

Second Edition

Computability,
Complexity, and
Languages
Fundamentals of
Theoretical Computer Science

Martin D. Davis
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
New York, New York

Ron Sigal
Departments of Mathematics and Computer Science
Yale University
New Haven, Connecticut

Elaine J. Weyuker
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
New York, New York

ACADEMIC PRESS
Harcourt, Brace & Company
Boston San Diego New York
London Sydney Tokyo Toronto

This book is printed on acid-free paper @)

Copyright© 1994, 1983 by Academic Press, Inc.
All rights reserved
No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

ACADEMIC PRESS, INC.
525 B Street, Suite 1900, San Diego, CA 92101-4495

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data
Davis, Martin 1928-

Computability, complexity, and languages: fundamentals of
theoretical computer science/Martin D. Davis, Ron Sigal,
Elaine J. Weyuker. --2nd ed.

p. em. --(Computer science and applied mathematics)
Includes bibliographical references and index.
ISBN 0-12-206382-1
1. Machine theory. 2. Computational complexity. 3. Formal

languages. I. Sigal, Ron. II. Weyuker, Elaine J. III. Title.
IV. Series.
QA267.D38 1994
511.3-dc20 93-26807

CIP

Printed in the United States of America
94 95 96 97 98 BC 9 8 7 6 5 4 3 2 1

To the memory of Helen and Harry Davis
and to

Hannah and Herman Sigal
Sylvia and Marx Weyuker

Vir;ginia Davis, Dana Latch, Thomas Ostrand
and to

Rachel Weyuker Ostrand

Contents

Preface
Acknowledgments
Dependency Graph

1 Preliminaries
1. Sets and n-tuples
2. Functions
3. Alphabets and Strings
4. Predicates
5. Quantifiers
6. Proof by Contradiction
7. Mathematical Induction

Part l Computability

2 Programs and Computable Functions
1. A Programming Language
2. Some Examples of Programs
3. Syntax
4. Computable Functions
5. More about Macros

vii

xiii
xvii
xix

1
1
3
4
5
6
8
9

15

17
17
18
25
28
32

viii Contents

3 Primitive Recursive Functions 39
1. Composition 39
2. Recursion 40
3. PRC Classes 42
4. Some Primitive Recursive Functions 44
5. Primitive Recursive Predicates 49
6. Iterated Operations and Bounded Quantifiers 52
7. Minimalization 55
8. Pairing Functions and Godel Numbers 59

4 A Universal Program 65
1. Coding Programs by Numbers 65
2. The Halting Problem 68
3. Universality 70
4. Recursively Enumerable Sets 78
5. The Parameter Theorem 85
6. Diagonalization and Reducibility 88
7. Rice's Theorem 95

*8. The Recursion Theorem 97
*9. A Computable Function That Is Not Primitive Recursive 105

5 Calculations on Strings 113
1. Numerical Representation of Strings 113
2. A Programming Language for String Computations 121
3. The Languages .9' and .9, 126
4. Post-Turing Programs 129
5. Simulation of .9, in :T 135
6. Simulation of .:Tin .9' 140

6 Turing Machines 145
1. Internal States 145
2. A Universal Turing Machine 152
3. The Languages Accepted by Turing Machines 153
4. The Halting Problem for Turing Machines 157
5. Nondeterministic Turing Machines 159
6. Variations on the Turing Machine Theme 162

7 Processes and Grammars 169
1. Semi-Thue Processes 169
2. Simulation of Nondeterministic Turing Machines by

Semi-Thue Processes 171

Contents ix

3. Unsolvable Word Problems 176
4. Post's Correspondence Problem 181
5. Grammars 186
6. Some Unsolvable Problems Concerning Grammars 191

*7. Normal Processes 192

8 Classifying Unsolvable Problems 197
1. Using Oracles 197
2. Relativization of Universality 201
3. Reducibility 207
4. Sets r.e. Relative to an Oracle 211
5. The Arithmetic Hierarchy :215
6. Post's Theorem 217
7. Classifying Some Unsolvable Problems 224
8. Rice's Theorem Revisited 230
9. Recursive Permutations 231

Part 2 Grammars and Automata 235

9 Regular Languages 237
1. Finite Automata 237
2. Nondeterministic Finite Automata 242
3. Additional Examples 247
4. Closure Properties 249
5. Kleene's Theorem 253
6. The Pumping Lemma and Its Applications 260
7. The Myhill-Nerode Theorem 263

10 Context-Free Languages 269
1. Context-Free Grammars and Their Derivation Trees 269
2. Regular Grammars 280
3. Chomsky Normal Form 285
4. Bar-Hillel's Pumping Lemma 287
5. Closure Properties 291

*6. Solvable and Unsolvable Problems 297
7. Bracket Languages 301
8. Pushdown Automata 308
9. Compilers and Formal Languages 323

X Contents

11 Context-Sensitive Languages 327
327
330
337

1. The Chomsky Hierarchy
2. Linear Bounded Automata
3. Closure Properties

Part 3 Logic 345

12 Propositional Calculus 34 7
1. Formulas and Assignments 347
2. Tautological Inference 352
3. Normal Forms 353
4. The Davis-Putnam Rules 360
5. Minimal Unsatisfiability and Subsumption 366
6. Resolution 367
7. The Compactness Theorem 370

13 Quantification Theory 375
1. The Language of Predicate Logic 375
2. Semantics 377
3. Logical Consequence 382
4. Herbrand's Theorem 388
5. Unification 399
6. Compactness and Countability 404

*7. Godel's Incompleteness Theorem 407
*8. Unsolvability of the Satisfiability Problem in Predicate Logic 410

Part4 Complexity

14 Abstract Complexity
1. The Blum Axioms
2. The Gap Theorem
3. Preliminary Form of the Speedup Theorem
4. The Speedup Theorem Concluded

15 Polynomial-Time Computability
1. Rates of Growth
2. P versus NP
3. Cook's Theorem
4. Other NP-Complete Problems

417

419
419
425
428
435

439
439
443
451
457

Contents xi

Part 5 Semantics 465

16 Approximation Orderings 467
1. Programming Language Semantics 467
2. Partial Orders 4 72
3. Complete Partial Orders 475
4. Continuous Functions 486
5. Fixed Points 494

17 Denotational Semantics of Recursion Equations 505
1. Syntax 505
2. Semantics of Terms 511
3. Solutions toW-Programs 520
4. Denotational Semantics ofW-Programs 530
5. Simple Data Structure Systems 539
6. Infinitary Data Structure Systems 544

18 Operational Semantics of Recursion Equations 557
1. Operational Semantics for Simple Data Structure Systems 557
2. Computable Functions 575
3. Operational Semantics for Infinitary Data Structure Systems 584

Suggestions for Further Reading 593
Notation Index 595
Index 599

Preface

Theoretical computer science is the mathematical study of models of
computation. As such, it originated in the 1930s, well before the existence
of modern computers, in the work of the logicians Church, Godel, Kleene,
Post, and Turing. This early work has had a profound influence on the
practical and theoretical development of computer science. Not only has
the Turing machine model proved basic for theory, but the work of these
pioneers presaged many aspects of computational practice that are now
commonplace and whose intellectual antecedents are typically unknown to
users. Included among these are the existence in principle of all-purpose
(or universal) digital computers, the concept of a program as a list of
instructions in a formal language, the possibility of interpretive programs,
the duality between software and hardware, and the representation of
languages by formal structures. based on productions. While the spotlight
in computer science has tended to fall on the truly breathtaking technolog­
ical advances that have been taking place, important work in the founda­
tions of the subject has continued as well. It is our purpose in writing this
book to provide an introduction to the various aspects of theoretical
computer science for undergraduate and graduate students that is suffi­
ciently comprehensive that the professional literature of treatises and
research papers will become accessible to our readers.

We are dealing with a very young field that is still finding itself.
Computer scientists have by no means been unanimous in judging which

xiii

xiv Preface

parts of the subject will turn out to have enduring significance. In this
situation, fraught with peril for authors, we have attempted to select topics
that have already achieved a polished classic form, and that we believe will
play an important role in future research.

In this second edition, we have included new material on the subject of
programming language semantics, which we believe to be established as an
important topic in theoretical computer science. Some of the material on
computability theory that had been scattered in the first edition has been
brought together, and a few topics that were deemed to be of only
peripheral interest to our intended audience have been eliminated. Nu­
merous exercises have also been added. We were particularly pleased to be
able to include the answer to a question that had to be listed as open in
the first edition. Namely, we present Neil Immerman's surprisingly
straightforward proof of the fact that the class of languages accepted by
linear bounded automata is closed under complementation.

We have assumed that many of our readers will have had little experi­
ence with mathematical proof, but that almost all of them have had
substantial programming experience. Thus the first chapter contains an
introduction to the use of proofs in mathematics in addition to the usual
explanation of terminology and notation. We then proceed to take advan­
tage of the reader's background by developing computability theory in the
context of an extremely simple abstract programming language. By system­
atic use of a macro expansion technique, the surprising power of the
language is demonstrated. This culminates in a universal program, which is
written in all detail on a single page. By a series of simulations, we then
obtain the equivalence of various different formulations of computability,
including Turing's. Our point of view with respect to these simulations is
that it should not be the reader's responsibility, at this stage, to fill in the
details of vaguely sketched arguments, but rather that it is our responsibil­
ity as authors to arrange matters so that the simulations can be exhibited
simply, clearly, and completely.

This material, in various preliminary forms, has been used with under­
graduate and graduate students at New York University, Brooklyn College,
The Scuola Matematica lnteruniversitaria-Perugia, The University of Cal­
ifornia-Berkeley, The University of California-Santa Barbara, Worcester
Polytechnic Institute, and Yale University.

Although it has been our practice to cover the material from the second
part of the book on formal languages after the first part, the chapters on
regular and on context-free languages can be read immediately after
Chapter 1. The Chomsky-Schiitzenberger representation theorem for con­
text-free languages in used to develop their relation to pushdown au­
tomata in a way that we believe is clarifying. Part 3 is an exposition of the
aspects of logic that we think are important for computer science and can

Preface XV

also be read immediately following Chapter 1. Each of the chapters of Part
4 introduces an important theory of computational complexity, concluding
with the theory of NP-completeness. Part 5, which is new to the second
edition, uses recursion equations to expand upon the notion of computabil­
ity developed in Part 1, with an emphasis on the techniques of formal
semantics, both denotational and operational. Rooted in the early work of
Godel, Herbrand, Kleene, and others, Part 5 introduces ideas from the
modern fields of functional programming languages, denotational seman­
tics, and term rewriting systems.

Because many of the chapters are independent of one another, this book
can be used in various ways. There is more than enough material for a
full-year course at the graduate level on theory of computation. We have
used the unstarred sections of Chapters 1-6 and Chapter 9 in a successful
one-semester junior-level course, Introduction to Theory of Computation,
at New York University. A course on finite automata and forma/languages
could be based on Chapters 1, 9, and 10. A semester or quarter course on
logic for computer scientists could be based on selections from Parts 1 and
3. Part 5 could be used for a third semester on the theory of computation
or an introduction to programming language semantics. Many other ar­
rangements and courses are possible, as should be apparent from the
dependency graph, which follows the Acknowledgments. It is our hope,
however, that this book will help readers to see theoretical computer
science not as a fragmented list of discrete topics, but rather as a unified
subject drawing on powerful mathematical methods and on intuitions
derived from experience with computing technology to give valuable in­
sights into a vital new area of human knowledge.

Note to the Reader

Many readers will wish to begin with Chapter 2, using the material of
Chapter 1 for reference as required. Readers who enjoy skipping around
will find the dependency graph useful.

Sections marked with an asterisk (*) may be skipped without loss of
continuity. The relationship of these sections to later material is given in
the dependency graph.

Exercises marked with an asterisk either introduce new material, refer
to earlier material in ways not indicated in the dependency graph, or
simply are considered more difficult than unmarked exercises.

A reference to Theorem 8.1 is to Theorem 8.1 of the chapter in which
the reference is made. When a reference is to a theorem in another
chapter, the chapter is specified. The same system is used in referring to
numbered formulas and to exercises.

Acknowledgments

It is a pleasure to acknowledge the help we have received. Charlene
Herring, Debbie Herring, Barry Jacobs, and Joseph Miller made their
student classroom notes available to us. James Cox, Keith Harrow, Steve
Henkind, Karen Lemone, Colm O'Dunlaing, and James Robinett provided
helpful comments and corrections. Stewart Weiss was kind enough to
redraw one of the figures. Thomas Ostrand, Norman Shulman, Louis
Salkind, Ron Sigal, Patricia Teller, and Elia Weixelbaum were particularly
generous with their time, and devoted many hours to helping us. We are
especially grateful to them.

Acknowledgments to Corrected Printing

We have taken this opportunity to correct a number of errors. We are
grateful to the readers who have called our attention to errors and who
have suggested corrections. The following have been particularly helpful:
Alissa Bernholc, Domenico Cantone, John R. Cowles, Herbert Enderton,
Phyllis Frankl, Fred Green, Warren Hirsch, J. D. Monk, Steve Rozen, and
Stewart Weiss.

xvii

xviii Acknowledgments

Acknowledgments to Second Edition

Yuri Gurevich, Paliath Narendran, Robert Paige, Carl Smith, and particu­
larly Robert McNaughton made numerous suggestions for improving the
first edition. Kung Chen, William Hurwood, Dana Latch, Sidd Puri,
Benjamin Russell, Jason Smith, Jean Toal, and Niping Wu read a prelimi­
nary version of Part 5.

Dependency Graph

Chapter 15
Polynombll-Time

Computability

Chapter 13
a.-tlftc.tlon Theory

A solid line between two chapters indicates the dependence of the un­
starred sections of the higher numbered chapter on the unstarred sections
of the lower numbered chapter. An asterisk next to a solid line indicates
that knowledge of the starred sections of the lower numbered chapter is
also assumed. A dotted line shows that knowledge of the unstarred
sections of the lower numbered chapter is assumed for the starred sections
of the higher numbered chapter.

xix

1

Preliminaries

1. Sets and n-tuples

We shall often be dealing with sets of objects of some definite kind.
Thinking of a collection of entities as a set simply amounts to a decision to
regard the whole collection as a single object. We shall use the word class
as synonymous with set. In particular we write N for the set of natural
numbers 0, 1, 2, 3,. . . . In this book the word number will always mean
natural number except in contexts where the contrary is explicitly stated.

We write

aES

to mean that a belongs to S or, equivalently, is a member of the set S, and

aftS

to mean that a does not belong to S. It is useful to speak of the empty set,
written 0, which has no members. The equation R = S, where R and S
are sets, means that R and S are identical as sets, that is, that they have
exactly the same members. We write R ~Sand speak of Rasa subset of
S to mean that every element of R is also an element of S. Thus, R = S if
and only if R ~ S and S ~ R. Note also that for any set R, 0 ~ R and
R ~ R. We write R c S to indicate that R ~ S but R =/= S. In this case R

1

2 Chapter 1 Preliminaries

is called a proper subset of S. If R and S are sets, we write R uS for the
union of R and S, which is the collection of all objects which are members
of either R or S or both. R n S, the intersection of R and S, is the set of
all objects that belong to both R and S. R - S, the set of all objects that
belong to R and do not belong to S, is the difference between R and S. S
may contain objects not in R. Thus R - S = R- (R n S). Often we will
be working in contexts where all sets being considered are subsets of some
fixed set D (sometimes called a domain or a universe). In such a case we
write S for D - S, and call S the complement of S. Most frequently we
shall be writing S for N- S. The De Morgan identities

R us= R. n s,
RnS=RuS

are very useful; they are easy to check and any reader not already familiar
with them should do so. We write

for the set cons1stmg of the n objects a1 , a 2 , ••• , an. Sets that can be
written in this form as well as the empty set are called finite. Sets that are
not finite, e.g., N, are called infinite. It should be carefully noted that a
and {a} are not the same thing. In particular, a E S is true if and only if
{a} ~ S. Since two sets are equal if and only if they have the same
members, it follows that, for example, {a, b, c} = {a, c, b} = {b, a, c}. That
is, the order in which we may choose to write the members of a set is
irrelevant. Where order is important, we speak instead of an n-tuple or a
list. We write n-tuples using parentheses rather than curly braces:

(al , ... ,an).

Naturally, the elements making up an n-tuple need not be distinct. Thus
(4, 1, 4, 2) is a 4-tuple. A 2-tuple is called an ordered pair, and a 3-tuple is
called an ordered triple. Unlike the case for sets of one object, we do not
distinguish between the object a and the l-tuple (a). The crucial property of
n-tuples is

if and only if

... , and

If S 1 , S2 , .•• , Sn are given sets, then we write S 1 X S2 X · · · X Sn for the
set of all n-tuples (a I' az' ... ' an) such that al E sl' az E Sz' ... ' an E sn.

2. Functions 3

S1 X S2 X ••· X Sn is sometimes called the Cartesian product of
S1 , S2 , ••• , Sn. In case S1 = S2 = = Sn = S we write sn for the Carte­
sian product S1 X S2 X · · · X Sn.

2. Functions

Functions play an important role in virtually every branch of pure and
applied mathematics. We may define a function simply as a set f, all of
whose members are ordered pairs and that has the special property

(a, b) E f and (a, c) E f implies b = c.

However, intuitively it is more helpful to think of the pairs listed as the
rows of a table. For f a function, one writes f(a) = b to mean that
(a, b) E f; the definition of function ensures that for each a there can be
at most one such b. The set of all a such that (a, b) E f for some b is
called the domain of f. The set of all f(a) for a in the domain of f is
called the range of f.

As an example, let f be the set of ordered pairs (n, n2) for n EN.
Then, for each n EN, f(n) = n2• The domain off is N. The range off is
the set of perfect squares.

Functions f are often specified by algorithms that provide procedures
for obtaining f(a) from a. This method of specifying functions is particu­
larly important in computer science. However, as we shall see in Chapter
4, it is quite possible to possess an algorithm that specifies a function
without being able to tell which elements belong to its domain. This makes
the notion of a so-called partial function play a central role in computabil­
ity theory. A partial function on a set S is simply a function whose domain
is a subset of S. An example of a partial function on N is given by g(n)
= In, where the domain of g is the set of perfect squares. If f is a partial
function on S and a E S, then we write f(a)J, and say that f(a) is defined
to indicate that a is in the domain of f; if a is not in the domain of f, we
write f(a)j and say that f(a) is undefined. If a partial function on S has
the domain S, then it is called total. Finally, we should mention that the
empty set 0 is itself a function. Considered as a partial function on some
set S, it is nowhere defined.

For a partial function f on a Cartesian product S1 X S2 X ··· X Sn, we
write f(a 1 , ••• , an) rather than f((a 1 , ••• , an)). A partial function f on a
set sn is called an n-ary partial function on S, or a function of n variables
on S. We use unary and binary for 1-ary and 2-ary, respectively. For n-ary
partial functions, we often write f(x 1 , ••• , xn) instead of f as a way of
showing explicitly that f is n-ary.

4 Chapter 1 Preliminaries

Sometimes it is useful to work with particular kinds of functions. A
function f is one-one if, for all x, y in the domain of J, f(x) = f(y)
implies x = y. Stated differently, if x =/= y then f(x) =/= f(y). If the range of
f is the set S, then we say that f is an onto function with respect to S, or
simply that f is onto S. For example, f(n) = n2 is one-one, and f is onto
the set of perfect squares, but it is not onto N.

We will sometimes refer to the idea of closure. If S is a set and f is a
partial function on S, then S is closed under f if the range of f is a subset
of S. For example, N is closed under f(n) = nZ, but it is not closed under
h(n) = ..;n (where h is a total function on N).

3. Alphabets and Strings

An alphabet is simply some finite nonempty set A of objects called
symbols. An n-tuple of symbols of A is called a word or a string on A.
Instead of writing a word as (a 1 , a2 , ••• , an) we write simply a1 a2 • •• an. If
u = a1a2 ••• an, then we say that n is the length of u and write lui = n.
We allow a unique null word, written 0, of length 0. (The reason for using
the same symbol for the number zero and the null word will become clear
in Chapter 5.) The set of all words on the alphabet A is written A*. Any
subset of A* is called a language on A or a language with alphabet A. We
do not distinguish between a symbol a E A and the ~d of length 1
consisting of that symbol. If u, v E A*, then we write u v for the word
obtained by placing the string v after the string u. For example, if
A = {a, b, c}, u = bab, and v = caa, then

uv = babcaa and vu = caabab.

Where no confusion can result, we write uv instead of ;;u. It is obvious
that, for all u,

uO = Ou = u,

and that, for all u, v, w,

u(vw) = (uv)w.

Also, if either uv = uw or vu = wu, then v = w.
If u is a string, and n E N, n > 0, we write

ulnJ = uu ... u. ------­n

We also write ul01 = 0. We use the square brackets to avoid confusion with
numerical exponentiation.

4. Predicates 5

If u E A*, we write uR for u written backward; i.e., if u = a1a2 ••• an,
for al' ... ' an E A, then uR =an ... azat. Clearly, oR = 0 and (uv)R =
vRuR for u, v E A*.

4. Predicates

By a predicate or a Boolean-valued function on a set S we mean a total
function P on S such that for each a E S, either

P(a) =TRUE or P(a) = FALSE,

where TRUE and FALSE are a pair of distinct objects called truth values.
We often say P(a) is true for P(a) =TRUE, and P(a) is false for
P(a) = FALSE. For our purposes it is useful to identify the truth values
with specific numbers, so we set

TRUE= 1 and FALSE= 0.

Thus, a predicate is a special kind of function with values in N. Predicates
on a set S are usually specified by expressions which become statements,
either true or false, when variables in the expression are replaced by
symbols designating fixed elements of S. Thus the expression

x<S

specifies a predicate on N, namely,

P(x) = {~ if x=0,1,2,3,4
otherwise.

Three basic operations on truth values are defined by the tables in Table
4.1. Thus if P and Q are predicates on a set S, there are also the
predicates -P, P & Q, P v Q. -Pis true just when Pis false; P & Q is
true when both P and Q are true, otherwise it is false; P v Q is true when
either P or Q or both are true, otherwise it is false. Given a predicate P

Table 4.1

p -p p q p&q pVq

0 1 1 1
0 0 1 0 1

0 0 1
0 0 0 0

6 Chapter 1 Preliminaries

on a set S, there is a corresponding subset R of S, namely, the set of all
elements a E S for which P(a) = 1. We write

R ={a E SIP(a)}.

Conversely, given a subset R of a given set S, the expression

xER

defines a predicate on S, namely, the predicate defined by

Of course, in this case,

P(x) = {~ if X E R
if X ft. R.

R = {x E SIP(x)}.

The predicate P is called the characteristic function of the set R. The close
connection between sets and predicates is such that one can readily
translate back and forth between discourse involving one of these notions
and discourse involving the other. Thus we have

{x E s I P(x) & Q(x)} = {x E s I P(x)} n {xEs I Q(x)},

{xES I P(x) v Q(x)} ={xES I P(x)} u {xES I Q(x)},

{xES I -P(x)} = S- {xES I P(x)}.

To indicate that two expressions containing variables define the same
predicate we place the symbol = between them. Thus,

X < 5 =X = 0 V X = 1 V X = 2 V X = 3 V X = 4.

The De Morgan identities from Section 1 can be expressed as follows in
terms of predicates on a set S:

P(x) & Q(x) =- (- P(x) v - Q(x)),

P(x) v Q(x) =- (- P(x) & - Q(x)).

5. Quantifiers

In this section we will be concerned exclusively with predicates on Nm (or
what is the same thing, m-ary predicates on N) for different values of m.
Here and later we omit the phrase "on N" when the meaning is clear.

5. Quantifiers 7

Thus, let P(t, x 1 , ••• , xn) be an (n + 1)-ary predicate. Consider the predi­
cate Q(y, x1 , ••• , xn) defined by

Q(y,x 1 , ••• ,xn) -P(O,x 1 , ••• ,xn) V P(l,x 1 , ••• ,xn)

V ··· V P(y,x1 , ••• ,xn).

Thus the predicate Q(y, x1 , ••• , xn) is true just in case there is a value of
t ~ y such that P(t, x1 , ••• , xn) is true. We write this predicate Q as

The expression "(3 t), y" is called a bounded existential quantifier. Similarly,
we write (Vt), YP{t, x1 , ••• , xn) for the predicate

P(O, XI' ••• ' xn) & P(l, XI' ••• ' xn) & ... & P(y, XI' .•• ' xn).

This predicate is true just in case P(t, x1 , ••• , xn) is true for all t ~ y.
The expression "(Vt), y" is called a bounded universal quantifier. We also
write (3t) < YP(t, x1 , ••• , xn) for the predicate that is true just in
case P(t, x1 , ••• , xn) is true for at least one value of t < y and
(V t) < Y P(t, x 1 , ••• , x n) for the predicate that is true just in case
P(t, x 1 , ••• , xn) is true for all values oft < y.

We write

for the predicate which is true if there exists some t E N for which
P(t, XI' ••• ' xn) is true. Similarly, (Vt)P(t, XI' ••• ' xn) is true if
P(t, XI' ••• ' xn) is true for all t EN.

The following generalized De Morgan identities are sometimes useful:

-(3t),YP(t,x1 , ••• ,xn)- (Vt),Y -P(t,Xp···•xn),

-(3t)P(t,x1 , ••• ,xn)- (Vt) -P(t,x1 , ••• ,xn).

The reader may easily verify the following examples:

(3y)(x + y = 4) - x ~ 4,

(3y)(x + y = 4)- (3y), 4(x + y = 4),

(Vy){xy = 0) -X= 0,

(3y),z(X + y = 4)- (x + z ~ 4& X~ 4).

8 Chapter 1 Preliminaries

6. Proof by Contradiction

In this book we will be calling many of the assertions we make theorems
(or corollaries or lemmas) and providing proofs that they are correct. Why
are proofs necessary? The following example should help in answering this
question.

Recall that a number is called a prime if it has exactly two distinct
divisors, itself and 1. Thus 2, 17, and 41 are primes, but 0, 1, 4, and 15 are
not. Consider the following assertion:

n2 - n + 41 is prime for all n EN.

This assertion is in fact false. Namely, for n = 41 the expression becomes

412 - 41 + 41 = 412 '

which is certainly not a prime. However, the assertion is true (readers with
access to a computer can easily check this!) for all n ~ 40. This example
shows that inferring a result about all members of an infinite set (such as
N) from even a large finite number of instances can be very dangerous. A
proof is intended to overcome this obstacle.

A proof begins with some initial statements and uses logical reasoning to
infer additional statements. (In Chapters 12 and 13 we shall see how the
notion of logical reasoning can be made precise; but in fact, our use of
logical reasoning will be in an informal intuitive style.) When the initial
statements with which a proof begins are already accepted as correct, then
any of the additional statements inferred can also be accepted as correct.
But proofs often cannot be carried out in this simple-minded pattern. In
this and the next section we will discuss more complex proof patterns.

In a proof by contradiction, one begins by supposing that the assertion
we wish to prove is false. Then we can feel free to use the negation of what
we are trying to prove as one of the initial statements in constructing a
proof. In a proof by contradiction we look for a pair of statements
developed in the course of the proof which contradict one another. Since
both cannot be true, we have to conclude that our original supposition was
wrong and therefore that our desired conclusion is correct.

We give two examples here of proof by contradiction. There will be
many in the course of the book. Our first example is quite famous. We
recall that every number is either even (i.e., = 2n for some n E N) or odd
(i.e., = 2n + 1 for some n EN). Moreover, if m is even, m = 2n, then
m 2 = 4n2 = 2 · 2n2 is even, while if m is odd, m = 2n + 1, then m 2 =
4n 2 + 4n + 1 = 2(2n2 + 2n) + 1 is odd. We wish to prove that the
equation

2 = (mjn)2 (6.1)

7. Mathematical Induction 9

has no solution for m, n EN (that is, that fi is not a "rational" number).
We suppose that our equation has a solution and proceed to derive a
contradiction. Given our supposition that (6.1) has a solution, it must have
a solution in which m and n are not both even numbers. This is true
because if m and n are both even, we can repeatedly "cancel" 2 from
numerator and denominator until at least one of them is odd. On the
other hand, we shall prove that for every solution of (6.1) m and n must
both be even. The contradiction will show that our supposition was false,
i.e., that (6.1) has no solution.

It remains to show that in every solution of (6.1), m and n are both
even. We can rewrite (6.1) as

m 2 = 2n2 ,

which shows that m2 is even. As we saw above this implies that m is even,
say m = 2k. Thus, m2 = 4k 2 = 2n 2, or n 2 = 2k 2• Thus, n 2 is even and
hence n is even. •

Note the symbol •, which means "the proof is now complete."
Our second example involves strings as discussed in Section 3.

Theorem 6.1. Let x E {a, b}* such that xa = ax. Then x = a[nJ for some
n EN.

Proof. Suppose that xa = ax but x contains the letter b. Then we can
write x = a[nlbu, where we have explicitly shown the first (i.e., leftmost)
occurrence of b in x. Then

Thus,
bua = abu.

But this is impossible, since the same string cannot have its first symbol be
both b and a. This contradiction proves the theorem. •

Exercises

1. Prove that the equation (p 1 q)2 = 3 has no solution for p, q E N.

2. Prove that if x E {a, b}* and abx = xab, then x = (ab)[nJ for some
n EN.

7. Mathematicallnduction

Mathematical induction furnishes an important technique for proving
statements of the form (Vn)P(n), where P is a predicate on N. One

10 Chapter 1 Preliminaries

proceeds by proving a pair of auxiliary statements, namely,

P(O)

and

(Vn)(/f P(n) then P(n + 1)). (7.1)

Once we have succeeded in proving these auxiliary statements we can
regard (Vn)P(n) as also proved. The justification for this is as follows.

From the second auxiliary statement we can infer each of the infinite set
of statements:

If P(O) then P(l),

If P(l) then P(2),

If P(2) then P(3),

Since we have proved P(O), we can infer P(l). Having now proven P(l) we
can get P(2), etc. Thus, we see that P(n) is true for all n and hence
(Vn)P(n) is true.

Why is this helpful? Because sometimes it is much easier to prove (7.1)
than to prove (Vn)P(n) in some other way. In proving this second auxiliary
proposition one typically considers some fixed but arbitrary value k of n
and shows that if we assume P(k) we can prove P(k + 1). P(/.,) is then
called the induction hypothesis. This methodology enables us to use P(k) as
one of the initial statements in the proof we are constructing.

There are some paradoxical things about proofs by mathematical induc­
tion. One is that considered superficially, it seems like an example of
circular reasoning. One seems to be assuming P(k) for an arbitrary k,
which is exactly what one is supposed to be engaged in proving. Of course,
one is not really assuming (Vn)P(n). One is assuming P(k) for some
particular k in order to show that P(k + 1) follows.

It is also paradoxical that in using induction (we shall often omit the
word mathematical), it is sometimes easier to prove statements by first
making them "stronger." We can put this schematically as follows. We
wish to prove (Vn)P(n). Instead we decide to prove the stronger assertion
(VnXP(n) & Q(n)) (which of course implies the original statement). Prov­
ing the stronger statement by induction requires that we prove

P(O) & Q(O)

and

(Vn)[If P(n) & Q(n) then P(n + 1) & Q(n + 1)].

In proving this second auxiliary statement, we may take P(k)& Q(k) as
our induction hypothesis. Thus, although strengthening the statement to

7. Mathematical Induction 11

be proved gives us more to prove, it also gives us a stronger induction
hypothesis and, therefore, more to work with. The technique of deliber­
ately strengthening what is to be proven for the purpose of making proofs
by induction easier is called induction loading.

It is time for an example of a proof by induction. The following is useful
in doing one of the exercises in Chapter 6.

Theorem 7.1. For all n EN we have L/~ 0(2i + 1) = (n + 1)2•

Proof. For n = 0, our theorem states simply that 1 = 12, which is true.
Suppose the result known for n = k. That is, our induction hypothesis is

Then

k

E (2i + 1) = <k + 1/.
i~O

k+ I k

E (2i + 1) = E (2i + o + 2(k + 1) + 1
i~O i~O

= (k + 1)2 + 2(k + 1) + 1

= (k + 2)2•

But this is the desired result for n = k + 1. •
Another form of mathematical induction that is often very useful is

called course-of-values induction or sometimes complete induction. In the
case of course-of-values induction we prove the single auxiliary statement

('Vn)[Jf (Vm)m < nP(m) then P(n)], (7.2)

and then conclude that (Vn)P(n) is true. A potentially confusing aspect of
course-of-values induction is the apparent lack of an initial statement
P(O). But in fact there is no such lack. The case n = 0 of (7.2) is

If ('Vm)m < 0 P(m) then P(O).

But the "induction hypothesis" (Vm)m < 0 P(m) is entirely vacuous because
there is nom EN such that m < 0. So in proving (7.2) for n = 0 we really
are just proving P(O). In practice it is sometimes possible to give a single
proof of (7.2) that works for all n including n = 0. But often the case
n = 0 has to be handled separately.

To see why course-of-values induction works, consider that, in the light
of what we have said about the n = 0 case, (7.2) leads to the following

12 Chapter 1 Preliminar•s

infinite set of statements:

P(O),

If P(O) then P(l),

If P(O) & P(l) then P(2),

If P(O) & P(l) & P(2) then P(3),

Here is an example of a theorem proved by course-of-values induction.

Theorem 7.2. There is no string x E {a, b}* such that ax= xb.

Proof. Consider the following predicate: If x E {a, b}* and lxl = n, then
ax =/= xb. We will show that this is true for all n E N. So we assume it true
for all m < k for some given k and show that it follows for k. This proof
will be by contradiction. Thus, suppose that lxl = k and ax= xb. The
equation implies that a is the first and b the last symbol in x. So, we can
write x = aub. Then

aaub = aubb,
i.e.,

au= ub.

But lui < lxl. Hence by the induction hypothesis au =/= ub. This contradic­
tion proves the theorem. •

Proofs by course-of-values induction can always be rewritten so as to
involve reference to the principle that if some predicate is true for some
element of N, then there must be a least element of N for which it is true.
Here is the proof of Theorem 7.2 given in this style.

Proof. Suppose there is a string x E {a, b}* such that ax = xb. Then
there must be a string satisfying this equation of minimum length. Let x
be such a string. Then ax= xb, but, if lui < lxl, then au =/= ub. However,
ax= xb implies that x = aub, so that au = ub and lui < lxl. This contra­
diction proves the theorem. •

Exercises

1. Prove by mathematical induction that E7~ 1 i = n(n + 1)/2.

2. Here is a "proof' by mathematical induction that if x, y EN, then
x = y. What is wrong?

7. Mathematical Induction

Let

max(x, y) = {;

for x, y E N. Consider the predicate

if X ~y

otherwise

(Vx)(Vy)[/f max(x, y) = n, thenx = y].

13

For n = 0, this is clearly true. Assume the result for n = k, and let
max(x, y) = k + 1. Let x 1 = x- 1, y 1 = y- 1. Then max(x1 , y1) = k.
By the induction hypothesis, x 1 = y 1 and therefore x = x 1 + 1 =
Y1 + 1 = Y·

3. Here· is another incorrect proof that purports to use mathematical
induction to prove that all flowers have the same color! What is
wrong?

Consider the following predicate: If S is a set of flowers containing
exactly n elements, then all the flowers in S have the same color. The
predicate is clearly true if n = 1. We suppose it true for n = k and
prove the result for n = k + 1. Thus, let S be a set of k + 1 flowers. If
we remove one flower from S we get a set of k flowers. Therefore, by
the induction hypothesis they all have the same color. Now return the
flower removed from S and remove another. Again by our induction
hypothesis the remaining flowers all have the same color. But now
both of the flowers removed have been shown to have the same color
as the rest. Thus, all the flowers in S have the same color.

4. Show that there are no strings x, y E {a, b}* such that xay = ybx.

5. Give a "one-line" proof of Theorem 7.2 that does not use mathemati­
cal induction.

Part 1

Computability

2

Programs and
Computable Functions

1. A Programming Language

Our development of computability theory will be based on a specific
programming language ..:7. We will use certain letters as variables whose
values are numbers. (In this book the word number will always mean
nonnegative integer, unless the contrary is specifically stated.) In particu­
lar, the letters

XI Xz X3 ...

will be called the input variables of ..:7, the letter Y will be called the
output variable of ..:7, and the letters

ZI Zz z3
will be called the local variables of ..:7. The subscript 1 is often omitted; i.e.,
X stands for X 1 and Z for Z 1• Unlike the programming languages in
actual use, there is no upper limit on the values these variables can
assume. Thus from the outset, ..:7 must be regarded as a purely theoretical
entity. Nevertheless, readers having programming experience will find
working with ..:7 very easy.

In ..:7 we will be able to write "instructions" of various sorts; a
"program" of ..:7 will then consist of a list (i.e., a finite sequence) of

17

18

Instruction

V+- V+ 1
V+- V-I

Chapter 2 Programs and Computable Functions

Table 1.1

Interpretation

Increase by I the value of the variable V.
If the value of V is 0, leave it unchanged; otherwise decrease by I the

value of V.
IF V * 0 GOTO L If the value of V is nonzero, perform the instruction with label L next;

otherwise proceed to the next instruction in the list.

instructions. For example, for each variable V there will be an instruction:

V+--V+1

A simple example of a program of .9' is

X+--X+ 1
X+--X+1

"Execution" of this program has the effect of increasing the value of X by
2. In addition to variables, we will need "labels." In .9' these are

AI Bl CI DI El Az Bz Cz Dz Ez A3

Once again the subscript 1 can be omitted. We give in Table 1.1 a
complete list of our instructions. In this list V stands for any variable and
L stands for any label.

These instructions will be called the increment, decrement, and condi­
tional branch instructions, respectively.

We will use the special convention that the output variable Y and the
local variables Z; initially have the value 0. We will sometimes indicate the
value of a variable by writing it in lowercase italics. Thus x 5 is the value of
Xs.

Instructions may or may not have labels. When an instruction is labeled,
the label is written to its left in square brackets. For example,

[B] Z+--Z-1

In order to base computability theory on the language .9', we will
require formal definitions. But before we supply these, it is instructive to
work informally with programs of .9'.

2. Some Examples of Programs

(a) Our first example is the program

[A] X+--X-1
Y+--Y+1
IF X =/= 0 GOTO A

2. Some Examples of Programs 19

If the initial value x of X is not 0, the effect of this program is to copy x
into Y and to decrement the value of X down to 0. (By our conventions
the initial value of Y is 0.) If x = 0, then the program halts with Y having
the value 1. We will say that this program computes the function

f(x) = {~ if X= 0
otherwise.

This program halts when it executes the third instruction of the program
with X having the value 0. In this case the condition X -=!= 0 is not fulfilled
and therefore the branch is not taken. When an attempt is made to move
on to the nonexistent fourth instruction, the program halts. A program will
also halt if an instruction labeled L is to be executed, but there is no
instruction in the program with that label. In this case, we usually will use
the letter E (for "exit") as the label which labels no instruction.

(b) Although the preceding program is a perfectly well-defined pro­
gram of our language .9', we may think of it as having arisen in an attempt
to write a program that copies the value of X into Y, and therefore
containing a "bug" because it does not handle 0 correctly. The following
slightly more complicated example remedies this situation.

[A] IF X-=!= 0 GOTO B
Z+-Z+1
IF Z -=1= 0 GOTO E

[B] X+-- X- 1
Y+-Y+1
Z+-Z+1
IF Z-=!= OGOTOA

As we can easily convince ourselves, this program does copy the value of
X into Y for all initial values of X. Thus, we say that it computes the
function f(x) = x. At first glance.Z's role in the computation may not be
obvious. It is used simply to allow us to code an unconditional branch. That
is, the program segment

Z+-Z+1
IF Z-=!= 0 GOTO L

(2.1)

has the effect (ignoring the effect on the value of Z) of an instruction

GOTOL

such as is available in most programming languages. To see that this is true
we note that the first instruction of the segment guarantees that Z has a
nonzero value. Thus the condition Z -=!= 0 is always true and hence the next
instruction performed will be the instruction labeled L. Now GOTO L is

20 Chapter 2 Programs and Computable Functions

not an instruction in our language .9", but since we will frequently have use
for such an instruction, we can use it as an abbreviation for the program
segment (2.1). Such an abbreviating pseudoinstruction will be called a
macro and the program or program segment which it abbreviates will be
called its macro expansion.

The use of these terms is obviously motivated by similarities with the
notion of a macro instruction occurring in many programming languages.
At this point we will not discuss how to ensure that the variables local to
the macro definition are distinct from the variables used in the main
program. Instead, we will manually replace any such duplicate variable
uses with unused variables. This will be illustrated in the "expanded"
multiplication program in (e). In Section 5 this matter will be dealt with in
a formal manner.

(c) Note that although the program of (b) does copy the value of X
into Y, in the process the value of X is "destroyed" and the program
terminates with X having the value 0. Of course, typically, programmers
want to be able to copy the value of one variable into another without the
original being "zeroed out." This is accomplished in the next program.
(Note that we use our macro instruction GOTO L several times to shorten
the program. Of course, if challenged, we could produce a legal program of
.9" by replacing each GOTO L by a macro expansion. These macro
expansions would have to use a local variable other than Z so as not to
interfere with the value of Z in the main program.)

[A] If X -=F 0 GOTO B
GOTOC

[B] X+-- X- 1
Y+-Y+1
Z+-Z+1
GOTOA

[C] IF Z -=F 0 GOTO D
GOTOE

[D] Z +-- Z- 1
X+-X+ 1
GOTOC

In the first loop, this program copies the value of X into both Y and Z,
while in the second loop, the value of X is restored. When the program
terminates, both X and Y contain X's original value and z = 0.

We wish to use this program to justify the introduction of a macro which
we will write

V+- V'

2. Some Examples of Programs 21

the execution of which will replace the contents of the variable V by the
contents of the variable V' while leaving the contents of V' unaltered.
Now, this program (c) functions correctly as a copying program only under
our assumption that the variables Y and Z are initialized to the value 0.
Thus, we can use the program as the basis of a macro expansion of
V +--- V' only if we can arrange matters so as to be sure that the corre­
sponding variables have the value 0 whenever the macro expansion is
entered. To solve this problem we introduce the macro

V+---0

which will have the effect of setting the contents of V equal to 0. The
corresponding macro expansion is simply

[L] V +--- V- 1
IF V =F 0 GOTO L

where, of course, the label L is to be chosen to be different from any of
the labels in the main program. We can now write the macro expansion of
V +--- V' by letting the macro V +--- 0 precede the program which results
when X is replaced by V' and Y is replaced by V in program (c). The
result is as follows:

V+---0
[A] IF V' =F 0 GOTO B

GOTOC
[B] V' +--- V' - 1

V+-V+1
Z+-Z+1
GOTOA

[C] IF Z =F 0 GOTO D
GOTOE

[D] Z +--- Z- 1
V' +--- V' + 1
GOTOC

With respect to this macro expansion the following should be noted:

1. It is unnecessary (although of course it would be harmless) to include
a Z +--- 0 macro at the beginning of the expansion because, as has
already been remarked, program (c) terminates with z = 0.

2. When inserting the expansion in an actual program, the variable Z
will have to be replaced by a local variable which does not occur in
the main program.

22 Chapter 2 Programs and Computable Functions

3. Likewise the labels A, B, C, D will have to be replaced by labels
which do not occur in the main program.

4. Finally, the label E in the macro expansion must be replaced by a
label L such that the instruction which follows the macro in the main
program (if there is one) begins [L].

(d) A program with two inputs that computes the function

is as follows:

f(xi ,xz) =xi +xz

Y+-XI
Z +-X2

[B] IF Z =F 0 GOTO A
GOTOE

[A] Z +-- Z- 1
Y+-Y+1
GOTOB

Again, if challenged we would supply macro expansions for "Y +-- XI"
and "Z +-- X2" as well as for the two unconditional branches. Note that Z
is used to preserve the value of X2 •

(e) We now present a program that multiplies, i.e. that computes
f(xpx 2) =xi ·x2 • Since multiplication can be regarded as repeated addi­
tion, we are led to the "program"

Zz +-- Xz
[B] IF Z 2 =F 0 GOTO A

GOTOE
[A] Z 2 +-- Z 2 -• 1

zi +--xi+ Y
Y+- zi
GOTOB

Of course, the "instruction" ZI +--XI + y is not permitted in the lan­
guage .9'. What we have in mind is that since we already have an addition
program, we can replace the macro ZI +--XI + Y by a program for
computing it, which we will call its macro expansion. At first glance, one
might wonder why the pair of instructions

zi +--xi+ Y

Y+- zi

2. Some Examples of Programs 23

was used in this program rather than the single instruction

v~x1 + Y

since we simply want to replace the current value of Y by the sum of its
value and x1 • The sum program in (d) computes Y = X 1 + X2 • If we were
to use that as a template, we would have to replace X 2 in the program by
Y. Now if we tried to use Y also as the variable being assigned, the macro
expansion would be as follows:

v~x1
z~v

[B] IF Z =F 0 GOTO A
GOTOE

[A] Z ~ Z- 1
v~ Y+ 1
GOTOB

What does this program actually compute? It should not be difficult to see
that instead of computing x 1 + y as desired, this program computes 2x 1 •

Since X 1 is to be added over and over again, it is important that X 1 not be
destroyed by the addition program. Here is the multiplication program,
showing the macro expansion of Z 1 ~ X 1 + Y:

Zz ~xz
[B] IF Z2 =F 0 GOTO A

GOTOE
[A] Z2 ~ Z2 - 1

zl ~x~
z3 ~ Y

[Bz] IF Z3 =F 0 GOTO A 2 Macro Expansion of
GOTO £ 2 zl ~x~ + Y

[Az] Z3 ~ Z3 - 1
Z 1 ~ Z 1 + 1
GOTO B2

[Ez] v~z1
GOTOB

Note the following:

1:- The local variable Z 1 in the addition program in (d) must be replaced
by another local variable (we have used Z 3) because Z 1 (the other
name for Z) is also used as a local variable in the multiplication
program.

24 Chapter 2 Programs and Computable Functions

2. The labels A, B, E are used in the multiplication program and hence
cannot be used in the macro expansion. We have used A 2 , B2 , £ 2

instead.
3. The instruction GOTO £ 2 terminates the addition. Hence, it is

necessary that the instruction immediately following the macro ex­
pansion be labeled £ 2 •

In the future we will often omit such details in connection with macro
expansions. All that is important is that our infinite supply of variables and
labels guarantees that the needed changes can always be made.

(f) For our final example, we take the program

Y+-X1

Z +-X2

[C] IF Z =fo 0 GOTO A
GOTOE

[A] IF Y =fo 0 GOTO B
GOTOA

[B] Y +- Y- 1
Z+-Z-1
GOTOC

If we begin with X 1 = 5, X 2 = 2, the program first sets Y = 5 and Z = 2.
Successively the program sets Y = 4, Z = 1 and Y = 3, Z = 0. Thus, the
computation terminates with Y = 3 = 5 - 2. Clearly, if we begin with
X 1 = m, X 2 = n, where m ~ n, the program will terminate with Y =
m -n.

What happens if we begin with a value of X 1 less than the value of X 2 ,

e.g., X 1 = 2, X 2 = 5? The program sets Y = 2 and Z = 5 and successively
sets Y = 1, Z = 4 and Y = 0, Z = 3. At this point the computation enters
the "loop":

[A] IF Y =fo 0 GOTO B
GOTOA

Since y = 0, there is no way out of this loop and the computation will
continue "forever." Thus, if we begin with X 1 = m, X 2 = n, where m < n,
the computation will never terminate. In this case (and in similar cases) we
will say that the program computes the partial function

if x 1 ~ Xz

if x1 <x2 •

(Partial functions are discussed in Chapter 1, Section 2.)

3. Syntax 25

Exercises

1. Write a program in Y (using macros freely) that computes the
function f(x) = 3x.

2. Write a program in Y that solves Exercise 1 using no macros.

3. Let f(x) = 1 if x is even; f(x) = 0 if x is odd. Write a program in Y
that computes f.

4. Let f(x) = 1 if x is even; f(x) undefined if x is odd. Write a program
in Y that computes f.

5. Let f(x 1 , x2) = 1 if x1 = x 2 ; f(x 1 , x2) = 0 if x 1 =I= x 2 • Without using
macros, write a program in Y that computes f.

6. Let f(x) be the greatest number n such that n 2 ~ x. Write a program
in Y that computes f.

7. Let gcd(x 1 , x2) be the greatest common divisor of x1 and x 2 • Write a
program in Y that computes gcd.

3. Syntax

We are now ready to be mercilessly precise about the language Y. Some
of the description recapitulates the preceding discussion.

The symbols

are called input variables,

zl Zz z3 ...

are called local variables, and Y is called the output variable of Y. The
symbols

AI Bl Cl Dl £1 Az Bz ...

are called labels of Y. (As already indicated, in practice the subscript 1 is
often omitted.) A statement is one of the following:

v~ V+ 1
v~ v-1
v~ v
IF V =I= 0 GOTO L

where V may be any variable and L may be any label.

26 Chapter 2 Programs and Computable Functions

Note that we have included among the statements of Y the "dummy"
commands V ~ V. Since execution of these commands leaves all values
unchanged, they have no effect on what a program computes. They are
included for reasons that will not be made clear until much later. But their
inclusion is certainly quite harmless.

Next, an instmction is either a statement (in which case it is also called
an unlabeled instruction) or [L] followed by a statement (in which case the
instruction is said to have L as its label or to be labeled L). A program is
a list (i.e., a finite sequence) of instructions. The length of this list is called
the length of the program. It is useful to include the empty program of
length 0, which of course contains no instructions.

As we have seen informally, in the course of a computation, the
variables of a program assume different numerical values. This suggests
the following definition:

A state of a program .9' is a list of equations of the form V = m, where V
is a variable and m is a number, including an equation for each variable
that occurs in 9' and including no two equations with the same variable.
As an example, let .9' be the program of (b) from Section 2, which contains
the variables X Y Z. The list

X= 4, Y= 3, z = 3

is thus a state of .9'. (The definition of state does not require that the state
can actually be "attained" from some initial state.) The list

X2 = 5, Y= 4, z =4

is also a state of .9'. (Recall that X is another name for X 1 and note that
the definition permits inclusion of equations involving variables not actu­
ally occurring in .9'.) The list

X= 3, Z=3

is not a state of .9' since no equation in Y occurs. Likewise, the list

X= 3, X=4, Y= 2, z = 2

is not a state of .9': there are two equations in X.
Let u be a state of .9' and let V be a variable that occurs in u. The

value of Vat u is then the (unique) number q such that the equation
V = q is one of the equations making up u. For example, the value of X
at the state

X= 4, Y= 3, Z=3

is 4.

3. Syntax 27

Suppose we have a program 9' and a state u of 9'. In order to say what
happens "next," we also need to know which instruction of 9' is about to
be executed. We therefore define a snapshot or instantaneous description
of a program 9' of length n to be a pair (i, u) where 1 ~ i ~ n + 1, and u
is a state of 9'. (Intuitively the number i indicates that it is the ith
instruction which is about to be executed; i = n + 1 corresponds to a
"stop" instruction.)

If s = (i, u) is a snapshot of 9' and V is a variable of 9', then the value
of Vats just means the value of V at u.

A snapshot (i, u) of a program 9' of length n is called terminal if
i = n + 1. If (i, u) is a nonterminal snapshot of 9', we define the successor
of (i, u) to be the snapshot (j, T) defined as follows:

Case 1. The ith instruction of 9' is V ~ V + 1 and u contains the
equation V = m. Then j = i + 1 and T is obtained from u by
replacing the equation V = m by V = m + 1 (i.e., the value of V
at T ism+ 1).

Case 2. The ith instruction of 9' is V ~ V- 1 and u contains the
equation V = m. Then j = i + 1 and T is obtained from u by
replacing the equation V = m by V = m - 1 if m -=!= 0; if m = 0,
T = U.

Case 3. The ith instruction of 9' is V ~ V. Then T = u and j = i + 1.
Case 4. The ith instruction of 9' is IF V-=!= 0 GOTO L. Then T = u, and

there are two subcases:
Case 4a. u contains the equation V = 0. Then j = i + 1.
Case 4b. u contains the equation V = m where m -=1= 0. Then, if there is

an instruction of 9' labeled L, j is the least number such that
the jth instruction of 9' is labeled L. Otherwise, j = n + 1.

For an example, we return to the program of (b), Section 2. Let u be
the state

X= 4, Y= 0, Z=O

and let us compute the successor of the snapshots (i, u) for various values
of i.

For i = 1, the successor is (4, u) where u is as above. For i = 2, the
successor is (3, T), where T consists of the equations

X=4, Y= 0, Z=l.

For i = 7, the successor is (8, u). This is a terminal snapshot.
A computation of a program 9' is defined to be a sequence (i.e., a list)

s1 ,s2 , ••• ,sk of snapshots of 9' such that s;+t is the successor of s; for
i = 1, 2, ... , k - 1 and sk is terminal.

28 Chapter 2 Programs and Computable Functions

Note that we have not forbidden a program to contain more than one
instruction having the same label. However, our definition of successor of
a snapshot, in effect, interprets a branch instruction as always referring to
the first statement in the program having the label in question. Thus, for
example, the program

[A] X+--- X- 1
IF X =1= 0 GOTO A

[A] X+--- X+ 1

is equivalent to the program

Exercises

[A] X+--- X- 1
IF X =1= 0 GOTO A
X+-X+ 1

1. Let .9 be the program of (b), Section 2. Write out a computation of .9
beginning with the snapshot (1, u), where u consists of the equations
X = 2, Y = 0, Z = 0.

2. Give a program .9 such that for every computation s1, ... , sk of .9,
k = 5.

3. Give a program .9 such that for any n ~ 0 and every computation
s1 = (1, u), s2 , ••• , sk of .9 that has the equation X= n in u, k =
2n + 1.

4. Computable Functions

We have been speaking of the function computed by a program .9. It is
now time to make this notion precise.

One would expect a program that computes a function of m variables to
contain the input variables X 1 , X2 , ••• , Xm, and the output variable Y,
and to have all other variables (if any) in the program be local. Although
this has been and will continue to be our practice, it is convenient not to
make it a formal requirement. According to the definitions we are going to
present, any program .9 of the language Y can be used to compute a
function of one variable, a function of two variables, and, in general, for
each m ~ 1, a function of m variables.

Thus, let .9 be any program in the language Y and let r 1 , ••• , r m be m
given numbers. We form the state u of .9 which consists of the equations

... ' Y=O

4. Computable Functions 29

together with the equations V = 0 for each variable V in go other than
X1 , ••• , Xm, Y. We will call this the initial state, and the snapshot (1, u),
the initial snapshot.

Case 1. There is a computation s 1 , s 2 , ••• , s k of go beginning with the initial
snapshot. Then we write r/J~m>(r 1 ,r2 , ••• ,rm) for the value of the
variable Y at the (terminal) snapshot sk.

Case 2. There is no such computation; i.e., there is an infinite sequence
s1 ,s2 ,s3 , ••• beginning with the initial snapshot where each si+l

is the successor of s;. In this case r/J~m>(r 1 , ••• , r m) is undefined.

Let us reexamine the examples in Section 2 from the point of view of
this definition. We begin with the program of (b). For this program go, we
have

1/J~l)(x) = x

for all x. For this one example, we give a detailed treatment. The following
list of snapshots is a computation of go:

(1,{X = r, Y= O,Z = 0}),
(4, {X= r, Y = 0, Z = 0}),
(5, {X= r- 1, Y = 0, Z = 0}),
(6, {X= r- 1, Y = 1, Z = 0}),
(7, {X= r- 1, Y = 1, Z = 1}),
(1, {X= r- 1, Y = 1, Z = 1}),

(1, {X= 0, Y = r, Z = r}),
(2, {X= 0, Y = r, Z = r}),

(3, {X= 0, Y = r, Z = r + 1}),
(8, {X= 0, Y = r, Z = r + 1}).

We have included a copy of go showing line numbers:

[A]

[B]

IF X =1= 0 GOTO B
z ~z + 1
IF Z =I= 0 GOTO E
x~x-1

Y~ Y+ 1
z ~z + 1
IF Z =/= 0 GOTO A

(1)

(2)

(3)

(4)
(5)

(6)

{7)

30 Chapter 2 Programs and Computable Functions

For other examples of Section 2 we have

{ 1 if r = 0 (a) 1/J(I >(r) = r
otherwise,

(b), (c) 1/1°>(r) = r,
(d) 1/1<2>(r1 , r2) = r1 + r2 ,

(e) 1/1<2>(r1 , r2) = r1 • r2 ,

(D 1/1<2l(rl, rz) = { r; - rz
if r1 ~ r2

if r1 < r2 •

Of course in several cases the programs written in Section 2 are abbrevia­
tions, and we are assuming that the appropriate macro expansions have
been provided.

As indicated, we are permitting each program to be used with any
number of inputs. If the program has n input variables, but only m < n
are specified, then according to the definition, the remaining input vari­
ables are assigned the value 0 and the computation proceeds. If on the
other hand, m values are specified where m > n the extra input values are
ignored. For example, referring again to the examples from Section 2, we
have

(c) t/J.!J>(r1 , r 2) = r1 ,

{d) tfJ.~,I>(r 1) = r 1 + 0 = ·rl>

t/I.J1>(rl 'rz' r3) = rl + rz.

For any program .9J and any positive integer m, the function
t/J.~m>(x 1 , ••• , xm) is said to be computed by .9. A given partial function g
(of one or more variables) is said to be partially computable if it is
computed by some program. That is, g is partially computable if there is a
program .9J such that

g(rl ,. .. ,rm) = 1/J.~m>(rl , ... ,rm)

for all r 1 , ••• , r m • Here this 'equation must be understood to mean not only
that both sides have the same value when they are defined, but also that
when either side of the equation is undefined, the other is also.

As explained in Chapter 1, a given function g of m variables is called
total if g(r1 , ••• , rm) is defined for all r1 , ••• , rm. A function is said to be
computable if it is both partially computable and total.

Partially computable functions are also called partial recursive, and
computable functions, i.e., functions that are both total and partial recur­
sive, are called recursive. The reason for this terminology is largely histori­
cal and will be discussed later.

Our examples from Section 2 give us a short list of partially computable
functions, namely: x, x + y, x · y, and x - y. Of these, all except the last
one are total and hence computable.

4. Computable Functions 31

Computability theory (also called recursion theory) studies the class of
partially computable functions. In order to justify the name, we need some
evidence that for every function which one can claim to be "computable"
on intuitive grounds, there really is a program of the language Y which
computes it. Such evidence will be developed as we go along.

We close this section with one final example of a program of .Y:

[A] X+-- X+ 1
IF X* 0 GOTO A

For this program 9', I/J.~1 >(x) is undefined for all x. So, the nowhere
defined function (see Chapter 1, Section 2) must be included in the class of
partially computable functions.

Exercises

1. Let 9' be the program

IF Xi= OGOTOA
[A] X+-- X+ 1

IF Xi= OGOTO A
[A] Y +-- Y + 1

What is 1/J.~IJ(x)?

2. The same as Exercise 1 for the program

[B] IF X * 0 GOTO A
Z+-Z+1
IF Z * OGOTO B

[A] X+-X

3. The same as Exercise 1 for the empty program.

4. Let 9' be the program

Y+-XI
[A] IFX2 =0GOTO£

Y+-Y+1
Y+-Y+1
X 2 +-- X 2 - 1
GOTOA

What is I/J.!)>(r1)? l/l}}>(r1 , r2)? I/Jj}>(r1 , r2 , r3)?

5. Show that for every partially computable function f(x 1 , ••• , xn), there
is a number m ~ 0 such that f is computed by infinitely many
programs of length m.

32 Chapter 2 Programs and Computable Functions

6. (a) For every number k ~ 0, let fk be the constant function fk(x) =
k. Show that for every k, fk is computable.

(b) Let us call an ..9P program a straightline program if it contains no
(labeled or unlabeled) instruction of the form IF V =F 0 GOTO
L. Show by h.duction on the length of programs that if the length
of a straightline program .9 is k, then 1/J.J.I)(x) ~ k for all x.

(c) Show that, if .9 is a straightline program that computes fk, then
the length of .9 is at least k.

(d) Show that no straightline Y program computes the function
f(x) = x + 1. Conclude that the class of functions computable by
straightline Y programs is contained in but is not equal to the
class of computable functions.

7. Let us call an Y program .9 forward-branching if the following
condition holds for each occurrence in .9 of a (labeled or unlabeled)
instruction of the form IF V =F 0 GOTO L. If IF V =F 0 GOTO L is
the ith instruction of .9, then either L does not appear as the label of
an instruction in .9, or else, if j is the least number such that L is the
label of the jth instruction in .9, then i < j. Show that a function is
computed by some forward-branching program if and only if it is
computed by some straightline program (see Exercise 6).

8. Let us call a unary function f(x) partially n-computable if it is com­
puted by some Y program .9 such that .9 has no more than n
instructions, every variable in .9 is among X, Y, Z 1 , ••• , Zn, and every
label in .9 is among A 1 , ••• , An, E.
(a) Show that if a unary function is computed by a program with no

more than n instructions, then it is partially n-computable.
(b) Show that for every n ~ 0, there are only finitely many distinct

partially n-computable unary functions.
(c) Show that for every n ~ 0, there are only finitely many distinct

unary functions computed by Y programs of length no greater
than n.

(d) Conclude that for every n ~ 0, there is a partially computable
unary function which is not computed by any Y program of
length less than n.

5. More about Macros

In Section 2 we gave some examples of computable functions (i.e., x + y,
x · y) giving rise to corresponding macros. Now we consider this process in
general.

5. More about Macros 33

Let f(x 1 , ••• , xn) be some partially computable function computed by
the program .9J. We shall assume that the variables that occur in .9J are all
included in the list Y, XI' ... ' xn' zl' ... ' zk and that the labels that
occur in .9J are all included in the list E, A 1 , ••• , A 1• We also assume that
for each instruction of .9J of the form

IF V =I= 0 GOTO A;

there is in .9J an instruction labeled A; . (In other words, E is the only
"exit" label.) It is obvious that, if .9J does not originally meet these
conditions, it will after minor changes in notation. We write

gJ =.9J(Y, XI, ... , xn ,zl , ... ,zk; E, AI, ... , At)

in order that we can represent programs obtained from .9J by replacing the
variables and labels by others. In particular, we will write

f2' m = .9J(Zm , Z m + 1 , ••• , Zm + n , Zm + n + 1 , ••• , Z m + n + k ;

for each given value of m. Now we want to be able to use macros like

in our programs, where V1 , ••• , V,, W can be any variables whatever. (In
particular, W might be one of V1 , ••• , V, .) We will take such a macro to be
an abbreviation of the following expansion:

zm +- 0
zm+l +-VI

Zm+z +- Vz

zm+n +- v,
Zm+n+ I +- 0
zm+n+2 +- 0

Here it is understood that the number m is chosen so large that none of
the variables or labels used in t2' m occur in the main program of which the
expansion is a part. Notice that the expansion sets the variables corre­
sponding to the output and local variables of .9J equal to 0 and those
corresponding to X 1 , ••• , Xn equal to the values of V1 , ••• , V,, respec­
tively. Setting the variables equal to 0 is necessary (even though they are

34 Chapter 2 Programs and Computable Functions

all local variables automatically initialized to 0) because the expansion may
be part of a loop in the main program; in this case, at the second and
subsequent times through the loop the local variables will have whatever
values they acquired the previous time around, and so will need to be
reset. Note that when t2'm terminates, the value of Zm is f(V1 , ••• , V,), so
that W finally does get the value f(V1 , ••• , V,).

If f(V1 , ••• , V,) is undefined, the program t2'm will never terminate. Thus
if f is not total, and the macro

w +--- f(VI ' ... ' v,)

is encountered in a program where V1 , ••• , V, have values for which f is
not defined, the main program will never terminate.

Here is an example:

This program computes the function f(x 1 , x2 , x 3), where

if X 1 ~ Xz

if X 1 < Xz.

In particular, f(2, 5, 6) is undefined, although (2 - 5) + 6 = 3 is positive.
The computation never gets past the attempt to compute 2- 5.

So far we have augmented our language .9 to permit the use of macros
which allow assignment statements of the form

W +--- f(VI, ... , V,),

where f is any partially computable function. Nonetheless there is avail­
able only one highly restrictive conditional branch statement, namely,

IF V =F 0 GOTO L

We will now see how to augment our language to include macros of the
form

IF P(V1 , ••• , V,) GOTO L

where P(x1 , ••• , xn) is a computable predicate. Here we are making use of
the convention, introduced in Chapter 1, that

TRUE= 1, FALSE= 0.

5. More about Macros 35

Hence predicates are just total functions whose values are always either 0
or 1. And therefore, it makes perfect sense to say that some given
predicate is or is not computable.

Let P(x1 , ••• , xn) be any computable predicate. Then the appropriate
macro expansion of

is simply

IF P(V1 , ••• , V,) GOTO L

Z +-- P(V1 , ••• , V,)
IF Z =I= 0 GOTO L

Note that P is a computable function and hence we have already shown
how to expand the first instruction. The second instruction, being one of
the basic instructions in the language .Y, needs no further expansion.

A simple example of this general kind of conditional branch statement
which we will use frequently is

IF V= OGOTO L

To see that this is legitimate we need only check that the. predicate P(x),
defined by P(x) =TRUE if x = 0 and P(x) =FALSE otherwise, is
computable. Since TRUE= 1 and FALSE= 0, the following program
does the job:

IF X =I= 0 GOTO E
Y+-Y+1

The use of macros has the effect of enabling us to write much shorter
programs than would be possible restricting ourselves to instructions of the
original language .Y. The original "assignment" statements V +-- V + 1,
V +-- V - 1 are now augmented by general assignment statements of the
form W +-- f(V1 , ••• , V,) for any partially computable function f. Also, the
original conditional branch statements IF V =/= 0 GOTO L are now aug­
mented by general conditional branch statements of the form IF
P(V1 , ••• , V,) GOTO L for any computable predicate P. The fact that any
function which can be computed using these general instructions could
already have been computed by a program of our original language Y
(since the general instructions are merely abbreviations of programs of .Y)
is powerful evidence of the generality of our notion of computability.

Our next task will be to develop techniques that will make it easy to see
that various particular functions are computable.

36 Chapter 2 Programs and Computable Functions

Exercises

1. (a) Use the process described in this section to expand the program
in example (d) of Section 2.

(b) What is the length of the .9' program expanded from example
(e) by this process?

2. Replace the instructions

in example (e) of Section 2 with the instruction Y +--- X 1 + Y, and
expand the result by the process described in this section. If 9' is the
resulting .9' program, what is I/I.J}>(r1 , r 2)?

3. Let f(x), g(x) be computable functions and let h(x) = f(g(x)). Show
that h is computable.

4. Show by constructing a program that the predicate x 1 ~ x 2 is com­
putable.

5. Let P(x) be a computable predicate. Show that the function f
defined by

is partially computable.

if P(x1 + x2)

otherwise

6. Let P(x) be a computable predicate. Show that

EXp(r) = { ~ if there are at least r numbers n such that P(n) = 1
otherwise

is partially computable.

7. Let 7T be a computable permutation (i.e., one-one, onto function) of
N, and let 7T- 1 be the inverse of 7T, i.e.,

7T-l(y) =X if and only if 7T(X) = y.

Show that 7T- 1 is computable.

8. Let f(x) be a partially computable but not total function, let M be a
finite set of numbers such that f(m)j for all m EM, and let g(x) be

5. More about Macros

an arbitrary partially computable function. Show that

{
g(x)

h(x) = f(x)

is partially computable.

if X EM

otherwise

37

9. Let .9"+ be a programming language that extends .9" by permitting
instructions of the form V ~ k, for any k ~ 0. These instructions
have the obvious effect of setting the value of V to k. Show that a
function is partially computable by some .9"+ program if and only if it
is partially computable.

10. Let .9"' be a programming language defined like .9" except that its
(labeled and unlabeled) instructions are of the three types

v~v·

v~ V+ 1
If V =!= V' GOTO L

These instructions are given the obvious meaning. Show that a
function is partially computable in .9"' if and only if it is partially
computable.

3

Primitive Recursive Functions

1. Composition

We want to combine computable functions in such a way that the output
of one becomes an input to another. In the simplest case we combine
functions f and g to obtain the function

h(x) = f(g(x)).

More generally, for functions of several variables:

Definition. Let f be a function of k variables and let g 1 , ••• , gk be
functions of n variables. Let

h(xl ' ... ' xn) = f(gl(xl ' ... ' xn), ... ' gk(xl ' ... ' xn)).

Then h is said to be obtained from f and g1, ... , gk by composition.

Of course, the functions J, g 1 , ••• , gk need not be total. h(x1 , ••• , xn)
will be defined when all of z1 = g1(x1, ... , xn), ... , zk = gk(x1, ... , xn) are
defined and also f(z1, ... , zk) is defined.

Using macros it is very easy to prove

Theorem 1.1. If h is obtained from the (partially) computable functions
f, g1, ... , gk by composition, then h is (partially) computable.

39

40 Chapter 3 Primitive Recursive Functions

The word partially is placed in parentheses in order to assert the
correctness of the statement with the word included or omitted in both
places.

Proof. The following program obviously computes h:

Z1 ~ gl(Xl , ... , Xn)

Zk ~gk(X1, ... ,Xn)

Y ~ f(Zl, · · ·, Zk)

Iff, g1 , ••• , gk are not only partially computable but are also total, then
so is h. •

By Section 4 of Chapter 2, we know that x, x + y, x · y, and x- y are
partially computable. So by Theorem 1.1 we see that 2x = x + x and
4x 2 = (2x) · (2x) are computable. So are 4x2 + 2x and 4x 2 - 2x. Note
that 4x2 - 2x is total, although it is obtained from the nontotal function
x - y by composition with 4x2 and 2x.

2. Recursion

Suppose k is some fixed number and

h(O) = k,

h(t + 1) = g(t, h(t)),
(2.1)

where g is some given total function of two variables. Then h is said to be
obtained from g by primitive recursion, or simply recursion. 1

Theorem 2.1. Let h be obtained from g as in (2.1), and let g be
computable. Then h is also computable.

Proof. We first note that the constant function f(x) = k is computable;
in fact, it is computed by the program

y ~ y + 1}
Y~ Y+ 1

k lines

Y~ Y+ 1

1 Primitive recursion, characterized by Equations (2.1) and (2.2), is just one specialized
form of recursion, but it is the only one we will be concerned with in this chapter, so we will
refer to it simply as recursion. We will consider more general forms of recursion in Part 5.

2. Recursion 41

Hence we have available the macro Y +-- k. The following is a program
that computes h(x):

Y+-k

[A] IFX=OGOTOE

Y +-- g(Z, Y)

Z+-Z+1

X+--X-1

GOTOA

To see that this program does what it is supposed to do, note that, if Y
has the value h(z) before executing the instruction labeled A, then it has
the value g(z, h(z)) = h(z + 1) after executing the instruction Y +­
g(Z, Y). Since Y is initialized to k = h(O), Y successively takes on the
values h(O), h(l), ... , h(x) and then terminates. •

A slightly more complicated kind of recursion is involved when we have

(2.2)
h(x1 , ••• ,xn,t + 1) =g(t,h(x1 , ••• ,xn,t),x1 , ••• ,xn).

Here the function h of n + 1 variables is said to be obtained by primitive
recursion, or simply recursion, from the total functions f (of n variables)
and g (of n + 2 variables). The recursion (2.2) is just like (2.1) except that
parameters x 1 , ••• , xn are involved. Again we have

Theorem 2.2. Let h be obtained from f and g as in (2.2) and let f, g be
computable. Then h is also computable.

Proof. The proof is almost the same as for Theorem 2.1. The following
program computes h(x1 , ••• , xn, xn+ 1):

Y +-- f(Xl, · · ·, Xn)

[A] IF Xn+l = 0 GOTO E

Y +-- g(Z, Y, X 1 , ••• , Xn)

Z+-Z+1

GOTOA •

42 Chapter 3 Primitive Recursive Functions

3. PRC Classes

So far we have considered the operations of composition and recursion.
Now we need some functions on which to get started. These will be

and the projection functions

s(x) =x + 1,

n(x) = 0,

1 :::;; i:::;; n.

[For example, u~(x 1 , x 2 , x 3 , x4) = x 3 .] The functions s, n, and u? are
called the initial functions.

Definition. A class of total functions ~ is called a PRC2 class if

1. the initial functions belong to ~.
2. a function obtained from functions belonging to ~ by either composi­

tion or recursion also belongs to ~-

Then we have

Theorem 3.1. The class of computable functions is a PRC class.

Proof. By Theorems 1.1, 2.1, and 2.2, we need only verify that the initial
functions are computable.

Now this is obvious; s(x) = x + 1 is computed by

n(x) is computed by the empty program, and u?(x 1 , ••• , xn) is computed
by the program

•
Definition. A function is called primitive recursive if it can be obtained
from the initial functions by a finite number of applications of composition
and recursion.

It is obvious from this definition that

2 This is an abbreviation for "primitive recursively closed."

3. PRC Classes 43

Corollary 3.2. The class of primitive recursive functions is a PRC class.

Actually we can say more:

Theorem 3.3. A function is primitive recursive if and only if it belongs to
every PRC class.

Proof. If a function belongs to every PRC class, then, in particular, by
Corollary 3.2, it belongs to the class of primitive recursive functions.

Conversely let a function f be a primitive recursive function and let ~
be some PRC class. We want to show that f belongs to '??. Since f is a
primitive recursive function, there is a list / 1 , f 2 , ••• , fn of functions such
that fn = f and each /; in the list is either an initial function or can be
obtained from preceding functions in the list by composition or recursion.
Now the initial functions certainly belong to the PRC class ~- Moreover
the result of applying composition or recursion to functions in ~ is again a
function belonging to '??.Hence each function in the list / 1 , ••• , fn belongs
to ~- Since fn = J, f belongs to ~- •

Corollary 3.4. Every primitive recursive function is computable.

Proof. By the theorem just proved, every primitive recursive function
belongs to the PRC class of computable functions. •

In Chapter 4 we shall show how to obtain a computable function that is
not primitive recursive. Hence it will follow that the set of primitive
recursive functions is a proper subset of the set of computable functions.

Exercises

1. Let ~be a PRC class, and let g1 , g2 , g3 , g4 belong to '??.Show that if

hz(x) = g2(x, x, x), and

h3(w, x, y, z) = h1(giw, y), z, gi2, g4(y, z))),

then h 2 , h 2 , h 3 also belong to '??.

2. Show that the class of all total functions is a PRC class.

3. Let n > 0 be some given number, and let '?? be a class of total
functions of no more than n variables. Show that ~ is not a PRC
class.

44 Chapter 3 Primitive Recursive Functions

4. Let ~ be a PRC class, let h belong to ~' and let

f(x) = h(g(x)) and

g(x) = h(f(x)).

Show that f belongs to %' if and only if g belongs to %'.

5. Prove Corollary 3.4 directly from Theorems 1.1, 2.1, 2.2, and the proof
of Theorem 3.1.

4. Some Primitive Recursive Functions

We proceed to make a short list of primitive recursive functions. Being
primitive recursive, they are also computable.

J. X+ y

To see that this is primitive recursive, we have to show how to obtain this
function from the initial functions using only the operations of composi­
tion and recursion.

If we write f(x, y) = x + y, we have the recursion equations

f(x,O) =x,

f(x,y + 1) =f(x,y) + 1.

We can rewrite these equations as

f(x,O) = ul(x),

f(x,y + 1) =g(y,f(x,y),x),

where g(x 1 , x2 , x 3) = s(u~(x 1 , x2 , x3)). The functions ul(x), u~(x 1 , x2 , x 3),

and s(x) are primitive recursive functions; in fact they are initial functions.
Also, g(x 1 , x2 , x 3) is a primitive recursive function, since it is obtained by
composition of primitive recursive functions. Thus, the preceding is a valid
application of the operation of recursion to primitive recursive functions.
Hence f(x, y) = x + y is primitive recursive.

Of course we already knew that x + y was a computable function. So we
have only obtained the additional information that it is in fact primitive
recursive.

2. x·y

The recursion equations for h(x, y) = x · y are

h(x, 0) = 0,
h(x,y + 1) = h(x,y) +x.

4. Some Primitive Recursive Functions 45

This can be rewritten

h(x,O) = n(x)

h(x, y + 1) = g(y, h(x, y), x).

Here, n(x) is the zero function,

f(x 1 , x 2) is x1 + x2 , and u~(x 1 , x 2 , x3), u~(x 1 , x 2 , x3) are projection func­
tions, Notice that the functions n(x), u~(x 1 , x 2 , x3), and u~(x 1 , x 2 , x3) are
all primitive recursive functions, since they are all initial functions. We
have- just shown that f(x 1 , x 2) = x1 + x 2 is primitive recursive, so
g(x1 , x 2 , x 3) is a primitive recursive function since it is obtained from
primitive recursive functions by composition. Finally, we conclude that

h(x,y) =x·y

is primitive recursive.

3. x!

The recursion equations are

0!= 1,

(x + l)!=x!·s(x).

More precisely, x! = h(x), where

h(O) = 1,

h(t + 1) =g(t,h(t)),

and

Finally, g is primitive recursive because

and multiplication is already known to be primitive recursive.
In the examples that follow, we leave it to the reader to check that the

recursion equations can be put in the precise form called for by the
definition of the operation of recursion.

46 Chapter 3 Primitive Recursive Functions

4. xY

The recursion equations are

x 0 = 1,

xy+l =xY·x.

Note that these equations assign the value 1 to the "indeterminate" 0°.

5. p(x)

The predecessor function p(x) is defined as follows:

{
X- 1

p(x) = 0
if X =fo 0
if X= 0.

It corresponds to the instruction in our programming language X ~ X - 1.
The recursion equations for p(x) are simply

p(O) = 0,

p(t + 1) = t.

Hence, p(x) is primitive recursive.

6. X _:_ y

The function x ..:... y is defined as follows:

• {X- y x-y=
0

if X ~y

if X < y.

This function should not be confused with the function x - y, which is
undefined if x < y. In particular, x ..:... y is total, while x - y is not.

We show that x ..:... y is primitive recursive by displaying the recursion
equations:

x-=-O=x,

x -=-(t + 1) = p(x..:... t).

7. lx- yl

The function lx - yl is defined as the absolute value of the difference
between x and y. It can be expressed simply as

lx- yl = (x-=- y) + (y -=-x)

and thus is primitive recursive.

4. Some Primitive Recursive Functions

8. a(x)

The function a(x) is defined as

a(x) = {~ if X= 0
if X-=/= 0.

a(x) is primitive recursive since

a(x) = 1 ..:... x.

Or we can simply write the recursion equations:

Exercises

a(O) = 1,

a(t + 1) = 0.

47

l. Give a detailed argument that xY, p(x), and x ..:... y are primitive
recursive.

2. Show that for each k, the function f(x) = k is primitive recursive.

3. Prove that if f(x) and g(x) are primitive recursive functions, so is
f(x) + g(x).

4. Without using x + y as a macro, apply the constructions in the
proofs of Theorems 1.1, 2.2, and 3.1 to give an .9' program that
computes x · y.

5. For any unary function f(x), the nth iteration off, written r, is

r<x) = f(... f(x) ...),

where f is composed with itself n times on the right side of the
equation. (Note that r(x) = x.) Let l/n, x) = r(x). Show that iff
is primitive recursive, then l 1 is also primitive recursive.

6.* (a) Let E(x) = 0 if x is even, E(x) = 1 if x is odd. Show that
E(x) is primitive recursive.

(b) Let H(x) = xj2 if x is even, (x- 0/2 if x is odd. Show that
H(x) is primitive recursive.

7.* Let f{O) = 0, /(1) = 1, /(2) = 22 , /(3) = 333 = 327 , etc. In general,
f(n) is written as a stack n high, of n's as exponents. Show that f is
primitive recursive.

48 Chapter 3 Primitive Recursive Functions

8. * Let k be some fixed number, let f be a function such that f(x + 1)
< x + 1 for all x, and let

h(O) = k

h(t + 1) = g(h(f(t + 1))).

Show that iff and g belong to some PRC class %',then so does h.
[Hint: Define f'(x) = min,< xf'(x) = 0. See Exercise 5 for the
definition of f'(x).] -

9.* Let g(x) be a primitive recursive function and let f(O, x) = g(x),
f(n + 1, x) = f(n, f(n, x)). Prove that f(n, x) is primitive recursive.

10. * Let COMP be the class of functions obtained from the initial
functions by a finite sequence of compositions.
(a) Show that for every function f(x 1 , ••• , xn) in COMP, either

f(x 1 , ••• , xn) = k for some constant k, or f(x 1 , ••• , xn) =
X; + k for some 1 :::;; i :::;; n and some constant k.

(b) An n-ary function f is monotone if for all n-tuples (x 1 , ••• , xn),
(y 1 , ••• , Yn) such that X; :::;; Y;, 1 :::;; i :::;; n, f(x 1 , ••• , xn) :::;;
f(y 1 , ••• , Yn). Show that every function in COMP is monotone.

(c) Show that COMP is a proper subset of the class of primitive
recursive functions.

(d) Show that the class of functions computed by straightline .9'
programs is a proper subset of COMP. [See Exercise 4.6 in
Chapter 2 for the definition of straightline programs.]

11. * Let 9' 1 be the class of all functions obtained from the initial
functions by any finite number of compositions and no more than
one recursion (in any order).
(a) Let f(x 1 , ••• , xn) belong to COMP. [See Exercise 10 for the

definition of COMP.] Show that there is a k > 0 such that
f(x 1 , ••• ,xn):::;; max{x 1 , ••• ,xn} + k.

(b) Let

h(o) = c

h(t + 1) = g(t, h(t)),

where c is some given number and g belongs to COMP. Show
that there is a k > 0 such that h(t) :::;; tk + c.

(c) Let

h(x1 , ••• ,xn,O) =f(x 1 , ••• ,xn)

h(x1 , ••• ,xn ,t + 1) = g(t,h(x 1 , ••• ,xn ,t),x1 , ••• ,xn),

5. Primitive Recursive Predicates 49

where f, g belong to COMP. Show that there are k, I> 0 such
that h(x1 , ••• ,xn,t):::;; tk + max{x1 , ••• ,xn} +I.

(d) Let f(xp ... , xn) belong to 9'1 • Show that there are k, I> 0
such that f(x 1 , ••• , xn) :::;; max{x1 , ••• , xn} · k + I.

(e) Show that 9'1 is a proper subset of the class of primitive
recursive functions.

5. Primitive Recursive Predicates

We recall from Chapter 1, Section 4, that predicates or Boolean-valued
functions are simply total functions whose values are 0 or 1. (We have
identified 1 with TRUE and 0 with FALSE.) Thus we can speak without
further ado of primitive recursive predicates.

We continue· our list of primitive recursive functions, including some
that are predicates.

9. X= y

The predicate x = y is defined as 1 if the values of x and y are the same
and 0 otherwise. Thus we wish to show that the function

d(x,y)={~ if X= y
if X =/= y

is primitive recursive. This follows immediately from the equation

d(x, y) = a(lx- yl).

JO. X :o;;y

This predicate is simply the primitive recursive function a(x ..:... y).

Theorem 5.1. Let ~be a PRC class. If P, Q are predicates that belong to
%',then so are -P, P v Q, and P & Q.3

Proof. Since -P = a(P), it follows that -P belongs to ~. (a was
defined in Section 4, item 8.)

3 See Chapter 1, Section 4.

50 Chapter 3 Primitive Recursive Functions

Also, we have
p & Q =P·Q,

so that P & Q belongs to ~.
Finally, the De Morgan law

P v Q <=> -(-P& -Q)

shows, using what we have already done, that P v Q belongs to 'lf. •

A result like Theorem 5.1 which refers to PRC classes can be applied to
the two classes we have shown to be PRC. That is, taking ~ to be the class
of all primitive recursive functions, we have

Corollary 5.2. If P, Q are primitive recursive predicates, then so are -P,
P v Q, and P & Q.

Similarly taking '(? to be the class of all computable functions, we have

Corollary 5.3. If P, Q are computable predicates, then so are - P,
P v Q, and P & Q.

As a simple example we have

11. x<y

We can write

or more simply

X <y <=>X :s;y & -(x =y),

x <y <=> -(y ::s;x).

Theorem 5.4 (Definition by Cases). Let 'lf be a PRC class. Let the
functions g, h and the predicate P belong to ~.Let

(
g(x1 , ••• , xn) if P(x1 , ... , xn)

/(xi' ... ' xn) = h() . x1 , ••• , xn otherwise.

Then f belongs to ~.

This will be recognized as a version of the familiar "if ... then ... ,
else ... " statement.

Proof. The result is obvious because

/(xi' ... ' xn)

= g(x1 , ••• , xn) · P(x1 , ••• , xn) + h(x1 , ••• , xn) · a(P(x1 , ••• , xn)) .

•

5. Primitive Recursive Predicates 51

Corollary 5.5. Let I&' be a PRC class, let n-ary functions g 1 , ••• , gm, h
and predicates P1 , ••• , Pm belong to ~'and let

P;(x 1 , ••• ,xn)& lj(x1 , ••• ,xn) = 0

for all 1 5. i < j 5. m and all x 1 , ••• , x n • If

then f also belongs to I&'.

gm(xl ' ... ' xn)

h(x1 , ••• ,xn)

if Pm(x1 , ••• , xn)

otherwise,

Proof. We argue by induction on m. The case for m = 1 is given by
Theorem 5.4, so let

Then

gm+ I(XI' ... ' xn)

h(x1 , ••• ,xn)

gm(xl ' ... ' xn)

h'(xl ' ... ' xn)

if pm+l(xl, ... ,xn)

otherwise,

if pm + l(xl ' ... ' xn)

otherwise.

if Pm(Xp ... ' xn)

otherwise,

and h' belongs to ~ by Theorem 5.4, so f belongs to ~ by the induction
hypothesis. •

Exercise

1. Let us call a predicate trivial if it is always TRUE or always FALSE.
Show that no nontrivial predicates belong to COMP (see Exercise 4.10
for the definition of COMP.)

52 Chapter 3 Primitive Recursive Functions

6. Iterated Operations and Bounded Quantifiers

Theorem 6.1. Let 'iff be a PRC class. If f(t, x1 , ••• , xn) belongs to 'iff,
then so do the functions

y

g(y,x1 , ... ,xn) = "[.J(t,x 1 , ... ,xn)
t=O

and
y

h(y,xl, ... ,xn) = 0J(t,xl, ... ,xn).
t=O

A common error is to attempt to prove this by using mathematical
induction on y. A little reflection reveals that such an argument by
induction shows that

all belong to 'iff, but not that the function g(y, x 1 , ••• , xn), one of whose
arguments is y, belongs to 'iff.

We proceed with the correct proof.

Proof. We note the recursion equations

g(O, X]' ... ' xn) = f(O, X]' ... ' xn),

g (t + 1, X 1 , ... , X n) = g (t, X 1 , ... , X n) + j(t + 1, X 1 , ... , X n),

and recall that since + is primitive recursive, it belongs to 'iff.
Similarly,

h(O, X]' ••• ' xn) = f(O, X]' ... ' xn),

h(t + 1,x1 , ... ,x) = h(t,x1 , ... ,xn) ·f(t + 1,x1 , ... ,xn). •

Sometimes we will want to begin the summation (or product) at 1
instead of 0. That is, we will want to consider

or

y

g(y,xl, ... ,xn) = "[.f(t,xl, ... ,xn)
t= I

y

h(y,x1 , ... ,x) = 0f(t,x 1 , ... ,xn).
t= I

6. Iterated Operations and Bounded Quantifiers

Then the initial recursion equations can be taken to be

g(O,x1 , ••• ,xn) = 0,

h(O,x 1 , ••• ,xn) = 1,

53

with the equations for g(t + 1, x 1 , ••• , xn) and h(t + 1, x 1 , ••• , xn) as in
the preceding proof. Note that we are implicitly defining a vacuous sum to
be 0 and a vacuous product to be 1. With this understanding we have
proved

Corollary 6.2. If f(t, x 1 , ••• , xn) belongs to the PRC class ~'then so do
the functions

and

y

g(y,x1 , ••• ,xn) = L:J(t,x1 , ••• ,xn)
t= I

y

h(y,x, ... ,xn) = 0f(t,x1 , ••• ,xn).
/=I

We have

Theorem 6.3. If the predicate P(t, x 1 , ••• , x n) belongs to some PRC class
'lf, then so do the predicates4

and

Proof. We need only observe that

and

(Vt),YP(t,x 1 , ••• ,xn) = [nP(t,x 1 , ••• ,xn>] = 1
/=0

(3t),YP(t,x 1 , ••• ,xn) <=> [EP(t,x 1 , ••• ,xn)] *0. •
/=0

Actually for the universal quantifier it would even have been correct to
write the equation

y

(Vt),YP(t,x 1 , ••• ,xn) = 0P(t,x1 , ••• ,xn).
/=0

4 See Chapter 1, Section 5.

54 Chapter 3 Primitive Recursive Functions

Sometimes in applying Theorem 6.3 we want to use the quantifier

or

That the theorem is still valid is clear from the relations

(3t)<yP(t,x 1 , ••• ,xn) <=> (3t),Y[t =I= y & P(t,x 1 , ••• ,xn)],

(Vt)<yP(t,x 1 , ••• ,xn) = (Vt),Y[t = y V P(t,x 1 , ••• ,xn)].

We continue our list of examples.

12. ylx

This is the predicate "y is a divisor of x." For example,

3112 is true

while

3113 is false.

The predicate is primitive recursive since

ylx = (3t),x(y·t =x).

13. Prime(x)

The predicate "x is a prime" is primitive recursive since

Prime(x) =x > 1&(\lt),xlt = 1 v t =x v- (tlx)}.

(A number is a prime if it is greater than 1 and it has no divisors other
than 1 and itself.)

Exercises

1. Let f(x) = 2x if x is a perfect square; f(x) = 2x + 1 otherwise. Show
that f is primitive recursive.

2. Let u(x) be the sum of the divisors of x if x =I= 0; u(O) = 0 [e.g.,
u(6) = 1 + 2 + 3 + 6 = 12]. Show that u(x) is primitive recursive.

3. Let 7T(x) be the number of primes that are ~ x. Show that 7T(x) is
primitive recursive.

4. Let SQSM(x) be true if x is the sum of two perfect squares; false
otherwise. Show that SQSM(x) is primitive recursive.

7. Mlnlmallzatlon 55

5. Let 'lf be a PRC class, let P(t, x 1 , ••• , xn) be a predicate in 'lf, and let

g(y,z,x1 , ••• ,xn) = (\ft)y:s;r:s;zP(t,Xp···,xn)and

h(y,z,x1 , ••• ,xn) = (3t)y:s;r:s;zP(t,Xp···,xn),

(where (Vt)y:s;t:s;zP(t,x 1 , ••• ,xn) and (3t)y:s;r:s;zP(t,x 1 , ••• ,xn) mean
that P(t, x 1 , ••• , xn) is true for all t (respectively, for some t) from y
to z). Show that g, h also belong to 'lf.

6. Let RP(x, y) be true if x andy are relatively prime (i.e., their greatest
common divisor is 1). Show that RP(x, y) is primitive recursive.

7. Give a sequence of compositions and recursions that shows explicitly
that Prime(x) is primitive recursive.

7. Minimalization

Let P(t, x 1 , ••• , xn) belong to some given PRC class 'lf. Then by Theorem
6.1, the function

y u

g(y,xl, ... ,xn) = E na(P(t,Xp•••,xn))
u=Ot=O

also belongs to 'lf. (Recall that the primitive recursive function a was
defined in Section 4.) Let us analyze this function g. Suppose for definite­
ness that for some value of t0 :::;; y,

for t < t0 ,

but

P(to' XI' ... ' xn) = 1,

i.e., that t0 is the least value oft :::;; y for which P(t, x 1 , ••• , xn) is true. Then

Hence,

if u < t0

if u ~ t0 •

g(y,xl , ... ,xn) = L 1 =to,
u<t0

so that g(y, x 1 , ••• , xn) is the least value oft for which P(t, x, ... , xn) is
true. Now, we define

if (3t):s;yP(t,x 1 , ••• ,xn)

otherwise.

56 Chapter 3 Primitive Recursive Functions

Thus, min,, YP(t, x 1 , ••• , xn) is the least value of t :::;; y for which
P(t, x 1 , ••• , xn) is true, if such exists; otherwise it assumes the (default) value
0. Using Theorems 5.4 and 6.3, we have

Theorem 7.1. If P(t, x 1 , ••• , xn) belongs to some PRC class '?? and
f(y, XI' ••• ' xn) = min, :5 YP(t, XI' ••• ' xn), then f also belongs to ~-

The operation "min 1 , y" is called bounded minimalization.
Continuing our list:

14. lx I y J

lxjy J is the "integer part" of the quotient xjy. For example, l7 /2J = 3
and l2/3J = 0. The equation

lxjyj = min[(t + 1) ·y > x]
1:5X

shows that lxjy J is primitive recursive. Note that according to this equa­
tion, we are taking lx/OJ = 0.

15. R(x,y)

R(x, y) is the remainder when x is divided by y. Since

x R(x,y)
- = lxjyj + --
y y

we can write

R(x,y) =x ..:..(y·lxjyJ),

so that R(x, y) is primitive recursive. [Note that R(x, 0) = x.]

16. Pn

Here, for n > 0, Pn is the nth prime number (in order of size). So that Pn
be a total function, we set Po = 0. Thus, Po = 0, p 1 = 2, p 2 = 3, p 3 = 5,
etc.

Consider the recursion equations

Po= 0,

Pn+ 1 = min [Prime(t) & t > Pn].
I:Spn! +I

To see that these equations are correct we must verify the inequality

(7.1)

7. Minimalization 57

To do so note that for 0 < i ~ n we have

(pn)!+1 1
----=K+ -,

Pi Pi

where K is an integer. Hence (pn)! + 1 is not divisible by any of the
primes p 1 , p 2 , ••• , Pn. So, either (pn)! + 1 is itself a prime or it is divisible
by a prime > Pn. In either case there is a prime q such that Pn < q ~
(pn)! + 1, which gives the inequality (7.1). (This argument is just Euclid's
proof that there are infinitely many primes.)

Before we can confidently assert that Pn is a primitive recursive func­
tion, we need to justify the interleaving of the recursion equations with
bounded minimalization. To do so, we first define the primitive recursive
function

h(y,z) = min[Prime(t)& t > y].
I:SZ

Then we set

k(x) = h(x, x! + 1),

another primitive recursive function. Finally, our recursion equations
reduce to

Po= 0,

Pn+ 1 = k(pn),

so that we can conclude finally that Pn is a primitive recursive function.
It is worth noting that by using our various theorems (and appropriate

macro expansions) we could now obtain explicitly a program of ..:7 which
actually computes Pn . Of course the program obtained in this way would
be extremely inefficient.

Now we want to discuss minimalization when there is no bound. We
write

minP(x1 , ••• , xn, y)
y

for the least value of y for which the predicate P is true if there is one. If
there is no value of y for which P(x 1 , • • • , x n , y) is true, then
miny P(x1 , ••• , xn, y) is undefined. (Note carefully the difference with
bounded minimalization.) Thus unbounded minimalization of a predicate
can easily produce a function which is not total. For example,

x- y = min [y + z = x]
z

58 Chapter 3 Primitive Recursive Functions

is undefined for x < y. Now, as we shall see later, there are primitive
recursive predicates P(x, y) such that miny P(x, y) is a total function
which is not primitive recursive. However, we can prove

Theorem 7.2. If P(x1 , ... ,xn,y) is a computable predicate and if

g(xl ' ... ' xn) = minP(xl ' ... ' Xn 'y),
y

then g is a partially computable function.

Proof. The following program obviously computes g:

Exercises

[A] IFP(Xt, ... ,Xn,Y)GOTOE

Y+-Y+1
GOTOA •

1. Let h(x) be the integer n such that n :::;; fix < n + 1. Show that h(x)
is primitive recursive.

2. Do the same when h(x) is the integer n such that

n :::;; (1 + fi)x < n + 1.

3. p is called a larger twin prime if p and p - 2 are both primes. (5, 7, 13,
19 are larger twin primes.) Let T(O) = 0, T(n) = the nth larger twin
prime. It is widely believed, but has not been proved, that there are
infinitely many larger twin primes. Assuming that this is true prove
that T(n) is computable.

4. Let u(n) be the nth number in order of size which is the sum of two
squares. Show that u(n) is primitive recursive.

5. Let R(x, t) be a primitive recursive predicate. Let

g(x,y) =max R(x,t),
1:5.y

i.e., g(x, y) is the largest value of-t :::;; y for which R(x, t) is true; if
there is none, g(x, y) = 0. Prove that g(x, y) is primitive recursive.

6. Let gcd(x, y) be the greatest common divisor of x and y. Show that
gcd(x, y) is primitive recursive.

7. Let lcm(x, y) be the least common multiple of x and y. Show that
lcm(x, y) is primitive recursive.

8. Pairing Functions and G6del Numbers 59

8. Give a computable predicate P(x1 , ••• , xn, y) such that the function
min Y P(x 1 , ••• , x n, y) is not computable.

9.* A function is elementary if it can be obtained from the functions s, n,
u), + , ..:... by a finite sequence of applications of composition, bounded
summation, and bounded product. (By application of bounded summa­
tion we mean obtaining the function r.r-o f(t, x 1 , ••• , xn) from
f(t, x 1 , ••• , xn), and similarly for bounded product.)

(a) Show that every elementary function is primitive recursive.

(b) Show that x · y, xY, and x! are elementary.

(c) Show that if n + 1-ary predicates P and Q are elementary, then
so are - P, P V Q, P & Q, ('Vt), YP(t, x 1 , ••• , xn),

(3t),; YP(t, x, ' ... ' xn), and min,,; YP(t, x,' ... ' xn).

(d) Show that Prime(x) is elementary.

(e) Let the binary function exp/x) be defined

exp0(x) = x

expy+ ,(x) = 2exp,(x).

Show that for every elementary function f(x 1 , ••• , xn), there is a
constant k such that f(x 1 , ••• , xn) ~ expk(max{x1 , ••• , xn}). [Hint:
Show that for every n there is an m ~ n such that x · expn(x) ~
expm(x) for all x.]

(f) Show that exp/x) is not elementary. Conclude that the class of
elementary functions is a proper subset of the class of primitive
recursive functions.

8. Pairing Functions and Godel Numbers

In this section we shall study two convenient coding devices which use
primitive recursive functions. The first is for coding pairs of numbers by
single numbers, and the second is for coding lists of numbers.

We define the primitive recursive function

(x, y) = 2x(2y + 1) ..:... 1.

Note that 2x(2y + 1) -=1= 0 so

(x,y) + 1 = 2x(2y + 1).

If z is any given number, there is a unique solution x, y to the equation

(x,y)=z, (8.1)

60 Chapter 3 Primitive Recursive Functions

namely, x is the largest number such that 2x I (z + 1), and y is then the
solution of the equation

2y + 1 = (z + l)j2x;

this last equation has a (unique) solution because (z + 1)/2x must be odd.
(The twos have been "divided out.") Equation (8.1) thus defines functions

x = /(z), y = r(z).

Since Eq. (8.1) implies that x, y < z + 1 we have

/(z) :::;; z, r(z) :::;; z.

Hence we can write

/{z) = min [(3y), z(z = (x, y))],
X$Z

r(z) = min[(3x)<z(z = (x,y))],
y,;;z -

so that /(z), r{z) are primitive recursive functions.
The definition of /(z), r(z) can be expressed by the statement

(x,y) = z =x = /(z)& y = r(z).

We summarize the properties of the functions (x,y), /(z), and r(z) in

Theorem 8.1 (Pairing Function Theorem). The functions (x, y), /(z), and
r(z) have the following properties:

1. they are primitive recursive;
2. l((x,y)) =x,r((x,y)) =y;
3. (/{z), r(z)) = z;
4. /(z), r(z):::;; z.

We next obtain primitive recursive functions that encode and decode
arbitrary finite sequences of numbers. The method we use, first employed
by Godel, depends on the prime power decomposition of integers.

We define the Godel number of the sequence (a 1 , ••• , an) to be the
number

n

[al, ···,an] = 0Pf'.
i=l

Thus, the Godel number of the sequence (3, 1, 5, 4, 6) is

[3, 1,5,4,6] = 23 .31 • 55 .74 ·116 •

For each fixed n, the function [a1 , ••• , an] is clearly primitive recursive.

8. Pairing Functions and Godel Numbers 61

Godel numbering satisfies the following uniqueness property:

Theorem 8.2. If [a 1 , ••• , an] = [b 1 , ••• , bn], then

i=1, ... ,n.

This result is an immediate consequence of the uniqueness of the
factorization of integers into primes, sometimes referred to as the unique
factorization theorem or the fundamental theorem of arithmetic. (For a
proof, see any elementary number theory textbook.)

However, note that

(8.2)

because p~ + 1 = 1. This same result obviously holds for any finite number
of zeros adjoined to the right end of a sequence. In particular, since

1 = 2° = 2°3° = 2°3°5° = ... '

it is natural to regard 1 as the Godel number of the "empty" sequence of
length 0, and it is useful to do so.

If one adjoins 0 to the left end of a sequence, the Godel number of the
new sequence will not be the same as the Godel number of the original
sequence. For example,

[2, 3] = 22 • 33 = 108,

and

[2,3,0] = 22 .33 • 5°= 108,

but

[0,2,3] = 2°.32 • 53 = 1125.

We will now define a primitive recursive function (x); so that if

X = [a 1 , ••• , an],

then (x); =a;. We set

(x); = min(-pf+ 1 lx).
t,;x

Note that (x)0 = 0, and (0); = 0 for all i.
We shall also use the primitive recursive function

Lt(x) = min{(x);-=!= O&(Vj)sx(j ::5; i v (x)j = 0)).
i,;x

(Lt stands for "length.") Thus, if x = 20 = 22 ·51 = [2, 0, 1], then (x)3 = 1,
but (x)4 = (x)5 = ... = (x)20 = 0. So, Lt(20) = 3. Also, Lt(O) = Lt(l) = 0.

62 Chapter 3 Primitive Recursive Functions

If x > 1, and Lt(x) = n, then Pn divides x but no prime greater than Pn
divides x. Note that Lt([a1 , ••• , an]) = n if and only if an =I= 0.

We summarize the key properties of these primitive recursive functions.

Theorem 8.3 (Sequence Number Theorem).

{
a.

a. ([a]' ... ' an])i = o'
if 1 ~ i ~ n

otherwise.
b. [(x) 1 , ••• ,(x)n] =x if n ~ Lt(x).

Our main application of these coding techniques is given in the next
chapter. The following exercises indicate that they can also be used to
show that PRC classes are closed under various interesting and useful
forms of recursion.

Exercises

1. Let f(x 1 , ••• , xn) be a function of n variables, and let f'(x) be a unary
function defined so that f'([xl' ... ' xn]) = f(xl' ... ' xn) for all
x 1 , ••• , xn. Show that f' is partially computable if and only if f is
partially computable.

2. Define Sort([x1 , ••• , xn]) = [y 1 , ••• , Yn], where y 1 , ••• , Yn is a permu­
tation of x1 , ••• , xn such that y1 ~ y2 ~ ••• ~ Yn. Show that Sort(x) is
primitive recursive.

3. Let F(O) = 0, F(l) = 1, F(n + 2) = F(n + 1) + F(n). [F(n) is the
nth so-called Fibonacci number.] Prove that F(n) is primitive recur­
sive.

4. (Simultaneous Recursion) Let

h 1(x,O) =f1(x),

h 2(x,O) =f2(x),

h1(x, t + 1) = g1(x, h 1(x, t), h 2(x, t)),

hz{x, t + 1) = gz(x, h 1(x, t), hz{x, t)).

Prove that if / 1 , / 2 , g 1 , g 2 all belong to some PRC class ~, then h 1 , h 2

do also.

5.* (Course-of-Values Recursion)
(a) For f(n) any function, we write

j{O) = 1,j{n) = [f(O),f(l), ... ,f(n- 1)] if n =I= 0.

8. Pairing Functions and GOdel Numbers

Let

f(n) = g(n,j(n))

for all n. Show that if g is primitive recursive so is f.
(b) Let

f(O) = 1, f(l) = 4, /(2) = 6,

f(x + 3) = f(x) + f(x + 1)2 + f(x + 2)3 •

Show that f(x) is primitive recursive.
(c) Let

h(O) = 3
X

h(x + 1) = L, h(t).
t=O

Show that h is primitive recursive.

6.* (Unnested Double Recursion) Let

f(O,y) =gl(y)

f(x + 1,0) =gz(x)

f(x + 1,y + 1) = h(x,y,f(x,y + 1),/(x + 1,y)).

63

Show that if g 1 , g2 , and hall belong to some PRC class I&', then f also
belongs to ~-

4

A Universal Program

1. Coding Programs by Numbers

We are going to associate with each program 9' of the language .9' a
number, which we write #(9'), in such a way that the program can be
retrieved from its number. To begin with we arrange the variables in order
as follows:

Y XI zi X 2 Z 2 X 3 Z3 ••••

Next we do the same for the labels:

AI BI CI DI EI Az Bz Cz Dz Ez A3

We write #(V), #(L) for the position of a given variable or label in the
appropriate ordering. Thus #(X2) = 4, #(ZI) = #(Z) = 3, #(E)= 5,
#(B2) = 7.

Now let I be an instruction (labeled or unlabeled) of the language .9'.
Then we write

#(/) =(a, (b, c))

where

1. if I is unlabeled, then a = 0; if I is labeled L, then a = #(L);
2. if the variable V is mentioned in I, then c = #(V) - 1;

65

66 Chapter 4 A Universal Program

3. if the statement in I is

v~v or v~ V+ 1 or v~ v-1,

then b = 0 or 1 or 2, respectively;
4. if the statement in I is

IF V-=!= 0 GOTO L'

then b = #(L') + 2.

Some examples:
The number of the unlabeled instruction X ~ X + 1 is

(0,(1,1)) = (0,5) = 10,

whereas the number of the instruction

[A] x~x+ 1

is

(1,(1,1)) = (1,5) = 21.

Note that for any given number q there is a unique instruction I with
#(/) = q. We first calculate l(q). If l(q) = 0, I is unlabeled; otherwise I
has the l(q)th label in our list. To find the variable mentioned in I, we
compute i = r(r(q)) + 1 and locate the ith variable V in our list. Then,
the statement in I will be

v~ v if l(r(q)) = 0,
v~ V+ 1 if l(r(q)) = 1,
v~ v-1 if l(r(q)) = 2,
IF V-=t= OGOTO L if j = l(r(q)) - 2 > 0

and L is the jth label in our list.
Finally, let a program go consist of the instructions I1 , I 2 , ••• , Ik. Then

we set

(1.1)

Since Godel numbers tend to be very large, the number of even rather
simple programs usually will be quite enormous. We content ourselves
with a simple example:

[A] x~x+ 1
IF X -=I= OGOTOA

1. Coding Programs by Numbers 67

The reader will recognize this as the example given in Chapter 2 of a
program that computes the nowhere defined function. Calling these in­
structions / 1 and / 2 , respectively, we have seen that #(/1) = 21. Since / 2

is unlabeled,

#(/2) = (0, (3, 1)) = (0,23) = 46.

Thus, finally, the number of this short program is

221 • 346 - 1.

Note that the number of the unlabeled instruction Y ~ Y is

(0,(0,0)) = (0,0) = 0.

Thus, by the ambiguity in Godel numbers [recall Eq. (8.2), Chapter 3], the
number of a program will be unchanged if an unlabeled Y ~ Y is tacked
onto its end. Of course this is a harmless ambiguity; the longer program
computes exactly what the shorter one does. However, we remove even
this ambiguity by adding to our official definition of program of .9 the
harmless stipulation that the final instruction in a program is not permitted to
be the unlabeled statement Y ~ Y.

With this last stipulation each number determines a unique program. As
an example, let us determine the program whose number is 199. We have

199 + 1 = 200 = 23 • 3°. 52 = [3, 0, 2].

Thus, if #(.9) = 199, .9 consists of 3 instructions, the second of which is
the unlabeled statement Y ~ Y. We have

and

Thus, the program is

3 = (2,0) = (2,(0,0))

2 = (0,1) = (0,(1,0)).

[B]Y ~ Y
Y~Y

Y~ Y+ 1

a not very interesting program that computes the function y = 1.
Note also that the empty program has the number 1 - 1 = 0.

Exercises

1. Compute #(.9) for .9 the programs of Exercises 4.1, 4.2, Chapter 2.

2. Find .9 such that #(.9) = 575.

68 Chapter 4 A Universal Program

2. The Halting Problem

In this section we want to discuss a predicate HALT(x, y), which we now
define. For given y, let go be the program such that #(go)= y. Then
HALT(x, y) is true if 1/J~I)(x) is defined and false if 1/J.J.'>(x) is undefined. To
put it succinctly:

HALT(x,y)- program number y eventually halts on input x.

We now prove the remarkable:

Theorem 2.1. HALT(x, y) is not a computable predicate.

Proof. Suppose that HALT(x, y) were computable. Then we could con­
struct the program go:

[A] IF HALT(X, X) GOTO A

(Of course go is to be the macro expansion of this program.) It is quite
clear that go has been constructed so that

1/l.JP(x) = { ~ndefined if
if

HALT(x,x)
- HALT(x, x).

Let #(go)= y0 • Then using the definition of the HALT predicate,

HALT(x,y0)- -HALT(x,x).

Since this equivalence is true for all x, we can set x = y0 :

HALT(y0 , y0) -- HALT(y0 , y0).

But this is a contradiction. •
To begin with, this theorem provides us with an example of a function

that is not computable by any program in the language ..:7. But we would
like to go further; we would like to conclude the following:

There is no algorithm that, given a program of ..:7 and an input to
that program, can determine whether or not the given program will
eventually halt on the given input.

In this form the result is called the unsolvability of the halting problem. We
reason as follows: if there were such an algorithm, we could use it to check
the truth or falsity of HALT(x, y) for given x, y by first obtaining program
tff with #(fff) = y and then checking whether tff eventually halts on input
x. But we have reason to believe that any algorithm for computing on

2. The Halting Problem 69

numbers can be carried out by a program of .9. Hence this would contradict
the fact that HALT(x, y) is not computable.

The last italicized assertion is a form of what has come to be called
Church's thesis. We have already accumulated some evidence for it, and we
will see more later. But, since the word algorithm has no general definition
separated from a particular language, Church's thesis cannot be proved as
a mathematical theorem.

In fact, we will use Church's thesis freely in asserting the nonexistence
of algorithms whenever we have shown that some problem cannot be
solved by a program of .9.

In the light of Church's thesis, Theorem 2.1 tells us that there really is
no algorithm for testing a given program and input to determine whether it
will ever halt. Anyone who finds it surprising that no algorithm exists for
such a "simple" problem should be made to realize that it is easy to
construct relatively short programs (of .9) such that nobody is in a position
to tell whether they will ever halt. For example, consider the assertion
from number theory that every even number ~ 4 is the sum of two prime
numbers. This assertion, known as Goldbach's conjecture, is clearly true for
small even numbers: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, etc. It is easy to
write a program .9' of .9 that will search for a counterexample to
Goldbach's conjecture, that is, an even number n ~ 4 that is not the sum
of two primes. Note that the test that a given even number n is a
counterexample only requires checking the primitive recursive predicate

- (3x),; n(3y),;n[Prime(x) & Prime(y) & X+ y = n].

The statement that .9' never halts is equivalent to Goldbach's conjecture.
Since the conjecture is still open after 250 years, nobody knows whether
this program .9' will eventually halt.

Exercises

1. Show that HALT(x, x) is not computable.

2. Let HALT(x, y) be defined

HALT(x, y) <=>program number y never halts on input x.

Show that HALT(x, y) is not computable.

3. Let HALT1(x) be defined HALT1(x) <=> HALT(l(x), r(x)). Show that
HALT1(x) is not computable.

70 Chapter 4 A Universal Program

4. Prove or disprove: If f(x 1, •.. , xn) is a total function such that for
some constant k, f(xl> ..• , xn) 5. k for all x 1 , ••• , xn, then f is
computable.

5. Suppose we claim that .9 is a program that computes HALT(x, x).
Give a counterexample that shows the claim to be false. That is, give
an input x for which .9 gives the wrong answer.

6. Let

f(x) = {~ if Goldbach's conjecture is true
otherwise.

Show that f(x) is primitive recursive.

3. Universality

The negative character of the results in the previous section might lead
one to believe that it is not possible to compute in a useful way with
numbers of programs. But, as we shall soon see, this belief is not justified.

For each n > 0, we define

cl>(n)(XI ' ••• ' Xn 'y) = 1/J.J.n>(xl ' ... ' Xn),

One of the key tools in computability theory is

where #(.9) = y.

Theorem 3.1 (Universality Theorem). For each n > 0, the function
ci><n>(x1 , ••• , xn, y) is partially computable.

We shall prove this theorem by showing how to construct, for each
n > 0, a program ~n which computes ci><n>. That is, we shall have for each
n > 0,

The programs ~n are called universal. For example, ~1 can be used to
compute any partially computable function of one variable, namely, if f(x)
is computed by a program .9 and y = #(.9), then f(x) = ci>(I>(x, y) =

1/J~>(x, y). The program ~n will work very much like an interpreter. It
must keep track of the current snapshot in a computation and by "decod­
ing" the number of the program being interpreted, decide what to do next
and then do it.

In writing the programs ~n we shall freely use macros corresponding to
functions that we know to be primitive recursive using the methods of
Chapter 3. We shall also freely ignore the rules concerning which letters
may be used to represent variables or labels of Y.

3. Universality 71

In considering the state of a computation we can assume that all
variables which are not given values have the value 0. With this under­
standing, we can code the state in which the ith variable in our list has the
value a; and all variables after the mth have the value 0, by the Godel
number [a1 , ••• , am]. For example, the state

Y= 0,

is coded by the number

[0, 2, 0, 1] = 32 • 7 = 63.

Notice in particular that the input variables are those whose position in
our list is an even number.

Now in the universal programs, we shall allocate storage as follows:

K will be the number such that the Kth instruction is about to be
executed;

S will store the current state coded in the manner just explained.

We proceed to give the program ~n for computing

y = <t><n>cx, ' ... ' xn 'xn+ ,).

We begin by exhibiting ~n in sections, explaining what each part does.
Finally, we shall put the pieces together. We begin:

Z +-- Xn+ I+ 1
n

s +-- n (pz;)x,
i=!

K+--1

If X11 + 1 = #(.9), where .9 consists of the instructions / 1 , ••• , Im, then Z
gets the value [#(/1), ••• , #(/m)] [see Eq. (1.1)]. S is initialized as
[0, X, , 0, X 2 , ••• , 0, Xn], which gives the first n input variables their appro­
priate values and gives all other variables the value 0. K, the instruction
counter, is given the initial value 1 (so that the computation can begin with
the first instruction). Next,

[C] IF K = Lt(Z) + 1 v K = 0 GOTO F

If the computation has ended, GOTO F, where the proper value will be
output. (The significance of K = 0 will be explained later.) Otherwise, the
current instruction must be decoded and executed:

U +-- r((Z)K)

p +-- Pr(U)+ I

72 Chapter 4 A Universal Program

(Z)K = (a, (b, c)) is the number of the Kth instruction. Thus, U = (b, c)
is the code for the statement about to be executed. The variable mentioned
in the Kth instruction is the (c + 1)th, i.e., the (r(U) + l)th, in our list.
Thus, its current value is stored as the exponent to which P divides S:

IF l(U) = 0 GOTO N

IF l(U) = 1 GOTO A

IF - (P I S) GOTO N

IF l(U) = 2 GOTO M

If l(U) = 0, the instruction is a dummy V ~ V and the computation need
do nothing to S. If l(U) = 1, the instruction is of the form V ~ V + 1, so
that 1 has to be added to the exponent on P in the prime power
factorization of S. The computation executes a GOTO A (for Add). If
l(U) =/= 0, 1, then the current instruction is either of the form V ~ V- 1
or IF V =/= 0 GOTO L. In either case, if P is not a divisor of S, i.e., if the
current value of Vis 0, the computation need do nothing to S. If PIS and
l(U) = 2, then the computation executes a GOTO M (for Minus), so that
1 can be subtracted from the exponent to which P divides S. To continue,

K ~ min [/((Z);) + 2 = l(U)]
i :s; Lt(Z)

GOTOC

If l(U) > 2 and PIS, the current instruction is of the form IF V =/= 0
GOTO L where V has a nonzero value and L is the label whose position
in our list is l(U) - 2. Accordingly the next instruction should be the first
with this label. That is, K should get as its value the least i for which
l((Z)) = l(U) - 2. If there is no instruction with the appropriate label, K
gets the value 0, which will lead to termination the next time through the
main loop. In either case the GOTO C causes a "jump" to the beginning
of the loop for the next instruction (if any) to be processed. Continuing,

[M] S ~ lS/PJ
GOTON

[A] s~S·P

[N] K~K+1

GOTOC

1 is subtracted or added to the value of the variable mentioned in the
current instruction by dividing or multiplying S by P, respectively. The

3. Universality

Z <-Xn+l + 1
n

s <--- n (pz;)x,

K<---1
[C] IF K = Lt(Z) + 1 v K = 0 GOTO F

U <--- r((Z)K)

p <--- Pr(U)+ I

IF /(U) = 0 GOTO N
IF /(U) = 1 GOTO A

IF -(PIS) GOTO N
IF /(U) = 2 GOTO M

K <--- min [/((Z);) + 2 = /(U)]
i,; Lt(Z)

GOTOC

[M] S <--- lS/PJ
GOTON

[A] S <--- S ·P

[N] K <--- K +I

GOTOC
[F] Y <--- (5)1

Figure 3.1. Program V", which computes Y = <t><">(X1 , ••• , X", Xn+ 1).

73

instruction counter is increased by 1 and the computation returns to
process the next instruction. To conclude the program,

[F] Y +- (S) 1

On termination, the value of Y for the program being simulated is stored
as the exponent on p/ = 2) in S. We have now completed our description
of Wn and we put the pieces together in Fig. 3.1.

For each n > 0, the sequence

enumerates all partially computable functions of n variables. When we
want to emphasize this aspect of the situation we write

It is often convenient to omit the superscript when n = 1, writing

<PyCx) = <P(x,y) = <f>Ol(x,y).

74 Chapter 4 A Universal Program

A simple modification of the programs :il'n would enable us to prove that
the predicates

STP<n>(x1 , ••• , xn, y, t) = Program number y halts after tor fewer
steps on inputs x 1 , ••• , xn

= There is a computation of program y of
length :::;; t + 1, beginning with inputs
x1 , ••• ,xn

are computable. We simply need to add a counter to determine when we
have simulated t steps. However, we can prove a stronger result.

Theorem 3.2 (Step-Counter Theorem). For each n > 0, the predicate
STP<n>(x1 , •• :, xn, y, t) is primitive recursive.

Proof. The idea is to provide numeric versions of the notions of snapshot
and successor snapshot and to show that the necessary functions are
primitive recursive. We use the same representation of program states that
we used in defining the universal programs, and if z represents state u,
then (i, z) represents the snapshot (i, u).

We begin with some functions for extracting the components of the ith
instruction of program number y:

LABEL(i, y) = l((y + 1);)

VAR(i,y) = r(r((y + 1);)) + 1

INSTR(i, y) = l(r((y + 1);))

LABEL'(i, y) = l(r((y + 1);))..:... 2

Next we define some predicates that indicate, for program y and the
snapshot represented by x, which kind of action is to be performed next.

SKIP(x, y) = [INSTR(/(x), y) = 0 & l(x):::;; Lt(y + 1)]

V [INSTR(/(x), y) ~ 2 & -{PvAR(I(x),y) I r(x))]

INCR(x,y) = INSTR(/(x),y) = 1

DECR(x, y) = INSTR(/(x), y) = 2 &pvAR(I(x),y) I r(x)

BRANCH(x,y) = INSTR(/(x),y) > 2&pvAR(I(x),y)lr(x)

& (3i), Lt(y+ 1>LABEL(i, y) = LABEL'(/(x), y)

3. Universality 75

Now we can define SUCC(x, y), which, for program number y, gives the
representative of the successor to the snapshot represented by x.

SUCC(x,y) =

We also need

(/(x) + 1, r(x))

(/(x) + 1, r(x) · PvAR(I(x),y))
(/(x) + 1, lr(x)/PvAR(I(x),y)J)
(min;, Lt(y + 1>[LABEL(i, y) = LABEL'

(Lt(y + 1) + 1, r(x))

n

INIT<n>(x1 , ••• , xn) = (1, 0 (p2;)x'),
i=l

if SKIP(x, y)

if INCR(x, y)
if DECR(x, y)
(/(x),y)], r(x))

if BRANCH(x, y)
otherwise.

which gives the representation of the initial snapshot for inputs x 1 , ••• , xn,
and

TERM(x,y) <=>l(x) > Lt(y + 1),

which tests whether x represents a terminal snapshot for program y.
Putting these together we can define a primitive recursive function that

gives the numbers of the successive snapshots produced by a given pro­
gram.

SNAP<n>(x 1 , ••• , xn, y, 0) = INIT<n>(x1 , ••• , xn)

SNAP<n>(x1 , ••• , xn, y, i + 1) = SUCC(SNAP<n>(x1 , ••• , xn, y, i), y)

Thus,

STP<n>(x1 , ••• , Xn, y, t) <=> TERM(SNAP<n>(x1 , ••• , Xn, y, t), y),

and it is clear that STP<n>(x1 , ••• , xn, y, t) is primitive recursive. •

By using the technique of the above proof, we can obtain the following
important result.

Theorem 3.3 (Normal Form Theorem). Let f(x 1 , ••• , xn) be a partially
computable function. Then there is a primitive recursive predicate
R(x1 , ••• , xn, y) such that

76 Chapter 4 A Universal Program

Proof. Let Yo be the number of a program that computes f(x 1 , ••• , xn).
We shall prove the following equation, which clearly implies the desired
result:

where R(x1 , ••• , xn, z) is the predicate

STP<n>(x1 , ••• , Xn, Yo, r(z))

& (r(SNAP<n>(x 1 , ••• , xn, Yo, r(z))))I

= /(z).

(3.1)

First consider the case when the righthand side of this equation is
defined. Then, in particular, there exists a number z such that

STP<n>(x1 , ••• ,xn,Yo,r(z))

and (r(SNAP<n>(x1 , ••• , xn, Yo, r(z))))I

= /(z).

For any such z, the computation by the program with number y0 has
reached a terminal snapshot in r(z) or fewer steps and /(z) is the value
held in the output variable Y, i.e., /(z) = f(x 1 , ••• , xn).

If, on the other hand, the right side is undefined, it must be the case that
STP<n>(x 1 , ••• ,xn,Yo,t) is false for all values oft, i.e., f(x 1 , ••• ,xn)j .

•
The normal form theorem leads to another characterization of the class

of partially computable functions.

Theorem 3.4. A function is partially computable if and only if it can be
obtained from the initial functions by a finite number of applications of
composition, recursion, and minimalization.

Proof. That every function which can be so obtained is partially com­
putable is an immediate consequence of Theorems 1.1, 2.1, 2.2, 3.1, and 7.2
in Chapter 3. Note that a partially computable predicate is necessarily
computable, so Theorem 7.2 covers all applications of minimalization to a
predicate obtained as described in the theorem.

Conversely, we can use the normal form theorem to write any given
partially computable function in the form

t(minR(x 1 , •.• , xn, y)),
y

where R is a primitive recursive predicate and so is obtained from the
initial functions by a finite number of applications of composition and

3. Universality 77

recursion. Finally, our given function is obtained from R by one use of
minimalization and then by composition with the primitive recursive func­
~nL •

When miny R(x1 , ••• , xn, y) is a total function [that is, when for each
x 1 , ••• , xn there is at least one y for which R(x 1 , ••• , xn, y) is true], we say
that we are applying the operation of proper minimalization to R. Now, if

t(minR(x 1 , ••• , xn, y))
y

is total, then miny R(x1 , ••• , xn, y) must be total. Hence we have

Theorem 3.5. A function is computable if and only if it can be obtained
from the initial functions by a finite number of applications of composi­
tion, recursion, and proper minimalization.

Exercises

1. Show that for each u, there are infinitely many different numbers v
such that for all x, <l>ix) = ci>v(x).

2. (a) Let

if ci>(x, xH

otherwise.

Show that H 1(x) is partially computable.
(b) Let A = {a 1 , ••• , an} be a finite set such that <I>(a;, a) j for

1 ::; i ::; n, and let

if ci>(x, xH

if X EA
otherwise.

Show that H 2(x) is partially computable.
(c) Give an infinite set B such that ci>(b, b) j for all b E B and such

that

is partially computable.

ifcl>(x,x)~

if X E B
otherwise

78 Chapter 4 A Universal Program

(d) Give an infinite set C such that cl>(c, c)j for all c E C and such
that

is not partially computable.

if cl>(x, x)J,

if X E C
otherwise

3. Give a program .9J such that H,9 (x1 , x2), defined

H,9 (x1 , x2) = program .9J eventually halts on inputs x1 , x 2

is not computable.

4. Let f(x 1 , ••• , xn) be computed by program .9, and suppose that for
some primitive recursive function g(x1 , ••• , xn),

is true for all x 1 , ••• , xn. Show that f(x 1 , ••• , xn) is primitive recursive.

5.* Give a primitive recursive function counter(x) such that if ci>n is a
computable predicate, then

cl>/counter(n)) =- HALT(counter(n),counter(n)).

That is, counter(n) is a counterexample to the possibility that ci>n
computes HALT(x, x). [Compare this exercise with Exercise 2.5.]

6. * Give an upper bound on the length of the shortest ..:7 program that
computes the function ci>Y(x).

4. Recursively Enumerable Sets

The close relation between predicates and sets, as described in Chapter 1,
lets us use the language of sets in talking about solvable and unsolvable
problems. For example, the predicate HALT(x, y) is the characteristic
function of the set {(x, y) E N 2 I HALT(x, y)}. To say that a set B, where
B ~ Nm, belongs to some class of functions means that the characteristic
function P(x1 , ••• , xm) of B belongs to the class in question. Thus, in
particular, to say that the set B is computable or recursive is just to say
that P(x1 , ••• , xm) is a computable function. Likewise, B is a primitive
recursive set if P(x1 , ••• , xm) is a primitive recursive predicate.

4. Recursively Enumerable Sets 79

We have, for example,

Theorem 4.1. Let the sets B, C belong to some PRC class %'. Then so do
the sets B u C, B n C, B.
Proof. This is an immediate consequence of Theorem 5.1, Chapter 3 .

•
As long as the Godel numbering functions [x 1 , ••• , xn] and (x); are

availaole, we can restrict our attention to subsets of N. We have, for
example,

Theorem 4.2. Let %' be a PRC class, and let B be a subset of Nm,
m ~ 1. Then B belongs to %' if and only if

B' = {[x 1 , ••• ,xm] ENI(x 1 , ••• ,xm) EB}

belongs to %'.

Proof. If Pix1 , ••• , xm) is the characteristic function of B, then

is the characteristic function of B', and PB' clearly belongs to ~ if P8

belongs to %'. On the other hand, if PB'(x) is the characteristic function of
B', then

is the characteristic function of B, and P8 clearly belongs to ~ if PB'
belongs to ~- •

It immediately follows, for example, that {[x, y] E N I HAL T(x, y)} is
not a computable set.

Definition. The set B c N is called recursively enumerable if there is a
partially computable function g(x) such that

B={xENig(xH}. (4.1)

The term recursively enumerable is usually abbreviated r.e. A set is
recursively enumerable just when it is the domain of a partially com­
putable function. If .9' is a program that computes the function g in (4.1),
then B is simply the set of all inputs to .9' for which .9' eventually halts. If
we think of .9' as providing an algorithm for testing for membership in B,
we see that for numbers that do belong to B, the algorithm will provide a

80 Chapter 4 A Universal Program

"yes" answer; but for numbers that do not, the algorithm will never
terminate. If we invoke Church's thesis, r.e. sets B may be thought of
intuitively as sets for which there exist algorithms related to B as in the
previous sentence, but without stipulating that the algorithms be expressed
by programs of the language .9'. Such algorithms, sometimes called semi­
decision procedures, provide a kind of "approximation" to solving the
problem of testing membership in B.

We have

Theorem 4.3. If B is a recursive set, then B is r.e.

Proof. Consider the program .9:

[A] IF - (X E B) GOTO A

Since B is recursive, the predicate x E B is computable and .9 can be
expanded to a program of .9'. Let .9 compute the function h(x). Then,
clearly,

B = {x E N I h(x H}. •
If B and B are both r.e., we have a pair of algorithms that will terminate

in case a given input is or is not in B, respectively. We can think of
combining these two algorithms to obtain a single algorithm that will
always terminate and that will tell us whether a given input belongs to B.
This combined algorithm might work by "running" the two separate
algorithms for longer and longer times until one of them terminates. This
method of combining algorithms is called dovetailing, and the step-counter
theorem enables us to use it in a rigorous manner.

Theorem 4.4. The set B is recursive if and only if B and B are both r.e.

Proof. If B is recursive, then by Theorem 4.1 so is ii, and hence by
Theorem 4.3, they are both r.e.

Conversely, if B and Bare both r.e., we may write

B = {x EN I g(x) ~},

ii = {x ENih(xH},

where g and h are both partially computable. Let g be computed by
program .9 and h be computed by program tff, and let p = #(.9),
q = #(tff). Then the program that follows computes B. (That is, the
program computes the characteristic function of B.)

4. Recursively Enumerable Sets

[A] IF STP(l>(X, p, T) GOTO C

IF STP<l)(X, q, T) GOTO E

T~ T+ 1
GOTOA

[C] Y~1

Theorem 4.5. If B and C are r.e. sets so are B u C and B n C.

Proof. Let

B = {x EN I g(x) ~},

C = {x EN I h(x) ~ },

81

•

where g and h are both partially computable. Let f(x) be the function
computed by the program

y ~ g(X)

Y ~ h(X)

Then f(x) is defined if and only if g(x) and h(x) are both defined. Hence

B n C = {x EN I f(x) ~},

so that B n C is also r.e.
To obtain the result for B u C we must use dovetailing again. Let g and

h be computed by programs 9' and t2', respectively, and let #(9') = p,
#(t2') = q. Let k(x) be the function computed by the program

[A] IF STP(l>(X, p, T) GOTO E

IF STP(l>(x, q, T) GOTO E

T~ T+ 1
GOTOA'

Then k(x) is defined just in case either g(x) or h(x) is defined. That is,

B u C = {x EN I k(xH}.

Definition. We write

W, = {x EN I <l>(x, nH}.

Then we have

•

Theorem 4.6 (Enumeration Theorem). A set B is r.e. if and only if there
is an n for which B = W, .

82 Chapter 4 A Universal Program

Proof. This is an immediate consequence of the definition of <l>(x, n) .

•
The theorem gets its name from the fact that the sequence

is an enumeration of all r.e. sets.
We define

K = {n EN In E W,}.

Now,

n E W, <=> <l>(n, n) t <=> HALT(n, n).

Thus, K is the set of all numbers n such that program number n
eventually halts on input n. We have

Theorem 4.7. K is r.e. but not recursive.

Proof. Since K = {n E N I <l>(n, n) t} and (by the universality
theorem-Theorem 3.1), <l>(n, n) is certainly partially computable, K is
clearly r.e. If K were also r.e., by the enumeration theorem we would have

K=W;

for some i. Then

i E K <=> i E W; <=> i E K,

which is a contradiction. •
Actually the proof of Theorem 2.1 already shows not only that

HALT(x, z) is not computable, but also that HALT(x, x) is not com­
putable, i.e., that K is not a recursive set. (This was Exercise 2.1.)

We conclude this section with some alternative ways of characterizing
r.e. sets.

Theorem 4.8. Let B be an r.e. set. Then there is a primitive recursive
predicate R(x, t) such that B = {x EN l(3t)R(x, t)}.

Proof. Let B = W,. Then B = {x EN l(3t)STP<0 (x, n, t)}, and STPO> is
primitive recursive by Theorem 3.2. •

Theorem 4.9. Let S be a nonempty r.e. set. Then there is a primitive
recursive function f(u) such that S = {f(n) I n E N} = {f(O), f(l),
f(2), ... } . That is, S is the range of f.

4. Recursively Enumerable Sets 83

Proof. By Theorem 4.8

S = {xI (3t)R(x, t)},

where R is a primitive recursive predicate. Let x 0 be some fixed member
of S (for example, the smallest). Let

f(u) = {/(u)
Xo

if R(l(u), r(u))
otherwise.

