
MATLAB®

Programming Fundamentals

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB Programming Fundamentals
© COPYRIGHT 1984–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
June 2004 First printing New for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Second printing Minor revision for MATLAB 7.0.4
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB 7.6 (Release 2008a)
October 2008 Online only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for MATLAB 7.11 (Release 2010b)
April 2011 Online only Revised for MATLAB 7.12 (Release 2011a)
September 2011 Online only Revised for MATLAB 7.13 (Release 2011b)
March 2012 Online only Revised for MATLAB 7.14 (Release 2012a)
September 2012 Online only Revised for MATLAB 8.0 (Release 2012b)
March 2013 Online only Revised for MATLAB 8.1 (Release 2013a)
September 2013 Online only Revised for MATLAB 8.2 (Release 2013b)
March 2014 Online only Revised for MATLAB 8.3 (Release 2014a)
October 2014 Online only Revised for MATLAB 8.4 (Release 2014b)
March 2015 Online only Revised for MATLAB 8.5 (Release 2015a)
September 2015 Online only Revised for MATLAB 8.6 (Release 2015b)
October 2015 Online only Rereleased for MATLAB 8.5.1 (Release 2015aSP1)
March 2016 Online only Revised for MATLAB 9.0 (Release 2016a)
September 2016 Online only Revised for MATLAB 9.1 (Release 2016b)
March 2017 Online only Revised for MATLAB 9.2 (Release 2017a)
September 2017 Online only Revised for MATLAB 9.3 (Release 2017b)
March 2018 Online only Revised for MATLAB 9.4 (Release 2018a)
September 2018 Online only Revised for MATLAB 9.5 (Release 2018b)
March 2019 Online only Revised for MATLAB 9.6 (Release 2019a)
September 2019 Online only Revised for MATLAB 9.7 (Release 2019b)
March 2020 Online only Revised for MATLAB 9.8 (Release 2020a)
September 2020 Online only Revised for MATLAB 9.9 (Release 2020b)
March 2021 Online only Revised for MATLAB 9.10 (Release 2021a)
September 2021 Online only Revised for MATLAB 9.11 (Release 2021b)
March 2022 Online only Revised for MATLAB 9.12 (Release 2022a)
September 2022 Online only Revised for MATLAB 9.13 (Release 2022b)

Language

Syntax Basics
1

Continue Long Statements on Multiple Lines 1-2

Name=Value in Function Calls . 1-3

Ignore Function Outputs . 1-4

Variable Names . 1-5
Valid Names . 1-5
Conflicts with Function Names . 1-5

Case and Space Sensitivity . 1-7

Choose Command Syntax or Function Syntax 1-8
Command Syntax and Function Syntax . 1-8
Avoid Common Syntax Mistakes . 1-9
How MATLAB Recognizes Command Syntax 1-9

Resolve Error: Undefined Function or Variable 1-11
Issue . 1-11
Possible Solutions . 1-11

Program Components
2

MATLAB Operators and Special Characters . 2-2
Arithmetic Operators . 2-2
Relational Operators . 2-2
Logical Operators . 2-2
Special Characters . 2-3
String and Character Formatting . 2-16

Array vs. Matrix Operations . 2-20
Introduction . 2-20
Array Operations . 2-20
Matrix Operations . 2-22

v

Contents

Compatible Array Sizes for Basic Operations 2-25
Inputs with Compatible Sizes . 2-25
Inputs with Incompatible Sizes . 2-27
Examples . 2-27

Array Comparison with Relational Operators 2-30
Array Comparison . 2-30
Logic Statements . 2-32

Operator Precedence . 2-33
Precedence of AND and OR Operators . 2-33
Overriding Default Precedence . 2-33

Average Similar Data Points Using a Tolerance 2-35

Group Scattered Data Using a Tolerance . 2-37

Bit-Wise Operations . 2-39

Perform Cyclic Redundancy Check . 2-45

Conditional Statements . 2-48

Loop Control Statements . 2-50

Regular Expressions . 2-52
What Is a Regular Expression? . 2-52
Steps for Building Expressions . 2-53
Operators and Characters . 2-56

Lookahead Assertions in Regular Expressions 2-64
Lookahead Assertions . 2-64
Overlapping Matches . 2-64
Logical AND Conditions . 2-65

Tokens in Regular Expressions . 2-67
Introduction . 2-67
Multiple Tokens . 2-69
Unmatched Tokens . 2-70
Tokens in Replacement Text . 2-70
Named Capture . 2-71

Dynamic Regular Expressions . 2-73
Introduction . 2-73
Dynamic Match Expressions — (??expr) . 2-74
Commands That Modify the Match Expression — (??@cmd) 2-74
Commands That Serve a Functional Purpose — (?@cmd) 2-75
Commands in Replacement Expressions — ${cmd} 2-77

Comma-Separated Lists . 2-80
What Is a Comma-Separated List? . 2-80
Generating a Comma-Separated List . 2-80
Assigning Output from a Comma-Separated List 2-82
Assigning to a Comma-Separated List . 2-82
How to Use Comma-Separated Lists . 2-83

vi Contents

Fast Fourier Transform Example . 2-86
Troubleshooting Operations with Comma-Separated Lists 2-86

Alternatives to the eval Function . 2-91
Why Avoid the eval Function? . 2-91
Variables with Sequential Names . 2-91
Files with Sequential Names . 2-92
Function Names in Variables . 2-92
Field Names in Variables . 2-93
Error Handling . 2-93

Classes (Data Types)

Overview of MATLAB Classes
3

Fundamental MATLAB Classes . 3-2

Detect States of Variables Using is* Functions 3-5

Numeric Classes
4

Integers . 4-2
Integer Classes . 4-2
Creating Integer Data . 4-2
Arithmetic Operations on Integer Classes . 4-4
Largest and Smallest Values for Integer Classes 4-4

Floating-Point Numbers . 4-6
Double-Precision Floating Point . 4-6
Single-Precision Floating Point . 4-6
Creating Floating-Point Data . 4-7
Arithmetic Operations on Floating-Point Numbers 4-8
Largest and Smallest Values for Floating-Point Classes 4-9
Accuracy of Floating-Point Data . 4-10
Avoiding Common Problems with Floating-Point Arithmetic 4-11

Create Complex Numbers . 4-14

Infinity and NaN . 4-15
Infinity . 4-15
NaN . 4-15

Identifying Numeric Classes . 4-17

vii

Display Format for Numeric Values . 4-18

Integer Arithmetic . 4-20

Single Precision Math . 4-27

The Logical Class
5

Find Array Elements That Meet a Condition . 5-2

Reduce Logical Arrays to Single Value . 5-6

Characters and Strings
6

Text in String and Character Arrays . 6-2

Create String Arrays . 6-5

Cell Arrays of Character Vectors . 6-12
Create Cell Array of Character Vectors . 6-12
Access Character Vectors in Cell Array . 6-12
Convert Cell Arrays to String Arrays . 6-13

Analyze Text Data with String Arrays . 6-15

Test for Empty Strings and Missing Values . 6-20

Formatting Text . 6-24
Fields of the Formatting Operator . 6-24
Setting Field Width and Precision . 6-28
Restrictions on Using Identifiers . 6-30

Compare Text . 6-32

Search and Replace Text . 6-37

Build Pattern Expressions . 6-40

Convert Numeric Values to Text . 6-45

Convert Text to Numeric Values . 6-48

Unicode and ASCII Values . 6-52

Hexadecimal and Binary Values . 6-54

viii Contents

Frequently Asked Questions About String Arrays 6-58
Why Does Using Command Form With Strings Return An Error? . . 6-58
Why Do Strings in Cell Arrays Return an Error? 6-59
Why Does length() of String Return 1? . 6-59
Why Does isempty("") Return 0? . 6-60
Why Does Appending Strings Using Square Brackets Return Multiple

Strings? . 6-61

Update Your Code to Accept Strings . 6-63
What Are String Arrays? . 6-63
Recommended Approaches for String Adoption in Old APIs 6-63
How to Adopt String Arrays in Old APIs . 6-65
Recommended Approaches for String Adoption in New Code 6-65
How to Maintain Compatibility in New Code 6-66
How to Manually Convert Input Arguments 6-67
How to Check Argument Data Types . 6-67
Terminology for Character and String Arrays 6-69

Dates and Time
7

Represent Dates and Times in MATLAB . 7-2

Specify Time Zones . 7-5

Convert Date and Time to Julian Date or POSIX Time 7-7

Set Date and Time Display Format . 7-10
Formats for Individual Date and Duration Arrays 7-10
datetime Display Format . 7-10
duration Display Format . 7-11
calendarDuration Display Format . 7-12
Default datetime Format . 7-12

Generate Sequence of Dates and Time . 7-14
Sequence of Datetime or Duration Values Between Endpoints with

Step Size . 7-14
Add Duration or Calendar Duration to Create Sequence of Dates . . 7-16
Specify Length and Endpoints of Date or Duration Sequence 7-17
Sequence of Datetime Values Using Calendar Rules 7-17

Share Code and Data Across Locales . 7-20
Write Locale-Independent Date and Time Code 7-20
Write Dates in Other Languages . 7-21
Read Dates in Other Languages . 7-21

Extract or Assign Date and Time Components of Datetime Array . . 7-23

Combine Date and Time from Separate Variables 7-26

Date and Time Arithmetic . 7-28

ix

Compare Dates and Time . 7-33

Plot Dates and Times . 7-36

Core Functions Supporting Date and Time Arrays 7-47

Convert Between Text and datetime or duration Values 7-48

Replace Discouraged Instances of Serial Date Numbers and Date
Strings . 7-57

Convert Serial Date Numbers and Date Strings 7-57
Replace Functions That Use Date Numbers 7-57
Discouraged Syntaxes for Date and Time Components 7-61
Guidelines for Updating Your Own Functions 7-62

Carryover in Date Vectors and Strings . 7-64

Converting Date Vector Returns Unexpected Output 7-66

Categorical Arrays
8

Create Categorical Arrays . 8-2

Convert Text in Table Variables to Categorical 8-6

Plot Categorical Data . 8-10

Compare Categorical Array Elements . 8-16

Combine Categorical Arrays . 8-19

Combine Categorical Arrays Using Multiplication 8-22

Access Data Using Categorical Arrays . 8-24
Select Data By Category . 8-24
Common Ways to Access Data Using Categorical Arrays 8-24

Work with Protected Categorical Arrays . 8-30

Advantages of Using Categorical Arrays . 8-34
Natural Representation of Categorical Data 8-34
Mathematical Ordering for Character Vectors 8-34
Reduce Memory Requirements . 8-34

Ordinal Categorical Arrays . 8-36
Order of Categories . 8-36
How to Create Ordinal Categorical Arrays 8-36
Working with Ordinal Categorical Arrays . 8-38

Core Functions Supporting Categorical Arrays 8-39

x Contents

Tables
9

Create Tables and Assign Data to Them . 9-2

Add and Delete Table Rows . 9-9

Add, Delete, and Rearrange Table Variables 9-12

Clean Messy and Missing Data in Tables . 9-18

Modify Units, Descriptions, and Table Variable Names 9-24

Add Custom Properties to Tables and Timetables 9-27

Access Data in Tables . 9-32
Summary of Table Indexing Syntaxes . 9-32
Table Indexing with Specified Rows and Variables 9-37
Find Rows Where Values Meet Logical Conditions 9-41
Dot Notation with Any Variable Name or Expression 9-44
Extract Data from Specified Rows and Variables 9-46

Calculations on Data in Tables . 9-48

Split Data into Groups and Calculate Statistics 9-56

Perform Calculations by Group in Table . 9-59

Advantages of Using Tables . 9-71

Grouping Variables To Split Data . 9-76
Grouping Variables . 9-76
Group Definition . 9-76
The Split-Apply-Combine Workflow . 9-77
Missing Group Values . 9-77

Changes to DimensionNames Property in R2016b 9-79

Data Cleaning and Calculations in Tables . 9-81

Grouped Calculations in Tables and Timetables 9-99

Timetables
10

Create Timetables . 10-2

Resample and Aggregate Data in Timetable 10-5

Combine Timetables and Synchronize Their Data 10-8

xi

Retime and Synchronize Timetable Variables Using Different
Methods . 10-14

Select Times in Timetable . 10-19

Clean Timetable with Missing, Duplicate, or Nonuniform Times
. 10-27

Using Row Labels in Table and Timetable Operations 10-36

Loma Prieta Earthquake Analysis . 10-41

Preprocess and Explore Time-Stamped Data Using timetable . . . 10-51

Add Events from External Data to Timetable 10-71

Find Events in Timestamped Data . 10-83

Structures
11

Structure Arrays . 11-2
Create Scalar Structure . 11-2
Access Values in Fields . 11-2
Index into Nonscalar Structure Array . 11-4

Concatenate Structures . 11-8

Generate Field Names from Variables . 11-10

Access Data in Nested Structures . 11-11

Access Elements of a Nonscalar Structure Array 11-13

Ways to Organize Data in Structure Arrays 11-15
Plane Organization . 11-15
Element-by-Element Organization . 11-16

Memory Requirements for Structure Array 11-18

Cell Arrays
12

What Is a Cell Array? . 12-2

Create Cell Array . 12-3

Access Data in Cell Array . 12-5

xii Contents

Add Cells to Cell Array . 12-8

Delete Data from Cell Array . 12-10

Combine Cell Arrays . 12-11

Pass Contents of Cell Arrays to Functions . 12-12

Preallocate Memory for Cell Array . 12-16

Cell vs. Structure Arrays . 12-17

Multilevel Indexing to Access Parts of Cells 12-21

Function Handles
13

Create Function Handle . 13-2
What Is a Function Handle? . 13-2
Creating Function Handles . 13-2
Anonymous Functions . 13-3
Arrays of Function Handles . 13-4
Saving and Loading Function Handles . 13-4

Pass Function to Another Function . 13-5

Call Local Functions Using Function Handles 13-6

Compare Function Handles . 13-8

Dictionaries
14

Map Data with Dictionaries . 14-2

Dictionaries and Custom Classes . 14-6
Hash Equivalence . 14-6
Overload keyHash and keyMatch for Custom Classes 14-6

Map Containers
15

Overview of Map Data Structure . 15-2

xiii

Description of Map Class . 15-4
Properties of Map Class . 15-4
Methods of Map Class . 15-4

Create Map Object . 15-6
Construct Empty Map Object . 15-6
Construct Initialized Map Object . 15-6
Combine Map Objects . 15-7

Examine Contents of Map . 15-8

Read and Write Using Key Index . 15-9
Read From Map . 15-9
Add Key/Value Pairs . 15-10
Build Map with Concatenation . 15-10

Modify Keys and Values in Map . 15-13
Remove Keys and Values from Map . 15-13
Modify Values . 15-13
Modify Keys . 15-14
Modify Copy of Map . 15-14

Map to Different Value Types . 15-15
Map to Structure Array . 15-15
Map to Cell Array . 15-16

Combining Unlike Classes
16

Valid Combinations of Unlike Classes . 16-2

Combining Unlike Integer Types . 16-3
Overview . 16-3
Example of Combining Unlike Integer Sizes 16-3
Example of Combining Signed with Unsigned 16-4

Combining Integer and Noninteger Data . 16-5

Combining Cell Arrays with Non-Cell Arrays 16-6

Empty Matrices . 16-7

Concatenation Examples . 16-8
Combining Single and Double Types . 16-8
Combining Integer and Double Types . 16-8
Combining Character and Double Types . 16-8
Combining Logical and Double Types . 16-8

xiv Contents

Using Objects
17

Copying Objects . 17-2
Two Copy Behaviors . 17-2
Handle Object Copy . 17-2
Value Object Copy Behavior . 17-2
Handle Object Copy Behavior . 17-3
Testing for Handle or Value Class . 17-5

Defining Your Own Classes
18

Scripts and Functions

Scripts
19

Create Scripts . 19-2

Add Comments to Code . 19-3

Create and Run Sections in Code . 19-5
Divide Your File into Sections . 19-5
Run Sections . 19-6
Navigate Between Sections . 19-7
Behavior of Sections in Functions . 19-8
Behavior of Sections in Loops and Conditional Statements 19-8

Scripts vs. Functions . 19-10

Add Functions to Scripts . 19-12
Create a Script with Local Functions . 19-12
Run Scripts with Local Functions . 19-12
Restrictions for Local Functions and Variables 19-13
Access Help for Local Functions . 19-13

Live Scripts and Functions
20

What Is a Live Script or Function? . 20-2
Differences with Plain Code Scripts and Functions 20-3

xv

Requirements . 20-4
Unsupported Features . 20-5

Create Live Scripts in the Live Editor . 20-6
Create Live Script . 20-6
Add Code . 20-6
Run Code . 20-7
Display Output . 20-7
Change View . 20-8
Format Text . 20-10
Save Live Scripts as Plain Code . 20-11

Modify Figures in Live Scripts . 20-12
Explore Data . 20-12
Add Formatting and Annotations . 20-13
Update Code with Figure Changes . 20-15
Save and Print Figure . 20-16

Format Text in the Live Editor . 20-18
Change Fonts . 20-20
Autoformatting . 20-21

Insert Equations into the Live Editor . 20-24
Insert Equation Interactively . 20-24
Insert LaTeX Equation . 20-26
Supported LaTeX Commands . 20-27

Add Interactive Controls to a Live Script . 20-34
Insert Controls . 20-34
Modify Control Labels . 20-35
Link Variables to Controls . 20-36
Specify Default Values . 20-37
Modify Control Execution . 20-37
Create Live Script with Multiple Interactive Controls 20-38
Share Live Script . 20-41

Add Interactive Tasks to a Live Script . 20-43
What Are Live Editor Tasks? . 20-43
Insert Tasks . 20-43
Run Tasks and Surrounding Code . 20-46
Modify Output Argument Name . 20-47
View and Edit Generated Code . 20-47
Custom Live Editor Tasks . 20-48

Create Live Functions . 20-49
Create Live Function . 20-49
Add Code . 20-49
Add Help . 20-50
Run Live Function . 20-50
Save Live Functions as Plain Code . 20-51

Add Help for Live Functions . 20-52

Share Live Scripts and Functions . 20-56
Hide Code Before Sharing . 20-57

xvi Contents

Live Code File Format (.mlx) . 20-58
Benefits of Live Code File Format . 20-58
Source Control . 20-58

Introduction to the Live Editor . 20-59

Accelerate Exploratory Programming Using the Live Editor 20-64

Create an Interactive Narrative with the Live Editor 20-69

Create Interactive Course Materials Using the Live Editor 20-77

Create Examples Using the Live Editor . 20-83

Create an Interactive Form Using the Live Editor 20-84

Create a Real-Time Dashboard Using the Live Editor 20-87

Acknowledgments . 20-89

Function Basics
21

Create Functions in Files . 21-2
Syntax for Function Definition . 21-2
Contents of Functions and Files . 21-3
End Statements . 21-4

Add Help for Your Program . 21-5

Configure the Run Button for Functions . 21-7

Base and Function Workspaces . 21-9

Share Data Between Workspaces . 21-10
Introduction . 21-10
Best Practice: Passing Arguments . 21-10
Nested Functions . 21-10
Persistent Variables . 21-11
Global Variables . 21-12
Evaluating in Another Workspace . 21-12

Check Variable Scope in Editor . 21-14
Use Automatic Function and Variable Highlighting 21-14
Example of Using Automatic Function and Variable Highlighting . 21-14

Types of Functions . 21-17
Local and Nested Functions in a File . 21-17
Private Functions in a Subfolder . 21-18
Anonymous Functions Without a File . 21-18

xvii

Anonymous Functions . 21-20
What Are Anonymous Functions? . 21-20
Variables in the Expression . 21-21
Multiple Anonymous Functions . 21-21
Functions with No Inputs . 21-22
Functions with Multiple Inputs or Outputs 21-22
Arrays of Anonymous Functions . 21-23

Local Functions . 21-25

Nested Functions . 21-27
What Are Nested Functions? . 21-27
Requirements for Nested Functions . 21-27
Sharing Variables Between Parent and Nested Functions 21-27
Using Handles to Store Function Parameters 21-29
Visibility of Nested Functions . 21-31

Resolve Error: Attempt to Add Variable to a Static Workspace. . . 21-33
Issue . 21-33
Possible Solutions . 21-33

Private Functions . 21-36

Function Precedence Order . 21-37
Change in Rules For Function Precedence Order 21-38

Update Code for R2019b Changes to Function Precedence Order
. 21-40
Identifiers cannot be used for two purposes inside a function 21-40
Identifiers without explicit declarations might not be treated as

variables . 21-40
Variables cannot be implicitly shared between parent and nested

functions . 21-41
Change in precedence of wildcard-based imports 21-42
Fully qualified import functions cannot have the same name as nested

functions . 21-42
Fully qualified imports shadow outer scope definitions of the same

name . 21-43
Error handling when import not found . 21-43
Nested functions inherit import statements from parent functions

. 21-44
Change in precedence of compound name resolution 21-44
Anonymous functions can include resolved and unresolved identifiers

. 21-45

Indexing into Function Call Results . 21-46
Example . 21-46
Supported Syntaxes . 21-46

xviii Contents

Function Arguments
22

Find Number of Function Arguments . 22-2

Support Variable Number of Inputs . 22-4

Support Variable Number of Outputs . 22-5

Validate Number of Function Arguments . 22-6

Checking Number of Arguments in Nested Functions 22-8

Ignore Inputs in Function Definitions . 22-10

Check Function Inputs with validateattributes 22-11

Parse Function Inputs . 22-13

Input Parser Validation Functions . 22-17

Debugging MATLAB Code
23

Debug MATLAB Code Files . 23-2
Display Output . 23-2
Debug Using Run to Here . 23-3
View Variable Value While Debugging . 23-5
Pause a Running File . 23-5
Step Into Functions . 23-5
Add Breakpoints and Run Code . 23-6
End Debugging Session . 23-7
Debug by Using Keyboard Shortcuts or Functions 23-8

Set Breakpoints . 23-9
Standard Breakpoints . 23-9
Conditional Breakpoints . 23-10
Error Breakpoints . 23-11
Breakpoints in Anonymous Functions . 23-11
Invalid Breakpoints . 23-12
Disable Breakpoints . 23-12
Clear Breakpoints . 23-13

Examine Values While Debugging . 23-14
View Variable Value . 23-14
View Variable Value Outside Current Workspace 23-15

xix

Presenting MATLAB Code
24

Publish and Share MATLAB Code . 24-2
Create and Share Live Scripts in the Live Editor 24-2
Publish MATLAB Code Files (.m) . 24-2
Add Help and Create Documentation . 24-4

Publishing Markup . 24-6
Markup Overview . 24-6
Sections and Section Titles . 24-8
Text Formatting . 24-9
Bulleted and Numbered Lists . 24-10
Text and Code Blocks . 24-10
External File Content . 24-11
External Graphics . 24-12
Image Snapshot . 24-14
LaTeX Equations . 24-14
Hyperlinks . 24-16
HTML Markup . 24-18
LaTeX Markup . 24-19

Output Preferences for Publishing . 24-21
How to Edit Publishing Options . 24-21
Specify Output File . 24-22
Run Code During Publishing . 24-23
Manipulate Graphics in Publishing Output 24-24
Save a Publish Setting . 24-28
Manage a Publish Configuration . 24-29

Coding and Productivity Tips
25

Save and Back Up Code . 25-2
Save Code . 25-2
Back Up Code . 25-2
Recommendations on Saving Files . 25-3
File Encoding . 25-3

Check Code for Errors and Warnings Using the Code Analyzer . . . 25-5
Enable Continuous Code Checking . 25-5
View Code Analyzer Status for File . 25-5
View Code Analyzer Messages . 25-6
Fix Problems in Code . 25-7
Create a Code Analyzer Message Report . 25-8
Adjust Code Analyzer Message Indicators and Messages 25-9
Understand Code Containing Suppressed Messages 25-11
Understand the Limitations of Code Analysis 25-12
Enable MATLAB Compiler Deployment Messages 25-14

xx Contents

Edit and Format Code . 25-16
Column Selection . 25-16
Change Case . 25-16
Automatically Complete Code . 25-16
Refactor Code . 25-17
Indent Code . 25-17
Fold Code . 25-18
Change the Right-Side Text Limit Indicator 25-19

Find and Replace Text in Files and Go to Location 25-21
Find and Replace Any Text in Current File 25-21
Find and Replace Functions or Variables in Current File 25-21
Automatically Rename All Variables or Functions in a File 25-22
Find Text in Multiple File Names or Files 25-23
Go To Location in File . 25-24

Add Reminders to Files . 25-27
Working with TODO/FIXME Reports . 25-27

MATLAB Code Analyzer Report . 25-29
Run the Code Analyzer Report . 25-29
Change Code Based on Code Analyzer Messages 25-30
Other Ways to Access Code Analyzer Messages 25-30

MATLAB Code Compatibility Analyzer . 25-32
Open the Code Compatibility Analyzer . 25-32
Programmatic Use . 25-34
Unsupported Functionality . 25-34

Code Generation Readiness Tool . 25-35
Issues Tab . 25-35
Files Tab . 25-36

Programming Utilities
26

Identify Program Dependencies . 26-2
Simple Display of Program File Dependencies 26-2
Detailed Display of Program File Dependencies 26-2
Dependencies Within a Folder . 26-2

Security Considerations to Protect Your Source Code 26-6
Create P-Code Files . 26-6
Build Standalone Executables . 26-6
Use Model Protection . 26-7
Convert Code to Native Code . 26-7
Host Compiled Application on Remote Protected Server 26-7
Utilize Secure OS Services . 26-7

Create a Content-Obscured File with P-Code 26-9
Create P-Code Files . 26-9
Invoke P-Code Files . 26-9

xxi

Run Older P-Code Files on Later Versions of MATLAB 26-9

Create Hyperlinks that Run Functions . 26-11
Run a Single Function . 26-11
Run Multiple Functions . 26-12
Provide Command Options . 26-12
Include Special Characters . 26-12

Create and Share Toolboxes . 26-14
Create Toolbox . 26-14
Share Toolbox . 26-18

Run Parallel Language in MATLAB . 26-20
Run Parallel Language in Serial . 26-20
Use Parallel Language Without a Pool . 26-21

Function Argument Validation
27

Function Argument Validation . 27-2
Introduction to Argument Validation . 27-2
Where to Use Argument Validation . 27-2
arguments Block Syntax . 27-2
Examples of Argument Validation . 27-5
Kinds of Arguments . 27-7
Required and Optional Positional Arguments 27-7
Repeating Arguments . 27-9
Name-Value Arguments . 27-11
Robust Handling of Name-Value Arguments 27-14
Name-Value Arguments from Class Properties 27-15
Order of Argument Validation . 27-17
Avoiding Class and Size Conversions . 27-17
nargin in Argument Validation . 27-19
Restrictions on Variable and Function Access 27-20
Debugging Arguments Blocks . 27-21

Argument Validation Functions . 27-23
Numeric Value Attributes . 27-23
Comparison with Other Values . 27-24
Data Types . 27-24
Size . 27-24
Membership and Range . 27-25
Text . 27-25
Define Validation Functions . 27-25

Transparency in MATLAB Code . 27-27
Writing Transparent Code . 27-27

xxii Contents

Software Development

Error Handling
28

Exception Handling in a MATLAB Application 28-2
Overview . 28-2
Getting an Exception at the Command Line 28-2
Getting an Exception in Your Program Code 28-3
Generating a New Exception . 28-3

Throw an Exception . 28-4
Suggestions on How to Throw an Exception 28-4

Respond to an Exception . 28-6
Overview . 28-6
The try/catch Statement . 28-6
Suggestions on How to Handle an Exception 28-7

Clean Up When Functions Complete . 28-9
Overview . 28-9
Examples of Cleaning Up a Program Upon Exit 28-10
Retrieving Information About the Cleanup Routine 28-11
Using onCleanup Versus try/catch . 28-12
onCleanup in Scripts . 28-12

Issue Warnings and Errors . 28-14
Issue Warnings . 28-14
Throw Errors . 28-14
Add Run-Time Parameters to Your Warnings and Errors 28-15
Add Identifiers to Warnings and Errors . 28-15

Suppress Warnings . 28-17
Turn Warnings On and Off . 28-18

Restore Warnings . 28-20
Disable and Restore a Particular Warning 28-20
Disable and Restore Multiple Warnings . 28-21

Change How Warnings Display . 28-22
Enable Verbose Warnings . 28-22
Display a Stack Trace on a Specific Warning 28-22

Use try/catch to Handle Errors . 28-23

xxiii

Program Scheduling
29

Schedule Command Execution Using Timer 29-2
Overview . 29-2
Example: Displaying a Message . 29-2

Timer Callback Functions . 29-4
Associating Commands with Timer Object Events 29-4
Creating Callback Functions . 29-5
Specifying the Value of Callback Function Properties 29-6

Handling Timer Queuing Conflicts . 29-8
Drop Mode (Default) . 29-8
Error Mode . 29-9
Queue Mode . 29-10

Performance
30

Measure the Performance of Your Code . 30-2
Overview of Performance Timing Functions 30-2
Time Functions . 30-2
Time Portions of Code . 30-2
The cputime Function vs. tic/toc and timeit 30-2
Tips for Measuring Performance . 30-3

Profile Your Code to Improve Performance . 30-4
What Is Profiling? . 30-4
Profile Your Code . 30-4
Profile Multiple Statements in Command Window 30-10
Profile an App . 30-11

Techniques to Improve Performance . 30-12
Environment . 30-12
Code Structure . 30-12
Programming Practices for Performance . 30-12
Tips on Specific MATLAB Functions . 30-13

Preallocation . 30-14
Preallocating a Nondouble Matrix . 30-14

Vectorization . 30-16
Using Vectorization . 30-16
Array Operations . 30-17
Logical Array Operations . 30-18
Matrix Operations . 30-19
Ordering, Setting, and Counting Operations 30-20
Functions Commonly Used in Vectorization 30-21

xxiv Contents

Background Processing
31

Asynchronous Functions . 31-2
Asynchronous Code . 31-2
Background Workers . 31-4

Run MATLAB Functions in Thread-Based Environment 31-6
Run Functions in the Background . 31-6
Run Functions on a Thread Pool . 31-6
Automatically Scale Up . 31-6
Check Thread Supported Functions . 31-6

Create Responsive Apps by Running Calculations in the Background
. 31-8

Open App Designer App . 31-8
Add a Future Array to the Properties . 31-8
Create y-axis Data in the Background . 31-9
Automatically Update Plot After Data Is Calculated in the Background

. 31-9
Make Your App More Responsive by Canceling the Future Array . 31-10
Responsive App That Calculates and Plots Simple Curves 31-11

Run Functions in Background . 31-13

Update Wait Bar While Functions Run in the Background 31-14

Memory Usage
32

Strategies for Efficient Use of Memory . 32-2
Use Appropriate Data Storage . 32-2
Avoid Temporary Copies of Data . 32-3
Reclaim Used Memory . 32-4

Resolve “Out of Memory” Errors . 32-6
Issue . 32-6
Possible Solutions . 32-6

How MATLAB Allocates Memory . 32-12

Avoid Unnecessary Copies of Data . 32-16
Passing Values to Functions . 32-16
Why Pass-by-Value Semantics . 32-19
Handle Objects . 32-19

xxv

Custom Help and Documentation
33

Create Help for Classes . 33-2
Help Text from the doc Command . 33-2
Custom Help Text . 33-3

Check Which Programs Have Help . 33-8

Create Help Summary Files — Contents.m 33-10
What Is a Contents.m File? . 33-10
Create a Contents.m File . 33-10
Check an Existing Contents.m File . 33-11

Customize Code Suggestions and Completions 33-12
Function Objects . 33-13
Signature Objects . 33-13
Argument Objects . 33-14
Create Function Signature File . 33-17
How Function Signature Information is Used 33-18
Multiple Signatures . 33-19

Display Custom Documentation . 33-21
Overview . 33-21
Create HTML Help Files . 33-22
Create info.xml File . 33-23
Create helptoc.xml File . 33-24
Build a Search Database . 33-26
Address Validation Errors for info.xml Files 33-27

Display Custom Examples . 33-29
How to Display Examples . 33-29
Elements of the demos.xml File . 33-30

Projects
34

Create Projects . 34-2
What Are Projects? . 34-2
Create Project . 34-2
Open Project . 34-2
Set up Project . 34-3
Add Files to Project . 34-5
Other Ways to Create Projects . 34-6

Automate Startup and Shutdown Tasks . 34-8
Specify Project Path . 34-8
Set Startup Folder . 34-8
Specify Startup and Shutdown Files . 34-8

Set MATLAB Projects Preferences . 34-10

xxvi Contents

Determine Order for Resolving Conflicts Using Dependency Analyzer
. 34-13

Manage Project Files . 34-15
Automatic Updates When Renaming, Deleting, or Removing Files

. 34-16

Find Project Files . 34-17
Group and Sort Project Files . 34-17
Search for and Filter Project Files . 34-17
Search the Content in Project Files . 34-17

Create Shortcuts to Frequent Tasks . 34-19
Run Shortcuts . 34-19
Create Shortcuts . 34-19
Organize Shortcuts . 34-19

Add Labels to Project Files . 34-21
Add Labels . 34-21
View and Edit Label Data . 34-21
Create Labels . 34-22

Create Custom Tasks . 34-23
Create a Custom Task Function . 34-23
Run a Custom Task . 34-23
Save Custom Task Report . 34-24

Componentize Large Projects . 34-25
Add or Remove Reference to a Project . 34-25
View, Edit, or Run Referenced Project Files 34-25
Extract Folder to Create a Referenced Project 34-26
Manage Changes in Referenced Project Using Checkpoints 34-26

Share Projects . 34-28
Create an Export Profile . 34-31

Upgrade Projects . 34-32
Run Upgrade Project Tool . 34-32
Examine Upgrade Project Report . 34-33

Analyze Project Dependencies . 34-35
Run a Dependency Analysis . 34-35
Explore the Dependency Graph, Views, and Filters 34-37
Investigate and Resolve Problems . 34-43
Find Required Products and Add-Ons . 34-46
Find File Dependencies . 34-47
Export Dependency Analysis Results . 34-49

Clone Remote Git Repository into New Project 34-51

Use Source Control with Projects . 34-52
Setup Source Control . 34-52
Perform Source Control Operations . 34-54
Work with Derived Files in Projects . 34-60
Find Project Files With Unsaved Changes 34-61

xxvii

Manage Open Files When Closing a Project 34-61

Create and Edit Projects Programmatically 34-62

Explore an Example Project . 34-69

Source Control Interface
35

Source Control Integration in MATLAB . 35-2
Classic and Distributed Source Control . 35-2

Set Source Control Preferences . 35-4
Set Git Preferences in MATLAB Online . 35-4

Use Git in MATLAB . 35-5
Clone Remote Git Repository . 35-5
Mark Files for Addition . 35-6
Review Changes . 35-6
Commit Modified Files . 35-7
Push Files . 35-8
Resolve Conflicts . 35-9
Manage Files . 35-10
Create Local Git Repository . 35-10
Store Uncommitted Changes Using Git Stashes 35-11

Set Up Git Source Control . 35-12
Register Binary Files with Git . 35-12
Configure MATLAB for Git on Windows . 35-12
Configure MATLAB to Use Git SSH Authentication 35-13
Install Git Credential Helper . 35-17
Disable Compression for Simulink Models 35-17
Configure Git to Use Git LFS . 35-17
Configure Git to use MATLAB for Diff and Merge 35-17
Install Command-Line Git Client . 35-18

Branch and Merge with Git . 35-19
Create Branch . 35-19
Switch Branch . 35-20
Compare Branches . 35-21
Merge Branches . 35-21
Revert to Head . 35-21
Delete Branches . 35-22

Add Git Submodules . 35-23
Update Submodules . 35-23
Use Fetch and Merge with Submodules . 35-23
Use Push to Send Changes to the Submodule Repository 35-23

Review Changes in SVN Source Control . 35-25

Mark Files for Addition to SVN Source Control 35-26

xxviii Contents

Move, Rename, or Delete Files Under SVN Source Control 35-27

Resolve SVN Source Control Conflicts . 35-28
Examining and Resolving Conflicts . 35-28
Resolve Conflicts . 35-28
Merge Text Files . 35-28
Extract Conflict Markers . 35-29

Commit Modified Files to SVN Source Control 35-31

Revert Changes in SVN Source Control . 35-32
Revert Local Changes . 35-32
Revert a File to a Specified Revision . 35-32

Set Up SVN Source Control . 35-33
SVN Source Control Options . 35-33
Register Binary Files with SVN . 35-33
Standard Repository Structure . 35-36
Tag Versions of Files . 35-36
Enforce Locking Files Before Editing . 35-36
Share a Subversion Repository . 35-37

Check Out from SVN Repository . 35-38
Retrieve Tagged Version of Repository . 35-38

Update SVN File Status and Revision . 35-40
Refresh Status of Files . 35-40
Update Revisions of Files . 35-40

Get SVN File Locks . 35-41
Manage SVN Repository Locks . 35-41

Continuous Integration Using MATLAB Projects and Jenkins . . . 35-42
Prerequisites . 35-42
Set Up MATLAB Project for Continuous Integration in Jenkins . . . 35-42
Reduce Test Runtime Using Dependency Cache and Impact Analysis

. 35-43
Enhance Workflow . 35-44

Customize External Source Control to Use MATLAB for Diff and
Merge . 35-46

Finding the Full Paths for MATLAB Diff, Merge, and AutoMerge . . 35-46
Integration with Git . 35-47
Integration with SVN . 35-48
Integration with Other Source Control Tools 35-49

MSSCCI Source Control Interface . 35-51

Set Up MSSCCI Source Control . 35-52
Create Projects in Source Control System 35-52
Specify Source Control System with MATLAB Software 35-53
Register Source Control Project with MATLAB Software 35-54
Add Files to Source Control . 35-56

xxix

Check Files In and Out from MSSCCI Source Control 35-57
Check Files Into Source Control . 35-57
Check Files Out of Source Control . 35-57
Undoing the Checkout . 35-58

Additional MSSCCI Source Control Actions 35-59
Getting the Latest Version of Files for Viewing or Compiling 35-59
Removing Files from the Source Control System 35-60
Showing File History . 35-60
Comparing the Working Copy of a File to the Latest Version in Source

Control . 35-61
Viewing Source Control Properties of a File 35-62
Starting the Source Control System . 35-63

Access MSSCCI Source Control from Editors 35-65

Troubleshoot MSSCCI Source Control Problems 35-66
Source Control Error: Provider Not Present or Not Installed Properly

. 35-66
Restriction Against @ Character . 35-67
Add to Source Control Is the Only Action Available 35-67
More Solutions for Source Control Problems 35-67

Unit Testing
36

Write Test Using Live Script . 36-3

Write Script-Based Unit Tests . 36-6

Write Script-Based Test Using Local Functions 36-11

Extend Script-Based Tests . 36-14
Test Suite Creation . 36-14
Test Selection . 36-14
Programmatic Access of Test Diagnostics 36-15
Test Runner Customization . 36-15

Run Tests in Editor . 36-17

Write Function-Based Unit Tests . 36-20
Create Test Function . 36-20
Run the Tests . 36-22
Analyze the Results . 36-23

Write Simple Test Case Using Functions . 36-24

Write Test Using Setup and Teardown Functions 36-27

Extend Function-Based Tests . 36-32
Fixtures for Setup and Teardown Code . 36-32
Test Logging and Verbosity . 36-33

xxx Contents

Test Suite Creation . 36-33
Test Selection . 36-33
Test Running . 36-34
Programmatic Access of Test Diagnostics 36-34
Test Runner Customization . 36-35

Author Class-Based Unit Tests in MATLAB 36-36
The Test Class Definition . 36-36
The Unit Tests . 36-36
Additional Features for Advanced Test Classes 36-37

Write Simple Test Case Using Classes . 36-39

Write Setup and Teardown Code Using Classes 36-42
Test Fixtures . 36-42
Test Case with Method-Level Setup Code 36-42
Test Case with Class-Level Setup Code . 36-43

Table of Verifications, Assertions, and Other Qualifications 36-45

Tag Unit Tests . 36-48
Tag Tests . 36-48
Select and Run Tests . 36-49

Write Tests Using Shared Fixtures . 36-52

Create Basic Custom Fixture . 36-55

Create Advanced Custom Fixture . 36-57

Use Parameters in Class-Based Tests . 36-62
How to Write Parameterized Tests . 36-62
How to Initialize Parameterization Properties 36-63
Specify Parameterization Level . 36-64
Specify How Parameters Are Combined . 36-65
Use External Parameters in Tests . 36-67

Create Basic Parameterized Test . 36-68

Create Advanced Parameterized Test . 36-73

Use External Parameters in Parameterized Test 36-80

Define Parameters at Suite Creation Time 36-84

Create Simple Test Suites . 36-91

Run Tests for Various Workflows . 36-93
Set Up Example Tests . 36-93
Run All Tests in Class or Function . 36-93
Run Single Test in Class or Function . 36-93
Run Test Suites by Name . 36-94
Run Test Suites from Test Array . 36-94
Run Tests with Customized Test Runner . 36-95

xxxi

Programmatically Access Test Diagnostics 36-96

Add Plugin to Test Runner . 36-97

Write Plugins to Extend TestRunner . 36-100
Custom Plugins Overview . 36-100
Extending Test Session Level Plugin Methods 36-100
Extending Test Suite Level Plugin Methods 36-101
Extending Test Class Level Plugin Methods 36-101
Extending Test Level Plugin Methods . 36-102

Create Custom Plugin . 36-103

Run Tests in Parallel with Custom Plugin 36-108

Write Plugin to Add Data to Test Results 36-116

Write Plugin to Save Diagnostic Details . 36-121

Plugin to Generate Custom Test Output Format 36-125

Analyze Test Case Results . 36-128

Analyze Failed Test Results . 36-131

Rerun Failed Tests . 36-133

Dynamically Filtered Tests . 36-136
Test Methods . 36-136
Method Setup and Teardown Code . 36-138
Class Setup and Teardown Code . 36-139

Create Custom Constraint . 36-142

Create Custom Boolean Constraint . 36-145

Overview of App Testing Framework . 36-149
App Testing . 36-149
Gesture Support of UI Components . 36-149
Write a Test for an App . 36-151

Write Tests for an App . 36-154

Write Tests That Use App Testing and Mocking Frameworks . . . 36-158
Create App . 36-158
Test App With Manual Intervention . 36-159
Create Fully Automated Test . 36-160

Overview of Performance Testing Framework 36-163
Determine Bounds of Measured Code . 36-163
Types of Time Experiments . 36-164
Write Performance Tests with Measurement Boundaries 36-164
Run Performance Tests . 36-165
Understand Invalid Test Results . 36-165

xxxii Contents

Test Performance Using Scripts or Functions 36-167

Test Performance Using Classes . 36-171

Measure Fast Executing Test Code . 36-177

Create Mock Object . 36-180

Specify Mock Object Behavior . 36-187
Define Mock Method Behavior . 36-187
Define Mock Property Behavior . 36-188
Define Repeating and Subsequent Behavior 36-189
Summary of Behaviors . 36-191

Qualify Mock Object Interaction . 36-192
Qualify Mock Method Interaction . 36-192
Qualify Mock Property Interaction . 36-193
Use Mock Object Constraints . 36-194
Summary of Qualifications . 36-196

Ways to Write Unit Tests . 36-198
Script-Based Unit Tests . 36-198
Function-Based Unit Tests . 36-199
Class-Based Unit Tests . 36-199
Extend Unit Testing Framework . 36-200

Compile MATLAB Unit Tests . 36-201
Run Tests with Standalone Applications 36-201
Run Tests in Parallel with Standalone Applications 36-202
TestRand Class Definition Summary . 36-202

Generate Code Coverage Report in HTML Format 36-204
Statement Coverage for MATLAB Source Code 36-204
Function Coverage for MATLAB Source Code 36-204
Generate and Analyze HTML Coverage Report 36-205
QuadraticPolynomial Class Definition . 36-207

Insert Test Code Using Editor . 36-209
Create Test Class . 36-209
Add Parameters and Methods . 36-209
Run Tests in Test Class . 36-212

Develop and Integrate Software with Continuous Integration . . 36-213
Continuous Integration Workflow . 36-213
Continuous Integration with MathWorks Products 36-215

Generate Artifacts Using MATLAB Unit Test Plugins 36-217

Continuous Integration with MATLAB on CI Platforms 36-221
Azure DevOps . 36-221
Bamboo . 36-221
CircleCI . 36-221
GitHub Actions . 36-221
GitLab CI/CD . 36-222
Jenkins . 36-222

xxxiii

Travis CI . 36-222
Other Platforms . 36-222

Build Automation
37

Overview of MATLAB Build Tool . 37-2
Create Plan with Tasks . 37-2
Run Tasks in Plan . 37-3

Create and Run Tasks Using Build Tool . 37-4
Create Build File . 37-4
Summary of Build File . 37-5
Visualize Task Dependencies . 37-6
Run Tasks in Plan . 37-6

System object Usage and Authoring
38

What Are System Objects? . 38-2
Running a System Object . 38-3
System Object Functions . 38-3

System Objects vs MATLAB Functions . 38-5
System Objects vs. MATLAB Functions . 38-5
Process Audio Data Using Only MATLAB Functions Code 38-5
Process Audio Data Using System Objects . 38-6

System Design in MATLAB Using System Objects 38-7
System Design and Simulation in MATLAB . 38-7
Create Individual Components . 38-7
Configure Components . 38-8
Create and Configure Components at the Same Time 38-8
Assemble Components Into System . 38-9
Run Your System . 38-9
Reconfiguring Objects . 38-10

Define Basic System Objects . 38-11
Create System Object Class . 38-11
Define Algorithm . 38-11

Change the Number of Inputs . 38-13

Validate Property and Input Values . 38-16
Validate a Single Property . 38-16
Validate Interdependent Properties . 38-16
Validate Inputs . 38-16
Complete Class Example . 38-16

xxxiv Contents

Initialize Properties and Setup One-Time Calculations 38-18

Set Property Values at Construction Time . 38-20

Reset Algorithm and Release Resources . 38-22
Reset Algorithm State . 38-22
Release System Object Resources . 38-22

Define Property Attributes . 38-24
Specify Property as Nontunable . 38-24
Specify Property as DiscreteState . 38-24
Example Class with Various Property Attributes 38-24

Hide Inactive Properties . 38-26
Specify Inactive Property . 38-26
Complete Class Definition File with Inactive Properties Method 38-26

Limit Property Values to Finite List . 38-28
Property Validation with mustBeMember . 38-28
Enumeration Property . 38-28
Create a Whiteboard System Object . 38-29

Process Tuned Properties . 38-32

Define Composite System Objects . 38-34

Define Finite Source Objects . 38-36
Use the FiniteSource Class and Specify End of the Source 38-36
Complete Class Definition File with Finite Source 38-36

Save and Load System Object . 38-38
Save System Object and Child Object . 38-38
Load System Object and Child Object . 38-38
Complete Class Definition Files with Save and Load 38-38

Define System Object Information . 38-41

Handle Input Specification Changes . 38-43
React to Input Specification Changes . 38-43
Restrict Input Specification Changes . 38-43

Summary of Call Sequence . 38-45
Setup Call Sequence . 38-45
Running the Object or Step Call Sequence . 38-45
Reset Method Call Sequence . 38-46
Release Method Call Sequence . 38-47

Detailed Call Sequence . 38-48
setup Call Sequence . 38-48
Running the Object or step Call Sequence . 38-48
reset Call Sequence . 38-49
release Call Sequence . 38-49

Tips for Defining System Objects . 38-50
General . 38-50

xxxv

Inputs and Outputs . 38-50
Using ~ as an Input Argument in Method Definitions 38-50
Properties . 38-50
Text Comparisons . 38-51
Simulink . 38-51
Code Generation . 38-52

Insert System Object Code Using MATLAB Editor 38-53
Define System Objects with Code Insertion . 38-53
Create a Temperature Enumeration . 38-55
Create Custom Property for Freezing Point . 38-56
Add Method to Validate Inputs . 38-57

Analyze System Object Code . 38-58

Use Global Variables in System Objects . 38-61
System Object Global Variables in MATLAB . 38-61
System Object Global Variables in Simulink . 38-61

Create Moving Average System Object . 38-65

Create New System Objects for File Input and Output 38-70

Create Composite System Object . 38-76

xxxvi Contents

Language

37

Syntax Basics

• “Continue Long Statements on Multiple Lines” on page 1-2
• “Name=Value in Function Calls” on page 1-3
• “Ignore Function Outputs” on page 1-4
• “Variable Names” on page 1-5
• “Case and Space Sensitivity” on page 1-7
• “Choose Command Syntax or Function Syntax” on page 1-8
• “Resolve Error: Undefined Function or Variable” on page 1-11

1

Continue Long Statements on Multiple Lines
This example shows how to continue a statement to the next line using ellipsis (...).

s = 1 - 1/2 + 1/3 - 1/4 + 1/5 ...
 - 1/6 + 1/7 - 1/8 + 1/9;

Build a long character vector by concatenating shorter vectors together:

mytext = ['Accelerating the pace of ' ...
 'engineering and science'];

The start and end quotation marks for a character vector must appear on the same line. For example,
this code returns an error, because each line contains only one quotation mark:

mytext = 'Accelerating the pace of ...
 engineering and science'

An ellipsis outside a quoted text is equivalent to a space. For example,

x = [1.23...
4.56];

is the same as

x = [1.23 4.56];

1 Syntax Basics

1-2

Name=Value in Function Calls
Since R2021a

MATLAB supports two syntaxes for passing name-value arguments.

plot(x,y,LineWidth=2) name=value syntax

plot(x,y,"LineWidth",2) comma-separated syntax

Use the name=value syntax to help identify name-value arguments for functions and to clearly
distinguish names from values in lists of name-value arguments.

Most functions and methods support both syntaxes, but there are some limitations on where and how
the name=value syntax can be used:

•

Mixing name,value and name=value syntaxes: The recommended practice is to use only one
syntax in any given function call. However, if you do mix name=value and name,value syntaxes
in a single call, all name=value arguments must appear after the name,value arguments. For
example, plot(x,y,"Color","red",LineWidth=2) is a valid combination, but
plot(x,y,Color="red","LineWidth",2) errors.

• Using positional arguments after name-value arguments: Some functions have positional
arguments that appear after name-value arguments. For example, this call to the verifyEqual
method uses the RelTol name-value argument, followed by a string input:

verifyEqual(testCase,1.5,2,"RelTol",0.1,...
 "Difference exceeds relative tolerance.")

Using the name=value syntax (RelTol=0.1) causes the statement to error. In cases where a
positional argument follows name-value arguments, use the name,value syntax.

• Names that are invalid variable names: Name-value arguments with names that are invalid
MATLAB variable names cannot be used with the name=value syntax. See “Variable Names” on
page 1-5 for more info. For example, a name-value argument like "allow-empty",true errors
if passed as allow-empty=true. Use the name,value syntax in these cases.

Function authors do not need to code differently to support both the name,value and name=value
syntaxes. For information on authoring functions that accept name-value arguments, see “Name-Value
Arguments” on page 27-11.

 Name=Value in Function Calls

1-3

Ignore Function Outputs

This example shows how to ignore specific outputs from a function using the tilde (~) operator.

Request all three possible outputs from the fileparts function.

helpFile = which('help');
[helpPath,name,ext] = fileparts(helpFile);

The current workspace now contains three variables from fileparts: helpPath, name, and ext. In
this case, the variables are small. However, some functions return results that use much more
memory. If you do not need those variables, they waste space on your system.

If you do not use the tilde operator, you can request only the first N outputs of a function (where N is
less than or equal to the number of possible outputs) and ignore any remaining outputs. For example,
request only the first output, ignoring the second and third.

helpPath = fileparts(helpFile);

If you request more than one output, enclose the variable names in square brackets, []. The
following code ignores the output argument ext.

[helpPath,name] = fileparts(helpFile);

To ignore function outputs in any position in the argument list, use the tilde operator. For example,
ignore the first output using a tilde.

[~,name,ext] = fileparts(helpFile);

You can ignore any number of function outputs using the tilde operator. Separate consecutive tildes
with a comma. For example, this code ignores the first two output arguments.

[~,~,ext] = fileparts(helpFile);

See Also

More About
• “Ignore Inputs in Function Definitions” on page 22-10

1 Syntax Basics

1-4

Variable Names

In this section...
“Valid Names” on page 1-5
“Conflicts with Function Names” on page 1-5

Valid Names
A valid variable name starts with a letter, followed by letters, digits, or underscores. MATLAB is case
sensitive, so A and a are not the same variable. The maximum length of a variable name is the value
that the namelengthmax command returns.

You cannot define variables with the same names as MATLAB keywords, such as if or end. For a
complete list, run the iskeyword command.

Examples of valid names: Examples of invalid names:
x6 6x
lastValue end
n_factorial n!

Conflicts with Function Names

Avoid creating variables with the same name as a function (such as i, j, mode, char, size, and
path). In general, variable names take precedence over function names. If you create a variable that
uses the name of a function, you sometimes get unexpected results.

Check whether a proposed name is already in use with the exist or which function. exist returns
0 if there are no existing variables, functions, or other artifacts with the proposed name. For example:

exist checkname

ans =
 0

If you inadvertently create a variable with a name conflict, remove the variable from memory with the
clear function.

Another potential source of name conflicts occurs when you define a function that calls load or eval
(or similar functions) to add variables to the workspace. In some cases, load or eval add variables
that have the same names as functions. Unless these variables are in the function workspace before
the call to load or eval, the MATLAB parser interprets the variable names as function names. For
more information, see:

• “Unexpected Results When Loading Variables Within a Function”
• “Alternatives to the eval Function” on page 2-91

 Variable Names

1-5

See Also
clear | exist | iskeyword | namelengthmax | which | isvarname

1 Syntax Basics

1-6

Case and Space Sensitivity
MATLAB code is sensitive to casing, and insensitive to blank spaces except when defining arrays.

Uppercase and Lowercase

In MATLAB code, use an exact match with regard to case for variables, files, and functions. For
example, if you have a variable, a, you cannot refer to that variable as A. It is a best practice to use
lowercase only when naming functions. This is especially useful when you use both Microsoft®

Windows® and UNIX®1 platforms because their file systems behave differently with regard to case.

When you use the help function, the help displays some function names in all uppercase, for
example, PLOT, solely to distinguish the function name from the rest of the text. Some functions for
interfacing to Oracle® Java® software do use mixed case and the command-line help and the
documentation accurately reflect that.

Spaces

Blank spaces around operators such as -, :, and (), are optional, but they can improve readability.
For example, MATLAB interprets the following statements the same way.

y = sin (3 * pi) / 2
y=sin(3*pi)/2

However, blank spaces act as delimiters in horizontal concatenation. When defining row vectors, you
can use spaces and commas interchangeably to separate elements:

A = [1, 0 2, 3 3]

A =

 1 0 2 3 3

Because of this flexibility, check to ensure that MATLAB stores the correct values. For example, the
statement [1 sin (pi) 3] produces a much different result than [1 sin(pi) 3] does.

[1 sin (pi) 3]

Error using sin
Not enough input arguments.

[1 sin(pi) 3]

ans =

 1.0000 0.0000 3.0000

1 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Case and Space Sensitivity

1-7

Choose Command Syntax or Function Syntax

MATLAB has two ways of calling functions, called function syntax and command syntax. This page
discusses the differences between these syntax formats and how to avoid common mistakes
associated with command syntax.

For introductory information on calling functions, see “Calling Functions”. For information related to
defining functions, see “Create Functions in Files” on page 21-2.

Command Syntax and Function Syntax
In MATLAB, these statements are equivalent:

load durer.mat % Command syntax
load('durer.mat') % Function syntax

This equivalence is sometimes referred to as command-function duality.

All functions support this standard function syntax:

[output1, ..., outputM] = functionName(input1, ..., inputN)

In function syntax, inputs can be data, variables, and even MATLAB expressions. If an input is data,
such as the numeric value 2 or the string array ["a" "b" "c"], MATLAB passes it to the function
as-is. If an input is a variable MATLAB will pass the value assigned to it. If an input is an expression,
like 2+2 or sin(2*pi), MATLAB evaluates it first, and passes the result to the function. If the
functions has outputs, you can assign them to variables as shown in the example syntax above.

Command syntax is simpler but more limited. To use it, separate inputs with spaces rather than
commas, and do not enclose them in parentheses.

functionName input1 ... inputN

With command syntax, MATLAB passes all inputs as character vectors (that is, as if they were
enclosed in single quotation marks) and does not assign outputs to variables. To pass a data type
other than a character vector, use the function syntax. To pass a value that contains a space, you have
two options. One is to use function syntax. The other is to put single quotes around the value.
Otherwise, MATLAB treats the space as splitting your value into multiple inputs.

If a value is assigned to a variable, you must use function syntax to pass the value to the function.
Command syntax always passes inputs as character vectors and cannot pass variable values. For
example, create a variable and call the disp function with function syntax to pass the value of the
variable:

A = 123;
disp(A)

This code returns the expected result,

123

You cannot use command syntax to pass the value of A, because this call

disp A

1 Syntax Basics

1-8

is equivalent to

disp('A')

and returns

A

Avoid Common Syntax Mistakes
Suppose that your workspace contains these variables:

filename = 'accounts.txt';
A = int8(1:8);
B = A;

The following table illustrates common misapplications of command syntax.

This Command... Is Equivalent to... Correct Syntax for Passing Value
open filename open('filename') open(filename)
isequal A B isequal('A','B') isequal(A,B)
strcmp class(A) int8 strcmp('class(A)','int8') strcmp(class(A),'int8')
cd tempdir cd('tempdir') cd(tempdir)
isnumeric 500 isnumeric('500') isnumeric(500)
round 3.499 round('3.499'), which is

equivalent to round([51 46 52
57 57])

round(3.499)

disp hello world disp('hello','world') disp('hello world')

or

disp 'hello world'
disp "string" disp('"string"') disp("string")

Passing Variable Names

Some functions expect character vectors for variable names, such as save, load, clear, and whos.
For example,

whos -file durer.mat X

requests information about variable X in the example file durer.mat. This command is equivalent to

whos('-file','durer.mat','X')

How MATLAB Recognizes Command Syntax

Consider the potentially ambiguous statement

ls ./d

 Choose Command Syntax or Function Syntax

1-9

This could be a call to the ls function with './d' as its argument. It also could represent element-
wise division on the array ls, using the variable d as the divisor.

If you issue this statement at the command line, MATLAB can access the current workspace and path
to determine whether ls and d are functions or variables. However, some components, such as the
Code Analyzer and the Editor/Debugger, operate without reference to the path or workspace. When
you are using those components, MATLAB uses syntactic rules to determine whether an expression is
a function call using command syntax.

In general, when MATLAB recognizes an identifier (which might name a function or a variable), it
analyzes the characters that follow the identifier to determine the type of expression, as follows:

• An equal sign (=) implies assignment. For example:

ls =d
• An open parenthesis after an identifier implies a function call. For example:

ls('./d')
• Space after an identifier, but not after a potential operator, implies a function call using command

syntax. For example:

ls ./d
• Spaces on both sides of a potential operator, or no spaces on either side of the operator, imply an

operation on variables. For example, these statements are equivalent:

ls ./ d

ls./d

Therefore, MATLAB treats the potentially ambiguous statement ls ./d as a call to the ls function
using command syntax.

The best practice is to avoid defining variable names that conflict with common functions, to prevent
any ambiguity.

See Also
“Calling Functions” | “Create Functions in Files” on page 21-2

1 Syntax Basics

1-10

Resolve Error: Undefined Function or Variable

Issue
You may encounter the following error message, or something similar, while working with functions
or variables in MATLAB:

Undefined function or variable 'x'.

These errors usually indicate that MATLAB cannot find a particular variable or MATLAB program file
in the current directory or on the search path.

Possible Solutions
Verify Spelling of Function or Variable Name

One of the most common causes is misspelling the function or variable name. Especially with longer
names or names containing similar characters (such as the letter l and numeral one), it is easy to
make mistakes and hard to detect them.

Often, when you misspell a MATLAB function, a suggested function name appears in the Command
Window. For example, this command fails because it includes an uppercase letter in the function
name:

accumArray

Undefined function or variable 'accumArray'.

Did you mean:
>> accumarray

When this happens, press Enter to execute the suggested command or Esc to dismiss it.

Verify Inputs Correspond to the Function Syntax

Object methods are typically called using function syntax: for instance method(object,inputs).
Alternatively, they can be called using dot notation: for instance object.method(inputs). One
common error is to mix these syntaxes. For instance, you might call the method using function syntax,
but to provide inputs following dot notation syntax and leave out the object as an input: for instance,
method(inputs). To avoid this, when calling an object method, make sure you specify the object
first, either through the first input of function syntax or through the first identifier of dot notation.

Make Sure Function Name Matches File Name

When you write a function, you establish its name when you write its function definition line. This
name should always match the name of the file you save it to. For example, if you create a function
named curveplot,

function curveplot(xVal, yVal)
 - program code -

then you should name the file containing that function curveplot.m. If you create a pcode file for
the function, then name that file curveplot.p. In the case of conflicting function and file names, the
file name overrides the name given to the function. In this example, if you save the curveplot

 Resolve Error: Undefined Function or Variable

1-11

function to a file named curveplotfunction.m, then attempts to invoke the function using the
function name will fail:

curveplot
Undefined function or variable 'curveplot'.

If you encounter this problem, change either the function name or file name so that they are the
same.

To Locate the file that defines this function, use the MATLAB Find Files utility as follows:

1
On the Home tab, in the File section, click Find Files.

2 Under Find files named, enter *.m
3 Under Find files containing text, enter the function name.
4 Click the Find button

Make Sure Necessary Toolbox Is Installed and Correct Version

If you are unable to use a built-in function from MATLAB or its toolboxes, make sure that the function
is installed and is the correct version.

If you do not know which toolbox contains the function you need, search for the function
documentation at https://www.mathworks.com/help. The toolbox name appears at the top of the
function reference page. Alternatively, for steps to identify toolboxes that a function depends on, see
“Identify Program Dependencies” on page 26-2.

Once you know which toolbox the function belongs to, use the ver function to see which toolboxes
are installed on the system from which you run MATLAB. The ver function displays a list of all
currently installed MathWorks® products. If you can locate the toolbox you need in the output
displayed by ver, then the toolbox is installed. If you cannot, you need to install it in order to use it.
For help with installing MathWorks products, see “Install License Manager on License Server”.

1 Syntax Basics

1-12

https://www.mathworks.com/help/

Verify Path Used to Access Function Toolbox

Tip If you have a custom file path, this step will delete it.

The MATLAB search path is a subset of all the folders in the file system. MATLAB uses the search
path to locate files used with MathWorks products efficiently. For more information, see “What Is the
MATLAB Search Path?”.

If the function you are attempting to use is part of a toolbox, then verify that the toolbox is available
using ver.

Because MATLAB stores the toolbox information in a cache file, you need to first update this cache
and then reset the path.

1
On the Home tab, in the Environment section, click Preferences.

The Preference dialog box appears.
2 On the MATLAB > General page, select Update Toolbox Path Cache.
3

On the Home tab, in the Environment section, select Set Path.

The Set Path dialog box opens.
4 Select Default.

A small dialog box opens warning that you will lose your current path settings if you proceed.
Select Yes if you decide to proceed.

Run ver to see if the toolbox is installed. If not, you may need to reinstall this toolbox to use this
function. For more information about installing a toolbox, see How do I install additional toolboxes
into an existing installation of MATLAB.

Once ver shows your toolbox, run the following command to see if you can find the function:

which -all <functionname>

replacing <functionname> with the name of the function. If MATLAB finds your function file, it
presents you with the path to it. You can add that file to the path using the addpath function. If it
does not, make sure the necessary toolbox is installed, and that it is the correct version.

Confirm The License Is Active

If you are unable to use a built-in function from a MATLAB toolbox and have confirmed that the
toolbox is installed, make sure that you have an active license for that toolbox. Use license to
display currently active licenses. For additional support for managing licenses, see “Manage Your
Licenses”.

 Resolve Error: Undefined Function or Variable

1-13

https://www.mathworks.com/matlabcentral/answers/101885-how-do-i-install-additional-toolboxes-into-an-existing-installation-of-matlab
https://www.mathworks.com/matlabcentral/answers/101885-how-do-i-install-additional-toolboxes-into-an-existing-installation-of-matlab

Program Components

• “MATLAB Operators and Special Characters” on page 2-2
• “Array vs. Matrix Operations” on page 2-20
• “Compatible Array Sizes for Basic Operations” on page 2-25
• “Array Comparison with Relational Operators” on page 2-30
• “Operator Precedence” on page 2-33
• “Average Similar Data Points Using a Tolerance” on page 2-35
• “Group Scattered Data Using a Tolerance” on page 2-37
• “Bit-Wise Operations” on page 2-39
• “Perform Cyclic Redundancy Check” on page 2-45
• “Conditional Statements” on page 2-48
• “Loop Control Statements” on page 2-50
• “Regular Expressions” on page 2-52
• “Lookahead Assertions in Regular Expressions” on page 2-64
• “Tokens in Regular Expressions” on page 2-67
• “Dynamic Regular Expressions” on page 2-73
• “Comma-Separated Lists” on page 2-80
• “Alternatives to the eval Function” on page 2-91

2

MATLAB Operators and Special Characters
This page contains a comprehensive listing of all MATLAB operators, symbols, and special characters.

Arithmetic Operators
Symbol Role More Information

+ Addition plus
+ Unary plus uplus
- Subtraction minus
- Unary minus uminus
.* Element-wise multiplication times
* Matrix multiplication mtimes
./ Element-wise right division rdivide
/ Matrix right division mrdivide
.\ Element-wise left division ldivide
\ Matrix left division

(also known as backslash)

mldivide

.^ Element-wise power power
^ Matrix power mpower
.' Transpose transpose
' Complex conjugate transpose ctranspose

Relational Operators
Symbol Role More Information

== Equal to eq
~= Not equal to ne
> Greater than gt
>= Greater than or equal to ge
< Less than lt
<= Less than or equal to le

Logical Operators
Symbol Role More Information

& Find logical AND and
| Find logical OR or
&& Find logical AND (with short-

circuiting)
Short-Circuit AND

2 Program Components

2-2

Symbol Role More Information
|| Find logical OR (with short-

circuiting)
Short-Circuit OR

~ Find logical NOT not

Special Characters
@ Name: At symbol

Uses:

• Function handle construction and reference
• Calling superclass methods

Description: The @ symbol forms a handle to either the named function that follows the @
sign, or to the anonymous function that follows the @ sign. You can also use @ to call
superclass methods from subclasses.

Examples

Create a function handle to a named function:

fhandle = @myfun

Create a function handle to an anonymous function:

fhandle = @(x,y) x.^2 + y.^2;

Call the disp method of MySuper from a subclass:

disp@MySuper(obj)

Call the superclass constructor from a subclass using the object being constructed:

obj = obj@MySuper(arg1,arg2,...)

More Information:

• “Create Function Handle” on page 13-2
• “Call Superclass Methods on Subclass Objects”

 MATLAB Operators and Special Characters

2-3

. Name: Period or dot

Uses:

• Decimal point
• Element-wise operations
• Structure field access
• Object property or method specifier

Description: The period character separates the integral and fractional parts of a
number, such as 3.1415. MATLAB operators that contain a period always work element-
wise. The period character also enables you to access the fields in a structure, as well as
the properties and methods of an object.

Examples

Decimal point:

102.5543

Element-wise operations:

A.*B
A.^2

Structure field access:

myStruct.f1

Object property specifier:

myObj.PropertyName

More Information

• “Array vs. Matrix Operations” on page 2-20
• “Structures”
• “Access Property Values”

2 Program Components

2-4

... Name: Dot dot dot or ellipsis

Uses: Line continuation

Description: Three or more periods at the end of a line continues the current command
on the next line. If three or more periods occur before the end of a line, then MATLAB
ignores the rest of the line and continues to the next line. This effectively makes a
comment out of anything on the current line that follows the three periods.

Note MATLAB interprets the ellipsis as a space character. Therefore, multi-line
commands must be valid as a single line with the ellipsis replaced by a space character.

Examples

Continue a function call on the next line:

sprintf(['The current value '...
'of %s is %d'],vname,value)

Break a character vector up on multiple lines and concatenate the lines together:

S = ['If three or more periods occur before the '...
 'end of a line, then the rest of that line is ' ...
 'ignored and MATLAB continues to the next line']

To comment out one line in a multiline command, use ... at the beginning of the line to
ensure that the command remains complete. If you use % to comment out a line it
produces an error:

y = 1 +...
 2 +...
 % 3 +...
 4;

However, this code runs properly since the third line does not produce a gap in the
command:

y = 1 +...
 2 +...
... 3 +...
 4;

More Information

• “Continue Long Statements on Multiple Lines” on page 1-2

 MATLAB Operators and Special Characters

2-5

, Name: Comma

Uses: Separator

Description: Use commas to separate row elements in an array, array subscripts,
function input and output arguments, and commands entered on the same line.

Examples

Separate row elements to create an array:

A = [12,13; 14,15]

Separate subscripts:

A(1,2)

Separate input and output arguments in function calls:

[Y,I] = max(A,[],2)

Separate multiple commands on the same line (showing output):

figure, plot(sin(-pi:0.1:pi)), grid on

More Information

• horzcat

2 Program Components

2-6

: Name: Colon

Uses:

• Vector creation
• Indexing
• For-loop iteration

Description: Use the colon operator to create regularly spaced vectors, index into
arrays, and define the bounds of a for loop.

Examples

Create a vector:

x = 1:10

Create a vector that increments by 3:

x = 1:3:19

Reshape a matrix into a column vector:

A(:)

Assign new elements without changing the shape of an array:

A = rand(3,4);
A(:) = 1:12;

Index a range of elements in a particular dimension:

A(2:5,3)

Index all elements in a particular dimension:

A(:,3)

for loop bounds:

x = 1;
for k = 1:25
 x = x + x^2;
end

More Information

• colon
• “Creating, Concatenating, and Expanding Matrices”

 MATLAB Operators and Special Characters

2-7

; Name: Semicolon

Uses:

• Signify end of row
• Suppress output of code line

Description: Use semicolons to separate rows in an array creation command, or to
suppress the output display of a line of code.

Examples

Separate rows to create an array:

A = [12,13; 14,15]

Suppress code output:

Y = max(A);

Separate multiple commands on a single line (suppressing output):

A = 12.5; B = 42.7, C = 1.25;
B =
 42.7000

More Information

• vertcat

2 Program Components

2-8

() Name: Parentheses

Uses:

• Operator precedence
• Function argument enclosure
• Indexing

Description: Use parentheses to specify precedence of operations, enclose function input
arguments, and index into an array.

Examples

Precedence of operations:

(A.*(B./C)) - D

Function argument enclosure:

plot(X,Y,'r*')
C = union(A,B)

Indexing:

A(3,:)
A(1,2)
A(1:5,1)

More Information

• “Operator Precedence” on page 2-33
• “Array Indexing”

 MATLAB Operators and Special Characters

2-9

[] Name: Square brackets

Uses:

• Array construction
• Array concatenation
• Empty matrix and array element deletion
• Multiple output argument assignment

Description: Square brackets enable array construction and concatenation, creation of
empty matrices, deletion of array elements, and capturing values returned by a function.

Examples

Construct a three-element vector:

X = [10 12 -3]

Add a new bottom row to a matrix:

A = rand(3);
A = [A; 10 20 30]

Create an empty matrix:

A = []

Delete a matrix column:

A(:,1) = []

Capture three output arguments from a function:

[C,iA,iB] = union(A,B)

More Information

• “Creating, Concatenating, and Expanding Matrices”
• horzcat
• vertcat

2 Program Components

2-10

{ } Name: Curly brackets

Uses: Cell array assignment and contents

Description: Use curly braces to construct a cell array, or to access the contents of a
particular cell in a cell array.

Examples

To construct a cell array, enclose all elements of the array in curly braces:

C = {[2.6 4.7 3.9], rand(8)*6, 'C. Coolidge'}

Index to a specific cell array element by enclosing all indices in curly braces:

A = C{4,7,2}

More Information

• “Cell Arrays”
% Name: Percent

Uses:

• Comment
• Conversion specifier

Description: The percent sign is most commonly used to indicate nonexecutable text
within the body of a program. This text is normally used to include comments in your
code.

Some functions also interpret the percent sign as a conversion specifier.

Two percent signs, %%, serve as a cell delimiter as described in “Create and Run Sections
in Code” on page 19-5.

Examples

Add a comment to a block of code:

% The purpose of this loop is to compute
% the value of ...

Use conversion specifier with sprintf:

sprintf('%s = %d', name, value)

More Information

• “Add Comments to Code” on page 19-3

 MATLAB Operators and Special Characters

2-11

%{ %} Name: Percent curly bracket

Uses: Block comments

Description: The %{ and %} symbols enclose a block of comments that extend beyond
one line.

Note With the exception of whitespace characters, the %{ and %} operators must appear
alone on the lines that immediately precede and follow the block of help text. Do not
include any other text on these lines.

Examples

Enclose any multiline comments with percent followed by an opening or closing brace:

%{
The purpose of this routine is to compute
the value of ...
%}

More Information

• “Add Comments to Code” on page 19-3
! Name: Exclamation point

Uses: Operating system command

Description: The exclamation point precedes operating system commands that you want
to execute from within MATLAB.

Not available in MATLAB Online™.

Examples

The exclamation point initiates a shell escape function. Such a function is to be performed
directly by the operating system:

!rmdir oldtests

More Information

• “Shell Escape Function Example”

2 Program Components

2-12

? Name: Question mark

Uses: Metaclass for MATLAB class

Description: The question mark retrieves the meta.class object for a particular class
name. The ? operator works only with a class name, not an object.

Examples

Retrieve the meta.class object for class inputParser:

?inputParser

More Information

• metaclass
'' Name: Single quotes

Uses: Character array constructor

Description: Use single quotes to create character vectors that have class char.

Examples

Create a character vector:

chr = 'Hello, world'

More Information

• “Text in String and Character Arrays” on page 6-2
"" Name: Double quotes

Uses: String constructor

Description: Use double quotes to create string scalars that have class string.

Examples

Create a string scalar:

S = "Hello, world"

More Information

• “Text in String and Character Arrays” on page 6-2

 MATLAB Operators and Special Characters

2-13

N/A Name: Space character

Uses: Separator

Description: Use the space character to separate row elements in an array constructor,
or the values returned by a function. In these contexts, the space character and comma
are equivalent.

Examples

Separate row elements to create an array:

% These statements are equivalent
A = [12 13; 14 15]
A = [12,13; 14,15]

Separate output arguments in function calls:

% These statements are equivalent
[Y I] = max(A)
[Y,I] = max(A)

N/A Name: Newline character

Uses: Separator

Description: Use the newline character to separate rows in an array construction
statement. In that context, the newline character and semicolon are equivalent.

Examples

Separate rows in an array creation command:

% These statements are equivalent
A = [12 13
 14 15]
A = [12 13; 14 15]

2 Program Components

2-14

~ Name: Tilde

Uses:

• Logical NOT
• Argument placeholder

Description: Use the tilde symbol to represent logical NOT or to suppress specific input
or output arguments.

Examples

Calculate the logical NOT of a matrix:

A = eye(3);
~A

Determine where the elements of A are not equal to those of B:

A = [1 -1; 0 1]
B = [1 -2; 3 2]
A~=B

Return only the third output value of union:

[~,~,iB] = union(A,B)

More Information

• not
• “Ignore Inputs in Function Definitions” on page 22-10
• “Ignore Function Outputs” on page 1-4

= Name: Equal sign

Uses: Assignment

Description: Use the equal sign to assign values to a variable. The syntax B = A stores
the elements of A in variable B.

Note The = character is for assignment, whereas the == character is for comparing the
elements in two arrays. See eq for more information.

Examples

Create a matrix A. Assign the values in A to a new variable, B. Lastly, assign a new value
to the first element in B.

A = [1 0; -1 0];
B = A;
B(1) = 200;

 MATLAB Operators and Special Characters

2-15

< & Name: Left angle bracket and ampersand

Uses: Specify superclasses

Description: Specify one or more superclasses in a class definition

Examples

Define a class that derives from one superclass:

classdef MyClass < MySuperclass
 …
end

Define a class that derives from multiple superclasses:

classdef MyClass < Superclass1 & Superclass2 & …
 …
end

More Information:

• “Subclass Syntax”
.? Name: Dot question mark

Uses: Specify fields of name-value structure

Description:

When using function argument validation, you can define the fields of the name-value
structure as the names of all writeable properties of the class.

Examples

Specify the field names of the propArgs structure as the writeable properties of the
matlab.graphics.primitive.Line class.

function f(propArgs)
 arguments
 propArgs.?matlab.graphics.primitive.Line
 end
 % Function code
 ...
end

More Information:

• “Name-Value Arguments from Class Properties” on page 27-15

String and Character Formatting
Some special characters can only be used in the text of a character vector or string. You can use
these special characters to insert new lines or carriage returns, specify folder paths, and more.

Use the special characters in this table to specify a folder path using a character vector or string.

2 Program Components

2-16

/

\

Name: Slash and Backslash

Uses: File or folder path separation

Description: In addition to their use as mathematical operators, the slash and backslash
characters separate the elements of a path or folder. On Microsoft Windows based
systems, both slash and backslash have the same effect. On The Open Group UNIX based
systems, you must use slash only.

Examples

On a Windows system, you can use either backslash or slash:

dir([matlabroot '\toolbox\matlab\elmat\shiftdim.m'])
dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

On a UNIX system, use only the forward slash:

dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

.. Name: Dot dot

Uses: Parent folder

Description: Two dots in succession refers to the parent of the current folder. Use this
character to specify folder paths relative to the current folder.

Examples

To go up two levels in the folder tree and down into the test folder, use:

cd ..\..\test

More Information

• cd
* Name: Asterisk

Uses: Wildcard character

Description: In addition to being the symbol for matrix multiplication, the asterisk * is
used as a wildcard character.

Wildcards are generally used in file operations that act on multiple files or folders.
MATLAB matches all characters in the name exactly except for the wildcard character *,
which can match any one or more characters.

Examples

Locate all files with names that start with january_ and have a .mat file extension:

dir('january_*.mat')

 MATLAB Operators and Special Characters

2-17

@ Name: At symbol

Uses: Class folder indicator

Description: An @ sign indicates the name of a class folder.

Examples

Refer to a class folder:

\@myClass\get.m

More Information

• “Class and Path Folders”
+ Name: Plus

Uses: Package directory indicator

Description: A + sign indicates the name of a package folder.

Examples

Package folders always begin with the + character:

+mypack
+mypack/pkfcn.m % a package function
+mypack/@myClass % class folder in a package

More Information

• “Packages Create Namespaces”

There are certain special characters that you cannot enter as ordinary text. Instead, you must use
unique character sequences to represent them. Use the symbols in this table to format strings and
character vectors on their own or in conjunction with formatting functions like compose, sprintf,
and error. For more information, see “Formatting Text” on page 6-24.

Symbol Effect on Text
'' Single quotation mark
%% Single percent sign
\\ Single backslash
\a Alarm
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\xN Hexadecimal number, N

2 Program Components

2-18

Symbol Effect on Text
\N Octal number, N

See Also

More About
• “Array vs. Matrix Operations” on page 2-20
• “Array Comparison with Relational Operators” on page 2-30
• “Compatible Array Sizes for Basic Operations” on page 2-25
• “Operator Precedence” on page 2-33
• “Find Array Elements That Meet a Condition” on page 5-2
• “Greek Letters and Special Characters in Chart Text”

 MATLAB Operators and Special Characters

2-19

Array vs. Matrix Operations
In this section...
“Introduction” on page 2-20
“Array Operations” on page 2-20
“Matrix Operations” on page 2-22

Introduction
MATLAB has two different types of arithmetic operations: array operations and matrix operations.
You can use these arithmetic operations to perform numeric computations, for example, adding two
numbers, raising the elements of an array to a given power, or multiplying two matrices.

Matrix operations follow the rules of linear algebra. By contrast, array operations execute element by
element operations and support multidimensional arrays. The period character (.) distinguishes the
array operations from the matrix operations. However, since the matrix and array operations are the
same for addition and subtraction, the character pairs .+ and .- are unnecessary.

Array Operations
Array operations execute element by element operations on corresponding elements of vectors,
matrices, and multidimensional arrays. If the operands have the same size, then each element in the
first operand gets matched up with the element in the same location in the second operand. If the
operands have compatible sizes, then each input is implicitly expanded as needed to match the size of
the other. For more information, see “Compatible Array Sizes for Basic Operations” on page 2-25.

As a simple example, you can add two vectors with the same size.

A = [1 1 1]

A =

 1 1 1

B = [1 2 3]

B =

 1 2 3

A+B

ans =

 2 3 4

If one operand is a scalar and the other is not, then MATLAB implicitly expands the scalar to be the
same size as the other operand. For example, you can compute the element-wise product of a scalar
and a matrix.

A = [1 2 3; 1 2 3]

A =

2 Program Components

2-20

 1 2 3
 1 2 3

3.*A

ans =

 3 6 9
 3 6 9

Implicit expansion also works if you subtract a 1-by-3 vector from a 3-by-3 matrix because the two
sizes are compatible. When you perform the subtraction, the vector is implicitly expanded to become
a 3-by-3 matrix.

A = [1 1 1; 2 2 2; 3 3 3]

A =

 1 1 1
 2 2 2
 3 3 3

m = [2 4 6]

m =

 2 4 6

A - m

ans =

 -1 -3 -5
 0 -2 -4
 1 -1 -3

A row vector and a column vector have compatible sizes. If you add a 1-by-3 vector to a 2-by-1 vector,
then each vector implicitly expands into a 2-by-3 matrix before MATLAB executes the element-wise
addition.

x = [1 2 3]

x =

 1 2 3

y = [10; 15]

y =

 10
 15

x + y

ans =

 11 12 13
 16 17 18

 Array vs. Matrix Operations

2-21

If the sizes of the two operands are incompatible, then you get an error.

A = [8 1 6; 3 5 7; 4 9 2]

A =

 8 1 6
 3 5 7
 4 9 2

m = [2 4]

m =

 2 4

A - m

Matrix dimensions must agree.

The following table provides a summary of arithmetic array operators in MATLAB. For function-
specific information, click the link to the function reference page in the last column.

Operator Purpose Description Reference
Page

+ Addition A+B adds A and B. plus
+ Unary plus +A returns A. uplus
- Subtraction A-B subtracts B from A minus
- Unary minus -A negates the elements of A. uminus
.* Element-wise

multiplication
A.*B is the element-by-element product of A and
B.

times

.^ Element-wise
power

A.^B is the matrix with elements A(i,j) to the
B(i,j) power.

power

./ Right array
division

A./B is the matrix with elements A(i,j)/
B(i,j).

rdivide

.\ Left array
division

A.\B is the matrix with elements B(i,j)/
A(i,j).

ldivide

.' Array transpose A.' is the array transpose of A. For complex
matrices, this does not involve conjugation.

transpose

Matrix Operations
Matrix operations follow the rules of linear algebra and are not compatible with multidimensional
arrays. The required size and shape of the inputs in relation to one another depends on the operation.
For nonscalar inputs, the matrix operators generally calculate different answers than their array
operator counterparts.

For example, if you use the matrix right division operator, /, to divide two matrices, the matrices
must have the same number of columns. But if you use the matrix multiplication operator, *, to
multiply two matrices, then the matrices must have a common inner dimension. That is, the number
of columns in the first input must be equal to the number of rows in the second input. The matrix
multiplication operator calculates the product of two matrices with the formula,

2 Program Components

2-22

C(i, j) = ∑
k = 1

n
A(i, k)B(k, j) .

To see this, you can calculate the product of two matrices.

A = [1 3;2 4]

A =

 1 3
 2 4

B = [3 0;1 5]

B =

 3 0
 1 5

A*B

ans =

 6 15
 10 20

The previous matrix product is not equal to the following element-wise product.

A.*B

ans =

 3 0
 2 20

The following table provides a summary of matrix arithmetic operators in MATLAB. For function-
specific information, click the link to the function reference page in the last column.

Operator Purpose Description Reference
Page

* Matrix
multiplication

C = A*B is the linear algebraic product of the
matrices A and B. The number of columns of A
must equal the number of rows of B.

mtimes

\ Matrix left
division

x = A\B is the solution to the equation Ax = B.
Matrices A and B must have the same number of
rows.

mldivide

/ Matrix right
division

x = B/A is the solution to the equation xA = B.
Matrices A and B must have the same number of
columns. In terms of the left division operator,
B/A = (A'\B')'.

mrdivide

^ Matrix power A^B is A to the power B, if B is a scalar. For other
values of B, the calculation involves eigenvalues
and eigenvectors.

mpower

 Array vs. Matrix Operations

2-23

Operator Purpose Description Reference
Page

' Complex
conjugate
transpose

A' is the linear algebraic transpose of A. For
complex matrices, this is the complex conjugate
transpose.

ctranspose

See Also

More About
• “Compatible Array Sizes for Basic Operations” on page 2-25
• “MATLAB Operators and Special Characters” on page 2-2
• “Operator Precedence” on page 2-33

2 Program Components

2-24

Compatible Array Sizes for Basic Operations

Most binary (two-input) operators and functions in MATLAB support numeric arrays that have
compatible sizes. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of them is 1. In the simplest cases, two array sizes are compatible if
they are exactly the same or if one is a scalar. MATLAB implicitly expands arrays with compatible
sizes to be the same size during the execution of the element-wise operation or function.

Inputs with Compatible Sizes
2-D Inputs

These are some combinations of scalars, vectors, and matrices that have compatible sizes:

• Two inputs which are exactly the same size.

• One input is a scalar.

• One input is a matrix, and the other is a column vector with the same number of rows.

• One input is a column vector, and the other is a row vector.

 Compatible Array Sizes for Basic Operations

2-25

Multidimensional Arrays

Every array in MATLAB has trailing dimensions of size 1. For multidimensional arrays, this means
that a 3-by-4 matrix is the same as a matrix of size 3-by-4-by-1-by-1-by-1. Examples of
multidimensional arrays with compatible sizes are:

• One input is a matrix, and the other is a 3-D array with the same number of rows and columns.

• One input is a matrix, and the other is a 3-D array. The dimensions are all either the same or one
of them is 1.

2 Program Components

2-26

Empty Arrays

The rules are the same for empty arrays or arrays that have a dimension size of zero. The size of the
dimension that is not equal to 1 determines the size of the output. This means that dimensions with a
size of zero must be paired with a dimension of size 1 or 0 in the other array, and that the output has
a dimension size of 0.

 A: 1-by-0
 B: 3-by-1
Result: 3-by-0

Inputs with Incompatible Sizes
Incompatible inputs have sizes that cannot be implicitly expanded to be the same size. For example:

• One of the dimension sizes are not equal, and neither is 1.

A: 3-by-2
B: 4-by-2

• Two nonscalar row vectors with lengths that are not the same.

A: 1-by-3
B: 1-by-4

Examples
Subtract Vector from Matrix

To simplify vector-matrix operations, use implicit expansion with dimensional functions such as sum,
mean, min, and others.

 Compatible Array Sizes for Basic Operations

2-27

For example, calculate the mean value of each column in a matrix, then subtract the mean value from
each element.

A = magic(3)

A =

 8 1 6
 3 5 7
 4 9 2

C = mean(A)

C =

 5 5 5

A - C

ans =

 3 -4 1
 -2 0 2
 -1 4 -3

Add Row and Column Vector

Row and column vectors have compatible sizes, and when you perform an operation on them the
result is a matrix.

For example, add a row and column vector. The result is the same as bsxfun(@plus,a,b).

a = [1 2 3 4]

ans =

 1 2 3 4

b = [5; 6; 7]

ans =

 5
 6
 7

a + b

ans =

 6 7 8 9
 7 8 9 10
 8 9 10 11

See Also
bsxfun

2 Program Components

2-28

More About
• “Array vs. Matrix Operations” on page 2-20
• “MATLAB Operators and Special Characters” on page 2-2

 Compatible Array Sizes for Basic Operations

2-29

Array Comparison with Relational Operators
In this section...
“Array Comparison” on page 2-30
“Logic Statements” on page 2-32

Relational operators compare operands quantitatively, using operators like “less than”, “greater
than”, and “not equal to.” The result of a relational comparison is a logical array indicating the
locations where the relation is true.

These are the relational operators in MATLAB.

Symbol Function Equivalent Description
< lt Less than
<= le Less than or equal to
> gt Greater than
>= ge Greater than or equal to
== eq Equal to
~= ne Not equal to

Array Comparison
Numeric Arrays

The relational operators perform element-wise comparisons between two arrays. The arrays must
have compatible sizes to facilitate the operation. Arrays with compatible sizes are implicitly expanded
to be the same size during execution of the calculation. In the simplest cases, the two operands are
arrays of the same size, or one is a scalar. For more information, see “Compatible Array Sizes for
Basic Operations” on page 2-25.

For example, if you compare two matrices of the same size, then the result is a logical matrix of the
same size with elements indicating where the relation is true.

A = [2 4 6; 8 10 12]

A =

 2 4 6
 8 10 12

B = [5 5 5; 9 9 9]

B =

 5 5 5
 9 9 9

A < B

ans =

2 Program Components

2-30

 1 1 0
 1 0 0

Similarly, you can compare one of the arrays to a scalar.

A > 7

ans =

 0 0 0
 1 1 1

If you compare a 1-by-N row vector to an M-by-1 column vector, then MATLAB expands each vector
into an M-by-N matrix before performing the comparison. The resulting matrix contains the
comparison result for each combination of elements in the vectors.

A = 1:3

A =

 1 2 3

B = [2; 3]

B =

 2
 3

A >= B

ans =

 0 1 1
 0 0 1

Empty Arrays

The relational operators work with arrays for which any dimension has size zero, as long as both
arrays have compatible sizes. This means that if one array has a dimension size of zero, then the size
of the corresponding dimension in the other array must be 1 or zero, and the size of that dimension in
the output is zero.

A = ones(3,0);
B = ones(3,1);
A == B

ans =

 Empty matrix: 3-by-0

However, expressions such as

A == []

return an error if A is not 0-by-0 or 1-by-1. This behavior is consistent with that of all other binary
operators, such as +, -, >, <, &, |, and so on.

To test for empty arrays, use isempty(A).

 Array Comparison with Relational Operators

2-31

Complex Numbers

• The operators >, <, >=, and <= use only the real part of the operands in performing comparisons.
• The operators == and ~= test both real and imaginary parts of the operands.

Inf, NaN, NaT, and undefined Element Comparisons

• Inf values are equal to other Inf values.
• NaN values are not equal to any other numeric value, including other NaN values.
• NaT values are not equal to any other datetime value, including other NaT values.
• Undefined categorical elements are not equal to any other categorical value, including other
undefined elements.

Logic Statements
Use relational operators in conjunction with the logical operators A & B (AND), A | B (OR),
xor(A,B) (XOR), and ~A (NOT), to string together more complex logical statements.

For example, you can locate where negative elements occur in two arrays.

A = [2 -1; -3 10]

A =

 2 -1
 -3 10

B = [0 -2; -3 -1]

B =

 0 -2
 -3 -1

A<0 & B<0

ans =

 0 1
 1 0

For more examples, see “Find Array Elements That Meet a Condition” on page 5-2.

See Also
gt | lt | ge | le | eq | ne

More About
• “Array vs. Matrix Operations” on page 2-20
• “Compatible Array Sizes for Basic Operations” on page 2-25
• “MATLAB Operators and Special Characters” on page 2-2

2 Program Components

2-32

Operator Precedence

You can build expressions that use any combination of arithmetic, relational, and logical operators.
Precedence levels determine the order in which MATLAB evaluates an expression. Within each
precedence level, operators have equal precedence and are evaluated from left to right. The
precedence rules for MATLAB operators are shown in this list, ordered from highest precedence level
to lowest precedence level:

1 Parentheses ()
2 Transpose (.'), power (.^), complex conjugate transpose ('), matrix power (^)
3 Power with unary minus (.^-), unary plus (.^+), or logical negation (.^~) as well as matrix

power with unary minus (^-), unary plus (^+), or logical negation (^~).

Note Although most operators work from left to right, the operators (^-), (.^-), (^+), (.^+),
(^~), and (.^~) work from second from the right to left. It is recommended that you use
parentheses to explicitly specify the intended precedence of statements containing these
operator combinations.

4 Unary plus (+), unary minus (-), logical negation (~)
5 Multiplication (.*), right division (./), left division (.\), matrix multiplication (*), matrix

right division (/), matrix left division (\)
6 Addition (+), subtraction (-)
7 Colon operator (:)
8 Less than (<), less than or equal to (<=), greater than (>), greater than or equal to (>=),

equal to (==), not equal to (~=)
9 Element-wise AND (&)
10 Element-wise OR (|)
11 Short-circuit AND (&&)
12 Short-circuit OR (||)

Precedence of AND and OR Operators
MATLAB always gives the & operator precedence over the | operator. Although MATLAB typically
evaluates expressions from left to right, the expression a|b&c is evaluated as a|(b&c). It is a good
idea to use parentheses to explicitly specify the intended precedence of statements containing
combinations of & and |.

The same precedence rule holds true for the && and || operators.

Overriding Default Precedence
The default precedence can be overridden using parentheses, as shown in this example:

A = [3 9 5];
B = [2 1 5];
C = A./B.^2
C =
 0.7500 9.0000 0.2000

 Operator Precedence

2-33

C = (A./B).^2
C =
 2.2500 81.0000 1.0000

See Also

More About
• “Array vs. Matrix Operations” on page 2-20
• “Compatible Array Sizes for Basic Operations” on page 2-25
• “Array Comparison with Relational Operators” on page 2-30
• “MATLAB Operators and Special Characters” on page 2-2

2 Program Components

2-34

Average Similar Data Points Using a Tolerance

This example shows how to use uniquetol to find the average z-coordinate of 3-D points that have
similar (within tolerance) x and y coordinates.

Use random points picked from the peaks function in the domain [− 3, 3] × [− 3, 3] as the data set.
Add a small amount of noise to the data.

xy = rand(10000,2)*6-3;
z = peaks(xy(:,1),xy(:,2)) + 0.5-rand(10000,1);
A = [xy z];
plot3(A(:,1), A(:,2), A(:,3), '.')
view(-28,32)

Find points that have similar x and y coordinates using uniquetol with these options:

• Specify ByRows as true, since the rows of A contain the point coordinates.
• Specify OutputAllIndices as true to return the indices for all points that are within tolerance

of each other.
• Specify DataScale as [1 1 Inf] to use an absolute tolerance for the x and y coordinates, while

ignoring the z-coordinate.

DS = [1 1 Inf];
[C,ia] = uniquetol(A, 0.3, 'ByRows', true, ...
 'OutputAllIndices', true, 'DataScale', DS);

 Average Similar Data Points Using a Tolerance

2-35

Average each group of points that are within tolerance (including the z-coordinates), producing a
reduced data set that still holds the general shape of the original data.

for k = 1:length(ia)
 aveA(k,:) = mean(A(ia{k},:),1);
end

Plot the resulting averaged-out points on top of the original data.

hold on
plot3(aveA(:,1), aveA(:,2), aveA(:,3), '.r', 'MarkerSize', 15)

See Also
uniquetol

More About
• “Group Scattered Data Using a Tolerance” on page 2-37

2 Program Components

2-36

Group Scattered Data Using a Tolerance

This example shows how to group scattered data points based on their proximity to points of interest.

Create a set of random 2-D points. Then create and plot a grid of equally spaced points on top of the
random data.

x = rand(10000,2);
[a,b] = meshgrid(0:0.1:1);
gridPoints = [a(:), b(:)];
plot(x(:,1), x(:,2), '.')
hold on
plot(gridPoints(:,1), gridPoints(:,2), 'xr', 'Markersize', 6)

Use ismembertol to locate the data points in x that are within tolerance of the grid points in
gridPoints. Use these options with ismembertol:

• Specify ByRows as true, since the point coordinates are in the rows of x.
• Specify OutputAllIndices as true to return all of the indices for rows in x that are within

tolerance of the corresponding row in gridPoints.

[LIA,LocB] = ismembertol(gridPoints, x, 0.05, ...
 'ByRows', true, 'OutputAllIndices', true);

For each grid point, plot the points in x that are within tolerance of that grid point.

 Group Scattered Data Using a Tolerance

2-37

figure
hold on
for k = 1:length(LocB)
 plot(x(LocB{k},1), x(LocB{k},2), '.')
end
plot(gridPoints(:,1), gridPoints(:,2), 'xr', 'Markersize', 6)

See Also
ismembertol

More About
• “Average Similar Data Points Using a Tolerance” on page 2-35

2 Program Components

2-38

Bit-Wise Operations

This topic shows how to use bit-wise operations in MATLAB® to manipulate the bits of numbers.
Operating on bits is directly supported by most modern CPUs. In many cases, manipulating the bits of
a number in this way is quicker than performing arithmetic operations like division or multiplication.

Number Representations

Any number can be represented with bits (also known as binary digits). The binary, or base 2, form of
a number contains 1s and 0s to indicate which powers of 2 are present in the number. For example,
the 8-bit binary form of 7 is

00000111

A collection of 8 bits is also called 1 byte. In binary representations, the bits are counted from the
right to the left, so the first bit in this representation is a 1. This number represents 7 because

22 + 21 + 20 = 7 .

When you type numbers into MATLAB, it assumes the numbers are double precision (a 64-bit binary
representation). However, you can also specify single-precision numbers (32-bit binary
representation) and integers (signed or unsigned, from 8 to 64 bits). For example, the most memory
efficient way to store the number 7 is with an 8-bit unsigned integer:

a = uint8(7)

a = uint8
 7

You can even specify the binary form directly using the prefix 0b followed by the binary digits (for
more information, see “Hexadecimal and Binary Values” on page 6-54). MATLAB stores the number
in an integer format with the fewest number of bits. Instead of specifying all the bits, you need to
specify only the left-most 1 and all the digits to the right of it. The bits to the left of that bit are
trivially zero. So the number 7 is:

b = 0b111

b = uint8
 7

MATLAB stores negative integers using two's complement. For example, consider the 8-bit signed
integer -8. To find the two's complement bit pattern for this number:

1 Start with the bit pattern of the positive version of the number, 8: 00001000.
2 Next, flip all of the bits: 11110111.
3 Finally, add 1 to the result: 11111000.

The result, 11111000, is the bit pattern for -8:

n = 0b11111000s8

n = int8
 -8

 Bit-Wise Operations

2-39

MATLAB does not natively display the binary format of numbers. For that, you can use the dec2bin
function, which returns a character vector of binary digits for positive integers. Again, this function
returns only the digits that are not trivially zero.

dec2bin(b)

ans =
'111'

You can use bin2dec to switch between the two formats. For example, you can convert the binary
digits 10110101 to decimal format with the commands

data = [1 0 1 1 0 1 0 1];
dec = bin2dec(num2str(data))

dec = 181

The cast and typecast functions are also useful to switch among different data types. These
functions are similar, but they differ in how they treat the underlying storage of the number:

• cast — Changes the underlying data type of a variable.
• typecast — Converts data types without changing the underlying bits.

Because MATLAB does not display the digits of a binary number directly, you must pay attention to
data types when you work with bit-wise operations. Some functions return binary digits as a
character vector (dec2bin), some return the decimal number (bitand), and others return a vector of
the bits themselves (bitget).

Bit Masking with Logical Operators

MATLAB has several functions that enable you to perform logical operations on the bits of two equal-
length binary representations of numbers, known as bit masking:

• bitand — If both digits are 1, then the resulting digit is also a 1. Otherwise, the resulting digit is
0.

• bitor — If either digit is 1, then the resulting digit is also a 1. Otherwise, the resulting digit is 0.
• bitxor — If the digits are different, then the resulting digit is a 1. Otherwise, the resulting digit

is 0.

In addition to these functions, the bit-wise complement is available with bitcmp, but this is a unary
operation that flips the bits in only one number at a time.

One use of bit masking is to query the status of a particular bit. For example, if you use a bit-wise
AND operation with the binary number 00001000, you can query the status of the fourth bit. You can
then shift that bit to the first position so that MATLAB returns a 0 or 1 (the next section describes bit
shifting in more detail).

n = 0b10111001;
n4 = bitand(n,0b1000);
n4 = bitshift(n4,-3)

n4 = uint8
 1

Bit-wise operations can have surprising applications. For example, consider the 8-bit binary
representation of the number n = 8:

2 Program Components

2-40

00001000

8 is a power of 2, so its binary representation contains a single 1. Now consider the number
n− 1 = 7:

00000111

By subtracting 1, all of the bits starting at the right-most 1 are flipped. As a result, when n is a power
of 2, corresponding digits of n and n− 1 are always different, and the bit-wise AND returns zero.

n = 0b1000;
bitand(n,n-1)

ans = uint8
 0

However, when n is not a power of 2, then the right-most 1 is for the 20 bit, so n and n− 1 have all
the same bits except for the 20 bit. For this case, the bit-wise AND returns a nonzero number.

n = 0b101;
bitand(n,n-1)

ans = uint8
 4

This operation suggests a simple function that operates on the bits of a given input number to check
whether the number is a power of 2:

function tf = isPowerOfTwo(n)
 tf = n && ~bitand(n,n-1);
end

The use of the short-circuit AND operator && checks to make sure that n is not zero. If it is, then the
function does not need to calculate bitand(n,n-1) to know that the correct answer is false.

Shifting Bits

Because bit-wise logical operations compare corresponding bits in two numbers, it is useful to be able
to move the bits around to change which bits are compared. You can use bitshift to perform this
operation:

• bitshift(A,N) shifts the bits of A to the left by N digits. This is equivalent to multiplying A by
2N.

• bitshift(A,-N) shifts the bits of A to the right by N digits. This is equivalent to dividing A by
2N.

These operations are sometimes written A<<N (left shift) and A>>N (right shift), but MATLAB does not
use << and >> operators for this purpose.

When the bits of a number are shifted, some bits fall off the end of the number, and 0s or 1s are
introduced to fill in the newly created space. When you shift bits to the left, the bits are filled in on
the right; when you shift bits to the right, the bits are filled in on the left.

For example, if you shift the bits of the number 8 (binary: 1000) to the right by one digit, you get 4
(binary: 100).

 Bit-Wise Operations

2-41

n = 0b1000;
bitshift(n,-1)

ans = uint8
 4

Similarly, if you shift the number 15 (binary: 1111) to the left by two digits, you get 60 (binary:
111100).

n = 0b1111;
bitshift(15,2)

ans = 60

When you shift the bits of a negative number, bitshift preserves the signed bit. For example, if you
shift the signed integer -3 (binary: 11111101) to the right by 2 digits, you get -1 (binary: 11111111).
In these cases, bitshift fills in on the left with 1s rather than 0s.

n = 0b11111101s8;
bitshift(n,-2)

ans = int8
 -1

Writing Bits

You can use the bitset function to change the bits in a number. For example, change the first bit of
the number 8 to a 1 (which adds 1 to the number):

bitset(8,1)

ans = 9

By default, bitset flips bits to on or 1. You can optionally use the third input argument to specify the
bit value.

bitset does not change multiple bits at once, so you need to use a for loop to change multiple bits.
Therefore, the bits you change can be either consecutive or nonconsecutive. For example, change the
first two bits of the binary number 1000:

bits = [1 2];
c = 0b1000;
for k = 1:numel(bits)
 c = bitset(c,bits(k));
end
dec2bin(c)

ans =
'1011'

Another common use of bitset is to convert a vector of binary digits into decimal format. For
example, use a loop to set the individual bits of the integer 11001101.

data = [1 1 0 0 1 1 0 1];
n = length(data);
dec = 0b0u8;
for k = 1:n
 dec = bitset(dec,n+1-k,data(k));

2 Program Components

2-42

end
dec

dec = uint8
 205

dec2bin(dec)

ans =
'11001101'

Reading Consecutive Bits

Another use of bit shifting is to isolate consecutive sections of bits. For example, read the last four
bits in the 16-bit number 0110000010100000. Recall that the last four bits are on the left of the
binary representation.

n = 0b0110000010100000;
dec2bin(bitshift(n,-12))

ans =
'110'

To isolate consecutive bits in the middle of the number, you can combine the use of bit shifting with
logical masking. For example, to extract the 13th and 14th bits, you can shift the bits to the right by
12 and then mask the resulting four bits with 0011. Because the inputs to bitand must be the same
integer data type, you can specify 0011 as an unsigned 16-bit integer with 0b11u16. Without the -
u16 suffix, MATLAB stores the number as an unsigned 8-bit integer.

m = 0b11u16;
dec2bin(bitand(bitshift(n,-12),m))

ans =
'10'

Another way to read consecutive bits is with bitget, which reads specified bits from a number. You
can use colon notation to specify several consecutive bits to read. For example, read the last 8 bits of
n.

bitget(n,16:-1:8)

ans = 1x9 uint16 row vector

 0 1 1 0 0 0 0 0 1

Reading Nonconsecutive Bits

You can also use bitget to read bits from a number when the bits are not next to each other. For
example, read the 5th, 8th, and 14th bits from n.

bits = [14 8 5];
bitget(n,bits)

ans = 1x3 uint16 row vector

 Bit-Wise Operations

2-43

 1 1 0

See Also
bitand | bitor | bitxor | bitget | bitset | bitshift | bitcmp

More About
• “Integers” on page 4-2
• “Perform Cyclic Redundancy Check” on page 2-45
• “Hexadecimal and Binary Values” on page 6-54

2 Program Components

2-44

Perform Cyclic Redundancy Check

This example shows how to perform a cyclic redundancy check (CRC) on the bits of a number. CRCs
are used to detect errors in the transmission of data in digital systems. When a piece of data is sent, a
short check value is attached to it. The check value is obtained by polynomial division with the bits in
the data. When the data is received, the polynomial division is repeated, and the result is compared
with the check value. If the results differ, then the data was corrupted during transmission.

Calculate Check Value by Hand

Start with a 16-bit binary number, which is the message to be transmitted:

1101100111011010

To obtain the check value, divide this number by the polynomial x3 + x2 + x + 1. You can represent
this polynomial with its coefficients: 1111.

The division is performed in steps, and after each step the polynomial divisor is aligned with the left-
most 1 in the number. Because the result of dividing by the four term polynomial has three bits (in
general dividing by a polynomial of length n + 1 produces a check value of length n), append the
number with 000 to calculate the remainder. At each step, the result uses the bit-wise XOR of the four
bits being operated on, and all other bits are unchanged.

The first division is

1101100111011010 000
1111

0010100111011010 000

Each successive division operates on the result of the previous step, so the second division is

0010100111011010 000
 1111

0001010111011010 000

The division is completed once the dividend is all zeros. The complete division, including the above
two steps, is

1101100111011010 000
1111
0010100111011010 000
 1111
0001010111011010 000
 1111
0000101111011010 000
 1111
0000010011011010 000
 1111
0000001101011010 000
 1111
0000000010011010 000
 1111
0000000001101010 000

 Perform Cyclic Redundancy Check

2-45

 1111
0000000000010010 000
 1111
0000000000001100 000
 1111
0000000000000011 000
 11 11
0000000000000000 110

The remainder bits, 110, are the check value for this message.

Calculate Check Value Programmatically

In MATLAB®, you can perform this same operation to obtain the check value using bit-wise
operations. First, define variables for the message and polynomial divisor. Use unsigned 32-bit
integers so that extra bits are available for the remainder.

message = 0b1101100111011010u32;
messageLength = 16;
divisor = 0b1111u32;
divisorDegree = 3;

Next, initialize the polynomial divisor. Use dec2bin to display the bits of the result.

divisor = bitshift(divisor,messageLength-divisorDegree-1);
dec2bin(divisor)

ans =
'1111000000000000'

Now, shift the divisor and message so that they have the correct number of bits (16 bits for the
message and 3 bits for the remainder).

divisor = bitshift(divisor,divisorDegree);
remainder = bitshift(message,divisorDegree);
dec2bin(divisor)

ans =
'1111000000000000000'

dec2bin(remainder)

ans =
'1101100111011010000'

Perform the division steps of the CRC using a for loop. The for loop always advances a single bit
each step, so include a check to see if the current digit is a 1. If the current digit is a 1, then the
division step is performed; otherwise, the loop advances a bit and continues.

for k = 1:messageLength
 if bitget(remainder,messageLength+divisorDegree)
 remainder = bitxor(remainder,divisor);
 end
 remainder = bitshift(remainder,1);
end

Shift the bits of the remainder to the right to get the check value for the operation.

2 Program Components

2-46

CRC_check_value = bitshift(remainder,-messageLength);
dec2bin(CRC_check_value)

ans =
'110'

Check Message Integrity

You can use the check value to verify the integrity of a message by repeating the same division
operation. However, instead of using a remainder of 000 to start, use the check value 110. If the
message is error free, then the result of the division will be zero.

Reset the remainder variable, and add the CRC check value to the remainder bits using a bit-wise OR.
Introduce an error into the message by flipping one of the bit values with bitset.

remainder = bitshift(message,divisorDegree);
remainder = bitor(remainder,CRC_check_value);
remainder = bitset(remainder,6);
dec2bin(remainder)

ans =
'1101100111011110110'

Perform the CRC division operation and then check if the result is zero.

for k = 1:messageLength
 if bitget(remainder,messageLength+divisorDegree)
 remainder = bitxor(remainder,divisor);
 end
 remainder = bitshift(remainder,1);
end
if remainder == 0
 disp('Message is error free.')
else
 disp('Message contains errors.')
end

Message contains errors.

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, NJ:

Prentice Hall, 1988.

[2] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage. Upper Saddle
River, NJ: Prentice Hall, 1995.

See Also
bitshift | bitxor

More About
• “Bit-Wise Operations” on page 2-39
• “Hexadecimal and Binary Values” on page 6-54

 Perform Cyclic Redundancy Check

2-47

Conditional Statements

Conditional statements enable you to select at run time which block of code to execute. The simplest
conditional statement is an if statement. For example:

% Generate a random number
a = randi(100, 1);

% If it is even, divide by 2
if rem(a, 2) == 0
 disp('a is even')
 b = a/2;
end

if statements can include alternate choices, using the optional keywords elseif or else. For
example:

a = randi(100, 1);

if a < 30
 disp('small')
elseif a < 80
 disp('medium')
else
 disp('large')
end

Alternatively, when you want to test for equality against a set of known values, use a switch
statement. For example:

[dayNum, dayString] = weekday(date, 'long', 'en_US');

switch dayString
 case 'Monday'
 disp('Start of the work week')
 case 'Tuesday'
 disp('Day 2')
 case 'Wednesday'
 disp('Day 3')
 case 'Thursday'
 disp('Day 4')
 case 'Friday'
 disp('Last day of the work week')
 otherwise
 disp('Weekend!')
end

For both if and switch, MATLAB executes the code corresponding to the first true condition, and
then exits the code block. Each conditional statement requires the end keyword.

In general, when you have many possible discrete, known values, switch statements are easier to
read than if statements. However, you cannot test for inequality between switch and case values.
For example, you cannot implement this type of condition with a switch:

yourNumber = input('Enter a number: ');

2 Program Components

2-48

if yourNumber < 0
 disp('Negative')
elseif yourNumber > 0
 disp('Positive')
else
 disp('Zero')
end

See Also
if | switch | end | return

 Conditional Statements

2-49

Loop Control Statements

With loop control statements, you can repeatedly execute a block of code. There are two types of
loops:

• for statements loop a specific number of times, and keep track of each iteration with an
incrementing index variable.

For example, preallocate a 10-element vector, and calculate five values:

x = ones(1,10);
for n = 2:6
 x(n) = 2 * x(n - 1);
end

• while statements loop as long as a condition remains true.

For example, find the first integer n for which factorial(n) is a 100-digit number:

n = 1;
nFactorial = 1;
while nFactorial < 1e100
 n = n + 1;
 nFactorial = nFactorial * n;
end

Each loop requires the end keyword.

It is a good idea to indent the loops for readability, especially when they are nested (that is, when one
loop contains another loop):

A = zeros(5,100);
for m = 1:5
 for n = 1:100
 A(m, n) = 1/(m + n - 1);
 end
end

You can programmatically exit a loop using a break statement, or skip to the next iteration of a loop
using a continue statement. For example, count the number of lines in the help for the magic
function (that is, all comment lines until a blank line):

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line)
 break
 elseif ~strncmp(line,'%',1)
 continue
 end
 count = count + 1;
end
fprintf('%d lines in MAGIC help\n',count);
fclose(fid);

2 Program Components

2-50

Tip If you inadvertently create an infinite loop (a loop that never ends on its own), stop execution of
the loop by pressing Ctrl+C.

See Also
for | while | break | continue | end

 Loop Control Statements

2-51

Regular Expressions

In this section...
“What Is a Regular Expression?” on page 2-52
“Steps for Building Expressions” on page 2-53
“Operators and Characters” on page 2-56

This topic describes what regular expressions are and how to use them to search text. Regular
expressions are flexible and powerful, though they use complex syntax. An alternative to regular
expressions is a pattern (since R2020b), which is simpler to define and results in code that is easier
to read. For more information, see “Build Pattern Expressions” on page 6-40.

What Is a Regular Expression?
A regular expression is a sequence of characters that defines a certain pattern. You normally use a
regular expression to search text for a group of words that matches the pattern, for example, while
parsing program input or while processing a block of text.

The character vector 'Joh?n\w*' is an example of a regular expression. It defines a pattern that
starts with the letters Jo, is optionally followed by the letter h (indicated by 'h?'), is then followed
by the letter n, and ends with any number of word characters, that is, characters that are alphabetic,
numeric, or underscore (indicated by '\w*'). This pattern matches any of the following:

Jon, John, Jonathan, Johnny

Regular expressions provide a unique way to search a volume of text for a particular subset of
characters within that text. Instead of looking for an exact character match as you would do with a
function like strfind, regular expressions give you the ability to look for a particular pattern of
characters.

For example, several ways of expressing a metric rate of speed are:

km/h
km/hr
km/hour
kilometers/hour
kilometers per hour

You could locate any of the above terms in your text by issuing five separate search commands:

strfind(text, 'km/h');
strfind(text, 'km/hour');
% etc.

To be more efficient, however, you can build a single phrase that applies to all of these search terms:

2 Program Components

2-52

Translate this phrase into a regular expression (to be explained later in this section) and you have:

pattern = 'k(ilo)?m(eters)?(/|\sper\s)h(r|our)?';

Now locate one or more of the terms using just a single command:

text = ['The high-speed train traveled at 250 ', ...
 'kilometers per hour alongside the automobile ', ...
 'travelling at 120 km/h.'];
regexp(text, pattern, 'match')

ans =

 1×2 cell array

 {'kilometers per hour'} {'km/h'}

There are four MATLAB functions that support searching and replacing characters using regular
expressions. The first three are similar in the input values they accept and the output values they
return. For details, click the links to the function reference pages.

Function Description
regexp Match regular expression.
regexpi Match regular expression, ignoring case.
regexprep Replace part of text using regular expression.
regexptranslate Translate text into regular expression.

When calling any of the first three functions, pass the text to be parsed and the regular expression in
the first two input arguments. When calling regexprep, pass an additional input that is an
expression that specifies a pattern for the replacement.

Steps for Building Expressions
There are three steps involved in using regular expressions to search text for a particular term:

1 Identify unique patterns in the string on page 2-54

This entails breaking up the text you want to search for into groups of like character types. These
character types could be a series of lowercase letters, a dollar sign followed by three numbers
and then a decimal point, etc.

2 Express each pattern as a regular expression on page 2-55

 Regular Expressions

2-53

Use the metacharacters and operators described in this documentation to express each segment
of your search pattern as a regular expression. Then combine these expression segments into the
single expression to use in the search.

3 Call the appropriate search function on page 2-55

Pass the text you want to parse to one of the search functions, such as regexp or regexpi, or to
the text replacement function, regexprep.

The example shown in this section searches a record containing contact information belonging to a
group of five friends. This information includes each person's name, telephone number, place of
residence, and email address. The goal is to extract specific information from the text..

contacts = { ...
'Harry 287-625-7315 Columbus, OH hparker@hmail.com'; ...
'Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net'; ...
'Mike 793-136-0975 Richmond, VA sue_and_mike@hmail.net'; ...
'Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net'; ...
'Jason 697-336-7728 Montrose, CO jason_blake@mymail.com'};

The first part of the example builds a regular expression that represents the format of a standard
email address. Using that expression, the example then searches the information for the email
address of one of the group of friends. Contact information for Janice is in row 2 of the contacts cell
array:

contacts{2}

ans =

 'Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net'

Step 1 — Identify Unique Patterns in the Text

A typical email address is made up of standard components: the user's account name, followed by an
@ sign, the name of the user's internet service provider (ISP), a dot (period), and the domain to which
the ISP belongs. The table below lists these components in the left column, and generalizes the
format of each component in the right column.

Unique patterns of an email address General description of each pattern
Start with the account name
 jan_stephens . . .

One or more lowercase letters and underscores

Add '@'
 jan_stephens@ . . .

@ sign

Add the ISP
 jan_stephens@horizon . . .

One or more lowercase letters, no underscores

Add a dot (period)
 jan_stephens@horizon. . . .

Dot (period) character

Finish with the domain
 jan_stephens@horizon.net

com or net

2 Program Components

2-54

Step 2 — Express Each Pattern as a Regular Expression

In this step, you translate the general formats derived in Step 1 into segments of a regular
expression. You then add these segments together to form the entire expression.

The table below shows the generalized format descriptions of each character pattern in the left-most
column. (This was carried forward from the right column of the table in Step 1.) The second column
shows the operators or metacharacters that represent the character pattern.

Description of each segment Pattern
One or more lowercase letters and underscores [a-z_]+
@ sign @
One or more lowercase letters, no underscores [a-z]+
Dot (period) character \.
com or net (com|net)

Assembling these patterns into one character vector gives you the complete expression:

email = '[a-z_]+@[a-z]+\.(com|net)';

Step 3 — Call the Appropriate Search Function

In this step, you use the regular expression derived in Step 2 to match an email address for one of the
friends in the group. Use the regexp function to perform the search.

Here is the list of contact information shown earlier in this section. Each person's record occupies a
row of the contacts cell array:

contacts = { ...
'Harry 287-625-7315 Columbus, OH hparker@hmail.com'; ...
'Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net'; ...
'Mike 793-136-0975 Richmond, VA sue_and_mike@hmail.net'; ...
'Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net'; ...
'Jason 697-336-7728 Montrose, CO jason_blake@mymail.com'};

This is the regular expression that represents an email address, as derived in Step 2:

email = '[a-z_]+@[a-z]+\.(com|net)';

Call the regexp function, passing row 2 of the contacts cell array and the email regular
expression. This returns the email address for Janice.

regexp(contacts{2}, email, 'match')

ans =

 1×1 cell array

 {'jan_stephens@horizon.net'}

MATLAB parses a character vector from left to right, “consuming” the vector as it goes. If matching
characters are found, regexp records the location and resumes parsing the character vector, starting
just after the end of the most recent match.

Make the same call, but this time for the fifth person in the list:

 Regular Expressions

2-55

regexp(contacts{5}, email, 'match')

ans =

 1×1 cell array

 {'jason_blake@mymail.com'}

You can also search for the email address of everyone in the list by using the entire cell array for the
input argument:

regexp(contacts, email, 'match');

Operators and Characters
Regular expressions can contain characters, metacharacters, operators, tokens, and flags that specify
patterns to match, as described in these sections:

• “Metacharacters” on page 2-56
• “Character Representation” on page 2-57
• “Quantifiers” on page 2-57
• “Grouping Operators” on page 2-58
• “Anchors” on page 2-59
• “Lookaround Assertions” on page 2-59
• “Logical and Conditional Operators” on page 2-60
• “Token Operators” on page 2-61
• “Dynamic Expressions” on page 2-61
• “Comments” on page 2-62
• “Search Flags” on page 2-62

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to construct a
generalized pattern of characters.

Metacharacter Description Example
. Any single character, including white

space
'..ain' matches sequences of five
consecutive characters that end with 'ain'.

[c1c2c3] Any character contained within the
square brackets. The following
characters are treated literally: $ | . *
+ ? and - when not used to indicate a
range.

'[rp.]ain' matches 'rain' or 'pain' or
'.ain'.

[^c1c2c3] Any character not contained within the
square brackets. The following
characters are treated literally: $ | . *
+ ? and - when not used to indicate a
range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except 'rain'
and 'pain' and '*ain'. For example, it
matches 'gain', 'lain', or 'vain'.

2 Program Components

2-56

Metacharacter Description Example
[c1-c2] Any character in the range of c1 through

c2

'[A-G]' matches a single character in the
range of A through G.

\w Any alphabetic, numeric, or underscore
character. For English character sets, \w
is equivalent to [a-zA-Z_0-9]

'\w*' identifies a word comprised of any
grouping of alphabetic, numeric, or underscore
characters.

\W Any character that is not alphabetic,
numeric, or underscore. For English
character sets, \W is equivalent to [^a-
zA-Z_0-9]

'\W*' identifies a term that is not a word
comprised of any grouping of alphabetic,
numeric, or underscore characters.

\s Any white-space character; equivalent to
[\f\n\r\t\v]

'\w*n\s' matches words that end with the
letter n, followed by a white-space character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit followed by
any non-white-space character.

\d Any numeric digit; equivalent to [0-9] '\d*' matches any number of consecutive
digits.

\D Any nondigit character; equivalent to
[^0-9]

'\w*\D\>' matches words that do not end
with a numeric digit.

\oN or \o{N} Character of octal value N '\o{40}' matches the space character,
defined by octal 40.

\xN or \x{N} Character of hexadecimal value N '\x2C' matches the comma character, defined
by hex 2C.

Character Representation

Operator Description
\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match literally

(for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a pattern must occur in the matching text.

Quantifier Number of Times Expression Occurs Example
expr* 0 or more times consecutively. '\w*' matches a word of any length.

 Regular Expressions

2-57

Quantifier Number of Times Expression Occurs Example
expr? 0 times or 1 time. '\w*(\.m)?' matches words that optionally

end with the extension .m.
expr+ 1 or more times consecutively. '' matches an

 HTML tag when the file name contains
one or more characters.

expr{m,n} At least m times, but no more than n times
consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and eight
non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to * and +,
respectively.

'' matches an
<a> HTML tag when the file name contains one
or more characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive digits.

Quantifiers can appear in three modes, described in the following table. q represents any of the
quantifiers in the previous table.

Mode Description Example
exprq Greedy expression: match as many characters

as possible.
Given the text '<tr><td><p>text</p></
td>', the expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

exprq? Lazy expression: match as few characters as
necessary.

Given the text'<tr><td><p>text</p></
td>', the expression '</?t.*?>' ends each
match at the first occurrence of the closing
angle bracket (>):

'<tr>' '<td>' '</td>'

exprq+ Possessive expression: match as much as
possible, but do not rescan any portions of the
text.

Given the text'<tr><td><p>text</p></
td>', the expression '</?t.*+>' does not
return any matches, because the closing
angle bracket is captured using .*, and is not
rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to multiple elements, or disable
backtracking in a specific group.

2 Program Components

2-58

Grouping
Operator

Description Example

(expr) Group elements of the expression and capture
tokens.

'Joh?n\s(\w*)' captures a token that
contains the last name of any person with the
first name John or Jon.

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}' matches two
consecutive patterns of a vowel followed by a
nonvowel, such as 'anon'.

Without grouping, '[aeiou][^aeiou]
{2}'matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack within the
group to complete the match, and do not
capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using the atomic
group, Z is captured using .* and is not
rescanned.

(expr1|expr2) Match expression expr1 or expression
expr2.

If there is a match with expr1, then expr2 is
ignored.

You can include ?: or ?> after the opening
parenthesis to suppress tokens or group
atomically.

'(let|tel)\w+' matches words that
contain, but do not end, with let or tel.

Anchors

Anchors in the expression match the beginning or end of a character vector or word.

Anchor Matches the... Example
^expr Beginning of the input text. '^M\w*' matches a word starting with M at

the beginning of the text.
expr$ End of the input text. '\w*m$' matches words ending with m at the

end of the text.
\<expr Beginning of a word. '\<n\w*' matches any words starting with

n.
expr\> End of a word. '\w*e\>' matches any words ending with e.

Lookaround Assertions

Lookaround assertions look for patterns that immediately precede or follow the intended match, but
are not part of the match.

The pointer remains at the current location, and characters that correspond to the test expression
are not captured or discarded. Therefore, lookahead assertions can match overlapping character
groups.

 Regular Expressions

2-59

Lookaround
Assertion

Description Example

expr(?=test) Look ahead for characters that match test. '\w*(?=ing)' matches terms that are
followed by ing, such as 'Fly' and 'fall'
in the input text 'Flying, not falling.'

expr(?!test) Look ahead for characters that do not
match test.

'i(?!ng)' matches instances of the letter i
that are not followed by ng.

(?<=test)expr Look behind for characters that match
test.

'(?<=re)\w*' matches terms that follow
're', such as 'new', 'use', and 'cycle'
in the input text 'renew, reuse,
recycle'

(?<!test)expr Look behind for characters that do not
match test.

'(?<!\d)(\d)(?!\d)' matches single-
digit numbers (digits that do not precede or
follow other digits).

If you specify a lookahead assertion before an expression, the operation is equivalent to a logical AND.

Operation Description Example
(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches

consonants.
(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches consonants.

For more information, see “Lookahead Assertions in Regular Expressions” on page 2-64.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given condition, and then use the
outcome to determine which pattern, if any, to match next. These operators support logical OR and if
or if/else conditions. (For AND conditions, see “Lookaround Assertions” on page 2-59.)

Conditions can be tokens on page 2-61, lookaround assertions on page 2-59, or dynamic expressions
on page 2-61 of the form (?@cmd). Dynamic expressions must return a logical or numeric value.

Conditional Operator Description Example
expr1|expr2 Match expression expr1 or expression

expr2.

If there is a match with expr1, then
expr2 is ignored.

'(let|tel)\w+' matches words that
start with let or tel.

(?(cond)expr) If condition cond is true, then match
expr.

'(?(?@ispc)[A-Z]:\\)' matches a
drive name, such as C:\, when run on a
Windows system.

(?(cond)expr1|expr2) If condition cond is true, then match
expr1. Otherwise, match expr2.

'Mr(s?)\..*?(?(1)her|his) \w*'
matches text that includes her when
the text begins with Mrs, or that
includes his when the text begins with
Mr.

2 Program Components

2-60

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular expression in
parentheses. You can refer to a token by its sequence in the text (an ordinal token), or assign names
to tokens for easier code maintenance and readable output.

Ordinal Token Operator Description Example
(expr) Capture in a token the characters that

match the enclosed expression.
'Joh?n\s(\w*)' captures a token that
contains the last name of any person
with the first name John or Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures tokens
for HTML tags, such as 'title' from
the text '<title>Some text</
title>'.

(?(N)expr1|expr2) If the Nth token is found, then match
expr1. Otherwise, match expr2.

'Mr(s?)\..*?(?(1)her|his) \w*'
matches text that includes her when
the text begins with Mrs, or that
includes his when the text begins with
Mr.

Named Token Operator Description Example
(?<name>expr) Capture in a named token the

characters that match the enclosed
expression.

'(?<month>\d+)-(?<day>\d+)-(?
<yr>\d+)' creates named tokens for
the month, day, and year in an input
date of the form mm-dd-yy.

\k<name> Match the token referred to by name. '<(?<tag>\w+).*>.*</\k<tag>>'
captures tokens for HTML tags, such as
'title' from the text '<title>Some
text</title>'.

(?(name)expr1|expr2) If the named token is found, then
match expr1. Otherwise, match
expr2.

'Mr(?<sex>s?)\..*?(?(sex)her|
his) \w*' matches text that includes
her when the text begins with Mrs, or
that includes his when the text begins
with Mr.

Note If an expression has nested parentheses, MATLAB captures tokens that correspond to the
outermost set of parentheses. For example, given the search pattern '(and(y|rew))', MATLAB
creates a token for 'andrew' but not for 'y' or 'rew'.

For more information, see “Tokens in Regular Expressions” on page 2-67.

Dynamic Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression to determine
the text to match.

The parentheses that enclose dynamic expressions do not create a capturing group.

 Regular Expressions

2-61

Operator Description Example
(??expr) Parse expr and include the resulting term

in the match expression.

When parsed, expr must correspond to a
complete, valid regular expression.
Dynamic expressions that use the backslash
escape character (\) require two
backslashes: one for the initial parsing of
expr, and one for the complete match.

'^(\d+)((??\\w{$1}))' determines
how many characters to match by reading
a digit at the beginning of the match. The
dynamic expression is enclosed in a
second set of parentheses so that the
resulting match is captured in a token. For
instance, matching '5XXXXX' captures
tokens for '5' and 'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include the output
returned by the command in the match
expression.

'(.{2,}).?(??@fliplr($1))' finds
palindromes that are at least four
characters long, such as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard any output
the command returns. (Helpful for
diagnosing regular expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include double letters
(such as pp), and displays intermediate
results.

Within dynamic expressions, use the following operators to define replacement terms.

Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd

For more information, see “Dynamic Regular Expressions” on page 2-73.

Comments

The comment operator enables you to insert comments into your code to make it more maintainable.
The text of the comment is ignored by MATLAB when matching against the input text.

Characters Description Example
(?#comment) Insert a comment in the regular expression.

The comment text is ignored when
matching the input.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches words
that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions.

Flag Description
(?-i) Match letter case (default for regexp and regexprep).
(?i) Do not match letter case (default for regexpi).

2 Program Components

2-62

Flag Description
(?s) Match dot (.) in the pattern with any character (default).
(?-s) Match dot in the pattern with any character that is not a newline character.
(?-m) Match the ^ and $ metacharacters at the beginning and end of text (default).
(?m) Match the ^ and $ metacharacters at the beginning and end of a line.
(?-x) Include space characters and comments when matching (default).
(?x) Ignore space characters and comments when matching. Use '\ ' and '\#' to

match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger expression.

See Also
regexp | regexpi | regexprep | regexptranslate | pattern

More About
• “Lookahead Assertions in Regular Expressions” on page 2-64
• “Tokens in Regular Expressions” on page 2-67
• “Dynamic Regular Expressions” on page 2-73
• “Search and Replace Text” on page 6-37

 Regular Expressions

2-63

Lookahead Assertions in Regular Expressions
In this section...
“Lookahead Assertions” on page 2-64
“Overlapping Matches” on page 2-64
“Logical AND Conditions” on page 2-65

Lookahead Assertions
There are two types of lookaround assertions for regular expressions: lookahead and lookbehind. In
both cases, the assertion is a condition that must be satisfied to return a match to the expression.

A lookahead assertion has the form (?=test) and can appear anywhere in a regular expression.
MATLAB looks ahead of the current location in the text for the test condition. If MATLAB matches the
test condition, it continues processing the rest of the expression to find a match.

For example, look ahead in a character vector specifying a path to find the name of the folder that
contains a program file (in this case, fileread.m).

chr = which('fileread')

chr =

 'matlabroot\toolbox\matlab\iofun\fileread.m'

regexp(chr,'\w+(?=\\\w+\.[mp])','match')

ans =

 1×1 cell array

 {'iofun'}

The match expression, \w+, searches for one or more alphanumeric or underscore characters. Each
time regexp finds a term that matches this condition, it looks ahead for a backslash (specified with
two backslashes, \\), followed by a file name (\w+) with an .m or .p extension (\.[mp]). The
regexp function returns the match that satisfies the lookahead condition, which is the folder name
iofun.

Overlapping Matches
Lookahead assertions do not consume any characters in the text. As a result, you can use them to find
overlapping character sequences.

For example, use lookahead to find every sequence of six nonwhitespace characters in a character
vector by matching initial characters that precede five additional characters:

chr = 'Locate several 6-char. phrases';
startIndex = regexpi(chr,'\S(?=\S{5})')

startIndex =

 1 8 9 16 17 24 25

2 Program Components

2-64

The starting indices correspond to these phrases:

Locate severa everal 6-char -char. phrase hrases

Without the lookahead operator, MATLAB parses a character vector from left to right, consuming the
vector as it goes. If matching characters are found, regexp records the location and resumes parsing
the character vector from the location of the most recent match. There is no overlapping of
characters in this process.

chr = 'Locate several 6-char. phrases';
startIndex = regexpi(chr,'\S{6}')

startIndex =

 1 8 16 24

The starting indices correspond to these phrases:

Locate severa 6-char phrase

Logical AND Conditions
Another way to use a lookahead operation is to perform a logical AND between two conditions. This
example initially attempts to locate all lowercase consonants in a character array consisting of the
first 50 characters of the help for the normest function:

helptext = help('normest');
chr = helptext(1:50)

chr =

 ' NORMEST Estimate the matrix 2-norm.
 NORMEST(S'

Merely searching for non-vowels ([^aeiou]) does not return the expected answer, as the output
includes capital letters, space characters, and punctuation:

c = regexp(chr,'[^aeiou]','match')

c =

 1×43 cell array

 Columns 1 through 14

 {' '} {'N'} {'O'} {'R'} {'M'} {'E'} {'S'} {'T'} {' '} {'E'} {'s'} {'t'} {'m'} {'t'}

 Columns 15 through 28

 {' '} {'t'} {'h'} {' '} {'m'} {'t'} {'r'} {'x'} {' '} {'2'} {'-'} {'n'} {'r'} {'m'}

 Columns 29 through 42

 {'.'} {'↵'} {' '} {' '} {' '} {' '} {'N'} {'O'} {'R'} {'M'} {'E'} {'S'} {'T'} {'('}

 Column 43

 {'S'}

 Lookahead Assertions in Regular Expressions

2-65

Try this again, using a lookahead operator to create the following AND condition:

(lowercase letter) AND (not a vowel)

This time, the result is correct:

c = regexp(chr,'(?=[a-z])[^aeiou]','match')

c =

 1×13 cell array

 {'s'} {'t'} {'m'} {'t'} {'t'} {'h'} {'m'} {'t'} {'r'} {'x'} {'n'} {'r'} {'m'}

Note that when using a lookahead operator to perform an AND, you need to place the match
expression expr after the test expression test:

(?=test)expr or (?!test)expr

See Also
regexp | regexpi | regexprep

More About
• “Regular Expressions” on page 2-52

2 Program Components

2-66

Tokens in Regular Expressions

In this section...
“Introduction” on page 2-67
“Multiple Tokens” on page 2-69
“Unmatched Tokens” on page 2-70
“Tokens in Replacement Text” on page 2-70
“Named Capture” on page 2-71

Introduction
Parentheses used in a regular expression not only group elements of that expression together, but
also designate any matches found for that group as tokens. You can use tokens to match other parts
of the same text. One advantage of using tokens is that they remember what they matched, so you
can recall and reuse matched text in the process of searching or replacing.

Each token in the expression is assigned a number, starting from 1, going from left to right. To make
a reference to a token later in the expression, refer to it using a backslash followed by the token
number. For example, when referencing a token generated by the third set of parentheses in the
expression, use \3.

As a simple example, if you wanted to search for identical sequential letters in a character array, you
could capture the first letter as a token and then search for a matching character immediately
afterwards. In the expression shown below, the (\S) phrase creates a token whenever regexp
matches any nonwhitespace character in the character array. The second part of the expression,
'\1', looks for a second instance of the same character immediately following the first.

poe = ['While I nodded, nearly napping, ' ...
 'suddenly there came a tapping,'];

[mat,tok,ext] = regexp(poe, '(\S)\1', 'match', ...
 'tokens', 'tokenExtents');
mat

mat =

 1×4 cell array

 {'dd'} {'pp'} {'dd'} {'pp'}

The cell array tok contains cell arrays that each contain a token.

tok{:}

ans =

 1×1 cell array

 {'d'}

ans =

 Tokens in Regular Expressions

2-67

 1×1 cell array

 {'p'}

ans =

 1×1 cell array

 {'d'}

ans =

 1×1 cell array

 {'p'}

The cell array ext contains numeric arrays that each contain starting and ending indices for a token.

ext{:}

ans =

 11 11

ans =

 26 26

ans =

 35 35

ans =

 57 57

For another example, capture pairs of matching HTML tags (e.g., <a> and) and the text
between them. The expression used for this example is

expr = '<(\w+).*?>.*?</\1>';

The first part of the expression, '<(\w+)', matches an opening angle bracket (<) followed by one or
more alphabetic, numeric, or underscore characters. The enclosing parentheses capture token
characters following the opening angle bracket.

The second part of the expression, '.*?>.*?', matches the remainder of this HTML tag (characters
up to the >), and any characters that may precede the next opening angle bracket.

The last part, '</\1>', matches all characters in the ending HTML tag. This tag is composed of the
sequence </tag>, where tag is whatever characters were captured as a token.

hstr = '<!comment>Default
';
expr = '<(\w+).*?>.*?</\1>';

2 Program Components

2-68

[mat,tok] = regexp(hstr, expr, 'match', 'tokens');
mat{:}

ans =

 ''

ans =

 'Default'

tok{:}

ans =

 1×1 cell array

 {'a'}

ans =

 1×1 cell array

 {'b'}

Multiple Tokens
Here is an example of how tokens are assigned values. Suppose that you are going to search the
following text:

andy ted bob jim andrew andy ted mark

You choose to search the above text with the following search pattern:

and(y|rew)|(t)e(d)

This pattern has three parenthetical expressions that generate tokens. When you finally perform the
search, the following tokens are generated for each match.

Match Token 1 Token 2
andy y
ted t d
andrew rew
andy y
ted t d

Only the highest level parentheses are used. For example, if the search pattern and(y|rew) finds the
text andrew, token 1 is assigned the value rew. However, if the search pattern (and(y|rew)) is
used, token 1 is assigned the value andrew.

 Tokens in Regular Expressions

2-69

Unmatched Tokens
For those tokens specified in the regular expression that have no match in the text being evaluated,
regexp and regexpi return an empty character vector ('') as the token output, and an extent that
marks the position in the string where the token was expected.

The example shown here executes regexp on a character vector specifying the path returned from
the MATLAB tempdir function. The regular expression expr includes six token specifiers, one for
each piece of the path. The third specifier [a-z]+ has no match in the character vector because this
part of the path, Profiles, begins with an uppercase letter:

chr = tempdir

chr =

 'C:\WINNT\Profiles\bpascal\LOCALS~1\Temp\'

expr = ['([A-Z]:)\\(WINNT)\\([a-z]+)?.*\\' ...
 '([a-z]+)\\([A-Z]+~\d)\\(Temp)\\'];

[tok, ext] = regexp(chr, expr, 'tokens', 'tokenExtents');

When a token is not found in the text, regexp returns an empty character vector ('') as the token
and a numeric array with the token extent. The first number of the extent is the string index that
marks where the token was expected, and the second number of the extent is equal to one less than
the first.

In the case of this example, the empty token is the third specified in the expression, so the third token
returned is empty:

tok{:}

ans =

 1×6 cell array

 {'C:'} {'WINNT'} {0×0 char} {'bpascal'} {'LOCALS~1'} {'Temp'}

The third token extent returned in the variable ext has the starting index set to 10, which is where
the nonmatching term, Profiles, begins in the path. The ending extent index is set to one less than
the starting index, or 9:

ext{:}

ans =

 1 2
 4 8
 10 9
 19 25
 27 34
 36 39

Tokens in Replacement Text

2 Program Components

2-70

When using tokens in replacement text, reference them using $1, $2, etc. instead of \1, \2, etc. This
example captures two tokens and reverses their order. The first, $1, is 'Norma Jean' and the
second, $2, is 'Baker'. Note that regexprep returns the modified text, not a vector of starting
indices.

regexprep('Norma Jean Baker', '(\w+\s\w+)\s(\w+)', '$2, $1')

ans =

 'Baker, Norma Jean'

Named Capture

If you use a lot of tokens in your expressions, it may be helpful to assign them names rather than
having to keep track of which token number is assigned to which token.

When referencing a named token within the expression, use the syntax \k<name> instead of the
numeric \1, \2, etc.:

poe = ['While I nodded, nearly napping, ' ...
 'suddenly there came a tapping,'];

regexp(poe, '(?<anychar>.)\k<anychar>', 'match')

ans =

 1×4 cell array

 {'dd'} {'pp'} {'dd'} {'pp'}

Named tokens can also be useful in labeling the output from the MATLAB regular expression
functions. This is especially true when you are processing many pieces of text.

For example, parse different parts of street addresses from several character vectors. A short name is
assigned to each token in the expression:

chr1 = '134 Main Street, Boulder, CO, 14923';
chr2 = '26 Walnut Road, Topeka, KA, 25384';
chr3 = '847 Industrial Drive, Elizabeth, NJ, 73548';

p1 = '(?<adrs>\d+\s\S+\s(Road|Street|Avenue|Drive))';
p2 = '(?<city>[A-Z][a-z]+)';
p3 = '(?<state>[A-Z]{2})';
p4 = '(?<zip>\d{5})';

expr = [p1 ', ' p2 ', ' p3 ', ' p4];

As the following results demonstrate, you can make your output easier to work with by using named
tokens:

loc1 = regexp(chr1, expr, 'names')

loc1 =

 struct with fields:

 Tokens in Regular Expressions

2-71

 adrs: '134 Main Street'
 city: 'Boulder'
 state: 'CO'
 zip: '14923'

loc2 = regexp(chr2, expr, 'names')

loc2 =

 struct with fields:

 adrs: '26 Walnut Road'
 city: 'Topeka'
 state: 'KA'
 zip: '25384'

loc3 = regexp(chr3, expr, 'names')

loc3 =

 struct with fields:

 adrs: '847 Industrial Drive'
 city: 'Elizabeth'
 state: 'NJ'
 zip: '73548'

See Also
regexp | regexpi | regexprep

More About
• “Regular Expressions” on page 2-52

2 Program Components

2-72

Dynamic Regular Expressions

In this section...
“Introduction” on page 2-73
“Dynamic Match Expressions — (??expr)” on page 2-74
“Commands That Modify the Match Expression — (??@cmd)” on page 2-74
“Commands That Serve a Functional Purpose — (?@cmd)” on page 2-75
“Commands in Replacement Expressions — ${cmd}” on page 2-77

Introduction
In a dynamic expression, you can make the pattern that you want regexp to match dependent on the
content of the input text. In this way, you can more closely match varying input patterns in the text
being parsed. You can also use dynamic expressions in replacement terms for use with the
regexprep function. This gives you the ability to adapt the replacement text to the parsed input.

You can include any number of dynamic expressions in the match_expr or replace_expr
arguments of these commands:

regexp(text, match_expr)
regexpi(text, match_expr)
regexprep(text, match_expr, replace_expr)

As an example of a dynamic expression, the following regexprep command correctly replaces the
term internationalization with its abbreviated form, i18n. However, to use it on a different
term such as globalization, you have to use a different replacement expression:

match_expr = '(^\w)(\w*)(\w$)';

replace_expr1 = '$118$3';
regexprep('internationalization', match_expr, replace_expr1)

ans =

 'i18n'

replace_expr2 = '$111$3';
regexprep('globalization', match_expr, replace_expr2)

ans =

 'g11n'

Using a dynamic expression ${num2str(length($2))} enables you to base the replacement
expression on the input text so that you do not have to change the expression each time. This
example uses the dynamic replacement syntax ${cmd}.

match_expr = '(^\w)(\w*)(\w$)';
replace_expr = '1{num2str(length($2))}$3';

regexprep('internationalization', match_expr, replace_expr)

 Dynamic Regular Expressions

2-73

ans =

 'i18n'

regexprep('globalization', match_expr, replace_expr)

ans =

 'g11n'

When parsed, a dynamic expression must correspond to a complete, valid regular expression. In
addition, dynamic match expressions that use the backslash escape character (\) require two
backslashes: one for the initial parsing of the expression, and one for the complete match. The
parentheses that enclose dynamic expressions do not create a capturing group.

There are three forms of dynamic expressions that you can use in match expressions, and one form
for replacement expressions, as described in the following sections

Dynamic Match Expressions — (??expr)
The (??expr) operator parses expression expr, and inserts the results back into the match
expression. MATLAB then evaluates the modified match expression.

Here is an example of the type of expression that you can use with this operator:

chr = {'5XXXXX', '8XXXXXXXX', '1X'};
regexp(chr, '^(\d+)(??X{$1})$', 'match', 'once');

The purpose of this particular command is to locate a series of X characters in each of the character
vectors stored in the input cell array. Note however that the number of Xs varies in each character
vector. If the count did not vary, you could use the expression X{n} to indicate that you want to match
n of these characters. But, a constant value of n does not work in this case.

The solution used here is to capture the leading count number (e.g., the 5 in the first character vector
of the cell array) in a token, and then to use that count in a dynamic expression. The dynamic
expression in this example is (??X{$1}), where $1 is the value captured by the token \d+. The
operator {$1} makes a quantifier of that token value. Because the expression is dynamic, the same
pattern works on all three of the input vectors in the cell array. With the first input character vector,
regexp looks for five X characters; with the second, it looks for eight, and with the third, it looks for
just one:

regexp(chr, '^(\d+)(??X{$1})$', 'match', 'once')

ans =

 1×3 cell array

 {'5XXXXX'} {'8XXXXXXXX'} {'1X'}

Commands That Modify the Match Expression — (??@cmd)
MATLAB uses the (??@cmd) operator to include the results of a MATLAB command in the match
expression. This command must return a term that can be used within the match expression.

For example, use the dynamic expression (??@flilplr($1)) to locate a palindrome, “Never Odd or
Even”, that has been embedded into a larger character vector.

2 Program Components

2-74

First, create the input string. Make sure that all letters are lowercase, and remove all nonword
characters.

chr = lower(...
 'Find the palindrome Never Odd or Even in this string');

chr = regexprep(chr, '\W*', '')

chr =

 'findthepalindromeneveroddoreveninthisstring'

Locate the palindrome within the character vector using the dynamic expression:

palindrome = regexp(chr, '(.{3,}).?(??@fliplr($1))', 'match')

palindrome =

 1×1 cell array

 {'neveroddoreven'}

The dynamic expression reverses the order of the letters that make up the character vector, and then
attempts to match as much of the reversed-order vector as possible. This requires a dynamic
expression because the value for $1 relies on the value of the token (.{3,}).

Dynamic expressions in MATLAB have access to the currently active workspace. This means that you
can change any of the functions or variables used in a dynamic expression just by changing variables
in the workspace. Repeat the last command of the example above, but this time define the function to
be called within the expression using a function handle stored in the base workspace:

fun = @fliplr;

palindrome = regexp(chr, '(.{3,}).?(??@fun($1))', 'match')

palindrome =

 1×1 cell array

 {'neveroddoreven'}

Commands That Serve a Functional Purpose — (?@cmd)
The (?@cmd) operator specifies a MATLAB command that regexp or regexprep is to run while
parsing the overall match expression. Unlike the other dynamic expressions in MATLAB, this operator
does not alter the contents of the expression it is used in. Instead, you can use this functionality to
get MATLAB to report just what steps it is taking as it parses the contents of one of your regular
expressions. This functionality can be useful in diagnosing your regular expressions.

The following example parses a word for zero or more characters followed by two identical
characters followed again by zero or more characters:

regexp('mississippi', '\w*(\w)\1\w*', 'match')

ans =

 1×1 cell array

 Dynamic Regular Expressions

2-75

 {'mississippi'}

To track the exact steps that MATLAB takes in determining the match, the example inserts a short
script (?@disp($1)) in the expression to display the characters that finally constitute the match.
Because the example uses greedy quantifiers, MATLAB attempts to match as much of the character
vector as possible. So, even though MATLAB finds a match toward the beginning of the string, it
continues to look for more matches until it arrives at the very end of the string. From there, it backs
up through the letters i then p and the next p, stopping at that point because the match is finally
satisfied:

regexp('mississippi', '\w*(\w)(?@disp($1))\1\w*', 'match')

i
p
p

ans =

 1×1 cell array

 {'mississippi'}

Now try the same example again, this time making the first quantifier lazy (*?). Again, MATLAB
makes the same match:

regexp('mississippi', '\w*?(\w)\1\w*', 'match')

ans =

 1×1 cell array

 {'mississippi'}

But by inserting a dynamic script, you can see that this time, MATLAB has matched the text quite
differently. In this case, MATLAB uses the very first match it can find, and does not even consider the
rest of the text:

regexp('mississippi', '\w*?(\w)(?@disp($1))\1\w*', 'match')

m
i
s

ans =

 1×1 cell array

 {'mississippi'}

To demonstrate how versatile this type of dynamic expression can be, consider the next example that
progressively assembles a cell array as MATLAB iteratively parses the input text. The (?!) operator
found at the end of the expression is actually an empty lookahead operator, and forces a failure at
each iteration. This forced failure is necessary if you want to trace the steps that MATLAB is taking to
resolve the expression.

MATLAB makes a number of passes through the input text, each time trying another combination of
letters to see if a fit better than last match can be found. On any passes in which no matches are

2 Program Components

2-76

found, the test results in an empty character vector. The dynamic script (?@if(~isempty($&)))
serves to omit the empty character vectors from the matches cell array:

matches = {};
expr = ['(Euler\s)?(Cauchy\s)?(Boole)?(?@if(~isempty($&)),' ...
 'matches{end+1}=$&;end)(?!)'];

regexp('Euler Cauchy Boole', expr);

matches

matches =

 1×6 cell array

 {'Euler Cauchy Bo…'} {'Euler Cauchy '} {'Euler '} {'Cauchy Boole'} {'Cauchy '} {'Boole'}

The operators $& (or the equivalent $0), $`, and $' refer to that part of the input text that is
currently a match, all characters that precede the current match, and all characters to follow the
current match, respectively. These operators are sometimes useful when working with dynamic
expressions, particularly those that employ the (?@cmd) operator.

This example parses the input text looking for the letter g. At each iteration through the text, regexp
compares the current character with g, and not finding it, advances to the next character. The
example tracks the progress of scan through the text by marking the current location being parsed
with a ^ character.

(The $` and $´ operators capture that part of the text that precedes and follows the current parsing
location. You need two single-quotation marks ($'') to express the sequence $´ when it appears
within text.)

chr = 'abcdefghij';
expr = '(?@disp(sprintf(''starting match: [%s^%s]'',$`,$'')))g';

regexp(chr, expr, 'once');

starting match: [^abcdefghij]
starting match: [a^bcdefghij]
starting match: [ab^cdefghij]
starting match: [abc^defghij]
starting match: [abcd^efghij]
starting match: [abcde^fghij]
starting match: [abcdef^ghij]

Commands in Replacement Expressions — ${cmd}
The ${cmd} operator modifies the contents of a regular expression replacement pattern, making this
pattern adaptable to parameters in the input text that might vary from one use to the next. As with
the other dynamic expressions used in MATLAB, you can include any number of these expressions
within the overall replacement expression.

Commands in replacement expressions only check the local workspace for variables. Caller and
global workspaces are not available to commands in replacement expressions

In the regexprep call shown here, the replacement pattern is '${convertMe($1,$2)}'. In this
case, the entire replacement pattern is a dynamic expression:

 Dynamic Regular Expressions

2-77

regexprep('This highway is 125 miles long', ...
 '(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}');

The dynamic expression tells MATLAB to execute a function named convertMe using the two tokens
(\d+\.?\d*) and (\w+), derived from the text being matched, as input arguments in the call to
convertMe. The replacement pattern requires a dynamic expression because the values of $1 and $2
are generated at runtime.

The following example defines the file named convertMe that converts measurements from imperial
units to metric.

function valout = convertMe(valin, units)
switch(units)
 case 'inches'
 fun = @(in)in .* 2.54;
 uout = 'centimeters';
 case 'miles'
 fun = @(mi)mi .* 1.6093;
 uout = 'kilometers';
 case 'pounds'
 fun = @(lb)lb .* 0.4536;
 uout = 'kilograms';
 case 'pints'
 fun = @(pt)pt .* 0.4731;
 uout = 'litres';
 case 'ounces'
 fun = @(oz)oz .* 28.35;
 uout = 'grams';
end
val = fun(str2num(valin));
valout = [num2str(val) ' ' uout];
end

At the command line, call the convertMe function from regexprep, passing in values for the
quantity to be converted and name of the imperial unit:

regexprep('This highway is 125 miles long', ...
 '(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}')

ans =

 'This highway is 201.1625 kilometers long'

regexprep('This pitcher holds 2.5 pints of water', ...
 '(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}')

ans =

 'This pitcher holds 1.1828 litres of water'

regexprep('This stone weighs about 10 pounds', ...
 '(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}')

ans =

 'This stone weighs about 4.536 kilograms'

2 Program Components

2-78

As with the (??@) operator discussed in an earlier section, the ${ } operator has access to
variables in the currently active workspace. The following regexprep command uses the array A
defined in the base workspace:

A = magic(3)

A =

 8 1 6
 3 5 7
 4 9 2

regexprep('The columns of matrix _nam are _val', ...
 {'_nam', '_val'}, ...
 {'A', '${sprintf(''%d%d%d '', A)}'})

ans =

 'The columns of matrix A are 834 159 672'

See Also
regexp | regexpi | regexprep

More About
• “Regular Expressions” on page 2-52

 Dynamic Regular Expressions

2-79

Comma-Separated Lists

In this section...
“What Is a Comma-Separated List?” on page 2-80
“Generating a Comma-Separated List” on page 2-80
“Assigning Output from a Comma-Separated List” on page 2-82
“Assigning to a Comma-Separated List” on page 2-82
“How to Use Comma-Separated Lists” on page 2-83
“Fast Fourier Transform Example” on page 2-86
“Troubleshooting Operations with Comma-Separated Lists” on page 2-86

What Is a Comma-Separated List?
When you type in a series of numbers separated by commas, MATLAB creates a comma-separated list
and returns each value individually.

1,2,3

ans =

 1

ans =

 2

ans =

 3

When used with large and more complex data structures like MATLAB structures and cell arrays,
comma-separated lists can help simplify your code.

Generating a Comma-Separated List
You can generate a comma-separated list from either a cell array or a MATLAB structure.

Generating a List from a Cell Array

When you extract multiple elements from a cell array, the result is a comma-separated list. Define a 4-
by-6 cell array.

C = cell(4,6);
for k = 1:24
 C{k} = k*2;
end
C

2 Program Components

2-80

C =

 4×6 cell array

 {[2]} {[10]} {[18]} {[26]} {[34]} {[42]}
 {[4]} {[12]} {[20]} {[28]} {[36]} {[44]}
 {[6]} {[14]} {[22]} {[30]} {[38]} {[46]}
 {[8]} {[16]} {[24]} {[32]} {[40]} {[48]}

Extract the fifth column to generate a comma-separated list.

C{:,5}

ans =

 34

ans =

 36

ans =

 38

ans =

 40

This is the same as explicitly typing the list.

C{1,5},C{2,5},C{3,5},C{4,5}

Generating a List from a Structure

When you extract a field of a structure array across one of its dimensions, the result is a comma-
separated list.

Start by converting the cell array used above into a 4-by-1 MATLAB structure with six fields: f1
through f6. Read field f5 for all rows, and MATLAB returns a comma-separated list.

S = cell2struct(C,{'f1','f2','f3','f4','f5','f6'},2);
S.f5

ans =

 34

ans =

 36

ans =

 Comma-Separated Lists

2-81

 38

ans =

 40

This is the same as explicitly typing the list.

S(1).f5,S(2).f5,S(3).f5,S(4).f5

Assigning Output from a Comma-Separated List
You can assign any or all consecutive elements of a comma-separated list to variables with a simple
assignment statement. Define the cell array Cand assign the first row to variables c1 through c6.

C = cell(4,6);
for k = 1:24
 C{k} = k*2;
end
[c1,c2,c3,c4,c5,c6] = C{1,1:6};
c5

c5 =

 34

When you specify fewer output variables than the number of outputs returned by the expression,
MATLAB assigns the first N outputs to those N variables and ignores any remaining outputs. In this
example, MATLAB assigns C{1,1:3} to the variables c1, c2, and c3 and ignores C{1,4:6}.

[c1,c2,c3] = C{1,1:6};

You can assign structure outputs in the same manner.

S = cell2struct(C,{'f1','f2','f3','f4','f5','f6'},2);
[sf1,sf2,sf3] = S.f5;
sf3

sf3 =

 38

You also can use the deal function for this purpose.

Assigning to a Comma-Separated List
The simplest way to assign multiple values to a comma-separated list is to use the deal function. This
function distributes its input arguments to the elements of a comma-separated list.

This example uses deal to overwrite each element in a comma-separated list. First initialize a two-
element list. This step is necessary because you cannot use comma-separated list assignment with an
undefined variable when using : as an index. See “Comma-Separated List Assignment to an
Undefined Variable” on page 2-89 for more information.

2 Program Components

2-82

c{1} = [];
c{2} = [];
c{:}

ans =

 []

ans =

 []

Use deal to overwrite each element in the list.

[c{:}] = deal([10 20],[14 12]);
c{:}

ans =

 10 20

ans =

 14 12

This example works in the same way, but with a comma-separated list of vectors in a structure field.

s(1).field1 = [[]];
s(2).field1 = [[]];
s.field1

ans =

 []

ans =

 []

Use deal to overwrite the structure fields.

[s.field1] = deal([10 20],[14 12]);
s.field1

ans =

 10 20

ans =

 14 12

How to Use Comma-Separated Lists
Common uses for comma-separated lists are:

 Comma-Separated Lists

2-83

• “Constructing Arrays” on page 2-84
• “Displaying Arrays” on page 2-84
• “Concatenation” on page 2-85
• “Function Call Arguments” on page 2-85
• “Function Return Values” on page 2-85

These sections provide examples of using comma-separated lists with cell arrays. Each of these
examples applies to structures as well.

Constructing Arrays

You can use a comma-separated list to enter a series of elements when constructing a matrix or array.
When you specify a list of elements with C{:,5}, MATLAB inserts the four individual elements.

C = cell(4,6);
for k = 1:24
 C{k} = k*2;
end
A = {'Hello',C{:,5},magic(4)}

A =

 1×6 cell array

 {'Hello'} {[34]} {[36]} {[38]} {[40]} {4×4 double}

When you specify the C cell itself, MATLAB inserts the entire cell array.

A = {'Hello',C,magic(4)}

A =

 1×3 cell array

 {'Hello'} {4×6 cell} {4×4 double}

Displaying Arrays

Use a list to display all or part of a structure or cell array.

A{:}

ans =

 'Hello'

ans =

 4×6 cell array

 {[2]} {[10]} {[18]} {[26]} {[34]} {[42]}
 {[4]} {[12]} {[20]} {[28]} {[36]} {[44]}
 {[6]} {[14]} {[22]} {[30]} {[38]} {[46]}
 {[8]} {[16]} {[24]} {[32]} {[40]} {[48]}

2 Program Components

2-84

ans =

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Concatenation

Putting a comma-separated list inside square brackets extracts the specified elements from the list
and concatenates them.

A = [C{:,5:6}]

A =

 34 36 38 40 42 44 46 48

Function Call Arguments

When writing the code for a function call, you enter the input arguments as a list with each argument
separated by a comma. If you have these arguments stored in a structure or cell array, then you can
generate all or part of the argument list from the structure or cell array instead. This can be
especially useful when passing in variable numbers of arguments.

This example passes several name-value arguments to the plot function.

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));
C = cell(2,3);
C{1,1} = 'LineWidth';
C{2,1} = 2;
C{1,2} = 'MarkerEdgeColor';
C{2,2} = 'k';
C{1,3} = 'MarkerFaceColor';
C{2,3} = 'g';
figure
plot(X,Y,'--rs',C{:})

Function Return Values

MATLAB functions can also return more than one value to the caller. These values are returned in a
list with each value separated by a comma. Instead of listing each return value, you can use a comma-
separated list with a structure or cell array. This becomes more useful for functions that have variable
numbers of return values.

This example returns three values to a cell array.

C = cell(1,3);
[C{:}] = fileparts('work/mytests/strArrays.mat')

C =

 1×3 cell array

 {'work/mytests'} {'strArrays'} {'.mat'}

 Comma-Separated Lists

2-85

Fast Fourier Transform Example
The fftshift function swaps the left and right halves of each dimension of an array. For the vector
[0 2 4 6 8 10], the output is [6 8 10 0 2 4]. For a multidimensional array, fftshift
performs this swap along each dimension.

fftshift uses vectors of indices to perform the swap. For the vector shown above, the index [1 2
3 4 5 6] is rearranged to form a new index [4 5 6 1 2 3]. The function then uses this index
vector to reposition the elements. For a multidimensional array, fftshift constructs an index vector
for each dimension. A comma-separated list makes this task much simpler.

Here is the fftshift function.

function y = fftshift(x)
 numDims = ndims(x);
 idx = cell(1,numDims);
 for k = 1:numDims
 m = size(x,k);
 p = ceil(m/2);
 idx{k} = [p+1:m 1:p];
 end
 y = x(idx{:});
end

The function stores the index vectors in cell array idx. Building this cell array is relatively simple.
For each of the N dimensions, determine the size of that dimension and find the integer index nearest
the midpoint. Then, construct a vector that swaps the two halves of that dimension.

By using a cell array to store the index vectors and a comma-separated list for the indexing operation,
fftshift shifts arrays of any dimension using just a single operation: y = x(idx{:}). If you use
explicit indexing, you need to write one if statement for each dimension you want the function to
handle.

 if ndims(x) == 1
 y = x(index1);
 else if ndims(x) == 2
 y = x(index1,index2);
 end
 end

Another way to handle this without a comma-separated list is to loop over each dimension, converting
one dimension at a time and moving data each time. With a comma-separated list, you move the data
just once. A comma-separated list makes it easy to generalize the swapping operation to any number
of dimensions.

Troubleshooting Operations with Comma-Separated Lists
Some common MATLAB operations and indexing techniques do not work directly on comma-
separated lists. This section details several errors you can encounter when working with comma-
separated lists and explains how to resolve the underlying issues.

Intermediate Indexing Produced a Comma-Separated List

2 Program Components

2-86

Compound indexing expressions with braces or dots can produce comma-separated lists. You must
index into the individual elements of the list to access them.

For example, create a 1-by-2 cell array that contains two 3-by-3 matrices of doubles.

A = {magic(3),rand(3)}

A =

 1×2 cell array

 {3×3 double} {3×3 double}

Use brace indexing to display both elements.

A{1,:}

ans =

 8 1 6
 3 5 7
 4 9 2

ans =

 0.7922 0.0357 0.6787
 0.9595 0.8491 0.7577
 0.6557 0.9340 0.7431

Indexing into A this way produces a comma-separated list that includes both matrices contained by
the cell array. You cannot use parentheses indexing to retrieve the entries at (1,2) in both matrices
in the list.

A{1,:}(1,2)

Intermediate brace '{}' indexing produced a comma-separated list with
2 values, but it must produce a single value when followed by
subsequent indexing operations.

To retrieve the entries at (1,2) in both of the matrices in the cell array, index into the cells
individually.

A{1,1}(1,2)
A{1,2}(1,2)

ans =

 1

ans =

 0.0357

Expression Produced a Comma-Separated List Instead of a Single Value

 Comma-Separated Lists

2-87

Arguments for conditional statements, logical operators, loops, and switch statements cannot be
comma-separated lists. For example, you cannot directly loop through the contents of a comma-
separated list using a for loop.

Create a cell array of the first three prime numbers.

A = cell(1,3);
A{1} = 2;
A{2} = 3;
A{3} = 5;

A{:} produces a comma-separated list of the three values.

A{:}

ans =

 2

ans =

 3

ans =

 5

Using for to loop through the comma-separated list generated by A{:} errors.

for c = A{:}
disp(c)
end

A brace '{}' indexing expression produced a comma-separated list with
3 values where only a single value is allowed.

To loop over the contents of A, enclose A{:} in square brackets to concatenate the values into a
vector.

for c = [A{:}]
disp(c)
end

 2

 3

 5

Assigning Multiple Elements Using Simple Assignment

Unlike with arrays, using simple assignment to assign values to multiple elements of a comma-
separated list errors. For example, define a 2-by-3 cell array.

B = cell(2,3);

2 Program Components

2-88

Assigning a value of 5 to all cells of the array using : as an index for B errors.

B{:} = 5

Assigning to 6 elements using a simple assignment statement is not
supported. Consider using comma-separated list assignment.

One way to accomplish this assignment is to enclose B{:} in square brackets and use the deal
function.

[B{:}] = deal(5)

B =

 2×3 cell array

 {[5]} {[5]} {[5]}
 {[5]} {[5]} {[5]}

Comma-Separated List Assignment to an Undefined Variable

You cannot assign a comma-separated list to an undefined variable using : as an index. In the
example in “Assigning to a Comma-Separated List” on page 2-82, the variable x is defined as a
comma-separated list with explicit indices before assigning new values to it using : as an index.

x{1} = [];
x{2} = [];
[x{:}] = deal([10 20],[14 12]);
x{:}

ans =

 10 20

ans =

 14 12

Performing the same assignment with a variable that has not been initialized errors.

[y{:}] = deal([10 20],[14 12]);

Comma-separated list assignment to a nonexistent variable is not
supported when any index is a colon (:). Use explicit indices or
define the variable before performing the assignment.

To solve this problem, initialize y in the same way as x, or create y using enough explicit indices to
accommodate the number of values produced by the deal function.

[y{1:2}] = deal([10 20],[14 12])

y =

 1×2 cell array

 {[10 20]} {[14 12]}

 Comma-Separated Lists

2-89

See Also
cell | deal | struct

2 Program Components

2-90

Alternatives to the eval Function
In this section...
“Why Avoid the eval Function?” on page 2-91
“Variables with Sequential Names” on page 2-91
“Files with Sequential Names” on page 2-92
“Function Names in Variables” on page 2-92
“Field Names in Variables” on page 2-93
“Error Handling” on page 2-93

Why Avoid the eval Function?
Although the eval function is very powerful and flexible, it is not always the best solution to a
programming problem. Code that calls eval is often less efficient and more difficult to read and
debug than code that uses other functions or language constructs. For example:

• MATLAB compiles code the first time you run it to enhance performance for future runs. However,
because code in an eval statement can change at run time, it is not compiled.

• Code within an eval statement can unexpectedly create or assign to a variable already in the
current workspace, overwriting existing data.

• Concatenated character vectors within an eval statement are often difficult to read. Other
language constructs can simplify the syntax in your code.

For many common uses of eval, there are preferred alternate approaches, as shown in the following
examples.

Variables with Sequential Names
A frequent use of the eval function is to create sets of variables such as A1, A2, ..., An, but this
approach does not use the array processing power of MATLAB and is not recommended. The
preferred method is to store related data in a single array. If the data sets are of different types or
sizes, use a structure or cell array.

For example, create a cell array that contains 10 elements, where each element is a numeric array:

numArrays = 10;
A = cell(numArrays,1);
for n = 1:numArrays
 A{n} = magic(n);
end

Access the data in the cell array by indexing with curly braces. For example, display the fifth element
of A:

A{5}

ans =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22

 Alternatives to the eval Function

2-91

 10 12 19 21 3
 11 18 25 2 9

The assignment statement A{n} = magic(n) is more elegant and efficient than this call to eval:

eval(['A', int2str(n),' = magic(n)']) % Not recommended

For more information, see:

• “Create Cell Array” on page 12-3
• “Structure Arrays” on page 11-2

Files with Sequential Names
Related data files often have a common root name with an integer index, such as myfile1.mat
through myfileN.mat. A common (but not recommended) use of the eval function is to construct
and pass each file name to a function using command syntax, such as

eval(['save myfile',int2str(n),'.mat']) % Not recommended

The best practice is to use function syntax, which allows you to pass variables as inputs. For example:

currentFile = 'myfile1.mat';
save(currentFile)

You can construct file names within a loop using the sprintf function (which is usually more
efficient than int2str), and then call the save function without eval. This code creates 10 files in
the current folder:

numFiles = 10;
for n = 1:numFiles
 randomData = rand(n);
 currentFile = sprintf('myfile%d.mat',n);
 save(currentFile,'randomData')
end

For more information, see:

• “Choose Command Syntax or Function Syntax” on page 1-8
• “Import or Export a Sequence of Files”

Function Names in Variables
A common use of eval is to execute a function when the name of the function is in a variable
character vector. There are two ways to evaluate functions from variables that are more efficient than
using eval:

• Create function handles with the @ symbol or with the str2func function. For example, run a
function from a list stored in a cell array:

examples = {@odedemo,@sunspots,@fitdemo};
n = input('Select an example (1, 2, or 3): ');
examples{n}()

• Use the feval function. For example, call a plot function (such as plot, bar, or pie) with data
that you specify at run time:

2 Program Components

2-92

plotFunction = input('Specify a plotting function: ','s');
data = input('Enter data to plot: ');
feval(plotFunction,data)

Field Names in Variables
Access data in a structure with a variable field name by enclosing the expression for the field in
parentheses. For example:

myData.height = [67, 72, 58];
myData.weight = [140, 205, 90];

fieldName = input('Select data (height or weight): ','s');
dataToUse = myData.(fieldName);

If you enter weight at the input prompt, then you can find the minimum weight value with the
following command.

min(dataToUse)

ans =
 90

For an additional example, see “Generate Field Names from Variables” on page 11-10.

Error Handling
The preferred method for error handling in MATLAB is to use a try, catch statement. For example:

try
 B = A;
catch exception
 disp('A is undefined')
end

If your workspace does not contain variable A, then this code returns:

A is undefined

Previous versions of the documentation for the eval function include the syntax
eval(expression,catch_expr). If evaluating the expression input returns an error, then eval
evaluates catch_expr. However, an explicit try/catch is significantly clearer than an implicit
catch in an eval statement. Using the implicit catch is not recommended.

 Alternatives to the eval Function

2-93

Classes (Data Types)

95

Overview of MATLAB Classes

• “Fundamental MATLAB Classes” on page 3-2
• “Detect States of Variables Using is* Functions” on page 3-5

3

Fundamental MATLAB Classes

There are many different data types, or classes, that you can work with in MATLAB. You can build
matrices and arrays of floating-point and integer data, characters and strings, logical true and
false values, and so on. Function handles connect your code with any MATLAB function regardless
of the current scope. Tables, timetables, structures, and cell arrays provide a way to store dissimilar
types of data in the same container.

There are 17 fundamental classes in MATLAB. Each of these classes is in the form of a matrix or
array. With the exception of function handles, this matrix or array is a minimum of 0-by-0 in size and
can grow to an n-dimensional array of any size. A function handle is always scalar (1-by-1).

All of the fundamental MATLAB classes are shown in the diagram below:

Numeric classes in the MATLAB software include signed and unsigned integers, and single- and
double-precision floating-point numbers. By default, MATLAB stores all numeric values as double-
precision floating point. (You cannot change the default type and precision.) You can choose to store
any number, or array of numbers, as integers or as single-precision. Integer and single-precision
arrays offer more memory-efficient storage than double-precision.

All numeric types support basic array operations, such as subscripting, reshaping, and mathematical
operations.

You can create two-dimensional double and logical matrices using one of two storage formats:
full or sparse. For matrices with mostly zero-valued elements, a sparse matrix requires a fraction
of the storage space required for an equivalent full matrix. Sparse matrices invoke methods
especially tailored to solve sparse problems.

These classes require different amounts of storage, the smallest being a logical value or 8-bit
integer which requires only 1 byte. It is important to keep this minimum size in mind if you work on
data in files that were written using a precision smaller than 8 bits.

The following table describes the fundamental classes in more detail.

3 Overview of MATLAB Classes

3-2

Class Name Documentation Intended Use
double, single Floating-Point

Numbers on page 4-
6

• Required for fractional numeric data.
• Double on page 4-6 and Single on page 4-6 precision.
• Use realmin and realmax to show range of values on page 4-

9.
• Two-dimensional arrays can be sparse.
• Default numeric type in MATLAB.

int8, uint8,
int16, uint16,
int32, uint32,
int64, uint64

Integers on page 4-
2

• Use for signed and unsigned whole numbers.
• More efficient use of memory. on page 32-2
• Use intmin and intmax to show range of values on page 4-

4.
• Choose from 4 sizes (8, 16, 32, and 64 bits).

char, string “Characters and
Strings”

• Data type for text.
• Native or Unicode®.
• Converts to/from numeric.
• Use with regular expressions on page 2-52.
• For multiple character arrays, use cell arrays.
• You also can store text in string arrays. For more information,

see string.
logical “Logical (Boolean)

Operations”
• Use in relational conditions or to test state.
• Can have one of two values: true or false.
• Also useful in array indexing.
• Two-dimensional arrays can be sparse.

function_handle “Function Handles” • Pointer to a function.
• Enables passing a function to another function
• Can also call functions outside usual scope.
• Use to specify graphics callback functions.
• Save to MAT-file and restore later.

table, timetable “Tables”,
“Timetables”

• Tables are rectangular containers for mixed-type, column-
oriented data.

• Tables have row and variable names that identify contents.
• Timetables also provide storage for data in a table with rows

labeled by time. Timetable functions can synchronize, resample,
or aggregate timestamped data.

• Use the properties of a table or timetable to store metadata
such as variable units.

• Manipulation of elements similar to numeric or logical arrays.
• Access data by numeric or named index.
• Can select a subset of data and preserve the table container or

can extract the data from a table.

 Fundamental MATLAB Classes

3-3

Class Name Documentation Intended Use
struct “Structures” • Fields store arrays of varying classes and sizes.

• Access one or all fields/indices in single operation.
• Field names identify contents.
• Method of passing function arguments.
• Use in comma-separated lists on page 2-80.
• More memory required for overhead

cell “Cell Arrays” • Cells store arrays of varying classes and sizes.
• Allows freedom to package data as you want.
• Manipulation of elements is similar to numeric or logical arrays.
• Method of passing function arguments.
• Use in comma-separated lists.
• More memory required for overhead

See Also

More About
• “Valid Combinations of Unlike Classes” on page 16-2

3 Overview of MATLAB Classes

3-4

Detect States of Variables Using is* Functions
MATLAB has many functions that detect if an array or object has a specified state. These functions
are sometimes referred to as the is* functions because their names start with is. The functions
return logical 1 (true) if the inputs have the specified states, and logical 0 (false) otherwise.

For example, you can use these functions to detect if:

• An array has a specified data type (such as numeric, double, categorical, datetime, or
string)

• A numeric matrix has certain properties (such as being symmetric)
• The elements of a numeric array are finite, real, or complex
• The elements of a categorical or datetime array meet certain conditions
• An array has any elements that are outliers, missing values, or local maxima or minima
• An object is a graphics handle, or a Java or COM object

This table contains an alphabetical list of the most notable is* functions with descriptions of the
states that they detect.

Function Description
isa Determine if input has specified data type
isappdata Determine if application data exists
isbanded Determine if matrix is within specific bandwidth
isbetween Find elements of datetime or duration array that are within date

and time interval
iscalendarduration Determine if input is calendarDuration array
iscategorical Determine if input is categorical array
iscategory Determine if inputs are names of categories
iscell Determine if input is cell array
iscellstr Determine if input is cell array of character vectors
ischange Find abrupt changes in input
ischar Determine if input is character array
iscolumn Determine if input is column vector
iscom Determine if input is Component Object Model (COM) object
isConfigured Determine if dictionary is configured
isdatetime Determine if input is datetime array
isdiag Determine if matrix is diagonal
isdst Find elements of datetime array that occur during daylight saving

time
isduration Determine if input is duration array
isempty Determine if input is empty array
isenum Determine if input is enumeration

 Detect States of Variables Using is* Functions

3-5

Function Description
isequal Determine if arrays are numerically equal
isequaln Determine if arrays are numerically equal, treating NaNs as equal
isevent Determine if input is Component Object Model (COM) object event
isfield Determine if input is MATLAB structure array field
isfile Determine if input is a file
isfinite Find array elements that are finite
isfloat Determine if input is floating-point array
isfolder Determine if input is folder
isgraphics Determine if input is valid graphics object handle
ishandle Determine if input is valid graphics or Java object handle
ishermitian Determine if matrix is Hermitian or skew-Hermitian
ishold Determine if graphics hold state is on
isinf Find array elements that are infinite
isinteger Determine if input is integer array
isinterface Determine if input is Component Object Model (COM) interface
isjava Determine if input is Java object
isKey Determine if dictionary contains key
iskeyword Determine if input is MATLAB keyword
isletter Find characters that are letters
islocalmax Find local maxima in input
islocalmin Find local minima in input
islogical Determine if input is logical array
ismac Determine if version is for macOS platform
ismatrix Determine if input is matrix
ismember Find array elements that are members of set array
ismembertol Find array elements, within tolerance, that are members of set array
ismethod Determine if object has specified method
ismissing Find missing values in input
isnan Find numeric array elements that are NaN (Not-a-Number)
isnat Find datetime array elements that are NaT (Not-a-Time)
isnumeric Determine if input is numeric array
isobject Determine if input is MATLAB object
isordinal Determine if input is ordinal categorical array
isoutlier Find outliers in input
ispc Determine if version is for Windows (PC) platform
isprime Find array elements that are prime

3 Overview of MATLAB Classes

3-6

Function Description
isprop Determine if input is object property
isprotected Determine if categories of categorical array are protected
isreal Determine if all numeric array elements are real numbers
isregular Determine if input times are regular with respect to time or

calendar unit
isrow Determine if input is row vector
isscalar Determine if input is scalar
issorted Determine if array is sorted
issortedrows Determine if matrix or table rows are sorted
isspace Find characters that are space characters
issparse Determine if input is sparse
isstring Determine if input is string array
isStringScalar Determine if input is string array with one element
isstrprop Find characters in input strings that are of specified category
isstruct Determine if input is structure array
isstudent Determine if version is Student Version
issymmetric Determine if matrix is symmetric or skew-symmetric
istable Determine if input is table
istabular Determine if input is table or timetable
istall Determine if input is tall array
istimetable Determine if input is timetable
istril Determine if matrix is lower triangular
istriu Determine if matrix is upper triangular
isundefined Find undefined elements in categorical array
isUnderlyingType Determine if input has specified underlying data type
isunix Determine if version is for Linux® or macOS platforms
isvalid Determine if input is valid handle
isvarname Determine if input is valid variable name
isvector Determine if input is vector
isweekend Find elements of datetime array that occur during weekends

See Also
exist | openvar | what | which | who | whos | Workspace Browser

Related Examples
• “Fundamental MATLAB Classes” on page 3-2

 Detect States of Variables Using is* Functions

3-7

Numeric Classes

• “Integers” on page 4-2
• “Floating-Point Numbers” on page 4-6
• “Create Complex Numbers” on page 4-14
• “Infinity and NaN” on page 4-15
• “Identifying Numeric Classes” on page 4-17
• “Display Format for Numeric Values” on page 4-18
• “Integer Arithmetic” on page 4-20
• “Single Precision Math” on page 4-27

4

Integers

In this section...
“Integer Classes” on page 4-2
“Creating Integer Data” on page 4-2
“Arithmetic Operations on Integer Classes” on page 4-4
“Largest and Smallest Values for Integer Classes” on page 4-4

Integer Classes
MATLAB has four signed and four unsigned integer classes. Signed types enable you to work with
negative integers as well as positive, but cannot represent as wide a range of numbers as the
unsigned types because one bit is used to designate a positive or negative sign for the number.
Unsigned types give you a wider range of numbers, but these numbers can only be zero or positive.

MATLAB supports 1-, 2-, 4-, and 8-byte storage for integer data. You can save memory and execution
time for your programs if you use the smallest integer type that accommodates your data. For
example, you do not need a 32-bit integer to store the value 100.

Here are the eight integer classes, the range of values you can store with each type, and the MATLAB
conversion function required to create that type:

Class Range of Values Conversion Function
Signed 8-bit integer -27 to 27-1 int8
Signed 16-bit integer -215 to 215-1 int16
Signed 32-bit integer -231 to 231-1 int32
Signed 64-bit integer -263 to 263-1 int64
Unsigned 8-bit integer 0 to 28-1 uint8
Unsigned 16-bit integer 0 to 216-1 uint16
Unsigned 32-bit integer 0 to 232-1 uint32
Unsigned 64-bit integer 0 to 264-1 uint64

Creating Integer Data
MATLAB stores numeric data as double-precision floating point (double) by default. To store data as
an integer, you need to convert from double to the desired integer type. Use one of the conversion
functions shown in the table above.

For example, to store 325 as a 16-bit signed integer assigned to variable x, type

x = int16(325);

If the number being converted to an integer has a fractional part, MATLAB rounds to the nearest
integer. If the fractional part is exactly 0.5, then from the two equally nearby integers, MATLAB
chooses the one for which the absolute value is larger in magnitude:

4 Numeric Classes

4-2

x = 325.499;
int16(x)
ans =

 int16

 325

x = x + .001;
int16(x)
ans =

 int16

 326

If you need to round a number using a rounding scheme other than the default, MATLAB provides
four rounding functions: round, fix, floor, and ceil. The fix function enables you to override the
default and round towards zero when there is a nonzero fractional part:

x = 325.9;

int16(fix(x))
ans =

 int16

 325

Arithmetic operations that involve both integers and floating-point always result in an integer data
type. MATLAB rounds the result, when necessary, according to the default rounding algorithm. The
example below yields an exact answer of 1426.75 which MATLAB then rounds to the next highest
integer:

int16(325) * 4.39
ans =

 int16

 1427

The integer conversion functions are also useful when converting other classes, such as strings, to
integers:

str = 'Hello World';

int8(str)
ans =

 1×11 int8 row vector

 72 101 108 108 111 32 87 111 114 108 100

If you convert a NaN value into an integer class, the result is a value of 0 in that integer class. For
example,

int32(NaN)
ans =

 Integers

4-3

 int32

 0

Arithmetic Operations on Integer Classes

MATLAB can perform integer arithmetic on the following types of data:

• Integers or integer arrays of the same integer data type. This yields a result that has the same
data type as the operands:

x = uint32([132 347 528]) .* uint32(75);
class(x)
ans =
 uint32

• Integers or integer arrays and scalar double-precision floating-point numbers. This yields a result
that has the same data type as the integer operands:

x = uint32([132 347 528]) .* 75.49;
class(x)
ans =
 uint32

For all binary operations in which one operand is an array of integer data type (except 64-bit
integers) and the other is a scalar double, MATLAB computes the operation using element-wise
double-precision arithmetic, and then converts the result back to the original integer data type. For
binary operations involving a 64-bit integer array and a scalar double, MATLAB computes the
operation as if 80-bit extended-precision arithmetic were used, to prevent loss of precision.

Operations involving complex numbers with integer types is not supported.

Largest and Smallest Values for Integer Classes

For each integer data type, there is a largest and smallest number that you can represent with that
type. The table shown under “Integers” on page 4-2 lists the largest and smallest values for each
integer data type in the “Range of Values” column.

You can also obtain these values with the intmax and intmin functions:

intmax('int8')
ans =

 int8

 127

intmin('int8')
ans =

 int8

 -128

4 Numeric Classes

4-4

If you convert a number that is larger than the maximum value of an integer data type to that type,
MATLAB sets it to the maximum value. Similarly, if you convert a number that is smaller than the
minimum value of the integer data type, MATLAB sets it to the minimum value. For example,

x = int8(300)
x =

 int8

 127

x = int8(-300)
x =

 int8

 -128

Also, when the result of an arithmetic operation involving integers exceeds the maximum (or
minimum) value of the data type, MATLAB sets it to the maximum (or minimum) value:

x = int8(100) * 3
x =

 int8

 127

x = int8(-100) * 3
x =

 int8

 -128

 Integers

4-5

Floating-Point Numbers

In this section...
“Double-Precision Floating Point” on page 4-6
“Single-Precision Floating Point” on page 4-6
“Creating Floating-Point Data” on page 4-7
“Arithmetic Operations on Floating-Point Numbers” on page 4-8
“Largest and Smallest Values for Floating-Point Classes” on page 4-9
“Accuracy of Floating-Point Data” on page 4-10
“Avoiding Common Problems with Floating-Point Arithmetic” on page 4-11

MATLAB represents floating-point numbers in either double-precision or single-precision format. The
default is double precision, but you can make any number single precision with a simple conversion
function.

Double-Precision Floating Point

MATLAB constructs the double-precision (or double) data type according to IEEE® Standard 754 for
double precision. Any value stored as a double requires 64 bits, formatted as shown in the table
below:

Bits Usage
63 Sign (0 = positive, 1 = negative)
62 to 52 Exponent, biased by 1023
51 to 0 Fraction f of the number 1.f

Single-Precision Floating Point

MATLAB constructs the single-precision (or single) data type according to IEEE Standard 754 for
single precision. Any value stored as a single requires 32 bits, formatted as shown in the table
below:

Bits Usage
31 Sign (0 = positive, 1 = negative)
30 to 23 Exponent, biased by 127
22 to 0 Fraction f of the number 1.f

Because MATLAB stores numbers of type single using 32 bits, they require less memory than
numbers of type double, which use 64 bits. However, because they are stored with fewer bits,
numbers of type single are represented to less precision than numbers of type double.

4 Numeric Classes

4-6

Creating Floating-Point Data
Use double-precision to store values greater than approximately 3.4 x 1038 or less than approximately
-3.4 x 1038. For numbers that lie between these two limits, you can use either double- or single-
precision, but single requires less memory.

Creating Double-Precision Data

Because the default numeric type for MATLAB is double, you can create a double with a simple
assignment statement:

x = 25.783;

The whos function shows that MATLAB has created a 1-by-1 array of type double for the value you
just stored in x:

whos x
 Name Size Bytes Class

 x 1x1 8 double

Use isfloat if you just want to verify that x is a floating-point number. This function returns logical
1 (true) if the input is a floating-point number, and logical 0 (false) otherwise:

isfloat(x)
ans =

 logical

 1

You can convert other numeric data, characters or strings, and logical data to double precision using
the MATLAB function, double. This example converts a signed integer to double-precision floating
point:

y = int64(-589324077574); % Create a 64-bit integer

x = double(y) % Convert to double
x =
 -5.8932e+11

Creating Single-Precision Data

Because MATLAB stores numeric data as a double by default, you need to use the single
conversion function to create a single-precision number:

x = single(25.783);

The whos function returns the attributes of variable x in a structure. The bytes field of this structure
shows that when x is stored as a single, it requires just 4 bytes compared with the 8 bytes to store it
as a double:

xAttrib = whos('x');
xAttrib.bytes
ans =
 4

 Floating-Point Numbers

4-7

You can convert other numeric data, characters or strings, and logical data to single precision using
the single function. This example converts a signed integer to single-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer

x = single(y) % Convert to single
x =

 single

 -5.8932e+11

Arithmetic Operations on Floating-Point Numbers

This section describes which classes you can use in arithmetic operations with floating-point
numbers.

