. Show that U(C1 U C2) = U{UC1 , UC2}. 

6. Let (D, !;;;D) be a cpo, and let C1 , C2 be chains in (D, !;;;D). 
(a) Show that if for all c 1 E C 1 there is a c 2 E C 2 such that 

cl !;;;D c2, then ucl !;;;D uc2. 
(b) Show that if for all c1 E C1 there is a c2 E C2 such that 

C 1 !;;;D c2, and if for all C2 E C2 there is a c1 E C1 SUCh that 
Cz !;;;D cl' then ucl = UCz. 

7. Let(D, !;;;D),(E, !;;;E)becpos,andletCbeachainin(D X£, !;;;Dx£). 
Show that UC = U(C ~ 1 XC ~2). 

8. (a) Let (D, !;;;D), (£, !;;;£) be partial orders such that the largest 
chain in (D, !;;;D) has m E N elements and the largest chain in 
(E, !;;;£) has n E N elements. What is the size of the largest 
chain in (D X E, !;;;Dx£)? 

(b) Let (D1, !;;;D)• ••. , (Dn, !;;;D) be partial orders such that the 
largest chain in (D;, !;;;D.) has m; E N elements, 1 ~ i ~ n. 
Prove by induction on n that all chains in 

(DI X ••• X Dn' !;;;D X·. ·XD ) 
I " 

are finite. 
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9. Let D be a set with m E N elements, and let (E, !;;;E) be a partial 
order in which the largest chain has n E N elements. What is the size 
of the largest chain in (D ~ E, !;;;D_,E)? 

10. Let D be a set and (E, !;;;E) a partial order. Show that (E, !;;;E) is a 
cpa if and only if (D ~ E, !;;;D_,E) is a cpa. 

II. Let (D, !;;;v ), (E, !;;;E) be cpos. Show that 

(<D X E)~ (D X E), !;;;(DXE)->(DXE)) 

is a cpa. 

12. Let D be a set and (E, !;;;E) a cpa. Show that 

(<D ~E)~ (D ~E), !;;;(D->E)->(D->E)) 

is a cpa. 

13. Let D be a set, let E r;;,D, let g>E(D) ={A E.9(D)I E r;;,A}, and 
let r;;,Y'E<D> be the restriction of r;;,Y'<D> to .9E(D). Show that 
(.9iD), r;;,9'£<D>) is a cpa. 

14. For sets D, E, let D ~ E be the set of all partial functions f on D 
p 

such that the range off is a subset of E, and let r;;,D .... E be defined 
as follows: for all f, g ED --; E, f r;;,D 7 E g if and only lf f r;;, g. Show 
that (D ~ E, r;;,D .... E) is a cpa. [Hint: Note that D ~Eisa subset of 

p p p 

.9(D X E) and r;;,D 7 E is the restriction of r;;,Y'(D xEJ to D --;E.] 

15. (a) Give a partial order (D, !;;;D) and a chain C in (D, !;;;D) such that 
C is not an ideal. 

(b) Give a partial order (D, !;;;D) and an ideal I of (D, !;;;D) such 
that I is not a chain. 

16. Let (D, !;;;v) be a partial order. 
(a) Show that if (D, !;;;D) has a bottom element, and if UE exists for 

every directed set E r;;, D, then (D, !;;;D) is a cpa. 
(b)* Show that if (D, !;;;D) is a cpa, then UE exists for every directed 

set E r;;, D. 

17. * Let ( D, !;;;D ), ( E, !;;;E) be partial orders. The lexicographic ordering on 
D X E, denoted !;;;L<D xE>, is defined 

(d1 ,e1) !;;;L<DxEJ(d2 ,e2 ) ifandonlyif 

d1 !;;;D d 2 or (d1 = d 2 and e1 !;;;E e2 ). 

Show that if (D, !;;;D), (E, !;;;;;£)are cpos, then (D X E, !;;;L<DxE>) is a 
cpa. 
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18.* For any sets D, E, a function f: D ~ E is onto if the range off is all 
of E. Let (D, !;;;D), (E, !;;;E) be partial orders. An isomorphism from 
(D, !;;;D) to (E, !;;;E) is a one-one, onto function f: D ~ E such that 
d !;;;D d' if and only if f(d) !;;;E f(d') for all d, d' E D. (D, !;;;D), 

(E, !;;;E) are isomorphic if there is an isomorphism from (D, !;;;D) to 
(E, !;;;E). If f: D ~ E is one-one, then the inverse off, denoted r I' 

is defined r I = {(e, d) E E X D I /(d) = e}. 

(a) Show that iff is an isomorphism from partial order (D, !;;;D) to 
partial order (E, !;;;E), then f- 1 is an isomorphism from (E, !;;;E) 

to (D, !;;;D). 

(b) Let (D, !;;;D), (E, !;;;E) be isomorphic partial orders. Show that 
(D, !;;;D) is a cpa if and only if (E, !;;;E) is a cpa. 

(c) Let D be a set with n E N elements and let (E, !;;;E) be a partial 
order. Show that (En, ~·) and (D ~ E, !;;;D __.E) are isomorphic. 

(d) Let (D, !;;;D ), ••• , (Dn, ~ ) be partial orders, let A = {1, ... , n}, 
and let g-(i) = (D;, !;;;D ), "1 ::; i ::; n. Show that (D 1 X ·•· X Dn, 
!;;;D 1 x·. ·x D) and (ch(g-), ~h(£11)) are isomorphic. 

19.* Let (D, !;;;D) be a partial order. 
(a) Let I be a principal ideal generated by some d ED. Show that 

I is an ideal of (D, !;;;D). 

(b) Show that (D, !;;;D) and (pid(D), ~ id(D)) are isomorphic. [See 
Exercise 18 for the definition of isofnorphic partial orders.] 

20.* A partial order (D, !;;;D) is a lattice if U{d, e} and n{d, e} exist for 
every d, e ED. It is a complete lattice if uE and nE exist for every 
E~D. 

(a) Give an example of a cpa that is not a lattice. 
(b) Give an example of a lattice that is not a cpa. 
(c) Let (D, !;;;D) be a lattice. Show that for every nonempty finite set 

E ~ D, UE and nE exist. 
(d) Show that for any set D, (!Jl!(D), ~Y"(D)) is a complete lattice. 
(e) Show that for any set D,(!Jl!(D), 29"(D)) is a complete lattice. 

21.* Let (D, !;;;D) be a partial order with D =F 0. (D, !;;;D) is bounded­
complete if UB exists for every B ~ D that has an upper bound in 
(D, ~). 
(a) Give an example of a cpa that is not bounded-complete. 
(b) Give an example of a bounded-complete partial order that is not 

a cpa. 
(c) Show that every bounded-complete partial order has a bottom 

element. [Hint: Consider U0.] 
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(d) Let (D, !;;;D) be a bounded-complete partial order. Show that for 
every nonempty E ~ D, nE exists. [Hint: Consider the least 
upper bound of U{d ED I d !;;;D e for all e E E}.] 

(e) (D, !;;;D) is well-founded if every nonempty subset of D has a 
least element. Prove that every nonempty well-founded partial 
order is bounded-complete. 

(f) Let (D, !;;;D), (E, !;;;E) be bounded-complete cpos. Show that 
(D X E, !;;;DxE) is a bounded-complete cpo. 

(g) Let D be a set and (E, !;;;E) a bounded-complete cpo. Show that 
(D ~ E, !;;;D__. E) is a bounded-complete cpo. 

22.* Let (D, !;;;D) be a cpo. An element d ED is compact (sometimes 
called finite) if for every chain C in (D, !;;;D) such that d !;;;D u C, 
there is a c E C such that d !;;;D c. The set of compact elements in 
(D, ~) is denoted K(D). (D, !;;;D) is algebraic if for every dE D, 
there is a chain C ~ K(D) such that d = u C. 

(a) Let (D, !;;;D) be a cpo, let d E K(D), and let C be a chain in 
(D, !;;;D) such that d = u C. Show that d E C. . 

(b) Let (D, !;;;D) be a cpo in which every chain is finite. Show that 
(D, !;;;D) is algebraic. 

(c) Let D be a set. Show that (.9J(D), ~9'(D)) is an algebraic cpo. 
(d) Give an example of a cpo (D, !;;;D), a compact d E K(D), and an 

infinite chain C in ( D, !;;;D ) such that d = U C. 

(e) Give an example of a cpo that is not algebraic. 
{f) Show that if (D, !;;;D), (E, !;;;E) are algebraic cpos, then so is 

(D X E, !;;;DxE). 

(g) Let (D, !;;;D) be a partial order. Show that (id(D), ~id(D)) is an 
algebraic cpo and that K(id(D)) = pid(D). 

(h) Show that if (D, !;;;D) is an algebraic cpo, then (D, ~) and 
(id(K(D)), ~id(K(D))) are isomorphic. [See Exercise 18 for the 
definition of isomorphic partial orders.] 

4. Continuous Functions 

Consider a computable function f composed with a partially computable 
function g applied to a number n, where g(n) i. How should we under­
stand the composition f(g(n))? One interpretation is that the computation 
of g(n) never terminates, so f never gets a result from g(n) and f(g{n)) 
must be undefined. In fact, this is the treatment of composition given in 
Chapter 3. 
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Definition. Let (D 1 , ~;;; 1 ), ••• , (Dn, ~ ), (E, !;;;;;£)be cpos with bottom ele­
ments ..L 01 , ... , ..L o., ..LE • A function f: D 1 X ••• X Dn ~ E is strict if 
f(d1 , ••• , dn) = ..L E for all (d1 , ••• , dn) such that d; = ..L 0 for one or 
more 1 ~ i ~ n. ' 

Let D1, ••• , Dn, E be sets, and let ((D) l. , ~;;;;(D,>" ), 1 ~ i ~ n, and 
(E l. , !;;;;;£ ) be the flat cpos on D 1 , •.• , Dn, E, with bottom elements ..L 0 , 

1 ~ i ~ n", and ..L E. For any partial function f on D 1 X ··· X Dn with 
range contained in E, the strict extension fl. : (D 1) l. X ··· X (Dn) l. ~ E l. 
of f is defined. 

fl. (xl ' ... ' xn) 

{

..LE if(x1 , ••• ,xn)f/=.D1 X···XDn 

= ..LE if(xp···,xn) E D 1 X··· X Dn and f(x 1 , ••• ,xn)i 

f(xl ' ... ' xn) otherwise. 

Clearly any such fl. is strict. We have not defined what it means for a 
function in N1 ~ N l. , for example, to be computable, but iff is partially 
computable, then it certainly would be reasonable to consider fl. to be 
partially computable. In the next chapter we will use strict functions in 
some situations, but we will not require computable functions to be strict. 
For example, the function g(x) = 3 for all x E N l. is not strict, but it 
certainly should be considered computable. However, some restrictions on 
computable functions appear to be reasonable. 

Consider the elements ( ..L N , ..L N ), ( ..L N , 3), and (7, 3) of N l. X N l. . If 
( ..L N , ..L N) approximates (7, 3) and ( ..L N , 3) better approximates (7, 3), 
then we should expect a function f: N l. X N l. ~ N l. to behave such that 
f( ..L N , ..L N) approximates /(7, 3) and f( ..L N , 3) better approximates /(7, 3). 
That is, if a function gets more information to compute with, it should be 
able to give a more informative result. It makes little sense, for our 
purposes, to consider a function f such that, for example, f( ..L N , ..L N) = 6, 
f( ..L N , 3) = 8, and /(7, 3) = ..L N • Since 6 and 8 are completely defined, 
neither approximates the other, and since ..L N is completely undefined, 
neither 6 nor 8 approximates ..LN. We formalize this notion as follows. 

Definition. Let (D, ~;;;;0 ) and (E, ~;;;;£) be partial orders. A function 
f: D ~ E is monotonic if, for all d, d' E D, d ~;;;; 0 d' implies f(d) ~;;;;£ 
f(d'). 

It is easy to see that any strict function f: N1 ~ N l. is. monotonic, 
though the reverse is not necessarily true. (See Exercise 1.) Though we will 
not require computable functions to be strict, we will certainly expect them 
to be monotonic. For example, let eq: N l. X N l. ~ N l. be the equality 
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predicate on N _j_ , that is, 

eq(x,y)={~ if X= y 
if X-=/= y, 

where as before 1 represents TRUE and 0 represents FALSE. Then eq is 
not monotonic, since ( ..l N, ..l N) !;;;N xN ( ..l N, 0) and eq( ..l N, ..l N) = 
1 !;t N 0 = eq( ..l N , 0). Now let <I> _j_ (~, y) be the strict extension of the 
unive~sal function <l>(x, y) defined in Chapter 4, and let n _j_ be the strict 
extension of the function n(x) = 0. Then for all x, y EN, 

HALT(x,y) = eq(O,n_j_ (<I> _j_ (x,y))). 

But we showed in Chapter 4 that HALT(x, y) is not computable, so if n _j_ 
and <I> _j_ are partially computable, then eq certainly is not. 

We will make frequent use of the following simple theorem. First we 
introduce a new piece of notation. Iff is a function with domain D, and 
E ~ D, then f(E) denotes the set {f(e) I e E £}. 

Theorem 4.1. Let (D, !;;;D), (£, !;;;E) be partial orders and f: D ~ E 
monotonic. If Cis a chain in (D, !;;;D), then f(C) is a chain in (E, ~E). 

Proof. Let f(d1),f(d2 ) E f(C). Then either d 1 !;;;D d2 , which implies 
f(d 1) !;;;E f(d 2), or d2 !;;;D d1, which implies f(d 2 ) !;;;E f(d 1). • 

Ordered sets like (N~ , !;;;N") are fairly simple, since all chains in 
J. 

(N~ , !;;;N") are finite, but when we go on to consider richer structures, we 
J. 

will require a property that is, in general, stronger than mono tonicity. Let 
(D, !;;;D) and(£, !;;;E) be cpos, and let C be a chain in (D, !;;;D). C might be 
an infinite set, so that we reach u C by way of an infinite chain of 
approximations. For a function f: D ~ E we would like to be able to 
reach f(UC) by way of the approximations {f(c) IcE C}. 

Definition. Let (D, !;;;D) and (£, !;;;E) be partial orders. A function 
f: D ~ E is continuous if, for any chain C in (D, !;;;D) such that u C exists, 
Uf(C) exists and f(UC) = Uf(C). [D ~ E] denotes the set of all contin­
uous functions in D ~E. The continuous function space ordering on 
[D ~ E] determined by(£, !;;;E), which is denoted !;;;[D~EJ' is the restric­
tion of !;;;D~E to [D ~ E]. 

Note that if (D, !;;;D) is a cpa then we can drop the reference to the 
existence of u C. 
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Theorem 4.2. Let (D, !:;;;0 ), (E, !;;;;£)be partial orders, and let fED ~ E. 

1. If f is continuous then it is monotonic. 
2. If f is monotonic and C is a finite chain in ( D, !:;;;0 ), then u C and 

Uf(C) exist and f(UC) = Uf(C). 
3. If all chains in (D, !:;;;0 ) are finite, then f is continuous if and only if 

it is monotonic. 

Proof. Let f be continuous, and let d 1 , d2 E D be such that d 1 !:;;; 0 d 2 • 

Then U{f(d1), f(d 2 )} = f(U{dp d 2}) = f(d2 ), so f(d 1) !;;;;£ f(d 2 ), and 
therefore f is monotonic. 

Now, let f be monotonic, and let C be a finite chain in (D, !:;;;0 ). Then 
f(C) is a finite chain by Theorem 4.1, so UC and Uf(C) both exist by 
Theorem 3.1. We have UC E C by Theorem 3.1, so f(UC) Ef(C), which 
implies f(UC) !;;;;£ Uf(C). Also, c !:;;; 0 U C for all c E C implies f(c) !;;;;£ 
f( U C) for all c E C by the monotonicity of f, so that f( u C) is an upper 
bound of f(C). Therefore Uf(C) !;;;;£ f(UC), and we have f(UC) = 
uf(C) by the antisymmetry of !;;;;£. 

Finally, part 3 follows immediately from parts 1 and 2. • 

Suppose (D, !:;;;0 ), (E, !;;;;£) are cpos, f: D ~ E is monotonic, and C is a 
chain in (D, ~).Then UC exists, and f(C) is a chain by Theorem 4.1, so 
.Uf(C) exists. Therefore, in these circumstances we can drop the reference 
to the existence of both u C and Uf( C). The following theorem simplifies 
matters a bit further and suggests a technique for proving continuity that is 
often more convenient than going to the definition. 

Theorem 4.3. Let (D, !:;;;0 ), (E, !;;;;£) be cpos, and let f E D ~ E. Then f 
is continuous if and only if: (1) f is monotonic, and (2) f( u C) !;;;;£ U f(C) 
for all chains C in ( D, ~ ). 

Proof. Let f be monotonic and let C be a chain in (D, ~).Then for all 
c E C, c !:;;; 0 u C implies f(c) !;;;;£ f( U C), so f( U C) is an upper bound of 
f(C) and Uf(C) !;;;;£ f(UC). Then by assumption (2) we have f(UC) = 
Uf(C), and f is continuous. The other direction follows from Theorem 
u • 

It follows from Theorem 4.2 and Exercise 3.8 that in N1 ~ N _j_ , for 
instance, monotonicity and continuity are equivalent properties. In gen­
eral, however, they are not. For example, let T: (N _j_ ~ N _j_) ~ N _j_ be 
defined 

T(f) = ( 1 
..l_N 

if f(n) -=!= ..l N for all n E N 

otherwise . 
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That is, T(f) is true just in case f is a total function when its domain and 
range are restricted to N. We will simply say that f is a total function. T is 
monotonic since for any g, h EN_~_~ N _~_,if g !;;;N .... N h then either g 
is not total and T(g) = ..l N !;;;N T(h), or g is totat whi'ch implies that h 
must be total, so that T(g) = 1 ~ T(h). However, T is not continuous. For 
all m EN, let nm: N _j_ ~ N _j_ be the "step function" defined by 

{ 
..l N if X = ..l N 

nm(x) = 0 if x-=/= ..l N and 0 ~ x ~ m 
..l N if X -=/= ..l N and X > m. 

Then {nm I m EN} is a chain, and T(nm) = ..l N for all m EN, so 
U{T(nm) I m EN}= ..lN. But (U{nm I m E N})(x) = 0 for all x EN, so 
T(u{nm I m EN})= 1. 

In the next chapter continuity will play a major role in our treatment of 
computable functions. 

With the help of the following lemmas we can prove a version of 
Theorems 3.7 and 3.8 for continuous functions. 

Exchange Lemma. Let (D, !;;;D) and(£, !;;;E) be partial orders, let (F, ~) 
be a cpa, let f: D X E ~ F be monotonic, and let C1 and C2 be chains in 
(D, !;;;D), (E, !;;;E), respectively. Then 

U{U{f(x,y) I y E C2 } I x E C1}, U {U{f(x,y) I x E C1} I y E C2 } 

exist, and they are equal. 

Proof. For all c1 E C1 , {f(c1 , y) I y E C2} is a chain by the monotonicity 
of the unary function f(c 1 , y) and Theorem 4.1, so u{f(cp y) I y E C2} 

exists. Also, if cl 'c'l E cl and cl !;;;D c'l' then for all Cz E Cz' 

f(c 1 , c2 ) !;;;F f(c'1 , c2 ) !;;;F U {f(c;, y) I y E C2}, 

so U {f(c 1 , y) I y E C2} !;;;F U {f(c'1 , y) I y E C2}. Therefore, 

{U{f(x,y) I y E C2} I x E C1} 

is a chain and u { u {f(x, y) I y E C2} I x E C1} exists. A similar argument 
holds for U{ u{f(x, y) I X E Cl} I y E Cz}. 

Let cl E cl. Then for all Cz E Cz, 

f(c 1 ,c2 ) !;;;F u{f(x,c2 )lx E C1} !;;;F u{u{f(x,y)lx E C1}ly E C2}, 

so 
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But (4.1) is true for all c 1 E C1 , so 

U{U{f(x,y) I y E Cz} I X E c,} !;;;F u {u{f(x,y) I X E c,} I y E Cz}. 

Similarly, 

u{u{f(x,y)lx E c,}ly E Cz} !;;;F u{u{f(x,y)ly E Cz}lx E c,}, 

so the lemma follows by the antisymmetry of !;;;F • • 
Let (D, !;;;D),(£, !;;;;£)be cpos and define apply: ([D ~ E] X D) ~ E by 

apply(/, d) = f(d). 

Then apply is monotonic, since if (f, d 1) !;;;ID .... EJxD (g, d 2), then 

apply(/, d 1) = f(d 1) 

!;;;E g(d 1) since f !;;;[D .... EJ g 

!;;;E g(d2 ) since d1 !;;;D d2 and g is monotonic 

= apply(g,d2 ). 

Now we can prove 

Theorem 4.4. If (D, !;;;D) and(£,!;;;;£) are cpos, then ([D ~ E], !;;;[D->EJ) 
is a cpa. Moreover, if :F is a chain in ([D ~ E], !;;;[D->EJ), then (u:F)(d) 
= U(:T(d)) for all dE D. 

Proof. The bottom element ..l D .... E defined in the proof of Theorem 3.8 
is continuous, so [D ~ E] has a bottom element. By Theorem 3.11, we 
only need to show that for all chains :F in ([ D ~ E ], !:;;;1 D .... EJ ), u D .... E :FE 
[D ~ E], that is, the least upper bound of :Fin (D ~ E, !;;;D .... E), which we 
know to exist by Theorem 3.8, is continuous. Let :F be a chain in 
([D ~ E], !;;;[D->EJ) and let C be a chain in (D, !;;;D). Then 

(UD_,E!F)(UC) 

= U{f(UC)I/E!F} byTheorem3.7 

= U{U{f(c)lc E C}IJE!F} since each f E :F is continuous 

= u { u {apply(/, c) I c E C} If E :F} 

= u { u {apply(/, c) I f E !F} I c E C} by the exchange lemma 

= u{u{f(c)I/E!F}Ic E C} 

= U{(UD_,E!F)(c)lc E C} 

= U((UD_,E!F)(C)), 

by Theorem 3. 7 

so UD_, E:Fis continuous, and ([D ~ E], !;;;[D->EJ) is a cpa. • 
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We conclude this section with a result that will be applied in the next 
chapter. (Also, see Exercise 5.10.) The proof is very similar to the proof of 
the exchange lemma, so we leave it to Exercise 13. 

Diagonal Lemma. Let ( D, i;;;D ) be a partial order and ( E, i;;;E) a cpo, let 
f: D X D ~ E be monotonic, and let C be a chain in (D, ~:;;;D). Then 

u{u{f(x,y)ly E C}lx E C} = u{f(x,x)lx E C}. 

Exercises 

1. Let (D 1 , I;;;D, ), ••. , (Dn, I;;;D" ), (£, !;;;£) be flat cpos. 
(a) Show that every strict function in D 1 X ··· X Dn ~ E is mono­

tonic. 
(b), Give an example of a monotonic function in D 1 X ... X Dn ~ E 

that is not strict. 
(c) Give a partial order (D, i;;;D) and a strict function in D ~ D 

that is not monotonic. 

2. Let f: N l ~ N j_ satisfy 

where h: N';'_ ~ N j_ and g;: Nl ~ N j_ , 1 ~ i ~ n, are strict. Show 
that f is strict. 

3. Let (D, ~;;;D),(£,~:;;;£) be partial orders, let e E £,and let fe: D ~ E 
be the constant function f/d) = e. Show that fe is continuous. 

4. Let (D, i;;;D) be a partial order, and let IdD: D ~ D be the identity 
function IdD(d) =d. Show that IdD is continuous. 

5. Let (D 1 , i;;;D, ), ..• , (Dn, i;;;D") be partial orders. Show that for 1 ~ i ~ 
n, the projection function ~ i: D 1 X ··· X Dn ~ D; is continuous. 

6. Let D, E be sets, let fED ~ E, and define /: /Ji!(D) ~/Ji!(£) as 
/(A) = {f(a) I a E A}. Show that /is continuous. 

7. Let (D, i;;;D ), (£, ~:;;;£ ), (F, i;;;F) be cpos, and let 

o: [£ ~ F] X [D ~ E] ~ (D ~F) 

be the composition operator on continuous functions. Show that the 
composition of continuous functions is a continuous function. That is, 
for all f E [£ ~ F], g E [D ~ E], show that f o g E [D ~ F]. 
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8. Let (D, i;;;D ), (E1 , i;;;£1 ), ••• , (En, i;;;E ) be cpos, and define the func­
tion construct: [D ~ E 1] X ... X [D ~En] ~ (D ~ (E1 X ··· X 

E)) as 

Let J: E [D ~ E;], 1 :o:; i :o:; n. Show that construct(f1 , ... ,f) E 
[D ~ (E1 X ... X En)]. 

9. Let (D, i;;;D ), (E, i;;;E) be cpos, and let applyn: [D ~ E] ~ (Dn ~ En) 
be defined as applyn(f)(dp ... ,dn) = (f(d 1), ... ,f(dn)). 

(a) Let f E [D ~ E]. Show that apply/f) E [Dn ~ P]. 

(b) Show that applyn E [[D ~ E] ~ [Dn ~ P]], i.e., applyn is con­
tinuous. 

10. Let (D, i;;;D ), (E, i;;;E ), (F, i;;;F) be cpos and define curry: [D X E ~ 
F] ~ (D ~ (E ~ F)) as curry(f)(d)(e) = f(d, e). Let f E [D X 

E ~ F] and d E D. 

(a) Show that curry(f)(d) E [E ~ F]. 

(b) Show that curry(/) E [D ~ [E ~ F]]. 

(c) Show that curry E [[D X E ~ F] ~ [D ~ [E ~ F]]]. 

11. Let (D, ~:;;;D), (E, ~:;;;£) be cpos, let D ---; E be the set of all strict 
functions in D ~ E, and let i;;;D ~ E be the restriction of i;;;D ~ E to 
D ~ E. Show that (D ---; , ~:;;; D ~ ;) is a cpo. 

s ~ 

12. Let ( D, i;;;D ), ( E, i;;;E) be cpos, let D -;;: E be the set of all monotonic 
functions in D ~ E, and let i;;;D ~ E be the restriction of i;;;D ~ E to 
D -;;: E. Show that (L -;;: E, ~:;;;D ~ ~) is a cpo. 

13. Prove the diagonal lemma. 

14.* Let (D, !;;;D), (E, !;;;£)be isomorphic cpos, and let f be an isomor­
phism from (D, i;;;D) to (E, i;;;E ). Show that f is continuous. [See 
Exercise 3.18 for the definition of isomorphic partial orders.] 

15.* Let (Dp i;;;D 1 ), ... ,(Dn, ~;;;D), (E, !;;;£)be partial orders and let fE 
D 1 X ... X Dn ~E. We say that f is monotonic (continuous) in the 
ith position, 1 :o:; i :o:; n, if for all dj E Dj, 1 :o:; j :o:; n and j =F i, the 
unary function f(d 1 , ••• ,d;_ 1 ,x,d;+ 1 , ••• ,dn) is monotonic (respec­
tively, continuous). 
(a) Let (D, i;;;D ), (E, i;;;E ), (F, i;;;F) be cpos, let f: D X E ~ F be 

monotonic, and let C be a chain in (D X E, i;;;Dx E). Show that 
U{U{f(x, y) I x E C U} I y E C ~2} and Uf(C) exist, and that 

u{u{f(x,y) I x E C ~ 1} I y E C ~2} = Uf(C). 
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(b) Let (D, !;;;D), (£, !;;;E), (F, !;;;F) be cpos, and let f E D X E ~ F. 
Use part (a) to show that f is continuous if and only if f is 
continuous in the first and second positions. 

(c) Let (D, !;;;D) and (£, !;;;E) be cpos. Show that the function 
apply: ([D ~ E] X D) ~ E is continuous. 

(d) Show that o, defined in Exercise 7, is continuous. 
(e) Generalize part (b) so that it applies to n-ary functions, n ~ 1. 

(f) Show that construct, defined in Exercise 8, is continuous. 

16.* A Scott domain is a bounded-complete algebraic cpa. [See Exercises 
3.21 and 3.22 for the definitions of bounded-complete and algebraic 
cpos.] 

(a) Show that if (D, !;;;D), (£, !;;;E) are Scott domains, then so is 
(D X E, !;;;DXE). 

(b) 

(c) 
Show that (N _]_ ~ N _]_, !;;;N .... N ) is a Scott domain. 

" " Show that if (D, !;;;D), (E, !;;;E) are Scott domains, then so is 
([D ~ E], !;;; 1D .... EJ). [Hint: For each dE K(D), e E K(£), de­
fine (d ~ e): D ~ E as 

(d ~e)(x) = {~E if d !;;;D X 

otherwise. 

Show that every function (d ~ e) is continuous and compact. 
Then show that for every d 1 , ... , dn E K(D) and e1 , ... , en E 

K(E), the function (d1 ~ e1) U ··· U (dn ~en) is continuous 
and compact. Use these functions to show that ([D ~ E], 
!;;;;; (D .... EJ) is algebraic.] 

(d) Give an algebraic cpo (D, !;;;D) such that ([D ~ D], !;;; 1D .... DJ) is 
not algebraic. 

5. Fixed Points 

We will now prove a fundamental theorem that will facilitate our work on 
denotational semantics. 