Then by Theorem 5.4 in Chapter 3, f is primitive recursive. Each value
f(u) is in S, since x 0 is automatically in S, while if R(l(u), r(u)) is true,
then certainly (3t)R(l(u), t) is true, which implies that f(u) = l(u) E S.
Conversely, if x E S, then R(x, t0) is true for some t0 . Then

f((x, t 0)) = l((x, t 0)) = x,

so that x = f(u) for u = (x, t 0). •
Theorem 4.10. Let f(x) be a partially computable function and let
S = {f(x)l f(xH}. (That is, Sis the range of f.) Then Sis r.e.

Proof. Let

Since

g(x) = { ~ if XES

otherwise.

S = {xI g(x)!},

it suffices to show that g(x) is partially computable. Let .9 be a program
that computes f and let #(.9) = p. Then the following program computes
g(x):

[A] IF- STPO)(Z, p, T) GOTO B

V ~ f(Z)

IF V=XGOTOE
[B] Z ~ Z + 1

IF Z ~ T GOTO A
T~ T+ 1
z~o

GOTOA

Note that in this program the macro expansion of V ~ f(Z) will be
entered only when the step-counter test has already guaranteed that f is
defined. •

84 Chapter 4 A Universal Program

Combining Theorems 4.9 and 4.10, we have

Theorem 4.11. Suppose that S -=!= 0. Then the following statements are
all equivalent:

1. S is r.e.;
2. S is the range of a primitive recursive function;
3. S is the range of a recursive function;
4. S is the range of a partial recursive function.

Proof. By Theorem 4.9, (1) implies (2). Obviously, (2) implies (3), and (3)
implies (4). By Theorem 4.10, (4) implies (1). Hence all four statements are
equivalent. •

Theorem 4.11 provides the motivation for the term recursively enumer­
able. In fact, such a set (if it is nonempty) is enumerated by a recursive
function.

Exercises

1. Let B be a subset of Nm, m > 1. We say that B is r.e. if B =
{(x1 , ... , xm) E Nm I g(xto ... , xm)H for some partially computable
function g(x 1 , ••• , xm). Let

Show that B' is r.e. if and only if B is r.e.

2. Let K0 = {(x, y) I x E Wj}. Show that K0 is r.e.

3. Let f be an n-ary partial function. The graph of f, denoted gr(f), is
the set {[x1 , ••• , xn ,f(x1 , ••• , xn)] I f(x 1 , ••• , xn)J, }.
(a) Let W be a PRC class. Prove that if f belongs to W then gr(f)

belongs to W.
(b) Prove that if gr (f) is recursive then f is partially computable.
(c) Prove that the recursiveness of gr(f) does not necessarily imply

that f is computable.

4. Let B = {f(n) In EN}, where f is a strictly increasing computable
function [i.e., f(n + 1) > f(n) for all n]. Prove that B is recursive.

5. Show that every infinite r.e. set has an infinite recursive subset. :

6. Prove that an infinite set A is r.e. if and only if A = {f(n) In EN}
for some one-one computable function f(x).

5. The Parameter Theorem

7. Let A, B be sets. Prove or disprove:
(a) If A u B is r.e., then A and B are both r.e.
(b) If A ~ B and B is r.e., then A is r.e.

85

8. Show that there is no computable function f(x) such that f(x) =
<l>(x, x) + 1 whenever <l>(x, xH.

9. (a) Let g(x), h(x) be partially computable functions. Show there is
a partially computable function f(x) such that f(xH for pre­
cisely those values of x for which either g(xH or h(x)J, (or
both) and such that when f(xH, either f(x) = g(x) or f(x) =
h(x).

(b) Can f be found fulfilling all the requirements of (a) but such
that in addition f(x) = g(x) whenever g(xH? Proof?

10. (a) Let A= {y l(3t)P(t,y)}, where P is a computable predicate.
Show that A is r.e.

(b) Let B={yl(3t1)···(3tn)Q(tl> ... ,tn,y)}, where Q is a com­
putable predicate. Show that B is r.e.

11. Give a computable predicate R(x, y) such that {y I(Vt)R(t, y)} is not
r.e.

5. The Parameter Theorem

The parameter theorem (which has also been called the iteration theorem
and the s-m-n theorem) is an important technical result that relates the
various functions cf><n>(x 1 , x2 , ••• , xn, y) for different values of n.

Theorem 5.1 (Parameter Theorem). For each n, m > 0, there is a primi­
tive recursive function S;:.(u 1 , Uz, ... , Un, y) such that

cf>(m+n>(xl ' ... ' Xm 'Ul ' ... ' Un 'y) = cf>(m)(XI ' ••• ' Xm 's;:.(ul ' ... ' Un 'y)).

(5.1)

Suppose that values for variables u 1 , ••• , un are fixed and we have in
mind some particular value of y. Then the left side of (5.1) is a partially
computable function of the m arguments x 1 , ••• , x m • Letting q be the
number of a program that computes this function of m variables, we have

86 Chapter 4 A Universal Program

The parameter theorem tells us that not only does there exist such a
number q, but that it can be obtained from u1 , ••• , un, y in a computable
(in fact, primitive recursive) way.

Proof. The proof is by mathematical induction on n.
For n = 1, we need to show that there is a primitive recursive function

S~(u, y) such that

ci><m+ 1>(x1 , ••• , Xm, u, y) = ci><m>(x1 , ••• , Xm, S~(u, y)).

Here S~(u, y) must be the number of a program which, given m inputs
x1 , ••• , xm, computes the same value as program number y does when
given the m + 1 inputs x1 , ••• , xm, u. Let .9 be the program such that
#(.9) = y. Then S~(u, y) can be taken to be the number of a program
which first gives the variable Xm+ I the value U and then proceeds tO carry
OUt fiJ. Xm+ 1 Will be given the value U by the program

~m+l ~ Xm+l + 1}
. u

xm+l ~ xm+l + 1

The number of the unlabeled instruction

is

(0, (1, 2m + 1)) = 16m+ 10.

So we may take

a primitive recursive function. Here the numbers of the instructions of .9J
which appear as exponents in the prime power factorization of y + 1 have
been shifted to the primes Pu+I•Pu+Z•···•Pu+Lt(y+l>·

To complete the proof, suppose the result known for n = k. Then we
have

5. The Parameter Theorem 87

using first the result for n = 1 and then the induction hypothesis. But now,
if we define

s!+ 1(ul ' ... ' uk 'uk+ I' y) = S!(ul ' ... ' uk 's~+k(uk+ I' y)),

we have the desired result. •
We next give a sample application of the parameter theorem. It is

desired to find a computable function g(u, v) such that

<1>/ <1>/x)) = <l>g(u, ,>(x).

We have by the meaning of the notation that

<1>/<1>/x)) = <l>(<l>(x, v), u)

is a partially computable function of x, u, v. Hence, we have

<l>u(<l>,.(x)) = <t><3>(x, u, v, z0)

for some number z0 • By the parameter theorem,

<t><3>(x, u, v, z0) = <l>(x, Sf(u, v, z0)) = <l>s[(u,,·,zix).

Exercises

1. Given a partially computable function f(x, y), find a primitive recur­
sive function g(u, v) such that

2. Show that there is a primitive recursive function g(u, v, w) such that

<1>(3>(u, v, w, z) = <l>g(u,v,w)(z).

3. Let us call a partially computable function g(x) extendable if there is a
computable function f(x) such that f(x) = g(x) for all x for which
g(xH. Show that there is no algorithm for determining of a given z
whether or not <l>z(x) is extendable. [Hint: Exercise 8 of Section 4
shows that <l>(x, x) + 1 is not extendable. Find an extendable function
k(x) such that the function

h(x t) = { <l>(x, x) + 1
' k(x)

is partially computable.]

if <l>(t,t).!.

otherwise

88 Chapter 4 A Universal Program

4.* A programming system is an enumeration S = {cf>in> I i EN, n > 0} of
the partially computable functions. That is, for each partially com­
putable function f(x 1 , ••• , xn) there is an i such that f is cf>in>.
(a) A programming system S is universal if for each n > 0, the

function qr<n>, defined

qr<n>(xl ' ... ' Xn 'i) = cf>in>(xl ' ... ' Xn),

is partially computable. That is, S is universal if a version of the
universality theorem holds for S. Obviously,

{ <l>}n> I i E N, n > 0}

is a universal programming system. Prove that a programming
system S is universal if and only if for each n > 0 there is a
computable function fn such that cf>in> = <I>J:<~> for all i.

(b) A universal programming system S is acceptable if for each
n, m > 0 there is a computable function s::,(u 1 , ••• , un, y) such
that

qr<m+n>(xl ' ... ' Xm 'Ut ' •.• ' Un 'y)

= qr<m>(xl ' ... ' Xm 's::,(ul ' ... ' Un 'y)).

That is, S is acceptable if a version of the parameter theorem
holds for S. Again, {<I>?> I i EN, n > 0} is obviously an acceptable
programming system. Prove that S is acceptable if and only if for
each n > 0 there is a computable function gn such that <l>fn> =
cf>t(;> for all i.

6. Diagonalization and Reducibility

So far we have seen very few examples of nonrecursive sets. We now
discuss two general techniques for proving that given sets are not recursive
or even that they are not r.e. The first method, diagonalization, turns on
the demonstration of two assertions of the following sort:

1. A certain set A can be enumerated in a suitable fashion.
2. It is possible, with the help of the enumeration, to define an object b

that is different from every object in the enumeration, i.e., b $.A.

We sometimes say that b is defined by diagonalizing over A. In some
diagonalization arguments the goal is simply to find some b $.A. We will
give an example of such an argument later in the chapter. The arguments
we will consider in this section have an additional twist: the definition of b
is such that b must belong to A, contradicting the assertion that we began

6. Dlagonalization and Reducibility 89

with an enumeration of all of the elements in A. The end of the
argument, then, is to draw some conclusion from this contradiction.

For example, the proof given for Theorem 2.1 is a diagonalization
argument that the predicate HALT(x, y), or equivalently, the set

{(x,y) E N 2 IHALT(x,y)},

is not computable. The set A in this case is the class of unary partially
computable functions, and assertion 1 follows from the fact that .9
programs can be coded as numbers. For each n, let .9-'n be the program
with number n. Then all unary partially computable functions occur
among I/I.J.1l, 1/1})/, We began by assuming that HALT(x, y) is com­
putable, and we wrote a program 9' that computes I/J.J.1>. The heart of the
proof consisted of showing that I/J.J.1> does not appear among I/J.J.1l, 1/J.J.?,
In particular, we wrote 9' so that for every x, I/J.J.1>(x),l. if and only if
,/,(1)() .
'1'.9' x x i , I.e.,

HALT(x, #(9')) <=>- HALT(x, x),

so I/J.J.1> differs from each function I/J.J.1l, 1/J.J.?,... on at least one input
value. That is, n is a counterexample to the possibility that I/J.J.1> is I/J.J.1>,
since 1/J.~>(n) ~ if and only if 1/J})>(n) i. Now we have the unary partialiy
computable function 1/J})> that is ~ot among I/J.J.1l, <PJ):, ... , so assertion 2 is
satisfied, giving us a contradiction. In the proof of Theorem 2.1 the
contradiction was expressed a bit differently: Because I/J.J.1> is partially
computable, it must appear among I/J.J.1l, 1/J.J.?, ... , and, in particular, it
must be I/J.J.1] ~ , since 9'#(.9') is 9' by definition, but we have the counterex­
ample I/J.J.1>(#(9')),l. if and only if I/J.J.1> (#(.9-'))j, i.e.,

#(~)

HALT(#(9'), #(9')) <=>- HALT(#(9'), #(9')).

Since we know assertion 1 to be true, and since assertion 2 depended on
the assumption that HALT(x, y) is computable, HALT(x, y) cannot be
computable.

To present the situation more graphically, we can represent the values
of each function I/J.J.1l, I/J.J.1/, ••• by the infinite array

,,,(1)(1) '1'.9'o

90 Chapter 4 A Universal Program

Each row represents one function. It is along the diagonal of this array
that we have arranged to find the counterexamples, which explains the
origin of the term diagonalization.

We can use a similar argument to give an example of a non-r.e. set. Let
TOT be the set of all numbers p such that p is the number of a program
that computes a total function f(x) of one variable. That is,

TOT= {zEN I (Vx)<l>(x, z) ~ }.

Since

<l>(x,zH =x E ~'

TOT is simply the set of numbers z such that ~ is the set of all
nonnegative integers.

We have

Theorem 6.1. TOT is not r.e.

Proof. Suppose that TOT were r.e. Since TOT =I= 0, by Theorem 4.9
there is a computable function g(x) such that TOT = {g(O), g(1), g(2), ... }.
Let

h(x) = <l>(x, g(x)) + 1.

Since each value g(x) is the number of a program that computes a total
function, <l>(u, g(x)H for all x, u and hence, in particular, h(xH for all x.
Thus h is itself a computable function. Let h be computed by program 9',
and let p = #(9'). Then p E TOT, so that p = g(i) for some i. Then

h(i) = <l>(i, g(i)) + 1 by definition of h

= <l>(i, p) + 1 since p = g(i)

= h(i) + 1 since h is computed by 9',

which is a contradiction. •
Note that in the proof of Theorem 6.1, the set A is TOT itself, and this

time assertion 1 was taken as an assumption, while assertion 2 is shown to
be true. Theorem 6.1 helps to explain why we base the study of com­
putability on partial functions rather than total functions. By Church's
thesis, Theorem 6.1 implies that there is no algorithm to determine if an .9
program computes a total function.

Once some set such as K has been shown to be nonrecursive, we can
use that set to give other examples of nonrecursive sets by way of the
reducibility method.

6. Diagonalization and Reducibility 91

Definition. Let A, B be sets. A is many-one reducible to B, written
A ~m B, if there is a computable function f such that

A= {x EN I f(x) E B}.

That is, x E A if and only if f(x) E B. (The word many-one simply refers
to the fact that we do not require f to be one-one.)

If A ~m B, then in a sense testing membership in A is "no harder
than" testing membership in B. In particular, to test x E A, we can
compute f(x) and then test f(x) E B.

Theorem 6.2. Suppose A ~m B.

1. If B is recursive, then A is recursive.
2. If B is r.e., then A is r.e.

Proof. Let A = {x EN I f(x) E B}, where f is computable, and let Pix)
be the characteristic function of B. Then

A = {x EN I P8 (f(x))},

and if B is recursive then P8 (f(x)), the characteristic function of A, is
computable.

Now suppose that B is r.e. Then B = {x E N I g(x)!} for some partially
computable function g, and A= {x EN I g(f(x))!}. But g(f(x)) is par­
tially computable, so A is r.e. •

We generally use Theorem 6.2 in the form: If A is not recursive (r.e.),
then B is not recursive (respectively, not r.e.). For example, let

K0 is clearly r.e. However, we can show by reducing K to K 0 , that is, by
showing that K ~m K 0 , that K 0 is not recursive: x E K if and only if
(x, x) E K 0 , and the function f(x) = (x, x) is computable. In fact, it is
easy to show that every r.e. set is many-one reducible to K0 : if A is r.e.,
then

A={xENig(x)!} for some partially computable g

= {x EN I <l>(x, z0H} for some z0

= {x EN I (x, z0) E K 0}.

92 Chapter 4 A Universal Program

Definition. A set A is m-complete if

1. A is r.e., and
2. for every r.e. set B, B ~m A.

So K 0 is m-complete. We can also show that K is m-complete. First we
show that K 0 ~m K. This argument is somewhat more involved because
K 0 seems, at first glance, to contain more information than K. K 0

represents the halting behavior of all partially computable functions on all
inputs, while K represents only the halting behavior of partially com­
putable functions on a single argument. We wish to take a pair (n, q) and
transform it to a number f((n, q)) of a single program such that

<l>q(nH if and only if <l>f((n,q))(f((n, q))H,

i.e., such that (n,q) E K 0 if and only if f((n,q)) E K. The parameter
theorem turns out to be very useful here. Let .9' be the program

y ~ <f>O>(l(Xz), r(Xz))

and let p = #(.9'). Then r/J.'Jl'(x 1 , x 2) = <t>0>(l(x2), r(x 2)), and

I/J.'Jl'(x1 ,x2) = <t><2>(x1 ,x2 ,p) = <t>0 >(x 1 ,Sf(x2 ,p))

by the parameter theorem, so for any pair (n, q),

<t>(l>(n, q) = I/J.'Jl'(x 1 , (n, q)) = <l>~~~(n,q),p)(x 1). (6.1)

Now, (6.1) holds for all values of x1 , so, in particular,

<t>(l>(n, q) = <t>f/~(n,q),p)(Sf((n, q), p)),

and therefore

<f>O>(n, q) t if and only if <l>~~~(n, q), P>(Sf ((n, q), p)) t,

i.e.,

(n,q) EK0 ifandonlyif Sf((n,q),p) EK.

With p held constant Sf(x, p) is a computable unary function, so K 0 ~m K.
To complete the argument that K is m-complete we need

Theorem 6.3. If A ~m Band B ~m C, then A ~m C.

Proof. Let A = {x E N I f(x) E B} and B = {x EN I g(x) E C}. Then
A = {x EN I g(f(x)) E C}, and g(f(x)) is computable. •

6. Diagonalization and Reducibility 93

As an immediate consequence we have

Corollary 6.4. If A is m-complete, B is r.e., and A ~m B, then B is
m-complete.

Proof. If Cis r.e. then C ~m A, and A ~m B by assumption, so C ~m B .

•
Thus, K is m-complete. Informally, testing membership in an m-com­

plete set is "at least as difficult as" testing membership in any r.e. set. So
an m-complete set is a good choice for showing by a reducibility argument
that a given set is not computable. We expand on this subject in Chapter 8.

Actually, we have shown both K ~m K 0 and K 0 ~m K, so in a sense,
testing membership in K and testing membership in K 0 are "equally
difficult" problems.

Definition. A =m B means that A ~m B and B ~m A.

In general, for sets A and B, if A =m B then testing membership in A
has the "same difficulty as" testing membership in B.

To summarize, we have proved

Theorem 6.5.

1. K and K 0 are m-complete.
2. K =m K0 •

We can also use reducibility arguments to show that certain sets are not
r.e. Let

EMPTY = {x E N I W., = 0}.

Theorem 6.6. EMPTY is not r.e.

Proof. We will show that K ~m EMPTY. K is not r.e., so by Theorem
6.2, EMPTY is not r.e. Let .9 be the program

y ~ <I>(Xz' Xz),

and let p = #(.9) . .9 ignores its first argument, so for a given z,

1/J.J}>(x, z)! for all x if and only if <l>(z, z)!.

By the parameter theorem

I/JJ.,Z>(x 1 , x2) = <t><2>(x 1 , x2 , p) = <I>(I>(x1 , Sf(x2 , p)),

94 Chapter 4 A Universal Program

so, for any z,

z E K if and only if <I>(z, z) j
if and only if 1/J.Ji>(x, z) j for all x
ifandonlyif <J>O>(x,Sf(z,p))j for all x

if and only if Ws/(z,p) = 0
if and only if Sf(z,p) E EMPTY.

f(z) = Sf(z, p) is computable, so K ::=;m EMPTY.

Exercises

1. Show that the proof of Theorem 4.7 is a diagonalization argument.

•

2. Prove by diagonalization that there is no enumeration / 0 , / 1 , / 2 , •••

of all total unary (not necessarily computable) functions on N.

3. Let A = {x EN I <l>x(x)J, and <l>x(x) > x}.
(a) Show that A is r.e.
(b) Show by diagonalization that A is not recursive.

4. Show how the diagonalization argument in the proof of Theorem 6.1
fails for the set of all numbers p such that p is the number of a
program that computes a partial function, i.e., the set N.

5. Let A, B be sets of numbers. Prove
(a) A ::=;m A.

(b) A ::=;m B if and only if A ::=;m B.
6. Prove that no m-complete set is recursive.

7. Let A, B be m-complete. Show that A =m B.

8. Prove that K :1, m K, i.e., K is not many-one reducible to K.

9. For every number n, let An ={xI n E J.Ji.}.
(a) Show that A; is r.e. but not recursive, for all i.
(b) Show that A; =m Aj for all i,j.

10. Define the predicate P(x) - <l>x(x) = 1. Show that P(x) is not
computable.

11. Define the predicate

Q(x) - the variable Y assumes the value 1 sometime dur­
ing the computation of 1/Jg>(x), where #(!JO) = x.

7. Rice's Theorem 95

Show that Q(x) is not computable. [Hint: Use the parameter theorem
and a version of the universal program W1 .]

12. Let INF = {x EN I Wr is infinite}. Show that INF =m TOTAL.

13. Let FIN = {x EN I w. is finite}. Show that K :::;;m FIN.

14.* Let

MONOTONE = {y E N I <1>/x) is total and

<1>/x) :::;; <1>/x + 1) for all x}.

(a) Show by diagonalization that MONOTONE is not r.e.
{b) Show that MONOTONE =m TOTAL.

7. Rice's Theorem

Using the reducibility method we can prove a theorem that gives us, at a
single stroke, a wealth of interesting unsolvable problems concerning
programs.

Let f be some collection of partially computable functions of one
variable. We may associate with f the set (usually called an index set)

R r = {t E N I <1>1 E f}.

Rr is a recursive set just in case the predicate g(t), defined g(t) = <1>1 E f,
is computable. Consider the examples:

1. f is the set of computable functions;
2. r is the set of primitive recursive functions;
3. f is the set of partially computable functions that are defined for all

but a finite number of values of x.

These examples make it plain that it would be interesting to be able to
show that Rr is computable for various collections f. Invoking Church's
thesis, we can say that R r is a recursive set just in case there is an
algorithm that accepts programs go as input and returns the value TRUE
or FALSE depending on whether or not the function tfJ}p,1 > does or does not
belong to f. In fact, those who work with computer programs would be
very pleased to possess algorithms that accept a program as input and
which return as output some useful property of the partial function
computed by that program. Alas, such algorithms are not to be found! This
dismal conclusion follows from Rice's theorem.

96 Chapter 4 A Universal Program

Theorem 7.1 (Rice's Theorem). Let r be a collection of partially com­
putable functions of one variable. Let there be partially computable
functions f(x), g(x) such that f(x) belongs to r but g(x) does not. Then
R r is not recursive.

Proof. Let h(x) be the function such that h(x)j for all x. We assume
first that h(x) does not belong to f. Let q be the number of

Z ~ <I>(X2 , X 2)

y ~ f(Xl)

Then, for any i, Sf (i, q) is the number of

X 2 ~ i

Now

and

Z ~ <I>(X2 , X 2)

Y ~ f(Xl)

i E K implies <l>(i,i)J,

implies <l>s:u. q)(x) = f(x) for all x

implies <l>s/(i,q) E f
implies Sf (i, q) E R r ,

i $. K implies <l>(i' i)j

implies <l>s/(i.q)(x) i for all x

implies <l>s/u. q> = h
implies <l>s/(i.q) $. r
implies Sf(i,q) $. Rr,

so K :::;; m R r . By Theorem 6.2, R r is not recursive.
If h(x) does belong to r, then the same argument with r and f(x)

replaced by f and g(x) shows that Rr is not recursive. But Rr = Rr, so,
by Theorem 4.1, Rr is not recursive in this case either. •

Corollary 7.2. There are no algorithms for testing a given program 9' of
the language .9 to determine whether 1/Jj.l)(x) belongs to any of the classes
described in Examples 1-3.

Proof. In each case we only need find the required functions f(x), g(x)
to show that Rr is not recursive. The corollary then follows by Church's

8. The Recursion Theorem 97

thesis. For 1, 2, or 3 we can take, for example, f(x) = uj(x) and g(x) =
1 - x [so that g(x) is defined only for x = 0, 1]. •

Exercises

I. Show that Rice's theorem is false if the requirement for functions
f(x), g(x) is omitted.

2. Show there is no algorithm to determine of a given program .9 in the
language .9' whether rf1.9(x) = x 2 for all x.

3. Show that there is no algorithm to determine of a pair of numbers u, v
whether ci>u(x) = ci>v(x) for all x.

4. Show that the set A = {x I cl>x is defined for at least one input} is r.e.
but not recursive.

5. Use Rice's theorem to show that the following sets are not recursive.
[See Section 6 for the definitions of the sets.]
(a) TOT;
(b) EMPTY;
(c) INF;
(d) FIN;
(e) MONOTONE;
(f) {y E N I <~>;!) is a predicate}.

6. Let f be a collection of partially computable functions of m variables,
m > 1, and let R~m> = {t E N I ci>fm> E f}. State and prove a version of
Rice's theorem for collections of partially computable functions of m
variables, m > 1.

7. Define the predicate

PROPER(n) <=> minz [cl>~2>(x, z) = 3] is an application of proper
minimalization to the predicate <1>~2>(x, z) = 3.

Show that PROPER(x) is not computable.

8. Let f be a set of partially computable functions of one variable. Show
that Rr is r.e. if and only if it is m-complete.

*8. The Recursion Theorem

In the proof that HALT(x, y) is not computable, we gave (assuming
HALT(x, y) to be computable) a program .9 such that

HALT(#(.9), #(.9)) <=>- HALT(#(.9), #(.9)).

98 Chapter 4 A Universal Program

We get a contradiction when we consider the behavior of the program .9
on input #(.9). The phenomenon of a program acting on its own descrip­
tion is sometimes called self-reference, and it is the source of many
fundamental results in computability theory. Indeed, the whole point of
diagonalization in the proof of Theorem 2.1 is to get a contradictory
self-reference. We turn now to a theorem which packages, so to speak, a
general technique for obtaining self-referential behavior. It is one of the
most important applications of the parameter theorem.

Theorem 8.1 (Recursion Theorem). Let g(z, Xp ... 'xm) be a partially
computable function of m + 1 variables. Then there is a number e such
that

Discussion. Let e = #(.9), so that l/l.~m>(x 1 , ••• , xm) = <l>~m>(x 1 , ••• , xm).
The equality in the theorem says that the m-ary function rfJ}p,m>(x 1 , ••• , xm)
is equal to g(z, x 1 , ••• , xm) when the first argument of g is held constant
at e. That is, .9 is a program that, in effect, gets access to its own number,
e, and computes the m-ary function g(e, x 1 , ••• , xm). Note that since
x 1 , ••• , xm can be arbitrary values, e generally does not appear among the
inputs to rfJ}p,m>(x 1 , .•• , xm), so .9 must somehow compute e. One might
suppose that .9 might contain e copies of an instruction such as Z +­
Z + 1, that is, an expansion of the macro Z +-- e, but if .9 has at least e
instructions, then certainly #(.9) > e. The solution is to write .9 so that it
computes e without having e "built in" to the program. In particular, we
build into .9 a "partial description" of .9, and then have .9 compute e
from the partial description. Let t2' be the program

z +-- S~(Xm+ I' xm+ I)

Y+-g(Z,X1 , ••• ,Xm)

We prefix #(t2') copies of the instruction xm +I +-- xm +I + 1 to get the
program !Jll:

z +-- S~(Xm+ I' xm+ I)

Y+-g(Z,X1 , ••• ,Xm)

8. The Recursion Theorem 99

After the first #(f2') instructions are executed, Xm+ 1 holds the Value
#{t2'), and S~(#(t2'), #(t2')), as defined in the proof of the parameter
theorem, computes the number of the program consisting of #(t2') copies
of Xm+l ~ Xm+l + 1 followed by program t2'. But that program is 9'1. So
z ~ S~(Xm+ I' xm+ I) gives z the value #(!Jll), andy~ g(Z, XI' ... ' Xm)
causes !Jll to output g(#(!Jll), x 1 , ••• , xm). We take e to be #(!Jll) and we
have

We now formalize this argument.

Proof. Consider the partially computable function

g(S~(v,v),x 1 , ••• ,xm)

where S~ is the function that occurs in the parameter theorem. Then we
have for some number z0 ,

g(S~(V, V), XI, ... , Xm) = cf>(m+ I)(XI, ... , Xm, V, Zo)

= cf><m>(x1 , ••• , xm, S~(v, z0)),

where we have used the parameter theorem. Setting v = z0 and e =
S~(z0 , z0), we have

g(e,x 1 , ••• ,xm) = cf><m>(x 1 , ••• ,xm ,e)= <I>;m>(x1 , ••• ,xm). •

We can use the recursion theorem to give another self-referential proof
that HALT(x, y) is not computable. If HALT(x, y) were computable, then

f(x,y) = { 6 if HALT(y, x)

otherwise

would be partially computable, so by the recursion theorem there would be
a number e such that

that is,

<l>e(y) = f(e, y) = { 6 if HALT(y, e)
otherwise,

- HALT(y, e)<=> HALT(y, e).

So HALT(x, y) is not computable. The self-reference occurs when <l>e
computes e, tests HALT(y, e), and then does the opposite of what
HALT(y, e) says it does.

100 Chapter 4 A Universal Program

One of the many uses of the recursion theorem is to allow us to write
down definitions of functions that involve the program used to compute
the function as part of its definition. For a simple example we give

Corollary 8.2. There is a number e such that for all x

<l>e(x) =e.

Proof. We consider the computable function

g(z, x) = uf(z, x) = z.

Applying the recursion theorem we obtain a number e such that

<l>e(x) = g(e, x) = e

and we are done. •
It is tempting to be a little metaphorical about this result. The program

with number e "consumes" its "environment" (i.e., the input x) and
outputs a "copy" of itself. That is, it is, in miniature, a self-reproducing
organism. This program has often been cited in considerations of the
comparison between living organisms and machines.

For another example, let

if t = 0
otherwise,

where g(x, y) is computable. It is clear that f(x, t) is partially computable,
so by the recursion theorem there is a number e such that

if t = 0
otherwise.

An easy induction argument on t shows that <l>e is a total, and therefore
computable, function. Now, <l>e satisfies the equations

<l>e(O) = k

<l>e(t + 1) = g(t, <l>e(t)),

that is, <l>e is obtained from g by primitive recursion of the form (2.1) in
Chapter 3, so the recursion theorem gives us another proof of Theorem 2.1
in Chapter 3. In fact, the recursion theorem can be used to justify
definitions based on much more general forms of recursion, which explains
how it came by its name.1 We give one more example, in which we wish to

1 For more on this subject, see Part 5.

8. The Recursion Theorem 101

know if there are partially computable functions f, g that satisfy the
equations

f(O) = 1

f(t + 1) = g(2t) + 1

g(O) = 3

g(2t + 2) = f(t) + 2.

Let F(z, t) be the partially computable function

if X= (0,0)

(8.1)

<l>z((1,2(r(x) _:_ 1))) + 1
F(z,x) = 3

{

1
if (3y), x (x = (0, y + 1))

if X= (1,0)

<l>z((O, l(r(x) ..:... 2)j2J)) + 2 if(3y),x(x = (1,2y + 2)).

By the recursion theorem there is a number e such that

<l>e(x) = F(e, x)

{

1
<l>e((1,2(r(x)..:... 1))) + 1

= ~e((O, l (r(x) ..:... 2) j2J)) + 2

if X= (0,0)

if (3y), x (x = (0, y + 1))

if X= (1,0)

if (3 Y) ,; x (X = (1, 2 Y + 2)) .

Now, setting

we have

f(x) = <l>e((O,x)) and g(x) = <l>e((1,x))

f(O) = <l>e((O, 0)) = 1

f(t + 1) = <l>e((O,t + 1)) = cf>e((1,2t)) + 1 =g(2t) + 1

g(O) = <l>e((1,0)) = 3

g(2t + 2) = cf>e((1,2t + 2)) = <l>e((O,t)) + 2 = f(t) + 2,

so f, g satisfy (8.1).
Another application of the recursion theorem is

Theorem 8.3 (Fixed Point Theorem). Let f(z) be a computable function.
Then there is a number e such that

for all x.

102 Chapter 4 A Universal Program

Proof. Let g(z, x) = <l>f<z>(x), a partially computable function. By the
recursion theorem, there is a number e such that

<l>e(x) = g(e, x) = <l>f(e)(x). •
Usually a number n is considered to be a fixed point of a function f(x)

if f(n) = n. Clearly there are computable functions that have no fixed
point in this sense, e.g., s(x). The fixed point theorem says that for every
computable function f(x), there is a number e of a program that computes
the same function as the program with number f(e).

For example, let P(x) be a computable predicate, let g(x) be a com­
putable function, and let while(n) = #(~n), where ~n is the program

X 2 +--- n

Y+-X
[A] IF - P(Y) GOTO E

Y +--- <l>x2(g(Y))

It should be clear that while(x) is a computable, in fact primitive recursive,
function, so by the fixed point theorem there is a number e such that

<l>e(x) = <l>while(e)(x).

It follows from the construction of while(e) that

<l>e(x) = <l>while(e)(x) = { ~e(g(x)) if - P(x)

otherwise.

Moreover,

so

(
g(x)

<l>e(g(x)) = <l>while(e)(g(x)) = <l>e(g(g(x)))
if - P(g(x))

otherwise,

<l>e(x) = <l>while(e)(x) = {;(x)
<l>e(g(g(x)))

if -P(x)

if P(x) &-P(g(x))

otherwise,

8. The Recursion Theorem 103

and continuing in this fashion we get

if - P(x)
if P(x) & - P(g(x))

if P(x) & P(g(x)) & - P(g(g(x)))

In other words, program e behaves like the pseudo-program

Y+-X

WHILE P(Y) DO

y +--- g(Y)

END

We end this discussion of the recursion theorem by giving another proof
of Rice's theorem. Let r, f(x), g(x) be as in the statement of Theorem
7.1.

Alternative Proof of Rice's Theorem.2 Suppose that Rr were computable.
Let

if t ERr

otherwise.

That is, Pr is the characteristic function of Rr. Let

(
g(x)

h(t,x)=)
f(x

if t ERr

otherwise.

Then, since (as in the proof of Theorem 5.4, Chapter 3)

h(t, x) = g(x) · Pr(t) + f(x) · a(Pr{t)),

h(t, x) is partially computable. Thus, by the recursion theorem, there is a
number e such that

(
g(x)

<l>e(x) = h(e, x) = f(x)
if <l>e belongs to r
otherwise.

2 This elegant proof was called to our attention by John Case.

104 Chapter 4 A Universal Program

Does e belong to Rr? Recalling that f(x) belongs to f but g(x) does not,
we have

eERr implies <l>e(x) = g(x)

implies <l>e is not in r
implies e rt Rr.

But likewise,

eft Rr implies <l>e(x)= f(x)

implies <l>e is in r
implies e ERr.

This contradiction proves the theorem. •
Exercises

1. Use the proof of Corollary 8.2 and the discussion preceding the proof
of the recursion theorem to write a program .9J such that rf19 (x) =
#(.9).

2. Let A = {x EN I <l>x(x)J, and <l>x(x) > x}. Use the recursion theo­
rem to show that A is not recursive.

3. Show that there is a number e such that W. = {e}.

4. Show that there is a program .9J such that rf19 (x) ~ if and only if
X= #(.9J).

5. (a) Show that there is a partially computable function f that satis­
fies the equations

What is /(2, 5)?

f(x,O)=x+2

f(x, 1) = 2 ·f(x,2x)

f(x,2t + 2) = 3 ·f(x,2t)

f(x,2t + 3) = 4 ·f(x,2t + 1).

(b) Prove that f is total.
(c) Prove that f is unique. (That is, only one function satisfies the

given equations.)

6. Give two distinct partially computable functions f, g that satisfy the
equations

/(0) = 2 g(O) =2

f(2t + 2) = 3 ·f(2t) g(2t + 2) =3. g(2t).

For the specific functions f, g that you give, what are f{l) and g{l)?

9. A Computable Function That Is Not Primitive Recursive 105

7. Let f(x) = x + 1. Use the proof of the fixed point theorem and the
discussion preceding the proof of the recursion theorem to give a
program !Jl! such that ci>#W>(x) = ci>f<HW»(x). What unary function
does !Jl! compute?

8. Give a function f(y) such that, for all y, f(y) > y and <1>/x) =
ci>f(y>(x).

9. Give a function f(y) such that, for all y, if cl>/x) = ci>f<Y>(x), then
<1>/x) is not total.

10. Show that the function while(x) defined following the fixed point
theorem is primitive recursive. [Hint: Use the parameter theorem.]

11. (a) Prove that the recursion theorem can be strengthened to read:
There are infinitely many numbers e such that

cl>~m>(x 1 , ••• , Xm) = g(e, XI, ••• , Xm).

(b) Prove that the fixed point theorem can be strengthened to read:
There are infinitely many numbers e such that

cl>f(e)(x) = cl>e(x).

12. Prove the following version of the recursion theorem: There is a
primitive recursive function self(x) such that for all z

cl>self(z)(x) = <I>;2>(self(z), x).

13. Prove the following version of the fixed point theorem: There is a
primitive recursive function fix(u) such that for all x, u,

cl>fix(u)(x) = cl><l>u(fix(u/x).

14. * Let S be an acceptable programming system with universal functions
qr<m>. Prove the following: For every partially computable function
g(z, x 1 , ••• , xm) there is a number e such that

qr;m>(x 1 , ••• , Xm) = g(e, X 1 , ••• , Xm).

That is, a version of the recursion theorem holds for S. [See Exercise
5.4 for the definition of acceptable programming systems.]

*9. A Computable Function That Is Not
Primitive Recursive

In Chapter 3 we showed that all primitive recursive functions are com­
putable, but we did not settle the question of whether all computable

106 Chapter 4 A Universal Program

functions are pnmitiVe recursive. We shall deal with this matter by
showing how to obtain a function h(x) that is computable but is not
primitive recursive. Our method will be to construct a computable function
cf>(t, x) that enumerates all of the unary primitive recursive functions. That
is, it will be the case that

1. for each fixed value t = t0 , the function cf>(t0 , x) will be primitive
recursive;

2. for each unary primitive recursive function f(x), there will be a
number t0 such that f(x) = cf>(t0 , x).

Once we have this function cf> at our disposal, we can diagonalize,
obtaining the unary computable function cf>(x, x) + 1 which must be
different from all primitive recursive functions. (If it were primitive recur­
sive, we would have

cf>(x, x) + 1 = cf>(t0 , x)

for some fixed t0 , and setting x = t0 would lead to a contradiction.)
We will obtain our enumerating function by giving a new characteriza­

tion of the unary primitive recursive functions. However, we begin by
showing how to reduce the number of parameters needed in the operation
of primitive recursion which, as defined in Chapter 3 (Eq. (2.2)), proceeds
from the total n-ary function f and the total n + 2-ary function g to yield
the n + 1-ary function h such that

h(x1, ... ,xn,O) =J(x1, ... ,xn)

h(x1, ... ,xn,t+ 1) =g(t,h(x1, ... ,xn,t),x1, ... ,xn).

If n > 1 we can reduce the number of parameters needed from n to n - 1
by using the pairing functions. That is, let

f<x1 , ... ,xn-1) = f(x1 , ... ,xn_z,l(xn-1),r(xn-1)),

g(t,u,x1 , ... ,xn_ 1) =g(t,u,x1 , ... ,xn_ 2 ,l(xn_ 1),r(xn_ 1)),

h(x1 , ... ,xn_ 1 ,t) = h(x1 , ... ,xn_ 2 ,l(xn_ 1),r(xn_ 1),t).

Then, we have

h(x1, ... ,xn-1•0) =f<x1, ... ,xn-1)

h(x1 , ... ,xn_ 1 ,t + 1) =g(t,h(x1 , ... ,xn_ 1 ,t),x1 , ... ,xn_ 1).

Finally, we can retrieve the original function h from the equation

h(x1 , ... ,xn,t) = h(x1 , ... ,Xn_ 2 ,(xn_ 1 ,xn),t).

9. A Computable Function That Is Not Primitive Recursive 107

By iterating this process we can reduce the number of parameters to 1,
that is, to recursions of the form

h(x, 0) = f(x)
(9.1)

h(x,t + 1) =g(t,h(x,t),x)

Recursions with no parameters, as in Eq. (2.1) in Chapter 3, can also
readily be put into the form (9.1). Namely, to deal with

t/J(O) = k

1/J(t + 1) = fJ(t, 1/J(t)),

we set f(x) = k (which can be obtained by k compositions with s(x)
beginning with n(x)) and

in the recursion (9.1). Then, t/J(t) = h(x, t) for all x. In particular, t/J(t) =
h(ul(t), ul(t)).

We can simplify recursions of the form (9.1) even further by using the
pairing functions to combine arguments. Namely, we set

h(x,t) = (h(x,t),(x,t)).

Then, we have

h(x,O) = (f(x),(x,O))

h(x,t + 1) = (h(x,t + 1),(x,t + 1))

= (g(t,h(x,t),x),(x,t + 1))

= g(h(x, t)),

where

g(u) = (g(r(r(u)),l(u),l(r(u)),(l(r(u)),r(r(u)) + 1)).

Once again, the original function h can be retrieved from h; we can use
the equation

h(x, t) = l(h(x, t)).

Now this reduction in the complexity of recursions was only possible
using the pairing functions. Nevertheless, we can use it to get a simplified
characterization of the class of primitive recursive functions by adding the
pairing functions to our initial functions. We may state the result as a
theorem.

108 Chapter 4 A Universal Program

Theorem 9.1. The primitive recursive functions are precisely the func­
tions obtainable from the initial functions

s(x),n(x),l(z),r(z),(x,y) and u?, 1 ~ i ~ n

using the operations of composition and primitive recursion of the particu­
lar form

h(x, 0) = f(x)

h(x,t + 1) =g(h(x,t)).

The promised characterization of the unary primitive recursive functions
is as follows.

Theorem 9.2. The unary primitive recursive functions are precisely those
obtained from the initial functions s(x) = x + 1, n(x) = 0, l(x), r(x) by
applying the following three operations on unary functions:

1. to go from f(x) and g(x) to f(g(x));
2. to go from f(x) and g(x) to (f(x), g(x));
3. to go from f(x) and g(x) to the function defined by the recursion

h(O) = 0

(t{~)
h(t + I)~ g({:I))

if t + 1 is odd,

if t + 1 is even.

Proof. Let us write PR for the set of all functions obtained from the
initial functions listed in the theorem using operations 1 through 3. We
will show that PR is precisely the set of unary primitive recursive functions.

To see that all the functions in PR are primitive recursive, it is necessary
only to consider operation 3. That is, we need to show that if f and g are
primitive recursive, and h is obtained using operation 3, then h is also
primitive recursive. What is different about operation 3 is that h(t + 1) is
computed, not from h(t) but rather from h(t/2) or h((t + l)j2), depend­
ing on whether t is even or odd. To deal with this we make use of Godel
numbering, setting

h(O) = 0,

h(n) = [h(O), ... , h(n - 1)] if n > 0.

9. A Computable Function That Is Not Primitive Recursive 109

We will show that iz is primitive recursive and then conclude that the same
is true of h by using the equation3

h(n) = (h(n + l))n+ t.

Then (recalling that Pn is the nth prime number) we have

h(n + 1) = h(n) · p:~n?

(
h(n) · P!~1 /ZJ>

= h(n) · P!~~(n))l•/21)
if n is odd,

if n is even.

Here, we have used ln/21 because it gives the correct value whether n is
even or odd and because we know from Chapter 3 that it is primitive
recursive.

Next we will show that every unary primitive recursive function belongs
to PR. For this purpose we will call a function g(x 1 , ••• , xn) satisfactory if
it has the property that for any unary functions h1{t), ... , hn(t) that belong
to PR, the function g(h 1(t), ... , hn(t)) also belongs to PR. Note that a
unary function g(t) that is satisfactory must belong to PR because g(t) =
g(ul(t)) and ul(t) = (/(t), r(t)) belongs to PR. Thus, we can obtain our
desired result by proving that all primitive recursive functions are satisfac­
tory.4

We shall use the characterization of the primitive recursive functions of
Theorem 9.1. Among the initial functions, we need consider only the
pairing function (x1 , x2) and the projection functions u? where 1 ~ i ~ n.
If h 1(t) and h2{t) are in PR, then using operation 2 in the definition of PR,
we see that (h 1(t), h2(t)) is also in PR. Hence, (x1 , x2) is satisfactory. And
evidently, if h 1(t), ... , hn(t) belong to PR, then u?(h 1(t), ... , hn(t)), which
is simply equal to h;(t), certainly belongs to PR, so u? is satisfactory.

To deal with composition, let

h(xl ' ... ' xn) = f(gl(xi ' ... ' xn), ... ' gk(xl ' ... ' xn))

where g 1 , ••• , gk and f are satisfactory. Let h 1(t), ... , hit) be given
functions that belong to PR. Then, setting

3 This is a general technique for dealing with recursive definitions for a given value in
terms of smaller values, so-called course-of-value recursions. See Exercise 8.5 in Chapter 3.

4 This is an example of what was called an induction loading device in Chapter 1.

110 Chapter 4 A Universal Program

for 1 ::::;; i ::::;; k we see that each §; belongs to PR. Hence

belongs to PR, and so, h is satisfactory.
Finally, let

h(x, 0) = f(x)

h(x,t + 1) =g(h(x,t))

where f and g are satisfactory. Let r/J(O) = 0 and let r/J(t + 1) =
h(r(t), /(t)). Recalling that

(a, b) = 2a(2b + 1)- 1,

we consider two cases according to whether t + 1 = 2a(2b + 1) is even or
odd. If t + 1 is even, then a > 0 and

1/J(t + 1) = h(b, a)

= g(h(b, a - 1))

= g(rfJ(2a-l(2b + 1)))

= g(r/J((t + 1)/2)).

On the other hand, if t + 1 is odd, then a = 0 and

In other words,

rfJ(O) = 0

1/J(t + 1) = h(b, 0)

= f(b)

= f(t/2).

if t + 1 is odd,

if t + 1 is even.

Now f and g are satisfactory, and, being unary, they are therefore in PR.
Since 1/J is obtained from f and g using operation 3, 1/J also belongs to PR.
To retrieve h from 1/J we can use h(x, y) = rfJ{(x, y) + 1). So,

h(h 1(t), hz(t)) = r/J(s((h 1(t), hz(t))))

9. A Computable Function That Is Not Primitive Recursive 111

from which we see that if h 1 and h 2 both belong to PR, then so does
h(h1(t), h 2(t)). Hence h is satisfactory. •

Now we are ready to define the function c/J(t, x), which we shall also
write as cfJ/x), that will enumerate the unary primitive recursive functions:

cfJ/x) =

X+ 1
0
l(x)

r(x)

cPt(n)(cPr(n)(x))

(c/JI(n/X), cPr(n)(x))

0
cPt(n)((x - 1) /2)

cPr(n)(cPr(X /2))

if t = 0
if t = 1
if t = 2
if t = 3

if t = 3n + 1, n > 0

if t = 3n + 2, n > 0

if t = 3n + 3, n > 0 and x = 0
if t = 3n + 3, n > 0 and x is odd

if t = 3n + 3, n > 0 and x is even

Here cjJ0(x), c/J1(x), c/J2(x), c/J3(x) are the four initial functions. For t > 3, t

is represented as 3n + i where n > 0 and i = 1, 2 or 3; the three
operations of Theorem 9.2 are then dealt with for values of t with the
corresponding value of i. The pairing functions are used to guarantee all
functions obtained for any value of t are eventually used in applying each
of the operations. It should be clear from the definition that c/J(t, x) is a
total function and that it does enumerate all the unary primitive recursive
functions. Although it is pretty clear that the definition provides an
algorithm for computing the values of cjJ for any given inputs, for a
rigorous proof more is needed. Fortunately, the recursion theorem makes
it easy to provide such a proof. Namely, we set

g(z, t, x)

X+ 1
0
l(x)

r(x)

<t>?)(l(n), <t>Y)(r(n), x))

(<t>;2)(l(n), x), <t>Y)(r(n), x))

0
<t>?)(l(n), lxj2J)

<t>Y)(r(n), <t>?)(t, lxj2J))

if t = 0
if t = 1
if t = 2
if t = 3

if t = 3n + 1, n > 0

if t = 3n + 2, n > 0

if t = 3n + 3, n > 0 and x = 0

if t = 3n + 3, n > 0 and x is odd

if t = 3n + 3, n > 0 and x is even

112 Chapter 4 A Universal Program

Then, g(z, t, x) is partially computable, and by the recursion theorem,
there is a number e such that

g(e,t,x) = <t>?>(t,x).

Then, since g(e, t, x) satisfies the definition of cf>(t, x) and that definition
determines cf> uniquely as a total function, we must have

cf>(t,x) =g(e,t,x),

so that cf> is computable.
The discussion at the beginning of this section now applies and we have

our desired result.

Theorem 9.3. The function cf>(x, x) + 1 is a computable function that is
not primitive recursive.

Exercises

1. Show that cf>(t, x) is not primitive recursive.

2. Give a direct proof that cf>(t, x) is computable by showing how to
obtain an ..:7 program that computes cf>. [Hint: Use the pairing func­
tions to construct a stack for handling recursions.]

5

Calculations on Strings

1. Numerical Representation of Strings

So far we have been dealing exclusively with computations on numbers.
Now we want to extend our point of view to include computations on
strings of symbols on a given alphabet. In order to extend computability
theory to strings on an alphabet A, we wish to associate numbers with
elements of A* in a one-one manner. We now describe one convenient
way of doing this: Let A be some given alphabet. Since A is a set, there is
no order implied among the symbols. However, we will assume in this
chapter that the elements of A have been placed in some definite order. In
particular, when we write A = {s1 , ••• , sn}, we think of the sequence
s1 , ••• , sn as corresponding to this given order. Now, let w = s. s. ···

lk lk- I

S;1S;0 • Then we associate with w the integer

(1.1)

With w = 0, we associate the number 0. (It is for this reason that we use
the same symbol for both.) For example, let A consist of the symbols
a, b, c given in the order shown, and let w = baacb. Then, the correspond­
ing integer is

X= 2 · 34 + 1 · 33 + 1 · 32 + 3 · 31 + 2 = 209.

113

114 Chapter 5 Calculations on Strings

In order to see that the representation (1.1) is unique, we show how to
retrieve the subscripts i0, i1, ... , ik from x assuming that x -=!= 0. We define
the primitive recursive functions:

R+(x y) = {R(x,y)
' y

+ { lxjy J
Q(x,y)= lxjyj-=-1

if - (y I x)
otherwise,

if - (y I x)

otherwise,

where the functions R(x, y) and l x jy J are as defined in Chapter 3, Sec­
tion 7. Then, as we shall easily show, for y -=1= 0,

x R+(x,y)
- = Q+(x,y) + ---
y y

This equation expresses ordinary division with quotient and remainder:

x R(x,y)
- = lxjyJ + --
y y

as long as y is not a divisor of x. If y is a divisor of x we have

x y R+(x, y)
- = lxjyJ = (lxjyJ..:... 1) +- = Q+(x,y) + ---
y y y

Thus, what we are doing differs from ordinary division with remainders in
that "remainders" are permitted to take on values between 1 and y rather
than between 0 and y - 1.

Now, let us set

Thus, by (1.1)

Therefore,

u0 =x,

u0 = ik ·nk + ik-t ·nk-t + ··· +i1 ·n + i0,

ut = ik . nk- t + ik -1 . nk- z + ... +it '

m=0,1, ... ,k.

(1.2)

(1.3)

(1.4)

1. Numerical Representation of Strings 115

Hence, for any number x satisfying (1.1), the string w can be retrieved. It
is worth noting that this can be accomplished using primitive recursive
functions. If we write

g(O, n, x) = x,

g(m + 1, n, x) = Q+(g(m, n, x), n),

then

g(m, n, x) = um (1.5)

as defined by (1.2), where, of course, g is primitive recursive. Moreover, if
we let h(m, n, x) = R+(g(m, n, x), n), then h is also primitive recursive,
and by (1.4)

im = h(m, n, x), m=0,1, ... ,k. (1.6)

This method of representing strings by numbers is clearly related to the
usual base n notation for numbers. To explore the connection, it is
instructive to consider the alphabet

1) = {1,2,3,4,5,6,7,8,9,)(}

in the order shown. Then the number associated with the string 45 is

4. 10 + 5 = 45.

On the other hand, the number associated with 2)(is

2. 10 + 10 = 30.

(Perhaps we should read 2)(as "twenty-ten"!) Clearly a string on I> that
does not include)(is simply the usual decimal notation for the number it
represents. It is numbers whose decimal representation includes a 0 which
now require an)(.

Thus, in the general case of an alphabet A consisting of s1 , ••• , sn,
ordered as shown, we see that we are simply using a base n representation
in which the "digits" range from 1 to n instead of the usual 0 to n - 1. We
are proceeding in this manner simply to avoid the lack of uniqueness of
the usual base n representation:

79 = 079 = 0079 = 00079 = etc.

This lack of uniqueness is of course caused by the fact that leading zeros
do not change the number being represented.

116 Chapter 5 Calculations on Strings

It is interesting to observe that the rules of elementary arithmetic
(including the use of "carries") work perfectly well with our representa­
tion. Here are a few examples:

1 7
+1X3

21 X

29
-1X

9

X5
x2X

X4X
1XX
3 1 4X

which corresponds to

which corresponds to

which corresponds to

17
+203

220

29
-20

9

105
X30
3150

(Incidentally, this shows that the common belief that the modern rules of
calculation required the introduction of a digit for 0 is unjustified.) Note in
particular the following examples of adding 1:

X1
+ 1

X2

3X
+ 1

4 1

3XX
+ 1

4 1 1

73XX
+ 1

7 4 1 1

49
+ 1

4X

Adding 1 to X gives a result of 1 with a carry of 1. If the string ends in
more than one X, the carry propagates. Subtracting 1 is similar, with a
propagating carry produced by a string ending in 1:

1X
1

1 9

X1
1

9X

7 1 1
1

6XX

Now we return to the general case. Given the alphabet A consisting of
s1 , ••• , sn in the order shown, the string w = s,. s,. · · · s,. s,. is called the

k k- 1 I 0

base n notation for the number x defined by (1.1). (0 is the base n notation
for the null string 0 for every n.) Thus when n is fixed we can regard a
partial function of one or more variables on A* as a function of the
corresponding numbers. (That is, the numbers are just those which the
given strings represent in base n notation.) It now makes perfect sense to
speak of an m-ary partial function on A* with values in A* as being
partially computable, or when it is total, as being computable. Similarly we

1. Numerical Representation of Strings 117

can say that an m-ary function on A* is primitive recursive. Note that for
any alphabet A = {s1 , ••• , sn} with the symbols ordered as shown, s1

denotes 1 in base n. Thus an m-ary predicate on A* is simply a total
m-ary function on A* all of whose values are either s1 or 0. And it now
makes sense as well to speak of an m-ary predicate on A* as being
computable.

As was stated in Chapter 1, for a given alphabet A, any subset of A* is
called a language on A. Once again, by associating with the elements of
A* the corresponding numbers, we can speak of a language on A as being
r.e., or recursive, or primitive recursive.

It is important to observe that whereas the usual base n notation using a
0 digit works only for n ~ 2, the representation (1.1) is valid even for
n = 1. For an alphabet consisting of the single symbol 1, the string 1rx1 of
length x is the base 1 notation for the number L.f,::~ 1 · {1); = L.f,::~ 1 = x.
That is, the base 1 (or unary) representation of the number x is simply a
string of ones of length x.

In thinking of numbers (that is, elements of N) as inputs to and outputs
from programs written in our language ..:7, no particular representation of
these numbers was specified or required. Numbers occur in the theory as
purely abstract entities, just as they do in ordinary mathematics. However,
when we wish to refer to particular numbers, we do so in the manner
familiar to all of us, by writing their decimal representations. These
representations are, of course, really strings on the alphabet that consists
of the decimal digits:

{0,1,2,3,4,5,6,7,8,9}.

But it is essential to avoid confusing such strings with the numbers they
represent. For this reason, for the remainder of this chapter we shall avoid
the use of decimal digits as symbols in our alphabets. Thus, a string of
decimal digits will always be meant to refer to a number.

Now, let A be some fixed alphabet containing exactly n symbols, say
A= {s 1 ,s2 , ••• ,sn}. For each m ~ 1, we define CONCAT~m) as follows:

CONCAT~1 >(u) = u,
(1.7)

where

z = CONCAT~m>(u 1 , ••• , um).

Thus, for given strings u 1 , •.• , um E A*, CONCAT~m>(u 1 , ••• , um) is simply
the string obtained by placing the strings u1 , ••• , um one after the other,

118 Chapter 5 Calculations on Strings

or, as is usually said, by concatenating them. We will usually omit the
superscript, so that, for example we may write

CONCATz{s2 s1 , s1s1s2) = s2 s1s1s1s2 •

Likewise,

CONCAT6(s2 s1 , s1s1s2) = s2 s1s1s1s2 •

However, the string s2 s1 represents the number 5 in base 2 and the
number 13 in base 6. Also, the string s1s1s2 represents the number 8 in
base 2 and the number 44 in base 6. Finally, the string s2 s1s1s1s2

represents 48 in base 2 and 2852 in base 6. If we wish to think of
CONCAT as defining functions on N (as will be necessary, for example, in
showing that the functions (1.7) are primitive recursive), then the example
we have been considering becomes

CONCAT2(5,8) = 48 and CONCAT6(13, 44) = 2852.

The same example in base 10 gives

CONCAT10 (21, 112) = 21112.

Bearing this discussion in mind, we now proceed to give a list of primitive
recursive functions (on A* or N, depending on one's point of view) that we
will need later.

1. f(u) = lui. This "length" function is most naturally understood as
being defined on A* and taking values in N. For each x, the number
L.J=o nj has the base n representation s\x+ 11; hence this number is
the smallest number whose base n representation contains x + 1
symbols. Thus,

lui = min [E nj > u].
x,;u j=O

2. g(u, v) = CONCATn(u, v). The primitive recursiveness of this func­
tion follows from the equation

CONCATn(u, v) = u · nivi + v.

3. CONCAT~m>(u 1 , ••• , um), as defined in (1.7), is primitive recursive
for each m, n ~ 1. This follows at once from the previous example
using composition.

4. RTENDn(w) = h(O, n, w), where his as in (1.6). As a function of A*,
RTENDn gives the rightmost symbol of a given word, as is clear from
(1.3) and (1.6).

1. Numerical Representation of Strings 119

5. LTENDn(w) = h(lwl..:... 1, n, w). LTENDn gives the leftmost symbol
of a given nonempty word.

6. RTRUNCn(w) = g(l, n, w). RTRUNCn gives the result of removing
the rightmost symbol from a given nonempty word, as is clear from
(1.3) and (1.5). When we can omit reference to the base n, we often write
w- for RTRUNCn(w). Note that o-= 0.

7. LTRUNCn{w) = w -=-(LTENDn(w) · nlwl-'- 1). In the notation of (1.3),
for a given nonempty word w, LTRUNCn(w) = w- ik · nk, i.e.,
LTRUNCn(w) is the result of removing the leftmost symbol from w.

We will now use the list of primitive recursive functions that we have
just given to prove the computability of a pair of functions that can be used
in changing base. Thus, let 1 :::;; n < I. Let A c A, where A is an alphabet
of n symbols and A is an alphabet of I symbols. Thus a string that belongs
to A* also belongs to A*. For any x E N, let w be the word in A* that
represents x in base n. Then, we write UPCHANGEn 1(x) for the number
which w represents in base I. For example, referring to our previous
example, we have UPCHANGE2 6(5) = 13, UPCHANGE2 6(8) = 44, UP­
CHANGE2,6(48) = 2852. Also' UPCHANGE2,10(5) =. 21 and UP­
CHANGE6 10(13) = 21.

Next, for' x E N, let w be the string in A* which represents x in base I,
and let w' be obtained from w by crossing out all of the symbols that
belong to A- A. Then, w' E A*, and we write DOWNCHANGEn 1(x)
for the number which w' represents in base n. For example, the string
s2 s6 s 1 represents the number 109 in base 6. To obtain
DOWNCHANGE2,6(109) we cross out the s6 , obtaining the string s2 s1,

which represents 5 in base 2; thus DOWNCHANGE2 6(10) = 5.
Although UPCHANGEn 1 and DOWNCHANGEn ~ are actually primi­

tive recursive functions, w~ will content ourselves with proving that they
are computable:

Theorem 1.1. Let 0 < n < I. Then the functions UPCHANGEn 1 and
DOWNCHANGEn 1 are computable. '

Proof. We begin with UPCHANGEn 1• We write a program which ex­
tracts the successive symbols of the word that the given number represents
in base n and uses them in computing the number that the given word
represents in base 1:

[A] IF X = 0 GOTO E

Z - LTENDn(X)

X- LTRUNCn(X)

Y-I·Y+Z
GOTOA

120 Chapter 5 Calculations on Strings

DOWNCHANGEn 1 is handled similarly. Our program will extract the
successive symbols of the word that the given number represents in base /.
However, these symbols will only be used if they belong to the smaller
alphabet, i.e., if as numbers they are :::;; n:

Exercises

[A] IF X = 0 GOTO E

Z +-- LTEND1(X)

X+-- LTRUNC1(X)

IF Z > n GOTO A

Y+-n·Y+Z

GOTOA •

1. (a) Write the numbers 40 and 12 in base 3 notation using the "digits"
{1, 2, 3}.

(b) Work out the multiplication 40 · 12 = 480 in base 3.
(c) Compute CONCATi12, 15) for n = 3, 5, and 10. Why is no

calculation required in the last case?
(d) Compute the following: UPCHANGE 3 7(15), UP-

CHANGE2, 7(15), UPCHANGE2, 10(15), DOWNCHANGE3, 7(15),
DOWNCHANGE2, 7(15), DOWNCHANGE2, 10(20).

2. Compute each of the following for n = 3.
(a) CONCATp>(17, 32).
(b) CONCAT~3>(17,32, 11).
(c) RTENDn(23).
(d) LTENDn(29).
(e) RTRUNCn(19).
(f) LTRUNCn(l8).

3. Do the previous exercise for n = 4.

4. Show that the function f whose value is the string formed of the
symbols occurring in the odd-numbered places in the input [i.e.,
f(a 1a2a3 ••• an)= a1a3 ···]is computable.

5. Let A = {s1 , ••• , sn}, and let P(x) be the predicate on N which is true
just when the string in A* that represents x has an even number of
symbols. Show that P(x) is primitive recursive.

2. A Programming Language for String Computations 121

6. If u * 0, let #(u, v) be the number of occurrences of u as a part of v
[e.g., #(bab, ababab) = 2]. Also, let #(0, v) = 0. Prove that #(u, v) is
primitive recursive.

7. Show that UPCHANGEn,t and DOWNCHANGEn,t are primitive
recursive.

8. Show that when lui is calculated with respect to base n notation,
lui ::; l!ogn uj + 1 for all u E N.

2. A Programming Language for String Computations

From the point of view of string computations, the language .9' seems
quite artificial. For example, the instruction

V+-V+1

which is so basic for integers, seems entirely unnatural as a basic instruc­
tion for string calculations. Thus, for the alphabet {a, b, c}, applying this
instruction to bacc produces bbaa because a carry is propagated. (This will
perhaps seem more evident if, momentarily ignoring our promise to avoid
the decimal digits as symbols in our alphabets, we use the alphabet {1, 2, 3}
and write

2133 + 1 = 2211.)

We are now going to introduce, for each n > 0, a programming lan­
guage Y,, which is specifically designed for string calculations on an
alphabet of n symbols. The languages Y, will be supplied with the same
input, output, and local variables as .9', except that we now think of them
as having values in the set A*, where A is an n symbol alphabet. Variables
not otherwise initialized are to be initialized to 0. We use the same
symbols as labels in Y, as in .9' and the same conventions regarding their
use. The instruction types are shown in Table 2.1.

The formal rules of syntax in Y, are entirely analogous to those for .9',
and we omit them. Similarly, we use macro expansions quite freely. An
m-ary partial function on A* which is computed by a program in Y, is
said to be partially computable in Y, . If the function is total and partially
computable in Y, , it is called computable in Y, .

Although the instructions of Y, refer to strings, we can just as well
think of them as referring to the numbers that the corresponding strings
represent in base n. For example, the numerical effect of the instruction

122 Chapter 5 Calculations on Strings

Table 2.1

Instruction Interpretation

V<- uV
for each symbol u in the alphabet A

v.- v-

Place the symbol u to the left of the string which is
the value of V.

Delete the final symbol of the string which is the
value of V. If the value of V is 0, leave it
unchanged.

If V ENDS u GOTO L
for each symbol u in the alphabet A
and each label L

If the value of V ends in the symbol u, execute next
the first instruction labeled L; otherwise proceed
to the next instruction.

in the n symbol alphabet {s1 , ••• , sn} ordered as shown is to replace the
numerical value x by i · nlxl + x. Just as the instructions of .9' are natural
as basic numerical operations, but complex as string operations, so the
instructions of .57, are natural as basic string operations, but complex as
numerical operations.

We now give some macros for use in .57, with the corresponding
expansions.

1. The macro IF V -=!= 0 GOTO L has the expansion

IF VENDS s1 GOTO L

IF V ENDS s2 GOTO L

IF V ENDS sn GOTO L

2. The macro V ~ 0 has the expansion

[A] v~ v-
IF V-=t= OGOTOA

3. The macro GOTO L has the expansion

IF Z ENDS s1 GOTO L

4. The macro V' ~ V has the expansion shown in Fig. 2.1.

The macro expansion of V' ~ V in .57, is quite similar to that in .9'.

2. A Programming Language for String Computations

Z+--0
V' +-- 0

[A] IF V ENDS s1 GOTO B1

IF V ENDS s2 GOTO B2

[C]

IF VENDS sn GOTO Bn
GOTOC

V' +-- s-V' V+-v-}
~;T6~A i = 1,2, ... ,n

IF Z ENDS s1 GOTO D 1

IF Z ENDS s2 GOTO D 2

IF Z ENDS sn GOTO Dn
GOTOE

z +-- z-)
~;Tbc i = 1,2, ... ,n

Figure 2.1. Macro expansion of V' +-- V in ~ .

The block of instructions

is usually written simply

IF VENDS s1 GOTO B1

IF VENDS s2 GOTO B2

IF VENDS sn GOTO Bn

IF V ENDS s; GOTO B; (1 .:5; i .:5; n)

123

Such a block of instructions is referred to as a filter for obvious reasons.
Note that at the point in the computation when the first "GOTO C" is
executed, V' and Z will both have the original value of V, whereas V will
have the value 0. On exiting, Z has the value 0, while V' retains the
original value of V and V has been restored to its original value.

If f(x 1 , ••• , xm) is any function that is partially computable in .?,, we
permit the use in .?, of macros of the form

V ~ f(Vl , ... , Vm)

The corresponding expansions are carried out in a manner entirely analo­
gous to that discussed in Chapter 2, Section 5.

We conclude this section with two examples of functions that are
computable in .?, for every n. The general results in the next section will

124

Carry
pro~agates

X~ Q

x ends s11

x ends s;

Chapter 5 Calculations on Strings

x~o
TEST X END

x ends s,

Figure 2.2. Flow chart for computing x + 1 in 5';, .

make it clear that these two examples are the only bit of programming in
.9;, that we shall need to carry out explicitly.

We want to show that the function x + 1 is computable in .9;,. We let
our alphabet consist of the symbols s 1 , s2 , ••• , sn ordered as shown. The
desired program is exhibited in Fig. 2.3; a flow chart that shows how the
program works is shown in Fig. 2.2.

Our final example is a program that computes x ..:... 1 base n. A flow
chart is given in Fig. 2.4 and the actual program in .9;, is exhibited in Fig.
2.5. The reader should check both of these programs with some examples.

[B] IF X ENDS s; GOTO A; (1 ~ i ~ n)

Y +--stY

GOTOE

[A;] x-x)
Y +-- s;+ 1Y 1 ~ i < n

GOTOC
[A.] x--x-

Y +--stY

GOTOB
[C] IF X ENDS s; GOTO D; (1 ~ i ~ n)

GOTOE

[D;l x-x)
Y +-- s;Y 1 ~ i ~ n

GOTOC

Figure 2.3. Program that computes x + 1 in 5';, .

2. A Programming Language for String Computations

Exercises

x~o

x ends s,

TEST X
f--....,....-~x-x­

x ends s1

no yes
I'Y~-J~~v~--~~x~=~o~]J-~-1END Carry IS L

propagated

Figure 2.4. Flow chart for computing x .:.. 1 in Y,. 0

Carry is
absorbed

[B] IF X ENDS s; GOTO A; (1 !> i !> n)

GOTOE

[A;] x-x)
Y+-s;_ 1Y 1<i!>n

GOTOC
[A,] x x-

IF X*- 0 GOTO C2
GOTOE

[C2l Y+- snY

GOTOB
[C] IF X ENDS s; GOTO D; (1 !> i !> n)

GOTOE

[D;] x-x)
Y+-s;Y 1!>i!>n
GOTOC

Figure 2.5. Program that computes x .:.. 1 in Y,. 0

125

1. Let A = {s1 , s2}o Write out the complete expansion of the macro
X ~ Y in ..9"2 0

126 Chapter 5 Calculations on Strings

2. Write a program in .?, to compute the function f defined in Exercise
1.4.

3. Show that f(u, v) = "i7V is computable in .?, . ("i7V is the concatenation
of u and v, defined in Chapter 1.)

4. Let A = {s1 , ••• , sn}, and let P(x) be the predicate on A* which is
true just when x has an even number of symbols. Show that P(x) is
computable in .?, .

5. Write a program in .?, to compute #(u, v) as defined in Exercise 1.6.

6. Give an expansion in .?, for the macro V - Vu, which means: Place
the symbol u to the right of the string that is the value of V.

7. Show that f(x) = xR is computable in .?,. (xR is defined in Chapter
1, Section 3.)

8. Let A = {s1 , ••• , sn}, and let g(u) = w for all strings u in A*, where
w is the base n notation for the number of symbols in u. Show that g
is computable in .?, .

9. Let A = {s1 , s2}, and let fJlJ be the .9"2 program

Y-X+ 1

Write out the computation of fJlJ for input x = s2s2 •

10. Let A = {s1 , s2 , s3}, and let fJlJ be the .9"3 program

Y-X-=-1

Write out the computation of fJlJ for input x = s1s1 •

11. (a) Show that Theorem 1.1 in Chapter 3 holds if we substitute
"computable in .?," for "computable."

(b) Show that Theorems 2.1 and 2.2 in Chapter 3 hold if we
substitute "computable in .?," for "computable."

(c) Show that if f(x 1 , ••• , xn) is primitive recursive, then it is
computable in .?, .

3. The Languages .9 and 9,

We now want to compare the functions that can be computed in the
various languages we have been considering, namely, .9" and the different
.?, . For the purpose of making this comparison, we take the point of view
that, in all of the languages, computations are "really" dealing with
numbers, and that strings on an n letter alphabet are simply data objects
being used to represent numbers (using base n of course).

3. The Languages .9" and .5';, 127

We shall see that in fact all of these languages are equivalent. That is, a
function f is partially computable if and only if it is partially computable
in each .?, and therefore, also, f is partially computable in any one .?, if
and only if it is partially computable in all of them.

To begin with we have

Theorem 3.1. A function is partially computable if and only if it is
partially computable in ..9"1 •

Proof. It is easy to see that the languages ..9" and ..9"1 are really the same.
That is, the numerical effect of the instructions

and v~ v-
in ..9"1 is the same as that of the corresponding instructions in ..9":

V ~ V + 1 and V ~ V - 1.

Furthermore, the condition "V ENDS st" in ..9"1 is equivalent to the
condition V -=!= 0 in ..9". (Since s 1 is the only symbol, ending in s 1 is
equivalent to being different from the null string.) •

This theorem shows that results we obtain about the languages .?, can
always be specialized to give results about ..9" by setting n = 1.

Next we shall prove

Theorem 3.2. If a function is partially computable, then it is also partially
computable in .?, for each n.

Proof. Let the function f be computed by a program .9 in the language
..9". We translate .9 into a program in .?, by replacing each instruction of
.9 by a macro in .?, as follows.

We replace each instruction V ~ V + 1 by the macro V ~ V + 1, each
instruction V ~ V - 1 by the macro V ~ V ..:... 1, and each instruction IF
V -=!= 0 GOTO L by the macro IF V -=1= 0 GOTO L. Here we are using the
fact, proved at the end of the preceding section, that x + 1 and x ..:... 1 are
both computable in base n, and hence can each be used to define a macro
in .?,.

It is then obvious that the new program computes in .?, the same
function f that .9 computes in ..9". •

This is the first of many proofs by the method of simulation: a program
in one language is "simulated" step by step by a corresponding program in
a different language.

We could now prove directly that if a function is partially computable in
.?, for any particular n, then it is in fact partially computable in our
original sense. But it will be easier to delay doing so since the result will be
an automatic consequence of our work on Post-Turing programs.

128 Chapter 5 Calculations on Strings

Exercises

1. Give a pnm1t1ve recursive function b1(n, x) such that any partial
function computed by an .9 program with x instructions is computed
by some .57,. program with no more than bln, x) instructions.

2. Give a primitive recursive function b~m>(n, x 1 , ••• , xm, y) such that any
partial function f(x 1 , ••• , xm) computed by an .9 program in y steps
on inputs x 1 , ••• , xm is computed by some .57,. program in no more
than b~m>(n, x 1 , ••• , xm, y) steps. [Hint: Note that after y steps no
variable holds a value larger than max{x 1 , ••• , xm} + y.]

3. Let n be some fixed number > 0, and let #(9') be a numbering
scheme for .57,. programs defined exactly like the numbering scheme
for .9 programs given in Chapter 4, except that #(I) = (a, (b, c)),
where

{

0 if the statement in I is V ~ v­
i if the statement in I is V ~ s;V

b=
#(L') · n + i

if the statement in I is IF V ENDS s; GOTO L'.

(a) Define

HALTn(x, y) =.57,. program y eventually halts on input x.

Show that the predicate HALTn(x, y) is not computable in.?,..
(b) Define the universal function <l>~m) for m-ary functions partially

computable in .57,. as follows:

(Of course, 1/J.J.m> is the m-ary partial function computed by the
.57,. program 9'.) Show that for each m > 0, the function
<l>~m>(x 1 , ••• , xm, y) is partially computable in .57,..

(c)* State and prove a version of the parameter theorem for .57,. .
(d)* State and prove a version of the recursion theorem for .57,. .
(e)* Show that .57,. is an acceptable programming system. [See Exer­

cise 5.4 in Chapter 4 for the definition of acceptable programming
systems.]

4. * Give an upper bound on the length of the shortest .9] program which
computes the function <l>yCx) defined in Chapter 4. [See Exercise 3.6 in
Chapter 4.]

4. Post- Turing Programs 129

4. Post- Turing Programs

In this section, we will study yet another programming language for string
manipulation, the Post-Turing language :T. Unlike.'?,., the language :T has
no variables. All of the information being processed is placed on one linear
tape. We can conveniently think of the tape as ruled into squares each of
which can carry a single symbol (see Fig. 4.1). The tape is thought of as
infinite in both directions. Each step of a computation is sensitive to just
one symbol on the tape, the symbol on the square being "scanned." We
can think of the tape passing through a device (like a tape recorder), or we
can think of the computer as a tapehead that moves along the tape and is
at each moment on one definite square (or we might say "tile"). With this
simple scheme, there are not many steps we can imagine. The symbol
being scanned can be altered. (That is, a new symbol can be "printed" in
its place.) Or which instruction of a program is to be executed next can
depend on which symbol is currently being scanned. Or, finally, the head
can move one square to the left or right of the square presently scanned.
We are led to the language shown in Table 4.1.

Although the formulation of :T we have presented is closer in spirit to
that originally given by Emil Post, it was Turing's analysis of the computa­
tion process that has made this formulation seem so appropriate. This
language has played a fundamental role in theoretical computer science.

Turing's analysis was obtained by abstracting from the process carried
out by a human being engaged in calculating according to a mechanical
deterministic algorithm. Turing reasoned that there was no loss of general­
ity in assuming that the person used a linear paper (like the paper tape in
an old-fashioned adding machine or a printing calculator) instead of
two-dimensional sheets of paper. Such a calculator is then engaged in
observing symbols and writing symbols. Again without loss of generality,
we can assume that only one symbol at a time is observed, since any finite
group of symbols can be regarded as a single "megasymbol." Finally, we
can assume that when the calculator shifts attention it is to an immediately
adjacent symbol. For, to look, say, three symbols to the left is equivalent to
moving one symbol to the left three successive times. And now we have
arrived at precisely the Post-Turing language.

In order to speak of a function being computed by a Post-Turing
program, we will need to deal with input and output. Let us suppose that

Figure 4.1

130 Chapter 5 Calculations on Strings

Table 4.1

Instruction Interpretation

PRINT a Replace the symbol on the square being scanned by a.
IF a GOTO L GOTO the first instruction labeled L if the symbol currently scanned is a;

otherwise, continue to the next instruction.
RIGHT
LEFT

Scan the square immediately to the right of the square presently scanned.
Scan the square immediately to the left of the square presently scanned.

we are dealing with string functions on the alphabet A = {s1 , s2 , ••• , sn}.
We will use an additional symbol, written s0 , which we call the blank and
use as a punctuation mark. Often we write B for the blank instead of s0 • All
of our computations will be arranged so that all but a finite number of
squares on the tape are blank, i.e., contain the symbol B. We show the
contents of a tape by exhibiting a finite section containing all of the
nonblank squares. We indicate the square currently being scanned by an
arrow pointing up, just below the scanned square.

For example we can write

to indicate that the tape consists of s 1 s 2 Bs2 s 1 with blank squares to the
left and right, and that the square currently scanned contains the s2

furthest to the right. We speak of a tape configuration as consisting of the
tape contents together with a specification of one square as being currently
scanned.

Now, to compute a partial function f(x 1 , ••• , xm) of m variables on A*,
we need to place the m strings x 1 , ••• , xm on the tape initially. We do this
using the initial tape configuration:

That is, the inputs are separated by single blanks, and the symbol initially
scanned is the blank immediately to the left of x 1 . Here are a few
examples:

1. n = 1, so the alphabet is {s1}. We want to compute a function
f(x 1 , x 2) and the initial values are x 1 = s1s1 , x 2 = s1 • Then the tape
configuration initially will be

B s1 s1 B s1•

i

4. Post- Turing Programs 131

Of course, there are infinitely many blank squares to the left and
right of the finite section we have shown:

... B B B B s1 s1 B s1 B B B

i

2. n = 2, x1 = s1 s2 , x2 = s2s1 , x3 = s2s2 • Then the tape configuration
is initially

B s1 s2 B s2 s1 B s2 s2 •

i

3. n = 2, x1 = 0, x2 = s2s1, x3 = s2 • Then the tape configuration is
initially

B B s2 s1 B s2 •

i

4. n = 2, x1 = s1s2 , x2 = s2s1, x3 = 0. Then the tape configuration is
initially

Note that there is no way to distinguish this initial tape configuration from
that for which there are only two inputs x1 = s1s2 and x2 = s2s1 • In other
words, with this method of placing inputs on the tape, the number of
arguments must be provided externally. It cannot be read from the tape.

A simple example of a Post-Turing program is given in Fig. 4.2.
Beginning with input x, this program outputs s2s1x. More explicitly,

beginning with a tape configuration

B x

i

this program halts with the tape configuration

B s2 s1 x.

i

Figure 4.2

PRINT s1

LEFf
PRINT s2

LEFf

132

[A)

Chapter 5 Calculations on Strings

RIGHT
IF s 1 GOTO A
IF s2 GOTOA
IF s3 GOTOA
PRINTs 1

RIGHT
PRINT s1

[C) LEFT
IF s1 GOTO C
IF s2 GOTOC
IF s3 GOTO C

Figure 4.3

Next, for a slightly more complicated example, we consider Fig. 4.3.
Here we are assuming that the alphabet is {s1 , s2 , s3}. Let x be a string on
this alphabet. Beginning with a tape configuration

B X

i

this program halts with the tape configuration

B x s1 s 1•

i

The computation proceeds by first moving right until the blank to the right
of x is located. The symbol s 1 is then printed twice and then the
computation proceeds by moving left until the blank to the left of x is
again located.

Figure 4.4 exhibits another example, this time with the alphabet {s1 , s2}.

The effect of this program is to "erase" all of the occurrences of s2 in the
input string, that is to replace each s2 by B. For the purpose of reading
output values off the tape, these additional Bs are ignored. Thus, if f(x) is
the function which this last program computes, we have, for example,

f(szslsz) = S1,

f(slszsl) = slsl'

f(O) = 0.

Of course, the initial tape configuration

B s1 s2 s1
i

4. Post- Turing Programs

[C) RIGHT
IF B GOTO E

IF s2 GOTO A
IF s 1 GOTO C

[A) PRINT B

IF B GOTO C

Figure 4.4

[A) RIGHT
IF B GOTO E

PRINT M
[B) RIGHT

IF s1 GOTO B
[C) RIGHT

IF s1 GOTO C
PRINT s1

[D) LEFT
IF s1 GOTO D
IF B GOTOD
PRINT s1

IF s1 GOTO A

Figure4.5

leads to the final tape configuration

B s1 B s1 B

i

but the blanks are ignored in reading the output.

133

For our final example we are computing a string function on the
alphabet {s1}. However, the program uses three symbols, B, s1 , and M.
The symbol M is a marker to keep track of a symbol being copied. The
program is given in Fig. 4.5. Beginning with the tape configuration

B u
i

where u is a string in which only the symbol s 1 occurs, this program will
terminate with the tape configuration

B u Bu.

i

134 Chapter 5 Calculations on Strings

(Thus we can say that this program computes the function 2x using unary
notation.) The computation proceeds by replacing each successive s1

(going from left to right) by the marker M and then copying the s 1 on the
right.

We conclude this section with some definitions. Let f(x 1 , ••• , xm) be an
m-ary partial function on the alphabet {s1 , ••• , sn}. Then the program .9 in
the Post-Turing language :T is said to compute f if when started in the
tape configuration

it eventually halts if and only if f(x 1 , ••• , xm) is defined and if, on halting,
the string f(x 1 , ••• , xm) can be read off the tape by ignoring all symbols
other than s1 , ••• , sn. (That is, any "markers" left on the tape as well as
blanks are to be ignored.) Note that we are thus permitting .9 to contain
instructions that mention symbols other than s1 , ••• , sn.

The program .9 will be said to compute f strictly if two additional
conditions are met:

1. no instruction in .9 mentions any symbol other than s0 , s1 , ••• , sn;
2. whenever .9 halts, the tape configuration is of the form

... BBBByBB

i

where the string y contains no blanks.

... '

Thus when .9 computes f strictly, the output is available in a consecu­
tive block of squares on the tape.

Exercises

1. Write out the computation performed by the Post-Turing program in
Fig. 4.4 on input string s1s2 s2 s1 • Do the same for input s1s2 s3s1 •

2. Write out the computation performed by the Post-Turing program in
Fig. 4.5 on input string s 1 s 1 Bs 1 s 1 s 1 • Do the same for input
s1s1Bs1Bs1s1 •

3. For each of the following functions, construct a Post-Turing program
that computes the function strictly.

(a) f(u, v) = ;;v.
(b) the predicate P(x) given in Exercise 2.4.
(c) the function f(x) = xR (see Exercise 2.7).
(d) the function #(u, v) given in Exercise 1.6.

5. Simulation of .9';, in fT 135

4. For each of the following functions, construct a Post-Turing program
using only the symbols s0 , s1 that computes the function in base 1
strictly.
(a) f(x,y) =x + y.
(b) f(x) = 2x.
(c) f(x, y) = x..:... y.
(d) f(x, y) = 2x + y ..:... 1.

5. Construct a Post-Turing program using only the symbols s0 , s1 , s2

that computes the function s(x) = x + 1 in base 2 strictly.

5. Simulation of Y, in !T

In this section we will prove

Theorem 5.1. If f(x 1 , ••• , xm) is partially computable in Y,., then there is
a Post-Turing program that computes f strictly.

Let .9 be a program in Y,. which computes f. We assume that in
addition to the input variables X 1 , ••• , Xm and the output variable Y, .9
uses the local variables zl ' ... ' zk. Thus, altogether .9 uses m + k + 1
variables:

We set I = m + k + 1 and write these variables, in the same order, as

VI , ... ,Jii.
We shall construct a Post-Turing program t!l that simulates .9 step by

step. Since all of the information available to t!l will be on the tape, we
must allocate space on the tape to contain the values of the variables
V1 , ••• , Vi. Our scheme is simply that at the beginning of each simulated
step, the tape configuration will be as follows:

B x 1 B x2 B ... B xm B z1 B ... B zk B y,
t

where x 1 , x 2 , ••• , xm, z1 , ••• , zk, y are the current values computed for
the variables XI' Xz' ... ' xm' zl' ... ' zk' Y. This scheme is especially
convenient in that the initial tape configuration

B x 1 B x2 B . .. B Xm

i

is already in the correct form, since the remaining variables are initialized
to be 0. So we must show how to program the effect of each instruction

136 Chapter 5 Calculations on Strings

type of s-:, in the language :T. Various macros in Ywill be useful in doing
this, and we now present them.

The macro

has the expansion

The macro

has the expansion

Similarly the macro

has the expansion

The macro

has the expansion

GOTOL

IF s0 GOTO L

IF s1 GOTO L

IF sn GOTO L

RIGHT TO NEXT BLANK

[A] RIGHT
IF B GOTO E
GOTOA

LEFT TO NEXT BLANK

[A] LEFT
IF B GOTO E
GOTOA

MOVE BLOCK RIGHT

[C] LEFT
IF s0 GOTO A 0

IF s1 GOTOA 1

IF sn GOTO An

RIGHT }
PRINTs; . _
LEFT 1- 1,2, ... ,n

GOTOC
RIGHT
PRINT B
LEFT

5. Simulation of Y, In .'T 137

The effect of the macro MOVE BLOCK RIGHT beginning with a tape
configuration

B .___I --------' i

in which the string in the rectangular box contains no blanks, is to
terminate with the tape configuration

B B I
i ~-----------~

Finally we will use the macro

whose expansion is

ERASE A BLOCK

[A] RIGHT

IF B GOTO E

PRINT B

GOTOA

This program causes the head to move to the right, with everything erased
between the square at which it begins and the first blank to its right.

We adopt the convention that a number ~ 0 in square brackets after
the name of a macro indicates that the macro is to be repeated that
number of times. For example,

is short for

RIGHT TO NEXT BLANK [3]

RIGHT TO NEXT BLANK

RIGHT TO NEXT BLANK

RIGHT TO NEXT BLANK

We are now ready to show how to simulate the three instruction types in
the language~ by Post-Turing programs. We begin with

In order to place the symbol s; to the left of the jth variable on the tape,
the values of the variables Vj, ... , V[must all be moved over one square to
the right to make room. After the s; has been inserted, we must remember

138 Chapter 5 Calculations on Strings

to go back to the blank at the left of the value of V1 in order to be ready
for the next simulated instruction. The program is

RIGHT TO NEXT BLANK [I]
MOVE BLOCK RIGHT[/ - j + 1]
RIGHT
PRINTs;
LEFf TO NEXT BLANK Ul

Next we must show how to simulate

The complication is that if the value of l-j is the null word, we want it left
unchanged. So we move to the blank immediately to the right of the value
of l-j. By moving one square to the left we can detect whether the value of
l-j is null (if it is, there are two consecutive blanks). Here is the program:

RIGHT TO NEXT BLANK [j]
LEFf
IF B GOTO C
MOVE BLOCK RIGHT [j]
RIGHT
GOTOE

[C] LEFf TO NEXT BLANK [j - 1]

The final instruction type in .57, is

IF l-j ENDS s; GOTO L

and the corresponding Post-Turing program is

RIGHT TO NEXT BLANK [j]
LEFf
IF s; GOTO C
GOTOD

[C] LEFf TO NEXT BLANK [j]
GOTOL

[D] RIGHT
LEFf TO NEXT BLANK [j]

This completes the simulation of the three instruction types of .57, .
Thus, given our program .9 in the language .57,, we can compile a

5. Simulation of .9';, In !T 139

corresponding program of :T. When this corresponding program termi­
nates, the tape configuration will be

.. . B B B x 1 B . .. B xm B z1 B .. . B zk B y B B B ... ,

i

where the values between blanks are those of the variables of .9 on its
termination. However, we wish only y to remain as output. Hence to
obtain our program ~ in the language :T we put at the end of the
compiled Post-Turing program the following:

ERASE A BLOCK [/- 1]

After this last has been executed, all but the last block will have been
erased and the tape configuration will be

... BBBByBBB

i

Thus, the output is in precisely the form required for us to be able to
assert that our Post-Turing program computes f strictly.

Exercises

1. (a) Use the construction in the proof of Theorem 5.1 to give a
Post-Turing program that computes the function f(x) computed
by the .9"2 program

[A] IF X ENDS s1 GOTO B
x~x-

IF X*- OGOTO A
GOTOE

[B] Y ~ s1Y
x~x­

GOTOA

(b) Do the same as (a) for f(x 1 , x2).

2. Answer question l(a) with the instruction [B] Y ~ s 1 Y replaced by [B]
Y~Y+l.

3. Give a primitive recursive function b1(n, x, z) such that any partial
function computed by an .9;, program that has x instructions and that
uses only variables among X to ... , X 1 , Z 1 , ... , Z k , Y is computed
strictly by a Post-Turing program with no more than b1(n, x, I+ k + 1)
instructions.

140 Chapter 5 Calculations on Strings

4. Give a primitive recursive function b~m>(n, x 1 , ••• , xm, y, z) such that
any partial function computed by an .?,. program in y steps on input
XI' 0 0 0' Xm' using only variables among XI' 0 0 0' XI, zl' 0 0 0' zk' Y, is
computed strictly by some Post-Turing program in no more than
b~m>(n, x 1 , ••• , xm, y, I + k + 1) steps. [Hint: Note that after y steps
no variable holds a value larger than max{x1 , ••• , xm} + y.]

5. * Give an upper bound on the length of the shortest Post-Turing
program that computes <1>/x). [See Exercise 3.4.]

6. Simulation of .:Tin Y

In this section we will prove

Theorem 6.1. If there is a Post-Turing program that computes the partial
function f(x 1 , ••• , xm), then f is partially computable.

What this theorem asserts is that if the m-ary partial function f on A*
is computed by a program of :T, then there is a program of .9 that
computes f (regarded as an m-ary partial function on the base n numeri­
cal values of the strings). Before giving the proof we observe some of the
consequences of this theorem. As shown in Fig. 6.1, the theorem completes
a "circle" of implications. Thus all of the conditions in the figure are
equivalent. To summarize:

Theorem 6.2. Let f be an m-ary partial function on A*, where A is an
alphabet of n symbols. Then the following conditions are all equivalent:

1. f is partially computable;
2. f is partially computable in .?,. ;

Figure 6.1

6. Simulation of .9'" in .'7' 141

3. f is computed strictly by a Post-Turing program;
4. f is computed by a Post-Turing program.

The equivalence of so many different notions of computability consti­
tutes important evidence for the correctness of our identification of
intuitive computability with these notions, i.e., for the correctness of
Church's thesis.

Shifting our point of view to that of an m-ary partial function on N, we
have

Corollary 6.3. For any n, I ~ 1, an m-ary partial function f on N is
partially computable in .9;, if and only if it is also partially computable in
S'f.
Proof. Each of these conditions is equivalent to the function f being
partially computable. •

By considering the language ..9"1 we have

Corollary 6.4. Every partially computable function is computed strictly by
some Post-Turing program that uses only the symbols s0 , s1 •

Now we return to the proof of Theorem 6.1. Let .9 be a Post-Turing
program that computes f. We want to construct a program ~ in the
language ..9" that computes f. ~ will consist of three sections:

BEGINNING
MIDDLE
END

The MIDDLE section will simulate .9 in a step-by-step "interpretive"
manner. The task of BEGINNING is to arrange the input to ~ in the
appropriate format for MIDDLE, and the task of END is to extract the
output.

Let us suppose that f is an m-ary partial function on A*, where
A = {sp ... , sn}. The Post-Turing program .9 will also use the blank B
and perhaps additional symbols (we are not assuming that the computation
is strict!) sn+ 1 , ••• , s,. We write the symbols that .9 uses in the order

s1 , ••• ,sn,sn+ 1 , ••• ,s,,B.

The program ~ will simulate .9 by using the numbers that strings on this
alphabet represent in base r + 1 as "codes" for the corresponding strings.
Note that as we have arranged the symbols, the blank B represents the
number r + 1. For this reason we will write the blank ass,+ 1 instead of s0 •

The tape configuration at a given stage in the computation by .9 will be

142 Chapter 5 Calculations on Strings

kept track of by ~ using three numbers stored in the variables L, H, and
R. The value of H will be the numerical value of the symbol currently
being scanned by the head. The value of L will be a number which
represents in base r + 1 a string of symbols w such that the tape contents
to the left of the head consists of infinitely many blanks followed by w. The
value of R represents in a similar manner the string of symbols to the right
of the head. For example, consider the tape configuration

. . . B B B B s2 s1 B s3 s1 s2 B B B

i

Here r = 3, so we will use the base 4. Then we would have

We might have

H= 3.

L = 2 · 42 + 1 · 4 + 4 = 40,

R = 1· 4 + 2 = 6.

An alternative representation could show some of the blanks on the left or
right explicitly. For example, recalling that B represents r + 1 = 4,

L = 4 · 43 + 2 · 42 + 1 · 4 + 4 = 296,

R = 1 · 43 + 2 · 42 + 4 · 4 + 4 = 116.

Now it is easy to simulate the instruction types of ::T by programs of .9.
An instruction PRINTs; is simulated by

H <r- i

An instruction IF s; GOTO L is simulated by

IF H = iGOTOL

An instruction RIGHT is simulated by

L <r- CONCAT,+ 1(L, H)
H <r- LTEND,+ 1(R)
R <r- LTRUNC,+ 1(R)
IF R =1= 0 GOTO E
R<r-r+1

6. Simulation of .'T in .'7'

Similarly an instruction LEFf is simulated by

R +-- CONCAT,+ 1(H, R)
H +-- RTEND,+ 1(L)
L +-- RTRUNC,+ 1(L)
IF L * 0 GOTO E
L+-r+l

143

Now the section MIDDLE of tff can be assembled simply by replacing
each instruction of go by its simulation.

In writing BEGINNING and END we must deal with the fact that f is
an m-ary function on {sl' ... ' sn}*. Thus the initial values of XI' ... ' xm
for tff will be numbers that represent the input strings in base n. Theorem
1.1 will enable us to change base as required. The section BEGINNING
has the task of calculating the initial values of L, H, R, that is, the values
corresponding to the tape configuration

where the numbers x 1 , ••• , xm are represented in base n notation. Thus
the section BEGINNING of tff can simply be taken to be

L +-r+l
H +-r+l
Z 1 +-- UPCHANGEn r+ 1(X1)

Z 2 +-- UPCHANGEn. r+ I(Xz)

Zm +-- UPCHANGEn,r+ 1(Xm)
R +-- CONCAT,+ 1(Z1,r + l,Z2 ,r + l, ... ,r + l,Zm)

Finally, the section END of tff can be taken simply to be

Z +-- CONCAT,+ 1(L, H, R)

Y +-- DOWNCHANGEn r+ I(Z)

We have now completed the description of the program tff that simu-
lates !JO, and our proof is complete. •

Exercises

I. Use the construction in the proof of Theorem 6.1 to give an .9
program that computes the same unary function as the Post-Turing

144 Chapter 5 Calculations on Strings

2. For any Post-Turing program .9, let #(.9) be #(t!!), where t!! is the
.9 program obtained for .9 in the proof of Theorem 6.1, and let
HALT~x, y) be defined

HALTg-(x, y) - y is the number of a Post-Turing program

that eventually halts on input x.

Show that HALT~x, y) is not a computable predicate.

3. * Show that the Post-Turing programs, under an appropriate ordering
.90 , .91 , ••• , are an acceptable programming system. [See Exercise 5.4
in Chapter 4 for the definition of acceptable programming systems.]

6

Turing Machines

1. Internal States

Now we turn to a variant of the Post-Turing language that is closer to
Turing's original formulation. Instead of thinking of a list of instructions,
we imagine a device capable of various internal states. The device is, at any
particular instant, scanning a square on a linear tape just like the one used
by Post-Turing programs. The combination of the current internal state
with the symbol on the square currently scanned is then supposed to
determine the next "action" of the device. As suggested by Turing's
analysis of the computation process (see Chapter 5, Section 4), we can take
the next action to be either "printing" a symbol on the scanned square or
moving one square to the right or left. Finally, the device must be
permitted to enter a new state.

We use the symbols q1 , q2 , q3 ,. • • to represent states and we write
s0 , s1 , s2 , ••• to represent symbols that can appear on the tape, where as
usual s0 = B is the "blank." By a quadruple we mean an expression of one
of the following forms consisting of four symbols:

1. q; sj sk ql,
2. q; sj R ql,
3. q; sj L ql.

145

146 Chapter 6 Turing Machines

We intend a quadruple of type 1 to signify that in state q; scanning symbol
sj, the device will print sk and go into state q1• Similarly, a quadruple of
type 2 signifies that in state q; scanning sj the device will move one square
to the right and then go into state q1• Finally, a quadruple of type 3 is like
one of type 2 except that the motion is to the left.

We now define a Turing machine to be a finite set of quadruples, no two
of which begin with the same pair q;sj. Actually, any finite set of quadru­
ples is called a nondeterministic Turing machine. But for the present we will
deal only with deterministic Turing machines, which satisfy the additional
"consistency" condition forbidding two quadruples of a given machine to
begin with the same pair q;sj, thereby guaranteeing that at any stage a
Turing machine is capable of only one action. Nondeterministic Turing
machines are discussed in Section 5.

The alphabet of a given Turing machine L consists of all of the symbols
s; wliich occur in quadruples of L except s0 •

We stipulate that a Turing machine always begins in state q1 • Moreover,
a Turing machine will halt if it is in state q; scanning sj and there is no
quadruple of the machine which begins q;sj. With these understandings, and
using the same conventions concerning input and output that were em­
ployed in connection with Post-Turing programs, it should be clear what it
means to say that some given Turing machine L computes a partial
function f on A* for a given alphabet A.

Just as for Post-Turing programs, we may speak of a Turing machine L
that computes a function strictly, namely: assuming that L computes f
where f is a partial function on A*, we say that L computes f strictly if

1. the alphabet of L is a subset of A;
2. whenever L halts, the final configuration has the form

By

i
qi

where y contains no blanks.

Writing s0 = B, s1 = 1 consider the Turing machine with alphabet {1}:

ql B R qz

qz 1 R qz

qz B 1 q3

q3 1 R q3
q3 B 1 ql.

1. Internal States

Table 1.1

State

Symbol

B

We can check the computation:

8111, 8111, ... ,8111B, 81111, 81111B, 811111
i i i i i i

147

The computation halts because there is no quadruple beginning q1l.
Clearly, this Turing machine computes (but not strictly) the function
f(x) = x + 2, where we are using unary (base 1) notation. The steps of the
computation, which explicitly exhibit the state of the machine, the string of
symbols on the tape, as well as the individual square on the tape being
scanned, are called configurations.

It is sometimes helpful to exhibit a Turing machine by giving a state
versus symbol table. Thus, for example the preceding Turing machine
could be represented as shown in Table 1.1.

Another useful representation is by a state transition diagram. The
Turing machine being discussed thus could be represented by the diagram
shown in Fig. 1.1.

We now prove

Theorem 1.1. Any partial function that can be computed by a Post­
Turing program can be computed by a Turing machine using the same
alphabet.

1/R

1/R

Figure 1.1

148 Chapter 6 Turing Machines

Proof. Let .9 be a given Post-Turing program consisting of the instruc­
tions Ip ... ,IK, and let s0 ,sp···,sn be a list that includes all of the
symbols mentioned in .9. We shall construct a Turing machine L that
simulates .9.

The idea is that L will be in state q; precisely when .9 is about to
execute instruction I;. Thus, if I; is "PRINT sk ,"then we place in L all of
the quadruples

j = 0, 1, ... , n.

If I; is "RIGHT," then we place in L all of the quadruples

j = 0, 1, ... , n.

If I; is "LEFT," then we place in L all of the quadruples

j = 0, 1, ... , n.

Finally, if I; is "IF sk GOTO L," let m be the least number such that Im is
labeled L if there is an instruction of .9 labeled L; otherwise let
m = K + 1. We place in L the quadruple

as well as all of the quadruples:

j=0,1, ... ,n; j=l=k.

It is clear that the actions of L correspond precisely to the instructions
of .9, so we are done. •

Using Corollary 6.4 from Chapter 5 and the proof of Theorem 1.1, we
have

Theorem 1.2. Let f be an m-ary partially computable function on A* for
a given alphabet A. Then there is a Turing machine L that computes f
strictly.

It is particularly interesting to apply this theorem to the case A = {1}.
Thus, if f(x 1 , ••• , xm) is any partially computable function on N, there is a
Turing machine that computes f using only the symbols B and 1. The
initial configuration corresponding to inputs x 1 , ••• , x m is

B 1[xd B . . . B 1[xmJ

i
q,

1. Internal States 149

and the final configuration when f(xl> ... , xmH will be

B l[f(x, , ... ,Xm)l,

i
qK+!

Next we shall consider a variant notion of Turing machines: machines
that consist of quintuples instead of quadruples. There are two kinds of
quintuples:

q; sj sk R qt'

q; sj sk L qt.

The first quintuple signifies that when the machine is in state q; scanning
sj it will print sk and then move one square to the right and go into state
q1• And naturally, the second quintuple is the same, except that the motion
is to the left. A finite set of quintuples no two of which begin with the
same pair q;sj is called a quintuple Turing machine. We can easily prove

Theorem 1.3. Any partial function that can be computed by a Turing
machine can be computed by a quintuple Turing machine using the same
alphabet.

Proof. Let L be a Turing machine with states q1 , ••• , qK and alphabet
{s1 , ••• , sn}. We construct a quintuple Turing machine L to simulate L.
The states of L will be q1 , ••• , qK, qK+ 1 , ••• , qzK·

For each quadruple of L of_!he form q; sj R q1 we place the correspond-
ing quintuple q; sj sj R q1 in .L. Similarly, for_each quadruple q; sj L q1 in
L, we place the quintuple q; sj sj L q1 in .L. And, for each quadruple
q; sj sk q1 !!_I L, we place in L the quintuple q; sj sk RqK+t· Finally we
place in L all quintuples of the form

i=l, ... ,K; j=O,l, ... ,n.

Quadruples requiring motion are simulated easily by quintuples. But a
quadruple requiring a "print" necessitates using a quintuple which causes
a motion after the "print" has taken place. The final list of quintuples
undoes the effect of this unwanted motion. The extra states qK+ 1 , ••• , q2K
serve to "remember" that we have gone a square too far to the right. •

Finally, we will complete another circle by proving

Theorem 1.4. Any partial function that can be computed by a quintuple
Turing machine can be computed by a Post-Turing program using the
same alphabet.

150 Chapter 6 Turing Machines

Combining Theorems 1.1, 1.3, and 1.4, we will have

Corollary 1.5. For a given partial function f, the following are equivalent:

1. f can be computed by a Post-Turing program;
2. f can be computed by a Turing machine;
3. f can be computed by a quintuple Turing machine.

Proof of Theorem 1.4. Let L be a given quintuple Turing machine with
states q1 , ••• , qK and alphabet {s1 , ••• , sn}. We associate with each state qi
a label A; and with each pair qisj a label B;j· Each label A; is to be
placed next to the first instruction in the filter:

[A;] IF s0 GOTO B;o
IF s 1 GOTO B;1

If L contains the quintuple qi sj sk Rq1, then we introduce the block of
instructions

[B;j] PRINT sk
RIGHT
GOTOA 1

Similarly, if L contains the quintuple q; sj sk L q1, then we introduce the
block of instructions:

[B;) PRINT sk
LEFT
GOTOA 1

Finally, if there is no quintuple in L beginning qisj, we introduce the
block

[Bij] GOTO E

Then we can easily construct a Post-Turing program that simulates L
simply by putting all of these blocks and filters one under the other. The
order is irrelevant except for one restriction: The filter labeled A 1 must
begin the program. The entire program is listed in Figure 1.2. •

1. Internal States

Exercises

[Ad IF s0 GOTO 8 10

IF sn GOTO B,n
IF s0 GOTO B20

IF sn GOTO Bzn

IF Sn GOTO BKn
[B; 111] PRINT sk,

RIGHT
GOTOA 1,

[B;2h] PRINT sk 2

Figure 1.2

1. Let T be the Turing machine consisting of the quadruples

ql B R qz

qz 1 R q3

q3 B R q4

q4 1 B ql
q4 B R q4.

151

For each integer x, let g(x) be the number of occurrences of 1 on the
tape when and if T halts when started with the read-write head one
square to the left of the initial 1, with input 1[xJ. What is the function
g(x)?

2. Write out the quadruples constituting a Turing machine that com­
putes the function

f(x) = {~ if x is a perfect square
otherwise

in base 1. Exhibit the state transition diagram for your machine.

3. Give precise definitions of configuration, computation, and Turing
machine L computes the function f. (Compare Chapter 2, Section 3.)

152 Chapter 6 Turing Machines

4. For each of the following functions, construct a Turing machine that
computes the function strictly.

(a) f(u, v) = ;7;.
(b) P(x) = x has an even number of symbols.
(c) f(x) given in Exercise 1.4 in Chapter 5.
(d) f(x) = xR. [xR is defined in Chapter 1, Section 3.]
(e) #(u, v) given in Exercise 1.6 in Chapter 5.

5. Construct Turing machines for Exercise 4.4 in Chapter 5.

6. Construct a Turing machine for Exercise 4.5 in Chapter 5.

7. Using the construction in the proof of Theorem 1.1, transform the
Post-Turing program in Figure 4.4 of Chapter 5 into an equivalent
Turing machine.

8. Using the construction in the proof of Theorem 1.3, transform the
Turing machine in Table 1.1 into an equivalent quintuple Turing
machine.

9. Construct a quintuple Turing machine that computes f(x, y) = x ..:... y
in base 1 strictly.

10. * Show that any partially computable function can be computed by a
quintuple Turing machine with two states. [Hint: A quintuple Turing
machine L with n states and m symbols (including s0) can be
simulated by a quintuple Turing machine L' with two states and
4mn + m symbols. The 4mn new symbols represent the current state
and currently scanned symbol of L, as well as additional bookkeep­
ing information. Transferring this stored information to an adjacent
square can be done by a "loop" that moves the tape head back and
forth.]

2. A Universal Turing Machine

Let us now recall the partially computable function <l>(x, z) from Chapter
4. For fixed z, <l>(x, z) is the unary partial function computed by the
program whose number is z. Let L be a Turing machine (in either
quadruple or quintuple form) that computes this function with alphabet
{1}. For reasons that we will explain, it is appropriate to call this machine
L universal.

Let g(x) be any partially computable function of one variable and let z0

be the number of some program in the language Y that computes g. Then

3. The Languages Accepted by Turing Machines 153

if we begin with a configuration

(where x and z0 are written as blocks of ones, i.e., in unary notation), and
let L proceed to compute, L will compute ci>(x, z0), i.e., g(x). Thus, L
can be used to compute any partially computable function of one variable.

L provides a suggestive model of an all-purpose computer, in which
data and programs are stored together in a single "memory." We can think
of z0 as a coded version of the program for computing g and x as the
input to that program. Turing's construction of a universal computer in
1936 provided reason to believe that, at least in principle, an all-purpose
computer would be possible, and was thus an anticipation of the modern
digital computer.

Exercises

1.* (a) Define a numbering #(L) of Turing machines like the number-
ing #(.9) of Y programs given in Chapter 4.

(b) Prove a version of the parameter theorem for Turing machines.
(c) Prove a version of the recursion theorem for Turing machines.
(d) Show that there is a Turing machine L that prints #(L) when

started with any input tape.
(e) Show that Turing machines are an acceptable programming sys­

tem. [Acceptable programming systems are defined in Exercise
5.4 in Chapter 4.]

2. * Give an upper bound on the size of the smallest universal Turing
machine. [See Exercise 5.5 in Chapter 5.]

3. The Languages Accepted by Turing Machines

Given a Turing machine L with alphabet A = {s1 , ... , sn}, a word u E A*
is said to be accepted by L if when L begins with the configuration

154 Chapter 6 Turing Machines

it will eventually halt. The set of all words u E A* that L accepts is called
the language accepted by L. An important problem in the theory of
computation involves characterizing the languages accepted by various
kinds of computing devices. It is easy for us to solve this problem for
Turing machines.

Theorem 3.1. A language is accepted by some Turing machine if and only
if the language is r.e.

Proof. Let L be the language accepted by a Turing machine L with
alphabet A. Let g(x) be the unary function on A* that L computes.
Then g 4s a partially computable function (by Corollary 1.5 and by
Theorem 6.2 in Chapter 5). Now,

L = {x EA*Ig(xH}. (3.1)

Hence L is r.e.
Conversely, let L be r.e. Then there is a partially computable function

g(x) such that (3.1) holds. Using Theorem 1.2, let L be a Turing machine
with alphabet {s1 , ••• , sn} that computes g(x) strictly. Then L accepts L.

Naturally Theorem 3.1 is also true for quintuple Turing machines.
Let us consider the special case A = {1}. Then we have

•

Theorem 3.2. A set U of numbers is r.e. if and only if there is a Turing
machine L with alphabet {1} that accepts 1[xJ if and only if x E U.

Proof. This follows immediately from Theorem 3.1 and the fact that the
base 1 representation of the number x is the string 1[xJ. •

This is an appropriate place to consider some annoying ambiguities in
our notation of r.e. language. Thus, for example, consider the language

L 0 = {a[nll n > 0},

on the alphabet {a, b}. According to our definitions, to say that L 0 is an
r.e. language is to say that the set of numbers which the strings in L 0

represent in base 2 is an r.e. set of numbers. But, this set of numbers is not
determined until an order is specified for the letters of the alphabet. If we take
a, b in the order shown, then the set of numbers which represent strings in
L 0 is clearly

Q1 = {2n - 11 n > 0},

3. The Languages Accepted by Turing Machines 155

while if we take the letters in the order b, a, the set of numbers which
represents strings in L 0 is

Now, although there is no difficulty whatever in showing that Q1 and Q2

are both r.e. sets, it is nevertheless a thoroughly unsatisfactory state of
affairs to be forced to be concerned with such matters in asserting that L 0

is an r.e.language. Here Theorem 3.1 comes to our rescue. The notion of a
given string being accepted by a Turing machine does not involve imposing
any order on the symbols of the alphabet. Hence, Theorem 3.1 implies
immediately that whether a particular language on a given alphabet is r.e.
is independent of how the symbols of the alphabet are ordered. The same is
clearly true of a language L on a given alphabet A being recursive since
this is equivalent to L and A* - L both being r.e.

Another ambiguity arises from the fact that a particular language may
be considered with respect to more than one alphabet. Thus, let A be an
n-letter alphabet and let A be an m-letter alphabet containing A, so that
m > n. Then a language L on the alphabet A is simply some subset of
A*, so that Lis also a language on the larger alphabet A. Thus, depending
on whether we are thinking of L as a language on A or as a language on
A, we will have to read the strings in L as being the notation for integers
in base n or in base m, respectively. Hence, we are led to the unpleasant
possibility that whether L is r.e. might actually depend on which alphabet
we are considering. As an example, we may take A = {a} and A= {a, b},
and consider the language L 0 above, where

L cA* cA*. 0- -

We have already seen that our original definition of L 0's being r.e. as a
language on the alphabet A amounts to requiring that the set of numbers
Q1 or Q2 (depending on the order of the symbols a, b) be r.e. However, if
we take our alphabet to be A, then the relevant set of numbers is

Q3 = {n E N I n > 0}.

We remove all such ambiguities by proving

Theorem 3.3. Let A k A where A and A are alphabets and let L k A*.
Then L is an r.e. language on the alphabet A if and only if L is an r.e.
language on A.
Proof. Let L be r.e. on A and let L be a Turing machine with alphabet
A that accepts L. Without loss of generality, we can assume that L begins

156 Chapter 6 Turing Machines

by moving right until it finds a blank and then returns to its original
position. Let L be obtained from L by adjoining to it the quadruples
q s s q for each symbol s E A - A, and each state q of L. Thus L will
enter an "infinite loop" if it ever encounters a symbol in A -A. Since L
has alphabet A and accepts the language L, we conclude from Theorem
3.1 that L is an r.e. language on A.

Conversely, let L be r.e. as a language on A, and let L be a Turing
machine with alphabet A that accepts L. Let g(x) be the function on A*
that L computes. (The symbols belonging to A - A thus serve as
"markers.") Since L ~A*, we have

L = {x EA*Ig(xH}.

Since g(x) is partially computable, it follows that L is an r.e. language on
A. •

Corollary 3.4. Let A, A, L be as in Theorem 3.3. Then L is a recursive
language on A if and only if L is a recursive language on A.
Proof. First let L be a recursive language on A. Then Land A* - L are
r.e. languages on A and therefore on A. Moreover, since

A* - L =(A* -A*) u (A* - L),

and since A* -A* is r.e., as the reader can easily show (see Exercise 6), it
follows from Theorem 4.5 in Chapter 4 that A* - L is r.e. Hence, L is a
recursive language on A.

Conversely, if L is a recursive language on A, then L and A* - L are
r.e. languages on A and therefore L is an r.e. language on A. Moreover,
since

A* - L =(A* - L) n A*,
and since A* is obviously r.e. (as a language on A and therefore on A), it
follows from Theorem 4.5 in Chapter 4 that A* - L is an r.e. language on
A and hence on A. Thus, Lis a recursive language on A. •

Exercises

1. Write out the quadruples constituting a Turing machine that accepts
the language consisting of all words on the alphabet {a, b} of the form
a[iJba[il.

2. Give a Turing machine that accepts {l[ilBl[j]Bl[i+j] I i, j EN}.

3. Give a Turing machine that accepts {w E {a, b}* I w = wR}.

4. The Halting Problem for Turing Machines 157

4. Show that there is a Turing machine that accepts the language
{llxlBliYll <1>/x) J,}.

5. Show that there is no Turing machine that accepts the language
{l!Yll <1>/x)t for all x EN}.

6. Complete the proof of Corollary 3.4 by showing that A* -A* is an r.e.
language.

4. The Halting Problem for Turing Machines

We can use the results of the previous section to obtain a sharpened form
of the unsolvability of the halting problem.

By the halting problem for a fixed given Turing machine L we mean
the problem of finding an algorithm to determine whether L will eventually
halt starting with a given configuration. We have

Theorem 4.1. There is a Turing machine .% with alphabet {1} that has an
unsolvable halting problem.

Proof. Take for the set U in Theorem 3.2, some r.e. set that is not
recursive (e.g., the set K from Chapter 4). Let .% be the corresponding
Turing machine. Thus .% accepts a string of ones if and only if its length
belongs to U. Hence, x E U if and only if .% eventually halts when started
with the configuration

B l[x]

i
ql

Thus, if there were an algorithm for solving the halting problem for Jr, it
could be used to test a given number x for membership in U. Since U is
not recursive, such an algorithm is impossible. •

This is really a stronger result than was obtained in Chapter 4. What we
can prove about Turing machines just using Theorem 2.1 in Chapter 4 is
that there is no algorithm that can be used, given a Turing machine and an
initial configuration, to determine whether the Turing machine will ever
halt. Our present result gives a fixed Turing machine whose halting
problem is unsolvable. Actually, this result could also have been easily
obtained from the earlier one by using a universal Turing machine.

Next, we show how the unsolvability of the halting problem can be used
to obtain another unsolvable problem concerning Turing machines. We
begin with a Turing machine .% with alphabet {1} that has an unsolvable

158 Chapter 6 Turing Machines

halting problem. Let the states of.% be q1 , ••• , qk. We will construct a
Turing machine .% by adjoining to the quadruples of .% the following
quadruples:

q; B B qk+l

for i = 1, 2, ... , k for which no quadruple of.% begins q;B, and

q; 1 1 qk+ I

for i = 1, 2, ... , k when no quadruple of.% begins q; 1. Thus, .% eventually
halts beginning with a given configuration if and only if .% eventually is in
state qk+ 1 • We conclude

Theorem 4.2. There is a Turing machine .% with alphabet {1} and a state
qm such that there is no algorithm that can determine whether.% will ever
arrive at state qm when it begins at a given configuration.

Exercises

1. Prove that there is a Turing machine .L such that there is no
algorithm that can determine of a given configuration whether .L will
eventually halt with a completely blank tape when started with the
given tape configuration.

2. Prove that there is a Turing machine .L with alphabet {s1 , s2} such
that there is no algorithm that can determine whether .L starting with
a given configuration will ever print the symbol s2 •

3. Let .L0 , .L1 , • • • be a list of all Turing machines, and let /; be the
unary partial function computed by L;, i = 0, 1, Suppose g(x) is a
total function such that for all x ~ 0 and all 0 :::;; i :::;; x, if /;CxH then
/;(x) < g(x). Show that g(x) is not computable.

4. Jill and Jack have been working as programmers for a year. They are
discussing their work. We listen in:

JACK: We are working on a wonderful program, AUTOCHECK.
AUTOCHECK will accept Pascal programs as inputs and will return
the values OK or LOOPS depending on whether the given program
is or is not free of infinite loops.

JILL: Big deal! We have a mad mathematician in our firm who has
developed an algorithm so complicated that no program can be
written to execute it no matter how much space and time is allowed.

Comment on and criticize Jack and Jill's statements.

5. Nondeterministic Turing Machines 159

5. Nondeterministic Turing Machines

As already mentioned, a nondeterministic Turing machine is simply an
arbitrary finite set of quadruples. Thus, what we have been calling a Turing
machine is simply a special kind of nondeterministic Turing machine.
For emphasis, we will sometimes refer to ordinary Turing machines as
deterministic.

A configuration

is called terminal with respect to a given nondeterministic Turing machine
(and the machine is said to halt) if it contains no quadruple beginning
q; sj. (This, of course, is exactly the same as for deterministic Turing
machines.) We use the symbol I- (borrowed from logic) placed between a
pair of configurations to indicate that the transition from the configuration
on the left to the one on the right is permitted by one of the quadruples of
the machine under consideration.

As an example, consider the nondeterministic Turing machine given by
the quadruples

ql B R qz

qz 1 R q3

qz B B q4

q3 1 R qz

q3 B B q3

q4 B R q4
q4 B B q5

Then we have

B 1 1 1 li-B 1 1 111--B 1 1 111--B1 1111--B11 1 1
i i i i i
ql qz q3 qz q3

I- B 1 1 1 1 B BI-B 1 1 1 1 B.
i i

160 Chapter 6 Turing Machines

So far the computation has been entirely determined; however, at this
point the nondeterminism plays a role. We have

B 1 1 1 1 BI-B 1 1 1 1 B,

i i
q4

at which the machine halts. But we also have

B 1111 BI-B 1111 BBI--B 1111 BBBI--

i i i

Let A = {s 1 , ... , s n} be a given alphabet and let u E A*. Then the
nondeterministic Turing machine L is said to accept u if there exists a
sequence of configurations y 1 , y 2 , ••• , 'Ym such that y 1 is the configuration

'Ym is terminal with respect to L, and y 1 I- y2 I- y 3 I- · · · I- 'Ym. In this
case, the sequence y 1 , y 2 , ••• , 'Ym is called an accepting computation by L
for u. If A is the alphabet of L, then the language accepted by L is the set
of all u E A* that are accepted by L.

Of course, for deterministic Turing machines, this definition gives noth­
ing new. However, it is important to keep in mind the distinctive feature of
acceptance by nondeterministic Turing machines. It is perfectly possible to
have an infinite sequence

'Y1 I- 'Yz I- 'Y3 1-­

of configurations, where y 1 is

s0 u
i
ql

even though u is accepted by L. It is only necessary that there be some
sequence of transitions leading to a terminal configuration. One some­
times expresses this by saying, "The machine is always permitted to guess
the correct next step."

Thus in the example given above, taking the alphabet A = {1}, we have
that L accepts 1111. In fact the language accepted by L is {l[Znl}. (See
Exercise 3.)

5. Nondeterministic Turing Machines 161

Since a Turing machine is also a nondeterministic Turing machine,
Theorem 3.1 can be weakened to give

Theorem 5.1. For every r.e. language L, there is a nondeterministic
Turing machine L that accepts L.

The converse is also true: the language accepted by a nondeterministic
Turing machine must be r.e. By Church's thesis, it is clear that this should
be true. It is only necessary to "run" a nondeterministic Turing machine

L on a given input u, following all alternatives at each step, and giving the
value (say) 0, if termination is reached along any branch. This defines a
function that is intuitively partially computable and whose domain is the
language accepted by L. However, a detailed proof along these lines
would be rather messy.

Fortunately the converse of Theorem 5.1 will be an easy consequence of
the methods we will develop in the next chapter.

Exercises

1. Explain why nondeterministic Turing machines are unsuitable for
defining functions.

2. Let L be the set of all words on the alphabet {a, b} that contain at
least two consecutive occurrences of b. Construct a nondeterministic
Turing machine that never moves left and accepts L.

3. Show that the nondeterministic Tudng machine L used as an exam­
ple in this section accepts the set {ll2nl}.

4. Let

L 1 = {w E {a, b}* I w has an even number of a's},

L2 ={wE {a, b}* I w has an odd number of b's}.

(a) Give deterministic Turing machines L 1 , L 2 that accept L 1 , L 2 ,

respectively, and combine them to get a nondeterministic Turing
machine that accepts L 1 u L 2 •

(b) Give a deterministic Turing machine that accepts L 1 U L 2 •

5. Give a nondeterministic Turing machine that accepts {llnJI n is prime}.

6. If we replace "the first instruction labeled L" by "some instruction
labeled L" in the interpretation of Post-Turing instructions of the
form IF u GOTO L, then we get nondeterministic Post-Turing pro­
grams. Show that a language is accepted by a nondeterministic Post-

162 Chapter 6 Turing Machines

Turing program if and only if it is accepted by a nondeterministic
Turing machine (where acceptance of a language by a Post-Turing
program is defined just like acceptance by a Turing machine).

6. Variations on the Turing Machine Theme

So far we have three somewhat different formulations of Turing's concep­
tion of computation: the Post-Turing programming language, Turing
machines as made up of quadruples, and quintuple Turing machines. The
proof that these formulations are equivalent was quite simple. This is true
in part because all three involved a single tapehead on a single two-way
infinite tape. But it is easy to imagine other arrangements. In fact, Turing's
original formulation was in terms of a tape that was infinite in only one
direction, that is, with a first or leftmost square (see Fig. 6.1). We can also
think of permitting several tapes, each of which can be one-way or two-way
infinite and each with its own tapehead. There might even be several
tapeheads per tape. As one would expect, programs can be shorter when
several tapes are available. But, if we believe Church's thesis, we certainly
would expect all of these formulations to be equivalent. In this section we
will indicate briefly how this equivalence can be demonstrated.

Let us begin by considering one-way infinite tapes. To make matters
definite, we assume that we are representing a Turing machine as a set of
quadruples. It is necessary to make a decision about the effect of a
quadruple q; si L qk in case the tapehead is already at the left end of the
tape. There are various possibilities, and it really does not matter very
much which we adopt. For definiteness we assume that an instruction to
move left will be interpreted as a halt in case the tapehead is already at
the leftmost square. Now it is pretty obvious that anything that a Turing
machine could do on a one-way infinite tape could also be done on a
two-way infinite tape, and we leave details to the reader.

How can we see that any partially computable function can be computed
by a Turing machine on a one-way infinite tape? One way is by simply
examining the proof of Theorem 5.1 in Chapter 5, which shows how a

Figure 6.1. Two-way infinite versus one-way infinite tape.

6. Variations on the Turing Machine Theme 163

... 1 I I I I I I I I I I I 1 ...

] 1 I I I I l I I I I I I···

\ 1111111 u

Figure 6.2

computation in any of the languages .9';, can be simulated by a program in
the Post-Turing language ::T. In fact, the program tff in the language :T
which is constructed to simulate a given program fJlJ in the language .9';,
has the particular property that when tff is executed, the tapehead never
moves to the left of the square initially scanned. Hence, the program tff
would work exactly as well on a one-way infinite tape whose leftmost
square is initially scanned. And, it is an easy matter, as in the proof of
Theorem 1.1, to convert tff into a Turing machine.

Although this is an entirely convincing argument, we would like to
mention another approach which is interesting in its own right, namely, we
directly face the question, how can the information contained in a two-way
infinite tape be handled by a Turing machine with one tapehead on a
one-way infinite tape? The intuitive idea is to think of a two-way infinite
tape as being "hinged" so it can be folded as in Fig. 6.2. Thus our two-way
infinite tape can be represented by a one-way infinite tape with two
"tracks," an "upper" and a "lower." Moreover, by adding enough symbols
to the alphabet, we can code each pair consisting of an upper and a lower
symbol by a single symbol.

Thus, let us begin with a Turing machine L with alphabet A =
{s1 , ••• ,sn} and states qp···•qK. Let L compute a unary 1 partial func­
tion g on A~, where A 0 ~A. Thus the input configuration when L is
computing g(x) for x E A~ will be

1 The restriction to unary functions is, of course, not essential.

164 Chapter 6 Turing Machines

We will construct a Turing machine L that computes g on a one-way
infinite tape. The initial configuration for .L will be

B X

i
ql

where # is a special symbol that will occupy the leftmost square on the
tape for most of the computation. The alphabet of L will be

Au{#} u {bj IO 5o i,j 5o n},
where we think of the symbol bj as indicatin[that s; is on the upper track
and sj is on the lower track. The states of L are q1 , q2 , q3, q4 , q5 , and

{ij;,t/;li = 1,2, ... ,K}

as well as certain additional states.
We can think of the quadruples constituting Las made up of three

sections: BEGINNING, MIDDLE, and END. BEGINNING serves to copy
the input on the upper track putting blanks on the corresponding lower
track of each square. BEGINNING consists of the quadruples

ql B R qz

qz S; R qz i = l,2, ... ,n,

qz B L q3

q3 S; b;
0 q3 i = O,l,2, ... ,n,

q3 bi
0 L q3 i = O,l,2, ... ,n,

q3 # R iit .

Thus, starting with the configuration

B s2 s1 s3

i
ql

BEGINNING will halt in the configuration

bg b~ bA b~ B.

i
ql

Note that bg is different from s0 =B. MIDDLE will consist of quadruples
corresponding to those of L as well as additional quadruples as indicated

6. Variations on the Turing Machine Theme 165

Table 6.1

Quadruple of .If Quadruple of .L

(a) q; si sk qt li; bi m
bk

m lit m = 0, l, ... ,n

ii; b~
l bf:' iit m = 0, l, ... ,n

(b) qi si R qt li; bi m R lit m = 0, l, ... ,n

ii; b~
l

L iit m = 0, l, ... ,n

(c) q; si L qt li; bi m L lit m = O,l, ... ,n

ii; b~
l

R iit m = 0, l, ... ,n

(d) li; B bo
0 li; i = 1,2, ... , K

ii; B bo
0 li; i = l,2, ... ,K

(e) li; # R ii; i = l,2, ... ,K

ii; # R li; i = l,2, ... ,K

in Table 6.1. The states ii;, ij; correspond to actions on the upper track and
lower track, respectively. Note in (b) and (c) that on the lower track left
and right are reversed. The quadruples in (d) replace single blanks B by
double blanks bg as needed. The quadruples (e) arrange for switchover
from the upper to the lower track. It should be clear that MIDDLE
simulates L.

END has the task of translating the output into a word on the original
alphabet A. This task is complicated by the fact that the output is split
between the two tracks. To begin with, END contains the following
quadruples:

ii; bj bj
q4)

whenever L contains no quadruple m m
iji bm b~ q4 beginning q;sj, for m = 0, 1, ... , n; 0 ~ i, j ~ n,

1 1

q4 b!
1

L q4'
q4 # B q5.

For each initial configuration for which L halts, the effect of BEGIN­
NING, MIDDLE, and this part of END is to ultimately produce a
configuration of the form

B b!t b!z b!k
1I 1z 1k •

i
q5

The remaining task of END is to convert the tape contents into

166

[D] RIGHT TO NEXT BLANK
MOVE BLOCK RIGHT
RIGHT

[C] RIGHT

Chapter 6 Turing Machines

IF bj GOTO A} (0 ~ i,j ~ n)

IF B GOTOF
GOTOC

[A}] PRINTs; (0 < i ~ n,O ~j ~ n)

GOTOBi
[AJI PRINT# (0 ~j ~ n)

GOTOBi
[B) LEFTTONEXTBLANK (0 <j ~ n)

PRINT si

GOTOD
[B0] LEFT TO NEXT BLANK

PRINT#
GOTOD

[F] LEFT
IF si GOTO F (0 < j ~ n)

IF# GOTOG
IF B GOTOE

[G] PRINT B

GOTOF

Figure6.3

Instead of giving quadruples for accomplishing this, we exhibit a program
in the Post-Turing language :T, so that we can make use of some of the
macros available in that language. Of course, this program can easily be
translated into a set of quadruples using the method of proof of Theorem
1.1. Because our macros for :T were designed for use with "blocks" of
symbols containing no blanks, we will use # instead of s0 = B in carrying
out our translation. One final pass will be needed to replace each # by B.
The program is given in Fig. 6.3.

Each bJ is processed going from left to right. bJ is replaced by s; (or by
if i = 0) and si (or # if j = 0) is printed on the left. The "MOVE
BLOCK RIGHT" macro is used to make room on the tape for printing the
successive symbols from the "lower" track. As an example let us apply the
program of Fig. 6.3 to the configuration

6. Variations on the Turing Machine Theme

B bf b\1 b/1

i
B B

i
B B

B B

B s1

i
B #

i
B B

b2
I

bll
I

b2
I

bll
I

i
s2 bll

I

i
s2 bo

I

sl s2

sl s2

sl sl

sl

b/1 B

bl
0 B

bl
0 B

bl
0 B

bll
I b/1

i
b/1

s2 #

sl s2

Figure6.4

167

D

c

A2
I

Bl

D

B Ao
I

B D

sl B D

sl B F

i
B E

In Fig. 6.4 we show various stages in the computation; in each case the
tape configuration is followed by the label on the next instruction to be
executed.

The technique of thinking of the tape of a Turing machine as decom­
posed into a number of parallel tracks has numerous uses. (It will appear
again in Chapter 11.) For the moment we note that it can be used to
simulate the behavior of a multitape Turing machine by an ordinary
Turing machine. For, in the first place a second track can be used to show
the position of a tapehead on a one-tape machine as in the example shown
in Fig. 6.5; the 1 under the s3 shows the position of the head. In an entirely
similar manner the contents of k tapes and the position of the tapehead
on each can be represented as a single tape with 2k tracks. Using this
representation, it is easy to see how to simulate any computation by a
k-tape Turing machine using only one tape. The same result can also be
obtained indirectly using the method of proof of Theorem 6.1 in Chapter 5
to show that any function computed by a k-tape Turing machine is
partially computable.

168 Chapter 6 Turing Machines

.. ·I 8 I s, I 53 1 8 I s, I 8 I· ..

i

8 s, SJ 8 s, 8

8 8 I 8 8 8

Figure 6.5

Exercises

1. Give a formal description of a Turing machine that uses three tapes:
one with a "read only" head for input, one with a "write only" head
for output, and one for "working." Give an appropriate definition of
computability by such machines and prove the equivalence with com­
putability by ordinary Turing machines.

2. Do the same for a Turing machine with input tape, output tape, and k
working tapes for any k ~ 1.

3. Let the Post-Turing language be augmented by the instructions UP,
DOWN so that it can deal with computations on a two-dimensional
"tape" infinite in all four directions. Supply an appropriate definition
of what it means to compute a function by a program in this language,
and prove that any function computed by such a program is partially
computable.

4. Adapt the construction in this section so that it works for binary
functions.

7

Processes and Grammars

1. Semi-Thue Processes

In this chapter we will see how the methods of computability theory can be
used to deal with combinatorial problems involving substitution of one
substring for another in a string.

Definition. Given a pair of words g, g on some alphabet, the expression

g~g

is called a semi-Thue production or simply a production. The term rewrite
rule is also used.

Thue is from Axel Thue, a Norwegian mathematician, and is pro­
nounced too-ay.

If P is the semi-Thue production g ~ g, then we write

to mean that there are (possibly null) words r, s such that

u = rgs and v = rgs.

(In other words, v is obtained from u by a replacement of g by g.)

169

170 Chapter 7 Processes and Grammars

Definition. A semi-Thue process is a finite set of semi-Thue productions.

If n is a semi-Thue process, we write

to mean that

u=v n

u=v p

for some production P which belongs to n. Finally, we write

if there is a sequence

.
u=v

II

u = u = u = ... = u = v.
I n 2 II n n

The sequence u 1 , u2 , ••• , un is then called a derivation of v from u. In
particular (taking n = 1)

u * u.

When no ambiguity results we often omit the explicit reference to n,
writing simply u = v and u ~ v.

Here is a simple example: We let n = {ab ~ aa, ba ~ bb}. Then we
have

aba = abb = aab = aaa.