Double-Precision Operations

You can perform basic arithmetic operations with double and any of the following other classes.
When one or more operands is an integer (scalar or array), the double operand must be a scalar. The
result is of type double, except where noted otherwise:

• single — The result is of type single
• double
• int* or uint* — The result has the same data type as the integer operand
• char
• logical

This example performs arithmetic on data of types char and double. The result is of type double:

c = 'uppercase' - 32;

class(c)
ans =
 double

char(c)
ans =
 UPPERCASE

Single-Precision Operations

You can perform basic arithmetic operations with single and any of the following other classes. The
result is always single:

• single
• double
• char
• logical

In this example, 7.5 defaults to type double, and the result is of type single:

4 Numeric Classes

4-8

x = single([1.32 3.47 5.28]) .* 7.5;

class(x)
ans =
 single

Largest and Smallest Values for Floating-Point Classes

For the double and single classes, there is a largest and smallest number that you can represent
with that type.

Largest and Smallest Double-Precision Values

The MATLAB functions realmax and realmin return the maximum and minimum values that you
can represent with the double data type:

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax, -realmin, realmin, realmax)

ans =
The range for double is:
 -1.79769e+308 to -2.22507e-308 and
 2.22507e-308 to 1.79769e+308

Numbers larger than realmax or smaller than -realmax are assigned the values of positive and
negative infinity, respectively:

realmax + .0001e+308
ans =
 Inf

-realmax - .0001e+308
ans =
 -Inf

Largest and Smallest Single-Precision Values

The MATLAB functions realmax and realmin, when called with the argument 'single', return the
maximum and minimum values that you can represent with the single data type:

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax('single'), -realmin('single'), ...
 realmin('single'), realmax('single'))

ans =
The range for single is:
 -3.40282e+38 to -1.17549e-38 and
 1.17549e-38 to 3.40282e+38

Numbers larger than realmax('single') or smaller than -realmax('single') are assigned the
values of positive and negative infinity, respectively:

realmax('single') + .0001e+038
ans =

 single

 Floating-Point Numbers

4-9

 Inf

-realmax('single') - .0001e+038
ans =

 single

 -Inf

Accuracy of Floating-Point Data
If the result of a floating-point arithmetic computation is not as precise as you had expected, it is
likely caused by the limitations of your computer's hardware. Probably, your result was a little less
exact because the hardware had insufficient bits to represent the result with perfect accuracy;
therefore, it truncated the resulting value.

Double-Precision Accuracy

Because there are only a finite number of double-precision numbers, you cannot represent all
numbers in double-precision storage. On any computer, there is a small gap between each double-
precision number and the next larger double-precision number. You can determine the size of this
gap, which limits the precision of your results, using the eps function. For example, to find the
distance between 5 and the next larger double-precision number, enter

format long

eps(5)
ans =
 8.881784197001252e-16

This tells you that there are no double-precision numbers between 5 and 5 + eps(5). If a double-
precision computation returns the answer 5, the result is only accurate to within eps(5).

The value of eps(x) depends on x. This example shows that, as x gets larger, so does eps(x):

eps(50)
ans =
 7.105427357601002e-15

If you enter eps with no input argument, MATLAB returns the value of eps(1), the distance from 1
to the next larger double-precision number.

Single-Precision Accuracy

Similarly, there are gaps between any two single-precision numbers. If x has type single, eps(x)
returns the distance between x and the next larger single-precision number. For example,

x = single(5);
eps(x)

returns

ans =

4 Numeric Classes

4-10

 single

 4.7684e-07

Note that this result is larger than eps(5). Because there are fewer single-precision numbers than
double-precision numbers, the gaps between the single-precision numbers are larger than the gaps
between double-precision numbers. This means that results in single-precision arithmetic are less
precise than in double-precision arithmetic.

For a number x of type double, eps(single(x)) gives you an upper bound for the amount that x is
rounded when you convert it from double to single. For example, when you convert the double-
precision number 3.14 to single, it is rounded by

double(single(3.14) - 3.14)
ans =
 1.0490e-07

The amount that 3.14 is rounded is less than

eps(single(3.14))
ans =

 single

 2.3842e-07

Avoiding Common Problems with Floating-Point Arithmetic
Almost all operations in MATLAB are performed in double-precision arithmetic conforming to the
IEEE standard 754. Because computers only represent numbers to a finite precision (double precision
calls for 52 mantissa bits), computations sometimes yield mathematically nonintuitive results. It is
important to note that these results are not bugs in MATLAB.

Use the following examples to help you identify these cases:

Example 1 — Round-Off or What You Get Is Not What You Expect

The decimal number 4/3 is not exactly representable as a binary fraction. For this reason, the
following calculation does not give zero, but rather reveals the quantity eps.

e = 1 - 3*(4/3 - 1)

e =
 2.2204e-16

Similarly, 0.1 is not exactly representable as a binary number. Thus, you get the following
nonintuitive behavior:

a = 0.0;
for i = 1:10
 a = a + 0.1;
end
a == 1
ans =

 logical

 Floating-Point Numbers

4-11

 0

Note that the order of operations can matter in the computation:

b = 1e-16 + 1 - 1e-16;
c = 1e-16 - 1e-16 + 1;
b == c
ans =

 logical

 0

There are gaps between floating-point numbers. As the numbers get larger, so do the gaps, as
evidenced by:

(2^53 + 1) - 2^53

ans =
 0

Since pi is not really π, it is not surprising that sin(pi) is not exactly zero:

sin(pi)

ans =
 1.224646799147353e-16

Example 2 — Catastrophic Cancellation

When subtractions are performed with nearly equal operands, sometimes cancellation can occur
unexpectedly. The following is an example of a cancellation caused by swamping (loss of precision
that makes the addition insignificant).

sqrt(1e-16 + 1) - 1

ans =
 0

Some functions in MATLAB, such as expm1 and log1p, may be used to compensate for the effects of
catastrophic cancellation.

Example 3 — Floating-Point Operations and Linear Algebra

Round-off, cancellation, and other traits of floating-point arithmetic combine to produce startling
computations when solving the problems of linear algebra. MATLAB warns that the following matrix A
is ill-conditioned, and therefore the system Ax = b may be sensitive to small perturbations:

A = diag([2 eps]);
b = [2; eps];
y = A\b;
Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 1.110223e-16.

These are only a few of the examples showing how IEEE floating-point arithmetic affects
computations in MATLAB. Note that all computations performed in IEEE 754 arithmetic are affected,
this includes applications written in C or FORTRAN, as well as MATLAB.

4 Numeric Classes

4-12

References

[1] Moler, Cleve. “Floating Points.” MATLAB News and Notes. Fall, 1996.

[2] Moler, Cleve. Numerical Computing with MATLAB. Natick, MA: The MathWorks, Inc., 2004.

 Floating-Point Numbers

4-13

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf
https://www.mathworks.com/moler.html

Create Complex Numbers
Complex numbers consist of two separate parts: a real part and an imaginary part. The basic
imaginary unit is equal to the square root of -1. This is represented in MATLAB by either of two
letters: i or j.

The following statement shows one way of creating a complex value in MATLAB. The variable x is
assigned a complex number with a real part of 2 and an imaginary part of 3:

x = 2 + 3i;

Another way to create a complex number is using the complex function. This function combines two
numeric inputs into a complex output, making the first input real and the second imaginary:

x = rand(3) * 5;
y = rand(3) * -8;

z = complex(x, y)
z =
 4.7842 -1.0921i 0.8648 -1.5931i 1.2616 -2.2753i
 2.6130 -0.0941i 4.8987 -2.3898i 4.3787 -3.7538i
 4.4007 -7.1512i 1.3572 -5.2915i 3.6865 -0.5182i

You can separate a complex number into its real and imaginary parts using the real and imag
functions:

zr = real(z)
zr =
 4.7842 0.8648 1.2616
 2.6130 4.8987 4.3787
 4.4007 1.3572 3.6865

zi = imag(z)
zi =
 -1.0921 -1.5931 -2.2753
 -0.0941 -2.3898 -3.7538
 -7.1512 -5.2915 -0.5182

4 Numeric Classes

4-14

Infinity and NaN
In this section...
“Infinity” on page 4-15
“NaN” on page 4-15

Infinity
MATLAB represents infinity by the special value Inf. Infinity results from operations like division by
zero and overflow, which lead to results too large to represent as conventional floating-point values.
MATLAB also provides a function called Inf that returns the IEEE arithmetic representation for
positive infinity as a double scalar value.

Several examples of statements that return positive or negative infinity in MATLAB are shown here.

x = 1/0
x =
Inf

x = 1.e1000
x =
 Inf

x = exp(1000)
x =
 Inf

x = log(0)
x =
 -Inf

Use the isinf function to verify that x is positive or negative infinity:

x = log(0);

isinf(x)
ans =
 1

NaN
MATLAB represents values that are not real or complex numbers with a special value called NaN,
which stands for “Not a Number”. Expressions like 0/0 and inf/inf result in NaN, as do any
arithmetic operations involving a NaN:

x = 0/0
x =

 NaN

You can also create NaNs by:

x = NaN;

whos x
 Name Size Bytes Class

 x 1x1 8 double

The NaN function returns one of the IEEE arithmetic representations for NaN as a double scalar
value. The exact bit-wise hexadecimal representation of this NaN value is,

 Infinity and NaN

4-15

format hex
x = NaN

x =

 fff8000000000000

Always use the isnan function to verify that the elements in an array are NaN:

isnan(x)
ans =

 1

MATLAB preserves the “Not a Number” status of alternate NaN representations and treats all of the
different representations of NaN equivalently. However, in some special cases (perhaps due to
hardware limitations), MATLAB does not preserve the exact bit pattern of alternate NaN
representations throughout an entire calculation, and instead uses the canonical NaN bit pattern
defined above.

Logical Operations on NaN

Because two NaNs are not equal to each other, logical operations involving NaN always return false,
except for a test for inequality, (NaN ~= NaN):

NaN > NaN
ans =
 0

NaN ~= NaN
ans =
 1

4 Numeric Classes

4-16

Identifying Numeric Classes
You can check the data type of a variable x using any of these commands.

Command Operation
whos x Display the data type of x.
xType = class(x); Assign the data type of x to a variable.
isnumeric(x) Determine if x is a numeric type.
isa(x, 'integer')
isa(x, 'uint64')
isa(x, 'float')
isa(x, 'double')
isa(x, 'single')

Determine if x is the specified numeric type. (Examples for any
integer, unsigned 64-bit integer, any floating point, double precision,
and single precision are shown here).

isreal(x) Determine if x is real or complex.
isnan(x) Determine if x is Not a Number (NaN).
isinf(x) Determine if x is infinite.
isfinite(x) Determine if x is finite.

 Identifying Numeric Classes

4-17

Display Format for Numeric Values
By default, MATLAB uses a 5-digit short format to display numbers. For example,

x = 4/3

x =

 1.3333

You can change the display in the Command Window or Editor using the format function.

format long
x

x =

 1.333333333333333

Using the format function only sets the format for the current MATLAB session. To set the format for
subsequent sessions, click Preferences on the Home tab in the Environment section. Select
MATLAB > Command Window, and then choose a Numeric format option.

The following table summarizes the numeric output format options.

Style Result Example
short
(default)

Short, fixed-decimal format with 4 digits after the
decimal point.

3.1416

long Long, fixed-decimal format with 15 digits after the
decimal point for double values, and 7 digits after
the decimal point for single values.

3.141592653589793

shortE Short scientific notation with 4 digits after the
decimal point.

3.1416e+00

longE Long scientific notation with 15 digits after the
decimal point for double values, and 7 digits after
the decimal point for single values.

3.141592653589793e+00

shortG Short, fixed-decimal format or scientific notation,
whichever is more compact, with a total of 5
digits.

3.1416

longG Long, fixed-decimal format or scientific notation,
whichever is more compact, with a total of 15
digits for double values, and 7 digits for single
values.

3.14159265358979

shortEng Short engineering notation (exponent is a multiple
of 3) with 4 digits after the decimal point.

3.1416e+000

longEng Long engineering notation (exponent is a multiple
of 3) with 15 significant digits.

3.14159265358979e+000

+ Positive/Negative format with +, -, and blank
characters displayed for positive, negative, and
zero elements.

+

4 Numeric Classes

4-18

Style Result Example
bank Currency format with 2 digits after the decimal

point.
3.14

hex Hexadecimal representation of a binary double-
precision number.

400921fb54442d18

rat Ratio of small integers. 355/113

The display format only affects how numbers are displayed, not how they are stored in MATLAB.

See Also
format

Related Examples
• “Format Output”

 Display Format for Numeric Values

4-19

Integer Arithmetic

This example shows how to perform arithmetic on integer data representing signals and images.

Load Integer Signal Data

Load measurement datasets comprising signals from four instruments using 8 and 16-bit A-to-D's
resulting in data saved as int8, int16 and uint16. Time is stored as uint16.

load integersignal

% Look at variables
whos Signal1 Signal2 Signal3 Signal4 Time1

 Name Size Bytes Class Attributes

 Signal1 7550x1 7550 int8
 Signal2 7550x1 7550 int8
 Signal3 7550x1 15100 int16
 Signal4 7550x1 15100 uint16
 Time1 7550x1 15100 uint16

Plot Data

First we will plot two of the signals to see the signal ranges.

plot(Time1, Signal1, Time1, Signal2);
grid;
legend('Signal1','Signal2');

4 Numeric Classes

4-20

It is likely that these values would need to be scaled to calculate the actual physical value that the
signal represents e.g. Volts.

Process Data

We can perform standard arithmetic on integers such as +, -, *, and /. Let's say we wished to find the
sum of Signal1 and Signal2.

SumSig = Signal1 + Signal2; % Here we sum the integer signals.

Now let's plot the sum signal and see where it saturates.

cla;
plot(Time1, SumSig);
hold on
Saturated = (SumSig == intmin('int8')) | (SumSig == intmax('int8')); % Find where it has saturated
plot(Time1(Saturated),SumSig(Saturated),'rd')
grid
hold off

 Integer Arithmetic

4-21

The markers show where the signal has saturated.

Load Integer Image Data

Next we will look at arithmetic on some image data.

street1 = imread('street1.jpg'); % Load image data
street2 = imread('street2.jpg');
whos street1 street2

 Name Size Bytes Class Attributes

 street1 480x640x3 921600 uint8
 street2 480x640x3 921600 uint8

Here we see the images are 24-bit color, stored as three planes of uint8 data.

Display Images

Display first image.

cla;
image(street1); % Display image
axis equal
axis off

4 Numeric Classes

4-22

Display second image.

image(street2); % Display image
axis equal
axis off

 Integer Arithmetic

4-23

Scale an Image

We can scale the image by a double precision constant but keep the image stored as integers. For
example,

duller = 0.5 * street2; % Scale image with a double constant but create an integer
whos duller

 Name Size Bytes Class Attributes

 duller 480x640x3 921600 uint8

subplot(1,2,1);
image(street2);
axis off equal tight
title('Original'); % Display image

subplot(1,2,2);
image(duller);
axis off equal tight
title('Duller'); % Display image

4 Numeric Classes

4-24

Add the Images

We can add the two street images together and plot the ghostly result.

combined = street1 + duller; % Add |uint8| images
subplot(1,1,1)
cla;
image(combined); % Display image
title('Combined');
axis equal
axis off

 Integer Arithmetic

4-25

4 Numeric Classes

4-26

Single Precision Math

This example shows how to perform arithmetic and linear algebra with single precision data. It also
shows how the results are computed appropriately in single-precision or double-precision, depending
on the input.

Create Double Precision Data

Let's first create some data, which is double precision by default.

Ad = [1 2 0; 2 5 -1; 4 10 -1]

Ad = 3×3

 1 2 0
 2 5 -1
 4 10 -1

Convert to Single Precision

We can convert data to single precision with the single function.

A = single(Ad); % or A = cast(Ad,'single');

Create Single Precision Zeros and Ones

We can also create single precision zeros and ones with their respective functions.

n = 1000;
Z = zeros(n,1,'single');
O = ones(n,1,'single');

Let's look at the variables in the workspace.

whos A Ad O Z n

 Name Size Bytes Class Attributes

 A 3x3 36 single
 Ad 3x3 72 double
 O 1000x1 4000 single
 Z 1000x1 4000 single
 n 1x1 8 double

We can see that some of the variables are of type single and that the variable A (the single precision
version of Ad) takes half the number of bytes of memory to store because singles require just four
bytes (32-bits), whereas doubles require 8 bytes (64-bits).

Arithmetic and Linear Algebra

We can perform standard arithmetic and linear algebra on singles.

B = A' % Matrix Transpose

B = 3x3 single matrix

 Single Precision Math

4-27

 1 2 4
 2 5 10
 0 -1 -1

whos B

 Name Size Bytes Class Attributes

 B 3x3 36 single

We see the result of this operation, B, is a single.

C = A * B % Matrix multiplication

C = 3x3 single matrix

 5 12 24
 12 30 59
 24 59 117

C = A .* B % Elementwise arithmetic

C = 3x3 single matrix

 1 4 0
 4 25 -10
 0 -10 1

X = inv(A) % Matrix inverse

X = 3x3 single matrix

 5 2 -2
 -2 -1 1
 0 -2 1

I = inv(A) * A % Confirm result is identity matrix

I = 3x3 single matrix

 1 0 0
 0 1 0
 0 0 1

I = A \ A % Better way to do matrix division than inv

I = 3x3 single matrix

 1 0 0
 0 1 0
 0 0 1

E = eig(A) % Eigenvalues

4 Numeric Classes

4-28

E = 3x1 single column vector

 3.7321
 0.2679
 1.0000

F = fft(A(:,1)) % FFT

F = 3x1 single column vector

 7.0000 + 0.0000i
 -2.0000 + 1.7321i
 -2.0000 - 1.7321i

S = svd(A) % Singular value decomposition

S = 3x1 single column vector

 12.3171
 0.5149
 0.1577

P = round(poly(A)) % The characteristic polynomial of a matrix

P = 1x4 single row vector

 1 -5 5 -1

R = roots(P) % Roots of a polynomial

R = 3x1 single column vector

 3.7321
 1.0000
 0.2679

Q = conv(P,P) % Convolve two vectors

Q = 1x7 single row vector

 1 -10 35 -52 35 -10 1

R = conv(P,Q)

R = 1x10 single row vector

 1 -15 90 -278 480 -480 278 -90 15 -1

stem(R); % Plot the result

 Single Precision Math

4-29

A Program That Works for Either Single or Double Precision

Now let's look at a function to compute enough terms in the Fibonacci sequence so the ratio is less
than the correct machine epsilon (eps) for datatype single or double.

% How many terms needed to get single precision results?
fibodemo('single')

ans = 19

% How many terms needed to get double precision results?
fibodemo('double')

ans = 41

% Now let's look at the working code.
type fibodemo

function nterms = fibodemo(dtype)
%FIBODEMO Used by SINGLEMATH demo.
% Calculate number of terms in Fibonacci sequence.

% Copyright 1984-2014 The MathWorks, Inc.

fcurrent = ones(dtype);
fnext = fcurrent;

4 Numeric Classes

4-30

goldenMean = (ones(dtype)+sqrt(5))/2;
tol = eps(goldenMean);
nterms = 2;
while abs(fnext/fcurrent - goldenMean) >= tol
 nterms = nterms + 1;
 temp = fnext;
 fnext = fnext + fcurrent;
 fcurrent = temp;
end

Notice that we initialize several of our variables, fcurrent, fnext, and goldenMean, with values
that are dependent on the input datatype, and the tolerance tol depends on that type as well. Single
precision requires that we calculate fewer terms than the equivalent double precision calculation.

 Single Precision Math

4-31

The Logical Class

• “Find Array Elements That Meet a Condition” on page 5-2
• “Reduce Logical Arrays to Single Value” on page 5-6

5

Find Array Elements That Meet a Condition

This example shows how to filter the elements of an array by applying conditions to the array. For
instance, you can examine the even elements in a matrix, find the location of all 0s in a
multidimensional array, or replace NaN values in data. You can perform these tasks using a
combination of the relational and logical operators. The relational operators (>, <, >=, <=, ==, ~=)
impose conditions on the array, and you can apply multiple conditions by connecting them with the
logical operators and, or, and not, respectively denoted by the symbols &, |, and ~.

Apply a Single Condition

To apply a single condition, start by creating a 5-by-5 matrix that contains random integers between 1
and 15. Reset the random number generator to the default state for reproducibility.

rng default
A = randi(15,5)

A = 5×5

 13 2 3 3 10
 14 5 15 7 1
 2 9 15 14 13
 14 15 8 12 15
 10 15 13 15 11

Use the relational less than operator, <, to determine which elements of A are less than 9. Store the
result in B.

B = A < 9

B = 5x5 logical array

 0 1 1 1 0
 0 1 0 1 1
 1 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0

The result is a logical matrix. Each value in B represents a logical 1 (true) or logical 0 (false) state
to indicate whether the corresponding element of A fulfills the condition A < 9. For example, A(1,1)
is 13, so B(1,1) is logical 0 (false). However, A(1,2) is 2, so B(1,2) is logical 1 (true).

Although B contains information about which elements in A are less than 9, it doesn’t tell you what
their values are. Rather than comparing the two matrices element by element, you can use B to index
into A.

A(B)

ans = 8×1

 2
 2
 5
 3

5 The Logical Class

5-2

 8
 3
 7
 1

The result is a column vector of the elements in A that are less than 9. Since B is a logical matrix, this
operation is called logical indexing. In this case, the logical array being used as an index is the
same size as the other array, but this is not a requirement. For more information, see “Array
Indexing”.

Some problems require information about the locations of the array elements that meet a condition
rather than their actual values. In this example, you can use the find function to locate all of the
elements in A less than 9.

I = find(A < 9)

I = 8×1

 3
 6
 7
 11
 14
 16
 17
 22

The result is a column vector of linear indices. Each index describes the location of an element in A
that is less than 9, so in practice A(I) returns the same result as A(B). The difference is that A(B)
uses logical indexing, whereas A(I) uses linear indexing.

Apply Multiple Conditions

You can use the logical and, or, and not operators to apply any number of conditions to an array; the
number of conditions is not limited to one or two.

First, use the logical and operator, denoted &, to specify two conditions: the elements must be less
than 9 and greater than 2. Specify the conditions as a logical index to view the elements that
satisfy both conditions.

A(A<9 & A>2)

ans = 5×1

 5
 3
 8
 3
 7

The result is a list of the elements in A that satisfy both conditions. Be sure to specify each condition
with a separate statement connected by a logical operator. For example, you cannot specify the
conditions above by A(2<A<9), since it evaluates to A(2<A | A<9).

Next, find the elements in A that are less than 9 and even numbered.

 Find Array Elements That Meet a Condition

5-3

A(A<9 & ~mod(A,2))

ans = 3×1

 2
 2
 8

The result is a list of all even elements in A that are less than 9. The use of the logical NOT operator,
~, converts the matrix mod(A,2) into a logical matrix, with a value of logical 1 (true) located where
an element is evenly divisible by 2.

Finally, find the elements in A that are less than 9 and even numbered and not equal to 2.

A(A<9 & ~mod(A,2) & A~=2)

ans = 8

The result, 8, is even, less than 9, and not equal to 2. It is the only element in A that satisfies all three
conditions.

Use the find function to get the index of the element equal to 8 that satisfies the conditions.

find(A<9 & ~mod(A,2) & A~=2)

ans = 14

The result indicates that A(14) = 8.

Replace Values That Meet a Condition

Sometimes it is useful to simultaneously change the values of several existing array elements. Use
logical indexing with a simple assignment statement to replace the values in an array that meet a
condition.

Replace all values in A that are greater than 10 with the number 10.

A(A>10) = 10

A = 5×5

 10 2 3 3 10
 10 5 10 7 1
 2 9 10 10 10
 10 10 8 10 10
 10 10 10 10 10

Next, replace all values in A that are not equal to 10 with a NaN value.

A(A~=10) = NaN

A = 5×5

 10 NaN NaN NaN 10
 10 NaN 10 NaN NaN
 NaN NaN 10 10 10
 10 10 NaN 10 10

5 The Logical Class

5-4

 10 10 10 10 10

Lastly, replace all of the NaN values in A with zeros and apply the logical NOT operator, ~A.

A(isnan(A)) = 0;
C = ~A

C = 5x5 logical array

 0 1 1 1 0
 0 1 0 1 1
 1 1 0 0 0
 0 0 1 0 0
 0 0 0 0 0

The resulting matrix has values of logical 1 (true) in place of the NaN values, and logical 0 (false)
in place of the 10s. The logical NOT operation, ~A, converts the numeric array into a logical array
such that A&C returns a matrix of logical 0 (false) values and A|C returns a matrix of logical 1
(true) values.

See Also
nan | Short-Circuit AND | Short-Circuit OR | isnan | find | and | or | xor | not

 Find Array Elements That Meet a Condition

5-5

Reduce Logical Arrays to Single Value

This example shows how to use the any and all functions to reduce an entire array to a single
logical value.

The any and all functions are natural extensions of the logical | (OR) and & (AND) operators,
respectively. However, rather than comparing just two elements, the any and all functions compare
all of the elements in a particular dimension of an array. It is as if all of those elements are connected
by & or | operators and the any or all functions evaluate the resulting long logical expressions.
Therefore, unlike the core logical operators, the any and all functions reduce the size of the array
dimension that they operate on so that it has size 1. This enables the reduction of many logical values
into a single logical condition.

First, create a matrix A that contains random integers between 1 and 25. Reset the random number
generator to the default state for reproducibility.

rng default
A = randi(25,5)

A = 5×5

 21 3 4 4 17
 23 7 25 11 1
 4 14 24 23 22
 23 24 13 20 24
 16 25 21 24 17

Next, use the mod function along with the logical NOT operator, ~, to determine which elements in A
are even.

A = ~mod(A,2)

A = 5x5 logical array

 0 0 1 1 0
 0 0 0 0 0
 1 1 1 0 1
 0 1 0 1 1
 1 0 0 1 0

The resulting matrices have values of logical 1 (true) where an element is even, and logical 0
(false) where an element is odd.

Since the any and all functions reduce the dimension that they operate on to size 1, it normally
takes two applications of one of the functions to reduce a 2–D matrix into a single logical condition,
such as any(any(A)). However, if you use the notation A(:) to regard all of the elements of A as a
single column vector, you can use any(A(:)) to get the same logical information without nesting the
function calls.

Determine if any elements in A are even.

any(A(:))

5 The Logical Class

5-6

ans = logical
 1

You can perform logical and relational comparisons within the function call to any or all. This makes
it easy to quickly test an array for a variety of properties.

Determine if all elements in A are odd.

all(~A(:))

ans = logical
 0

Determine whether any main or super diagonal elements in A are even. Since the vectors returned by
diag(A) and diag(A,1) are not the same size, you first need to reduce each diagonal to a single
scalar logical condition before comparing them. You can use the short-circuit OR operator || to
perform the comparison, since if any elements in the first diagonal are even then the entire
expression evaluates to true regardless of what appears on the right-hand side of the operator.

any(diag(A)) || any(diag(A,1))

ans = logical
 1

See Also
any | all | and | or | xor | Short-Circuit AND | Short-Circuit OR

 Reduce Logical Arrays to Single Value

5-7

Characters and Strings

• “Text in String and Character Arrays” on page 6-2
• “Create String Arrays” on page 6-5
• “Cell Arrays of Character Vectors” on page 6-12
• “Analyze Text Data with String Arrays” on page 6-15
• “Test for Empty Strings and Missing Values” on page 6-20
• “Formatting Text” on page 6-24
• “Compare Text” on page 6-32
• “Search and Replace Text” on page 6-37
• “Build Pattern Expressions” on page 6-40
• “Convert Numeric Values to Text” on page 6-45
• “Convert Text to Numeric Values” on page 6-48
• “Unicode and ASCII Values” on page 6-52
• “Hexadecimal and Binary Values” on page 6-54
• “Frequently Asked Questions About String Arrays” on page 6-58
• “Update Your Code to Accept Strings” on page 6-63

6

Text in String and Character Arrays

There are two ways to represent text in MATLAB®. You can store text in string arrays. And in any
version of MATLAB, you can store text in character arrays. A typical use for character arrays is to
store pieces of text as character vectors. MATLAB displays strings with double quotes and character
vectors with single quotes.

Represent Text with String Arrays

You can store any 1-by-n sequence of characters as a string, using the string data type. Enclose text
in double quotes to create a string.

str = "Hello, world"

str =
"Hello, world"

Though the text "Hello, world" is 12 characters long, str itself is a 1-by-1 string, or string scalar.
You can use a string scalar to specify a file name, plot label, or any other piece of textual information.

To find the number of characters in a string, use the strlength function.

n = strlength(str)

n = 12

If the text includes double quotes, use two double quotes within the definition.

str = "They said, ""Welcome!"" and waved."

str =
"They said, "Welcome!" and waved."

To add text to the end of a string, use the plus operator, +. If a variable can be converted to a string,
then plus converts it and appends it.

fahrenheit = 71;
celsius = (fahrenheit-32)/1.8;
tempText = "temperature is " + celsius + "C"

tempText =
"temperature is 21.6667C"

You can also concatenate text using the append function.

tempText2 = append("Today's ",tempText)

tempText2 =
"Today's temperature is 21.6667C"

The string function can convert different types of inputs, such as numeric, datetime, duration, and
categorical values. For example, convert the output of pi to a string.

ps = string(pi)

ps =
"3.1416"

6 Characters and Strings

6-2

You can store multiple pieces of text in a string array. Each element of the array can contain a string
having a different number of characters, without padding.

str = ["Mercury","Gemini","Apollo";...
 "Skylab","Skylab B","ISS"]

str = 2x3 string
 "Mercury" "Gemini" "Apollo"
 "Skylab" "Skylab B" "ISS"

str is a 2-by-3 string array. You can find the lengths of the strings with the strlength function.

N = strlength(str)

N = 2×3

 7 6 6
 6 8 3

String arrays are supported throughout MATLAB and MathWorks® products. Functions that accept
character arrays (and cell arrays of character vectors) as inputs also accept string arrays.

Represent Text with Character Vectors

To store a 1-by-n sequence of characters as a character vector, using the char data type, enclose it in
single quotes.

chr = 'Hello, world'

chr =
'Hello, world'

The text 'Hello, world' is 12 characters long, and chr stores it as a 1-by-12 character vector.

whos chr

 Name Size Bytes Class Attributes

 chr 1x12 24 char

If the text includes single quotes, use two single quotes within the definition.

chr = 'They said, ''Welcome!'' and waved.'

chr =
'They said, 'Welcome!' and waved.'

Character vectors have two principal uses:

• To specify single pieces of text, such as file names and plot labels.
• To represent data that is encoded using characters. In such cases, you might need easy access to

individual characters.

For example, you can store a DNA sequence as a character vector.

seq = 'GCTAGAATCC';

 Text in String and Character Arrays

6-3

You can access individual characters or subsets of characters by indexing, just as you would index
into a numeric array.

seq(4:6)

ans =
'AGA'

Concatenate character vector with square brackets, just as you concatenate other types of arrays.

seq2 = [seq 'ATTAGAAACC']

seq2 =
'GCTAGAATCCATTAGAAACC'

Starting in R2019a, you also can concatenate text using append. The append function is
recommended because it treats string arrays, character vectors, and cell arrays of character vectors
consistently.

seq2 = append(seq,'ATTAGAAACC')

seq2 =
'GCTAGAATCCATTAGAAACC'

MATLAB functions that accept string arrays as inputs also accept character vectors and cell arrays of
character vectors.

See Also
string | char | cellstr | strlength | plus | horzcat | append

Related Examples
• “Create String Arrays” on page 6-5
• “Analyze Text Data with String Arrays” on page 6-15
• “Frequently Asked Questions About String Arrays” on page 6-58
• “Update Your Code to Accept Strings” on page 6-63
• “Cell Arrays of Character Vectors” on page 6-12

6 Characters and Strings

6-4

Create String Arrays

String arrays store pieces of text and provide a set of functions for working with text as data. You can
index into, reshape, and concatenate strings arrays just as you can with arrays of any other type. You
also can access the characters in a string and append text to strings using the plus operator. To
rearrange strings within a string array, use functions such as split, join, and sort.

Create String Arrays from Variables

MATLAB® provides string arrays to store pieces of text. Each element of a string array contains a 1-
by-n sequence of characters.

You can create a string using double quotes.

str = "Hello, world"

str =
"Hello, world"

As an alternative, you can convert a character vector to a string using the string function. chr is a
1-by-17 character vector. str is a 1-by-1 string that has the same text as the character vector.

chr = 'Greetings, friend'

chr =
'Greetings, friend'

str = string(chr)

str =
"Greetings, friend"

Create a string array containing multiple strings using the [] operator. str is a 2-by-3 string array
that contains six strings.

str = ["Mercury","Gemini","Apollo";
 "Skylab","Skylab B","ISS"]

str = 2x3 string
 "Mercury" "Gemini" "Apollo"
 "Skylab" "Skylab B" "ISS"

Find the length of each string in str with the strlength function. Use strlength, not length, to
determine the number of characters in strings.

L = strlength(str)

L = 2×3

 7 6 6
 6 8 3

As an alternative, you can convert a cell array of character vectors to a string array using the string
function. MATLAB displays strings in string arrays with double quotes, and displays characters
vectors in cell arrays with single quotes.

 Create String Arrays

6-5

C = {'Mercury','Venus','Earth'}

C = 1x3 cell
 {'Mercury'} {'Venus'} {'Earth'}

str = string(C)

str = 1x3 string
 "Mercury" "Venus" "Earth"

In addition to character vectors, you can convert numeric, datetime, duration, and categorical values
to strings using the string function.

Convert a numeric array to a string array.

X = [5 10 20 3.1416];
string(X)

ans = 1x4 string
 "5" "10" "20" "3.1416"

Convert a datetime value to a string.

d = datetime('now');
string(d)

ans =
"26-Nov-2022 13:56:34"

Also, you can read text from files into string arrays using the readtable, textscan, and fscanf
functions.

Create Empty and Missing Strings

String arrays can contain both empty and missing values. An empty string contains zero characters.
When you display an empty string, the result is a pair of double quotes with nothing between them
(""). The missing string is the string equivalent to NaN for numeric arrays. It indicates where a string
array has missing values. When you display a missing string, the result is <missing>, with no
quotation marks.

Create an empty string array using the strings function. When you call strings with no
arguments, it returns an empty string. Note that the size of str is 1-by-1, not 0-by-0. However, str
contains zero characters.

str = strings

str =
""

Create an empty character vector using single quotes. Note that the size of chr is 0-by-0.

chr = ''

chr =

 0x0 empty char array

6 Characters and Strings

6-6

Create a string array where every element is an empty string. You can preallocate a string array with
the strings function.

str = strings(2,3)

str = 2x3 string
 "" "" ""
 "" "" ""

To create a missing string, convert a missing value using the string function. The missing string
displays as <missing>.

str = string(missing)

str =
<missing>

You can create a string array with both empty and missing strings. Use the ismissing function to
determine which elements are strings with missing values. Note that the empty string is not a
missing string.

str(1) = "";
str(2) = "Gemini";
str(3) = string(missing)

str = 1x3 string
 "" "Gemini" <missing>

ismissing(str)

ans = 1x3 logical array

 0 0 1

Compare a missing string to another string. The result is always 0 (false), even when you compare a
missing string to another missing string.

str = string(missing);
str == "Gemini"

ans = logical
 0

str == string(missing)

ans = logical
 0

Access Elements of String Array

String arrays support array operations such as indexing and reshaping. Use array indexing to access
the first row of str and all the columns.

 Create String Arrays

6-7

str = ["Mercury","Gemini","Apollo";
 "Skylab","Skylab B","ISS"];
str(1,:)

ans = 1x3 string
 "Mercury" "Gemini" "Apollo"

Access the second element in the second row of str.

str(2,2)

ans =
"Skylab B"

Assign a new string outside the bounds of str. MATLAB expands the array and fills unallocated
elements with missing values.

str(3,4) = "Mir"

str = 3x4 string
 "Mercury" "Gemini" "Apollo" <missing>
 "Skylab" "Skylab B" "ISS" <missing>
 <missing> <missing> <missing> "Mir"

Access Characters Within Strings

You can index into a string array using curly braces, {}, to access characters directly. Use curly
braces when you need to access and modify characters within a string element. Indexing with curly
braces provides compatibility for code that could work with either string arrays or cell arrays of
character vectors. But whenever possible, use string functions to work with the characters in strings.

Access the second element in the second row with curly braces. chr is a character vector, not a
string.

str = ["Mercury","Gemini","Apollo";
 "Skylab","Skylab B","ISS"];
chr = str{2,2}

chr =
'Skylab B'

Access the character vector and return the first three characters.

str{2,2}(1:3)

ans =
'Sky'

Find the space characters in a string and replace them with dashes. Use the isspace function to
inspect individual characters within the string. isspace returns a logical vector that contains a true
value wherever there is a space character. Finally, display the modified string element, str(2,2).

TF = isspace(str{2,2})

TF = 1x8 logical array

6 Characters and Strings

6-8

 0 0 0 0 0 0 1 0

str{2,2}(TF) = "-";
str(2,2)

ans =
"Skylab-B"

Note that in this case, you can also replace spaces using the replace function, without resorting to
curly brace indexing.

replace(str(2,2)," ","-")

ans =
"Skylab-B"

Concatenate Strings into String Array

Concatenate strings into a string array just as you would concatenate arrays of any other kind.

Concatenate two string arrays using square brackets, [].

str1 = ["Mercury","Gemini","Apollo"];
str2 = ["Skylab","Skylab B","ISS"];
str = [str1 str2]

str = 1x6 string
 "Mercury" "Gemini" "Apollo" "Skylab" "Skylab B" "ISS"

Transpose str1 and str2. Concatenate them and then vertically concatenate column headings onto
the string array. When you concatenate character vectors into a string array, the character vectors
are automatically converted to strings.

str1 = str1';
str2 = str2';
str = [str1 str2];
str = [["Mission:","Station:"] ; str]

str = 4x2 string
 "Mission:" "Station:"
 "Mercury" "Skylab"
 "Gemini" "Skylab B"
 "Apollo" "ISS"

Append Text to Strings

To append text to strings, use the plus operator, +. The plus operator appends text to strings but
does not change the size of a string array.

Append a last name to an array of names. If you append a character vector to strings, then the
character vector is automatically converted to a string.

names = ["Mary";"John";"Elizabeth";"Paul";"Ann"];
names = names + ' Smith'

names = 5x1 string
 "Mary Smith"

 Create String Arrays

6-9

 "John Smith"
 "Elizabeth Smith"
 "Paul Smith"
 "Ann Smith"

Append different last names. You can append text to a string array from a string array or from a cell
array of character vectors. When you add nonscalar arrays, they must be the same size.

names = ["Mary";"John";"Elizabeth";"Paul";"Ann"];
lastnames = ["Jones";"Adams";"Young";"Burns";"Spencer"];
names = names + " " + lastnames

names = 5x1 string
 "Mary Jones"
 "John Adams"
 "Elizabeth Young"
 "Paul Burns"
 "Ann Spencer"

Append a missing string. When you append a missing string with the plus operator, the output is a
missing string.

str1 = "Jones";
str2 = string(missing);
str1 + str2

ans =
<missing>

Split, Join, and Sort String Array

MATLAB provides a rich set of functions to work with string arrays. For example, you can use the
split, join, and sort functions to rearrange the string array names so that the names are in
alphabetical order by last name.

Split names on the space characters. Splitting changes names from a 5-by-1 string array to a 5-by-2
array.

names = ["Mary Jones";"John Adams";"Elizabeth Young";"Paul Burns";"Ann Spencer"];
names = split(names)

names = 5x2 string
 "Mary" "Jones"
 "John" "Adams"
 "Elizabeth" "Young"
 "Paul" "Burns"
 "Ann" "Spencer"

Switch the columns of names so that the last names are in the first column. Add a comma after each
last name.

names = [names(:,2) names(:,1)];
names(:,1) = names(:,1) + ','

names = 5x2 string
 "Jones," "Mary"

6 Characters and Strings

6-10

 "Adams," "John"
 "Young," "Elizabeth"
 "Burns," "Paul"
 "Spencer," "Ann"

Join the last and first names. The join function places a space character between the strings it joins.
After the join, names is a 5-by-1 string array.

names = join(names)

names = 5x1 string
 "Jones, Mary"
 "Adams, John"
 "Young, Elizabeth"
 "Burns, Paul"
 "Spencer, Ann"

Sort the elements of names so that they are in alphabetical order.

names = sort(names)

names = 5x1 string
 "Adams, John"
 "Burns, Paul"
 "Jones, Mary"
 "Spencer, Ann"
 "Young, Elizabeth"

See Also
string | strings | strlength | ismissing | isspace | plus | split | join | sort

Related Examples
• “Analyze Text Data with String Arrays” on page 6-15
• “Search and Replace Text” on page 6-37
• “Compare Text” on page 6-32
• “Test for Empty Strings and Missing Values” on page 6-20
• “Frequently Asked Questions About String Arrays” on page 6-58
• “Update Your Code to Accept Strings” on page 6-63

 Create String Arrays

6-11

Cell Arrays of Character Vectors

To store text as a character vector, enclose it single quotes. Typically, a character vector has text that
you consider to be a single piece of information, such as a file name or a label for a plot. If you have
many pieces of text, such as a list of file names, then you can store them in a cell array. A cell array
whose elements are all character vectors is a cell array of character vectors.

Note

• The recommended way to store text is to use string arrays. If you create variables that have the
string data type, store them in string arrays, not cell arrays. For more information, see “Text in
String and Character Arrays” on page 6-2 and “Update Your Code to Accept Strings” on page 6-
63.

• While the phrase cell array of strings frequently has been used to describe such cell arrays, the
phrase is no longer accurate because such a cell array holds character vectors, not strings.

Create Cell Array of Character Vectors

To create a cell array of character vectors, use curly braces, {}, just as you would to create any cell
array. For example, use a cell array of character vectors to store a list of names.

C = {'Li','Sanchez','Jones','Yang','Larson'}

C = 1x5 cell
 {'Li'} {'Sanchez'} {'Jones'} {'Yang'} {'Larson'}

The character vectors in C can have different lengths because a cell array does not require that its
contents have the same size. To determine the lengths of the character vectors in C, use the
strlength function.

L = strlength(C)

L = 1×5

 2 7 5 4 6

Access Character Vectors in Cell Array

To access character vectors in a cell array, index into it using curly braces, {}. Extract the contents of
the first cell and store it as a character vector.

C = {'Li','Sanchez','Jones','Yang','Larson'};
chr = C{1}

chr =
'Li'

6 Characters and Strings

6-12

Assign a different character vector to the first cell.

C{1} = 'Yang'

C = 1x5 cell
 {'Yang'} {'Sanchez'} {'Jones'} {'Yang'} {'Larson'}

To refer to a subset of cells, instead of their contents, index using smooth parentheses.

C(1:3)

ans = 1x3 cell
 {'Yang'} {'Sanchez'} {'Jones'}

While you can access the contents of cells by indexing, most functions that accept cell arrays as
inputs operate on the entire cell array. For example, you can use the strcmp function to compare the
contents of C to a character vector. strcmp returns 1 where there is a match and 0 otherwise.

TF = strcmp(C,'Yang')

TF = 1x5 logical array

 1 0 0 1 0

You can sum over TF to find the number of matches.

num = sum(TF)

num = 2

Use TF as logical indices to return the matches in C. If you index using smooth parentheses, then the
output is a cell array containing only the matches.

M = C(TF)

M = 1x2 cell
 {'Yang'} {'Yang'}

Convert Cell Arrays to String Arrays

String arrays are supported throughout MATLAB® and MathWorks® products. Therefore it is
recommended that you use string arrays instead of cell arrays of character vectors. (However,
MATLAB functions that accept string arrays as inputs do accept character vectors and cell arrays of
character vectors as well.)

You can convert cell arrays of character vectors to string arrays. To convert a cell array of character
vectors, use the string function.

C = {'Li','Sanchez','Jones','Yang','Larson'}

C = 1x5 cell
 {'Li'} {'Sanchez'} {'Jones'} {'Yang'} {'Larson'}

 Cell Arrays of Character Vectors

6-13

str = string(C)

str = 1x5 string
 "Li" "Sanchez" "Jones" "Yang" "Larson"

In fact, the string function converts any cell array, so long as all of the contents can be converted to
strings.

C2 = {5, 10, 'some text', datetime('today')}

C2=1×4 cell array
 {[5]} {[10]} {'some text'} {[26-Nov-2022]}

str2 = string(C2)

str2 = 1x4 string
 "5" "10" "some text" "26-Nov-2022"

See Also
cellstr | char | iscellstr | strcmp | string

More About
• “Text in String and Character Arrays” on page 6-2
• “Access Data in Cell Array” on page 12-5
• “Create String Arrays” on page 6-5
• “Update Your Code to Accept Strings” on page 6-63
• “Frequently Asked Questions About String Arrays” on page 6-58

6 Characters and Strings

6-14

Analyze Text Data with String Arrays

This example shows how to store text from a file as a string array, sort the words by their frequency,
plot the result, and collect basic statistics for the words found in the file.

Import Text File to String Array

Read text from Shakespeare's Sonnets with the fileread function. fileread returns the text as a
1-by-100266 character vector.

sonnets = fileread('sonnets.txt');
sonnets(1:35)

ans =
 'THE SONNETS

 by William Shakespeare'

Convert the text to a string using the string function. Then, split it on newline characters using the
splitlines function. sonnets becomes a 2625-by-1 string array, where each string contains one
line from the poems. Display the first five lines of sonnets.

sonnets = string(sonnets);
sonnets = splitlines(sonnets);
sonnets(1:5)

ans = 5x1 string
 "THE SONNETS"
 ""
 "by William Shakespeare"
 ""
 ""

Clean String Array

To calculate the frequency of the words in sonnets, first clean it by removing empty strings and
punctuation marks. Then reshape it into a string array that contains individual words as elements.

Remove the strings with zero characters ("") from the string array. Compare each element of
sonnets to "", the empty string. You can create strings, including an empty string, using double
quotes. TF is a logical vector that contains a true value wherever sonnets contains a string with zero
characters. Index into sonnets with TF and delete all strings with zero characters.

TF = (sonnets == "");
sonnets(TF) = [];
sonnets(1:10)

ans = 10x1 string
 "THE SONNETS"
 "by William Shakespeare"
 " I"
 " From fairest creatures we desire increase,"
 " That thereby beauty's rose might never die,"
 " But as the riper should by time decease,"

 Analyze Text Data with String Arrays

6-15

 " His tender heir might bear his memory:"
 " But thou, contracted to thine own bright eyes,"
 " Feed'st thy light's flame with self-substantial fuel,"
 " Making a famine where abundance lies,"

Replace some punctuation marks with space characters. For example, replace periods, commas, and
semi-colons. Keep apostrophes because they can be part of some words in the Sonnets, such as
light's.

p = [".","?","!",",",";",":"];
sonnets = replace(sonnets,p," ");
sonnets(1:10)

ans = 10x1 string
 "THE SONNETS"
 "by William Shakespeare"
 " I"
 " From fairest creatures we desire increase "
 " That thereby beauty's rose might never die "
 " But as the riper should by time decease "
 " His tender heir might bear his memory "
 " But thou contracted to thine own bright eyes "
 " Feed'st thy light's flame with self-substantial fuel "
 " Making a famine where abundance lies "

Strip leading and trailing space characters from each element of sonnets.

sonnets = strip(sonnets);
sonnets(1:10)

ans = 10x1 string
 "THE SONNETS"
 "by William Shakespeare"
 "I"
 "From fairest creatures we desire increase"
 "That thereby beauty's rose might never die"
 "But as the riper should by time decease"
 "His tender heir might bear his memory"
 "But thou contracted to thine own bright eyes"
 "Feed'st thy light's flame with self-substantial fuel"
 "Making a famine where abundance lies"

Split sonnets into a string array whose elements are individual words. You can use the split
function to split elements of a string array on whitespace characters, or on delimiters that you
specify. However, split requires that every element of a string array must be divisible into an equal
number of new strings. The elements of sonnets have different numbers of spaces, and therefore are
not divisible into equal numbers of strings. To use the split function on sonnets, write a for-loop
that calls split on one element at a time.

Create the empty string array sonnetWords using the strings function. Write a for-loop that splits
each element of sonnets using the split function. Concatenate the output from split onto
sonnetWords. Each element of sonnetWords is an individual word from sonnets.

sonnetWords = strings(0);
for i = 1:length(sonnets)

6 Characters and Strings

6-16

 sonnetWords = [sonnetWords ; split(sonnets(i))];
end
sonnetWords(1:10)

ans = 10x1 string
 "THE"
 "SONNETS"
 "by"
 "William"
 "Shakespeare"
 "I"
 "From"
 "fairest"
 "creatures"
 "we"

Sort Words Based on Frequency

Find the unique words in sonnetWords. Count them and sort them based on their frequency.

To count words that differ only by case as the same word, convert sonnetWords to lowercase. For
example, The and the count as the same word. Find the unique words using the unique function.
Then, count the number of times each unique word occurs using the histcounts function.

sonnetWords = lower(sonnetWords);
[words,~,idx] = unique(sonnetWords);
numOccurrences = histcounts(idx,numel(words));

Sort the words in sonnetWords by number of occurrences, from most to least common.

[rankOfOccurrences,rankIndex] = sort(numOccurrences,'descend');
wordsByFrequency = words(rankIndex);

Plot Word Frequency

Plot the occurrences of words in the Sonnets from the most to least common words. Zipf's Law states
that the distribution of occurrences of words in a large body text follows a power-law distribution.

loglog(rankOfOccurrences);
xlabel('Rank of word (most to least common)');
ylabel('Number of Occurrences');

 Analyze Text Data with String Arrays

6-17

Display the ten most common words in the Sonnets.

wordsByFrequency(1:10)

ans = 10x1 string
 "and"
 "the"
 "to"
 "my"
 "of"
 "i"
 "in"
 "that"
 "thy"
 "thou"

Collect Basic Statistics in Table

Calculate the total number of occurrences of each word in sonnetWords. Calculate the number of
occurrences as a percentage of the total number of words, and calculate the cumulative percentage
from most to least common. Write the words and the basic statistics for them to a table.

numOccurrences = numOccurrences(rankIndex);
numOccurrences = numOccurrences';
numWords = length(sonnetWords);
T = table;
T.Words = wordsByFrequency;

6 Characters and Strings

6-18

T.NumOccurrences = numOccurrences;
T.PercentOfText = numOccurrences / numWords * 100.0;
T.CumulativePercentOfText = cumsum(numOccurrences) / numWords * 100.0;

Display the statistics for the ten most common words.

T(1:10,:)

ans=10×4 table
 Words NumOccurrences PercentOfText CumulativePercentOfText
 ______ ______________ _____________ _______________________

 "and" 490 2.7666 2.7666
 "the" 436 2.4617 5.2284
 "to" 409 2.3093 7.5377
 "my" 371 2.0947 9.6324
 "of" 370 2.0891 11.722
 "i" 341 1.9254 13.647
 "in" 321 1.8124 15.459
 "that" 320 1.8068 17.266
 "thy" 280 1.5809 18.847
 "thou" 233 1.3156 20.163

The most common word in the Sonnets, and, occurs 490 times. Together, the ten most common words
account for 20.163% of the text.

See Also
string | split | join | unique | replace | lower | splitlines | histcounts | strip | sort |
table

Related Examples
• “Create String Arrays” on page 6-5
• “Search and Replace Text” on page 6-37
• “Compare Text” on page 6-32
• “Test for Empty Strings and Missing Values” on page 6-20

 Analyze Text Data with String Arrays

6-19

Test for Empty Strings and Missing Values

String arrays can contain both empty strings and missing values. Empty strings contain zero
characters and display as double quotes with nothing between them (""). You can determine if a
string is an empty string using the == operator. The empty string is a substring of every other string.
Therefore, functions such as contains always find the empty string within other strings. String
arrays also can contain missing values. Missing values in string arrays display as <missing>. To find
missing values in a string array, use the ismissing function instead of the == operator.

Test for Empty Strings

You can test a string array for empty strings using the == operator.

You can create an empty string using double quotes with nothing between them (""). Note that the
size of str is 1-by-1, not 0-by-0. However, str contains zero characters.

str = ""

str =
""

Create an empty character vector using single quotes. Note that the size of chr is 0-by-0. The
character array chr actually is an empty array, and not just an array with zero characters.

chr = ''

chr =

 0x0 empty char array

Create an array of empty strings using the strings function. Each element of the array is a string
with no characters.

str2 = strings(1,3)

str2 = 1x3 string
 "" "" ""

Test if str is an empty string by comparing it to an empty string.

if (str == "")
 disp 'str has zero characters'
end

str has zero characters

Do not use the isempty function to test for empty strings. A string with zero characters still has a
size of 1-by-1. However, you can test if a string array has at least one dimension with a size of zero
using the isempty function.

Create an empty string array using the strings function. To be an empty array, at least one
dimension must have a size of zero.

str = strings(0,3)

6 Characters and Strings

6-20

str =

 0x3 empty string array

Test str using the isempty function.

isempty(str)

ans = logical
 1

Test a string array for empty strings. The == operator returns a logical array that is the same size as
the string array.

str = ["Mercury","","Apollo"]

str = 1x3 string
 "Mercury" "" "Apollo"

str == ''

ans = 1x3 logical array

 0 1 0

Find Empty Strings Within Other Strings

Strings always contain the empty string as a substring. In fact, the empty string is always at both the
start and the end of every string. Also, the empty string is always found between any two consecutive
characters in a string.

Create a string. Then test if it contains the empty string.

str = "Hello, world";
TF = contains(str,"")

TF = logical
 1

Test if str starts with the empty string.

TF = startsWith(str,"")

TF = logical
 1

Count the number of characters in str. Then count the number of empty strings in str. The count
function counts empty strings at the beginning and end of str, and between each pair of characters.
Therefore if str has N characters, it also has N+1 empty strings.

str

str =
"Hello, world"

 Test for Empty Strings and Missing Values

6-21

strlength(str)

ans = 12

count(str,"")

ans = 13

Replace a substring with the empty string. When you call replace with an empty string, it removes
the substring and replaces it with a string that has zero characters.

replace(str,"world","")

ans =
"Hello, "

Insert a substring after empty strings using the insertAfter function. Because there are empty
strings between each pair of characters, insertAfter inserts substrings between each pair.

insertAfter(str,"","-")

ans =
"-H-e-l-l-o-,- -w-o-r-l-d-"

In general, string functions that replace, erase, extract, or insert substrings allow you to specify
empty strings as the starts and ends of the substrings to modify. When you do so, these functions
operate on the start and end of the string, and between every pair of characters.

Test for Missing Values

You can test a string array for missing values using the ismissing function. The missing string is the
string equivalent to NaN for numeric arrays. It indicates where a string array has missing values. The
missing string displays as <missing>.

To create a missing string, convert a missing value using the string function.

str = string(missing)

str =
<missing>

You can create a string array with both empty and missing strings. Use the ismissing function to
determine which elements are strings with missing values. Note that the empty string is not a
missing string.

str(1) = "";
str(2) = "Gemini";
str(3) = string(missing)

str = 1x3 string
 "" "Gemini" <missing>

ismissing(str)

ans = 1x3 logical array

 0 0 1

6 Characters and Strings

6-22

Compare str to a missing string. The comparison is always 0 (false), even when you compare a
missing string to another missing string.

str == string(missing)

ans = 1x3 logical array

 0 0 0

To find missing strings, use the ismissing function. Do not use the == operator.

See Also
string | strings | strlength | ismissing | contains | startsWith | endsWith | erase |
extractBetween | extractBefore | extractAfter | insertAfter | insertBefore | replace |
replaceBetween | eraseBetween | eq | all | any

Related Examples
• “Create String Arrays” on page 6-5
• “Analyze Text Data with String Arrays” on page 6-15
• “Search and Replace Text” on page 6-37
• “Compare Text” on page 6-32

 Test for Empty Strings and Missing Values

6-23

Formatting Text

To convert data to text and control its format, you can use formatting operators with common
conversion functions, such as num2str and sprintf. These operators control notation, alignment,
significant digits, and so on. They are similar to those used by the printf function in the C
programming language. Typical uses for formatted text include text for display and output files.

For example, %f converts floating-point values to text using fixed-point notation. Adjust the format by
adding information to the operator, such as %.2f to represent two digits after the decimal mark, or
%12f to represent 12 characters in the output, padding with spaces as needed.

A = pi*ones(1,3);
txt = sprintf('%f | %.2f | %12f', A)

txt =
'3.141593 | 3.14 | 3.141593'

You can combine operators with ordinary text and special characters in a format specifier. For
instance, \n inserts a newline character.

txt = sprintf('Displaying pi: \n %f \n %.2f \n %12f', A)

txt =
 'Displaying pi:
 3.141593
 3.14
 3.141593'

Functions that support formatting operators are compose, num2str, sprintf, fprintf, and the
error handling functions assert, error, warning, and MException.

Fields of the Formatting Operator
A formatting operator can have six fields, as shown in the figure. From right to left, the fields are the
conversion character, subtype, precision, field width, flags, and numeric identifier. (Space characters
are not allowed in the operator. They are shown here only to improve readability of the figure.) The
conversion character is the only required field, along with the leading % character.

Conversion Character

The conversion character specifies the notation of the output. It consists of a single character and
appears last in the format specifier.

Specifier Description
c Single character.

6 Characters and Strings

6-24

Specifier Description
d Decimal notation (signed).
e Exponential notation (using a lowercase e, as in 3.1415e+00).
E Exponential notation (using an uppercase E, as in 3.1415E+00).
f Fixed-point notation.
g The more compact of %e or %f. (Insignificant zeroes do not print.)
G Same as %g, but using an uppercase E.
o Octal notation (unsigned).
s Character vector or string array.
u Decimal notation (unsigned).
x Hexadecimal notation (unsigned, using lowercase letters a–f).
X Hexadecimal notation (unsigned, using uppercase letters A–F).

For example, format the number 46 using different conversion characters to display the number in
decimal, fixed-point, exponential, and hexadecimal formats.

A = 46*ones(1,4);
txt = sprintf('%d %f %e %X', A)

txt =
'46 46.000000 4.600000e+01 2E'

Subtype

The subtype field is a single alphabetic character that immediately precedes the conversion
character. Without the subtype field, the conversion characters %o, %x, %X, and %u treat input data as
integers. To treat input data as floating-point values instead and convert them to octal, decimal, or
hexadecimal representations, use one of following subtype specifiers.

b The input data are double-precision floating-point values rather than unsigned integers. For
example, to print a double-precision value in hexadecimal, use a format like %bx.

t The input data are single-precision floating-point values rather than unsigned integers.

Precision

The precision field in a formatting operator is a nonnegative integer that immediately follows a
period. For example, in the operator %7.3f, the precision is 3. For the %g operator, the precision
indicates the number of significant digits to display. For the %f, %e, and %E operators, the precision
indicates how many digits to display to the right of the decimal point.

Display numbers to different precisions using the precision field.

txt = sprintf('%g %.2g %f %.2f', pi*50*ones(1,4))

txt =

 '157.08 1.6e+02 157.079633 157.08'

While you can specify the precision in a formatting operator for input text (for example, in the %s
operator), there is usually no reason to do so. If you specify the precision as p, and p is less than the
number of characters in the input text, then the output contains only the first p characters.

 Formatting Text

6-25

Field Width

The field width in a formatting operator is a nonnegative integer that specifies the number of digits or
characters in the output when formatting input values. For example, in the operator %7.3f, the field
width is 7.

Specify different field widths. To show the width for each output, use the | character. By default, the
output text is padded with space characters when the field width is greater than the number of
characters.

txt = sprintf('|%e|%15e|%f|%15f|', pi*50*ones(1,4))

txt =

 '|1.570796e+02| 1.570796e+02|157.079633| 157.079633|'

When used on text input, the field width can determine whether to pad the output text with spaces. If
the field width is less than or equal to the number of characters in the input text, then it has no effect.

txt = sprintf('%30s', 'Pad left with spaces')

txt =

 ' Pad left with spaces'

Flags

Optional flags control additional formatting of the output text. The table describes the characters you
can use as flags.

Character Description Example
Minus sign (-) Left-justify the converted argument

in its field.
%-5.2d

Plus sign (+) For numeric values, always print a
leading sign character (+ or -).
For text values, right-justify the
converted argument in its field.

%+5.2d
%+5s

Space Insert a space before the value. % 5.2f
Zero (0) Pad with zeroes rather than spaces. %05.2f
Pound sign (#) Modify selected numeric

conversions:

• For %o, %x, or %X, print 0, 0x, or
0X prefix.

• For %f, %e, or %E, print decimal
point even when precision is 0.

• For %g or %G, do not remove
trailing zeroes or decimal point.

%#5.0f

Right- and left-justify the output. The default behavior is to right-justify the output text.

txt = sprintf('right-justify: %12.2f\nleft-justify: %-12.2f',...
 12.3, 12.3)

6 Characters and Strings

6-26

txt =

 'right-justify: 12.30
 left-justify: 12.30 '

Display a + sign for positive numbers. The default behavior is to omit the leading + sign for positive
numbers.

txt = sprintf('no sign: %12.2f\nsign: %+12.2f',...
 12.3, 12.3)

txt =

 'no sign: 12.30
 sign: +12.30'

Pad to the left with spaces and zeroes. The default behavior is to pad with spaces.

txt = sprintf('Pad with spaces: %12.2f\nPad with zeroes: %012.2f',...
 5.2, 5.2)

txt =

 'Pad with spaces: 5.20
 Pad with zeroes: 000000005.20'

Note You can specify more than one flag in a formatting operator.

Value Identifiers

By default, functions such as sprintf insert values from input arguments into the output text in
sequential order. To process the input arguments in a nonsequential order, specify the order using
numeric identifiers in the format specifier. Specify nonsequential arguments with an integer
immediately following the % sign, followed by a $ sign.

Ordered Sequentially Ordered By Identifier
sprintf('%s %s %s',...
 '1st','2nd','3rd')

ans =

 '1st 2nd 3rd'

sprintf('%3$s %2$s %1$s',...
 '1st','2nd','3rd')

ans =

 '3rd 2nd 1st'

Special Characters

Special characters can be part of the output text. But because they cannot be entered as ordinary
text, they require specific character sequences to represent them. To insert special characters into
output text, use any of the character sequences in the table.

Special Character Representation in Format
Specifier

Single quotation mark ''
Percent character %%

 Formatting Text

6-27

Special Character Representation in Format
Specifier

Backslash \\
Alarm \a
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Vertical tab \v
Character whose Unicode numeric value can be represented by
the hexadecimal number, N

\xN

Example: sprintf('\x5A')
returns 'Z'

Character whose Unicode numeric value can be represented by
the octal number, N

\N

Example: sprintf('\132')
returns 'Z'

Setting Field Width and Precision
The formatting operator follows a set of rules for formatting output text to the specified field width
and precision. You also can specify values for the field width and precision outside the format
specifier, and use numbered identifiers with the field width and precision.

Rules for Formatting Precision and Field Width

The figure illustrates how the field width and precision settings affect the output of the formatting
functions. In this figure, the zero following the % sign in the formatting operator means to add leading
zeroes to the output text rather than space characters.

• If the precision is not specified, then it defaults to six.
• If the precision p is less than the number of digits in the fractional part of the input, then only p

digits are shown after the decimal point. The fractional value is rounded in the output.
• If the precision p is greater than the number of digits f in the fractional part of the input, then p

digits are shown after the decimal point. The fractional part is extended to the right with p-f
zeroes in the output.

6 Characters and Strings

6-28

• If the field width is not specified, then it defaults to p+1+n, where n is the number of digits in the
whole part of the input value.

• If the field width w is greater than p+1+n, then the whole part of the output value is padded to the
left with w-(p+1+n) additional characters. The additional characters are space characters unless
the formatting operator includes the 0 flag. In that case, the additional characters are zeroes.

Specify Field Width and Precision Outside Format Specifier

You can specify the field width and precision using values from a sequential argument list. Use an
asterisk (*) in place of the field width or precision fields of the formatting operator.

For example, format and display three numbers. In each case, use an asterisk to specify that the field
width or precision come from input arguments that follow the format specifier.

txt = sprintf('%*f %.*f %*.*f',...
 15,123.45678,...
 3,16.42837,...
 6,4,pi)

txt =

 ' 123.456780 16.428 3.1416'

The table describes the effects of each formatting operator in the example.

Formatting Operator Description
%*f Specify width as the following input argument,

15.
%.*f Specify precision as the following input

argument, 3.
%*.*f Specify width and precision as the following input

arguments, 6, and 4.

You can mix the two styles. For example, get the field width from the following input argument and
the precision from the format specifier.

txt = sprintf('%*.2f', 5, 123.45678)

txt =

 '123.46'

Specify Numbered Identifiers in Width and Precision Fields

You also can specify field width and precision as values from a nonsequential argument list, using an
alternate syntax shown in the figure. Within the formatting operator, specify the field width and
precision with asterisks that follow numbered identifiers and $ signs. Specify the values of the field
width and precision with input arguments that follow the format specifier.

 Formatting Text

6-29

For example, format and display three numbers. In each case, use a numbered identifier to specify
that the field width or precision come from input arguments that follow the format specifier.

txt = sprintf('%1$*4$f %2$.*5$f %3$*6$.*7$f',...
 123.45678, 16.42837, pi, 15, 3, 6, 4)

txt =

 ' 123.456780 16.428 3.1416'

The table describes the effect of each formatting operator in the example.

Formatting Operator Description
%1$*4$f 1$ specifies the first input argument,

123.45678, as the value
*4$ specifies the fourth input argument, 15, as
the field width

%2$.*5$f 2$ specifies the second input argument,
16.42837, as the value
.*5$ specifies the fifth input argument, 3, as the
precision

%3$*6$.*7$f 3$ specifies the third input argument, pi, as the
value
*6$ specifies the sixth input argument, 6, as the
field width
.*7$ specifies the seventh input argument, 4, as
the precision

Restrictions on Using Identifiers
If any of the formatting operators include an identifier field, then all the operators in the format
specifier must include identifier fields. If you use both sequential and nonsequential ordering in the
same function call, then the output is truncated at the first switch between sequential and
nonsequential identifiers.

Valid Syntax Invalid Syntax
sprintf('%d %d %d %d',...
 1,2,3,4)

ans =

 '1 2 3 4'

sprintf('%d %3$d %d %d',...
 1,2,3,4)

ans =

 '1 '

If your function call provides more input arguments than there are formatting operators in the format
specifier, then the operators are reused. However, only function calls that use sequential ordering
reuse formatting operators. You cannot reuse formatting operators when you use numbered
identifiers.

6 Characters and Strings

6-30

Valid Syntax Invalid Syntax
sprintf('%d',1,2,3,4)

ans =

 '1234'

sprintf('%1$d',1,2,3,4)

ans =

 '1'

If you use numbered identifiers when the input data is a vector or array, then the output does not
contain formatted data.

Valid Syntax Invalid Syntax
v = [1.4 2.7 3.1];
sprintf('%.4f %.4f %.4f',v)

ans =

 '1.4000 2.7000 3.1000'

v = [1.4 2.7 3.1];
sprintf('%3$.4f %1$.4f %2$.4f',v)

ans =

 1×0 empty char array

See Also
compose | sprintf | fprintf | num2str

Related Examples
• “Convert Text to Numeric Values” on page 6-48
• “Convert Numeric Values to Text” on page 6-45

 Formatting Text

6-31

Compare Text

Compare text in character arrays and string arrays in different ways. You can compare string arrays
and character vectors with relational operators and with the strcmp function. You can sort string
arrays using the sort function, just as you would sort arrays of any other type. MATLAB® also
provides functions to inspect characters in pieces of text. For example, you can determine which
characters in a character vector or string array are letters or space characters.

Compare String Arrays for Equality

You can compare string arrays for equality with the relational operators == and ~=. When you
compare string arrays, the output is a logical array that has 1 where the relation is true, and 0 where
it is not true.

Create two string scalars. You can create strings using double quotes.

str1 = "Hello";
str2 = "World";
str1,str2

str1 =
"Hello"

str2 =
"World"

Compare str1 and str2 for equality.

str1 == str2

ans = logical
 0

Compare a string array with multiple elements to a string scalar.

str1 = ["Mercury","Gemini","Apollo";...
 "Skylab","Skylab B","International Space Station"];
str2 = "Apollo";
str1 == str2

ans = 2x3 logical array

 0 0 1
 0 0 0

Compare a string array to a character vector. As long as one of the variables is a string array, you can
make the comparison.

chr = 'Gemini';
TF = (str1 == chr)

TF = 2x3 logical array

 0 1 0

6 Characters and Strings

6-32

 0 0 0

Index into str1 with TF to extract the string elements that matched Gemini. You can use logical
arrays to index into an array.

str1(TF)

ans =
"Gemini"

Compare for inequality using the ~= operator. Index into str1 to extract the elements that do not
match 'Gemini'.

TF = (str1 ~= chr)

TF = 2x3 logical array

 1 0 1
 1 1 1

str1(TF)

ans = 5x1 string
 "Mercury"
 "Skylab"
 "Skylab B"
 "Apollo"
 "International Space Station"

Compare two nonscalar string arrays. When you compare two nonscalar arrays, they must be the
same size.

str2 = ["Mercury","Mars","Apollo";...
 "Jupiter","Saturn","Neptune"];
TF = (str1 == str2)

TF = 2x3 logical array

 1 0 1
 0 0 0

Index into str1 to extract the matches.

str1(TF)

ans = 2x1 string
 "Mercury"
 "Apollo"

Compare String Arrays with Other Relational Operators

You can also compare strings with the relational operators >, >=, <, and <=. Strings that start with
uppercase letters come before strings that start with lowercase letters. For example, the string
"ABC" is less than "abc". Digits and some punctuation marks also come before letters.

 Compare Text

6-33

"ABC" < "abc"

ans = logical
 1

Compare a string array that contains names to another name with the > operator. The names
Sanchez, de Ponte, and Nash come after Matthews, because S, d, and N all are greater than M.

str = ["Sanchez","Jones","de Ponte","Crosby","Nash"];
TF = (str > "Matthews")

TF = 1x5 logical array

 1 0 1 0 1

str(TF)

ans = 1x3 string
 "Sanchez" "de Ponte" "Nash"

Sort String Arrays

You can sort string arrays. MATLAB® stores characters as Unicode® using the UTF-16 character
encoding scheme. Character and string arrays are sorted according to the UTF-16 code point order.
For the characters that are also the ASCII characters, this order means that uppercase letters come
before lowercase letters. Digits and some punctuation also come before letters.

Sort the string array str.

sort(str)

ans = 1x5 string
 "Crosby" "Jones" "Nash" "Sanchez" "de Ponte"

Sort a 2-by-3 string array. The sort function sorts the elements in each column separately.

sort(str2)

ans = 2x3 string
 "Jupiter" "Mars" "Apollo"
 "Mercury" "Saturn" "Neptune"

To sort the elements in each row, sort str2 along the second dimension.

sort(str2,2)

ans = 2x3 string
 "Apollo" "Mars" "Mercury"
 "Jupiter" "Neptune" "Saturn"

6 Characters and Strings

6-34

Compare Character Vectors

You can compare character vectors and cell arrays of character vectors to each other. Use the
strcmp function to compare two character vectors, or strncmp to compare the first N characters.
You also can use strcmpi and strncmpi for case-insensitive comparisons.

Compare two character vectors with the strcmp function. chr1 and chr2 are not equal.

chr1 = 'hello';
chr2 = 'help';
TF = strcmp(chr1,chr2)

TF = logical
 0

Note that the MATLAB strcmp differs from the C version of strcmp. The C version of strcmp
returns 0 when two character arrays are the same, not when they are different.

Compare the first two characters with the strncmp function. TF is 1 because both character vectors
start with the characters he.

TF = strncmp(chr1,chr2,2)

TF = logical
 1

Compare two cell arrays of character vectors. strcmp returns a logical array that is the same size as
the cell arrays.

C1 = {'pizza'; 'chips'; 'candy'};
C2 = {'pizza'; 'chocolate'; 'pretzels'};
strcmp(C1,C2)

ans = 3x1 logical array

 1
 0
 0

Inspect Characters in String and Character Arrays

You can inspect the characters in string arrays or character arrays with the isstrprop, isletter,
and isspace functions.

• The isstrprop inspects characters in either string arrays or character arrays.
• The isletter and isspace functions inspect characters in character arrays only.

Determine which characters in a character vector are space characters. isspace returns a logical
vector that is the same size as chr.

chr = 'Four score and seven years ago';
TF = isspace(chr)

TF = 1x30 logical array

 Compare Text

6-35

 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

The isstrprop function can query characters for many different traits. isstrprop can determine
whether characters in a string or character vector are letters, alphanumeric characters, decimal or
hexadecimal digits, or punctuation characters.

Determine which characters in a string are punctuation marks. isstrprop returns a logical vector
whose length is equal to the number of characters in str.

str = "A horse! A horse! My kingdom for a horse!"

str =
"A horse! A horse! My kingdom for a horse!"

isstrprop(str,"punct")

ans = 1x41 logical array

 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1

Determine which characters in the character vector chr are letters.

isstrprop(chr,"alpha")

ans = 1x30 logical array

 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1

See Also
strcmp | sort | isstrprop | isletter | isspace | eq | ne | gt | ge | le | lt

Related Examples
• “Text in String and Character Arrays” on page 6-2
• “Create String Arrays” on page 6-5
• “Analyze Text Data with String Arrays” on page 6-15
• “Search and Replace Text” on page 6-37
• “Test for Empty Strings and Missing Values” on page 6-20

6 Characters and Strings

6-36

Search and Replace Text

Processing text data often involves finding and replacing substrings. There are several functions that
find text and return different information: some functions confirm that the text exists, while others
count occurrences, find starting indices, or extract substrings. These functions work on character
vectors and string scalars, such as "yes", as well as character and string arrays, such as
["yes","no";"abc","xyz"]. In addition, you can use patterns to define rules for searching, such as
one or more letter or digit characters.

Search for Text

To determine if text is present, use a function that returns logical values, like contains,
startsWith, or endsWith. Logical values of 1 correspond to true, and 0 corresponds to false.

txt = "she sells seashells by the seashore";
TF = contains(txt,"sea")

TF = logical
 1

Calculate how many times the text occurs using the count function.

n = count(txt,"sea")

n = 2

To locate where the text occurs, use the strfind function, which returns starting indices.

idx = strfind(txt,"sea")

idx = 1×2

 11 28

Find and extract text using extraction functions, such as extract, extractBetween,
extractBefore, or extractAfter.

mid = extractBetween(txt,"sea","shore")

mid =
"shells by the sea"

Optionally, include the boundary text.

mid = extractBetween(txt,"sea","shore","Boundaries","inclusive")

mid =
"seashells by the seashore"

Find Text in Arrays

The search and replacement functions can also find text in multi-element arrays. For example, look
for color names in several song titles.

songs = ["Yellow Submarine";
 "Penny Lane";

 Search and Replace Text

6-37

 "Blackbird"];

colors =["Red","Yellow","Blue","Black","White"];

TF = contains(songs,colors)

TF = 3x1 logical array

 1
 0
 1

To list the songs that contain color names, use the logical TF array as indices into the original songs
array. This technique is called logical indexing.

colorful = songs(TF)

colorful = 2x1 string
 "Yellow Submarine"
 "Blackbird"

Use the function replace to replace text in songs that matches elements of colors with the string
"Orange".

replace(songs,colors,"Orange")

ans = 3x1 string
 "Orange Submarine"
 "Penny Lane"
 "Orangebird"

Match Patterns

Since R2020b

In addition to searching for literal text, like “sea” or “yellow”, you can search for text that matches a
pattern. There are many predefined patterns, such as digitsPattern to find numeric digits.

address = "123a Sesame Street, New York, NY 10128";
nums = extract(address,digitsPattern)

nums = 2x1 string
 "123"
 "10128"

For additional precision in searches, you can combine patterns. For example, locate words that start
with the character “S”. Use a string to specify the “S” character, and lettersPattern to find
additional letters after that character.

pat = "S" + lettersPattern;
StartWithS = extract(address,pat)

StartWithS = 2x1 string
 "Sesame"

6 Characters and Strings

6-38

 "Street"

For more information, see “Build Pattern Expressions” on page 6-40.

See Also
contains | extract | count | pattern | replace | strfind

Related Examples
• “Text in String and Character Arrays” on page 6-2
• “Build Pattern Expressions” on page 6-40
• “Test for Empty Strings and Missing Values” on page 6-20
• “Regular Expressions” on page 2-52

 Search and Replace Text

6-39

Build Pattern Expressions

Since R2020b

Patterns are a tool to aid in searching for and modifying text. Similar to regular expressions, a
pattern defines rules for matching text. Patterns can be used with text-searching functions like
contains, matches, and extract to specify which portions of text these functions act on. You can
build a pattern expression in a way similar to how you would build a mathematical expression, using
pattern functions, operators, and literal text. Because building pattern expressions is open ended,
patterns can become quite complicated. Building patterns in steps and using functions like
maskedPattern and namedPattern can help organize complicated patterns.

Building Simple Patterns

The simplest pattern is built from a single pattern function. For example, lettersPattern matches
any letter characters. There are many pattern functions for matching different types of characters
and other features of text. A list of these functions can be found on the pattern reference page.

txt = "abc123def";
pat = lettersPattern;
extract(txt,pat)

ans = 2x1 string
 "abc"
 "def"

Patterns combine with other patterns and literal text by using the plus(+) operator. This operator
appends patterns and text together in the order they are defined in the pattern expression. The
combined patterns only match text in the same order. In this example, "YYYY/MM/DD" is not a match
because a four-letter string must be at the end of the text.

txt = "Dates can be expressed as MM/DD/YYYY, DD/MM/YYYY, or YYYY/MM/DD";
pat = lettersPattern(2) + "/" + lettersPattern(2) + "/" + lettersPattern(4);
extract(txt,pat)

ans = 2x1 string
 "MM/DD/YYYY"
 "DD/MM/YYYY"

Patterns used with the or(|) operator specify that only one of the two specified patterns needs to
match a section of text. If neither pattern is able to match then the pattern expression fails to match.

txt = "123abc";
pat = lettersPattern|digitsPattern;
extract(txt,pat)

ans = 2x1 string
 "123"
 "abc"

Some pattern functions take patterns as their input and modify them in some way. For example,
optionalPattern makes a specified pattern match if possible, but the pattern is not required for a
successful match.

6 Characters and Strings

6-40

txt = ["123abc" "abc"];
pat = optionalPattern(digitsPattern) + lettersPattern;
extract(txt,pat)

ans = 1x2 string
 "123abc" "abc"

Boundary Patterns

Boundary patterns are a special type of pattern that do not match characters but rather match the
boundaries between a designated character type and other characters or the start or end of that
piece of text. For example, digitBoundary matches the boundaries between digit characters and
nondigit characters and between digit characters and the start or end of the text. It does not match
digit characters themselves. Boundary patterns are useful as delimiters for functions like split.

txt = "123abc";
pat = digitBoundary;
split(txt,pat)

ans = 3x1 string
 ""
 "123"
 "abc"

Boundary patterns are special amongst patterns because they can be negated using the not(~)
operator. When negated in this way, boundary patterns match before or after characters that did not
satisfy the requirements above. For example, ~digitBoundary matches the boundary between:

• characters that are both digits
• characters that are both nondigits
• a nondigit character and the start or end of a piece of text

Use replace to mark the locations matched by ~digitBoundary with a "|" character.

txt = "123abc";
pat = ~digitBoundary;
replace(txt,pat,"|")

ans =
"1|2|3a|b|c|"

Building Complicated Patterns in Steps

Sometimes a simple pattern is not sufficient to solve a problem and a more complicated pattern is
needed. As a pattern expression grows it can become difficult to understand what it is matching. One
way to simplify building a complicated pattern is building each part of the pattern separately and
then combining the parts together into a single pattern expression.

For instance, email addresses use the form local_part@domain.TLD. Each of the three identifiers —
local_part, domain, and TLD — must be a combination of digits, letters and underscore characters. To
build the full pattern, start by defining a pattern for the identifiers. Build a pattern that matches one
letter or digit character or one underscore character.

identCharacters = alphanumericsPattern(1) | "_";

 Build Pattern Expressions

6-41

Now, use asManyOfPattern to match one or more consecutive instances of identCharacters.

identifier = asManyOfPattern(identCharacters,1);

Next, build a pattern that matches an email containing multiple identifiers.

emailPattern = identifier + "@" + identifier + "." + identifier;

Test the pattern by seeing how well it matches the following example emails.

exampleEmails = ["janedoe@mathworks.com"
 "abe.lincoln@whitehouse.gov"
 "alberteinstein@physics.university.edu"];
matches(exampleEmails,emailPattern)

ans = 3x1 logical array

 1
 0
 0

The pattern fails to match several of the example emails even though all the emails are valid. Both the
local_part and domain can be made of a series of identifiers that are separated by periods. Use the
identifier pattern to build a pattern that is capable of matching a series of identifiers.
asManyOfPattern matches as many concurrent appearances of the specified pattern as possible,
but if there are none the rest of the pattern is still able to match successfully.

identifierSeries = asManyOfPattern(identifier + ".") + identifier;

Use this pattern to build a new emailPattern that can match all of the example emails.

emailPattern = identifierSeries + "@" + identifierSeries + "." + identifier;
matches(exampleEmails,emailPattern)

ans = 3x1 logical array

 1
 1
 1

Organizing Pattern Display

Complex patterns can sometimes be difficult to read and interpret, especially by those you share
them with who are unfamiliar with the pattern's structure. For example, when displayed,
emailPattern is long and difficult to read.

emailPattern

emailPattern = pattern
 Matching:

 asManyOfPattern(asManyOfPattern(alphanumericsPattern(1) | "_",1) + ".") + asManyOfPattern(alphanumericsPattern(1) | "_",1) + "@" + asManyOfPattern(asManyOfPattern(alphanumericsPattern(1) | "_",1) + ".") + asManyOfPattern(alphanumericsPattern(1) | "_",1) + "." + asManyOfPattern(alphanumericsPattern(1) | "_",1)

Part of the issue with the display is that there are many repetitions of the identifier pattern. If the
exact details of this pattern are not important to users of the pattern, then the display of the

6 Characters and Strings

6-42

identifier pattern can be concealed using maskedPattern. This function creates a new pattern
where the display of identifier is masked and the variable name, "identifier", is displayed
instead. Alternatively, you can specify a different name to be displayed. The details of patterns that
are masked in this way can be accessed by clicking "Show all details" in the displayed pattern.

identifier = maskedPattern(identifier);
identifierSeries = asManyOfPattern(identifier + ".") + identifier

identifierSeries = pattern
 Matching:

 asManyOfPattern(identifier + ".") + identifier

 Show all details

Patterns can be further organized using the namedPattern function. namedPattern designates a
pattern as a named pattern that changes how the pattern is displayed when combined with other
patterns. Email addresses have several important portions, local_part@domain.TLD, which each have
their own matching rules. Create a named pattern for each section.

localPart = namedPattern(identifierSeries,"local_part");

Named patterns can be nested, to further delineate parts of a pattern. To nest a named pattern, build
a pattern using named patterns and then designate that pattern as a named pattern. For example,
Domain.TLD can be divided into the domain, subdomains, and the top level domain (TLD). Create
named patterns for each part of domain.TLD.

subdomain = namedPattern(identifierSeries,"subdomain");
domainName = namedPattern(identifier,"domainName");
tld = namedPattern(identifier,"TLD");

Nest the named patterns for the components of domain underneath a single named pattern domain.

domain = optionalPattern(subdomain + ".") + ...
 domainName + "." + ...
 tld;
domain = namedPattern(domain);

Combine the patterns together into a single named pattern, emailPattern. In the display of
emailPattern you can see each named pattern and what they match as well as the information on
any nested named patterns.

emailPattern = localPart + "@" + domain

emailPattern = pattern
 Matching:

 local_part + "@" + domain

 Using named patterns:

 local_part : asManyOfPattern(identifier + ".") + identifier
 domain : optionalPattern(subdomain + ".") + domainName + "." + TLD
 subdomain : asManyOfPattern(identifier + ".") + identifier
 domainName: identifier
 TLD : identifier

 Build Pattern Expressions

6-43

 Show all details

You can access named patterns and nested named patterns by dot-indexing into a pattern. For
example, you can access the nested named pattern subdomain by dot-indexing from emailPattern
into domain and then dot-indexing again into subdomain.

emailPattern.domain.subdomain

ans = pattern
 Matching:

 asManyOfPattern(identifier + ".") + identifier

 Show all details

Dot-assignment can be used to change named patterns without needing to rewrite the rest of the
pattern expression.

emailPattern.domain = "mathworks.com"

emailPattern = pattern
 Matching:

 local_part + "@" + domain

 Using named patterns:

 local_part: asManyOfPattern(identifier + ".") + identifier
 domain : "mathworks.com"

 Show all details

Copyright 2020 The MathWorks, Inc.

See Also
pattern | string | regexp | contains | replace | extract

More About
• “Search and Replace Text” on page 6-37
• “Regular Expressions” on page 2-52

6 Characters and Strings

6-44

Convert Numeric Values to Text

This example shows how to convert numeric values to text and append them to larger pieces of text.
For example, you might want to add a label or title to a plot, where the label includes a number that
describes a characteristic of the plot.

Convert to Strings

To convert a number to a string that represents it, use the string function.

str = string(pi)

str =
"3.1416"

The string function converts a numeric array to a string array having the same size.

A = [256 pi 8.9e-3];
str = string(A)

str = 1x3 string
 "256" "3.141593" "0.0089"

You can specify the format of the output text using the compose function, which accepts format
specifiers for precision, field width, and exponential notation.

str = compose("%9.7f",pi)

str =
"3.1415927"

If the input is a numeric array, then compose returns a string array. Return a string array that
represents numbers using exponential notation.

A = [256 pi 8.9e-3];
str = compose("%5.2e",A)

str = 1x3 string
 "2.56e+02" "3.14e+00" "8.90e-03"

Add Numbers to Strings

The simplest way to combine text and numbers is to use the plus operator (+). This operator
automatically converts numeric values to strings when the other operands are strings.

For example, plot a sine wave. Calculate the frequency of the wave and add a string representing that
value in the title of the plot.

X = linspace(0,2*pi);
Y = sin(X);
plot(X,Y)
freq = 1/(2*pi);
str = "Sine Wave, Frequency = " + freq + " Hz"

 Convert Numeric Values to Text

6-45

str =
"Sine Wave, Frequency = 0.15915 Hz"

title(str)

Sometimes existing text is stored in character vectors or cell arrays of character vectors. However,
the plus operator also automatically converts those types of data to strings when another operand is
a string. To combine numeric values with those types of data, first convert the numeric values to
strings, and then use plus to combine the text.

str = 'Sine Wave, Frequency = ' + string(freq) + {' Hz'}

str =
"Sine Wave, Frequency = 0.15915 Hz"

Character Codes

If your data contains integers that represent Unicode® values, use the char function to convert the
values to the corresponding characters. The output is a character vector or array.

u = [77 65 84 76 65 66];
c = char(u)

c =
'MATLAB'

Converting Unicode values also allows you to include special characters in text. For instance, the
Unicode value for the degree symbol is 176. To add char(176) to a string, use plus.

6 Characters and Strings

6-46

deg = char(176);
temp = 21;
str = "Temperature: " + temp + deg + "C"

str =
"Temperature: 21°C"

Hexadecimal and Binary Values

You can represent hexadecimal and binary values in your code either using text or using literals. The
recommended way to represent them is to write them as literals. You can write hexadecimal and
binary literals using the 0x and 0b prefixes respectively. However, it can sometimes be useful to
represent such values as text, using the dec2hex or dec2bin functions.

For example, set a bit in a binary value. If you specify the binary value using a literal, then it is stored
as an integer. After setting one of the bits, display the new binary value as text using the dec2bin
function.

register = 0b10010110

register = uint8
 150

register = bitset(register,5,0)

register = uint8
 134

binStr = dec2bin(register)

binStr =
'10000110'

See Also
dec2bin | dec2hex | char | string | compose | plus

More About
• “Convert Text to Numeric Values” on page 6-48
• “Hexadecimal and Binary Values” on page 6-54
• “Convert Between Text and datetime or duration Values” on page 7-48
• “Formatting Text” on page 6-24
• “Unicode and ASCII Values” on page 6-52

 Convert Numeric Values to Text

6-47

Convert Text to Numeric Values

This example shows how to convert text to the numeric values that it represents. Typically, you need
to perform such conversions when you have text that represents numbers to be plotted or used in
calculations. For example, the text might come from a text file or spreadsheet. If you did not already
convert it to numeric values when importing it into MATLAB®, you can use the functions shown in
this example.

You can convert string arrays, character vectors, and cell arrays of character vectors to numeric
values. Text can represent hexadecimal or binary values, though when you convert them to numbers
they are stored as decimal values. You can also convert text representing dates and time to
datetime or duration values, which can be treated like numeric values.

Double-Precision Values

The recommended way to convert text to double-precision values is to use the str2double function.
It can convert character vectors, string arrays, and cell arrays of character vectors.

For example, create a character vector using single quotes and convert it to the number it represents.

X = str2double('3.1416')

X = 3.1416

If the input argument is a string array or cell array of character vectors, then str2double converts
it to a numeric array having the same size. You can create strings using double quotes. (Strings have
the string data type, while character vectors have the char data type.)

str = ["2.718","3.1416";
 "137","0.015"]

str = 2x2 string
 "2.718" "3.1416"
 "137" "0.015"

 X = str2double(str)

X = 2×2

 2.7180 3.1416
 137.0000 0.0150

The str2double function can convert text that includes commas (as thousands separators) and
decimal points. For example, you can use str2double to convert the Balance variable in the table
below. Balance represents numbers as strings, using a comma as the thousands separator.

load balances
balances

balances=3×2 table
 Customer Balance
 _________ ___________

 "Diaz" "13,790.00"

6 Characters and Strings

6-48

 "Johnson" "2,456.10"
 "Wu" "923.71"

T.Balance = str2double(T.Balance)

T=3×2 table
 Customer Balance
 _________ _______

 "Diaz" 13790
 "Johnson" 2456.1
 "Wu" 923.71

If str2double cannot convert text to a number, then it returns a NaN value.

While the str2num function can also convert text to numbers, it is not recommended. str2num uses
the eval function, which can cause unintended side effects when the text input includes a function
name. To avoid these issues, use str2double.

As an alternative, you can convert strings to double-precision values using the double function. If the
input is a string array, then double returns a numeric array that has the same size, just as
str2double does. However, if the input is a character vector, then double converts the individual
characters to numbers representing their Unicode® values.

X = double("3.1416")

X = 3.1416

X = double('3.1416')

X = 1×6

 51 46 49 52 49 54

This list summarizes the best practices for converting text to numeric values.

• To convert text to numeric values, use the str2double function. It treats string arrays, character
vectors, and cell arrays of character vectors consistently.

• You can also use the double function for string arrays. However, it treats character vectors
differently.

• Avoid str2num. It calls the eval function which can have unintended consequences.

Hexadecimal and Binary Values

You can represent hexadecimal and binary numbers as text or as literals. When you write them as
literals, you must use the 0x and 0b prefixes. When you represent them as text and then convert
them, you can use the prefixes, but they are not required.

For example, write a hexadecimal number as a literal. The prefix is required.

D = 0x3FF

D = uint16
 1023

 Convert Text to Numeric Values

6-49

Then convert text representing the same value by using the hex2dec function. It recognizes the
prefix but does not require it.

D = hex2dec('3FF')

D = 1023

D = hex2dec('0x3FF')

D = 1023

Convert text representing binary values using the bin2dec function.

D = bin2dec('101010')

D = 42

D = bin2dec('0b101010')

D = 42

Dates and Times

MATLAB provides the datetime and duration data types to store dates and times, and to treat
them as numeric values. To convert text representing dates and times, use the datetime and
duration functions.

Convert text representing a date to a datetime value. The datetime function recognizes many
common formats for dates and times.

C = '2019-09-20'

C =
'2019-09-20'

D = datetime(C)

D = datetime
 20-Sep-2019

You can convert arrays representing dates and times.

str = ["2019-01-31","2019-02-28","2019-03-31"]

str = 1x3 string
 "2019-01-31" "2019-02-28" "2019-03-31"

D = datetime(str)

D = 1x3 datetime
 31-Jan-2019 28-Feb-2019 31-Mar-2019

If you convert text to duration values, then use the hh:mm:ss or dd:hh:mm:ss formats.

D = duration('12:34:56')

6 Characters and Strings

6-50

D = duration
 12:34:56

See Also
bin2dec | hex2dec | str2double | datetime | duration | double | table

More About
• “Convert Numeric Values to Text” on page 6-45
• “Convert Between Text and datetime or duration Values” on page 7-48
• “Hexadecimal and Binary Values” on page 6-54
• “Formatting Text” on page 6-24
• “Unicode and ASCII Values” on page 6-52

 Convert Text to Numeric Values

6-51

Unicode and ASCII Values

MATLAB® stores all characters as Unicode® characters using the UTF-16 encoding, where every
character is represented by a numeric code value. (Unicode incorporates the ASCII character set as
the first 128 symbols, so ASCII characters have the same numeric codes in Unicode and ASCII.) Both
character arrays and string arrays use this encoding. You can convert characters to their numeric
code values by using various numeric conversion functions. You can convert numbers to characters
using the char function.

Convert Characters to Numeric Code Values

You can convert characters to integers that represent their Unicode code values. To convert a single
character or a character array, use any of these functions:

• double
• uint16, uint32, or uint64

The best practice is to use the double function. However, if you need to store the numeric values as
integers, use unsigned integers having at least 16 bits because MATLAB uses the UTF-16 encoding.

Convert a character vector to Unicode code values using the double function.

C = 'MATLAB'

C =
'MATLAB'

unicodeValues = double(C)

unicodeValues = 1×6

 77 65 84 76 65 66

You cannot convert characters in a string array directly to Unicode code values. In particular, the
double function converts strings to the numbers they represent, just as the str2double function
does. If double cannot convert a string to a number, then it returns a NaN value.

str = "MATLAB";
double(str)

ans = NaN

To convert characters in a string, first convert the string to a character vector, or use curly braces to
extract the characters. Then convert the characters using a function such as double.

C = char(str);
unicodeValues = double(C)

unicodeValues = 1×6

 77 65 84 76 65 66

6 Characters and Strings

6-52

Convert Numeric Code Values to Characters

You can convert Unicode values to characters using the char function.

D = [77 65 84 76 65 66]

D = 1×6

 77 65 84 76 65 66

C = char(D)

C =
'MATLAB'

A typical use for char is to create characters you cannot type and append them to strings. For
example, create the character for the degree symbol and append it to a string. The Unicode code
value for the degree symbol is 176.

deg = char(176)

deg =
'°'

myLabel = append("Current temperature is 21",deg,"C")

myLabel =
"Current temperature is 21°C"

For more information on Unicode, including mappings between characters and code values, see
Unicode.

See Also
char | double | single | string | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64

More About
• “Convert Text to Numeric Values” on page 6-48
• “Convert Numeric Values to Text” on page 6-45

External Websites
• Unicode

 Unicode and ASCII Values

6-53

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode

Hexadecimal and Binary Values

You can represent numbers as hexadecimal or binary values. In some contexts, these representations
of numbers are more convenient. For example, you can represent the bits of a hardware register
using binary values. In MATLAB®, there are two ways to represent hexadecimal and binary values:

• As literals. Starting in R2019b, you can write hexadecimal and binary values as literals using an
appropriate prefix as notation. For example, 0x2A is a literal that specifies 42—and MATLAB
stores it as a number, not as text.

• As strings or character vectors. For example, the character vector '2A' represents the number 42
as a hexadecimal value. When you represent a hexadecimal or binary value using text, enclose it
in quotation marks. MATLAB stores this representation as text, not a number.

MATLAB provides several functions for converting numbers to and from their hexadecimal and binary
representations.

Write Integers Using Hexadecimal and Binary Notation

Hexadecimal literals start with a 0x or 0X prefix, while binary literals start with a 0b or 0B prefix.
MATLAB stores the number written with this notation as an integer. For example, these two literals
both represent the integer 42.

A = 0x2A

A = uint8
 42

B = 0b101010

B = uint8
 42

Do not use quotation marks when you write a number using this notation. Use 0-9, A-F, and a-f to
represent hexadecimal digits. Use 0 and 1 to represent binary digits.

By default, MATLAB stores the number as the smallest unsigned integer type that can accommodate
it. However, you can use an optional suffix to specify the type of integer that stores the value.

• To specify unsigned 8-, 16-, 32-, and 64-bit integer types, use the suffixes u8, u16, u32, and u64.
• To specify signed 8-, 16-, 32-, and 64-bit integer types, use the suffixes s8, s16, s32, and s64.

For example, write a hexadecimal literal to be stored as a signed 32-bit integer.

A = 0x2As32

A = int32
 42

When you specify signed integer types, you can write literals that represent negative numbers.
Represent negative numbers in two's complement form. For example, specify a negative number with
a literal using the s8 suffix.

A = 0xFFs8

6 Characters and Strings

6-54

A = int8
 -1

Since MATLAB stores these literals as numbers, you can use them in any context or function where
you use numeric arrays.

Represent Hexadecimal and Binary Values as Text

You can also convert integers to character vectors that represent them as hexadecimal or binary
values using the dec2hex and dec2bin functions. Convert an integer to hexadecimal.

hexStr = dec2hex(255)

hexStr =
'FF'

Convert an integer to binary.

binStr = dec2bin(16)

binStr =
'10000'

Since these functions produce text, use them when you need text that represents numeric values. For
example, you can append these values to a title or a plot label, or write them to a file that stores
numbers as their hexadecimal or binary representations.

Represent Arrays of Hexadecimal Values as Text

The recommended way to convert an array of numbers to text is to use the compose function. This
function returns a string array having the same size as the input numeric array. To produce
hexadecimal format, use %X as the format specifier.

A = [255 16 12 1024 137]

A = 1×5

 255 16 12 1024 137

hexStr = compose("%X",A)

hexStr = 1x5 string
 "FF" "10" "C" "400" "89"

The dec2hex and dec2bin functions also convert arrays of numbers to text representing them as
hexadecimal or binary values. However, these functions return character arrays, where each row
represents a number from the input numeric array, padded with zeros as necessary.

Convert Binary Representations to Hexadecimal

To convert a binary value to hexadecimal, start with a binary literal, and convert it to text
representing its hexadecimal value. Since a literal is interpreted as a number, you can specify it
directly as the input argument to dec2hex.

D = 0b1111;
hexStr = dec2hex(D)

 Hexadecimal and Binary Values

6-55

hexStr =
'F'

If you start with a hexadecimal literal, then you can convert it to text representing its binary value
using dec2bin.

D = 0x8F;
binStr = dec2bin(D)

binStr =
'10001111'

Bitwise Operations with Binary Values

One typical use of binary numbers is to represent bits. For example, many devices have registers that
provide access to a collection of bits representing data in memory or the status of the device. When
working with such hardware you can use numbers in MATLAB to represent the value in a register.
Use binary values and bitwise operations to represent and access particular bits.

Create a number that represents an 8-bit register. It is convenient to start with binary representation,
but the number is stored as an integer.

register = 0b10010110

register = uint8
 150

To get or set the values of particular bits, use bitwise operations. For example, use the bitand and
bitshift functions to get the value of the fifth bit. (Shift that bit to the first position so that
MATLAB returns a 0 or 1. In this example, the fifth bit is a 1.)

b5 = bitand(register,0b10000);
b5 = bitshift(b5,-4)

b5 = uint8
 1

To flip the fifth bit to 0, use the bitset function.

register = bitset(register,5,0)

register = uint8
 134

Since register is an integer, use the dec2bin function to display all the bits in binary format.
binStr is a character vector, and represents the binary value without a leading 0b prefix.

binStr = dec2bin(register)

binStr =
'10000110'

See Also
bin2dec | bitand | bitshift | bitset | dec2bin | dec2hex | hex2dec | sprintf | sscanf

6 Characters and Strings

6-56

More About
• “Convert Text to Numeric Values” on page 6-48
• “Convert Numeric Values to Text” on page 6-45
• “Formatting Text” on page 6-24
• “Bit-Wise Operations” on page 2-39
• “Perform Cyclic Redundancy Check” on page 2-45

External Websites
• Two's Complement

 Hexadecimal and Binary Values

6-57

https://en.wikipedia.org/wiki/Two%27s_complement

Frequently Asked Questions About String Arrays
You can use string arrays to work with text throughout MathWorks products. String arrays store
pieces of text and provide a set of functions for working with text as data. You can index into,
reshape, and concatenate strings arrays just as you can with arrays of any other type. For more
information, see “Create String Arrays” on page 6-5.

In most respects, strings arrays behave like character vectors and cell arrays of character vectors.
However, there are a few key differences between string arrays and character arrays that can lead to
results you might not expect. For each of these differences, there is a recommended way to use
strings that leads to the expected result.

Why Does Using Command Form With Strings Return An Error?
When you use functions such as the cd, dir, copyfile, or load functions in command form, avoid
using double quotes. In command form, arguments enclosed in double quotes can result in errors. To
specify arguments as strings, use functional form.

With command syntax, you separate inputs with spaces rather than commas, and you do not enclose
input arguments in parentheses. For example, you can use the cd function with command syntax to
change folders.

cd C:\Temp

The text C:\Temp is a character vector. In command form, all arguments are always character
vectors. If you have an argument, such as a folder name, that contains spaces, then specify it as one
input argument by enclosing it in single quotes.

cd 'C:\Program Files'

But if you specify the argument using double quotes, then cd throws an error.

cd "C:\Program Files"

Error using cd
Too many input arguments.

The error message can vary depending on the function that you use and the arguments that you
specify. For example, if you use the load function with command syntax and specify the argument
using double quotes, then load throws a different error.

load "myVariables.mat"

Error using load
Unable to read file '"myVariables.mat"': Invalid argument.

In command form, double quotes are treated as part of the literal text rather than as the string
construction operator. If you wrote the equivalent of cd "C:\Program Files" in functional form,
then it would look like a call to cd with two arguments.

cd('"C:\Program','Files"')

When specifying arguments as strings, use function syntax. All functions that support command
syntax also support function syntax. For example, you can use cd with function syntax and input
arguments that are double quoted strings.

6 Characters and Strings

6-58

cd("C:\Program Files")

Why Do Strings in Cell Arrays Return an Error?
When you have multiple strings, store them in a string array, not a cell array. Create a string array
using square brackets, not curly braces. String arrays are more efficient than cell arrays for storing
and manipulating text.

str = ["Venus","Earth","Mars"]

str = 1×3 string array
 "Venus" "Earth" "Mars"

Avoid using cell arrays of strings. When you use cell arrays, you give up the performance advantages
that come from using string arrays. And in fact, most functions do not accept cell arrays of strings as
input arguments, options, or values of name-value pairs. For example, if you specify a cell array of
strings as an input argument, then the contains function throws an error.

C = {"Venus","Earth","Mars"}

C = 1×3 cell array
 {["Venus"]} {["Earth"]} {["Mars"]}

TF = contains(C,"Earth")

Error using contains
First argument must be a string array, character vector, or cell array of character vectors.

Instead, specify the argument as a string array.

str = ["Venus","Earth","Mars"];
TF = contains(str,"Earth");

Cell arrays can contain variables having any data types, including strings. It is still possible to create
a cell array whose elements all contain strings. And if you already have specified cell arrays of
character vectors in your code, then replacing single quotes with double quotes might seem like a
simple update. However, it is not recommended that you create or use cell arrays of strings.

Why Does length() of String Return 1?
It is common to use the length function to determine the number of characters in a character vector.
But to determine the number of characters in a string, use the strlength function, not length.

Create a character vector using single quotes. To determine its length, use the length function.
Because C is a vector, its length is equal to the number of characters. C is a 1-by-11 vector.

C = 'Hello world';
L = length(C)

L = 11

Create a string with the same characters, using double quotes. Though it stores 11 characters, str is
a 1-by-1 string array, or string scalar. If you call length on a string scalar, then the output argument is
1, no matter how many characters it stores.

str = "Hello World";
L = length(str)

 Frequently Asked Questions About String Arrays

6-59

L = 1

To determine the number of characters in a string, use the strlength function. For compatibility,
strlength operates on character vectors as well. In both cases strlength returns the number of
characters.

L = strlength(C)

L = 11

L = strlength(str)

L = 11

You also can use strlength on string arrays containing multiple strings and on cell arrays of
character vectors.

The length function returns the size of the longest dimension of an array. For a string array, length
returns the number of strings along the longest dimension of the array. It does not return the number
of characters within strings.

Why Does isempty("") Return 0?
A string can have no characters at all. Such a string is an empty string. You can specify an empty
string using an empty pair of double quotes.

L = strlength("")

L = 0

However, an empty string is not an empty array. An empty string is a string scalar that happens to
have no characters.

sz = size("")

sz = 1×2
 1 1

If you call isempty on an empty string, then it returns 0 (false) because the string is not an empty
array.

tf = isempty("")

tf = logical
 0

However, if you call isempty on an empty character array, then it returns 1 (true). A character
array specified as a empty pair of single quotes, '', is a 0-by-0 character array.

tf = isempty('')

tf = logical
 1

To test whether a piece of text has no characters, the best practice is to use the strlength function.
You can use the same call whether the input is a string scalar or a character vector.

str = "";
if strlength(str) == 0

6 Characters and Strings

6-60

 disp('String has no text')
end

String has no text

chr = '';
if strlength(chr) == 0
 disp('Character vector has no text')
end

Character vector has no text

Why Does Appending Strings Using Square Brackets Return Multiple
Strings?
You can append text to a character vector using square brackets. But if you add text to a string array
using square brackets, then the new text is concatenated as new elements of the string array. To
append text to strings, use the plus operator or the strcat function.

For example, if you concatenate two strings, then the result is a 1-by-2 string array.

str = ["Hello" "World"]

str = 1×2 string array
 "Hello" "World"

However, if you concatenate two character vectors, then the result is a longer character vector.

str = ['Hello' 'World']

chr = 'HelloWorld'

To append text to a string (or to the elements of a string array), use the plus operator instead of
square brackets.

str = "Hello" + "World"

str = "HelloWorld"

As an alternative, you can use the strcat function. strcat appends text whether the input
arguments are strings or character vectors.

str = strcat("Hello","World")

str = "HelloWorld"

Whether you use square brackets, plus, or strcat, you can specify an arbitrary number of
arguments. Append a space character between Hello and World.

str = "Hello" + " " + "World"

str = "Hello World"

See Also
string | strlength | contains | plus | strcat | sprintf | dir | cd | copyfile | load | length
| size | isempty

 Frequently Asked Questions About String Arrays

6-61

Related Examples
• “Create String Arrays” on page 6-5
• “Test for Empty Strings and Missing Values” on page 6-20
• “Compare Text” on page 6-32
• “Update Your Code to Accept Strings” on page 6-63

6 Characters and Strings

6-62

Update Your Code to Accept Strings
If you write code for other MATLAB users, then it is to your advantage to update your API to accept
string arrays, while maintaining backward compatibility with other text data types. String adoption
makes your code consistent with MathWorks products.

If your code has few dependencies, or if you are developing new code, then consider using string
arrays as your primary text data type for better performance. In that case, best practice is to write or
update your API to accept input arguments that are character vectors, cell arrays of character
vectors, or string arrays.

For the definitions of string array and other terms, see “Terminology for Character and String Arrays”
on page 6-69.

What Are String Arrays?
In MATLAB, you can store text data in two ways. One way is to use a character array, which is a
sequence of characters, just as a numeric array is a sequence of numbers. The other way is to store a
sequence of characters in a string. You can store multiple strings in a string array. For more
information, see “Characters and Strings”.

Recommended Approaches for String Adoption in Old APIs
When your code has many dependencies, and you must maintain backward compatibility, follow these
approaches for updating functions and classes to present a compatible API.

Functions

• Accept string arrays as input arguments.

• If an input argument can be either a character vector or a cell array of character vectors, then
update your code so that the argument also can be a string array. For example, consider a
function that has an input argument you can specify as a character vector (using single
quotes). Best practice is to update the function so that the argument can be specified as either
a character vector or a string scalar (using double quotes).

• Accept strings as both names and values in name-value pair arguments.

• In name-value pair arguments, allow names to be specified as either character vectors or
strings—that is, with either single or double quotes around the name. If a value can be a
character vector or cell array of character vectors, then update your code so that it also can be
a string array.

• Do not accept cell arrays of string arrays for text input arguments.

• A cell array of string arrays has a string array in each cell. For example, {"hello","world"}
is a cell array of string arrays. While you can create such a cell array, it is not recommended
for storing text. The elements of a string array have the same data type and are stored
efficiently. If you store strings in a cell array, then you lose the advantages of using a string
array.

However, if your code accepts heterogeneous cell arrays as inputs, then consider accepting cell
arrays that contain strings. You can convert any strings in such a cell array to character
vectors.

 Update Your Code to Accept Strings

6-63

• In general, do not change the output type.

• If your function returns a character vector or cell array of character vectors, then do not
change the output type, even if the function accepts string arrays as inputs. For example, the
fileread function accepts an input file name specified as either a character vector or a
string, but the function returns the file contents as a character vector. By keeping the output
type the same, you can maintain backward compatibility.

• Return the same data type when the function modifies input text.

• If your function modifies input text and returns the modified text as the output argument, then
the input and output arguments should have the same data type. For example, the lower
function accepts text as the input argument, converts it to all lowercase letters, and returns it.
If the input argument is a character vector, then lower returns a character vector. If the input
is a string array, then lower returns a string array.

• Consider adding a 'TextType' argument to import functions.

• If your function imports data from files, and at least some of that data can be text, then
consider adding an input argument that specifies whether to return text as a character array or
a string array. For example, the readtable function provides the 'TextType' name-value
pair argument. This argument specifies whether readtable returns a table with text in cell
arrays of character vectors or string arrays.

Classes

• Treat methods as functions.

• For string adoption, treat methods as though they are functions. Accept string arrays as input
arguments, and in general, do not change the data type of the output arguments, as described
in the previous section.

• Do not change the data types of properties.

• If a property is a character vector or a cell array of character vectors, then do not change its
type. When you access such a property, the value that is returned is still a character vector or a
cell array of character vectors.

As an alternative, you can add a new property that is a string, and make it dependent on the
old property to maintain compatibility.

• Set properties using string arrays.

• If you can set a property using a character vector or cell array of character vectors, then
update your class to set that property using a string array too. However, do not change the
data type of the property. Instead, convert the input string array to the data type of the
property, and then set the property.

• Add a string method.

• If your class already has a char and/or a cellstr method, then add a string method. If you
can represent an object of your class as a character vector or cell array of character vectors,
then represent it as a string array too.

6 Characters and Strings

6-64

How to Adopt String Arrays in Old APIs
You can adopt strings in old APIs by accepting string arrays as input arguments, and then converting
them to character vectors or cell arrays of character vectors. If you perform such a conversion at the
start of a function, then you do not need to update the rest of it.

The convertStringsToChars function provides a way to process all input arguments, converting
only those arguments that are string arrays. To enable your existing code to accept string arrays as
inputs, add a call to convertStringsToChars at the beginnings of your functions and methods.

For example, if you have defined a function myFunc that accepts three input arguments, process all
three inputs using convertStringsToChars. Leave the rest of your code unaltered.

function y = myFunc(a,b,c)
 [a,b,c] = convertStringsToChars(a,b,c);
 <line 1 of original code>
 <line 2 of original code>
 ...

In this example, the arguments [a,b,c] overwrite the input arguments in place. If any input
argument is not a string array, then it is unaltered.

If myFunc accepts a variable number of input arguments, then process all the arguments specified by
varargin.

function y = myFunc(varargin)
 [varargin{:}] = convertStringsToChars(varargin{:});
 ...

Performance Considerations

The convertStringsToChars function is more efficient when converting one input argument. If
your function is performance sensitive, then you can convert input arguments one at a time, while
still leaving the rest of your code unaltered.

function y = myFunc(a,b,c)
 a = convertStringsToChars(a);
 b = convertStringsToChars(b);
 c = convertStringsToChars(c);
 ...

Recommended Approaches for String Adoption in New Code
When your code has few dependencies, or you are developing entirely new code, consider using
strings arrays as the primary text data type. String arrays provide good performance and efficient
memory usage when working with large amounts of text. Unlike cell arrays of character vectors,
string arrays have a homogeneous data type. String arrays make it easier to write maintainable code.
To use string arrays while maintaining backward compatibility to other text data types, follow these
approaches.

Functions

• Accept any text data types as input arguments.

• If an input argument can be a string array, then also allow it to be a character vector or cell
array of character vectors.

 Update Your Code to Accept Strings

6-65

• Accept character arrays as both names and values in name-value pair arguments.

• In name-value pair arguments, allow names to be specified as either character vectors or
strings—that is, with either single or double quotes around the name. If a value can be a string
array, then also allow it to be a character vector or cell array of character vectors.

• Do not accept cell arrays of string arrays for text input arguments.

• A cell array of string arrays has a string array in each cell. While you can create such a cell
array, it is not recommended for storing text. If your code uses strings as the primary text data
type, store multiple pieces of text in a string array, not a cell array of string arrays.

However, if your code accepts heterogeneous cell arrays as inputs, then consider accepting cell
arrays that contain strings.

• In general, return strings.

• If your function returns output arguments that are text, then return them as string arrays.
• Return the same data type when the function modifies input text.

• If your function modifies input text and returns the modified text as the output argument, then
the input and output arguments should have the same data type.

Classes

• Treat methods as functions.

• Accept character vectors and cell arrays of character vectors as input arguments, as described
in the previous section. In general, return strings as outputs.

• Specify properties as string arrays.

• If a property contains text, then set the property using a string array. When you access the
property, return the value as a string array.

How to Maintain Compatibility in New Code
When you write new code, or modify code to use string arrays as the primary text data type, maintain
backward compatibility with other text data types. You can accept character vectors or cell arrays of
character vectors as input arguments, and then immediately convert them to string arrays. If you
perform such a conversion at the start of a function, then the rest of your code can use string arrays
only.

The convertCharsToStrings function provides a way to process all input arguments, converting
only those arguments that are character vectors or cell arrays of character vectors. To enable your
new code to accept these text data types as inputs, add a call to convertCharsToStrings at the
beginnings of your functions and methods.

For example, if you have defined a function myFunc that accepts three input arguments, process all
three inputs using convertCharsToStrings.

function y = myFunc(a,b,c)
 [a,b,c] = convertCharsToStrings(a,b,c);
 <line 1 of original code>
 <line 2 of original code>
 ...

6 Characters and Strings

6-66

In this example, the arguments [a,b,c] overwrite the input arguments in place. If any input
argument is not a character vector or cell array of character vectors, then it is unaltered.

If myFunc accepts a variable number of input arguments, then process all the arguments specified by
varargin.

function y = myFunc(varargin)
 [varargin{:}] = convertCharsToStrings(varargin{:});
 ...

Performance Considerations

The convertCharsToStrings function is more efficient when converting one input argument. If
your function is performance sensitive, then you can convert input arguments one at a time, while
still leaving the rest of your code unaltered.

function y = myFunc(a,b,c)
 a = convertCharsToStrings(a);
 b = convertCharsToStrings(b);
 c = convertCharsToStrings(c);
 ...

How to Manually Convert Input Arguments
If it is at all possible, avoid manual conversion of input arguments that contain text, and instead use
the convertStringsToChars or convertCharsToStrings functions. Checking the data types of
input arguments and converting them yourself is a tedious approach, prone to errors.

If you must convert input arguments, then use the functions in this table.

Conversion Function
String scalar to character vector char
String array to cell array of character vectors cellstr
Character vector to string scalar string
Cell array of character vectors to string array string

How to Check Argument Data Types
To check the data type of an input argument that could contain text, consider using the patterns
shown in this table.

Required Input Argument
Type

Old Check New Check

Character vector or string
scalar

ischar(X) ischar(X) ||
isStringScalar(X)
validateattributes(X,
{'char','string'},
{'scalartext'})

 Update Your Code to Accept Strings

6-67

Required Input Argument
Type

Old Check New Check

Character vector or string
scalar

validateattributes(X,
{'char'},{'row'})

validateattributes(X,
{'char','string'},
{'scalartext'})

Nonempty character vector or
string scalar

ischar(X) && ~isempty(X) (ischar(X) ||
isStringScalar(X)) &&
strlength(X) ~= 0
(ischar(X) ||
isStringScalar(X)) && X
~= ""

Cell array of character vectors
or string array

iscellstr(X) iscellstr(X) ||
isstring(X)

Any text data type ischar(X) ||
iscellstr(X)

ischar(X) ||
iscellstr(X) ||
isstring(X)

Check for Empty Strings

An empty string is a string with no characters. MATLAB displays an empty string as a pair of double
quotes with nothing between them (""). However, an empty string is still a 1-by-1 string array. It is
not an empty array.

The recommended way to check whether a string is empty is to use the strlength function.

str = "";
tf = (strlength(str) ~= 0)

Note Do not use the isempty function to check for an empty string. An empty string has no
characters but is still a 1-by-1 string array.

The strlength function returns the length of each string in a string array. If the string must be a
string scalar, and also not empty, then check for both conditions.

tf = (isStringScalar(str) && strlength(str) ~= 0)

If str could be either a character vector or string scalar, then you still can use strlength to
determine its length. strlength returns 0 if the input argument is an empty character vector ('').

tf = ((ischar(str) || isStringScalar(str)) && strlength(str) ~= 0)

Check for Empty String Arrays

An empty string array is, in fact, an empty array—that is, an array that has at least one dimension
whose length is 0.

The recommended way to create an empty string array is to use the strings function, specifying 0
as at least one of the input arguments. The isempty function returns 1 when the input is an empty
string array.

str = strings(0);
tf = isempty(str)

6 Characters and Strings

6-68

The strlength function returns a numeric array that is the same size as the input string array. If the
input is an empty string array, then strlength returns an empty array.

str = strings(0);
L = strlength(str)

Check for Missing Strings

String arrays also can contain missing strings. The missing string is the string equivalent to NaN for
numeric arrays. It indicates where a string array has missing values. The missing string displays as
<missing>, with no quotation marks.

You can create missing strings using the missing function. The recommended way to check for
missing strings is to use the ismissing function.

str = string(missing);
tf = ismissing(str)

Note Do not check for missing strings by comparing a string to the missing string.

The missing string is not equal to itself, just as NaN is not equal to itself.

str = string(missing);
f = (str == missing)

Terminology for Character and String Arrays
MathWorks documentation uses these terms to describe character and string arrays. For consistency,
use these terms in your own documentation, error messages, and warnings.

• Character vector — 1-by-n array of characters, of data type char.
• Character array — m-by-n array of characters, of data type char.
• Cell array of character vectors — Cell array in which each cell contains a character vector.
• String or string scalar — 1-by-1 string array. A string scalar can contain a 1-by-n sequence of

characters, but is itself one object. Use the terms "string scalar" and "character vector" alongside
each other when to be precise about size and data type. Otherwise, you can use the term "string"
in descriptions.

• String vector — 1-by-n or n-by-1 string array. If only one size is possible, then use it in your
description. For example, use "1-by-n string array" to describe an array of that size.

• String array — m-by-n string array.
• Empty string — String scalar that has no characters.
• Empty string array — String array with at least one dimension whose size is 0.
• Missing string — String scalar that is the missing value (displays as <missing>).

See Also
char | cellstr | string | strings | convertStringsToChars | convertCharsToStrings |
isstring | isStringScalar | ischar | iscellstr | strlength | validateattributes |
convertContainedStringsToChars

 Update Your Code to Accept Strings

6-69

More About
• “Create String Arrays” on page 6-5
• “Test for Empty Strings and Missing Values” on page 6-20
• “Compare Text” on page 6-32
• “Search and Replace Text” on page 6-37
• “Frequently Asked Questions About String Arrays” on page 6-58

6 Characters and Strings

6-70

Dates and Time

• “Represent Dates and Times in MATLAB” on page 7-2
• “Specify Time Zones” on page 7-5
• “Convert Date and Time to Julian Date or POSIX Time” on page 7-7
• “Set Date and Time Display Format” on page 7-10
• “Generate Sequence of Dates and Time” on page 7-14
• “Share Code and Data Across Locales” on page 7-20
• “Extract or Assign Date and Time Components of Datetime Array” on page 7-23
• “Combine Date and Time from Separate Variables” on page 7-26
• “Date and Time Arithmetic” on page 7-28
• “Compare Dates and Time” on page 7-33
• “Plot Dates and Times” on page 7-36
• “Core Functions Supporting Date and Time Arrays” on page 7-47
• “Convert Between Text and datetime or duration Values” on page 7-48
• “Replace Discouraged Instances of Serial Date Numbers and Date Strings” on page 7-57
• “Carryover in Date Vectors and Strings” on page 7-64
• “Converting Date Vector Returns Unexpected Output” on page 7-66

7

Represent Dates and Times in MATLAB
The primary way to store date and time information is in datetime arrays, which support arithmetic,
sorting, comparisons, plotting, and formatted display. The results of arithmetic differences are
returned in duration arrays or, when you use calendar-based functions, in calendarDuration
arrays.

For example, create a MATLAB datetime array that represents two dates: June 28, 2014 at 6 a.m. and
June 28, 2014 at 7 a.m. Specify numeric values for the year, month, day, hour, minute, and second
components for the datetime.

t = datetime(2014,6,28,6:7,0,0)

t =
 28-Jun-2014 06:00:00 28-Jun-2014 07:00:00

Change the value of a date or time component by assigning new values to the properties of the
datetime array. For example, change the day number of each datetime by assigning new values to the
Day property.

t.Day = 27:28

t =

 27-Jun-2014 06:00:00 28-Jun-2014 07:00:00

Change the display format of the array by changing its Format property. The following format does
not display any time components. However, the values in the datetime array do not change.

t.Format = 'MMM dd, yyyy'

t =
 Jun 27, 2014 Jun 28, 2014

If you subtract one datetime array from another, the result is a duration array in units of fixed
length.

t2 = datetime(2014,6,29,6,30,45)

t2 =

 29-Jun-2014 06:30:45

d = t2 - t

d =

 48:30:45 23:30:45

By default, a duration array displays in the format, hours:minutes:seconds. Change the display
format of the duration by changing its Format property. You can display the duration value with a
single unit, such as hours.

d.Format = 'h'

d =

 48.512 hrs 23.512 hrs

7 Dates and Time

7-2

You can create a duration in a single unit using the seconds, minutes, hours, days, or years
functions. For example, create a duration of 2 days, where each day is exactly 24 hours.

d = days(2)

d =
 2 days

You can create a calendar duration in a single unit of variable length. For example, one month can be
28, 29, 30, or 31 days long. Specify a calendar duration of 2 months.

L = calmonths(2)

L =
 2mo

Use the caldays, calweeks, calquarters, and calyears functions to specify calendar durations
in other units.

Add a number of calendar months and calendar days. The number of days remains separate from the
number of months because the number of days in a month is not fixed, and cannot be determined
until you add the calendar duration to a specific datetime.

L = calmonths(2) + caldays(35)

L =
 2mo 35d

Add calendar durations to a datetime to compute a new date.

t2 = t + calmonths(2) + caldays(35)

t2 =

 Oct 01, 2014 Oct 02, 2014

t2 is also a datetime array.

whos t2

 Name Size Bytes Class Attributes

 t2 1x2 161 datetime

In summary, there are several ways to represent dates and times, and MATLAB has a data type for
each approach:

• Represent a point in time, using the datetime data type.
Example: Wednesday, June 18, 2014 10:00:00

• Represent a length of time, or a duration in units of fixed length, using the duration data type.
When using the duration data type, 1 day is always equal to 24 hours, and 1 year is always equal
to 365.2425 days.
Example: 72 hours and 10 minutes

• Represent a length of time, or a duration in units of variable length, using the
calendarDuration data type.
Example: 1 month, which can be 28, 29, 30, or 31 days long.

 Represent Dates and Times in MATLAB

7-3

The calendarDuration data type also accounts for daylight saving time changes and leap years,
so that 1 day might be more or less than 24 hours, and 1 year can have 365 or 366 days.

See Also
datetime | duration | calendarDuration

7 Dates and Time

7-4

Specify Time Zones
In MATLAB, a time zone includes the time offset from Coordinated Universal Time (UTC), the daylight
saving time offset, and a set of historical changes to those values. The time zone setting is stored in
the TimeZone property of each datetime array. When you create a datetime, it is unzoned by
default. That is, the TimeZone property of the datetime is empty (''). If you do not work with
datetime values from multiple time zones and do not need to account for daylight saving time, you
might not need to specify this property.

You can specify a time zone when you create a datetime, using the 'TimeZone' name-value pair
argument. The time zone value 'local' specifies the system time zone. To display the time zone
offset for each datetime, include a time zone offset specifier such as 'Z' in the value for the
'Format' argument.

t = datetime(2014,3,8:9,6,0,0,'TimeZone','local',...
 'Format','d-MMM-y HH:mm:ss Z')

t =

 8-Mar-2014 06:00:00 -0500 9-Mar-2014 06:00:00 -0400

A different time zone offset is displayed depending on whether the datetime occurs during daylight
saving time.

You can modify the time zone of an existing datetime. For example, change the TimeZone property of
t using dot notation. You can specify the time zone value as the name of a time zone region in the
IANA Time Zone Database. A time zone region accounts for the current and historical rules for
standard and daylight offsets from UTC that are observed in that geographic region.

t.TimeZone = 'Asia/Shanghai'

t =

 8-Mar-2014 19:00:00 +0800 9-Mar-2014 18:00:00 +0800

You also can specify the time zone value as a character vector of the form +HH:mm or -HH:mm, which
represents a time zone with a fixed offset from UTC that does not observe daylight saving time.

t.TimeZone = '+08:00'

t =

 8-Mar-2014 19:00:00 +0800 9-Mar-2014 18:00:00 +0800

Operations on datetime arrays with time zones automatically account for time zone differences. For
example, create a datetime in a different time zone.

u = datetime(2014,3,9,6,0,0,'TimeZone','Europe/London',...
 'Format','d-MMM-y HH:mm:ss Z')

u =

 9-Mar-2014 06:00:00 +0000

View the time difference between the two datetime arrays.

dt = t - u

 Specify Time Zones

7-5

dt =

 -19:00:00 04:00:00

When you perform operations involving datetime arrays, the arrays either must all have a time zone
associated with them, or they must all have no time zone.

See Also
datetime | timezones

Related Examples
• “Represent Dates and Times in MATLAB” on page 7-2
• “Convert Date and Time to Julian Date or POSIX Time” on page 7-7

7 Dates and Time

7-6

Convert Date and Time to Julian Date or POSIX Time

You can convert datetime arrays to represent points in time in specialized numeric formats. In
general, these formats represent a point in time as the number of seconds or days that have elapsed
since a specified starting point. For example, the Julian date is the number of days and fractional days
that have elapsed since the beginning of the Julian period. The POSIX® time is the number of
seconds that have elapsed since 00:00:00 1-Jan-1970 UTC (Coordinated Universal Time). MATLAB®
provides the juliandate and posixtime functions to convert datetime arrays to Julian dates and
POSIX times.

While datetime arrays are not required to have a time zone, converting "unzoned" datetime values
to Julian dates or POSIX times can lead to unexpected results. To ensure the expected result, specify
the time zone before conversion.

Specify Time Zone Before Conversion

You can specify a time zone for a datetime array, but you are not required to do so. In fact, by
default the datetime function creates an "unzoned" datetime array.

Create a datetime value for the current date and time.

d = datetime("now")

d = datetime
 26-Nov-2022 13:51:56

d is constructed from the local time on your machine and has no time zone associated with it. In many
contexts, you might assume that you can treat the times in an unzoned datetime array as local
times. However, the juliandate and posixtime functions treat the times in unzoned datetime
arrays as UTC times, not local times. To avoid any ambiguity, it is recommended that you avoid using
juliandate and posixtime on unzoned datetime arrays. For example, avoid using
posixtime(datetime("now")) in your code.

If your datetime array has values that do not represent UTC times, specify the time zone using the
TimeZone name-value pair argument so that juliandate and posixtime interpret the datetime
values correctly.

d = datetime("now","TimeZone","America/New_York")

d = datetime
 26-Nov-2022 13:51:56

As an alternative, you can specify the TimeZone property after you create the array.

d.TimeZone = "America/Los_Angeles"

d = datetime
 26-Nov-2022 10:51:56

To see a complete list of time zones, use the timezones function.

 Convert Date and Time to Julian Date or POSIX Time

7-7

Convert Zoned and Unzoned Datetime Values to Julian Dates

A Julian date is the number of days (including fractional days) since noon on November 24, 4714
BCE, in the proleptic Gregorian calendar, or January 1, 4713 BCE, in the proleptic Julian calendar. To
convert datetime arrays to Julian dates, use the juliandate function.

Create a datetime array and specify its time zone.

DZ = datetime("2016-07-29 10:05:24") + calmonths(1:3);
DZ.TimeZone = "America/New_York"

DZ = 1x3 datetime
 29-Aug-2016 10:05:24 29-Sep-2016 10:05:24 29-Oct-2016 10:05:24

Convert D to the equivalent Julian dates.

format longG
JDZ = juliandate(DZ)

JDZ = 1×3

 2457630.08708333 2457661.08708333 2457691.08708333

Create an unzoned copy of DZ. Convert D to the equivalent Julian dates. As D has no time zone,
juliandate treats the times as UTC times.

D = DZ;
D.TimeZone = "";
JD = juliandate(D)

JD = 1×3

 2457629.92041667 2457660.92041667 2457690.92041667

Compare JDZ and JD. The differences are equal to the time zone offset between UTC and the
America/New_York time zone in fractional days.

JDZ - JD

ans = 1×3

 0.166666666511446 0.166666666511446 0.166666666511446

Convert Zoned and Unzoned Datetime Values to POSIX Times

The POSIX time is the number of seconds (including fractional seconds) elapsed since 00:00:00 1-
Jan-1970 UTC (Coordinated Universal Time), ignoring leap seconds. To convert datetime arrays to
POSIX times, use the posixtime function.

Create a datetime array and specify its time zone.

DZ = datetime("2016-07-29 10:05:24") + calmonths(1:3);
DZ.TimeZone = "America/New_York"

7 Dates and Time

7-8

DZ = 1x3 datetime
 29-Aug-2016 10:05:24 29-Sep-2016 10:05:24 29-Oct-2016 10:05:24

Convert D to the equivalent POSIX times.

PTZ = posixtime(DZ)

PTZ = 1×3

 1472479524 1475157924 1477749924

Create an unzoned copy of DZ. Convert D to the equivalent POSIX times. As D has no time zone,
posixtime treats the times as UTC times.

D = DZ;
D.TimeZone = "";
PT = posixtime(D)

PT = 1×3

 1472465124 1475143524 1477735524

Compare PTZ and PT. The differences are equal to the time zone offset between UTC and the
America/New_York time zone in seconds.

PTZ - PT

ans = 1×3

 14400 14400 14400

See Also
datetime | timezones | posixtime | juliandate

Related Examples
• “Represent Dates and Times in MATLAB” on page 7-2
• “Specify Time Zones” on page 7-5

 Convert Date and Time to Julian Date or POSIX Time

7-9

Set Date and Time Display Format

In this section...
“Formats for Individual Date and Duration Arrays” on page 7-10
“datetime Display Format” on page 7-10
“duration Display Format” on page 7-11
“calendarDuration Display Format” on page 7-12
“Default datetime Format” on page 7-12

Formats for Individual Date and Duration Arrays
datetime, duration, and calendarDuration arrays have a Format property that controls the
display of values in each array. When you create a datetime array, it uses the MATLAB global default
datetime display format unless you explicitly provide a format. Use dot notation to access the Format
property to view or change its value. For example, to set the display format for the datetime array,
t, to the default format, type:

t.Format = 'default'

Changing the Format property does not change the values in the array, only their display. For
example, the following can be representations of the same datetime value (the latter two do not
display any time components):

Thursday, August 23, 2012 12:35:00
August 23, 2012
23-Aug-2012

The Format property of the datetime, duration, and calendarDuration data types accepts
different formats as inputs.

datetime Display Format
You can set the Format property to one of these character vectors.

Value of Format Description
'default' Use the default display format.
'defaultdate' Use the default date display format that does not

show time components.

To change the default formats, see “Default datetime Format” on page 7-12.

Alternatively, you can specify a custom date format that includes Unicode characters as literal text.
This table shows several common display formats and examples of the formatted output for the date,
Saturday, April 19, 2014 at 9:41:06 PM in New York City. In such formats you can use nonletter ASCII
characters such as hyphens, spaces, or colons, or any non-ASCII characters, to separate date and
time fields. To include the ASCII letters A-Z and a-z as literal characters in the format, enclose them
in quotation marks.

7 Dates and Time

7-10

Value of Format Example
'yyyy-MM-dd' 2014-04-19
'dd/MM/yyyy' 19/04/2014
'dd.MM.yyyy' 19.04.2014
'yyyy年 MM月 dd日' 2014年 04月 19日

'MMMM d, yyyy' April 19, 2014
'eeee, MMMM d, yyyy h:mm a' Saturday, April 19, 2014 9:41 PM
'MMMM d, yyyy HH:mm:ss Z' April 19, 2014 21:41:06 -0400
'yyyy-MM-dd''T''HH:mmXXX' 2014-04-19T21:41-04:00

For a complete list of valid symbolic identifiers, see the Format property for datetime arrays.

Note The letter identifiers that datetime accepts are different from those used by the datestr,
datenum, and datevec functions.

duration Display Format
To display a duration as a single number that includes a fractional part (for example, 1.234 hours),
specify one of these character vectors:

Value of Format Description
'y' Number of exact fixed-length years. A fixed-length year is

equal to 365.2425 days.
'd' Number of exact fixed-length days. A fixed-length day is equal

to 24 hours.
'h' Number of hours
'm' Number of minutes
's' Number of seconds

To specify the number of fractional digits displayed, use the format function.

To display a duration in the form of a digital timer, specify one of the following character vectors.

• 'dd:hh:mm:ss'
• 'hh:mm:ss'
• 'mm:ss'
• 'hh:mm'

You also can display up to nine fractional second digits by appending up to nine S characters. For
example, 'hh:mm:ss.SSS' displays the milliseconds of a duration value to 3 digits.

Changing the Format property does not change the values in the array, only their display.

 Set Date and Time Display Format

7-11

calendarDuration Display Format
Specify the Format property of a calendarDuration array as a character vector that can include
the characters y, q, m, w, d, and t, in this order. The format must include m, d, and t.

This table describes the date and time components that the characters represent.

Character Unit Required?
y Years no
q Quarters (multiples of 3

months)
no

m Months yes
w Weeks no
d Days yes
t Time (hours, minutes, and

seconds)
yes

To specify the number of digits displayed for fractional seconds, use the format function.

If the value of a date or time component is zero, it is not displayed.

Changing the Format property does not change the values in the array, only their display.

Default datetime Format
You can set default formats to control the display of datetime arrays created without an explicit
display format. These formats also apply when you set the Format property of a datetime array to
'default' or 'defaultdate'. When you change the default setting, datetime arrays set to use
the default formats are displayed automatically using the new setting.

Changes to the default formats persist across MATLAB sessions.

To specify a default format, type

datetime.setDefaultFormats('default',fmt)

where fmt is a character vector composed of the letters A-Z and a-z described for the Format
property of datetime arrays, above. For example,

datetime.setDefaultFormats('default','yyyy-MM-dd hh:mm:ss')

sets the default datetime format to include a 4-digit year, 2-digit month number, 2-digit day number,
and hour, minute, and second values.

In addition, you can specify a default format for datetimes created without time components. For
example,

datetime.setDefaultFormats('defaultdate','yyyy-MM-dd')

sets the default date format to include a 4-digit year, 2-digit month number, and 2-digit day number.

To reset the both the default format and the default date-only formats to the factory defaults, type

7 Dates and Time

7-12

datetime.setDefaultFormats('reset')

The factory default formats depend on your system locale.

You also can set the default formats in the Preferences dialog box. For more information, see “Set
Command Window Preferences”.

See Also
datetime | duration | calendarDuration | format

 Set Date and Time Display Format

7-13

Generate Sequence of Dates and Time
In this section...
“Sequence of Datetime or Duration Values Between Endpoints with Step Size” on page 7-14
“Add Duration or Calendar Duration to Create Sequence of Dates” on page 7-16
“Specify Length and Endpoints of Date or Duration Sequence” on page 7-17
“Sequence of Datetime Values Using Calendar Rules” on page 7-17

Sequence of Datetime or Duration Values Between Endpoints with
Step Size

This example shows how to use the colon (:) operator to generate sequences of datetime or
duration values in the same way that you create regularly spaced numeric vectors.

Use Default Step Size

Create a sequence of datetime values starting from November 1, 2013, and ending on November 5,
2013. The default step size is one calendar day.

t1 = datetime(2013,11,1,8,0,0);
t2 = datetime(2013,11,5,8,0,0);
t = t1:t2

t = 1x5 datetime
Columns 1 through 3

 01-Nov-2013 08:00:00 02-Nov-2013 08:00:00 03-Nov-2013 08:00:00

Columns 4 through 5

 04-Nov-2013 08:00:00 05-Nov-2013 08:00:00

Specify Step Size

Specify a step size of 2 calendar days using the caldays function.

t = t1:caldays(2):t2

t = 1x3 datetime
 01-Nov-2013 08:00:00 03-Nov-2013 08:00:00 05-Nov-2013 08:00:00

Specify a step size in units other than days. Create a sequence of datetime values spaced 18 hours
apart.

t = t1:hours(18):t2

t = 1x6 datetime
Columns 1 through 3

 01-Nov-2013 08:00:00 02-Nov-2013 02:00:00 02-Nov-2013 20:00:00

7 Dates and Time

7-14

Columns 4 through 6

 03-Nov-2013 14:00:00 04-Nov-2013 08:00:00 05-Nov-2013 02:00:00

Use the years, days, minutes, and seconds functions to create datetime and duration sequences
using other fixed-length date and time units. Create a sequence of duration values between 0 and 3
minutes, incremented by 30 seconds.

d = 0:seconds(30):minutes(3)

d = 1x7 duration
 0 sec 30 sec 60 sec 90 sec 120 sec 150 sec 180 sec

Compare Fixed-Length Duration and Calendar Duration Step Sizes

Assign a time zone to t1 and t2. In the America/New_York time zone, t1 now occurs just before a
daylight saving time change.

t1.TimeZone = 'America/New_York';
t2.TimeZone = 'America/New_York';

If you create the sequence using a step size of one calendar day, then the difference between
successive datetime values is not always 24 hours.

t = t1:t2;
dt = diff(t)

dt = 1x4 duration
 24:00:00 25:00:00 24:00:00 24:00:00

Create a sequence of datetime values spaced one fixed-length day apart,

t = t1:days(1):t2

t = 1x5 datetime
Columns 1 through 3

 01-Nov-2013 08:00:00 02-Nov-2013 08:00:00 03-Nov-2013 07:00:00

Columns 4 through 5

 04-Nov-2013 07:00:00 05-Nov-2013 07:00:00

Verify that the difference between successive datetime values is 24 hours.

dt = diff(t)

dt = 1x4 duration
 24:00:00 24:00:00 24:00:00 24:00:00

Integer Step Size

If you specify a step size in terms of an integer, it is interpreted as a number of 24-hour days.

t = t1:1:t2

 Generate Sequence of Dates and Time

7-15

t = 1x5 datetime
Columns 1 through 3

 01-Nov-2013 08:00:00 02-Nov-2013 08:00:00 03-Nov-2013 07:00:00

Columns 4 through 5

 04-Nov-2013 07:00:00 05-Nov-2013 07:00:00

Add Duration or Calendar Duration to Create Sequence of Dates

This example shows how to add a duration or calendar duration to a datetime to create a sequence of
datetime values.

Create a datetime scalar representing November 1, 2013, at 8:00 AM.

t1 = datetime(2013,11,1,8,0,0);

Add a sequence of fixed-length hours to the datetime.

t = t1 + hours(0:2)

t = 1x3 datetime
 01-Nov-2013 08:00:00 01-Nov-2013 09:00:00 01-Nov-2013 10:00:00

Add a sequence of calendar months to the datetime.

t = t1 + calmonths(1:5)

t = 1x5 datetime
Columns 1 through 3

 01-Dec-2013 08:00:00 01-Jan-2014 08:00:00 01-Feb-2014 08:00:00

Columns 4 through 5

 01-Mar-2014 08:00:00 01-Apr-2014 08:00:00

Each datetime in t occurs on the first day of each month.

Verify that the dates in t are spaced 1 month apart.

dt = caldiff(t)

dt = 1x4 calendarDuration
 1mo 1mo 1mo 1mo

Determine the number of days between each date.

dt = caldiff(t,'days')

dt = 1x4 calendarDuration
 31d 31d 28d 31d

7 Dates and Time

7-16

Add a number of calendar months to the date, January 31, 2014, to create a sequence of dates that
fall on the last day of each month.

t = datetime(2014,1,31) + calmonths(0:11)

t = 1x12 datetime
Columns 1 through 5

 31-Jan-2014 28-Feb-2014 31-Mar-2014 30-Apr-2014 31-May-2014

Columns 6 through 10

 30-Jun-2014 31-Jul-2014 31-Aug-2014 30-Sep-2014 31-Oct-2014

Columns 11 through 12

 30-Nov-2014 31-Dec-2014

Specify Length and Endpoints of Date or Duration Sequence

This example shows how to use the linspace function to create equally spaced datetime or duration
values between two specified endpoints.

Create a sequence of five equally spaced dates between April 14, 2014, and August 4, 2014. First,
define the endpoints.

A = datetime(2014,04,14);
B = datetime(2014,08,04);

The third input to linspace specifies the number of linearly spaced points to generate between the
endpoints.

C = linspace(A,B,5)

C = 1x5 datetime
 14-Apr-2014 12-May-2014 09-Jun-2014 07-Jul-2014 04-Aug-2014

Create a sequence of six equally spaced durations between 1 and 5.5 hours.

A = duration(1,0,0);
B = duration(5,30,0);
C = linspace(A,B,6)

C = 1x6 duration
 01:00:00 01:54:00 02:48:00 03:42:00 04:36:00 05:30:00

Sequence of Datetime Values Using Calendar Rules

This example shows how to use the dateshift function to generate sequences of dates and time
where each instance obeys a rule relating to a calendar unit or a unit of time. For instance, each

 Generate Sequence of Dates and Time

7-17

datetime must occur at the beginning a month, on a particular day of the week, or at the end of a
minute. The resulting datetime values in the sequence are not necessarily equally spaced.

Dates on Specific Day of Week

Generate a sequence of dates consisting of the next three occurrences of Monday. First, define
today's date.

t1 = datetime('today','Format','dd-MMM-yyyy eee')

t1 = datetime
 26-Nov-2022 Sat

The first input to dateshift is always the datetime array from which you want to generate a
sequence. Specify 'dayofweek' as the second input to indicate that the datetime values in the
output sequence must fall on a specific day of the week. You can specify the day of the week either by
number or by name. For example, you can specify Monday either as 2 or 'Monday'.

t = dateshift(t1,'dayofweek',2,1:3)

t = 1x3 datetime
 28-Nov-2022 Mon 05-Dec-2022 Mon 12-Dec-2022 Mon

Dates at Start of Month

Generate a sequence of start-of-month dates beginning with April 1, 2014. Specify 'start' as the
second input to dateshift to indicate that all datetime values in the output sequence should fall at
the start of a particular unit of time. The third input argument defines the unit of time, in this case,
month. The last input to dateshift can be an array of integer values that specifies how t1 should be
shifted. In this case, 0 corresponds to the start of the current month, and 4 corresponds to the start
of the fourth month from t1.

t1 = datetime(2014,04,01);
t = dateshift(t1,'start','month',0:4)

t = 1x5 datetime
 01-Apr-2014 01-May-2014 01-Jun-2014 01-Jul-2014 01-Aug-2014

Dates at End of Month

Generate a sequence of end-of-month dates beginning with April 1, 2014.

t1 = datetime(2014,04,01);
t = dateshift(t1,'end','month',0:2)

t = 1x3 datetime
 30-Apr-2014 31-May-2014 30-Jun-2014

Determine the number of days between each date.

dt = caldiff(t,'days')

dt = 1x2 calendarDuration
 31d 30d

7 Dates and Time

7-18

The dates are not equally spaced.

Other Units of Dates and Time

You can specify other units of time such as week, day, and hour.

t1 = datetime('now')

t1 = datetime
 26-Nov-2022 10:07:55

t = dateshift(t1,'start','hour',0:4)

t = 1x5 datetime
Columns 1 through 3

 26-Nov-2022 10:00:00 26-Nov-2022 11:00:00 26-Nov-2022 12:00:00

Columns 4 through 5

 26-Nov-2022 13:00:00 26-Nov-2022 14:00:00

Previous Occurrences of Dates and Time

Generate a sequence of datetime values beginning with the previous hour. Negative integers in the
last input to dateshift correspond to datetime values earlier than t1.

t = dateshift(t1,'start','hour',-1:1)

t = 1x3 datetime
 26-Nov-2022 09:00:00 26-Nov-2022 10:00:00 26-Nov-2022 11:00:00

See Also
dateshift | linspace

 Generate Sequence of Dates and Time

7-19

Share Code and Data Across Locales

In this section...
“Write Locale-Independent Date and Time Code” on page 7-20
“Write Dates in Other Languages” on page 7-21
“Read Dates in Other Languages” on page 7-21

Write Locale-Independent Date and Time Code

Follow these best practices when sharing code that handles dates and time with MATLAB® users in
other locales. These practices ensure that the same code produces the same output display and that
output files containing dates and time are read correctly on systems in different countries or with
different language settings.

Create language-independent datetime values. That is, create datetime values that use month
numbers rather than month names, such as 01 instead of January. Avoid using day of week names.

For example, do this:

t = datetime('today','Format','yyyy-MM-dd')

t = datetime
 2022-11-26

instead of this:

t = datetime('today','Format','eeee, dd-MMM-yyyy')

t = datetime
 Saturday, 26-Nov-2022

Display the hour using 24-hour clock notation rather than 12-hour clock notation. Use the 'HH'
identifiers when specifying the display format for datetime values.

For example, do this:

t = datetime('now','Format','HH:mm')

t = datetime
 13:36

instead of this:

t = datetime('now','Format','hh:mm a')

t = datetime
 01:36 PM

7 Dates and Time

7-20

When specifying the display format for time zone information, use the Z or X identifiers instead of the
lowercase z to avoid the creation of time zone names that might not be recognized in other languages
or regions.

Assign a time zone to t.

t.TimeZone = 'America/New_York';

Specify a language-independent display format that includes a time zone.

t.Format = 'dd-MM-yyyy Z'

t = datetime
 26-11-2022 -0500

If you share files but not code, you do not need to write locale-independent code while you work in
MATLAB. However, when you write to a file, ensure that any text representing dates and times is
language-independent. Then, other MATLAB users can read the files easily without having to specify
a locale in which to interpret date and time data.

Write Dates in Other Languages

Specify an appropriate format for text representing dates and times when you use the char or
cellstr functions. For example, convert two datetime values to a cell array of character vectors
using cellstr. Specify the format and the locale to represent the day, month, and year of each
datetime value as text.

t = [datetime('today');datetime('tomorrow')]

t = 2x1 datetime
 26-Nov-2022
 27-Nov-2022

S = cellstr(t,'dd. MMMM yyyy','de_DE')

S = 2x1 cell
 {'26. November 2022'}
 {'27. November 2022'}

S is a cell array of character vectors representing dates in German. You can export S to a text file to
use with systems in the de_DE locale.

Read Dates in Other Languages
You can read text files containing dates and time in a language other than the language that MATLAB
uses, which depends on your system locale. Use the textscan or readtable functions with the
DateLocale name-value pair argument to specify the locale in which the function interprets the
dates in the file. In addition, you might need to specify the character encoding of a file that contains
characters that are not recognized by your computer's default encoding.

 Share Code and Data Across Locales

7-21

• When reading text files using the textscan function, specify the file encoding when opening the
file with fopen. The encoding is the fourth input argument to fopen.

• When reading text files using the readtable function, use the FileEncoding name-value pair
argument to specify the character encoding associated with the file.

See Also
datetime | char | cellstr | readtable | textscan

7 Dates and Time

7-22

Extract or Assign Date and Time Components of Datetime
Array

This example shows two ways to extract date and time components from existing datetime arrays:
accessing the array properties or calling a function. Then, the example shows how to modify the date
and time components by modifying the array properties.

Access Properties to Retrieve Date and Time Component

Create a datetime array.

t = datetime('now') + calyears(0:2) + calmonths(0:2) + hours(20:20:60)

t = 1x3 datetime
 27-Nov-2022 07:12:59 28-Dec-2023 03:12:59 28-Jan-2025 23:12:59

Get the year values of each datetime in the array. Use dot notation to access the Year property of t.

t_years = t.Year

t_years = 1×3

 2022 2023 2025

The output, t_years, is a numeric array.

Get the month values of each datetime in t by accessing the Month property.

t_months = t.Month

t_months = 1×3

 11 12 1

You can retrieve the day, hour, minute, and second components of each datetime in t by accessing the
Hour, Minute, and Second properties, respectively.

Use Functions to Retrieve Date and Time Component

Use the month function to get the month number for each datetime in t. Using functions is an
alternate way to retrieve specific date or time components of t.

m = month(t)

m = 1×3

 11 12 1

Use the month function rather than the Month property to get the full month names of each datetime
in t.

m = month(t,'name')

 Extract or Assign Date and Time Components of Datetime Array

7-23

m = 1x3 cell
 {'November'} {'December'} {'January'}

You can retrieve the year, quarter, week, day, hour, minute, and second components of each datetime
in t using the year, quarter, week, hour, minute, and second functions, respectively.

Get the week of year numbers for each datetime in t.

w = week(t)

w = 1×3

 49 52 5

Get Multiple Date and Time Components

Use the ymd function to get the year, month, and day values of t as three separate numeric arrays.

[y,m,d] = ymd(t)

y = 1×3

 2022 2023 2025

m = 1×3

 11 12 1

d = 1×3

 27 28 28

Use the hms function to get the hour, minute, and second values of t as three separate numeric
arrays.

[h,m,s] = hms(t)

h = 1×3

 7 3 23

m = 1×3

 12 12 12

s = 1×3

 59.1738 59.1738 59.1738

7 Dates and Time

7-24

Modify Date and Time Components

Assign new values to components in an existing datetime array by modifying the properties of the
array. Use dot notation to access a specific property.

Change the year number of all datetime values in t to 2014. Use dot notation to modify the Year
property.

t.Year = 2014

t = 1x3 datetime
 27-Nov-2014 07:12:59 28-Dec-2014 03:12:59 28-Jan-2014 23:12:59

Change the months of the three datetime values in t to January, February, and March, respectively.
You must specify the new value as a numeric array.

t.Month = [1,2,3]

t = 1x3 datetime
 27-Jan-2014 07:12:59 28-Feb-2014 03:12:59 28-Mar-2014 23:12:59

Set the time zone of t by assigning a value to the TimeZone property.

t.TimeZone = 'Europe/Berlin';

Change the display format of t to display only the date, and not the time information.

t.Format = 'dd-MMM-yyyy'

t = 1x3 datetime
 27-Jan-2014 28-Feb-2014 28-Mar-2014

If you assign values to a datetime component that are outside the conventional range, MATLAB®
normalizes the components. The conventional range for day of month numbers is from 1 to 31. Assign
day values that exceed this range.

t.Day = [-1 1 32]

t = 1x3 datetime
 30-Dec-2013 01-Feb-2014 01-Apr-2014

The month and year numbers adjust so that all values remain within the conventional range for each
date component. In this case, January -1, 2014 converts to December 30, 2013.

See Also
datetime | ymd | hms | week

 Extract or Assign Date and Time Components of Datetime Array

7-25

Combine Date and Time from Separate Variables
This example shows how to read date and time data from a text file. Then, it shows how to combine
date and time information stored in separate variables into a single datetime variable.

Create a space-delimited text file named schedule.txt that contains the following (to create the
file, use any text editor, and copy and paste):

Date Name Time
10.03.2015 Joe 14:31
10.03.2015 Bob 15:33
11.03.2015 Bob 11:29
12.03.2015 Kim 12:09
12.03.2015 Joe 13:05

Read the file using the readtable function. Use the %D conversion specifier to read the first and
third columns of data as datetime values.
T = readtable('schedule.txt','Format','%{dd.MM.uuuu}D %s %{HH:mm}D','Delimiter',' ')

T =
 Date Name Time
 __________ _____ _____
 10.03.2015 'Joe' 14:31
 10.03.2015 'Bob' 15:33
 11.03.2015 'Bob' 11:29
 12.03.2015 'Kim' 12:09
 12.03.2015 'Joe' 13:05

readtable returns a table containing three variables.

Change the display format for the T.Date and T.Time variables to view both date and time
information. Since the data in the first column of the file ("Date") have no time information, the time
of the resulting datetime values in T.Date default to midnight. Since the data in the third column of
the file ("Time") have no associated date, the date of the datetime values in T.Time defaults to the
current date.

T.Date.Format = 'dd.MM.uuuu HH:mm';
T.Time.Format = 'dd.MM.uuuu HH:mm';
T

T =
 Date Name Time
 ________________ _____ ________________
 10.03.2015 00:00 'Joe' 12.12.2014 14:31
 10.03.2015 00:00 'Bob' 12.12.2014 15:33
 11.03.2015 00:00 'Bob' 12.12.2014 11:29
 12.03.2015 00:00 'Kim' 12.12.2014 12:09
 12.03.2015 00:00 'Joe' 12.12.2014 13:05

Combine the date and time information from two different table variables by adding T.Date and the
time values in T.Time. Extract the time information from T.Time using the timeofday function.

myDatetime = T.Date + timeofday(T.Time)

myDatetime =
 10.03.2015 14:31
 10.03.2015 15:33

7 Dates and Time

7-26

 11.03.2015 11:29
 12.03.2015 12:09
 12.03.2015 13:05

See Also
readtable | timeofday

 Combine Date and Time from Separate Variables

7-27

Date and Time Arithmetic

This example shows how to add and subtract date and time values to calculate future and past dates
and elapsed durations in exact units or calendar units. You can add, subtract, multiply, and divide
date and time arrays in the same way that you use these operators with other MATLAB® data types.
However, there is some behavior that is specific to dates and time.

Add and Subtract Durations to Datetime Array

Create a datetime scalar. By default, datetime arrays are not associated with a time zone.

t1 = datetime('now')

t1 = datetime
 26-Nov-2022 10:25:08

Find future points in time by adding a sequence of hours.

t2 = t1 + hours(1:3)

t2 = 1x3 datetime
 26-Nov-2022 11:25:08 26-Nov-2022 12:25:08 26-Nov-2022 13:25:08

Verify that the difference between each pair of datetime values in t2 is 1 hour.

dt = diff(t2)

dt = 1x2 duration
 01:00:00 01:00:00

diff returns durations in terms of exact numbers of hours, minutes, and seconds.

Subtract a sequence of minutes from a datetime to find past points in time.

t2 = t1 - minutes(20:10:40)

t2 = 1x3 datetime
 26-Nov-2022 10:05:08 26-Nov-2022 09:55:08 26-Nov-2022 09:45:08

Add a numeric array to a datetime array. MATLAB treats each value in the numeric array as a
number of exact, 24-hour days.

t2 = t1 + [1:3]

t2 = 1x3 datetime
 27-Nov-2022 10:25:08 28-Nov-2022 10:25:08 29-Nov-2022 10:25:08

Add to Datetime with Time Zone

If you work with datetime values in different time zones, or if you want to account for daylight saving
time changes, work with datetime arrays that are associated with time zones. Create a datetime
scalar representing March 8, 2014, in New York.

7 Dates and Time

7-28

t1 = datetime(2014,3,8,0,0,0,'TimeZone','America/New_York')

t1 = datetime
 08-Mar-2014

Find future points in time by adding a sequence of fixed-length (24-hour) days.

t2 = t1 + days(0:2)

t2 = 1x3 datetime
 08-Mar-2014 00:00:00 09-Mar-2014 00:00:00 10-Mar-2014 01:00:00

Because a daylight saving time shift occurred on March 9, 2014, the third datetime in t2 does not
occur at midnight.

Verify that the difference between each pair of datetime values in t2 is 24 hours.

dt = diff(t2)

dt = 1x2 duration
 24:00:00 24:00:00

You can add fixed-length durations in other units such as years, hours, minutes, and seconds by
adding the outputs of the years, hours, minutes, and seconds functions, respectively.

To account for daylight saving time changes, you should work with calendar durations instead of
durations. Calendar durations account for daylight saving time shifts when they are added to or
subtracted from datetime values.

Add a number of calendar days to t1.

t3 = t1 + caldays(0:2)

t3 = 1x3 datetime
 08-Mar-2014 09-Mar-2014 10-Mar-2014

View that the difference between each pair of datetime values in t3 is not always 24 hours due to the
daylight saving time shift that occurred on March 9.

dt = diff(t3)

dt = 1x2 duration
 24:00:00 23:00:00

Add Calendar Durations to Datetime Array

Add a number of calendar months to January 31, 2014.

t1 = datetime(2014,1,31)

t1 = datetime
 31-Jan-2014

t2 = t1 + calmonths(1:4)

 Date and Time Arithmetic

7-29

t2 = 1x4 datetime
 28-Feb-2014 31-Mar-2014 30-Apr-2014 31-May-2014

Each datetime in t2 occurs on the last day of each month.

Calculate the difference between each pair of datetime values in t2 in terms of a number of calendar
days using the caldiff function.

dt = caldiff(t2,'days')

dt = 1x3 calendarDuration
 31d 30d 31d

The number of days between successive pairs of datetime values in dt is not always the same
because different months consist of a different number of days.

Add a number of calendar years to January 31, 2014.

t2 = t1 + calyears(0:4)

t2 = 1x5 datetime
 31-Jan-2014 31-Jan-2015 31-Jan-2016 31-Jan-2017 31-Jan-2018

Calculate the difference between each pair of datetime values in t2 in terms of a number of calendar
days using the caldiff function.

dt = caldiff(t2,'days')

dt = 1x4 calendarDuration
 365d 365d 366d 365d

The number of days between successive pairs of datetime values in dt is not always the same
because 2016 is a leap year and has 366 days.

You can use the calquarters, calweeks, and caldays functions to create arrays of calendar
quarters, calendar weeks, or calendar days that you add to or subtract from datetime arrays.

Adding calendar durations is not commutative. When you add more than one calendarDuration
array to a datetime, MATLAB adds them in the order in which they appear in the command.

Add 3 calendar months followed by 30 calendar days to January 31, 2014.

t2 = datetime(2014,1,31) + calmonths(3) + caldays(30)

t2 = datetime
 30-May-2014

First add 30 calendar days to the same date, and then add 3 calendar months. The result is not the
same because when you add a calendar duration to a datetime, the number of days added depends on
the original date.

t2 = datetime(2014,1,31) + caldays(30) + calmonths(3)

7 Dates and Time

7-30

t2 = datetime
 02-Jun-2014

Calendar Duration Arithmetic

Create two calendar durations and then find their sum.

d1 = calyears(1) + calmonths(2) + caldays(20)

d1 = calendarDuration
 1y 2mo 20d

d2 = calmonths(11) + caldays(23)

d2 = calendarDuration
 11mo 23d

d = d1 + d2

d = calendarDuration
 2y 1mo 43d

When you sum two or more calendar durations, a number of months greater than 12 roll over to a
number of years. However, a large number of days does not roll over to a number of months, because
different months consist of different numbers of days.

Increase d by multiplying it by a factor of 2. Calendar duration values must be integers, so you can
multiply them only by integer values.

2*d

ans = calendarDuration
 4y 2mo 86d

Calculate Elapsed Time in Exact Units

Subtract one datetime array from another to calculate elapsed time in terms of an exact number of
hours, minutes, and seconds.

Find the exact length of time between a sequence of datetime values and the start of the previous
day.

t2 = datetime('now') + caldays(1:3)

t2 = 1x3 datetime
 27-Nov-2022 10:25:11 28-Nov-2022 10:25:11 29-Nov-2022 10:25:11

t1 = datetime('yesterday')

t1 = datetime
 25-Nov-2022

dt = t2 - t1

 Date and Time Arithmetic

7-31

dt = 1x3 duration
 58:25:11 82:25:11 106:25:11

whos dt

 Name Size Bytes Class Attributes

 dt 1x3 40 duration

dt contains durations in the format, hours:minutes:seconds.

View the elapsed durations in units of days by changing the Format property of dt.

dt.Format = 'd'

dt = 1x3 duration
 2.4342 days 3.4342 days 4.4342 days

Scale the duration values by multiplying dt by a factor of 1.2. Because durations have an exact
length, you can multiply and divide them by fractional values.

dt2 = 1.2*dt

dt2 = 1x3 duration
 2.921 days 4.121 days 5.321 days

Calculate Elapsed Time in Calendar Units

Use the between function to find the number of calendar years, months, and days elapsed between
two dates.

t1 = datetime('today')

t1 = datetime
 26-Nov-2022

t2 = t1 + calmonths(0:2) + caldays(4)

t2 = 1x3 datetime
 30-Nov-2022 30-Dec-2022 30-Jan-2023

dt = between(t1,t2)

dt = 1x3 calendarDuration
 4d 1mo 4d 2mo 4d

See Also
between | diff | caldiff

7 Dates and Time

7-32

Compare Dates and Time

This example shows how to compare datetime and duration arrays. You can perform an element-
by-element comparison of values in two datetime arrays or two duration arrays using relational
operators, such as > and <.

Compare Datetime Arrays

Compare two datetime arrays. The arrays must be the same size or one can be a scalar.

A = datetime(2013,07,26) + calyears(0:2:6)

A = 1x4 datetime
 26-Jul-2013 26-Jul-2015 26-Jul-2017 26-Jul-2019

B = datetime(2014,06,01)

B = datetime
 01-Jun-2014

A < B

ans = 1x4 logical array

 1 0 0 0

The < operator returns logical 1 (true) where a datetime in A occurs before a datetime in B.

Compare a datetime array to text representing a date.

A >= '26-Sep-2014'

ans = 1x4 logical array

 0 1 1 1

Comparisons of datetime arrays account for the time zone information of each array.

Compare September 1, 2014, at 4:00 p.m. in Los Angeles with 5:00 p.m. on the same day in New
York.

A = datetime(2014,09,01,16,0,0,'TimeZone','America/Los_Angeles',...
 'Format','dd-MMM-yyyy HH:mm:ss Z')

A = datetime
 01-Sep-2014 16:00:00 -0700

B = datetime(2014,09,01,17,0,0,'TimeZone','America/New_York',...
 'Format','dd-MMM-yyyy HH:mm:ss Z')

B = datetime
 01-Sep-2014 17:00:00 -0400

 Compare Dates and Time

7-33

A < B

ans = logical
 0

4:00 p.m. in Los Angeles occurs after 5:00 p.m. on the same day in New York.

Compare Durations

Compare two duration arrays.

A = duration([2,30,30;3,15,0])

A = 2x1 duration
 02:30:30
 03:15:00

B = duration([2,40,0;2,50,0])

B = 2x1 duration
 02:40:00
 02:50:00

A >= B

ans = 2x1 logical array

 0
 1

Compare a duration array to a numeric array. Elements in the numeric array are treated as a number
of fixed-length (24-hour) days.

A < [1; 1/24]

ans = 2x1 logical array

 1
 0

Determine if Dates and Time Are Contained Within an Interval

Use the isbetween function to determine whether values in a datetime array lie within a closed
interval.

Define endpoints of an interval.

tlower = datetime(2014,08,01)

tlower = datetime
 01-Aug-2014

tupper = datetime(2014,09,01)

7 Dates and Time

7-34

tupper = datetime
 01-Sep-2014

Create a datetime array and determine whether the values lie within the interval bounded by t1
and t2.

A = datetime(2014,08,21) + calweeks(0:2)

A = 1x3 datetime
 21-Aug-2014 28-Aug-2014 04-Sep-2014

tf = isbetween(A,tlower,tupper)

tf = 1x3 logical array

 1 1 0

See Also
isbetween

More About
• “Array Comparison with Relational Operators” on page 2-30

 Compare Dates and Time

7-35

Plot Dates and Times

This example shows how to create line plots with dates and times that are stored as datetime and
duration arrays. The datetime data type represents points in time, such as August 24, 2020,
10:50:30 a.m., while the duration data type represents lengths of time, such as 12 hours and 30
minutes. Most plotting functions accept datetime and duration arrays as x-, y-, and z-coordinates
and show tick values with appropriate date and time units. You can specify your own axis limits and
tick values using datetime and duration values. You can also change the format of tick values to
show date and time units of your choice. Data tips show datetime and duration values for cursor
positions on a plot, and you can export those values to workspace variables. When you read data from
a spreadsheet or comma-separated value (CSV) file, you can include the date and time data in your
plots.

Plot Date and Time Data

You can plot datetime and duration arrays without converting them to numeric arrays. Most
plotting functions accept datetime and duration arrays as input arguments.

For example, plot a data set that has datetime values on the x-axis and numeric values on the y-axis.
The x-coordinates are the datetime values for every day in June and July 2021. The plot
automatically displays tick values with an appropriate format on the x-axis. In this case, the
appropriate format shows month names and day numbers with the year.

XDates = [datetime(2021,6,1:30) datetime(2021,7,1:31)];
YNumsForXDates = sin(0:0.1:6);
plot(XDates,YNumsForXDates)

7 Dates and Time

7-36

Similarly, plot a data set that has duration values on the x-axis. To create a duration array in units
of seconds, use the seconds function.

XTimes = seconds(0:120);
YNumsForXTimes = cos(0:0.05:6);
plot(XTimes,YNumsForXTimes)

 Plot Dates and Times

7-37

Specify Axes Limits

When you change the limits on a plot, the tick values that are shown for datetime and duration
values are updated automatically. You can update limits interactively or by calling the xlim, ylim, or
zlim functions for the corresponding axis. Specify the new limits as a datetime or duration array.
If you change limits to zoom in or zoom out far enough, then the tick values can show other date and
time components, not just new tick values.

For example, plot the XDates and YNumsForXDates arrays. Then change the x-axis limits to June 20
and July 7, 2021, using xlim. The plot displays new tick values.

plot(XDates,YNumsForXDates)
xlim([datetime("2021-06-20") datetime("2021-07-07")])

7 Dates and Time

7-38

Change the x-axis limits to June 20 and June 22, 2021. The tick values show hour and minute
components in hh:mm format because the plot is zoomed in enough to show smaller time units on the
x-axis.

xlim([datetime("2021-06-20") datetime("2021-06-22")])

 Plot Dates and Times

7-39

Specify Tick Values

You do not have to change axes limits to change tick values. Instead, you can specify your own tick
values along the x-, y-, or z-axes by using the xticks, yticks, or zticks functions. Specify the tick
values as a datetime or duration array.

For example, plot the XTimes and YNumsForXTimes arrays. Then specify tick values at 0, 60, and
120 seconds by using xticks.

plot(XTimes,YNumsForXTimes)
xticks(seconds([0 60 120]))

7 Dates and Time

7-40

Specify Tick Format

Plotting functions use default formats to display datetime and duration values as tick values. To
override the format for the tick values on an axis, use the xtickformat, ytickformat, or
ztickformat functions.

For example, plot XDates and YNumsForXDates. Specify a tick value format showing year, month,
and day numbers by using xtickformat.

plot(XDates,YNumsForXDates)
xtickformat("yyyy-MM-dd")

 Plot Dates and Times

7-41

As an alternative, you can also call plot with the DatetimeTickFormat or DurationTickFormat
name-value arguments. For example, this call to the plot function creates the same plot.

plot(XDates,YNumsForXDates,"DatetimeTickFormat","yyyy-MM-dd")

However, these name-value arguments can be used with the plot function only. You can use
functions such as xtickformat after calling any plotting function, such as scatter, stem, and
stairs.

Axes Properties That Store Dates and Times

Axis limits, the locations of tick labels, and the x-, y-, and z-values for datetime and duration
arrays in line plots are also stored as properties of an Axes object. These properties represent those
aspects of line plots.

• XLim, YLim, ZLim
• XTick, YTick, ZTick
• XData, YData, ZData

For example, the XLim and XTick properties associated with the plot of XDates and
YNumsForXDates store datetime values. Get the Axes object for the plot and display these
properties.

ax = gca;
ax.XLim

7 Dates and Time

7-42

ans = 1x2 datetime
 2021-06-01 2021-08-03

ax.XTick

ans = 1x5 datetime
 2021-06-01 2021-06-15 2021-06-29 2021-07-13 2021-07-27

Export and Convert Data Tip Values

When you click on a plot, you create a data tip at that cursor position that displays its x- and y-
coordinates. Data tips display numeric values as well as datetime and duration values. However,
when you export the cursor data to the workspace, the coordinates are reported as a pair of numeric
values. To convert exported cursor data to the datetime or duration value, use the num2ruler
function.

For example, plot XDates and YNumsForXDates. Then create a data tip by clicking on the plot.

To export the cursor data to the workspace, right-click the data tip and select Export Cursor Data
to Workspace. This action exports the cursor data to a structure in the workspace.

cursor_info =

 struct with fields:

 Plot Dates and Times

7-43

 Target: [1×1 Line]
 Position: [25 0.5985]
 DataIndex: 26

The cursor_info.Position field represents the cursor data as a pair of numeric values. The Axes
object associated with the plot has the information needed to convert the numeric value of the x-
coordinate to a datetime value. Get the Axes object for the plot. Then pass the numeric x-
coordinate and the x-axis from the Axes object to num2ruler.

ax = gca;
datetimePosition = num2ruler(cursor_info.Position(1),ax.XAxis)

datetimePosition =

 datetime

 26-Jun-2021

You do not need to convert the numeric y-coordinate, cursor_info.Position(2) because the y-
values in this plot are numeric.

Plot Dates and Times from File

Data files such as spreadsheets and CSV files often store dates and times as formatted text. When you
read in data from such files, you can convert text representing dates and times to datetime or
duration arrays. Then you can create plots of that data.

For example, create a plot of data from the example data file outages.csv. This CSV file contains six
columns of data. Two columns contain text that represent dates and times.

Region,OutageTime,Loss,Customers,RestorationTime,Cause
SouthWest,2002-02-01 12:18,458.9772218,1820159.482,2002-02-07 16:50,winter storm
SouthEast,2003-01-23 00:49,530.1399497,212035.3001,,winter storm
SouthEast,2003-02-07 21:15,289.4035493,142938.6282,2003-02-17 08:14,winter storm
...

The recommended way to read data from a CSV file is to use the readtable function. This function
reads data from a file and returns it in a table.

Read in outages.csv. The readtable function automatically converts the text in the OutageTime
and RestorationTime columns to datetime arrays. The columns that represent numbers (Loss
and Customers) are read in as numeric arrays. The remaining columns are read in as strings. The
table stores the columns of data from outages.csv in table variables that have the same names.
Finally, sort the rows of T by the dates and times in OutageTime by using the sortrows function. If
a table is not sorted by time, then it is a best practice to sort the table by time before plotting or
analyzing the data.

T = readtable("outages.csv","TextType","string");
T = sortrows(T,"OutageTime")

T=1468×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ __________________

 "SouthWest" 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 "winter storm"
 "MidWest" 2002-03-05 17:53 96.563 2.8666e+05 2002-03-10 14:41 "wind"
 "MidWest" 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 "severe storm"

7 Dates and Time

7-44

 "MidWest" 2002-03-26 01:59 388.04 5.6422e+05 2002-03-28 19:55 "winter storm"
 "MidWest" 2002-04-20 16:46 23141 NaN NaT "unknown"
 "SouthWest" 2002-05-08 20:34 50.732 34481 2002-05-08 22:21 "thunder storm"
 "MidWest" 2002-05-18 11:04 1389.1 1.3447e+05 2002-05-21 01:22 "unknown"
 "NorthEast" 2002-05-20 10:57 9116.6 2.4983e+06 2002-05-21 15:22 "unknown"
 "SouthEast" 2002-05-27 09:44 237.28 1.7101e+05 2002-05-27 16:19 "wind"
 "SouthEast" 2002-06-02 16:11 0 0 2002-06-05 05:55 "energy emergency"
 "West" 2002-06-06 19:28 311.86 NaN 2002-06-07 00:51 "equipment fault"
 "SouthEast" 2002-06-17 23:01 42.542 39877 2002-06-17 23:49 "thunder storm"
 "MidWest" 2002-07-01 04:33 203.94 60650 2002-07-02 14:54 "severe storm"
 "MidWest" 2002-07-01 08:18 100.71 1.8116e+05 2002-07-01 11:33 "severe storm"
 "MidWest" 2002-07-10 01:49 168.02 NaN 2002-07-10 17:20 "equipment fault"
 "SouthEast" 2002-07-14 21:32 90.83 60133 2002-07-14 23:53 "thunder storm"
 ⋮

You can access table variables by using dot notation, referring to a table variable by name. With dot
notation, you can treat table variables like arrays.

Plot the power loss against outage time. To access these variables from the table, use dot notation.

plot(T.OutageTime,T.Loss)

Calculate the durations of the power outages and plot them against OutageTime. To calculate the
durations, subtract OutageTime from RestorationTime. The result, OutageDuration, is a
duration array, because arithmetic with datetime values produces lengths of time as output. Some
of these outage durations are long, so change the format of the y-axis tick values from hours to years

 Plot Dates and Times

7-45

by using ytickformat. The fact that some outages apparently last for years indicates there might be
a few questionable data values in the file. Depending on how you plan to analyze the data, you can
either reprocess it in some way or remove the rows containing bad values.

OutageDuration = T.RestorationTime - T.OutageTime;
plot(T.OutageTime,OutageDuration)
ytickformat("y")

See Also
plot | datetime | duration | seconds | readtable | sortrows | xlim | xtickformat | xticks

Related Examples
• “2-D and 3-D Plots”
• “Types of MATLAB Plots”
• “Generate Sequence of Dates and Time” on page 7-14
• “Compare Dates and Time” on page 7-33
• “Date and Time Arithmetic” on page 7-28
• “Convert Between Text and datetime or duration Values” on page 7-48

7 Dates and Time

7-46

Core Functions Supporting Date and Time Arrays
Many functions in MATLAB operate on date and time arrays in much the same way that they operate
on other arrays.

This table lists notable MATLAB functions that operate on datetime, duration, and
calendarDuration arrays in addition to other arrays.

size
length
ndims
numel

isrow
iscolumn

cat
horzcat
vertcat

permute
reshape
transpose
ctranspose

linspace

isequal
isequaln

eq
ne
lt
le
ge
gt

sort
sortrows
issorted

intersect
ismember
setdiff
setxor
unique
union

abs
floor
ceil
round

min
max
mean
median
mode

plus
minus
uminus
times
rdivide
ldivide
mtimes
mrdivide
mldivide
diff
sum

char
string
cellstr

plot
plot3
scatter
scatter3
bar
barh
histogram

stem
stairs
area
mesh
surf
surface

semilogx
semilogy
fill
fill3
line
text

 Core Functions Supporting Date and Time Arrays

7-47

Convert Between Text and datetime or duration Values

This example shows how to convert between text and data types that represent dates and times. The
datetime data type represents points in time, such as August 24, 2020, 10:50:30 a.m., and the
duration data type represents lengths of time, such as 3 hours, 47 minutes, and 16 seconds. A
common reason for converting dates and times to text is to append them to strings that are used as
plot labels or file names. Similarly, if a file has columns of data that store dates and times as text, you
can read the data from those columns into datetime or duration arrays, making the data more
useful for analysis.

To convert:

• datetime or duration values to text, use the string function. (You can also use the char
function to convert these values to character vectors.)

• text to datetime values, use the datetime function.
• text to duration values, use the duration function.

Also, some functions, such as the readcell, readvars, and readtable functions, read text from
files and automatically convert text representing dates and times to datetime or duration arrays.

Convert datetime and duration Values to Text

Create a datetime value that represents the current date and time.

d = datetime("now")

d = datetime
 26-Nov-2022 13:48:44

To convert d to text, use the string function.

str = string(d)

str =
"26-Nov-2022 13:48:44"

Similarly, you can convert duration values. For example, first create a duration value that
represents 3 hours and 30 minutes. One way to create this value is to use the hours and minutes
functions. These functions create duration values that you can then combine.

d = hours(3) + minutes(30)

d = duration
 3.5 hr

Convert d to text.

str = string(d)

str =
"3.5 hr"

7 Dates and Time

7-48

One common use of such strings is to add them to plot labels or file names. For example, create a
simple plot with a title that includes today's date. First convert the date and add it to the string
myTitle.

d = datetime("today")

d = datetime
 26-Nov-2022

myTitle = "Plot generated on: " + string(d)

myTitle =
"Plot generated on: 26-Nov-2022"

Create the plot with your title.

plot(rand(10,1))
title(myTitle)

Convert Arrays to String Arrays

You can also convert arrays of datetime or duration values. When you convert them by using the
string function, the resulting string array has the same size.

For example, create a datetime array.

D = datetime(2021,1:3,15,12,0,0)'

 Convert Between Text and datetime or duration Values

7-49

D = 3x1 datetime
 15-Jan-2021 12:00:00
 15-Feb-2021 12:00:00
 15-Mar-2021 12:00:00

Convert D to a string array.

str = string(D)

str = 3x1 string
 "15-Jan-2021 12:00:00"
 "15-Feb-2021 12:00:00"
 "15-Mar-2021 12:00:00"

Similarly, you can create a duration array and convert it. One way to create a duration array is to
use the duration function. Call it with numeric inputs that specify hours, minutes, and seconds.

D = duration(1:3,30,0)'

D = 3x1 duration
 01:30:00
 02:30:00
 03:30:00

Convert the duration array.

str = string(D)

str = 3x1 string
 "01:30:00"
 "02:30:00"
 "03:30:00"

Specify Format of Output Text

The datetime and duration data types have properties that specify the format for display. Live
scripts and the Command Window use that format to display values. When you convert datetime or
duration arrays by using the string function, you can specify a different format.

For example, create a datetime value and display it.

d = datetime("now")

d = datetime
 26-Nov-2022 13:48:47

Specify a format using letter identifiers for the full name of the month, the day, year, and time.
Convert d to a string that represents the date and time using that format.

fmt = "dd MMMM yyyy, hh:mm:ss a";
str = string(d,fmt)

str =
"26 November 2022, 01:48:47 PM"

7 Dates and Time

7-50

Similarly, you can specify a format when you convert a duration array. First create a duration
value.

d = hours(1) + minutes(30) + seconds(45)

d = duration
 1.5125 hr

Convert d to a string using the identifiers hh:mm:ss for the hour, minute, and second.

fmt = "hh:mm:ss";
string(d,fmt)

ans =
"01:30:45"

Note: The string function does not provide a second input argument for a format when converting
other data types.

Specify Locale of Output Text

You can also convert datetime and duration arrays using different locales. The locale provides
appropriate names for the day and month. To use a locale that is not the default locale, provide it as
another input argument.

For example, specify fr_FR as the locale to represent the current date and time using the French
name for the month.

d = datetime("now")

d = datetime
 26-Nov-2022 13:48:47

fmt = "dd MMMM yyyy, hh:mm:ss a";
locale = "fr_FR";
str = string(d,fmt,locale)

str =
"26 novembre 2022, 01:48:47 PM"

Similarly, you can specify a locale when you convert duration arrays. The locale for France uses a
different abbreviation for hours.

d = hours(5)

d = duration
 5 hr

fmt = "h";
locale = "fr_FR";
str = string(d,fmt,locale)

str =
"5 h"

Note: The string function does not provide a third input argument for a locale when converting
other data types.

 Convert Between Text and datetime or duration Values

7-51

Convert Text to datetime Values

You can convert text to datetime values if the text specifies dates and times in a format that the
datetime function recognizes.

Create a string that represents a date and a time.

str = "2021-09-15 09:12:34"

str =
"2021-09-15 09:12:34"

Convert str to a datetime value.

d = datetime(str)

d = datetime
 15-Sep-2021 09:12:34

Interpret Format of Input Text

The datetime function recognizes many commonly used text formats. However, if your text is in a
format that datetime does not recognize, you can specify the format as an input argument.

For example, create a string that specifies a date and time using the ISO 8601 standard.

str = "2021-09-15T091234"

str =
"2021-09-15T091234"

The datetime function does not recognize this format. To convert this string to a datetime value,
specify the format of the input text. Then call the datetime function. (When the format includes
literal text, enclose it in quotation marks. In this example specify the literal text T as 'T'.)

infmt = "yyyy-MM-dd'T'HHmmss";
d = datetime(str,"InputFormat",infmt)

d = datetime
 15-Sep-2021 09:12:34

Convert Text to duration Values

You can convert text to duration values if the text specifies times in a format that the duration
function recognizes.

Create a string that represents a length of time.

str = "00:34:01"

str =
"00:34:01"

Convert str to a duration value.

d = duration(str)

7 Dates and Time

7-52

d = duration
 00:34:01

Interpret Format of Input Text

The duration function recognizes formats that specify days, hours, minutes, and seconds separated
by colons. These formats are:

• "dd:hh:mm:ss"
• "hh:mm:ss"
• "mm:ss"
• "hh:mm"
• Any of the first three formats, with up to nine S characters to indicate fractional second digits,

such as "hh:mm:ss.SSSS"

If the input text is ambiguous, which means that it could be interpreted as matching the "mm:ss" or
"hh:mm" formats, specify the format as an input argument.

For example, create a string that represents a length of time.

str = "34:01"

str =
"34:01"

To convert this string to a duration of 34 minutes and 1 second, specify the format. Then call the
duration function.

infmt = "mm:ss";
d = duration(str,"InputFormat",infmt)

d = duration
 00:34:01

Read Dates and Times from Files

Many files, such as spreadsheets and text files, store dates and times as text. If the dates and times
are in recognized formats, then functions such as readcell, readvars, and readtable can read
them and automatically convert them to datetime or duration arrays.

For example, the CSV file outages.csv is a sample file that is distributed with MATLAB®. The file
contains data for a set of electrical power outages. The first line of outages.csv has column names.
The rest of the file has comma-separated data values for each outage. The file has 1468 lines of data.
The first few lines are shown here.

Region,OutageTime,Loss,Customers,RestorationTime,Cause
SouthWest,2002-02-01 12:18,458.9772218,1820159.482,2002-02-07 16:50,winter storm
SouthEast,2003-01-23 00:49,530.1399497,212035.3001,,winter storm
SouthEast,2003-02-07 21:15,289.4035493,142938.6282,2003-02-17 08:14,winter storm
West,2004-04-06 05:44,434.8053524,340371.0338,2004-04-06 06:10,equipment fault
MidWest,2002-03-16 06:18,186.4367788,212754.055,2002-03-18 23:23,severe storm
...

To read the first three columns from outages.csv and store them directly in arrays, use the
readvars function. To read text into variables that store string arrays, specify the TextType name-

 Convert Between Text and datetime or duration Values

7-53

value argument. However, the function recognizes the values in the second column of the CSV file as
dates and times and creates the OutageTime variable as a datetime array. Display the first five
rows of each output array.

[Region,OutageTime,Loss] = readvars("outages.csv","TextType","string");
whos Region OutageTime Loss

 Name Size Bytes Class Attributes

 Loss 1468x1 11744 double
 OutageTime 1468x1 23520 datetime
 Region 1468x1 94920 string

Loss(1:5)

ans = 5×1

 458.9772
 530.1399
 289.4035
 434.8054
 186.4368

OutageTime(1:5)

ans = 5x1 datetime
 2002-02-01 12:18
 2003-01-23 00:49
 2003-02-07 21:15
 2004-04-06 05:44
 2002-03-16 06:18

Region(1:5)

ans = 5x1 string
 "SouthWest"
 "SouthEast"
 "SouthEast"
 "West"
 "MidWest"

To read the whole spreadsheet and store the data in a table, use the readtable function. To read
text into table variables that store string arrays, specify the TextType name-value argument.
However, readtable still converts OutageTime and RestorationTime to table variables that store
datetime arrays.

T = readtable("outages.csv","TextType","string")

T=1468×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ _________________

 "SouthWest" 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 "winter storm"
 "SouthEast" 2003-01-23 00:49 530.14 2.1204e+05 NaT "winter storm"
 "SouthEast" 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 "winter storm"
 "West" 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 "equipment fault"

7 Dates and Time

7-54

 "MidWest" 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 "severe storm"
 "West" 2003-06-18 02:49 0 0 2003-06-18 10:54 "attack"
 "West" 2004-06-20 14:39 231.29 NaN 2004-06-20 19:16 "equipment fault"
 "West" 2002-06-06 19:28 311.86 NaN 2002-06-07 00:51 "equipment fault"
 "NorthEast" 2003-07-16 16:23 239.93 49434 2003-07-17 01:12 "fire"
 "MidWest" 2004-09-27 11:09 286.72 66104 2004-09-27 16:37 "equipment fault"
 "SouthEast" 2004-09-05 17:48 73.387 36073 2004-09-05 20:46 "equipment fault"
 "West" 2004-05-21 21:45 159.99 NaN 2004-05-22 04:23 "equipment fault"
 "SouthEast" 2002-09-01 18:22 95.917 36759 2002-09-01 19:12 "severe storm"
 "SouthEast" 2003-09-27 07:32 NaN 3.5517e+05 2003-10-04 07:02 "severe storm"
 "West" 2003-11-12 06:12 254.09 9.2429e+05 2003-11-17 02:04 "winter storm"
 "NorthEast" 2004-09-18 05:54 0 0 NaT "equipment fault"
 ⋮

As these table variables are datetime arrays, you can perform convenient calculations with them.
For example, you can calculate the durations of the power outages and attach them to the table as a
duration array.