Definition. Let (D, !;;;D) be a partial order, and let fED ~D. An 
element d ED is a fixed point of f if f(d) = d, and it is the least fixed 
point off in (D, !;;;D) if d !;;;D e for every fixed point e ED of f. The least 
fixed point off in (D, !;;;D), if it exists, is denoted IL(D, r;;;; 0 /. 

We will generally omit the subscript and write 11-f when the partial 
order (D, !;;;D) is understood. 
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Fixed points play a fundamental role in denotational semantics, and 
continuity is important because it allows us to guarantee the existence of 
least fixed points. Before we can prove the fixed point theorem, we need 
some notation and a lemma. Let D be a set and let fED ---+D. For each 
n EN we define a function fn: D ---+ D, called the nth iteration of f, as 
follows: 

fo(x) = x 

r+ 1(x) = f(r(x)). 

Note that these equations can also be understood as defining a single 
binary function JY(x): D X N ---+ D. 

Lemma 1. Let (D, !;;;D) be a partial order with bottom element ..l D , and 
let f: D ---+ D be monotonic. Then r< ..l D) !;;;D r + 1( ..l D) for all n E N, 
and <r< ..l D) In E N} is a chain in (D, !;;;D). 

Proof. First we argue by induction on n that r<..L D) !;;;D r+m(..l D) for 
all n, m EN. If n = 0, then / 0( ..l D) = ..l D !;;;D fm( ..l D), so assume 
r<..L D) !;;;D r+m(..L D) for all m EN. Then for any m EN, 

r+ I( ..l D)= f(r( ..l D)) 
!;;;D f(r +m( ..l D)) by the induction hypothesis and 

the monotonicity of f 

The lemma now follows immediately. • 
Theorem 5.1 (Fixed Point Theorem for cpos). Let (D, !;;;D) be a cpo, 
and let f: D ---+ D be continuous. Then the least fixed point J.t.f exists, and 
J.l.f = u{r(..l D) In EN}. 

Proof. By Lemma 1, <r< ..l D) In E N} is a chain, so u <r< ..l D) In E N} 
exists. Moreover, u <r< ..l D) In E N} is a fixed point off, since 

f(u{r(..LD)In EN}) 

= Uf({r( ..l D) In EN}) by the continuity of f 

u{fn+l(..l D) In EN} 

u(<r+ 1(..LD)In EN} u {f0 (..LD)}) 
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Finally, if e is any fixed point of J, then we argue by induction on n that 
r<l_ o> !;;;D e for all n EN. If n = 0 then / 0(1_ o> = j_ D !:o e, so as­
sume r< j_ o> !;;;D e. Then 

r+l(l_o)= f(r(l_D)) 
!:;;; 0 f(e) by the induction hypothesis and 

the monotonicity of f 
= e since e is a fixed point of J, 

so e is an upper bound of {r( 1_ 0 ) I n E N}. Therefore, 

u{r{l_ 0 )ln EN} !:;;; 0 e, 

and u {r( 1_ 0 ) I n E N} is the least fixed point of f. • 
The fixed point theorem has a variety of applications. One, as we will 

show in the next chapter, is to justify recursive definitions of functions. 
Another is to justify inductive definitions of sets. Consider, for example, 
the definition of propositional formulas in Chapter 12. For simplicity we 
let .91', the set of atoms, be {p, q}, and we consider only formulas with the 
connectives ..., and :::) , so that the alphabet B = {p, q, ..,, :::) , (, )}. An 
alternative statement of the definition of propositional formulas over .91' is 
the following: the set of propositional formulas over .91' is the smallest (with 
respect to ~) subset of B* that 

1. contains .91', 
2. is closed under the operation that transforms a to ..., a, and 
3. is closed under the operation that transforms a and {3 to (a :::) {3 ). 

In other words, the set of propositional formulas over .91' is the smallest set 
X ~ B* that satisfies 

.91' U {...,a I a EX} U {(a:::) {3) I a, {3 EX} ~X. (5.1) 

Moreover, since (5.1) would still be satisfied if any element of X not 
required by 1, 2, or 3 were removed, and since we are looking for the 
smallest X which satisfies (5.1), we can rewrite (5.1) as the equality 

X =.91' U {...,a I a EX} U {(a:::) {3) I a, {3 EX}. (5.2) 

One way of looking at this equation is to consider the right side as a 
function <1>: 9'{B*) ---+ 9'{B*) that takes subsets Z ~ B* and transforms 
them to 

<I>(Z) =.91' U {...,a I a E Z} U {(a:::) {3) I a, {3 E Z}. 

A solution to (5.2), then, is some X such that, when <I> is applied to X, the 
result is still X; that is, X is a fixed point of <1>. For example, let Z be 
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some arbitrary fixed point of <1>. Then 

Z = <I>(Z) =~ U {-,a I a E Z} U {(a:::) {3) I a, {3 E Z}, 

so Z is a solution to (5.2). 
Now, the definition calls for the smallest such set, i.e., JL<I>, so for the 

definition to make sense we need to know that JL<I> exists. This is where 
the fixed point theorem is useful. We have already shown that the partial 
order (!Jl!(D), ~9"<D>) is a cpo for any set D, so (9'(8*), ~9"<8 .>) is a cpo. 
If <I> is continuous then JL<I> exists by the fixed point theorem. Let '(? be a 
chain of subsets of 8*. Then U'(f = U'(f in (9'(8*), ~9"(8 .>), and 

<I>(U'(f) =~ U {-,a I a E U'lf} U {(a:::) {3) I a, {3 E U'(f} 

=~ U ( U {{-,a I a E C} ICE 'lf}) 

U ( U {{(a :::) {3) I a, {3 E C} I C E 'lf}) 

U {~ U {-,a I a E C} U {(a:::) {3) I a, {3 E C} ICE '(f} 

U{<I>(C) IcE '(f} 

u <I>( '(f)' 

so <I> is continuous, and JL<I> exists. 
Note that, although the preceding definition of the set of propositional 

formulas mentions the operations that transform a to -, a and a, {3 to 
(a :::) {3 ), no mention is made of a process of building up the set from ~ 
by repeated application of these operations. The set we define is simply a 
certain solution to a certain equation. On the other hand, the definition 
given in Chapter 12 does mention repeated applications of these opera­
tions. The fixed point theorem, which not only tells us that JL<I> exists, but 
also that JL<I> = u{<l>;(0) I i EN}, makes the connection between these 
two versions of the definition. <1>(0), <1> 2(0), ... , are subsets of JL<I> built 
up by ever more applications of the formula building operations. 

Another way of formalizing the notion of "repeated applications" is to 
give a context-free grammar 2 r such that L(f) is the set of propositional 
formulas over ~. In particular, let f consist of the productions 

s~.s s~p 

S ~ (S :::) S) S ~ q, 

2 The reader who is unfamiliar with Chapter 10 may skip to the definition of admissible 
predicates. 
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where S is the start symbol. By definition, L(f) = {u E B* IS ~ u}. Sup­
pose a, {3 E L(f). Then S ~ a and S ~ {3, which implies 

S = (S :::> S) ~ (a:::> S) ~ (a:::> {3), 

so (a :::> {3) E L(f). Similarly, if a E L(f), then S = ..., S ~ ..., a and 
..., a E L(f). 

It seems, then, that L(f) is the set of propositional formulas over .w', but 
how can we prove it? By Theorem 1.4 of Chapter 10, a E L(f) if and only 
if there is a derivation tree for a in f. We define the height of a derivation 
tree g; denoted h(.9), as follows. If ::T consists of exactly one vertex, the 
root, then h(.9) = 1. If ::T consists of a root with successors v1 , ••• , vn, 
then 

h(::T) = max{h(!:T"'), ... , h(!:T"")} + 1, 

where ::T"; is the subtree of ::T with root v;, 1 ~ i ~ n. For each n E N, we 
define 

Ln = {u E B* I there is a derivation tree ::Tfor u in r with h(::T) ~ n + 1}. 

Clearly, L(f) = Un EN Ln. If we can show that cl>n(0) = Ln for all 
n E N, then we will have 

JLcl> = un EN cl>n(0) = un EN Ln = L(f). 

If n = 0 then <1> 0(0) = 0 = L 0 , since the only derivation tree of height 1 
with root S does not yield a word in B*. For n > 0 we argue by induction 
on n. If n = 1 then <1> 1(0) = {p, q} = L 1 • For n + 2 we have 

cl>n+2(0) = cl>(cl>n+l(0)) 

= ci>(Ln+ 1) by the induction hypothesis 

= {p,q} U {-,a I a E Ln+l} U {(a:::> {3)1 a,{3 E Ln+l}. 

Also, it is clear from the definition of Ln + 2 and the nature of f that 

Ln+Z = Ln+! U {...,a I a E Ln+l} U {(a:::> {3) I a, {3 E Ln+l}. 

Since {p,q} ~Ln+l• we have cl>n+ 2(0) ~Ln+Z· On the other hand, by 
Lemma 1 we have Ln+ 1 = ci>n+ 1(0) ~ cl>n+ 2(0), which implies Ln+Z ~ 
ci>n+ 2(0), and so we have cl>n+ 2(0) = Ln+Z• completing the induction and 
the proof that JL<I> = L(f). 

These various treatments of the definition of propositional formulas 
help to illustrate some of the ideas in the next two chapters. On the one 
hand, we have an abstract mathematical characterization of the set of 
propositional formulas as the smallest solution to equation (5.2). On the 
other hand, we have L(f) = {u E B* IS ~ u}, the set of words generated 
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from S by derivations in f. We can give a "deterministic" characterization 
of L(f) as the set of words in B* for which there exists a leftmost 
derivation from the start symbol. A somewhat more abstract characteriza­
tion of the same set is Un eN Ln, which is given in terms of derivation 
trees, without any reference to the details of the choices made in the 
construction of derivation sequences. In the terminology of semantics, #Let> 
is a denotational definition, and L(f) is an operational definition. The link 
between JLcl> and L(f) is given by the fixed point theorem and its 
characterization of JLcl> as u{ct>i(0) I i EN}. 

A useful tool for reasoning about fixed points is embodied in the fixed 
point induction principle. 

Definition. Let (D, !;;;D) be a cpo. A predicate P(x) on D is admissible if 
the following holds for all chains C in (D, !;;;D): 

if P(c) for all c E C, then P(UC). 

Theorem 5.2 (Fixed Point Induction Principle). Let (D, !;;;D) be a cpo, 
f: D ~ D a continuous function, and P(x) an admissible predicate on D. 
If 

1. P(l_ D), and 
2. P(fi( ..l D)) implies P(l + 1( ..l D)) for all i E N, 

then P( JLJ}. 

Proof. Ordinary induction shows that P(l( ..l D)) holds for all i E N. The 
set {l(..iD)IiEN} is a chain by Lemma 1, so P(U{l(..iD)IiEN}) 
holds by the admissibility of P(x), and of course u{fi(..l D) I i EN} = JLf. 

• 
For example, suppose we define Y as the smallest subset of B* that 

1. contains {p, q, -, p, -, q}, 
2. is closed under the operation that transforms a to -, a, 
3. is closed under the operation that transforms a and {3 to (a :::) {3 ). 

Is Y equal to the set of propositional formulas over Sit'? Let 

'I'(Z) = {p,q, -,p, -,q} U {-,a I a E Z} U {(a:::) {3) I a, {3 E Z}. 

'I' is continuous, by an argument almost identical to the argument that cl> 
is continuous, so JLW exists. The question, then, is whether JLW = JLcl>. We 
argue by fixed point induction that JLW ~ JLcl>. Let P(X) be the predicate 
X~ JLcl>. P(X) is admissible, since if %' is a chain in (.9(B*), ~9"(B*>) 
and C ~ JLcl> for all C E %', then clearly u %' ~ JLcl>. The bottom element 
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of (.9'(B*), ~9'(8 .>) is 0, and 0 ~ JL<I>. Also, if '1';(0) ~ JL<I>, then 

-qri+l(0) = 'l'('l'i(0)) 

~ W(JL<I>) by the induction hypothesis and the monotonicity of 'I' 

= {p,q, -,p, -,q} U {-,a I a E JL<I>} U {(a:::> f3) I a, {3 E JL<I>} 

= {p,q} U {-,a I a E JL<I>} U {(a:::> {3) Ia, {3 E JL<I>} 

since -,p, -,q E {-,a I a E JL<I>} 

= <I>( JL<I>) 

= JL<I>. 

Therefore, by the fixed point induction principle, we have JLW ~ JL<I>. A 
similar induction argument on the admissible predicate X~ JLW shows 
that JL<I> ~ JLW, so we have JLW = JL<I>. The point is that both definitions 
characterize the same set, and the second definition, with its unnecessary 
reference to -, p and -, q, can be simplified to the first definition. When 
fixed points are used to define the meaning of programs, the same 
technique can be used to show that two programs are equivalent, or to 
simplify programs. 

For sets defined like the set of propositional formulas over .91, fixed point 
induction is closely related to a form of induction known as structural 
induction. Let P(x) be a property of propositional formulas over .91 (rather 
than sets of formulas). If 

1. P( a) for every a E .91', 
2. P( a) implies P(-, a) for all propositional formulas a over .91, 
3. P( a) and P( {3) implies P(( a :::> {3 )) for all propositional formulas a, 

{3 over .91, 

then the structural induction principle allows us to conclude P( a) for all 
propositional formulas a over .91. The assumptions P( a) and P( {3) in 2 
and 3 are the structural induction hypotheses. To see why the conclusion is 
valid, let P(X) be the property on sets of propositional formulas over .91 
defined 

P(A) ifandonlyif P(a)forall a EA. 

P(X) is admissible: if '?? is a chain in (.9'(B*), ~9'(8 .>) and P(C) for all 
C E '??, then for each C E ~ we have P(a) for all a E C, which implies 
P(a) for all a E u~, that is, P(U~). Now, assumptions 1, 2, and 3 
enable us to prove 

• P(0), 
• P(<l>i(0)) implies P(<t>i+ 1(0)) for all i EN, 
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from which we conclude, by fixed point induction, P( JLcf> ), i.e., P( a) for all 
a E JLcf>, the set of propositional formulas over .91'. We will give several 
structural induction arguments in the next chapter. 

The reader will recall that we proved a theorem in Chapter 4 that was 
also called a fixed point theorem. The two are closely related. The 
recursion theorem from Chapter 4 is sometimes called, for historical 
reasons, the second recursion theorem. In fact, the earlier fixed point 
theorem, which follows from (and just as easily implies) the second 
recursion theorem, is itself sometimes called the second recursion theorem. 
The fixed point theorem in this chapter is a version of a classical theorem 
from computability theory that is sometimes called the first recursion 
theorem. 

The names of these two recursion theorems come from the fact that 
they can both be used in proving functions to be partially computable, 
particularly functions defined by recursion. However, there is a significant 
distinction between the two theorems. The fixed point theorem in this 
chapter gives a fixed point for each continuous function on a cpo. In 
particular, if F: [N _]_ ~ N _]_] ~ [N _]_ ~ N _]_] is continuous, then we get a 
function f E [N _]_ ~ N _]_]such that F(f) =f. On the other hand, the fixed 
point theorem in Chapter 4 is more directly concerned with programs than 
functions. A computable function g gets the effect of transforming a 
function cf>#(9'J to the function cf>g(#(9")) by acting on the (code of the) 
program that computes cf>#Wl, and the fixed point theorem in Chapter 4 
gives a program tff such that cf>*<"> = cf>g(#(<f)). It would be reasonable, 
then, to call that earlier theorem a syntactic fixed point theorem and to 
call the current theorem a semantic fixed point theorem. 

Just as the second recursion theorem gives a partially computable 
function cf>*<"> that satisfies cf>#(<fl = cf>g(#(<f)), so too does the first recur­
sion theorem give, for the appropriate kind of F, a partially computable 
JLF. We will say no more about the first recursion theorem in its classical 
form (other than to direct the reader to Exercise 11), but as we shall see, 
the main point of the next chapter is to use the fixed point theorem for 
cpos to define partially computable functions. 

Exercises 

1. Give functions f, g, h: N _]_ ~ N _]_ such that 
(a) f has no fixed points; 
(b) g has exactly one fixed point; 

(c) h has infinitely many fixed points. 
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2. Give a function f: N _L ~ N _L such that f is not continuous and JL! 
exists. 

3. Give a partial order (D, !;;;D) and a function f: D ~ D such that f is 
continuous, f has at least one fixed point, and JL! does not exist. 

4. Give a fixed point characterization of the set of W-terms defined at 
the beginning of Chapter 13, where W is some vocabulary. 

5. Let (D, !;;;D) be a cpa, let f E [D ~ D], let E = {e ED I f(e) = e}, 
and let !;;;;;£ be the restriction of !;;;D to E. Show that (E, !;;;E) is a 
cpa. 

6. Let (D, !;;;D) be a cpa. 

(a) Let P(X) be the predicate on fJIJ(D) defined "X is a finite set." 
In the context of (fJIJ(D), ~9"<D>), is P admissible? 

(b) Let Q(X) be the predicate on fJIJ(D) defined "X is an infinite 
set." In the context of(fJIJ(D), ~9"(D)), is Q admissible? 

(c) Let R(f) be the predicate on D ~ D defined "f is strict." In 
the context of (D ~ D, !;;;D .... D), is R admissible? 

7. Let (D, !;;;D), (E, !;;;E) be cpos, let P(x), Q(x) be admissible predi­
cates on D, and let R(x, y) be an admissible predicate on D X E. 

(a) Show that P(x) & Q(x) is admissible. 

(b) Show that P(x) v Q(x) is admissible. 

(c) Show that (Vd E D)R(d, y) is an admissible predicate on E. 

8. * (a) Let r be a context-free grammar with variables 'F and termi­
nals T. Give a fixed point characterization of L(f). [Hint: 
Define a function <I> such that JL<I>(V) = {w E T* I V ~ w} for 
all V E 'F.] 

(b) Let f be the grammar with 'F= {S}, T = {a}, and the single 
production S ~ aSa. Show by fixed point induction that L(f) = 
0. 

9.* Let (D, !;;;D) be a complete lattice, and let f: D ~ D be monotonic. 
Show that JL! exists and that JL! = n{d ED I f(d) !;;;D d}. [See Exer­
cise 3.20 for the definition of complete lattices.] 

10.* Let (D, !;;;D) be a cpa, and define f.LD: [D ~ D] ~ D as f.LD(f) = JL! 
for all JE [D ~ D]. 

(a) Let f, g E [D ~ D], and suppose f !;;;!D .... DJ g. Show by induc­
tion on n that r !;;;(D .... D) gn for all n EN. 

(b) Let :F be a chain in ([D ~ D], !;;;(D->DJ). Show by induction on 
n that (ug-)n = u{r If E :F}. [Hint: Use the diagonal lemma.] 
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(c) Show that JLv is continuous. [Hint: Use parts (a) and (b) and the 
exchange lemma.] 

11.* As in Exercise 3.14, N ~ N is the set of all partial functions on N. 
For each finite function Pe = {(x1 , y 1), ••• , (xn, Yn)} in N ~ N, n ~ 0, 

- p 
we encode e as e E N, where 

li = O'! pY;+l 
v z= 1 X; • 

A function F: (N ~ N) ~ (N ~ N) is a recursive operator if there is 
some partially cooi'putable function h(y, x) such that 

F(g) (x) = z if and only if h(O, x) = z for some e ~g. 
(a) Let G:(N--; N) ~ (N--; N) be defined G(f)(x) = 2 ·f(x). 

Show that G is a recursive operator. 
(b) Show that every recursive operator is monotonic and continuous. 
(c) Show that, if F is a recursive operator, then there is a com­

putable function f such that F( <I>) = <l>f<x> for all x E N. 
(d) (First Recursion Theorem) Prove that, for every recursive opera­

tor F, p,F exists and is partially computable. 





17 

Denotational Semantics 
of Recursion Equations 

1. Syntax 

Now that we have developed a theory of approximation orders, we can 
define recursion equations and give them a denotational semantics. The 
operational semantics, given in the next chapter, will show that the 
functions defined by recursion equations are, in a reasonable sense, 
computable. 

As in Chapter 13,1 where we defined the terms and formulas of 
quantification theory, we begin with a small alphabet 

A= {t,x,f,l, X,-,#,(,,),=} 

of symbols that are always available. The members of 

VART = {tl1i 11 i EN} 

are type variables, and a type is 

• a type variable, or 
• T 1 X ··· X Tn, n ~ 1, where T 1 , •.• , Tn are type variables, or 
• T 1 X ··· X Tn-T, n ~ 1, where T 1 , ••• , Tn, T are type variables. 

1 Knowledge of Chapter 13 is not assumed, but there is a substantial overlap in the 
treatment of the syntax and semantics of terms. 

505 
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These three kinds of types are individual types, product types, and function 
types, respectively. For a given T EVART, the members of VARI = 
{x#T#I1;1 I i E N} are individual variables of type T, and 

U VARI 

is the set of all individual variables. For a function type T1 X ··· X Tn-T, 
the members of 

VAR~,x ... XT.-T = {f#T1 X··· X Tn -T#IIi] I i EN} 

are the function variables of type T1 X ··· X Tn -T, and 

is the set of all function variables. Also, VAR = VAR1 U VARF. We will 
let X, Y, Z (possibly subscripted) stand for individual variables and F, G, H 
(possibly subscripted) stand for function variables.2 Occasionally we will 
write V for an arbitrary variable of either kind. We will also use more 
suggestive names in the examples. If 0 is any of the syntactic objects 
defined in this section (W-terms, W-programs, etc.), then IV(O) is the set 
of all individual variables which occur in 0, FV(O) is the set of all function 
variables which occur in 0, and V(O) = IV(O) u FV(O). 

A typed vocabulary is a pair (W, T ), where W is a finite set of function 
symbols distinct from the symbols in A, and T is a function on W such that 
for each f E W, T(f) is either an individual type or a function type. We say 
that T(f) is the type of f. f is a constant symbol if T(f) is an individual type, 
and it is a proper function symbol otherwise. Given T, it is easy to 
determine the arity of any f E W, denoted ar(f). If f is a constant symbol, 
then ar(f) = 0, and if T(f) = T1 X ··· X Tn-T, then ar(f) = n. It will also 
be useful to supplement T with the functions 8 and p, which give the 
domain type and range type, respectively, of symbols in W. For constant 
symbols c E W, S(c) is undefined and p(c) = T(c), and for proper function 
symbols fEW with T(f) = T1 X··· X Tn-T, 

S(f) = T1 X ···X Tn and p(f) = T. 

2 Note that the letter X is not itself an individual variable. It is what we sometimes call a 
rnetavariable. That is, it is a variable, which we use in talking about the syntax of recursion 
equations, whose values are individual variables. Similarly, F is a metavariable whose values 
are function variables. We also use metavariables such as T, c, f, t, and P, whose values are 
type variables, constant symbols, function symbols, terms, and programs, respectively. 
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We extend rand p to VAR and 8 to VARF in the obvious way. For ex­
ample, T(X#T#I[il) = T and 8(f#T 1 X··· X Tn -T#I[il) = T1 X ···X Tn. 
For a typed vocabulary (W, r ), TV(W, r) is the set of all type variables that 
occur in the types of all of the symbols in W. We will omit r and write 
TV(W) for TV(W, r ). 

is 
Let (W, T) be a typed vocabulary. For any T E TV(W), a W-term of type T 

• an individual variable of type T, or 
• c E W, where r(c) = T, or 
• g(t 1 , ••• ,t), where g E W, r(g) = T1 X··· X Tn-T, and t; is a 

W-term of type T;, 1 :::;; i :::;; n, or 
• F(t1 , ••• , t), where FE VARF, r(F) = T1 X··· X Tn-T, and t; is a 

W-term of type T;, 1 :::;; i :::;; n. 

We extend T so that r(t) = T for any term t of type T. For V0 ~ VAR, 
TMMV0 ) is the set of all W-terms t of type T such that V(t) ~ V0 , and 
TMw(V0 ) is the set of all W-terms t such that V(t) ~ V0 • Also, we will 
write TM~ for TMM0) and TMw for TMw(0). Terms in TMw, that is, 
W-terms without variables, are sometimes called ground W-terms. 

For example, let N be a type variable, and let (W1 , r 1) be the typed 
vocabulary with W1 = {O,s}, r 1(0) = N and r 1(s) = N -N. We have 
TV(W1) = {N} and TMw1 = {0, s(O), s(s(O)), ... }. This is a vocabulary 
suitable for naming the natural numbers. We call terms of the form 

n ...----... 
s( ··· s) (0) ··· ), n EN, 

numerals, which we will generally write as nor sn(o). 
Now, let NL be a type variable distinct from N, and let (W2 , r 2 ) be the 

typed vocabulary with W2 = {O,s,nil,cons}, r 2(0) = N, r 2(s) = N -N, 
rz{nil) = NL, and r 2(cons) = N X NL-NL. Then TV(W2 ) = {N, NL} and 
™w2 is 

TMw1 U {nil, cons(O, nil), cons(s(O), nil), cons(O, cons(O, nil)), ... }. 

We might use this vocabulary for naming lists of numbers. The idea is that 
a list is either empty or it is constructed from a first element and a list of 
all succeeding elements. (The reader familiar with the programming lan­
guage LISP will recognize cons and nil.) 

A W-recursion equation is an equation of the form F(Xp ... , X) = t, 
where, for some T E TV(W) 

1. X1 , ••• , Xn are distinct individual variables, F is a function variable, 
and r(F) = r(X 1) X ··· X r(Xn) -T, and 

2. t E TM~{{XI, ... ,Xn} U VARF). 
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If E is theW-recursion equation F(X1 , ••• , Xn) = t, then F is the principal 
function variable of E, denoted PF(E), and any function variable that 
occurs in t is an auxiliary function variable of E. Note that a function 
variable can be both principal and auxiliary in a given equation. AF(E) is 
the set of auxiliary function variables of E. A W-recursion program (or 
simply W-program) is a finite set {E1 , ••• , En}, n ~ 0, of W-recursion 
equations such that 

1. PF(E;) * PF(Ej) for 1 :::;; i < j :::;; n, and 
2. U f~ 1 AF(E;) ~ {PF(E1), ... , PF(En)}. 

If equation E in W -program P is F( X 1 , ••• , X n) = t, then E is the defining 
equation for F in P. The first restriction in the definition of W-programs 
prevents inconsistencies, and the second ensures that every function vari­
able that occurs on the right side of any equation is defined. When some 
program P is given and F( X 1 , ••• , X n) = t is the defining equation for F in 
P, we will sometimes write rhs(F) to denote the term t on the righthand 
side of the equation. 

Note that we require each function to be defined by exactly one 
equation, while in Chapter 3 we used two equations to define a function by 
recursion. For example, 

+(x,O) =x 

+ (x,y + 1) =s(+(x,y)) 

is a (somewhat informal) definition of addition. Another way of describing 
addition is 

+(x,y) = {;(+(x,y..:... 1)) 
if y = 0 

otherwise, 
(1.1) 

which can be construed as a single equation if the if-then-else test is itself 
a function. That is, given the function 

if(b, X, y) = {~ 
we can rewrite (1.1) as 

if b =TRUE 
otherwise, 

+(x,y) = if(y = O,x,s(+(x,y..:... 1))). (1.2) 

Of course, we also need the predicate y = 0 and the predecessor function 
y ..:... 1 for (1.2) to be meaningful. Therefore, we impose the following 
conditions on the vocabularies we will use. 

Let Bool be some particular type variable and let tt, ff be two new 
symbols. (It does not matter which type variable we choose for Bool, but it 
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will remain fixed throughout.) A standard constructor vocabulary is any 
vocabulary (We, Te) such that tt, ff E We, with Te(tt) = Te(ff) = Bool, and 
such that for each T E TV(We) there is at least one constant symbol 
c EWe with Te(c) = T. The latter requirement is not strictly necessary, but 
it will turn out to be convenient. We create a set of built-in function 
symbols for a standard constructor vocabulary (We , T) as follows. Let 
we-= we - {tt, ff} and let Pe be the range type function derived from Te. 

For each T E TV(W) we create the new symbol if T, for each f E we- we 
define the set of new symbols 

B(f) = {is_f} u {f;- 1 11 ::;; i ::;; ar(f)}, 

and we define 

B(We) = {ifT IT E TV(W)} U U B(f). 
rewc-

Note that {f;- 1 11 ::;; i ::;; ar(f)} = 0 if f is a constant symbol. We assign 
types to these new symbols with T B( w, > : 

for each T E TV(We) 

where Pe(f) = T 

A standard vocabulary is any typed vocabulary (W, T) such that 

for some standard constructor vocabulary (We, Te). The symbols in We are 
constructor symbols: they are used to build up data objects. tt and ff, in 
particular, will be used to represent TRUE and FALSE. The is_f symbols 
are discriminator function symbols: they are used to determine how an 
object is constructed. The f;- 1 symbols are selector function symbols: they 
are used to decompose compound objects. 