Thus,

aba ~ aaa,

and the sequence of words aba, abb, aab, aaa is a derivation of aaa from
aba.

Exercises

1. Let n be the semi-Thue process with the production ba ~ ab.
(a) Give two different derivations of aaabbb from abbaba.

(b) Give the set of all words in {a, b}* from which aabb can be
derived.

(c) Give the set of all words which can be derived from bbaa.

2. Let n be the semi-Thue process with productions ba ~ ab and
ab ~ ba. Show that for all words u, v E {a, b}*, u 'fr v if and only if

v * u.

2. Simulation of Nondeterministic Turing Machines 171

3. Give a semi-Thue process n such that 1[xJ =if 1[Yl if and only if lx- yl
is even.

4. Let A= {l,2,bLbi,bf.bLc1 ,c2 ,d1 ,d2}. Give a semi-Thue process
ll SUCh that bi1 • • • bin ~ W E {1 2}* for all words bi 1 • •• bin where

JJ Jn n ' ' lJ ln '
i 1 ••• in, j 1 ••• jn are binary representations of numbers and i 1 ••• in +
j 1 ••• jn = w. [Hint: The symbols c1 , c2 are used to remember the need
to carry 1, and d1 , d2 are used to remember the need to carry 2.]

2. Simulation of Nondeterministic Turing Machines by
Semi-Thue Processes

Let us begin with a nondeterministic Turing machine L with alphabet
{s1 , ••• , sK}, and states q1 , q2, ... , qn. We shall show how to simulate L
by a semi-Thue process !.(L) on the alphabet

Each stage in a computation by L is specified completely by the current
configuration. We shall code each such stage by a word on the alphabet of
!.{.L). For example, the configuration

i
q4

will be represented by the single word

(2.1)

Note that h is used as a beginning and end marker, and the symbol q4

indicates the state of L and is placed immediately to the left of the
scanned square. A word like (2.1) will be called a Post word. Of course, the
same configuration can be represented by infinitely many Post words
because any number of additional blanks may be shown on the left or
right. For example,

is a Post word representing the same configuration that (2.1) does.
In general, a word huqivh, where 0 ~ i ~ n + 1, is called a Post word if

u and v are words on the subalphabet {s0 , s1 , ••• , sK}. We shall show how
to associate suitable semi-Thue productions with each quadruple of L;
the productions simulate the effect of that quadruple on Post words.

172 Chapter 7 Processes and Grammars

1. For each quadruple of L of the form q; sj sk q1 we place in I(L)
the production

2. For each quadruple of L of the form q; sj R q1 we place in I(L) the
productions

q;sjsk ~ sjqlsk'

q;sjh ~ sjq1s0h.

k=O,l, ... ,K,

3. For each quadruple of L of the form q; sj L q1 we place in I(L) the
productions

skqisj ~ qlsksj'

hq;sj ~ hq1s0sj.

k=O,l, ... ,K,

To see how these productions simulate the behavior of L, suppose L is
in configuration

This configuration is represented by the Post word

hs2 q4 s1s0 s3 h.

Now suppose L contains the quadruple

q4 si s3 qs.

Then I(L) contains the production

so that

The Post word on the right then corresponds to the configuration immedi­
ately following application of the above quadruple. Now suppose that L
contains the quadruple

2. Simulation of Nondeterministic Turing Machines 173

(Of course, if L is a deterministic Turing machine, it cannot contain both
of these quadruples.) Then I(L) contains the production

q4s1so ~ slq3so'

so that

Finally if L contains the quadruple

q4 sl Lqz,

then I(L) contains the production

Szq4sl ~ qzSzSJ'

so that

The productions involving h are to take care of cases where motion to
the right or left would go past the part of the tape included in the Post
word, so that an additional blank must be added. For example, if the
configuration is

and L contains the quadruple

q4 sJ R q3'

then I(L) contains the production

q4slh ~ slq3soh

and we have

so that the needed blank on the right has been inserted. The reader will
readily verify that blanks on the left are similarly supplied when needed.

We now complete the specification of I(L):

4. Whenever q;sp = 1, ... , n; j = 0, 1, ... , K) are not the first two
symbols of a quadruple of L, we place in I(L) the production

Thus, qn + 1 serves as a "halt" state.

174 Chapter 7 Processes and Grammars

5. Finally, we place in !.(L) the productions

We have

qn+lsi~qn+l'

qn+lh ~ qoh

s;qo ~ qo'

i=0,1, ... ,K,

i=0,1, ... ,K.

Theorem 2.1. Let L be a deterministic Turing machine, and let w be a
Post word on the alphabet of !.(L). Then

1. there is at most one word z such that w = z, and
I.<L>

2. if there is a word z satisfying (1), then z is a Post word.

Proof. We have w = huq;vh.
If 1 5. i 5. n, then

a. if v = 0 no production of !.(L) applies to w;
b. if v begins with the symbol si and there is a (necessarily unique)

quadruple of L which begins q;si, then there is a uniquely applica­
ble production of !.(L) and the result of applying it will be a Post
word;

c. if v begins with the symbol si and there is no quadruple of L which
begins q; si, then the one applicable production of !.(L) is

qisj ~ qn+lsj,

which yields another Post word when applied to w.

If i = n + 1, then

a. if v = 0, the only applicable production of !.(L) is

qn+lh ~ qoh,

which yields a Post word;
b. if v begins with the symbol si, the only applicable production of

!.(L) is

which again yields a Post word.

Finally, if i = 0, then

a. if u = 0, no production of !.(L) can be applied;
b. if u ends with si, the only applicable production of !.(L) is

sjqo ~ qo'

which yields a Post word. •

2. Simulation of Nondeterministic Turing Machines 175

Our next result makes precise the sense in which I(L) simulates L.

Theorem 2.2. Let L be a nondeterministic Turing machine. Then, for
each string u on the alphabet of L, L accepts u if and only if

Proof. Let the alphabet of L be s 1 , ••• , s K. First let us suppose that L
accepts u. Then, if L begins in the configuration

s0 u
i
ql

it will eventually reach a state qi scanning a symbol sk where no quadruple
of L begins q; sk. Then we will have (for appropriate words v, w on the
alphabet of L)

Next suppose that L does not accept u. Then, beginning with configu­
ration

L will never halt. Let

and suppose that

w =w =w =···=w
I I.(L) 2 I.(A) 3 I.(L) !.(L) m •

Then each wj, 1 .:5; j .:5; m, must contain a symbol qi with 1 .:5; i .:5; n. Hence
there can be no derivation of a Post word containing q0 from w1 , and so,
in particular, there is no derivation of hq0 h from w1 • •

Definition. The inverse of the production g -+ g is the production g -+ g.

For example, the inverse of the production ab -+ aa is the production
aa -+ ab.

176 Chapter 7 Processes and Grammars

Let us write O(L) for the semi-Thue process which consists of the
inverses of all the productions of !.(L). Then an immediate consequence
of Theorem 2.2 is

Theorem 2.3. Let L be a nondeterministic Turing machine. Then for
each string u in the alphabet of L, L accepts u if and only if

Exercises

1. (a) Give !.(L), where L is the Turing machine in Table 1.1 of
Chapter 6.

(b) Give a derivation that shows that hq1s0lllh = hq0h.
'i.(.#f)

(c) Describe {u I hq0 h ~ hq1s0 uh}.
n<L>

2. Give a semi-Thue process n such that, for all words u, v E {1, 2}*,
hq1s0us0vh 'if w E {1, 2}*, where u + v = w in binary notation.

3. Show that for any partially computable function f(x), there is a
semi-Thue process n such that for all x EN, l[xJ 'if l[Yl if and only if
Y = f(x).

3. Unsolvable Word Problems

Definition. The word problem for a semi-Thue process n is the problem
of determining for any given pair u, v of words on the alphabet of n
whether u 'if v.

We shall prove

Theorem 3.1. There is a Turing machine L such that the word problem
is unsolvable for both the semi-Thue processes !.(L) and O(L).

Proof. By Theorem 3.1 in Chapter 6, there is a Turing machine L (in
fact, deterministic) that accepts a nonrecursive language. Suppose first that
the word problem for !.(L) were solvable. Then there would be an

algorithm for testing given words v, w to determine whether v ~ w. By
'i.(.#f)

Theorem 2.2, we could use this algorithm to determine whether L will
accept a given word u by testing whether

3. Unsolvable Word Problems 177

We would thus have an algorithm for testing a given word u to see
whether L will accept it. But such an algorithm cannot exist since the
language accepted by L is not a recursive set.

Finally, an algorithm that solved the word problem for O(L) would also
solve the word problem for !.(L), since

v ~ w
I.<L>

if and only if w ~ v.
n<L> •

Definition. A semi-Thue process is called a Thue process if the inverse of
each production in the process is also in the process.

The fact that Thue processes are in fact "two-way" processes is a
curious coincidence.

We write g- g to combine the production g ~ g and its inverse
g~g.

For each Turing machine L, we write

0(L) = !.(L) U O(L),

so that 0(L) is a Thue process. We have

Theorem 3.2 (Post's Lemma). Let L be a deterministic Turing machine.
Let u be a word on the alphabet of L such that

Then

Proof. Let the sequence

be a derivation in 0(L). Since w1 is a Post word, and each production of
0(L) transforms Post words into Post words, we can conclude that the
entire derivation consists of Post words. We need to show how to eliminate
use of productions belonging to O(L) from this derivation. So let us
assume that the last time in the derivation that a production of O(L) was
used was in getting from W; to W; + 1 • That is, we assume

w.~w.l·
1 lHL> t+ '

W. I = W· 2 ~ WI= hqoh.
t+ I.<L> t+ I.<L>

178 Chapter 7 Processes and Grammars

Now, O(L) consists of inverses of productions of !.(L); hence we must
have

Moreover, we must have i + 1 < I because no production of !.(L) can be
applied to w1 = hq0h. Now, w;+ 1 is a Post word and

By Theorem 2.1, we conclude that w;+ 2 = w;. Thus the transition from W;

to W;+ 1 and then back to W;+ 2 = W; is clearly an unnecessary detour. That
is, the sequence

W 1 , W 2 , ••• , W;, W;+ 3 , ••• , W1

from which W;+ 1, W;+2 have been omitted is a derivation in E>(L).
We have shown that any derivation that uses a production belonging to

O(L) can be shortened. Continuing this procedure, we eventually obtain a
derivation using only productions of !.(L). •

Theorem 3.3 (Post-Markov). If the deterministic Turing machine L
accepts a nonrecursive set, then the word problem for the Thue process
E>(L) is unsolvable.

Proof. Let u be a word on the alphabet of L. Then we have, using
Theorems 2.2 and 3.2,

L accepts u

if and only if

if and only if

Hence, an algorithm for solving the word problem for E>(L) could be used
to determine whether or not L will accept u, which is impossible. •

Now we consider semi-Thue processes on an alphabet of two symbols.

Theorem 3.4. There is a semi-Thue process on the alphabet {a, b} whose
word problem is unsolvable. Moreover, for each production g ~ h of this
semi-Thue process, g, h =/= 0.

3. Unsolvable Word Problems 179

Proof. Let us begin with a semi-Thue process n on the alphabet A =
{a1 , ••• , an} and with productions

i = 1,2, ... ,m,

whose word problem is unsolvable. We also assume that for each i =
1, 2, ... , m, g; =/= 0 and g; =/= 0. This is legitimate because this condition is
satisfied by the productions of I(L).

We write

a'. = balilb
J '

j=1,2, ... ,n,

where there is a string of a's of length j between the two b's. Finally, for
any word w =/= 0 in A*,

w =a. a. ···a.
lt 12 lk '

we write

w' =a'. a'. ··· a' . .
lt h lk

In addition we let 0' = 0. Then, we consider the semi-Thue process ll' on
the alphabet {a, b} whose productions are

i = 1,2, ... ,m.

We have

Lemma 1. If u rt v, then u' ~ v'.

Proof. We have u = rg;s, v = rg;s. Hence u' = r'gis', v' = r'gis', so

that u' ~ v'. •
Lemma 2. If u' ~ w, then for some v E A* we have w = v' and u Ji v.

Proof. We have u' = pg/q, w = pg/q. Now, since g; =/= 0, g/ begins and
ends with the letter b. Hence each of p and q either begins and ends with
b or is 0, so that p = r', q = s'. Then, u = rg;s. Let v = rg;s. Then
w = v' and u rt v. •

Lemma 3. u 'fr v if and only if u' ~ v'.

Proof. If U = Ul rf Uz rf ··· rf Un = V, then by Lemma 1

U'- u' =u' = - lw zw =u'- v' n' n - •

180 Chapter 7 Processes and Grammars

Conversely, if

U , = w = = ... = w = v'
I n' Wz n' II' n '

then by Lemma 2, for each W; there is a string u; E A* such that W; = u~.
Thus,

u' u' u' = =Iff zw

By Lemma 2 once again,

=u'- v' []' n- .

so that u 'if v. •

Proof of Theorem 3.4 Concluded. By Lemma 3, if the word problem for TI'
were solvable, the word problem for TI would also be solvable. Hence, the
word problem for n, is unsolvable. •

In the preceding proof it is clear that if the semi-Thue process TI with
which we begin is actually a Thue process, then TI' will be a Thue process
on {a, b}. We conclude

Theorem 3.5. There is a Thue process on the alphabet {a, b} whose word
problem is unsolvable. Moreover, for each production g ----) h of this Thue
process, g, h =I= 0.

Exercises

1. Let TI be the semi-Thue process with productions cde ----) ce, d ----) cde.
Use the construction in the proof of Theorem 3.4 to get a semi-Thue
process TI' with productions on {a, b} such that u =if v if and only if
u' ~ v' for all words u, v E {c, d, e}*.

2. A semi-Thue system is defined to be a pair (u 0 , TI), where TI is a
semi-Thue process and u0 is a given word on the alphabet of TI. A
word w is called a theorem of (u 0 , TI) if u0 'if w. Show that there is a
semi-Thue system for which no algorithm exists to determine whether
a given string is a theorem of the system.

3. Let TI be a semi-Thue process containing only one production. Show
that n has a solvable word problem.

4.* Give an upper bound on the size of the smallest semi-Thue process
with an undecidable word problem. [See Exercise 2.2 in Chapter 6.]

4. Post's Correspondence Problem 181

4. Post's Correspondence Problem

The Post correspondence problem first appeared in a paper by Emil Post
in 1946. It was only much later that this problem was seen to have
important applications in the theory of formal languages.

Our treatment of the Post correspondence problem is a simplification of
a proof due to Floyd, itself much simpler than Post's original work.

The correspondence problem may conveniently be thought of as a
solitaire game played with special sets of dominoes. Each domino has a
word (on some given alphabet) appearing on each half. A typical domino is
shown in Fig. 4.1. A Post correspondence system is simply a finite set of
dominoes of this kind. Figure 4.2 gives a simple example of a Post
correspondence system using three dominoes and the alphabet {a, b}. Each
move in the solitaire game defined by a particular Post correspondence
system consists of simply placing one of the dominoes of the system to the
right of the dominoes laid down on previous moves. The key fact is that
the dominoes are not used up by being played, so that each one can be used
any number of times. The way to "win" the game is to reach a situation
where the very same word appears on the top halves as on the bottom
halves of the dominoes when we read across from left to right. Figure 4.3
shows how to win the game defined by the dominoes of Fig. 4.2. (Note that
one of the dominoes is used twice.) The word aabbbb which appears across
both the top halves and bottom halves is called a solution of the given Post
correspondence system. Thus a Post correspondence system possesses a
solution if and only if it is possible to win the game defined by that system.

huuh

huhuu

Figure 4.1

DGD
G~G

Figure4.2

DDGG
G G ~ ~

Figure 4.3

182 Chapter 7 Processes and Grammars

We shall prove

Theorem 4.1. There is no algorithm that can test a given Post correspon­
dence system to determine whether it has a solution.

Proof. Using Theorem 3.4, we begin with a semi-Thue process n on the
alphabet {a, b} whose word problem is unsolvable. We modify n in the
following trivial way: we add to the productions of n the two productions

a ---+a, b---+ b.

Naturally this addition has no effect on whether

for given words u, v. However, it does guarantee that whenever u =if v,
there is a derivation

where m is an odd number. This is because with the added productions we
have

U; fiU;

for each i, so that any step in a derivation (e.g., the first) can be repeated if
necessary to change the length of the derivation from an even to an odd
number.

Let u and v be any given words on the alphabet {a, b}. We shall
construct a Post correspondence system Pu,v (which depends on n as well
as on the words u and v) such that Pu,v has a solution if and only if u =if v.
Once we have obtained this Pu v we are through. For, if there were an
algorithm for testing given Post' correspondence systems for possessing a
solution, this algorithm could be applied in particular to Pu v and therefore
to determine whether u =if v; since n has an unsolvable' word problem,
this is impossible.

We proceed to show how to construct Pu,v. Let the productions of ll
(including the two we have just added) be g; ---+ h;, i = 1, 2, ... , n. The
alphabet of Pu, v consists of the eight symbols

abtib[] * *·
For any word w on {a, b}, we write w for the word on {a, b} obtained by
placing "- " on top of each symbol of w. Pu v is then to consist of the
2n + 4 dominoes shown in Fig. 4.4. Note th~t because n contains the
productions a ---+ a and b ---+ b, Pu, v contains the four dominoes

4. Post's Correspondence Problem

Bc;JDQJ~CIJ
liJDDGQJG

i =I, 2, ... ,n

Figure 4.4

183

Therefore, it is clear that in our play it is legitimate to use dominoes of the
form

where p is any word on {a, b}, since any such dominoes can be assembled
by lining up single dominoes selected appropriately from the previous four.

We proceed to show that Pu,v has a solution if and only if u 'if v.
First suppose that u 'if v. Let

where m is an odd number. Thus, for each i, 1 :::;; i < m, we can write

where the transition from U; to U;+ 1 is via the j;th production of II. Then
we claim that the word

(4.1)

is a solution of Pu v. To see this, let us begin to play by laying down the
dominoes: '

At this stage, the word on top is

while the word on the bottom is

184 Chapter 7 Processes and Grammars

We can continue to play as follows:

Now the word on top is

and the word on the bottom is

Recalling that m is an odd number we see that we can win by continuing
as follows:

BC!J ... []c;J~
00 [JBEJ

lfm I

tj,. I

for, at this point the word both on top and on bottom is (4.1).
Conversely suppose that Pu,u has a solution w. Examining Fig. 4.4, we

see that the only possible way to win involves playing

and

first and last, respectively. This is because none of the other dominoes in
Pu, u have tops and bottoms which begin (or end) with the same symbol.
Thus, w must begin with [and end with]. Let us write w = [z]y, where z
contains no]. (Of course it is quite possible that y = 0.) Since the only
domino containing] contains it on the far right on top and on bottom, we
see that [z] itself is already a solution to Pu , . We work with this solution.
So far we know that the game looks like this:

B ... CD
EJ B

so that the solution [z] looks like this:

[u*···*v].

4. Post's Correspondence Problem

Continuing from the left we see that the play must go

CJ
0

185

where g; g; ··· g; = u. (This is necessary in order for the bottom to
I 2 k

"catch up" with the u * which is already on top.) Writing u = u1 and
u2 = h;1h;2 ... h;k we see that u1 =fr u 2 and that the solution has the form

[u1 * u2 * .. · * v].
Now we see how the play must continue:

where of cou~se u2 = gj1gh ... gh. Again, writing u3 = hj1hh ... hh we
have that u 2 Ii u 3 and that the solution has the form

[u 1 * u2 * u3 * .. · * v].
Continuing, it is clear that the solution can be written

where

so that u =fr v. •
Exercises

1. Let II be the semi-Thue process with productions aba ----) a, b ----) aba,
and let u = bb, v = aaaaaa. Describe the Post correspondence system
Pu,t· and give a solution to Pu,c.

2. Find a solution to the Post correspondence problem defined by the
dominoes

6
G

186 Chapter 7 Processes and Grammars

3. Find an algorithm for Post correspondence problems whose alphabet
consists of just one symbol.

5. Grammars

A phrase-structure grammar or simply a grammar is just a semi-Thue
process in which the letters of the alphabet are separated into two disjoint
sets called the variables and the terminals, with one of the variables singled
out as the start symbol. It is customary (but, of course, not necessary) to
use lower case letters for terminals, capital letters for variables, and in
particular the letter S for the start symbol.

Let r be a grammar with start symbol S and let r, T be the sets of
variables and terminals of f, respectively. Then we define

L(f) = {u E T* I S ~ u},

and call L(f) the language generated by r. Our purpose in this section is to
characterize languages which can be generated by grammars.

We first prove

Theorem 5.1. Let U be a language accepted by a nondeterministic Turing
machine. Then there is a grammar r such that U = L(f).

Proof. Let U ~ T* and let L be a nondeterministic Turing machine that
accepts U. We will construct f by modifying the semi-Thue process .O(L)
from Section 2. Let L have the states q1 , ••• , qn. Then we recall that the
alphabet of .O(L) [which is the same as that of l(L)] consists of
s0 , q0 , q1 , q2 , ••• , qn, qn + 1 , h in addition to the letters of the alphabet of
L. We let the terminals of f be just the letters of T, and the variables of f
be the symbols from the alphabet of .O(L) not in T, together with the two
additional symbols S and q. S is to be the start symbol of f. The
productions of f are then the productions of .O(L) together with the
productions

qs ---+ sq for each sET

qh ---+ 0.

5. Grammars

Now, let L accept u E T*. Then, using Theorem 2.3, we have

S t hq0 h 7' hq1s0uh t quh 7' uqh t u,

so that u E L(f).

187

Conversely, let u E L(f). Then u E T* and S f u. Examining the list
of productions of r, we see that we must in fact have

S t hq0 h 7' vqhz 1' vz = u.

Proceeding further, we see that the symbol q could only be introduced
using the production

Hence, our derivation must have the form

S 1' hq0 h 7 xhq1s0 yhz 1' xqyhz 7 xyqhz 1' xyz = u,

where of course xy = v. Thus, there is a derivation of xhq1 s0 yhz from
hq0 h in f. Moreover, this must actually be a derivation in O(L) since the
added productions are clearly inapplicable. Moreover, the productions of
O(L) always lead from Post words to Post words. Hence, xhq1s0 yhz must
be a Post word. That is, x = z = 0 and u = xyz = y. We conclude that

Thus by Theorem 2.3, L accepts u. •
Now, let us begin with a grammar r and see what we can say about

L(f). Thus, let the alphabet of f be

where T = {sl '0 0 0' sn} is the set of terminals, VI' 0 0 0' vk are the variables,
and S = V1 is the start symbol. Let us order the alphabet of r as shown.
Thus strings on this alphabet are notations for integers in the base n + k.
We have

Lemma 1. The predicate u ==> v is primitive recursive.
r

Proof. Let the productions f be g; ~ h;, i = 1, 2, ... , I. We write, for
i = 1, 2, ... , I,

PROD;(u, v) = (3r, s),Ju = CONCAT(r,g;, s) & v = CONCAT(r, h;, s)].

188 Chapter 7 Processes and Grammars

Since, by Chapter 5, Section 1, CON CAT is primitive recursive, each of the
predicates PROD; is primitive recursive. But

u =f v = PROD 1(u,v) v PROD2(u,v) v ··· v PROD1(u,v),

and the result follows. •
We write DERIV(u, y) to mean that for some m, y = [u 1 , ••• , um, 1],

where the sequence Ut' 0 0 0' um is a derivation of u from s in r. (The "1"
has been added to avoid complications in case um = u = 0.) Then, since
the value of S in base n + k is n + 1 [because S = V1 is the (n + l)th
symbol in our alphabet], we have

DERIV(u,y) = (3m),r(m + 1 = Lt(y) & (y) 1 = n + 1

&(y)m =u &(y)m+l = 1

&('t/j)<m{j = 0 V [(y)j (:> (y)j+t]}).

Using Lemma 1, we have proved

Lemma 2. DERIV(u, y) is primitive recursive.

Also, by definition of DERIV(u, y), we have for every word u on the
alphabet of r

S 'f u = (3y)DERIV(u, y). (5.1)

Finally, (5.1) shows that

S ~ u = minDERIV(u,y)!.
r Y

Hence, by Lemma 2 and Theorem 7.2 in Chapter 3, we see that {u IS ~ u}
. B r ts r.e. ut

L(f) = T* n {u IS =f u} (5.2)

(where T is the alphabet of terminals of f), so that L(f) is the intersec­
tion of two r.e. sets and hence is r.e. Combining this result with Theorem
5.1 in Chapter 6 and Theorem 5.1 in this chapter, we have

Theorem 5.2. A language U is r.e. if and only if there is a grammar r
such that U = L(f).

5. Grammars 189

We now are able to obtain easily the promised converse to Theorem 5.1
in Chapter 6. In fact putting Theorem 3.1 in Chapter 6 and Theorems 5.1
and 5.2 in this chapter all together, we have

Theorem 5.3. Let L be a given language. Then the following conditions
are all equivalent:

1. L is r.e.;
2. L is accepted by a deterministic Turing machine;
3. L is accepted by a nondeterministic Turing machine;
4. there is a grammar f such that L = L(f).

Theorem 5.3 involves some of the main concerns of theoretical com­
puter science: on the one hand, the relation between grammars, the
languages they generate, and the devices that accept them; on the other
hand, the relation, for various devices, between determinism and nondeter­
minism.

We will conclude this section by obtaining a result that will be needed in
Chapter 11, but can easily be proved at this point.

Definition. A grammar f is called context-sensitive if for each production
g---+ h of r we have lgl ~ lhl.

Lemma 3. If r is context-sensitive, then

is recursive.

Proof. It will suffice to obtain a recursive bound for y in formula (5.1).
Since

for any derivation u1 , ••• , urn of u from S in the context-sensitive gram­
mar r, we must have

u 1 ,u2 , ••• ,um ~g(u),

where g(u) is the smallest number which represents a string of length
lui + 1 in base n + k. Now, since g(u) is simply the value in base n + k of
a string consisting of lui + 1 repetitions of 1, we have

lui
g(u) = L (n + k)i,

i=O

190 Chapter 7 Processes and Grammars

which is primitive recursive because lui is primitive recursive. Next, note
that we may assume that the derivation

S = U 1 ==> u2 ==> • • • ==> Um = U

contains no repetitions. This is because given a sequence of steps

z = U; ==> ui+l ==> ••• ==> ui+t = z,

we could simply eliminate the steps u; + 1 , ... , u; + 1• Hence the length m of
the derivation is bounded by the total number of distinct strings of length
::5; lui on our alphabet of n + k symbols. But this number is just g{u).
Hence,

m

[u1, ... ,um,l] = 0Pt;·Pm+l :5;h(u),
i=l

where we have written h(u) for the primitive recursive function defined by

Finally, we have

g(u)

h(u) = n pf<u>. Pg(u)+ I .
i=l

S 'if u <=> (3y)sh<u>DERIV(u,y),

which gives the result. •
Theorem 5.4. If f is a context-sensitive grammar, then L{f) is recursive.

Proof. We will use Lemma 3 and Eq. (5.2). Since T* is a recursive set, the
result follows at once. •

Exercises

1. For each of the following languages L, give a grammar f such that
L = L(f).
(a) L = {alnlblnJ In E N}.

(b) L = {alnlblmll n ::5; m}.

(c) L = {wwR I w E {a, b}*}.

2. Use the construction in the proof of Theorem 5.1 to give a grammar f
such that L(f) = {llmlBllnJBllm +nJI m, n ~ 0}.

3. Write down the proof of Theorem 5.2.

6. Some Unsolvable Problems Concerning Grammars 191

4. (a) Let f have the variables S, B, C, the terminals a, b, c and the
productions

S ~ aSBC,

CB ~ BC,

S ~aBC,

bB ~ bb,

aB ~ ab, bC ~ be,

cC ~ cc.

Prove that for each n -=/= 0, alnlblnlclnJ E L(f).
(b)* Prove that L(f) = {alnlblnlclnJ In -=/= 0}.

6. Some Unsolvable Problems Concerning Grammars

How much information can we hope to obtain about L(f) by a computa­
tion that uses the grammar f as input? Not much at all, as we shall see.

Let L be a Turing machine and let u be some given word on the
alphabet of L. We shall construct a grammar fu as follows:

The variables of ru are the entire alphabet of !.(L) together with S
(the start symbol) and V. There is just one terminal, namely, a. The
productions of ru are all of the productions of !.(L) together with

S ~ hq1s0uh

hq0 h ~ V

v~av

v~a.

Then it follows at once from Theorems 2.1 and 2.2 that S 'f:> V if and only
if L accepts u. Thus we have "

Lemma. If L accepts u, then L(f) = {alii I i -=1= 0}. If L does not accept
u, then L(fu) = 0.

Now we can select L so that the language it accepts is not recursive.
Then there is no algorithm for determining for given u whether L accepts
u. But the lemma obviously implies the equivalences

L accepts u = L(f)-=!= 0

= L(f) is infinite

<=>aEL(f).

192 Chapter 7 Processes and Grammars

We have obtained

Theorem 6.1. There is no algorithm to determine of a given grammar f
whether

1. L(f) = 0,
2. L(f) is infinite, or
3. v0 E L(f) for a fixed word v0 •

We can also prove

Theorem 6.2. There is no algorithm for determining of a given pair f, ~
of grammars whether

1. L(~) ~ L(f),
2. L(~) = L(f).

Proof. Let ~ be the grammar with the single variable S, the single
terminal a, and the productions

S ---+ aS

S---+ a.

Then L(~) = {a[ill i -=/= 0}. Thus we have by the previous lemma

L accepts u - L(~) = L(fu) - L(~) ~ L(fu).

The result follows at once.

Exercise

•

1. Show that there is no algorithm to determine of a given grammar f
whether
(a) L(f) contains at least one word with exactly three symbols;
(b) v0 is the shortest word in L(f) for some given word v0 ;

(c) L(f) =A* for some given alphabet A.

*7. Normal Processes

Given a pair of words g and g we write

gz ---+ zg

7. Normal Processes 193

to indicate a kind of transformation on strings called a normal production.
If P is the normal production gz ~ zg we write

if for some string z we have

u =gz, v =zg.

That is, v can be obtained from u by crossing off g from the left of u and
adjoining g to the right. A normal process is simply a finite set of normal
productions. If 11 is a normal process, we write

U'7V

to mean that

U=;1V

for some production P in 11. Finally, we write

u~v

to mean that there is a sequence (called a derivation)

The word problem for 11 is the problem of determining of two given words
u, v whether u ~ v.

Let TI be a semi-Thue process on the alphabet {a, b} with an unsolvable
word problem. We shall show how to simulate TI by a normal process 11 on
the alphabet {a, b, ii, b}. As earlier, if u E {a, b}*, we write u for the word
on {ii, b} obtained by placing - above each letter in u. Let the produc­
tions of TI be

Then the productions of 11 will be

g;z ~ zh;

az ~ zii

bz ~zb
iiz ~ za

bz ~ zb.

i = l,2, ... ,n.

i = 1,2, ... , n

A word on {a, b, ii, b} is called proper if it can be written in one of the
forms uv or uv, where u, v are words on {a, b}. We say that two words are

194 Chapter 7 Processes and Grammars

associates if there is a derivation of one from the other using only the last
four productions of 11. A word on {a, b} of length n has 2n associates, all of
which are proper. For example, the associates of baab are as follows:

~=~=~=~=~=~=~=~=~.

Generally for u, v E {a, b}*, the proper words uv and uv are associates of
each other and also of the word vu. In fact, vu is the unique word on {a, b}
which is an associate of uv. Thus, a word is proper just in case it is an
associate of a word on {a, b}.

Lemma 1. If u If v, then u ~ v.

Proof. We have u = pg;q, v = ph;q for some i. Then

Lemma 2. If u if v, then u ~ v.

Proof. Immediate from Lemma 1.

•

•
Lemma 3. Let u be proper and let u 7 v. Then there are words r, s on
{a, b} that are associates of u, v, respectively, such that r if s.
Proof. If v is an associate of u, then u and v are both associates of some
word r on {a, b}, and the result follows because r 'if r.

If v is not an associate of u, the production used to obtain v from u
must be one of the g;z ~ zh;. Since u is proper, we have u = g;elfi, where
p, q are words on {a, b}. Then v = qph;. Thus, setting

r = pg;q,

the result follows because r If s. •
Lemma 4. Let u be proper and let u ~ v. Then there are words r, s on
{a, b} that are associates of u, v, respectively, such that r =if s.
Proof. By induction on the length of the derivation in 11 of v from u. The
result is obvious if the derivation has length 1. Suppose the result is known
for derivations of length m, and let

By the induction hypothesis, there are words r, z on {a, b} that are
associates of u, um, respectively, such that r 'if z. By Lemma 3, um + 1 is an
associate of a words on {a, b} such that z =if s. Thus, r =if s. •

7. Normal Processes 195

Lemma 5. Let u, v be words on {a, b}. Then u ~ v if and only if u fr v.

Proof. By Lemma 2 we know that u fr v implies u ~ v. Conversely, if
u ~ v, by Lemma 4, r fr s, where r, s are words on {a, b} that are
associates of u, v, respectively. But since u, v are already words on {a, b},
we have r = u, s = v, so that u fr v. •

Since n was chosen to have an unsolvable word problem, it is now clear
that v has an unsolvable word problem. For, by Lemma 5, if we had an
algorithm for deciding whether u ~ v, we could use it to decide whether
u fr v.

We have proved

Theorem 7.1. There is a normal process on a four-letter alphabet with an
unsolvable word problem.

Exercise

1. Show that there is a normal process with an unsolvable word problem
whose alphabet contains only two letters.

8

Classifying Unsolvable Problems

1. Using Oracles

Once one gets used to the fact that there are explicit problems, such as the
halting problem, that have no algorithmic solution, one is led to consider
questions such as the following.

Suppose we were given a "black box" or, as one says, an oracle, which
somehow can tell us whether a given Turing machine with given input
eventually halts. (Of course, by Church's thesis, the behavior of such an
"oracle" cannot be characterized by an algorithm.) Then it is natural to
consider a kind of program that is allowed to ask questions of our oracle
and to use the answers in its further computation. Which noncomputable
functions will now become computable?

In this chapter we will see how to give a precise answer to such
questions. To begin with, we shall have to modify the programming
language Y introduced in Chapter 2, to permit the use of "oracles."
Specifically, we change the definition of "statement" (in Chapter 2, Section
3) to allow statements of the form V +-- O(V) instead of V +-- V. The
modified version of Y thus contains four kinds of statement: increment,
decrement, conditional branch, and this new kind of statement which we
call an oracle statement. The definitions of instruction, program, state,
snapshot, and terminal snapshot remain exactly as in Chapter 2.

197

198 Chapter 8 Classifying Unsolvable Problems

We now let G be some partial function on N with values in N, and we
shall think of G as an oracle. Let .9J be a program of length n and let
(i, u) be a nonterminal snapshot of .9, i.e., i :::;; n. We define the snapshot
(j, T) to be the G-successor of (i, u) exactly as in the definition of
successor in Chapter 2, Section 3, except that Case 3 is now replaced by

Case 3. The ith instruction of .9J is V +-- O(V) and u contains the equation
V = m. If G(m)J,, then j = i + 1 and T is obtained from u by
replacing the equation V = m by V = G(m). If G(m) i, then
(i, u) has no successor.

Thus, when G(m) J,, execution of this oracle statement has the intuitive
effect of answering the computer's question "G(m) = ?". When G(m)j,
an "out-of-bounds" condition is recognized, and the computer halts with­
out reaching a terminal snapshot. Of course, when G is total, every
nonterminal snapshot has a successor.

A G-computation is defined just like computation except that the word
successor is replaced by G-successor. A number m that is replaced by
G(m) in the course of a G-computation (under Case 3) is called an oracle
query of the G-computation. We define 1/J.J.~ {;(r 1 , r 2 , ••• , r m) exactly as we
defined I/J.J.m>(r1 , r2 , ••• , r m) in Chapter 2, Section 4, except that the word
computation is replaced by G-computation.

Now, let G be a total function. Then, the partial function
I/J.J.~{;(x 1 , ••• , xm) is said to be G-computed by .9. A partial function f is
said to be partially G-computable or G-partial recursive if there is a
program that G-computes it. A partially G-computable function that is
total is called G-computable or G-recursive. Note that we have not defined
partially G-computable unless G is a total function.

We have a few almost obvious theorems.

Theorem 1.1. If f is partially computable, then f is partially G-computa­
ble for all total functions G.

Proof. Clearly, we can assume that f is computed by a program .9J
containing no statements of the form' V +-- V. Now this program .9J is also

1 Unlabeled statements V +- V can just be deleted, and

can be replaced by

[L] V+-V

[L] V+- V+ 1

V+-V-1.

1. Using Oracles 199

a program in the new revised sense; moreover, a computation of 9' is the
same thing as a G-computation of 9' since 9' contains no oracle state­
ments. Hence 1/JJ-~6 = 1/JJ.m> for all G. •

We write I for the identity function /(x) = x. (Thus, I= ulJ

Theorem 1.2. f is partially computable if and only if f is partially
/-computable.

Proof. If f is partially computable, then by Theorem 1.1 it is certainly
partially /-computable. Conversely, let 9' /-compute f. Let 9'' be ob­
tained from 9' by replacing each oracle statement V +--- O(V) by V +--- V.
Then, 9'' is a program in the original sense and 9'' computes f. •

Theorem 1.3. Let G be a total function. Then G is G-computable.

Proof. The following program2 clearly G-computes G:

X+--- O(X)

Y+-X •

Theorem 1.4. The class of G-computable functions is a PRC class.

Proof. Exactly like the proof of Theorem 3.1 in Chapter 3. •

This last proof illustrates a situation, which turns out to be quite typical,
in which the proof of an earlier theorem can be used virtually intact to
prove a theorem relative to an "oracle" G. One speaks of a relativized
theorem and of relativizing a proof. It is a matter of taste how much detail
to provide in such a case.

Theorem 1.5. Let F be partially G-computable and let G be H-computa­
ble. Then F is partially H-computable.

Proof. Let 9' be a program which G-computes F. Let 9'' be obtained
from 9' by replacing each oracle statement V +--- O(V) by a macro
expansion obtained from some program which H-computes G. Then
clearly, 9'' H-computes F. •

Theorem 1.6. Let G be any computable function. Then a function F is
partially computable if and only if it is partially G-computable.

2 Of course, we can freely use macro expansions, as explained in Chapter 2.

200 Chapter 8 Classifying Unsolvable Problems

Proof. Theorem 1.1 gives the result in one direction. For the converse, let
F be partially G-computable. By Theorem 1.2, G is /-computable. Hence,
by Theorem 1.5, F is partially /-computable and so, by Theorem 1.2 again,
F is partially computable. •

It is useful to be able to work with "oracles" that are functions of more
than one variable. We introduce this notion by using a familiar coding
device from Chapter 3, Section 8.

Definition. Let f be a total n-ary function on N, n > 1. Then we say
that g is (partially) !-computable to mean that g is (partially) G-computa­
ble, where

G(x) = f((x) 1 , ••• , (x)n). (1.1)

Theorem 1.7. Let f be a total n-ary function on N. Then f is /-computa­
ble.

Proof. Let G be defined by (1.1). Then

f(xl ' ... ' xn) = G([xl ' ... ' xn]).

Hence the following program G-computes f:

Z ~ O(Z)

y~z •
Since predicates are also total functions we can speak of a function

being (partially) P-computable, where P is a predicate. Also, we speak of a
function being (partially) A-computable when A ~ N; as usual, we simply
identify A with the predicate that is its characteristic function.

Exercises

1. Provide a suitable definition of computability by a Post-Turing pro­
gram relative to an oracle and prove an appropriate equivalence
theorem.

2. For a given total function G from N to N, define the class Rec(G) to
be the class of functions obtained from G and the initial functions of
Chapter 3 using composition, recursion, and minimalization. Prove
that every function in Rec(G) is partially G-computable.

2. Relativization of Universality 201

2. Relativization of Universality

We now proceed to relativize the development in Chapter 4. As in Chapter
4, Section 1, we define an instruction number #(I) = (a, (b, c)) for all
instructions /. The only difference is that b = 0 now indicates an oracle
staLement instead of one of the form V ~ V. For 9' a program, we now
define #(9') as before. As indicated in Chapter 4, in order to avoid
ambiguity we must not permit a program ending in the instruction whose
number is 0. This instruction is now the unlabeled statement Y ~ O(Y).
Hence, for complete rigor, if we wish to end a program with Y ~ O(Y), we
will have to provide the statement with a spurious label.

We define <t>g'>(xp ... ,xn,y) to be t/J.J.~b(x 1 , ... ,xn) where 9' is the
unique program such that #(9') = y. We also write <l>c(x, y) for <I>g>(x, y).
We have

Theorem 2.1 (Relativized Universality Theorem). Let G be total. Then
the function <l>g'>(x 1 , ••• , xn, y) is partially G-computable.

Proof. The proof of this theorem is essentially contained in the program
of Fig. 2.1. The daggers (*) indicate the changes from the unrelativized
universal program in Fig. 3.1 in Chapter 4. As in that case, what we have is
essentially an interpretative program. The new element is of course the
interpretation of oracle statements. This occurs in the following program
segment which, not surprisingly, itself contains an oracle statement:

[0] W ~ (S)r(U)+ 1

B~w

B ~ O(B)
S~lSjPwj·P 8

The program segment works as follows. First, W and B are both set to the
current value of the variable in the oracle statement being interpreted.
Then an oracle statement gives B a new value which is G of the old value.
Finally, this new value is stored as an exponent on the appropriate prime
in the number S. The remainder of the program works exactly as in the
unrelativized case. •

Let G be any partial function on N with values in N. Then we define
the relativized step-counter predicate by

STP~n>(x 1 , ••• , xn, y, t) = there is a G-computation of program number
y of length ~ t + 1 beginning with inputs
xl , . .. ,xn.

202 Chapter 8 Classifying Unsolvable Problems

z +- x.+ 1 + 1
n

s +- n (p2;)x,
i=l

K+-1

[C] IF K = Lt(Z) + 1 v K = 0 GOTO F

U +- r((Z)K)

p +- Pr(U)+ I
IF l(U) = 0 GOTO 0 (:j:)

IF l(U) = 1 GOTO A

IF -(PIS) GOTO N

IF l(U) = 2 GOTO M

K+- min [l((Z);) + 2 = l(U)]
i,;Lt(Z)

GOTOC

[0] W +- (S)r(U)+ 1 (:j:)

B +- W (:j:)

B+-O(B) (:j:)

S +-[S/Pwj ·P8 (:j:)

GOTON (:j:)

[M] S +-[S/PJ

GOTON

[A] S+-S·P

[N] K+-K+ 1

GOTOC

[F] y +- (S)I

Figure 2.1. Program that G-computes CI>h">(xl ' ... ' x.' x.+ I).

As in the unrelativized case, we have

Theorem 2.2 (Relativized Step-Counter Theorem). For any total function
G, the predicates STP~">(xp ... , x., y, t) are G-computable.

In Chapter 4 we proved that the unrelativized predicates STP<•> are
primitive recursive, but we do not need such a sharp result here. Instead,
we modify the program in Fig. 2.1 by adding a variable Q that functions as
a step counter. Then each time through the main loop, Q is increased by 1,
so that the program will "know" when a given number of steps has been

2. Relativizatlon of Universality 203

Z <-- Xn+ 1 + 1
n

s --- . n (p2i)x;
•=1

K<--1

[C] Q=Q+1 (*)

IF Q > Xn+Z + 1 GOTO E (*)

IF K = Lt(Z) + 1 v K = 0 GOTO F

U <-- r((Z)K)

p <-- Pr(U)+ I

IF l(U) = 0 GOTO 0 (:j:)

IF /(U) = 1 GOTO A

IF -(PIS) GOTO N

IF /(U) = 2 GOTO M

K<- min [l((Z);) + 2 = l(U)]
islt(Z)

GOTOC

[O] W <-- (S)r(U)+ I (:j:)

B <-- W (:j:)

B <-- O(B) (:j:)

S <-[SjPwj·P8 (:j:)

GOTON (:j:)

[M] S <-[S/PJ

GOTON

[A] S<-S·P

[N] K<-K+ 1

GOTOC

[F] Y<--1 (*)

Figure 2.2. Program that G-computes STPhnl(X1 , ••• , Xn, Xn+ 1 , Xn+ 2).

exceeded. The program is given in Fig. 2.2. The asterisks (*) indicate
changes from the relativized universal program and the daggers (:j:), as
before, indicate the changes made in relativizing.

We shall now consider certain partial functions with finite domains, and
use numbers as codes for them. For every u E N we define

{u}(i) = { ~(u))i+ I fori < l(u)

fori ~ l(u).
(2.1)

204 Chapter 8 Classifying Unsolvable Problems

Thus, if /(u) = 0, then {u} = 0, the nowhere defined function. Also, if

u = (k,[a0 ,a1 , ••• ,ak_ 1]),

then {u}(x) =ax for x = 0, 1, ... , k - 1 and {u}(x)j for x :2: k.

Theorem 2.3. The predicate

P (X 1 , ••• , X n , Y, I, U) <=> STI{W(X 1 , ••• , X n , Y, I)

is computable.

Proof. We will transform the program in Fig. 2.2 into one that computes
P(x 1 , ••• ,xn,xn+l•xn+z•Xn+ 3). We need only replace the single oracle
statement B ~ 0(B) by instructions that operate on X n + 3 to obtain the
required information about {xn+ 3}. This involves first testing for
{x n + 3}(b),!., where b is the value of the variable B. If {x n + 3}(b) i, compu­
tation should halt with output 0, because there is no computation in this
case. Otherwise B should be given the value {xn+ 3}(b). Thus, by (2.1), it
suffices to replace the oracle statement B ~ O(B) in the program in Fig.
2.2 by the following pair of instructions:

IF l(Xn+3):::;; B GOTO E

•
Now, let G be a total function. Then, we define

u-<G

to mean that {u}(i) = G(i) for 0 :::;; i < /(u). [Of course, by (2.1), {u}(i)j for
i ;;::: /(u).] For a number u such that u -< G, values of G can be retrieved
by using the equations

G(i) = (r(u))i+ 1 , i = 0, 1, ... ,/(u)- 1.

We can use the predicate STI{~j>(x 1 , ••• , xn, y, t) to obtain an important
result that isolates the noncomputability of the relativized step-counter
predicate in a way that will prove helpful. The simple observation on which
this result capitalizes is that any G-computation can contain only finitely
many oracle queries.

Theorem 2.4 (Finiteness Theorem). Let G be a total function. Then, we
have

2. Relatlvlzation of Universality 205

Proof. First suppose that STPbn>(x1 , ••• , xn, y, t) is true for some given
values of x 1 , ••• , xn, y, t, and let go be the program with #(go)= y. Let
s 1 , s 2 , ••• , s k be a G-computation of go where s 1 is the initial snapshot
corresponding to the input values x 1 , x2 , ••• , xn and where k:::;; t + 1. Let
M be the largest value of an oracle query of this G-computation, and let
u = (M + 1,[G(O),G(l), ... ,G(M)]). Thus, u-< G and {u}(m) = G(m)
for all m :::;; M. Hence, s1, s2 , ••• , sk is likewise a {u}-computation of go_
Since k :::;; t + 1, STI(~j>(x 1 , ••• , xn, y, t) is true.

Conversely, let us be given u -< G such that STI(~j>(x 1 , ••• , xn, y, t) is
true, and let #(go)= y, Let s1, s2 , ••• , sk be a {u}-computation of go
where s1 is the initial snapshot corresponding to the input values
x 1 , x2 , ••• , xn and where k :::;; t + 1. For each m that is an oracle query of
this {u}-computation, we must have {u}(m) J,, since otherwise one of the
snapshots in this {u}-computation would be nonterminal and yet not have a
successor. Since u -< G, we must have {u}(m) = G(m) for all such m.
Hence s1, s2 , ••• , sk is likewise a G-computation of go_ Since k :::;; t + 1,
STPtn>(x1 , ••• , xn, y, t) is true. •

To conclude this section we turn to the parameter theorem (Theorem
5.1 in Chapter 4).

Theorem 2.5 (Relativized and Strengthened Parameter Theorem). For
each n, m > 0, there is a primitive recursive function s;:.(u 1 , ••• , un, y)
such that for every total function G:

<t>&m+nl(x1 , ••• , Xm, U1 , ••• , Un, y) = <t>&m>(x 1 , ••• , Xm, S;:.(ul, ... , Un, y)).

(2.2)

Moreover, the functions s;:. have the property:

Proof. The functions s;:. are defined exactly as in the proof of Theorem
5.1 in Chapter 4. We briefly give the proof again in a slightly different way.
Thus, let #(go) = y; then the function S~(u, y) is defined to be the
number of the program .9 obtained from go by preceding it by the
statement

xm+l ~xm+l + 1

repeated u times. Since .9 on inputs x1, ... , xm will do exactly what go
would have done on inputs x 1 , ••• , x m , u we have

206 Chapter 8 Classifying Unsolvable Problems

the desired result for n = 1. To complete the proof, we define s::, for
n > 1 by the recursion

It is now easy to prove by induction on n that if #(9') = y, then
s::,(ul' ... ' un 'y) = #(.9), where .9 is obtained from 9' by preceding it
by the following program consisting of un + ··· +u1 statements.

~m+n +-- xm+n + 1}
. u
• n

xm+n +-- xm+n + 1

Hence, .9 on inputs x 1 , ••• , x m will do exactly what 9' would have done
on inputs x1 , ••• , xm, u1 , ••• , un. Thus, we obtain (2.2).

Finally, let

s::,(ul ' ... ' un 'y) = s::,(ul ' ... ' un 'y) = #(.9),

and let y = #(9'). Then, .9 consists of a list of increment statements
followed by 9', and for 1 :::;; i :::;; n, U; and u; are both simply the number of
times the statement

xm+i +-- xm+i + 1

occurs in .9 preceding 9'. Thus, U; = u;.

Exercises

1. (a) Show that the functions s::, do not have the property:

•

(b) Can the definition of s::, be modified so the parameter theorem
continues to hold, but so the condition of (a) holds as well? How?

2. Prove the converse of Exercise 1.2.

3. Reducibility 207

3. Reducibility

If A and B are sets such that A is B-recursive, we also say that A is
Turing-reducible to B and we write A ~, B. We have

Theorem 3.1. A ~, A. If A ~, B and B ~, C, then A ~,C.

Proof. The first statement follows at once from Theorem 1.3 and the
second from Theorem 1.5. •

Any relation on the subsets of N for which Theorem 3.1 is true is called
a reducibility. Many reducibilities have been studied. For example, we
introduced many-one reducibility in Chapter 4. We can also define a
restricted form of many-one reducibility.

Definition. We write A ~ 1 Band say that A is one-one reducible to B if
there is a one-one recursive function f (i.e., f(x) = f(y) implies x = y)
such that

A= {x EN I f(x) E B}.

Theorem 3.2. A ~ 1 B implies A ~m B implies A ~, B.

Proof. The first implication is immediate. For the second implication, let
A = {x EN I f(x) E B}, where f is recursive. Then the following program
B-computes A:

X~ f(X)

X~ O(X)
v~x

Theorem 3.3. ~ 1 and ~m are both reducibilities.
•

Proof. Clearly A = {x EN I /(x) E A}, where I is the identity function.
Hence A ~ 1 A and therefore A ~m A.

Let A ~m B and B ~m C, and let

A = {x EN I f(x) E B},

where J, g are recursive. Then

B = {x E N I g(x) E C},

A= {x ENig(f(x)) E C},

so that A ~me. If, moreover, f and g are one-one and h(x) = g(f(x)),
then h is also one-one, because

h(x) = h(y) implies g(f(x)) = g(f(y))

implies f(x) = f(y)

implies x = y. •

208 Chapter 8 Classifying Unsolvable Problems

Thus, we have three examples, :::;; 1, ::;;m, and :::;;~' of reducibilities.
Polynomial-time reducibility, ::;;P , which we will study in Chapter 15, is
another example. (In fact, historically, polynomial-time reducibility was
suggested by many-one reducibility.) There are a number of simple
properties that all reducibilities share. To work some of these out, let us
write ::;;Q to represent an arbitrary reducibility. By replacing Q by 1, m, t
(or even p) we specialize to the particular reducibilities we have been
studying. We write A $, QB to indicate that it is not the case that
A ::;;Q B.

Definition. A =Q B means that A ::;;Q Band B ::;;Q A.

Theorem 3.4. For any reducibility ::;;Q:

A =Q A,

A =Q B implies B =Q A,

A =Q B and B =Q C implies A =Q C.

Proof. Immediate from the definition. •
Definition. Let W be a collection of subsets of N and let ::;;Q be a
reducibility. W is called Q-closed if it has the property

A E Wand B ::;;Q A implies B E W.

Also, a set A E W is called Q-complete for W if for every B E W we have
B ::;;Q A.

NP-completeness, which will be studied in Chapter 15, is, in the present
terminology, polynomial-time completeness for NP. Completeness of a set
A is often proved by showing that a set already known to be complete can
be reduced to A.

Theorem 3.5. Let A be Q-complete for W, let BE W, and let A ::;;Q B.
Then B is Q-complete for W.

Proof. Let C E W. Then C ::;;Q A. Hence C ::;;Q B. •

If W is a collection of subsets of N, we write

co-W = {A ~ N I A E W}.

Theorem 3.6. Let co-W be Q-closed, let A be Q-complete for W, and let
A E co-W. Then we have W = co-W.

3. Reducibility 209

Proof. Let BE W. Then, since A is Q-complete for W, B ~Q A. Since
A E co-W and co-W is Q-closed, BE co-W. This proves that W ~co-W.

Next let B E co-W. Then ii E W. By what has already been shown,
ii E co-W. Hence B E W. This proves that co-W ~ W. •

As we shall see, Theorem 3.6 is quite useful. Our applications will be to
the case of one-one and many-one reducibility. For this purpose, it is
useful to note

Theorem 3.7. If A ~m B, then A ~m B. Likewise if A ~, B, then
A~, ii.
Proof. If A = {x E Nlf(x) E B}, then clearly A= {x E Nlf(x) E B} .

•
Corollary 3.8. If W ism-closed or 1-closed, then so is co-W.

Proof. Let BE co-W, A ~m B. By the theorem, A ~m B. Since BE W
and W ism-closed, A E W. Hence A E co-W. Similarly for ~, . •

For a concrete example, we may take W to be the collection of r.e.
subsets of N. (For notation, the reader should review Chapter 4, Section
4.) We have

Theorem 3.9. K is 1-complete for the class of r.e. sets.

Proof. Let A be any r.e. set. We must show that A ~, K. Since A is r.e.,
we have

A = {x EN I f(xH},

where f is a partially computable function. Let g(t, x) = f(x) for all t, x.
Thus, g is also partially computable. Using the (unrelativized) universality
and parameter theorems, we have for a suitable number e:

Hence,

g(t,x) = ci><2>(t,x,e) = ci>(t,Sf(x,e)).

A = {x EN I f(x) ~}

= {x EN I g(Sf(x, e), x) ~}

= {x EN I ci>(Sf(x, e), Sf(x, e)H}

= {x EN I Sf(x,e) E K}.

Thus, A ~m K. But, by the strengthened version of the parameter theo­
rem (Theorem 2.5), Sf(x, e) is actually one-one. Hence, A ~, K. •

210 Chapter 8 Classifying Unsolvable Problems

The class of r.e. sets is easily seen to be m-closed. Thus, let f be partial­
ly computable, let A = {x EN I f(x) ~ }, and let B = {x EN I g(x) E A},
where g is computable. Then

B = {x EN I f(g(x))t},

so that B is r.e. Applying Theorems 3.2, 3.6, and 3.9 and Corollary 3.8, we
obtain the not very interesting conclusion:

If Kis r.e., then the complement of every r.e. set is r.e.

Since we know that K is in fact not r.e., this does us no good. However,
Corollary 3.8 and Theorem 3.6 together with the fact that there is an r.e.
set (e.g., K) whose complement is not r.e. permits us to conclude

Theorem 3.10. If A is m-complete for the class of r.e. sets, then A is not
r.e., so that A is not recursive.

We conclude this section with a simple but important construction. For
A, B ~ N we write

A E9 B = {2x I x E A} u {2x + 11 x E B}.

Intuitively, A E9 B contains the information in both A and B and nothing
else. This suggests the truth of the following simple result.

Theorem 3.11. A ~. A E9 B, B ~. A E9 B. If A ~. C and B ~. C, then
A E9 B ~.C.

Proof. The following program (A E9 B)-computes A:

x~2x

X~ O(X)

Y~x

If the first instruction is replaced by X~ 2X + 1, the program (A E9 B)­
computes B.

Finally, let CA, C8 be the characteristic functions of A and B, respec­
tively. Assuming that A and B are both C-computable, there must be
programs that C-compute the functions CA and C8 , respectively. Hence,
we may use macros

4. Sets r.e. Relative to an Oracle 211

in programs that have C available as oracle. Thus, the following program
C-computes A E9 B:

Exercises

IF21 X GOTO D
X+-- l(X _:_ 1)/2J
Y +-- CiX)
GOTOE

[D] X+-- lX/2J
Y +-- CiX)

•

1. Let U = {x EN ll(x) E W,.<x>}. Show that U is 1-complete for the
class of r.e. sets.

2. Let K :::;; 1 A and let

C = {x EKI<I>/x) ~A E9A}.

Prove that A :::;; 1 C, C :::;;1 A, but C ~ m A.

3. Prove that Theorem 3.11 holds with :::;; 1 replaced by ::;;m •

4. Let FIN = {x E N I W., is finite}. Prove that K :::;; 1 FIN.

5. Prove that if B, li-=/= 0, then for every recursive set A, A :::;;m B.

4. Sets r.e. Relative to an Oracle

If G is a total function (of one or more arguments) we say that a set
B ~ N is G-recursively enumerable (abbreviated G-r.e.) if there is a par­
tially G-computable function g such that

B = {x E N I g(x) ~}.

By Theorem 1.6, r.e. sets are then simply sets that are G-r.e. for some
computable function G.

It is easy to relativize the proofs in Chapter 4, Section 4, using, in
particular, the relativized step-counter theorem. We give some of the
results and leave the details to the reader.

Theorem 4.1. If B is a G-recursive set, then B is G-r.e.

212 Chapter 8 Classifying Unsolvable Problems

Theorem 4.2. The set B is G-recursive if and only if B and li are both
G-r.e.

Theorem 4.3. If B and C are G-r.e. sets, so are B u C and B n C.

Next, we obtain

Theorem 4.4. The set A is G-r.e. if and only if there is a G-computable
predicate Q (x, t) such that

A= {x EN l(3t)Q(x,t)}. (4.1)

Proof. First let A be G-r.e. Then, there is a partially G-computable
function h such that

A = {x E N I h(x H}.
Writing h(x) = <I>G(x, z0), we have

A = {x EN I (3t)STPi}>(x, z0 , t)},

which gives the result in one direction.
Conversely, let (4.1) hold, where Q is a G-computable predicate. Let

h(x) be the partial function which is G-computed by the following pro­
gram:

Then clearly,

so that A is G-r.e.

[B] Z +--- Q(X, Y)
Y+-Y+1
IF Z = OGOTO B

A = {x E N I h(x) ~},

•
Corollary 4.5. The set A is G-r.e. if and only if there is a G-recursive set
B such that

A= {x EN l(3y)((x,y) E B)}.

Proof. If B is G-recursive, then the predicate (x, y) E B is G-computa­
ble (by Theorem 1.4) and hence, by the theorem, A is G-r.e.

Conversely, if A is G-r.e., we have a G-computable predicate Q such
that (4.1) holds. Letting B = {z EN I Q(/(z), r(z))}, B is (again by Theo­
rem 1.4) G-recursive and

A= {x EN l(3y)((x,y) E B)}. •

4. Sets r.e. Relative to an Oracle 213

For any unary function G, we write

w,c = {x ENI<I>c(x,n)J,}.

(Thus W, = Wj.) For the remainder of this section, G will be a unary total
function. We have at once

Theorem 4.6 (Relativized Enumeration Theorem). A set B is G-r.e. if
and only if there is an n for which B = w,c .

We define

G' = {n E N I n E w,c}.

(Thus, K = /'.) G' is called the jump of G. We have

Theorem 4.7. G' is G-r.e. but not G-recursive.

This is just the relativization of Theorem 4.7, in Chapter 4, and the
proof of that theorem relativizes easily. However, we include the details
because of the importance of the result.

Proof of Theorem 4. 7. Since

G' = {n EN I <l>c(n, n)J,},

the relativized universality theorem shows that G' is G-r.e. If G' were also
G-r.e., we would have G' = w;c for some i EN. Then

i E G' <=> i E we <=> i E G'
I '

a contradiction. •
Our next result is essentially a relativization of Theorem 3.9.

Theorem 4.8. The following assertions are all equivalent:

a. A .:5; 1 G';
b. A .:5;m G';
c. A is G-r.e.

Proof. It is obvious that assertion a implies b. To see that b implies c, let
h be a recursive function such that

x E A if and only if h(x) E G'.

Then

x E A if and only if <l>c(h(x), h(x)) L

so that A is G-r.e.

214 Chapter 8 Classifying Unsolvable Problems

Finally, to see that c implies a, let A be G-r.e., so that we can write

A= {x EN I f{x),l.},

where f is partially G-computable. Let g(t, x) = f(x) for all t, x. By the
relativized universality and parameter theorems, we have, for some num­
ber e,

Hence,

g(t, x) = ct>g>(t, x, e)= cl>c(t, S/(x, e)).

A= {x EN I f(x),l.}

= {x EN I g(S/(x, e), x),l.}

= {x EN I <l>c(S/(x, e), Sf(x, e)),!.}

= {x EN I S/(x,e) E G'}.

Since, by Theorem 2.5, Sf(x, e) is one-one, we have A ~ 1 G'. •
Theorem 4.9. IfF and G are total unary functions and F is G-recursive,
then F' ~ 1 G'.

Proof. By Theorem 4.7, F' is F-r.e. That is, we can write

F' = {x ENIJ(x),l.},

where f is partially F-computable. By Theorem 1.5, f is also partially
G-computable. Hence F' is G-r.e. By Theorem 4.8, F' ~ 1 G'. •

By iterating the jump operation, we can obtain a hierarchy of problems
each of which is "more unsolvable" than the preceding one.

We write c<n> for the jump iterated n times. That is, we define

We have

G<O> = G,

c<n+l> = (G<n>)'.

Theorem 4.10. 0<n+ I) is 0<n>-r.e. but not 0<n>-recursive.

Proof. Immediate from Theorem 4.7. •
It should be noted that, by Theorem 4.9, K =1 0', since I and 0 are

both recursive and K = I'. Later we shall see that much more can be said
along these lines.

5. The Arithmetic Hierarchy 215

Exercise

1. Show that there are sets A, B, C such that A is B-r.e. and B is C-r.e.,
but A is not C-r.e.

5. The Arithmetic Hierarchy

The arithmetic hierarchy, which we will study in this section, is one of the
principle tools used in classifying unsolvable problems.

Definition. I 0 is the class of recursive sets. For each n E N, In+ 1 is the
class of sets which are A-r.e. for some set A that belongs to In. For all n,
nn =co-In, an= Inn nn.

Note that I 1 is the class of r.e. sets and that I 0 = ll 0 = a0 = d 1 is the
class of recursive sets.

Theorem 5.1. In~ In+l> lln ~ lln+l·

Proof. For any set A E In, A is A -r.e. and hence A E In+ 1 . The rest
follows by taking complements. •

Theorem 5.2. 0<n> E In.

Proof. By induction. For n = 0 the result is obvious. The inductive step
follows at once from Theorem 4.10. •

Theorem 5.3. A E In+ 1 if and only if A is 0<n>-r.e.

Proof. If A is 0<n>-r.e., it follows at once from Theorem 5.2 that
A E In+ I'

We prove the converse by induction. If A E l 1 , then A is r.e., so, of
course, A is 0-r.e. Assume the result known for n = k and let A E Ik+ 2 .

Then A is B-r.e. for some B E Ik+ 1 . By the induction hypothesis, B is
0<k>-r.e. By Theorem 4.8, A :::;; 1 B' and B :o;; 1 0<k+ 1). By Theorem 4.9,
B' :o;; 10<k+Z>. Hence A :o;; 1 0<k+Z>, and by Theorem 4.8 again, A is 0<k+ I)_

~ .
Corollary 5.4. For n ~ 1 the following are all equivalent:

A< 0(n).
-1 '

216 Chapter 8 Classifying Unsolvable Problems

Proof. This follows at once from Theorems 4.8 and 5.3.

Corollary 5.5. For n ~ 1, 0<n> is 1-complete for !.n.

Proof. Immediate from Theorem 5.2 and Corollary 5.4.

•

•
Corollary 5.6. For n ~ 1, !.n and lln are both m-closed and hence
1-closed.

Proof. Let A E !.n, B :::;;m A. Then using Corollary 5.4 twice, B :::;; m 0<n>,
and hence B E !,n. This proves that !,n is m-closed. The result for nn is
now immediate from Corollary 3.8. •

Theorem 5.7. A E An+ 1 if and only if A :::;;1 0<n>.

Proof. Immediate from Theorems 4.2 and 5.3. •
In particular, since K =1 0' (actually K =1 0'), A2 consists of all sets

that are K-recursive, that is, sets for which there are algorithms that can
decide membership by making use of an oracle for the halting problem.

Theorem 5.8. !,n u nn ~ An+ I.

Proof. For n = 0, the inclusion becomes an equality, so we assume
n ~ 1. If A E In, then by Corollary 5.4, A :::;;10<n>, so by Theorem 5.7,
A E An+ I" If A E nn, then A ::;;10(n). But clearly A :::;;1 A(for example,
by Theorem 1.4). Hence A :::;; 1 0<n> and by Theorem 5.7, A E An+t· •

Theorem 5.9. For n ~ 1, 0<n> E In - An.

Proof. By Theorem 4.10, 0<n> is not 0<n -!>-recursive. •
Theorem 5.10 (Kieene's Hierarchy Theorem). We have for n ~ 1

1. An c !.n, An c lln;
2. Inc In+t• nn c nn+t;
3. In u nn c An+t·

Proof.

1. By definition An ~ !.n, An ~ lln. By Theorem 5.9, 0<n> E In - An,
and so 0(n)E nn -An. Thus the inclusions are proper.

2. By Theorem 5.1 we need show only that the inclusions are proper.
B 0 (n+l) ~ If0(n+l) ~ b Th 580(n+l) A ut E "'-n+l" E "'-n• ~orem . , E an+!•
contradicting Theorem 5.9. Likewise 0<n+t>E lln+t- lln.

6. Post's Theorem 217

3. By Theorem 5.8, we need show only that the inclusion is proper. Let
An = 0(n) (B 0(n). We shall show that An E An+ I -(In u lln). By
Theorem 3.11 (with C = 0<n>), we have An ::5; 1 0<n>. Hence An E
An+ 1 • Also,

0(n) = {x EN l2x E An},

0(n)= {x ENI2x + 1 EAn}.

Hence 0<n> ::5; 1 An, 0<n> ::5; 1 An. Suppose that An E In. Then, by

Corollary 5.6, 0<n>E In, so that 0<n> E An, contradicting Theorem
5.9. Likewise if An E nn' then 0(n) E nn and hence 0(n) E An .

•
Since we have now seen that for all n ~ 1, In =I= co-In, and since we

know that for n ~ 1, In and lln are each m-closed, we may apply
Theorem 3.6 to obtain the following extremely useful result.

Theorem 5.11. If A ism-complete for In, then A f/=. lln. Likewise, if A
is m-complete for lln, then A f/=. In.

6. Post's Theorem

In order to make use of the arithmetic hierarchy, we will employ an
alternative characterization of the classes In, nn involving strings of
quantifiers. This alternative formulation is most naturally expressed in
terms of predicates rather than sets. Hence we will use the following
terminology.

We first associate with each predicate P(x1 , ••• , x.) the set

A= {x ENIP((x)1 , ••• ,(x).}}.

Then we say that P is In or that P is a In predicate to mean that
A E In. Likewise, we say that p is nn or An if A E nn or A E An'
respectively. Notice that we continue to regard In and nn as consisting of
subsets of N, and we will not speak of a predicate as being a member of
In or nn.

Our terminology involves a slight anomaly for unary predicates. We have
just defined P(x) to be In (or lln) if the set A = {x EN I P((x)1)}

belongs to In (or lln), whereas it would be more natural to speak of P(x)
as being In (or lln) depending on whether B = {x EN I P(x)} belongs to
In (or lln). Fortunately, there is really no conflict, for we have

218 Chapter 8 Classifying Unsolvable Problems

Theorem 6.1. Let B = {x EN I P(x)}. Then P(x) is In if and only if
B E In 0 Likewise for nn, An 0

Proof. For n = 0, the result is obvious, so assume that n ~ 1. P(x) is In
(or lln, or An) if and only if the set A = {x EN I P({x)1)} belongs to In
(or lln or An). Now,

A = {x E N I (x)1 E B},

and

B={xENI2xEA}.

Thus A =m B. By Corollary 5.6, this gives the result.

Theorem 6.2. Let P(x 1 , ••• , x 5) be a In predicate and let

Q(tl , ... ,tk) = P{fl(tl , ... ,tk), ... ,f.{tl , ... ,tk)),

•

where f 1 , ••• , fs are computable functions. Then Q is also In. Likewise
for nn 0

Proof. Let

A = {x EN I P((x)1, ... , (x).)},

B ={tEN I Q((t)l , ... ,(t)k)}.

We shall prove that B ~m A. It will thus follow that if A E In (or lln),
then B E In (or lln), giving the desired result.

We have

t E B = Q((t)1 , ... ,(t)k)

- p (f1 ((t) 1 , ... , (t) k), ... , fs ((t) 1 , ... , (t) k))

- [fl ((t) I ' 0 0 0 ' (t) k)' 0 0 0 ,f. ((t) I ' 0 0 0 ' (t) k)] E A'

so that B ~m A. •
Theorem 6.3. A predicate P is In (or lln) if and only if - P is lln (or
In)•

Proof. A = {x EN I P((x)1, ... , (x).)} implies

A= {x EN I -P((x)1 ,oo.,(x).)}. •
Theorem 6.4. Let P(x 1 ,. 00, x.), Q(xp 00., x,) be In (or lln). Then the
predicates P & Q and P V Q are likewise In (or lln).

6. Post's Theorem

Proof. For n = 0, the result is obvious. Assume that n ~ 1 and let

A = {x EN I P((x) 1 , ••• , (x).)},

B = {x EN I Q((x)1 , ••• , (x)s)},

C = {x EN I P((x) 1 , ••• , (x)s) & Q((x) 1 , ••• , (x).)},

D = {x EN I P((x) 1 , ••• ,(x)s) V Q((x) 1 , ••• ,(x),)}.

219

Thus, C =An Band D =AU B. If P and Q are In, then A, BE In.
Thus, by Theorem 5.3, A and B are both 0<n -1)-r.e. By Theorem 4.3, C
and D are likewise 0<n- 1>-r.e., and so P & Q and P V Q are In.

If p and Q are nn' then A, B E nn so that A, jj E In 0 By Theorems
4.3 and 5.3, An B = (A U B) E In and AU ii = (A n B) E In . Hence
D,C E nn, so that both p v Q and p & Q are nn. •

Theorem 6.5. Let Q(x1 , ••• , xs, y) be In, n ~ 1, and let

P(x 1 , ••• ,xs) = (3y)Q(x1 , ••• ,x.,y).

Then P is also In.

Proof. Let

A = {x EN I Q((x)1 , ••• , (x)s, (x)s+ 1)},

B = {x EN I P((x) 1 , ••• ,(x),)}.

We are given that A E In, i.e., that A is 0<n -I>-r.e., and we must show
that B is likewise 0<n- 1 >-r.e.

By Theorem 4.4, we may write

A= {x EN l(3t)R(x,t)},

where R is 0<n -I>_recursive. Hence,

Thus,

Q(x 1 , ••• ,x.,y) = [x 1 , ••• ,xs,y] EA

= (3t)R([x1 , ••• ,xs,y],t).

x E B = P((x)1, ••• ,(x)s)

= (3y)Q((x) 1 , ••• , (x)s, y)

= (3y)(3t)R([(x)1 , ••• ,(x)..,y],t)

= (3z)R([(x) 1 , ••• , (x) .. , /(z)], r(z)).

By Theorems 1.4 and 4.4, B is 0<n -1)-r.e. •

220 Chapter 8 Classifying Unsolvable Problems

Theorem 6.6. Let Q (x 1 , ••• , xs, y) be lln, n ~ 1, and let

P(x1 , ••• ,xs)- (Vy)Q(x 1 , ••• ,xs,y).

Then P is also lln.

Proof. -P(x1 , ••• ,x,)- (3y) -Q(xp····x.,y).
from Theorems 6.3 and 6.5.

The result follows

•
The main result of this section is

Theorem 6. 7 (Post's Theorem). A predicate P(x 1 , ••• , x,) is In+ 1 if and
only if there is a ll n predicate Q(x 1 , ••• , X s, y) SUCh that

P(x1 , ••• ,x)- (3y)Q(x 1 , ••• ,xs,y). (6.1)

Proof. If (6.1) holds, with Q a nn predicate, it is easy to see that P must
be In+ 1 • By Theorem 5.8, Q is certainly itself In+ 1 , and therefore, by
Theorem 6.5, P is In+ 1 •

The converse is somewhat more difficult. Let us temporarily introduce
the following terminology: we will say that a predicate P(x1 , ••• , xs) is
3n+ I if it can be expressed in the form (6.1), where Q is nn. Then Post's
theorem just says that the In+ 1 and the 3 n + 1 predicates are the same. We
have already seen that all 3n+ 1 predicates are In+ 1 •

Lemma 1. If a predicate is In ' then it is 3 n + I.

Proof. For n = 0, the result is obvious. Let n ~ 1, and let P(x 1 , ••• , xs)
be In. Let

A= {x EN I P((x) 1 , ••• ,(x),)}.

Then A is eJ<n-J>_r.e., so by Theorem 4.4,

A= {x EN l(3t)R(x,t)},

where R is 0<n -!>-recursive. Thus

P(x1 , ••• ,xs)- (3t)R([x1 , ••• ,xs],t).

It remains to show that R([x1 , ••• , xs], t) is lln. But in fact, by Theorem
1.4, R([x 1 , ••• , xs], t) is 0n- 1-recursive, so that it is actually an and hence
certainly nn. •

Lemma 2. If a predicate is nn' then it is 3 n + 1•

Proof. If P(x1 , ••• , x) is nn, we need only set

Q(x 1 , ••• ,xs,y)- P(x1 , ••• ,x),

6. Post's Theorem

so that, of course,

P(x1 , ••• ,x) = (3y)Q(x1 , ••• ,x.,y).

Since

{x EN I Q((x) 1 , ••• ,(x).,(x)s+ 1)} = {x EN I P((x) 1 , ••• ,(x)5)},

the predicate Q is also nn' which gives the result.

Lemma 3. If P(x1 , ••• , x., z) is 3n+ 1 and

Q(x 1 , ••• ,X5) = (3z)P(x1 , ••• ,x.,z),

then Q is 3 n + I.

Proof.· We may write

P(x 1 ,ooo,X5 ,z) = (3y)R(x 1 ,ooo,X5 ,z,y),

where R is nn o Then

Q(x1 ,ooo,X5) = (3z)(3y)R(x1 ,ooo,X5 ,z,y)

= (3t)R(x1 , o o o, X 5 , l(t), r(t)),

which is 3 n + I by Theorem 6o2o

Lemma 4. If P and Q are 3n+1, then so are P & Q and P V Qo

Proof. Let us write

P(x1 ,ooo,x) = (3y)R(x 1 ,ooo,x.,y),

Q(x1 ,ooo,X5) = (3z)S(x1 ,ooo,x.,z),

where RandS are nn o Then

and

P(x 1 ,ooo,x)& Q(x1 ,ooo,X5)=(3y)(3z)[R(x1 ,ooo,X5 ,y)

&S(x1 ,ooo,X5 ,z)]

P(x1 ,ooo,X5) V Q(x1 ,ooo,x) = (3y)(3z)[R(x1 ,ooo,x.,y)

VS(x1 ,ooo,X5 ,z)]o

221

•

•

The result follows from Theorem 6.4 and Lemmas 2 and 30 •

Lemma 5. If P(x1 , 0 0 0, x., t) is 3n+ 1 and

Q(x1 ,ooo,X5 ,y) = ('Vt):>.yP(x 1 ,ooo,x.,t),

then Q is 3 n + I o

222 Chapter 8 Classifying Unsolvable Problems

Proof. Let

P(x 1 , ••• ,x.,t) <=> (3z)R(x 1 , ••• ,xs,t,z),

where R is lln. Thus,

Q(x 1 , ••• ,xs,y) <=> (Vt),/3z)R(x1 , ••• ,x.,t,z)

<=> (3u)(Vt),YR(x1 , ••• ,x.,t,(u)1+1),

where we are using the Godel number u = [z0 , z1 , ••• , zy] to encode the
sequence of values of z corresponding to t = 0, 1, ... , y. Thus,

Q(x1 , ••• ,xs,y) <=> (3u)(Vt)[t > y V R(x1 , ••• ,xs,t,(u)1+ 1)]

<=> (3u)S(x1 , ••• , xs, y, u),

where S is lln. For n = 0, we have used Theorem 6.3 from Chapter 3; and
for n > 0, we have used the fact that the predicate t > y is recursive (and
hence certainly lln), and Theorems 6.2, 6.4, and 6.6. •

We now recall from Section 2 that u -< G means that

{u}(i) = G(i) for 0:::;; i < l(u).

Lemma 6. Let R(x) be In . Then the predicate u -< R is 3 n +I.

Proof. We have

u-< R <=> (Vi)<l(u){[(r(u))i+ 1 = 1 & R(i)] V [(r(u))i+l = 0&- R(i)]}

<=>l(u) = 0 V (3z)(z + 1 = /(u)&(Vi),z{[(r(u));+l = 1& R(i)]

v[(r(u))i+l = 0&- R(i)]}).

Thus, using Lemmas 1-5 and the fact that the predicate - R(i) is lln, we
have the result. •

Proof of Theorem 6. 7 (Post's Theorem) Concluded. Let P(x 1 , ••• , x,) be any
In+ 1 predicate. Let

A= {x EN I P((x)1 , ••• ,(x)s)}.

Then A E In+ 1 , which means that A is B-r.e. for some set B E In. Let
R(x) be the characteristic function of B, so that by Theorem 6.1, R is In.
Since A is B-r.e., we are able to write

A = {x EN I f(x}t},

6. Post's Theorem 223

where f is partially B-computable. Let f be B-computed by a program
with number y0 . Then, using Theorem 2.4 (the finiteness theorem), we
have

x EA = (3t)STPk1>(x,y0 ,t)

= (3t)(3u){u -< R & STI(W(x, Yo, t)}.
Thus,

P(x 1 , ••• ,x,) = (3t)(3u){u-< R &STI(W([x 1 , ••• ,xs],y0 ,t)}.

Therefore by Theorem 2.3 and Lemmas 3, 4, and 6, P is 3 n + 1• •

Now that we know that being In+ 1 and 3n+ 1 are the same, we may
rewrite Lemma 5 as

Corollary 6.8. If P(x 1 , ••• , x s, t) is In and

Q(x 1 , ••• ,xs,y) = ('Vt)5,yP(x 1 , ••• ,x.,t),

then Q is also In.

Also, we can easily obtain the following results.

Corollary 6.9. A predicate P(x I ' ... ' X s) is n n + I if and only if there is a
In predicate Q (x 1 , ••• , x s, y) such that

P(x1 , ••• , x) = ('Vy)Q(x 1 , ••• , x., y).

Proof. Immediate from Post's theorem and Theorem 6.3. •
Corollary 6.10. If P(x I' ... ' Xs' t) is nn' and

Q(x 1 , ••• ,x,y) = (3t) 5 YP(x 1 , ••• ,xs,t),

then Q is also nn.
Proof. Immediate from Corollary 6.8 and Theorem 6.3. •

We are now in a position to survey the situation. We call a predicate
P(x1 , ••• , xs) arithmetic if there is a recursive predicate R(x1 , ••• , xs,
y 1 , ••• , Yn) such that

P(xl , ... ,x,) = (Qiyi)(QzJ2) ··· (QnYn)R(xl , ... ,xs,YI , ... ,yn),

(6.2)

where each of Q 1 , ••• , Qn is either the symbol 3 or the symbol V. We say
that the Q; are alternating if for 1 ~ i < n when Q; is 3, then Q; + 1 is V
and vice versa. Then we have

224 Chapter 8 Classifying Unsolvable Problems

Theorem 6.11.

a. Every predicate that is !.n or lln for any n is arithmetic.
b. Every arithmetic predicate is !.n for some n (and also lln for some

n).
c. A predicate is !.n (or lln) if and only if it can be represented in the

form (6.2) with Q1 = 3 (or Q1 = 'V) and the Q; alternating.

Proof. Since !.0 and ll 0 predicates are just recursive, they are arithmetic.
Proceeding by induction, if we know, for some particular n, that all !.n and
lln predicates are arithmetic, then Theorem 6.7 and Corollary 6.9 show
that the Same is true for !_n+ 1 and fin+ 1 predicateS. This proveS a.

For b we proceed by induction on n, the number of quantifiers. For
n = 0, we have a !.0 (and a ll 0) predicate. If the result is known for n = k,
then it follows for n = k + 1 using Theorems 6.5-6.7 and Corollary 6.9.

Finally, cis easily proved by mathematical induction using Theorem 6.7
and Corollary 6.9. •

7. Classifying Some Unsolvable Problems

We will now see how to apply the arithmetic hierarchy. We begin with the
set

TOT= {zEN I ('Vx)<l>(x, zH},
which consists of all numbers of programs which compute total functions.
This set was discussed in Chapter 4, Section 6, where it was shown that
TOT is not r.e. Without relying on this previous discussion, we shall obtain
much sharper information about TOT.

We begin by observing that

TOT= {zEN I ('Vx)(3t)STP(I>(x, z, t)},

so that TOT E ll 2 • We shall prove

Theorem 7.1. TOT is 1-complete for ll 2 • Therefore, TOT rt !.2 .

Proof. The second assertion follows from the first by Theorem 5.11.
Since we know that TOT E n 2' it remains to show that for any A E n2'

we have A ~1 TOT. For A E ll 2 , we can write

A ={wEN I ('Vx)(3y)R(x, y, w)},

where R is recursive. Let

h(x, w) = minR(x, y, w),
y

7. Classifying Some Unsolvable Problems 225

so that h is partially computable. Let h be computed by a program with
number e. Thus,

(3y)R(x,y,w) = h(x,wH = <f><2>(x,w,eH = <l>(x,Sf(w,e))J,

where we have used the parameter theorem. Hence,

w EA = (Vx)(3y)R(x,y,w)

= (Vx)[<l>(x, Sf(w, e)H]

= Sf(w, e) E TOT.

Since, by Theorem 2.5, Sf(w, e) is one-one, we can conclude that

A .:5; 1TOT.

As a second simple example we consider

INF = {z E N I JJi is infinite}.

We have

z E INF = (Vx)(3y).(y > x & y E JJi).
Now

y E Ui- (3t)STP(l>(y, z, t),

•

and hence the predicate y E JJi is !.1 . Using Theorems 6.4 and 6.5,
(3y) (y > x & y E ~) is also !.1 , and finally INF E II2 . We shall show
that INF is also 1-complete for II 2 • By Theorem 3.5, it suffices to show
that TOT .:5; 1 INF since we already know that TOT is 1-complete for II 2 •

To do this we shall obtain a recursive one-one function f(x) such that

~ = N implies Uf<x> = N

and

~ =I= N implies Uf<x> is finite.

Having done this we will be through since we will have

x E TOT= f(x) E INF,

and therefore,

TOT .:5; 1 INF.

(7.1)

The intuitive idea behind the construction of f is that program number
f(x) will "accept" a given input z if and only if program number x

226 Chapter 8 Classifying Unsolvable Problems

"accepts" successively inputs 0, 1, ... , z. We can write this intuitive idea in
the form of an equation as follows:

Uf(x) ={zEN I ('Vk),. z(k E J¥,)}.

Now it is a routine matter to use the parameter theorem to obtain f. We
first note that, by Corollary 6.8, the predicate ('V k), z (k E W) is !.1 .

Hence, as earlier, there is a number e such that

('Vk),z(k E J¥,) <=> ci><2>(z,x,eH

<=> cl>(z, Sf(x, e)H

<=> z E WS/(x,e).

Thus the desired function f(x) is simply Sf(x, e), which is one-one, as we
know from Theorem 2.5.

This completes the proof that INF is 1-complete for ll 2 . Hence also,
INF ft. !.2 •

The following notation will be useful.

Definition. Let A, B, C ~ N. Then we write A :::;;m (B, C) to mean that
there is a recursive function f such that

x E A implies f(x) E B

and

x E A implies f(x) E C.

Iff is one-one we write A :::;;1 (B, C).

Thus A :::;; 1 B is simply the assertion: A :::;; 1 (B, B).
It will be useful to note that by (7.1), we have actually proved

TOT :::;; 1 (TOT,INF). (7.2)

Now, we have

Theorem 7.2. If A :::;; 1 (B, C), B ~ D, and C n D = 0, then A :::;; 1 D.

Proof. We have a recursive one-one function f such that

x E A implies f(x) E B implies f(x) ED

and

x E A implies f(x) E C implies f(x) E 75. •

7. Classifying Some Unsolvable Problems 227

Our final example will classify a I 3 set, and is considerably more
difficult than either of those considered so far.

Theorem 7 .3. Let

COF = {x EN I J.V.. is finite}.

Then COF is 1-complete for I 3 •

Lemma 1. COF E I 3 •

Proof.

COF = {x EN I (3n)(Vk)(k ~ n v k E J.V..)}.

Since the predicate in parentheses is I 1 , the result follows from Theorem
6.11. •

We introduce the notation

n»i. = {m EN I STP(ll(m, x, n)}.

Intuitively, n»i- is the set of numbers that program number x "accepts" in
~ n steps. Clearly,

We also define

n»i.' = {m <rIm EnJ.V..}.

We write L(n, x) to mean that

Clearly L(n, x) is a recursive predicate. We write

R(x,n)- (Vr)s/r E J.V..) V [L(n,x)&(3k)<n(k !tnJ.V..)].

Since R(x, n) is I 1 we can use the parameter theorem, as in the previous
example, to find a recursive one-one function g(x) such that

~<xJ = {n I R(x, n)}.

Lemma 2. If x E TOT, then g(x) E TOT. If x It INF, then g(x) E
COF- TOT.

Proof. If x E TOT, then J.V.. = N, so that (Vr)<n(r E J.V..) is true for all
rz. Hence R(x, n) is true for all n, i.e., ~<xJ = N-and g(x) E TOT.

228 Chapter 8 Classifying Unsolvable Problems

Now let x f/=. INF, i.e., J¥, is finite. Therefore, there is a number n0 such
that for all n > n0 , we have

and

Thus, for n > n0 ,

i.e., L(n, x) is true. Thus, n > n0 implies that R(x, n) is true, i.e., that
n E ~<x>. We have shown that all sufficiently large integers belong to
~<x>· Hence g(x) E COF. It remains to show that g(x) f/=. TOT.

Let s be the least number not in J¥,. We consider two cases.

Case 1. sf/=. ~<x>· Then surely g(x) f/=. TOT.
Case 2. s E ~<x>· That is, R(x,s) is true. But (Vr) 55(r E J¥,) must be

false because s f/=. J¥,. Hence L(s,x) must be true and (3k) < 5(k f/=. 5 J¥,).
Now this number k is less than s, which is the least number not in J¥,.
Hence k E J¥,. Since k f/=. 5J¥,,

(7.3)

Now we claim that this number n f/=. ~<x>, which will show that in this
case also g(x) f/=. TOT. Thus, suppose that n E ~<x>, i.e., that R(x, n)
is true. Since sf/=. J¥, and n ~ s, the condition (Vr)<n(r E J¥,) must
be false. Thus we would have to have L(n, x), i.e., n+~J¥,n =nJ¥,n. But
by (7.3), k < s ::; n, kEn+ 1J¥,, and k f/=.nJ¥,. This is a contradiction .

•
Lemma 3. TOT ::; 1 (TOT, COF - TOT).

Proof. Let f be the recursive one-one function satisfying (7.1) and let g
be as above. Let h(x) = g(f(x)). Then using Lemma 2 and (7.1), we have

x E TOT implies f(x) E TOT implies h(x) E TOT,
x f/=. TOT implies f(x) f/=. INF implies h(x) E COF- TOT. •

Now let A E !.3 • We wish to show that A ::::; 1 COF. By Post's theorem,
we can write

x E A - (3n)B(x, n),

where B is ll 2 • Using the pairing functions, let

C = {t EN I (3n) 5 t(t)B(r(t), n)}.

7. Classifying Some Unsolvable Problems 229

Thus, C E TI 2 • Theorem 7.1, C :o:; 1 TOT. Hence, using Lemma 3, C :o:; 1

(TOT, COF - TOT). Let 8 be a recursive one-one function such that

t E C implies O(t) E TOT,

t $. C implies O(t) E COF- TOT.
(7.4)

Consider the l 1 predicate r(z) E We((i(z),x))' Using the parameter theo­
rem as usual, we can write this in the form z E WrJ!(x>, where 1/J is a
one-one recursive function. Thus,

Wofr(x) = {(k,m)lm E We((k,x))}. (7.5)

The theorem then follows at once from

Lemma 4. x E A if and only if 1/J(x) E COF.

Proof. Let x EA. Then B(x, n) is true for some least value of n. Hence,
for all k ~ n, we have (k, x) E C. By (7.4), O((k, x)) E TOT for all
k ~ n. Since n is the least value for which B(x, n) is true, B(x, k) is false
fork< n. Hence, fork< n, (k, x) $.C. Thus, by (7.4), O((k, x)) E COF
- TOT. To recapitulate,

k > n implies O((k, x)) E TOT,
and (7.6)

k < n implies O((k,x)) E COF- TOT.

Thus, by (7.5) we see that for k ~ n, (k, m) E Wofr(x) for all m. For each
k < n, We((k, x» contains all but a finite set of m. Thus, altogether, Wofr(x)

can omit at most finitely many integers, i.e., 1/J(x) E COF.
Now, let x $.A. Then, B(x, n) is false for all n. Therefore, (k, x) $. C

for all k. By (7.4),

O((k,x)) E COF- TOT forall kEN,

and thus certainly,

O((k, x)) $.TOT for all kEN.

That is, for every k E N, there exists m such that m $. We((k, x))• i.e., by
(7.5), such that (k,m) $. Wofr(x>· Thus, ~(x> is infinite, and hence 1/J(x) $.
COF. •

Exercises

1. Show that the following sets belong to l 3 •

(a) {x E N I there is a recursive function f such that <l>x ~ f}.
(b) { (x, y) I x EN & y EN & W. - w;, is finite}.

230 Chapter 8 Classifying Unsolvable Problems

2. (a) Prove that for each m, n there is a predicate U(x 1 , ••• , xm, y)
which is In, such that for every In predicate P(x1 , ••• , xm) there
is a number Yo with

P(x1 , ••• ,xm) <=> U(x 1 , ••• ,xm,Yo).

(b) State and prove a similar result for nn.

3. Use the previous exercise to prove that for each n, nn - In -=t= 0.

8. Rice's Theorem Revisited

In Chapter 4, we gave a proof of Rice's theorem (Theorem 7.1) using the
original parameter theorem. We get a somewhat stronger result using the
strengthened form of the parameter theorem.

Definition. Let r be a set of partially computable functions of one
variable. As in Chapter 4, Section 7, we write

Rr ={tEN I <I>, En.

We call r nontrivial if r -=1= 0 and there is at least one partially com­
putable function g(x) such that g $. r.

Theorem 8.1 (Strengthened Form of Rice's Theorem). Let f be a nontriv­
ial collection of partially computable functions of one variable. Then,
K ::5; 1 Rr or K ::5; 1 Rr, so that Rr is not recursive.

Thus not only is Rr nonrecursive, but the halting problem can be
"solved" using Rr as an oracle. Actually, the first proof of Rice's theorem
already shows that either K ::5;m Rr or K ::5;m Rr. We give essentially the
same proof here, using the strengthened form of the parameter theorem to
upgrade the result to one-one reducibility.

Proof. We recall (Chapter 1, Section 2) that 0 is a partially computable
function, namely, the nowhere defined function.

Case 1. 0 ft. r. Since r is nontrivial, it contains at least one function,
say f. Since f E r and 0 ft. r, f -=1= 0; f must be defined for at least
one value. Let

Since

!l(x, t) = { ~{t) if X E K
if X $. K.

xEK=<I>(x,xH,

9. Recursive Permutations 231

it is clear that 0. is partially computable. Using the parameter
theorem in its strengthened form, we can write

O.(x, t) = <l>g(x)(t),

where g is a one-one recursive function. Then we have

x E K implies <l>g(x) = f implies g(x) ERr;

x ft K implies <l>g(x) = 0 implies g(x) ft Rr.

Thus, K ~ 1 Rr.
Case 2. 0 E f. Now let A be the class of all partially computable

functions not in f. Thus, Rr = RtJ. and 0 ft A. By Case 1, K ~ 1 RtJ.,
and hence by Theorem 3.7, K ~ 1 Rr. •

Exercises

1. State and prove a relativized version of Rice's theorem.

2. (a) Develop a code for partial functions from N to N with finite
domains, writing fn for the nth such function.

(b) Prove the Rice-Shapiro theorem: Rr is r.e. if and only if f = 0
or there is a recursive function t(x) such that

r = {g I (3x)(g ;;2ft<x)}.

9. Recursive Permutations

Definition. A one-one recursive function f whose domain and range are
both N is called a recursive permutation.

With each recursive permutation f we may associate its inverse r I:
r 1(t) = min(t = f(x)).

X

Then, r I is clearly likewise a recursive permutation.

Definition. Let A, B ~ N. Then A and B are said to be recursively
isomorphic, written A = B, if there is a recursive permutation f such that
x E A if and only if f(x) E B.

Since a recursive permutation provides what is essentially a mere change
of notation, recursively isomorphic sets may be thought of as containing
the same "information" presented in different notation.

232 Chapter 8 Classifying Unsolvable Problems

It is obvious that A = B implies A =1 B. Remarkably, the converse
statement is also true.

Theorem 9.1 (Myhill). If A =1 B, then A = B.

In our proof of this theorem we shall need to code sequences of ordered
pairs of numbers. We shall speak of the code of the sequence

(a! 'bJ)' ... ' (an 'bn)

of pairs of elements of N meaning the number

(9.1)

Thus, the numbers a;, b; can be retrieved from the code u by using the
relations

a;= /((r(u));))

b; = r((r(u));)
i = 1,2, ... ,/(u).

Note that every natural number is the code of a unique finite (possibly
empty) sequence of ordered pairs.

We say that the finite sequence (9.1) associates A and B, where A, B ~ N,
if

1. a; =/= aj for 1 :::;; i < j :::;; n;
2. b; =/= bj for 1 :::;; i < j :::;; n;
3. for each i, 1 :::;; i :::;; n, either a; E A and b; E B or a; f/=. A and b; f/=. B.

We shall prove the

Lemma. Let A :::;;1 B. Then there is a computable function k(u, v) such
that if u codes the sequence (9.1) that associates A and B and a f/=.
{a1 , a 2 , ••• , an}, then there is a b such that k(u, a) codes the sequence

(a1 ,b1), ••• ,(an ,bn),(a,b)

that also associates A and B.

Proof. Let f be a recursive one-one function such that

x E A if and only if f(x) E B.

(9.2)

(9.3)

We provide an algorithm for computing b from u and a. k(u, a) can then
be set equal to the code of (9.2), i.e.

k(u,a) = (/(u) + 1,r(u) ·pA~'>~>1).

9. Recursive Permutations 233

The numbers f(a 1), f(a 2), ••• , f(an), f(a) are all distinct, because f is
one-one. Hence, at least one of these n + 1 numbers does not belong to
the set {b1 , b2 , ••• , bn}. Our algorithm for obtaining b begins by computing
f(a). If f(a) ft {b1 , b2 , ••• , bn}, we set b = f(a). Otherwise, f(a) = b; for
some i and we try f(a), because

a E A <=> f(a) = b; E B <=>a; E a; E A <=> f(a) E B.

If f(a) ft {b1 , b2 , ••• , bn}, we set b = f(a;). Otherwise, if f(a) = bj, we
continue the process, trying f(aj). By 1 and 2, none of the a; and b;
obtained in this way duplicate previous ones. Thus, by our earlier remark
the process must terminate in a value b. Using (9.3), we see that either
a E A and b E B or a ft A and b ft B. •

Proof of Theorem 9.1. Since A ~ 1 B, by the Lemma there is a computable
function k(u, v) such that if u codes (9.1) that associates A and B and
a ft {a1 , a2 , ••• , an}, then for some b, k(u, a) codes the sequence (9.2) that
also associates A and B. But since B ~ 1 A, we can also apply the Lemma
to obtain a computable function k(u, v) such that if u codes (9.1) that
associates A and B and b ft {bp b2 , ••• , bn}, then for some a, k(u, b)
codes the sequence (9.2) that likewise associates A and B.

We let v(O) = 0, which codes the empty sequence. (Note that the empty
sequence does associate A and B.) We let

{
v(2x)

v(2x + 1) =

k(v(2x), x)

if x is one of the left components

ofthe sequence coded by v(2x)

otherwise;

if x is one of the right components
{

v(2x + 1)

v(2x + 2) =
k(v(2x + 1),x)

of the sequence coded by v(2x + 1)

otherwise.

Thus, we have

1. v is a computable function.
2. For each x, v(x) codes a sequence that associates A and B.
3. The sequence coded by v(x + 1) is identical to, or is an extension of,

the sequence coded by v(x).
4. For each a EN, there is an x such that a pair (a, b) occurs in the

sequence coded by v(x). (In fact, we can take x = 2a + 1.)
5. For each b E N, there is an x such that a pair (a, b) occurs in the

sequence coded by v{x). (In fact, we can take x = 2b + 2.)

234 Chapter 8 Classifying Unsolvable Problems

We now define the function f by setting f(a) to be the number b such
that the pair (a, b) appears in the sequence coded by some v(x). b is
uniquely determined because all the v(x) code sequences that associate A
and B. f is clearly computable. In fact,

f(a) = mjn(3i)s/(v(Za+l))[(r(v(2a + 1))); =(a, b)].

By 5, the range off is N; thus f is a recursive permutation and hence,
A =B. •

Exercises

1. Prove that K = U, where U is defined in Exercise 3.1.

2. Prove that

Part 2

Grammars and
Automata

9

Regular Languages

1. Finite Automata

Computability theory, discussed in Part 1, is the theory of computation
obtained when limitations of space and time are deliberately ignored. In
automata theory, which we study in this chapter, computation is studied in
a context in which bounds on space and time are entirely relevant. The
point of view of computability theory is exemplified in the behavior of a
Turing machine (Chapter 6) in which a read-write head moves back and
forth on an infinite tape, with no preset limit on the number of steps
required to reach termination.1 At the opposite pole, one can imagine a
device which moves from left to right on a finite input tape, and it is just
such devices, the so-called finite automata, that we will now study. Since a
finite automaton will have only one opportunity to scan each square in its
motion from left to right, nothing is to be gained by permitting the device
to "print" new symbols on its tape.

Unlike modern computers, whose action is controlled in part by an
internally stored list of instructions called a program, the computing

1 The present chapter does not depend on familiarity with the material in Chapters 2-8.
Any exercises that refer to earlier material are marked with an •.

237

238 Chapter 9 Regular Languages

Table 1.1

6 a b

q, q2 q4
q2 q2 q3
q3 q4 q3
q4 q4 q4

devices we will consider in this chapter have no such programs and no
internal memory for storing either programs or partial results. In addition,
since, as we just indicated, a finite automaton is permitted only a single
pass over the tape, there is no external memory available. Instead, there
are internal states that control the automaton's behavior and also function
as memory in the sense of being able to retain some information about
what has been read from the input tape up to a given point.

Thus, a finite automaton can be thought of as a very limited computing
device which, after reading a string of symbols on the input tape, either
accepts the input or rejects it, depending upon the state the machine is in
when it has finished reading the tape.

The machine begins by reading the leftmost symbol on the tape, in a
specified state called the initial state (the automaton is in this state
whenever it is initially "turned on"). If at a given time, the machine is in a
state qi reading a given symbol sj on the input tape, the device moves one
square to the right on the tape and enters a state qk. The current state of
the automaton plus the symbol on the tape being read completely deter­
mine the automaton's next state.

Definition. A finite automaton Lon the alphabee A = {s1 , ••• , sn} with
states Q = {q1 , ••• , qm} is given by a function 8 that maps each pair
(q;, sj), 1 ::; i ::; m, 1 ::; j ::; n, into a state qk, together with a set F ~ Q.
One of the states, usually q1 , is singled out and called the initial state. The
states belonging to the set F are called the final or accepting states, 8 is
called the transition function.

We can represent the function 8 using a state versus symbol table. An
example is given in Table 1.1, where the alphabet is {a, b}, F = {q3}, and q1

2 For an introduction to alphabets and strings, see Chapter 1, Section 3.

1. Finite Automata 239

is the initial state. It is easy to check that for the tapes

I a I a I h h I b I

I h I u I h I a I

I u I a I b I a I

I a I b I h I b I
the automaton will terminate in states q3 , q4 , q4 , and q3 , respectively. We
shall say that the automaton accepts the strings aabbb and abbb (because
q3 E F), while it rejects the strings baba and aaba (because q4 fl. F), i.e.,
that it accepts the first and fourth of the preceding tapes and rejects the
second and third.

To proceed more formally, let L be a finite automaton with transition
function 8, initial state q1 , and accepting states F. If q; is any state of L
and u E A*, where A is the alphabet of L, we shall write l)*(q;, u) for the
state which L will enter if it begins in state qi at the left end of the string
u and moves across u until the entire string has been processed. A formal
definition by recursion is

l>*(q;,O) = q;,

l>*(q;.usj) = t>(t>*(q;,u),sj)·

Obviously, l>*(q;, sj) = l>(q;, s/ Then we say that L accepts a word u
provided that 8*(q1 , u) E F. L rejects u means that 8*(q1 , u) E Q -F.
Finally, the language accepted by L, written L(L), is the set of all u E A*
accepted by L:

L(L) = {u E A* l8*(q1 , u) E F}.

A language is called regular if there exists a finite automaton that accepts
it.

It is important to realize that the notion of regular language does not
depend on the particular alphabet. That is, if L s;;; A* and A s;;; B, then
there is an automaton on the alphabet A that accepts L if and only if
there is one on the alphabet B that accepts L. That is, an automaton with
alphabet B can be contracted to one on the alphabet A by simply
restricting the transition function 8 to A; clearly this will have no effect

240 Chapter 9 Regular Languages

on which elements of A* are accepted. Likewise, an automaton L with
alphabet A can be expanded to one with alphabet B by introducing a new
"trap" state q and decreeing

8(q;, b)= q for all states q; of Land all bE B- A,

8 (q, b) = q for all b E B.

Leaving the set of accepting states unchanged (so that q is not an
accepting state), we see that the expanded automaton accepts the same
language as L.

Returning to the automaton given by Table 1.1 with F = {q3}, it is easy
to see that the language it accepts is

{aln]b[m) In, m > 0}. (1.1)

Thus we have shown that (1.1) is a regular language.
We conclude this section by mentioning another way to represent the

transition function 8. We can draw a graph in which each state is
represented by a vertex. Then, the fact that 8(q;, sj) = qk is represented by
drawing an arrow from vertex q; to vertex qk and labeling it sj. The
diagram thus obtained is called the state transition diagram for the given
automaton. The state transition diagram for the transition function of
Table 1.1 is shown in Fig. 1.1. ·

Exercises

1. In each of the following examples, an alphabet A and a language L
are indicated with L ~A*. In each case show that L is regular by
constructing a finite automaton L that accepts L.

b

Figure 1.1

1. Finite Automata 241

(a) A = {1}; L = {ll6kl11 k ~ 0}.

(b) A = {a, b}; L consists of all words whose final four symbols form
the string bbab.

(c) A = {a, b}; L consists of all words whose final five symbols
include two a's and three b's.

(d) A = {0, 1}; L consists of all strings that, when considered as
binary numbers, have a value which is an integral multiple of 5.

L is to be a binary addition checker in the sense that it accepts
strings of binary triples

such that c1c2 ••• en is the sum of a1a2 ••• an and b 1b 2 ••• bn
when each is ,treated as a binary number.

(f) A ={a, b, c}. A palindrome is a word such that w = wR. That is,
it reads the same backward and forward. L consists of all
palindromes of length less than or equal to 6.

(g) A ={a, b}; L consists of all strings s1s2 ••• sn such that sn-z =b.
(Note that L contains no strings of length less than 3.)

(h) A = {a, b}; L consists of all words in which three a's occur
consecutively.

(i) A = {a, b}; L consists of all words in which three a's do not
occur consecutively.

2. (a) Suppose that the variable names in your favorite programming
language are words w on the alphabet {A, ... , Z, 0, ... , 9} such
that 1 :::;; lwl :::;; 8 and such that the first symbol of w belongs to
{A, ... , Z}. Give a finite automaton that accepts the language
consisting of these variable names.

(b) Now, remove the restriction lwl :::;; 8 and give a finite automaton
that accepts this extended language.

3. Describe the language accepted by each of the following finite au­
tomata. In each case the initial state is q1 •

242 Chapter 9 Regular Languages

(a)

81 a b c

q1 qz q3 q4

qz qz q4 q5

q3 q4 q3 q5

q4 q4 q4 q4

q5 q4 q4 q5

(b) 82 = 81, F2 = {q4}.

(c)

83 a b c

q1 qz qz q1

qz q3 qz q1

q3 q1 q3 qz

4. Let A = {s1 , ••• , sn}. How many finite automata are there on A with
exactly m states, m > 0?

5. Show that there is a regular language that is not accepted by any finite
automaton with just one accepting state.

6. For any regular language L, define rank(L) = the least number n
such that L is accepted by some finite automaton with n states. Prove
that for every n > 0 there is a regular language L with rank(L) = n.

7. Prove or disprove the following: If L 1 , L 2 are regular languages such
that L 1 ~ L 2 , then rank(L1) :::;; rank(L 2).

8.* Let L be a finite automaton on the alphabet A = {s1 , ••• , sn} with
states Q = {q1 , ••• , qm}, transition function 8, initial state q1 , and
accepting states F. Give a Turing machine L' that accepts L(L).

2. Nondeterministic Finite Automata

Next we modify the definition of a finite automaton to permit transitions at
each stage to either zero, one, or more than one states. Formally, we
accomplish this by altering the definition of a finite automaton in the
previous section by making the values of the transition function 8 be sets
of states, i.e., sets of elements of Q (rather than members of Q). The devices

2. Nondeterministic Finite Automata 243

Table 2.1

6 a b

ql {ql, q2} {ql, q3}

q2 {q4} 0
q3 0 {q4}

q4 {q4} {q4}

so obtained are called nondeterministic finite automata (ndfa), and some­
times ordinary finite automata are then called deterministic finite automata
(dfa). An ndfa on a given alphabet A with set of states Q is specified by
giving such a transition function l> [which maps each pair (q;, si) into a
possibly empty subset of Q] and a fixed subset F of Q. For an ndfa, we
define

l) *(q; '0) = {q;},

l>*(q;, us) = U l>(q, si).
qE li*(qi, u)

Thus, in calculating l>*(q;, u), one accumulates all states that the automa­
ton can enter when it reaches the right end of u, beginning at the left end
of u in state q;. An ndfa L with initial state q1 accepts u E A* if
l>*(q1 , u) n F =I= 0, i.e., if at least one of the states at which L ultimately
arrives belongs to F. Finally, L(L), the language accepted by L, is the set
of all strings accepted by L.

An example is given in Table 2.1 and Figure 2.1. Here F = {q4}. It is not
difficult to see that this ndfa accepts a string on the alphabet {a, b} just in
case at least one of the symbols has two successive occurrences in the
string.

In state q1 , if the next character read is an a, then there are two
possibilities. It might be that this a is the first of the desired pair of a's. In
that case we would want to remember that we had found one a and hence

Figure2.1

244 Chapter 9 Regular Languages

enter state q2 to record that fact. On the other hand, it might be that the
symbol following this a will be a b. Then this a is of no help in attaining
the desired goal and hence we would remain in q 1 • Since we are not able
to look ahead in the string, we cannot at this point determine which role
the current a is playing and so the automaton "simultaneously" hypothe­
sizes both possibilities. If the next character read is b, then since there is
no transition from q2 reading b, the choice has been resolved and the
automaton will be in state q1 • If instead, the character following the first a
is another a, then since q2 E S(q1 , a) and q4 E S(q2 , a), and on any input
the automaton once in state q4 remains in q4 , the input string will be
accepted because q4 is an accepting state. A similar analysis can be made
if a b is read when the automaton is in state q1 •

Strictly speaking, a dfa is not just a special kind of ndfa, although it is
frequently thought of as such. This is because for a dfa, O{q, s) is a state,
whereas for an ndfa it is a set of states. But it is natural to identify the dfa

L with transition function S, with the closely related ndfa .ii whose
transition function 8 is given by

8(q, s) = {S(q, s)},

and which has the same final states as L. Obviously L(L) = L(.ii).
The main theorem on nondeterministic finite automata is

Theorem 2.1. A language is accepted by an ndfa if and only if it is
regular. Equivalently, a language is accepted by an ndfa if and only if it is
accepted by a dfa.

Proof. As we have just seen, a language accepted by a dfa is also
accepted by an ndfa. Conversely, let L = L(L), where L is an ndfa with
transition function S, set of states Q = {q1 , ••• , qm}, and set of final states
F. We will construct a dfa L such that L{L) = L(L) = L. The idea of
the construction is that the individual states of L will be sets of states
of L.

Thus, we proceed to specify the dfa L on the same alphabet as L. The
states of L are just the zm sets of states (including 0) of L. We write
these as Q = {Q1 , Q2 , ••• , Q2m}, where in particular Q 1 = {q1} is to be the
initial state of L. The set .'7 of final states of L is given by

.'7= {Q; I Q; n F =1= 0}.

The transition function 8 of L is then defined by

8(Q;, s) = U S(q, s).
qEQi

2. Nondeterministic Finite Automata

Now, we have

Lemma 1. Let R ~ Q. Then

s(U Q;,s) = U 8(Q;,s).
Q;ER Q;ER

Proof. Let UQ,e R Q; = Q. Then by definition,

B(Q, s) = U 8(q, s)
qEQ

= U U 8(q,s)
Q;ER qEQ;

= U B(Q;,s).
Q,eR

Lemma 2. For any string u,

B*(Q;, u) = U 8*(q, u).
qEQ;

Proof. The proof is by induction on lui. If lui = 0, then u = 0 and

B*(Q;,O)=Q;= u {q}= u 8*(q,O).
qEQ; qeQ,

245

•

If lui = I + 1 and the result is known for lui = I, we write u = us, where
lui =I, and observe that, using Lemma 1 and the induction hypothesis,

B*(Q;,u) = B*(Q;,us)

= 8(8*(Q;,u),s)

=B{ U 8*(q,u),s)
qeQ,

= U B(8*(q,u),s)
qeQ,

= u U 8(r,s)
qeQ, rE6*(q,v)

= U 8*(q, us)
qeQ,

= U 8*(q, u). •
qeQ,

246 Chapter 9 Regular Languages

Lemma 3. L(L) = L(L).

Proof. u E L(L) if and only if B*(Q1 , u) E !T. But, by Lemma 2,

Hence,

B*(Q1, u) = B*({q1}, u) = 8*(q1, u).

u E L(L) if and only if 8*(q1, u) E Y
if and only if 8*(q1, u) n F =F 0
if and only if u E L(L). •

Proof of Theorem 2.1 Concluded. Theorem 2.1 is an immediate conse­
quence of Lemma 3. •

Note that this proof is constructive. Not only have we shown that if a
language is accepted by some ndfa, it is also accepted by some dfa, but we
have also provided, within the proof, an algorithm for carrying out the
conversion. This is important because, although it is frequently easier to
design an ndfa than a dfa to accept a particular language, actual machines
that are built are deterministic.

Exercises

1. Describe the language accepted by each of the following ndfas. In each
case the initial state is q1 •

(a)

81 a b c

ql {ql 'qz' q3} 0 0

qz 0 {q4} 0 F1 = {q4}.

q3 0 0 {q4}

q4 0 0 0

(b) 8z = 81, Fz = {ql, qz, q3}.
(c)

83 a b

ql {qz} 0
F3 = {qz}.

qz 0 {ql 'q3}

q3 {ql 'q3} 0

3. Additional Examples 247

2. For each dfa L in Exercise 1.3, transform L into an ndfa L' which
accepts L(L). Then transform L' into a dfa L" by way of the
construction in the proof of Theorem 2.1.

3. Let L be a dfa with a single accepting state. Consider the ndfa L'
formed by reversing the roles of the initial and accepting states and
reversing the direction of the arrows of all transitions in the transition
diagram. Describe L(L') in terms of L(L).

4. Prove that, given any ndfa L 1 , there exists an ndfa L 2 with exactly
one accepting state such that

5. (a) The construction in the proof of Theorem 2.1 shows that any
regular language accepted by an ndfa with n states is accepted by
some dfa with 2 n states. Show that there is a regular language
that is accepted by an ndfa with two states, not accepted by any
ndfa with fewer than two states, and accepted by a dfa with two
states.

(b) Show that there is a regular language that is accepted by an ndfa
with two states and not accepted by any dfa with fewer than four
states.

(c) Show that there is a regular language that is accepted by an ndfa
with three states and not accepted by any dfa with fewer than
eight states.

3. Additional Examples

We first give two simple examples of finite automata and their associated
regular languages.

For our first example we consider a unary even parity checker. That is,
we want to design a finite automaton over the alphabet {1} such that the
machine terminates in an accepting state if and only if the input string
contains an even number of ones. Intuitively then, the machine must
contain two states which "remember" whether an even or an odd number
of ones have been encountered so far. When the automaton begins, no
ones, and hence an even number of ones, have been read; hence the initial
state q1 will represent the even parity state, and q2 , the odd parity state.
Furthermore, since we want to accept words containing an even number of
ones, q 1 will be an accepting state.

248 Chapter 9 Regular Languages

1 0 F~{,,)
1

Figure 3.1

Thus the finite automaton to perform the required task is as shown in
Fig. 3.1, and the language it accepts is

We next consider a slightly more complicated example. Suppose we wish
to design a finite automaton that will function as a 25t,Z candy vending
machine. The alphabet consists of the three symbols n, d, and q (repre­
senting nickel, dime, and quarter, respectively-no pennies, please!). If
more than 251Z is deposited, no change is returned and no credit is given
for the overage. Intuitively, the states keep track of the amount of money
deposited so far. The automaton is exhibited in Fig. 3.2, with each state
labeled to indicate its role. The state labeled 0 is the initial state. Note that
the state labeled d is a "dead" state; i.e., once that state is entered it may
never be left. Whenever sufficient money has been inserted so that the
automaton has entered the 25t,Z (accepting) state, any additional coins will
send the machine into this dead state, which may be thought of as a coin
return state. Presumably when in the accepting state, a button can be
pressed to select your candy and the machine is reset to 0.

Unlike the previous example, the language accepted by this finite
automaton is a finite set. It consists of the following combinations of
nickels, dimes, and quarters: {nnnnn, nnnnd, nnnnq, nnnd, nnnq, nndn,
nndd,nndq, nnq,ndnn, ndnd, ndnq,ndd, ndq,nq,dnnn,dnnd,dnnq,dnd,
dnq, ddn, ddd, ddq, dq, q}.

q

d

q

F = {25)

Figure3.2

4. Closure Properties 249

a

a b

Figure3.3

Suppose we wish to design an automaton on the alphabet {a, b} that
accepts all and only strings which end in bab or aaba. A real-world analog
of this problem might arise in a demographic study in which people of
certain ethnic groups are to be identified by checking to see if their family
name ends in certain strings of letters.

It is easy to design the desired ndfa: see Fig. 3.3.
As our final example, we discuss a slightly more complicated version of

the first example considered in Section 1:

An ndfa L such that L(L) = L is shown in Fig. 3.4.
These two examples of ndfas illustrate an important characteristic of

such machines: not only is it permissible to have many alternative transi­
tions for a given state-symbol pair, but frequently there are no transitions
for a given pair. In a sense, this means that whereas for a dfa one has to
describe what happens for any string whether or not that string is a word
in the language, for an ndfa one need only describe the behavior of the
automaton for words in the language.

a b

Figure3.4

4. Closure Properties

We will be able to prove that the class of regular languages is closed under
a large number of operations. It will be helpful that, by the equivalence

250 Chapter 9 Regular Languages

theorems of the previous two sections, we can use deterministic or nonde­
terministic finite automata to suit our convenience.

Definition. A dfa is called nonrestarting if there is no pair q, s for which

8(q,s) =q1 ,

where q1 is the initial state.

Theorem 4.1. There is an algorithm that will transform a given dfa L
into a nonrestarting dfa L such that L(L) = L(L).

Proof. Let Q = {q1 , q2 , ••• , qn} be the set of states of L, q1 the initial
state, F the set of accepting states, and 8 the transition function. We
construct L with the set of states Q = Q U {qn+ 1}, initial state q1 , and
transition function 8 defined by

_ (8(q,s)
8(q, s) =

qn+l

8(qn+ I> s) = 8(q1 , s).

if q E Q and 8(q, s) =/= q1

if q E Q and 8(q, s) = q1 ,

Thus, there is no transition into state q1 for L. The set of accepting states
F of L is defined by

F-- (F
- F U {qn+l}

To see that L(L) = L(L) as required, one need only observe that L
follows the same transitions as L except that whenever L reenters q1 , L
enters qn+I· •

Theorem 4.2. If L and L are regular languages, then so is L u L.

Proof. Without loss of generality, by Theorem 4.1, let L, L be non­
restarting dfas that accept L and L, respectively, with Q, q1 , F, 8 and
Q, ij1 , F, 8 the set of states, initial state, set of accepting states, and
transition function of L and L, respectively. We also assume that L and
L have no states in common, i.e., Q n Q = 0. Furthermore, by the
discussion in Section 1, we can assume that the alphabets of L and L are
the same, say, A. We define the ndfa L with states Q, initial state q1 , set
of accepting states F, and transition function 8 as follows:

4. Closure Properties 251

(That is, L contains a new initial state q1 and all states of L and L
except their initial states.)

F = f F u ~ u {ql} - {ql 'ql}

\FuF

if q1 E F or q1 E F
otherwise.

The transition function of L is defined as follows for s E A:

v _ ({8(q, s)}
8(q, s)- { B(q, s)}

if q E Q- {q1}

if q E Q- {q1}

S(q1 ,s) = {8(q1 ,s)} U {8(q1 ,s)}.

Thus, since Q n Q = 0 and L and L are nonrestarting, once a first
transition has been selected, the automaton L is locked into one of the
two automata Land L. Hence L(L) = L u L. •

Theorem 4.3. Let L ~ A* be a regular language. Then A* - L is
regular.

Proof. Let L be a dfa that accepts L. Let L have alphabet A, set of
states Q, and set of accepting states F. Let L be exactly like L except
that it accepts precisely when L rejects. That is, the set of accepting states
of .ii is Q -F. Then .ii clearly accepts A* - L. •

Theorem 4.4. If L 1 and L 2 are regular languages, then so is L 1 n L 2 •

Proof. Let L 1 , L 2 ~A*. Then we have the De Morgan identity:

L 1 n L 2 =A* - ((A* - L 1) U (A* - L 2)).

Theorems 4.2 and 4.3 then give the result.

Theorem 4.5. 0 and {0} are regular languages.

•

Proof. 0 is clearly the language accepted by any automaton whose set of
accepting states is empty. Next, the automaton with states q1 , q2 , alphabet
{a}, accepting states F = {q1}, and transition function 8(q1 , a) = 8(q2 , a)
= q2 clearly accepts {0}, as does any nonrestarting dfa on any alphabet
provided F = {q1}. •

Theorem 4.6. Let u E A*. Then {u} is a regular language.

Proof. For u = 0, we already know this from Theorem 4.5. Otherwise let
u = a1a2 ... a1a1+ t> where a1 , a2 , ... , a1, a1+ 1 EA. Let L be the ndfa

252 Chapter 9 Regular Languages

with states qpq2 , ••• ,q1+ 2 , initial state q1 , accepting state q1+ 2 , and
transition function 8 given by

8(q;, a;) = {qi+ 1},

8(q;,a)=0

Then L(L) = {u}.

i=1, ... ,/+1,

for a E A - {a;}.

Corollary 4.7. Every finite subset of A* is regular.

•

Proof. We have already seen that 0 is regular. If L = {u 1 , ••• , un}, where
u1 , ••• , un E A*, we note that

L = {u 1} U {u 2} U ··· U {un},

and apply Theorems 4.2 and 4.6.

Exercises

•

1. Let A = {a, b}, let L 1 ~A* consist of all words with at least two
occurrences of a, and let L 2 ~A* consist of all words with at least two
occurrences of b. For each of the following languages L, give an ndfa
that accepts L.
(a) L = L 1 U L 2 •

(b) L =A* - L 1 •

(c) L =A* - L 2 •

(d) L = L 1 n L 2 •

2. Use the constructions in the proofs of Theorem 4.6 and Corollary 4.7
to give an ndfa that accepts the language {ab, ac, ad}.

3. (a) Let L, L' be regular languages. Prove that L - L' is regular.
(b) Let L, L' be languages such that L is regular, L u L' is regular,

and L n L' = 0. Prove that L' is regular.

4. Let L 1 , L 2 be regular languages with rank(L 1) = n 1 and rank(L 2) =
n2 • [See Exercise 1.6 for the definition of rank.]

{a) Use Theorems 4.1, 4.2, and 2.1 to give an upper bound on
rank(L 1 U L 2).

(b) Use Theorems 4.1, 4.2, 4.3, 4.4, and 2.1 to give an upper bound on
rank(L 1 n L 2).

5.* Let A 1 , A 2 be alphabets, and let f be a function from A1 to subsets
of A~. f is a substitution on A 1 if f(O) = {0} and, for all nonnull words

5. Kleene's Theorem 253

a1 ••• an EAr, where a1 , ••• , an E A 1 , f(a 1 ••• an) = f(a 1) ••• f(an) =
{u1, ... , unlu; E f(a;), 1 :::;; i:::;; n}. For L ~At, f(L) = Uwe L f(w).

(a) Let A 1 ={a, b}, A2 = {c, d, e}, let f be the substitution on A 1

such that f(a) = {cc,O} and f(b) ={wE A~ I w ends in e}, and
let L = {a[mlb[nJI m, n ~ 0}. What is f(L)?

(b) Let A 1 , A 2 be alphabets, let f be a substitution on A 1 such that
f(a) ~A~ is a regular language for all a E A 1 , and let L be a
regular language on A 1 • Prove that f(L) is a regular language on
Az.

(c) Let A1 , A2 be alphabets, and let g be a function from Ar to
A~. g is a homomorphism on A 1 if g(O) = 0 and, for all nonnull
words al ... an EAr' where al' ... ' an E AI' g(al ... an) =
g(a 1)··· g(an). For L ~Ar, g(L) = {g(w)l wE L}. Use (b) to
show that if g is a homomorphism on A 1 and L ~ Aj is regular,
then g(L) is regular.

5. Kleene's Theorem

In this section we will see how the class of regular languages can be
characterized as the class of all languages obtained from finite languages
using a few operations.

Definition. Let L 1 , L 2 ~A*. Then, we write

Definition. Let L ~A*. Then we write

With respect to this last definition, note that

1. 0 E L * automatically because n = 0 is allowed;
2. for A* the present notation is consistent with what we have been

using.

Theorem 5.1. If L, L are regular languages, then L · L is a regular
language.

Proof. Let L and L be dfas that accept L and L, respectively, with
Q, q1 , F, l> and Q, ij 1 , F, 8 the set of states, initial state, set of accepting
states, and transition function, respectively. Assume that L and L have

254 Chapter 9 Regular Languages

no states in common, i.e., Q n Q = 0. By our discussion in Section 1, we
can assume without loss of generality that the alphabets of L and L are
the same. Consider the ndfa L formed by "gluing together" ./1 and L in
the following way. The set Q of states of Lis Q u Q, and the initial state
is q1 • We will define the transition function 8 of L in such a way that the
transitions of L will contain all transitions of ./1 and L. In addition
8(q, s) will contain B(q1 , s) for every q E F. Thus, any time a symbol of
the input string causes ./1 to enter an accepting state, L can either
continue by treating the next symbol of the input as being from the word
of L or as the first symbol of the word of L. Formally we define 8 as
follows:

{

{8(q, s)} for q E Q- F

8(q, s) = {8(q, s)} U { B(ij1 , s)} for q E F

{ B(q, s)} for q E Q.

Thus, L begins by behaving exactly like ./1. However, just when ./1 has
accepted a word and would make a transition from an accepting state, L
may proceed as if it were L making a transition from ij1 •

Finally, if 0 E L we set F = F u F, and if 0 ~ L we set F =F. Clearly,
L · L = L(L), so that L · L is a regular language. •

Theorem 5.2. If L is a regular language, then so is L *.

Proof. Let ./1 be a nonrestarting dfa that accepts L with alphabet A, set
of states Q, initial state q1 , accepting states F, and transition function 8.
We construct the ndfa L with the same states and initial state as ./1,
and accepting state q1 • The transition function 8 is defined as follows:

- ({S(q,s)}
8(q, s) = {8(q, s)} u {qt}

if 8(q, s) ~ F

if 8(q, s) E F.

That is, whenever ./1 would enter an accepting state, L will enter either
the corresponding accepting state or the initial state. Clearly L * = L(L),
so that L * is a regular language. •

Theorem 5.3 (K.leene's Theorem). A language is regular if and only if it
can be obtained from finite languages by applying the three operators
u, ·, * a finite number of times.

The characterization of regular languages that Kleene's theorem gives
resembles the definition of the primitive recursive functions and the
characterization of the partially computable functions of Theorem 3.5 in

5. Kleene's Theorem 255

Chapter 4. In each case one begins with some initial objects and applies
certain operations a finite number of times.

Proof. Every finite language is regular by Corollary 4.7, and if L =
L 1 U L 2 or L = L 1 • L 2 or L = Lj, where L 1 and L 2 are regular, then L
is regular by Theorems 4.2, 5.1, and 5.2, respectively. Therefore, by
induction on the number of applications of u , ·, and *, any language
obtained from finite languages by applying these operators a finite number
of times is regular.

On the other hand, let L be a regular language, L = L(L), where L is
a dfa with states q1 , ••• , qn. As usual, q1 is the initial state, F is the set of
accepting states, 8 is the transition function, and A = {s1 , ••• , sK} is the
alphabet. We define the sets RL, i, j > 0, k ~ 0, as follows:

R~.j = {x E A* l8*(q;, x) = qj and L passes through no state

q1 with I > k as it moves across x}.

More formally, RL is the set of words x = s;1S; 2 ••• s;,s;,+ 1 such that we
can write

8(qi' S;l) = qjl'

8(qjl 's;) = qh'

8(qj,_ I 's;) = qj,'

8(qj,,si,+l) = qj,

where j 1 , j 2 , ••• , j, ::; k. Now, we observe that

since for a word of length 1, L passes directly from state qi into state qj
while in processing any word of length > 1, L will pass through some
intermediate state q1, I~ 1. Thus R?,j is a finite set. Furthermore, we have

R~,j 1 = R~.j u [R~.k+l. CRLI,k+l)* ·RLI,j]• (5.1)

This rather imposing formula really states something quite simple: The set
Rtj 1 contains all the elements of RL and in addition contains strings x,
such that L in scanning x passes through the state qk+ 1 (but through
none with larger subscript) some finite number of times. Such a string can
be decomposed into a left end, which L enters in state qi and leaves in

256 Chapter 9 Regular Languages

state qk+ 1 (passing only through states with subscripts less than k + 1 in
the process), followed by some finite number of pieces each of which L
enters and leaves in state qk+ 1 (passing only through q1 with I ~ k),
and a right end which L enters in state qk+ 1 and leaves in state qi

(again passing only through states with subscript ~ k in between). Now
we have

Lemma. Each RL can be obtained from finite languages by a finite
number of applications of the operations u, ·, *.

Proof. We prove by induction on k that for all i, j, the set RL has the
desired property. For k = 0 this is obvious, since RL is finite.

Assuming the result known fork, (5.1) yields the result fork+ 1. •

Proof of Kleene's Theorem Concluded. We note that

thus, the result follows at once from the lemma. •
Kleene's theorem makes it possible to give names to regular languages

in a particularly simple way. Let us begin with an alphabet A =

{s1 , s2 , ••• , sk}. Then we define the corresponding alphabet:

A= {s 1 ,s2 , ••• ,sk,0,0, U, · ,*,(,)}.

The class of regular expressions on the alphabet A is then defined to be the
subset of A* determined by the following:

1. 0, 0, s 1 , ••• , s k are regular expressions.
2. If a and {3 are regular expressions, then so is (a U {3).
3. If a and {3 are regular expressions, then so is (a · {3).
4. If a is a regular expression, then so is a*.
5. No expression is regular unless it can be generated using a finite

number of applications of 1-4.

Here are a few examples of regular expressions on the alphabet A =
{a, b, c}:

(a · (h* u c*))
(0 U (a ·h)*)
(c* · h*).

5. Kleene's Theorem 257

For each regular expression y, we define a corresponding regular
language (y) by recursion according to the following "semantic" rules: 3

(s;) = {s;},

(0) = {0},

(0) = 0,

((aU /3)) =(a) U ({3),

((a· {3)) =(a)· ({3),

(a*)= (a)*.

When (y) = L, we say that the regular expression y represents L. Thus,

We have

((a· (b* U c*))) = {ablnll n;;;:: 0} U {aclmll m;;;:: 0},

((O u (a ·b)*)) = ((a ·b)*) = {(ab)1n11 n ;;;:: 0},

((c* · b*)) = {clmlb[nJim,n;;;:: 0}.

Theorem 5.4. For every finite subset L of A*, there is a regular expres­
sion y on A such that (y) = L.

Proof. If L = 0, then L = (0). If L = {0}, then L = (0). If L = {x},
where x = S; 1 S; 2 • • • s;,. then

L = ((s. · (s. · (s. ··· s.) ···))). 'J '2 'J lJ

This gives the result for languages L consisting of 0 or 1 element.
Assuming the result known for languages of k elements, let L have k + 1
elements. Then we can write

L = L 1 U {x},

where x E A* and L 1 contains k elements. By the induction hypothesis,
there is a regular expression a such that (a) = L 1 • By the one-element
case already considered, there is a regular expression {3 such that ({3) =
{x}. Then we have

((aU {3)) = (a) U ({3) = L 1 U {x} = L. •
3 For more on this subject see Part 5.

258 Chapter 9 Regular Languages

Theorem 5.5 (K.leene's Theorem-Second Version). A language L ~A*
is regular if and only if there is a regular expression y on A such that
(y)=L.

Proof. For any regular expression y, the regular language (y) is built up
from finite languages by applying u, ·, * a finite number of times, so (y)
is regular by Kleene's theorem.

On the other hand, let L be a regular language. If L is finite then, by
Theorem 5.4, there is a regular expression y such that (y) = L. Other­
wise, by Kleene's theorem, L can be obtained from certain finite language
by a finite number of applications of the operations u, · , *. By beginning
with regular expressions representing these finite languages, we can build
up a regular expression representing L by simply indicating each use of
the operations u, ·, * by writing U, ·, *, respectively, and punctuating
with (and). •

Exercises

1. (a) For each language L described in Exercise 1.1, give a regular
expression a such that L = (a) .

(b) For each dfa L described in Exercise 1.3, give a regular expres­
sion a such that L(L) = (a).

(c) For each ndfa L described in Exercise 2.1, give a regular
expression a such that L(L) = (a).

2. For regular expressions a, {3, let us write a = {3 to mean that
(a) = ({3). For a, {3, y given regular expressions, prove the follow­
ing identities.
(a) (a U a) = a.
(b) ((a· (3) U (a· y)) =(a· ({3 U y)).

(c) (({3 • a) U (y · a)) = (({3 U y) · a).
(d) (a*· a*)= a*.
(e) (a· a*)= (a*· a).

(f) a** =a*.
(g) (O U (a· a*))= a*.
(h) ((a· (3)* ·a)= (a· ({3 ·a)*).

(i) (a U {3)* = (a * · {3 *)* = (a * U {3 *)*.
3. Using the identities of Exercise 2 prove that

((abb)*(ba)*(b Uaa)) = (abb)*((O U (b(ab)*a))b U (ba)*(aa)).