T.OutageDuration = T.RestorationTime - T.OutageTime

T=1468×7 table
 Region OutageTime Loss Customers RestorationTime Cause OutageDuration
 ___________ ________________ ______ __________ ________________ _________________ ______________

 "SouthWest" 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 "winter storm" 148:32:00
 "SouthEast" 2003-01-23 00:49 530.14 2.1204e+05 NaT "winter storm" NaN
 "SouthEast" 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 "winter storm" 226:59:00
 "West" 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 "equipment fault" 00:26:00
 "MidWest" 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 "severe storm" 65:05:00
 "West" 2003-06-18 02:49 0 0 2003-06-18 10:54 "attack" 08:05:00
 "West" 2004-06-20 14:39 231.29 NaN 2004-06-20 19:16 "equipment fault" 04:37:00
 "West" 2002-06-06 19:28 311.86 NaN 2002-06-07 00:51 "equipment fault" 05:23:00
 "NorthEast" 2003-07-16 16:23 239.93 49434 2003-07-17 01:12 "fire" 08:49:00
 "MidWest" 2004-09-27 11:09 286.72 66104 2004-09-27 16:37 "equipment fault" 05:28:00
 "SouthEast" 2004-09-05 17:48 73.387 36073 2004-09-05 20:46 "equipment fault" 02:58:00
 "West" 2004-05-21 21:45 159.99 NaN 2004-05-22 04:23 "equipment fault" 06:38:00
 "SouthEast" 2002-09-01 18:22 95.917 36759 2002-09-01 19:12 "severe storm" 00:50:00
 "SouthEast" 2003-09-27 07:32 NaN 3.5517e+05 2003-10-04 07:02 "severe storm" 167:30:00
 "West" 2003-11-12 06:12 254.09 9.2429e+05 2003-11-17 02:04 "winter storm" 115:52:00
 "NorthEast" 2004-09-18 05:54 0 0 NaT "equipment fault" NaN
 ⋮

See Also
char | string | duration | datetime | hours | minutes | seconds | readcell | readvars |
readtable | readtimetable | table | timetable

More About
• “Represent Dates and Times in MATLAB” on page 7-2
• “Generate Sequence of Dates and Time” on page 7-14
• “Extract or Assign Date and Time Components of Datetime Array” on page 7-23
• “Compare Dates and Time” on page 7-33

 Convert Between Text and datetime or duration Values

7-55

• “Date and Time Arithmetic” on page 7-28
• “Convert Date and Time to Julian Date or POSIX Time” on page 7-7

External Websites
• Proleptic Gregorian Calendar

7 Dates and Time

7-56

https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar

Replace Discouraged Instances of Serial Date Numbers and
Date Strings

As of R2022b, serial date numbers and date strings are not recommended for specifying dates and
times in MATLAB. Serial date numbers represent dates and times as the number of days since a fixed,
preset date. Date strings represent dates and times as formatted text. Instead, use the datetime
data type to represent points in time, and the duration and calendarDuration data types to
represent elapsed times.

In particular, the datetime data type provides many advantages over serial date numbers. These
advantages include:

• Flexible formats for both output display and input text parsing
• Storage for fractional seconds out to nanosecond precision
• Properties to account for time zones, daylight saving time, and leap seconds

MATLAB functions offer equivalent support for datetime arrays. That is, functions that accept serial
date numbers or date strings as inputs also accept datetime arrays as inputs. For example, the plot
function accepts both serial date numbers and datetime arrays. If you specify datetime arrays,
then plot automatically formats axis and tick labels using properties of the datetime inputs. This
plotting capability is another example of the advantages provided by datetime arrays.

This topic shows you how to remove serial date numbers and date strings from your MATLAB code.
You can convert them to the recommended data types, replace functions and syntaxes that use serial
date numbers or date strings, and update your own functions while maintaining backward
compatibility.

Convert Serial Date Numbers and Date Strings
You can convert serial date numbers and date strings to datetime arrays. The datetime function is
the recommended function for most conversions.

• To convert serial date numbers, use datetime.

d = 738522;
d = datetime(d,"ConvertFrom","datenum")

• To convert date strings, use datetime.

d = datetime("2022-06-28 12:34:56")

To specify the input format, use the InputFormat name-value argument.

d = "28 June 2022";
d = datetime(d,"InputFormat","dd MMMM yyyy")

• To convert text timestamps that represent elapsed time as hours, minutes, and seconds, use the
duration function.

d = duration("08:17:43")

Replace Functions That Use Date Numbers
There are older date and time functions in MATLAB that use serial date numbers, or return results as
serial date numbers or date strings. For example, the datenum function returns specified dates and

 Replace Discouraged Instances of Serial Date Numbers and Date Strings

7-57

times as serial date numbers. The datestr function returns dates and times as date strings.
Functions such as date, now, and today return serial date numbers or date strings. These functions
are not recommended.

This table describes common date and time operations, the discouraged functions that perform these
operations, and their recommended replacements. There are no plans to remove the discouraged
functions described in the table.

Operation Discouraged Function Recommended Replacement
Add time to points in time. addtodate Add duration or

calendarDuration values to
datetime values.

Example: Add array of hours.

d = datetime("2022-01-01");
d = d + hours(0:4:12)

Example: Add array of calendar
months.

d = datetime("2022-01-01");
d = d + calmonths(0:2)

Return current time (as a date
vector).

clock Use datetime or
datetime("now"), and
datevec to convert to a date
vector.

Example: Return current time
as datetime value.

d = datetime
% or
d = datetime("now")

Example: Return current time
as date vector.

d = datevec(datetime)

Return current date (as text). date Use datetime("today").

Example: Return current date
as datetime value.

d = datetime("today")

Example: Return current date
as text.

d = datetime("today");
d = string(d)

7 Dates and Time

7-58

Operation Discouraged Function Recommended Replacement
Specify dates and times (as data
type treated numerically).

datenum Use datetime values.

Example: Convert serial date
number to datetime value.

d = 738522;
d = datetime(d,"ConvertFrom","datenum")

Specify dates and times (as
text).

datestr Use the string or char
function.

Example: Convert datetime
value to text.

d = datetime(2022,6,28,12,34,56)
d = string(d)

Convert date vector to text. datestr Use the string or char
function.

Example: Convert date vector
to datetime value, then to text.

dv = [2022 6 28 12 34 56];
d = datetime(dv)
d = string(d)

Return last dates of months. eomdate Use the dateshift function
with datetime values as inputs.

Example: Return last date of
current month as datetime
value.

d = datetime("today")
endMonth = dateshift(d,"end","month")

Example: Return last date of
month given y and m as numeric
inputs for year and month.

y = 2022;
m = 6;
endMonth = dateshift(datetime(y,m,1),"end","month")

 Replace Discouraged Instances of Serial Date Numbers and Date Strings

7-59

Operation Discouraged Function Recommended Replacement
Calculate difference between
two points in time.

etime Subtract datetime values or
use the between function.

Example: Subtract datetime
values. The result is a
duration value representing
elapsed time in units of fixed
length.

startOfToday = datetime("today")
currentTime = datetime("now")
elapsedTime = currentTime - startOfToday

Example: Return difference
between datetime values. The
result is a calendarDuration
value representing elapsed time
in calendar units of variable
length.

d1 = datetime("2022-01-01")
d2 = datetime("now")
elapsedTime = between(d1,d2)

Return date of last occurrence
of weekday in month.

lweekdate Use the dateshift and
datetime functions.

Example: Return last Tuesday
of October 2021 as datetime
value.

october = datetime(2021,10,1);
endOfOctober = dateshift(october,"end","month");
lastTuesday = dateshift(endOfOctober,"dayofweek","Tuesday","previous")

Convert dates and times to
Excel® serial date numbers.

m2xdate Use the exceltime function.

Example: Return current date
as Excel serial date number.

d = datetime("today")
excelNum = exceltime(d)

Return number of whole months
between dates.

months Use the between function with
datetime values as inputs.

Example: Return number of
months between January 1,
2021, and current date.

d1 = datetime("2021-01-01")
d2 = datetime("today")
numMonths = between(d1,d2,"months")

7 Dates and Time

7-60

Operation Discouraged Function Recommended Replacement
Return current time. now Use datetime or

datetime("now").

Example: Return current time
as datetime value.

d = datetime
% or
d = datetime("now")

Return date of specific
occurrence of weekday in
month.

nweekdate Use the dateshift and
datetime functions.

Example: Return first Tuesday
of October 2021 as datetime
value.

october = datetime(2021,10,1);
firstTuesday = dateshift(october,"dayofweek","Tuesday",1)

Return current date. today Use datetime("today").

Example: Return current date
as datetime value.

d = datetime("today")

Return weeks in year (as
numbers).

weeknum Use the week function with
datetime values as inputs.

Example: Return week of year
for current date.

d = datetime("today")
weekNumber = week(d,"weekofyear")

Convert Excel serial date
numbers to MATLAB dates and
times.

x2mdate Use the datetime with
dateType as "excel".

Example: Convert Excel serial
date number to datetime
value.

excelNum = 44481
dt = datetime(excelNum,"ConvertFrom","excel")

Discouraged Syntaxes for Date and Time Components
There are date and time functions in MATLAB that return components of input dates and times. The
components of points in time are years, quarters, months, days, hours, minutes, and seconds. For
example, June 28, 2022, 12:34:56 p.m. has a year component of 2022 and a day component of 28.
Though not shown, it also has a quarter component of 2 because it occurs during the second quarter
of 2022.

 Replace Discouraged Instances of Serial Date Numbers and Date Strings

7-61

The functions that return date and time components are year, quarter, month, and so on. The
datevec, ymd, hms, and timeofday functions also return components as numeric vectors or
matrices. All of these functions support datetime arrays as inputs.

Many of these functions also support serial date numbers and date strings as inputs. However, the
syntaxes that support these inputs are not recommended. Instead, use datetime arrays as inputs.
The table shows discouraged syntaxes and recommended syntaxes for these functions.

There are no plans to remove support for serial date numbers and date strings from these functions.

Date and Time Component
Function

Discouraged Syntax Recommended Syntax

datevec dateVector = datevec(738700.52426)
dateVector = datevec("2022-06-28 12:34:56")

d = datetime("2022-06-28 12:34:56")
dateVector = datevec(d)

day dayNum = day(738700.52426)
dayNum = day("2022-06-28 12:34:56")

d = datetime("2022-06-28 12:34:56")
dayNum = day(d)
% or
dayNum = d.Day

hour hourNum = hour(738700.52426)
hourNum = hour("2022-06-28 12:34:56")

d = datetime("2022-06-28 12:34:56")
hourNum = hour(d)
% or
hourNum = d.Hour

minute minuteNum = minute(738700.52426)
minuteNum = minute("2022-06-28 12:34:56")

d = datetime("2022-06-28 12:34:56")
minuteNum = minute(d)
% or
minuteNum = d.Minute

month monthNum = month(738700.52426)
monthNum = month("2022-06-28 12:34:56")

d = datetime("2022-06-28 12:34:56")
monthNum = month(d)
% or
monthNum = d.Month

quarter quarterNum = quarter(738700.52426)
quarterNum = quarter("2022-06-28 12:34:56")

d = datetime("2022-06-28 12:34:56")
quarterNum = quarter(d)

second secondNum = second(738700.52426)
secondNum = second("2022-06-28 12:34:56")

d = datetime("2022-06-28 12:34:56")
secondNum = second(d)
% or
secondNum = d.Second

year yearNum = year(738700.52426)
yearNum = year("2022-06-28 12:34:56")

d = datetime("2022-06-28 12:34:56")
yearNum = year(d)
% or
yearNum = d.Year

Guidelines for Updating Your Own Functions
If you write code for other MATLAB users, then it is to your advantage to update your functions to
accept datetime arrays while maintaining backward compatibility with serial date numbers and date
strings. Adoption of datetime arrays makes your code consistent with MathWorks products.

• In existing code, accept datetime arrays as input arguments. If an input argument can be an
array of serial date numbers or date strings, then update your code so that the argument can also
be a datetime array.

If your code is already based on serial date numbers or date strings, then a simple and quick
method to accept datetime inputs is to convert them as the first step in the code. To convert

7 Dates and Time

7-62

datetime arrays to serial date numbers, use the convertTo function. To convert datetime
arrays to date strings, use the string or char function.

For example, if your function myFunc accepts serial date numbers, update it to accept a
datetime array too. Leave the rest of your code unaltered.

function y = myFunc(d)
 if (isdatetime(d))
 d = convertTo(d,"datenum")
 <line 1 of original code>
 <line 2 of original code>
 ...

• In general, do not change the output type. Even if your existing code returns serial date numbers
or date strings, it is a best practice to maintain the expected output type when other users depend
on your code.

• In the long term, consider rewriting your existing code to perform time-based calculations in
terms of datetime arrays. If you simply convert datetime inputs to serial date numbers or date
strings, then you lose information in their properties, such as time zones.

• If you rewrite your code and it is code that accepted date strings as inputs, then you might need to
consider backward compatibility. To preserve backward compatibility, you can interpret date
strings in the same way that the datenum function interprets them.

To convert a date string to a datetime value in a backward-compatible way, use the
matlab.datetime.compatibility.convertDatenum function. This function is designed to be
a compatibility layer for your functions.

d = "01/02/22";
d = matlab.datetime.compatibility.convertDatenum(d)

• In new code, use datetime arrays as the primary data type for representing points in time. Use
duration arrays as the primary type for representing elapsed times.

If you must also accept serial date numbers and date strings as input arguments, then use the
datetime function to convert them.

See Also

Related Examples
• “Represent Dates and Times in MATLAB” on page 7-2
• “Convert Between Text and datetime or duration Values” on page 7-48
• “Compare Dates and Time” on page 7-33
• “Extract or Assign Date and Time Components of Datetime Array” on page 7-23
• “Date and Time Arithmetic” on page 7-28
• “Generate Sequence of Dates and Time” on page 7-14
• “Plot Dates and Times” on page 7-36

 Replace Discouraged Instances of Serial Date Numbers and Date Strings

7-63

Carryover in Date Vectors and Strings

Note The datenum and datestr functions are not recommended. Instead, use datetime values to
represent points in time rather than serial date numbers or date vectors. Unlike these numeric
representations, datetime values display in a human-readable format, and have properties to
account for time zones and leap seconds. For more information on updating your code to use
datetime values, see “Replace Discouraged Instances of Serial Date Numbers and Date Strings” on
page 7-57.

If an element falls outside the conventional range, MATLAB adjusts both that date vector element and
the previous element. For example, if the minutes element is 70, MATLAB adjusts the hours element
by 1 and sets the minutes element to 10. If the minutes element is -15, then MATLAB decreases the
hours element by 1 and sets the minutes element to 45.

In this example, the month element has a value of 22. MATLAB increments the year value to 2022 and
sets the month to October. Both the datetime and datestr functions adjust for the month element
that is outside the conventional range. However, datestr is not recommended.

d1 = datetime([2021 22 03 00 00 00])

d1 =

 datetime

 03-Oct-2022

d2 = datestr([2021 22 03 00 00 00])

d2 =

 '03-Oct-2022'

The functions account for negative values the same way in any component that is not a month
component. For example, these calls both take inputs with month specified as 7 (July) and the number
of days specified as -5. They both subtract five from the last day of June, which is June 30, to yield a
return date of June 25, 2022.

d1 = datetime([2022 07 -05 00 00 00])

d1 =

 datetime

 25-Jun-2022

d2 = datestr([2022 07 -05 00 00 00])

d2 =

 '25-Jun-2022'

The exception to this rule occurs when the month component is a number less than 1. In that case,
datetime and datestr behave differently. The datetime function subtracts the month component
from the beginning of the year component, so that the output date occurs during the previous year.

7 Dates and Time

7-64

For example, this call with inputs for the year 2022 returns a date of July 3, 2021 because the month
component is -5.

d1 = datetime([2022 -5 3 0 0 0])

d1 =

 datetime

 03-Jul-2021

However, datestr instead sets the month component of the output to January 2022. When the input
has a month component that is less than 1, datestr treats it as 1.

d2 = datestr([2022 -5 3 0 0 0])

d2 =

 '03-Jan-2022'

The carrying forward of values also applies when you use the datenum function to convert text
representing dates and times. For example, datenum interprets October 3, 2022 and September 33,
2022 as the same date, and returns the same serial date number. But again, datenum is not
recommended.

d = datenum("2022-10-03")

d =

 738797

d = datenum("2022-09-33")

d =

 738797

However, the datetime function does not interpret the text representing September 33, 2022. It
does not attempt to carry over values in text that specifies dates and times outside convention
ranges. Instead the result is an error.

d = datetime("2022-10-03")

d =

 datetime

 03-Oct-2022

d = datetime("2022-09-33")

Error using datetime
Could not recognize the date/time format of '2022-09-33'. You can specify a format using the 'InputFormat'
parameter. If the date/time text contains day, month, or time zone names in a language foreign to the
'en_US' locale, those might not be recognized. You can specify a different locale using the 'Locale'
parameter.

 Carryover in Date Vectors and Strings

7-65

Converting Date Vector Returns Unexpected Output

Note The datenum and datestr functions are not recommended. Instead, use datetime values to
represent points in time rather than serial date numbers or date vectors. Unlike these numeric
representations, datetime values display in a human-readable format, often avoiding the need for
conversion to text.

If you need to convert a date vector to text, the best practice is to first convert it to a datetime
value, and then to convert the datetime value to text by using the string or char functions. For
more information on updating your code to use datetime values, see “Replace Discouraged
Instances of Serial Date Numbers and Date Strings” on page 7-57.

While you can convert date vectors to text directly by using the datestr function, you might get
unexpected results, as described in this section.

Because a date vector is a 1-by-6 row vector of numbers, the datestr function might interpret input
date vectors as vectors of serial date numbers and return unexpected output. Or it might interpret
vectors of serial date numbers as date vectors. This ambiguity exists because datestr has a
heuristic rule for interpreting a 1-by-6 row vector as either a date vector or a vector of six serial date
numbers. The same ambiguity applies to inputs that are m-by-6 numeric matrices, where each row
can be interpreted either as a date vector or as six serial date numbers.

For example, consider a date vector that includes the year 3000. This year is outside the range of
years that datestr interprets as elements of date vectors. Therefore, the input is interpreted as a 1-
by-6 vector of serial date numbers.

d = datestr([3000 11 05 10 32 56])

d =

 6×11 char array

 '18-Mar-0008'
 '11-Jan-0000'
 '05-Jan-0000'
 '10-Jan-0000'
 '01-Feb-0000'
 '25-Feb-0000'

Here datestr interprets 3000 as a serial date number, and converts it to the text '18-Mar-0008'
(the date that is 3000 days after 0-Jan-0000). Also, datestr converts the next five elements as
though they also were serial date numbers.

There are two methods for converting such a date vector to text.

• The recommended method is to convert the date vector to a datetime value. Then convert it
using the char, cellstr, or string function. The datetime function always treats 1-by-6
numeric vectors as date vectors.

dt = datetime([3000 11 05 10 32 56]);
ds = string(dt)

7 Dates and Time

7-66

dt =

 "05-Nov-3000 10:32:56"
• As an alternative, convert it to a serial date number using the datenum function. Then, convert

the date number to a character vector using datestr.

dn = datenum([3000 11 05 10 32 56]);
ds = datestr(dn)

ds =

 '05-Nov-3000 10:32:56'

When converting dates to text, datestr interprets input as either date vectors or serial date
numbers using a heuristic rule. Consider an m-by-6 matrix. The datestr function interprets the
matrix as m date vectors when:

• The first five columns contain integers.
• The absolute value of the sum of each row is in the range 1500–2500.

If either condition is false, for any row, then datestr interprets the m-by-6 matrix as an m-by-6 matrix
of serial date numbers.

Usually, dates with years in the range 1700–2300 are interpreted as date vectors. However, datestr
might interpret rows with month, day, hour, minute, or second values outside their normal ranges as
serial date numbers. For example, datestr correctly interprets the following date vector for the year
2020:

d = datestr([2020 06 21 10 51 00])

d =

 '21-Jun-2020 10:51:00'

But given a day value outside the typical range (1–31), datestr returns a date for each element of
the vector.

d = datestr([2020 06 2110 10 51 00])

d =

 6×11 char array

 '12-Jul-0005'
 '06-Jan-0000'
 '10-Oct-0005'
 '10-Jan-0000'
 '20-Feb-0000'
 '00-Jan-0000'

Again, the datetime function always treats numeric inputs as date vectors. In this case, it calculates
an appropriate date, interpreting 2110 as the 2110th day since the beginning of June 2020.

d = datetime([2020 06 2110 10 51 00])

d =

 Converting Date Vector Returns Unexpected Output

7-67

 datetime

 11-Mar-2026 10:51:00

• When you have a matrix of date vectors that datestr might interpret incorrectly as serial date
numbers, convert the matrix by using either the datetime or datenum functions. Then convert
those values to text.

• When you have a matrix of serial date numbers that datestr might interpret as date vectors, first
convert the matrix to a column vector. Then, use datestr to convert the column vector.

See Also
datetime | datevec | char | string

More About
• “Represent Dates and Times in MATLAB” on page 7-2
• “Convert Between Text and datetime or duration Values” on page 7-48

7 Dates and Time

7-68

Categorical Arrays

• “Create Categorical Arrays” on page 8-2
• “Convert Text in Table Variables to Categorical” on page 8-6
• “Plot Categorical Data” on page 8-10
• “Compare Categorical Array Elements” on page 8-16
• “Combine Categorical Arrays” on page 8-19
• “Combine Categorical Arrays Using Multiplication” on page 8-22
• “Access Data Using Categorical Arrays” on page 8-24
• “Work with Protected Categorical Arrays” on page 8-30
• “Advantages of Using Categorical Arrays” on page 8-34
• “Ordinal Categorical Arrays” on page 8-36
• “Core Functions Supporting Categorical Arrays” on page 8-39

8

Create Categorical Arrays

This example shows how to create a categorical array. categorical is a data type for storing data
with values from a finite set of discrete categories. These categories can have a natural order, but it is
not required. A categorical array provides efficient storage and convenient manipulation of data,
while also maintaining meaningful names for the values. You can use categorical arrays in a table to
define groups of rows.

By default, categorical arrays contain categories that have no mathematical ordering. For example,
the discrete set of pet categories ["dog","cat","bird"] has no meaningful mathematical
ordering, so MATLAB® uses the alphabetical ordering ["bird","cat","dog"]. Ordinal categorical
arrays contain categories that have a meaningful mathematical ordering. For example, the discrete
set of size categories ["small","medium","large"] has the mathematical ordering small <
medium < large.

When you create categorical arrays from string arrays (or cell arrays of character vectors), leading
and trailing spaces are removed. For example, if you specify the text [" cat","dog"] as categories,
then when you convert them to categories they become ["cat","dog"].

Create Categorical Array from String Array

You can use the categorical function to create a categorical array from a numeric array, logical
array, string array, cell array of character vectors, or an existing categorical array.

Create a 1-by-11 string array containing state names from New England.

state = ["MA","ME","CT","VT","ME","NH","VT","MA","NH","CT","RI"]

state = 1x11 string
 Columns 1 through 9

 "MA" "ME" "CT" "VT" "ME" "NH" "VT" "MA" "NH"

 Columns 10 through 11

 "CT" "RI"

Convert the string array, state, to a categorical array that has no mathematical order.

state = categorical(state)

state = 1x11 categorical
 Columns 1 through 9

 MA ME CT VT ME NH VT MA NH

 Columns 10 through 11

 CT RI

List the discrete categories in the variable state. There are only six unique states listed in state,
which means there are six categories. The categories are listed in alphabetical order.

categories(state)

8 Categorical Arrays

8-2

ans = 6x1 cell
 {'CT'}
 {'MA'}
 {'ME'}
 {'NH'}
 {'RI'}
 {'VT'}

Add New and Missing Elements

Add elements to the original string array. One of the elements is the missing string, displayed as
<missing>. Just as NaN can indicate missing values in a numeric array, <missing> indicates missing
values in a string array.

state = ["MA","ME","CT","VT","ME","NH","VT","MA","NH","CT","RI"];
state = [string(missing) state];
state(13) = "ME"

state = 1x13 string
 Columns 1 through 9

 <missing> "MA" "ME" "CT" "VT" "ME" "NH" "VT" "MA"

 Columns 10 through 13

 "NH" "CT" "RI" "ME"

Convert the string array to a categorical array. The missing string becomes an undefined category,
displayed as <undefined>. It indicates an element of the categorical array that does not belong to
any category.

state = categorical(state)

state = 1x13 categorical
 Columns 1 through 8

 <undefined> MA ME CT VT ME NH VT

 Columns 9 through 13

 MA NH CT RI ME

Create Ordinal Categorical Array from String Array

Create a 1-by-8 string array containing the sizes of eight objects.

AllSizes = ["medium","large","small","small","medium",...
 "large","medium","small"];

The string array, AllSizes, has three distinct values: "large", "medium", and "small". When
using a string array, there is no convenient way to indicate that small < medium < large.

Convert the string array, AllSizes, to an ordinal categorical array. Use valueset to specify the
values small, medium, and large, which define the categories. For an ordinal categorical array, the
first category specified is the smallest and the last category is the largest.

 Create Categorical Arrays

8-3

valueset = ["small","medium","large"];
sizeOrd = categorical(AllSizes,valueset,'Ordinal',true)

sizeOrd = 1x8 categorical
 Columns 1 through 6

 medium large small small medium large

 Columns 7 through 8

 medium small

The order of the values in the categorical array, sizeOrd, remains unchanged.

List the discrete categories in the categorical variable, sizeOrd.

categories(sizeOrd)

ans = 3x1 cell
 {'small' }
 {'medium'}
 {'large' }

The categories are listed in the specified order to match the mathematical ordering small <
medium < large.

Create Ordinal Categorical Array by Binning Numeric Data

Create a vector of 100 random numbers between zero and 50.

x = rand(100,1)*50;

Use the discretize function to create a categorical array by binning the values of x. Put all values
between zero and 15 in the first bin, all the values between 15 and 35 in the second bin, and all the
values between 35 and 50 in the third bin. Each bin includes the left endpoint, but does not include
the right endpoint.

catnames = ["small","medium","large"];
binnedData = discretize(x,[0 15 35 50],'categorical',catnames);

binnedData is a 100-by-1 ordinal categorical array with three categories, such that small <
medium < large.

Use the summary function to print the number of elements in each category.

summary(binnedData)

 small 30
 medium 35
 large 35

You can make various kinds of charts of the binned data. For example, make a pie chart of
binnedData.

pie(binnedData)

8 Categorical Arrays

8-4

See Also
categorical | categories | summary | discretize

Related Examples
• “Convert Text in Table Variables to Categorical” on page 8-6
• “Access Data Using Categorical Arrays” on page 8-24
• “Compare Categorical Array Elements” on page 8-16

More About
• “Advantages of Using Categorical Arrays” on page 8-34
• “Ordinal Categorical Arrays” on page 8-36

 Create Categorical Arrays

8-5

Convert Text in Table Variables to Categorical

This example shows how to convert variables in a table from text to categorical arrays. The same
workflow applies for table variables that are string arrays and variables that are cell arrays of
character vectors.

Load Sample Data and Create a Table

Load sample data gathered from 100 patients.

load patients

Store the patient data from Age, Height, Weight, SelfAssessedHealthStatus, and Location in
a table. Use the unique identifiers in the variable LastName as row names. To convert variables that
are cell arrays of character vectors to string arrays, use the convertvars function.

T = table(Age,Height,Weight,Smoker,...
 SelfAssessedHealthStatus,Location,...
 'RowNames',LastName);
T = convertvars(T,@iscellstr,"string")

T=100×6 table
 Age Height Weight Smoker SelfAssessedHealthStatus Location
 ___ ______ ______ ______ ________________________ ___________________________

 Smith 38 71 176 true "Excellent" "County General Hospital"
 Johnson 43 69 163 false "Fair" "VA Hospital"
 Williams 38 64 131 false "Good" "St. Mary's Medical Center"
 Jones 40 67 133 false "Fair" "VA Hospital"
 Brown 49 64 119 false "Good" "County General Hospital"
 Davis 46 68 142 false "Good" "St. Mary's Medical Center"
 Miller 33 64 142 true "Good" "VA Hospital"
 Wilson 40 68 180 false "Good" "VA Hospital"
 Moore 28 68 183 false "Excellent" "St. Mary's Medical Center"
 Taylor 31 66 132 false "Excellent" "County General Hospital"
 Anderson 45 68 128 false "Excellent" "County General Hospital"
 Thomas 42 66 137 false "Poor" "St. Mary's Medical Center"
 Jackson 25 71 174 false "Poor" "VA Hospital"
 White 39 72 202 true "Excellent" "VA Hospital"
 Harris 36 65 129 false "Good" "St. Mary's Medical Center"
 Martin 48 71 181 true "Good" "VA Hospital"
 ⋮

Convert Table Variables from Text to Categorical Arrays

The variables, Location and SelfAssessedHealthStatus, contain discrete sets of unique values.
When a variable contains a set of values that can be thought of as categories, such as locations or
statuses, consider converting it to a categorical variable.

Convert Location to a categorical array.

T.Location = categorical(T.Location);

The variable, SelfAssessedHealthStatus, contains four unique values: Excellent, Fair, Good,
and Poor.

8 Categorical Arrays

8-6

Convert SelfAssessedHealthStatus to an ordinal categorical array, such that the categories
have the mathematical ordering Poor < Fair < Good < Excellent.

T.SelfAssessedHealthStatus = categorical(T.SelfAssessedHealthStatus,...
 {'Poor','Fair','Good','Excellent'},'Ordinal',true);

Print a Summary

View the data type, description, units, and other descriptive statistics for each variable by using
summary to summarize the table.

format compact

summary(T)

Variables:
 Age: 100x1 double
 Values:
 Min 25
 Median 39
 Max 50
 Height: 100x1 double
 Values:
 Min 60
 Median 67
 Max 72
 Weight: 100x1 double
 Values:
 Min 111
 Median 142.5
 Max 202
 Smoker: 100x1 logical
 Values:
 True 34
 False 66
 SelfAssessedHealthStatus: 100x1 ordinal categorical
 Values:
 Poor 11
 Fair 15
 Good 40
 Excellent 34
 Location: 100x1 categorical
 Values:
 County General Hospital 39
 St. Mary s Medical Center 24
 VA Hospital 37

The table variables SelfAssessedHealthStatus and Location are categorical arrays. The
summary contains the counts of the number of elements in each category. For example, the summary
indicates that 11 of the 100 patients assess their own health as poor and 34 assess their health as
excellent.

Select Data Based on Categories

Create a subtable, T1, containing the age, height, and weight of all patients who were observed at
County General Hospital and assesses their own health as excellent. You can easily create a logical
vector based on the values in the categorical arrays Location and
SelfAssessedHealthStatus.

 Convert Text in Table Variables to Categorical

8-7

rows = T.Location=='County General Hospital' & T.SelfAssessedHealthStatus=='Excellent';

rows is a 100-by-1 logical vector with logical true (1) for the table rows where the location is County
General Hospital and the patients assessed their health as excellent.

Define the subset of variables.

vars = ["Age","Height","Weight"];

Use parentheses to create the subtable, T1.

T1 = T(rows,vars)

T1=13×3 table
 Age Height Weight
 ___ ______ ______
 Smith 38 71 176
 Taylor 31 66 132
 Anderson 45 68 128
 King 30 67 186
 Edwards 42 70 158
 Rivera 29 63 130
 Richardson 30 67 141
 Torres 45 70 137
 Peterson 32 60 136
 Ramirez 48 64 137
 Barnes 42 66 194
 Butler 38 68 184
 Bryant 48 66 134

Since ordinal categorical arrays have a mathematical ordering for their categories, you can
perform elementwise comparisons of them with relational operations, such as greater than and less
than.

Create a subtable, T2, of the age, height, and weight of all patients who assessed their health status
as poor or fair.

First, define the subset of rows to include in table T2.

rows = T.SelfAssessedHealthStatus<='Fair';

Then, define the subset of variables to include in table T2.

vars = ["Age","Height","Weight"];

Use parentheses to create the subtable T2.

T2 = T(rows,vars)

T2=26×3 table
 Age Height Weight
 ___ ______ ______
 Johnson 43 69 163
 Jones 40 67 133
 Thomas 42 66 137
 Jackson 25 71 174
 Garcia 27 69 131

8 Categorical Arrays

8-8

 Rodriguez 39 64 117
 Lewis 41 62 137
 Lee 44 66 146
 Hall 25 70 189
 Hernandez 36 68 166
 Lopez 40 66 137
 Gonzalez 35 66 118
 Mitchell 39 71 164
 Campbell 37 65 135
 Parker 30 68 182
 Stewart 49 68 170
 ⋮

See Also

Related Examples
• “Create Tables and Assign Data to Them” on page 9-2
• “Create Categorical Arrays” on page 8-2
• “Access Data in Tables” on page 9-32
• “Access Data Using Categorical Arrays” on page 8-24

More About
• “Advantages of Using Categorical Arrays” on page 8-34
• “Ordinal Categorical Arrays” on page 8-36

 Convert Text in Table Variables to Categorical

8-9

Plot Categorical Data

This example shows how to plot data from a categorical array.

Load Sample Data

Load sample data gathered from 100 patients. Display the data types and sizes of the arrays from the
patients MAT-file.

load patients
whos

 Name Size Bytes Class Attributes

 Age 100x1 800 double
 Diastolic 100x1 800 double
 Gender 100x1 11412 cell
 Height 100x1 800 double
 LastName 100x1 11616 cell
 Location 100x1 14208 cell
 SelfAssessedHealthStatus 100x1 11540 cell
 Smoker 100x1 100 logical
 Systolic 100x1 800 double
 Weight 100x1 800 double

Create Categorical Arrays

The workspace variable, Location, lists three unique medical facilities where patients were
observed.

To access and compare data more easily, convert Location to a categorical array.

Location = categorical(Location);

Summarize the categorical array. The summary displays the number of times each category
appears in Location.

summary(Location)

 County General Hospital 39
 St. Mary's Medical Center 24
 VA Hospital 37

39 patients were observed at County General Hospital, 24 at St. Mary's Medical Center, and 37 at the
VA Hospital.

The workspace variable, SelfAssessedHealthStatus, contains four unique values, Excellent,
Fair, Good, and Poor.

Convert SelfAssessedHealthStatus to an ordinal categorical array, such that the categories
have the mathematical ordering Poor < Fair < Good < Excellent.

SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus,...
 ["Poor","Fair","Good","Excellent"],"Ordinal",true);

Summarize the categorical array, SelfAssessedHealthStatus.

8 Categorical Arrays

8-10

summary(SelfAssessedHealthStatus)

 Poor 11
 Fair 15
 Good 40
 Excellent 34

Plot Histogram

Create a histogram bar plot directly from SelfAssessedHealthStatus. This categorical array
is an ordinal categorical array. The categories have the ordering Poor < Fair < Good <
Excellent, which determines the order of the categories along the x-axis of the plot. The
histogram function plots the category counts for each of the four categories.

figure
histogram(SelfAssessedHealthStatus)
title("Self Assessed Health Status From 100 Patients")

Create a histogram of the hospital location for only the patients who assessed their health as Fair or
Poor.

figure
histogram(Location(SelfAssessedHealthStatus <= "Fair"))
title("Location of Patients in Fair or Poor Health")

 Plot Categorical Data

8-11

Create Pie Chart

Create a pie chart directly from a categorical array.

figure
pie(SelfAssessedHealthStatus);
title("Self Assessed Health Status From 100 Patients")

8 Categorical Arrays

8-12

The function pie accepts the categorical array, SelfAssessedHealthStatus, and plots a pie
chart of the four categories.

Create Pareto Chart

Create a Pareto chart from the category counts for each of the four categories of
SelfAssessedHealthStatus.

figure
A = countcats(SelfAssessedHealthStatus);
C = categories(SelfAssessedHealthStatus);
pareto(A,C);
title("Self Assessed Health Status From 100 Patients")

 Plot Categorical Data

8-13

The first input argument to pareto must be a vector. If a categorical array is a matrix or
multidimensional array, reshape it into a vector before calling countcats and pareto.

Create Scatter Plot

Determine if self-assessed health is related to blood pressure readings. Create a scatter plot of
Diastolic and Systolic readings for two groups of patients.

First, create x- and y-arrays of blood pressure readings for two groups of patients. The first group of
patients consists of those who assess their self-health as either Poor or Fair. The second group
consists of those who assess their self-health as Good or Excellent.

You can use the categorical array, SelfAssessedHealthStatus, to create logical indices. Use
the logical indices to extract values from Diastolic and Systolic into different arrays.

X1 = Diastolic(SelfAssessedHealthStatus <= "Fair");
Y1 = Systolic(SelfAssessedHealthStatus <= "Fair");

X2 = Diastolic(SelfAssessedHealthStatus >= "Good");
Y2 = Systolic(SelfAssessedHealthStatus >= "Good");

X1 and Y1 are 26-by-1 numeric arrays containing data for the patients with Poor or Fair health.

X2 and Y2 are 74-by-1 numeric arrays containing data for the patients with Good or Excellent
health.

8 Categorical Arrays

8-14

Create a scatter plot of blood pressure readings for the two groups of patients. The plot shows no
suggestive differences between the two groups, possibly indicating that blood pressure does not
affect how these patients assessed their own health.

figure
h1 = scatter(X1,Y1,"o");
hold on
h2 = scatter(X2,Y2,"x");

title("Blood Pressure for Groups of Patients Assessing Self Health");
xlabel("Diastolic (mm Hg)")
ylabel("Systolic (mm Hg)")
legend("Poor or Fair","Good or Excellent")

See Also
categorical | summary | countcats | histogram | pie | bar | rose | scatter

Related Examples
• “Access Data Using Categorical Arrays” on page 8-24

 Plot Categorical Data

8-15

Compare Categorical Array Elements

This example shows how to use relational operations with a categorical array.

Create Categorical Array from Cell Array of Character Vectors

Create a 2-by-4 cell array of character vectors.

C = {'blue' 'red' 'green' 'blue';...
 'blue' 'green' 'green' 'blue'};

colors = categorical(C)

colors = 2x4 categorical
 blue red green blue
 blue green green blue

colors is a 2-by-4 categorical array.

List the categories of the categorical array.

categories(colors)

ans = 3x1 cell
 {'blue' }
 {'green'}
 {'red' }

Determine If Elements Are Equal

Use the relational operator, eq (==), to compare the first and second rows of colors.

colors(1,:) == colors(2,:)

ans = 1x4 logical array

 1 0 1 1

Only the values in the second column differ between the rows.

Compare Entire Array to Character Vector

Compare the entire categorical array, colors, to the character vector 'blue' to find the location of
all blue values.

colors == 'blue'

ans = 2x4 logical array

 1 0 0 1
 1 0 0 1

There are four blue entries in colors, one in each corner of the array.

8 Categorical Arrays

8-16

Convert to an Ordinal Categorical Array

Add a mathematical ordering to the categories in colors. Specify the category order that represents
the ordering of color spectrum, red < green < blue.

colors = categorical(colors,{'red','green' 'blue'},'Ordinal',true)

colors = 2x4 categorical
 blue red green blue
 blue green green blue

The elements in the categorical array remain the same.

List the discrete categories in colors.

categories(colors)

ans = 3x1 cell
 {'red' }
 {'green'}
 {'blue' }

Compare Elements Based on Order

Determine if elements in the first column of colors are greater than the elements in the second
column.

colors(:,1) > colors(:,2)

ans = 2x1 logical array

 1
 1

Both values in the first column, blue, are greater than the corresponding values in the second
column, red and green.

Find all the elements in colors that are less than 'blue'.

colors < 'blue'

ans = 2x4 logical array

 0 1 1 0
 0 1 1 0

The function lt (<) indicates the location of all green and red values with 1.

See Also
categorical | categories

 Compare Categorical Array Elements

8-17

Related Examples
• “Access Data Using Categorical Arrays” on page 8-24

More About
• “Relational Operations”
• “Advantages of Using Categorical Arrays” on page 8-34
• “Ordinal Categorical Arrays” on page 8-36

8 Categorical Arrays

8-18

Combine Categorical Arrays

This example shows how to combine two categorical arrays.

Create Categorical Arrays

Create a categorical array, A, containing the preferred lunchtime beverage of 25 students in
classroom A.

rng('default')
A = randi(3,[25,1]);
A = categorical(A,1:3,{'milk' 'water' 'juice'});

A is a 25-by-1 categorical array with three distinct categories: milk, water, and juice.

Summarize the categorical array, A.

summary(A)

 milk 6
 water 5
 juice 14

Six students in classroom A prefer milk, five prefer water, and fourteen prefer juice.

Create another categorical array, B, containing the preferences of 28 students in classroom B.

B = randi(3,[28,1]);
B = categorical(B,1:3,{'milk' 'water' 'juice'});

B is a 28-by-1 categorical array containing the same categories as A.

Summarize the categorical array, B.

summary(B)

 milk 9
 water 8
 juice 11

Nine students in classroom B prefer milk, eight prefer water, and eleven prefer juice.

Concatenate Categorical Arrays

Concatenate the data from classrooms A and B into a single categorical array, Group1.

Group1 = [A;B];

Summarize the categorical array, Group1.

summary(Group1)

 milk 15
 water 13
 juice 25

Group1 is a 53-by-1 categorical array with three categories: milk, water, and juice.

 Combine Categorical Arrays

8-19

Create Categorical Array with Different Categories

Create a categorical array, Group2, containing data from 50 students who were given the additional
beverage option of soda.

Group2 = randi(4,[50,1]);
Group2 = categorical(Group2,1:4,{'juice' 'milk' 'soda' 'water'});

Summarize the categorical array, Group2.

summary(Group2)

 juice 12
 milk 14
 soda 10
 water 14

Group2 is a 50-by-1 categorical array with four categories: juice, milk, soda, and water.

Concatenate Arrays with Different Categories

Concatenate the data from Group1 and Group2.

students = [Group1;Group2];

Summarize the resulting categorical array, students.

summary(students)

 milk 29
 water 27
 juice 37
 soda 10

Concatenation appends the categories exclusive to the second input, soda, to the end of the list of
categories from the first input, milk, water, juice, soda.

Use reordercats to change the order of the categories in the categorical array, students.

students = reordercats(students,{'juice','milk','water','soda'});

categories(students)

ans = 4x1 cell
 {'juice'}
 {'milk' }
 {'water'}
 {'soda' }

Union of Categorical Arrays

Use the function union to find the unique responses from Group1 and Group2.

C = union(Group1,Group2)

C = 4x1 categorical
 milk
 water

8 Categorical Arrays

8-20

 juice
 soda

union returns the combined values from Group1 and Group2 with no repetitions. In this case, C is
equivalent to the categories of the concatenation, students.

All of the categorical arrays in this example were nonordinal. To combine ordinal categorical arrays,
they must have the same sets of categories including their order.

See Also
categorical | categories | summary | union | cat | horzcat | vertcat

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Combine Categorical Arrays Using Multiplication” on page 8-22
• “Convert Text in Table Variables to Categorical” on page 8-6
• “Access Data Using Categorical Arrays” on page 8-24

More About
• “Ordinal Categorical Arrays” on page 8-36

 Combine Categorical Arrays

8-21

Combine Categorical Arrays Using Multiplication

This example shows how to use the times function to combine categorical arrays, including ordinal
categorical arrays and arrays with undefined elements. When you call times on two categorical
arrays, the output is a categorical array with new categories. The set of new categories is the set of
all the ordered pairs created from the categories of the input arrays, or the Cartesian product. times
forms each element of the output array as the ordered pair of the corresponding elements of the
input arrays. The output array has the same size as the input arrays.

Combine Two Categorical Arrays

Combine two categorical arrays using times. The input arrays must have the same number of
elements, but can have different numbers of categories.

A = categorical({'blue','red','green'});
B = categorical({'+','-','+'});
C = A.*B

C = 1x3 categorical
 blue + red - green +

Cartesian Product of Categories

Show the categories of C. The categories are all the ordered pairs that can be created from the
categories of A and B, also known as the Cartesian product.

categories(C)

ans = 6x1 cell
 {'blue +' }
 {'blue -' }
 {'green +'}
 {'green -'}
 {'red +' }
 {'red -' }

As a consequence, A.*B does not equal B.*A.

D = B.*A

D = 1x3 categorical
 + blue - red + green

categories(D)

ans = 6x1 cell
 {'+ blue' }
 {'+ green'}
 {'+ red' }
 {'- blue' }
 {'- green'}
 {'- red' }

8 Categorical Arrays

8-22

Multiplication with Undefined Elements

Combine two categorical arrays. If either A or B have an undefined element, the corresponding
element of C is undefined.

A = categorical({'blue','red','green','black'});
B = categorical({'+','-','+','-'});
A = removecats(A,{'black'});
C = A.*B

C = 1x4 categorical
 blue + red - green + <undefined>

Cartesian Product of Ordinal Categorical Arrays

Combine two ordinal categorical arrays. C is an ordinal categorical array only if A and B are both
ordinal. The ordering of the categories of C follows from the orderings of the input categorical arrays.

A = categorical({'blue','red','green'},{'green','red','blue'},'Ordinal',true);
B = categorical({'+','-','+'},'Ordinal',true);
C = A.*B;
categories(C)

ans = 6x1 cell
 {'green +'}
 {'green -'}
 {'red +' }
 {'red -' }
 {'blue +' }
 {'blue -' }

See Also
categorical | categories | summary | times

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Combine Categorical Arrays” on page 8-19
• “Access Data Using Categorical Arrays” on page 8-24

More About
• “Ordinal Categorical Arrays” on page 8-36

 Combine Categorical Arrays Using Multiplication

8-23

Access Data Using Categorical Arrays
In this section...
“Select Data By Category” on page 8-24
“Common Ways to Access Data Using Categorical Arrays” on page 8-24

Select Data By Category
Selecting data based on its values is often useful. This type of data selection can involve creating a
logical vector based on values in one variable, and then using that logical vector to select a subset of
values in other variables. You can create a logical vector for selecting data by finding values in a
numeric array that fall within a certain range. Additionally, you can create the logical vector by
finding specific discrete values. When using categorical arrays, you can easily:

• Select elements from particular categories. For categorical arrays, use the logical operators
== or ~= to select data that is in, or not in, a particular category. To select data in a particular
group of categories, use the ismember function.

For ordinal categorical arrays, use inequalities >, >=, <, or <= to find data in categories above or
below a particular category.

• Delete data that is in a particular category. Use logical operators to include or exclude data
from particular categories.

• Find elements that are not in a defined category. Categorical arrays indicate which elements
do not belong to a defined category by <undefined>. Use the isundefined function to find
observations without a defined value.

Common Ways to Access Data Using Categorical Arrays

This example shows how to index and search using categorical arrays. You can access data using
categorical arrays stored within a table in a similar manner.

Load Sample Data

Load sample data gathered from 100 patients.

load patients
whos

 Name Size Bytes Class Attributes

 Age 100x1 800 double
 Diastolic 100x1 800 double
 Gender 100x1 11412 cell
 Height 100x1 800 double
 LastName 100x1 11616 cell
 Location 100x1 14208 cell
 SelfAssessedHealthStatus 100x1 11540 cell
 Smoker 100x1 100 logical
 Systolic 100x1 800 double
 Weight 100x1 800 double

8 Categorical Arrays

8-24

Create Categorical Arrays from Cell Arrays of Character Vectors

The cell arrays Location and SelfAssessedHealthStatus contain data that belong in categories.
Each cell array contains character vectors taken from a small set of unique values (indicating three
locations and four health statuses respectively). To convert Location and
SelfAssessedHealthStatus to categorical arrays, use the categorical function.

Location = categorical(Location);
SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus);

Search for Members of a Single Category

For categorical arrays, you can use the logical operators == and ~= to find the data that is in, or
not in, a particular category.

Determine if there are any patients observed at the location, Rampart General Hospital.

any(Location == "Rampart General Hospital")

ans = logical
 0

There are no patients observed at Rampart General Hospital.

Search for Members of a Group of Categories

You can use ismember to find data in a particular group of categories. Create a logical vector for the
patients observed at either County General Hospital or VA Hospital.

VA_CountyGenIndex = ...
 ismember(Location,{'County General Hospital','VA Hospital'});

VA_CountyGenIndex is a 100-by-1 logical array containing logical true (1) for each element in the
categorical array Location that is a member of the category County General Hospital or VA
Hospital. The output, VA_CountyGenIndex contains 76 nonzero elements.

Use the logical vector, VA_CountyGenIndex to select the LastName of the patients observed at
either County General Hospital or VA Hospital.

VA_CountyGenPatients = LastName(VA_CountyGenIndex);

VA_CountyGenPatients is a 76-by-1 cell array of character vectors.

Select Elements in a Particular Category to Plot

Use the summary function to print a summary containing the category names and the number of
elements in each category.

summary(Location)

 County General Hospital 39
 St. Mary's Medical Center 24
 VA Hospital 37

Location is a 100-by-1 categorical array with three categories. County General Hospital
occurs in 39 elements, St. Mary's Medical Center in 24 elements, and VA Hospital in 37
elements.

 Access Data Using Categorical Arrays

8-25

Use the summary function to print a summary of SelfAssessedHealthStatus.

summary(SelfAssessedHealthStatus)

 Excellent 34
 Fair 15
 Good 40
 Poor 11

SelfAssessedHealthStatus is a 100-by-1 categorical array with four categories.

Use logical operator == to access the ages of patients who assess their own health status as Good.
Then plot a histogram of this data.

figure()
histogram(Age(SelfAssessedHealthStatus == 'Good'))
title('Ages of Patients with Good Health Status')

histogram(Age(SelfAssessedHealthStatus == 'Good')) plots the age data for the 40
patients who reported Good as their health status.

Delete Data from a Particular Category

You can use logical operators to include or exclude data from particular categories. Delete all patients
observed at VA Hospital from the workspace variables, Age and Location.

Age = Age(Location ~= "VA Hospital");
Location = Location(Location ~= "VA Hospital");

8 Categorical Arrays

8-26

Now, Age is a 63-by-1 numeric array, and Location is a 63-by-1 categorical array.

List the categories of Location, as well as the number of elements in each category.

summary(Location)

 County General Hospital 39
 St. Mary's Medical Center 24
 VA Hospital 0

The patients observed at VA Hospital are deleted from Location, but VA Hospital is still a
category.

Use the removecats function to remove VA Hospital from the categories of Location.

Location = removecats(Location,"VA Hospital");

Verify that the category, VA Hospital, was removed.

categories(Location)

ans = 2x1 cell
 {'County General Hospital' }
 {'St. Mary's Medical Center'}

Location is a 63-by-1 categorical array that has two categories.

Delete Element

You can delete elements by indexing. For example, you can remove the first element of Location by
selecting the rest of the elements with Location(2:end). However, an easier way to delete
elements is to use [].

Location(1) = [];
summary(Location)

 County General Hospital 38
 St. Mary's Medical Center 24

Location is a 62-by-1 categorical array that has two categories. Deleting the first element has no
effect on other elements from the same category and does not delete the category itself.

Test for Undefined Elements

Remove the category County General Hospital from Location.

Location = removecats(Location,"County General Hospital");

Display the first eight elements of the categorical array, Location.

Location(1:8)

ans = 8x1 categorical
 St. Mary's Medical Center
 <undefined>
 St. Mary's Medical Center
 St. Mary's Medical Center
 <undefined>

 Access Data Using Categorical Arrays

8-27

 <undefined>
 St. Mary's Medical Center
 St. Mary's Medical Center

After removing the category, County General Hospital, elements that previously belonged to
that category no longer belong to any category defined for Location. The categorical elements
that do not belong to any category are undefined, and display <undefined> as their values.

Use the function isundefined to find elements of a categorical array that do not belong to any
category.

undefinedIndex = isundefined(Location);

undefinedIndex is a 62-by-1 categorical array containing logical true (1) for all undefined
elements in Location.

Set Undefined Elements

Use the summary function to print the number of undefined elements in Location.

summary(Location)

 St. Mary's Medical Center 24
 <undefined> 38

The first element of Location belongs to the category, St. Mary's Medical Center. Set the first
element to be an undefined value so that it no longer belongs to any category. You can create
undefined elements in a categorical array by assigning '', "", '<undefined>', string(nan),
or missing as elements. When you assign such values to elements of a categorical array, it
converts them to undefined values.

Location(1) = "";
summary(Location)

 St. Mary's Medical Center 23
 <undefined> 39

You can make selected elements undefined without removing a category or changing the categories
of other elements. Set undefined elements to indicate elements with values that are unknown.

Preallocate Categorical Arrays with Undefined Elements

You can use undefined elements to preallocate the size of a categorical array for better
performance. Create a categorical array that has elements with known locations only.

definedIndex = ~isundefined(Location);
newLocation = Location(definedIndex);
summary(newLocation)

 St. Mary's Medical Center 23

Expand the size of newLocation so that it is a 200-by-1 categorical array. Set the last new
element to be an undefined element. All of the other new elements are also assigned undefined
values. The 23 original elements keep the values that they had.

newLocation(200) = "";
summary(newLocation)

8 Categorical Arrays

8-28

 St. Mary's Medical Center 23
 <undefined> 177

newLocation has room for values you plan to store in the array later.

See Also
categorical | categories | summary | any | histogram | removecats | isundefined

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Convert Text in Table Variables to Categorical” on page 8-6
• “Plot Categorical Data” on page 8-10
• “Compare Categorical Array Elements” on page 8-16
• “Work with Protected Categorical Arrays” on page 8-30

More About
• “Advantages of Using Categorical Arrays” on page 8-34
• “Ordinal Categorical Arrays” on page 8-36

 Access Data Using Categorical Arrays

8-29

Work with Protected Categorical Arrays

This example shows how to work with a categorical array with protected categories.

When you create a categorical array with the categorical function, you have the option of
specifying whether or not the categories are protected. Ordinal categorical arrays always have
protected categories, but you also can create a nonordinal categorical array that is protected using
the 'Protected',true name-value pair argument.

When you assign values that are not in the array's list of categories, the array updates automatically
so that its list of categories includes the new values. Similarly, you can combine (nonordinal)
categorical arrays that have different categories. The categories in the result include the categories
from both arrays.

When you assign new values to a protected categorical array, the values must belong to one of the
existing categories. Similarly, you can only combine protected arrays that have the same categories.

• If you want to combine two nonordinal categorical arrays that have protected categories, they
must have the same categories, but the order does not matter. The resulting categorical array
uses the category order from the first array.

• If you want to combine two ordinal categorical array (that always have protected categories), they
must have the same categories, including their order.

To add new categories to the array, you must use the function addcats.

Create Ordinal Categorical Array

Create a categorical array containing the sizes of 10 objects. Use the names small, medium, and
large for the values 'S', 'M', and 'L'.

A = categorical({'M';'L';'S';'S';'M';'L';'M';'L';'M';'S'},...
 {'S','M','L'},{'small','medium','large'},'Ordinal',true)

A = 10x1 categorical
 medium
 large
 small
 small
 medium
 large
 medium
 large
 medium
 small

A is a 10-by-1 categorical array.

Display the categories of A.

categories(A)

ans = 3x1 cell
 {'small' }
 {'medium'}

8 Categorical Arrays

8-30

 {'large' }

Verify That Categories Are Protected

When you create an ordinal categorical array, the categories are always protected.

Use the isprotected function to verify that the categories of A are protected.

tf = isprotected(A)

tf = logical
 1

The categories of A are protected.

Assign Value in New Category

If you try to assign a new value that does not belong to one of the existing categories, then MATLAB®
returns an error. For example, you cannot assign the value 'xlarge' to the categorical array, as in
the expression A(2) = 'xlarge', because xlarge is not a category of A. Instead, MATLAB®
returns the error:

Error using categorical/subsasgn (line 68)

Cannot add a new category 'xlarge' to this categorical array

because its categories are protected. Use ADDCATS to

add the new category.

To add a new category for xlarge, use the addcats function. Since A is ordinal you must specify the
order for the new category.

A = addcats(A,'xlarge','After','large');

Now, assign a value for 'xlarge', since it has an existing category.

A(2) = 'xlarge'

A = 10x1 categorical
 medium
 xlarge
 small
 small
 medium
 large
 medium
 large
 medium
 small

A is now a 10-by-1 categorical array with four categories, such that small < medium < large <
xlarge.

 Work with Protected Categorical Arrays

8-31

Combine Two Ordinal Categorical Arrays

Create another ordinal categorical array, B, containing the sizes of five items.

B = categorical([2;1;1;2;2],1:2,{'xsmall','small'},'Ordinal',true)

B = 5x1 categorical
 small
 xsmall
 xsmall
 small
 small

B is a 5-by-1 categorical array with two categories such that xsmall < small.

To combine two ordinal categorical arrays (which always have protected categories), they must have
the same categories and the categories must be in the same order.

Add the category 'xsmall' to A before the category 'small'.

A = addcats(A,'xsmall','Before','small');

categories(A)

ans = 5x1 cell
 {'xsmall'}
 {'small' }
 {'medium'}
 {'large' }
 {'xlarge'}

Add the categories {'medium','large','xlarge'} to B after the category 'small'.

B = addcats(B,{'medium','large','xlarge'},'After','small');

categories(B)

ans = 5x1 cell
 {'xsmall'}
 {'small' }
 {'medium'}
 {'large' }
 {'xlarge'}

The categories of A and B are now the same including their order.

Vertically concatenate A and B.

C = [A;B]

C = 15x1 categorical
 medium
 xlarge
 small
 small
 medium

8 Categorical Arrays

8-32

 large
 medium
 large
 medium
 small
 small
 xsmall
 xsmall
 small
 small

The values from B are appended to the values from A.

List the categories of C.

categories(C)

ans = 5x1 cell
 {'xsmall'}
 {'small' }
 {'medium'}
 {'large' }
 {'xlarge'}

C is a 16-by-1 ordinal categorical array with five categories, such that xsmall < small < medium
< large < xlarge.

See Also
categorical | categories | summary | isprotected | isordinal | addcats

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Convert Text in Table Variables to Categorical” on page 8-6
• “Access Data Using Categorical Arrays” on page 8-24
• “Combine Categorical Arrays” on page 8-19
• “Combine Categorical Arrays Using Multiplication” on page 8-22

More About
• “Ordinal Categorical Arrays” on page 8-36

 Work with Protected Categorical Arrays

8-33

Advantages of Using Categorical Arrays
In this section...
“Natural Representation of Categorical Data” on page 8-34
“Mathematical Ordering for Character Vectors” on page 8-34
“Reduce Memory Requirements” on page 8-34

Natural Representation of Categorical Data
categorical is a data type to store data with values from a finite set of discrete categories. One
common alternative to using categorical arrays is to use character arrays or cell arrays of character
vectors. To compare values in character arrays and cell arrays of character vectors, you must use
strcmp which can be cumbersome. With categorical arrays, you can use the logical operator eq (==)
to compare elements in the same way that you compare numeric arrays. The other common
alternative to using categorical arrays is to store categorical data using integers in numeric arrays.
Using numeric arrays loses all the useful descriptive information from the category names, and also
tends to suggest that the integer values have their usual numeric meaning, which, for categorical
data, they do not.

Mathematical Ordering for Character Vectors
Categorical arrays are convenient and memory efficient containers for nonnumeric data with values
from a finite set of discrete categories. They are especially useful when the categories have a
meaningful mathematical ordering, such as an array with entries from the discrete set of categories
{'small','medium','large'} where small < medium < large.

An ordering other than alphabetical order is not possible with character arrays or cell arrays of
character vectors. Thus, inequality comparisons, such as greater and less than, are not possible. With
categorical arrays, you can use relational operations to test for equality and perform element-wise
comparisons that have a meaningful mathematical ordering.

Reduce Memory Requirements

This example shows how to compare the memory required to store data as a cell array of character
vectors versus a categorical array. Categorical arrays have categories that are defined as character
vectors, which can be costly to store and manipulate in a cell array of character vectors or char
array. Categorical arrays store only one copy of each category name, often reducing the amount of
memory required to store the array.

Create a sample cell array of character vectors.

state = [repmat({'MA'},25,1);repmat({'NY'},25,1);...
 repmat({'CA'},50,1);...
 repmat({'MA'},25,1);repmat({'NY'},25,1)];

Display information about the variable state.

whos state

8 Categorical Arrays

8-34

 Name Size Bytes Class Attributes

 state 150x1 16200 cell

The variable state is a cell array of character vectors requiring 17,400 bytes of memory.

Convert state to a categorical array.

state = categorical(state);

Display the discrete categories in the variable state.

categories(state)

ans = 3x1 cell
 {'CA'}
 {'MA'}
 {'NY'}

state contains 150 elements, but only three distinct categories.

Display information about the variable state.

whos state

 Name Size Bytes Class Attributes

 state 150x1 476 categorical

There is a significant reduction in the memory required to store the variable.

See Also
categorical | categories

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Convert Text in Table Variables to Categorical” on page 8-6
• “Compare Categorical Array Elements” on page 8-16
• “Access Data Using Categorical Arrays” on page 8-24

More About
• “Ordinal Categorical Arrays” on page 8-36

 Advantages of Using Categorical Arrays

8-35

Ordinal Categorical Arrays
In this section...
“Order of Categories” on page 8-36
“How to Create Ordinal Categorical Arrays” on page 8-36
“Working with Ordinal Categorical Arrays” on page 8-38

Order of Categories
categorical is a data type to store data with values from a finite set of discrete categories, which
can have a natural order. You can specify and rearrange the order of categories in all categorical
arrays. However, you only can treat ordinal categorical arrays as having a mathematical ordering to
their categories. Use an ordinal categorical array if you want to use the functions min, max, or
relational operations, such as greater than and less than.

The discrete set of pet categories {'dog' 'cat' 'bird'} has no meaningful mathematical
ordering. You are free to use any category order and the meaning of the associated data does not
change. For example, pets = categorical({'bird','cat','dog','dog','cat'}) creates a
categorical array and the categories are listed in alphabetical order, {'bird' 'cat' 'dog'}. You
can choose to specify or change the order of the categories to {'dog' 'cat' 'bird'} and the
meaning of the data does not change.

ordinal categorical arrays contain categories that have a meaningful mathematical ordering. For
example, the discrete set of size categories {'small', 'medium', 'large'} has the
mathematical ordering small < medium < large. The first category listed is the smallest and the
last category is the largest. The order of the categories in an ordinal categorical array affects the
result from relational comparisons of ordinal categorical arrays.

How to Create Ordinal Categorical Arrays

This example shows how to create an ordinal categorical array using the categorical function with
the 'Ordinal',true name-value pair argument.

Ordinal Categorical Array from a Cell Array of Character Vectors

Create an ordinal categorical array, sizes, from a cell array of character vectors, A. Use valueset,
specified as a vector of unique values, to define the categories for sizes.

A = {'medium' 'large';'small' 'medium'; 'large' 'small'};
valueset = {'small', 'medium', 'large'};

sizes = categorical(A,valueset,'Ordinal',true)

sizes = 3x2 categorical
 medium large
 small medium
 large small

sizes is 3-by-2 ordinal categorical array with three categories such that small < medium <
large. The order of the values in valueset becomes the order of the categories of sizes.

8 Categorical Arrays

8-36

Ordinal Categorical Array from Integers

Create an equivalent categorical array from an array of integers. Use the values 1, 2, and 3 to define
the categories small, medium, and large, respectively.

A2 = [2 3; 1 2; 3 1];
valueset = 1:3;
catnames = {'small','medium','large'};

sizes2 = categorical(A2,valueset,catnames,'Ordinal',true)

sizes2 = 3x2 categorical
 medium large
 small medium
 large small

Compare sizes and sizes2

isequal(sizes,sizes2)

ans = logical
 1

sizes and sizes2 are equivalent categorical arrays with the same ordering of categories.

Convert a Categorical Array from Nonordinal to Ordinal

Create a nonordinal categorical array from the cell array of character vectors, A.

sizes3 = categorical(A)

sizes3 = 3x2 categorical
 medium large
 small medium
 large small

Determine if the categorical array is ordinal.

isordinal(sizes3)

ans = logical
 0

sizes3 is a nonordinal categorical array with three categories, {'large','medium','small'}.
The categories of sizes3 are the sorted unique values from A. You must use the input argument,
valueset, to specify a different category order.

Convert sizes3 to an ordinal categorical array, such that small < medium < large.

sizes3 = categorical(sizes3,{'small','medium','large'},'Ordinal',true);

 Ordinal Categorical Arrays

8-37

sizes3 is now a 3-by-2 ordinal categorical array equivalent to sizes and sizes2.

Working with Ordinal Categorical Arrays
In order to combine or compare two categorical arrays, the sets of categories for both input arrays
must be identical, including their order. Furthermore, ordinal categorical arrays are always
protected. Therefore, when you assign values to an ordinal categorical array, the values must belong
to one of the existing categories. For more information see “Work with Protected Categorical Arrays”
on page 8-30.

See Also
categorical | categories | isordinal | isequal

Related Examples
• “Create Categorical Arrays” on page 8-2
• “Convert Text in Table Variables to Categorical” on page 8-6
• “Compare Categorical Array Elements” on page 8-16
• “Access Data Using Categorical Arrays” on page 8-24

More About
• “Advantages of Using Categorical Arrays” on page 8-34

8 Categorical Arrays

8-38

Core Functions Supporting Categorical Arrays
Many functions in MATLAB operate on categorical arrays in much the same way that they operate on
other arrays. A few of these functions might exhibit special behavior when operating on a categorical
array. If multiple input arguments are ordinal categorical arrays, the function often requires that they
have the same set of categories, including order. Furthermore, a few functions, such as max and gt,
require that the input categorical arrays are ordinal.

The following table lists notable MATLAB functions that operate on categorical arrays in addition to
other arrays.

size
length
ndims
numel

isrow
iscolumn

cat
horzcat
vertcat

isequal
isequaln

eq
ne
lt
le
ge
gt

min
max
median
mode

intersect
ismember
setdiff
setxor
unique
union

times

sort
sortrows
issorted

permute
reshape
transpose
ctranspose

plot
plot3
scatter
scatter3
bar
barh
histogram

pie
rose
stem
stairs
area
mesh
surf
surface

semilogx
semilogy
fill
fill3
line
text

double
single
int8
int16
int32
int64
uint8
uint16
uint32
uint64
char
string
cellstr

 Core Functions Supporting Categorical Arrays

8-39

Tables

• “Create Tables and Assign Data to Them” on page 9-2
• “Add and Delete Table Rows” on page 9-9
• “Add, Delete, and Rearrange Table Variables” on page 9-12
• “Clean Messy and Missing Data in Tables” on page 9-18
• “Modify Units, Descriptions, and Table Variable Names” on page 9-24
• “Add Custom Properties to Tables and Timetables” on page 9-27
• “Access Data in Tables” on page 9-32
• “Calculations on Data in Tables” on page 9-48
• “Split Data into Groups and Calculate Statistics” on page 9-56
• “Perform Calculations by Group in Table” on page 9-59
• “Advantages of Using Tables” on page 9-71
• “Grouping Variables To Split Data” on page 9-76
• “Changes to DimensionNames Property in R2016b” on page 9-79
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99

9

Create Tables and Assign Data to Them

Tables are suitable for column-oriented data such as tabular data from text files or spreadsheets.
Tables store columns of data in variables. The variables in a table can have different data types,
though all of the variables must have the same number of rows. However, table variables are not
restricted to storing only column vectors. For example, a table variable can contain a matrix with
multiple columns as long as it has the same number of rows as the other table variables.

In MATLAB®, you can create tables and assign data to them in several ways.

• Create a table from input arrays by using the table function.
• Add variables to an existing table by using dot notation.
• Assign variables to an empty table.
• Preallocate a table and fill in its data later.
• Convert variables to tables by using the array2table, cell2table, or struct2table

functions.
• Read a table from file by using the readtable function.
• Import a table using the Import Tool.

The way you choose depends on the nature of your data and how you plan to use tables in your code.

Create Tables from Input Arrays

You can create a table from arrays by using the table function. For example, create a small table
with data for five patients.

First, create six column-oriented arrays of data. These arrays have five rows because there are five
patients. (Most of these arrays are 5-by-1 column vectors, while BloodPressure is a 5-by-2 matrix.)

LastName = ["Sanchez";"Johnson";"Zhang";"Diaz";"Brown"];
Age = [38;43;38;40;49];
Smoker = [true;false;true;false;true];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

Now create a table, patients, as a container for the data. In this call to the table function, the
input arguments use the workspace variable names for the names of the variables in patients.

patients = table(LastName,Age,Smoker,Height,Weight,BloodPressure)

patients=5×6 table
 LastName Age Smoker Height Weight BloodPressure
 _________ ___ ______ ______ ______ _____________

 "Sanchez" 38 true 71 176 124 93
 "Johnson" 43 false 69 163 109 77
 "Zhang" 38 true 64 131 125 83
 "Diaz" 40 false 67 133 117 75
 "Brown" 49 true 64 119 122 80

9 Tables

9-2

The table is a 5-by-6 table because it has six variables. As the BloodPressure variable shows, a
table variable itself can have multiple columns. This example shows why tables have rows and
variables, not rows and columns.

Add Variable to Table Using Dot Notation

Once you have created a table, you can add a new variable at any time by using dot notation. Dot
notation refers to table variables by name, T.varname, where T is the table and varname is the
variable name. This notation is similar to the notation you use to access and assign data to the fields
of a structure.

For example, add a BMI variable to patients. Calculate body mass index, or BMI, using the values in
patients.Weight and patients.Height. Assign the BMI values to a new table variable.

patients.BMI = (patients.Weight*0.453592)./(patients.Height*0.0254).^2

patients=5×7 table
 LastName Age Smoker Height Weight BloodPressure BMI
 _________ ___ ______ ______ ______ _____________ ______

 "Sanchez" 38 true 71 176 124 93 24.547
 "Johnson" 43 false 69 163 109 77 24.071
 "Zhang" 38 true 64 131 125 83 22.486
 "Diaz" 40 false 67 133 117 75 20.831
 "Brown" 49 true 64 119 122 80 20.426

Assign Variables to Empty Table

Another way to create a table is to start with an empty table and assign variables to it. For example,
re-create the table of patient data, but this time assign variables using dot notation.

First, create an empty table, patients2, by calling table without arguments.

patients2 = table

patients2 =

 0x0 empty table

Next, create a copy of the patient data by assigning variables. Table variable names do not have to
match array names, as shown by the Name and BP table variables.

patients2.Name = LastName;
patients2.Age = Age;
patients2.Smoker = Smoker;
patients2.Height = Height;
patients2.Weight = Weight;
patients2.BP = BloodPressure

patients2=5×6 table
 Name Age Smoker Height Weight BP
 _________ ___ ______ ______ ______ __________

 "Sanchez" 38 true 71 176 124 93
 "Johnson" 43 false 69 163 109 77
 "Zhang" 38 true 64 131 125 83
 "Diaz" 40 false 67 133 117 75

 Create Tables and Assign Data to Them

9-3

 "Brown" 49 true 64 119 122 80

Preallocate Table and Fill Rows

Sometimes you know the sizes and data types of the data that you want to store in a table, but you
plan to assign the data later. Perhaps you plan to add only a few rows at a time. In that case,
preallocating space in the table and then assigning values to empty rows can be more efficient.

For example, to preallocate space for a table to contain time and temperature readings at different
stations, use the table function. Instead of supplying input arrays, specify the sizes and data types of
the table variables. To give them names, specify the 'VariableNames' argument. Preallocation fills
table variables with default values that are appropriate for their data types.

sz = [4 3];
varTypes = ["double","datetime","string"];
varNames = ["Temperature","Time","Station"];
temps = table('Size',sz,'VariableTypes',varTypes,'VariableNames',varNames)

temps=4×3 table
 Temperature Time Station
 ___________ ____ _________

 0 NaT <missing>
 0 NaT <missing>
 0 NaT <missing>
 0 NaT <missing>

One way to assign or add a row to a table is to assign a cell array to a row. If the cell array is a row
vector and its elements match the data types of their respective variables, then the assignment
converts the cell array to a table row. However, you can assign only one row at a time using cell
arrays. Assign values to the first two rows.

temps(1,:) = {75,datetime('now'),"S1"};
temps(2,:) = {68,datetime('now')+1,"S2"}

temps=4×3 table
 Temperature Time Station
 ___________ ____________________ _________

 75 26-Nov-2022 13:56:46 "S1"
 68 27-Nov-2022 13:56:46 "S2"
 0 NaT <missing>
 0 NaT <missing>

As an alternative, you can assign rows from a smaller table into a larger table. With this method, you
can assign one or more rows at a time.

temps(3:4,:) = table([63;72],[datetime('now')+2;datetime('now')+3],["S3";"S4"])

temps=4×3 table
 Temperature Time Station
 ___________ ____________________ _______

 75 26-Nov-2022 13:56:46 "S1"
 68 27-Nov-2022 13:56:46 "S2"

9 Tables

9-4

 63 28-Nov-2022 13:56:46 "S3"
 72 29-Nov-2022 13:56:46 "S4"

You can use either syntax to increase the size of a table by assigning rows beyond the end of the
table. If necessary, missing rows are filled in with default values.

temps(6,:) = {62,datetime('now')+6,"S6"}

temps=6×3 table
 Temperature Time Station
 ___________ ____________________ _________

 75 26-Nov-2022 13:56:46 "S1"
 68 27-Nov-2022 13:56:46 "S2"
 63 28-Nov-2022 13:56:46 "S3"
 72 29-Nov-2022 13:56:46 "S4"
 0 NaT <missing>
 62 02-Dec-2022 13:56:47 "S6"

Convert Variables to Tables

You can convert variables that have other data types to tables. Cell arrays and structures are other
types of containers that can store arrays that have different data types. So you can convert cell arrays
and structures to tables. You can also convert an array to a table where the table variables contain
columns of values from the array. To convert these kinds of variables, use the array2table,
cell2table, or struct2table functions.

For example, convert an array to a table by using array2table. Arrays do not have column names,
so the table has default variable names.

A = randi(3,3)

A = 3×3

 3 3 1
 3 2 2
 1 1 3

a2t = array2table(A)

a2t=3×3 table
 A1 A2 A3
 __ __ __

 3 3 1
 3 2 2
 1 1 3

You can provide your own table variable names by using the "VariableNames" name-value
argument.

a2t = array2table(A,"VariableNames",["First","Second","Third"])

a2t=3×3 table
 First Second Third

 Create Tables and Assign Data to Them

9-5

 _____ ______ _____

 3 3 1
 3 2 2
 1 1 3

Read Table from File

It is common to have a large quantity of tabular data in a file such as a CSV (comma-separated value)
file or an Excel® spreadsheet. To read such data into a table, use the readtable function.

For example, the CSV file outages.csv is a sample file that is distributed with MATLAB. The file
contains data for a set of electrical power outages. The first line of outages.csv has column names.
The rest of the file has comma-separated data values for each outage. The first few lines are shown
here.

Region,OutageTime,Loss,Customers,RestorationTime,Cause
SouthWest,2002-02-01 12:18,458.9772218,1820159.482,2002-02-07 16:50,winter storm
SouthEast,2003-01-23 00:49,530.1399497,212035.3001,,winter storm
SouthEast,2003-02-07 21:15,289.4035493,142938.6282,2003-02-17 08:14,winter storm
West,2004-04-06 05:44,434.8053524,340371.0338,2004-04-06 06:10,equipment fault
MidWest,2002-03-16 06:18,186.4367788,212754.055,2002-03-18 23:23,severe storm
...

To read outages.csv and store the data in a table, you can use readtable. It reads numeric
values, dates and times, and strings into table variables that have appropriate data types. Here, Loss
and Customers are numeric arrays. The OutageTime and RestorationTime variables are
datetime arrays because readtable recognizes the date and time formats of the text in those
columns of the input file. To read the rest of the text data into string arrays, specify the "TextType"
name-value argument.

outages = readtable("outages.csv","TextType","string")

outages=1468×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ _________________

 "SouthWest" 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 "winter storm"
 "SouthEast" 2003-01-23 00:49 530.14 2.1204e+05 NaT "winter storm"
 "SouthEast" 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 "winter storm"
 "West" 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 "equipment fault"
 "MidWest" 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 "severe storm"
 "West" 2003-06-18 02:49 0 0 2003-06-18 10:54 "attack"
 "West" 2004-06-20 14:39 231.29 NaN 2004-06-20 19:16 "equipment fault"
 "West" 2002-06-06 19:28 311.86 NaN 2002-06-07 00:51 "equipment fault"
 "NorthEast" 2003-07-16 16:23 239.93 49434 2003-07-17 01:12 "fire"
 "MidWest" 2004-09-27 11:09 286.72 66104 2004-09-27 16:37 "equipment fault"
 "SouthEast" 2004-09-05 17:48 73.387 36073 2004-09-05 20:46 "equipment fault"
 "West" 2004-05-21 21:45 159.99 NaN 2004-05-22 04:23 "equipment fault"
 "SouthEast" 2002-09-01 18:22 95.917 36759 2002-09-01 19:12 "severe storm"
 "SouthEast" 2003-09-27 07:32 NaN 3.5517e+05 2003-10-04 07:02 "severe storm"
 "West" 2003-11-12 06:12 254.09 9.2429e+05 2003-11-17 02:04 "winter storm"
 "NorthEast" 2004-09-18 05:54 0 0 NaT "equipment fault"
 ⋮

9 Tables

9-6

Import Table Using Import Tool

Finally, you can interactively preview and import data from spreadsheets or delimited text files by
using the Import Tool. There are two ways to open the Import Tool.

• MATLAB Toolstrip: On the Home tab, in the Variable section, click Import Data.
• MATLAB command prompt: Enter uiimport(filename), where filename is the name of a text

or spreadsheet file.

For example, open the outages.csv sample file by using uiimport and which to get the path to
the file.

uiimport(which("outages.csv"))

The Import Tool shows you a preview of the six columns from outages.csv. To import the data as a
table, follow these steps.

1 In the Imported Data section, select Table as the output type.
2 Click Import Selection (near the upper-right corner). The new table, named outages, appears

in your workspace.

See Also
readtable | table | array2table | cell2table | struct2table | Import Tool

Related Examples
• “Access Data in Tables” on page 9-32
• “Add and Delete Table Rows” on page 9-9

 Create Tables and Assign Data to Them

9-7

• “Add, Delete, and Rearrange Table Variables” on page 9-12
• “Clean Messy and Missing Data in Tables” on page 9-18
• “Modify Units, Descriptions, and Table Variable Names” on page 9-24
• “Advantages of Using Tables” on page 9-71

9 Tables

9-8

Add and Delete Table Rows

This example shows how to add and delete rows in a table. You can also edit tables using the
Variables Editor.

Load Sample Data

Load the sample patients data and create a table, T.

load patients
T = table(LastName,Gender,Age,Height,Weight,Smoker,Systolic,Diastolic);
size(T)

ans = 1×2

 100 8

The table, T, has 100 rows and eight variables.

Add Rows by Concatenation

Read data on more patients from a comma-delimited file, morePatients.csv, into a table, T2. Then,
append the rows from T2 to the end of the table, T.

T2 = readtable('morePatients.csv');
Tnew = [T;T2];
size(Tnew)

ans = 1×2

 104 8

The table Tnew has 104 rows. In order to vertically concatenate two tables, both tables must have the
same number of variables, with the same variable names. If the variable names are different, you can
directly assign new rows in a table to rows from another table. For example, T(end+1:end+4,:) =
T2.

Add Rows from Cell Array

To append new rows stored in a cell array, vertically concatenate the cell array onto the end of the
table. You can concatenate directly from a cell array when it has the right number of columns and the
contents of its cells can be concatenated onto the corresponding table variables.

cellPatients = {'Trujillo','Male',42,70,158,0,116,83;
 'Falk','Female',28,62,125,1,120,71};
Tnew = [Tnew;cellPatients];
size(Tnew)

ans = 1×2

 106 8

You also can convert a cell array to a table using the cell2table function.

 Add and Delete Table Rows

9-9

Add Rows from Structure

You also can append new rows stored in a structure. Convert the structure to a table, and then
concatenate the tables.

structPatients(1,1).LastName = 'George';
structPatients(1,1).Gender = 'Nonbinary';
structPatients(1,1).Age = 45;
structPatients(1,1).Height = 76;
structPatients(1,1).Weight = 182;
structPatients(1,1).Smoker = 1;
structPatients(1,1).Systolic = 132;
structPatients(1,1).Diastolic = 85;

structPatients(2,1).LastName = 'Russo';
structPatients(2,1).Gender = 'Female';
structPatients(2,1).Age = 29;
structPatients(2,1).Height = 58;
structPatients(2,1).Weight = 120;
structPatients(2,1).Smoker = 0;
structPatients(2,1).Systolic = 112;
structPatients(2,1).Diastolic = 70;

Tnew = [Tnew;struct2table(structPatients)];
size(Tnew)

ans = 1×2

 108 8

Omit Duplicate Rows

To omit any rows in a table that are duplicated, use the unique function.

Tnew = unique(Tnew);
size(Tnew)

ans = 1×2

 107 8

unique deleted two duplicate rows.

Delete Rows by Row Number

Delete rows 18, 20, and 21 from the table.

Tnew([18,20,21],:) = [];
size(Tnew)

ans = 1×2

 104 8

The table contains information on 103 patients now.

9 Tables

9-10

Delete Rows by Row Name

First, specify the variable of identifiers, LastName, as row names. Then, delete the variable,
LastName, from Tnew. Finally, use the row name to index and delete rows.

Tnew.Properties.RowNames = Tnew.LastName;
Tnew.LastName = [];
Tnew('Smith',:) = [];
size(Tnew)

ans = 1×2

 103 7

The table now has one less row and one less variable.

Search for Rows to Delete

You also can search for observations in the table. For example, delete rows for any patients under the
age of 30.

toDelete = Tnew.Age < 30;
Tnew(toDelete,:) = [];
size(Tnew)

ans = 1×2

 86 7

The table now has 17 fewer rows.

See Also
table | readtable | array2table | cell2table | struct2table

Related Examples
• “Add, Delete, and Rearrange Table Variables” on page 9-12
• “Clean Messy and Missing Data in Tables” on page 9-18

 Add and Delete Table Rows

9-11

Add, Delete, and Rearrange Table Variables

This example shows how to add, delete, and rearrange column-oriented variables in a table. You can
add, move, and delete table variables using the addvars, movevars, and removevars functions. As
alternatives, you also can modify table variables using dot syntax or by indexing into the table. Use
the splitvars and mergevars functions to split multicolumn variables and combine multiple
variables into one. Finally, you can reorient a table so that the rows of the table become variables of
an output table, using the rows2vars function.

You also can modify table variables using the Variables Editor.

Load Sample Data and Create Tables

Load arrays of sample data from the patients MAT-file. Display the names and sizes of the variables
loaded into the workspace.

load patients
whos -file patients

 Name Size Bytes Class Attributes

 Age 100x1 800 double
 Diastolic 100x1 800 double
 Gender 100x1 11412 cell
 Height 100x1 800 double
 LastName 100x1 11616 cell
 Location 100x1 14208 cell
 SelfAssessedHealthStatus 100x1 11540 cell
 Smoker 100x1 100 logical
 Systolic 100x1 800 double
 Weight 100x1 800 double

Create two tables. Create one table, T, with information collected from a patient questionnaire and
create another table, T2, with data measured from patients. Each table has 100 rows.

T = table(Age,SelfAssessedHealthStatus,Smoker);
T.SelfAssessedHealthStatus = string(T.SelfAssessedHealthStatus);
T2 = table(Height,Weight,Systolic,Diastolic);

Display the first five rows of each table.

head(T,5)

 Age SelfAssessedHealthStatus Smoker
 ___ ________________________ ______

 38 "Excellent" true
 43 "Fair" false
 38 "Good" false
 40 "Fair" false
 49 "Good" false

head(T2,5)

 Height Weight Systolic Diastolic
 ______ ______ ________ _________

9 Tables

9-12

 71 176 124 93
 69 163 109 77
 64 131 125 83
 67 133 117 75
 64 119 122 80

Add Variables Concatenated from Another Table

Add variables to the table T by horizontally concatenating it with T2.

T = [T T2];

Display the first five rows of T.

head(T,5)

 Age SelfAssessedHealthStatus Smoker Height Weight Systolic Diastolic
 ___ ________________________ ______ ______ ______ ________ _________

 38 "Excellent" true 71 176 124 93
 43 "Fair" false 69 163 109 77
 38 "Good" false 64 131 125 83
 40 "Fair" false 67 133 117 75
 49 "Good" false 64 119 122 80

The table T now has 7 variables and 100 rows.

If the tables that you are horizontally concatenating have row names, horzcat concatenates the
tables by matching the row names. Therefore, the tables must use the same row names, but the row
order does not matter.

Add Variable from Workspace to Table

Add the names of patients from the workspace variable LastName before the first table variable in T.
You can specify any location in the table using the name of a variable near the new location. Use
quotation marks to refer to the names of table variables. However, do not use quotation marks for
input arguments that are workspace variables.

T = addvars(T,LastName,'Before',"Age");
T.LastName = string(T.LastName);
head(T,5)

 LastName Age SelfAssessedHealthStatus Smoker Height Weight Systolic Diastolic
 __________ ___ ________________________ ______ ______ ______ ________ _________

 "Smith" 38 "Excellent" true 71 176 124 93
 "Johnson" 43 "Fair" false 69 163 109 77
 "Williams" 38 "Good" false 64 131 125 83
 "Jones" 40 "Fair" false 67 133 117 75
 "Brown" 49 "Good" false 64 119 122 80

You also can specify locations in a table using numbers. For example, the equivalent syntax using a
number to specify location is T = addvars(T,LastName,'Before',1).

 Add, Delete, and Rearrange Table Variables

9-13

Add Variables Using Dot Syntax

An alternative way to add new table variables is to use dot syntax. When you use dot syntax, you
always add the new variable as the last table variable. You can add a variable that has any data type,
as long as it has the same number of rows as the table.

Create a new variable for blood pressure as a horizontal concatenation of the two variables
Systolic and Diastolic. Add it to T.

T.BloodPressure = [Systolic Diastolic];
head(T,5)

 LastName Age SelfAssessedHealthStatus Smoker Height Weight Systolic Diastolic BloodPressure
 __________ ___ ________________________ ______ ______ ______ ________ _________ _____________

 "Smith" 38 "Excellent" true 71 176 124 93 124 93
 "Johnson" 43 "Fair" false 69 163 109 77 109 77
 "Williams" 38 "Good" false 64 131 125 83 125 83
 "Jones" 40 "Fair" false 67 133 117 75 117 75
 "Brown" 49 "Good" false 64 119 122 80 122 80

T now has 9 variables and 100 rows. A table variable can have multiple columns. So although
BloodPressure has two columns, it is one table variable.

Add a new variable, BMI, in the table T, that contains the body mass index for each patient. BMI is a
function of height and weight. When you calculate BMI, you can refer to the Weight and Height
variables that are in T.

T.BMI = (T.Weight*0.453592)./(T.Height*0.0254).^2;

The operators ./ and .^ in the calculation of BMI indicate element-wise division and exponentiation,
respectively.

Display the first five rows of the table T.

head(T,5)

 LastName Age SelfAssessedHealthStatus Smoker Height Weight Systolic Diastolic BloodPressure BMI
 __________ ___ ________________________ ______ ______ ______ ________ _________ _____________ ______

 "Smith" 38 "Excellent" true 71 176 124 93 124 93 24.547
 "Johnson" 43 "Fair" false 69 163 109 77 109 77 24.071
 "Williams" 38 "Good" false 64 131 125 83 125 83 22.486
 "Jones" 40 "Fair" false 67 133 117 75 117 75 20.831
 "Brown" 49 "Good" false 64 119 122 80 122 80 20.426

Move Variable in Table

Move the table variable BMI using the movevars function, so that it is after the variable Weight.
When you specify table variables by name, use quotation marks.

T = movevars(T,"BMI",'After',"Weight");
head(T,5)

 LastName Age SelfAssessedHealthStatus Smoker Height Weight BMI Systolic Diastolic BloodPressure
 __________ ___ ________________________ ______ ______ ______ ______ ________ _________ _____________

 "Smith" 38 "Excellent" true 71 176 24.547 124 93 124 93

9 Tables

9-14

 "Johnson" 43 "Fair" false 69 163 24.071 109 77 109 77
 "Williams" 38 "Good" false 64 131 22.486 125 83 125 83
 "Jones" 40 "Fair" false 67 133 20.831 117 75 117 75
 "Brown" 49 "Good" false 64 119 20.426 122 80 122 80

You also can specify locations in a table using numbers. For example, the equivalent syntax using a
number to specify location is T = movevars(T,"BMI",'After',6). It is often more convenient to
refer to variables by name.

Move Table Variable Using Indexing

As an alternative, you can move table variables by indexing. You can index into a table using the same
syntax you use for indexing into a matrix.

Move BloodPressure so that it is next to BMI.

T = T(:,[1:7 10 8 9]);
head(T,5)

 LastName Age SelfAssessedHealthStatus Smoker Height Weight BMI BloodPressure Systolic Diastolic
 __________ ___ ________________________ ______ ______ ______ ______ _____________ ________ _________

 "Smith" 38 "Excellent" true 71 176 24.547 124 93 124 93
 "Johnson" 43 "Fair" false 69 163 24.071 109 77 109 77
 "Williams" 38 "Good" false 64 131 22.486 125 83 125 83
 "Jones" 40 "Fair" false 67 133 20.831 117 75 117 75
 "Brown" 49 "Good" false 64 119 20.426 122 80 122 80

In a table with many variables, it is often more convenient to use the movevars function.

Delete Variables

To delete table variables, use the removevars function. Delete the Systolic and Diastolic table
variables.

T = removevars(T,["Systolic","Diastolic"]);
head(T,5)

 LastName Age SelfAssessedHealthStatus Smoker Height Weight BMI BloodPressure
 __________ ___ ________________________ ______ ______ ______ ______ _____________

 "Smith" 38 "Excellent" true 71 176 24.547 124 93
 "Johnson" 43 "Fair" false 69 163 24.071 109 77
 "Williams" 38 "Good" false 64 131 22.486 125 83
 "Jones" 40 "Fair" false 67 133 20.831 117 75
 "Brown" 49 "Good" false 64 119 20.426 122 80

Delete Variable Using Dot Syntax

As an alternative, you can delete variables using dot syntax and the empty matrix, []. Remove the
Age variable from the table.

T.Age = [];
head(T,5)

 LastName SelfAssessedHealthStatus Smoker Height Weight BMI BloodPressure
 __________ ________________________ ______ ______ ______ ______ _____________

 Add, Delete, and Rearrange Table Variables

9-15

 "Smith" "Excellent" true 71 176 24.547 124 93
 "Johnson" "Fair" false 69 163 24.071 109 77
 "Williams" "Good" false 64 131 22.486 125 83
 "Jones" "Fair" false 67 133 20.831 117 75
 "Brown" "Good" false 64 119 20.426 122 80

Delete Variable Using Indexing

You also can delete variables using indexing and the empty matrix, []. Remove the
SelfAssessedHealthStatus variable from the table.

T(:,"SelfAssessedHealthStatus") = [];
head(T,5)

 LastName Smoker Height Weight BMI BloodPressure
 __________ ______ ______ ______ ______ _____________

 "Smith" true 71 176 24.547 124 93
 "Johnson" false 69 163 24.071 109 77
 "Williams" false 64 131 22.486 125 83
 "Jones" false 67 133 20.831 117 75
 "Brown" false 64 119 20.426 122 80

Split and Merge Table Variables

To split multicolumn table variables into variables that each have one column, use the splitvars
functions. Split the variable BloodPressure into two variables.

T = splitvars(T,"BloodPressure",'NewVariableNames',["Systolic","Diastolic"]);
head(T,5)

 LastName Smoker Height Weight BMI Systolic Diastolic
 __________ ______ ______ ______ ______ ________ _________

 "Smith" true 71 176 24.547 124 93
 "Johnson" false 69 163 24.071 109 77
 "Williams" false 64 131 22.486 125 83
 "Jones" false 67 133 20.831 117 75
 "Brown" false 64 119 20.426 122 80

Similarly, you can group related table variables together in one variable, using the mergevars
function. Combine Systolic and Diastolic back into one variable, and name it BP.

T = mergevars(T,["Systolic","Diastolic"],'NewVariableName',"BP");
head(T,5)

 LastName Smoker Height Weight BMI BP
 __________ ______ ______ ______ ______ __________

 "Smith" true 71 176 24.547 124 93
 "Johnson" false 69 163 24.071 109 77
 "Williams" false 64 131 22.486 125 83
 "Jones" false 67 133 20.831 117 75
 "Brown" false 64 119 20.426 122 80

9 Tables

9-16

Reorient Rows to Become Variables

You can reorient the rows of a table or timetable, so that they become the variables in the output
table, using the rows2vars function. However, if the table has multicolumn variables, then you must
split them before you can call rows2vars.

Reorient the rows of T. Specify that the names of the patients in T are the names of table variables in
the output table. The first variable of T3 contains the names of the variables of T. Each remaining
variable of T3 contains the data from the corresponding row of T.

T = splitvars(T,"BP",'NewVariableNames',["Systolic","Diastolic"]);
T3 = rows2vars(T,'VariableNamesSource',"LastName");
T3(:,1:5)

ans=6×5 table
 OriginalVariableNames Smith Johnson Williams Jones
 _____________________ ______ _______ ________ ______

 {'Smoker' } 1 0 0 0
 {'Height' } 71 69 64 67
 {'Weight' } 176 163 131 133
 {'BMI' } 24.547 24.071 22.486 20.831
 {'Systolic' } 124 109 125 117
 {'Diastolic'} 93 77 83 75

You can use dot syntax with T3 to access patient data as an array. However, if the row values of an
input table cannot be concatenated, then the variables of the output table are cell arrays.

T3.Smith

ans = 6×1

 1.0000
 71.0000
 176.0000
 24.5467
 124.0000
 93.0000

See Also
table | addvars | movevars | removevars | splitvars | mergevars | inner2outer |
rows2vars

Related Examples
• “Add and Delete Table Rows” on page 9-9
• “Clean Messy and Missing Data in Tables” on page 9-18
• “Modify Units, Descriptions, and Table Variable Names” on page 9-24

 Add, Delete, and Rearrange Table Variables

9-17

Clean Messy and Missing Data in Tables

This example shows how to find, clean, and delete table rows with missing data.

Load Sample Data

Load sample data from a comma-separated text file, messy.csv. The file contains many different
missing data indicators:

• Empty character vector ('')
• period (.)
• NA
• NaN
• -99

To specify the character vectors to treat as empty values, use the 'TreatAsMissing' name-value
pair argument with the readtable function. (Use the disp function to display all 21 rows, even
when running this example as a live script.)

T = readtable('messy.csv','TreatAsMissing',{'.','NA'});
disp(T)

 A B C D E
 ________ ____ __________ ____ ____

 {'afe1'} 3 {'yes' } 3 3
 {'egh3'} NaN {'no' } 7 7
 {'wth4'} 3 {'yes' } 3 3
 {'atn2'} 23 {'no' } 23 23
 {'arg1'} 5 {'yes' } 5 5
 {'jre3'} 34.6 {'yes' } 34.6 34.6
 {'wen9'} 234 {'yes' } 234 234
 {'ple2'} 2 {'no' } 2 2
 {'dbo8'} 5 {'no' } 5 5
 {'oii4'} 5 {'yes' } 5 5
 {'wnk3'} 245 {'yes' } 245 245
 {'abk6'} 563 {0x0 char} 563 563
 {'pnj5'} 463 {'no' } 463 463
 {'wnn3'} 6 {'no' } 6 6
 {'oks9'} 23 {'yes' } 23 23
 {'wba3'} NaN {'yes' } NaN 14
 {'pkn4'} 2 {'no' } 2 2
 {'adw3'} 22 {'no' } 22 22
 {'poj2'} -99 {'yes' } -99 -99
 {'bas8'} 23 {'no' } 23 23
 {'gry5'} NaN {'yes' } NaN 21

T is a table with 21 rows and five variables. 'TreatAsMissing' only applies to numeric columns in
the file and cannot handle numeric values specified as text, such as '-99'.

Summarize Table

View the data type, description, units, and other descriptive statistics for each variable by creating a
table summary using the summary function.

9 Tables

9-18

summary(T)

Variables:

 A: 21x1 cell array of character vectors

 B: 21x1 double

 Values:

 Min -99
 Median 14
 Max 563
 NumMissing 3

 C: 21x1 cell array of character vectors

 D: 21x1 double

 Values:

 Min -99
 Median 7
 Max 563
 NumMissing 2

 E: 21x1 double

 Values:

 Min -99
 Median 14
 Max 563

When you import data from a file, the default is for readtable to read any variables with
nonnumeric elements as a cell array of character vectors.

Find Rows with Missing Values

Display the subset of rows from the table, T, that have at least one missing value.

TF = ismissing(T,{'' '.' 'NA' NaN -99});
rowsWithMissing = T(any(TF,2),:);
disp(rowsWithMissing)

 A B C D E
 ________ ___ __________ ___ ___

 {'egh3'} NaN {'no' } 7 7
 {'abk6'} 563 {0x0 char} 563 563
 {'wba3'} NaN {'yes' } NaN 14
 {'poj2'} -99 {'yes' } -99 -99
 {'gry5'} NaN {'yes' } NaN 21

readtable replaced '.' and 'NA' with NaN in the numeric variables, B, D, and E.

 Clean Messy and Missing Data in Tables

9-19

Replace Missing Value Indicators

Clean the data so that the missing values indicated by code -99 have the standard MATLAB®
numeric missing value indicator, NaN.

T = standardizeMissing(T,-99);
disp(T)

 A B C D E
 ________ ____ __________ ____ ____

 {'afe1'} 3 {'yes' } 3 3
 {'egh3'} NaN {'no' } 7 7
 {'wth4'} 3 {'yes' } 3 3
 {'atn2'} 23 {'no' } 23 23
 {'arg1'} 5 {'yes' } 5 5
 {'jre3'} 34.6 {'yes' } 34.6 34.6
 {'wen9'} 234 {'yes' } 234 234
 {'ple2'} 2 {'no' } 2 2
 {'dbo8'} 5 {'no' } 5 5
 {'oii4'} 5 {'yes' } 5 5
 {'wnk3'} 245 {'yes' } 245 245
 {'abk6'} 563 {0x0 char} 563 563
 {'pnj5'} 463 {'no' } 463 463
 {'wnn3'} 6 {'no' } 6 6
 {'oks9'} 23 {'yes' } 23 23
 {'wba3'} NaN {'yes' } NaN 14
 {'pkn4'} 2 {'no' } 2 2
 {'adw3'} 22 {'no' } 22 22
 {'poj2'} NaN {'yes' } NaN NaN
 {'bas8'} 23 {'no' } 23 23
 {'gry5'} NaN {'yes' } NaN 21

standardizeMissing replaces three instances of -99 with NaN.

Create a new table, T2, and replace missing values with values from previous rows of the table.
fillmissing provides a number of ways to fill in missing values.

T2 = fillmissing(T,'previous');
disp(T2)

 A B C D E
 ________ ____ _______ ____ ____

 {'afe1'} 3 {'yes'} 3 3
 {'egh3'} 3 {'no' } 7 7
 {'wth4'} 3 {'yes'} 3 3
 {'atn2'} 23 {'no' } 23 23
 {'arg1'} 5 {'yes'} 5 5
 {'jre3'} 34.6 {'yes'} 34.6 34.6
 {'wen9'} 234 {'yes'} 234 234
 {'ple2'} 2 {'no' } 2 2
 {'dbo8'} 5 {'no' } 5 5
 {'oii4'} 5 {'yes'} 5 5
 {'wnk3'} 245 {'yes'} 245 245
 {'abk6'} 563 {'yes'} 563 563
 {'pnj5'} 463 {'no' } 463 463
 {'wnn3'} 6 {'no' } 6 6

9 Tables

9-20

 {'oks9'} 23 {'yes'} 23 23
 {'wba3'} 23 {'yes'} 23 14
 {'pkn4'} 2 {'no' } 2 2
 {'adw3'} 22 {'no' } 22 22
 {'poj2'} 22 {'yes'} 22 22
 {'bas8'} 23 {'no' } 23 23
 {'gry5'} 23 {'yes'} 23 21

Remove Rows with Missing Values

Create a new table, T3, that contains only the rows from T without missing values. T3 has only 16
rows.

T3 = rmmissing(T);
disp(T3)

 A B C D E
 ________ ____ _______ ____ ____

 {'afe1'} 3 {'yes'} 3 3
 {'wth4'} 3 {'yes'} 3 3
 {'atn2'} 23 {'no' } 23 23
 {'arg1'} 5 {'yes'} 5 5
 {'jre3'} 34.6 {'yes'} 34.6 34.6
 {'wen9'} 234 {'yes'} 234 234
 {'ple2'} 2 {'no' } 2 2
 {'dbo8'} 5 {'no' } 5 5
 {'oii4'} 5 {'yes'} 5 5
 {'wnk3'} 245 {'yes'} 245 245
 {'pnj5'} 463 {'no' } 463 463
 {'wnn3'} 6 {'no' } 6 6
 {'oks9'} 23 {'yes'} 23 23
 {'pkn4'} 2 {'no' } 2 2
 {'adw3'} 22 {'no' } 22 22
 {'bas8'} 23 {'no' } 23 23

T3 contains 16 rows and five variables.

Organize Data

Sort the rows of T3 in descending order by C, and then sort in ascending order by A.

T3 = sortrows(T2,{'C','A'},{'descend','ascend'});
disp(T3)

 A B C D E
 ________ ____ _______ ____ ____

 {'abk6'} 563 {'yes'} 563 563
 {'afe1'} 3 {'yes'} 3 3
 {'arg1'} 5 {'yes'} 5 5
 {'gry5'} 23 {'yes'} 23 21
 {'jre3'} 34.6 {'yes'} 34.6 34.6
 {'oii4'} 5 {'yes'} 5 5
 {'oks9'} 23 {'yes'} 23 23
 {'poj2'} 22 {'yes'} 22 22
 {'wba3'} 23 {'yes'} 23 14
 {'wen9'} 234 {'yes'} 234 234
 {'wnk3'} 245 {'yes'} 245 245

 Clean Messy and Missing Data in Tables

9-21

 {'wth4'} 3 {'yes'} 3 3
 {'adw3'} 22 {'no' } 22 22
 {'atn2'} 23 {'no' } 23 23
 {'bas8'} 23 {'no' } 23 23
 {'dbo8'} 5 {'no' } 5 5
 {'egh3'} 3 {'no' } 7 7
 {'pkn4'} 2 {'no' } 2 2
 {'ple2'} 2 {'no' } 2 2
 {'pnj5'} 463 {'no' } 463 463
 {'wnn3'} 6 {'no' } 6 6

In C, the rows are grouped first by 'yes', followed by 'no'. Then in A, the rows are listed
alphabetically.

Reorder the table so that A and C are next to each other.

T3 = T3(:,{'A','C','B','D','E'});
disp(T3)

 A C B D E
 ________ _______ ____ ____ ____

 {'abk6'} {'yes'} 563 563 563
 {'afe1'} {'yes'} 3 3 3
 {'arg1'} {'yes'} 5 5 5
 {'gry5'} {'yes'} 23 23 21
 {'jre3'} {'yes'} 34.6 34.6 34.6
 {'oii4'} {'yes'} 5 5 5
 {'oks9'} {'yes'} 23 23 23
 {'poj2'} {'yes'} 22 22 22
 {'wba3'} {'yes'} 23 23 14
 {'wen9'} {'yes'} 234 234 234
 {'wnk3'} {'yes'} 245 245 245
 {'wth4'} {'yes'} 3 3 3
 {'adw3'} {'no' } 22 22 22
 {'atn2'} {'no' } 23 23 23
 {'bas8'} {'no' } 23 23 23
 {'dbo8'} {'no' } 5 5 5
 {'egh3'} {'no' } 3 7 7
 {'pkn4'} {'no' } 2 2 2
 {'ple2'} {'no' } 2 2 2
 {'pnj5'} {'no' } 463 463 463
 {'wnn3'} {'no' } 6 6 6

See Also
readtable | summary | ismissing | sortrows | standardizeMissing | rmmissing |
fillmissing

Related Examples
• “Add and Delete Table Rows” on page 9-9
• “Add, Delete, and Rearrange Table Variables” on page 9-12
• “Modify Units, Descriptions, and Table Variable Names” on page 9-24
• “Access Data in Tables” on page 9-32

9 Tables

9-22

• “Missing Data in MATLAB”
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99

 Clean Messy and Missing Data in Tables

9-23

Modify Units, Descriptions, and Table Variable Names

This example shows how to access and modify table properties for variable units, descriptions, and
names. You also can edit these property values using the Variables Editor.

Load Sample Data

Load the sample patients data and create a table. T.LastName is a cell array of character vectors, so
convert to a string array. The table T 100 rows and 6 variables. The sixth variable, BloodPressure,
is a 100-by-2 numeric array.

load patients
BloodPressure = [Systolic Diastolic];

T = table(LastName,Age,Height,Weight,Smoker,BloodPressure);
T.LastName = string(T.LastName)

T=100×6 table
 LastName Age Height Weight Smoker BloodPressure
 __________ ___ ______ ______ ______ _____________

 "Smith" 38 71 176 true 124 93
 "Johnson" 43 69 163 false 109 77
 "Williams" 38 64 131 false 125 83
 "Jones" 40 67 133 false 117 75
 "Brown" 49 64 119 false 122 80
 "Davis" 46 68 142 false 121 70
 "Miller" 33 64 142 true 130 88
 "Wilson" 40 68 180 false 115 82
 "Moore" 28 68 183 false 115 78
 "Taylor" 31 66 132 false 118 86
 "Anderson" 45 68 128 false 114 77
 "Thomas" 42 66 137 false 115 68
 "Jackson" 25 71 174 false 127 74
 "White" 39 72 202 true 130 95
 "Harris" 36 65 129 false 114 79
 "Martin" 48 71 181 true 130 92
 ⋮

Add Variable Units

Specify units for each variable in the table by modifying the table property, VariableUnits. While
the property is a cell array of character vectors, you can assign values to it using a string array.

T.Properties.VariableUnits = ["","Yrs","In","Lbs","","mm Hg"];

An individual empty string within the string array indicates that the corresponding variable does not
have units.

Add a Variable Description for a Single Variable

Add a variable description for the variable, BloodPressure. Assign text to the element of
VariableDescriptions that contains the description for BloodPressure.

T.Properties.VariableDescriptions("BloodPressure") = "Systolic/Diastolic";

9 Tables

9-24

You can use the variable name, BloodPressure, or the numeric index of the variable, 6, to index
into VariableDescriptions.

Summarize the Table

View the data type, description, units, and other descriptive statistics for each variable by using
summary to summarize the table.

summary(T)

Variables:

 LastName: 100x1 string

 Age: 100x1 double

 Properties:
 Units: Yrs
 Values:

 Min 25
 Median 39
 Max 50

 Height: 100x1 double

 Properties:
 Units: In
 Values:

 Min 60
 Median 67
 Max 72

 Weight: 100x1 double

 Properties:
 Units: Lbs
 Values:

 Min 111
 Median 142.5
 Max 202

 Smoker: 100x1 logical

 Values:

 True 34
 False 66

 BloodPressure: 100x2 double

 Properties:
 Units: mm Hg
 Description: Systolic/Diastolic
 Values:
 Column 1 Column 2

 Modify Units, Descriptions, and Table Variable Names

9-25

 ________ ________

 Min 109 68
 Median 122 81.5
 Max 138 99

The BloodPressure variable has a description and the Age, Height, Weight, and BloodPressure
variables have units.

Change a Variable Name

Change the variable name for the first variable from LastName to PatientName.

T.Properties.VariableNames("LastName") = "PatientName";

Display the first five rows of the table, T.

T(1:5,:)

ans=5×6 table
 PatientName Age Height Weight Smoker BloodPressure
 ___________ ___ ______ ______ ______ _____________

 "Smith" 38 71 176 true 124 93
 "Johnson" 43 69 163 false 109 77
 "Williams" 38 64 131 false 125 83
 "Jones" 40 67 133 false 117 75
 "Brown" 49 64 119 false 122 80

In addition to properties for variable units, descriptions and names, there are table properties for row
and dimension names, a table description, and user data.

See Also
readtable | table | array2table | cell2table | struct2table | summary

Related Examples
• “Add, Delete, and Rearrange Table Variables” on page 9-12
• “Access Data in Tables” on page 9-32

9 Tables

9-26

Add Custom Properties to Tables and Timetables

This example shows how to add custom properties to tables and timetables, set and access their
values, and remove them.

All tables and timetables have properties that contain metadata about them or their variables. You
can access these properties through the T.Properties object, where T is the name of the table or
timetable. For example, T.Properties.VariableNames returns a cell array containing the names
of the variables of T.

The properties you access through T.Properties are part of the definitions of the table and
timetable data types. You cannot add or remove these predefined properties. But starting in
R2018b, you can add and remove your own custom properties, by modifying the
T.Properties.CustomProperties object of a table or timetable.

Add Properties

Read power outage data into a table. Sort it using the first variable that contains dates and times,
OutageTime. Then display the first three rows.

T = readtable('outages.csv');
T = sortrows(T,'OutageTime');
head(T,3)

 Region OutageTime Loss Customers RestorationTime Cause
 _____________ ________________ ______ __________ ________________ ________________

 {'SouthWest'} 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 {'winter storm'}
 {'MidWest' } 2002-03-05 17:53 96.563 2.8666e+05 2002-03-10 14:41 {'wind' }
 {'MidWest' } 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 {'severe storm'}

Display its properties. These are the properties that all tables have in common. Note that there is also
a CustomProperties object, but that by default it has no properties.

T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x6 cell}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

To add custom properties, use the addprop function. Specify the names of the properties. For each
property, also specify whether it has metadata for the whole table (similar to the Description
property) or for its variables (similar to the VariableNames property). If the property has variable
metadata, then its value must be a vector whose length is equal to the number of variables.

 Add Custom Properties to Tables and Timetables

9-27

Add custom properties that contain an output file name, file type, and indicators of which variables to
plot. Best practice is to assign the input table as the output argument of addprop, so that the custom
properties are part of the same table. Specify that the output file name and file type are table
metadata using the 'table' option. Specify that the plot indicators are variable metadata using the
'variable' option.

T = addprop(T,{'OutputFileName','OutputFileType','ToPlot'}, ...
 {'table','table','variable'});
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x6 cell}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 OutputFileName: []
 OutputFileType: []
 ToPlot: []

Set and Access Values of Custom Properties

When you add custom properties using addprop, their values are empty arrays by default. You can
set and access the values of the custom properties using dot syntax.

Set the output file name and type. These properties contain metadata for the table. Then assign a
logical array to the ToPlot property. This property contains metadata for the variables. In this
example, the elements of the value of the ToPlot property are true for each variable to be included
in a plot, and false for each variable to be excluded.

T.Properties.CustomProperties.OutputFileName = 'outageResults';
T.Properties.CustomProperties.OutputFileType = '.mat';
T.Properties.CustomProperties.ToPlot = [false false true true true false];
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x6 cell}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 OutputFileName: 'outageResults'
 OutputFileType: '.mat'

9 Tables

9-28

 ToPlot: [0 0 1 1 1 0]

Plot variables from T in a stacked plot using the stackedplot function. To plot only the Loss,
Customers, and RestorationTime values, use the ToPlot custom property as the second input
argument.

stackedplot(T,T.Properties.CustomProperties.ToPlot);

When you move or delete table variables, both the predefined and custom properties are reordered so
that their values correspond to the same variables. In this example, the values of the ToPlot custom
property stay aligned with the variables marked for plotting, just as the values of the
VariableNames predefined property stay aligned.

Remove the Customers variable and display the properties.

T.Customers = [];
T.Properties

ans =
 TableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x5 cell}
 VariableDescriptions: {}

 Add Custom Properties to Tables and Timetables

9-29

 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 OutputFileName: 'outageResults'
 OutputFileType: '.mat'
 ToPlot: [0 0 1 1 0]

Convert the table to a timetable, using the outage times as row times. Move Region to the end of the
table, and RestorationTime before the first variable, using the movevars function. Note that the
properties are reordered appropriately. The RestorationTime and Loss variables still have
indicators for inclusion in a plot.

T = table2timetable(T);
T = movevars(T,'Region','After','Cause');
T = movevars(T,'RestorationTime','Before',1);
T.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'OutageTime' 'Variables'}
 VariableNames: {'RestorationTime' 'Loss' 'Cause' 'Region'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [1468x1 datetime]
 StartTime: 2002-02-01 12:18
 SampleRate: NaN
 TimeStep: NaN

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 OutputFileName: 'outageResults'
 OutputFileType: '.mat'
 ToPlot: [1 1 0 0]

Remove Properties

You can remove any or all of the custom properties of a table using the rmprop function. However,
you cannot use it to remove predefined properties from T.Properties, because those properties are
part of the definition of the table data type.

Remove the OutputFileName and OutputFileType custom properties. Display the remaining table
properties.

T = rmprop(T,{'OutputFileName','OutputFileType'});
T.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []

9 Tables

9-30

 DimensionNames: {'OutageTime' 'Variables'}
 VariableNames: {'RestorationTime' 'Loss' 'Cause' 'Region'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [1468x1 datetime]
 StartTime: 2002-02-01 12:18
 SampleRate: NaN
 TimeStep: NaN

 Custom Properties (access using t.Properties.CustomProperties.<name>):
 ToPlot: [1 1 0 0]

See Also
readtable | table | head | addprop | table2timetable | movevars | rmprop | sortrows |
stackedplot

Related Examples
• “Modify Units, Descriptions, and Table Variable Names” on page 9-24
• “Access Data in Tables” on page 9-32
• “Add, Delete, and Rearrange Table Variables” on page 9-12

 Add Custom Properties to Tables and Timetables

9-31

Access Data in Tables
In this section...
“Summary of Table Indexing Syntaxes” on page 9-32
“Table Indexing with Specified Rows and Variables” on page 9-37
“Find Rows Where Values Meet Logical Conditions” on page 9-41
“Dot Notation with Any Variable Name or Expression” on page 9-44
“Extract Data from Specified Rows and Variables” on page 9-46

A table is a container that stores column-oriented data in variables. Table variables can have different
data types and sizes as long as all variables have the same number of rows. Table variables have
names, just as the fields of a structure have names. The rows of a table can have names, but row
names are not required. To access or modify table data, index into the rows and variables using either
their names or numeric indices.

Typical reasons for indexing into tables include:

• Reordering or removing rows and variables.
• Adding arrays as new rows or variables.
• Extracting arrays of data to use as input arguments to functions.

Another way to access or modify table data is to open it in the Variables editor for graphical editing.
To open a table, double-click it in the Workspace browser or use the openvar function.

Summary of Table Indexing Syntaxes
Depending on the type of indexing you use, you can access either a subtable or an array extracted
from the table. Indexing with:

• Smooth parentheses, (), returns a table that has selected rows and variables.
• Dot notation returns the contents of a variable as an array.
• Curly braces, {}, returns an array concatenated from the contents of selected rows and

variables.

You can specify rows and variables by name, numeric index, or data type.

• Starting in R2019b, variable names and row names can include any characters, including spaces
and non-ASCII characters. Also, they can start with any characters, not just letters. Variable and
row names do not have to be valid MATLAB identifiers (as determined by the isvarname
function).

• Starting in R2022a, when you specify rows and variables by name, you can use a pattern object
to specify names. For example, "Var" + digitsPattern matches all names that start with Var
and end with any number of digits.

9 Tables

9-32

Type of Output Syntax Rows Variables Examples
Table, containing
specified rows
and variables

T(rows,vars) Specified as:

• Row numbers
(between 1 and
m)

• Logical array
having m
elements

• Names, if T has
row names

• Times, if T is a
timetable

• Colon (:),
meaning all
rows

Specified as:

• Variable
numbers
(between 1 and
n)

• Logical array
having n
elements

• Names
• Colon (:),

meaning all
variables

• T(1:5,[1 4
5])

Table having
the first five
rows and the
first, fourth,
and fifth
variables of T

• T(1:5,[true
false false
true true])

Table having
the first five
rows and the
first, fourth,
and fifth
variables of T

• T(:,
["A","B"])

Table having all
rows and the
variables
named A and B

• T(:,"A" +
wildcardPatt
ern)

Table having all
rows and
variables whose
names start
with A

 Access Data in Tables

9-33

Type of Output Syntax Rows Variables Examples
Table, containing
variables that
have specified
data type

S =
vartype(type);

T(rows,S)

Specified as:

• Row numbers
(between 1 and
m)

• Logical array
having m
elements

• Names, if T has
row names

• Times, if T is a
timetable

• Colon (:),
meaning all
rows

Specified as a data
type, such as
"numeric",
"categorical",
or "datetime"

• S =
vartype("num
eric");

T(1:5,S)

Table having
the first five
rows and the
numeric
variables of T

Array, extracting
data from one
variable

T.var

T.(expression)

Not specified Specified as:

• A variable
name (without
quotation
marks)

• An expression
inside
parentheses
that returns a
variable name
or number

• T.Date

Array extracted
from table
variable named
Date

• T.
("2019/06/30
")

Array extracted
from table
variable named
2019/06/30

• T.(1)

Array extracted
from the first
table variable

9 Tables

9-34

Type of Output Syntax Rows Variables Examples
Array, extracting
data from one
variable and
specified rows

T.var(rows)

T.(expression)
(rows)

Specified as
numeric or logical
indices of the array

Specified as:

• A variable
name (without
quotation
marks)

• An expression
inside
parentheses
that returns a
variable name
or number

• T.Date(1:5)

First five rows
of array
extracted from
table variable
named Date

• T.
("2019/06/30
")(1:5)

First five rows
of array
extracted from
table variable
named
2019/06/30

• T.(1)(1:5)

First five rows
of array
extracted from
the first table
variable

 Access Data in Tables

9-35

Type of Output Syntax Rows Variables Examples
Array,
concatenating
data from
specified rows
and variables

T{rows,vars} Specified as:

• Row numbers
(between 1 and
m)

• Logical array
having m
elements

• Names, if T has
row names

• Times, if T is a
timetable

• Colon (:),
meaning all
rows

Specified as:

• Variable
numbers
(between 1 and
n)

• Logical array
having n
elements

• Names
• Colon (:),

meaning all
variables

• T{1:5,[1 4
5]}

Array
concatenated
from the first
five rows and
the first, fourth,
and fifth
variables of T

• T{1:5,[true
false false
true true]}

Array
concatenated
from the first
five rows and
the first, fourth,
and fifth
variables of T

• T{:,
["A","B"]}

Array
concatenated
from all rows
and the
variables
named A and B

• T{:,"A" +
wildcardPatt
ern}

Array
concatenated
from all rows
and variables
whose names
start with A

9 Tables

9-36

Type of Output Syntax Rows Variables Examples
Array,
concatenating
data from
specified rows
and variables
with specified
data type

S =
vartype(type);

T{rows,S}

Specified as:

• Row numbers
(between 1 and
m)

• Logical array
having m
elements

• Names, if T has
row names

• Times, if T is a
timetable

• Colon (:),
meaning all
rows

Specified as a data
type, such as
"numeric",
"categorical",
or "datetime"

• S =
vartype("num
eric");

T{1:5,S}

Array
concatenated
from the first
five rows and
the numeric
variables of T

Array,
concatenating
data from all
rows and
variables

T.Variables Not specified Not specified • T.Variables

Identical to
array returned
by T{:,:}

Table Indexing with Specified Rows and Variables

Load sample data for 100 patients from the patients MAT-file to workspace variables.

load patients
whos

 Name Size Bytes Class Attributes

 Age 100x1 800 double
 Diastolic 100x1 800 double
 Gender 100x1 11412 cell
 Height 100x1 800 double
 LastName 100x1 11616 cell
 Location 100x1 14208 cell
 SelfAssessedHealthStatus 100x1 11540 cell
 Smoker 100x1 100 logical
 Systolic 100x1 800 double
 Weight 100x1 800 double

Create a table and populate it with the Age, Height, Weight, Smoker, and
SelfAssessedHealthStatus workspace variables. Use the unique identifiers in LastName as row
names. T is a 100-by-5 table, with 100 rows and five variables. (When you specify a vector of row
names, it does not count as a table variable). Also, convert SelfAssessedHealthStatus to a
categorical variable because it contains only the unique values Excellent, Good, Fair, and
Poor. It can be useful to treat a variable as a categorical array when it has a fixed set of values
that you can think of as categories.

 Access Data in Tables

9-37

SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus);
T = table(Age,Height,Weight,Smoker,SelfAssessedHealthStatus,...
 'RowNames',LastName)

T=100×5 table
 Age Height Weight Smoker SelfAssessedHealthStatus
 ___ ______ ______ ______ ________________________

 Smith 38 71 176 true Excellent
 Johnson 43 69 163 false Fair
 Williams 38 64 131 false Good
 Jones 40 67 133 false Fair
 Brown 49 64 119 false Good
 Davis 46 68 142 false Good
 Miller 33 64 142 true Good
 Wilson 40 68 180 false Good
 Moore 28 68 183 false Excellent
 Taylor 31 66 132 false Excellent
 Anderson 45 68 128 false Excellent
 Thomas 42 66 137 false Poor
 Jackson 25 71 174 false Poor
 White 39 72 202 true Excellent
 Harris 36 65 129 false Good
 Martin 48 71 181 true Good
 ⋮

Index Using Numeric Indices or end Keyword

Create a subtable containing the first five rows and all the variables from T. To specify the desired
rows and variables, use numeric indices within parentheses. This type of indexing is similar to
indexing into numeric arrays.

firstRows = T(1:5,:)

firstRows=5×5 table
 Age Height Weight Smoker SelfAssessedHealthStatus
 ___ ______ ______ ______ ________________________

 Smith 38 71 176 true Excellent
 Johnson 43 69 163 false Fair
 Williams 38 64 131 false Good
 Jones 40 67 133 false Fair
 Brown 49 64 119 false Good

You can also use the end keyword to mean the last row or variable. Use the end keyword to index
into the last five rows of the table.

lastRows = T(end-4:end,:)

lastRows=5×5 table
 Age Height Weight Smoker SelfAssessedHealthStatus
 ___ ______ ______ ______ ________________________

 Alexander 25 69 171 true Good
 Russell 44 69 188 true Good
 Griffin 49 70 186 false Fair

9 Tables

9-38

 Diaz 45 68 172 true Good
 Hayes 48 66 177 false Fair

In addition to numeric indices, you can use row or variable names inside the parentheses. (In this
case, using row indices and a colon is more compact than using row or variable names.)

Index Using Names

Select all the data for the patients with the last names Griffin, Diaz, and Hayes. Since T has row
names that are the last names of patients, index into T using row names.

rowsByName = T(["Griffin","Diaz","Hayes"],:)

rowsByName=3×5 table
 Age Height Weight Smoker SelfAssessedHealthStatus
 ___ ______ ______ ______ ________________________

 Griffin 49 70 186 false Fair
 Diaz 45 68 172 true Good
 Hayes 48 66 177 false Fair

You also can select variables by name. Create a table that has only the first five rows of T and the
Height and Weight variables. Display it.

variablesByName = T(1:5,["Height","Weight"])

variablesByName=5×2 table
 Height Weight
 ______ ______

 Smith 71 176
 Johnson 69 163
 Williams 64 131
 Jones 67 133
 Brown 64 119

Table variable names do not have to be valid MATLAB® identifiers. They can include spaces and non-
ASCII characters, and can start with any character.

For example, rename the SelfAssessedHealthStatus variable by using the renamevars function.
Add spaces and a dash to make that variable name more readable. Then index into T using variable
names.

T = renamevars(T,"SelfAssessedHealthStatus","Self-Assessed Health Status");
T(1:5,["Age","Smoker","Self-Assessed Health Status"])

ans=5×3 table
 Age Smoker Self-Assessed Health Status
 ___ ______ ___________________________

 Smith 38 true Excellent
 Johnson 43 false Fair
 Williams 38 false Good
 Jones 40 false Fair
 Brown 49 false Good

 Access Data in Tables

9-39

Specify Row or Variable Names Using Patterns

When you specify table row or variable names, you can use a pattern that defines a rule for matching
text. For example, you can match variable names that start with "Var" followed by any digits. You
can build pattern expressions using pattern objects, strings, and operators.

For example, index into T by row name to find all rows where the last name of the patient begins with
the letter G. To match any letters after G use the wildcardPattern function.

beginsWithG = "G" + wildcardPattern

beginsWithG = pattern
 Matching:

 "G" + wildcardPattern

T(beginsWithG,:)

ans=6×5 table
 Age Height Weight Smoker Self-Assessed Health Status
 ___ ______ ______ ______ ___________________________

 Garcia 27 69 131 true Fair
 Green 44 71 193 false Good
 Gonzalez 35 66 118 false Fair
 Gray 31 64 130 false Excellent
 Gonzales 48 71 174 false Good
 Griffin 49 70 186 false Fair

Index into T by variable name to find any name that contains Status as part of the name.

containsStatus = wildcardPattern + "Status" + wildcardPattern;
T(1:5,containsStatus)

ans=5×1 table
 Self-Assessed Health Status

 Smith Excellent
 Johnson Fair
 Williams Good
 Jones Fair
 Brown Good

Index by Data Type of Variables

Instead of specifying variables using names or numbers, you can create a data type subscript that
matches all variables having the same data type.

First, create a data type subscript to match numeric table variables by using the vartype function.

subscriptObject = vartype("numeric")

subscriptObject =
 table vartype subscript:

9 Tables

9-40

 Select table variables matching the type 'numeric'

 See Access Data in a Table.

Create a table that has only the numeric variables from T. The Smoker variable is a logical variable
and Self-Assessed Health Status is a categorical variable so they are excluded.

onlyNumericVariables = T(:,subscriptObject)

onlyNumericVariables=100×3 table
 Age Height Weight
 ___ ______ ______

 Smith 38 71 176
 Johnson 43 69 163
 Williams 38 64 131
 Jones 40 67 133
 Brown 49 64 119
 Davis 46 68 142
 Miller 33 64 142
 Wilson 40 68 180
 Moore 28 68 183
 Taylor 31 66 132
 Anderson 45 68 128
 Thomas 42 66 137
 Jackson 25 71 174
 White 39 72 202
 Harris 36 65 129
 Martin 48 71 181
 ⋮

Find Rows Where Values Meet Logical Conditions

Create another, smaller table from the data in the patients MAT-file.

load patients.mat
T = table(Age,Height,Weight,Smoker);

To find the rows of a table where values meet a logical condition, use logical indexing. First use dot
notation to access table variables. Then you can create an array of logical indices where values in the
variables meet a condition that you specify. Index into the table using the logical indices.

Extract Data from Table Variable Using Dot Notation

To extract data from a table variable, use dot notation.

For example, plot a histogram of numeric values from the table variable Weight. With dot notation,
you can treat T.Weight as a numeric array. T.Weight is a double-precision column vector with 100
rows.

histogram(T.Weight)
title("Patient Weights")

 Access Data in Tables

9-41

Index into Rows That Meet Logical Conditions

You can index into an array or a table using an array of logical indices. Typically, you use a logical
expression that determines which values in a table variable meet a logical condition. The result of the
expression is an array of logical indices.

For example, create logical indices matching patients whose age is less than 40.

rows = T.Age < 40

rows = 100x1 logical array

 1
 0
 1
 0
 0
 0
 1
 0
 1
 1
 ⋮

To extract heights for patients whose age is less than 40, index into the Height variable using rows.
There are 56 patients younger than 40.

9 Tables

9-42

T.Height(rows)

ans = 56×1

 71
 64
 64
 68
 66
 71
 72
 65
 69
 69
 ⋮

You can index into a table with logical indices. Display the rows of T for the patients who are younger
than 40.

T(rows,:)

ans=56×4 table
 Age Height Weight Smoker
 ___ ______ ______ ______

 38 71 176 true
 38 64 131 false
 33 64 142 true
 28 68 183 false
 31 66 132 false
 25 71 174 false
 39 72 202 true
 36 65 129 false
 32 69 191 true
 27 69 131 true
 37 70 179 false
 39 64 117 false
 28 65 123 true
 25 70 189 false
 39 63 143 false
 25 63 114 false
 ⋮

You can match multiple conditions with one logical expression. Display the rows for smoking patients
younger than 40.

rows = (T.Smoker==true & T.Age<40);
T(rows,:)

ans=18×4 table
 Age Height Weight Smoker
 ___ ______ ______ ______

 38 71 176 true
 33 64 142 true
 39 72 202 true
 32 69 191 true

 Access Data in Tables

9-43

 27 69 131 true
 28 65 123 true
 30 67 186 true
 33 66 180 true
 39 71 164 true
 37 70 194 true
 33 67 115 true
 31 72 178 true
 28 69 189 true
 39 68 182 true
 37 65 120 true
 31 66 141 true
 ⋮

Dot Notation with Any Variable Name or Expression

When you index using dot notation, there are two ways to specify a variable.

• By name, without quotation marks. For example, T.Date specifies a variable named "Date".
• By an expression, where the expression is enclosed by parentheses after the dot. For example, T.

("Start Date") specifies a variable named "Start Date".

Use the first syntax when a table variable name also happens to be a valid MATLAB® identifier. (A
valid identifier starts with a letter and includes only letters, digits, and underscores.)

Use the second syntax when you specify:

• A number that indicates the position of the variable in the table.
• A variable name that isn't a valid MATLAB identifier.
• A function whose output is the name of a variable in the table, or a variable you add to the table.

The output of the function must be a character vector or a string scalar.

For example, create a table from the patients MAT-file. Then use dot notation to access the
contents of table variables.

load patients

T = table(Age,Height,Weight,Smoker);

To specify a variable by position in the table, use a number. Age is the first variable in T, so use the
number 1 to specify its position.

T.(1)

ans = 100×1

 38
 43
 38
 40
 49
 46
 33

9 Tables

9-44

 40
 28
 31
 ⋮

To specify a variable by name, either specify it after the dot or enclose it in quotation marks and
parentheses. Since Age is a valid identifier, you can specify it using either T.Age or T.("Age").

T.Age

ans = 100×1

 38
 43
 38
 40
 49
 46
 33
 40
 28
 31
 ⋮

You can specify table variable names that are not valid MATLAB identifiers. Variable names can
include spaces and non-ASCII characters, and can start with any character. However, when you use
dot notation to access a table variable with such a name, you must specify it using quotation marks
and parentheses.

For example, add a variable name with spaces and a hyphen to T.

SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus);
T = addvars(T,SelfAssessedHealthStatus,'NewVariableNames',"Self-Assessed Health Status");
T(1:5,:)

ans=5×5 table
 Age Height Weight Smoker Self-Assessed Health Status
 ___ ______ ______ ______ ___________________________

 38 71 176 true Excellent
 43 69 163 false Fair
 38 64 131 false Good
 40 67 133 false Fair
 49 64 119 false Good

Access the new table variable using dot notation. Display the first five elements.

healthStatus = T.("Self-Assessed Health Status");
healthStatus(1:5)

ans = 5x1 categorical
 Excellent
 Fair
 Good
 Fair

 Access Data in Tables

9-45

 Good

You also can use the output of a function as a variable name. Delete the T.("Self-Assessed
Health Status") variable. Then replace it with a variable whose name includes the current date.

T.("Self-Assessed Health Status") = [];
T.(string(datetime("today")) + " Self Report") = SelfAssessedHealthStatus;
T(1:5,:)

ans=5×5 table
 Age Height Weight Smoker 26-Nov-2022 Self Report
 ___ ______ ______ ______ _______________________

 38 71 176 true Excellent
 43 69 163 false Fair
 38 64 131 false Good
 40 67 133 false Fair
 49 64 119 false Good

Extract Data from Specified Rows and Variables

Indexing with curly braces extracts data from a table and results in an array, not a subtable. But
other than that difference, you can specify rows and variables using numbers, names, and data type
subscripts, just as you can when you index using smooth parentheses. To extract values from a table,
use curly braces. If you extract values from multiple table variables, then the variables must have
data types that allow them to be concatenated together.

Specify Rows and Variables

Create a table from numeric and logical arrays from the patients file.

load patients

T = table(Age,Height,Weight,Smoker,...
 'RowNames',LastName);

Extract data from multiple variables in T. Unlike dot notation, indexing with curly braces can extract
values from multiple table variables and concatenate them into one array.

Extract the height and weight for the first five patients. Use numeric indices to select the first five
rows, and variable names to select the variables Height and Weight.

A = T{1:5,["Height","Weight"]}

A = 5×2

 71 176
 69 163
 64 131
 67 133
 64 119

A is a 5-by-2 numeric array, not a table.

9 Tables

9-46

If you specify one variable name, then curly brace indexing results in the same array you can get with
dot notation. However, you must specify both rows and variables when you use curly brace indexing.
For example, the syntaxes T.Height and T{:,"Height"} return the same array.

Extract Data from All Rows and Variables

If all the table variables have data types that allow them to be concatenated together, then you can
use the T.Variables syntax to put all the table data into an array. This syntax is equivalent to
T{:,:} where the colons indicate all rows and all variables. If the table has row names, they are not
included in the output from T.Variables. Row names are not stored in a table variable. Row names
are part of the metadata that describes a table.

A2 = T.Variables

A2 = 100×4

 38 71 176 1
 43 69 163 0
 38 64 131 0
 40 67 133 0
 49 64 119 0
 46 68 142 0
 33 64 142 1
 40 68 180 0
 28 68 183 0
 31 66 132 0
 ⋮

See Also
table | histogram | addvars | vartype | renamevars

Related Examples
• “Advantages of Using Tables” on page 9-71
• “Create Tables and Assign Data to Them” on page 9-2
• “Modify Units, Descriptions, and Table Variable Names” on page 9-24
• “Calculations on Data in Tables” on page 9-48
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99
• “Find Array Elements That Meet a Condition” on page 5-2

 Access Data in Tables

9-47

Calculations on Data in Tables

This example shows how to perform calculations on data in tables. Tables can contain both numeric
and nonnumeric data. After you identify the table variables that contain numeric data, you can access
the data in those variables by using either curly braces or dot notation. Then you can perform
arithmetic operations or call functions on the numeric data and assign the result back into the table,
all in one line of code. You also can use the rowfun function for calculations across the rows of a
table and the varfun function for calculations along the variables. If your table has groups of data
within it, you can use the groupsummary, rowfun, and varfun functions to perform calculations for
each group in the table.

Read Sample Data into Table

Read data from a CSV (comma-separated values) file, testScores.csv, into a table by using the
readtable function. The sample file contains test scores for 10 students who attend two different
schools. The output table contains variables that have numeric data and other variables that have text
data. One of these variables, School, has a fixed set of values or categories. These categories denote
two groups of students within this table. Convert School to a categorical variable.

scores = readtable("testScores.csv","TextType","string");
scores.School = categorical(scores.School)

scores=10×5 table
 LastName School Test1 Test2 Test3
 __________ __________ _____ _____ _____

 "Jeong" XYZ School 90 87 93
 "Collins" XYZ School 87 85 83
 "Torres" XYZ School 86 85 88
 "Phillips" ABC School 75 80 72
 "Ling" ABC School 89 86 87
 "Ramirez" ABC School 96 92 98
 "Lee" XYZ School 78 75 77
 "Walker" ABC School 91 94 92
 "Garcia" ABC School 86 83 85
 "Chang" XYZ School 79 76 82

Create Subtable with Numeric Data

Create a subtable that has only the numeric data. Because the first two variables have nonnumeric
data, one straightforward way is to index into the table specifying the other variables.

numericScores = scores(:,3:end)

numericScores=10×3 table
 Test1 Test2 Test3
 _____ _____ _____

 90 87 93
 87 85 83
 86 85 88
 75 80 72
 89 86 87
 96 92 98

9 Tables

9-48

 78 75 77
 91 94 92
 86 83 85
 79 76 82

As an alternative, you can specify variables by data type using the vartype function. This function is
useful when you have a large table with many variables that have different data types. It returns a
subscript that you can use to specify table variables.

numericVars = vartype("numeric")

numericVars =
 table vartype subscript:

 Select table variables matching the type 'numeric'

 See Access Data in a Table.

numericScores = scores(:,numericVars)

numericScores=10×3 table
 Test1 Test2 Test3
 _____ _____ _____

 90 87 93
 87 85 83
 86 85 88
 75 80 72
 89 86 87
 96 92 98
 78 75 77
 91 94 92
 86 83 85
 79 76 82

Perform Arithmetic and Call Functions on Table Data

The test scores are based on a 100-point scale. To convert them to scores on a different scale,
multiply the scores by the same factor.

However, you cannot use the same syntax that you would use for a numeric array. Instead, extract the
data into an array, scale it, and assign it back into the table. In this way, you can perform arithmetic
operations or call functions on the contents of a table in one line of code.

To extract the contents of a table, use curly braces. For example, this syntax specifies all rows and all
table variables of numericScores and returns the result as a numeric matrix. As long as the table
variables have compatible data types, you can concatenate their contents in this way.

A = numericScores{:,:}

A = 10×3

 90 87 93
 87 85 83
 86 85 88

 Calculations on Data in Tables

9-49

 75 80 72
 89 86 87
 96 92 98
 78 75 77
 91 94 92
 86 83 85
 79 76 82

If a matrix has the same size as a table and a compatible data type, you can assign the matrix to the
contents of the table.

Scale the numeric data so the test scores are on a 25-point scale, and assign it back into the table.

numericScores{:,:} = numericScores{:,:} * 0.25

numericScores=10×3 table
 Test1 Test2 Test3
 _____ _____ _____

 22.5 21.75 23.25
 21.75 21.25 20.75
 21.5 21.25 22
 18.75 20 18
 22.25 21.5 21.75
 24 23 24.5
 19.5 18.75 19.25
 22.75 23.5 23
 21.5 20.75 21.25
 19.75 19 20.5

As an alternative to curly braces, you can use T.Variables to specify all table variables.
T.Variables represents the same thing as T{:,:} syntax.

For example, subtract the minimum value within each table variable from that variable.

numericScores.Variables = numericScores.Variables - min(numericScores.Variables)

numericScores=10×3 table
 Test1 Test2 Test3
 _____ _____ _____

 3.75 3 5.25
 3 2.5 2.75
 2.75 2.5 4
 0 1.25 0
 3.5 2.75 3.75
 5.25 4.25 6.5
 0.75 0 1.25
 4 4.75 5
 2.75 2 3.25
 1 0.25 2.5

You can perform calculations on one variable at a time by using dot notation and variable names. For
example, add a correction worth five points to the last set of scores in Test3. The other table
variables are unaffected by this operation.

9 Tables

9-50

numericScores.Test3 = numericScores.Test3 + 5

numericScores=10×3 table
 Test1 Test2 Test3
 _____ _____ _____

 3.75 3 10.25
 3 2.5 7.75
 2.75 2.5 9
 0 1.25 5
 3.5 2.75 8.75
 5.25 4.25 11.5
 0.75 0 6.25
 4 4.75 10
 2.75 2 8.25
 1 0.25 7.5

Calculate Across Each Table Row

Find the mean, minimum, and maximum values of the test scores for each student. Calculate these
values across each row. Assign them to the original table as new table variables.

One simple, useful way is to extract the data into a matrix, call a function on it, and then assign the
output to a new table variable. For example, calculate the mean test scores across each row. Then
add them to scores in a new table variable, TestMean. Use curly braces to extract the numeric data
from Test1, Test2, and Test3 into a matrix. To calculate the mean across rows, specify the
dimension as 2 when you call mean.

vars = ["Test1","Test2","Test3"];
scores.TestMean = mean(scores{:,vars},2)

scores=10×6 table
 LastName School Test1 Test2 Test3 TestMean
 __________ __________ _____ _____ _____ ________

 "Jeong" XYZ School 90 87 93 90
 "Collins" XYZ School 87 85 83 85
 "Torres" XYZ School 86 85 88 86.333
 "Phillips" ABC School 75 80 72 75.667
 "Ling" ABC School 89 86 87 87.333
 "Ramirez" ABC School 96 92 98 95.333
 "Lee" XYZ School 78 75 77 76.667
 "Walker" ABC School 91 94 92 92.333
 "Garcia" ABC School 86 83 85 84.667
 "Chang" XYZ School 79 76 82 79

Another way to perform calculations across rows is to use the rowfun function. You do not need to
extract data from the table when using rowfun. Instead, pass the table and a function to apply to the
data as input arguments to rowfun. While the syntax is a little more complex, rowfun can be useful
when the function that you apply takes multiple input arguments or returns multiple output
arguments.

For example, use the bounds function to find the minimum and maximum test scores. The bounds
function returns two output arguments, so apply it to scores by using rowfun. The output of
rowfun is a new table that has TestMin and TestMax variables. In this case, also specify

 Calculations on Data in Tables

9-51

"SeparateInputs" as false so that values across each row are combined into a vector before
being passed to bounds.

minmaxTest = rowfun(@bounds, ...
 scores, ...
 "InputVariables",vars, ...
 "OutputVariableNames",["TestMin","TestMax"], ...
 "SeparateInputs",false)

minmaxTest=10×2 table
 TestMin TestMax
 _______ _______

 87 93
 83 87
 85 88
 72 80
 86 89
 92 98
 75 78
 91 94
 83 86
 76 82

Concatenate scores and minmaxTest so that these values are in one table.

scores = [scores minmaxTest]

scores=10×8 table
 LastName School Test1 Test2 Test3 TestMean TestMin TestMax
 __________ __________ _____ _____ _____ ________ _______ _______

 "Jeong" XYZ School 90 87 93 90 87 93
 "Collins" XYZ School 87 85 83 85 83 87
 "Torres" XYZ School 86 85 88 86.333 85 88
 "Phillips" ABC School 75 80 72 75.667 72 80
 "Ling" ABC School 89 86 87 87.333 86 89
 "Ramirez" ABC School 96 92 98 95.333 92 98
 "Lee" XYZ School 78 75 77 76.667 75 78
 "Walker" ABC School 91 94 92 92.333 91 94
 "Garcia" ABC School 86 83 85 84.667 83 86
 "Chang" XYZ School 79 76 82 79 76 82

Calculate Along Each Table Variable

Find the mean score for each test. Calculate these values along the table variables.

The simplest way is to use mean. First use curly braces to extract the numeric data from Test1,
Test2, and Test3 into a matrix. Then call mean to calculate the mean of each column of the matrix.
The output is a numeric vector where each element is the mean of a table variable.

vars = ["Test1","Test2","Test3"];
meanOfEachTest = mean(scores{:,vars})

meanOfEachTest = 1×3

9 Tables

9-52

 85.7000 84.3000 85.7000

Another way to perform calculations along table variables is to use the varfun function. You do not
need to extract data from the table when using varfun. Instead, pass the table and a function to
apply to the data as input arguments to varfun.

Calculate the mean scores using varfun. The output is a new table with meaningful names for the
table variables.

meanOfEachTest = varfun(@mean, ...
 scores, ...
 "InputVariables",vars)

meanOfEachTest=1×3 table
 mean_Test1 mean_Test2 mean_Test3
 __________ __________ __________

 85.7 84.3 85.7

Calculate Using Groups of Data Within Table

If your table has one or more grouping variables, then you can perform calculations on groups of data
within the table. You can use the values in a grouping variable to specify the groups that the rows
belong to.

For example, the School variable in scores has two values, ABC School and XYZ School. You can
think of these two values as categories that denote groups of data in scores. In this case, you can
perform calculations by school.

To apply a function and use grouping variables, you can use the varfun function. You can specify a
function, such as mean, and then use varfun to apply it to each table variable that you specify. When
you also specify grouping variables, varfun applies the function to each group within each table
variable.

Calculate the mean score for each test by school.

vars = ["Test1","Test2","Test3"];
meanScoresBySchool = varfun(@mean, ...
 scores, ...
 "InputVariables",vars, ...
 "GroupingVariables","School")

meanScoresBySchool=2×5 table
 School GroupCount mean_Test1 mean_Test2 mean_Test3
 __________ __________ __________ __________ __________

 ABC School 5 87.4 87 86.8
 XYZ School 5 84 81.6 84.6

Starting in R2018a, you also can use the groupsummary function to perform calculations on groups
of data in each table variable.

meanScoresBySchool = groupsummary(scores,"School","mean",vars)

meanScoresBySchool=2×5 table
 School GroupCount mean_Test1 mean_Test2 mean_Test3

 Calculations on Data in Tables

9-53

 __________ __________ __________ __________ __________

 ABC School 5 87.4 87 86.8
 XYZ School 5 84 81.6 84.6

The syntax for groupsummary is a bit simpler. Also, you can use groupsummary to specify multiple
methods at once. For example, find both the minimum and maximum scores of each test by school.

minmaxBySchool = groupsummary(scores,"School",["min","max"],vars)

minmaxBySchool=2×8 table
 School GroupCount min_Test1 max_Test1 min_Test2 max_Test2 min_Test3 max_Test3
 __________ __________ _________ _________ _________ _________ _________ _________

 ABC School 5 75 96 80 94 72 98
 XYZ School 5 78 90 75 87 77 93

To use all the predefined methods of groupsummary, specify "all" as the method. Calculate all
statistics on the mean test score by school.

allStatsBySchool = groupsummary(scores,"School","all","TestMean")

allStatsBySchool=2×13 table
 School GroupCount mean_TestMean sum_TestMean min_TestMean max_TestMean range_TestMean median_TestMean mode_TestMean var_TestMean std_TestMean nummissing_TestMean nnz_TestMean
 __________ __________ _____________ ____________ ____________ ____________ ______________ _______________ _____________ ____________ ____________ ___________________ ____________

 ABC School 5 87.067 435.33 75.667 95.333 19.667 87.333 75.667 57.967 7.6136 0 5
 XYZ School 5 83.4 417 76.667 90 13.333 85 76.667 29.856 5.464 0 5

Sometimes you might want to find a particular value in one table variable and then find the
corresponding value in another table variable. In such cases use rowfun.

For example, find the student in each school who had the highest mean test score. The attached
supporting function, findNameAtMax, returns both the highest score and the name of the student
who had that score. Use rowfun to apply findNameAtMax to each group of students. The rowfun
function is suitable because findNameAtMax has multiple input arguments (last names and test
scores) and also returns multiple output arguments.

maxScoresBySchool = rowfun(@findNameAtMax, ...
 scores, ...
 "InputVariables",["LastName","TestMean"], ...
 "GroupingVariables","School", ...
 "OutputVariableNames",["max_TestMean","LastName"])

maxScoresBySchool=2×4 table
 School GroupCount max_TestMean LastName
 __________ __________ ____________ _________

 ABC School 5 95.333 "Ramirez"
 XYZ School 5 90 "Jeong"

Supporting Function
function [maxValue,lastName] = findNameAtMax(names,values)
 % Return maximum value and the last name

9 Tables

9-54

 % from the row at which the maximum value occurred
 [maxValue,maxIndex] = max(values);
 lastName = names(maxIndex);
end

See Also
table | rowfun | varfun | groupsummary | readtable | vartype

Related Examples
• “Access Data in Tables” on page 9-32
• “Clean Messy and Missing Data in Tables” on page 9-18
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99

 Calculations on Data in Tables

9-55

Split Data into Groups and Calculate Statistics

This example shows how to split data from the patients.mat data file into groups. Then it shows
how to calculate mean weights and body mass indices, and variances in blood pressure readings, for
the groups of patients. It also shows how to summarize the results in a table.

Load Patient Data

Load sample data gathered from 100 patients.

load patients

Convert Gender and SelfAssessedHealthStatus to categorical arrays.

Gender = categorical(Gender);
SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus);
whos

 Name Size Bytes Class Attributes

 Age 100x1 800 double
 Diastolic 100x1 800 double
 Gender 100x1 330 categorical
 Height 100x1 800 double
 LastName 100x1 11616 cell
 Location 100x1 14208 cell
 SelfAssessedHealthStatus 100x1 560 categorical
 Smoker 100x1 100 logical
 Systolic 100x1 800 double
 Weight 100x1 800 double

Calculate Mean Weights

Split the patients into nonsmokers and smokers using the Smoker variable. Calculate the mean
weight for each group.

[G,smoker] = findgroups(Smoker);
meanWeight = splitapply(@mean,Weight,G)

meanWeight = 2×1

 149.9091
 161.9412

The findgroups function returns G, a vector of group numbers created from Smoker. The
splitapply function uses G to split Weight into two groups. splitapply applies the mean function
to each group and concatenates the mean weights into a vector.

findgroups returns a vector of group identifiers as the second output argument. The group
identifiers are logical values because Smoker contains logical values. The patients in the first group
are nonsmokers, and the patients in the second group are smokers.

smoker

smoker = 2x1 logical array

9 Tables

9-56

 0
 1

Split the patient weights by both gender and status as a smoker and calculate the mean weights.

G = findgroups(Gender,Smoker);
meanWeight = splitapply(@mean,Weight,G)

meanWeight = 4×1

 130.3250
 130.9231
 180.0385
 181.1429

The unique combinations across Gender and Smoker identify four groups of patients: female
nonsmokers, female smokers, male nonsmokers, and male smokers. Summarize the four groups and
their mean weights in a table.

[G,gender,smoker] = findgroups(Gender,Smoker);
T = table(gender,smoker,meanWeight)

T=4×3 table
 gender smoker meanWeight
 ______ ______ __________

 Female false 130.32
 Female true 130.92
 Male false 180.04
 Male true 181.14

T.gender contains categorical values, and T.smoker contains logical values. The data types of these
table variables match the data types of Gender and Smoker respectively.

Calculate body mass index (BMI) for the four groups of patients. Define a function that takes Height
and Weight as its two input arguments, and that calculates BMI.

meanBMIfcn = @(h,w)mean((w ./ (h.^2)) * 703);
BMI = splitapply(meanBMIfcn,Height,Weight,G)

BMI = 4×1

 21.6721
 21.6686
 26.5775
 26.4584

Group Patients Based on Self-Reports

Calculate the fraction of patients who report their health as either Poor or Fair. First, use
splitapply to count the number of patients in each group: female nonsmokers, female smokers,
male nonsmokers, and male smokers. Then, count only those patients who report their health as
either Poor or Fair, using logical indexing on S and G. From these two sets of counts, calculate the
fraction for each group.

 Split Data into Groups and Calculate Statistics

9-57

[G,gender,smoker] = findgroups(Gender,Smoker);
S = SelfAssessedHealthStatus;
I = ismember(S,{'Poor','Fair'});
numPatients = splitapply(@numel,S,G);
numPF = splitapply(@numel,S(I),G(I));
numPF./numPatients

ans = 4×1

 0.2500
 0.3846
 0.3077
 0.1429

Compare the standard deviation in Diastolic readings of those patients who report Poor or Fair
health, and those patients who report Good or Excellent health.

stdDiastolicPF = splitapply(@std,Diastolic(I),G(I));
stdDiastolicGE = splitapply(@std,Diastolic(~I),G(~I));

Collect results in a table. For these patients, the female nonsmokers who report Poor or Fair health
show the widest variation in blood pressure readings.

T = table(gender,smoker,numPatients,numPF,stdDiastolicPF,stdDiastolicGE,BMI)

T=4×7 table
 gender smoker numPatients numPF stdDiastolicPF stdDiastolicGE BMI
 ______ ______ ___________ _____ ______________ ______________ ______

 Female false 40 10 6.8872 3.9012 21.672
 Female true 13 5 5.4129 5.0409 21.669
 Male false 26 8 4.2678 4.8159 26.578
 Male true 21 3 5.6862 5.258 26.458

See Also
findgroups | splitapply

Related Examples
• “Grouping Variables To Split Data” on page 9-76
• “Perform Calculations by Group in Table” on page 9-59
• “Data Cleaning and Calculations in Tables” on page 9-81

9 Tables

9-58

Perform Calculations by Group in Table

You can perform calculations on groups of data within table variables by using these functions:

• groupsummary, groupcounts, groupfilter, and grouptransform
• varfun and rowfun
• findgroups and splitapply

In most cases, groupsummary is the recommended function for grouped calculations. It is simple to
use and returns a table with labels that describe results. The other listed functions, however, also
offer capabilities that can be useful in some situations.

Create Table from File

The sample spreadsheet outages.csv contains data values that represent electric utility power
outages in the United States. To create a table from the file, use the readtable function. To read
text data from the file into table variables that are string arrays, specify the TextType name-value
argument as "string".

outages = readtable("outages.csv","TextType","string")

outages=1468×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 ___________ ________________ ______ __________ ________________ _________________

 "SouthWest" 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 "winter storm"
 "SouthEast" 2003-01-23 00:49 530.14 2.1204e+05 NaT "winter storm"
 "SouthEast" 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 "winter storm"
 "West" 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 "equipment fault"
 "MidWest" 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 "severe storm"
 "West" 2003-06-18 02:49 0 0 2003-06-18 10:54 "attack"
 "West" 2004-06-20 14:39 231.29 NaN 2004-06-20 19:16 "equipment fault"
 "West" 2002-06-06 19:28 311.86 NaN 2002-06-07 00:51 "equipment fault"
 "NorthEast" 2003-07-16 16:23 239.93 49434 2003-07-17 01:12 "fire"
 "MidWest" 2004-09-27 11:09 286.72 66104 2004-09-27 16:37 "equipment fault"
 "SouthEast" 2004-09-05 17:48 73.387 36073 2004-09-05 20:46 "equipment fault"
 "West" 2004-05-21 21:45 159.99 NaN 2004-05-22 04:23 "equipment fault"
 "SouthEast" 2002-09-01 18:22 95.917 36759 2002-09-01 19:12 "severe storm"
 "SouthEast" 2003-09-27 07:32 NaN 3.5517e+05 2003-10-04 07:02 "severe storm"
 "West" 2003-11-12 06:12 254.09 9.2429e+05 2003-11-17 02:04 "winter storm"
 "NorthEast" 2004-09-18 05:54 0 0 NaT "equipment fault"
 ⋮

Create categorical Variables for Grouped Calculations

Table variables can have any data type. But conceptually, you can also think of tables as having two
general kinds of variables: data variables and grouping variables.

• Data variables enable you to describe individual events or observations. For example, in outages
you can think of the OutageTime, Loss, Customers, and RestorationTime variables as data
variables.

• Grouping variables enable you to group together events or observations that have something in
common. For example, in outages you can think of the Region and Cause variables as grouping

 Perform Calculations by Group in Table

9-59

variables. You can group together and analyze the power outages that occur in the same region or
share the same cause.

Often, grouping variables contain a discrete set of fixed values that specify categories. The categories
specify groups that data values can belong to. The categorical data type can be a convenient type
for working with categories.

To convert Region and Cause to categorical variables, use the convertvars function.

outages = convertvars(outages,["Region","Cause"],"categorical")

outages=1468×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 _________ ________________ ______ __________ ________________ _______________

 SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
 SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
 SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm
 West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
 MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm
 West 2003-06-18 02:49 0 0 2003-06-18 10:54 attack
 West 2004-06-20 14:39 231.29 NaN 2004-06-20 19:16 equipment fault
 West 2002-06-06 19:28 311.86 NaN 2002-06-07 00:51 equipment fault
 NorthEast 2003-07-16 16:23 239.93 49434 2003-07-17 01:12 fire
 MidWest 2004-09-27 11:09 286.72 66104 2004-09-27 16:37 equipment fault
 SouthEast 2004-09-05 17:48 73.387 36073 2004-09-05 20:46 equipment fault
 West 2004-05-21 21:45 159.99 NaN 2004-05-22 04:23 equipment fault
 SouthEast 2002-09-01 18:22 95.917 36759 2002-09-01 19:12 severe storm
 SouthEast 2003-09-27 07:32 NaN 3.5517e+05 2003-10-04 07:02 severe storm
 West 2003-11-12 06:12 254.09 9.2429e+05 2003-11-17 02:04 winter storm
 NorthEast 2004-09-18 05:54 0 0 NaT equipment fault
 ⋮

Calculate Statistics by Group in Table

You can calculate statistics by group in a table using functions such as groupsummary, varfun, and
splitapply. These functions enable you to specify groups of data within a table and methods that
perform calculations on each group. You can store the results in another table or in output arrays.

For example, determine the mean power loss and customers affected due to the outages in each
region in the outages table. The recommended way to perform this calculation is to use the
groupsummary function. Specify Region as the grouping variable, mean as the method to apply to
each group, and Loss and Customers as the data variables. The output lists the regions (in the
Region variable), the number of power outages per region (in the GroupCount variable), and the
mean power loss and customers affected in each region (in the mean_Loss and mean_Customers
variables, respectively).

meanLossByRegion = groupsummary(outages,"Region","mean",["Loss","Customers"])

meanLossByRegion=5×4 table
 Region GroupCount mean_Loss mean_Customers
 _________ __________ _________ ______________

 MidWest 142 1137.7 2.4015e+05
 NorthEast 557 551.65 1.4917e+05
 SouthEast 389 495.35 1.6776e+05

9 Tables

9-60

 SouthWest 26 493.88 2.6975e+05
 West 354 433.37 1.5201e+05

The groupsummary function is recommended for several reasons:

• You can specify many common methods (such as max, min, and mean) by name, without using
function handles.

• You can specify multiple methods in one call.
• NaNs, NaTs, and other missing values in the data variables are automatically omitted when

calculating results.

The third point explains why the mean_Loss and mean_Customers variables do not have NaNs in the
meanLossByRegion output table.

To specify multiple methods in one call to groupsummary, list them in an array. For example,
calculate the maximum, mean, and minimum power loss by region.

lossStatsByRegion = groupsummary(outages,"Region",["max","mean","min"],"Loss")

lossStatsByRegion=5×5 table
 Region GroupCount max_Loss mean_Loss min_Loss
 _________ __________ ________ _________ ________

 MidWest 142 23141 1137.7 0
 NorthEast 557 23418 551.65 0
 SouthEast 389 8767.3 495.35 0
 SouthWest 26 2796 493.88 0
 West 354 16659 433.37 0

The minimum loss in every region is zero. To analyze only those outages that resulted in losses
greater than zero, exclude the rows in outages where the loss is zero. First create a vector of logical
indices whose values are logical 1 (true) for rows where outages.Loss is greater than zero. Then
index into outages to return a table that includes only those rows. Again, calculate the maximum,
mean, and minimum power loss by region.

nonZeroLossIndices = outages.Loss > 0;
nonZeroLossOutages = outages(nonZeroLossIndices,:);
nonZeroLossStats = groupsummary(nonZeroLossOutages,"Region",["max","mean","min"],"Loss")

nonZeroLossStats=5×5 table
 Region GroupCount max_Loss mean_Loss min_Loss
 _________ __________ ________ _________ ________

 MidWest 81 23141 1264.1 8.9214
 NorthEast 180 23418 827.47 0.74042
 SouthEast 234 8767.3 546.16 2.3096
 SouthWest 23 2796 515.35 27.882
 West 175 16659 549.76 0.71847

Use Alternative Functions for Grouped Calculations

There are alternative functions that perform grouped calculations in tables. While groupsummary is
recommended, the alternative functions are also useful in some situations.

 Perform Calculations by Group in Table

9-61

• The varfun function performs calculations on variables. It is similar to groupsummary, but
varfun can perform both grouped and ungrouped calculations.

• The rowfun function performs calculations along rows. You can specify methods that take
multiple inputs or that return multiple outputs.

• The findgroups and splitapply functions can perform calculations on variables or along rows.
You can specify methods that take multiple inputs or that return multiple outputs. The outputs of
splitapply are arrays, not tables.

Call varfun on Variables

For example, calculate the maximum power loss by region using varfun. The output table has a
similar format to the output of groupsummary.

maxLossByVarfun = varfun(@max, ...
 outages, ...
 "InputVariables","Loss", ...
 "GroupingVariables","Region")

maxLossByVarfun=5×3 table
 Region GroupCount max_Loss
 _________ __________ ________

 MidWest 142 23141
 NorthEast 557 23418
 SouthEast 389 8767.3
 SouthWest 26 2796
 West 354 16659

However, there are significant differences when you use varfun:

• You must always specify the method by using a function handle.
• You can specify only one method.
• You can perform grouped or ungrouped calculations.
• NaNs, NaTs, and other missing values in the data variables are automatically included when

calculating results.

The last point is a significant difference in behavior between groupsummary and varfun. For
example, the Loss variable has NaNs. If you use varfun to calculate the mean losses, then by default
the results are NaNs, unlike the default groupsummary results.

meanLossByVarfun = varfun(@mean, ...
 outages, ...
 "InputVariables","Loss", ...
 "GroupingVariables","Region")

meanLossByVarfun=5×3 table
 Region GroupCount mean_Loss
 _________ __________ _________

 MidWest 142 NaN
 NorthEast 557 NaN
 SouthEast 389 NaN
 SouthWest 26 NaN
 West 354 NaN

9 Tables

9-62

To omit missing values when using varfun, wrap the method in an anonymous function so that you
can specify the "omitnan" option.

omitnanMean = @(x)(mean(x,"omitnan"));

meanLossOmitNaNs = varfun(omitnanMean, ...
 outages, ...
 "InputVariables","Loss", ...
 "GroupingVariables","Region")

meanLossOmitNaNs=5×3 table
 Region GroupCount Fun_Loss
 _________ __________ ________

 MidWest 142 1137.7
 NorthEast 557 551.65
 SouthEast 389 495.35
 SouthWest 26 493.88
 West 354 433.37

Another point refers to a different but related use case, which is to perform ungrouped calculations
on table variables. To apply a method to all table variables without grouping, use varfun. For
example, calculate the maximum power loss and the maximum number of customers affected in the
entire table.

maxValuesInOutages = varfun(@max, ...
 outages, ...
 "InputVariables",["Loss","Customers"])

maxValuesInOutages=1×2 table
 max_Loss max_Customers
 ________ _____________

 23418 5.9689e+06

Call rowfun on Rows

The rowfun function applies a method along the rows of a table. Where varfun applies a method to
each specified variable, one by one, rowfun takes all specified table variables as input arguments to
the method and applies the method once.

For example, calculate the median loss per customer in each region. To perform this calculation, first
specify a function that takes two input arguments (loss and customers), divides the loss by the
number of customers, and then returns the median.

medianLossCustFcn = @(loss,customers)(median(loss ./ customers,"omitnan"));

Then call rowfun. You can specify a meaningful output variable name by using the
OutputVariablesNames name-value argument.

meanLossPerCustomer = rowfun(medianLossCustFcn, ...
 outages, ...
 "InputVariables",["Loss","Customers"], ...
 "GroupingVariables","Region", ...
 "OutputVariableNames","MedianLossPerCustomer")

 Perform Calculations by Group in Table

9-63

meanLossPerCustomer=5×3 table
 Region GroupCount MedianLossPerCustomer
 _________ __________ _____________________

 MidWest 142 0.0042139
 NorthEast 557 0.0028512
 SouthEast 389 0.0032057
 SouthWest 26 0.0026353
 West 354 0.002527

You can also use rowfun when the method returns multiple outputs. For example, use bounds to
calculate the minimum and maximum loss per region in one call to rowfun. The bounds function
returns two output arguments.

boundsLossPerRegion = rowfun(@bounds, ...
 outages, ...
 "InputVariables","Loss", ...
 "GroupingVariables","Region", ...
 "OutputVariableNames",["MinLoss","MaxLoss"])

boundsLossPerRegion=5×4 table
 Region GroupCount MinLoss MaxLoss
 _________ __________ _______ _______

 MidWest 142 0 23141
 NorthEast 557 0 23418
 SouthEast 389 0 8767.3
 SouthWest 26 0 2796
 West 354 0 16659

Call findgroups and splitapply on Variables or Rows

You can use the findgroups function to define groups and then use splitapply to apply a method
to each group. The findgroups function returns a vector of group numbers that identifies which
group a row of data is part of. The splitapply function returns a numeric array of the outputs of
the method applied to the groups.

For example, calculate the maximum power loss by region using findgroups and splitapply.

G = findgroups(outages.Region)

G = 1468×1

 4
 3
 3
 5
 1
 5
 5
 5
 2
 1
 ⋮

maxLossArray = splitapply(@max,outages.Loss,G)

9 Tables

9-64

maxLossArray = 5×1
104 ×

 2.3141
 2.3418
 0.8767
 0.2796
 1.6659

Like rowfun, splitapply enables you to specify methods that return multiple outputs. Calculate
both minima and maxima by using bounds.

[minLossArray,maxLossArray] = splitapply(@bounds,outages.Loss,G)

minLossArray = 5×1

 0
 0
 0
 0
 0

maxLossArray = 5×1
104 ×

 2.3141
 2.3418
 0.8767
 0.2796
 1.6659

You can also specify methods that take multiple inputs. For example, use the medianLossCustFcn
function again to calculate the median loss per customer. But this time, return the median loss per
customer in each region as an array.

medianLossCustFcn = @(loss,customers)(median(loss ./ customers,"omitnan"));

medianLossArray = splitapply(medianLossCustFcn,outages.Loss,outages.Customers,G)

medianLossArray = 5×1

 0.0042
 0.0029
 0.0032
 0.0026
 0.0025

The numeric outputs of findgroups and splitapply are not annotated like the output of
groupsummary. However, returning numeric outputs can have other benefits:

• You can use the output of findgroups in multiple calls to splitapply. You might want to use
findgroups and splitapply for efficiency when you make many grouped calculations on a
large table.

 Perform Calculations by Group in Table

9-65

• You can create a results table with a different format by building it from the outputs of
findgroups and splitapply.

• You can call methods that return multiple outputs.
• You can append the outputs of splitapply to an existing table.

Append New Calculation to Existing Table

If you already have a table of results, you can append the results of another calculation to that table.
For example, calculate the mean duration of power outages in each region in hours. Append the mean
durations as a new variable to the lossStatsByRegion table.

First subtract the outage times from the restoration times to return the durations of the power
outages. Convert these durations to hours by using the hours function.

D = outages.RestorationTime - outages.OutageTime;
H = hours(D)

H = 1468×1
105 ×

 0.0015
 NaN
 0.0023
 0.0000
 0.0007
 0.0001
 0.0000
 0.0001
 0.0001
 0.0001
 ⋮

Next use mean to calculate the mean durations. The outage durations have some NaN values because
the outage and restoration times have some missing values. As before, wrap the method in an
anonymous function to specify the "omitnan" option.

omitnanMean = @(x)(mean(x,"omitnan"));

Calculate the mean duration of power outages by region. Append it to lossStatsByRegion as a new
table variable.

G = findgroups(outages.Region);
lossStatsByRegion.mean_Outage = splitapply(omitnanMean,H,G)

lossStatsByRegion=5×6 table
 Region GroupCount max_Loss mean_Loss min_Loss mean_Outage
 _________ __________ ________ _________ ________ ___________

 MidWest 142 23141 1137.7 0 819.25
 NorthEast 557 23418 551.65 0 581.04
 SouthEast 389 8767.3 495.35 0 40.83
 SouthWest 26 2796 493.88 0 59.519
 West 354 16659 433.37 0 673.45

9 Tables

9-66

Specify Groups as Bins

There is another way to specify groups. Instead of specifying categories as unique values in a
grouping variable, you can bin values in a variable where values are distributed continuously. Then
you can use those bins to specify groups.

For example, bin the power outages by year. To count the number of power outages per year, use the
groupcounts function.

outagesByYear = groupcounts(outages,"OutageTime","year")

outagesByYear=13×3 table
 year_OutageTime GroupCount Percent
 _______________ __________ _______

 2002 36 2.4523
 2003 62 4.2234
 2004 79 5.3815
 2005 74 5.0409
 2006 108 7.3569
 2007 91 6.1989
 2008 115 7.8338
 2009 142 9.673
 2010 177 12.057
 2011 190 12.943
 2012 207 14.101
 2013 186 12.67
 2014 1 0.06812

Visualize the number of outages per year. The number per year increases over time in this data set.

bar(outagesByYear.year_OutageTime,outagesByYear.GroupCount)

 Perform Calculations by Group in Table

9-67

You can use groupsummary with bins as groups. For example, calculate the median values for
customers affected and power losses by year.

medianLossesByYear = groupsummary(outages,"OutageTime","year","median",["Customers","Loss"])

medianLossesByYear=13×4 table
 year_OutageTime GroupCount median_Customers median_Loss
 _______________ __________ ________________ ___________

 2002 36 1.7101e+05 277.02
 2003 62 1.0204e+05 295.6
 2004 79 1.0108e+05 252.44
 2005 74 91536 265.16
 2006 108 86020 210.08
 2007 91 1.0529e+05 232.12
 2008 115 86356 205.77
 2009 142 63119 83.491
 2010 177 66212 155.76
 2011 190 48200 75.286
 2012 207 66994 78.289
 2013 186 55669 69.596
 2014 1 NaN NaN

Visualize the median number of customers affected by outages per year. Although the number of
outages increased over time, the median number of affected customers decreased.

plot(medianLossesByYear,"year_OutageTime","median_Customers")

9 Tables

9-68

Return the rows of outages for years with more than 75 outages. To index into outages by those
years, use the groupfilter function. To find the bins with more than 75 rows, specify an anonymous
function that returns a logical 1 if the number of rows in a bin is greater than 75.

outages75 = groupfilter(outages,"OutageTime","year",@(x) numel(x) > 75)

outages75=1295×7 table
 Region OutageTime Loss Customers RestorationTime Cause year_OutageTime
 _________ ________________ ______ __________ ________________ _______________ _______________

 West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 equipment fault 2004
 West 2004-06-20 14:39 231.29 NaN 2004-06-20 19:16 equipment fault 2004
 MidWest 2004-09-27 11:09 286.72 66104 2004-09-27 16:37 equipment fault 2004
 SouthEast 2004-09-05 17:48 73.387 36073 2004-09-05 20:46 equipment fault 2004
 West 2004-05-21 21:45 159.99 NaN 2004-05-22 04:23 equipment fault 2004
 NorthEast 2004-09-18 05:54 0 0 NaT equipment fault 2004
 NorthEast 2004-11-13 10:42 NaN 1.4227e+05 2004-11-19 02:31 winter storm 2004
 SouthEast 2004-12-06 23:18 NaN 37136 2004-12-14 03:21 winter storm 2004
 West 2004-12-21 18:50 112.05 7.985e+05 2004-12-29 03:46 winter storm 2004
 NorthEast 2004-12-26 22:18 255.45 1.0444e+05 2004-12-27 14:11 winter storm 2004
 SouthWest 2004-06-06 05:27 559.41 2.19e+05 2004-06-06 05:55 equipment fault 2004
 MidWest 2004-07-02 09:16 15128 2.0104e+05 2004-07-06 14:11 thunder storm 2004
 SouthWest 2004-07-18 14:40 340.35 1.4963e+05 2004-07-26 23:34 severe storm 2004
 NorthEast 2004-09-16 19:42 4718 NaN NaT unknown 2004
 SouthEast 2004-09-20 12:37 8767.3 2.2249e+06 2004-10-02 06:00 severe storm 2004
 MidWest 2004-11-09 18:44 470.83 67587 2004-11-09 21:24 wind 2004
 ⋮

 Perform Calculations by Group in Table

9-69

Summary of Behavior and Recommendations

Use these tips and recommendations to decide which functions to use to perform group calculations.

• Specify groups using either grouping variables or bins created from numeric, datetime, or
duration variables.

• To perform calculations by group on data in tables or timetables, use the recommended function
groupsummary. The related functions groupcounts, groupfilter, and grouptransform also
are useful.

• Consider using varfun to automatically include missing values (such as NaNs and NaTs) when
applying methods to groups of data. Also, varfun can perform both grouped and ungrouped
calculations.

• Consider using findgroups and splitapply for efficiency when you make many consecutive
grouped calculations on a large table.

• Consider using findgroups and splitapply to append new arrays to an existing table of
results.

• To perform calculations using a method that returns multiple outputs, such as bounds, use either
rowfun or splitapply.

• To perform calculations along rows using a method that requires multiple input arguments, use
either rowfun or splitapply.

See Also
groupsummary | groupcounts | groupfilter | grouptransform | varfun | rowfun |
findgroups | splitapply | table | categorical | datetime | duration | readtable |
convertvars | bounds

Related Examples
• “Access Data in Tables” on page 9-32
• “Calculations on Data in Tables” on page 9-48
• “Grouping Variables To Split Data” on page 9-76
• “Access Data Using Categorical Arrays” on page 8-24
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99

9 Tables

9-70

Advantages of Using Tables

Conveniently Store Mixed-Type Data in Single Container

You can use the table data type to collect mixed-type data and metadata properties, such as variable
name, row names, descriptions, and variable units, in a single container. Tables are suitable for
column-oriented or tabular data that is often stored as columns in a text file or in a spreadsheet. For
example, you can use a table to store experimental data, with rows representing different
observations and columns representing different measured variables.

Tables consist of rows and column-oriented variables. Each variable in a table can have a different
data type and a different size, but each variable must have the same number of rows.

For example, load sample patients data.

load patients

Then, combine the workspace variables, Systolic and Diastolic into a single BloodPressure
variable and convert the workspace variable, SelfAssessedHealthStatus, from a cell array of
character vectors to a categorical array.

BloodPressure = [Systolic Diastolic];
SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus);

whos("Age","Smoker","BloodPressure","SelfAssessedHealthStatus")

 Name Size Bytes Class Attributes

 Age 100x1 800 double
 BloodPressure 100x2 1600 double
 SelfAssessedHealthStatus 100x1 560 categorical
 Smoker 100x1 100 logical

The variables Age, BloodPressure, SelfAssessedHealthStatus, and Smoker have varying data
types and are candidates to store in a table since they all have the same number of rows, 100.

Now, create a table from the variables and display it.

T = table(Age,Smoker,BloodPressure,SelfAssessedHealthStatus)

T=100×4 table
 Age Smoker BloodPressure SelfAssessedHealthStatus
 ___ ______ _____________ ________________________

 38 true 124 93 Excellent
 43 false 109 77 Fair
 38 false 125 83 Good
 40 false 117 75 Fair
 49 false 122 80 Good
 46 false 121 70 Good
 33 true 130 88 Good
 40 false 115 82 Good
 28 false 115 78 Excellent
 31 false 118 86 Excellent
 45 false 114 77 Excellent
 42 false 115 68 Poor

 Advantages of Using Tables

9-71

 25 false 127 74 Poor
 39 true 130 95 Excellent
 36 false 114 79 Good
 48 true 130 92 Good
 ⋮

The table displays in a tabular format with the variable names at the top.

Each variable in a table is a single data type. If you add a new row to the table, MATLAB® forces
consistency of the data type between the new data and the corresponding table variables. For
example, if you try to add information for a new patient where the first column contains the patient's
health status instead of age, as in the expression T(end+1,:) = {"Poor",true,[130 84],37},
then you receive the error:

Right hand side of an assignment to a categorical array must be a categorical
or text representing a category name.

The error occurs because MATLAB® cannot assign numeric data, 37, to the categorical array,
SelfAssessedHealthStatus.

For comparison of tables with structures, consider the structure array, StructArray, that is
equivalent to the table, T.

StructArray = table2struct(T)

StructArray=100×1 struct array with fields:
 Age
 Smoker
 BloodPressure
 SelfAssessedHealthStatus

Structure arrays organize records using named fields. Each field's value can have a different data
type or size. Now, display the named fields for the first element of StructArray.

StructArray(1)

ans = struct with fields:
 Age: 38
 Smoker: 1
 BloodPressure: [124 93]
 SelfAssessedHealthStatus: Excellent

Fields in a structure array are analogous to variables in a table. However, unlike with tables, you
cannot enforce homogeneity within a field. For example, you can have some values of
S.SelfAssessedHealthStatus that are categorical array elements, such as Poor or Good, others
that are strings, such as "Poor" and "Good", and others that are integers, such as 0 or 1.

Now consider the same data stored in a scalar structure, with four fields each containing one variable
from the table.

ScalarStruct = struct(...
 "Age",Age,...
 "Smoker",Smoker,...
 "BloodPressure",BloodPressure,...
 "SelfAssessedHealthStatus",SelfAssessedHealthStatus)

9 Tables

9-72

ScalarStruct = struct with fields:
 Age: [100x1 double]
 Smoker: [100x1 logical]
 BloodPressure: [100x2 double]
 SelfAssessedHealthStatus: [100x1 categorical]

Unlike with tables, you cannot enforce that the data is rectangular. For example, the field
ScalarStruct.Age can be a different length than the other fields.

A table allows you to maintain the rectangular structure (like a structure array) and enforce
homogeneity of variables (like fields in a scalar structure). Although cell arrays do not have named
fields, they have many of the same disadvantages as structure arrays and scalar structures. If you
have rectangular data that is homogeneous in each variable, consider using a table. Then you can use
numeric or named indexing, and you can use table properties to store metadata.

Access Data Using Numeric or Named Indexing

You can index into a table using parentheses, curly braces, or dot indexing. Parentheses allow you to
select a subset of the data in a table and preserve the table container. Curly braces and dot indexing
allow you to extract data from a table. Within each table indexing method, you can specify the rows
or variables to access by name or by numeric index.

Consider the sample table from above. Each row in the table, T, represents a different patient. The
workspace variable, LastName, contains unique identifiers for the 100 rows. Add row names to the
table by setting the RowNames property to LastName and display the first five rows of the updated
table.

T.Properties.RowNames = LastName;
T(1:5,:)

ans=5×4 table
 Age Smoker BloodPressure SelfAssessedHealthStatus
 ___ ______ _____________ ________________________

 Smith 38 true 124 93 Excellent
 Johnson 43 false 109 77 Fair
 Williams 38 false 125 83 Good
 Jones 40 false 117 75 Fair
 Brown 49 false 122 80 Good

In addition to labeling the data, you can use row and variable names to access data in the table. For
example, use named indexing to display the age and blood pressure of the patients Williams and
Brown.

T(["Williams","Brown"],["Age","BloodPressure"])

ans=2×2 table
 Age BloodPressure
 ___ _____________

 Williams 38 125 83
 Brown 49 122 80

Now, use numeric indexing to return an equivalent subtable. Return the third and fifth rows from the
first and third variables.

 Advantages of Using Tables

9-73

T([3 5],[1 3])

ans=2×2 table
 Age BloodPressure
 ___ _____________

 Williams 38 125 83
 Brown 49 122 80

With cell arrays or structures, you do not have the same flexibility to use named or numeric indexing.

• With a cell array, you must use strcmp to find desired named data, and then you can index into
the array.

• With a scalar structure or structure array, it is not possible to refer to a field by number.
Furthermore, with a scalar structure, you cannot easily select a subset of variables or a subset of
observations. With a structure array, you can select a subset of observations, but you cannot select
a subset of variables.

• With a table, you can access data by named index or by numeric index. Furthermore, you can
easily select a subset of variables and a subset of rows.

For more information on table indexing, see “Access Data in Tables” on page 9-32.

Use Table Properties to Store Metadata

In addition to storing data, tables have properties to store metadata, such as variable names, row
names, descriptions, and variable units. You can access a property using T.Properties.PropName,
where T is the name of the table and PropName is the name of a table property.

For example, add a table description, variable descriptions, and variable units for Age.

T.Properties.Description = "Simulated Patient Data";

T.Properties.VariableDescriptions = ...
 ["" ...
 "true or false" ...
 "Systolic/Diastolic" ...
 "Status Reported by Patient"];

T.Properties.VariableUnits("Age") = "Yrs";

Individual empty strings within VariableDescriptions indicate that the corresponding variable
does not have a description. For more information, see the Properties section of table.

To print a table summary, use the summary function.

summary(T)

Description: Simulated Patient Data

Variables:

 Age: 100x1 double

 Properties:
 Units: Yrs
 Values:

9 Tables

9-74

 Min 25
 Median 39
 Max 50

 Smoker: 100x1 logical

 Properties:
 Description: true or false
 Values:

 True 34
 False 66

 BloodPressure: 100x2 double

 Properties:
 Description: Systolic/Diastolic
 Values:
 Column 1 Column 2
 ________ ________

 Min 109 68
 Median 122 81.5
 Max 138 99

 SelfAssessedHealthStatus: 100x1 categorical

 Properties:
 Description: Status Reported by Patient
 Values:

 Excellent 34
 Fair 15
 Good 40
 Poor 11

Structures and cell arrays do not have properties for storing metadata.

See Also
table | summary

Related Examples
• “Create Tables and Assign Data to Them” on page 9-2
• “Modify Units, Descriptions, and Table Variable Names” on page 9-24
• “Access Data in Tables” on page 9-32
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99

 Advantages of Using Tables

9-75

Grouping Variables To Split Data
You can use grouping variables to split data variables into groups. Typically, selecting grouping
variables is the first step in the Split-Apply-Combine workflow. You can split data into groups, apply a
function to each group, and combine the results. You also can denote missing values in grouping
variables, so that corresponding values in data variables are ignored.

Grouping Variables
Grouping variables are variables used to group, or categorize, observations—that is, data values in
other variables. A grouping variable can be any of these data types:

• Numeric, logical, categorical, datetime, or duration vector
• Cell array of character vectors
• Table, with table variables of any data type in this list

Data variables are the variables that contain observations. A grouping variable must have a value
corresponding to each value in the data variables. Data values belong to the same group when the
corresponding values in the grouping variable are the same.

This table shows examples of data variables, grouping variables, and the groups that you can create
when you split the data variables using the grouping variables.

Data Variable Grouping Variable Groups of Data
[5 10 15 20 25 30] [0 0 0 0 1 1] [5 10 15 20] [25 30]
[10 20 30 40 50 60] [1 3 3 1 2 1] [10 40 60] [50] [20 30]
[64 72 67 69 64 68] {'F','M','F','M','F','F'} [64 67 64 68] [72 69]

You can give groups of data meaningful names when you use cell arrays of character vectors or
categorical arrays as grouping variables. A categorical array is an efficient and flexible choice of
grouping variable.

Group Definition
Typically, there are as many groups as there are unique values in the grouping variable. (A
categorical array also can include categories that are not represented in the data.) The groups and
the order of the groups depend on the data type of the grouping variable.

• For numeric, logical, datetime, or duration vectors, or cell arrays of character vectors, the
groups correspond to the unique values sorted in ascending order.

• For categorical arrays, the groups correspond to the unique values observed in the array, sorted in
the order returned by the categories function.

The findgroups function can accept multiple grouping variables, for example G =
findgroups(A1,A2). You also can include multiple grouping variables in a table, for example T =
table(A1,A2); G = findgroups(T). The findgroups function defines groups by the unique
combinations of values across corresponding elements of the grouping variables. findgroups
decides the order by the order of the first grouping variable, and then by the order of the second
grouping variable, and so on. For example, if A1 = {'a','a','b','b'} and A2 = [0 1 0 0],

9 Tables

9-76

then the unique values across the grouping variables are 'a' 0, 'a' 1, and 'b' 0, defining three
groups.

The Split-Apply-Combine Workflow
After you select grouping variables and split data variables into groups, you can apply functions to
the groups and combine the results. This workflow is called the Split-Apply-Combine workflow. You
can use the findgroups and splitapply functions together to analyze groups of data in this
workflow. This diagram shows a simple example using the grouping variable Gender and the data
variable Height to calculate the mean height by gender.

The findgroups function returns a vector of group numbers that define groups based on the unique
values in the grouping variables. splitapply uses the group numbers to split the data into groups
efficiently before applying a function.

Missing Group Values
Grouping variables can have missing values. This table shows the missing value indicator for each
data type. If a grouping variable has missing values, then findgroups assigns NaN as the group
number, and splitapply ignores the corresponding values in the data variables.

Grouping Variable Data Type Missing Value Indicator
Numeric NaN
Logical (Cannot be missing)
Categorical <undefined>
datetime NaT
duration NaN
Cell array of character vectors ''
String <missing>

See Also
findgroups | splitapply | rowfun | varfun

 Grouping Variables To Split Data

9-77

Related Examples
• “Access Data in Tables” on page 9-32
• “Perform Calculations by Group in Table” on page 9-59
• “Split Data into Groups and Calculate Statistics” on page 9-56
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99

9 Tables

9-78

Changes to DimensionNames Property in R2016b

The table data type is suitable for collecting column-oriented, heterogeneous data in a single
container. Tables also contain metadata properties such as variable names, row names, dimension
names, descriptions, and variable units. Starting in R2016b, you can use the dimension names to
access table data and metadata using dot subscripting. To support that, the dimension names must
satisfy the same requirements as the variable names. For backwards compatibility, tables enforce
those restrictions by automatically modifying dimension names when needed.

Create a table that has row names and variable names.
Number = [8; 21; 13; 20; 11];
Name = {'Van Buren'; 'Arthur'; 'Fillmore'; 'Garfield'; 'Polk'};
Party = categorical({'Democratic'; 'Republican'; 'Whig'; 'Republican'; 'Republican'});
T = table(Number,Party,'RowNames',Name)

T =

 Number Party
 ______ __________

 Van Buren 8 Democratic
 Arthur 21 Republican
 Fillmore 13 Whig
 Garfield 20 Republican
 Polk 11 Republican

Display its properties, including the dimension names. The default values of the dimension names are
'Row' and 'Variables'.

T.Properties

ans =

 struct with fields:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'Number' 'Party'}
 VariableDescriptions: {}
 VariableUnits: {}
 RowNames: {5×1 cell}

Starting in R2016b, you can assign new names to the dimension names, and use them to access table
data. Dimension names must be valid MATLAB identifiers, and must not be one of the reserved
names, 'Properties', 'RowNames', or 'VariableNames'.