For example, we can expand the typed vocabulary (W1 , T1) given above 
to the standard constructor vocabulary (W3 , T3), where W3 = {tt, ff, 0, s}, 
T3(tt) = T3(ff) = Bool, T3(0) = N, and Tis)= N-+ N. Then 
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where 

T8 (wJif8001 ) = Bool X Bool X Booi-+Bool 

T8 (wJifN) = Bool X N X N -+N 

T8 (wJis_O) = N -+Bool 

T8 <wJis_s) = N-+ Bool 

T8(wJs 1- 1 ) = N -+N, 

and we can rewrite Eq. (1.2) as 

+(X,Y) = ifN(is_O(Y),X,s(+(X,s1- 1 (Y)))), (1.3) 

where + E VARF. 
Similarly, we can expand (W2 , T 2 ) to (W4 , T4 ), where W4 = 

{tt, ff, 0, s, nil, cons}, Titt) = T4(ff) = Bool, T4(0) = N, T4(s) = N-+ N, T4(nil) 
= NL, and T4(cons) = N X NL -+ NL. Then 

B(W4 ) = B(W3 ) U {ifNL,is_nil,is_cons,cons1- 1 ,cons; 1}. 

Henceforth, we let (WN, TN) be the standard vocabulary based on (W3 , T 3 ) 

and we let (WNL, TNL) be the standard vocabulary based on (W4 , T4 ). 

That is, 

WN = {tt, ff, 0, s, if Bool, if N, is_O, is_s, s1- 1} 

and 

WNL = WN U {nil,cons,ifNL,is_nil,is_cons,consl 1 ,cons:Z 1}. 

Generally we will just write T for TN or TNL. 
Note that we intend to interpret s1- 1 as the predecessor function in Eq. 

(1.3). At this point, of course, (1.3) has no meaning at all. The task of 
giving a meaning to equations like (1.3) begins in the next section. 

Exercises 

1. Let T(X) = N and T(F) = N X N -+ N. Describe TMwN({X, F}). 

2. Let we = {tt, ff, 0, s, leaf, tree}, and let Tc(tt) = Tc(ff) = Bool, Tc(O) = N, 
Tc(s) = N -+ N, Tc(leat) = T, and Tc(tree) = N X T X T -+T. 

(a) Describe TM~ for each T E TV(Wc). 
c 

(b) Describe (B(Wc), T8<w)· 
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(c) Let (W, T) =(We U B(W), Te U T8 <w)· Describe ™w for each 
T E TV(W). 

3. Let T(X) = N, T(Y) = NL, T(F) = N X N -N, T(G) = N -N, and 
T(H) = N - NL. Which of the following are WNL -terms? 
(a) F(s(X)). 
(b) cons( G( X), cons( X, nil)). 
(c) cons(nil,cons(O, Y)). 
(d) cons1- 1(H(O)). 
(e) if N(tT, cons( 0, nil), 0 ). 
(f) if NL(tT, cons( 0, nil), H( if N( tT, X, 0)) ). 

4. Assume that each of the following are WNL -terms. Give the types of 
the variables in each term. 
(a) ifN(F(O),G(O),s(H(O))). 
(b) s1- 1(F(cons(X,G(s(Y))))). 
(c) is_cons(F(s1- 1 (X), if N(G(O), H( G(Y)), 0), X)). 
(d) F(is_O(F(X))). 

5. Describe the values of T and the types of X, Y, F, G, H that make 
F(ifT(tt,G(F(X), Y),H(s(Y)))) a WNL-term. 

6. Let (W, T) be a vocabulary, let V ~ V AR, and extend T to (A u W)* 
so that T(w) = T if and only if w = cf>u for some cf> E W U V with 
p(cf>) = T. 

(a) Give a fixed point definition of TMw(V) in the manner of the 
definition of the set of propositional formulas given in Section 5 
of Chapter 16. 

(b) State and prove a structural induction principle for TMw(V). 

2. Semantics of Terms 

We develop the semantics of W-programs in several stages. In this section 
we work on the semantics of terms, beginning with the semantics of 
vocabularies. We will work exclusively with standard vocabularies, so 
throughout the rest of this chapter we take (W, T) to be some arbitrary 
standard vocabulary based on some standard constructor vocabulary 
(We, Te). We will generally refer simply to W rather than (W, T ). 

Definition. A type assignment for W is a function :T with domain TV(W) 
such that 

1. for each T E TV(W), :T( T) is a partial order (DCT(T), !;;;CT(T)) with 
bottom element ..LCT(T), and, in particular, 
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2. Y(Bool) is the flat cpa on some set with exactly two elements . 

.57 is a complete type assignment for W if .57( T) is a cpa for each T E TV(W). 

A type assignment for W gives a meaning for each type variable in 
TV(W). For example, if YN(Bool) is the flat cpa on {TRUE,FALSE} and 
~(N) = (N _L , ~N ), then YN is a complete type assignment for WN. 

L 

When .57 is understood, we will write (Boo!, ~Boo!) for Y(Bool) and 
..L Bool for the bottom element of Y(Bool). For an arbitrary T E TV(W), 
we will often write (DT, ~T) for (IJ.'T(T)' ~.'T(T)) and ..L T for ..L.'T(T). Also, 
we will sometimes write 

(DT 1 X···XT '~T X···XT) 
n I " 

for 

In particular, D6(F) = DT 1 x ... XTn if T(F) = T 1 X ... X Tn -+T. 

It will be useful to define the following notation. For sets D, E and 
f: D ~ E, ran f is the range of f. Also, if e E E, then ran e = {e}. In 
effect, we are treating e as a function of 0 arguments. 

Definition. Let .57 be a type assignment for W. A Y-interpretation for W is 
a function J with domain W that satisfies the following conditions. 

1. For all constant symbols c E We with T(c) = T, .f(c) E DT - { ..L T}. 
We will write tt for .f(tt) and ff for J(tT). 

2. For all proper function symbols f Ewe with T(f) = Tl X ... X Tn -+T, 

a . .f(f) E D X .. · X D ~ D · 
TJ T 11 T' 

b. if .f(f)(dp ... , dn) =.f(f)(ep ... , en)=/= ..L T, then (dp ... , dn) = 
(e] ' ... 'en); 

c. if d; =/= ..L T', 1 ~ i ~ n, then .f(f)(d1, ... , dn) =/= ..L T . 

3. For all f, g E We such that p(f) = p(g), ran J(f) and ran .f(g) can 
have at most ..L p(f) in common; that is, 

(ran J(f) n ran .f(g)) - { ..L p(r) = 0. 

4. For all T E TV(W),.f(ifT): Bool X DT X DT ~ DT is defined 

J(ifT)(b, d, e) = {~ 
j_T 

if b = tt 
if b = ff 
if b = ..L Boo! • 
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5. For all constant symbols c E we- with T(c) = T, J(is_c): DT ~ Bool 
is defined 

if d =J(c) 
J(is_c)(d) = ff {

tt 

..l Boo! 

if d =I= ..l T and d =I=J(c) 

ifd=..l_T; 

for all proper function symbols f EWe with T(f) = T 1 X ··· X Tn -+T, 

J(is_f): DT ~ Bool is defined 

J(is_f)(d) = ff {
tt 

..l Boo! 

if d =I= ..l T and d E ran J(f) 

if d =I= ..l T and d ft. ran J(f) 

if d = j_ T • 

6. For all proper function symbols f Ewe with T(f) = Tl X ... X Tn -+T 

and for all 1 :::;; i :::;; n, J(f;- 1 ): DT ~ DT, is defined 

if d =I= ..l T and d =J(f)(d1 , ••• , dn) for 

some (d1, ... , dn) EDT, X ··· X DT" 

otherwise. 

If J(f) is continuous for all proper function symbols f E W, then J is a 
continuous !7-interpretation. A W-structure is a pair !, = ( g; J), where .9"" is 
a type assignment for W and J is a Y-interpretation for W. !. is a complete 
W-structure if .9"" is a complete type assignment, and it is a continuous 
W-structure if J is a continuous .7-interpretation. 

A Y-interpretation for W gives a meaning to each symbol in W, using 
the objects made available by .9"" in the sets DT. Conditions 4, 5, and 6 
require a specific interpretation for the built-in function symbols. Note in 
particular that J(f;- 1 ) is a well-defined function because of condition 2b. 
Conditions 2c and 3 are imposed to make certain information about the 
objects of a W-structure available at the syntactic level of W-terms. 
Condition 2c implies that the meaning of a ground term is never the 
bottom element, so that it makes sense, for example, to replace s! 1(s(O)) 
with 0, since J(sXJ(O)) =I= ..lN. Condition 3 implies that it makes sense to 
replace a term such as is_f ( g( c)) with fT. As we will see in the next 
chapter, the replacement of terms by equivalent terms is the basis of the 
operational semantics of recursion equations, so these conditions are 
included to make the operational semantics work correctly. 
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For an example, let WN and YN be as before. If 

JN(tt) = TRUE 

JN(tT) = FALSE 

JN(O) = 0 

JN(s)(m) = { ..L N 
m + 1 

{
TRUE 

JN(is_s)(d) = FALSE 

..L Boo! 

ifm=..LN 

otherwise 

if b =TRUE 
if b =FALSE 
if b = ..L Boo! 

if b =TRUE 
if b =FALSE 
if b = ..L Boo! 

if d = 0 
if d =I= ..L N and d > 0 

ifd=..LN 

if d =I= ..L N and d > 0 

if d = 0 
ifd=..LN 

if d =I= ..L N and d > 0 
otherwise, 

then JN is a YN-assignment for WN. We will write !.N for (.5JN, JN ). It is 
easy to check that !,N is complete and continuous. 

We now have a way of interpreting the symbols of W, but before we can 
give a meaning to arbitrary terms, we need a way of interpreting variables. 

Definition. Let .9"" be a type assignment for W and V a set of variables. A 
variable assignment for V based on .9"" is a function a with domain V such 
that 

1. a(X) EDT for each individual variable X E V with T(X) = T, and 
2. a(F) EDT, X ··· X DT. ~ DT for each function variable FE V with 

T{F) = T 1 X ··· X Tn -+T. 

a is a continuous variable assignment for V if a(F) is continuous for each 
function variable F E V . .W7 (V) is the set of all variable assignments for V 
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based on :T, and ~.W'y(V) is the set of all continuous variable assignments 
for V based on :T. 

Let (!T.,J) be a W-structure and V a set of variables. For any a E.W'y(V), 
we extend a to a function aJ with domain TMw(V) as follows: 

aJ (c) =J(c) 

aJ (X) = a(X) 

for all constant symbols c E W 

for all individual variables X E V 

aJ (f(tl ' ... 'tn)) =J(f)(aJ (tl ), ... 'aJ (tn)) 

aJ(F(t 1 , ••• ,tn)) = a(F)(aJ(t 1), ••• ,aJ(tn)) 

where fEW 

where FE V. 

aJ is a function we can use to assign a meaning to any term in TMw(V). 
Note that 0 is the unique assignment in .W'y(0), and if t E TMw, i.e., t 
contains no variables, then 0J is sufficient for interpreting t. When J is 
understood, we will often write a for aJ. 

For example, let V = {X, Y, F}, and let 

a(X) = 3, a(Y) = 5, a(F) = + _j_, 

where + _j_ is the strict extension of +. Then a E ~.W'yN(V), and 

aJN(s(F(X, s(Y)))) =JN(s)(aJN(F(X, s(Y) ))) 

=JN(s)(a(F)(aJN(X), aJN(s(Y)))) 

=JN(s)( a (F)( a (X), JN(s)( aJN(Y)))) 

=JN(s)( a(F )( a(X),JN(s)( a(Y)))) 

=JN(s)( a(F )(3,JN(s)(5))) 

= JN (s)( a (F )(3, 6)) 

=JN(s)(9) 

= 10. 

The next theorem shows that aJ (t) assigns a value to term t in the 
appropriate set, namely, DT(t). We need it to verify that the definition of 
a J makes sense. For example, when we define 

where r(f) = T 1 X ··· X Tn -+T, we have J(f) EDT X ·•· X DT ~ DT, so 
I n 

we want to know that aJ (t;) EDT , 1 :::;; i :::;; n. 
I 
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Theorem 2.1. Let (9'; J) be a W-structure, V a set of variables, a E 
.Wy-(V), and t E TMW(V) for some T E TV(W). Then a5 (t) EDT. 

Proof. We argue by structural induction on t. If t is a constant symbol 
c E W, then a,y(c) =J(c) EDT, and if tis an individual variable X E V, 
then aJ (X) = a(X) EDT 0 If t is f(tl '0 0 0 'tJ, where fEw, T(f) = 
T1 X··· X Tn-T, and t; E TM~(V), 1:::;; i:::;; n, then a,y(t;) EDT,' 1:::;; 
i:::;; n, by the induction hypothesis, and J(f) EDT, X ··· X DT., ~ DT, so 

Similarly, if tis F(t 1 , ••• , tJ, where FE V, T(F) = T1 X ··· X Tn-T, and 
t; E TMw(V), 1 :::;; i:::;; n, then a(F) EDT x ··· x DT ~ DT and 

I n 

Let .<T be a complete type assignment for W and V a set of variables. 
Then for each individual variable X E V with T(X) = T, ( DT, !;;;T) is a 
cpa by assumption, and for each function variable F E V with T(F) = 
Tl X ••• X Tn-T, 

is a cpa by Theorems3 16.3.6 and 16.4.4. Now, let g-v be the function with 
domain V such that 

g-v(X) = (DT, !;;;T) for each X E V with T(X) = T 

g-v(F) = ([DT, X ... XDT ~DT], !;;;[D x .. ·xD ->D J) 
II TJ T 11 T 

for each FE V with T(F) = T1 X ··· X Tn-T. 

Then a continuous variable assignment for V based on .<Tis a g-v-choice 
function and vice versa, so ~.Wy(V) = ch(g-v), and (ch(g-v), !;;;ch(9lvl) is a 
cpa by Theorem 16.3.10. Writing !;;;;~~'"'" <V> for !;;;ch<9lvl, we have proved 

Theorem 2.2. Let .<T be a complete type assignment for W and V a set of 
variables. Then (%'-Wy(V), !;;;w.~,(VJ) is a cpa. 

Note that the bottom element of (~.Wy(V), !;;;t::W''T(Vl), which we will 

3 We will refer to theorems in Chapter 16 frequently here, so we adopt the convention of 
writing Theorem 16.3.6, for example, to refer to Theorem 3.6 in Chapter 16. 
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write Or-;:w,.<V>• or simply 0 when Yand V are understood, satisfies 

O(X) = ..L T(X) for each individual variable X E V 

517 

0 (F )( d 1 , ••• , d n) = ..Lr<F > for each function variable F E V and all 

(dl , ... ,dn) E DS(F)' 

Note that if V = 0, th~ Oy,:w-, (V > = 0. Given a ground term t E TM w , 
we wiJI generally write O(t) to interpret t. 

The next theorem says, in effect, that the function that extends assign­
ments a to a,. is monotonic and continuous. 

Theorem 2.3. Let (!T, J) be a complete, continuous W-structure, V a set 
of variables, and t E TMw(V) for some T E TV(W). 

1. For a, {3 E %'~'7(V), a !;;;l<:w.,.(V) {3 implies a_y (t) !;;;T li.Y (t). 
2. For a chain .W' in (%'.W'7 (V); !;;;y,:w:.,.<v>), U.W'y(t) = U{a,y (t) I a E.W'}. 

Proof. Both parts can be proven by structural induction on t, and part 1 is 
straightforward, so we leave it as an exercise and concentrate on part 2. 
Let .W' be a chain in (%'~'7(V), !;;;;; y,:w:T <V> ). Then U.W' exists by Theorem 
2.2. If t is a constant symbol c E W, then 

U.W'(c) =J(c) = u{J(c) I a E.W'} = U{a(c) I a E.W'}, 

and if t is an individual variable X E V, then 

U.W'(X) = ( U.W')(X) 

= U{a(X) I a E.W'} 

= U{a(X)IaE.W'}. 

If tis f(t 1 , ••• , tn), where fEW, then 

U.W'(f(tl•···•tn)) 
=J(f)(U.W'(tl), ... , U.W'(tn)) 

by Theorem 16.3.9 

=J(f)(U{a(t 1)1 a E.W'}, ... , u{a(tn)l a E.W'}) by the induction 

hypothesis 

=J(f)(U{(a(tl), ... , a(tn))l a E.W'}) by Theorem 16.3.5 

= U{J(f)(a(t 1), ... , a(tn)) I a E.W'} since J(f) is continuous and 

{(a(t 1), ••• , a(tn))l a E.W'} is a chain by part 1 

= U{a(f(t 10 ... ,tn))l a E.W'}. 

Finally, Jet t be F(t 10 ... ,tn), where F is a function variable in V, and let 
r: %'.W'g-(V) X 'IF.W'g-(V) ~ DT be defined f(a, {3) = a(F)( {i(tl), ... ' li<tn)). 
Then r is monotonic by part 1 and by the monotonicity of a(F) for all 
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a EJ/1', so 

UJ!i'(F(tl, ... ,tn)) 

= (UJ!i')(F)(UJ!i'(tl), ... , UJ!i'(tn)) 
= (U{a(F) I a EJ/1'}XUJ!i'(t 1), ••• , UJ!i'(tn)) by Theorem 16.3.9 

= U{a(F)(UJ11'(t 1), ... , UJ!i'(tn))l a EJ/1'} by Theorem 16.3.7 

= U{a(F)(U{ /3(t 1) I {3 EJ/1'}, ... , U{ /3(tn) I {3 EJ/1'}) I a EJ/1'} by 

the induction hypothesis 
= U{a(F)(U{( /3(t 1), ••• , j3(tn)) I {3 E Jli'}) I a E J/1'} by Theorem 

16.3.5 

= U{U{a(F)(j3(t 1), ... ,/3(tn))1 {3 EJ/1'}1 a EJ/1'} since a(F)iscon­

tinuous for each a EJ/1' and {( /3(t 1), ••• , j3(tn)) I {3 EJ/1'} 

is a chain by part 1 
= U { U {f( a, {3) I {3 E J/1'} I a E J/1'} 

= u {f( a, a) I a E J/1'} by the diagonal lemma 

= U{a(F)(a(tl), ... ' a(tn)) I a EJ/1'} 
= U{a(F(t 1 , ... ,t))l a EJ/1'}. • 

We also prove one more result about variable assignments that we will 
use in the next section. 

Coincidence Lemma. Let (Y,J) be a W-structure, let V1 , V2 be sets of 
variables, let a EJ/1'y(V1) and {3 E~9'"(V2 ), and let 

V = {V E V1 n V2 I a(V) = {3(V)}. 

Then for all t E TMw(V), a(t) = j3(t). 

Proof. We argue by structural induction on t. If tis an individual variable 
X E V, then a(X) = a(X) = {3(X) = j3(X). If tis a constant symbol c E W, 
then a(c) =J(c) = j3(c). If tis f(t 1 , ••• , t), where fEW, then 

a(f(tl ' ... 'tn)) =J(f)(a(tl), ... ' a(tn)) 

=J(f)( j3(t1 ), ••• , j3(tn)) by the induction hypothesis 

= j3(f(tp ... ,tn)), 

and if tis F(t 1 , ••• , tn), where FE V, then 

a(F(t 1 , ... ,tn)) = a(F)(a(t 1), ... , a(tn)) 

= a(F )( j3(t1 ), ... , j3(tn)) by the induction hypothesis 

= {3(F )( /3(t 1 ), ... , j3(tn)) since F E V 

= j3(F(tp ... ,tn)). • 
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Exercises 

1. Show that !.N is a complete, continuous WN-structure. 

2. Let 9'"(Bool) = ({ _!_, 0, 1}, {( _!_, _!_ ), ( _!_, 0), ( _!_, 1), (0, 0), (1, 1)}), 9'"(N) 
= (Nl_ , !;;;N" ), J(tt) = 0, and J (ff) = 1. Extend J to a 7-interpre­
tation for WN. 

3. Let 9'" be a type assignment for WNL with 9'"(N) = 9'"(NL) = 
(N j_, !;;;N ). 

(a) Let J(nil) = 0 and J(cons) = + j_ (the strict extension of + ). 
Show that J cannot be extended to a 7-interpretation for WNL. 

(b) Give a continuous 7-interpretation J' for WNL. [Hint: Consider 
the pairing function ( x, y) from Chapter 3.] What is 
0J.(cons(s(O), nil))? 

4. Let !, = (9'; J) be a W-structure such that 9'"( T) is a flat cpo for all 
T E TV(W). Show that for every built-in function symbol f E W, J(f) 
is continuous. 

5. Let a(X) = 3, a(Y) = 2, a(F) = + j_ , and a(G) = · j_ (the strict 
extension of the multiplication function). Calculate aJN(t), where t is 
as follows. 
(a) F(s(X),G(s(X),F(X, y))). 
(b) s1- 1(F(s1- 1(s(X)), Y)). 
(c) if N(is_O( G( X, s1- 1 (si 1 ( 0)) )), X, Y). 
(d) if Bool(is_s(X), is_O(X), is_O(X)). 

6. Let J,;(O) = 0 and Y,;(s) = e j_ , where e(n) = 2n for all n E N. 
(a) Extend Y,; to a .9N-interpretation for WN. 
(b) Calculate a .. /t) for each term t given in Exercise 5. 

e 

7. Let 9'"(Bool) = 9'"N(Bool), 9'"(N) = 9'"N(N), and 9'"(NL) = 
(TUP j_ , !;;;TUP ), where TUP is the set of all tuples of natural 

" numbers and (TUP j_, !;;;TUP ) is the flat cpo on TUP. Give a 7-inter-
pretation for W NL . " 

8. Let 9'"(Bool) = 9'"N(Bool), 9'"(N) = 9'"N(N), and 9'"(NL) = 
(.9r(N), ~9"t(NJ), where .9r(N) consists of all the finite subsets of N, 
and let J(consXe, {d1 , ••• , dn}) = {e, d1 , ••• , dn}. Explain why J can­
not be extended to a 7-interpretation for WNL. 

9. Let !, = (9';J) be a continuous W-structure, and let f EWe. Show 
that for all d,e E D(<r> such that j_p(fl =/= d !;;;p(f) e, if dE ranJ(f) 
then e E ran J(f). Hint: Use is_f.] 

10. Let !. = (9';J) be a continuous W-structure, and let f EWe. Show 
that for all d, e E D5(r)' if _!_ p(f) =/=J(f)(d) !;;;p(f) J(f)(e), then d 
!;;;5 <r> e. [Hint: Use f;- 1 , 1 :::;; i :::;; ar(f).] 
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11. Let (Y,J) = !.N, and let X E VAR7. Give_ a term t E ™wN({X}) 
and a, {3 E 'IF.W'y({X}) such that aJ (t) !;;;N" {3J (t) and {3 c~:~" <lXI> a. 

12. Let (Y,J) be a W-structure, let V be a set of variables, and let 
a, {3 E 'IF.Wy(V). Show that if aJ (t) !;;;T(I) aJ (t) for all t E TMw(V), 
then a !;;;%'.#_,(v>f3· 

13. Prove part 1 of Theorem 2.3. 

14. Let !. = (Y, J) be a complete, continuous W-structure, and let V be 
a set of variables. 
(a) Define a function g~ such that .W'y(V) = ch(g~), and show 

that (.Wy(V), !;;;,..,._,(V)) is a cpo. 
(b) Show that part 1 of Theorem 2.3 holds for (~9"(V), !;;;,~"w/ 
(c) Show that part 2 of Theorem 2.3 fails for (~9"(V), !;;;,~"w/ 

3. Solutions to W-Programs 

Now that we have the tools for giving a meaning to terms, we can take the 
first step toward defining the denotational semantics of programs. Let 

be a W-program, and let !, = (Y, J) be a W-structure. We want to define 
the meaning ofF; in terms oft;, 1 ::; i ::; m. The idea is that we start with 
a variable assignment a E 'IF.Wy(FV(P)) which gives a meaning to each 
function variable in t;. Then for any possible input (d 1 , ••• , dn) E D8(F;) 

we extend a with the assignment {3 = {(X 1 , d 1), ... , (Xn;, dn)} and use 
a U {3 to interpret t;, giving us an output value for input (d1 , ••• , dn ). 

It will be convenient to introduce a special notation for the assignment 
{3 in the previous paragraph. Given an equation F( X~' ... , X) = t and 
d = (d1 , ... , dn) E D8<F >' the variable assignment a<d1 •••• ,d.,P also written 
ad, is {(X1, d1 ), ... , (Xn, dn)}; that is, 

a(d d (X.)= d. 
1 • · • · • n) I I ' 

1::=;i::=;n. 

The particular equation that determines the variables in the domain of ad 

will always be clear from the context in which ad is used. 

Definition. Let !, = (Y, J) be a W-structure and P a W-program. We 
associate with P the higher order function <1>~: 'IF.W'y(FV(P)) ~.wy(FV(P)), 
defined as follows. For each F E FV(P), with defining equation 
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When !. is understood we will write cl>p for ct>~. 
It is clear from the definition that ct>~ E 'i&".W'g-(FV(P)) ~ .W'g-(FV(P)), but 

if !. is complete and continuous we can prove something stronger. 

Theorem 3.1. Let !. = (Y,J) be a complete, continuous W-structure and 
let P be a W-program. Then ct>~ E 'i&"~?(FV(P)) ~ 'i&".W'g-(FV(P)). 

Proof. We will write cl>p for ct>~. Let a E 'i&".W'g-(FV(P)). We need to show 
that cl>p(a)(F) E [Ds(F> ~ Dr<F>] for each FE FV(P). It follows from 
Theorem 2.1 that ci> p( a )(F) E D8<F > ~ Dr<F >, so we just need to show 
that cl>p(a)(F) is continuous. Let F(X 10 ... ,X) = t be an equation in P 
with T(F) = T 1 X ··· X Tn -+ T, and let C be a chain in 
(DT X ... X T ' [;;;T X ... X T ). Then {a u ac I c E C} is a chain in 

I '' I n 
('6".W'y-(V), [;;;><:<>'><V>), where V= {X 1, ..• ,Xn} U FV(P), so U{a U ac lc E 

C} exists by Theorem 2.2. Moreover, for any G E FV(P), 

(aU auc)(G) = a(G) = U{(a U a)(G)Ic E C}, 

and for X;, 1 :::;; i :::;; n, 

(aU auc)(X;) = (UC)~ i = U(C ~ i) = U{(a U a)(X;) IcE C}, 

so by Theorem 16.3.9, aU auc = U{a U ac IcE C}. Therefore, 

cl>p(a)(F)(UC) =aU auc(t) 

= U {a U ac I c E C}(t) 

= U {aU ac(t) I c E C} 

= U{cl>p(a)(F)(c) IcE C} 

= Ucl>p(a)(F)(C), 

and ci> p( a )(F) is continuous. 

by Theorem 2.3 

• 
Since a program P is a set of equations, it makes sense to try to solve 

these equations to find the meaning of P. 
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Definition. Let I = (Y,J) be a W-structure and P a W-program. A 
solution toP in I is any a E..W7 (FV(P)) such that 

(3.1) 

for every equation F(XH ... ,X)= tin P and every (d1 , ... , dn) E D5(F)' 

In other words, every function variable in P is assigned a function such 
that every equation in P is satisfied for every possible value taken by the 
individual variables. Note that an equivalent statement of (3.1) is 

(aU a(d~>····d)_;r(F(X 1 , ... ,Xn)) =(aU a(d,, ... ,d)J(t) 

for every equation F(X1 , ••• ,Xn) =tin P and every (d1 , ••• , dn) E D5<F>· 
It is important to understand that for an arbitrary a E ..W7 (FV(P)), 

<l>p(a) is not necessarily a solution to P. Consider the WN-structure 
IN = (.o/N ,JN) and the WN-program Q with equations 

F(X) = G(X) 

G(X) = F(X). 

The problem is that <I>Q(a)(F) is defined in terms of a(G), but applying 
<I>Q to a changes the function assigned toG from a(G) to <I>Q(a)(G). For 
example, if a(F) is the constant function of a(F)(x) = 3 and a(G) is the 
constant function a(G)(x) = 7, then 

but 

<I>Q(a)(F)(O) =au a 0(G(X)) = a(G)(O) = 7, 

<I>Q(a) U a 0(rhs(F)) = <I>Q(a) U a 0(G(X)) 

= <I>Q(a)(G)(O) 

=aU a 0(F(X)) = a(F)(O) = 3, 

so <I>Q( a) is not a solution to Q. 
What we need is an a such that <I>Q leaves a(F) and a(G) unchanged; 

that is, we need a fixed point of <I>Q. If a is some fixed point of <I>Q, then 
for any d E N _]_ we have 

a(F)(d) = <I>Q(a)(F)(d) =aU a/rhs(F)) 

a(G)(d) = <I>Q(a)(G)(d) =aU a/rhs(G)), 

so a is a solution to Q. More generally, we can prove 
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Theorem 3.2. Let !. = (9';J) be a W-structure, and let P be a W-pro­
gram. Then a E ~.W"y(FV(P)) is a solution toP in !. if and only if a is a 
fixed point of ct>~. 

Proof. If a E ~.Wy(FV(P)) is a solution to P in !., then 

a(F)(d) =aU airhs(F)) = ct>~(a)(F)(d) 

holds for all FE FV(P) and all dE D6<F>• so ct>~(a) = a. On the other 
hand, if a E ~.W"y(FV(P)) is a fixed point of ct>~, then 

a(F)(d) = ct>~(a)(F)(d) =aU airhs(F)) 

holds for all F E FV(P) and all d E D6 <F >, so a is a solution to P in !. . 