5. Kleene's Theorem 259

(Note that parentheses and the symbol "·" have been omitted to
facilitate reading.)

4. Let a, {3 be given regular expressions such that 0 f/:. (a) . Consider
the equation in the "unknown" regular expression ~:

~ = (/3 u a. a)).

Prove that this equation has the solution

~=({3·a*)

and that the solution is unique in the sense that if ~ 1 also satisfies the
equation, then ~ = ~ 1 •

5. Let L = {x E {a, b}* I x =/= 0 and bb is not a substring of x}.
(a) Show that L is regular by constructing a dfa L such that

L = L(L).

(b) Find a regular expression y such that L = (y).

6. Let L = (((a · a) u (a · a · a))*). Find a dfa L that accepts L.

7. Describe an algorithm that, given any regular expression a, produces
an ndfa L that accepts (a) .

8. Let L 1 , L 2 be regular languages with rank(L 1) = n 1 and rank(L 2) =
n2 • [See Exercise 1.6 for the definition of rank.]
(a) Use Theorem 5.1 to give an upper bound on rank(L 1 • L 2).

(b) Use Theorem 5.2 to give an upper bound on rank(L~).

9. LetA={s1 , ••• ,sn}.
(a) Give a function b 1 such that rank((a)) :::;; b 1(a) for all regular

expressions a on A.
(b) Define the size of a regular expression on A as follows.

size(0) = 1
size(O) = 1
size(s;} = 1 i = 1, ... , n
size((a U {3)) =size(a) + size({3) + 1
size((a · {3)) =size(a) + size({3) + 1
size(a*) =size(a) + 1

Give a numeric function b2 such that rank((a)) :::;; b2(size(a))
for all regular expressions a on A.

(c)* Verify that b2 is primitive recursive.

10.* Let A = {s1 , ••• , sn}, let a, {3 be regular expressions on A, and let
Pa, Pf3 be primitive recursive predicates such that for all w E A*,

260 Chapter 9 Regular Languages

Pa(w) = 1 if and only if wE (a) and P/w) = 1 if and only if
WE ({3).

(a) Give a primitive recursive predicate P< au 13 > such that
P(a u 13 >(w) = 1 if and only if w E ((a U {3)) .

(b) Give a primitive recursive predicate P<a·fJ> such that P(a·fJ>(w)
= 1 if and only if w E ((a · {3)) .

(c) Give a primitive recursive predicate Pa* such that Pa.(w) = 1 if
and only if w E (a*).

{d) Use parts (a), (b), and (c) to show that for all regular expressions
y on A, there is a primitive recursive predicate P-y such that
P/ w) = 1 if and only if w E (y).

6. The Pumping Lemma and Its Applications

We will make use of the following basic combinatorial fact:

Pigeon-Hole Principle. If (n + 1) objects are distributed among n
sets, then at least one of the sets must contain at least two objects.

We will use this pigeon-hole principle to prove the following result.

Theorem 6.1 (Pumping Lemma). Let L = L(L), where L is a dfa with
n states. Let x E L, where lxl ~ n. Then we can write x = uvw, where
v =1= 0 and uvlilw E L for all i = 0, 1, 2, 3,

Proof. Since x consists of at least n symbols, L must go through at least
n state transitions as it scans x. Including the initial state, this requires at
least n + 1 (not necessarily distinct) states. But since there are only n
states in all, we conclude (here is the pigeon-hole principle!) that L must
be in at least one state more than once. Let q be a state in which L finds
itself at least twice. Then we can write x = uvw, where

l>*(ql 'u) = q,

l>*(q,v)=q,

l>*(q, w) E F.

That is, L arrives in state q for the first time after scanning the last
(right-hand) symbol of u and then again after scanning the last symbol of
v. Since this "loop" can be repeated any number of times, it is clear that

8*(q 1 , uvlilw) = 8*(q 1 , uvw) E F.

Hence uvlilw E L. •

6. The Pumping Lemma and Its Applications 261

Theorem 6.2. Let L be a dfa with n states. Then, if L(L) -=1= 0, there is
a string x E L(L) such that lxl < n.

Proof. Let x be a string in L(L) of the shortest possible length. Suppose
lxl;;:::: n. By the pumping lemma, x = uvw, where v -=1= 0 and uw E L(L).
Since luwl < lxl, this is a contradiction. Thus lxl < n. •

This theorem furnishes an algorithm for testing a given dfa L to see
whether the language it accepts is empty. We need only "run" L on all
strings of length less than the number of states of L. If none is accepted,
we will be able to conclude that L(L) = 0.

Next we turn to infinite regular languages. If L = L(L) is infinite, then
L must surely contain words having length greater than the number of
states of L. Hence from the pumping lemma, we can conclude

Theorem 6.3. If L is an infinite regular language, then there are words
u,v, w, such that v -=1= 0 and uvlilw E L for i = 0, 1, 2, 3,

This theorem is useful in showing that certain languages are not regular.
However, for infinite regular languages we can say even more.

Theorem 6.4. Let L be a dfa with n states. Then L(L) is infinite if and
only if L(L) contains a string x such that n ~ lxl < 2n.

Proof. First let x E L(L) with n ~ lxl < 2n. By the pumping lemma, we
can write x = uvw, where v -=1= 0 and uvlilw E L(L) for all i. But then
L(L) is infinite.

Conversely, let L(L) be infinite. Then L(L) must contain strings of
length ;;:::: 2n. Let x E L(L), where x has the shortest possible length
;;:::: 2n. We write x = x 1x 2 , where lx11 = n. Thus lx21 :2::: n. Then using the
pigeon-hole principle as in the proof of the pumping lemma, we can write
x 1 = uvw, where

l>*(ql 'u) = q,

l>*(q, v) = q with 1 ~ lvl ~ n,

l>*(q, wx2) E F.

Thus uwx2 E L(L). But

luwx21 :2::: lx21 :2::: n,

and luwx21 < lxl, and since x was a shortest word of L(L) with length at
least 2n, we have

n ~ luwx21 < 2n. •

262 Chapter 9 Regular Languages

This theorem furnishes an algorithm for testing a given dfa L to
determine whether L(L) is finite. We need only run Lon all strings x
such that n :::;; lxl < 2n, where L has n states. L(L) is infinite just in
case L accepts at least one of these strings.

For another example of an algorithm, let L 1 , L 2 be dfas on the
alphabet A and let us seek to determine whether L(L1) ~ L(L2). Using
the methods of proof of Theorems 4.2-4.4, we can obtain a dfa L such
that

L(L) = L(L1) n [A* - L(L2)].

Then L(L1) ~ L(L2) if and only if L(L) = 0. Since Theorem 6.2
enables us to test algorithmically whether L(L) = 0, we have an algo­
rithm by means of which we can determine whether L(L1) ~ L(L2).

Moreover, since L(L1) = L(L2) just when L(L1) ~ L(L2) and L(L2) ~
L(L1), we also have an algorithm for testing whether L(L1) = L(L2).

The pumping lemma also furnishes a technique for showing that given
languages are not regular. For example, let L = {a[n1b[n11 n > 0}, and
suppose that L = L(L), where L is a dfa with m states. We get a
contradiction by showing that there is a word x E L, with lxl ~ m, such
that there is no way of writing x = uvw, with v =I= 0, so that {uv[i1w I i ~ 0}
~ L. Let x = a[11b[11, where 2/ ~ m, and let a[11b[11 = uvw. Then either
v = al1d or v = a[1db[121 or v = b[12 1, with /1 ,/2 :::;; I, and in each case
uvvw rt L, contradicting the pumping lemma, so there can be no such dfa
L, and L is not regular.

This example and the exercises at the end of Section 7 show that finite
automata are incapable of doing more than a limited amount of counting.

Exercises

1. Given a word w and a dfa L, a test to determine if w E L(L) is a
membership test.
(a) Let L 1 , L 2 be arbitrary dfas on alphabet A = {s1 , ••• , sn}, where

L 1 has m 1 states and L 2 has m2 states. Give an upper bound
f(m 1 , m2) on the number of membership tests necessary to
determine if L(L1) = L(L2).

(b)* Verify that f is primitive recursive.

2. (a) Describe an algorithm that, for any regular expressions a and {3,
determines if (a) = ({3) .

(b) Give a function g(x, y) such that the algorithm in part (a)
requires at most g(size(a), size({3)) membership tests. [See Exer­
cise 5.9 for the definition of size(a).]

(c)* Verify that g is primitive recursive.

7. The Myhill- Nerode Theorem 263

7. The Myhill- Nerode Theorem

We conclude this chapter by giving another characterization of the regular
languages on an alphabet A. We begin with a pair of definitions.

Definition. Let L ~A*, where A is an alphabet. For strings x,y EA*,
we write x =L y to mean that for every w E A* we have xw E L if and
only if yw E L.

It is obvious that = L has the following properties.

X =LX.

If X ==. L y, then y ==. L X.

If X ==. L y and y ==. L Z, then X ==. L Z.

(Relations having these three properties are known as equivalence rela­
tions.)

It is also obvious that

If x =L y, then for all wE A*, xw =L yw.

Definition. Let L ~A*, where A is an alphabet. Let S ~A*. Then S is
called a spanning set for L if

1. S is finite, and
2. for every x E A*, there is a y E S such that x =L y.

Then we can prove

Theorem 7.1 (Myhili-Nerode). A language is regular if and only if it has
a spanning set.

Proof. First let L be regular. Then L = L(L), where L is a dfa with set
of states Q, initial state q1 , and transition function 8. Let us call a state
q E Q reachable if there exists y E A* such that

8*(ql,y)=q. (7.1)

For each reachable state q, we select one particular string y that satisfies
(7.1) and we write it as Yq. Thus,

8*(q1, yq) = q

for every reachable state q. We set

S = {Yq I q is reachable}.

S is clearly finite. To show that S is a spanning set for L, we let x E A*
and show how to find y E S such that x =L y. In fact, let 8*(q1, x) = q,

264 Chapter 9 Regular Languages

and set y = Yq. Thus, y E S and l>*(q 1 , y) = q. Now for every w E A*,

l>*(q 1 ,xw) = l>*(q,w) = l>*(q1 ,yw).

Hence, l>*(q1 , xw) E F if and only if l>*(q1 , yw) E F; i.e., xw E L if and
only if yw E L. Thus, x =L y.

Conversely, let L ~A* and let S ~A* be a spanning set for L. We
show how to construct a dfa ./1 such that L(./1) = L. We define the set of
states of ./1 to be Q = {qx I x E S}, where we have associated a state qx
with each element x E S. Since S is a spanning set for L, there is an
x 0 E S such that 0 =L x 0 ; we take qxo to be the initial state of ./1. We let
the final states of ./1 be

F= {qyly EL}.

Finally, for a E A, we set l>(qx, a)= qy, where yES and xa =L y. Then
we claim that for all w E A*,

where xw =L y.

We prove this claim by induction on lwl. For lwl = 0, we have w = 0.
Moreover, l>*(qx,O) = qx and xO = x =L x. Suppose our claim is known
for all words w such that lwl = k, and consider w E A* with lwl = k + 1.
Then w = ua, where lui = k and a EA. We have

l>*(qx, w) = l>(l>*(qx, u), a) = l>(qy, a) = qz,

where, using the induction hypothesis, xu =L y and, by definition of l>,
ya =L z. Then xw = xua =L ya =L z, which proves the claim. Now, we
have

L(./1) = {wE A* ll>*(qx 11 , w) E F}.

Let l>*(qxo• w) = qy. Then by the way x0 was defined and our claim,

W ::L XoW ::L y.

Thus, w E L if and only if y E L, which in turn is true if and only if
qY E F, i.e., if and only if w E L(./1). Hence L = L(./1). •

Like the pumping lemma, the Myhill-Nerode theorem furnishes a
technique for showing that a given language is not regular. For example,
let L = {alnlblnJ I n > 0} again, and let n 1 , n2 be distinct numbers > 0.
Then alnJib(nJI ELand aln 21blnJI $. L, so alnJI ;f:.L aln 21, and since =L is an
equivalence relation, there can be no word w such that alnd =L w and
aln 2J =L w. But if there were a spanning set S = {w 1 , ••• , wm} for L, then
by the pigeon-hole principle, there would have to be at least two distinct

7. The Myhill- Nerode Theorem 265

words among {a, aa, ... , alm + 11}, say alii and alii, and some wk E S such
that alii =L wk and alii =L wk, which is impossible. Therefore L has no
spanning set, and by the Myhill-Nerode theorem, L is not regular.

Exercises

1. (a) For each language L described in Exercise 1.1, give a spanning
set for L.

(b) For each dfa L described in Exercise 1.3, give a spanning set
for L(L).

(c) For each ndfa L described in Exercise 2.1, give a spanning set
for L(L).

2. Prove that there is no dfa that accepts exactly the set of all words that
are palindromes over a given alphabet containing at least two sym­
bols. (For a definition of palindrome, see Exercise l.lf.)

3. u is called an initial segment of a word w if there is a word v such
that w = uv. Let L be a regular language. Prove that the language
consisting of all initial segments of words of L is a regular language.

4. Let L be a regular language and L' the language consisting of all
words w such that both wand w ·ware words in L. Prove that L' is
regular.

5. Prove the following statement, if it is true, or give a counterexample:
Every language that is a subset of a regular language is regular.

6. Prove that each of the following is not a regular language.
(a) The language on the alphabet {a, b} consisting of all strings in

which the number of occurrences of b is greater than the
number of occurrences of a.

(b) The language L over the alphabet {., 0, 1, ... , 9}, consisting of all
strings that are initial segments of the infinite decimal expansion
of 7T. [L = {3, 3., 3.1, 3.14, 3.141, 3.1415, ... }.]

(c) The language L over the alphabet {a, b} consisting of all strings
that are initial segments of the infinite string

babaabaaabaaaab ...

7. Let L = {alilbUI I i =I= j}. Show that L is not regular.

8. Let L = {alnlbl2nl In > 0}. Show that L is not regular.

9. Let L = {alnlblmJ I 0 < n ~ m}. Show that L is not regular.

10. Let L = {alPI I p is a prime number}. Show that L is not regular.

266 Chapter 9 Regular Languages

11. Let L be a finite automaton with alphabet A, set of states Q =

{q1 , ••• , qn}, initial state q 1 , and transition function 8. Let
a 1 , a2 , a3 , ••• be an infinite sequence of symbols of A. We can think
of these symbols as being "fed" to L in the given order producing a
sequence of states r1 , r2 , r3 , ••• , where r1 is just the initial state q1

and r;+ 1 = 8(r;, a), i = 1, 2, 3, Suppose there are integers p, k
such that

for all i ~ k.

Prove that there are integers /, s such that s :::;; np and

ri+s = r; for all i ~I.

[Hint: Use the pigeon-hole principle.]

12. (a) Let L be a regular language, and let S be a spanning set for L.
S is a minimal spanning set for L if there is no spanning set for
L that has fewer elements than S, and S is independent if there
is no pairs, S 1 of distinct elements of S such that s =L S 1

• Prove
that S is minimal if and only if it is independent.

(b) Let L be a regular language, and let S, S 1 be spanning sets for
L. S and S 1 are isomorphic if there is a one-one function f
from S onto S 1 such that s =L f(s) for all s E S. Prove that if S
and S 1 are both minimal, then they are isomorphic.

(c) A dfa L is a minimal dfa for a regular language L if L = L(L)
and if there is no dfa .4'1 with fewer states than L such that
L(L1) = L(L). Let L be a regular language, let L be a dfa
that accepts L, and let S be a spanning set for L constructed
from L as in the proof of Theorem 7.1. Prove that if L is a
minimal dfa for L then S is a minimal spanning set for L. Why
is the converse to this statement false?

(d) Let L be a regular language, let S be a spanning set for L, and
let L be the dfa constructed from S as in the proof of Theorem
7.1. Prove that S is a minimal spanning set for L if and only if

L is a minimal dfa for L.
(e) Let L and L 1 be dfas on alphabet A with states Q and Q1 ,

initial states q1 and q;, accepting states F and F 1
, and transi­

tion functions 8 and 8 1 • L and .4'1 are isomorphic if there is a
one-one function g from Q onto Q1 such that g(q1) = q;, q E F
if and only if g(q) E F 1 , and 8 1(g(q), s) = g(8(q, s)) for all
q E Q and s EA. (Informally, Land L 1 are identical but for
a renaming of the states.) Prove that, if L and L 1 are
both minimal dfas for some regular language L, then they are
isomorphic.

7. The Myhill- Nerode Theorem 267

13. Let L 1 , L 2 be languages on some alphabet A. The right quotient of
L 1 by L 2 , denoted L 1/L 2 , is {x l.xy E L 1 for some y E L 2}. Prove
that if L 1 and L 2 are regular, then L 1/L 2 is regular.

14. Let L = {alPlblmll p is a prime number, m > 0} U {alnll n ;::: 0}.
(a) Show that L is not regular. [Hint: See Exercise 4.3 and Exer­

cises 10 and 13 above.]
(b) Explain why the pumping lemma alone is not sufficient to show

that L is not regular.
(c) State and prove a stronger version of the pumping lemma which

is sufficient to show that L is not regular.

10

Context-Free Languages

1. Context-Free Grammars and Their Derivation Trees

Let 'F, T be a pair of disjoint alphabets. A context-free production on 'F, T
is an expression

x~h

where X E 'F and h E ('FU T)*. The elements of 'Fare called variables,
and the elements of T are called terminals. If P stands for the production
X~ hand u, v E ('FU T)*, we write

U=JV

to mean that there are words p, q E ('FU T)* such that u = pXq and
v = phq. In other words, v results from u by replacing the variable X by
the word h. Productions X~ 0 are called null productions. A context-free
grammar r with variables 'F and terminals T consists of a finite set of
context-free productions on 'F, T together with a designated symbol
S E 'F called the start symbol. Collectively, the set 'FU T is called the
alphabet of r. If none of the productions of r is a null production, r is
called a positive context-free grammar.'

1 Those who have read Chapter 7 should note that every positive context-free grammar is a
context-sensitive grammar in the sense defined there. For the moment we are not assuming
familiarity with Chapter 7. However, the threads will all be brought together in the next
chapter.

269

270 Chapter 10 Context-Free Languages

If r is a context-free grammar with variables 'F and terminals T, and if
u,v E ('FUT)*, we write

u=pv

to mean that u =;tv for some production P of r. We write

u'?v

to mean there is a sequence u1 , ••• , um where u = u1 , um = v, and

for 1 ~ i < m.

The sequence u1 , ••• , um is called a derivation of v from u in f. The
number m is called the length of the derivation. 2 The symbol r below the
==> may be omitted when no ambiguity results. Finally, we define

L(f) = {u E T* IS ~ u}.

L(f) is called the language generated by f. A language L ~ T* is called
context-free If there is a context-free grammar r such that L = L(f).

A simple example of a context-free grammar r is given by 'F= {S},
T = {a, b}, and the productions

S ---+ aSb, S ---+ ab.

Here we clearly have

L(f) = {a[n)b[nll n > 0};

thus, this language is context-free. We showed in Chapter 9, Section 6, that
L(f) is not regular. Later we shall see that every regular language is
context-free. For the meanwhile we have proved

Theorem 1.1. The language L = {a[nlb[nll n > 0} is context-free but not
regular.

We now wish to discuss the relation between context-free grammars in
general and positive context-free grammars. It is obvious that if r is a
positive context-free grammar, then 0 f/=. L(f). We shall show that except
for this limitation, everything that can be done using context-free gram­
mars can be done with positive context-free grammars. This will require
some messy technicalities, but working out the details now will simplify
matters later.

2 Some authors use the number m - 1 as the length of the derivation.

1. Context-Free Grammars and Their Derivation Trees 271

Definition. We define the kernel of a given context-free grammar f,
written ker (f), to be the set of variables V of f such that V =f 0.

As an example consider the context-free grammar f 0 with productions

s~XYIT, s ~ax, x~o. v~ o.
Then ker(f0) ={X, Y, S}. This example suggests an algorithm for locating
the elements of ker(f) for a given context-free grammar f. We let

~~ = {VI V ~ 0 is a production of f},

r;+ I = r; u {VI v ~a is a production of r, where a E r;*}.

Thus for f 0, ~u = {X, Y}, 'Y1 ={X, Y, S}, and r; = 'Y1 for all i > 1. S is
in 'Yl because XYIT E 'Yo* . In the general case it is clear, because r has
only finitely many variables, that a stage k will eventually be reached for
which ~+ 1 = ~ and that then r; = 'Yk for all i > k. We have

Lemma I. If 'Yk = 'Yk+ 1 , then ker(f) = 'Yk.

Proof. It is clear that r; ~ ker (f) for all i. Conversely, we show that if
V E ker(f), then V E 'Yk. We prove this by induction on the length of a
derivation of 0 from V in f. If there is such a derivation of length 2, then
V t 0, so that V ~ 0 is a production of f and V E 'Y0. Let us assume the
result for all derivations of length < r and let V = a 1 = a 2 = ··· =
a,_ 1 = a, = 0 be a derivation of length r in f. The words a 1 , a 2 , ••• , a,_ 1

must consist entirely of variables, since terminals cannot be eliminated by
context-free productions. Let a 2 = V1 V2 • • • V,. Then we have V; =f 0,
i = 1, 2, ... , s, by derivations of length < r. By the induction hypothesis,
each v; E 'Yk . Since f contains the production V ~ V1 V2 • • • V, , and
a 2 E ~* , we have V E 'Yk + 1 = 'Yk . •

Lemma 2. There is an algorithm that will transform a given context-free
grammar f into a positive context-free grammar f such that L(f) = L(f)
or L(f) = L(f) u {0}.

Proof. We begin by computing ker (f). Then we obtain f by first adding
all productions that can be obtained from the productions of f by deleting
from their righthand sides one or more variables belonging to ker (f) and
by then deleting all productions (old and new) of the form V ~ 0. (In our
example, f 0 would have the productions S ~ XYIT, S ~ aX, S ~ a,
S ~ Yl'X, S ~ XIT, S ~ XYY, S ~ XY, S ~ YY, S ~ IT, S ~ XX,
S ~X, S ~ Y.) We shall show that L(f) = L(f) or L(f) = L(f) u {0}.

272 Chapter 1 0 Context-Free Languages

Let v ~ f3t f3z ... f3s be a production of r that is not a production of
r, where {31 , {32, ..• , f3s E (~u T), and where this production was ob­
tained from a production of r of the form

V ~ Uo f3t Ut f3z ••. f3sus'

with u0,u1,u2, ... ,U5 E (ker(f))*. [Of course, u0,u5 might be 0. But
since 0 E (ker (f))*, this creates no difficulty.] Now,

U; =f 0, i = 0,1,2, ... ,s,

so that

V t Uo f3tUI f3z ••• Us-1 f3sus =f f3t f3z ..• f3s ·

Thus, the effect of this new production of f can be simulated in f. This
proves that L(f} ~ L(f).

It remains to show that if v E L(f) and v -=!= 0, then v E L(f}. Let T be
the set of terminals of r (and also of f). We shall prove by induction the
stronger assertion:

For any variable V, ifV =f w-=/= 0 forw E T*, then V=j? w.

If in fact V t ~, then r contains the production V ~ w which is also a
production of r. Otherwise we may write

V t w0V1w1V2w2 ••• V.ws 'f w,

where Vto····V. are variables and w0 ,w1 ,w2 , ••• ,W5 are (possible null)
words on the terminals. Then w can be written

where

i = 1, 2, ... ' s.

Since each V; must have a shorter derivation from V; than w has from V,
we may proceed inductively by assuming that for each V; which is not 0,

V;:; V;. On the other hand, if V; = 0, then V; E ker(f). We set
r

vo = {0
I V;

if V; = 0
otherwise.

Then v ~ WoV~w IV~w 2 ••• V~ws is one of the productions of r. Hence
we have

1. Context-Free Grammars and Their Derivation Trees 273

We can now easily prove

Theorem 1.2. A language L is context-free if and only if there is a
positive context-free grammar r such that

L = L(f) or L = L(f) U {0}. (1.1)

Moreover, there is an algorithm that will transform a context-free gram­
mar A for which L = L(A) into a positive context-free grammar f that
satisfies (1.1).

Proof. If L is context-free with L = L(A) for a context-free grammar A,
then we can use the algorithm of Lemma 2 to construct a positive
context-free grammar f such that L = L(f) or L = L(f) u {0}.

Conversely, if f is a positive context-free grammar and L = L(f), there
is nothing to prove since a positive context-free grammar is already a
context-free grammar. If L = L(f) u {0}, let S be the start symbol of f
and let f be the context-free grammar obtained from f by introducing S
as a new start symbol and adding the productions

S-+ S,

Clearly, L(f) = L(f) u {0}.

s-+ 0.

•
Now, let f be a positive context-free grammar with alphabet T u 'Y,

where T consists of the terminals and r is the set of variables. We will
make use of trees consisting of a finite number of points called nodes or
vertices, each of which is labeled by a letter of the alphabet, i.e., an
element of T u r. Certain vertices will have other nodes as immediate
successors, and the immediate successors of a given node are to be in some
definite order. It is helpful (though of course not part of the formal
development) to think of the immediate successors of a given node as
being physically below the given node and arranged from left to right in
their given order. Nodes are to be connected by line segments to their
immediate successors. There is to be exactly one node which is not an
immediate successor; this node is called the root. Each node other than
the root is to be the immediate successor of precisely one node, its
predecessor. Nodes which have no immediate successors are called leaves.

A tree is called a f -tree if it satisfies the following conditions:

1. the root is labeled by a variable;
2. each vertex which is not a leaf is labeled by a variable;
3. if a vertex is labeled X and its immediate successors are labeled

a 1 , a 2 , ••• , ak (reading from left to right), then X-+ a 1 a 2 ••• ak is
a production of r.

274 Chapter 1 0 Context-Free Languages

Let !T be a f-tree, and let 11 be a vertex of !T which is labeled by the
variable X. Then we shall speak of the subtree !Tv of !T determined by 11.The
vertices of !Tv are 11, its immediate successors in !T, their immediate
successors, and so on. The vertices of !Tv are labeled exactly as they are in
!T. (In particular, the root of !Tv is 11 which is labeled X.) Clearly, !Tv is
itself a f-tree.

If !Tis a f-tree, we write (!T) for the word that consists of the labels of
the leaves of !T reading from left to right (a vertex to the left of a given
node is regarded as also being to the left of each of its immediate
successors). If the root of !T is labeled by the start symbol S of r and if
w = (!T), then !Tis called a derivation tree for win r. Thus the tree shown
in Fig. 1.1 is a derivation tree for a14lbl31 in the grammar shown in the same
figure.

Theorem 1.3. If f is a positive context-free grammar, and S =f w, then
there is a derivation tree for w in r.
Proof. Our proof is by induction on the length of a derivation of w from
s in r. If this length is 1, then w = s and the required derivation tree
consists of a single vertex labeled S (being both root and leaf).

Now let w have a derivation from S of length r + 1, where the result is
known for derivations of length r. Then we have S ~ v = w with v, w E

('YU T)*, where the induction hypothesis applies to the derivation S ~ v.
Thus, we may assume that we have a derivation tree for v. Now since
v = w, we must have v = x.Xy and w = xa1 ··· aky, where r contains the
production X~ a 1 ... ak. Then the derivation tree for v can be extended
to yield a derivation tree for w simply by giving k immediate successors to
the node labeled X, labeled a 1, ... , ak from left to right. •

Before considering the converse of Theorem 1.3, it will be helpful to
consider the following derivations of a14lbPl from S with respect to the
grammar indicated in Fig. 1.1:

1. S = aXbY = a12l)(by = a13l)(by = a14lbY = a14lbi21Y = a14lbPl

2. S = aXbY = aiZJ)(by = a12l)(bi2Jy = aPl)(b[2Jy = aPl)(bi3J = a14lbPl

3. S = aXbY = aXb121Y = aXb131 = a12l)(bl31 = a13l)(bPl = a14lbl31.

Now, if the proof of Theorem 1.3 is applied to these three derivations, the
very same derivation tree is obtained-namely, the one shown in Fig. 1.1.
This shows that there does not exist a one-one correspondence between
derivations and derivation trees, but that rather, several derivations may
give rise to the same tree. Hence, there is no unique derivation which we
can hope to be able to read off a given derivation tree.

1. Context-Free Grammars and Their Derivation Trees 275

S aXbY

X-+aX y bY
x a y b

Figure 1.1. A derivation tree for af4lbf31 in the indicated grammar.

Definition. We write u = 1 v (in f) if u = xXy and v = xzy, where X~ z
is a production of f and X E T*. If, instead, X E (T U W")* but y E T*,
we write u =,v.

Thus, when u = 1 v, it is the leftmost variable in u for which a substitu­
tion is made, whereas when u =, v, it is the rightmost variable in u. A
derivation

is called a leftmost derivation, and then we write u1 ;;,.1 un. Similarly, a
derivation

is called a rightmost derivation, and we write u1 ;;,., un. In the preceding
examples of derivations of al4lbl31 from S in the grammar of Fig. 1.1, 1 is
leftmost, 3 is rightmost, and 2 is neither.

Now we shall see how, given a derivation tree :T for a word w E T*, we
can obtain a leftmost derivation of w from S and a rightmost derivation of w
from S. Let the word which consists of the labels of the immediate
successors of the root of :T(reading from left to right) be v0 X 1v1X 2 •••

X,v,, where Vo, VI, ... ' v, E T*, XI' Xz, ... ' X, E r, and XI' Xz, ... ' X,
label the vertices v1 , ••• , v,, which are immediate successors of the root of
::T. (Of course, some of the V; may be 0.) Then S ~ v0 X 1v1X 2 ••• X,v, is
one of the productions of f. Now it is possible that the immediate
successors of the root of :Tare all leaves; this is precisely the case where
w = v0 and r = 0. If this is the case, then we have S = 1 wand S =, w, so
that we do have a leftmost as well as a rightmost derivation of w from S.

276 Chapter 1 0 Context-Free Languages

d, ·~--,
a I X b I y

!all ! !b/! ~ 1/1 I I I I I I I I
Ia X 1 I b I
I I I I I
I 1 I I
I I I
1 a I I I ._ ____ j_ ___

Figure 1.2. Decomposition of the tree of Fig. 1.1 as in the proof of the existence of leftmost
and rightmost derivations.

Otherwise, i.e., for r > 0, we consider the trees 9j =:Tv', i = 1, 2, ... , r.
Here 9i has its root II; labeled X; and is made up of the part of :T
consisting of II;, its immediate successors, their immediate successors, etc.
(see Fig. 1.2). Let f; be the grammar whose productions and alphabet are
the same as for r but which has start symbol X;. Then 9j is a derivation
tree in f;. Let 9j be a derivation tree for w; in f;. Then, clearly,

w = v0w1v1w2v2 ••• w,v,.

Moreover, since each 9j contains fewer vertices than :T, we may assume
inductively that for i = 1, 2, ... , r

Hence we have

and

and

S = 1 v0 X 1v1X 2 ••• X,v,
~1 v0w1v1X 2 ••• X,v,
~1 v0w1v1w2 ••• X,v,

S =,v0 X 1v1X 2 ••• X,v,
~,v0X1v 1 X2 ••• w,v,

~,v0X1v 1 w2 ••• w,v,
~,v0w 1v 1w2 ••• w,v, = w.

1. Context-Free Grammars and Their Derivation Trees 277

So we have shown how to obtain a leftmost and a rightmost derivation of
w from sin r.

Now, Theorem 1.3 tells us that if w E L(f), there is a derivation tree
for w in r. And we have just seen that if there is a derivation tree for w in
r, then there are both leftmost and rightmost derivations of w from s in
r [so that, in particular, w E L(f)]. Putting all of this information together
we have

Theorem 1.4. Let f be a positive context-free grammar with start symbol
S and terminals T. Let w E T*. Then the following conditions are equiva­
lent:

1. wE L(f);
2. there is a derivation tree for w in f;
3. there is a leftmost derivation of w from S in f;
4. there is a rightmost derivation of w from s in r 0

Definition. A positive context-free grammar is called branching if it has
no productions of the form X ~ Y, where X and Y are variables.

For a derivation tree in a branching grammar r, each vertex that is not
a leaf cannot be the only immediate successor of its predecessor. Since we
shall find it useful to work with branching grammars, we prove

Theorem 1.5. There is an algorithm that transforms a given positive
context-free grammar r into a branching context-free grammar a such
that L(a) = L(f).

Proof. Let 'F be the set of variables of f. First suppose that r contains
productions

... , (1.2)

where k ~ 1 and X 1 , X 2 , ••• , Xk E 'F. Then, we can eliminate the pro­
ductions (1.2) and replace each variable X; in the remaining productions
of r by the new variable X. (If one of X 1 , ••• , Xk is the start symbol, then
X must now be the start symbol.) Obviously the language generated is not
changed by this transformation.

Thus, we need consider only the case where no "cycles" like (1.2) occur
in f. If r is not branching, it must contain a production X~ Y such that
f contains no productions of the form Y ~ Z. We eliminate the produc­
tion X~ Y, but add tor productions X~ x for each word x E ('FU T)*
for which y ~X is a production of r. Again the language generated is
unchanged, but the number of productions that r contains of the form

278 Chapter 1 0 Context-Free Languages

U ~ V has been decreased. Iterating this process we arrive at a grammar
a containing no productions of the form U ~ V, which is therefore of the
required form. •

A path in a f-tree :Tis a sequence a 1 , a 2 , ••• , ak of vertices of :T such
that ai+ 1 is an immediate successor of a; for i = 1, 2, ... , k - 1. All of
the vertices on the path are called descendants of a 1 •

A particularly interesting situation arises when two different vertices
a, {3 lie on the same path in the derivation tree :T and are labeled by the
same variable X. In such a case one of the vertices is a descendant of the
other, say, {3 is a descendant of a. yfJ is then not only a subtree of :T but
also of :Ta. [In fact, ('Ta)f3 = :Tf3.] We wish to consider two important

Original tree !7
(<>,/l are labeled by the same variable)

f pruned !/spliced

Figure 1.3

1. Context-Free Grammars and Their Derivation Trees 279

operations on the derivation tree :T which can be performed in this case.
The first operation, which we call prnning, is to remove the subtree :Ta
from the vertex a and to graft the subtree g-f3 in its place. The second
operation, which we call splicing, is to remove the subtree g-f3 from the
vertex {3 and to graft an exact copy of :Ta in its place. (See Fig. 1.3.)
Because a and {3 are labeled by the same variable, the trees obtained by
prnning and splicing are themselves derivation trees.

Let y; and .57. be trees obtained from a derivation tree :T in a branching
grammar by pruning and splicing, respectively, where a and {3 are as
before. We have (:T) = r 1(:Ta)r2 for words r 1 , r2 and (:Ta) = q1(:Tf3)q2

for words q1 , q2 • Since a, {3 are distinct vertices, and since the grammar is
branching, q1 and q2 cannot both be 0. (That is, q1q2 =I= 0.) Also,

<y;> = r 1(:Tf3)r2 and (.57.)= r1 q\2l(:T13)q~2lr2 • (1.3)

Since q1q2 =I= 0, we have I(:Tf3)1 < I(:Ta)l and hence I(:TP)I < I(:T)I. From
this last inequality and Theorem 1.4, we can easily infer

Theorem 1.6. Let f be a branching context-free grammar, let u E L(f),
and let u have a derivation tree :T in r that has two different vertices on
the same path labeled by the same variable. Then there is a word
v E L(f) such that lvl < lui.

Proof. Since u = (:T), we need only take v = <y;>. •
Exercises

1. Find a context-free grammar generating the set of arithmetic state­
ments of Pascal (or FORTRAN).

2. Consider the grammar r with start symbol S and productions

S---+ XXYY

X---+ a

X---+ XX

y---+ b.

y---+ yy

Show that f generates the same language as the grammar of Fig. 1.1.

3. Show that 0 is a context-free language.

4. Give three languages that are context-free but not regular. Justify your
answer.

5. Give a context-free grammar r such that ker {f) = 'r.j and ~ =I=
ker(f), i = 1,2,3.

280 Chapter 1 0 Context-Free Languages

6. Let r be a context-free grammar with productions XI ~ al ' ... '

xn ~ an. We define the width of r as Ei~ I I a;l.
(a) Give a function f(w) such that for any context-free grammar f

with width w, there is a positive context-free grammar r such
that L(f) = L(f) or L(f) = L(f) U {0} and f has no more than
f(w) productions.

(b) Give a grammar f with width w for which any such f has at least
f(w) /2 productions.

7. (a) Let f be the grammar in Exercise 2. Give two different deriva­
tion trees for aaabb. From each tree obtain a leftmost and a
rightmost derivation of aaabb from S.

(b) Let f' be the grammar in Fig. 1.1. Prove that for every wE L(f'),
there is a unique derivation tree for W in r I •

8. Let r be the grammar with productions

s~vw

s~w

v~bx

v~b

w~aw x~s

w~x x~w

w~Y

and start symbol S. Use the construction in the proof of Theorem 1.5
to give a branching context-free grammar a such that L(a) = L(f).
Can any of the resulting productions be eliminated from a?

2. Regular Grammars

We shall now see that regular languages are generated by context-free
grammars of an especially simple form.

Definition. A context-free grammar is called regular if each of its produc­
tions has one of the two forms

U ~ aV or U ~a,

where U, V are variables and a is a terminal.

Then we have

Theorem 2.1. If L is a regular language, then there is a regular grammar
r such that either L = L(f) or L = L(f) u {0}.

Proof. Let L = L(.L), where L is a dfa with states q1 , ••• , qm, alphabet
{s1 , ••• , sn}, transition function 8, and set of accepting states F. We

2. Regular Grammars 281

construct a grammar f With variables q1, ... , qm, terminals s1, ... , Sn, and
start symbol q1 • The productions are

1. q; ---+ s,qj whenever 8(q;, s,) = qj, and
2. q; ---+ s, whenever 8(q;, s,) E F.

Clearly the grammar f is regular. We shall show that L(f) is just L - {0}.
First, suppose u E L, u -=!= 0; let u = s,. s,. ··· s,. s,. . Thus, 8*(q1, u) E

I 2 I I+ I

F, so that we have

8(q1,s.)=q., 8(q.,s.)=q., ... , 8(q1.,s,.)=q,. EF. (2.1)
't l1 1J 12 12 I 1+1 /+1

Hence, the grammar f contains the productions

q1. ---+ S; • (2.2)
I I+ I

Thus, we have in f

ql ==> S;,qj,

==> S;,S;2qh
(2.3)

==> S;,S;2 ... S;lqh

==> S; 1S;2 ··· S;1S;1+ 1 = U,

so that u E L(f).
Conversely, suppose that u E L(f), u = s,. s,. ··· s,. s,. . Then there is a

I 2 I I+ 1

derivation of u from q1 in r, which must be of the form (2.3). Hence, the
productions listed in (2.2) must belong to r, and finally, the transitions
(2.1) must hold in .L. Thus, u E L(L). •

Theorem 2.2. Let r be a regular grammar. Then L(f) is a regular
language.

Proof. Let r have the variables VI ' Vz ' ... ' VK' where s = VI is the start
symbol, and the terminals sl' ... ' sn. Since r is assumed to be regular, its
productions are of the form V; ---+ s,l-j and V; ---+ s,. We shall construct an
ndfa L which accepts precisely L(f).

The states of L will be V1 , V2 , ••• , VK and an additional state W. V1 will
be the initial state and W will be the only accepting state, i.e., F = {W}.
Let

81(V;, s,) = {J.j IV; ---+ s,l-j is a production of r},

if V; ---+ s, is a production of r
otherwise.

282 Chapter 1 0 Context-Free Languages

Then we take as the transition function 8 of L

8(V;, s,) = 81(V;, s,) U !52(V;, s,).

This completes the specification of L.
Now let u = s,. s, s,. s,. E L(f). Thus, we must have

I 2 I I+ I

V1 = S· V = S· S· V ~ S· S· ... S· V = S· S· ... S· S· (2.4)
't 11 '' 'z Jz 't 'z '' lt '' 'z '' 't+l'

where r contains the productions

Thus,

VI ~ S;ll-}1 '

V ~s. V,
11 'z Jz

l-fl- I ~ S;ll-}1'

l-}1 ~ S;l+ I •

l-}1 E 8(V1 , s;),
l-}2 E S(l-}1 , s;),

V1. E ll(V1. , s,.),
I 1- I I

WE 8(V1., S;).
I I+ I

Thus, WE 8*(V1 , u) and u E L(.L).

(2.5)

(2.6)

Conversely, if u = s,. s, s; s; is accepted by L, then there must be
I 2 I I+ 1

a sequence of transitions of the form (2.6). Hence, the productions of (2.5)
must all belong to f, so that there is a derivation of the form (2.4) of u
from V1• •

In order to combine Theorems 2.1 and 2.2 in a single equivalence, it is
necessary to show only that if L is a regular language, then so is L u {0}.
But this follows at once from Theorems 4.2 and 4.5 in Chapter 9.

Combining Theorems 2.1 and 2.2 with this discussion, we have

Theorem 2.3. A language L is regular if and only if there is a regular
grammar f such that either L = L(f) or L = L(f) u {0}.

Since regular grammars are context-free grammars, we have

Corollary 2.4. Every regular language is context-free.

The converse of Corollary 2.4 is not true, however, as we have already
observed in Theorem 1.1.

2. Regular Grammars 283

There are more extensive classes of context-free grammars which can be
shown to generate only regular languages. A particularly important exam­
ple for us (see Section 7) is the class of right-linear grammars.

Definition. A context-free grammar is called right-linear if each of its
productions has one of the two forms

u~xv or u~x, (2.7)

where U, V are variables and x =1= 0 is a word consisting entirely of
terminals.

Thus a regular grammar is just a right-linear grammar in which lxl = 1
for each string x in (2.7). We have

Theorem 2.5. Let f be a right-linear grammar. Then L(f) is regular.

Proof. Given a right-linear grammar r, we construct a regular grammar
r as follows.

We replace each production of f of the form

by the productions

n > 1,

Zn-2 ~ an-lzn-1'
Zn-1 ~ anV,

where Z 1 , ••• , Zn _ 1 are new variables. Also, we replace each production

n > 1,

by a list of productions similar to the preceding list except that instead of
the last production we have

Zn-l~an.

It is obvious that f is regular and that L(f) = L{f). •
Exercises

1. (a) For each regular language L described in Exercise 1.1 of Chapter
9, give a regular grammar r such that L(f) = L - {0}.

284 Chapter 10 Context-Free Languages

(b) For each dfa L in Exercise 1.3 of Chapter 9, give a regular
grammar f such that L(f) = L(L) - {0}.

(c) For each ndfa L in Exercise 2.1 of Chapter 9, give a regular
grammar f such that L(f) = L(L) - {0}.

2. Let r be the grammar with productions

S ----+ aS X ----+ bX
S ----+ aX X ----+ bZ
S ----+ aY Y----+ eX

Z ----+ aZ
Z ----+ bZ
Z ----+ cZ

Z ----+ a
z ----+ b
z ----+ c

Y~cz

and start symbol S. Give an ndfa L such that L(L) = L(f).

3. Let f be the grammar with productions

and start symbol S.

S ----+aX
S ----+ bY
X----+ aZ
X----+ bX

Y---+aY
Y----+ bZ

Z ----+ aS
Z ----+ bS
Z ----+ a
Z---+b

(a) Use the construction in the proof of Theorem 2.2 to give an ndfa
L with five states such that L(L) = L(f).

(b) Transform L into a dfa L' with four states such that L(L') =

L(f).

4. Prove that for every regular language L, there is a regular grammar r
with start symbol S such that L = L(f) or L = L(f) U {0} and such
that every w E L(f) has exactly one derivation from S in f.

5. Prove that for every n ;::: 1, there is a regular language generated by
no regular grammar with fewer than n variables.

6. (a) Write a context-free grammar to generate all and only regular
expressions over the alphabet {a, b}.

(b) Can a regular grammar generate this language? Support your
answer.

7. A grammar f is self-embedding if there is a variable X such that

X=f vXw, where v,w E (W"U T)*- {0}.

Let L be a context-free language. Prove that L is regular if and only if
there is a non-self-embedding context-free grammar f such that
L(f) = L.

3. Chomsky Normal Form 285

8. For a language L, the reverse of L, denoted LR, is {wR I wE L}.
(a) Let f be a regular grammar and let L = L(f). Show that there is

an ndfa which accepts L R.

(b) Conclude from (a) that a language L is regular if and only if L R

is regular.
(c) Let r be a grammar such that all productions are of the form

U ~ Vs or U ~ s, where U, V are variables and s is a terminal.
Show that L(f) is regular.

(d) A grammar is left-linear if each of its productions is of the form
U ~ Vx or U ~ x, where U, V are variables and x is a word
consisting entirely of terminals. Prove that a language L is
regular if and only if there is a left-linear grammar r such that
L = L(f) or L = L(f) U {0}.

3. Chomsky Normal Form

Although context-free grammars are extremely simply, there are even
simpler special classes of context-free grammars that suffice to give all
context-free languages. Such classes are called normal forms.

Definition. A context-free grammar f with variables 'F and terminals T
is in Chomsky normal form if each of its productions has one of the two
forms

x~ yz or x~a,

where X, Y, Z E 'F and a E T.

Then we can prove

Theorem 3.1. There is an algorithm that transforms a given positive
context-free grammar r into a Chomsky normal form grammar A such
that L(f) = L(A).

Proof. Using Theorem 1.5, we begin with a branching context-free gram­
mar r with variables 'F and terminals T. We continue by "disguising" the
terminals as variables. That is, for each a E T we introduce a new variable
X a. Then we modify r by replacing each production X ~ X for which X is
not a single terminal by X ~ x 1 , where x 1 is obtained from x by replacing
each terminal a by the corresponding new variable X a. In addition all of
the productions Xa ~ a are added. Clearly the grammar thus obtained
generates the same language as r and has all of its productions in one of

286

the two forms

x~a,

Chapter 1 0 Context-Free Languages

k ';:::. 2, (3.1)

(3.2)

where X, X 1 , ••• , Xk are variables and a is a terminal. To obtain a
Chomsky normal form grammar we need to eliminate all of the produc­
tions of type (3.1) for which k > 2. We can do this by introducing the new
variables Z 1 , Z 2 , ••• , Zk_ 2 and replacing (3.1) by the productions

x~x1Z1

zl ~x2z2

zk-3 ~ xk-2zk-2

zk-2 ~ xk-lxk ·

Thus we obtain a grammar in Chomsky normal form that generates L(f) .

•
As an example, let us convert the grammar of Fig. 1.1 to Chomsky

normal form ..

Step 1. Eliminate productions of the form X 1 ~ X2 : there are no such
productions so we skip this step.

Step 2. Disguise the terminals as variables: the grammar now consists
of the productions

Step 3. Obtain Chomsky normal form by replacing the production
s ~ xaxxby by the productions

S ~xaz1 ,

Z1 ~xz2 ,

Z2 ~ XbY.

The final Chomsky normal form grammar thus obtained consists of the
productions

4. Bar-Hillel's Pumping Lemma

Exercises

l. (a) Find context-free grammars f 1, f 2 such that

L(f1) = {a[ilbln I i ~ j > 0}

L(f2) = {al2 ilblill i > 0}.

287

(b) Find Chomsky normal form grammars that generate the same
languages.

2. Let T = {!, p, q} be the set of terminals for the grammar f:

s ~p, s ~ q, s ~! ss.
Find a Chomsky normal form grammar that generates L(f).

3.* A context-free grammar is said to be in Greibach normal form if every
production of the grammar is of the form

k ~ 0,

where a E T and X, Y1, Y2 , ••• , Yk E 'F. Show that there is an algo­
rithm that transforms any positive context-free grammar into one in
Greibach normal form that generates the same language.

4.* Show that there is an algorithm that transforms any positive context­
free grammar into a grammar that generates the same language for
which every production is of the form

or

A, B, C E 'F, a E T.

A ~a,

A ~aB,

A~ aBC,

4. Bar-Hillel's Pumping Lemma

An important application of Chomsky normal form is in the proof of the
following key theorem, which is an analog for context-free languages of the
pumping lemma for regular languages.

Theorem 4.1 (Bar-Hillel's Pumping Lemma). Let f be a Chomsky nor­
mal form grammar with exactly n variables, and let L = L(f). Then, for

288 Chapter 1 0 Context-Free Languages

every x E L for which lxl > 2n, we have x = r1q1rq2r2 , where

1. lq1rq2l:::;; 2\
2. qlq2 =I= 0;
3. for all i ~ 0, r1 q\ilrq~ilr2 E L.

Lemma. Let S 'f u, where f is a Chomsky normal form grammar.
Suppose that :T is a derivation tree for u in r and that no path in :T
contains more than k nodes. Then lui:::;; 2k- 2•

Proof. First, suppose that :T has just one leaf labeled by a terminal a.
Then u = a, and :T has just two nodes, which are labeled S and a,
respectively. Thus, no path in :T contains more than two nodes and
lui= 1 :::;; 22 - 2•

Otherwise, since r is in Chomsky normal form, the root of :T must have
exactly two immediate successors a, {3 in :T labeled by variables, say, X
andY, respectively. (In this case, r contains the productionS ~ XY.) Now
we will consider the two trees 9'1 = :Ta and 92 = yfJ whose roots are
labeled X and Y, respectively. (See Fig. 4.1.)

In each of 9'1 and 92 the longest path must contain :::;; k - 1 nodes.
Proceeding inductively, we may assume that each of 9'1, 92 have :::;; 2k-J

leaves. Hence,

•
Proof of Theorem 4.1. Let x E L, where lxl > 2n, and let :T be a deriva­
tion tree for X in f. Let a 1 , a 2 , ••• , am be a path in :fwhere m is as large
as possible. Then m ~ n + 2. (For, if m :::;; n + 1, by the lemma, lxl :::;; 2n - 1.)

'----------------
1-

1

s

L--------------J
Figure4.l

4. Bar-Hillel's Pumping Lemma 289

s

Figure 4.2

am is a leaf (otherwise we could get a longer path) and so is labeled by a
terminal. a 1 , a 2 , ••• , am_ 1 are all labeled by variables. Let us write

'Yi = am+i-n-2' i = 1,2, ... ,n + 2

so that the sequence of vertices y 1 , y2 , ••• , 'Yn + 2 is simply the path
consisting of the vertices

where 'Yn + 2 = am is labeled by a terminal, and y 1 , ••• , 'Yn + 1 are labeled by
variables. Since there are only n variables in the alphabet of r, the
pigeon-hole principle guarantees that there is a variable X that labels two
different vertices: a = 'Y; and {3 = 'Yj, i < j. (See Fig. 4.2.) Hence, the
discussion of pruning and splicing at the end of Section 1 can be applied.
We let the words q1q2 , r1 , r2 be defined as in that discussion and set
r = (:713). Then [recalling (1.3)] we have

(Y;;) = r 1rr2,

(.9;) = r,q\2lrq~2lr2,

((.9;).) = r,qplrq~lr2.

290 Chapter 10 Context-Free Languages

Since pruning and splicing a derivation tree in f yields a new derivation
tree in r, we see that all of these words belong to L(f). If, in addition, we
iterate the splicing operation, we see that all of the words r 1 q\ilrq¥lr 2 ,

i ~ 0, belong to L(f).
Finally, we note that the path 'Y;, ... , 'Yn + 2 in !701 consists of ~ n + 2

nodes and that no path in !701 can be longer. (This is true simply because if
there were a path in !701 consisting of more than n + 3 - i vertices, it
could be extended backward through a = 'Y; to yield a path in :T consist­
ing of more than m vertices.) Hence by the lemma

•
As an example of the uses of Bar-Hillel's pumping lemma, we show that

the language L = {a[n]b(nlc[nll n > 0} is not context-free.
Suppose that L is context-free with L = L(f), where f is a Chomsky

normal form grammar with n variables. Choose k so large that la[klb[klc[kll
> 2n (i.e., choose k > 2n /3). Then we would have a[klb[klc[kJ = r 1q1rq2r2 ,

where, setting

we have X; E L for i = 0, 1, 2, 3, In particular,

Since the elements of L consist of a block of a's, followed by a block of
b's, followed by a block of c's, we see that q1 and q2 must each contain
only one of these letters. Thus, one of the three letters occurs neither in q1

nor in q2 • But since as i = 2, 3, 4, 5, ... , X; contains more and more copies
of q1 and q2 and since q1q2 =I= 0, it is impossible for X; to have the same
number of occurrences of a, b, and c. This contradiction shows that L is
not context-free.

We have proved

Theorem 4.2. The language L = {a[n]b(nlc[nlln > 0} is not context-free.

Exercises

1. Show that {a[illi is a prime number} is not context-free.

2. Show that {a[i2 lli > 0} is not context-free.

3. Show that a context-free language on a one-letter alphabet is regular.

5. Closure Properties 291

5. Closure Properties

We now consider for context-free languages, some of the closure proper­
ties previously discussed for regular languages.

Theorem 5.1. If L 1 , L 2 are context-free languages, then so is L 1 u L 2 •

Proof. Let L 1 = L(f1), L 2 = L(f2), where f 1 , f 2 are context-free gram­
mars with disjoint sets of variables 7 1 and 7 2 , and start symbols S1 ,

S2 , respectively. Let r be the context-free grammar with variables
~ u 7 2 u {S} and start symbol S. The productions of f are those of f 1

and f 2 , together with the two additional productions S ~ S 1 , S ~ S2 •

Then obviously L(f) = L(f1) U L(f2), so that L 1 U L 2 = L(f). •

Surprisingly enough, the class of context-free languages is not closed
under intersection. In fact, let f 1 be the context-free grammar whose
productions are

S ~ Sc, S ~ Xc, X ~ aXb, X ~ ab.

Then clearly,

L 1 = L(f1) = {alnlb[nlclmJ In, m > 0}.

Now, let f 2 be the grammar whose productions are

S ~ aS, S ~ aX, X ~ bXc, X ~ be.

Then

L 2 =L(f2) = {almJb[nJc[nJin,m > 0}.

Thus, L 1 and L 2 are context-free languages. But

Ll n Lz = {aln)b[nJctnJ I n > 0}'

which, by Theorem 4.2, is not context-free. We have proved

Theorem 5.2. There are context-free languages L 1 and L 2 such that
L 1 n L 2 is not context-free.

Corollary 5.3. There is a context-free language L ~A* such that A*- L
is not context-free.

Proof. Suppose otherwise, i.e., for every context-free language L ~A*,
A* - L is also context-free. Then the De Morgan identity

L 1 n L 2 =A* -((A* - L 1) n (A* - L 2))

together with Theorem 5.1 would contradict Theorem 5.2. •

292 Chapter 10 Context-Free Languages

Although, as we have just seen, the intersection of context-free lan­
guages need not be context-free, the situation is different if one of the two
languages is regular.

Theorem 5.4. If R is a regular language and L is a context-free language,
then R n L is context-free.

Proof. Let A be an alphabet such that L, R s;;;A*. Let L = L(f) or
L(f) u {0}, where r is a positive context-free grammar with variables 'J/,
terminals A and start symbol S. Finally, let L be a dfa that accepts R
with states Q, initial state q1 E Q, accepting states F s;;; Q, and transition
function 8. Now, for each symbol u E A u 'J/ and each ordered pair
p, q E Q, we introduce a new symbol uPq. We shall construct a positive
context-free grammar f whose terminals are just the elements of A (i.e.,
the terminals of f) and whose set of variables consists of a start symbol S
together with all of the new symbols uPq for u E A u 'J/ and p, q E Q.
(Ncte that for a E A, a is a terminal, but aPq is a variable for each
p, q E Q.) The productions of f are as follows:

1. S ~ SM for all q E F.
2. XPq ~ uf'1u{1' 2 ••• un'n-lq for all productions X~ ul Uz ... un of

f and all p,r1,r2, ... ,rn-l•q E Q.
3. aPq ~ a for all a E A and all p, q E Q such that 8(p, a) = q.

We shall now prove that L(f) = L(f) n R. Since f is clearly a positive
context-free grammar, and since R n L = L(t} or R n L = L(f) u {0},
the theorem follows from Theorem 1.2.

First let u = a 1a 2 ··· an E L(f) n R. Since u E L(f), we have

Using productions 1 and 2 of f, we have

(5.1)

where q2, q3, ... , qn are arbitrary states of L and qn + 1 is any state in F.
(q1 is of course the initial state.) But since u E L(.L), we can choose the
states q2,q3, ... ,qn+l so that

i = l,2, ... ,n, (5.2)

and qn+ 1 E F. In this case, not only does (5.1) hold, but also the produc­
tions

i = l,2, ... ,n, (5.3)

5. Closure Properties

all belong to f. Hence, finally,

Conversely, let S ~ u E A*. We shall need the following
r

293

Lemma. Let uPq ~ u E A*. Then, 8*(p, u) = q. Moreover, if u is a
r

variable, then u =f u.

Since S f Sq,q ? u where q E F, we can use the Lemma to conclude

that 8*(q1 , u) = q, and S =f u. Hence, u E R n L(f). Theorem 5.4 then
follows immediately. •

It remains to prove the Lemma.

Proof of Lemma. The proof is by induction on the length of a derivation of
u from uPq in f. If that length is 2, we must have u E A, u = u. Then,
8*(p, u) = 8(p, u) = q. Otherwise we can write

where we have written r 0 = p and rn = q. Thus, we have

i = l,2, ... ,n, (5.4)

where u = u1u2 ... un. Clearly, the induction hypothesis can be applied to
the derivations in (5.4) so that 8*(r;_ 1 , u) = r;, i = 1, 2, ... , n. Hence
8*(p, u) = rn = q. Also, if u; is a variable, the induction hypothesis will
give u; =f u;, while otherwise u; E A and u; = u;. Finally,

must be a production of f. Hence, we have

•
Let A, P be alphabets such that P ~A. For each letter a E A, let us

write

if a E P
if a E A- P.

294 Chapter 1 0 Context-Free lanQuages

In other words, Erp{x) is the word that results from x when all the
symbols in it that are part of the alphabet P are "erased." If L ~A*, we
also write

Erp(L) = {Erp(x) I x E L}.

Finally, if r is any context-free grammar with terminals T and if P ~ T,
we write Erp{f) for the context-free grammar with terminals T- P, the
same variables and start symbol as r, and productions

for each production X~ v of r. [Note that even if r is a positive
context-free grammar, Erp{f) may not be positive; that is, it is possible
that Erp(v) = 0 even if v -=1= 0.] We have

Theorem 5.5. If r is a context-free grammar and f' = Erp{f), then
L(f) = Erp{L(f)).3

Proof. Let S be the start symbol off and f'. Suppose that w E L(f). We
have

S =WI t Wz ••• t Wm = W.

Let V; = Erp(w), i = 1, 2, ... , m. Then clearly,

s = vl =:> Vz ... =:> vm = Erp(w),
r r

so that Erp(w) E L{f'). This proves that L{f');;2 Erp(L(f)).

To complete the proof it will suffice to show that whenever X ~ v E
r

(T- P)*, there is a word wET* such that X =f wand v = Erp(w)._We
do this by induction on the length of a derivation of v from X in r. If
X f v, then X~ v is a production of f', so that X~ w is a production of

r for some w with Erp{w) = v. Proceeding inductively, let there be a
derivation of v from X in f' of length k > 2, where the result is known

3 Readers familiar with the terminology may enjoy noting that this theorem states that the
"operators" Land Erp commute.

5. Closure Properties 295

for all derivations of length < k. Then, we can write

where u0 , u1 , ••• , us E (T- P)* and V1 , V2 , ••• , V. are variables. Thus,
there are words u0, u1 , ••• , usE T* such that u; = Erp(u;), i = 0, 1, ... , s,
and

is a production of r. Also we can write

where

i = 1, ... ' s. (5.5)

Since (5.5).clearly involves derivations of length < k, the induction hypoth­
esis applies, and we can conclude that there are words V; E T*, i =
1, 2, ... , s, such that v; = Er p(v) and V; =f v;, i = 1, 2, ... , s. Hence, we
have

But

which completes the proof. •
Corollary 5.6. If L ~A* is a context-free language and P ~A, then
Erp(L) is also a context-free language.

Proof. Let L = L(f), where f is a context-free grammar, and let f =
Erp(f). Then, by Theorem 5.5, Erp(L) = L(f), so that Erp(L) is context­
free. •

Exercises

1. For each of the following, give languages L 1 , L 2 on alphabet {a, b}
such that
(a) L 1 , L 2 are context-free but not regular, and L 1 U L 2 is regular;
(b) L 1 , L 2 are context-free, L 1 =/= L 2 , and L 1 U L 2 is not regular;

296 Chapter 1 0 Context-Free Languages

(c) L 1 , L 2 are context-free but not regular, L 1 n L 2 =/= 0, and L 1 n L 2

is regular;
(d) L 1 , L 2 are context-free but not regular, L 1 =/= L 2 , and L 1 n L 2 is

context-free but not regular.

2. Let L, L' be context-free languages. Prove the following.
(a) L · L' is context-free.
(b) L* is context-free.
(c) L R = {wR I w E L} is context-free.

3. Give languages R, L 1 , L 2 on alphabet {a, b} such that R is regular,
L 1 , L 2 are context-free but not regular, and
(a) R n L 1 is regular;
(b) R n L 2 is not regular.

4. Give a context-free language L on alphabet A ={a, b} such that L is
not regular and A* - L is context-free.

5. Let R = {almlblnJ I m ~ 0, n > 0}, L = {alnlblnJ I n > 0}. Use the con­
struction in the proof of Theorem 5.4 to give a grammar f such that
L(f) = R n L.

6. Give alphabets A, P such that P =/= 0, P ~A, P =/=A, and give lan­
guages L 1 , L 2 ~A* such that
(a) L 1 is not context-free and Erp(L 1) is regular;
(b) L 2 is context-free and Erp(L2) is not regular.

7. Prove that if L ~ A* is regular and P ~ A, then Er p(L) is also
regular.

8. Let A 1 , A 2 be alphabets, let L ~ Aj be context-free, let f be a
substitution on A 1 such that f(a) ~A~ is context-free for all a E A 1 ,

and let g be a homomorphism from Aj to A~ . [See Exercise 4.5 in
Chapter 9 for the definitions of substitution and homomorphism.]
(a) Prove that f(L) is context-free.
(b) Prove that g(L) is context-free.

9. Let A 1 = {a1 , ••• , an}, let L ~ Aj be context-free, and let R ~ Aj be
regular.
(a) Let A 2 = {a'1 , ••• , a~}, where A 1 n A 2 = 0, and let f be a

substitution on A 1 such that f(a;) ={a;, a~}, 1 ~ i ~ n. Show
that A~ · R n f(L) is context-free. [See Exercise 8.]

(b) Let g be the homomorphism on A 1 U A 2 such that g(a;) = 0
and g(a:) =a;, 1 ~ i ~ n. Show that g(A~ · R n f(L)) is
context-free.

6. Solvable and Unsolvable Problems 297

(c) Show that g(A~ ·R nf(L)) = LjR, the right quotient of L by
R. [See Exercise 7.13 in Chapter 9 for the definition of right
quotient.]

{d) Conclude that if L is context-free and R is regular, then L/R is
context-free.

*6. Solvable and Unsolvable Problems4

Let f be a context-free grammar with terminals T and start symbol S, let
u E T*, and let us consider the problem of determining whether u E L(f).
First let u = 0. Then we can use the algorithms provided in Section 1 to
compute ker (f). Since 0 E L(f) if and only if S E ker (f), we can answer
the question in this case. For u =/= 0, we use Theorems 1.2 and 3.1 to
obtain a Chomsky normal form grammar a such that u E L(f) if and only
if u E L(a). To test whether u E L(a), we use the following:

Lemma. Let a be a Chomsky normal form grammar with terminals T.
Let V be a variable of a and let

v =i> u E T*.

Then there is a derivation of u from V in a of length 2lul.

Proof. The proof is by induction on lui. If lui = 1, then u is a terminal
and a must contain a production V ~ u, so that we have a derivation of u
from V of length 2.

Now, let V =:f u, where lui > 1, and let us assume the result known for
all strings of length < lui. Recalling the definition of a Chomsky normal
form grammar, we see that

V=XY~u.

Thus, we must have X~ v, Y ~ w, u = vw where I vi, lwl <lui. By the
induction hypothesis we have derivations

X= a 1 = a 2 =

Y = {31 = f3z =

Hence, we can write the derivation

= a21vl = V,

= f3zlwl = w.

V=XY= a1Y= a2Y= ··· = a 21v1Y= v{31 = v{32 = ··· = v{321 w 1,

4 The • does not refer to the material through Theorem 6.4.

298 Chapter 1 0 Context-Free Languages

where v/321w 1 = vw = u. But this derivation is of length 2lvl + 2lwl = 2lul,
which completes the proof. •

Now to test u E L(/l), we simply write out all derivations from S of
length 2lul. We have u E L(/l) if and only if at least one of these
derivations terminates in the string u.

We have proved

Theorem 6.1.5 There is an algorithm that will test a given context-free
grammar r and a given word u to determine whether u E L(f).

Next we wish to consider the question of whether a given context-free
grammar generates the empty language 0. Let r be a given context-free
grammar. We first check as previously to decide whether 0 E L(f). If
0 E L(f), we know that L(f) =/= 0. Otherwise we us Theorems 1.2 and 1.5
to obtain a branching context-free grammar f such that L(f) = L(f). Let
f have n variables and set of terminals T. Suppose that L(f) =I= 0. Let
u E L(f), where u has the shortest possible length of any word in L(f).
Then in any derivation tree for u in f, each path contains fewer than n + 2
nodes. This is because, if there were a path containing at least n + 2
nodes, at least n + 1 of them would be labeled by variables, and by the
pigeon-hole principle, Theorem 1.6 would apply and yield a word v E L(f)
with lvl <lui. Thus, we conclude that

L(f) =/= 0 if and only if there is a derivation tree Yin f of a word
u E T* such that each path in Y contains fewer than n + 2 nodes.

It is a straightforward matter (at least in principle) to write out
explicitly all derivation trees in f in which no path has length ~ n + 2. To
test whether L(f) =/= 0, it suffices to note whether there is such a tree Y
for which (Y) E T*. Thus we have

Theorem 6.2. There is an algorithm to test a given context-free grammar
f to determine whether L(f) = 0.

Next we seek an algorithm to test whether L(f) is finite or infinite for a
given context-free grammar f. Such an algorithm can easily be obtained
from the following.

5 This result follows at once from Theorem 5.4 in Chapter 7; but the algorithm given here
is of some independent interest.

6. Solvable and Unsolvable Problems 299

Theorem 6.3. Let r be a Chomsky normal form grammar with exactly n
variables. Then L(f) is infinite if and only if there is a word x E L(f)
such that

2n < lxl ~ 2n+ 1•

Proof. If there is a word X E L(f) with lxl > 2n, then by Bar-Hillel's
pumping lemma, L(f) is infinite.

Conversely, let L(f) be infinite. Let u be a word of shortest possible
length such that u E L(f) and lui > 2n+ 1. By Bar-Hillel's pumping lemma,
we have u = r1q1rqzrz where q1q2 =/= 0, lq1rqzl ~ 2n and X= r1rrz E L(f).
Now,

lxl ~ lr1r21 = lui - lq1rqzl > 2n.

Since lxl <lui, the manner in which we chose u guarantees that lxl ~ 2n+ 1 .
•

Theorem 6.4. There is an algorithm to test a given context-free grammar
f to determine whether L(f) is finite or infinite.

Proof. Given context-free grammar r with terminals T, we use the
algorithms of Theorems 1.2 and 3.1 to construct a Chomsky normal form
grammar Ll with L(f) = L(Ll) or L(Ll) u {0}. Let Ll have n variables and
let I= 2n. Then we simply use Theorem 6.1 to test each word u E T* for
which I <lui ~ 21 to see whether u E L(f). L(f) is infinite if and only if
at least one of these words u does belong to L(f). •

Remarkably enough, there are also some very simple unsolvable prob­
lems related to context-free grammars.6 The easiest way to obtain these
results is to associate a pair of context-free grammars with each Post
correspondence system.

Thus, suppose we are given the finite set of dominoes:

~
[2]

i = 1, 2, ... , n, where u;, V; E A* for some given alphabet A. We introduce
n new symbols C1, Cz, ••• , Cn and define two context-free grammars fl, f2,
both of which have as their terminals A u {c I> c 2 ' ... ' c n}. r I has the

6 The remainder of this section depends on Chapter 7. Readers who have not covered this
material should move on to Section 7.

300 Chapter 1 0 Context-Free Languages

single variable S1 , its start symbol, and f 2 has S2 as its only variable and
start symbol. The productions of f 1 are

i = 1, 2, ... , n,

and those of r2 are

i = 1,2, ... ,n.

Now, the given Post correspondence system has a solution if and only if we
can have

U· U· ••• U· = V· V· ••• V·
1t 12 1m 1t 12 1m

for some sequence i 1 , i2 , ••• , im. Moreover,

L(f1) = {u. U· ••• U· C· ••• C· C·}
lt lz lm lm lz lt

and

L(f2) = {V·V· ••• V· C· ••• C· C· }.
11 12 1m 1m lz 't

Thus, we have

Theorem 6.5. L(f1) n L(f2) =F 0 if and only if the given Post correspon­
dence problem has a solution.

Using Theorem 4.1 in Chapter 7, we conclude

Theorem 6.6. There is no algorithm to test a given pair of context-free
grammars f 1 , f 2 to determine whether L{f1) n L(f2) = 0.

Another important unsolvability result about context-free grammars
concerns ambiguity.

Definition. A context-free grammar f is called ambiguous if there is a
word u E L(f) that has two different leftmost derivations in f. If f is not
ambiguous, it is said to be unambiguous.

Theorem 6.7. There is no algorithm to test a given context-free grammar
to determine whether it is ambiguous.

Proof. Once again we begin with a Post correspondence system, and form
the two context-free grammars rl' r2 used in proving Theorem 6.5. rl and
f 2 are obviously both unambiguous. Now let r have start symbol Sand all
of the productions of f 1 and f 2 , together with S ~ S1 and S ~ S2 • Then,
since the first step of a derivation from s in r involves an irreversible

7. Bracket Languages 301

commitment to either rl or r2' r will be ambiguous just in case
L(f1) n L(f2) =/= 0. By Theorem 6.5 this will be the case if and only if the
given Post correspondence system has a solution. The result now follows
again from Theorem 4.1 in Chapter 7. •

Another unsolvability result is given in Exercise 8.16.

Exercises

l. Let f 1 be the grammar with productions S ~aS, S ~a, and let f 2 be
the grammar with productions S ~ SS, S ~a.
(a) How many derivation trees are there for a161 in f 1? In f 2?
(b) How many derivations of a141 from S are there in f 1? In f 2?
{c) How many leftmost derivations of a161 from S are there in f 1? In

rz?

2. Write a context-free grammar r such that

L(r) = {alilb[jlclkJ I i = j v j = k}.

This language is an example of an inherently ambiguous language, i.e., a
language such that every grammar that generates it is ambiguous.
Explain why this language is inherently ambiguous.

3. Give an unambiguous context-free grammar that generates the same
language as the ambiguous grammar

7. Bracket Languages

S ~aB

S ~Ab

A ~aAB

B~ABb

A ~a

B ~b.

Let A be some finite set. Although we think of A as an alphabet, we will
also wish to permit A = 0. Let B be the alphabet we get from A by
adjoining the 2n new symbols l , 1, i = 1, 2, ... , n, where n is some given
positive integer. We will write PARiA) for the language consisting of all
strings in B* that are correctly "paired," thinking of each pair l , 1 as
matching left and right brackets. More precisely, PARn(A) = L(f0), where

302 Chapter 10 Context-Free Languages

f 0 is the context-free grammar with the single variable S, terminals B, and
the productions

1. S ---+ a for all a E A,
2. s ---+ isL i = 1, 2, ... , n.
3. s ---+ ss' s ---+ 0.

The languages PARn(A) are called bracket languages.
Let us consider the example A = {a, b, c}, n = 2. For ease of reading we

will use the symbol (for ~ ,) for ~ , [for ~ , and] for ~ . Then
cb[(ab)c](a[b]c) E PAR 2(A), as the reader should easily verify. Also,
{)[] E PARz{A), since we have

S = SS ~ (S)[S] ~ ()[].

Bracket languages have the following properties.

Theorem 7.1. PARn{A) is a context-free language such that

a. A* ~ PARn(A);
b. if x, y E PARn(A), so is xy;
c. if x E PARn(A), so is ~x), for i = 1, 2, ... , n;
d. if x E PARn(A) and x f/:. A*, then we can write x = u/v/w, for

some i = 1, 2, ... , n, where u E A* and v, w E PARn(A).

Proof. Since PARn(A) = L(f0) where f 0 is a context-free grammar,
PARn(A) must be context-free. Property a follows at once on considering
the productions 1 and 3. Forb, let S ~ x, S ~ y. Then using the produc­
tions 3, we have

s = ss ~xy.

For c, let S ~ x. Then using the productions 2, we have

s = .<s.> ~.<x.>
l l l l.

To prove d, note first that we can assume lxl > 1 because otherwise
x E A*. Then, a derivation of x from S must begin by using a production
containing Son the right. We proceed by induction assuming the result for
all strings of length < lxl. There are two cases.

Case 1. S =/S/ ~/v/ = x, where S ~ v; the result then follows
(without using the induction hypothesis) with u = w = 0.

Case 2. S = SS ~ rs = x where S ~ r, S ~ s, and r =/= 0, s =/= 0. Clearly,
lrl, lsi< lxl. If rEA*, then lsi> 1 and we can use the induction
hypothesis to write s = ulv/w, where u E A* and v, w E

7. Bracket Languages 303

PARn(A), and the desired result follows since ru E A*. Other­
wise, we can use the induction hypothesis to write r = u~v/w
where u E A* and v, w E PARn(A), so that the result follows
since ws E PARn(A) by b. •

Historically, the special case A = 0 has played an important role in
studying context-free languages. The language PARn(0) is called the Dyck
language of order n and is usually written Dn.

Now let us begin with a Chomsky normal form grammar r, with
terminals T and productions

i = 1,2, ... ,n, (7.1)

in addition to certain productions of the form V ~a with a E T. We will
construct a new grammar rs which we call the separator of r. The
terminals of rs are the symbols of T together with 2n new symbols ~ 'L
i = 1, 2, ... , n. Thus a pair of "brackets" has been added for each of the
productions (7.1).

The productions of fs are

i = 1,2, ... ,n,

as well as all of the productions of r of the form V ~ a with a E T.
As an example, let f have the productions

s~XY, s ~rr, Y~zz,

x~a, z~a.

Then r is ambiguous as we can see from the leftmost derivations:

S = XY = aY = aZZ = aaZ = aaa,

S = IT = ZZX = aZX = aaX = aaa.

The productions of fs can be written

S ~ (X)Y, S ~ [Y]X, Y ~ {Z}Z,

x~a, z~a,

using (), [], and {} in place of the numbered brackets. The two derivations
just given then become

S = (X)Y = (a)Y = (a){Z}Z = (a){a}Z = (a){a}a,

S = [Y]X = [{Z}Z]X = [{a}Z]X = [{a}a]X = [{a}a]a.

fs thus separates the two derivations in f. The bracketing in the words
(a){a}a, [{a}a]a enables their respective derivation trees to be recovered.

304 Chapter 10 Context-Free Languages

If we write P for the set of brackets ~ , l, i = 1, 2, ... , n, then clearly
f = Erp(f.). Hence by Theorem 5.5,

Theorem 7.2. Erp(L(f.)) = L(f).

We also will prove

Lemma 1. L(r:.) ~ PARn(T).

Proof. We show that if X'{:: w E (T uP)* for any variable X, then

w E PARn(T). The proof is by induction on the length of a derivation of w
from X in r .. If this length is 2, then w is a single terminal and the result
is clear. Otherwise we can write

where Y; ~ u and Z; ~ v. By the induction hypothesis, u, v E PARn(T).
Is rs

By band c of Theorem 7.1, so is w. •

Now let a be the grammar whose variables, start symbol, and terminals
are those of r. and whose productions are as follows:

1. all productions v---+ a from r (or equivalently r.) with a E T,
2. all productions X; ---+ ~ Y;, i = 1, 2, ... , n,
3. all productions V---+ a)Z;, i = 1, 2, ... , n, for which V---+ a is a pro-

duction of f with a E T.

We have

Lemma 2. L(a) is regular.

Proof. Since a is obviously right-linear, the result follows at once from
Theorem 2.5. •

Lemma 3. L(f.) ~ L(a).

Proof. We show that if X'{:: u E (T u P)* then X 'i> u. If u has a

derivation of length 2, then u E T, and X ---+ u is a production of r. and
of f and therefore also of a. Thus X =i> u.

Proceeding by induction, let

X = X ==> .< y.>z. ~ < v>w = u
l rs l ll I fs l I '

7. Bracket Languages 305

where the induction hypothesis applies to Y; 'f;: v and to Z; 'f;: wo Thus,

Y; 'i> v and Z; 'i> Wo Let v = za, a E To (See Exercise 30) Then, examining
the productions of the grammar A, we see that we must have

Y ~zV=za = v,
I 4 4

where V ~a is a production of fo But then we have

•
Lemma 4. L(A) n PARn(T) ~ L(fJ

Proof. Let X 'i> u, where u E PARn(T)o We shall prove that X it Uo

The proof is by induction on the total number of occurrences of the
symbols~,] in u. If this number is 0, then, examining the productions of A,
we see that u E T and the production X ~ u is in A and hence in r. 0

Thus X it Uo

Now let X 'i> u, where u contains occurrences of the bracket symbols
~ , 1 and where the result is known for words v containing fewer occur­
rences of these symbols than Uo Examining the productions of A, we see
that our derivation of u from X must begin with one of the productions 20
(If the derivation began with a production of the form 1, then u would be
a terminal. If the derivation began with a production of the form 3, then
u = a~w for some word w, which is impossible by Theorem 7o1do) There­
fore u =~z, for some word z and some i = 1, 2, 0 0 0, no By Theorem 7o1d,
u =~v]w, where v, w E PARn(T)o In our derivation of u in A, the symbol]
can only arise from the use of one of the productions of the form 3, say,
V ~ a)Z;, where a E T and V ~ a is a production of fo Then v must end
in a, so that we can write v = ua, where

X X <y • <-v <- >z • < > = ;=;; i 'f;V =;;vai ;'f;V;W

and Z; 'i> Wo Moreover, since V ~a is a production of f, it is also one of
the productions of A of the form 1. Therefore, we have in A

y; =i> vv=; ua = vo

Since v and w must each contain fewer occurrences of~ , l than u, we have
by the induction hypothesis

y; 'f v,
s

Z; it wo

306 Chapter 1 0 Context-Free Languages

Hence,

•
We are now ready to state

Theorem 7.3. Let r be a grammar in Chomsky normal form with termi­
nals T. Then there is a regular language R such that

Proof. Let a be defined as above and let R = L(a). The result then
follows at once from Lemmas 1-4. •

Theorem 7.4 (Chomsky-Schiitzenherger Representation Theorem). A
language L ~ T* is context-free if and only if there is a regular language
R and a number n such that

L = Erp(R n PARn(T)),

where P = <Lll i = 1,2, ... ,n}.

(7.2)

Proof. It is clear by Theorems 7.2 and 7.3 that for every grammar r in
Chomsky normal form, L = L(r) satisfies (7.2). For an arbitrary context­
free language L, by Theorems 1.2 and 3.1, there is a Chomsky normal
form grammar r such that

L = L(r) or L = L(r) U {0}.

If

then

L(r) U {0} = Erp((R U {0}) n PARn(T))

since, by Theorem 7.1a, 0 E PARn(T). But, by Theorems 4.2 and 4.5 in
Chapter 9, R u {0} is a regular language.

It remains only to show that any language L that satisfies (7.2) must be
context-free. But since, by Theorem 7.1, PARn(T) is context-free, this
result follows at once from Theorem 5.4 and Corollary 5.6. •

The Chomsky-Schiitzenberger theorem is usually expressed in terms of
the Dyck languages Dn = PARn(0). Since our form of the theorem is
equivalent to the more usual form, we will give only a very brief sketch of
the proof of the usual form. It is necessary to go back to the construction

7. Bracket Languages 307

of r .. Each element a of T is now thought of as a "left bracket" and is
supplied with a "twin" a' to act as its corresponding right bracket. A new
grammar f 1 is then defined to have the same productions X; ~ ~ Y;~,
i = 1, 2, ... 'n, as r. but to have productions

v~aa'

for each production V ~a of r. Then clearly, L(f1) can be obtained from
L(f.) by simply replacing all occurrences of letters a E T in words of
L(f.) by aa'. By replacing a by aa' in productions of the forms 1 and 3 of
a, we obtain a right linear grammar a' such that

where T' = {a, a' I a E T}. But in fact L(f1) ~ Dm, where m = n + k and
there are k letters in T. Thus,

L(f1) = L(a') n Dm.

Finally letting Q = <L 11 i = 1, 2, ... , n} u {a' I a E T}, we have

L(f) = ErQ(L(f1)) = ErQ(L(a') n Dm).

Thus, we get

Theorem 7.5. A language L is context-free if and only if there is a
regular language R, an alphabet Q, and an integer m such that

Exercises

1. Let A be a finite set of symbols, n a positive integer, and PARn(A) =
L(f0), where f 0 is the grammar given in the definition of PARn(A).
Show that f 0 is ambiguous. [See Section 6 for the definition of
ambiguous grammars.]

2. Let r be the grammar with productions

and start symbol S.
(a) Give r ..

s~xz

s~XY z~sY

(b) Give a, as defined following Lemma 1, for r.

308

{c) Show that L{f5) -=/= PAR3({a, b}).

(d) Show that L(f.) -=1= L(A.).

Chapter 1 0 Context-Free Languages

3. Let f be a grammar in Chomsky normal form with variables 'Y and
terminals T, and let T u P be the terminals of fs. Prove that for all

V E 'Y and all w such that V ~ w, w = us for some v E ('YU T uP)* rs
and some s E 'YU T.

4. Let f be a regular grammar, and let f' be the Chomsky normal form
grammar derived from r by the construction in the proof of Theorem
3.1. Prove that L{r:) is regular.

8. Pushdown Automata

We are now ready to discuss the question of what kind of automaton is
needed for accepting context-free languages. We take our cue from
Theorem 7.2, and begin by trying to construct an appropriate automaton
for recognizing L{f5), where f is a given Chomsky normal form grammar.
We know that L{f5) = R n PARn(T), where R is a regular language.
Thus R is accepted by a finite automaton. The problem we need to solve is
this: what additional facilities does this finite automaton require in order
to check that some given word belongs to PARn(T)? Those familiar with
"stacks" and their uses will see at once that what is needed is a "pushdown
stack" as an auxiliary storage device. Such a device behaves in a last­
in-first-out manner. At each step in a computation with a pushdown stack
one or both of a pair of operations can be performed:

1. The symbol at the "top" of the stack may be read and discarded.
(This operation is called popping the stack.)

2. A new symbol may be "pushed" onto the stack.

A stack can be used to identify a string as belonging to PARn(T) as
follows: For each pair ~ , f, i = 1, 2, ... , n, a special symbol 1; is introduced.
Now, as our automaton moves from left to right over a string, it pushes 1;
onto the stack whenever it sees ~ , and it pops the stack, eliminating a 1;,
whenever it sees f . Such an automaton will successfully scan the entire
string and terminate with an empty stack just in case the string belongs to
PARn(T).

To move toward making these ideas precise, let T be a given alphabet
and let P = {Lf I i = 1, 2, ... , n}. Let .n = {11 ,Jl' ... ,Jn}, where we have
introduced a single symbol 1; for each pair ; , f, 1 ~ i ~ n. Let u E

(T uP)*, say, u = c1c2 ••• ck, where c1 , c2 , ••• , ck E T UP. We define a

8. Pushdown Automata

sequence yiu) of elements of 0.* as follows:

y 1(u) = 0

if cj E T

if C· =(
J I

if c.=> and -v.(u) =1.a
) i I J I '

309

for j = 1, 2, ... , k. Note that if cj = l, 'Yj+ 1(u) will be undefined unless 'Yj
begins with the symbol 1; for the very same value of i. Of course, if a
particular y,(u) is undefined, all yiu) with j > r will also be undefined.

Definition. We say that the word u E (T u P)* is balanced if yj(u) is
defined for 1 ::; j ::; lui + 1 and 'Yiul+ 1(u) = 0.

The heuristic considerations with which we began suggest

Theorem 8.1. Let T be an alphabet and let

P = {l, ll i = 1, 2, ... , n}, TnP= 0.

Let u E (T UP)*, let 0. = {11, 12 , ... , 1n}. Then u E PARn(T) if and only
if u is balanced.

The proof is via a series of easy lemmas.

Lemma 1. If u E T * , then u is balanced.

Proof. Clearly yiu) = 0 for 1 ::; j ::; lui + 1 in this case. •
Lemma 2. If u and v are balanced, so is uv.

Proof. Clearly yiuv) = yj(u) for 1 ::; j ::; lui + 1. Since 'Yiul+ 1(u) = 0 =
'Y!u!+l(uv) = y 1(v), we have 'Y!u!+iuv) = yiv) for 1 ::;j::; lvl + 1. Hence,
'Y!uv!+ l(uv) = 'Yiul+lvl+ l(uv) = 'Yivl+ l(v) = 0. •

Lemma 3. Let v =/u/. Then u is balanced if and only if v is balanced.

Proof. We have y 1(v) = 0, y 2(v) = 1;, 'Yj+ 1(v) = yiu)1;, j = 1,2, ... ,
lvl- 1. In particular, y1, 1(v) = y1u1+ 2(v) = 'Y!u!+l(u)1;. Thus, if u is bal­
anced, then 'Yiul+ 1(u) = 0, so that y 101(v) = 1; and 'Yivl+ 1(v) = 0. Con­
versely, if v is balanced, 'Yivl+ 1(v) = 0, so that y 1v1(v) must be 1; and
'Y1u1+ l(u) = 0. •

Lemma 4. If u is balanced and uv is balanced, then v is balanced.

310 Chapter 1 0 Context-Free Languages

Proof. y/uv) = y/u) for 1 ::::;; j ::::;; lui + 1. Since Yiui+ 1(u) = 0, we have
Y1u1+/uv) = yi(v) for 1 ::::;;j::::;; lvl + 1. Finally,

0 = Yiuvi+l(uv) = Yiui+lvi+l(uv) = Ylvi+l(v). •
Lemma 5. If u E PARn(T), then u is balanced.

Proof. The proof is by induction on the total number of occurrences of
the symbols ~ , f in u. If this number is 0, then u E T*, so by Lemma 1, u is
balanced.

Proceeding by induction, let u have k > 0 occurrences of the symbols
~ , f, where the result is known for all strings with fewer than k occurrences
of these symbols. Then, by Theorem 7.1d, we can write u = vlw[z, where
v, w, z E PARn(T). By the induction hypothesis, v, w, z are all balanced,
and by Lemmas 2 and 3, u is therefore balanced. •

Lemma 6. If u is balanced, then u E PARn(T).

Proof. If u E T*, the result follows from Theorem 7.1a. Otherwise, we
can write u = xy, where x E T * and the initial symbol of y is in P. By the
definition of yj(u), we will have yj(u) = 0 for 1 ::::;; j ::::;; lxl + 1. Therefore,
the initial symbol of y cannot be one of the f. Thus we can write u = x~z,
and Ylxi+ 2(u) = 1;. Since u is balanced, Y[ui+ 1(u) = 0, and we can let k be
the least integer > lxl + 1 for which Yk(u) = 0. Then yk_ 1(u) = 1; and the
(k - l)th symbol of u must be f. Thus u = x~vJw, where k = lxl + I vi + 3.
Thus 0 = Yixi+ivl+ 3(u) = Yixi+ivi+ 3(x~v[). Hence x~v[is balanced. By
Lemma 4, w is balanced. Since x E T*, x is balanced, and by Lemma 4
again, / v/ is balanced. By Lemma 3, v is balanced. Since x E T*, x E

PARn(T). Since I vi, lwl <lui, we can assume by mathematical induction
that it is already known that v, w E PARn(T). By band c of Theorem 7.1,
we conclude that u E PARn(T). •

Theorem 8.1 is an immediate consequence of Lemmas 5 and 6.
We now give a precise definition of pushdown automata. We begin with

a finite set of states Q = {q1 , ••• , qm}, q1 being the initial state, a subset
F ~ Q of final, or accepting, states, a tape alphabet A, and a pushdown
alphabet .0. (We usually use lowercase letters for elements of A and
capital letters for elements of .0.) We assume that the symbol 0 does not
belong to either A or .0 and write A= A u {0), :0: = .0 u {0}. A transition
is a quintuple of the form

q;aU: Vqi

where a E A and U, V E :0:. Intuitively, if a E A and U, V E .n, this is to
read: "In state q; scanning a, with U on top of the stack, move one square

8. Pushdown Automata 311

to the right, 'pop' the stack removing U, 'push' V onto the stack, and enter
state qj ." If a = 0, motion to the right does not take place and the stack
action can occur regardless of what symbol is actually being scanned.
Similarly, U = 0 indicates that nothing is to be popped and V = 0 that
nothing is to be pushed. A pushdown automaton is specified by a finite set
of transitions. The distinct transitions q;aU:Vqj, q;bW:Xqk are called
incompatible if one of the following is the case:

1. a = b and U = W;
2. a = b and U or W is 0;
3. U = W and a or b is 0;
4. a or b is 0 and U or W is 0.

A pushdown automaton is deterministic if it has no pair of incompatible
transitions.

Let u E A* and let L be a pushdown automaton. Then a u-configura­
tion for L is a triple A = (k, q;, a), where 1 :s; k :s; lui + 1, q; is a state of
L, and a E .0*. [Intuitively, the u-configuration (k, q;, a) stands for the
situation in which u is written on .L's tape, Lis scanning the kth symbol
of u-or, if k =lui + 1, has completed scanning u-and a is the string of
symbols on the pushdown stack.] We speak of q; as the state at configura­
tion A and of a as the stack contents at configuration A. If a = 0, we say
the stack is empty at A. For a pair of u-configurations, we write

u: (k,q;,a) r-,(l,qj,{3)

if L contains a transition q;aU:Vqj, where a= Uy, {3 = Vy for some
y E .0*, and either

1. I = k and a = 0, or
2. I= k + 1 and the kth symbol of u is a.

Note that the equation a = Uy is to be read simply a = y in case U = 0;
likewise for {3 = Vy.

A sequence A1 , A2 , ••• , Am of u-configurations is called a u-computa-
tion by L if

1. A1 = (1, q, 0) for some q E Q,
2. Am =(lui+ 1, p, y) for some p E Q and y E .0*, and
3. u: A; r-, Ai+l for 1 :s; i < m.

This u-computation is called accepting if the state at A1 is the initial state
q1 , the state pat Am is in F, and the stack at Am is empty. We say that L
accepts the string u E A* if there is an accepting u-computation by .L. We
write L(L) for the set of strings accepted by L, and we call L(.L) the
language accepted by L.

312 Chapter 10 Context-Free Languages

Acceptance can alternatively be defined either by requiring only that the
state at Am is in F or only that y = 0. It is not difficult to prove that the
class of languages accepted by pushdown automata is not changed by
either of these alternatives. (See Exercise 8.)

A few examples should provide readers with some intuition for working
with pushdown automata.

Example L 1 Tape alphabet= {a, b}, pushdown alphabet ={A}, Q =
{q1 , q2}, F = {q2}. The transitions are

q1a0: Aq1

q1bA: Oq2

q2 bA:Oq2 •

The reader should verify that L(L1) = {alnlblnll n > 0}.

Example L 2 Tape alphabet= {a, b, c}, pushdown alphabet= {A, B},
Q = {q1 , q2}, F = {q2}. The transitions are

q1a0: Aq1

q1b0: Bq1

q 1c0: Oq2

qzaA:Oqz

q2 bB: Oq2 •

Here, L(L2) = {ucuR I u E {a, b}*}.

Example L 3 Tape alphabet = {a, b}, pushdown alphabet = {A, B}, Q =
{q, 'qz}, F = {qz},

q1a0: Aq1

q1b0: Bq1

q1aA: Oq2

q1bB: Oq2

qzaA: Oqz

q2 bB: Oq2 •

In this case, L(L3) = {uuR I u E {a, b}*, u =F 0}. Note that while L 1 , L 2
are deterministic, L 3 is a nondeterministic pushdown automaton. Does
there exist a deterministic pushdown automaton that accepts L(L3)? Why
not?

8. Pushdown Automata 313

L(L1), L(L2), and L(L3) are all context-free languages. We begin our
investigation of the relationship between context-free languages and push­
down automata with the following theorem.

Theorem 8.2. Let f be a Chomsky normal form grammar with separator
r. . Then there is a deterministic pushdown automaton L such that
L(L) = L(f.).

Proof. Let T be the set ofterminals of r. By Theorem 7.3, for suitable n,

L(f.) = R n PARn(T),

where R is a regular language. Let P = {~, ll i = 1, 2, ... , n}. Let .10 be a
dfa with alphabet T u P that accepts R. Let Q = {q1 , ••• , qm} be the
states of .10 , q 1 the initial state, F ~ Q the accepting states, and l> the
transition function. We construct a pushdown automaton L with tape
alphabet T u P and the same states, initial state, and accepting states as

L 0 , Lis to have the pushdown alphabet !1 = {11 , ••• , In}. The transitions
of L are as follows for all q E Q:

a. for each a E T, qaO: Op, where p = l>(q, a);
b. fori= 1,2, ... ,n,qf0: l;p;, where P; = l>(q,~);
c. for i = 1, 2, ... , n, qJ 1;: Op;, where P; = l>(q,]).

Since the second entry in these transitions is never 0, we see that for any
u E (T uP)*, a u-computation must be of length lui + 1. It is also clear
that no two of the transitions in a -c are incompatible; thus, L is
deterministic.

Now, let u E L(f.), u = c1c2 ••• cK, where c1 , c2 , ... , cK E (T UP).
Since u E R, the dfa L 0 accepts u. Thus, there is a sequence
p 1, p 2 , ••. , PK+ 1 E Q such that p 1 = q1, PK+ 1 E F, and l>(p;, c;) =Pi+ 1 ,

i = 1, 2, ... , K. Since u E PARn(T), by Theorem 8.1, u is balanced, so that
yiu) is defined for j = 1, 2, ... , K + 1 and 'YK + 1(u) = 0. We let

Iii= (j,pi,yi(u)), j = 1,2, ... ,K+ 1.

To see that the sequence !l.1 , !l. 2 , ••• , !l. K + 1 is an accepting u-computation
by L, it remains only to check that

j=1,2, ... ,K.

But this clear from the definition of yiu).
Conversely, let L accept u = c1c2 ••• cK. Thus, let !l.1 , !l. 2 , ••• , !l.K+ 1 be

an accepting u-computation by L. Let

j = 1,2, ... ,K+ 1.

314 Chapter 1 0 Context-Free Languages

Since

j = 1,2, ... ,K,

and y 1 = 0, we see that yi satisfies the defining recursion for yi(u) and
hence, 'Yj = r/u) for j = 1, 2, ... ' K + 1. Since 'YK +I = 0, u is balanced
and hence u E PARn(T). Finally, we have p 1 = qp PK+ 1 E F, and
8(pi, ci) =Pi+ 1. Therefore the dfa L 0 accepts u, and u E R. •

We call a pushdown automaton atomic (whether or not it is determinis-
tic) if all of its transitions are of one of the forms

i. paO: Oq,
ii. pOU: Oq,

iii. pOO: Vq.

Thus, at each step in a computation an atomic pushdown automaton can
read the tape and move right, or pop a symbol off the stack or push a
symbol on the stack. But, unlike pushdown automata in general, it cannot
perform more than one of these actions in a single step.

Let L be a given atomic pushdown automaton with tape alphabet T
and pushdown alphabet .n = {11 , 12 , ••• , Jn}. We set

P = {L fl i = 1, 2, ... , n}

and show how to use the "brackets" to define a kind of "record" of a
computation by L. Let a1 , a2 , ••• , am be a (not necessarily accepting)
v-computation by L, where v = c1c2 ••• cK and ck E T, k = 1,2, ... ,K,
and where a; = U;, P;, y;), i = 1, 2, ... , m. We set

WI= 0

if 'Yi+l = Y; }

if 'Yi+ I = Jj'Yi

if 'Y; = Jj'Yi+ I

1 ~ i < m.

[Note that 'Yi+I = Y; is equivalent to /i+I =I;+ 1 and is the case when a
transition Of form i is used in getting from a; to ai+ I; the remaining twO
cases occur when transitions of the form iii or ii, respectively, are used.]
Now let w = wm, so that Erp(w) = v and m = lwl + 1. This word w is
called the record of the given v-computation a1 , ••• , am by L. From w we
can read off not only the word v but also the sequence of "pushes" and
"pops" as they occur. In particular, w;, 1 < i ~ m, indicates how L goes
from ai-l to a;.

8. Pushdown Automata 315

Now we want to modify the pushdown automaton L of Theorem 8.2 so
that it will accept L(f) instead of L(f.). In doing so we will have to give
up determinism. The intuitive idea is to use nondeterminism by permitting
our modified pushdown automaton to "guess" the location of the "brac­
kets" /, /. Thus, continuing to use the notation of the proof of Theorem
8.2, we define a pushdown automaton .ii with the same states, initial state,
accepting states, and pushdown alphabet as L. However, the tape alpha­
bet of .ii will be T (rather than T u P). The transitions of .ii are, for all
qEQ:

a. for each a E T, qaO: Op, where p = 8(q, a) [i.e., the same as the
transitions a of L];

b. fori= 1,2, ... ,n, qOO: l;p;, where P; = 8(q,~);
c. for i = 1, 2, ... , n, qOl;: Ojj; where P; = 8(q,]).

Depending on the transition function 8, .ii can certainly be nondetermin­
istic. We shall prove that L(L) = L(f). Note that .ii is atomic (although
Lis not).

First, let v E L(f). Then, since Er/L(f.)) = L(f), there is a word
wE L(f.) such that Er/w) = v. By Theorem 8.2, wE L(L). Let
a1 , a 2 , ••• , am be an accepting w-computation by L (where in fact
m = lwl + 1). Let

i = 1,2, ... ,m.

Let n; = 1 if w: a; 1-_, ai+ I via a transition belonging to group a;
otherwise n; = 0,1 :::;; i < m. Let

11 = 1,

1:::;; i < m.

Finally let

i = 1,2, ... ,m.

Then, as is easily checked,

1:::;; i < m.

Since xm = (I vi + 1, q, 0) with q E F, we have v E L(L).
Conversely, let v E L(L). Let XI' x2' ... ' xm be an accepting v­

computation by .L, where we may write

i = 1,2, ... ,m.

316 Chapter 1 0 Context-Free Languages

Using the fact that L is atomic, we can let w be the record of this
computation in the sense defined earlier so that Er p(w) = v and m =
lwl + 1. We write

!l.; = (i,p;,y),

and easily observe that

w: fi; I-.I fii+ I'

i = 1,2, ... ,m,

i = 1,2, ... ,m.

[In effect, whenever L pushes 1; onto its stack, ~ is inserted into w; and
whenever L pops 1;, ~ is inserted into w. This makes the transitions b, c of
L behave on w just the way the corresponding transitions of L behave
on v.] Since Pm E F and 'Ym = 0, !l. 1 , !l. 2 , ••• , lim is an accepting w-compu­
tation by L. Thus, by Theorem 8.2, wE L(f.). Hence v E L(f).

We have shown that L(f) = L(L). Hence we have proved

Theorem 8.3. Let f be a Chomsky normal form grammar. Then there is
a pushdown automaton L such that L(L) = L(f).

Now let L be any context-free language. By Theorems 1.2 and 3.1 there
is a Chomsky normal form grammar r such that L = L(f) or L(f) u {0}.
In the former case, we have shown how to obtain a pushdown automaton
L such that L = L(L). For the latter case we first modify the dfa L 0

used in the proof of Theorem 8.2 so that it is nonrestarting. We know that
this can be done without changing the regular language that L 0 accepts by
Theorem 4.1 in Chapter 9. By carrying out the construction of a pushdown
automaton L for which L(L) = L(f) using the modified version of

L 0 , L will have the property that none of its transitions has q1 as its final
symbol. That is, L will never return to its initial state. Thus, if we define
L' to be exactly like L except for having as its set of accepting states

F' = F u {q1},

we see that L(L') = L(L) u {0} = L(f) u {0}. Thus we have proved

Theorem 8.4. For every context-free language L, there is a pushdown
automaton L such that L = L(L).

We will end this section by proving the converse of this result. Thus we
must begin with a pushdown automaton and prove that the language it
accepts is context-free. As a first step toward this goal, we will show that
we can limit our considerations to atomic pushdown automata.

Theorem 8.5. Let L be a pushdown automaton. Then there is an atomic
pushdown automaton L such that L(L) = L(L).

8. Pushdown Automata 317

Proof. For each transition

paU: Vq

of L for which a, U, V =/= 0, we introduce two new states r, s and let L
have the transitions

paO: Or,

rOU: Os,
sOO: Vq.

If exactly one of a, U, V is 0, then only two transitions are needed for L.
Finally, for each transition pOO: Oq, we introduce a new state t and replace
pOO: Oq with the transitions pOO: Jt, tOJ: Oq, where J is an arbitrary
symbol of the pushdown alphabet (or a new symbol if the pushdown
alphabet of L is empty). Otherwise, L is exactly like L. Clearly,
L(L) = L(L). •

Theorem 8.6. For every pushdown automaton L, L(L) is a context-free
language.

Proof. Without loss of generality, by using Theorem 8.5 we can assume
that L is atomic. Let L have states Q = {qt, ... , qm}, initial state qt,
final states F, tape alphabet T, and pushdown alphabet !1 = {Jt, ... , Jn}.
Let P = {~,]I i = 1, ... , n}. Let L ~ (T u P)* consist of the records of
every accepting u-computation by L, and let R = L(L0), where L 0 is the
ndfa with alphabet T u P, the same states, initial state, and accepting
states as L, and transition function 8 defined as follows. For each q E Q,

l>(q, a) = {p E Q I L has the transition qaO: Op} for a E T,

t>(q .~) = {p E Q I L has the transition qOO: lip}, i = 1, ... , n,

t>(q ,/) = {p E Q I L has the transition qOJi: Op}, i = 1, ... , n.

Let w E L be the record of an accepting u-computation at' ... ' am'
where ai = (li, Pi• y;), i = 1, ... , m. An easy induction on i shows that
PiE 8*{qt,w;), i = 1, ... ,m, so, in particular, Pm E l>*{qt,w), which im­
plies wE R, since Pm must be an accepting state. Moreover, another easy
induction on i shows that 'Yi(w) = 'Yi• i = 1, ... , m, which implies that
yi(w) is defined for 1::; i::; lwl + 1 and 'Yiwl+t(w) = 'Yiwl+t = 0 (since
at, ... , am is accepting), i.e., w is balanced. Therefore, by Theorem 8.1,
wE R n PARn(T), and soL~ R n PARn(T).

On the other hand, let w = ct ... c, be a balanced word in R, i.e.,
wE R n PARn(T), let u = dt ... d. be Erp{w), and let Pt····•Pr+t be

318 Chapter 1 0 Context-Free Languages

some sequence of states such that p 1 = q1 ,p,+ 1 E F, and Pi+ IE 8(p;,c;)
for i = 1, ... , r. We claim that

where

if C; E T
otherwise,

is an accepting u-computation by L and that w is its record. Clearly, we
have (/1 , p 1 , y1(w)) = (1, q1 , 0), 1,+ 1 =lui + 1, Pr+ 1 E F, and 'Yr+ 1(w) = 0
(since w is balanced), so we just need to show that

(8.2)

fori= 1,.,.,r. For arbitrary i = 1, ... ,r, if 'Y;+ 1(w) = Y;(w), then c; E T,
so Pi+! E 8(p;,c;), and L has the transition P;C;O:Opi+l" Now, a simple
induction on i shows that Erp(c1 ••• c;_ 1) = d1 ••• d1 _ 1, i = 1, ... , r + 1
(where c1 ••• c0 represents 0), from which we can sho~

if c; E T then d 1 = c; ,
I

i = 1, ... , r.

In particular, for any i = 1, ... , r, if c; E T, then

Erp(c1 ••• c;) = Erp(c 1 ••• c;_ 1)c; = d 1 ••• d1;_ 1c;,

so c; must be d1 since c; is not deleted when Erp is applied to w.
Therefore, L has'the transition p;d10:0pi+l and li+ 1 =I;+ 1, so (8.2) is
satisfied. If, instead, 'Yi+ 1(w) = Jjyi(~) for some j = 1, ... , n, then c; =j,
so Pi+! E 8(p;,j) and L has the transition p;OO: Jjpi+J· Moreover,
cj ft. T, so I;+ 1 = I;, and (8.2) is satisfied in this case as well. Finally, if
Y;(w) =lj'Yi+l(w) for some j = 1, ... ,n, then c; =],so Pi+l E 8(p;,])
and L has the transition P;Olj:Opi+l" Moreover, li+ 1 = 1;, so again (8.2)
is satisfied. Therefore, (8.1) is an accepting u-computation by L. If we set
W; = c1 ••• c;_ 1 , i = 1, ... , r + 1, then an induction on i shows that w is
indeed the record of (8.1), so w E L, and we have R n PARiT) ~ L.
Therefore, L = R n PARn{T), and

L(L) = Erp(R n PARn(T)).

Finally, by Theorems 5.4 and 7.1 and Corollary 5.6, L(L) is context-free .

•

8. Pushdown Automata 319

Exercises

1. Let T be an alphabet, P = {}, / I i = 1, ... , n}, w = a1 ··· am E

PARn(T). Intefers j, k, where 1 5. j < k 5. m, are matched in w if
w = a1 ··· aj-tiaj+t ··· ak_ 1]ak+t ···am, for some 1 5. i 5. n, and if
aj+ I ... ak-1 is balanced. Let r be a Chomsky normal form gram­
mar.
(a) Let w =l x E L(f.). Prove that there is exactly one k, 1 < k 5.

lwl, such that 1 and k are matched in w.
(b) Show that r. is unambiguous. [See Section 6 for the definition of

ambiguous grammars.]

2. (a) For pushdown automaton L 1 in the examples, give the accept­
ing u1-computation for u1 = aabb.

(b) For pushdown automaton L 2 in the examples and u 2 = abcbba,
give the longest sequence A1 = (1, qp 0), A2 , ••• , Am of u2-con­
figurations that satisfies condition 3 in the definition of u-com­
putations.

(c) For pushdown automaton L 3 in the examples, give all possible
u3-computations, accepting or not, for u 3 = aaaa.

3. For each of the following languages L, give a pushdown automaton
that accepts L.
(a) {alnlbl2nll n > 0}.

(b) {alnlblmll 0 < n 5, m}.

(c) {alnlblmJI n =/= m}.

(d) {alnlblmlalnll m, n > 0} U {alnlclnll n > 0}.

4. Let L be the pushdown automaton with Q = {q1}, F = {q1}, and
transitions

What is L(L)?

q1a0: Aq1 q1aB: Oq1
q1b0: Bq1 q1bA: Oq1.

5. Let L be the pushdown automaton with Q = {q1 , q2 , q3 , q4 , q5},

F = {q5}, and transitions

q100: Zq2

q2a0: Aq2

q2 bA:Oq3

q2 bZ:Oq4

q3 bA: Oq3

q3bZ: Oq4

q3a0: Oq4

q30Z: Oq5

q4 a0: Oq4

q4 b0: Oq4

q40A:Oq4

q40Z:Oq4 •

320 Chapter 10 Context-Free Languages

(a) What is L(.L)?

(b) Prove that for every u E {a, b}*, there is a u-computation by L.

6. Show that every regular language accepted by a (deterministic) finite
automaton with n states is accepted by a (deterministic) pushdown
automaton with n states and an empty pushdown alphabet.

7. Show that every regular language R is accepted by a pushdown
automaton with at most two states, and if 0 E R then R is accepted
by a pushdown automaton with one state.

8. Let L be a pushdown automaton with initial state q1 , accepting
states F, and tape alphabet A, let u E A*, and let a1 =
(1, q1 , 0), ... , am = (lui + 1, p, y) be a u-computation by L. We say
that L accepts u by final state if p E F, and that L accepts u by empty
stack if y = 0. T(L) = {u E A* I L accepts u by final state}, and
N(L) = {u E A* I L accepts u by empty stack}.
(a) Let .L1 , .L2 , L 3 be the pushdown automata from the examples.

Give T(.ff;), N(.ff;), i = 1, 2, 3.
(b) Prove that a language L is context-free if and only if L = T(L)

for some pushdown automaton L.

(c) Prove that a language L is context-free if and only if L = N(L)
for some pushdown automaton L.

9. Let L be a pushdown automaton with tape alphabet A, and let
u E A*. An infinite sequence al' a2, .•• of u-configurations for Lis
an infinite u-computation by L if for some n and some x such that
u = xy for some y, each finite sequence al' •.. ' an' ... ' an +m' m ~ 0,
is an x-computation by L. It is an accepting infinite u-computation if
a 1 , ••• , ak is an accepting u-computation by L for some k.

(a) Give a pushdown automaton L 1 and word u1 such that there is
a nonaccepting infinite u-computation by L 1 •

(b) Give a pushdown automaton .L2 and word u2 such that there is
an accepting infinite u2-computation (/1 , P1> y 1), (/2 , p 2 , y 2), ...

by .L2 where, for some k, p1 is an accepting state for all I~ k.
(c) Give a pushdown automaton L 3 and word u3 such that there is

an accepting infinite u3-computation (/1 , p 1 , y 1), (/2 , p 2 , y 2), ...

by .L3 where there is no k such that p1 is an accepting state for
all I ~ k.

10. Give the incompatible pairs among the following transitions. In each
case, give the condition(s) 1, 2, 3, or 4 by which the pair is incompati­
ble.

8. Pushdown Automata

qiaJI: Oqi
qibJI: Oqi
qiaJI: Oqz

qiaO: lzqi
q1011: Oqi

qiblz: liqi
qiOO: Jiqi

321

11. LetT= {a, b}, P = {~, ~ ,~,~}, 0. = {11 , 12}. We will write(,),[,] for
~,~,~,~,respectively. Give Y;(w), 1 :::;; i:::;; lwl + 1, for each of the
following.
(a) w = a(b[ba]a)b[a].

(b) w = (ab[ab)a].

{c) w = a[b]]a.

(d) w = (a([b]a).

12. Let f be the grammar with productions S ~ SS, S ~a.

(a) Use the construction in the proof of Theorem 8.2 to give a
deterministic pushdown automaton that accepts L(f.).

{b) Use the construction in the proof of Theorem 8.3 to give a
pushdown automaton that accepts L(f).

13. (a) For pushdown automata L 1 , L 2 , L 3 in the examples, use the
construction in the proof of Theorem 8.5 to give atomic push­
down automata ~ , L 2 , L 3 •

(b) Answer Exercise 2 for ~ , .ii2 , ~.

14. Let L be the pushdown automaton with Q = {q1 , q2}, initial state
q1 , F = {q2}, tape alphabet {a, b}, pushdown alphabet {A}, and transi­
tions

q1a0: Oq1

q 1b0: Oq2

q 100: Aq1

q 10A: Oq1

q2 a0: Oq1

q2 b0: Oq2

q20A: Oq2

q200: Aq2 •

Use the constructions in Theorems 8.6 and 5.4 to give a context-free
grammar f such that L(f) = L(L).

15. Let us call a generalized pushdown automaton a device that functions
just like a pushdown automaton except that it can write any finite
sequence of symbols on the stack in a single step. Show that, for every
generalized pushdown automaton L, there is a pushdown automaton
.ii such that L(L) = L(.ii).

16.* Let

322 Chapter 1 0 Context-Free Languages

be a set of dominoes on the alphabet A. Let B = {c1, ... , ck} be an
alphabet such that A n B = 0. Let c $. A u B. Let

R = {ycyR I y E A*B*},

L 1 = {u.u. ··· u.c.c. ···c. c.}
lt l2 ln ln 'n-1 l2 lt'

L 2 = {u. V· ••• V· C· C· ••• C· C·}
11 12 1n 1n 1n-l 12 11'

sp = {yczR I y E Ll 'z E Lz}.

Recall that by Theorem 6.5, the Post correspondence problem P has
a solution if and only if L 1 n L 2 * 0.
(a) Show that the Post correspondence problem P has no solution

if and only if R n S P = 0.
(b) Show that (A u B u {c})* - R and (A u B u {c})* - Sp are

both context-free. [Hint: Construct pushdown automata.]
(c) From (a) and (b) show how to conclude that there is no algo­

rithm that can determine for a given context-free grammar r
with terminals T whether L(f) u {0} = T*.

(d) Now show that there is no algorithm that can determine for a
given context-free grammar rl and regular grammar r2 whether

(i) L(f1) = L(f2),

(ii) L(f1) ~ L(f2).

17.* Let L be a pushdown automaton with Q = {q1 , ••• , qm}, tape alpha­
bet A = {a1 , ••• , an}, and pushdown alphabet .0 = {11 , ••• , 11}, and
let p,p' E Q,1,1' En. A sequence (l,p!,'YJ), ... ,(1,pk,yk) ofO­
configurations for L is a reaching sequence by L from (p, J) to
(p',1') if p 1 = p, y 1 = 1, Pk = p', 'Yk = 1'8 for some 8 E .0*, IY;I > 0
for 1 :::;; i:::;; k, and 0: (l,p;, y;) I-..,. (1, Pi+ 1 , 'Yi+ 1)for 1 :::;; i < k. (p, J)
is a looping pair of L if there is a reaching sequence by L from
(p, J) to (p, J).

(a) Prove that if L has a u-computation a 1 , ••• , ak =(lui + 1 ,
p, 1y) for some looping pair (p, J) of L, then L has an
infinite uw-computation for every w E A*. [See Exercise 9 for
the definition of infinite u-computations.]

(b) Prove that if (p, J) is a looping pair for L, then there is a
reaching sequence a1 = (1, p, 1), ... , ak = (1, p, 18) by L from
(p, J) to (p, J) such that 181:::;; lm [Hint: Consider the pigeon­
hole principle and the proofs of the pumping lemmas.]

9. Compilers and Formal Languages 323

(c) Prove that if (p, J) is a looping pair of L, then there is a
reaching sequence A1 , ••• , Ak by L from (p, J) to (p, J) with
k ~ m(l + l)lm + 1.

(d) Give an algorithm that will determine, for a pushdown automa­
ton Land pair (p, 1), whether or not (p, J) is a looping pair of
L.

(e) Prove that if L has an infinite u-computation, for some u E A*,
then L has a looping pair.

(f) Suppose now that ,((is deterministic. Prove that there is a
deterministic pushdown automaton L' such that
(i) there is no infinite u-computation by L' for any u E A*;

(ii) there is a u-computation by L' for every u E A*, and
(iii) T(L') = T(L). [See Exercise 8 for the definition of

T(L).]

(g) A language L is a deterministic context-free language if L = T(L)
for some deterministic pushdown automaton L. Prove that if
L ~A* is a deterministic context-free language, then A* - L is
also a deterministic context-free language.

(h) Show that {alilbUlclkll i =1= j or j =1= k} is a context-free language
which is not deterministic.

(i) Show that there is an algorithm that can determine for a given
deterministic pushdown automaton L and dfa L' whether
T(L) = L(L').

9. Compilers and Formal Languages

A compiler is a program that takes as input a program (known as the
source program) written in a high-level language such as COBOL, FOR­
TRAN, or Pascal and translates it into an equivalent program (known as
the object program) in a low-level language such as an assembly language
or a machine language. Just as in Chapters 2 and 5 we found it easier to
write programs with the aid of macros, most programmers find program­
ming in a high-level language faster, easier, and less tedious than in a
low-level language. Thus the need for compilers.

The translation process is divided into a sequence of phases, of which
the first two are of particular interest to us. Lexical analysis, which is the
first phase of the compilation process, consists of dividing the characters of
the source program into groups called tokens. Tokens are the logical units
of an instruction and include keywords such as IF, THEN, and DO,

324 Chapter 10 Context-Free Languages

operators such as + and * , predicates such as > , variable names, labels,
constants, and punctuation symbols such as (and ; .

The reason that the lexical analysis phase of compilation is of interest to
us is that it represents an application of the theory of finite automata and
regular expressions. The lexical analyzer must identify tokens, determine
types, and store this information into a symbol table for later use. Typi­
cally, compiler writers use nondeterministic finite automata to design these
token recognizers. For example, the following is an ndfa that recognizes
unsigned integer constants.

Digit

Anything but a digit

Similarly, a nondeterministic finite automaton that recognizes variable
names might look like this:

Letter
Digit

Anything but a
letter or a digit

We end our brief discussion of lexical analysis by noting that it is not
always a simple task to properly determine the division into tokens. For
example, in FORTRAN, the statements

DO 10 I= 1.11

and

DO 10 I= 1,11

look very similar but are in fact totally unrelated instructions. The first is
an assignment statement that assigns to a variable named D0101 (em­
bedded blanks are ignored in FORTRAN) the value 1.11. The second is a
DO loop that indicates that the body is to be performed 11 times. It is
not until the "." or "," is encountered that the statement type can be
determined.

At the completion of the lexical analysis phase of compilation, tokens
have been identified, their types determined, and when appropriate, the
value entered in the symbol table. At this point, the second phase of
compilation, known as syntactic analysis or parsing, begins. It is in this
second phase that context-free grammars play a central role.

9. Compilers and Formal Languages 325

For programming languages that are context-free, the parsing problem
amounts to determining for a given context-free grammar f and word w

1. whether w E L(f), and
2. if wE L(f), how w could have been generated.

Intuitively, the parsing phase of the compilation process consists of the
construction of derivation or parse trees whose leaves are the tokens
identified by the lexical analyzer.

Thus, for example, if our grammar included the productions

S ---+ while-statement

S ---+ assignment-statement

while-statement ---+ while cond do S

cond ---+ cond v cond

cond ---+ rei

rei ---+ exp pred exp

exp ---+ exp + exp

exp ---+ var

exp ---+ canst

pred ---+ >

pred ---+ =

assignment-statement ---+ var +--- exp

then the parse tree for the statement

while x > y v z = 2 do w +--- x + 4

is given by Fig. 9.1.
The parsing is usually accomplished by simulating the behavior of a

pushdown automaton that accepts L(f) either starting from the root of
the tree or the leaves of the tree. In the former case, this is known as
top-down parsing and in the latter case, bottom-up parsing.

Most programming languages are for the most part context-free. (A
major exception is the coordination of declarations and uses.) A common
technique involves the definition of a superset of the programming lan­
guage which can be accepted by a deterministic pushdown automaton. This
is desirable since there are particularly fast algorithms for parsing gram­
mars associated with deterministic pushdown automata.

326 Chapter 10 Context-Free Languages

s
I

while-statement

while------:/ ~S
/1~ I

'T v T 7T~
rei rei var(w) - exp

/I~ /1~ /I~
TpfTTprT T+T

var(x) > var(v) var(z) const (2) var(x) const(4)

Figure 9.1

Exercise

1. Give a context-free grammar for generating valid Pascal arithmetic
expressions over the alphabet {a, b, +, -, *, ;, j, (,)}, where variable
names are elements of {a, b}* of length at least 1. Is the grammar
ambiguous? What are the implications of this?

11

Context-Sensitive Languages

1. The Chomsky Hierarchy

We are now going to place our work in the context of Noam Chomsky's
hierarchy of grammars and languages. An arbitrary (phrase structure)
grammar (recall Chapter 7, Section 5) is called a type 0 grammar. A
context-sensitive grammar (recall Chapter 7, Section 5) is called a type 1
grammar. A positive context-free grammar (recall Chapter 10, Section 1) is
called a type 2 grammar, and a regular grammar (recall Chapter 10, Section
2) is called a type 3 grammar. The inclusions suggested by the numbering
obviously hold: every regular grammar is context-free, and every positive
context-free grammar is context-sensitive. (Of course, grammars contain­
ing productions of the form V---+ 0 cannot be context-sensitive.)

For each type of grammar, there is a corresponding class of languages:

r regular 1 r 31 . context- ee 2 A language L IS fo . . or of type 1 context -sensltwe
r.e. 0

[
regular l

. . . ositive context- ee
1f and only 1f there IS a p t t .t. fo grammar r con ex -sensl we

phrase structure

327

328 Chapter 11 Context-Sensitive Languages

such that

L = L(f) or L = L(f) U {0}.

For regular languages this statement is just Theorem 2.3 in Chapter 10.
For context-free languages, it is Theorem 1.2 in Chapter 10. For context­
sensitive languages we take it as a definition. For r.e. languages it is
Theorem 5.2 in Chapter 7, and the special reference to {0} is not needed.
We have

Theorem 1.1. Every regular language is context-free. Every context-free
language is context-sensitive. Every context-sensitive language is recursive.

Proof. The first two statements follow simply from the corresponding
inclusions among the types of grammar. The third follows at once from
Theorem 5.4 in Chapter 7. •

We would like to show that the inclusions of Theorem 1.1 are proper,
that is, that none of the four classes mentioned in the theorem is identical
to any of the others. We have seen in Theorem 1.1 in Chapter 10, that the
language L = {alnlblnlln > 0} is context-free but not regular. Similarly, we
saw in Theorem 4.2 in Chapter 10 that the language {alnlblnlclnlln > 0} is
not context-free, while Exercise 5.4 in Chapter 7 shows that it is context­
sensitive. This takes care of the first two inclusions of Theorem 1.1. The
following theorem takes care of the remaining one.

Theorem 1.2. There is a recursive language on the alphabet {1} that is not
context -sensitive.

Proof. We first code each context-sensitive grammar f with terminal
alphabet {1} by a string on the five-letter alphabet A = {1, V, b, ~ , /}.
We do this simply by replacing each variable by a distinct string of the
form Vbln, using the arrow"~ " as usual between the left and right sides
of productions, and using the slash "/" to separate productions. (Of
course, not every string on this alphabet is actually the code for a
context-sensitive grammar.) Now, the strings that code context-sensitive
grammars may be placed in alphabetic order (or equivalently, in numerical
order, regarding each string on A as the base 5 notation for an integer, as
in Chapter 5). We let L; be the context-sensitive language generated by
the ith context-sensitive grammar in this enumeration, i = 1, 2, 3,
Then we set

This is, of course, a typical diagonal construction, and we easily show that

1. The Chomsky Hierarchy 329

L is not context-sensitive. For, if L = L,. , then
()

if and only if 1[inl f/:. L.
'"

if and only if 1[iol f/:. L.

To see that L is recursive we note that there is an algorithm which given
i will return a context-sensitive grammar f; that generates L;. Then 1[il

can be tested for membership in L; using the algorithm developed in the
proof of Theorem 5.4 in Chapter 7. •

For each class of languages corresponding to types 0, 1, 2, 3, we are
concerned with questions of the following kinds: What can we determine
algorithmically about a language from a grammar which generates it?
What kinds of device will accept precisely the languages belonging to the
class? Under what operations are the classes closed? We have been
dealing with these questions for languages of types 0, 2, and 3. Now, we
will see what can be said about languages of type 1, i.e., context-sensitive
languages. We begin by considering the question of closure under union.
We will need the

Lemma. There is an algorithm that will transform a given context­
sensitive grammar r into a context-sensitive grammar A such that the left
sides of the productions of A contain no terminals and L(f) = L(A).

Proof. We "disguise" the terminals as variables as in the proof of
Theorem 3.1 in Chapter 10, except that now we need to replace the
terminals on both the left and right sides of the productions. The resulting
grammar, A, consists of productions of the form X 1 ••• Xm ~ Y1 ••• Yn,
m ~ n, and Xa ~ a, where X 1 , ••• , Xm, Y1 , ••• , Y,, Xa are variables and a
is a terminal. Clearly, L(A) = L(f). •

Theorem 1.3. If L 1 , L 2 are context-sensitive languages, then so is
L 1 u L 2 •

Proof. Assume L 1 = L{f1) or L{f1) U {0}, L 2 = L(f2) or L(f2) U {0},
where rl and r2 are context-sensitive grammars with disjoint sets of
variables of the form obtained in the Lemma. We construct f from f 1 and
f 2 exactly as in the proof of Theorem 5.1 in Chapter 10, so that r is also
context-sensitive and L(f) = L{f1) u L(f2). Clearly, L 1 U L 2 = L{f) or
L(f) u {0}. •

Exercises

1. Show that {w E {a, b, c}*lw has an equal number of a's, b's, c's} is
context-sensitive.

330 Chapter 11 Context-Sensitive Languages

2. Let r be the grammar with productions

S---+ AXYp
AX---+ AaA
AX---+ AbB
AX---+ AccC

Aa ---+ aA
Ab ---+ bA
Ba ---+ aB
Bb ---+ bB
Ca ---+ aC
Cb ---+ bC

AY---+ XYa
BY---+ XYb
CY---+ cc
aX---+ Xa
bX---+ Xb,

where 'F= {S, X, Y, A, B,C} and T ={A, p, a, b, c}. What is L(f)?

3. Show that {wwlw E {a, b}*} is context-sensitive.

4. Apply the construction in the proof of the Lemma to the grammar in
Exercise 2.

5. Show that the proof of Theorem 1.3 fails if we do not assume that f 1 ,

r2 conform to the conditions of the Lemma.

6. (a) Let r be a context-sensitive grammar. Show that there is a
context-sensitive grammar f' such that L(f') = L(f) and such
that, for every production u ---+ v in r, lui ::; 2 and lvl ::; 2.

(b) Prove that a language L is context-sensitive if and only if it is
generated by a grammar f, with variables 'F and terminals T,
such that every production in f has the form uVw ---+ uvw, where
U, WE ('FU T)*, V E 'F, and V E ('FU T)* - {0}. [Note: This
explains the origin of the term context-sensitive.]

2. Linear Bounded Automata

We are now going to deal with the question: which devices accept context­
sensitive languages? We define a linear bounded automaton on the alpha­
bet C = {s1 , s2 , ••• , sn} to be a nondeterministic Turing machine Lon the
alphabet C u {A, p} such that the only quadruples L contains beginning
q A or q p are of the forms q A R p and q p L p, respectively, such that L
has a final state, written ij, where no quadruple of L begins ij, and finally
such that for every quadruple q a b p in L, we have b -=1= A, p. Thus, when
scanning A, L can move only right, and when scanning p, L can move
only left, and the symbols A, p can never be printed in the course of a
computation. Thus, the effect of the additional symbols A and p is simply
to prevent the machine from moving beyond the confines of the given
string on the tape. Because of this we can code a configuration of L by a
triple (i, q, Awp), where 0 ::; i ::; lwl + 1; i gives the position of the tape­
head (i.e., of the scanned square), q is the current state; and Awp is the

2. Linear Bounded Automata

Quadruple in L

qabp
qaRp
qaLp

Table 2.1

Corresponding transition

(lul,q,uav) 1--_.,. <lul,p,ubv)
(lul,q,uav) 1--_.,. (lui+ l,p,uav)
(lui, q, uav) I-..,. (lui - 1, p, uav)

331

tape contents, w E (C u {s0})*. (Recall that s0 is the blank.) As usual, for
configurations y, 8 we write y 1-...,. 8 to mean that one of the quadruples
of L permits the transition from y to 8, and write y ;. ...,. 8 to mean that
there is a sequence of configurations y = y 1 , y2 , ••• , 'Yk = 8 such that
'Y; 1-...,. 'Y;+ 1 for 1 :::;; i < k. Table 2.1 shows which transitions are permitted
by each quadruple in L (here a E C u {s0 , A, p}, b E C u {s0}). (Of
course, for a = A, p, only quadruples of the second and third kind,
respectively, can occur in L.)

L is said to accept a string w E C * if

(l,q1 ,Awp) ;...,{i,ij,Aw'p),

where q1 is the initial state of Land, of course, ij is the final state. (Note
carefully that unlike the situation for Turing machines, a configuration will
be regarded as "accepting" only if L is in its final state ij.) If A k C, we
write LiL) for the set of all w E A* that are accepted by L. The main
theorem is

Theorem 2.1 (Landweber-Kuroda). The language L k A* is context­
sensitive if and only if there is a linear bounded automaton L such that
L =LiL).

We begin with

Lemma 1. There is an algorithm that transforms any given context­
sensitive grammar f with terminals T into a linear bounded automaton L
such that L(f) = LT(L).

Proof. Let 'F be the set of variables of r, and let S E 'F be the start
symbol. The alphabet of L will be T U 'F. Let the productions of f be
u; ~ V;, i = 1,2, ... ,m, where

u. = a<iJa<il ··· a<il and v. = f3U>'f3U> ... {3(i) • (2.1)
I I 2 k; I I 2 I; '

afil, a~il, ... , akil, f3fi>, f3ii>, ... , f3F> E T U 'F,
I I

and k; :::;; I;. Then we set

aU> =aU> =
k;+l k;+2

332 Chapter 11 Context-Sensitive Languages

That is, we fill out the left side of each production with blanks. Since L is
operating nondeterministically, it can seek the word V; on the tape and
replace it by U;, thus undoing the work of the production. It will help in
following the construction of the automaton L if we think of it as
operating in one of these four phases: initialization, searching, production
undoing, and termination. The states of .I will be the initial state q 1 , the
search state u, the return state ii, the undomg states pji>, qji> for 1 :::;; i :::;; m
and 1 :::;; j :::;; I; [I; is as defined in Eqs. (2.1)], and the termination states T, 7.

Phase 1 (Initialization) We place in L the quadruples

Thus in Phase 1, L operating nondeterministically "decides" to enter
either the search or the termination phase.

Phase 2 (Search) We place in L the quadruples

(T a R (T a=/=p

(T p L (T

(T f3fi) f3fi) p~i) 1:::;; i:::;; m

(T a L (j a =/= ,\
(T ,\ R ql.

In Phase 2, L moves right along the tape searching for one of the initial
symbols f3fi> of the right side of a production. Finding one, L may enter
an undoing state. If L encounters the right end marker p while still in
state u, it enters the return state ii and goes back to the beginning.

Phase 3 (Production Undoing) We place in L the quadruples, for
1 :::;; j < I;, 1 :::;; i :::;; m,

py> 13P> a~i)
1

qy>

qji> a~i)
1

R pU> j+l
p(i)

I;
f3(i)

I;
aU>

I;
(T

together with the quadruples

py> So R p\i)
1 •

When operating in Phase 3, L has the opportunity to replace the right
side of one of the productions on the tape by the left side (ignoring any

2. Linear Bounded Automata 333

blanks that might have been introduced by previous replacements). If L
succeeds, it can enter the return state u, return to the left, and begin
again.

Phase 4 (Termination) We place in L the quadruples

T So R T

T s R T
T So R T

T p L ij.

Thus if Lever returns to state q1 with the tape contents

i,j ~ 0

(where, of course, S is the start symbol of f), then L will have the
opportunity to move all the way to the right in this phase and to enter the
final state ij.

Thus, L will accept a word w E T* just in case there is a derivation of
w from sin r. •

Lemma 2. If L ~A* is a context-sensitive language, then there is a linear
bounded automaton L such that L = LiL).

Proof. We have L = L(f) or L(f) u {0} for a context-sensitive grammar
f. In the first case, L can be obtained as in Lemma 1. In the second case,
we modify the automaton L of Lemma 1 by adding the quadruple
q1 p L ij. The modified automaton accepts 0 as well as the strings that L
accepts. •

Now, we wish to discuss the converse situation: we are given a linear
bounded automaton L and alphabet A and wish to obtain a context­
sensitive grammar r such that L(f) = LiL) - {0}. The construction will
be similar to the simulation, in Chapter 7, of a Turing machine by a
semi-Thue process. However, the coding must be tighter because all the
productions need to be non-length-decreasing.

Let L be the given linear bounded automaton with alphabet C where
A ~ C, initial state q1 , and final state ij. To begin with, we will only
consider words u E C* for which lui ~ 2; such words can be written awb,
where w E C*, a, b E C. We wish to code a configuration (i, q, Aawbp) of

L by a word of length lawbl = lwl + 2. To help us in doing this, we will use
five variants on each letter a E C:

a Ia al a a.

334 Chapter 11 Context-Sensitive Languages

The interpretation of these markings is

r a: a on the left end of the word;
al: a on the right end of the word;
a: a on the left end, but the symbol being scanned is A, one square to

the left of a;
a: a on the right end, but the symbol being scanned is p, one square to

the right of a.

Finally, the current state will ordinarily be indicated by a subscript on the
scanned symbol. If however, the scanned symbol is A or p, the subscript
will be on the adjacent symbol, marked, as just indicated, by an arrow.
Thus, if L has n states we introduce 3(n + 1) + 2n symbols for each
a E c. (Note that a and a always have a subscript.) The examples in Table
2.2 should make matters plain. Of course, this encoding only works for
words Awp for which lwl ~ 2.