Assign a new name to the first dimension name, and use it to access the row names of the table.

T.Properties.DimensionNames{1} = 'Name';
T.Name

ans =

 5×1 cell array

 Changes to DimensionNames Property in R2016b

9-79

 'Van Buren'
 'Arthur'
 'Fillmore'
 'Garfield'
 'Polk'

Create a new table variable called Name. When you create the variable, the table modifies its first
dimension name to prevent a conflict. The updated dimension name becomes Name_1.

T{:,'Name'} = {'Martin'; 'Chester'; 'Millard'; 'James'; 'James'}

Warning: DimensionNames property was modified to avoid conflicting dimension and variable names:
 'Name'. See Compatibility Considerations for Using Tables for more details. This will become an
error in a future release.

T =

 Number Party Name
 ______ __________ _________

 Van Buren 8 Democratic 'Martin'
 Arthur 21 Republican 'Chester'
 Fillmore 13 Whig 'Millard'
 Garfield 20 Republican 'James'
 Polk 11 Republican 'James'

T.Properties.DimensionNames

ans =

 1×2 cell array

 'Name_1' 'Data'

Similarly, if you assign a dimension name that is not a valid MATLAB identifier, the name is modified.

T.Properties.DimensionNames{1} = 'Last Name';
T.Properties.DimensionNames

Warning: DimensionNames property was modified to make the name 'Last Name' a valid MATLAB
identifier. See Compatibility Considerations for Using Tables for more details. This will
become an error in a future release.

ans =

 1×2 cell array

 'LastName' 'Data'

In R2016b, tables raise warnings when dimension names are not valid identifiers, or conflict with
variable names or reserved names, so that you can continue to work with code and tables created
with previous releases. If you encounter these warnings, it is recommended that you update your
code to avoid them.

9 Tables

9-80

Data Cleaning and Calculations in Tables

This example shows how to clean data stored in a MATLAB® table. It also shows how to perform
calculations by using the numeric and categorical data that the table contains.

Because tables and timetables are containers, working with them is somewhat different than working
with ordinary numeric arrays. The example shows how to use different tabular subscripting modes,
how these modes differ, and the advantages and disadvantages of each mode for different situations.
It also shows how to access and assign data, apply transformation and summary functions, convert
table variables to different data types, and plot results.

The Ames Housing Data used in this example comes from residential real estate data for the town of
Ames, Iowa, in the United States. You can download the original data from an XLS (Excel®
Workbook) spreadsheet. The data description is available as a text file. (Used with permission of the
copyright holder. Please contact the copyright holder if you wish to publish or redistribute this data.)

Import Spreadsheet Data to Table

The best way to import a spreadsheet into MATLAB is to use the readtable function, or for data that
include timestamps, the readtimetable function. While the Ames Housing Data includes the sale
month and year for each house, the month and year are stored in separate columns. In this case, it is
simpler to use readtable.

Read the housing data. With readtable you can read data directly from a URL. Store all text data
from the spreadsheet as string arrays in the output table. Also, when readtable reads column
headers from a file, it uses them as table variable names and transforms them into valid MATLAB
identifiers. To preserve the original names, use the 'VariableNamingRule' name-value argument.

housing = readtable("http://jse.amstat.org/v19n3/decock/AmesHousing.xls","TextType","string");

Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating variable names for the table. The original column headers are saved in the VariableDescriptions property.
Set 'VariableNamingRule' to 'preserve' to use the original column headers as table variable names.

Display housing. The table has one variable for each of the 82 columns in the spreadsheet.

housing

housing=2930×82 table
 Order PID MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities LotConfig LandSlope Neighborhood Condition1 Condition2 BldgType HouseStyle OverallQual OverallCond YearBuilt YearRemod_Add RoofStyle RoofMatl Exterior1st Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond Foundation BsmtQual BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2 BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating HeatingQC CentralAir Electrical x1stFlrSF x2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr KitchenAbvGr KitchenQual TotRmsAbvGrd Functional Fireplaces FireplaceQu GarageType GarageYrBlt GarageFinish GarageCars GarageArea GarageQual GarageCond PavedDrive WoodDeckSF OpenPorchSF EnclosedPorch x3SsnPorch ScreenPorch PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
 _____ ____________ __________ ________ ___________ _______ ______ _____ ________ ___________ _________ _________ _________ ____________ __________ __________ ________ __________ ___________ ___________ _________ _____________ _________ _________ ___________ ___________ __________ __________ _________ _________ __________ ________ ________ ____________ ____________ __________ ____________ __________ _________ ___________ _______ _________ __________ __________ _________ _________ ____________ _________ ____________ ____________ ________ ________ ____________ ____________ ___________ ____________ __________ __________ ___________ __________ ___________ ____________ __________ __________ __________ __________ __________ __________ ___________ _____________ __________ ___________ ________ ______ _______ ___________ _______ ______ ______ ________ _____________ _________

 1 "0526301100" "020" "RL" 141 31770 "Pave" "NA" "IR1" "Lvl" "AllPub" "Corner" "Gtl" "NAmes" "Norm" "Norm" "1Fam" "1Story" 6 5 1960 1960 "Hip" "CompShg" "BrkFace" "Plywood" "Stone" 112 "TA" "TA" "CBlock" "TA" "Gd" "Gd" "BLQ" 639 "Unf" 0 441 1080 "GasA" "Fa" "Y" "SBrkr" 1656 0 0 1656 1 0 1 0 3 1 "TA" 7 "Typ" 2 "Gd" "Attchd" 1960 "Fin" 2 528 "TA" "TA" "P" 210 62 0 0 0 0 "NA" "NA" "NA" 0 5 2010 "WD" "Normal" 2.15e+05
 2 "0526350040" "020" "RH" 80 11622 "Pave" "NA" "Reg" "Lvl" "AllPub" "Inside" "Gtl" "NAmes" "Feedr" "Norm" "1Fam" "1Story" 5 6 1961 1961 "Gable" "CompShg" "VinylSd" "VinylSd" "None" 0 "TA" "TA" "CBlock" "TA" "TA" "No" "Rec" 468 "LwQ" 144 270 882 "GasA" "TA" "Y" "SBrkr" 896 0 0 896 0 0 1 0 2 1 "TA" 5 "Typ" 0 "NA" "Attchd" 1961 "Unf" 1 730 "TA" "TA" "Y" 140 0 0 0 120 0 "NA" "MnPrv" "NA" 0 6 2010 "WD" "Normal" 1.05e+05
 3 "0526351010" "020" "RL" 81 14267 "Pave" "NA" "IR1" "Lvl" "AllPub" "Corner" "Gtl" "NAmes" "Norm" "Norm" "1Fam" "1Story" 6 6 1958 1958 "Hip" "CompShg" "Wd Sdng" "Wd Sdng" "BrkFace" 108 "TA" "TA" "CBlock" "TA" "TA" "No" "ALQ" 923 "Unf" 0 406 1329 "GasA" "TA" "Y" "SBrkr" 1329 0 0 1329 0 0 1 1 3 1 "Gd" 6 "Typ" 0 "NA" "Attchd" 1958 "Unf" 1 312 "TA" "TA" "Y" 393 36 0 0 0 0 "NA" "NA" "Gar2" 12500 6 2010 "WD" "Normal" 1.72e+05
 4 "0526353030" "020" "RL" 93 11160 "Pave" "NA" "Reg" "Lvl" "AllPub" "Corner" "Gtl" "NAmes" "Norm" "Norm" "1Fam" "1Story" 7 5 1968 1968 "Hip" "CompShg" "BrkFace" "BrkFace" "None" 0 "Gd" "TA" "CBlock" "TA" "TA" "No" "ALQ" 1065 "Unf" 0 1045 2110 "GasA" "Ex" "Y" "SBrkr" 2110 0 0 2110 1 0 2 1 3 1 "Ex" 8 "Typ" 2 "TA" "Attchd" 1968 "Fin" 2 522 "TA" "TA" "Y" 0 0 0 0 0 0 "NA" "NA" "NA" 0 4 2010 "WD" "Normal" 2.44e+05
 5 "0527105010" "060" "RL" 74 13830 "Pave" "NA" "IR1" "Lvl" "AllPub" "Inside" "Gtl" "Gilbert" "Norm" "Norm" "1Fam" "2Story" 5 5 1997 1998 "Gable" "CompShg" "VinylSd" "VinylSd" "None" 0 "TA" "TA" "PConc" "Gd" "TA" "No" "GLQ" 791 "Unf" 0 137 928 "GasA" "Gd" "Y" "SBrkr" 928 701 0 1629 0 0 2 1 3 1 "TA" 6 "Typ" 1 "TA" "Attchd" 1997 "Fin" 2 482 "TA" "TA" "Y" 212 34 0 0 0 0 "NA" "MnPrv" "NA" 0 3 2010 "WD" "Normal" 1.899e+05
 6 "0527105030" "060" "RL" 78 9978 "Pave" "NA" "IR1" "Lvl" "AllPub" "Inside" "Gtl" "Gilbert" "Norm" "Norm" "1Fam" "2Story" 6 6 1998 1998 "Gable" "CompShg" "VinylSd" "VinylSd" "BrkFace" 20 "TA" "TA" "PConc" "TA" "TA" "No" "GLQ" 602 "Unf" 0 324 926 "GasA" "Ex" "Y" "SBrkr" 926 678 0 1604 0 0 2 1 3 1 "Gd" 7 "Typ" 1 "Gd" "Attchd" 1998 "Fin" 2 470 "TA" "TA" "Y" 360 36 0 0 0 0 "NA" "NA" "NA" 0 6 2010 "WD" "Normal" 1.955e+05
 7 "0527127150" "120" "RL" 41 4920 "Pave" "NA" "Reg" "Lvl" "AllPub" "Inside" "Gtl" "StoneBr" "Norm" "Norm" "TwnhsE" "1Story" 8 5 2001 2001 "Gable" "CompShg" "CemntBd" "CmentBd" "None" 0 "Gd" "TA" "PConc" "Gd" "TA" "Mn" "GLQ" 616 "Unf" 0 722 1338 "GasA" "Ex" "Y" "SBrkr" 1338 0 0 1338 1 0 2 0 2 1 "Gd" 6 "Typ" 0 "NA" "Attchd" 2001 "Fin" 2 582 "TA" "TA" "Y" 0 0 170 0 0 0 "NA" "NA" "NA" 0 4 2010 "WD" "Normal" 2.135e+05
 8 "0527145080" "120" "RL" 43 5005 "Pave" "NA" "IR1" "HLS" "AllPub" "Inside" "Gtl" "StoneBr" "Norm" "Norm" "TwnhsE" "1Story" 8 5 1992 1992 "Gable" "CompShg" "HdBoard" "HdBoard" "None" 0 "Gd" "TA" "PConc" "Gd" "TA" "No" "ALQ" 263 "Unf" 0 1017 1280 "GasA" "Ex" "Y" "SBrkr" 1280 0 0 1280 0 0 2 0 2 1 "Gd" 5 "Typ" 0 "NA" "Attchd" 1992 "RFn" 2 506 "TA" "TA" "Y" 0 82 0 0 144 0 "NA" "NA" "NA" 0 1 2010 "WD" "Normal" 1.915e+05
 9 "0527146030" "120" "RL" 39 5389 "Pave" "NA" "IR1" "Lvl" "AllPub" "Inside" "Gtl" "StoneBr" "Norm" "Norm" "TwnhsE" "1Story" 8 5 1995 1996 "Gable" "CompShg" "CemntBd" "CmentBd" "None" 0 "Gd" "TA" "PConc" "Gd" "TA" "No" "GLQ" 1180 "Unf" 0 415 1595 "GasA" "Ex" "Y" "SBrkr" 1616 0 0 1616 1 0 2 0 2 1 "Gd" 5 "Typ" 1 "TA" "Attchd" 1995 "RFn" 2 608 "TA" "TA" "Y" 237 152 0 0 0 0 "NA" "NA" "NA" 0 3 2010 "WD" "Normal" 2.365e+05
 10 "0527162130" "060" "RL" 60 7500 "Pave" "NA" "Reg" "Lvl" "AllPub" "Inside" "Gtl" "Gilbert" "Norm" "Norm" "1Fam" "2Story" 7 5 1999 1999 "Gable" "CompShg" "VinylSd" "VinylSd" "None" 0 "TA" "TA" "PConc" "TA" "TA" "No" "Unf" 0 "Unf" 0 994 994 "GasA" "Gd" "Y" "SBrkr" 1028 776 0 1804 0 0 2 1 3 1 "Gd" 7 "Typ" 1 "TA" "Attchd" 1999 "Fin" 2 442 "TA" "TA" "Y" 140 60 0 0 0 0 "NA" "NA" "NA" 0 6 2010 "WD" "Normal" 1.89e+05
 11 "0527163010" "060" "RL" 75 10000 "Pave" "NA" "IR1" "Lvl" "AllPub" "Corner" "Gtl" "Gilbert" "Norm" "Norm" "1Fam" "2Story" 6 5 1993 1994 "Gable" "CompShg" "HdBoard" "HdBoard" "None" 0 "TA" "TA" "PConc" "Gd" "TA" "No" "Unf" 0 "Unf" 0 763 763 "GasA" "Gd" "Y" "SBrkr" 763 892 0 1655 0 0 2 1 3 1 "TA" 7 "Typ" 1 "TA" "Attchd" 1993 "Fin" 2 440 "TA" "TA" "Y" 157 84 0 0 0 0 "NA" "NA" "NA" 0 4 2010 "WD" "Normal" 1.759e+05
 12 "0527165230" "020" "RL" NaN 7980 "Pave" "NA" "IR1" "Lvl" "AllPub" "Inside" "Gtl" "Gilbert" "Norm" "Norm" "1Fam" "1Story" 6 7 1992 2007 "Gable" "CompShg" "HdBoard" "HdBoard" "None" 0 "TA" "Gd" "PConc" "Gd" "TA" "No" "ALQ" 935 "Unf" 0 233 1168 "GasA" "Ex" "Y" "SBrkr" 1187 0 0 1187 1 0 2 0 3 1 "TA" 6 "Typ" 0 "NA" "Attchd" 1992 "Fin" 2 420 "TA" "TA" "Y" 483 21 0 0 0 0 "NA" "GdPrv" "Shed" 500 3 2010 "WD" "Normal" 1.85e+05
 13 "0527166040" "060" "RL" 63 8402 "Pave" "NA" "IR1" "Lvl" "AllPub" "Inside" "Gtl" "Gilbert" "Norm" "Norm" "1Fam" "2Story" 6 5 1998 1998 "Gable" "CompShg" "VinylSd" "VinylSd" "None" 0 "TA" "TA" "PConc" "Gd" "TA" "No" "Unf" 0 "Unf" 0 789 789 "GasA" "Gd" "Y" "SBrkr" 789 676 0 1465 0 0 2 1 3 1 "TA" 7 "Typ" 1 "Gd" "Attchd" 1998 "Fin" 2 393 "TA" "TA" "Y" 0 75 0 0 0 0 "NA" "NA" "NA" 0 5 2010 "WD" "Normal" 1.804e+05
 14 "0527180040" "020" "RL" 85 10176 "Pave" "NA" "Reg" "Lvl" "AllPub" "Inside" "Gtl" "Gilbert" "Norm" "Norm" "1Fam" "1Story" 7 5 1990 1990 "Gable" "CompShg" "HdBoard" "HdBoard" "None" 0 "TA" "TA" "PConc" "Gd" "TA" "Gd" "GLQ" 637 "Unf" 0 663 1300 "GasA" "Gd" "Y" "SBrkr" 1341 0 0 1341 1 0 1 1 2 1 "Gd" 5 "Typ" 1 "Po" "Attchd" 1990 "Unf" 2 506 "TA" "TA" "Y" 192 0 0 0 0 0 "NA" "NA" "NA" 0 2 2010 "WD" "Normal" 1.715e+05

 Data Cleaning and Calculations in Tables

9-81

http://jse.amstat.org/v19n3/decock.pdf
http://jse.amstat.org/v19n3/decock/AmesHousing.xls
http://jse.amstat.org/v19n3/decock/AmesHousing.xls
http://jse.amstat.org/v19n3/decock/DataDocumentation.txt

 15 "0527182190" "120" "RL" NaN 6820 "Pave" "NA" "IR1" "Lvl" "AllPub" "Corner" "Gtl" "StoneBr" "Norm" "Norm" "TwnhsE" "1Story" 8 5 1985 1985 "Gable" "CompShg" "HdBoard" "HdBoard" "None" 0 "Gd" "TA" "PConc" "Gd" "TA" "Av" "GLQ" 368 "BLQ" 1120 0 1488 "GasA" "TA" "Y" "SBrkr" 1502 0 0 1502 1 0 1 1 1 1 "Gd" 4 "Typ" 0 "NA" "Attchd" 1985 "RFn" 2 528 "TA" "TA" "Y" 0 54 0 0 140 0 "NA" "NA" "NA" 0 6 2010 "WD" "Normal" 2.12e+05
 16 "0527216070" "060" "RL" 47 53504 "Pave" "NA" "IR2" "HLS" "AllPub" "CulDSac" "Mod" "StoneBr" "Norm" "Norm" "1Fam" "2Story" 8 5 2003 2003 "Hip" "CompShg" "CemntBd" "Wd Shng" "BrkFace" 603 "Ex" "TA" "PConc" "Gd" "TA" "Gd" "ALQ" 1416 "Unf" 0 234 1650 "GasA" "Ex" "Y" "SBrkr" 1690 1589 0 3279 1 0 3 1 4 1 "Ex" 12 "Mod" 1 "Gd" "BuiltIn" 2003 "Fin" 3 841 "TA" "TA" "Y" 503 36 0 0 210 0 "NA" "NA" "NA" 0 6 2010 "WD" "Normal" 5.38e+05
 ⋮

The spreadsheet has some column headers with spaces and other column headers that start with
numbers. Column headers become variable names in the output table. By default, readtable
standardizes names with spaces by using camel case, and standardizes names beginning with
numbers by prepending them with 'x'. Although a table can have variable names with spaces and
other non-alphanumeric characters in them, the standardization makes working with table variable
names more natural. Before standardizing names, readtable saves the original column headers in
housing.Properties.VariableDescriptions.

housing.Properties.VariableDescriptions

ans = 1×82 cell
 {'Order'} {'PID'} {'MS SubClass'} {'MS Zoning'} {'Lot Frontage'} {'Lot Area'} {'Street'} {'Alley'} {'Lot Shape'} {'Land Contour'} {'Utilities'} {'Lot Config'} {'Land Slope'} {'Neighborhood'} {'Condition 1'} {'Condition 2'} {'Bldg Type'} {'House Style'} {'Overall Qual'} {'Overall Cond'} {'Year Built'} {'Year Remod/Add'} {'Roof Style'} {'Roof Matl'} {'Exterior 1st'} {'Exterior 2nd'} {'Mas Vnr Type'} {'Mas Vnr Area'} {'Exter Qual'} {'Exter Cond'} {'Foundation'} {'Bsmt Qual'} {'Bsmt Cond'} {'Bsmt Exposure'} {'BsmtFin Type 1'} {'BsmtFin SF 1'} {'BsmtFin Type 2'} {'BsmtFin SF 2'} {'Bsmt Unf SF'} {'Total Bsmt SF'} {'Heating'} {'Heating QC'} {'Central Air'} {'Electrical'} {'1st Flr SF'} {'2nd Flr SF'} {'Low Qual Fin SF'} {'Gr Liv Area'} {'Bsmt Full Bath'} {'Bsmt Half Bath'} {'Full Bath'} {'Half Bath'} {'Bedroom AbvGr'} {'Kitchen AbvGr'} {'Kitchen Qual'} {'TotRms AbvGrd'} {'Functional'} {'Fireplaces'} {'Fireplace Qu'} {'Garage Type'} {'Garage Yr Blt'} {'Garage Finish'} {'Garage Cars'} {'Garage Area'} {'Garage Qual'} {'Garage Cond'} {'Paved Drive'} {'Wood Deck SF'} {'Open Porch SF'} {'Enclosed Porch'} {'3Ssn Porch'} {'Screen Porch'} {'Pool Area'} {'Pool QC'} {'Fence'} {'Misc Feature'} {'Misc Val'} {'Mo Sold'} {'Yr Sold'} {'Sale Type'} {'Sale Condition'} {'SalePrice'}

In this example, the original variable names are not needed. To delete them, assign an empty cell
array to the VariableDescriptions property.

housing.Properties.VariableDescriptions = {};

Clean Data Before Analysis

You can remove the Order variable because it is a row index and not needed. To remove one variable
from the table, assign an empty array, [], to the variable, just as you delete rows or columns from a
matrix.

housing.Order = [];

There are 81 variables left in the table. For a complete analysis of the housing prices, most of the
variables are probably important. But for this example, only a much smaller subset is needed. To
delete the unwanted variables one-by-one is tedious. The removevars function can delete them all at
once, but in this case there is an easier way. First list the variables that you want to keep. Then use
subscripting to select them and delete the others. Selecting variables by name is often much easier
than figuring out their numeric indices.

keep = ["PID" "MSSubClass" "LotFrontage", "LotArea" "Neighborhood" "BldgType" ...
 "OverallCond" "YearBuilt" "YearRemod_Add" "Foundation" "Heating" ...
 "CentralAir" "x1stFlrSF" "x2ndFlrSF" "LowQualFinSF" "GrLivArea" ...
 "BsmtFullBath" "BsmtHalfBath" "FullBath" "HalfBath" "BedroomAbvGr" ...
 "GarageType" "MoSold" "YrSold" "SalePrice"];
housing = housing(:,keep)

housing=2930×25 table
 PID MSSubClass LotFrontage LotArea Neighborhood BldgType OverallCond YearBuilt YearRemod_Add Foundation Heating CentralAir x1stFlrSF x2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr GarageType MoSold YrSold SalePrice
 ____________ __________ ___________ _______ ____________ ________ ___________ _________ _____________ __________ _______ __________ _________ _________ ____________ _________ ____________ ____________ ________ ________ ____________ __________ ______ ______ _________

 "0526301100" "020" 141 31770 "NAmes" "1Fam" 5 1960 1960 "CBlock" "GasA" "Y" 1656 0 0 1656 1 0 1 0 3 "Attchd" 5 2010 2.15e+05
 "0526350040" "020" 80 11622 "NAmes" "1Fam" 6 1961 1961 "CBlock" "GasA" "Y" 896 0 0 896 0 0 1 0 2 "Attchd" 6 2010 1.05e+05
 "0526351010" "020" 81 14267 "NAmes" "1Fam" 6 1958 1958 "CBlock" "GasA" "Y" 1329 0 0 1329 0 0 1 1 3 "Attchd" 6 2010 1.72e+05
 "0526353030" "020" 93 11160 "NAmes" "1Fam" 5 1968 1968 "CBlock" "GasA" "Y" 2110 0 0 2110 1 0 2 1 3 "Attchd" 4 2010 2.44e+05
 "0527105010" "060" 74 13830 "Gilbert" "1Fam" 5 1997 1998 "PConc" "GasA" "Y" 928 701 0 1629 0 0 2 1 3 "Attchd" 3 2010 1.899e+05
 "0527105030" "060" 78 9978 "Gilbert" "1Fam" 6 1998 1998 "PConc" "GasA" "Y" 926 678 0 1604 0 0 2 1 3 "Attchd" 6 2010 1.955e+05
 "0527127150" "120" 41 4920 "StoneBr" "TwnhsE" 5 2001 2001 "PConc" "GasA" "Y" 1338 0 0 1338 1 0 2 0 2 "Attchd" 4 2010 2.135e+05

9 Tables

9-82

 "0527145080" "120" 43 5005 "StoneBr" "TwnhsE" 5 1992 1992 "PConc" "GasA" "Y" 1280 0 0 1280 0 0 2 0 2 "Attchd" 1 2010 1.915e+05
 "0527146030" "120" 39 5389 "StoneBr" "TwnhsE" 5 1995 1996 "PConc" "GasA" "Y" 1616 0 0 1616 1 0 2 0 2 "Attchd" 3 2010 2.365e+05
 "0527162130" "060" 60 7500 "Gilbert" "1Fam" 5 1999 1999 "PConc" "GasA" "Y" 1028 776 0 1804 0 0 2 1 3 "Attchd" 6 2010 1.89e+05
 "0527163010" "060" 75 10000 "Gilbert" "1Fam" 5 1993 1994 "PConc" "GasA" "Y" 763 892 0 1655 0 0 2 1 3 "Attchd" 4 2010 1.759e+05
 "0527165230" "020" NaN 7980 "Gilbert" "1Fam" 7 1992 2007 "PConc" "GasA" "Y" 1187 0 0 1187 1 0 2 0 3 "Attchd" 3 2010 1.85e+05
 "0527166040" "060" 63 8402 "Gilbert" "1Fam" 5 1998 1998 "PConc" "GasA" "Y" 789 676 0 1465 0 0 2 1 3 "Attchd" 5 2010 1.804e+05
 "0527180040" "020" 85 10176 "Gilbert" "1Fam" 5 1990 1990 "PConc" "GasA" "Y" 1341 0 0 1341 1 0 1 1 2 "Attchd" 2 2010 1.715e+05
 "0527182190" "120" NaN 6820 "StoneBr" "TwnhsE" 5 1985 1985 "PConc" "GasA" "Y" 1502 0 0 1502 1 0 1 1 1 "Attchd" 6 2010 2.12e+05
 "0527216070" "060" 47 53504 "StoneBr" "1Fam" 5 2003 2003 "PConc" "GasA" "Y" 1690 1589 0 3279 1 0 3 1 4 "BuiltIn" 6 2010 5.38e+05
 ⋮

Two of the variable names are not very clear. Rename those variables with better names by using the
VariableNames property.

housing.Properties.VariableNames(["GrLivArea" "LowQualFinSF"]) = ["TotalAboveGroundLivingArea" "LowQualFinishedArea"];

There are two other variable names, starting with 'x', that look odd. Another way to rename them is
to use the renamevars function. If you use renamevars, assign the output to the original table.
Otherwise the update is lost.

housing = renamevars(housing,["x1stFlrSF" "x2ndFlrSF"],["FirstFlrArea" "SecondFlrArea"]);

Convert and Clean Up Data Types

Six of the variables are string arrays. Conceptually they all contain categorical data: discrete,
nonnumeric values drawn from a small fixed set of possible values or categories. It is almost always a
good idea to convert that kind of data to categorical arrays. You can use the
detectImportOptions function to control the data types of the data you read with readtable. But
instead of starting over, you can convert these table variables to have the categorical data type.
For example, convert the Neighborhood variable to a categorical array.

housing.Neighborhood = categorical(housing.Neighborhood);

This assignment overwrites, or replaces, the existing text variable Neighborhood in the table with a
new categorical variable. Replacement is what enables the assignment to change the data type. In
contrast, this assignment, using indexing:

housing.Neighborhood(:) = categorical(housing.Neighborhood)

assigns values into the existing text variable, element by element, rather than replacing the variable.
In that case housing.Neighborhood remains a string array. This behavior is consistent with the
behavior of ordinary workspace variables. Assignment by indexing into an array does not change the
type of the array. For example, if you index into an array of integers and assign a floating-point value
to an element, the value is truncated and stored as an integer.

x = uint32([1 2 3]);
x(2) = 2.2 % converted to 2, as a uint32

x = 1×3 uint32 row vector

 1 2 3

Assignment with dot notation is one way to convert the type of a variable in a table. The
convertvars function is another way and has two benefits. First, it avoids any confusion about
overwriting as opposed to assignment into a variable. The convertvars function always overwrites

 Data Cleaning and Calculations in Tables

9-83

existing variables and converts their type. Second, convertvars can operate on more than one
variable at a time. There are several more text variables in housing to be converted to the
categorical data type. Changing them one at a time would get tedious, but convertvars can
convert more than one variable in one command.

housing = convertvars(housing,["BldgType" "Foundation"],"categorical");

It is not necessary to explicitly list the variables by name or position in the table. You can find all the
table variables that are string arrays and convert them to categorical variables. To specify table
variables that are string arrays, use the function handle @isstring when calling convertvars.

housing = convertvars(housing,@isstring,"categorical");

In both cases, assign the output of convertvars back to the original table. Otherwise, the update is
lost.

Sometimes, converting all text variables to categorical is too much. For example, if the current
homeowners' names were present in the data, then it would not make sense to store them in a
categorical variable. Homeowners' names do not define housing categories. You might keep their
names in a string array instead.

As another example, the CentralAir variable is one of the variables that was converted to
categorical. But because its categories are just Y and N, it might make more sense to consider it a
logical variable.

summary(housing.CentralAir)

 N 196
 Y 2734

The logical data type (like all the integer types) does not allow missing values (analogous to NaN),
while categorical does. The CentralAir variable happens to have no missing data values. You
can use either logical or categorical as the data type for CentralAir.

any(ismissing(housing.CentralAir))

ans = logical
 0

Convert the data type to logical, with true corresponding to Y, using dot notation to overwrite the
existing categorical variable with the new logical one.

housing.CentralAir = (housing.CentralAir == "Y");

Display the converted data in housing.

housing

housing=2930×25 table
 PID MSSubClass LotFrontage LotArea Neighborhood BldgType OverallCond YearBuilt YearRemod_Add Foundation Heating CentralAir FirstFlrArea SecondFlrArea LowQualFinishedArea TotalAboveGroundLivingArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr GarageType MoSold YrSold SalePrice
 __________ __________ ___________ _______ ____________ ________ ___________ _________ _____________ __________ _______ __________ ____________ _____________ ___________________ __________________________ ____________ ____________ ________ ________ ____________ __________ ______ ______ _________

 0526301100 020 141 31770 NAmes 1Fam 5 1960 1960 CBlock GasA true 1656 0 0 1656 1 0 1 0 3 Attchd 5 2010 2.15e+05
 0526350040 020 80 11622 NAmes 1Fam 6 1961 1961 CBlock GasA true 896 0 0 896 0 0 1 0 2 Attchd 6 2010 1.05e+05
 0526351010 020 81 14267 NAmes 1Fam 6 1958 1958 CBlock GasA true 1329 0 0 1329 0 0 1 1 3 Attchd 6 2010 1.72e+05
 0526353030 020 93 11160 NAmes 1Fam 5 1968 1968 CBlock GasA true 2110 0 0 2110 1 0 2 1 3 Attchd 4 2010 2.44e+05
 0527105010 060 74 13830 Gilbert 1Fam 5 1997 1998 PConc GasA true 928 701 0 1629 0 0 2 1 3 Attchd 3 2010 1.899e+05

9 Tables

9-84

 0527105030 060 78 9978 Gilbert 1Fam 6 1998 1998 PConc GasA true 926 678 0 1604 0 0 2 1 3 Attchd 6 2010 1.955e+05
 0527127150 120 41 4920 StoneBr TwnhsE 5 2001 2001 PConc GasA true 1338 0 0 1338 1 0 2 0 2 Attchd 4 2010 2.135e+05
 0527145080 120 43 5005 StoneBr TwnhsE 5 1992 1992 PConc GasA true 1280 0 0 1280 0 0 2 0 2 Attchd 1 2010 1.915e+05
 0527146030 120 39 5389 StoneBr TwnhsE 5 1995 1996 PConc GasA true 1616 0 0 1616 1 0 2 0 2 Attchd 3 2010 2.365e+05
 0527162130 060 60 7500 Gilbert 1Fam 5 1999 1999 PConc GasA true 1028 776 0 1804 0 0 2 1 3 Attchd 6 2010 1.89e+05
 0527163010 060 75 10000 Gilbert 1Fam 5 1993 1994 PConc GasA true 763 892 0 1655 0 0 2 1 3 Attchd 4 2010 1.759e+05
 0527165230 020 NaN 7980 Gilbert 1Fam 7 1992 2007 PConc GasA true 1187 0 0 1187 1 0 2 0 3 Attchd 3 2010 1.85e+05
 0527166040 060 63 8402 Gilbert 1Fam 5 1998 1998 PConc GasA true 789 676 0 1465 0 0 2 1 3 Attchd 5 2010 1.804e+05
 0527180040 020 85 10176 Gilbert 1Fam 5 1990 1990 PConc GasA true 1341 0 0 1341 1 0 1 1 2 Attchd 2 2010 1.715e+05
 0527182190 120 NaN 6820 StoneBr TwnhsE 5 1985 1985 PConc GasA true 1502 0 0 1502 1 0 1 1 1 Attchd 6 2010 2.12e+05
 0527216070 060 47 53504 StoneBr 1Fam 5 2003 2003 PConc GasA true 1690 1589 0 3279 1 0 3 1 4 BuiltIn 6 2010 5.38e+05
 ⋮

All the text data has been converted to categorical variables. But there are still a few things to
clean up.

The OverallCond variable was read in as a numeric array, but its values are all drawn from the
integers 1-10. You can leave these values as numeric data, but you can think of it as ordinal
categorical data. When a categorical array is ordinal, its categories have a specified order. For
example, the categories 10 and 5 can be compared (10 > 5, because a house whose condition is
rated as a 10 is theoretically nicer than one rated 5), but for these comparisons, there is no numeric
meaning to 10 - 5. To avoid unintentionally treating OverallCond as numeric data, convert it to an
ordinal categorical array, which still enables relational comparisons but prevents arithmetic
operations. The category names 1, 2, and so on are easy to interpret and are acceptable.

housing.OverallCond = categorical(housing.OverallCond,1:10,"Ordinal",true);

Similarly, the MSSubClass variable consisted of numeric codes in the original spreadsheet. You can
think of those values as being categorical data. Because there is no mathematical order to these
particular codes, the categories are nonordinal (or nominal). In this case, readtable read those
values in as text to preserve leading zeroes in the codes. MSSubClass was then converted to
categorical data.

While MSSubClass has the data type that you want, you might find it difficult to interpret the codes
as categories of houses. The file that describes the Ames Housing Data contains the definitions of the
numeric codes. Giving these categories readable names can help you understand the data. To make it
clear which names go with which numbers, specify both the categories (code) and their names
(subclass) in another call to the categorical function.

code = ["020" "030" "040" "045" "050" "060" "070" "075" "080" "085" "090" "120" "150" "160" "180" "190"];
subclass = ["1-STORY 1946 & NEWER ALL STYLES" ...
 "1-STORY 1945 & OLDER" ...
 "1-STORY W/FINISHED ATTIC ALL AGES" ...
 "1-1/2 STORY - UNFINISHED ALL AGES" ...
 "1-1/2 STORY FINISHED ALL AGES" ...
 "2-STORY 1946 & NEWER" ...
 "2-STORY 1945 & OLDER" ...
 "2-1/2 STORY ALL AGES" ...
 "SPLIT OR MULTI-LEVEL" ...
 "SPLIT FOYER" ...
 "DUPLEX - ALL STYLES AND AGES" ...
 "1-STORY PUD (Planned Unit Development) - 1946 & NEWER" ...
 "1-1/2 STORY PUD - ALL AGES" ...
 "2-STORY PUD - 1946 & NEWER" ...
 "PUD - MULTILEVEL - INCL SPLIT LEV/FOYER" ...

 Data Cleaning and Calculations in Tables

9-85

 "2 FAMILY CONVERSION - ALL STYLES AND AGES"];
housing.MSSubClass = categorical(housing.MSSubClass,code,subclass);

The category names for the BldgType variable are not obvious. As with MSSubClass, more
descriptive names can help you understand the building categories. To display the number of houses
in each building category, use the summary function.

summary(housing.BldgType)

 1Fam 2425
 2fmCon 62
 Duplex 109
 Twnhs 101
 TwnhsE 233

With only five categories, you can safely list the new category names in the right order without
specifying the old names. To rename categories, use the renamecats function.

types = ["Single-family Detached" "Two-family Conversion" "Duplex" "Townhouse End Unit" "Townhouse Inside Unit"];
housing.BldgType = renamecats(housing.BldgType,types);

The GarageType variable includes the category NA, standing for Not Applicable. In GarageType, NA
means that the house does not have a garage. But it is too easy to confuse NA with a missing value. A
true missing value means it cannot be determined if a house has a garage. But in this housing data, it
is always known if a house has a garage. Change that one category name to make its meaning clearer.

housing.GarageType = renamecats(housing.GarageType,"NA","None");

Finally, the PID variable was read in as a string array. While its values were numeric, some of them
had leading zeroes. The readtable function preserved this information by storing the values as
strings. Then the call to convertvars converted the PID variable to a categorical array. PID
stores identification numbers that are unique. Identification numbers are assigned as needed and do
not come from a fixed set of values. There is no particular advantage in storing them in a
categorical variable. If every identification number is a category, then adding a new identification
number means adding a new category to PID. It might be more convenient to convert PID back to a
string array. To convert values to strings, use the string function.

housing.PID = string(housing.PID);

Display the results of the preliminary data cleaning.

housing

housing=2930×25 table
 PID MSSubClass LotFrontage LotArea Neighborhood BldgType OverallCond YearBuilt YearRemod_Add Foundation Heating CentralAir FirstFlrArea SecondFlrArea LowQualFinishedArea TotalAboveGroundLivingArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr GarageType MoSold YrSold SalePrice
 ____________ ___ ___________ _______ ____________ ______________________ ___________ _________ _____________ __________ _______ __________ ____________ _____________ ___________________ __________________________ ____________ ____________ ________ ________ ____________ __________ ______ ______ _________

 "0526301100" 1-STORY 1946 & NEWER ALL STYLES 141 31770 NAmes Single-family Detached 5 1960 1960 CBlock GasA true 1656 0 0 1656 1 0 1 0 3 Attchd 5 2010 2.15e+05
 "0526350040" 1-STORY 1946 & NEWER ALL STYLES 80 11622 NAmes Single-family Detached 6 1961 1961 CBlock GasA true 896 0 0 896 0 0 1 0 2 Attchd 6 2010 1.05e+05
 "0526351010" 1-STORY 1946 & NEWER ALL STYLES 81 14267 NAmes Single-family Detached 6 1958 1958 CBlock GasA true 1329 0 0 1329 0 0 1 1 3 Attchd 6 2010 1.72e+05
 "0526353030" 1-STORY 1946 & NEWER ALL STYLES 93 11160 NAmes Single-family Detached 5 1968 1968 CBlock GasA true 2110 0 0 2110 1 0 2 1 3 Attchd 4 2010 2.44e+05
 "0527105010" 2-STORY 1946 & NEWER 74 13830 Gilbert Single-family Detached 5 1997 1998 PConc GasA true 928 701 0 1629 0 0 2 1 3 Attchd 3 2010 1.899e+05
 "0527105030" 2-STORY 1946 & NEWER 78 9978 Gilbert Single-family Detached 6 1998 1998 PConc GasA true 926 678 0 1604 0 0 2 1 3 Attchd 6 2010 1.955e+05
 "0527127150" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 41 4920 StoneBr Townhouse Inside Unit 5 2001 2001 PConc GasA true 1338 0 0 1338 1 0 2 0 2 Attchd 4 2010 2.135e+05
 "0527145080" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 43 5005 StoneBr Townhouse Inside Unit 5 1992 1992 PConc GasA true 1280 0 0 1280 0 0 2 0 2 Attchd 1 2010 1.915e+05
 "0527146030" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 39 5389 StoneBr Townhouse Inside Unit 5 1995 1996 PConc GasA true 1616 0 0 1616 1 0 2 0 2 Attchd 3 2010 2.365e+05
 "0527162130" 2-STORY 1946 & NEWER 60 7500 Gilbert Single-family Detached 5 1999 1999 PConc GasA true 1028 776 0 1804 0 0 2 1 3 Attchd 6 2010 1.89e+05
 "0527163010" 2-STORY 1946 & NEWER 75 10000 Gilbert Single-family Detached 5 1993 1994 PConc GasA true 763 892 0 1655 0 0 2 1 3 Attchd 4 2010 1.759e+05

9 Tables

9-86

 "0527165230" 1-STORY 1946 & NEWER ALL STYLES NaN 7980 Gilbert Single-family Detached 7 1992 2007 PConc GasA true 1187 0 0 1187 1 0 2 0 3 Attchd 3 2010 1.85e+05
 "0527166040" 2-STORY 1946 & NEWER 63 8402 Gilbert Single-family Detached 5 1998 1998 PConc GasA true 789 676 0 1465 0 0 2 1 3 Attchd 5 2010 1.804e+05
 "0527180040" 1-STORY 1946 & NEWER ALL STYLES 85 10176 Gilbert Single-family Detached 5 1990 1990 PConc GasA true 1341 0 0 1341 1 0 1 1 2 Attchd 2 2010 1.715e+05
 "0527182190" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER NaN 6820 StoneBr Townhouse Inside Unit 5 1985 1985 PConc GasA true 1502 0 0 1502 1 0 1 1 1 Attchd 6 2010 2.12e+05
 "0527216070" 2-STORY 1946 & NEWER 47 53504 StoneBr Single-family Detached 5 2003 2003 PConc GasA true 1690 1589 0 3279 1 0 3 1 4 BuiltIn 6 2010 5.38e+05
 ⋮

Create Variable for Date of Sale

The table has separate variables for the month and year of sale. It is more convenient if those
variables are combined in one datetime variable. Assignment by using dot notation is a good way to
add a new variable at the right edge of a table. Add the date of sale as a new variable.

housing.LastSoldDate = datetime(housing.YrSold,housing.MoSold,0,"Format","MMM yyyy");

Now delete the two original variables. It is easier to list the variables by name and use removevars.

housing = removevars(housing,["YrSold" "MoSold"])

housing=2930×24 table
 PID MSSubClass LotFrontage LotArea Neighborhood BldgType OverallCond YearBuilt YearRemod_Add Foundation Heating CentralAir FirstFlrArea SecondFlrArea LowQualFinishedArea TotalAboveGroundLivingArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr GarageType SalePrice LastSoldDate
 ____________ ___ ___________ _______ ____________ ______________________ ___________ _________ _____________ __________ _______ __________ ____________ _____________ ___________________ __________________________ ____________ ____________ ________ ________ ____________ __________ _________ ____________

 "0526301100" 1-STORY 1946 & NEWER ALL STYLES 141 31770 NAmes Single-family Detached 5 1960 1960 CBlock GasA true 1656 0 0 1656 1 0 1 0 3 Attchd 2.15e+05 Apr 2010
 "0526350040" 1-STORY 1946 & NEWER ALL STYLES 80 11622 NAmes Single-family Detached 6 1961 1961 CBlock GasA true 896 0 0 896 0 0 1 0 2 Attchd 1.05e+05 May 2010
 "0526351010" 1-STORY 1946 & NEWER ALL STYLES 81 14267 NAmes Single-family Detached 6 1958 1958 CBlock GasA true 1329 0 0 1329 0 0 1 1 3 Attchd 1.72e+05 May 2010
 "0526353030" 1-STORY 1946 & NEWER ALL STYLES 93 11160 NAmes Single-family Detached 5 1968 1968 CBlock GasA true 2110 0 0 2110 1 0 2 1 3 Attchd 2.44e+05 Mar 2010
 "0527105010" 2-STORY 1946 & NEWER 74 13830 Gilbert Single-family Detached 5 1997 1998 PConc GasA true 928 701 0 1629 0 0 2 1 3 Attchd 1.899e+05 Feb 2010
 "0527105030" 2-STORY 1946 & NEWER 78 9978 Gilbert Single-family Detached 6 1998 1998 PConc GasA true 926 678 0 1604 0 0 2 1 3 Attchd 1.955e+05 May 2010
 "0527127150" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 41 4920 StoneBr Townhouse Inside Unit 5 2001 2001 PConc GasA true 1338 0 0 1338 1 0 2 0 2 Attchd 2.135e+05 Mar 2010
 "0527145080" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 43 5005 StoneBr Townhouse Inside Unit 5 1992 1992 PConc GasA true 1280 0 0 1280 0 0 2 0 2 Attchd 1.915e+05 Dec 2009
 "0527146030" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 39 5389 StoneBr Townhouse Inside Unit 5 1995 1996 PConc GasA true 1616 0 0 1616 1 0 2 0 2 Attchd 2.365e+05 Feb 2010
 "0527162130" 2-STORY 1946 & NEWER 60 7500 Gilbert Single-family Detached 5 1999 1999 PConc GasA true 1028 776 0 1804 0 0 2 1 3 Attchd 1.89e+05 May 2010
 "0527163010" 2-STORY 1946 & NEWER 75 10000 Gilbert Single-family Detached 5 1993 1994 PConc GasA true 763 892 0 1655 0 0 2 1 3 Attchd 1.759e+05 Mar 2010
 "0527165230" 1-STORY 1946 & NEWER ALL STYLES NaN 7980 Gilbert Single-family Detached 7 1992 2007 PConc GasA true 1187 0 0 1187 1 0 2 0 3 Attchd 1.85e+05 Feb 2010
 "0527166040" 2-STORY 1946 & NEWER 63 8402 Gilbert Single-family Detached 5 1998 1998 PConc GasA true 789 676 0 1465 0 0 2 1 3 Attchd 1.804e+05 Apr 2010
 "0527180040" 1-STORY 1946 & NEWER ALL STYLES 85 10176 Gilbert Single-family Detached 5 1990 1990 PConc GasA true 1341 0 0 1341 1 0 1 1 2 Attchd 1.715e+05 Jan 2010
 "0527182190" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER NaN 6820 StoneBr Townhouse Inside Unit 5 1985 1985 PConc GasA true 1502 0 0 1502 1 0 1 1 1 Attchd 2.12e+05 May 2010
 "0527216070" 2-STORY 1946 & NEWER 47 53504 StoneBr Single-family Detached 5 2003 2003 PConc GasA true 1690 1589 0 3279 1 0 3 1 4 BuiltIn 5.38e+05 May 2010
 ⋮

Explore Data with Plots

Explore the data by making some simple plots. Many basic plotting commands do not accept tables as
input arguments. But you can use dot notation to pass one or more table variables into a plotting
function. You are taking arrays out of the table and passing them as input arguments to a plotting
function.

For example, make a scatter plot of the sale prices of houses in the table as a function of the years in
which they were built.

scatter(housing.YearBuilt,housing.SalePrice,20,"filled");

A log transformation of the prices might show a simpler relationship between year and price. Also,
you can show more information in the scatter plot by using the living area of the houses to color the
markers. The living areas have a long right tail, so it is also useful to show a log transformation of the

 Data Cleaning and Calculations in Tables

9-87

areas. To transform the two table variables, wrap them in calls to the log function. Then make
another scatter plot.

logSalePrice = log(housing.SalePrice);
logLivingArea = log(housing.TotalAboveGroundLivingArea);
scatter(housing.YearBuilt,logSalePrice,20,logLivingArea,"filled");

Clean Errors in Data

Any large, complex data set collected over a long period of time might contain some errors. Check for
errors in the housing data. Dates in the data are a good place to start. First compare YearBuilt to
YearRemod_Add.

checkRows = housing.YearBuilt > housing.YearRemod_Add;
housing(checkRows,:)

ans=1×24 table
 PID MSSubClass LotFrontage LotArea Neighborhood BldgType OverallCond YearBuilt YearRemod_Add Foundation Heating CentralAir FirstFlrArea SecondFlrArea LowQualFinishedArea TotalAboveGroundLivingArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr GarageType SalePrice LastSoldDate
 ____________ _______________________________ ___________ _______ ____________ ______________________ ___________ _________ _____________ __________ _______ __________ ____________ _____________ ___________________ __________________________ ____________ ____________ ________ ________ ____________ __________ _________ ____________

 "0907194160" 1-STORY 1946 & NEWER ALL STYLES 65 10739 CollgCr Single-family Detached 5 2002 2001 PConc GasA true 1444 0 0 1444 1 0 2 0 3 Attchd 2.03e+05 Mar 2009

It is not possible for remodeling to have been done in 2001 if the house itself was built in 2002. If you
assume that the YearBuilt value is known to be the error (an assumption that needs to be
confirmed), you can use dot notation to assign 2001 as the year in which this house was built.

housing.YearBuilt(checkRows) = 2001;

As another check, compare the new LastSoldDate variable to YearBuilt.

checkRows = housing.YearBuilt > year(housing.LastSoldDate);
housing(checkRows,:)

ans=2×24 table
 PID MSSubClass LotFrontage LotArea Neighborhood BldgType OverallCond YearBuilt YearRemod_Add Foundation Heating CentralAir FirstFlrArea SecondFlrArea LowQualFinishedArea TotalAboveGroundLivingArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr GarageType SalePrice LastSoldDate
 ____________ _______________________________ ___________ _______ ____________ ______________________ ___________ _________ _____________ __________ _______ __________ ____________ _____________ ___________________ __________________________ ____________ ____________ ________ ________ ____________ __________ __________ ____________

 "0908154235" 2-STORY 1946 & NEWER 313 63887 Edwards Single-family Detached 5 2008 2008 PConc GasA true 4692 950 0 5642 2 0 2 1 3 Attchd 1.6e+05 Dec 2007
 "0908154195" 1-STORY 1946 & NEWER ALL STYLES 128 39290 Edwards Single-family Detached 5 2008 2009 PConc GasA true 5095 0 0 5095 1 1 2 1 2 Attchd 1.8385e+05 Sep 2007

There is another issue. These two houses were sold in late 2007, as shown in the LastSoldDate
variable. But the corresponding value in YearBuilt is 2008. It might be that for these houses, the
years in YearBuilt were recorded in early 2008 (another assumption needing confirmation). Update
the YearBuilt variable, this time by using dot notation to assign to two rows.

housing.YearBuilt(checkRows) = 2007;

Clean Up Missing Data

The next step in cleaning the data is to check for missing data in the numeric and categorical
variables. The one logical variable in housing does not support missing values. The ismissing
function indicates which elements of the table have missing values.

missingElements = ismissing(housing)

missingElements = 2930×24 logical array

9 Tables

9-88

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 ⋮

The ismissing function returns a logical matrix that is the same size as the table. Summing the
columns of that matrix gives the number of missing values in each of the variables of the table.

numMissing = sum(missingElements,1)

numMissing = 1×24

 0 0 490 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0

Only three of the variables have missing data, but without the variable names it is not easy to tell
which variables they are. One way to tell is to index into the VariableNames property of the table to
find the names that correspond to the variables with missing values.

housing.Properties.VariableNames(numMissing > 0)

ans = 1×3 cell
 {'LotFrontage'} {'BsmtFullBath'} {'BsmtHalfBath'}

Deciding what to do about missing data is a challenge. If the data is missing at random, and there are
only a few missing values, one strategy is to remove those rows from the table. The four missing
basement bath values (NaNs, in this case) occur in only two rows. You can remove those two rows by
using the rmmissing function.

missingBsmtBath = ismissing(housing.BsmtFullBath) | ismissing(housing.BsmtHalfBath);
housing(missingBsmtBath,:)

ans=2×24 table
 PID MSSubClass LotFrontage LotArea Neighborhood BldgType OverallCond YearBuilt YearRemod_Add Foundation Heating CentralAir FirstFlrArea SecondFlrArea LowQualFinishedArea TotalAboveGroundLivingArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr GarageType SalePrice LastSoldDate
 ____________ _______________________________ ___________ _______ ____________ ______________________ ___________ _________ _____________ __________ _______ __________ ____________ _____________ ___________________ __________________________ ____________ ____________ ________ ________ ____________ __________ _________ ____________

 "0903230120" 1-STORY 1946 & NEWER ALL STYLES 99 5940 BrkSide Single-family Detached 7 1946 1950 PConc GasA true 896 0 0 896 NaN NaN 1 0 2 Detchd 79000 Mar 2008
 "0908154080" 1-STORY 1946 & NEWER ALL STYLES 123 47007 Edwards Single-family Detached 7 1959 1996 Slab GasA true 3820 0 0 3820 NaN NaN 3 1 5 Attchd 2.847e+05 Jun 2008

housing = rmmissing(housing,"DataVariables",["BsmtFullBath" "BsmtHalfBath"]);
whos housing

 Name Size Bytes Class Attributes

 housing 2928x24 595935 table

This call to rmmissing removes only the rows that have missing values in BsmtFullBath and
BsmtHalfBath. The 490 rows with missing LotFrontage values are still in the table. You can

 Data Cleaning and Calculations in Tables

9-89

remove these 490 rows but doing so deletes more than 16% of the data. You also can fill these
missing values with the mean frontage value by using the fillmissing function, but that is not
practical for this data. For variables that form a time series, fillmissing also supports filling
variables with interpolated values or moving-window smoothed values. LotFrontage is not a time
series. The data in this variable is a cross-sectional data set.

One commonly used strategy for filling in missing values in cross-sectional data is to create a
regression model to predict the missing values in a row from the non-missing data in that row. A
simple scatter plot indicates that there is a log-log relationship between the area of a lot and its
frontage. That relationship suggests a model.

loglog(housing.LotArea,housing.LotFrontage,'o')

You can use that log-log relationship to fill in the missing LotFrontage values by regressing the
values on LotArea.

missingValues = ismissing(housing.LotFrontage);
beta = polyfit(log(housing.LotArea(~missingValues)),log(housing.LotFrontage(~missingValues)),1);
housing.LotFrontage(missingValues) = exp(polyval(beta,log(housing.LotArea(missingValues))));

You can use dot notation to work on data in a table when you use functions such as polyfit and
polyval that accept numeric vectors but not tables. You can think of a table as a container that is
designed to hold data having different types. Functions such as polyfit that are specifically for
numeric inputs do not work on a table because a table often contains nonnumeric data. Even when a
table contains only numeric data, it is still a container. The functions must be applied to the contents
of the table. Use dot notation to access table variables.

Add the imputed missing values that you calculated with polyfit and polyval to the scatter plot. A
simple imputation scheme might not be sufficient in a real analysis of this data, but it illustrates how
to visualize and make computations on numeric data in a table.

hold on
loglog(housing.LotArea(missingValues),housing.LotFrontage(missingValues),'rx')
hold off

Arithmetic on Table Variables

Dot notation has been convenient for operations such as converting an existing table variable, adding
a new variable, assigning values, plotting, and applying functions like polyval to a table variable.
Dot notation is also convenient for arithmetic operations on table variables. For example, convert the
LotFrontage variable from feet to meters.

housing.LotFrontage = 0.3048 * housing.LotFrontage;
housing.Properties.VariableUnits("LotFrontage") = "m"

housing=2928×24 table
 PID MSSubClass LotFrontage LotArea Neighborhood BldgType OverallCond YearBuilt YearRemod_Add Foundation Heating CentralAir FirstFlrArea SecondFlrArea LowQualFinishedArea TotalAboveGroundLivingArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr GarageType SalePrice LastSoldDate
 ____________ ___ ___________ _______ ____________ ______________________ ___________ _________ _____________ __________ _______ __________ ____________ _____________ ___________________ __________________________ ____________ ____________ ________ ________ ____________ __________ _________ ____________

 "0526301100" 1-STORY 1946 & NEWER ALL STYLES 42.977 31770 NAmes Single-family Detached 5 1960 1960 CBlock GasA true 1656 0 0 1656 1 0 1 0 3 Attchd 2.15e+05 Apr 2010
 "0526350040" 1-STORY 1946 & NEWER ALL STYLES 24.384 11622 NAmes Single-family Detached 6 1961 1961 CBlock GasA true 896 0 0 896 0 0 1 0 2 Attchd 1.05e+05 May 2010
 "0526351010" 1-STORY 1946 & NEWER ALL STYLES 24.689 14267 NAmes Single-family Detached 6 1958 1958 CBlock GasA true 1329 0 0 1329 0 0 1 1 3 Attchd 1.72e+05 May 2010
 "0526353030" 1-STORY 1946 & NEWER ALL STYLES 28.346 11160 NAmes Single-family Detached 5 1968 1968 CBlock GasA true 2110 0 0 2110 1 0 2 1 3 Attchd 2.44e+05 Mar 2010
 "0527105010" 2-STORY 1946 & NEWER 22.555 13830 Gilbert Single-family Detached 5 1997 1998 PConc GasA true 928 701 0 1629 0 0 2 1 3 Attchd 1.899e+05 Feb 2010
 "0527105030" 2-STORY 1946 & NEWER 23.774 9978 Gilbert Single-family Detached 6 1998 1998 PConc GasA true 926 678 0 1604 0 0 2 1 3 Attchd 1.955e+05 May 2010
 "0527127150" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 12.497 4920 StoneBr Townhouse Inside Unit 5 2001 2001 PConc GasA true 1338 0 0 1338 1 0 2 0 2 Attchd 2.135e+05 Mar 2010
 "0527145080" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 13.106 5005 StoneBr Townhouse Inside Unit 5 1992 1992 PConc GasA true 1280 0 0 1280 0 0 2 0 2 Attchd 1.915e+05 Dec 2009

9 Tables

9-90

 "0527146030" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 11.887 5389 StoneBr Townhouse Inside Unit 5 1995 1996 PConc GasA true 1616 0 0 1616 1 0 2 0 2 Attchd 2.365e+05 Feb 2010
 "0527162130" 2-STORY 1946 & NEWER 18.288 7500 Gilbert Single-family Detached 5 1999 1999 PConc GasA true 1028 776 0 1804 0 0 2 1 3 Attchd 1.89e+05 May 2010
 "0527163010" 2-STORY 1946 & NEWER 22.86 10000 Gilbert Single-family Detached 5 1993 1994 PConc GasA true 763 892 0 1655 0 0 2 1 3 Attchd 1.759e+05 Mar 2010
 "0527165230" 1-STORY 1946 & NEWER ALL STYLES 19.049 7980 Gilbert Single-family Detached 7 1992 2007 PConc GasA true 1187 0 0 1187 1 0 2 0 3 Attchd 1.85e+05 Feb 2010
 "0527166040" 2-STORY 1946 & NEWER 19.202 8402 Gilbert Single-family Detached 5 1998 1998 PConc GasA true 789 676 0 1465 0 0 2 1 3 Attchd 1.804e+05 Apr 2010
 "0527180040" 1-STORY 1946 & NEWER ALL STYLES 25.908 10176 Gilbert Single-family Detached 5 1990 1990 PConc GasA true 1341 0 0 1341 1 0 1 1 2 Attchd 1.715e+05 Jan 2010
 "0527182190" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 17.465 6820 StoneBr Townhouse Inside Unit 5 1985 1985 PConc GasA true 1502 0 0 1502 1 0 1 1 1 Attchd 2.12e+05 May 2010
 "0527216070" 2-STORY 1946 & NEWER 14.326 53504 StoneBr Single-family Detached 5 2003 2003 PConc GasA true 1690 1589 0 3279 1 0 3 1 4 BuiltIn 5.38e+05 May 2010
 ⋮

Using dot notation means that the multiplication is applied not to the housing table, which cannot
be done because tables are containers, but rather to its LotFrontage variable, which is a numeric
vector. With dot notation, you extracted LotFrontage from the table and put the modified version
back in.

Another way to access the contents of a table is to subscript into it by using curly braces, just as you
use curly braces to extract the contents of a cell array. You can use curly brace subscripting to refer
to and operate on data in a table by extracting and reinserting contents. For example, convert
LotFrontage back to feet by using curly brace subscripting.

housing{:,"LotFrontage"} = housing{:,"LotFrontage"} / 0.3048;
housing.Properties.VariableUnits("LotFrontage") = "ft";

Dot notation and brace subscripting are different syntaxes for the same kinds of operations. They
both work on the contents of a table. Also, they both enable you to specify a table variable and a
subset of its rows.

housing.LotArea(1:2)

ans = 2×1

 31770
 11622

housing{1:2,"LotArea"}

ans = 2×1

 31770
 11622

While both syntaxes work on the contents of table, there are two subtle differences to consider.

First, a limitation of curly brace subscripting is that it assigns into the contents of a table rather than
replacing a variable. For example, this assignment does not change the data type of the
LotFrontage variable in the way that an assignment using dot notation does. The call to the single
function on the right side of the assignment creates an array having the single data type. But by
subscripting into housing with curly braces, you assign values from that array into the existing table
variable. And the data type of LotFrontage is double. The values from the right side are converted
back to double by this assignment.

housing{:,"LotFrontage"} = single(housing{:,"LotFrontage"});

Second, a benefit of curly brace subscripting is that, unlike dot notation, it uses the familiar two-
dimensional subscripting syntax. This syntax enables you to refer to more than one variable at a time

 Data Cleaning and Calculations in Tables

9-91

and also to a subset of rows. For example, there are five variables whose units are square feet.
Converting these variables to square meters one at a time is tedious. To apply the multiplication to all
five variables at once, use curly brace subscripting.

areaVars = ["LotArea" "FirstFlrArea" "SecondFlrArea" "LowQualFinishedArea" "TotalAboveGroundLivingArea"];
housing{:,areaVars} = 0.3048^2 * housing{:,areaVars};
housing.Properties.VariableUnits(areaVars) = "m^2";

A common mistake is to use parenthesis subscripting instead of braces to operate on the contents of a
table. While some functions, such as ismissing or varfun, do accept a table as their input, many
numeric operations, including arithmetic, do not. For example, this assignment using parentheses
results in an error. The try-catch block catches the error and displays it.

try
 housing(:,areaVars) = 0.3048^2 * housing(:,areaVars);
catch ME
 disp(ME.message)
end

Undefined function 'mtimes' for input arguments of type 'table'.

This assignment results in an error because housing(:,areaVars) is a 2928-by-5 table, not a
numeric matrix. If you used curly brace subscripting, such as housing{:,areaVars}, then the
result would be a 2928-by-5 numeric matrix. Because tables are designed to hold data of different
types, including nonnumeric data, many functions that make sense for only numeric data do not work
on a table. Dot notation and curly brace subscripting exist to give you access to data in a table.

A third way to do calculations on numeric variables in a table is to use the varfun function. Like
curly brace subscripting, varfun can operate on all or only some of the variables in a table. Unlike
curly braces, varfun operates on each table variable separately. By default, varfun returns another
table containing a variable for each separate result.

Sometimes the operation that you want to apply is an existing function. To pass the function as an
argument to varfun, use a function handle. For example, use the round function to round data in the
variables specified by areaVars.

roundedAreaTable = varfun(@round,housing,"InputVariables",areaVars)

roundedAreaTable=2928×5 table
 round_LotArea round_FirstFlrArea round_SecondFlrArea round_LowQualFinishedArea round_TotalAboveGroundLivingArea
 _____________ __________________ ___________________ _________________________ ________________________________

 2952 154 0 0 154
 1080 83 0 0 83
 1325 123 0 0 123
 1037 196 0 0 196
 1285 86 65 0 151
 927 86 63 0 149
 457 124 0 0 124
 465 119 0 0 119
 501 150 0 0 150
 697 96 72 0 168
 929 71 83 0 154
 741 110 0 0 110
 781 73 63 0 136
 945 125 0 0 125
 634 140 0 0 140

9 Tables

9-92

 4971 157 148 0 305
 ⋮

If there is no function that does exactly what you want, you can also write an anonymous function to
do it.

sqMeters2sqFeet = @(x) x / 0.3048^2;
areaTable = varfun(sqMeters2sqFeet,housing,"InputVariables",areaVars)

areaTable=2928×5 table
 Fun_LotArea Fun_FirstFlrArea Fun_SecondFlrArea Fun_LowQualFinishedArea Fun_TotalAboveGroundLivingArea
 ___________ ________________ _________________ _______________________ ______________________________

 31770 1656 0 0 1656
 11622 896 0 0 896
 14267 1329 0 0 1329
 11160 2110 0 0 2110
 13830 928 701 0 1629
 9978 926 678 0 1604
 4920 1338 0 0 1338
 5005 1280 0 0 1280
 5389 1616 0 0 1616
 7500 1028 776 0 1804
 10000 763 892 0 1655
 7980 1187 0 0 1187
 8402 789 676 0 1465
 10176 1341 0 0 1341
 6820 1502 0 0 1502
 53504 1690 1589 0 3279
 ⋮

Because that result is a table, it can be assigned back into the original table with parenthesis
subscripting.

housing(:,areaVars) = areaTable;
housing.Properties.VariableUnits(areaVars) = "ft^2";

It is important to understand the difference between the parentheses in

housing(:,areaVars) = areaTable;

and the braces in

housing{:,areaVars} = 0.3048^2 * housing{:,areaVars};

The two assignments have the same effect. The assignment with parentheses assigns one table to
another. The assignment with curly braces explicitly assigns values to the content of the table. The
left and right sides of that assignment are numeric matrices. Because curly brace subscripting
extracts and reinserts data, it is a convenient way to modify data in place. Contents-to-contents
assignment can operate on only one data type at a time, while table-to-table assignment can move
data of different types. For example, this assignment results in an error because it involves mixed
numeric and categorical data in brace subscripting.

try
 housing{:,["LotFrontage" "OverallCond"]} = normalize(housing{:,["LotFrontage" "OverallCond"]});
catch ME

 Data Cleaning and Calculations in Tables

9-93

 disp(ME.message)
end

Unable to concatenate the specified table variables.

Because varfun returns a table, assignment using parenthesis subscripting cannot change the type
of any table variables. For example, this assignment does not convert any variables from the double
to single data type.

housing(:,areaVars) = varfun(@single,housing,"InputVariables",areaVars);

To convert the data types of table variables, use convertvars, as previously shown.

Row Operations on Data in Table

Because curly brace subscripting extracts the variables from a table as one matrix having one data
type, you can use it to perform row operations across numeric variables in a table. For example, a
check on the data is to compare the individual square footage variables against
TotalAboveGroundLivingArea. Extract the former by using curly braces. Then compare their row
sums to TotalAboveGroundLivingArea, extracted by using dot notation.

area = housing{:,["FirstFlrArea" "SecondFlrArea" "LowQualFinishedArea"]}

area = 2928×3

 1656 0 0
 896 0 0
 1329 0 0
 2110 0 0
 928 701 0
 926 678 0
 1338 0 0
 1280 0 0
 1616 0 0
 1028 776 0
 ⋮

isequal(sum(area,2), housing.TotalAboveGroundLivingArea)

ans = logical
 1

The square footage data is consistent. Another example is to compute the total number of bathrooms
in each house by extracting the four different bathroom counts and adding them up across each row.

bathCountVars = ["BsmtHalfBath" "HalfBath" "BsmtFullBath" "FullBath"];
bathCounts = housing{:,bathCountVars}

bathCounts = 2928×4

 0 0 1 1
 0 0 0 1
 0 1 0 1
 0 1 1 2
 0 1 0 2
 0 1 0 2

9 Tables

9-94

 0 0 1 2
 0 0 0 2
 0 0 1 2
 0 1 0 2
 ⋮

You might think to sum the rows of that matrix as:

sum(housing{:,bathCountVars},2);

but that sum is not correct. Half-baths count only half as much as full bathrooms. A trend in real
estate listings is to account for multiple half-baths by counting them after the decimal point. Matrix
multiplication makes that operation one line.

TotalBaths = housing{:,bathCountVars} * [.1; .1; 1; 1];

Replace those four variables with TotalBaths, rather than adding a new variable at the end of the
table. Begin this replacement by using addvars to add TotalBaths next to the existing variables.

housing = addvars(housing,TotalBaths, 'After',"HalfBath");

There is a mistake in one row of the data. A townhouse built in 2007 probably does not have four half
baths and no full baths.

groupcounts(housing,"TotalBaths")

ans=17×3 table
 TotalBaths GroupCount Percent
 __________ __________ ________

 0.4 1 0.034153
 1 442 15.096
 1.1 293 10.007
 1.2 20 0.68306
 1.3 2 0.068306
 2 890 30.396
 2.1 558 19.057
 2.2 29 0.99044
 3 349 11.919
 3.1 288 9.8361
 3.2 6 0.20492
 3.3 1 0.034153
 4 25 0.85383
 4.1 16 0.54645
 4.2 3 0.10246
 6 2 0.068306
 ⋮

housing(housing.TotalBaths < 1,:)

ans=1×25 table
 PID MSSubClass LotFrontage LotArea Neighborhood BldgType OverallCond YearBuilt YearRemod_Add Foundation Heating CentralAir FirstFlrArea SecondFlrArea LowQualFinishedArea TotalAboveGroundLivingArea BsmtFullBath BsmtHalfBath FullBath HalfBath TotalBaths BedroomAbvGr GarageType SalePrice LastSoldDate
 ____________ ___ ___________ _______ ____________ _____________________ ___________ _________ _____________ __________ _______ __________ ____________ _____________ ___________________ __________________________ ____________ ____________ ________ ________ __________ ____________ __________ _________ ____________

 "0528228275" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 53 3922 Blmngtn Townhouse Inside Unit 5 2006 2007 PConc GasA true 1402 0 0 1402 0 2 0 2 0.4 2 Attchd 1.942e+05 Jan 2007

 Data Cleaning and Calculations in Tables

9-95

The BsmtHalfBath count should be two full bathrooms. The bathroom counts are all numeric. The
assignment with braces updates all three values across that row.

housing{housing.TotalBaths < 1,["BsmtHalfBath" "FullBath" "TotalBaths"]} = [0 2 2.2];

Next use removevars to delete the redundant original variables.

housing = removevars(housing,bathCountVars)

housing=2928×21 table
 PID MSSubClass LotFrontage LotArea Neighborhood BldgType OverallCond YearBuilt YearRemod_Add Foundation Heating CentralAir FirstFlrArea SecondFlrArea LowQualFinishedArea TotalAboveGroundLivingArea TotalBaths BedroomAbvGr GarageType SalePrice LastSoldDate
 ____________ ___ ___________ _______ ____________ ______________________ ___________ _________ _____________ __________ _______ __________ ____________ _____________ ___________________ __________________________ __________ ____________ __________ _________ ____________

 "0526301100" 1-STORY 1946 & NEWER ALL STYLES 141 31770 NAmes Single-family Detached 5 1960 1960 CBlock GasA true 1656 0 0 1656 2 3 Attchd 2.15e+05 Apr 2010
 "0526350040" 1-STORY 1946 & NEWER ALL STYLES 80 11622 NAmes Single-family Detached 6 1961 1961 CBlock GasA true 896 0 0 896 1 2 Attchd 1.05e+05 May 2010
 "0526351010" 1-STORY 1946 & NEWER ALL STYLES 81 14267 NAmes Single-family Detached 6 1958 1958 CBlock GasA true 1329 0 0 1329 1.1 3 Attchd 1.72e+05 May 2010
 "0526353030" 1-STORY 1946 & NEWER ALL STYLES 93 11160 NAmes Single-family Detached 5 1968 1968 CBlock GasA true 2110 0 0 2110 3.1 3 Attchd 2.44e+05 Mar 2010
 "0527105010" 2-STORY 1946 & NEWER 74 13830 Gilbert Single-family Detached 5 1997 1998 PConc GasA true 928 701 0 1629 2.1 3 Attchd 1.899e+05 Feb 2010
 "0527105030" 2-STORY 1946 & NEWER 78 9978 Gilbert Single-family Detached 6 1998 1998 PConc GasA true 926 678 0 1604 2.1 3 Attchd 1.955e+05 May 2010
 "0527127150" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 41 4920 StoneBr Townhouse Inside Unit 5 2001 2001 PConc GasA true 1338 0 0 1338 3 2 Attchd 2.135e+05 Mar 2010
 "0527145080" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 43 5005 StoneBr Townhouse Inside Unit 5 1992 1992 PConc GasA true 1280 0 0 1280 2 2 Attchd 1.915e+05 Dec 2009
 "0527146030" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 39 5389 StoneBr Townhouse Inside Unit 5 1995 1996 PConc GasA true 1616 0 0 1616 3 2 Attchd 2.365e+05 Feb 2010
 "0527162130" 2-STORY 1946 & NEWER 60 7500 Gilbert Single-family Detached 5 1999 1999 PConc GasA true 1028 776 0 1804 2.1 3 Attchd 1.89e+05 May 2010
 "0527163010" 2-STORY 1946 & NEWER 75 10000 Gilbert Single-family Detached 5 1993 1994 PConc GasA true 763 892 0 1655 2.1 3 Attchd 1.759e+05 Mar 2010
 "0527165230" 1-STORY 1946 & NEWER ALL STYLES 62.496 7980 Gilbert Single-family Detached 7 1992 2007 PConc GasA true 1187 0 0 1187 3 3 Attchd 1.85e+05 Feb 2010
 "0527166040" 2-STORY 1946 & NEWER 63 8402 Gilbert Single-family Detached 5 1998 1998 PConc GasA true 789 676 0 1465 2.1 3 Attchd 1.804e+05 Apr 2010
 "0527180040" 1-STORY 1946 & NEWER ALL STYLES 85 10176 Gilbert Single-family Detached 5 1990 1990 PConc GasA true 1341 0 0 1341 2.1 2 Attchd 1.715e+05 Jan 2010
 "0527182190" 1-STORY PUD (Planned Unit Development) - 1946 & NEWER 57.299 6820 StoneBr Townhouse Inside Unit 5 1985 1985 PConc GasA true 1502 0 0 1502 2.1 1 Attchd 2.12e+05 May 2010
 "0527216070" 2-STORY 1946 & NEWER 47 53504 StoneBr Single-family Detached 5 2003 2003 PConc GasA true 1690 1589 0 3279 4.1 4 BuiltIn 5.38e+05 May 2010
 ⋮

Unlike curly braces, varfun operates on each variable in a table separately. For that reason, varfun
cannot do row operations. The related function rowfun can do row operations. It is often simpler and
faster to use curly brace subscripting for row operations.

Reductions of Data in Table

In previous sections, the operations on numeric data in the table were transformations that replace
the original values. Many other important operations are reductions whose results are scalars. For
example, calculate the median price of the values in SalePrice.

median(housing.SalePrice)

ans = 160000

The median function works column-wise on matrices. You can use curly brace subscripting to extract
those four variables as a numeric matrix. Then you can calculate the medians of the columns of the
matrix.

median(housing{:,["LotFrontage", "LotArea" "TotalAboveGroundLivingArea" "SalePrice"]})

ans = 1×4
105 ×

 0.0007 0.0944 0.0144 1.6000

9 Tables

9-96

This operation does not attach variable names or any other table metadata to the result. As an
alternative, you can use varfun to apply median to each variable in the table. With varfun, the
result is another table that contains separate numeric results and preserves the names.

varfun(@median,housing,"InputVariables",["LotFrontage", "LotArea" "TotalAboveGroundLivingArea" "SalePrice"])

ans=1×4 table
 median_LotFrontage median_LotArea median_TotalAboveGroundLivingArea median_SalePrice
 __________________ ______________ _________________________________ ________________

 69.183 9436.5 1442 1.6e+05

These two ways to get the medians are equivalent. There is a trade-off between having the variable
names preserved in another table and having the results in one numeric row vector. The way you pick
depends on what you plan to do with the result.

Operations on Mixed Data Types

Using curly braces when calculating the medians has another drawback. Curly braces require
compatible data type for all the variables. That is, the data you extract from the variables must have
data types that allow them to be concatenated into one matrix. Ordinal categorical data can also
have median values. Because categorical and numeric arrays cannot be concatenated, this
operation results in an error.

median(housing{:,["LotFrontage", "LotArea" "OverallCond"
"TotalAboveGroundLivingArea" "SalePrice"]})

But because varfun operates on each variable in the table separately, there is no requirement that
the variables have the same data type or compatible types allowing concatenation. The only
requirement is that all the variables must support the function that is applied. To calculate the
medians of ordinal categorical variables and numeric variables in one function call use varfun.

varfun(@median,housing,"InputVariables",["LotFrontage", "LotArea" "OverallCond" "TotalAboveGroundLivingArea" "SalePrice"])

ans=1×5 table
 median_LotFrontage median_LotArea median_OverallCond median_TotalAboveGroundLivingArea median_SalePrice
 __________________ ______________ __________________ _________________________________ ________________

 69.183 9436.5 5 1442 1.6e+05

See Also
categorical | table | readtable | varfun | renamevars | convertvars | summary |
ismissing | rmmissing | datetime | removevars | addvars | groupcounts

Related Examples
• “Access Data in Tables” on page 9-32
• “Clean Messy and Missing Data in Tables” on page 9-18
• “Create Timetables” on page 10-2
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Perform Calculations by Group in Table” on page 9-59

 Data Cleaning and Calculations in Tables

9-97

• “Grouped Calculations in Tables and Timetables” on page 9-99

9 Tables

9-98

Grouped Calculations in Tables and Timetables

Grouped calculations can help you interpret large datasets such as time-series data. In such
calculations, you use a grouping variable to split a dataset into groups and apply a function to each
group. A grouping variable contains values, such as time periods or station locations, that you can use
to group other data values, such as temperature readings or atmospheric concentrations of a gas. In
MATLAB®, you can store such data in tables or timetables. With grouped calculations in a table you
can often calculate results in-place, in one table, instead of breaking data out into separate tables and
merging results later.

This example shows how to import nitrogen dioxide (NO2) data from the US Environmental
Protection Agency (EPA) into a table and do grouped calculations on this data. NO2 is one of the
Criteria Air Pollutants regulated under the US Clean Air Act. It is toxic by itself and is also a key
component of photochemical smog that results in ground-level ozone production. NO2 is produced
through high-temperature processes that can split nitrogen and oxygen gases and enable them to
recombine. Natural processes contribute NO2 to the atmosphere, but so do human activities such as
combustion in automobile engines and power plants, lightning, and biomass burning. The
concentration of NO2 in the atmosphere is also influenced by the photochemical cycling between NO
and NO2, atmospheric transport, and ultimately oxidation to nitric acid, causing acid rain. Different
processes contribute NO2 to the atmosphere on different timescales, leading to daily (diurnal),
weekly, and annual cycles in its atmospheric concentration. Time-series analysis of such data relies
heavily on grouped calculations to examine different periodic behavior or to average the data over
time to smooth out high-frequency variability and reveal long-term trends.

The example first shows how to do preliminary data cleaning, including conversion of the table to a
timetable. Then it shows simple ways to group the data by one grouping variable and calculate annual
mean NO2 concentrations. It also shows how to group the NO2 data by two grouping variables
together, time and location, enabling calculations that find locations exceeding EPA standards at
various times. You can also group the NO2 data by time period to look for daily or yearly cycles.
Finally it shows how to apply a function that requires inputs from multiple table variables to find the
times at which the maximum NO2 concentrations occurred at each site.

Import NO2 Data to Table

First, import NO2 data from the Air Quality System (AQS) database maintained by the EPA. This data
consists of hourly measurements of NO2 concentrations from outdoor monitors across the United
States, Puerto Rico, and the U.S. Virgin Islands. It is stored as a set of zipped spreadsheets, one for
each year starting with 1980.

Download hourly NO2 measurements for the years 1985–1989. You can download and unzip the
compressed spreadsheets by using the unzip function. The result is set of files in your current folder
with names such as hourly_42602_1985.csv. Here, 42602 is an EPA code for NO2. (Data from the
US Environmental Protection Agency. Air Quality System Data Mart available via Air Data: Air Quality
Data Collected at Outdoor Monitors Across the US. Accessed July 15, 2021.)

yrs = string(1985:1989);
urls = "https://aqs.epa.gov/aqsweb/airdata/hourly_42602_" + yrs + ".zip";
fnames = strings(numel(yrs),1);
for ii = 1:numel(yrs)
 fnames(ii) = unzip(urls(ii));
end
fnames

 Grouped Calculations in Tables and Timetables

9-99

https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data

fnames = 5×1 string
 "hourly_42602_1985.csv"
 "hourly_42602_1986.csv"
 "hourly_42602_1987.csv"
 "hourly_42602_1988.csv"
 "hourly_42602_1989.csv"

Import data from the spreadsheets into a table. Start by creating an empty table. Then import data
from the spreadsheets, one by one, by using the readtable function and adding it to the table.

Create import options that help specify how readtable imports tabular data. To create import
options based on the contents of the spreadsheets, use the detectImportOptions function. Read
all the text data into table variables that store strings. You can also specify that only specified table
variables have certain data types. To specify that only the TimeGMT and TimeLocal table variables
store times as duration arrays, use the setvaropts function.

NO2data = table;
opts = detectImportOptions(fnames(1),"TextType","string");
opts = setvaropts(opts,["TimeGMT","TimeLocal"],"Type","duration","InputFormat","hh:mm");

Import data from the spreadsheets by using the readtable function. You can vertically concatenate
the tables you read in so that all the data is in one large table.

The spreadsheets have column names, such as "Time GMT", that you cannot use as MATLAB
identifiers. As the warning messages indicate, readtable converts these names into table variable
names that are valid MATLAB identifiers, such as TimeGMT. When a table variable name is also a
valid MATLAB identifier, it is easier to access the variable by using dot notation, as in
NO2data.TimeGMT.

for ii = 1:numel(yrs)
 NO2data = [NO2data; readtable(fnames(ii),opts)];
end

Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating variable names for the table. The original column headers are saved in the VariableDescriptions property.
Set 'VariableNamingRule' to 'preserve' to use the original column headers as table variable names.

Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating variable names for the table. The original column headers are saved in the VariableDescriptions property.
Set 'VariableNamingRule' to 'preserve' to use the original column headers as table variable names.

Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating variable names for the table. The original column headers are saved in the VariableDescriptions property.
Set 'VariableNamingRule' to 'preserve' to use the original column headers as table variable names.

Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating variable names for the table. The original column headers are saved in the VariableDescriptions property.
Set 'VariableNamingRule' to 'preserve' to use the original column headers as table variable names.

Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating variable names for the table. The original column headers are saved in the VariableDescriptions property.
Set 'VariableNamingRule' to 'preserve' to use the original column headers as table variable names.

Display NO2data. It has 24 variables storing NO2 sample measurements, site locations, state names,
times, and many other pieces of information.

NO2data

NO2data=11294497×24 table
 StateCode CountyCode SiteNum ParameterCode POC Latitude Longitude Datum ParameterName DateLocal TimeLocal DateGMT TimeGMT SampleMeasurement UnitsOfMeasure MDL Uncertainty Qualifier MethodType MethodCode MethodName StateName CountyName DateOfLastChange
 _________ __________ _______ _____________ ___ ________ _________ _______ ________________________ __________ _________ __________ _______ _________________ ___________________ ___ ___________ _________ __________ __________ __________________________________ _________ __________ ________________

9 Tables

9-100

 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 01:00 1985-01-02 08:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 02:00 1985-01-02 09:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 03:00 1985-01-02 10:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 04:00 1985-01-02 11:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 05:00 1985-01-02 12:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 06:00 1985-01-02 13:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 08:00 1985-01-02 15:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 09:00 1985-01-02 16:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 10:00 1985-01-02 17:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 16:00 1985-01-02 23:00 1 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 17:00 1985-01-03 00:00 1 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 18:00 1985-01-03 01:00 1 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 19:00 1985-01-03 02:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 20:00 1985-01-03 03:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 21:00 1985-01-03 04:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 4 1 7 42602 1 34.128 -109.31 "WGS84" "Nitrogen dioxide (NO2)" 1985-01-02 22:00 1985-01-03 05:00 0 "Parts per billion" 5 "" "" "Non-FRM" 14 "INSTRUMENTAL - CHEMILUMINESCENCE" "Arizona" "Apache" ""
 ⋮

Clean NO2 Table and Convert to Timetable

Next, prepare NO2data for analysis by cleaning the data. Data cleaning is the process of detecting
and correcting (or removing) parts of the data set that are either corrupt, inaccurate, or irrelevant.
You can also convert table variables so that they have data types that can be more convenient for
analysis, such as categorical or datetime arrays.

For example, the table variable SampleMeasurement has measurements of NO2 concentration.
Concentrations below the method detection limit (MDL) are unreliable. To exclude them from
analysis, find the rows where SampleMeasurement is below the MDL. Set those elements to NaN.

NO2data.SampleMeasurement(NO2data.SampleMeasurement < NO2data.MDL) = NaN;

Create a table that contains only the subset of variables that are relevant to this example. You can use
table subscripting to create a table that has all rows (specified by a colon) and only those variables
that you name.

NO2data = NO2data(:,["DateLocal","TimeLocal","SampleMeasurement","StateName","CountyName","SiteNum","Latitude","Longitude"])

NO2data=11294497×8 table
 DateLocal TimeLocal SampleMeasurement StateName CountyName SiteNum Latitude Longitude
 __________ _________ _________________ _________ __________ _______ ________ _________

 1985-01-02 01:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 02:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 03:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 04:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 05:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 06:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 08:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 09:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 10:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 16:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 17:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 18:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 19:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 20:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 21:00 NaN "Arizona" "Apache" 7 34.128 -109.31
 1985-01-02 22:00 NaN "Arizona" "Apache" 7 34.128 -109.31

 Grouped Calculations in Tables and Timetables

9-101

 ⋮

Combine the local date and time into a single timestamp. The new Timestamp table variable is a
datetime array. Delete the DateLocal and TimeLocal variables because they are now redundant.

NO2data.Timestamp = NO2data.DateLocal + NO2data.TimeLocal;
NO2data.Timestamp.Format = "default";
NO2data.DateLocal = [];
NO2data.TimeLocal = [];

To categorize the data later, convert the StateName and CountyName variables to categorical
arrays, first erasing space characters from the names. There are fixed sets of state and county names
in the data, which makes it convenient to create categories based on them.

NO2data.StateName = categorical(erase(NO2data.StateName," "));
NO2data.CountyName = categorical(erase(NO2data.CountyName," "));

Rename the SampleMeasurement variable to MeasuredNO2. One way to rename table variables is
by using the VariableNames property of the table.

NO2data.Properties.VariableNames("SampleMeasurement") = "MeasuredNO2";

Convert NO2data to a timetable. The datetime values in Timestamp are now row times that label
the rows of the timetable. The dates and times of the original table were in separate variables. To put
data like this data into a timetable, it is more convenient to import the data as a table, and then
combine the separate date and time variables into one datetime variable. Then convert the modified
table by using the table2timetable function.

NO2data = table2timetable(NO2data)

NO2data=11294497×6 timetable
 Timestamp MeasuredNO2 StateName CountyName SiteNum Latitude Longitude
 ____________________ ___________ _________ __________ _______ ________ _________

 02-Jan-1985 01:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 02:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 03:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 04:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 05:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 06:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 08:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 09:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 10:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 16:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 17:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 18:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 19:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 20:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 21:00:00 NaN Arizona Apache 7 34.128 -109.31
 02-Jan-1985 22:00:00 NaN Arizona Apache 7 34.128 -109.31
 ⋮

Simple Grouped Calculations by State

Given the size of the timetable, it is obvious that there are many thousands of hourly measurements
in every state. One way to calculate the number of measurements for each state is to sum the number

9 Tables

9-102

of rows that have a particular state as a category. For example, calculate the number of
measurements for Alaska, and then for Arizona.

numAlaska = sum(NO2data.StateName=="Alaska")

numAlaska = 7071

numArizona = sum(NO2data.StateName=="Arizona")

numArizona = 142793

It is tedious to perform this calculation multiple times or to store intermediate results in many
variables or subtables. Instead, MATLAB provides functions that group data in tables and apply
functions to each group in-place. For example, use the groupcounts function to group the data in
NO2data by the states in StateName and count the rows in each group. Instead of calling sum many
times, call groupcounts once.

NO2counts = groupcounts(NO2data,"StateName")

NO2counts=42×3 table
 StateName GroupCount Percent
 __________________ __________ ________

 Alaska 7071 0.062606
 Arizona 1.4279e+05 1.2643
 Arkansas 40723 0.36056
 California 3.4015e+06 30.116
 Colorado 2.2394e+05 1.9827
 Connecticut 1.2615e+05 1.1169
 Delaware 75185 0.66568
 DistrictOfColumbia 74988 0.66393
 Florida 2.1172e+05 1.8746
 Georgia 74971 0.66378
 Illinois 4.407e+05 3.9019
 Indiana 3.3058e+05 2.927
 Kansas 10625 0.094072
 Kentucky 2.8789e+05 2.549
 Louisiana 1.6914e+05 1.4976
 Maryland 1.2565e+05 1.1125
 ⋮

To sort the results in a table or timetable, use the sortrows function. Sort gc on its GroupCount
variable from highest to lowest value.

sortedNO2counts = sortrows(NO2counts,"GroupCount","descend")

sortedNO2counts=42×3 table
 StateName GroupCount Percent
 _____________ __________ _______

 California 3.4015e+06 30.116
 Pennsylvania 8.2796e+05 7.3307
 Missouri 4.8609e+05 4.3038
 Texas 4.7163e+05 4.1758
 Illinois 4.407e+05 3.9019
 Virginia 3.4464e+05 3.0514
 Massachusetts 3.3833e+05 2.9956

 Grouped Calculations in Tables and Timetables

9-103

 Indiana 3.3058e+05 2.927
 NewJersey 3.2862e+05 2.9095
 Montana 2.8886e+05 2.5576
 Kentucky 2.8789e+05 2.549
 NorthDakota 2.7822e+05 2.4633
 Ohio 2.7478e+05 2.4329
 Oklahoma 2.4477e+05 2.1672
 NewYork 2.3126e+05 2.0475
 Wisconsin 2.3079e+05 2.0434
 ⋮

To calculate other statistics, use the groupsummary function. For example, find the maximum NO2
concentration measured in each state.

NO2max = groupsummary(NO2data,"StateName","max","MeasuredNO2");
sortedNO2max = sortrows(NO2max,"max_MeasuredNO2","descend")

sortedNO2max=42×3 table
 StateName GroupCount max_MeasuredNO2
 ____________ __________ _______________

 Nevada 64821 743.5
 California 3.4015e+06 540
 Indiana 3.3058e+05 500
 Colorado 2.2394e+05 462
 NewYork 2.3126e+05 451
 Tennessee 1.9592e+05 410
 Ohio 2.7478e+05 403
 Kentucky 2.8789e+05 368
 Pennsylvania 8.2796e+05 357
 Minnesota 90293 328
 Missouri 4.8609e+05 326
 Connecticut 1.2615e+05 319
 Oklahoma 2.4477e+05 318
 NewHampshire 25598 312
 Delaware 75185 300
 Louisiana 1.6914e+05 286
 ⋮

As an alternative, you can use the varfun function with the "GroupingVariables" name-value
argument for grouped calculations. But the groupsummary function is simpler and performs most of
the same grouped calculations as varfun.

Simple Grouped Calculations by Time

Functions such as groupcounts, groupsummary, and varfun work equally well on tables and
timetables. But timetables also provide the retime and synchronize functions, which can perform
time-based calculations by using their row times. You can group timetable data by time and perform
calculations on data within the time periods. The retime function is the best option for such cases.

For example, group the data in NO2data into yearly time periods. Find the maximum NO2
concentration for each year.

yearlyMaxNO2 = retime(NO2data(:,"MeasuredNO2"),"yearly","max")

yearlyMaxNO2=5×1 timetable
 Timestamp MeasuredNO2

9 Tables

9-104

 ___________ ___________

 01-Jan-1985 407.3
 01-Jan-1986 500
 01-Jan-1987 497
 01-Jan-1988 743.5
 01-Jan-1989 462

This calculation is useful if you have one time series. In this case, the data in the MeasuredNO2
variable come from multiple sites. A more useful analysis is to group by both year and site.

Calculate Annual Means by Site

The US EPA has two National Ambient Air Quality Standards (NAAQS) for NO2. A location is not in
compliance with the NAAQS if either:

• The annual mean exceeds 53 ppb
• The 98th percentile of 1-hour daily maximum concentrations, averaged over 3 years, exceeds 100

parts-per-billion (ppb)

Analyze data in NO2data to find locations that are not in compliance with the first standard, where
the annual mean exceeded 53 ppb. There are three different ways to approach this analysis. What the
three approaches have in common is that you can group the data by both time and site to calculate
annual means by site.

Group by Multiple Grouping Variables

To find sites that do not comply with the NAAQS, calculate the mean value for each site for each year.
While NO2data does not include unique identifiers for the sites, you can use state names, county
names, and site numbers together to uniquely identify air quality sites.

The row times of NO2data are datetime values. Extract their year components and add a new
variable to NO2data named Year. Calculate the annual means for each site by using groupsummary
with StateName, CountyName, SiteNum, and Year as grouping variables.

NO2data.Year = year(NO2data.Timestamp);
meanNO2bySite = groupsummary(NO2data,["StateName","CountyName","SiteNum","Year"],"mean","MeasuredNO2")

meanNO2bySite=1585×6 table
 StateName CountyName SiteNum Year GroupCount mean_MeasuredNO2
 _________ ______________ _______ ____ __________ ________________

 Alaska KenaiPeninsula 1004 1989 7071 9.7986
 Arizona Apache 7 1985 5920 7.75
 Arizona Apache 7 1986 2059 6.7857
 Arizona Apache 7 1988 1981 7.1391
 Arizona Apache 7 1989 3861 6.9146
 Arizona Apache 8 1985 6007 5.9138
 Arizona Apache 8 1986 1999 6.1875
 Arizona Apache 8 1988 1924 6.3333
 Arizona Apache 8 1989 3771 7.2619
 Arizona Apache 9 1985 5852 6.7021
 Arizona Apache 9 1986 1942 7.6579
 Arizona Apache 9 1988 2068 8.5333
 Arizona Apache 9 1989 3813 6.9604
 Arizona Apache 10 1985 5905 8.4406

 Grouped Calculations in Tables and Timetables

9-105

https://www.epa.gov/criteria-air-pollutants/naaqs-table

 Arizona Apache 10 1986 2009 7.3333
 Arizona Apache 10 1988 2117 7.2381
 ⋮

To find the sites that have the highest mean NO2, sort the timetable.

sortedMeanNO2bySite = sortrows(meanNO2bySite,"mean_MeasuredNO2","descend")

sortedMeanNO2bySite=1585×6 table
 StateName CountyName SiteNum Year GroupCount mean_MeasuredNO2
 __________ __________ _______ ____ __________ ________________

 California LosAngeles 1103 1988 8272 61.526
 California LosAngeles 1103 1986 8083 61.266
 California LosAngeles 1103 1985 8217 59.965
 California LosAngeles 1105 1985 1194 58.399
 California LosAngeles 1002 1986 8084 57.422
 California LosAngeles 1002 1985 8159 57.401
 California LosAngeles 1701 1989 8299 57.118
 California LosAngeles 1701 1986 8229 55.924
 California LosAngeles 1103 1989 8135 55.335
 California LosAngeles 1701 1987 8284 54.864
 California LosAngeles 1601 1989 8201 54.685
 California LosAngeles 1701 1985 8341 54.147
 California LosAngeles 1103 1987 8150 54.092
 California LosAngeles 1601 1988 7546 53.828
 California LosAngeles 1601 1985 8307 53.377
 California LosAngeles 2005 1989 8225 53.174
 ⋮

You can create a table that includes only those sites exceeding 53 ppb by using logical indexing.
Create a logical vector that indicates the rows where mean_MeasuredNO2 is greater than 53. Use
that vector as a subscript to get matching rows from meanNO2bySite.

exceeded53ppb = meanNO2bySite.mean_MeasuredNO2 > 53;
sitesExceed53ppb = meanNO2bySite(exceeded53ppb,:)

sitesExceed53ppb=19×6 table
 StateName CountyName SiteNum Year GroupCount mean_MeasuredNO2
 __________ __________ _______ ____ __________ ________________

 California LosAngeles 2 1988 8278 53.17
 California LosAngeles 1002 1985 8159 57.401
 California LosAngeles 1002 1986 8084 57.422
 California LosAngeles 1002 1988 8176 53.004
 California LosAngeles 1103 1985 8217 59.965
 California LosAngeles 1103 1986 8083 61.266
 California LosAngeles 1103 1987 8150 54.092
 California LosAngeles 1103 1988 8272 61.526
 California LosAngeles 1103 1989 8135 55.335
 California LosAngeles 1105 1985 1194 58.399
 California LosAngeles 1601 1985 8307 53.377
 California LosAngeles 1601 1988 7546 53.828
 California LosAngeles 1601 1989 8201 54.685
 California LosAngeles 1701 1985 8341 54.147
 California LosAngeles 1701 1986 8229 55.924

9 Tables

9-106

 California LosAngeles 1701 1987 8284 54.864
 ⋮

Pivot to Find Relationships Between Grouping Variables

Sometimes pivoting, or rearranging statistics calculated from tabular data, makes it easier to see and
analyze results, particularly when you look at the relationship between two grouping variables. For
example, you can create a pivot table for the annual mean NO2 by site. By pivoting, you can create a
table where every site lists annual mean NO2 in its own table variable, showing the relationship
between year and site. In MATLAB, you can create pivot tables by using the stack and unstack
functions, which stack and unstack table variables into taller or wider formats.

A complication in this case is that NO2data has three grouping variables that together uniquely
identify sites: state name, county name, and site number. To create a pivot table, first combine these
three table variables into one variable. Convert StateName, CountyName, and SiteNum into strings
and add them together. Replace spaces and dashes with underscores, and erase periods and
parentheses. The names in SiteID are unique site identifiers.

siteID = string(NO2data.StateName) + "_" + string(NO2data.CountyName) + "_" + string(NO2data.SiteNum);
siteID = replace(siteID,[" ","-"],"_");
siteID = erase(siteID,[".","(",")"]);

Add SiteID to NO2data as a new table variable. Calculate annual means by using groupsummary,
but this time use SiteID as a grouping variable.

NO2data.SiteID = categorical(siteID);
meanNO2bySiteID = groupsummary(NO2data,["SiteID","Year"],"mean","MeasuredNO2")

meanNO2bySiteID=1585×4 table
 SiteID Year GroupCount mean_MeasuredNO2
 __________________________ ____ __________ ________________

 Alaska_KenaiPeninsula_1004 1989 7071 9.7986
 Arizona_Apache_10 1985 5905 8.4406
 Arizona_Apache_10 1986 2009 7.3333
 Arizona_Apache_10 1988 2117 7.2381
 Arizona_Apache_10 1989 4282 6.9929
 Arizona_Apache_11 1985 5262 8.4264
 Arizona_Apache_11 1986 1960 7.587
 Arizona_Apache_11 1988 2063 8.0471
 Arizona_Apache_11 1989 4266 7.5714
 Arizona_Apache_7 1985 5920 7.75
 Arizona_Apache_7 1986 2059 6.7857
 Arizona_Apache_7 1988 1981 7.1391
 Arizona_Apache_7 1989 3861 6.9146
 Arizona_Apache_8 1985 6007 5.9138
 Arizona_Apache_8 1986 1999 6.1875
 Arizona_Apache_8 1988 1924 6.3333
 ⋮

To create a pivot table, use the unstack function. Each unique site in the SiteID variable of
meanNO2bySiteID becomes the name of a separate table variable in the output,
pivotedMeanNO2bySiteID, and has the annual means associated with that site. This unstacking
operation is how you can create a pivot table in MATLAB.

pivotedMeanNO2bySiteID = unstack(meanNO2bySiteID,"mean_MeasuredNO2","SiteID","GroupingVariable","Year")

 Grouped Calculations in Tables and Timetables

9-107

pivotedMeanNO2bySiteID=5×443 table
 Year Alaska_KenaiPeninsula_1004 Arizona_Apache_10 Arizona_Apache_11 Arizona_Apache_7 Arizona_Apache_8 Arizona_Apache_9 Arizona_Maricopa_3002 Arizona_Maricopa_3003 Arizona_Pima_1011 Arizona_Pima_19 Arizona_Pima_2 Arkansas_Pulaski_1002 California_Alameda_1001 California_Alameda_3 California_Butte_2 California_ContraCosta_1002 California_ContraCosta_2 California_ContraCosta_3 California_ContraCosta_3001 California_ElDorado_9 California_Fresno_241 California_Fresno_242 California_Fresno_5 California_Fresno_6 California_Fresno_7 California_Kern_232 California_Kern_4 California_Kern_5001 California_Kern_6 California_Kern_6001 California_Kern_7 California_LosAngeles_1002 California_LosAngeles_1103 California_LosAngeles_1105 California_LosAngeles_113 California_LosAngeles_1201 California_LosAngeles_1301 California_LosAngeles_16 California_LosAngeles_1601 California_LosAngeles_1701 California_LosAngeles_2 California_LosAngeles_2005 California_LosAngeles_2401 California_LosAngeles_4002 California_LosAngeles_4101 California_LosAngeles_5001 California_LosAngeles_6002 California_LosAngeles_7001 California_LosAngeles_8001 California_Marin_1 California_Mendocino_7 California_Monterey_1002 California_Napa_3 California_Orange_1 California_Orange_1002 California_Orange_5001 California_Plumas_1001 California_Riverside_5001 California_Riverside_6001 California_Riverside_8001 California_Sacramento_1 California_Sacramento_10 California_Sacramento_1001 California_Sacramento_2 California_Sacramento_5002 California_Sacramento_6 California_SanBernardino_1 California_SanBernardino_1004 California_SanBernardino_12 California_SanBernardino_2002 California_SanBernardino_3 California_SanBernardino_4001 California_SanBernardino_6 California_SanBernardino_7002 California_SanBernardino_9004 California_SanDiego_1 California_SanDiego_1002 California_SanDiego_1004 California_SanDiego_1006 California_SanDiego_1007 California_SanDiego_3 California_SanDiego_5 California_SanDiego_6 California_SanFrancisco_4 California_SanFrancisco_5 California_SanJoaquin_1002 California_SanLuisObispo_1004 California_SanLuisObispo_2001 California_SanLuisObispo_2002 California_SanLuisObispo_4001 California_SanMateo_1001 California_SantaBarbara_10 California_SantaBarbara_1010 California_SantaBarbara_1011 California_SantaBarbara_1012 California_SantaBarbara_1013 California_SantaBarbara_1014 California_SantaBarbara_1015 California_SantaBarbara_1016 California_SantaBarbara_1017 California_SantaBarbara_1018 California_SantaBarbara_1019 California_SantaBarbara_1020 California_SantaBarbara_1021 California_SantaBarbara_1025 California_SantaBarbara_1026 California_SantaBarbara_1027 California_SantaBarbara_1030 California_SantaBarbara_2002 California_SantaBarbara_2004 California_SantaBarbara_2005 California_SantaBarbara_4002 California_SantaBarbara_4003 California_SantaBarbara_4004 California_SantaBarbara_5001 California_SantaBarbara_8 California_SantaBarbara_9 California_SantaClara_2004 California_SantaCruz_3 California_Shasta_1001 California_Shasta_6 California_Solano_4 California_Sonoma_3 California_Stanislaus_1003 California_Stanislaus_1004 California_Stanislaus_5 California_Tulare_2002 California_Ventura_1003 California_Ventura_2002 California_Ventura_2003 California_Ventura_3001 California_Ventura_5 California_Ventura_6 California_Ventura_7001 Colorado_Adams_3001 Colorado_Arapahoe_1002 Colorado_Arapahoe_3 Colorado_Denver_2 Colorado_ElPaso_4 Colorado_ElPaso_6001 Colorado_ElPaso_6003 Colorado_ElPaso_6004 Colorado_ElPaso_6005 Colorado_ElPaso_6006 Colorado_ElPaso_6009 Colorado_ElPaso_6011 Colorado_ElPaso_6013 Connecticut_Fairfield_113 Connecticut_Fairfield_123 Connecticut_Hartford_1003 Connecticut_NewHaven_1123 Delaware_NewCastle_2002 Delaware_NewCastle_3001 DistrictOfColumbia_DistrictofColumbia_17 DistrictOfColumbia_DistrictofColumbia_25 Florida_Duval_32 Florida_Duval_70 Florida_Hillsborough_1052 Florida_Hillsborough_1055 Florida_Miami_Dade_27 Florida_Miami_Dade_4002 Florida_Orange_2002 Florida_PalmBeach_1004 Florida_PalmBeach_1101 Florida_Pinellas_18 Georgia_DeKalb_2 Georgia_Fulton_48 Illinois_Cook_1002 Illinois_Cook_1102 Illinois_Cook_1601 Illinois_Cook_3101 Illinois_Cook_3102 Illinois_Cook_3601 Illinois_Cook_37 Illinois_Cook_39 Illinois_Cook_40 Illinois_Cook_4002 Illinois_Cook_4003 Illinois_Cook_4004 Illinois_Cook_4005 Illinois_Cook_45 Illinois_Cook_53 Illinois_Cook_63 Illinois_DuPage_1003 Illinois_SaintClair_10 Indiana_Allen_6 Indiana_Clark_3 Indiana_Jasper_2 Indiana_Jasper_3 Indiana_Jefferson_1 Indiana_Knox_4 Indiana_Lake_1016 Indiana_Marion_30 Indiana_Marion_57 Indiana_Marion_65 Indiana_Marion_70 Indiana_Porter_15 Indiana_Porter_16 Indiana_Posey_1 Indiana_Posey_1002 Indiana_Posey_2 Indiana_Spencer_2 Indiana_Spencer_6 Indiana_Sullivan_1 Indiana_Tippecanoe_1001 Indiana_Vanderburgh_1001 Indiana_Vanderburgh_1002 Indiana_Vigo_1012 Kansas_Wyandotte_1 Kentucky_Boone_7 Kentucky_Boyd_10 Kentucky_Campbell_1001 Kentucky_Daviess_5 Kentucky_Fayette_12 Kentucky_Henderson_13 Kentucky_Jefferson_1020 Kentucky_McCracken_1024 Kentucky_Trigg_1 Louisiana_Calcasieu_100 Louisiana_EastBatonRouge_4 Louisiana_Jefferson_1001 Louisiana_Orleans_12 Louisiana_WestBatonRouge_1 Maryland_AnneArundel_19 Maryland_BaltimoreCity_40 Maryland_Baltimore_10 Maryland_Baltimore_3001 Massachusetts_Bristol_1004 Massachusetts_Essex_5 Massachusetts_Hampden_15 Massachusetts_Hampden_16 Massachusetts_Hampden_17 Massachusetts_Hampshire_4002 Massachusetts_Norfolk_8 Massachusetts_Norfolk_9 Massachusetts_Suffolk_1003 Massachusetts_Suffolk_2 Massachusetts_Suffolk_21 Massachusetts_Suffolk_35 Massachusetts_Suffolk_36 Massachusetts_Suffolk_37 Massachusetts_Worcester_20 Michigan_Dickinson_901 Michigan_Dickinson_902 Michigan_Kent_20 Michigan_Midland_940 Michigan_Midland_941 Michigan_Oakland_902 Michigan_Wayne_16 Michigan_Wayne_19 Michigan_Wayne_29 Minnesota_Carlton_6316 Minnesota_Hennepin_50 Minnesota_Hennepin_953 Minnesota_Ramsey_1 Minnesota_Ramsey_3 Minnesota_Ramsey_864 Minnesota_Wright_7 Missouri_Atchison_1 Missouri_Atchison_2 Missouri_Clay_25 Missouri_Clay_5 Missouri_Greene_14 Missouri_Greene_36 Missouri_Jackson_33 Missouri_Platte_23 Missouri_SaintCharles_1002 Missouri_SaintLouis_1 Missouri_SaintLouis_3001 Missouri_SaintLouis_5001 Missouri_SaintLouis_6 Missouri_SaintLouis_7001 Missouri_StLouisCity_72 Missouri_StLouisCity_80 Montana_Missoula_34 Montana_Rosebud_700 Montana_Rosebud_701 Montana_Rosebud_702 Montana_Rosebud_704 Montana_Rosebud_760 Montana_Rosebud_761 Montana_Rosebud_762 Nevada_Clark_1001 Nevada_Clark_16 Nevada_Clark_557 Nevada_Washoe_15 Nevada_Washoe_16 NewHampshire_Hillsborough_16 NewJersey_Bergen_1 NewJersey_Camden_3 NewJersey_Essex_1003 NewJersey_Essex_11 NewJersey_Hudson_6 NewJersey_Morris_3001 NewJersey_Union_4 NewJersey_Union_5001 NewMexico_Bernalillo_15 NewMexico_Bernalillo_23 NewMexico_Catron_1 NewMexico_Eddy_3 NewMexico_SanJuan_14 NewYork_Bronx_74 NewYork_Erie_2 NewYork_Erie_5 NewYork_Essex_5 NewYork_Nassau_5 NewYork_NewYork_10 NewYork_NewYork_56 NewYork_NewYork_63 NorthCarolina_Forsyth_22 NorthCarolina_Forsyth_7 NorthCarolina_Mecklenburg_34 NorthCarolina_Wake_14 NorthDakota_Burke_1 NorthDakota_Dunn_3 NorthDakota_Mercer_1 NorthDakota_Mercer_101 NorthDakota_Mercer_102 NorthDakota_Mercer_103 NorthDakota_Mercer_104 NorthDakota_Oliver_101 NorthDakota_Oliver_2 Ohio_Cuyahoga_2003 Ohio_Cuyahoga_33 Ohio_Cuyahoga_43 Ohio_Franklin_4 Ohio_Hamilton_1013 Ohio_Hamilton_35 Ohio_Hamilton_4002 Ohio_Jefferson_1012 Ohio_Montgomery_29 Ohio_Pickaway_1 Ohio_Pickaway_1001 Ohio_Stark_16 Oklahoma_Cleveland_44 Oklahoma_Cleveland_49 Oklahoma_Kay_600 Oklahoma_Muskogee_167 Oklahoma_Oklahoma_1037 Oklahoma_Oklahoma_33 Oklahoma_Tulsa_127 Oklahoma_Tulsa_174 Oklahoma_Tulsa_191 Oregon_Multnomah_80 Pennsylvania_Allegheny_3 Pennsylvania_Allegheny_31 Pennsylvania_Allegheny_8 Pennsylvania_Beaver_14 Pennsylvania_Berks_9 Pennsylvania_Blair_801 Pennsylvania_Bucks_12 Pennsylvania_Cambria_11 Pennsylvania_Dauphin_401 Pennsylvania_Delaware_2 Pennsylvania_Erie_10 Pennsylvania_Erie_3 Pennsylvania_Lackawanna_2006 Pennsylvania_Lancaster_7 Pennsylvania_Lawrence_15 Pennsylvania_Lehigh_4 Pennsylvania_Luzerne_1101 Pennsylvania_Montgomery_13 Pennsylvania_Northampton_17 Pennsylvania_Perry_301 Pennsylvania_Philadelphia_22 Pennsylvania_Philadelphia_23 Pennsylvania_Philadelphia_29 Pennsylvania_Philadelphia_4 Pennsylvania_Philadelphia_47 Pennsylvania_Washington_200 Pennsylvania_Washington_5 Pennsylvania_York_8 RhodeIsland_Providence_12 RhodeIsland_Providence_19 SouthCarolina_Aiken_3 SouthCarolina_Barnwell_1 SouthCarolina_Lexington_5 SouthCarolina_Richland_1006 Tennessee_Bradley_102 Tennessee_Davidson_10 Tennessee_Davidson_11 Tennessee_Giles_1 Tennessee_Maury_106 Tennessee_McMinn_101 Tennessee_Rutherford_101 Tennessee_Shelby_24 Tennessee_Sullivan_7 Tennessee_Sullivan_9 Tennessee_Williamson_103 Texas_Bexar_36 Texas_Brazoria_1003 Texas_Dallas_44 Texas_Dallas_45 Texas_Dallas_55 Texas_Dallas_69 Texas_ElPaso_27 Texas_ElPaso_37 Texas_Galveston_1002 Texas_Gregg_1 Texas_Harris_1034 Texas_Harris_1035 Texas_Harris_1037 Texas_Harris_24 Texas_Harris_26 Texas_Harris_47 Texas_Harris_7001 Texas_Jefferson_9 Texas_Orange_1001 Texas_Tarrant_1002 Texas_Tarrant_1003 Texas_Travis_17 Utah_Davis_1 Utah_SaltLake_3001 Utah_Utah_2 Utah_Weber_1 Vermont_Chittenden_3 Vermont_Rutland_2 Virginia_AlexandriaCity_9 Virginia_Arlington_20 Virginia_FairfaxCity_5 Virginia_Fairfax_1004 Virginia_Fairfax_18 Virginia_Fairfax_5001 Virginia_Henrico_14 Virginia_NorfolkCity_23 Virginia_RichmondCity_21 Virginia_Roanoke_1004 Virginia_VirginiaBeachCity_7 Washington_King_80 Washington_King_82 WestVirginia_Cabell_6 WestVirginia_Greenbrier_1 WestVirginia_Hancock_1004 WestVirginia_Kanawha_4 WestVirginia_Ohio_7 Wisconsin_Columbia_8 Wisconsin_Kenosha_1001 Wisconsin_Kenosha_16 Wisconsin_Milwaukee_41 Wisconsin_Milwaukee_80 Wisconsin_Rock_1002 Wisconsin_Rock_1004
 ____ __________________________ _________________ _________________ ________________ ________________ ________________ _____________________ _____________________ _________________ _______________ ______________ _____________________ _______________________ ____________________ __________________ ___________________________ ________________________ ________________________ ___________________________ _____________________ _____________________ _____________________ ___________________ ___________________ ___________________ ___________________ _________________ ____________________ _________________ ____________________ _________________ __________________________ __________________________ __________________________ _________________________ __________________________ __________________________ ________________________ __________________________ __________________________ _______________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________ ______________________ ________________________ _________________ ___________________ ______________________ ______________________ ______________________ _________________________ _________________________ _________________________ _______________________ ________________________ __________________________ _______________________ __________________________ _______________________ __________________________ _____________________________ ___________________________ _____________________________ __________________________ _____________________________ __________________________ _____________________________ _____________________________ _____________________ ________________________ ________________________ ________________________ ________________________ _____________________ _____________________ _____________________ _________________________ _________________________ __________________________ _____________________________ _____________________________ _____________________________ _____________________________ ________________________ __________________________ _________________________ _________________________ __________________________ ______________________ ______________________ ___________________ ___________________ ___________________ __________________________ __________________________ _______________________ ______________________ _______________________ _______________________ _______________________ _______________________ ____________________ ____________________ _______________________ ___________________ ______________________ ___________________ _________________ _________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ _________________________ _________________________ _________________________ _________________________ _______________________ _______________________ __ __ ________________ ________________ _________________________ _________________________ _____________________ _______________________ ___________________ ______________________ ______________________ ___________________ ________________ _________________ __________________ __________________ __________________ __________________ __________________ __________________ ________________ ________________ ________________ __________________ __________________ __________________ __________________ ________________ ________________ ________________ ____________________ ______________________ _______________ _______________ ________________ ________________ ___________________ ______________ _________________ _________________ _________________ _________________ _________________ _________________ _________________ _______________ __________________ _______________ _________________ _________________ __________________ _______________________ ________________________ ________________________ _________________ __________________ ________________ ________________ ______________________ __________________ ___________________ _____________________ _______________________ _______________________ ________________ _______________________ __________________________ ________________________ ____________________ __________________________ _______________________ _________________________ _____________________ _______________________ __________________________ _____________________ ________________________ ________________________ ________________________ ____________________________ _______________________ _______________________ __________________________ _______________________ ________________________ ________________________ ________________________ ________________________ __________________________ ______________________ ______________________ ________________ ____________________ ____________________ ____________________ _________________ _________________ _________________ ______________________ _____________________ ______________________ __________________ __________________ ____________________ __________________ ___________________ ___________________ ________________ _______________ __________________ __________________ ___________________ __________________ __________________________ _____________________ ________________________ ________________________ _____________________ ________________________ _______________________ _______________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ _________________ _______________ ________________ ________________ ________________ ____________________________ __________________ __________________ ____________________ __________________ __________________ _____________________ _________________ ____________________ _______________________ _______________________ __________________ ________________ ____________________ ________________ ______________ ______________ _______________ ________________ __________________ __________________ __________________ ________________________ _______________________ ____________________________ _____________________ ___________________ __________________ ____________________ ______________________ ______________________ ______________________ ______________________ ______________________ ____________________ __________________ ________________ ________________ _______________ __________________ ________________ __________________ ___________________ __________________ _______________ __________________ _____________ _____________________ _____________________ ________________ _____________________ ______________________ ____________________ __________________ __________________ __________________ ___________________ ________________________ _________________________ ________________________ ______________________ ____________________ ______________________ _____________________ _______________________ ________________________ _______________________ ____________________ ___________________ ____________________________ ________________________ ________________________ _____________________ _________________________ __________________________ ___________________________ ______________________ ____________________________ ____________________________ ____________________________ ___________________________ ____________________________ ___________________________ _________________________ ___________________ _________________________ _________________________ _____________________ ________________________ _________________________ ___________________________ _____________________ _____________________ _____________________ _________________ ___________________ ____________________ ________________________ ___________________ ____________________ ____________________ ________________________ ______________ ___________________ _______________ _______________ _______________ _______________ _______________ _______________ ____________________ _____________ _________________ _________________ _________________ _______________ _______________ _______________ _________________ _________________ _________________ __________________ __________________ _______________ ____________ __________________ ___________ ____________ ____________________ _________________ _________________________ _____________________ ______________________ _____________________ ___________________ _____________________ ___________________ _______________________ ________________________ _____________________ ____________________________ __________________ __________________ _____________________ _________________________ _________________________ ______________________ ___________________ ____________________ ______________________ ____________________ ______________________ ______________________ ___________________ ___________________

 1989 9.7986 6.9929 7.5714 6.9146 7.2619 6.9604 NaN NaN 19.756 25.689 27.227 12.066 26.196 22.652 16.322 17.069 23.601 23.539 20.121 14.488 17.632 20.123 32.092 NaN 25.63 21.521 33.682 13.708 NaN 22.502 17.431 51.026 55.335 NaN 33.294 39.365 46.157 39.372 54.685 57.118 51.135 53.174 44.575 42.93 29.629 39.111 37.877 19.853 NaN 22.555 NaN 14.988 18.075 47.195 37.19 43.02 NaN 24.132 32.392 37.062 20.855 25.009 18.622 17.045 17.725 25.017 26.622 44.851 13.684 37.511 NaN 19.918 16.094 NaN 41.653 27.655 32.466 37.276 18.508 35.96 30.693 27.044 27.493 NaN 26.059 25.598 11.694 16.023 17.585 13.495 24.317 27.267 12.192 6.8022 7.4621 6.0716 6.024 9.3787 9.406 11.892 9.7051 9.7773 18.279 9.1268 9.2821 8.3069 9.3139 7.2573 18.54 14.527 NaN NaN 6.433 6.6575 NaN 16.863 NaN 34.421 11.895 NaN 16.747 20.459 17.455 NaN 14.707 26.935 23.164 14.554 27.47 18.231 19.073 11.033 13.273 NaN 29.366 NaN 22.103 40.313 NaN 12.714 16.409 19.683 23.401 11.403 16.267 23.618 25.598 25.759 NaN 20.889 28.421 33.532 28.746 25.898 19.397 16.372 NaN 22.114 NaN 14.271 18.42 13.979 14.196 NaN 16.546 19.791 28.933 23.9 NaN 17.284 31.36 29.417 29.535 26.866 34.424 NaN 27.441 23.05 29.568 24.884 NaN NaN 32.554 25.617 22.677 13.897 NaN NaN NaN NaN NaN 34.163 NaN 21.582 25.471 23.033 NaN NaN NaN NaN 13.036 9.8545 9.4845 NaN NaN NaN NaN NaN 32.844 NaN 16.385 20.575 14.368 19.911 23.832 26.838 15.57 NaN NaN 20.097 15.164 22.077 17.042 18.46 35.227 NaN 25.526 NaN NaN NaN 28.953 NaN 12.54 21.528 26.423 29.594 32.31 32.13 24.06 26.43 23.926 26.179 11.332 8.6171 18.412 12.076 11.082 NaN 25.104 NaN 25.591 8.1999 22.078 25.228 NaN NaN 20.237 11.668 NaN NaN 17.968 12.712 NaN 16.544 NaN 13.007 16.678 22.031 20.57 21.325 17.047 23.86 26.534 20.372 14.493 11.466 10.188 8.66 9.169 9.8034 8.0625 10.547 NaN 35.57 30.477 NaN NaN 22.833 34.686 25.264 32.765 33.182 31.38 16.314 37.654 23.908 NaN 19.504 NaN 12.437 14.919 NaN 19.656 24.038 7.9884 29.446 41.977 49.448 NaN 15.668 13.546 19.253 13.737 6.5652 6.7879 8.9777 NaN 7.9715 7.7364 10.251 NaN 8.9198 NaN 33.657 24.804 NaN NaN 29.817 27.515 23.01 NaN NaN 12.49 NaN NaN 14.216 13.302 10.997 13.619 16.072 NaN 13.431 20.415 15.932 25.838 28.295 25.79 20.556 23.377 NaN 24.989 19.175 22.115 NaN NaN 16.646 22.342 18.152 19.69 21.258 19.031 NaN NaN 10.934 NaN NaN 32.935 29.186 39.744 20.817 20.624 22.6 23.634 NaN 10.253 7.9022 NaN 10.265 13.636 NaN 14.546 NaN 10.882 13.834 6.6817 26.657 19.766 NaN 7.2863 NaN NaN NaN 17.914 13.754 21.998 NaN 22.736 NaN NaN 21.837 23.29 27.548 17.805 NaN 23.565 NaN 13.025 14.187 18.882 NaN 18.128 21.987 32.907 29.279 28.75 19.088 15.678 31.226 26.319 23.639 27.847 22.203 29.668 16.617 20.578 24.855 15.169 20.507 NaN NaN 16.234 8.3624 20.15 22.11 19.306 10.498 NaN 17.218 20.235 28.515 NaN NaN
 1985 NaN 8.4406 8.4264 7.75 5.9138 6.7021 24.546 15.514 18.531 NaN 24.518 11.748 26.308 22.396 15.87 15.428 23.182 21.806 17.941 15.142 NaN NaN 31.365 19.75 20.952 26.921 30.993 NaN NaN NaN NaN 57.401 59.965 58.399 38.492 39.672 52.548 NaN 53.377 54.147 50.289 50.162 47.958 50.114 NaN NaN NaN 17.384 43.92 24.229 NaN 15.855 18.447 43.104 29.302 42.811 NaN 20.183 NaN 35.461 22.077 NaN 18.823 18.546 NaN 20.747 26.424 39.996 NaN 37.844 38.204 NaN 13.073 21.232 NaN 27.568 27.879 32.718 17.111 NaN 31.908 NaN 25.372 28.254 NaN 20.258 11.732 15.251 17.762 13.598 22.81 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 18.188 NaN 11.797 NaN NaN NaN NaN 15.398 29.84 NaN NaN 11.09 NaN 20.359 17.994 NaN NaN 22.091 22.5 NaN NaN 20.857 19.645 11.459 NaN 27.996 28.659 19.921 NaN 47.934 23.989 NaN NaN NaN NaN NaN NaN NaN NaN NaN 27.085 21.763 30.71 29.012 25.01 36.44 28.321 16.73 11.309 19.458 16.542 11.3 17.428 11.708 NaN 14.395 17.472 15.937 27.001 22.592 24.021 17.317 34.109 NaN NaN 27.304 34.9 42.464 27.823 NaN NaN NaN 24.622 24.338 NaN NaN 22.475 NaN 16.508 12.728 11.049 11.159 NaN NaN 21.894 20.817 NaN 18.893 13.242 13.404 NaN 24.704 NaN 10.191 10.965 10.863 NaN 12.02 14.059 12.323 NaN 13.912 17.453 21.639 13.276 18.625 25.127 23.747 16.189 7.3081 12.353 24.902 16.618 24.532 22.192 20.122 35.846 18.22 26.679 18.263 22.122 25.231 NaN NaN NaN NaN NaN 24.399 39.768 30.652 NaN NaN 25.344 NaN 11.918 9.3198 NaN NaN NaN 16.595 8.6867 22.76 NaN NaN 18.871 NaN NaN 21.701 NaN NaN NaN NaN 16.102 10.219 8.6515 NaN 25.521 15.02 13.793 22.332 20.21 19.638 15.016 NaN 34.309 23.916 NaN 12.593 12.093 8.9425 10.568 9.4729 8.9321 9.3806 33.51 NaN 27.971 NaN 27.348 NaN 33.968 27.979 30.159 33.573 32.32 15.408 42.927 23.856 19.197 NaN 7.2632 NaN 17.908 32.466 19.512 24.49 6.1648 33.617 42.346 NaN NaN 15.117 NaN 19.708 NaN NaN 6.1797 9.0852 7.6016 8.3062 7.0871 9.0084 7.6155 NaN NaN 29.908 22.072 25.342 18.026 29.099 29.067 19.529 22.141 NaN NaN 19.598 19.67 NaN NaN NaN 13.974 17.06 16.525 12.774 20.443 19.25 NaN 29.692 27.063 23.138 23.368 18.04 25.828 20.217 22.045 24.373 17.031 NaN 23.05 19.274 21.778 19.444 21.536 23.813 21.589 10.948 31.667 NaN 34.406 33.719 36.223 19.809 18.619 25.262 26.242 NaN NaN 8.916 NaN 7.8505 13.259 NaN NaN 13.02 NaN 12.057 NaN 18.537 19.75 17.573 NaN 16.809 15.465 22.288 18.562 15.853 NaN 24.654 19.713 14.71 11.741 21.096 25.421 28.928 17.341 15.587 23.676 14.588 14.603 11.179 20.275 23.15 NaN NaN 38.119 31.138 31.073 16.922 NaN 29.671 24.991 23.347 25.148 21.04 25.784 NaN NaN 23.05 14.758 18.108 19.799 34.428 16.663 8.6705 18.629 23.72 17.997 11.788 14.625 14.075 18.757 26.559 14.536 13.956

This representation of the annual means by site has an advantage and a disadvantage.

• It is easier to look at the short five-year time series for each site. After unstacking, each site has
its own variable in pivotedMeanNO2bySiteID. You can easily compare sites to each other.

• It is harder to sort and pick out the largest values across the whole pivoted table. After
unstacking, pivotedMeanNO2bySiteID has 443 variables. The stacked version,
meanNO2bySite, has only seven variables.

Group by Time and Another Grouping Variable

To group data in NO2data by year and another grouping variable, it was necessary to add Year as an
additional variable. Also, the output from groupsummary is a table even when the input is a
timetable. But suppose you want to keep the results in a timetable instead. The retime function can
also produce annual summaries. But it can group data only by time. To group data by site and by year,
rearrange NO2data so that you can call retime on a timetable where the NO2 concentrations are
already grouped by site.

Group the raw data in NO2data by site by using the unstack function. The output timetable has a
separate variable for each site. This timetable looks similar to a pivot table. But instead of having
means or some other statistic, NO2bySite has all the raw data. It is just reorganized. For further
convenience, sort the rows of the timetable by their row times so that the earliest timestamps come
first.

NO2bySite = unstack(NO2data,"MeasuredNO2","SiteID","GroupingVariable","Timestamp");
NO2bySite = sortrows(NO2bySite)

NO2bySite=43824×442 timetable
 Timestamp Alaska_KenaiPeninsula_1004 Arizona_Apache_10 Arizona_Apache_11 Arizona_Apache_7 Arizona_Apache_8 Arizona_Apache_9 Arizona_Maricopa_3002 Arizona_Maricopa_3003 Arizona_Pima_1011 Arizona_Pima_19 Arizona_Pima_2 Arkansas_Pulaski_1002 California_Alameda_1001 California_Alameda_3 California_Butte_2 California_ContraCosta_1002 California_ContraCosta_2 California_ContraCosta_3 California_ContraCosta_3001 California_ElDorado_9 California_Fresno_241 California_Fresno_242 California_Fresno_5 California_Fresno_6 California_Fresno_7 California_Kern_232 California_Kern_4 California_Kern_5001 California_Kern_6 California_Kern_6001 California_Kern_7 California_LosAngeles_1002 California_LosAngeles_1103 California_LosAngeles_1105 California_LosAngeles_113 California_LosAngeles_1201 California_LosAngeles_1301 California_LosAngeles_16 California_LosAngeles_1601 California_LosAngeles_1701 California_LosAngeles_2 California_LosAngeles_2005 California_LosAngeles_2401 California_LosAngeles_4002 California_LosAngeles_4101 California_LosAngeles_5001 California_LosAngeles_6002 California_LosAngeles_7001 California_LosAngeles_8001 California_Marin_1 California_Mendocino_7 California_Monterey_1002 California_Napa_3 California_Orange_1 California_Orange_1002 California_Orange_5001 California_Plumas_1001 California_Riverside_5001 California_Riverside_6001 California_Riverside_8001 California_Sacramento_1 California_Sacramento_10 California_Sacramento_1001 California_Sacramento_2 California_Sacramento_5002 California_Sacramento_6 California_SanBernardino_1 California_SanBernardino_1004 California_SanBernardino_12 California_SanBernardino_2002 California_SanBernardino_3 California_SanBernardino_4001 California_SanBernardino_6 California_SanBernardino_7002 California_SanBernardino_9004 California_SanDiego_1 California_SanDiego_1002 California_SanDiego_1004 California_SanDiego_1006 California_SanDiego_1007 California_SanDiego_3 California_SanDiego_5 California_SanDiego_6 California_SanFrancisco_4 California_SanFrancisco_5 California_SanJoaquin_1002 California_SanLuisObispo_1004 California_SanLuisObispo_2001 California_SanLuisObispo_2002 California_SanLuisObispo_4001 California_SanMateo_1001 California_SantaBarbara_10 California_SantaBarbara_1010 California_SantaBarbara_1011 California_SantaBarbara_1012 California_SantaBarbara_1013 California_SantaBarbara_1014 California_SantaBarbara_1015 California_SantaBarbara_1016 California_SantaBarbara_1017 California_SantaBarbara_1018 California_SantaBarbara_1019 California_SantaBarbara_1020 California_SantaBarbara_1021 California_SantaBarbara_1025 California_SantaBarbara_1026 California_SantaBarbara_1027 California_SantaBarbara_1030 California_SantaBarbara_2002 California_SantaBarbara_2004 California_SantaBarbara_2005 California_SantaBarbara_4002 California_SantaBarbara_4003 California_SantaBarbara_4004 California_SantaBarbara_5001 California_SantaBarbara_8 California_SantaBarbara_9 California_SantaClara_2004 California_SantaCruz_3 California_Shasta_1001 California_Shasta_6 California_Solano_4 California_Sonoma_3 California_Stanislaus_1003 California_Stanislaus_1004 California_Stanislaus_5 California_Tulare_2002 California_Ventura_1003 California_Ventura_2002 California_Ventura_2003 California_Ventura_3001 California_Ventura_5 California_Ventura_6 California_Ventura_7001 Colorado_Adams_3001 Colorado_Arapahoe_1002 Colorado_Arapahoe_3 Colorado_Denver_2 Colorado_ElPaso_4 Colorado_ElPaso_6001 Colorado_ElPaso_6003 Colorado_ElPaso_6004 Colorado_ElPaso_6005 Colorado_ElPaso_6006 Colorado_ElPaso_6009 Colorado_ElPaso_6011 Colorado_ElPaso_6013 Connecticut_Fairfield_113 Connecticut_Fairfield_123 Connecticut_Hartford_1003 Connecticut_NewHaven_1123 Delaware_NewCastle_2002 Delaware_NewCastle_3001 DistrictOfColumbia_DistrictofColumbia_17 DistrictOfColumbia_DistrictofColumbia_25 Florida_Duval_32 Florida_Duval_70 Florida_Hillsborough_1052 Florida_Hillsborough_1055 Florida_Miami_Dade_27 Florida_Miami_Dade_4002 Florida_Orange_2002 Florida_PalmBeach_1004 Florida_PalmBeach_1101 Florida_Pinellas_18 Georgia_DeKalb_2 Georgia_Fulton_48 Illinois_Cook_1002 Illinois_Cook_1102 Illinois_Cook_1601 Illinois_Cook_3101 Illinois_Cook_3102 Illinois_Cook_3601 Illinois_Cook_37 Illinois_Cook_39 Illinois_Cook_40 Illinois_Cook_4002 Illinois_Cook_4003 Illinois_Cook_4004 Illinois_Cook_4005 Illinois_Cook_45 Illinois_Cook_53 Illinois_Cook_63 Illinois_DuPage_1003 Illinois_SaintClair_10 Indiana_Allen_6 Indiana_Clark_3 Indiana_Jasper_2 Indiana_Jasper_3 Indiana_Jefferson_1 Indiana_Knox_4 Indiana_Lake_1016 Indiana_Marion_30 Indiana_Marion_57 Indiana_Marion_65 Indiana_Marion_70 Indiana_Porter_15 Indiana_Porter_16 Indiana_Posey_1 Indiana_Posey_1002 Indiana_Posey_2 Indiana_Spencer_2 Indiana_Spencer_6 Indiana_Sullivan_1 Indiana_Tippecanoe_1001 Indiana_Vanderburgh_1001 Indiana_Vanderburgh_1002 Indiana_Vigo_1012 Kansas_Wyandotte_1 Kentucky_Boone_7 Kentucky_Boyd_10 Kentucky_Campbell_1001 Kentucky_Daviess_5 Kentucky_Fayette_12 Kentucky_Henderson_13 Kentucky_Jefferson_1020 Kentucky_McCracken_1024 Kentucky_Trigg_1 Louisiana_Calcasieu_100 Louisiana_EastBatonRouge_4 Louisiana_Jefferson_1001 Louisiana_Orleans_12 Louisiana_WestBatonRouge_1 Maryland_AnneArundel_19 Maryland_BaltimoreCity_40 Maryland_Baltimore_10 Maryland_Baltimore_3001 Massachusetts_Bristol_1004 Massachusetts_Essex_5 Massachusetts_Hampden_15 Massachusetts_Hampden_16 Massachusetts_Hampden_17 Massachusetts_Hampshire_4002 Massachusetts_Norfolk_8 Massachusetts_Norfolk_9 Massachusetts_Suffolk_1003 Massachusetts_Suffolk_2 Massachusetts_Suffolk_21 Massachusetts_Suffolk_35 Massachusetts_Suffolk_36 Massachusetts_Suffolk_37 Massachusetts_Worcester_20 Michigan_Dickinson_901 Michigan_Dickinson_902 Michigan_Kent_20 Michigan_Midland_940 Michigan_Midland_941 Michigan_Oakland_902 Michigan_Wayne_16 Michigan_Wayne_19 Michigan_Wayne_29 Minnesota_Carlton_6316 Minnesota_Hennepin_50 Minnesota_Hennepin_953 Minnesota_Ramsey_1 Minnesota_Ramsey_3 Minnesota_Ramsey_864 Minnesota_Wright_7 Missouri_Atchison_1 Missouri_Atchison_2 Missouri_Clay_25 Missouri_Clay_5 Missouri_Greene_14 Missouri_Greene_36 Missouri_Jackson_33 Missouri_Platte_23 Missouri_SaintCharles_1002 Missouri_SaintLouis_1 Missouri_SaintLouis_3001 Missouri_SaintLouis_5001 Missouri_SaintLouis_6 Missouri_SaintLouis_7001 Missouri_StLouisCity_72 Missouri_StLouisCity_80 Montana_Missoula_34 Montana_Rosebud_700 Montana_Rosebud_701 Montana_Rosebud_702 Montana_Rosebud_704 Montana_Rosebud_760 Montana_Rosebud_761 Montana_Rosebud_762 Nevada_Clark_1001 Nevada_Clark_16 Nevada_Clark_557 Nevada_Washoe_15 Nevada_Washoe_16 NewHampshire_Hillsborough_16 NewJersey_Bergen_1 NewJersey_Camden_3 NewJersey_Essex_1003 NewJersey_Essex_11 NewJersey_Hudson_6 NewJersey_Morris_3001 NewJersey_Union_4 NewJersey_Union_5001 NewMexico_Bernalillo_15 NewMexico_Bernalillo_23 NewMexico_Catron_1 NewMexico_Eddy_3 NewMexico_SanJuan_14 NewYork_Bronx_74 NewYork_Erie_2 NewYork_Erie_5 NewYork_Essex_5 NewYork_Nassau_5 NewYork_NewYork_10 NewYork_NewYork_56 NewYork_NewYork_63 NorthCarolina_Forsyth_22 NorthCarolina_Forsyth_7 NorthCarolina_Mecklenburg_34 NorthCarolina_Wake_14 NorthDakota_Burke_1 NorthDakota_Dunn_3 NorthDakota_Mercer_1 NorthDakota_Mercer_101 NorthDakota_Mercer_102 NorthDakota_Mercer_103 NorthDakota_Mercer_104 NorthDakota_Oliver_101 NorthDakota_Oliver_2 Ohio_Cuyahoga_2003 Ohio_Cuyahoga_33 Ohio_Cuyahoga_43 Ohio_Franklin_4 Ohio_Hamilton_1013 Ohio_Hamilton_35 Ohio_Hamilton_4002 Ohio_Jefferson_1012 Ohio_Montgomery_29 Ohio_Pickaway_1 Ohio_Pickaway_1001 Ohio_Stark_16 Oklahoma_Cleveland_44 Oklahoma_Cleveland_49 Oklahoma_Kay_600 Oklahoma_Muskogee_167 Oklahoma_Oklahoma_1037 Oklahoma_Oklahoma_33 Oklahoma_Tulsa_127 Oklahoma_Tulsa_174 Oklahoma_Tulsa_191 Oregon_Multnomah_80 Pennsylvania_Allegheny_3 Pennsylvania_Allegheny_31 Pennsylvania_Allegheny_8 Pennsylvania_Beaver_14 Pennsylvania_Berks_9 Pennsylvania_Blair_801 Pennsylvania_Bucks_12 Pennsylvania_Cambria_11 Pennsylvania_Dauphin_401 Pennsylvania_Delaware_2 Pennsylvania_Erie_10 Pennsylvania_Erie_3 Pennsylvania_Lackawanna_2006 Pennsylvania_Lancaster_7 Pennsylvania_Lawrence_15 Pennsylvania_Lehigh_4 Pennsylvania_Luzerne_1101 Pennsylvania_Montgomery_13 Pennsylvania_Northampton_17 Pennsylvania_Perry_301 Pennsylvania_Philadelphia_22 Pennsylvania_Philadelphia_23 Pennsylvania_Philadelphia_29 Pennsylvania_Philadelphia_4 Pennsylvania_Philadelphia_47 Pennsylvania_Washington_200 Pennsylvania_Washington_5 Pennsylvania_York_8 RhodeIsland_Providence_12 RhodeIsland_Providence_19 SouthCarolina_Aiken_3 SouthCarolina_Barnwell_1 SouthCarolina_Lexington_5 SouthCarolina_Richland_1006 Tennessee_Bradley_102 Tennessee_Davidson_10 Tennessee_Davidson_11 Tennessee_Giles_1 Tennessee_Maury_106 Tennessee_McMinn_101 Tennessee_Rutherford_101 Tennessee_Shelby_24 Tennessee_Sullivan_7 Tennessee_Sullivan_9 Tennessee_Williamson_103 Texas_Bexar_36 Texas_Brazoria_1003 Texas_Dallas_44 Texas_Dallas_45 Texas_Dallas_55 Texas_Dallas_69 Texas_ElPaso_27 Texas_ElPaso_37 Texas_Galveston_1002 Texas_Gregg_1 Texas_Harris_1034 Texas_Harris_1035 Texas_Harris_1037 Texas_Harris_24 Texas_Harris_26 Texas_Harris_47 Texas_Harris_7001 Texas_Jefferson_9 Texas_Orange_1001 Texas_Tarrant_1002 Texas_Tarrant_1003 Texas_Travis_17 Utah_Davis_1 Utah_SaltLake_3001 Utah_Utah_2 Utah_Weber_1 Vermont_Chittenden_3 Vermont_Rutland_2 Virginia_AlexandriaCity_9 Virginia_Arlington_20 Virginia_FairfaxCity_5 Virginia_Fairfax_1004 Virginia_Fairfax_18 Virginia_Fairfax_5001 Virginia_Henrico_14 Virginia_NorfolkCity_23 Virginia_RichmondCity_21 Virginia_Roanoke_1004 Virginia_VirginiaBeachCity_7 Washington_King_80 Washington_King_82 WestVirginia_Cabell_6 WestVirginia_Greenbrier_1 WestVirginia_Hancock_1004 WestVirginia_Kanawha_4 WestVirginia_Ohio_7 Wisconsin_Columbia_8 Wisconsin_Kenosha_1001 Wisconsin_Kenosha_16 Wisconsin_Milwaukee_41 Wisconsin_Milwaukee_80 Wisconsin_Rock_1002 Wisconsin_Rock_1004
 ____________________ __________________________ _________________ _________________ ________________ ________________ ________________ _____________________ _____________________ _________________ _______________ ______________ _____________________ _______________________ ____________________ __________________ ___________________________ ________________________ ________________________ ___________________________ _____________________ _____________________ _____________________ ___________________ ___________________ ___________________ ___________________ _________________ ____________________ _________________ ____________________ _________________ __________________________ __________________________ __________________________ _________________________ __________________________ __________________________ ________________________ __________________________ __________________________ _______________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________ ______________________ ________________________ _________________ ___________________ ______________________ ______________________ ______________________ _________________________ _________________________ _________________________ _______________________ ________________________ __________________________ _______________________ __________________________ _______________________ __________________________ _____________________________ ___________________________ _____________________________ __________________________ _____________________________ __________________________ _____________________________ _____________________________ _____________________ ________________________ ________________________ ________________________ ________________________ _____________________ _____________________ _____________________ _________________________ _________________________ __________________________ _____________________________ _____________________________ _____________________________ _____________________________ ________________________ __________________________ _________________________ _________________________ __________________________ ______________________ ______________________ ___________________ ___________________ ___________________ __________________________ __________________________ _______________________ ______________________ _______________________ _______________________ _______________________ _______________________ ____________________ ____________________ _______________________ ___________________ ______________________ ___________________ _________________ _________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ _________________________ _________________________ _________________________ _________________________ _______________________ _______________________ __ __ ________________ ________________ _________________________ _________________________ _____________________ _______________________ ___________________ ______________________ ______________________ ___________________ ________________ _________________ __________________ __________________ __________________ __________________ __________________ __________________ ________________ ________________ ________________ __________________ __________________ __________________ __________________ ________________ ________________ ________________ ____________________ ______________________ _______________ _______________ ________________ ________________ ___________________ ______________ _________________ _________________ _________________ _________________ _________________ _________________ _________________ _______________ __________________ _______________ _________________ _________________ __________________ _______________________ ________________________ ________________________ _________________ __________________ ________________ ________________ ______________________ __________________ ___________________ _____________________ _______________________ _______________________ ________________ _______________________ __________________________ ________________________ ____________________ __________________________ _______________________ _________________________ _____________________ _______________________ __________________________ _____________________ ________________________ ________________________ ________________________ ____________________________ _______________________ _______________________ __________________________ _______________________ ________________________ ________________________ ________________________ ________________________ __________________________ ______________________ ______________________ ________________ ____________________ ____________________ ____________________ _________________ _________________ _________________ ______________________ _____________________ ______________________ __________________ __________________ ____________________ __________________ ___________________ ___________________ ________________ _______________ __________________ __________________ ___________________ __________________ __________________________ _____________________ ________________________ ________________________ _____________________ ________________________ _______________________ _______________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ _________________ _______________ ________________ ________________ ________________ ____________________________ __________________ __________________ ____________________ __________________ __________________ _____________________ _________________ ____________________ _______________________ _______________________ __________________ ________________ ____________________ ________________ ______________ ______________ _______________ ________________ __________________ __________________ __________________ ________________________ _______________________ ____________________________ _____________________ ___________________ __________________ ____________________ ______________________ ______________________ ______________________ ______________________ ______________________ ____________________ __________________ ________________ ________________ _______________ __________________ ________________ __________________ ___________________ __________________ _______________ __________________ _____________ _____________________ _____________________ ________________ _____________________ ______________________ ____________________ __________________ __________________ __________________ ___________________ ________________________ _________________________ ________________________ ______________________ ____________________ ______________________ _____________________ _______________________ ________________________ _______________________ ____________________ ___________________ ____________________________ ________________________ ________________________ _____________________ _________________________ __________________________ ___________________________ ______________________ ____________________________ ____________________________ ____________________________ ___________________________ ____________________________ ___________________________ _________________________ ___________________ _________________________ _________________________ _____________________ ________________________ _________________________ ___________________________ _____________________ _____________________ _____________________ _________________ ___________________ ____________________ ________________________ ___________________ ____________________ ____________________ ________________________ ______________ ___________________ _______________ _______________ _______________ _______________ _______________ _______________ ____________________ _____________ _________________ _________________ _________________ _______________ _______________ _______________ _________________ _________________ _________________ __________________ __________________ _______________ ____________ __________________ ___________ ____________ ____________________ _________________ _________________________ _____________________ ______________________ _____________________ ___________________ _____________________ ___________________ _______________________ ________________________ _____________________ ____________________________ __________________ __________________ _____________________ _________________________ _________________________ ______________________ ___________________ ____________________ ______________________ ____________________ ______________________ ______________________ ___________________ ___________________

 01-Jan-1985 00:00:00 NaN NaN NaN NaN NaN NaN 30 NaN 40 NaN NaN NaN 20 20 10 30 30 20 60 20 NaN NaN 50 NaN NaN 10 30 NaN NaN NaN NaN 120 130 110 90 10 120 NaN 90 60 50 110 90 110 NaN NaN NaN 30 80 30 NaN 20 20 10 10 60 NaN 10 NaN 10 20 NaN 10 20 NaN 20 NaN NaN NaN 10 NaN NaN 10 20 NaN 40 20 70 10 NaN 40 NaN 40 40 NaN NaN 20 10 10 10 20 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 20 20 NaN NaN NaN 10 NaN NaN NaN NaN NaN NaN NaN 7 5 NaN 15 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 28 32 32 50 30 36 40 10 NaN 18 9 NaN NaN 7 NaN 10 10 NaN 17.5 NaN NaN NaN NaN NaN NaN NaN 10 8 NaN NaN NaN NaN NaN NaN NaN NaN 16 NaN 7 19 23 9 NaN NaN NaN NaN NaN NaN 13 NaN NaN NaN NaN NaN NaN 6 NaN NaN NaN 11 NaN 17 20 13 NaN NaN NaN NaN NaN NaN NaN 5 15 10 26 36 NaN NaN 35 7 18 19 NaN NaN NaN NaN NaN 31 49 44 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 9 NaN NaN 8 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 6.3 NaN 24 13 13 17 NaN 22 31 NaN 15 12 NaN NaN NaN NaN NaN 8.4 NaN 20.7 NaN 40 NaN 28 NaN 34 35 26 17 37 32 8 NaN NaN NaN NaN 21 6 12 NaN 23 36 NaN NaN 12 NaN 21 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 18 NaN 18 15 17 15 20 18 NaN NaN 21 NaN NaN NaN NaN NaN NaN 5.3 NaN 6.3 18.5 NaN 18 23 15 31 8 39 9 22 46 20 NaN 24 20 16 26 22 31 32 19 40 NaN 40 30 NaN NaN NaN 23 13 NaN NaN NaN NaN 5.3 NaN NaN NaN NaN NaN NaN NaN NaN 11.5 6.4 NaN 10 NaN NaN NaN NaN NaN 20 20 10 NaN NaN 10 10 10 NaN 10 NaN 10 NaN NaN NaN NaN NaN 30 NaN 40 NaN NaN 35 25 39.3 36.1 34.5 39.8 NaN NaN 20 NaN 21 20 30 14 NaN 15 19 NaN NaN NaN NaN NaN 11 NaN NaN
 01-Jan-1985 01:00:00 NaN NaN NaN NaN NaN NaN 30 NaN 40 NaN NaN 12 10 30 20 30 30 20 60 NaN NaN NaN 30 NaN NaN 20 20 NaN NaN NaN NaN 120 140 80 90 10 120 NaN 90 60 50 110 80 100 NaN NaN NaN 30 100 30 NaN 10 20 10 10 60 NaN 20 NaN 10 20 NaN 10 20 NaN 20 20 30 NaN 10 20 NaN 10 30 NaN 40 20 60 10 NaN 40 NaN 40 50 NaN NaN 10 10 20 30 20 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 20 20 NaN NaN NaN NaN NaN NaN 20 NaN NaN NaN 10 8 7 NaN 18 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 28 30 34 50 30 34 41 10 NaN 18 8 NaN NaN 9 NaN 9 10 NaN 20.1 NaN NaN NaN NaN NaN NaN NaN 9 8 NaN NaN NaN NaN NaN NaN NaN NaN 18 NaN NaN 19 20 NaN NaN NaN NaN 10 NaN NaN 10 NaN NaN NaN NaN NaN NaN 6 NaN NaN NaN 11 NaN 10 21 10 NaN NaN NaN NaN NaN NaN NaN 15 8 15 15 35 NaN NaN 35 8 20 17 NaN NaN NaN NaN NaN 30 43 40 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 6.9 NaN NaN 11 NaN NaN 6 NaN NaN NaN NaN NaN NaN NaN NaN NaN 6.3 NaN 25 15 13 17 NaN 24 34 NaN 19 9 7 NaN NaN NaN NaN 10.6 NaN 31.8 NaN 40 NaN 28 NaN 35 36 27 20 38 31 12 NaN NaN NaN NaN 21 6 11 NaN 32 36 NaN NaN 12 NaN 20 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 18 NaN 18 19 15 12 20 15 NaN NaN 16 NaN NaN NaN NaN NaN NaN 6.3 NaN 6.3 18.5 NaN 19 24 16 33 9 35 10 22 44 18 NaN 25 25 17 24 24 36 33 18 30 NaN 40 30 NaN NaN NaN 23 19 NaN NaN NaN NaN 5.3 NaN NaN NaN NaN NaN NaN NaN NaN 15.1 6.1 NaN 10 NaN NaN 10 NaN NaN 20 20 10 NaN NaN 10 10 10 NaN 10 NaN 10 NaN NaN NaN NaN NaN 20 NaN 40 NaN NaN 32 25 34.5 32.9 29.2 39.8 NaN NaN 15 6 21 20 20 18 NaN 10 20 NaN NaN NaN NaN NaN NaN NaN NaN
 ⋮

In this format you can easily plot the raw data by using the stackedplot function. This plot shows
NO2 concentrations for each site as a function of time.

stackedplot(NO2bySite)

9 Tables

9-108

To create a timetable that is also a pivot table, use retime to calculate annual means.

meanNO2bySiteTT = retime(NO2bySite,"yearly","mean")

meanNO2bySiteTT=5×442 timetable
 Timestamp Alaska_KenaiPeninsula_1004 Arizona_Apache_10 Arizona_Apache_11 Arizona_Apache_7 Arizona_Apache_8 Arizona_Apache_9 Arizona_Maricopa_3002 Arizona_Maricopa_3003 Arizona_Pima_1011 Arizona_Pima_19 Arizona_Pima_2 Arkansas_Pulaski_1002 California_Alameda_1001 California_Alameda_3 California_Butte_2 California_ContraCosta_1002 California_ContraCosta_2 California_ContraCosta_3 California_ContraCosta_3001 California_ElDorado_9 California_Fresno_241 California_Fresno_242 California_Fresno_5 California_Fresno_6 California_Fresno_7 California_Kern_232 California_Kern_4 California_Kern_5001 California_Kern_6 California_Kern_6001 California_Kern_7 California_LosAngeles_1002 California_LosAngeles_1103 California_LosAngeles_1105 California_LosAngeles_113 California_LosAngeles_1201 California_LosAngeles_1301 California_LosAngeles_16 California_LosAngeles_1601 California_LosAngeles_1701 California_LosAngeles_2 California_LosAngeles_2005 California_LosAngeles_2401 California_LosAngeles_4002 California_LosAngeles_4101 California_LosAngeles_5001 California_LosAngeles_6002 California_LosAngeles_7001 California_LosAngeles_8001 California_Marin_1 California_Mendocino_7 California_Monterey_1002 California_Napa_3 California_Orange_1 California_Orange_1002 California_Orange_5001 California_Plumas_1001 California_Riverside_5001 California_Riverside_6001 California_Riverside_8001 California_Sacramento_1 California_Sacramento_10 California_Sacramento_1001 California_Sacramento_2 California_Sacramento_5002 California_Sacramento_6 California_SanBernardino_1 California_SanBernardino_1004 California_SanBernardino_12 California_SanBernardino_2002 California_SanBernardino_3 California_SanBernardino_4001 California_SanBernardino_6 California_SanBernardino_7002 California_SanBernardino_9004 California_SanDiego_1 California_SanDiego_1002 California_SanDiego_1004 California_SanDiego_1006 California_SanDiego_1007 California_SanDiego_3 California_SanDiego_5 California_SanDiego_6 California_SanFrancisco_4 California_SanFrancisco_5 California_SanJoaquin_1002 California_SanLuisObispo_1004 California_SanLuisObispo_2001 California_SanLuisObispo_2002 California_SanLuisObispo_4001 California_SanMateo_1001 California_SantaBarbara_10 California_SantaBarbara_1010 California_SantaBarbara_1011 California_SantaBarbara_1012 California_SantaBarbara_1013 California_SantaBarbara_1014 California_SantaBarbara_1015 California_SantaBarbara_1016 California_SantaBarbara_1017 California_SantaBarbara_1018 California_SantaBarbara_1019 California_SantaBarbara_1020 California_SantaBarbara_1021 California_SantaBarbara_1025 California_SantaBarbara_1026 California_SantaBarbara_1027 California_SantaBarbara_1030 California_SantaBarbara_2002 California_SantaBarbara_2004 California_SantaBarbara_2005 California_SantaBarbara_4002 California_SantaBarbara_4003 California_SantaBarbara_4004 California_SantaBarbara_5001 California_SantaBarbara_8 California_SantaBarbara_9 California_SantaClara_2004 California_SantaCruz_3 California_Shasta_1001 California_Shasta_6 California_Solano_4 California_Sonoma_3 California_Stanislaus_1003 California_Stanislaus_1004 California_Stanislaus_5 California_Tulare_2002 California_Ventura_1003 California_Ventura_2002 California_Ventura_2003 California_Ventura_3001 California_Ventura_5 California_Ventura_6 California_Ventura_7001 Colorado_Adams_3001 Colorado_Arapahoe_1002 Colorado_Arapahoe_3 Colorado_Denver_2 Colorado_ElPaso_4 Colorado_ElPaso_6001 Colorado_ElPaso_6003 Colorado_ElPaso_6004 Colorado_ElPaso_6005 Colorado_ElPaso_6006 Colorado_ElPaso_6009 Colorado_ElPaso_6011 Colorado_ElPaso_6013 Connecticut_Fairfield_113 Connecticut_Fairfield_123 Connecticut_Hartford_1003 Connecticut_NewHaven_1123 Delaware_NewCastle_2002 Delaware_NewCastle_3001 DistrictOfColumbia_DistrictofColumbia_17 DistrictOfColumbia_DistrictofColumbia_25 Florida_Duval_32 Florida_Duval_70 Florida_Hillsborough_1052 Florida_Hillsborough_1055 Florida_Miami_Dade_27 Florida_Miami_Dade_4002 Florida_Orange_2002 Florida_PalmBeach_1004 Florida_PalmBeach_1101 Florida_Pinellas_18 Georgia_DeKalb_2 Georgia_Fulton_48 Illinois_Cook_1002 Illinois_Cook_1102 Illinois_Cook_1601 Illinois_Cook_3101 Illinois_Cook_3102 Illinois_Cook_3601 Illinois_Cook_37 Illinois_Cook_39 Illinois_Cook_40 Illinois_Cook_4002 Illinois_Cook_4003 Illinois_Cook_4004 Illinois_Cook_4005 Illinois_Cook_45 Illinois_Cook_53 Illinois_Cook_63 Illinois_DuPage_1003 Illinois_SaintClair_10 Indiana_Allen_6 Indiana_Clark_3 Indiana_Jasper_2 Indiana_Jasper_3 Indiana_Jefferson_1 Indiana_Knox_4 Indiana_Lake_1016 Indiana_Marion_30 Indiana_Marion_57 Indiana_Marion_65 Indiana_Marion_70 Indiana_Porter_15 Indiana_Porter_16 Indiana_Posey_1 Indiana_Posey_1002 Indiana_Posey_2 Indiana_Spencer_2 Indiana_Spencer_6 Indiana_Sullivan_1 Indiana_Tippecanoe_1001 Indiana_Vanderburgh_1001 Indiana_Vanderburgh_1002 Indiana_Vigo_1012 Kansas_Wyandotte_1 Kentucky_Boone_7 Kentucky_Boyd_10 Kentucky_Campbell_1001 Kentucky_Daviess_5 Kentucky_Fayette_12 Kentucky_Henderson_13 Kentucky_Jefferson_1020 Kentucky_McCracken_1024 Kentucky_Trigg_1 Louisiana_Calcasieu_100 Louisiana_EastBatonRouge_4 Louisiana_Jefferson_1001 Louisiana_Orleans_12 Louisiana_WestBatonRouge_1 Maryland_AnneArundel_19 Maryland_BaltimoreCity_40 Maryland_Baltimore_10 Maryland_Baltimore_3001 Massachusetts_Bristol_1004 Massachusetts_Essex_5 Massachusetts_Hampden_15 Massachusetts_Hampden_16 Massachusetts_Hampden_17 Massachusetts_Hampshire_4002 Massachusetts_Norfolk_8 Massachusetts_Norfolk_9 Massachusetts_Suffolk_1003 Massachusetts_Suffolk_2 Massachusetts_Suffolk_21 Massachusetts_Suffolk_35 Massachusetts_Suffolk_36 Massachusetts_Suffolk_37 Massachusetts_Worcester_20 Michigan_Dickinson_901 Michigan_Dickinson_902 Michigan_Kent_20 Michigan_Midland_940 Michigan_Midland_941 Michigan_Oakland_902 Michigan_Wayne_16 Michigan_Wayne_19 Michigan_Wayne_29 Minnesota_Carlton_6316 Minnesota_Hennepin_50 Minnesota_Hennepin_953 Minnesota_Ramsey_1 Minnesota_Ramsey_3 Minnesota_Ramsey_864 Minnesota_Wright_7 Missouri_Atchison_1 Missouri_Atchison_2 Missouri_Clay_25 Missouri_Clay_5 Missouri_Greene_14 Missouri_Greene_36 Missouri_Jackson_33 Missouri_Platte_23 Missouri_SaintCharles_1002 Missouri_SaintLouis_1 Missouri_SaintLouis_3001 Missouri_SaintLouis_5001 Missouri_SaintLouis_6 Missouri_SaintLouis_7001 Missouri_StLouisCity_72 Missouri_StLouisCity_80 Montana_Missoula_34 Montana_Rosebud_700 Montana_Rosebud_701 Montana_Rosebud_702 Montana_Rosebud_704 Montana_Rosebud_760 Montana_Rosebud_761 Montana_Rosebud_762 Nevada_Clark_1001 Nevada_Clark_16 Nevada_Clark_557 Nevada_Washoe_15 Nevada_Washoe_16 NewHampshire_Hillsborough_16 NewJersey_Bergen_1 NewJersey_Camden_3 NewJersey_Essex_1003 NewJersey_Essex_11 NewJersey_Hudson_6 NewJersey_Morris_3001 NewJersey_Union_4 NewJersey_Union_5001 NewMexico_Bernalillo_15 NewMexico_Bernalillo_23 NewMexico_Catron_1 NewMexico_Eddy_3 NewMexico_SanJuan_14 NewYork_Bronx_74 NewYork_Erie_2 NewYork_Erie_5 NewYork_Essex_5 NewYork_Nassau_5 NewYork_NewYork_10 NewYork_NewYork_56 NewYork_NewYork_63 NorthCarolina_Forsyth_22 NorthCarolina_Forsyth_7 NorthCarolina_Mecklenburg_34 NorthCarolina_Wake_14 NorthDakota_Burke_1 NorthDakota_Dunn_3 NorthDakota_Mercer_1 NorthDakota_Mercer_101 NorthDakota_Mercer_102 NorthDakota_Mercer_103 NorthDakota_Mercer_104 NorthDakota_Oliver_101 NorthDakota_Oliver_2 Ohio_Cuyahoga_2003 Ohio_Cuyahoga_33 Ohio_Cuyahoga_43 Ohio_Franklin_4 Ohio_Hamilton_1013 Ohio_Hamilton_35 Ohio_Hamilton_4002 Ohio_Jefferson_1012 Ohio_Montgomery_29 Ohio_Pickaway_1 Ohio_Pickaway_1001 Ohio_Stark_16 Oklahoma_Cleveland_44 Oklahoma_Cleveland_49 Oklahoma_Kay_600 Oklahoma_Muskogee_167 Oklahoma_Oklahoma_1037 Oklahoma_Oklahoma_33 Oklahoma_Tulsa_127 Oklahoma_Tulsa_174 Oklahoma_Tulsa_191 Oregon_Multnomah_80 Pennsylvania_Allegheny_3 Pennsylvania_Allegheny_31 Pennsylvania_Allegheny_8 Pennsylvania_Beaver_14 Pennsylvania_Berks_9 Pennsylvania_Blair_801 Pennsylvania_Bucks_12 Pennsylvania_Cambria_11 Pennsylvania_Dauphin_401 Pennsylvania_Delaware_2 Pennsylvania_Erie_10 Pennsylvania_Erie_3 Pennsylvania_Lackawanna_2006 Pennsylvania_Lancaster_7 Pennsylvania_Lawrence_15 Pennsylvania_Lehigh_4 Pennsylvania_Luzerne_1101 Pennsylvania_Montgomery_13 Pennsylvania_Northampton_17 Pennsylvania_Perry_301 Pennsylvania_Philadelphia_22 Pennsylvania_Philadelphia_23 Pennsylvania_Philadelphia_29 Pennsylvania_Philadelphia_4 Pennsylvania_Philadelphia_47 Pennsylvania_Washington_200 Pennsylvania_Washington_5 Pennsylvania_York_8 RhodeIsland_Providence_12 RhodeIsland_Providence_19 SouthCarolina_Aiken_3 SouthCarolina_Barnwell_1 SouthCarolina_Lexington_5 SouthCarolina_Richland_1006 Tennessee_Bradley_102 Tennessee_Davidson_10 Tennessee_Davidson_11 Tennessee_Giles_1 Tennessee_Maury_106 Tennessee_McMinn_101 Tennessee_Rutherford_101 Tennessee_Shelby_24 Tennessee_Sullivan_7 Tennessee_Sullivan_9 Tennessee_Williamson_103 Texas_Bexar_36 Texas_Brazoria_1003 Texas_Dallas_44 Texas_Dallas_45 Texas_Dallas_55 Texas_Dallas_69 Texas_ElPaso_27 Texas_ElPaso_37 Texas_Galveston_1002 Texas_Gregg_1 Texas_Harris_1034 Texas_Harris_1035 Texas_Harris_1037 Texas_Harris_24 Texas_Harris_26 Texas_Harris_47 Texas_Harris_7001 Texas_Jefferson_9 Texas_Orange_1001 Texas_Tarrant_1002 Texas_Tarrant_1003 Texas_Travis_17 Utah_Davis_1 Utah_SaltLake_3001 Utah_Utah_2 Utah_Weber_1 Vermont_Chittenden_3 Vermont_Rutland_2 Virginia_AlexandriaCity_9 Virginia_Arlington_20 Virginia_FairfaxCity_5 Virginia_Fairfax_1004 Virginia_Fairfax_18 Virginia_Fairfax_5001 Virginia_Henrico_14 Virginia_NorfolkCity_23 Virginia_RichmondCity_21 Virginia_Roanoke_1004 Virginia_VirginiaBeachCity_7 Washington_King_80 Washington_King_82 WestVirginia_Cabell_6 WestVirginia_Greenbrier_1 WestVirginia_Hancock_1004 WestVirginia_Kanawha_4 WestVirginia_Ohio_7 Wisconsin_Columbia_8 Wisconsin_Kenosha_1001 Wisconsin_Kenosha_16 Wisconsin_Milwaukee_41 Wisconsin_Milwaukee_80 Wisconsin_Rock_1002 Wisconsin_Rock_1004
 ___________ __________________________ _________________ _________________ ________________ ________________ ________________ _____________________ _____________________ _________________ _______________ ______________ _____________________ _______________________ ____________________ __________________ ___________________________ ________________________ ________________________ ___________________________ _____________________ _____________________ _____________________ ___________________ ___________________ ___________________ ___________________ _________________ ____________________ _________________ ____________________ _________________ __________________________ __________________________ __________________________ _________________________ __________________________ __________________________ ________________________ __________________________ __________________________ _______________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________ ______________________ ________________________ _________________ ___________________ ______________________ ______________________ ______________________ _________________________ _________________________ _________________________ _______________________ ________________________ __________________________ _______________________ __________________________ _______________________ __________________________ _____________________________ ___________________________ _____________________________ __________________________ _____________________________ __________________________ _____________________________ _____________________________ _____________________ ________________________ ________________________ ________________________ ________________________ _____________________ _____________________ _____________________ _________________________ _________________________ __________________________ _____________________________ _____________________________ _____________________________ _____________________________ ________________________ __________________________ _________________________ _________________________ __________________________ ______________________ ______________________ ___________________ ___________________ ___________________ __________________________ __________________________ _______________________ ______________________ _______________________ _______________________ _______________________ _______________________ ____________________ ____________________ _______________________ ___________________ ______________________ ___________________ _________________ _________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ _________________________ _________________________ _________________________ _________________________ _______________________ _______________________ __ __ ________________ ________________ _________________________ _________________________ _____________________ _______________________ ___________________ ______________________ ______________________ ___________________ ________________ _________________ __________________ __________________ __________________ __________________ __________________ __________________ ________________ ________________ ________________ __________________ __________________ __________________ __________________ ________________ ________________ ________________ ____________________ ______________________ _______________ _______________ ________________ ________________ ___________________ ______________ _________________ _________________ _________________ _________________ _________________ _________________ _________________ _______________ __________________ _______________ _________________ _________________ __________________ _______________________ ________________________ ________________________ _________________ __________________ ________________ ________________ ______________________ __________________ ___________________ _____________________ _______________________ _______________________ ________________ _______________________ __________________________ ________________________ ____________________ __________________________ _______________________ _________________________ _____________________ _______________________ __________________________ _____________________ ________________________ ________________________ ________________________ ____________________________ _______________________ _______________________ __________________________ _______________________ ________________________ ________________________ ________________________ ________________________ __________________________ ______________________ ______________________ ________________ ____________________ ____________________ ____________________ _________________ _________________ _________________ ______________________ _____________________ ______________________ __________________ __________________ ____________________ __________________ ___________________ ___________________ ________________ _______________ __________________ __________________ ___________________ __________________ __________________________ _____________________ ________________________ ________________________ _____________________ ________________________ _______________________ _______________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ _________________ _______________ ________________ ________________ ________________ ____________________________ __________________ __________________ ____________________ __________________ __________________ _____________________ _________________ ____________________ _______________________ _______________________ __________________ ________________ ____________________ ________________ ______________ ______________ _______________ ________________ __________________ __________________ __________________ ________________________ _______________________ ____________________________ _____________________ ___________________ __________________ ____________________ ______________________ ______________________ ______________________ ______________________ ______________________ ____________________ __________________ ________________ ________________ _______________ __________________ ________________ __________________ ___________________ __________________ _______________ __________________ _____________ _____________________ _____________________ ________________ _____________________ ______________________ ____________________ __________________ __________________ __________________ ___________________ ________________________ _________________________ ________________________ ______________________ ____________________ ______________________ _____________________ _______________________ ________________________ _______________________ ____________________ ___________________ ____________________________ ________________________ ________________________ _____________________ _________________________ __________________________ ___________________________ ______________________ ____________________________ ____________________________ ____________________________ ___________________________ ____________________________ ___________________________ _________________________ ___________________ _________________________ _________________________ _____________________ ________________________ _________________________ ___________________________ _____________________ _____________________ _____________________ _________________ ___________________ ____________________ ________________________ ___________________ ____________________ ____________________ ________________________ ______________ ___________________ _______________ _______________ _______________ _______________ _______________ _______________ ____________________ _____________ _________________ _________________ _________________ _______________ _______________ _______________ _________________ _________________ _________________ __________________ __________________ _______________ ____________ __________________ ___________ ____________ ____________________ _________________ _________________________ _____________________ ______________________ _____________________ ___________________ _____________________ ___________________ _______________________ ________________________ _____________________ ____________________________ __________________ __________________ _____________________ _________________________ _________________________ ______________________ ___________________ ____________________ ______________________ ____________________ ______________________ ______________________ ___________________ ___________________

 01-Jan-1985 NaN 8.4406 8.4264 7.75 5.9138 6.7021 24.546 15.514 18.531 NaN 24.518 11.748 26.308 22.396 15.87 15.428 23.182 21.806 35.881 15.142 NaN NaN 31.365 19.75 20.952 26.921 30.993 NaN NaN NaN NaN 57.401 59.965 58.399 38.492 39.672 52.548 NaN 53.377 54.147 50.289 50.162 47.958 50.114 NaN NaN NaN 17.384 43.92 24.229 NaN 15.855 18.447 43.104 29.302 42.811 NaN 20.183 NaN 35.461 22.077 NaN 18.823 18.546 NaN 20.747 26.424 39.996 NaN 37.844 38.204 NaN 13.073 21.232 NaN 27.568 27.879 32.718 17.111 NaN 31.908 NaN 25.372 28.254 NaN 20.258 11.732 15.251 17.762 13.598 22.81 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 18.188 NaN 11.797 NaN NaN NaN NaN 15.398 29.84 NaN NaN 11.09 NaN 20.359 17.994 NaN NaN 22.091 22.5 NaN NaN 20.857 19.645 11.459 NaN 27.996 28.659 19.921 NaN 47.934 23.989 NaN NaN NaN NaN NaN NaN NaN NaN NaN 27.085 21.763 30.71 29.012 25.01 36.44 28.321 16.73 11.309 19.458 16.542 11.3 17.428 11.708 NaN 14.395 17.472 15.937 27.001 22.592 24.021 17.317 34.109 NaN NaN 27.304 34.9 42.464 27.823 NaN NaN NaN 24.622 24.338 NaN NaN 22.475 NaN 16.508 12.728 11.049 11.159 NaN NaN 21.894 20.817 NaN 18.893 13.242 13.404 NaN 24.704 NaN 10.191 10.965 10.863 NaN 12.02 14.059 12.323 NaN 13.912 17.453 21.639 13.276 18.625 25.127 23.747 16.189 7.3081 12.353 24.902 16.618 24.532 22.192 20.122 35.846 18.22 26.679 18.263 22.122 25.231 NaN NaN NaN NaN NaN 24.399 39.768 30.652 NaN NaN 25.344 NaN 11.918 9.3198 NaN NaN NaN 16.595 8.6867 22.76 NaN NaN 18.871 NaN NaN 21.701 NaN NaN NaN NaN 16.102 10.219 8.6515 NaN 25.521 15.02 13.793 22.332 20.21 19.638 15.016 NaN 52.023 23.916 NaN 12.593 12.093 8.9425 10.568 9.4729 8.9321 9.3806 33.51 NaN 27.971 NaN 27.348 NaN 33.968 27.979 30.159 33.573 32.32 15.408 42.927 23.856 19.197 NaN 7.2632 NaN 17.908 32.466 19.512 24.49 6.1648 33.617 42.346 NaN NaN 15.117 NaN 19.708 NaN NaN 6.1797 9.0852 7.6016 8.3062 7.0871 9.0084 7.6155 NaN NaN 29.908 22.072 25.342 18.026 29.099 29.067 19.529 22.141 NaN NaN 19.598 19.67 NaN NaN NaN 13.974 17.06 16.525 12.774 20.443 19.25 NaN 29.692 27.063 23.138 23.368 18.04 25.828 20.217 22.045 24.373 17.031 NaN 23.05 19.274 21.778 19.444 21.536 23.813 21.589 10.948 31.667 NaN 34.406 33.719 36.223 19.809 18.619 25.262 26.242 NaN NaN 8.916 NaN 7.8505 13.259 NaN NaN 13.02 NaN 12.057 NaN 18.537 19.75 17.573 NaN 16.809 15.465 22.288 18.562 15.853 NaN 24.654 19.713 14.71 11.741 21.096 25.421 28.928 17.341 15.587 23.676 14.588 14.603 11.179 20.275 23.15 NaN NaN 38.119 31.138 31.073 16.922 NaN 29.671 24.991 23.347 25.148 21.04 25.784 NaN NaN 23.05 14.758 18.108 19.799 34.428 16.663 8.6705 18.629 23.72 17.997 11.788 14.625 14.075 18.757 26.559 14.536 13.956
 01-Jan-1986 NaN 7.3333 7.587 6.7857 6.1875 7.6579 NaN 10.816 20.043 NaN 24.036 12.383 25.817 22.413 15.932 15.513 23.238 22.14 38.407 14.519 19.512 NaN 32.125 16.135 19.994 23.927 30.657 NaN NaN NaN NaN 57.422 61.266 NaN 42.167 32.775 52.877 NaN 52.982 55.924 49.656 51.265 50.39 52.939 NaN 42.075 NaN 15.945 NaN 25.236 NaN 15.4 18.873 44.647 30.347 42.358 NaN 20.263 NaN 32.584 22.894 NaN 14.896 15.641 NaN 17.291 27.45 42.873 NaN 42.875 NaN 16.134 15.104 24.178 NaN 24.919 29.698 34.062 18.365 NaN 32.813 26.668 27.248 23.262 24.453 23.66 11.63 14.361 17.025 13.811 25.354 NaN 11.333 7.7075 6.7778 6.5787 6.7744 10.311 NaN NaN NaN NaN NaN 9.552 NaN NaN NaN 7.2131 18.304 13.057 11.347 10.897 NaN 7.6748 11.063 15.74 22.75 NaN NaN NaN 16.632 19.264 17.383 17.879 NaN 24.073 24.637 NaN 29.37 19.151 18.612 11.048 NaN NaN 29.788 20.583 NaN 46.959 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 26.808 21.944 28.921 29.726 23.681 29.263 34.748 15.686 NaN 20.731 NaN 14.793 19.395 13.345 13.34 14.855 NaN 19.216 30.544 22.189 16.758 17.349 31.479 NaN NaN 26.497 31.666 41.484 25.755 22.434 NaN NaN 24.424 23.444 NaN NaN 23.407 12.409 15.068 NaN NaN 11.764 15.848 NaN NaN 19.41 NaN 21.499 NaN NaN 12.077 NaN NaN 10.722 10.582 9.9393 NaN 10.685 14.285 10.324 33.12 13.229 14.944 21.254 14.33 18.87 21.944 33.019 16.472 6.6789 NaN 22.55 16.568 25.139 19.715 19.405 35.694 NaN 26.736 23.56 29.285 22.306 NaN NaN 12.952 NaN NaN 24.827 33.813 33.618 NaN NaN 24.076 29.656 12.011 9.7336 NaN NaN NaN 15.487 19.343 20.231 NaN NaN 19.528 NaN 17.28 21.242 NaN NaN NaN NaN 16.581 13.038 9.6631 NaN NaN 14.25 13.806 22.082 20.995 20.896 16.037 NaN 35.899 19.872 NaN 11.498 10.498 9.4051 10.095 9.6492 9.8615 13.53 NaN NaN 29.201 NaN 25.467 17.309 30.186 27.491 32.48 31.747 31.926 15.752 31.068 25.007 17.85 NaN 7.1154 12.82 NaN 35.33 20.538 25.2 7.2556 33.792 43.22 48.628 NaN 18.296 10.689 22.176 NaN NaN 7.3706 8.8679 7.1527 9.7337 7.0102 8.6307 6.8223 NaN 28.067 26.678 21.427 25.933 19.528 29.328 27.169 20.258 21.602 NaN NaN 18.439 18.795 NaN NaN 11.398 13.718 18.592 16.843 14.262 21.168 19.588 NaN 33.32 26.239 19.882 24.299 NaN 26.732 20.047 22.914 NaN 16.394 NaN 19.578 19.133 22.735 21.53 21.121 NaN NaN 11.541 NaN 17.398 36.348 33.298 35.91 19.827 19.557 24.243 25.42 NaN 8.9886 8.0979 9.4549 NaN 15.236 NaN NaN 13.783 NaN 14.101 NaN 25.322 19.989 17.213 NaN NaN 15.74 29.374 18.6 17.524 23.369 26.29 19.114 NaN NaN 20.536 26.168 28.6 17.739 15.729 24.972 NaN 14.402 NaN 18.705 22.432 NaN NaN 35.334 25.012 27.123 19.013 NaN 31.363 27.049 24.736 25.662 26.251 24.318 NaN NaN 22.36 15.369 19.215 19.82 32.476 17.905 8.1619 18.48 23.496 18.445 11.013 16.914 30.289 19.944 27.538 13.324 14.81

Create a stacked plot of the annual means.

stackedplot(meanNO2bySiteTT)

 Grouped Calculations in Tables and Timetables

9-109

You might want to preserve information from the original timetable NO2data in this timetable of
results. For example, you might want to add the latitudes and longitudes of the sites to NO2bySite.
They were stored for each timestamp in NO2data. But to store them more compactly in this
timetable, add them as per-variable custom properties to NO2bySite.

LatLon = groupsummary(NO2data,"SiteID","mode",["Latitude","Longitude"]);
NO2bySite = addprop(NO2bySite,["Latitude","Longitude"],["variable","variable"]);
NO2bySite.Properties.CustomProperties.Latitude(string(LatLon.SiteID)) = LatLon.mode_Latitude';
NO2bySite.Properties.CustomProperties.Longitude(string(LatLon.SiteID)) = LatLon.mode_Longitude';

Moving Means for Data Grouped by Site

To calculate compliance with the second NAAQS standard for NO2 requires a sequence of grouped
calculations. By the second standard, a location is out of compliance if the 98th percentile of the 1-
hour daily maximum concentrations of NO2, averaged over 3 years, exceeds 100 ppb.