• 
Going back to the example, we still have the problem that ct>Q has more 

than one fixed point. Any a that assigns the same function f to both F and 
G, where f could be anything from the everywhere undefined function to 
(some extension to N _~_ of) the total predicate HALT(X, X), is a solution 
to Q. Clearly, there is nothing in program Q to indicate that the program­
mer meant to specify a solution to the halting problem. For that matter, 
there is no indication that the programmer meant to solve any problem at 
all in writing program Q. The sensible approach is to focus on the least 
fixed point of ct>Q, which would be a(FXd) = a(G)(d) = ..L N for all 
d E N _~_ , i.e., a = .n. 

Of course, we do not know that JLcl>~ exists in general, for an arbitrary 
W-structure !. and an arbitrary W-program P. 

Theorem 3.3. Let !. = (9'; J) be a complete, continuous W-structure and 
let P be a W-program. Then JLcl>~ exists, and JLcl>~ E ~.W"y(FV(P)). 

Proof. We will write cl>p for ct>~. If JLcl>p exists, then Theorem 3.1 implies 
that JLcl>p E ~.W"y(FV(P)), so we just need to show that it exists. By 
Theorem 2.2, it is sufficient to show that 

so by Theorem 3.1 we only need to show that cl>p is continuous. Let .W be 
a chain in (~.Wy(FV(P)), !;;;W...,~<FV(P))), F(X1,. •• ,Xn) =tan equation in P, 
and d E D6<F >. It is easy to see that {a U ad I a E .W} is a chain in 
(~.W"y(V), !;;;w...,~ <V>), where V = {X 1, ••• , Xn} U FV(P), and that 

(3.2) 
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so we have 

<f>p( U.w')(F)(d) 

= U.w' U a/t) 

= U {aU ad I a E.w'}(t) 

= U{a U a/t) I a E.w'} 

= U{<f>p(a)(F)(d) I a E.w'} 

= (U{<f>p(a)(F) I a E.w'})(d) 

= (U{<f>p(a) I a E.w'})(F)(d) 

= (U<f>p(.w'))(F)(d). 

by (3.2) 

by Theorem 2.2 

by Theorem 16.3.7 

by Theorem 16.3.9 

(Note that F and d were arbitrarily chosen, so U { <f>p( a )(F )(d) I a E .w'} 
exists for all d E Da(F > and U { <f> p( a )(F) I a E .w'} exists for all F E FV(P), 
justifying the use of Theorems 16.3.7 and 16.3.9.) Now, <f>p(U.w')(F)(d) = 
( U <f>p(.w'))(F )(d) for all d E D8(F > and all F E FV(P), so <f>p( U .w') = 
U <f>p(.w') and <f>p is continuous. • 

The fixed point theorem not only tells us that JL<f>p exists, but it also 
gives us a way of calculating JL<f>p, since JL<f>p = u{<t>~(!l) I i EN}. For 
example, let ADD be the WN-program with the equation 

+(X,Y) = ifN(is_O(Y),X,s(+(X,s 1- 1 (Y)))). 

Then, writing J for JN, in kN we have, for any d E N j_ and any n E N, 

<f>~J(fl)( + )(d, j_ N) 

and 

= <f>l'oo( n) u a(d, j_ Jif N (is_O(Y)' X, s( + (X, sl- I (Y))))) 

= J(if N )(J(is_O)( j_ N)' d' <f>~oo< n) u a(d, j_ N /s( + (X, sl- I (Y))))) 

=J(ifN)( _l 8001 ,d,<f>~00(!1) U a(d,l_Js(+(X,s 1- 1(Y))))) 

<t>~;J(!l)( + )(d, 0) 

= <f>l'o 0 (!1) U a(d,o)(ifN(is_O(Y),X,s( + (X,s 1- 1(Y))))) 

=J(if N )(J(is_O)(O), d, <1>~00 (!1) U a(d,o)(s( +(X, s 1- 1 (Y)) ))) 

=J(ifN)(tt, d,<f>~00 (!1) U a(d,o/s( + (X,s 1- 1(Y))))) 

= d, 
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so JL<I>AD 0 ( + )(d, _iN) = _i N and JL<I>Aoo< + )(d, 0) = d. The situation is 
more complicated if the second argument is > 0. For example, 

ci>ADD(O)( + )(d, 1) 

=J(ifN)(J(is_O)(l),d,H U a(d,l)(s( + (X,s 1- 1 (Y))))) 

= n U a<d.I)(s( +(X, s 1- 1 (Y)))) 

=J(s)(O( + )(d,J(sl 1)0))) 

=J(s)(_i N) 

but if we iterate <I> ADo n + 2 times, n ;;::: 0, we get 

ci>~i(O)(+)(d,1) =ci>~;rJ(O) U a<d.l)(s(+(X,si 1(Y)))) 

=J(s)( ci>~rJ(O)( + )(d, 0)) 

Similarly, 

=J(s)(d) 

= {d + 1 
j_N 

ifd EN 
otherwise. 

cl>fo 0 (!1)( + )(d,2) = ci>ADD(O) U a(d,Z)(s( + (X,s 1- 1(Y)))) 

=J(s)(ci>AD 0 (!1)( + )(d, 1)) 

but if we iterate <I> ADo n + 3 times, n ;;::: 0, we get 

<1>~~(!1)( + )(d,2) = ci>~;i<O) u a<d. 2>(s( + (X,s 1- 1(Y)))) 

=J(s)(ci>~i(O)( + )(d, 1)) 

= {d + 2 
j_N 

ifd EN 
otherwise. 

In general, it can be shown by induction on n that, for any n E N, 

if d, e E Nand 0 :::;; e < n (3_3) 
otherwise, 
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so, for all d, e E N _j_ , 

JL<I>AD 0 ( + )(d, e) = U {<1>~00 (0)( + )(d, e) In EN} 

= {d + e 
..LN 

if d, e EN 
otherwise . 

That is, JL<I>A00( +) is the strict extension of +. 
We can also use the fact that JL<I>Aoo is a fixed point of <I>Aoo to verify 

that JL<I>A00( + )(d, e) = d + _j_ e for any given d, e E N _j_ • For example, 

JL<I>Aoo< + )(3, 2) 

= <I>Aoo< JL<I>Aoo)( + )(3, 2) 

= JL<I>ADD U a(3,Z)(ifN(is_O(Y),X,s( + (X,s! 1 (Y))))) 

=J(s)( JL<I>ADo( + )(3, 1)) 

=J(s)( <f>ADD( JL<f>ADD )( + )(3, 1)) 

=J(s)(JL<I>ADD U a(3, l)(ifN (is_O(Y), X, s( +(X, s,- 1 (Y))) ))) 

=J(s)(J(s)( JL<I>A00 ( + )(3,0))) 

= J(s)(J(s)( <I>Aoo< JL<I>Aoo)( + )(3, 0))) 

=J(s)(J(s)(JL<I>ADD U a(3,0)(ifN(is_O(Y),X,s( + (X,s! 1 (Y))))))) 

= J(s)(J(s)(3)) 

= 5. 

Before we go on we prove the following useful lemma. 

Extension Lemma. Let (9'; J) be a complete, continuous W-structure, 
and let P, Q be W-programs such that P ~ Q. 

1. For all FE FV(P), JL<I>p(F) = JL<I>Q(F). 

2. For all t E TMw(FV(P)), ~(t) = JL<I>Q(t). 

Proof. Let F(X 1 , ... ,Xn) = t be the defining equation for Fin P. First 
we prove by induction on i that 

<I>~(O)(F) = <I>~(O)(F) for all i EN. (3.4) 
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If i = 0 then <I>~{O.)(F) = O.(F) = <I>g(O.)(F), so assume <I>~{O.)(F) = 
<I>Q(O.)(F) and let dE D8<F>· Then 

<1>~+ 1(0.)(F)(d) = <1>~(0.) U ait) 

= <1>~(0.) U ait) 

= <l>b+ l(O.)(F)(d), 

by the induction hypothesis and 
the coincidence lemma 

and d is an arbitrary element of D8<FP so we have <1>~+ 1 (0.)(F) = 
<I>Q+ 1(0.){F), concluding the induction. Now, 

JL<I>p(F) = U{<I>~(O.) I i E N}(F) 

U{<I>~(O.)(F) I i EN} 

U{<I>~(O.)(F) I i EN} 

U{<I>~(O.) I i E N}(F) 

= JL<I>Q(F), 

by the fixed point theorem 

by Theorem 16.3.9 

by (3.4) 

by Theorem 16.3.9 

which completes the proof of part 1. Part 2 follows immediately from part 
1 by the coincidence lemma. • 

We have one more step to take before we define the denotational 
semantics of W-programs. In the next section we will select from any 
complete, continuous W-structure l certain objects, the data objects, to 
get a data structure system A. We will then give the denotational seman­
tics of W-programs in terms of A. However, it will turn out that IN is 
already a data structure system, which we will also call AN , so we can 
anticipate the next section and give the denotational semantics in AN for 
WN-programs.4 The idea is to give a single function that assigns a meaning 
to all WN-programs. 

Definition. The denotational meaning function for AN, denoted fg11 N, is 
defined 

for all WN-programs P. 

4 The reader who wishes to go on at this point to the chapter on operational semantics will 
be able to read the first two sections of that chapter as they apply to the particular structure 
lN. We simply need to remark that lN is a simple WN·structure (as defined in Section 5 of 
the current chapter) and that aN = rep(lN) = lN (as defined in Section 4 of the current 
chapter) is a simple data structure system for WN. 
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Exercises 

1. Let !, = (9';J) be a complete, continuous W-structure, let P be a 
W-program, and let <l>p = <I>i. Prove the following statements. 
(a) <1>~(!1) E 'IF.Wy(FV(P)) for all i E N. 

(b) {<1>~(!1) I i EN} is a chain in (~.Wy(FV(P)), !;;;,.,_,...:r <FV<P»). [Hint: 
See Lemma 1 in Section 5 of Chapter 16.] 

2. Give aWN-program p such that JL<I>iN = n. 
3. Give a WN-program P such that <l>j;N has infinitely many fixed points. 

4. Show that <1>,&0 has exactly one fixed point. 

5. Give a WN-program P with FV(P) = {F} such that JL<I>iN(F) is not 
strict. 

6. Prove (3.3). 

7. Let !, = !.N and let P be the WN-program with the equation 

F(X) = if N (is_O(X), 2, s(F(s1- 1 (X)))). 

(a) Show by induction on n that, for any n E N, 

<I>~(O)(F)(x) = {x + 2 
.l_N 

for all x E N _j_ • 

if x E N and 0 ::; x < n 
if x = ..L N or x ~ n 

(b) Show that JL<I>p(F) = f _j_, where f(x) = x + 2 for all x EN. 

8. Let P be the WN-program with equations 

F(X,Y) = ifN(is_O(Y),X,s(F(X,s! 1 (Y)))) 

G(X) = F(X,X) 

H(X) = ifN(is_O(X),s(O),G(H(s1- 1 (X)))) 

and let <l>p = <I>iN. 

(a) Let a(F) = · _j_ (the strict extension of the multiplication func­
tion), a(G)(x) = x + _j_ 2 for all x EN _j_, and a(H)(x) = 3 for 
all x E N _j_. What is <1>p(a)(F)(3, 5)? <1>p(a)(G)(7)? 
<l>p( a )(H)(13)? 

(b) What is <l>~(a)(F)(3,5)? <l>~(a)(G)(7)? <l>~(a)(H)(13)? 

(c) Describe <I>~(O)(F), <I>~(O)(G), and <I>~(O)(H) for all i EN. 
(d) Describe JL<I>p(F), JL<I>p(G), and JL<I>p(H). 
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9. Let P be the WN·program with equations 

F(X) = ifN(is_O(X),s(O),G(X,X)) 

G(X,Y) = ifN(is_O(Y),F(X),s(G(X,s1- 1 (X)))) 

and let <l>p = cf>~N. 
(a) Let a(F)(x) = 3 for all x EN j_, and let a{ G)= + j_ • What is 

<1>p(a)(F)(3)? <1>p(a)(G)(3,2)? 

(b) What is <l>~(a)(F)(3)? <l>~(a)(G)(3, 2)? 

(c) Describe <1>~(0.) for each i E N. 
(d) Describe JL<I>p. 

10. Give a WN·program P such that JL<I>~N(F) = · j_ (the strict extension 
of the multiplication function) for some F E FV(P). 

11. Give a WN·program P such that JL<I>~N(F) = F j_, where F(n) is the 
nth Fibonacci number, for some F E FV(P). [See Exercise 8.3 in 
Chapter 3 for the definition of Fibonacci numbers.] 

12. Let &, v, - be the usual operations on truth values. Give a 
W-program P such that, in any W-structure, JL<I>p(&) = & j_, 

JL<I>p(V) = v j_, and JL<I>p(-) =- j_ , where 

r(&) = r( V) = Bool X Bool - Bool 

and r(""') = Bool - Bool. 

13. Let l = (.9'; J) be a W-structure. Suppose we extend the standard 
vocabulary W to W' by adding the symbols is_tt, is_tT, and suppose 
we give is_tt, is_tT their natural interpretations J(is_tt), J(is_tT) as 
in condition 5 on Y:interpretations. Give a W-program P with func­
tion variables ls_tt, ls_tT such that JL<I>p(Is_tt) =J(is_tt) and 
JLilip(Is_tT) = J(is_tT). 

14. Let l = (9'""N,~), where~ is given in Exercise 2.6. What is JL<I>fo0 ? 

15.* Let l = (.9';J) be a complete, continuous W-structure, and let P be 
a W-program. Define w;: ..Wg-(FV(P)) ---+ ..Wg-(FV(P)) exactly like <I>~ 
except that its domain is ..Wg-(FV(P)). [This exercise requires the 
results of Exercise 2.14.] 
(a) Show that a E ..Wg-(FV(P)) is a solution to P in l if and only if a 

is a fixed point of w;. 
(b) Show that w; is monotonic. 

(c) Give a W-program Q such that 'I'J is not continuous. [Hint: Let 
f be a function and C a chain such that f( U C) =F Uf(C). For 
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all c E C, let ac(F) = f and let ac(G) be the constant function 
ac(G)(x) =c. Put the equation H(X) = F(G(X)) in Q.] 

(d) Show that ('l'i)i(O.) E %'.W'y(FV(P)) for all i EN. [Hint: Use 
Theorem 2.3 in the induction step.] 

(e) Show that u{('l'i)i(O.) I i EN} exists and is JLWi. 

4. Denotational Semantics of W-Programs 

Next we turn to the treatment of data structures. There are two properties 
that they should satisfy: 

1. Since the semantics of program P is to be based on the function <l>p, 
we want data structures to be rich enough to guarantee the existence 
of J.L<I>p for every program P. 

2. Since we need to be able to specify the inputs to a program, we want 
every element in a data structure to be the meaning of some term. 

These two properties may seem to be contradictory. Property 1 requires 
data structures to have enough elements to give meanings to programs, 
and property 2 requires that data structures not have too many elements. 
We deal with these requirements in two steps. Theorem 3.3 guarantees 
that JL<I>i exists when !. is a complete, continuous W-structure, so we 
begin with such structures and pare them down so that property 2 is 
satisfied. 

Definition. Let !. = (Y,J) be a complete, continuous W-structure. 

1. An element d E DY(T)' for some T E TV(W), is representable in W if 
there is some W-program P and some term t E TMMFV(P)) such 
that d = (JL<I>i)J (t). rep (DY(T)) is the set 

{ d E D.9"(T) I d is representable in w}' 
!;;;rep(Y(T)) is the restriction of !;;;Y(T) to rep (D.'T(T)), and rep (!T) is 
defined 

rep(!T)(T) = (rep(DY(T), !;;;rcp(.'T(T))) 

for all T E TV(W). 
2. For any function 

f E D.9"(T,) X ... X D.9"(T.) ---+ D:T(T)' 

where T1, ... , Tn, T E TV(W), let 

rep( f) E rep(D:T(T,) X · ·· X rep(p'T(T) ---+ P<T(T) 
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be defined 

rep(f)(dl ' ... ' dn) = f(dl ' ... ' dn) 

for all (d1, ••• , dn) E rep(p'T(T,)) X ··· X rep(DY(T). Then rep(J) 
is defined 

rep(J)(c) =J(c) for all constant symbols c E W 

rep(J)(f) = rep(J(f)) for all proper function symbols f E W. 

3. Finally, rep (I) = (rep(.?'), rep (J)) is the data structure system for W 
based on I. 

The point is that an arbitrary W-structure I might contain objects that 
we can never use as data since there is no way to refer to them. Therefore, 
in defining functions that we wish to consider computable, we will restrict 
our attention to the representable objects in rep (I). We might call these 
the data objects of I. 

It is important to understand that even if d1 , ••• , dn are representable, 
rep (f)(dp ... , dn) may not be representable if f is some arbitrary func­
tion. However, we will show that rep (f)(d1 , ••• , dn) is representable when 
f is the interpretation J(f) of some f E W. 

When 7 is understood, we will generally write (D,(T)' !;;;,(T)) for 
rep(.?')( T ), 

D,(T,)X ... Xr(T.l for rep(DY(T) X··· X rep(DY(T.l), 

D,(T,)X ... x r(T.)""'r(T) for rep(DY(T,)) X··· X rep(DY(T.l) ~ rep(DY(T)), 

and, when 8(F) = T 1 X··· X Tn -+T, D,( 6(F)) for D,(T,)X ... xr(T.l" 
Let I = (.9'; J) be a W-structure. Then for every constant symbol 

c E W, J(c) is representable since JL<I>i(c) =J(c) for any W-program P. 
Moreover, for every T E TV(W), ..l T is representable: let c E we be a 
constant symbol with T(c) = T, and let P be the W-program with equation 
B(X) = B(X), where T(X) = T and T(B) = T -+T. Then JL<I>i(B(c)) = 
O(B(c)) = ..l T. (This explains, by the way, our requirement that We 
contain a constant symbol of type T for every T E TV(We).) 

In IN, then, it is clear that every element in Bool is representable in 
WN. Moreover, every element in N .L is representable in WN: for all 
n E N, JL<I>;(n) = n, where P is any WN-program, e.g., the empty program. 
(In a case like this we can simply say O(n) = n.) Therefore, rep (§N) = .9N, 
rep(JN) =JN, and rep(IN) =IN. We will write AN for IN when we 
want to emphasize that IN is a data structure system for WN. 

Now, let Vr be a set of function variables, and let d = JL<I>i(t). It is 
useful to note that simply by changing the function variables in P and t, we 
can always find a W-program Q and a term u E TMw(FV(Q)) such that 
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FV(Q) n Jj = 0 and JLcl>~(u) = JLcl>~(t). Therefore, given representable 
elements d1 , ••• , dn, we can always find W-programs P1 , ••• , Pn such that 
FV(P;) n FV(lj) = 0, 1 ::::; i < j ::::; n, and terms t 1 , ••• , tn such that t; E 
TMw(FV(P;)) and d; = JL<I>~(t;), 1 ::::; i ::::; n. We will say that P1 , ••• , Pn are 
consistent if FV(P;) n FV(lj) = 0, 1 ::::; i < j::::; n. 

The first thing we need to do is show that data structure systems are 
W-structures. We begin with a lemma that shows that, for all proper 
function symbols f E W with T{f) = T 1 X · · · X T n -+ T, rep (J) (f) E 
Dr(T 1) X ··· X Dr(T.) ~ Dr(T). In other words, data structure systems are 
closed under the interpretations of the function symbols. 

Lemma 1. Let !. = (.5T,J) be a complete, continuous W-structure, and 
let fEw with T(f) = Tl X ... X Tn -+T. If (dl ' ... ' dn) E Dr(TJ)X 00. X r(T.)' 

then rep {J){f){d1 , ••• , dn) E Dr(T). 

Proof. Let d; = ( JL<I>P)J (t;), 1 ::::; i ::::; n, where P1 , ••• , Pn are consistent. 
Then P = U ?~ 1 P; is a W-program, and 

{ JLcl>p)J {f(tl, ... , tn)) 

= J{f){ ( JL<I>p )J{tl)' ... ' { JLcl>p)J{tn)) 

=J{f)( { JL<I>p)J{tl ), • • •, { JLcl>p)J{tn)) 

=J{f){dl '• • •' dn) 

by the extension lemma 

= rep(J){f){d1 , ••• , dn) since (dl ' ... ' dn) E Dr(T))X ... X r(T.) • 

• 
We will use the next lemma when considering the interpretations of the 

built-in function symbols is_f and f;- 1. 

Lemma 2. Let !. = (.57, J) be a complete, continuous W-structure, and 
let f Ewe with T{f) = Tl X ... X Tn -+T. If(dl , ... , dn) E DTJX ... XTn and 
J{f){dl ' ... ' dn) E Dr(T) - { .l T}, then (dl ' ... ' dn) E Dr(TJ)X ... X r(Tn). 

Proof. Let J(f){d1 , ••• , dn) = ( JL<I>p)J {t). Then for 1 ::::; i ::::; n, 

( JLWp)J(r;- 1 (t)) =J(f;- 1 )( ( JL<I>p)J (t)) 

=J{f;-1 ){J(f){dl '• • •' dn)) 

• 
Theorem 4.1. Let !. = (.57, J) be a complete, continuous W-structure. 
Then rep(!,) is a W-structure. 
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Proof. For any T E TV(W), (Dr(T)' !;;;r(T)) is clearly a partial order with 
bottom element _l_ T , and ( Dr(Bool), !;;;r(Bool)) = 9'"(Bool), so rep ( 9'") is a 
type assignment for W. 

Now we need to show that rep (J) is a rep (g)-interpretation for W. 
Note that in the context of the type assignment rep (.9'), each reference to 
a set DT in the definition of Y-interpretations should be understood as 
referring to rep (D7 (T)), i.e., Dr(T). Also, each reference there to J should 
be understood as a reference to rep (J). It is clear that rep (J) (c) = J(c) 
for all constant symbols C E We, SO condition 1 in the definition 
of .9=interpretations is Satisfied. If f E We is a proper function symbol 
with T(f) = T 1 X ··· X Tn - T, and d; E Dr(T;)' 1 ::; i ::; n, then 
rep (J)(f)(d1 , ••• , dn) E Dr(T) by Lemma 1, so condition 2a is satisfied. 
Conditions 2b, 2c, and 3 follow immediately from the definition of rep (J). 
Condition 4 follows immediately from Lemma 1 and the definition of 
rep (J), as does condition 5 for all constant symbols in We-, SO let f E We 
with T(f) = T 1 X··· X Tn-T, and let dE Dr(T)" If d = _l_ T then 
rep (J)(is_f)(d) = J(is_f)(d) = _l_ Bool, so assume d -=/= _l_ T • If d E 
ran(rep (J)(f)), then obviously d E ran J(f), so that rep (J)(is_f)(d) = 
J(is_f)(d) = tt. Now, if d E ran J(f), then d =J(f)(d1 , ••• , dn) for some 
(d1 , ••• ,dn) E Dr< 5<rn by Lemma 2, sod E ran(rep(J)(f)). Therefore, if 
d ft. ran(rep (J)(f)), then d ft. ran J(f), and rep (J)(is_f)(d) = 
J(is_f)(d) = ff, so condition 5 is satisfied. Finally, condition 6 is satisfied 
by a similar argument, so rep (J) is a rep (.57)-interpretation, and rep(!,) 
is a W-structure. • 

We can now define the denotational semantics of recursion programs. 
For a complete, continuous W-structure (9';J) and a variable assignment 
a E.J¥'7 (V), where V is a set of function variables, let rep(a) be the 
function on V defined by 

rep(a)(F) = rep(a(F)) for all FE V. 

Note that the domain of a(F) is Dr< 5(F)) for all F E V, but rep (a) is a 
variable assignment in ~ep(.9")(V) if and only if 

rep( a )(F )(d) E Dr< p(F)) for all F E Vandall d E Dr< 5<F». 

Definition. Let !, be a complete, continuous W-structure, and let A = 
rep(!,). The denotational meaning function for A, denoted 9Jt:., is defined 

9Jt:.(P) = rep( JL<I>~) 

for all W-programs P. 

For a W-program P and F E FV(P), we have 

9Jt:.(P)(F) =rep( JL<I>~)(F) =rep( JL<I>~(F)). 
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The point is that, rather than taking JL<I>~(F) as the function assigned to 
F, we assign to F a function whose domain consists only of representable 
objects. 

We showed that JL<I>~ is a solution to P in any complete, continuous 
W-structure I. We now show that 9111(P) is a solution to P in a = rep (I). 
That is, we still have a solution when we restrict our attention to the data 
structure system based on I. We begin with three lemmas that let us 
ignore nonrepresentable objects when applying JL<I>~ to terms. In particu­
lar, we want to show that if {3 E.W:.ep(.'7J(V), where Vis a set of individual 
variables, then for any term t E TMw(FV(P) U V), 

(JL<I>~ U {3)5 (t) = (rep(JL<I>~) U f3)rcp(J)(t). 

It will follow easily, then, that 9111(P) = rep ( JL<I>~) is a solution to Pin a. 

Lemma 3. Let I = (Y,J) be a complete, continuous W-structure, let P 
be a W-program, let V ~ VAR 1 , and let a E Jlfrcp(.'7J(V). Then for any 
term t E TMw(V U FV(P)), ( JL<I>~ U a)5 (t) E Dr(T(t))· 

Proof. We have JL<I>~ U a E ~'T(V U FV(P)), which implies 
( JL<I>~ u a )5 (t) E DT(t) by Theorem 2.1, so we need to show only that 

( JL<I>~ u a ~Y (t) is representable. We argue by structural induction on t. If 
t is a constant symbol c E W, then ( JL<I>~ u a ~Y (c) is clearly repre­
sentable, and if tis X E V, then ( JL<I>~ u a ~Y (X) = a(X) is representable 
by assumption. If t is f( t 1 , ••• , tn ), where f E W, then 

( JL<I>i U a )J (f(t 1 , ••• , tn)) 

=J(f)((JL<I>i U a)J(t 1), ••• ,(JL<I>~ U a)J(tn)) 

= J(f)( ( JL<I>~, L.- (u 1 ), ••• , ( JL<I>~.)f (un)) 

for some P;, u;, 1 ::;; i ::;; n, by the induction 
hypothesis, where P1 , ••• , Pn are consistent 

by the extension lemma, where P0 = U:'~ 1 P; 

= ( JL<I>~o)J (f(u 1 , ••• , un)) 

E DT(t) by Theorem 2.1, 

and ( JL <I>~" ).Y (f( u 1 , ••• , u n)) is representable, so it is in D,< T(t)) • The argu­
ment is similar if tis F(t 1 , ••• , t) with F E FV(P). • 
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Lemma 4. Let I = (Y,J) be a complete, continuous W-structure, let 
a= rep(I), and let P be a W-program. Then rep( JL<I>~) E~cp(.'TJ(FV(P)). 

Proof. Let F(Xu ... , X) = t be an equation in P, and let d E D,<~<F ». 
Then 

rep( JL<I>~)(F)(d) =rep( JL<I>~(F))(d) 

= JL<I>~(F)(d) since d E D,< S(F » 

= ( JL<I>~ U ad)J (t) 

E Dr(T(I)) 

since JL<I>~ is a solution to P 

by Lemma 3. • 

Lemma 5. Let I = (Y, J) be a complete, continuous W-structure, let 
V; ~ VAR 1 and ~ ~ VARF, let a E.J¥'7(~) be such that rep(a) E 
~cp(YJ(~), and let {3 E~cp(Yl(V;). Then for any term t E TMw(~ U V;), 

(a U {3 )J (t) = (rep( a) U {3 )rep (J)(t). 

Proof. Note that rep(a) U {3 E~ep(Yl(~ U V;), so by Theorems 2.1 and 
4.1, 

(rep (a) U {3 )rcp(J)(t) E Dr(T(t)) for any t E TMw(~ U V;). (4.1) 

We argue by structural induction on t. If t is a constant symbol c E W, 
then 

(aU f3)J(c) =J(c) = rep(J)(c) = (rep(a) U f3)rep(Jl(c), 

and if tis X E V;, then 

(aU f3)J(X) = {3(X) = (rep(a) U f3)rep(J)(X). 

If't is f(t 1,. .. , t), where fEW, then 

(aU f3)J(f(tp ... ,tn)) 

=J(f){(a U f3)J(t 1), ... ,(a U f3)J(tn)) 

=J(f)((rep(a) U f3)rep(J)(t 1), ... ,(rep(a) U f3)rep(J)(tn)) 

by the induction hypothesis 

= rep(J)(f)((rep(a) U f3)rep(J)(t 1), ... ,(rep(a) U f3)rep(J)(tn)) 

by (4.1) 

The argument is similar if t is F( t 1 , ••• , t n), where F E ~. • 
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Theorem 4.2. Let ~ = (9'; J) be a complete, continuous W-structure, 
and let a = rep(~). Then for any W-program P, g-ip) is a solution toP in 
a. 
Proof. Let p be a W-program, let F( XI' ... ' xn) = t be an equation in P, 
and let d E D,< S(F ». Then 

sg~(P)(F)(d) =rep ( JLci>~)(F)(d) 

= ( JLcl>~ U ad)J (t) as in the proof of Lemma 4 

= (rep(JLcl>~) U ad)rep(Jl(t) by Lemmas 4 and 5 

• 
Let a be a data structure system for W. Now that we have a meaning in 

a for every W-program, it makes sense to ask if a given W-program P 
defines the functions we want it to define. That is, we can ask if P is 
correct. Determining that a program is correct is known as program 
verification. 