Now we will construct a semi-Thue process !. such that given configura­
tions y,"l> of Land their codes y, 8, respectively, we shall have

y 1-..,. 8 if and only if y ? 8.

As for Turing machines, we define !. by introducing suitable productions
corresponding to each quadruple of L. The correspondence is shown in
Table 2.3, where we have written C for C U {s0}.

Now, since these productions simulate the behavior of L in an obvious
and direct manner, we see that L will accept the string aub, u E C*,
a, bE C, just in case there is a derivation, from the initial word laq,ubl
using these productions, of a word containing ij as a subscript. To put this
result in a more manageable form, we add to the alphabet of !. the symbol
S and add to !. the "cleanup" productions

aS~ S, Sa~ S, (2.2)

where a can be any one of a, Ia, al, a, or a, for any a E c. Since these
productions will transform the codes for configurations with the final state

Table 2.2

Configuration

(3, q, Aababcp)
(1, q, Aababcp)

(5, q, Aababcp)

(0, q, Aababcp)

(6, q, Aababcp)

Code

1abaqbcl
raqbabcl
1ababc!

iiqbabcl

1 abab~

2. Linear Bounded Automata 335

Table 2.3

Quadruple of L Productions of ~

q a b p, a,b e C

q a R p, aeC
all be C

qARp all a e C

q aLp, aeC
all be C

qpLp all a e C

q into the single symbol S, and since there is no other way to obtain the
single symbol S using the productions of I, we have

Lemma 3. L accepts the string aub, a, b E C, u E C*, if and only if

Now let .n be the semi-Thue process whose productions are the inverses
of the productions of I. (See Chapter 7, Section 2.) Then we have

Lemma 4. L accepts the string aub, a, b E C, u E C*, if and only if

Now we are ready to define a context-sensitive grammar f. Let the
terminals of r be the members of A, let the variables of r be

1. the symbols from the alphabet of .n that do not belong to A, and
2. symbols a0 for each a EA.

336 Chapter 11 Context-Sensitive Languages

Finally, the productions of f are the productions of !1 together with

1::~: ::o} for all a, bE A.

a0bl ~ ab

(2.3)

It is easy to check that f is in fact context-sensitive. [Of course, the
productions (2.2) must be read from right to left, since it is the inverses of
(2.2) that appear in f.] Moreover, using Lemma 4 and (2.3), we have

Lemma 5. Let w E A*. Then w E L(f) if and only if lwl ~ 2 and
w ELiL).

Now let L be a given linear bounded automaton, A a given alphabet,
and let f be the context-sensitive grammar just constructed. Then, by
Lemma 5, we have

LA(L) = L(f) U L 0 ,

where L 0 is the set of words w E A* accepted by L such that lwl < 2. But
L 0 is finite, hence (Corollary 4.7 in Chapter 9) L 0 is a regular language,
and so is certainly context-sensitive. Finally, using Theorem 1.3, we see
that LiL) is context-sensitive. This, together with Lemma 2, completes
the proof of Theorem 2.1. •

Exercises

1. Let L be the linear bounded automaton with initial state q1, final
state ij, and quadruples

q, a R qz qz b R q,
q, b R q3 qz c R q,
q, c R q, q3 a R q,
q, p L ij q3 c R q,.

What is L(L)?

2. Give a deterministic linear bounded automaton L that accepts
{w E {a, b, c}* I w has an equal number of a's, b's, c's}.

3. Give a linear bounded automaton L that accepts {ww I wE {a, b}*}.

4. Let L be the linear bounded automaton with initial state q1 , final
state ij, and quadruples

3. Closure Properties 337

(a) Use the construction in the proof of Theorem 2.1 to give a
grammar f such that L(f) = L(L).

(b) Give a derivation of aabb in r.
5. Let r be the grammar with start symbol S and productions S ~ aSb,

S ~ ab.

(a) Use the construction in the proof of Theorem 2.1 to give a linear
bounded automaton L such that L(L) = L(f).

(b) Give an accepting computation by L for input aabb.

6. Prove that every context-free language is accepted by a deterministic
linear bounded automaton.

7. Show that there is an algorithm to test a given linear bounded
automaton L and word w to determine whether or not L will
eventually halt on input w. That is, the halting problem is solvable for
linear bounded automata. [Hint: Consider the pigeon-hole principle.]

3. Closure Properties

We have already seen that the context-sensitive languages are closed
under union (Theorem 1.3), and now we consider intersection. Here,
although the context-free languages are not closed under intersection
(Theorem 5.2 in Chapter 10), we can prove

Theorem 3.1. If L 1 and L 2 are context-sensitive languages, then so is
L 1 nL2 •

Proof. Let L 1 = LiL1), L 2 = LiL2), where L 1 , L 2 are linear
bounded automata. The idea of the proof is to test a string w for
membership in L 1 n L 2 by first seeing whether L 1 will also accept w and
then, if L 1 does, to see whether L 2 will also accept w. The difficulty is
that L 1 may destroy the input w in the process of testing it. If we were
working with Turing machines, we would be able to deal with this kind of
problem by saving a copy of the input on a part of the tape that remained
undisturbed. Since linear bounded automata have no extra space, the
problem must be solved another way. The solution uses an important idea:
we think of our tape as consisting of a number of separate "tracks," in this
case two tracks. We will construct a linear bounded automaton L that will
work as follows:

1. L will copy the input so it appears on both the upper and the lower
track of the tape;

338 Chapter 11 Context-Sensitive Languages

2. L will simulate L 1 working on the upper track only;
3. if L 1 has accepted, L will then simulate L 2 working on the lower

track (on which the original input remains undisturbed).

Thus, let us assume that L 1 and L 2 both have the alphabet C =
{s1 , s2 , ••• , sn}. (Of course, in addition they may use the symbols A, p, s0 .)

L will be a linear bounded automaton using, in addition, the symbols
bj, 0 :o:; i, j :o:; n. We think of the presence of the symbol bj as indicating
that s; is on the "upper track" while sj is on the "lower track" at the
indicated position. Finally we assume that q1 is the initial state of L 1 , that
q is its final state, and that q2 is the initial state of L 2 • We also assume
that the sets of states of L 1 and L 2 are disjoint. L is to have initial state
q0 and have the same final state as L 2 • L is to contain the following
quadruples (for 0 :o:; i :o:; n):

(1) Initialization:

qo S; bi
I

q
q bi

I R qo

qo p L q
q bi

I
L q

q A R ql.

Here q, q are not among the states of L 1 and L 2 . These quadruples
cause L to copy the input on both "tracks" and then to return to the
leftmost symbol of the input.

(2) For each quadruple of L 1 , the corresponding quadruples, obtained
by replacing each s; by bj, j = 0, 1, ... , n, are to be in L. These quadru­
ples cause L to simulate L 1 operating on the "upper" track. In addition,

L is to have the quadruples for 0 :o:; i, j :o:; n:

q bi
1

R q
q p L p
p bi

1 sj p
p sj L p
p A R qz.

Here again p does not occur among the states of L 1 , L 2 • These quadru­
ples cause L to restore the "lower" track and then to enter the initial
state of L 2 scanning the leftmost input symbol.

3. Closure Properties

(3) Finally, L is to contain all the quadruples of L 2 •

Since it is plain that

the proof is complete.

339

•
As an application, we obtain an unsolvability result about context­

sensitive grammars.

Theorem 3.2. There is no algorithm for determining of a given context­
sensitive grammar r whether L(f) = 0.

Proof. Suppose there were such an algorithm. We can show that there
would then be an algorithm for determining of two given context-free
grammars f 1 , f 2 whether L(f1) n L(f2) = 0, thus contradicting Theorem
6.6 in Chapter 10. For, since f 1 , f 2 are context-sensitive, the constructive
nature of the proofs of Theorems 2.1 and 3.1 will enable us to obtain a
context-sensitive grammar f with L(f) = L(f1) n L(f2). •

We turn now to a question about context-sensitive languages that was
one of the outstanding open problems in theoretical computer science for
over two decades. In 1964 Kuroda raised the question: Are the context­
sensitive languages closed under complementation? It remained unsettled
until 1987, when Neil Immerman showed that the answer is yes. What is
particularly interesting is that, after more than twenty years, the solution
turned out to be surprisingly straightforward.

We will show that if L ~A* is accepted by a linear bounded automaton,
then so is A* - L. Suppose that L is accepted by the linear bounded
automaton L with alphabet {s1 , ••• ,sn_ 1} and states {q1, ... ,qk}. (We
take qk to be ij, and we will sometimes write A, pas sn, sn+ 1 , respectively.)
We want to find another linear bounded automaton ./Y which accepts when
L rejects and vice versa. This would be easy if L were deterministic, but
suppose L is nondeterministic. If w rt L then every computation by L on
input Awp is nonaccepting, so if we constructed ./Y to simulate L and
enter the final state ij precisely when L halts in a state other than ij, then
every halting computation by ./Y would enter ij and ./Y would accept w (if it
has at least one halting computation). However, if w E L, then L could
still have some computations which halt in some state other than ij, in
which case ./Y would still accept w. Thus, we need ./Y to accept only when
every computation of L fails to end in state ij.

The problem is that it is not at all clear how to construct ./Y so that a
single computation by ./Y can correctly gather information about every
computation by L. We could deterministically simulate L, using a stack

340 Chapter 11 Context-Sensitive Languages

to remember "branch points." However, L has I Awpl· k · nlwl distinct
configurations with I Awpl tape squares, so a nonlooping computation by L
on input Awp could run for as many as I Awpl· k · nlwl - 1 steps, and each
step could require adding more information to the stack. There is no way,
then, that such a stack can be stored in lwl tape squares, even using
multiple tracks as in the proof of Theorem 3.1. Actually, there are
simulation techniques that are much more efficient in terms of space, but
none are known that are sufficiently parsimonious for our purposes here.

The solution discovered by Immerman is to store sufficient information
about the possible computations by counting configurations. The largest
value that needs to be stored is I Awpl· k · nlwl, which for any w -=1= 0 can be
represented in base n notation by a string of length

~ logn IAwpl + logn k + lwl + 1 ~ c ·lwl

for some constant c. (We can ignore the case w = 0 since the decision to
accept or reject 0 can be built explicitly into the quadruples of .#".) The
important thing is that c does not depend on w, so we can construct ./Y to
maintain each such counter on c tracks, regardless of the length of the
input. In fact, it will be convenient to consider the c tracks holding a
counter as a single track with c "subtracks."

The other objects we need to represent are configurations. If the initial
configuration is (1, q1 , Awp), then it is clear that we can represent on a
single track any configuration (i, q, Axp) where lxl = lwl. For example, we
could add to the alphabet of some track new symbols sf, 0 ~ i ~ n + 1
and 1 ~ j ~ k. Then sf in square I on this track represents L in state qj
scanning square I (on its own tape) holding symbol s;. Not every string on
the alphabet

represents a configuration of L, but it is clear that the representations of
all configurations of L with IAwpl tape squares can be written one after
another, say, in ascending numerical order, on some track. We will call the
ith configuration in this enumeration C;. Of these configurations, some
may never occur in any computation by Lon input Awp. We say that a
configuration (i, q, Axp) is reachable from w if (1, q1 , Awp) ~..,. (i, q, Axp).

We describe the behavior of ./Y by means of two nondeterministic
procedures, the COUNT phase and the TEST phase. Although these are
written in an informal high-level notation, it should be clear that ./Y can be
constructed to carry them out, using no more than IAwpl tape squares. We
begin with the TEST phase, described in Figure 3.1, where we will see the
importance of being able to count the reachable configurations. Suppose

3. Closure Properties

COUNTER+-- 0
fori= 1 to IAwpl·k ·nlwl

CONFIG +-- C;
nondeterministic ally simulate some computation by .If

on Awp until it reaches CON FIG or terminates

if CONFIG has been reached then

if CONFJG is accepting
then enter q' and halt

else COUNTER +-- COUNTER + 1
end for

if COUNTER = r then enter ij and halt

else enter q' and halt

Figure 3.1. The TEST phase of f.

341

we have a tape with w on track 1 and r on track 2, where r is the number
of configurations reachable from w. We will write this tape as Aw jrp. The
TEST phase needs four tracks in addition to tracks 1 and 2. Two are
needed for variables i and COUNTER, which hold numbers ~ IAwpl· k ·
nlwl, one is needed for CONFIG, which holds representations of configu­
rations with I Awpl tape squares, and a fourth is needed to simulate
computations by L on input Awp. It is clear that each track is large
enough for its purpose. Let q' be some non final state of .IY.

Claim 1. Executing the TEST phase, .#' accepts w jr if and only if L
rejects w.

If L accepts w, there are at most r - 1 nonaccepting reachable
configurations, so any computation by.#' will either

• run forever simulating some computation by L;
• simulate some computation by L that halts in state ij, or
• end with COUNTER < r.

Therefore, no computation by.#' ends in state ij, and.#' rejects w jr. If L
rejects w then .#' can "guess" computations by L that reach every
reachable configuration. None of these is accepting, so .#' finishes with
COUNTER = r and accepts w jr. This proves Claim 1.

Finally, we need to show that .#' can correctly compute r prior to
entering the TEST phase. It might seem that .#'could simply guess r and
then continue with the TEST phase. The problem is that, if .#' incorrectly
guesses some r' < r, then some computation by.#' in the TEST phase
might end with COUNTER= r' and accept w when it should reject it.
Therefore, it is not enough that some computation by.#' reach the TEST
phase with the correct value of r. We must ensure that every computation

342 Chapter 11 Context-Sensitive Languages

i<--0
COUNTER<-- 0
NEW-COUNTER <-- I

[Main] if NEW _COUNTER = COUNTER then

delete all but tracks 1 and 2 from tape

goto TEST phase

i<-i+l
COUNTER <-- NEW _COUNTER
NEW _COUNTER <-- 0
forj =I to IAwplokonlwl

t<--0

CONFIGI <-- Ci
for I = I to I Awpl 0 k 0 nlwl

CONFIG2 <-- C1

nondeterministically simulate some computation

by ./ton Awp until it reaches CONFIG2 or

until i steps have been executed

if CONFIG2 has been reached then

end for

t<-t+l

if CONFIG2 = CONFIGI or

CONFIG2 f-_, CON FIG I then

NEW _COUNTER <-- NEW _COUNTER + 1
leave inner loop

if I > I Awpl o k 0 nlwl and t < COUNTER then

enter q' and halt

end for

goto Main

Figure 3.2. The COUNT phase of AI'.

by ./Y that gets as far as the TEST phase must do so with the correct value
of r. We will now show that this can be done.

For all i ~ 0, let ri be the number of configurations of L that can be
reached from (1, q1 , Awp) in no more than i steps. Then there is some i 0

such that rio = rio+ 1 = r. We will argue by induction that each r;, for
1 ::::; i ::::; i 0 , is correctly computed by the COUNT phase, given in Figure
3.2. The input is the initial tape Awp. We also need tracks to hold variables
NEW_COUNTER, COUNTER, i, j, l, t, CONFIG1, and CONFIG2, and
a track to use in simulating computations by .4. Again it is clear that
sufficient space is available. We stipulate that NEW_COUNTER, which
will eventually hold r, should be stored on track 2.

Claim 2. For i ~ 0, any computation by ./Y on Awp that completes i
executions of the main loop has the correct value of ri in NEW _COUN­
TER.

3. Closure Properties 343

The claim is obvious for i = 0, so we assume it is true for some i ~ 0
and show that it is true for i + 1. Suppose some computation completes
i + 1 executions of the main loop. Then throughout the i + 1st execution
of the main loop, COUNTER = r; by the induction hypothesis (since
COUNTER is set to NEW_COUNTER at the beginning of the loop).
CONFIGl ranges over all configurations with IAwpl tape squares, and for
each value of CONFIGl we want NEW_COUNTER to be incremented
just in case CONFIGl is reachable within i + 1 steps. Now, for each value
of CONFIGl, the inner for loop1 ends either with I ~ IAwpl· k · nlwl,
meaning that the current CONFIGl has been found to be reachable
within i + 1 steps, or with I > I Awpl· k · nlwl and t = COUNTER, mean­
ing that all r; of the configurations reachable within i steps have been
found and none of them leads to CONFIGl in 0 or 1 steps, i.e., CONFIGl
is not reachable within i + 1 steps. In the first case NEW _COUNTER is
incremented and in the second case it is not, so the claim is true for i + 1.

To conclude we simply note that at least one computation by .AI' on Awp
will correctly guess the appropriate computations by L to simulate and
will execute the main loop i0 + 1 times, leaving r on track 2. Any such
computation will then go on to execute the TEST phase, and, by Claim 1,

.AI' will accept w if and only if L rejects w. Therefore, by Theorem 2.1 we
have proved

Theorem 3.3. If L ~A* is context-sensitive, then so is A* - L.

We conclude this chapter by mentioning another major problem con­
cerning context-sensitive languages that remains open: is every context­
sensitive language accepted by a deterministic linear bounded automaton?

Exercises

1. Let L, L' be context-sensitive languages. Prove the following.
(a) L · L' is context-sensitive.
(b) L* is context-sensitive.
(c) L R = {wR I w E L} is context-sensitive.

2. Let L ~A* be an r.e. language. Show that there is a context-sensitive
language L' ~(A U {c})* such that for all w E A*, we have

wEL if and only if wc[il E L' for some i ~ 0.

1 We are assuming here that when a loop of the form fori = 1 to n runs to completion, it
leaves i = n + 1.

344 Chapter 11 Context-Sensitive Languages

3. Show that for every r.e. language L there is a context-sensitive
grammar r such that the grammar obtained from r by adding a single
production of the form V ~ 0 generates L. [Hint: Use Exercise 2 and
take c to be the variable V.]

4. Give alphabets A, P and a context-sensitive language L ~A* such
that Er p(L) is not context-sensitive.

5. Let A 1 , A 2 be alphabets and let L ~Aj be context-sensitive. Let f
be a substitution on A 1 such that for each a E A,f(a) ~A~ is
context-sensitive and 0 $. f(a). Let g be a homomorphism from Aj to
A~ such that g(a) =I= 0 for all a EA. [See Exercise 4.5 in Chapter 9 for
the definitions of substitution and homomorphism.]
(a) Prove that f(L) is context-sensitive.
(b) Prove that g(L) is context-sensitive.
(c) Give a context-sensitive language L' and homomorphism h such

that h(L') is not context-sensitive.

Part 3

Logic

12

Propositional Calculus

1. Formulas and Assignments

Let A be some given alphabet and let Sit' ~ A*. Let B = A u {--,, 1\ , V ,
::::>, ~, (,)}, where we assume that these additional symbols are not
already in A. --,, 1\, V, ::::> , ~ are called (propositional) connectives.
Then by a propositional formula over Sit' we mean any element of B* which
either belongs to Sit' or is obtainable from elements of Sit' by repeated
applications of the following operations on B*:

1. transform a into --, a;

2. transform a and {3 into (a 1\ {3);
3. transform a and {3 into (a V {3);
4. transform a and {3 into (a ::::> {3);
5. transform a and {3 into (a ~ {3).

When the meaning is clear from the context, propositional formulas over Sit'
will be called .J!t'-formulas or even just formulas for short. In this context
the elements of Sit' (which are automatically .Jit'-formulas) are called atoms.

To make matters concrete we can take A = {p, q, r, s, 1}, and let

Sit'= {pl[il, qlliJ, rlliJ, s11;1li E N}.

In this case the atoms are called propositional variables. We can think of
the suffix 11;1 as a subscript and write P; = pl1;1, q; = ql1;1, etc. Here are a

347

348 Chapter 12 Propositional Calculus

few examples of formulas:

((-,p:::>q):::>p),

((((p Aq) =>r) A ((p1 Aq1) :::>r1)) :::> -,s),

(((pi V •Pz) V PJ) A (-,pi V PJ)).

Although the special case of propositional variables really suffices for
studying propositional formulas, it is useful in order to include later
applications, to allow the more general case of an arbitrary language of
atoms. (In fact our assumption that the atoms form a language is not really
necessary.)

By an assignment on a given set of atoms .91 we mean a function v which
maps each atom into the set {FALSE, TRUE} = {0, 1}, where (recall Chap­
ter 1, Section 4), as usual, we are identifying FALSE with 0 and TRUE
with 1. Thus for each atom a we will have v(a) = 0 or v(a) = 1. Given
an assignment v on a set of atoms .91, we now show how to define a value
yv E {0, 1} for each .91-formula y. The definition is by recursion and
proceeds as follows:

1. if a is an atom, then av = v(a); . {1 if {3v=O
2. If y = -, {3, then yv = O if {3v = 1;

3. (a A {3)v = 1 if av .= {3 v = 1
0 otherwise;
0 if a v = {3 v = 0 4. (a V f3)v =
1 otherwise;
0 if av = 1 and {3 v = 0

5. (a :::> {3)v = 1
otherwise;

6. (a ++ {3)v = { 01 if a v = {3 v
otherwise.

A set .n of .91-formulas is said to be truth-functionally satisfiable, or just
satisfiable for short, if there is an assignment v on .91 such that a v = 1 for
all a E 0; otherwise .n is said to be (truth-functionally) unsatisfiable. If
.n = {y} consists of a single formula, then we say that y is (truth-function­
ally) satisfiable if .n is; y is (truth-functionally) unsatisfiable if .n is
unsatisfiable. y is called a tautology if yv = 1 for all assignments v. It is
obvious that

Theorem 1.1. y is tautology if and only if -, y is unsatisfiable.

We agree to write a = {3 for .91-formulas a, {3 to mean that for every
assignment v on .91, a v = {3 v. This convention amounts to thinking of an

.91-formula as naming a mapping from {0, l}n into {0, 1} for some n EN, so
that two .91-formulas are regarded as the same if they determine the same

1. Formulas and Assignments 349

Table 1.1

a f3 -,a (--,aVf3) (a:>f3) (f3:>a) (a++f3)

0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 0
0 0

mappings. [Thus, in high school algebra one writes x 2 - 1 = (x- 1)
X (x + 1), although x 2 - 1 and (x - 1){x + 1) are quite different as
expressions, because they determine the same mappings on numbers.] With
this understanding, we are able to eliminate some of the connectives in
favor of others in a systematic manner. In particular, the equations

(a :l {3) = (-, a V {3),

(a++ {3) =((a :l {3) 1\ ({3 :l a))

(1.1)

(1.2)

enable us to limit ourselves to the connectives -,, 1\, V. The truth of
these two equations is easily verified by examining the "truth" tables in
Table 1.1, which show all four possibilities for the pair a", {3 ".

With our use of the equal sign, all tautologies are equal to one another
and likewise all unsatisfiable formulas are equal to one another. Since the
equations

a" = 1 for all v , {3 " = 0 for all v

determine a to be a tautology and {3 to be unsatisfiable, it is natural to
write 1 for any .W-formula which is a tautology and 0 for any .W-formula
which is unsatisfiable. Thus a = 1 means that a is a tautology, and a = 0
means that a is unsatisfiable.

The system of .W-formulas, under the operations -,, 1\, V and involving
the "constants" 0, 1 obeys algebraic laws, some of which are analogous to
laws satisfied by the real numbers under the operations -, ·, +; but there
are some striking differences as well. Specifically, we have, for all .W­
formulas a, {3, y

(aAl)=a

(a/\-,a)=O

(a/\0)=0

(aAa)=a

absorption:

(aVO)=a

contradiction; excluded middle:

(av--,a)=l

(avl)=l

idempotency:
(aVa)=a

350 Chapter 12 Propositional Calculus

commutativity:

(a/\f3)=(f3/\a) (aVf3)=(f3Va)

associativity:

(a 1\ (f3/\ y)) = ((a 1\ f3) 1\ y) (a V (f3 V y)) = ((a V f3) V y)

distributivity:

(a 1\ (f3 V y)) = ((a 1\ f3) V (a 1\ y)) (a V (f3/\ y)) = ((a V f3) 1\ (a V y))

De Morgan laws:

-,(a/\f3)=(-,av -,f3) -,(aV/3)=(-,a/\ -,f3)

double negation:

These equations, which are easily checked using truth tables, are the basis
of the so-called Boolean algebra. In each row, the equations on the left
and right can be obtained from one another by simply interchanging all
occurrences of" V" with "A" and of "0" with "1." This is a special case of
a general principle. The truth tables in Table 1.2 show that if we think of 0
as representing "TRUE," and 1, "FALSE" (instead of the other way
around), the tables for "A" and "V" will simply be interchanged. Thus a
being from another planet watching us doing propositional calculus might
be able to guess that that was in fact what we were doing. But this being
would have no way to tell which truth value we were representing by 0 and
which by 1, and therefore could not say which of the two connectives
represents "and" and which "or." Therefore we have the

General Principle of Duality: Any correct statement involving A, V
and 0, 1, can be translated into another correct statement in which
0 and 1 have been interchanged and A and V have been inter­
changed.

Of course, in carrying out the translation, notions defined in terms of 0,
1, A, and V must be replaced by their duals. For example, the dual of "a
is a tautology" is "a is unsatisfiable." (The first is "a" = 1 for all v"; the

a f3

1
0 1
1 0
0 0

Table 1.2

(aAf3)

1
0

0
0

(a V {3)

1
0

1. Formulas and Assignments

second is "a'' = 0 for all v".) Thus the dual of the correct statement

if a is a tautology, so is (a V {3)

is the equally correct statement

if a is unsatisfiable, so is (a 1\ {3) .

351

Returning to our list of algebraic laws, we note that in particular the
operations 1\ and V are commutative and associative. We take advantage
of this associativity to write simply

A a;= (a1 1\ a 2 1\ ··· 1\ ak)
isk

V a;= (a 1 V a 2 V ··· V ak)
isk

without bothering to specify any particular grouping of the indicated
formulas. We freely omit parentheses that are not necessary to avoid
ambiguity.

Exercises

1. For each of the following formulas tell whether it is (i) satisfiable, (ii) a
tautology, (iii) unsatisfiable.
(a) ((p :J (q :J r)) :J ((p :J q) :J (p :J r))).
(b) ((p :J (q :J r)) ++ ((p 1\ q) :J r)).
(c) (p 1\ ..,q).
(d) ((p v q) :J p).
(e) ((..,(p :J q) :J (p 1\.., q)).

2. Apply the general principle of duality to each of the following true
statements:
(a) (p V .., p) is a tautology.
(b) (p :J (q :J p)) is a tautology.

3. Prove that if a and {3 are formulas, then a = {3 if and only if the
formula (a ++ {3) is a tautology.

4. Verify the laws of absorption, contradiction, etc. given in this section.

5. Let .N be a set of atoms, and define

.w() =.W'

.W:,+ 1 =.W' U {..,a, (a 1\ {3),

(a V {3), (a :J {3), (a++ {3) I a, {3 E.J¥;,}.

Show by induction on n that for all a E .w;, , the number of left

352 Chapter 12 Propositional Calculus

parentheses equals the number of right parentheses. Conclude that
any propositional formula over .91 has an equal number of left and
right parentheses.

6. Let .91, .91' be sets of atoms such that .91 c;;;, .91', and let v, v' be
assignments on .91, .91', respectively, such that v(a) = v '(a) for all
atoms a in .91. Define .w;. , n ~ 0, as in Exercise 5, and show by
induction on n that v(a) = v '(a) for all formulas a E .w;.. Conclude
that v(a) = v '(a) for all propositional formulas over .91.

2. Tautologicallnference

Let y 1 , y 2 , ••• , 'Yn, y be .91-formulas. Then we write

'Y1 ''Yz' · · ·' 'Yn I= 'Y

and call y a tautological consequence of the premises y 1 , ••• , 'Yn if for every
assignment v on .91 for which yf = y~ = · · · = 'Ynv = 1, we have also
yv = 1. This relation of tautological consequence is the most important
concept in the propositional calculus. However, we can easily prove

Theorem 2.1. The relation y 1 , y2 , ••• , 'Yn I= y is equivalent to each of the
following:

1. the formula ((y 1 A y 2 A •·• A 'Yn) :::> y) is a tautology;
2. the formula (y 1 A y2 A ··· A 'Yn A -, y) is unsatisfiable.

Proof. ((y 1 A y2 A ··· A y) :::> y) is not a tautology just in case for
some assignment v, (y 1 A y 2 A · ·· A y)v = 1 but yv = 0. That is, just in
case for some assignment v, yf = 'Yz = · · · = y,:' = 1 but yv = 0, which
means simply that it is not the case that y 1 , y 2 , ••• , 'Yn I= y. Likewise

(y 1 A y2 A · · · A 'Yn A -, y)

is satisfiable if and only if for some assignment v, yf = y~ = ··· = y,:' =
(-, 'Y)v = 1, i.e., yf = 'Y~ = · · · = 'Ynv = 1, but 'Yv = 0. •

Thus the problem of tautological inference is reduced to testing a
formula for satisfiability, or for being a tautology. Of course, in principle,
such a test can be carried out by simply constructing a truth table.
However, a truth table for a formula containing n different atoms will
require 2 n rows. Hence, truth table construction may be quite unfeasible
even for formulas of modest size.

3. Normal Forms 353

Consider the example

((p 1\ q) :::>(r 1\ s)),((pt 1\ qt) =>rt),((rt 1\ s) =>st),p,q,qt ,ptl=st.

(2.1)

Since there are eight atoms, a truth table would contain 28 = 256 rows. In
this example we can reason directly. If v makes all the premises TRUE,
then (p 1\ q)" = (p 1 1\ q1)" = 1. Therefore, (r 1\ s)" = rr = 1, and in
particular s" = 1. Thus, (r 1 1\ s)" = 1 and finally, sr = 1. We will use
Theorem 2.1 to develop more systematic methods for doing such problems.

Exercises

1. Which of the following are correct?
(a) (p :::>q), PI= q.

(b) (p :::> q), q I= p.

(c) (p :::>q), ..,q I= •P·
(d) (p:::>(q:::>r)),(..,svp),ql=(s:::>r).

2. Apply Theorem 2.1 to Exercise 1.

3. Prove or disprove each of the following.
(a) a, {3 I= y if and only if a I= ({3 :::> y).

(b) a I= {3 and {3 I= a if and only if a = {3.

(c) if a I= {3 or a I= y then a I= ({3 V y).

(d) if a I= {3 or a I= y then a I= ({3 1\ y).

(e) if a I= {3 and a I= y then a I= ({3 1\ y).
(f) if a I= {3 and a I= y then a I= ({3 V y).

(g) if a I= .., a then .., a is a tautology.
(h) if a, {3 I= y then a I= y or {3 I= y.

(i) if a I= y then a, {3 I= y.

(j) if a I= ({3 V y) then a I= {3 or a I= y.

4. (a) Show that if a is unsatisfiable then a 1= {3 for any formula (3.

(b) Show that if {3 is a tautology then a I= {3 for any formula a.

3. Normal Forms

We will now describe some algebraic procedures for simplifying .91'­
formulas:

(I) ELIMINATE :::> AND - .

354 Chapter 12 Propositional Calculus

Simply use Eq. (1.2) for each occurrence of ++ • After all such occur­
rences have been eliminated, use Eq. (1.1) for each occurrence of :::> .

Assuming (I) accomplished, we move on to

(II) MOVE -, INWARD.

For any occurrence of -, that is not immediately to the left of an atom
either

1. the occurrence immediately precedes another -,, in which case the
pair -, -, can be eliminated using the law of double negation; or

2. the occurrence immediately precedes an ..W-formula of the form
(a A {3) or (a V {3), in which case one of the De Morgan laws can
be applied to move the -, inside the parentheses.

After (II) has been applied some finite number of times, a formula will
be obtained to which (II) can no longer be applied. Such a formula must
have each -, immediately preceding an atom.

As an example of the use of (I) and (II) consider the formula

(((p ++ q) :::> (r :::> s)) A (q :::> -,(pAr))). (3.1)

Eliminating ++ gives

((((p :::>q) A (q :::>p)) :::> (r :::>s)) A (q :::>-,(pAr))).

Eliminate :::> :

(-, ((-, p V q) A (-, q V p)) V (-, r V s)) A (-, q V -, (p A r)). (3 .2)

Move -, inward:

(-,(-,p V q) V -,(-,q V p) V (-,r V s)) A (-,q V -,p V -,r).

Move -, inward:

((p A -,q) V (q A -,p) V -,r V s) A (-,q V -,p V -,r). (3.3)

A formula A is called a literal if either A is an atom or A is -,a, where
a is an atom. Note that if A = -,a, for a an atom, then -,A = -,-,a= a.
For a an atom it is convenient to write a for -,a.

With this notation (3.3) becomes

((p A ij) V (q Ajj) V r V s) A (ij V jj V r). (3.4)

The distributive laws can be used to carry out further simplification,
analogous to "multiplying out" in elementary algebra. However, the fact

3. Normal Forms 355

that there are two distributive laws available is a complication because the
"multiplying out" can proceed in two directions. As we shall see, each
direction gives rise to a specific so-called normal form.

A handy technique that makes use of the reader's facility with elemen­
tary algebra is to actually replace the symbols A, V by + , · and then
calculate as in ordinary algebra. Since there are two distributive laws
available, correct results will be obtained either by replacing A by + and
V by · or vice versa. Thus, writing · for A (and even omitting the · as in
elementary algebra) and + for v, (3.4) can be written

(pq + qjj + r + s) · (q + p + r)

= pqq + pqp + pqr + qjjq + qjjp + qjjr + rq + rp + ,.,.

+ sq + sp + sr

= pq + o + pqr + o + qp + qjjr + rq

+ rp + r + sq + sp + sr

= (p A q) V (p A q A r) V (q A p) V (q A p A r)

V (r A q) V (r A p) V r V (s A q) V (s A p) V (s A r), (3 .5)

where we have used the principles of contradiction and absorption. Alter­
natively, writing + for A and · for V, (3.4) can be written

(p + q)(q + p)rs + qpr

= (pq + pp + qq + qp)rs + qpr

= (pq + 1 + 1 + qp)rs + qpr

= pqrs + qprs + qpr

= (p v q v r v s) A (q v p v r v s) A (q v p v r). (3.6)

Let A; be a sequence of distinct literals, 1 :::;; i :::;; n. Then the formula
V;, n A; is called an V -clause and the formula /\;, n A; is called an
A-clause. A pair of literals A, A' are called mates if A' = -,A. We have

Theorem 3.1. Let A; be a literal for 1 :::;; i :::;; n. Then the following are
equivalent:

1. vi :5 n A; is a tautology;
2. /\;, n A; is unsatisfiable;
3. some pair A;, Ai, 1 :::;; i, j :::;; n, is a pair of mates.

356 Chapter 12 Propositional Calculus

Proof. If \ = -, A;, then obviously, V;, n A; is a tautology and A; 5, n A;
is unsatisfiable. If, on the other hand, the A; contain no pair of mates, then
there are assignments v, w such that v(A) = 1, w(A) = 0 for 1 ~ i ~ n.
Then (Vi5.n A;)w = 0, (A;5,n A;)''= 1, so that Vi5.n A; is not a tautology
and A; 5, n A; is satisfiable. •

Let K;, 1 ~ i ~ n, be a sequence of distinct V -clauses. Then the
.J¥'-formula A;< n K; is said to be in conjunctive normal form (CNF). Dually,
if K;, 1 ~ i ~ n, is a sequence of distinct A -clauses, then the .J¥'-formula
V; 5. n K; is in disjunctive normal form (DNF). Note that (3.6) is in CNF and
(3.5) is in DNF. We say that (3.6) is a CNF of (3.1) and that (3.5) is a DNF
of (3.1). It should be clear that the procedures we have been describing
will yield a CNF and a DNF for each .w'-formula. Thus we have

Theorem 3.2. There is an algorithm which will transform any given
.w'-formula a into a formula {3 in CNF such that {3 = a. There is a similar
(in fact, dual) algorithm for DNF.

Because of Theorem 2.1, the following result is of particular importance.

Theorem 3.3. A formula in CNF is a tautology if and only if each of its
V -clauses is a tautology. Dually, a formula in DNF is unsatisfiable if and
only if each of its A -clauses is unsatisfiable.

Proof. Let a = A; 5,n K;, where each K; is an V -clause. If each K; is a
tautology, then for any assignment v we have K;" = 1 for 1 ~ i ~ n, so that
a" = 1; hence a is a tautology. If some K; is not a tautology, then there is
an assignment v such that K;" = 0; hence a" = 0 and a is not a tautology.

The proof for DNF is similar. Alternatively, we can invoke the general
principle of duality. •

Let us try to use these methods in applying Theorem 2.1 to example
(2.1). First, using Theorem 2.1(1), we wish to know whether the following
formula is a tautology:

((((p Aq):::) (r As))A((p1 Aq1) :::)r 1)

A((r 1 As) :::)s1) Ap A q A q1 Ap 1) :::)s1).

Use of (I) yields

(-,((-,(p Aq) V (r As)) A (-,(p1 Aq1) Vr1)

A(-,(r 1 As) Vs 1) Ap Aq Aq1 Ap 1) Vs1).

Use of (II) gives

(-, (-, (p A q) V (r As)) V-, (-, (p 1 A q1) V r 1)

V -,(-,(r1 As) Vs 1) V -,pV -,qV -,q1 V -,p1 Vs 1).

3. Normal Forms 357

Use of (II) again yields

One final use of (II) gives

((p A q A (....,r V,s))V(p1 A q1 A,r 1)

V(r 1 As A,s1) v .pv,qv •q1 V •P1 Vs1).(3.7)

To apply Theorem 3.3, it is necessary to find a CNF of (3. 7). So we replace
A by + and V by ·:

and see that the CNF of (3.7) will consist of 27 clauses. Here are three
"typical" clauses from this CNF:

(p V p 1 V r 1 V p Vii V ii1 V p1 V s 1)

(r v s v q1 v r 1 v p vii v ii1 v p1 V s1)

(q v r1 v s1 v p vii v ii1 v p1 v s 1).

Each of these clauses contains a pair of literals that are mates: p, p in the
first (and also p 1 , p1); q1 , ii1 in the second; and q, ii in the third (also
s1 , s1). The same will be true for the remaining 24 clauses. But this is
clearly not the basis for a very efficient algorithm. What if we try Theorem
2.1(2) on the same example? Then we need to show that the following
formula is unsatisfiable:

Using (I) we obtain

((...., (p A q) V (r As)) A (...., (p1 A q1) V r 1)

A(....,(r 1 As) Vs1) Ap Aq Aq1 Ap1 A,s1).

(3.9)

358 Chapter 12 Propositional Calculus

Using (II) we obtain

((-, p V -, q V (r As)) A (-, p 1 V -, q1 V r 1)

A(-,r 1 v -,sVs1) ApAqAq1 Ap 1 A -,s 1).
(3.10)

To find a DNF formula equal to this we replace A by · and V by +,
obtaining

(p + ij + rs)(p 1 + ij1 + r 1)(r 1 + s + s1)pqq1p 1s1 •

But this is exactly the same as (3.8) except that each literal has been
replaced by its mate! Once again we face essentially the same 27 clauses.

Suppose we seek a formula in CNF equal to (3.10) instead of a formula
in DNF. We need only replace A by + and V by·:

In this manner, we get a formula in which almost all "multiplying out" has
already occurred. The CNF is simply

(p V ij V r)A(p V ij V s)A(p1 V ij1 V r 1)
(3.11)

It consists of nine short, easily obtained clauses.
A moment's reflection will show that this situation is entirely typical.

Because the formula of Theorem 2.1(2) has the form

(yl A Yz A··· A Yn A -,y),

we can get a CNF formula simply by obtaining a CNF for each of the
(ordinarily short) formulas y 1 , y2 , ••• , Yn,-, y. However, to obtain a DNF,
which according to Theorem 3.3 is what we really want, we will have to
multiply out (n + 1) polynomials. If, say, each of y 1 , ••• , Yn, -, y is an
V -clause consisting of k literals, then the DNF will consist of kn+ 1

A -clauses. And the general principle of duality guarantees (as we have
already seen in our particular example) that the same discouraging arith­
metic will emerge should we attempt instead to use Theorem 2.1(1). In this
case a DNF will generally be easy to get, whereas a CNF (which is what we
really want) will require a good deal of computing time.

These considerations lead to the following problem:

Satisfiability Problem. Find an efficient algorithm for testing an .w'­
formula in CNF to determine whether it is truth-functionally satisfiable.

3. Normal Forms 359

This problem has been of central importance in theoretical computer
science, not only for the reasons already given, but also for others that will
emerge in Chapter 15.

Exercises

l. Find CNF and DNF formulas equal to each of the following.
(a) ((p A (q V r)) V (q A (p V r))).

2.

(b) ((-,pV(pA -,q))A(rV(-,pAq))).
(c) (p :::> (q ++ r)).

Find a DNF formula that has the truth table

p q r

1 1 1 0
0 1 1 1
1 0 1 1
0 0 1 1
1 1 0 0
0 1 0 1
1 0 0 0
0 0 0 0

[Hint: The second row of the table corresponds to the A -clause
(-, p A q A r). Each row for which the value is 1 similarly determines
an A -clause.]

3. Show how to generalize Exercise 2 to obtain a DNF formula corre­
sponding to any given truth table.

4. Describe a dual of the method of Exercise 3 which, for any formula a,
gives a DNF formula {3 such that a= -, {3. Then show how to turn
-, {3 into a CNF formula y such that a = y. Apply the method to the
truth table in Exercise 2. [Hint: Each row in the truth table for which
the value is 0 corresponds to an A -clause which should not be true.]

5. Let .91 = {p, q, r}.

(a) Give a DNF formula a over .91 such that a'· = 1 for exactly three
assignments v on .91.

(b) Give a CNF formula {3 over .91 such that {3 '' = 1 for exactly three
assignments v on .91.

360 Chapter 12 Propositional Calculus

6. (a) Let a be

(p A q A r)V(p A q A --,r)V(p A --,q A r)

V(p A --,q A --,r).

Give DNF formulas {3, y, S with 3,2, 1 A-clauses, respectively,
such that a = {3 = y = S.

(b) Let a be

(p V q V r)A(p V q V --,r)A(p V --,q V r)

A(p V --,q V --,r).

Give CNF formulas {3, y, S with 3, 2, 1 V -clauses, respectively,
such that a = {3 = y = S.

7. Give a CNF formula a with two v -clauses such that a =/= {3 for all
CNF formulas {3 with one V -clause.

8. Use a normal form to show the correctness of the inference

(p:>q),(rv --,q),--,(pAr) F= •P·

4. The Davis- Putnam Rules

In order to make it easier to state algorithms for manipulating formulas in
CNF, it will be helpful to give a simple representation of such formulas as
sets. From now on we use the word clause to mean V -clause. We
represent the clause K = V j, m Aj as the set K = {AN ~ m}, and we
represent the formula a = /\; < n K;, where each K; is a clause, as the set
a = {K;Ii ~ n}. In so doing we lose the order of the clauses and the order
of the literals in each clause; however, by the commutative laws, this does
not matter.

It is helpful to speak of the empty set of literals as the empty clause,
written 0, and of the empty set of clauses as the empty formula, written
simply 0. Since it is certainly true, although vacuously so, that there is an
assignment (in fact any assignment will do) which makes every clause
belonging to the empty formula true, it is natural and appropriate to agree
that the empty formula 0 is satisfiable (in fact, it is a tautology). On the
other hand, there is no assignment which makes some literal belonging to
the empty clause o true (because there are no such literals). Thus, we
should regard the empty clause o as being unsatisfiable. Hence any
formula a such that 0 E a will be unsatisfiable as well.

4. The Davis- Putnam Rules 361

We will give some rules for manipulating formulas in CNF that are
helpful in designing algorithms for testing such formulas for satisfiability.
By Theorem 3.1, a clause K is a tautology if and only if A,-, A E K for
some literal A. Now, if K E a and K is a tautologous clause, then a is
satisfiable if and only if a - {K} is. Hence, we can assume that the sets of
clauses with which we deal contain no clauses which are tautologies. The
following terminology is helpful: a clause K = {A}, consisting of a single
literal, is called a unit. If a is a set of clauses and A is a literal, then a
clause K is called A-positive if A E K, K is called A-negative if -,A E K,
and K is called A-neutral if K is neither A-positive nor A-negative. Since
tautologous clauses have been excluded, no clause can be both A-positive
and A-negative. We write a: for the set of A-positive clauses of a, a;
for the set of A-negative clauses of a, and a~ for the set of A-neutral
clauses of a. Thus for every literal A, we have the decomposition a =
a: u a; u a~. Finally, we write

POSA(a) =a~ U {K- {A}IK E a:},

NEGA(a) =a~ U {K- {-, A}IK E a;}.

Our main result is

Theorem 4.1 (Splitting Rule). Let a be a formula in CNF, and let A be
a literal. Then a is satisfiable if and only if at least one of the pair
POSA(a) and NEGA(a) is satisfiable.

Proof. First let a be satisfiable, say au = 1. Thus Ku = 1 for all K E a.
That is, for each K E a, there is a literal JL E K such that JLu = 1. Now,
we must have either Au = 1 or Au = 0. Suppose first that Au = 0. We know
that for each K E a: , there is a literal JL E K such that JLu = 1. Thus this
JL is not A. Thus, for K E a:, (K- {A})D = 1. Hence, in this case,
POSA(a)u = 1. If, instead, Au = 1, we can argue similarly that for each
K E a;, (K- {-, A})u = 1 and hence that NEGA(a)u = 1.

Conversely, let POSA(a)u = 1 for some assignment v. Then we define
the assignment w by stipulating that

for all literals JL =1= A, -, A.

Now, if K E a~, then Kw = Ku = 1; if K E a:, then Kw = (K- {A})w =
(K- {A})u = 1; finally, if K E a;, then Kw = 1 because (-, A)w = 1. Thus,
aw = 1.

If, instead, NEGA(a)u = 1 for some assignment v, we define w by

for all literals JL =I= A, -, A.

362 Chapter 12 Propositional Calculus

Then if K E a~, we have Kw = Kv = 1; if K E a;:, then Kw =

(K- {--, A})w = (K- {--, A})v = 1; finally, if K E a;, then Kw = 1 because
Aw = 1. Thus again aw = 1. •

This theorem has the virtue of eliminating one literal, but at the price of
considering two formulas instead of one. For this reason, it is of particular
interest to find special cases in which we do not need to consider both
POSA(a) and NEGA(a).

Thus, suppose that a;:= 0. Then NEGA(a) = a~J ~ POSA(a). Hence,
in this case, for any assignment v we have POS A (a)" = 1 implies
NEGA(a)v = 1. Therefore, we conclude

Corollary 4.2 (Pure Literal Rule). If a;:= 0, then a is satisfiable if
and only if NEGA(a) = a~ is satisfiable.

For another useful special case, suppose that the unit clause {A} E a.
Then, since {A} - {A} = D , we conclude that D E POS A (a). Hence,
POS A (a) is unsatisfiable, and we have

Corollary 4.3 (Unit Rule). If {A} E a, then a is satisfiable if and only if
NEGA(a) is satisfiable.

To illustrate this last corollary by an example, let a be (3.11), which is a
CNF of (3.9). Using the set representation,

a= {{jj,q,r},{jj,q,s},{jj1 ,q1 ,r1},{r1 ,s,s1},{p},{q},{q1},{p1},{s1}}.

(4.1)

Thus, there are nine clauses, of which five are units. Using the unit clause
{p}, Corollary 4.3 tells us that a is satisfiable if and only if NEG,(a) is.
That is, we need to test for satisfiability the set of clauses

Using the unit rule again, this time choosing the unit clause {q}, we reduce
to

Using the unit clause {s}, we get

4. The Davis- Putnam Rules

Successive uses of the unit clauses {q1}, {p1}, {81} yield

{{r}, {jj1 , r 1}, {r 1 , s 1}, {p1}, {s1}};

{{r}, {r 1}, {r1 , s 1}, {s1}};

{{r}, {r1}, {r1}}.

363

This last, containing the unit clauses {r1} and {r1}, is clearly unsatisfiable.
Or, alternatively, applying the unit rule one last time, we obtain

which is unsatisfiable because it contains the empty clause D.
So we have shown by this computation that (4.1), and therefore (3.9), is

unsatisfiable. And by Theorem 2.1, we then can conclude (once again) that
the tautological inference (2.1) is valid.

A slight variant of this computation would begin by applying Corollary
4.2, the pure literal rule, to (4.1), using the literal r. This has the effect of
simply deleting the first clause. The rest of the computation might then go
as previously, but with the initial clause deleted at each stage.

For another example, recall (3.6), which was obtained as a CNF of (3.1).
Written as a set of clauses this becomes

{3 = {{p,q,r,s},{ij,p,r,s},{ij,p,r}}. (4.2)

Here the pure literal rule can be applied using either of the literals r, s.
Thus, we have that {3 is satisfiable if and only if {3,0 is satisfiable, if and
only if {3.0 is satisfiable. And we have

f3.o = {{ij,jj,r}}.

From the first we see at once that {3 is satisfiable; if we wish to use the
second, we can note by inspection that (f3.0)v = 1, where v(q) = v(p) =
v(r) = 0, or we can use the pure literal rule a second time (using any of
the three available literals) and once again arrive at the empty formula 0.

We next turn to an example that has no unit clauses and to which the
pure literal rule is not applicable:

a= {{ij,p},{r,p},{jj,ij},{jj,s},{q,r},{q,s}}.

Thus we are led to use the splitting rule forming, say,

POS/a) = {{ij},{r},{q,r},{q,s}},

NEG/ a) = {{ij}, {s}, {q, r}, {q, s}}.

364 Chapter 12 Propositional Calculus

Applying the pure literal rule once and then the unit rule twice to
POS,(a), we obtain successively

{{q}, {r}, {q, r}}, {{r}, {r}}, { o},

so that POS,(a) is unsatisfiable. Doing the same to NEG,(a) we obtain
successively

{{q}, {s}, {q, s}}, {{s},{s}}, { o},

so that NEG,(a) is likewise unsatisfiable. By Theorem 4.1, we can thus
conclude that a is unsatisfiable.

These examples suggest a rather systematic recursive procedure (some­
times known as the Davis-Putnam procedure) for testing a given formula
a in CNF for satisfiability. The procedure as we shall describe it will not
be completely deterministic; there will be situations in which one of a
number of literals is to be selected. We will write the recursive procedure
using two variables, y for a set of clauses and Y for a stack of sets of
clauses. We write TOP(.Y) for the set of clauses at the top of the stack .Y,
POP(.Y) for Y after TOP(.Y) has been removed, PUSH({3,.9) for the
stack obtained by putting {3 on the top of Y, and 0 for the empty stack.
The procedure is as follows:

y~ a; Y~ 0;
while y =I= 0 and (0 $. y or Y =I= 0)

if 0 E 'Y
then y ~ TOP(.Y); Y ~ POP(.Y);
else if 'YA- = 0

then y ~ y~;
else if {A} E y

then y ~ NEG"(y);
else Y~ PUSH(NEGA(y),.Y); y ~ POSA(y);

end while
if y = 0 then return SATISFIABLE

else return UNSATISFIABLE

Thus, this procedure will terminate returning SATISFIABLE whenever
y is the empty formula 0, whether or not the stack Y is empty. (This is all
right because the original formula will be satisfiable if any one of the
formulas obtained by repeated uses of the splitting rule is satisfiable, and,
of course, 0 is satisfiable.) The procedure will terminate returning UN­
SATISFIABLE if o E y and Y = 0. (Here, y is unsatisfiable, and no
formulas remain in Y as the result of uses of the splitting rule.) If neither

4. The Davis- Putnam Rules 365

of these termination conditions is satisfied, the algorithm will first test for
o E y. If o E y, it rejects (since y is unsatisfiable) and "pops" the stack.
Otherwise it attempts to apply first the pure literal rule and then the unit
rule. If both attempts fail, it chooses (nondeterministically) some literal A,
takes POSi y) as the new formula to work on, and "pushes" NEGA(y)
onto the stack for future reference.

It is not difficult to see that the algorithm just given must always
terminate. Let us say that a set of clauses a reduces to a set of clauses {3 if
for each clause K in {3 there is a clause "K in a such that K ~ "K. Then, at
the beginning of each pass through the while loop, y is a set of clauses to
which a reduces and the stack consists of a list of sets of clauses to each
of which a reduces. Since, for a given a, there are only a finite number of
distinct configurations of this kind, and none can be repeated, the algo­
rithm must eventually terminate.

Exercises

1. Let a be {{p, q, r}, {p, q}, {jj, r}}. For A = p, q, r, jj, q, r, give a;, a;,
a~, POSA(a), NEGA(a). Which of these sets are necessarily equal?

2. Use the Davis-Putnam rules to show the correctness of the inference
in Exercise 3.8.

3. Use the Davis-Putnam rules to show the correctness of the following
inference.

If John went swimming, then he lost his glasses and did not go to the
movies. If John ate too much meat and did not go to the movies, then
he will suffer indigestion. Therefore, if John ate too much meat and
went swimming, then he will suffer indigestion.

4. Test the following set of clauses for satisfiability:

{p, q, r, s}

{jj, q, r}

{i'' s}
{q, r}
{p, s}.

5. Modify the Davis-Putnam procedure so that when the answer is
SATISFIABLE on input a, it returns an assignment v such that
a''= 1.

366 Chapter 12 Propositional Calculus

6. How many distinct computations can be performed by the
Davis-Putnam procedure on input {{p, q, r}, {p, q}, {jj, r}}?

7. Let a be a CNF formula with n distinct atoms.
(a) What is the maximum number of formulas that can be on the

stack in the Davis-Putnam procedure at any given time?
(b) Suppose that a is satisfiable. Show that if the Davis-Putnam

procedure always makes the right choice of A at each stage, the
while loop executes no more than n times.

(c) How many times must the while loop execute on input

{{p, q}, {p, q}, {jj, q}, {jj, q}}?

On input

{{p, q, r}, {p, q, r}, {p, q, r}, {p, q, r},

{jj, q, r}, {jj, q, r}, {jj, q, r}, {jj, q, r}}?

5. Minimal Unsatisfiability and Subsumption

We begin with

Theorem 5.1. Let the clauses K 1 , Kz satisfy K 1 c Kz. Then if a is a
formula in CNF such that K 1 , Kz E a, then a is satisfiable if and only if
a - {K2} is satisfiable.

Proof. Clearly, if a is satisfiable, so is a - {K2}.

Conversely, if (a - {K2})V = 1, then Kf = 1, so that also Kf = 1. Hence,
av = 1. •

Thus, if in fact K1, Kz E a and K 1 c K2 , we may simply drop K2 and test
a - {K2} for satisfiability. The operation of dropping K2 in such a case is
called subsumption. Unfortunately, there is no efficient algorithm known
for testing a large set of clauses for the possibility of applying subsumption.

Definition. A finite set of clauses a is called minimally unsatisfiable if

1. a is unsatisfiable, and
2. for all {3 c a, {3 is satisfiable.

Definition. A finite set of clauses a is said to be linked if whenever
A E K 1 and K 1 E a, there is a clause K 2 E a such that ..., A E K 2 . That is,
each literal in a clause of a has a mate in another clause of a.

6. Resolution 367

Then it is very easy to prove

Theorem 5.2. Let a be minimally unsatisfiable. Then

1. for no K1 , K2 E a can we have K1 c K2 , and
2. a is linked.

Proof. Condition 1 is an immediate consequence of Theorem 5.1. To
verify 2, suppose that a is minimally unsatisfiable but not linked. Then,
there is a literal A in a clause K E a such that the literal -, A occurs in
none of the clauses of a, i.e., a;= 0. Thus, by the pure literal rule, a~ is
unsatisfiable. But since a~ c a, this is a contradiction. •

Exercise

1. Give a minimally unsatisfiable CNF formula with four clauses.

6. Resolution

Let K1 , K2 be clauses such that A E K1 and -,A E K2 • Then we write

resA(K1 , K2) = (K1 -{A}) U (K2 - {-,A}).

The clause resA(K1 , K2) is then called the resolvent of K1 , K2 with respect to
the literal A. The operation of forming resolvents has been the basis of a
very large number of computer programs designed to perform logical
deductions. We have

Theorem 6.1. Let A be an atom and let K1 , K2 be clauses such that
A E K1, -,A E K2 . Then

Proof. Let v be an assignment such that Kf = K~ = 1. Now if Au = 1,
then (K2 - {-, AW = 1, while if Au= 0, then (K1 - {A})V = 1. In either
case, therefore, resA(K1 , K2)u = 1. •

Let a be a finite set of clauses. A sequence of clauses K1 , K2 , ••• , Kn = K

is called a resolution derivation of K from a if for each i, 1 :;;; i :;;; n, either
K; E a or there are j, k < i and a literal A such that K; = resA(Ki, Kk). A
resolution derivation of D from a is called a resolution refutation of a. We
define

368 Chapter 12 Propositional Calculus

We have

Theorem 6.2. Let a be a formula in CNF and let A be a literal. Then a
is satisfiable if and only if RES/a) is satisfiable.

Proof. First let a" = 1. Then if K E a1, we have also K E a, so that
K" = 1. Furthermore, if K = resA(K1 , K2), with K1 E a;, Kz E a;, then
Kf = 1, Kf = 1, so that, by Theorem 6.1, K" = 1. Since for all K E

RESA(a), we have K" = 1, it follows that RESA(a)" = 1.
Conversely, let RESA(a)" = 1. We claim that either POSA(a)" = 1 or

NEGA(a)" = 1. For, suppose that POSA(a)" = 0. Since a1 ~ RESA(a), we
have (a1)" = 1. So for some K1 E a;, we must have (K1 - {A})V = 0.
However, for all Kz E a; and this K1 , we must have resA(K 1 , K2)" =
[(K1 - {A}) U (K2 - {-, A})]D = 1. Thus, for all K2 E a; we have (K2 -

{-, A})V = 1, i.e., NEG A(a)"= 1. This proves our claim that either POSA(a)
or NEGA(a) must be satisfiable. By Theorem 4.1, i.e., the splitting rule, a
is satisfiable. •

Theorem 6.2 suggests another procedure for testing a formula a in CNF
for satisfiability. As with the Davis-Putnam rules, seek a literal of a to
which the pure literal or unit rule can be applied. If none is to be found,
choose a literal A of a and compute RESA(a). Continue recursively.

As with the Davis-Putnam procedure, this procedure must eventually
terminate in { D} or 0; this is because the number of literals is successively
diminished. This procedure has the advantage of not requiring a stack of
formulas, but the disadvantage that the problem may get considerably
larger because of the use of the RESA(a) operation. Unfortunately, the
present procedure is also called the Davis-Putnam procedure in the
literature. To add to the confusion, it seems that computer implementa­
tions of the "Davis-Putnam procedure" have been almost exclusively of
the procedure introduced in Section 4, whereas theoretical analyses of the
computational complexity of the "Davis-Putnam procedure" have tended
to deal with the procedure we have just introduced.

Theorem 6.3. Let a be a formula in CNF and suppose that there is a
resolution derivation of the clause K from a. Then a'· = 1 implies
K" = 1.

Proof. Let K1 , K2 , ••• , Kn = K be a resolution derivation of K from a.

We shall prove that K;" = 1 for 1 :::;; i :::;; n, which will prove the result. To
prove this by induction, we assume that K}' = 1 for all j < i. (Of course for
the case i = 1, this induction hypothesis is true vacuously.) Now, there are
two cases. If K; E a, then K;" = 1. Otherwise K; = resA(Kj, Kk), where

6. Resolution 369

j, k < i. Hence, by the induction hypothesis, Kj' = Kf: = 1. So by Theorem
6.1, Kt = 1. •

Theorem 6.4 (Ground Resolution Theorem). The formula a in CNF is
unsatisfiable if and only if there is a resolution refutation of a.

Proof. First let there be a resolution refutation of a, but suppose that
nevertheless au = 1. Then, by Theorem 6.3, ov = 1, which is impossible.

Conversely, let a be unsatisfiable. Let A1 , A2 , ••• , Ak be a list of all the
atoms that occur in a. Let

a 0 =a, i = 1,2, ... ,k.

Clearly each a; contains only the atoms Aj for which i < j .:5; k. Hence ak

contains no atoms at all, and must be either 0 or {0}. On the other hand,
by Theorem 6.2, we have that a; is unsatisfiable for 0 .:5; i .:5; k. Hence
ak = { 0}. Now, let the sequence K 1 , Kz, ••• , Km of clauses consist, first, of
all of the clauses of a 0 = a, then, all of the clauses of a 1 , and so on
through all of the clauses of ak. But this last means that Km = 0.
Moreover, it is clear from the definition of the RESA operation that
K 1 , Kz, ••• , Km is a resolution derivation. •

To illustrate the ground resolution theorem, we apply it to (4.1) to show,
once again, that (3.9) is unsatisfiable. Here then is a resolution refutation
of the formula a of (4.1):

{jj, q, s}, {i1, s, s1}, {jj, q, i 1 , s1}, {p}, {q, i 1 , s1}, {q}, {i1, s1},

{sl}, {it}, {jjl 'iit 'rl}, {jjl 'fit}, {ql}, {jjl}, {pi}, 0.

Exercises

1. (a) Use the resolution method to answer Exercise 1.1.
(b) Do the same for Exercise 2.1.

2. Give a resolution refutation that shows the correctness of the infer­
ence of Exercise 3.8.

3. Do the same for the inference of Exercise 4.3.

4. Let a 0 , ••• , an be CNF formulas, and let {3 be a DNF formula
V;, m /3;. Show that a 0 , ••• , an I= {3 if and only if there is a resolu­
tion refutation of U;, n a; U {..., /3; I i .:5; m}.

370 Chapter 12 Propositional Calculus

5. Let A be an atom and let K1 , K2 be clauses such that A E K1 ,

-, A E K2 . Prove or disprove the following.
(a) reSA(K1 , K2) I= (K1 V K2).

(b) resA(K1 , K2) I= K1 or resA(K" K2) I= K2 •

(c) resA(K1 , K2) I= (K1 A K2).

(d) ifresA(K1 ,K2)isvalid,then (K1 A K2) is valid.

6. Let a be a formula in CNF and let A be a literal. Prove or disprove
that a is valid if and only if RESA(a) is valid.

7. The Compactness Theorem

Now, we will prove a theorem relating infinite sets of .W-formulas to their
finite subsets.

Definition. A set !1 of .W-formulas is called finitely satisfiable if for every
finite set a ~ n, the set a is truth-functionally satisfiable.

We have

Theorem 7.1. Let !1 be finitely satisfiable and let a be an .W-formula.
Then either !1 u {a} or !1 u {-, a} is finitely satisfiable.

Proof. Suppose to the contrary that !1 is finitely satisfiable but that
neither !1 u {a} nor !1 u {-,a} is finitely satisfiable. Then there are finite
sets a,' .:12 ~ n such that a, u {a} and .:12 u {-,a} are both truth­
functionally unsatisfiable. But .:11 u .:1 2 is a finite subset of !1 and hence
there must be an assignment v such that for each {3 E .:1 1 u .:1 2 , we have
{3v = 1. Now, either av = 1 or av = 0. In the first case .:1 1 u {a} is
satisfiable, and in the second case .:1 2 u {-, a} is satisfiable. This is a
contradiction. •

Now we will need to use a general property of infinite languages.

Enumeration Principle. Let L be an infinite subset of A*, where
A is an alphabet (and therefore is finite). Then there is an infinite
sequence or enumeration w 0 , w 1 , w 2 , • • • which consists of all the
words in L each listed exactly once.

The truth of this enumeration principle can be seen in many ways. One is
simply to imagine the elements of L written in order of increasing length,
and to order words of the same length among themselves like the entries
in a dictionary. Alternatively, one can regard the strings on A as notations

7. The Compactness Theorem 371

for numbers in some base (as in Chapter 5) and arrange the elements of L
in numerical order. (Actually, as it is not difficult to see, these two
methods yield the same enumeration.) Of course, no claim is made that
there is an algorithm for computing W; from i. Such an algorithm can only
exist if the language L is r.e.

Now, let a 0 , a 1 , a 2 , ••• be an enumeration of the set of all .sat-formulas.
(By the enumeration principle, such an enumeration must exist.) Let .n be
a given finitely satisfiable set of .sat-formulas. We define the sequence

no= n

(
nn u {an}

.On+l = .On U {--,an}

if this set is finitely satisfiable

otherwise.

By Theorem 7.1, we have

Lemma 1. Each .On is finitely satisfiable.

Let 0 = U~~o .On. Then, we have

Lemma 2. n is finitely satisfiable.

Proof. Let us be given a finite set A ~ n. For each 'Y E A, 'Y E nn for
some n. Hence A ~ .Om, where m is the maximum of those n. By Lemma
1, A is truth-functionally satisfiable. •

Lemma 3. For each .sat-formula a either a En or --,a E n, but not
both.

Proof. Let a= an. Then a E nn+l or--, a E nn+l' so that a or--, a
belongs tO 0. If a,--, a E 0, then by Lemma 2, the finite set {a,--, a}
would have to be truth-functionally satisfiable. But this is impossible. •

Now we define an assignment v by letting v(A) = 1 if A E 0 and
v(A) = 0 if Aft 0 for every atom A. We have

Lemma 4. For each .sat-formula a, au = 1 if and only if a E 0.
Proof. As we already know, it suffices to restrict ourselves to formulas
using the connectives --,, V, A. And, in fact, the De Morgan relation

(/31 V f3z) = --, (--, /31 A --, f3z)

shows that we can restrict ourselves even further, to the connectives --,, A.
So, we assume that a is an .sat-formula expressed in terms of the connec­
tives --,, A. Our proof will be by induction on the total number of
occurrences of these connectives in a.

372 Chapter 12 Propositional Calculus

If this total number is 0, then a is an atom, and the result follows
from our definition of v. Otherwise we must have either a= -, {3 or a=
({3 A y), where by the induction hypothesis we can assume the desired
result for {3 and y.

Case 1. a = -, {3
Then, using Lemma 3,

Case 2. a = ({3 A y)

a'' = 1 if and only if (3'' =/= 1

if and Only if {3 I' $_ n
if and only if a E fl.

If a'' = 1, then {3'' = y'' = 1, so by the induction hypothesis, {3, y E

0. If a ft. 0, then by Lemma 3, -, a E 0. But the finite set { {3, y, -, a}
is not satisfiable, contradicting Lemma 2. Thus, a E fl.

Conversely, if a En, then neither -, {3 nor -, 'Y can belong to n,
because the finite sets {a, -, {3}, {a, -, y} are not satisfiable. Thus, by
Lemma 3, {3, 'Y E n. By the induction hypothesis {3 I' = y'' = 1. Therefore,
a''= 1. •

Now, since n ~ n, we see that a''= 1 for each a En. Hence, n is
truth-functionally satisfiable. Since we began with an arbitrary finitely
satisfiable set of ..w'-formulas n, we have proved

Theorem 7.2 (Compactness Theorem for Propositional Calculus). Let 0.
be a finitely satisfiable set of ..w'-formulas. Then n is truth-functionally
satisfiable.

Exercises

1. Is the set of clauses

{(p; V •P;+ 1)Ii = 1,2,3, ... }

satisfiable? Why?

2. The same for the set

3.* Let us be given a plane map containing infinitely many countries.
Suppose there is no way to color this map with k colors so that

7. The Compactness Theorem 373

adjacent countries are colored with different colors. Prove that there is
a finite submap for which the same is true.

4. * Let r be a (not necessarily finite) set of .W-formulas, and let a be an
.W-formula. We can generalize the notion of tautological consequence
by writing r I= a to mean this: for every assignment v on .W such that
y" = 1 for all 'Y E f, we also have a" = 1.

(a) Show that f I= a if and only if y 1 , ••• , 'Yn I= a for some y 1 , ••• , 'Yn
E r.

(b) Show that if r is an r.e. set, then {a I r 1= a} is also r.e.
(c) Give an r.e. set r such that {a I r 1= a} is not recursive.
(d) Let r be an r.e. set of .W-formulas such that for some .W-formula

a, both r 1= a and r 1= ..., a. Show that {a I r 1= a} is recursive.
(e) Let r be an r.e. set of .W-formulas such that for every .W-formula

a, either r 1= a or r 1= ..., a but not both. Show that {a I r 1= a}
is recursive.

13

Quantification Theory

1. The Language of Predicate Logic

Although a considerable part of logical inference is contained in the
propositional calculus, it is only with the introduction of the apparatus of
quantifiers that one can encompass the full scope of logical deduction as it
occurs in mathematics, and in science generally. We begin with an alpha­
bet called a vocabulary consisting of two kinds of symbols, relation symbols
and function symbols. Let W be a vocabulary. For each symbol t E W, we
assume there is an integer 8(t) called the degree oft. For t a function
symbol, 8(t) ~ 0, while for t a relation symbol, 8(t) > 0. A function
symbol t whose degree is 0 is also called a constant symbol. We assume
that W contains at least one relation symbol. (What we are calling a
vocabulary is often called a language in the literature of mathematical
logic. Obviously this terminology is not suitable for a book on theoretical
computer science.) In addition to W we shall use the alphabet

Q = { ..., ' " ' v ' :::> ' +-+ 'v' 3' (') ' X' y' z' u' v' w' I' ,} '
where the boldface comma, is one of the symbols that belong to Q. The
words that belong to the language

{xlliJ' yllil' zllil' ullil' vllil' wllill i E N}

375

376 Chapter 13 Quantification Theory

are called variables. Again we think of strings of the form l[i1, i > 0, as
subscripts, e.g., writing x 5 for xlllll. By a W-tenn (or when the vocabu­
lary W is understood, simply a tenn) we mean an element of (Q U W)*
that either is a constant symbol c E W or a variable, or is obtained from
constant symbols and variables by repeated application of the operation on
(Q U W)* that transforms ~-t 1 , f.tz, ... , 1-tn into

f(~-tJ '1-tz' · · ·' 1-tn),

where f is a function symbol in W and S(f) = n > 0.
An atomic W-fonnula is an element of (Q U W)* of the form

r (f.t 1 ' f.tz ' · · · • 1-tn) ,

where r E W is a relation symbol, S(r) = n, and ~-t 1 , f.tz, ... , 1-tn are terms.
Finally, a W-fonnula (or simply a fonnula) is either an atomic W-formula
or is obtained from atomic W-formulas by repeated application of the
following operations on (Q U W)*:

1. transform a into -, a;
2. transform a and f3 into (a A f3);
3. transform a and f3 into (a V f3);
4. transform a and f3 into (a ::> f3);
5. transform a and f3 into (a - f3);
6. transform a into (V b) a, where b is a variable;
7. transform a into (3 b) a, where b is a variable.

If b is a variable, the expressions

(Vb) and (3b)

are called universal quantifiers and existential quantifiers, respectively.
Let b be a variable, let A be a formula or a term, and suppose that we

have the decomposition A = rbs, where the leftmost symbol of s is not I.
(This means that b is not part of a longer variable. In fact, because A is a
formula or a term, s will have to begin either with , or with).) Then we say
that the variable b occurs in A. If more than one such decomposition is
possible for a given variable b we speak, in an obvious sense, of the first
occu"ence of b in A, the second occu"ence of b in A, etc., reading from left
to right.

Next suppose that a is a formula and that we have the decomposition

a= r(Vb)f3s or a= r(3b)f3s,

where f3 is itself a fonnula. Then the occu"ence of b in the quantifiers
shown, as well as all occu"ences of bin {3, are called bound occu"ences of b
in a. Any occurrence of b in a that is not bound is called a free

2. Semantics 377

occu"ence of b in a. A W-formula a containing no free occurrences of
variables is called a W-sentence, or simply a sentence. Any occurrence of a
variable in a term is considered to be a free occu"ence.

Thus, in the formula

(r(x) :J (3y)s(u,y)),

x and u each have one occurrence, and it is free; y has two occurrences,
and they are both bound. The formula

(Vx)(3u)(r(x) :J (3y)s(u,y))

is a sentence.

Exercises

1. Let W = {0, s, <}, where 0, s are function symbols with 8(0) = 0,
8(s) = 1, and < is a relation symbol with 8(<) = 2. Describe the set
of W-terms and the set of atomic W-formulas.

2. {a) Define the height of a W-term t, denoted Ht (t), as follows:

Ht(x) = 1 for all variables x
Ht(c) = 1 for all constant symbols c

Ht{f(tp···,tn)) = max{Ht(t) 11 -5:, i -5:, n} + 1.

Show by induction on height that all W-terms have an equal
number of left and right parentheses.

{b) Do the same for W-formulas.

2. Semantics

In analogy with the propositional calculus, we wish to associate the truth
values, 1 and 0, with sentences. To do this for a given sentence a will
require an "interpretation" of the function and relation symbols in a.

By an interpretation I of a vocabulary W, we mean a nonempty set D,
called the domain of I, together with the following:

1. an element c1 of D, for each constant symbol c E W;
2. a function f 1 from D 8<f> into 1 D, for each function symbol fEW for

which 8(/) > 0; and
3. a function r1 from D 8<r> into {0, 1}, for each relation symbol r E W.

1 Recall from Chapter 1, Section 1, that D" is the set of n-tuples of elements of D.

378 Chapter 13 Quantification Theory

Let A be a term or a formula and let b 1 , b2 , • •• , bn be a list of distinct
variables which includes all the variables that have free occu"ences in A.
Then, we write A = A(b 1 , ••• , bn) as a declaration of our intention to
regard b 1 , ••• , bn as acting like parameters taking on values. In such a
case, if t 1 , ••• , tn are terms containing no occurrences of variables that
have bound occurrences in A, we write A(t1 , ••• , tn) for the term or
formula obtained from A by simultaneously replacing b 1 by t1 , b2 by
12 , ••• , bn by In.

Now let t be a W-term, t = t(b 1 , b2 , ••• , bn), and let I be an interpreta­
tion of W, with domain D. Then we shall define a value t 1[d1 , d 2 , ••• , dn]
ED for all d 1 , d 2 , ••• , dn ED. For the case n = 0, we write simply t 1• We
define this notion recursively as follows:

1. If t = t(b 1 , b2 , ••• , bn) and t is a variable, then t must be b; for some
i, 1 :;;; i:;;; n, and we define t 1[d 1 , d 2 , ••• , dn] = d;;

2. If t = t(b 1 , b2 , ••• , bn) and t is a constant symbol c in W, then we
define t 1[d 1 ,d2 , ••• ,dn] = c1 ;

3. If t = t(b 1 , b 2 , ••• , bn) = g(t 1 , t 2 , ••• , tm), where g is a function sym­
bol in W, 8(g) = m > 0, then we first set I; = t;(b1 , b2 , ••• , bn),
i = 1, 2, ... , m, and we let S; = t/[d1 , d 2 , ••• , dn], i = 1, 2, ... , m. Fi­
nally, we define

Continuing, if a is a W-formula, a= a(b 1 , b2 , ••• , bn), and I is an
interpretation of W with domain D, we shall define a va1J.1e
a 1[d1 , d 2 , ••• , dn] E {0, 1}, for all d 1 , d 2 , ••• , dn ED. Again, in the partic­
ular case n = 0 (which can happen only if a is a sentence), we simply
write a 1• The recursive definition is as follows:

1. If a = a(b1 , b2 , ••• , bn) = r(t1 , t 2 , ••• , tm), where r is a relation sym­
bol in W, 8(r) = m, then we first set I; = t;(b 1 , b2 , ••• , bn), i =
1, 2, ... , m, and then let s; = t/[d1 , d 2 , ••• , dn], i = 1, 2, ... , m. Fi­
nally, we define a 1[dpd2 , ••• ,dn] = r1(sps2 , ••• ,sm).

In 2-6 which follow, let {3 = {3(b 1 , ••• , bn), y = y(b 1 , ••• , bn), where we
assume that {3 1[d1 , ••• , dn] = k, y 1[d1 , ••• , dn] =I with k, IE {0, 1}, are
already defined for all d 1 , d 2 , ••• , dn ED:

2. If a is --, {3, a = a(b 1 , ••• , bn), then we define

if k = 0
if k = 1.

2. Semantics

3. If a is ({3 A y), a = a(bl> ... , bn), then we define

if k =I= 1
otherwise.

4. If a is ({3 V y), a = a(bp ... , bn), then we define

if k =I= 0
otherwise.

5. If a is ({3 :::> y), a = a(b 1 , ••• , bn), then we define

379

if k = 1 and I = 0
otherwise.

6. If a is ({3 ~ y), a = a(b 1 , ••• , bn), then we define

{ 1 if k =I
a'[d1 , ••• ,dn] = 0 otherwise.

In 7 and 8 let {3 = {3(b 1 , ••• , bn, b), where we assume that
{3 1[d1 , ••• , dn, e] is already defined for all d1 , ••• , dn, e ED:

7. If a is (V b) {3, a = a(bl> ... , bn), then we define

if {3 1[d1 , ••• ,dn,e] = 1 for all e ED

otherwise.

8. If a is (3b) {3, a = a(b 1 , ••• , bn), then we define

if {3 1[d1 , ••• ,dn,e] = 1 for some e ED

otherwise.

It is important to be aware of the entirely nonconstructive nature of 7
and 8 of this definition. When the set D is infinite, the definition provides
no algorithm for carrying out the required searches. and, indeed, in many
important cases no such algorithm exists.

Let us consider some simple examples.

EXAMPLE 1. W = {c, r, s}, where c is a constant symbol, and rand s are
relation symbols, 8(r) = 3, 8(s) = 2. Let I have the domain D =
{0, 1, 2, 3, ... , }, let c1 = 0, and let

if x+y=z
otherwise,

s/x,y) = {~ if X ::; y
otherwise.

380 Chapter 13 Quantification Theory

If a is the sentence

(Vx)(Vy)(Vz)(r(x,y,z) :::>s(x,z)),

then it is easy to see that a 1 = 1. For if u, v, w E D and r1(u, v, w) = 1,
then u + v = w, so that u:::;; w and therefore s1(u, w) = 1. So if y =
y(x, y, z) is the formula (r(x, y, z) :::> s(x, z)), then y 1[u, v, w] = 1.

On the other hand, if {3 is the sentence

(Vx)(3y)r(x, y, c),

then {3 1 = 0. This is because r1(1, v, 0) = 0 for all v ED. Therefore

r(x,y,c)1[1,v] = 0

for all v ED. Thus, (3y)r(x,y,c)1[1] = 0, and therefore, finally, {3 1 = 0.

EXAMPLE 2. W, a, {3 are as in Example 1. I has the domain

{ ... , -3, -2, -1,0, 1,2,3, ... ,},

the set of all integers. c 1 , r1 , s 1 are defined as in Example 1. In this case, it
is easy to see that a 1 = 0 and {3 1 = 1.

An interpretation I of the vocabulary W is called a model of a W­
sentence a if a 1 = 1; I is called a model of the set .n of W-sentences if I
is a model of each a E n. n is said to be satisfiable if it has at least one
model. An individual W-sentence a is called satisfiable if {a} is satisfiable,
i.e., if a has a model. a is called valid if every interpretation of W is a
model of a.

If a = a(b 1 , ••• , bn), {3 = {3(b 1 , ••• , bn) are W-formulas, we write a = {3
to mean that a and {3 are semantically equivalent, that is,

for all interpretations I of W and all d1 , ••• , dn ED, the domain of I.
Then, as is readily verified, all of the equations from Section 1 of Chapter
12 hold true as well in the present context. We also note the quantifica­
tional De Morgan laws:

..., (Vb)a = (3b)..., a;..., (3b)a = (Vb)..., a. (2.1)

Again, as in the case of the propositional calculus, we may eliminate the
connectives :::> and ++ by using appropriate equations from Chapter 12,
Section 1. Once again, there is a "general principle of duality," but we
omit the details.

2. Semantics 381

Now, let {3 = {3(b 1 , ••• , bn, b), and let the variable a have no occur­
rences in {3. Then it is quite obvious that

(3b){3(b 1 , ••• , bn, b) = (3a){3(b 1 , ••• , bn, a),

(Vb){3(b 1 , ••• ,bn,b) = (Va){3(b 1 , ••• ,bn,a).

Continuing to assume that a has no occurrences in {3, we have

Exercises

((Va)a A {3) = (Va)(a A {3),

((3a)a A {3) = (3a)(a A {3),

((Va)a V {3) = (Va)(a V {3),

((3a)a V {3) = (3a)(a V {3).

(2.2)

(2.3)

1. Let W be as in Example 1. For each of the following W-sentences give
an interpretation that is a model of the sentence as well as one that is
not.
(a) (Vx)(3y)(Vz)(s(x,c) :::>r(x,y,z)).
(b) (3y)(Vx)(Vz)(s(x,c) :::>r(x,y,z)).
(c) (Vx)(Vy)(s(x, y) :::> s(y, x)).

2. Give an interpretation that is a model of (a) in Exercise 1 but not of
(b).

3. Let W = {ca, cb, cat, eq}, let interpretation I have domain {a, b}*, and
let ca1 =a, cb1 = b, cat1(u,v) = 17V, and

if u = v
otherwise.

For each of the following formulas a, calculate a 1•

(a) (Vx)(3y)eq(cat(ca,x),y).
(b) (3y)(Vx)eq(cat(ca, x), y).
(c) (Vx)(3y)eq(cat(x,y),x).
(d) (Vx)(3y)(eq(cat(ca, y), x) v eq(cat(cb, y), x)).
(e) (3x)eq(cat(ca, x), cat(x, cb)).

4. For each of the following formulas, tell whether it is (i) satisfiable, (ii)
valid, (iii) unsatisfiable.
(a) ((3x)p(x) A (Vy)--,p(y)).
(b) (Vx)(3y)r(f(a),b).

382 Chapter 13 Quantification Theory

(c) ((Vx)(3y)r(x,y) :J (3y)(Vx)r(x,y)).
(d) ((3y)(Vx)r(x,y) :J (Vx)(3y)r(x,y)).
(e) (3x)(Vy) < (x,y).
(f) ((3x)p(x) :J (3x)(Vy)p(x)).

5. Let W = {0, s, +, eq}, let interpretation I have domain N, and let
01 = 0, s 1 be the successor function, +1 be the addition function, and
eq1 be equality (as in Exercise 3). For each of the following sets S, give
a formula a such that

(a) S = N.

(b) S = {(x, y, z) E N 3 I x + y = z}.

(c) S = {(x, y) E N 2 I x ~ y}.

(d) S = {(x, y, z) E N 3 I z ..:. y = x}.

(e) S = {x EN I x is even}.

6. For a set of sentences .n, let Mod(!l) be the collection of all models of
.n. Prove that

3. Logical Consequence

We are now ready to use the semantics just developed to define the notion
of logical consequence. Let W be a vocabulary, let r be a set ofW-sentences,
and let y be a W-sentence. Then we write

fl=y

and call y a logical consequence of the premises r if every model of r is
also a model of y. If r = { y1 , ••• , Yn}, then we omit the braces { , }, and
write simply

'Y1 'Yz' · · ·' Yn I= Y ·

Note that y 1 , y 2 , ••• , Yn I= y if and only if for every interpretation I of W
for which

y{ = y£ = ··· = Yn1 = 1,

we also have y 1 = 1. (Intuitively, we may think of the various interpreta­
tions as "possible worlds." Then our definition amounts to saying that y is
a logical consequence of some premises if y is true in every possible world

3. Logical Consequence 383

in which the premises are all true.) As in the case of the propositional
calculus, logical consequence can be determined by considering a single
sentence. The proof of the corresponding theorem is virtually identical to
that of Theorem 2.1 in Chapter 12 and is omitted.

Theorem 3.1. The relation y 1 , y 2 , ••• , 'Yn I= y is equivalent to each of the
following:

1. the sentence ((y 1 1\ •· · 1\ y) :::) y) is valid;
2. the sentence (y 1 1\ · · · 1\ 'Yn 1\ ..., y) is unsatisfiable.

Once again we are led to a problem of satisfiability. We will focus our
efforts on computational methods for demonstrating the unsatisfiability of
a given sentence. We begin by showing how to obtain a suitable normal
form for any given sentence.

As in Chapter 12, Section 3, we begin with the procedures

(I) ELIMINATE :::) and - .
(II) MOVE ..., INWARD.

Procedure (I) is carried out exactly as in Chapter 12. For (II), we also need
to use the quantificational De Morgan laws (2.1). Ultimately all ...,swill
come to immediately precede relation symbols.

(III) RENAME VARIABLES.

Rename bound variables as necessary to ensure that no variables occur
in two different quantifiers, using (2.2). Thus, the sentence

((Vx)(Vy)r(x, y) V ((Vx)s(x) 1\ (3y)s(y))

might become

(Vx)(Vy)r(x,y) V ((Vu)s(u) 1\ (3v)s(v)).

(IV) PULL QUANTIFIERS

Using (2.3), bring all quantifiers to the left of the sentence. Where possible,
do so with existential quantifiers preceding universal quantifiers. Thus, to
continue our example, we would get successively

(Vx)(Vy)r(x, y) V (3v)((Vu)s(u) 1\ s(v))

= (3v)((Vx)(Vy)r(x, y) V ((Vu)s(u) 1\ s(v)))

= (3v)(Vx)(Vy)(Vu)(r(x, y) V (s(u) 1\ s(v))).

After applying (IV) as many times as possible, we obtain a sentence
consisting of a string of quantifiers followed by a formula containing no

384 Chapter 13 Quantification Theory

quantifiers. Such a sentence is called a prenex sentence. A prenex sentence
is also said to be in prenex normal form.

Let y be a sentence of the form

where n ~ 0, and a = a(b1 , b2 , • •• , bn , b). Let g be a function symbol
which is not in a with 8(g) = n. If necessary, we enlarge the vocabulary W
to include this new symbol g. Then we write

Ys is called the Skolemization of y. [In the case n = 0, g is a constant
symbol and the term

g(bl 'bz ' ... ' bn)

is to be simply understood as standing for g.] Skolemization is important
because of the following theorem.

Theorem 3.2. Let y be a W-sentence and let 'Ys be its Skolemization.
Then

1. every model of 'Ys is a model of y;
2. if y has a model, then so does Ys ;
3. y is satisfiable if and only if 'Ys is satisfiable.

Proof. Condition 3 obviously follows from 1 and 2.
To prove 1, let a, y be as previously and let

Let I be a model of 'Ys so that y/ = 1, and let the domain of I be D.
Then, if d1 , ••• , dn are arbitrary elements of D, we have f3 1[d 1 , ••• , dn] =
1. Let e = g1(d1 , ... , dn). Thus a 1[d1 , ... , dn, e] = 1, so that

Hence finally, y 1 = 1.
To prove 2, let y 1 = 1, where I has the domain D. Again let d1 , ••• , dn

be any elements of D. Then, writing f3 for the formula (3b)a, so that we
may write f3 = f3(bp ... , bn), we have f3 1[dp ... , dn] = 1. Thus, there is
an element e E D such that a 1[d1 , ••• , dn, e] = 1. Hence, we have shown
that for each d1 , ••• , dn ED, there is at least one element e ED such
that a 1[d1 , ... , dn, e] = 1. Thus, we may extend the interpretation I to

3. Logical Consequence 385

the new function symbol g by defining g1(d 1 , ••• , dn) to be such an
element 2 e, for each d 1 , ••• , dn ED. Thus, for all d 1 , d2 , ••• , dn ED, we
have

13 1[dl ' ... ' dn] = aJ[dl ' ... ' dn 'g/dl ' ... ' dn)] = 1.

Hence, finally, y/ = 1. •
Since Theorem 3.2 shows that the leftmost existential quantifier in a

prenex formula may be eliminated without affecting satisfiability, we can,
by iterated Skolemization, obtain a sentence containing no existential
quantifiers. We write this

(V) ELIMINATE EXISTENTIAL QUANTIFIERS.

In the example discussed under (IV), this would yield simply

(Vx)(Vy)(Vu)(r(x,y) V (s(u) 1\ s(c))), (3.1)

where c is a constant symbol.
For another example consider the sentence

(Vx)(3u)(Vy)(Vz)(3v)r(x, y, z, u, v),

where r is a relation symbol, 8(r) = 5. Then two Skolemizations yield

(Vx)(Vy)(Vz)r(x, y, z, g(x), h(x, y, z)). (3.2)

A sentence a is called universal if it has the form (V b 1)(V b2) • • • (V bn)y,
where the formula y contains no quantifiers. We may summarize the
procedure (1)-(V) in

Theorem 3.3. There is an algorithm that will transform any given sen­
tence 13 into a universal sentence a such that 13 is satisfiable if and only if
a is satisfiable. Moreover, any model of a is also a model of 13.

In connection with our procedure (1)-(V) consider the example

((Vx)(3y)r(x,y) 1\ (Vu)(3v)s(u,v)),

where r and s are relation symbols. By varying the order in which the
quantifiers are pulled, we can obtain the prenex sentences

1. (Vx)(3y)(Vu)(3v)(r(x,y) As(u,v)),
2. (Vu)(3v)(Vx)(3y)(r(x,y) 1\ s(u,v)),

2 Here we are using a nonconstructive set-theoretic principle known as the axiom of
choice.

386 Chapter 13 Quantification Theory

3. (Vx)(Vu)(3y)(3v)(r(x,y) As(u,v)).

Skolemizations will then yield the corresponding universal sentences:

1. (Vx)(Vu)(r(x, g(x)) A s(u, h(x, u))),
2. (Vu)(Vx)(r(x, g(u, x)) A s(u, h(u))),
3. (Vx)(Vu)(r(x, g(x, u)) A s(u, h(x, u))).

But, for this example, one would expect that y should "depend" only on x
and v only on u. In other words, we would expect to be able to use a
universal sentence such as

4. (Vx)(Vu)(r(x, g(x)) A s(u, h(u))).

As we shall see, it is important to be able to justify such simplifications.
Proceeding generally, let y be a sentence of the form

where n ~ 0 and a= a(b 1 , b 2 , ••• , bn, b). Let g be a function symbol
which does not occur in y with 8(g) = n. Then we write

'Ys is called a generalized Skolemization of y. Then we have the following
generalization of Theorem 3.2.

Theorem 3.4. Let y be a W-sentence and let 'Ys be a generalized
Skolemization of y. Then we have 1-3 of Theorem 3.2.

Proof. Again we need verify only 1 and 2. Let a, y, 8 be as above. To
prove 1, let I be a model of 'Ys with domain D. Let {3 be defined as in the
proof of Theorem 3.2. Then 8 1 = 1 and (Vb 1) ••• (Vbn)f3 1 = 1. As in the
proof of Theorem 3.2, we conclude that

and so y 1 = 1.
Conversely, let y 1 = 1, where I has domain D. Then 8 1 = 1 and

Precisely as in the proof of Theorem 3.2, we can extend the interpretation
I to the symbol g in such a way that

Hence, y/ = 1. •

3. Logical Consequence 387

Henceforth we will consider the steps (IV) PULL QUANTIFIERS and
(V) ELIMINATE EXISTENTIAL QUANTIFIERS to permit the use of
generalized Skolemizations. Moreover, as we have seen, Theorem 3.3
remains correct if the universal sentence is obtained using generalized
Skolemizations.

Exercises

1. Consider the inference

(Vx)(p(x) :J (Vy)(s(y,x) :Ju(x))),

(3x)(p(x) A (3y)(s(y, x) A h(y, x)))

F= (3x)(3y)(u(x) Ah(y,x) As(y,x)).

(a) Find a universal sentence whose unsatisfiability is equivalent to
the correctness of this inference. Can you do this so that Skolem­
ization introduces only constant symbols?

(b) Using (a), show that the inference is correct.

2. (a) Using generalized Skolemization find a universal sentence whose
unsatisfiability is equivalent to the correctness of the inference

(3x)(Vy)r(x, y) F= (Vy)(3x)r(x, y).

(b) Show that the inference is correct.

3. The same as Exercise 2(a) for the inference

(Vx)(Vy)(Vz)(Vu)(V V)(Vw)((P(x, y, u) A P(y, z, v) A P(x, v, w))

:J P(u, z, w)),

(Vx)(Vy)(3z)P(z, x, y),

(Vx)(Vy)(3z)P(x, z, y) F= (3x)(Vy)P(y, x, y).

4. Prove Theorem 3.1.

5. For each sentence a in Exercise 2.1, perform the following.
(a) Transform a into a prenex normal form sentence.
(b) Give the Skolemization 'Ys of y.

{c) Give a model I of a.

(d) Extend I to a model of 'Ys •

6. Let y be a W-sentence, for some vocabulary W, and let 'Ys be its
Skolemization. Prove or disprove each of the following statements.
(a) If y is valid then 'Ys is valid.
(b) If 'Ys is valid then y is valid.

388 Chapter 13 Quantification Theory

7. Let W be a vocabulary, r a set ofW-sentences, and a, {3 W-sentences.
Prove each of the following statements.
(a) (Deduction Theorem) f u {a} 1= {3 if and only if f 1= (a :::> {3) .

(b) (Contraposition) r u {a} I= ..., {3 if and only if r u { {3} 1= ..., a.
(c) (Reductio ad absurdum) r u {a} 1= ({3 A -, {3) if and only if

r I= ..., a.

4. Herbrand's Theorem

We have seen that the problem of logical inference is reducible to the
problem of satisfiability, which in turn is reducible to the problem of
satisfiability of universal sentences. In this section, we will prove Herbrand's
theorem, which can be used together with algorithms for truth-functional
satisfiability (discussed in Chapter 12) to develop procedures for this
purpose.

Let a be a universal W-sentence for some vocabulary W, where we
assume that a contains all the symbols in W. If a contains at least one
constant symbol, we call the set of all constant symbols in a the constant
set of a. If a contains no constant symbols, we let a be some new constant
symbol, which we add toW, and we call {a} the constant set of a. Then the
language which consists of all W-terms containing no variables is called the
Herbrand universe of a. The set J/1' of atomic W-formulas containing no
variables is called the atom set of a. We will work with the set of
propositional formulas over J/1', i.e., of J/1'-formulas in the sense of Chapter
12, Section 1. Each of these J/1'-formulas is also a W-sentence that contains no
quantifiers.

Returning to the universal sentence (3.1), we see that its constant set is
{c}, its Herbrand universe is likewise {c}, and its atom set is {r(c, c), s(c)}.

Next, examining the universal sentence (3.2), its constant set is {a}, but
its Herbrand universe is infinite:

H = {a, g(a), h(a, a, a), g(g(a)), g(h(a, a, a)), h(a, a, g(a)), ... }.

Its atom set is likewise infinite:

Theorem 4.1. Let ~ = ~(b 1 , b2 , ••• , bn) be a W-formula containing no
quantifiers, so that the sentence

4. Herbrand's Theorem 389

is universal. Let H be the Herbrand universe of y and let Sit' be its atom
set. Then, y is satisfiable if and only if the set

(4.1)

of .Jit'-formulas is truth-functionally satisfiable.

Proof. First let y be satisfiable, say, y 1 = 1, and let D be the domain of
I. We now define an assignment v on Sit'. Let r be a relation symbol of W,
S(r) = m, so that r(t1 , ••• , tm) E Sit' for all t 1 , ... , tm E H. Then we define

v(r(tp···•tm)) = r1(t[, ... ,t~).

We have

Lemma 1. For all .Jit'-formulas a, a 1 =a".

Proof. As in Chapter 12, we may assume that a contains only the
connectives --,, A. Proceeding by induction, we see that if a is an atom,
the result is obvious from our definition of v. Thus, we may suppose that
a = --, {3 or a = ({3 A y), where the result is known for {3 or, for {3 and
y, respectively.

In the first case, we have

if and only if

if and only if
if and only if

Similarly, in the second case

if and only if
if and only if
if and only if

{31 = 0

{3" = 0
av = 1.

{3/=y/=1

{3v = 'Yv = 1
au= 1. •

Returning to the proof of the theorem, we wish to show that for all
a En, au= 1. By Lemma 1, it will suffice to show that a 1 = 1 for
a En. Now, since y 1 = 1, we have

But clearly, for t 1 , ... , tn E H,

We conclude that 0. is truth-functionally satisfiable.

390 Chapter 13 Quantification Theory

Conversely, let us be given an assignment v on .W' such that av = 1 for
all a E .n. We shall use v to construct an interpretation I of W. The
domain of I is simply the Herbrand universe H. Furthermore,

1. If c E W is a constant symbol, then c 1 = c. (That is, a constant
symbol is interpreted as itself.)

2. Iff E W is a function symbol, 8(/) = n > 0, and t 1 , t2, ... , tn E H,
then

fJ(t 1 ,t2 , ... ,tn) =J(tpt2 , ... ,tn) E H.

(Note carefully the use of boldface.)
3. If r E W is a relation symbol, 8(r) = n, and t 1 , t 2 , ... , tn E H, then

r1(t 1 , t 2 , ... , tn) = v(r(t 1 , t 2 , ... , tn)).

(Note that the assignment v is only used in 3.) We have

Lemma 2. For every t E H, t 1 = t.

Proof. Immediate from 1 and 2. •
Lemma 3. For every W-formula a= a(b1 , ••• , bn) containing no quanti­
fiers, and all t 1 , ... , tn E H, we have

a 1[tl , ... ,tn] = v(a(tl , ... ,tn}).

Proof. If a is an atom, the result follows at once from 3 and Lemma 2.
For the general case it now follows because the same recursive rules are
used for the propositional connectives, whether we are evaluating interpre­
tations or assignments. •

Returning to the proof of the theorem, we wish to show that y 1 = 1. For
this, recalling that H is the domain of I, it suffices to show that

for all t 1 , ... , tn E H.

By Lemma 3, this amounts to showing that

for all t 1 , ... , tn E H.

But this last is precisely what we have assumed about v. •
The usefulness of the theorem we have just proved results from combin­

ing it with the compactness theorem (Theorem 7.2 in Chapter 12).

Theorem 4.2 (Herbrand's Theorem). Let '' y, H, .W', and .n be as in
Theorem 4.1. Then y is unsatisfiable if and only if there is a truth-

4. Herbrand's Theorem 391

functionally unsatisfiable W-formula of the form A13 e I {3 for some finite
subset I of n.
Proof. If there is a truth-functionally unsatisfiable .sat-formula A13 e I {3,
where I ~ n, then for every assignment v on .sat, there is some {3 E I
such that {3 v = 0. Hence I, and therefore also .n, is not truth-functionally
satisfiable; hence by Theorem 4.1, y is unsatisfiable.

Conversely, if y is unsatisfiable, then by Theorem 4.1, .n is not truth­
functionally satisfiable. Thus, by the compactness theorem (Theorem 7.2 in
Chapter 12), n is not finitely satisfiable; i.e., there is a finite set I ~ .n
such that I is not truth-functionally satisfiable. Then, the sentence
A 13 e I {3 is truth-functionally unsatisfiable. •

This theorem leads at once to a family of procedures for demonstrating
the unsatisfiability of a universal sentence y. Write n = U~ ~ 0 In , where
I 0 = 0, In ~ In+ 1 , the In are all finite, and where there is an algorithm
that transforms each In into In+ 1 • (This can easily be managed, e.g., by
simply writing the elements of .n as an infinite sequence.) Then we have
the procedure

n+---0

WHILE 1\ {3 IS TRUTH-FUNCTIONALLY SATISFIABLE DO
{3E"i.n

n+-n+1
END

If y is unsatisfiable, the procedure will eventually terminate; otherwise it
will continue forever. The test for truth-functional satisfiability of A13 e I" {3
can be performed using the methods of Chapter 12, e.g., the Davis-Putnam
rules. Using this discussion, we are able to conclude

Theorem 4.3. For every vocabulary W the set of unsatisfiable sentences is
recursively enumerable. Likewise the set of valid sentences is r.e.

Proof. Given a sentence a, we apply our algorithms to obtain a universal
sentence y that is satisfiable if and only if a is. We then apply the
preceding procedure based on Herbrand's theorem. It will ultimately halt
if and only if a is unsatisfiable. This procedure shows that the set of
unsatisfiable sentences is r.e.

Since a sentence a is valid if and only if --, a is unsatisfiable, the same
procedure shows that the set of valid sentences is r.e. •

One might have hoped that the set of unsatisfiable W-sentences would
in fact be recursive. But as we shall see later (Theorem 8.1), this is not the

392 Chapter 13 Quantification Theory

case. Thus, as we shall see, we cannot hope for an algorithm that,
beginning with sentences y 1 , y2 , ••• , Yn, y as input, will return YES if
y 1 , y 2 , ••• , Yn I= y, and NO otherwise. The best we can hope for is a
general procedure that will halt and return YES whenever the given
logical inference is correct, but that may fail to terminate otherwise. And
in fact, using Theorem 3.1 and an algorithm of the kind used in the proof
of Theorem 4.3, we obtain just such a procedure.

Now let us consider what is involved in testing the truth-functional
satisfiability of 1\ 13 E I {3, where I is a finite subset of the set .n defined in
(4.1). If we wish to use the methods developed in Chapter 12, we need to
obtain a CNF of 1\ 13 E I {3. But, if for each {3 E I, we have a CNF formula
{3 ° such that {3 = {3 °, then 1\ 13 E 'i {3 ° is clearly a CNF of 1\ f3 E 'i {3. This
fact makes CNF useful in this context.

In fact we can go further. We can apply the algorithms of Chapter 12,
Section 3, to obtain CNF formulas directly for~= ~(b 1 , ••• , bn). When we
do this we are in effect enlarging the set of formulas to which we apply the
methods of Chapter 12, by allowing atoms that contain variables. Each
formula can then be thought of as representing all of the W-formulas
obtained by replacing each variable by an element of the Herbrand
universe H. In this context formulas containing no variables are called
ground formulas. We also speak of ground literals, ground clauses, etc.

If the CNF formula obtained in this manner from ~(b 1 , ••• , bn) is given
by the set of clauses

(4.2)

then each {3 E I will have a CNF

where t 1 , ••• , t n are suitable elements of H. Hence, there will be a CNF of
1\ f3 E 'i {3 representable in the form

{K;(t{, ... ,tDii = 1, ... ,r,j = 1, ... ,s}, (4.3)

where t{, ... , t~ E H, j = 1, 2, ... , s. Thus, what we are seeking is an
unsatisfiable set of clauses of the form (4.3). Of course, such a set can be
unsatisfiable without being minimally unsatisfiable in the sense of Chapter
12, Section 5. In fact, there is no reason to expect a minimally unsatisfiable
set of clauses which contains, say, K 1(t1 , ••• , tn) to also contain
K 2(t1 , ••• , tn). Thus, we are led to treat the clauses in the set (4.2)
independently of one another, seeking substitutions of elements of H for
the variables b1 , ••• , bn so as to obtain a truth-functionally inconsistent set

4. Herbrand's Theorem 393

R of clauses. Each of the clauses in (4.2) can give rise by substitution to
one or more of the clauses of R.

Let us consider some examples.

EXAMPLE 1. Consider this famous inference: All men are mortal; Socrates
is a man; therefore, Socrates is mortal. An appropriate vocabulary would be
{m, t, s}, where m, t are relation symbols of degree 1 (which we think of as
standing for the properties of being a man, and of being mortal, respec­
tively), and s is a constant symbol (which we think of as naming Socrates).
The inference becomes

(Vx)(m(x) :::> t(x)), m(s) 1= t(s).

Thus, we wish to prove the unsatisfiability of the sentence

((Vx)(m(x) :::> t(x)) A m(s) A ..., t(s)).

Going to prenex form, we see that no Skolemization is needed:

(Vx)((-,m(x) Vt(x)) Am(s) A -,t(s)).

The Herbrand universe is just {s}. In this simple case, Herbrand's theorem
tells us that we have to prove the truth-functional unsatisfiability of

((..., m(s) V t(s)) A m(s) A ..., t(s));

that is, we are led directly to a ground formula in CNF. Using the set
representation of Chapter 12, Section 4, we are dealing with the set of
clauses

{ {m(s), t(s)}, {m(s)} , {t(s)} } .

Using the Davis-Putnam rules (or, in this case equivalently, resolution),
we obtain successively

{{t(s)}, {t(s)}}, and { D};

hence the original inference was valid.

EXAMPLE 2. Another inference: Every shark eats a tadpole; all large white
fish are sharks; some large white fish live in deep water; any tadpole eaten by a
deep water fish is miserable; therefore, some tadpoles are miserable.

Our vocabulary is {s, b, t, r, m, e}, where all of these are relation symbols
of degree 1, except e, which is a relation symbol of degree 2. e(x, y) is to
represent "x eats y." s stands for the property of being a shark, b of being a
large white fish, t of being a tadpole, r of living in deep water, and m of

394 Chapter 13 Quantification Theory

being miserable. The inference translates as

(Vx)(s(x) :::> (3y)(t(y) t\ e(x,y))),

(Vx)(b(x) :::> s(x)),
(3x)(b(x) t\ r(x)),

(Vx)(Vy)((r(x) At(y) t\e(x,y)) =>m(y)) F= (3y)(t(y) Am(y)).

Thus, we need to demonstrate the unsatisfiability of the sentence

((Vx)(s(x) :::> (3y)(t(y) t\ e(x, y)))

t\ (Vx)(b(x) =>s(x))
t\ (3x)(b(x) t\ r(x))
A(Vx)(Vy)((r(x) At(y) Ae(x,y)) =>m(y))

t\ -, (3y)(t(y) t\ m(y))).
We proceed as follows.

I. ELIMINATE :::> :

((Vx)(-,s(x) V (3y)(t(y) Ae(x,y)))

t\ (V X)(-, b(X) V s(X))

A(3x)(b(x) t\ r(x))

t\ (Vx)(Vy)(-, (r(x) t\ t(y) t\ e(x, y)) V m(y))

t\-, (3y)(t(y) t\ m(y))).

II. MOVE ..., INWARD:

((Vx)(-, s(x) V (3y)(t(y) t\ e(x, y)))

A(Vx)(-, b(x) V s(x))

A(3x)(b(x) t\ r(x))

A(Vx)(Vy)(-,r(x) V -,t(y) V --.e(x,y) V m(y))

A(Vy)(-,t(y) V --.m(y))).

III. RENAME VARIABLES;

((Vx)(-, s(x) V (3y1)(t(y1) t\ e(x, y 1)))

A(Vz)(-, b(z) v s(z))

t\ (3u)(b(u) t\ r(u))

A(Vv)(Vw)(--.r(v) V --.t(w) V -,e(v,w) V m(w))

A(Vy)(-,t(y) V -,m(y))).

4. Herbrand's Theorem 395

IV. PULL QUANTIFIERS (trying to pull existential quantifiers first):

(3u)(Vx)(3y 1)(Vz)(Vv)(Vw)(Vy)

((..., s(x) V (t(y 1) A e(x,y1)))

A (..., b(z) v s(z))

Ab(u) A r(u)

A(...,r(v) V ...,t(w) V ...,e(v,w) V m(w))

A(...,t(y) V ...,m(y))).

V. ELIMINATE EXISTENTIAL QUANTIFIERS:

(Vx)(Vz)(Vv)(Vw)(Vy)

((..., s(x) V (t(g(x))

A e(x,g(x))))

A (..., b(z) v s(z))

A b(c) A r(c)

A(...,r(v) V ...,t(w) V ...,e(v,w) V m(w))

A(...,t(y) V ...,m(y))).

Thus we are led to the clauses

{s(x), t(g(x))},

{s(x), e(x, g(x))},

(b(z), s(z)},

{b(c)},

{r(c)},

{r(v), t(w), e(v, w), m(w)},

{t(y), m(y)}.

The Herbrand universe is

H = {c,g(c),g(g(c)), ... }.

To find substitutions for the variables in H, we have recourse to Theorem
5.2 (2) in Chapter 12. To search for a minimally unsatisfiable set of ground
clauses, we should seek substitutions that will lead to every literal having a
mate (in another clause). By inspection, we are led to the substitution

X= C, z = c, v = c, w = g(c), y = g(c).

396 Chapter 13 Quantification Theory

We thus obtain the set of ground clauses

{s(c),t(g(c))},

{s(c), e(c, g(c))},

{b(c), s(c)},

{b(c)},

{r(c)},

{f(c), i(g(c)), e(c, g(c)), m(g(c))},

{i(g(c)), m(g(c))}.

Although this set of clauses is linked, we must still test for satisfiability.
Using the Davis-Putnam rules we obtain, first using the unit rule on
{b(c)},

{s(c), t(g(c))},

{S(c), e(c, g(c))},

{s(c)},

{r(c)},

{f(c), i(g(c)), e(c, g(c)), m(g(c))},

{i(g(c)), m(g(c))}.

Using the unit rule on {s(c)} and then on {r(c)} gives

{t(g(c))},

{e(c, g(c))},

{i(g(c)), e(c, g(c)), m(g(c))},

{i(g(c)), m(g(c))}.

Using the unit rule on {t(g(c))} and then on {e(c, g(c))} gives

{m(g(c))},

{m(g(c))}.

Finally, we obtain the set of clauses consisting of the empty clause:

D.

In Examples 1 and 2 each clause of (4.2) gave rise to just one clause in
the truth-functionally unsatisfiable set of clauses obtained. That is, we

4. Herbrand's Theorem 397

obtain a truth-functionally unsatisfiable set of clauses of the form (4.3)
with s = 1. Our next example will be a little more complicated.

EXAMPLE 3. We consider the inference

(Vx)(3y)(r(x, y) V r(y, x)),

(Vx)(Vy)(r(x, y) :J r(y, y)) I= (3z)r(z, z).

Thus, we wish to demonstrate the unsatisfiability of the sentence

(Vx)(3y)(r(x, y) V r(y, x))

A (Vx)(Vy)(r(x, y) :J r(y, y)) A -, (3z)r(z, z).

We proceed as follows:

I, II, III. ELIMINATE :J; MOVE -, INWARD; RENAME VARI­
ABLES:

(Vx)(3y)(r(x, y) V r(y, x))

A(Vu)(Vv)(-,r(u,v) V r(v,v)) A (Vz)-,r(z,z).

IV. PULL QUANTIFIERS:

(Vx)(3y)(Vu)(Vv)(Vz)((r(x, y) V r(y, x))

A(-,r(u,v) V r(v,v)) A -,r(z,z)).

V. ELIMINATE EXISTENTIAL QUANTIFIERS:

(Vx)(Vu)(Vv)(Vz)((r(x, g(x)) V r(g(x), x))

A(-,r(u,v) V r(v,v)) A -,r(z,z)).

We thus obtain the set of clauses

{r(x, g(x)), r(g(x), x)},

{r(u,v),r(v,v)},

{f(z,z)}.

The Herbrand universe is

H = {a,g(a),g(g(a)), ... }.

How can we find a mate for r(x, g(x))? Not by using r(z, z)-whichever
element t E H we substitute for x, r(x,g(x)) will become r(t,g(t)),
which cannot be obtained from r(z, z) by replacing z by any element of H.

398 Chapter 13 Quantification Theory

Thus the only potential mate for r(x, g(x)) is r(u, v). We tentatively set
u = x, v = g(x) so that the second clause becomes

{r(x, g(x)), r(g(x), g(x))} .

But now, r(u, v) is also the only available potential mate for r(g(x), x).
Thus, we are led to also substitute v = x, u = g(x) in the second clause,
obtaining

{;:(g(x), x), r(x, x)}.

Both r(g(x), g(x)) and r(x, x) can be matched with r(z, z) to produce
mates. We thus arrive at the set of clauses

{r(x, g(x)), r(g(x), x)},

{r(x, g(x)), r(g(x), g(x))},

{;:(g(x), x), r(x, x)},

{r(x, x)},

{r(g(x), g(x))} .

Now we can replace x by any element of H to obtain a linked set of
ground clauses. For example, we can set x =a; but any other substitution
for x will do. Actually, it is just as easy to work with the nonground clauses
as listed, since the propositional calculus processing is quite independent
of which element of H we substitute for x. In fact after four applications of
the unit rule (or of resolution) we obtain D, which shows that the original
inference was correct.

Exercises

1. Describe the Herbrand universe and the atom set of the universal
sentence obtained in Exercise 3.1.

2. Do the same for Exercise 3.2.

3. Do the same for Exercise 3.3.

4. Let W = {c, J, p}, where c is a constant symbol, f is a function symbol
with 8(/) = 1, and p is a relation symbol with 8(p) = 1. Show that
{(3x) p(x), -, p(c), -, p(f(c)), -, p(f(f(c))), ... } is satisfiable.

5. Unification 399

5. Unification

We continue our consideration of Example 3 of the previous section. Let
us analyze what was involved in attempting to "mate" our literals. Suppose
we want to mate r(x, g(x)) with r(z, z). The first step is to observe that
both literals have the same relation symbol r, and that r is negated in one
and only one of the two literals. Next we were led to the equations

X= Z, g(x) = z.

The first equation is easily satisfied by setting x = z. But then the sec­
ond equation becomes g(z) = z, and clearly no substitution from the
Herbrand universe can satisfy this equation. Thus, we were led to consider
instead the pair of literals r(x, g(x)), r(u, v). The equations we need to
solve are then

X= U, g(x) = v.

Again we satisfy the first equation by letting x = u; the second equation
becomes g(u) = v, which can be satisfied by letting v = g(u). So the
literals become r(u, g(u)) and r(u, g(u)).

This example illustrates the so-called unification algorithm for finding
substitutions which will transform given literals r(A1 , ••• , An),
;:(p., 1 , ••• , p.,) into mates of one another. The procedure involves compar­
ing two terms p.,, A and distinguishing four cases:

1. One of p.,, A (say, p.,) is a variable and A does not contain this
variable. Then replace p., by A throughout.

2. One of p.,, A (say, p.,) is a variable, A =F p.,, but A contains p.,. Then
report: NOT UNIFIABLE.

3. p.,, A both begin with function symbols, but not with the same function
symbol. Again report: NOT UNIFIABLE.

4. p.,, A begin with the same function symbol, say

Then use this same procedure recursively on the pairs

VI = 1J1 ' Vz = 7Jz' "·'
In applying the unification algorithm to

we begin with the pairs of terms

... '

400 Chapter 13 Quantification Theory

and apply the preceding procedure to each. Naturally, substitutions called
for by step 1 must be made in all of the terms before proceeding.

To see that the process always terminates, it is necessary to note only
that whenever step 1 is applied, the total number of variables present
decreases.

EXAMPLE Let us attempt to unify

r(g(x), y, g(g(z))) with r(u, g(u), g(v)).

We are led to the equations

g(x) = u, y = g(u), g(g(z)) =g(v).

The first equation leads to letting

u = g(x),

and the remaining equations then become

y = g(g(x)) and g(g(z)) =g(v).

The second is satisfied by letting

y = g(g(x)),

which does not affect the third equation. The third equation leads recur­
sively to

g(z) = v,

which is satisfied by simply setting v equal to the left side of this equation.
The final result is

r(g(x), g(g(x)), g(g(z))), r(g(x), g(g(x)), g(g(z))).

Numerous systematic procedures for showing sentences to be unsatisfi­
able based on the unification algorithm have been studied. These proce­
dures work directly with clauses containing variables and do not require
that substitutions from the Herbrand universe actually be carried out. In
particular, there are linked conjunct procedures that are based on searches
for a linked set of clauses, followed by a test for truth-functional unsatisfi­
ability. However, most computer implemented procedures have been based
on resolution. In these procedures, when a pair of literals have been mated
by an appropriate substitution, they are immediately eliminated by resolu­
tion. We illustrate the use of resolution on Examples 2 and 3 of the
previous section.

5. Unification 401

Beginning with the clauses of Example 2, applying the unification
algorithm to the pair of literals s(z), s(x), and then using resolution, we
get

Next, unifying

{b(x), t(g(x))},

{b(x), e(x, g(x))},

{b(c)},

{r(c)},

{;:(v), i(w), e(v, w), m(w)},

{t(y),m(y)}.

e(x, g(x)) and e(v, w)

and using resolution, we get

{b(x), t(g(x))},

{b(c)},

{r(c)},

{b(x), r(x), i(g(x)), m(g(x))},

{i(y), m(y)}.

Another stage of unification and resolution yields

and then

Finally, we get

{t(g(c))} ,

{r(c)},

{r(c), i(g(c)), m(g(c))},

{i(y), m(y)},

{r(c)},

{r(c), m(g(c))},

{m(g(c))}.

{r(c)},

{r(c)},

and, then, to complete the proof,

D.

402 Chapter 13 Quantification Theory

The combination of unification with resolution can be thought of as a
single step constituting a kind of generalized resolution. Thus, resolution
in the sense of Chapter 12, that is, resolution involving only ground
clauses, will now be called ground resolution, while the unmodified word
resolution will be used to represent this more general operation. In the
ground case we used the notation resiK 1 , K2) for the resolvent of K 1 , K2

with respect to the literal A, namely,

(K 1 - {A}) U (K2 - {...,A}).

In the general case, let A E Kz, ..., f.L E Kz, where the unification algorithm
can be successfully applied to A and ..., f.L· Thus, there are substitutions for
the variables which yield new clauses i(1 , i<2 such that if the substitutions
transform A into A, they also transform ..., f.L into ..., i Then we write

Let a be a finite set of clauses. Then a sequence of clauses K 1 , Kz, ... , Kn

is called a resolution deri~·ation of Kn = K from a if for each i, 1 :::;; i :::;; n,
either K; E 'a or there are j, k < i and literals A, f.L such that K; =
res"·~-'(Kj, Kk). As in Chapter 12, a resolution derivation of o from a is
called a resolution refutation of a. The key theorem is

Theorem 5.1 (J. A. Robinson's General Resolution Theorem). Let { =
{(b 1 , ••• , bn) be a W-formula containing no quantifiers, and let { be in
CNF. Let

Then, the sentence y is unsatisfiable if and only if there is a resolution
refutation of the clauses of {.

We shall not prove this theorem here, but will content ourselves with
showing how it applies to Example 3 of the previous section. The clauses
were

1. {r(x, g(x)), r(g(x), x)}
2. {f(u, v), r(v, v)}
3. {f(z, z)}.

A resolution refutation is obtained as follows:

4. {r(g(x),x),r(g(x),g(x))} (resolving 1 and 2);
5. {r(x, x), r(g(x), g(x))} (resolving 2 and 4);
6. {r(g(x), g(x))} (resolving 3 and 5);
7. o (resolving 3 and 6).

5. Unification

Exercises

1. Indicate which of the following pairs of terms are unifiable.
(a) x, g(y).

(b) x,g(x).

(c) f(x),g(y).
(d) f(x,h(a)),f(g(y),h(y)).

(e) f(x,x),f(g(y),a).
(f) f(x, y, z),f(g(w, w), g(x, x), g(y, y)).

403

2. Prove the correctness of the inferences of Exercises 3.1-3.3 by obtain­
ing minimally unsatisfiable sets of clauses.

3. Prove the correctness of the inferences of Exercises 3.1-3.3 by obtain­
ing resolution refutations.

4. (a) Prove that the problem of the validity of the sentence

(3x)(3y)(Vz)((r(x, y) :J (r(y, z) A r(z, z)))

A((r(x,y) As(x,y)) :J (s(x,z) As(z,z))))

leads to the list of clauses

{r(x, y)},

{s(x, y), r(y, h(x, y)), r(h(x, y), h(x, y))},

{r(y, h(x, y)), r(h(x, y), h(x, y))'

s(x, h(x, y)), s(h(x, y), h(x, y))}.

[Hint: Use Theorem 5.1 in Chapter 12.]
(b) Prove the validity of the sentence in (a) by giving a resolution

refutation.

5. * A conventional notation for describing a substitution is
{x 1/t 1 , ••• , xn!tn}, where x 1 , ••• , xn are distinct variables and t 1 , ••• , tn
are terms. If A is a term or a formula and (} is a substitution, then A8
denotes the result of simultaneously replacing each occurrence of X;

in A by t;, 1 ::; i ::; n. A unifier of two terms or formulas A, JL is a
substitution (} such that A(J and JL8 are identical. Modify the unifica­
tion algorithm so that if A, JL are unifiable, it returns a unifier of A, JL.
Apply the modified algorithm to Exercise 1.

6.* An V -clause with at most one literal that is not negated is called a
Hom clause. Horn clauses are the basis of logic programming languages
such as Pro log. Horn clauses of the form A or (-, A1 V · · · V -, An V
A), where the latter is sometimes written (A1 A · · · A An :J A), are

404 Chapter 13 Quantification Theory

called program clauses, and a Hom program is a set (or conjunction) of
program clauses. The input to a Horn program 9' is a clause of the
form (-, A1 V · · · V -, "-n), called a goal clause, and the output is a
substitution (}, called an answer substitution, such that

(Vx1) ••• (Vx1)9' I= (Vy1) ••• (Vyk)[(A1 A··· A "-n)O],

where x 1 , ••• , x1 are all of the variables which occur free in 9' and
y 1 , ••• , Yk are all of the variables which occur free in (A1 A··· A A)O.
(If there is no such answer substitution then the program can either
stop and return NO or it can run forever.) If (A1 A · · · A A)O has no
free variable occurrences, then (} is a ground answer substitution.
(a) Let (} be a substitution such that (A1 V · · · V "-n)O has no free

variable occurrences. Show that (} is a ground answer substitution
if and only if

(Vx1) ••• (Vx1)[9' U {(-, A1 V ··· V -, "-n)O}]

is unsatisfiable.
(b) Let 9' be the Horn program with clauses

{edge(a, b), edge(b, c), edge(x, y) :::) connected(x, y),

edge(x, y) A connected(y, z) :::) connected(x, z)}.

For each of the following goal clauses, use resolution and the
modified unification algorithm from Exercise 5 to find all possible
answer substitutions.

(i) -,edge(a, y).
(ii) -,edge(x, a).
(iii) -,edge(x,y).
(iv) -, connected(b, y).
(v) -, connected(a, y).

6. Compactness and Countability

In this section we give two applications of the circle of ideas surrounding
Herbrand's theorem that are extremely important in mathematical logic. It
will be interesting to see if they have a role to play in the application of
logic to computer science.

Theorem 6.1 (Compactness Theorem for Predicate Logic). Let 0. be a
set of W-sentences each finite subset of which is satisfiable. Then n is
satisfiable.

6. Compactness and Countabillty 405

Proof. If n is finite, there is nothing to prove. If n is infinite, we can use
the enumeration principle from Chapter 12, Section 7, to obtain an
enumeration {30 , {3 1 , {32 , • • • of the elements of !1. Let us write

'Yn = A {3;' n = 0, 1,2,
isn

Let steps {1)-(V) of Section 3 be applied to each of {30 , {3 1 , {32 ,. • • to
obtain universal sentences

a; = (Vb~;>) ··· (Vb~~)~;(b~i>, ... , b~~).

Then by Theorem 3.3, for each i, a; is satisfiable if and only if {3; is
satisfiable, and moreover any model of a; is also a model of {3;. Now let us
apply the same steps {1)-(V) to the sentence 'Yn. We see that if we use
generalized Skolemization we can do this in such a way that the universal
sentence l)n we obtain, corresponding to 'Yn in the sense of Theorem 3.3,
consists of universal quantifiers followed by the formula

i:5.n

Now, by hypothesis, each 'Yn is satisfiable. Hence, by Theorem 3.3, so is
each l>n. For each n, let Hn be the Herbrand universe of l>n. Thus,

Ho ~ Ht ~Hz

Let H = UnEN Hn. By Theorem 4.1, the sets

"" - { A Y (1U> l(i))ll(i) 1U> E H . - 0 1 } .:.,n - i~~ ~i t , ••• , m, 1 , ••• , m, n , l - , , ... , n

are truth-functionally satisfiable. We wish to show that the set

r = ui{tl '0 0 0' 1m) I It' lz' 0 0 0 E u}
is itself truth-functionally satisfiable. By the compactness theorem for
propositional calculus (Theorem 7.2 in Chapter 12) it suffices to prove this
for every finite subset A of r. But for any finite subset A of r, there is a
largest value of the subscript i which occurs, and all the lj which occur are
in some Hk. Let I be the larger of this subscript k and this largest value of
i. Then A is itself a subset of

AI= {~;(1 1 , ••• ,1m) I 11 ,12 , ••• E H1 ,0:::;; i:::;; 1}.

Moreover, since I 1 is truth-functionally satisfiable, so is A1, and therefore
A. This shows that f is truth-functionally satisfiable.

406 Chapter 13 Quantification Theory

Now, let .W' be the set of all atoms which occur in the formulas that
belong to f. Let v be an assignment on .W' such that {3'' = 1 for all {3 E f.
Then we use v to construct an interpretation I of W with domain H
precisely as in the proof of Theorem 4.1. Then Lemmas 2 and 3 of that
proof hold and precisely as in that case we have

t/[t1 , ••• , tm) = 1 for all t 1 , ••• , tm; E Hand i EN.

Hence, a/ = 1 for all i E N. Since any model of a; is also a model of {3;,
we have {3/ = 1 for all i E N. Thus, I is a model of n. •

Now let us begin with a set 0. of W-sentences which has a model I.
Then of course I is a model of every finite subset of n. Thus, the method
of proof of the previous theorem can be applied to 0.. Of course, this
would be pointless if our aim were merely to obtain a model of 0.; we
already have a model I of 0.. But the method of proof of Theorem 6.1
gives us a model of 0. whose domain H is a language on an alphabet. Thus,
we have proved

Theorem 6.2 (Skolem-Lowenheim Theorem). Let 0. be a satisfiable set
ofW-sentences. Then n has a model whose domain is a language on some
alphabet.

What makes this important and interesting is that any language satisfies
the enumeration principle of Chapter 12, Section 7. Infinite sets that
possess an enumeration are called countably infinite. This brings us to the
usual form of the Skolem-LOwenheim theorem.

Corollary 6.3. Let 0. be a satisfiable set of W-sentences. Then 0. has a
model whose domain is countably infinite.

Many infinite sets that occur in mathematics are not countable. In fact,
the diagonal method, which was used in obtaining unsolvability results in
Part 1 of this book, was originally developed by Cantor to prove that the
set of real numbers is not countable. What the Skolem-LOwenheim
theorem shows is that no set of sentences can characterize an infinite
uncountable set in the sense of excluding countable models.

We close this section with another useful form of the compactness
theorem.

Theorem 6.4. If f I= y, then there is a finite subset a of f such that
a t= Y·

Proof. Since every model of r is a model of y, the set r u {--, y} has no
models; that is, it is not satisfiable. Thus, by Theorem 6.1, there is a finite

7. G6del's Incompleteness Theorem 407

subset a of f such that a u {-, y} is unsatisfiable. Thus every model of a
is a model of y, i.e., a 1= y. •

Exercises

1. Let nl' !lz be sets of sentences such that nl u n2 is unsatisfiable.
Prove that there is a sentence a such that !l 1 I= a, and !l2 1= -, a.

2. Show that if a set n of sentences has models with arbitrarily large
finite domains, then it has a model with an infinite domain. [Hint:
Show that n u {(3xl) ... (3x)/\is;i<j$n X; =F xj In EN} is satisfi­
able.]

3. Let W be the vocabulary {0, c, s, >},where 0, care constant symbols, s
is a function symbol with 8(s) = 1, and > is a relation symbol with
8(>) = 2. Use the compactness theorem to show that the set of
sentences {c > 0, c > s(0), c > s(s(0)), ... } is satisfiable.

*7. Godel's Incompleteness Theorem

Let f be a recursive set of W-sentences for some given vocabulary W. We
think of f as being considered for use as a set of "axioms" for some part
of mathematics. The requirement that f be recursive is natural, because,
by Church's thesis, it simply amounts to requiring that there be some
algorithmic method of determining whether or not an alleged "axiom"
really is one. Often f will be finite. We define T r = {y If I= y} and call
T r the axiomatizable theory on W whose axioms are the sentences belong­
ing to the set f. Of course, it is quite possible to have different sets of
axioms which define the same theory.

If T is an axiomatizable theory, we write

I-T 'Y

(read: "T proves y") to mean that y E T. We also write lf-T y to mean
that y f/:. T. The most important fact about axiomatizable theories is given
by the following theorem.

Theorem 7.1. An axiomatizable theory is r.e.

Proof. By Theorems 3.1 and 6.4, y E T r if and only if

(y 1 A y2 A · ·· A Yn A -, y)

408 Chapter 13 Quantification Theory

is unsatisfiable for some 'Y!' 'Yz' ..• ' 'Yn E r. Since r is recursive, it is
certainly r.e. Thus, by Theorem 4.11 in Chapter 4, there is a recursive
function g on N whose range is f. For a given sentence y, let

c5(n, y) = (g(O) A g(l) A ··· A g(n) A ..., y)

for all n EN. Clearly, c5(n, y) is a recursive function of n and y.
Moreover, the sentence y belongs to T r if and only if there is an n E N
such that c5(n, y) is unsatisfiable. But by Theorem 4.3, the set of unsatisfi­
able W-sentences is r.e. Hence there is a partially computable function h
which is defined for a given input if and only if that input is an unsatisfi­
able W-sentence. Let h be computed by program .9 and let p = #(.9).
Then the following "dovetailing" program halts if and only if the input y
belongs to T r, thereby showing that T r is r.e.:

[A] Z+--15(/(T),y)
T+-T+1
IF- STP(l>(z, p, r(T)) GOTO A •

We shall see in the next section that there is a f such that T r is not
recursive.

Now let W be some vocabulary intended for use in expressing properties
of the natural numbers. By a numeral system for W, we mean a recursive
function 11 on N such that for each n E N, 11(n) is a W-term containing no
variables, and such that for all n, m E N, n =1= m implies 11(n) =1= 11(m).
When 11 can be understood from the context, we write n for 11(n). n is
called the numeral corresponding to n and may be thought of as a notation
for n using the vocabulary W. A popular choice is

n = S(S(··· S(O)) ···),

where S is a function symbol of degree 1, 0 is a constant symbol, and the
number of occurrences of S is n.

Let a= a(b) be a W-formula and letT be an axiomatizable theory on
W. Then, given a numeral system for W, we can associate with a the set

U = {n EN 11--T a(n)}. (7.1)

In this case, we say that the formula a represents the set U in T. If we begin
with a set U ~ N, we can ask the question: is there a W-formula a which
represents U in T? We have

Theorem 7.2. If there is a formula a which represents the set U in an
axiomatizable theory T, then U is r.e.

7. Godel's Incompleteness Theorem 409

Proof. Let T be an axiomatizable theory, and let a represent U in T. By
Theorem 7.1, we know that there is a program 9! that will halt for given
input y if and only if I-T y. Given n E N, we need only compute a(n)
[which we can do because v(n) = n is recursive], and feed it as input to 9!.
The new program thus defined halts for given input n E N if and only if
I-T a(n). By (7.1), U is r.e. •

In fact, there are many axiomatizable theories in which all r.e. sets are
representable. To see the negative force of Theorem 7.2, we rewrite it as
follows.

Corollary 7.3. Let T be an axiomatizable theory. Then if U ~ N is not
r.e., there is no formula which represents U in T.

This corollary is a form of Godel's incompleteness theorem. To obtain a
more striking form of the theorem, let us say that the formula a quasi­
represents the set U in T if

{n EN li-T a(n)} ~ U. (7.2)

We can think of such a formula a as intended to express the proposition
"n E U" using the vocabulary W. Comparing (7.1) and (7.2) and consider­
ing Corollary 7.3, we have

Corollary 7.4. Let T be an axiomatizable theory and let U ~ N be a set
that is not r.e. Let the formula a quasi-represent U in T. Then, there is a
number n0 such that n0 E U but lf-T a(n0).

As we can say loosely, the sentence a(n0) is "true" but not provable.
Corollary 7.4 is another form of Godel's incompleteness theorem. We
conclude with our final version.

Theorem 7.5. Let T be an axiomatizable theory, and let S be an r.e. set
that is not recursive. Let a = a(x) be a formula such that a represents S
in T, and -, a quasi-represents S in T. Then there is a number n0 such
that lf-T a(fi0) and lf-T -, a(n0).

Proof. We take U = S in Corollary 7.4 to obtain a number n 0 such that
n0 E S, but lf-T -, a(n0). Since n0 $ S and a represents S in T, we must
also have lf-T a(n0). •

In this last case, it is usual to say that a(n0) is undecidable in T.

Exercises

1. Let r be an r.e. set of W-sentences for some vocabulary W. Show that
{y I r 1= y} is r.e.

410 Chapter 13 Quantification Theory

2. Let T be an axiomatizable theory on some vocabulary W. T is consis­
tent if there is no W-sentence a such that both I-T a and I-T -, a,
and T is inconsistent otherwise.

(a) Show that if T is inconsistent then I-T a for all W-sentences a.
(b) Show that if there is a formula which represents some nonrecur-

sive set in T, then T is consistent.
(c) Show that if T is consistent and the formula a represents some

r.e. set U in T, then -, a quasi-represents fJ in T.

3. An axiomatizable theory T on vocabulary W is complete if for all
W-sentences a, either I-T a or I-T -,a. Show that if Tis complete
then it is recursive. [See also Exercise 2.]

4. An axiomatizable theory T on some vocabulary W is w-consistent if the
following holds for all W-formulas a(b): If I-T -, a(n) for all n E N,
then lf-T (3x)a(x). Show that if T is w-consistent then it is consis­
tent. [See Exercise 2 for the definition of consistency.]