Start with the hourly concentrations of NO2 by site. To find the daily maximum for each site, use the
retime function, specifying "max" as the method to find the maximum concentration for each day's
worth of data. Then find the 98th percentiles of the daily maximums in each year's worth of data,
calling retime a second time. To calculate percentiles, use the findPrctile supporting function
referred to in this example.

dailyMax = retime(NO2bySite,"daily","max");
yearlyP98 = retime(dailyMax,"yearly",@(x)findPrctile(x,98))

yearlyP98=5×442 timetable
 Timestamp Alaska_KenaiPeninsula_1004 Arizona_Apache_10 Arizona_Apache_11 Arizona_Apache_7 Arizona_Apache_8 Arizona_Apache_9 Arizona_Maricopa_3002 Arizona_Maricopa_3003 Arizona_Pima_1011 Arizona_Pima_19 Arizona_Pima_2 Arkansas_Pulaski_1002 California_Alameda_1001 California_Alameda_3 California_Butte_2 California_ContraCosta_1002 California_ContraCosta_2 California_ContraCosta_3 California_ContraCosta_3001 California_ElDorado_9 California_Fresno_241 California_Fresno_242 California_Fresno_5 California_Fresno_6 California_Fresno_7 California_Kern_232 California_Kern_4 California_Kern_5001 California_Kern_6 California_Kern_6001 California_Kern_7 California_LosAngeles_1002 California_LosAngeles_1103 California_LosAngeles_1105 California_LosAngeles_113 California_LosAngeles_1201 California_LosAngeles_1301 California_LosAngeles_16 California_LosAngeles_1601 California_LosAngeles_1701 California_LosAngeles_2 California_LosAngeles_2005 California_LosAngeles_2401 California_LosAngeles_4002 California_LosAngeles_4101 California_LosAngeles_5001 California_LosAngeles_6002 California_LosAngeles_7001 California_LosAngeles_8001 California_Marin_1 California_Mendocino_7 California_Monterey_1002 California_Napa_3 California_Orange_1 California_Orange_1002 California_Orange_5001 California_Plumas_1001 California_Riverside_5001 California_Riverside_6001 California_Riverside_8001 California_Sacramento_1 California_Sacramento_10 California_Sacramento_1001 California_Sacramento_2 California_Sacramento_5002 California_Sacramento_6 California_SanBernardino_1 California_SanBernardino_1004 California_SanBernardino_12 California_SanBernardino_2002 California_SanBernardino_3 California_SanBernardino_4001 California_SanBernardino_6 California_SanBernardino_7002 California_SanBernardino_9004 California_SanDiego_1 California_SanDiego_1002 California_SanDiego_1004 California_SanDiego_1006 California_SanDiego_1007 California_SanDiego_3 California_SanDiego_5 California_SanDiego_6 California_SanFrancisco_4 California_SanFrancisco_5 California_SanJoaquin_1002 California_SanLuisObispo_1004 California_SanLuisObispo_2001 California_SanLuisObispo_2002 California_SanLuisObispo_4001 California_SanMateo_1001 California_SantaBarbara_10 California_SantaBarbara_1010 California_SantaBarbara_1011 California_SantaBarbara_1012 California_SantaBarbara_1013 California_SantaBarbara_1014 California_SantaBarbara_1015 California_SantaBarbara_1016 California_SantaBarbara_1017 California_SantaBarbara_1018 California_SantaBarbara_1019 California_SantaBarbara_1020 California_SantaBarbara_1021 California_SantaBarbara_1025 California_SantaBarbara_1026 California_SantaBarbara_1027 California_SantaBarbara_1030 California_SantaBarbara_2002 California_SantaBarbara_2004 California_SantaBarbara_2005 California_SantaBarbara_4002 California_SantaBarbara_4003 California_SantaBarbara_4004 California_SantaBarbara_5001 California_SantaBarbara_8 California_SantaBarbara_9 California_SantaClara_2004 California_SantaCruz_3 California_Shasta_1001 California_Shasta_6 California_Solano_4 California_Sonoma_3 California_Stanislaus_1003 California_Stanislaus_1004 California_Stanislaus_5 California_Tulare_2002 California_Ventura_1003 California_Ventura_2002 California_Ventura_2003 California_Ventura_3001 California_Ventura_5 California_Ventura_6 California_Ventura_7001 Colorado_Adams_3001 Colorado_Arapahoe_1002 Colorado_Arapahoe_3 Colorado_Denver_2 Colorado_ElPaso_4 Colorado_ElPaso_6001 Colorado_ElPaso_6003 Colorado_ElPaso_6004 Colorado_ElPaso_6005 Colorado_ElPaso_6006 Colorado_ElPaso_6009 Colorado_ElPaso_6011 Colorado_ElPaso_6013 Connecticut_Fairfield_113 Connecticut_Fairfield_123 Connecticut_Hartford_1003 Connecticut_NewHaven_1123 Delaware_NewCastle_2002 Delaware_NewCastle_3001 DistrictOfColumbia_DistrictofColumbia_17 DistrictOfColumbia_DistrictofColumbia_25 Florida_Duval_32 Florida_Duval_70 Florida_Hillsborough_1052 Florida_Hillsborough_1055 Florida_Miami_Dade_27 Florida_Miami_Dade_4002 Florida_Orange_2002 Florida_PalmBeach_1004 Florida_PalmBeach_1101 Florida_Pinellas_18 Georgia_DeKalb_2 Georgia_Fulton_48 Illinois_Cook_1002 Illinois_Cook_1102 Illinois_Cook_1601 Illinois_Cook_3101 Illinois_Cook_3102 Illinois_Cook_3601 Illinois_Cook_37 Illinois_Cook_39 Illinois_Cook_40 Illinois_Cook_4002 Illinois_Cook_4003 Illinois_Cook_4004 Illinois_Cook_4005 Illinois_Cook_45 Illinois_Cook_53 Illinois_Cook_63 Illinois_DuPage_1003 Illinois_SaintClair_10 Indiana_Allen_6 Indiana_Clark_3 Indiana_Jasper_2 Indiana_Jasper_3 Indiana_Jefferson_1 Indiana_Knox_4 Indiana_Lake_1016 Indiana_Marion_30 Indiana_Marion_57 Indiana_Marion_65 Indiana_Marion_70 Indiana_Porter_15 Indiana_Porter_16 Indiana_Posey_1 Indiana_Posey_1002 Indiana_Posey_2 Indiana_Spencer_2 Indiana_Spencer_6 Indiana_Sullivan_1 Indiana_Tippecanoe_1001 Indiana_Vanderburgh_1001 Indiana_Vanderburgh_1002 Indiana_Vigo_1012 Kansas_Wyandotte_1 Kentucky_Boone_7 Kentucky_Boyd_10 Kentucky_Campbell_1001 Kentucky_Daviess_5 Kentucky_Fayette_12 Kentucky_Henderson_13 Kentucky_Jefferson_1020 Kentucky_McCracken_1024 Kentucky_Trigg_1 Louisiana_Calcasieu_100 Louisiana_EastBatonRouge_4 Louisiana_Jefferson_1001 Louisiana_Orleans_12 Louisiana_WestBatonRouge_1 Maryland_AnneArundel_19 Maryland_BaltimoreCity_40 Maryland_Baltimore_10 Maryland_Baltimore_3001 Massachusetts_Bristol_1004 Massachusetts_Essex_5 Massachusetts_Hampden_15 Massachusetts_Hampden_16 Massachusetts_Hampden_17 Massachusetts_Hampshire_4002 Massachusetts_Norfolk_8 Massachusetts_Norfolk_9 Massachusetts_Suffolk_1003 Massachusetts_Suffolk_2 Massachusetts_Suffolk_21 Massachusetts_Suffolk_35 Massachusetts_Suffolk_36 Massachusetts_Suffolk_37 Massachusetts_Worcester_20 Michigan_Dickinson_901 Michigan_Dickinson_902 Michigan_Kent_20 Michigan_Midland_940 Michigan_Midland_941 Michigan_Oakland_902 Michigan_Wayne_16 Michigan_Wayne_19 Michigan_Wayne_29 Minnesota_Carlton_6316 Minnesota_Hennepin_50 Minnesota_Hennepin_953 Minnesota_Ramsey_1 Minnesota_Ramsey_3 Minnesota_Ramsey_864 Minnesota_Wright_7 Missouri_Atchison_1 Missouri_Atchison_2 Missouri_Clay_25 Missouri_Clay_5 Missouri_Greene_14 Missouri_Greene_36 Missouri_Jackson_33 Missouri_Platte_23 Missouri_SaintCharles_1002 Missouri_SaintLouis_1 Missouri_SaintLouis_3001 Missouri_SaintLouis_5001 Missouri_SaintLouis_6 Missouri_SaintLouis_7001 Missouri_StLouisCity_72 Missouri_StLouisCity_80 Montana_Missoula_34 Montana_Rosebud_700 Montana_Rosebud_701 Montana_Rosebud_702 Montana_Rosebud_704 Montana_Rosebud_760 Montana_Rosebud_761 Montana_Rosebud_762 Nevada_Clark_1001 Nevada_Clark_16 Nevada_Clark_557 Nevada_Washoe_15 Nevada_Washoe_16 NewHampshire_Hillsborough_16 NewJersey_Bergen_1 NewJersey_Camden_3 NewJersey_Essex_1003 NewJersey_Essex_11 NewJersey_Hudson_6 NewJersey_Morris_3001 NewJersey_Union_4 NewJersey_Union_5001 NewMexico_Bernalillo_15 NewMexico_Bernalillo_23 NewMexico_Catron_1 NewMexico_Eddy_3 NewMexico_SanJuan_14 NewYork_Bronx_74 NewYork_Erie_2 NewYork_Erie_5 NewYork_Essex_5 NewYork_Nassau_5 NewYork_NewYork_10 NewYork_NewYork_56 NewYork_NewYork_63 NorthCarolina_Forsyth_22 NorthCarolina_Forsyth_7 NorthCarolina_Mecklenburg_34 NorthCarolina_Wake_14 NorthDakota_Burke_1 NorthDakota_Dunn_3 NorthDakota_Mercer_1 NorthDakota_Mercer_101 NorthDakota_Mercer_102 NorthDakota_Mercer_103 NorthDakota_Mercer_104 NorthDakota_Oliver_101 NorthDakota_Oliver_2 Ohio_Cuyahoga_2003 Ohio_Cuyahoga_33 Ohio_Cuyahoga_43 Ohio_Franklin_4 Ohio_Hamilton_1013 Ohio_Hamilton_35 Ohio_Hamilton_4002 Ohio_Jefferson_1012 Ohio_Montgomery_29 Ohio_Pickaway_1 Ohio_Pickaway_1001 Ohio_Stark_16 Oklahoma_Cleveland_44 Oklahoma_Cleveland_49 Oklahoma_Kay_600 Oklahoma_Muskogee_167 Oklahoma_Oklahoma_1037 Oklahoma_Oklahoma_33 Oklahoma_Tulsa_127 Oklahoma_Tulsa_174 Oklahoma_Tulsa_191 Oregon_Multnomah_80 Pennsylvania_Allegheny_3 Pennsylvania_Allegheny_31 Pennsylvania_Allegheny_8 Pennsylvania_Beaver_14 Pennsylvania_Berks_9 Pennsylvania_Blair_801 Pennsylvania_Bucks_12 Pennsylvania_Cambria_11 Pennsylvania_Dauphin_401 Pennsylvania_Delaware_2 Pennsylvania_Erie_10 Pennsylvania_Erie_3 Pennsylvania_Lackawanna_2006 Pennsylvania_Lancaster_7 Pennsylvania_Lawrence_15 Pennsylvania_Lehigh_4 Pennsylvania_Luzerne_1101 Pennsylvania_Montgomery_13 Pennsylvania_Northampton_17 Pennsylvania_Perry_301 Pennsylvania_Philadelphia_22 Pennsylvania_Philadelphia_23 Pennsylvania_Philadelphia_29 Pennsylvania_Philadelphia_4 Pennsylvania_Philadelphia_47 Pennsylvania_Washington_200 Pennsylvania_Washington_5 Pennsylvania_York_8 RhodeIsland_Providence_12 RhodeIsland_Providence_19 SouthCarolina_Aiken_3 SouthCarolina_Barnwell_1 SouthCarolina_Lexington_5 SouthCarolina_Richland_1006 Tennessee_Bradley_102 Tennessee_Davidson_10 Tennessee_Davidson_11 Tennessee_Giles_1 Tennessee_Maury_106 Tennessee_McMinn_101 Tennessee_Rutherford_101 Tennessee_Shelby_24 Tennessee_Sullivan_7 Tennessee_Sullivan_9 Tennessee_Williamson_103 Texas_Bexar_36 Texas_Brazoria_1003 Texas_Dallas_44 Texas_Dallas_45 Texas_Dallas_55 Texas_Dallas_69 Texas_ElPaso_27 Texas_ElPaso_37 Texas_Galveston_1002 Texas_Gregg_1 Texas_Harris_1034 Texas_Harris_1035 Texas_Harris_1037 Texas_Harris_24 Texas_Harris_26 Texas_Harris_47 Texas_Harris_7001 Texas_Jefferson_9 Texas_Orange_1001 Texas_Tarrant_1002 Texas_Tarrant_1003 Texas_Travis_17 Utah_Davis_1 Utah_SaltLake_3001 Utah_Utah_2 Utah_Weber_1 Vermont_Chittenden_3 Vermont_Rutland_2 Virginia_AlexandriaCity_9 Virginia_Arlington_20 Virginia_FairfaxCity_5 Virginia_Fairfax_1004 Virginia_Fairfax_18 Virginia_Fairfax_5001 Virginia_Henrico_14 Virginia_NorfolkCity_23 Virginia_RichmondCity_21 Virginia_Roanoke_1004 Virginia_VirginiaBeachCity_7 Washington_King_80 Washington_King_82 WestVirginia_Cabell_6 WestVirginia_Greenbrier_1 WestVirginia_Hancock_1004 WestVirginia_Kanawha_4 WestVirginia_Ohio_7 Wisconsin_Columbia_8 Wisconsin_Kenosha_1001 Wisconsin_Kenosha_16 Wisconsin_Milwaukee_41 Wisconsin_Milwaukee_80 Wisconsin_Rock_1002 Wisconsin_Rock_1004

9 Tables

9-110

 ___________ __________________________ _________________ _________________ ________________ ________________ ________________ _____________________ _____________________ _________________ _______________ ______________ _____________________ _______________________ ____________________ __________________ ___________________________ ________________________ ________________________ ___________________________ _____________________ _____________________ _____________________ ___________________ ___________________ ___________________ ___________________ _________________ ____________________ _________________ ____________________ _________________ __________________________ __________________________ __________________________ _________________________ __________________________ __________________________ ________________________ __________________________ __________________________ _______________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________ ______________________ ________________________ _________________ ___________________ ______________________ ______________________ ______________________ _________________________ _________________________ _________________________ _______________________ ________________________ __________________________ _______________________ __________________________ _______________________ __________________________ _____________________________ ___________________________ _____________________________ __________________________ _____________________________ __________________________ _____________________________ _____________________________ _____________________ ________________________ ________________________ ________________________ ________________________ _____________________ _____________________ _____________________ _________________________ _________________________ __________________________ _____________________________ _____________________________ _____________________________ _____________________________ ________________________ __________________________ _________________________ _________________________ __________________________ ______________________ ______________________ ___________________ ___________________ ___________________ __________________________ __________________________ _______________________ ______________________ _______________________ _______________________ _______________________ _______________________ ____________________ ____________________ _______________________ ___________________ ______________________ ___________________ _________________ _________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ _________________________ _________________________ _________________________ _________________________ _______________________ _______________________ __ __ ________________ ________________ _________________________ _________________________ _____________________ _______________________ ___________________ ______________________ ______________________ ___________________ ________________ _________________ __________________ __________________ __________________ __________________ __________________ __________________ ________________ ________________ ________________ __________________ __________________ __________________ __________________ ________________ ________________ ________________ ____________________ ______________________ _______________ _______________ ________________ ________________ ___________________ ______________ _________________ _________________ _________________ _________________ _________________ _________________ _________________ _______________ __________________ _______________ _________________ _________________ __________________ _______________________ ________________________ ________________________ _________________ __________________ ________________ ________________ ______________________ __________________ ___________________ _____________________ _______________________ _______________________ ________________ _______________________ __________________________ ________________________ ____________________ __________________________ _______________________ _________________________ _____________________ _______________________ __________________________ _____________________ ________________________ ________________________ ________________________ ____________________________ _______________________ _______________________ __________________________ _______________________ ________________________ ________________________ ________________________ ________________________ __________________________ ______________________ ______________________ ________________ ____________________ ____________________ ____________________ _________________ _________________ _________________ ______________________ _____________________ ______________________ __________________ __________________ ____________________ __________________ ___________________ ___________________ ________________ _______________ __________________ __________________ ___________________ __________________ __________________________ _____________________ ________________________ ________________________ _____________________ ________________________ _______________________ _______________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ _________________ _______________ ________________ ________________ ________________ ____________________________ __________________ __________________ ____________________ __________________ __________________ _____________________ _________________ ____________________ _______________________ _______________________ __________________ ________________ ____________________ ________________ ______________ ______________ _______________ ________________ __________________ __________________ __________________ ________________________ _______________________ ____________________________ _____________________ ___________________ __________________ ____________________ ______________________ ______________________ ______________________ ______________________ ______________________ ____________________ __________________ ________________ ________________ _______________ __________________ ________________ __________________ ___________________ __________________ _______________ __________________ _____________ _____________________ _____________________ ________________ _____________________ ______________________ ____________________ __________________ __________________ __________________ ___________________ ________________________ _________________________ ________________________ ______________________ ____________________ ______________________ _____________________ _______________________ ________________________ _______________________ ____________________ ___________________ ____________________________ ________________________ ________________________ _____________________ _________________________ __________________________ ___________________________ ______________________ ____________________________ ____________________________ ____________________________ ___________________________ ____________________________ ___________________________ _________________________ ___________________ _________________________ _________________________ _____________________ ________________________ _________________________ ___________________________ _____________________ _____________________ _____________________ _________________ ___________________ ____________________ ________________________ ___________________ ____________________ ____________________ ________________________ ______________ ___________________ _______________ _______________ _______________ _______________ _______________ _______________ ____________________ _____________ _________________ _________________ _________________ _______________ _______________ _______________ _________________ _________________ _________________ __________________ __________________ _______________ ____________ __________________ ___________ ____________ ____________________ _________________ _________________________ _____________________ ______________________ _____________________ ___________________ _____________________ ___________________ _______________________ ________________________ _____________________ ____________________________ __________________ __________________ _____________________ _________________________ _________________________ ______________________ ___________________ ____________________ ______________________ ____________________ ______________________ ______________________ ___________________ ___________________

 01-Jan-1985 NaN 27 29 25 10 22 100 60 70 NaN 80 53 100 80 60 50 80 80 120 60 NaN NaN 120 70 90 90 110 NaN NaN NaN NaN 190 230 230 180 140 210 NaN 210 170 180 170 200 220 NaN NaN NaN 60 200 70 NaN 70 60 170 150 170 NaN 70 NaN 130 90 NaN 80 80 NaN 90 110 130 NaN 120 120 NaN 50 100 NaN 110 120 150 70 NaN 130 NaN 110 110 NaN 80 30 50 70 50 100 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 80 NaN 40 NaN NaN NaN NaN 60 90 NaN NaN 20 NaN 70 80 NaN NaN 100 100 NaN NaN 70 60 30 NaN 100 132 86 NaN 160 106 NaN NaN NaN NaN NaN NaN NaN NaN NaN 84 66 88 80 160 103 84 65 50 54 58 47 61 45 NaN 72 65 52.5 89.7 97 91 63 93 NaN NaN 89 97 114 86 NaN NaN NaN 87 81 NaN NaN 66 NaN 60 47 47 53 NaN NaN 75 71 NaN 74 60 97 NaN 96 NaN 37 34 34 NaN 53 69 36 NaN 56 115 65 49 55 83 98 68 25 39.8 94 60 77 81 64 107 66 81 57 67 74 NaN NaN NaN NaN NaN 71 99 87 NaN NaN 65 NaN 37.7 30.8 NaN NaN NaN 60 14.8 81.7 NaN NaN 66 NaN NaN 70 NaN NaN NaN NaN 65.3 45 33 NaN 127.9 52.5 40 63 60 65 52 NaN 172 79 NaN 37 40 31 37 39 36.5 28 284.6 NaN 181.6 NaN 120 NaN 117 94 109 108 119 73 124 82 75 NaN 23 NaN 60 139 62 80 27 113 125 NaN NaN 54 NaN 65 NaN NaN 11 26 25 29 20 36 28 NaN NaN 105 80 82 56 85 97 65 87 NaN NaN 82 61 NaN NaN NaN 55.2 60.5 67.9 48.8 77 73.2 NaN 96 87 91 73 61 93 70 70 72 82 NaN 85 65 67 68 73 76 65 40 110 NaN 110 100 90 88 56 77 75 NaN NaN 27 NaN 39.8 45 NaN NaN 64 NaN 40 NaN 95 67 57.5 NaN 60 60 100 70 60 NaN 80 80 60 30 90 100 100 70 60 100 50 60 30 80 90 NaN NaN 130 130 110 49 NaN 90 90 74.8 87.1 69 90.2 NaN NaN 80 53 67 70 90 56 31 70 68 55 34.5 81 77 66 82 54.1 49.3
 01-Jan-1986 NaN 13 14 15 11 13 NaN 43 114 NaN 81 54 110 80 60 50 80 80 140 60 80 NaN 140 50 80 80 100 NaN NaN NaN NaN 210 240 NaN 190 150 210 NaN 180 180 180 180 180 210 NaN 180 NaN 60 NaN 80 NaN 60 80 180 140 160 NaN 70 NaN 120 90 NaN 50 60 NaN 70 100 140 NaN 150 NaN 60 60 80 NaN 110 120 150 70 NaN 140 130 120 80 80 100 30 50 70 50 100 NaN 49 53 21 20 25 41 NaN NaN NaN NaN NaN 34 NaN NaN NaN 29 70 40 30 30 NaN 29 30 50 70 NaN NaN NaN 70 80 80 50 NaN 100 90 NaN 110 70 70 30 NaN NaN 133 94 NaN 155 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 84 71 89 80 90 85 122 65 NaN 61 NaN 71 73 45 42 67 NaN 72.2 94 87 42 60 85 NaN NaN 77 86 113 80 75 NaN NaN 49 81 NaN NaN 75 50 66 NaN NaN 60 130 NaN NaN 68 NaN 237 NaN NaN 49 NaN NaN 36 35 35 NaN 31 61 33 116.8 46 115 55 48 75 77 98 76 21 NaN 84 71 85 81 66 110 NaN 81 49 114 85 NaN NaN 55 NaN NaN 121 122 93 NaN NaN 73 110 40.8 35 NaN NaN NaN 39.8 66.9 92.9 NaN NaN 80 NaN 53 71 NaN NaN NaN NaN 65.8 52 32 NaN NaN 54.1 45 75 84 67 58 NaN 157 81 NaN 38 30 27 35 28 26 48 NaN NaN 116.3 NaN 210 52 92 85 111 100 117 57 100 82 64 NaN 15 40 NaN 113 72 114 20 101 138 127 NaN 66 46 79 NaN NaN 20 28 24 38 21 31 23 NaN 65 75 75 94 63 90 85 86 72 NaN NaN 69 61.6 NaN NaN 63.7 54.1 63.2 64.2 53.6 82.3 97.7 NaN 180 88 65 71 NaN 98 67 72 NaN 60 NaN 60 59 67 75 79 NaN NaN 42 NaN 40 110 90 90 83 61 70 72 NaN 33.4 21.7 27 NaN 62 NaN NaN 53 NaN 57 NaN 91 72.5 67 NaN NaN 70 110 70 70 80 100 70 NaN NaN 80 90 110 70 60 100 NaN 40 NaN 70 80 NaN NaN 130 90 80 57 NaN 85 85 80.7 71.6 78.6 72.7 NaN NaN 75 55 68 80 90 70 29 67 72 62 35.5 99 119 71 80 45.1 56.8

Next calculate a moving mean for each site, specifying a three-year window for the moving mean. The
smoothdata enables you to apply the movmean function to each variable in yearlyP98.

moving3yearAvg = smoothdata(yearlyP98,"movmean",[years(3) 0])

moving3yearAvg=5×442 timetable
 Timestamp Alaska_KenaiPeninsula_1004 Arizona_Apache_10 Arizona_Apache_11 Arizona_Apache_7 Arizona_Apache_8 Arizona_Apache_9 Arizona_Maricopa_3002 Arizona_Maricopa_3003 Arizona_Pima_1011 Arizona_Pima_19 Arizona_Pima_2 Arkansas_Pulaski_1002 California_Alameda_1001 California_Alameda_3 California_Butte_2 California_ContraCosta_1002 California_ContraCosta_2 California_ContraCosta_3 California_ContraCosta_3001 California_ElDorado_9 California_Fresno_241 California_Fresno_242 California_Fresno_5 California_Fresno_6 California_Fresno_7 California_Kern_232 California_Kern_4 California_Kern_5001 California_Kern_6 California_Kern_6001 California_Kern_7 California_LosAngeles_1002 California_LosAngeles_1103 California_LosAngeles_1105 California_LosAngeles_113 California_LosAngeles_1201 California_LosAngeles_1301 California_LosAngeles_16 California_LosAngeles_1601 California_LosAngeles_1701 California_LosAngeles_2 California_LosAngeles_2005 California_LosAngeles_2401 California_LosAngeles_4002 California_LosAngeles_4101 California_LosAngeles_5001 California_LosAngeles_6002 California_LosAngeles_7001 California_LosAngeles_8001 California_Marin_1 California_Mendocino_7 California_Monterey_1002 California_Napa_3 California_Orange_1 California_Orange_1002 California_Orange_5001 California_Plumas_1001 California_Riverside_5001 California_Riverside_6001 California_Riverside_8001 California_Sacramento_1 California_Sacramento_10 California_Sacramento_1001 California_Sacramento_2 California_Sacramento_5002 California_Sacramento_6 California_SanBernardino_1 California_SanBernardino_1004 California_SanBernardino_12 California_SanBernardino_2002 California_SanBernardino_3 California_SanBernardino_4001 California_SanBernardino_6 California_SanBernardino_7002 California_SanBernardino_9004 California_SanDiego_1 California_SanDiego_1002 California_SanDiego_1004 California_SanDiego_1006 California_SanDiego_1007 California_SanDiego_3 California_SanDiego_5 California_SanDiego_6 California_SanFrancisco_4 California_SanFrancisco_5 California_SanJoaquin_1002 California_SanLuisObispo_1004 California_SanLuisObispo_2001 California_SanLuisObispo_2002 California_SanLuisObispo_4001 California_SanMateo_1001 California_SantaBarbara_10 California_SantaBarbara_1010 California_SantaBarbara_1011 California_SantaBarbara_1012 California_SantaBarbara_1013 California_SantaBarbara_1014 California_SantaBarbara_1015 California_SantaBarbara_1016 California_SantaBarbara_1017 California_SantaBarbara_1018 California_SantaBarbara_1019 California_SantaBarbara_1020 California_SantaBarbara_1021 California_SantaBarbara_1025 California_SantaBarbara_1026 California_SantaBarbara_1027 California_SantaBarbara_1030 California_SantaBarbara_2002 California_SantaBarbara_2004 California_SantaBarbara_2005 California_SantaBarbara_4002 California_SantaBarbara_4003 California_SantaBarbara_4004 California_SantaBarbara_5001 California_SantaBarbara_8 California_SantaBarbara_9 California_SantaClara_2004 California_SantaCruz_3 California_Shasta_1001 California_Shasta_6 California_Solano_4 California_Sonoma_3 California_Stanislaus_1003 California_Stanislaus_1004 California_Stanislaus_5 California_Tulare_2002 California_Ventura_1003 California_Ventura_2002 California_Ventura_2003 California_Ventura_3001 California_Ventura_5 California_Ventura_6 California_Ventura_7001 Colorado_Adams_3001 Colorado_Arapahoe_1002 Colorado_Arapahoe_3 Colorado_Denver_2 Colorado_ElPaso_4 Colorado_ElPaso_6001 Colorado_ElPaso_6003 Colorado_ElPaso_6004 Colorado_ElPaso_6005 Colorado_ElPaso_6006 Colorado_ElPaso_6009 Colorado_ElPaso_6011 Colorado_ElPaso_6013 Connecticut_Fairfield_113 Connecticut_Fairfield_123 Connecticut_Hartford_1003 Connecticut_NewHaven_1123 Delaware_NewCastle_2002 Delaware_NewCastle_3001 DistrictOfColumbia_DistrictofColumbia_17 DistrictOfColumbia_DistrictofColumbia_25 Florida_Duval_32 Florida_Duval_70 Florida_Hillsborough_1052 Florida_Hillsborough_1055 Florida_Miami_Dade_27 Florida_Miami_Dade_4002 Florida_Orange_2002 Florida_PalmBeach_1004 Florida_PalmBeach_1101 Florida_Pinellas_18 Georgia_DeKalb_2 Georgia_Fulton_48 Illinois_Cook_1002 Illinois_Cook_1102 Illinois_Cook_1601 Illinois_Cook_3101 Illinois_Cook_3102 Illinois_Cook_3601 Illinois_Cook_37 Illinois_Cook_39 Illinois_Cook_40 Illinois_Cook_4002 Illinois_Cook_4003 Illinois_Cook_4004 Illinois_Cook_4005 Illinois_Cook_45 Illinois_Cook_53 Illinois_Cook_63 Illinois_DuPage_1003 Illinois_SaintClair_10 Indiana_Allen_6 Indiana_Clark_3 Indiana_Jasper_2 Indiana_Jasper_3 Indiana_Jefferson_1 Indiana_Knox_4 Indiana_Lake_1016 Indiana_Marion_30 Indiana_Marion_57 Indiana_Marion_65 Indiana_Marion_70 Indiana_Porter_15 Indiana_Porter_16 Indiana_Posey_1 Indiana_Posey_1002 Indiana_Posey_2 Indiana_Spencer_2 Indiana_Spencer_6 Indiana_Sullivan_1 Indiana_Tippecanoe_1001 Indiana_Vanderburgh_1001 Indiana_Vanderburgh_1002 Indiana_Vigo_1012 Kansas_Wyandotte_1 Kentucky_Boone_7 Kentucky_Boyd_10 Kentucky_Campbell_1001 Kentucky_Daviess_5 Kentucky_Fayette_12 Kentucky_Henderson_13 Kentucky_Jefferson_1020 Kentucky_McCracken_1024 Kentucky_Trigg_1 Louisiana_Calcasieu_100 Louisiana_EastBatonRouge_4 Louisiana_Jefferson_1001 Louisiana_Orleans_12 Louisiana_WestBatonRouge_1 Maryland_AnneArundel_19 Maryland_BaltimoreCity_40 Maryland_Baltimore_10 Maryland_Baltimore_3001 Massachusetts_Bristol_1004 Massachusetts_Essex_5 Massachusetts_Hampden_15 Massachusetts_Hampden_16 Massachusetts_Hampden_17 Massachusetts_Hampshire_4002 Massachusetts_Norfolk_8 Massachusetts_Norfolk_9 Massachusetts_Suffolk_1003 Massachusetts_Suffolk_2 Massachusetts_Suffolk_21 Massachusetts_Suffolk_35 Massachusetts_Suffolk_36 Massachusetts_Suffolk_37 Massachusetts_Worcester_20 Michigan_Dickinson_901 Michigan_Dickinson_902 Michigan_Kent_20 Michigan_Midland_940 Michigan_Midland_941 Michigan_Oakland_902 Michigan_Wayne_16 Michigan_Wayne_19 Michigan_Wayne_29 Minnesota_Carlton_6316 Minnesota_Hennepin_50 Minnesota_Hennepin_953 Minnesota_Ramsey_1 Minnesota_Ramsey_3 Minnesota_Ramsey_864 Minnesota_Wright_7 Missouri_Atchison_1 Missouri_Atchison_2 Missouri_Clay_25 Missouri_Clay_5 Missouri_Greene_14 Missouri_Greene_36 Missouri_Jackson_33 Missouri_Platte_23 Missouri_SaintCharles_1002 Missouri_SaintLouis_1 Missouri_SaintLouis_3001 Missouri_SaintLouis_5001 Missouri_SaintLouis_6 Missouri_SaintLouis_7001 Missouri_StLouisCity_72 Missouri_StLouisCity_80 Montana_Missoula_34 Montana_Rosebud_700 Montana_Rosebud_701 Montana_Rosebud_702 Montana_Rosebud_704 Montana_Rosebud_760 Montana_Rosebud_761 Montana_Rosebud_762 Nevada_Clark_1001 Nevada_Clark_16 Nevada_Clark_557 Nevada_Washoe_15 Nevada_Washoe_16 NewHampshire_Hillsborough_16 NewJersey_Bergen_1 NewJersey_Camden_3 NewJersey_Essex_1003 NewJersey_Essex_11 NewJersey_Hudson_6 NewJersey_Morris_3001 NewJersey_Union_4 NewJersey_Union_5001 NewMexico_Bernalillo_15 NewMexico_Bernalillo_23 NewMexico_Catron_1 NewMexico_Eddy_3 NewMexico_SanJuan_14 NewYork_Bronx_74 NewYork_Erie_2 NewYork_Erie_5 NewYork_Essex_5 NewYork_Nassau_5 NewYork_NewYork_10 NewYork_NewYork_56 NewYork_NewYork_63 NorthCarolina_Forsyth_22 NorthCarolina_Forsyth_7 NorthCarolina_Mecklenburg_34 NorthCarolina_Wake_14 NorthDakota_Burke_1 NorthDakota_Dunn_3 NorthDakota_Mercer_1 NorthDakota_Mercer_101 NorthDakota_Mercer_102 NorthDakota_Mercer_103 NorthDakota_Mercer_104 NorthDakota_Oliver_101 NorthDakota_Oliver_2 Ohio_Cuyahoga_2003 Ohio_Cuyahoga_33 Ohio_Cuyahoga_43 Ohio_Franklin_4 Ohio_Hamilton_1013 Ohio_Hamilton_35 Ohio_Hamilton_4002 Ohio_Jefferson_1012 Ohio_Montgomery_29 Ohio_Pickaway_1 Ohio_Pickaway_1001 Ohio_Stark_16 Oklahoma_Cleveland_44 Oklahoma_Cleveland_49 Oklahoma_Kay_600 Oklahoma_Muskogee_167 Oklahoma_Oklahoma_1037 Oklahoma_Oklahoma_33 Oklahoma_Tulsa_127 Oklahoma_Tulsa_174 Oklahoma_Tulsa_191 Oregon_Multnomah_80 Pennsylvania_Allegheny_3 Pennsylvania_Allegheny_31 Pennsylvania_Allegheny_8 Pennsylvania_Beaver_14 Pennsylvania_Berks_9 Pennsylvania_Blair_801 Pennsylvania_Bucks_12 Pennsylvania_Cambria_11 Pennsylvania_Dauphin_401 Pennsylvania_Delaware_2 Pennsylvania_Erie_10 Pennsylvania_Erie_3 Pennsylvania_Lackawanna_2006 Pennsylvania_Lancaster_7 Pennsylvania_Lawrence_15 Pennsylvania_Lehigh_4 Pennsylvania_Luzerne_1101 Pennsylvania_Montgomery_13 Pennsylvania_Northampton_17 Pennsylvania_Perry_301 Pennsylvania_Philadelphia_22 Pennsylvania_Philadelphia_23 Pennsylvania_Philadelphia_29 Pennsylvania_Philadelphia_4 Pennsylvania_Philadelphia_47 Pennsylvania_Washington_200 Pennsylvania_Washington_5 Pennsylvania_York_8 RhodeIsland_Providence_12 RhodeIsland_Providence_19 SouthCarolina_Aiken_3 SouthCarolina_Barnwell_1 SouthCarolina_Lexington_5 SouthCarolina_Richland_1006 Tennessee_Bradley_102 Tennessee_Davidson_10 Tennessee_Davidson_11 Tennessee_Giles_1 Tennessee_Maury_106 Tennessee_McMinn_101 Tennessee_Rutherford_101 Tennessee_Shelby_24 Tennessee_Sullivan_7 Tennessee_Sullivan_9 Tennessee_Williamson_103 Texas_Bexar_36 Texas_Brazoria_1003 Texas_Dallas_44 Texas_Dallas_45 Texas_Dallas_55 Texas_Dallas_69 Texas_ElPaso_27 Texas_ElPaso_37 Texas_Galveston_1002 Texas_Gregg_1 Texas_Harris_1034 Texas_Harris_1035 Texas_Harris_1037 Texas_Harris_24 Texas_Harris_26 Texas_Harris_47 Texas_Harris_7001 Texas_Jefferson_9 Texas_Orange_1001 Texas_Tarrant_1002 Texas_Tarrant_1003 Texas_Travis_17 Utah_Davis_1 Utah_SaltLake_3001 Utah_Utah_2 Utah_Weber_1 Vermont_Chittenden_3 Vermont_Rutland_2 Virginia_AlexandriaCity_9 Virginia_Arlington_20 Virginia_FairfaxCity_5 Virginia_Fairfax_1004 Virginia_Fairfax_18 Virginia_Fairfax_5001 Virginia_Henrico_14 Virginia_NorfolkCity_23 Virginia_RichmondCity_21 Virginia_Roanoke_1004 Virginia_VirginiaBeachCity_7 Washington_King_80 Washington_King_82 WestVirginia_Cabell_6 WestVirginia_Greenbrier_1 WestVirginia_Hancock_1004 WestVirginia_Kanawha_4 WestVirginia_Ohio_7 Wisconsin_Columbia_8 Wisconsin_Kenosha_1001 Wisconsin_Kenosha_16 Wisconsin_Milwaukee_41 Wisconsin_Milwaukee_80 Wisconsin_Rock_1002 Wisconsin_Rock_1004
 ___________ __________________________ _________________ _________________ ________________ ________________ ________________ _____________________ _____________________ _________________ _______________ ______________ _____________________ _______________________ ____________________ __________________ ___________________________ ________________________ ________________________ ___________________________ _____________________ _____________________ _____________________ ___________________ ___________________ ___________________ ___________________ _________________ ____________________ _________________ ____________________ _________________ __________________________ __________________________ __________________________ _________________________ __________________________ __________________________ ________________________ __________________________ __________________________ _______________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________ ______________________ ________________________ _________________ ___________________ ______________________ ______________________ ______________________ _________________________ _________________________ _________________________ _______________________ ________________________ __________________________ _______________________ __________________________ _______________________ __________________________ _____________________________ ___________________________ _____________________________ __________________________ _____________________________ __________________________ _____________________________ _____________________________ _____________________ ________________________ ________________________ ________________________ ________________________ _____________________ _____________________ _____________________ _________________________ _________________________ __________________________ _____________________________ _____________________________ _____________________________ _____________________________ ________________________ __________________________ _________________________ _________________________ __________________________ ______________________ ______________________ ___________________ ___________________ ___________________ __________________________ __________________________ _______________________ ______________________ _______________________ _______________________ _______________________ _______________________ ____________________ ____________________ _______________________ ___________________ ______________________ ___________________ _________________ _________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ _________________________ _________________________ _________________________ _________________________ _______________________ _______________________ __ __ ________________ ________________ _________________________ _________________________ _____________________ _______________________ ___________________ ______________________ ______________________ ___________________ ________________ _________________ __________________ __________________ __________________ __________________ __________________ __________________ ________________ ________________ ________________ __________________ __________________ __________________ __________________ ________________ ________________ ________________ ____________________ ______________________ _______________ _______________ ________________ ________________ ___________________ ______________ _________________ _________________ _________________ _________________ _________________ _________________ _________________ _______________ __________________ _______________ _________________ _________________ __________________ _______________________ ________________________ ________________________ _________________ __________________ ________________ ________________ ______________________ __________________ ___________________ _____________________ _______________________ _______________________ ________________ _______________________ __________________________ ________________________ ____________________ __________________________ _______________________ _________________________ _____________________ _______________________ __________________________ _____________________ ________________________ ________________________ ________________________ ____________________________ _______________________ _______________________ __________________________ _______________________ ________________________ ________________________ ________________________ ________________________ __________________________ ______________________ ______________________ ________________ ____________________ ____________________ ____________________ _________________ _________________ _________________ ______________________ _____________________ ______________________ __________________ __________________ ____________________ __________________ ___________________ ___________________ ________________ _______________ __________________ __________________ ___________________ __________________ __________________________ _____________________ ________________________ ________________________ _____________________ ________________________ _______________________ _______________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ _________________ _______________ ________________ ________________ ________________ ____________________________ __________________ __________________ ____________________ __________________ __________________ _____________________ _________________ ____________________ _______________________ _______________________ __________________ ________________ ____________________ ________________ ______________ ______________ _______________ ________________ __________________ __________________ __________________ ________________________ _______________________ ____________________________ _____________________ ___________________ __________________ ____________________ ______________________ ______________________ ______________________ ______________________ ______________________ ____________________ __________________ ________________ ________________ _______________ __________________ ________________ __________________ ___________________ __________________ _______________ __________________ _____________ _____________________ _____________________ ________________ _____________________ ______________________ ____________________ __________________ __________________ __________________ ___________________ ________________________ _________________________ ________________________ ______________________ ____________________ ______________________ _____________________ _______________________ ________________________ _______________________ ____________________ ___________________ ____________________________ ________________________ ________________________ _____________________ _________________________ __________________________ ___________________________ ______________________ ____________________________ ____________________________ ____________________________ ___________________________ ____________________________ ___________________________ _________________________ ___________________ _________________________ _________________________ _____________________ ________________________ _________________________ ___________________________ _____________________ _____________________ _____________________ _________________ ___________________ ____________________ ________________________ ___________________ ____________________ ____________________ ________________________ ______________ ___________________ _______________ _______________ _______________ _______________ _______________ _______________ ____________________ _____________ _________________ _________________ _________________ _______________ _______________ _______________ _________________ _________________ _________________ __________________ __________________ _______________ ____________ __________________ ___________ ____________ ____________________ _________________ _________________________ _____________________ ______________________ _____________________ ___________________ _____________________ ___________________ _______________________ ________________________ _____________________ ____________________________ __________________ __________________ _____________________ _________________________ _________________________ ______________________ ___________________ ____________________ ______________________ ____________________ ______________________ ______________________ ___________________ ___________________

 01-Jan-1985 NaN 27 29 25 10 22 100 60 70 NaN 80 53 100 80 60 50 80 80 120 60 NaN NaN 120 70 90 90 110 NaN NaN NaN NaN 190 230 230 180 140 210 NaN 210 170 180 170 200 220 NaN NaN NaN 60 200 70 NaN 70 60 170 150 170 NaN 70 NaN 130 90 NaN 80 80 NaN 90 110 130 NaN 120 120 NaN 50 100 NaN 110 120 150 70 NaN 130 NaN 110 110 NaN 80 30 50 70 50 100 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 80 NaN 40 NaN NaN NaN NaN 60 90 NaN NaN 20 NaN 70 80 NaN NaN 100 100 NaN NaN 70 60 30 NaN 100 132 86 NaN 160 106 NaN NaN NaN NaN NaN NaN NaN NaN NaN 84 66 88 80 160 103 84 65 50 54 58 47 61 45 NaN 72 65 52.5 89.7 97 91 63 93 NaN NaN 89 97 114 86 NaN NaN NaN 87 81 NaN NaN 66 NaN 60 47 47 53 NaN NaN 75 71 NaN 74 60 97 NaN 96 NaN 37 34 34 NaN 53 69 36 NaN 56 115 65 49 55 83 98 68 25 39.8 94 60 77 81 64 107 66 81 57 67 74 NaN NaN NaN NaN NaN 71 99 87 NaN NaN 65 NaN 37.7 30.8 NaN NaN NaN 60 14.8 81.7 NaN NaN 66 NaN NaN 70 NaN NaN NaN NaN 65.3 45 33 NaN 127.9 52.5 40 63 60 65 52 NaN 172 79 NaN 37 40 31 37 39 36.5 28 284.6 NaN 181.6 NaN 120 NaN 117 94 109 108 119 73 124 82 75 NaN 23 NaN 60 139 62 80 27 113 125 NaN NaN 54 NaN 65 NaN NaN 11 26 25 29 20 36 28 NaN NaN 105 80 82 56 85 97 65 87 NaN NaN 82 61 NaN NaN NaN 55.2 60.5 67.9 48.8 77 73.2 NaN 96 87 91 73 61 93 70 70 72 82 NaN 85 65 67 68 73 76 65 40 110 NaN 110 100 90 88 56 77 75 NaN NaN 27 NaN 39.8 45 NaN NaN 64 NaN 40 NaN 95 67 57.5 NaN 60 60 100 70 60 NaN 80 80 60 30 90 100 100 70 60 100 50 60 30 80 90 NaN NaN 130 130 110 49 NaN 90 90 74.8 87.1 69 90.2 NaN NaN 80 53 67 70 90 56 31 70 68 55 34.5 81 77 66 82 54.1 49.3
 01-Jan-1986 NaN 20 21.5 20 10.5 17.5 100 51.5 92 NaN 80.5 53.5 105 80 60 50 80 80 130 60 80 NaN 130 60 85 85 105 NaN NaN NaN NaN 200 235 230 185 145 210 NaN 195 175 180 175 190 215 NaN 180 NaN 60 200 75 NaN 65 70 175 145 165 NaN 70 NaN 125 90 NaN 65 70 NaN 80 105 135 NaN 135 120 60 55 90 NaN 110 120 150 70 NaN 135 130 115 95 80 90 30 50 70 50 100 NaN 49 53 21 20 25 41 NaN NaN NaN NaN NaN 34 NaN NaN NaN 29 75 40 35 30 NaN 29 30 55 80 NaN NaN 20 70 75 80 50 NaN 100 95 NaN 110 70 65 30 NaN 100 132.5 90 NaN 157.5 106 NaN NaN NaN NaN NaN NaN NaN NaN NaN 84 68.5 88.5 80 125 94 103 65 50 57.5 58 59 67 45 42 69.5 65 62.35 91.85 92 66.5 61.5 89 NaN NaN 83 91.5 113.5 83 75 NaN NaN 68 81 NaN NaN 70.5 50 63 47 47 56.5 130 NaN 75 69.5 NaN 155.5 60 97 49 96 NaN 36.5 34.5 34.5 NaN 42 65 34.5 116.8 51 115 60 48.5 65 80 98 72 23 39.8 89 65.5 81 81 65 108.5 66 81 53 90.5 79.5 NaN NaN 55 NaN NaN 96 110.5 90 NaN NaN 69 110 39.25 32.9 NaN NaN NaN 49.9 40.85 87.3 NaN NaN 73 NaN 53 70.5 NaN NaN NaN NaN 65.55 48.5 32.5 NaN 127.9 53.3 42.5 69 72 66 55 NaN 164.5 80 NaN 37.5 35 29 36 33.5 31.25 38 284.6 NaN 148.95 NaN 165 52 104.5 89.5 110 104 118 65 112 82 69.5 NaN 19 40 60 126 67 97 23.5 107 131.5 127 NaN 60 46 72 NaN NaN 15.5 27 24.5 33.5 20.5 33.5 25.5 NaN 65 90 77.5 88 59.5 87.5 91 75.5 79.5 NaN NaN 75.5 61.3 NaN NaN 63.7 54.65 61.85 66.05 51.2 79.65 85.45 NaN 138 87.5 78 72 61 95.5 68.5 71 72 71 NaN 72.5 62 67 71.5 76 76 65 41 110 40 110 95 90 85.5 58.5 73.5 73.5 NaN 33.4 24.35 27 39.8 53.5 NaN NaN 58.5 NaN 48.5 NaN 93 69.75 62.25 NaN 60 65 105 70 65 80 90 75 60 30 85 95 105 70 60 100 50 50 30 75 85 NaN NaN 130 110 95 53 NaN 87.5 87.5 77.75 79.35 73.8 81.45 NaN NaN 77.5 54 67.5 75 90 63 30 68.5 70 58.5 35 90 98 68.5 81 49.6 53.05

Display sites that are out of compliance. First specify a time range starting in 1987, the first year for
which the moving three-year window has three full years of data.

full3years = timerange("1987-01-01","1989-01-01","closed")

full3years =
 timetable timerange subscript:

 Select timetable rows with times in the closed interval:
 [01-Jan-1987 00:00:00, 01-Jan-1989 00:00:00]

 See Select Timetable Data by Row Time and Variable Type.

Next find sites that exceeded the standard during any year in the 1987–1989 time period. The vector
exceed is a vector of logical values whose values are 1 (true) where the corresponding variables of
moving3yearAvg have values that exceed the standard. You can use logical arrays to index into
tables. In this case, index into moving3yearAvg by using exceed to display only the variables for
the sites that exceed the standard.

exceed = any(moving3yearAvg{full3years,:}>100,1);
moving3yearAvg(full3years,exceed)

ans=3×85 timetable
 Timestamp California_Alameda_1001 California_ContraCosta_3001 California_Fresno_5 California_Kern_4 California_LosAngeles_1002 California_LosAngeles_1103 California_LosAngeles_1105 California_LosAngeles_113 California_LosAngeles_1201 California_LosAngeles_1301 California_LosAngeles_16 California_LosAngeles_1601 California_LosAngeles_1701 California_LosAngeles_2 California_LosAngeles_2005 California_LosAngeles_2401 California_LosAngeles_4002 California_LosAngeles_5001 California_LosAngeles_6002 California_LosAngeles_8001 California_Orange_1 California_Orange_1002 California_Orange_5001 California_Riverside_6001 California_Riverside_8001 California_SanBernardino_1 California_SanBernardino_1004 California_SanBernardino_2002 California_SanBernardino_3 California_SanBernardino_9004 California_SanDiego_1 California_SanDiego_1002 California_SanDiego_1004 California_SanDiego_1007 California_SanDiego_3 California_SanDiego_5 California_SanDiego_6 California_SanMateo_1001 California_SantaClara_2004 California_Tulare_2002 Colorado_Adams_3001 Colorado_Arapahoe_1002 Colorado_Arapahoe_3 Colorado_Denver_2 Colorado_ElPaso_4 Delaware_NewCastle_3001 DistrictOfColumbia_DistrictofColumbia_25 Illinois_Cook_3102 Illinois_Cook_40 Illinois_Cook_53 Indiana_Knox_4 Indiana_Lake_1016 Indiana_Marion_70 Kentucky_Boyd_10 Maryland_BaltimoreCity_40 Massachusetts_Hampden_17 Massachusetts_Suffolk_2 Massachusetts_Worcester_20 Missouri_Jackson_33 Missouri_StLouisCity_72 Montana_Missoula_34 Nevada_Clark_1001 Nevada_Clark_16 Nevada_Clark_557 Nevada_Washoe_15 Nevada_Washoe_16 NewHampshire_Hillsborough_16 NewJersey_Bergen_1 NewJersey_Essex_1003 NewJersey_Essex_11 NewJersey_Hudson_6 NewJersey_Union_4 NewYork_Bronx_74 NewYork_Nassau_5 NewYork_NewYork_10 NewYork_NewYork_56 NewYork_NewYork_63 Pennsylvania_Allegheny_31 Pennsylvania_Philadelphia_22 Pennsylvania_Philadelphia_29 Pennsylvania_Philadelphia_47 Texas_Dallas_44 Texas_Harris_1037 Utah_SaltLake_3001 Virginia_Fairfax_5001
 ___________ _______________________ ___________________________ ___________________ _________________ __________________________ __________________________ __________________________ _________________________ __________________________ __________________________ ________________________ __________________________ __________________________ _______________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ ___________________ ______________________ ______________________ _________________________ _________________________ __________________________ _____________________________ _____________________________ __________________________ _____________________________ _____________________ ________________________ ________________________ ________________________ _____________________ _____________________ _____________________ ________________________ __________________________ ______________________ ___________________ ______________________ ___________________ _________________ _________________ _______________________ __ __________________ ________________ ________________ ______________ _________________ _________________ ________________ _________________________ ________________________ _______________________ __________________________ ___________________ _______________________ ___________________ _________________ _______________ ________________ ________________ ________________ ____________________________ __________________ ____________________ __________________ __________________ _________________ ________________ ________________ __________________ __________________ __________________ _________________________ ____________________________ ____________________________ ____________________________ _______________ _________________ __________________ _____________________

 01-Jan-1987 100 133.33 120 103.33 196.67 230 230 176.67 140 200 NaN 190 173.33 173.33 173.33 196.67 200 180 NaN 200 176.67 143.33 170 NaN 126.67 103.33 140 133.33 120 140 110 116.67 146.67 NaN 133.33 135 116.67 96.667 NaN 93.333 133 95.667 NaN 157.33 106 110 101.33 NaN 116 114 109.5 NaN 189.33 117 104.33 NaN 108.33 122 127.9 138.67 NaN 284.6 NaN 133.63 140 163.33 85.5 107 113.33 112 117.67 108 119.33 108.67 127.67 126 NaN 125.67 110 123.33 96.667 105 106.67 120 81.45
 01-Jan-1988 102.5 133.33 120 105 200 235 230 172.5 142.5 195 160 187.5 173.33 177.5 173.33 192.5 197.5 180 NaN 200 175 145 167.5 NaN 132.5 97.5 145 130 120 135 112.5 120 152.5 NaN 132.5 143.33 120 100 NaN 95 131.5 102.25 124 149.25 106 105 95.5 114 116 114 98.667 NaN 162.25 112.5 103.5 178 104.75 112.67 127.9 125 109 284.6 183.2 141.5 140 163.33 100.67 109.75 119.75 115.5 123.75 112 111 110.5 129.5 129 111 119 110 115 97.5 105 105 120 82.267
 01-Jan-1989 103.33 140 113.33 110 196.67 230 NaN 160 140 183.33 155 183.33 175 170 170 196.67 190 180 120 NaN 176.67 160 166.67 120 140 86.667 156.67 126.67 NaN 136.67 116.67 123.33 163.33 170 130 150 126.67 103.33 130 103.33 133.33 114.5 108.5 153.33 NaN 83.333 85.667 99.5 121 180 83 140 137.67 103.67 95.667 178 93 102 NaN 86.667 92 NaN 162.75 136.1 140 160 119.33 112 121 122.67 124.33 123.33 96 106.33 126.33 130.33 111 99.667 NaN 113.33 110 NaN 106.67 118 100.9

The NO2bySite timetable has latitudes and longitudes for the sites, saved as custom properties. The
latitudes and longitudes are associated with the variables of the timetable. You can mark the sites
that exceeded the standard on a map by using the geoscatter function. The sites that exceeded the
standard in 1987 are marked in yellow. (Here, moving3yearAvg{1,:} accesses the first row of the
timetable, corresponding to the year 1987.) The sites out of compliance in 1987 were typically large
cities such as Los Angeles. Due to the Clean Air Act, a similar analysis using the latest data for the
years 2015–2019 would show no sites out of compliance with the NO2 standard.

 Grouped Calculations in Tables and Timetables

9-111

geoscatter(moving3yearAvg.Properties.CustomProperties.Latitude,...
 moving3yearAvg.Properties.CustomProperties.Longitude,...
 moving3yearAvg{1,:},moving3yearAvg{1,:}>100,'filled')

Group by Time Periods

Another way to group by time is by using periodic time units to look for things like seasonality or
daily cycles. For example, consider the average daily pattern of NO2 concentrations at each site. It is
likely that fossil fuel combustion emissions from human activity and atmospheric photochemistry
driven by the sun contribute to a daily cycle in NO2 concentrations. You cannot calculate the mean
daily cycle using retime. One approach is to use the varfun function by adding a grouping variable
based on the time of day of each timestamp. The timeofday function returns the time of day, or
length of time since midnight, as a duration. This code sample shows the approach by using varfun.

NO2bySite.Hour = timeofday(NO2bySite.Timestamp);
NO2bySite.Hour.Format = "hh:mm";
meanDailyCycleNO2 = varfun(@mean,NO2bySite,"GroupingVariable","Hour")

For common calendar periods such as hour of day or month of year, there is a simpler method. These
common calendar periods are options of the groupsummary function. Call groupsummary with the
"hourofday" option.

meanDailyCycleNO2 = groupsummary(NO2bySite,"Timestamp","hourofday","mean")

meanDailyCycleNO2=24×444 table
 hourofday_Timestamp GroupCount mean_Alaska_KenaiPeninsula_1004 mean_Arizona_Apache_10 mean_Arizona_Apache_11 mean_Arizona_Apache_7 mean_Arizona_Apache_8 mean_Arizona_Apache_9 mean_Arizona_Maricopa_3002 mean_Arizona_Maricopa_3003 mean_Arizona_Pima_1011 mean_Arizona_Pima_19 mean_Arizona_Pima_2 mean_Arkansas_Pulaski_1002 mean_California_Alameda_1001 mean_California_Alameda_3 mean_California_Butte_2 mean_California_ContraCosta_1002 mean_California_ContraCosta_2 mean_California_ContraCosta_3 mean_California_ContraCosta_3001 mean_California_ElDorado_9 mean_California_Fresno_241 mean_California_Fresno_242 mean_California_Fresno_5 mean_California_Fresno_6 mean_California_Fresno_7 mean_California_Kern_232 mean_California_Kern_4 mean_California_Kern_5001 mean_California_Kern_6 mean_California_Kern_6001 mean_California_Kern_7 mean_California_LosAngeles_1002 mean_California_LosAngeles_1103 mean_California_LosAngeles_1105 mean_California_LosAngeles_113 mean_California_LosAngeles_1201 mean_California_LosAngeles_1301 mean_California_LosAngeles_16 mean_California_LosAngeles_1601 mean_California_LosAngeles_1701 mean_California_LosAngeles_2 mean_California_LosAngeles_2005 mean_California_LosAngeles_2401 mean_California_LosAngeles_4002 mean_California_LosAngeles_4101 mean_California_LosAngeles_5001 mean_California_LosAngeles_6002 mean_California_LosAngeles_7001 mean_California_LosAngeles_8001 mean_California_Marin_1 mean_California_Mendocino_7 mean_California_Monterey_1002 mean_California_Napa_3 mean_California_Orange_1 mean_California_Orange_1002 mean_California_Orange_5001 mean_California_Plumas_1001 mean_California_Riverside_5001 mean_California_Riverside_6001 mean_California_Riverside_8001 mean_California_Sacramento_1 mean_California_Sacramento_10 mean_California_Sacramento_1001 mean_California_Sacramento_2 mean_California_Sacramento_5002 mean_California_Sacramento_6 mean_California_SanBernardino_1 mean_California_SanBernardino_1004 mean_California_SanBernardino_12 mean_California_SanBernardino_2002 mean_California_SanBernardino_3 mean_California_SanBernardino_4001 mean_California_SanBernardino_6 mean_California_SanBernardino_7002 mean_California_SanBernardino_9004 mean_California_SanDiego_1 mean_California_SanDiego_1002 mean_California_SanDiego_1004 mean_California_SanDiego_1006 mean_California_SanDiego_1007 mean_California_SanDiego_3 mean_California_SanDiego_5 mean_California_SanDiego_6 mean_California_SanFrancisco_4 mean_California_SanFrancisco_5 mean_California_SanJoaquin_1002 mean_California_SanLuisObispo_1004 mean_California_SanLuisObispo_2001 mean_California_SanLuisObispo_2002 mean_California_SanLuisObispo_4001 mean_California_SanMateo_1001 mean_California_SantaBarbara_10 mean_California_SantaBarbara_1010 mean_California_SantaBarbara_1011 mean_California_SantaBarbara_1012 mean_California_SantaBarbara_1013 mean_California_SantaBarbara_1014 mean_California_SantaBarbara_1015 mean_California_SantaBarbara_1016 mean_California_SantaBarbara_1017 mean_California_SantaBarbara_1018 mean_California_SantaBarbara_1019 mean_California_SantaBarbara_1020 mean_California_SantaBarbara_1021 mean_California_SantaBarbara_1025 mean_California_SantaBarbara_1026 mean_California_SantaBarbara_1027 mean_California_SantaBarbara_1030 mean_California_SantaBarbara_2002 mean_California_SantaBarbara_2004 mean_California_SantaBarbara_2005 mean_California_SantaBarbara_4002 mean_California_SantaBarbara_4003 mean_California_SantaBarbara_4004 mean_California_SantaBarbara_5001 mean_California_SantaBarbara_8 mean_California_SantaBarbara_9 mean_California_SantaClara_2004 mean_California_SantaCruz_3 mean_California_Shasta_1001 mean_California_Shasta_6 mean_California_Solano_4 mean_California_Sonoma_3 mean_California_Stanislaus_1003 mean_California_Stanislaus_1004 mean_California_Stanislaus_5 mean_California_Tulare_2002 mean_California_Ventura_1003 mean_California_Ventura_2002 mean_California_Ventura_2003 mean_California_Ventura_3001 mean_California_Ventura_5 mean_California_Ventura_6 mean_California_Ventura_7001 mean_Colorado_Adams_3001 mean_Colorado_Arapahoe_1002 mean_Colorado_Arapahoe_3 mean_Colorado_Denver_2 mean_Colorado_ElPaso_4 mean_Colorado_ElPaso_6001 mean_Colorado_ElPaso_6003 mean_Colorado_ElPaso_6004 mean_Colorado_ElPaso_6005 mean_Colorado_ElPaso_6006 mean_Colorado_ElPaso_6009 mean_Colorado_ElPaso_6011 mean_Colorado_ElPaso_6013 mean_Connecticut_Fairfield_113 mean_Connecticut_Fairfield_123 mean_Connecticut_Hartford_1003 mean_Connecticut_NewHaven_1123 mean_Delaware_NewCastle_2002 mean_Delaware_NewCastle_3001 mean_DistrictOfColumbia_DistrictofColumbia_17 mean_DistrictOfColumbia_DistrictofColumbia_25 mean_Florida_Duval_32 mean_Florida_Duval_70 mean_Florida_Hillsborough_1052 mean_Florida_Hillsborough_1055 mean_Florida_Miami_Dade_27 mean_Florida_Miami_Dade_4002 mean_Florida_Orange_2002 mean_Florida_PalmBeach_1004 mean_Florida_PalmBeach_1101 mean_Florida_Pinellas_18 mean_Georgia_DeKalb_2 mean_Georgia_Fulton_48 mean_Illinois_Cook_1002 mean_Illinois_Cook_1102 mean_Illinois_Cook_1601 mean_Illinois_Cook_3101 mean_Illinois_Cook_3102 mean_Illinois_Cook_3601 mean_Illinois_Cook_37 mean_Illinois_Cook_39 mean_Illinois_Cook_40 mean_Illinois_Cook_4002 mean_Illinois_Cook_4003 mean_Illinois_Cook_4004 mean_Illinois_Cook_4005 mean_Illinois_Cook_45 mean_Illinois_Cook_53 mean_Illinois_Cook_63 mean_Illinois_DuPage_1003 mean_Illinois_SaintClair_10 mean_Indiana_Allen_6 mean_Indiana_Clark_3 mean_Indiana_Jasper_2 mean_Indiana_Jasper_3 mean_Indiana_Jefferson_1 mean_Indiana_Knox_4 mean_Indiana_Lake_1016 mean_Indiana_Marion_30 mean_Indiana_Marion_57 mean_Indiana_Marion_65 mean_Indiana_Marion_70 mean_Indiana_Porter_15 mean_Indiana_Porter_16 mean_Indiana_Posey_1 mean_Indiana_Posey_1002 mean_Indiana_Posey_2 mean_Indiana_Spencer_2 mean_Indiana_Spencer_6 mean_Indiana_Sullivan_1 mean_Indiana_Tippecanoe_1001 mean_Indiana_Vanderburgh_1001 mean_Indiana_Vanderburgh_1002 mean_Indiana_Vigo_1012 mean_Kansas_Wyandotte_1 mean_Kentucky_Boone_7 mean_Kentucky_Boyd_10 mean_Kentucky_Campbell_1001 mean_Kentucky_Daviess_5 mean_Kentucky_Fayette_12 mean_Kentucky_Henderson_13 mean_Kentucky_Jefferson_1020 mean_Kentucky_McCracken_1024 mean_Kentucky_Trigg_1 mean_Louisiana_Calcasieu_100 mean_Louisiana_EastBatonRouge_4 mean_Louisiana_Jefferson_1001 mean_Louisiana_Orleans_12 mean_Louisiana_WestBatonRouge_1 mean_Maryland_AnneArundel_19 mean_Maryland_BaltimoreCity_40 mean_Maryland_Baltimore_10 mean_Maryland_Baltimore_3001 mean_Massachusetts_Bristol_1004 mean_Massachusetts_Essex_5 mean_Massachusetts_Hampden_15 mean_Massachusetts_Hampden_16 mean_Massachusetts_Hampden_17 mean_Massachusetts_Hampshire_4002 mean_Massachusetts_Norfolk_8 mean_Massachusetts_Norfolk_9 mean_Massachusetts_Suffolk_1003 mean_Massachusetts_Suffolk_2 mean_Massachusetts_Suffolk_21 mean_Massachusetts_Suffolk_35 mean_Massachusetts_Suffolk_36 mean_Massachusetts_Suffolk_37 mean_Massachusetts_Worcester_20 mean_Michigan_Dickinson_901 mean_Michigan_Dickinson_902 mean_Michigan_Kent_20 mean_Michigan_Midland_940 mean_Michigan_Midland_941 mean_Michigan_Oakland_902 mean_Michigan_Wayne_16 mean_Michigan_Wayne_19 mean_Michigan_Wayne_29 mean_Minnesota_Carlton_6316 mean_Minnesota_Hennepin_50 mean_Minnesota_Hennepin_953 mean_Minnesota_Ramsey_1 mean_Minnesota_Ramsey_3 mean_Minnesota_Ramsey_864 mean_Minnesota_Wright_7 mean_Missouri_Atchison_1 mean_Missouri_Atchison_2 mean_Missouri_Clay_25 mean_Missouri_Clay_5 mean_Missouri_Greene_14 mean_Missouri_Greene_36 mean_Missouri_Jackson_33 mean_Missouri_Platte_23 mean_Missouri_SaintCharles_1002 mean_Missouri_SaintLouis_1 mean_Missouri_SaintLouis_3001 mean_Missouri_SaintLouis_5001 mean_Missouri_SaintLouis_6 mean_Missouri_SaintLouis_7001 mean_Missouri_StLouisCity_72 mean_Missouri_StLouisCity_80 mean_Montana_Missoula_34 mean_Montana_Rosebud_700 mean_Montana_Rosebud_701 mean_Montana_Rosebud_702 mean_Montana_Rosebud_704 mean_Montana_Rosebud_760 mean_Montana_Rosebud_761 mean_Montana_Rosebud_762 mean_Nevada_Clark_1001 mean_Nevada_Clark_16 mean_Nevada_Clark_557 mean_Nevada_Washoe_15 mean_Nevada_Washoe_16 mean_NewHampshire_Hillsborough_16 mean_NewJersey_Bergen_1 mean_NewJersey_Camden_3 mean_NewJersey_Essex_1003 mean_NewJersey_Essex_11 mean_NewJersey_Hudson_6 mean_NewJersey_Morris_3001 mean_NewJersey_Union_4 mean_NewJersey_Union_5001 mean_NewMexico_Bernalillo_15 mean_NewMexico_Bernalillo_23 mean_NewMexico_Catron_1 mean_NewMexico_Eddy_3 mean_NewMexico_SanJuan_14 mean_NewYork_Bronx_74 mean_NewYork_Erie_2 mean_NewYork_Erie_5 mean_NewYork_Essex_5 mean_NewYork_Nassau_5 mean_NewYork_NewYork_10 mean_NewYork_NewYork_56 mean_NewYork_NewYork_63 mean_NorthCarolina_Forsyth_22 mean_NorthCarolina_Forsyth_7 mean_NorthCarolina_Mecklenburg_34 mean_NorthCarolina_Wake_14 mean_NorthDakota_Burke_1 mean_NorthDakota_Dunn_3 mean_NorthDakota_Mercer_1 mean_NorthDakota_Mercer_101 mean_NorthDakota_Mercer_102 mean_NorthDakota_Mercer_103 mean_NorthDakota_Mercer_104 mean_NorthDakota_Oliver_101 mean_NorthDakota_Oliver_2 mean_Ohio_Cuyahoga_2003 mean_Ohio_Cuyahoga_33 mean_Ohio_Cuyahoga_43 mean_Ohio_Franklin_4 mean_Ohio_Hamilton_1013 mean_Ohio_Hamilton_35 mean_Ohio_Hamilton_4002 mean_Ohio_Jefferson_1012 mean_Ohio_Montgomery_29 mean_Ohio_Pickaway_1 mean_Ohio_Pickaway_1001 mean_Ohio_Stark_16 mean_Oklahoma_Cleveland_44 mean_Oklahoma_Cleveland_49 mean_Oklahoma_Kay_600 mean_Oklahoma_Muskogee_167 mean_Oklahoma_Oklahoma_1037 mean_Oklahoma_Oklahoma_33 mean_Oklahoma_Tulsa_127 mean_Oklahoma_Tulsa_174 mean_Oklahoma_Tulsa_191 mean_Oregon_Multnomah_80 mean_Pennsylvania_Allegheny_3 mean_Pennsylvania_Allegheny_31 mean_Pennsylvania_Allegheny_8 mean_Pennsylvania_Beaver_14 mean_Pennsylvania_Berks_9 mean_Pennsylvania_Blair_801 mean_Pennsylvania_Bucks_12 mean_Pennsylvania_Cambria_11 mean_Pennsylvania_Dauphin_401 mean_Pennsylvania_Delaware_2 mean_Pennsylvania_Erie_10 mean_Pennsylvania_Erie_3 mean_Pennsylvania_Lackawanna_2006 mean_Pennsylvania_Lancaster_7 mean_Pennsylvania_Lawrence_15 mean_Pennsylvania_Lehigh_4 mean_Pennsylvania_Luzerne_1101 mean_Pennsylvania_Montgomery_13 mean_Pennsylvania_Northampton_17 mean_Pennsylvania_Perry_301 mean_Pennsylvania_Philadelphia_22 mean_Pennsylvania_Philadelphia_23 mean_Pennsylvania_Philadelphia_29 mean_Pennsylvania_Philadelphia_4 mean_Pennsylvania_Philadelphia_47 mean_Pennsylvania_Washington_200 mean_Pennsylvania_Washington_5 mean_Pennsylvania_York_8 mean_RhodeIsland_Providence_12 mean_RhodeIsland_Providence_19 mean_SouthCarolina_Aiken_3 mean_SouthCarolina_Barnwell_1 mean_SouthCarolina_Lexington_5 mean_SouthCarolina_Richland_1006 mean_Tennessee_Bradley_102 mean_Tennessee_Davidson_10 mean_Tennessee_Davidson_11 mean_Tennessee_Giles_1 mean_Tennessee_Maury_106 mean_Tennessee_McMinn_101 mean_Tennessee_Rutherford_101 mean_Tennessee_Shelby_24 mean_Tennessee_Sullivan_7 mean_Tennessee_Sullivan_9 mean_Tennessee_Williamson_103 mean_Texas_Bexar_36 mean_Texas_Brazoria_1003 mean_Texas_Dallas_44 mean_Texas_Dallas_45 mean_Texas_Dallas_55 mean_Texas_Dallas_69 mean_Texas_ElPaso_27 mean_Texas_ElPaso_37 mean_Texas_Galveston_1002 mean_Texas_Gregg_1 mean_Texas_Harris_1034 mean_Texas_Harris_1035 mean_Texas_Harris_1037 mean_Texas_Harris_24 mean_Texas_Harris_26 mean_Texas_Harris_47 mean_Texas_Harris_7001 mean_Texas_Jefferson_9 mean_Texas_Orange_1001 mean_Texas_Tarrant_1002 mean_Texas_Tarrant_1003 mean_Texas_Travis_17 mean_Utah_Davis_1 mean_Utah_SaltLake_3001 mean_Utah_Utah_2 mean_Utah_Weber_1 mean_Vermont_Chittenden_3 mean_Vermont_Rutland_2 mean_Virginia_AlexandriaCity_9 mean_Virginia_Arlington_20 mean_Virginia_FairfaxCity_5 mean_Virginia_Fairfax_1004 mean_Virginia_Fairfax_18 mean_Virginia_Fairfax_5001 mean_Virginia_Henrico_14 mean_Virginia_NorfolkCity_23 mean_Virginia_RichmondCity_21 mean_Virginia_Roanoke_1004 mean_Virginia_VirginiaBeachCity_7 mean_Washington_King_80 mean_Washington_King_82 mean_WestVirginia_Cabell_6 mean_WestVirginia_Greenbrier_1 mean_WestVirginia_Hancock_1004 mean_WestVirginia_Kanawha_4 mean_WestVirginia_Ohio_7 mean_Wisconsin_Columbia_8 mean_Wisconsin_Kenosha_1001 mean_Wisconsin_Kenosha_16 mean_Wisconsin_Milwaukee_41 mean_Wisconsin_Milwaukee_80 mean_Wisconsin_Rock_1002 mean_Wisconsin_Rock_1004
 ___________________ __________ _______________________________ ______________________ ______________________ _____________________ _____________________ _____________________ __________________________ __________________________ ______________________ ____________________ ___________________ __________________________ ____________________________ _________________________ _______________________ ________________________________ _____________________________ _____________________________ ________________________________ __________________________ __________________________ __________________________ ________________________ ________________________ ________________________ ________________________ ______________________ _________________________ ______________________ _________________________ ______________________ _______________________________ _______________________________ _______________________________ ______________________________ _______________________________ _______________________________ _____________________________ _______________________________ _______________________________ ____________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ _______________________ ___________________________ _____________________________ ______________________ ________________________ ___________________________ ___________________________ ___________________________ ______________________________ ______________________________ ______________________________ ____________________________ _____________________________ _______________________________ ____________________________ _______________________________ ____________________________ _______________________________ __________________________________ ________________________________ __________________________________ _______________________________ __________________________________ _______________________________ __________________________________ __________________________________ __________________________ _____________________________ _____________________________ _____________________________ _____________________________ __________________________ __________________________ __________________________ ______________________________ ______________________________ _______________________________ __________________________________ __________________________________ __________________________________ __________________________________ _____________________________ _______________________________ ______________________________ ______________________________ _______________________________ ___________________________ ___________________________ ________________________ ________________________ ________________________ _______________________________ _______________________________ ____________________________ ___________________________ ____________________________ ____________________________ ____________________________ ____________________________ _________________________ _________________________ ____________________________ ________________________ ___________________________ ________________________ ______________________ ______________________ _________________________ _________________________ _________________________ _________________________ _________________________ _________________________ _________________________ _________________________ ______________________________ ______________________________ ______________________________ ______________________________ ____________________________ ____________________________ ___ ___ _____________________ _____________________ ______________________________ ______________________________ __________________________ ____________________________ ________________________ ___________________________ ___________________________ ________________________ _____________________ ______________________ _______________________ _______________________ _______________________ _______________________ _______________________ _______________________ _____________________ _____________________ _____________________ _______________________ _______________________ _______________________ _______________________ _____________________ _____________________ _____________________ _________________________ ___________________________ ____________________ ____________________ _____________________ _____________________ ________________________ ___________________ ______________________ ______________________ ______________________ ______________________ ______________________ ______________________ ______________________ ____________________ _______________________ ____________________ ______________________ ______________________ _______________________ ____________________________ _____________________________ _____________________________ ______________________ _______________________ _____________________ _____________________ ___________________________ _______________________ ________________________ __________________________ ____________________________ ____________________________ _____________________ ____________________________ _______________________________ _____________________________ _________________________ _______________________________ ____________________________ ______________________________ __________________________ ____________________________ _______________________________ __________________________ _____________________________ _____________________________ _____________________________ _________________________________ ____________________________ ____________________________ _______________________________ ____________________________ _____________________________ _____________________________ _____________________________ _____________________________ _______________________________ ___________________________ ___________________________ _____________________ _________________________ _________________________ _________________________ ______________________ ______________________ ______________________ ___________________________ __________________________ ___________________________ _______________________ _______________________ _________________________ _______________________ ________________________ ________________________ _____________________ ____________________ _______________________ _______________________ ________________________ _______________________ _______________________________ __________________________ _____________________________ _____________________________ __________________________ _____________________________ ____________________________ ____________________________ ________________________ ________________________ ________________________ ________________________ ________________________ ________________________ ________________________ ________________________ ______________________ ____________________ _____________________ _____________________ _____________________ _________________________________ _______________________ _______________________ _________________________ _______________________ _______________________ __________________________ ______________________ _________________________ ____________________________ ____________________________ _______________________ _____________________ _________________________ _____________________ ___________________ ___________________ ____________________ _____________________ _______________________ _______________________ _______________________ _____________________________ ____________________________ _________________________________ __________________________ ________________________ _______________________ _________________________ ___________________________ ___________________________ ___________________________ ___________________________ ___________________________ _________________________ _______________________ _____________________ _____________________ ____________________ _______________________ _____________________ _______________________ ________________________ _______________________ ____________________ _______________________ __________________ __________________________ __________________________ _____________________ __________________________ ___________________________ _________________________ _______________________ _______________________ _______________________ ________________________ _____________________________ ______________________________ _____________________________ ___________________________ _________________________ ___________________________ __________________________ ____________________________ _____________________________ ____________________________ _________________________ ________________________ _________________________________ _____________________________ _____________________________ __________________________ ______________________________ _______________________________ ________________________________ ___________________________ _________________________________ _________________________________ _________________________________ ________________________________ _________________________________ ________________________________ ______________________________ ________________________ ______________________________ ______________________________ __________________________ _____________________________ ______________________________ ________________________________ __________________________ __________________________ __________________________ ______________________ ________________________ _________________________ _____________________________ ________________________ _________________________ _________________________ _____________________________ ___________________ ________________________ ____________________ ____________________ ____________________ ____________________ ____________________ ____________________ _________________________ __________________ ______________________ ______________________ ______________________ ____________________ ____________________ ____________________ ______________________ ______________________ ______________________ _______________________ _______________________ ____________________ _________________ _______________________ ________________ _________________ _________________________ ______________________ ______________________________ __________________________ ___________________________ __________________________ ________________________ __________________________ ________________________ ____________________________ _____________________________ __________________________ _________________________________ _______________________ _______________________ __________________________ ______________________________ ______________________________ ___________________________ ________________________ _________________________ ___________________________ _________________________ ___________________________ ___________________________ ________________________ ________________________

9 Tables

9-112

 0 1826 11.067 5 NaN 5.5 NaN 5.8 32.726 14.354 21.406 28.032 24.291 14.211 25.197 23.05 14.065 17.794 21.557 20.961 37.392 12.859 18.895 18.505 30.127 17.676 21.78 26.663 36.455 12.487 13.738 23.841 16.139 51.783 56.009 58.113 40.43 41.108 43.376 35.362 49.271 52.205 45.488 50.675 43.835 41.112 31.931 39.447 39.333 19.822 40.603 19.932 11.379 15.293 18.034 41.522 32.273 38.499 10.219 22.653 36.461 39.84 19.016 25.607 18.12 18.808 20.777 20.192 31.541 43.196 11.918 39.857 45.24 18.559 12.178 27.05 45.278 26.012 28.571 36.717 15.058 37.174 28.608 23.827 26.61 23.097 23.121 26.404 11.765 13.988 18.196 14.168 22.684 23.397 11.613 6.8706 7.521 6.3204 5.7838 8.6386 8.5229 11.749 7.9907 8.789 22.127 7.4138 7.8793 7.2338 8.797 7.1772 16.574 14.849 11.44 10 5.9286 7.5291 10.698 16.756 25.186 30.06 11.189 10 13.729 21.152 17.193 NaN 17.587 25.686 22.386 12.557 32.817 18.426 16.033 10.438 13.6 24 32.111 19.436 25.254 34.13 NaN 14.745 19.143 24.777 32.953 8.6858 21.343 28.167 29.845 26.061 26.552 23.204 28.863 28.954 28.074 27.881 29.858 18.426 11.783 21.97 18.506 18.302 17.395 14.248 13.894 17.03 18.542 19.07 32.172 25.919 27.348 20.137 29.261 28.087 29.35 28.644 27.535 32.97 32.305 26.011 30.004 26.923 26.591 26.643 26.686 26.006 24.952 15.164 20.391 13.09 11.805 10.934 20.888 30.979 28.444 26.321 NaN 26.191 14.774 15.3 14 25.159 13 10.077 11.376 11.034 14.754 11.212 14.368 12.105 21.279 14.28 14.613 23.721 14.263 22.191 24.028 28.99 18.132 6.6434 13.797 23.969 18.506 25.061 20.548 21.404 32.885 19.49 28.777 16.737 24.928 23.542 27.896 46.412 14.3 21.438 23.996 26.006 31.988 30.211 25.601 26.971 27.376 28.731 12.19 10.244 21.988 12.421 11.314 17.478 27.172 25.826 27.888 8.635 23.307 27.626 22.751 23.833 23.184 13.135 8.5055 11.132 19.503 14.271 9.122 17.107 29.978 15.185 16.403 24.269 21.551 23.377 19.873 24.398 34.543 24.434 15.402 11.642 11.263 8.964 9.7615 11.129 10.084 11.737 33.768 39.849 34.402 33.333 28.508 22.45 34.946 28.791 33.814 36.543 33.991 16.934 34.889 27.533 20.042 20.522 NaN 11.794 14.667 35.804 23.676 28.538 7.9273 34.319 43.353 47.154 18.779 19.395 13.542 22.454 13.806 7.7727 6.5152 8.3152 7.0698 8.8211 6.8861 9.4444 7.8742 9.2727 26.154 30.04 23.891 30.198 20.436 31.105 31.069 22.072 25.242 11.988 12.829 21.704 18.443 14.825 15.526 14.913 15.834 21.356 17.654 14.734 20.117 19.899 30.11 33.928 30.068 24.316 26.073 22.344 29.448 21.913 27.444 28.635 19.412 18.415 25.324 21.601 22.857 23.739 24.213 27.479 24.849 10.673 32.308 15.455 34.196 32.07 37.16 24.617 25.375 25.825 25.508 19.818 9.614 8.1506 9.5858 7.9039 15.955 14.828 14.896 18.539 10.455 15.422 6.4706 28.537 21.874 19.487 7.5615 16.405 16.805 25.858 19.96 18.08 27.283 22.536 24.406 15.728 11.009 21.249 26.497 26.634 19.892 16.459 24.267 16.319 15.451 14.128 21.076 22.429 17.095 20.538 38.052 29.908 33.8 15.523 14.981 29.54 25.977 23.95 25.628 24.213 26.094 18.067 21.325 25.555 18.788 20.008 18.215 28.907 18.878 8.888 21.786 27.369 19.487 11.607 31.082 28.775 21.356 25.235 15.674 15.797
 ⋮

To visualize the daily cycle for the first few sites, use stackedplot. Compare the pattern of a single
peak in remote sites in Alaska and Arizona to the morning and evening peaks during rush hour at
urban sites in Arizona and California.

meanDailyCycleNO2.GroupCount = [];
meanDailyCycleNO2.hourofday_Timestamp = hours(double(meanDailyCycleNO2.hourofday_Timestamp));
stackedplot(meanDailyCycleNO2,'XVariable','hourofday_Timestamp')

Grouped Calculations with Functions That Require Multiple Inputs

The retime, groupsummary, and varfun functions all apply functions separately to each table
variable. But sometimes you have functions that use more than one table variable as inputs. For
example, you might want to find the time or index at which some condition occurred within each
group of data values. In such cases, use the rowfun function. It enables you to apply functions that
require multiple inputs.

For example, determine when the maximum NO2 concentration occurred at each site. This
determination requires a function such as the findMax supporting function referred to in this
example. The findMax function requires both timestamps and data values as input arguments. It
returns the maximum value with the time at which the maximum value occurred.

 Grouped Calculations in Tables and Timetables

9-113

To group the data in NO2data by SiteID and find the times when the maximum NO2 concentration
occurred at each site, use rowfun. Specify that the inputs to findMax are Timestamp and
MeasuredNO2 from NO2data. Convert NO2data to a table so that rowfun returns a table.

NO2data = timetable2table(NO2data);
rowfun(@findMax,NO2data,"GroupingVariable","SiteID","InputVariables",["Timestamp","MeasuredNO2"], ...
 "OutputVariableNames",["MaxMeasuredNO2","MaxOccurrenceTime"])

ans=442×4 table
 SiteID GroupCount MaxMeasuredNO2 MaxOccurrenceTime
 ___________________________ __________ ______________ ____________________

 Alaska_KenaiPeninsula_1004 7071 194 03-Aug-1989 10:00:00
 Arizona_Apache_10 14313 32 01-Jul-1985 09:00:00
 Arizona_Apache_11 13551 33 22-Aug-1985 10:00:00
 Arizona_Apache_7 13821 25 14-Feb-1985 17:00:00
 Arizona_Apache_8 13701 14 22-Feb-1989 09:00:00
 Arizona_Apache_9 13675 25 16-Nov-1988 12:00:00
 Arizona_Maricopa_3002 5746 140 11-Jan-1985 10:00:00
 Arizona_Maricopa_3003 9904 150 08-Mar-1985 17:00:00
 Arizona_Pima_1011 35608 194 22-Jan-1987 10:00:00
 Arizona_Pima_19 10191 93 22-Nov-1989 10:00:00
 Arizona_Pima_2 12283 110 27-Jun-1985 09:00:00
 Arkansas_Pulaski_1002 40723 92 27-Jan-1988 05:00:00
 California_Alameda_1001 42863 150 06-Oct-1987 10:00:00
 California_Alameda_3 42453 140 12-Feb-1988 08:00:00
 California_Butte_2 39502 230 31-Jan-1987 19:00:00
 California_ContraCosta_1002 36327 90 12-Mar-1989 15:00:00
 ⋮

With these results you could extend your analysis to find out why the NO2 concentrations were
particularly high on those dates.

Supporting Functions

Supporting local functions are defined below.

function [maxVal,maxTime] = findMax(times,vals)
 % Return time at which maximum element of vals occurred
 [maxVal,maxIndex] = max(vals);
 if ~isnan(maxVal)
 maxTime = times(maxIndex);
 else
 maxTime = NaT;
 end
end
function y = findPrctile(x,p)
 % Return data point nearest to percentile p, without interpolation
 xs = sort(x);
 n = sum(~isnan(x)); % use non-NaN elements only
 k = p*n/100 + 0.5; % index of data point that represents 100*(i-0.5)/n th percentile
 y = xs(round(k)); % data point nearest specified p
end

See Also
categorical | table | timetable | readtable | detectImportOptions | varfun | datetime |
groupcounts | groupsummary | rowfun | retime | stackedplot

9 Tables

9-114

Related Examples
• “Access Data in Tables” on page 9-32
• “Clean Messy and Missing Data in Tables” on page 9-18
• “Add, Delete, and Rearrange Table Variables” on page 9-12
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Perform Calculations by Group in Table” on page 9-59
• “Data Cleaning and Calculations in Tables” on page 9-81

 Grouped Calculations in Tables and Timetables

9-115

Timetables

• “Create Timetables” on page 10-2
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Combine Timetables and Synchronize Their Data” on page 10-8
• “Retime and Synchronize Timetable Variables Using Different Methods” on page 10-14
• “Select Times in Timetable” on page 10-19
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Using Row Labels in Table and Timetable Operations” on page 10-36
• “Loma Prieta Earthquake Analysis” on page 10-41
• “Preprocess and Explore Time-Stamped Data Using timetable” on page 10-51
• “Add Events from External Data to Timetable” on page 10-71
• “Find Events in Timestamped Data” on page 10-83

10

Create Timetables

This example shows how to create a timetable, combine timetables, and adjust the data from multiple
timetables to a common time vector. The common time vector can contain the times from either or
both timetables, or it can be an entirely new time vector that you specify. The example shows how to
compute and display a daily mean for weather measurements contained in different timetables.

A timetable is a type of table that associates a time with each row. A timetable can store column-
oriented data variables that have different data types and sizes, so long as each variable has the same
number of rows. In addition, timetables provide time-specific functions to combine, subscript into,
and adjust their data.

Import Timetables from Files

Load air quality data and weather measurements into two different timetables. The dates of the
measurements range from November 15, 2015, to November 19, 2015. The air quality data come
from a sensor inside a building, while the weather measurements come from sensors outside.

Read the air quality data from a table with the readtimetable function. The output is a timetable.

indoors = readtimetable('indoors.csv');

You also can create a timetable from an M-by-N array with the array2timetable function, or from
workspace variables with the timetable function.

Display the first five rows of indoors. Each row of the timetable has a time that labels that row of
data.

indoors(1:5,:)

ans=5×2 timetable
 Time Humidity AirQuality
 ___________________ ________ __________

 2015-11-15 00:00:24 36 80
 2015-11-15 01:13:35 36 80
 2015-11-15 02:26:47 37 79
 2015-11-15 03:39:59 37 82
 2015-11-15 04:53:11 36 80

Load the timetable with weather measurements. Display the first five rows of outdoors.

load outdoors
outdoors(1:5,:)

ans=5×3 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:24 49 51.3 29.61
 2015-11-15 01:30:24 48.9 51.5 29.61
 2015-11-15 03:00:24 48.9 51.5 29.61
 2015-11-15 04:30:24 48.8 51.5 29.61
 2015-11-15 06:00:24 48.7 51.5 29.6

10 Timetables

10-2

Synchronize Timetables

The timetables, indoors and outdoors, contain different measurements taken inside and outside a
building at different times. Combine all the data into one timetable with the synchronize function.

tt = synchronize(indoors,outdoors);
tt(1:5,:)

ans=5×5 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:24 36 80 49 51.3 29.61
 2015-11-15 01:13:35 36 80 NaN NaN NaN
 2015-11-15 01:30:24 NaN NaN 48.9 51.5 29.61
 2015-11-15 02:26:47 37 79 NaN NaN NaN
 2015-11-15 03:00:24 NaN NaN 48.9 51.5 29.61

The output timetable, tt contains all the times from both timetables. synchronize puts a missing
data indicator where there are no data values to place in tt. When both input timetables have a
variable with the same name, such as Humidity, synchronize renames both variables and adds
both to the output timetable.

Synchronize the timetables again, and this time fill in missing data values with linear interpolation.

ttLinear = synchronize(indoors,outdoors,'union','linear');
ttLinear(1:5,:)

ans=5×5 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:24 36 80 49 51.3 29.61
 2015-11-15 01:13:35 36 80 48.919 51.463 29.61
 2015-11-15 01:30:24 36.23 79.77 48.9 51.5 29.61
 2015-11-15 02:26:47 37 79 48.9 51.5 29.61
 2015-11-15 03:00:24 37 80.378 48.9 51.5 29.61

Adjust Data in One Timetable

You also can adjust the data in a single timetable to a new time vector. Calculate the means of the
variables in ttLinear over six-hour intervals with the retime function. If any rows have NaN values
after you adjust the data, remove them with the rmmissing function.

tv = [datetime(2015,11,15):hours(6):datetime(2015,11,18)];
ttHourly = retime(ttLinear,tv,'mean');
ttHourly = rmmissing(ttHourly);

Plot Timetable Data

Normalize the data in ttHourly to the mean for each variable in the timetable. Plot the mean daily
values of these measurements. You can use the Variables property of a timetable to access the
variables. ttHourly.Variables returns the same variables as ttHourly{:,:}.

ttMeanVars = ttHourly.Variables./mean(ttHourly.Variables);
plot(ttHourly.Time,ttMeanVars);

 Create Timetables

10-3

legend(ttHourly.Properties.VariableNames,'Interpreter','none');
xlabel('Time');
ylabel('Normalized Weather Measurements');
title('Mean Daily Weather Trends');

See Also
timetable | table2timetable | synchronize | retime | timerange | rmmissing

Related Examples
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Combine Timetables and Synchronize Their Data” on page 10-8
• “Retime and Synchronize Timetable Variables Using Different Methods” on page 10-14
• “Select Times in Timetable” on page 10-19
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99

10 Timetables

10-4

Resample and Aggregate Data in Timetable

This example shows how to resample and aggregate data in a timetable. A timetable is a type of table
that associates a time with each row. A timetable can store column-oriented data variables that have
different data types and sizes, provided that each variable has the same number of rows. With the
retime function, you can resample timetable data, or aggregate timetable data into time bins you
specify.

Import Timetable

Load a timetable containing weather measurements taken from November 15, 2015, to November 19,
2015. The timetable contains humidity, temperature, and pressure readings taken over this time
period.

load outdoors
outdoors(1:5,:)

ans=5×3 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:24 49 51.3 29.61
 2015-11-15 01:30:24 48.9 51.5 29.61
 2015-11-15 03:00:24 48.9 51.5 29.61
 2015-11-15 04:30:24 48.8 51.5 29.61
 2015-11-15 06:00:24 48.7 51.5 29.6

Determine if the timetable is regular. A regular timetable is one in which the differences between all
consecutive row times are the same. outdoors is not a regular timetable.

TF = isregular(outdoors)

TF = logical
 0

Find the differences in the time steps. They vary between half a minute and an hour and a half.

dt = unique(diff(outdoors.Time))

dt = 3x1 duration
 00:00:24
 01:29:36
 01:30:00

Resample Timetable with Interpolation

Adjust the data in the timetable with the retime function. Specify an hourly time vector. Interpolate
the timetable data to the new row times.

TT = retime(outdoors,'hourly','spline');
TT(1:5,:)

ans=5×3 timetable
 Time Humidity TemperatureF PressureHg

 Resample and Aggregate Data in Timetable

10-5

 ___________________ ________ ____________ __________

 2015-11-15 00:00:00 49.001 51.298 29.61
 2015-11-15 01:00:00 48.909 51.467 29.61
 2015-11-15 02:00:00 48.902 51.51 29.61
 2015-11-15 03:00:00 48.9 51.5 29.61
 2015-11-15 04:00:00 48.844 51.498 29.611

Resample Timetable with Nearest Neighbor Values

Specify an hourly time vector for TT. For each row in TT, copy values from the corresponding row in
outdoors whose row time is nearest.

TT = retime(outdoors,'hourly','nearest');
TT(1:5,:)

ans=5×3 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:00 49 51.3 29.61
 2015-11-15 01:00:00 48.9 51.5 29.61
 2015-11-15 02:00:00 48.9 51.5 29.61
 2015-11-15 03:00:00 48.9 51.5 29.61
 2015-11-15 04:00:00 48.8 51.5 29.61

Aggregate Timetable Data and Calculate Daily Mean

The retime function provides aggregation methods, such as mean. Calculate the daily means for the
data in outdoors.

TT = retime(outdoors,'daily','mean');
TT

TT=4×3 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:00 48.931 51.394 29.607
 2015-11-16 00:00:00 47.924 51.571 29.611
 2015-11-17 00:00:00 48.45 51.238 29.613
 2015-11-18 00:00:00 49.5 50.8 29.61

Adjust Timetable Data to Regular Times

Calculate the means over six-hour time intervals. Specify a regular time step using the 'regular'
input argument and the 'TimeStep' name-value pair argument.

TT = retime(outdoors,'regular','mean','TimeStep',hours(6));
TT(1:5,:)

ans=5×3 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:00 48.9 51.45 29.61

10 Timetables

10-6

 2015-11-15 06:00:00 48.9 51.45 29.6
 2015-11-15 12:00:00 49.025 51.45 29.61
 2015-11-15 18:00:00 48.9 51.225 29.607
 2015-11-16 00:00:00 48.5 51.4 29.61

As an alternative, you can specify a time vector that has the same six-hour time intervals. Specify a
format for the time vector to display both date and time when you display the timetable.

tv = datetime(2015,11,15):hours(6):datetime(2015,11,18);
tv.Format = 'dd-MMM-yyyy HH:mm:ss';
TT = retime(outdoors,tv,'mean');
TT(1:5,:)

ans=5×3 timetable
 Time Humidity TemperatureF PressureHg
 ____________________ ________ ____________ __________

 15-Nov-2015 00:00:00 48.9 51.45 29.61
 15-Nov-2015 06:00:00 48.9 51.45 29.6
 15-Nov-2015 12:00:00 49.025 51.45 29.61
 15-Nov-2015 18:00:00 48.9 51.225 29.607
 16-Nov-2015 00:00:00 48.5 51.4 29.61

See Also
timetable | table2timetable | synchronize | retime

Related Examples
• “Combine Timetables and Synchronize Their Data” on page 10-8
• “Retime and Synchronize Timetable Variables Using Different Methods” on page 10-14
• “Select Times in Timetable” on page 10-19
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Grouped Calculations in Tables and Timetables” on page 9-99
• “Add Events from External Data to Timetable” on page 10-71
• “Find Events in Timestamped Data” on page 10-83

 Resample and Aggregate Data in Timetable

10-7

Combine Timetables and Synchronize Their Data

You can combine timetables and synchronize their data in a variety of ways. You can concatenate
timetables vertically or horizontally, but only when they contain the same row times or timetable
variables. Use the synchronize function to combine timetables with different row times and
timetable variables. synchronize creates a timetable that contains all variables from all input
timetables. It then synchronizes the data from the input timetables to the row times of the output
timetable. synchronize can fill in missing elements of the output timetable with missing data
indicators, with values copied from their nearest neighbors, or with interpolated values.
synchronize also can aggregate timetable data over time bins you specify.

Concatenate Timetables Vertically

Load timetables from openPricesSmall and concatenate them vertically. The timetables are
opWeek1 and opWeek2. They contain opening prices for some stocks during the first and second
weeks of January 2016.

load openPricesSmall

Display the two timetables.

opWeek1

opWeek1=5×2 timetable
 Time AAPL FB
 ____________________ ______ ______

 08-Jan-2016 09:00:00 98.55 99.88
 07-Jan-2016 09:00:00 98.68 100.5
 06-Jan-2016 09:00:00 100.56 101.13
 05-Jan-2016 09:00:00 105.75 102.89
 04-Jan-2016 09:00:00 102.61 101.95

opWeek2

opWeek2=5×2 timetable
 Time AAPL FB
 ____________________ ______ ______

 14-Jan-2016 09:00:00 97.96 95.85
 13-Jan-2016 09:00:00 100.32 100.58
 12-Jan-2016 09:00:00 100.55 99
 11-Jan-2016 09:00:00 98.97 97.91
 08-Jan-2016 09:00:00 98.55 99.88

Concatenate the timetables. You can concatenate timetables vertically when they have the same
variables. The row times label the rows and are not contained in a timetable variable. Note that the
row times of a timetable can be out of order and do not need to be regularly spaced. For example, op
does not include days that fall on weekends. A timetable also can contain duplicate times. op contains
two rows for 08-Jan-2016 09:00:00.

op = [opWeek2;opWeek1]

op=10×2 timetable
 Time AAPL FB

10 Timetables

10-8

 ____________________ ______ ______

 14-Jan-2016 09:00:00 97.96 95.85
 13-Jan-2016 09:00:00 100.32 100.58
 12-Jan-2016 09:00:00 100.55 99
 11-Jan-2016 09:00:00 98.97 97.91
 08-Jan-2016 09:00:00 98.55 99.88
 08-Jan-2016 09:00:00 98.55 99.88
 07-Jan-2016 09:00:00 98.68 100.5
 06-Jan-2016 09:00:00 100.56 101.13
 05-Jan-2016 09:00:00 105.75 102.89
 04-Jan-2016 09:00:00 102.61 101.95

Concatenate Timetables Horizontally

You also can concatenate timetables horizontally. The timetables must have the same row times and
different variables.

Display the timetable opOtherStocks. The timetable has the same row times as opWeek1, but
variables for different stocks.

opOtherStocks

opOtherStocks=5×2 timetable
 Time MSFT TWTR
 ____________________ _____ _____

 08-Jan-2016 09:00:00 52.37 20.51
 07-Jan-2016 09:00:00 52.7 21
 06-Jan-2016 09:00:00 54.32 21.62
 05-Jan-2016 09:00:00 54.93 22.79
 04-Jan-2016 09:00:00 54.32 22.64

Concatenate opWeek1 and opOtherStock. The output timetable has one set of row times and the
variables from both timetables.

op = [opWeek1 opOtherStocks]

op=5×4 timetable
 Time AAPL FB MSFT TWTR
 ____________________ ______ ______ _____ _____

 08-Jan-2016 09:00:00 98.55 99.88 52.37 20.51
 07-Jan-2016 09:00:00 98.68 100.5 52.7 21
 06-Jan-2016 09:00:00 100.56 101.13 54.32 21.62
 05-Jan-2016 09:00:00 105.75 102.89 54.93 22.79
 04-Jan-2016 09:00:00 102.61 101.95 54.32 22.64

Synchronize Timetables and Indicate Missing Data

Load air quality data and weather measurements from two different timetables and synchronize
them. The dates of the measurements range from November 15, 2015, to November 19, 2015. The air
quality data come from a sensor inside a building, while the weather measurements come from
sensors outside.

 Combine Timetables and Synchronize Their Data

10-9

load indoors
load outdoors

Display the first five lines of each timetable. They contain measurements of different quantities taken
at different times.

indoors(1:5,:)

ans=5×2 timetable
 Time Humidity AirQuality
 ___________________ ________ __________

 2015-11-15 00:00:24 36 80
 2015-11-15 01:13:35 36 80
 2015-11-15 02:26:47 37 79
 2015-11-15 03:39:59 37 82
 2015-11-15 04:53:11 36 80

outdoors(1:5,:)

ans=5×3 timetable
 Time Humidity TemperatureF PressureHg
 ___________________ ________ ____________ __________

 2015-11-15 00:00:24 49 51.3 29.61
 2015-11-15 01:30:24 48.9 51.5 29.61
 2015-11-15 03:00:24 48.9 51.5 29.61
 2015-11-15 04:30:24 48.8 51.5 29.61
 2015-11-15 06:00:24 48.7 51.5 29.6

Synchronize the timetables. The output timetable tt contains all the times from both timetables.
synchronize puts a missing data indicator where there are no data values to place in tt. When both
input timetables have a variable with the same name, such as Humidity, synchronize renames
both variables and adds both to the output timetable.

tt = synchronize(indoors,outdoors);
tt(1:5,:)

ans=5×5 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:24 36 80 49 51.3 29.61
 2015-11-15 01:13:35 36 80 NaN NaN NaN
 2015-11-15 01:30:24 NaN NaN 48.9 51.5 29.61
 2015-11-15 02:26:47 37 79 NaN NaN NaN
 2015-11-15 03:00:24 NaN NaN 48.9 51.5 29.61

Synchronize and Interpolate Data Values

Synchronize the timetables, and fill in missing timetable elements with linear interpolation. To
synchronize on a time vector that includes all times from both timetables, specify 'union' for the
output times.

ttLinear = synchronize(indoors,outdoors,'union','linear');
ttLinear(1:5,:)

10 Timetables

10-10

ans=5×5 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:24 36 80 49 51.3 29.61
 2015-11-15 01:13:35 36 80 48.919 51.463 29.61
 2015-11-15 01:30:24 36.23 79.77 48.9 51.5 29.61
 2015-11-15 02:26:47 37 79 48.9 51.5 29.61
 2015-11-15 03:00:24 37 80.378 48.9 51.5 29.61

Synchronize to Regular Times

Synchronize the timetables to an hourly time vector. The input timetables had irregular row times.
The output timetable has regular row times with one hour as the time step.

ttHourly = synchronize(indoors,outdoors,'hourly','linear');
ttHourly(1:5,:)

ans=5×5 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:00 36 80 49 51.299 29.61
 2015-11-15 01:00:00 36 80 48.934 51.432 29.61
 2015-11-15 02:00:00 36.634 79.366 48.9 51.5 29.61
 2015-11-15 03:00:00 37 80.361 48.9 51.5 29.61
 2015-11-15 04:00:00 36.727 81.453 48.834 51.5 29.61

Synchronize the timetables to a 30-minute time step. Specify a regular time step using the
'regular' input argument and the 'TimeStep' name-value pair argument.

ttHalfHour = synchronize(indoors,outdoors,'regular','linear','TimeStep',minutes(30));
ttHalfHour(1:5,:)

ans=5×5 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:00 36 80 49 51.299 29.61
 2015-11-15 00:30:00 36 80 48.967 51.366 29.61
 2015-11-15 01:00:00 36 80 48.934 51.432 29.61
 2015-11-15 01:30:00 36.224 79.776 48.9 51.499 29.61
 2015-11-15 02:00:00 36.634 79.366 48.9 51.5 29.61

As an alternative, you can synchronize the timetables to a time vector that specifies half-hour
intervals.

tv = [datetime(2015,11,15):minutes(30):datetime(2015,11,18)];
tv.Format = indoors.Time.Format;
ttHalfHour = synchronize(indoors,outdoors,tv,'linear');
ttHalfHour(1:5,:)

ans=5×5 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 Combine Timetables and Synchronize Their Data

10-11

 2015-11-15 00:00:00 36 80 49 51.299 29.61
 2015-11-15 00:30:00 36 80 48.967 51.366 29.61
 2015-11-15 01:00:00 36 80 48.934 51.432 29.61
 2015-11-15 01:30:00 36.224 79.776 48.9 51.499 29.61
 2015-11-15 02:00:00 36.634 79.366 48.9 51.5 29.61

Synchronize and Aggregate Data Values

Synchronize the timetables and calculate the daily means for all variables in the output timetable.

ttDaily = synchronize(indoors,outdoors,'daily','mean');
ttDaily

ttDaily=4×5 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:00 36.5 80.05 48.931 51.394 29.607
 2015-11-16 00:00:00 36.85 80.35 47.924 51.571 29.611
 2015-11-17 00:00:00 36.85 79.45 48.45 51.238 29.613
 2015-11-18 00:00:00 NaN NaN 49.5 50.8 29.61

Synchronize the timetables to six-hour time intervals and calculate a mean for each interval.

tt6Hours = synchronize(indoors,outdoors,'regular','mean','TimeStep',hours(6));
tt6Hours(1:5,:)

ans=5×5 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:00 36.4 80.2 48.9 51.45 29.61
 2015-11-15 06:00:00 36.4 79.8 48.9 51.45 29.6
 2015-11-15 12:00:00 36.6 80.4 49.025 51.45 29.61
 2015-11-15 18:00:00 36.6 79.8 48.9 51.225 29.607
 2015-11-16 00:00:00 36.6 80.2 48.5 51.4 29.61

As an alternative, specify a time vector that has the same six-hour time intervals.

tv = [datetime(2015,11,15):hours(6):datetime(2015,11,18)];
tv.Format = indoors.Time.Format;
tt6Hours = synchronize(indoors,outdoors,tv,'mean');
tt6Hours(1:5,:)

ans=5×5 timetable
 Time Humidity_indoors AirQuality Humidity_outdoors TemperatureF PressureHg
 ___________________ ________________ __________ _________________ ____________ __________

 2015-11-15 00:00:00 36.4 80.2 48.9 51.45 29.61
 2015-11-15 06:00:00 36.4 79.8 48.9 51.45 29.6
 2015-11-15 12:00:00 36.6 80.4 49.025 51.45 29.61
 2015-11-15 18:00:00 36.6 79.8 48.9 51.225 29.607

10 Timetables

10-12

 2015-11-16 00:00:00 36.6 80.2 48.5 51.4 29.61

See Also
timetable | table2timetable | synchronize | retime

Related Examples
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Retime and Synchronize Timetable Variables Using Different Methods” on page 10-14
• “Select Times in Timetable” on page 10-19
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Grouped Calculations in Tables and Timetables” on page 9-99
• “Add Events from External Data to Timetable” on page 10-71
• “Find Events in Timestamped Data” on page 10-83

 Combine Timetables and Synchronize Their Data

10-13

Retime and Synchronize Timetable Variables Using Different
Methods

This example shows how to fill in gaps in timetable variables, using different methods for different
variables. You can specify whether each timetable variable contains continuous or discrete data using
the VariableContinuity property of the timetable. When you resample the timetable using the
retime function, retime either interpolates, fills in with previous values, or fills in with missing data
indicators, depending on the values in the VariableContinuity property. Similarly, the
synchronize function interpolates or fills in values based on the VariableContinuity property of
the input timetables.

Create Timetable

Create a timetable that has simulated weather measurements for several days in May 2017. The
timetable variables Tmax and Tmin contain maximum and minimum temperature readings for each
day, and PrecipTotal contains total precipitation for the day. WXEvent is a categorical array,
recording whether certain kinds of weather events, such as thunder or hail, happened on any given
day. The timetable has simulated data from May 4 to May 10, 2017, but is missing data for two days,
May 6th and May 7th.

Date = [datetime(2017,5,4) datetime(2017,5,5) datetime(2017,5,8:10)]';
Tmax = [60 62 56 59 60]';
Tmin = [44 45 40 42 45]';
PrecipTotal = [0.2 0 0 0.15 0]';
WXEvent = [2 0 0 1 0]';
WXEvent = categorical(WXEvent,[0 1 2 3 4],{'None','Thunder','Hail','Fog','Tornado'});
Station1 = timetable(Date,Tmax,Tmin,PrecipTotal,WXEvent)

Station1=5×4 timetable
 Date Tmax Tmin PrecipTotal WXEvent
 ___________ ____ ____ ___________ _______

 04-May-2017 60 44 0.2 Hail
 05-May-2017 62 45 0 None
 08-May-2017 56 40 0 None
 09-May-2017 59 42 0.15 Thunder
 10-May-2017 60 45 0 None

Resample Continuous and Discrete Timetable Variables

One way to fill in data for the two missing days is to use the retime function. If you call retime
without specifying a method, then retime fills in gaps with missing data indicators. For instance,
retime fills gaps in numeric variables with NaN values, and gaps in the categorical variable with
undefined elements.

Station1Daily = retime(Station1,'daily')

Station1Daily=7×4 timetable
 Date Tmax Tmin PrecipTotal WXEvent
 ___________ ____ ____ ___________ ___________

 04-May-2017 60 44 0.2 Hail
 05-May-2017 62 45 0 None

10 Timetables

10-14

 06-May-2017 NaN NaN NaN <undefined>
 07-May-2017 NaN NaN NaN <undefined>
 08-May-2017 56 40 0 None
 09-May-2017 59 42 0.15 Thunder
 10-May-2017 60 45 0 None

If you specify a method when you call retime, it uses the same method to fill gaps in every variable.
To apply different methods to different variables, you can call retime multiple times, each time
indexing into the timetable to access a different subset of variables.

However, you also can apply different methods by specifying the VariableContinuity property of
the timetable. You can specify whether each variable contains continuous or discrete data. Then the
retime function applies a different method to each timetable variable, depending on the
corresponding VariableContinuity value.

If you specify VariableContinuity, then the retime function fills in the output timetable variables
using the following methods:

• 'unset' — Fill in values using the missing data indicator for that type (such as NaN for numeric
variables).

• 'continuous' — Fill in values using linear interpolation.
• 'step' — Fill in values using previous value.
• 'event' — Fill in values using the missing data indicator for that type.

Specify that the temperature data in Station1 is continuous, that PrecipTotal is step data, and
that WXEvent is event data.

Station1.Properties.VariableContinuity = {'continuous','continuous','step','event'};
Station1.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Date' 'Variables'}
 VariableNames: {'Tmax' 'Tmin' 'PrecipTotal' 'WXEvent'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: [continuous continuous step event]
 RowTimes: [5x1 datetime]
 StartTime: 04-May-2017
 SampleRate: NaN
 TimeStep: NaN
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

Resample the data in Station1. Given the values assigned to VariableContinuity, the retime
function interpolates the temperature data, fills in the previous day's values in PrecipTotal, and
fills in WXEvent with undefined elements.

Station1Daily = retime(Station1,'daily')

Station1Daily=7×4 timetable
 Date Tmax Tmin PrecipTotal WXEvent

 Retime and Synchronize Timetable Variables Using Different Methods

10-15

 ___________ ____ ______ ___________ ___________

 04-May-2017 60 44 0.2 Hail
 05-May-2017 62 45 0 None
 06-May-2017 60 43.333 0 <undefined>
 07-May-2017 58 41.667 0 <undefined>
 08-May-2017 56 40 0 None
 09-May-2017 59 42 0.15 Thunder
 10-May-2017 60 45 0 None

If you specify a method, then retime applies that method to all variables, overriding the values in
VariableContinuity.

Station1Missing = retime(Station1,'daily','fillwithmissing')

Station1Missing=7×4 timetable
 Date Tmax Tmin PrecipTotal WXEvent
 ___________ ____ ____ ___________ ___________

 04-May-2017 60 44 0.2 Hail
 05-May-2017 62 45 0 None
 06-May-2017 NaN NaN NaN <undefined>
 07-May-2017 NaN NaN NaN <undefined>
 08-May-2017 56 40 0 None
 09-May-2017 59 42 0.15 Thunder
 10-May-2017 60 45 0 None

Synchronize Timetables That Contain Continuous and Discrete Data

The synchronize function also fills in output timetable variables using different methods, depending
on the values specified in the VariableContinuity property of each input timetable.

Create a second timetable that contains pressure readings in millibars from a second weather station.
The timetable has simulated readings from May 4 to May 8, 2017.

Date = datetime(2017,5,4:8)';
Pressure = [995 1003 1013 1018 1006]';
Station2 = timetable(Date,Pressure)

Station2=5×1 timetable
 Date Pressure
 ___________ ________

 04-May-2017 995
 05-May-2017 1003
 06-May-2017 1013
 07-May-2017 1018
 08-May-2017 1006

Synchronize the data from the two stations using the synchronize function. synchronize fills in
values for variables from Station1 according to the values in the VariableContinuity property
of Station1. However, since the VariableContinuity property of Station2 is empty,
synchronize fills in Pressure with NaN values.

BothStations = synchronize(Station1,Station2)

10 Timetables

10-16

BothStations=7×5 timetable
 Date Tmax Tmin PrecipTotal WXEvent Pressure
 ___________ ____ ______ ___________ ___________ ________

 04-May-2017 60 44 0.2 Hail 995
 05-May-2017 62 45 0 None 1003
 06-May-2017 60 43.333 0 <undefined> 1013
 07-May-2017 58 41.667 0 <undefined> 1018
 08-May-2017 56 40 0 None 1006
 09-May-2017 59 42 0.15 Thunder NaN
 10-May-2017 60 45 0 None NaN

To indicate that Station2.Pressure contains continuous data, specify the VariableContinuity
property of Station2. Though Station2 contains only one variable, you must specify
VariableContinuity using a cell array, not a character vector.

Station2.Properties.VariableContinuity = {'continuous'};
Station2.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Date' 'Variables'}
 VariableNames: {'Pressure'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: continuous
 RowTimes: [5x1 datetime]
 StartTime: 04-May-2017
 SampleRate: NaN
 TimeStep: 1d
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

Synchronize the data from the two stations. synchronize fills in values in
BothStations.Pressure because Station2.Pressure has continuous data.

BothStations = synchronize(Station1,Station2)

BothStations=7×5 timetable
 Date Tmax Tmin PrecipTotal WXEvent Pressure
 ___________ ____ ______ ___________ ___________ ________

 04-May-2017 60 44 0.2 Hail 995
 05-May-2017 62 45 0 None 1003
 06-May-2017 60 43.333 0 <undefined> 1013
 07-May-2017 58 41.667 0 <undefined> 1018
 08-May-2017 56 40 0 None 1006
 09-May-2017 59 42 0.15 Thunder 994
 10-May-2017 60 45 0 None 982

 Retime and Synchronize Timetable Variables Using Different Methods

10-17

If you specify a method as an input argument to synchronize, then synchronize applies that
method to all variables, just as the retime function does.

See Also
timetable | synchronize | retime

Related Examples
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Combine Timetables and Synchronize Their Data” on page 10-8
• “Select Times in Timetable” on page 10-19
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Grouped Calculations in Tables and Timetables” on page 9-99
• “Add Events from External Data to Timetable” on page 10-71
• “Find Events in Timestamped Data” on page 10-83

10 Timetables

10-18

Select Times in Timetable

A timetable is a type of table that associates a time with each row. You can select time-based subsets
of its data in several ways:

• Find times within a certain range using the timerange or withtol functions.
• Match recurring units of time, such as days or months, using the components of datetime arrays.
• Resample or group data with the retime function.

For example, read a sample file outages.csv, containing data representing electric utility outages
in the United States from 2002–2014. The vector of row times, OutageTime, indicates when the
outages occurred. The readtimetable function imports it as a datetime array. Display the first five
rows.

TT = readtimetable('outages.csv');
head(TT,5)

 OutageTime Region Loss Customers RestorationTime Cause
 ________________ _____________ ______ __________ ________________ ___________________

 2002-02-01 12:18 {'SouthWest'} 458.98 1.8202e+06 2002-02-07 16:50 {'winter storm' }
 2003-01-23 00:49 {'SouthEast'} 530.14 2.1204e+05 NaT {'winter storm' }
 2003-02-07 21:15 {'SouthEast'} 289.4 1.4294e+05 2003-02-17 08:14 {'winter storm' }
 2004-04-06 05:44 {'West' } 434.81 3.4037e+05 2004-04-06 06:10 {'equipment fault'}
 2002-03-16 06:18 {'MidWest' } 186.44 2.1275e+05 2002-03-18 23:23 {'severe storm' }

Before R2019a, read tabular data with readtable and convert it to a timetable using
table2timetable.

Select Time Range

To find data in a specific range, you can use the timerange function, which defines time-based
subscripts for indexing. For instance, define a range for the summer of 2008, which started on June
20 and ended on September 21. By default, timerange defines a half-open interval that is closed on
the left and open on the right, so specify the end date as September 22.

TR = timerange("2008-06-20","2008-09-22")

TR =
 timetable timerange subscript:

 Select timetable rows with times in the half-open interval:
 [20-Jun-2008 00:00:00, 22-Sep-2008 00:00:00)

 See Select Times in Timetable.

Find the outages that occurred in that range, and then plot the number of customers affected over
time.

summer08 = TT(TR,:);
stem(summer08.OutageTime,summer08.Customers)
ylabel("Customers")

 Select Times in Timetable

10-19

Several outages during that time range had high customer impact. Expand the range to a time period
that spans the entire year of 2008 and look for similarly high numbers.

TR = timerange("2008","years");
all08 = TT(TR,:);
high08 = all08(all08.Customers > 500000,:);

stem(high08.OutageTime,high08.Customers)
ylabel('Customers')

10 Timetables

10-20

The timerange function is also helpful for selecting specific dates. Selecting times by comparing
datetime values can give misleading results because all datetime values include both date and
time components. However, when you specify only the date component of a datetime value, the time
component is set to midnight. Therefore, although there is data from June 26, a comparison like this
one returns no results.

any(summer08.OutageTime == datetime("2008-06-26"))

ans = logical
 0

Instead, you can use timerange.

TR = timerange("2008-06-26","days");
june26 = summer08(TR,:)

june26=1×5 timetable
 OutageTime Region Loss Customers RestorationTime Cause
 ________________ _____________ ______ _________ ________________ _________________

 2008-06-26 22:36 {'NorthEast'} 425.21 93612 2008-06-27 06:53 {'thunder storm'}

Another way to define a range is to specify a tolerance around a time using withtol. For example,
find rows from the summer of 2008 where OutageTime is within three days of Labor Day, September
1.

 Select Times in Timetable

10-21

WT = withtol("2008-09-01",days(3));
nearSep1 = summer08(WT,:)

nearSep1=4×5 timetable
 OutageTime Region Loss Customers RestorationTime Cause
 ________________ _____________ ______ _________ ________________ ___________________

 2008-09-01 23:35 {'SouthEast'} 206.27 2.27e+05 NaT {'equipment fault'}
 2008-09-01 00:18 {'MidWest' } 510.05 74213 2008-09-01 14:07 {'thunder storm' }
 2008-09-02 19:01 {'MidWest' } NaN 2.215e+05 2008-09-03 02:58 {'severe storm' }
 2008-08-29 20:25 {'West' } NaN 31624 2008-09-01 01:51 {'wind' }

Match Units of Time

You also can use units of datetime values, such as hours or days, to identify rows for logical
indexing. This method can be useful for specifying periodic intervals.

For example, find the values of OutageTime whose month components have values of 3 or less,
corresponding to January, February, and March of each year. Use the resulting logical array to index
into TT.

TR = (month(TT.OutageTime) <= 3);
winterTT = TT(TR,:);

head(winterTT,5)

 OutageTime Region Loss Customers RestorationTime Cause
 ________________ _____________ ______ __________ ________________ ________________

 2002-02-01 12:18 {'SouthWest'} 458.98 1.8202e+06 2002-02-07 16:50 {'winter storm'}
 2003-01-23 00:49 {'SouthEast'} 530.14 2.1204e+05 NaT {'winter storm'}
 2003-02-07 21:15 {'SouthEast'} 289.4 1.4294e+05 2003-02-17 08:14 {'winter storm'}
 2002-03-16 06:18 {'MidWest' } 186.44 2.1275e+05 2002-03-18 23:23 {'severe storm'}
 2005-02-04 08:18 {'MidWest' } NaN NaN 2005-02-04 19:51 {'attack' }

Create a pie chart of the wintertime causes. The pie function accepts only numeric or categorical
inputs, so first convert Cause to categorical.

winterTT.Cause = categorical(winterTT.Cause);
pie(winterTT.Cause)
title("Causes of Outages, January to March");

10 Timetables

10-22

Group by Time Period

The retime function adjusts row times to create specified intervals, either by resampling or grouping
values. Its pre-defined intervals range from seconds to years, and you can specify how to handle
missing or multiple values for the intervals. For instance, you can select the first observation from
each week, or count observations in a quarter.

For the outage data, you can use retime to find totals for each year. First, create a timetable with
only numeric variables. Then, call retime and specify a yearly interval, combining multiple values
using a sum. The output has one row for each year, containing the total losses and total customers
affected during that year.

numTT = TT(:,vartype("numeric"));
numTT = retime(numTT,"yearly","sum");
head(numTT,5)

 OutageTime Loss Customers
 ________________ _____ __________

 2002-01-01 00:00 81335 1.3052e+07
 2003-01-01 00:00 58036 1.396e+07
 2004-01-01 00:00 51014 1.5523e+07
 2005-01-01 00:00 33980 8.7334e+06
 2006-01-01 00:00 35129 2.5729e+07

Create a bar chart of the number of customers affected each year.

 Select Times in Timetable

10-23

bar(numTT.OutageTime,numTT.Customers)
xlabel("Year")
ylabel("Customers")

Calculate Durations Using Row Times

You can use the row times of a timetable with other datetime or duration values to perform
calculations. For example, calculate the durations of the power outages listed in the outage data.
Then calculate the monthly medians of the outage durations and plot them.

First add the outage durations to TT by subtracting the row times (which are the starts of power
outages) from RestorationTime (which are the ends of the power outages). Change the format of
OutageDuration to display the durations of the outages in days. Display the first five rows of TT.

TT.OutageDuration = TT.RestorationTime - TT.OutageTime;
TT.OutageDuration.Format = 'd';
head(TT,5)

 OutageTime Region Loss Customers RestorationTime Cause OutageDuration
 ________________ _____________ ______ __________ ________________ ___________________ ______________

 2002-02-01 12:18 {'SouthWest'} 458.98 1.8202e+06 2002-02-07 16:50 {'winter storm' } 6.1889 days
 2003-01-23 00:49 {'SouthEast'} 530.14 2.1204e+05 NaT {'winter storm' } NaN days
 2003-02-07 21:15 {'SouthEast'} 289.4 1.4294e+05 2003-02-17 08:14 {'winter storm' } 9.4576 days
 2004-04-06 05:44 {'West' } 434.81 3.4037e+05 2004-04-06 06:10 {'equipment fault'} 0.018056 days
 2002-03-16 06:18 {'MidWest' } 186.44 2.1275e+05 2002-03-18 23:23 {'severe storm' } 2.7118 days

10 Timetables

10-24

Create a timetable that has only the outage durations. Some rows of TT have missing values, NaT, for
the restoration times, leading to NaN values in OutageDuration. To remove the NaN values from
medianTT, use the rmmissing function. Then use retime to calculate the monthly median outage
duration. Display the first five rows of medianTT.

medianTT = TT(:,"OutageDuration");
medianTT = rmmissing(medianTT);
medianTT = retime(medianTT,'monthly',@median);
head(medianTT,5)

 OutageTime OutageDuration
 ________________ ______________

 2002-02-01 00:00 6.1889 days
 2002-03-01 00:00 2.7472 days
 2002-04-01 00:00 NaN days
 2002-05-01 00:00 0.72917 days
 2002-06-01 00:00 0.22431 days

Create a stairstep chart of the monthly median outage durations.

stairs(medianTT.OutageTime,medianTT.OutageDuration)
xlabel("Year")
ylabel("Median Duration (days)")

 Select Times in Timetable

10-25

See Also
categorical | timetable | retime | timerange | readtimetable | month | withtol |
rmmissing | vartype | datetime | duration | NaT

Related Examples
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Access Data in Tables” on page 9-32
• “Calculations on Data in Tables” on page 9-48
• “Grouped Calculations in Tables and Timetables” on page 9-99
• “Compare Dates and Time” on page 7-33
• “Date and Time Arithmetic” on page 7-28

10 Timetables

10-26

Clean Timetable with Missing, Duplicate, or Nonuniform Times

This example shows how to create a regular timetable from one that has missing, duplicate, or
nonuniform times. A timetable is a type of table that associates a time-stamp, or row time, with each
row of data. In a regular timetable, the row times are sorted and unique, and differ by the same
regular time step.

Also, some toolboxes have functions that work on regularly spaced time series data in the form of
numeric arrays. So the example also shows how to export the data from a timetable for use with other
functions.

There are a number of issues with row times that can make timetables irregular. The row times can
be missing. They can be out of order. They can be duplicates, creating multiple rows with the same
time that might have the same or different data. And even when they are present, sorted, and unique,
they can differ by time steps of different sizes.

Timetables provide a number of different ways to resolve missing, duplicate, or nonuniform times,
and to resample or aggregate data to create regular row times.

• To find missing row times, use ismissing.
• To remove missing times and data, use rmmissing.
• To sort a timetable by its row times, use sortrows.
• To make a timetable with unique and sorted row times, use unique and retime.
• To remove duplicate times, specify a vector of unique times and use retime.
• To make a regular timetable, specify a regular time vector and use retime.

 Clean Timetable with Missing, Duplicate, or Nonuniform Times

10-27

Load Timetable

Load a sample timetable from the MAT-file badTimes that contains weather measurements taken
over several hours on June 9, 2016. The timetable TT includes temperature, rainfall, and wind speed
measurements taken at irregular times during that day.

load badTimes
TT

TT=12×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ____ ____ _________

 09-Jun-2016 06:01:04 73 0.01 2.3
 09-Jun-2016 07:59:23 59 0.08 0.9
 09-Jun-2016 09:53:57 59 0.03 3.4
 09-Jun-2016 09:53:57 67 0.03 3.4
 NaT 56 0 0
 09-Jun-2016 09:53:57 67 0.03 3.4
 09-Jun-2016 08:49:10 62 0.01 2.7
 09-Jun-2016 08:49:10 75.8 0.01 2.7
 09-Jun-2016 08:49:10 82 0.01 2.7
 09-Jun-2016 05:03:11 66.2 0.05 3
 09-Jun-2016 08:49:10 67.2 0.01 2.7
 09-Jun-2016 04:12:00 58.8 NaN NaN

10 Timetables

10-28

Find and Remove Rows with Missing Row Times

One way to begin is by finding and removing rows that have a NaT, or missing value, as the row time.
To find missing values in the vector of row times, use ismissing. The ismissing function returns a
logical vector that contains 1 wherever TT.Time has a missing value.

natRowTimes = ismissing(TT.Time)

natRowTimes = 12x1 logical array

 0
 0
 0
 0
 1
 0
 0
 0
 0
 0
 ⋮

To keep only those rows that do not have missing values as row times, index into TT using
~natRowTimes as row indices. Assign those rows to a new timetable, goodRowTimesTT.

goodRowTimesTT = TT(~natRowTimes,:)

goodRowTimesTT=11×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ____ ____ _________

 09-Jun-2016 06:01:04 73 0.01 2.3
 09-Jun-2016 07:59:23 59 0.08 0.9
 09-Jun-2016 09:53:57 59 0.03 3.4
 09-Jun-2016 09:53:57 67 0.03 3.4
 09-Jun-2016 09:53:57 67 0.03 3.4
 09-Jun-2016 08:49:10 62 0.01 2.7
 09-Jun-2016 08:49:10 75.8 0.01 2.7
 09-Jun-2016 08:49:10 82 0.01 2.7
 09-Jun-2016 05:03:11 66.2 0.05 3
 09-Jun-2016 08:49:10 67.2 0.01 2.7
 09-Jun-2016 04:12:00 58.8 NaN NaN

This method removes only the rows that have missing row times. The timetable variables still might
have missing data values. For example, the last row of goodRowTimesTT has NaN values for the Rain
and Windspeed variables.

Remove Rows with Missing Times and Missing Data

As an alternative, you can remove both missing row times and missing data values at the same time
by using the rmmissing function. rmmissing removes any timetable rows that have missing row
times, missing data values, or both.

Display the missing row time and missing data values of TT.

TT

 Clean Timetable with Missing, Duplicate, or Nonuniform Times

10-29

TT=12×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ____ ____ _________

 09-Jun-2016 06:01:04 73 0.01 2.3
 09-Jun-2016 07:59:23 59 0.08 0.9
 09-Jun-2016 09:53:57 59 0.03 3.4
 09-Jun-2016 09:53:57 67 0.03 3.4
 NaT 56 0 0
 09-Jun-2016 09:53:57 67 0.03 3.4
 09-Jun-2016 08:49:10 62 0.01 2.7
 09-Jun-2016 08:49:10 75.8 0.01 2.7
 09-Jun-2016 08:49:10 82 0.01 2.7
 09-Jun-2016 05:03:11 66.2 0.05 3
 09-Jun-2016 08:49:10 67.2 0.01 2.7
 09-Jun-2016 04:12:00 58.8 NaN NaN

Remove all rows that have missing row times or data values. Assign the remaining rows to the
timetable goodValuesTT.

goodValuesTT = rmmissing(TT)

goodValuesTT=10×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ____ ____ _________

 09-Jun-2016 06:01:04 73 0.01 2.3
 09-Jun-2016 07:59:23 59 0.08 0.9
 09-Jun-2016 09:53:57 59 0.03 3.4
 09-Jun-2016 09:53:57 67 0.03 3.4
 09-Jun-2016 09:53:57 67 0.03 3.4
 09-Jun-2016 08:49:10 62 0.01 2.7
 09-Jun-2016 08:49:10 75.8 0.01 2.7
 09-Jun-2016 08:49:10 82 0.01 2.7
 09-Jun-2016 05:03:11 66.2 0.05 3
 09-Jun-2016 08:49:10 67.2 0.01 2.7

Sort Timetable and Determine If It Is Regular

After dealing with missing values, you can go on to sort your timetable and then determine if the
sorted timetable is regular.

To determine if goodValuesTT is already sorted, use the issorted function.

tf = issorted(goodValuesTT)

tf = logical
 0

Since it is not, sort the timetable on its row times by using the sortrows function.

sortedTT = sortrows(goodValuesTT)

sortedTT=10×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ____ ____ _________

10 Timetables

10-30

 09-Jun-2016 05:03:11 66.2 0.05 3
 09-Jun-2016 06:01:04 73 0.01 2.3
 09-Jun-2016 07:59:23 59 0.08 0.9
 09-Jun-2016 08:49:10 62 0.01 2.7
 09-Jun-2016 08:49:10 75.8 0.01 2.7
 09-Jun-2016 08:49:10 82 0.01 2.7
 09-Jun-2016 08:49:10 67.2 0.01 2.7
 09-Jun-2016 09:53:57 59 0.03 3.4
 09-Jun-2016 09:53:57 67 0.03 3.4
 09-Jun-2016 09:53:57 67 0.03 3.4

Determine whether sortedTT is regular. A regular timetable has the same time interval between
consecutive row times. Even a sorted timetable can have time steps that are not uniform.

tf = isregular(sortedTT)

tf = logical
 0

Since it is not, display the differences between row times.

diff(sortedTT.Time)

ans = 9x1 duration
 00:57:53
 01:58:19
 00:49:47
 00:00:00
 00:00:00
 00:00:00
 01:04:47
 00:00:00
 00:00:00

Since the row times are sorted, this result shows that some row times are unique and some are
duplicates.

Remove Duplicate Rows

Timetables can have duplicate rows. Timetable rows are duplicates if they have the same row times
and the same data values. In this example, the last two rows of sortedTT are duplicate rows. (There
are other rows in sortedTT that have duplicate row times but differing data values.)

To remove the duplicate rows from sortedTT, use unique. The unique function returns the unique
rows and sorts them by their row times.

uniqueRowsTT = unique(sortedTT)

uniqueRowsTT=9×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ____ ____ _________

 09-Jun-2016 05:03:11 66.2 0.05 3
 09-Jun-2016 06:01:04 73 0.01 2.3

 Clean Timetable with Missing, Duplicate, or Nonuniform Times

10-31

 09-Jun-2016 07:59:23 59 0.08 0.9
 09-Jun-2016 08:49:10 62 0.01 2.7
 09-Jun-2016 08:49:10 67.2 0.01 2.7
 09-Jun-2016 08:49:10 75.8 0.01 2.7
 09-Jun-2016 08:49:10 82 0.01 2.7
 09-Jun-2016 09:53:57 59 0.03 3.4
 09-Jun-2016 09:53:57 67 0.03 3.4

Find Rows with Duplicate Times and Different Data

Timetables can have rows with duplicate row times but different data values. In this example,
uniqueRowsTT has several rows with the same row times but different values.

Find the rows that have duplicate row times. First, sort the row times and find consecutive times that
have no difference between them. Times with no difference between them are the duplicates. Index
back into the vector of row times and return a unique set of times that identify the duplicate row
times in uniqueRowsTT.

dupTimes = sort(uniqueRowsTT.Time);
tf = (diff(dupTimes) == 0);
dupTimes = dupTimes(tf);
dupTimes = unique(dupTimes)

dupTimes = 2x1 datetime
 09-Jun-2016 08:49:10
 09-Jun-2016 09:53:57

To display the rows with duplicate row times, index into uniqueRowsTT using dupTimes. When you
index on times, the output timetable contains all rows with matching row times.

uniqueRowsTT(dupTimes,:)

ans=6×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ____ ____ _________

 09-Jun-2016 08:49:10 62 0.01 2.7
 09-Jun-2016 08:49:10 67.2 0.01 2.7
 09-Jun-2016 08:49:10 75.8 0.01 2.7
 09-Jun-2016 08:49:10 82 0.01 2.7
 09-Jun-2016 09:53:57 59 0.03 3.4
 09-Jun-2016 09:53:57 67 0.03 3.4

Select First and Last Rows with Duplicate Times

When a timetable has rows with duplicate times, you might want to select particular rows and discard
the other rows having duplicate times. For example, you can select either the first or the last of the
rows with duplicate row times by using the unique and retime functions.

First, create a vector of unique row times from TT by using unique.

uniqueTimes = unique(uniqueRowsTT.Time)

uniqueTimes = 5x1 datetime
 09-Jun-2016 05:03:11

10 Timetables

10-32

 09-Jun-2016 06:01:04
 09-Jun-2016 07:59:23
 09-Jun-2016 08:49:10
 09-Jun-2016 09:53:57

Select the first row from each set of rows that have duplicate times. To copy data from the first rows,
specify the 'firstvalue' method.

firstUniqueRowsTT = retime(uniqueRowsTT,uniqueTimes,'firstvalue')

firstUniqueRowsTT=5×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ____ ____ _________

 09-Jun-2016 05:03:11 66.2 0.05 3
 09-Jun-2016 06:01:04 73 0.01 2.3
 09-Jun-2016 07:59:23 59 0.08 0.9
 09-Jun-2016 08:49:10 62 0.01 2.7
 09-Jun-2016 09:53:57 59 0.03 3.4

Select the last rows from each set of rows that have duplicate times. To copy data from the last rows,
specify the 'lastvalue' method.

lastUniqueRowsTT = retime(uniqueRowsTT,uniqueTimes,'lastvalue')

lastUniqueRowsTT=5×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ____ ____ _________

 09-Jun-2016 05:03:11 66.2 0.05 3
 09-Jun-2016 06:01:04 73 0.01 2.3
 09-Jun-2016 07:59:23 59 0.08 0.9
 09-Jun-2016 08:49:10 82 0.01 2.7
 09-Jun-2016 09:53:57 67 0.03 3.4

As a result, the last two rows of firstUniqueRowsTT and lastUniqueRowsTT have different values
in the Temp variable.

Aggregate Data from All Rows with Duplicate Times

Another way to deal with data in the rows having duplicate times is to aggregate or combine the data
values in some way. For example, you can calculate the means of several measurements of the same
quantity taken at the same time.

Calculate the mean temperature, rainfall, and wind speed for rows with duplicate row times using the
retime function.

meanTT = retime(uniqueRowsTT,uniqueTimes,'mean')

meanTT=5×3 timetable
 Time Temp Rain WindSpeed
 ____________________ _____ ____ _________

 09-Jun-2016 05:03:11 66.2 0.05 3
 09-Jun-2016 06:01:04 73 0.01 2.3

 Clean Timetable with Missing, Duplicate, or Nonuniform Times

10-33

 09-Jun-2016 07:59:23 59 0.08 0.9
 09-Jun-2016 08:49:10 71.75 0.01 2.7
 09-Jun-2016 09:53:57 63 0.03 3.4

As a result, the last two rows of meanTT have mean temperatures in the Temp variable for the rows
with duplicate row times.

Make Timetable Regular

Finally, you can resample data from an irregular timetable to make it regular by using the retime
function. For example, you can interpolate the data from meanTT onto a regular hourly time vector.
To use linear interpolation, specify 'linear'. Each row time in hourlyTT begins on the hour, and
there is a one-hour interval between consecutive row times.

hourlyTT = retime(meanTT,'hourly','linear')

hourlyTT=6×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ______ ________ _________

 09-Jun-2016 05:00:00 65.826 0.0522 3.0385
 09-Jun-2016 06:00:00 72.875 0.010737 2.3129
 09-Jun-2016 07:00:00 66.027 0.044867 1.6027
 09-Jun-2016 08:00:00 59.158 0.079133 0.9223
 09-Jun-2016 09:00:00 70.287 0.013344 2.8171
 09-Jun-2016 10:00:00 62.183 0.031868 3.4654

Instead of using a predefined time step such as 'hourly', you can specify a time step of your own.
To specify a time step of 30 minutes, use the 'regular' input argument and the 'TimeStep' name-
value argument. You can specify a time step of any size as a duration or calendarDuration value.

regularTT = retime(meanTT,'regular','linear','TimeStep',minutes(30))

regularTT=11×3 timetable
 Time Temp Rain WindSpeed
 ____________________ ______ ________ _________

 09-Jun-2016 05:00:00 65.826 0.0522 3.0385
 09-Jun-2016 05:30:00 69.35 0.031468 2.6757
 09-Jun-2016 06:00:00 72.875 0.010737 2.3129
 09-Jun-2016 06:30:00 69.576 0.027118 1.9576
 09-Jun-2016 07:00:00 66.027 0.044867 1.6027
 09-Jun-2016 07:30:00 62.477 0.062616 1.2477
 09-Jun-2016 08:00:00 59.158 0.079133 0.9223
 09-Jun-2016 08:30:00 66.841 0.03695 2.007
 09-Jun-2016 09:00:00 70.287 0.013344 2.8171
 09-Jun-2016 09:30:00 66.235 0.022606 3.1412
 09-Jun-2016 10:00:00 62.183 0.031868 3.4654

Extract Regular Timetable Data into Array

You can export the timetable data for use with functions to analyze data that is regularly spaced in
time. For example, the Econometrics Toolbox™ and the Signal Processing Toolbox™ have functions
you can use for further analysis on regularly spaced data.

10 Timetables

10-34

Extract the timetable data as an array. You can use the Variables property to return the data as an
array, as long as the table variables have data types that allow them to be concatenated.

A = regularTT.Variables

A = 11×3

 65.8260 0.0522 3.0385
 69.3504 0.0315 2.6757
 72.8747 0.0107 2.3129
 69.5764 0.0271 1.9576
 66.0266 0.0449 1.6027
 62.4768 0.0626 1.2477
 59.1579 0.0791 0.9223
 66.8412 0.0370 2.0070
 70.2868 0.0133 2.8171
 66.2348 0.0226 3.1412
 ⋮

regularTT.Variables is equivalent to using curly brace syntax, regularTT{:,:}, to access the
data in the timetable variables.

A2 = regularTT{:,:}

A2 = 11×3

 65.8260 0.0522 3.0385
 69.3504 0.0315 2.6757
 72.8747 0.0107 2.3129
 69.5764 0.0271 1.9576
 66.0266 0.0449 1.6027
 62.4768 0.0626 1.2477
 59.1579 0.0791 0.9223
 66.8412 0.0370 2.0070
 70.2868 0.0133 2.8171
 66.2348 0.0226 3.1412
 ⋮

See Also
timetable | table2timetable | retime | issorted | sortrows | unique | diff | isregular |
rmmissing | fillmissing

Related Examples
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Combine Timetables and Synchronize Their Data” on page 10-8
• “Retime and Synchronize Timetable Variables Using Different Methods” on page 10-14
• “Select Times in Timetable” on page 10-19
• “Grouped Calculations in Tables and Timetables” on page 9-99
• “Add Events from External Data to Timetable” on page 10-71
• “Find Events in Timestamped Data” on page 10-83

 Clean Timetable with Missing, Duplicate, or Nonuniform Times

10-35

Using Row Labels in Table and Timetable Operations

Tables and timetables provide ways to label the rows in your data. In tables, you can label the rows
with names. In timetables, you must label the rows with dates, times, or both. Row names are
optional for tables, but row times are required for timetables. These row labels are part of the
metadata in a table or timetable. In some functions you also can use row labels as key variables,
grouping variables, and so on, just as you can use the data variables in a table or timetable. These
functions are sortrows, join, innerjoin, outerjoin, varfun, rowfun, stack, and unstack.
There are some limitations on using these table functions and on using row labels as key variables.

Sort on Row Labels

For example, you can sort a timetable on its row times, on one or more of its data variables, or on row
times and data variables together.

Create a timetable using the timetable function. A timetable has row times along its first
dimension, labeling the rows. The row times are a property of the timetable, not a timetable variable.

Date = datetime(2016,7,[10;10;11;11;10;10;11;11]);
X = [1;1;1;1;2;2;2;2];
Y = {'a';'b';'a';'b';'a';'b';'a';'b'};
Z = [1;2;3;4;5;6;7;8];
TT = timetable(X,Y,Z,'RowTimes',Date)

TT=8×3 timetable
 Time X Y Z
 ___________ _ _____ _

 10-Jul-2016 1 {'a'} 1
 10-Jul-2016 1 {'b'} 2
 11-Jul-2016 1 {'a'} 3
 11-Jul-2016 1 {'b'} 4
 10-Jul-2016 2 {'a'} 5
 10-Jul-2016 2 {'b'} 6
 11-Jul-2016 2 {'a'} 7
 11-Jul-2016 2 {'b'} 8

Rename the first dimension. By default, the name of the first dimension of a timetable is Time. You
can access the Properties.DimensionNames property to rename a dimension.

TT.Properties.DimensionNames{1} = 'Date';
TT.Properties.DimensionNames

ans = 1x2 cell
 {'Date'} {'Variables'}

As an alternative, you can specify the row times as the first input argument to timetable, without
specifying 'RowTimes'. The timetable function names the row times, or the first dimension, after
the first input argument, just as it names the timetable variables after the other input arguments.

TT = timetable(Date,X,Y,Z)

TT=8×3 timetable
 Date X Y Z

10 Timetables

10-36

 ___________ _ _____ _

 10-Jul-2016 1 {'a'} 1
 10-Jul-2016 1 {'b'} 2
 11-Jul-2016 1 {'a'} 3
 11-Jul-2016 1 {'b'} 4
 10-Jul-2016 2 {'a'} 5
 10-Jul-2016 2 {'b'} 6
 11-Jul-2016 2 {'a'} 7
 11-Jul-2016 2 {'b'} 8

Sort the timetable by row times. To sort on row times, refer to the first dimension of the timetable by
name.

sortrows(TT,'Date')

ans=8×3 timetable
 Date X Y Z
 ___________ _ _____ _

 10-Jul-2016 1 {'a'} 1
 10-Jul-2016 1 {'b'} 2
 10-Jul-2016 2 {'a'} 5
 10-Jul-2016 2 {'b'} 6
 11-Jul-2016 1 {'a'} 3
 11-Jul-2016 1 {'b'} 4
 11-Jul-2016 2 {'a'} 7
 11-Jul-2016 2 {'b'} 8

Sort by the data variables X and Y. sortrows sorts on X first, then on Y.

sortrows(TT,{'X' 'Y'})

ans=8×3 timetable
 Date X Y Z
 ___________ _ _____ _

 10-Jul-2016 1 {'a'} 1
 11-Jul-2016 1 {'a'} 3
 10-Jul-2016 1 {'b'} 2
 11-Jul-2016 1 {'b'} 4
 10-Jul-2016 2 {'a'} 5
 11-Jul-2016 2 {'a'} 7
 10-Jul-2016 2 {'b'} 6
 11-Jul-2016 2 {'b'} 8

Sort by row times and X together.

sortrows(TT,{'Date' 'X'})

ans=8×3 timetable
 Date X Y Z
 ___________ _ _____ _

 10-Jul-2016 1 {'a'} 1
 10-Jul-2016 1 {'b'} 2

 Using Row Labels in Table and Timetable Operations

10-37

 10-Jul-2016 2 {'a'} 5
 10-Jul-2016 2 {'b'} 6
 11-Jul-2016 1 {'a'} 3
 11-Jul-2016 1 {'b'} 4
 11-Jul-2016 2 {'a'} 7
 11-Jul-2016 2 {'b'} 8

Use Row Labels as Grouping or Key Variables

When you group rows together using the rowfun, varfun, stack, and unstack functions, you can
specify row labels as grouping variables. When you join tables or timetable together using the join,
innerjoin, and outerjoin functions, you can specify row labels as key variables.

For example, you can perform an inner join two tables together, using row names and a table variable
together as key variables. An inner join keeps only those table rows that match with respect to the
key variables.

Create two tables of patient data. A table can have row names along its first dimension, labeling the
rows, but is not required to have them. Specify the last names of patients as the row names of the
tables. Add the first names of the patients as table variables.

A = table({'Michael';'Louis';'Alice';'Rosemary';'Julie'},[38;43;45;40;49],...
 'VariableNames',{'FirstName' 'Age'},...
 'RowNames',{'Garcia' 'Johnson' 'Wu' 'Jones' 'Picard'})

A=5×2 table
 FirstName Age
 ____________ ___

 Garcia {'Michael' } 38
 Johnson {'Louis' } 43
 Wu {'Alice' } 45
 Jones {'Rosemary'} 40
 Picard {'Julie' } 49

B = table({'Michael';'Beverly';'Alice'},...
 [64;69;67],...
 [119;163;133],...
 [122 80; 109 77; 117 75],...
 'VariableNames',{'FirstName' 'Height' 'Weight' 'BloodPressure'},...
 'RowNames',{'Garcia' 'Johnson' 'Wu'})

B=3×4 table
 FirstName Height Weight BloodPressure
 ___________ ______ ______ _____________

 Garcia {'Michael'} 64 119 122 80
 Johnson {'Beverly'} 69 163 109 77
 Wu {'Alice' } 67 133 117 75

If a table has row names, then you can index into it by row name. Indexing by row names is a
convenient way to select rows of a table. Index into B by a patient's last name to retrieve information
about the patient.

B('Garcia',:)

10 Timetables

10-38

ans=1×4 table
 FirstName Height Weight BloodPressure
 ___________ ______ ______ _____________

 Garcia {'Michael'} 64 119 122 80

Perform an inner join on the two tables. Both tables use the last names of patients as row names, and
contain the first names as a table variable. Some patients in the two tables have matching last names
but different first names. To ensure that both last and first names match, use the row names and
FirstName as key variables. To specify the row names as a key or grouping variable, use the name of
the first dimension of the table. By default, the name of the first dimension is 'Row'.

C = innerjoin(A,B,'Keys',{'Row','FirstName'})

C=2×5 table
 FirstName Age Height Weight BloodPressure
 ___________ ___ ______ ______ _____________

 Garcia {'Michael'} 38 64 119 122 80
 Wu {'Alice' } 45 67 133 117 75

If you rename the first dimension of a table, then you can refer to the row names by that name
instead of using 'Row'. Perform the same inner join as above but use a different name to refer to the
row names.

Show the dimension names of A by accessing its Properties.DimensionNames property.

A.Properties.DimensionNames

ans = 1x2 cell
 {'Row'} {'Variables'}

Change the name of the first dimension of the table by using its Properties.DimensionNames
property. Then use the new name as a key variable.

A.Properties.DimensionNames{1} = 'LastName';
A.Properties.DimensionNames

ans = 1x2 cell
 {'LastName'} {'Variables'}

Perform an inner join on A and B using LastName and FirstName as key variables.

B.Properties.DimensionNames{1} = 'LastName';
D = innerjoin(A,B,'Keys',{'LastName','FirstName'})

D=2×5 table
 FirstName Age Height Weight BloodPressure
 ___________ ___ ______ ______ _____________

 Garcia {'Michael'} 38 64 119 122 80
 Wu {'Alice' } 45 67 133 117 75

 Using Row Labels in Table and Timetable Operations

10-39

Notes on Use of Table Functions and Row Labels

• You cannot stack or unstack row labels using the stack and unstack functions. However, you can
use row labels as grouping variables.

• You cannot perform a join using the join, innerjoin, or outerjoin functions when the first
argument is a table and the second argument is a timetable. However, you can perform a join
when both arguments are tables, both are timetables, or the first argument is a timetable and the
second is a table.

• The output of a join operation can have row labels if you specify row labels as key variables. For
more details on row labels from a join operation, see the documentation on the 'Keys',
'LeftKeys', and 'RightKeys' arguments of the join, innerjoin, and outerjoin functions.

See Also
sortrows | join | innerjoin | outerjoin | varfun | rowfun | stack | unstack

10 Timetables

10-40

Loma Prieta Earthquake Analysis

This example shows how to store timestamped earthquake data in a timetable and how to use
timetable functions to analyze and visualize the data.

Load Earthquake Data

The example file quake.mat contains 200 Hz data from the October 17, 1989, Loma Prieta
earthquake in the Santa Cruz Mountains. The data are courtesy of Joel Yellin at the Charles F. Richter
Seismological Laboratory, University of California, Santa Cruz.

Start by loading the data.

load quake
whos e n v

 Name Size Bytes Class Attributes

 e 10001x1 80008 double
 n 10001x1 80008 double
 v 10001x1 80008 double

In the workspace there are three variables, containing time traces from an accelerometer located in
the Natural Sciences building at UC Santa Cruz. The accelerometer recorded the main shock
amplitude of the earthquake wave. The variables n, e, v refer to the three directional components
measured by the instrument, which was aligned parallel to the fault, with its N direction pointing in
the direction of Sacramento. The data are uncorrected for the response of the instrument.

Create a variable, Time, containing the timestamps sampled at 200Hz with the same length as the
other vectors. Represent the correct units with the seconds function and multiplication to achieve
the Hz (s−1) sampling rate. This results in a duration variable which is useful for representing
elapsed time.

Time = (1/200)*seconds(1:length(e))';
whos Time

 Name Size Bytes Class Attributes

 Time 10001x1 80010 duration

Organize Data in Timetable

Separate variables can be organized in a table or timetable for more convenience. A timetable
provides flexibility and functionality for working with time-stamped data. Create a timetable with
the time and three acceleration variables and supply more meaningful variable names. Display the
first eight rows using the head function.

varNames = {'EastWest', 'NorthSouth', 'Vertical'};
quakeData = timetable(Time, e, n, v, 'VariableNames', varNames);
head(quakeData)

 Time EastWest NorthSouth Vertical
 _________ ________ __________ ________

 0.005 sec 5 3 0

 Loma Prieta Earthquake Analysis

10-41

 0.01 sec 5 3 0
 0.015 sec 5 2 0
 0.02 sec 5 2 0
 0.025 sec 5 2 0
 0.03 sec 5 2 0
 0.035 sec 5 1 0
 0.04 sec 5 1 0

Explore the data by accessing the variables in the timetable with dot subscripting. (For more
information on dot subscripting, see “Access Data in Tables” on page 9-32.) Choose the "East-West"
amplitude and plot it as function of the duration.

plot(quakeData.Time,quakeData.EastWest)
title('East-West Acceleration')

Scale Data

Scale the data by the gravitational acceleration, or multiply each variable in the table by the constant.
Since the variables are all of the same type (double), you can access all variables using the
dimension name, Variables. Note that quakeData.Variables provides a direct way to modify the
numerical values within the timetable.

quakeData.Variables = 0.098*quakeData.Variables;

Select Subset of Data for Exploration

Examine the time region where the amplitude of the shockwave starts to increase from near zero to
maximum levels. Visual inspection of the above plot shows that the time interval from 8 to 15 seconds

10 Timetables

10-42

is of interest. For better visualization draw black lines at the selected time spots to draw attention to
that interval. All subsequent calculations involve this interval.

t1 = seconds(8)*[1;1];
t2 = seconds(15)*[1;1];
hold on
plot([t1 t2],ylim,'k','LineWidth',2)
hold off

Store Data of Interest

Create another timetable with data in this interval. Use timerange to select the rows of interest.

tr = timerange(seconds(8),seconds(15));
dataOfInterest = quakeData(tr,:);
head(dataOfInterest)

 Time EastWest NorthSouth Vertical
 _________ ________ __________ ________

 8 sec -0.098 2.254 5.88
 8.005 sec 0 2.254 3.332
 8.01 sec -2.058 2.352 -0.392
 8.015 sec -4.018 2.352 -4.116
 8.02 sec -6.076 2.45 -7.742
 8.025 sec -8.036 2.548 -11.466
 8.03 sec -10.094 2.548 -9.8
 8.035 sec -8.232 2.646 -8.134

 Loma Prieta Earthquake Analysis

10-43

Visualize the three acceleration variables on three separate axes.

figure
subplot(3,1,1)
plot(dataOfInterest.Time,dataOfInterest.EastWest)
ylabel('East-West')
title('Acceleration')
subplot(3,1,2)
plot(dataOfInterest.Time,dataOfInterest.NorthSouth)
ylabel('North-South')
subplot(3,1,3)
plot(dataOfInterest.Time,dataOfInterest.Vertical)
ylabel('Vertical')

Calculate Summary Statistics

To display statistical information about the data use the summary function.

summary(dataOfInterest)

RowTimes:

 Time: 1400x1 duration
 Values:
 Min 8 sec
 Median 11.498 sec
 Max 14.995 sec
 TimeStep 0.005 sec

10 Timetables

10-44

Variables:

 EastWest: 1400x1 double

 Values:

 Min -255.09
 Median -0.098
 Max 244.51

 NorthSouth: 1400x1 double

 Values:

 Min -198.55
 Median 1.078
 Max 204.33

 Vertical: 1400x1 double

 Values:

 Min -157.88
 Median 0.98
 Max 134.46

Additional statistical information about the data can be calculated using varfun. This is useful for
applying functions to each variable in a table or timetable. The function to apply is passed to varfun
as a function handle. Apply the mean function to all three variables and output the result in format of
a table, because the time is not meaningful after computing the temporal means.

mn = varfun(@mean,dataOfInterest,'OutputFormat','table')

mn=1×3 table
 mean_EastWest mean_NorthSouth mean_Vertical
 _____________ _______________ _____________

 0.9338 -0.10276 -0.52542

Calculate Velocity and Position

To identify the speed of propagation of the shockwave, integrate the accelerations once. Use
cumulative sums along the time variable to get the velocity of the wave front.

edot = (1/200)*cumsum(dataOfInterest.EastWest);
edot = edot - mean(edot);

Next perform the integration on all three variables to calculate the velocity. It is convenient to create
a function and apply it to the variables in the timetable with varfun. In this example, the function
is included at the end of this example and is named velFun.

vel = varfun(@velFun,dataOfInterest);
head(vel)

 Time velFun_EastWest velFun_NorthSouth velFun_Vertical
 _________ _______________ _________________ _______________

 Loma Prieta Earthquake Analysis

10-45

 8 sec -0.56831 0.44642 1.8173
 8.005 sec -0.56831 0.45769 1.834
 8.01 sec -0.5786 0.46945 1.832
 8.015 sec -0.59869 0.48121 1.8114
 8.02 sec -0.62907 0.49346 1.7727
 8.025 sec -0.66925 0.5062 1.7154
 8.03 sec -0.71972 0.51894 1.6664
 8.035 sec -0.76088 0.53217 1.6257

Apply the same function velFun to the velocities to determine the position.

pos = varfun(@velFun,vel);
head(pos)

 Time velFun_velFun_EastWest velFun_velFun_NorthSouth velFun_velFun_Vertical
 _________ ______________________ ________________________ ______________________

 8 sec 2.1189 -2.1793 -3.0821
 8.005 sec 2.1161 -2.177 -3.0729
 8.01 sec 2.1132 -2.1746 -3.0638
 8.015 sec 2.1102 -2.1722 -3.0547
 8.02 sec 2.107 -2.1698 -3.0458
 8.025 sec 2.1037 -2.1672 -3.0373
 8.03 sec 2.1001 -2.1646 -3.0289
 8.035 sec 2.0963 -2.162 -3.0208

Notice how the variable names in the timetable created by varfun include the name of the function
used. It is useful to track the operations that have been performed on the original data. Adjust the
variable names back to their original values using dot notation.

pos.Properties.VariableNames = varNames;

Plot the three components of the velocity and position for the time interval of interest.

figure
subplot(2,1,1)
plot(vel.Time,vel.Variables)
legend(quakeData.Properties.VariableNames,'Location','NorthWest')
title('Velocity')
subplot(2,1,2)
plot(vel.Time,pos.Variables)
legend(quakeData.Properties.VariableNames,'Location','NorthWest')
title('Position')

10 Timetables

10-46

Visualize Trajectories

The trajectories can be plotted in 2D or 3D by using the component value. This plot shows different
ways of visualizing this data.

Begin with 2-dimensional projections. Here is the first with a few values of time annotated.

figure
plot(pos.NorthSouth,pos.Vertical)
xlabel('North-South')
ylabel('Vertical')
% Select locations and label
nt = ceil((max(pos.Time) - min(pos.Time))/6);
idx = find(fix(pos.Time/nt) == (pos.Time/nt))';
text(pos.NorthSouth(idx),pos.Vertical(idx),char(pos.Time(idx)))

 Loma Prieta Earthquake Analysis

10-47

Use plotmatrix to visualize a grid of scatter plots of all variables against one another and
histograms of each variable on the diagonal. The output variable Ax, represents each axes in the grid
and can be used to identify which axes to label using xlabel and ylabel.

figure
[S,Ax] = plotmatrix(pos.Variables);

for ii = 1:length(varNames)
 xlabel(Ax(end,ii),varNames{ii})
 ylabel(Ax(ii,1),varNames{ii})
end

10 Timetables

10-48

Plot a 3-D view of the trajectory and plot a dot at every tenth position point. The spacing between
dots indicates the velocity.

step = 10;
figure
plot3(pos.NorthSouth,pos.EastWest,pos.Vertical,'r')
hold on
plot3(pos.NorthSouth(1:step:end),pos.EastWest(1:step:end),pos.Vertical(1:step:end),'.')
hold off
box on
axis tight
xlabel('North-South')
ylabel('East-West')
zlabel('Vertical')
title('Position')

 Loma Prieta Earthquake Analysis

10-49

Supporting Functions

Functions are defined below.

function y = velFun(x)
 y = (1/200)*cumsum(x);
 y = y - mean(y);
end

See Also
timetable | head | summary | varfun | duration | seconds | timerange

Related Examples
• “Represent Dates and Times in MATLAB” on page 7-2
• “Create Timetables” on page 10-2
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99
• “Select Times in Timetable” on page 10-19
• “Access Data in Tables” on page 9-32

10 Timetables

10-50

Preprocess and Explore Time-Stamped Data Using timetable

This example shows how to analyze bicycle traffic patterns from sensor data using the timetable
data container to organize and preprocess time-stamped data. The data come from sensors on
Broadway Street in Cambridge, MA. The City of Cambridge provides public access to the full data set
at the Cambridge Open Data site.

This example shows how to perform a variety of data cleaning, munging, and preprocessing tasks
such as removing missing values and synchronizing time-stamped data with different timesteps. In
addition, data exploration is highlighted including visualizations and grouped calculations using the
timetable data container to:

• Explore daily bicycle traffic
• Compare bicycle traffic to local weather conditions
• Analyze bicycle traffic on various days of the week and times of day

Import Bicycle Traffic Data into Timetable

Import a sample of the bicycle traffic data from a comma-separated text file. The readtable function
returns the data in a table. Display the first eight rows using the head function.

bikeTbl = readtable('BicycleCounts.csv');
head(bikeTbl)

 Timestamp Day Total Westbound Eastbound
 ___________________ _____________ _____ _________ _________

 2015-06-24 00:00:00 {'Wednesday'} 13 9 4
 2015-06-24 01:00:00 {'Wednesday'} 3 3 0
 2015-06-24 02:00:00 {'Wednesday'} 1 1 0
 2015-06-24 03:00:00 {'Wednesday'} 1 1 0
 2015-06-24 04:00:00 {'Wednesday'} 1 1 0
 2015-06-24 05:00:00 {'Wednesday'} 7 3 4
 2015-06-24 06:00:00 {'Wednesday'} 36 6 30
 2015-06-24 07:00:00 {'Wednesday'} 141 13 128

The data have timestamps, so it is convenient to use a timetable to store and analyze the data. A
timetable is similar to a table, but includes timestamps that are associated with the rows of data. The
timestamps, or row times, are represented by datetime or duration values. datetime and
duration are the recommended data types for representing points in time or elapsed times,
respectively.

Convert bikeTbl into a timetable using the table2timetable function. You must use a conversion
function because readtable returns a table. table2timetable converts the first datetime or
duration variable in the table into the row times of a timetable. The row times are metadata that
label the rows. However, when you display a timetable, the row times and timetable variables are
displayed in a similar fashion. Note that the table has five variables whereas the timetable has four.

bikeData = table2timetable(bikeTbl);
head(bikeData)

 Timestamp Day Total Westbound Eastbound
 ___________________ _____________ _____ _________ _________

 Preprocess and Explore Time-Stamped Data Using timetable

10-51

https://data.cambridgema.gov/dataset/Eco-Totem-Broadway-Bicycle-Count/q8v9-mcfg

 2015-06-24 00:00:00 {'Wednesday'} 13 9 4
 2015-06-24 01:00:00 {'Wednesday'} 3 3 0
 2015-06-24 02:00:00 {'Wednesday'} 1 1 0
 2015-06-24 03:00:00 {'Wednesday'} 1 1 0
 2015-06-24 04:00:00 {'Wednesday'} 1 1 0
 2015-06-24 05:00:00 {'Wednesday'} 7 3 4
 2015-06-24 06:00:00 {'Wednesday'} 36 6 30
 2015-06-24 07:00:00 {'Wednesday'} 141 13 128

whos bikeTbl bikeData

 Name Size Bytes Class Attributes

 bikeData 9387x4 1412425 timetable
 bikeTbl 9387x5 1487735 table

Access Times and Data

Convert the Day variable to categorical. The categorical data type is designed for data that consists
of a finite set of discrete values, such as the names of the days of the week. List the categories so
they display in day order. Use dot subscripting to access variables by name.

bikeData.Day = categorical(bikeData.Day,{'Sunday','Monday','Tuesday',...
 'Wednesday','Thursday','Friday','Saturday'});

In a timetable, the times are treated separately from the data variables. Access the Properties of
the timetable to show that the row times are the first dimension of the timetable, and the variables
are the second dimension. The DimensionNames property shows the names of the two dimensions,
while the VariableNames property shows the names of the variables along the second dimension.

bikeData.Properties

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Timestamp' 'Variables'}
 VariableNames: {'Day' 'Total' 'Westbound' 'Eastbound'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [9387x1 datetime]
 StartTime: 2015-06-24 00:00:00
 SampleRate: NaN
 TimeStep: NaN
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

By default, table2timetable assigned Timestamp as the first dimension name when it converted
the table to a timetable, since this was the variable name from the original table. You can change the
names of the dimensions, and other timetable metadata, through the Properties.

Change the names of the dimensions to Time and Data.

bikeData.Properties.DimensionNames = {'Time' 'Data'};
bikeData.Properties

10 Timetables

10-52

ans =
 TimetableProperties with properties:

 Description: ''
 UserData: []
 DimensionNames: {'Time' 'Data'}
 VariableNames: {'Day' 'Total' 'Westbound' 'Eastbound'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowTimes: [9387x1 datetime]
 StartTime: 2015-06-24 00:00:00
 SampleRate: NaN
 TimeStep: NaN
 CustomProperties: No custom properties are set.
 Use addprop and rmprop to modify CustomProperties.

Display the first eight rows of the timetable.

head(bikeData)

 Time Day Total Westbound Eastbound
 ___________________ _________ _____ _________ _________

 2015-06-24 00:00:00 Wednesday 13 9 4
 2015-06-24 01:00:00 Wednesday 3 3 0
 2015-06-24 02:00:00 Wednesday 1 1 0
 2015-06-24 03:00:00 Wednesday 1 1 0
 2015-06-24 04:00:00 Wednesday 1 1 0
 2015-06-24 05:00:00 Wednesday 7 3 4
 2015-06-24 06:00:00 Wednesday 36 6 30
 2015-06-24 07:00:00 Wednesday 141 13 128

Determine the number of days that elapsed between the latest and earliest row times. The variables
can be accessed by dot notation when referencing variables one at a time.

elapsedTime = max(bikeData.Time) - min(bikeData.Time)

elapsedTime = duration
 9383:30:00

elapsedTime.Format = 'd'

elapsedTime = duration
 390.98 days

To examine the typical bicycle counts on a given day, calculate the means for the total number of
bikes, and the numbers travelling westbound and eastbound.

Return the numeric data as a matrix by indexing into the contents of bikeData using curly braces.
Display the first eight rows. Use standard table subscripting to access multiple variables.

counts = bikeData{:,2:end};
counts(1:8,:)

ans = 8×3

 Preprocess and Explore Time-Stamped Data Using timetable

10-53

 13 9 4
 3 3 0
 1 1 0
 1 1 0
 1 1 0
 7 3 4
 36 6 30
 141 13 128

Since the mean is appropriate for only the numeric data, you can use the vartype function to select
the numeric variables. vartype can be more convenient than manually indexing into a table or
timetable to select variables. Calculate the means and omit NaN values.

counts = bikeData{:,vartype('numeric')};
mean(counts,'omitnan')

ans = 1×3

 49.8860 24.2002 25.6857

Select Data by Date and Time of Day

To determine how many people bicycle during a holiday, examine the data on the 4th of July holiday.
Index into the timetable by row times for July 4, 2015. When you index on row times, you must match
times exactly. You can specify the time indices as datetime or duration values, or as character
vectors that can be converted to dates and times. You can specify multiple times as an array.

Index into bikeData with specific dates and times to extract data for July 4, 2015. If you specify the
date only, then the time is assumed to be midnight, or 00:00:00.

bikeData('2015-07-04',:)

ans=1×4 timetable
 Time Day Total Westbound Eastbound
 ___________________ ________ _____ _________ _________

 2015-07-04 00:00:00 Saturday 8 7 1

d = {'2015-07-04 08:00:00','2015-07-04 09:00:00'};
bikeData(d,:)

ans=2×4 timetable
 Time Day Total Westbound Eastbound
 ___________________ ________ _____ _________ _________

 2015-07-04 08:00:00 Saturday 15 3 12
 2015-07-04 09:00:00 Saturday 21 4 17

It would be tedious to use this strategy to extract the entire day. You can also specify ranges of time
without indexing on specific times. To create a time range subscript as a helper, use the timerange
function.

Subscript into the timetable using a time range for the entire day of July 4, 2015. Specify the start
time as midnight on July 4, and the end time as midnight on July 5. By default, timerange covers all

10 Timetables

10-54

times starting with the start time and up to, but not including, the end time. Plot the bicycle counts
over the course of the day.

tr = timerange('2015-07-04','2015-07-05');
jul4 = bikeData(tr,'Total');
head(jul4)

 Time Total
 ___________________ _____

 2015-07-04 00:00:00 8
 2015-07-04 01:00:00 13
 2015-07-04 02:00:00 4
 2015-07-04 03:00:00 1
 2015-07-04 04:00:00 0
 2015-07-04 05:00:00 1
 2015-07-04 06:00:00 8
 2015-07-04 07:00:00 16

bar(jul4.Time,jul4.Total)
ylabel('Bicycle Counts')
title('Bicycle Counts on July 4, 2015')

From the plot, there is more volume throughout the day, leveling off in the afternoon. Because many
businesses are closed, the plot does not show typical traffic during commute hours. Spikes later in
the evening can be attributed to celebrations with fireworks, which occur after dark. To examine
these trends more closely, the data should be compared to data for typical days.

 Preprocess and Explore Time-Stamped Data Using timetable

10-55

Compare the data for July 4 to data for the rest of the month of July.

jul = bikeData(timerange('2015-07-01','2015-08-01'),:);
plot(jul.Time,jul.Total)
hold on
plot(jul4.Time,jul4.Total)
ylabel('Total Count')
title('Bicycle Counts in July')
hold off
legend('Bicycle Count','July 4 Bicycle Count')

The plot shows variations that can be attributed to traffic differences between weekdays and
weekends. The traffic patterns for July 4 and 5 are consistent with the pattern for weekend traffic.
July 5 is a Monday but is often observed as a holiday. These trends can be examined more closely with
further preprocessing and analysis.

Preprocess Times and Data Using timetable

Time-stamped data sets are often messy and may contain anomalies or errors. Timetables are well
suited for resolving anomalies and errors.

A timetable does not have to have its row times in any particular order. It can contain rows that are
not sorted by their row times. A timetable can also contain multiple rows with the same row time,
though the rows can have different data values. Even when row times are sorted and unique, they can
differ by time steps of different sizes. A timetable can even contain NaT or NaN values to indicate
missing row times.

10 Timetables

10-56

The timetable data type provides a number of different ways to resolve missing, duplicate, or
nonuniform times. You can also resample or aggregate data to create a regular timetable. When a
timetable is regular, it has row times that are sorted and unique, and have a uniform or evenly spaced
time step between them.

• To find missing row times, use ismissing.
• To remove missing times and data, use rmmissing.
• To sort a timetable by its row times, use sortrows.
• To make a timetable with unique and sorted row times, use unique and retime.
• To make a regular timetable, specify a uniformly spaced time vector and use retime.

Sort in Time Order

Determine if the timetable is sorted. A timetable is sorted if its row times are listed in ascending
order.

issorted(bikeData)

ans = logical
 0

Sort the timetable. The sortrows function sorts the rows by their row times, from earliest to latest
time. If there are rows with duplicate row times, then sortrows copies all the duplicates to the
output.

 Preprocess and Explore Time-Stamped Data Using timetable

10-57

bikeData = sortrows(bikeData);
issorted(bikeData)

ans = logical
 1

Identify and Remove Missing Times and Data

A timetable can have missing data indicators in its variables or its row times. For example, you can
indicate missing numeric values as NaNs, and missing datetime values as NaTs. You can assign, find,
remove, and fill missing values with the standardizeMissing, ismissing, rmmissing, and
fillmissing functions, respectively.

Find and count the missing values in the timetable variables. In this example, missing values indicate
circumstances when no data were collected.

missData = ismissing(bikeData);
sum(missData)

ans = 1×4

 1 3 3 3

The output from ismissing is a logical matrix, the same size as the table, identifying missing data
values as true. Display any rows which have missing data indicators.

idx = any(missData,2);
bikeData(idx,:)

ans=3×4 timetable
 Time Day Total Westbound Eastbound
 ___________________ ___________ _____ _________ _________

 2015-08-03 00:00:00 Monday NaN NaN NaN
 2015-08-03 01:00:00 Monday NaN NaN NaN
 NaT <undefined> NaN NaN NaN

ismissing(bikeData) finds missing data in the timetable variables only, not the times. To find
missing row times, call ismissing on the row times.

missTimes = ismissing(bikeData.Time);
bikeData(missTimes,:)

ans=2×4 timetable
 Time Day Total Westbound Eastbound
 ____ ___________ _____ _________ _________

 NaT <undefined> NaN NaN NaN
 NaT Friday 6 3 3

In this example, missing times or data values indicate measurement errors and can be excluded.
Remove rows of the table containing missing data values and missing row times using rmmissing.

bikeData = rmmissing(bikeData);
sum(ismissing(bikeData))

10 Timetables

10-58

ans = 1×4

 0 0 0 0

sum(ismissing(bikeData.Time))

ans = 0

Remove Duplicate Times and Data

Determine if there are duplicate times and/or duplicate rows of data. You might want to exclude exact
duplicates, as these can also be considered measurement errors. Identify duplicate times by finding
where the difference between the sorted times is exactly zero.

idx = diff(bikeData.Time) == 0;
dup = bikeData.Time(idx)

dup = 3x1 datetime
 2015-08-21 00:00:00
 2015-11-19 23:00:00
 2015-11-19 23:00:00

Three times are repeated and November 19, 2015, is repeated twice. Examine the data associated
with the repeated times.

bikeData(dup(1),:)

ans=2×4 timetable
 Time Day Total Westbound Eastbound
 ___________________ ______ _____ _________ _________

 2015-08-21 00:00:00 Friday 14 9 5
 2015-08-21 00:00:00 Friday 11 7 4

bikeData(dup(2),:)

ans=3×4 timetable
 Time Day Total Westbound Eastbound
 ___________________ ________ _____ _________ _________

 2015-11-19 23:00:00 Thursday 17 15 2
 2015-11-19 23:00:00 Thursday 17 15 2
 2015-11-19 23:00:00 Thursday 17 15 2

The first has duplicated times but non-duplicate data, whereas the others are entirely duplicated.
Timetable rows are considered duplicates when they contain identical row times and identical data
values across the rows. You can use unique to remove duplicate rows in the timetable. The unique
function also sorts the rows by their row times.

bikeData = unique(bikeData);

The rows with duplicate times but non-duplicate data require some interpretation. Examine the data
around those times.

 Preprocess and Explore Time-Stamped Data Using timetable

10-59

d = dup(1) + hours(-2:2);
bikeData(d,:)

ans=5×4 timetable
 Time Day Total Westbound Eastbound
 ___________________ ________ _____ _________ _________

 2015-08-20 22:00:00 Thursday 40 30 10
 2015-08-20 23:00:00 Thursday 25 18 7
 2015-08-21 00:00:00 Friday 11 7 4
 2015-08-21 00:00:00 Friday 14 9 5
 2015-08-21 02:00:00 Friday 6 5 1

In this case, the duplicate time may have been mistaken since the data and surrounding times are
consistent. Though it appears to represent 01:00:00, it is uncertain what time this should have been.
The data can be accumulated to account for the data at both time points.

sum(bikeData{dup(1),2:end})

ans = 1×3

 25 16 9

This is only one case which can be done manually. However, for many rows, the retime function can
perform this calculation. Accumulate the data for the unique times using the sum function to
aggregate. The sum is appropriate for numeric data but not the categorical data in the timetable. Use
vartype to identify the numeric variables.

vt = vartype('numeric');
t = unique(bikeData.Time);
numData = retime(bikeData(:,vt),t,'sum');
head(numData)

 Time Total Westbound Eastbound
 ___________________ _____ _________ _________

 2015-06-24 00:00:00 13 9 4
 2015-06-24 01:00:00 3 3 0
 2015-06-24 02:00:00 1 1 0
 2015-06-24 03:00:00 1 1 0
 2015-06-24 04:00:00 1 1 0
 2015-06-24 05:00:00 7 3 4
 2015-06-24 06:00:00 36 6 30
 2015-06-24 07:00:00 141 13 128

You cannot sum the categorical data, but since one label represents the whole day, take the first value
on each day. You can perform the retime operation again with the same time vector and concatenate
the timetables together.

vc = vartype('categorical');
catData = retime(bikeData(:,vc),t,'firstvalue');
bikeData = [catData,numData];
bikeData(d,:)

ans=4×4 timetable
 Time Day Total Westbound Eastbound

10 Timetables

10-60

 ___________________ ________ _____ _________ _________

 2015-08-20 22:00:00 Thursday 40 30 10
 2015-08-20 23:00:00 Thursday 25 18 7
 2015-08-21 00:00:00 Friday 25 16 9
 2015-08-21 02:00:00 Friday 6 5 1

Examine Uniformity of Time Interval

The data appear to have a uniform time step of one hour. To determine if this is true for all the row
times in the timetable, use the isregular function. isregular returns true for sorted, evenly-
spaced times (monotonically increasing), with no duplicate or missing times (NaT or NaN).

isregular(bikeData)

ans = logical
 0

The output of 0, or false, indicates that the times in the timetable are not evenly spaced. Explore
the time interval in more detail.

dt = diff(bikeData.Time);
[min(dt); max(dt)]

ans = 2x1 duration
 00:30:00
 03:00:00

To put the timetable on a regular time interval, use retime or synchronize and specify the time
interval of interest.

Determine Daily Bicycle Volume

Determine the counts per day using the retime function. Accumulate the count data for each day
using the sum method. This is appropriate for numeric data but not the categorical data in the
timetable. Use vartype to identify the variables by data type.

dayCountNum = retime(bikeData(:,vt),'daily','sum');
head(dayCountNum)

 Time Total Westbound Eastbound
 ___________________ _____ _________ _________

 2015-06-24 00:00:00 2141 1141 1000
 2015-06-25 00:00:00 2106 1123 983
 2015-06-26 00:00:00 1748 970 778
 2015-06-27 00:00:00 695 346 349
 2015-06-28 00:00:00 153 83 70
 2015-06-29 00:00:00 1841 978 863
 2015-06-30 00:00:00 2170 1145 1025
 2015-07-01 00:00:00 997 544 453

As above, you can perform the retime operation again to represent the categorical data using an
appropriate method and concatenate the timetables together.

 Preprocess and Explore Time-Stamped Data Using timetable

10-61

dayCountCat = retime(bikeData(:,vc),'daily','firstvalue');
dayCount = [dayCountCat,dayCountNum];
head(dayCount)

 Time Day Total Westbound Eastbound
 ___________________ _________ _____ _________ _________

 2015-06-24 00:00:00 Wednesday 2141 1141 1000
 2015-06-25 00:00:00 Thursday 2106 1123 983
 2015-06-26 00:00:00 Friday 1748 970 778
 2015-06-27 00:00:00 Saturday 695 346 349
 2015-06-28 00:00:00 Sunday 153 83 70
 2015-06-29 00:00:00 Monday 1841 978 863
 2015-06-30 00:00:00 Tuesday 2170 1145 1025
 2015-07-01 00:00:00 Wednesday 997 544 453

Synchronize Bicycle Count and Weather Data

Examine the effect of weather on cycling behavior by comparing the bicycle count with weather data.
Load the weather timetable which includes historical weather data from Boston, MA, including storm
events.

load BostonWeatherData
head(weatherData)

 Time TemperatureF Humidity Events
 ___________ ____________ ________ ____________

 01-Jul-2015 72 78 Thunderstorm
 02-Jul-2015 72 60 None
 03-Jul-2015 70 56 None
 04-Jul-2015 67 75 None
 05-Jul-2015 72 67 None
 06-Jul-2015 74 69 None
 07-Jul-2015 75 77 Rain
 08-Jul-2015 79 68 Rain

To summarize the times and variables in the timetable, use the summary function.

summary(weatherData)

RowTimes:

 Time: 383x1 datetime
 Values:
 Min 01-Jul-2015
 Median 08-Jan-2016
 Max 17-Jul-2016
 TimeStep 24:00:00

Variables:

 TemperatureF: 383x1 double

 Values:

 Min 2
 Median 55
 Max 85

10 Timetables

10-62

 Humidity: 383x1 double

 Values:

 Min 29
 Median 64
 Max 97

 Events: 383x1 categorical

 Values:

 Fog 7
 Hail 1
 Rain 108
 Rain-Snow 4
 Snow 18
 Thunderstorm 12
 None 233

Combine the bicycle data with the weather data to a common time vector using synchronize. You
can resample or aggregate timetable data using any of the methods documented on the reference
page for the synchronize function.

Synchronize the data from both timetables to a common time vector, constructed from the
intersection of their individual daily time vectors.

data = synchronize(dayCount,weatherData,'intersection');
head(data)

 Time Day Total Westbound Eastbound TemperatureF Humidity Events
 ___________________ _________ _____ _________ _________ ____________ ________ ____________

 2015-07-01 00:00:00 Wednesday 997 544 453 72 78 Thunderstorm
 2015-07-02 00:00:00 Thursday 1943 1033 910 72 60 None
 2015-07-03 00:00:00 Friday 870 454 416 70 56 None
 2015-07-04 00:00:00 Saturday 669 328 341 67 75 None
 2015-07-05 00:00:00 Sunday 702 407 295 72 67 None
 2015-07-06 00:00:00 Monday 1900 1029 871 74 69 None
 2015-07-07 00:00:00 Tuesday 2106 1140 966 75 77 Rain
 2015-07-08 00:00:00 Wednesday 1855 984 871 79 68 Rain

Compare bicycle traffic counts and outdoor temperature on separate y axes to examine the trends.
Remove the weekends from the data for visualization.

idx = ~isweekend(data.Time);
weekdayData = data(idx,{'TemperatureF','Total'});
figure
yyaxis left
plot(weekdayData.Time, weekdayData.Total)
ylabel('Bicycle Count')
yyaxis right
plot(weekdayData.Time,weekdayData.TemperatureF)
ylabel('Temperature (\circ F)')
title('Bicycle Counts and Temperature Over Time')
xlim([min(data.Time) max(data.Time)])

 Preprocess and Explore Time-Stamped Data Using timetable

10-63

The plot shows that the traffic and weather data might follow similar trends. Zoom in on the plot.

xlim([datetime('2015-11-01'),datetime('2016-05-01')])

10 Timetables

10-64

The trends are similar, indicating that fewer people cycle on colder days.

Analyze by Day of Week and Time of Day

Examine the data based on different intervals such as day of the week and time of day. Determine the
total counts per day using varfun to perform grouped calculations on variables. Specify the sum
function with a function handle and the grouping variable and preferred output type using name-
value pairs.

byDay = varfun(@sum,bikeData,'GroupingVariables','Day',...
 'OutputFormat','table')

byDay=7×5 table
 Day GroupCount sum_Total sum_Westbound sum_Eastbound
 _________ __________ _________ _____________ _____________

 Sunday 1344 25315 12471 12844
 Monday 1343 79991 39219 40772
 Tuesday 1320 81480 39695 41785
 Wednesday 1344 86853 41726 45127
 Thursday 1344 87516 42682 44834
 Friday 1342 76643 36926 39717
 Saturday 1343 30292 14343 15949

figure
bar(byDay{:,{'sum_Westbound','sum_Eastbound'}})
legend({'Westbound','Eastbound'},'Location','eastoutside')

 Preprocess and Explore Time-Stamped Data Using timetable

10-65

xticklabels({'Sun','Mon','Tue','Wed','Thu','Fri','Sat'})
title('Bicycle Count by Day of Week')

The bar plot indicates that traffic is heavier on weekdays. Also, there is a difference in the Eastbound
and Westbound directions. This might indicate that people tend to take different routes when
entering and leaving the city. Another possibility is that some people enter on one day and return on
another day.

Determine the hour of day and use varfun for calculations by group.

bikeData.HrOfDay = hour(bikeData.Time);
byHr = varfun(@mean,bikeData(:,{'Westbound','Eastbound','HrOfDay'}),...
 'GroupingVariables','HrOfDay','OutputFormat','table');
head(byHr)

 HrOfDay GroupCount mean_Westbound mean_Eastbound
 _______ __________ ______________ ______________

 0 389 5.4396 1.7686
 1 389 2.7712 0.87147
 2 391 1.8696 0.58312
 3 391 0.7468 0.289
 4 391 0.52685 1.0026
 5 391 0.70588 4.7494
 6 391 3.1228 22.097
 7 391 9.1176 63.54

10 Timetables

10-66

bar(byHr{:,{'mean_Westbound','mean_Eastbound'}})
legend('Westbound','Eastbound','Location','eastoutside')
xlabel('Hour of Day')
ylabel('Bicycle Count')
title('Mean Bicycle Count by Hour of Day')

There are traffic spikes at the typical commute hours, around 9:00 a.m. and 5:00 p.m. Also, the trends
between the Eastbound and Westbound directions are different. In general, the Westbound direction
is toward residential areas surrounding the Cambridge area and toward the universities. The
Eastbound direction is toward Boston.

The traffic is heavier later in the day in the Westbound direction compared to the Eastbound
direction. This might indicate university schedules and traffic due to restaurants in the area. Examine
the trend by day of week as well as hour of day.

byHrDay = varfun(@sum,bikeData,'GroupingVariables',{'HrOfDay','Day'},...
 'OutputFormat','table');
head(byHrDay)

 HrOfDay Day GroupCount sum_Total sum_Westbound sum_Eastbound
 _______ _________ __________ _________ _____________ _____________

 0 Sunday 56 473 345 128
 0 Monday 55 202 145 57
 0 Tuesday 55 297 213 84
 0 Wednesday 56 374 286 88
 0 Thursday 56 436 324 112

 Preprocess and Explore Time-Stamped Data Using timetable

10-67

 0 Friday 55 442 348 94
 0 Saturday 56 580 455 125
 1 Sunday 56 333 259 74

To arrange the timetable so that the days of the week are the variables, use the unstack function.

hrAndDayWeek = unstack(byHrDay(:,{'HrOfDay','Day','sum_Total'}),'sum_Total','Day');
head(hrAndDayWeek)

 HrOfDay Sunday Monday Tuesday Wednesday Thursday Friday Saturday
 _______ ______ ______ _______ _________ ________ ______ ________

 0 473 202 297 374 436 442 580
 1 333 81 147 168 173 183 332
 2 198 77 68 93 128 141 254
 3 86 41 43 44 50 61 80
 4 51 81 117 101 108 80 60
 5 105 353 407 419 381 340 128
 6 275 1750 1867 2066 1927 1625 351
 7 553 5355 5515 5818 5731 4733 704

ribbon(hrAndDayWeek.HrOfDay,hrAndDayWeek{:,2:end})
ylim([0 24])
xlim([0 8])
xticks(1:7)
xticklabels({'Sun','Mon','Tue','Wed','Thu','Fri','Sat'})
ylabel('Hour')
title('Bicycle Count by Hour and Day of Week')

10 Timetables

10-68

There are similar trends for the regular work days of Monday through Friday, with peaks at rush hour
and traffic tapering off in the evening. Friday has less volume, though the overall trend is similar to
the other work days. The trends for Saturday and Sunday are similar to each other, without rush hour
peaks and with more volume later in the day. The late evening trends are also similar for Monday
through Friday, with less volume on Friday.

Analyze Traffic During Rush Hour

To examine the overall time of day trends, split up the data by rush hour times. It is possible to use
different times of day or units of time using the discretize function. For example, separate the data
into groups for AM, AMRush, Day, PMRush, PM. Then use varfun to calculate the mean by group.

bikeData.HrLabel = discretize(bikeData.HrOfDay,[0,6,10,15,19,24],'categorical',...
 {'AM','RushAM','Day','RushPM','PM'});
byHrBin = varfun(@mean,bikeData(:,{'Total','HrLabel'}),'GroupingVariables','HrLabel',...
 'OutputFormat','table')

byHrBin=5×3 table
 HrLabel GroupCount mean_Total
 _______ __________ __________

 AM 2342 3.5508
 RushAM 1564 94.893
 Day 1955 45.612
 RushPM 1564 98.066
 PM 1955 35.198

bar(byHrBin.mean_Total)
cats = categories(byHrBin.HrLabel);
xticklabels(cats)
title('Mean Bicycle Count During Rush Hours')

 Preprocess and Explore Time-Stamped Data Using timetable

10-69

In general, there is about twice as much traffic in this area during the evening and morning rush
hours compared to other times of the day. There is very little traffic in this area in the early morning,
but there is still significant traffic in the evening and late evening, comparable to the day outside of
the morning and evening rush hours.

See Also
timetable | table2timetable | head | summary | varfun | timerange | sortrows | rmmissing
| retime | datetime | unstack

Related Examples
• “Represent Dates and Times in MATLAB” on page 7-2
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99
• “Select Times in Timetable” on page 10-19
• “Add Events from External Data to Timetable” on page 10-71
• “Find Events in Timestamped Data” on page 10-83

10 Timetables

10-70

Add Events from External Data to Timetable

This example shows how to use events with timestamped data stored in timetables. An event consists
of a timestamp (when something happened), often a description (what happened), and sometimes
additional information about the event. The timestamp for an instantaneous event is a single point in
time, either a datetime or duration value. The timestamp for an interval event consists of two
points in time that define the start and end of the event.

You can use events to find or mark data of interest for plotting and analysis. This example shows how
you can define events in data using information that is external to your data set. To find events that
are within your timestamped data, see “Find Events in Timestamped Data” on page 10-83.

You can store events separately from the main data set. A timetable is a convenient way to store
events because it can hold the event timestamps along with their descriptions and any other
information. You can use the event timestamps as subscripts into the main data set to select data at,
before, or after an event, or between two events. You can also store events in the same timetable as
the data set they describe by using one or more additional timetable variables. This example shows
how to use both representations. The representation that is more useful depends on the data analysis
you plan to perform.

Define Data Set Using Variations in Length of Day

By definition a day is 86,400 seconds long, where the second has a precise definition in the
International System of Units (SI). However, the length of a day actually varies due to several
physical causes. It varies with the seasons by as much as 30 seconds over and 21 seconds under the
SI definition because of the eccentricity of Earth's orbit and the tilt of its axis. Averaging these
seasonal effects enables the definition of the mean solar day, which does not vary in length over a
year.

Also, there is a very long-term slowing in the rotational speed of the Earth due to tidal interaction
with the moon; a smaller, opposite, shorter-term component believed to be due to melting of
continental ice sheets; very short-term cycles on the order of decades; and unpredictable fluctuations
due to geological events and other causes. Because of those effects, the length of a mean solar day
might increase or decrease. In recent decades, it has fluctuated up and down, but has mostly been 1–
3 milliseconds longer than 86,400 seconds. That difference is known as the excess Length of Day, or
excess LOD.

For this example, create a timetable that contains the excess LOD for every day from January 1, 1962,
to the present. The International Earth Rotation and Reference Systems Service (IERS) collects and
publishes this data. However, this data needs preprocessing before storing in a MATLAB timetable
because the dates are modified Julian dates. To read the IERS data into a table, use the readtable
function. Rename the two variables of interest to MJD and ExcessLOD.

file = "https://datacenter.iers.org/data/latestVersion/223_EOP_C04_14.62-NOW.IAU1980223.txt";
IERSdata = readtable(file,"NumHeaderLines",14);
IERSdata.Properties.VariableNames([4 8]) = ["MJD","ExcessLOD"];

To store the excess LOD values in a timetable, convert the modified Julian dates to datetime values.
Use the datetime function with the "ConvertFrom","mjd" name-value argument. Convert the
excess LOD values to duration values by using the seconds function. Then convert IERSdata from
a table to a timetable using the table2timetable function.

 Add Events from External Data to Timetable

10-71

https://www.iers.org/IERS/EN/Home/home_node.html
https://en.wikipedia.org/wiki/Julian_day

IERSdata.Date = datetime(IERSdata.MJD,"ConvertFrom","mjd");
IERSdata.ExcessLOD = seconds(IERSdata.ExcessLOD);
IERSdata = table2timetable(IERSdata(:,["Date","ExcessLOD"]))

IERSdata=22017×1 timetable
 Date ExcessLOD
 ___________ ____________

 01-Jan-1962 0.001723 sec
 02-Jan-1962 0.001669 sec
 03-Jan-1962 0.001582 sec
 04-Jan-1962 0.001496 sec
 05-Jan-1962 0.001416 sec
 06-Jan-1962 0.001382 sec
 07-Jan-1962 0.001413 sec
 08-Jan-1962 0.001505 sec
 09-Jan-1962 0.001628 sec
 10-Jan-1962 0.001738 sec
 11-Jan-1962 0.001794 sec
 12-Jan-1962 0.001774 sec
 13-Jan-1962 0.001667 sec
 14-Jan-1962 0.00151 sec
 15-Jan-1962 0.001312 sec
 16-Jan-1962 0.001112 sec
 ⋮

Plot the excess LOD as a function of time. The excess LOD is currently decreasing on average but has
remained positive except during very brief periods.

plot(IERSdata.Date,IERSdata.ExcessLOD,"b-");
ylabel("Excess LOD");

10 Timetables

10-72

Calculate Cumulative Excess Length of Day

A clock that defines a day as 86,400 SI seconds is effectively running fast with respect to the Earth's
rotation, gaining time with respect to the sun each day. A few extra milliseconds per day might seem
unimportant, but the excess LOD since 1962 accumulates.

Add the cumulative excess LOD to IERSdata as another table variable. To calculate the cumulative
sum of the excess LOD, use the cumsum function. Then use the stackedplot function to plot excess
LOD and cumulative excess LOD together. This plot shows that the shift due to the accumulated
excess LOD since the 1960s has been less than one minute.

IERSdata.CumulativeELOD = [0; cumsum(IERSdata.ExcessLOD(1:end-1))];
h = stackedplot(IERSdata,["ExcessLOD","CumulativeELOD"])

h =
 StackedLineChart with properties:

 SourceTable: [22017×2 timetable]
 DisplayVariables: {'ExcessLOD' 'CumulativeELOD'}
 Color: [0 0.4470 0.7410]
 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
 MarkerSize: 6

 Show all properties

Define Leap Seconds as Events in Separate TImetable

At midnight on January 1, 1972, the current version of the system of time known as Coordinated
Universal Time (UTC) was enacted, which uses 86,400 SI seconds per day. On that date, UTC was
defined to be roughly in sync with solar time at the Greenwich Meridian, or more precisely, with the
time known as UT1. However, timekeeping based on exactly 86,400 SI seconds per day would drift

 Add Events from External Data to Timetable

10-73

away from our physical experience of solar time because of accumulated excess LOD. So when
needed, an extra leap second adjustment is inserted to keep UTC approximately in sync with solar
time. Without these leap second adjustments after 1972, accumulated excess LOD would have caused
UTC to drift away from UT1 over the years. Within decades, the difference would have grown to tens
of seconds.