Definition. Let a be a data structure system for W, let P be a W-pro­
gram, and let f E Dr(Tt)X ... X r(Tn)-r(T) for some Tl' ... ' Tn' T E TV(W). 
We say that Pis partially co"ect with respect to f if 

for some F E P, and we say that P is totally co"ect with respect to f if 
giP)(F) = f for some FE P. 

For example, we indicated in the previous section that JL<I>fj;0 ( +) = 
+ .l , and g~JADD) = JL<I>fi;0 since aN = ~N, so ADD is totally correct 
with respect to + .l • Recall that the correctness argument for ADD was 
based on ordinary induction. We will now give an application of fixed point 
induction in establishing a partial correctness result. 

Let eq: N .l X N .l ~ Bool (where Bool = { ..l Boo! , TRUE, FALSE} here) 
be the strict function defined by 

{
TRUE 

eq(x, y) = FALSE 

..l Bool 

if X, y E N and X = y 

if x, y E N and x =/= y 
otherwise, 
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and let EQ be the WN-program with the equation 

E(X, Y) = if 8001 (is_O(X), if 8001 (is_O(Y), tt, ff), E(s 1- 1 (X), s1- 1 (Y))). 

Writing ¥5'.<# for ¥f'.W'yN({E}), let aeq E ¥5'.<# be the assignment aeq(E) = eq, 
and let P(x) be the predicate on ¥5'.<# defined by 

P(a) ={TRUE 
FALSE 

if a ~@".<>' aeq 

otherwise. 

If .W' is a chain in ( ¥5'.<#, ~w.w) such that P( a) holds for all a E.<#, then 
clearly P( U .<#) holds, so P(x) is admissible. We want to show by fixed 
point induction that P( f.t<I>EQ) holds. Let n = n@".<>'. It is obvious that 
P(O) holds, so we assume P(<I>~Q(O)) and show that P(<I>~"Q\!1)) holds. 
We have <I>~Q(O) ~w.w aeq by the induction hypothesis, which implies 
<1>~01 (!1) ~@".<>' <I>EQ(aeq) by the monotonicity of <I>EQ' so if we can show 
that. <I>EQ(aeq) ~w.w aeq' then we will have <1>~01 (!1) ~@".<>' aeq' i.e., 
P(<l>~~1 (!1)). If x = .l N then it is easy to see that 

<I>EQ(aeq)(E)(x,y) =.l 8001 = ae/E)(x,y), 

so assume that x E N. If x = 0, then 

{
TRUE 

<I>EQ(aeq)(E)(x,y) = FALSE 

.l Bool 

if y =X 

if y E N and y =F x 

if y = .l N 

= aeq(E)(x,y), 

and ff x > 0, then 

{
TRUE 

= FALSE 

.l Bool 

~Bool ae/E)(x,y). 

if X= y 

if y E N - {0} and x =F y 

otherwise 

This concludes the proof of P( <1>~01 (!1)), so P( f.t<I>EQ) holds by fixed point 
induction. Therefore, 

and EQ is partially correct with respect to eq. 
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Exercises 

1. Let P1 = {F(X) = F(s(X))}, P2 = {F(X) = s(F(X))} be WN-pro­
grams. Give consistent WN-programs Q1 , Q2 such that, in any WN­
structure l, JL<I>ij 1 uQ 2(G 1) = JL<I>'i;1(F) and JL<I>~ 1 uQ 2(G 2 ) = JL<I>'i;2(F). 

2. Give a standard vocabulary W = We u B(We) and a W-structure 
l = (.9; J) such that, for some T E TV(W), there is an element 
d E DT - { ..l T} that is not in the range of J(f) for any f E We. 

3. Give aWN-structure l such that rep(l) =Fl. 
4. Show that Lemma 2 is not necessarily true for all f E W. 

5. (a) Give a standard vocabulary W, a W-structure l = (.9; J), and a 
function f E D T 1 ~ D Tz , for some T I> T 2 E TV(W), such that 
rep(/) f/:. Dr( Ttl ~ Dr(Tz). 

(b) Give an assignment a E .J¥'7 ({F}), where F is a function variable, 
such that rep(a) f/:..W..ep(.9"J({F}). 

6. Let l = (.9; J) be a complete, continuous W-structure, let V oe a 
set of function variables, and let a, {3 E ~.>&(r(V). Show that if 
a !;;;;>r.w:, (V > {3, then rep (a )(F) !;;;;,< 5(F » .... r<F > rep ( {3 )(F) for all F E V. 

7. Show that EQ is not totally correct with respect to eq. 

8. Use fixed point induction to show that ADD is partially correct with 
respect to + .l • 

9. Let l = (g; J) be a complete, continuous W-structure such that 
rep(l) = l, let P be a W-program, and let a E ~w_'7(FV(P)) be a 
solution to P in l. 

(a) Show that JL<I>i; !;;;;w.w,(FV(P))a. 
(b) Show that for all F E FV(P), Pis partially correct with respect to 

a(F). 

10.* Let l = (Y,J) be a complete, continuous W-structure, and let 
nl = nW.~q(VARtl" For any T E TV(W), we will say that an element 
dE DT is constructed if d = TI";(t) for some t E ™w,(VAR 1). 

(a) Let P be a W-program. Show by induction on i that for all 
V ~ V AR 1 , all {3 E .J¥'7 ( V) such that {3(X) is constructed for all 
X E V, and all t E TMw(FV(P) u V), <l>~(!l) u {3(t) is con­
structed. [Hint: For cases i = 0 and i = k + 1, argue by struc­
tural induction on t.] 

(b) Let T E TV(W), and let d E D,(Tl. Show that d = U C for some 
chain C of constructed elements. [Hint: Use part (a) with 
V= 0.] 

(c) Let T E TV(W). Show that for every d E D,(T) - { ..l T}, d E 

ran J(f) for some f E We. [Hint: See Exercise 2.9.] Compare 
with Exercise 2. 
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5. Simple Data Structure Systems 

So far AN is the only data structure system we have seen, so in this section 
we give some more examples. In particular, we look at a rather simple 
form of data structure system. 

Definition. Let !. = (.9'; J) be a W-structure. !. is a simple W-structure if 

1. Y( T) is a flat cpo for all T E TV(W), and 
2. J(f) is Strict for every proper constructor function symbol f E We. 

A = rep(!.) is a simple data structure system for W if !. is a simple 
W-structure. 

It is easy to see that any simple W-structure is complete and continuous. 
Clearly, AN is simple. For another example, we extend AN with tuples of 
natural numbers to create a simple WNL -structure, where WNL is the 
vocabulary for lists described in Section 1. Let TUP(N) be the set of all 
tuples of natural numbers, including the "empty" tuple ( ), and let 
(TUP(N) _]_, !;;;TUP(N)") be the flat cpo on TUP(N). We define !.NL = 
(~L,JNL) as follows: 

YNL (Boot) = YN (Bool) 

~L(N) = YN(N) 

~L(NL) = (TUP(N) _]_, !;;;TUP(N)") 

JNL(O) = 0 

JNL(s) = S _!_ 

JNL(nil) = () 

JNL(cons) =cons_]_ (the strict extension of cons) 

where cons: N X TUP(N) ~ TUP(N) is defined 

For built-in function symbols f, JNL(f) is defined according to conditions 
4-6 on Y.:interpretations. It is easy to check that !.NL is a simple W-struc­
ture. Moreover, we have ll(nil) = ( ), and for any tuple (m 1 , 0 •• , mn) we 
have 

O(cons(m1 , cons(m2 , • • • cons(mn, nil) · · · ) ) ) = (m 1 , ••• , mn) o 

Therefore, every element in TUP(N) _]_ is representable, so we have 
!.NL = rep (!.NL), and !.NL is a simple data structure system for WNL. We 
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will write ANL for INL when we are interested in INL as a data structure 
system. 

Now, let LIST be the WNL-program with equations 

Length(X) = ifN(is_nii(X), 0, s(Length(cons; 1 (X)))) 

Nth(X, Y) = ifN(is_O(X),cons 1- 1 (Y),Nth(s! 1 (X),cons; 1 (Y))) 

Cat(X, Y) = ifNL(is_nii(X), Y, cons(cons! 1 (X), Cat(cons; 1 (X), Y))) 

Rev(X) = ifNL(is_nii(X), 

X, Cat(Rev( cons2 1 (X)), 

cons(cons 1- 1 (X), nil))). 

Then f:g. (LIST)(Length) evaluates the length of a list. More precisely, if '-'NL 
len((m 1 , ••• , mn)) = n for any list (m 1 , ••• , mn) E TUP(N), then 
gll.NL(LIST)(Length) = len _L • It is clear that g~~.N,~LIST)(Length) is strict, 
so we argue by induction on the length of lists: 

g~~. (LIST)(Length)(( )) 
Nl. 

= JL<I>usT(Length)(( )) 

= <l>usT( JL<I>usT)(Length)(( )) 

= JL<I>usT u a 0 (ifN(is_nii(X),O,s(Length(cons; 1 (X))))) 

= JNL(if N ){JNL(is_nil){( )), 0, JLCI>usT U a< l(s(Length(cons; 1 (X))))) 

= 0, 

and 

gll.NL(LIST)(Length)((m 1 , ••• , mn+ 1)) 

= JLCI>usT U a(m,, ... ,m.+ 1>(ifN(is_nii(X),O,s(Length(cons; 1 (X))))) 

=JNL(s)(JL<I>usT(Length)(JNL(cons; 1 )((m 1 , ••• , mn + 1)))) 

=JNL{s)( JL<f>LIST(Length)((m2, ... , mn + 1 ))) 

=JNL(s){n) by the induction hypothesis 

= n + 1. 

We leave it to the reader to verify that gll.N,_(LIST)(Nth)(n, I) returns the 
nth element, starting from 0, of list I (if it exists); gll.N,_(LIST)(Cat) 
concatenates two lists; and gll. (LIST)(Rev) reverses a list. 

Nl. 
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In the previous paragraph we referred to lists rather than tuples. Why? 
The real question is, what is a list? The vocabulary WNL was created to let 
us name lists of numbers, based on our intuitive understanding of the 
nature of lists. Our point of view is that a list of numbers is just an element 

of Y(NL), where (9'; J) is any WNL -structure. This is essentially an 
axiomatic approach, where we express the properties we expect from our 
data objects, without specifying just what those objects are. So TUP(N) _L 

is one set of objects that can serve as lists of numbers, but there are 
others. An alternative WNL-structure will be given by the construction 
preceding Theorem 5.1. 

For a third example, we show that .9 programs, defined in Chapter 2, 
can be incorporated into a simple data structure system. We start with type 
variables Bool, N, V, L, S, I, and P, to be assigned truth values, numbers, 
variables (of .9), labels, statements, instructions, and .9 programs, respec­
tively. For a constructor vocabulary we take 

where 

\¥.:. = {tt, ff, 0, s, var, lab, skip, incr, deer, goto, unlab_instr, 

lab_instr, empty, cons}, 

T(O) = N 

T(var) = N -+V 

T0ab) = N -+L 

T(Skip) = V -+S 

T(incr) = V -+S 

T(decr) = V -+S 

T(s)=N-+N 

T(goto) = V X L -+S 

T(unlab_instr) = S -+1 

T(lab_instr) = LX S-+ I 

T(empty) = P 

T(cons) =I X P -+P, 

and we set Wy, = We U B(Wc). Now we set ~,( T) = SfN( T) for T = Bool, N, 
and we set ~,( T) to be the flat cpa on .9 variables, labels, statements, 
instructions, and .9 programs for T = V, L, S, I, P, respectively. Let 
V0 , V1 , ••• and L 0 , L 1 , ••• enumerate the .9 variables and labels, as in the 
beginning of Chapter 4 (except that we begin counting at 0 rather than 1). 
Then for the constructor symbols we define ._Yy, as follows: 

...Yy,(O) = 0 ._Yy,(s) = s _L 

..;:y,(var) = var .L 

..;:y,(lab) = lab _L 

..;:.,,(skip) = skip .L 

..;:.,,(incr) = incr _L 

..;:.,,(deer) = deer _L 

..;:y,(goto) = goto .L 

..;:.,,(unlab_instr) = unlab_instr .L 

..;:.,,(lab_instr) = lab_instr .L 

..;:y,(empty) = empty program 

..;:.,,(cons) = cons _L , 
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where 

var(n) = V, 

lab(n) = Ln 
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goto(V, L) =IF V * 0 GOTO L 

unlab_instr(S) = S 

skip(n) = V +--- V 

incr(V) = V +--- V + 1 

deer( V) = V +--- V - 1 

lab_instr(L, S) = [L] S 

For example, 

a 

O(cons( lab_instr( lab( 0 ), deer( var( 1)) ), 
cons( unlab_instr( incr( var( 0)) ), 

cons( unlab_instr( goto( var( 1 ), lab( 0))) 
empty)))) 

[A] X+-X- 1 
Y+-Y+l 
IF Xo!= OGOTOA 

dy = (rep(~,), rep(..;:,,>) = (~,, ..;:y,) is the simple data structure system 
of .9' programs. 

One of the standard problems in programming language theory is to 
show the existence of structures that satisfy a given set of conditions. We 
can ask, for example, is there a strict data structure system for every 
standard vocabulary? We will show that there is. We define Ir(W) = 
(.9';-(W)•~(w), the simple Herbrand W-structure, as follows.5 For each 
T E TV(W), let .9';-(W)( T) be the flat cpa on TM~, . We will write ..l T for 
the bottom element of g;.(W)( T ). Next we define ,y;,.(W): 

~(W)(c) = c for each constant symbol c E W,. 

if t; * ..l T,, 1 :::;; i :::;; n 

otherwise, 

for each f E We with T(f) = T 1 X · · · X Tn -+T. For each f E B(W,.), ~(W)(f) 
is defined according to conditions 4-6 on Y-interpretations. It is clear that 
I;r(W) is a simple W-structure, and an easy structural induction shows that 

5 The idea of creating structures based on terms comes from the field of mathematical 
logic. For example, Herbrand unicerses are defined and play a significant role in Chapter 13. 
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O(t) = t for all t E ™w,, so every element in IJI''(W) is representable. 
Therefore, a%'(W) = rep (l_;r(W)) = I.:r(W) is a simple data structure system 
for W, and we have proved 

Theorem 5.1. There is a simple data structure system for every standard 
vocabulary. 

Exercises 

I. Show that any simple W-structure is complete and continuous. 

2. Let I = (Y,J) be a simple W-structure, and let f Ewe with T(f) = 
T -T. What is JL.f(f)? 

3. Show that INL is a simple WNL-structure. 

4. Show by induction on n that 

{
m. 

~11 (LIST)(Nth)(i, (m 0 , ••• , mn)) = ..L' 
NL N 

5. Show by induction on n that 

if 0:::;; i:::;; n 

if i > n. 

~t..NL(LIST)(Cat)((l 1 , ••• , In), (m 1 , ••• , m,)) = (/1 •• • In, m 1 , ••• , m,). 

6. Using Exercise 5, show by induction on n that 

~t..NL(LIST)(Rev)((m 1 , ••• ,mn)) = (mn , ... ,m1). 

7. Give a WNL-program P such that 

8. Give the ~yAerm t such that O(t) is 

[Cd Z 2 +--- Z 3 - 1 

n 

IF Z3 =I= 0 GOTO C1 

9. Describe I.:r(WNd. 

10. Complete the proof of Theorem 5.1 by showing that rep CI-r(W)) = 
I.:r(W) for any standard vocabulary W. 

11.* Let I = (Y,J) be a W-structure. For any T E TV(W), we will say 
that an element d E DT is ground if d = ..L T or d = O(t) for some 
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t E TMw , and we will say that I is term-generated if for all T E 

TV(W), e~ery element of DT is ground. 
(a) Show that there is a term-generated W-structure for every 

standard vocabulary W. 
(b) Give a standard vocabulary W and a simple W-structure that is 

not term-generated. 
(c) Let I = (9'; J) be a simple W-structure, and let P be a W-pro­

gram. Show by induction on i that for all V ~ VAR1 , all 
{3 E .Wy(V) such that {3(X) is ground for all X E V, and all 
t E TMw(FV(P) U V), <1>~(.0) U {3(t) is ground. [Hint: For 
cases i = 0 and i = k + 1, argue by structural induction on t.] 

(d) Let I = (9';J) be a simple W-structure. Show that rep(I) is 
term-generated. [Hint: Use part (c) with V = 0.] 

12.* Let I= (9';J), I' = (::T',J') be W-structures. We say that I, I' 
are isomorphic if there is a set of functions {JT I T E TV(W)} such 
that 

• for all T E TV(W), fT is an isomorphism from ::T( T) to ::T'( T ), 
• for all constant symbols c E We with r(c) = T, fT(J(c)) = ::T'(c), 

and 
e for all proper function symbols f E We with r(f) = T 1 X · · · X 

Tn -+T, 

/T(J(f)(d) , ... ,dn)) =J'(f)(/T,(d)), ... ,fT.(dn)) 

for all (dp ... ,dn) E D5<r>· 

[See Exercise 3.18 in Chapter 16 for the definition of isomorphic 
partial orders.] 

(a) Show that IN, I2'<WN> are isomorphic. 
(b) Show that INL, I2'(WNd are isomorphic. 
(c) Let I be a simple W-structure. Use Exercise 11 to show that 

rep (I), I2'(W) are isomorphic. 

6. lnfinitary Data Structure Systems 

Simple data structure systems are too elementary to demonstrate the 
power of the framework we developed in Chapter 16, so in this section we 
look at more complex systems. 

Definition. Let I = (9'; J) be a complete, continuous W-structure. I is 
an infinitary W-structure if for every proper constructor function symbol 
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f E We , ..l p(f) f/=. ran J(f). d = rep ( !_) is an in finitary data Structure system 
for W if !. is an infinitary W-structure. 

Suppose we try to define, as an interpretation J(s) for s E WN, a 
continuous successor function s"' for N _L such that ..L N f/=. ran s"". If s"' 
and s, the ordinary successor function, agree on N then we still get the 
positive natural numbers s""(O), s"'(s"'(O)), ... by repeated application of s"' 
to 0, but we get other objects as well. Since ..L N f/=. ran s"", we get 
..L N c s"'( ..L N ), which implies s""( ..L N) c s""(s""( ..L N )) by the monotonicity 
of s"" and by condition 2b on Y:interpretations. The idea is that we know 
that s""(..L N) is the successor of something, but that is all we know. Now, 
s"'(s""( ..L N )) is also the successor of something, but we also know that it is 
the successor of something that is the successor of something, so 
s"'(s""( ..L N )) is more defined than s""( ..L N ). Moreover, an object like s""( ..L N) 
must be different than every natural number: s""( ..L N) = 0 would violate 
condition 3 on Y:interpretations, and s""( ..L N) = n + 1 = s""(n) would vio­
late condition 2b. What we get, therefore, is an infinite chain of distinct 
new objects: 

But then we need yet another new object u {(s"');( ..L N) I i E N} if we are to 
have a cpo. 

It is not at all obvious, then, that infinitary W-structures exist. In fact, we 
will show that they do. We begin by defining a variation on the Herbrand 
structures of Section 5. For each T E TV(W), we create a new constant 
symbol6 J.T with T(J.T) = T, and we set 

For each T E TV(W) we define the ordering !;;;T+ on TM~+ as follows: 

(

t =.l.T ort = uor 

[t = f(t 1 , ••• ,tn) and u = f(u 1 , ••• ,un), for 
t c + u if and only if . -T some f Ewe Wtth T(f) = Tl X ... X Tn -+T, and 

t; !;;;T~ D;, 1 :::;; i :::;; n]. 
I 

For WN we have w~ = {tt, ff, 0, s, J.Bool' J.N}, TM~t = {J.Bool• tt, ft'}, and 

6 Note that the symbol .l.T is introduced into the semantics of W-programs. The vocabu­
lary W remains the same. That is, .l.T cannot appear in a W-program. 
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TM~~ = {s;(O) I i EN} u {si(l.N) I i EN}. The definition of ~;;;N. im­
plies, for example, 

.l.N ~;;;N. s;(O) for all i EN, 

.l.N !;;;N+ s(.l.N) I;;;N+ s(s(.l.N)) I;;;N+ s(s(O)), and 

.l.N I;;;N+ S(.l.N) I;;;N+ s(S(.l.N)) I;;;N+ s(s(s(.l.N))) I;;;N+ 

Now, for each T E TV(W), (TM~+, I;;;T+ ) is a partial order with bottom 
element l.T, but we still have the problem that (TM~+, I;;;T+ ) is not, in 
general, a cpo. For example, {si(l.N) I i EN} is a chain in (TM~~, I;;;N+ ) 
without a least upper bound. Here is where we apply the ideal construc­
tion. 

Definition. The Herbrand ideal type assignment for W, denoted g;~<W>• is 
defined, for all T E TV(W), 

.9';~(W)( T) = (id(TM~+ ), ~ id(TMi.+ >). 

(As usual, we are writing id(TM~+) for id(TM~+ , I;;;T+ ).) The Herbrand 
ideal 9';~(Wfinterpretation, denoted ~·(W)• is defined 

e for all COnstant symbols C E We, With T(C) = T, 

e for all proper function symbols f EWe, with T(f) = T1 X ··· X Tn -+T, 

~·(W){f){/1 ' ... 'In) = {f(tp ... 'tn) It; E I;' 1 ::; i ::; n} u {.l.T} 

for all (/1 , ... , In) E id(TMw·) X ··· X id(TM~. ); 
• for all f E B(We), ~~(W)(f) is defined according to conditions 4-6 on 

9'=interpretations. 

The Herbrand ideal W-structure, denoted I..r~<W>• is (g;.<W>•~'<w)· 

When W is understood we will write (!T"',J"') for (.9';~<W>·~·<W>) 

(DT., ~;;;T.) for g;.(W)( T ), and ..l T• for the bottom element of (DT., ~;;;T. ). 
As usual, we will write tt for J""(tt) and ff for J""(tT). 

For a first example we consider I..r·(WN> = (g;.<WN>'~~<WN>), which 
we will write as I~. There are three kinds of elements in DN., including 
two kinds of principal ideals. For each numeral n there is pid(n) = 

{si( l. N) I i ::; n} u {n}, and for each term of the form sn( l. N) there is 
pid(sn(l.N)) = {si(l.N) I i::; n}. For all numerals n we will write n for 
pid(n), e.g., 3 = pid(3), where pid(n) is distinguished from the natural 
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number n by context. Somewhat ambiguously, perhaps, we will call these 
objects numbers. [Indeed, by our discussion about lists in Section 5, we 
could make a case that pid(3) is the natural number 3.] Also, we will write 
n _j_ for pid(sn( l. N )). These two kinds of objects look very similar, but the 
significant difference is that no object n can occur in an infinite chain. 
This is because n is the greatest element of n, so n cannot be a proper 
subset of any larger ideal. Therefore, there is no object d distinct from n 
such that n !;;;N~ d. In other words, n is not an approximation of any other 
element, so we can say that n is completely defined. On the other hand, 
{n _j_ I n E N} is an infinite chain, and 

u {n _j_ I n E N} = u {n _j_ I n E N} 

= U{pid(sn(.LN))In EN} 

= {sn(.LN) In EN}. 

In fact, {sn( l. N) I n E N} is the unique infinite ideal of Y"'(N), and we will 
write it as w. Clearly, w is not a principal ideal. 

We will now show that, for any standard vocabulary W, !.2'~<W> is an 
infinitary W-structure. 

Lemma 1. Let IE DT~ for some T E TV(W). 

1. If c E /, where c E we is some constant symbol, then I =Joe( c). 
2. If f( tp ... , tn) E /, where f E We is some proper function symbol, 

then I =Joo(f)(/1 , ••• , In), where, for 1 ::; i ::; n, 

I;= {u E TM~+ lf(t 1 , ••• ,t;_ 1 ,u,ti+P···,tn) E /}. 

Proof. Let c E I be some constant symbol. I is directed, so no term 
u E TM~+ of the form g or g( 01 '0 0 0 'um ), where g E we is distinct from 
c, can be in I since, by definition of !;;;; T+ , there is no term v E TM~+ 
such that c, u !;;;T+ v. Also, l.T E I since I is downward closed, so I= 
{l.T,c} =J"'(c). 

Now, let f(t 1, ••• , t) E /, for some f EWe with T(f) = T 1 X ··· X 
Tn -+T, and for 1 ::; i ::; n let / 1 , ••• , In be as defined in the statement of 
the lemma. Firs.t we show that / 1 , ••• , In are ideals. For 1 ::; i ::; n, t; E I;, 
so I; is nonempty. If u E I;, v E TM~+, and v !;;;Ti u, then 

f(t 1 , ••• ,t;_ 1 ,u,ti+ 1 , ••• ,tn) E I 

and 
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which implies f(t 1, ... , t;_ 1, v, t;+ 1, ... , tJ E I since I is downward closed. 
Therefore, v E I; and I; is downward closed. If u, v E I;, there is a term 
f(tp ... ,t;_ 1,w,t;+P···,tJ E I such that 

f(tl , ... ,ti-1 ,u,ti+l , ... ,tn) !;;;T+ f(tl , ... ,ti-1 ,w,ti+l , ... ,tn), 

f(tl , ... ,ti-1 ,v,ti+l , ... ,tn) !;;;T+ f(tl , ... ,ti-l ,w,ti+l , ... ,tn), 

since I is directed. Then wE I; and u, v !;;;T+ w, so I; is directed. There­
fore, I; is an ideal, 1 ::; i ::; n, i.e., I; E DT~. ' 

We claim that I =J"'(f)(/1, ... , In). Let u E I. If u = .L T, then u E 
J"'(f)(/1, ... , In) by definition of J"'(f). Otherwise, u must be of the form 
f( u 1 , ... , u J since I is directed. Then there is a term f( v ~' ... , vJ E I 
such that 

which implies, for 1 ::; i ::; n, 

f(tp ... ,t;_pU;,ti+P···,tn) !;;;T+ f(vp···,vn), 

so that 

f(tl , ... ,ti-1 ,u;,ti+l , ... ,tn) E I. 

Therefore, we have u; E I;, 1 ::; i ::; n, which implies f( up ... , uJ E 
J"'(f)(/1, ... , In), and so I ~ Joo(f)(/1, ... , In). Now, let u E 
J"'(f)(/1, ... , In). If u = .L T then u E I. Otherwise, u is of the form 
f( u 1, ... , uJ, where u; E I;, 1 ::; i ::; n. Therefore, by definition of I;, 

and since I is directed, a simple induction on n shows that there is a term 
f(vp ... ,vJ E I such that 

Then u; !;;;T+ v;, 1 ::; i ::; n, which implies f( up ... , uJ !;;;T+ f( vp ... ,vJ, 
so f( u I ' . : . 'u n) E I' since I is downward closed. Therefore, 
J"'{f)(/1, ... , In)~ I, and so I =J"'(f)(/1, ... , In). • 

Theorem 6.1. IK~(W> is an infinitary W-structure. 

Proof. It is clear that y+"' is a type assignment for W, and it is complete 
by Theorem 16.3.12. Therefore, we begin by showing that J"' is a 
::T"' -interpretation for W. Note that .L T occurs in every ideal of 
(TMw+, !;;;T+ ), and {.LT} is an ideal, so {.LT} is the bottom element _iT" 
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of (DTx' !;;;;Tx ). Now, for any constant symbol c E we with T(c) = T' 
J"'(c) = {.LT, c} * _1_ T' is an ideal of (TMw+, !;;;;T+ ), so condition 1 is 
satisfied. Let f E ~· be a proper function symbol with T(f) = T 1 X · · · X 
T,. -+T, let (/1 '0 0 0' /,.) E DTx X 000 X DTx' and let I =J"'(f)(/1 '0 0 0' I,.). I 
is nonempty since .LT E /. S~ppose that "r(t1, ... , t) E I, u E TMw+, and 
u !;;;;T+ f(tp ... , t). If u =.LT or u = f(tp ... , t) then u E I. 
Otherwise, by the definition of !;;;;T+, u must be a term of the form 
f(u 1, ... ,u,.), where u; !;;;;T+ t;, 1 ~ i ~ n. Then u; E I;, 1 ~ i ~ n, since I; 
is downward closed, so f( u 1 , ... , u,.) E I and I is downward closed. 
Suppose t, u E /. If t !;;;;T+ u or u !;;;;T+ t then either t, u !;;;;T+ t E I or t, u 
!;;;;T+ u E /, so suppose otherwise. Then t, u must be terms of the form 
f(t'p ... ,t,.),f(up···•u), respectively, and t;,u; E I; implies there is a 
W; E I; such that t;,u; !;;;;T+ W;, 1 ~ i ~ n, so f(t 1 , ••• ,t,.),f(u1, ... ,u) 
!;;;;T+ f( w1, ... , w) E I. Therefore, I is directed and it is an ideal, so 
I E DT, and condition 2a is satisfied. If (/1, ... , In), (J1 , ••• , Jn) E 
DT, X ··· X DT, are distinct, then clearly J"'(f)(/1, ... , In) * J"'(f) 

I n 

(11, ... , J,.), so J"'(f) is one-one and condition 2b is satisfied. Conditions 
2c, 3, 4, 5, and 6 follow immediately from the definition of J"'(f), so 
(.?""',J"") is a complete W-structure. 