5. A function f(x 1 , ••• , xn) is representable in an axiomatizable theory T
if there is a formula a(b 1 , ••• , bn, b) such that if f(m 1 , ••• , mn) = k
then

I-T a(m 1 , ... ,mn,lc) and 1--T(Vy)(a(m 1 , ... ,mn,y) :::>y =k).

We say that a represents f(x 1 , ••• , xn) in T. Let T be a consistent
axiomatizable theory [see Exercise 2] such that I-T 0 =/= 1 and such
that every primitive recursive function is representable in T.

(a) Let a(x, y, t, z) represent the function STP(I)(x, y, t) in T, and
for every r.e. set wm' let f3m(x) be the formula (3t)a(x, m, t, 1).
Show that if n E wm then I-T f3m(n).

(b) Show that if n ft wm then I-T -, a(n, m, i, 1) for all t EN.

(c) Show that if T is w-consistent then n ft Wm implies lf-T f3m(n).
[See Exercise 4.]

(d) Conclude that if T is an w-consistent axiomatizable theory in
which every primitive recursive function is representable and if
I-T 0 =/= 1, then T has an undecidable sentence.

*8. Unsolvability of the Satisfiability Problem in
Predicate Logic

In 1928, the great mathematician David Hilbert called the problem of
finding an algorithm for testing a given sentence to determine whether it is

8. Unsolvability of the Satisflability Problem in Predicate Logic 411

satisfiable "the main problem of mathematical logic." This was because
experience had shown that all of the inferences in mathematics could be
expressed within the logic of quantifiers. Thus, an algorithm meeting
Hilbert's requirements would have provided, in principle, algorithmic
solutions to all the problems in mathematics. So, when unsolvable prob­
lems were discovered in the 1930s, it was only to be expected that Hilbert's
satisfiability problem would also turn out to be unsolvable.

Theorem 8.1 (Church-Turing). There is a vocabulary W such that
there is no algorithm for testing a given W-sentence to determine whether
it is satisfiable.

Proof. Our plan will be to translate the word problem for a Thue process
into predicate logic in such a way that a solution to Hilbert's satisfiability
problem would also yield a solution to the word problem for the given
process.

Thus, using Theorem 3.5 in Chapter 7, let n be a Thue process on the
alphabet {a, b} with an unsolvable word problem. Let n have the produc­
tions g; ~ h;, i = 1, 2, ... , K, together with their inverses, where we may
assume that for each i, g;, h; =/= 0 (recall Theorem 3.5 in Chapter 7). We
introduce the vocabulary W = {a, b, •, ~}, where a, b are constant symbols,
• is a function symbol, and ~ is a relation symbol, with 8(•) = 8(~) = 2.
We will make use of the interpretation I with domain {a, b}* - {0} which
is defined as follows:

if and only if u if v.

For ease of reading, we shall write • and ~ in "infix" position. Thus,
we shall write, for example,

((x •a) ~y) instead of ~ (•(x,a), y).

For each word w E {a, b}* - {0}, we now define a W-term w# as
follows:

a#= a, b# = b,
(8.1)

(ua)# = (u#•a), (ub)# = (u# •b).

412 Chapter 13 Quantification Theory

We have

Lemma 1. For every word w E {a, b}* - {0}, we have (w#)1 = w.

Proof. The proof is by an easy induction on lwl, using (8.1) and the
definition of the interpretation /. •

Let f be the set of W-sentences obtained by prefixing the appropriate
universal quantifiers to each W-formula in the following list:

1. (x=x),
2. ((x=y):::>(y=x)),
3. (((x =y) 1\ (y = z)) :::> (x = z)),
4. (((x = y) 1\ (u = v)) :::> ((x • u) = (y • v))),
5. (((x•y)•z) = (x•(y•z))),
5 + i. (gt = ht}, 1 :::;; i :::;; K.

We have

Lemma 2. The interpretation I is a model of the set of sentences r.
Proof. The sentences of r all express in logical notation basic facts about
concatenation of strings and about derivations in Thue processes. Detailed
verification is left to the reader. •

Lemma 3. If r I= (u# = v#), then u * v.

Proof. By the definition of logical inference and Lemma 2, we have
(u# = v#)I = 1. Hence

•
We next wish to establish the converse of Lemma 3. For this it will

suffice to show that if u 'if v, then the sentence

A a 1\ ..., (u# = v#)
aEf

is unsatisfiable (recall Theorem 3.1). The Herbrand universe is

H = {a,b,a•a,a•b,b•a,b•b,a• (a•a), ... }.

Let us call a W-sentence a a Herbrand instance of a W-formula {3 if a can
be obtained from {3 by replacing each of its free variables by an element
of H. a is said to be rooted if it is a tautological consequence of the
sentences 5 + i together with Herbrand instances of the formulas listed in
1-5. Obviously, if the sentence {3 is rooted, then r I= {3.

8. Unsolvabillty of the Satlsflablllty Problem in Predicate Logic 413

Lemma 4. If w = uv, where u -=!= 0 and v-=!= 0, then

(w* ~ (u* • v*)) (8.2)

is rooted.

Proof. The proof is by induction on I vi. If I vi = 1, we can assume without
loss of generality that v = a. But in this case, the sentence (8.2) is a
Herbrand instance of formula 1.

Supposing the result known for v, we need to establish it for va and vb.
We give the proof for va, that for vb being similar. So let w = uv, where
we can assume that (8.2) is rooted. We need to show that the sentence

((wa)* ~ (u* •(va)*))

is likewise rooted. By (8.1) this amounts to showing that

((w* •a) ~ (u* • (v* •a)))

is rooted. But this follows from the induction hypothesis, noting that the
following sentences are rooted. (For each of these sentences, the number
of the corresponding formula of which it is a Herbrand instance is given.)

(a ~ a) (1)

(((w* ~ (u* • v*)) 1\ (a~ a)):::> ((w* •a) ~ ((u* • v*) •a))) (4)

(((u* • v*) •a) ~ (u* • (v* •a))) (5)

((((w* •a) ~ ((u* • v*) •a)) 1\ (((u* • v*) •a) ~ (u* • (v* •a)))))

:::> (((w* •a) ~ (u* • (v* •a)))). (3)

•
Lemma 5. If u rr v, then (u* ~ v*) is rooted.

Proof. For some i, 1 ::; i ::; K, we have either u = pg;q, v = ph;q, or
u = ph;q, v = pg;q, where p, q E {a, b}*. We may assume that in fact
u = pg;q, v = ph;q, because in the other case we could use the following
Herbrand instance of formula 2:

((v* ~ u*) :::> (u* ~ v*)).

The proof now divides into three cases.

Case I. p = q = 0. Then the sentence (u* ~ v*) is just 5 + i and is
therefore in r.

414 Chapter 13 Quantification Theory

Case II. p = 0, q =1= 0. Using 5 + i and the following Herbrand in­
stance of formula 4:

we see that the sentence

is rooted. Using Lemma 4 and Herbrand instances of formulas 2 and 3
we obtain the result.

Case III. p, q =I= 0. Using Case II, the sentence ((g;q)# ~ (h;q)#) is
rooted. Using the Herbrand instance of formula 4:

(((p# ~p#) A ((g;q)# ~ (h;q)#))

::) ((p# •(g;q)#) ~ (p# •(h;q)#))),

we see that

is rooted. The result now follows using Lemma 4 and Herbrand
instances of formulas 2 and 3. •

Lemma 6. If u 'fr v, then (u# ~ v#) is rooted.

Proof. The proof is by induction on the length of a derivation of v from
u. If this length is 1, then v = u, and we may use a Herbrand instance of
formula 1. To complete the proof, we may assume that u 'fr w If v, where
it is known that (u# ~ w#) is rooted. By Lemma 5, (w# ~ v#) is rooted.
We then get the result by using the following Herbrand instance of
formula 3:

•
Combining Lemmas 3 and 6, we obtain

Lemma 7. u 'fr v if and only if r 1= (u# ~ v#).

Now it is easy to complete the proof of our theorem. If we possessed an
algorithm for testing a given W-sentence for satisfiability, we could use it
to test the sentence

A a A -,(u# ~ v#)
aEf

8. Unsolvablllty of the Satisfiability Problem in Predicate Logic 415

and therefore, by Theorem 3.1, to test the correctness of the logical
inference r 1= (u# ~ v#). This would in turn lead to an algorithm for
solving the word problem for n, which we know is unsolvable. •

A final remark: We really have been working with the axiomatizable
theory Tr. Thus what Lemma 7 states is just that

(8.3)

Hence we conclude that the theory T r is not recursive. [If it were, we
could use (8.3) to solve the word problem for n.] Thus we have proved

Theorem 8.2. There are axiomatizable theories that are not recursive.

Exercises

1. Prove Lemma 2.

2. Let W be the vocabulary used in this section. Show that for every
deterministic Turing machine L there is a finite set f of W-sentences
and a computable function f(x) such that for any string w, L accepts
w if and only if r I= f(w). [Hint: See Theorems 3.3 and 3.4 in Chapter
7.]

Part 4

Complexity

14

Abstract Complexity

1. The Blum Axioms

In this chapter we will develop an abstract theory of the amount of
resources needed to carry out computations. In practical terms resources
can be measured in various ways: storage space used, time, some weighted
average of central processor time and peripheral processor time, some
combinations of space and time used, or even monetary cost. The theo­
rems proved in this chapter are quite independent of which of these
"measures" we use. We shall work with two very simple assumptions
known as the Blum axioms after Manuel Blum, who introduced them in his
doctoral dissertation. These assumptions are satisfied by any of the "mea­
sures" mentioned above (if given precise definitions in any natural man­
ner) as well as by many others.

Definition. A 2-ary partial function C on N is called a complexity
measure if it satisfies the Blum axioms:

1. C(x,i)J, if and only if <l>;(x)J,;
2. The predicate C(x, i) ::5; y is recursive. (This predicate is of course

false if C(x, i) i .)

We write C;(x) = C(x, i). We think of C;(x) as the complexity of the
computation that occurs when the program whose number is i is fed the

419

420 Chapter 14 Abstract Complexity

input x. It is not very difficult to see that various natural ways of
measuring complexity of computation do satisfy the Blum axioms. What is
remarkable is that some very interesting and quite nontrivial results can be
derived from such meager assumptions.

Let us examine some examples of proposed complexity measures:

1. C;(x) =the number of steps in a computation by program number ion
input x. The first axiom is clearly satisfied; the second follows from the
computability of the step-counter predicate STP(I).

2. M;(x) =the largest value assumed by any variable in program number i
when this program is given input x, if <l>;(x)!; M;(x)j otherwise. The
definition forces the first axiom to be true. The truth of the second
axiom is a more subtle matter. The key observation is that, for a
given program, there are only finitely many different snapshots1 in
which all variables have values less than or equal to a given number
y. Hence, given numbers i, x, y we can test the condition M;(x) ::::; y
by "running" program number i on the input x until one of the
following occurs:

I. A snapshot is reached in which some variable has a value > y.
Then we return the value FALSE.

II. The computation halts with all variables having values ::::; y. Then
we return the value TRUE.

III. The same snapshot is reached twice. (By the pigeon-hole principle
this must happen eventually if neither I nor II occurs.) Then,
recognizing that the computation is in an "infinite" loop and so
will never terminate, we return the value FALSE. (The reader
should note that this algorithm in no way contradicts the unsolv­
ability of the halting problem. Case I can include both halting
and nonhalting computations.)

We will make important use of this "maximum-space" complexity
measure, and we reserve the notation M;(x) for it.

3. C;(x) = <l>;(x). Although the first Blum axiom is satisfied, the second
is certainly not; namely, choose i so that

<1>/x) = { ~ for xES
otherwise,

where S is any given r.e. nonrecursive set. Then the condition
<l>;(x) ::::; 0 is equivalent to x E S and hence is not recursive.

1 The definition of snapshot is in Chapter 2, Section 3.

1. The Blum Axioms 421

If P(x) is any predicate on N, we write

P(x) a.e.,

and say that P(x) is true almost everywhere, to mean that there exists
m0 EN such that P(x) is true for all x > m 0 • Equivalently, P(x) is true
for all but a finite set of numbers. We may think of a partial function on N
as a total function with values in the set N u {oo}. That is, we write
g(x) = oo to mean that g(x)j. We extend the meaning of < so that
n < oo for all n EN. x ~ y continues to mean x < y or x = y, so that
n ~ oo for n E N but also oo ~ oo.

The second Blum axiom can be written in the equivalent forms:

2'. The predicate C;(x) = y is recursive.
2". The predicate C;(x) < y is recursive.

To see that 2, 2' and 2" are all equivalent we note that

C;(x) = y <=> (C;(x) ~ y & - (C;(x) ~ y ...:...1)) v (y = 0 & C;(x) ~ y),

so that 2 implies 2'. 2' implies 2" because

C;(x) < y <=> (3z)</C;(x) = z).

Finally, 2" implies 2 because

C;(x) ~y <=> C;(x) <y + 1.

Let us call a recursive function r(x) a scaling factor if

1. r is increasing, i.e., r(x + 1) ~ r(x), and
2. limx--.oo r(x) = oo, i.e. r assumes arbitrarily large values.

Condition 1 is obviously equivalent to the statement: x ~ y implies
r(x) ~ r(y). Then we have

Theorem 1.1. Let C;(x) be a complexity measure and let r(x) be a scaling
factor. Let D;(x) = r(C;(x)). Then D;(x) is a complexity measure.

Proof. It is clear that D satisfies the first Blum axiom. To test D;(x) ~ y,
note that if y < r(O) then D;(x) = r(C;(x)) ~ r(O) > y. Otherwise, find the
number t for which

r(O) ~ r(l) ~ r(2) ~ ··· ~ r(t) ~ y < r(t + 1).

We claim that D;(x) ~ y if and only if C;(x) ~ t. It remains only to verify
this claim. If C;(x) ~ t, then

D;(x) = r(C;(x)) ~ r(t) ~ y.

422 Chapter 14 Abstract Complexity

Otherwise, if t + 1 :::;; C;(x), then

y < r(t + 1) :::;; r(C;(x)) = D;(x). •
This theorem is hardly surprising. Naturally, if C;(x) is a plausible

complexity measure, we would expect 2c,<x> to be one as well. What is
surprising is that any pair of complexity measures are related to each other
in a manner not so different from C and D in Theorem 1.1.

Theorem 1.2 (Recursive Relatedness Theorem). Let C and D be arbi­
trary complexity measures. Then there is a recursive function r(x, y) such
that r(x, y) < r(x, y + 1), and for all i

C;(x) :::;; r(x, D;(x)) a.e.

and (1.1)

D;(x):::;; r(x,C;(x)) a.e.

[where we let r(x,oo) = oo for all x].

Proof. Note that by the first Blum axiom

C;(x),l. if and only if

<l>;(x),l. if and only if D;(x),l..

By the second Blum axiom (in the form 2'), the predicate

C;(x) = y v D;(x) = y

is recursive. Hence the function h defined as follows is recursive:

hC) = { max(C;(x), D;(x))
l, X, y O

if C;(x) = y v D;(x) = y

otherwise.

Let

r(x,y) =y + maxj,;xmaxz,;yh(j,x,z),

so that r(x, y) is recursive. Then

r(x,y + 1) = (y + 1) + maxj,;xmaxz,;y+l h(j,x,z)

> y + max j, x max z, Y h(j, x, z)

= r(x, y)

1. The Blum Axioms 423

since maximizing over a larger set of numbers cannot result in a smaller
outcome. Moreover, using this same principle, and assuming that x ~ i,

r(x,D;(x)) ~ maxj,xmaxzsD;(x>h(j,x,z)

Thus, the inequality

~ h(i, x, D;(x)) (since x ~ i)

= max(C;(x), D;(x))

~ C;(x).

holds for all x ~ i and hence almost everywhere. Since the definition of h is
symmetric in C and D, the same argument shows that

a.e. •
As we shall see, one use of the recursive relatedness theorem is in

enabling us to proceed, in some cases, from the knowledge that a theorem
is true for one particular complexity measure to the truth of that theorem
for all complexity measures.

Exercises

1. Which of the following are complexity measures?
(a) C;(x) = 0 for all i, x. (That is, all computation is "free.")

(b) C;(x)={M0 ;(x) for ift.A
for i E A,

where A is some given finite set such that <I>; is total for all
i EA. (That is, the programs whose numbers belong to A can
be run "free.")

(c) C;(x) = 2ct>;(x>.

C() _ {M;(x) if i is even
(d) ; x - the number of steps in computing <l>;(x) if i is odd.

424 Chapter 14 Abstract Complexity

2. Prove that if C is a complexity measure and

D-(x) = { C;(x)
I 0

for i It A

for i E A,

where A is as in Exercise l(b), then D is a complexity measure.

3. Let C;(x) be the number of steps in the computation on input x by .9'
program .9, where #(.9) = i. For some fixed n > 0, let D;(x) be the
number of steps in the computation on input x by ~ program .9',
where #(.9) = i and .9' is constructed from .9J as in Section 3 of
Chapter 5, by treating each .9' instruction as a macro in ~ .
(a) Show that D is a complexity measure.
(b) Give a function r(x, y) that satisfies the recursive relatedness

theorem for C and D. [See Exercise 3.2 in Chapter 5.]

4. Let C be a complexity measure.
(a) Show that for every i, C;(x) is partially computable.
(b) Show that if cl>;(x) is total, then C;(x) is computable.

5. Let C be a complexity measure. Show that the predicate P(i),
defined

P(i) <=> (Vx)(3y E N)C;(x) :::;; y,

is not computable.

6. Let C be an arbitrary complexity measure. Show that there is a
recursive function t such that

<l>;(x) :::;; t(x, C;(x)) a.e.

[Hint: Use the complexity measure M;(x) and the recursive related­
ness theorem.]

7. Can the result of the previous problem be improved so that t is a
unary recursive function such that

<l>;(x) :::;; t(C;(x)) a.e.?

Prove that your answer is correct.

8. (a) Let C be the complexity measure in Example 1. Show that for
any computable function f(x) there is a program number i such
that cl>;(x) = 0 and C;(x) > f(x) for all x. Conclude that there
are arbitrarily (with respect to computable lower bounds) slow .9'
programs that compute constant functions.

2. The Gap Theorem 425

(b) Let D be an arbitrary complexity measure. Show that for any
computable function f(x) there is a program number i such that
<l>;(x) = 0 for all x and D;(x) > f(x) a.e. [Hint: Use (a) and the
recursive relatedness theorem.]

9. Let C be a complexity measure. Show that there is no computable
function g(x,y) such that for all i, x, if <l>;(x),l. then C;(x):::;;
g(x, <l>;(x)). Compare with Exercise 6. [Hint: Use Exercise 8.]

10. Let C be a complexity measure. Show that for any computable
function f(x) there is a computable function g(x) such that g(x) :::;; 1
for all x and such that for any i, if <I>; = g then C;(x) > f(x) for
infinitely many x. Conclude that there are arbitrarily (with respect to
computable lower bounds) complex "small" computable functions.
[Hint: Define

g(x) = (~ if cl(x)(x) :::;; f(x) and <1>/(x)(x) * 1

otherwise.]

11. Let C be a complexity measure. Show that for any computable
function f(x) there is a computable function g(x) such that g(x) :::;; x
for all x and such that for any i, if <I>; = g then C;(x) > f(x) for all
x > i. Compare with Exercise 10.

2. The Gap Theorem

In this section Cis some given fixed complexity measure. Suppose that t(x)
is a complexity bound. That is, assume that we are restricted to computa­
tions for which C;(x) :::;; t(x) whenever <l>;(x),l.. Then, in response to our
complaints, the bound is increased enormously to g(t(x)), where g is some
recursive, rapidly increasing function, e.g., g(x) = 2x or

.2} g(x) = 22 . · x or

Then, we can carry out far more computations. Right? Wrong! If the
original function t(x) is sufficiently tricky, it is possible that for every i,
there are only finitely many values of x for which

C;(x) :::;; g(t(x)), but not C;(x):::;; t(x).

This surprising assertion is a consequence of the gap theorem.

426 Chapter 14 Abstract Complexity

Theorem 2.1 (Gap Theorem). Let g(x, y) be any recursive function
such that g(x, y) > y. Then, there is a recursive function t(x) such that if
x > i and C;(x) < g(x, t(x)), then C;(x) ~ t(x). (See Fig. 2.1.)

Proof. Consider the predicate

P(x,y) +-+ ('vi)<x(C;(x) ~y v g(x,y) ~ C;(x)).

By the second Blum axiom, the predicate C;(x) ~ y is computable. So is
the predicate

g(x,y) ~ C;(x) =- (3z)<g(x.Jz = C;(x)).

Hence, P(x, y) is also recursive. We define

t(x) = minY P(x,y), (2.1)

so that t is a partially computable function. We will show that t is total.
Let x be a given number. Consider the set Q = {C;(x) I i < x & <l>;(x)! }.

Let Yo = 0 if Q = 0 and let y0 be the largest element of Q otherwise. We

Figure 2.1. For x > i, C;(x) cannot enter the "gap."

2. The Gap Theorem 427

claim that P(x, y0) is true. To see this, choose i < x. Then if <l>;(x),!., then
C;(x)J, and therefore C;(x) :::;; Yo. If, on the other hand, <l>;(x)j then
C;(x) i. Since g(x, y 0),l., the predicate g(x, y0) :::;; C;(x) is true. Thus, we
have P(x, y0). We have shown that for every x EN there is a number y
such that P(x, y). Thus, t(x) defined by (2.1) is total and therefore
recursive.

Now let x > i and C;(x) < g(x, t(x)). Since P(x, t(x)) is true, and i < x,
we have C;(x):::;; t(x) v g(x, t(x)):::;; C;(x). But C;(x) < g(x, t(x)). Hence
C;(x) :::;; t(x). •

In their fine book, Machtey and Young (see "Suggestions for Further
Reading") give an amusing interpretation of the gap theorem. Let us
imagine two computers, one of which is very much faster than the other.
We think of each computer equipped with a reasonably efficient inter­
preter for our programming language .9' so that we can speak of running a
program qf .9' on one or another of the computers. Let C;(x) be the
computation time of the slow computer running program number i on
input x. Similarly for D;(x) and the fast computer. Clearly, C and D
satisfy the Blum axioms. By the recursive relatedness theorem, there is a
recursive function r satisfying (1.1). If we let g(x, y) = r(x, y) + y + 1,
then we have g(x, y) > y, g(x, y + 1) > g(x, y) and

C;(x):::;; r(x, D;(x)) < g(x, D;(x)) a.e.

Now let t(x) satisfy the gap theorem for the complexity measure C with
respect to this function g. And consider a program .9J with number i such
that D;(x) :::;; t(x) a.e. That is, for sufficiently large inputs x, .9J runs on
the fast machine in time bounded by t(x). Then on the slow computer, .9J
will run in time

C;(x) < g(x, D;(x)) :::;; g(x, t(x)) a.e.

But now the gap theorem comes into play to assure us that

C;(x) :::;; t(x) a.e.

Conclusion: Any program that runs in time t(x) on the fast computer also
runs in time t(x) (for sufficiently large x) on the slow computer!

Exercises

1. Let C be a complexity measure. Does the gap theorem imply that
there is no program number i such that lxl 2 :::;; C;(x):::;; lxl 3 a.e.?
Explain.

428 Chapter 14 Abstract Complexity

2. Let C be a complexity measure. We will say that a total function f(x)
is C-constructible if there is a program number i such that C;(x) = f(x)
for all x. Prove or disprove that every computable function is C-con­
structible.

3. Preliminary Form of the Speedup Theorem

Computer scientists often seek programs that will obtain a desired result
using minimum resources. The speedup theorem, which is the deepest
theorem in this chapter, tells us that it is possible for there to be no best
program for this purpose. Roughly speaking, the theorem states that there
exists a recursive function that is so badly behaved that for every program
to compute it, there is another program that computes the same function
but which uses much less resources. The proof of the speedup theorem is
quite intricate. In this section we will prove a preliminary version. Then in
the next section we will use this preliminary version to obtain the full
speedup theorem. The proof of the speedup theorem will use the parame­
ter theorem and the recursion theorem from Chapter 4 (Theorems 5.1 and
8.1).

We define a particular complexity measure M;(x) as follows. If <l>;(x)j,
then M;(x)j. If <l>;(x)L then M;(x) is the largest value assumed by any
variable in program number i when computing with input x. Thus M;(x) is
just the complexity measure in Example 2 of Section 1. We will also work
with MF>(x 1 , x2), which is defined exactly like M;(x) except that program
number i is given the pair of inputs x 1 , x 2 • M;(x) and MF>(x 1 , x2) are
related by

Theorem 3.1. MF>(x, y) = Ms/(y,i)(x), where S/ is the function defined in
the parameter theorem.

Proof. Let i = #(.90). Then, examining the proof of Theorem 5.1 in
Chapter 4, we see that S/(y, i) = #(.9), where .9 is a program consisting
of y copies of the instruction X 2 +-- X 2 + 1 followed by the program .90 •

The result is now obvious. •

Our preliminary form of the speedup theorem is as follows.

Theorem 3.2. Let g(x, y) be any given recursive function. Then there is a
recursive function f(x) such that f(x) ::; x and, whenever <I>; = f, there is

3. Preliminary Form of the Speedup Theorem 429

a j such that

ci>i(x) = f(x) a.e. (3.1)

and

a.e. (3.2)

Discussion. To see the force of the theorem take g(x, y) = 2Y. Then,
given <I>; = f, there is a j satisfying (3.1) such that

i.e.,

M/x) :::;; log2 M;{x) a.e.

Thus program number j computes f a.e. and uses far less resources than
program number i. In Section 4 we shall improve this preliminary version
of the speedup theorem by eliminating the "a.e." condition in (3.1) and by
obtaining (3.2) for an arbitrary complexity measure, not merely for M.

The proof of Theorem 3.2 will use a diagonal argument, but one far
more complex than we have encountered so far. Let us recall how a simple
diagonal argument works. When we write

K = {n E N I n ft W,}

we know that K is not r.e. because it differs from each r.e. set W; with
respect to the number i, namely, i E W; if and only if i ft K. More
generally, a diagonal argument constructs an object that is guaranteed not
to belong to a given class by systematically ensuring that the object differs
in some way from each member of the class. More intricate diagonal
arguments often are carried out in an infinite sequence of stages; at each
stage one seeks to ensure that the object being constructed is different
from some particular member of the class. The proof of the speedup
theorem is of this character.

Proof of Theorem 3.2. We will proceed through "stages" x = 0, 1, 2, 3,
At each stage x and for certain n, w EN, we will define a set C(n, w, x) ~
N. We think of the members of C(n, w, x) as numbers of programs which
are cancelled at stage x with respect to n and w. C(n, w, x) is defined

430 Chapter 14 Abstract Complexity

recursively by the equation

C(n,w,x)={iENiw:o;;i<x&i$. UC(n,w,y)
y<x (3.3)

&M;(x) <g(x,M~2>(x,i + 1))}.
We think of Cas a 3-ary partial function on N. (The fact that the values of
C are finite subsets of N instead of numbers is of no importance.
Naturally, if we wished, we could use some coding device to represent each
finite subset of N by a particular number.) The three conditions in (3.3)
connected by & are to be tested in order with the understanding that if the
first or second condition is false, the succeeding conditions are simply not
tested. Thus we have

W ~X implies C(n, w, x) = 0 for all n. (3.4)

Moreover, we have obviously

Lemma 1. If C(n, w, y) ~ for all y < x and Mp>(x, i + 1) ~ for all i such
that w:::;; i < x, then C(n, w, xH.

Indeed, when the conditions of Lemma 1 are satisfied, we can explicitly
compute C(n, w, x) given knowledge of C(n, w, y) for y < x. Now clearly,
when the conditions of Lemma 1 are not satisfied, C(n, w, x)j. Thus (3.3)
can be used to give an algorithm for computing C and we may conclude
that C is a partially computable function.

Lemma 2. If i E C(n, w, x), then M;(xH and cl>;(xH.

Proof. The truth of the condition

M;(x) < g(x, M~2>(x, i + 1))

implies that M;(x) ~,and by the Blum axioms, this implies cl>;(x) ~. •

We shall now define a 3-ary partially computable function k on N such
that if C(n, w, xH, then for each i E C(n, w, x), we will have k(x, w, n) -=!=

cl>;(x). k is computed by using the following procedure:

Compute C(n, w, x). If this computation terminates, compute cl>;(x)
for each i E C(n, w, x). [By Lemma 2, each such ct>;(xH .] Finally,
set k(x, w, n) equal to the least number which is not a member of the
finite set

{cl>;(x)li E C(n,w,x)}.

3. Preliminary Form of the Speedup Theorem 431

It is to this function k that we apply the recursion theorem. Thus, we
obtain a number e such that

<1>~2>(x, w) = k(x, w, e). (3.5)

Lemma 3. If x ::::; w, then k(x, w, e) = 0.

Proof. Let x::::; w. By (3.4), C(e, w, x) = 0. Hence, by definition, k(x, w, e)
is the least number which does not belong to 0, namely, 0. •

Lemma 4. If k(x, w, e)!, then k(x, w, e) ::::; x.

Proof. The largest possible value for k(x, w, e) would be obtained if the
values <l>;(x) for i E C(e, w, x) were all different and were consecutive
numbers beginning with 0. In this "worst" case, there would be as many
values of <l>;(x) as in the set C(e, w, x). But,

C(e, w, x) ~ {i EN I w::::; i < x}

~ {0, 1, 2, ... , X - 1}.

Thus, all the values of <l>;(x) would be < x and hence k(x, w, e) ::::; x. •

Lemma 5. Let x > w. Suppose that

<t>?>(x, w + 1)!, <1>~2>(x, w + 2H, ... , <t>?>(x, x) ~ (3.6)

and

<t>?><o, w)!. <1>?>(1, w)!. ... , <1>~ 2>(x - 1, w H. (3.7)

Then, <1>~2>(x,w)!, i.e., k(x,w,eH.

The reader is referred to Fig. 3.1 in connection with this lemma. In
effect, Lemma 5 states that if <1>~2 > is defined along both the horizontal and
vertical "pincers" shown pointing at (x, w), then it must also be defined at
(x, w).

Proof of Lemma 5. By (3.7), <1>~ 2>(y, w H for all y < x. By definition
of k(y,w,e) = <t>?>(y,w), we have that C(e,w,y)! for all y <x. By
(3.6), <1>~2>(x, i + 1)~ for all i such that w::::; i < x. Hence, likewise,
M?>(x, i + 1)~ for these i. By Lemma 1, C(e, w, xH. But now, by defini­
tion of k, k(x, w, eH. •

Lemma 6. <1>?> is total.

Proof. We shall prove by induction on x the assertion

For all w, (3.8)

432 Chapter 14 Abstract Complexity

X

Figure 3.1. Horizontal and vertical "pincers" pointing at (x, w). (Sec Lemma 5.)

By Lemma 3, we have

<1>~2>(0, w) = k(O, w, e) = 0,

which gives the result for x = 0. Suppose that x > 0, and it is known that

ci>~Z>(y' W) J,

for all y < x and all w. We shall show that (3.8) then follows.
By Lemma 3, (3.8) holds for all w ~ x. Thus, we need show only that

(3.8) holds for w < x. That is, it suffices to show that

ci>~2>(x, x - 1) J, ... , ci>~2>(x, O)J,.

We will prove each of these in succession by using Lemma 5. That is, in
Lemma 5, we successively set w = x - 1, x - 2, ... , 0. In each case (3.7)
(the horizontal "pincer") is satisfied by the induction hypothesis. For
w = x - 1, (3.6) requires only that cl>~2>(x, x)J,, and this last follows at
once from Lemma 3. Thus by Lemma 5, ci>~2>(x, x - 1) J,. But this means
that (3.6) is now satisfied with w = x - 2. Hence once again Lemma 5
shows that cl>~2>(x, x - 2) J,. Continuing, we eventually obtain cl>~2>(x, 0) J, .

•
For the remainder of the proof of Theorem 3.1, we will use the notation

lw = {i EN I i < w} = {0, 1, ... , W- 1}.

3. Preliminary Form of the Speedup Theorem 433

Lemma 7. C(n, w, x) = C(n, 0, x) - Iw.

Proof. The proof is by induction on x. C(n, w, 0) = 0 for all n, w. Hence
the result for x = 0 is trivially true. Suppose the result known for all y < x.
We obtain the result for x as follows (noting {i E N I w ::; i < x} n lw = 0):

C(n,w,x) = {i EN I w::; i <x & i $. U C(n,w,y)
y<x

& M;(x) < g(x, M~2>(x, i + 1))}
= {iENiw::=;i<x & i$. U (C(n,O,y) -lw)

y<x

& M;(x) < g(x, M~2>(x, i + 1))}
={iENiw::=;i<x&i$. UC(n,O,y)

y<x

& M;(x) < g(x, M~2>(x, i + 1))}
={iENIO::=;i<x&i$. UC(n,O,y)

y<x

&M;(x) <g(x,M~2>(x,i + 1))} -lw

= C(n,O,x)- lw. •

Lemma 8. For each w E N, there is a number mw such that for all
x > mw, we have

<t><2>(x w) = <t><2>(x 0)
e ' e ' ·

Proof. By (3.3) [the definition of C(n, w, x)], we have C(e, 0, x) n
C(e, 0, y) = 0 for x -=!= y. [Numbers in C(e, 0, y) for y < x are automati­
cally excluded from C(e, 0, x).] Hence each number in Iw belongs to at
most one of the sets C(e, 0, x). If we let mw be the largest such value of x,
then for X> mw,

C(e,O,x) n lw = 0.

Hence, using Lemma 7, for X > mw'

C(e,w,x) = C(e,O,x)- lw = C(e,O,x).

434 Chapter 14 Abstract Complexity

Hence, by the definition of the function k we have for X > mw'

<I>;2>(x, w) = k(x, w, e)= k(x,O, e)= <t>?>(x,O). •

Note that there is no claim being made that mw is a computable
function of w, and indeed it is not!

We are now ready to define the function f(x) whose existence is
asserted in Theorem 3.2. We set

f(x) = <I>;2>(x,O).

Lemma 9. If <I>; = f and x > i, then

g(x, M~2>(x, i + 1)) :::;; M;(x).

Proof. Suppose otherwise. Choose the least value of x > i with

g(x, M~2>(x, i + 1)) > M;(x). (3.9)

Then we claim that for y < x, i $. C(e, 0, y). This is because

C(e,O,y) = {j EN I j <y & j $. U C(e,O,z)
z<y

&M/y) <g(y,M~2>(y,j + 1))},
so that, if i E C(e, 0, y), we would have i < y < x, and

g(y, M~2>(y, i + 1)) > M;(y),

contradicting the choice of x as the least number > i satisfying (3.9).
Thus, we have

i ft. U C(e,O,y).
y<x

Hence,

iEC(e,O,x)={jENij<x&j$. UC(e,O,y)
y<x

& Mi(x) < g(x, M~2>(x,j + 1)) }·

Now k(x, 0, e) was defined to be different from all <l>i(x) for which
j E C(e, 0, x). Hence, k(x, 0, e) =/= <l>;(x). But

k(x,O,e) = <1>~2>(x,O) =f(x) = <l>;(x),

This contradiction completes the proof.

4. The Speedup Theorem Concluded 435

Proof of Theorem 3.2 Concluded. Let <I>; = f, and set j = Sf<i + 1, e).
Then, by Theorem 3.1 and Lemma 9, we have for x > i,

g(x, Mj(x)) = g(x, M;2>(x, i + 1)) 5o M;(x),

which proves (3.2). Finally, using the parameter theorem (Theorem 5.1 in
Chapter 4) and Lemma 8 we have for x > m;+ 1 ,

<1>/x) = <t>?>(x,i + 1) = <I>!2>(x,O) =f(x),

which proves (3.1).

4. The Speedup Theorem Concluded

•

We will begin by showing how to eliminate the a.e. from Eq. (3.1) in
Theorem 3.2. The technique we will use is a general one; to change a
condition

<1>/x) = f(x) a.e.

into an equation valid everywhere, we need only modify program number j
to agree with f(x) at a finite number of values. We can do this by patching
in a "table look-up" program. More precisely, we have

Theorem 4.1. There is a recursive function t(u, w) such that

<I> {x) - { <1>/x)
t(u,w) - (r(w))x+ 1

Mt(u,w)(x) = M/x)

if x > l(w)

if x 5o l(w),

if x > l(w).

Here, once again we are using the pairing functions and Godel numbers
as coding devices (Chapter 3, Section 8).

Proof. Let the numbers u, w be given. Let Pu be program number u of
the language .Y, if this program begins with a labeled statement. Other­
wise let Pu be program number u modified by having its initial statement
labeled by a label not otherwise occurring in the program. In either case
let L be the label with which Pu begins.

Let Qu w be a program of Y which computes the primitive recursive
function (r(w))x+ 1 , which always terminates using a branch instruction,
and which has no labels in common with Pu . Let V be a local variable that
occurs neither in Pu nor in Qu w. Let t(u, w) be the number of the
program indicated in Fig. 4.1. N~te that V- X is to be replaced by a

436

V+-X

~=~=!) . l(w)

V+-V-1

IF V'i' OGOTO L

Qu,w
pu

Figure 4.1

Chapter 14 Abstract Complexity

suitable macro expansion as in Chapter 2 and that there are /(w) state­
ments V +-- V - 1. Clearly this can all be done with t a recursive (even
primitive recursive) function.

Now, letx > l(w). Then after the /(w) decrement instructions V +-- V- 1
have been executed, V will have the value x- l(w) > 0. Hence, the
branch shown will be taken and program Pu will be executed. Hence,
<l>,(u,w)(x) = <l>u(x). To compare the value of M,(u,w)(x) and Mu(x) we
need to be concerned about the maximum value assumed by variables in
the macro expansion of V +-- X. Examining this macro expansion as given
in (c) in Chapter 2, Section 2, we see that the only possibility for a number
> x to arise is in the case x = 0. This is because local variables need to be
incremented to 1 in this macro expansion in order to force a branch to be
taken.2 However, we are assuming x > l(w) ~ 0, so that x =/= 0. Hence,
Mt(u,w)(x) = Mu(x).

Finally, let x ~ l(w). Then after /(w) executions of V +-- V- 1, V has
the value 0. Thus Qu,w is executed. Hence, <l>t(u,w)(x) = (r(w))x. •

Now we can easily prove

Theorem 4.2. Let g(x, y) be any given recursive function. Then there is a
recursive f(x) such that f(x) ~ x and, whenever <I>; = f, there is a j such
that

<1>/x) = f(x)

and

g(x, M/x)) ~ M;(x) a.e.

2 Actually, if each unconditional branch statement in program (c), Chapter 2, Section 2,
is directly expanded, some of the local variables used in this expansion will reach values
> 1. The simplest way to get around this is to place the single statement Z 2 +- Z2 + 1 at the
beginning of this program and then to replace each of the four unconditional branch
statements GOTO L by the corresponding conditional branch statement IF Z 2 * 0 GOTO L.

4. The Speedup Theorem Concluded 437

Proof. Let f be as in Theorem 3.2, and suppose <I>; =f. Then there is
j EN such that (3.1) and (3.2) hold. Let <l>ix) = f(x) for x > x 0 • Let

w = (x0 ,[f(O), ... ,f(x0)]).

Finally, let j = t(j, w). Then using Theorem 4.1,

if X> X 0

if X :::;; Xo,

i.e., <l>j =f. Theorem 4.1 also implies that M;(x) =Mix) a.e. Hence,
using t3.2), we have almost everywhere

•
Finally, we are ready to give the speedup theorem for arbitrary complex­

ity measures.

Theorem 4.3 (Blum Speedup Theorem). Let g(x, y) be any given recur­
sive function and let C be any complexity measure. Then there is a
recursive function f(x) such that f(x) :::;; x and whenever <I>; = f, there is a
j such that

and

Proof. Using the recursive relatedness theorem (Theorem 1.2), there is a
recursive function r(x, y) such that

r(x, y) < r(x, y + 1),

C;(x) :::;; r(x, M;(x)) a.e.

M;(x) :::;; r(x, C;(x)) a.e.

Let

h(x, y) = L, g(x, z),
zsy

so that h is recursive,

h(x,y) ~ g(x,y),

and

h(x, y + 1) ~ h(x, y).

438 Chapter 14 Abstract Complexity

Finally, let

g(x,y) = r(x,h(x,r(x,y))).

Now, we apply Theorem 4.2 using g as the given function g. Let f(x) be
the recursive function obtained, so that f(x) ::; x. Let <I>; =f. Then there
is a j such that <l>j = f and

g(x, M/x)) ::; M;(x) a.e.

Hence, we have, almost everywhere,

r(x,g(x,C/x)))::; r(x,h(x,C/x)))

::; r(x,h(x,r(x, M/x))))

=g(x,M/x))

::; M;(x)::; r(x,C;(x)).

Now, if C;(x) < g(x, Cj(x)) for any value of x, we would have, for that
value of x,

Hence, we must have, almost everywhere,

•
Exercises

1. Show that for all i E N there is a j such that <l>j(x) = M;(x) and
<1>/x) = Mj(x) for all x. Conclude that every function M;(x) has an
"optimal" program with respect to complexity measure M.

2. Let L be the set of all strings that are syntactically correct Pascal
programs, and let

P(x) = {~ if X E L
otherwise.

Does the speedup theorem imply that there is no fastest .9 program
that computes P(x)? Explain.

15

Polynomial-Time Computability

1. Rates of Growth

In this chapter we will be working with functions f such that f(n) EN for
all sufficiently large n E N, but which may be undefined or have negative
values for some finite number of values of n. We refer to such functions
briefly, and slightly inaccurately, as functions from N to N. These func­
tions f will typically have the additional property

lim f(n) = oo. (1.1)
n-+oo

Examples of such functions are n2 , 2n, and llog 2 nJ. It will be important for
us to understand in what sense we can say that 2n grows faster than n2 and
that n2 grows faster than Uog 2 nJ. Although in practice, the definitions we
are about to give are of interest only for functions that satisfy (1.1), our
definitions will not assume that this is the case.

Definition. Let f, g be functions from N to N. Then, we say that
f(n) = O(g(n)) if there are numbers c and n 0 such that f(n) :;;; cg(n) for
all n ~ n 0 • If these conditions do not hold we say that f(n) =/= O(g(n)).

If f(n) = O(g{n)) and g(n) = O{f(n)) we say that f and g have the
same rate of growth. On the other hund, if f(n) = O(g(n)) but g(n) =/=

O(f(n)), we say that g(n) grows faster than f(n).

439

440 Chapter 15 Polynomial- Time Computability

An example should help clarify these notions. We have

n2 = 0(3n2 - 6n + 5)
since

1 1

3n2 - 6n + 5
----------~~-

3- 6/n + 5jn 2 3

as n ~ oo, and therefore there is a number n 0 such that for all n ~ n0 ,

nz

3n2 - 6n + 5 :::;; 1.

Likewise 3n2 - 6n + 5 = O(n2), so that these two functions have the
same rate of growth.

Clearly, it is also true that 3n2 - 6n + 5 = O(n 3); however,

n3 -=1= 0(3n2 - 6n + 5)

because

n3 1
--=-------- = n . ~ oo
3n2 - 6n + 5 3- 6/n + 5jn 2

as n ~ oo. Thus, we can say that n3 grows faster than 3n2 - 6n + 5.
More generally, we can prove

Theorem 1.1. Let f, g be functions from N to N, and let

. f(n)
hm -() = {3,

n->oo g n
(1.2)

where {3 is a positive real number. Then f(n) = O(g(n)) and g(n) =
O(f(n)), so that f and g have the same rate of growth.

If, on the other hand,

f(n)
lim -- = oo,

n-+oo g(n)
(1.3)

then g(n) = O(f(n)) but f(n) -=!= O(g(n)), so that f(n) grows faster than
g(n).

Proof. If (1.2) holds, then there is a number n 0 such that for all n ~ n0 ,

f(n)
g(n) :::;; {3 + 1.

1. Rates of Growth

Hence, f(n) = O(g(n)). Since (1.2) implies that

g(n) 1
lim--=-

n->"' f(n) {3'

the same reasoning can be used to show that g(n) = O(f(n)).
Next, (1.3) implies that

. g(n)
hm f() = 0.

n---+00 n

Therefore, there is a number n 0 such that n ~ n 0 implies

g(n)

f(n) ~ 1.

441

Hence, g(n) = O(f(n)). If we had also f(n) = O(g(n)), then for numbers
c, n0 we should have for n ~ n 0 ,

f(n)
g(n) ~ c;

on the other hand, (1.3) implies that there is a number n 1 such that n ~ n1

implies
f(n)

g(n) > c,

which is a contradiction. •
A polynomial is a function p from N to N that is defined by a formula

of the form

(1.4)

where a0 , a 1 , ••• , a,_ 1 are integers, positive, negative, or zero, while a, is a
positive integer. In this case the number r is called the degree of the
polynomial p. The degree of a polynomial determines its rate of growth in
the following precise sense.

Theorem 1.2. Let p be a polynomial of degree r. Then p and n' have the
same rate of growth. Moreover, p grows faster than nm if m < r, and nm
grows faster than p if m > r.

Proof. Letting p be as in (1.4), we have

p(n) a0 a 1
--=-+--+···+a ~a n' n' nr-I r r

442 Chapter 15 Polynomial- Time Computability

as n ~ oo. Also,

so that

p(n)
-- ~00

nm

p(n) p(n)
__ = --·nr-m

nm n' '

if r > m, and
p(n)
--~o

nm

The result then follows from Theorem 1.1.

if r < m.

•
Next we shall see that exponential functions grow faster than any fixed

power.

Theorem 1.3. The function kn, with k > 1, grows faster than any polyno­
mial.

Proof. It clearly suffices to prove that for any r E N,

kn
lim -, = oo.

n-HXJ n

One way to obtain this result is to use L'Hospital's rule from calculus; on
differentiating the numerator and denominator of this fraction r times, a
fraction is obtained whose numerator approaches infinity and whose de­
nominator is a constant (in fact, r!). To obtain the result directly, we first
prove the following lemma.

Lemma. Let g be a function from N to N such that

g(n + 1)

!~"" g(n) = {3 > 1.

Then g(n) ~ oo as n ~ oo.

Proof of Lemma. Let y be a number strictly between 1 and {3, for
example, y = (1 + {3) ;2. Then there is a number n 0 such that n ~ n0

implies

Thus, for each m,

g(n + 1)

g(n) ~ 'Y·

g(n 0 + m) ~ yg(n 0 + m - 1) ~ ··· ~ ymg(n 0).

Since y m ~ oo as m ~ oo, the result follows. •

2. P versus NP

Proof of Theorem 1.3 Concluded. Setting

we have

g(n + 1)

g(n)

g(n) = kn jn',

which, by the lemma, gives the result.

Exercises

443

as n ~ oo,

•

1. Suppose we have a computer that executes 1 million instructions per
second.
(a) For each of the following functions f(x), give the length of the

longest string that can be processed in one hour if f{lwl) instruc­
tions are required to process a string w: f(x) = x; f(x) = x 2 ;

f(x) = x 4 ; f(x) = 2x.

{b) For the same functions, approximately how long would it take to
process w if lwl = 100?

2. What is the least x EN such that 10000x2 :::;; 2x?

3. For each of the following functions f(x), give a function g{x) such
that some Turing machine on a two-symbol alphabet can calculate
f(x) in O(g(lxl)) steps: f(x) = 2x; f(x) = x 2 ; f(x) = 2x; f(x) = 2<2 '>.

4. (a) Show that if p(n) is defined by (1.4), then p(n) is positive for n
sufficiently large, so that p is a function from N to N in the
sense defined at the beginning of this chapter.

(b) Show that if p(n) is as in (a) with r > 0, then p(n) ~ oo as
n ~ oo.

5. Show that n grows faster than llog2 nJ.

6. Show that for any k ~ 1 and any polynomials p(x), q(x), there is a
polynomial r(x) such that q(x) · kP<x> = 0(2'<x>).

2. P versus NP

Computability theory has enabled us to distinguish clearly and precisely
between problems for which there are algorithms and those for which

444 Chapter 15 Polynomial- Time Computability

there are none. However, there is a great deal of difference between
solvability "in principle," with which computability theory deals, and solv­
ability "in practice," which is a matter of obtaining an algorithm that can
be implemented to run using space and time resources likely to be
available. It has become customary to speak of problems that are solvable,
not only in principle but also in practice, as tractable; problems that may
be solvable in principle but are not solvable in practice are then called
intractable.

The satisfiability problem, discussed in Chapter 12, is an example that is
illuminating in this connection and will, in fact, play a central role in this
chapter. The satisfiability problem is certainly solvable; in Chapter 12, we
discussed algorithms for testing a given formula in CNF for satisfiability
based on truth tables, on converting to DNF, on resolution, and on the
Davis-Putnam rules. However, we cannot claim that the satisfiability
problem is tractable on the basis of any of these algorithms or, for that
matter, on the basis of any known algorithm. As we have seen, procedures
based on truth tables or DNF require a number of steps which is an
exponential function of the length of the expression representing a given
formula in CNF. It is because of the rapid growth of the exponential
function that these procedures can quickly exhaust available resources.
Procedures based on resolution or on the Davis-Putnam rules can be
designed that work well on "typical" formulas. However, no one has
succeeded in designing such a procedure for which it can be proved that
exponential behavior never arises, and it is widely believed (for reasons
that will be indicated later) that every possible procedure for the satisfia­
bility problem behaves exponentially in some cases. Thus the satisfiability
problem is regarded as a prime candidate for intractability, although the
matter remains far from being settled.

This association of intractability with the exponential function, coupled
with the fact (Theorem 1.3) that an exponential function grows faster than
any polynomial function, suggests that a problem be regarded as tractable
if there is an algorithm that solves it which requires a number of steps
bounded by some polynomial in the length of the input.

To make these ideas precise, we have recourse to the Turing machine
model of computation as developed in Chapter 6. In particular, we shall
use the terms configuration and computation as in Chapter 6.

Definition. A language L on an alphabet A is said to be polynomial-time
decidable if there is a Turing machine L that accepts L, and a polynomial
p(n), such that the number of steps in an accepting computation by L
with input x is ::;; p(lxl). When the alphabet is understood, we write P for
the class of polynomial-time decidable languages.

2. P versus NP 445

Definition. A total function f on A*, where A is an alphabet, is said to
be polynomial-time computable if there is a Turing machine L that
computes f, and a polynomial p(n), such that the number of steps in the
computation by L with input x is :::;; p(lxl).

With respect to both of these definitions, we note

1. It suffices that there exist a polynomial p(n) such that the number of
steps in the computation by L with input x is :::;; p(lxl) for all but a
finite number of input strings x. For, in such a case, to include the finite
number of omitted cases as well, we let c be the largest number of
steps used by L in these cases, and replace p(n) by the polynomial
p(n) +c.

2. Using 1 and Theorem 1.2, it suffices that the number of steps be
O(lxl') for some r E N.

The discussion leading to these definitions suggests that in analogy with
Church's thesis, we consider the

Cook-Karp Thesis. The problem of determining membership of strings
in a given language L is tractable if and only if L E P.

The evidence supporting the Cook-Karp thesis is much weaker than
that supporting Church's thesis. Nevertheless, it has gained wide accep­
tance. Later, we shall discuss some of the reasons for this.

The following simple result is quite important.

Theorem 2.1. Let L E P, let f be a polynomial-time computable func­
tion on A*, and let Q = {x E A* I f{x) E L}. Then Q E P.

Proof. Let L accept L using a number of steps which is O(lxl'), and let
.!Y compute f(x) in a number of steps which is O(lxls). A Turing machine
!J1I that accepts Q is easily constructed that, in effect, first runs .!Y on x to
compute f(x) and then runs Lon f(x) to determine whether f(x) E L.
Since a Turing machine cannot print more symbols in the course of a
computation then there are steps in that computation, we have

lf(x)l:::;; lxl + p(lxl), where p(n) = O(ns).

By Theorem 1.2, it follows that lf{x)l = O(lxls). Hence, the number of
steps required by !J1I on input x is O(lxlsr). •

Theorem 2.2. Let f, g be polynomial-time computable functions, and let
h(x) = f(g(x)). Then h is polynomial-time computable.

Proof. The proof is similar to that of the previous theorem. •

446 Chapter 15 Polynomial- Time Computability

It has turned out to be extremely difficult to prove that specific lan­
guages do not belong to P, although there are many likely candidates. An
important example is the satisfiability problem discussed in Chapter 12. To
make matters definite, we assume a set of atoms .91' = {a2 , a 2 , ••• }, where
subscripts are understood as in Section 1 of Chapter 12. We use the
symbols

for the atoms and their negations, simply using concatenation for disjunc­
tion. Finally, we use the symbol 1 to begin a clause. Then, any string on
the alphabet C ={a, a, I, I} which begins 1 and in which 1 is never
immediately followed by I, stands for a CNF formula (where in the interest
of simplicity we are permitting empty and tautologous clauses and repeti­
tions of literals in a clause). Thus the CNF formula

(p v q v r v s) A (ij v jJ v r v s) A (ij v jJ v r)

from Chapter 12 could be written as

Any string in C* which ends 1 or in which 1 is repeated represents a CNF
formula which contains the empty clause, and hence is unsatisfiable.

Now, we write SAT for the language consisting of all elements of C*
that represent satisfiable CNF formulas. In spite of a great deal of
attention to the question, it is still not known whether SAT E P. The
starting point of the work on computational complexity that we discuss in
this chapter is the observation that the situation changes entirely when we
shift our attention from deterministic to nondeterministic computation.
Nondeterministically one can discover very rapidly that a formula is
satisfiable; it is necessary only that the satisfying assignment be "guessed."
That is, instead of constructing an entire truth table, it suffices to construct
a single row. To make these ideas precise, we have recourse to nondeter­
ministic Turing machines as discussed in Chapter 6, Section 5.

Definition. A language L is said to belong to the class NP if there is a
nondeterministic Turing machine L that accepts L, and a polynomial
p(n), such that for each x E L, there is an accepting computation
y 1 , y 2 , ••• , 'Ym by L for x with m :::;; p(lxl).

We then have readily

Theorem 2.3. P ~ NP. If L E NP, then L is recursive.

2. P versus NP 447

Proof. The first inclusion is obvious, since an ordinary Turing machine is
a nondeterministic Turing machine.

For the rest, let L E NP, let L be a nondeterministic Turing machine
which accepts L, with corresponding polynomial p(n). We set y 1 to be the
configuration

Next, by examining the quadruples of L, we find all configurations y 2

such that y 1 I- y 2 • Continuing in this manner, we determine all possible
sequences y 1 , y 2 , ••• , 'Ym with m :;;; p(lxl) such that

'Y1 I- 'Y2 I- · ·· I- 'Ym •

Then, x E L if and only if at least one of these sequences is an accepting
computation by L for x. This gives an algorithm for determining whether
x E L, and so, invoking Church's thesis, we conclude that L is recursive.
(Methods like those used in Chapter 7 could be used to prove that L is
recursive without using Church's thesis.) •

In line with our discussion of the satisfiability problem viewed nondeter­
ministically, we can prove

Theorem 2.4. SATE NP.

Proof. Without providing all the rather messy details, we indicate how to
construct a nondeterministic Turing machine L that accepts SAT.

L will begin by checking that a given input string x E C* really does
represent a CNF formula. Such a check requires only verifying that x
begins with the symbol 1 and that no 1 is immediately followed by I. This
can clearly be accomplished by L in a single pass over x, and therefore it
can be done in O(lxl) steps.

The remainder of the computation will involve successive passes over
the string x in which truth values are assigned to literals, and clauses thus
satisfied are labeled as being such. When a clause has been satisfied, the
symbol 1 that introduces it is replaced by ! (so the fact that a clause still
begins 1 indicates that it has not yet been satisfied). Also, when a literal
a llil is assigned the value 1, all occurrences of the literal a llil in clauses
not yet satisfied will be replaced by cpllil (so that they will not be assigned
the value 1 in a subsequent pass). Likewise, when the literal a llil is
assigned the value 0, all occurrences of that literal in clauses not yet
satisfied will be replaced by cpllil.

448 Chapter 15 Polynomial- Time Computability

We will speak of L as being in one of two modes: search or update.
After verifying that the input string x does represent a CNF formula, L
enters search mode. In search mode, L begins by finding the first
occurrence of 1 remaining in x, starting from the left. If no 1 remains,
then the formula has been satisfied and the computation halts. Otherwise,

L has found an 1 and seeks to satisfy the clause that it heads. L scans the
clause, moving to the right. When the symbol a or a is encountered, L is
scanning the first symbol of a literal a I Iii or a 11i1, as the case may be. L
thus has the opportunity to satisfy the clause by making this literal true,
assigning a llil the value 1 in the first case and 0 in the second. L
nondeterministically decides whether to make this assignment. (This is the
only respect in which L behaves nondeterministically.) If L does not
make the assignment, then it continues its scan. If it reaches the end of the
clause without having made an assignment, L enters an infinite loop. If L
does make such an assignment, it enters update mode.

In update mode, L begins by marking the newly assigned literal,
replacing a by p, or a by p, respectively. L then moves left to the 1 that
begins the clause and replaces it by !. Finally, L moves to the right end of
x, and then scans from right to left, checking all literals in subsequent
clauses to see whether they match the newly assigned literal. This can be
done by checking each block of Is against the block that follows p (or p).
For literals that have been made true by the new assignment, the clause
containing them is marked as satisfied, by replacing the 1 at its head by !.
For literals that have been made false, the a or a is replaced by cp. When
the update is complete, L reenters search mode.

This completes the description of how L operates. It remains to
estimate the number of steps that L requires for a successful computa­
tion. The number of steps between L entering and leaving each of search
and update mode is clearly O(lxl). Since this will happen no more than lxl
times, we conclude that the time for the entire computation is O(lxl 2) •

•
It is natural to ask whether the inclusion P ~ NP is proper, i.e., whether

there is a language L such that L E NP - P. As we shall see, using the
notion of NP-completeness to be defined below, it can be shown that if
there were such a language, then it would follow that SATE NP- P.
Unfortunately, this remains an open question.

Definition.1 Let L, Q be languages. Then we write

Q ::;P L,

1 For a general discussion of reducibility, see Chapter 8.

2. P versus NP 449

and say that Q is polynomial-time reducible to L, if there is a
polynomial-time computable function f such that

X E Q <=> f(X) E L.

Theorem 2.5. Let R ::=;P Q and Q ::;P L. Then R ::=;P L.

Proof. This follows at once from Theorem 2.2. •
Definition. A language L is called NP-hard if for every Q E NP, we have
Q ::;P L. L is called NP-complete if L E NP and L is NP-hard.

The significance of NP-completeness can be appreciated from the fol­
lowing result.

Theorem 2.6. If there is an NP-complete language L such that L E P,
then NP = P.

Proof. We need to show that if Q E NP, then Q E P. Let Q ~A*. Since
L is NP-hard, there is a polynomial-time computable function f such that

Q = {x E A* I f(x) E L}.

The result now follows from Theorem 2.1. •
Intuitively, one can thus think of the NP-complete languages as the

"hardest" languages in NP. As we shall see in the next section, SAT is
NP-complete. Thus, if it should turn out that SATE P, then every NP­
complete problem would also be in P. It is considerations like these that
have led to the tentative conclusion that NP-complete problems should be
regarded as being intractable. To date, however, although very many
problems are known to be NP-complete, there is no language known to be
in NP - P, and it thus remains possible that NP = P.

Exercises

1. Show that Theorem 2.1 still holds when Pis replaced by NP.

2. Show that if 0 c L, M c A* for some alphabet A, and if L, ME P,
then L ::=;P M.

3. Show that L ::=;P M does not necessarily imply that M ::=;P L.

4. Let L, ME P be languages on some alphabet A. Show that each of
the following languages are in P: A* - L, L n M, L u M.

5. Let L, ME NP be languages on some alphabet A. Show that each of
the following languages are in NP: L n M, L u M.

450 Chapter 15 Polynomial- Time Computability

6. Show that every regular language is polynomial-time decidable. [See
Chapter 9.]

7. Show that every context-free language is polynomial-time decidable.
[See Chapter 10.]

8. Give a language that is not polynomial-time decidable.

9. Give a function that is not polynomial-time computable.

10. Let A be an alphabet and set

co-NP = {L ~A* I A*- L E NP}.

Show that if there is a language L such that L is NP-complete and
L E co-NP, then NP = co-NP.

11. Show that Theorem 2.1 still holds when Pis replaced by NP.

12. * Let f be a total function on N, and let A be an alphabet. A total
unary function g(x) on A* is computed in DTIME(f) if it is
computed by some Turing machine that always runs in ~ f(lxl) steps
on input x. A language L ~A* belongs to DTIME (f) if L is
accepted by some Turing machine that runs in ~ f(lxl) steps for
every x E L. L belongs to NTIME (f) if L is accepted by some
nondeterministic Turing machine that has an accepting computation
with ~ f(l xI) steps for every x E L. For languages L, M ~A*, we
will write L ~ 1 M to indicate that there is a function g computable
in DTIME(f) such that x E L if and only if g(x) EM.

(a) Show that P = Un~o DTIME(xn).
(b) Show that NP = Un~o NTIME(xn).
(c) Prove that if L E DTIME(x 2) and M ~~ L, where f(x) = x,

then ME DTIME(4x 2 + x).

(d) Prove that if L E NTIME(x 2) and M ~~ L, where f(x) = x,
then ME NTIME(4x 2 + x).

(e) Let f(x) = x 2 • Give a function g(x) such that if L E

DTIME(x 2) and M ~r L, then ME DTIME(g).
13. * A language L belongs to EXPTIME if there is a Turing machine L

that accepts L and a polynomial p(n) such that for every x E L, L
runs for no more than 2P<Ixl) steps.
(a) Let ./Y be a nondeterministic Turing machine with k states. For

a function f(x), what is the maximum number of distinct com­
putations that ./Y can carry out in ~ f(x) steps?

(b) Show that NP ~ EXPTIME. [See Exercise 1.6.]
14.* A language L belongs to PSPACE if there is a Turing machine L

that accepts L and a polynomial p(n) such that for every x E L, L

3. Cook's Theorem 451

scans at most p(lxD different squares on its tape. L belongs to
NPSPACE if there is a nondeterministic Turing machine AI that
accepts L and a polynomial q(n) such that for every x E L, AI has
some accepting computation in which at most p(lxl) different tape
squares are scanned.

(a) Show that PSPACE = NPSPACE.

(b) Show that NP ~ PSPACE.

15.* (a) Let L be a Turing machine with states q1 , ••• , qk and alphabet
{s1 , ••• , sn}. How many distinct configurations of L are there
with m tape squares?

(b) Show that PSPACE ~ EXPTIME. [Hint: Use the pigeon-hole
principle. See the discussion in Section 1 of Chapter 14.]

3. Cook's Theorem

We now prove the main theorem of this chapter.

Theorem 3.1 (Cook's Theorem). SAT is NP-complete.

Proof. Since we know, by Theorem 2.4, that SATE NP, it remains to
show that SAT is NP-hard. That is, we need to show that if L E NP, then
L ::;;P SAT. Thus, let L E NP, and let L be a nondeterministic Turing
machine that accepts L, with p(n) the polynomial that furnishes a bound
on the number of steps L requires to accept an input string. Without loss
of generality, we assume that p(n) ~ n for all n. We must show that there
is a polynomial-time computable function that translates any input string
u for L into a CNF formula 8u such that u is accepted by L if and only if
8u is satisfiable. For a given input u, let t = p(lul).

We know that if L accepts input u, it does so in :::;; t steps. Therefore, in
order to determine whether L accepts u, we need only run it on u for at
most t steps and check to see whether the final configuration is terminal.
Since at each step of the computation, L can move at most one square to
the left or right of the square currently being scanned, it follows that after
t steps, the scanned square can be at most t squares to the left or t
squares to the right of its original position. Since we have chosen the
polynomial p(n) so that t ~ lui, for our present purposes it suffices to
consider 2t + 1 squares of tape. Thus, since we are considering only t
steps of the computation, we can completely exhibit all of the information
on .L's tape, using a t by (2t + 1) array (see Fig. 3.1).

452 Chapter 15 Polynomial- Time Computability

I' 2t + 1

l Tape at step 1

Tape at step 2 .
l

. .
Tape at step t

Figure3.l

The first line of this array, corresponding to the initial tape contents, will
then have the form

where L begins in state q 1 scanning the (t + l)th symbol in this string,
the s0 immediately preceding u.

We will find it convenient, in this proof, to use the Turing machine
model used in Theorem 4.2 in Chapter 6, in which acceptance of an input
is by arrival in a unique accepting state qm. We assume, therefore, that L
is a Turing machine of this type. Let the set of states of L be Q =
{q1 , q2 , ••• , qm} and let the set of tape symbols be S = {s0 , s 1 , ..• , sJ It
will simplify matters if we need to check only configuration number t to
determine acceptance. Thus, we alter our definition of accepting computa­
tion to permit any number of repetitions of consecutive configurations;
hence we may assume that our accepting computation consists of exactly t
steps.

We will define a CNF formula l>u that is satisfiable if and only if u is
accepted by L. Our set of atoms (each of length O(t 2)) will be

.91= {Ph,j,k,ui,j,k 11 ~ h ~ m,O ~ i ~ r,1 ~j ~ 2t + 1,1 ~ k ~ t}.

We first assume that u is accepted by L, so that we have an accepting
computation by L for u. We assume that the above t by 2t + 1 array has
been constructed correspondingly. We will construct the CNF formula l>u
so that l>:; = 1, where v is the assignment on .91 defined by

f 01 v(Ph,j,k) = \

v(u .. k)=\ 1
'·],

0

if L is in state qh scanning the jth position at the
kth step of the computation
otherwise,

(3.1)

if tape symbol s; is in the jth position of the kth
row of the array
otherwise.

3. Cook's Theorem 453

In constructing 8u, we will find the following abbreviation useful:

V{xe 11 ~ e ~ /} = A (--, Xe V --,X 1) A V Xe,

l~e<f~l l~e~l

where {xe 11 ~ e ~ /} is a set of formulas. Thus,

V{xe 11 ~ e ~ I} (3.2)

is a formula whose value is TRUE (i.e., 1) under a given assignment if and
only if exactly one of the formulas x1 , x2 , ••• , x1 has the value TRUE
under that assignment. In the particular case that x 1 , x 2 , ••• , x 1 are atoms,
(3.2) is a CNF formula. We will need to calculate I V{xe 11 ~ e ~ I} I in this
case. Formula (3.2) contains a clause consisting of two literals for each pair
(e, f) with 1 ~ e < f ~ I, followed by a single clause of I literals. Since
there are /{I - 1) /2 such pairs (e, f), and since in our notation, with 1
being used to separate clauses, each clause is of length 1 plus the number
of its literals, we have

(
/{1 - 1))

IV{xel1~e~l}l= 2 ·3+(/+1) ·O(t 2)=0(/2t 2).

Let us write

where lui= z.

We present a sequence of CNF formulas whose conjunction 8u (which is
then also a CNF formula) may be thought of as simulating the behavior of
Lin accepting u. Each of these formulas has the value TRUE under the
assignment v. We precede each formula with an English sentence in
quotes, which may be thought of as expressing a corresponding property of
the accepting computation by L for u; each such sentence is intended to
make it clear that the corresponding formula is indeed true under the
assignment v. In some cases the formula as written will not be in CNF; in
these cases the formula written is intended to stand for a formula in CNF
obtained from it by using the methods of Chapter 12, Section 3.

(1) "The initial configuration has tape contents corresponding to the
first row of the array, with L in state q1 scanning the symbol s0

immediately to the left of the first symbol of u."

A Uo,j,l A A uui,t+j+l,l A A Uo,t+z+j+l,l A Pt,t+t,l·
O<j~t+ I O<j~z O<j~t-z

This expression is clearly of length O(t 3).

454 Chapter 15 Polynomial- Time Computability

(2) "At each step of the computation there is a unique state and a
unique scanned square."

A V{Ph,j,kl1~h~m,1~j~2t+l}.
1 ~k~t

By the preceding remarks, the length of this expression is 0(15).

(3) "Each entry of the array contains exactly one symbol."

A A V{u;,j,k IO ~ i ~ r}.
l~k~t l~j~21+1

r is a constant, so that this expression is of length O(t4).

(4) "Each configuration in the computation, after the first, is identical
to the preceding configuration, or is obtained from it by applying one of
the quadruples of L."

This formula will be the most complicated. Let the quadruples of L be
as follows:

{q; s1· sk q1 I a= 1,2, ... ,a},
a a a u

(3.3a)

{ q;b sib R q1b I b = 1, 2, ... , b}, (3.3b)

{q;, si, L q1, I c = 1, 2, ... , c}. (3.3c)

To make the formula easier to understand, we write it in the form

A A (NOTHEAD(j, k) VIDENT(j, k)
I~ k < t I ~j ~ 21 +I

VA(j, k) V B(j, k) V C(j, k)),

where each of these five disjuncts will be explained below. It will turn out
that each disjunct has length O(t 2); hence we may conclude that the
length of the entire formula will be O(t 4).

We define

NOTHEAD(j, k) = V (u;,j,k 1\ ui,j,k+l) 1\ A -, Ph,j,k

O~i~r I ~h~m

so that NOTHEAD(j, k)v = 1 for given j, k if and only if L is not
scanning the jth position at the kth step of the computation.

Next we set

IDENT(J·, k) = V V (p 1\ u: 1\ P 1\ u:) h,j,k i,j,k h,j,k+l i,j,k+l '
l~h~m O~i~r

3. Cook's Theorem 455

so that IDENT(j, k)v = 1 for given j, k if and only if L is scanning the
jth position at both the kth and the (k + 1)th steps of the computation,
and both the state and the symbol are the same in both of these configu­
rations.

Next,

A(j,k) = V (P;.,j.k 1\ Oj.,j.k 1\ uk.,j,k+l 1\ Pi.,j,k+l),
lsasii

where A(j, k)v = 1 if and only if the (k + 1)th step results from the kth
by one of the quadruples of (3.3a).

Similarly, we will define B(j, k) so that B(j, k)v = 1 if and only if the
(k + 1)th step results from the kth by one of the quadruples of (3.3b). For
j -=1= 2t + 1, we can define

B(j,k) = V (p;b,j,k 1\ 0jb,j,k 1\ 0jb,j,k+l 1\ Pib,j+l,k+l).
lsbsb

This definition will not work for j = 2t + 1 because there are no atoms
Ph,Zt + 2, k • But since the computation cannot proceed beyond the bound­
aries of our array, it suffices to take B(2t + 1, k) to be any unsatisfiable
formula, e.g., the empty clause.

Finally, we will define C(j, k) so that C(j, k)v = 1 if and only if the
(k + 1)th step results from the kth by one of the quadruples of (3.3c). For
j -=1= 1, we can define

C(j, k) = V (p. · k 1\ U· · k 1\ U· · k I 1\ Pi · I k I)· led• led• led• + col- • +
l:SC:SC

This definition will not work for j = 1 because there are no atoms Ph, o, k.

But since the computation cannot proceed beyond the boundaries of our
array, it suffices to let C(l, k) be any unsatisfiable formula, e.g., the empty
clause.

(5) "The tth configuration is a terminal configuration." Equivalently,
"At the tth step, L is in state qm ."

V Pm,j,t•
l,;;j,;;2t+l

This expression is clearly of length O(t 3).

Now, we take 8u to be simply the conjunction of the CNF formulas (1)
through (5) above. It is clear from what has already been said that if L
accepts u, then 8u is satisfiable; in fact, 8:; = 1.

456 Chapter 15 Polynomial- Time Computability

Conversely, let v be an assignment such that 8:/ = 1. We will show that
L accepts u. By (3), we see that for each 1 :::;; j :::;; 2t + 1, 1 :::;; k :::;; t, there
is a unique i such that v(ui,j,k) = 1. Hence we can uniquely reconstruct
our t by 2t + 1 array. By (2), for each row of the array there is a unique
state qh and position j in the row such that v(Ph,j,k) = 1. Thus, each row
can be made into a configuration of L so that (3.1) is satisfied. By (1), the
configuration corresponding to the first row of the array is an initial
configuration for L with input u. By (4), for each row of the array after
the first, the corresponding configuration is identical to it or results from it
using one of the quadruples of L. Finally, by (5) the entire sequence of
configurations constitutes an accepting computation by L for u. Thus, u is
accepted by .L.

It remains to be shown that there is a polynomial-time computable
function that maps each string u onto the corresponding CNF formula 8u .
Now, the CNF formulas of (2)-(5) do not depend on u, and a Turing
machine can easily be constructed to write these on a tape in a number of
steps proportional to the length of the expression, which, as we have seen,
is O{t 5), and hence polynomial in lui. It remains to consider (1), which is a
conjunction of atoms. Some of these atoms do not depend directly on u;
producing this part of (1) simply involves writing O(t3) symbols. The
remaining atoms of (1) correspond in a one-one manner to the symbols
making up u; they can obviously be produced by a Turing machine in a
number of steps proportional to lui. This completes the proof. •

Using Theorem 2.6, we have at once

Corollary 3.2. P = NP if and only if SAT E P.

Exercises

1. Let L be the Turing machine with the single tuple q1 B a q2 , and let
u be the string a. Give 8u for t = 1.

2. For any set .Sit' of atoms, show that the set of all propositional DNF
formulas over .Sit' that are not tautologies is NP-complete.

3. For any set .Sit' of atoms, show that the set of all satisfiable proposi­
tional formulas over .Sit' is NP-complete.

4. The HALF-SAT problem is this: given a propositional CNF formula y,
determine if there is an assignment v on the atoms in yv = 1 and such
that av = 1 for exactly half of the atoms a in y. [Hint: Show that
SAT :::;;P HALF-SAT. Given a CNF formula y, create a new atom a'
for each atom a in y and add clauses of the form {a, a'}, {a, a'}.]

4. Other NP-Complete Problems 457

4. Other NP-Complete Problems

The principal technique for proving a problem to be NP-complete is given
by the following result:

Theorem 4.1. Let Q be an NP-complete problem, and let Q ~P L. Then
L is NP-hard.

Proof. Let R be any language such that R E NP. Since Q is NP-com­
plete, we have R ~P Q. By Theorem 2.5, R ~P L. Thus, L is NP-hard .

•
Corollary 4.2. Let Q be an NP-complete problem, let L E NP, and let
Q ~P L. Then L is NP-complete.

Thus, once it has been shown that a problem is NP-complete, it can be
used to show that other problems are NP-complete. In this way many
problems have been shown to be NP-complete. It is this fact that consti­
tutes the main evidence for regarding NP-complete problems as being
intractable. Since the existence of a polynomial-time algorithm for even a
single one of these problems would imply that there is a polynomial-time
algorithm for every one of them, and, since it is argued that it is most
unlikely that this could be the case without even one of these algorithms
having been discovered, it is concluded that in all likelihood none of these
problems have polynomial-time algorithms, and so they should all be
regarded as intractable.

We will present a very small sample of this work, showing that a few
problems are NP-complete. We begin with a restricted form of the satisfi­
ability problem.

The 3-SAT problem is to determine whether a formula in CNF in which
no clause contains more than three literals is satisfiable. We show that
3-SAT is NP-complete by showing that any CNF formula ~ can be
transformed in polynomial time to a CNF formula ~ 1 containing at most
three literals per clause such that ~ is satisfiable if and only if ~ 1 is
satisfiable.

Theorem 4.3. 3-SAT is NP-complete.

Proof. Since 3-SAT is a special case of SAT, and SAT is in NP, it follows
that 3-SAT is in NP. Let

k ~ 4, (4.1)

be any one of the clauses of ~ containing more than three literals. Let
{31 , {32 , ••• , {3k _ 3 be atoms which do not appear in ~. We construct ~ 1 by

458 Chapter 15 Polynomial- Time Computability

replacing (4.1) by the conjunction

la1a2 f3Jia3{i1 f3zla4fiz f331 ··· lak_zfik-4f3k-31ak-1ak fik-3 ·

It is easy to see that ' is satisfiable if and only if C is satisfiable.
Moreover, since the length of '' is bounded by a constant times the length
of ', the transformation can be performed in linear time. •

It is interesting that there are problems which superficially appear to be
unrelated, but between which we can readily find a polynomial-time
transformation. Our next example is known as the COMPLETE-SUB­
GRAPH problem. A graph G consists of a finite nonempty set of vertices
V = {v 1 , ••• , vn} and a finite set of edges E. Each edge is a pair of vertices.
The size of the graph is simply the number of vertices it contains. A
subgraph of a graph G = (V, E) is a graph G' = (V', E') where V' ~ V,
and E' ~E. A graph G = (V, E) is complete if there is an edge in E
between every pair of distinct vertices in V.

The COMPLETE-SUBGRAPH problem is this: given a graph and a
number k, does the graph have a complete subgraph of size k?

Theorem 4.4. COMPLETE-SUBGRAPH is NP-complete.

Proof. We show informally that COMPLETE-SUBGRAPH is in NP. Let
the number k and a list of the vertices and of the edges of the given graph
be written on the tape of a Turing machine in any reasonable notation.
The procedure begins by nondeterministically selecting a vertex and then
decrementing k. By continuing this process until k has been decremented
to 0, a list of k vertices is obtained. The procedure then tests [in time
O(k 2)] whether the graph has a complete subgraph in those vertices. Since

k :::;; n :::;; length of the string representing G on the tape,

where G is the given graph, this shows that COMPLETE-SUBGRAPH E

NP.
To show that COMPLETE-SUBGRAPH is NP-hard, we show that

SAT ::;;P COMPLETE-SUBGRAPH. Thus, we must show how to map
each CNF formula y into a pair consisting of a number k and a graph G
so that y is satisfiable if and only if G has a complete subgraph of size k.
If y =I y 1 I y2 • • • I Yk is a CNF formula, where y 1 , y2 , ••• , Yk are clauses,
then we take the number k to be simply the number of clauses in y and
construct the graph G = (V, E), where

V = { (a, i) I a is a literal in y;},

E = {((a,i),({3,j))l a =F -,{3 and i =Fj}.

4. Other NP-Complete Problems 459

Thus we have a vertex for each occurrence of each literal in y. Edges join
pairs of vertices that represent literals in different clauses provided one is
not the negation of the other. This means that these literals can both be
assigned the value "TRUE" at the same time. If y is satisfiable, there is
some way to assign truth values to the atoms so that y evaluates to
"TRUE." Thus at least one literal of each clause of y must be assigned
the value "TRUE," and in G there will be an edge connecting each pair of
"true literals." This means that the nodes of G corresponding to the "true
literals" of y form a complete subgraph of size k. Conversely, if y contains
a complete subgraph of size k, then since edges join pairs of literals in
different clauses that can be true at the same time, there is a way to make
each clause of y true at the same time. Thus y is satisfiable. Furthermore,
G can clearly be obtained from y by a polynomial-time computable
function. •

A clique in a given graph is a maximal complete subgraph of that graph;
that is, a clique is a complete subgraph of a given graph that is not a
subgraph of any other complete subgraph of that graph. The MAX­
CLIQUE problem is to find the size of the largest clique in a given graph.
Of course, in this form, MAX-CLIQUE is not a language but rather a
function, and so it does not make sense in terms of our definitions to ask
whether it is in NP. However, since removing a vertex and all edges
containing it from a complete subgraph yields another complete subgraph,
we see that any algorithm for the MAX-CLIQUE problem that could
actually be implemented using reasonable resources could easily be trans­
formed into an equally usable algorithm for the COMPLETE-SUB­
GRAPH problem. Hence, to the extent that NP-completeness can be
regarded as implying intractability, we are entitled to conclude that MAX­
CLIQUE is likewise intractable.

We next consider a closely related graph-theoretic problem, known as
VERTEX-COVER. A set S is a vertex cover for a graph G = (V, E) if
S ~ V and for every (x, y) E E, either xES or yES. The VERTEX­
COVER problem is to determine for a given graph G and integer k
whether G has a vertex cover of size k.

Theorem 4.5. Let G = (V, E) be a graph and let

E' = {(x,y) I x,y E V,x =I= y, and (x,y) $. E}.

Let us consider the graph G' = (V, E') (sometimes called the complement
graph of G). Then S ~ V is the set of vertices of a complete subgraph of
G if and only if V- S is a vertex cover in G'.

460 Chapter 15 Polynomial- Time Computability

Proof. Let S be the set of vertices of a complete subgraph of G. Then, by
definition, for any (x,y) E E', either x E V- S or y E V- S. Thus,
V- Sis a vertex cover of G'. Conversely, if V- Sis a vertex cover of G',
then for any (x, y) E E', either x E V- S or y E V- S. Thus no edge of
G' connects two vertices in S. Thus for every u, v E S, u =/= v, we have
(u, v) E E, and so S is the set of vertices '1f a complete subgraph of G .

•
Corollary 4.6. VERTEX-COVER is NP-complete.

The SET-COVER problem is to determine for a family of sets a=
{S1 , S2 , ••• , Sn}, and number k, whether there exists a subfamily r of a of
size k, f = {Sm,, Sm 2 , ••• , Sm)• such that

Corollary 4.7. SET-COVER is NP-complete.

Proof. Let G = (V,E) be a graph with V= {v 1 ,v2 , ••• ,vn}. Fori=
1, 2, ... , n, Jet

S; = {Cv;,vj)l(v;,vj) EE} U {Cvj,v)l(v;,vj) EE}.

Clearly r = {S;,, S;2 , ••• , S;) is a set cover for a = {S1 , S2 , ••• , Sn} if and
only if {v;,, V;2 , ••• , v;) is a vertex cover for G. •

Many hundreds of NP-complete problems have been identified in quite
diverse areas. We conclude this section with a few more examples. For
each we indicate in brackets the nature of some known proof of NP­
hardness.

1. HAMILTONIAN-CIRCUIT (HC): given a graph G = (V, E) with k
vertices, determine if there is an ordering v 1 , ••• , v k of the vertices in
V such that (v;,V;+ 1) E E, 1:::;; i < k, and (vk,v 1) E E. [VERTEX­
COVER ::;;P HC.]

2. 3-DIMENSIONAL-MATCHING(3DM): given a setS ~A X B XC,
where A, B, Care disjoint finite sets each with q elements, determine
if there is a subset M ~ S with q elements such that for any (a, b, c),
(a', b', c') EM, a =/=a', b =/= b', and c =/= c'. [3SAT ::;;P 3DM.]

3. PARTITION: given a set A = {a1 , ••• , an} of positive integers, deter­
mine if there is a subset S ~A such that LaESa= LaEA-sa.
[3DM ::;;P PARTITION.]

4. INTEGER-PROGRAMMING (IP): given a finite set

X= {(Cx; , ... , x~), z;) 11:::;; i:::;; m},

4. Other NP-Complete Problems 461

where all xj, Z; are integers, and given a tuple (c 1 , ••• , en) of integers
and an integer b, determine if there is a tuple (y1 , ••• , Yn) of integers
such that (xL ... , x~) · (y1 , ••• , Yn) :::;; Z;, 1 :::;; i :::;; n, and (c I> ••• , en) ·
(y1 , ••• , Yn) ~ b. (The dot product of any two n-tuples is defined
(xl, ... , xn) · (y1, ... , Yn) = E?~ 1 X;· Y;·) [3SAT ::;;P IP.]

5. QUADRATIC-DIOPHANTINE-EQUATIONS (ODE): given posi­
tive integers a, b, c, determine if there are positive integers x, y such
that ax 2 + by = c. [3SAT ::;;P ODE.]

6. STRAIGHTLINE-PROGRAM-INEQUIV ALENCE (SPI): given a
set of variables {X1 , ••• , Xn}, two programs .9', ~ each being a
sequence of assignments of the form

V ~ IF W = X THEN Y ELSE Z,

where V, W, X, Y, Z E {X1 , ... , Xn}, and given a set of values
{v 1 , ••• , vm}, determine if there is an initial state

{X1 = V; , ••• , Xn = V; },
I n

where each V; E {v 1, ... , vm}, such that .9', ~ end with a different
value for sam~ variable. [3SAT ::;;P SPI.]

Exercises

1. The CHROMATIC-NUMBER problem is to determine for a given
graph G = (V, E) and integer k whether there is a function f from V
to {1, 2, ... , k} such that if (x, y) E £, then f(x) =/= f(y). {Intuitively,
this problem amounts to determining whether or not it is possible to
"color" the vertices of G using k colors in such a way that no two
adjacent vertices are colored the same.) Show that CHROMATIC­
NUMBER is NP-complete. [Hint: Show 3-SAT ::;;P CHROMATIC­
NUMBER.] [Further hint: Assume y = jy1jy2 ••• I'Ym is a CNF
formula such that no 'Y; contains more than three literals. Assume
there are n atoms a 1 , a 2 , ••• , an that appear either negated or
unnegated in y. Construct a graph G with 3n + m vertices such that
G is n + 1 colorable if and only if y is satisfiable.]

2. The 2-COLORABILITY problem is to determine whether a given
graph can be colored using only two colors. Show that 2-COLORA­
BILITY is in P.

3. The 2-SAT problem is to determine whether a CNF formula in which
no clause contains more than two literals is satisfiable. It is known
that 2-SAT E P. Show why a technique like the one used to show

462 Chapter 15 Polynomial- Time Computability

3-SA T is NP-complete does not work for 2-SAT. Show that 2-SAT is
in P.

4. The EXACT-COVER problem is to determine for a finite family of
sets A = {S1 , S2 , ••• , Sn} whether there exists a set cover r of A such
that the elements of r are pairwise disjoint. Show that EXACT­
COVER is NP-complete. [Hint: Show that

CHROMATIC-NUMBER ~P EXACT-COVER.]

5. The SUBGRAPH-ISOMORPHISM (SI) problem is, given graphs
G1 = (V1 , E1), G2 = (V2 , £ 2), to determine if there is a one-one
function f from V1 to V2 such that (v;, vj) E £ 1 if and only if
(f(v;),f(vj)) E £ 2• Show that SUBGRAPH-ISOMORPHISM is NP­
complete. [Hint: Show COMPLETE-SUBGRAPH ~P Sl.]

6. The LONGEST-COMMON-SUBSEQUENCE (LCS) problem is,
given an alphabet A, a set {w 1 , ••• , wn} of strings on A, and a positive
integer k, to determine if there is a string y E A* with lyl ~ k such
that, for 1 ~ i ~ n, W; = x 0y 1x 1y2 x 2 ••• y1x1 and y = y 1 , ••• , y1 for
some x 0 , • •• , x 1 , y 1 , ••• , y1 E A*. Show that LCS is NP-complete.
[Hint: Show VERTEX-COVER ~P LCS. Let G = (V, E) be a graph,
where V = {v 1 , ••• , vn} and E = {(v;,, vj,), ... , (v;m, vj)}, where
i1 ~ j 1, 1 ~ I ~ m. For each edge (v;,, vh), create the string

WI= VI ••• V;1_ 1V;1+ 1 ••• VnVI ••• Vj,_,Vj,+J ••• Vn,

and also create the string u = v 1 ••• vn. Show that G has a vertex
cover of size k if and only if {w 1 , ••• , wm, u} has a common subse­
quence of size n - k.]

7. The TRAVELING-VENDOR (TV) problem is, given a set C =
{c 1 , ••• ,cn} of cities, a positive integer distance d(c;,cj) for each
pair of cities, and a positive integer b, to determine if there is a
Hamiltonian circuit (c;,, ... , c;) such that

m-1

L, d(c; ,c;) + d(c; ,c;) ~b.
J J+ 1 m 1

j=l

Show that TV is NP-complete. [Hint: show HC ~P TV.]

8. The SUBSET-SUM problem is, given a set {a1 , ••• , an} of positive
integers and positive integer b, to determine if there is a subset
{b1 , ••• , bm} ~ {a1 , ••• , an} such that E?'~ 1 b; = b. Show that SUBSET­
SUM is NP-complete. [Hint: Show PARTITION ~P SUBSET-SUM.]

4. Other NP-Complete Problems 463

9. The KNAPSACK problem is, given a set S = {(s1 , v1), ••• , (sn, vn)} of
pairs of positive integers, where s; is a size and V; is a value,
1 ~ i ~ n, and given positive integers b, k, to determine if there is a
subset A ~ S such that

L s ~ b and L v ;;::: k.
(s,l')EA (s,L')EA

Show that KNAPSACK is NP-complete. [Hint: Show PARTITION
~P KNAPSACK.]

10. The MULTIPROCESSOR-SCHEDULING (MS) problem is, given a
set T = {t1 , ••• , tn} of positive integers (task times) and positive
integers m (number of processors) and d (deadline), to determine if
there is a partition of T into disjoint sets T1 , ••• , Tm such that for
1 ~ i ~ m, L:, E T t ~ d. Show that MS is NP-complete. [Hint: Show
PARTITION ~P· MS.]

11. The RECORD-ALLOCATION (RA) problem is, given a set L =
{11 , ••• , In} of positive integers (record lengths) and positive integers t
(track length) and k (number of tracks), to determine if there is a
partition of L into disjoint sets L 1 , ••• , Lk such that for 1 ~ i ~ k,
L:1E L I~ t. Show that RA is NP-complete. [Hint: Show PARTITION
~p RA..l

12. The TASK-SEQUENCING (TS) problem is, given a set

{(tl ,dl ,pl), ... ,(tn ,dn ,pn)}

of triples of positive integers (where for 1 ~ i ~ n, t; is the amount of
time necessary to complete task i, d; is the deadline for task i, and P;
is the penalty for failing to complete task i by its deadline) and given
a positive integer b, to determine if there is a sequence (i1 , ••• , in) of
tasks such that L; E L P; ~ b, where L ~ {1, ... , n} is the set of late
tasks, i.e., those ij with L:!~ 1 t; > d; . Show that TS is NP-complete.
[Hint: Show PARTITION ~P TS.] 1

Part 5

Semantics

16

Approximation Orderings

1. Programming Language Semantics

In Part 1 of this book we studied various classes of functions, principally
the class of partially computable functions. In Part 5 we also investigate
classes of functions but from a different perspective. One of the key results
from Part 1 is that the partially computable functions can be defined by
way of any number of substantially different formalisms. Once the equiva­
lence of ..:7 programs, Turing machines, etc., has been demonstrated, it
becomes clear that the definition of partially computable functions in
terms of ..:7 programs is an artifact of our particular exposition, and in
results like Theorem 2.1 of Chapter 4 concerning the HALT predicate, the
role of ..:7 programs recedes to the formal background. In direct propor­
tion to the accumulation of equivalent formal systems, the class of partially
computable numeric functions takes on an independent, absolute status,
and the status of each particular formal system declines. It is fair to say
that computability is about a certain class of functions, however they are
defined.

On the more practical side of computer science, however, the formal
description of functions has blossomed into the elaborate field of program­
ming languages, where we find thousands of formal systems far richer and
more complex than any we describe in this book. The differences between

467

468 Chapter 16 Approximation Orderings

the two fields are entirely appropriate. In the theory of computation, where
we are interested in the abstract mathematical properties of functions and
classes of functions, it is appropriate to eliminate all but the most essential
components of our formal systems. In the areas of computer science that
support the practice of solving problems, it is appropriate to elaborate a
wide range of programming languages to support the needs of various
problem domains, programming styles, and philosophies of language de­
sign.

When the various programming languages are important in their own
right, the business of associating a function to each program is more than a
means to the end of defining a class of functions. It becomes the subject of
programming language semantics.

The issue came up already in Chapter 2 when we carefully defined a
semantics for ..:7 programs, associating a partial function 1./1.9' with each
program .9'. In the course of defining the semantics of ..:7 programs we
defined the notion of a computation, which characterizes a mechanical
process of deriving a numerical output value from an input value. In
essence we ·have defined an abstract machine that stores the values of the
X, Y, and Z variables and updates those values by performing various
operations as specified by a program. A computation describes the se­
quence of states assumed by the machine in the process of deriving an
output (if there is one), and the meaning of a program is characterized by
all of the computations it performs, one for each possible input. This style
of defining the meaning of programs is called operational semantics be­
cause it depends on the operation of some kind of machine.

It is clear that programs and computations are very different sorts of
objects. Computations are dynamic in nature; that is, they describe a
process that evolves over time. Without the benefit of a semantics to give
them meaning, programs are simply static sequences of syntactic symbols.
Now, the goal of creating a semantics is to associate a function with a
program, and at least from the perspective of set theory, a function is a
static entity: it is simply a set of ordered pairs. We could argue, then, that
it is a diversion to interpose the conceptual complication of computations
between a program and its function. It would be more straightforward to
define a function, by purely "mathematical" means, directly from the
syntactic structure of the program. Of course, the concept of "purely
'mathematical' means" is not precisely defined. In the present context it
implies, at the very least, an absence of operational detail. Its connotation
will become clearer as we proceed. This alternative to operational seman­
tics is called denotational semantics.

The denotational approach might be preferable for its conceptual sim­
plicity, but we do not mean to imply that it is "better" than, or a

1. Programming Language Semantics 469

replacement for, an operational semantics. In a practical setting the two
are complementary. A denotational semantics can provide a succinct
description of the meaning of a programming language, abstracted from
the level of pragmatic details, and an operational semantics approaches
more closely an actual implementation. In the theoretical area of com­
putability, the operational style is crucial, preceding the denotational style
both historically and conceptually. It is the mechanical nature of an
operational semantics that gives sense to the term computable function. If
computability theory is more about the class of partially computable
functions than the particular formal systems for defining them, it is just as
much about the concept of mechanical computation which is embodied in
the operational semantics of .9' programs, Turing machines, Pascal, LISP,
etc.

The exposition given here of semantics, both operational and denota­
tional, has two goals.

1. It should broaden and deepen the understanding of computable
functions and computation.

2. It is an introduction to some of the ideas found in the theoretical
study of programming languages.

There are two ways in which we will extend the theory of computable
functions covered in Part 1. One is to expand the class of data objects that
are directly covered by the theory. We have accounted for computable
functions on the natural numbers and computable functions on strings
over arbitrary finite alphabets, but the typical programming language
offers a much greater variety of data types like lists, arrays, and in many
cases, user-defined data types. Now, natural numbers and strings are both
perfectly appropriate data types for a theory of computable functions
because of their capacity for encoding more complex structures. We
showed in Chapter 3, for example, how finite lists of numbers can be
encoded as a single Godel number. So a theorem like the universality
theorem in Chapter 4 implicitly tells us that there is a partially computable
universal function for partially computable functions on lists of numbers.
However, by explicitly admitting a richer assortment of data types, we can
bring the theory closer to the actual practice of computation.

In every model of computation we covered in Part 1, a function com­
puted by some program or machine was considered to be defined for a
given input just when there was a finite computation for that input. Indeed,
in Chapter 2 we defined a computation as a finite sequence of instanta­
neous descriptions. When a given input leads to an infinite sequence of
instantaneous descriptions, we did not consider that sequence a computa­
tion, and so we did not consider the program to be doing any useful work

470 Chapter 16 Approximation Orderings

in this case. However, there are programs whose sole reason for being is
the work they accomplish while they are running, rather than the output
they produce at the end of a computation. For example, an operating
system, the program that organizes the functioning of a computer, pro­
duces little useful output when it is terminated, and, in fact, it is designed
to be able to run without ever terminating. The termination of an operat­
ing system might just as well indicate a failure rather than the successful
completion of a computation.

Our second extension, then, is to try to account for the work done in the
course of a computation. Our perspective here is that instantaneous
descriptions represent partial results that approximate the overall result of
a computation. We will admit the possibility of infinite computations as
well. In a sense, the result of an infinite computation is the computation
itself, and each instantaneous description is a piece of the result, approxi­
mating the whole. Our data structures, therefore will come equipped with
an ordering, an approximation ordering, which formalizes the notion of
different partial results being more or less complete realizations of the
total result.

We will focus here on the equational style of function definition. In
particular, we will work with equations like

F(X) = H(G(X), X). (1.1)

There are two kinds of variables in Eq. (1.1). X is intended to denote
individuals, say, natural numbers, and F, G, and H denote functions.
There is another important difference in our interpretation of these
variables. In the equation 2x = x + x, with x ranging over the natural
numbers, equality holds for all values of x, but the equation x 2 - 4 = 0
calls for one or more particular values of x which make equality hold. In
(1.1) X has the first interpretation, and F, G, and H have the second.
That is, we are looking for functions f, g, and h that make f(X) =
h(g(X), X) true for all values of X, in which case the assignment off, g,
and h to variables F, G, and H constitutes a solution to (1.1). In
equational programming we define functions by writing sets of equations
to be satisfied.

Normally equations are understood to be symmetric in their left and
right sides, but the two sides of (1.1) have an important distinction. IfF is
assigned a function there might be a number of assignments for G and H
that solve (1.1), but assigning functions to G and H induces a unique value
for F. In this sense we can interpret the right side as a function (some­
times called a higher order function) which takes any pair of functions g, h
assigned to G and H and yields a unique function for F. We will make

1. Programming Language Semantics 471

essential use of such higher order functions in the denotational semantics
of recursion equations.

We need to consider the issue of partial functions. In the simple
equation

F(X) = G(X), (1.2)

if F and G are interpreted as total functions f and g, then there is no
ambiguity in the requirement that f(x) = g(x) for all values of x. Suppose,
though, that f and g are defined

f(x) =g(x) = {0 d f" d un e me
if X> 0
if X= 0.

What should be the meaning of f(O) = g(O)? Previously we have inter­
preted equality to mean

1. either both sides are defined or both sides are undefined, and
2. when both sides are defined they have the same value.

An alternative, which we will now adopt, is to extend the universe of
objects with a new element that represents the property of being unde­
fined. For instance, we extend N to N .L = N u { .L N}, where .L N

(pronounced "bottom") is different from all natural numbers. Now we can
define

L (x) = g .L (x) = { ~ N
if X> 0
if X= 0.

f and g are not total functions, but f .L and g .L are, and f .L (x) = g .L (x)
for all x EN.

There are two distinct kinds of elements in N .L: numbers and .LN. We
can compare them by saying that numbers are completely defined ele­
ments and .L N is the unique completely undefined element. This is a
simple example of our notion of approximation. In a sense .L N is an
approximation, a very weak one, to any natural number n. The idea is
clearer, perhaps, in a richer set like Nl , where we can say that (.L N , .L N ,

.L N) and (3, .L N , 5) both approximate (3, 7, 5), and that (3, .L N , 5) is a
better approximation than (.L N , .L N , .L N). Thus, we can think of a
sequence like (. .L N , .L N , .L N), (3, .L N , 5), (3, 7, 5) as a computation,
where (.L N , .L N , .L N) and (3, .L N , 5) are partial results leading to the
final value (3, 7, 5).

In this chapter we investigate the mathematical aspects of approxima­
tion orderings and functions defined on them. In the next chapter we apply
these ideas to the semantics of recursion equations.

472 Chapter 16 Approximation Orderings

2. Partial Orders

For a set D, a binary relation on D is any subset of D X D. If R is a binary
relation on some set, we generally write a R b to mean (a, b) E R. If R is
a binary relation on D and E ~ D, then the binary relation {(a, b) E EX
E I aRb} on E is the restriction of R to E.

Definition. Let D be a set and !;;;; a binary relation on D. !;;;; is a partial
ordering of D if it has the properties of

1. reflexivity: a !;;;; a for all a E D;
2. antisymmetry: a !;;;; b and b !;;;; a implies a = b for all a, b E D;
3. transitivity: a !;;;; b and b !;;;; c implies a !;;;; c for all a, b, c E D.

If !;;;; is a partial ordering of D, then the pair (D, !;;;;) is a partially ordered
set, or simply a partial order. We will sometimes write a c b to mean
a!;;;; band a-=!= b.

It is easy to find examples of partial orders. (N, .:5;), where .:5; is the
usual ordering of N, is a partial order. (N _j_ , !;;;N), where !;;;N is defined

.l .l

m !;;;N n if and only if m = ..L N or m = n,
.l

is also a partial order. Note that while 5 .:5; 7, for example, it is not true
that 5 !;;;N 7. If D is a set, the power set of D, denoted !Jl!(D), is the set
of all subs~ts of D. For any set D, it is easy to see that (!Jll(D), ~Y"<D>) is a
partial order, where ~Y"(D) is the subset relation on the sets in !Jl!(D).
Also, (D, =v) is a partial order for any set D, where =v is the equality
relation on the elements of D. Although .:5; , !;;;N-' , ~Y"<N>, and =N are
all partial orderings, they are quite different in structure.

Definition. A partial ordering !;;;; of a set D is a linear ordering of D if
for every a, bED, either a !;;;; b orb!;;;; a. (D, !;;;;) is a linearly ordered set,
or simply a linear order.

So, for example, (N, .:5;) is a linear order, but (N _j_, !;;;N), (N, =N) and
(!Jl!(N), ~9'(n)) are not. -'

We will often find it useful to create new partial orders from given
partial orders.

Definition. Let (D 1, !;;;v,), ••• , (Dn, !;;;D") be partial orders. Then
!;;;D,x·. ·xD", the Cartesian product ordering on D1 X •·· X Dn determined

2. Partial Orders 473

by !;;;D 1 , ••• , !;;;D" , is defined

(d1 , ••• , dn) !;;;D 1 x .. ·xD (e1 , ••• , en) if and only if d; !;;;D e; for all1:::;; i:::;; n.
n 1

Theorem 2.1. If (D1 , !;;;D), ••• , (Dn, !;;;D) are partial orders, then (D1 X

··· X Dn, !;;;D 1 x·. ·xD) is a partial order.

Proof. We will write !;;;;; for !;;;D 1 x·. ·xD" and !;;;;; ; for !;;;D;, 1 :::;; i :::;; n. We
need to show that !;;;;; is reflexive, symmetric, and transitive. For any
(dp ... , dn) E D 1 X · · · X Dn, we have d; !;;;;;; d; by the reflexivity of !;;;;; ; ,

1 :::;; i :::;; n, so (d)' ... ' dn) !;;;;; (d)' ... ' dn). If (d)' ... ' dn) !;;;;; (e)' ... ' en) and
(e1 , ••• , en) !;;;;; (d1 , ••• , dn), then, for 1 :::;; i :::;; n, d; !;;;;;; e; and e; !;;;;;; d;, which
implies d; = e; by the antisymmetry of !;;;;; ; , so we have (d1 , ••• , dn) =
(e1 , ••• , en). Finally, if (d1 , ••• , dn) !;;;;; (ep ... , en) and (e1 , ••• , en) !;;;;;

(f1 , ••• ,fn), then, for 1:::;; i:::;; n, d; !;;;;;; e; and e; !;;;;;; f;, which implies
d; !;;;;;; /; by the transitivity of !;;;;; ; , so we have (d1 , ••• , dn) !;;;;; (f1 , ••• ,fn) .

•
For example, (N1 , !;;;;;) is a partial order, where !;;;;; is the Cartesian

product ordering on N1 determined by !;;;N , ••• , !;;;N •
L L

Definition. Let D and E be sets. A function whose domain is D and
whose range is a subset of E is a function from D into E. The set of all
functions from D into E is denoted D ~E. If !;;;;;£ is a partial ordering of
E, then !;;;D E , the function space ordering on D ~ E determined by !;;;;;£ ,

is defined

f !;;;D E g if and only if f(d) !;;;E g(d)for all d ED.

We sometimes write f: D ~ E to indicate that fED ~E.

Theorem 2.2. If D is a set and (E, !;;;E) is a partial order, then (D ~ E,
!;;;D E) is a partial order.

Proof. We will write !;;;;; for !;;;D_,E. Let f, g, h be arbitrary functions in
D ~ E. For any d E D, f(d) !;;;E f(d) by the reflexivity of !;;;E , so f!;;;;; f. If
f!;;;;; g and g !;;;;; f, then for any d E D, f(d) !;;;E g(d) and g(d) !;;;E f(d),
which implies by the antisymmetry of !;;;E that f(d) = g(d) for all d ED,
i.e., f =g. If f!;;;;; g and g!;;;;; h, then for any dE D, f(d) !;;;E g(d) and
g(d) !;;;E h(d), which implies by the transitivity of !;;;E that f(d) !;;;E h(d)
for all d E D, i.e., f!;;;;; h. •

For example, (N1 ~ N j_ , !;;;;;) is a partial order, where !;;;;; is the
function space ordering on N1 ~ N j_ determined by !;;;N •

L

474 Chapter 16 Approximation Orderings

Definition. Let A be a set and let 9J be a function with domain A such
that 9J(a) is a partial order for all a EA. We will write (Da, !;;;a) for
9J(a). A 9J-choice function 1 is a function f with domain A such that
f(a) E Da for all a EA. ch(9J) is the set of all 91-choice functions. The
9J-choice function ordering !;;;;; ch(.!'*) is defined

f !;;;ch(.!'*) g if and only if f(a) !;;;a g(a) for all a EA.

For example, let A = {1, 2}, let 9J(i) = (Ni ~ N _]_ , !;;;N,_,N,) for i .= 1,
2, and let f(i) = u; for i = 1, 2. That is, f(l) is the unary projection
function, and f(2) is a binary projection function. (Recall that ul and uf
are defined in Chapter 3.) Then f E ch(9J).

Theorem 2.3. Let A be a set and 9J(a) a partial order for all a EA.
Then (ch(9J), !;;;;; ch(.!'*)) is a partial order.

Proof. The proof is identical to the proof of Theorem 2.2, except that
instead of a single ordering !;;;;;£ , we have a different ordering !;;;;; a for each
a EA. •

Exercises

1. Show that (N, I) is a partial order, where mIn is the predicate "m is a
divisor of n" defined in Chapter 3. [Note that 0 I 0 is true.] Is it linear?

2. Let (D, !;;;0) be a partial order, and let

;;;J0 = {(x,y) ED xDiy !;;;0 x}.

Show that (D, ;;;J0) is a partial order.

3. Let (D, !;;;0) be a partial order, let E ~ D, and let !;;;;;£ be the
restriction of !;;;0 to E.
(a) Show that (£, !;;;E) is a partial order.
(b) Show that if (D, !;;;0) is a linear order, then (£, ~) is a linear

order.

4. For which set(s) A is (A, 0) a partial order?

1 When A is infinite, proving the existence of 9"-choice functions generally requires an
axiom from set theory known as the axiom of choice. However, our treatment of denotational
semantics will require only 9"-choice functions with a finite domain, so we need not be
concerned with this issue. The interested reader should consult any introductory text on set
theory, e.g., those mentioned in "Suggestions for Further Reading."

3. Complete Partial Orders 475

5. Let (D, !;;;D) be a partial order, and let d1 , ••• , dn E D be such that
d 1 !;;;D d 2 ~ • • • !;;;D dn !;;;D d 1• Show that d 1 = d 2 = · · · = dn.

6. (a) Show that there are three distinct partial orderings of {0, 1}.
(b) Show that there are nineteen distinct partial orderings of {0, 1, 2}.

7. Let D ={a, b, c}, !;;;D ={(a, a), (b, b), (c, c), (a, b), (a, c)}, E = {d, e},
and !;;;E = {(d,d),(e,e),(d,e)}.
(a) What is (D X E, !;;;Dx E)?
(b) What is (D ~ E, !;;;D-+E)?

8. Let (D, !;;;D) be a partial order, and let

Show that Cv is transitive and satisfies the property of asymmetry,
namely, that x Cv y implies y ltv x, for all x, y ED. Is Cv reflex­
ive?

9. Let D, E be finite sets with m, n elements, respectively.
(a) Show by induction on m that D X E has m · n elements.
(b) Show by induction on m that D ~ E has nm elements.

10. Give linear orders (D, !;;;D) and(£, !;;;E) such that (D X E, !;;;DxE)

and (D ~ E, !;;;D-+ E) are not linear orders.

11. Give a linear order (D, !;;;D) with D =I= 0 such that (N X D, !;;;NxD)

and (N ~ D, !;;;N-+D) are linear orders (where !;;;NxD is determined
by ~ , the usual ordering on N, and !;;;D). Is (D X N, !;;;DxN) a
linear order? (D ~ N, !;;;D-+ N)?

12. Give distinct functions f, g EN~ ~ N j_ such that f !;;;N" -+ N g.
L L

13. Let 9J(i) = N~ ~ N j_ for all i EN, i =1= 0. Give distinct functions
f, g E ch(9J) such that f !;;;ch(.91) g.

3. Complete Partial Orders

We will be particularly interested in partial orders that are rich in certain
kinds of elements.

Definition. Let (D, !;;;D) be a partial order, and let E ~D. An element
e0 E E is the least element of E with respect to !;;;D if e0 !;;;D e for all
e E £, and it is the greatest element of E with respect to !;;;D if e !;;;D e0
for all e E £.

476 Chapter 16 Approximation Orderings

If (D, !;;;D) is a partial order and E ~ D, then E can have at most one
least element: if e, e' are least elements of E, then e !;;;D e' and e' !;;;D e,
so by antisymmetry e = e'. Similarly, E can have at most one greatest
element. Therefore, we are justified in speaking about the least element of
E and the greatest element of E.

Definition. Let (D, !;;;D) be a partial order, and let E ~D. An element
dE D is a lower bound of E in (D, ~)if d !;;;D e for all e E E, and.it is
an upper bound of E in (D, !;;;D) if e !;;;D d for all e E E. Moreover, d is
the least upper bound of E in (D, !;;;D) if it is the least element with respect
to !;;;D of the set of all upper bounds of E in (D, !;;;D), and it is the greatest
lower bound of E in (D, !;;;D) if it is the greatest element with respect to
!;;;D of the set of all lower bounds of E in (D, !;;;D). If the least upper
bound of E in (D, !;;;D) exists, it is denoted U(D, [;; o> E. If the greatest
lower bound of E in (D, !;;;D) exists, it is denoted n(D, [;; ol E.

Suppose (D, !;;;D) is a partial order and E ~D. Since the set of upper
bounds of E in (D, !;;;D) can have at most one least element, it follows that
E can have at most one least upper bound in (D, !;;;D). Similarly, E can
have at most one greatest lower bound in (D, !;;;D). Note that U(D, [;; o> E, if
it exists, is not necessarily an element of E, though if it is then it is the
greatest element of E. A similar observation holds for n(D, [;; ol E.

In our work on semantics we are interested primarily in least upper
bounds. We will generally drop the subscript and write UE when it is
apparent to which partial order we are referring. Occasionally we will write
UvE.

Partial orders can differ greatly in the existence of upper and lower
bounds of their various subsets. Let A = {0, 1, 2} and let !;;;A be the usual
ordering on {0, 1, 2}. Then every subset of A has one or more upper
bounds and one least upper bound. For example, 1 and 2 are both upper
bounds of {0, 1}, and 1 is the least upper bound. Note that 2 = n0 and
0 = u 0. However, consider (N, ::;). Every finite subset of N has a
greatest element, and every nonempty subset of N has a finite set of lower
bounds, so every nonempty subset of N has a greatest lower bound. Also,
every nonempty subset of N has a least element, and every finite subset of
N has a nonempty set of upper bounds, so every finite subset of N has a
least upper bound. However, an infinite subset of N has no upper bounds.
Note that nN0 does not exist. (Why?)

A subset of a partial order can fail to have a least upper bound for one
of two reasons. Either the set of upper bounds is empty, as in the case of
an infinite subset of N, or it is nonempty but has no least element. For
example, let (Q, ::; Q) be the ordered set of the rational numbers. Then

3. Complete Partial Orders 477

A = {q E Q I q 2 < 2} has plenty of upper bounds, but it has no rational
least upper bound. On the other hand, A has a least upper bound in
(R, ~a>. the ordered set of the real numbers. In fact, Ua A = fi. For a
simpler example, consider (D, !;;;D), where D = {a, b, c, d} and

!;;;D = {(a,a),(b,b),(c,c),(d,d),(a,c),(a,d),(b,c),(b,d)}.

Here, c and d are both upper bounds of {a, b}, but {c, d} has no least
element.

If we have a sequence d0 , d 1 , d 2 , ••• that represents a finite or infinite
computation, where d0 , d1 , d2 , • • • are elements in some partial order
(D, ~), then we want (D, ~) to contain some element d which repre­
sents the result of that computation. The following definition formalizes
this idea.

Definition. Let (D, !;;;D) be a partial order. A chain in (D, !;;;D) is a
nonempty set C ~ D such that c !;;;D c' or c' !;;;D c for every c, c' E C.
(D, !;;;D) is a complete partial order, or cpo, if

1. D has a least element with respect to ~ , and
2. U(D, r;; o> C exists for every chain C in (D, !;;;D).

The least element in a partial order (D, !;;;D) is generally written ..l v or
..l , and called the bottom element of (D, !;;;D), or simply bottom of
(D, !;;;D). Note that if (D, !;;;D) is a partial order, C is a chain in (D, !;;;D),

and !;;;; c is the restriction of !;;;D to C, then (C, !;;;; c> is a linear order.
Every nonempty subset of N is a chain in (N, ~), since (N, ~) is a

linear order, and, as we showed previously, no infinite subset of N has a
least upper bound in (N, ~),so (N, ~)is not a cpo. However, any set can
be turned into a cpo, in the same way that we turned N into (N _]_ , !;;;N).

Let D be a set, let ..l v be some new object not in D, and let D _]_"=
D U {..l vl· Then !;;;D , defined

"
d !;;;D e if and only if d = ..l v or d = e,

"
is 'the flat partial ordering of D _]_ . Every chain in (D _]_ , !;;;D) is either
{ ..l vl, or {d} for some d E D, or { ..l v , d} for some d E D, so 'every chain
in (D _]_ , !;;;D) has a least upper bound, and therefore (D _]_ , !;;;D) is a cpo.

" " We call (D _]_ , !;;;D) the flat cpo on D. For example, (N _]_ , !;;;N) is the flat
cpo on N. " "

We can generalize this discussion about flat cpos.

Theorem 3.1. Let (D, !;;;D) be a partial order, and let C be a finite chain
in (D, ~). Then u C exists and u C E C.

478 Chapter 16 Approximation Orderings

Proof. We argue by induction on the size of finite chains in (D, !;;;D). If
C = {c}, then obviously UC =c. If C = {cp ... , en+ 1}, then C' =
{c 1 , ••• , en} is also a chain, so UC' E C' by the induction hypothesis. Now,
if cn+l !;;;D UC', then uc = UC' E c. Otherwise, UC' !;;;D cn+l• since
C is a chain, SO U C = C n + 1 E C. •

We immediately get

Corollary 3.2. Let (D, ~;;;;D) be a partial order with a bottom element. If
every chain in (D, ~;;;;D) is finite, then (D, ~;;;;D) is a cpo.

Corollary 3.3. Every finite partial order with a bottom element is a .cpo.

Power sets are another source of cpos. Let D be a set, and let
g> ~fJIJ(D). Then the union of g>, denoted ug>, is defined

ug> = {d E D I d E E for some E E g>}.

It is a basic mathematical fact that u g> exists.

Theorem 3.4. Let D be a set. Then (fJIJ(D), ~.'JD<D>) is a cpo.

Proof. We have already noted that (fJIJ(D), ~9'(DJ) is a partial order. For
any set E EfJIJ(D), 0 ~ E, so 0 is the bottom element of(fJIJ(D), ~9'(Dl).
Let g> ~fJIJ(D). It is clear that ug> EfJIJ(D), and we claim that ug> = ug>.

For any E E g>, we have E ~ ug>, so ug> is an upper bound of g> in
(fJIJ(D), ~9'<D>). Let A EfJIJ(D) be any upper bound of g>. Then for any
d E ug>, d E E for some E E g>, and E ~A, so d EA. Therefore,
ug> ~A, which implies ug> = ug>. This argument holds, in particular,
when g> is a chain, so (fJIJ(D), ~9'(Dl) is a cpo. •

Note that in the proof of Theorem 3.4, we actually showed that every
subset of fJIJ(D) has a least upper bound. (See Exercise 20 for more on this
point.)

The constructions of Section 2 can also be used to construct cpos with a
richer structure than flat cpos. Let D 1 , ••• , Dn be sets, and let D =
D 1 X ··· X Dn. We define the projection functions ~ 1: D ___.. D 1 , ••• ,

~ n: D ___.. Dn as follows. For 1 :::;; i :::;; n,

Note that if D; = N, for all 1 :::;; i :::;; n, then ~ j is the function u'j from
Chapter 3, where 1 :::;; j :::;; n. We will write (d 1 , ••• , dnH i instead of
~ i(d1 , ••• , dn). If E ~ D, we write E ~ i to denote {e ~ i I e E E}.

3. Complete Partial Orders 479

Theorem 3.5. Let (D, !;;;1), ... , (Dn, !;;;;,) be partial orders, and let E ~
D 1 X ··· X Dn. Then UE exists if and only if U(E t 1), ... , U (E t n)
exist, and if uE exists, then UE = (U(E t 1), ... , u (E t n)).

Proof. We will write !;;;;; for !;;;D,x·. ·xD •• Suppose UE exists, and let
UE = (e 1 , ••• ,en). Then e; ED;, 1:::;; i:::;; n, and we claim that e; =
U(E t i). For 1 :::;; i :::;; n, if e E E t i, then there is some element

(e1 , •.. ,e;_ 1 ,e,ei+ 1 , ... ,en) E E,

and (el, ... , e;_ p e, ei+ p ... , en) !;;;;; (ep ... , en) implies e !;;;;;; e;, SO e; is an
upper bound of E t i. Let d be any upper bound of E t i. Then for any
(e1 , ... , en) E E, ei !;;;i ei for 1 :::;; j :::;; n, j =/= i, and e; !;;;;;; d, so
(e1 , ••• , d, ... , en) is an upper bound of E. But (e1 , ••• , en) is the least
upper bound of E, so (e1 , ••• , en) !;;;;; (e 1 , ••• , d, ... , en), and, in particular,
e; !;;;;;; d, so e; = U(E t i). Therefore, U(E t i) exists, 1 :::;; i :::;; n, and UE
= (e 1 , ••• ,en) = (u(E U), ... , U (E t n)).

Now, suppose U(E t 1), ... , U (E t n) exist. Then (U(E t 1), ... ,
U(E t n)) is an element of D 1 X ··· X Dn, and we claim that it is UE. If
(e1 , ... , en) E E, then for 1 :::;; i :::;; n, e; E E t i, which implies e; !;;;;;;
U (E t i), so (e 1 , ••• , en) !;;;;; (U(E t 1), ... , U(E t n)). Therefore,
(u(E U), ... , U(E t n)) is an upper bound of E. Let (d1 , ••• , dn) be any
upper bound of E. For 1 :::;; i :::;; n, if e E E t i then there is some
(e1 , •.• ,e, ... ,en) E £,and (e 1 , ... ,e, ... ,en)!;;;;; (d 1 , ••• ,dn) implies e !;;;;;;
d;, so d; is an upper bound of E t i. But then U(E t i) !;;;;;; d;, 1 :::;; i:::;; n,
which implies (U(E t 1), ... , U (E t n))!;;;;; (d 1 , ••• , dn), so
(U(EU), ... ,U(Etn))= U£. •

Theorem 3.6. If (D1, !;;;1), ••• , (Dn,!;;;;,) are cpos, then (D1 X •·· X Dn,
!;;;0 , x·. -xo) is a cpo.

Pr(Joj. We will write D for D 1 X ·•· X Dn and !;;;;; for !;;;D,x· ··xD ••

(D, !;;;;;) is a partial order by Theorem 2.1. Let ..l; be the bottom element
of (D;, !;;;;;;), 1 :::;; i :::;; n. Then (..l 1 , ••• , ..l n) !;;;;; (d1 , ••• , dn) for all
(d1 , ... , dn) E D, so (D, !;;;;;) has a bottom element.

Now, let C be a chain in (D, !;;;;;). We must show that u C exists. For
1 :::;; i :::;; n, if e;, c; E C t i, then there are e, e' E C such that e; = e t i
and c; = e' t i. Since C is a chain, either e !;;;;; e' or e' !;;;;; e, which implies
that either e; !;;;;;; c; or c; !;;;;;; e;. Therefore C t i is a chain in cpo (D;, ~), so
U(C t i) exists, 1 :::;; i:::;; n, and by Theorem 3.5, UC exists. •

We can prove a similar result for function space orderings. If sr ~ D ~ E
for some sets D, E, then for any d ED we write Y(d) to denote the set
{f(d) If E .7}.

480 Chapter 16 Approximation Orderings

Theorem 3.7. Let D be a set and (£, !;;;E) a partial order, and let
:T~ D ~E. Then U.<T exists if and only if U(.<T(d)) exists for all dE D,
and if U.<T exists then (u.<T)(d) = u (.<T(d)) for all d E D.

Proof. We will write !;;;; for !:;;;0 _, E • Suppose U.<T exists, and let d E D.
Then (U.<T)(d) is an element of E, and we claim (U.<T)(d) = U(ff(d)).
For any f E .9T, f !;;;; U.<T implies f(d) !;;;E (U.<T) (d), so (U.<T) (d) is an
upper bound of :T(d). Let e be any upper bound of :T(d), and let
fe: D ~ E be defined

if X= d
otherwise.

Then for any f E .9T, f(x) !;;;E (U.<T) (x) = fe(x) for x E D such that x -=!= d,
and f(d) !;;;E e = fe(d), so fe is an upper bound of .'T. But then U.<T!;;;; fe,
and, in particular, (U.<T)(d) !;;;E fe(d) = e, so (U.<T)(d) = U (.<T(d)).

Now, suppose U(.<T(d)) exists for all dE D. Then the function

g(d) = U(.<T(d)) for all dE D

belongs to D ~ E, and we claim that g = U.'T. If f E .9T, then for any
d E D, f(d) E .<T(d), which implies f(d) !;;;E U (.<T(d)) = g(d), so f!;;;; g.
Therefore, g is an upper bound of .'T. Let h be any upper bound of .'T. For
any d ED, if e E .<T(d), then e = f(d) for some f E .9T, and f!;;;; h implies
e = f(d) !;;;E h(d), so h(d) is an upper bound of :T(d). But then g(d) =
U(.<T(d)) !;;;E h(d) for all d ED, which implies g!;;;; h, so g = U.'T. •

Theorem 3.8. If D is a set and(£, !;;;E) a cpa, then (D ~ E, !;;;0 _,E) is a
cpa.

Proof. We will write !;;;; for !;;;0 _,E. (D ~ E, !;;;;) is a partial order by
Theorem 2.2. Define the constant function ..l0 E (d) = ..lEfor all d ED,
where ..l E is the bottom element of (£, !;;;E). Then ..l0 E !;;;; f for all
fED ~ E, so (D ~ E, !;;;;) has a bottom element.

Now, let :T be a chain in (D ~ E, !;;;;). Then :T(d) is a chain in (£, !;;;E)

for any d E D, since, for any f(d), g(d) E .<T(d), f!;;;; g implies f(d) !;;;E

g(d) and g !;;;; f implies g(d) !;;;E f(d). Therefore u (.<T(d)) exists for all
dE D, since(£, !;;;E) is a cpa, and by Theorem 3.7, U.<Texists. •

The proofs of the following two theorems are almost identical to the
proofs of Theorem 3. 7 and Theorem 3.8.

Theorem 3.9. Let A be a set, let 9'(a) be a partial order for each a E A,
and let :T~ ch(D). Then U.<T exists if and only if U(.<T(a)) exists for all
a E A, and if U.<Texists, then (U.<T)(a) = U(.<T(a)) for all a EA.

3. Complete Partial Orders 481

Theorem 3.10. Let A be a set and let g'(a) be a cpo for each a EA.
Then (ch{g'), ~h(.'B >) is a cpo.

The iteration of our operations for constructing partial orders quickly
gives us partial orders of considerable complexity. Theorems 3.6, 3.8, and
3.10 tell us that if we start with cpos, we end up with cpos. For example,

is the cpo of functions that transform binary functions in N~ ~ N .L into
unary functions in N .L ~ N .L • Functions that operate on other functions
are sometimes called higher order functions. For example ldv v= (D ~D)
~ (D ~D), defined ldv v<f) = f, is an easily described higher order
function. One way of defining a higher order function F is to give a
definition of the function F(f) for every function f in the domain of F.
For example,

Idv v<f) (d) = f(d) for all d ED.

Note that ldv v<f)(d) is to be interpreted as Odv v(f)){d). Similarly,
when we write an expression such as f(g)(h)(d), we mean ((f(g))(h))(d).
Another example is the composition operator o: (E ~ F) X (D ~ E) ~
(D ~F), for some sets D, E, F, where, for any f: E ~ F and g: D ~ E,
o (f, g) is defined

o {f, g)(d) = f(g(d)) for all dE D.

(o(f, g) is usually written f o g.) We will make frequent use of this sort of
definition in the next chapter.

One way to show that a partial order (E, !;;;E) is a cpo is to build it up
explicitly by the constructions we have described. Another is to show that
it is contained in another partial order (D, !;;;D) known to be a cpo and
that the least upper bounds of all chains in (E, !;;;E) belong to E.

Theorem 3.11. Let (D, !;;;D) be a cpo, let E ~ D, and let !;;;E be the
restriction of ~ to E. If

1. E has a least element with respect to ~ and
2. Uv C E E for all chains C in (E, !;;;E),

then (E, ~)is a cpo and UE C = Uv C for all chains C in (E, !;;;E).

Proof. E has a least element by assumption, so we only need to show that
every chain C in (E, !;;;E) has a least upper bound in (E, ~), i.e., that

482 Chapter 16 Approximation Orderings

UE C exists. If C is a chain in (£, !;;;E), then it is also a chain in (D, !;;;D),
and we know that UD C exists. We claim that UD C is UE C. For any
c E C, we have c !;;;D UDC, which implies c !;;;E UDC, since c and UD C
are both in E. Therefore, UD Cis an upper bound of C in(£, !;;;£).Let e
be any upper bound of C in (£, !;;;E). Then for all c E C, c !;;;E e implies
c !;;;D e, so e is an upper bound of C in (D, !;;;D). Therefore, UD C !;;;D e,
which implies UD C !;;;E e since UD C and e are both in £, so UD C =
UEC. •

We give one application of Theorem 3.11 here and another in the next
section. The following construction gives us a way of turning an arbitrary
partial order into a cpo.

Definition. Let (D, !;;;D) be a partial order. A set E ~ D is downward
closed if for all e E E and all d E D, if d !;;;D e, then d E £. E is directed
if for all c, d E £, there is some e E E such that c !;;;D e and d !;;;D e. An
ideal of (D, !;;;D) is a nonempty, downward closed, directed subset of D.
The set of all ideals of (D, !;;;D) is denoted id(D, !;;;D). The ordering
~id(D, ~;;D> is ~.9'(D) restricted to id(D, !;;;D).

We will write id(D) when the ordering !;;;D is understood.

Theorem 3.12. Let (D, !;;;D) be a partial order with a bottom element.
Then (id(D), ~id(D>) is a cpo.

Proof. It is easy to check that (id(D), ~ id(D)) is a partial order. An ideal is
nonempty by definition, so _i D E I for any ideal I, since I is downward
closed. Moreover, { _i D} is an ideal, and { _i D} ~ I for any ideal I, so { _i D}
is the bottom element of (id(D), ~id(D)). Now, let J be a chain in
(id(D), ~id(D)). It is obvious that id(D) ~g>(D), so by Theorem 3.11 we
need to show only that U .9'(d)J E id(D), i.e., that UJ is an ideal. J is a
nonempty set of nonempty sets, so UJ is nonempty. Let e E UJ, d E D,
and d !;;;D e. Then e E I for some I EJ, which implies dE I since I is an
ideal. Therefore, d E UJ, so UJ is downward closed. Now, if c, d E UJ,
then c E I1 and d E I2 for some I1 , I2 E J, which implies c, d E I1 U I2 •

But I1 U I2 E J, since I1 ~ I2 implies I1 U I2 = I2 and I2 ~ I1 implies
I1 U I2 = I1 • Therefore, there is an e E I1 U I2 such that c !;;;D e and
d !;;;D e, since I1 U I2 is directed, and I1 U I2 ~ UJ, so e E UJ. So UJ
is directed, and it is an ideal. •

Let (D, !;;;D) be a partial order. For each e ED, the principal ideal
generated bye, denoted pid(e), is the set {d E DId !;;;D e}. It is easy to see
that pid(e) is an ideal of (D, !;;;D). The set of principal ideals of (D, !;;;D),

3. Complete Partial Orders 483

denoted pid(D), is {pid(d) I d ED}, and ~pid(Dl is the restriction of ~.9'(D)
to pid(D). We can think of the partial order (pid(D), ~pid<D>) as a "copy"
of (D, !;;;D) in (id(D), ~id<D>), and any chain C in (D, !;;;D) has a "copy"
{pid(c)l c E C} in (id(D), ~id(Dl). Going from (D, !;;;D) to (id(D), ~id(Dl),
then, has the effect of guaranteeing the existence of a least upper bound in
(id(D), ~id(D>) for each ("copy" of a) chain in (D, !;;;D). For this reason,
(id(D), ~id<D>) is called the ideal completion of (D, !;;;D). For more on this
subject, see Exercise 19.

Exercises

1. Give an example of a partial order that is not a cpo.

2. Give an example of a cpo in which not every chain has a greatest
lower bound.

3. Let w be some object not in N. Give a binary relation !;;; such that
(N u {w}, ~ u !;;;) is a cpo (where ~ is the usual ordering of N).

4. Let (D, !;;;D) be a cpo, let C be a chain in (D, !;;;D), and let d E D.
Show that if c !;;;D d for all c E C, then u C !;;;D d.

5. Let (D, !;;;D) be a cpo, and let C1 u C2 be a chain in (D, !;;;D), where
C1 ,C2 ~D. Show that U(C1 U C2) = U{UC1 , UC2}.

6. Let (D, !;;;D) be a cpo, and let C1 , C2 be chains in (D, !;;;D).
(a) Show that if for all c 1 E C 1 there is a c 2 E C 2 such that

cl !;;;D c2, then ucl !;;;D uc2.
(b) Show that if for all c1 E C1 there is a c2 E C2 such that

C 1 !;;;D c2, and if for all C2 E C2 there is a c1 E C1 SUCh that
Cz !;;;D cl' then ucl = UCz.

7. Let(D, !;;;D),(E, !;;;E)becpos,andletCbeachainin(D X£, !;;;Dx£).
Show that UC = U(C ~ 1 XC ~2).

8. (a) Let (D, !;;;D), (£, !;;;£) be partial orders such that the largest
chain in (D, !;;;D) has m E N elements and the largest chain in
(E, !;;;£) has n E N elements. What is the size of the largest
chain in (D X E, !;;;Dx£)?

(b) Let (D1, !;;;D)• ••. , (Dn, !;;;D) be partial orders such that the
largest chain in (D;, !;;;D.) has m; E N elements, 1 ~ i ~ n.
Prove by induction on n that all chains in

(DI X ••• X Dn' !;;;D X·. ·XD)
I "

are finite.

484 Chapter 16 Approximation Orderings

9. Let D be a set with m E N elements, and let (E, !;;;E) be a partial
order in which the largest chain has n E N elements. What is the size
of the largest chain in (D ~ E, !;;;D_,E)?

10. Let D be a set and (E, !;;;E) a partial order. Show that (E, !;;;E) is a
cpa if and only if (D ~ E, !;;;D_,E) is a cpa.

II. Let (D, !;;;v), (E, !;;;E) be cpos. Show that

(<D X E)~ (D X E), !;;;(DXE)->(DXE))

is a cpa.

12. Let D be a set and (E, !;;;E) a cpa. Show that

(<D ~E)~ (D ~E), !;;;(D->E)->(D->E))

is a cpa.

13. Let D be a set, let E r;;,D, let g>E(D) ={A E.9(D)I E r;;,A}, and
let r;;,Y'E<D> be the restriction of r;;,Y'<D> to .9E(D). Show that
(.9iD), r;;,9'£<D>) is a cpa.

14. For sets D, E, let D ~ E be the set of all partial functions f on D
p

such that the range off is a subset of E, and let r;;,D E be defined
as follows: for all f, g ED --; E, f r;;,D 7 E g if and only lf f r;;, g. Show
that (D ~ E, r;;,D E) is a cpa. [Hint: Note that D ~Eisa subset of

p p p

.9(D X E) and r;;,D 7 E is the restriction of r;;,Y'(D xEJ to D --;E.]

15. (a) Give a partial order (D, !;;;D) and a chain C in (D, !;;;D) such that
C is not an ideal.

(b) Give a partial order (D, !;;;D) and an ideal I of (D, !;;;D) such
that I is not a chain.

16. Let (D, !;;;v) be a partial order.
(a) Show that if (D, !;;;D) has a bottom element, and if UE exists for

every directed set E r;;, D, then (D, !;;;D) is a cpa.
(b)* Show that if (D, !;;;D) is a cpa, then UE exists for every directed

set E r;;, D.

17. * Let (D, !;;;D), (E, !;;;E) be partial orders. The lexicographic ordering on
D X E, denoted !;;;L<D xE>, is defined

(d1 ,e1) !;;;L<DxEJ(d2 ,e2) ifandonlyif

d1 !;;;D d 2 or (d1 = d 2 and e1 !;;;E e2).