Show the difference since 1972. First, select the post-1971 excess LOD data by subscripting into
IERSdata with a time range starting on January 1, 1972. To create that time range, use the
timerange function.

IERSdata1972 = IERSdata(timerange("1972-01-01",Inf),"ExcessLOD")

IERSdata1972=18365×1 timetable
 Date ExcessLOD
 ___________ ____________

 01-Jan-1972 0.002539 sec
 02-Jan-1972 0.002708 sec
 03-Jan-1972 0.002897 sec
 04-Jan-1972 0.003065 sec
 05-Jan-1972 0.003177 sec
 06-Jan-1972 0.00322 sec
 07-Jan-1972 0.003201 sec
 08-Jan-1972 0.003137 sec
 09-Jan-1972 0.003033 sec
 10-Jan-1972 0.002898 sec
 11-Jan-1972 0.002772 sec
 12-Jan-1972 0.002672 sec
 13-Jan-1972 0.002621 sec
 14-Jan-1972 0.002642 sec
 15-Jan-1972 0.00274 sec
 16-Jan-1972 0.002937 sec
 ⋮

Add another variable with the unadjusted difference since 1972. Start with the cumulative excess
LOD on January 1, 1972, which was 0.0454859 second. For every date that follows, calculate the
unadjusted difference. By the beginning of 2017, the unadjusted difference would have grown to
about 26 seconds. Display IERSdata1972 using a time range that includes the start of 2017.

DiffUT1_1972 = seconds(0.0454859);
IERSdata1972.UnadjustedDiff = DiffUT1_1972 + [0; cumsum(IERSdata1972.ExcessLOD(1:end-1))];
IERSdata1972(timerange("2016-12-29","2017-01-04"),:)

ans=6×2 timetable
 Date ExcessLOD UnadjustedDiff
 ___________ _____________ ______________

 29-Dec-2016 0.0008055 sec 26.402 sec
 30-Dec-2016 0.0008525 sec 26.402 sec
 31-Dec-2016 0.0009173 sec 26.403 sec
 01-Jan-2017 0.001016 sec 26.404 sec
 02-Jan-2017 0.0011845 sec 26.405 sec
 03-Jan-2017 0.0013554 sec 26.406 sec

This drift is what leap seconds are designed to mitigate. You can think of each leap second that is
inserted into the UTC timeline as an event. These events are not part of the LOD data. However, the

10 Timetables

10-74

leapseconds function lists each of the leap second events that has occurred since 1972. (The leap
second events listed by leapseconds come from another data set provided by the IERS.) The
timetable returned by leapseconds contains a timestamp, a description of each event (+ for leap
second insertions, - for removals), and the cumulative number of leap seconds up to and including
the event. To date, all leap second events have been insertions.

lsEvents = leapseconds()

lsEvents=27×2 timetable
 Date Type CumulativeAdjustment
 ___________ ____ ____________________

 30-Jun-1972 + 1 sec
 31-Dec-1972 + 2 sec
 31-Dec-1973 + 3 sec
 31-Dec-1974 + 4 sec
 31-Dec-1975 + 5 sec
 31-Dec-1976 + 6 sec
 31-Dec-1977 + 7 sec
 31-Dec-1978 + 8 sec
 31-Dec-1979 + 9 sec
 30-Jun-1981 + 10 sec
 30-Jun-1982 + 11 sec
 30-Jun-1983 + 12 sec
 30-Jun-1985 + 13 sec
 31-Dec-1987 + 14 sec
 31-Dec-1989 + 15 sec
 31-Dec-1990 + 16 sec
 ⋮

At this point, the main LOD data is in the IERSdata1972 timetable. The leap second events are in
the lsEvents timetable.

Use Event Timestamps to Select Data

Add the unadjusted difference, or cumulative excess LOD, at each date in lsEvents. To find the
unadjusted differences on these dates, index into the UnadjustedDiff variable of IERSdata1972
and select the unadjusted difference at the timestamps from lsEvents. Then append those
differences to each event in lsEvents as additional information about the event.

lsEvents.UnadjustedDiff = IERSdata1972.UnadjustedDiff(lsEvents.Date)

lsEvents=27×3 timetable
 Date Type CumulativeAdjustment UnadjustedDiff
 ___________ ____ ____________________ ______________

 30-Jun-1972 + 1 sec 0.63494 sec
 31-Dec-1972 + 2 sec 1.1864 sec
 31-Dec-1973 + 3 sec 2.2976 sec
 31-Dec-1974 + 4 sec 3.289 sec
 31-Dec-1975 + 5 sec 4.2718 sec
 31-Dec-1976 + 6 sec 5.3334 sec
 31-Dec-1977 + 7 sec 6.3469 sec
 31-Dec-1978 + 8 sec 7.398 sec
 31-Dec-1979 + 9 sec 8.3526 sec
 30-Jun-1981 + 10 sec 9.6281 sec
 30-Jun-1982 + 11 sec 10.389 sec

 Add Events from External Data to Timetable

10-75

 30-Jun-1983 + 12 sec 11.249 sec
 30-Jun-1985 + 13 sec 12.451 sec
 31-Dec-1987 + 14 sec 13.634 sec
 31-Dec-1989 + 15 sec 14.669 sec
 31-Dec-1990 + 16 sec 15.379 sec
 ⋮

Plot Events Against Data

The lsEvents timetable shows that at each event, the IERS inserted a leap second whenever the
excess LOD accumulated by roughly one additional second. To confirm this observation visually, plot
the instantaneous leap second events as points overlaid on the LOD data over time.

plot(IERSdata1972.Date,IERSdata1972.UnadjustedDiff);
hold on
plot(lsEvents.Date,IERSdata1972.UnadjustedDiff(lsEvents.Date),"r+");
hold off

Represent Events in Additional Timetable Variable

Each leap second is an instantaneous event that occurs at a specific time. Another way to represent
them is as a state variable appended to the original LOD data. A state variable describes the "state"
of the process being measured at each time point in the data rather than tagging a specific instant.
One possible state variable for this leap second data is an indicator variable that records an
adjustment on each event date, with missing values on all the other dates. Assign the leap second
event types to a state variable in IERSdata1972, using timestamps from lsEvents to assign event
types to the correct rows. This approach works because all timestamps from lsEvents are also
timestamps in IERSdata1972. The assignment automatically fills the other elements of the new
Adjustment variable with missing values.

IERSdata1972.Adjustment(lsEvents.Date) = lsEvents.Type;
IERSdata1972(timerange("2016-12-29","2017-01-04"),:)

10 Timetables

10-76

ans=6×3 timetable
 Date ExcessLOD UnadjustedDiff Adjustment
 ___________ _____________ ______________ ___________

 29-Dec-2016 0.0008055 sec 26.402 sec <undefined>
 30-Dec-2016 0.0008525 sec 26.402 sec <undefined>
 31-Dec-2016 0.0009173 sec 26.403 sec +
 01-Jan-2017 0.001016 sec 26.404 sec <undefined>
 02-Jan-2017 0.0011845 sec 26.405 sec <undefined>
 03-Jan-2017 0.0013554 sec 26.406 sec <undefined>

Another possibility, more useful in this example, is to add a state variable that indicates the
cumulative sum of leap seconds at any given date in the LOD data. Leap seconds occur at the end of a
day, so first assign a value of one second to the day after the date for each event.

IERSdata1972.Adjustment = []; % remove the previous state variable
IERSdata1972.Adjustment(lsEvents.Date+caldays(1)) = seconds(1);
IERSdata1972(timerange("2016-12-29","2017-01-04"),:)

ans=6×3 timetable
 Date ExcessLOD UnadjustedDiff Adjustment
 ___________ _____________ ______________ __________

 29-Dec-2016 0.0008055 sec 26.402 sec 0 sec
 30-Dec-2016 0.0008525 sec 26.402 sec 0 sec
 31-Dec-2016 0.0009173 sec 26.403 sec 0 sec
 01-Jan-2017 0.001016 sec 26.404 sec 1 sec
 02-Jan-2017 0.0011845 sec 26.405 sec 0 sec
 03-Jan-2017 0.0013554 sec 26.406 sec 0 sec

Then use a cumulative sum to fill in the Adjustment state variable at all other times in the data.
Instead of containing values of + and <undefined>, the state variable Adjustment now lists the
number of leap seconds added as of the date listed in each row of IERSdata1972.

IERSdata1972.Adjustment = cumsum(IERSdata1972.Adjustment);
IERSdata1972(timerange("2016-12-29","2017-01-04"),:)

ans=6×3 timetable
 Date ExcessLOD UnadjustedDiff Adjustment
 ___________ _____________ ______________ __________

 29-Dec-2016 0.0008055 sec 26.402 sec 26 sec
 30-Dec-2016 0.0008525 sec 26.402 sec 26 sec
 31-Dec-2016 0.0009173 sec 26.403 sec 26 sec
 01-Jan-2017 0.001016 sec 26.404 sec 27 sec
 02-Jan-2017 0.0011845 sec 26.405 sec 27 sec
 03-Jan-2017 0.0013554 sec 26.406 sec 27 sec

Although not used here, the retime function is often a useful tool for converting instantaneous
events to a state variable.

While the new state variable represents the instantaneous events, it is just like all the other variables
in IERSdata1972, with a value that is defined at each time. You can use it to compute the actual
differences between UTC and UT1, given all the leap second adjustments, by subtracting it from the

 Add Events from External Data to Timetable

10-77

unadjusted difference. The convention is to compute the actual difference with the opposite sign as
UT1 – UTC and denote it as DUT1.

IERSdata1972.DUT1 = IERSdata1972.UnadjustedDiff - IERSdata1972.Adjustment;
IERSdata1972(timerange("2016-12-29","2017-01-04"),:)

ans=6×4 timetable
 Date ExcessLOD UnadjustedDiff Adjustment DUT1
 ___________ _____________ ______________ __________ ____________

 29-Dec-2016 0.0008055 sec 26.402 sec 26 sec 0.40159 sec
 30-Dec-2016 0.0008525 sec 26.402 sec 26 sec 0.40239 sec
 31-Dec-2016 0.0009173 sec 26.403 sec 26 sec 0.40324 sec
 01-Jan-2017 0.001016 sec 26.404 sec 27 sec -0.59584 sec
 02-Jan-2017 0.0011845 sec 26.405 sec 27 sec -0.59482 sec
 03-Jan-2017 0.0013554 sec 26.406 sec 27 sec -0.59364 sec

Plot State Variable Against Data

The IERS makes leap second adjustments to keep UTC roughly in sync with UT1. To show how this
adjustment works, plot the Adjustment state variable as a piecewise-constant step function over
time. The step function approximates the accumulated excess LOD, so subtracting it keeps DUT1
small. For visual confirmation, plot DUT1 along the same time axis by using the stackedplot
function. Plot UnadjustedDiff and Adjustment together along one y-axis, with a legend, and plot
DUT1 along a second y-axis.

h = stackedplot(IERSdata1972,{["UnadjustedDiff","Adjustment"],"DUT1"})

h =
 StackedLineChart with properties:

 SourceTable: [18365×4 timetable]
 DisplayVariables: {{1×2 cell} 'DUT1'}
 Color: [0 0.4470 0.7410]

10 Timetables

10-78

 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
 MarkerSize: 6

 Show all properties

Add the value of DUT1 before and after each leap second to lsEvents. To get these values, use the
instantaneous form of the leap second events. Index into the DUT1 variable of IERSdata1972 using
the timestamps from lsEvents. Get the value of DUT1 on the date each leap second was added and
on the date of the day after. In general, DUT1 has a small negative value the day after a leap second is
added.

lsEvents.UnadjustedDiff = []; % remove the previous additional event information
lsEvents.DUT1_before = IERSdata1972.DUT1(lsEvents.Date);
lsEvents.DUT1_after = IERSdata1972.DUT1(lsEvents.Date+caldays(1))

lsEvents=27×4 timetable
 Date Type CumulativeAdjustment DUT1_before DUT1_after
 ___________ ____ ____________________ ___________ ____________

 30-Jun-1972 + 1 sec 0.63494 sec -0.36236 sec
 31-Dec-1972 + 2 sec 0.18641 sec -0.8107 sec
 31-Dec-1973 + 3 sec 0.29763 sec -0.69952 sec
 31-Dec-1974 + 4 sec 0.28898 sec -0.70817 sec
 31-Dec-1975 + 5 sec 0.2718 sec -0.72578 sec
 31-Dec-1976 + 6 sec 0.33338 sec -0.66411 sec
 31-Dec-1977 + 7 sec 0.34693 sec -0.64986 sec
 31-Dec-1978 + 8 sec 0.39802 sec -0.59892 sec
 31-Dec-1979 + 9 sec 0.35261 sec -0.64508 sec
 30-Jun-1981 + 10 sec 0.6281 sec -0.37053 sec
 30-Jun-1982 + 11 sec 0.38922 sec -0.60911 sec
 30-Jun-1983 + 12 sec 0.24852 sec -0.75008 sec
 30-Jun-1985 + 13 sec 0.45106 sec -0.54797 sec
 31-Dec-1987 + 14 sec 0.63443 sec -0.36417 sec
 31-Dec-1989 + 15 sec 0.66947 sec -0.32879 sec
 31-Dec-1990 + 16 sec 0.37936 sec -0.61885 sec
 ⋮

Choose Events or State Variables

The two representations, a separate list of instantaneous events and a state variable defined at all
times, are conceptually different. In some cases, there might not be a useful definition of a "state"
that corresponds to the periods between instantaneous events. But when there is, the two
representations are equivalent and useful in similar ways. For example, to select all the data after the
22nd leap second but before the 23rd, you can use event times and timerange.

from22to23 = timerange(lsEvents.Date(22),lsEvents.Date(23),"openleft");
data22to23 = IERSdata1972(from22to23,:)

data22to23=2557×4 timetable
 Date ExcessLOD UnadjustedDiff Adjustment DUT1
 ___________ _____________ ______________ __________ ____________

 01-Jan-1999 0.0009738 sec 21.283 sec 22 sec -0.71702 sec
 02-Jan-1999 0.000888 sec 21.284 sec 22 sec -0.71604 sec

 Add Events from External Data to Timetable

10-79

 03-Jan-1999 0.0008605 sec 21.285 sec 22 sec -0.71516 sec
 04-Jan-1999 0.0008798 sec 21.286 sec 22 sec -0.71429 sec
 05-Jan-1999 0.0008935 sec 21.287 sec 22 sec -0.71342 sec
 06-Jan-1999 0.0009693 sec 21.287 sec 22 sec -0.71252 sec
 07-Jan-1999 0.0010658 sec 21.288 sec 22 sec -0.71155 sec
 08-Jan-1999 0.0010857 sec 21.29 sec 22 sec -0.71049 sec
 09-Jan-1999 0.0010715 sec 21.291 sec 22 sec -0.7094 sec
 10-Jan-1999 0.0010519 sec 21.292 sec 22 sec -0.70833 sec
 11-Jan-1999 0.0010021 sec 21.293 sec 22 sec -0.70728 sec
 12-Jan-1999 0.0008986 sec 21.294 sec 22 sec -0.70628 sec
 13-Jan-1999 0.0007891 sec 21.295 sec 22 sec -0.70538 sec
 14-Jan-1999 0.0007236 sec 21.295 sec 22 sec -0.70459 sec
 15-Jan-1999 0.0006842 sec 21.296 sec 22 sec -0.70386 sec
 16-Jan-1999 0.0006091 sec 21.297 sec 22 sec -0.70318 sec
 ⋮

As an alternative, you can create a logical subscript from the state variable that selects the same
data.

from22to23 = (IERSdata1972.Adjustment == seconds(22));
data22to23 = IERSdata1972(from22to23,:)

data22to23=2557×4 timetable
 Date ExcessLOD UnadjustedDiff Adjustment DUT1
 ___________ _____________ ______________ __________ ____________

 01-Jan-1999 0.0009738 sec 21.283 sec 22 sec -0.71702 sec
 02-Jan-1999 0.000888 sec 21.284 sec 22 sec -0.71604 sec
 03-Jan-1999 0.0008605 sec 21.285 sec 22 sec -0.71516 sec
 04-Jan-1999 0.0008798 sec 21.286 sec 22 sec -0.71429 sec
 05-Jan-1999 0.0008935 sec 21.287 sec 22 sec -0.71342 sec
 06-Jan-1999 0.0009693 sec 21.287 sec 22 sec -0.71252 sec
 07-Jan-1999 0.0010658 sec 21.288 sec 22 sec -0.71155 sec
 08-Jan-1999 0.0010857 sec 21.29 sec 22 sec -0.71049 sec
 09-Jan-1999 0.0010715 sec 21.291 sec 22 sec -0.7094 sec
 10-Jan-1999 0.0010519 sec 21.292 sec 22 sec -0.70833 sec
 11-Jan-1999 0.0010021 sec 21.293 sec 22 sec -0.70728 sec
 12-Jan-1999 0.0008986 sec 21.294 sec 22 sec -0.70628 sec
 13-Jan-1999 0.0007891 sec 21.295 sec 22 sec -0.70538 sec
 14-Jan-1999 0.0007236 sec 21.295 sec 22 sec -0.70459 sec
 15-Jan-1999 0.0006842 sec 21.296 sec 22 sec -0.70386 sec
 16-Jan-1999 0.0006091 sec 21.297 sec 22 sec -0.70318 sec
 ⋮

Both representations have their uses. For example, while each event can be plotted as a point, the
state variable is the more convenient form for highlighting regions between events in a plot. To
highlight the region between the 22nd and 23rd leap second, use the isbetween function with the
Adjustment state variable from IERSdata1972.

plot(IERSdata1972.Date,IERSdata1972.UnadjustedDiff);
hold on
from22to23 = isbetween(IERSdata1972.Adjustment,seconds(22),seconds(23));
plot(IERSdata1972.Date(from22to23),IERSdata1972.UnadjustedDiff(from22to23),"r-","LineWidth",4);
hold off

10 Timetables

10-80

You can switch between the two representations. In this case, to get the leap second event dates from
the adjustment state variable, find the locations where the adjustment changes, and subtract one day.
The eventTimes output represents the dates on which leap seconds were added, which are
instantaneous events.

eventTimes = IERSdata1972.Date(diff(IERSdata1972.Adjustment) ~= 0) - caldays(1)

eventTimes = 27×1 datetime
 29-Jun-1972
 30-Dec-1972
 30-Dec-1973
 30-Dec-1974
 30-Dec-1975
 30-Dec-1976
 30-Dec-1977
 30-Dec-1978
 30-Dec-1979
 29-Jun-1981
 29-Jun-1982
 29-Jun-1983
 29-Jun-1985
 30-Dec-1987
 30-Dec-1989
 30-Dec-1990
 29-Jun-1992
 29-Jun-1993
 29-Jun-1994
 30-Dec-1995
 29-Jun-1997
 30-Dec-1998
 30-Dec-2005
 30-Dec-2008
 29-Jun-2012
 29-Jun-2015

 Add Events from External Data to Timetable

10-81

 30-Dec-2016

Whether you use instantaneous events, state variables, or switch between them depends on which
representation is more convenient and useful for the data analysis that you plan to perform. Both
representations are useful ways to add information about events to your timestamped data in a
timetable.

See Also
timetable | datetime | seconds | leapseconds | timerange | isbetween | stackedplot |
readtable | table2timetable | cumsum

Related Examples
• “Represent Dates and Times in MATLAB” on page 7-2
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Data Cleaning and Calculations in Tables” on page 9-81
• “Grouped Calculations in Tables and Timetables” on page 9-99
• “Select Times in Timetable” on page 10-19
• “Find Events in Timestamped Data” on page 10-83

10 Timetables

10-82

Find Events in Timestamped Data

This example shows how to use events to work with timestamped data stored in timetables. An event
consists of a timestamp (when something happened), often a description (what happened), and
sometimes additional information about the event. The timestamp for an instantaneous event is a
single point in time, either a datetime or duration value. The timestamp for an interval event
consists of two points in time that define the start and end of the event.

You can use events to find or mark data of interest for plotting and analysis. This example shows how
you can define events in data using information that is within your data set. To add events from an
external data source to your timestamped data, see “Add Events from External Data to Timetable” on
page 10-71.

You can store events separately from the main data set. A timetable is a convenient way to store
events because it can hold the event timestamps along with their descriptions and any other
information. You can use the event timestamps as subscripts into the main data set to select data at,
before, or after an event, or between two events. You can also store events in the same timetable as
the data set they describe by using one or more additional timetable variables. This example shows
how to use both representations. The representation that is more useful depends on the data analysis
you plan to perform.

Define Data Set Using Variations in Length of Day

By definition a day is 86,400 seconds long, where the second has a precise definition in the
International System of Units (SI). However, the length of a day actually varies due to several
physical causes. It varies with the seasons by as much as 30 seconds over and 21 seconds under the
SI definition because of the eccentricity of Earth's orbit and the tilt of its axis. Averaging these
seasonal effects enables the definition of the mean solar day, which does not vary in length over a
year.

Also, there is a very long-term slowing in the rotational speed of the Earth due to tidal interaction
with the moon; a smaller, opposite, shorter-term component believed to be due to melting of
continental ice sheets; very short-term cycles on the order of decades; and unpredictable fluctuations
due to geological events and other causes. Because of those effects, the length of a mean solar day
might increase or decrease. In recent decades, it has fluctuated up and down, but has mostly been 1–
3 milliseconds longer than 86,400 seconds. That difference is known as the excess Length of Day, or
excess LOD.

For this example, create a timetable that contains the excess LOD for every day from January 1, 1962,
to the present. The International Earth Rotation and Reference Systems Service (IERS) collects and
publishes this data. However, this data needs preprocessing before storing in a MATLAB timetable
because the dates are modified Julian dates. To read the IERS data into a table, use the readtable
function. Rename the two variables of interest to MJD and ExcessLOD.

file = "https://datacenter.iers.org/data/latestVersion/223_EOP_C04_14.62-NOW.IAU1980223.txt";
IERSdata = readtable(file,"NumHeaderLines",14);
IERSdata.Properties.VariableNames([4 8]) = ["MJD","ExcessLOD"];

To store the excess LOD values in a timetable, convert the modified Julian dates to datetime values.
Use the datetime function with the "ConvertFrom","mjd" name-value argument. Then convert
IERSdata from a table to a timetable using the table2timetable function.

 Find Events in Timestamped Data

10-83

https://www.iers.org/IERS/EN/Home/home_node.html
https://en.wikipedia.org/wiki/Julian_day

IERSdata.Date = datetime(IERSdata.MJD,"ConvertFrom","mjd");
IERSdata.ExcessLOD = seconds(IERSdata.ExcessLOD);
IERSdata = table2timetable(IERSdata(:,["Date","ExcessLOD"]))

IERSdata=22017×1 timetable
 Date ExcessLOD
 ___________ ____________

 01-Jan-1962 0.001723 sec
 02-Jan-1962 0.001669 sec
 03-Jan-1962 0.001582 sec
 04-Jan-1962 0.001496 sec
 05-Jan-1962 0.001416 sec
 06-Jan-1962 0.001382 sec
 07-Jan-1962 0.001413 sec
 08-Jan-1962 0.001505 sec
 09-Jan-1962 0.001628 sec
 10-Jan-1962 0.001738 sec
 11-Jan-1962 0.001794 sec
 12-Jan-1962 0.001774 sec
 13-Jan-1962 0.001667 sec
 14-Jan-1962 0.00151 sec
 15-Jan-1962 0.001312 sec
 16-Jan-1962 0.001112 sec
 ⋮

Plot the excess LOD as a function of time.

plot(IERSdata.Date,IERSdata.ExcessLOD,"b-");
ylabel("Excess LOD");

10 Timetables

10-84

Find Events in Data Set

Since the 1960s there have been several periods when the excess LOD decreased over the short
term. If you smooth the excess LOD data, you can see this local behavior more easily.

To smooth the excess LOD, use the smoothdata function. Then plot the smoothed data over the
excess LOD.

IERSdata.SmoothedELOD = smoothdata(seconds(IERSdata.ExcessLOD),"loess","SmoothingFactor",.4);
plot(IERSdata.Date,IERSdata.ExcessLOD,"b-");
hold on
plot(IERSdata.Date,IERSdata.SmoothedELOD,"g-","LineWidth",2);
hold off
ylabel("Excess LOD");

The peaks and troughs of the smoothed data show where the short-term trend changed direction.
After reaching a peak, the excess LOD decreases. After reaching a trough, the excess LOD increases.
The peaks and troughs are notable events in this data set.

To identify the peaks and troughs in the smoothed data, use the islocalmax and islocalmin
functions. Then get the date and the value of the excess LOD for each peak and trough. Create a
categorical array with two types, peak and trough, that describe these two types of events.

peaks = find(islocalmax(IERSdata.SmoothedELOD));
troughs = find(islocalmin(IERSdata.SmoothedELOD));
Date = IERSdata.Date([peaks;troughs]);
Value = IERSdata.SmoothedELOD([peaks;troughs]);
Type = categorical([zeros(size(peaks)); ones(size(troughs))],[0 1],["peak","trough"]);

Save Events in Timetable

Create a timetable that contains the peak and trough events. Each row of the timetable contains the
event date, the type of event, and the value of the excess LOD at that event.

extremaEvents = sortrows(timetable(Date,Type,Value))

 Find Events in Timestamped Data

10-85

extremaEvents=9×2 timetable
 Date Type Value
 ___________ ______ __________

 16-Jul-1972 peak 0.0030145
 04-Aug-1975 trough 0.0027592
 25-Jun-1977 peak 0.0028619
 11-Jan-1987 trough 0.0012623
 31-Oct-1993 peak 0.0023055
 11-Nov-2003 trough 0.00031077
 13-Feb-2008 peak 0.00087789
 18-Jul-2010 trough 0.00074339
 24-Dec-2015 peak 0.0012426

Plot Events Against Data

Mark the peaks and troughs on the plot, using a triangle pointed upward for peaks and a triangle
pointed downward for troughs.

hold on
isPeak = (extremaEvents.Type == "peak");
hpeaks = plot(extremaEvents.Date(isPeak),extremaEvents.Value(isPeak),"y^","MarkerFaceColor","y");
isTrough = (extremaEvents.Type == "trough");
htroughs = plot(extremaEvents.Date(isTrough),extremaEvents.Value(isTrough),"yv","MarkerFaceColor","y");
hold off

Find Data Between Two Events

Select the subset of data between the second peak and the second trough.

First specify the time range of these events by using the timerange function and the dates on which
the peak and trough occurred.

between2peak2trough = timerange(extremaEvents.Date(3),extremaEvents.Date(4))

10 Timetables

10-86

between2peak2trough =
 timetable timerange subscript:

 Select timetable rows with times in the half-open interval:
 [25-Jun-1977 00:00:00, 11-Jan-1987 00:00:00)

 See Select Times in Timetable.

Index into IERSdata using the time range. Display the start and the end of the subset using the head
and tail functions.

segment4 = IERSdata(between2peak2trough,:);
head(segment4)

 Date ExcessLOD SmoothedELOD
 ___________ ____________ ____________

 25-Jun-1977 0.002277 sec 0.0028619
 26-Jun-1977 0.002236 sec 0.0028619
 27-Jun-1977 0.002147 sec 0.0028619
 28-Jun-1977 0.002032 sec 0.0028619
 29-Jun-1977 0.001936 sec 0.0028619
 30-Jun-1977 0.001871 sec 0.0028619
 01-Jul-1977 0.001875 sec 0.0028619
 02-Jul-1977 0.00193 sec 0.0028619

tail(segment4)

 Date ExcessLOD SmoothedELOD
 ___________ _____________ ____________

 03-Jan-1987 0.0015672 sec 0.0012623
 04-Jan-1987 0.001762 sec 0.0012623
 05-Jan-1987 0.0018557 sec 0.0012623
 06-Jan-1987 0.0018304 sec 0.0012623
 07-Jan-1987 0.0016989 sec 0.0012623
 08-Jan-1987 0.0014924 sec 0.0012623
 09-Jan-1987 0.0012496 sec 0.0012623
 10-Jan-1987 0.0010093 sec 0.0012623

Create Interval Events from Instantaneous Events

From peak to trough, the excess LOD is decreasing, meaning that the Earth's rotation speeds up
during that interval. Store these decreasing periods in a table as interval events. The last peak has no
matching trough, so use the last time in the data set as the end time for the last interval.

StartDate = IERSdata.Date(peaks);
EndDate = [IERSdata.Date(troughs); IERSdata.Date(end)];
decreasingEvents = table(StartDate,EndDate)

decreasingEvents=5×2 table
 StartDate EndDate
 ___________ ___________

 16-Jul-1972 04-Aug-1975
 25-Jun-1977 11-Jan-1987
 31-Oct-1993 11-Nov-2003
 13-Feb-2008 18-Jul-2010

 Find Events in Timestamped Data

10-87

 24-Dec-2015 12-Apr-2022

Compute the average decrease in excess LOD during each interval (in units of seconds of daily excess
LOD per year). Add that information to the interval events in the table.

dTime = decreasingEvents.EndDate - decreasingEvents.StartDate;
dExcess = IERSdata.SmoothedELOD(decreasingEvents.EndDate) - IERSdata.SmoothedELOD(decreasingEvents.StartDate);
decreasingEvents.AnnualAvgDecrease = seconds(dExcess ./ years(dTime))

decreasingEvents=5×3 table
 StartDate EndDate AnnualAvgDecrease
 ___________ ___________ _________________

 16-Jul-1972 04-Aug-1975 -8.3728e-05 sec
 25-Jun-1977 11-Jan-1987 -0.00016756 sec
 31-Oct-1993 11-Nov-2003 -0.0001989 sec
 13-Feb-2008 18-Jul-2010 -5.5449e-05 sec
 24-Dec-2015 12-Apr-2022 -0.0002662 sec

These results show that the mean solar day, averaged over an entire year, has been decreasing over
the last few years by about 0.3 milliseconds per year. The mean solar day is currently near or even
slightly less than 86,400 seconds. However, many experts believe that this trend will not continue.

Convert Instantaneous Events to State Variable Using retime Function

The extremaEvents timetable records times at which the smoothed excess LOD reached a peak and
began a decrease or reached a trough and began an increase. Another way to represent those
changes is as a state variable that indicates whether the data are increasing or decreasing at any
given time in the data set. To convert the discrete peak and trough events into a new increasing and
decreasing state variable, first assign the peak and trough events into the excess LOD data at their
time of occurrence.

The new timetable variable, State, is a state variable

with three states. The states are peak at any peak, trough at any trough, and <undefined> at any
other time between a peak and a trough.

IERSdata.State(extremaEvents.Date) = extremaEvents.Type;
IERSdata(timerange("2015-12-23","2016-01-01"),:)

ans=9×3 timetable
 Date ExcessLOD SmoothedELOD State
 ___________ _____________ ____________ ___________

 23-Dec-2015 0.0016556 sec 0.0012426 <undefined>
 24-Dec-2015 0.0015032 sec 0.0012426 peak
 25-Dec-2015 0.0014242 sec 0.0012426 <undefined>
 26-Dec-2015 0.0014033 sec 0.0012426 <undefined>
 27-Dec-2015 0.0014386 sec 0.0012426 <undefined>
 28-Dec-2015 0.0015334 sec 0.0012426 <undefined>
 29-Dec-2015 0.0016433 sec 0.0012426 <undefined>
 30-Dec-2015 0.0017386 sec 0.0012425 <undefined>
 31-Dec-2015 0.0018316 sec 0.0012425 <undefined>

10 Timetables

10-88

Now rename the values in State to represent the state at any time, not just at peaks and troughs.
Use the renamecats function to rename the states as decreasingLOD and increasingLOD. These
two states represent decreasing LOD and increasing LOD.

To carry these state variable values forward to each time in the data, use the retime function,
specifying the previous method. After every trough, retime uses the previous method to carry
increasingLOD forward as the state, until retime encounters a peak. Then it carries
decreasingLOD forward as the state.

IERSdata.State = renamecats(IERSdata.State,["decreasingLOD","increasingLOD"]);
IERSdata = retime(IERSdata,IERSdata.Date,"previous");
IERSdata(timerange("2015-12-23","2016-01-01"),:)

ans=9×3 timetable
 Date ExcessLOD SmoothedELOD State
 ___________ _____________ ____________ _____________

 23-Dec-2015 0.0016556 sec 0.0012426 increasingLOD
 24-Dec-2015 0.0015032 sec 0.0012426 decreasingLOD
 25-Dec-2015 0.0014242 sec 0.0012426 decreasingLOD
 26-Dec-2015 0.0014033 sec 0.0012426 decreasingLOD
 27-Dec-2015 0.0014386 sec 0.0012426 decreasingLOD
 28-Dec-2015 0.0015334 sec 0.0012426 decreasingLOD
 29-Dec-2015 0.0016433 sec 0.0012426 decreasingLOD
 30-Dec-2015 0.0017386 sec 0.0012425 decreasingLOD
 31-Dec-2015 0.0018316 sec 0.0012425 decreasingLOD

retime is a valuable tool to convert from instantaneous events to a state variable. In this example,
the peaks and troughs occurred at certain row times of the data timetable. But even for externally
defined events whose times are not in your data set, retime enables you to evaluate the state at only
the times that do appear in the data. In this example, passing IERSdata.Date as an argument into
retime shows this capability.

Finally, highlight the segments where excess LOD is decreasing in red. Even though
decreasingEvents contains the start and end times of those segments, you can plot those
segments more easily using the state variable.

delete([hpeaks; htroughs]);
hold on
decreasing = (IERSdata.State == "decreasingLOD");
plot(IERSdata.Date(decreasing),IERSdata.SmoothedELOD(decreasing),'r.');
hold off

 Find Events in Timestamped Data

10-89

Alternatively, highlight the background in those regions. In this case, the interval events are more
convenient.

hold on
startEnd = [decreasingEvents.StartDate decreasingEvents.EndDate];
h = fill(startEnd(:,[1 2 2 1]),[-.002 -.002 .005 .005],"red","FaceAlpha",.2,"LineStyle","none");
hold off

Find More Complex Events in Data

The excess LOD has both increased and decreased since the 1960s. Indeed, in many years there were
short periods when the raw excess LOD was significantly negative. These are only very short-term

10 Timetables

10-90

fluctuations, but during those periods the Earth was rotating one millisecond or more faster than
86,400 SI seconds.

plot(IERSdata.Date,IERSdata.ExcessLOD,"b-");
ylabel("Excess LOD");
hold on
line(IERSdata.Date([1 end]),[0 0],"Color","k","LineStyle",":")
hold off
ylabel("Excess LOD");

Identify the years in which the excess LOD was negative on any day. Then use retime to find the
minimum excess LOD in each of those years and create a timetable of events. These are interval
events in one sense but are stored as instantaneous events marked only by their year.

negLOD = IERSdata(IERSdata.ExcessLOD < 0,"ExcessLOD");
negYears = unique(dateshift(negLOD.Date,"start","year"));
negYears.Format = "uuuu";
negLODEvents = retime(negLOD,negYears,"min");
negLODEvents.Properties.VariableNames = "MinExcessLOD"

negLODEvents=25×1 timetable
 Date MinExcessLOD
 ____ ______________

 1984 -9.38e-05 sec
 1986 -1.33e-05 sec
 1987 -0.0001492 sec
 1988 -7.06e-05 sec
 1999 -0.0001063 sec
 2000 -0.000311 sec
 2001 -0.0007064 sec
 2002 -0.0007436 sec
 2003 -0.0009769 sec
 2004 -0.0010672 sec
 2005 -0.0010809 sec

 Find Events in Timestamped Data

10-91

 2006 -0.0003865 sec
 2007 -0.0006192 sec
 2008 -0.0003945 sec
 2009 -0.0004417 sec
 2010 -0.000784 sec
 ⋮

Mark the time axis red for each year that had periods when the excess LOD was negative. In this data
set, such years happen more frequently after the year 2000.

hold on
plot([negLODEvents.Date negLODEvents.Date+calyears(1)],[-.0016 -.0016],"r-","lineWidth",6);
ylim(seconds([-.0016 .0045]));
hold off

Whether you use instantaneous events, state variables, or switch between them depends on which
representation is more convenient and useful for the data analysis that you plan to carry out. Both
representations are useful ways to add information about events to your timestamped data in a
timetable.

See Also
timetable | datetime | retime | smoothdata | islocalmax | islocalmin | seconds |
timerange | stackedplot | readtable | table2timetable

Related Examples
• “Represent Dates and Times in MATLAB” on page 7-2
• “Resample and Aggregate Data in Timetable” on page 10-5
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times” on page 10-27
• “Data Cleaning and Calculations in Tables” on page 9-81

10 Timetables

10-92

• “Grouped Calculations in Tables and Timetables” on page 9-99
• “Select Times in Timetable” on page 10-19
• “Add Events from External Data to Timetable” on page 10-71

 Find Events in Timestamped Data

10-93

Structures

• “Structure Arrays” on page 11-2
• “Concatenate Structures” on page 11-8
• “Generate Field Names from Variables” on page 11-10
• “Access Data in Nested Structures” on page 11-11
• “Access Elements of a Nonscalar Structure Array” on page 11-13
• “Ways to Organize Data in Structure Arrays” on page 11-15
• “Memory Requirements for Structure Array” on page 11-18

11

Structure Arrays
When you have data that you want to organize by name, you can use structures to store it. Structures
store data in containers called fields, which you can then access by the names you specify. Use dot
notation to create, assign, and access data in structure fields. If the value stored in a field is an array,
then you can use array indexing to access elements of the array. When you store multiple structures
as a structure array, you can use array indexing and dot notation to access individual structures and
their fields.

Create Scalar Structure
First, create a structure named patient that has fields storing data about a patient. The diagram
shows how the structure stores data. A structure like patient is also referred to as a scalar
structure because the variable stores one structure.

Use dot notation to add the fields name, billing, and test, assigning data to each field. In this
example, the syntax patient.name creates both the structure and its first field. The commands that
follow add more fields.

patient.name = 'John Doe';
patient.billing = 127;
patient.test = [79 75 73; 180 178 177.5; 220 210 205]

patient = struct with fields:
 name: 'John Doe'
 billing: 127
 test: [3x3 double]

Access Values in Fields
After you create a field, you can keep using dot notation to access and change the value it stores.

For example, change the value of the billing field.

patient.billing = 512.00

patient = struct with fields:
 name: 'John Doe'

11 Structures

11-2

 billing: 512
 test: [3x3 double]

With dot notation, you also can access the value of any field. For example, make a bar chart of the
values in patient.test. Add a title with the text in patient.name. If a field stores an array, then
this syntax returns the whole array.

bar(patient.test)
title("Test Results for " + patient.name)

To access part of an array stored in a field, add indices that are appropriate for the size and type of
the array. For example, create a bar chart of the data in one column of patient.test.

bar(patient.test(:,1))

 Structure Arrays

11-3

Index into Nonscalar Structure Array
Structure arrays can be nonscalar. You can create a structure array having any size, as long as each
structure in the array has the same fields.

For example, add a second structure to patients having data about a second patient. Also, assign
the original value of 127 to the billing field of the first structure. Since the array now has two
structures, you must access the first structure by indexing, as in patient(1).billing = 127.

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68 70 68; 118 118 119; 172 170 169];
patient(1).billing = 127

patient=1×2 struct array with fields:
 name
 billing
 test

As a result, patient is a 1-by-2 structure array with contents shown in the diagram.

11 Structures

11-4

Each patient record in the array is a structure of class struct. An array of structures is sometimes
referred to as a struct array. However, the terms struct array and structure array mean the same
thing. Like other MATLAB® arrays, a structure array can have any dimensions.

A structure array has the following properties:

• All structures in the array have the same number of fields.
• All structures have the same field names.
• Fields of the same name in different structures can contain different types or sizes of data.

If you add a new structure to the array without specifying all of its fields, then the unspecified fields
contain empty arrays.

patient(3).name = 'New Name';
patient(3)

ans = struct with fields:
 name: 'New Name'
 billing: []
 test: []

To index into a structure array, use array indexing. For example, patient(2) returns the second
structure.

patient(2)

ans = struct with fields:
 name: 'Ann Lane'
 billing: 28.5000
 test: [3x3 double]

To access a field, use array indexing and dot notation. For example, return the value of the billing
field for the second patient.

 Structure Arrays

11-5

patient(2).billing

ans = 28.5000

You also can index into an array stored by a field. Create a bar chart displaying only the first two
columns of patient(2).test.

bar(patient(2).test(:,[1 2]))

Note You can index into part of a field only when you refer to a single element of a structure array.
MATLAB does not support statements such as patient(1:2).test(1:2,2:3), which attempt to
index into a field for multiple elements of the structure array. Instead, use the arrayfun function.

See Also
struct | fieldnames | isfield

Related Examples
• “Access Elements of a Nonscalar Structure Array” on page 11-13
• “Generate Field Names from Variables” on page 11-10
• “Create Cell Array” on page 12-3
• “Cell vs. Structure Arrays” on page 12-17

11 Structures

11-6

• “Create Tables and Assign Data to Them” on page 9-2
• “Advantages of Using Tables” on page 9-71

 Structure Arrays

11-7

Concatenate Structures

This example shows how to concatenate structure arrays using the [] operator. To concatenate
structures, they must have the same set of fields, but the fields do not need to contain the same sizes
or types of data.

Create scalar (1-by-1) structure arrays struct1 and struct2, each with fields a and b:

struct1.a = 'first';
struct1.b = [1,2,3];
struct2.a = 'second';
struct2.b = rand(5);
struct1,struct2

struct1 = struct with fields:
 a: 'first'
 b: [1 2 3]

struct2 = struct with fields:
 a: 'second'
 b: [5x5 double]

Just as concatenating two scalar values such as [1,2] creates a 1-by-2 numeric array, concatenating
struct1 and struct2 creates a 1-by-2 structure array.

combined = [struct1,struct2]

combined=1×2 struct array with fields:
 a
 b

When you want to access the contents of a particular field, specify the index of the structure in the
array. For example, access field a of the first structure.

combined(1).a

ans =
'first'

Concatenation also applies to nonscalar structure arrays. For example, create a 2-by-2 structure
array named new. Because the 1-by-2 structure combined and the 2-by-2 structure new both have
two columns, you can concatenate them vertically with a semicolon separator.

new(1,1).a = 1;
new(1,1).b = 10;
new(1,2).a = 2;
new(1,2).b = 20;
new(2,1).a = 3;
new(2,1).b = 30;
new(2,2).a = 4;
new(2,2).b = 40;

larger = [combined; new]

11 Structures

11-8

larger=3×2 struct array with fields:
 a
 b

Access field a of the structure larger(2,1). It contains the same value as new(1,1).a.

larger(2,1).a

ans = 1

See Also

Related Examples
• “Creating, Concatenating, and Expanding Matrices”
• “Structure Arrays” on page 11-2
• “Access Elements of a Nonscalar Structure Array” on page 11-13

 Concatenate Structures

11-9

Generate Field Names from Variables

This example shows how to derive a structure field name at run time from a variable or expression.
The general syntax is

structName.(dynamicExpression)

where dynamicExpression is a variable or expression that, when evaluated, returns a string scalar.
Field names that you reference with expressions are called dynamic fieldnames, or sometimes
dynamic field names.

For example, create a field name from the current date:

currentDate = datestr(now,'mmmdd');
myStruct.(currentDate) = [1,2,3]

If the current date reported by your system is February 29, then this code assigns data to a field
named Feb29:

myStruct =
 Feb29: [1 2 3]

The dynamic fieldname can return either a character vector or a string scalar. For example, you can
specify the field Feb29 using either single or double quotes.

myStruct.('Feb29')

ans =
 1 2 3

myStruct.("Feb29")

ans =
 1 2 3

Field names, like variable names, must begin with a letter, can contain letters, digits, or underscore
characters, and are case sensitive. To avoid potential conflicts, do not use the names of existing
variables or functions as field names.

See Also
struct | fieldnames | getfield | setfield

Related Examples
• “Variable Names” on page 1-5
• “Structure Arrays” on page 11-2

11 Structures

11-10

Access Data in Nested Structures
This example shows how to index into a structure that is nested within another structure. The general
syntax for accessing data in a particular field is

structName(index).nestedStructName(index).fieldName(indices)

When a structure is scalar (1-by-1), you do not need to include the indices to refer to the single
element. For example, create a scalar structure s, where field n is a nested scalar structure with
fields a, b, and c:

s.n.a = ones(3);
s.n.b = eye(4);
s.n.c = magic(5);

Access the third row of field b:

third_row_b = s.n.b(3,:)

Variable third_row_b contains the third row of eye(4).

third_row_b =
 0 0 1 0

Expand s so that both s and n are nonscalar (1-by-2):

s(1).n(2).a = 2*ones(3);
s(1).n(2).b = 2*eye(4);
s(1).n(2).c = 2*magic(5);

s(2).n(1).a = '1a';
s(2).n(2).a = '2a';
s(2).n(1).b = '1b';
s(2).n(2).b = '2b';
s(2).n(1).c = '1c';
s(2).n(2).c = '2c';

Structure s now contains the data shown in the following figure.

Access part of the array in field b of the second element in n within the first element of s:

part_two_eye = s(1).n(2).b(1:2,1:2)

This returns the 2-by-2 upper left corner of 2*eye(4):

part_two_eye =
 2 0
 0 2

See Also
struct | setfield | getfield

 Access Data in Nested Structures

11-11

Related Examples
• “Structure Arrays” on page 11-2
• “Ways to Organize Data in Structure Arrays” on page 11-15

11 Structures

11-12

Access Elements of a Nonscalar Structure Array
This example shows how to access and process data from multiple elements of a nonscalar structure
array:

Create a 1-by-3 structure s with field f:

s(1).f = 1;
s(2).f = 'two';
s(3).f = 3 * ones(3);

Although each structure in the array must have the same number of fields and the same field names,
the contents of the fields can be different types and sizes. When you refer to field f for multiple
elements of the structure array, such as

s(1:3).f

or

s.f

MATLAB returns the data from the elements in a comma-separated list, which displays as follows:

ans =
 1

ans =
 two

ans =
 3 3 3
 3 3 3
 3 3 3

You cannot assign the list to a single variable with the syntax v = s.f because the fields can contain
different types of data. However, you can assign the list items to the same number of variables, such
as

[v1, v2, v3] = s.f;

or assign to elements of a cell array, such as

c = {s.f};

If all of the fields contain the same type of data and can form a hyperrectangle, you can concatenate
the list items. For example, create a structure nums with scalar numeric values in field f, and
concatenate the data from the fields:

nums(1).f = 1;
nums(2).f = 2;
nums(3).f = 3;

allNums = [nums.f]

This code returns

allNums =
 1 2 3

 Access Elements of a Nonscalar Structure Array

11-13

If you want to process each element of an array with the same operation, use the arrayfun function.
For example, count the number of elements in field f of each structure in array s:

numElements = arrayfun(@(x) numel(x.f), s)

The syntax @(x) creates an anonymous function. This code calls the numel function for each element
of array s, such as numel(s(1).f), and returns

numElements =
 1 3 9

For related information, see:

• “Comma-Separated Lists” on page 2-80
• “Anonymous Functions” on page 21-20

11 Structures

11-14

Ways to Organize Data in Structure Arrays
There are at least two ways you can organize data in a structure array: plane organization and
element-by-element organization. The method that best fits your data depends on how you plan to
access the data, and, for very large data sets, whether you have system memory constraints.

Plane organization allows easier access to all values within a field. Element-by-element organization
allows easier access to all information related to a single element or record. The following sections
include an example of each type of organization:

• “Plane Organization” on page 11-15
• “Element-by-Element Organization” on page 11-16

When you create a structure array, MATLAB stores information about each element and field in the
array header. As a result, structures with more elements and fields require more memory than
simpler structures that contain the same data.

Plane Organization
Consider an RGB image with three arrays corresponding to color intensity values.

If you have arrays RED, GREEN, and BLUE in your workspace, then these commands create a scalar
structure named img that uses plane organization:

img.red = RED;
img.green = GREEN;
img.blue = BLUE;

Plane organization allows you to easily extract entire image planes for display, filtering, or other
processing. For example, multiply the red intensity values by 0.9:

 Ways to Organize Data in Structure Arrays

11-15

adjustedRed = .9 * img.red;

If you have multiple images, you can add them to the img structure, so that each element
img(1),...,img(n) contains an entire image. For an example that adds elements to a structure,
see the following section.

Element-by-Element Organization
Consider a database with patient information. Each record contains data for the patient’s name, test
results, and billing amount.

These statements create an element in a structure array named patient:

patient(1).name = 'John Doe';
patient(1).billing = 127.00;
patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

Additional patients correspond to new elements in the structure. For example, add an element for a
second patient:

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

Element-by-element organization supports simple indexing to access data for a particular patient. For
example, find the average of the first patient’s test results, calculating by rows (dimension 2) rather
than by columns:

aveResultsDoe = mean(patient(1).test,2)

This code returns

aveResultsDoe =
 75.6667
 178.5000
 212.0000

See Also
struct

11 Structures

11-16

More About
• “Structure Arrays” on page 11-2
• “Access Elements of a Nonscalar Structure Array” on page 11-13
• “Memory Requirements for Structure Array” on page 11-18

 Ways to Organize Data in Structure Arrays

11-17

Memory Requirements for Structure Array
Structure arrays do not require completely contiguous memory. However, each field requires
contiguous memory, as does the header that MATLAB creates to describe the array. For very large
arrays, incrementally increasing the number of fields or the number of elements in a field results in
Out of Memory errors.

Preallocate memory for the contents by assigning initial values with the struct function, such as

newStruct(1:25,1:50) = struct('a',ones(20),'b',zeros(30),'c',rand(40));

This code creates and populates a 25-by-50 structure array S with fields a, b, and c.

If you prefer not to assign initial values, you can initialize a structure array by assigning empty arrays
to each field of the last element in the structure array, such as

newStruct(25,50).a = [];
newStruct(25,50).b = [];
newStruct(25,50).c = [];

or, equivalently,

newStruct(25,50) = struct('a',[],'b',[],'c',[]);

However, in this case, MATLAB only allocates memory for the header, and not for the contents of the
array.

For more information, see:

• “Reshaping and Rearranging Arrays”
• “How MATLAB Allocates Memory” on page 32-12

11 Structures

11-18

Cell Arrays

• “What Is a Cell Array?” on page 12-2
• “Create Cell Array” on page 12-3
• “Access Data in Cell Array” on page 12-5
• “Add Cells to Cell Array” on page 12-8
• “Delete Data from Cell Array” on page 12-10
• “Combine Cell Arrays” on page 12-11
• “Pass Contents of Cell Arrays to Functions” on page 12-12
• “Preallocate Memory for Cell Array” on page 12-16
• “Cell vs. Structure Arrays” on page 12-17
• “Multilevel Indexing to Access Parts of Cells” on page 12-21

12

What Is a Cell Array?
A cell array is a data type with indexed data containers called cells. Each cell can contain any type of
data. Cell arrays commonly contain pieces of text, combinations of text and numbers from
spreadsheets or text files, or numeric arrays of different sizes.

There are two ways to refer to the elements of a cell array. Enclose indices in smooth parentheses,
(), to refer to sets of cells — for example, to define a subset of the array. Enclose indices in curly
braces, {}, to refer to the text, numbers, or other data within individual cells.

For more information, see:

• “Create Cell Array” on page 12-3
• “Access Data in Cell Array” on page 12-5

12 Cell Arrays

12-2

Create Cell Array

This example shows how to create a cell array using the {} operator or the cell function.

When you have data to put into a cell array, create the array using the cell array construction
operator, {}.

myCell = {1, 2, 3;
 'text', rand(5,10,2), {11; 22; 33}}

myCell=2×3 cell array
 {[1]} {[2]} {[3]}
 {'text'} {5x10x2 double} {3x1 cell}

Like all MATLAB® arrays, cell arrays are rectangular, with the same number of cells in each row.
myCell is a 2-by-3 cell array.

You also can use the {} operator to create an empty 0-by-0 cell array.

C = {}

C =

 0x0 empty cell array

To add values to a cell array over time or in a loop, create an empty N-dimensional array using the
cell function.

emptyCell = cell(3,4,2)

emptyCell = 3x4x2 cell array
emptyCell(:,:,1) =

 {0x0 double} {0x0 double} {0x0 double} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double} {0x0 double}

emptyCell(:,:,2) =

 {0x0 double} {0x0 double} {0x0 double} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double} {0x0 double}

emptyCell is a 3-by-4-by-2 cell array, where each cell contains an empty array, [].

See Also
cell

Related Examples
• “Access Data in Cell Array” on page 12-5

 Create Cell Array

12-3

• “Structure Arrays” on page 11-2
• “Create Tables and Assign Data to Them” on page 9-2
• “Cell vs. Structure Arrays” on page 12-17
• “Advantages of Using Tables” on page 9-71

12 Cell Arrays

12-4

Access Data in Cell Array

This example shows how to read and write data to and from a cell array.

Create a 2-by-3 cell array of text and numeric data.

C = {'one', 'two', 'three';
 1, 2, 3}

C=2×3 cell array
 {'one'} {'two'} {'three'}
 {[1]} {[2]} {[3]}

There are two ways to refer to the elements of a cell array. Enclose indices in smooth parentheses,
(), to refer to sets of cells--for example, to define a subset of the array. Enclose indices in curly
braces, {}, to refer to the text, numbers, or other data within individual cells.

Cell Indexing with Smooth Parentheses, ()

Cell array indices in smooth parentheses refer to sets of cells. For example, to create a 2-by-2 cell
array that is a subset of C, use smooth parentheses.

upperLeft = C(1:2,1:2)

upperLeft=2×2 cell array
 {'one'} {'two'}
 {[1]} {[2]}

Update sets of cells by replacing them with the same number of cells. For example, replace cells in
the first row of C with an equivalent-sized (1-by-3) cell array.

C(1,1:3) = {'first','second','third'}

C=2×3 cell array
 {'first'} {'second'} {'third'}
 {[1]} {[2]} {[3]}

If cells in your array contain numeric data, you can convert the cells to a numeric array using the
cell2mat function.

numericCells = C(2,1:3)

numericCells=1×3 cell array
 {[1]} {[2]} {[3]}

numericVector = cell2mat(numericCells)

numericVector = 1×3

 1 2 3

numericCells is a 1-by-3 cell array, but numericVector is a 1-by-3 array of type double.

 Access Data in Cell Array

12-5

Content Indexing with Curly Braces, {}

Access the contents of cells--the numbers, text, or other data within the cells--by indexing with curly
braces. For example, to access the contents of the last cell of C, use curly braces.

last = C{2,3}

last = 3

last is a numeric variable of type double, because the cell contains a double value.

Similarly, you can index with curly braces to replace the contents of a cell.

C{2,3} = 300

C=2×3 cell array
 {'first'} {'second'} {'third'}
 {[1]} {[2]} {[300]}

You can access the contents of multiple cells by indexing with curly braces. MATLAB® returns the
contents of the cells as a comma-separated list. Because each cell can contain a different type of data,
you cannot assign this list to a single variable. However, you can assign the list to the same number of
variables as cells. MATLAB® assigns to the variables in column order.

Assign contents of four cells of C to four variables.

[r1c1, r2c1, r1c2, r2c2] = C{1:2,1:2}

r1c1 =
'first'

r2c1 = 1

r1c2 =
'second'

r2c2 = 2

If each cell contains the same type of data, you can create a single variable by applying the array
concatenation operator, [], to the comma-separated list.

Concatenate the contents of the second row into a numeric array.

nums = [C{2,:}]

nums = 1×3

 1 2 300

See Also
cell | cell2mat

Related Examples
• “Create Cell Array” on page 12-3

12 Cell Arrays

12-6

• “Multilevel Indexing to Access Parts of Cells” on page 12-21
• “Comma-Separated Lists” on page 2-80

 Access Data in Cell Array

12-7

Add Cells to Cell Array

This example shows how to add cells to a cell array.

Create a 1-by-3 cell array.

C = {1, 2, 3}

C=1×3 cell array
 {[1]} {[2]} {[3]}

Assign data to a cell outside the current dimensions. MATLAB® expands the cell array to a rectangle
that includes the specified subscripts. Any intervening cells contain empty arrays.

C{4,4} = 44

C=4×4 cell array
 {[1]} {[2]} {[3]} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double} {[44]}

Add cells without specifying a value by assigning an empty array as the contents of a cell. C is now a
5-by-5 cell array.

C{5,5} = []

C=5×5 cell array
 Columns 1 through 4

 {[1]} {[2]} {[3]} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double} {0x0 double}
 {0x0 double} {0x0 double} {0x0 double} {[44]}
 {0x0 double} {0x0 double} {0x0 double} {0x0 double}

 Column 5

 {0x0 double}
 {0x0 double}
 {0x0 double}
 {0x0 double}
 {0x0 double}

See Also

Related Examples
• “Access Data in Cell Array” on page 12-5
• “Combine Cell Arrays” on page 12-11

12 Cell Arrays

12-8

• “Delete Data from Cell Array” on page 12-10

 Add Cells to Cell Array

12-9

Delete Data from Cell Array

This example shows how to remove data from individual cells, and how to delete entire cells from a
cell array.

Create a 3-by-3 cell array.

C = {1, 2, 3; 4, 5, 6; 7, 8, 9}

C=3×3 cell array
 {[1]} {[2]} {[3]}
 {[4]} {[5]} {[6]}
 {[7]} {[8]} {[9]}

Delete the contents of a particular cell by assigning an empty array to the cell, using curly braces for
content indexing, {}.

C{2,2} = []

C=3×3 cell array
 {[1]} {[2]} {[3]}
 {[4]} {0x0 double} {[6]}
 {[7]} {[8]} {[9]}

Delete sets of cells using standard array indexing with smooth parentheses, (). For example, remove
the second row of C.

C(2,:) = []

C=2×3 cell array
 {[1]} {[2]} {[3]}
 {[7]} {[8]} {[9]}

See Also

Related Examples
• “Add Cells to Cell Array” on page 12-8
• “Access Data in Cell Array” on page 12-5

12 Cell Arrays

12-10

Combine Cell Arrays

This example shows how to combine cell arrays by concatenation or nesting. To run the code in this
example, create several cell arrays with the same number of columns:

C1 = {1, 2, 3};
C2 = {'A', 'B', 'C'};
C3 = {10, 20, 30};

Concatenate cell arrays with the array concatenation operator, []. In this example, vertically
concatenate the cell arrays by separating them with semicolons:

C4 = [C1; C2; C3]

C4 is a 3-by-3 cell array:

C4 =
 [1] [2] [3]
 'A' 'B' 'C'
 [10] [20] [30]

Create a nested cell array with the cell array construction operator, {}:

C5 = {C1; C2; C3}

C5 is a 3-by-1 cell array, where each cell contains a cell array:

C5 =
 {1x3 cell}
 {1x3 cell}
 {1x3 cell}

To combine cell arrays of character vectors into one character vector, use the strjoin function.

See Also
strjoin

Related Examples
• “Creating, Concatenating, and Expanding Matrices”

 Combine Cell Arrays

12-11

Pass Contents of Cell Arrays to Functions

These examples show several ways to pass data from a cell array to a MATLAB® function that does
not recognize cell arrays as inputs.

Pass Contents of Single Cell by Indexing with Curly Braces, {}

This example creates a cell array that contains text and a 20-by-2 array of random numbers.

randCell = {'Random Data', rand(20,2)};
plot(randCell{1,2})
title(randCell{1,1})

Plot only the first column of data by indexing further into the content (multilevel indexing).

figure
plot(randCell{1,2}(:,1))
title('First Column of Data')

12 Cell Arrays

12-12

Combine Numeric Data from Multiple Cells Using cell2mat

This example creates a 5-by-2 cell array that stores temperature data for three cities, and plots the
temperatures for each city by date.

temperature(1,:) = {'2020-01-01', [45, 49, 0]};
temperature(2,:) = {'2020-04-03', [54, 68, 21]};
temperature(3,:) = {'2020-06-20', [72, 85, 53]};
temperature(4,:) = {'2020-09-15', [63, 81, 56]};
temperature(5,:) = {'2020-12-31', [38, 54, 18]};

allTemps = cell2mat(temperature(:,2));
dates = datetime(temperature(:,1));

plot(dates, allTemps)

 Pass Contents of Cell Arrays to Functions

12-13

Pass Contents of Multiple Cells as Comma Separated List to Function

This example plots X against Y, and applies line styles from a 2-by-3 cell array C.

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

C(:,1) = {'LineWidth'; 2};
C(:,2) = {'MarkerEdgeColor'; 'k'};
C(:,3) = {'MarkerFaceColor'; 'g'};

plot(X, Y, '--rs', C{:})

12 Cell Arrays

12-14

See Also

More About
• “Access Data in Cell Array” on page 12-5
• “Multilevel Indexing to Access Parts of Cells” on page 12-21
• “Comma-Separated Lists” on page 2-80

 Pass Contents of Cell Arrays to Functions

12-15

Preallocate Memory for Cell Array
This example shows how to initialize and allocate memory for a cell array.

Cell arrays do not require completely contiguous memory. However, each cell requires contiguous
memory, as does the cell array header that MATLAB creates to describe the array. For very large
arrays, incrementally increasing the number of cells or the number of elements in a cell results in
Out of Memory errors.

Initialize a cell array by calling the cell function, or by assigning to the last element. For example,
these statements are equivalent:

C = cell(25,50);
C{25,50} = [];

MATLAB creates the header for a 25-by-50 cell array. However, MATLAB does not allocate any
memory for the contents of each cell.

See Also
cell

Related Examples
• “Reshaping and Rearranging Arrays”
• “How MATLAB Allocates Memory” on page 32-12

12 Cell Arrays

12-16

Cell vs. Structure Arrays

This example compares cell and structure arrays, and shows how to store data in each type of array.
Both cell and structure arrays allow you to store data of different types and sizes.

Structure Arrays

Structure arrays contain data in fields that you access by name.

For example, store patient records in a structure array.

patient(1).name = 'John Doe';
patient(1).billing = 127.00;
patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

patient

patient=1×2 struct array with fields:
 name
 billing
 test

Create a bar graph of the test results for each patient.

numPatients = numel(patient);
for p = 1:numPatients
 figure
 bar(patient(p).test)
 title(patient(p).name)
 xlabel('Test')
 ylabel('Result')
end

 Cell vs. Structure Arrays

12-17

12 Cell Arrays

12-18

Cell Arrays

Cell arrays contain data in cells that you access by numeric indexing. Common applications of cell
arrays include storing separate pieces of text and storing heterogeneous data from spreadsheets.

For example, store temperature data for three cities over time in a cell array.

temperature(1,:) = {'2009-12-31', [45, 49, 0]};
temperature(2,:) = {'2010-04-03', [54, 68, 21]};
temperature(3,:) = {'2010-06-20', [72, 85, 53]};
temperature(4,:) = {'2010-09-15', [63, 81, 56]};
temperature(5,:) = {'2010-12-09', [38, 54, 18]};

temperature

temperature=5×2 cell array
 {'2009-12-31'} {[45 49 0]}
 {'2010-04-03'} {[54 68 21]}
 {'2010-06-20'} {[72 85 53]}
 {'2010-09-15'} {[63 81 56]}
 {'2010-12-09'} {[38 54 18]}

Plot the temperatures for each city by date.

allTemps = cell2mat(temperature(:,2));
dates = datetime(temperature(:,1));

 Cell vs. Structure Arrays

12-19

plot(dates,allTemps)
title('Temperature Trends for Different Locations')
xlabel('Date')
ylabel('Degrees (Fahrenheit)')

Other Container Arrays

Struct and cell arrays are the most commonly used containers for storing heterogeneous data. Tables
are convenient for storing heterogeneous column-oriented or tabular data. Alternatively, use map
containers, or create your own class.

See Also
cell | cell2mat | containers.Map | table | struct | datetime | plot

Related Examples
• “Access Data in Cell Array” on page 12-5
• “Structure Arrays” on page 11-2
• “Access Data in Tables” on page 9-32

More About
• “Advantages of Using Tables” on page 9-71

12 Cell Arrays

12-20

Multilevel Indexing to Access Parts of Cells

This example shows techniques for accessing data in arrays stored within cells of cell arrays.

Create a sample cell array.

myNum = [1, 2, 3];
myCell = {'one', 'two'};
myStruct.Field1 = ones(3);
myStruct.Field2 = 5*ones(5);

C = {myNum, 100*myNum;
 myCell, myStruct}

C=2×2 cell array
 {[1 2 3]} {[100 200 300]}
 {1x2 cell} {1x1 struct }

Access the complete contents of a particular cell using curly braces, {}. For example, return a
numeric vector from the cell that contains it.

C{1,2}

ans = 1×3

 100 200 300

Access part of the contents of a cell by appending indices, using syntax that matches the data type of
the contents.

Enclose numeric indices in smooth parentheses. For example, C{1,1} returns the 1-by-3 numeric
vector, [1 2 3]. Access the second element of that vector using smooth parentheses.

C{1,1}(1,2)

ans = 2

Enclose cell array indices in curly braces. For example, C{2,1} returns the cell array,
{'one','two'}. Access the contents of the second cell within that cell array using curly braces.

C{2,1}{1,2}

ans =
'two'

Refer to fields of a struct array with dot notation, and index into the array as described for numeric
and cell arrays. For example, C{2,2} returns a structure array, where Field2 contains a 5-by-5
numeric array of fives. Access the element in the fifth row and first column of that field using dot
notation and smooth parentheses.

C{2,2}.Field2(5,1)

ans = 5

 Multilevel Indexing to Access Parts of Cells

12-21

You can nest any number of cell and structure arrays. For example, add nested cells and structures to
C.

C{2,1}{2,2} = {pi, eps};
C{2,2}.Field3 = struct('NestedField1', rand(3), ...
 'NestedField2', magic(4), ...
 'NestedField3', {{'text'; 'more text'}});

Access parts of the new data using curly braces, smooth parentheses, or dot notation.

copy_pi = C{2,1}{2,2}{1,1}

copy_pi = 3.1416

part_magic = C{2,2}.Field3.NestedField2(1:2,1:2)

part_magic = 2×2

 16 2
 5 11

nested_cell = C{2,2}.Field3.NestedField3{2,1}

nested_cell =
'more text'

See Also

Related Examples
• “Access Data in Cell Array” on page 12-5

12 Cell Arrays

12-22

Function Handles

• “Create Function Handle” on page 13-2
• “Pass Function to Another Function” on page 13-5
• “Call Local Functions Using Function Handles” on page 13-6
• “Compare Function Handles” on page 13-8

13

Create Function Handle

In this section...
“What Is a Function Handle?” on page 13-2
“Creating Function Handles” on page 13-2
“Anonymous Functions” on page 13-3
“Arrays of Function Handles” on page 13-4
“Saving and Loading Function Handles” on page 13-4

You can create function handles to named and anonymous functions. You can store multiple function
handles in an array, and save and load them, as you would any other variable.

What Is a Function Handle?
A function handle is a MATLAB data type that stores an association to a function. Indirectly calling a
function enables you to invoke the function regardless of where you call it from. Typical uses of
function handles include:

• Passing a function to another function (often called function functions). For example, passing a
function to integration and optimization functions, such as integral and fzero.

• Specifying callback functions (for example, a callback that responds to a UI event or interacts with
data acquisition hardware).

• Constructing handles to functions defined inline instead of stored in a program file (anonymous
functions).

• Calling local functions from outside the main function.

You can see if a variable, h, is a function handle using isa(h,'function_handle').

Creating Function Handles
To create a handle for a function, precede the function name with an @ sign. For example, if you have
a function called myfunction, create a handle named f as follows:

f = @myfunction;

You call a function using a handle the same way you call the function directly. For example, suppose
that you have a function named computeSquare, defined as:

function y = computeSquare(x)
y = x.^2;
end

Create a handle and call the function to compute the square of four.

f = @computeSquare;
a = 4;
b = f(a)

13 Function Handles

13-2

b =

 16

If the function does not require any inputs, then you can call the function with empty parentheses,
such as

h = @ones;
a = h()

a =

 1

Without the parentheses, the assignment creates another function handle.

a = h

a =

 @ones

Function handles are variables that you can pass to other functions. For example, calculate the
integral of x2 on the range [0,1].

q = integral(f,0,1);

Function handles store their absolute path, so when you have a valid handle, you can invoke the
function from any location. You do not have to specify the path to the function when creating the
handle, only the function name.

Keep the following in mind when creating handles to functions:

• Name length — Each part of the function name (including package and class names) must be less
than the number specified by namelengthmax. Otherwise, MATLAB truncates the latter part of
the name.

• Scope — The function must be in scope at the time you create the handle. Therefore, the function
must be on the MATLAB path or in the current folder. Or, for handles to local or nested functions,
the function must be in the current file.

• Precedence — When there are multiple functions with the same name, MATLAB uses the same
precedence rules to define function handles as it does to call functions. For more information, see
“Function Precedence Order” on page 21-37.

• Overloading — When a function handle is invoked with one or more arguments, MATLAB
determines the dominant argument. If the dominant argument is an object, MATLAB determines if
the object’s class has a method which overloads the same name as the function handle’s
associated function. If it does, then the object’s method is invoked instead of the associated
function.

Anonymous Functions
You can create handles to anonymous functions. An anonymous function is a one-line expression-
based MATLAB function that does not require a program file. Construct a handle to an anonymous
function by defining the body of the function, anonymous_function, and a comma-separated list of
input arguments to the anonymous function, arglist. The syntax is:

 Create Function Handle

13-3

h = @(arglist)anonymous_function

For example, create a handle, sqr, to an anonymous function that computes the square of a number,
and call the anonymous function using its handle.

sqr = @(n) n.^2;
x = sqr(3)

x =

 9

For more information, see “Anonymous Functions” on page 21-20.

Arrays of Function Handles
You can create an array of function handles by collecting them into a cell or structure array. For
example, use a cell array:

C = {@sin, @cos, @tan};
C{2}(pi)

ans =

 -1

Or use a structure array:

S.a = @sin; S.b = @cos; S.c = @tan;
S.a(pi/2)

ans =

 1

Saving and Loading Function Handles
You can save and load function handles in MATLAB, as you would any other variable. In other words,
use the save and load functions. If you save a function handle, MATLAB saves the absolute path
information. You can invoke the function from any location that MATLAB is able to reach, as long as
the file for the function still exists at this location. An invalid handle occurs if the file location or file
name has changed since you created the handle. If a handle is invalid, MATLAB might display a
warning when you load the file. When you invoke an invalid handle, MATLAB issues an error.

See Also
str2func | func2str | functions | isa | function_handle

Related Examples
• “Pass Function to Another Function” on page 13-5

More About
• “Anonymous Functions” on page 21-20

13 Function Handles

13-4

Pass Function to Another Function

You can use function handles as input arguments to other functions, which are called function
functions. These functions evaluate mathematical expressions over a range of values. Typical function
functions include integral, quad2d, fzero, and fminbnd.

For example, to find the integral of the natural log from 0 through 5, pass a handle to the log
function to integral.

a = 0;
b = 5;
q1 = integral(@log,a,b)

q1 = 3.0472

Similarly, to find the integral of the sin function and the exp function, pass handles to those
functions to integral.

q2 = integral(@sin,a,b)

q2 = 0.7163

q3 = integral(@exp,a,b)

q3 = 147.4132

Also, you can pass a handle to an anonymous function to function functions. An anonymous function is
a one-line expression-based MATLAB® function that does not require a program file. For example,
evaluate the integral of x/(ex− 1) on the range [0,Inf]:

fun = @(x)x./(exp(x)-1);
q4 = integral(fun,0,Inf)

q4 = 1.6449

Functions that take a function as an input (called function functions) expect that the function
associated with the function handle has a certain number of input variables. For example, if you call
integral or fzero, the function associated with the function handle must have exactly one input
variable. If you call integral3, the function associated with the function handle must have three
input variables. For information on calling function functions with more variables, see
“Parameterizing Functions”.

See Also

Related Examples
• “Create Function Handle” on page 13-2
• “Parameterizing Functions”

More About
• “Anonymous Functions” on page 21-20

 Pass Function to Another Function

13-5

Call Local Functions Using Function Handles

This example shows how to create handles to local functions. If a function returns handles to local
functions, you can call the local functions outside of the main function. This approach allows you to
have multiple, callable functions in a single file.

Create the following function in a file, ellipseVals.m, in your working folder. The function returns
a struct with handles to the local functions.

% Copyright 2015 The MathWorks, Inc.

function fh = ellipseVals
fh.focus = @computeFocus;
fh.eccentricity = @computeEccentricity;
fh.area = @computeArea;
end

function f = computeFocus(a,b)
f = sqrt(a^2-b^2);
end

function e = computeEccentricity(a,b)
f = computeFocus(a,b);
e = f/a;
end

function ae = computeArea(a,b)
ae = pi*a*b;
end

Invoke the function to get a struct of handles to the local functions.

h = ellipseVals

h =

 struct with fields:

 focus: @computeFocus
 eccentricity: @computeEccentricity
 area: @computeArea

Call a local function using its handle to compute the area of an ellipse.

h.area(3,1)

ans =

 9.4248

13 Function Handles

13-6

Alternatively, you can use the localfunctions function to create a cell array of function handles
from all local functions automatically. This approach is convenient if you expect to add, remove, or
modify names of the local functions.

See Also
localfunctions

Related Examples
• “Create Function Handle” on page 13-2

More About
• “Local Functions” on page 21-25

 Call Local Functions Using Function Handles

13-7

Compare Function Handles

Compare Handles Constructed from Named Function

MATLAB® considers function handles that you construct from the same named function to be equal.
The isequal function returns a value of true when comparing these types of handles.

fun1 = @sin;
fun2 = @sin;
isequal(fun1,fun2)

ans =

 logical

 1

If you save these handles to a MAT-file, and then load them back into the workspace, they are still
equal.

Compare Handles to Anonymous Functions

Unlike handles to named functions, function handles that represent the same anonymous function are
not equal. They are considered unequal because MATLAB cannot guarantee that the frozen values of
nonargument variables are the same. For example, in this case, A is a nonargument variable.

A = 5;
h1 = @(x)A * x.^2;
h2 = @(x)A * x.^2;
isequal(h1,h2)

ans =

 logical

 0

If you make a copy of an anonymous function handle, the copy and the original are equal.

h1 = @(x)A * x.^2;
h2 = h1;
isequal(h1,h2)

ans =

 logical

 1

13 Function Handles

13-8

Compare Handles to Nested Functions

MATLAB considers function handles to the same nested function to be equal only if your code
constructs these handles on the same call to the function containing the nested function. This
function constructs two handles to the same nested function.

function [h1,h2] = test_eq(a,b,c)
h1 = @findZ;
h2 = @findZ;

 function z = findZ
 z = a.^3 + b.^2 + c';
 end
end

Function handles constructed from the same nested function and on the same call to the parent
function are considered equal.

[h1,h2] = test_eq(4,19,-7);
isequal(h1,h2)

ans =

 logical

 1

Function handles constructed from different calls are not considered equal.

[q1,q2] = test_eq(4,19,-7);
isequal(h1,q1)

ans =

 logical

 0

See Also
isequal

Related Examples
• “Create Function Handle” on page 13-2

 Compare Function Handles

13-9

Dictionaries

• “Map Data with Dictionaries” on page 14-2
• “Dictionaries and Custom Classes” on page 14-6

14

Map Data with Dictionaries

A dictionary is a data structure that creates associations between data of different types. Dictionaries
store data as values, that are accessed using corresponding unique keys. Keys and values can be
different data types, and each key and value pair is an entry.

The basic function of a dictionary is to link two associated sets of data so that an element of one set
can be used to find the corresponding element of the other. This action is called a lookup. Dictionaries
offer consistent performance regardless of how many entries the dictionary has.

This example shows how to create a dictionary and modify its entries. It then shows how dictionaries
handle data types and how to store different data types.

Create Dictionary

For example, create a dictionary using products as keys and prices as values. The dictionary output
indicates the data type of the keys and values.

Products = ["Tomato" "Carrot" "Mango" "Mushroom"];
Prices = [1 .5 2.50 1.99];
d = dictionary(Products,Prices)

d =
 dictionary (string ⟼ double) with 4 entries:

 "Tomato" ⟼ 1
 "Carrot" ⟼ 0.5000
 "Mango" ⟼ 2.5000
 "Mushroom" ⟼ 1.9900

Now, perform a lookup to find the price of carrots. Any price in the dictionary can be found using the
associated key.

d("Carrot")

ans = 0.5000

Modify Dictionary

To insert new entries into a dictionary, you can map a value to a new key using an equal sign (=). This
command adds the key "Potato" with a price of 0.75 as the value.

d("Potato") = 0.75

d =
 dictionary (string ⟼ double) with 5 entries:

 "Tomato" ⟼ 1
 "Carrot" ⟼ 0.5000
 "Mango" ⟼ 2.5000
 "Mushroom" ⟼ 1.9900
 "Potato" ⟼ 0.7500

You can change an entry by mapping a new value to an existing key. This command changes the price
of "Tomato" to 1.25.

14 Dictionaries

14-2

d("Tomato") = 1.25

d =
 dictionary (string ⟼ double) with 5 entries:

 "Tomato" ⟼ 1.2500
 "Carrot" ⟼ 0.5000
 "Mango" ⟼ 2.5000
 "Mushroom" ⟼ 1.9900
 "Potato" ⟼ 0.7500

Remove entries by mapping the key to an empty array ([]). This command removes the entry for
"Mango".

d("Mango") = []

d =
 dictionary (string ⟼ double) with 4 entries:

 "Tomato" ⟼ 1.2500
 "Carrot" ⟼ 0.5000
 "Mushroom" ⟼ 1.9900
 "Potato" ⟼ 0.7500

Any of the prior actions can be vectorized, rather than operating on one entry at a time. For example,
this command adds two new entries for "Celery" and "Grapes" with associated prices.

d(["Celery" "Grapes"]) = [0.50 1.95]

d =
 dictionary (string ⟼ double) with 6 entries:

 "Tomato" ⟼ 1.2500
 "Carrot" ⟼ 0.5000
 "Mushroom" ⟼ 1.9900
 "Potato" ⟼ 0.7500
 "Celery" ⟼ 0.5000
 "Grapes" ⟼ 1.9500

Dictionaries and Data Types

Dictionary keys and values can be of almost any data type and a dictionary is typed based on its
entries. Once data types are assigned, the dictionary is configured.

Keys and values do not need to be of the same data type. However, all keys and all values in a
dictionary must share respective data types or be able to be converted to the configured data type.

If a new entry is inserted that does not match the configured data types for the dictionary, then
MATLAB attempts to convert the data types to match the configuration.

For example, create a dictionary that accepts keys and values that are strings. Then add an entry that
contains a numeric value. MATLAB converts the value to a string.

d = dictionary("hello","world")

 Map Data with Dictionaries

14-3

d =
 dictionary (string ⟼ string) with 1 entry:

 "hello" ⟼ "world"

d("newKey") = 1

d =
 dictionary (string ⟼ string) with 2 entries:

 "hello" ⟼ "world"
 "newKey" ⟼ "1"

isstring(d("newKey"))

ans = logical
 1

Store Different Data Types in Dictionary

Dictionaries require that all entries share the same respective data types for keys and values.
However, you can store multiple data types in a dictionary by putting the data in a cell array. Each
element of a cell array can contain data of any type or size. This approach satisfies the dictionary type
requirement because all of the values are cell arrays.

Create a cell array containing values of various data types, and then create a string array of keys.

myCell = {datetime,@myfun,struct,[1 2 3 4]}

myCell=1×4 cell array
 {[26-Nov-2022 11:39:23]} {@myfun} {1x1 struct} {[1 2 3 4]}

names = ["my birthday" "my favorite function" "a structure" "numeric array"]

names = 1x4 string
 "my birthday" "my favorite func..." "a structure" "numeric array"

Create a dictionary using the specified keys and values.

d = dictionary(names,myCell)

d =
 dictionary (string ⟼ cell) with 4 entries:

 "my birthday" ⟼ {[26-Nov-2022 11:39:23]}
 "my favorite function" ⟼ {@myfun}
 "a structure" ⟼ {1x1 struct}
 "numeric array" ⟼ {[1 2 3 4]}

Data Type Limitations

Dictionaries allow entries of almost any data type, but there are some limitations. Certain data types
like struct are accepted as part of an entry, but vectorized operations are not supported for

14 Dictionaries

14-4

structures with different fields. Vectorized lookup is not supported for types that are not able to be
concatenated.

Dictionaries do not accept these data types as keys or values:

• Tables
• Tall arrays
• Distributed arrays
• graph and digraph objects

Unconfigured Dictionaries

When you create a dictionary without any entries, it is an unconfigured dictionary, and it has no data
type assigned to the keys and values.

d = dictionary

d =
 dictionary with unset key and value types.

isConfigured(d)

ans = logical
 0

Adding entries to an unconfigured dictionary configures it with the data types of the keys and values.
A dictionary can be configured without adding any entries by creating empty inputs of the intended
data types. For example, create a dictionary with no entries that accepts string keys and struct
values.

d = dictionary(string.empty,struct.empty)

d =
 dictionary (string ⟼ struct) with no entries.

isConfigured(d)

ans = logical
 1

The dictionary is now configured and will accept only entries that are valid for the assigned data
types.

See Also
dictionary | keyHash | keyMatch

Related Examples
• “Dictionaries and Custom Classes” on page 14-6

 Map Data with Dictionaries

14-5

Dictionaries and Custom Classes
One benefit of the dictionary data type is the ability to accept almost any data type, including custom
classes. In some cases however, the behavior of custom classes affects how they interact with
dictionaries. This example shows how to overload two key functions for custom classes to make sure
that dictionaries behave as expected.

Hash Equivalence
Dictionaries are a hash map, meaning that they convert keys into uint64 scalar hash codes. Each
hash code represents a unique key and is used during lookup to quickly find the requested value. In
MATLAB, these scalars are generated using the keyHash function, which uses input property
information to generate a uint64 scalar. The equivalence of hashed keys can be compared using the
keyMatch function. For a dictionary to function properly, when keyMatch(A,B) is true, then
keyHash(A) and keyHash(B) must be equal. For most data types, this relationship holds true
without any extra steps. However, some custom classes can have properties that you do not want to
include as part of the comparison.

For example, create a class that is used to collect data and record the time that the data was
collected. This class has two properties dataValue and timestamp.

classdef myDataClass
 properties
 dataValue double = 0
 timestamp datetime = datetime
 end
end

For the purposes of comparing data, only dataValue is important. However, keyHash uses both
properties when generating a hash code.

Overload keyHash and keyMatch for Custom Classes
To make myDataClass work as intended with dictionaries, overload keyHash and keyMatch. Add
keyHash and keyMatch methods to myDataClass that use only dataValue property to generate
and compare hash values.

classdef myDataClass
 properties
 dataValue double = 0
 timestamp datetime = datetime
 end
 methods
 function h = keyHash(obj)
 h = keyHash(obj.dataValue);
 end
 function TF = keyMatch(objA,objB)
 tf = keyMatch(objA.dataValue,objB.dataValue);
 end
 end
end

See Also
dictionary | keyHash | keyMatch

14 Dictionaries

14-6

Related Examples
• “Map Data with Dictionaries” on page 14-2

 Dictionaries and Custom Classes

14-7

Map Containers

• “Overview of Map Data Structure” on page 15-2
• “Description of Map Class” on page 15-4
• “Create Map Object” on page 15-6
• “Examine Contents of Map” on page 15-8
• “Read and Write Using Key Index” on page 15-9
• “Modify Keys and Values in Map” on page 15-13
• “Map to Different Value Types” on page 15-15

15

Overview of Map Data Structure
A Map is a type of fast key lookup data structure that offers a flexible means of indexing into its
individual elements. Unlike most array data structures in the MATLAB software that only allow access
to the elements by means of integer indices, the indices for a Map can be nearly any scalar numeric
value or a character vector.

Indices into the elements of a Map are called keys. These keys, along with the data values associated
with them, are stored within the Map. Each entry of a Map contains exactly one unique key and its
corresponding value. Indexing into the Map of rainfall statistics shown below with a character vector
representing the month of August yields the value internally associated with that month, 37.3.

Mean monthly rainfall statistics (mm)

Keys are not restricted to integers as they are with other arrays. Specifically, a key may be any of the
following types:

• 1-by-N character array
• Scalar real double or single
• Signed or unsigned scalar integer

The values stored in a Map can be of any type. This includes arrays of numeric values, structures,
cells, character arrays, objects, or other Maps.

Note A Map is most memory efficient when the data stored in it is a scalar number or a character
array.

See Also
keys | values | containers.Map

15 Map Containers

15-2

Related Examples
• “Description of Map Class” on page 15-4
• “Create Map Object” on page 15-6
• “Examine Contents of Map” on page 15-8

 Overview of Map Data Structure

15-3

Description of Map Class
A Map is actually an object, or instance, of a MATLAB class called Map. It is also a handle object and,
as such, it behaves like any other MATLAB handle object. This section gives a brief overview of the
Map class. For more details, see the containers.Map reference page.

Properties of Map Class
All objects of the Map class have three properties. You cannot write directly to any of these
properties; you can change them only by means of the methods of the Map class.

Property Description Default
Count Unsigned 64-bit integer that represents the total number of key/

value pairs contained in the Map object.
0

KeyType Character vector that indicates the type of all keys contained in the
Map object. KeyType can be any of the following: double, single,
char, and signed or unsigned 32-bit or 64-bit integer. If you attempt
to add keys of an unsupported type, int8 for example, MATLAB
makes them double.

char

ValueType Character vector that indicates the type of values contained in the
Map object. If the values in a Map are all scalar numbers of the
same type, ValueType is set to that type. If the values are all
character arrays, ValueType is 'char'. Otherwise, ValueType is
'any'.

any

To examine one of these properties, follow the name of the Map object with a dot and then the
property name. For example, to see what type of keys are used in Map mapObj, use

mapObj.KeyType

A Map is a handle object. As such, if you make a copy of the object, MATLAB does not create a new
Map; it creates a new handle for the existing Map that you specify. If you alter the Map's contents in
reference to this new handle, MATLAB applies the changes you make to the original Map as well. You
can, however, delete the new handle without affecting the original Map.

Methods of Map Class
The Map class implements the following methods. Their use is explained in the later sections of this
documentation and also in the function reference pages.

Method Description
isKey Check if Map contains specified key
keys Names of all keys in Map
length Length of Map
remove Remove key and its value from Map
size Dimensions of Map
values Values contained in Map

15 Map Containers

15-4

See Also
keys | isKey | values | containers.Map | remove | length | size

Related Examples
• “Overview of Map Data Structure” on page 15-2
• “Create Map Object” on page 15-6
• “Examine Contents of Map” on page 15-8

 Description of Map Class

15-5

Create Map Object
A Map is an object of the Map class. It is defined within a MATLAB package called containers. As
with any class, you use its constructor function to create any new instances of it. You must include the
package name when calling the constructor:

newMap = containers.Map(optional_keys_and_values)

Construct Empty Map Object
When you call the Map constructor with no input arguments, MATLAB constructs an empty Map
object. When you do not end the command with a semicolon, MATLAB displays the following
information about the object you have constructed:

newMap = containers.Map

newMap =

 Map with properties:

 Count: 0
 KeyType: char
 ValueType: any

The properties of an empty Map object are set to their default values:

• Count = 0
• KeyType = 'char'
• ValueType = 'any'

Once you construct the empty Map object, you can use the keys and values methods to populate it.
For a summary of MATLAB functions you can use with a Map object, see “Methods of Map Class” on
page 15-4

Construct Initialized Map Object
Most of the time, you will want to initialize the Map with at least some keys and values at the time
you construct it. You can enter one or more sets of keys and values using the syntax shown here. The
brace operators ({}) are not required if you enter only one key/value pair:

mapObj = containers.Map({key1, key2, ...}, {val1, val2, ...});

For those keys and values that are character vectors, be sure that you specify them enclosed within
single quotation marks. For example, when constructing a Map that has character vectors as keys,
use

mapObj = containers.Map(...
 {'keystr1', 'keystr2', ...}, {val1, val2, ...});

As an example of constructing an initialized Map object, create a new Map for the following key/value
pairs taken from the monthly rainfall map shown earlier in this section.

15 Map Containers

15-6

k = {'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', ...
 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'Annual'};

v = {327.2, 368.2, 197.6, 178.4, 100.0, 69.9, ...
 32.3, 37.3, 19.0, 37.0, 73.2, 110.9, 1551.0};

rainfallMap = containers.Map(k, v)

rainfallMap =

 Map with properties:

 Count: 13
 KeyType: char
 ValueType: double

The Count property is now set to the number of key/value pairs in the Map, 13, the KeyType is
char, and the ValueType is double.

Combine Map Objects
You can combine Map objects vertically using concatenation. However, the result is not a vector of
Maps, but rather a single Map object containing all key/value pairs of the contributing Maps.
Horizontal vectors of Maps are not allowed. See “Build Map with Concatenation” on page 15-10,
below.

See Also
keys | values | containers.Map

Related Examples
• “Overview of Map Data Structure” on page 15-2
• “Description of Map Class” on page 15-4
• “Examine Contents of Map” on page 15-8

 Create Map Object

15-7

Examine Contents of Map
Each entry in a Map consists of two parts: a unique key and its corresponding value. To find all the
keys in a Map, use the keys method. To find all of the values, use the values method.

Create a new Map called ticketMap that maps airline ticket numbers to the holders of those tickets.
Construct the Map with four key/value pairs:

ticketMap = containers.Map(...
 {'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...
 {'James Enright', 'Carl Haynes', 'Sarah Latham', ...
 'Bradley Reid'});

Use the keys method to display all keys in the Map. MATLAB lists keys of type char in alphabetical
order, and keys of any numeric type in numerical order:

keys(ticketMap)

ans =

 '2R175' 'A479GY' 'B7398' 'NZ1452'

Next, display the values that are associated with those keys in the Map. The order of the values is
determined by the order of the keys associated with them.

This table shows the keys listed in alphabetical order:

keys values
2R175 James Enright
A479GY Sarah Latham
B7398 Carl Haynes
NZ1452 Bradley Reid

The values method uses the same ordering of values:

values(ticketMap)

ans =

 'James Enright' 'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

See Also
keys | isKey | values | containers.Map | remove | length | size

Related Examples
• “Create Map Object” on page 15-6
• “Read and Write Using Key Index” on page 15-9
• “Modify Keys and Values in Map” on page 15-13
• “Map to Different Value Types” on page 15-15

15 Map Containers

15-8

Read and Write Using Key Index
When reading from the Map, use the same keys that you have defined and associated with particular
values. Writing new entries to the Map requires that you supply the values to store with a key for
each one.

Note For a large Map, the keys and value methods use a lot of memory as their outputs are cell
arrays.

Read From Map
After you have constructed and populated your Map, you can begin to use it to store and retrieve
data. You use a Map in the same manner that you would an array, except that you are not restricted to
using integer indices. The general syntax for looking up a value (valueN) for a given key (keyN) is
shown here. If the key is a character vector, enclose it in single quotation marks:

valueN = mapObj(keyN);

Start with the Map ticketMap :

ticketMap = containers.Map(...
 {'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...
 {'James Enright', 'Carl Haynes', 'Sarah Latham', ...
 'Bradley Reid'});

You can find any single value by indexing into the Map with the appropriate key:

passenger = ticketMap('2R175')

passenger =

James Enright

Find the person who holds ticket A479GY:

sprintf(' Would passenger %s please come to the desk?\n', ...
 ticketMap('A479GY'))

ans =

 Would passenger Sarah Latham please come to the desk?

To access the values of multiple keys, use the values method, specifying the keys in a cell array:

values(ticketMap, {'2R175', 'B7398'})

ans =

 'James Enright' 'Carl Haynes'

Map containers support scalar indexing only. You cannot use the colon operator to access a range of
keys as you can with other MATLAB classes. For example, the following statements throw an error:

ticketMap('2R175':'B7398')
ticketMap(:)

 Read and Write Using Key Index

15-9

Add Key/Value Pairs
Unlike other array types, each entry in a Map consists of two items: the value and its key. When you
write a new value to a Map, you must supply its key as well. This key must be consistent in type with
any other keys in the Map.

Use the following syntax to insert additional elements into a Map:

existingMapObj(newKeyName) = newValue;

Start with the Map ticketMap :

ticketMap = containers.Map(...
 {'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...
 {'James Enright', 'Carl Haynes', 'Sarah Latham', ...
 'Bradley Reid'});

Add two more entries to the ticketMap Map. Verify that ticketMap now has six key/value pairs:

ticketMap('947F4') = 'Susan Spera';
ticketMap('417R93') = 'Patricia Hughes';

ticketMap.Count

ans =

 6

List all of the keys and values in ticketMap:
keys(ticketMap), values(ticketMap)

ans =

 '2R175' '417R93' '947F4' 'A479GY' 'B7398' 'NZ1452'

ans =

 'James Enright' 'Patricia Hughes' 'Susan Spera' 'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

Build Map with Concatenation
You can add key/value pairs to a Map in groups using concatenation. The concatenation of Map
objects is different from other classes. Instead of building a vector of Map objects, MATLAB returns a
single Map containing the key/value pairs from each of the contributing Map objects.

Rules for the concatenation of Map objects are:

• Only vertical vectors of Map objects are allowed. You cannot create an m-by-n array or a
horizontal vector of Map objects. For this reason, vertcat is supported for Map objects, but not
horzcat.

• All keys in each Map being concatenated must be of the same class.
• You can combine Maps with different numbers of key/value pairs. The result is a single Map object

containing key/value pairs from each of the contributing Map objects:

tMap1 = containers.Map({'2R175', 'B7398', 'A479GY'}, ...
 {'James Enright', 'Carl Haynes', 'Sarah Latham'});

15 Map Containers

15-10

tMap2 = containers.Map({'417R93', 'NZ1452', '947F4'}, ...
 {'Patricia Hughes', 'Bradley Reid', 'Susan Spera'});

% Concatenate the two maps:
ticketMap = [tMap1; tMap2];

The result of this concatenation is the same 6-element Map that was constructed in the previous
section:
ticketMap.Count

ans =

 6

keys(ticketMap), values(ticketMap)

ans =

 '2R175' '417R93' '947F4' 'A479GY' 'B7398' 'NZ1452'

ans =

 'James Enright' 'Patricia Hughes' 'Susan Spera' 'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

• Concatenation does not include duplicate keys or their values in the resulting Map object.

In the following example, both objects m1 and m2 use a key of 8. In Map m1, 8 is a key to value C;
in m2, it is a key to value X:

m1 = containers.Map({1, 5, 8}, {'A', 'B', 'C'});
m2 = containers.Map({8, 9, 6}, {'X', 'Y', 'Z'});

Combine m1 and m2 to form a new Map object, m:

m = [m1; m2];

The resulting Map object m has only five key/value pairs. The value C was dropped from the
concatenation because its key was not unique:

keys(m), values(m)

ans =

 [1] [5] [6] [8] [9]

ans =

 'A' 'B' 'Z' 'X' 'Y'

See Also
keys | isKey | values | containers.Map

Related Examples
• “Create Map Object” on page 15-6
• “Examine Contents of Map” on page 15-8
• “Modify Keys and Values in Map” on page 15-13

 Read and Write Using Key Index

15-11

• “Map to Different Value Types” on page 15-15

15 Map Containers

15-12

Modify Keys and Values in Map

Note Keep in mind that if you have more than one handle to a Map, modifying the handle also makes
changes to the original Map. See “Modify Copy of Map” on page 15-14, below.

Remove Keys and Values from Map
Use the remove method to delete any entries from a Map. When calling this method, specify the Map
object name and the key name to remove. MATLAB deletes the key and its associated value from the
Map.

The syntax for the remove method is

remove(mapName, 'keyname');

Start with the Map ticketMap :

ticketMap = containers.Map(...
 {'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...
 {'James Enright', 'Carl Haynes', 'Sarah Latham', ...
 'Bradley Reid'});

Remove one entry (the specified key and its value) from the Map object:

remove(ticketMap, 'NZ1452');
values(ticketMap)

ans =

 'James Enright' 'Sarah Latham' 'Carl Haynes'

Modify Values
You can modify any value in a Map simply by overwriting the current value. The passenger holding
ticket A479GY is identified as Sarah Latham:

ticketMap('A479GY')

ans =

Sarah Latham

Change the passenger's first name to Anna Latham by overwriting the original value for the A479GY
key:

ticketMap('A479GY') = 'Anna Latham';

Verify the change:

ticketMap('A479GY')

ans =

Anna Latham

 Modify Keys and Values in Map

15-13

Modify Keys
To modify an existing key while keeping the value the same, first remove both the key and its value
from the Map. Then create a new entry, this time with the corrected key name.

Modify the ticket number belonging to passenger James Enright:

remove(ticketMap, '2R175');
ticketMap('2S185') = 'James Enright';

k = keys(ticketMap); v = values(ticketMap);
str1 = ' ''%s'' has been assigned a new\n';
str2 = ' ticket number: %s.\n';

fprintf(str1, v{1})
fprintf(str2, k{1})

 'James Enright' has been assigned a new
 ticket number: 2S185.

Modify Copy of Map
Because ticketMap is a handle object, you need to be careful when making copies of the Map. Keep
in mind that by copying a Map object, you are really just creating another handle to the same object.
Any changes you make to this handle are also applied to the original Map.

Make a copy of the ticketMap Map. Write to this copy, and notice that the change is applied to the
original Map object itself:

copiedMap = ticketMap;

copiedMap('AZ12345') = 'unidentified person';
ticketMap('AZ12345')

ans =

unidentified person

Clean up:

remove(ticketMap, 'AZ12345');
clear copiedMap;

See Also
keys | isKey | values | containers.Map | remove | length | size

Related Examples
• “Create Map Object” on page 15-6
• “Examine Contents of Map” on page 15-8
• “Read and Write Using Key Index” on page 15-9
• “Map to Different Value Types” on page 15-15

15 Map Containers

15-14

Map to Different Value Types
It is fairly common to store other classes, such as structures or cell arrays, in a Map structure.
However, Maps are most memory efficient when the data stored in them belongs to one of the basic
MATLAB types such as double, char, integers, and logicals.

Map to Structure Array
The following example maps airline seat numbers to structures that contain ticket numbers and
destinations. Start with the Map ticketMap, which maps ticket numbers to passengers:

ticketMap = containers.Map(...
 {'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...
 {'James Enright', 'Carl Haynes', 'Sarah Latham', ...
 'Bradley Reid'});

Then create the following structure array, containing ticket numbers and destinations:

s1.ticketNum = '2S185'; s1.destination = 'Barbados';
s1.reserved = '06-May-2008'; s1.origin = 'La Guardia';
s2.ticketNum = '947F4'; s2.destination = 'St. John';
s2.reserved = '14-Apr-2008'; s2.origin = 'Oakland';
s3.ticketNum = 'A479GY'; s3.destination = 'St. Lucia';
s3.reserved = '28-Mar-2008'; s3.origin = 'JFK';
s4.ticketNum = 'B7398'; s4.destination = 'Granada';
s4.reserved = '30-Apr-2008'; s4.origin = 'JFK';
s5.ticketNum = 'NZ1452'; s5.destination = 'Aruba';
s5.reserved = '01-May-2008'; s5.origin = 'Denver';

Map five seats to these structures:

seatingMap = containers.Map(...
 {'23F', '15C', '15B', '09C', '12D'}, ...
 {s5, s1, s3, s4, s2});

Using this Map object, find information about the passenger who has reserved seat 09C:

seatingMap('09C')

ans =

 ticketNum: 'B7398'
 destination: 'Granada'
 reserved: '30-Apr-2008'
 origin: 'JFK'

Using ticketMap and seatingMap together, you can find the name of the person who has reserved
seat 15B:

ticket = seatingMap('15B').ticketNum;
passenger = ticketMap(ticket)

passenger =

Sarah Latham

 Map to Different Value Types

15-15

Map to Cell Array
As with structures, you can also map to a cell array in a Map object. Continuing with the airline
example of the previous sections, some of the passengers on the flight have “frequent flyer” accounts
with the airline. Map the names of these passengers to records of the number of miles they have used
and the number of miles they still have available:

accountMap = containers.Map(...
 {'Susan Spera','Carl Haynes','Anna Latham'}, ...
 {{247.5, 56.1}, {0, 1342.9}, {24.6, 314.7}});

Use the Map to retrieve account information on the passengers:

name = 'Carl Haynes';
acct = accountMap(name);

fprintf('%s has used %.1f miles on his/her account,\n', ...
 name, acct{1})
fprintf(' and has %.1f miles remaining.\n', acct{2})

Carl Haynes has used 0.0 miles on his/her account,
 and has 1342.9 miles remaining.

See Also
keys | isKey | values | containers.Map | struct | cell

Related Examples
• “Create Map Object” on page 15-6
• “Structure Arrays” on page 11-2
• “Create Cell Array” on page 12-3
• “Examine Contents of Map” on page 15-8
• “Read and Write Using Key Index” on page 15-9
• “Modify Keys and Values in Map” on page 15-13

15 Map Containers

15-16

Combining Unlike Classes

• “Valid Combinations of Unlike Classes” on page 16-2
• “Combining Unlike Integer Types” on page 16-3
• “Combining Integer and Noninteger Data” on page 16-5
• “Combining Cell Arrays with Non-Cell Arrays” on page 16-6
• “Empty Matrices” on page 16-7
• “Concatenation Examples” on page 16-8

16

Valid Combinations of Unlike Classes
Matrices and arrays can be composed of elements of almost any MATLAB data type as long as all
elements in the matrix are of the same type. If you do include elements of unlike classes when
constructing a matrix, MATLAB converts some elements so that all elements of the resulting matrix
are of the same type.

Data type conversion is done with respect to a preset precedence of classes. The following table
shows the five classes you can concatenate with an unlike type without generating an error (that is,
with the exception of character and logical).

TYPE character integer single double logical
character character character character character invalid
integer character integer integer integer integer
single character integer single single single
double character integer single double double
logical invalid integer single double logical

For example, concatenating a double and single matrix always yields a matrix of type single.
MATLAB converts the double element to single to accomplish this.

See Also

More About
• “Combining Unlike Integer Types” on page 16-3
• “Combining Integer and Noninteger Data” on page 16-5
• “Combining Cell Arrays with Non-Cell Arrays” on page 16-6
• “Concatenation Examples” on page 16-8
• “Concatenating Objects of Different Classes”

16 Combining Unlike Classes

16-2

Combining Unlike Integer Types
In this section...
“Overview” on page 16-3
“Example of Combining Unlike Integer Sizes” on page 16-3
“Example of Combining Signed with Unsigned” on page 16-4

Overview
If you combine different integer types in a matrix (e.g., signed with unsigned, or 8-bit integers with
16-bit integers), MATLAB returns a matrix in which all elements are of one common type. MATLAB
sets all elements of the resulting matrix to the data type of the leftmost element in the input matrix.
For example, the result of the following concatenation is a vector of three 16-bit signed integers:

A = [int16(450) uint8(250) int32(1000000)]

A =

 1×3 int16 row vector

 450 250 32767

Example of Combining Unlike Integer Sizes
Concatenate the following two numbers once, and then switch their order. The return value depends
on the order in which the integers are concatenated. The leftmost type determines the data type for
all elements in the vector:

A = [int16(5000) int8(50)]

A =

 1×2 int16 row vector

 5000 50

B = [int8(50) int16(5000)]

B =

 1×2 int8 row vector

 50 127

The first operation returns a vector of 16-bit integers. The second returns a vector of 8-bit integers.
The element int16(5000) is set to 127, the maximum value for an 8-bit signed integer.

The same rules apply to vertical concatenation:

C = [int8(50); int16(5000)]

C =

 2×1 int8 column vector

 Combining Unlike Integer Types

16-3

 50
 127

Note You can find the maximum or minimum values for any MATLAB integer type using the intmax
and intmin functions. For floating-point types, use realmax and realmin.

Example of Combining Signed with Unsigned
Now do the same exercise with signed and unsigned integers. Again, the leftmost element determines
the data type for all elements in the resulting matrix:

A = [int8(-100) uint8(100)]

A =

 1×2 int8 row vector

 -100 100

B = [uint8(100) int8(-100)]

B =

 1×2 uint8 row vector

 100 0

The element int8(-100) is set to zero because it is no longer signed.

MATLAB evaluates each element prior to concatenating them into a combined array. In other words,
the following statement evaluates to an 8-bit signed integer (equal to 50) and an 8-bit unsigned
integer (unsigned -50 is set to zero) before the two elements are combined. Following the
concatenation, the second element retains its zero value but takes on the unsigned int8 type:

A = [int8(50), uint8(-50)]

A =

 1×2 int8 row vector

 50 0

See Also

More About
• “Integers” on page 4-2
• “Integer Arithmetic” on page 4-20

16 Combining Unlike Classes

16-4

Combining Integer and Noninteger Data
If you combine integers with double, single, or logical classes, all elements of the resulting
matrix are given the data type of the left-most integer. For example, all elements of the following
vector are set to int32:

A = [true pi int32(1000000) single(17.32) uint8(250)]

 Combining Integer and Noninteger Data

16-5

Combining Cell Arrays with Non-Cell Arrays
Combining a number of arrays in which one or more is a cell array returns a new cell array. Each of
the original arrays occupies a cell in the new array:

A = [100, {uint8(200), 300}, 'MATLAB'];
whos A

 Name Size Bytes Class Attributes

 A 1x4 477 cell

Each element of the combined array maintains its original class:

fprintf('Classes: %s %s %s %s\n',...
 class(A{1}),class(A{2}),class(A{3}),class(A{4}))

Classes: double uint8 double char

16 Combining Unlike Classes

16-6

Empty Matrices
If you construct a matrix using empty matrix elements, the empty matrices are ignored in the
resulting matrix:

A = [5.36; 7.01; []; 9.44]
A =
 5.3600
 7.0100
 9.4400

 Empty Matrices

16-7

Concatenation Examples
In this section...
“Combining Single and Double Types” on page 16-8
“Combining Integer and Double Types” on page 16-8
“Combining Character and Double Types” on page 16-8
“Combining Logical and Double Types” on page 16-8

Combining Single and Double Types
Combining single values with double values yields a single matrix. Note that 5.73*10^300 is
too big to be stored as a single, thus the conversion from double to single sets it to infinity. (The
class function used in this example returns the data type for the input value).

x = [single(4.5) single(-2.8) pi 5.73*10^300]
x =
 4.5000 -2.8000 3.1416 Inf

class(x) % Display the data type of x
ans =
 single

Combining Integer and Double Types
Combining integer values with double values yields an integer matrix. Note that the fractional part
of pi is rounded to the nearest integer. (The int8 function used in this example converts its numeric
argument to an 8-bit integer).

x = [int8(21) int8(-22) int8(23) pi 45/6]
x =
 21 -22 23 3 8
class(x)
ans =
 int8

Combining Character and Double Types
Combining character values with double values yields a character matrix. MATLAB converts the
double elements in this example to their character equivalents:

x = ['A' 'B' 'C' 68 69 70]
x =
 ABCDEF

class(x)
ans =
 char

Combining Logical and Double Types
Combining logical values with double values yields a double matrix. MATLAB converts the
logical true and false elements in this example to double:

16 Combining Unlike Classes

16-8

x = [true false false pi sqrt(7)]
x =
 1.0000 0 0 3.1416 2.6458

class(x)
ans =
 double

 Concatenation Examples

16-9

Using Objects

17

Copying Objects

In this section...
“Two Copy Behaviors” on page 17-2
“Handle Object Copy” on page 17-2
“Value Object Copy Behavior” on page 17-2
“Handle Object Copy Behavior” on page 17-3
“Testing for Handle or Value Class” on page 17-5

Two Copy Behaviors
There are two fundamental kinds of MATLAB objects — handles and values.

Value objects behave like MATLAB fundamental types with respect to copy operations. Copies are
independent values. Operations that you perform on one object do not affect copies of that object.

Handle objects are referenced by their handle variable. Copies of the handle variable refer to the
same object. Operations that you perform on a handle object are visible from all handle variables that
reference that object.

Handle Object Copy
If you are defining classes and want to support handle object copy, see “Implement Copy for Handle
Classes”.

Value Object Copy Behavior
MATLAB numeric variables are value objects. For example, when you copy a to the variable b, both
variables are independent of each other. Changing the value of a does not change the value of b:

a = 8;
b = a;

Now reassign a. b is unchanged:

a = 6;
b

b =
 8

Clearing a does not affect b:

clear a
b

b =
 8

17 Using Objects

17-2

Value Object Properties

The copy behavior of values stored as properties in value objects is the same as numeric variables.
For example, suppose vobj1 is a value object with property a:

vobj1.a = 8;

If you copy vobj1 to vobj2, and then change the value of vobj1 property a, the value of the copied
object's property, vobj2.a, is unaffected:

vobj2 =vobj1;
vobj1.a = 5;
vobj2.a

ans =
 8

Handle Object Copy Behavior
Here is a handle class called HdClass that defines a property called Data.

classdef HdClass < handle
 properties
 Data
 end
 methods
 function obj = HdClass(val)
 if nargin > 0
 obj.Data = val;
 end
 end
 end
end

Create an object of this class:

hobj1 = HdClass(8)

Because this statement is not terminated with a semicolon, MATLAB displays information about the
object:

hobj1 =

 HdClass with properties:

 Data: 8

The variable hobj1 is a handle that references the object created. Copying hobj1 to hobj2 results in
another handle referring to the same object:

hobj2 = hobj1

hobj2 =

 HdClass with properties:

 Data: 8

 Copying Objects

17-3

Because handles reference the object, copying a handle copies the handle to a new variable name,
but the handle still refers to the same object. For example, given that hobj1 is a handle object with
property Data:

hobj1.Data

ans =

 8

Change the value of hobj1's Data property and the value of the copied object's Data property also
changes:

hobj1.Data = 5;
hobj2.Data

ans =

 5

Because hobj2 and hobj1 are handles to the same object, changing the copy, hobj2, also changes
the data you access through handle hobj1:

hobj2.Data = 17;
hobj1.Data

ans =

 17

Reassigning Handle Variables

Reassigning a handle variable produces the same result as reassigning any MATLAB variable. When
you create an object and assign it to hobj1:

hobj1 = HdClass(3.14);

hobj1 references the new object, not the same object referenced previously (and still referenced by
hobj2).

Clearing Handle Variables

When you clear a handle from the workspace, MATLAB removes the variable, but does not remove
the object referenced by the other handle. However, if there are no references to an object, MATLAB
destroys the object.

Given hobj1 and hobj2, which both reference the same object, you can clear either handle without
affecting the object:

hobj1.Data = 2^8;
clear hobj1
hobj2

hobj2 =

 HdClass with properties:

 Data: 256

17 Using Objects

17-4

If you clear both hobj1 and hobj2, then there are no references to the object. MATLAB destroys the
object and frees the memory used by that object.

Deleting Handle Objects

To remove an object referenced by any number of handles, use delete. Given hobj1 and hobj2,
which both refer to the same object, delete either handle. MATLAB deletes the object:

hobj1 = HdClass(8);
hobj2 = hobj1;
delete(hobj1)
hobj2

hobj2 =

 handle to deleted HdClass

Use clear to remove the variable from the workspace.

Modifying Objects

When you pass an object to a function, MATLAB passes a copy of the object into the function
workspace. If the function modifies the object, MATLAB modifies only the copy of the object that is in
the function workspace. The differences in copy behavior between handle and value classes are
important in such cases:

• Value object — The function must return the modified copy of the object. To modify the object in
the caller’s workspace, assign the function output to a variable of the same name

• Handle object — The copy in the function workspace refers to the same object. Therefore, the
function does not have to return the modified copy.

Testing for Handle or Value Class
To determine if an object is a handle object, use the isa function. If obj is an object of some class,
this statement determines if obj is a handle:

isa(obj,'handle')

For example, the containers.Map class creates a handle object:
hobj = containers.Map({'Red Sox','Yankees'},{'Boston','New York'});
isa(hobj,'handle')

ans =

 1

hobj is also a containers.Map object:

isa(hobj,'containers.Map')

ans =

 1

Querying the class of hobj shows that it is a containers.Map object:

class(hobj)

 Copying Objects

17-5

ans =

containers.Map

The class function returns the specific class of an object.

See Also

Related Examples
• “Implement Copy for Handle Classes”

17 Using Objects

17-6

Defining Your Own Classes

All MATLAB data types are implemented as object-oriented classes. You can add data types of your
own to your MATLAB environment by creating additional classes. These user-defined classes define
the structure of your new data type, and the functions, or methods, that you write for each class
define the behavior for that data type.

These methods can also define the way various MATLAB operators, including arithmetic operations,
subscript referencing, and concatenation, apply to the new data types. For example, a class called
polynomial might redefine the addition operator (+) so that it correctly performs the operation of
addition on polynomials.

With MATLAB classes you can

• Create methods that overload existing MATLAB functionality
• Restrict the operations that are allowed on an object of a class
• Enforce common behavior among related classes by inheriting from the same parent class
• Significantly increase the reuse of your code

For more information, see “Role of Classes in MATLAB”.

18

Scripts and Functions

3

Scripts

• “Create Scripts” on page 19-2
• “Add Comments to Code” on page 19-3
• “Create and Run Sections in Code” on page 19-5
• “Scripts vs. Functions” on page 19-10
• “Add Functions to Scripts” on page 19-12

19

Create Scripts
Scripts are the simplest kind of code file because they have no input or output arguments. They are
useful for automating series of MATLAB commands, such as computations that you have to perform
repeatedly from the command line or series of commands you have to reference.

You can create a new script in the following ways:

• Highlight commands from the Command History, right-click, and select Create Script.
•

On the Home tab, click the New Script button.
• Use the edit function. For example, edit new_file_name creates (if the file does not exist) and

opens the file new_file_name. If new_file_name is unspecified, MATLAB opens a new file
called Untitled.

After you create a script, you can add code to the script and save it. For example, you can save this
code that generates random numbers from 0 through 100 as a script called numGenerator.m.

columns = 10000;
rows = 1;
bins = columns/100;

rng(now);
list = 100*rand(rows,columns);
histogram(list,bins)

Save your script and run the code using either of these methods:

• Type the script name on the command line and press Enter. For example, to run the
numGenerator.m script, type numGenerator.

•
On the Editor tab, click the Run button.

You also can run the code from a second code file. To do this, add a line of code with the script name
to the second code file. For example, to run the numGenerator.m script from a second code file, add
the line numGenerator; to the file. MATLAB runs the code in numGenerator.m when you run the
second file.

When execution of the script completes, the variables remain in the MATLAB workspace. In the
numGenerator.m example, the variables columns, rows, bins, and list remain in the workspace.
To see a list of variables, type whos at the command prompt. Scripts share the base workspace with
your interactive MATLAB session and with other scripts.

See Also

More About
• “Create and Run Sections in Code” on page 19-5
• “Scripts vs. Functions” on page 19-10
• “Base and Function Workspaces” on page 21-9
• “Create Live Scripts in the Live Editor” on page 20-6

19 Scripts

19-2

Add Comments to Code

When you write code, it is a good practice to add comments that describe the code. Comments allow
others to understand your code and can refresh your memory when you return to it later. During code
development and testing, you also can use comments to comment out any code that does not need to
run.

In the Live Editor, you can insert lines of text before and after code to describe a process or code.
Text lines provide additional flexibility such as standard formatting options, and the insertion of
images, hyperlinks, and equations. For more information, see “Create Live Scripts in the Live Editor”
on page 20-6.

Note When you have a MATLAB code file (.m) containing text that has characters in a different
encoding than that of your platform, when you save or publish your file, MATLAB displays those
characters as garbled text. Live scripts and functions (.mlx) support storing and displaying
characters across all locales.

To add comments to MATLAB code, use the percent (%) symbol. Comment lines can appear anywhere
in a code file, and you can append comments to the end of a line of code.

For example:

% Add up all the vector elements.
y = sum(x) % Use the sum function.

To comment out multiple lines of code, use the block comment operators, %{ and %}. The %{ and %}
operators must appear alone on the lines that immediately precede and follow the block of help text.
Do not include any other text on these lines.

For example:

a = magic(3);
%{
sum(a)
diag(a)
sum(diag(a))
%}
sum(diag(fliplr(a)))

To comment out a selection, select the lines of code, go to the Editor or Live Editor tab, and in the
Code section, click the comment button . You also can type Ctrl+R. To uncomment the selected
lines code, click the uncomment button or type Ctrl+Shift+R. On macOS systems, use
Command+/ to comment and Command+Option+/ to uncomment. On Linux systems, use Ctrl+/ to
comment and Ctrl+Shift+/ to uncomment.

To comment out part of a statement that spans multiple lines, use an ellipsis (...) instead of a
percent sign. For example:

header = ['Last Name, ', ...
 'First Name, ', ...
 ... 'Middle Initial, ', ...
 'Title']

 Add Comments to Code

19-3

The Editor and Live Editor include tools and context menu items to help you add, remove, or change
the format of comments for MATLAB, Java, and C/C++ code. For example, suppose that you have this
lengthy text into a commented line.
% This is a code file that has a comment that is a little more than 75 columns wide.
disp('Hello, world')

With the cursor on the line, go to Editor or Live Editor tab, and in the Code section, click the wrap

comments button . The comment wraps to the next line:
% This is a code file that has a comment that is a little more than 75
% columns wide.
disp('Hello, world')

By default, as you type comments in the Editor and Live Editor, the text wraps when it reaches a
column width of 75. To change the column where the comment text wraps or to disable automatic
comment wrapping, go to the Home tab and in the Environment section, click Preferences.
Select MATLAB > Editor/Debugger > Language, and adjust the Comment formatting
preferences. To adjust Comment formatting preferences in MATLAB Online, select Editor/
Debugger > MATLAB Language.

The Editor and Live Editor do not wrap comments with:

• Section titles (comments that begin with %%)
• Long contiguous text, such as URLs
• Bulleted list items (text that begins with * or #) onto the preceding line

See Also

Related Examples
• “Add Help for Your Program” on page 21-5
• “Create Scripts” on page 19-2
• “Create Live Scripts in the Live Editor” on page 20-6
• “Editor/Debugger Preferences”

19 Scripts

19-4

Create and Run Sections in Code
Since R2021b. Replaces Code Sections (R2021a) and Run Sections in Live Scripts (R2021a).

MATLAB code files often contain many commands and lines of text. You typically focus your efforts on
a single part of your code at a time, working with the code and related text in pieces. For easier
document management and navigation, divide your file into sections. Then, you can run the code in
an individual section and navigate between sections, as needed.

Divide Your File into Sections
To create a section, go to the Editor or Live Editor tab and in the Section section, click the Section
Break button. You also can enter two percent signs (%%) at the start of the line where you want to
begin the new section. The new section is highlighted with a blue border, indicating that it is
selected. If there is only one section in your code file, the section is not highlighted, as it is always
selected.

In the Editor, a section begins with two percent signs (%%). The text on the same line as %% is called
the section title. Including section titles is optional, however, it improves the readability of the file
and appears as a heading if you publish your code.

In the Live Editor, a section can consist of code, text, and output. When you create a section or modify
an existing section, the bar on the left side of the section is displayed with vertical striping. The
striping indicates that the section is stale. A stale section is a section that has not yet been run, or
that has been modified since it was last run.

 Create and Run Sections in Code

19-5

https://www.mathworks.com/help/releases/R2021a/matlab/matlab_prog/run-sections-of-programs.html
https://www.mathworks.com/help/releases/R2021a/matlab/matlab_prog/run-sections.html

Delete Sections

To delete a section break in the Editor, delete the two percent signs (%%) at the beginning of the
section. To delete a section break in the Live Editor, place your cursor at the beginning of the line
directly after the section break and press Backspace. Alternatively, you can place your cursor at the
end of the line directly before the section break and press the Delete key.

Note You cannot remove sections breaks added by MATLAB. For more information about when
MATLAB might add a section break, see “Behavior of Sections in Functions” on page 19-8 and
“Behavior of Sections in Loops and Conditional Statements” on page 19-8.

Minimize Section Margin

To maximize the space available for editing code in the Editor, you can hide the Run Section, Run to
Here, and Code Folding margins. This minimizes the gray area to the left of your code. To hide one or
more of the margins, right-click the gray area to the left of your code and clear the Show Run
Section Margin, Show Run to Here Margin, and/or Show Code Folding Margin options.

Run Sections
You can run your code file by either running each section individually or by running all of the code in
the file at once. To run a section individually, it must contain all the values it requires, or the values
must exist in the MATLAB workspace. When running individual sections, MATLAB does not save your
file and the file does not have to be on your search path.

This table describes different ways to run your code.

Operation Instructions
Run all the code in the file. On the Editor or Live Editor tab, in the Run section, click Run.
Run the code in the selected
section. On the Editor or Live Editor tab, in the Section section, click

Run Section.

In the Live Editor, you also can click the blue bar to the left of the
section.

Run the code in the selected
section, and then move to the
next section.

On the Editor or Live Editor tab, in the Section section, select
Run and Advance.

19 Scripts

19-6

Operation Instructions
Run the code in the selected
section, and then run all the
code after the selected
section.

On the Editor or Live Editor tab, in the Section section, select
Run to End.

Run to a specific line of code
and pause.

Click the Run to Here button to the left of the line. If the selected
line cannot be reached, MATLAB continues running until the end of
the file is reached or a breakpoint is encountered.

In the Editor, the Run to Here button is available only for code
that has been saved. In the Live Editor, the Run to Here button is
available for all code, whether it is saved or not. In functions and
classes, the Run to Here button is available only when evaluation
is paused.

For more information, see “Debug MATLAB Code Files” on page 23-
2.

Increment Values in Sections

You can increment numeric values within a section, rerunning that section after every change. This
helps you fine-tune and experiment with your code.

To increment a numeric value within a section, use controls in the Live Editor. For example, this code
calculates the factorial of the variable x.

x = 5;
y = factorial(x)

y =
 120

To interactively change the value of x, in a live script, replace the value 5 with a numeric slider. By
default, MATLAB reruns the current section when the value of the slider changes.

For more information, see “Add Interactive Controls to a Live Script” on page 20-34.

Navigate Between Sections
You can navigate between sections in a file without running the code within those sections. This
navigation facilitates jumping quickly from section to section within a file. You might navigate this
way, for example, to find specific code in a large file.

 Create and Run Sections in Code

19-7

Operation Instructions
Move to specific section.

On the Editor or Live Editor tab, in the Navigate section, click
Go To . Then, in the Sections section, select from the available
options.

Move to previous section.
On the Editor or Live Editor tab, in the Navigate section, click
Go To , and then click Previous Section. Alternatively, you can use
the Ctrl+Up keyboard shortcut.

Move to next section
On the Editor or Live Editor tab, in the Navigate section, click
Go To , and then click Next Section. Alternatively, you can use the
Ctrl+Down keyboard shortcut.

Behavior of Sections in Functions
In the Editor, if you add a section break within a function, MATLAB inserts section breaks at the
function declaration and at the function end statement. If you do not end the function with an end
statement, MATLAB behaves as if the end of the function occurs immediately before the start of the
next function.

In the Live Editor, you cannot add section breaks inside a function. Sections inside local functions are
not supported. If you add local functions to a live script, MATLAB adds a section break before the first
local function definition and removes all section breaks after it. When running individual sections in a
live script, you can run only the sections that are before the local function definitions.

Behavior of Sections in Loops and Conditional Statements
In the Editor, if you add a section break within a loop or conditional statement (such as an if
statement or for loop), MATLAB adds section breaks at the lines containing the start and end of the
statement (if those lines do not already contain a section break). The sections within the loop or
conditional statement are independent from the sections in the remaining code and become nested
inside the sections in the remaining code. Sections inside nested loop or conditional statements also
become nested.

For example, this code preallocates a 10-element vector, and then calculates nine values. If a
calculated value is even, MATLAB adds one to it.

x = ones(1,10);
for n = 2:10

 x(n) = 2 * x(n - 1);
 if rem(x(n), 2) == 0

 x(n) = x(n) + 1;
 end
end

If you add a section break at line 3, inside the for loop, MATLAB adds a section break at line 9, the
end statement for the for loop. If you add a section break at line 6, inside the if statement, MATLAB
adds a section break at line 8, the end statement for the if statement, leading to three levels of
nested sections.

19 Scripts

19-8

• At the outermost level of nesting, one section spans the entire file.

• At the second level of nesting, a section exists within the for loop.

• At the third level of nesting, one section exists within the if statement.

See Also

More About
• “Create Scripts” on page 19-2
• “Create Live Scripts in the Live Editor” on page 20-6
• “Scripts vs. Functions” on page 19-10

 Create and Run Sections in Code

19-9

Scripts vs. Functions
This topic discusses the differences between scripts and functions, and shows how to convert a script
to a function.

Both scripts and functions allow you to reuse sequences of commands by storing them in code files.
Scripts are the simplest type of code file, since they store commands exactly as you would type them
at the command line. However, functions are more flexible and more easily extensible.

Create a script in a file named triarea.m that computes the area of a triangle:

b = 5;
h = 3;
a = 0.5*(b.*h)

After you save the file, you can call the script from the command line:

triarea

a =
 7.5000

To calculate the area of another triangle using the same script, you could update the values of b and
h in the script and rerun it. Each time you run it, the script stores the result in a variable named a
that is in the base workspace.

However, instead of manually updating the script each time, you can make your code more flexible by
converting it to a function. Replace the statements that assign values to b and h with a function
declaration statement. The declaration includes the function keyword, the names of input and
output arguments, and the name of the function.

function a = triarea(b,h)
a = 0.5*(b.*h);
end

After you save the file, you can call the function with different base and height values from the
command line without modifying the script:

a1 = triarea(1,5)
a2 = triarea(2,10)
a3 = triarea(3,6)

a1 =
 2.5000
a2 =
 10
a3 =
 9

Functions have their own workspace, separate from the base workspace. Therefore, none of the calls
to the function triarea overwrite the value of a in the base workspace. Instead, the function assigns
the results to variables a1, a2, and a3.

19 Scripts

19-10

See Also

More About
• “Create Scripts” on page 19-2
• “Create Functions in Files” on page 21-2
• “Add Functions to Scripts” on page 19-12
• “Base and Function Workspaces” on page 21-9

 Scripts vs. Functions

19-11

Add Functions to Scripts

Starting in R2016b, MATLAB scripts, including live scripts, can contain code to define functions.
These functions are called local functions. Local functions are useful if you want to reuse code within
a script. By adding local functions, you can avoid creating and managing separate function files. They
are also useful for experimenting with functions, which can be added, modified, and deleted easily as
needed.

Create a Script with Local Functions
To create a script or live script with local functions, go to the Home tab and select New Script or
New Live Script. Then, add code to the file. Add all local functions at end of the file, after the script
code. Include at least one line of script code before the local functions. Each local function must
begin with its own function definition statement and end with the end keyword. The functions can
appear in any order.

For example, create a script called mystats.m.

edit mystats

In the file, include two local functions, mymean and mymedian. The script mystats declares an array,
determines the length of the array, and then uses the local functions mymean and mymedian to
calculate the average and median of the array.

x = 1:10;
n = length(x);
avg = mymean(x,n);
med = mymedian(x,n);

function a = mymean(v,n)
% MYMEAN Local function that calculates mean of array.

 a = sum(v)/n;
end

function m = mymedian(v,n)
% MYMEDIAN Local function that calculates median of array.

 w = sort(v);
 if rem(n,2) == 1
 m = w((n + 1)/2);
 else
 m = (w(n/2) + w(n/2 + 1))/2;
 end
end

When you add local functions to a live script, MATLAB automatically adds a section break before the
first local function definition and removes all section breaks after it. This is because the Live Editor
does not support individual sections within local functions.

Run Scripts with Local Functions
To run a script or live script that includes local functions, in the Editor or Live Editor tab, click the

 Run button. You also can type the saved script name in the Command Window.

19 Scripts

19-12

To run an individual section inside a script or live script, place the cursor inside the section and use
the Run Section button (requires R2017b or later for .m files). In live scripts or functions (.mlx
files), you only can run sections that are before the local function definitions.

Restrictions for Local Functions and Variables
Local functions are only visible within the file where they are defined. They are not visible to
functions in other files, and cannot be called from the Command Window.

Local functions in the current file have precedence over functions in other files. That is, when you call
a function within a script, MATLAB checks whether the function is a local function before looking for
the function in other locations. This allows you to create an alternate version of a particular function
while retaining the original in another file.

Scripts create and access variables in the base workspace. Local functions, like all other functions,
have their own workspaces that are separate from the base workspace. Local functions cannot access
variables in the workspace of other functions or in the base workspace, unless you pass them as
arguments.

Access Help for Local Functions
Although you cannot call a local function from the command line or from functions in other files, you
can access its help using the help command. Specify the names of both the script and the local
function, separating them with a > character.

For example:

help mystats>mymean

 mymean Local function that calculates mean of array.

See Also

More About
• “Create Functions in Files” on page 21-2
• “Function Precedence Order” on page 21-37
• “Base and Function Workspaces” on page 21-9

 Add Functions to Scripts

19-13

Live Scripts and Functions

20

What Is a Live Script or Function?
MATLAB live scripts and live functions are interactive documents that combine MATLAB code with
formatted text, equations, and images in a single environment called the Live Editor. In addition, live
scripts store and display output alongside the code that creates it.

Use live scripts and functions to:

Visually explore and analyze problems

• Write, execute, and test code in a single interactive environment.
• Run blocks of code individually (live scripts only) or as a whole file, and view the results and

graphics with the code that produced them.

Share richly formatted, executable narratives

• Add titles, headings, and formatted text to describe a process and include equations, images, and
hyperlinks as supporting material.

• Save your narratives as richly formatted, executable documents and share them with colleagues
or the MATLAB community, or convert them to HTML, PDF, Microsoft Word, or LaTeX documents
for publication.

20 Live Scripts and Functions

20-2

Create interactive lectures for teaching

• Combine code and results with formatted text and mathematical equations.
• Create step-by-step lectures and evaluate them incrementally to illustrate a topic.
• Modify code on the fly to answer questions or explore related topics.
• Share lectures with students as interactive documents or in hard copy format, and distribute

partially completed files as assignments.

Differences with Plain Code Scripts and Functions
Live scripts and live functions differ from plain code scripts and functions in several ways. This table
summarizes the main differences.

 What Is a Live Script or Function?

20-3

 Live Scripts and Functions Plain Code Scripts and Functions
File Format Live Code file format. For more information,

see “Live Code File Format (.mlx)” on page
20-58

Plain Text file format

File
Extension

.mlx .m

Output
Display

With code in the Live Editor (live scripts only) In Command Window

Text
Formatting

Add and view formatted text in the Live
Editor

Use publishing markup to add
formatted text, publish to view

Visual
Representati
on

Requirements

• MATLAB R2016a — MATLAB supports live scripts in versions R2016a and above, and live
functions in versions R2018a and above.

• Operating System — Starting in R2019b, MATLAB supports the Live Editor in all operating
systems supported by MATLAB. For more information, see System Requirements.

For MATLAB versions R2016a through R2019a, the Live Editor is not supported in several
operating systems supported by MATLAB.

Unsupported operating systems include:

• Red Hat Enterprise Linux 6.
• Red Hat Enterprise Linux 7.
• SUSE Linux Enterprise Desktop versions 13.0 and earlier.
• Debian 7.6 and earlier.

In addition, some operating systems require additional configuration to run the Live Editor in
MATLAB versions R2016a through R2019a. If you are unable to run the Live Editor on your
system, Contact Technical Support for information on how to configure your system.

20 Live Scripts and Functions

20-4

https://www.mathworks.com/support/requirements/matlab-system-requirements.html

Unsupported Features
Some MATLAB features are unsupported in the Live Editor:

• Classes — Classes are not supported in the Live Editor. Create classes as plain code files (.m)
instead. You then can use the classes in your live scripts or functions.

• MATLAB preferences — The Live Editor ignores some MATLAB preferences, including custom
keyboard shortcuts and Emacs-style keyboard shortcuts.

See Also

Related Examples
• “Create Live Scripts in the Live Editor” on page 20-6
• “Live Code File Format (.mlx)” on page 20-58
• MATLAB Live Script Gallery

 What Is a Live Script or Function?

20-5

https://www.mathworks.com/products/matlab/live-script-gallery.html

Create Live Scripts in the Live Editor

Live scripts are program files that contain your code, output, and formatted text together in a single
interactive environment called the Live Editor. In live scripts, you can write your code and view the
generated output and graphics along with the code that produced it. Add formatted text, images,
hyperlinks, and equations to create an interactive narrative that you can share with others.

Create Live Script

To create a live script in the Live Editor, go to the Home tab and click New Live Script . You also
can use the edit function in the Command Window. For example, type edit penny.mlx to open or
create the file penny.mlx. To ensure that a live script is created, specify a .mlx extension. If an
extension is not specified, MATLAB defaults to a file with .m extension, which only supports plain
code.

Open Existing Script as Live Script

If you have an existing script, you can open it as a live script in the Live Editor. Opening a script as a
live script creates a copy of the file and leaves the original file untouched. MATLAB converts
publishing markup from the original script to formatted content in the new live script.

To open an existing script (.m) as a live script (.mlx) from the Editor, right-click the document tab,
and select Open scriptName as Live Script from the context menu. Alternatively, go to the Editor
tab, click Save , and select Save As. Then, set the Save as type: to MATLAB Live Code Files
(*.mlx) and click Save.

Note You must use one of the described conversion methods to convert your script to a live script.
Simply renaming the script with a .mlx extension does not work and can corrupt the file.

Add Code
After you create a live script, you can add code and run it. For example, add this code that plots a
vector of random data and draws a horizontal line on the plot at the mean.

n = 50;
r = rand(n,1);
plot(r)

20 Live Scripts and Functions

20-6

m = mean(r);
hold on
plot([0,n],[m,m])
hold off
title('Mean of Random Uniform Data')

Run Code
To run the code, click the vertical striped bar to the left of the code. Alternatively, go to the Live

Editor tab and click Run . While your program is running, a status indicator appears at the
top left of the Editor window. A gray blinking bar to the left of a line of code indicates the line that
MATLAB is evaluating. To navigate to the line MATLAB is evaluating, click the status indicator.

If an error occurs while MATLAB is running your program or if MATLAB detects a significant issue in
your code, the status indicator becomes an error icon . To navigate to the error, click the icon. An
error icon to the right of the line of code indicates the error. The corresponding error message is
displayed as an output.

You do not need to save your live script to run it. When you do save your live script, MATLAB

automatically saves it with a .mlx extension. For example, go the Live Editor tab, click Save ,
and enter the name plotRand. MATLAB saves the live script as plotRand.mlx.

Display Output
By default, MATLAB displays output to the right of the code. Each output is displayed with the line
that creates it. To move focus between the code and the output using the keyboard, press Ctrl+Shift
+O. On macOS, press Option+Command+O.

When scrolling, MATLAB aligns the output to the code that generates it. To disable the alignment of
output to code when output is on the right, right-click the output section and select Disable
Synchronous Scrolling. To change the size of the output display panel, drag the resizer bar
between the code and output to the left or to the right.

 Create Live Scripts in the Live Editor

20-7

To clear an output, right-click the output or the code line that created it, and select Clear Output. To
clear all output, right-click anywhere in the script and select Clear All Output. Alternatively, go to
the View tab and in the Output section, click the Clear all Output button.

To open individual outputs, such as variables and figures, in a separate window, click the Open in
figure window button in the upper right corner of the output. Variables open in the Variables
editor, and figures open in a new figure window. Changes made to variables or figures outside of a
live script do not apply to the output displayed in the live script.

To modify figures in the output, use the tools in the upper-right corner of the figure axes or in the
Figure toolstrip. You can use the tools to explore the data in a figure and add formatting and
annotations. For more information, see “Modify Figures in Live Scripts” on page 20-12.

Change View
To optimize your live script for your current flow, you can change where to display output and
whether to display code in the live script.

By default, output displays to the right of the code. Each output displays with the line that creates it.
This option is ideal when writing code.

20 Live Scripts and Functions

20-8

To display output in line with the code, select the Output inline button to the right of the live

script. You also can go to the View tab and in the View section, select Output inline . MATLAB
displays each output underneath the line that creates it. This view is ideal for sharing.

To hide the code and display only output, controls, tasks, and formatted text, select the Hide code
button to the right of the live script or in the View tab. This view is ideal for sharing when you
want others to only change the value of the controls in your live script, or when you do not want
others to see your code.

To change the default location of the output when creating a new live script, on the Home tab, in the
Environment section, click Preferences . Select MATLAB > Editor / Debugger > Display, and
then select a different option for the Live Editor default view.

 Create Live Scripts in the Live Editor

20-9

Format Text
You can add formatted text, hyperlinks, images, and equations to your live scripts to create a
presentable document to share with others. For example, add a title and some introductory text to
plotRand.mlx:

1
Place your cursor at the top of the live script and, in the Live Editor tab, select Text . A new
text line appears above the code.

2
Click the Select Style button and select Title.

3 Add the text Plot Random Data.
4 With your cursor still in the line, click the Align Center button to center the text.
5 Press Enter to move to the next line.
6 Type the text This script plots a vector of random data and draws a

horizontal line on the plot at the mean.

For more information including a list of all available formatting options, see “Format Text in the Live
Editor” on page 20-18.

To adjust the displayed font size in the Live Editor, use the Ctrl + Plus (+) and Ctrl + Minus (-)
keyboard shortcuts or the Ctrl + Mouse Scroll keyboard shortcut. On macOS systems, use the
Command key instead of the Ctrl key.

The change in the displayed font size is not honored when exporting the live script to PDF, Microsoft
Word, HTML, or LaTeX.

20 Live Scripts and Functions

20-10

Save Live Scripts as Plain Code
To save a live script as a plain code file (.m):

1 On the Live Editor tab, in the File section, select Save > Save As....
2 In the dialog box that appears, select MATLAB Code files (UTF-8) (*.m) as the Save as

type.
3 Click Save.

When saving, MATLAB converts all formatted content to publish markup.

See Also

More About
• “Format Text in the Live Editor” on page 20-18
• “Create and Run Sections in Code” on page 19-5
• “Modify Figures in Live Scripts” on page 20-12
• MATLAB Live Script Gallery

 Create Live Scripts in the Live Editor

20-11

https://www.mathworks.com/products/matlab/live-script-gallery.html

Modify Figures in Live Scripts
In the Live Editor, you can interactively modify figures in the output. Use the provided tools to
explore data and add formatting and annotations to your figures. Then, update your code to reflect
changes using the generated code.

Explore Data
You can interactively explore figures in the output using the toolbar that appears in the upper-right
corner of the axes when you hover over a figure. The tools available depend on the contents of the
axes, but typically include zooming, panning, rotating, exporting, and restoring the original view.

Zooming, panning, and rotating the axes let you explore different views of your data. By default, you
can scroll or pinch to zoom into and out from the view of the axes. You also can drag to pan (2-D view)
or drag to rotate (3-D view). Gesture-based interactions are not supported in R2018a and previous
releases.

You can enable more interactions by clicking the zoom-in , zoom-out , pan , and rotate
buttons in the axes toolbar. For example, click the zoom-in button if you want to drag a rectangle to
zoom into a region of interest.

Note When you open a saved live script, a blue information icon appears next to each output
figure, indicating that the interactive tools are not available yet. To make these tools available, run
the live script.

Suppose that you want to explore the health information of 100 patients. Create a live script called
patients_smoking.mlx and add code that loads the data and adds a scatter plot that shows the
systolic blood pressure of patients that smoke versus patients that do not smoke, by age. Run the
code by going to the Live Editor tab and clicking Run .

load patients

figure
scatter(Age(Smoker==1),Systolic(Smoker==1));
hold on
scatter(Age(Smoker==0),Systolic(Smoker==0));
hold off

20 Live Scripts and Functions

20-12

Explore the points where the patient is between 35 and 40 years old. Select the zoom-in button and
drag a rectangle around the points between the 35 and 40 x-axis markers. The view zooms into the
selected region.

Add Formatting and Annotations
In addition to exploring the data, you can format and annotate your figures interactively by adding
titles, labels, legends, grid lines, arrows, and lines. To add an item, first select the desired figure.
Then, go to the Figure tab and select one of the available options. To add a formatting or annotation
option to your favorites, click the star at the top right of the desired annotation button.

This table describes the available formatting and annotation options.

 Modify Figures in Live Scripts

20-13

Option Description

Title
Add a title to the axes.

To modify an existing title, click the existing title
and enter the modified text.

X-Label

Y-Label

Add a label to the axes.

To modify an existing label, click the existing
label and enter the modified text.

Legend
Add a legend to the figure.

To modify the existing legend descriptions, click
the existing descriptions and enter the modified
text. To remove the legend, select Remove
Legend from the Figure tab.

Colorbar
Add a colorbar legend to the figure.

To remove the colorbar legend, select Remove
Colorbar from the Figure tab.

Grid

X-Grid

Y-Grid

Add grid lines to the axes.

To remove all the grid lines from the axes, select
Remove Grid from the Figure tab.

Line

Arrow

Text Arrow

Double Arrow

Add a line or arrow annotation to the figure.
Draw the arrow from tail to head.

To move an existing annotation, click the
annotation to select it and drag it to the desired
location.

To remove the selected annotation, press the
Delete key.

For example, suppose that you want to add a title, axes labels, a legend, grid lines, and an arrow
annotation to the figure in patients_smoking.mlx.

•
To add a title, go to the Figure tab, and select Title. A blue rectangle appears prompting
you to enter text. Type the text Systolic Blood Pressure vs. Age and press Enter.

•
To add axes labels, go to the Figure tab, and select X-Label. A blue rectangle appears

prompting you to enter text. Type the text Age and press Enter. Select Y-Label. A blue

20 Live Scripts and Functions

20-14

rectangle appears prompting you to enter text. Type the text Systolic Pressure and press
Enter.

•
To add a legend, go to the Figure tab, and select Legend. A legend appears at the upper-
right corner of the axes. Click the data1 description in the legend and replace the text with
Smoking. Click the data2 description in the legend and replace the text with Non-Smoking.
Press Enter.

•
To add grid lines, go to the Figure tab, and select Grid. Grid lines appear in the axes.

• To update the code, in the selected figure, click the Update Code button. The live script now
contains the code needed to reproduce the figure changes.
grid on
legend(["Smoker","Non-Smoker"])
title("Systolic Blood Pressure vs. Age")
xlabel("Age")
ylabel("Systolic Pressure")

Update Code with Figure Changes
When modifying output figures in live scripts, changes to the figure are not automatically added to
the script. With each interaction, the Live Editor generates the code needed to reproduce the
interactions and displays this code either underneath or to the right of the figure. Use the Update
Code button to add the generated code to your script. This enables you to reproduce the interactions
the next time you run the live script.

For example, in the live script patients_smoking.mlx, after zooming in on patients between 35
and 40 years of age, click the Update Code button.

 Modify Figures in Live Scripts

20-15

MATLAB adds the generated code for the interaction after the line containing the code for creating
the plot.

xlim([34.92 39.97])
ylim([105.9 139.8])

If the Live Editor is unable to determine where to place the generated code, the Update Code button
is disabled. This occurs, for example, if you modify the code without running the script again. In this
case, use the Copy button to copy the generated code into the clipboard. You then can paste the code
into your script at the appropriate location.

Save and Print Figure
At any point during figure modification, you can choose to save or print the figure for future use.

To save the figure, click the Export button in the axes toolbar and select from the available
options. For more information on saving figures, see “Save Plot as Image or Vector Graphics File” or
“Save Figure to Reopen in MATLAB Later”.

To print the figure, click the Open in figure window button in the upper-right corner of the figure.
This opens the figure in a separate figure window. Then, select File > Print. For more information on
printing figures, see “Print Figure from File Menu”.

Note Any changes made to the figure in the separate figure window are not reflected in the live
script. Similarly, any changes made to the figure in the live script are not reflected in the open figure
window.

20 Live Scripts and Functions

20-16

See Also

Related Examples
• “Format Text in the Live Editor” on page 20-18
• “Create and Run Sections in Code” on page 19-5

 Modify Figures in Live Scripts

20-17

Format Text in the Live Editor
You can add formatted text, hyperlinks, images, and equations to your live scripts and functions to
create a presentable document to share with others.

To insert a new item, go to the Insert tab and select from the available options:

Option Description Additional Details

 Code
Insert a blank
line of code.

You can insert a code line before, after, or between text lines.

 Section
Break

Insert a section
break.

You can insert a section break to divide your live script or function
into manageable sections to evaluate individually. A section can
consist of code, text, and output. For more information, see
“Create and Run Sections in Code” on page 19-5.

 Text
Insert a blank
line of text.

A text line can contain formatted text, hyperlinks, images, or
equations. You can insert a text line before, after, or between code
lines.

 Table of
Contents

Insert a table of
contents.

The table of contents contains a list of all the titles and headings in
the document. If the document contains only one title, then it is not
included in the table of contents. Only the title of the table of
contents is editable.

You can insert a table of contents only in text lines. If you insert a
table of contents into a code line, MATLAB places it directly above
the current code section.

When exporting a live script containing a table of contents to
Microsoft Word, by default, the table of contents in the resulting
document does not include page numbers. To add page numbers,
click the table of contents and select Update Table.

 Code
Example

Insert a
formatted code
example.

A code example is sample code that appears as indented and
monospaced text.

• Select Plain to insert sample code as unhighlighted text.
• Select MATLAB to insert sample code as text highlighted

according to MATLAB syntax.

20 Live Scripts and Functions

20-18

Option Description Additional Details

 Image Insert an image. You can insert images only in text lines. If you insert an image into
a code line, MATLAB places the image in a new text line directly
under the selected code line.

To change the alternate text, alignment, and size of an image after
inserting it, right-click the image and select Edit Image... from
the context menu.

• Alt Text — Add text to the edit field to specify alternative text
for the image.

• Alignment — Select from the available options to specify how
the image aligns with the other items in the row.

• Size — To specify a size relative to the original image size,
select Relative (%) and specify the width and height of the
image as a percentage of the original image. To specify an
absolute size, select Absolute (px) and specify the width and
height of the image in pixels. Select Keep Aspect Ratio to
maintain the aspect ratio while resizing.

To return to the original image size, right-click the image and
select Reset Image.

 Hyperlink Insert a
hyperlink.

You can insert hyperlinks only in text lines. If you insert a
hyperlink into a code line, MATLAB places the hyperlink in a new
text line directly under the selected code line.

• Select Web page to insert a hyperlink to an external web page.
Then, enter the URL of the web page.

• Select Location in existing document to insert a hyperlink to
a specific location in a separate live script or live function.
Enter or browse for the file path and then select a location in
the document preview that displays on the right.

• Select Location in this document to insert a hyperlink that
points to an existing location within the document. When
prompted, click the desired location within the document to
select it as the target. You also can use the Alt + Up Arrow
and Alt + Down Arrow keyboard shortcuts. Location can be a
code section, text paragraph, title, or heading. Linking to
individual lines of text or code is not supported.

• Select Existing file to insert a hyperlink to a file. Then, enter
the file path.

 Equation Insert an
equation.

You insert add equations only in text lines. If you insert an
equation into a code line, MATLAB places the equation in a new
text line directly under the selected code line. For more
information, see “Insert Equations into the Live Editor” on page
20-24.

To format existing text, use any of the options included in the Live Editor tab Text section:

 Format Text in the Live Editor

20-19

Format Type Options
Text Style

 Normal

 Heading 1

 Heading 2

 Heading 3

 Title
Text Alignment Align left

 Align center

 Align right
Lists Numbered list

 Bulleted list
Standard
Formatting Bold

 Italic

 Underline

 Monospaced

To change the case of selected text or code from all uppercase to lowercase, or vice versa, select the
text, right-click, and select Change Case. You also can press Ctrl+Shift+A. If the text contains both
uppercase and lowercase text, MATLAB changes the case to all uppercase.

Change Fonts
You can adjust the displayed font size in the Live Editor, or use settings to change the font name,
style, size, and color of code and text.

To increase or decrease the displayed font size in the Live Editor, zoom in or out using the Ctrl +
Plus (+) and Ctrl + Minus (-) keyboard shortcuts or by holding Ctrl and scrolling with the mouse.
On macOS systems, use the Command key instead of the Ctrl key. The change in the displayed font
size is not honored when exporting the live script to PDF, Microsoft Word, HTML, or LaTeX.

To change the font name, style, size, and color of code and text, using settings. For example, this code
changes the color and style of titles in the Live Editor:

20 Live Scripts and Functions

20-20

s = settings;
s.matlab.fonts.editor.title.Style.PersonalValue = {'bold'};
s.matlab.fonts.editor.title.Color.PersonalValue = [0 0 255 1];

This code increases the size and changes the font name of normal text in the Live Editor:

s = settings;
s.matlab.fonts.editor.normal.Size.PersonalValue = 20;
s.matlab.fonts.editor.normal.Name.PersonalValue = 'Calibri';

The Live Editor updates all open live scripts and live functions to show the selected fonts. When you
create new live scripts or functions, the selected fonts are applied as well.

For more information, see matlab.fonts

Autoformatting
For quick formatting in live scripts and functions, you can use a combination of keyboard shortcuts
and character sequences. Formatting appears after you enter the final character in a sequence.

This table shows a list of formatting styles and their available keyboard shortcuts and autoformatting
sequences.

Formatting
Style

Autoformattin
g Sequence

Keyboard Shortcut

Title # text +
Enter

Ctrl + Alt + L

Heading 1 ## text +
Enter

Ctrl + Shift + 1

Heading 2 ### text +
Enter

Ctrl + Shift + 2

Heading 3 #### text +
Enter

Ctrl + Shift + 3

 Format Text in the Live Editor

20-21

Formatting
Style

Autoformattin
g Sequence

Keyboard Shortcut

Section break
with heading 1

%% text +
Enter

With cursor at beginning of line with text:

Ctrl + Shift + 1, then Ctrl + Alt + Enter
Section break %% + Enter

--- + Enter

*** + Enter

Ctrl + Alt + Enter

Bulleted list * text

- text

+ text

Ctrl + Alt + U

Numbered list number. text Ctrl + Alt + O
Italic *text*

text

Ctrl + I

Bold **text**

__text__

Ctrl + B

Bold and italic ***text***

___text___

Ctrl + B, then Ctrl + I

Monospace `text`

|text|

Ctrl + M

Underline None Ctrl + U
LaTeX equation $LaTeX$ Ctrl + Shift + L
Hyperlink URL + Space or

Enter

<URL>

[Label](URL)

Ctrl + K

Trademark,
service mark,
and copyright
symbols (™, ℠,
®, and ©)

(TM)

(SM)

(R)

(C)

None

Note Title, heading, section break, and list sequences must be entered at the beginning of a line.

Sometimes you want an autoformatting sequence such as *** to appear literally. To display the
characters in the sequence, escape out of the autoformatting by pressing the Backspace key or by

20 Live Scripts and Functions

20-22

clicking Undo . For example, if you type ## text + Enter, a heading in the Heading 1 style with
the word text appears. To undo the formatting style and simply display ## text, press the
Backspace key. You only can escape out of a sequence directly after completing it. After you enter
another character or move the cursor, escaping is no longer possible.

To revert the autoformatting for LaTeX equations and hyperlinks, use the Backspace key at any
point.

To force formatting to reappear after escaping out of a sequence, click the Redo button. You only
can redo an action directly after escaping it. After you enter another character or move the cursor,
the redo action is no longer possible. In this case, to force the formatting to reappear, delete the last
character in the sequence and type it again.

To disable all or certain autoformatting sequences, you can adjust the “Editor/Debugger
Autoformatting Preferences”.

See Also
export

More About
• “Insert Equations into the Live Editor” on page 20-24
• “Share Live Scripts and Functions” on page 20-56

 Format Text in the Live Editor

20-23

Insert Equations into the Live Editor
To describe a mathematical process or method used in your code, insert equations into your live
script or function. Only text lines can contain equations. If you insert an equation into a code line,
MATLAB places the equation into a new text line directly under the selected code line.

There are two ways to insert an equation into a live script or function.

• Insert an equation interactively — You can build an equation interactively by selecting from a
graphical display of symbols and structures.

• Insert a LaTeX equation — You can enter LaTeX commands and the Live Editor inserts the
corresponding equation.

Insert Equation Interactively
To insert an equation interactively:

1 Go to the Insert tab and click Equation.

A blank equation appears.

2 Build your equation by selecting symbols, structures, and matrices from the options displayed in
the Equation tab. View additional options by clicking the drop-down arrow to the right of each
section.

20 Live Scripts and Functions

20-24

When adding or editing a matrix, a context menu appears, which you can use to delete and insert
rows and columns. You also can use the context menu to change or remove matrix delimiters.

3 Format your equation using the options available in the Text section. Formatting is only available
for text within the equation. Numbers and symbols cannot be formatted. The formatting option is
disabled unless the cursor is placed within text that can be formatted.

Keyboard Shortcuts for Equation Editing

The equation editor provides a few shortcuts for adding elements to your equation:

• To insert symbols, structures, and matrices, type a backslash followed by the name of the symbol.
For example, type \pi to insert a π symbol into the equation. To discover the name of a symbol or
structure, hover over the corresponding button in the Equation tab. You can also type backslash
in the equation editor to bring up a completion menu of all supported names.

Note Although the \name syntax closely resembles LaTeX command syntax, entering full LaTeX
expressions is not supported when inserting equations interactively.

• To insert subscripts, superscripts, and fractions, use the symbols ‘_’, ‘^’ or ‘/’. For example:

• Type x_2 to insert x2 into the equation.
• Type x^2 to insert x2 into the equation.
• Type x/2 to insert x

2 into the equation.

• To insert a new column into a matrix, type a ‘,’ at the end of the last cell in a matrix row. To insert
a new row, type a semicolon ‘;’ at the end of the last cell in a matrix column.

• To insert the common symbols listed in this table, type a combination of other symbols.

Keyboard
Input

Symbol Keyboard
Input

Symbol Keyboard
Input

Symbol

| | ∥ => ⇒ != ≠
|= ⊧ <--> ⟷ !< ≮
|– ⊢ <-> ↔ !> ≯
–| ⊣ <= ≤ !<= ≰

 Insert Equations into the Live Editor

20-25

Keyboard
Input

Symbol Keyboard
Input

Symbol Keyboard
Input

Symbol

-> → >= ≥ !>= ≱
<- ← <> ≠
<-- ⟵ ~= ≠

Insert LaTeX Equation

To insert a LaTeX equation:

1 Go to the Insert tab, click Equation , and select LaTeX Equation.
2 Enter a LaTeX expression in the dialog box that appears. For example, you can enter \sin(x) =

\sum_{n=0}^{\infty}{\frac{(-1)^n x^{2n+1}}{(2n+1)!}}.

The preview pane shows a preview of equation as it would appear in the live script.

3 To include a description of the LaTeX equation when exporting the live script to HTML, add text
to the Alt Text field. For example, you can enter the text Maclaurin series for sin(x).

The description specifies alternative text for the equation and is saved as an alt attribute in the
HTML document. It is used to provide additional information for the equation if, for example, a
user is using a screen reader.

4 Press OK to insert the equation into your live script.

LaTeX expressions describe a wide range of equations. This table shows several examples of LaTeX
expressions and their appearance when inserted into a live script.

LaTeX Expression Equation in Live Script
a^2 + b^2 = c^2 a2 + b2 = c2

20 Live Scripts and Functions

20-26

LaTeX Expression Equation in Live Script
\int_{0}^{2} x^2\sin(x) dx ∫0 2

x2sin(x)dx

\sin(x) = \sum_{n=0}^{\infty}{\frac{(-1)^n x^{2n
+1}}{(2n+1)!}} sin(x) = ∑

n = 0

∞ (− 1)nx2n + 1

(2n + 1)!

{a,b,c} \neq \{a,b,c\} a, b, c ≠ a, b, c
x^{2} \geq 0\qquad \text{for all}x\in\mathbf{R} x2 ≥ 0 for all x ∈ R
\matrix{a & b \cr c & d} a b

c d

Supported LaTeX Commands

MATLAB supports most standard LaTeX math mode commands. These tables show a list of supported
LaTeX commands.

Non-ASCII Letters

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
ø o œ oe å aa
Ø O Œ OE Å AA
ł l æ ae ß ss
Ł L Æ AE

Greek/Hebrew Letters

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
α alpha ν nu ξ xi
β beta ω omega ζ zeta
χ chi о omicron ɛ varepsilon
δ delta ϕ phi φ varphi
ε epsilon π pi ϖ varpi
η eta ψ psi ϱ varrho
v gamma ρ rho ς varsigma
ι iota σ sigma ϑ vartheta
κ kappa τ tau א aleph
λ lambda θ theta
μ mu υ upsilon
Δ Delta Φ Phi Θ Theta
Γ Gamma Π Pi ϒ Upsilon
Λ Lambda Ψ Psi Ξ Xi

 Insert Equations into the Live Editor

20-27

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
Ω Omega Σ Sigma

Operator Symbols

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
* ast ± pm ≀ wr
★ star ∓ mp ∩ cap
· cdot ⃛ amalg ∪ cup
◦ circ ⊙ odot ⊎ uplus
• bullet ⊖ ominus ⊓ sqcap
◇ diamond ⊕ oplus ⊔ sqcup
∖ setminus ⊘ oslash ∧ wedge, land
× times ⊗ otimes ∨ vee, lor
÷ div ⃛ bigoplus ◁ triangleleft
⊥ bot, perp ⃛ bigotimes ▷ triangleright
⊤ top ⃛ bigodot △ bigtriangleup
∏ prod ⃛ biguplus ▽ bigtriangledown
∐ coprod ⋂ bigcap ⋁ bigvee
∑ sum ⋃ bigcup ⋀ bigwedge
∫ int, intop ∮ oint ⃛ bigsqcup
⨍ intbar

Relation Symbols

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
≡ equiv < lt > gt
≅ cong ≤ le, leq ≥ ge, geq
≠ neq, ne, not= ≮ not< ≯ not>
∼ sim ≺ prec ≻ succ
≃ simeq ≼ preceq ≽ succeq
≈ approx ≪ ll ≫ gg
≍ asymp ⊂ subset ⊃ supset
≐ doteq ⊆ subseteq ⊇ supseteq
∝ propto ⊑ sqsubseteq ⊒ sqsupseteq
⊧ models ∣ mid ∊ in
⋈ bowtie ∥ parallel ∉ notin
⊢ vdash ⇔ iff ∍ ni, owns
⊣ dashv

20 Live Scripts and Functions

20-28

Note Some commands can be combined with the not command to create the negated version of the
symbol. For example, \not\leq creates the symbol ≰. The commands that can be combined include
leq, geq, equiv, cong, approx, sim, simeq, models, ni, parallel, succ, succeq, prec,
preceq, subset, supset, subseteq, supseteq, sqsubseteq, and sqsupseteq.

Arrows

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
← leftarrow → rightarrow ↑ uparrow
⇐ Leftarrow ⇒ Rightarrow ⇑ Uparrow
⟵ longleftarrow ⟶ longrightarrow ↓ downarrow
⟸ Longleftarrow ⟹ Longrightarrow ⇓ Downarrow
↩ hookleftarrow ↪ hookrightarrow ↕ updownarrow
↽ leftharpoondown ⇁ rightharpoondow

n
⇕ Updownarrow

↼ leftharpoonup ⇀ rightharpoonup ↔ leftrightarrow
↙ swarrow ↗ nearrow ⇔ Leftrightarrow
↖ nwarrow ↘ searrow ⟷ longleftrightar

row
↦ mapsto ⟼ longmapsto ⟺ Longleftrightar

row

Brackets

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
{ lbrace } rbrace | vert
[lbrack] rbrack ‖ Vert
〈 langle 〉 rangle \ backslash
⌈ lceil ⌉ rceil
⌊ lfloor ⌋ rfloor
⃛ llbracket ⃛ rrbracket

Sample LaTeX Command Sample LaTeX Command Sample LaTeX Command
big, bigl, bigr,
bigm

bigg, biggl,
biggr, biggm

abc brace

Big, Bigl, Bigr,
Bigm

Bigg, Biggl,
Biggr, Biggm

abc brack

Misc Symbols

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
∞ infty ∀ forall ℘ wp

 Insert Equations into the Live Editor

20-29

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
∇ nabla ∃ exists ∠ angle
∂ partial ∅ emptyset △ triangle
ℑ Im ı i ◊ lozenge
ℜ Re ȷ j ℏ hbar
ℓ ell ı imath ′ prime
… dots, ldots,

hellip
ȷ jmath ¬ lnot, neg

⋯ cdots : colon surd

⋱ ddots ⋅ cdotp ← gets
⋮ vdots . ldotp → to
∵ because ∴ therefore ∝ varpropto
° degree ♧ clubsuit ♣ varclubsuit
† dag, dagger ♡ heartsuit ♥ varheartsuit
‡ ddag, ddagger ♢ diamondsuit ♦ vardiamondsuit
↲ ldsh ♤ spadesuit ♠ varspadesuit
§ mathsection

Note The exists command can be combined with the not command to create the negated version
of the symbol. For example, \not\exists creates the symbol ∄.

Text Symbols

Sample LaTeX Command Sample LaTeX Command Sample LaTeX Command
£ pounds,

textsterling
¿ textquestiondow

n
⃛ quotedblbase

¢ textcent ¡ textexclamdown ‵ backprime
€ texteuro « flqq,

guillemotleft
 space

¥ yen » frqq,
guillemotright

‰ permil

® textregistered § S \ backslash
™ trademark,

texttrademark
¶ P ¦ brokenvert

© copyright

Accents

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
á acute ȧ dot a tilde

20 Live Scripts and Functions

20-30

Symbol LaTeX Command Symbol LaTeX Command Symbol LaTeX Command
a bar ä ddot a vec

a⌣ breve a⃛ dddot à grave

a
ˇ check a⃛ ddddot a hat

Functions

Sample LaTeX Command Sample LaTeX Command Sample LaTeX Command
arccos arccos det det ln ln
arcsin arcsin dim dim log log
arctan arctan exp exp max max
arg arg gcd gcd min min
cos cos hom hom Pr Pr
cosh cosh ker ker sec sec
cot cot lg lg sin sin
coth coth lim lim sinh sinh
csc csc liminf liminf sup sup
deg deg limsup limsup tan tan

Math Constructs

Sample LaTeX Command Sample LaTeX Command Sample LaTeX Command
abc
xyz

frac
b
a stackrel,

overset
a
b

over

abc sqrt b
a

underset a
b

overwithdelims

mod a bmod a
b

binom, choose abc overleftarrow

moda pmod a b
c d

pmatrix abc overrightarrow

abc widehat a b
c d

matrix abc overleftrightar
row

abc widetilde a b
c d

begin{array} ab
cd

hline

abc bra a b
c d

begin{cases}

∑
i = 0

10 limits

abc ket a
2 b2 left, middle,

right ∑i = 0

10 nolimits

 Insert Equations into the Live Editor

20-31

Sample LaTeX Command Sample LaTeX Command Sample LaTeX Command
ab cd braket

Note To create a matrix using the matrix and pmatrix commands, use the & symbol to separate
columns, and \cr to separate rows. For example, to create a 2–by–2 matrix, use the expression
\matrix{a & b \cr c & d}.

For large operators, MATLAB automatically adjusts the position of limits depending on whether or not
there is text inline with the equation. To force the display of the limits above and below the operator,
use the limits command. To force the display of the limits adjacent to the operator, use the
\nolimits command. For example, the expression \sum\limits_{i=0}^{10} displays the limits
of the summation operator above and below the operator. The expression \sum
\nolimits_{i=0}^{10} displays the limits of the summation operator adjacent to the operator.

∑
i = 0

10

∑i = 0

10

White Space

Sample LaTeX Command Sample LaTeX Command Sample LaTeX Command
ab negthinspace abc mathord a[b mathopen
ab thinspace a∑b mathop a]b mathclose

a b enspace a + b mathbin a b mathinner
a b quad a = b mathrel a b kern, mkern
a b qquad a, b mathpunct

Text Styling

Sample LaTeX Command Sample LaTeX Command Sample LaTeX Command
displaystyle ABCDE text, textnormal ABCDE texttt

textstyle ABCDE bf, textbf,
mathbf

ABCDE textsf

scriptstyle ABCDE it, textit,
mathit

AℬCDℰ cal, mathcal

scriptscriptsty
le

ABCDE rm, textrm,
mathrm

ABℂD mathbb

 ABCDE hbox, mbox ABℭD mathfrak

20 Live Scripts and Functions

20-32

See Also

Related Examples
• “Share Live Scripts and Functions” on page 20-56

External Websites
• https://www.latex-project.org/

 Insert Equations into the Live Editor

20-33

https://www.latex-project.org/

Add Interactive Controls to a Live Script
You can add sliders, spinners, drop-down lists, check boxes, edit fields, and buttons to your live
scripts to control variable values interactively. Adding interactive controls to a script is useful when
you want to share the script with others. Use interactive controls to set and change the values of
variables in your live script using familiar user interface components.

Insert Controls
To insert a control into a live script, go to the Live Editor tab, and in the Code section, click
Control. Then, select from the available options. To replace an existing value with a control, select
the value in the live script and then insert the control. The Control menu shows only the options
available for the selected value. To configure the control, right-click the control in the live script and
then select Configure Control.

This table shows the full list of controls.

Control Description Configuration Details
Numeric Slider Use numeric sliders to interactively

change the value of a variable by
moving the slider thumb to the desired
numeric value.

The value to the left of the slider is its
current value.

In the Values section, specify a Min,
Max, and Step value or select a
workspace variable from the drop-down
list.

For more information about specifying
the slider values using variables, see
“Link Variables to Controls” on page
20-36.

Numeric Spinner Use numeric spinners to interactively
increment or decrement the value of a
variable by clicking the up and down
arrow buttons to the right of the value.
You also can enter a numeric value for
the spinner in the numeric edit field.

The value in the numeric edit field is
the current value of the spinner.

In the Values section, specify a Min,
Max, and Step value or select a
workspace variable from the drop-down
list.

For more information about specifying
the spinner values using variables, see
“Link Variables to Controls” on page
20-36.

20 Live Scripts and Functions

20-34

Control Description Configuration Details
Drop-Down List Use drop-down lists to interactively

change the value of a variable by
selecting from a list of items.

Hover over any item displayed in the
drop-down list to see its value.

In the Items > Item labels field,
specify the text that you want to
display for each item in the drop-down
list.

In the Items > Item values field,
specify the values for each item in the
drop-down list. Make sure to enclose
text values in single or double quotes
because the Live Editor interprets each
item in the list as code.

You also can populate the items in the
drop-down list using values stored in a
variable. For more information, see
“Link Variables to Controls” on page
20-36.

Check Box Use check boxes to interactively set the
value of a variable to either the logical
value 1 (true) or the logical value 0
(false).

The displayed state of the check box
(checked or not checked) determines
its current value.

Not applicable

Edit Field Use edit fields to interactively set the
value of a variable to any typed input.

The text displayed in the edit field and
the configured data type determines its
current value.

In the Type section, in the Data type
field, select from the available options
to specify the data type of the text in
the edit field.

Button Use button controls to interactively run
code upon button click.

To change the text displayed on the
button, in the Label section, enter the
label text.

Modify Control Labels
You can hide the code in a live script and display only formatted text, labeled controls, Live Editor
tasks, and output. Hiding the code is useful when sharing and exporting live scripts. To hide the code,
click the Hide code button to the right of the live script. You also can go to the View tab, and in the

View section, click Hide Code. To show the code again, click the Output inline button or the
Output on right button .

When the code is hidden, labels display next to the control. To modify the label for a control, right-
click the control and select Configure Control. Then, in the Label section, enter the label text. The
label text is also the text that displays on button controls in all views. Press Tab or Enter, or click
outside of the control configuration menu to return to the live script.

 Add Interactive Controls to a Live Script

20-35

Link Variables to Controls
You can link variables to slider values, spinner values, and drop-down items to create dynamic
controls.

To specify the minimum, maximum, and step values for a slider or spinner using variables, right-click
the control and select Configure Control. Then, in the Values section, select a workspace variable
for Min, Max, and Step. Only variables with numeric values appear in the drop-down list. If the
variables that you want to select are not listed, try running the live script first to create the variables
in the workspace. Changes to the variables are automatically reflected in the numeric slider or
spinner.

To populate the items in a drop-down list using the values stored in a variable, right-click the control
and select Configure Control. Then, in the Items section, select a workspace variable from the
Variable list. The variable must be a string array or a string scalar to appear in the list. If the
variable that you want to select is not listed, try running the live script first to create the variable in
the workspace. Changes to the variable are automatically reflected in the drop-down list.

For example, create a live script and define the variable lastnames containing a list of last names.
lastnames = ["Houston","Vega","Obrien","Potter","Rivera","Hanson","Fowler","Tran","Briggs"];

Run the live script to create lastnames in the workspace. Then, go to the Live Editor tab, and in
the Code section, select Control > Drop Down. In the Items section of the control configuration
menu, select lastnames as the Variable.

Close the configuration menu to return to the live script. The drop-down list now contains the last
names defined in lastnames.

20 Live Scripts and Functions

20-36

If you add, remove, or edit the values in lastnames, MATLAB updates the items in the drop-down list
accordingly.

Note If the items in a drop-down list are linked to a variable, and one or more of the values in the
variable are deleted while the live script is running, an error can occur if one of the deleted values
was the selected list item. To minimize the potential for this error, avoid deleting values from a linked
variable while the live script is running.

Specify Default Values
You can set the default value for sliders, spinners, drop-down lists, check boxes, and edit fields in live
scripts.

To set the default value for a control, right-click the control and select Configure Control. Then, in
the Defaults section, specify a default value by entering the value or by selecting a workspace
variable from the list. The list shows only valid variables for the control. For drop-down lists, select
the default value from the list of items.

To restore the default value for a control, right-click the control and select Restore Default Value.

Tip To link the value of a control to a workspace variable, set the default value for the control to that
variable. The control value is set to the default value and changes as the variable value changes. The
control value stays linked to the variable value until the control value is changed manually, for
example, by moving the slider thumb of a numeric slider.

Modify Control Execution
You can modify when and what code runs when the value of a control changes. By default, when the
value of a control changes, the Live Editor runs the code in the current section. To configure this
behavior, right-click the control and select Configure Control. Then, in the Execution section,
modify the values of the fields described in the table. Press Tab or Enter, or click outside of the
control configuration menu to return to the live script.

 Add Interactive Controls to a Live Script

20-37

Field Options
Run On (numeric sliders and numeric spinners
only)

Select one of these options to specify when the
code runs:

• Value changing (default) — Run the code
while the value of the slider or spinner is
changing.

• Value changed — Run the code after the
slider or spinner value is done changing (user
has released the slider thumb or the spinner
up/down arrow buttons).

Run Select one of these options to specify what code
runs when the value of the control changes:

• Current section (default) — Run the
section that contains the control.

• Current section and modified or not
yet run sections above — Run the
current section and any modified or not-yet-
run code above the control. If the live script
has not yet been run, changing the control
value runs the current section and all sections
before it.

• Current section to end — Run the
section that contains the control and any
sections that follow.

• All sections — Run all sections in the live
script.

• Nothing — Do not run any code.

Tip When using a button control in a live script,
consider setting the Run field for all other
controls in the live script to Nothing. Then, the
code runs only when the user clicks the button
control. This can be useful when the live script
requires multiple control values to be set before
running the code.

Create Live Script with Multiple Interactive Controls

This example shows how you can use interactive controls to visualize and investigate patient data in
MATLAB. Using a variety of interactive controls, you can filter a list of patients and then plot the age
and systolic blood pressure of the filtered list, highlighting the patients over a specified blood
pressure.

The example uses variables to control the slider and spinner values, as well as the drop-down list
items. For instance, to filter the patient list by location, insert a drop-down list and select the
locationStrings variable to populate the items in the list. To filter the patient list by age, insert a

20 Live Scripts and Functions

20-38

numeric slider and select the minAge and maxAge variables as the Min and Max values. To specify a
threshold systolic blood pressure, insert a numeric spinner and select the minPressure and
maxPressure variables as the Min and Max values.

To filter the data only when the Filter Data button is pressed, set the Run execution option for the
drop-down list, checkbox, numeric slider, and edit field to Nothing.

To view and interact with the controls, open this example in your browser or in MATLAB.

Get and Filter Sample Patient Data

Create a table from the patient data. Use the drop-down list, checkbox, numeric slider, and edit field
to specify patient filtering information such as location, smoking status, age, and the letters present
in the patient last name. Use the Filter Data button to filter the data.

T = readtable("patients.xls");

locationStrings = ["VA Hospital","County General Hospital","St. Mary's Medical Center"];

selectedLocation = ;

isSmoker = ;

maxAge = max(T.Age);
minAge = min(T.Age);

minimumAge = ;

 Add Interactive Controls to a Live Script

20-39

nameContains = ;

idx = T.Location==selectedLocation & T.Smoker==isSmoker & T.Age>=minimumAge;
if ~strcmp(nameContains,"")
 idx = idx & contains(T.LastName,nameContains);
end
TFiltered = T(idx,:);

Plot Filtered Patient Data

Plot the age and systolic blood pressure of the filtered patient data, highlighting the patients over a
specified blood pressure. Use the numeric spinner to specify the threshold blood pressure value.

minPressure = min(TFiltered.Systolic);
maxPressure = max(TFiltered.Systolic);

thresholdPressure = ;

TOverThreshold = TFiltered(TFiltered.Systolic>=thresholdPressure,:);

sp1 = scatter(TFiltered.Age,TFiltered.Systolic);
hold on
sp2 = scatter(TOverThreshold.Age,TOverThreshold.Systolic,"red");
hold off

title("Age vs. Systolic Blood Pressure of Patients")
xlabel("Age")
ylabel("Systolic Blood Pressure")

legendText = sprintf("Patients with systolic blood pressure over %d mmHg",thresholdPressure);
legend(sp2,legendText,Location="southoutside")

20 Live Scripts and Functions

20-40

Share Live Script
When the live script is complete, share it with others. Users can open the live script in MATLAB and
experiment with it by using the controls interactively.

If you share the live script itself as an interactive document, consider hiding the code in the live
script before sharing it. When the code is hidden, the Live Editor displays only formatted text, labeled
controls, Live Editor tasks, and output. To hide the code, click the Hide code button to the right of
the live script. You also can go to the View tab, and in the View section, click Hide Code.

If you share the live script as a static PDF, Microsoft Word, HTML, or LaTeX document, the Live
Editor saves the control as code. For example, if the “Create Live Script with Multiple Interactive
Controls” on page 20-38 example live script is exported to HTML (using the Export options on the
Live Editor tab), the drop-down list control is replaced with its current value
(locationStrings(1)), the check box control is replaced with its current value (false), the
numeric slider control is replaced with its current value (31), and the text box control is replaced
with its current value ("e"). The button is not displayed at all.

 Add Interactive Controls to a Live Script

20-41

See Also
export

More About
• “Add Interactive Tasks to a Live Script” on page 20-43
• “Share Live Scripts and Functions” on page 20-56

20 Live Scripts and Functions

20-42

Add Interactive Tasks to a Live Script

What Are Live Editor Tasks?
Live Editor tasks are simple point-and-click interfaces that can be added to a live script to perform a
specific set of operations. You can add tasks to live scripts to explore parameters and automatically
generate code. Use tasks to reduce development time, errors, and time spent plotting.

Tasks represent a series of MATLAB commands. You can display their output either inline or on the
right. To see the MATLAB commands that the task runs, show the generated code.

Insert Tasks

To add a task to a live script, go to the Live Editor tab, click Task , and select from the
available tasks. You also can type the name of the task in a live script code block. As you type, the
Live Editor displays possible matches, and you can select and insert the desired task. For example,
create a live script that creates a vector of data containing an outlier.

A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];

Add the Create Plot task to your live script to plot the vector of data.

 Add Interactive Tasks to a Live Script

20-43

Add the Clean Outlier Data task to your live script to smooth the noisy data and avoid skewed
results. To add the task, start typing the word clean in the live script and select Clean Outlier
Data from the suggested command completions. In the task, set Input data to A. The task identifies
and fills two outliers in the data and creates the variable cleanedData in the MATLAB workspace
with the stored results. You also can see the results in the output plot for the task. Continue
modifying additional parameters until you are satisfied with the results.

20 Live Scripts and Functions

20-44

Restore Default Parameters

To restore all parameter values back to their defaults, click the Options button () in the top-right
corner of the task and select Restore Default Values.

Collapse Tasks for Improved Readability

When you are done modifying parameters, you can collapse the task to help with readability. To
collapse the task, click the arrow at the top-left of the task.

 Add Interactive Tasks to a Live Script

20-45

The task displays as a single, user-readable line of pseudocode with output.

Delete Tasks

To delete a task, click the Options button () in the top-right corner of the task and select Remove
Task. Alternatively, select the task and then press the Delete or Backspace key.

Run Tasks and Surrounding Code
By default, as you modify the value of parameters in the task, the task and current section (including
other tasks in the section) run automatically. This ensures that the results and surrounding code in
the section remain up to date. For example, in the live script cleanmydata.mlx, the entire section
including the code that creates the vector of noisy data reruns every time you modify the value of a
parameter in the Clean Outlier Data task.

A green circular icon in the top-right corner of the task indicates that the task runs automatically
when you modify the task parameters.

To disable running the task automatically when you modify the task parameters, click the Autorun
icon. The icon updates to display the disabled state. Then, to run the task and current section, on the

Live Editor tab, click the Run Section button. Some tasks do not run automatically by default.
This default setting ensures optimal performance for those tasks.

20 Live Scripts and Functions

20-46

You also can change what code runs when the values of parameters in the task change. To change
what code runs, click the Options button () in the top-right corner of the task, select Autorun and
then select from the available options:

• Current section (default) — Run the section that contains the task. To run only the task, add
section breaks before and after the task. For more information about sections and how to add
section breaks, see “Create and Run Sections in Code” on page 19-5.

• Current section and modified or not yet run sections above — Run the current section and
any modified or not-yet-run code above the task. If the live script has not yet been run, changing
the values of parameters in the task runs the current section and all sections before it.

• Current section to end — Run the section that contains the task and any sections that follow.
• All sections — Run all sections in the live script.
• Nothing — Do not run any code. This option disables running the task automatically when you

modify the task parameters.

Modify Output Argument Name
To modify the name of the output argument, click the text box containing the argument name and
enter a new name.

You can use the resulting output argument in subsequent code, including as inputs to additional Live
Editor tasks.

View and Edit Generated Code

To see the MATLAB commands that the task runs, click the Options button () in the top-right corner
of the task and select either Controls and Code or Code Only. You also can use the down arrow at
the bottom of the task to show and hide the generated code. The generated code is read-only.

To edit the generated code, click the Options button () and select Convert Task to Editable Code.
This option removes the task and replaces it with the generated code, which you then can edit.

 Add Interactive Tasks to a Live Script

20-47

Custom Live Editor Tasks
You can create your own Live Editor tasks to perform a set of operations specific to your workflow.
You can then add your Live Editor tasks to your own live scripts or share them with others. For more
information, see “Live Editor Task Development Overview”.

See Also

More About
• “Add Interactive Controls to a Live Script” on page 20-34
• “Clean Messy Data and Locate Extrema Using Live Editor Tasks”
• “Live Editor Task Development Overview”
• MATLAB Live Script Gallery

20 Live Scripts and Functions

20-48

https://www.mathworks.com/products/matlab/live-script-gallery.html

Create Live Functions

Live functions are program files that contain code and formatted text together in a single interactive
environment called the Live Editor. Similar to live scripts, live functions allow you to reuse sequences
of commands by storing them in program files. Live functions provide more flexibility, though,
primarily because you can pass them input values and receive output values.

Create Live Function
To create a live function, go to the Home tab and select New > Live Function.

Open Existing Function as Live Function

If you have an existing function, you can open it as a live function in the Live Editor. Opening a
function as a live function creates a copy of the file and leaves the original file untouched. MATLAB
converts publishing markup from the original script to formatted content in the new live function.

To open an existing function (.m) as a live function (.mlx) from the Editor, right-click the document
tab and select Open functionName as Live Function from the context menu.

Alternatively, go to the Editor tab, click Save , and select Save As. Then, set the Save as type: to
MATLAB Live Code Files (*.mlx) and click Save.

Note You must use one of the described conversion methods to convert your function to a live
function. Simply renaming the function with a .mlx extension does not work and can corrupt the file.

Create Live Function from Selected Code

If you have an existing large live script or function, you can break it into smaller pieces by
automatically converting selected areas of code into functions or local functions. This is called code
refactoring.

To refactor a selected area of code, select one or more lines of code and on the Live Editor tab, in
the Code section, click Refactor. Then, select from the available options. MATLAB creates a
function with the selected code and replaces the original code with a call to the newly created
function.

Add Code
After you create the live function, add code to the function and save it. For example, add this code
and save it as a function called mymean.mlx. The mymean function calculates the average of the
input list and returns the results.

function a = mymean(v,n)
 a = sum(v)/n;
end

 Create Live Functions

20-49

Add Help
To document the function, add formatted help text above the function definition. For example, add a
title and some text to describe the functionality. For more information about adding help text to
functions, see “Add Help for Live Functions” on page 20-52.

Run Live Function
You can run live functions using several methods, including calling them from the Command Window
or calling them from a live script. In MATLAB Online, you also can use the Run button.

To run a live function from the Command Window, enter the name of the function in the Command
Window. For example, use mymean.mlx to calculate the mean of 10 sequential numbers from 1 to 10.

mymean(1:10, 10)

ans =
 5.5000

You also can call the live function from a live script. For example, create a live script called
mystats.mlx. Add this code that declares an array, determines the length of the array, and passes
both values to the function mymean.

x = 1:10;
n = length(x);
avg = mymean(x,n);
disp(['Average = ', num2str(avg)])

Run the live script. The Live Editor displays the output.

If a live function displays text or returns values, the Live Editor displays the output in the calling live
script, in line with the call to the live function. For example, add a line to mymean that displays the
calculated mean before returning the value:

function a = mymean(v,n)
 a = sum(v)/n;

20 Live Scripts and Functions

20-50

 disp(['a = ', num2str(a)])
end

When you run mystats, the Live Editor displays the output for mymean with the output from
mystats.

In MATLAB Online, you can use the Run button to run live functions interactively. When you run a

live function using the Run button, the output displays in the Command Window. To run live

functions that require input argument values or any other additional setup, configure the Run
button by clicking Run and adding one or more commands. For more information about configuring

the Run button, see “Configure the Run Button for Functions” on page 21-7.

Save Live Functions as Plain Code
To save a live function as a plain code file (.m):

1 On the Live Editor tab, in the File section, select Save > Save As....
2 In the dialog box that appears, select MATLAB Code files (UTF-8) (*.m) as the Save as

type.
3 Click Save.

When saving, MATLAB converts all formatted content to publish markup.

See Also

More About
• “Add Help for Live Functions” on page 20-52

 Create Live Functions

20-51

Add Help for Live Functions
You can provide help for the live functions you write. Help text appears in the Command Window
when you use the help command. You also can use the doc command to display the help text in a
separate browser.

Create help text by inserting text at the beginning of the file, immediately before the function
definition line (the line with the function keyword).

For example, create a live function called addme.mlx with this code:

function c = addme(a,b)

switch nargin
 case 2
 c = a + b;
 case 1
 c = a + a;
 otherwise
 c = 0;
end

Add help text to describe the function.

When you type help addme in the Command Window, the help text displays.

20 Live Scripts and Functions

20-52

The first line of help text, often called the H1 line, typically contains a brief description of the
function. When displaying help for a function, MATLAB first displays the name of the function
followed by the H1 line. Then, MATLAB displays the syntax of the function. Finally, MATLAB displays
any remaining help text.

To add "See also" links, add a text line at the end of the help text that begins with the words See
also followed by a list of function names. If the functions exist on the search path or in the current
folder, the help command displays each of these function names as a hyperlink to its help. Otherwise,
help prints the function names as they appear in the help text.

Note When multiple programs have the same name, the help command determines which help text
to display by applying the rules described in “Function Precedence Order” on page 21-37. However,
if a program has the same name as a built-in function, the Help on Selection option in context
menus always displays documentation for the built-in function.

To enhance the documentation displayed in the Help browser further, you can format the text and add
hyperlinks, images, equations, and example code. For example, in the addme function, select the H1
line and in the Live Editor tab, change the Normal text style to Title. Then, position your cursor at
the end of the second syntax description, go to the Insert tab, and select Equation. Enter the
equation c = a + b and press Esc. Finally, in the Insert tab, select Code Example > MATLAB and
add two examples. For more information about formatting files in the Live Editor, see “Format Text in
the Live Editor” on page 20-18.

 Add Help for Live Functions

20-53

Use the doc command to display the help text in a separate browser.

You also can add help to live functions by inserting comments at the beginning of the file. Comments
at the beginning of the file display as help text when you use the help and doc commands, similar to
how text at the beginning of the file displays. For more information about adding help using
comments, see “Add Help for Your Program” on page 21-5.

20 Live Scripts and Functions

20-54

See Also
export

More About
• “Create Live Functions” on page 20-49
• “Format Text in the Live Editor” on page 20-18
• “Share Live Scripts and Functions” on page 20-56

 Add Help for Live Functions

20-55

Share Live Scripts and Functions
You can share live scripts and live functions with others for teaching or demonstration purposes, or to
provide readable, external documentation of your code. You can share the files as an interactive
document with other MATLAB users, or you can share static PDF, Microsoft Word, HTML, and LaTeX
versions of the files for viewing outside of MATLAB.

This table shows the different ways to share live scripts and functions.

Ways to Share Instructions
As an interactive document Distribute the live code file (.mlx). Recipients of the file can open

and view the file in MATLAB in the same state that you last saved
it, including any generated output.

MATLAB supports live scripts starting in R2016a and live functions
starting in R2018a.

As a static document viewable
outside of MATLAB

Export the live script or function to a standard format. Available
formats include PDF, Microsoft Word, HTML, and LaTeX.