It is immediate from the definition that _1_ P <O f/:. ran J"'(f) for every 
proper constructor function symbol f, so it remains for us only to show that 
J"'(f) is continuous for every proper f E w. Let f E we be a proper 
function symbol with T(f) = T1 X ··· X Tn -+T, and let'?? be a chain in the 
cpa (DT, x ... x T', !;;;;Tx x ... x Tx ). It is easy to see J"'(f) is monotonic, so by 

I " I II 

Theorem 16.4.3 we just need to show that J"'(f)( U %') !;;;; Tx 
UJ"'(f)(%'); that is, 

J"'(f)( U%') ~ UJ"'(f)(%'). 

Lett EJ"'(f)(U'?J') =J"'(f)(u(%' p), ... , u (%' t n)). If t = .LT then t E 
J"'(f)(/) for all I E '??,so that t E UJ"'(f)('?J'). Otherwise, tis some term 
f(t 1, ... ,t,.), where t; E U('?J' t i), 1 ~ i ~ n. Now, for 1 ~ i ~ n, if t; E 
U(%' t i), then t; E (If, ... ,/~) t i for some (If, ... , I~) E C, and since 
{(If, ... , ID 11 ~ i ~ n} is a finite subset of the chain '??, there is some 
(/1, ... , In) E %' such that 

Then t; E 1;, 1 ~ i ~ n, which implies f(tp 00., tn) EJ"'(f)(/1 ,. 00, In), so 
that f( t P 00 . , t) E u J"'(f) ( '??) = u J"'(f)( %'). Therefore, J"'(f) ( u %') 
~ UJ"'(f)(%'). 

We turn now to the built-in function symbols. Again, it is easy to see 
that each J"'(ifT), J""(is_f), and J"'(f;- 1 ) is monotonic, using Lemma 1 in 
the latter two cases. Let T E TV(W), and let %' be a chain in 
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{DBoolx X Tx X Tx' !;;;Boolx X Tx X Tx ). If { U '/FH 1 = ..1_ Boot• then I J, 1 = ..1_ Boot• 
for all I E ~ and we have 

If (U~)J,l = tt then J"'(ifT)(U%') = (U%'H2 = U(~ J,2). Now, if 
t E U(%' J,2), then t E I for some (b, I, J) E %', and there is some 
(tt,I',J') E ~such that I !;;;Tx /',so 

Therefore, J""(ifT){u~) ~ UJ""(ifT){~). Similarly, if (U'IF)J,l = ff then 
J""(ifT){u~) = (U~H3 ~ uJ"'(ifT){~), so J"'(ifT) is continuous. 

Next, let f E we with p(f) = T' and let ~ be a chain in (DTx' !;;;Tx ). If 
~ = {..L Tx} then J""(is_f)(U%') = ..L Boot• = UJ""(is_f){%'), so assume~ 
contains some I * ..L T •. Then there is some term in I ~ U ~ of the form g 
or g( u 1,. •• , Um ), where g EWe, SO I, U ~ E ran J"'(g) by Lemma 1. 
Moreover, for all J E ~' if J *..LT. then J ~ U~ implies that J also 
contains a term of the form g or g( v1 , ••• , vm ), so J E ran J"'(g). There­
fore, if f, g are the same then J""(is_f){u~) = tt = UJ"'(is_f){~), 
and if they are distinct then, by condition 3 on Y-interpretations, 
J"'(is_f) ( u ~) = ff = u J""(is_f) ( ~). 

We conclude with the functions J"'(f;- 1 ). Let f Ewe with T(f) = 
T1 X··· X Tn-T, and let%' be a chain in (DTx' !;;;Tx). If U%' $. ran...Y"'(f), 
then J"'(f;- 1 ){u~) = ..L T", and, for any IE%', if there were a term 
f(t 1 ,. •• , tJ E I, then f(t 1', ••• , tn) E U~ would imply by Lemma 1 that 
U %' E ran J"'(f), so ...Y""(f;- 1 ){/) = ..L T" and U...Y"'(f;- 1 ){~) =..LT •. Sup­
pose, then, that U %' = ...Y""(f){/1 , • .'. , In) for some (/1 , ••• : In) E 
DT·x ... xT•, so that J"'(f;- 1 ){U%') =I;, and lett E I;. Then there is a 
ter~ u or"the form f(u 10 ••• ,u;_ 10 t,ui+ 1 , ••• ,uJ E U%', which implies 
u E I for some IE~. Therefore, by Lemma 1, t E...Y"'(f;- 1)(/) ~ 
u ...Y""(f;- 1 ){~), and we have J""(f;- 1){U%') ~ u ...Y""(f;- 1 ){~), so 

...Y"'(f;- 1 ) is continuous. • 

We immediately get 

Corollary 6.2. There is an infinitary data structure system for every 
standard vocabulary. 

For example, A~ = rep(!.~) is an in finitary data structure system for 
WN. It is clear that each element in D 8001 • is representable. It turns out, 
moreover, that every element in Dw is representable. Certainly each 
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n E DN~ is representable, since O(n) = n. For example, 

0(2) =J"'(s)(J"'(s)(J"'(O))) =J"'(s)(J"'(s)( {.LN, 0})) 

=J""(s)({.LN, s(.LN), s(O)}) 

= {.LN , s(.LN), s(s(.LN)), s(s(O) )} 

= 20 

Now, let P be the WN-program with equations 

B(X) = B(X) 

G(X) = s(G(X))o 

Then for any n j_ E DN", n j_ = JLcl>p(sn(B(O))). For example, 

JLcl>p(s(s(B(O)))) =J""(s)(J"'(s)(O(B)(J"'(O)))) 

= J""(s)(J"'(s)( {.LN})) 

=J""(s)({.LN 's(.LN)}) 

= {.LN 's(.LN), s(s(.LN) )} 

551 

Also, an easy induction on n E N shows that ci>~(O)(G)(O) = n j_ for all 
n EN (where 0 = {l.N, 0}), so 

JL<I>p(G(O)) = u {ci>~(O)(G(O)) In EN} 

= U{ci>~(O)(G)(O)In EN} 

= U{nj_ In EN} 

= Wo 

Therefore, every element of DN~ is representable, and A""N = !.~ 0 

The situation is more interesting when we consider 

and A"'NL = rep(!.~L)o As in the previous example, .r"(N) = rep(.r")(N), 
but now .r"(NL) =F rep (.9""") (NL)o Again there are three kinds of elements 
in DNL" 0 For each term of the form cons(t 1 , .. o cons(tn, nil) .. o ), n ~ 0, 
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where t; E TM~NL, 1 ~ i ~ n, there is a principal ideal. For example, 

pid(cons(l, cons(.l.N, nil))) 

= {.l.NL, cons(.l.N, .l.NL), cons(s(.l.N ), .l.NL), cons(1, .l.NL), 

cons(.l.N, cons(.l.N, .l.NL)), cons(s(.l.N), cons(.l.N, .l.NL)), 

cons(l, cons(.l.N, .l.NL)), cons(.l.N, cons(.l.N, nil)), 

cons(s(.l.N), cons(.l.N, nil)), cons(l, cons(.l.N, nil))}. 

Note that pid(l.N) = {l.N}, pid(nil) = {l.NL,nil} =J""(nil), 

pid(cons(.l.N, nil)) = {.l.NL, cons(.l.N, .l.NL), cons(.l.N, nil)} 

=J"'(cons)(pid(.l.N ), pid(nil)), 

and, as the reader can verify, 

pid(cons(l, cons(.l.N, nil))) =J"'(cons)(pid(l), pid(cons(.l.N, nil))). 

That is, pid(cons(l,cons(l.N,nil))) is built up from pid(nil), the list with 
no elements, by applying J"'(cons) to (pid(l.N), pid(nil)) to get 
pid(cons(l.N,nil)), a list with one element (namely, pid(l.N)), and then 
applying J"'(cons) again to (pid(l), pid(cons( l. N, nil))) to get a list with 
two elements (namely, pid(l) and pid(l.N)). Therefore, we write 
pid(cons(l,cons(l.N,nil))) as (pid(l),pid(l.N)), or simply (1, ..LN.). In 
general, we write pid(nil) as the empty list ( ) and pid(cons 
(t1 , ••• cons(tn,nil) ··· )) as the finite list (d1 , ••• , dn), where d; = pid(t;), 
1 ~ i ~ n. 

For each term of the form cons(t 1 , ••• cons(tn, l.NL) ··· ), n ~ 0, where 
t; E TM~NL, 1 ~ i ~ n, there is also a principal ideal. For example, 
pid(cons( 1, cons( l. N, l. NL) )) is 

{.l.NL , cons(.l.N , .1. NL), cons(s(.l.N), .l.NL), 

cons(l,.l.NL), cons(.l.N ,cons(.l.N ,.l.NL)), 

cons(s(.l.N), cons(.l.N, .l.NL)), cons(l, cons(.l.N ,.l.NL) )} . 

Here we have 

pid(cons(l,cons(.l.N ,.l.NL))) =J"'(cons)(l,Joc(cons)( ..L N00 ' ..L NL")), 

which we write (1, ..L Noo) _]_ . In general we write elements of the form 
pid(cons(tH···cons(tn,l.NL) ···))as (d1 , ••• ,dn)_j_, where d; = pid(t;), 
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1 :::;; i :::;; n. We call these objects prefix lists, since 

for any e I ' 0 0 0 ' em E D N"· 

We also have elements in DNL" which are nonprincipal ideals. The 
difference between ( d 1 , ••• , d n) and ( d 1 , ••• , d n) _!_ is that the former is 
built up from the completely defined empty list J"'(nil) and the latter 
is built up from the completely undefined list .L NL"· Now, we can 
have infinite chains of finite lists, e.g., { ( n _]_ ) I n E N}, where we write 
u { ( n _]_ ) I n E N} as ( w), but the least upper bound is always a finite list 
(though not a principal ideal). On the other hand, chains of prefix lists can 
lead to infinite lists. For example, { ( 0, ... , n) _]_ I n E N} is a chain, since 

(0) _!_ !;;;NL" (0, 1) _!_ !;;;NL" (0, 1, 2) _!_ !;;;NL" •••' 

and the least upper bound of { ( 0, ... , n) _]_ I n E N} is the infinite ideal 
which we write as the infinite list (0, 1, 2, 3, ... ). There are other interest­
ing kinds of non principal ideals, such as u { ( n _]_ ) _]_ I n E N} and 

n 
u{<~>_j_ In EN}, 

which we leave to the reader to explore. 
It is interesting to observe that even these infinite lists, or the repre­

sentable ones, more precisely, can be quite useful. In fact, a family of 
programming languages known as lazy functional languages has been devel­
oped based on the use of such objects. The typical use of infinite lists in 
these languages is to define an infinite list of desired objects and then to 
select some particular object from the list. The word lazy refers to the fact 
that, in practice, it is not necessary to generate an entire infinite list before 
performing the selection: it is necessary to generate only enough of the list 
so that the desired object appears. For a simple example, let P be the 
program with equations 

F(X) = cons(X, F(s(X))) 

Nth(X, Y) = ifNL(is_O(X), cons1- 1 (Y), Nth(s 1- 1 (X), cons; 1 (Y)) ). 

Then 

~(F(O)) = (0, 1,2, ... ) and ~(Nth(n,F(O))) = n for all n EN. 

In the next chapter we will show that the infinite list ( p 1 , p 2 , ••• ) of all 
primes is also representable. 
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Unlike a""N, we now have objects that are not representable. For exam­
ple, the infinite list L = (HALT(O, 0), HALT(l, 1), ... ) is not repre­
sentable, where HALT(x, x) is the predicate defined in Chapter 4. If it 
were representable, say L = JLCI>Q(t), then we would have 

JLCI>PuQ(Nth(n,t)) = HALT(n,n) for all n EN, 

which, informally at least, would imply that HALT(x, x) is computable. 
For our final example, we take a vocabulary, WR, suitable for represent­

ing the decimal expansions of real numbers x in the interval 0 :::;; x < 1. 
(This interval is usually written [0, 1).) This time we begin with constant 
symbols d0 ,d1 , ... ,d9 , with T(d0) = ··· = T(d9 ) = D, to represent deci­
mal digits. We will build up lists of decimal digits with dnil and dcons, 
where T(dnil) = DL and T(dcons) = D X DL-DL. We also include in 
WR the symbols of WNL. We call the elements of D 0 x decimal digits, which 
we write as .l 0 ., 0, 1, ... , 9. Again we have three kinds of elements in 
D 0 Lx: (1) finite lists of decimal digits, which we write .d1d2 ••• dn, n ;:::: 0; 
(2) prefix lists of decimal digits, which we write .d1 d2 ••• dn _j_ , n ;:::: 0; and 
(3) infinite lists of decimal digits, which we write .d 1 d2 •••• It is clear that 
there is an object in D 0 Lx for every real number in [0, 1). (Actually, there 
is more than one object for some real numbers, since, for example, 
.29999 ... and .3 are distinct in DoL x, but that problem will not concern us 
here.) We call the elements of D 0 Lx computable real numbers7 in [0, 1). It is 
a basic mathematical fact that there are more real numbers than there are 
WR-programs and WR-terms, so there are certainly objects in D 0 Lx that are 
not computable real numbers. It is clear that every nonrepeating rational 
number in [0, 1) is computable, e.g., .33 = O(dcons(d3 ,dcons(d3 ,dnil))). 
It is also clear, intuitively, that we could write a WR-program to define long 
division, so every repeating rational number in [0, 1) is computable. In the 
next chapter we will show, moreover, that some irrational numbers are 
computable as well. 

Exercises 

1. Let We = {tt, ff, c, f} be a standard constructor vocabulary with Te(c) 
= T and Te(f) =TXT -T, and let W =We U B(We). 

(a) Give an infinite chain in (TM~., !;;;T+ ). 

(b) Let J"" =~'(W)• What is fl5 ,(f(X,f(c,c)))? 

7 Really we should call these objects representable real numbers at this point, but the 
operational semantics in the next chapter will justify the more traditional name. 
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2. What is pid(3) in !l"'N? What is pid(s3(l.N))? 

3. Show that n _j_ !;;;Noc n for all n E N. [Note that n has two different 
meanings here.] 

4, Let ,_f~ =~~(WN)' 
(a) Show that ..Y"'(s) (2) = 3. 

(b) Show that ..Y"'(s)(2 _j_) = 3 _j_ • 

(c) Show that ..Y""(s1- 1 )(3 _j_) = 2 _j_ • 

5. (a) What is gll~N(ADD)( + )(3, 2)? 

(b) What is gll'N(ADD)( + )(3 _j_ , 2)? 

(c) What is gll'N(ADD)( + )(3, 2 _j_ )? 

6. What is ( ..L N"' 1) in !l"'NL? What is ( ..L N"' 1) _j_ ? 

7. Show that (n) _j_ !;;;NL~ (n) for all n EN. 

8. Let J"' = ..Yr(WNd. 
(a) Show that ..Y"'(cons)(O, (1)) = (0, 1). 
(b) Show that ..Y"'(cons)(O, (1) _j_) = (0, 1) _j_. 

(c) Show that ..Y"'(cons; 1 )((0, 1) _j_) = (1) _j_. 

9. (a) 

(b) 

10. (a) 

(b) 

What is g.oc (LIST)(Length)( (2, 2))? '-'NL 
What is g •• (LIST)(Length)( (2, 2, 2, ... ))? '-'NL 
What is g •• (LIST)(Cat)((2,3), (4,5))? '-'NL 
What is gll'NL(LIST)(Cat)((2, 3), (4, 5, 6, ... ))? 

11. Write a WNL-program P with F E FV( P) such that 

for all representable lists of numbers (n 1 , n 2 , ••• ) E DNL". 

12. Write a WNL-program P with FE FV(P) such that 

gll'NL(P)(F)((m 1 , m 2 , ... ), (n 1 , n 2 , ... )) = (m 1 + n1 , m 2 + n 2 , ... ) 

for all representable lists of numbers (m 1 , m 2 , ••• ), (n 1 , n 2 , ••• ) E 

DNL"· 

13. Show that (1, 1, 1 ... ) is representable. 

14. Show that ( 1 _j_ , 1 _j_ , 1 _j_ ••• ) is representable. 

15. Show that for any n EN, (n, n + 1, n + 2, ... ) is representable. 

16. Let ( w) _j_ = u{(n _j_) _j_ In EN}. Describe ( w) _j_, and show that it is 
representable. 
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17. Let 
n 

(w,w, ... ) = u{<~)_~_ In EN}. 
Describe ( w, w, ... ), and show that it is representable. 

18. Prove the assertion made in the proof of Theorem 6.1: for every 
f E W, J"'(f) is monotonic. 
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Operational Semantics 
of Recursion Equations 

1. Operational Semantics for Simple Data 
Structure Systems 

The definition of gt:. accomplishes our goal of directly assigning a meaning 
to programs without the intermediary notion of a computation. On the 
other hand, at this point we have no a priori reason for believing that the 
functions defined by recursion programs are (partially) computable. It 
turns out, though, that they are computable in a very reasonable sense. In 
this chapter we go back to basics and define a notion of computation, one 
appropriate for recursion programs, which has much in common with 
computations of Y programs. This new kind of computation will be the 
basis for the operational semantics of W-programs. The idea is that the 
operational semantics will give us a way to compute the functions defined 
by the denotational semantics. We say that an operational semantics is 
correct with respect to the denotational semantics gt:. for a data structure 
system a if it gives every W-program P the same meaning given by gt:., 
that is, :;gt:.(P). The precise details depend on the nature of the particular 
data structure systems in which we wish to compute, so in this section we 
concentrate on an operational semantics appropriate for simple data 
structure systems. 

An Y program computation is a sequence of snapshots, and the relation 
between a snapshot and its successor is easily described. Computations of 
recursion programs are similar in nature. The idea, as before, is that we 

557 
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treat an equation like F(X) = G(H(X)) as a definition ofF in terms of 
G(H(X)). Given a term F(3), for example, we attempt to determine its 
value by replacing it with G(H(3)). Of course, G and H should also be 
defined, so we replace them by their definitions as well, and continue 
replacing until we get a numeral. We formalize this idea as follows. 

Again we let W be some arbitrary standard vocabulary throughout the 
chapter. A W-substitution is a finite function {(X 1 , t), ... , (Xn, tn)} such 
that X1 , ••• , X, are distinct individual variables and t 1 , ••• , tn are W-terms 
such that T(t) = T(X), 1 :o:; i :o:; n. The application of a W-substitution (} 
to a W-term t is written t (}, and the result of applying (} to t is the W-term 
obtained from t by simultaneously replacing each occurrence of X; by t;, 
1 :o:; i :o:; n. Note that each variable in the domain of (} is replaced by a 
term of the same type, so if t is a W-term, then t(} is also a W-term. We 
can give a more formal definition as follows. Let (} be a W-substitution. 
Then 

c (} = c for constant symbols c E W 

XO =t for X E VAR 1 such that (X,t) E (} 

X(} = X for X E V AR 1 such that X $. the domain of (} 

f(t 1 , ••• ,tn)O =f(t 10, ... ,tn0) wherefE W 

F(t 1 , ••• ,tn)O=F(t 10, ... ,tn(}) whereF E VARF. 

The following useful lemma shows that we can sometimes trade in part 
of a variable assignment for a substitution. 

Substitution Lemma. Let l = (Y,Y) be a W-structure, let v; ~ VAR 1 

and Vr ~ VARF, let a E..w"y(Vr), and let f3 E..w"y(JI;) be a variable assign­
ment and (} a substitution such that, for all X E v;, V(X (}) ~ Vr and 
{3(X) = a(XO). Then for all t E ™w<v; u Vr), au {3(t) = a(tO). 

Proof. We argue by structural induction on t. If t is a constant symbol 
c E W, then 

a u {3(c) =Y(c) = Y(c (}) = a(c (} ), 

and if t is X E v;, then a u fj(X) = {3(X) = a(X (}) by assumption. If t is 
f(t 1 , ••• , tn), where fEW, then 

aU {3(f(t1 , ... ,tn)) 

=Y(f)(a U {3(t 1 ), ••• , a U {3(tn)) 

=Y(f)(a(t 1 0), ... , a(tnO)) by the induction hypothesis 

= a(f(t 10, ... ,tn0)) 

= a(f(t~' ... ,tn)O). 
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If t is F( tp ... , t" ), where F E J-f, then 

a U ,B(F(tp ... , tn)) 

= a(F)(a U ,B(t 1), ••• ,a U ,B(tn)) 

= a(F)( a(t 1 e), ... , a(tn e)) by the induction hypothesis 

= a(F(t 1 e, ... , tn 8)) 

= a(F(tp ... ,tn)e). 
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• 
A W-term rewrite rule is a pair of W-terms, written u -+v, such that 

/V(v) ~ /V(u) and such that no individual variable occurs more than once 
in u. A W-term rewriting system is a set of W-term rewrite rules. 1 We say 
that a W-term t matches a rewrite rule u -+v with substitution e if t = ue. 
A W-term rewriting system T is deterministic if no W-term matches more 
than one rewrite rule in T. 

In order to use a W-term rewriting system T, we associate with T a 
rewriting strategy u which selects, for every W-term t, a (possibly empty) set 
of occurrences2 of subterms of t. These are the (T, u )-redexes of t. A 
W-term w is a T -rewrite of W-term t if t matches some rewrite rule u -+ v in 
T with substitution e, and w = ve. Given a strategy u, a W-term w is a 
(T, u )-rewrite of a W-term t, denoted 

t ==> w, 
T,u 

if w is the result of replacing every (T, u )-redex t' oft by aT-rewrite oft'. 
A W-term t is (T, u )-normal if the set of (T, u )-redexes is empty. A 
(T, u )-computation for W-term tis a (possibly infinite) sequence of W-terms 
t 0 , t 1 , ••• such that 

1. t 0 is t, 
2. t; ==> t;+ 1 for all t; occurring in the sequence, and 

T,u 

3. for all t; in the sequence, t; is (T, u )-normal if and only if t; is the 
last term in the sequence. 

For our definition of a computation to be reasonable, it is crucial that 
the process of finding the term t;+ 1 that follows term t; should itself be 
"mechanical," that is, computable in some sense. Moreover, the test that a 

1 Although the definition permits rules of the form c -+d, where c, d are constant symbols, 
they play no role in our treatment of operational semantics, so we assume that such rules do 
not occur in any rewriting system referred to in this chapter. 

2 Note that we distinguish between subterms and occurrences of subterms. For example, 
F( G( 0 ), G( 0)) has two occurrences of the subterm G( 0 ), and a strategy u might select the 
occurrence on the left without selecting the occurrence on the right. 
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term is (T, u )-normal must also be computable, so that we know when a 
computation terminates. Now, three kinds of steps are involved in finding 
ti+ 1: 

• finding the set of (T, u )-redexes oft;; 
• for each (T, u )-redex oft;, finding a rule u -+v in T and a substitution 

e such that t; matches u -+v with e; and 
• applying (J to v. 

It is clear that finding and applying substitutions are fairly simple opera­
tions. (For a more detailed treatment see the unification algorithm in 
Chapter 13.) Therefore, we must look more closely at rewriting strategies 
and sets of rewrite rules. We begin with four commonly defined rewriting 
strategies. 

Definition. LetT be a W-term rewriting system. A W-term is T-rewritable 
if it matches some rule in T. Let t be a W-term. An innermost occurrence 
of a T-rewritable subterm oft is one which has no T-rewritable subterms.3 

An outermost occurrence of a T-rewritable subterm oft is one which is not 
a subterm of any T-rewritable subterm oft. The leftmost innermost strat­
egy, denoted uu, selects the leftmost of the innermost occurrences of 
T -rewritable subterms of t. If there is no such subterm then uu selects the 
empty set. The parallel innermost strategy, denoted up; , selects the (possi­
bly empty) set of all innermost occurrences of T-rewritable subterms oft. 
The leftmost outermost strategy, denoted u10 , selects the leftmost of the 
outermost occurrences of T-rewritable subterms of t, or the empty set if 
there is no such subterm. The parallel outermost strategy, denoted upo, 

selects the (possibly empty) set of all outermost occurrences of T-rewrita­
ble subterms of t. 

Note that in each of the four strategies, the choice of (T, u )-redexes 
depends on the particular set T. Therefore, the computability of applying 
u depends on the nature ofT. 

To illustrate, let T consist of the rewrite rules 

F(X) -+s(F(s(X))) 
F(X) -+X 

G(O,Y)-+Y 
G(s(X),s(Y)) -+s(G(X, Y)). 

Then the underlined subterm of G(s(F( 0 )), s(F( O))) is the (T, uu)-redex, 

and the underlined subterm of G(F(G(O,O)),F(O)) is the (T, u10 )-redex. 

3 Note that we are not considering a term to be a subterm of itself. 
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Each of 

F(2) ~ 2 
-- T,uli 

F(2) ~ s(F(3)) ~ s(s(F(4))) ~ s(s(4)) = 6 
-- T,uu -- T,uli T,uu 

F(2) ~ s(F(3)) ~ s(s(F(4))) ~ s(s(s(F(S)))) ~ 
-- T, uu -- T, u1; T, uu T, uu 

is a (T, uu)-computation for F(2), where the underlined terms are the 
(T, uu)-redexes, and 

G(F(F(O)),F(2)) ==> G(s(F(s(F(O)))),s(F(3))) 
T, Upo 

==> s(G(F(s(F(O))),F(3))) 
T,upo --

==> s(G(s(F(O)),s(F(4)))) 
T,upo 

==> s(s(G(F(O),F(4)))) 
T,upo ----

==> s(s(G( 0, s( F(S)) ))) 
T, Upo 

==> s(s(s(F(S)))) 
T,upo 

==> s(s(s(S))) = 8 
T,upo 

is a (T, uP0 )-computation for G(F(F(O)),F(2)), where the underlined 
terms 
are the (T, CTP 0 )-redexes. 

It is clear from the example that computations for a given term t are not 
necessarily unique, which would make them unsuitable for the definition 
of functions. However, we can associate with each W-program a determin­
istic W-term rewriting system, which does give unique computations. 

Definition. Let P be a W-program. TheW-term rewriting system associated 
with P for simple data structure systems, denoted T.(P), consists of 

F(X1 , ••• ,Xn) -u for each equation F(X1 , ••• ,Xn) = u in P, 

together with 

• for each T E TV(W), 

ifT(tt, X, Y)-X 

ifT(tT,x, Y) -v 
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(The choice of particular individual variables X, Y is unimportant, as 
long as they are distinct and of the appropriate type.) 

e for each constant symbol C E We-, With r(c) = T, 

is-c(c) -tt 
is-c(t) -rr for each t E ™k - {c} 

• for each proper function symbol f EWe, with ar(f) = n and p(() = T, 

is-f(f(t 1 , ••• , tn)) -tt 

for each f(t 1 , ••• , tn) E TM~ 
( 

is-f(u) -rr 
for each u E TM~, not of the form f(t 1 , ••• , tn) 

f;-l (f(t 1 , ••• , tn)) -t; 

for each f(t 1 , ••• , tn) E TM~, 

It is clear that for any W-program P, T.(P) is deterministic, so T.(P) gives 
a unique (T.(P), u )-computation for any W-term t, where u is any rewrit­
ing strategy. It is also easy to see that for any W-term t, the process of 
finding a matching rewrite rule in T.(P), if one exists, is straightforward. It 
follows that finding the set of (T.(P), u )-redexes for t, where u is any of 
the strategies just defined, is also straightforward. Moreover, the test that a 
term is (T.(P), u )-normal is easy, so we have four reasonable notions of a 
computation. 

To illustrate, T.(ADD) has the rules 

+(X, Y) -if N(is_O(Y), X, s( +(X, s1- 1 (Y)) )) 

if 8001 (tt, X, Y)-X 

if 8001 (fT, X, Y)- Y 

ifN(tt,X, Y)- X 

ifN(tT,X,Y) -v 

is-0(0) -tt 

is-O(s(n)) -rr 
is-s(s(n)) -tt 

is-s(O) -rr 

s.- 1 (s(n)) -n 

for all n EN 

for all n EN 

for all n EN, 



1. Operational Semantics for Simple Data Structure Systems 

and 

+(3,2) 

=====:::) if N(is-0(2),3, s( + (3, s1- 1(2)))) 
T,(ADD), u1, 

=====:::) ifN(tT,3,s( + (3,s 1- 1 (2)))) 
T,(ADD), u1, 

=====:::) s( + (3, s1- 1 (2))) 
T,(ADD), u1, 

=====:::) s(if N(is-O(s 1- 1 (2)),3, s( + (3, s1- 1(s 1- 1(2)))))) 
T,(ADD), CTf0 

=====:::) s(ifN(is-0(1), 3, s( + (3, s1- 1 (sl 1(2)))))) 
T,(ADD), u1, 

=====:::) s(if N (IT, 3, s( + (3, s1- 1 (s1- 1 (2)))))) 
T,.(ADD), u 10 

=====:::) s(s( + (3, s 1- 1 (s! 1(2)) ))) 
T,(ADD), u1, 

=====:::) s(s(ifN(is-O(s 1- 1(1)),3, s( + (3, s1- 1(s! 1(s 1- 1(2)))))))) 
T,(ADD), u1, 

=====:::) s(s(ifN(is-0(0),3, s( + (3, s! 1(s 1- 1(s 1- 1(2)))))))) 
T,(ADD), ulo 

=====:::) s(s(if N(tt,3, s( + (3, s1- 1 (s! 1(s 1- 1 (2))))) ))) 
T,(ADD), u 1, 

==:::::;'> s(s(3)) = 5 
T,(ADD), CT/0 

is the (T.(ADD), u10 )-computation for + (3,2). 
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Now, in this example, the leftmost outermost strategy gives us exactly 
what we want with respect to aN, computing 5 from+ (3,2). The leftmost 
innermost strategy, on the other hand, is a different story. Consider the 
simple program 

P = {G(X) = G(X),H(X) = 3}. 