Show that if (D, !;;;D), (E, !;;;;;£)are cpos, then (D X E, !;;;L<DxE>) is a
cpa.

3. Complete Partial Orders 485

18.* For any sets D, E, a function f: D ~ E is onto if the range off is all
of E. Let (D, !;;;D), (E, !;;;E) be partial orders. An isomorphism from
(D, !;;;D) to (E, !;;;E) is a one-one, onto function f: D ~ E such that
d !;;;D d' if and only if f(d) !;;;E f(d') for all d, d' E D. (D, !;;;D),

(E, !;;;E) are isomorphic if there is an isomorphism from (D, !;;;D) to
(E, !;;;E). If f: D ~ E is one-one, then the inverse off, denoted r I'

is defined r I = {(e, d) E E X D I /(d) = e}.

(a) Show that iff is an isomorphism from partial order (D, !;;;D) to
partial order (E, !;;;E), then f- 1 is an isomorphism from (E, !;;;E)

to (D, !;;;D).

(b) Let (D, !;;;D), (E, !;;;E) be isomorphic partial orders. Show that
(D, !;;;D) is a cpa if and only if (E, !;;;E) is a cpa.

(c) Let D be a set with n E N elements and let (E, !;;;E) be a partial
order. Show that (En, ~·) and (D ~ E, !;;;D __.E) are isomorphic.

(d) Let (D, !;;;D), ••• , (Dn, ~) be partial orders, let A = {1, ... , n},
and let g-(i) = (D;, !;;;D), "1 ::; i ::; n. Show that (D 1 X ·•· X Dn,
!;;;D 1 x·. ·x D) and (ch(g-), ~h(£11)) are isomorphic.

19.* Let (D, !;;;D) be a partial order.
(a) Let I be a principal ideal generated by some d ED. Show that

I is an ideal of (D, !;;;D).

(b) Show that (D, !;;;D) and (pid(D), ~ id(D)) are isomorphic. [See
Exercise 18 for the definition of isofnorphic partial orders.]

20.* A partial order (D, !;;;D) is a lattice if U{d, e} and n{d, e} exist for
every d, e ED. It is a complete lattice if uE and nE exist for every
E~D.

(a) Give an example of a cpa that is not a lattice.
(b) Give an example of a lattice that is not a cpa.
(c) Let (D, !;;;D) be a lattice. Show that for every nonempty finite set

E ~ D, UE and nE exist.
(d) Show that for any set D, (!Jl!(D), ~Y"(D)) is a complete lattice.
(e) Show that for any set D,(!Jl!(D), 29"(D)) is a complete lattice.

21.* Let (D, !;;;D) be a partial order with D =F 0. (D, !;;;D) is bounded­
complete if UB exists for every B ~ D that has an upper bound in
(D, ~).
(a) Give an example of a cpa that is not bounded-complete.
(b) Give an example of a bounded-complete partial order that is not

a cpa.
(c) Show that every bounded-complete partial order has a bottom

element. [Hint: Consider U0.]

486 Chapter 16 Approximation Orderings

(d) Let (D, !;;;D) be a bounded-complete partial order. Show that for
every nonempty E ~ D, nE exists. [Hint: Consider the least
upper bound of U{d ED I d !;;;D e for all e E E}.]

(e) (D, !;;;D) is well-founded if every nonempty subset of D has a
least element. Prove that every nonempty well-founded partial
order is bounded-complete.

(f) Let (D, !;;;D), (E, !;;;E) be bounded-complete cpos. Show that
(D X E, !;;;DxE) is a bounded-complete cpo.

(g) Let D be a set and (E, !;;;E) a bounded-complete cpo. Show that
(D ~ E, !;;;D__. E) is a bounded-complete cpo.

22.* Let (D, !;;;D) be a cpo. An element d ED is compact (sometimes
called finite) if for every chain C in (D, !;;;D) such that d !;;;D u C,
there is a c E C such that d !;;;D c. The set of compact elements in
(D, ~) is denoted K(D). (D, !;;;D) is algebraic if for every dE D,
there is a chain C ~ K(D) such that d = u C.

(a) Let (D, !;;;D) be a cpo, let d E K(D), and let C be a chain in
(D, !;;;D) such that d = u C. Show that d E C. .

(b) Let (D, !;;;D) be a cpo in which every chain is finite. Show that
(D, !;;;D) is algebraic.

(c) Let D be a set. Show that (.9J(D), ~9'(D)) is an algebraic cpo.
(d) Give an example of a cpo (D, !;;;D), a compact d E K(D), and an

infinite chain C in (D, !;;;D) such that d = U C.

(e) Give an example of a cpo that is not algebraic.
{f) Show that if (D, !;;;D), (E, !;;;E) are algebraic cpos, then so is

(D X E, !;;;DxE).

(g) Let (D, !;;;D) be a partial order. Show that (id(D), ~id(D)) is an
algebraic cpo and that K(id(D)) = pid(D).

(h) Show that if (D, !;;;D) is an algebraic cpo, then (D, ~) and
(id(K(D)), ~id(K(D))) are isomorphic. [See Exercise 18 for the
definition of isomorphic partial orders.]

4. Continuous Functions

Consider a computable function f composed with a partially computable
function g applied to a number n, where g(n) i. How should we under­
stand the composition f(g(n))? One interpretation is that the computation
of g(n) never terminates, so f never gets a result from g(n) and f(g{n))
must be undefined. In fact, this is the treatment of composition given in
Chapter 3.

4. Continuous Functions 487

Definition. Let (D 1 , ~;;; 1), ••• , (Dn, ~), (E, !;;;;;£)be cpos with bottom ele­
ments ..L 01 , ... , ..L o., ..LE • A function f: D 1 X ••• X Dn ~ E is strict if
f(d1 , ••• , dn) = ..L E for all (d1 , ••• , dn) such that d; = ..L 0 for one or
more 1 ~ i ~ n. '

Let D1, ••• , Dn, E be sets, and let ((D) l. , ~;;;;(D,>"), 1 ~ i ~ n, and
(E l. , !;;;;;£) be the flat cpos on D 1 , •.• , Dn, E, with bottom elements ..L 0 ,

1 ~ i ~ n", and ..L E. For any partial function f on D 1 X ··· X Dn with
range contained in E, the strict extension fl. : (D 1) l. X ··· X (Dn) l. ~ E l.
of f is defined.

fl. (xl ' ... ' xn)

{

..LE if(x1 , ••• ,xn)f/=.D1 X···XDn

= ..LE if(xp···,xn) E D 1 X··· X Dn and f(x 1 , ••• ,xn)i

f(xl ' ... ' xn) otherwise.

Clearly any such fl. is strict. We have not defined what it means for a
function in N1 ~ N l. , for example, to be computable, but iff is partially
computable, then it certainly would be reasonable to consider fl. to be
partially computable. In the next chapter we will use strict functions in
some situations, but we will not require computable functions to be strict.
For example, the function g(x) = 3 for all x E N l. is not strict, but it
certainly should be considered computable. However, some restrictions on
computable functions appear to be reasonable.

Consider the elements (..L N , ..L N), (..L N , 3), and (7, 3) of N l. X N l. . If
(..L N , ..L N) approximates (7, 3) and (..L N , 3) better approximates (7, 3),
then we should expect a function f: N l. X N l. ~ N l. to behave such that
f(..L N , ..L N) approximates /(7, 3) and f(..L N , 3) better approximates /(7, 3).
That is, if a function gets more information to compute with, it should be
able to give a more informative result. It makes little sense, for our
purposes, to consider a function f such that, for example, f(..L N , ..L N) = 6,
f(..L N , 3) = 8, and /(7, 3) = ..L N • Since 6 and 8 are completely defined,
neither approximates the other, and since ..L N is completely undefined,
neither 6 nor 8 approximates ..LN. We formalize this notion as follows.

Definition. Let (D, ~;;;;0) and (E, ~;;;;£) be partial orders. A function
f: D ~ E is monotonic if, for all d, d' E D, d ~;;;; 0 d' implies f(d) ~;;;;£
f(d').

It is easy to see that any strict function f: N1 ~ N l. is. monotonic,
though the reverse is not necessarily true. (See Exercise 1.) Though we will
not require computable functions to be strict, we will certainly expect them
to be monotonic. For example, let eq: N l. X N l. ~ N l. be the equality

488 Chapter 16 Approximation Orderings

predicate on N _j_ , that is,

eq(x,y)={~ if X= y
if X-=/= y,

where as before 1 represents TRUE and 0 represents FALSE. Then eq is
not monotonic, since (..l N, ..l N) !;;;N xN (..l N, 0) and eq(..l N, ..l N) =
1 !;t N 0 = eq(..l N , 0). Now let <I> _j_ (~, y) be the strict extension of the
unive~sal function <l>(x, y) defined in Chapter 4, and let n _j_ be the strict
extension of the function n(x) = 0. Then for all x, y EN,

HALT(x,y) = eq(O,n_j_ (<I> _j_ (x,y))).

But we showed in Chapter 4 that HALT(x, y) is not computable, so if n _j_
and <I> _j_ are partially computable, then eq certainly is not.

We will make frequent use of the following simple theorem. First we
introduce a new piece of notation. Iff is a function with domain D, and
E ~ D, then f(E) denotes the set {f(e) I e E £}.

Theorem 4.1. Let (D, !;;;D), (£, !;;;E) be partial orders and f: D ~ E
monotonic. If Cis a chain in (D, !;;;D), then f(C) is a chain in (E, ~E).

Proof. Let f(d1),f(d2) E f(C). Then either d 1 !;;;D d2 , which implies
f(d 1) !;;;E f(d 2), or d2 !;;;D d1, which implies f(d 2) !;;;E f(d 1). •

Ordered sets like (N~ , !;;;N") are fairly simple, since all chains in
J.

(N~ , !;;;N") are finite, but when we go on to consider richer structures, we
J.

will require a property that is, in general, stronger than mono tonicity. Let
(D, !;;;D) and(£, !;;;E) be cpos, and let C be a chain in (D, !;;;D). C might be
an infinite set, so that we reach u C by way of an infinite chain of
approximations. For a function f: D ~ E we would like to be able to
reach f(UC) by way of the approximations {f(c) IcE C}.

Definition. Let (D, !;;;D) and (£, !;;;E) be partial orders. A function
f: D ~ E is continuous if, for any chain C in (D, !;;;D) such that u C exists,
Uf(C) exists and f(UC) = Uf(C). [D ~ E] denotes the set of all contin­
uous functions in D ~E. The continuous function space ordering on
[D ~ E] determined by(£, !;;;E), which is denoted !;;;[D~EJ' is the restric­
tion of !;;;D~E to [D ~ E].

Note that if (D, !;;;D) is a cpa then we can drop the reference to the
existence of u C.

4. Continuous Functions 489

Theorem 4.2. Let (D, !:;;;0), (E, !;;;;£)be partial orders, and let fED ~ E.

1. If f is continuous then it is monotonic.
2. If f is monotonic and C is a finite chain in (D, !:;;;0), then u C and

Uf(C) exist and f(UC) = Uf(C).
3. If all chains in (D, !:;;;0) are finite, then f is continuous if and only if

it is monotonic.

Proof. Let f be continuous, and let d 1 , d2 E D be such that d 1 !:;;; 0 d 2 •

Then U{f(d1), f(d 2)} = f(U{dp d 2}) = f(d2), so f(d 1) !;;;;£ f(d 2), and
therefore f is monotonic.

Now, let f be monotonic, and let C be a finite chain in (D, !:;;;0). Then
f(C) is a finite chain by Theorem 4.1, so UC and Uf(C) both exist by
Theorem 3.1. We have UC E C by Theorem 3.1, so f(UC) Ef(C), which
implies f(UC) !;;;;£ Uf(C). Also, c !:;;; 0 U C for all c E C implies f(c) !;;;;£
f(U C) for all c E C by the monotonicity of f, so that f(u C) is an upper
bound of f(C). Therefore Uf(C) !;;;;£ f(UC), and we have f(UC) =
uf(C) by the antisymmetry of !;;;;£.

Finally, part 3 follows immediately from parts 1 and 2. •

Suppose (D, !:;;;0), (E, !;;;;£) are cpos, f: D ~ E is monotonic, and C is a
chain in (D, ~).Then UC exists, and f(C) is a chain by Theorem 4.1, so
.Uf(C) exists. Therefore, in these circumstances we can drop the reference
to the existence of both u C and Uf(C). The following theorem simplifies
matters a bit further and suggests a technique for proving continuity that is
often more convenient than going to the definition.

Theorem 4.3. Let (D, !:;;;0), (E, !;;;;£) be cpos, and let f E D ~ E. Then f
is continuous if and only if: (1) f is monotonic, and (2) f(u C) !;;;;£ U f(C)
for all chains C in (D, ~).

Proof. Let f be monotonic and let C be a chain in (D, ~).Then for all
c E C, c !:;;; 0 u C implies f(c) !;;;;£ f(U C), so f(U C) is an upper bound of
f(C) and Uf(C) !;;;;£ f(UC). Then by assumption (2) we have f(UC) =
Uf(C), and f is continuous. The other direction follows from Theorem
u •

It follows from Theorem 4.2 and Exercise 3.8 that in N1 ~ N _j_ , for
instance, monotonicity and continuity are equivalent properties. In gen­
eral, however, they are not. For example, let T: (N _j_ ~ N _j_) ~ N _j_ be
defined

T(f) = (1
..l_N

if f(n) -=!= ..l N for all n E N

otherwise .

490 Chapter 16 Approximation Orderings

That is, T(f) is true just in case f is a total function when its domain and
range are restricted to N. We will simply say that f is a total function. T is
monotonic since for any g, h EN_~_~ N _~_,if g !;;;N N h then either g
is not total and T(g) = ..l N !;;;N T(h), or g is totat whi'ch implies that h
must be total, so that T(g) = 1 ~ T(h). However, T is not continuous. For
all m EN, let nm: N _j_ ~ N _j_ be the "step function" defined by

{
..l N if X = ..l N

nm(x) = 0 if x-=/= ..l N and 0 ~ x ~ m
..l N if X -=/= ..l N and X > m.

Then {nm I m EN} is a chain, and T(nm) = ..l N for all m EN, so
U{T(nm) I m EN}= ..lN. But (U{nm I m E N})(x) = 0 for all x EN, so
T(u{nm I m EN})= 1.

In the next chapter continuity will play a major role in our treatment of
computable functions.

With the help of the following lemmas we can prove a version of
Theorems 3.7 and 3.8 for continuous functions.

Exchange Lemma. Let (D, !;;;D) and(£, !;;;E) be partial orders, let (F, ~)
be a cpa, let f: D X E ~ F be monotonic, and let C1 and C2 be chains in
(D, !;;;D), (E, !;;;E), respectively. Then

U{U{f(x,y) I y E C2 } I x E C1}, U {U{f(x,y) I x E C1} I y E C2 }

exist, and they are equal.

Proof. For all c1 E C1 , {f(c1 , y) I y E C2} is a chain by the monotonicity
of the unary function f(c 1 , y) and Theorem 4.1, so u{f(cp y) I y E C2}

exists. Also, if cl 'c'l E cl and cl !;;;D c'l' then for all Cz E Cz'

f(c 1 , c2) !;;;F f(c'1 , c2) !;;;F U {f(c;, y) I y E C2},

so U {f(c 1 , y) I y E C2} !;;;F U {f(c'1 , y) I y E C2}. Therefore,

{U{f(x,y) I y E C2} I x E C1}

is a chain and u { u {f(x, y) I y E C2} I x E C1} exists. A similar argument
holds for U{ u{f(x, y) I X E Cl} I y E Cz}.

Let cl E cl. Then for all Cz E Cz,

f(c 1 ,c2) !;;;F u{f(x,c2)lx E C1} !;;;F u{u{f(x,y)lx E C1}ly E C2},

so

4. Continuous Functions 491

But (4.1) is true for all c 1 E C1 , so

U{U{f(x,y) I y E Cz} I X E c,} !;;;F u {u{f(x,y) I X E c,} I y E Cz}.

Similarly,

u{u{f(x,y)lx E c,}ly E Cz} !;;;F u{u{f(x,y)ly E Cz}lx E c,},

so the lemma follows by the antisymmetry of !;;;F • •
Let (D, !;;;D),(£, !;;;;£)be cpos and define apply: ([D ~ E] X D) ~ E by

apply(/, d) = f(d).

Then apply is monotonic, since if (f, d 1) !;;;ID EJxD (g, d 2), then

apply(/, d 1) = f(d 1)

!;;;E g(d 1) since f !;;;[D EJ g

!;;;E g(d2) since d1 !;;;D d2 and g is monotonic

= apply(g,d2).

Now we can prove

Theorem 4.4. If (D, !;;;D) and(£,!;;;;£) are cpos, then ([D ~ E], !;;;[D->EJ)
is a cpa. Moreover, if :F is a chain in ([D ~ E], !;;;[D->EJ), then (u:F)(d)
= U(:T(d)) for all dE D.

Proof. The bottom element ..l D E defined in the proof of Theorem 3.8
is continuous, so [D ~ E] has a bottom element. By Theorem 3.11, we
only need to show that for all chains :F in ([D ~ E], !:;;;1 D EJ), u D E :FE
[D ~ E], that is, the least upper bound of :Fin (D ~ E, !;;;D E), which we
know to exist by Theorem 3.8, is continuous. Let :F be a chain in
([D ~ E], !;;;[D->EJ) and let C be a chain in (D, !;;;D). Then

(UD_,E!F)(UC)

= U{f(UC)I/E!F} byTheorem3.7

= U{U{f(c)lc E C}IJE!F} since each f E :F is continuous

= u { u {apply(/, c) I c E C} If E :F}

= u { u {apply(/, c) I f E !F} I c E C} by the exchange lemma

= u{u{f(c)I/E!F}Ic E C}

= U{(UD_,E!F)(c)lc E C}

= U((UD_,E!F)(C)),

by Theorem 3. 7

so UD_, E:Fis continuous, and ([D ~ E], !;;;[D->EJ) is a cpa. •

492 Chapter 16 Approximation Orderings

We conclude this section with a result that will be applied in the next
chapter. (Also, see Exercise 5.10.) The proof is very similar to the proof of
the exchange lemma, so we leave it to Exercise 13.

Diagonal Lemma. Let (D, i;;;D) be a partial order and (E, i;;;E) a cpo, let
f: D X D ~ E be monotonic, and let C be a chain in (D, ~:;;;D). Then

u{u{f(x,y)ly E C}lx E C} = u{f(x,x)lx E C}.

Exercises

1. Let (D 1 , I;;;D,), ••. , (Dn, I;;;D"), (£, !;;;£) be flat cpos.
(a) Show that every strict function in D 1 X ··· X Dn ~ E is mono­

tonic.
(b), Give an example of a monotonic function in D 1 X ... X Dn ~ E

that is not strict.
(c) Give a partial order (D, i;;;D) and a strict function in D ~ D

that is not monotonic.

2. Let f: N l ~ N j_ satisfy

where h: N';'_ ~ N j_ and g;: Nl ~ N j_ , 1 ~ i ~ n, are strict. Show
that f is strict.

3. Let (D, ~;;;D),(£,~:;;;£) be partial orders, let e E £,and let fe: D ~ E
be the constant function f/d) = e. Show that fe is continuous.

4. Let (D, i;;;D) be a partial order, and let IdD: D ~ D be the identity
function IdD(d) =d. Show that IdD is continuous.

5. Let (D 1 , i;;;D,), ..• , (Dn, i;;;D") be partial orders. Show that for 1 ~ i ~
n, the projection function ~ i: D 1 X ··· X Dn ~ D; is continuous.

6. Let D, E be sets, let fED ~ E, and define /: /Ji!(D) ~/Ji!(£) as
/(A) = {f(a) I a E A}. Show that /is continuous.

7. Let (D, i;;;D), (£, ~:;;;£), (F, i;;;F) be cpos, and let

o: [£ ~ F] X [D ~ E] ~ (D ~F)

be the composition operator on continuous functions. Show that the
composition of continuous functions is a continuous function. That is,
for all f E [£ ~ F], g E [D ~ E], show that f o g E [D ~ F].

4. Continuous Functions 493

8. Let (D, i;;;D), (E1 , i;;;£1), ••• , (En, i;;;E) be cpos, and define the func­
tion construct: [D ~ E 1] X ... X [D ~En] ~ (D ~ (E1 X ··· X

E)) as

Let J: E [D ~ E;], 1 :o:; i :o:; n. Show that construct(f1 , ... ,f) E
[D ~ (E1 X ... X En)].

9. Let (D, i;;;D), (E, i;;;E) be cpos, and let applyn: [D ~ E] ~ (Dn ~ En)
be defined as applyn(f)(dp ... ,dn) = (f(d 1), ... ,f(dn)).

(a) Let f E [D ~ E]. Show that apply/f) E [Dn ~ P].

(b) Show that applyn E [[D ~ E] ~ [Dn ~ P]], i.e., applyn is con­
tinuous.

10. Let (D, i;;;D), (E, i;;;E), (F, i;;;F) be cpos and define curry: [D X E ~
F] ~ (D ~ (E ~ F)) as curry(f)(d)(e) = f(d, e). Let f E [D X

E ~ F] and d E D.

(a) Show that curry(f)(d) E [E ~ F].

(b) Show that curry(/) E [D ~ [E ~ F]].

(c) Show that curry E [[D X E ~ F] ~ [D ~ [E ~ F]]].

11. Let (D, ~:;;;D), (E, ~:;;;£) be cpos, let D ---; E be the set of all strict
functions in D ~ E, and let i;;;D ~ E be the restriction of i;;;D ~ E to
D ~ E. Show that (D ---; , ~:;;; D ~ ;) is a cpo.

s ~

12. Let (D, i;;;D), (E, i;;;E) be cpos, let D -;;: E be the set of all monotonic
functions in D ~ E, and let i;;;D ~ E be the restriction of i;;;D ~ E to
D -;;: E. Show that (L -;;: E, ~:;;;D ~ ~) is a cpo.

13. Prove the diagonal lemma.

14.* Let (D, !;;;D), (E, !;;;£)be isomorphic cpos, and let f be an isomor­
phism from (D, i;;;D) to (E, i;;;E). Show that f is continuous. [See
Exercise 3.18 for the definition of isomorphic partial orders.]

15.* Let (Dp i;;;D 1), ... ,(Dn, ~;;;D), (E, !;;;£)be partial orders and let fE
D 1 X ... X Dn ~E. We say that f is monotonic (continuous) in the
ith position, 1 :o:; i :o:; n, if for all dj E Dj, 1 :o:; j :o:; n and j =F i, the
unary function f(d 1 , ••• ,d;_ 1 ,x,d;+ 1 , ••• ,dn) is monotonic (respec­
tively, continuous).
(a) Let (D, i;;;D), (E, i;;;E), (F, i;;;F) be cpos, let f: D X E ~ F be

monotonic, and let C be a chain in (D X E, i;;;Dx E). Show that
U{U{f(x, y) I x E C U} I y E C ~2} and Uf(C) exist, and that

u{u{f(x,y) I x E C ~ 1} I y E C ~2} = Uf(C).

494 Chapter 16 Approximation Orderings

(b) Let (D, !;;;D), (£, !;;;E), (F, !;;;F) be cpos, and let f E D X E ~ F.
Use part (a) to show that f is continuous if and only if f is
continuous in the first and second positions.

(c) Let (D, !;;;D) and (£, !;;;E) be cpos. Show that the function
apply: ([D ~ E] X D) ~ E is continuous.

(d) Show that o, defined in Exercise 7, is continuous.
(e) Generalize part (b) so that it applies to n-ary functions, n ~ 1.

(f) Show that construct, defined in Exercise 8, is continuous.

16.* A Scott domain is a bounded-complete algebraic cpa. [See Exercises
3.21 and 3.22 for the definitions of bounded-complete and algebraic
cpos.]

(a) Show that if (D, !;;;D), (£, !;;;E) are Scott domains, then so is
(D X E, !;;;DXE).

(b)

(c)
Show that (N _]_ ~ N _]_, !;;;N N) is a Scott domain.

" " Show that if (D, !;;;D), (E, !;;;E) are Scott domains, then so is
([D ~ E], !;;; 1D EJ). [Hint: For each dE K(D), e E K(£), de­
fine (d ~ e): D ~ E as

(d ~e)(x) = {~E if d !;;;D X

otherwise.

Show that every function (d ~ e) is continuous and compact.
Then show that for every d 1 , ... , dn E K(D) and e1 , ... , en E

K(E), the function (d1 ~ e1) U ··· U (dn ~en) is continuous
and compact. Use these functions to show that ([D ~ E],
!;;;;; (D EJ) is algebraic.]

(d) Give an algebraic cpo (D, !;;;D) such that ([D ~ D], !;;; 1D DJ) is
not algebraic.

5. Fixed Points

We will now prove a fundamental theorem that will facilitate our work on
denotational semantics.

Definition. Let (D, !;;;D) be a partial order, and let fED ~D. An
element d ED is a fixed point of f if f(d) = d, and it is the least fixed
point off in (D, !;;;D) if d !;;;D e for every fixed point e ED of f. The least
fixed point off in (D, !;;;D), if it exists, is denoted IL(D, r;;;; 0 /.

We will generally omit the subscript and write 11-f when the partial
order (D, !;;;D) is understood.

5. Fixed Points 495

Fixed points play a fundamental role in denotational semantics, and
continuity is important because it allows us to guarantee the existence of
least fixed points. Before we can prove the fixed point theorem, we need
some notation and a lemma. Let D be a set and let fED ---+D. For each
n EN we define a function fn: D ---+ D, called the nth iteration of f, as
follows:

fo(x) = x

r+ 1(x) = f(r(x)).

Note that these equations can also be understood as defining a single
binary function JY(x): D X N ---+ D.

Lemma 1. Let (D, !;;;D) be a partial order with bottom element ..l D , and
let f: D ---+ D be monotonic. Then r< ..l D) !;;;D r + 1(..l D) for all n E N,
and <r< ..l D) In E N} is a chain in (D, !;;;D).

Proof. First we argue by induction on n that r<..L D) !;;;D r+m(..l D) for
all n, m EN. If n = 0, then / 0(..l D) = ..l D !;;;D fm(..l D), so assume
r<..L D) !;;;D r+m(..L D) for all m EN. Then for any m EN,

r+ I(..l D)= f(r(..l D))
!;;;D f(r +m(..l D)) by the induction hypothesis and

the monotonicity of f

The lemma now follows immediately. •
Theorem 5.1 (Fixed Point Theorem for cpos). Let (D, !;;;D) be a cpo,
and let f: D ---+ D be continuous. Then the least fixed point J.t.f exists, and
J.l.f = u{r(..l D) In EN}.

Proof. By Lemma 1, <r< ..l D) In E N} is a chain, so u <r< ..l D) In E N}
exists. Moreover, u <r< ..l D) In E N} is a fixed point off, since

f(u{r(..LD)In EN})

= Uf({r(..l D) In EN}) by the continuity of f

u{fn+l(..l D) In EN}

u(<r+ 1(..LD)In EN} u {f0 (..LD)})

496 Chapter 16 Approximation Orderings

Finally, if e is any fixed point of J, then we argue by induction on n that
r<l_ o> !;;;D e for all n EN. If n = 0 then / 0(1_ o> = j_ D !:o e, so as­
sume r< j_ o> !;;;D e. Then

r+l(l_o)= f(r(l_D))
!:;;; 0 f(e) by the induction hypothesis and

the monotonicity of f
= e since e is a fixed point of J,

so e is an upper bound of {r(1_ 0) I n E N}. Therefore,

u{r{l_ 0)ln EN} !:;;; 0 e,

and u {r(1_ 0) I n E N} is the least fixed point of f. •
The fixed point theorem has a variety of applications. One, as we will

show in the next chapter, is to justify recursive definitions of functions.
Another is to justify inductive definitions of sets. Consider, for example,
the definition of propositional formulas in Chapter 12. For simplicity we
let .91', the set of atoms, be {p, q}, and we consider only formulas with the
connectives ..., and :::) , so that the alphabet B = {p, q, ..,, :::) , (,)}. An
alternative statement of the definition of propositional formulas over .91' is
the following: the set of propositional formulas over .91' is the smallest (with
respect to ~) subset of B* that

1. contains .91',
2. is closed under the operation that transforms a to ..., a, and
3. is closed under the operation that transforms a and {3 to (a :::) {3).

In other words, the set of propositional formulas over .91' is the smallest set
X ~ B* that satisfies

.91' U {...,a I a EX} U {(a:::) {3) I a, {3 EX} ~X. (5.1)

Moreover, since (5.1) would still be satisfied if any element of X not
required by 1, 2, or 3 were removed, and since we are looking for the
smallest X which satisfies (5.1), we can rewrite (5.1) as the equality

X =.91' U {...,a I a EX} U {(a:::) {3) I a, {3 EX}. (5.2)

One way of looking at this equation is to consider the right side as a
function <1>: 9'{B*) ---+ 9'{B*) that takes subsets Z ~ B* and transforms
them to

<I>(Z) =.91' U {...,a I a E Z} U {(a:::) {3) I a, {3 E Z}.

A solution to (5.2), then, is some X such that, when <I> is applied to X, the
result is still X; that is, X is a fixed point of <1>. For example, let Z be

5. Fixed Points 497

some arbitrary fixed point of <1>. Then

Z = <I>(Z) =~ U {-,a I a E Z} U {(a:::) {3) I a, {3 E Z},

so Z is a solution to (5.2).
Now, the definition calls for the smallest such set, i.e., JL<I>, so for the

definition to make sense we need to know that JL<I> exists. This is where
the fixed point theorem is useful. We have already shown that the partial
order (!Jl!(D), ~9"<D>) is a cpo for any set D, so (9'(8*), ~9"<8 .>) is a cpo.
If <I> is continuous then JL<I> exists by the fixed point theorem. Let '(? be a
chain of subsets of 8*. Then U'(f = U'(f in (9'(8*), ~9"(8 .>), and

<I>(U'(f) =~ U {-,a I a E U'lf} U {(a:::) {3) I a, {3 E U'(f}

=~ U (U {{-,a I a E C} ICE 'lf})

U (U {{(a :::) {3) I a, {3 E C} I C E 'lf})

U {~ U {-,a I a E C} U {(a:::) {3) I a, {3 E C} ICE '(f}

U{<I>(C) IcE '(f}

u <I>('(f)'

so <I> is continuous, and JL<I> exists.
Note that, although the preceding definition of the set of propositional

formulas mentions the operations that transform a to -, a and a, {3 to
(a :::) {3), no mention is made of a process of building up the set from ~
by repeated application of these operations. The set we define is simply a
certain solution to a certain equation. On the other hand, the definition
given in Chapter 12 does mention repeated applications of these opera­
tions. The fixed point theorem, which not only tells us that JL<I> exists, but
also that JL<I> = u{<l>;(0) I i EN}, makes the connection between these
two versions of the definition. <1>(0), <1> 2(0), ... , are subsets of JL<I> built
up by ever more applications of the formula building operations.

Another way of formalizing the notion of "repeated applications" is to
give a context-free grammar 2 r such that L(f) is the set of propositional
formulas over ~. In particular, let f consist of the productions

s~.s s~p

S ~ (S :::) S) S ~ q,

2 The reader who is unfamiliar with Chapter 10 may skip to the definition of admissible
predicates.

498 Chapter 16 Approximation Orderings

where S is the start symbol. By definition, L(f) = {u E B* IS ~ u}. Sup­
pose a, {3 E L(f). Then S ~ a and S ~ {3, which implies

S = (S :::> S) ~ (a:::> S) ~ (a:::> {3),

so (a :::> {3) E L(f). Similarly, if a E L(f), then S = ..., S ~ ..., a and
..., a E L(f).

It seems, then, that L(f) is the set of propositional formulas over .w', but
how can we prove it? By Theorem 1.4 of Chapter 10, a E L(f) if and only
if there is a derivation tree for a in f. We define the height of a derivation
tree g; denoted h(.9), as follows. If ::T consists of exactly one vertex, the
root, then h(.9) = 1. If ::T consists of a root with successors v1 , ••• , vn,
then

h(::T) = max{h(!:T"'), ... , h(!:T"")} + 1,

where ::T"; is the subtree of ::T with root v;, 1 ~ i ~ n. For each n E N, we
define

Ln = {u E B* I there is a derivation tree ::Tfor u in r with h(::T) ~ n + 1}.

Clearly, L(f) = Un EN Ln. If we can show that cl>n(0) = Ln for all
n E N, then we will have

JLcl> = un EN cl>n(0) = un EN Ln = L(f).

If n = 0 then <1> 0(0) = 0 = L 0 , since the only derivation tree of height 1
with root S does not yield a word in B*. For n > 0 we argue by induction
on n. If n = 1 then <1> 1(0) = {p, q} = L 1 • For n + 2 we have

cl>n+2(0) = cl>(cl>n+l(0))

= ci>(Ln+ 1) by the induction hypothesis

= {p,q} U {-,a I a E Ln+l} U {(a:::> {3)1 a,{3 E Ln+l}.

Also, it is clear from the definition of Ln + 2 and the nature of f that

Ln+Z = Ln+! U {...,a I a E Ln+l} U {(a:::> {3) I a, {3 E Ln+l}.

Since {p,q} ~Ln+l• we have cl>n+ 2(0) ~Ln+Z· On the other hand, by
Lemma 1 we have Ln+ 1 = ci>n+ 1(0) ~ cl>n+ 2(0), which implies Ln+Z ~
ci>n+ 2(0), and so we have cl>n+ 2(0) = Ln+Z• completing the induction and
the proof that JL<I> = L(f).

These various treatments of the definition of propositional formulas
help to illustrate some of the ideas in the next two chapters. On the one
hand, we have an abstract mathematical characterization of the set of
propositional formulas as the smallest solution to equation (5.2). On the
other hand, we have L(f) = {u E B* IS ~ u}, the set of words generated

5. Fixed Points 499

from S by derivations in f. We can give a "deterministic" characterization
of L(f) as the set of words in B* for which there exists a leftmost
derivation from the start symbol. A somewhat more abstract characteriza­
tion of the same set is Un eN Ln, which is given in terms of derivation
trees, without any reference to the details of the choices made in the
construction of derivation sequences. In the terminology of semantics, #Let>
is a denotational definition, and L(f) is an operational definition. The link
between JLcl> and L(f) is given by the fixed point theorem and its
characterization of JLcl> as u{ct>i(0) I i EN}.

A useful tool for reasoning about fixed points is embodied in the fixed
point induction principle.

Definition. Let (D, !;;;D) be a cpo. A predicate P(x) on D is admissible if
the following holds for all chains C in (D, !;;;D):

if P(c) for all c E C, then P(UC).

Theorem 5.2 (Fixed Point Induction Principle). Let (D, !;;;D) be a cpo,
f: D ~ D a continuous function, and P(x) an admissible predicate on D.
If

1. P(l_ D), and
2. P(fi(..l D)) implies P(l + 1(..l D)) for all i E N,

then P(JLJ}.

Proof. Ordinary induction shows that P(l(..l D)) holds for all i E N. The
set {l(..iD)IiEN} is a chain by Lemma 1, so P(U{l(..iD)IiEN})
holds by the admissibility of P(x), and of course u{fi(..l D) I i EN} = JLf.

•
For example, suppose we define Y as the smallest subset of B* that

1. contains {p, q, -, p, -, q},
2. is closed under the operation that transforms a to -, a,
3. is closed under the operation that transforms a and {3 to (a :::) {3).

Is Y equal to the set of propositional formulas over Sit'? Let

'I'(Z) = {p,q, -,p, -,q} U {-,a I a E Z} U {(a:::) {3) I a, {3 E Z}.

'I' is continuous, by an argument almost identical to the argument that cl>
is continuous, so JLW exists. The question, then, is whether JLW = JLcl>. We
argue by fixed point induction that JLW ~ JLcl>. Let P(X) be the predicate
X~ JLcl>. P(X) is admissible, since if %' is a chain in (.9(B*), ~9"(B*>)
and C ~ JLcl> for all C E %', then clearly u %' ~ JLcl>. The bottom element

500 Chapter 16 Approximation Orderings

of (.9'(B*), ~9'(8 .>) is 0, and 0 ~ JL<I>. Also, if '1';(0) ~ JL<I>, then

-qri+l(0) = 'l'('l'i(0))

~ W(JL<I>) by the induction hypothesis and the monotonicity of 'I'

= {p,q, -,p, -,q} U {-,a I a E JL<I>} U {(a:::> f3) I a, {3 E JL<I>}

= {p,q} U {-,a I a E JL<I>} U {(a:::> {3) Ia, {3 E JL<I>}

since -,p, -,q E {-,a I a E JL<I>}

= <I>(JL<I>)

= JL<I>.

Therefore, by the fixed point induction principle, we have JLW ~ JL<I>. A
similar induction argument on the admissible predicate X~ JLW shows
that JL<I> ~ JLW, so we have JLW = JL<I>. The point is that both definitions
characterize the same set, and the second definition, with its unnecessary
reference to -, p and -, q, can be simplified to the first definition. When
fixed points are used to define the meaning of programs, the same
technique can be used to show that two programs are equivalent, or to
simplify programs.

For sets defined like the set of propositional formulas over .91, fixed point
induction is closely related to a form of induction known as structural
induction. Let P(x) be a property of propositional formulas over .91 (rather
than sets of formulas). If

1. P(a) for every a E .91',
2. P(a) implies P(-, a) for all propositional formulas a over .91,
3. P(a) and P({3) implies P((a :::> {3)) for all propositional formulas a,

{3 over .91,

then the structural induction principle allows us to conclude P(a) for all
propositional formulas a over .91. The assumptions P(a) and P({3) in 2
and 3 are the structural induction hypotheses. To see why the conclusion is
valid, let P(X) be the property on sets of propositional formulas over .91
defined

P(A) ifandonlyif P(a)forall a EA.

P(X) is admissible: if '?? is a chain in (.9'(B*), ~9'(8 .>) and P(C) for all
C E '??, then for each C E ~ we have P(a) for all a E C, which implies
P(a) for all a E u~, that is, P(U~). Now, assumptions 1, 2, and 3
enable us to prove

• P(0),
• P(<l>i(0)) implies P(<t>i+ 1(0)) for all i EN,

5. Fixed Points 501

from which we conclude, by fixed point induction, P(JLcf>), i.e., P(a) for all
a E JLcf>, the set of propositional formulas over .91'. We will give several
structural induction arguments in the next chapter.

The reader will recall that we proved a theorem in Chapter 4 that was
also called a fixed point theorem. The two are closely related. The
recursion theorem from Chapter 4 is sometimes called, for historical
reasons, the second recursion theorem. In fact, the earlier fixed point
theorem, which follows from (and just as easily implies) the second
recursion theorem, is itself sometimes called the second recursion theorem.
The fixed point theorem in this chapter is a version of a classical theorem
from computability theory that is sometimes called the first recursion
theorem.

The names of these two recursion theorems come from the fact that
they can both be used in proving functions to be partially computable,
particularly functions defined by recursion. However, there is a significant
distinction between the two theorems. The fixed point theorem in this
chapter gives a fixed point for each continuous function on a cpo. In
particular, if F: [N _]_ ~ N _]_] ~ [N _]_ ~ N _]_] is continuous, then we get a
function f E [N _]_ ~ N _]_]such that F(f) =f. On the other hand, the fixed
point theorem in Chapter 4 is more directly concerned with programs than
functions. A computable function g gets the effect of transforming a
function cf>#(9'J to the function cf>g(#(9")) by acting on the (code of the)
program that computes cf>#Wl, and the fixed point theorem in Chapter 4
gives a program tff such that cf>*<"> = cf>g(#(<f)). It would be reasonable,
then, to call that earlier theorem a syntactic fixed point theorem and to
call the current theorem a semantic fixed point theorem.

Just as the second recursion theorem gives a partially computable
function cf>*<"> that satisfies cf>#(<fl = cf>g(#(<f)), so too does the first recur­
sion theorem give, for the appropriate kind of F, a partially computable
JLF. We will say no more about the first recursion theorem in its classical
form (other than to direct the reader to Exercise 11), but as we shall see,
the main point of the next chapter is to use the fixed point theorem for
cpos to define partially computable functions.

Exercises

1. Give functions f, g, h: N _]_ ~ N _]_ such that
(a) f has no fixed points;
(b) g has exactly one fixed point;

(c) h has infinitely many fixed points.

502 Chapter 16 Approximation Orderings

2. Give a function f: N _L ~ N _L such that f is not continuous and JL!
exists.

3. Give a partial order (D, !;;;D) and a function f: D ~ D such that f is
continuous, f has at least one fixed point, and JL! does not exist.

4. Give a fixed point characterization of the set of W-terms defined at
the beginning of Chapter 13, where W is some vocabulary.

5. Let (D, !;;;D) be a cpa, let f E [D ~ D], let E = {e ED I f(e) = e},
and let !;;;;;£ be the restriction of !;;;D to E. Show that (E, !;;;E) is a
cpa.

6. Let (D, !;;;D) be a cpa.

(a) Let P(X) be the predicate on fJIJ(D) defined "X is a finite set."
In the context of (fJIJ(D), ~9"<D>), is P admissible?

(b) Let Q(X) be the predicate on fJIJ(D) defined "X is an infinite
set." In the context of(fJIJ(D), ~9"(D)), is Q admissible?

(c) Let R(f) be the predicate on D ~ D defined "f is strict." In
the context of (D ~ D, !;;;D D), is R admissible?

7. Let (D, !;;;D), (E, !;;;E) be cpos, let P(x), Q(x) be admissible predi­
cates on D, and let R(x, y) be an admissible predicate on D X E.

(a) Show that P(x) & Q(x) is admissible.

(b) Show that P(x) v Q(x) is admissible.

(c) Show that (Vd E D)R(d, y) is an admissible predicate on E.

8. * (a) Let r be a context-free grammar with variables 'F and termi­
nals T. Give a fixed point characterization of L(f). [Hint:
Define a function <I> such that JL<I>(V) = {w E T* I V ~ w} for
all V E 'F.]

(b) Let f be the grammar with 'F= {S}, T = {a}, and the single
production S ~ aSa. Show by fixed point induction that L(f) =
0.

9.* Let (D, !;;;D) be a complete lattice, and let f: D ~ D be monotonic.
Show that JL! exists and that JL! = n{d ED I f(d) !;;;D d}. [See Exer­
cise 3.20 for the definition of complete lattices.]

10.* Let (D, !;;;D) be a cpa, and define f.LD: [D ~ D] ~ D as f.LD(f) = JL!
for all JE [D ~ D].

(a) Let f, g E [D ~ D], and suppose f !;;;!D DJ g. Show by induc­
tion on n that r !;;;(D D) gn for all n EN.

(b) Let :F be a chain in ([D ~ D], !;;;(D->DJ). Show by induction on
n that (ug-)n = u{r If E :F}. [Hint: Use the diagonal lemma.]

5. Fixed Points 503

(c) Show that JLv is continuous. [Hint: Use parts (a) and (b) and the
exchange lemma.]

11.* As in Exercise 3.14, N ~ N is the set of all partial functions on N.
For each finite function Pe = {(x1 , y 1), ••• , (xn, Yn)} in N ~ N, n ~ 0,

- p
we encode e as e E N, where

li = O'! pY;+l
v z= 1 X; •

A function F: (N ~ N) ~ (N ~ N) is a recursive operator if there is
some partially cooi'putable function h(y, x) such that

F(g) (x) = z if and only if h(O, x) = z for some e ~g.
(a) Let G:(N--; N) ~ (N--; N) be defined G(f)(x) = 2 ·f(x).

Show that G is a recursive operator.
(b) Show that every recursive operator is monotonic and continuous.
(c) Show that, if F is a recursive operator, then there is a com­

putable function f such that F(<I>) = <l>f<x> for all x E N.
(d) (First Recursion Theorem) Prove that, for every recursive opera­

tor F, p,F exists and is partially computable.

17

Denotational Semantics
of Recursion Equations

1. Syntax

Now that we have developed a theory of approximation orders, we can
define recursion equations and give them a denotational semantics. The
operational semantics, given in the next chapter, will show that the
functions defined by recursion equations are, in a reasonable sense,
computable.

As in Chapter 13,1 where we defined the terms and formulas of
quantification theory, we begin with a small alphabet

A= {t,x,f,l, X,-,#,(,,),=}

of symbols that are always available. The members of

VART = {tl1i 11 i EN}

are type variables, and a type is

• a type variable, or
• T 1 X ··· X Tn, n ~ 1, where T 1 , •.• , Tn are type variables, or
• T 1 X ··· X Tn-T, n ~ 1, where T 1 , ••• , Tn, T are type variables.

1 Knowledge of Chapter 13 is not assumed, but there is a substantial overlap in the
treatment of the syntax and semantics of terms.

505

506 Chapter 17 Denotational Semantics of Recursion Equations

These three kinds of types are individual types, product types, and function
types, respectively. For a given T EVART, the members of VARI =
{x#T#I1;1 I i E N} are individual variables of type T, and

U VARI

is the set of all individual variables. For a function type T1 X ··· X Tn-T,
the members of

VAR~,x ... XT.-T = {f#T1 X··· X Tn -T#IIi] I i EN}

are the function variables of type T1 X ··· X Tn -T, and

is the set of all function variables. Also, VAR = VAR1 U VARF. We will
let X, Y, Z (possibly subscripted) stand for individual variables and F, G, H
(possibly subscripted) stand for function variables.2 Occasionally we will
write V for an arbitrary variable of either kind. We will also use more
suggestive names in the examples. If 0 is any of the syntactic objects
defined in this section (W-terms, W-programs, etc.), then IV(O) is the set
of all individual variables which occur in 0, FV(O) is the set of all function
variables which occur in 0, and V(O) = IV(O) u FV(O).

A typed vocabulary is a pair (W, T), where W is a finite set of function
symbols distinct from the symbols in A, and T is a function on W such that
for each f E W, T(f) is either an individual type or a function type. We say
that T(f) is the type of f. f is a constant symbol if T(f) is an individual type,
and it is a proper function symbol otherwise. Given T, it is easy to
determine the arity of any f E W, denoted ar(f). If f is a constant symbol,
then ar(f) = 0, and if T(f) = T1 X ··· X Tn-T, then ar(f) = n. It will also
be useful to supplement T with the functions 8 and p, which give the
domain type and range type, respectively, of symbols in W. For constant
symbols c E W, S(c) is undefined and p(c) = T(c), and for proper function
symbols fEW with T(f) = T1 X··· X Tn-T,

S(f) = T1 X ···X Tn and p(f) = T.

2 Note that the letter X is not itself an individual variable. It is what we sometimes call a
rnetavariable. That is, it is a variable, which we use in talking about the syntax of recursion
equations, whose values are individual variables. Similarly, F is a metavariable whose values
are function variables. We also use metavariables such as T, c, f, t, and P, whose values are
type variables, constant symbols, function symbols, terms, and programs, respectively.

1. Syntax 507

We extend rand p to VAR and 8 to VARF in the obvious way. For ex­
ample, T(X#T#I[il) = T and 8(f#T 1 X··· X Tn -T#I[il) = T1 X ···X Tn.
For a typed vocabulary (W, r), TV(W, r) is the set of all type variables that
occur in the types of all of the symbols in W. We will omit r and write
TV(W) for TV(W, r).

is
Let (W, T) be a typed vocabulary. For any T E TV(W), a W-term of type T

• an individual variable of type T, or
• c E W, where r(c) = T, or
• g(t 1 , ••• ,t), where g E W, r(g) = T1 X··· X Tn-T, and t; is a

W-term of type T;, 1 :::;; i :::;; n, or
• F(t1 , ••• , t), where FE VARF, r(F) = T1 X··· X Tn-T, and t; is a

W-term of type T;, 1 :::;; i :::;; n.

We extend T so that r(t) = T for any term t of type T. For V0 ~ VAR,
TMMV0) is the set of all W-terms t of type T such that V(t) ~ V0 , and
TMw(V0) is the set of all W-terms t such that V(t) ~ V0 • Also, we will
write TM~ for TMM0) and TMw for TMw(0). Terms in TMw, that is,
W-terms without variables, are sometimes called ground W-terms.

For example, let N be a type variable, and let (W1 , r 1) be the typed
vocabulary with W1 = {O,s}, r 1(0) = N and r 1(s) = N -N. We have
TV(W1) = {N} and TMw1 = {0, s(O), s(s(O)), ... }. This is a vocabulary
suitable for naming the natural numbers. We call terms of the form

n ...----...
s(··· s) (0) ···), n EN,

numerals, which we will generally write as nor sn(o).
Now, let NL be a type variable distinct from N, and let (W2 , r 2) be the

typed vocabulary with W2 = {O,s,nil,cons}, r 2(0) = N, r 2(s) = N -N,
rz{nil) = NL, and r 2(cons) = N X NL-NL. Then TV(W2) = {N, NL} and
™w2 is

TMw1 U {nil, cons(O, nil), cons(s(O), nil), cons(O, cons(O, nil)), ... }.

We might use this vocabulary for naming lists of numbers. The idea is that
a list is either empty or it is constructed from a first element and a list of
all succeeding elements. (The reader familiar with the programming lan­
guage LISP will recognize cons and nil.)

A W-recursion equation is an equation of the form F(Xp ... , X) = t,
where, for some T E TV(W)

1. X1 , ••• , Xn are distinct individual variables, F is a function variable,
and r(F) = r(X 1) X ··· X r(Xn) -T, and

2. t E TM~{{XI, ... ,Xn} U VARF).

508 Chapter 17 Denotational Semantics of Recursion Equations

If E is theW-recursion equation F(X1 , ••• , Xn) = t, then F is the principal
function variable of E, denoted PF(E), and any function variable that
occurs in t is an auxiliary function variable of E. Note that a function
variable can be both principal and auxiliary in a given equation. AF(E) is
the set of auxiliary function variables of E. A W-recursion program (or
simply W-program) is a finite set {E1 , ••• , En}, n ~ 0, of W-recursion
equations such that

1. PF(E;) * PF(Ej) for 1 :::;; i < j :::;; n, and
2. U f~ 1 AF(E;) ~ {PF(E1), ... , PF(En)}.

If equation E in W -program P is F(X 1 , ••• , X n) = t, then E is the defining
equation for F in P. The first restriction in the definition of W-programs
prevents inconsistencies, and the second ensures that every function vari­
able that occurs on the right side of any equation is defined. When some
program P is given and F(X 1 , ••• , X n) = t is the defining equation for F in
P, we will sometimes write rhs(F) to denote the term t on the righthand
side of the equation.

Note that we require each function to be defined by exactly one
equation, while in Chapter 3 we used two equations to define a function by
recursion. For example,

+(x,O) =x

+ (x,y + 1) =s(+(x,y))

is a (somewhat informal) definition of addition. Another way of describing
addition is

+(x,y) = {;(+(x,y..:... 1))
if y = 0

otherwise,
(1.1)

which can be construed as a single equation if the if-then-else test is itself
a function. That is, given the function

if(b, X, y) = {~
we can rewrite (1.1) as

if b =TRUE
otherwise,

+(x,y) = if(y = O,x,s(+(x,y..:... 1))). (1.2)

Of course, we also need the predicate y = 0 and the predecessor function
y ..:... 1 for (1.2) to be meaningful. Therefore, we impose the following
conditions on the vocabularies we will use.

Let Bool be some particular type variable and let tt, ff be two new
symbols. (It does not matter which type variable we choose for Bool, but it

1. Syntax 509

will remain fixed throughout.) A standard constructor vocabulary is any
vocabulary (We, Te) such that tt, ff E We, with Te(tt) = Te(ff) = Bool, and
such that for each T E TV(We) there is at least one constant symbol
c EWe with Te(c) = T. The latter requirement is not strictly necessary, but
it will turn out to be convenient. We create a set of built-in function
symbols for a standard constructor vocabulary (We , T) as follows. Let
we-= we - {tt, ff} and let Pe be the range type function derived from Te.

For each T E TV(W) we create the new symbol if T, for each f E we- we
define the set of new symbols

B(f) = {is_f} u {f;- 1 11 ::;; i ::;; ar(f)},

and we define

B(We) = {ifT IT E TV(W)} U U B(f).
rewc-

Note that {f;- 1 11 ::;; i ::;; ar(f)} = 0 if f is a constant symbol. We assign
types to these new symbols with T B(w, > :

for each T E TV(We)

where Pe(f) = T

A standard vocabulary is any typed vocabulary (W, T) such that

for some standard constructor vocabulary (We, Te). The symbols in We are
constructor symbols: they are used to build up data objects. tt and ff, in
particular, will be used to represent TRUE and FALSE. The is_f symbols
are discriminator function symbols: they are used to determine how an
object is constructed. The f;- 1 symbols are selector function symbols: they
are used to decompose compound objects.

For example, we can expand the typed vocabulary (W1 , T1) given above
to the standard constructor vocabulary (W3 , T3), where W3 = {tt, ff, 0, s},
T3(tt) = T3(ff) = Bool, T3(0) = N, and Tis)= N-+ N. Then

510 Chapter 17 Denotational Semantics of Recursion Equations

where

T8 (wJif8001) = Bool X Bool X Booi-+Bool

T8 (wJifN) = Bool X N X N -+N

T8 (wJis_O) = N -+Bool

T8 <wJis_s) = N-+ Bool

T8(wJs 1- 1) = N -+N,

and we can rewrite Eq. (1.2) as

+(X,Y) = ifN(is_O(Y),X,s(+(X,s1- 1 (Y)))), (1.3)

where + E VARF.
Similarly, we can expand (W2 , T 2) to (W4 , T4), where W4 =

{tt, ff, 0, s, nil, cons}, Titt) = T4(ff) = Bool, T4(0) = N, T4(s) = N-+ N, T4(nil)
= NL, and T4(cons) = N X NL -+ NL. Then

B(W4) = B(W3) U {ifNL,is_nil,is_cons,cons1- 1 ,cons; 1}.

Henceforth, we let (WN, TN) be the standard vocabulary based on (W3 , T 3)

and we let (WNL, TNL) be the standard vocabulary based on (W4 , T4).

That is,

WN = {tt, ff, 0, s, if Bool, if N, is_O, is_s, s1- 1}

and

WNL = WN U {nil,cons,ifNL,is_nil,is_cons,consl 1 ,cons:Z 1}.

Generally we will just write T for TN or TNL.
Note that we intend to interpret s1- 1 as the predecessor function in Eq.

(1.3). At this point, of course, (1.3) has no meaning at all. The task of
giving a meaning to equations like (1.3) begins in the next section.

Exercises

1. Let T(X) = N and T(F) = N X N -+ N. Describe TMwN({X, F}).

2. Let we = {tt, ff, 0, s, leaf, tree}, and let Tc(tt) = Tc(ff) = Bool, Tc(O) = N,
Tc(s) = N -+ N, Tc(leat) = T, and Tc(tree) = N X T X T -+T.

(a) Describe TM~ for each T E TV(Wc).
c

(b) Describe (B(Wc), T8<w)·

2. Semantics of Terms 511

(c) Let (W, T) =(We U B(W), Te U T8 <w)· Describe ™w for each
T E TV(W).

3. Let T(X) = N, T(Y) = NL, T(F) = N X N -N, T(G) = N -N, and
T(H) = N - NL. Which of the following are WNL -terms?
(a) F(s(X)).
(b) cons(G(X), cons(X, nil)).
(c) cons(nil,cons(O, Y)).
(d) cons1- 1(H(O)).
(e) if N(tT, cons(0, nil), 0).
(f) if NL(tT, cons(0, nil), H(if N(tT, X, 0))).

4. Assume that each of the following are WNL -terms. Give the types of
the variables in each term.
(a) ifN(F(O),G(O),s(H(O))).
(b) s1- 1(F(cons(X,G(s(Y))))).
(c) is_cons(F(s1- 1 (X), if N(G(O), H(G(Y)), 0), X)).
(d) F(is_O(F(X))).

5. Describe the values of T and the types of X, Y, F, G, H that make
F(ifT(tt,G(F(X), Y),H(s(Y)))) a WNL-term.

6. Let (W, T) be a vocabulary, let V ~ V AR, and extend T to (A u W)*
so that T(w) = T if and only if w = cf>u for some cf> E W U V with
p(cf>) = T.

(a) Give a fixed point definition of TMw(V) in the manner of the
definition of the set of propositional formulas given in Section 5
of Chapter 16.

(b) State and prove a structural induction principle for TMw(V).

2. Semantics of Terms

We develop the semantics of W-programs in several stages. In this section
we work on the semantics of terms, beginning with the semantics of
vocabularies. We will work exclusively with standard vocabularies, so
throughout the rest of this chapter we take (W, T) to be some arbitrary
standard vocabulary based on some standard constructor vocabulary
(We, Te). We will generally refer simply to W rather than (W, T).

Definition. A type assignment for W is a function :T with domain TV(W)
such that

1. for each T E TV(W), :T(T) is a partial order (DCT(T), !;;;CT(T)) with
bottom element ..LCT(T), and, in particular,

512 Chapter 17 Denotational Semantics of Recursion Equations

2. Y(Bool) is the flat cpa on some set with exactly two elements .

.57 is a complete type assignment for W if .57(T) is a cpa for each T E TV(W).

A type assignment for W gives a meaning for each type variable in
TV(W). For example, if YN(Bool) is the flat cpa on {TRUE,FALSE} and
~(N) = (N _L , ~N), then YN is a complete type assignment for WN.

L

When .57 is understood, we will write (Boo!, ~Boo!) for Y(Bool) and
..L Bool for the bottom element of Y(Bool). For an arbitrary T E TV(W),
we will often write (DT, ~T) for (IJ.'T(T)' ~.'T(T)) and ..L T for ..L.'T(T). Also,
we will sometimes write

(DT 1 X···XT '~T X···XT)
n I "

for

In particular, D6(F) = DT 1 x ... XTn if T(F) = T 1 X ... X Tn -+T.

It will be useful to define the following notation. For sets D, E and
f: D ~ E, ran f is the range of f. Also, if e E E, then ran e = {e}. In
effect, we are treating e as a function of 0 arguments.

Definition. Let .57 be a type assignment for W. A Y-interpretation for W is
a function J with domain W that satisfies the following conditions.

1. For all constant symbols c E We with T(c) = T, .f(c) E DT - { ..L T}.
We will write tt for .f(tt) and ff for J(tT).

2. For all proper function symbols f Ewe with T(f) = Tl X ... X Tn -+T,

a . .f(f) E D X .. · X D ~ D ·
TJ T 11 T'

b. if .f(f)(dp ... , dn) =.f(f)(ep ... , en)=/= ..L T, then (dp ... , dn) =
(e] ' ... 'en);

c. if d; =/= ..L T', 1 ~ i ~ n, then .f(f)(d1, ... , dn) =/= ..L T .

3. For all f, g E We such that p(f) = p(g), ran J(f) and ran .f(g) can
have at most ..L p(f) in common; that is,

(ran J(f) n ran .f(g)) - { ..L p(r) = 0.

4. For all T E TV(W),.f(ifT): Bool X DT X DT ~ DT is defined

J(ifT)(b, d, e) = {~
j_T

if b = tt
if b = ff
if b = ..L Boo! •

2. Semantics of Terms 513

5. For all constant symbols c E we- with T(c) = T, J(is_c): DT ~ Bool
is defined

if d =J(c)
J(is_c)(d) = ff {

tt

..l Boo!

if d =I= ..l T and d =I=J(c)

ifd=..l_T;

for all proper function symbols f EWe with T(f) = T 1 X ··· X Tn -+T,

J(is_f): DT ~ Bool is defined

J(is_f)(d) = ff {
tt

..l Boo!

if d =I= ..l T and d E ran J(f)

if d =I= ..l T and d ft. ran J(f)

if d = j_ T •

6. For all proper function symbols f Ewe with T(f) = Tl X ... X Tn -+T

and for all 1 :::;; i :::;; n, J(f;- 1): DT ~ DT, is defined

if d =I= ..l T and d =J(f)(d1 , ••• , dn) for

some (d1, ... , dn) EDT, X ··· X DT"

otherwise.

If J(f) is continuous for all proper function symbols f E W, then J is a
continuous !7-interpretation. A W-structure is a pair !, = (g; J), where .9"" is
a type assignment for W and J is a Y-interpretation for W. !. is a complete
W-structure if .9"" is a complete type assignment, and it is a continuous
W-structure if J is a continuous .7-interpretation.

A Y-interpretation for W gives a meaning to each symbol in W, using
the objects made available by .9"" in the sets DT. Conditions 4, 5, and 6
require a specific interpretation for the built-in function symbols. Note in
particular that J(f;- 1) is a well-defined function because of condition 2b.
Conditions 2c and 3 are imposed to make certain information about the
objects of a W-structure available at the syntactic level of W-terms.
Condition 2c implies that the meaning of a ground term is never the
bottom element, so that it makes sense, for example, to replace s! 1(s(O))
with 0, since J(sXJ(O)) =I= ..lN. Condition 3 implies that it makes sense to
replace a term such as is_f (g(c)) with fT. As we will see in the next
chapter, the replacement of terms by equivalent terms is the basis of the
operational semantics of recursion equations, so these conditions are
included to make the operational semantics work correctly.

514 Chapter 17 Denotatlonal Semantics of Recursion Equations

For an example, let WN and YN be as before. If

JN(tt) = TRUE

JN(tT) = FALSE

JN(O) = 0

JN(s)(m) = { ..L N
m + 1

{
TRUE

JN(is_s)(d) = FALSE

..L Boo!

ifm=..LN

otherwise

if b =TRUE
if b =FALSE
if b = ..L Boo!

if b =TRUE
if b =FALSE
if b = ..L Boo!

if d = 0
if d =I= ..L N and d > 0

ifd=..LN

if d =I= ..L N and d > 0

if d = 0
ifd=..LN

if d =I= ..L N and d > 0
otherwise,

then JN is a YN-assignment for WN. We will write !.N for (.5JN, JN). It is
easy to check that !,N is complete and continuous.

We now have a way of interpreting the symbols of W, but before we can
give a meaning to arbitrary terms, we need a way of interpreting variables.

Definition. Let .9"" be a type assignment for W and V a set of variables. A
variable assignment for V based on .9"" is a function a with domain V such
that

1. a(X) EDT for each individual variable X E V with T(X) = T, and
2. a(F) EDT, X ··· X DT. ~ DT for each function variable FE V with

T{F) = T 1 X ··· X Tn -+T.

a is a continuous variable assignment for V if a(F) is continuous for each
function variable F E V . .W7 (V) is the set of all variable assignments for V

2. Semantics of Terms 515

based on :T, and ~.W'y(V) is the set of all continuous variable assignments
for V based on :T.

Let (!T.,J) be a W-structure and V a set of variables. For any a E.W'y(V),
we extend a to a function aJ with domain TMw(V) as follows:

aJ (c) =J(c)

aJ (X) = a(X)

for all constant symbols c E W

for all individual variables X E V

aJ (f(tl ' ... 'tn)) =J(f)(aJ (tl), ... 'aJ (tn))

aJ(F(t 1 , ••• ,tn)) = a(F)(aJ(t 1), ••• ,aJ(tn))

where fEW

where FE V.

aJ is a function we can use to assign a meaning to any term in TMw(V).
Note that 0 is the unique assignment in .W'y(0), and if t E TMw, i.e., t
contains no variables, then 0J is sufficient for interpreting t. When J is
understood, we will often write a for aJ.

For example, let V = {X, Y, F}, and let

a(X) = 3, a(Y) = 5, a(F) = + _j_,

where + _j_ is the strict extension of +. Then a E ~.W'yN(V), and

aJN(s(F(X, s(Y)))) =JN(s)(aJN(F(X, s(Y))))

=JN(s)(a(F)(aJN(X), aJN(s(Y))))

=JN(s)(a (F)(a (X), JN(s)(aJN(Y))))

=JN(s)(a(F)(a(X),JN(s)(a(Y))))

=JN(s)(a(F)(3,JN(s)(5)))

= JN (s)(a (F)(3, 6))

=JN(s)(9)

= 10.

The next theorem shows that aJ (t) assigns a value to term t in the
appropriate set, namely, DT(t). We need it to verify that the definition of
a J makes sense. For example, when we define

where r(f) = T 1 X ··· X Tn -+T, we have J(f) EDT X ·•· X DT ~ DT, so
I n

we want to know that aJ (t;) EDT , 1 :::;; i :::;; n.
I

516 Chapter 17 Denotational Semantics of Recursion Equations

Theorem 2.1. Let (9'; J) be a W-structure, V a set of variables, a E
.Wy-(V), and t E TMW(V) for some T E TV(W). Then a5 (t) EDT.

Proof. We argue by structural induction on t. If t is a constant symbol
c E W, then a,y(c) =J(c) EDT, and if tis an individual variable X E V,
then aJ (X) = a(X) EDT 0 If t is f(tl '0 0 0 'tJ, where fEw, T(f) =
T1 X··· X Tn-T, and t; E TM~(V), 1:::;; i:::;; n, then a,y(t;) EDT,' 1:::;;
i:::;; n, by the induction hypothesis, and J(f) EDT, X ··· X DT., ~ DT, so

Similarly, if tis F(t 1 , ••• , tJ, where FE V, T(F) = T1 X ··· X Tn-T, and
t; E TMw(V), 1 :::;; i:::;; n, then a(F) EDT x ··· x DT ~ DT and

I n

Let .<T be a complete type assignment for W and V a set of variables.
Then for each individual variable X E V with T(X) = T, (DT, !;;;T) is a
cpa by assumption, and for each function variable F E V with T(F) =
Tl X ••• X Tn-T,

is a cpa by Theorems3 16.3.6 and 16.4.4. Now, let g-v be the function with
domain V such that

g-v(X) = (DT, !;;;T) for each X E V with T(X) = T

g-v(F) = ([DT, X ... XDT ~DT], !;;;[D x .. ·xD ->D J)
II TJ T 11 T

for each FE V with T(F) = T1 X ··· X Tn-T.

Then a continuous variable assignment for V based on .<Tis a g-v-choice
function and vice versa, so ~.Wy(V) = ch(g-v), and (ch(g-v), !;;;ch(9lvl) is a
cpa by Theorem 16.3.10. Writing !;;;;~~'"'" <V> for !;;;ch<9lvl, we have proved

Theorem 2.2. Let .<T be a complete type assignment for W and V a set of
variables. Then (%'-Wy(V), !;;;w.~,(VJ) is a cpa.

Note that the bottom element of (~.Wy(V), !;;;t::W''T(Vl), which we will

3 We will refer to theorems in Chapter 16 frequently here, so we adopt the convention of
writing Theorem 16.3.6, for example, to refer to Theorem 3.6 in Chapter 16.

2. Semantics of Terms

write Or-;:w,.<V>• or simply 0 when Yand V are understood, satisfies

O(X) = ..L T(X) for each individual variable X E V

517

0 (F)(d 1 , ••• , d n) = ..Lr<F > for each function variable F E V and all

(dl , ... ,dn) E DS(F)'

Note that if V = 0, th~ Oy,:w-, (V > = 0. Given a ground term t E TM w ,
we wiJI generally write O(t) to interpret t.

The next theorem says, in effect, that the function that extends assign­
ments a to a,. is monotonic and continuous.

Theorem 2.3. Let (!T, J) be a complete, continuous W-structure, V a set
of variables, and t E TMw(V) for some T E TV(W).

1. For a, {3 E %'~'7(V), a !;;;l<:w.,.(V) {3 implies a_y (t) !;;;T li.Y (t).
2. For a chain .W' in (%'.W'7 (V); !;;;y,:w:.,.<v>), U.W'y(t) = U{a,y (t) I a E.W'}.

Proof. Both parts can be proven by structural induction on t, and part 1 is
straightforward, so we leave it as an exercise and concentrate on part 2.
Let .W' be a chain in (%'~'7(V), !;;;;; y,:w:T <V>). Then U.W' exists by Theorem
2.2. If t is a constant symbol c E W, then

U.W'(c) =J(c) = u{J(c) I a E.W'} = U{a(c) I a E.W'},

and if t is an individual variable X E V, then

U.W'(X) = (U.W')(X)

= U{a(X) I a E.W'}

= U{a(X)IaE.W'}.

If tis f(t 1 , ••• , tn), where fEW, then

U.W'(f(tl•···•tn))
=J(f)(U.W'(tl), ... , U.W'(tn))

by Theorem 16.3.9

=J(f)(U{a(t 1)1 a E.W'}, ... , u{a(tn)l a E.W'}) by the induction

hypothesis

=J(f)(U{(a(tl), ... , a(tn))l a E.W'}) by Theorem 16.3.5

= U{J(f)(a(t 1), ... , a(tn)) I a E.W'} since J(f) is continuous and

{(a(t 1), ••• , a(tn))l a E.W'} is a chain by part 1

= U{a(f(t 10 ... ,tn))l a E.W'}.

Finally, Jet t be F(t 10 ... ,tn), where F is a function variable in V, and let
r: %'.W'g-(V) X 'IF.W'g-(V) ~ DT be defined f(a, {3) = a(F)({i(tl), ... ' li<tn)).
Then r is monotonic by part 1 and by the monotonicity of a(F) for all

518 Chapter 17 Denotatlonal Semantics of Recursion Equations

a EJ/1', so

UJ!i'(F(tl, ... ,tn))

= (UJ!i')(F)(UJ!i'(tl), ... , UJ!i'(tn))
= (U{a(F) I a EJ/1'}XUJ!i'(t 1), ••• , UJ!i'(tn)) by Theorem 16.3.9

= U{a(F)(UJ11'(t 1), ... , UJ!i'(tn))l a EJ/1'} by Theorem 16.3.7

= U{a(F)(U{ /3(t 1) I {3 EJ/1'}, ... , U{ /3(tn) I {3 EJ/1'}) I a EJ/1'} by

the induction hypothesis
= U{a(F)(U{(/3(t 1), ••• , j3(tn)) I {3 E Jli'}) I a E J/1'} by Theorem

16.3.5

= U{U{a(F)(j3(t 1), ... ,/3(tn))1 {3 EJ/1'}1 a EJ/1'} since a(F)iscon­

tinuous for each a EJ/1' and {(/3(t 1), ••• , j3(tn)) I {3 EJ/1'}

is a chain by part 1
= U { U {f(a, {3) I {3 E J/1'} I a E J/1'}

= u {f(a, a) I a E J/1'} by the diagonal lemma

= U{a(F)(a(tl), ... ' a(tn)) I a EJ/1'}
= U{a(F(t 1 , ... ,t))l a EJ/1'}. •

We also prove one more result about variable assignments that we will
use in the next section.

Coincidence Lemma. Let (Y,J) be a W-structure, let V1 , V2 be sets of
variables, let a EJ/1'y(V1) and {3 E~9'"(V2), and let

V = {V E V1 n V2 I a(V) = {3(V)}.

Then for all t E TMw(V), a(t) = j3(t).

Proof. We argue by structural induction on t. If tis an individual variable
X E V, then a(X) = a(X) = {3(X) = j3(X). If tis a constant symbol c E W,
then a(c) =J(c) = j3(c). If tis f(t 1 , ••• , t), where fEW, then

a(f(tl ' ... 'tn)) =J(f)(a(tl), ... ' a(tn))

=J(f)(j3(t1), ••• , j3(tn)) by the induction hypothesis

= j3(f(tp ... ,tn)),

and if tis F(t 1 , ••• , tn), where FE V, then

a(F(t 1 , ... ,tn)) = a(F)(a(t 1), ... , a(tn))

= a(F)(j3(t1), ... , j3(tn)) by the induction hypothesis

= {3(F)(/3(t 1), ... , j3(tn)) since F E V

= j3(F(tp ... ,tn)). •

2. Semantics of Terms 519

Exercises

1. Show that !.N is a complete, continuous WN-structure.

2. Let 9'"(Bool) = ({ _!_, 0, 1}, {(_!_, _!_), (_!_, 0), (_!_, 1), (0, 0), (1, 1)}), 9'"(N)
= (Nl_ , !;;;N"), J(tt) = 0, and J (ff) = 1. Extend J to a 7-interpre­
tation for WN.

3. Let 9'" be a type assignment for WNL with 9'"(N) = 9'"(NL) =
(N j_, !;;;N).

(a) Let J(nil) = 0 and J(cons) = + j_ (the strict extension of +).
Show that J cannot be extended to a 7-interpretation for WNL.

(b) Give a continuous 7-interpretation J' for WNL. [Hint: Consider
the pairing function (x, y) from Chapter 3.] What is
0J.(cons(s(O), nil))?

4. Let !, = (9'; J) be a W-structure such that 9'"(T) is a flat cpo for all
T E TV(W). Show that for every built-in function symbol f E W, J(f)
is continuous.

5. Let a(X) = 3, a(Y) = 2, a(F) = + j_ , and a(G) = · j_ (the strict
extension of the multiplication function). Calculate aJN(t), where t is
as follows.
(a) F(s(X),G(s(X),F(X, y))).
(b) s1- 1(F(s1- 1(s(X)), Y)).
(c) if N(is_O(G(X, s1- 1 (si 1 (0)))), X, Y).
(d) if Bool(is_s(X), is_O(X), is_O(X)).

6. Let J,;(O) = 0 and Y,;(s) = e j_ , where e(n) = 2n for all n E N.
(a) Extend Y,; to a .9N-interpretation for WN.
(b) Calculate a .. /t) for each term t given in Exercise 5.

e

7. Let 9'"(Bool) = 9'"N(Bool), 9'"(N) = 9'"N(N), and 9'"(NL) =
(TUP j_ , !;;;TUP), where TUP is the set of all tuples of natural

" numbers and (TUP j_, !;;;TUP) is the flat cpo on TUP. Give a 7-inter-
pretation for W NL . "

8. Let 9'"(Bool) = 9'"N(Bool), 9'"(N) = 9'"N(N), and 9'"(NL) =
(.9r(N), ~9"t(NJ), where .9r(N) consists of all the finite subsets of N,
and let J(consXe, {d1 , ••• , dn}) = {e, d1 , ••• , dn}. Explain why J can­
not be extended to a 7-interpretation for WNL.

9. Let !, = (9';J) be a continuous W-structure, and let f EWe. Show
that for all d,e E D(<r> such that j_p(fl =/= d !;;;p(f) e, if dE ranJ(f)
then e E ran J(f). Hint: Use is_f.]

10. Let !. = (9';J) be a continuous W-structure, and let f EWe. Show
that for all d, e E D5(r)' if _!_ p(f) =/=J(f)(d) !;;;p(f) J(f)(e), then d
!;;;5 <r> e. [Hint: Use f;- 1 , 1 :::;; i :::;; ar(f).]

520 Chapter 17 Denotational Semantics of Recursion Equations

11. Let (Y,J) = !.N, and let X E VAR7. Give_ a term t E ™wN({X})
and a, {3 E 'IF.W'y({X}) such that aJ (t) !;;;N" {3J (t) and {3 c~:~" <lXI> a.

12. Let (Y,J) be a W-structure, let V be a set of variables, and let
a, {3 E 'IF.Wy(V). Show that if aJ (t) !;;;T(I) aJ (t) for all t E TMw(V),
then a !;;;%'.#_,(v>f3·

13. Prove part 1 of Theorem 2.3.

14. Let !. = (Y, J) be a complete, continuous W-structure, and let V be
a set of variables.
(a) Define a function g~ such that .W'y(V) = ch(g~), and show

that (.Wy(V), !;;;,..,._,(V)) is a cpo.
(b) Show that part 1 of Theorem 2.3 holds for (~9"(V), !;;;,~"w/
(c) Show that part 2 of Theorem 2.3 fails for (~9"(V), !;;;,~"w/

3. Solutions to W-Programs

Now that we have the tools for giving a meaning to terms, we can take the
first step toward defining the denotational semantics of programs. Let

be a W-program, and let !, = (Y, J) be a W-structure. We want to define
the meaning ofF; in terms oft;, 1 ::; i ::; m. The idea is that we start with
a variable assignment a E 'IF.Wy(FV(P)) which gives a meaning to each
function variable in t;. Then for any possible input (d 1 , ••• , dn) E D8(F;)

we extend a with the assignment {3 = {(X 1 , d 1), ... , (Xn;, dn)} and use
a U {3 to interpret t;, giving us an output value for input (d1 , ••• , dn).

It will be convenient to introduce a special notation for the assignment
{3 in the previous paragraph. Given an equation F(X~' ... , X) = t and
d = (d1 , ... , dn) E D8<F >' the variable assignment a<d1 •••• ,d.,P also written
ad, is {(X1, d1), ... , (Xn, dn)}; that is,

a(d d (X.)= d.
1 • · • · • n) I I '

1::=;i::=;n.

The particular equation that determines the variables in the domain of ad

will always be clear from the context in which ad is used.

Definition. Let !, = (Y, J) be a W-structure and P a W-program. We
associate with P the higher order function <1>~: 'IF.W'y(FV(P)) ~.wy(FV(P)),
defined as follows. For each F E FV(P), with defining equation

3. Solutions to W-Programs 521

When !. is understood we will write cl>p for ct>~.
It is clear from the definition that ct>~ E 'i&".W'g-(FV(P)) ~ .W'g-(FV(P)), but

if !. is complete and continuous we can prove something stronger.

Theorem 3.1. Let !. = (Y,J) be a complete, continuous W-structure and
let P be a W-program. Then ct>~ E 'i&"~?(FV(P)) ~ 'i&".W'g-(FV(P)).

Proof. We will write cl>p for ct>~. Let a E 'i&".W'g-(FV(P)). We need to show
that cl>p(a)(F) E [Ds(F> ~ Dr<F>] for each FE FV(P). It follows from
Theorem 2.1 that ci> p(a)(F) E D8<F > ~ Dr<F >, so we just need to show
that cl>p(a)(F) is continuous. Let F(X 10 ... ,X) = t be an equation in P
with T(F) = T 1 X ··· X Tn -+ T, and let C be a chain in
(DT X ... X T ' [;;;T X ... X T). Then {a u ac I c E C} is a chain in

I '' I n
('6".W'y-(V), [;;;><:<>'><V>), where V= {X 1, ..• ,Xn} U FV(P), so U{a U ac lc E

C} exists by Theorem 2.2. Moreover, for any G E FV(P),

(aU auc)(G) = a(G) = U{(a U a)(G)Ic E C},

and for X;, 1 :::;; i :::;; n,

(aU auc)(X;) = (UC)~ i = U(C ~ i) = U{(a U a)(X;) IcE C},

so by Theorem 16.3.9, aU auc = U{a U ac IcE C}. Therefore,

cl>p(a)(F)(UC) =aU auc(t)

= U {a U ac I c E C}(t)

= U {aU ac(t) I c E C}

= U{cl>p(a)(F)(c) IcE C}

= Ucl>p(a)(F)(C),

and ci> p(a)(F) is continuous.

by Theorem 2.3

•
Since a program P is a set of equations, it makes sense to try to solve

these equations to find the meaning of P.

522 Chapter 17 Denotatlonal Semantics of Recursion Equations

Definition. Let I = (Y,J) be a W-structure and P a W-program. A
solution toP in I is any a E..W7 (FV(P)) such that

(3.1)

for every equation F(XH ... ,X)= tin P and every (d1 , ... , dn) E D5(F)'

In other words, every function variable in P is assigned a function such
that every equation in P is satisfied for every possible value taken by the
individual variables. Note that an equivalent statement of (3.1) is

(aU a(d~>····d)_;r(F(X 1 , ... ,Xn)) =(aU a(d,, ... ,d)J(t)

for every equation F(X1 , ••• ,Xn) =tin P and every (d1 , ••• , dn) E D5<F>·
It is important to understand that for an arbitrary a E ..W7 (FV(P)),

<l>p(a) is not necessarily a solution to P. Consider the WN-structure
IN = (.o/N ,JN) and the WN-program Q with equations

F(X) = G(X)

G(X) = F(X).

The problem is that <I>Q(a)(F) is defined in terms of a(G), but applying
<I>Q to a changes the function assigned toG from a(G) to <I>Q(a)(G). For
example, if a(F) is the constant function of a(F)(x) = 3 and a(G) is the
constant function a(G)(x) = 7, then

but

<I>Q(a)(F)(O) =au a 0(G(X)) = a(G)(O) = 7,

<I>Q(a) U a 0(rhs(F)) = <I>Q(a) U a 0(G(X))

= <I>Q(a)(G)(O)

=aU a 0(F(X)) = a(F)(O) = 3,

so <I>Q(a) is not a solution to Q.
What we need is an a such that <I>Q leaves a(F) and a(G) unchanged;

that is, we need a fixed point of <I>Q. If a is some fixed point of <I>Q, then
for any d E N _]_ we have

a(F)(d) = <I>Q(a)(F)(d) =aU a/rhs(F))

a(G)(d) = <I>Q(a)(G)(d) =aU a/rhs(G)),

so a is a solution to Q. More generally, we can prove

3. Solutions to W-Programs 523

Theorem 3.2. Let !. = (9';J) be a W-structure, and let P be a W-pro­
gram. Then a E ~.W"y(FV(P)) is a solution toP in !. if and only if a is a
fixed point of ct>~.

Proof. If a E ~.Wy(FV(P)) is a solution to P in !., then

a(F)(d) =aU airhs(F)) = ct>~(a)(F)(d)

holds for all FE FV(P) and all dE D6<F>• so ct>~(a) = a. On the other
hand, if a E ~.W"y(FV(P)) is a fixed point of ct>~, then

a(F)(d) = ct>~(a)(F)(d) =aU airhs(F))

holds for all F E FV(P) and all d E D6 <F >, so a is a solution to P in !. .

•
Going back to the example, we still have the problem that ct>Q has more

than one fixed point. Any a that assigns the same function f to both F and
G, where f could be anything from the everywhere undefined function to
(some extension to N _~_ of) the total predicate HALT(X, X), is a solution
to Q. Clearly, there is nothing in program Q to indicate that the program­
mer meant to specify a solution to the halting problem. For that matter,
there is no indication that the programmer meant to solve any problem at
all in writing program Q. The sensible approach is to focus on the least
fixed point of ct>Q, which would be a(FXd) = a(G)(d) = ..L N for all
d E N _~_ , i.e., a = .n.

Of course, we do not know that JLcl>~ exists in general, for an arbitrary
W-structure !. and an arbitrary W-program P.

Theorem 3.3. Let !. = (9'; J) be a complete, continuous W-structure and
let P be a W-program. Then JLcl>~ exists, and JLcl>~ E ~.W"y(FV(P)).

Proof. We will write cl>p for ct>~. If JLcl>p exists, then Theorem 3.1 implies
that JLcl>p E ~.W"y(FV(P)), so we just need to show that it exists. By
Theorem 2.2, it is sufficient to show that

so by Theorem 3.1 we only need to show that cl>p is continuous. Let .W be
a chain in (~.Wy(FV(P)), !;;;W...,~<FV(P))), F(X1,. •• ,Xn) =tan equation in P,
and d E D6<F >. It is easy to see that {a U ad I a E .W} is a chain in
(~.W"y(V), !;;;w...,~ <V>), where V = {X 1, ••• , Xn} U FV(P), and that

(3.2)

524 Chapter 17 Denotational Semantics of Recursion Equations

so we have

<f>p(U.w')(F)(d)

= U.w' U a/t)

= U {aU ad I a E.w'}(t)

= U{a U a/t) I a E.w'}

= U{<f>p(a)(F)(d) I a E.w'}

= (U{<f>p(a)(F) I a E.w'})(d)

= (U{<f>p(a) I a E.w'})(F)(d)

= (U<f>p(.w'))(F)(d).

by (3.2)

by Theorem 2.2

by Theorem 16.3.7

by Theorem 16.3.9

(Note that F and d were arbitrarily chosen, so U { <f>p(a)(F)(d) I a E .w'}
exists for all d E Da(F > and U { <f> p(a)(F) I a E .w'} exists for all F E FV(P),
justifying the use of Theorems 16.3.7 and 16.3.9.) Now, <f>p(U.w')(F)(d) =
(U <f>p(.w'))(F)(d) for all d E D8(F > and all F E FV(P), so <f>p(U .w') =
U <f>p(.w') and <f>p is continuous. •

The fixed point theorem not only tells us that JL<f>p exists, but it also
gives us a way of calculating JL<f>p, since JL<f>p = u{<t>~(!l) I i EN}. For
example, let ADD be the WN-program with the equation

+(X,Y) = ifN(is_O(Y),X,s(+(X,s 1- 1 (Y)))).

Then, writing J for JN, in kN we have, for any d E N j_ and any n E N,

<f>~J(fl)(+)(d, j_ N)

and

= <f>l'oo(n) u a(d, j_ Jif N (is_O(Y)' X, s(+ (X, sl- I (Y)))))

= J(if N)(J(is_O)(j_ N)' d' <f>~oo< n) u a(d, j_ N /s(+ (X, sl- I (Y)))))

=J(ifN)(_l 8001 ,d,<f>~00(!1) U a(d,l_Js(+(X,s 1- 1(Y)))))

<t>~;J(!l)(+)(d, 0)

= <f>l'o 0 (!1) U a(d,o)(ifN(is_O(Y),X,s(+ (X,s 1- 1(Y)))))

=J(if N)(J(is_O)(O), d, <1>~00 (!1) U a(d,o)(s(+(X, s 1- 1 (Y)))))

=J(ifN)(tt, d,<f>~00 (!1) U a(d,o/s(+ (X,s 1- 1(Y)))))

= d,

3. Solutions to W-Programs 525

so JL<I>AD 0 (+)(d, _iN) = _i N and JL<I>Aoo< +)(d, 0) = d. The situation is
more complicated if the second argument is > 0. For example,

ci>ADD(O)(+)(d, 1)

=J(ifN)(J(is_O)(l),d,H U a(d,l)(s(+ (X,s 1- 1 (Y)))))

= n U a<d.I)(s(+(X, s 1- 1 (Y))))

=J(s)(O(+)(d,J(sl 1)0)))

=J(s)(_i N)

but if we iterate <I> ADo n + 2 times, n ;;::: 0, we get

ci>~i(O)(+)(d,1) =ci>~;rJ(O) U a<d.l)(s(+(X,si 1(Y))))

=J(s)(ci>~rJ(O)(+)(d, 0))

Similarly,

=J(s)(d)

= {d + 1
j_N

ifd EN
otherwise.

cl>fo 0 (!1)(+)(d,2) = ci>ADD(O) U a(d,Z)(s(+ (X,s 1- 1(Y))))

=J(s)(ci>AD 0 (!1)(+)(d, 1))

but if we iterate <I> ADo n + 3 times, n ;;::: 0, we get

<1>~~(!1)(+)(d,2) = ci>~;i<O) u a<d. 2>(s(+ (X,s 1- 1(Y))))

=J(s)(ci>~i(O)(+)(d, 1))

= {d + 2
j_N

ifd EN
otherwise.

In general, it can be shown by induction on n that, for any n E N,

if d, e E Nand 0 :::;; e < n (3_3)
otherwise,

526 Chapter 17 Denotational Semantics of Recursion Equations

so, for all d, e E N _j_ ,

JL<I>AD 0 (+)(d, e) = U {<1>~00 (0)(+)(d, e) In EN}

= {d + e
..LN

if d, e EN
otherwise .

That is, JL<I>A00(+) is the strict extension of +.
We can also use the fact that JL<I>Aoo is a fixed point of <I>Aoo to verify

that JL<I>A00(+)(d, e) = d + _j_ e for any given d, e E N _j_ • For example,

JL<I>Aoo< +)(3, 2)

= <I>Aoo< JL<I>Aoo)(+)(3, 2)

= JL<I>ADD U a(3,Z)(ifN(is_O(Y),X,s(+ (X,s! 1 (Y)))))

=J(s)(JL<I>ADo(+)(3, 1))

=J(s)(<f>ADD(JL<f>ADD)(+)(3, 1))

=J(s)(JL<I>ADD U a(3, l)(ifN (is_O(Y), X, s(+(X, s,- 1 (Y))))))

=J(s)(J(s)(JL<I>A00 (+)(3,0)))

= J(s)(J(s)(<I>Aoo< JL<I>Aoo)(+)(3, 0)))

=J(s)(J(s)(JL<I>ADD U a(3,0)(ifN(is_O(Y),X,s(+ (X,s! 1 (Y)))))))

= J(s)(J(s)(3))

= 5.

Before we go on we prove the following useful lemma.

Extension Lemma. Let (9'; J) be a complete, continuous W-structure,
and let P, Q be W-programs such that P ~ Q.

1. For all FE FV(P), JL<I>p(F) = JL<I>Q(F).

2. For all t E TMw(FV(P)), ~(t) = JL<I>Q(t).

Proof. Let F(X 1 , ... ,Xn) = t be the defining equation for Fin P. First
we prove by induction on i that

<I>~(O)(F) = <I>~(O)(F) for all i EN. (3.4)

3. Solutions to W-Programs 527

If i = 0 then <I>~{O.)(F) = O.(F) = <I>g(O.)(F), so assume <I>~{O.)(F) =
<I>Q(O.)(F) and let dE D8<F>· Then

<1>~+ 1(0.)(F)(d) = <1>~(0.) U ait)

= <1>~(0.) U ait)

= <l>b+ l(O.)(F)(d),

by the induction hypothesis and
the coincidence lemma

and d is an arbitrary element of D8<FP so we have <1>~+ 1 (0.)(F) =
<I>Q+ 1(0.){F), concluding the induction. Now,

JL<I>p(F) = U{<I>~(O.) I i E N}(F)

U{<I>~(O.)(F) I i EN}

U{<I>~(O.)(F) I i EN}

U{<I>~(O.) I i E N}(F)

= JL<I>Q(F),

by the fixed point theorem

by Theorem 16.3.9

by (3.4)

by Theorem 16.3.9

which completes the proof of part 1. Part 2 follows immediately from part
1 by the coincidence lemma. •

We have one more step to take before we define the denotational
semantics of W-programs. In the next section we will select from any
complete, continuous W-structure l certain objects, the data objects, to
get a data structure system A. We will then give the denotational seman­
tics of W-programs in terms of A. However, it will turn out that IN is
already a data structure system, which we will also call AN , so we can
anticipate the next section and give the denotational semantics in AN for
WN-programs.4 The idea is to give a single function that assigns a meaning
to all WN-programs.

Definition. The denotational meaning function for AN, denoted fg11 N, is
defined

for all WN-programs P.

4 The reader who wishes to go on at this point to the chapter on operational semantics will
be able to read the first two sections of that chapter as they apply to the particular structure
lN. We simply need to remark that lN is a simple WN·structure (as defined in Section 5 of
the current chapter) and that aN = rep(lN) = lN (as defined in Section 4 of the current
chapter) is a simple data structure system for WN.

528 Chapter 17 Denotational Semantics of Recursion Equations

Exercises

1. Let !, = (9';J) be a complete, continuous W-structure, let P be a
W-program, and let <l>p = <I>i. Prove the following statements.
(a) <1>~(!1) E 'IF.Wy(FV(P)) for all i E N.

(b) {<1>~(!1) I i EN} is a chain in (~.Wy(FV(P)), !;;;,.,_,...:r <FV<P»). [Hint:
See Lemma 1 in Section 5 of Chapter 16.]

2. Give aWN-program p such that JL<I>iN = n.
3. Give a WN-program P such that <l>j;N has infinitely many fixed points.

4. Show that <1>,&0 has exactly one fixed point.

5. Give a WN-program P with FV(P) = {F} such that JL<I>iN(F) is not
strict.

6. Prove (3.3).

7. Let !, = !.N and let P be the WN-program with the equation

F(X) = if N (is_O(X), 2, s(F(s1- 1 (X)))).

(a) Show by induction on n that, for any n E N,

<I>~(O)(F)(x) = {x + 2
.l_N

for all x E N _j_ •

if x E N and 0 ::; x < n
if x = ..L N or x ~ n

(b) Show that JL<I>p(F) = f _j_, where f(x) = x + 2 for all x EN.

8. Let P be the WN-program with equations

F(X,Y) = ifN(is_O(Y),X,s(F(X,s! 1 (Y))))

G(X) = F(X,X)

H(X) = ifN(is_O(X),s(O),G(H(s1- 1 (X))))

and let <l>p = <I>iN.

(a) Let a(F) = · _j_ (the strict extension of the multiplication func­
tion), a(G)(x) = x + _j_ 2 for all x EN _j_, and a(H)(x) = 3 for
all x E N _j_. What is <1>p(a)(F)(3, 5)? <1>p(a)(G)(7)?
<l>p(a)(H)(13)?

(b) What is <l>~(a)(F)(3,5)? <l>~(a)(G)(7)? <l>~(a)(H)(13)?

(c) Describe <I>~(O)(F), <I>~(O)(G), and <I>~(O)(H) for all i EN.
(d) Describe JL<I>p(F), JL<I>p(G), and JL<I>p(H).

3. Solutions to W-Programs 529

9. Let P be the WN·program with equations

F(X) = ifN(is_O(X),s(O),G(X,X))

G(X,Y) = ifN(is_O(Y),F(X),s(G(X,s1- 1 (X))))

and let <l>p = cf>~N.
(a) Let a(F)(x) = 3 for all x EN j_, and let a{ G)= + j_ • What is

<1>p(a)(F)(3)? <1>p(a)(G)(3,2)?

(b) What is <l>~(a)(F)(3)? <l>~(a)(G)(3, 2)?

(c) Describe <1>~(0.) for each i E N.
(d) Describe JL<I>p.

10. Give a WN·program P such that JL<I>~N(F) = · j_ (the strict extension
of the multiplication function) for some F E FV(P).

11. Give a WN·program P such that JL<I>~N(F) = F j_, where F(n) is the
nth Fibonacci number, for some F E FV(P). [See Exercise 8.3 in
Chapter 3 for the definition of Fibonacci numbers.]

12. Let &, v, - be the usual operations on truth values. Give a
W-program P such that, in any W-structure, JL<I>p(&) = & j_,

JL<I>p(V) = v j_, and JL<I>p(-) =- j_ , where

r(&) = r(V) = Bool X Bool - Bool

and r(""') = Bool - Bool.

13. Let l = (.9'; J) be a W-structure. Suppose we extend the standard
vocabulary W to W' by adding the symbols is_tt, is_tT, and suppose
we give is_tt, is_tT their natural interpretations J(is_tt), J(is_tT) as
in condition 5 on Y:interpretations. Give a W-program P with func­
tion variables ls_tt, ls_tT such that JL<I>p(Is_tt) =J(is_tt) and
JLilip(Is_tT) = J(is_tT).

14. Let l = (9'""N,~), where~ is given in Exercise 2.6. What is JL<I>fo0 ?

15.* Let l = (.9';J) be a complete, continuous W-structure, and let P be
a W-program. Define w;: ..Wg-(FV(P)) ---+ ..Wg-(FV(P)) exactly like <I>~
except that its domain is ..Wg-(FV(P)). [This exercise requires the
results of Exercise 2.14.]
(a) Show that a E ..Wg-(FV(P)) is a solution to P in l if and only if a

is a fixed point of w;.
(b) Show that w; is monotonic.

(c) Give a W-program Q such that 'I'J is not continuous. [Hint: Let
f be a function and C a chain such that f(U C) =F Uf(C). For

530 Chapter 17 Denotational Semantics of Recursion Equations

all c E C, let ac(F) = f and let ac(G) be the constant function
ac(G)(x) =c. Put the equation H(X) = F(G(X)) in Q.]

(d) Show that ('l'i)i(O.) E %'.W'y(FV(P)) for all i EN. [Hint: Use
Theorem 2.3 in the induction step.]

(e) Show that u{('l'i)i(O.) I i EN} exists and is JLWi.

4. Denotational Semantics of W-Programs

Next we turn to the treatment of data structures. There are two properties
that they should satisfy:

1. Since the semantics of program P is to be based on the function <l>p,
we want data structures to be rich enough to guarantee the existence
of J.L<I>p for every program P.

2. Since we need to be able to specify the inputs to a program, we want
every element in a data structure to be the meaning of some term.

These two properties may seem to be contradictory. Property 1 requires
data structures to have enough elements to give meanings to programs,
and property 2 requires that data structures not have too many elements.
We deal with these requirements in two steps. Theorem 3.3 guarantees
that JL<I>i exists when !. is a complete, continuous W-structure, so we
begin with such structures and pare them down so that property 2 is
satisfied.

Definition. Let !. = (Y,J) be a complete, continuous W-structure.

1. An element d E DY(T)' for some T E TV(W), is representable in W if
there is some W-program P and some term t E TMMFV(P)) such
that d = (JL<I>i)J (t). rep (DY(T)) is the set

{ d E D.9"(T) I d is representable in w}'
!;;;rep(Y(T)) is the restriction of !;;;Y(T) to rep (D.'T(T)), and rep (!T) is
defined

rep(!T)(T) = (rep(DY(T), !;;;rcp(.'T(T)))

for all T E TV(W).
2. For any function

f E D.9"(T,) X ... X D.9"(T.) ---+ D:T(T)'

where T1, ... , Tn, T E TV(W), let

rep(f) E rep(D:T(T,) X · ·· X rep(p'T(T) ---+ P<T(T)

4. Denotational Semantics of W-Programs 531

be defined

rep(f)(dl ' ... ' dn) = f(dl ' ... ' dn)

for all (d1, ••• , dn) E rep(p'T(T,)) X ··· X rep(DY(T). Then rep(J)
is defined

rep(J)(c) =J(c) for all constant symbols c E W

rep(J)(f) = rep(J(f)) for all proper function symbols f E W.

3. Finally, rep (I) = (rep(.?'), rep (J)) is the data structure system for W
based on I.

The point is that an arbitrary W-structure I might contain objects that
we can never use as data since there is no way to refer to them. Therefore,
in defining functions that we wish to consider computable, we will restrict
our attention to the representable objects in rep (I). We might call these
the data objects of I.

It is important to understand that even if d1 , ••• , dn are representable,
rep (f)(dp ... , dn) may not be representable if f is some arbitrary func­
tion. However, we will show that rep (f)(d1 , ••• , dn) is representable when
f is the interpretation J(f) of some f E W.

When 7 is understood, we will generally write (D,(T)' !;;;,(T)) for
rep(.?')(T),

D,(T,)X ... Xr(T.l for rep(DY(T) X··· X rep(DY(T.l),

D,(T,)X ... x r(T.)""'r(T) for rep(DY(T,)) X··· X rep(DY(T.l) ~ rep(DY(T)),

and, when 8(F) = T 1 X··· X Tn -+T, D,(6(F)) for D,(T,)X ... xr(T.l"
Let I = (.9'; J) be a W-structure. Then for every constant symbol

c E W, J(c) is representable since JL<I>i(c) =J(c) for any W-program P.
Moreover, for every T E TV(W), ..l T is representable: let c E we be a
constant symbol with T(c) = T, and let P be the W-program with equation
B(X) = B(X), where T(X) = T and T(B) = T -+T. Then JL<I>i(B(c)) =
O(B(c)) = ..l T. (This explains, by the way, our requirement that We
contain a constant symbol of type T for every T E TV(We).)

In IN, then, it is clear that every element in Bool is representable in
WN. Moreover, every element in N .L is representable in WN: for all
n E N, JL<I>;(n) = n, where P is any WN-program, e.g., the empty program.
(In a case like this we can simply say O(n) = n.) Therefore, rep (§N) = .9N,
rep(JN) =JN, and rep(IN) =IN. We will write AN for IN when we
want to emphasize that IN is a data structure system for WN.

Now, let Vr be a set of function variables, and let d = JL<I>i(t). It is
useful to note that simply by changing the function variables in P and t, we
can always find a W-program Q and a term u E TMw(FV(Q)) such that

532 Chapter 17 Denotatlonal Semantics of Recursion Equations

FV(Q) n Jj = 0 and JLcl>~(u) = JLcl>~(t). Therefore, given representable
elements d1 , ••• , dn, we can always find W-programs P1 , ••• , Pn such that
FV(P;) n FV(lj) = 0, 1 ::::; i < j ::::; n, and terms t 1 , ••• , tn such that t; E
TMw(FV(P;)) and d; = JL<I>~(t;), 1 ::::; i ::::; n. We will say that P1 , ••• , Pn are
consistent if FV(P;) n FV(lj) = 0, 1 ::::; i < j::::; n.

The first thing we need to do is show that data structure systems are
W-structures. We begin with a lemma that shows that, for all proper
function symbols f E W with T{f) = T 1 X · · · X T n -+ T, rep (J) (f) E
Dr(T 1) X ··· X Dr(T.) ~ Dr(T). In other words, data structure systems are
closed under the interpretations of the function symbols.

Lemma 1. Let !. = (.5T,J) be a complete, continuous W-structure, and
let fEw with T(f) = Tl X ... X Tn -+T. If (dl ' ... ' dn) E Dr(TJ)X 00. X r(T.)'

then rep {J){f){d1 , ••• , dn) E Dr(T).

Proof. Let d; = (JL<I>P)J (t;), 1 ::::; i ::::; n, where P1 , ••• , Pn are consistent.
Then P = U ?~ 1 P; is a W-program, and

{ JLcl>p)J {f(tl, ... , tn))

= J{f){ (JL<I>p)J{tl)' ... ' { JLcl>p)J{tn))

=J{f)({ JL<I>p)J{tl), • • •, { JLcl>p)J{tn))

=J{f){dl '• • •' dn)

by the extension lemma

= rep(J){f){d1 , ••• , dn) since (dl ' ... ' dn) E Dr(T))X ... X r(T.) •

•
We will use the next lemma when considering the interpretations of the

built-in function symbols is_f and f;- 1.

Lemma 2. Let !. = (.57, J) be a complete, continuous W-structure, and
let f Ewe with T{f) = Tl X ... X Tn -+T. If(dl , ... , dn) E DTJX ... XTn and
J{f){dl ' ... ' dn) E Dr(T) - { .l T}, then (dl ' ... ' dn) E Dr(TJ)X ... X r(Tn).

Proof. Let J(f){d1 , ••• , dn) = (JL<I>p)J {t). Then for 1 ::::; i ::::; n,

(JLWp)J(r;- 1 (t)) =J(f;- 1)((JL<I>p)J (t))

=J{f;-1){J(f){dl '• • •' dn))

•
Theorem 4.1. Let !. = (.57, J) be a complete, continuous W-structure.
Then rep(!,) is a W-structure.

4. Denotatlonal Semantics of W-Programs 533

Proof. For any T E TV(W), (Dr(T)' !;;;r(T)) is clearly a partial order with
bottom element _l_ T , and (Dr(Bool), !;;;r(Bool)) = 9'"(Bool), so rep (9'") is a
type assignment for W.

Now we need to show that rep (J) is a rep (g)-interpretation for W.
Note that in the context of the type assignment rep (.9'), each reference to
a set DT in the definition of Y-interpretations should be understood as
referring to rep (D7 (T)), i.e., Dr(T). Also, each reference there to J should
be understood as a reference to rep (J). It is clear that rep (J) (c) = J(c)
for all constant symbols C E We, SO condition 1 in the definition
of .9=interpretations is Satisfied. If f E We is a proper function symbol
with T(f) = T 1 X ··· X Tn - T, and d; E Dr(T;)' 1 ::; i ::; n, then
rep (J)(f)(d1 , ••• , dn) E Dr(T) by Lemma 1, so condition 2a is satisfied.
Conditions 2b, 2c, and 3 follow immediately from the definition of rep (J).
Condition 4 follows immediately from Lemma 1 and the definition of
rep (J), as does condition 5 for all constant symbols in We-, SO let f E We
with T(f) = T 1 X··· X Tn-T, and let dE Dr(T)" If d = _l_ T then
rep (J)(is_f)(d) = J(is_f)(d) = _l_ Bool, so assume d -=/= _l_ T • If d E
ran(rep (J)(f)), then obviously d E ran J(f), so that rep (J)(is_f)(d) =
J(is_f)(d) = tt. Now, if d E ran J(f), then d =J(f)(d1 , ••• , dn) for some
(d1 , ••• ,dn) E Dr< 5<rn by Lemma 2, sod E ran(rep(J)(f)). Therefore, if
d ft. ran(rep (J)(f)), then d ft. ran J(f), and rep (J)(is_f)(d) =
J(is_f)(d) = ff, so condition 5 is satisfied. Finally, condition 6 is satisfied
by a similar argument, so rep (J) is a rep (.57)-interpretation, and rep(!,)
is a W-structure. •

We can now define the denotational semantics of recursion programs.
For a complete, continuous W-structure (9';J) and a variable assignment
a E.J¥'7 (V), where V is a set of function variables, let rep(a) be the
function on V defined by

rep(a)(F) = rep(a(F)) for all FE V.

Note that the domain of a(F) is Dr< 5(F)) for all F E V, but rep (a) is a
variable assignment in ~ep(.9")(V) if and only if

rep(a)(F)(d) E Dr< p(F)) for all F E Vandall d E Dr< 5<F».

Definition. Let !, be a complete, continuous W-structure, and let A =
rep(!,). The denotational meaning function for A, denoted 9Jt:., is defined

9Jt:.(P) = rep(JL<I>~)

for all W-programs P.

For a W-program P and F E FV(P), we have

9Jt:.(P)(F) =rep(JL<I>~)(F) =rep(JL<I>~(F)).

534 Chapter 17 Denotational Semantics of Recursion Equations

The point is that, rather than taking JL<I>~(F) as the function assigned to
F, we assign to F a function whose domain consists only of representable
objects.

We showed that JL<I>~ is a solution to P in any complete, continuous
W-structure I. We now show that 9111(P) is a solution to P in a = rep (I).
That is, we still have a solution when we restrict our attention to the data
structure system based on I. We begin with three lemmas that let us
ignore nonrepresentable objects when applying JL<I>~ to terms. In particu­
lar, we want to show that if {3 E.W:.ep(.'7J(V), where Vis a set of individual
variables, then for any term t E TMw(FV(P) U V),

(JL<I>~ U {3)5 (t) = (rep(JL<I>~) U f3)rcp(J)(t).

It will follow easily, then, that 9111(P) = rep (JL<I>~) is a solution to Pin a.

Lemma 3. Let I = (Y,J) be a complete, continuous W-structure, let P
be a W-program, let V ~ VAR 1 , and let a E Jlfrcp(.'7J(V). Then for any
term t E TMw(V U FV(P)), (JL<I>~ U a)5 (t) E Dr(T(t))·

Proof. We have JL<I>~ U a E ~'T(V U FV(P)), which implies
(JL<I>~ u a)5 (t) E DT(t) by Theorem 2.1, so we need to show only that

(JL<I>~ u a ~Y (t) is representable. We argue by structural induction on t. If
t is a constant symbol c E W, then (JL<I>~ u a ~Y (c) is clearly repre­
sentable, and if tis X E V, then (JL<I>~ u a ~Y (X) = a(X) is representable
by assumption. If t is f(t 1 , ••• , tn), where f E W, then

(JL<I>i U a)J (f(t 1 , ••• , tn))

=J(f)((JL<I>i U a)J(t 1), ••• ,(JL<I>~ U a)J(tn))

= J(f)((JL<I>~, L.- (u 1), ••• , (JL<I>~.)f (un))

for some P;, u;, 1 ::;; i ::;; n, by the induction
hypothesis, where P1 , ••• , Pn are consistent

by the extension lemma, where P0 = U:'~ 1 P;

= (JL<I>~o)J (f(u 1 , ••• , un))

E DT(t) by Theorem 2.1,

and (JL <I>~").Y (f(u 1 , ••• , u n)) is representable, so it is in D,< T(t)) • The argu­
ment is similar if tis F(t 1 , ••• , t) with F E FV(P). •

4. Denotational Semantics of W-Programs 535

Lemma 4. Let I = (Y,J) be a complete, continuous W-structure, let
a= rep(I), and let P be a W-program. Then rep(JL<I>~) E~cp(.'TJ(FV(P)).

Proof. Let F(Xu ... , X) = t be an equation in P, and let d E D,<~<F ».
Then

rep(JL<I>~)(F)(d) =rep(JL<I>~(F))(d)

= JL<I>~(F)(d) since d E D,< S(F »

= (JL<I>~ U ad)J (t)

E Dr(T(I))

since JL<I>~ is a solution to P

by Lemma 3. •

Lemma 5. Let I = (Y, J) be a complete, continuous W-structure, let
V; ~ VAR 1 and ~ ~ VARF, let a E.J¥'7(~) be such that rep(a) E
~cp(YJ(~), and let {3 E~cp(Yl(V;). Then for any term t E TMw(~ U V;),

(a U {3)J (t) = (rep(a) U {3)rep (J)(t).

Proof. Note that rep(a) U {3 E~ep(Yl(~ U V;), so by Theorems 2.1 and
4.1,

(rep (a) U {3)rcp(J)(t) E Dr(T(t)) for any t E TMw(~ U V;). (4.1)

We argue by structural induction on t. If t is a constant symbol c E W,
then

(aU f3)J(c) =J(c) = rep(J)(c) = (rep(a) U f3)rep(Jl(c),

and if tis X E V;, then

(aU f3)J(X) = {3(X) = (rep(a) U f3)rep(J)(X).

If't is f(t 1,. .. , t), where fEW, then

(aU f3)J(f(tp ... ,tn))

=J(f){(a U f3)J(t 1), ... ,(a U f3)J(tn))

=J(f)((rep(a) U f3)rep(J)(t 1), ... ,(rep(a) U f3)rep(J)(tn))

by the induction hypothesis

= rep(J)(f)((rep(a) U f3)rep(J)(t 1), ... ,(rep(a) U f3)rep(J)(tn))

by (4.1)

The argument is similar if t is F(t 1 , ••• , t n), where F E ~. •

536 Chapter 17 Denotatlonal Semantics of Recursion Equations

Theorem 4.2. Let ~ = (9'; J) be a complete, continuous W-structure,
and let a = rep(~). Then for any W-program P, g-ip) is a solution toP in
a.
Proof. Let p be a W-program, let F(XI' ... ' xn) = t be an equation in P,
and let d E D,< S(F ». Then

sg~(P)(F)(d) =rep (JLci>~)(F)(d)

= (JLcl>~ U ad)J (t) as in the proof of Lemma 4

= (rep(JLcl>~) U ad)rep(Jl(t) by Lemmas 4 and 5

•
Let a be a data structure system for W. Now that we have a meaning in

a for every W-program, it makes sense to ask if a given W-program P
defines the functions we want it to define. That is, we can ask if P is
correct. Determining that a program is correct is known as program
verification.

Definition. Let a be a data structure system for W, let P be a W-pro­
gram, and let f E Dr(Tt)X ... X r(Tn)-r(T) for some Tl' ... ' Tn' T E TV(W).
We say that Pis partially co"ect with respect to f if

for some F E P, and we say that P is totally co"ect with respect to f if
giP)(F) = f for some FE P.

For example, we indicated in the previous section that JL<I>fj;0 (+) =
+ .l , and g~JADD) = JL<I>fi;0 since aN = ~N, so ADD is totally correct
with respect to + .l • Recall that the correctness argument for ADD was
based on ordinary induction. We will now give an application of fixed point
induction in establishing a partial correctness result.

Let eq: N .l X N .l ~ Bool (where Bool = { ..l Boo! , TRUE, FALSE} here)
be the strict function defined by

{
TRUE

eq(x, y) = FALSE

..l Bool

if X, y E N and X = y

if x, y E N and x =/= y
otherwise,

4. Denotational Semantics of W-Programs 537

and let EQ be the WN-program with the equation

E(X, Y) = if 8001 (is_O(X), if 8001 (is_O(Y), tt, ff), E(s 1- 1 (X), s1- 1 (Y))).

Writing ¥5'.<# for ¥f'.W'yN({E}), let aeq E ¥5'.<# be the assignment aeq(E) = eq,
and let P(x) be the predicate on ¥5'.<# defined by

P(a) ={TRUE
FALSE

if a ~@".<>' aeq

otherwise.

If .W' is a chain in (¥5'.<#, ~w.w) such that P(a) holds for all a E.<#, then
clearly P(U .<#) holds, so P(x) is admissible. We want to show by fixed
point induction that P(f.t<I>EQ) holds. Let n = n@".<>'. It is obvious that
P(O) holds, so we assume P(<I>~Q(O)) and show that P(<I>~"Q\!1)) holds.
We have <I>~Q(O) ~w.w aeq by the induction hypothesis, which implies
<1>~01 (!1) ~@".<>' <I>EQ(aeq) by the monotonicity of <I>EQ' so if we can show
that. <I>EQ(aeq) ~w.w aeq' then we will have <1>~01 (!1) ~@".<>' aeq' i.e.,
P(<l>~~1 (!1)). If x = .l N then it is easy to see that

<I>EQ(aeq)(E)(x,y) =.l 8001 = ae/E)(x,y),

so assume that x E N. If x = 0, then

{
TRUE

<I>EQ(aeq)(E)(x,y) = FALSE

.l Bool

if y =X

if y E N and y =F x

if y = .l N

= aeq(E)(x,y),

and ff x > 0, then

{
TRUE

= FALSE

.l Bool

~Bool ae/E)(x,y).

if X= y

if y E N - {0} and x =F y

otherwise

This concludes the proof of P(<1>~01 (!1)), so P(f.t<I>EQ) holds by fixed point
induction. Therefore,

and EQ is partially correct with respect to eq.

538 Chapter 17 Denotatlonal Semantics of Recursion Equations

Exercises

1. Let P1 = {F(X) = F(s(X))}, P2 = {F(X) = s(F(X))} be WN-pro­
grams. Give consistent WN-programs Q1 , Q2 such that, in any WN­
structure l, JL<I>ij 1 uQ 2(G 1) = JL<I>'i;1(F) and JL<I>~ 1 uQ 2(G 2) = JL<I>'i;2(F).

2. Give a standard vocabulary W = We u B(We) and a W-structure
l = (.9; J) such that, for some T E TV(W), there is an element
d E DT - { ..l T} that is not in the range of J(f) for any f E We.

3. Give aWN-structure l such that rep(l) =Fl.
4. Show that Lemma 2 is not necessarily true for all f E W.

5. (a) Give a standard vocabulary W, a W-structure l = (.9; J), and a
function f E D T 1 ~ D Tz , for some T I> T 2 E TV(W), such that
rep(/) f/:. Dr(Ttl ~ Dr(Tz).

(b) Give an assignment a E .J¥'7 ({F}), where F is a function variable,
such that rep(a) f/:..W..ep(.9"J({F}).

6. Let l = (.9; J) be a complete, continuous W-structure, let V oe a
set of function variables, and let a, {3 E ~.>&(r(V). Show that if
a !;;;;>r.w:, (V > {3, then rep (a)(F) !;;;;,< 5(F » r<F > rep ({3)(F) for all F E V.

7. Show that EQ is not totally correct with respect to eq.

8. Use fixed point induction to show that ADD is partially correct with
respect to + .l •

9. Let l = (g; J) be a complete, continuous W-structure such that
rep(l) = l, let P be a W-program, and let a E ~w_'7(FV(P)) be a
solution to P in l.

(a) Show that JL<I>i; !;;;;w.w,(FV(P))a.
(b) Show that for all F E FV(P), Pis partially correct with respect to

a(F).

10.* Let l = (Y,J) be a complete, continuous W-structure, and let
nl = nW.~q(VARtl" For any T E TV(W), we will say that an element
dE DT is constructed if d = TI";(t) for some t E ™w,(VAR 1).

(a) Let P be a W-program. Show by induction on i that for all
V ~ V AR 1 , all {3 E .J¥'7 (V) such that {3(X) is constructed for all
X E V, and all t E TMw(FV(P) u V), <l>~(!l) u {3(t) is con­
structed. [Hint: For cases i = 0 and i = k + 1, argue by struc­
tural induction on t.]

(b) Let T E TV(W), and let d E D,(Tl. Show that d = U C for some
chain C of constructed elements. [Hint: Use part (a) with
V= 0.]

(c) Let T E TV(W). Show that for every d E D,(T) - { ..l T}, d E

ran J(f) for some f E We. [Hint: See Exercise 2.9.] Compare
with Exercise 2.

5. Simple Data Structure Systems 539

5. Simple Data Structure Systems

So far AN is the only data structure system we have seen, so in this section
we give some more examples. In particular, we look at a rather simple
form of data structure system.

Definition. Let !. = (.9'; J) be a W-structure. !. is a simple W-structure if

1. Y(T) is a flat cpo for all T E TV(W), and
2. J(f) is Strict for every proper constructor function symbol f E We.

A = rep(!.) is a simple data structure system for W if !. is a simple
W-structure.

It is easy to see that any simple W-structure is complete and continuous.
Clearly, AN is simple. For another example, we extend AN with tuples of
natural numbers to create a simple WNL -structure, where WNL is the
vocabulary for lists described in Section 1. Let TUP(N) be the set of all
tuples of natural numbers, including the "empty" tuple (), and let
(TUP(N) _]_, !;;;TUP(N)") be the flat cpo on TUP(N). We define !.NL =
(~L,JNL) as follows:

YNL (Boot) = YN (Bool)

~L(N) = YN(N)

~L(NL) = (TUP(N) _]_, !;;;TUP(N)")

JNL(O) = 0

JNL(s) = S _!_

JNL(nil) = ()

JNL(cons) =cons_]_ (the strict extension of cons)

where cons: N X TUP(N) ~ TUP(N) is defined

For built-in function symbols f, JNL(f) is defined according to conditions
4-6 on Y.:interpretations. It is easy to check that !.NL is a simple W-struc­
ture. Moreover, we have ll(nil) = (), and for any tuple (m 1 , 0 •• , mn) we
have

O(cons(m1 , cons(m2 , • • • cons(mn, nil) · · ·))) = (m 1 , ••• , mn) o

Therefore, every element in TUP(N) _]_ is representable, so we have
!.NL = rep (!.NL), and !.NL is a simple data structure system for WNL. We

540 Chapter 17 Denotatlonal Semantics of Recursion Equations

will write ANL for INL when we are interested in INL as a data structure
system.

Now, let LIST be the WNL-program with equations

Length(X) = ifN(is_nii(X), 0, s(Length(cons; 1 (X))))

Nth(X, Y) = ifN(is_O(X),cons 1- 1 (Y),Nth(s! 1 (X),cons; 1 (Y)))

Cat(X, Y) = ifNL(is_nii(X), Y, cons(cons! 1 (X), Cat(cons; 1 (X), Y)))

Rev(X) = ifNL(is_nii(X),

X, Cat(Rev(cons2 1 (X)),

cons(cons 1- 1 (X), nil))).

Then f:g. (LIST)(Length) evaluates the length of a list. More precisely, if '-'NL
len((m 1 , ••• , mn)) = n for any list (m 1 , ••• , mn) E TUP(N), then
gll.NL(LIST)(Length) = len _L • It is clear that g~~.N,~LIST)(Length) is strict,
so we argue by induction on the length of lists:

g~~. (LIST)(Length)(())
Nl.

= JL<I>usT(Length)(())

= <l>usT(JL<I>usT)(Length)(())

= JL<I>usT u a 0 (ifN(is_nii(X),O,s(Length(cons; 1 (X)))))

= JNL(if N){JNL(is_nil){()), 0, JLCI>usT U a< l(s(Length(cons; 1 (X)))))

= 0,

and

gll.NL(LIST)(Length)((m 1 , ••• , mn+ 1))

= JLCI>usT U a(m,, ... ,m.+ 1>(ifN(is_nii(X),O,s(Length(cons; 1 (X)))))

=JNL(s)(JL<I>usT(Length)(JNL(cons; 1)((m 1 , ••• , mn + 1))))

=JNL{s)(JL<f>LIST(Length)((m2, ... , mn + 1)))

=JNL(s){n) by the induction hypothesis

= n + 1.

We leave it to the reader to verify that gll.N,_(LIST)(Nth)(n, I) returns the
nth element, starting from 0, of list I (if it exists); gll.N,_(LIST)(Cat)
concatenates two lists; and gll. (LIST)(Rev) reverses a list.

Nl.

5. Simple Data Structure Systems 541

In the previous paragraph we referred to lists rather than tuples. Why?
The real question is, what is a list? The vocabulary WNL was created to let
us name lists of numbers, based on our intuitive understanding of the
nature of lists. Our point of view is that a list of numbers is just an element

of Y(NL), where (9'; J) is any WNL -structure. This is essentially an
axiomatic approach, where we express the properties we expect from our
data objects, without specifying just what those objects are. So TUP(N) _L

is one set of objects that can serve as lists of numbers, but there are
others. An alternative WNL-structure will be given by the construction
preceding Theorem 5.1.

For a third example, we show that .9 programs, defined in Chapter 2,
can be incorporated into a simple data structure system. We start with type
variables Bool, N, V, L, S, I, and P, to be assigned truth values, numbers,
variables (of .9), labels, statements, instructions, and .9 programs, respec­
tively. For a constructor vocabulary we take

where

\¥.:. = {tt, ff, 0, s, var, lab, skip, incr, deer, goto, unlab_instr,

lab_instr, empty, cons},

T(O) = N

T(var) = N -+V

T0ab) = N -+L

T(Skip) = V -+S

T(incr) = V -+S

T(decr) = V -+S

T(s)=N-+N

T(goto) = V X L -+S

T(unlab_instr) = S -+1

T(lab_instr) = LX S-+ I

T(empty) = P

T(cons) =I X P -+P,

and we set Wy, = We U B(Wc). Now we set ~,(T) = SfN(T) for T = Bool, N,
and we set ~,(T) to be the flat cpa on .9 variables, labels, statements,
instructions, and .9 programs for T = V, L, S, I, P, respectively. Let
V0 , V1 , ••• and L 0 , L 1 , ••• enumerate the .9 variables and labels, as in the
beginning of Chapter 4 (except that we begin counting at 0 rather than 1).
Then for the constructor symbols we define ._Yy, as follows:

...Yy,(O) = 0 ._Yy,(s) = s _L

..;:y,(var) = var .L

..;:y,(lab) = lab _L

..;:.,,(skip) = skip .L

..;:.,,(incr) = incr _L

..;:.,,(deer) = deer _L

..;:y,(goto) = goto .L

..;:.,,(unlab_instr) = unlab_instr .L

..;:.,,(lab_instr) = lab_instr .L

..;:y,(empty) = empty program

..;:.,,(cons) = cons _L ,

542

where

var(n) = V,

lab(n) = Ln

Chapter 17 Denotational Semantics of Recursion Equations

goto(V, L) =IF V * 0 GOTO L

unlab_instr(S) = S

skip(n) = V +--- V

incr(V) = V +--- V + 1

deer(V) = V +--- V - 1

lab_instr(L, S) = [L] S

For example,

a

O(cons(lab_instr(lab(0), deer(var(1))),
cons(unlab_instr(incr(var(0))),

cons(unlab_instr(goto(var(1), lab(0)))
empty))))

[A] X+-X- 1
Y+-Y+l
IF Xo!= OGOTOA

dy = (rep(~,), rep(..;:,,>) = (~,, ..;:y,) is the simple data structure system
of .9' programs.

One of the standard problems in programming language theory is to
show the existence of structures that satisfy a given set of conditions. We
can ask, for example, is there a strict data structure system for every
standard vocabulary? We will show that there is. We define Ir(W) =
(.9';-(W)•~(w), the simple Herbrand W-structure, as follows.5 For each
T E TV(W), let .9';-(W)(T) be the flat cpa on TM~, . We will write ..l T for
the bottom element of g;.(W)(T). Next we define ,y;,.(W):

~(W)(c) = c for each constant symbol c E W,.

if t; * ..l T,, 1 :::;; i :::;; n

otherwise,

for each f E We with T(f) = T 1 X · · · X Tn -+T. For each f E B(W,.), ~(W)(f)
is defined according to conditions 4-6 on Y-interpretations. It is clear that
I;r(W) is a simple W-structure, and an easy structural induction shows that

5 The idea of creating structures based on terms comes from the field of mathematical
logic. For example, Herbrand unicerses are defined and play a significant role in Chapter 13.

5. Simple Data Structure Systems 543

O(t) = t for all t E ™w,, so every element in IJI''(W) is representable.
Therefore, a%'(W) = rep (l_;r(W)) = I.:r(W) is a simple data structure system
for W, and we have proved

Theorem 5.1. There is a simple data structure system for every standard
vocabulary.

Exercises

I. Show that any simple W-structure is complete and continuous.

2. Let I = (Y,J) be a simple W-structure, and let f Ewe with T(f) =
T -T. What is JL.f(f)?

3. Show that INL is a simple WNL-structure.

4. Show by induction on n that

{
m.

~11 (LIST)(Nth)(i, (m 0 , ••• , mn)) = ..L'
NL N

5. Show by induction on n that

if 0:::;; i:::;; n

if i > n.

~t..NL(LIST)(Cat)((l 1 , ••• , In), (m 1 , ••• , m,)) = (/1 •• • In, m 1 , ••• , m,).

6. Using Exercise 5, show by induction on n that

~t..NL(LIST)(Rev)((m 1 , ••• ,mn)) = (mn , ... ,m1).

7. Give a WNL-program P such that

8. Give the ~yAerm t such that O(t) is

[Cd Z 2 +--- Z 3 - 1

n

IF Z3 =I= 0 GOTO C1

9. Describe I.:r(WNd.

10. Complete the proof of Theorem 5.1 by showing that rep CI-r(W)) =
I.:r(W) for any standard vocabulary W.

11.* Let I = (Y,J) be a W-structure. For any T E TV(W), we will say
that an element d E DT is ground if d = ..L T or d = O(t) for some

544 Chapter 17 Denotational Semantics of Recursion Equations

t E TMw , and we will say that I is term-generated if for all T E

TV(W), e~ery element of DT is ground.
(a) Show that there is a term-generated W-structure for every

standard vocabulary W.
(b) Give a standard vocabulary W and a simple W-structure that is

not term-generated.
(c) Let I = (9'; J) be a simple W-structure, and let P be a W-pro­

gram. Show by induction on i that for all V ~ VAR1 , all
{3 E .Wy(V) such that {3(X) is ground for all X E V, and all
t E TMw(FV(P) U V), <1>~(.0) U {3(t) is ground. [Hint: For
cases i = 0 and i = k + 1, argue by structural induction on t.]

(d) Let I = (9';J) be a simple W-structure. Show that rep(I) is
term-generated. [Hint: Use part (c) with V = 0.]

12.* Let I= (9';J), I' = (::T',J') be W-structures. We say that I, I'
are isomorphic if there is a set of functions {JT I T E TV(W)} such
that

• for all T E TV(W), fT is an isomorphism from ::T(T) to ::T'(T),
• for all constant symbols c E We with r(c) = T, fT(J(c)) = ::T'(c),

and
e for all proper function symbols f E We with r(f) = T 1 X · · · X

Tn -+T,

/T(J(f)(d) , ... ,dn)) =J'(f)(/T,(d)), ... ,fT.(dn))

for all (dp ... ,dn) E D5<r>·

[See Exercise 3.18 in Chapter 16 for the definition of isomorphic
partial orders.]

(a) Show that IN, I2'<WN> are isomorphic.
(b) Show that INL, I2'(WNd are isomorphic.
(c) Let I be a simple W-structure. Use Exercise 11 to show that

rep (I), I2'(W) are isomorphic.

6. lnfinitary Data Structure Systems

Simple data structure systems are too elementary to demonstrate the
power of the framework we developed in Chapter 16, so in this section we
look at more complex systems.

Definition. Let I = (9'; J) be a complete, continuous W-structure. I is
an infinitary W-structure if for every proper constructor function symbol

6. lnfinltary Data Structure Systems 545

f E We , ..l p(f) f/=. ran J(f). d = rep (!_) is an in finitary data Structure system
for W if !. is an infinitary W-structure.

Suppose we try to define, as an interpretation J(s) for s E WN, a
continuous successor function s"' for N _L such that ..L N f/=. ran s"". If s"'
and s, the ordinary successor function, agree on N then we still get the
positive natural numbers s""(O), s"'(s"'(O)), ... by repeated application of s"'
to 0, but we get other objects as well. Since ..L N f/=. ran s"", we get
..L N c s"'(..L N), which implies s""(..L N) c s""(s""(..L N)) by the monotonicity
of s"" and by condition 2b on Y:interpretations. The idea is that we know
that s""(..L N) is the successor of something, but that is all we know. Now,
s"'(s""(..L N)) is also the successor of something, but we also know that it is
the successor of something that is the successor of something, so
s"'(s""(..L N)) is more defined than s""(..L N). Moreover, an object like s""(..L N)
must be different than every natural number: s""(..L N) = 0 would violate
condition 3 on Y:interpretations, and s""(..L N) = n + 1 = s""(n) would vio­
late condition 2b. What we get, therefore, is an infinite chain of distinct
new objects:

But then we need yet another new object u {(s"');(..L N) I i E N} if we are to
have a cpo.

It is not at all obvious, then, that infinitary W-structures exist. In fact, we
will show that they do. We begin by defining a variation on the Herbrand
structures of Section 5. For each T E TV(W), we create a new constant
symbol6 J.T with T(J.T) = T, and we set

For each T E TV(W) we define the ordering !;;;T+ on TM~+ as follows:

(

t =.l.T ort = uor

[t = f(t 1 , ••• ,tn) and u = f(u 1 , ••• ,un), for
t c + u if and only if . -T some f Ewe Wtth T(f) = Tl X ... X Tn -+T, and

t; !;;;T~ D;, 1 :::;; i :::;; n].
I

For WN we have w~ = {tt, ff, 0, s, J.Bool' J.N}, TM~t = {J.Bool• tt, ft'}, and

6 Note that the symbol .l.T is introduced into the semantics of W-programs. The vocabu­
lary W remains the same. That is, .l.T cannot appear in a W-program.

546 Chapter 17 Denotational Semantics of Recursion Equations

TM~~ = {s;(O) I i EN} u {si(l.N) I i EN}. The definition of ~;;;N. im­
plies, for example,

.l.N ~;;;N. s;(O) for all i EN,

.l.N !;;;N+ s(.l.N) I;;;N+ s(s(.l.N)) I;;;N+ s(s(O)), and

.l.N I;;;N+ S(.l.N) I;;;N+ s(S(.l.N)) I;;;N+ s(s(s(.l.N))) I;;;N+

Now, for each T E TV(W), (TM~+, I;;;T+) is a partial order with bottom
element l.T, but we still have the problem that (TM~+, I;;;T+) is not, in
general, a cpo. For example, {si(l.N) I i EN} is a chain in (TM~~, I;;;N+)
without a least upper bound. Here is where we apply the ideal construc­
tion.

Definition. The Herbrand ideal type assignment for W, denoted g;~<W>• is
defined, for all T E TV(W),

.9';~(W)(T) = (id(TM~+), ~ id(TMi.+ >).

(As usual, we are writing id(TM~+) for id(TM~+ , I;;;T+).) The Herbrand
ideal 9';~(Wfinterpretation, denoted ~·(W)• is defined

e for all COnstant symbols C E We, With T(C) = T,

e for all proper function symbols f EWe, with T(f) = T1 X ··· X Tn -+T,

~·(W){f){/1 ' ... 'In) = {f(tp ... 'tn) It; E I;' 1 ::; i ::; n} u {.l.T}

for all (/1 , ... , In) E id(TMw·) X ··· X id(TM~.);
• for all f E B(We), ~~(W)(f) is defined according to conditions 4-6 on

9'=interpretations.

The Herbrand ideal W-structure, denoted I..r~<W>• is (g;.<W>•~'<w)·

When W is understood we will write (!T"',J"') for (.9';~<W>·~·<W>)

(DT., ~;;;T.) for g;.(W)(T), and ..l T• for the bottom element of (DT., ~;;;T.).
As usual, we will write tt for J""(tt) and ff for J""(tT).

For a first example we consider I..r·(WN> = (g;.<WN>'~~<WN>), which
we will write as I~. There are three kinds of elements in DN., including
two kinds of principal ideals. For each numeral n there is pid(n) =

{si(l. N) I i ::; n} u {n}, and for each term of the form sn(l. N) there is
pid(sn(l.N)) = {si(l.N) I i::; n}. For all numerals n we will write n for
pid(n), e.g., 3 = pid(3), where pid(n) is distinguished from the natural

6. lnfinitary Data Structure Systems 547

number n by context. Somewhat ambiguously, perhaps, we will call these
objects numbers. [Indeed, by our discussion about lists in Section 5, we
could make a case that pid(3) is the natural number 3.] Also, we will write
n _j_ for pid(sn(l. N)). These two kinds of objects look very similar, but the
significant difference is that no object n can occur in an infinite chain.
This is because n is the greatest element of n, so n cannot be a proper
subset of any larger ideal. Therefore, there is no object d distinct from n
such that n !;;;N~ d. In other words, n is not an approximation of any other
element, so we can say that n is completely defined. On the other hand,
{n _j_ I n E N} is an infinite chain, and

u {n _j_ I n E N} = u {n _j_ I n E N}

= U{pid(sn(.LN))In EN}

= {sn(.LN) In EN}.