To export your live script or function to one of these formats, on
the Live Editor tab, select Export and then select a format. The
saved file closely resembles the appearance of the live script or
function when viewed in the Live Editor with output inline. To
export all of the live scripts and live functions in a folder, on the
Live Editor tab, select Export > Export Folder. In MATLAB
Online, go to the Live Editor tab and select Save instead of
Export.

When exporting to LaTeX, MATLAB creates a separate
matlab.sty file in the same folder as the output document, if one
does not exist already. STY files, also known as LaTeX Style
Documents, give you more control over the appearance of the
output document.

Alternatively, to export your live script or function
programmatically, use the export function. When using the
export function, you can customize the resulting converted file.
For example, you can hide the code in the converted file, as well as
customize the format of figures, and the document paper size,
orientation, and margins.

You also can use settings to customize the converted file before
exporting. For more information, see matlab.editor Settings.

As a full-screen presentation Open the live script or function, go to the View tab and click the
Full Screen button. MATLAB opens the file in full-screen mode.

To exit full-screen mode, move the mouse to the top of the screen
to display the View tab and click the Full Screen button again.

20 Live Scripts and Functions

20-56

Ways to Share Instructions
As a MATLAB code file Save the live script or function as a plain code file (.m) and

distribute it. Recipients of the file can open and view the file in
MATLAB. MATLAB converts formatted content from the live script
or function to publishing markup in the new script or function.

For more information, see “Save Live Scripts as Plain Code” on
page 20-11.

Hide Code Before Sharing
Consider hiding the code in the live script before sharing it as an interactive or static document.
When the code is hidden, the Live Editor displays only formatted text, labeled controls, Live Editor
tasks, and output. If a Live Editor task is configured to only show code and no controls, then the task
does not display when you hide code.

To hide the code, click the hide code button to the right of the live script. You also can go to the
View tab, and in the View section, click Hide Code . To show the code again, click the output

inline button or the output on right button .

Alternatively, if you are using the export function to share your live script, you can hide the code
using the HideCode option.

See Also
export | matlab.editor

Related Examples
• “Create Live Scripts in the Live Editor” on page 20-6
• “Format Text in the Live Editor” on page 20-18
• MATLAB Live Script Gallery

 Share Live Scripts and Functions

20-57

https://www.mathworks.com/products/matlab/live-script-gallery.html

Live Code File Format (.mlx)
MATLAB stores live scripts and functions using the Live Code file format in a file with a .mlx
extension. The Live Code file format uses Open Packaging Conventions technology, which is an
extension of the zip file format. Code and formatted content are stored in an XML document separate
from the output using the Office Open XML (ECMA-376) format.

Benefits of Live Code File Format
• Interoperable Across Locales — Live code files support storing and displaying characters

across all locales, facilitating sharing files internationally. For example, if you create a live script
with a Japanese locale setting, and open the live script with a Russian locale setting, the
characters in the live script display correctly.

• Extensible — Live code files can be extended through the ECMA-376 format, which supports the
range of formatting options offered by Microsoft Word. The ECMA-376 format also accommodates
arbitrary name-value pairs, should there be a need to extend the format beyond what the standard
offers.

• Forward Compatible — Future versions of live code files are compatible with previous versions
of MATLAB by implementing the ECMA-376 standard's forward compatibility strategy.

• Backward Compatible — Future versions of MATLAB can support live code files created by a
previous version of MATLAB.

Source Control
To determine and display code differences between live scripts or functions, use the MATLAB
Comparison Tool.

If you use source control, register the .mlx extension as binary. For more information, see “Register
Binary Files with SVN” on page 35-33 or “Register Binary Files with Git” on page 35-12.

See Also

More About
• “What Is a Live Script or Function?” on page 20-2
• “Create Live Scripts in the Live Editor” on page 20-6

External Websites
• Open Packaging Conventions Fundamentals
• Office Open XML File Formats (ECMA-376)

20 Live Scripts and Functions

20-58

https://docs.microsoft.com/previous-versions/windows/desktop/opc/open-packaging-conventions-overview?redirectedfrom=MSDN
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/

Introduction to the Live Editor

This example is an introduction to the Live Editor. In the Live Editor, you can create live scripts that
show output together with the code that produced it. Add formatted text, equations, images, and
hyperlinks to enhance your narrative, and share the live script with others as an interactive
document.

Create a live script in the Live Editor. To create a live script, on the Home tab, click New Live
Script.

Add the Census Data

Divide your live script into sections. Sections can contain text, code, and output. MATLAB® code
appears with a gray background and output appears with a white background. To create a new
section, go to the Live Editor tab and click the Section Break button.

Add the US Census data for 1900 to 2000.

years = (1900:10:2000); % Time interval
pop = [75.995 91.972 105.711 123.203 131.669 ... % Population Data
 150.697 179.323 213.212 228.505 250.633 265.422]

pop = 1×11

 75.9950 91.9720 105.7110 123.2030 131.6690 150.6970 179.3230 213.2120 228.5050 250.6330 265.4220

Visualize the Population Change over Time

Sections can be run independently. To run the code in a section, go to the Live Editor tab and click
the Run Section button. You can also click the blue bar that appears when you move the mouse to
the left of the section. When you run a section, output and figures appear together with the code that
produced them.

Plot the population data against the year.

plot(years,pop,'bo'); % Plot the population data
axis([1900 2020 0 400]);
title('Population of the U.S. 1900-2000');
ylabel('Millions');
xlabel('Year')
ylim([50 300])

 Introduction to the Live Editor

20-59

Can we predict the US population in the year 2010?

Fitting the Data

Add supporting information to the text, including equations, images, and hyperlinks.

Let's try fitting the data with polynomials. We'll use the MATLAB polyfit function to get the
coefficients.

The fit equations are:

y = ax + b linear
y = ax2 + bx + c quadratic
y = ax3 + bx2 + cx + d . cubic

x = (years-1900)/50;
coef1 = polyfit(x,pop,1)

coef1 = 1×2

 98.9924 66.1296

coef2 = polyfit(x,pop,2)

coef2 = 1×3

20 Live Scripts and Functions

20-60

 15.1014 68.7896 75.1904

coef3 = polyfit(x,pop,3)

coef3 = 1×4

 -17.1908 66.6739 29.4569 80.1414

Plotting the Curves

Create sections with any number of text and code lines.

We can plot the linear, quadratic, and cubic curves fitted to the data. We'll use the polyval function
to evaluate the fitted polynomials at the points in x.

pred1 = polyval(coef1,x);
pred2 = polyval(coef2,x);
pred3 = polyval(coef3,x);
[pred1; pred2; pred3]

ans = 3×11

 66.1296 85.9281 105.7266 125.5250 145.3235 165.1220 184.9205 204.7190 224.5174 244.3159 264.1144
 75.1904 89.5524 105.1225 121.9007 139.8870 159.0814 179.4840 201.0946 223.9134 247.9403 273.1753
 80.1414 88.5622 101.4918 118.1050 137.5766 159.0814 181.7944 204.8904 227.5441 248.9305 268.2243

Now let's plot the predicted values for each polynomial.

hold on
plot(years,pred1)
plot(years,pred2)
plot(years,pred3)
ylim([50 300])
legend({'Data' 'Linear' 'Quadratic' 'Cubic'},'Location', 'NorthWest')
hold off

 Introduction to the Live Editor

20-61

Predicting the Population

You can share your live script with other MATLAB users so that they can reproduce your results. You
also can publish your results as PDF, Microsoft® Word, or HTML documents. Add controls to your
live scripts to show users how important parameters affect the analysis. To add controls, go to the
Live Editor tab, click the Control button, and select from the available options.

We can now calculate the predicted population of a given year using our three equations.

year = ;
xyear = (year-1900)/50;
pred1 = polyval(coef1,xyear);
pred2 = polyval(coef2,xyear);
pred3 = polyval(coef3,xyear);
[pred1 pred2 pred3]

ans = 1×3

 299.7517 321.6427 295.0462

20 Live Scripts and Functions

20-62

For the year 2010 for example, the linear and cubic fits predict similar values of about 284 million
people, while the quadratic fit predicts a much higher value of about 300 million people.

See Also

More About
• “Create Live Scripts in the Live Editor” on page 20-6
• MATLAB Live Script Gallery

 Introduction to the Live Editor

20-63

https://www.mathworks.com/products/matlab/live-script-gallery.html

Accelerate Exploratory Programming Using the Live Editor

The following is an example of how to use the Live Editor to accelerate exploratory programming.
This example demonstrates how you can use the Live Editor to:

• See output together with the code that produced it.
• Divide your program into sections to evaluate blocks of code individually.
• Include visualizations.
• Experiment with parameter values using controls.
• Summarize and share your findings.

Load Highway Fatality Data

The Live Editor displays output together with the code that produced it. To run a section, go to the
Live Editor tab and select the Run Section button. You can also click the blue bar that appears
when you move your mouse to the left edge of a section.

In this example, we explore some highway fatality data. Start by loading the data. The variables are
shown as the column headers of the table.

load fatalities
fatalities(1:10,:)

ans=10×8 table
 longitude latitude deaths drivers vehicles vehicleMiles alcoholRelated urbanPopulation
 _________ ________ ______ _______ ________ ____________ ______________ _______________

 Wyoming -107.56 43.033 164 380.18 671.53 9261 54 65.226
 District_of_Columbia -77.027 38.892 43 349.12 240.4 3742 12 100
 Vermont -72.556 44.043 98 550.46 551.52 7855 20 38.196
 North_Dakota -99.5 47.469 100 461.78 721.84 7594 35 55.807
 South_Dakota -99.679 44.272 197 563.3 882.77 8784 76 51.923
 Delaware -75.494 39.107 134 533.94 728.52 9301 48 80.021
 Montana -110.58 46.867 229 712.88 1056.7 11207 100 54.031
 Rhode_Island -71.434 41.589 83 741.84 834.5 8473 41 90.936
 New_Hampshire -71.559 43.908 171 985.77 1244.6 13216 51 59.181
 Maine -69.081 44.886 194 984.83 1106.8 14948 58 40.206

Calculate Fatality Rates

The Live Editor allows you to divide your program into sections containing text, code, and output. To
create a new section, go to the Live Editor tab and click the Section Break button. The code in a
section can be run independently, which makes it easy to explore ideas as you write your program.

Calculate the fatality rate per one million vehicle miles. From these values we can find the states with
the lowest and highest fatality rates.

states = fatalities.Properties.RowNames;
rate = fatalities.deaths./fatalities.vehicleMiles;
[~, minIdx] = min(rate); % Minimum accident rate
[~, maxIdx] = max(rate); % Maximum accident rate
disp([states{minIdx} ' has the lowest fatality rate at ' num2str(rate(minIdx))])

Massachusetts has the lowest fatality rate at 0.0086907

20 Live Scripts and Functions

20-64

disp([states{maxIdx} ' has the highest fatality rate at ' num2str(rate(maxIdx))])

Mississippi has the highest fatality rate at 0.022825

Distribution of Fatalities

You can include visualizations in your program. Like output, plots and figures appear together with
the code that produced them.

We can use a bar chart to see the distribution of fatality rates among the states. There are 11 states
that have a fatality rate greater than 0.02 per million vehicle miles.

histogram(rate,10)
xlabel('Fatalities per Million Vehicle Miles')
ylabel('Number of States')

Find Correlations in the Data

You can explore your data quickly in the Live Editor by experimenting with parameter values to see
how your results will change. Add controls to change parameter values interactively. To add controls,
go to the Live Editor tab, click the Control button, and select from the available options.

 Accelerate Exploratory Programming Using the Live Editor

20-65

We can experiment with the data to see if any of the variables in the table are correlated with
highway fatalities. For example, it appears that highway fatality rates are lower in states with a
higher percentage urban population.

dataToPlot = ;
close % Close any open figures
scatter(fatalities.(dataToPlot),rate) % Plot fatalities vs. selected variable
xlabel(dataToPlot)
ylabel('Percent Fatalities per Million Vehicle Miles')

hold on
xmin = min(fatalities.(dataToPlot));
xmax = max(fatalities.(dataToPlot));
p = polyfit(fatalities.(dataToPlot),rate,1); % Calculate & plot least squares line
plot([xmin xmax], polyval(p,[xmin xmax]))

20 Live Scripts and Functions

20-66

Plot Fatalities and Urbanization on a US Map

Summarize your results and share your live script with your colleagues. Using your live script, they
can recreate and extend your analysis. You can also save your analysis as HTML, Microsoft® Word, or
PDF documents for publication.

Based on this analysis, we can summarize our findings using a plot of fatality rates and urban
population on a map of the continental United States.

load usastates.mat
figure
geoplot([usastates.Lat], [usastates.Lon], 'black')
geobasemap darkwater
hold on
geoscatter(fatalities.latitude,fatalities.longitude,2000*rate,fatalities.urbanPopulation,'filled')
c = colorbar;
title(c,'Percent Urban')

 Accelerate Exploratory Programming Using the Live Editor

20-67

See Also

More About
• “Create Live Scripts in the Live Editor” on page 20-6
• MATLAB Live Script Gallery

20 Live Scripts and Functions

20-68

https://www.mathworks.com/products/matlab/live-script-gallery.html

Create an Interactive Narrative with the Live Editor

The following is an example of how to create an interactive narrative in the Live Editor. An interactive
narrative ties together the computations that you use to solve a problem. This example shows how to:

• Display output together with your MATLAB® code.
• Use formatted text to describe your approach.
• Use equations to describe the underlying mathematics.
• Use images to illustrate important points.
• Add links to background material.
• Use controls to modify parameters and re-run the analysis.
• Plot data for visualization.
• Invite colleagues to extend your analysis.

Overall Approach

Include formatted text as part of the interactive narrative. Use bold, italic, and underlined text to
highlight important words. Use bullets or numbers to format lists.

Estimate the power output from a typical solar panel installation on a specific date, time, and location
by calculating the following:

• Solar time
• Solar declination and solar elevation
• Air mass and the solar radiation reaching the earth's surface
• Radiation on a solar panel given its position, tilt, and efficiency
• Power generated in a day and over the entire year

Use the results of these calculations to plot solar and panel radiation for the example day and
location. Then, plot the expected panel power generation over the course of a year. To streamline the
analysis, use two MATLAB functions created for this example: solarCorrection and
panelRadiation.

Solar Time

Show output together with the code that produced it. To run a section of code, go to the Live Editor
tab and click the Run Section button.

Power generation in a solar panel depends on how much solar radiation reaches the panel. This in
turn depends on the sun's position relative to the panel as the sun moves across the sky. For example,
suppose that you want to calculate power output for a solar panel on June 1st at 12 noon in Boston,
Massachusetts.

lambda = ; % longitude

phi = ; % latitude

UTCoff = ; % UTC offset
january1 = datetime(2019,1,1); % January 1st
localTime = datetime(2019,6,1,12,0,0) % Noon on June 1

 Create an Interactive Narrative with the Live Editor

20-69

localTime = datetime
 01-Jun-2019 12:00:00

To calculate the sun's position for a given date and time, use solar time. Twelve noon solar time is the
time when the sun is highest in the sky. To calculate solar time, apply a correction to local time. That
correction has two parts:

• A term which corrects for the difference between the observer's location and the local meridian.
• An orbital term related to the earth's orbital eccentricity and axial tilt.

Calculate solar time using the solarCorrection function.

d = caldays(between(january1,localTime,'Day')); % Day of year
solarCorr = solarCorrection(d,lambda,str2double(UTCoff)); % Correction to local time
solarTime = localTime + minutes(solarCorr)

solarTime = datetime
 01-Jun-2019 12:18:15

Solar Declination and Elevation

Include equations to describe the underlying mathematics. Create equations using LaTeX commands.
To add a new equation, go to the Insert tab and click the Equation button. Double-click an equation
to edit it in the Equation Editor.

The solar declination (δ) is the angle of the sun relative to the earth's equatorial plane. The solar
declination is 0∘ at the vernal and autumnal equinoxes, and rises to a maximum of 23 . 45∘ at the
summer solstice. Calculate the solar declination for a given day of the year (d) using the equation

δ = sin−1 sin(23 . 45)sin 360
365(d− 81)

Then, use the declination (δ), the latitude (ϕ), and the hour angle (ω) to calculate the sun's elevation
(α) at the current time. The hour angle is the number of degrees of rotation of the earth between the
current solar time and solar noon.

α = sin−1 sinδsinϕ + cosδcosϕcosω

delta = asind(sind(23.45)*sind(360*(d - 81)/365)); % Declination
omega = 15*(solarTime.Hour + solarTime.Minute/60 - 12); % Hour angle
alpha = asind(sind(delta)*sind(phi) + ... % Elevation
 cosd(delta)*cosd(phi)*cosd(omega));
disp(['Solar Declination = ' num2str(delta) ' Solar Elevation = ' num2str(alpha)])

Solar Declination = 21.8155 Solar Elevation = 69.113

Calculate the time of sunrise and sunset in Standard Time using the sun's declination and the local
latitude.

sunrise = 12− cos−1 − tanϕtanδ
15∘

− solarCorr
60 sunset = 12 + cos−1 − tanϕtanδ

15∘

− solarCorr
60

20 Live Scripts and Functions

20-70

midnight = dateshift(localTime,'start','day');
sr = 12 - acosd(-tand(phi)*tand(delta))/15 - solarCorr/60;
sunrise = timeofday(midnight + hours(sr));
ss = 12 + acosd(-tand(phi)*tand(delta))/15 - solarCorr/60;
sunset = timeofday(midnight + hours(ss));

sunrise.Format = 'hh:mm:ss';
sunset.Format = 'hh:mm:ss';
disp('Sunrise = ' + string(sunrise) + ' Sunset = ' + string(sunset))

Sunrise = 04:16:06 Sunset = 19:07:22

Air Mass and Solar Radiation

Include images to illustrate important points in your story. To include an image, copy and paste an
image from another source or go to the Insert tab and click the Image button.

As light from the sun passes through the earth's atmosphere, some of the solar radiation is absorbed.
Air mass is the length of the path of light through the atmosphere (Y) relative to the shortest possible
path (X) when the sun's elevation is 90∘, as shown in the diagram below. It is a function of solar
elevation (α).

The larger the air mass, the less radiation reaches the ground. Calculate the air mass using the
equation

airMass = 1
cos(90− α) + 0 . 5057(6 . 0799 + α)−1 . 6364 .

Then, calculate the solar radiation reaching the ground (in kilowatts per square meter) using the
empirical equation

solarRad = 1 . 353 * 0 . 7AM0 . 678
.

airMass = 1/(cosd(90-alpha) + 0.50572*(6.07955+alpha)^-1.6354);
solarRad = 1.353*0.7^(airMass^0.678); % kW/m^2
disp(['Air Mass = ' num2str(airMass) ' Solar Radiation = ' num2str(solarRad) ' kW/m^2'])

 Create an Interactive Narrative with the Live Editor

20-71

Air Mass = 1.0698 Solar Radiation = 0.93141 kW/m^2

Solar Radiation on Fixed Panels

Use hyperlinks to reference supporting information from other sources. To add a hyperlink, go to the
Insert tab and click the Hyperlink button.

Panels installed with a solar tracker can move with the sun and receive 100% of the sun's radiation as
the sun moves across the sky. However, most solar cell installations have panels set at a fixed azimuth
and tilt. Therefore, the actual radiation reaching the panel also depends on the solar azimuth. The
solar azimuth (γ) is the compass direction of the sun's position in the sky. At solar noon in the
Northern hemisphere the solar azimuth is180∘ corresponding to the direction south. Calculate the
solar azimuth using the equation

γ =
cos−1 sinδcosϕ− cosδsinϕcosω

cosα for solar time ≤ 12

360∘− cos−1 sinδcosϕ− cosδsinϕcosω
cosα for solar time > 12

gamma = acosd((sind(delta)*cosd(phi) - cosd(delta)*sind(phi)*cosd(omega))/cosd(alpha));
if (hour(solarTime) >= 12) && (omega >= 0)
 gamma = 360 - gamma;
end
disp(['Solar Azimuth = ' num2str(gamma)])

Solar Azimuth = 191.7888

In the northern hemisphere, a typical solar panel installation has panels oriented toward the south
with a panel azimuth (β) of 180∘. At northern latitudes, a typical tilt angle (τ) is 35∘. Calculate the
panel radiation for fixed panels from the total solar radiation using the equation

panelRad = solarRad cos(α)sin(τ)cos(β− γ) + sin(α)cos(τ) .

beta = 180; % Panel azimuth
tau = 35; % Panel tilt
panelRad = solarRad*max(0,(cosd(alpha)*sind(tau)*cosd(beta-gamma) + sind(alpha)*cosd(tau)));
disp(['Panel Radiation = ' num2str(panelRad) ' kW/m^2'])

Panel Radiation = 0.89928 kW/m^2

Panel Radiation and Power Generation for a Single Day

Modify parameters using interactive controls. Display plots together with the code that produced
them.

Panel Radiation

For a given day of the year, calculate the total solar radiation and the radiation on the panel. To
simplify the analysis, use the panelRadiation function. Try different dates to see how the solar and
panel radiation change depending on the time of year.

selectedMonth = ;

selectedDay = ;
selectedDate = datetime(2019,selectedMonth,selectedDay);
[times,solarRad,panelRad] = panelRadiation(selectedDate,lambda,phi,UTCoff,tau,beta) ;

20 Live Scripts and Functions

20-72

https://www.sciencedirect.com/topics/engineering/solar-azimuth-angle

plot(times,solarRad,times,panelRad)

selectedDate.Format = 'MMMM dd yyyy';
title('Solar and Panel Radiation for ' + string(selectedDate))
xlabel('Hour of Day');
ylabel('Radiation, kW/m^2')
legend('Available Solar Radiation','Solar Radiation on Panel', 'Location','South')

Power Generation

So far, the calculations assume that all of the radiation reaching the panel is available to generate
power. However, solar panels do not convert 100% of available solar radiation into electricity. The
efficiency of a solar panel is the fraction of the available radiation that is converted. The efficiency of
a solar panel depends on the design and materials of the cell.

Typically, a residential installation includes 20m2 of solar panels with an efficiency of 25%. Modify the
parameters below to see how efficiency and size affect panel power generation.

eff = ; % Panel efficiency

pSize = ; % Panel size in m^2
radiation = sum(panelRad(1:end-1)+panelRad(2:end))/2;
dayPower = eff*pSize*radiation; % Panel electric output in kW

selectedDate.Format = 'dd-MMM-yyyy';
disp('Expected daily electical output for ' + string(selectedDate) + ' = ' + num2str(dayPower) + ' kW-hrs')

 Create an Interactive Narrative with the Live Editor

20-73

Expected daily electical output for 01-Jun-2019 = 33.4223 kW-hrs

Power Generation for the Whole Year

Hover over a plot to interact with it. Interacting with a plot in the Live Editor will generate code that
you can then add to your script.

Repeat the calculation to estimate power generation for each day of the year.

yearDates = datetime(2019,1,1:365); % Create a vector of days in the year
dailyPower = zeros(1,365);
for i = 1:365
 [times,solarRad,panelRad] = panelRadiation(yearDates(i),lambda,phi,UTCoff,tau,beta) ;
 radiation = sum(panelRad(1:end-1)+panelRad(2:end))/2;
 dailyPower(i) = eff*pSize*radiation;
end

plot(yearDates,dailyPower)
title('Yearly Power Generation')
xlabel('Date');
ylabel('Power Generation, kW-hrs')

yearlyPower = sum(dailyPower);
disp(['Expected annual power output = ' num2str(yearlyPower) ' kW-hrs'])

Expected annual power output = 9954.3272 kW-hrs

20 Live Scripts and Functions

20-74

Panel Tilt and Latitude

Use a heatmap to determine how panel tilt affects power generation. The heatmap below shows that
the optimal panel tilt for any location is about 5∘ less than the latitude.

load LatitudeVsTilt.mat
heatmap(powerTbl,'Tilt','Latitude',...
 'ColorVariable','Power');
xlabel('Panel Tilt')
ylabel('Latitude')
title('Normalized Power Output')

Extend the Analysis

Share your analysis with colleagues. Invite them to reproduce or extend your analysis. Work
collaboratively using the Live Editor.

In reality, true power output from a solar installation is significantly affected by local weather
conditions. An interesting extension of this analysis would be to see how cloud cover affects the
results. In the US, you can use data from these government websites.

• Use historical local weather data from the National Weather Service website.

 Create an Interactive Narrative with the Live Editor

20-75

https://www.weather.gov/phi/localclimate.html

• Use measured solar radiation data from the National Solar Radiation Database.

See Also

More About
• “Create Live Scripts in the Live Editor” on page 20-6
• “Format Text in the Live Editor” on page 20-18
• MATLAB Live Script Gallery

20 Live Scripts and Functions

20-76

https://nsrdb.nrel.gov/
https://www.mathworks.com/products/matlab/live-script-gallery.html

Create Interactive Course Materials Using the Live Editor

The following is an example of how to use live scripts in the classroom. This example shows how to:

• Add equations to explain the underlying mathematics.
• Execute individual sections of MATLAB® code.
• Include plots for visualization.
• Use links and images to provide supporting information.
• Experiment with MATLAB code interactively.
• Reinforce concepts with other examples.
• Use live scripts for assignments.

What does it mean to find the nth root of 1?

Add equations to explain the underlying mathematics for concepts that you want to teach. To add an
equation, go to the Insert tab and click the Equation button. Then, select from the symbols and
structures in the Equation tab.

Today we're going to talk about finding the roots of 1. What does it mean to find the nth root of 1?
The nth roots of 1 are the solutions to the equation xn− 1 = 0.

For square roots, this is easy. The values are x = ± 1 = ± 1. For higher-order roots, it gets a bit
more difficult. To find the cube roots of 1 we need to solve the equation x3− 1 = 0. We can factor this
equation to get

x− 1 x2 + x + 1 = 0 .

So the first cube root is 1. Now we can use the quadratic formula to get the second and third cube
roots.

x = −b ± b2− 4ac
2a

Calculate the Cube Roots

To execute individual sections of MATLAB code, go to the Live Editor tab and click the Run Section
button. Output appears together with the code that created it. Create sections using the Section
Break button.

In our case a, b, and c are all equal to 1. The other two roots are calculated from these formulas:

a = 1 ; b = 1 ; c = 1;
roots = [];
roots(1) = 1;
roots(2) = (-b + sqrt(b^2 - 4*a*c))/(2*a); % Use the quadratic formula
roots(3) = (-b - sqrt(b^2 - 4*a*c))/(2*a);

So the full set of cube roots of 1 are:

disp(roots')

 Create Interactive Course Materials Using the Live Editor

20-77

 1.0000 + 0.0000i
 -0.5000 - 0.8660i
 -0.5000 + 0.8660i

Displaying Roots in the Complex Plane

Include plots in the Live Editor so students can visualize important concepts.

We can visualize the roots in the complex plane to see their location.

range = 0:0.01:2*pi;
plot(cos(range),sin(range),'k') % Plot the unit circle
axis square; box off
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
hold on
plot(real(roots), imag(roots), 'ro') % Plot the roots

Finding Higher Order Roots

To add supporting information, go to the Insert tab and click the Hyperlink and Image buttons.
Students can use supporting information to explore lecture topics outside of the classroom.

Once you get past n = 3, things get even trickier. For 4th roots we could use the quartic formula
discovered by Lodovico Ferrari in 1540. But this formula is long and unwieldy, and doesn't help us
find roots higher than 4. Luckily, there is a better way, thanks to a 17th century French
mathematician named Abraham de Moivre.

Abraham de Moivre was born in Vitry in Champagne on May 26, 1667. He was a contemporary and
friend of Isaac Newton, Edmund Halley, and James Stirling. https://en.wikipedia.org/wiki/
Abraham_de_Moivre

20 Live Scripts and Functions

20-78

https://en.wikipedia.org/wiki/Abraham_de_Moivre
https://en.wikipedia.org/wiki/Abraham_de_Moivre
https://en.wikipedia.org/wiki/Abraham_de_Moivre

He is best known for de Moivre's theorem that links complex numbers and trigonometry, and for his
work on the normal distribution and probability theory. De Moivre wrote a book on probability theory,
The Doctrine of Chances, said to have been prized by gamblers. De Moivre first discovered Binet's
formula, the closed-form expression for Fibonacci numbers linking the nth power of the golden ratio
φ to the nth Fibonacci number. He was also the first to postulate the Central Limit Theorem, a
cornerstone of probability theory.

De Moivre's theorem states that for any real x and any integer n,

cos x + i sin x n = cos nx + i sin nx .

How does that help us solve our problem? We also know that for any integer k,

1 = cos 2kπ + i sin 2kπ .

So by de Moivre's theorem we get

11/n = cos 2kπ + i sin 2kπ 1/n = cos 2kπ
n + i sin 2kπ

n .

Calculating the nth Roots of 1

Use the Live Editor to experiment with MATLAB code interactively. Add controls to show students
how important parameters affect the analysis. To add controls, go to the Live Editor tab, click the
Control button, and select from the available options.

We can use this last equation to find the nth roots of 1. For example, for any value of n, we can use
the formula above with values of k = 0…n− 1. We can use this MATLAB code to experiment with
different values of n:

n = ;
roots = zeros(1, n);
for k = 0:n-1
 roots(k+1) = cos(2*k*pi/n) + 1i*sin(2*k*pi/n); % Calculate the roots
end
disp(roots')

 1.0000 + 0.0000i
 0.5000 - 0.8660i

 Create Interactive Course Materials Using the Live Editor

20-79

https://en.wikipedia.org/wiki/De_Moivre%27s_formula
https://en.wikipedia.org/wiki/The_Doctrine_of_Chances
https://en.wikipedia.org/wiki/Binet%27s_formula
https://en.wikipedia.org/wiki/Binet%27s_formula
https://en.wikipedia.org/wiki/Central_Limit_Theorem

 -0.5000 - 0.8660i
 -1.0000 - 0.0000i
 -0.5000 + 0.8660i
 0.5000 + 0.8660i

Plotting the roots in the complex plane shows that the roots are equally spaced around the unit circle
at intervals of 2π/n.

cla
plot(cos(range),sin(range),'k') % Plot the unit circle
hold on
plot(real(roots),imag(roots),'ro') % Plot the roots

Finding the nth Roots of -1, i, and -i

Use additional examples to reinforce important concepts. Modify code during the lecture to answer
questions or explore ideas in more depth.

We can find the roots of -1, i, and -i just by using extensions of the approach described above. If we
look at the unit circle we see that the values of 1, i, -1, -i appear at angles 0, π/2, π, and 3π/2
respectively.

r = ones(1,4);
theta = [0 pi/2 pi 3*pi/2];
[x,y] = pol2cart(theta,r);
cla
plot(cos(range),sin(range),'k') % Plot the unit circle
hold on
plot(x, y, 'ro') % Plot the values of 1, i, -1, and -i
text(x(1)+0.05,y(1),'1') % Add text labels
text(x(2),y(2)+0.1,'i')
text(x(3)-0.1,y(3),'-1')
text(x(4)-0.02,y(4)-0.1,'-i')

20 Live Scripts and Functions

20-80

Knowing this, we can write the following expression for i:

i = cos 2k + 1/2 π + i sin 2k + 1/2 π .

Taking the nth root of both sides gives

i1/n = cos 2k + 1/2 π + i sin 2k + 1/2 π 1/n

and by de Moivre's theorem we get

i1/n = cos 2k + 1/2 π + i sin 2k + 1/2 π 1/n = cos 2k + 1/2 π
n + i sin 2k + 1/2 π

n .

Homework

Use live scripts as the basis for assignments. Give students the live script used in the lecture and
have them complete exercises that test their understanding of the material.

Use the techniques described above to complete the following exercises:

Exercise 1: Write MATLAB code to calculate the 3 cube roots of i.

% Put your code here

Exercise 2: Write MATLAB code to calculate the 5 fifth roots of -1.

% Put your code here

Exercise 3: Describe the mathematical approach you would use to calculate the nth roots of an
arbitrary complex number. Include the equations you used in your approach.

 Create Interactive Course Materials Using the Live Editor

20-81

(Describe your approach here.)

See Also

More About
• “Create Live Scripts in the Live Editor” on page 20-6
• MATLAB Live Script Gallery

20 Live Scripts and Functions

20-82

https://www.mathworks.com/products/matlab/live-script-gallery.html

Create Examples Using the Live Editor

This example shows how to use the Live Editor to document or create an example for your code. The
example uses formatted text, equations, and runnable code to document the sample function
estimatePanelOutput. It also uses sliders and text fields to allow users to experiment with
different function inputs.

To view and interact with the controls, open this example in MATLAB®.

See Also

More About
• “Create Live Scripts in the Live Editor” on page 20-6
• “Add Help for Live Functions” on page 20-52
• “Display Custom Documentation” on page 33-21
• MATLAB Live Script Gallery

 Create Examples Using the Live Editor

20-83

https://www.mathworks.com/products/matlab/live-script-gallery.html

Create an Interactive Form Using the Live Editor

This example shows how to use the Live Editor to create an interactive form that completes a
calculation based on input provided by a user. The example uses drop-down menus and sliders to
prompt the user for input, and then uses a button to run a calculation using the provided input. The
example hides the code to only show the controls and results to the user.

To view and interact with the example, open it in MATLAB®. To view the code for this example in
MATLAB, go to the View tab and click Output Inline or Output on Right.

20 Live Scripts and Functions

20-84

See Also

More About
• “Create Live Scripts in the Live Editor” on page 20-6

 Create an Interactive Form Using the Live Editor

20-85

• MATLAB Live Script Gallery

20 Live Scripts and Functions

20-86

https://www.mathworks.com/products/matlab/live-script-gallery.html

Create a Real-Time Dashboard Using the Live Editor

This example shows how to use the Live Editor to create a dashboard for displaying and analyzing
real-time data. The example uses a button and a check-box to get and display real-time data on
demand. The example hides the code to only show the controls and results to the user.

To view and interact with the example, open it in MATLAB®. To view the code for this example in
MATLAB, go to the View tab and click Output Inline or Output on Right.

See Also

More About
• “Create Live Scripts in the Live Editor” on page 20-6

 Create a Real-Time Dashboard Using the Live Editor

20-87

• MATLAB Live Script Gallery

20 Live Scripts and Functions

20-88

https://www.mathworks.com/products/matlab/live-script-gallery.html

Acknowledgments
MATLAB Live Editor uses Antenna House® XSL Formatter. Antenna House is a trademark of Antenna
House, Inc.

Antenna House XSL Formatter© 2009–2019 Copyright Antenna House, Inc.

 Acknowledgments

20-89

Function Basics

• “Create Functions in Files” on page 21-2
• “Add Help for Your Program” on page 21-5
• “Configure the Run Button for Functions” on page 21-7
• “Base and Function Workspaces” on page 21-9
• “Share Data Between Workspaces” on page 21-10
• “Check Variable Scope in Editor” on page 21-14
• “Types of Functions” on page 21-17
• “Anonymous Functions” on page 21-20
• “Local Functions” on page 21-25
• “Nested Functions” on page 21-27
• “Resolve Error: Attempt to Add Variable to a Static Workspace.” on page 21-33
• “Private Functions” on page 21-36
• “Function Precedence Order” on page 21-37
• “Update Code for R2019b Changes to Function Precedence Order” on page 21-40
• “Indexing into Function Call Results” on page 21-46

21

Create Functions in Files
Both scripts and functions allow you to reuse sequences of commands by storing them in program
files. Scripts are the simplest type of program, since they store commands exactly as you would type
them at the command line. Functions provide more flexibility, primarily because you can pass input
values and return output values. For example, this function named fact computes the factorial of a
number (n) and returns the result (f).

function f = fact(n)
 f = prod(1:n);
end

This type of function must be defined within a file, not at the command line. Often, you store a
function in its own file. In that case, the best practice is to use the same name for the function and
the file (in this example, fact.m), since MATLAB associates the program with the file name. Save the
file either in the current folder or in a folder on the MATLAB search path.

You can call the function from the command line, using the same syntax rules that apply to functions
installed with MATLAB. For instances, calculate the factorial of 5.

x = 5;
y = fact(5)

y =

 120

Starting in R2016b, another option for storing functions is to include them at the end of a script file.
For instance, create a file named mystats.m with a few commands and two functions, fact and
perm. The script calculates the permutation of (3,2).

x = 3;
y = 2;
z = perm(x,y)

function p = perm(n,r)
 p = fact(n)/fact(n-r);
end

function f = fact(n)
 f = prod(1:n);
end

Call the script from the command line.

mystats

z =

 6

Syntax for Function Definition

The first line of every function is the definition statement, which includes the following elements.

21 Function Basics

21-2

function keyword
(required)

Use lowercase characters for the keyword.

Output arguments (optional) If your function returns one output, you can specify the output name
after the function keyword.

function myOutput = myFunction(x)

If your function returns more than one output, enclose the output
names in square brackets.

function [one,two,three] = myFunction(x)

If there is no output, you can omit it.

function myFunction(x)

Or you can use empty square brackets.

function [] = myFunction(x)

Function name (required) Valid function names follow the same rules as variable names. They
must start with a letter, and can contain letters, digits, or
underscores.

Note To avoid confusion, use the same name for both the function file
and the first function within the file. MATLAB associates your
program with the file name, not the function name. Script files cannot
have the same name as a function in the file.

Input arguments (optional) If your function accepts any inputs, enclose their names in
parentheses after the function name. Separate inputs with commas.

function y = myFunction(one,two,three)

If there are no inputs, you can omit the parentheses.

Tip When you define a function with multiple input or output arguments, list any required arguments
first. This ordering allows you to call your function without specifying optional arguments.

Contents of Functions and Files
The body of a function can include valid MATLAB expressions, control flow statements, comments,
blank lines, and nested functions. Any variables that you create within a function are stored within a
workspace specific to that function, which is separate from the base workspace.

Program files can contain multiple functions. If the file contains only function definitions, the first
function is the main function, and is the function that MATLAB associates with the file name.
Functions that follow the main function or script code are called local functions. Local functions are
only available within the file.

 Create Functions in Files

21-3

End Statements
Functions end with either an end statement, the end of the file, or the definition line for a local
function, whichever comes first. The end statement is required if:

• Any function in the file contains a nested function (a function completely contained within its
parent).

• The function is a local function within a function file, and any local function in the file uses the end
keyword.

• The function is a local function within a script file.

Although it is sometimes optional, use end for better code readability.

See Also
function

More About
• “Files and Folders that MATLAB Accesses”
• “Base and Function Workspaces” on page 21-9
• “Types of Functions” on page 21-17
• “Add Functions to Scripts” on page 19-12

21 Function Basics

21-4

Add Help for Your Program

This example shows how to provide help for the programs you write. Help text appears in the
Command Window when you use the help function.

Create help text by inserting comments at the beginning of your program. If your program includes a
function, position the help text immediately below the function definition line (the line with the
function keyword). If the function contains an arguments block, you also can position the help text
immediately below the arguments block.

For example, create a function in a file named addme.m that includes help text:

function c = addme(a,b)
% ADDME Add two values together.
% C = ADDME(A) adds A to itself.
%
% C = ADDME(A,B) adds A and B together.
%
% See also SUM, PLUS.

switch nargin
 case 2
 c = a + b;
 case 1
 c = a + a;
 otherwise
 c = 0;
end

When you type help addme at the command line, the help text displays in the Command Window:

addme Add two values together.
 C = addme(A) adds A to itself.

 C = addme(A,B) adds A and B together.

 See also sum, plus.

The first help text line, often called the H1 line, typically includes the program name and a brief
description. The Current Folder browser and the help and lookfor functions use the H1 line to
display information about the program.

Create See also links by including function names at the end of your help text on a line that begins
with % See also. If the function exists on the search path or in the current folder, the help
command displays each of these function names as a hyperlink to its help. Otherwise, help prints the
function names as they appear in the help text.

You can include hyperlinks (in the form of URLs) to Web sites in your help text. Create hyperlinks by
including an HTML <a> anchor element. Within the anchor, use a matlab: statement to
execute a web command. For example:

% For more information, see <a href="matlab:
% web('https://www.mathworks.com')">the MathWorks Web site.

 Add Help for Your Program

21-5

End your help text with a blank line (without a %). The help system ignores any comment lines that
appear after the help text block.

Note When multiple programs have the same name, the help command determines which help text
to display by applying the rules described in “Function Precedence Order” on page 21-37. However,
if a program has the same name as a MathWorks function, the Help on Selection option in context
menus always displays documentation for the MathWorks function.

See Also
help | lookfor

Related Examples
• “Add Comments to Code” on page 19-3
• “Create Help for Classes” on page 33-2
• “Create Help Summary Files — Contents.m” on page 33-10
• “Check Which Programs Have Help” on page 33-8
• “Display Custom Documentation” on page 33-21
• “Use Help Files with MEX Functions”

21 Function Basics

21-6

Configure the Run Button for Functions
Functions are program files that accept inputs and return outputs. To run functions that require input
argument values or any other additional setup from the Editor, configure the Run button.

To configure the Run button in the Editor, click Run and add one or more run commands.

For example:

1 Create the function myfunction.m that performs a calculation using the inputs x and y and
stores the results in z.

function z = myfunction(x,y)
z = x.^2 + y;

2 Go to the Editor tab and click Run . MATLAB displays the list of commands available for
running the function.

3 Click the last item in the list and replace the text type code to run with a call to the function
including the required input arguments. For example, enter the text result =
myfunction(1:10,5) to run myfunction with the input arguments 1:10 and 5, and store the
results in the variable result. MATLAB replaces the default command with the newly added
command.

To run multiple commands at once, enter the commands on the same line. For example, enter the
text a = 1:10; b = 5; result = myfunction(a,b) to create the variables a and b and
then call myfunction with a and b as the input arguments.

Note If you define a run command that creates a variable with the same name as a variable in
the base workspace, the run command variable overwrites the base workspace variable when you
run that run command.

4 Click the Run button. MATLAB runs the function using the first run command in the list. For
example, click Run to run myfunction using the command result =
myfunction(1:10,5). MATLAB displays the result in the Command Window.

 Configure the Run Button for Functions

21-7

result =

 6 9 14 21 30 41 54 69 86

To run the function using a different run command from the list, click Run and select the
desired command. When you select a run command from the list, it becomes the default for the
Run button.

To edit or delete an existing run command, click Run , right-click the command, and then select
Edit or Delete.

Note Running live functions in the Live Editor using the Run button is only supported in MATLAB
Online. When you run a live function using the Run button, the output displays in the Command
Window. To run a live function in an installed version of MATLAB, call the function from the Command
Window or from a script or live script.

See Also

More About
• “Calling Functions”
• “Create Functions in Files” on page 21-2
• “Create Live Functions” on page 20-49

21 Function Basics

21-8

Base and Function Workspaces
This topic explains the differences between the base workspace and function workspaces, including
workspaces for local functions, nested functions, and scripts.

The base workspace stores variables that you create at the command line. This includes any variables
that scripts create, assuming that you run the script from the command line or from the Editor.
Variables in the base workspace exist until you clear them or end your MATLAB session.

Functions do not use the base workspace. Every function has its own function workspace. Each
function workspace is separate from the base workspace and all other workspaces to protect the
integrity of the data. Even local functions in a common file have their own workspaces. Variables
specific to a function workspace are called local variables. Typically, local variables do not remain in
memory from one function call to the next.

When you call a script from a function, the script uses the function workspace.

Like local functions, nested functions have their own workspaces. However, these workspaces are
unique in two significant ways:

• Nested functions can access and modify variables in the workspaces of the functions that contain
them.

• All of the variables in nested functions or the functions that contain them must be explicitly
defined. That is, you cannot call a function or script that assigns values to variables unless those
variables already exist in the function workspace.

See Also

Related Examples
• “Share Data Between Workspaces” on page 21-10

More About
• “Nested Functions” on page 21-27

 Base and Function Workspaces

21-9

Share Data Between Workspaces
In this section...
“Introduction” on page 21-10
“Best Practice: Passing Arguments” on page 21-10
“Nested Functions” on page 21-10
“Persistent Variables” on page 21-11
“Global Variables” on page 21-12
“Evaluating in Another Workspace” on page 21-12

Introduction
This topic shows how to share variables between workspaces or allow them to persist between
function executions.

In most cases, variables created within a function are local variables known only within that function.
Local variables are not available at the command line or to any other function. However, there are
several ways to share data between functions or workspaces.

Best Practice: Passing Arguments
The most secure way to extend the scope of a function variable is to use function input and output
arguments, which allow you to pass values of variables.

For example, create two functions, update1 and update2, that share and modify an input value.
update2 can be a local function in the file update1.m, or can be a function in its own file,
update2.m.

function y1 = update1(x1)
 y1 = 1 + update2(x1);

function y2 = update2(x2)
 y2 = 2 * x2;

Call the update1 function from the command line and assign to variable Y in the base workspace:

X = [1,2,3];
Y = update1(X)

Y =
 3 5 7

Nested Functions
A nested function has access to the workspaces of all functions in which it is nested. So, for example,
a nested function can use a variable (in this case, x) that is defined in its parent function:

function primaryFx
 x = 1;
 nestedFx

21 Function Basics

21-10

 function nestedFx
 x = x + 1;
 end
end

When parent functions do not use a given variable, the variable remains local to the nested function.
For example, in this version of primaryFx, the two nested functions have their own versions of x that
cannot interact with each other.

function primaryFx
 nestedFx1
 nestedFx2

 function nestedFx1
 x = 1;
 end

 function nestedFx2
 x = 2;
 end
end

For more information, see “Nested Functions” on page 21-27.

Persistent Variables

When you declare a variable within a function as persistent, the variable retains its value from one
function call to the next. Other local variables retain their value only during the current execution of
a function. Persistent variables are equivalent to static variables in other programming languages.

Declare variables using the persistent keyword before you use them. MATLAB initializes persistent
variables to an empty matrix, [].

For example, define a function in a file named findSum.m that initializes a sum to 0, and then adds to
the value on each iteration.

function findSum(inputvalue)
persistent SUM_X

if isempty(SUM_X)
 SUM_X = 0;
end
SUM_X = SUM_X + inputvalue;

When you call the function, the value of SUM_X persists between subsequent executions.

These operations clear the persistent variables for a function:

• clear all
• clear functionname
• Editing the function file

To prevent clearing persistent variables, lock the function file using mlock.

 Share Data Between Workspaces

21-11

Global Variables

Global variables are variables that you can access from functions or from the command line. They
have their own workspace, which is separate from the base and function workspaces.

However, global variables carry notable risks. For example:

• Any function can access and update a global variable. Other functions that use the variable might
return unexpected results.

• If you unintentionally give a “new” global variable the same name as an existing global variable,
one function can overwrite the values expected by another. This error is difficult to diagnose.

Use global variables sparingly, if at all.

If you use global variables, declare them using the global keyword before you access them within
any particular location (function or command line). For example, create a function in a file called
falling.m:

function h = falling(t)
 global GRAVITY
 h = 1/2*GRAVITY*t.^2;

Then, enter these commands at the prompt:

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

The two global statements make the value assigned to GRAVITY at the command prompt available
inside the function. However, as a more robust alternative, redefine the function to accept the value
as an input:

function h = falling(t,gravity)
 h = 1/2*gravity*t.^2;

Then, enter these commands at the prompt:

GRAVITY = 32;
y = falling((0:.1:5)',GRAVITY);

Evaluating in Another Workspace
The evalin and assignin functions allow you to evaluate commands or variable names from
character vectors and specify whether to use the current or base workspace.

Like global variables, these functions carry risks of overwriting existing data. Use them sparingly.

evalin and assignin are sometimes useful for callback functions in graphical user interfaces to
evaluate against the base workspace. For example, create a list box of variable names from the base
workspace:

function listBox
figure
lb = uicontrol('Style','listbox','Position',[10 10 100 100],...

21 Function Basics

21-12

 'Callback',@update_listBox);
update_listBox(lb)

function update_listBox(src,~)
vars = evalin('base','who');
src.String = vars;

For other programming applications, consider argument passing and the techniques described in
“Alternatives to the eval Function” on page 2-91.

See Also

More About
• “Base and Function Workspaces” on page 21-9

 Share Data Between Workspaces

21-13

Check Variable Scope in Editor
In this section...
“Use Automatic Function and Variable Highlighting” on page 21-14
“Example of Using Automatic Function and Variable Highlighting” on page 21-14

Scoping issues can be the source of some coding problems. For instance, if you are unaware that
nested functions share a particular variable, the results of running your code might not be as you
expect. Similarly, mistakes in usage of local, global, and persistent variables can cause unexpected
results.

The Code Analyzer does not always indicate scoping issues because sharing a variable across
functions is not an error—it may be your intent. Use MATLAB function and variable highlighting
features to identify when and where your code uses functions and variables. If you have an active
Internet connection, you can watch the Variable and Function Highlighting video for an overview of
the major features.

For conceptual information on nested functions and the various types of MATLAB variables, see
“Sharing Variables Between Parent and Nested Functions” on page 21-27 and “Share Data Between
Workspaces” on page 21-10.

Use Automatic Function and Variable Highlighting
By default, the Editor indicates functions, local variables, and variables with shared scope in various
shades of blue. Variables with shared scope include: global variables on page 21-12, persistent
variables on page 21-11, and variables within nested functions. (For more information, see “Nested
Functions” on page 21-10.)

To enable and disable highlighting or to change the colors, click Preferences and select
MATLAB > Colors > Programming tools. In MATLAB Online, highlighting is enabled by default
and changing the preferences for highlighting is not available.

By default, the Editor:

• Highlights all instances of a given function or local variable in sky blue when you place the cursor
within a function or variable name. For instance:

• Displays a variable with shared scope in teal blue, regardless of the cursor location. For instance:

Example of Using Automatic Function and Variable Highlighting
Consider the code for a function rowsum:

function rowTotals = rowsum
% Add the values in each row and
% store them in a new array

x = ones(2,10);

21 Function Basics

21-14

https://www.mathworks.com/videos/variable-and-subfunction-highlighting-in-r2010b-101555.html

[n, m] = size(x);
rowTotals = zeros(1,n);
for i = 1:n
 rowTotals(i) = addToSum;
end

 function colsum = addToSum
 colsum = 0;
 thisrow = x(i,:);
 for i = 1:m
 colsum = colsum + thisrow(i);
 end
 end

end

When you run this code, instead of returning the sum of the values in each row and displaying:

ans =

 10 10

MATLAB displays:

ans =

 0 0 0 0 0 0 0 0 0 10

Examine the code by following these steps:

1
On the Home tab in the Environment section, click Preferences and select MATLAB >
Colors > Programming tools. Ensure that Automatically highlight and Variables with
shared scope are selected.

2 Copy the rowsum code into the Editor.

Notice the variable appears in teal blue, which indicates i is not a local variable. Both the
rowTotals function and the addToSum functions set and use the variable i.

The variable n, at line 6 appears in black, indicating that it does not span multiple functions.

 Check Variable Scope in Editor

21-15

3 Hover the mouse pointer over an instance of variable i.

A tooltip appears: The scope of variable 'i' spans multiple functions.
4 Click the tooltip link for information about variables whose scope span multiple functions.
5 Click an instance of i.

Every reference to i highlights in sky blue and markers appear in the indicator bar on the right
side of the Editor.

6 Hover over one of the indicator bar markers.

A tooltip appears and displays the name of the function or variable and the line of code
represented by the marker.

7 Click a marker to navigate to the line indicated in tooltip for that marker.

This is particularly useful when your file contains more code than you can view at one time in the
Editor.

Fix the code by changing the instance of i at line 15 to y.

You can see similar highlighting effects when you click on a function reference. For instance, click on
addToSum.

21 Function Basics

21-16

Types of Functions
In this section...
“Local and Nested Functions in a File” on page 21-17
“Private Functions in a Subfolder” on page 21-18
“Anonymous Functions Without a File” on page 21-18

Local and Nested Functions in a File
Program files can contain multiple functions. Local and nested functions are useful for dividing
programs into smaller tasks, making it easier to read and maintain your code.

Local functions are subroutines that are available within the same file. Local functions are the most
common way to break up programmatic tasks. In a function file, which contains only function
definitions, local functions can appear in the file in any order after the main function in the file. In a
script file, which contains commands and function definitions, local function must be at the end of the
file. (Functions in scripts are supported in R2016b or later.)

For example, create a function file named myfunction.m that contains a main function,
myfunction, and two local functions, squareMe and doubleMe:

function b = myfunction(a)
 b = squareMe(a)+doubleMe(a);
end
function y = squareMe(x)
 y = x.^2;
end
function y = doubleMe(x)
 y = x.*2;
end

You can call the main function from the command line or another program file, although the local
functions are only available to myfunction:

myfunction(pi)

ans =
 16.1528

Nested functions are completely contained within another function. The primary difference between
nested functions and local functions is that nested functions can use variables defined in parent
functions without explicitly passing those variables as arguments.

Nested functions are useful when subroutines share data, such as applications that pass data
between components. For example, create a function that allows you to set a value between 0 and 1
using either a slider or an editable text box. If you use nested functions for the callbacks, the slider
and text box can share the value and each other’s handles without explicitly passing them:

function myslider
value = 0;
f = figure;
s = uicontrol(f,'Style','slider','Callback',@slider);
e = uicontrol(f,'Style','edit','Callback',@edittext,...

 Types of Functions

21-17

 'Position',[100,20,100,20]);

 function slider(obj,~)
 value = obj.Value;
 e.String = num2str(value);
 end
 function edittext(obj,~)
 value = str2double(obj.String);
 s.Value = value;
 end

end

Private Functions in a Subfolder
Like local or nested functions, private functions are accessible only to functions in a specific location.
However, private functions are not in the same file as the functions that can call them. Instead, they
are in a subfolder named private. Private functions are available only to functions in the folder
immediately above the private folder. Use private functions to separate code into different files, or
to share code between multiple, related functions.

Anonymous Functions Without a File

Anonymous functions allow you to define a function without creating a program file, as long as the
function consists of a single statement. A common application of anonymous functions is to define a
mathematical expression, and then evaluate that expression over a range of values using a MATLAB®
function function, i.e., a function that accepts a function handle as an input.

For example, this statement creates a function handle named s for an anonymous function:

s = @(x) sin(1./x);

This function has a single input, x. The @ operator creates the function handle.

You can use the function handle to evaluate the function for particular values, such as

y = s(pi)

y = 0.3130

Or, you can pass the function handle to a function that evaluates over a range of values, such as
fplot:

range = [0.01,0.1];
fplot(s,range)

21 Function Basics

21-18

See Also

More About
• “Local Functions” on page 21-25
• “Nested Functions” on page 21-27
• “Private Functions” on page 21-36
• “Anonymous Functions” on page 21-20

 Types of Functions

21-19

Anonymous Functions

In this section...
“What Are Anonymous Functions?” on page 21-20
“Variables in the Expression” on page 21-21
“Multiple Anonymous Functions” on page 21-21
“Functions with No Inputs” on page 21-22
“Functions with Multiple Inputs or Outputs” on page 21-22
“Arrays of Anonymous Functions” on page 21-23

What Are Anonymous Functions?
An anonymous function is a function that is not stored in a program file, but is associated with a
variable whose data type is function_handle. Anonymous functions can accept multiple inputs and
return one output. They can contain only a single executable statement.

For example, create a handle to an anonymous function that finds the square of a number:

sqr = @(x) x.^2;

Variable sqr is a function handle. The @ operator creates the handle, and the parentheses ()
immediately after the @ operator include the function input arguments. This anonymous function
accepts a single input x, and implicitly returns a single output, an array the same size as x that
contains the squared values.

Find the square of a particular value (5) by passing the value to the function handle, just as you
would pass an input argument to a standard function.

a = sqr(5)

a =
 25

Many MATLAB functions accept function handles as inputs so that you can evaluate functions over a
range of values. You can create handles either for anonymous functions or for functions in program
files. The benefit of using anonymous functions is that you do not have to edit and maintain a file for a
function that requires only a brief definition.

For example, find the integral of the sqr function from 0 to 1 by passing the function handle to the
integral function:

q = integral(sqr,0,1);

You do not need to create a variable in the workspace to store an anonymous function. Instead, you
can create a temporary function handle within an expression, such as this call to the integral
function:

q = integral(@(x) x.^2,0,1);

21 Function Basics

21-20

Variables in the Expression
Function handles can store not only an expression, but also variables that the expression requires for
evaluation.

For example, create a handle to an anonymous function that requires coefficients a, b, and c.

a = 1.3;
b = .2;
c = 30;
parabola = @(x) a*x.^2 + b*x + c;

Because a, b, and c are available at the time you create parabola, the function handle includes
those values. The values persist within the function handle even if you clear the variables:

clear a b c
x = 1;
y = parabola(x)

y =
 31.5000

To supply different values for the coefficients, you must create a new function handle:

a = -3.9;
b = 52;
c = 0;
parabola = @(x) a*x.^2 + b*x + c;

x = 1;
y = parabola(1)

y =
 48.1000

You can save function handles and their associated values in a MAT-file and load them in a subsequent
MATLAB session using the save and load functions, such as

save myfile.mat parabola

Use only explicit variables when constructing anonymous functions. If an anonymous function
accesses any variable or nested function that is not explicitly referenced in the argument list or body,
MATLAB throws an error when you invoke the function. Implicit variables and function calls are often
encountered in the functions such as eval, evalin, assignin, and load. Avoid using these
functions in the body of anonymous functions.

Multiple Anonymous Functions
The expression in an anonymous function can include another anonymous function. This is useful for
passing different parameters to a function that you are evaluating over a range of values. For
example, you can solve the equation

 Anonymous Functions

21-21

for varying values of c by combining two anonymous functions:

g = @(c) (integral(@(x) (x.^2 + c*x + 1),0,1));

Here is how to derive this statement:

1 Write the integrand as an anonymous function,

@(x) (x.^2 + c*x + 1)
2 Evaluate the function from zero to one by passing the function handle to integral,

integral(@(x) (x.^2 + c*x + 1),0,1)
3 Supply the value for c by constructing an anonymous function for the entire equation,

g = @(c) (integral(@(x) (x.^2 + c*x + 1),0,1));

The final function allows you to solve the equation for any value of c. For example:

g(2)

ans =
 2.3333

Functions with No Inputs
If your function does not require any inputs, use empty parentheses when you define and call the
anonymous function. For example:

t = @() datestr(now);
d = t()

d =
26-Jan-2012 15:11:47

Omitting the parentheses in the assignment statement creates another function handle, and does not
execute the function:

d = t

d =
 @() datestr(now)

Functions with Multiple Inputs or Outputs

Anonymous functions require that you explicitly specify the input arguments as you would for a
standard function, separating multiple inputs with commas. For example, this function accepts two
inputs, x and y:

myfunction = @(x,y) (x^2 + y^2 + x*y);

x = 1;
y = 10;
z = myfunction(x,y)

z = 111

21 Function Basics

21-22

However, an anonymous function returns only one output. If the expression in the function returns
multiple outputs, then you can request them when you invoke the function handle.

For example, the ndgrid function can return as many outputs as the number of input vectors. This
anonymous function that calls ndgrid returns only one output (mygrid). Invoke mygrid to access
the outputs returned by the ndgrid function.

c = 10;
mygrid = @(x,y) ndgrid((-x:x/c:x),(-y:y/c:y));
[x,y] = mygrid(pi,2*pi);

You can use the output from mygrid to create a mesh or surface plot:

z = sin(x) + cos(y);
mesh(x,y,z)

Arrays of Anonymous Functions

Although most MATLAB fundamental data types support multidimensional arrays, function handles
must be scalars (single elements). However, you can store multiple function handles using a cell array
or structure array. The most common approach is to use a cell array, such as

f = {@(x)x.^2;
 @(y)y+10;
 @(x,y)x.^2+y+10};

 Anonymous Functions

21-23

When you create the cell array, keep in mind that MATLAB interprets spaces as column separators.
Either omit spaces from expressions, as shown in the previous code, or enclose expressions in
parentheses, such as

f = {@(x) (x.^2);
 @(y) (y + 10);
 @(x,y) (x.^2 + y + 10)};

Access the contents of a cell using curly braces. For example, f{1} returns the first function handle.
To execute the function, pass input values in parentheses after the curly braces:

x = 1;
y = 10;

f{1}(x)
f{2}(y)
f{3}(x,y)

ans =
 1

ans =
 20

ans =
 21

See Also

More About
• “Create Function Handle” on page 13-2
• “Types of Functions” on page 21-17

21 Function Basics

21-24

Local Functions

This topic explains the term local function, and shows how to create and use local functions.

MATLAB program files can contain code for more than one function. In a function file, the first
function in the file is called the main function. This function is visible to functions in other files, or
you can call it from the command line. Additional functions within the file are called local functions,
and they can occur in any order after the main function. Local functions are only visible to other
functions in the same file. They are equivalent to subroutines in other programming languages, and
are sometimes called subfunctions.

As of R2016b, you can also create local functions in a script file, as long as they all appear after the
last line of script code. For more information, see “Add Functions to Scripts” on page 19-12.

For example, create a function file named mystats.m that contains a main function, mystats, and
two local functions, mymean and mymedian.

function [avg, med] = mystats(x)
n = length(x);
avg = mymean(x,n);
med = mymedian(x,n);
end

function a = mymean(v,n)
% MYMEAN Example of a local function.

a = sum(v)/n;
end

function m = mymedian(v,n)
% MYMEDIAN Another example of a local function.

w = sort(v);
if rem(n,2) == 1
 m = w((n + 1)/2);
else
 m = (w(n/2) + w(n/2 + 1))/2;
end
end

The local functions mymean and mymedian calculate the average and median of the input list. The
main function mystats determines the length of the list n and passes it to the local functions.

Although you cannot call a local function from the command line or from functions in other files, you
can access its help using the help function. Specify names of both the file and the local function,
separating them with a > character:

help mystats>mymean

 mymean Example of a local function.

Local functions in the current file have precedence over functions and class methods in other files.
That is, when you call a function or method within a program file, MATLAB checks whether the
function is a local function before looking for other main functions. Therefore, you can create an
alternate version of a particular function while retaining the original in another file.

 Local Functions

21-25

All functions, including local functions, have their own workspaces that are separate from the base
workspace. Local functions cannot access variables used by other functions unless you pass them as
arguments. In contrast, nested functions (functions completely contained within another function)
can access variables used by the functions that contain them.

See Also
localfunctions

More About
• “Nested Functions” on page 21-27
• “Function Precedence Order” on page 21-37
• “Types of Functions” on page 21-17

21 Function Basics

21-26

Nested Functions

In this section...
“What Are Nested Functions?” on page 21-27
“Requirements for Nested Functions” on page 21-27
“Sharing Variables Between Parent and Nested Functions” on page 21-27
“Using Handles to Store Function Parameters” on page 21-29
“Visibility of Nested Functions” on page 21-31

What Are Nested Functions?
A nested function is a function that is completely contained within a parent function. Any function in
a program file can include a nested function.

For example, this function named parent contains a nested function named nestedfx:

function parent
disp('This is the parent function')
nestedfx

 function nestedfx
 disp('This is the nested function')
 end

end

The primary difference between nested functions and other types of functions is that they can access
and modify variables that are defined in their parent functions. As a result:

• Nested functions can use variables that are not explicitly passed as input arguments.
• In a parent function, you can create a handle to a nested function that contains the data necessary

to run the nested function.

Requirements for Nested Functions
• Typically, functions do not require an end statement. However, to nest any function in a program
file, all functions in that file must use an end statement.

• You cannot define a nested function inside any of the MATLAB program control statements, such
as if/elseif/else, switch/case, for, while, or try/catch.

• You must call a nested function either directly by name (without using feval), or using a function
handle that you created using the @ operator (and not str2func).

• All of the variables in nested functions or the functions that contain them must be explicitly
defined. That is, you cannot call a function or script that assigns values to variables unless those
variables already exist in the function workspace. (For more information, see “Resolve Error:
Attempt to Add Variable to a Static Workspace.” on page 21-33.)

Sharing Variables Between Parent and Nested Functions

 Nested Functions

21-27

In general, variables in one function workspace are not available to other functions. However, nested
functions can access and modify variables in the workspaces of the functions that contain them.

This means that both a nested function and a function that contains it can modify the same variable
without passing that variable as an argument. For example, in each of these functions, main1 and
main2, both the main function and the nested function can access variable x:

function main1
x = 5;
nestfun1

 function nestfun1
 x = x + 1;
 end

end

function main2
nestfun2

 function nestfun2
 x = 5;
 end

x = x + 1;
end

When parent functions do not use a given variable, the variable remains local to the nested function.
For example, in this function named main, the two nested functions have their own versions of x that
cannot interact with each other:

function main
 nestedfun1
 nestedfun2

 function nestedfun1
 x = 1;
 end

 function nestedfun2
 x = 2;
 end
end

Functions that return output arguments have variables for the outputs in their workspace. However,
parent functions only have variables for the output of nested functions if they explicitly request them.
For example, this function parentfun does not have variable y in its workspace:

function parentfun
x = 5;
nestfun;

 function y = nestfun
 y = x + 1;
 end

end

If you modify the code as follows, variable z is in the workspace of parentfun:

function parentfun
x = 5;
z = nestfun;

 function y = nestfun
 y = x + 1;
 end

21 Function Basics

21-28

end

Using Handles to Store Function Parameters

Nested functions can use variables from three sources:

• Input arguments
• Variables defined within the nested function
• Variables defined in a parent function, also called externally scoped variables

When you create a function handle for a nested function, that handle stores not only the name of the
function, but also the values of externally scoped variables.

For example, create a function in a file named makeParabola.m. This function accepts several
polynomial coefficients, and returns a handle to a nested function that calculates the value of that
polynomial.

function p = makeParabola(a,b,c)
p = @parabola;

 function y = parabola(x)
 y = a*x.^2 + b*x + c;
 end

end

The makeParabola function returns a handle to the parabola function that includes values for
coefficients a, b, and c.

At the command line, call the makeParabola function with coefficient values of 1.3, .2, and 30. Use
the returned function handle p to evaluate the polynomial at a particular point:

p = makeParabola(1.3,.2,30);

X = 25;
Y = p(X)

Y =
 847.5000

Many MATLAB functions accept function handle inputs to evaluate functions over a range of values.
For example, plot the parabolic equation from -25 to +25:

fplot(p,[-25,25])

 Nested Functions

21-29

You can create multiple handles to the parabola function that each use different polynomial
coefficients:

firstp = makeParabola(0.8,1.6,32);
secondp = makeParabola(3,4,50);
range = [-25,25];

figure
hold on
fplot(firstp,range)
fplot(secondp,range,'r:')
hold off

21 Function Basics

21-30

Visibility of Nested Functions
Every function has a certain scope, that is, a set of other functions to which it is visible. A nested
function is available:

• From the level immediately above it. (In the following code, function A can call B or D, but not C or
E.)

• From a function nested at the same level within the same parent function. (Function B can call D,
and D can call B.)

• From a function at any lower level. (Function C can call B or D, but not E.)

function A(x, y) % Main function
B(x,y)
D(y)

 function B(x,y) % Nested in A
 C(x)
 D(y)

 function C(x) % Nested in B
 D(x)
 end
 end

 function D(x) % Nested in A
 E(x)

 Nested Functions

21-31

 function E(x) % Nested in D
 disp(x)
 end
 end
end

The easiest way to extend the scope of a nested function is to create a function handle and return it
as an output argument, as shown in “Using Handles to Store Function Parameters” on page 21-29.
Only functions that can call a nested function can create a handle to it.

See Also

More About
• “Resolve Error: Attempt to Add Variable to a Static Workspace.” on page 21-33
• “Create Function Handle” on page 13-2
• “Checking Number of Arguments in Nested Functions” on page 22-8
• “Types of Functions” on page 21-17

21 Function Basics

21-32

Resolve Error: Attempt to Add Variable to a Static Workspace.

Issue
The workspaces for nested and anonymous functions are static. This means that all variables used
within the function must be present in the text of the code.

If you attempt to dynamically add a variable to the static workspace of an anonymous function, a
nested function, or a function that contains a nested function, then MATLAB issues an error of the
form

Attempt to add variable to a static workspace.

For more information about the differences between the base and function workspaces, see “Base
and Function Workspaces” on page 21-9. For more information about nested functions, see “Nested
Functions” on page 21-27.

Possible Solutions
Declare Variable in Advance

One way to avoid dynamically adding a variable to static workspaces is to explicitly declare the
variable in the code before dynamically assigning a value to that variable. Doing so will cause the
variable name to be visible to MATLAB, so the name will be included in the fixed set of variables that
make up the static workspace.

For example, suppose a script named makeX.m dynamically assigns a value to variable X. A function
that calls makeX and explicitly declares X avoids the dynamic adding error because X is in the
function workspace.

A common way to declare a variable is to initialize its value to an empty array:

function noerror

nestedfx

 function nestedfx
 X = [];
 makeX
 end
end

Using eval, evalin, or assignin to Assign New Variables In a Nested Function

Using eval, evalin, or assignin to assign new variables inside of a nested functions will generate
an error.

function staticWorkspaceErrors
 function nest
 % This will error since x is not declared outside of the eval
 eval("x=2");
 end
end

 Resolve Error: Attempt to Add Variable to a Static Workspace.

21-33

If possible, avoid these functions altogether. See “Alternatives to the eval Function” on page 2-91. If it
is not possible to avoid them, then explicitly declare the variable within the parent function:

function noStaticWorkspaceErrors
 x = [];
 function nest
 % This will not error since 'x' is declared outside of the eval
 eval("x=2");
 end
end

Using a MATLAB script to Assign New Variables In a Nested Function

Calling a MATLAB script that creates a variable inside of a nested function will generate an error. In
the example below, the script, scriptThatIntroducesZ, contains code that assigns a value to the
variable z. Since the code does not explicitly declare that z is being assigned an error will be thrown.

function staticWorkspaceErrors
 function nest
 % This will error since 'z' is not declared outside of this script
 scriptThatIntroducesZ
 end
end

To avoid an error, declare the variable within the function before calling the script that assigns a
value to it.

function noStaticWorkspaceErrors
 function nest
 % This will not error since 'z' is declared outside of the script
 z = [];
 scriptThatIntroducesZ
 end
end

Alternatively, convert the script to a function and make z it's output argument. This approach also
makes the code clearer.

Use Explicit Variable Name with load Function

Using load to assign variables inside of a nested function, without explicitly specifying the variable
name will generate an error. In the example below, load is used to load a MAT-file containing the
variable Y. Since the code does not explicitly declare that Y is being assigned an error will be thrown.

function staticWorkspaceErrors
 function nest
 % This will error since var Y is not explicitly specified
 load MatFileWithVarY
 end
end

To avoid an error, instead specify the variable name as an input to the load function.

function noStaticWorkspaceErrors
 function nest
 % This will not error since variables 'x' and 'y' are specified
 load MatFileWithVarX x
 y = load('MatFileWithVarY','y');

21 Function Basics

21-34

 end
end

Alternatively, assign the output from the load function to a structure array.

Assigning a Variable in the MATLAB Debugger in a Nested Function

While debugging, you cannot add a variable using the debug command prompt if you are stopped in a
nested function. Assign the variable into the base workspace, which is not static.

K>> assignin('base','X',myvalue)

Assigning a Variable in an Anonymous Functions

Anonymous functions cannot contain variable assignments. When the anonymous function is called an
error will be thrown.

% This will error since 'x' is being assigned inside
% the anonymous function
@()eval("x=2")

Rewrite the function in such a way that variable assignments are not required.

xEquals2 = @()2;
x = xEquals2()

x =

 2

See Also

More About
• “Base and Function Workspaces” on page 21-9
• “Nested Functions” on page 21-27

 Resolve Error: Attempt to Add Variable to a Static Workspace.

21-35

Private Functions

This topic explains the term private function, and shows how to create and use private functions.

Private functions are useful when you want to limit the scope of a function. You designate a function
as private by storing it in a subfolder with the name private. Then, the function is available only to
functions and scripts in the folder immediately above the private subfolder.

For example, within a folder that is on the MATLAB search path, create a subfolder named private.
Do not add private to the path. Within the private folder, create a function in a file named
findme.m:

function findme
% FINDME An example of a private function.

disp('You found the private function.')

Change to the folder that contains the private folder and create a file named visible.m.

function visible
findme

Change your current folder to any location and call the visible function.

visible

You found the private function.

Although you cannot call the private function from the command line or from functions outside the
parent of the private folder, you can access its help:

help private/findme

 findme An example of a private function.

Private functions have precedence over standard functions, so MATLAB finds a private function
named test.m before a nonprivate program file named test.m. This allows you to create an
alternate version of a particular function while retaining the original in another folder.

See Also

More About
• “Function Precedence Order” on page 21-37
• “Types of Functions” on page 21-17

21 Function Basics

21-36

Function Precedence Order

This topic explains how MATLAB determines which function to call when multiple functions in the
current scope have the same name. The current scope includes the current file, an optional private
subfolder relative to the currently running function, the current folder, and the MATLAB path.

MATLAB uses this precedence order:

1 Variables

Before assuming that a name matches a function, MATLAB checks for a variable with that name
in the current workspace.

Note If you create a variable with the same name as a function, MATLAB cannot run that
function until you clear the variable from memory.

2 Function or class whose name matches an explicitly imported name

The import function allows functions with compound names (names comprised of several parts
joined by dots) to be called using only the final part of the compound name. When a function
name matches an explicit (non-wildcard) imported function, MATLAB uses the imported
compound name and gives it precedence over all other functions with the same name.

3 Nested functions within the current function
4 Local functions within the current file
5 Function or class whose name matches a wildcard-based imported name

When a function name matches a wildcard-based imported function, MATLAB uses the imported
compound name and gives it precedence over all other functions with the same name, except for
nested and local functions.

6 Private functions

Private functions are functions in a subfolder named private that is immediately below the
folder of the currently running file.

7 Object functions

An object function accepts a particular class of object in its input argument list. When there are
multiple object functions with the same name, MATLAB checks the classes of the input
arguments to determine which function to use.

8 Class constructors in @ folders

MATLAB uses class constructors to create a variety of objects (such as timeseries or
audioplayer), and you can define your own classes using object-oriented programming. For
example, if you create a class folder @polynom and a constructor function @polynom/
polynom.m, the constructor takes precedence over other functions named polynom.m anywhere
on the path.

9 Loaded Simulink® models
10 Functions in the current folder
11 Functions elsewhere on the path, in order of appearance

 Function Precedence Order

21-37

When determining the precedence of functions within the same folder, MATLAB considers the file
type, in this order:

1 Built-in function
2 MEX-function
3 Simulink model files that are not loaded, with file types in this order:

a SLX file
b MDL file

4 Stateflow® chart with a .sfx extension
5 App file (.mlapp) created using MATLAB App Designer
6 Program file with a .mlx extension
7 P-file (that is, an encoded program file with a .p extension)
8 Program file with a .m extension

For example, if MATLAB finds a .m file and a P-file with the same name in the same folder, it uses the
P-file. Because P-files are not automatically regenerated, make sure that you regenerate the P-file
whenever you edit the program file.

To determine the function MATLAB calls for a particular input, include the function name and the
input in a call to the which function.

Change in Rules For Function Precedence Order
Starting in R2019b, MATLAB changes the rules for name resolution, impacting the precedence order
of variables, nested functions, local functions, and external functions. For information about the
changes and tips for updating your code, see “Update Code for R2019b Changes to Function
Precedence Order” on page 21-40.

• Identifiers cannot be used for two purposes inside a function
• Identifiers without explicit declarations might not be treated as variables
• Variables cannot be implicitly shared between parent and nested functions
• Change in precedence of compound name resolution
• Anonymous functions can include resolved and unresolved identifiers

The behavior of the import function has changed.

• Change in precedence of wildcard-based imports
• Fully qualified import functions cannot have the same name as nested functions
• Fully qualified imports shadow outer scope definitions of the same name
• Error handling when import not found
• Nested functions inherit import statements from parent functions

See Also
import

21 Function Basics

21-38

More About
• “What Is the MATLAB Search Path?”
• Variables on page 1-5
• “Types of Functions” on page 21-17
• “Class Precedence and MATLAB Path”

 Function Precedence Order

21-39

Update Code for R2019b Changes to Function Precedence
Order

Starting in R2019b, MATLAB changes the rules for name resolution, impacting the precedence order
of variables, nested functions, local functions, and external functions. The new rules simplify and
standardize name resolution. For more information, see “Function Precedence Order” on page 21-37.

These changes impact the behavior of the import function. You should analyze and possibly update
your code. To start, search your code for import statements. For example, use “Find Files and
Folders” to search for .m and .mlx files containing text import. Refer to these search results when
evaluating the effects of the following changes.

Identifiers cannot be used for two purposes inside a function
Starting in R2019b, an error results if you use an identifier, first as a local or imported function, and
then as a variable. In previous releases, an identifier could be used for different purposes within the
scope of a function, which resulted in ambiguous code.

If this behavior change impacts your code, rename either the variable or the function so that they
have different names.

Starting in R2019b Updated Code R2019a and Earlier
The name local is used as the
local function and then a
variable. This code errors.

function myfunc
% local is an undefined variable
local(1); % Errors
local = 2;
disp(local);
end

function local(x)
disp(x)
end

Rename the function local to
localFcn.

function myfunc
localFcn(1);
local = 2;
disp(local);
end

function localFcn(x)
disp(x)
end

This code displays 1 then 2.

function myfunc
local(1); % local is a function
local = 2;
disp(local);
end

function local(x)
disp(x)
end

Identifiers without explicit declarations might not be treated as
variables
Starting in R2019b, MATLAB does not use indexing operators to identify the variables in your
program. Previously, an identifier without an explicit declaration was treated as a variable when it
was indexed with a colon, end, or curly braces. For example, x was treated as a variable in
x(a,b,:), x(end), and x{a}.

Consider the following code. MATLAB used to treat x as a variable because of colon-indexing.
Starting in R2019b, if a function of the same name exists on the path, MATLAB treats x as a function.

function myfunc
load data.mat; % data.mat contains variable x
disp(x(:))
end

21 Function Basics

21-40

If you intend to use x as a variable from data.mat instead of a function, explicitly declare it.
Similarly, to use an identifier x as a variable obtained from a script, declare it before invoking the
script. This new behavior also applies if the variable is implicitly introduced by the functions sim,
eval, evalc, and assignin.

This table shows some examples of how you can update your code.

Before After
function myfunc
load data.mat;
disp(x(:))
end

function myfunc
load data.mat x;
disp(x(:))
end

function myfunc2
myscript; % Contains variable x
disp(x(:))
end

function myfunc2
x = [];
myscript;
disp(x(:))
end

Variables cannot be implicitly shared between parent and nested
functions
Starting in R2019b, sharing an identifier as a variable between a nested function on page 21-27 and
its parent function is possible only if the identifier is explicitly declared as a variable in the parent
function.

For example, in the following code, identifier x in myfunc is different from variable x in the nested
function. If x is a function on the path, MATLAB treats x in myfunc as a function and the code runs.
Otherwise, MATLAB throws an error.

function myfunc
nested;
x(3) % x is not a shared variable
 function nested
 x = [1 2 3];
 end
end

In previous releases, if x was a function on the path, MATLAB treated it as a function in myfunc and
as a variable in nested. If x was not a function on the path, MATLAB treated it as a variable shared
between myfunc and nested. This resulted in code whose output was dependent on the state of the
path.

To use an identifier as a variable shared between parent and nested functions, you might need to
update your code. For example, you can initialize the identifier to an empty array in the parent
function.

 Update Code for R2019b Changes to Function Precedence Order

21-41

Before After
function myfunc
nested;
x(3)
 function nested
 x = [1 2 3];
 end
end

function myfunc
x = [];
nested;
x(3)
 function nested
 x = [1 2 3];
 end
end

Change in precedence of wildcard-based imports
Starting in R2019b, imported functions from wildcard-based imports have lower precedence than
variables, nested functions, and local functions. In R2019a and earlier, imports in a function
shadowed local functions and nested functions.

For example, in this code, the statement local() calls myfunc/local instead of pkg1.local in the
wildcard-based import. The statement nest() calls myfunc/nest instead of pkg1.nest.

Starting in R2019b R2019a and Earlier
function myfunc
% Import includes functions local and nest
import pkg1.*
local() % Calls myfunc/local

 function nest
 end

nest(); % Calls myfunc/nest
end

function local
end

function myfunc
% Import includes functions local and nest
import pkg1.*
local() % Calls pkg1.local and
 % displays warning since R2018a

 function nest
 end

nest(); % Calls pkg1.nest
end

function local
end

In the search results for import, look for statements that include the wildcard character (*).

Fully qualified import functions cannot have the same name as nested
functions
Starting in R2019b, fully qualified imports that share a name with a nested function in the same
scope throw an error.

Starting in R2019b Updated Code R2019a and Earlier
This function errors because it
shares a name with a nested
function in the same scope.

function myfunc
import pkg.nest % Errors
nest();

 function nest
 end
end

To call function nest from the
import statement, rename local
function myfunc/nest.

function myfunc
import pkg.nest
nest();

 function newNest
 end
end

This function calls function
nest from the import
statement.

function myfunc
import pkg.nest
nest(); % Calls pkg.nest

 function nest
 end
end

21 Function Basics

21-42

Starting in R2019b Updated Code R2019a and Earlier
This function errors because
declaring a variable with the
same name as the imported
function nest is not supported.

function myvarfunc
import pkg.nest % Errors
nest = 1
end

Rename variable nest.

function myvarfunc
import pkg.nest % Errors
thisNest = 1
end

This function modifies variable
nest.

function myvarfunc
import pkg.nest
nest = 1 % Modifies variable nest and
 % displays warning since R2018a
end

Fully qualified imports shadow outer scope definitions of the same
name
Starting in R2019b, fully qualified imports always shadow outer scope definitions of the same name.
In R2019a and earlier, a fully qualified import was ignored when it shadowed an identifier in the
outer scope.

Starting in R2019b Updated Code R2019a and Earlier
Local function nest calls
function x from imported
package.

function myfunc
x = 1;

 function nest
 % Import function x
 import pkg1.x
 % Calls pkg1.x
 x()
 end
end

To use variable x in local
function nest, pass the variable
as an argument.

function myfunc
x = 1;
nest(x)

 function nest(x1)
 % Import function x
 import pkg1.x
 % Calls pkg1.x with
 % variable x1
 x(x1)
 end
end

In this code, function nest
ignores imported function x.

function myfunc
x = 1;

 function nest
 % Import function x
 import pkg1.x
 % x is a variable
 x()
 end
end

Error handling when import not found
Starting in R2019b, fully qualified imports that cannot be resolved throw an error with or without
Java. In R2019a and earlier, MATLAB behaved differently depending on whether you started MATLAB
with the -nojvm option. Do not use functions like javachk and usejava to customize error
messages.

 Update Code for R2019b Changes to Function Precedence Order

21-43

Starting in R2019b Updated Code R2019a and Earlier
This code throws an error when
starting MATLAB with the -
nojvm option.

function myfunc
import java.lang.String % Errors

if ~usejava('jvm')
 % Statement never executes
 disp('This function requires Java');
else
 % Do something with Java String class
end
end

Remove call to usejava.

function myfunc
import java.lang.String % Errors
% Do something with java String class
end

This code displays a message
when starting MATLAB with the
-nojvm option.

function myfunc
import java.lang.String

if ~usejava('jvm')
 % Display message
 disp('This function requires Java');
else
 % Do something with Java String class
end
end

Nested functions inherit import statements from parent functions
Starting in R2019b, nested functions inherit import statements from the parent function. In R2019a
and earlier, nested functions did not inherit import statements from their parent functions.

Starting in R2019b R2019a and Earlier
function myfunc

% Package p1 has functions plot and bar
import p1.plot
import p1.*
nest

 function nest
 plot % Calls p1.plot
 bar % Calls p1.bar
 end
end

function myfunc

% Package p1 has functions plot and bar
import p1.plot
import p1.*
nest

 function nest
 plot % Calls plot function on path
 bar % Calls bar function on path
 end
end

Change in precedence of compound name resolution
Starting in R2019b, MATLAB resolves compound names differently. A compound name is comprised
of several parts joined by a dot (for example, a.b.c), which can be used to reference package
members. With R2019b, MATLAB resolves compound names by giving precedence to the longest
matching prefix. In previous releases, the precedence order followed a more complex set of rules.

For example, suppose a package pkg contains a class foo with a static method bar and also a
subpackage foo with a function bar.

+pkg/@foo/bar.m % bar is a static method of class foo
+pkg/+foo/bar.m % bar is a function in subpackage foo

In R2019b, a call to which pkg.foo.bar returns the path to the package function.

which pkg.foo.bar

+pkg/+foo/bar.m

Previously, a static method took precedence over a package function in cases where a package and a
class had the same name.

21 Function Basics

21-44

Anonymous functions can include resolved and unresolved identifiers
Starting in R2019b, anonymous functions can include both resolved and unresolved identifiers. In
previous releases, if any identifiers in an anonymous function were not resolved at creation time, all
identifiers in that anonymous function were unresolved.

Starting in R2019b R2019a and Earlier
To evaluate the anonymous function, MATLAB
calls the local function lf with x defined in
myscript because lf in the anonymous function
resolves to the local function.

function myfun
myscript; % Includes x = 1 and lf = 10
f = @()lf(x);
f() % Displays 'Inside lf'
end

% Local function to myfun
function lf(y)
disp('Inside lf');
end

MATLAB considers lf as an unresolved identifier
along with x, and used x to index into the
variable lf from myscript.

function myfun
myscript; % Includes x = 1 and lf = 10
f = @()lf(x);
f() % Displays 10
end

% Local function to myfun
function lf(y)
disp('Inside lf');
end

See Also
import

More About
• “Import Classes”

 Update Code for R2019b Changes to Function Precedence Order

21-45

Indexing into Function Call Results
This topic describes how to dot index into temporary variables created by function calls. A temporary
variable is created when the result of a function call is used as an intermediate variable in a larger
expression. The result of the function call in the expression is temporary because the variable it
creates exists only briefly, and is not stored in the MATLAB workspace after execution. An example is
the expression myFunction(x).prop, which calls myFunction with the argument x, and then
returns the prop property of the result. You can invoke any type of function (anonymous, local,
nested, or private) in this way.

Example
Consider the function:

function y = myStruct(x)
 y = struct("Afield",x);
end

This function creates a structure with one field, named Afield, and assigns a value to the field. You
can invoke the function and create a structure with a field containing the value 1 with the command:

myStruct(1)

ans =

 struct with fields:

 Afield: 1

However, if you want to return the field value directly, you can index into the function call result with
the command:

myStruct(1).Afield

ans =

 1

After this command executes, the temporary structure created by the command myStruct(1) no
longer exists, and MATLAB returns only the field value. Conceptually, this usage is the same as
creating the structure, indexing into it, and then deleting it:

S = struct("Afield",1);
S.Afield
clear S

Supported Syntaxes
MATLAB supports dot indexing into function call results, as in foo(arg).prop. Other forms of
indexing into function call results (with parentheses such as foo(arg)(2) or with curly braces such
as foo(arg){2}) are not supported. Successful commands must meet the criteria:

• The function is invoked with parentheses, as in foo(arg1,arg2,...).
• The function returns a variable for which dot indexing is defined, such as a structure, table, or

object.

21 Function Basics

21-46

• The dot indexing subscript is valid.

MATLAB always attempts to apply the dot indexing operation to the temporary variable, even if the
function returns a variable for which dot indexing is not defined. For example, if you try to index into
the matrix created by magic(3), then you get an error.

magic(3).field

Dot indexing is not supported for variables of this type.

You can add more indexing commands onto the end of an expression as long as the temporary
variables can continue to be indexed. For example, consider the expression:

table(rand(10,2)).Var1(3,:)

In this expression, you index into a table to get the matrix it contains, and then index into the matrix
to get the third row:

• table(rand(10,2)) creates a table with one variable named Var1. The variable contains a 10-
by-2 matrix.

• table(rand(10,2)).Var1 returns the 10-by-2 matrix contained in Var1.
• table(rand(10,2)).Var1(3,:) returns the third row in the matrix contained in Var1.

See Also
function | subsref

More About
• “Types of Functions” on page 21-17
• “Array Indexing”
• “Access Data in Tables” on page 9-32

 Indexing into Function Call Results

21-47

Function Arguments

• “Find Number of Function Arguments” on page 22-2
• “Support Variable Number of Inputs” on page 22-4
• “Support Variable Number of Outputs” on page 22-5
• “Validate Number of Function Arguments” on page 22-6
• “Checking Number of Arguments in Nested Functions” on page 22-8
• “Ignore Inputs in Function Definitions” on page 22-10
• “Check Function Inputs with validateattributes” on page 22-11
• “Parse Function Inputs” on page 22-13
• “Input Parser Validation Functions” on page 22-17

22

Find Number of Function Arguments
This example shows how to determine how many input or output arguments your function receives
using nargin and nargout.

Input Arguments

Create a function in a file named addme.m that accepts up to two inputs. Identify the number of
inputs with nargin.

function c = addme(a,b)

switch nargin
 case 2
 c = a + b;
 case 1
 c = a + a;
 otherwise
 c = 0;
end

Call addme with one, two, or zero input arguments.

addme(42)

ans =
 84

addme(2,4000)

ans =
 4002

addme

ans =
 0

Output Arguments

Create a new function in a file named addme2.m that can return one or two outputs (a result and its
absolute value). Identify the number of requested outputs with nargout.

function [result,absResult] = addme2(a,b)

switch nargin
 case 2
 result = a + b;
 case 1
 result = a + a;
 otherwise
 result = 0;
end

if nargout > 1
 absResult = abs(result);
end

Call addme2 with one or two output arguments.

22 Function Arguments

22-2

value = addme2(11,-22)

value =
 -11

[value,absValue] = addme2(11,-22)

value =
 -11

absValue =
 11

Functions return outputs in the order they are declared in the function definition.

See Also
nargin | narginchk | nargout | nargoutchk

 Find Number of Function Arguments

22-3

Support Variable Number of Inputs
This example shows how to define a function that accepts a variable number of input arguments using
varargin. The varargin argument is a cell array that contains the function inputs, where each
input is in its own cell.

Create a function in a file named plotWithTitle.m that accepts a variable number of paired (x,y)
inputs for the plot function and an optional title. If the function receives an odd number of inputs, it
assumes that the last input is a title.

function plotWithTitle(varargin)
if rem(nargin,2) ~= 0
 myTitle = varargin{nargin};
 numPlotInputs = nargin - 1;
else
 myTitle = 'Default Title';
 numPlotInputs = nargin;
end

plot(varargin{1:numPlotInputs})
title(myTitle)

Because varargin is a cell array, you access the contents of each cell using curly braces, {}. The
syntax varargin{1:numPlotInputs} creates a comma-separated list of inputs to the plot
function.

Call plotWithTitle with two sets of (x,y) inputs and a title.

x = [1:.1:10];
y1 = sin(x);
y2 = cos(x);
plotWithTitle(x,y1,x,y2,'Sine and Cosine')

You can use varargin alone in an input argument list, or at the end of the list of inputs, such as

function myfunction(a,b,varargin)

In this case, varargin{1} corresponds to the third input passed to the function, and nargin returns
length(varargin) + 2.

See Also
nargin | varargin

Related Examples
• “Access Data in Cell Array” on page 12-5

More About
• “Checking Number of Arguments in Nested Functions” on page 22-8
• “Comma-Separated Lists” on page 2-80

22 Function Arguments

22-4

Support Variable Number of Outputs
This example shows how to define a function that returns a variable number of output arguments
using varargout. Output varargout is a cell array that contains the function outputs, where each
output is in its own cell.

Create a function in a file named magicfill.m that assigns a magic square to each requested
output.

function varargout = magicfill
 nOutputs = nargout;
 varargout = cell(1,nOutputs);

 for k = 1:nOutputs
 varargout{k} = magic(k);
 end

Indexing with curly braces {} updates the contents of a cell.

Call magicfill and request three outputs.

[first,second,third] = magicfill

first =
 1

second =
 1 3
 4 2

third =
 8 1 6
 3 5 7
 4 9 2

MATLAB assigns values to the outputs according to their order in the varargout array. For example,
first == varargout{1}.

You can use varargout alone in an output argument list, or at the end of the list of outputs, such as

function [x,y,varargout] = myfunction(a,b)

In this case, varargout{1} corresponds to the third output that the function returns, and nargout
returns length(varargout) + 2.

See Also
nargout | varargout

Related Examples
• “Access Data in Cell Array” on page 12-5

More About
• “Checking Number of Arguments in Nested Functions” on page 22-8

 Support Variable Number of Outputs

22-5

Validate Number of Function Arguments
This example shows how to check whether your custom function receives a valid number of input or
output arguments. MATLAB performs some argument checks automatically. For other cases, you can
use narginchk or nargoutchk.

Automatic Argument Checks

MATLAB checks whether your function receives more arguments than expected when it can
determine the number from the function definition. For example, this function accepts up to two
outputs and three inputs:

function [x,y] = myFunction(a,b,c)

If you pass too many inputs to myFunction, MATLAB issues an error. You do not need to call
narginchk to check for this case.

[X,Y] = myFunction(1,2,3,4)

Error using myFunction
Too many input arguments.

Use the narginchk and nargoutchk functions to verify that your function receives:

• A minimum number of required arguments.
• No more than a maximum number of arguments, when your function uses varargin or

varargout.

Input Checks with narginchk

Define a function in a file named testValues.m that requires at least two inputs. The first input is a
threshold value to compare against the other inputs.

function testValues(threshold,varargin)
minInputs = 2;
maxInputs = Inf;
narginchk(minInputs,maxInputs)

for k = 1:(nargin-1)
 if (varargin{k} > threshold)
 fprintf('Test value %d exceeds %d\n',k,threshold);
 end
end

Call testValues with too few inputs.

testValues(10)

Error using testValues (line 4)
Not enough input arguments.

Call testValues with enough inputs.

testValues(10,1,11,111)

Test value 2 exceeds 10
Test value 3 exceeds 10

22 Function Arguments

22-6

Output Checks with nargoutchk

Define a function in a file named mysize.m that returns the dimensions of the input array in a vector
(from the size function), and optionally returns scalar values corresponding to the sizes of each
dimension. Use nargoutchk to verify that the number of requested individual sizes does not exceed
the number of available dimensions.

function [sizeVector,varargout] = mysize(x)
minOutputs = 0;
maxOutputs = ndims(x) + 1;
nargoutchk(minOutputs,maxOutputs)

sizeVector = size(x);

varargout = cell(1,nargout-1);
for k = 1:length(varargout)
 varargout{k} = sizeVector(k);
end

Call mysize with a valid number of outputs.

A = rand(3,4,2);
[fullsize,nrows,ncols,npages] = mysize(A)

fullsize =
 3 4 2

nrows =
 3

ncols =
 4

npages =
 2

Call mysize with too many outputs.

A = 1;
[fullsize,nrows,ncols,npages] = mysize(A)

Error using mysize (line 4)
Too many output arguments.

See Also
narginchk | nargoutchk

Related Examples
• “Support Variable Number of Inputs” on page 22-4
• “Support Variable Number of Outputs” on page 22-5

 Validate Number of Function Arguments

22-7

Checking Number of Arguments in Nested Functions

This topic explains special considerations for using varargin, varargout, nargin, and nargout
with nested functions.

varargin and varargout allow you to create functions that accept variable numbers of input or
output arguments. Although varargin and varargout look like function names, they refer to
variables, not functions. This is significant because nested functions share the workspaces of the
functions that contain them.

If you do not use varargin or varargout in the declaration of a nested function, then varargin or
varargout within the nested function refers to the arguments of an outer function.

For example, create a function in a file named showArgs.m that uses varargin and has two nested
functions, one that uses varargin and one that does not.

function showArgs(varargin)
nested1(3,4)
nested2(5,6,7)

 function nested1(a,b)
 disp('nested1: Contents of varargin{1}')
 disp(varargin{1})
 end

 function nested2(varargin)
 disp('nested2: Contents of varargin{1}')
 disp(varargin{1})
 end

end

Call the function and compare the contents of varargin{1} in the two nested functions.

showArgs(0,1,2)

nested1: Contents of varargin{1}
 0

nested2: Contents of varargin{1}
 5

On the other hand, nargin and nargout are functions. Within any function, including nested
functions, calls to nargin or nargout return the number of arguments for that function. If a nested
function requires the value of nargin or nargout from an outer function, pass the value to the
nested function.

For example, create a function in a file named showNumArgs.m that passes the number of input
arguments from the primary (parent) function to a nested function.

function showNumArgs(varargin)

disp(['Number of inputs to showNumArgs: ',int2str(nargin)]);
nestedFx(nargin,2,3,4)

22 Function Arguments

22-8

 function nestedFx(n,varargin)
 disp(['Number of inputs to nestedFx: ',int2str(nargin)]);
 disp(['Number of inputs to its parent: ',int2str(n)]);
 end

end

Call showNumArgs and compare the output of nargin in the parent and nested functions.

showNumArgs(0,1)

Number of inputs to showNumArgs: 2
Number of inputs to nestedFx: 4
Number of inputs to its parent: 2

See Also
nargin | nargout | varargin | varargout

 Checking Number of Arguments in Nested Functions

22-9

Ignore Inputs in Function Definitions
This example shows how to ignore inputs in your function definition using the tilde (~) operator. Use
this operator when your function must accept a predefined set of inputs, but your function does not
use all of the inputs. Common applications include defining callback functions.

In a file named colorButton.m, define a callback for a push button that does not use the
eventdata input. Add a tilde to the input argument list so that the function ignores eventdata.
function colorButton
figure;
uicontrol('Style','pushbutton','String','Click me','Callback',@btnCallback)

function btnCallback(h,~)
set(h,'BackgroundColor',rand(3,1))

The function declaration for btnCallback is effectively the same as the following:

function btnCallback(h,eventdata)

However, using the tilde prevents the addition of eventdata to the function workspace and makes it
clearer that the function does not use eventdata.

You can ignore any number of inputs in your function definition, in any position in the argument list.
Separate consecutive tildes with a comma. For example:

function myFunction(myInput,~,~)

See Also

More About
• “Ignore Function Outputs” on page 1-4

22 Function Arguments

22-10

Check Function Inputs with validateattributes
Verify that the inputs to your function conform to a set of requirements using the
validateattributes function.

validateattributes requires that you pass the variable to check and the supported data types for
that variable. Optionally, pass a set of attributes that describe the valid dimensions or values.

Check Data Type and Other Attributes

Define a function in a file named checkme.m that accepts up to three inputs: a, b, and c. Check
whether:

• a is a two-dimensional array of positive double-precision values.
• b contains 100 numeric values in an array with 10 columns.
• c is a nonempty character vector or cell array.

function checkme(a,b,c)

validateattributes(a,{'double'},{'positive','2d'})
validateattributes(b,{'numeric'},{'numel',100,'ncols',10})
validateattributes(c,{'char','cell'},{'nonempty'})

disp('All inputs are ok.')

The curly braces {} indicate that the set of data types and the set of additional attributes are in cell
arrays. Cell arrays allow you to store combinations of text and numeric data, or character vectors of
different lengths, in a single variable.

Call checkme with valid inputs.

checkme(pi,rand(5,10,2),'text')

All inputs are ok.

The scalar value pi is two-dimensional because size(pi) = [1,1].

Call checkme with invalid inputs. The validateattributes function issues an error for the first
input that fails validation, and checkme stops processing.

checkme(-4)

Error using checkme (line 3)
Expected input to be positive.

checkme(pi,rand(3,4,2))

Error using checkme (line 4)
Expected input to be an array with number of elements equal to 100.

checkme(pi,rand(5,10,2),struct)

Error using checkme (line 5)
Expected input to be one of these types:

 char, cell

 Check Function Inputs with validateattributes

22-11

Instead its type was struct.

The default error messages use the generic term input to refer to the argument that failed
validation. When you use the default error message, the only way to determine which input failed is
to view the specified line of code in checkme.

Add Input Name and Position to Errors

Define a function in a file named checkdetails.m that performs the same validation as checkme,
but adds details about the input name and position to the error messages.

function checkdetails(a,b,c)

validateattributes(a,{'double'},{'positive','2d'},'','First',1)
validateattributes(b,{'numeric'},{'numel',100,'ncols',10},'','Second',2)
validateattributes(c,{'char'},{'nonempty'},'','Third',3)

disp('All inputs are ok.')

The empty character vector '' for the fourth input to validateattributes is a placeholder for an
optional function name. You do not need to specify a function name because it already appears in the
error message. Specify the function name when you want to include it in the error identifier for
additional error handling.

Call checkdetails with invalid inputs.

checkdetails(-4)

Error using checkdetails (line 3)
Expected input number 1, First, to be positive.

checkdetails(pi,rand(3,4,2))

Error using checkdetails (line 4)
Expected input number 2, Second, to be an array with
number of elements equal to 100.

See Also
validateattributes | validatestring

22 Function Arguments

22-12

Parse Function Inputs
This example shows how to define required and optional inputs, assign defaults to optional inputs,
and validate all inputs to a custom function using the Input Parser.

The Input Parser provides a consistent way to validate and assign defaults to inputs, improving the
robustness and maintainability of your code. To validate the inputs, you can take advantage of
existing MATLAB functions or write your own validation routines.

Step 1. Define your function.

Create a function in a file named printPhoto.m. The printPhoto function has one required input
for the file name, and optional inputs for the finish (glossy or matte), color space (RGB or CMYK),
width, and height.

function printPhoto(filename,varargin)

In your function declaration statement, specify required inputs first. Use varargin to support
optional inputs.

Step 2. Create an inputParser object.

Within your function, call inputParser to create a parser object.

p = inputParser;

Step 3. Add inputs to the scheme.

Add inputs to the parsing scheme in your function using addRequired, addOptional, or
addParameter. For optional inputs, specify default values.

For each input, you can specify a handle to a validation function that checks the input and returns a
scalar logical (true or false) or errors. The validation function can be an existing MATLAB function
(such as ischar or isnumeric) or a function that you create (such as an anonymous function or a
local function).

In the printPhoto function, filename is a required input. Define finish and color as optional
inputs, and width and height as optional parameter value pairs.

defaultFinish = 'glossy';
validFinishes = {'glossy','matte'};
checkFinish = @(x) any(validatestring(x,validFinishes));

defaultColor = 'RGB';
validColors = {'RGB','CMYK'};
checkColor = @(x) any(validatestring(x,validColors));

defaultWidth = 6;
defaultHeight = 4;

addRequired(p,'filename',@ischar);
addOptional(p,'finish',defaultFinish,checkFinish)
addOptional(p,'color',defaultColor,checkColor)
addParameter(p,'width',defaultWidth,@isnumeric)
addParameter(p,'height',defaultHeight,@isnumeric)

 Parse Function Inputs

22-13

Inputs that you add with addRequired or addOptional are positional arguments. When you call a
function with positional inputs, specify those values in the order they are added to the parsing
scheme.

Inputs added with addParameter are not positional, so you can pass values for height before or
after values for width. However, parameter value inputs require that you pass the input name
(height or width) along with the value of the input.

If your function accepts optional input strings or character vectors and name-value arguments,
specify validation functions for the optional inputs. Otherwise, the Input Parser interprets the
optional strings or character vectors as parameter names. For example, the checkFinish validation
function ensures that printPhoto interprets 'glossy' as a value for finish and not as an invalid
parameter name.

Step 4. Set properties to adjust parsing (optional).

By default, the Input Parser makes assumptions about case sensitivity, function names, structure
array inputs, and whether to allow additional parameter names and values that are not in the scheme.
Properties allow you to explicitly define the behavior. Set properties using dot notation, similar to
assigning values to a structure array.

Allow printPhoto to accept additional parameter value inputs that do not match the input scheme
by setting the KeepUnmatched property of the Input Parser.

p.KeepUnmatched = true;

If KeepUnmatched is false (default), the Input Parser issues an error when inputs do not match the
scheme.

Step 5. Parse the inputs.

Within your function, call the parse method. Pass the values of all of the function inputs.

parse(p,filename,varargin{:})

Step 6. Use the inputs in your function.

Access parsed inputs using these properties of the inputParser object:

• Results — Structure array with names and values of all inputs in the scheme.
• Unmatched — Structure array with parameter names and values that are passed to the function,

but are not in the scheme (when KeepUnmatched is true).
• UsingDefaults — Cell array with names of optional inputs that are assigned their default values

because they are not passed to the function.

Within the printPhoto function, display the values for some of the inputs:

disp(['File name: ',p.Results.filename])
disp(['Finish: ', p.Results.finish])

if ~isempty(fieldnames(p.Unmatched))
 disp('Extra inputs:')
 disp(p.Unmatched)
end
if ~isempty(p.UsingDefaults)
 disp('Using defaults: ')

22 Function Arguments

22-14

 disp(p.UsingDefaults)
end

Step 7. Call your function.

The Input Parser expects to receive inputs as follows:

• Required inputs first, in the order they are added to the parsing scheme with addRequired.
• Optional positional inputs in the order they are added to the scheme with addOptional.
• Positional inputs before parameter name and value pair inputs.
• Parameter names and values in the form Name1,Value1,...,NameN,ValueN.

Pass several combinations of inputs to printPhoto, some valid and some invalid:

printPhoto('myfile.jpg')

File name: myfile.jpg
Finish: glossy
Using defaults:
 'finish' 'color' 'width' 'height'

printPhoto(100)

Error using printPhoto (line 23)
The value of 'filename' is invalid. It must satisfy the function: ischar.

printPhoto('myfile.jpg','satin')

Error using printPhoto (line 23)
The value of 'finish' is invalid. Expected input to match one of these strings:

'glossy', 'matte'

The input, 'satin', did not match any of the valid strings.

printPhoto('myfile.jpg',height=10,width=8)

File name: myfile.jpg
Finish: glossy
Using defaults:
 'finish' 'color'

When using name-value arguments before R2021a, pass names as strings or character vectors, and
separate names and values with commas. For example:

printPhoto('myfile.jpg','height',10,'width',8)

To pass a value for the nth positional input, either specify values for the previous (n – 1) inputs or
pass the input as a parameter name and value pair. For example, these function calls assign the same
values to finish (default 'glossy') and color:

printPhoto('myfile.gif','glossy','CMYK') % positional

printPhoto('myfile.gif',color='CMYK') % name and value

See Also
inputParser | varargin

 Parse Function Inputs

22-15

More About
• “Input Parser Validation Functions” on page 22-17

22 Function Arguments

22-16

Input Parser Validation Functions
This topic shows ways to define validation functions that you pass to the Input Parser to check custom
function inputs.

The Input Parser methods addRequired, addOptional, and addParameter each accept an
optional handle to a validation function. Designate function handles with an at (@) symbol.

Validation functions must accept a single input argument, and they must either return a scalar logical
value (true or false) or error. If the validation function returns false, the Input Parser issues an
error and your function stops processing.

There are several ways to define validation functions:

• Use an existing MATLAB function such as ischar or isnumeric. For example, check that a
required input named num is numeric:

p = inputParser;
checknum = @isnumeric;
addRequired(p,'num',checknum)

parse(p,'text')

The value of 'num' is invalid. It must satisfy the function: isnumeric.

• Create an anonymous function. For example, check that input num is a numeric scalar greater
than zero:

p = inputParser;
checknum = @(x) isnumeric(x) && isscalar(x) && (x > 0);
addRequired(p,'num',checknum)

parse(p,rand(3))

The value of 'num' is invalid. It must satisfy the function: @(x) isnumeric(x) && isscalar(x)
&& (x>0).

• Define your own function, typically a local function in the same file as your primary function. For
example, in a file named usenum.m, define a local function named checknum that issues custom
error messages when the input num to usenum is not a numeric scalar greater than zero:

function usenum(num)
 p = inputParser;
 addRequired(p,'num',@checknum);
 parse(p,num);

function TF = checknum(x)
 TF = false;
 if ~isscalar(x)
 error('Input is not scalar');
 elseif ~isnumeric(x)
 error('Input is not numeric');
 elseif (x <= 0)
 error('Input must be > 0');
 else
 TF = true;
 end

Call the function with an invalid input:

 Input Parser Validation Functions

22-17

usenum(-1)

Error using usenum (line 4)
The value of 'num' is invalid. Input must be > 0

See Also
inputParser | is* | validateattributes

Related Examples
• “Parse Function Inputs” on page 22-13
• “Create Function Handle” on page 13-2

More About
• “Anonymous Functions” on page 21-20

22 Function Arguments

22-18

Debugging MATLAB Code

23

Debug MATLAB Code Files

Since R2021b. Replaces Debug a MATLAB Program (R2021a) and Debug Code in the Live Editor
(R2021a).

You can diagnose problems in your MATLAB code files by debugging your code interactively in the
Editor and Live Editor or programmatically by using debugging functions in the Command Window.

There are several ways to debug your code:

• Display output by removing semicolons.
• Run the code to a specific line and pause by clicking the Run to Here button .
• Step into functions and scripts while paused by clicking the Step In button .
• Add breakpoints to your file to enable pausing at specific lines when you run your code.

Before you begin debugging, to avoid unexpected results, save your code files and make sure that the
code files and any files they call exist on the search path or in the current folder. MATLAB handles
unsaved changes differently depending on where you are debugging from:

• Editor — If a file contains unsaved changes, MATLAB saves the file before running it.
• Live Editor — MATLAB runs all changes in a file, whether they are saved or not.
• Command Window — If a file contains unsaved changes, MATLAB runs the saved version of the
file. You do not see the results of your changes.

Display Output
One way to determine where a problem occurs in your MATLAB code file is to display the output. To
display the output for a line, remove the semicolon from the end of that line. In the Editor, MATLAB
displays the output in the Command Window. In the Live Editor, MATLAB displays the output with the
line of code that creates it.

For example, suppose that you have a script called plotRand.m that plots a vector of random data
and draws a horizontal line on the plot at the mean.

n = 50;
r = rand(n,1);
plot(r)

m = mean(r);
hold on
plot([0,n],[m,m])
hold off
title('Mean of Random Uniform Data')

To display the output of the rand function at line two, remove the semicolon at the end of the line.
MATLAB displays the value of r in the Command Window.

23 Debugging MATLAB Code

23-2

https://www.mathworks.com/help/releases/R2021a/matlab/matlab_prog/debugging-process-and-features.html
https://www.mathworks.com/help/releases/R2021a/matlab/matlab_prog/debug-code-in-the-live-editor.html

In the Live Editor, MATLAB displays the value of r with line two.

Debug Using Run to Here
To explore the state of all variables in the workspace at a specific point in your code, run your code
file and then pause. To run code to a specified line and then pause, click the Run to Here button to
the left of the line. If the selected line cannot be reached, MATLAB continues running until the end of
the file is reached or a breakpoint is encountered.

When debugging, the Run to Here button becomes the Continue to Here button . In functions
and classes, running to a specified line and then pausing is only available when debugging using the
Continue to Here button . In R2021a and previous releases, to run to where the cursor is positioned

and pause while debugging, go to the Editor tab, and click the Run to Cursor button .

 Debug MATLAB Code Files

23-3

For example, click the Run to Here button to the left of line two in plotRand.m. MATLAB runs
plotRand.m starting at line one and pauses before running line two.

When MATLAB pauses, multiple changes occur:

• The Run button in the Editor or Live Editor tab changes to a Continue button.
• The prompt in the Command Window changes to K>> indicating that MATLAB is in debug mode

and that the keyboard is in control.
• MATLAB indicates the line at which it is paused by using a green arrow and green highlighting.

Tip It is a good practice to avoid modifying a file while MATLAB is paused. Changes that are made
while MATLAB is paused do not run until after MATLAB finishes running the code and the code is
rerun.

The line at which MATLAB is paused does not run until after you continue running the code. To
continue running the code, click the Continue button. MATLAB continues running the file until it
reaches the end of the file or a breakpoint. You also can click the Continue to Here button to the
left of the line of code that you want to continue running to.

To continue running the code line-by-line, on the Editor or Live Editor tab, click Step. MATLAB
executes the current line at which it is paused and the pauses at the next line.

23 Debugging MATLAB Code

23-4

View Variable Value While Debugging
To view the value of a variable while MATLAB is paused, place your cursor over the variable. The
current value of the variable appears in a data tip. The data tip stays in view until you move the
cursor. To disable data tips, go to the View tab and click the Datatips button off.

You also can view the value of a variable by typing the variable name in the Command Window. For
example, to see the value of the variable n, type n and press Enter. The Command Window displays
the variable name and its value. To view all the variables in the current workspace, use the
Workspace browser.

For more information, see “Examine Values While Debugging” on page 23-14.

Pause a Running File
You can pause long running code while it is running to check on the progress and ensure that it is
running as expected. To pause running code, go to the Editor or Live Editor tab and click the
Pause button. MATLAB pauses at the next executable line, and the Pause button changes to a
Continue button. To continue running the code, press the Continue button.

Note Clicking the Pause button can cause MATLAB to pause in a file outside your own code.

Step Into Functions
While debugging, you can step into called files, pausing at points where you want to examine values.
To step into a file, click the Step In button directly to the left of the function or script that you
want to step into. MATLAB displays the button only if the line contains a call to another function or

 Debug MATLAB Code Files

23-5

script. After stepping in, click the Step Out button at the top of the file to run the rest of the called
function, leave the called function, and then pause.

By default, the Step In button displays only for user-defined functions and scripts. To show the
button for all functions and scripts, on the Home tab, in the Environment section, click
Preferences. Then, select MATLAB > Editor/Debugger, and in the Debugging section, set the
Show contextual Step in buttons option to Always. To never show the button, set the Show
contextual Step in buttons option to Never.

Alternatively, you can step in and out of functions while debugging by using the Step In or
Step Out buttons on the Editor or Live Editor tab. These buttons do not honor the Show
contextual Step in buttons preference and always step in and out of user-defined and MathWorks
functions.

Function Call Stack

When you step into a called function or file, MATLAB displays the list of the functions it executed
before pausing at the current line. The list, also called the function call stack, is shown at the top of
the file and displays the functions in order, starting on the left with the first called script or function,
and ending on the right with the current script or function in which MATLAB is paused.

For each function in the function call stack, there is a corresponding workspace. Workspaces contain
variables that you create within MATLAB or import from data files or other programs. Variables that
you assign through the Command Window or create by using scripts belong to the base workspace.
Variables that you create in a function belong to their own function workspace.

You can examine the values of variables outside of the current workspace by selecting a different
workspace. For more information, see “Examine Values While Debugging” on page 23-14.

Add Breakpoints and Run Code
If there are lines of code in your file that you want to pause at every time you run your code, add
breakpoints at those lines. You can add breakpoints interactively by using the Editor and Live Editor,
programmatically by using functions in the Command Window, or both.

There are three types of breakpoints: standard, conditional, and error. To add a standard breakpoint
in the Editor or Live Editor, click the gray area to the left of the executable line where you want to set
the breakpoint. For example, click the area next to line three in plotRand.m to add a breakpoint at
that line.

23 Debugging MATLAB Code

23-6

When you run the file, MATLAB pauses at the line of code indicated by the breakpoint. The line at
which MATLAB is paused does not run until after you continue running your code.

For example, with the plotRand.m file open in the Editor, click the Run button in the Editor tab.
MATLAB runs plotRand.m starting at line one and pauses before running line three.

When MATLAB pauses, multiple changes occur:

• The Run button in the Editor or Live Editor tab changes to a Continue button.
• The prompt in the Command Window changes to K>> indicating that MATLAB is in debug mode

and that the keyboard is in control.
• MATLAB indicates the line at which it is paused by using a green arrow and green highlighting.

Tip It is a good practice to avoid modifying a file while MATLAB is paused. Changes that are made
while MATLAB is paused do not run until after MATLAB finished running the code and the code is
rerun.

To continue running the code, click the Continue button. MATLAB continues running the file until
it reaches the end of the file or a breakpoint. To continue running the code line-by-line, on the Editor
or Live Editor tab, click Step. MATLAB executes the current line at which it is paused, and then
pauses at the next line.

For more information about the different types of breakpoints and how to set, clear, and disable them,
see “Set Breakpoints” on page 23-9.

End Debugging Session
After you identify a problem, to end the debugging session, go to the Editor or Live Editor tab and

click Stop. After you end debugging, the normal >> prompt in the Command Window reappears
in place of the K>> prompt. You no longer can access the function call stack.

To avoid confusion, make sure to end your debugging session every time you are done debugging. If
you make changes to a file and save it while debugging, MATLAB ends the debugging session. If
MATLAB becomes unresponsive when it pauses, press Ctrl+C to end debugging.

 Debug MATLAB Code Files

23-7

Debug by Using Keyboard Shortcuts or Functions
You can perform most debugging actions by using keyboard shortcuts or by using functions in the
Command Window. This table describes debugging actions and the related keyboard shortcuts and
functions that you can use to perform them.

Action Description Keyboard Shortcut Function

Continue Continue running file
until the end of the file
is reached or until
another breakpoint is
encountered.

F5 dbcont

Step Run the current line of
code.

F10

(Shift+Command+O
on macOS systems)

dbstep

Step In Run the current line of
code, and, if the line
contains a call to
another function, step
into that function.

F11

(Shift+Command+I on
macOS systems)

dbstep in

Step Out After stepping in, run
the rest of the called
function, leave the
called function, and
then pause.

Shift+F11

(Shift+Command+U
on macOS systems)

dbstep out

Stop
End debugging session. Shift+F5 dbquit

Set Breakpoint Set a breakpoint at the
current line, if no
breakpoint exists.

F12 dbstop

Clear Breakpoint Clear the breakpoint at
the current line.

F12 dbclear

See Also

Related Examples
• “Set Breakpoints” on page 23-9
• “Examine Values While Debugging” on page 23-14
• “Edit and Format Code” on page 25-16

23 Debugging MATLAB Code

23-8

Set Breakpoints
Since R2021b. Replaces Set Breakpoints (R2021a) and Debug Code in the Live Editor (R2021a).

Setting breakpoints pauses the execution of your MATLAB program so that you can examine values
where you think an issue might have occurred. You can set breakpoints interactively in the Editor or
Live Editor, or by using functions in the Command Window.

There are three types of breakpoints:

• Standard
• Conditional
• Error

You can set breakpoints only at executable lines in saved files that are in the current folder or in
folders on the search path. You can set breakpoints at any time, whether MATLAB is idle or busy
running a file.

By default, when MATLAB reaches a breakpoint, it opens the file containing the breakpoint. To
disable this option:

1
From the Home tab, in the Environment section, click Preferences.

2 In the Preferences window, select MATLAB > Editor/Debugger.
3 Clear the Automatically open file when MATLAB reaches a breakpoint option and click OK.

Standard Breakpoints
A standard breakpoint pauses at a specific line in a file. To set a standard breakpoint, click the gray
area to the left of the executable line where you want to set the breakpoint. Alternatively, you can
press the F12 key to set a breakpoint at the current line. If you attempt to set a breakpoint at a line
that is not executable, such as a comment or a blank line, MATLAB sets it at the next executable line.

To set a standard breakpoint programmatically, use the dbstop function. For example, to add a
breakpoint at line three in a file named plotRand.m, type:

dbstop in plotRand at 3

When debugging a file that contains a loop, set the breakpoint inside the loop to examine the values
at each increment of the loop. Otherwise, if you set the breakpoint at the start of the loop, MATLAB
pauses at the loop statement only once. For example, this code creates an array of ten ones and uses
a for loop to perform a calculation on items two through six of the array:

 Set Breakpoints

23-9

https://www.mathworks.com/help/releases/R2021a/matlab/matlab_prog/set-breakpoints.html
https://www.mathworks.com/help/releases/R2021a/matlab/matlab_prog/debug-code-in-the-live-editor.html

x = ones(1:10);

for n = 2:6
 x(n) = 2 * x(n-1);
end

For MATLAB to pause at each increment of the for loop (a total of five times), set a breakpoint at line
four.

Conditional Breakpoints

A conditional breakpoint causes MATLAB to pause at a specific line in a file only when the specified
condition is met. For example, you can use conditional breakpoints when you want to examine results
after some iterations in a loop.

To set a conditional breakpoint, right-click the gray area to the left of the executable line where you
want to set the breakpoint and select Set Conditional Breakpoint. If a breakpoint already exists on
that line, select Set/Modify Condition. In the dialog box that opens, enter a condition and click OK.
A condition is any valid MATLAB expression that returns a logical scalar value.

When you run the code, MATLAB evaluates the condition before running the line. If the condition is
met, MATLAB enters debug mode and pauses at the line. For example, this code creates an array of
ten ones and uses a for loop to perform a calculation on items two through six of the array:

x = one(1:10)

for n = 2:6
 x(n) = 2 * x(n-1);
end

Set a conditional breakpoint at line four with the condition n >= 4. When you run the code, MATLAB
runs through the for loop twice and pauses on the third iteration at line four when n is 4. If you
continue running the code, MATLAB pauses again at line four on the fourth iteration when n is 5, and
then once more, when n is 6.

You also can set a conditional breakpoint programmatically using the dbstop function. For example,
to add a conditional breakpoint in myprogram.m at line six, type:

dbstop in myprogram at 6 if n>=4

23 Debugging MATLAB Code

23-10

Error Breakpoints
In the Editor, you can set an error breakpoint to have MATLAB pause and enter debug mode if
MATLAB encounters an issue. Setting error breakpoints is not supported in the Live Editor.

Unlike standard and conditional breakpoints, you do not set error breakpoints at a specific line or in a
specific file. When you set an error breakpoint, MATLAB pauses at any line in any file if the error
condition specified occurs. MATLAB then enters debug mode and opens the file containing the error,
with the execution arrow at the line containing the error.

To set an error breakpoint, on the Editor tab, click Run and select from these options:

• Pause on Errors to pause on all errors.
• Pause on Warnings to pause on all warnings.
• Pause on NaN or Inf to pause on NaN (not-a-number) or Inf (infinite) values.

Alternatively, you can set an error breakpoint programmatically by using the dbstop function with a
specified condition. For example, to pause execution on all errors, type:

dbstop if error

To pause execution at the first run-time error within the try portion of a try/catch block that has a
message ID of MATLAB:ls:InputsMustBeStrings, type:

dbstop if caught error MATLAB:ls:InputsMustBeStrings

Breakpoints in Anonymous Functions
You can set multiple breakpoints in a line of MATLAB code that contains anonymous functions. You
can set a breakpoint for the line itself and for each anonymous function in the line.

To set a breakpoint on a line containing an anonymous function, click the gray area to the left of the
line. MATLAB adds a breakpoint for the line, and a disabled breakpoint for each anonymous function
in the line. To enable a breakpoint for an anonymous function, click the disabled breakpoint for that
function.

To view information about all the breakpoints on a line, place your cursor on the breakpoint icon. A
tooltip appears with available information. For example, in this code, line seven contains two
anonymous functions, with a breakpoint at each one.

When you set a breakpoint in an anonymous function, MATLAB pauses when the anonymous function
is called. The line highlighted in green is where the code defines the anonymous function. The line
highlighted in gray is where the code calls the anonymous functions. For example, in this code,
MATLAB pauses the program at a breakpoint set for the anonymous function g, defined at line seven,
and called at line eight.

 Set Breakpoints

23-11

Invalid Breakpoints

A dark gray breakpoint indicates an invalid breakpoint.

Breakpoints are invalid for these reasons:

• Unsaved changes in the file. To make breakpoints valid, save the file. The gray breakpoints
become red, indicating that they are now valid.

• A syntax error in the file. When you set a breakpoint, an error message appears indicating where
the syntax error is. To make the breakpoint valid, fix the syntax error and save the file.

Disable Breakpoints
You can disable selected breakpoints so that your program temporarily ignores them and runs
uninterrupted. For example, you might disable a breakpoint after you think you identified and
corrected an issue or if you are using conditional breakpoints.

To disable a breakpoint, right-click the breakpoint icon, and select Disable Breakpoint from the
context menu.

The breakpoint becomes light gray to indicate that it is disabled.

To reenable a breakpoint, right-click the breakpoint icon and select Enable Breakpoint from the
context menu.

The gray breakpoints become red, and program execution pauses at that line.

To enable or disable all breakpoints in the file, right-click the gray area to the left of an executable
line and select Enable All Breakpoints in File or Disable All Breakpoints in File. These options
are available only if there is at least one breakpoint to enable or disable.

23 Debugging MATLAB Code

23-12

Clear Breakpoints
All breakpoints remain in a file until you clear (remove) them or until they are cleared automatically
at the end of your MATLAB session.

To clear a breakpoint, right-click the breakpoint icon and select Clear Breakpoint from the context
menu. Alternatively, you can press the F12 key to clear the breakpoint.

To clear a breakpoint programmatically, use the dbclear function. For example, to clear the
breakpoint at line six in a file called myprogram.m, type:

 dbclear in myprogram at 6

To clear all breakpoints in the file, right-click the breakpoint alley and select Clear All Breakpoints
in File. You can also use the dbclear all command. For example, to clear all the breakpoints in a
file called myprogram.m, type:

dbclear all in myprogram

To clear all breakpoints in all files, including error breakpoints, right-click the breakpoint alley and
select Clear All Breakpoints. You also can use the dbclear all command.

Breakpoints clear automatically when you end a MATLAB session. To save your breakpoints for future
sessions, use the dbstatus function.

See Also

Related Examples
• “Debug MATLAB Code Files” on page 23-2
• “Examine Values While Debugging” on page 23-14

 Set Breakpoints

23-13

Examine Values While Debugging
Since R2021b. Replaces Examine Value While Debugging (R2021a).

When debugging a code file, you can view the value of any variable currently in the workspace while
MATLAB is paused. If you want to determine whether a line of code produces the expected result or
not, examining values is useful. If the result is as expected, you can continue running the code or step
to the next line. If the result is not as you expect, then that line, or a previous line, might contain an
error.

View Variable Value
There are several ways to view the value of a variable while debugging:

• Workspace browser — The Workspace browser displays all variables in the current workspace.
The Value column of the Workspace browser shows the current value of the variable.

To view more details, double-click the variable. The Variables Editor opens, displaying the content
for that variable. You also can use the openvar function to open a variable in the Variables Editor.

• Editor and Live Editor — To view the value of a variable in the Editor and Live Editor, place your
cursor over the variable. The current value of the variable appears in a data tip. The data tip stays
in view until you move the cursor. If you have trouble getting the data tip to appear, click the line
containing the variable, and then move the pointer next to the variable.

Data tips are always enabled when debugging in the Editor. To disable data tips in the Live Editor
or when editing a file in the Editor, go to the View tab and click the Datatips button off.

You also can view the value of a variable or equation by selecting it in the Editor and Live Editor,
right-clicking, and selecting Evaluate Selection in Command Window. MATLAB displays the
value of the variable or equation in the Command Window.

Note You cannot evaluate a selection while MATLAB is busy, for example, running a file.

23 Debugging MATLAB Code

23-14

https://www.mathworks.com/help/releases/R2021a/matlab/matlab_prog/examine-values.html

• Command Window — To view the value of a variable in the Command Window, type the variable
name. For the example, to see the value of a variable n, type n and press Enter. The Command
Window displays the variable name and its value. To view all the variables in the current
workspace, call the who function.

View Variable Value Outside Current Workspace
When you are debugging a function or when you step into a called function or file, MATLAB displays
the list of the functions it executed before pausing at the current line. The list, also called the
function call stack, is shown at the top of the file in the Editor or Live Editor. The list displays the
functions in order, starting on the left with the first called script or function, and ending on the right
with the current script or function in which MATLAB is paused.

You also can use the dbstack function to view the current workspace in the Command Window:

dbstack

> In mean (line 48)
In plotRand (line 5)

For each function in the function call stack, there is a corresponding workspace. Workspaces contain
variables that you create within MATLAB or import from data files or other programs. Variables that
you assign through the Command Window or create by using scripts belong to the base workspace.
Variables that you create in a function belong to their own function workspace.

To examine the values of variables outside of the current workspace, select a different workspace. In
the Editor or Live Editor, select a workspace from the drop-down list to the right of the function call
stack at the top of the file.

You also can use the dbup and dbdown functions in the Command Window to select the previous or
next workspace in the function call stack. To list the variables in the current workspace, use who or
whos.

If you attempt to view the value of a variable in a different workspace while MATLAB is in the process
of overwriting it, MATLAB displays an error in the Command Window.
K>> x
Variable "x" is inaccessible. When a variable appears on both sides of an assignment
statement, the variable may become temporarily unavailable during processing.

The error occurs whether you select the workspace by using the drop-down list to the right of the
function call stack or the dbup command.

 Examine Values While Debugging

23-15

See Also

Related Examples
• “Debug MATLAB Code Files” on page 23-2
• “Set Breakpoints” on page 23-9

23 Debugging MATLAB Code

23-16

Presenting MATLAB Code

MATLAB software enables you to present your MATLAB code in various ways. You can share your
code and results with others, even if they do not have MATLAB software. You can save MATLAB
output in various formats, including HTML, XML, and LaTeX. If Microsoft Word or Microsoft
PowerPoint applications are on your Microsoft Windows system, you can publish to their formats as
well.

• “Publish and Share MATLAB Code” on page 24-2
• “Publishing Markup” on page 24-6
• “Output Preferences for Publishing” on page 24-21

24

Publish and Share MATLAB Code

MATLAB provides options for presenting your code to others. You can publish your MATLAB Code
files (.m) to create formatted documents or you can create and share live scripts and live functions in
the Live Editor.

Create and Share Live Scripts in the Live Editor
The easiest way to create cohesive, sharable documents that include executable MATLAB code,
embedded output, and formatted text is to use the Live Editor. Supported output formats include:
MLX, PDF, Microsoft Word, HTML, and LaTeX. For details, see “Create Live Scripts in the Live
Editor” on page 20-6.

Publish MATLAB Code Files (.m)
To create shareable documents using your MATLAB Code files (.m), you can publish the files.
Publishing a MATLAB Code file creates a formatted document that includes your code, comments,
and output. Common reasons to publish code are to share the documents with others for teaching or
demonstration, or to generate readable, external documentation of your code.

24 Presenting MATLAB Code

24-2

This code demonstrates the Fourier series expansion for a square wave.

MATLAB Code with Markup Published Document

To publish your code:

1 Create a MATLAB script or function. Divide the code into steps or sections by inserting two
percent signs (%%) at the beginning of each section.

 Publish and Share MATLAB Code

24-3

2 Document the code by adding explanatory comments at the beginning of the file and within each
section.

Within the comments at the top of each section, you can add markup that enhances the
readability of the output. For example, the code in the preceding table includes the following
markup.

Titles %% Square Waves from Sine Waves

%% Add an Odd Harmonic and Plot It

%% Note About Gibbs Phenomenon
Variable name in italics % As _k_ increases, ...
LaTeX equation % $$ y = y + \frac{sin(k*t)}{k} $$

Note When you have a file containing text that has characters in a different encoding than that
of your platform, when you save or publish your file, MATLAB displays those characters as
garbled text.

3 Publish the code. On the Publish tab, click Publish.

By default, MATLAB creates a subfolder named html, which contains an HTML file and files for
each graphic that your code creates. The HTML file includes the code, formatted comments, and
output. Alternatively, you can publish to other formats, such as PDF files or Microsoft PowerPoint
presentations. For more information on publishing to other formats, see “Specify Output File” on
page 24-22.

In MATLAB Online, to allow MATLAB to open output windows automatically when publishing,
enable pop-up windows in your Web browser.

After publishing the code, you can share the folder containing the published files. For more
information, see “Share Folders Using MATLAB Drive”.

The sample code that appears in the previous figure is part of the installed documentation. You can
view the code in the Editor by running this command:

edit(fullfile(matlabroot,'help','techdoc','matlab_env', ...
 'examples','fourier_demo2.m'))

Add Help and Create Documentation
You can add help to your code by inserting comments at the start of a MATLAB code file. MATLAB
displays the help comments when you type help file_name in the Command Window. For more
information, see “Add Help for Your Program” on page 21-5.

You also can create your own MATLAB documentation topics for viewing from the MATLAB Help
browser or the web. For more information, see “Display Custom Documentation” on page 33-21

See Also
publish

24 Presenting MATLAB Code

24-4

More About
• “Create Live Scripts in the Live Editor” on page 20-6
• “Publishing Markup” on page 24-6
• “Output Preferences for Publishing” on page 24-21

External Websites
• Publishing MATLAB Code from the Editor video

 Publish and Share MATLAB Code

24-5

https://www.mathworks.com/videos/publishing-matlab-code-from-the-editor-101570.html

Publishing Markup
When publishing your MATLAB code files (.m), you can enhance the readability of the published
documents by adding markup to the comments within the files. Adding markup allows you to format
the published documents and display external files and graphics.

Markup Overview
To insert markup, you can:

• Use the formatting buttons and drop-down menus on the Publish tab to format the file. This
method automatically inserts the text markup for you.

• Select markup from the Insert Text Markup list in the right click menu.
• Type the markup directly in the comments.

The following table provides a summary of the text markup options. Refer to this table if you are not
using the MATLAB Editor, or if you do not want to use the Publish tab to apply the markup.

Note When working with markup:

• Spaces following the comment symbols (%) often determine the format of the text that follows.
• Starting new markup often requires preceding blank comment lines, as shown in examples.
• Markup only works in comments that immediately follow a section break.

Result in Output Example of Corresponding File Markup
“Sections and Section Titles” on page
24-8

%% SECTION TITLE
% DESCRIPTIVE TEXT

%%% SECTION TITLE WITHOUT SECTION BREAK
% DESCRIPTIVE TEXT

“Text Formatting” on page 24-9 % _ITALIC TEXT_

% *BOLD TEXT*

% |MONOSPACED TEXT|

% Trademarks:
% TEXT(TM)

% TEXT(R)

24 Presenting MATLAB Code

24-6

Result in Output Example of Corresponding File Markup
“Bulleted and Numbered Lists” on
page 24-10

%% Bulleted List
%
% * BULLETED ITEM 1
% * BULLETED ITEM 2
%

%% Numbered List
%
% # NUMBERED ITEM 1
% # NUMBERED ITEM 2
%

“Text and Code Blocks” on page 24-10 %%
%
% PREFORMATTED
% TEXT
%

%% MATLAB(R) Code
%
% for i = 1:10
% disp x
% end
%

“External File Content” on page 24-11 %
% <include>filename.m</include>
%

“External Graphics” on page 24-12 %
% <<FILENAME.PNG>>
%

“Image Snapshot” on page 24-14 snapnow;

“LaTeX Equations” on page 24-14 %% Inline Expression
% $x^2+e^{\pi i}$

%% Block Equation
%
% $$e^{\pi i} + 1 = 0$$
%

“Hyperlinks” on page 24-16 % <https://www.mathworks.com MathWorks>

% <matlab:FUNCTION DISPLAYED_TEXT>

“HTML Markup” on page 24-18 %
% <html>
% <table border=1><tr>
% <td>one</td>
% <td>two</td></tr></table>
% </html>
%

 Publishing Markup

24-7

Result in Output Example of Corresponding File Markup
“LaTeX Markup” on page 24-19 %% LaTeX Markup Example

% <latex>
% \begin{tabular}{|r|r|}
% \hline n&$n!$\\
% \hline 1&1\\ 2&2\\ 3&6\\
% \hline
% \end{tabular}
% </latex>
%

Sections and Section Titles
Code sections allow you to organize, add comments, and execute portions of your code. Code sections
begin with double percent signs (%%) followed by an optional section title. The section title displays as
a top-level heading (h1 in HTML), using a larger, bold font.

Note You can add comments in the lines immediately following the title. However, if you want an
overall document title, you cannot add any MATLAB code before the start of the next section (a line
starting with %%).

For instance, this code produces a polished result when published.

%% Vector Operations
% You can perform a number of binary operations on vectors.
%%
A = 1:3;
B = 4:6;
%% Dot Product
% A dot product of two vectors yields a scalar.
% MATLAB has a simple command for dot products.
s = dot(A,B);
%% Cross Product
% A cross product of two vectors yields a third
% vector perpendicular to both original vectors.
% Again, MATLAB has a simple command for cross products.
v = cross(A,B);

By saving the code in an Editor and clicking the Publish button on the Publish tab, MATLAB
produces the output as shown in this figure. Notice that MATLAB automatically inserts a Contents
menu from the section titles in the MATLAB file.

24 Presenting MATLAB Code

24-8

Text Formatting
You can mark selected text in the MATLAB comments so that they display in italic, bold, or
monospaced text when you publish the file. Simply surround the text with _, *, or | for italic, bold, or
monospaced text, respectively.

For instance, these lines display each of the text formatting syntaxes if published.

%% Calculate and Plot Sine Wave
% _Define_ the *range* for |x|

Trademark Symbols

If the comments in your MATLAB file include trademarked terms, you can include text to produce a
trademark symbol (™) or registered trademark symbol (®) in the output. Simply add (R) or (TM)
directly after the term in question, without any space in between.

For example, suppose that you enter these lines in a file.

%% Basic Matrix Operations in MATLAB(R)
% This is a demonstration of some aspects of MATLAB(R)
% and the Symbolic Math Toolbox(TM).

If you publish the file to HTML, it appears in the MATLAB web browser.

 Publishing Markup

24-9

Bulleted and Numbered Lists
MATLAB allows bulleted and numbered lists in the comments. You can use this syntax to produce
bulleted and numbered lists.

%% Two Lists
%
% * ITEM1
% * ITEM2
%
% # ITEM1
% # ITEM2
%

Publishing the example code produces this output.

Text and Code Blocks
Preformatted Text

Preformatted text appears in monospace font, maintains white space, and does not wrap long lines.
Two spaces must appear between the comment symbol and the text of the first line of the
preformatted text.

Publishing this code produces a preformatted paragraph.

%%
% Many people find monospaced text easier to read:
%
% A dot product of two vectors yields a scalar.
% MATLAB has a simple command for dot products.

24 Presenting MATLAB Code

24-10

Syntax-Highlighted Sample Code

Executable code appears with syntax highlighting in published documents. You also can highlight
sample code. Sample code is code that appears within comments.

To indicate sample code, you must put three spaces between the comment symbol and the start of the
first line of code. For example, clicking the Code button on the Publish tab inserts the following
sample code in your Editor.

%%
%
% for i = 1:10
% disp(x)
% end
%

Publishing this code to HTML produces output in the MATLAB web browser.

External File Content
To add external file content into MATLAB published code, use the <include> markup. Specify the
external file path relative to the location of the published file. Included MATLAB code files publish as
syntax-highlighted code. Any other files publish as plain text.

For example, this code inserts the contents of sine_wave.m into your published output:

%% External File Content Example
% This example includes the file contents of sine_wave.m into published
% output.
%
% <include>sine_wave.m</include>
%
% The file content above is properly syntax highlighted.

Publish the file to HTML.

 Publishing Markup

24-11

External Graphics
To publish an image that the MATLAB code does not generate, use text markup. By default, MATLAB
already includes code-generated graphics.

This code inserts a generic image called FILENAME.PNG into your published output.

%%
%
% <<FILENAME.PNG>>
%

MATLAB requires that FILENAME.PNG be a relative path from the output location to your external
image or a fully qualified URL. Good practice is to save your image in the same folder that MATLAB
publishes its output. For example, MATLAB publishes HTML documents to a subfolder html. Save
your image file in the same subfolder. You can change the output folder by changing the publish
configuration settings. In MATLAB Online, save your image file to your Published folder, which is
located in your root folder.

External Graphics Example Using surf(peaks)

This example shows how to insert surfpeaks.jpg into a MATLAB file for publishing.

To create the surfpeaks.jpg, run this code in the Command Window.

saveas(surf(peaks),'surfpeaks.jpg');

To produce an HTML file containing surfpeaks.jpg from a MATLAB file:

1 Create a subfolder called html in your current folder.
2 Create surfpeaks.jpg by running this code in the Command Window.

saveas(surf(peaks),'html/surfpeaks.jpg');

24 Presenting MATLAB Code

24-12

3 Publish this MATLAB code to HTML.

%% Image Example
% This is a graphic:
%
% <<surfpeaks.jpg>>
%

Valid Image Types for Output File Formats

The type of images you can include when you publish depends on the output type of that document as
indicated in this table. For greatest compatibility, best practice is to use the default image format for
each output type.

Output File Format Default Image Format Types of Images You Can Include
doc png Any format that your installed version of

Microsoft Office supports.
html png All formats publish successfully. Ensure that the

tools you use to view and process the output
files can display the output format you specify.

latex png or epsc2 All formats publish successfully. Ensure that the
tools you use to view and process the output
files can display the output format you specify.

pdf bmp bmp and jpg.
ppt png Any format that your installed version of

Microsoft Office supports.

 Publishing Markup

24-13

Output File Format Default Image Format Types of Images You Can Include
xml png All formats publish successfully. Ensure that the

tools you use to view and process the output
files can display the output format you specify.

Image Snapshot
You can insert code that captures a snapshot of your MATLAB output. This is useful, for example, if
you have a for loop that modifies a figure that you want to capture after each iteration.

The following code runs a for loop three times and produces output after every iteration. The
snapnow command captures all three images produced by the code.

%% Scale magic Data and Display as Image

for i=1:3
 imagesc(magic(i))
 snapnow;
end

If you publish the file to HTML, it resembles the following output. By default, the images in the HTML
are larger than shown in the figure. To resize images generated by MATLAB code, use the Max
image width and Max image height fields in the Publish settings pane, as described in “Output
Preferences for Publishing” on page 24-21.

LaTeX Equations
Inline LaTeX Expression

MATLAB enables you to include an inline LaTeX expression in any code that you intend to publish. To
insert an inline expression, surround your LaTeX markup with dollar sign characters ($). The $ must

24 Presenting MATLAB Code

24-14

immediately precede the first word of the inline expression, and immediately follow the last word of
the inline expression, without any space in between.

Note

• All publishing output types support LaTeX expressions, except Microsoft PowerPoint.
• MATLAB publishing supports standard LaTeX math mode directives. Text mode directives or

directives that require additional packages are not supported.

This code contains a LaTeX expression:

%% LaTeX Inline Expression Example
%
% This is an expression: $x^2+e^{\pi i}$. It is
% inline with the text.

If you publish the sample text markup to HTML, this is the resulting output.

LaTeX Display Equation

MATLAB enables you to insert LaTeX symbols in blocks that are offset from the main comment text.
Two dollar sign characters ($$) on each side of an equation denote a block LaTeX equation.
Publishing equations in separate blocks requires a blank line in between blocks.

This code is a sample text markup.

%% LaTeX Equation Example
%
% This is an equation:
%
% $$e^{\pi i} + 1 = 0$$
%
% It is not in line with the text.

If you publish to HTML, the equation appears as shown here.

 Publishing Markup

24-15

Hyperlinks
Static Hyperlinks

You can insert static hyperlinks within a MATLAB comment, and then publish the file to HTML, XML,
or Microsoft Word. When specifying a static hyperlink to a web location, include a complete URL
within the code. This is useful when you want to point the reader to a web location. You can display or
hide the URL in the published text. Consider excluding the URL, when you are confident that readers
are viewing your output online and can click the hyperlink.

Enclose URLs and any replacement text in angled brackets.

%%
% For more information, see our web site:
% <https://www.mathworks.com MathWorks>

Publishing the code to HTML produces this output.

Eliminating the text MathWorks after the URL produces this modified output.

Note If your code produces hyperlinked text in the MATLAB Command Window, the output shows the
HTML code rather than the hyperlink.

Dynamic Hyperlinks

You can insert dynamic hyperlinks, which MATLAB evaluates at the time a reader clicks that link.
Dynamic hyperlinks enable you to point the reader to MATLAB code or documentation, or enable the
reader to run code. You implement these links using matlab: syntax. If the code that follows the
matlab: declaration has spaces in it, replace them with %20.

24 Presenting MATLAB Code

24-16

Note Dynamic links only work when viewing HTML in the MATLAB web browser.

Diverse uses of dynamic links include:

• “Dynamic Link to Run Code” on page 24-17
• “Dynamic Link to a File” on page 24-17
• “Dynamic Link to a MATLAB Function Reference Page” on page 24-18

Dynamic Link to Run Code

You can specify a dynamic hyperlink to run code when a user clicks the hyperlink. For example, this
matlab: syntax creates hyperlinks in the output, which when clicked either enable or disable
recycling:

%% Recycling Preference
% Click the preference you want:
%
% <matlab:recycle('off') Disable recycling>
%
% <matlab:recycle('on') Enable recycling>

The published result resembles this HTML output.

When you click one of the hyperlinks, MATLAB sets the recycle command accordingly. After clicking
a hyperlink, run recycle in the Command Window to confirm that the setting is as you expect.

Dynamic Link to a File

You can specify a link to a file that you know is in the matlabroot of your reader. You do not need to
know where each reader installed MATLAB. For example, link to the function code for publish.
%%
% See the
% <matlab:edit(fullfile(matlabroot,'toolbox','matlab','codetools','publish.m')) code>
% for the publish function.

Next, publish the file to HTML.

 Publishing Markup

24-17

When you click the code link, the MATLAB Editor opens and displays the code for the publish
function. On the reader's system, MATLAB issues the command (although the command does not
appear in the reader's Command Window).

Dynamic Link to a MATLAB Function Reference Page

You can specify a link to a MATLAB function reference page using matlab: syntax. For example,
suppose that your reader has MATLAB installed and running. Provide a link to the publish reference
page.

%%
% See the help for the <matlab:doc('publish') publish> function.

Publish the file to HTML.

When you click the publish hyperlink, the MATLAB Help browser opens and displays the reference
page for the publish function. On the reader's system, MATLAB issues the command, although the
command does not appear in the Command Window.

HTML Markup
You can insert HTML markup into your MATLAB file. You must type the HTML markup since no
button on the Publish tab generates it.

Note When you insert text markup for HTML code, the HTML code publishes only when the
specified output file format is HTML.

This code includes HTML tagging.

%% HTML Markup Example
% This is a table:
%
% <html>
% <table border=1><tr><td>one</td><td>two</td></tr>
% <tr><td>three</td><td>four</td></tr></table>
% </html>
%

If you publish the code to HTML, MATLAB creates a 2-row table with two columns. The table contains
the values one, two, three, and four.

24 Presenting MATLAB Code

24-18

If a section produces command-window output that starts with <html> and ends with </html>,
MATLAB includes the source HTML in the published output. For example, MATLAB displays the disp
command and makes a table from the HTML code if you publish this code:

disp('<html><table><tr><td>1</td><td>2</td></tr></table></html>')

LaTeX Markup
You can insert LaTeX markup into your MATLAB file. You must type all LaTeX markup since no button
on the Publish tab generates it.

Note When you insert text markup for LaTeX code, that code publishes only when the specified
output file format is LaTeX.

This code is an example of LaTeX markup.

%% LaTeX Markup Example
% This is a table:
%
% <latex>
% \begin{tabular}{|c|c|} \hline
% n & $n!$ \\ \hline
% 1 & 1 \\
% 2 & 2 \\
% 3 & 6 \\ \hline
% \end{tabular}
% </latex>

If you publish the file to LaTeX, then the Editor opens a new .tex file containing the LaTeX markup.

 Publishing Markup

24-19

% This LaTeX was auto-generated from MATLAB code.
% To make changes, update the MATLAB code and republish this document.

\documentclass{article}
\usepackage{graphicx}
\usepackage{color}

\sloppy
\definecolor{lightgray}{gray}{0.5}
\setlength{\parindent}{0pt}

\begin{document}

\section*{LaTeX Markup Example}

\begin{par}
This is a table:
\end{par} \vspace{1em}
\begin{par}

\begin{tabular}{|c|c|} \hline
n & $n!$ \\ \hline
1 & 1 \\
2 & 2 \\
3 & 6 \\ \hline
\end{tabular}

\end{par} \vspace{1em}

\end{document}

MATLAB includes any additional markup necessary to compile this file with a LaTeX program.

See Also

More About
• “Publish and Share MATLAB Code” on page 24-2
• “Output Preferences for Publishing” on page 24-21

24 Presenting MATLAB Code

24-20

Output Preferences for Publishing
In this section...
“How to Edit Publishing Options” on page 24-21
“Specify Output File” on page 24-22
“Run Code During Publishing” on page 24-23
“Manipulate Graphics in Publishing Output” on page 24-24
“Save a Publish Setting” on page 24-28
“Manage a Publish Configuration” on page 24-29

How to Edit Publishing Options
Use the default publishing preferences if your code requires no input arguments and you want to
publish to HTML. However, if your code requires input arguments, or if you want to specify output
settings, code execution, or figure formats, then specify a custom configuration.

1 Go to the Publish tab and select Publish .
2 Select Edit Publishing Options.
3 In the Edit Configurations dialog box, specify output preferences.

Use the MATLAB expression pane to specify the code that executes during publishing. Use the
Publish settings pane to specify output, figure, and code execution options.

Together, the panes make what MATLAB refers to as a publish configuration. MATLAB associates
each publish configuration with an .m file. The name of the publish configuration is displayed at
the top of the dialog box and is editable.

 Output Preferences for Publishing

24-21

Specify Output File
You specify the output format and location on the Publish settings pane.

MATLAB publishes to these formats.

Format Notes
html Publishes to an HTML document. You can use an Extensible Stylesheet

Language (XSL) file.
xml Publishes to XML document. You can use an Extensible Stylesheet Language

(XSL) file.
latex Publishes to LaTeX document. Does not preserve syntax highlighting. You can

use an Extensible Stylesheet Language (XSL) file.
doc Publishes to a Microsoft Word document. Does not preserve syntax

highlighting. This format is only available on Windows platforms.
ppt Publishes to a Microsoft PowerPoint document. Does not preserve syntax

highlighting. This format is only available on Windows platforms.
pdf Publishes to a PDF document.

24 Presenting MATLAB Code

24-22

Note XSL files allow you more control over the appearance of the output document. For more
details, see http://docbook.sourceforge.net/release/xsl/current/doc/.

Run Code During Publishing
• “Specifying Code” on page 24-23
• “Evaluating Code” on page 24-23
• “Including Code” on page 24-24
• “Catching Errors” on page 24-24
• “Limiting the Amount of Output” on page 24-24

Specifying Code

By default, MATLAB executes the .m file that you are publishing. However, you can specify any valid
MATLAB code in the MATLAB expression pane. For example, if you want to publish a function that
requires input, then run the command function(input). Additional code, whose output you want
to publish, appears after the functions call. If you clear the MATLAB expression area, then MATLAB
publishes the file without evaluating any code.

Note Publish configurations use the base MATLAB workspace. Therefore, a variable in the MATLAB
expression pane overwrites the value for an existing variable in the base workspace.

Evaluating Code

Another way to affect what MATLAB executes during publishing is to set the Evaluate code option in
the Publish setting pane. This option indicates whether MATLAB evaluates the code in the .m file
that is publishing. If set to true, MATLAB executes the code and includes the results in the output
document.

Because MATLAB does not evaluate the code nor include code results when you set the Evaluate
code option to false, there can be invalid code in the file. Therefore, consider first running the file
with this option set to true.

For example, suppose that you include comment text, Label the plot, in a file, but forget to
preface it with the comment character. If you publish the document to HTML, and set the Evaluate
code option to true, the output includes an error.

 Output Preferences for Publishing

24-23

http://docbook.sourceforge.net/release/xsl/current/doc/

Use the false option to publish the file that contains the publish function. Otherwise, MATLAB
attempts to publish the file recursively.

Including Code

You can specify whether to display MATLAB code in the final output. If you set the Include code
option to true, then MATLAB includes the code in the published output document. If set to false,
MATLAB excludes the code from all output file formats, except HTML.

If the output file format is HTML, MATLAB inserts the code as an HTML comment that is not visible
in the web browser. If you want to extract the code from the output HTML file, use the MATLAB
grabcode function.

For example, suppose that you publish H:/my_matlabfiles/my_mfiles/sine_wave.m to HTML
using a publish configuration with the Include code option set to false. If you share the output with
colleagues, they can view it in a web browser. To see the MATLAB code that generated the output,
they can issue the following command from the folder containing sine_wave.html:

grabcode('sine_wave.html')

MATLAB opens the file that created sine_wave.html in the Editor.

Catching Errors

You can catch and publish any errors that occur during publishing. Setting the Catch error option to
true includes any error messages in the output document. If you set Catch error to false, MATLAB
terminates the publish operation if an error occurs during code evaluation. However, this option has
no effect if you set the Evaluate code property to false.

Limiting the Amount of Output

You can limit the number of lines of code output that is included in the output document by specifying
the Max # of output lines option in the Publish settings pane. Setting this option is useful if a
smaller, representative sample of the code output suffices.

For example, the following loop generates 100 lines in a published output unless Max # of output
lines is set to a lower value.

for n = 1:100
 disp(x)
end;

Manipulate Graphics in Publishing Output
• “Choosing an Image Format” on page 24-24
• “Setting an Image Size” on page 24-25
• “Capturing Figures” on page 24-25
• “Specifying a Custom Figure Window” on page 24-26
• “Creating a Thumbnail” on page 24-27

Choosing an Image Format

When publishing, you can choose the image format that MATLAB uses to store any graphics
generated during code execution. The available image formats in the drop-down list depend on the

24 Presenting MATLAB Code

24-24

setting of the Figure capture method option. For greatest compatibility, select the default as
specified in this table.

Output File Format Default Image Format Types of Images You Can Include
doc png Any format that your installed version of

Microsoft Office supports.
html png All formats publish successfully. Ensure that the

tools you use to view and process the output
files can display the output format you specify.

latex png or epsc2 All formats publish successfully. Ensure that the
tools you use to view and process the output
files can display the output format you specify.

pdf bmp bmp and jpg.
ppt png Any format that your installed version of

Microsoft Office supports.
xml png All formats publish successfully. Ensure that the

tools you use to view and process the output
files can display the output format you specify.

Setting an Image Size

You set the size of MATLAB generated images in the Publish settings pane on the Edit
Configurations dialog window. You specify the image size in pixels to restrict the width and height of
images in the output. The pixel values act as a maximum size value because MATLAB maintains an
image’s aspect ratio. MATLAB ignores the size setting for the following cases:

• When working with external graphics as described in “External Graphics” on page 24-12
• When using vector formats, such as .eps
• When publishing to .pdf

Capturing Figures

You can capture different aspects of the Figure window by setting the Figure capture method
option. This option determines the window decorations (title bar, toolbar, menu bar, and window
border) and plot backgrounds for the Figure window.

This table summarizes the effects of the various Figure capture methods.

Use This Figure Capture
Method

To Get Figure Captures with These Appearance Details

 Window Decorations Plot Backgrounds
entireGUIWindow Included for dialog boxes; Excluded for

figures
Set to white for figures; matches the
screen for dialog boxes

print Excluded for dialog boxes and figures Set to white
getframe Excluded for dialog boxes and figures Matches the screen plot background
entireFigureWindow Included for dialog boxes and figures Matches the screen plot background

 Output Preferences for Publishing

24-25

Note Typically, MATLAB figures have the HandleVisibility property set to on. Dialog boxes are
figures with the HandleVisibility property set to off or callback. If your results are different
from the results listed in the preceding table, the HandleVisibility property of your figures or
dialog boxes might be atypical. For more information, see HandleVisibility.

Specifying a Custom Figure Window

MATLAB allows you to specify custom appearance for figures it creates. If the Use new figure option
in the Publish settings pane is set to true, then in the published output, MATLAB uses a Figure
window at the default size and with a white background. If the Use new figure option is set to
false, then MATLAB uses the properties from an open Figure window to determine the appearance
of code-generated figures. This preference does not apply to figures included using the syntax in
“External Graphics” on page 24-12.

Use the following code as a template to produce Figure windows that meet your needs.

% Create figure
figure1 = figure('Name','purple_background',...
'Color',[0.4784 0.06275 0.8941]);
colormap('hsv');

% Create subplot
subplot(1,1,1,'Parent',figure1);
box('on');

% Create axis labels
xlabel('x-axis');
ylabel({'y-axis'})

% Create title
title({'Title'});

24 Presenting MATLAB Code

24-26

% Enable printed output to match colors on screen
set(figure1,'InvertHardcopy','off')

By publishing your file with this window open and the Use new figure option set to false, any code-
generated figure takes the properties of the open Figure window.

Note You must set the Figure capture method option to entireFigureWindow for the final
published figure to display all the properties of the open Figure window.

Creating a Thumbnail

You can save the first code-generated graphic as a thumbnail image. You can use this thumbnail to
represent your file on HTML pages. To create a thumbnail, follow these steps:

1 On the Publish tab, click Publish and select Edit Publishing Options. The Edit
Configurations dialog box opens.

2 Set the Image Format option to a bitmap format, such as .png or .jpg. MATLAB creates
thumbnail images in bitmap formats.

3 Set the Create thumbnail option to true.

MATLAB saves the thumbnail image in the folder specified by the Output folder option in the
Publish settings pane.

 Output Preferences for Publishing

24-27

Save a Publish Setting
You can save your publish settings, which allows you to reproduce output easily. It can be useful to
save your commonly used publish settings.

When the Publish settings options are set, you can follow these steps to save the settings:

1 Click Save As when the options are set in the manner you want.

The Save Publish Settings As dialog box opens and displays the names of all the currently
defined publish settings. By default the following publish settings install with MATLAB:

• Factory Default

You cannot overwrite the Factory Default and can restore them by selecting Factory
Default from the Publish settings list.

• User Default

Initially, User Default settings are identical to the Factory Default settings. You can
overwrite the User Default settings.

2 In the Settings Name field, enter a meaningful name for the settings. Then click Save.

You can now use the publish settings with other MATLAB files.

You also can overwrite the publishing properties saved under an existing name. Select the name
from the Publish settings list, and then click Overwrite.

24 Presenting MATLAB Code

24-28

Manage a Publish Configuration
• “Running an Existing Publish Configuration” on page 24-29
• “Creating Multiple Publish Configurations for a File” on page 24-29
• “Reassociating and Renaming Publish Configurations” on page 24-30
• “Using Publish Configurations Across Different Systems” on page 24-30

Together, the code in the MATLAB expression pane and the settings in the Publish settings pane
make a publish configuration that is associated with one file. These configurations provide a simple
way to refer to publish preferences for individual files.

To create a publish configuration, on the Publish tab, click Publish , and select Edit Publishing
Options. The Edit Configurations dialog box opens, containing the default publish preferences. In the
Publish configuration name field, type a name for the publish configuration, or accept the default
name. The publish configuration saves automatically.

Running an Existing Publish Configuration

After saving a publish configuration, you can run it without opening the Edit Configurations dialog
box:

1 Click Publish . If you position your mouse pointer on a publish configuration name, MATLAB
displays a tooltip showing the MATLAB expression associated with the specific configuration.

2 Select a configuration name to use for the publish configuration. MATLAB publishes the file using
the code and publish settings associated with the configuration.

Creating Multiple Publish Configurations for a File

You can create multiple publish configurations for a given file. You might do this to publish the file
with different values for input arguments, with different publish setting property values, or both.
Create a named configuration for each purpose, all associated with the same file. Later you can run
whichever particular publish configuration you want.

Use the following steps as a guide to create new publish configurations.

1 Open a file in your Editor.
2 Click the Publish button drop-down arrow, and select Edit Publishing Options. The Edit

Configurations dialog box opens.
3

Click the Add button located on the left pane.

A new name appears on the configurations list, filename_n, where the value of n depends on
the existing configuration names.

 Output Preferences for Publishing

24-29

4 If you modify settings in the MATLAB expression or Publish setting pane, MATLAB
automatically saves the changes.

Reassociating and Renaming Publish Configurations

Each publish configuration is associated with a specific file. If you move or rename a file, redefine its
association. If you delete a file, consider deleting the associated configurations, or associating them
with a different file.

When MATLAB cannot associate a configuration with a file, the Edit Configurations dialog box
displays the file name in red and a File Not Found message. To reassociate a configuration with
another file, perform the following steps.

1 Click the Clear search button on the left pane of the Edit Configurations dialog box.
2 Select the file for which you want to reassociate publish configurations.
3 In the right pane of the Edit Configurations dialog box, click Choose.... In the Open dialog box,

navigate to and select the file with which you want to reassociate the configurations.

You can rename the configurations at any time by selecting a configuration from the list in the left
pane. In the right pane, edit the value for the Publish configuration name.

Note To run correctly after a file name change, you might need to change the code statements in the
MATLAB expression pane. For example, change a function call to reflect the new file name for that
function.

Using Publish Configurations Across Different Systems

Each time you create or save a publish configuration using the Edit Configurations dialog box, the
Editor updates the publish_configurations.m file in your preferences folder. (This is the folder
that MATLAB returns when you run the MATLAB prefdir function.)

Although you can port this file from the preferences folder on one system to another, only one
publish_configurations.m file can exist on a system. Therefore, only move the file to another
system if you have not created any publish configurations on the second system. In addition, because

24 Presenting MATLAB Code

24-30

the publish_configurations.m file might contain references to file paths, be sure that the
specified files and paths exist on the second system.

MathWorks recommends that you not update publish_configurations.m in the MATLAB Editor
or a text editor. Changes that you make using tools other than the Edit Configurations dialog box
might be overwritten later.

See Also

More About
• “Publish and Share MATLAB Code” on page 24-2
• “Publishing Markup” on page 24-6

 Output Preferences for Publishing

24-31

Coding and Productivity Tips

• “Save and Back Up Code” on page 25-2
• “Check Code for Errors and Warnings Using the Code Analyzer” on page 25-5
• “Edit and Format Code” on page 25-16
• “Find and Replace Text in Files and Go to Location” on page 25-21
• “Add Reminders to Files” on page 25-27
• “MATLAB Code Analyzer Report” on page 25-29
• “MATLAB Code Compatibility Analyzer” on page 25-32
• “Code Generation Readiness Tool” on page 25-35

25

Save and Back Up Code
In this section...
“Save Code” on page 25-2
“Back Up Code” on page 25-2
“Recommendations on Saving Files” on page 25-3
“File Encoding” on page 25-3

You can save your files in the Editor and Live Editor using several methods. In the Editor, you also can
create backup copies of your files. Creating backup copies of your files ensures that you have a
known working version of the files before making changes to them, and can also be useful for
recovering lost changes after a system problem.

Depending on your needs, you can also control how the files you save are encoded and cached.

Save Code
When you modify a file in the Editor or the Live Editor, MATLAB indicates that there are unsaved
changes in the file by displaying an asterisk (*) next to the file name in the document tab.

To save the file, go to the Editor or Live Editor tab, and in the File section, click Save.

To change the name, location, or type of a file, select Save > Save As. For example, to save a live
script as a plain code file (.m), on the Live Editor tab, in the File section, select Save > Save As. In
the dialog box that appears, select MATLAB Code files (UTF-8) (*.m) as the Save as type and
click Save.

Back Up Code
You can create backup copies of your files in the Editor. Creating a backup copy of a file ensures that
you have a known working version of the file before making changes to it. To create a backup copy of
a file, on the Editor tab, in the File section, select Save > Save Copy As. This option is not available
in the Live Editor or in MATLAB Online.

In addition, when you modify files in the Editor, MATLAB automatically creates backup copies of the
files. If you lose changes to your files due to system problems, you can use the automatically created
backup copies of the files to recover the changes.

By default, MATLAB saves a backup copy of a modified file every five minutes using the same file
name but with an .asv extension. For example, filename.m would have a backup file name of
filename.asv. If you lose changes to your file, you can recover the unsaved changes by opening the
backup copy of the file, filename.asv, and saving it as filename.m.

25 Coding and Productivity Tips

25-2

To change how and when MATLAB saves backup copies of files, on the Home tab, in the

Environment section, click Preferences. Then, select MATLAB > Editor/Debugger > Backup
Files. You can specify:

• How often to save backup copies of the files you are editing.
• What file extension to use when creating backup copies of files.
• Where to save backup copies of files.
• Whether to automatically delete backup copies of files when you close the corresponding source
file in the Editor.

For more information about the available options, see the Backup Files preferences in “Editor/
Debugger Preferences”.

In MATLAB Online, every time you save a code file in the Editor, MATLAB stores the contents of your
code file in the version history. For more information about recovering a previous version of a file in
MATLAB Online, see “Access Files in MATLAB Online”.

MATLAB does not automatically create backups of files modified in the Live Editor.

Recommendations on Saving Files
MathWorks recommends that you save files that you create to a folder outside the matlabroot
folder tree, where matlabroot is the folder returned when you type matlabroot in the Command
Window. Similarly, when you edit files that you get from MathWorks, save your edited version outside
the matlabroot folder tree. If you save your files in the matlabroot folder tree, they can be
overwritten when you install a new version of MATLAB.

If you do save files in the matlabroot folder tree, you may need to take extra steps for your changes
to take effect. At the beginning of each MATLAB session, MATLAB loads and caches in memory the
locations of files in the matlabroot folder tree. Therefore, if you add, remove, or make changes to
files in the matlabroot folder tree using an external editor or file system operations, you must
update the cache so that MATLAB recognizes the changes you made. For more information, see
“Toolbox Path Caching in MATLAB”.

File Encoding
As of R2020a, when the Editor saves a new MATLAB code file that has a .m extension, such as a
script or a function, it uses UTF-8 without a byte-order-mark (BOM). The Editor saves existing files
with their current encoding unless a different one is selected from the Save As dialog. For example, to
save a file using a legacy locale-specific encoding for compatibility with an earlier release of MATLAB,
on the Editor tab, in the File section, select Save > Save as. In the dialog box that appears, select
the desired encoding from the Save as type options.

The current encoding is displayed next to the file name in the Editor status bar or, if the Editor
Window is docked, the Desktop status bar.

 Save and Back Up Code

25-3

See Also

More About
• “Editor/Debugger Preferences”
• “Manage Files and Folders”

25 Coding and Productivity Tips

25-4

Check Code for Errors and Warnings Using the Code Analyzer
The MATLAB Code Analyzer can automatically check your code for coding problems. You can view
warning and error messages about your code, and modify your file based on the messages. The
messages are updated automatically and continuously so you can see if your changes address the
issues noted in the messages. Some messages offer additional information, automatic code
correction, or both.

Enable Continuous Code Checking

To enable continuous code checking, on the Home tab, in the Environment section, click
Preferences. Select MATLAB > Code Analyzer, and then select the Enable integrated warning
and error messages check box. Set the Underlining option to Underline warnings and
errors.

When continuous code checking is enabled, MATLAB displays warning and error messages about
your code in the Editor and Live Editor. For example, the sample file lengthofline.m contains
several errors and warnings. Copy the file into your current folder and then open it in the Editor.
copyfile(fullfile(matlabroot,'help','techdoc','matlab_env','examples','lengthofline.m'))
fileattrib('lengthofline.m','+w');
edit('lengthofline.m')

View Code Analyzer Status for File
When you open a file in the Editor or Live Editor, the message indicator at the top of the indicator bar
shows the overall Code Analyzer status for the file.

Message Indicator Description
File contains syntax errors or other significant
issues.
File contains warnings or opportunities for
improvement, but no errors.
File contains no errors, warnings, or
opportunities for improvement.

For example, in lengthofline.m, the message indicator is , meaning that the file contains at
least one error.

 Check Code for Errors and Warnings Using the Code Analyzer

25-5

View Code Analyzer Messages
To go to the first code fragment containing a message, click the message indicator. The identified
code fragment is underlined in either red for errors or orange for warnings and improvement
opportunities. If the file contains an error, clicking the message indicator brings you to the first error.

For example, in lengthofline.m, when you click the message indicator, the cursor moves to line 47,
where the first error occurs. MATLAB displays the errors for that line next to the error marker in the
indicator bar. Multiple messages can represent a single problem or multiple problems. Addressing
one message might address all of them. Or, after you address one, the other messages might change
or what you need to do can become clearer.

25 Coding and Productivity Tips

25-6

To go to the next code fragment containing a message, click the message indicator. You also can click
a marker in the indicator bar to go to the line that the marker represents. For example, click the first
marker in the indicator bar in lengthofline.m. The cursor moves to the beginning of line 21.

To view the message for a code fragment, move the mouse pointer within the underlined code
fragment. Alternatively, you can position your cursor within the underlined code fragment and press
Ctrl+M. If additional information is available for the message, the message includes a Details
button. Click the button to display the additional information and any suggested user actions.

Fix Problems in Code
For each message in your code file, modify the code to address the problem noted in the message. As
you modify the code, the message indicator and underlining are updated to reflect changes you make,
even if you do not save the file.

For example, on line 47 in lengthofline.m, the message suggests a delimiter imbalance. When you
move the arrow keys over each delimiter, MATLAB does not appear to indicate a mismatch. However,
code analysis detects the semicolon in data{3}(;) and interprets it as the end of a statement.

To fix the problem in line 47, change data{3}(;) to data{3}(:). The single change addresses all
of the messages on line 47, and the underline no longer appears for the line. Because the change

removes the only error in the file, the message indicator at the top of the bar changes from to

, indicating that only warnings and potential improvements remain.

For some messages, MATLAB suggests an automatic fix that you can apply to fix the problem. If an
automatic fix is available for a problem, the code fragment is highlighted and the message includes a
Fix button.

 Check Code for Errors and Warnings Using the Code Analyzer

25-7

For example, on line 27 in lengthofline.m, place the mouse over the underlined and highlighted
code fragment prod. The displayed message includes a Fix button.

If you know how to fix the problem, perhaps from prior experience, click the Fix button. If you are
unfamiliar with the problem, right-click the highlighted code. The first item in the context menu
shows the suggested fix. Select the item to apply the fix.

If multiple instances of a problem exist, MATLAB might offer to apply the suggested fix for all
instances of the problem. To apply the fix for all instances of a problem, right-click the highlighted
code and select Fix All (n) Instances of This Issue. This option is not available for all suggested
fixes.

After you modify the code to address all the messages or disable designated messages, the message
indicator becomes green. The example file with all messages addressed has been saved as
lengthofline2.m. For example, to open the corrected version of the sample file lengthofline.m,
use this command:

open(fullfile(matlabroot,'help','techdoc',...
 'matlab_env', 'examples','lengthofline2.m'))

Create a Code Analyzer Message Report
You can create a report of Code Analyzer messages for all files in a folder.

To create a report for all files in a folder:

1 In the Current Folder browser, click the button.
2 Select Reports > Code Analyzer Report.
3 Modify your files based on the messages in the report.
4 Save the modified files.
5 Rerun the report to see if your changes addressed the issues noted in the messages.

25 Coding and Productivity Tips

25-8

To create a report for an individual MATLAB code file, use the mlintrpt function. For example, to
create a report for the sample file lengthofline.m, enter mlintrpt('lengthofline.m') in the
Command Window.

For more information, see “MATLAB Code Analyzer Report” on page 25-29.

Adjust Code Analyzer Message Indicators and Messages
You can specify which type of coding issues are underlined to best suit your current development
stage. For example, when first coding, you might prefer to underline only errors, because warnings
can be distracting. To change the underlining preferences, on the Home tab, in the Environment

section, click Preferences. Select MATLAB > Code Analyzer, and then select an Underlining
option.

You also can adjust what messages you see when analyzing your code. Code analysis does not provide
perfect information about every situation. Sometimes, you might not want to change the code based
on a message. If you do not want to change the code, and you do not want to see the indicator and
message for a specific line, you can suppress them. For example, the first message on line 48 of the
sample file lengthofline.m is Terminate statement with semicolon to suppress
output (in functions). Adding a semicolon to the end of a statement suppresses output and is a
common practice. Code analysis alerts you to lines that produce output, but lack the terminating
semicolon. If you want to view output from line 48, do not add the semicolon as the message
suggests.

You can suppress (turn off) the indicators for warning and error messages in these ways:

• Suppress an instance of a message in the current file.
• Suppress all instances of a message in the current file.
• Suppress all instances of a message in all files.

You cannot suppress error messages such as syntax errors.

Suppress an Instance of a Message in the Current File

You can suppress a specific instance of a Code Analyzer message in the current file. For example, to
suppress the message on line 48 in the sample file lengthofline.m, right-click the first underline
on line 48 and select Suppress 'Terminate statement with semicolon...' > On This Line.

The comment %#ok<NOPRT> appears at the end of the line, which instructs MATLAB to suppress the
Terminate statement with semicolon to suppress output (in functions) Code
Analyzer message for that line. The underline and mark in the indicator bar for the message
disappear.

If a line contains two messages that you do not want to display, right-click each underline separately
and select the appropriate entry from the context menu. The %#ok syntax expands. For example,
suppressing both messages for line 48 in the sample file lengthofline.m adds the comment
%#ok<NBRAK,NOPRT> at the end of the line.

Even if Code Analyzer preferences are set to enable this message, the specific instance of the
suppressed message does not appear because the %#ok takes precedence over the preference
setting. If you later decide you want to show the Terminate statement with semicolon to
suppress output (in functions) Code Analyzer message for that line, delete %#ok<NOPRT>
from the line.

 Check Code for Errors and Warnings Using the Code Analyzer

25-9

Suppress All Instances of a Message in the Current File

You can suppress all instances of a specific Code Analyzer message in the current file. For example, to
suppress all instances of the message on line 48 in the sample file lengthofline.m, right-click the
first underline on line 48 and select Suppress 'Terminate statement with semicolon...' > In This
File.

The comment %#ok<*NOPRT> appears at the end of the line, which instructs MATLAB to suppress all
instances of the Terminate statement with semicolon to suppress output (in
functions) Code Analyzer message in the current file. All underlines and marks in the message
indicator bar that correspond to this message disappear.

If a line contains two messages that you do not want to display anywhere in the current file, right-
click each underline separately and select the appropriate entry from the context menu. The %#ok
syntax expands. For the example, suppressing both messages for line 48 in the sample file
lengthofline.m adds the comment %#ok<*NBRAK,*NOPRT>.

Even if Code Analyzer preferences are set to enable this message, the message does not appear
because the %#ok takes precedence over the preference setting. If you later decide you want to show
all instances of the Terminate statement with semicolon to suppress output (in
functions) Code Analyzer message in the current file, delete %#ok<*NOPRT> from the line.

Suppress All Instances of a Message in All Files

You can disable all instances of a Code Analyzer message in all files. For example, to suppress all
instances in all files of the message on line 48 in the sample file lengthofline.m, right-click the
first underline on line 48 and select Suppress 'Terminate statement with semicolon...' > In All
Files. This option modifies the Code Analyzer preferences.

If you know which messages you want to suppress, you can disable them directly using Code Analyzer
preferences:

1
On the Home tab, in the Environment section, click Preferences.

2 Select MATLAB > Code Analyzer.
3 Search the messages to find the ones you want to suppress.
4 Clear the check box associated with each message you want to suppress in all files.
5 Click OK.

Save and Reuse Code Analyzer Message Settings

You can set options to enable or disable certain Code Analyzer messages, and then save those
settings to a file. When you want to use a settings file with a particular file, you select it from the
Code Analyzer preferences. The settings file remains in effect until you select another settings file.
Typically, you change the settings file when you have a subset of files for which you want to use a
particular settings file.

To save settings to a file:

1
On the Home tab, in the Environment section, click Preferences.

2 Select MATLAB > Code Analyzer.
3 Enable or disable specific messages or categories of messages.

25 Coding and Productivity Tips

25-10

4 Click the Actions button , select Save As, and then save the settings to a txt file.
5 Click OK.

You can reuse these settings for any MATLAB file, or provide the settings file to another user. To use
the saved settings:

1
On the Home tab, in the Environment section, click Preferences.

2 Select MATLAB > Code Analyzer.
3 Open the Active settings list and select Browse.
4 Choose from any of your settings files.

The settings you choose remain in effect for all MATLAB files until you select another set of Code
Analyzer settings.

Understand Code Containing Suppressed Messages
If you receive code that contains suppressed messages, you might want to review the messages
without having to unsuppress them first. A message might be in a suppressed state for any of the
following reasons:

• One or more %#ok<message-ID> directives are on a line of code that elicits a message specified
by <message-ID>.

• One or more %#ok<*message-ID> directives are in a file that elicits a message specified by
<message-ID>.

• The messages are cleared in the Code Analyzer preferences pane.
• The messages are disabled by default.

To determine why messages are suppressed:

1 Search the file for the %#ok directive and create a list of all the message IDs associated with that
directive.

2
On the Home tab, in the Environment section, click Preferences.

3 Select MATLAB > Code Analyzer.
4 In the search field, type msgid: followed by one of the message IDs from step 1. The message

list now contains only the message that corresponds to that ID. If the message is a hyperlink,
click it to see an explanation and suggested action for the message. The results can provide
insight into why the message is suppressed or disabled.

 Check Code for Errors and Warnings Using the Code Analyzer

25-11

5 Click the Clear search button to clear the search field, and then repeat step 4 for each
message ID from step 1.

6 To display messages that are disabled by default and disabled in the Preferences window, click
the down arrow to the right of the search field. Then, select Show Disabled Messages.

7 Review the message associated with each message ID to understand why it is suppressed in the
code or disabled in Preferences.

Understand the Limitations of Code Analysis
Code analysis is a valuable tool, but it has some limitations:

• Code analysis sometimes fails to produce Code Analyzer messages where you expect them.

By design, code analysis attempts to minimize the number of incorrect messages it returns, even if
this behavior allows some issues to go undetected.

• Code analysis sometimes produces messages that do not apply to your situation.

Clicking the Details button to display additional information for a message can help you
determine if the message applies to your situation. Error messages are almost always problems.
However, many warnings are suggestions to look at something in the code that is unusual, but
might be correct in your case.

Suppress a warning message if you are certain that the message does not apply to your situation.
If your reason for suppressing a message is subtle or obscure, include a comment giving the
rationale. That way, those who read your code are aware of the situation.

For more information, see “Adjust Code Analyzer Message Indicators and Messages” on page 25-9.

Distinguish Function Names from Variable Names

Code analysis cannot always distinguish function names from variable names. For the following code,
if the Code Analyzer message is enabled, code analysis returns the message, Code Analyzer
cannot determine whether xyz is a variable or a function, and assumes it is a

25 Coding and Productivity Tips

25-12

function. Code analysis cannot make a determination because xyz has no obvious value assigned to
it. However, the code might have placed the value in the workspace in a way that code analysis
cannot detect.

function y=foo(x)
 .
 .
 .
 y = xyz(x);
end

For example, in the following code, xyz can be a function or a variable loaded from the MAT-file.
Code analysis has no way of making a determination.

function y=foo(x)
 load abc.mat
 y = xyz(x);
end

Variables might also be undetected by code analysis when you use the eval, evalc, evalin, or
assignin functions.

If code analysis mistakes a variable for a function, do one of the following:

• Initialize the variable so that code analysis does not treat it as a function.
• For the load function, specify the variable name explicitly in the load command line. For

example:

 function y=foo(x)
 load abc.mat xyz
 y = xyz(x);
 end

Distinguish Structures from Handle Objects

Code analysis cannot always distinguish structures from handle objects. In the following code, if x is
a structure, you might expect a Code Analyzer message indicating that the code never uses the
updated value of the structure. If x is a handle object, however, then this code can be correct.

function foo(x)
 x.a = 3;
end

Code analysis cannot determine whether x is a structure or a handle object. To minimize the number
of incorrect messages, code analysis returns no message for the previous code, even though it might
contain a subtle and serious bug.

Distinguish Built-In Functions from Overloaded Functions

If some built-in functions are overloaded in a class or on the path, Code Analyzer messages might
apply to the built-in function, but not to the overloaded function you are calling. In this case, suppress
the message on the line where it appears or suppress it for the entire file.

For information on suppressing messages, see “Adjust Code Analyzer Message Indicators and
Messages” on page 25-9.

 Check Code for Errors and Warnings Using the Code Analyzer

25-13

Determine the Size or Shape of Variables

Code analysis has a limited ability to determine the type of variables and the shape of matrices. Code
analysis might produce messages that are appropriate for the most common case, such as for vectors.
However, these messages might be inappropriate for less common cases, such as for matrices.

Analyze Class Definitions with Superclasses

Code Analyzer has limited capabilities to check class definitions with superclasses. For example, Code
Analyzer cannot always determine if the class is a handle class, but it can sometimes validate custom
attributes used in a class if the attributes are inherited from a superclass. When analyzing class
definitions, Code Analyzer tries to use information from the superclasses, but often cannot get
enough information to make a certain determination.

Analyze Class Methods

Most class methods must contain at least one argument that is an object of the same class as the
method. But this argument does not always have to be the first argument. When it is, code analysis
can determine that an argument is an object of the class you are defining, and can do various checks.
For example, code analysis can check that the property and method names exist and are spelled
correctly. However, when code analysis cannot determine that an object is an argument of the class
you are defining, then it cannot provide these checks.

Enable MATLAB Compiler Deployment Messages
You can switch between showing or hiding MATLAB Compiler deployment messages when you work
on a file by changing the Code Analyzer preference for this message category. Your choice likely
depends on whether you are working on a file to be deployed. Changing this preference also changes
the setting in the Editor. Similarly, changing the setting in the Editor changes this preference.
However, if the Code Analyzer preferences are open when you modify the setting in the Editor, the
changes are not reflected in the Preferences window. Whether you change the setting in the Editor or
the Preferences window, the change applies to the Editor and the Code Analyzer Report.

To enable MATLAB Compiler™ deployment messages:

1
On the Home tab, in the Environment section, click Preferences.

2 Select MATLAB > Code Analyzer.
3 Click the down arrow next to the search field, and then select Show Messages in Category >

MATLAB Compiler (Deployment) Messages.
4 Click the Enable Category button to the right of the MATLAB Compiler (Deployment)

Messages category title.
5 Clear individual messages that you do not want to display for your code.
6 Decide if you want to save these settings, so you can reuse them the next time you work on a file

to be deployed.

The settings txt file, which you can create as described in “Save and Reuse Code Analyzer Message
Settings” on page 25-10, includes the status of this setting.

See Also
mlintrpt | checkcode

25 Coding and Productivity Tips

25-14

Related Examples
• “MATLAB Code Analyzer Report” on page 25-29
• “Code Analyzer Preferences”

 Check Code for Errors and Warnings Using the Code Analyzer

25-15

Edit and Format Code
To edit you code, in the Editor and Live Editor, you can use column selection, code autocompletion,
and refactoring. To format your code and make your code easier to read, use indentation, text-width
indication, and code folding.

Column Selection
When adding or editing code in the Editor and Live Editor, you can select and edit a rectangular area
of code (also known as column selection or block edit). If you want to copy or delete several columns
of data (as opposed to rows) or if you want to edit multiple lines at one time, selecting and editing
code is useful. To select a rectangular area, press the Alt key while making a selection with the
mouse. On macOS systems, use the Option key instead.

For example, select the second column of data in A.

Type 0 to set all the selected values to 0.

Before R2021b, column selection is available only in the Live Editor, not in the Editor.

Change Case
You can change the case of selected text or code from all uppercase to lowercase, or vice versa, in the
Editor and Live Editor. Select the text, right-click, and select Change Case. Alternatively, you can
press Ctrl+Shift+A. If the text contains uppercase and lowercase text, MATLAB changes the case to
all uppercase.

Before R2021b, the Change Case option is available only in the Live Editor, not in the Editor.

Automatically Complete Code
MATLAB automatically completes parentheses and quotes when entering code in the Editor and Live
Editor. For example, if you type an open parenthesis in the Editor or Live Editor, MATLAB adds the
closing parenthesis. MATLAB also automatically splits comments, character vectors, strings, and
parentheses when you press Enter. For example, if you press Enter in a comment, MATLAB moves
the text after the cursor to a new line and adds a percent (%) symbol to the beginning of the new line.

MATLAB can also automatically complete block endings in control flow statements and function and
class definitions. To autocomplete block endings, on the Home tab, in the Environment section,

25 Coding and Productivity Tips

25-16

click Preferences. Select Editor/Debugger > Automatic Completions and in the Autocoding
options section, select one or more of the Autocomplete block endings options.

To undo an automatic code completion, press Ctrl+Z or the Undo button. To disable automatic
code completions, in the Editor/Debugger > Automatic Completions preferences, clear one or
more of the options in the Autocoding options section. For more information, see “Editor/Debugger
Preferences”.

Before R2021b, MATLAB completes code only in the Live Editor, not in the Editor.

Refactor Code
You can break large scripts or functions into smaller pieces by converting selected areas of code into
functions or local functions, known as code refactoring.

To refactor a selected area of code:

1 Select one or more lines of code.
2 On the Editor or Live Editor tab, in the Code section, click Refactor and select from the

available options.
3 Enter a name for the new function. MATLAB creates a function with the selected code and

replaces the original code with a call to the newly created function.

Before R2021b, refactoring options are available only in the Live Editor, not in the Editor.

Indent Code
Indenting code makes functions and statements such as while loops easier to read. By default,
MATLAB indents code such as functions and the body of loops in the Editor and Live Editor as you
type. When you indent lines by using tabs or spaces, MATLAB also aligns subsequent lines with those
lines.

You can enable or disable automatic indenting depending on how you prefer to write code. On the

Home tab, in the Environment section, click Preferences. Select MATLAB > Editor/
Debugger > Language and in the Language drop-down list, select a programming language. Then,
in the Indenting section of the selected language, select or clear the Apply smart indenting while
typing option.

Note Indenting preferences are not supported for TLC, VHDL, or Verilog.

In MATLAB Online, indenting preferences are located under MATLAB > Editor/Debugger >
MATLAB Language and MATLAB > Editor/Debugger > Other Languages.

To indent selected lines of code if automatic indenting is disabled, go to the Editor or Live Editor

tab and in the Code section, click .

To manually increase the indent of selected lines further to the left or right, on the Editor or Live

Editor tab, click , or . Manually increasing the indent works whether automatic indenting is

 Edit and Format Code

25-17

enabled or disabled. Alternatively, you can use the Tab key or the Shift+Tab key, respectively. If you
select the Emacs-style Tab key smart indenting option in the MATLAB > Editor/Debugger >
Tab preferences, the selected lines indent according to indenting practices.

Before R2018a, indenting preferences are supported only in the Editor, not in the Live Editor.

Specify Function Indenting Preferences

You can specify how functions indent in MATLAB code files. On the Home tab, in the Environment

section, click Preferences. Select MATLAB > Editor/Debugger > Language and in the
Language drop-down list, select MATLAB. Then, select from the Function indenting format
options:

• Classic — The Editor and Live Editor align the function code with the function declaration.

• Indent nested functions — The Editor and Live Editor indent the function code within a
nested function.

• Indent all functions — The Editor and Live Editor indent the function code for main and
nested functions.