For G(O) we get the infinite (T.(P), uu)-computation 

G(O) G(O) ···, 
-- T,(P), uu -- T,(P), uu 

which is entirely appropriate since gaN(P)(G) is the everywhere undefined 
function and gaN(PXG)(O) =..lN. However, uu also gives the infinite 
computation 

H(G(O)) ====> H(G(O)) ===> H(G(O)) ===> 
T,(P), uu T,(P), uu T,(P), uu 
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which is not what we want, with respect to aN, since 

DdN(P)(H)( ..lN) = JL<I>p(H)( ..lN) 

u ( {<I>~+ 1(0)(H)( ..lN) I i E N} u {<I>~(O)(H)( ..lN)}) 

U ({<1>~(0) U a_~_N(3) I i EN} U { ..lN}) 

= 3. 

The problem is that the nonstrict function assigned to H by 9J6)P) can 
completely ignore its input and produce an output value, but the leftmost 
(or parallel) innermost strategy requires the computation to try forever to 
compute G( 0 ). On the other hand, the leftmost (or parallel) outermost 
strategy gives the finite computation 

H(G(O)) 3, 
T,(P), ulo 

which is exactly what we want. 
The point is that innermost strategies may be fine in a context where all 

functions are strict, but they are not successful in general. For our 
purposes they are not appropriate since, even if we interpret all construc­
tor function symbols with strict functions, the interpretations of the if T 
symbols are necessarily not strict. This is quite sensible, since we do not 
want J(ifT)(b, d, e) to depend on both d and e, but only on (at most) one 
of d or e, according to the value of b. We choose a strategy which is 
neither purely innermost nor outermost, but which is closer in spirit to an 
outermost strategy, since it does not depend on completing the computa­
tion of innermost subterms. It will be convenient to define it only for 
deterministic W-term rewriting systems. 

Definition. Let T be a deterministic W-term rewriting system, and let t be 
a W-term. In the full rewriting strategy, denoted uf, the (T, uf)-rewrite4 oft 

4 Technically, the definition of (T, ur )-rewrites varies somewhat from the general definition 
of (T, u )-rewrites given earlier, since we replace subterms c!»(t 1 , ••• , tn) by the T-rewrite of 
cl»(rry(t 1), ••• ,rry(tn)), i.e., ry(cl»(rry(t 1), ••• ,rry(tn))), rather than by the T-rewrite of 
cl»( t 1 ,, ••• , tn ). The difference is of no concern, however, and the definition of (T, ur )-compu­
tations, which depends only on (T, ur )-rewrites and (T, ur )-normality, conforms to the general 
definition of (T, u )-computations. 



1. Operational Semantics for Simple Data Structure Systems 

is rr T(t), where rr T(t) is defined in two stages: 

u8 if ~(t 1 , ••• , tn) matches a rule 
~(u 1 , ••• , un) -+u in T with 

rT(~(t 1 , ••• ,tn)) = substitution 8 

= c for all constant symbols c E W 

rrT(~(t 1 , ••• , tn) )= r T( ~(rr T(t 1 ), ••• , rr T(tn)) ). 
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The W-term t is (T, ur )-normal if there is no subterm ~(t 1 , ••• , tn) of t 
such that ~(rrT(t 1 ), ••• , rrT(tn)) matches a rewrite rule in T. 

Throughout this section we will write r P and rr P for r T,<P> and rr T,<P>, 
respectively. Just as with uu, up;, u 10 , and upo, the computability of 
applying ur depends on the rewriting system T, and T.(P) and ur give us 
another reasonable notion of a computation. Note that if t 0 , t 1 , t 2 , ••• is 
an infinite (T,(P), ur)-computation, then rr~(t 0 ) = t; for all i EN. In other 
words, rr~(t 0 ), rr~(t 0 ), rr~(t 0 ), ••• is by definition the (T.(P), ur)-computa­
tion for t 0 when the computation is infinite. If t 0 , t 1 , ••• , tn is a finite 
(T.(P), ur)-computation, then rr~(t 0 ) = t; for 1 ~ i ~ n, and rr~(t 0 ) = tn 
for i > n. That is, rr p(t) = t if t is (T.(P), ur )-normal. 

It is clear that for any term f(t 1 , ••• , tn ), where f is a constructor symbol, 

since there are no rewrite rules in T.(P) for f. In WN, for example, we have 
rrp(s(t)) = s(rrp(t)), and, in particular, rrp(n) = n for any numeral n. To 
illustrate ur we give the (T.(ADD), ur)-computation for + (3,2): 

+(3,2) =====> rrp(+(3,2)) 
T,.(ADD), u 1 ( 

= rp(+ rrp(3), rrp(2))) 

= rp(+ (3,2)) 

= ifN (is-0(2),3, s( + (3, s1- 1(2))))) 

==:::;'> rrp(ifN(is_0(2),3,s( + (3,s 1- 1(2))))) 
T,(ADD), u1 ( 

= rp(ifN(rrp(is-0(2)),rrp(3),rrp(s +(3,s1 1 (2)))))) 

= r p(if N(r p(is_O( rr p(2))), 3, r p(s( rr p( + (3, s1- 1( 2) )))))) 

= r p(if N(r p(is-0(2)), 3, r p(s( r p( + ( rr p(3), rr p(s1 1( 2)))))))) 

= r p(if N(ff, 3,r p(s( r p( + (3, r p(s 1- 1( rr p(2))))))))) 
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= rp(ifN(tT,3,rp(s(rp( + (3,rp(s1- 1(2)))))))) 

= r p(if N(tT, 3, r p(s( r p( + (3, I)))))) 

= r p(if N( tT, 3, r p(s(if N( is-0(1), 3, s( + (3, s 1- 1(1)))) )))) 

= r p(if N( tT, 3, s(if N( is-0( 1), 3, s( + (3, sj" 1(1))))) )) 

= s(if N(is-0( I), 3, s( + (3, s 1- 1( I))))) 

====> rrp(s(if N(is-0(1),3, s( + (3, s 1- 1(1)))))) 
T,(ADD), u 1 

= · · · = s(s( if N(is-0( 0 ), 3, s( + (3, sj" 1 ( 0)))))) 

====> rrp(s(s(ifN(is-0(0),3,s( +(3,sj" 1(0))))))) 
T,(ADD), u 1 

= ... = 5. 

We use (Ts(P), ur)-computations to define the operational semantics of 
W-programs with respect to simple data structure systems. In particular, 
we use the final terms in finite computations to determine the functions 
defined by P. Moreover, the value of these terms should be independent of 
the denotational semantics of P, so we use the least informative variable 
assignment, .n, to interpret them. 

Definition. Let a = rep(!.) be a simple data structure system for W. The 
operational meaning function for a, denoted &'t:., is defined as follows. For 
all W-programs P0 , all FE FV(P0 ), and all (d1 , ••• , dn) E D,<~<F»• 

where 

if the (Ts(P), ur )-computation for 
F(t1 , ••• , tn) is finite and ends with t 
otherwise, 

• d; = JL<I>~(t;), 1 ::::; i ::::; n, 
• P0 , P1 , ••. ·, Pn are consistent, and 
• P = U7=o P;. 

The idea is that we can compute &'t:.(P0 )(F)(dp ... , dn) by extending 
program P0 with programs P1 , ••• , Pn and then carrying out the 
(Ts( U7 = 0 P; ), ur )-computation for F( t 1 , ••• , t J. In aN , of course, n = O(n) 
for all n EN, so to compute a function on (m 1 , ••• , mn) E Nn, we can 
simply let P; = 0, 1 ::::; i ::::; n. Moreover, to represent ..LN we can just 
include the equation B(X) = B(X). 

Note, however, that in general there are many different choices of 
programs P1 , ••• , Pn and terms t 1 , ••• , tn which characterize the same tuple 
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(d1 , ••• , dn), and these might give different computations. It is not obvious, 
then, that the definition of &t:. makes sense. We need to know that we get 
the same result in all cases, even if the computations differ. Theorem 1.1 
later in this section, which shows that the operational and denotational 
semantics are equivalent for simple data structure systems, implies that 
we do. 

We should note that the purist might object that the operational 
semantics of W-programs is not really independent of the denotational 
semantics since the initial term F( t 1 , ••• , t n) and the program P depend on 
the condition d; = JL<I>~(t;), 1 ~ i ~ n. Indeed, we could give an alterna­
tive operational semanti'cs in which the input to a program P is simply a 
sequence such as ((P1 , t 1), ••• , (Pn, tn)) and the output is the final term in 
the (Ts(U7~o P;), ur)-computation for F(t1 , ••• , t). Of course, Theorem 
1.1 would need to be reformulated in a suitable way. For our purposes, 
however, the important thing is that there is some term F( t 1 , ••• , t) from 
which the correct value of g"iP0 )(F)(d1 , ••• , dn) can be computed. That 
fact is sufficient to justify calling the function gt:.(P0) (F) computable. 

We now turn to the proof of Theorem 1.1, beginning with four lemmas. 
In Lemma 1 we finally apply condition 2c on Y-interpretations. Lemma 3, 
which is proved by an induction based on Lemma 2, is the heart of the 
argument. It shows that the terms of a computation (interpreted by .n) 
correctly approximate the value of the function being computed. Lemma 4 
guarantees that, if a function has a non-bottom value for some given input, 
then the computation for that input will eventually terminate. 

Lemma 1. Let I = (:T, J) be a W-structure and let a be any variable 
assignment based on :T. Then for any term t E ™w,, a(t) =/= .L T(t) • 

Proof. We argue by structural induction on t. If t is a constant symbol 
c E we' then a(c) = J(c) E DT(c) - { .L T(c)} by condition 1 on Y-interpre­
tations. Otherwise, t is of the form f( tH ... 't), where f E we. Then 
a(f(tl,••••tn)) =J(f)(a(tl), ... , a(tn)) =/= _LT(I) by the induction hypoth­
eSiS and condition 2c on Y-interpretations. • 

Lemma 2. Let I = (:T, J) be a complete, continuous W-structure, and 
let P be a W-program. Then for all t E TMw(FV(P)) and for all i E N, 
<1>~+ 1(0)(t) = <I>~(O)(rrp(t)). 

Proof. Let i EN. We argue by structural induction on t. If tis a constant 
symbol c E W, then 

<1>~+ 1 (0)(c) =J(c) =J(rrp(c)) = <I>~(O)(rrp(c)). 
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If t is of the form f(t 10 ••• , tn), where fEW, then rrp(f(t 1 , ••• , tn)) = 
rp(f(rrp(t 1), ••• , rrp(tn))). If f(rrp(t 1), ••• , rrp(tn)) does not match any 
rewrite rule in T.(P), then rrp(f(t 1 , ••• ,tJ) = f(rrp(t 1), ••• ,rrp(tn)), and 

cl>~+ I(O,)(f(tl ' ... 'tn)) 

=J(f)( cl>~+ I ( {} )(tl ), ... , cl>~+ I (0, )(tn)) 

= ci>~(O.)(f(rrp(t 1 ), ••• ,rrp(tn))) 

= ci>~(O.)(rrp(f(t 1 , ••• ,tn))). 

by the induction 
hypothesis 

Otherwise, f(rrp(t 1), ••• , rrp(tn)) does match some rewrite rule in T.(P). 
Suppose tis ifT(u,v,w). If rrp(u) = tt then 

and 

rrp(ifT(u,v,w)) = rp(ifT(rrp(u),rrp(v),rrp(w))) = rrp(v), 

=J(ifT)(cl>~+ 1(0.)(u), cl>~+ 1(0,)(v), cl>~+ 1(0,)(w)) 

= J(ifT )( <1>~(0. )(rr p(U) ), <I>~( n )(rr p( V) ), <I>~( n )(rr p(W) )) 

by the induction hypothesis 

= J(ifT )(tt, <1>~(0. )(rr p(v) ), ci>~(O.)(rr p(w) )) 

= ci>~(O.)(rrp(v)) 

= ci>~(O.)(rrp(ifT(u,v,w))). 

Similarly, if rrp(u) = tT then 

Next, suppose, t is is_c( u) for some constant symbol c E we-. If rr p(u) 
= c then 
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and 

<1>~+ 1(!l)(is-c(u)) 

=J(is_c)(cl>~+ 1(!l)(u)) 

=J(is_c)( cl>~( n )(rr p(u))) 

= J(is_c)(J(c)) 

by the induction hypothesis 

= tt by conditions 1 and 5 on §.:interpretations 

= cl>~(!l)(rrp(is_c(u))). 
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Othetwise, rr p(u) = g or g( u 1 , ... , um) E TMw for some constant symbol 
or proper function symbol g distinct from c, so 'that 

rrp(is_c(u)) = rp(is_c(rrp(u))) =fT. 

Suppose rr p(c) = g. Then 

<1>~+ 1(!l)(is_c(u)) 

= J(is_c)( cl>~+ 1 ( n )(u)) 

=J(is_c)(cl>~(!l)(rrp(u))) by the induction hypothesis 

= J(is_c)(J(g)) 

= ff by conditions 1, 3, and 5 on §.:interpretations 

Similarly, if rrp(u) = g(u 1 , ••• ,um) then 

<1>~+ 1(!l)(is_c(u)) 

=J(is-c)(cl>~+ 1(!l)(u)) 

= J(is_c)( cl>~( !l)(rr p(u))) by the induction hypothesis 

=J(is_c)(J(g)(ci>~(!l)(u 1 ), ••• , cl>~(!l)(um))) 

= ff by Lemma 1 and conditions 2c, 3, and 5 on 

g.: interpretations 
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The argument is nearly the same if t is is-f( u), where f is a proper 
function symbol in we . 

Now suppose tis fi- 1(u) and rrp(u) = f(tu···•tn) E ™w,. Then 

and 

=...Y(fi-1 )(<I>~+ I(.O)(u)) 

=...Y(fi- 1 )( <1>~(.0 )(rrp(u))) by the induction hypothesis 

by Lemma 1 and conditions 2c on 6 on 
Y.:interpretations 

Finally, suppose t is F(t 1, ••• , t), where F E FV(P), and let 
F( X 1 , ••. , X n) = u be the defining equation for F in P. Then 

= <f>~+ I(.O)(F)(<f>~+I(.O)(tl), ... ,<I>~+ I(.O)(tn)) 

= <I>~+ I ( n )(F)( <I>~( n )(rr p(tl))' ... '<I>~( n )(rr p(tn))) 

by the induction hypothesis 

= <1>~(.0) U a(u) where a(Xj) = <I>~(.O)(rrp(tj)), 1 ~j ~ n 

= <I>~(.O)(uO) by the substitution lemma 

• 
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Lemma 3. Let l = (Y, J) be a complete, continuous W-structure, and 
let P be a W-program. Then for all t E TMw(FV(P)) and for i EN, 
<I>~( n ){t) = O(rr~{t)). 

Proof. We argue by induction on i. If i = 0 then for all t E TMw(FV(P)), 

<l>~(!l)(t) = O{t) = O(rr~(t)), 

so assume the lemma is true for i = k. Then for all t E TMw(FV(P)), 

<1>~+ 1{!l)(t) = <l>~(!l)(rrp(t)) 

= O(rr~(rr p(t))) 

= O(rr~+ 1(t)). 

by Lemma2 

by the induction hypothesis 

(See Exercise 12.) • 

Lemma 4. Let l = (Y,J) be a simple W-structure, let P be a W-pro­
gram, and let t E TMw(FV(P)). If O{t) =F ..l T(t), then O(rrp(t)) = O(t) 
and rrp(t) E ™w,. 

Proof. Let T(t) = T. We argue by structural induction on t, assuming 
throughout that O(t) =F ..l T . If t is a constant symbol c E W, then rr p(c) = 
C E TMw. If tis f(tp···,tn), where f EWe and T(f) = T 1 X··· X Tn 

-+T, the~ O(t;) =F ..l T , 1 :::;; i:::;; n, by the strictness of J(f), so O(rrp(t;)) 
= O(t;) and rrp(t;) E'TMw by the induction hypothesis, 1 :::;; i:::;; n, and 
we have ' 

O(f(t 1 , ••• ,tn)) =J(f)(O(t1), ••• ,0(tn)) 

=J(f){O(rrp(t 1 )), ••• , O(rrp(tn))) 

where f(tp ... , tn) E TMw. 
Suppose t is ifT( u, v, w ). Then O(u) =F ..l Boo! , so O(rr p{u)) = O(u) and 

rrp(u) E TMw by the induction hypothesis. If O(u) = tt then rrp(u) must 
be tt by condition 3 on .:7-interpretations, and rrp(ifT(u,v,w)) = rrp(v). 
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Therefore, 

O(ifT(u,v,w)) 

=J(ifT)(O(u), O(v), O(w)) 

= O(v) 

= O(rrp(v)) by the induction hypothesis, since 

O(v) = O(ifT(u, v, w)) * _1_ T 

= O(rrp(ifT(u,v,w))), 

and by the induction hypothesis, rrp(ifT(u,v,w)) = rrp(v) E TMw. If 
O(u) = ff then we get O(ifT( u, v, w )) = O(rrp(ifT( u, v, w ))) 'and 
rrp(ifT(u,v,w)) = rrp(w) E TMw by a similar argument. 

Next, suppose t is is_f(u) for some f EWe with T(f) = T1 X · · · x 
Tn-T. If O(is_f(u)) = tt, then _iT* O(u) E ranJ(f), so O(rrp(u)) = 
O(u) and rrp(u) E TMw by the induction hypothesis. Moreover, O(rrp(u)) 
E ran J(f) implies rrp(~) must be of the form f(t 1 , ••• , tJ by condition 3 
on Y:interpretations, so rr p(is_f( u )) = tt E TMw and O(rr p(is_f( u))) = 
tt = O(is-f(u)). If O(is_f(u)) = ff, then _1_ ~ * O(u) ft. ranJ(f), so 
O(rrp(u)) = O(u) and rrp(u) E TMw by the induction hypothesis. More­
over, O(rrp(u)) ft. ran J(f) implies that rrp(u) cannot be of the form 
f(tp ... ,tJ, so rrp(is_f(u)) = tTE TMw and O(rrp(is_f(u))) = ff = 
O(is_f( u) ). The argument is similar if t 'is is_c( u) for some constant 
symbol C E We-. 

Now suppose tis f;- 1(u), where T(f) = T1 X · · · X Tn-T. Then _1_ T 
* O(u) E ran J(f), so O(rrp(u)) = O(u) and rrp(u) E TMw by the induc­
tion hypothesis. Again, rrp(u) must be of the form rft 1 , ••• , tJ, so 
rrp(f;- 1(u)) = t; E ™w,, and 

O(f;- 1 (u)) =J(f;- 1)(0(u)) 

= J(f;- 1 )(O(rr p(u))) 

=J(f;- 1 )(O(f(tl, ... , tn))) 

= J(f;- 1 )(J(f)(O(t 1), ••• , O(tn))) 

= O(t;) since J(f)(O(t 1), ••• , O(tn)) * _1_ T 

= O(rrp(f;- 1 (u))). 

Finally, if t is of the form F(tp·· .,tn), where FE FV(P), then 
O(F(t 1 , ••• , tJ) = _1_ T and there is nothing to prove in this case. • 
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Theorem 1.1. Let a = rep(~) be a simple data structure system for W. 
Then&!!. =~tJ.· 

Proof. Let P0 be a W-program, let F E FV(P0 ), and let (d1 , 0 0 0, dn) E 
D,(B(F)) 0 For 1 ::; i ::; n let d; = JLCI>p,(t;) for some W-program P; and some 
t; E TMw(FV(P;)) such that P0 , P1 , o o o, Pn are consistent, and let P = 
U7~o P;o Then 

~!J.(P0 )(F)(d 1 , o o o, dn) 

=~!J.(P0 )(F)(~(t 1 ), o o o, JLCI>p.,(tn)) 

= JLcl>p11(F)(~(tl ), o o o, JLCI>p.,(tn)) 

= JLcl>p(F)(~(tl ), o o o, ~(tn)) 

= ~(F(tl, o o o, tn)) 

= U{cl>~(fl)liEN}(F(t 10 ooo,tn)) 

= U {ct>~(O)(F(tl, 0 0 0, tn)) li EN} 

by the extension lemma 

by Theorem 1702030 

By Theorem 170203 the set {ct>~(O)(F(t 1 ,ooo,tn))li EN} is a chain in the 

flat cpo (D,<F>• ~;;;,<F>), so if u{ct>~(O)(F(t 1 ,. 0 0, tJ) I i EN} * .L p(FJ, then 

U{ci>~(O)(F(t 1 ,. 0 0, t)) I i EN} = ct>~(O)(F(t 1 , 0 0 0, t)) for some small­
est i0 E No Now, 

ci>~(O)(F(t 10 ooo,tn)) = ll(rr~'(F(tpooo,tn))) by Lemma 3 

= fi(rr~'+ 1(F(t 1 , o o o, tn))) by Lemma4, 

where rr~'+ 1 (F(t 1 ,ooo,tJ) E TMw, so that rr~'+ 1 (F(t 1 ,ooo,tJ) is a 
(T.(P), ur )-normal term, and ' 

~!J.(P0 )(F)(d 1 ,ooo,dn) = ll(rr~'+ 1 (F(t 1 ,ooo,tn))) 

= &!J.(P0 )(F)(d1 , o o o, dn)o 

Otherwise, u {ct>~(O)(F(t 10 0 0 0, t)) I i E N} = .L p(FJ, and 

by Lemma 3, so either the (T.(P), Ur )-computation for F( t I '0 0 0 't n) is 
infinite or it ends with a (T_.(P), ur)-normal term rr~(F(t 1 , 0. 0, t)) such 
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that O(rr~(F( t 1 , ••• , tn ))) = ..L P (Fl , and in either case 

g-a(P0 )(F)(dp ... , dn) = ..L p(F) = &'a(P0 )(F)(d1 , ... , dn). 

The choice of P0 , F, and (d 1 , ••• , dn) was arbitrary, so g-a =&'a. • 

Thus &'a is correct with respect to g-a for every simple data structure 
system a. Moreover, there is no ambiguity in the definition of sga, so 
Theorem 1.1 implies that the definition of &'a is independent of the choice 
of programs and terms used to denote values in a. Theorem 1.1 also 
justifies the following 

Definition. Let a be a simple data structure system for W. A function f 
is a-computable if there is a W-program P and F E FV(P) such that 
f = ga(P)(F). 

It follows, then, from our work in the previous chapter that + _j_ is a 
aN-computable function. We have also seen some examples of aNL-com­
putable functions. In the next section we will examine the aN-computable 
functions more closely. 

Exercises 

1. Let (} = {(X1 ,F(O)),(X3 , s(X 2 ))}. What is G(s(X 2 ),X)8? 

2. Let a be a variable assignment such that a(X) = 1, a(Y) = 2. 
Give a substitution (} such that JL<I>Aoo u a(+ (s(X), Y)) 
= JLci>ADo(+(s(X),Y)8) in !.N. 

3. We have left open the possibility of a W-term rewriting system T, a 
strategy u, and a W-term t such that t is not (T, u )-normal but there 
is no (T, u )-rewrite oft. Verify that this situation does not occur for 
Ts(P) and u, where P is any W-program and u is any of the five 
strategies we have defined. 

4. LetT be the WN-term rewriting system with rewrite rules 

F(X, Y) -s(Y) 

F(X, Y) -F(Y, Y), 

and lett= F(F(2,3),F(4,5)). Give two distinct (T, u)-computations 
for t, where u is (a) uu; (b) u1o; (c) up;; (d) upo. 

5. Give the (Ts(ADD), u )-computation for + (3, 2), where u is (a) uu; 
(b) Up;; (c) upo. 

6. Let P be a W-program and let t E TMw(FV(P)). Show that for all 
i EN, rr~(t) E TMw(FV(P)). 
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7. Let P be the WN-program with the equation 

F(X) = ifN(is-O(X),1,s(F(s;- 1 (X)))). 

(a) Describe T,(P). 
(b) Give the (T,(P), ar)-computation for F(2). 

8. Let P =ADDU {B(X) = B(X)}, where r(B) = N -+N. 
(a) Give the (T5(P), ar )-computation for + ( 3, s(s( B( 0))) ). 
(b) Give the (T,(P), ar )-computation for + ( s( s( s( B( 0))) ), 2 ). 
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9. Without using Theorem 1.1, give the value of each of the following. 
(a) &'!':. (ADD)(+ )(3, 2). 

N 

(b) &'!':. (ADD)(+)( l_ N '2). 
N 

(c) &'!':. (ADD)(+ )(3, _iN). 
N 

10. Let t be the WNL -term cons( 1, cons( 2, nil)). Describe T,(LIST), and 
give the (T,(LIST), ar )-computation for each of the following WNL­
terms. [LIST is defined in Section 5 of Chapter 17.] 
(a) Length( t). 
(b) Nth(1,t). 

(c) Cat( t, t ). 
(d) Rev(t). 

11. Without using Theorem 1.1, give the value of each of the following. 
(a) &'!':. (LIST) (Length) ( (2, 3) ). 

NL 

(b) &'I':.Nc(LIST)(Length)( l_ NL). 
(c) &'I':.Nc(LIST) (Nth) (2, (2, 3, 4) ). 
(d) &'!':. (LIST) (Nth) ( l_ NL ' (2, 3, 4 > ). 

NL 

(e) &'I':.Nc(LIST)(Cat)( (2, 3), (4, 5) ). 
(f) &'I':.Nc(LIST)(Cat)(_l_ NL, (4,5)). 
(g) &'!':. (LIST)( Cat) ( (2, 3), _i NL). 

NL 

(h) &'I':.Nc(LIST)(Rev) ( (2, 3) ). 

12. Let D be a set, let fED ----) D, and let d ED. Show that for all 
n EN, r+ 1(d) = r(f(d)). 

2. Computable Functions 

Now that we have a new class of computable numeric functions, It IS 
reasonable to compare it to the partially computable functions defined in 
Part 1 of the book. We will show that they are essentially the same, just as 
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we showed that a function is partially computable if and only if it is 
computable by Turing machines or Post-Turing programs. The difference 
here is that, technically, the two classes contain different kinds of func­
tions, since in this chapter we have defined computable functions on N1 , 
n ;;::: 1, rather than partially computable functions on Nn. However, this 
distinction is easily overcome. 

We begin with the primitive recursive functions. 

Lemma 1. Iff is primitive recursive, then f _]_ is aN-computable. 

Proof. We argue by induction on the number of compositions and recur­
sions by which f is obtained from the initial functions. The aN-computa­
bility of the initial functions is given by the following programs: 

P, = {S(X) = s(X)} 

Pn = {N(X) = ifN(is-O(X),O,O)} 

where Pocr' is 

{Def1(X) = if8001(is-O(X), tt, tt)} 

and, for n ;;::: 1, Poer••, is Pocr• together with the equation 

Note that we include Def;, 1 ~ i ~ n, to enforce the strictness of 
JL<I>p .... wn. 

Now let 

where f, g 1, ••• , g k are primitive recursive. By the induction hypothesis 
there are programs P0 , P1 , ••• , Pk with function variables F, G 1, ••• , Gk 
such that f _]_ = JL<I>p (F) and g;j_ = JL<I>p(G;), 1 ~ i ~ n. We assume that 

II ' 
P0 , P1 , ••• , Pk are consistent and do not contain the function variable H, 
and we set P to 

n 

UP; U {H(X 1 , ••• ,Xn) = F(G 1(X 1 , ••• ,Xn), ... ,Gk(X 1 , ••• ,Xn))}. 
i=O 



2. Computable Functions 577 

Then for any (x1 , ••• , xn) EN~ we have 

JL<I>p(H)(x1 , ••• , xn) 

= <l>p( JL<I>p)(H)(x 1 , ••• , xn) 

= J,t<l>p(F)( J,t<l>p(G 1 )(x 1 , ••• , Xn ), ... , JL<I>p(G k )(x 1 , ••• , Xn)) 

= JL<I>p0(F)(JL<I>p,(G 1)(x1 , ••• , xn), ... , J,t<l>pk(Gk)(x 1 , ••• , xn)) 

by the extension lemma 

= L (g~ (x1 , ••• ,xn), ... ,g: (x1 , ••• ,xn)). 