In fact, {sn(l. N) I n E N} is the unique infinite ideal of Y"'(N), and we will
write it as w. Clearly, w is not a principal ideal.

We will now show that, for any standard vocabulary W, !.2'~<W> is an
infinitary W-structure.

Lemma 1. Let IE DT~ for some T E TV(W).

1. If c E /, where c E we is some constant symbol, then I =Joe(c).
2. If f(tp ... , tn) E /, where f E We is some proper function symbol,

then I =Joo(f)(/1 , ••• , In), where, for 1 ::; i ::; n,

I;= {u E TM~+ lf(t 1 , ••• ,t;_ 1 ,u,ti+P···,tn) E /}.

Proof. Let c E I be some constant symbol. I is directed, so no term
u E TM~+ of the form g or g(01 '0 0 0 'um), where g E we is distinct from
c, can be in I since, by definition of !;;;; T+ , there is no term v E TM~+
such that c, u !;;;T+ v. Also, l.T E I since I is downward closed, so I=
{l.T,c} =J"'(c).

Now, let f(t 1, ••• , t) E /, for some f EWe with T(f) = T 1 X ··· X
Tn -+T, and for 1 ::; i ::; n let / 1 , ••• , In be as defined in the statement of
the lemma. Firs.t we show that / 1 , ••• , In are ideals. For 1 ::; i ::; n, t; E I;,
so I; is nonempty. If u E I;, v E TM~+, and v !;;;Ti u, then

f(t 1 , ••• ,t;_ 1 ,u,ti+ 1 , ••• ,tn) E I

and

548 Chapter 17 Denotatlonal Semantics of Recursion Equations

which implies f(t 1, ... , t;_ 1, v, t;+ 1, ... , tJ E I since I is downward closed.
Therefore, v E I; and I; is downward closed. If u, v E I;, there is a term
f(tp ... ,t;_ 1,w,t;+P···,tJ E I such that

f(tl , ... ,ti-1 ,u,ti+l , ... ,tn) !;;;T+ f(tl , ... ,ti-1 ,w,ti+l , ... ,tn),

f(tl , ... ,ti-1 ,v,ti+l , ... ,tn) !;;;T+ f(tl , ... ,ti-l ,w,ti+l , ... ,tn),

since I is directed. Then wE I; and u, v !;;;T+ w, so I; is directed. There­
fore, I; is an ideal, 1 ::; i ::; n, i.e., I; E DT~. '

We claim that I =J"'(f)(/1, ... , In). Let u E I. If u = .L T, then u E
J"'(f)(/1, ... , In) by definition of J"'(f). Otherwise, u must be of the form
f(u 1 , ... , u J since I is directed. Then there is a term f(v ~' ... , vJ E I
such that

which implies, for 1 ::; i ::; n,

f(tp ... ,t;_pU;,ti+P···,tn) !;;;T+ f(vp···,vn),

so that

f(tl , ... ,ti-1 ,u;,ti+l , ... ,tn) E I.

Therefore, we have u; E I;, 1 ::; i ::; n, which implies f(up ... , uJ E
J"'(f)(/1, ... , In), and so I ~ Joo(f)(/1, ... , In). Now, let u E
J"'(f)(/1, ... , In). If u = .L T then u E I. Otherwise, u is of the form
f(u 1, ... , uJ, where u; E I;, 1 ::; i ::; n. Therefore, by definition of I;,

and since I is directed, a simple induction on n shows that there is a term
f(vp ... ,vJ E I such that

Then u; !;;;T+ v;, 1 ::; i ::; n, which implies f(up ... , uJ !;;;T+ f(vp ... ,vJ,
so f(u I ' . : . 'u n) E I' since I is downward closed. Therefore,
J"'{f)(/1, ... , In)~ I, and so I =J"'(f)(/1, ... , In). •

Theorem 6.1. IK~(W> is an infinitary W-structure.

Proof. It is clear that y+"' is a type assignment for W, and it is complete
by Theorem 16.3.12. Therefore, we begin by showing that J"' is a
::T"' -interpretation for W. Note that .L T occurs in every ideal of
(TMw+, !;;;T+), and {.LT} is an ideal, so {.LT} is the bottom element _iT"

6. lnfinitary Data Structure Systems 549

of (DTx' !;;;;Tx). Now, for any constant symbol c E we with T(c) = T'
J"'(c) = {.LT, c} * _1_ T' is an ideal of (TMw+, !;;;;T+), so condition 1 is
satisfied. Let f E ~· be a proper function symbol with T(f) = T 1 X · · · X
T,. -+T, let (/1 '0 0 0' /,.) E DTx X 000 X DTx' and let I =J"'(f)(/1 '0 0 0' I,.). I
is nonempty since .LT E /. S~ppose that "r(t1, ... , t) E I, u E TMw+, and
u !;;;;T+ f(tp ... , t). If u =.LT or u = f(tp ... , t) then u E I.
Otherwise, by the definition of !;;;;T+, u must be a term of the form
f(u 1, ... ,u,.), where u; !;;;;T+ t;, 1 ~ i ~ n. Then u; E I;, 1 ~ i ~ n, since I;
is downward closed, so f(u 1 , ... , u,.) E I and I is downward closed.
Suppose t, u E /. If t !;;;;T+ u or u !;;;;T+ t then either t, u !;;;;T+ t E I or t, u
!;;;;T+ u E /, so suppose otherwise. Then t, u must be terms of the form
f(t'p ... ,t,.),f(up···•u), respectively, and t;,u; E I; implies there is a
W; E I; such that t;,u; !;;;;T+ W;, 1 ~ i ~ n, so f(t 1 , ••• ,t,.),f(u1, ... ,u)
!;;;;T+ f(w1, ... , w) E I. Therefore, I is directed and it is an ideal, so
I E DT, and condition 2a is satisfied. If (/1, ... , In), (J1 , ••• , Jn) E
DT, X ··· X DT, are distinct, then clearly J"'(f)(/1, ... , In) * J"'(f)

I n

(11, ... , J,.), so J"'(f) is one-one and condition 2b is satisfied. Conditions
2c, 3, 4, 5, and 6 follow immediately from the definition of J"'(f), so
(.?""',J"") is a complete W-structure.

It is immediate from the definition that _1_ P <O f/:. ran J"'(f) for every
proper constructor function symbol f, so it remains for us only to show that
J"'(f) is continuous for every proper f E w. Let f E we be a proper
function symbol with T(f) = T1 X ··· X Tn -+T, and let'?? be a chain in the
cpa (DT, x ... x T', !;;;;Tx x ... x Tx). It is easy to see J"'(f) is monotonic, so by

I " I II

Theorem 16.4.3 we just need to show that J"'(f)(U %') !;;;; Tx
UJ"'(f)(%'); that is,

J"'(f)(U%') ~ UJ"'(f)(%').

Lett EJ"'(f)(U'?J') =J"'(f)(u(%' p), ... , u (%' t n)). If t = .LT then t E
J"'(f)(/) for all I E '??,so that t E UJ"'(f)('?J'). Otherwise, tis some term
f(t 1, ... ,t,.), where t; E U('?J' t i), 1 ~ i ~ n. Now, for 1 ~ i ~ n, if t; E
U(%' t i), then t; E (If, ... ,/~) t i for some (If, ... , I~) E C, and since
{(If, ... , ID 11 ~ i ~ n} is a finite subset of the chain '??, there is some
(/1, ... , In) E %' such that

Then t; E 1;, 1 ~ i ~ n, which implies f(tp 00., tn) EJ"'(f)(/1 ,. 00, In), so
that f(t P 00 . , t) E u J"'(f) ('??) = u J"'(f)(%'). Therefore, J"'(f) (u %')
~ UJ"'(f)(%').

We turn now to the built-in function symbols. Again, it is easy to see
that each J"'(ifT), J""(is_f), and J"'(f;- 1) is monotonic, using Lemma 1 in
the latter two cases. Let T E TV(W), and let %' be a chain in

550 Chapter 17 Denotational Semantics of Recursion Equations

{DBoolx X Tx X Tx' !;;;Boolx X Tx X Tx). If { U '/FH 1 = ..1_ Boot• then I J, 1 = ..1_ Boot•
for all I E ~ and we have

If (U~)J,l = tt then J"'(ifT)(U%') = (U%'H2 = U(~ J,2). Now, if
t E U(%' J,2), then t E I for some (b, I, J) E %', and there is some
(tt,I',J') E ~such that I !;;;Tx /',so

Therefore, J""(ifT){u~) ~ UJ""(ifT){~). Similarly, if (U'IF)J,l = ff then
J""(ifT){u~) = (U~H3 ~ uJ"'(ifT){~), so J"'(ifT) is continuous.

Next, let f E we with p(f) = T' and let ~ be a chain in (DTx' !;;;Tx). If
~ = {..L Tx} then J""(is_f)(U%') = ..L Boot• = UJ""(is_f){%'), so assume~
contains some I * ..L T •. Then there is some term in I ~ U ~ of the form g
or g(u 1,. •• , Um), where g EWe, SO I, U ~ E ran J"'(g) by Lemma 1.
Moreover, for all J E ~' if J *..LT. then J ~ U~ implies that J also
contains a term of the form g or g(v1 , ••• , vm), so J E ran J"'(g). There­
fore, if f, g are the same then J""(is_f){u~) = tt = UJ"'(is_f){~),
and if they are distinct then, by condition 3 on Y-interpretations,
J"'(is_f) (u ~) = ff = u J""(is_f) (~).

We conclude with the functions J"'(f;- 1). Let f Ewe with T(f) =
T1 X··· X Tn-T, and let%' be a chain in (DTx' !;;;Tx). If U%' $. ran...Y"'(f),
then J"'(f;- 1){u~) = ..L T", and, for any IE%', if there were a term
f(t 1 ,. •• , tJ E I, then f(t 1', ••• , tn) E U~ would imply by Lemma 1 that
U %' E ran J"'(f), so ...Y""(f;- 1){/) = ..L T" and U...Y"'(f;- 1){~) =..LT •. Sup­
pose, then, that U %' = ...Y""(f){/1 , • .'. , In) for some (/1 , ••• : In) E
DT·x ... xT•, so that J"'(f;- 1){U%') =I;, and lett E I;. Then there is a
ter~ u or"the form f(u 10 ••• ,u;_ 10 t,ui+ 1 , ••• ,uJ E U%', which implies
u E I for some IE~. Therefore, by Lemma 1, t E...Y"'(f;- 1)(/) ~
u ...Y""(f;- 1){~), and we have J""(f;- 1){U%') ~ u ...Y""(f;- 1){~), so

...Y"'(f;- 1) is continuous. •

We immediately get

Corollary 6.2. There is an infinitary data structure system for every
standard vocabulary.

For example, A~ = rep(!.~) is an in finitary data structure system for
WN. It is clear that each element in D 8001 • is representable. It turns out,
moreover, that every element in Dw is representable. Certainly each

6. lnfinitary Data Structure Systems

n E DN~ is representable, since O(n) = n. For example,

0(2) =J"'(s)(J"'(s)(J"'(O))) =J"'(s)(J"'(s)({.LN, 0}))

=J""(s)({.LN, s(.LN), s(O)})

= {.LN , s(.LN), s(s(.LN)), s(s(O))}

= 20

Now, let P be the WN-program with equations

B(X) = B(X)

G(X) = s(G(X))o

Then for any n j_ E DN", n j_ = JLcl>p(sn(B(O))). For example,

JLcl>p(s(s(B(O)))) =J""(s)(J"'(s)(O(B)(J"'(O))))

= J""(s)(J"'(s)({.LN}))

=J""(s)({.LN 's(.LN)})

= {.LN 's(.LN), s(s(.LN))}

551

Also, an easy induction on n E N shows that ci>~(O)(G)(O) = n j_ for all
n EN (where 0 = {l.N, 0}), so

JL<I>p(G(O)) = u {ci>~(O)(G(O)) In EN}

= U{ci>~(O)(G)(O)In EN}

= U{nj_ In EN}

= Wo

Therefore, every element of DN~ is representable, and A""N = !.~ 0

The situation is more interesting when we consider

and A"'NL = rep(!.~L)o As in the previous example, .r"(N) = rep(.r")(N),
but now .r"(NL) =F rep (.9""") (NL)o Again there are three kinds of elements
in DNL" 0 For each term of the form cons(t 1 , .. o cons(tn, nil) .. o), n ~ 0,

552 Chapter 17 Denotational Semantics of Recursion Equations

where t; E TM~NL, 1 ~ i ~ n, there is a principal ideal. For example,

pid(cons(l, cons(.l.N, nil)))

= {.l.NL, cons(.l.N, .l.NL), cons(s(.l.N), .l.NL), cons(1, .l.NL),

cons(.l.N, cons(.l.N, .l.NL)), cons(s(.l.N), cons(.l.N, .l.NL)),

cons(l, cons(.l.N, .l.NL)), cons(.l.N, cons(.l.N, nil)),

cons(s(.l.N), cons(.l.N, nil)), cons(l, cons(.l.N, nil))}.

Note that pid(l.N) = {l.N}, pid(nil) = {l.NL,nil} =J""(nil),

pid(cons(.l.N, nil)) = {.l.NL, cons(.l.N, .l.NL), cons(.l.N, nil)}

=J"'(cons)(pid(.l.N), pid(nil)),

and, as the reader can verify,

pid(cons(l, cons(.l.N, nil))) =J"'(cons)(pid(l), pid(cons(.l.N, nil))).

That is, pid(cons(l,cons(l.N,nil))) is built up from pid(nil), the list with
no elements, by applying J"'(cons) to (pid(l.N), pid(nil)) to get
pid(cons(l.N,nil)), a list with one element (namely, pid(l.N)), and then
applying J"'(cons) again to (pid(l), pid(cons(l. N, nil))) to get a list with
two elements (namely, pid(l) and pid(l.N)). Therefore, we write
pid(cons(l,cons(l.N,nil))) as (pid(l),pid(l.N)), or simply (1, ..LN.). In
general, we write pid(nil) as the empty list () and pid(cons
(t1 , ••• cons(tn,nil) ···)) as the finite list (d1 , ••• , dn), where d; = pid(t;),
1 ~ i ~ n.

For each term of the form cons(t 1 , ••• cons(tn, l.NL) ···), n ~ 0, where
t; E TM~NL, 1 ~ i ~ n, there is also a principal ideal. For example,
pid(cons(1, cons(l. N, l. NL))) is

{.l.NL , cons(.l.N , .1. NL), cons(s(.l.N), .l.NL),

cons(l,.l.NL), cons(.l.N ,cons(.l.N ,.l.NL)),

cons(s(.l.N), cons(.l.N, .l.NL)), cons(l, cons(.l.N ,.l.NL))} .

Here we have

pid(cons(l,cons(.l.N ,.l.NL))) =J"'(cons)(l,Joc(cons)(..L N00 ' ..L NL")),

which we write (1, ..L Noo) _]_ . In general we write elements of the form
pid(cons(tH···cons(tn,l.NL) ···))as (d1 , ••• ,dn)_j_, where d; = pid(t;),

6. lnfinitary Data Structure Systems 553

1 :::;; i :::;; n. We call these objects prefix lists, since

for any e I ' 0 0 0 ' em E D N"·

We also have elements in DNL" which are nonprincipal ideals. The
difference between (d 1 , ••• , d n) and (d 1 , ••• , d n) _!_ is that the former is
built up from the completely defined empty list J"'(nil) and the latter
is built up from the completely undefined list .L NL"· Now, we can
have infinite chains of finite lists, e.g., { (n _]_) I n E N}, where we write
u { (n _]_) I n E N} as (w), but the least upper bound is always a finite list
(though not a principal ideal). On the other hand, chains of prefix lists can
lead to infinite lists. For example, { (0, ... , n) _]_ I n E N} is a chain, since

(0) _!_ !;;;NL" (0, 1) _!_ !;;;NL" (0, 1, 2) _!_ !;;;NL" •••'

and the least upper bound of { (0, ... , n) _]_ I n E N} is the infinite ideal
which we write as the infinite list (0, 1, 2, 3, ...). There are other interest­
ing kinds of non principal ideals, such as u { (n _]_) _]_ I n E N} and

n
u{<~>_j_ In EN},

which we leave to the reader to explore.
It is interesting to observe that even these infinite lists, or the repre­

sentable ones, more precisely, can be quite useful. In fact, a family of
programming languages known as lazy functional languages has been devel­
oped based on the use of such objects. The typical use of infinite lists in
these languages is to define an infinite list of desired objects and then to
select some particular object from the list. The word lazy refers to the fact
that, in practice, it is not necessary to generate an entire infinite list before
performing the selection: it is necessary to generate only enough of the list
so that the desired object appears. For a simple example, let P be the
program with equations

F(X) = cons(X, F(s(X)))

Nth(X, Y) = ifNL(is_O(X), cons1- 1 (Y), Nth(s 1- 1 (X), cons; 1 (Y))).

Then

~(F(O)) = (0, 1,2, ...) and ~(Nth(n,F(O))) = n for all n EN.

In the next chapter we will show that the infinite list (p 1 , p 2 , •••) of all
primes is also representable.

554 Chapter 17 Denotational Semantics of Recursion Equations

Unlike a""N, we now have objects that are not representable. For exam­
ple, the infinite list L = (HALT(O, 0), HALT(l, 1), ...) is not repre­
sentable, where HALT(x, x) is the predicate defined in Chapter 4. If it
were representable, say L = JLCI>Q(t), then we would have

JLCI>PuQ(Nth(n,t)) = HALT(n,n) for all n EN,

which, informally at least, would imply that HALT(x, x) is computable.
For our final example, we take a vocabulary, WR, suitable for represent­

ing the decimal expansions of real numbers x in the interval 0 :::;; x < 1.
(This interval is usually written [0, 1).) This time we begin with constant
symbols d0 ,d1 , ... ,d9 , with T(d0) = ··· = T(d9) = D, to represent deci­
mal digits. We will build up lists of decimal digits with dnil and dcons,
where T(dnil) = DL and T(dcons) = D X DL-DL. We also include in
WR the symbols of WNL. We call the elements of D 0 x decimal digits, which
we write as .l 0 ., 0, 1, ... , 9. Again we have three kinds of elements in
D 0 Lx: (1) finite lists of decimal digits, which we write .d1d2 ••• dn, n ;:::: 0;
(2) prefix lists of decimal digits, which we write .d1 d2 ••• dn _j_ , n ;:::: 0; and
(3) infinite lists of decimal digits, which we write .d 1 d2 •••• It is clear that
there is an object in D 0 Lx for every real number in [0, 1). (Actually, there
is more than one object for some real numbers, since, for example,
.29999 ... and .3 are distinct in DoL x, but that problem will not concern us
here.) We call the elements of D 0 Lx computable real numbers7 in [0, 1). It is
a basic mathematical fact that there are more real numbers than there are
WR-programs and WR-terms, so there are certainly objects in D 0 Lx that are
not computable real numbers. It is clear that every nonrepeating rational
number in [0, 1) is computable, e.g., .33 = O(dcons(d3 ,dcons(d3 ,dnil))).
It is also clear, intuitively, that we could write a WR-program to define long
division, so every repeating rational number in [0, 1) is computable. In the
next chapter we will show, moreover, that some irrational numbers are
computable as well.

Exercises

1. Let We = {tt, ff, c, f} be a standard constructor vocabulary with Te(c)
= T and Te(f) =TXT -T, and let W =We U B(We).

(a) Give an infinite chain in (TM~., !;;;T+).

(b) Let J"" =~'(W)• What is fl5 ,(f(X,f(c,c)))?

7 Really we should call these objects representable real numbers at this point, but the
operational semantics in the next chapter will justify the more traditional name.

6. lnfinitary Data Structure Systems 555

2. What is pid(3) in !l"'N? What is pid(s3(l.N))?

3. Show that n _j_ !;;;Noc n for all n E N. [Note that n has two different
meanings here.]

4, Let ,_f~ =~~(WN)'
(a) Show that ..Y"'(s) (2) = 3.

(b) Show that ..Y"'(s)(2 _j_) = 3 _j_ •

(c) Show that ..Y""(s1- 1)(3 _j_) = 2 _j_ •

5. (a) What is gll~N(ADD)(+)(3, 2)?

(b) What is gll'N(ADD)(+)(3 _j_ , 2)?

(c) What is gll'N(ADD)(+)(3, 2 _j_)?

6. What is (..L N"' 1) in !l"'NL? What is (..L N"' 1) _j_ ?

7. Show that (n) _j_ !;;;NL~ (n) for all n EN.

8. Let J"' = ..Yr(WNd.
(a) Show that ..Y"'(cons)(O, (1)) = (0, 1).
(b) Show that ..Y"'(cons)(O, (1) _j_) = (0, 1) _j_.

(c) Show that ..Y"'(cons; 1)((0, 1) _j_) = (1) _j_.

9. (a)

(b)

10. (a)

(b)

What is g.oc (LIST)(Length)((2, 2))? '-'NL
What is g •• (LIST)(Length)((2, 2, 2, ...))? '-'NL
What is g •• (LIST)(Cat)((2,3), (4,5))? '-'NL
What is gll'NL(LIST)(Cat)((2, 3), (4, 5, 6, ...))?

11. Write a WNL-program P with F E FV(P) such that

for all representable lists of numbers (n 1 , n 2 , •••) E DNL".

12. Write a WNL-program P with FE FV(P) such that

gll'NL(P)(F)((m 1 , m 2 , ...), (n 1 , n 2 , ...)) = (m 1 + n1 , m 2 + n 2 , ...)

for all representable lists of numbers (m 1 , m 2 , •••), (n 1 , n 2 , •••) E

DNL"·

13. Show that (1, 1, 1 ...) is representable.

14. Show that (1 _j_ , 1 _j_ , 1 _j_ •••) is representable.

15. Show that for any n EN, (n, n + 1, n + 2, ...) is representable.

16. Let (w) _j_ = u{(n _j_) _j_ In EN}. Describe (w) _j_, and show that it is
representable.

556 Chapter 17 Denotatlonal Semantics of Recursion Equations

17. Let
n

(w,w, ...) = u{<~)_~_ In EN}.
Describe (w, w, ...), and show that it is representable.

18. Prove the assertion made in the proof of Theorem 6.1: for every
f E W, J"'(f) is monotonic.

18

Operational Semantics
of Recursion Equations

1. Operational Semantics for Simple Data
Structure Systems

The definition of gt:. accomplishes our goal of directly assigning a meaning
to programs without the intermediary notion of a computation. On the
other hand, at this point we have no a priori reason for believing that the
functions defined by recursion programs are (partially) computable. It
turns out, though, that they are computable in a very reasonable sense. In
this chapter we go back to basics and define a notion of computation, one
appropriate for recursion programs, which has much in common with
computations of Y programs. This new kind of computation will be the
basis for the operational semantics of W-programs. The idea is that the
operational semantics will give us a way to compute the functions defined
by the denotational semantics. We say that an operational semantics is
correct with respect to the denotational semantics gt:. for a data structure
system a if it gives every W-program P the same meaning given by gt:.,
that is, :;gt:.(P). The precise details depend on the nature of the particular
data structure systems in which we wish to compute, so in this section we
concentrate on an operational semantics appropriate for simple data
structure systems.

An Y program computation is a sequence of snapshots, and the relation
between a snapshot and its successor is easily described. Computations of
recursion programs are similar in nature. The idea, as before, is that we

557

558 Chapter 18 Operational Semantics of Recursion Equations

treat an equation like F(X) = G(H(X)) as a definition ofF in terms of
G(H(X)). Given a term F(3), for example, we attempt to determine its
value by replacing it with G(H(3)). Of course, G and H should also be
defined, so we replace them by their definitions as well, and continue
replacing until we get a numeral. We formalize this idea as follows.

Again we let W be some arbitrary standard vocabulary throughout the
chapter. A W-substitution is a finite function {(X 1 , t), ... , (Xn, tn)} such
that X1 , ••• , X, are distinct individual variables and t 1 , ••• , tn are W-terms
such that T(t) = T(X), 1 :o:; i :o:; n. The application of a W-substitution (}
to a W-term t is written t (}, and the result of applying (} to t is the W-term
obtained from t by simultaneously replacing each occurrence of X; by t;,
1 :o:; i :o:; n. Note that each variable in the domain of (} is replaced by a
term of the same type, so if t is a W-term, then t(} is also a W-term. We
can give a more formal definition as follows. Let (} be a W-substitution.
Then

c (} = c for constant symbols c E W

XO =t for X E VAR 1 such that (X,t) E (}

X(} = X for X E V AR 1 such that X $. the domain of (}

f(t 1 , ••• ,tn)O =f(t 10, ... ,tn0) wherefE W

F(t 1 , ••• ,tn)O=F(t 10, ... ,tn(}) whereF E VARF.

The following useful lemma shows that we can sometimes trade in part
of a variable assignment for a substitution.

Substitution Lemma. Let l = (Y,Y) be a W-structure, let v; ~ VAR 1

and Vr ~ VARF, let a E..w"y(Vr), and let f3 E..w"y(JI;) be a variable assign­
ment and (} a substitution such that, for all X E v;, V(X (}) ~ Vr and
{3(X) = a(XO). Then for all t E ™w<v; u Vr), au {3(t) = a(tO).

Proof. We argue by structural induction on t. If t is a constant symbol
c E W, then

a u {3(c) =Y(c) = Y(c (}) = a(c (}),

and if t is X E v;, then a u fj(X) = {3(X) = a(X (}) by assumption. If t is
f(t 1 , ••• , tn), where fEW, then

aU {3(f(t1 , ... ,tn))

=Y(f)(a U {3(t 1), ••• , a U {3(tn))

=Y(f)(a(t 1 0), ... , a(tnO)) by the induction hypothesis

= a(f(t 10, ... ,tn0))

= a(f(t~' ... ,tn)O).

1. Operational Semantics for Simple Data Structure Systems

If t is F(tp ... , t"), where F E J-f, then

a U ,B(F(tp ... , tn))

= a(F)(a U ,B(t 1), ••• ,a U ,B(tn))

= a(F)(a(t 1 e), ... , a(tn e)) by the induction hypothesis

= a(F(t 1 e, ... , tn 8))

= a(F(tp ... ,tn)e).

559

•
A W-term rewrite rule is a pair of W-terms, written u -+v, such that

/V(v) ~ /V(u) and such that no individual variable occurs more than once
in u. A W-term rewriting system is a set of W-term rewrite rules. 1 We say
that a W-term t matches a rewrite rule u -+v with substitution e if t = ue.
A W-term rewriting system T is deterministic if no W-term matches more
than one rewrite rule in T.

In order to use a W-term rewriting system T, we associate with T a
rewriting strategy u which selects, for every W-term t, a (possibly empty) set
of occurrences2 of subterms of t. These are the (T, u)-redexes of t. A
W-term w is a T -rewrite of W-term t if t matches some rewrite rule u -+ v in
T with substitution e, and w = ve. Given a strategy u, a W-term w is a
(T, u)-rewrite of a W-term t, denoted

t ==> w,
T,u

if w is the result of replacing every (T, u)-redex t' oft by aT-rewrite oft'.
A W-term t is (T, u)-normal if the set of (T, u)-redexes is empty. A
(T, u)-computation for W-term tis a (possibly infinite) sequence of W-terms
t 0 , t 1 , ••• such that

1. t 0 is t,
2. t; ==> t;+ 1 for all t; occurring in the sequence, and

T,u

3. for all t; in the sequence, t; is (T, u)-normal if and only if t; is the
last term in the sequence.

For our definition of a computation to be reasonable, it is crucial that
the process of finding the term t;+ 1 that follows term t; should itself be
"mechanical," that is, computable in some sense. Moreover, the test that a

1 Although the definition permits rules of the form c -+d, where c, d are constant symbols,
they play no role in our treatment of operational semantics, so we assume that such rules do
not occur in any rewriting system referred to in this chapter.

2 Note that we distinguish between subterms and occurrences of subterms. For example,
F(G(0), G(0)) has two occurrences of the subterm G(0), and a strategy u might select the
occurrence on the left without selecting the occurrence on the right.

560 Chapter 18 Operational Semantics of Recursion Equations

term is (T, u)-normal must also be computable, so that we know when a
computation terminates. Now, three kinds of steps are involved in finding
ti+ 1:

• finding the set of (T, u)-redexes oft;;
• for each (T, u)-redex oft;, finding a rule u -+v in T and a substitution

e such that t; matches u -+v with e; and
• applying (J to v.

It is clear that finding and applying substitutions are fairly simple opera­
tions. (For a more detailed treatment see the unification algorithm in
Chapter 13.) Therefore, we must look more closely at rewriting strategies
and sets of rewrite rules. We begin with four commonly defined rewriting
strategies.

Definition. LetT be a W-term rewriting system. A W-term is T-rewritable
if it matches some rule in T. Let t be a W-term. An innermost occurrence
of a T-rewritable subterm oft is one which has no T-rewritable subterms.3

An outermost occurrence of a T-rewritable subterm oft is one which is not
a subterm of any T-rewritable subterm oft. The leftmost innermost strat­
egy, denoted uu, selects the leftmost of the innermost occurrences of
T -rewritable subterms of t. If there is no such subterm then uu selects the
empty set. The parallel innermost strategy, denoted up; , selects the (possi­
bly empty) set of all innermost occurrences of T-rewritable subterms oft.
The leftmost outermost strategy, denoted u10 , selects the leftmost of the
outermost occurrences of T-rewritable subterms of t, or the empty set if
there is no such subterm. The parallel outermost strategy, denoted upo,

selects the (possibly empty) set of all outermost occurrences of T-rewrita­
ble subterms of t.

Note that in each of the four strategies, the choice of (T, u)-redexes
depends on the particular set T. Therefore, the computability of applying
u depends on the nature ofT.

To illustrate, let T consist of the rewrite rules

F(X) -+s(F(s(X)))
F(X) -+X

G(O,Y)-+Y
G(s(X),s(Y)) -+s(G(X, Y)).

Then the underlined subterm of G(s(F(0)), s(F(O))) is the (T, uu)-redex,

and the underlined subterm of G(F(G(O,O)),F(O)) is the (T, u10)-redex.

3 Note that we are not considering a term to be a subterm of itself.

1. Operational Semantics for Simple Data Structure Systems 561

Each of

F(2) ~ 2
-- T,uli

F(2) ~ s(F(3)) ~ s(s(F(4))) ~ s(s(4)) = 6
-- T,uu -- T,uli T,uu

F(2) ~ s(F(3)) ~ s(s(F(4))) ~ s(s(s(F(S)))) ~
-- T, uu -- T, u1; T, uu T, uu

is a (T, uu)-computation for F(2), where the underlined terms are the
(T, uu)-redexes, and

G(F(F(O)),F(2)) ==> G(s(F(s(F(O)))),s(F(3)))
T, Upo

==> s(G(F(s(F(O))),F(3)))
T,upo --

==> s(G(s(F(O)),s(F(4))))
T,upo

==> s(s(G(F(O),F(4))))
T,upo ----

==> s(s(G(0, s(F(S)))))
T, Upo

==> s(s(s(F(S))))
T,upo

==> s(s(s(S))) = 8
T,upo

is a (T, uP0)-computation for G(F(F(O)),F(2)), where the underlined
terms
are the (T, CTP 0)-redexes.

It is clear from the example that computations for a given term t are not
necessarily unique, which would make them unsuitable for the definition
of functions. However, we can associate with each W-program a determin­
istic W-term rewriting system, which does give unique computations.

Definition. Let P be a W-program. TheW-term rewriting system associated
with P for simple data structure systems, denoted T.(P), consists of

F(X1 , ••• ,Xn) -u for each equation F(X1 , ••• ,Xn) = u in P,

together with

• for each T E TV(W),

ifT(tt, X, Y)-X

ifT(tT,x, Y) -v

562 Chapter 18 Operational Semantics of Recursion Equations

(The choice of particular individual variables X, Y is unimportant, as
long as they are distinct and of the appropriate type.)

e for each constant symbol C E We-, With r(c) = T,

is-c(c) -tt
is-c(t) -rr for each t E ™k - {c}

• for each proper function symbol f EWe, with ar(f) = n and p(() = T,

is-f(f(t 1 , ••• , tn)) -tt

for each f(t 1 , ••• , tn) E TM~
(

is-f(u) -rr
for each u E TM~, not of the form f(t 1 , ••• , tn)

f;-l (f(t 1 , ••• , tn)) -t;

for each f(t 1 , ••• , tn) E TM~,

It is clear that for any W-program P, T.(P) is deterministic, so T.(P) gives
a unique (T.(P), u)-computation for any W-term t, where u is any rewrit­
ing strategy. It is also easy to see that for any W-term t, the process of
finding a matching rewrite rule in T.(P), if one exists, is straightforward. It
follows that finding the set of (T.(P), u)-redexes for t, where u is any of
the strategies just defined, is also straightforward. Moreover, the test that a
term is (T.(P), u)-normal is easy, so we have four reasonable notions of a
computation.

To illustrate, T.(ADD) has the rules

+(X, Y) -if N(is_O(Y), X, s(+(X, s1- 1 (Y))))

if 8001 (tt, X, Y)-X

if 8001 (fT, X, Y)- Y

ifN(tt,X, Y)- X

ifN(tT,X,Y) -v

is-0(0) -tt

is-O(s(n)) -rr
is-s(s(n)) -tt

is-s(O) -rr

s.- 1 (s(n)) -n

for all n EN

for all n EN

for all n EN,

1. Operational Semantics for Simple Data Structure Systems

and

+(3,2)

=====:::) if N(is-0(2),3, s(+ (3, s1- 1(2))))
T,(ADD), u1,

=====:::) ifN(tT,3,s(+ (3,s 1- 1 (2))))
T,(ADD), u1,

=====:::) s(+ (3, s1- 1 (2)))
T,(ADD), u1,

=====:::) s(if N(is-O(s 1- 1 (2)),3, s(+ (3, s1- 1(s 1- 1(2))))))
T,(ADD), CTf0

=====:::) s(ifN(is-0(1), 3, s(+ (3, s1- 1 (sl 1(2))))))
T,(ADD), u1,

=====:::) s(if N (IT, 3, s(+ (3, s1- 1 (s1- 1 (2))))))
T,.(ADD), u 10

=====:::) s(s(+ (3, s 1- 1 (s! 1(2)))))
T,(ADD), u1,

=====:::) s(s(ifN(is-O(s 1- 1(1)),3, s(+ (3, s1- 1(s! 1(s 1- 1(2))))))))
T,(ADD), u1,

=====:::) s(s(ifN(is-0(0),3, s(+ (3, s! 1(s 1- 1(s 1- 1(2))))))))
T,(ADD), ulo

=====:::) s(s(if N(tt,3, s(+ (3, s1- 1 (s! 1(s 1- 1 (2))))))))
T,(ADD), u 1,

==:::::;'> s(s(3)) = 5
T,(ADD), CT/0

is the (T.(ADD), u10)-computation for + (3,2).

563

Now, in this example, the leftmost outermost strategy gives us exactly
what we want with respect to aN, computing 5 from+ (3,2). The leftmost
innermost strategy, on the other hand, is a different story. Consider the
simple program

P = {G(X) = G(X),H(X) = 3}.

For G(O) we get the infinite (T.(P), uu)-computation

G(O) G(O) ···,
-- T,(P), uu -- T,(P), uu

which is entirely appropriate since gaN(P)(G) is the everywhere undefined
function and gaN(PXG)(O) =..lN. However, uu also gives the infinite
computation

H(G(O)) ====> H(G(O)) ===> H(G(O)) ===>
T,(P), uu T,(P), uu T,(P), uu

564 Chapter 18 Operational Semantics of Recursion Equations

which is not what we want, with respect to aN, since

DdN(P)(H)(..lN) = JL<I>p(H)(..lN)

u ({<I>~+ 1(0)(H)(..lN) I i E N} u {<I>~(O)(H)(..lN)})

U ({<1>~(0) U a_~_N(3) I i EN} U { ..lN})

= 3.

The problem is that the nonstrict function assigned to H by 9J6)P) can
completely ignore its input and produce an output value, but the leftmost
(or parallel) innermost strategy requires the computation to try forever to
compute G(0). On the other hand, the leftmost (or parallel) outermost
strategy gives the finite computation

H(G(O)) 3,
T,(P), ulo

which is exactly what we want.
The point is that innermost strategies may be fine in a context where all

functions are strict, but they are not successful in general. For our
purposes they are not appropriate since, even if we interpret all construc­
tor function symbols with strict functions, the interpretations of the if T
symbols are necessarily not strict. This is quite sensible, since we do not
want J(ifT)(b, d, e) to depend on both d and e, but only on (at most) one
of d or e, according to the value of b. We choose a strategy which is
neither purely innermost nor outermost, but which is closer in spirit to an
outermost strategy, since it does not depend on completing the computa­
tion of innermost subterms. It will be convenient to define it only for
deterministic W-term rewriting systems.

Definition. Let T be a deterministic W-term rewriting system, and let t be
a W-term. In the full rewriting strategy, denoted uf, the (T, uf)-rewrite4 oft

4 Technically, the definition of (T, ur)-rewrites varies somewhat from the general definition
of (T, u)-rewrites given earlier, since we replace subterms c!»(t 1 , ••• , tn) by the T-rewrite of
cl»(rry(t 1), ••• ,rry(tn)), i.e., ry(cl»(rry(t 1), ••• ,rry(tn))), rather than by the T-rewrite of
cl»(t 1 ,, ••• , tn). The difference is of no concern, however, and the definition of (T, ur)-compu­
tations, which depends only on (T, ur)-rewrites and (T, ur)-normality, conforms to the general
definition of (T, u)-computations.

1. Operational Semantics for Simple Data Structure Systems

is rr T(t), where rr T(t) is defined in two stages:

u8 if ~(t 1 , ••• , tn) matches a rule
~(u 1 , ••• , un) -+u in T with

rT(~(t 1 , ••• ,tn)) = substitution 8

= c for all constant symbols c E W

rrT(~(t 1 , ••• , tn))= r T(~(rr T(t 1), ••• , rr T(tn))).

565

The W-term t is (T, ur)-normal if there is no subterm ~(t 1 , ••• , tn) of t
such that ~(rrT(t 1), ••• , rrT(tn)) matches a rewrite rule in T.

Throughout this section we will write r P and rr P for r T,<P> and rr T,<P>,
respectively. Just as with uu, up;, u 10 , and upo, the computability of
applying ur depends on the rewriting system T, and T.(P) and ur give us
another reasonable notion of a computation. Note that if t 0 , t 1 , t 2 , ••• is
an infinite (T,(P), ur)-computation, then rr~(t 0) = t; for all i EN. In other
words, rr~(t 0), rr~(t 0), rr~(t 0), ••• is by definition the (T.(P), ur)-computa­
tion for t 0 when the computation is infinite. If t 0 , t 1 , ••• , tn is a finite
(T.(P), ur)-computation, then rr~(t 0) = t; for 1 ~ i ~ n, and rr~(t 0) = tn
for i > n. That is, rr p(t) = t if t is (T.(P), ur)-normal.

It is clear that for any term f(t 1 , ••• , tn), where f is a constructor symbol,

since there are no rewrite rules in T.(P) for f. In WN, for example, we have
rrp(s(t)) = s(rrp(t)), and, in particular, rrp(n) = n for any numeral n. To
illustrate ur we give the (T.(ADD), ur)-computation for + (3,2):

+(3,2) =====> rrp(+(3,2))
T,.(ADD), u 1 (

= rp(+ rrp(3), rrp(2)))

= rp(+ (3,2))

= ifN (is-0(2),3, s(+ (3, s1- 1(2)))))

==:::;'> rrp(ifN(is_0(2),3,s(+ (3,s 1- 1(2)))))
T,(ADD), u1 (

= rp(ifN(rrp(is-0(2)),rrp(3),rrp(s +(3,s1 1 (2))))))

= r p(if N(r p(is_O(rr p(2))), 3, r p(s(rr p(+ (3, s1- 1(2)))))))

= r p(if N(r p(is-0(2)), 3, r p(s(r p(+ (rr p(3), rr p(s1 1(2))))))))

= r p(if N(ff, 3,r p(s(r p(+ (3, r p(s 1- 1(rr p(2)))))))))

566 Chapter 18 Operational Semantics of Recursion Equations

= rp(ifN(tT,3,rp(s(rp(+ (3,rp(s1- 1(2))))))))

= r p(if N(tT, 3, r p(s(r p(+ (3, I))))))

= r p(if N(tT, 3, r p(s(if N(is-0(1), 3, s(+ (3, s 1- 1(1))))))))

= r p(if N(tT, 3, s(if N(is-0(1), 3, s(+ (3, sj" 1(1)))))))

= s(if N(is-0(I), 3, s(+ (3, s 1- 1(I)))))

====> rrp(s(if N(is-0(1),3, s(+ (3, s 1- 1(1))))))
T,(ADD), u 1

= · · · = s(s(if N(is-0(0), 3, s(+ (3, sj" 1 (0))))))

====> rrp(s(s(ifN(is-0(0),3,s(+(3,sj" 1(0)))))))
T,(ADD), u 1

= ... = 5.

We use (Ts(P), ur)-computations to define the operational semantics of
W-programs with respect to simple data structure systems. In particular,
we use the final terms in finite computations to determine the functions
defined by P. Moreover, the value of these terms should be independent of
the denotational semantics of P, so we use the least informative variable
assignment, .n, to interpret them.

Definition. Let a = rep(!.) be a simple data structure system for W. The
operational meaning function for a, denoted &'t:., is defined as follows. For
all W-programs P0 , all FE FV(P0), and all (d1 , ••• , dn) E D,<~<F»•

where

if the (Ts(P), ur)-computation for
F(t1 , ••• , tn) is finite and ends with t
otherwise,

• d; = JL<I>~(t;), 1 ::::; i ::::; n,
• P0 , P1 , ••. ·, Pn are consistent, and
• P = U7=o P;.

The idea is that we can compute &'t:.(P0)(F)(dp ... , dn) by extending
program P0 with programs P1 , ••• , Pn and then carrying out the
(Ts(U7 = 0 P;), ur)-computation for F(t 1 , ••• , t J. In aN , of course, n = O(n)
for all n EN, so to compute a function on (m 1 , ••• , mn) E Nn, we can
simply let P; = 0, 1 ::::; i ::::; n. Moreover, to represent ..LN we can just
include the equation B(X) = B(X).

Note, however, that in general there are many different choices of
programs P1 , ••• , Pn and terms t 1 , ••• , tn which characterize the same tuple

1. Operational Semantics for Simple Data Structure Systems 567

(d1 , ••• , dn), and these might give different computations. It is not obvious,
then, that the definition of &t:. makes sense. We need to know that we get
the same result in all cases, even if the computations differ. Theorem 1.1
later in this section, which shows that the operational and denotational
semantics are equivalent for simple data structure systems, implies that
we do.

We should note that the purist might object that the operational
semantics of W-programs is not really independent of the denotational
semantics since the initial term F(t 1 , ••• , t n) and the program P depend on
the condition d; = JL<I>~(t;), 1 ~ i ~ n. Indeed, we could give an alterna­
tive operational semanti'cs in which the input to a program P is simply a
sequence such as ((P1 , t 1), ••• , (Pn, tn)) and the output is the final term in
the (Ts(U7~o P;), ur)-computation for F(t1 , ••• , t). Of course, Theorem
1.1 would need to be reformulated in a suitable way. For our purposes,
however, the important thing is that there is some term F(t 1 , ••• , t) from
which the correct value of g"iP0)(F)(d1 , ••• , dn) can be computed. That
fact is sufficient to justify calling the function gt:.(P0) (F) computable.

We now turn to the proof of Theorem 1.1, beginning with four lemmas.
In Lemma 1 we finally apply condition 2c on Y-interpretations. Lemma 3,
which is proved by an induction based on Lemma 2, is the heart of the
argument. It shows that the terms of a computation (interpreted by .n)
correctly approximate the value of the function being computed. Lemma 4
guarantees that, if a function has a non-bottom value for some given input,
then the computation for that input will eventually terminate.

Lemma 1. Let I = (:T, J) be a W-structure and let a be any variable
assignment based on :T. Then for any term t E ™w,, a(t) =/= .L T(t) •

Proof. We argue by structural induction on t. If t is a constant symbol
c E we' then a(c) = J(c) E DT(c) - { .L T(c)} by condition 1 on Y-interpre­
tations. Otherwise, t is of the form f(tH ... 't), where f E we. Then
a(f(tl,••••tn)) =J(f)(a(tl), ... , a(tn)) =/= _LT(I) by the induction hypoth­
eSiS and condition 2c on Y-interpretations. •

Lemma 2. Let I = (:T, J) be a complete, continuous W-structure, and
let P be a W-program. Then for all t E TMw(FV(P)) and for all i E N,
<1>~+ 1(0)(t) = <I>~(O)(rrp(t)).

Proof. Let i EN. We argue by structural induction on t. If tis a constant
symbol c E W, then

<1>~+ 1 (0)(c) =J(c) =J(rrp(c)) = <I>~(O)(rrp(c)).

568 Chapter 18 Operational Semantics of Recursion Equations

If t is of the form f(t 10 ••• , tn), where fEW, then rrp(f(t 1 , ••• , tn)) =
rp(f(rrp(t 1), ••• , rrp(tn))). If f(rrp(t 1), ••• , rrp(tn)) does not match any
rewrite rule in T.(P), then rrp(f(t 1 , ••• ,tJ) = f(rrp(t 1), ••• ,rrp(tn)), and

cl>~+ I(O,)(f(tl ' ... 'tn))

=J(f)(cl>~+ I ({})(tl), ... , cl>~+ I (0,)(tn))

= ci>~(O.)(f(rrp(t 1), ••• ,rrp(tn)))

= ci>~(O.)(rrp(f(t 1 , ••• ,tn))).

by the induction
hypothesis

Otherwise, f(rrp(t 1), ••• , rrp(tn)) does match some rewrite rule in T.(P).
Suppose tis ifT(u,v,w). If rrp(u) = tt then

and

rrp(ifT(u,v,w)) = rp(ifT(rrp(u),rrp(v),rrp(w))) = rrp(v),

=J(ifT)(cl>~+ 1(0.)(u), cl>~+ 1(0,)(v), cl>~+ 1(0,)(w))

= J(ifT)(<1>~(0.)(rr p(U)), <I>~(n)(rr p(V)), <I>~(n)(rr p(W)))

by the induction hypothesis

= J(ifT)(tt, <1>~(0.)(rr p(v)), ci>~(O.)(rr p(w)))

= ci>~(O.)(rrp(v))

= ci>~(O.)(rrp(ifT(u,v,w))).

Similarly, if rrp(u) = tT then

Next, suppose, t is is_c(u) for some constant symbol c E we-. If rr p(u)
= c then

1. Operational Semantics for Simple Data Structure Systems

and

<1>~+ 1(!l)(is-c(u))

=J(is_c)(cl>~+ 1(!l)(u))

=J(is_c)(cl>~(n)(rr p(u)))

= J(is_c)(J(c))

by the induction hypothesis

= tt by conditions 1 and 5 on §.:interpretations

= cl>~(!l)(rrp(is_c(u))).

569

Othetwise, rr p(u) = g or g(u 1 , ... , um) E TMw for some constant symbol
or proper function symbol g distinct from c, so 'that

rrp(is_c(u)) = rp(is_c(rrp(u))) =fT.

Suppose rr p(c) = g. Then

<1>~+ 1(!l)(is_c(u))

= J(is_c)(cl>~+ 1 (n)(u))

=J(is_c)(cl>~(!l)(rrp(u))) by the induction hypothesis

= J(is_c)(J(g))

= ff by conditions 1, 3, and 5 on §.:interpretations

Similarly, if rrp(u) = g(u 1 , ••• ,um) then

<1>~+ 1(!l)(is_c(u))

=J(is-c)(cl>~+ 1(!l)(u))

= J(is_c)(cl>~(!l)(rr p(u))) by the induction hypothesis

=J(is_c)(J(g)(ci>~(!l)(u 1), ••• , cl>~(!l)(um)))

= ff by Lemma 1 and conditions 2c, 3, and 5 on

g.: interpretations

570 Chapter 18 Operational Semantics of Recursion Equations

The argument is nearly the same if t is is-f(u), where f is a proper
function symbol in we .

Now suppose tis fi- 1(u) and rrp(u) = f(tu···•tn) E ™w,. Then

and

=...Y(fi-1)(<I>~+ I(.O)(u))

=...Y(fi- 1)(<1>~(.0)(rrp(u))) by the induction hypothesis

by Lemma 1 and conditions 2c on 6 on
Y.:interpretations

Finally, suppose t is F(t 1, ••• , t), where F E FV(P), and let
F(X 1 , ••. , X n) = u be the defining equation for F in P. Then

= <f>~+ I(.O)(F)(<f>~+I(.O)(tl), ... ,<I>~+ I(.O)(tn))

= <I>~+ I (n)(F)(<I>~(n)(rr p(tl))' ... '<I>~(n)(rr p(tn)))

by the induction hypothesis

= <1>~(.0) U a(u) where a(Xj) = <I>~(.O)(rrp(tj)), 1 ~j ~ n

= <I>~(.O)(uO) by the substitution lemma

•

1. Operational Semantics for Simple Data Structure Systems 571

Lemma 3. Let l = (Y, J) be a complete, continuous W-structure, and
let P be a W-program. Then for all t E TMw(FV(P)) and for i EN,
<I>~(n){t) = O(rr~{t)).

Proof. We argue by induction on i. If i = 0 then for all t E TMw(FV(P)),

<l>~(!l)(t) = O{t) = O(rr~(t)),

so assume the lemma is true for i = k. Then for all t E TMw(FV(P)),

<1>~+ 1{!l)(t) = <l>~(!l)(rrp(t))

= O(rr~(rr p(t)))

= O(rr~+ 1(t)).

by Lemma2

by the induction hypothesis

(See Exercise 12.) •

Lemma 4. Let l = (Y,J) be a simple W-structure, let P be a W-pro­
gram, and let t E TMw(FV(P)). If O{t) =F ..l T(t), then O(rrp(t)) = O(t)
and rrp(t) E ™w,.

Proof. Let T(t) = T. We argue by structural induction on t, assuming
throughout that O(t) =F ..l T . If t is a constant symbol c E W, then rr p(c) =
C E TMw. If tis f(tp···,tn), where f EWe and T(f) = T 1 X··· X Tn

-+T, the~ O(t;) =F ..l T , 1 :::;; i:::;; n, by the strictness of J(f), so O(rrp(t;))
= O(t;) and rrp(t;) E'TMw by the induction hypothesis, 1 :::;; i:::;; n, and
we have '

O(f(t 1 , ••• ,tn)) =J(f)(O(t1), ••• ,0(tn))

=J(f){O(rrp(t 1)), ••• , O(rrp(tn)))

where f(tp ... , tn) E TMw.
Suppose t is ifT(u, v, w). Then O(u) =F ..l Boo! , so O(rr p{u)) = O(u) and

rrp(u) E TMw by the induction hypothesis. If O(u) = tt then rrp(u) must
be tt by condition 3 on .:7-interpretations, and rrp(ifT(u,v,w)) = rrp(v).

572 Chapter 18 Operational Semantics of Recursion Equations

Therefore,

O(ifT(u,v,w))

=J(ifT)(O(u), O(v), O(w))

= O(v)

= O(rrp(v)) by the induction hypothesis, since

O(v) = O(ifT(u, v, w)) * _1_ T

= O(rrp(ifT(u,v,w))),

and by the induction hypothesis, rrp(ifT(u,v,w)) = rrp(v) E TMw. If
O(u) = ff then we get O(ifT(u, v, w)) = O(rrp(ifT(u, v, w))) 'and
rrp(ifT(u,v,w)) = rrp(w) E TMw by a similar argument.

Next, suppose t is is_f(u) for some f EWe with T(f) = T1 X · · · x
Tn-T. If O(is_f(u)) = tt, then _iT* O(u) E ranJ(f), so O(rrp(u)) =
O(u) and rrp(u) E TMw by the induction hypothesis. Moreover, O(rrp(u))
E ran J(f) implies rrp(~) must be of the form f(t 1 , ••• , tJ by condition 3
on Y:interpretations, so rr p(is_f(u)) = tt E TMw and O(rr p(is_f(u))) =
tt = O(is-f(u)). If O(is_f(u)) = ff, then _1_ ~ * O(u) ft. ranJ(f), so
O(rrp(u)) = O(u) and rrp(u) E TMw by the induction hypothesis. More­
over, O(rrp(u)) ft. ran J(f) implies that rrp(u) cannot be of the form
f(tp ... ,tJ, so rrp(is_f(u)) = tTE TMw and O(rrp(is_f(u))) = ff =
O(is_f(u)). The argument is similar if t 'is is_c(u) for some constant
symbol C E We-.

Now suppose tis f;- 1(u), where T(f) = T1 X · · · X Tn-T. Then _1_ T
* O(u) E ran J(f), so O(rrp(u)) = O(u) and rrp(u) E TMw by the induc­
tion hypothesis. Again, rrp(u) must be of the form rft 1 , ••• , tJ, so
rrp(f;- 1(u)) = t; E ™w,, and

O(f;- 1 (u)) =J(f;- 1)(0(u))

= J(f;- 1)(O(rr p(u)))

=J(f;- 1)(O(f(tl, ... , tn)))

= J(f;- 1)(J(f)(O(t 1), ••• , O(tn)))

= O(t;) since J(f)(O(t 1), ••• , O(tn)) * _1_ T

= O(rrp(f;- 1 (u))).

Finally, if t is of the form F(tp·· .,tn), where FE FV(P), then
O(F(t 1 , ••• , tJ) = _1_ T and there is nothing to prove in this case. •

1. Operational Semantics for Simple Data Structure Systems 573

Theorem 1.1. Let a = rep(~) be a simple data structure system for W.
Then&!!. =~tJ.·

Proof. Let P0 be a W-program, let F E FV(P0), and let (d1 , 0 0 0, dn) E
D,(B(F)) 0 For 1 ::; i ::; n let d; = JLCI>p,(t;) for some W-program P; and some
t; E TMw(FV(P;)) such that P0 , P1 , o o o, Pn are consistent, and let P =
U7~o P;o Then

~!J.(P0)(F)(d 1 , o o o, dn)

=~!J.(P0)(F)(~(t 1), o o o, JLCI>p.,(tn))

= JLcl>p11(F)(~(tl), o o o, JLCI>p.,(tn))

= JLcl>p(F)(~(tl), o o o, ~(tn))

= ~(F(tl, o o o, tn))

= U{cl>~(fl)liEN}(F(t 10 ooo,tn))

= U {ct>~(O)(F(tl, 0 0 0, tn)) li EN}

by the extension lemma

by Theorem 1702030

By Theorem 170203 the set {ct>~(O)(F(t 1 ,ooo,tn))li EN} is a chain in the

flat cpo (D,<F>• ~;;;,<F>), so if u{ct>~(O)(F(t 1 ,. 0 0, tJ) I i EN} * .L p(FJ, then

U{ci>~(O)(F(t 1 ,. 0 0, t)) I i EN} = ct>~(O)(F(t 1 , 0 0 0, t)) for some small­
est i0 E No Now,

ci>~(O)(F(t 10 ooo,tn)) = ll(rr~'(F(tpooo,tn))) by Lemma 3

= fi(rr~'+ 1(F(t 1 , o o o, tn))) by Lemma4,

where rr~'+ 1 (F(t 1 ,ooo,tJ) E TMw, so that rr~'+ 1 (F(t 1 ,ooo,tJ) is a
(T.(P), ur)-normal term, and '

~!J.(P0)(F)(d 1 ,ooo,dn) = ll(rr~'+ 1 (F(t 1 ,ooo,tn)))

= &!J.(P0)(F)(d1 , o o o, dn)o

Otherwise, u {ct>~(O)(F(t 10 0 0 0, t)) I i E N} = .L p(FJ, and

by Lemma 3, so either the (T.(P), Ur)-computation for F(t I '0 0 0 't n) is
infinite or it ends with a (T_.(P), ur)-normal term rr~(F(t 1 , 0. 0, t)) such

574 Chapter 18 Operational Semantics of Recursion Equations

that O(rr~(F(t 1 , ••• , tn))) = ..L P (Fl , and in either case

g-a(P0)(F)(dp ... , dn) = ..L p(F) = &'a(P0)(F)(d1 , ... , dn).

The choice of P0 , F, and (d 1 , ••• , dn) was arbitrary, so g-a =&'a. •

Thus &'a is correct with respect to g-a for every simple data structure
system a. Moreover, there is no ambiguity in the definition of sga, so
Theorem 1.1 implies that the definition of &'a is independent of the choice
of programs and terms used to denote values in a. Theorem 1.1 also
justifies the following

Definition. Let a be a simple data structure system for W. A function f
is a-computable if there is a W-program P and F E FV(P) such that
f = ga(P)(F).

It follows, then, from our work in the previous chapter that + _j_ is a
aN-computable function. We have also seen some examples of aNL-com­
putable functions. In the next section we will examine the aN-computable
functions more closely.

Exercises

1. Let (} = {(X1 ,F(O)),(X3 , s(X 2))}. What is G(s(X 2),X)8?

2. Let a be a variable assignment such that a(X) = 1, a(Y) = 2.
Give a substitution (} such that JL<I>Aoo u a(+ (s(X), Y))
= JLci>ADo(+(s(X),Y)8) in !.N.

3. We have left open the possibility of a W-term rewriting system T, a
strategy u, and a W-term t such that t is not (T, u)-normal but there
is no (T, u)-rewrite oft. Verify that this situation does not occur for
Ts(P) and u, where P is any W-program and u is any of the five
strategies we have defined.

4. LetT be the WN-term rewriting system with rewrite rules

F(X, Y) -s(Y)

F(X, Y) -F(Y, Y),

and lett= F(F(2,3),F(4,5)). Give two distinct (T, u)-computations
for t, where u is (a) uu; (b) u1o; (c) up;; (d) upo.

5. Give the (Ts(ADD), u)-computation for + (3, 2), where u is (a) uu;
(b) Up;; (c) upo.

6. Let P be a W-program and let t E TMw(FV(P)). Show that for all
i EN, rr~(t) E TMw(FV(P)).

2. Computable Functions

7. Let P be the WN-program with the equation

F(X) = ifN(is-O(X),1,s(F(s;- 1 (X)))).

(a) Describe T,(P).
(b) Give the (T,(P), ar)-computation for F(2).

8. Let P =ADDU {B(X) = B(X)}, where r(B) = N -+N.
(a) Give the (T5(P), ar)-computation for + (3, s(s(B(0)))).
(b) Give the (T,(P), ar)-computation for + (s(s(s(B(0)))), 2).

575

9. Without using Theorem 1.1, give the value of each of the following.
(a) &'!':. (ADD)(+)(3, 2).

N

(b) &'!':. (ADD)(+)(l_ N '2).
N

(c) &'!':. (ADD)(+)(3, _iN).
N

10. Let t be the WNL -term cons(1, cons(2, nil)). Describe T,(LIST), and
give the (T,(LIST), ar)-computation for each of the following WNL­
terms. [LIST is defined in Section 5 of Chapter 17.]
(a) Length(t).
(b) Nth(1,t).

(c) Cat(t, t).
(d) Rev(t).

11. Without using Theorem 1.1, give the value of each of the following.
(a) &'!':. (LIST) (Length) ((2, 3)).

NL

(b) &'I':.Nc(LIST)(Length)(l_ NL).
(c) &'I':.Nc(LIST) (Nth) (2, (2, 3, 4)).
(d) &'!':. (LIST) (Nth) (l_ NL ' (2, 3, 4 >).

NL

(e) &'I':.Nc(LIST)(Cat)((2, 3), (4, 5)).
(f) &'I':.Nc(LIST)(Cat)(_l_ NL, (4,5)).
(g) &'!':. (LIST)(Cat) ((2, 3), _i NL).

NL

(h) &'I':.Nc(LIST)(Rev) ((2, 3)).

12. Let D be a set, let fED ----) D, and let d ED. Show that for all
n EN, r+ 1(d) = r(f(d)).

2. Computable Functions

Now that we have a new class of computable numeric functions, It IS
reasonable to compare it to the partially computable functions defined in
Part 1 of the book. We will show that they are essentially the same, just as

576 Chapter 18 Operational Semantics of Recursion Equations

we showed that a function is partially computable if and only if it is
computable by Turing machines or Post-Turing programs. The difference
here is that, technically, the two classes contain different kinds of func­
tions, since in this chapter we have defined computable functions on N1 ,
n ;;::: 1, rather than partially computable functions on Nn. However, this
distinction is easily overcome.

We begin with the primitive recursive functions.

Lemma 1. Iff is primitive recursive, then f _]_ is aN-computable.

Proof. We argue by induction on the number of compositions and recur­
sions by which f is obtained from the initial functions. The aN-computa­
bility of the initial functions is given by the following programs:

P, = {S(X) = s(X)}

Pn = {N(X) = ifN(is-O(X),O,O)}

where Pocr' is

{Def1(X) = if8001(is-O(X), tt, tt)}

and, for n ;;::: 1, Poer••, is Pocr• together with the equation

Note that we include Def;, 1 ~ i ~ n, to enforce the strictness of
JL<I>p wn.

Now let

where f, g 1, ••• , g k are primitive recursive. By the induction hypothesis
there are programs P0 , P1 , ••• , Pk with function variables F, G 1, ••• , Gk
such that f _]_ = JL<I>p (F) and g;j_ = JL<I>p(G;), 1 ~ i ~ n. We assume that

II '
P0 , P1 , ••• , Pk are consistent and do not contain the function variable H,
and we set P to

n

UP; U {H(X 1 , ••• ,Xn) = F(G 1(X 1 , ••• ,Xn), ... ,Gk(X 1 , ••• ,Xn))}.
i=O

2. Computable Functions 577

Then for any (x1 , ••• , xn) EN~ we have

JL<I>p(H)(x1 , ••• , xn)

= <l>p(JL<I>p)(H)(x 1 , ••• , xn)

= J,t<l>p(F)(J,t<l>p(G 1)(x 1 , ••• , Xn), ... , JL<I>p(G k)(x 1 , ••• , Xn))

= JL<I>p0(F)(JL<I>p,(G 1)(x1 , ••• , xn), ... , J,t<l>pk(Gk)(x 1 , ••• , xn))

by the extension lemma

= L (g~ (x1 , ••• ,xn), ... ,g: (x1 , ••• ,xn)).

L (g~ (xl , ... ,xn), ... ,g: (xl , ... ,xn))

= f(g 1 (X 1 , ••• , X n) , ... , g k (X 1 , ••• , X n)}

and if not then

so JL<I>p(H) = h _]_ .
Finally, let

h(x1 , ••• ,xn,O) =f(x1 , ••• ,xn)

h(x1 , ••• ,xn,y + 1) =g(y,h(xJ>···•xn,y),x 1 , ••• ,xn),

where g, h are primitive recursive. By the induction hypothesis there are
programs P1, Pg with function variables F, G such that JL<I>plF) = f _]_ and
JL<I>p8(G) = g _]_ . We assume that P1, Pg are consistent and do not contain
the function variable H, and we set P to P1 u Pg u {H(X 1 , ••• ,Xn, Y) = t},
where tis

if N (is-O(Y),

F(X1 , ••• ,Xn),

G(s 1- 1 (Y),H(X 1 , ••• ,Xn,s1- 1(Y)),X 1 , ••• ,Xn)).

Let (xi> 0 0 0' xn) EN~ 0 It is clear that JL<I>p(H)(xl '0 0 0 'Xn' .LN) = .LN'
so to conclude the proof we argue by induction on y that

578 Chapter 18 Operational Semantics of Recursion Equations

= JLcl>p(F)(x 1 , ••• ,xn)

= JL<I>p/F)(x 1 , ... , xn)

Assume, now, that JL<I>p(H)(x1 , ••• , xn, y) = h _j_ (x1 , ••• , xn, y). Then

JLcl>p(H)(x1 , ••• , xn, y + 1)

= JL<I>p u a(xl , ... ,x. ,y+ l)(t)

= g _!_ (y, h _!_ (x 1 , ••• , Xn, y), X 1 , ••• , Xn)

•

Theorem 2.1. Iff is partially computable, then f _j_ is aN-computable.

Proof. Let f be a partially computable n-ary function. By Theorem 3.3 in
Chapter 4, there is a primitive recursive predicate R(x 1 , ••• , xn, y) such
that

f(x 1 , ••• , xn) = /(minR(x1 , ••• , xn, z)),
z

and by Lemma 1 there are WN-programs PR, P1 with function variables R
and L such that JLcl>p (R) = R _j_ and JL<I>p(L) = I _j_ • We assume that PR, P1

R I

are consistent and do not include function variables F, G, and we set P to
PR u P1 together with the equations

F(X 1 , ... ,Xn) = L(G(Xp ... ,Xn ,0))

G(X 1 , ••• , Xn, Y) = ifN(is-s(R(X 1, ••• ,Xn, Y)), Y,G(X1 , ••• ,Xn ,s(Y))).

2. Computable Functions

Let (x 1 , ••• , xn) E N1. It is clear that, for all y EN,

JL<I>p(G)(x 1 , ••• , Xn, y)

- {yl_N

JL<I>p(G)(x 1 , ••• , xn, y + 1)

and so

if (xI> ... ' xn 'y) ft Nn +I

if R(x1 , ••• ,xn,y)

otherwise,

if (X I> ... , X n , 0) ft N n + 1

if f(X 1 , • • • , X n) j

otherwise.

Therefore, if (xl' ... ' xn) E Nn and f(xl ' ... ' xn) J,' then

JL<I>p(F)(x 1 , ••• , xn) =I _j_ (minz R(x1 , ••• , xn, z))

= /(minz R(x1 , ••• , xn, z))

=f(xl, ... ,xn),

and

otherwise, so that

JL<I>p(F)(x1 , ••• , xn) = f _j_ (x1 , ••• , xn)

for all (x1, ... , xn) E N1, i.e., JL<I>p(F) = f _j_ •

579

•
To prove a result in the other direction, we need a way of going from

functions on N1 to partial functions on Nn.

Definition. For any function f: N1 ~ N _j_ , let f" be the partial n-ary
function on Nn defined

if f(x 1 , ••• , xn) =F l_N

otherwise.

Theorem 2.2. Iff is AN-computable, then f" is partially computable.

Proof. The proof is similar to the proof in Chapter 4 that the STP<n>
predicates are primitive recursive. We encode WN-terms, WN-programs,
and WN-substitutions as numbers and give a numeric version of the rrp

580 Chapter 18 Operational Semantics of Recursion Equations

functions. All WN-terms are words in the 20 symbol alphabet A u WN, so
for any word wE (AU WN)*, we let # 20(w) be the numeric value ofw in
base 20 notation, as defined in Chapter 5. We will use # 20 to encode
variables and function symbols. We encode each WN-term t as #(t), where

#(<!>) = (#zo(<f>), 0)

#(<f>(tl ' ... 'tn))

if <1> is a constant symbol or

individual variable

= (# 20 (<I>), [#(t 1), ••• , #(tn)]) if <I> is a proper function

symbol or function variable.

If Pis aWN-program

{F1(Xl, ... ,X~) = t 1, ••• ,Fm(x;n, ... ,X::',.) = tm}•

then we associate with P the finite numeric function

and if () is aWN-substitution {(X 1 , t 1), ... , (Xn, tn)}, then we associate with
() the finite numeric function

We encode any finite numeric function c/J = {(xp y 1), ••• , (xn, Yn)} as
n

J> = 0PJ;+I,
i= 1 '

and we set #(P) = J>P and #(0) = (b6 for any WN-program P and WN-sub­
stitution 0.

Now we define some numeric functions for handling WN-terms, their
values, and their encoding numbers:

NUM(O) = #(0)

NUM(x + 1) = (#20 (s), [NUM(x)])

TERM(z, XI' .•. ' xn) = (z, [NUM(xl), ... ' NUM(xn)])

{
0 ifx=#(O)

EVAL(x) = EiVAL((r(x)) 1) + 1 if /(x) = # 20(s)

otherwise

if X= #(0)
if /(x) = # 20(s)

otherwise.

2. Computable Functions 581

It is clear that NUM(n) = #(n) and EVAL(#(n)) = n for any n EN;
TERM(#20(F), m 1 , ••• , mn) = #(F(m 1 , ••• , mn)) for any function variable
F; and IS-NUM(x) is the predicate that tests whether x = #(n) for some
numeral n.

Next we define two functions for handling WN-substitutions:

Lt(r(l))

MAKE-SUB(y,t)= 0 <r(I)),+I
. P(l((Y)/(1).:.1)),
•=1

(s)1 ..:... 1 if r(t) = 0 and (s)1 =/= 0

if r(t) = 0 and (s)1 = 0

APPLY -SUB(s, t) = Lt(r(t))

(l(t), n PiAPPLY_SUB(s,(r(t)),))

i=l

otherwise.

If Pis aWN-program and F(X 1 , ••• , X) = u is an equation in P, then

Also, if () is aWN-substitution and t is aWN-term, then

APPLY -SUB(#(O), #(t)) =#(tO).

Finally, we define some functions for handling (T.(P), ur)-rewriting:

RP(y, t) =

APPLY -SUB (MAKE-SUB (y, t), r((y)1<1> ..:... 1))

(r(t))2

(r(t))3

(r(t))2

(r(t))3

#(tt)

#(tT)

if (y)/(1) =/= 0
if l(t) = # 20(if800L) and (r(t))1 = #(tt)

if l(t) = # 20(if800L) and (r(t))1 = #(tT)

if l(t) = # 20(if N) and (r(t))1 = #(tt)

if l(t) = # 20(if N) and (r(t))1 = #(tT)

if l(t) = # 20(is_O) and (r(t))1 = #(0)

if l(t) = # 20(is_O) and l((r(t))1) = # 20(s)

and IS-NUM(t)
#(tt) if l(t) = # 20(is_s) and l((r(t))1) = # 20(s)

and IS-NUM(t)

#(tT) if l(t) = # 20(is_s) and (r(t))1 = #(0)

(r((r(t))1))1 if l(t) = # 20(s1- 1) and l((r(t))1) = # 20(s)

and IS-NUM(t)

otherwise

582 Chapter 18 Operational Semantics of Recursion Equations

(
Lt(r(t)))

RRP(y, t) = RP y, (/(t), I1 P;RRP(y,(r(t)),))

RRP*(y,t,O) = t

RRP*(y,t,r + 1) = RRP(y,RRP*(y,t,r))

RRPT*(y, z, XI' ... ' Xn 'r) = RRP*(y, TERM(z, XI' ... ' xn), r)

END(y, z, XI' ... ' xn) = min [RRPT*(y, z, XI' ... ' xn 'r)
r

= RRPT*(y, z, XI' ... ' xn 'r + 1)].

If Pis aWN-program and tis aWN-term, then RP(#(P), #(t)) = #(rp(t)),
RRP(#(P), #(t)) = #(rrp(t)), and RRP*(#(P), #(t), i) = #(rr~(t)). Also, if
F is a function variable and (m1, ... , mn) E Nn, then

RRPT*(#(P),#20 (F),m1, ... ,mn,i) = #(rr~(F(m 1 , ... ,mn))),

and END(#(P), # 20(F), m 1 , • •• , mn) is the smallest i such that
rr~(F(m 10 ••• ,m)) is (Ts(P), ur)-normal, if such ani exists, and is unde­
fined otherwise.

Now, let f: N~ ~ N _~_ be a AN-computable function, let f = JL<I>p(F),
let a = # 20(P), and let b = # 20(F). Then it is clear that

f71"(xl ' ... ' xn) = EV AL(RRPT*(a, b, XI' ... ' xn 'END(a, b, XI' ... ' xn)))

for all (x 1 , ... ,xn) ENn. EVAL, RRPT*, and END are partially com­
putable, so !71" is partially computable. •

Exercises

1. Show that for all n > 0 and all (x 1 , ... , xn) EN~,

(
TRUE if(x1 , ... ,xn) E Nn

9J!J. (PDef")(Defn)(x1 , ••• , xn) = h ·
N ..l Bool ot erw1se.

2. For each of the following functions f from Chapter 3, give a WN-pro­
gram P with F E FV(P) such that 9Jt:.N(P) (F) = f _~_ .
(a) f(x, y) = x · y.
(b) f(x) = x!.

(c) f(x, y) = xY.

(d) f(x) = p(x).

(e) f(x, y) = x...:... y.

(f) f(x, y) = lx- yl.
(g) f(x) = a(x).

2. Computable Functions 583

3. Let P(x), Q(x) be primitive recursive predicates, and let P, Q be
WN-programs such that gllN(P)(Fp) = P _]_ and gllJP)(FQ) = Q _]_ . For
each of the following predicates R(x), give a WN-program R with
F R E FV(R) such that gil (R)(F R) = R _]_ . [Also see Exercise 3.12 in

N

Chapter 17.]

(a) R(x) = - P(x).

(b) R(x) = P(x) & Q(x).
(c) R(x) = P(x) v Q(x).

(d) R(x) = (3z),xP(z).

(e) R(x) = (Vz),xP(z).

4. Let P(x, y) be a primitive recursive predicate, and let P be a WN­
program such that gllN(P)(Fp) = P _]_. Give a WN-program R with
MinR E FV(R) such that gllN(R)(MinR) is the strict extension of
minz, x P(z, y).

5. For each of the following predicates P from Chapter 3, give a
WN-program P with Fp E FV(P) such that gllN(P)(Fp) = P _]_.

(a) P(x, y) = x = y.

(b) P(x,y) =x ~y.

(c) P(x,y) =x <y.

(d) P(x, y) =xI y.
(e) P(x) = Prime(x).

6. For each of the following functions f from Chapter 3, give a WN-pro­
gram P with FE FV(P) such that gllN(P)(F) = f _]_.
(a) f(x,y) = lxjyj.

(b) f(x, y) = R(x, y).

(c) f(x) = Px·
(d) f(x,y) = (x,y).

(e) f(x) = l(x).

(f) f(x) = r(x).

(g) f(xl, ... ,xn) = [xl•···•xn].

(h) f(x, y) = (x)Y.

(i) f(x) = Lt(x).

7. Show that RRPT* is primitive recursive.

8. Let #: {Y programs} ~ N be the coding function for Y programs
given in Chapter 4. Give a Wy-program P with C E FV(P) such that
gil (P)(C) =#_]_.[See Section 5 in Chapter 17 for the definitions ofWy
and ay.]

584 Chapter 18 Operational Semantics of Recursion Equations

9.* (a) Give a WN-program SMN with S E FV(SMN) such that
9~JSMN)(S) is the strict extension of S/. [See the parameter
theorem in Chapter 4 for the definition of S/.]

(b) Let sl: N X {3" programs} ~ {3" programs} be defined: For all
3" programs .9 and all u E N,

<t><2l(x, u, #(.9)) = <1>(x, #(s l (u, .9))).

Give a Wy -program SMN with S E FV(SMN) such that
9~)SMN) (S) is the strict extension of s l .

3. Operational Semantics for lnfinitary Data
Structure Systems

We turn now to the operational semantics for infinitary data structure
systems. It differs in two respects from the operational semantics we gave
for simple data structure systems. First, for a term such as is_f(f(t)), we
cannot be sure that JL<I>p(is_f(f(t))) = tt when J(f) is strict because
JL<I>p(t) might be .l r(tl • Therefore, we defined Ts(P) so that we rewrite
is_f(f(t)) to tt only when t is free of variables, which guarantees that

JL<I>p(t) * .l T(l). Moreover, if JL<I>p(t) * .l r(t)' then <l>~(!l)(t) * .l r(t) for
some smallest i 0 , and Lemmas 3 and 4 guarantee that twill eventually be
rewritten to some term which is free of variables. In an infinitary data
structure system, however, this problem does not arise because we always
have JL<I>p(f(t)) * .l p(fl • Therefore, we can replace T,(P) with a simpler,
indeed finite, term rewriting system.

Definition. Let P be a W-program. The infinitary W-term rewriting system
associated with P, denoted T;(P), consists of

F(X 1 , ••• , X) -+u for each equation F(X 1 , ••• , Xn) = u in P,

together with

• for each T E TV(W),

ifT(tt, X, Y)-+ X

ifT(ff, X, Y)-+ y

3. lnflnltary Data Structure Systems 585

e for each COnstant symbol C EWe-, With T(C) = T,

is-c(c) -tt

is-c(d) -ff for each d EWe-- {c} With T(d) = T

is-c(f(Xl ' ... 'Xn)) -ff for each f Ewe with

T(f) = T 1 X ••• X Tn-T

• for each proper function symbol f E We , with ar(f) = n and p(() = T,

is-f(f(X 1 , ••• , Xn)) -u
is-f(c) -ff

is-f(g(X 1 , ••• , Xm)) -ff

for each C EWe With T(c) = T

for each g EWe - {f} with

ar(g) = m and p(g) = T

for 1 ::; i ::; n .

Again, the choice of particular individual variables is unimportant, as long
as they are of the appropriate type and in each rewrite rule the variables
are distinct.

It is easy to see that all term rewriting systems T;(P) are deterministic
and that (T;(P), uc)-computations are a reasonable sort of computation. In
this section we will write r P and rr P for r T,(P> and rr T,(P>, respectively.

The other difference we need to address is that there are infinite chains
in infinitary data structure systems. In particular, there are terms t such
that O(rr~(t)) = <I>~(n)(t) CT(I) JL<I>p(t) for all i E N, so that we get an
infinite computation

t =====> rrp(t) =====> rr~(t) ===>
T1(P), u 1 T1(P), u 1 T1(P), u 1

which never reaches the desired value JL<I>p(t). Therefore, we cannot
expect to base the operational semantics on the final terms of finite
computations. Instead, we take the point of view that an infinite computa­
tion produces ever better approximations to the actual value and that the
entire computation gives the meaning of the function being computed.

Definition. Let a = rep(I) be an infinitary data structure system for W.
The operational meaning function for a, denoted &!!. , is defined as follows.
For all W-programs P0 , all FE FV(P0), and all (d1 , ••• , dn) E D,(5(F)),

&!J.(P0)(F)(d1 , ••• , dn) = U {O(rr~(F(t 10 ••• , tn))) I i EN},

586 Chapter 18 Operational Semantics of Recursion Equations

where

• d; = JL<I>i(t), 1 :::;; i :::;; n,
• P0 , P1 , ••• ', Pn are consistent, and
• P= U7~oP;.

The proof that &11 is correct with respect to 9111 for all infinitary data
structure systems is very much like the proof of Theorem 1.1.

Lemma 1. Let I = (.5T,J) be an infinitary W-structure, and let P be a
W-program. Then for all t E TMw(FV(P)) and for all i EN, <1>~+ 1(.0)(t) =
<I>~(n)(rr p(t)).

Proof. The proof is almost identical to the proof of Lemma 2 in Section
1. The only differences occur in the cases where tis of the form is_f(u) or
f;- 1(u). In particular, if is_f(rrp(u)) or f;- 1(rrp(u)) match a rewrite rule in
T;(P), then we do not necessarily have rrp(u) E TMw , so we cannot

c

appeal to Lemma 1 in Section 1 to show that <I>~(.O)(rrp(u)) =F ..l T(u).

However, rr p(u) must be of the form g or g(ul ' ... ' um) for some g E we'
so that <I>~(n)(rr p(u)) =F ..l T(u) is certainly true in an infinitary W-struc­
ture, and the argument goes through unchanged but for the reference to
Lemma 1 in Section 1. •

Repeating the proof of Lemma 3 in Section 1 gives us

Lemma 2. Let I = (.57, J) be an in finitary W-structure, and let P be a
W-program. Then for all t E TMw(FV(P)) and for all i EN, <I>~(.O)(t) =
O(rr~(t)).

Now the proof of Theorem 3.1 is even simpler than the proof of
Theorem 1.1.

Theorem 3.1. Let A = rep(I) be an infinitary data structure system for
W. Then &'11 = 9111 •

Proof. Let P0 be a W-program, let F E FV(P0), and let (d1 , ••• , dn) E

Dr(B(F)). For 1 :::;; i :::;; n let d; = JL<I>p,(t) for some W-program P; and some
t; E TMw(FV(P)) such that P0 , P1 , .•• , Pn are consistent, and let P =
U7=o P;. Then

9J11(P0)(F)(d1 , ••• , dn)

U {<I>~(.O)(F(t 1 , ••• , tn)) I i EN} as in the proof of Theorem 1.1

u {!1(rr~(F(t 1 , ••• , tn))) I i EN} by Lemma 2

= &'11(P0)(F)(d1 , ••• , dn). •

3. lnfinitary Data Structure Systems 587

As we did for simple data structure systems, we can now define com­
putable functions in infinitary data structure systems.

Definition. Let a be an infinitary data structure system for W. A function
f is a-computable if there is a W-program P and FE FV(P) such that
f = .f~iP)(F).

We can also use Lemma 2 to justify the name computable real numbers
used in the previous chapter.

Definition. Let l be an infinitary W-structure, and let T E TV(W). An
element d E DT is computable if there is some W-program P and some
term t E TMw(FV(P)) such that d = U{O(rr~(t)) I i EN}.

Now we can easily prove

Theorem 3.2. Let l be an infinitary W-structure, and let T E TV(W).
Then an element d EDT is representable if and only if it is computable.

Proof. Let d E DT. If d is representable then there is a W-program P
and a term t E TMw(FV(P)) such that

d =~(t)

= U{ci>~(O) I i E N}(t)

= u { ci>~(O)(t) I i EN}

= u {n(rr~(t)) 1 i EN}

by Theorem 17 .2.3

by Lemma 2,

so d is computable. Similarly, if d is computable then there is a W-pro­
gram P and a term t E TMw(FV(P)) such that

d = u {O(rr~(t)) I i EN} = JL<I>p(t),

and so d is representable. •
Now that we have available all of the strict extensions of the partially

computable functions, we conclude with two promised examples of com­
puting with infinite objects. We will be working in infinitary data struc­
tures, but it is not hard to verify that if f(x 1 , ••• , xn) is partially com­
putable and Pis aWN-program obtained in the proof of Theorem 2.1 such
that gr,)P) (F) = f .L , then

(3.1)

588 Chapter 18 Operational Semantics of Recursion Equations

Primes(X) = Sieve(Seq(X))

Seq(X) = cons(X, Seq(s(X)))

Sieve(L) = cons(cons! 1 (L), Sieve(Eiim(cons1- 1 (L),consz- 1 (L))))

Elim(X,L) = ifNdX lcons 1- 1 (L),

Elim(X,cons2 1 (L)),

cons(cons 1- 1 (L), Elim(X,consz- 1 (L))))

Figure 3.1. The main part of program PR.

for all (x1 , ... , xn) E Nn. We will now freely write f(xt> ... , xn) as a
macro in WNL-programs and Wa-programs when f(x 1 , ••• , xn) is partially
computable. If P(x1 , ••• , xn) is a computable predicate, then when we
write P(x1 , ••• , xn) in a program its range should be understood as
{ ..l Boot ' tt, ff}.

The first example is a WNL -program for generating the list (p 1 , p 2 , •••)

of all prime numbers. It is based on the method known as Eratosthenes'
sieve, where we start with the list (2, 3, 4, ...), eliminate all numbers
divisible by 2, then eliminate all numbers divisible by 3, all numbers
divisible by 5, etc. Let PR be the WNL-program with the equations in Fig.
3.1 along with the definition of the predicate xI y, i.e., "x divides y." Then
in I~L we have

JL<I>pa (Primes(2))

= J,t<l>pa(Sieve)(J,t<1>pa(Seq)(2))

= J,t<1>pa(Sieve)((2, 3, 4, ...))

= (2, JL<I>pa(Sieve)(JL<1>pa(Eiim)(2, (3, 4, 5, ...))))

= (2, JL<I>pa(Sieve)((3, 5, 7, ...)))

= (2, 3, JL<I>pa(Sieve)(JL<1>pa(Eiim)(3, (5, 7, 9, ...))))

= (2, 3, JL<I>pa(Sieve)((5, 7, 11, ...)))

= (2,3,5, ...)

where the notation (2, JL<I>pa(Sieve)((3, 5, 7, ...))) means the list with 2
followed by the elements of the list JL<I>pa(Sieve) ((3, 5, 7, ...)). Therefore,
the list of primes is representable. Moreover, Theorem 3.2 shows that it
can be generated by a (T;(PR), ur)-computation.

3. lnfinitary Data Structure Systems 589

Finally, we show that there are computable irrational numbers. It is a
mathematical fact that the well-known irrational number e = 2. 7182 ...
can be expressed as 2 + if + -t + · · · , and we can use this fact to show
that e/10 = .27182 ... is computable.5 The idea is to consider 1f + }f
+ · · · as a sort of base notation system analogous to the decimal system,
where .354, for example, represents -fh + 1 ~, + ~~-' . All we have to do,
then, is to change 2 + if + -t + · · · (divided by 10) into its decimal
representation. The procedure consists of taking the integer part as the
first decimal digit, multiplying the fractional part by 10, normalizing the
result (i.e., reducing the numerators by carrying), and then repeating these
steps with the normalized result. The correct method for carrying is given
by the equations

m

n + 1!

(n + 1)lmj(n + 1)j + R(m, n + 1)

n + 1!

lmj(n + l)j
n! +

R(m, n + 1)

n + 1!

For example, starting with 2 + if + -t + .,& we get 2 as the first decimal
digit, and then we get

10 . (if + -t + .,&) = -w + w + *
14 () 2 7 0 0 2 = 2T + 3T + 4T = + 2T + 3T + 4!•

so 7 is the second decimal digit. Next we get

10 (0 0 2) 0 0 20 . 2!+3!+4! =2!+3!+4!
0 50 0 I 2 0 = 2T + 3T + 4T = + 2T + 3T + 4f,

so 0 is the third decimal digit. Notice, however, that if we start with
2 + if + -t + .,& + -tr , we get .271 instead of .270. That is, we get more
precision by starting with more terms. However, if we want to get the
decimal expansion of the infinite sum 2 + I:~~ 2 ;!r , then at any given
iteration we certainly cannot perform the entire multiplication by 10
before beginning the carry step. Fortunately, we need to perform only
enough of it so that multiplying and normalizing any additional terms
would not change the decimal digit produced by the current iteration.

5 This example is due to D. A. Turner, who credits E. W. Dijkstra with the idea.

590 Chapter 18 Operational Semantics of Recursion Equations

K(X) = cons(X, K(X))

Convert(L) = dcons(Digit(First(L)),

Convert(Norm(2, cons(O, MultlO(Rest(L))))))

Norm(C, L) = ifNdSecond(L) + 9 < C,

cons(First(L), Norm(s(C), Rest(L))),

Carry(C, cons(First(L), Norm(s(C), Rest(L)))))

Carry(C, L) = cons(First(L) + [Second(L) jCJ

cons(R(Second(L), C), Rest2(L)))

MultlO(L) = cons(IO · First(L), MultlO(Rest(L)))

First(L) = cons 1- 1 (L)

Second(L) = cons 1- 1 (cons 2- 1 (L))

Rest(L) = cons 2- 1 (L)

Rest2(L) = cons; 1 (cons;! 1(L))

Figure 3.2. The main part of program E.

Now, the carry procedure leaves fractions of the form R(m, n)jn!, where
R(m, n) < n, so when we multiply by 10 we get 10 · R(m, n)jn!, and then
we carry llO · R(m, n)jnJ < 10njn = 10. So the maximum possible carry
is always 9, and if we have a term mjn! such that m + 9 < n, there will
never be a carry out of mjn!, regardless of what is carried into mjn!.
Therefore, when we reach such a term, we can be sure that we have
enough information to produce a correct decimal digit. Let E be the
program with the equations in Fig. 3.2 together with the appropriate
definitions of addition, multiplication, integer division, and remainder.
Also, Digit, with T(Digit) = N -+ D, must be defined so that JL<f>iDigit)

turns natural numbers 0, ... , 9 into decimal digits 0, ... , 9. Now, JL<f>iK(l))
is the infinite list (1, 1, ...) E DNL", which we use to represent L:~ ~ 2 ljn!.
We leave it as an exercise to check that JL<f>iConvert(cons(2,K(l)))) =
e j10 E DoL". So e j10 is representable, and Theorem 3.2 justifies calling
ej10 a computable real number.

Exercises

1. Let P =ADDU {B(X) = B(X)}, where T(B) = N -+N. Give T;(P),
and give the (T;(P), ur)-computation for each of the following.

(a) + (3,2).
(b) +(3,s(s(B(O)))).

(c) + (s(s(s(B(0)))),2).

3. lnflnltary Data Structure Systems 591

2. Without using Theorem 3.1, give the value of each of the following.
(a) &'~'N(ADD)(+)(3, 2).
(b) &'~'N(ADD) (+) (3, 2 j_).

(c) &'~'N(ADD) (+) (3 j_, 2).

3. Let P = LIST U {B(X) = B(X), BL(X) = BL(X)}, where T(B) =
N -+Nand T(BL) = NL -+NL, lett be cons(B(O),cons(l,nil)), and
let u be cons(0, cons(1, BL(nil))). [LIST is defined in Section 5 of
Chapter 17.] Give T;(P), and give the (T;(P), ur)-computation for each
of the following.
(a) Length(t).
(b) Length(u).
(c) Nth(0, t).
(d) Nth(I, u).
(e) Cat(t,t).
(f) Cat(t, u).
(g) Cat(u, t).
(h) Reverse(t).
(i) Reverse(u).
(j) Length(Cat(Rev(t), t)).

4. Let /1 = (..1. N~, 1), /2 = (0, 1) j_. Without using Theorem 3.1, give
the value of each of the following.
(a) &'~'NL(LIST) (Length) (/1).

(b) &'~'NL(LIST)(Length}(/2).

(c) &'sr.L(LIST)(Nth)(O, /1).

(d) &'~'NL(LIST)(Nth) (1, /2).

(e) &'~'NL(LIST)(Cat}(/ 1 , / 1).

(f) &'~'NL(LIST)(Cat)(/ 1 , / 2).

(g) &'~'NL(LIST)(Cat)(/2 , / 1).

(h) &'~'NL(LIST) (Rev) (/1).

(i) &'~~ (LIST)(Rev)(/2). NL
5. Give a WN-program with F E FV(P) such that g~N(P) (F) (0) = ..1. N

and g~'N(P)(F)(O) = 0. Verify that &'~N(P)(F)(O) = ..1. N and
&'~~(P)(F)(O) = 0.

N

6. Verify the sentence containing (3.1).

7. Give the (T;(PR u LIST), ur)-computation for Nth(l, Primes(2)).

8. Suppose we change the defining equation for Norm in E to

Norm(C, L) = Carry(C, cons(First(L), Norm(s(C), Rest(L)))).

Now what is ~(Convert(cons(2, K(l))))?

592 Chapter 18 Operational Semantics of Recursion Equations

9. Show that if A is a nonempty r.e. set, then there is a computable list
I= (i0 , i1 , .••) in DNL" such that A = {i EN I i occurs in 1}.

10.* Show that if I = (i0 , i1 , •••) is a computable list of numbers in DNL',

then {i EN I i occurs in I} is r.e. [Hint: Adapt the proof of Theorem
2.2.]

Suggestions for Further Reading

C. L. Chang and R. C. T. Lee, Symbolic Logic and Mechanical Theorem Proving. Academic
Press, New York, 1973.

A very readable treatise on resolution-based algorithms for satisfiability in quantification
theory.

Martin Davis, Computability and Unsolvability. Dover, New York, 1983.
Originally published in 1958. The 1983 reprint includes an appendix on unsolvable

problems in number theory.

Martin Davis (editor), The Undecidable. Raven, New York, 1965.
A collection of basic papers in computability theory. Included are the original papers in

which Church announced his "thesis," in which Turing defined his machines and produced a
universal computer, in which Post stated his "problem," and in which Turing introduced
"oracles."

Herbert P. Enderton, A Mathematical Introduction to Logic. Academic Press, New York, 1972.
An introductory textbook on mathematical logic for mathematically mature readers.

Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York, 1979.

This treatise includes a comprehensive list of NP-complete problems.

Carl A. Gunter, Semantics of Programming Languages. MIT Press, Cambridge, Massachusetts,
1992.

A treatment of denotational semantics for the sophisticated reader.

Paul R. Halmos, Naive Set Theory. Van Nostrand, Princeton, New Jersey, 1964.
A short, classic introduction to set theory.

593

594 Suggestions for Further Reading

Michael Harrison, Introduction to Formal Language Theory. Addison-Wesley, Reading, Mas­
sachusetts, 1978.

A comprehensive, up-to-date, readable treatise on formal languages.

Karel Hrbacek and Thomas Jech, Introduction to Set Theory, second edition. Marcel Dekker,
New York, 1984.

Another introduction to set theory, somewhat more detailed than the book by Halmos.

Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

Another introduction to theoretical computer science.

Jacques Loeckx and Kurt Sieber, The Foundations of Program Verification, second edition.
John Wiley and Sons, New York, 1987.

A well-written treatment of programming language semantics with an emphasis on
program verification.

Donald W. Loveland, Automated Theorem Proving: A Logical Basis. North-Holland Publ.,
Amsterdam, 1978.

A well-organized account of resolution theory.

Michael Machtey and Paul Young, An Introduction to the General Theory of Algorithms.
North-Holland Publ., Amsterdam, 1978.

A well-written account of computability and complexity theory.

Hartley Rogers, Theory of Recursive Functions and Effective Computability. McGraw-Hill, New
York, 1967.

The classic comprehensive treatise on computability and noncomputability.

David Schmidt, Denotational Semantics: A Methodology for Language Development. Wm. C.
Brown Publishers, Dubuque, Iowa, 1988.

A good general introduction to the denotational semantics of programming languages.

Joseph R. Shoenfield, Degrees of Unsolvability. North-Holland Publ., Amsterdam, 1971.
A short and clearly written monograph on the subject going well beyond the material

covered in this book.

Robert I. Soare, Recursively Enumerable Sets and Degrees: The Study of Computable Functions
and Computably Generated Sets. Springer-Verlag, Berlin and New York, 1987.

A modem treatment of advanced recursive function theory.

Joseph E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Lan­
guage Theory. MIT Press, Cambridge, Massachusetts, 1977.

An early treatment of denotational semantics.

Notation Index

E 1 (3t), (Vt) 7
0 1 • 9
c;;;;,c 1 ..:7 17
u,n 2 1/J~m>(r,, ... ' rm) 29
R-S 2 s(x), n(x), ur<x,,. .. ' xn) 42
s 2 X..:. y 46
{a 1, ••• ,an} 2 a(x) 47
(a 1, ••• ,an) 2 min,,Y P(t,x 1, ••• ,xn) 55
X 2 lxjyJ, R(x,y) 56
sn 3 Pn 56
f(a)L f(a)j 3 miny P(x 1, ••• , xn, y) 57
lui 4 (x,y) 59
A* 4 /(z), r(z) 60
uv 4 [a,, ... ' an] 60
uln] 4 (x); 61
- ,&, v 5 Lt(x) 61
{a E SIP(a)} 6 #(.9J) 65,201
= 6 HALT(X,Y) 68
(3t) :5 Y' (Vt) :5 y 7 <t><n>(x,, ... ' Xn, y) 70

595

596 Notation Index

vn 70 Ll ·L2 253
<l>}nl(xl, ... ' xn) 73 L* 253
<1>/x) 73 0,0, u, ·,* 256
STP<nl(x1, ••• , xn, y, t) 74 (y) 257
w, 81 =L 263
K 82 X--+ h 269
s::,(up ... ' un, y) 85,205 u=u 270

r
~m 91 ker(f) 271
- m 93 Y' 274
Rr 95 <Y> 274
w 119 Er/L), Er/f) 294
3';, 121 PARn(A) 301
y 129 r, 303
I- 159 I-_, 311
g-+h 169 LiL) 331 •
u = u, u = u 170 -,,I\, v, :J' +-+ 347 n n
k(L) 171 y'' 348
!1(L) 176 YJ····•Yn F Y 352,382
8(L) 177 D 360
L(f) 186,270 + - 0 a\, aA , aA 361
1/l},.~J(rl, · · ·, rm) 198 POSA(a), NEGA(a) 361
STP~nl(xp ... , xn, y, t) 201 RESA(a) 367
{u}(i) 203 8(t) 375
u-<G 204 V, 3 375

~~' ~] 207 A= A(bl, ... ,bn) 378
-Q 208 a 1[dp···•dn] 378
co-W 208 fFy 382
AfBB 210 Ys 384
we n 213 Tr 407
G' 213 I-T y 407
c<n) 214 w# 411
kn, nn, dn 215 M;(x) 420
TOT 224 a.e. 421
rl 231 00 421
L(L) 239, 243, 311 O(g(n)) 439

Notation Index 597

p 444 F(XH ... ,Xn) = t 507
SAT 446 PF(E), AF(E) 508
NP 446 rhs(E) 508
:s;p 448 Bool, tt, ff 508
V{xe II :::;; e :::;; /} 453 ifT, is_f, f;- 1 509
.l_N 471 (We U B(W), Tc U T B(W) 509
!;;;;; 472 (WN, TN), (WNL• TNL) 510

!YJ(D) 472 (D.'T(T)' !;;;;; .'T(T)), ..L .'T(T) 511

!;;;D,x ··· xD., 472 (Boo), !;;;Bool), ..Lsool 512
(D ~ E, !;;;D-+ E) 473 (DT, !;;;;; T), ..L T 512
(ch(g), !;;;ch(-'fil) 474 (DT X · · · X T ' i;;;T X · · · X T) 512

I n I n

uE, nE 476 D8(F) 512
(D .i, !;;;D) 477 ran f 512

L

ug> 478 tt, ff 512
d ~ i 478 !_N = (9'""N,JN) 514
!T(d) 479 a(F), a(X) 514
f(g)(d) 481 S41~V) 514
(id(D), ~ id(D)) 482 ~S41~V) 515
pid(e) 482 ajt), a(t) 515
f.l 487 !;;;;; 1\:W:"(V) 516
f(E) 488 Og:w:"(V) 517
([D ~ E], !;;;[D-+ EJ) 488 a(d, ... d.>• ad 520

t4 494 ci>l p 520
r<x) 495 ADD 524
x,~ 505 g!J.N 527
VARI, VARF, VAR 506 (rep(D.'T(T)), !;;;;; rep(.'T(T))) 530
IV(O), FV(O), V(O) 506 rep(f) 530
(W, T) 506 rep(!,) = (rep(9'""), rep(J)) 531
T(f), S(f), p(f) 506 (Dr(T)' !;;;;; r(T) 531
ar(f) 506 Dr(T 1)X ···X r(T 0)

531
TV(W) 507 Dr(T 1)X ··· Xr(T 0)--+r(T) 531
TMw(V), TMw(V) 507 Dr(8(F)) 531

™w·™w 507 rep(a) 533
N,NL 507 g!J. 533
n, sn(o) 507 !_NL = (.5JNL, JNL) 539
0, s, nil, cons 507 aNL 540

598 Notation Index

LIST 540 Wa 554
ay= (~,...Yy) 542 od1d2 00 0 554
!_K(W) = (~(W)> ~(W)) 542 te 558
aK(W) 543 u~v 559
w+ 545 t=w 559
(TM~+' !;;;T+), .iT 545

T,u
560 Uti> Upi> Uto> Upo

!.Kx(W) = (~x(W)> ~x(W)) 546 Ty(P) 561
(DTx' !;;;Tx), .l Tx 546 ur 564
!.~ 546 rp,rrp 565,585
nj_,w 547 &'!J. 566,585
A'" N 550 f./xl, 0 0 0' xn) 579
!_~L' a'"NL 551 # 2o(w), #(t), #(P), #(e) 580
(d1,ooo,dn)l_ 552 T;(P) 584

Index

A

Algorithms, 3, 68, 79-80, 95, 411
Almost everywhere, 421
Alphabets, 4, 113, 347, 375, 505

of linear bounded automata, 330
of pushdown automata, 310
of Turing machines, 146

Approximation orderings, 470-471, 487, 505,
see also Complete partial orders; Partial
orders

Arithmetic hierarchy, 215-230
Arithmetic predicates, 223
Assignments

complete type, 512, 513, 516, 539
continuous variable, 514-515, 539
Herbrand ideal type, 546
on propositional atoms, 348, 406, 455-456
type, 511-512
variable, 514-515

Atoms, 347
Automata theory, 237
Axiomatizable theories, 407-410, 415

complete, 410
consistent, 410
nonrecursive, 415
w-consistent, 410

Axiom of choice, 474

8

Balanced words, 309-310
Bar-Hillel's pumping lemma, 287-290, 299
Base n notation, 116, 328, 580
Binary relations, 472

restrictions of, 4 72
Blum axioms, 419-425
Blum, Manuel, 419
Blum speedup theorem, 437-438
Boolean algebra, 350
Bottom elements, 477
Bracket languages, 301-308

Cantor, Georg, 406
Cartesian product, 3
Case, John, 103
Chains, 477, 499
Chang, C. L., 593

c

Chomsky hierarchy, 327-330
Chomsky normal form grammars, 285-287,

287-290, 297, 303, 306, 308, 313, 316,
319

separators of, 303-308, 313, 319
Chomsky-Schiitzenberger representation

theorem, 306

599

600

Church, Alonzo, 411
Church's thesis, 69, 80, 90, 95, 96, 141, 161,

162, 197, 407, 445, 447
Clauses, 355-356

linked sets of, 366-367, 396, 398, 400
minimally unsatisfiable sets of, 366-367,

392, 395
unit, 361, 362, 363

Closure properties, 4
for context-free languages, 291-297
for context-sensitive languages, 329,

337-344
for regular languages, 249-256

CNF, see Conjunctive normal form
COBOL, 323
Coding

of finite functions, 203-204, 580
of pairs, 59-60, see also Pairing functions
of programs, 65-67
of sequences, 60-63, see also Godel num-

bers
of states of programs, 71
of strings, 113-115
of WN-programs, 579-582
of WN-substitutions, 579-582
of WN-terms, 579-582

COF, 227
Coincidence lemma, 518, 527
COMP, 48
Compact elements of a cpo, 486
Compactness theorem

for predicate logic, 390, 404-406
for propositional calculus, 370-373, 390,

404
Compilers, 323-326
Complete partial orders, 475-486, 516, see

also Partial orders; Orderings
algebraic, 486, 494
compact elements of, 486
of continuous variable assignments,

516-517
flat, 477, 539

Complexity
abstract, 419-438
measures, 419

Composition, 39-40, 42, 76, 77, 108, 200, 576
Computability theory, 17, 18, 31, 70, 98, 113,

169, 237, 443
Computable functions, see Functions, com­

putable

Index

Computable real numbers, 554, 587, 589-590
Computations

infinite, 469-470, 563
by linear bounded automata, 339-343
by nondeterministic Turing machines, 160,

171, 447-448, 451-456
by pushdown automata, 311-323
by Y' programs, 27, 28, 29, 70-75, 420,

468, 557
for W-terms, 559-575, 584-587, 588

Configurations
of linear bounded automata, 330, 331
of Post-Turing programs, 130
of pushdown automata, 311
of Turing machines, 147, 159-160, 444,

452-456
Conjunctive normal form, 356-360, 364, 368,

392, 393, 444, 446, 447-448, 451-456,
457-458, 461

co-NP, 450
Constant symbols, 375, 506
Context-free grammars, 269-280, 326, 327,

497-499, see also Chomsky normal form
grammars

ambiguity of, 300, 303, 307, 319
branching, 277, 279, 285
Chomsky normal form, see Chomsky nor-

mal form grammars
derivations in, 270, 275, 277
derivation trees in, see Derivation trees
Greibach normal form, 287
kernels of, 271
languages generated by, 270
left-linear, 285
leftmost derivations in, 275-277
positive, 269, 271, 273, 277, 327
productions of, 269
regular, 280-285, 327
right-linear, 283, 304
rightmost derivations in, 275-277
self-embedding, 284
unsolvable problems involving, 297-301

Context-free languages, 269-326, 327-328,
337, 450, see also Context-free gram­
mars

closure properties for, 291-297
and compilers, 323-326
deterministic, 323
infinite, 298-299
inherently ambiguous, 301

Index

nonregular, 270
and pushdown automata, 308-323
regular, 280-285

Context-sensitive grammars, 189-190,
327-330

unsolvable problems involving, 339
Context-sensitive languages, 327-344

closure properties for, 329, 337-344
open questions concerning, 343

Cook-Karp thesis, 445
Cook's theorem, 451-456
Corollaries, 8
Correctness

of operational semantics, 557
of programs, 536

Course-of-values recursion, 62-63
cpo, 477, see also Complete partial orders

flat, 477

D

Data structure systems, 531, 536
infinitary, 544-556, 584-592
simple, 539-544, 557-575

Davis, Martin, 593
Davis-Putnam rules, 360-366,368, 391, 393,

396, 444
Definition by cases, 50-51
Degree

of function symbols, 375
of polynomials, 441
of relation symbols, 375

De Morgan identities, 2, 6, 7, 50, 251, 291,
350, 354, 371, 380

Derivation trees, 274-279, 298, 498
pruning and splicing of, 279, 289

dfa, 243, see also Finite automata
minimal, 266

Diagonalization, 88-90, 94, 106, 328, 406,
429

Diagonal lemma, 492, 502, 518
Disjunctive normal form, 356-360, 444
DNF, see Disjunctive normal form
Dovetailing, 80, 81, 408
DTIME, 450
Duality, general principle of, 350, 356, 358,

380
Dycklanguages, 303,306

E

Empty program, 26
Enderton, Herbert P., 593
Enumeration principle, 370, 371, 405
Enumeration theorem, 81
Equivalence relations, 263
Euclid, 57
Exchange lemma, 490, 491, 503
EXPTIME, 450, 451

601

Extension lemma, 526-527, 532, 534, 573

F

Fibonacci numbers, 62, 529
Finite automata, 237-242

deterministic, 243, 280, 292
nondeterministic, 242-249, 281, 324
nonrestarting, 250, 316

Finiteness theorem, 204
Finite satisfiability, 370-372
First-order logic, see Quantification theory
Fixed point induction principle, 499, see also

Induction, fixed point
Fixed points, 494-503

as solutions to W-programs, 523
Fixed point theorem, 101, 501, see also Re­

cursion theorem
for cpos, 495-496, 497, 499, 501, 524

Floyd, R. W., 181
Formulas

atomic, 376
ground, 392
Herbrand instances of, 412-414
in predicate logic, 376
propositional, 347, 496-500
quasi-representing sets, 409
representing functions, 410
representing sets, 408, 409
semantically equivalent, 380

FORTRAN, 279, 323, 324
Functions, 3

binary, 3
Boolean-valued, 5
characteristic, 6, 78, see also Predicates
computable, 28-32, 41, 42, 77, 112, 116,

121,469,567
computed by Post-Turing programs, 134,

135, 140, 141, 147, 149, 150
computed by .Y programs, 19, 22-25, 30
computed strictly, 134, 135, 139, 146, 148

602

computed by Turing machines, 146-152
constructible, 428
continuous, 486-494, 495
~-computable, 574, 575-584
domain of, 3
elementary, 59
exponential, 425, 442, 444, 450
G-computable, 198
G-partial recursive, 198
G-recursive, 198
higher order, 470, 481, 520
intuitively computable, see Church's thesis
monotonic, 487-494
n-ary, 3, 200
nowhere defined, 3, 31
one-one,4,84
onto, 4
partial, 3, 24
partially computable, 30, 39, 70, 73, 75, 76,

83, 96, 116, 127, 140, 148, 198, 199,467,
501,578-582

partially computable in .9;,, 121, 127, 135,
140, 141

partially G-computable, 198
partial recursive, 30, 84
polynomial time computable, 445
primitive recursive, 39-63, 84, 105-112,

117, 188, 262, 576-578
range of, 3, 82, 83, 84
recursive, 30, 84, 426, 428, 436, 437
strict, 487, 539, 564
strict extensions of, 487
on strings, 116-117
total, 3, 5, 30, 40, 42, 90, 198, 199, 200, 201,

202, 204, 205
unary, 3

Function symbols, 375, 506
arity of, 506
built-in, 509
constructor, 509
degree of, 375
discriminator, 509
proper, 506
selector, 509

r-trees, 273-274, 278
paths in, 278

G

Gap theorem, 425-428
Garey, Michael R., 593

Index

Godel, Kurt, 60
Godel numbers, 60-63, 66, 67, 71, 74-75, 79,

84,108,200,204,217-218,222,232,435,
580

Godel's incompleteness theorem, 407-410
Goldbach's conjecture, 69, 70
Grammars, 186-191, see also Context-free

grammars; Context-sensitive grammars;
Regular grammars

derivations in, 188, 270
languages generated by, 186, 270,327-329
left-linear, 285
null productions of, 269, 327, 344
phrase structure, 186, 327
positive context-free, 269, 327
productions of, 186, 269
regular, 280-285, 327
right-linear, 283, 304
self-embedding, 284
start symbol of, 186, 269
terminals of, 186, 269
unsolvable problems concerning, 191-192,

300-301, 322, 339
variables of, 186, 269

Graphs, 458-460
cliques in, 459
complete, 458-459

Greatest lower bounds, 476
Greibach normal form grammars, 287
G-r.e. sets, 211-215
Ground clauses, 392
Ground resolution, 369, see also Resolution,

in propositional calculus
Ground resolution theorem, 369
Gunter, Carl A., 593

H

Halmos, Paul R., 593
Halting problem, 68-70, 78, 82, 89, 97-98,

99, 197, 467, 488, 523, 554, see also Un­
solvability of, halting problem

for Post-Turing programs, 144
for Turing machines, 157-158

Harrison, Michael, 594
Herbrand instances of formulas, 412-414
Herbrand's theorem, 388-398, 404
Herbrand universes, 388, 389, 390, 392, 393,

395,398,405,406,412,542
Hilbert, David, 410, 411
Homomorphisms, 253, 296, 344

Index

Horn clauses, 403
Horn programs, 404
Hrbacek, Karel, 594

Ideals, 482-483, 546-556
principal, 482, 552

Immerman, Neil, 339
Index sets, 95, 103, 230-231
Induction, 9-13

complete, 11-12
course-of-values, 11-12, 302
fixed point, 499-500, 536-537
hypothesis, 10
loading, 11, 109
mathematical, 9-13, 52, 86, 206, 215, 245,

256, 264, 271, 293, 304, 305, 433, 495,
540, 571, 576

structural, 500-501, 516, 517, 518, 534,
535, 558, 567, 571

INF, 225
Initial functions, 42, 76, 108
Instantaneous descriptions, 27, see also

Snapshots of a program
Instructions, 17-18, 26, 65-67, 197

conditional branch, 18, 35
decrement, 18
increment, 18
labeled, 26
numbers of, 65-67, 74, 201
oracle, 197-198, 201
of Post-Turing programs, 129
of~ programs, 122
unlabeled, 26
while, 103

Interpretations
continuous, 513, 539
Herbrand ideal, 546
for predicate logic vocabularies, 377, 382,

411
for typed vocabularies, 512-513, 539, 546

Interpreters, 70
Intractability, 444, 457, 459
Isomorphisms, 485
Iteration theorem, see Parameter theorem

J

Jech, Thomas, 594
Johnson, David S., 593
Jumps of sets, 213

K

Kleene's hierarchy theorem, 216
Kleene's theorem, 253-260
Kuroda, S. Y., 331, 339

Labels, 18, 25
Landweber, P. S., 331

L

Languages, 4, see also Vocabularies
accepted by deterministic Turing ma­

chines, 189
accepted by finite automata, 239
accepted by linear bounded automata,

330-337

603

accepted by nondeterministic finite au­
tomata, 243

accepted by nondeterministic Turing ma-
chines, 160-161, 186, 189

accepted by pushdown automata, 311-323
accepted by Turing machines, 153-157, 189
context-free, see Context-free languages
context-sensitive, see Context-sensitive

languages
generated by grammars, 186, 189, 270,

327-328
inherently ambiguous, 301
in NP, see NP
NP-complete, see NP-completeness
NP-hard, 449
polynomial-time decidable, see P
r.e., see r.e. languages
recursive, 156, 190, 328, 446
recursively enumerable, see r.e. languages
regular, see Regular languages
spanning sets for, 263

Lattices, 485, 502
Lazy functional languages, 553
Least upper bounds, 476
Lee, R. C. T., 593
Lemmas, 8
Lewis, Harry R., 594
Lexical analysis, 323
L'Hospital's rule, 442
Linear bounded automata, 330-343

deterministic, 336, 337, 343
Lin ears orders, 4 72, see also Partial orders
Linked conjunct procedures, 400
LISP, 507

604

Lists
finite, 541, 552
infinite, 553, 588-590
prefix, 553

Literals, 354, 447-448
Loeckx,Jacques, 594
Logic, see Propositional calculus; Quantifi-

cation theory
Logical consequence, 382-388
Logic programming languages, 403
Loveland, Donald W., 594

M

Machtey, Michael, 427, 594
Macro expansions, 20-24, 33, 35, 121-123
Macros, 20, 32-37, 122-123, 127

for Post-Turing programs, 136, 137
Many-one reducibility, 90-95, 207-211
Markov, A. A., 178
Mates, 355, 357-358, 366-367, 397-398, 399,

see also Linked conjunct procedures
Mathematical induction, see Induction,

mathematical
m-completeness, 92, 93, 97, 210, 217
Meaning functions

denotational, 527, 533, 536, 557, 573-574,
586

operational, 566, 573-574, 585-586
Metavariables, 506
Minimalization, 55-59, 75, 76, 77, 200, 578

bounded, 55-58
proper, 77
unbounded, 57-58

Minimal unsatisfiability, 366-367, 392, 395,
see also Satisfiability, truth functional

Models, 380, 382, 384, 385, 406, 412
countable, 406

Myhill, John, 232, 263
Myhill-Nerode theorem, 263-264

N

Natural numbers, 1
ndfa, 243, see also Finite automata, nonde-

terministic
Nerode, Ani!, 263
Normal form theorem, 75
Normal processes, 192-195
Normal productions, 193
NP, 446-451, 456, 457-463

Index

NP-completeness, 208,448, 449,451,457-463
NP-complete problems

CHROMATIC-NUMBER, 461,462
COMPLETE-SUBGRAPH, 458-459, 462
EXACT-COVER, 462
HALF-SAT, 456
HAMILTONIAN-CIRCUIT, 460, 462
INTEGER-PROGRAMMING, 460
KNAPSACK, 463
LONGEST-COMMON-SUBSE-

QUENCE, 462
MAX-CLIQUE, 459
MULTIPROCESSOR-SCHEDULING,

463
PARTITION, 460, 462, 463
QUADRATIC-DIOPHANTINE-EQUA-

TIONS, 461
RECORD-ALLOCATION, 463
SAT, 446-456, 458
SET-COVER, 460
STRAIGHTLINE-PROGRAM-IN-

EQUIVALENCE, 461
SUBGRAPH-ISOMORPHISM, 462
SUBSET-SUM, 462
TASK-SEQUENCING, 463
3-DIMENSIONAL-MATCHING, 460
3-SAT, 457-458, 460, 461, 462
TRAVELING-VENDOR, 462
2-COLORABILITY, 461
2-SAT, 461-462
VERTEX-COVER, 459-460,462

NP-hardness, 449, 451, 457
NPSPACE, 451
NTIME, 450
n-tuples, 2
Numeral systems, 408

0

1-completeness, 209, 226
One-one reducibility, 207-211
Oracles, 197-200
Ordered pairs, 2
Orderings, see also Partial orders

Cartesian product, 472, 479
continuous function space, 488
.91-choice function, 474, 481
function space, 473, 480
lexicographic, 481

Index

p

P,444-446, 448,449,456,461
Pairing functions, 59-60, 65, 66, 67, 74-75,

83, 106, 107, 110, 203,228,232,435
Pairing function theorem, 60
Palindromes, 241, 265
Papadimitriou, Christos H., 594
Parameter theorem, 85-88, 92, 93, 96, 99,

209, 225, 226, 229, 231, 428, 435
relativized, 205-206, 209

Parsing, 324-326
Partially computable functions, see Func­

tions, partially computable
Partial orders, 472-475, see also Complete

partial orders
bottom elements of, 471, 477
bounded-complete, 485, 494
chains in, 477, 499
complete, see Complete partial orders
ideal completions of, 483
ideals of, 482-483, 546-556
isomorphic, 485, 486, 493, 544
principal ideals of, 482

Partial recursive functions, see Functions,
partial recursive

Pascal, 279, 323, 326, 438
Pigeon-hole principle, 260, 264, 266, 451
n., 215-230

as a collection of sets, 215
as a property of predicates, 217

Polynomials, 441, 442
Polynomial-time computability, 445
Polynomial-time decidability, 444
Polynomial-time reducibility, 208, 448-449,

457
Post correspondence problem, 181-186,

299-301, 322
Post correspondence system, 181, 300
Post, Emil L., 129, 178, 181
Post's lemma, 177
Post's theorem, 217-224, 228
Post-Turing programs, 129-144, 145, 149,

150, 161, 200
Post words, 171-175, 177, 187
Power sets, 472
PRC classes, 42-44, 49-56, 62, 63, 79, 84,

199
Predecessor function, 46
Predicate logic, 375-415

605

Predicates, 5-7, 10, 34-35, 68, 217-224, 419
admissible, 499, 502, 537
arithmetic, 223-224
computable, 34-35, 50, 68, 85
primitive recursive, 49-51, 78, 187,

259-260
recursive, 419

Prenex normal form, 384
Prenex sentences, 384
Prime numbers, 8, 54, 56-57, 69, 265, 267,

588
Primitive recursive functions, see Functions,

primitive recursive
Productions, see Context-free grammars,

productions of; Semi-Thue productions
null, 269

Programming systems, 88
acceptable, 88, 105, 128, 144, 153

Programs, 17-28, 65-67, 197, see also W-
programs

computations of, 27
correct, 536
as a data structure system, 542
functions computed by, 19, 22-24, 28-32,

198
G-computations of, 198, 201
instantaneous descriptions of, 27
length of, 26
numbers of, 65-67, 68, 70, 74-76, 86, 89,

90,95-97,97-105,201,224,225
with oracles, 197-198
Post-Turing, see Post-Turing programs
snapshots of, 27-28, 29, 70, 74-76,

197-198,420
states of, 26, 197
straightline, 32
for string computations, 121-26
universal, 70

Program verification, 536
Projection functions, 42, 478
Prolog, 403
Proof by contradiction, 8-9
Proofs, 8
Propositional calculus, 347-373
Propositional connectives, 347
Propositional variables, 347
PSPACE, 450, 451
Pumping lemma, 260-262, 264, 267, see also

Bar-Hillel's pumping lemma

606

Pure literal rule, 362, 363
Pushdown automata, 30H-323

atomic, 314,315,316
computations hy, 311-323
deterministic, 311,313, 315
generalized, 321
languages accepted hy, 311-323
nondeterministic, 312, 315
transitions of, 310

Q

Quadruples, 145, 330-333, 338, 454-455
Quantification theory, 375-415
Quantifiers, 7-H

alternating, 223
hounded, 7, 53-55
in predicate logic, 376

Quintuples, 149

R

Rates of growth, 439-443
Recursion, 40, 41, 44, 45, 76, 77, 100, 200,

34H, 496, 501, 576
course-of-values, 62, I 09
primitive, 40, 41, 100, 106, 108
simultaneous, 62
unnested double, 63

Recursion equations, 40, 41, 44, 45, 46, 47,
62, 63, 100, 104, 309, 314, 505, 508, see
also W-recursion equations

Recursion theorem, 97-105, Ill, 428,431,
see also Fixed point theorem

first, 501, 503
second, 501

Recursion theory, 31, see also Computability
theory

Recursive functions, see Functions, recursive
Recursive function theory, see Computability

theory
Recursive isomorphisms, 231-234
Recursive languages, see Languages, recur­

sive
Recursively enumerable languages, see r.e.

languages
Recursively enumerable sets, see r.e. sets
Recursive operators, 503
Recursive permutations, 231-234
Recursive relatedness theorem, 422, 424, 425,

437

Recursive sets, see Sets, recursive
Redexes, 559

Index

Reducibilities, 90-95, 96, 207-211, see also
Many-one reducibility; One-one re­
ducibility; Polynomial-time reducibility

completeness with respect to, 92-93, 208,
210

Regular expressions, 256-260
Regular grammars, 280-285, 327
Regular languages, 237-267, 280-285, 292,

304, 306, 327-32H, 450, see also Regular
grammars

closure properties for, 249-260
examples of, 247-249
and finite automata, 237-242
infinite, 261
and nondeterministic finite automata,

242-247
represented by regular expressions, 257
spanning sets for, 263-267

r.e. languages, 154-157, 161, 188, 189,327,
344,371,391-392,407-408

Relation symbols, 375
Relativization, 199

of computability, 198
of enumeration theorem, 213
of parameter theorem, 205-206
of recursive enumerability, 211-215
of step-counter theorem, 202-204
of universality theorem, 201-202

Remainder, 56, 114
Representable elements, see W-structures,

representable elements of
r.e. sets, 78-85,88,90-95, 209-211,231,391,

407,408,409,592
relative to an oracle, 211-215

Resolution
derivations, 367, 402
in predicate logic, 400-404
in propositional calculus, 367-370,393,

402,444
refutations, 367, 402

Resolvents, 367
Rewrite rules, 169, 559, see also W-term

rewriting systems
Rewriting strategies, 559, 560, 564-565
Rice-Shapiro theorem, 231
Rice's theorem, 95-97, 103, 230-231
Right quotients, 266, 297
Robinson's general resolution theorem, 402

Index

Rogers, Hartley, 594
Rooted sentences, 412-414

SAT, 446-456, 458
Satisfiability

finite, 370

s

in predicate logic, 380, 383, 384, 385,
389-391,394,411

problem, 358
truth-functional, 348-352, 352-353,

355-356,358,364,366-367,372,
389-391, 405, 444, 446-456

Scaling factors, 421
Schmidt, David, 594
Scott domains, 494
Self-embedding grammars, 284
Self-reference, 98, 99
Self-reproducing program, 100
Semantics, see also Meaning functions

denotational, 468, 499, 505-556
of formulas in predicate logic, 377-382
operational, 468, 499, 557-592
of programming languages, 467-468
of propositional formulas, 348
of regular expressions, 257
of .Y programs, 26-28
ofW-terms, 511-520

Semi-decision procedures, 80, 392
Semi-Thue processes, 169-180, 182, 186, 334,

see also Thue processes
derivations in, 170

Semi-Thue productions, 169
inverses of, 175-176, 177, 335

Sentences, 377
models of, 380
prenex, 384
rooted, 412, 413, 414
satisfiable, see Satisfiability, in predicate

logic
semantically equivalent, 380
Skolemized, 384-387, 393, 405
undecidable, 409
universal, 385, 388
valid, 380, 383, 391

Sentential logic, see Propositional calculus
Sequence number theorem, 62
Sets I, 78

characteristic functions of, 6, 78, 79
complement of, 2

computable, 78
difference of, 2
empty, I
equality of, I
finite, 2
G-r.e., see G-r.e. sets
G-recursive, 211-214
infinite, 2
intersection of, 2
r.e., see r.e. sets
recursive, 78, 80, 88, 91, 210
recursively isomorphic, 231
union of, 2

Shoenfield, Joseph R., 594
Sieber, Kurt, 594
l., 215-230

as a collection of sets, 215

607

as a property of predicates, 217
Simulation, 70-75, 127, 135-144, 163-167,

171-176, 333-336
Skolemization, 384-387

generalized, 386-387, 405
Skolem-Uiwenheim theorem, 406
s-m-n theorem, see Parameter theorem
Snapshots of a program, 27-28, 70, 74-76,

197, 420
initial, 29
successor of, 27
terminal, 27, 75, 76, 197

Soare, Robert 1., 594
Socrates, 393
Solutions to W-programs, 520-530, 534, 536
Spanning sets, 263
Speedup theorem, 428-438
Splitting rule, 361, 363, 364
Stacks, 310-311
Start symbols, 269
Statements, 25, see also Instructions
States, 26, 145, 197, 238

accepting, 238, 310
dead, 248
final, 238, 310, 330, 331
initial, 29, 238, 310, 331

State transition diagrams, 147, 240
Step-counter predicates, 74-75, 78, 81, 82,

83, 224, 225
relativized, 201-205, 211, 212

Step-counter theorem, 74
relativized, 202-204

Stoy, Joseph E., 594

608

Strings, 4, 12, 113-144
computable functions on, 116, 121
computations on, 113, 121
concatenation of, 117-ll8
length of, 4, 118
numerical representation of, 113-117
partially computable functions on, 116, 121
primitive recursive functions on, 117
programming languages for, 121-126

Subsets, I
proper, 2

Substitution lemma, 558, 570
Substitutions

on alphabets, 252, 296, 344
answer, 404
to individual variables, 395, 397-398,

399-404, see also W-substitutions
Subsumption, 366
Symbols, 4, see also Constant symbols; Func­

tion symbols; Relation symbols
Syntax

of propositional calculus, 347-348
of quantification theory, 375-377
of Y~ programs, 121
of Y' programs, 25-26
of W-programs, 505-511

T

Tautological consequence, 352, 373
Tautological inference, 352-353
Tautologies, 348, 352, 355-356
Terminals, 186, 269
Terms, 376, see also W-terms
Theorems, 8
Theoretical computer science, 189, 359, see

also Automata theory; Complexity;
Computability theory; Languages; Se­
mantics, of programming languages

Thue, Axel, 169
Thue processes, 177-181,411
TOT, 90, 224-229
Tractability, 444
Transition functions, 238
Truth values, 5
Turing, Alan, 129, 153, 411

analysis of computation process, 129, 145
Turing machines, 145-168, 176, 191, 197,

415, 444, 445, 447, see also Configura­
tions, of Turing machines; Linear
bounded automata

Index

deterministic, 146, 159, 174, 176, 177, 178,
189, 415

functions computed by, 146-152
languages accepted by, 153-157, 186-187,

189
multiple tape, 167, 168
multiple track, 163-168,337-343
nondeterministic, 146, 159-162, 171-176,

186, 189, 330, 446-456
one-way infinite, 162-167
quintuple, 149, 150
universal, 152-153

Turing reducibility, 207-211
Types, 505-506

domain, 506
function, 506
individual, 506
product, 506
range, 506

u

Unconditional branch, 19-20
Undecidable sentences, 409
Unification, 399-404, 560

algorithm, 399
Unifiers, 403
Unit clauses, 361, 362, 363
Unit rule, 362
Universal computers, 153
Universality theorem, 70, 209

relativized, 201-202
Universal programs, 70
Universal sentences, 385
Unsolvability of

halting problem, 68, 82, 99, 157-158, 197,
420

Post's correspondence problem, 181-186
problems involving grammars, 191-192,

297-301, 339
problems involving programs, see Rice's

theorem
satisfiability problem in predicate logic,

392, 410-415
word problems, 176-180, 195, 411

v
Validity, see Sentences, valid
Variables, 17, 25, 65

auxilliary function, 508

Index

bound, 376-377
free, 376-377
function, 506
in grammars, 186, 269
individual, 506
initialization of, 18, 121
input, 17, 25
local, 17, 25
occurrences of, 376-377
output, 17, 25
in predicate logic, 375-376
princip<jJ function, 508
propositional, 347
of Y, 17,25
type, 505

Vocabularies, 375, 506
interpretations of, 377
standard, 509, 511, 543, 550
standard constructor, 509, 511
typed, 506

w
W-formulas, 376, see also Formulas
Word problems, 176-180,411

of normal processes, 193- 195
Words, 4, see also Strings

length of, 4
W-programs, 508, 580

denotational semantics for, 530-538
operational semantics for, 557-592

partially correct, 536
solutions to, 520-530, 534, 536
totally correct, 536

W-recursion equations, 507-508
W-sentences, 377, see also Sentences
W-structures, 513

complete, 513, 539
computable elements of, 587
continuous, 513, 539
data structure systems based on, 531
Herbrand ideal, 546

609

infinitary, 544-545, 548, 587
representable elements of, 530-531, 534,

539, 551, 554, 587
simple, 539
simple Herbrand, 542

W-substitutions, 558, 580
W-term rewriting systems, 559

for infinitary data structure systems,
584-585

for simple data structure systems, 561-562
strategies for, 559, 560, 564-565

W-terms, 376, 507, 580
ground, 507
normal, 559, 565
semantics of, 511-520

y

Young, Paul, 427, 594

	Contents
	Preface
	Acknowledgments
	Dependency Graph
	1 Preliminaries
	1. Sets and n-tuples
	2. Functions
	3. Alphabets and Strings
	4. Predicates
	5. Quantifiers
	6. Proof by Contradiction
	7. Mathematical Induction

	Part 1 Computability
	2 Programs and Computable Functions
	1. A Programming Language
	2. Some Examples of Programs
	3. Syntax
	4. Computable Functions
	5. More about Macros

	3 Primitive Recursive Functions
	1. Composition
	2. Recursion
	3. PRC Classes
	4. Some Primitive Recursive Functions
	5. Primitive Recursive Predicates
	6. Iterated Operations and Bounded Quantifiers
	7. Minimalization
	8. Pairing Functions and Gödel Numbers

	4 A Universal Program
	1. Coding Programs by Numbers
	2. The Halting Problem
	3. Universality
	4. Recursively Enumerable Sets
	5. The Parameter Theorem
	6. Diagonalization and Reducibility
	7. Rice's Theorem
	*8. The Recursion Theorem
	*9. A Computable Function That Is Not Primitive Recursive

	5 Calculations on Strings
	1. Numerical Representation of Strings
	2. A Programming Language for String Computations
	3. The Languages S and S_n
	4. Post-Turing Programs
	5. Simulation of S_n in T
	6. Simulation of T in S

	6 Turing Machines
	1. Internal States
	2. A Universal Turing Machine
	3. The Languages Accepted by Turing Machines
	4. The Halting Problem for Turing Machines
	5. Nondeterministic Turing Machines
	6. Variations on the Turing Machine Theme

	7 Processes and Grammars
	1. Semi-Thue Processes
	2. Simulation of Nondeterministic Turing Machines by Semi-Thue Processes
	3. Unsolvable Word Problems
	4. Post's Correspondence Problem
	5. Grammars
	6. Some Unsolvable Problems Concerning Grammars
	*7. Normal Processes

	8 Classifying Unsolvable Problems
	1. Using Oracles
	2. Relativization of Universality
	3. Reducibility
	4. Sets r.e. Relative to an Oracle
	5. The Arithmetic Hierarchy
	6. Post's Theorem
	7. Classifying Some Unsolvable Problems
	8. Rice's Theorem Revisited
	9. Recursive Permutations

	Part 2 Grammars and Automata
	9 Regular Languages
	1. Finite Automata
	2. Nondeterministic Finite Automata
	3. Additional Examples
	4. Closure Properties
	5. Kleene's Theorem
	6. The Pumping Lemma and Its Applications
	7. The Myhill-Nerode Theorem

	10 Context-Free Languages
	1. Context-Free Grammars and Their Derivation Trees
	2. Regular Grammars
	3. Chomsky Normal Form
	4. Bar-Hillel's Pumping Lemma
	5. Closure Properties
	*6. Solvable and Unsolvable Problems
	7. Bracket Languages
	8. Pushdown Automata
	9. Compilers and Formal Languages

	11 Context-Sensitive Languages
	1. The Chomsky Hierarchy
	2. Linear Bounded Automata
	3. Closure Properties

	Part 3 Logic
	12 Propositional Calculus
	1. Formulas and Assignments
	2. Tautological Inference
	3. Normal Forms
	4. The Davis-Putnam Rules
	5. Minimal Unsatisfiability and Subsumption
	6. Resolution
	7. The Compactness Theorem

	13 Quantification Theory
	1. The Language of Predicate Logic
	2. Semantics
	3. Logical Consequence
	4. Herbrand's Theorem
	5. Unification
	6. Compactness and Countability
	*7. Gödel's Incompleteness Theorem
	*8. Unsolvability of the Satisfiability Problem in Predicate Logic

	Part 4 Complexity
	14 Abstract Complexity
	1. The Blum Axioms
	2. The Gap Theorem
	3. Preliminary Form of the Speedup Theorem
	4. The Speedup Theorem Concluded

	15 Polynomial-Time Computability
	1. Rates of Growth
	2. P versus NP
	3. Cook's Theorem
	4. Other NP-Complete Problems

	Part 5 Semantics
	16 Approximation Orderings
	1. Programming Language Semantics
	2. Partial Orders
	3. Complete Partial Orders
	4. Continuous Functions
	5. Fixed Points

	17 Denotational Semantics of Recursion Equations
	1. Syntax
	2. Semantics of Terms
	3. Solutions to W-Programs
	4. Denotational Semantics of W-Programs
	5. Simple Data Structure Systems
	6. Infinitary Data Structure Systems

	18 Operational Semantics of Recursion Equations
	1. Operational Semantics for Simple Data Structure Systems
	2. Computable Functions
	3. Operational Semantics for Infinitary Data Structure Systems

	Suggestions for Further Reading
	Notation Index
	Index