L (g~ (xl , ... ,xn), ... ,g: (xl , ... ,xn)) 

= f( g 1 (X 1 , ••• , X n ) , ... , g k (X 1 , ••• , X n )} 

and if not then 

so JL<I>p(H) = h _]_ . 
Finally, let 

h(x1 , ••• ,xn,O) =f(x1 , ••• ,xn) 

h(x1 , ••• ,xn,y + 1) =g(y,h(xJ>···•xn,y),x 1 , ••• ,xn), 

where g, h are primitive recursive. By the induction hypothesis there are 
programs P1, Pg with function variables F, G such that JL<I>plF) = f _]_ and 
JL<I>p8(G) = g _]_ . We assume that P1, Pg are consistent and do not contain 
the function variable H, and we set P to P1 u Pg u {H(X 1 , ••• ,Xn, Y) = t}, 
where tis 

if N (is-O(Y), 

F(X1 , ••• ,Xn), 

G(s 1- 1 (Y),H(X 1 , ••• ,Xn,s1- 1(Y)),X 1 , ••• ,Xn)). 

Let (xi> 0 0 0' xn) EN~ 0 It is clear that JL<I>p(H)(xl '0 0 0 'Xn' .LN) = .LN' 
so to conclude the proof we argue by induction on y that 
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= JLcl>p(F)(x 1 , ••• ,xn) 

= JL<I>p/F)(x 1 , ... , xn) 

Assume, now, that JL<I>p(H)(x1 , ••• , xn, y) = h _j_ (x1 , ••• , xn, y). Then 

JLcl>p(H)(x1 , ••• , xn, y + 1) 

= JL<I>p u a(xl , ... ,x. ,y+ l)(t) 

= g _!_ (y, h _!_ (x 1 , ••• , Xn, y ), X 1 , ••• , Xn) 

• 

Theorem 2.1. Iff is partially computable, then f _j_ is aN-computable. 

Proof. Let f be a partially computable n-ary function. By Theorem 3.3 in 
Chapter 4, there is a primitive recursive predicate R(x 1 , ••• , xn, y) such 
that 

f(x 1 , ••• , xn) = /( minR(x1 , ••• , xn, z)), 
z 

and by Lemma 1 there are WN-programs PR, P1 with function variables R 
and L such that JLcl>p (R) = R _j_ and JL<I>p(L) = I _j_ • We assume that PR, P1 

R I 

are consistent and do not include function variables F, G, and we set P to 
PR u P1 together with the equations 

F(X 1 , ... ,Xn) = L(G(Xp ... ,Xn ,0)) 

G(X 1 , ••• , Xn, Y) = ifN(is-s(R(X 1, ••• ,Xn, Y)), Y,G(X1 , ••• ,Xn ,s(Y))). 
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Let (x 1 , ••• , xn) E N1. It is clear that, for all y EN, 

JL<I>p(G)(x 1 , ••• , Xn, y) 

- {yl_N 

JL<I>p(G)(x 1 , ••• , xn, y + 1) 

and so 

if (xI> ... ' xn 'y) ft Nn +I 

if R(x1 , ••• ,xn,y) 

otherwise, 

if (X I> ... , X n , 0) ft N n + 1 

if f( X 1 , • • • , X n ) j 

otherwise. 

Therefore, if (xl' ... ' xn) E Nn and f(xl ' ... ' xn) J,' then 

JL<I>p(F)(x 1 , ••• , xn) =I _j_ (minz R(x1 , ••• , xn, z)) 

= /(minz R(x1 , ••• , xn, z)) 

=f(xl, ... ,xn), 

and 

otherwise, so that 

JL<I>p(F)(x1 , ••• , xn) = f _j_ (x1 , ••• , xn) 

for all (x1, ... , xn) E N1, i.e., JL<I>p(F) = f _j_ • 
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• 
To prove a result in the other direction, we need a way of going from 

functions on N1 to partial functions on Nn. 

Definition. For any function f: N1 ~ N _j_ , let f" be the partial n-ary 
function on Nn defined 

if f(x 1 , ••• , xn) =F l_N 

otherwise. 

Theorem 2.2. Iff is AN-computable, then f" is partially computable. 

Proof. The proof is similar to the proof in Chapter 4 that the STP<n> 
predicates are primitive recursive. We encode WN-terms, WN-programs, 
and WN-substitutions as numbers and give a numeric version of the rrp 
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functions. All WN-terms are words in the 20 symbol alphabet A u WN, so 
for any word wE (AU WN)*, we let # 20(w) be the numeric value ofw in 
base 20 notation, as defined in Chapter 5. We will use # 20 to encode 
variables and function symbols. We encode each WN-term t as #(t), where 

#(<!>) = (#zo(<f>), 0) 

#(<f>(tl ' ... 'tn)) 

if <1> is a constant symbol or 

individual variable 

= ( # 20 ( <I>), [ #(t 1 ), ••• , #(tn)]) if <I> is a proper function 

symbol or function variable. 

If Pis aWN-program 

{F1(Xl, ... ,X~) = t 1, ••• ,Fm(x;n, ... ,X::',.) = tm}• 

then we associate with P the finite numeric function 

and if () is aWN-substitution {(X 1 , t 1), ... , (Xn, tn)}, then we associate with 
() the finite numeric function 

We encode any finite numeric function c/J = {(xp y 1 ), ••• , (xn, Yn)} as 
n 

J> = 0PJ;+I, 
i= 1 ' 

and we set #(P) = J>P and #(0) = (b6 for any WN-program P and WN-sub­
stitution 0. 

Now we define some numeric functions for handling WN-terms, their 
values, and their encoding numbers: 

NUM(O) = #(0) 

NUM(x + 1) = (#20 (s), [NUM(x)]) 

TERM(z, XI' .•. ' xn) = (z, [NUM(xl), ... ' NUM(xn)]) 

{
0 ifx=#(O) 

EVAL(x) = EiVAL((r(x)) 1 ) + 1 if /(x) = # 20(s) 

otherwise 

if X= #(0) 
if /(x) = # 20(s) 

otherwise. 
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It is clear that NUM(n) = #(n) and EVAL(#(n)) = n for any n EN; 
TERM(#20(F), m 1 , ••• , mn) = #(F(m 1 , ••• , mn )) for any function variable 
F; and IS-NUM(x) is the predicate that tests whether x = #(n) for some 
numeral n. 

Next we define two functions for handling WN-substitutions: 

Lt(r(l )) 

MAKE-SUB(y,t)= 0 <r(I)),+I 
. P(l((Y)/(1).:.1)), 
•=1 

(s)1 ..:... 1 if r(t) = 0 and (s)1 =/= 0 

if r(t) = 0 and (s)1 = 0 

APPLY -SUB(s, t) = Lt(r(t)) 

(l(t), n PiAPPLY_SUB(s,(r(t)),)) 

i=l 

otherwise. 

If Pis aWN-program and F(X 1 , ••• , X) = u is an equation in P, then 

Also, if () is aWN-substitution and t is aWN-term, then 

APPLY -SUB(#(O), #(t)) =#(tO). 

Finally, we define some functions for handling (T.(P), ur)-rewriting: 

RP(y, t) = 

APPLY -SUB (MAKE-SUB (y, t), r((y )1<1> ..:... 1)) 

(r(t ))2 

(r(t ))3 

(r(t ))2 

(r(t ))3 

#(tt) 

#(tT) 

if (y )/(1) =/= 0 
if l(t) = # 20(if800L) and (r(t))1 = #(tt) 

if l(t) = # 20(if800L) and (r(t))1 = #(tT) 

if l(t) = # 20(if N) and (r(t ))1 = #(tt) 

if l(t) = # 20(if N) and (r(t ))1 = #(tT) 

if l(t) = # 20(is_O) and (r(t))1 = #(0) 

if l(t) = # 20(is_O) and l((r(t))1) = # 20(s) 

and IS-NUM(t) 
#(tt) if l(t) = # 20(is_s) and l((r(t ))1) = # 20(s) 

and IS-NUM(t) 

#(tT) if l(t) = # 20(is_s) and (r(t))1 = #(0) 

(r((r(t))1))1 if l(t) = # 20(s1- 1 ) and l((r(t))1) = # 20(s) 

and IS-NUM(t) 

otherwise 
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( 
Lt(r(t)) ) 

RRP(y, t) = RP y, (/(t), I1 P;RRP(y,(r(t)),)) 

RRP*(y,t,O) = t 

RRP*(y,t,r + 1) = RRP(y,RRP*(y,t,r)) 

RRPT*(y, z, XI' ... ' Xn 'r) = RRP*(y, TERM(z, XI' ... ' xn), r) 

END(y, z, XI' ... ' xn) = min [RRPT*(y, z, XI' ... ' xn 'r) 
r 

= RRPT*(y, z, XI' ... ' xn 'r + 1)]. 

If Pis aWN-program and tis aWN-term, then RP(#(P), #(t)) = #(rp(t)), 
RRP(#(P), #(t)) = #(rrp(t)), and RRP*(#(P), #(t), i) = #(rr~(t)). Also, if 
F is a function variable and (m1, ... , mn) E Nn, then 

RRPT*(#(P),#20 (F),m1, ... ,mn,i) = #(rr~(F(m 1 , ... ,mn))), 

and END(#(P), # 20(F), m 1 , • •• , mn) is the smallest i such that 
rr~(F(m 10 ••• ,m)) is (Ts(P), ur)-normal, if such ani exists, and is unde­
fined otherwise. 

Now, let f: N~ ~ N _~_ be a AN-computable function, let f = JL<I>p(F), 
let a = # 20(P), and let b = # 20(F). Then it is clear that 

f71"(xl ' ... ' xn) = EV AL(RRPT*(a, b, XI' ... ' xn 'END( a, b, XI' ... ' xn))) 

for all (x 1 , ... ,xn) ENn. EVAL, RRPT*, and END are partially com­
putable, so !71" is partially computable. • 

Exercises 

1. Show that for all n > 0 and all (x 1 , ... , xn) EN~, 

(
TRUE if(x1 , ... ,xn) E Nn 

9J!J. (PDef")(Defn)(x1 , ••• , xn) = h · 
N ..l Bool ot erw1se. 

2. For each of the following functions f from Chapter 3, give a WN-pro­
gram P with F E FV(P) such that 9Jt:.N(P) (F) = f _~_ . 
(a) f(x, y) = x · y. 
(b) f(x) = x!. 

(c) f(x, y) = xY. 

(d) f(x) = p(x ). 

(e) f(x, y) = x...:... y. 

(f) f(x, y) = lx- yl. 
(g) f(x) = a(x). 



2. Computable Functions 583 

3. Let P(x), Q(x) be primitive recursive predicates, and let P, Q be 
WN-programs such that gllN(P)(Fp) = P _]_ and gllJP)(FQ) = Q _]_ . For 
each of the following predicates R(x), give a WN-program R with 
F R E FV(R) such that gil (R)(F R) = R _]_ . [Also see Exercise 3.12 in 

N 

Chapter 17.] 

(a) R(x) = - P(x). 

(b) R(x) = P(x) & Q(x). 
(c) R(x) = P(x) v Q(x). 

(d) R(x) = (3z),xP(z). 

(e) R(x) = (Vz),xP(z). 

4. Let P(x, y) be a primitive recursive predicate, and let P be a WN­
program such that gllN(P)(Fp) = P _]_. Give a WN-program R with 
MinR E FV(R) such that gllN(R)(MinR) is the strict extension of 
minz, x P(z, y). 

5. For each of the following predicates P from Chapter 3, give a 
WN-program P with Fp E FV(P) such that gllN(P)(Fp) = P _]_. 

(a) P(x, y) = x = y. 

(b) P(x,y) =x ~y. 

(c) P(x,y) =x <y. 

(d) P(x, y) =xI y. 
(e) P(x) = Prime(x). 

6. For each of the following functions f from Chapter 3, give a WN-pro­
gram P with FE FV(P) such that gllN(P)(F) = f _]_. 
(a) f(x,y) = lxjyj. 

(b) f(x, y) = R(x, y). 

(c) f(x) = Px· 
(d) f(x,y) = (x,y). 

(e) f(x) = l(x). 

(f) f(x) = r(x). 

(g) f(xl, ... ,xn) = [xl•···•xn]. 

(h) f(x, y) = (x)Y. 

(i) f(x) = Lt(x). 

7. Show that RRPT* is primitive recursive. 

8. Let #: {Y programs} ~ N be the coding function for Y programs 
given in Chapter 4. Give a Wy-program P with C E FV(P) such that 
gil (P)(C) =#_]_.[See Section 5 in Chapter 17 for the definitions ofWy 
and ay.] 
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9.* (a) Give a WN-program SMN with S E FV(SMN) such that 
9~JSMN)(S) is the strict extension of S/. [See the parameter 
theorem in Chapter 4 for the definition of S/.] 

(b) Let sl: N X {3" programs} ~ {3" programs} be defined: For all 
3" programs .9 and all u E N, 

<t><2l(x, u, #(.9)) = <1>( x, #(s l (u, .9))). 

Give a Wy -program SMN with S E FV(SMN) such that 
9~)SMN) (S) is the strict extension of s l . 

3. Operational Semantics for lnfinitary Data 
Structure Systems 

We turn now to the operational semantics for infinitary data structure 
systems. It differs in two respects from the operational semantics we gave 
for simple data structure systems. First, for a term such as is_f( f( t) ), we 
cannot be sure that JL<I>p(is_f(f(t))) = tt when J(f) is strict because 
JL<I>p(t) might be .l r(tl • Therefore, we defined Ts(P) so that we rewrite 
is_f( f( t)) to tt only when t is free of variables, which guarantees that 

JL<I>p(t) * .l T(l). Moreover, if JL<I>p(t) * .l r(t)' then <l>~(!l)(t) * .l r(t) for 
some smallest i 0 , and Lemmas 3 and 4 guarantee that twill eventually be 
rewritten to some term which is free of variables. In an infinitary data 
structure system, however, this problem does not arise because we always 
have JL<I>p(f( t)) * .l p(fl • Therefore, we can replace T,(P) with a simpler, 
indeed finite, term rewriting system. 

Definition. Let P be a W-program. The infinitary W-term rewriting system 
associated with P, denoted T;(P), consists of 

F(X 1 , ••• , X) -+u for each equation F(X 1 , ••• , Xn) = u in P, 

together with 

• for each T E TV(W), 

ifT(tt, X, Y)-+ X 

ifT(ff, X, Y)-+ y 
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e for each COnstant symbol C EWe-, With T(C) = T, 

is-c(c) -tt 

is-c(d) -ff for each d EWe-- {c} With T(d) = T 

is-c(f(Xl ' ... 'Xn)) -ff for each f Ewe with 

T(f) = T 1 X ••• X Tn-T 

• for each proper function symbol f E We , with ar(f) = n and p(() = T, 

is-f(f(X 1 , ••• , Xn)) -u 
is-f(c) -ff 

is-f(g(X 1 , ••• , Xm)) -ff 

for each C EWe With T(c) = T 

for each g EWe - {f} with 

ar(g) = m and p(g) = T 

for 1 ::; i ::; n . 

Again, the choice of particular individual variables is unimportant, as long 
as they are of the appropriate type and in each rewrite rule the variables 
are distinct. 

It is easy to see that all term rewriting systems T;(P) are deterministic 
and that (T;(P), uc )-computations are a reasonable sort of computation. In 
this section we will write r P and rr P for r T,(P> and rr T,(P>, respectively. 

The other difference we need to address is that there are infinite chains 
in infinitary data structure systems. In particular, there are terms t such 
that O(rr~(t)) = <I>~( n )(t) CT(I) JL<I>p(t) for all i E N, so that we get an 
infinite computation 

t =====> rrp(t) =====> rr~(t) ===> 
T1(P), u 1 T1(P), u 1 T1(P), u 1 

which never reaches the desired value JL<I>p(t). Therefore, we cannot 
expect to base the operational semantics on the final terms of finite 
computations. Instead, we take the point of view that an infinite computa­
tion produces ever better approximations to the actual value and that the 
entire computation gives the meaning of the function being computed. 

Definition. Let a = rep(I) be an infinitary data structure system for W. 
The operational meaning function for a, denoted &!!. , is defined as follows. 
For all W-programs P0 , all FE FV(P0 ), and all (d1 , ••• , dn) E D,( 5(F)), 

&!J.(P0 )(F)(d1 , ••• , dn) = U {O(rr~(F(t 10 ••• , tn))) I i EN}, 
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where 

• d; = JL<I>i(t), 1 :::;; i :::;; n, 
• P0 , P1 , ••• ', Pn are consistent, and 
• P= U7~oP;. 

The proof that &11 is correct with respect to 9111 for all infinitary data 
structure systems is very much like the proof of Theorem 1.1. 

Lemma 1. Let I = (.5T,J) be an infinitary W-structure, and let P be a 
W-program. Then for all t E TMw(FV(P)) and for all i EN, <1>~+ 1(.0)(t) = 
<I>~( n )(rr p(t)). 

Proof. The proof is almost identical to the proof of Lemma 2 in Section 
1. The only differences occur in the cases where tis of the form is_f(u) or 
f;- 1(u). In particular, if is_f(rrp(u)) or f;- 1(rrp(u)) match a rewrite rule in 
T;(P), then we do not necessarily have rrp(u) E TMw , so we cannot 

c 

appeal to Lemma 1 in Section 1 to show that <I>~(.O)(rrp(u)) =F ..l T(u). 

However, rr p(u) must be of the form g or g( ul ' ... ' um) for some g E we' 
so that <I>~( n )(rr p(u)) =F ..l T(u) is certainly true in an infinitary W-struc­
ture, and the argument goes through unchanged but for the reference to 
Lemma 1 in Section 1. • 

Repeating the proof of Lemma 3 in Section 1 gives us 

Lemma 2. Let I = (.57, J) be an in finitary W-structure, and let P be a 
W-program. Then for all t E TMw(FV(P)) and for all i EN, <I>~(.O)(t) = 
O(rr~(t)). 

Now the proof of Theorem 3.1 is even simpler than the proof of 
Theorem 1.1. 

Theorem 3.1. Let A = rep(I) be an infinitary data structure system for 
W. Then &'11 = 9111 • 

Proof. Let P0 be a W-program, let F E FV(P0 ), and let (d1 , ••• , dn) E 

Dr(B(F)). For 1 :::;; i :::;; n let d; = JL<I>p,(t) for some W-program P; and some 
t; E TMw(FV(P)) such that P0 , P1 , .•• , Pn are consistent, and let P = 
U7=o P;. Then 

9J11(P0 )(F)(d1 , ••• , dn) 

U {<I>~(.O)(F(t 1 , ••• , tn)) I i EN} as in the proof of Theorem 1.1 

u {!1(rr~(F(t 1 , ••• , tn))) I i EN} by Lemma 2 

= &'11(P0 )(F)(d1 , ••• , dn). • 
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As we did for simple data structure systems, we can now define com­
putable functions in infinitary data structure systems. 

Definition. Let a be an infinitary data structure system for W. A function 
f is a-computable if there is a W-program P and FE FV(P) such that 
f = .f~iP)(F). 

We can also use Lemma 2 to justify the name computable real numbers 
used in the previous chapter. 

Definition. Let l be an infinitary W-structure, and let T E TV(W). An 
element d E DT is computable if there is some W-program P and some 
term t E TMw(FV(P)) such that d = U{O(rr~(t)) I i EN}. 

Now we can easily prove 

Theorem 3.2. Let l be an infinitary W-structure, and let T E TV(W). 
Then an element d EDT is representable if and only if it is computable. 

Proof. Let d E DT. If d is representable then there is a W-program P 
and a term t E TMw(FV(P)) such that 

d =~(t) 

= U{ci>~(O) I i E N}(t) 

= u { ci>~(O)(t) I i EN} 

= u {n(rr~(t)) 1 i EN} 

by Theorem 17 .2.3 

by Lemma 2, 

so d is computable. Similarly, if d is computable then there is a W-pro­
gram P and a term t E TMw(FV(P)) such that 

d = u {O(rr~(t)) I i EN} = JL<I>p(t), 

and so d is representable. • 
Now that we have available all of the strict extensions of the partially 

computable functions, we conclude with two promised examples of com­
puting with infinite objects. We will be working in infinitary data struc­
tures, but it is not hard to verify that if f(x 1 , ••• , xn) is partially com­
putable and Pis aWN-program obtained in the proof of Theorem 2.1 such 
that gr,)P) (F) = f .L , then 

(3.1) 
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Primes(X) = Sieve(Seq(X)) 

Seq(X) = cons(X, Seq(s(X))) 

Sieve(L) = cons(cons! 1 (L), Sieve(Eiim(cons1- 1 (L),consz- 1 (L)))) 

Elim(X,L) = ifNdX lcons 1- 1 (L), 

Elim(X,cons2 1 (L) ), 

cons(cons 1- 1 (L), Elim(X,consz- 1 (L)) )) 

Figure 3.1. The main part of program PR. 

for all (x1 , ... , xn) E Nn. We will now freely write f(xt> ... , xn) as a 
macro in WNL-programs and Wa-programs when f(x 1 , ••• , xn) is partially 
computable. If P(x1 , ••• , xn) is a computable predicate, then when we 
write P(x1 , ••• , xn) in a program its range should be understood as 
{ ..l Boot ' tt, ff}. 

The first example is a WNL -program for generating the list ( p 1 , p 2 , ••• ) 

of all prime numbers. It is based on the method known as Eratosthenes' 
sieve, where we start with the list (2, 3, 4, ... ), eliminate all numbers 
divisible by 2, then eliminate all numbers divisible by 3, all numbers 
divisible by 5, etc. Let PR be the WNL-program with the equations in Fig. 
3.1 along with the definition of the predicate xI y, i.e., "x divides y." Then 
in I~L we have 

JL<I>pa (Primes(2)) 

= J,t<l>pa(Sieve)( J,t<1>pa(Seq)(2)) 

= J,t<1>pa(Sieve)((2, 3, 4, ... )) 

= (2, JL<I>pa(Sieve)( JL<1>pa(Eiim)(2, (3, 4, 5, ... )))) 

= (2, JL<I>pa(Sieve)((3, 5, 7, ... ))) 

= (2, 3, JL<I>pa(Sieve)( JL<1>pa(Eiim)(3, (5, 7, 9, ... )))) 

= (2, 3, JL<I>pa(Sieve)((5, 7, 11, ... ))) 

= (2,3,5, ... ) 

where the notation (2, JL<I>pa(Sieve)( (3, 5, 7, ... ))) means the list with 2 
followed by the elements of the list JL<I>pa(Sieve) ( (3, 5, 7, ... ) ). Therefore, 
the list of primes is representable. Moreover, Theorem 3.2 shows that it 
can be generated by a (T;(PR), ur )-computation. 
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Finally, we show that there are computable irrational numbers. It is a 
mathematical fact that the well-known irrational number e = 2. 7182 ... 
can be expressed as 2 + if + -t + · · · , and we can use this fact to show 
that e/10 = .27182 ... is computable.5 The idea is to consider 1f + }f 
+ · · · as a sort of base notation system analogous to the decimal system, 
where .354, for example, represents -fh + 1 ~, + ~~-' . All we have to do, 
then, is to change 2 + if + -t + · · · (divided by 10) into its decimal 
representation. The procedure consists of taking the integer part as the 
first decimal digit, multiplying the fractional part by 10, normalizing the 
result (i.e., reducing the numerators by carrying), and then repeating these 
steps with the normalized result. The correct method for carrying is given 
by the equations 

m 

n + 1! 

(n + 1)lmj(n + 1)j + R(m, n + 1) 

n + 1! 

lmj(n + l)j 
n! + 

R(m, n + 1) 

n + 1! 

For example, starting with 2 + if + -t + .,& we get 2 as the first decimal 
digit, and then we get 

10 . (if + -t + .,& ) = -w + w + * 
14 () 2 7 0 0 2 = 2T + 3T + 4T = + 2T + 3T + 4!• 

so 7 is the second decimal digit. Next we get 

10 ( 0 0 2 ) 0 0 20 . 2!+3!+4! =2!+3!+4! 
0 50 0 I 2 0 = 2T + 3T + 4T = + 2T + 3T + 4f, 

so 0 is the third decimal digit. Notice, however, that if we start with 
2 + if + -t + .,& + -tr , we get .271 instead of .270. That is, we get more 
precision by starting with more terms. However, if we want to get the 
decimal expansion of the infinite sum 2 + I:~~ 2 ;!r , then at any given 
iteration we certainly cannot perform the entire multiplication by 10 
before beginning the carry step. Fortunately, we need to perform only 
enough of it so that multiplying and normalizing any additional terms 
would not change the decimal digit produced by the current iteration. 

5 This example is due to D. A. Turner, who credits E. W. Dijkstra with the idea. 
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K(X) = cons(X, K(X)) 

Convert(L) = dcons(Digit(First(L)), 

Convert(Norm(2, cons(O, MultlO(Rest(L)))))) 

Norm(C, L) = ifNdSecond(L) + 9 < C, 

cons(First(L), Norm(s(C), Rest(L)) ), 

Carry(C, cons(First(L), Norm(s(C), Rest(L))))) 

Carry(C, L) = cons(First(L) + [Second(L) jCJ 

cons(R(Second(L), C), Rest2(L))) 

MultlO(L) = cons(IO · First(L), MultlO(Rest(L))) 

First( L) = cons 1- 1 ( L) 

Second(L) = cons 1- 1 (cons 2- 1 (L)) 

Rest(L) = cons 2- 1 (L) 

Rest2(L) = cons; 1 (cons;! 1(L)) 

Figure 3.2. The main part of program E. 

Now, the carry procedure leaves fractions of the form R(m, n)jn!, where 
R(m, n) < n, so when we multiply by 10 we get 10 · R(m, n)jn!, and then 
we carry llO · R(m, n)jnJ < 10njn = 10. So the maximum possible carry 
is always 9, and if we have a term mjn! such that m + 9 < n, there will 
never be a carry out of mjn!, regardless of what is carried into mjn!. 
Therefore, when we reach such a term, we can be sure that we have 
enough information to produce a correct decimal digit. Let E be the 
program with the equations in Fig. 3.2 together with the appropriate 
definitions of addition, multiplication, integer division, and remainder. 
Also, Digit, with T(Digit) = N -+ D, must be defined so that JL<f>iDigit) 

turns natural numbers 0, ... , 9 into decimal digits 0, ... , 9. Now, JL<f>iK(l)) 
is the infinite list (1, 1, ... ) E DNL", which we use to represent L:~ ~ 2 ljn!. 
We leave it as an exercise to check that JL<f>iConvert(cons(2,K(l)))) = 
e j10 E DoL". So e j10 is representable, and Theorem 3.2 justifies calling 
ej10 a computable real number. 

Exercises 

1. Let P =ADDU {B(X) = B(X)}, where T(B) = N -+N. Give T;(P), 
and give the (T;(P), ur )-computation for each of the following. 

(a) + (3,2). 
(b) +(3,s(s(B(O)))). 

(c) + (s(s(s(B(0)))),2). 
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2. Without using Theorem 3.1, give the value of each of the following. 
(a) &'~'N(ADD)( + )(3, 2). 
(b) &'~'N(ADD) ( +) (3, 2 j_ ). 

(c) &'~'N(ADD) ( +) (3 j_, 2). 

3. Let P = LIST U {B(X) = B(X), BL(X) = BL(X)}, where T(B) = 
N -+Nand T(BL) = NL -+NL, lett be cons(B(O),cons(l,nil)), and 
let u be cons( 0, cons( 1, BL( nil))). [LIST is defined in Section 5 of 
Chapter 17.] Give T;(P), and give the (T;(P), ur)-computation for each 
of the following. 
(a) Length(t). 
(b) Length( u). 
(c) Nth( 0, t). 
(d) Nth( I, u). 
(e) Cat(t,t). 
(f) Cat(t, u). 
(g) Cat(u, t). 
(h) Reverse( t). 
(i) Reverse( u). 
(j) Length( Cat(Rev( t), t) ). 

4. Let /1 = (..1. N~, 1), /2 = (0, 1) j_. Without using Theorem 3.1, give 
the value of each of the following. 
(a) &'~'NL(LIST) (Length) (/1 ). 

(b) &'~'NL(LIST)(Length}(/2 ). 

(c) &'sr.L(LIST)(Nth)(O, /1). 

(d) &'~'NL(LIST)(Nth) (1, /2 ). 

(e) &'~'NL(LIST)(Cat}(/ 1 , / 1). 

(f) &'~'NL(LIST)(Cat)(/ 1 , / 2 ). 

(g) &'~'NL(LIST)(Cat)(/2 , / 1). 

(h) &'~'NL(LIST) (Rev) (/1 ). 

(i) &'~~ (LIST)(Rev)(/2 ). NL 
5. Give a WN-program with F E FV(P) such that g~N(P) (F) (0) = ..1. N 

and g~'N(P)(F)(O) = 0. Verify that &'~N(P)(F)(O) = ..1. N and 
&'~~(P)(F)(O) = 0. 

N 

6. Verify the sentence containing (3.1). 

7. Give the (T;(PR u LIST), ur)-computation for Nth(l, Primes(2)). 

8. Suppose we change the defining equation for Norm in E to 

Norm(C, L) = Carry(C, cons(First(L), Norm(s(C), Rest(L)))). 

Now what is ~(Convert(cons(2, K(l))))? 
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9. Show that if A is a nonempty r.e. set, then there is a computable list 
I= (i0 , i1 , .•• ) in DNL" such that A = {i EN I i occurs in 1}. 

10.* Show that if I = (i0 , i1 , ••• ) is a computable list of numbers in DNL', 

then {i EN I i occurs in I} is r.e. [Hint: Adapt the proof of Theorem 
2.2.] 
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