In MATLAB Online, MATLAB indenting preferences are located under MATLAB > Editor/Debugger
> MATLAB Language.

Fold Code
Code folding expands and collapses blocks of MATLAB code in the Editor. You can use code folding to
hide code that you are not currently working on. Code folding improves the readability of a file that
contains numerous functions or other blocks of code. Code folding is not supported in the Live Editor.

For example, you can fold:

25 Coding and Productivity Tips

25-18

• Code sections
• for and parfor blocks
• Function code
• Class code
• Multiline comments

To expand or collapse a block of code, click the plus or minus sign that appears to the left of the
construct in the Editor. Alternatively, you can use the Ctrl+Shift+. (period) and Ctrl+. (period)
keyboard shortcuts or use the code folding buttons in the View tab.

To expand or collapse all of the code in a file, place your cursor anywhere within the file, go to the

View tab, and select Expand All or Collapse All. Alternatively, you can use the Ctrl+Shift
+, (comma) and Ctrl+, (comma) keyboard shortcuts.

Note If you print a file with one or more collapsed constructs, those constructs are expanded in the
printed version of the file.

You can change which programming constructs can be folded and whether a programming construct
is collapsed the first time that you open a MATLAB file. On the Home tab, in the Environment

section, click Preferences. Select Editor/Debugger > Code Folding, and then adjust the
preference options.

Change the Right-Side Text Limit Indicator
By default, a light gray vertical line (rule) appears at column 75 in the Editor, indicating where a line
exceeds 75 characters. You can set this text limit indicator to another value, which is useful, for
example, if you want to view the code in another text editor that has a different line width limit. The
right-side text limit indicator is not supported in the Live Editor.

To hide or change the appearance of the vertical line:

1
On the Home tab, in the Environment section, click Preferences.

2 In the Preferences window, select MATLAB > Editor/Debugger > Display.
3 Adjust the settings in the Right-hand text limit section.

The right-side text limit indicator is a visual cue only and does not prevent text from exceeding the
limit. To wrap comment text at a specified column number automatically, go to the Home tab and in
the Environment section, click Preferences. Select MATLAB > Editor/Debugger > Language,
and adjust the Comment formatting preferences. To adjust Comment formatting preferences in
MATLAB Online, select Editor/Debugger > MATLAB Language.

See Also

Related Examples
• “Create Scripts” on page 19-2

 Edit and Format Code

25-19

• “Create Live Scripts in the Live Editor” on page 20-6
• “Format Text in the Live Editor” on page 20-18

25 Coding and Productivity Tips

25-20

Find and Replace Text in Files and Go to Location
Find and replace text in the current file or multiple files, automatically rename variables or functions,
and go to a location in a file.

Find and Replace Any Text in Current File

You can search for, and optionally replace, any text within a file open in the Editor or Live Editor. To

search for text in a file, on the Editor or Live Editor tab, in the Navigate section, click Find. You
also can use the Ctrl+F keyboard shortcut.

In the find and replace dialog box, enter the text that you want to search for and then use the and
 buttons to search backward or forward through the file. You also can use the F3 and Shift+F3

keyboard shortcuts.

Select a search option to change how the Editor and Live Editor search for text:

• Match case – Select the Match case button to match only text with the precise case of the
search text.

• Find whole words only – Select the Whole word button to search only for exact full-word
matches.

• Regular expression search – Select the Regular Expression button to search using a regular
expression. For example, to find all the words in a file that contain the letter x, enter the
expression \w*x\w* and select the Regular Expression button . Multiline search, including the
use of the control characters \n and \r, is not supported. In addition, grouping operators, token
operators, comments, and dynamic expressions are not supported. For more information about
using regular expressions, see “Regular Expressions” on page 2-52.

To replace text in the file, click the expand button to the left of the search field to open the replace
options. Then, enter the text that you want to replace the search text with and use the Replace and
Replace all buttons to replace the text.

Find and Replace Functions or Variables in Current File
In the Editor and Live Editor, you can find all references to a particular function or variable in a file
by selecting an instance of that function or variable. When you select an instance, MATLAB
automatically highlights all other references of that function or variable in teal blue. In addition,
MATLAB adds a marker for each reference in the indicator bar. To see what line number a marker in
the indicator bar represents, hover over it. To navigate to the function or variable reference indicated
by the marker, click the marker.

 Find and Replace Text in Files and Go to Location

25-21

Note If the indicator bar contains a code analyzer marker and a variable marker for the same line,
the variable marker takes precedence.

Finding functions and variables using automatic highlighting is more efficient than using text finding
tools because when using automatic highlighting, MATLAB only finds references to that particular
function or variable, not other occurrences. For example, it does not find instances of the function or
variable name in comments. Furthermore, MATLAB only finds references to the same variable. That
is, if two variables use the same name, but are in different scopes on page 21-10, highlighting one
does not cause the other to highlight.

For example, if you select the first instance of the variable i in the rowTotals function, MATLAB
highlights that instance and the two other instances of i. In addition, MATLAB displays three
variables markers in the indicator bar.

To disable automatic highlighting of functions and variables, go to the Home tab and in the

Environment section, click Preferences. In MATLAB > Colors > Programming Tools, clear
the Automatically highlight option.

Automatically Rename All Variables or Functions in a File
You can automatically rename multiple references to a variable or function variable within a file when
you rename any of the following:

Variable or Function Renamed Example
Function name in a function declaration Rename foo in:

function foo(m)

25 Coding and Productivity Tips

25-22

Variable or Function Renamed Example
Input or output variable name in a function
declaration

(Except varargin and varargout)

Rename y or m in:

function y = foo(m)

Variable name on the left side of assignment
statement

(Except global variable names)

Rename y in:

y = 1

When you rename a variable or function, if there is more than one reference to that variable or
function in the file, MATLAB prompts you to rename all instances by pressing Shift + Enter.
(Typically, multiple references to a function in a file only occur when you use nested functions or local
functions.)

To undo automatic name changes, click button once.

Automatic variable and function renaming is enabled by default. To disable it, on the Home tab, in

the Environment section, click Preferences. Select MATLAB > Editor/Debugger >
Language and in the Language field, select MATLAB. Then, clear the Enable automatic variable
and function renaming preference.

In MATLAB Online, the Enable automatic variable and function renaming preference is located
in MATLAB > Editor/Debugger > MATLAB Language.

Find Text in Multiple File Names or Files
You can find folders and file names that include specified text, or whose contents contain specified
text using the Find Files dialog box. To open the Find Files dialog box, on the Editor or Live Editor

tab, in the Navigate section, click Find and select Find Files. For more information, see “Find
Files and Folders”.

 Find and Replace Text in Files and Go to Location

25-23

Go To Location in File
You can go to a specific location in a file, set bookmarks, navigate backward and forward within the
file, and open a file or variable from within a file.

Navigate to a Specific Location

This table show how to navigate to a specific location in a file open in the Editor and Live Editor.

Go To Instructions Notes
Line Number On the Editor or Live Editor tab, in the

Navigate section, click Go To . Select
Go to Line... and specify the line that you
want to navigate to.

None

Function definition On the Editor or Live Editor tab, in the

Navigate section, click Go To . In the
Function section, select the local function
or nested function that you want to
navigate to.

You also can select the file in the Current
Folder browser and click the up arrow at
the bottom of Current Folder browser to
open the Details panel. Then, in the Details

panel, double-click the function icon
corresponding to the title of the function or
local function that you want to navigate to.

Includes local functions and nested
functions.

For both class and function files, the
functions list in alphabetical order—except
that in function files, the name of the main
function always appears at the top of the
list.

Code Section On the Editor or Live Editor tab, in the

Navigate section, click Go To . In the
Sections section, select the title of the
code section that you want to navigate to.

You also can select the file in the Current
Folder browser and click the up arrow at
the bottom of Current Folder browser to
open the Details panel. Then, in the Details

panel, double-click the section icon
corresponding to the title of the section
that you want to navigate to.

For more information, see “Create and Run
Sections in Code” on page 19-5.

25 Coding and Productivity Tips

25-24

Go To Instructions Notes
Property In the Current Folder browser, select the

file that you want to navigate through and
click the up arrow at the bottom of
Current Folder browser to open the Details
panel. Then, in the Details panel, double-

click the property icon corresponding
to the name of the property that you want
to navigate to.

For more information, see “Ways to Use
Properties”.

Method In the Current Folder browser, select the
file that you want to navigate through and
click the up arrow at the bottom of
Current Folder browser to open the Details
panel. Then, in the Details panel, double-

click the icon corresponding to the
name of the method that you want to
navigate to.

For more information, see “Methods in
Class Design”.

Bookmark On the Editor or Live Editor tab, and in
the Navigate section, click Bookmark
. Then, select Previous or Next.

For information about setting and clearing
bookmarks, see “Set Bookmarks” on page
25-25.

Note The Details panel does not display details for live scripts or live functions and is not available in
MATLAB Online.

Set Bookmarks

You can set a bookmark at any line in a file in the Editor and Live Editor so that you can quickly
navigate to the bookmarked line. This is particularly useful in long files. For example, suppose that
while working on a line, you want to look at another part of the file, and then return. Set a bookmark
at the current line, go to the other part of the file, and then use the bookmark to return.

To set a bookmark in the Editor and Live Editor, position the cursor on the line that you want to add

the bookmark to. Then, go to the Editor or Live Editor tab, and in the Navigate section, click
Bookmark. To clear the bookmark, click Bookmark , and select Set/Clear. You also can click the
bookmark icon to the left of the line.

Starting in R2021b, MATLAB maintains bookmarks after you close a file.

Navigate Backward and Forward in Files

In the Editor and Live Editor, you can access lines in a file in the same sequence that you previously
navigated or edited them. To navigate backward and forward in sequence, on the Editor or Live

Editor tab, in the Navigate section, click the and buttons.

Editing a line or navigating to another line using the list of features described in “Navigate to a
Specific Location” on page 25-24 interrupts the backward and forward sequence. Once the sequence
is interrupted, you can still go to the lines preceding the interruption point in the sequence, but you

 Find and Replace Text in Files and Go to Location

25-25

cannot go to any lines after that point. Any lines that you edit or navigate to after interrupting the
sequence are added to the sequence after the interruption point.

For example, open a file containing more than 6 lines and edit lines 2, 4, and 6. Click the button

to return to line 4, and then again to return to line 2. Click the button to return to line 4. Edit line

3. This interrupts the sequence. You can no longer use the button to return to line 6. You can,

however, click the button to return to line 2.

Open a File or Variable from Within a File

You can open a function, file, variable, or Simulink model from within a file in the Editor or Live
Editor. Position the cursor on the name, right-click, and select Open selection. The Editor or Live
Editor performs a action based on the selection, as described in this table.

Item Action
Local function Navigates to the local function within the current file, if that file is a

MATLAB code file. If no function by that name exists in the current file,
the Editor or Live Editor runs the open function on the selection,
which opens the selection in the appropriate tool.

Text file Opens in the Editor.
Figure file (.fig) Opens in a figure window.
MATLAB variable that is in
the current workspace

Opens in the Variables Editor.

Model Opens in Simulink.
Other If the selection is some other type, Open selection looks for a

matching file in a private folder in the current folder and performs the
appropriate action.

See Also
lookfor

Related Examples
• “Find Files and Folders”

25 Coding and Productivity Tips

25-26

Add Reminders to Files

Annotating a file makes it easier to find areas of your code that you intend to improve, complete, or
update later. To annotate a file, add comments with the text TODO, FIXME, or any text of your
choosing. After you annotate several files, run the TODO/FIXME Report, to identify all the MATLAB
code files within a given folder that you have annotated.

This sample TODO/FIXME Report shows a file containing the text TODO, FIXME, and NOTE. The
search is case insensitive.

Working with TODO/FIXME Reports
1 Use the Current Folder browser to navigate to the folder containing the files for which you want

to produce a TODO/FIXME report.

Note You cannot run reports when the path is a UNC (Universal Naming Convention) path; that
is, a path that starts with \\. Instead, use an actual hard drive on your system, or a mapped
network drive.

2 On the Current Folder browser, click , and then select Reports > TODO/FIXME Report.

The TODO/FIXME Report opens in the MATLAB Web Browser.
3 In the TODO/FIXME Report window, select one or more of the following to specify the lines that

you want the report to include:

• TODO
• FIXME
• The text field check box

You can then enter any text in this field, including a regular expression on page 2-52. For
example, you can enter NOTE, tbd, or re.*check.

Specifying custom text or which lines to search for is not supported in MATLAB Online.
4 Run the report on the files in the current folder, by clicking Rerun This Report.

The window refreshes and lists all lines in the MATLAB files within the specified folder that
contain the text you selected in step 1. Matches are not case sensitive.

If you want to run the report on a folder other than the one currently specified in the report
window, change the current folder. Then, click Run Report on Current Folder.

 Add Reminders to Files

25-27

To open a file in the Editor at a specific line, click the line number in the report. Then you can change
the file, as needed.

Suppose you have a file, area.m, in the current folder. The code for area.m appears in the image
that follows.

When you run the TODO/FIXME report on the folder containing area.m, with the text TODO and
FIXME selected and the text NOTE specified and selected, the report lists:
9 and rectangle. (todo)
14 Fixme: Is the area of hemisphere as below?
17 fIXME
21 NOTE: Find out from the manager if we need to include

Notice the report includes the following:

• Line 9 as a match for the text TODO. The report includes lines that have the selected text
regardless of its placement within a comment.

• Lines 14 and 17 as a match for the text FIXME. The report matches selected text in the file
regardless of their casing.

• Line 21 as a match for the text NOTE. The report includes lines that have text as specified in the
text field, assuming that you select the text field.

25 Coding and Productivity Tips

25-28

MATLAB Code Analyzer Report

Run the Code Analyzer Report

The Code Analyzer Report displays potential errors and problems, as well as opportunities for
improvement in your code through messages. For example, a common message indicates that a
variable foo might be unused.

To run the Code Analyzer Report:

1 In the Current Folder browser, navigate to the folder that contains the files you want to check.
2 Click , and then select Reports > Code Analyzer Report.

The report displays in the MATLAB Web Browser, showing those files identified as having
potential problems or opportunities for improvement.

3 For each message in the report, review the suggestion and your code. Click the line number to
open the file in the Editor at that line, and change the file based on the message. Use the
following general advice:

• If you are unsure what a message means or what to change in the code, click the link in the
message if one appears. If the message does not contain a link, and you are unsure what a
message means or what to do, search for related topics in the Help browser. For more
information, see “Check Code for Errors and Warnings Using the Code Analyzer” on page 25-
5.

• The messages do not provide perfect information about every situation and in some cases, you
might not want to change anything based on the message. For more information, see
“Understand the Limitations of Code Analysis” on page 25-12.

• If there are certain messages or types of messages you do not want to see, you can suppress
them. For more information, see “Adjust Code Analyzer Message Indicators and Messages” on
page 25-9.

 MATLAB Code Analyzer Report

25-29

4 After modifying the file, save it. Consider saving the file to a different name if you made
significant changes that might introduce errors. Then you can refer to the original file, if needed,

to resolve problems with the updated file. Use the Compare button on the Editor or Live
Editor tab to help you identify the changes you made to the file. For more information, see
“Compare Files and Folders and Merge Files”.

5 Run and debug the file or files again to be sure that you have not introduced any inadvertent
errors.

6 If the report is displaying, click Rerun This Report to update the report based on the changes
you made to the file. Ensure that the messages are gone, based on the changes you made to the
files. To rerun the report in MATLAB Online, in the Current Folder browser, click , and then
select Reports > Code Analyzer Report.

Change Code Based on Code Analyzer Messages
For information on how to correct the potential problems presented in Code Analyzer messages, use
the following resources:

• Open the file in the Editor and click the Details button in the tooltip, as shown in the image
following this list. An extended message opens. However, not all messages have extended
messages.

• Use the Help browser Search pane to find documentation about terms presented in the messages.

The following image shows a tooltip with a Details button. The orange line under the equals (=) sign
indicates a tooltip displays if you hover over the equals sign. The orange highlighting indicates that
an automatic fix is available.

Other Ways to Access Code Analyzer Messages
You can get Code Analyzer messages using any of the following methods. Each provides the same
messages, but in a different format:

• Access the Code Analyzer Report for a file from the Profiler detail report.
• Run the checkcode function, which analyzes the specified file and displays messages in the

Command Window.
• Run the mlintrpt function, which runs checkcode and displays the messages in the Web

Browser.
• Use automatic code checking while you work on a file in the Editor. For more information, see

“Check Code for Errors and Warnings Using the Code Analyzer” on page 25-5.

25 Coding and Productivity Tips

25-30

See Also
mlintrpt | checkcode

Related Examples
• “Check Code for Errors and Warnings Using the Code Analyzer” on page 25-5
• “Code Analyzer Preferences”

 MATLAB Code Analyzer Report

25-31

MATLAB Code Compatibility Analyzer
The Code Compatibility Analyzer is a convenient tool that analyzes your code, lists the entire set of
compatibility issues in tabular format, and provides you with instructions on how to address these
compatibility issues. The report enables you to:

• Identify the compatibility issues that you must address for your code to run properly in the current
MATLAB release.

• Estimate the effort required to update your code when you upgrade to a newer MATLAB release.
• Improve your code by replacing functionality that is not recommended.

The Code Compatibility Analyzer displays the locations in your code that are affected by compatibility
issues and provides links to the documentation for more information on how to make the necessary
changes at each location.

Open the Code Compatibility Analyzer
To run the Code Compatibility Analyzer:

1 In the Current Folder browser, navigate to and open the folder that contains the code files you
want to analyze.

2 In the Current Folder browser that lists the files you want to analyze, either click or right-click
in the white space of the browser. Both options open a menu. Select Reports > Code
Compatibility Report. Alternatively, you can run codeCompatibilityReport at the command
prompt to generate the report or select Code Compatibility Analyzer from the Apps tab.

The report displays in the MATLAB Web Browser, showing potential compatibility issues. For
example:

25 Coding and Productivity Tips

25-32

3 Update your code to resolve the syntax errors for each file listed in the Syntax Errors section.
Syntax errors result in code that does not run. While most likely the code did not run properly in
previous releases, syntax errors impact compatibility analysis. For example, Parse error at '}':
usage might be invalid MATLAB syntax.

4 For each functionality listed in the report, review the issue description and your code. Messages
include the line numbers to help locate the issue in your code. To open the file in the Editor at
that line, click the line number. Then change the file based on the message. If you are unsure
what a message means or what to change in the code, click the Documentation link associated
with the message.

Each functionality listed in the report displays a recommended action. You also can use the
following general advice:

• Functionality that has been removed — Update your code to avoid compatibility errors in
the current release.

• Functionality that has changed behavior — Confirm that the change in behavior is
acceptable, and if not, update your code for the current release.

 MATLAB Code Compatibility Analyzer

25-33

• Unsupported functionality that might cause errors — Files listed here use functionality
that is unsupported, undocumented, and not intended for customer use. Update your code to
use documented functionality to avoid errors and unexpected behavior changes.

• Functionality that will be removed — Update your code now or in a later release. Updating
your code now makes future upgrades easier.

• Functionality that will change behavior — Investigate these changes now to make future
upgrades easier.

• New functionality that might improve code — Consider updating your code. Current code
is expected to continue working in future releases but newer functionality is recommended.

The Code Compatibility Analyzer also includes information about the checks performed on your
code and the list of files that MATLAB analyzed for code compatibility.

Programmatic Use
When you generate a Code Compatibility Analyzer through the current folder browser, MATLAB
analyzes code in the current working folder and subfolders. However, if you generate a report
programmatically, you can specify particular files to analyze or to exclude subfolders from analysis.
To generate a report programmatically, use one of the following methods.

• To generate a report that opens in the MATLAB® Web Browser programmatically, use
codeCompatibilityAnalyzer and specify the folder you wish to analyze.

• To generate a report for the current folder and it's subfolders, use the
codeCompatibilityReport function.

• To return a CodeCompatibilityAnalysis object that contains the report information, use the
analyzeCodeCompatibility function. You can then display a report for the stored object using
the codeCompatibilityReport function.

Unsupported Functionality

The Code Compatibility Analyzer checks for functionality that is unsupported, undocumented, and not
intended for use. Such features are subject to change or removal without notice and can cause future
errors. In some cases there is documented replacement functionality, but there might be no simple
replacement. Contact MathWorks Support to describe your usage and request supported
replacement.

See Also
Code Compatibility Analyzer | analyzeCodeCompatibility | codeCompatibilityReport |
CodeCompatibilityAnalysis

25 Coding and Productivity Tips

25-34

https://www.mathworks.com/company/aboutus/contact_us.html

Code Generation Readiness Tool

The code generation readiness tool screens MATLAB code for features and functions that code
generation does not support. The tool provides a report that lists the source files that contain
unsupported features and functions. It is possible that the tool does not detect all code generation
issues. Under certain circumstances, it is possible that the tool can report false errors. Therefore,
before you generate code, verify that your code is suitable for code generation by generating a MEX
function.

The code generation readiness tool does not report functions that the code generator automatically
treats as extrinsic. Examples of such functions are plot, disp, and figure.

Issues Tab

On the Issues tab, the tool displays information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor. To learn more about the
issues and how to fix them, use the Code Analyzer.

• Unsupported MATLAB function calls, language features, and data types.

You can also:

 Code Generation Readiness Tool

25-35

• View your MATLAB code inside the Code Generation Readiness Tool. When you select an issue,
the part of your MATLAB code that caused this issue gets highlighted.

• Group the readiness results either by issue or by file.
• Select the language that the code generation readiness analysis uses.
• Refresh the code generation readiness analysis if you updated your MATLAB code.
• Export the analysis report either as plain text file or as a coder.ScreenerInfo object in the

base workspace.

Files Tab

If the code that you are checking calls functions in other MATLAB code files, the Files tab shows the
call dependency between these files. If you select Show MathWorks Functions, the report also lists
the MathWorks functions that your function calls.

See Also
coder.screener | coder.ScreenerInfo Properties

Related Examples
• “MATLAB Language Features Supported for C/C++ Code Generation” (MATLAB Coder)

25 Coding and Productivity Tips

25-36

• “Functions and Objects Supported for C/C++ Code Generation” (MATLAB Coder)

 Code Generation Readiness Tool

25-37

Programming Utilities

• “Identify Program Dependencies” on page 26-2
• “Security Considerations to Protect Your Source Code” on page 26-6
• “Create a Content-Obscured File with P-Code” on page 26-9
• “Create Hyperlinks that Run Functions” on page 26-11
• “Create and Share Toolboxes” on page 26-14
• “Run Parallel Language in MATLAB” on page 26-20

26

Identify Program Dependencies
If you need to know what other functions and scripts your program is dependent upon, use one of the
techniques described below.

Simple Display of Program File Dependencies
For a simple display of all program files referenced by a particular function, follow these steps:

1 Type clear functions to clear all functions from memory (see Note below).

Note clear functions does not clear functions locked by mlock. If you have locked functions
(which you can check using inmem) unlock them with munlock, and then repeat step 1.

2 Execute the function you want to check. Note that the function arguments you choose to use in
this step are important, because you can get different results when calling the same function
with different arguments.

3 Type inmem to display all program files that were used when the function ran. If you want to see
what MEX-files were used as well, specify an additional output:

[mfiles, mexfiles] = inmem

Detailed Display of Program File Dependencies
For a more detailed display of dependent function information, use the
matlab.codetools.requiredFilesAndProducts function. In addition to program files,
matlab.codetools.requiredFilesAndProducts shows which MathWorks products a particular
function depends on. If you have a function, myFun, that calls to the edge function in the Image
Processing Toolbox™:

[fList,pList] = matlab.codetools.requiredFilesAndProducts('myFun.m');
fList

fList =

 'C:\work\myFun.m'

The only required program file, is the function file itself, myFun.

{pList.Name}'

ans =

 'MATLAB'
 'Image Processing Toolbox'

The file, myFun.m, requires both MATLAB and the Image Processing Toolbox.

Dependencies Within a Folder

The Dependency Report shows dependencies among MATLAB code files in a folder. Use this report to
determine:

26 Programming Utilities

26-2

• Which files in the folder are required by other files in the folder
• If any files in the current folder will fail if you delete a file
• If any called files are missing from the current folder

The report does not list:

• Files in the toolbox/matlab folder because every MATLAB user has those files.

Therefore, if you use a function file that shadows a built-in function file, MATLAB excludes both
files from the list.

• Files called from anonymous functions.
• The superclass for a class file.
• Files called from eval, evalc, run, load, function handles, and callbacks.

MATLAB does not resolve these files until run time, and therefore the Dependency Report cannot
discover them.

• Some method files.

The Dependency Report finds class constructors that you call in a MATLAB file. However, any
methods you execute on the resulting object are unknown to the report. These methods can exist
in the classdef file, as separate method files, or files belonging to superclass or superclasses of
a method file.

To provide meaningful results, the Dependency Report requires the following:

• The search path when you run the report is the same as when you run the files in the folder. (That
is, the current folder is at the top of the search path.)

• The files in the folder for which you are running the report do not change the search path or
otherwise manipulate it.

• The files in the folder do not load variables, or otherwise create name clashes that result in
different program elements with the same name.

Note Do not use the Dependency Report to determine which MATLAB code files someone else needs
to run a particular file. Instead use the matlab.codetools.requiredFilesAndProducts
function.

Creating Dependency Reports

1 Use the Current Folder pane to navigate to the folder containing the files for which you want to
produce a Dependency Report.

Note You cannot run reports when the path is a UNC (Universal Naming Convention) path; that
is, a path that starts with \\. Instead, use an actual hard drive on your system, or a mapped
network drive.

2 On the Current Folder pane, click , and then select Reports > Dependency Report.

The Dependency Report opens in the MATLAB Web Browser.
3 If you want, select one or more options within the report, as follows:

 Identify Program Dependencies

26-3

• To see a list of all MATLAB code files (children) called by each file in the folder (parent), select
Show child functions.

The report indicates where each child function resides, for example, in a specified toolbox. If
the report specifies that the location of a child function is unknown, it can be because:

• The child function is not on the search path.
• The child function is not in the current folder.
• The file was moved or deleted.

• To list the files that call each MATLAB code file, select Show parent functions.

The report limits the parent (calling) functions to functions in the current folder.
• To include local functions in the report, select Show subfunctions. The report lists local

functions directly after the main function and highlights them in gray.
4 Click Run Report on Current Folder.

Reading and Working with Dependency Reports

The following image shows a Dependency Report. It indicates that chirpy.m calls two files in Signal
Processing Toolbox™ and one in Image Processing Toolbox. It also shows that go.m calls mobius.m,
which is in the current folder.

The Dependency Report includes the following:

• MATLAB File List

The list of files in the folder on which you ran the Dependency Report. Click a link in this column
to open the file in the Editor.

• Children

26 Programming Utilities

26-4

The function or functions called by the MATLAB file.

Click a link in this column to open the MATLAB file listed in the same row, and go to the first
reference to the called function. For instance, suppose your Dependency Report appears as shown
in the previous image. Clicking \images\images\erode.m opens chirpy.m and places the cursor
at the first line that references erode. In other words, it does not open erode.m.

• Multiple class methods

Because the report is a static analysis, it cannot determine run-time data types and, therefore,
cannot identify the particular class methods required by a file. If multiple class methods match a
referenced method, the Dependency Report inserts a question mark link next to the file name. The
question mark appears in the following image.

Click the question mark link to list the class methods with the specified name that MATLAB might
use. MATLAB lists almost all the method files on the search path that match the specified method
file (in this case, freqresp.m). Do not be concerned if the list includes methods of classes and
MATLAB built-in functions that are unfamiliar to you.

It is not necessary for you to determine which file MATLAB will use. MATLAB determines which
method to use depending on the object that the program calls at run time.

 Identify Program Dependencies

26-5

Security Considerations to Protect Your Source Code
Although MATLAB source code (.m) is executable by itself, the contents of MATLAB source files are
easily accessed, revealing design and implementation details. If you do not want to distribute your
proprietary application code in this format, you can use one or more of these options instead:

• “Create P-Code Files” on page 26-6 — Convert plain text MATLAB files to a content-obscured
execute-only format.

• “Build Standalone Executables” on page 26-6 — Use MATLAB Compiler/Simulink Compiler to
generate standalone applications from MATLAB programs or Simulink models.

• “Use Model Protection” on page 26-7 — Use Model Protection to conceal the contents of
Simulink models.

• “Convert Code to Native Code” on page 26-7 — Compile source code and algorithms into
platform-specific binary files.

• “Host Compiled Application on Remote Protected Server” on page 26-7 — Host the compiled
application on a remote protected server using “MATLAB Web App Server” or “MATLAB
Production Server” with restricted access.

• “Utilize Secure OS Services” on page 26-7 — Host the compiled application on a protected
server on a shielded virtual machine.

Create P-Code Files
Convert some or all of your source code files to a content-obscured format called a P-code file (with
a .p file extension), and distribute your application code in this format.

For more information on generating P-code files, see “Create a Content-Obscured File with P-Code”
on page 26-9.

Build Standalone Executables
Another way to protect your source code is to build it into a standalone executable and distribute the
executable, along with any other necessary files, to your users. You must have the MATLAB Compiler
or Simulink Compiler and a supported C or C++ compiler installed to prepare files for deployment.
The end user, however, does not need MATLAB.

When MATLAB Compiler or Simulink Compiler creates an standalone executable, all the files
required for that application are bundled into an archive. In the archive, each MATLAB code file
(plain text MATLAB file or P-code file) is encrypted using the standard AES-256 algorithm. By default,
the names of files and the directory structure are not obscured and other file types (such as MAT, FIG,
MEX, and so on) are not encrypted.

Starting in R2021b, you can obscure the names of files and the directory structure, and also encrypt
other file types (such as MAT, FIG, MEX, and so on) using the -s option for mcc (MATLAB Compiler).
At run time, the encrypted files remain encrypted on the disk but are decrypted in memory to their
original form before compiling. Depending on the use case, you can combine other methods with this
one to gain an additional layer of protection. For example, you can create a P-coded file from MATLAB
code files before they are compiled.

To build a standalone executable for your MATLAB application, develop and debug your application
following the usual workflow for MATLAB program files. For information on how to generate
executable files, see “Create Standalone Application from MATLAB” (MATLAB Compiler).

26 Programming Utilities

26-6

Use Model Protection
Protecting a model conceals the implementation details of the original model by compiling it into a
referenced model. When you create a protected model, the implementation details of the original
model are concealed by compiling it into a package known as an SLXP. An SLXP includes derived files
to support user-requested functionality in the Simulink environment, such as code generation or
simulation.

If a user creates a protected model for simulation only, most of the IP is hidden inside derived binary
files. If the user creates a protected model for code generation support as well, the SLXP includes
certain supporting files for code generation in either readable C/C++ code or obfuscated binary
format, depending on how the user created the SLXP.

Simulation and code generation functionalities can be optionally password-protected so that only the
recipients with the password can use these functionalities. When using password protection, the main
supporting files for that functionality are protected using AES-256 encryption. These files are
decrypted on the disk when the end user enters the password.

Not all supporting files in a package are encrypted. These files include very little of the IP but can
still reveal certain information about the model such as interfaces and sample times.

For more information, see “Protect Models to Conceal Contents” (Simulink Coder).

Convert Code to Native Code
Convert some or all of your source code or algorithms to C/C++ code and then compile it to binary
files. There are several options for converting code to binary files:

• The mex command to generate binary files from C/C++ code.
• “MATLAB Coder” to generate binary files from MATLAB code.
• “Simulink Coder” to generate C/C++ code from Simulink models and compile the generated code

into standalone binary files.

To achieve an additional layer of protection, you can apply binary obfuscation (using tools outside of
MathWorks) on the generated binary.

Host Compiled Application on Remote Protected Server
One method for protecting source code is to store that source code on a remote protected server
using “MATLAB Web App Server” or “MATLAB Production Server”. The stored source code resides on
a server with restricted access, and users access the application through secure interfaces. The files
are encrypted with the same mechanisms as described in “Build Standalone Executables” on page 26-
6.

Utilize Secure OS Services
Use different system-hardening techniques that are provided by your operating system. For example,
algorithms can reside on a server with restricted access that runs on a shielded virtual machine. The
shielded virtual machine can provide additional layers of security to protect your IP.

 Security Considerations to Protect Your Source Code

26-7

See Also
pcode

Related Examples
• “Create a Content-Obscured File with P-Code” on page 26-9

26 Programming Utilities

26-8

Create a Content-Obscured File with P-Code
A P-code file behaves the same as the MATLAB source from which it was produced. The P-code file
also runs at the same speed as the source file. P-code files are purposely obfuscated.

Note Security Considerations: The pcode function produces MATLAB program files in a
proprietary, obfuscated code format. Consider combining multiple approaches to protect sensitive
code or data. For more information, see “Security Considerations to Protect Your Source Code” on
page 26-6.

Create P-Code Files
To generate a P-code file, enter the following command in the MATLAB Command Window:

pcode file1 file2, ...

The command produces the files file1.p, file2.p, and so on. To convert all .m source files
residing in your current folder to P-code files, use the command:

pcode *.m

See the pcode function reference page for a description of all syntaxes for generating P-code files.

Invoke P-Code Files
You can invoke the resulting P-code files in the same way you invoke the MATLAB .m source files from
which they were produced. For example, to invoke file myfun.p, type:

[out1,out2,...] = myfun(in1,in2,...);

To invoke script myscript.p, type:

myscript;

When you call a P-code file, MATLAB gives it execution precedence over its corresponding .m source
file. This is true even if you change the source code at generating the P-code file. Remember to
remove the .m source file before distributing your code.

Run Older P-Code Files on Later Versions of MATLAB
P-code files are designed to be independent of the release in which they were created and the release
in which they are used (backward and forward compatibility). New and deprecated MATLAB features
can cause errors, but these errors would also appear if you used the original MATLAB source file. To
fix errors of this kind in a P-code file, fix the corresponding MATLAB source file and create a new P-
code file.

P-code files built using MATLAB Version 7.4 (R2007a) and earlier have a different format than those
built with more recent versions of MATLAB. These older P-code files do not run in MATLAB V8.6
(R2015b) or later. Rebuild any P-code files that were built with MATLAB V7.4 or earlier using a more
recent version of MATLAB, and then redistribute them as necessary.

 Create a Content-Obscured File with P-Code

26-9

See Also
pcode

Related Examples
• “Security Considerations to Protect Your Source Code” on page 26-6

26 Programming Utilities

26-10

Create Hyperlinks that Run Functions
The special keyword matlab: lets you embed commands in other functions. Most commonly, the
functions that contain it display hyperlinks, which execute the commands when you click the
hyperlink text. Functions that support matlab: syntax include disp, error, fprintf, help, and
warning.

Use matlab: syntax to create a hyperlink in the Command Window that runs one or more functions.
For example, you can use disp to display the word Hypotenuse as an executable hyperlink as follows:

disp('Hypotenuse')

Clicking the hyperlink executes the three commands following matlab:, resulting in

c =
 5

Executing the link creates or redefines the variables a, b, and c in the base workspace.

The argument to disp is an <a href> HTML hyperlink. Include the full hypertext text, from '<a
href= to ' within a single line, that is, do not continue long text on a new line. No spaces are
allowed after the opening < and before the closing >. A single space is required between a and href.

You cannot directly execute matlab: syntax. That is, if you type

matlab:a=3; b=4;c=hypot(a,b)

you receive an error, because MATLAB interprets the colon as an array operator in an illegal context:

??? matlab:a=3; b=4;c=hypot(a,b)
 |
Error: The expression to the left of the equals sign
 is not a valid target for an assignment.

You do not need to use matlab: to display a live hyperlink to the Web. For example, if you want to
link to an external Web page, you can use disp, as follows:

disp('Hypotenuse')

The result in the Command Window looks the same as the previous example, but instead opens a
page at en.wikipedia.org:

Hypotenuse

Using matlab:, you can:

• “Run a Single Function” on page 26-11
• “Run Multiple Functions” on page 26-12
• “Provide Command Options” on page 26-12
• “Include Special Characters” on page 26-12

Run a Single Function
Use matlab: to run a specified statement when you click a hyperlink in the Command Window. For
example, run this command:

 Create Hyperlinks that Run Functions

26-11

https://en.wikipedia.org/wiki/Hypotenuse

disp('Generate magic square')

It displays this link in the Command Window:

When you click the link, MATLAB runs magic(4).

Run Multiple Functions
You can run multiple functions with a single link. For example, run this command:

disp('Plot x,y')

It displays this link in the Command Window:

When you click the link, MATLAB runs this code:

x = 0:1:8;
y = sin(x);
plot(x,y)

Redefine x in the base workspace:

x = -2*pi:pi/16:2*pi;

Click the hyperlink, Plot x,y again and it changes the current value of x back to 0:1:8. The code
that matlab: runs when you click the Plot x,y defines x in the base workspace.

Provide Command Options
Use multiple matlab: statements in a file to present options, such as

disp('Disable feature')
disp('Enable feature')

The Command Window displays the links that follow. Depending on which link you click, MATLAB sets
state to 0 or 1.

Include Special Characters
MATLAB correctly interprets most text that includes special characters, such as a greater than
symbol (>). For example, the following statement includes a greater than symbol (>).

disp(' 0''">Positive')

and generates the following hyperlink.

26 Programming Utilities

26-12

Some symbols might not be interpreted correctly and you might need to use the ASCII value for the
symbol. For example, an alternative way to run the previous statement is to use ASCII 62 instead of
the greater than symbol:
disp('Positive')

 Create Hyperlinks that Run Functions

26-13

Create and Share Toolboxes
In this section...
“Create Toolbox” on page 26-14
“Share Toolbox” on page 26-18

You can package MATLAB files to create a toolbox to share with others. These files can include
MATLAB code, data, apps, examples, and documentation. When you create a toolbox, MATLAB
generates a single installation file (.mltbx) that enables you or others to install your toolbox.

Create Toolbox

To create a toolbox installation file:

1
In the Environment section of the Home tab, select Package Toolbox from the Add-Ons
menu.

2
In the Package a Toolbox dialog box, click the button and select your toolbox folder. It is good
practice to create the toolbox package from the folder level above your toolbox folder.
The .mltbx toolbox file contains information about the path settings for your toolbox files and
folders. By default, any of the included folders and files that are on your path when you create
the toolbox appear on their paths after the end users install the toolbox.

3 In the dialog box, add the following information about your toolbox.

Toolbox
Information
Field

Description

Toolbox
Name

Enter the toolbox name, if necessary. By default, the toolbox name is the
name of the toolbox folder. The Toolbox Name becomes the .mltbx file
name.

Version Enter the toolbox version number in the Major.Minor.Bug.Build format.
Bug and Build are optional.

Author
Name, Email,
and Company

Enter contact information for the toolbox author. To save the contact
information, click Set as default contact.

Toolbox
Image

To select an image that represents your toolbox, click Select toolbox
image.

Summary and
Description

Enter the toolbox summary and description. It is good practice to keep the
Summary text brief and to add detail to the Description text.

4 To ensure MATLAB detects the expected components, review the toolbox contents. The following
sections of the Package a Toolbox dialog box appear after you select a toolbox folder.

26 Programming Utilities

26-14

Package a
Toolbox
Dialog Box
Section

Description

Toolbox
Files and
Folders

List of the folders and files contained in your toolbox. The listed files and
folders are only those files that are located in the top level of the toolbox
folder. You cannot navigate through the folders in the Toolbox Packaging
dialog box.

By default, if your toolbox contains a P-code file and a MATLAB code file (.m)
with the same name in the same folder, MATLAB excludes the .m file from the
toolbox. To include both the .p and .m files, clear the Exclude MATLAB
script or function files with matching P-files option.

To exclude other files or folders from the toolbox, register them in the text file
that is displayed when you click Exclude files and folders. It is good
practice to exclude any source control files related to your toolbox.

Requiremen
ts

Add-ons — List of add-ons required for your toolbox. Selected add-ons are
downloaded and installed when the toolbox is installed. MATLAB auto-
populates this list with the add-ons it thinks the toolbox requires and selects
them all by default. You can choose to omit any add-ons you do not want to
install with your toolbox.

If MATLAB is unable to find the installation information for an add-on in the
list, you must enter a download URL. The download URL is the location where
MATLAB can download and install the add-on. When the toolbox is installed,
MATLAB installs the add-on using the specified URL.
External Files — List of the files required for your toolbox that are located
outside the toolbox folder. MATLAB auto-populates this list with the files it
thinks the toolbox requires and selects them all by default. You can choose to
omit any files you do not want in your toolbox.

Install
Actions

MATLAB Path — List of folders that are added to the user’s MATLAB path
when they install a toolbox. By default, the list includes any of the toolbox
folders that are on your path when you create the toolbox. You can exclude
folders from being added to the user’s path by clearing them from the list. To
manage the path for when a toolbox is installed, click Manage the current
MATLAB path. To reset the list to the default list, click Reset to the
current MATLAB path.
Java Class Path — List of Java files that are added to the user’s Java class path
when they install a toolbox. Upon toolbox installation, the JAR files are added
to the dynamic path for the duration of the MATLAB session. When the
toolbox user restarts MATLAB, the JAR files are added to the static path.

 Create and Share Toolboxes

26-15

Package a
Toolbox
Dialog Box
Section

Description

Installation of Additional Software — List of additional software ZIP files that
are installed on the user's system when they install a toolbox.

Specify these fields:

• Display Name — The name to display to the user when they install a
toolbox.

• License URL — The URL of the additional software license agreement to
display to the user when they install a toolbox. The user is prompted to
review and agree to the license agreement during installation. You must
specify a valid URL to the license agreement.

• Download URL — The URL to the ZIP file that contains the additional
software. To specify different download URLs for different platforms,
select a platform name from the drop-down menu to the left of the
download URL. Then, click Add Platform to add a download URL for
additional platforms.

When the user installs a toolbox, MATLAB installs all additional software in
the addons\Toolboxes\AdditionalSoftware folder, where addons is the
add-ons default installation folder. For more information about the location of
the add-ons default installation folder, see “Get and Manage Add-Ons”.

If your toolbox contains code that refers to the installation folder of the
specified additional software, make these references portable to other
computers. Replace the references with calls to the generated function
toolboxname\getInstallationLocation.mlx, where toolboxname is
the name of your toolbox. For example, if you are creating a toolbox called
mytoolbox and want to reference the install location for additional software
called mysoftware, replace this code

mysoftwarelocation = 'C:\InstalledSoftware\mysoftware\'

with this code:

mysoftwarelocation = mytoolbox.getInstallationLocation('mysoftware')

To enable testing of the toolbox on your computer before packaging the
toolbox, click the toolboxname\getInstallationLocation.mlx link at
the bottom of the Installation of Additional Software section and enter the
installed location of each additional piece of software on your computer.

Toolbox
Portability

MATLAB uses the information in the Toolbox Portability section when the
user installs the toolbox. If the compatibility check fails because the user has
an unsupported platform or MATLAB version, MATLAB displays a warning.
However, the user still can install the toolbox.

26 Programming Utilities

26-16

Package a
Toolbox
Dialog Box
Section

Description

Platform Compatibility—List of platforms that support the toolbox. Consider if
your toolbox has third-party software or hardware requirements that are
platform specific. MATLAB Online cannot interact with hardware, including
devices used for image acquisition and instrument control.
Release Compatibility—List of MATLAB releases that support the toolbox.
Products—List of MathWorks products required by your toolbox. Create this
list manually.

Examples,
Apps, and
Documentat
ion

Examples—Published MATLAB examples associated with your toolbox. To
include .m and .mlx files as examples, click the Add examples button, select
your code file, and click Publish HTML. MATLAB publishes the code to
HTML and places the output files in the html folder.

Alternatively, you can manually publish code files to HTML in MATLAB and
then include the code files and the HTML files in your toolbox folder.

• For a live script (.mlx) example, export it to HTML. On the Live Editor
tab, select Save > Export to HTML and save it in a folder named html.

• For a script (.m) example, publish it to HTML with the publish function.
Do not specify an output folder when publishing your examples. For the
Package a Toolbox tool to recognize the examples, the output folder must
be the default folder (html).

To create different categories for your examples, place the examples in
different subfolders within your toolbox folder. When you add your toolbox
folder to the Package a Toolbox dialog box, MATLAB creates a demos.xml file
to describe your examples, and takes the example subfolder name as the
example category name. Alternatively, you can create your own demos.xml
file. The demos.xml file allows recipients to access your examples through
the Supplemental Software link at the bottom of the Help browser home
page. For more information, see “Display Custom Examples” on page 33-29.
Apps—Published MATLAB installable apps associated with your toolbox. The
Package a Toolbox tool recognizes apps (.mlapp files) and app installer files
(.mlappinstall files) and includes them in your toolbox.

• To specify which apps (.mlapp files) are also installed and registered in
the user's MATLAB Apps Gallery, select the apps.

• All .mlappinstall files in your toolbox folder are installed and
registered in the user's MATLAB Apps Gallery.

 Create and Share Toolboxes

26-17

Package a
Toolbox
Dialog Box
Section

Description

Getting Started Guide—Quick start guide for your toolbox. For the Package a
Toolbox tool to recognize a Getting Started Guide, include the guide as a live
script named GettingStarted.mlx in a doc subfolder within your toolbox
folder.

Alternatively, you can generate and edit GettingStarted.mlx from the
Package a Toolbox dialog box.

Users of your toolbox can view the Getting Started Guide through the Options
menu for the toolbox in the Add-On Manager. For more information, see “Get
and Manage Add-Ons”.
Help Browser Integration—Custom documentation associated with your
toolbox. For the Package a Toolbox tool to recognize custom documentation,
include an info.xml file to identify your documentation files. If you use the
builddocsearchdb function to build the documentation database before
packaging your toolbox, you can include the generated helpsearch
subfolder in your toolbox. The info.xml file and the helpsearch folder
allow recipients to access your documentation through the Supplemental
Software link at the bottom of the Help browser home page. For more
information, see “Display Custom Documentation” on page 33-21.

Alternatively, you can generate info.xml and helptoc.xml template files
from the Package a Toolbox dialog box. To access your documentation
through the Help browser, complete the documentation templates and include
info.xml on the MATLAB path.

5 Package your toolbox.

• To save your toolbox, click Package at the top of the Package a Toolbox dialog box. Packaging
your toolbox generates a .mltbx file in your current MATLAB folder.

• To save your toolbox and share it on MATLAB Central File Exchange, select Package and
Share from the Package menu at the top of the Package a Toolbox dialog box. This option
generates a .mltbx file in your current MATLAB folder and opens a web page for your
toolbox submission to File Exchange. MATLAB populates the File Exchange submission form
with information about the toolbox. Review and submit the form to share your toolbox on File
Exchange.

When you create a toolbox, MATLAB generates a .prj file that contains information about the
toolbox and saves it frequently. It is good practice to save this associated .prj file so that you
can quickly create future revisions of your toolbox.

Share Toolbox
To share your toolbox with others, give them the .mltbx file. All files you added when you packaged
the toolbox are included in the .mltbx file. When the end users install your toolbox, they do not need
to be concerned with the MATLAB path or other installation details. The .mltbx file manages these
details for end users.

26 Programming Utilities

26-18

https://www.mathworks.com/matlabcentral/fileexchange/

For information on installing, uninstalling, and viewing information about toolboxes, see “Get and
Manage Add-Ons”.

You can share your toolbox with others by attaching the .mltbx file to an email message, or using
any other method you typically use to share files—such as uploading to MATLAB Central File
Exchange. If you upload your toolbox to File Exchange, your users can download the toolbox from
within MATLAB. For more information, see “Get and Manage Add-Ons”.

Alternatively, you can upload your toolbox to File Exchange when you package it. Select Package
and Share from the Package menu at the top of the Package a Toolbox dialog box.

Note While .mltbx files can contain any files you specify, MATLAB Central File Exchange places
additional limitations on submissions. If your toolbox contains any of the following, it cannot be
submitted to File Exchange:

• MEX-files.
• Other binary executable files, such as DLLs or ActiveX® controls. (Data and image files are

typically acceptable.)

See Also
publish | matlab.addons.toolbox.packageToolbox |
matlab.addons.toolbox.toolboxVersion | matlab.addons.toolbox.installToolbox |
matlab.addons.toolbox.uninstallToolbox |
matlab.addons.toolbox.installedToolboxes

Related Examples
• “Get and Manage Add-Ons”
• “Display Custom Examples” on page 33-29
• “Package Apps From the MATLAB Toolstrip”
• “Display Custom Documentation” on page 33-21

 Create and Share Toolboxes

26-19

https://www.mathworks.com/matlabcentral/fileexchange/
https://www.mathworks.com/matlabcentral/fileexchange/

Run Parallel Language in MATLAB
The following parallel language functionality is available in MATLAB:

• parfor
• parfeval and parfevalOnAll
• DataQueue and PollableDataQueue
• afterEach and afterAll
• Constant

You do not need Parallel Computing Toolbox to run code using this functionality.

Run Parallel Language in Serial
Some syntaxes for parallel language functionality have automatic parallel support. Functionality with
automatic parallel support automatically uses default parallel resources if you have Parallel
Computing Toolbox. If you do not have Parallel Computing Toolbox, this parallel language
functionality runs in serial. For more information about automatic parallel support, see “Run MATLAB
Functions with Automatic Parallel Support” (Parallel Computing Toolbox).

The following parallel language functionality has automatic parallel support:

• parfor
• parfeval and parfevalOnAll

To run functions in the background, use parallel language syntaxes with backgroundPool instead.
Code that you write using backgroundPool can automatically scale to use more parallel resources if
you have Parallel Computing Toolbox. For more information, see backgroundPool.

Serial parfor

The following syntaxes run in parallel when you have Parallel Computing Toolbox, and otherwise run
in serial:

• parfor loopvar = initval:endval; statements; end
• parfor (loopvar = initval:endval, M); statements; end

When a parfor-loop runs in serial, the iterations run in reverse order. For more information, see
parfor and parfor.

Serial parfeval and parfevalOnAll

The following syntaxes run in parallel when you use Parallel Computing Toolbox, and otherwise run in
serial:

• parfeval(fcn,n,X1,...Xm)
• parfevalOnAll(fcn,n,X1,...Xm)

When a Future object runs in serial, MATLAB runs the function fcn associated with it using
deferred execution. The function runs when MATLAB becomes idle, blocking MATLAB until the
function finishes running. Examples of functionality that causes MATLAB to be temporarily idle
include:

26 Programming Utilities

26-20

• Using pause
• Using fetchOutputs or fetchNext to get results from a Future object
• Using wait to wait for a Future object to finish
• Using afterEach or afterAll to run a function after a Future object finishes

Use Parallel Language Without a Pool
DataQueue and PollableDataQueue

When you create a DataQueue or PollableDataQueue object, the object is not directly associated
with the background pool or a parallel pool. You can therefore use a DataQueue or
PollableDataQueue object without any pool.

The following code updates a plot on each iteration of a parfor-loop. If you have Parallel Computing
Toolbox, the parfor-loop runs using a parallel pool. If you do not have Parallel Computing Toolbox,
the code runs in serial.

x = 1:1000

line = plot(x,NaN(size(x)));

q = parallel.pool.DataQueue;
afterEach(q,@(data)updatePlot(line,data));

parfor i = 1:numel(x)
 % Simulate some work
 pause(rand)

 y(i) = x(i)^2;
 send(q,[i y(i)])
end

function updatePlot(line,data)
 line.XData(data(1)) = data(1);
 line.YData(data(1)) = data(2);
 drawnow
end

Constant

When you create a Constant object, the object is not directly associated with the background pool or
a parallel pool. You can therefore use a Constant object without any pool.

The following code creates a Constant object in your current MATLAB session. You can write to a
temporary file using c.Value and fprintf.

If you have Parallel Computing Toolbox, the parfor-loop runs using a parallel pool. If you use a
parallel pool, the Constant is available on each worker in the parallel pool. Otherwise, the
Constant object is created only in your current MATLAB session.

c = parallel.pool.Constant(@() fopen(tempfile(pwd),'wt'),@fclose);
parfor i = 1:10
 y(i) = i^2;
 fprintf(c.Value,"%03d %f\n",i,y(i));
end

 Run Parallel Language in MATLAB

26-21

You can use the following syntaxes without Parallel Computing Toolbox:

• parallel.pool.Constant(X)
• parallel.pool.Constant(fcn)
• parallel.pool.Constant(fcn,cleanupFcn)

26 Programming Utilities

26-22

Function Argument Validation

27

Function Argument Validation

Introduction to Argument Validation
Function argument validation is a way to declare specific restrictions on function arguments. Using
argument validation you can constrain the class, size, and other aspects of arguments without writing
code in the body of the function to perform these tests.

Function argument validation is declarative, which enables MATLAB desktop tools to extract
information about a function by inspection of specific code blocks. By declaring requirements for
arguments, you can eliminate cumbersome argument-checking code and improve the readability,
robustness, and maintainability of your code.

The function argument validation syntax simplifies the process of defining optional, repeating, and
name-value arguments. The syntax also enables you to define default values in a consistent way.

Where to Use Argument Validation

The use of function argument validation is optional in function definitions. Argument validation is
most useful in functions that can be called by any code and where validity of the arguments must be
determined before executing the function code. Functions that are designed for use by others can
benefit from the appropriate level of restriction on arguments and the opportunity to return specific
error messages based on the argument validation checks.

Where Validation Is Not Needed

In local and private functions, and in private or protected methods, the caller is aware of input
requirements, so these types of functions can be called with valid arguments.

Where Validation Is Not Allowed

You cannot use argument validation syntax in nested functions, abstract methods, or handle class
destructor methods. For more information on argument validation in methods, see “Method Syntax”.

arguments Block Syntax

Functions define argument validation in optional code blocks that are delimited by the keywords
arguments and end. If used, an arguments block must start before the first executable line of the
function.

You can use multiple arguments blocks in a function, but all blocks must occur before any code that
is not part of an arguments block.

The highlighted area in the following code shows the syntax for input argument validation.

27 Function Argument Validation

27-2

The function argument declaration can include any of these kinds of restrictions:

• Size — The length of each dimension, enclosed in parentheses
• Class — The name of a single MATLAB class
• Functions — A comma-separated list of validation functions, enclosed in braces

You can also define a default value for the input argument in the function validation declaration for
that argument. The default value must satisfy the declared restrictions for that argument.

Size

Validation size is the dimensions of the argument, specified with nonnegative integer numbers or
colons (:). A colon indicates that any length is allowed in that dimension. You cannot use expressions
for dimensions. The value assigned to the argument in the function call must be compatible with the
specified size, or MATLAB throws an error.

MATLAB indexed assignment rules apply to size specifications. For example, a 1-by-1 value is
compatible with the size specified as (5,3) because MATLAB applies scalar expansion. Also,
MATLAB row-column conversion applies so that a size specified as (1,:) can accept a size of 1-by-n
and n-by-1.

Here are some examples:

• (1,1) — The input must be exactly 1-by-1.
• (3,:) — The first dimension must be 3, and second dimension can be any value.

If you do not specify a size, then any size is allowed unless restricted by validation functions.

Class

Validation class is the name of a single class. The value assigned to the function input must be of the
specified class or convertible to the specified class. Use any MATLAB class or externally defined class
that is supported by MATLAB, except Java, COM classes, and MATLAB class definitions that do not
use the classdef keyword (classes defined before MATLAB software Version 7.6).

Here are some examples:

• char — Input must be of class char or a value that MATLAB can convert to a char, such as
string.

 Function Argument Validation

27-3

• double — Input can be a numeric value of any precision.
• cell — Input must be a cell array.
• A user-defined class

If you do not specify a class, then any class is allowed unless restricted by validation functions.

Validation Functions

A validation function is a MATLAB function that throws an error if certain requirements are not
satisfied by the argument value. Validation functions do not return values and, unlike class and size,
cannot change the value of the arguments they are validating.

During the validation process, MATLAB passes the argument value to each validation function listed
for that argument. The value passed to the validation functions is the result of any conversion made
by the class and size specifications. MATLAB calls each function from left to right and throws the first
error encountered.

For a table of predefined validation functions, see “Argument Validation Functions” on page 27-23.

Default Value

An input argument default value can be any constant or expression that satisfies the size, class, and
validation function requirements. Specifying a default value in an argument declaration makes the
argument optional. MATLAB uses the default value when the argument is not included in the function
call. Default value expressions are evaluated each time the default is used.

Note Because MATLAB validates the default value only when the function is called without a value
for the argument, an invalid default value causes an error only when the function is called without
that argument.

Optional arguments must be positioned after required arguments in the function signature and in the
arguments block. For more information on optional arguments, see “Required and Optional
Positional Arguments” on page 27-7.

Validation Sequence

Arguments are validated from top to bottom in the arguments block. MATLAB validates each part of
an argument declaration in a specific order. First the class is validated, then the size. The result of
the class and size validations is passed to the validation functions. Each step is optional depending on
whether class, size, and validation functions are in the argument declaration.

For more information, see “Order of Argument Validation” on page 27-17

Conversion to Declared Class and Size

Both class validation and size validation can change the value of an argument. Here are some
examples of conversions that MATLAB can perform.

To satisfy class restrictions:

• A char value can be converted to a string value.
• A single value can be converted to a double.

27 Function Argument Validation

27-4

To satisfy size restrictions:

• Scalar expansion can change input size from scalar to nonscalar.
• A column vector can be converted to a row vector.

As a result, the validated value in the function body can be different from the value passed when
calling the function. For more information on class conversion, see “Implicit Class Conversion”. To
avoid class and size conversions during validation, use argument validation functions instead. For
more information, see “Avoiding Class and Size Conversions” on page 27-17.

Output Argument Validation

Starting in R2022b, argument validation can be used on output arguments. Similar to input
arguments, you can validate the class and size of output arguments and also apply validation
functions. However, you cannot specify default values for output arguments or refer to previously
declared arguments. Output argument validation is always optional. Adding output argument
validation helps improve code readability and also maintains consistent output in code that might
change over time.

Separate arguments blocks must be used for validating input and output arguments. Define the type
of arguments block (Input) or (Output) after the arguments statement. If both (Input) and
(Output) argument blocks are used, the (Output) block must follow the (Input) block. then If no
type is specified, then MATLAB assumes the block contains input arguments.

For more information, see arguments.

Examples of Argument Validation
Basic Argument Validation

This arguments block specifies the size and class of the three inputs.

function out = myFunction(A, B, C)
 arguments
 A (1,1) string
 B (1,:) double
 C (2,2) cell
 end

 % Function code
 ...
end

In this function, the variables must meet these validation requirements:

• A is a string scalar.
• B is a 1-by-any length vector of doubles.
• C is a 2-by-2 cell array.

Value Conversion

The following function illustrates how inputs can be converted to match the classes specified in the
arguments block. The SpeedEnum class is an enumeration class created to define the values allowed
for the third argument.

 Function Argument Validation

27-5

function forwardSpeed(a,b,c)
 arguments
 a double
 b char
 c SpeedEnum
 end

 % Function code
 disp(class(a))
 disp(class(b))
 disp(class(c))
end

Here is the enumeration class.

classdef SpeedEnum < int32
 enumeration
 Full (100)
 Half (50)
 Stop (0)
 end
end

This call to the function uses input values that MATLAB can convert to the declared types. The actual
argument types within the function are displayed as output.

forwardSpeed(int8(4),"A string",'full')

double
char
SpeedEnum

Specific Restrictions Using Validation Functions

Validation functions can restrict arguments in more specific ways. You can use predefined validation
functions for many common kinds of validation, and you can define your own validation function to
satisfy specific requirements.

For example, this function specifies the following validations using mustBeNumeric, mustBeReal,
mustBeMember, and the local function mustBeEqualSize.

• Input x must be a real, numeric row vector of any length.
• Input v must be a real, numeric row vector the same size as x.
• Input method must be a character vector that is one of the three allowed choices. Because

method specifies a default value, this argument is optional.
function myInterp(x,v,method)
 arguments
 x (1,:) {mustBeNumeric,mustBeReal}
 v (1,:) {mustBeNumeric,mustBeReal,mustBeEqualSize(v,x)}
 method (1,:) char {mustBeMember(method,{'linear','cubic','spline'})} = 'linear'
 end
 % Function code

end

% Custom validation function
function mustBeEqualSize(a,b)
 % Test for equal size
 if ~isequal(size(a),size(b))
 eid = 'Size:notEqual';

27 Function Argument Validation

27-6

 msg = 'Size of first input must equal size of second input.';
 throwAsCaller(MException(eid,msg))
 end
end

Avoid using function argument validation within custom validation functions. For more information
about defining validation functions and a list of predefined validation functions, see “Argument
Validation Functions” on page 27-23.

Output Argument Validation

Starting in R2022b, argument validation can be used on output arguments.

For example, this function validates the size and class of three input arguments and one output
argument using separate arguments blocks. Note that the (Input) block must precede the
(Output) block.

function out = myFunction(A, B, C)
 arguments (Input)
 A (1,1) string
 B (1,:) double
 C (2,2) cell
 end

 arguments (Output)
 out (1,:) double
 end

 % Function code
 ...
end

Kinds of Arguments
Function argument validation can declare four kinds of arguments. Functions can define any of these
kinds of arguments, but the arguments must be defined in the following order:

1 Required positional arguments
2 Optional positional arguments
3 Repeating positional arguments
4 Optional name-value arguments

Required and Optional Positional Arguments
Positional arguments must be passed to a function in a specific order. The position of the value passed
in the argument list must correspond to the order that the argument is declared in the arguments
block. All argument names in the arguments block must be unique.

Positional arguments in the arguments block are required when calling the function, unless the
argument defines a default value. Specifying a default value in the argument declaration makes a
positional argument optional because MATLAB can use the default value when no value is passed in
the function call.

 Function Argument Validation

27-7

The default value can be a constant or an expression that produces a result that satisfies the
argument declaration. The expression can refer to the arguments that are declared before it in the
arguments block, but not arguments that are declared after it.

MATLAB evaluates the default value expression only when the argument is not included in the
function call.

All optional arguments must be positioned after all required arguments in the arguments block. For
example, in this argument block, maxval and minval have default values and are therefore optional.

function myFunction(x,y,maxval,minval)
 arguments
 x (1,:) double
 y (1,:) double
 maxval (1,1) double = max(max(x),max(y))
 minval (1,1) double = min(min(x),min(y))
 end

 % Function code

end

You can call this function with any of these syntaxes:

myFunction(x,y,maxval,minval)
myFunction(x,y,maxval)
myFunction(x,y)

An optional positional argument becomes required when its position must be filled in the function call
to identify arguments that come after it. That is, if you want to specify a value for minval, you must
specify a value for maxval.

Ignored Positional Arguments

MATLAB lets you ignore arguments by passing a tilde character (~) in place of the argument. You can
define a function that ignores unused positional arguments by adding a tilde character (~) in the
arguments block corresponding to the position of the argument in the function signature. Add a tilde
character (~) for each ignored argument in the function signature.

Ignored arguments cannot have default values or specify class, size, or validation functions.

The tilde character (~) is treated as an optional argument unless it is followed by a required
positional argument. For example, in this function the tilde character (~) represents an optional
argument.

function c = f(~)
 arguments
 ~
 end

 % Function code
end

You can call this function with no arguments.

c = f

Or you can call this function with one argument.

27 Function Argument Validation

27-8

c = f(2)

In the following function, the tilde character (~) represents a required argument.

function c = f(~,x)
 arguments
 ~
 x
 end

 % Function code
 ...
end

Calls to this function must include both arguments.

c = f(2,3)

For more information on calling functions with ignored inputs, see “Ignore Inputs in Function
Definitions” on page 22-10.

Repeating Arguments
Repeating arguments are positional arguments that can be specified repeatedly as arguments.
Declare repeating arguments in an arguments block that includes the Repeating attribute.

arguments (Repeating)
 arg1
 arg2
 ...
end

Functions can have one Repeating arguments block for inputs and one for outputs. A Repeating
input arguments block can contain one or more repeating arguments, while a Repeating output
arguments block can contain only one repeating argument.

A function that defines a Repeating arguments block can be called with zero or more occurrences
of all the arguments in the block. If a call to a function includes repeating arguments, then all
arguments in the Repeating arguments block must be included for each repetition.

For example, if a Repeating arguments block defines input arguments x and y, then each
repetition must contain both x and y.

Repeating input arguments cannot specify default values and therefore cannot be optional. However,
you can call the function without including any repeating arguments.

Functions must declare repeating input arguments after positional arguments and before name-value
arguments. You cannot specify name-value arguments within a Repeating block. For information on
name-value arguments, see “Name-Value Arguments” on page 27-11.

In the function, each repeating argument becomes a cell array with the number of elements equal to
the number of repeats passed in the function call. The validation is applied to each element of the cell
array. If the function is called with zero occurrences of this argument, the cell array has a size of 1-
by-0. That is, it is empty.

For example, this function declares a block of three repeating arguments, x, y, and option.

 Function Argument Validation

27-9

function [xCell,yCell,optionCell] = fRepeat(x,y,option)
 arguments (Repeating)
 x double
 y double
 option {mustBeMember(option,["linear","cubic"])}
 end

 % Function code
 % Return cell arrays
 xCell = x;
 yCell = y;
 optionCell = option;
end

You can call the function with no inputs or multiples of three inputs. MATLAB creates a cell array for
each argument containing all the values passes for that argument. This call to fRepeat passes two
sets of the three repeating arguments.

[xCell,yCell,optionCell] = fRepeat(1,2,"linear",3,4,"cubic")

xCell =

 1×2 cell array

 {[1]} {[3]}

yCell =

 1×2 cell array

 {[2]} {[4]}

optionCell =

 1×2 cell array

 {["linear"]} {["cubic"]}

The following function accepts repeating arguments for x and y inputs in a Repeating arguments
block. In the body of the function, the values specified as repeating arguments are available in the
cell arrays x and y. This example interleaves the values of x and y to match the required input to the
plot function: plot(x1,y1,…).

function myPlotRepeating(x,y)
 arguments (Repeating)
 x (1,:) double
 y (1,:) double
 end

 % Function code
 % Interleave x and y
 z = reshape([x;y],1,[]);

 % Call plot function
 if ~isempty(z)
 plot(z{:});

27 Function Argument Validation

27-10

 end
end

Call this function with repeating pairs of arguments.

x1 = 1:10;
y1 = sin(x1);
x2 = 0:5;
y2 = sin(x2);
myPlotRepeating(x1,y1,x2,y2)

Avoid Using varargin for Repeating Arguments

Using varargin with functions that use argument validation is not recommended. If varargin is
restricted in size or class in the repeating arguments block, then the restrictions apply to all values in
varargin.

If you use varargin to support legacy code, it must be the only argument in a Repeating
arguments block.

For example, this function defines two required positional arguments and varargin as the repeating
argument.

function f(a, b, varargin)
 arguments
 a uint32
 b uint32
 end
 arguments (Repeating)
 varargin
 end

 % Function code
 ...
end

Name-Value Arguments
Name-value arguments associate a name with a value that is passed to the function. Name-value
arguments:

• Can be passed to the function in any order
• Are always optional
• Must be declared after all positional and repeating arguments
• Cannot appear in an arguments block that uses the Repeating attribute
• Must use unique names even when using multiple name-value structures
• Cannot use names that are also used for positional arguments

Declare name-value arguments in an arguments block using dot notation to define the fields of a
structure. For example, the structure named NameValueArgs defines two name-value arguments,
Name1 and Name2. You can use any valid MATLAB identifier as the structure name.

arguments
 NameValueArgs.Name1

 Function Argument Validation

27-11

 NameValueArgs.Name2
end

The structure name must appear in the function signature.

function myFunction(NameValueArgs)

Call the function using the field names in the name-value structure.

myFunction(Name1=value1,Name2=value2)

Before R2021a, pass names as strings or character vectors, and separate names and values with
commas. Both syntaxes are valid in later releases.

The name of the structure used in the function signature is the name of the structure in the function
workspace that contains the names and values passed to the function.

function result = myFunction(NameValueArgs)
 arguments
 NameValueArgs.Name1
 NameValueArgs.Name2
 end

 % Function code
 result = NameValueArgs.Name1 * NameValueArgs.Name2;
end

r = myFunction(Name1=3,Name2=7)

r =

 21

Name-value arguments support partial name matching when there is no ambiguity. For example, a
function that defines LineWidth and LineStyle as its two name-value arguments accepts LineW
and LineS, but using Line results in an error. In general, using full names is the recommended
practice to improve code readability and avoid unexpected behavior.

The same name-value argument can be repeated in a function call without error, but the last version
specified is the one MATLAB honors. For example, this call to plot specifies the value for Color
twice. MATLAB displays the plot in red.

plot(x,y,Color="blue",LineStyle="--",Color="red")

Default Values for Name-Value Arguments

You can specify a default value for each name. If you do not specify a default value and the function is
called without that name-value argument, then that field is not present in the name-value structure. If
no name-value arguments are passed to the function, MATLAB creates the structure, but it has no
fields.

To determine what name-value arguments have been passed in the function call, use the isfield
function.

For example, the following function defines two required positional arguments (width and height)
and two name-value arguments (LineStyle and LineWidth). In this example, the options
structure has two fields (LineStyle and LineWidth) containing either the default values or values
specified as name-value arguments when the function is called.

27 Function Argument Validation

27-12

function myRectangle(width,height,options)
 arguments
 width double
 height double
 options.LineStyle (1,1) string = "-"
 options.LineWidth (1,1) {mustBeNumeric} = 1
 end

 % Function code
 ...
end

All of these syntaxes are valid ways to call this function.

myRectangle(4,5)
myRectangle(4,5,LineStyle=":",LineWidth=2)
myRectangle(4,5,LineWidth=2,LineStyle=":")
myRectangle(4,5,LineStyle=":")
myRectangle(4,5,LineWidth=2)

Before R2021a, pass names as strings or character vectors, and separate names and values with
commas. For example:

myRectangle(4,5,"LineStyle",":","LineWidth",2)
myRectangle(4,5,"LineWidth",2,"LineStyle",":")

Using Repeating and Name-Value Arguments

If the function defines repeating arguments, then you must declare the name-value arguments in a
separate arguments block that follows the repeating arguments block. For example, this function
accepts two repeating arguments, x and y. After specifying all repeats of x and y, you can specify a
name-value argument that assigns the value lin or log to the PlotType name.

To determine if the function call includes the PlotType argument, use the isfield function to
check for the PlotType field in the scale structure.

function myLinLog(x,y,scale)
 arguments(Repeating)
 x (1,:) double
 y (1,:) double
 end
 arguments
 scale.PlotType (1,1) string
 end
 z = reshape([x;y],1,[]);
 if isfield(scale,"PlotType")
 if scale.PlotType == "lin"
 plot(z{:})
 elseif scale.PlotType =="log"
 loglog(z{:})
 end
 end
end

Call this function with or without the name-value argument.

 Function Argument Validation

27-13

myLinLog(1:5,1:5)
myLinLog(1:5,1:5,1:10,1:100:1000)
myLinLog(1:5,1:5,1:10,1:100:1000,PlotType="log")

Before R2021a, pass names as strings or character vectors, and separate names and values with
commas. For example:

myLinLog(1:5,1:5,1:10,1:100:1000,"PlotType","log")

Multiple Name-Value Structures

Function argument blocks can contain multiple name-value structures. However, the field names
must be unique among all structures. This function has two name-value structures: lineOptions
and fillOptions. These structures cannot have the same field names.

The arguments in the myRectangle function are:

• width and height are required positional arguments of type double.
• lineOptions.LineStyle is a scalar string with a default value of "-".
• lineOptions.LineWidth is a scalar numeric with a default value of 1.
• fillOptions.Color is a string.
• fillOptions.Pattern has no restrictions on its value.

function myRectangle(width,height,lineOptions,fillOptions)
 arguments
 width double
 height double
 lineOptions.LineStyle (1,1) string = "-"
 lineOptions.LineWidth (1,1) {mustBeNumeric} = 1
 fillOptions.Color string
 fillOptions.Pattern
 end

 % Function Code
 ...
end

Robust Handling of Name-Value Arguments
The best practice for implementing name-value arguments in your functions is by defining them in an
arguments block. An arguments block eliminates the need to write your own code to parse the name-
value arguments, and the block also helps implement robust argument parsing for both the
"name",value syntax and the name=value syntax introduced in R2021a.

Enforcing Valid Names

Defining a name-value argument in an arguments block ensures that the name is a valid identifier. In
turn, this helps ensure that your arguments work with both "name",value and name=value
syntaxes. For example, a name-value argument that uses an invalid identifier can work with the
comma-separated syntax:

myFunction(data,"allow-empty",true)

27 Function Argument Validation

27-14

However, the same call using allow-empty=true throws an error. Defining the name-value
argument in an arguments block ensures that the names you define are valid MATLAB variable names
and compatible with the name=value syntax.

Avoiding Unexpected Results with Text Inputs

Functions that include both optional text inputs and name-value arguments run the risk of MATLAB
interpreting text inputs as the names of the name-value arguments. This function includes two
optional text inputs and a name-value argument.
function mySignal(tag,unit,opts)
 arguments
 tag = "0"
 unit = "ampere"
 opts.Magnifier {mustBeMember(opts.Magnifier,["small","medium","big"])}
 end
end

A user enters this function call intending to set the values of tag to "Mag" and unit to "coulomb":

mySignal("Mag","coulomb")

However, MATLAB, through partial matching, parses "Mag" as the name-value argument Magnifer.
"coulomb" is not a valid value for that name, so the function errors.

One way to avoid this is to make tag a required argument by removing its default value:
function mySignal(tag,unit,opts)
 arguments
 tag
 unit = "ampere"
 opts.Magnifier {mustBeMember(opts.Magnifier,["small","medium","big"])}
 end
end

Because MATLAB does not parse required inputs as name-value arguments, the same function call
now sets the value of tag to "Mag" and does not error.

Another option is to make all three inputs name-value arguments. This helps users avoid mistakes
when specifying inputs because each value is associated with a name, and the order the user
specifies the inputs does not affect the end results.

Name-Value Arguments from Class Properties
A useful function syntax in MATLAB uses the public properties of a class for the names of name-value
arguments. To specify name-value arguments for all settable properties defined by a class (that is, all
properties with public SetAccess), use this syntax in an arguments block:

structName.?ClassName

A function can use the "structName.? ClassName" syntax only once. Therefore, a function can
define only one name-value structure that gets its field names from a class, even if using different
classes and structure names.

If the class places restrictions on values that you can assign to the property by using property
validation, then the function applies the validation to the individual name-value arguments. For
information on property validation, see “Validate Property Values”.

For example, this function has two required arguments, x and y and accepts any public property
name and value for the matlab.graphics.chart.primitive.Bar class.

 Function Argument Validation

27-15

function myBar(x,y,propArgs)
 arguments
 x (:,:) double
 y (:,:) double
 propArgs.?matlab.graphics.chart.primitive.Bar
 end
 propertyCell = namedargs2cell(propArgs);
 bar(x,y,propertyCell{:})
end

Call the function with the required inputs and any settable property name-value pairs.

x = [1,2,3;4,5,6];
y = x.^2;
myBar(x,y)
myBar(x,y,FaceColor="magenta",BarLayout="grouped")

Before R2021a, pass names as strings or character vectors, and separate names and values with
commas. For example:

myBar(x,y,"FaceColor","magenta","BarLayout","grouped")

Override Specific Properties

You can override the class property validation by redefining the property name with a specific name-
value argument in the arguments block.

structName.?ClassName
structName.PropertyName (dim1,dim2,...) ClassName {fcn1,fcn2,...}

The specific name-value argument validation overrides the validation defined by class for the
individually specified property name.

For example, the following function defines name-value arguments as the properties of the
matlab.graphics.chart.primitive.Bar class. The function also overrides the property name
FaceColor to allow only these specific values: red or blue.

The matlab.graphics.chart.primitive.Bar class has a default value for FaceColor that is not
one of the restricted values (red or blue). Therefore, the overriding declaration must assign a
default value that satisfies the restriction placed by the mustBeMember validation function. That is,
the default value must be red or blue.

This function converts the name-value structure to a cell array containing interleaved names and
values using the namedargs2cell function.
function myBar(x,y,propArgs)
 arguments
 x (:,:) double
 y (:,:) double
 propArgs.?matlab.graphics.chart.primitive.Bar
 propArgs.FaceColor {mustBeMember(propArgs.FaceColor,{'red','blue'})} = "blue"
 end
 propertyCell = namedargs2cell(propArgs);
 bar(x,y,propertyCell{:})
end

Call the function using the two required arguments, x and y. Optionally pass any name-value pairs
supported by the bar function and a value for FaceColor that can be either red or blue. Other
values for FaceColor are not allowed.

x = [1,2,3;4,5,6];
y = x.^2;
myBar(x,y)
myBar(x,y,FaceColor="red",BarLayout="grouped")

27 Function Argument Validation

27-16

Order of Argument Validation
When a function is called, MATLAB validates the arguments in the order they are declared in the
arguments block, from top to bottom. Each argument is fully validated before the next argument is
validated. Therefore, any reference to a previously declared argument uses values that have been
validated. Functions throw an error as a result of the first validation failure.

Validated values can be different from the original values passed as inputs when the function is
called. For example, this function declares the inputs as class uint32 values. The third input
declaration assigns a default value equal to the product of the first two inputs.

function c = f(a, b,c)
 arguments
 a uint32
 b uint32
 c uint32 = a .* b
 end

 % Function code
 ...
end

Calling the function with inputs that are a different numeric class (for example, double) results in a
conversion to uint32.

c = f(1.8,1.5)

Because the optional argument c is not specified in the function call, MATLAB evaluates the default
value and assigns it to c after converting a and b to uint32 values. In this case, the conversion
results in a value of 2 for both inputs. Therefore, the product of a times b is four.

c =

 uint32

 4

If you specify a value for the third input, then the function assigns a value to c and does not evaluate
the default value expression.

c = f(1.8,1.5,25)

c =

 uint32

 25

Avoiding Class and Size Conversions
When an argument value that is passed to a function does not match the class and size required by
the validation, MATLAB converts the value to the declared class and size when conversion is possible.
To avoid the standard conversions performed by MATLAB from argument validation, use validation
functions instead of class and size restrictions. Calls to validation functions do not return values and
cannot change the value of the argument.

 Function Argument Validation

27-17

For example, this function restricts the first input to a two-dimensional array of any size that is of
class double. The second input must be a 5-by-3 array of any class.

function f(a,b)
 arguments
 a (:,:) double
 b (5,3)
 end
 % Function code
end

Because of standard MATLAB type conversion and scalar expansion, you can call this function with
the following inputs and not receive a validation error.

f('character vector',144)

By default, MATLAB converts the elements of the character vector to their equivalent numeric value
and applies scalar expansion to create a 5-by-3 array from the scalar value 144.

Using specialized validation functions can provide more specific argument validation. For example,
this function defines specialized validation functions that it uses in place of the class and size
specifications for the first and second arguments. These local functions enable you to avoid input
value conversions.

• mustBeOfClass restricts the input to a specific class without allowing conversion or subclasses.
For a related function, see mustBeA.

• mustBeEqualSize restricts two inputs to be of equal size without allowing scalar expansion. For
a related function, see mustBeScalarOrEmpty.

• mustBeDims restricts the input to be of a specified dimension without allowing transposition or
scalar expansion. For a related function, see mustBeVector.

function fCustomValidators(a,b)
 arguments
 a {mustBeOfClass(a,'double'), mustBeDims(a,2)}
 b {mustBeEqualSize(b,a)}
 end
 % Function code
end

% Custom validator functions
function mustBeOfClass(input,className)
 % Test for specific class name
 cname = class(input);
 if ~strcmp(cname,className)
 eid = 'Class:notCorrectClass';
 msg = ['Input must be of class ',className,'.'];
 throwAsCaller(MException(eid,msg))
 end
end

function mustBeEqualSize(a,b)
 % Test for equal size
 if ~isequal(size(a),size(b))
 eid = 'Size:notEqual';
 msg = 'Inputs must have equal size.';
 throwAsCaller(MException(eid,msg))

27 Function Argument Validation

27-18

 end
end

function mustBeDims(input,numDims)
 % Test for number of dimensions
 if ~isequal(length(size(input)),numDims)
 eid = 'Size:wrongDimensions';
 msg = ['Input must have ',num2str(numDims),' dimension(s).'];
 throwAsCaller(MException(eid,msg))
 end
end

Use fCustomValidators to text the mustBeOfClass function. The first argument is not of class
double, so the function returns an error.

fCustomValidators('character vector',144)

Error using fCustomValidators
 fCustomValidators('character vector',144)
 ↑
Invalid argument at position 1. Input must be of class double.

In this call, the number of dimensions of the first input is wrong, so the validation function returns a
custom error message.

fCustomValidators(ones(2,2,4),144)

Error using fCustomValidators
 fCustomValidators(ones(2,2,4),144)
 ↑
Invalid argument at position 1. Input must have 2 dimension(s).

The mustBeEqualSize validator function checks to see if the inputs are of the same size.

fCustomValidators(ones(2,2),144)

Error using fCustomValidators
 fCustomValidators(ones(2,2),144)
 ↑
Invalid argument at position 2. Inputs must have equal size.

For related predefined validation functions, see mustBeA, mustBeFloat, and mustBeVector.

nargin in Argument Validation
The nargin function returns the number of function input arguments given in the call to the
currently executing function. When using function argument validation, the value returned by
nargin within a function is the number of positional arguments provided when the function is called.

Repeating arguments are positional arguments and therefore the number of repeating arguments
passed to the function when called is included in the value returned by nargin.

The value that nargin returns does not include optional arguments that are not included in the
function call. Also, nargin does not count any name-value arguments.

Use nargin to determine if optional positional arguments are passed to the function when called. For
example, this function declares three positional arguments and a name-value argument. Here is how
the function determines what arguments are passed when it is called.

 Function Argument Validation

27-19

• nargin determines if the optional positional argument c is passed to the function with a switch
block.

• isfield determines if the name-value argument for Format is passed to the function.

function result = fNargin(a,b,c,namedargs)
 arguments
 a (1,1) double
 b (1,1) double
 c (1,1) double = 1
 namedargs.Format (1,:) char
 end

 % Function code
 switch nargin
 case 2
 result = a + b;
 case 3
 result = a^c + b^c;
 end
 if isfield(namedargs,"Format")
 format(namedargs.Format);
 end
end

In this function call, the value of nargin is 2:

result = fNargin(3,4)

result =

 7

In this function call, the value of nargin is 3:

result = fNargin(3,4,7.62)

result =

 4.3021e+04

In this function call, the value of nargin is 3:

result = fNargin(3,4,7.62,Format="bank")

result =

 43020.56

Restrictions on Variable and Function Access

arguments blocks exist in the function's workspace. Any packages, classes, or functions added to the
scope of the function using the import command are added to the scope of the arguments block.

The only variables visible to validator functions and default value expressions are the input variables
already declared. In this function, the default value of c is derived from a and b.

27 Function Argument Validation

27-20

function c = f(a,b,c)
 arguments
 a uint32
 b uint32
 c uint32 = a * b
 end

 % Function code
 ...
end

However, you cannot refer to input variables not yet declared in an arguments block. For example,
using this declaration for argument a in the previous function is not valid because b and c have not
been declared yet.

arguments
 a uint32 = b * c
 b uint32
 c uint32
end

Argument validation expressions can reference only previously declared, and therefore validated,
arguments. Validation functions and default values for name-value arguments cannot access other
name-value arguments.

Limitations on Functions in arguments Block

Any references to previously declared arguments must be visible in the text of validation functions
and default values. To ensure code transparency, do not use functions that interact with the function
workspace. Specifically, do not use nested functions or any of the functions listed in the following
table in the arguments block.

assignin builtin clear
dbstack eval evalc
evalin exist feval
input inputname load
nargin narginchk nargoutchk
save whos who

These restrictions apply only within the arguments block and do not apply to variables or functions
in the body of the function.

Debugging Arguments Blocks
While debugging inside of an arguments block the workspace is read only. This means that it is
possible to inspect the workspace and view the values assigned to variables. However, it is not
possible to create new variables or change the values assigned to existing variables while the
workspace is read only. Once the debugger is outside of the arguments block it will once again be
possible to create or edit variables.

See Also
namedargs2cell | arguments

 Function Argument Validation

27-21

Related Examples
• “Argument Definitions”
• “Argument Validation Functions” on page 27-23
• “Validate Property Values”

27 Function Argument Validation

27-22

Argument Validation Functions
MATLAB defines functions for use in argument validation. These functions support common use
patterns for validation and provide descriptive error messages. The following tables categorize the
MATLAB validation functions and describe their use.

Numeric Value Attributes
Name Meaning Functions Called

on Inputs
mustBePositive(value) value > 0 gt, isreal,

isnumeric,
islogical

mustBeNonpositive(valu
e)

value <= 0 ge, isreal,
isnumeric,
islogical

mustBeNonnegative(valu
e)

value >= 0 ge, isreal,
isnumeric,
islogical

mustBeNegative(value) value < 0 lt, isreal,
isnumeric,
islogical

mustBeFinite(value) value has no NaN and
no Inf elements.

isfinite

mustBeNonNan(value) value has no NaN
elements.

isnan

mustBeNonzero(value) value ~= 0 eq, isnumeric,
islogical

mustBeNonsparse(value) value has no sparse
elements.

issparse

mustBeReal(value) value has no
imaginary part.

isreal

mustBeInteger(value) value ==
floor(value)

isreal,
isfinite, floor,
isnumeric,
islogical

mustBeNonmissing(value
)

value cannot contain
missing values.

ismissing

 Argument Validation Functions

27-23

Comparison with Other Values
Name Meaning Functions Called

on Inputs
mustBeGreaterThan(valu
e,c)

value > c gt, isreal,
isnumeric,
islogical

mustBeLessThan(value,c
)

value < c lt, isreal,
isnumeric,
islogical

mustBeGreaterThanOrEqu
al(value,c)

value >= c ge, isreal,
isnumeric,
islogical

mustBeLessThanOrEqual(
value,c)

value <= c le, isreal,
isnumeric,
islogical

Data Types
Name Meaning Functions Called

on Inputs
mustBeA(value,classnam
es)

value must be of
specific class.

Uses class
definition
relationships

mustBeNumeric(value) value must be
numeric.

isnumeric

mustBeNumericOrLogical
(value)

value must be
numeric or logical.

isnumeric,
islogical

mustBeFloat(value) value must be
floating-point array.

isfloat

mustBeUnderlyingType(v
alue,typename)

value must have
specified underlying
type.

isUnderlyingTyp
e

Size
Name Meaning Functions Called

on Inputs
mustBeNonempty(value) value is not empty. isempty
mustBeScalarOrEmpty(va
lue)

value must be a
scalar or be empty.

isscalar,
isempty

mustBeVector(value) value must be a
vector.

isvector

27 Function Argument Validation

27-24

Membership and Range
Name Meaning Functions Called

on Inputs
mustBeMember(value,S) value is an exact

match for a member of
S.

ismember

mustBeInRange(value,lo
wer,upper,boundflags)

value must be within
range.

gt, ge, lt, le

Text
Name Meaning Functions Called

on Inputs
mustBeFile(path) path must refer to a

file.
isfile

mustBeFolder(folder) path must refer to a
folder.

isfolder

mustBeNonzeroLengthTex
t(value)

value must be a piece
of text with nonzero
length.

Not applicable

mustBeText(value) value must be a
string array, character
vector, or cell array of
character vectors.

Not applicable

mustBeTextScalar(value
)

value must be a
single piece of text.

Not applicable

mustBeValidVariableNam
e(varname)

varname must be a
valid variable name.

isvarname

Define Validation Functions
Validation functions are MATLAB functions that check requirements on values entering functions or
properties. Validation functions determine when to throw errors and what error messages to display.

Functions used for validation have these design elements:

• Validation functions do not return outputs or modify program state. The only purpose is to check
the validity of the input value.

• Validation functions must accept the value being validated as an argument. If the function accepts
more than one argument, the first input is the value to be validated.

• Validation functions rely only on the inputs. No other values are available to the function.
• Validation functions throw an error if the validation fails. Using throwAsCaller to throw

exceptions avoids showing the validation function itself in the displayed error message.

Creating your own validation function is useful when you want to provide specific validation that is
not available using the MATLAB validation functions. You can create a validation function as a local

 Argument Validation Functions

27-25

function within the function file or place it on the MATLAB path. To avoid a confluence of error
messages, do not use function argument validation within user-defined validation functions.

For example, the mustBeRealUpperTriangular function restricts the input to real-valued, upper
triangular matrices. The validation function uses the istriu and isreal functions.
function mustBeRealUpperTriangular(a)
 if ~(istriu(a) && isreal(a))
 eidType = 'mustBeRealUpperTriangular:notRealUpperTriangular';
 msgType = 'Input must be a real-valued, upper triangular matrix.';
 throwAsCaller(MException(eidType,msgType))
 end
end

If the argument is not of the correct type, the function throws an error.

a = [1 2 3+2i; 0 2 3; 0 0 1];
mustBeRealUpperTriangular(a)

Input must be a real-valued, upper triangular matrix.

See Also

More About
• “Function Argument Validation” on page 27-2

27 Function Argument Validation

27-26

Transparency in MATLAB Code

Code has transparent variable access if MATLAB can identify every variable access by scanning the
code while ignoring comments, character vectors, and string literals. Variable access includes
reading, adding, removing, or modifying workspace variables.

In these coding contexts, MATLAB requires transparent variable access:

• Function argument validation blocks. For more information, see “Restrictions on Variable and
Function Access” on page 27-20

• The body of a parfor loop or spmd block. For more information, see “Ensure Transparency in
parfor-Loops or spmd Statements” (Parallel Computing Toolbox).

In these contexts, nontransparent variable access results in run-time errors.

Writing Transparent Code
Transparent code refers to variable names explicitly. For example, in this code, MATLAB can identify
X and ii as variables.

X = zeros(1,10);
for ii = 1:10
 X(ii) = randi(9,1);
end

However, in the following call to the eval function, MATLAB cannot recognize the variables in the
statement that is passed to eval because the input is a character string.

X = zeros(1,10);
for ii = 1:10
 eval('X(ii) = randi(9,1);')
end

Before executing this code, MATLAB sees a call to the eval function with one argument, which is the
character vector 'X(ii) = randi(9,1);'.

To be transparent, code must refer to variable names explicitly so that MATLAB can identify the
variables by inspection or static analysis. Using the eval function with the character vector 'X(ii)
= randi(9,1);' means that MATLAB must execute the code to identify X and ii as variables.

Here is a partial list of functions and coding that you cannot use with transparent variable access:

• eval, evalc, evalin, or assignin
• Scripts
• MEX functions that access the workspace variables dynamically, for example by using

mexGetVariable
• Introspective functions such as who and whos
• The save and load commands, except when the result from load is assigned explicitly
• Any dynamic name reference

 Transparency in MATLAB Code

27-27

Passing a variable to a function using the command form is not transparent because it is equivalent to
passing the argument as a character string. For example, these calls to the clear function are both
nontransparent.

clear X
clear('X')

If code creates workspace variables, but MATLAB can identify these new variables only after
executing the code, then this code does not have transparent variable access. For example, MATLAB
cannot determine what variables are loaded from a MAT file, so this statement is nontransparent.

load foo.mat

However, code that explicitly assigns the loaded variable to a name is transparent because MATLAB
can recognize that the name on the left-hand side refers to a workspace variable. For example, this
statement loads the variable X from the MAT file into the workspace in a variable named X.

X = load('foo.mat','X');

Access to variables must be transparent within the workspace. For example, code cannot use the
evalin or assignin functions in a workspace that requires transparency to create variables in
another workspace.

See Also

More About
• “Function Argument Validation” on page 27-2
• “Scope Variables and Generate Names”

27 Function Argument Validation

27-28

Software Development

29

Error Handling

• “Exception Handling in a MATLAB Application” on page 28-2
• “Throw an Exception” on page 28-4
• “Respond to an Exception” on page 28-6
• “Clean Up When Functions Complete” on page 28-9
• “Issue Warnings and Errors” on page 28-14
• “Suppress Warnings” on page 28-17
• “Restore Warnings” on page 28-20
• “Change How Warnings Display” on page 28-22
• “Use try/catch to Handle Errors” on page 28-23

28

Exception Handling in a MATLAB Application
In this section...
“Overview” on page 28-2
“Getting an Exception at the Command Line” on page 28-2
“Getting an Exception in Your Program Code” on page 28-3
“Generating a New Exception” on page 28-3

Overview
No matter how carefully you plan and test the programs you write, they may not always run as
smoothly as expected when executed under different conditions. It is always a good idea to include
error checking in programs to ensure reliable operation under all conditions.

In the MATLAB software, you can decide how your programs respond to different types of errors. You
may want to prompt the user for more input, display extended error or warning information, or
perhaps repeat a calculation using default values. The error-handling capabilities in MATLAB help
your programs check for particular error conditions and execute the appropriate code depending on
the situation.

When MATLAB detects a severe fault in the command or program it is running, it collects information
about what was happening at the time of the error, displays a message to help the user understand
what went wrong, and terminates the command or program. This is called throwing an exception. You
can get an exception while entering commands at the MATLAB command prompt or while executing
your program code.

Getting an Exception at the Command Line
If you get an exception at the MATLAB prompt, you have several options on how to deal with it as
described below.

Determine the Fault from the Error Message

Evaluate the error message MATLAB has displayed. Most error messages attempt to explain at least
the immediate cause of the program failure. There is often sufficient information to determine the
cause and what you need to do to remedy the situation.

Review the Failing Code

If the function in which the error occurred is implemented as a MATLAB program file, the error
message should include a line that looks something like this:

surf

Error using surf (line 49)
Not enough input arguments.

The text includes the name of the function that threw the error (surf, in this case) and shows the
failing line number within that function's program file. Click the line number; MATLAB opens the file
and positions the cursor at the location in the file where the error originated. You may be able to
determine the cause of the error by examining this line and the code that precedes it.

28 Error Handling

28-2

Step Through the Code in the Debugger

You can use the MATLAB Debugger to step through the failing code. Click the underlined error text to
open the file in the MATLAB Editor at or near the point of the error. Next, click the hyphen at the
beginning of that line to set a breakpoint at that location. When you rerun your program, MATLAB
pauses execution at the breakpoint and enables you to step through the program code. The command
dbstop on error is also helpful in finding the point of error.

See the documentation on “Debug MATLAB Code Files” on page 23-2 for more information.

Getting an Exception in Your Program Code
When you are writing your own program in a program file, you can catch exceptions and attempt to
handle or resolve them instead of allowing your program to terminate. When you catch an exception,
you interrupt the normal termination process and enter a block of code that deals with the faulty
situation. This block of code is called a catch block.

Some of the things you might want to do in the catch block are:

• Examine information that has been captured about the error.
• Gather further information to report to the user.
• Try to accomplish the task at hand in some other way.
• Clean up any unwanted side effects of the error.

When you reach the end of the catch block, you can either continue executing the program, if
possible, or terminate it.

Use an MException object to access information about the exception in your program. For more
information, see “Respond to an Exception” on page 28-6.

Generating a New Exception
When your program code detects a condition that will either make the program fail or yield
unacceptable results, it should throw an exception. This procedure

• Saves information about what went wrong and what code was executing at the time of the error.
• Gathers any other pertinent information about the error.
• Instructs MATLAB to throw the exception.

Use an MException object to capture information about the error. For more information, see “Throw
an Exception” on page 28-4.

 Exception Handling in a MATLAB Application

28-3

Throw an Exception
When your program detects a fault that will keep it from completing as expected or will generate
erroneous results, you should halt further execution and report the error by throwing an exception.
The basic steps to take are:

1 Detect the error. This is often done with some type of conditional statement, such as an if or
try/catch statement that checks the output of the current operation.

2 Construct an MException object to represent the error. Add an error identifier and error
message to the object when calling the constructor.

3 If there are other exceptions that may have contributed to the current error, you can store the
MException object for each in the cause field of a single MException that you intend to throw.
Use the addCause function for this.

4 If there is fix that can be suggested for the current error, you can add it to the Correction field
of the MException that you intend to throw. Use the addCorrection function for this.

5 Use the throw or throwAsCaller function to have MATLAB issue the exception. At this point,
MATLAB stores call stack information in the stack field of the MException, exits the currently
running function, and returns control to either the keyboard or an enclosing catch block in a
calling function.

Suggestions on How to Throw an Exception
This example illustrates throwing an exception using the steps just described.

Create a function, indexIntoArray, that indexes into a specified array using a specified index. The
function catches any errors that MATLAB throws and creates an exception that provides general
information about the error. When it catches an error, it detects whether the error involves the
number of inputs or the specified index. If it does, the function adds additional exceptions with more
detailed information about the source of the failure, and suggests corrections when possible.
function indexIntoArray(A,idx)

% 1) Detect the error.
try
 A(idx)
catch

 % 2) Construct an MException object to represent the error.
 errID = 'MYFUN:BadIndex';
 msg = 'Unable to index into array.';
 baseException = MException(errID,msg);

 % 3) Store any information contributing to the error.
 if nargin < 2
 causeException = MException('MATLAB:notEnoughInputs','Not enough input arguments.');
 baseException = addCause(baseException,causeException);

 % 4) Suggest a correction, if possible.
 if(nargin > 1)
 exceptionCorrection = matlab.lang.correction.AppendArgumentsCorrection('1');
 baseException = baseException.addCorrection(exceptionCorrection);
 end

 throw(baseException);
 end

 try
 assert(isnumeric(idx),'MYFUN:notNumeric', ...
 'Indexing array is not numeric.')
 catch causeException
 baseException = addCause(baseException,causeException);
 end

28 Error Handling

28-4

 if any(size(idx) > size(A))
 errID = 'MYFUN:incorrectSize';
 msg = 'Indexing array is too large.';
 causeException2 = MException(errID,msg);
 baseException = addCause(baseException,causeException2);
 end

 % 5) Throw the exception to stop execution and display an error
 % message.
 throw(baseException)
end
end

If you call the function without specifying an index, the function throws a detailed error and suggests
a correction:

A = [13 42; 7 20];
indexIntoArray(A)

Error using indexIntoArray
Unable to index into array.

Caused by:
 Not enough input arguments.

Did you mean:
>> indexIntoArray(A, 1)

If you call the function with a nonnumeric index array that is too large, the function throws a detailed
error.

A = [13 42; 7 20];
idx = ['a' 'b' 'c'];
indexIntoArray(A, idx)

Error using indexIntoArray
Unable to index into array.

Caused by:
 Error using assert
 Indexing array is not numeric.
 Indexing array is too large.

 Throw an Exception

28-5

Respond to an Exception
In this section...
“Overview” on page 28-6
“The try/catch Statement” on page 28-6
“Suggestions on How to Handle an Exception” on page 28-7

Overview
The MATLAB software, by default, terminates the currently running program when an exception is
thrown. If you catch the exception in your program, however, you can capture information about what
went wrong and deal with the situation in a way that is appropriate for the particular condition. This
requires a try/catch statement.

The try/catch Statement
When you have statements in your code that could generate undesirable results, put those statements
into a try/catch block that catches any errors and handles them appropriately.

A try/catch statement looks something like the following pseudocode. It consists of two parts:

• A try block that includes all lines between the try and catch statements.
• A catch block that includes all lines of code between the catch and end statements.

 try
 Perform one ...
 or more operations
A catch ME
 Examine error info in exception object ME
 Attempt to figure out what went wrong
 Either attempt to recover, or clean up and abort
 end

B Program continues

The program executes the statements in the try block. If it encounters an error, it skips any
remaining statements in the try block and jumps to the start of the catch block (shown here as
point A). If all operations in the try block succeed, then execution skips the catch block entirely and
goes to the first line following the end statement (point B).

Specifying the try, catch, and end commands and also the code of the try and catch blocks on
separate lines is recommended. If you combine any of these components on the same line, separate
them with commas:

try, surf, catch ME, ME.stack, end
ans =
 file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
 name: 'surf'
 line: 49

Note You cannot define nested functions within a try or catch block.

28 Error Handling

28-6

The Try Block

On execution, your code enters the try block and executes each statement as if it were part of the
regular program. If no errors are encountered, MATLAB skips the catch block entirely and continues
execution following the end statement. If any of the try statements fail, MATLAB immediately exits
the try block, leaving any remaining statements in that block unexecuted, and enters the catch
block.

The Catch Block

The catch command marks the start of a catch block and provides access to a data structure that
contains information about what caused the exception. This is shown as the variable ME in the
preceding pseudocode. ME is an MException object. When an exception occurs, MATLAB creates an
MException object and returns it in the catch statement that handles that error.

You are not required to specify any argument with the catch statement. If you do not need any of the
information or methods provided by the MException object, just specify the catch keyword alone.

The MException object is constructed by internal code in the program that fails. The object has
properties that contain information about the error that can be useful in determining what happened
and how to proceed. The MException object also provides access to methods that enable you to
respond to the exception.

Having entered the catch block, MATLAB executes the statements in sequence. These statements
can attempt to

• Attempt to resolve the error.
• Capture more information about the error.
• Switch on information found in the MException object and respond appropriately.
• Clean up the environment that was left by the failing code.

The catch block often ends with a rethrow command. The rethrow causes MATLAB to exit the
current function, keeping the call stack information as it was when the exception was first thrown. If
this function is at the highest level, that is, it was not called by another function, the program
terminates. If the failing function was called by another function, it returns to that function. Program
execution continues to return to higher level functions, unless any of these calls were made within a
higher-level try block, in which case the program executes the respective catch block.

Suggestions on How to Handle an Exception
The following example reads the contents of an image file. It includes detailed error handling, and
demonstrates some suggested actions you can take in response to an error.

The image-reading function throws and catches errors in several ways.

• The first if statement checks whether the function is called with an input argument. If no input
argument is specified, the program throws an error and suggests an input argument to correct the
error.

• The try block attempts to open and read the file. If either the open or the read fails, the program
catches the resulting exception and saves the MException object in the variable ME1.

• The catch block checks to see if the specified file could not be found. If so, the program allows for
the possibility that a common variation of the filename extension (e.g., jpeg instead of jpg) was

 Respond to an Exception

28-7

used, by retrying the operation with a modified extension. This is done using a try/catch
statement nested within the original try/catch.

function d_in = read_image(filename)

% Check the number of input arguments.
if nargin < 1
 me = MException('MATLAB:notEnoughInputs','Not enough input arguments.');
 aac = matlab.lang.correction.AppendArgumentsCorrection('"image.png"');
 me = me.addCorrection(aac);
 throw(me);
end

% Attempt to read file and catch an exception if it arises.
try
 fid = fopen(filename,'r');
 d_in = fread(fid);
catch ME1
 % Get last segment of the error identifier.
 idSegLast = regexp(ME1.identifier,'(?<=:)\w+$','match');

 % Did the read fail because the file could not be found?
 if strcmp(idSegLast,'InvalidFid') && ...
 ~exist(filename,'file')

 % Yes. Try modifying the filename extension.
 switch ext
 case '.jpg' % Change jpg to jpeg
 filename = strrep(filename,'.jpg','.jpeg');
 case '.jpeg' % Change jpeg to jpg
 filename = strrep(filename,'.jpeg','.jpg');
 case '.tif' % Change tif to tiff
 filename = strrep(filename,'.tif','.tiff');
 case '.tiff' % Change tiff to tif
 filename = strrep(filename,'.tiff','.tif');
 otherwise
 fprintf('File %s not found\n',filename);
 rethrow(ME1);
 end

 % Try again, with modified filenames.
 try
 fid = fopen(filename,'r');
 d_in = fread(fid);
 catch ME2
 fprintf('Unable to access file %s\n',filename);
 ME2 = addCause(ME2,ME1);
 rethrow(ME2)
 end
 end
end

This example illustrates some of the actions that you can take in response to an exception.

• Compare the identifier field of the MException object to possible causes of the error. In this
case, the function checks whether the identifier ends in 'InvalidFid', indicating a file could not
be found.

• Use a nested try/catch statement to retry the operation with improved input. In this case, the
function retries the open and read operations using a known variation of the filename extension.

• Display an appropriate message.
• Add the first MException object to the cause field of the second.
• Add a suggested correction to an MException object.
• Rethrow the exception. This stops program execution and displays the error message.

Cleaning up any unwanted results of the error is also advisable. For example, close figures that
remained open after the error occurred.

28 Error Handling

28-8

Clean Up When Functions Complete

In this section...
“Overview” on page 28-9
“Examples of Cleaning Up a Program Upon Exit” on page 28-10
“Retrieving Information About the Cleanup Routine” on page 28-11
“Using onCleanup Versus try/catch” on page 28-12
“onCleanup in Scripts” on page 28-12

Overview
A good programming practice is to make sure that you leave your program environment in a clean
state that does not interfere with any other program code. For example, you might want to

• Close any files that you opened for import or export.
• Restore the MATLAB path.
• Lock or unlock memory to prevent or allow erasing MATLAB function or MEX-files.
• Set your working folder back to its default if you have changed it.
• Make sure global and persistent variables are in the correct state.

MATLAB provides the onCleanup function for this purpose. This function, when used within any
program, establishes a cleanup routine for that function. When the function terminates, whether
normally or in the event of an error or Ctrl+C, MATLAB automatically executes the cleanup routine.

The following statement establishes a cleanup routine cleanupFun for the currently running
program:

cleanupObj = onCleanup(@cleanupFun);

When your program exits, MATLAB finds any instances of the onCleanup class and executes the
associated function handles. The process of generating and activating function cleanup involves the
following steps:

1 Write one or more cleanup routines for the program under development. Assume for now that it
takes only one such routine.

2 Create a function handle for the cleanup routine.
3 At some point, generally early in your program code, insert a call to the onCleanup function,

passing the function handle.
4 When the program is run, the call to onCleanup constructs a cleanup object that contains a

handle to the cleanup routine created in step 1.
5 When the program ends, MATLAB implicitly clears all objects that are local variables. This

invokes the destructor method for each local object in your program, including the cleanup
object constructed in step 4.

6 The destructor method for this object invokes this routine if it exists. This perform the tasks
needed to restore your programming environment.

 Clean Up When Functions Complete

28-9

You can declare any number of cleanup routines for a program file. Each call to onCleanup
establishes a separate cleanup routine for each cleanup object returned.

If, for some reason, the object returned by onCleanup persists beyond the life of your program, then
the cleanup routine associated with that object is not run when your function terminates. Instead, it
will run whenever the object is destroyed (e.g., by clearing the object variable).

Your cleanup routine should never rely on variables that are defined outside of that routine. For
example, the nested function shown here on the left executes with no error, whereas the very similar
one on the right fails with the error, Undefined function or variable 'k'. This results from
the cleanup routine's reliance on variable k which is defined outside of the nested cleanup routine:

function testCleanup function testCleanup
k = 3; k = 3;
myFun obj = onCleanup(@myFun);
 function myFun function myFun
 fprintf('k is %d\n', k) fprintf('k is %d\n', k)
 end end
end end

Examples of Cleaning Up a Program Upon Exit
Example 1 — Close Open Files on Exit

MATLAB closes the file with identifier fid when function openFileSafely terminates:

function openFileSafely(fileName)
fid = fopen(fileName, 'r');
c = onCleanup(@()fclose(fid));

s = fread(fid);
 .
 .
 .
end

Example 2 — Maintain the Selected Folder

This example preserves the current folder whether functionThatMayError returns an error or not:

function changeFolderSafely(fileName)
 currentFolder = pwd;
 c = onCleanup(@()cd(currentFolder));

 functionThatMayError;
 end % c executes cd(currentFolder) here.

Example 3 — Close Figure and Restore MATLAB Path

This example extends the MATLAB path to include files in the toolbox\images folders, and then
displays a figure from one of these folders. After the figure displays, the cleanup routine
restore_env closes the figure and restores the path to its original state.

function showImageOutsidePath(imageFile)
fig1 = figure;
imgpath = genpath([matlabroot '\toolbox\images']);

28 Error Handling

28-10

% Define the cleanup routine.
cleanupObj = onCleanup(@()restore_env(fig1, imgpath));

% Modify the path to gain access to the image file,
% and display the image.
addpath(imgpath);
rgb = imread(imageFile);
fprintf('\n Opening the figure %s\n', imageFile);
image(rgb);
pause(2);

 % This is the cleanup routine.
 function restore_env(fighandle, newpath)
 disp ' Closing the figure'
 close(fighandle);
 pause(2)

 disp ' Restoring the path'
 rmpath(newpath);
 end
end

Run the function as shown here. You can verify that the path has been restored by comparing the
length of the path before and after running the function:

origLen = length(path);

showImageOutsidePath('greens.jpg')
 Opening the figure greens.jpg
 Closing the figure
 Restoring the path

currLen = length(path);
currLen == origLen
ans =
 1

Retrieving Information About the Cleanup Routine
In Example 3 shown above, the cleanup routine and data needed to call it are contained in a handle to
an anonymous function:

@()restore_env(fig1, imgpath)

The details of that handle are then contained within the object returned by the onCleanup function:

cleanupObj = onCleanup(@()restore_env(fig1, imgpath));

You can access these details using the task property of the cleanup object as shown here. (Modify
the showImageOutsidePath function by adding the following code just before the comment line
that says, “% This is the cleanup routine.”)

disp ' Displaying information from the function handle:'
task = cleanupObj.task;
fun = functions(task)
wsp = fun.workspace{2,1}

 Clean Up When Functions Complete

28-11

fprintf('\n');
pause(2);

Run the modified function to see the output of the functions command and the contents of one of
the workspace cells:

showImageOutsidePath('greens.jpg')

Opening the figure greens.jpg
Displaying information from the function handle:
fun =
 function: '@()restore_env(fig1,imgpath)'
 type: 'anonymous'
 file: 'c:\work\g6.m'
 workspace: {2x1 cell}
wsp =
 imageFile: 'greens.jpg'
 fig1: 1
 imgpath: [1x3957 char]
 cleanupObj: [1x1 onCleanup]
 rgb: [300x500x3 uint8]
 task: @()restore_env(fig1,imgpath)

Closing the figure
Restoring the path

Using onCleanup Versus try/catch
Another way to run a cleanup routine when a function terminates unexpectedly is to use a try,
catch statement. There are limitations to using this technique however. If the user ends the program
by typing Ctrl+C, MATLAB immediately exits the try block, and the cleanup routine never executes.
The cleanup routine also does not run when you exit the function normally.

The following program cleans up if an error occurs, but not in response to Ctrl+C:

function cleanupByCatch
try
 pause(10);
catch
 disp(' Collecting information about the error')
 disp(' Executing cleanup tasks')
end

Unlike the try/catch statement, the onCleanup function responds not only to a normal exit from
your program and any error that might be thrown, but also to Ctrl+C. This next example replaces the
try/catch with onCleanup:

function cleanupByFunc
obj = onCleanup(@()...
 disp(' Executing cleanup tasks'));
pause(10);

onCleanup in Scripts
onCleanup does not work in scripts as it does in functions. In functions, the cleanup object is stored
in the function workspace. When the function exits, this workspace is cleared thus executing the

28 Error Handling

28-12

associated cleanup routine. In scripts, the cleanup object is stored in the base workspace (that is, the
workspace used in interactive work done at the command prompt). Because exiting a script has no
effect on the base workspace, the cleanup object is not cleared and the routine associated with that
object does not execute. To use this type of cleanup mechanism in a script, you would have to
explicitly clear the object from the command line or another script when the first script terminates.

 Clean Up When Functions Complete

28-13

Issue Warnings and Errors

In this section...
“Issue Warnings” on page 28-14
“Throw Errors” on page 28-14
“Add Run-Time Parameters to Your Warnings and Errors” on page 28-15
“Add Identifiers to Warnings and Errors” on page 28-15

Issue Warnings
You can issue a warning to flag unexpected conditions detected when running a program. The
warning function prints a warning message to the command line. Warnings differ from errors in two
significant ways:

• Warnings do not halt the execution of the program.
• You can suppress any unhelpful MATLAB warnings.

Use the warning function in your code to generate a warning message during execution. Specify the
message as the input argument to the warning function:

warning('Input must be text')

For example, you can insert a warning in your code to verify the software version:

function warningExample1
 if ~strncmp(version, '7', 1)
 warning('You are using a version other than v7')
 end

Throw Errors
You can throw an error to flag fatal problems within the program. Use the error function to print
error messages to the command line. After displaying the message, MATLAB stops the execution of
the current program.

For example, suppose you construct a function that returns the number of combinations of k elements
from n elements. Such a function is nonsensical if k > n; you cannot choose 8 elements if you start
with just 4. You must incorporate this fact into the function to let anyone using combinations know
of the problem:

function com = combinations(n,k)
 if k > n
 error('Cannot calculate with given values')
 end
 com = factorial(n)/(factorial(k)*factorial(n-k));
end

If the combinations function receives invalid input, MATLAB stops execution immediately after
throwing the error message:

combinations(4,8)

28 Error Handling

28-14

Error using combinations (line 3)
Cannot calculate with given values

Add Run-Time Parameters to Your Warnings and Errors
To make your warning or error messages more specific, insert components of the message at the time
of execution. The warning function uses conversion characters that are the same as those used by
the sprintf function. Conversion characters act as placeholders for substrings or values, unknown
until the code executes.

For example, this warning uses %s and %d to mark where to insert the values of variables arrayname
and arraydims:

warning('Array %s has %d dimensions.',arrayname,arraydims)

If you execute this command with arrayname = 'A' and arraydims = 3, MATLAB responds:

Warning: Array A has 3 dimensions.

Adding run-time parameters to your warnings and errors can clarify the problems within a program.
Consider the function combinations from “Throw Errors” on page 28-14. You can throw a much
more informative error using run-time parameters:

function com = combinations(n,k)
 if k > n
 error('Cannot choose %i from %i elements',k,n)
 end
 com = factorial(n)/(factorial(k)*factorial(n-k));
end

If this function receives invalid arguments, MATLAB throws an error message and stops the program:

combinations(6,9)

Error using combinations (line 3)
Cannot choose 9 from 6 elements

Add Identifiers to Warnings and Errors
An identifier provides a way to uniquely reference a warning or an error.

Enable or disable warnings with identifiers. Use an identifying text argument with the warning
function to attach a unique tag to a message:

warning(identifier_text,message_text)

For example, you can add an identifier tag to the previous MATLAB warning about which version of
software is running:

minver = '7';
if ~strncmp(version,minver,1)
 warning('MYTEST:VERCHK','Running a version other than v%s',minver)
end

Adding an identifier to an error message allows for negative testing. However, adding and recovering
more information from errors often requires working with MException objects.

 Issue Warnings and Errors

28-15

See Also
warning | lastwarn | warndlg | MException

Related Examples
• “Suppress Warnings” on page 28-17
• “Restore Warnings” on page 28-20
• “Exception Handling in a MATLAB Application” on page 28-2

28 Error Handling

28-16

Suppress Warnings

Your program might issue warnings that do not always adversely affect execution. To avoid confusion,
you can hide warning messages during execution by changing their states from 'on' to 'off'.

To suppress specific warning messages, you must first find the warning identifier. Each warning
message has a unique identifier. To find the identifier associated with a MATLAB warning, reproduce
the warning. For example, this code reproduces a warning thrown if MATLAB attempts to remove a
nonexistent folder:

rmpath('folderthatisnotonpath')

Warning: "folderthatisnotonpath" not found in path.

Note If this statement does not produce a warning message, use the following code to temporarily
enable the display of all warnings, and then restore the original warning state:

w = warning ('on','all');
rmpath('folderthatisnotonpath')
warning(w)

To obtain information about the most recently issued warning, use the warning or lastwarn
functions. This code uses the query state to return a data structure containing the identifier and the
current state of the last warning:

w = warning('query','last')

w =

 identifier: 'MATLAB:rmpath:DirNotFound'
 state: 'on'

You can save the identifier field in the variable, id:

id = w.identifier;

Note warning('query','last') returns the last displayed warning. MATLAB only displays
warning messages that have state: 'on' and a warning identifier.

Using the lastwarn function, you can retrieve the last warning message, regardless of its display
state:

lastwarn

ans =

"folderthatisnotonpath" not found in path.

 Suppress Warnings

28-17

Turn Warnings On and Off
After you obtain the identifier from the query state, use this information to disable or enable the
warning associated with that identifier.

Continuing the example from the previous section, turn the warning
'MATLAB:rmpath:DirNotFound' off, and repeat the operation.

warning('off',id)
rmpath('folderthatisnotonpath')

MATLAB displays no warning.

Turn the warning on, and try to remove a nonexistent path:

warning('on',id)
rmpath('folderthatisnotonpath')

Warning: "folderthatisnotonpath" not found in path.

MATLAB now issues a warning.

Tip Turn off the most recently invoked warning with warning('off','last').

Controlling All Warnings

The term all refers only to those warnings that have been issued or modified during your current
MATLAB session. Modified warning states persist only through the current session. Starting a new
session restores the default settings.

Use the identifier 'all' to represent the group of all warnings. View the state of all warnings with
either syntax:

warning('query','all')

warning

To enable all warnings and verify the state:

warning('on','all')
warning('query','all')

All warnings have the state 'on'.

To disable all warnings and verify the state, use this syntax:

warning('off','all')
warning

All warnings have the state 'off'.

28 Error Handling

28-18

See Also

Related Examples
• “Restore Warnings” on page 28-20
• “Change How Warnings Display” on page 28-22

 Suppress Warnings

28-19

Restore Warnings

MATLAB allows you to save the on-off warning states, modify warning states, and restore the
original warning states. This is useful if you need to temporarily turn off some warnings and later
reinstate the original settings.

The following statement saves the current state of all warnings in the structure array called
orig_state:

orig_state = warning;

To restore the original state after any warning modifications, use this syntax:

warning(orig_state);

You also can save the current state and toggle warnings in a single command. For example, the
statement, orig_state = warning('off','all'); is equivalent to the commands:

orig_state = warning;
warning('off','all')

Disable and Restore a Particular Warning
This example shows you how to restore the state of a particular warning.

1 Query the Control:parameterNotSymmetric warning:

 warning('query','Control:parameterNotSymmetric')

The state of warning 'Control:parameterNotSymmetric' is 'on'.
2 Turn off the Control:parameterNotSymmetric warning:

orig_state = warning('off','Control:parameterNotSymmetric')

orig_state =

 identifier: 'Control:parameterNotSymmetric'
 state: 'on'

orig_state contains the warning state before MATLAB turns
Control:parameterNotSymmetric off.

3 Query all warning states:

warning

The default warning state is 'on'. Warnings not set to the default are

State Warning Identifier

 off Control:parameterNotSymmetric

MATLAB indicates that Control:parameterNotSymmetric is 'off'.
4 Restore the original state:

warning(orig_state)
warning('query','Control:parameterNotSymmetric')

28 Error Handling

28-20

The state of warning 'Control:parameterNotSymmetric' is 'on'.

Disable and Restore Multiple Warnings
This example shows you how to save and restore multiple warning states.

1 Disable three warnings, and query all the warnings:

w(1) = warning('off','MATLAB:rmpath:DirNotFound');
w(2) = warning('off','MATLAB:singularMatrix');
w(3) = warning('off','Control:parameterNotSymmetric');
warning

The default warning state is 'on'. Warnings not set to the default are

State Warning Identifier

 off Control:parameterNotSymmetric
 off MATLAB:rmpath:DirNotFound
 off MATLAB:singularMatrix

2 Restore the three warnings to their the original state, and query all warnings:

warning(w)
warning

All warnings have the state 'on'.

You do not need to store information about the previous warning states in an array, but doing so
allows you to restore warnings with one command.

Note When temporarily disabling multiple warnings, using methods related to onCleanup might be
advantageous.

Alternatively, you can save and restore all warnings.

1 Enable all warnings, and save the original warning state:

orig_state = warning('on','all');
2 Restore your warnings to the previous state:

warning(orig_state)

See Also
warning | onCleanup

Related Examples
• “Suppress Warnings” on page 28-17
• “Clean Up When Functions Complete” on page 28-9

 Restore Warnings

28-21

Change How Warnings Display

You can control how warnings appear in MATLAB by modifying two warning modes, verbose and
backtrace.

Mode Description Default
verbose Display a message on how to suppress

the warning.
off (terse)

backtrace Display a stack trace after a warning is
invoked.

on (enabled)

Note The verbose and backtrace modes present some limitations:

• prev_state does not contain information about the backtrace or verbose modes in the
statement, prev_state = warning('query','all').

• A mode change affects all enabled warnings.

Enable Verbose Warnings
When you enable verbose warnings, MATLAB displays an extra line of information with each warning
that tells you how to suppress it.

For example, you can turn on all warnings, disable backtrace, and enable verbose warnings:

warning on all
warning off backtrace
warning on verbose

Running a command that produces an error displays an extended message:

rmpath('folderthatisnotonpath')

Warning: "folderthatisnotonpath" not found in path.
(Type "warning off MATLAB:rmpath:DirNotFound" to suppress this warning.)

Display a Stack Trace on a Specific Warning
It can be difficult to locate the source of a warning when it is generated from code buried in several
levels of function calls. When you enable the backtrace mode, MATLAB displays the file name and line
number where the warning occurred. For example, you can enable backtrace and disable verbose:

warning on backtrace
warning off verbose

Running a command that produces an error displays a hyperlink with a line number:

Warning: "folderthatisnotonpath" not found in path.
> In rmpath at 58

Clicking the hyperlink takes you to the location of the warning.

28 Error Handling

28-22

Use try/catch to Handle Errors
You can use a try/catch statement to execute code after your program encounters an error. try/
catch statements can be useful if you:

• Want to finish the program in another way that avoids errors
• Need to clean up unwanted side effects of the error
• Have many problematic input parameters or commands

Arrange try/catch statements into blocks of code, similar to this pseudocode:

try
 try block...
catch
 catch block...
end

If an error occurs within the try block, MATLAB skips any remaining commands in the try block
and executes the commands in the catch block. If no error occurs within try block, MATLAB
skips the entire catch block.

For example, a try/catch statement can prevent the need to throw errors. Consider the
combinations function that returns the number of combinations of k elements from n elements:

function com = combinations(n,k)
 com = factorial(n)/(factorial(k)*factorial(n-k));
end

MATLAB throws an error whenever k > n. You cannot construct a set with more elements, k, than
elements you possess, n. Using a try/catch statement, you can avoid the error and execute this
function regardless of the order of inputs:

function com = robust_combine(n,k)
 try
 com = factorial(n)/(factorial(k)*factorial(n-k));
 catch
 com = factorial(k)/(factorial(n)*factorial(k-n));
 end
end

robust_combine treats any order of integers as valid inputs:

C1 = robust_combine(8,4)
C2 = robust_combine(4,8)

C1 =

 70

C2 =

 70

Optionally, you can capture more information about errors if a variable follows your catch statement:

catch MExc

 Use try/catch to Handle Errors

28-23

MExc is an MException class object that contains more information about the thrown error. To learn
more about accessing information from MException objects, see “Exception Handling in a MATLAB
Application” on page 28-2.

See Also
MException | onCleanup | try, catch

28 Error Handling

28-24

Program Scheduling

• “Schedule Command Execution Using Timer” on page 29-2
• “Timer Callback Functions” on page 29-4
• “Handling Timer Queuing Conflicts” on page 29-8

29

Schedule Command Execution Using Timer

In this section...
“Overview” on page 29-2
“Example: Displaying a Message” on page 29-2

Overview
The MATLAB software includes a timer object that you can use to schedule the execution of MATLAB
commands. This section describes how you can create timer objects, start a timer running, and
specify the processing that you want performed when a timer fires. A timer is said to fire when the
amount of time specified by the timer object elapses and the timer object executes the commands you
specify.

To use a timer, perform these steps:

1 Create a timer object.

You use the timer function to create a timer object.
2 Specify which MATLAB commands you want executed when the timer fires and control other

aspects of timer object behavior.

You use timer object properties to specify this information. To learn about all the properties
supported by the timer object, see timer. You can also set timer object properties when you
create them, in step 1.

3 Start the timer object.

After you create the timer object, you must start it, using either the start or startat function.
4 Delete the timer object when you are done with it.

After you are finished using a timer object, you should delete it from memory. See delete for
more information.

Note The specified execution time and the actual execution of a timer can vary because timer objects
work in the MATLAB single-threaded execution environment. The length of this time lag is dependent
on what other processing MATLAB is performing. To force the execution of the callback functions in
the event queue, include a call to the drawnow function in your code. The drawnow function flushes
the event queue.

Example: Displaying a Message
The following example sets up a timer object that executes a MATLAB command character vector
after 10 seconds elapse. The example creates a timer object, specifying the values of two timer object
properties, TimerFcn and StartDelay. TimerFcn specifies the timer callback function. This is the
MATLAB command or program file that you want to execute when the timer fires. In the example, the
timer callback function sets the value of the MATLAB workspace variable stat and executes the
MATLAB disp command. The StartDelay property specifies how much time elapses before the
timer fires.

29 Program Scheduling

29-2

After creating the timer object, the example uses the start function to start the timer object. (The
additional commands in this example are included to illustrate the timer but are not required for
timer operation.)

t = timer('TimerFcn', 'stat=false; disp(''Timer!'')',...
 'StartDelay',10);
start(t)

stat=true;
while(stat==true)
 disp('.')
 pause(1)
end

When you execute this code, it produces this output:

.

.

.

.

.

.

.

.

.
Timer!

delete(t) % Always delete timer objects after using them.

See Also
timer

More About
• “Timer Callback Functions” on page 29-4
• “Handling Timer Queuing Conflicts” on page 29-8

 Schedule Command Execution Using Timer

29-3

Timer Callback Functions

In this section...
“Associating Commands with Timer Object Events” on page 29-4
“Creating Callback Functions” on page 29-5
“Specifying the Value of Callback Function Properties” on page 29-6

Note Callback function execution might be delayed if the callback involves a CPU-intensive task such
as updating a figure.

Associating Commands with Timer Object Events
The timer object supports properties that let you specify the MATLAB commands that execute when a
timer fires, and for other timer object events, such as starting, stopping, or when an error occurs.
These are called callbacks. To associate MATLAB commands with a timer object event, set the value
of the associated timer object callback property.

The following diagram shows when the events occur during execution of a timer object and give the
names of the timer object properties associated with each event. For example, to associate MATLAB
commands with a start event, assign a value to the StartFcn callback property. Error callbacks can
occur at any time.

Timer Object Events and Related Callback Function

29 Program Scheduling

29-4

Creating Callback Functions

When the time period specified by a timer object elapses, the timer object executes one or more
MATLAB functions of your choosing. You can specify the functions directly as the value of the callback
property. You can also put the commands in a function file and specify the function as the value of the
callback property.

Specifying Callback Functions Directly

This example creates a timer object that displays a greeting after 5 seconds. The example specifies
the value of the TimerFcn callback property directly, putting the commands in a character vector.

t = timer('TimerFcn',@(x,y)disp('Hello World!'),'StartDelay',5);

Note When you specify the callback commands directly as the value of the callback function
property, the commands are evaluated in the MATLAB workspace.

Putting Commands in a Callback Function

Instead of specifying MATLAB commands directly as the value of a callback property, you can put the
commands in a MATLAB program file and specify the file as the value of the callback property.

When you create a callback function, the first two arguments must be a handle to the timer object
and an event structure. An event structure contains two fields: Type and Data. The Type field
contains a character vector that identifies the type of event that caused the callback. The value of this
field can be any of the following: 'StartFcn', 'StopFcn', 'TimerFcn', or 'ErrorFcn'. The Data
field contains the time the event occurred.

In addition to these two required input arguments, your callback function can accept application-
specific arguments. To receive these input arguments, you must use a cell array when specifying the
name of the function as the value of a callback property. For more information, see “Specifying the
Value of Callback Function Properties” on page 29-6.

Example: Writing a Callback Function

This example implements a simple callback function that displays the type of event that triggered the
callback and the time the callback occurred. To illustrate passing application-specific arguments, the
example callback function accepts as an additional argument a character vector and includes this text
in the display output. To see this function used with a callback property, see “Specifying the Value of
Callback Function Properties” on page 29-6.

function my_callback_fcn(obj, event, text_arg)

txt1 = ' event occurred at ';
txt2 = text_arg;

event_type = event.Type;
event_time = datestr(event.Data.time);

msg = [event_type txt1 event_time];
disp(msg)
disp(txt2)

 Timer Callback Functions

29-5

Specifying the Value of Callback Function Properties

You associate a callback function with a specific event by setting the value of the appropriate callback
property. You can specify the callback function as a cell array or function handle. If your callback
function accepts additional arguments, you must use a cell array.

The following table shows the syntax for several sample callback functions and describes how you call
them.

Callback Function Syntax How to Specify as a Property Value for
Object t

function myfile(obj, event) t.StartFcn = @myfile
function myfile t.StartFcn = @(~,~)myfile
function myfile(obj, event, arg1,
arg2)

t.StartFcn = {@myfile, 5, 6}

This example illustrates several ways you can specify the value of timer object callback function
properties, some with arguments and some without. To see the code of the callback function,
my_callback_fcn, see “Example: Writing a Callback Function” on page 29-5:

1 Create a timer object.

t = timer('StartDelay', 4, 'Period', 4, 'TasksToExecute', 2, ...
 'ExecutionMode', 'fixedRate');

2 Specify the value of the StartFcn callback. Note that the example specifies the value in a cell
array because the callback function needs to access arguments passed to it:

t.StartFcn = {@my_callback_fcn, 'My start message'};
3 Specify the value of the StopFcn callback. Again, the value is specified in a cell array because

the callback function needs to access the arguments passed to it:

t.StopFcn = { @my_callback_fcn, 'My stop message'};
4 Specify the value of the TimerFcn callback. The example specifies the MATLAB commands in a

character vector:

t.TimerFcn = @(x,y)disp('Hello World!');
5 Start the timer object:

start(t)

The example outputs the following.

StartFcn event occurred at 10-Mar-2004 17:16:59
My start message
Hello World!
Hello World!
StopFcn event occurred at 10-Mar-2004 17:16:59
My stop message

6 Delete the timer object after you are finished with it.

delete(t)

See Also
timer

29 Program Scheduling

29-6

More About
• “Handling Timer Queuing Conflicts” on page 29-8

 Timer Callback Functions

29-7

Handling Timer Queuing Conflicts

During busy times, in multiple-execution scenarios, the timer might need to add the timer callback
function (TimerFcn) to the MATLAB execution queue before the previously queued execution of the
callback function has been completed. The BusyMode property affects behavior only when the
ExecutionMode property is set to FixedRate. For other values of ExecutionMode, there cannot be
overlapping attempts to execute the timer callback function because the delay between executions is
always relative to the completion of the previous execution.

You can determine how the timer object handles this scenario by setting the BusyMode property to
use one of these modes:

Drop Mode (Default)
If you specify 'drop' as the value of the BusyMode property, the timer object adds the timer callback
function to the execution queue only when the queue is empty. If the execution queue is not empty,
the timer object skips the execution of the callback.

For example, suppose you create a timer with a period of 1 second, but a callback that requires at
least 1.6 seconds, as shown here for mytimer.m.

function mytimer()
 t = timer;

 t.Period = 1;
 t.ExecutionMode = 'fixedRate';
 t.TimerFcn = @mytimer_cb;
 t.BusyMode = 'drop';
 t.TasksToExecute = 5;
 t.UserData = tic;

 start(t)
end

function mytimer_cb(h,~)
 timeStart = toc(h.UserData)
 pause(1.6);
 timeEnd = toc(h.UserData)
end

This table describes how the timer manages the execution queue.

Approximate Elapsed Time
(Seconds)

Timer Action Function Running

0 (timer start) Add TimerFcn to timer queue None
0 + queue lag No action taken. First call of TimerFcn
1 Attempt to add 2nd call of

TimerFcn to queue. 1st call of
TimerFcn is still running so
2nd call is dropped

29 Program Scheduling

29-8

Approximate Elapsed Time
(Seconds)

Timer Action Function Running

1.6 Add 2nd call of TimerFcn to
queue

none

1.6 + queue lag No action taken. 2nd call of TimerFcn
2 Attempt to add 3rd call of

TimerFcn to queue. 2nd call of
TimerFcn is still running so 3rd
call is dropped

3.2 Add 3rd call of TimerFcn to
queue. 4th call is dropped

none

3.2 + queue lag Attempt to add 4th call of
TimerFcn to queue. 3rd call of
TimerFcn is still running so 4th
call is dropped

3rd call of TimerFcn
3.2

4.8 Add 4th call of TimerFcn to
queue. 5th call is dropped

none

4.8 + queue lag Attempt to add 5th call of
TimerFcn to queue. 4th call of
TimerFcn is still running so 5th
call is dropped

4th call of TimerFcn
4.8

6.4 Add 5th call of TimerFcn to
queue.

none

6.4 + queue lag TasksToExecute has a value
of 5 so mytimer has no more
callbacks to execute.

4th call of TimerFcn
8

Error Mode
The 'error' mode for the BusyMode property is similar to the 'drop' mode: In both modes, the
timer allows only one instance of the callback in the execution queue. In 'error' mode, when the
queue is nonempty, the timer calls the function that you specify by using the ErrorFcn property, and
then stops processing. The currently running callback function completes, but the callback in the
queue does not execute.

For example, modify mytimer.m (described in the previous section) so that it includes an error
handling function and sets BusyMode to 'error'.

function mytimer()
 t = timer;

 t.Period = 1;
 t.ExecutionMode = 'fixedRate';
 t.TimerFcn = @mytimer_cb;
 t.ErrorFcn = @myerror;
 t.BusyMode = 'error';
 t.TasksToExecute = 5;
 t.UserData = tic;

 start(t)

 Handling Timer Queuing Conflicts

29-9

end

function mytimer_cb(h,~)
 timeStart = toc(h.UserData)
 pause(1.6);
 timeEnd = toc(h.UserData)
end

function myerror(h,~)
 disp('Reached the error function')
end

This table describes how the timer manages the execution queue.

Approximate Elapsed Time
(Seconds)

Timer Action Function Running

0 (timer start) Add TimerFcn to timer queue None
0 + queue lag No action taken. First call of TimerFcn
1 Attempt to add 2nd call of

TimerFcn to queue. 1st call of
TimerFcn is still running so
myerror will be queued at the
completion of the first call of
TimerFcn

1.6 Add myerror to queue none
1.6 + queue lag No action taken. myerror is called

Queue Mode
If you specify 'queue', the timer object waits until the currently executing callback function finishes
before queuing the next execution of the timer callback function.

In 'queue' mode, the timer object tries to make the average time between executions equal the
amount of time specified in the Period property. If the timer object has to wait longer than the time
specified in the Period property between executions of the timer function callback, it shortens the
time period for subsequent executions to make up the time.

For example, modify mytimer.m (described in the previous section) so that BusyMode is set to
'queue'.

function mytimer()
 t = timer;

 t.Period = 1;
 t.ExecutionMode = 'fixedRate';
 t.TimerFcn = @mytimer_cb;
 t.ErrorFcn = @myerror;
 t.BusyMode = 'queue';
 t.TasksToExecute = 5;
 t.UserData = tic;

 start(t)

29 Program Scheduling

29-10

end

function mytimer_cb(h,~)
 timeStart = toc(h.UserData)
 pause(1.6);
 timeEnd = toc(h.UserData)
end

function myerror(h,~)
 disp('Reached the error function')
end

This table describes how the timer manages the execution queue.

Approximate Elapsed Time
(Seconds)

Timer Action Function Running

0 Start the first execution of the
callback.

None

0 + queue lag No action taken. First call of TimerFcn
1 Attempt to start the 2nd

execution of the callback. The
1st execution is not complete
and the execution queue
remains empty.

1.6 The timer adds the 2nd callback
to the queue

none

1.6 + queue lag No action taken. 2nd call of TimerFcn
2 Attempt to add the 3rd

execution of the callback. The
2nd execution is not complete
and the execution queue
remains empty.

3 Attempt to start the 4th
execution of the callback. The
2nd execution is not complete
and the execution queue
remains empty.

3.2 Finish the 2nd callback
execution. The timer adds the
3rd and 4th callbacks to the
queue and executes the 3rd. The
execution queue contains the
4th callback.

none

3.2 + queue lag No action taken. 3rd call of TimerFcn

 Handling Timer Queuing Conflicts

29-11

Approximate Elapsed Time
(Seconds)

Timer Action Function Running

4 Attempt to start 5th and final
execution of the callback. The
3rd execution is not complete.
The execution queue contains
the 4th callback.

4.8 Finish the 3rd callback
execution. The timer adds the
5th execution to the queue and
executes the 4th. The execution
queue contains the 5th callback.

None

4.8 + queue lag TasksToExecute has a value
of 5 so mytimer has no more
callbacks to execute.

4th call of TimerFcn
6.4 none
6.4 + queue lag 5th call of TimerFcn
8

See Also
timer

More About
• “Timer Callback Functions” on page 29-4

29 Program Scheduling

29-12

Performance

• “Measure the Performance of Your Code” on page 30-2
• “Profile Your Code to Improve Performance” on page 30-4
• “Techniques to Improve Performance” on page 30-12
• “Preallocation” on page 30-14
• “Vectorization” on page 30-16

30

Measure the Performance of Your Code
In this section...
“Overview of Performance Timing Functions” on page 30-2
“Time Functions” on page 30-2
“Time Portions of Code” on page 30-2
“The cputime Function vs. tic/toc and timeit” on page 30-2
“Tips for Measuring Performance” on page 30-3

Overview of Performance Timing Functions
The timeit function and the stopwatch timer functions, tic and toc, enable you to time how long
your code takes to run. Use the timeit function for a rigorous measurement of function execution
time. Use tic and toc to estimate time for smaller portions of code that are not complete functions.

For additional details about the performance of your code, such as function call information and
execution time of individual lines of code, use the MATLAB Profiler. For more information, see “Profile
Your Code to Improve Performance” on page 30-4.

Time Functions
To measure the time required to run a function, use the timeit function. The timeit function calls
the specified function multiple times, and returns the median of the measurements. It takes a handle
to the function to be measured and returns the typical execution time, in seconds. Suppose that you
have defined a function, computeFunction, that takes two inputs, x and y, that are defined in your
workspace. You can compute the time to execute the function using timeit.

f = @() myComputeFunction(x,y); % handle to function
timeit(f)

Time Portions of Code
To estimate how long a portion of your program takes to run or to compare the speed of different
implementations of portions of your program, use the stopwatch timer functions, tic and toc.
Invoking tic starts the timer, and the next toc reads the elapsed time.

tic
 % The program section to time.
toc

Sometimes programs run too fast for tic and toc to provide useful data. If your code is faster than
1/10 second, consider measuring it running in a loop, and then average to find the time for a single
run.

The cputime Function vs. tic/toc and timeit
It is recommended that you use timeit or tic and toc to measure the performance of your
code. These functions return wall-clock time. Unlike tic and toc, the timeit function calls your
code multiple times, and, therefore, considers first-time costs.

30 Performance

30-2

The cputime function measures the total CPU time and sums across all threads. This measurement is
different from the wall-clock time that timeit or tic/toc return, and could be misleading. For
example:

• The CPU time for the pause function is typically small, but the wall-clock time accounts for the
actual time that MATLAB execution is paused. Therefore, the wall-clock time might be longer.

• If your function uses four processing cores equally, the CPU time could be approximately four
times higher than the wall-clock time.

Tips for Measuring Performance
Consider the following tips when you are measuring the performance of your code:

• Time a significant enough portion of code. Ideally, the code you are timing should take more than
1/10 second to run.

• Put the code you are trying to time into a function instead of timing it at the command line or
inside a script.

• Unless you are trying to measure first-time cost, run your code multiple times. Use the timeit
function.

• Avoid clear all when measuring performance. For more information, see the clear function.
• Assign your output to a variable instead of letting it default to ans.

See Also
timeit | tic | toc | profile

Related Examples
• “Profile Your Code to Improve Performance” on page 30-4
• “Techniques to Improve Performance” on page 30-12
• MATLAB Performance Measurement White Paper on MATLAB Central File Exchange

 Measure the Performance of Your Code

30-3

https://www.mathworks.com/matlabcentral/fileexchange/18510-matlab-performance-measurement

Profile Your Code to Improve Performance

What Is Profiling?
Profiling is a way to measure the time it takes to run your code and identify where MATLAB spends
the most time. After you identify which functions are consuming the most time, you can evaluate
them for possible performance improvements. You also can profile your code to determine which lines
of code do not run. Determining which lines of code do not run is useful when developing tests for
your code, or as a debugging tool to help isolate a problem in your code.

You can profile your code interactively using the MATLAB Profiler or programmatically using the
profile function. For more information about profiling your code programmatically, see profile. If
you are profiling code that runs in parallel, for best results use the Parallel Computing Toolbox
parallel profiler. For details, see “Profiling Parallel Code” (Parallel Computing Toolbox).

Tip Code that is prematurely optimized can be unnecessarily complex without providing a significant
gain in performance. Make your first implementation as simple as possible. Then, if speed is an issue,
use profiling to identify bottlenecks.

Profile Your Code

To profile your code and improve its performance, use this general process:

1 Run the Profiler on your code.
2 Review the profile summary results.
3 Investigate functions and individual lines of code.

For example, you may want to investigate functions and lines of code that use a significant
amount of time or that are called most frequently.

4 Save the profiling results.
5 Implement potential performance improvements in your code.

For example, if you have a load statement within a loop, you might be able to move the load
statement outside the loop so that it is called only once.

6 Save the files, and run clear all. Run the Profiler again and compare the results to the original
results.

7 Repeat the above steps to continue improving the performance of your code. When your code
spends most of its time on calls to a few built-in functions, you have probably optimized the code
as much as possible.

Run the Profiler on Your Code

To run the Profiler on a line of code:

1 Open the Profiler by going to the Apps tab, and under MATLAB, clicking the Profiler app icon.
You also can type profile viewer in the Command Window.

30 Performance

30-4

2 Go to the Profiler tab, and in the Profile section, enter the code that you want to profile in the
edit box.

For example, create a function solvelotka.m that finds the prey and predator population peaks
for the Lotka-Volterra example provided with MATLAB:

function [preypeaks,predatorpeaks] = solvelotka(t0, tfinal, y0)
 [~,y] = ode23(@lotka,[t0 tfinal],y0);

 preypeaks = calculatepeaks(y(:,1));
 predatorpeaks = calculatepeaks(y(:,2));

end

function peaks = calculatepeaks(A)
 [TF,P] = islocalmax(A);
 peaks = P(TF);
end

Enter this statement in the edit box to profile the solvelotka function:

[preypeaks,predatorpeaks] = solvelotka(0,15,[20;20])

If you previously profiled the statement in the current MATLAB session, you also can select it
from the edit box drop down list.

3
Click Run and Time.

When profiling is complete, the Profiler displays the results in Profile Summary. The statements
you profiled also display as having been run in the Command Window.

To profile a code file open in the Editor, on the Editor tab, in the Run section, select Run > Run and
Time. The Profiler profiles the code file open in the current Editor tab and displays the results in the
Profile Summary.

Review the Profile Summary Results

After running the Profiler on your code, the Profile Summary presents statistics about the overall
execution of your code and provides summary statistics for each function called. For example, the
image below shows the Profile Summary for the solvelotka function.

 Profile Your Code to Improve Performance

30-5

At the top of the Profile Summary results, a flame graph shows a visual representation of the time
MATLAB spent running the code. Each function that was run is represented by a bar in the flame
graph. User-defined functions display in blue, and MathWorks functions display in gray.

The functions in the graph display in hierarchical order, with parent functions appearing lower on the
graph, and child functions appearing higher on the graph. The bar that spans the entire bottom of the
graph labeled Profile Summary represents all of the code that ran. The width of a bar on the graph
represents the amount of time it took for the function to run as a percentage of the total run time.

To see the actual percentage and time values as well as the full function name, hover over the bar in
the graph. To display detailed information about a function including information about individual
code lines, click the bar representing that function.

30 Performance

30-6

The function table below the flame frame displays similar information to the flame graph. Initially the
functions appear in order of time they took to process. This table describes the information in each
column.

Column Description
Function Name Name of the function called by the profiled code.
Calls Number of times the profiled code called the function.
Total Time Total time spent in the function, in seconds. The time for the function includes time

spent in child functions. The Profiler itself takes some time, which is included in
the results. The total time can be zero for files whose run time is inconsequential.

Self Time Total time in seconds spent in a function, excluding time spent in any child
functions. Self time also includes some overhead resulting from the process of
profiling.

Total Time Plot Graphic display showing self time compared to total time.

To sort the function table by a specific column, click the arrow in the column header. For example,
click the arrow in the Function Name column to sort the functions alphabetically. Initially the results
appear in order by Total Time. To display detailed information about a function including information
about individual code lines, click the function name.

Investigate Functions and Individual Code Lines

To find potential improvements in your code, look for functions in the flame graph or function table
that use a significant amount of time or that are called most frequently. Click a function name to
display detailed information about the function, including information about individual code lines. For
example, click the solvelotka>calculatepeaks function. The Profiler displays detailed
information for the function.

 Profile Your Code to Improve Performance

30-7

At the top of the page, next to the name of the current function, the Profiler displays the number of
times the function was called by a parent function and the total time spent in the function. Use the
displayed links underneath the flame graph to open the function in your default editor or copy the
displayed results to a separate window.

To return to the Profile Summary, in the Profiler tab, click the Profile Summary button. You also
can click the Profile Summary bar at the bottom of the flame graph.

Once you have clicked an individual function, the Profiler displays additional information in these
sections:

30 Performance

30-8

Section Details
Flame Graph Flame graph showing visual representation of the time MATLAB spent

running the profiled function. The graph shows the hierarchy of the
profiled function, including child functions (displayed above the
current function) and parent functions (displayed below the current
function). User-defined functions display in blue (), and MathWorks
functions display in gray ().

Hover over the bar in the graph to see the actual percentage and time
values as well as the full function name. Click a bar representing a
function to display detailed information about the function.

Parents List of functions that call the profiled function, including the number
of times the parent function called the profiled function.

Click a function name in the list to display detailed information about
the function.

Lines that take the most
time

List of code lines in the profiled function that used the greatest
amount of processing time.

Click a code line to see it in the Function Listing section, within the
context of the rest of the function code.

Children List of all the functions called by the profiled function.

Click a function name in the list to display detailed information about
the function.

Code Analyzer results List of problems and potential improvements for the profiled function.
Coverage results Code coverage statistics about the lines of code in the function that

MATLAB executed while profiling.

To open the Profiler Coverage Report, in the Current Folder browser,
navigate to the folder containing the profiled code. Right-click in
white space, and then select Reports > Coverage Report.

To perform additional code coverage analysis for your code, see
“Generate Code Coverage Report in HTML Format” on page 36-204.

 Profile Your Code to Improve Performance

30-9

Section Details
Function listing Source code for the function, if it is a MATLAB code file.

For each line of code, the Function listing includes these columns:

• Execution time for each line of code
• Number of times that MATLAB executed the line of code
• The line number.

Click a line number in the Function listing to open the function
in your default editor.

• The source code for the function. The color of the text indicates
the following:

• Green — Commented lines
• Black — Executed lines of code
• Gray — Non-executed lines of code

By default, the Profiler highlights lines of code with the longest
execution time. The darker the highlighting, the longer the line of
code took to execute. To change the highlighting criteria, go to the
Profiler tab, and in the View section, click Highlight . Select from
the available highlighting options. For example, to highlight lines of
code that did not run, select the Non coverage option.

Save Your Results

To compare the impact of changes after you have made improvements to your code, save your
profiling results. To save your results, use the displayed link underneath the flame graph to copy the
displayed results to a separate window.

You also can print your results from the Profiler by going to the Profiler tab and clicking the Print
button.

Profile Multiple Statements in Command Window
To profile more than one statement in the Command Window:

30 Performance

30-10

1 Go to the Command Window and type profile on.
2 Enter and run the statements that you want to profile.
3 After running all of the statements, type profile off.
4 Open the Profiler by typing profile viewer. You also can go to the Apps tab, and under

MATLAB, click the Profiler app icon.
5 Review the Profile Summary results.

Profile an App
You can profile apps that you create in App Designer. You also can profile apps that ship with
MathWorks products, such as the Filter Design and Analysis tool included with Signal Processing
Toolbox.

To profile an app:

1 Open the Profiler by going to the Apps tab, and under MATLAB, clicking the Profiler app icon.
You also can type profile viewer in the Command Window.

2
In the Profile section of the Profiler toolstrip, click Start Profiling. Make sure that there is
no code in the edit box to the right of the button.

3 Start the app.
4 Use the app.
5 When you are finished, click Stop Profiling in the Profiler toolstrip.
6 Review the Profile Summary results.

Note To exclude the app startup process in the profile, reverse steps 2 and 3. In other words, start

the app before you click Start Profiling.

See Also
Apps
Profiler

Functions
profile | profsave

More About
• “Measure the Performance of Your Code” on page 30-2
• “Techniques to Improve Performance” on page 30-12
• “Generate Code Coverage Report in HTML Format” on page 36-204

 Profile Your Code to Improve Performance

30-11

Techniques to Improve Performance

In this section...
“Environment” on page 30-12
“Code Structure” on page 30-12
“Programming Practices for Performance” on page 30-12
“Tips on Specific MATLAB Functions” on page 30-13

To speed up the performance of your code, consider these techniques.

Environment
Be aware of background processes that share computational resources and decrease the performance
of your MATLAB code.

Code Structure
While organizing your code:

• Use functions instead of scripts. Functions are generally faster.
• Prefer local functions over nested functions. Use this practice especially if the function does not

need to access variables in the main function.
• Use modular programming. To avoid large files and files with infrequently accessed code, split

your code into simple and cohesive functions. This practice can decrease first-time run costs.

Programming Practices for Performance
Consider these programming practices to improve the performance of your code.

• Preallocate — Instead of continuously resizing arrays, consider preallocating the maximum
amount of space required for an array. For more information, see “Preallocation” on page 30-14.

• Vectorize — Instead of writing loop-based code, consider using MATLAB matrix and vector
operations. For more information, see “Vectorization” on page 30-16.

• Place independent operations outside loops — If code does not evaluate differently with each for
or while loop iteration, move it outside of the loop to avoid redundant computations.

• Create new variables if data type changes — Create a new variable rather than assigning data of a
different type to an existing variable. Changing the class or array shape of an existing variable
takes extra time to process.

• Use short-circuit operators — Use short-circuiting logical operators, && and || when possible.
Short-circuiting is more efficient because MATLAB evaluates the second operand only when the
result is not fully determined by the first operand. For more information, see Short-Circuit
AND and Short-Circuit OR.

• Avoid global variables — Minimizing the use of global variables is a good programming practice,
and global variables can decrease performance of your MATLAB code.

• Avoid overloading built-ins — Avoid overloading built-in functions on any standard MATLAB data
classes.

30 Performance

30-12

• Avoid using “data as code” — If you have large portions of code (for example, over 500 lines) that
generate variables with constant values, consider constructing the variables and saving them, for
example, in a MAT-file or .csv file. Then you can load the variables instead of executing code to
generate them.

• Run code in the background — Use parfeval with backgroundPool to run a function in the
background. You can simultaneously run other code in MATLAB and make your apps more
responsive. For more information, see “Run Functions in the Background” on page 31-6.

• Run code on a GPU or in parallel — If you have a Parallel Computing Toolbox license, run code on
a GPU by passing gpuArray data to a supported function or run code in parallel using, for
example, a parfor-loop. For more information, see “Choose a Parallel Computing Solution”
(Parallel Computing Toolbox).

Tips on Specific MATLAB Functions
Consider the following tips on specific MATLAB functions when writing performance critical code.

• Avoid clearing more code than necessary. Do not use clear all programmatically. For more
information, see clear.

• Avoid functions that query the state of MATLAB such as inputname, which, whos, exist(var),
and dbstack. Run-time introspection is computationally expensive.

• Avoid functions such as eval, evalc, evalin, and feval(fname). Use the function handle input
to feval whenever possible. Indirectly evaluating a MATLAB expression from text is
computationally expensive.

• Avoid programmatic use of cd, addpath, and rmpath, when possible. Changing the MATLAB path
during run time results in code recompilation.

See Also

More About
• “Measure the Performance of Your Code” on page 30-2
• “Profile Your Code to Improve Performance” on page 30-4
• “Preallocation” on page 30-14
• “Vectorization” on page 30-16
• “Graphics Performance”
• “Measure and Improve GPU Performance” (Parallel Computing Toolbox)

 Techniques to Improve Performance

30-13

Preallocation

for and while loops that incrementally increase the size of a data structure each time through the
loop can adversely affect performance and memory use. Repeatedly resizing arrays often requires
MATLAB to spend extra time looking for larger contiguous blocks of memory, and then moving the
array into those blocks. Often, you can improve code execution time by preallocating the maximum
amount of space required for the array.

The following code displays the amount of time needed to create a scalar variable, x, and then to
gradually increase the size of x in a for loop.

tic
x = 0;
for k = 2:1000000
 x(k) = x(k-1) + 5;
end
toc

Elapsed time is 0.301528 seconds.

If you preallocate a 1-by-1,000,000 block of memory for x and initialize it to zero, then the code runs
much faster because there is no need to repeatedly reallocate memory for the growing data
structure.

tic
x = zeros(1,1000000);
for k = 2:1000000
 x(k) = x(k-1) + 5;
end
toc

Elapsed time is 0.011938 seconds.

Use the appropriate preallocation function for the kind of array you want to initialize:

• zeros for numeric arrays
• strings for string arrays
• cell for cell arrays
• table for table arrays

Preallocating a Nondouble Matrix
When you preallocate a block of memory to hold a matrix of some type other than double, avoid
using the method

A = int8(zeros(100));

This statement preallocates a 100-by-100 matrix of int8, first by creating a full matrix of double
values, and then by converting each element to int8. Creating the array as int8 values saves time
and memory. For example:

A = zeros(100,'int8');

30 Performance

30-14

See Also

Related Examples
• “Reshaping and Rearranging Arrays”
• “Preallocate Memory for Cell Array” on page 12-16
• “Access Data Using Categorical Arrays” on page 8-24
• “Preallocate Arrays of Graphics Objects”
• “Construct Object Arrays”

More About
• “Techniques to Improve Performance” on page 30-12

 Preallocation

30-15

Vectorization
In this section...
“Using Vectorization” on page 30-16
“Array Operations” on page 30-17
“Logical Array Operations” on page 30-18
“Matrix Operations” on page 30-19
“Ordering, Setting, and Counting Operations” on page 30-20
“Functions Commonly Used in Vectorization” on page 30-21

Using Vectorization

MATLAB is optimized for operations involving matrices and vectors. The process of revising loop-
based, scalar-oriented code to use MATLAB matrix and vector operations is called vectorization.
Vectorizing your code is worthwhile for several reasons:

• Appearance: Vectorized mathematical code appears more like the mathematical expressions found
in textbooks, making the code easier to understand.

• Less Error Prone: Without loops, vectorized code is often shorter. Fewer lines of code mean fewer
opportunities to introduce programming errors.

• Performance: Vectorized code often runs much faster than the corresponding code containing
loops.

Vectorizing Code for General Computing

This code computes the sine of 1,001 values ranging from 0 to 10:

i = 0;
for t = 0:.01:10
 i = i + 1;
 y(i) = sin(t);
end

This is a vectorized version of the same code:

t = 0:.01:10;
y = sin(t);

The second code sample usually executes faster than the first and is a more efficient use of MATLAB.
Test execution speed on your system by creating scripts that contain the code shown, and then use
the tic and toc functions to measure their execution time.

Vectorizing Code for Specific Tasks

This code computes the cumulative sum of a vector at every fifth element:

x = 1:10000;
ylength = (length(x) - mod(length(x),5))/5;
y(1:ylength) = 0;
for n= 5:5:length(x)

30 Performance

30-16

 y(n/5) = sum(x(1:n));
end

Using vectorization, you can write a much more concise MATLAB process. This code shows one way
to accomplish the task:

x = 1:10000;
xsums = cumsum(x);
y = xsums(5:5:length(x));

Array Operations
Array operators perform the same operation for all elements in the data set. These types of
operations are useful for repetitive calculations. For example, suppose you collect the volume (V) of
various cones by recording their diameter (D) and height (H). If you collect the information for just
one cone, you can calculate the volume for that single cone:

V = 1/12*pi*(D^2)*H;

Now, collect information on 10,000 cones. The vectors D and H each contain 10,000 elements, and you
want to calculate 10,000 volumes. In most programming languages, you need to set up a loop similar
to this MATLAB code:

for n = 1:10000
 V(n) = 1/12*pi*(D(n)^2)*H(n);
end

With MATLAB, you can perform the calculation for each element of a vector with similar syntax as the
scalar case:

% Vectorized Calculation
V = 1/12*pi*(D.^2).*H;

Note Placing a period (.) before the operators *, /, and ^, transforms them into array operators.

Array operators also enable you to combine matrices of different dimensions. This automatic
expansion of size-1 dimensions is useful for vectorizing grid creation, matrix and vector operations,
and more.

Suppose that matrix A represents test scores, the rows of which denote different classes. You want to
calculate the difference between the average score and individual scores for each class. Using a loop,
the operation looks like:

A = [97 89 84; 95 82 92; 64 80 99;76 77 67;...
 88 59 74; 78 66 87; 55 93 85];

mA = mean(A);
B = zeros(size(A));
for n = 1:size(A,2)
 B(:,n) = A(:,n) - mA(n);
end

A more direct way to do this is with A - mean(A), which avoids the need of a loop and is
significantly faster.

 Vectorization

30-17

devA = A - mean(A)

devA =

 18 11 0
 16 4 8
 -15 2 15
 -3 -1 -17
 9 -19 -10
 -1 -12 3
 -24 15 1

Even though A is a 7-by-3 matrix and mean(A) is a 1-by-3 vector, MATLAB implicitly expands the
vector as if it had the same size as the matrix, and the operation executes as a normal element-wise
minus operation.

The size requirement for the operands is that for each dimension, the arrays must either have the
same size or one of them is 1. If this requirement is met, then dimensions where one of the arrays has
size 1 are expanded to be the same size as the corresponding dimension in the other array. For more
information, see “Compatible Array Sizes for Basic Operations” on page 2-25.

Another area where implicit expansion is useful for vectorization is if you are working with
multidimensional data. Suppose you want to evaluate a function, F, of two variables, x and y.

F(x,y) = x*exp(-x2 - y2)

To evaluate this function at every combination of points in the x and y vectors, you need to define a
grid of values. For this task you should avoid using loops to iterate through the point combinations.
Instead, if one of the vectors is a column and the other is a row, then MATLAB automatically
constructs the grid when the vectors are used with an array operator, such as x+y or x-y. In this
example, x is a 21-by-1 vector and y is a 1-by-16 vector, so the operation produces a 21-by-16 matrix
by expanding the second dimension of x and the first dimension of y.

x = (-2:0.2:2)'; % 21-by-1
y = -1.5:0.2:1.5; % 1-by-16
F = x.*exp(-x.^2-y.^2); % 21-by-16

In cases where you want to explicitly create the grids, you can use the meshgrid and ndgrid
functions.

Logical Array Operations
A logical extension of the bulk processing of arrays is to vectorize comparisons and decision making.
MATLAB comparison operators accept vector inputs and return vector outputs.

For example, suppose while collecting data from 10,000 cones, you record several negative values for
the diameter. You can determine which values in a vector are valid with the >= operator:

D = [-0.2 1.0 1.5 3.0 -1.0 4.2 3.14];
D >= 0

ans =

 0 1 1 1 0 1 1

30 Performance

30-18

You can directly exploit the logical indexing power of MATLAB to select the valid cone volumes,
Vgood, for which the corresponding elements of D are nonnegative:

Vgood = V(D >= 0);

MATLAB allows you to perform a logical AND or OR on the elements of an entire vector with the
functions all and any, respectively. You can throw a warning if all values of D are below zero:

if all(D < 0)
 warning('All values of diameter are negative.')
 return
end

MATLAB can also compare two vectors with compatible sizes, allowing you to impose further
restrictions. This code finds all the values where V is nonnegative and D is greater than H:

V((V >= 0) & (D > H))

The resulting vector is the same size as the inputs.

To aid comparison, MATLAB contains special values to denote overflow, underflow, and undefined
operators, such as Inf and NaN. Logical operators isinf and isnan exist to help perform logical
tests for these special values. For example, it is often useful to exclude NaN values from
computations:

x = [2 -1 0 3 NaN 2 NaN 11 4 Inf];
xvalid = x(~isnan(x))

xvalid =

 2 -1 0 3 2 11 4 Inf

Note Inf == Inf returns true; however, NaN == NaN always returns false.

Matrix Operations
When vectorizing code, you often need to construct a matrix with a particular size or structure.
Techniques exist for creating uniform matrices. For instance, you might need a 5-by-5 matrix of equal
elements:

A = ones(5,5)*10;

Or, you might need a matrix of repeating values:

v = 1:5;
A = repmat(v,3,1)

A =

 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5

The function repmat possesses flexibility in building matrices from smaller matrices or vectors.
repmat creates matrices by repeating an input matrix:

 Vectorization

30-19

A = repmat(1:3,5,2)
B = repmat([1 2; 3 4],2,2)

A =

 1 2 3 1 2 3
 1 2 3 1 2 3
 1 2 3 1 2 3
 1 2 3 1 2 3
 1 2 3 1 2 3

B =

 1 2 1 2
 3 4 3 4
 1 2 1 2
 3 4 3 4

Ordering, Setting, and Counting Operations
In many applications, calculations done on an element of a vector depend on other elements in the
same vector. For example, a vector, x, might represent a set. How to iterate through a set without a
for or while loop is not obvious. The process becomes much clearer and the syntax less
cumbersome when you use vectorized code.

Eliminating Redundant Elements

A number of different ways exist for finding the redundant elements of a vector. One way involves the
function diff. After sorting the vector elements, equal adjacent elements produce a zero entry when
you use the diff function on that vector. Because diff(x) produces a vector that has one fewer
element than x, you must add an element that is not equal to any other element in the set. NaN
always satisfies this condition. Finally, you can use logical indexing to choose the unique elements in
the set:

x = [2 1 2 2 3 1 3 2 1 3];
x = sort(x);
difference = diff([x,NaN]);
y = x(difference~=0)

y =

 1 2 3

Alternatively, you could accomplish the same operation by using the unique function:

y=unique(x);

However, the unique function might provide more functionality than is needed and slow down the
execution of your code. Use the tic and toc functions if you want to measure the performance of
each code snippet.

Counting Elements in a Vector

Rather than merely returning the set, or subset, of x, you can count the occurrences of an element in
a vector. After the vector sorts, you can use the find function to determine the indices of zero values

30 Performance

30-20

in diff(x) and to show where the elements change value. The difference between subsequent
indices from the find function indicates the number of occurrences for a particular element:

x = [2 1 2 2 3 1 3 2 1 3];
x = sort(x);
difference = diff([x,max(x)+1]);
count = diff(find([1,difference]))
y = x(find(difference))

count =

 3 4 3

y =

 1 2 3

The find function does not return indices for NaN elements. You can count the number of NaN and
Inf values using the isnan and isinf functions.

count_nans = sum(isnan(x(:)));
count_infs = sum(isinf(x(:)));

Functions Commonly Used in Vectorization
Function Description
all Determine if all array elements are nonzero or true
any Determine if any array elements are nonzero
cumsum Cumulative sum
diff Differences and Approximate Derivatives
find Find indices and values of nonzero elements
ind2sub Subscripts from linear index
ipermute Inverse permute dimensions of N-D array
logical Convert numeric values to logicals
meshgrid Rectangular grid in 2-D and 3-D space
ndgrid Rectangular grid in N-D space
permute Rearrange dimensions of N-D array
prod Product of array elements
repmat Repeat copies of array
reshape Reshape array
shiftdim Shift dimensions
sort Sort array elements
squeeze Remove singleton dimensions
sub2ind Convert subscripts to linear indices
sum Sum of array elements

 Vectorization

30-21

See Also

More About
• “Array Indexing”
• “Techniques to Improve Performance” on page 30-12
• “Array vs. Matrix Operations” on page 2-20

External Websites
• MathWorks Newsletter: Matrix Indexing in MATLAB

30 Performance

30-22

https://www.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html

Background Processing

• “Asynchronous Functions” on page 31-2
• “Run MATLAB Functions in Thread-Based Environment” on page 31-6
• “Create Responsive Apps by Running Calculations in the Background” on page 31-8
• “Run Functions in Background” on page 31-13
• “Update Wait Bar While Functions Run in the Background” on page 31-14

31

Asynchronous Functions
MATLAB either runs code synchronously or asynchronously. You can use the following functions to
run code asynchronously:

• parfeval and parfevalOnAll
• afterEach and afterAll

Calculate the maximum of two random matrices. MATLAB runs each line consecutively.

tic
A = rand(10000);
B = ones(10000);
C = max(A,B);
toc

Elapsed time is 0.992156 seconds.

When you run the code, MATLAB runs three calculations.

1 Calculate A = rand(10000) in the foreground.
2 Calculate B = ones(10000) in the foreground.
3 After creating A and B, calculate C = max(A,B) in the foreground.

Asynchronous Code
When you run a function asynchronously, MATLAB can run other code in the foreground at the same
time.

Use parfeval or parfevalOnAll to run functions asynchronously. Use afterEach and afterAll
to run functions asynchronously after a previous function completes.

• When you run a function asynchronously, MATLAB immediately returns a Future object. MATLAB
schedules the function to run in the background or on a parallel pool.

• Use parfeval and backgroundPool to run code in the background.
• If you have Parallel Computing Toolbox use parpool to run code on a parallel pool.
• If you have Parallel Computing Toolbox, you can use parfeval and other functions to

automatically run code on a parallel pool. For more information, see “Run MATLAB Functions
with Automatic Parallel Support” (Parallel Computing Toolbox).

• You can run other code while the function is running in the background.
• Use fetchOutputs to fetch results from the Future object.

31 Background Processing

31-2

Synchronous Functions Asynchronous Functions
MATLAB waits for the function to complete. MATLAB does not wait for the function to

complete.
MATLAB runs the code immediately. MATLAB runs the code when a worker is

available. For more information, see “Background
Workers” on page 31-4.

Outputs from the function are available in the
current workspace.

To copy outputs to the current workspace, use
fetchOutputs. When you use fetchOutputs,
MATLAB waits for the function to complete.

You can use any function or object in a
synchronous function.

You can use most functions and objects in an
asynchronous function.

• Any function or object that has thread support
will run in the background or on a
ThreadPool. For more information, see “Run
MATLAB Functions in Thread-Based
Environment” on page 31-6.

• All functions and objects are supported on
process-backed parallel pools (ProcessPool
and ClusterPool). For more information, see
“Run Code on Parallel Pools” (Parallel
Computing Toolbox).

The current workspace is also available in a
synchronous function.

Most of the variables in the current workspace
are also available in an asynchronous function.

Calculate the maximum of two random matrices: one created in the background, and one created in
the foreground. Matrix A is created in the background, and matrix B is calculated in the foreground at
the same time.

Note Generally, you do not need to use wait. fetchOutputs will implicitly wait for MATLAB to
finish running the function in the background before collecting results. The function wait is used
here to explicitly show waiting for results before collecting them.

tic
fA = parfeval(backgroundPool,@rand,1,10000);
B = ones(10000);
wait(fA)
C = max(fetchOutputs(fA),B);
toc

Elapsed time is 0.534475 seconds.

When you run the code, MATLAB runs three calculations.

1 Calculate A = rand(10000) in the background.

a Use parfeval to schedule the function rand to run in the background, with 1 output and a
single input 10000. Return a future fA in the foreground.

b Run the function rand in the background.

 Asynchronous Functions

31-3

2 Calculate B = ones(10000) in the foreground.
3 After creating A and B, calculate C = max(A,B) in the foreground.

a Use wait to explicitly wait for the future fA to finish running in the background.
b Use fetchOutputs to get rand(10000) from the future fA.
c Calculate the final result C from matrices fetchOutputs(fA) and B.

Background Workers
When you use parfeval or parfevalOnAll to run a function asynchronously, MATLAB runs the
function on a pool.

When you use backgroundPool to run code in the background, MATLAB uses the background pool
to run that code.

The background pool has a fixed number of workers. MATLAB uses these workers to run functions.
Each worker can only run one function at a time. Therefore when you run multiple functions in the
background, you must wait for a worker to be available to run each function.

Use the NumWorkers property of a BackgroundPool to find out how many workers you have.

• If you do not have Parallel Computing Toolbox, the background pool has 1 worker.
• If you have Parallel Computing Toolbox, the background pool has multiple workers. The number of

workers in the background pool is min(8,N) where N is the number of physical cores on your
machine. For example if your machine has 4 cores, the background pool has 4 workers. If your
machine has 16 cores, the background pool has 8 workers.

See Also
parfeval | backgroundPool

Related Examples
• “Update Wait Bar While Functions Run in the Background” on page 31-14

31 Background Processing

31-4

More About
• “Run MATLAB Functions in Thread-Based Environment” on page 31-6
• “Write Portable Parallel Code” (Parallel Computing Toolbox)

 Asynchronous Functions

31-5

Run MATLAB Functions in Thread-Based Environment
Hundreds of functions in MATLAB and other toolboxes can run in a thread-based environment. You
can use backgroundPool or parpool("threads") to run code in a thread-based environment.

• To run a function in the background, use parfeval and backgroundPool.
• For more information about thread pools, see “Choose Between Thread-Based and Process-Based

Environments” (Parallel Computing Toolbox).

Run Functions in the Background
If a function is supported in a thread-based environment, you can use parfeval and
backgroundPool to run it in the background.

Use the rand function to generate a 100-by-100 matrix of random numbers in the background.

f = parfeval(backgroundPool,@rand,1,100);

For more information about running code in the background, see backgroundPool.

Run Functions on a Thread Pool
If a function is supported in a thread-based environment, you can run it on a thread pool if you have
Parallel Computing Toolbox.

parpool("threads");
parfor i = 1:100
 A{i} = rand(100);
end

For more information about thread pools, see ThreadPool.

Automatically Scale Up
If you have Parallel Computing Toolbox, your code that uses backgroundPool automatically scales
up to use more available cores.

For information about the number of cores that you can use, see the NumWorkers property of
BackgroundPool.

By running multiple functions in the background at the same time when you use Parallel Computing
Toolbox, you can speed up the following code.

for i = 1:100
 f(i) = parfeval(backgroundPool,@rand,1,100);
end

Check Thread Supported Functions
If a MATLAB function has thread support, you can consult additional thread usage information on its
function page. See "Thread-Based Environment" in the Extended Capabilities section at the end of the
function page.

31 Background Processing

31-6

Tip For a filtered list of MATLAB functions that have thread support, see Function List (Thread-Based
Environment).

In general, functionality in “Graphics”, “App Building”, “External Language Interfaces”, “Files and
Folders”, and “Environment and Settings” is not supported.

MATLAB and several toolboxes include functions with built-in thread support. To view lists of all
functions in MATLAB and these toolboxes that have thread support, use the links in the following
table. Functions in the lists with warning indicators have limitations or usage notes specific to
running the function on threads. You can check the usage notes and limitations in the Extended
Capabilities section of the function reference page. For information about updates to individual
thread-supported functions, see the release notes.

Product List of Functions Supported on Threads
MATLAB Functions with thread support
Image Processing Toolbox™ Functions with thread support
Signal Processing Toolbox™ Functions with thread support

See Also
parfeval | backgroundPool

More About
• “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox)

 Run MATLAB Functions in Thread-Based Environment

31-7

Create Responsive Apps by Running Calculations in the
Background

This topic shows how to make an app more responsive by using the background pool. Usually,
MATLAB suspends execution while running calculations. While MATLAB is suspended, you are unable
to interrupt the app. To make your apps more responsive, use the background pool to run calculations
in the background. When MATLAB runs calculations in the background, your app can immediately
respond to user interface interactions.

If you want to modify an existing app that runs code in the background, see “Responsive App That
Calculates and Plots Simple Curves” on page 31-11.

In this topic, you:

• Open an existing app that does not run any code in the background.
• Modify a function to allow the app to run code in the background.
• Write a function to automatically update a plot after code finishes running in the background.
• Modify existing callbacks to allow your app to immediately respond to user interface interactions

and interrupt calculations.

Open App Designer App
The app you use in this example allows you to select a function, then calculate and plot y-axis data
depending on built-in x-axis data.

Run this command to open a working copy of the PlotCurve app.

openExample('matlab/PlotCurveAppExample')

Use this app as a starting point as you modify and reorganize the app code. The app has five
functions:

• getFunction — Use the value from the drop-down fcnDropDown to select a function fcn. The
custom functions available as supporting files use pause(rand) to simulate a nontrivial
calculation.

• createData — Use getFunction to get a function fcn, then use that function to compute y =
fcn(x) in iterations of a for-loop. The for-loop suspends MATLAB execution until it is finished.

• updatePlot — Update the plot represented by app.UIAxes with each y-axis data point after it is
calculated.

• clearPlot — Clear the plot.
• toggleButtons — Switch between enabling the Start button or Stop button.

Edit code by selecting Code View in the App Designer window.

Add a Future Array to the Properties
When you run a function in the background, you create a Future object. You can fetch outputs from
the Future object using fetchOutputs.

31 Background Processing

31-8

To make your app responsive, you need to store all of the Future objects the app creates. Then, you
can use cancel to stop the calculations running in the background when the user of the app clicks
the Stop button or uses the drop down fcnDropDown.

To store the Future objects the app creates, you must add a private property to your app. In the App
Designer toolstrip, click Property > Private Property, then name the property F.

properties (Access = private)
 h % Line object
 X % x-axis data
 F % Futures for calculation
end

Create y-axis Data in the Background
The createData function creates the y-axis data when the user of the app clicks the Start button.
Edit the function to calculate the y-axis data in the background.

1 Use parfeval and backgroundPool to run the function fcn in the background. In each
iteration of the for-loop, store each Future in an array f.

2 Store the future array as the F property of the app.
3 Use afterEach to run a function onFutureDone that updates a plot after each element of

app.F completes. Specify PassFuture as true to run the function using each Future element.
4 Use afterAll to toggle between the Start and Stop buttons after MATLAB finishes calculating

all of the y-axis data.

function createData(app)
 % Create data for the x-axis and y-axis.
 % Update a plot while the data is being created.

 % Get function
 fcn = app.getFunction;

 % x-axis data
 app.X = 5 * 1:100;

 % y-axis data
 for i = 1:numel(app.X)
 % Run fcn(x) in the background
 f(i) = parfeval(backgroundPool,fcn,1,app.X(i));
 end

 % Store the Future array
 app.F = f;

 % Update the plot after each Future finishes
 afterEach(app.F,@app.onFutureDone,0,PassFuture=true);

 % Toggle the buttons after all Future objects finish
 afterAll(app.F,@(~)app.toggleButtons,0);
end

Automatically Update Plot After Data Is Calculated in the Background
Create a new function to automatically update the plot after each Future finishes.

 Create Responsive Apps by Running Calculations in the Background

31-9

1 In the App Designer toolstrip, click Function > Private Function, then name the function
onFutureDone.

2 If the Future object finished with an error, immediately return from the function.
3 If the Future object did not finish with an error, use the ID property of f to find the index of the

element f in the array app.F. The index of the Future object f must match the index of the x-
axis data point.

4 Update the plot with the result from f and the matching x-axis data point by, using the index
idx.

function onFutureDone(app,f)
 % Do not update the plot if there was an error
 if ~isempty(f.Error)
 return
 end

 % Find the index of this future
 idx = ([app.F.ID] == f.ID);

 % Update the plot using the result
 app.updatePlot(fetchOutputs(f),idx);
end

Make Your App More Responsive by Canceling the Future Array
To make your app more responsive, edit callbacks cancel the Future array app.F after you:

• Change the value using the drop-down fcnDropDown.

function fcnDropDownValueChanged(app, event)
 % Stop futures
 if ~isempty(app.F)
 cancel(app.F)
 end

 app.clearPlot

 if app.StartButton.Enable == false
 app.createData
 end
end

• Push the Stop button.

function StopButtonPushed(app, event)
 % Stop futures
 if ~isempty(app.F)
 cancel(app.F)
 end

 app.toggleButtons
end

• Request the app to close.

function UIFigureCloseRequest(app, event)
 % Stop futures
 if ~isempty(app.F)

31 Background Processing

31-10

 cancel(app.F)
 end

 delete(app)
end

Responsive App That Calculates and Plots Simple Curves

This example shows an app that calculates and plots simple curves. You can select a function to plot,
then plot that function. The app uses a for-loop to calculate the y-axis data in the background.
MATLAB does not suspend execution while calculating the data, and therefore you are able to stop
the app or update the type of plot while the data is being calculated.

Run the PlotCurveBackground app by clicking the Run button in App Designer.

See Also
parfeval | backgroundPool | appdesigner

 Create Responsive Apps by Running Calculations in the Background

31-11

Related Examples
• “Run Functions in Background” on page 31-13
• “Update Wait Bar While Functions Run in the Background” on page 31-14

31 Background Processing

31-12

Run Functions in Background

This example shows how to run a function in the background using parfeval and backgroundPool.
When you run a function in the background, you can run other MATLAB® code at the same time.

Use parfeval to run the function magic(3) and retrieve one output. Specify backgroundPool as
the first argument to run the function in the background. When you use parfeval, you create a
Future object.

f = parfeval(backgroundPool,@magic,1,3);

To retrieve the output from the background, use fetchOutputs. MATLAB returns the output once
the execution of magic is complete.

fetchOutputs(f)

ans = 3×3

 8 1 6
 3 5 7
 4 9 2

See Also
parfeval | backgroundPool

Related Examples
• “Update Wait Bar While Functions Run in the Background” on page 31-14

More About
• “Run MATLAB Functions in Thread-Based Environment” on page 31-6
• “Create Responsive Apps by Running Calculations in the Background” on page 31-8

 Run Functions in Background

31-13

Update Wait Bar While Functions Run in the Background

This example shows how to use afterEach to update a wait bar with the progress of functions
running in the background.

Create a wait bar, w.

w = waitbar(0,'Please wait ...');

Set the number of iterations for your for-loop, N. Store the current number of completed iterations,
0, and the total number of iterations, N, in the UserData property of the wait bar.

N = ;
w.UserData = [0 N];

Run a for-loop with N iterations. In each iteration, use parfeval and backgroundPool to run
pause in the background for a random number of seconds. Store each Future object in an array.

for i = 1:N
 delay = rand;
 f(i) = parfeval(backgroundPool,@pause,0,delay);
end

Use the helper function updateWaitbar to update the waitbar after each Future finishes.

afterEach(f,@(~)updateWaitbar(w),0);

Use delete to close the wait bar after all the Future objects finish.

afterAll(f,@(~)delete(w),0);

Define Helper Function

Define the helper function updateWaitbar. The function increments the first element of the
UserData property, then uses the vector to calculate the progress.

function updateWaitbar(w)
 % Update a waitbar using the UserData property.

 % Check if the waitbar is a reference to a deleted object
 if isvalid(w)
 % Increment the number of completed iterations
 w.UserData(1) = w.UserData(1) + 1;

 % Calculate the progress
 progress = w.UserData(1) / w.UserData(2);

31 Background Processing

31-14

 % Update the waitbar
 waitbar(progress,w);
 end
end

See Also
parfeval | backgroundPool

More About
• “Run MATLAB Functions in Thread-Based Environment” on page 31-6
• “Create Responsive Apps by Running Calculations in the Background” on page 31-8

 Update Wait Bar While Functions Run in the Background

31-15

Memory Usage

• “Strategies for Efficient Use of Memory” on page 32-2
• “Resolve “Out of Memory” Errors” on page 32-6
• “How MATLAB Allocates Memory” on page 32-12
• “Avoid Unnecessary Copies of Data” on page 32-16

32

Strategies for Efficient Use of Memory
This topic explains several techniques to use memory efficiently in MATLAB.

Use Appropriate Data Storage
MATLAB provides you with different sizes of data classes, such as double and uint8, so you do not
need to use large classes to store your smaller segments of data. For example, it takes 7 KB less
memory to store 1,000 small unsigned integer values using the uint8 class than it does with
double.

Use the Appropriate Numeric Class

The numeric class you should use in MATLAB depends on your intended actions. The default class
double gives the best precision, but requires 8 bytes per element of memory to store. If you intend
to perform complicated math such as linear algebra, you must use a floating-point class such as a
double or single. The single class requires only 4 bytes. There are some limitations on what you
can do with the single class, but most MATLAB Math operations are supported.

If you just need to carry out simple arithmetic and you represent the original data as integers, you
can use the integer classes in MATLAB. The following is a list of numeric classes, memory
requirements (in bytes), and the supported operations.

Class (Data Type) Bytes Supported Operations
single 4 Most math
double 8 All math
logical 1 Logical/conditional operations
int8, uint8 1 Arithmetic and some simple functions
int16, uint16 2 Arithmetic and some simple functions
int32, uint32 4 Arithmetic and some simple functions
int64, uint64 8 Arithmetic and some simple functions

Reduce the Amount of Overhead When Storing Data

MATLAB arrays (implemented internally as mxArrays) require room to store meta information about
the data in memory, such as type, dimensions, and attributes. This takes about 104 bytes per array.
This overhead only becomes an issue when you have a large number (e.g., hundreds or thousands) of
small mxArrays (e.g., scalars). The whos command lists the memory used by variables, but does not
include this overhead.

Because simple numeric arrays (comprising one mxArray) have the least overhead, you should use
them wherever possible. When data is too complex to store in a simple array (or matrix), you can use
other data structures.

Cell arrays are comprised of separate mxArrays for each element. As a result, cell arrays with many
small elements have a large overhead.

Structures require a similar amount of overhead per field. Structures with many fields and small
contents have a large overhead and should be avoided. A large array of structures with numeric

32 Memory Usage

32-2

scalar fields requires much more memory than a structure with fields containing large numeric
arrays.

Also note that while MATLAB stores numeric arrays in contiguous memory, this is not the case for
structures and cell arrays. For more information, see “How MATLAB Allocates Memory” on page 32-
12.

Import Data to the Appropriate MATLAB Class

When reading data from a binary file with fread, it is a common error to specify only the class of the
data in the file, and not the class of the data MATLAB uses once it is in the workspace. As a result, the
default double is used even if you are reading only 8-bit values. For example,

fid = fopen('large_file_of_uint8s.bin', 'r');
a = fread(fid, 1e3, 'uint8'); % Requires 8k
whos a
 Name Size Bytes Class Attributes

 a 1000x1 8000 double

a = fread(fid, 1e3, 'uint8=>uint8'); % Requires 1k
whos a
 Name Size Bytes Class Attributes

 a 1000x1 1000 uint8

Make Arrays Sparse When Possible

If your data contains many zeros, consider using sparse arrays, which store only nonzero elements.
The following example compares sparse and full storage requirements:

A = eye(1000); % Full matrix with ones on the diagonal
As = sparse(A); % Sparse matrix with only nonzero elements
whos
 Name Size Bytes Class Attributes

 A 1000x1000 8000000 double
 As 1000x1000 24008 double sparse

You can see that this array requires only about 24 KB to be stored as sparse, but approximately 8 MB
as a full matrix. In general, for a sparse double array with nnz nonzero elements and ncol columns,
the memory required is:

• 16 * nnz + 8 * ncol + 8 bytes (on a 64-bit machine)

Note that MATLAB supports most, but not all, mathematical operations on sparse arrays.

Avoid Temporary Copies of Data
You can significantly reduce the amount of memory required by avoiding the creation of unnecessary
temporary copies of data.

 Strategies for Efficient Use of Memory

32-3

Avoid Creating Temporary Arrays

Avoid creating large temporary variables, and also make it a practice to clear temporary variables
when they are no longer needed. For example, this code creates an array of zeros stored as a
temporary variable A, and then converts A to single-precision:

A = zeros(1e6,1);
As = single(A);

It is more memory efficient to use one command to do both operations:

A = zeros(1e6,1,'single');

Using the repmat function, array preallocation, and for loops are other ways to work on non-double
data without requiring temporary storage in memory.

Use Nested Functions to Pass Fewer Arguments

When working with large data sets, be aware that MATLAB makes a temporary copy of an input
variable if the called function modifies its value. This temporarily doubles the memory required to
store the array, which causes MATLAB to generate an error if sufficient memory is not available.

One way to use less memory in this situation is to use nested functions. A nested function shares the
workspace of all outer functions, giving the nested function access to data outside of its usual scope.
In the example shown here, nested function setrowval has direct access to the workspace of the
outer function myfun, making it unnecessary to pass a copy of the variable in the function call. When
setrowval modifies the value of A, it modifies it in the workspace of the calling function. There is no
need to use additional memory to hold a separate array for the function being called, and there also is
no need to return the modified value of A:

function myfun
A = magic(500);
setrowval(400,0)
disp('The new value of A(399:401,1:10) is')
A(399:401,1:10)

 function setrowval(row,value)
 A(row,:) = value;
 end

end

Reclaim Used Memory
One simple way to increase the amount of memory you have available is to clear large arrays that you
no longer use.

Save Your Large Data Periodically to Disk

If your program generates very large amounts of data, consider writing the data to disk periodically.
After saving that portion of the data, use the clear function to remove the variable from memory and
continue with the data generation.

32 Memory Usage

32-4

Clear Old Variables from Memory When No Longer Needed

When you are working with a very large data set repeatedly or interactively, clear the old variable
first to make space for the new variable. Otherwise, MATLAB requires temporary storage of equal
size before overriding the variable. For example,

a = rand(1e5);
b = rand(1e5);
Out of memory.

More information

clear a
a = rand(1e5); % New array

See Also

More About
• “Resolve “Out of Memory” Errors” on page 32-6

 Strategies for Efficient Use of Memory

32-5

Resolve “Out of Memory” Errors

Issue
When your code operates on large amounts of data or does not use memory efficiently, MATLAB
might produce an error in response to an unreasonable array size, or it might run out of memory.
MATLAB has built-in protection against creating arrays that are too large. For example, this code
results in an error, because MATLAB cannot create an array with the requested number of elements.

A = rand(1e9);

Requested array exceeds the maximum possible variable size.

By default, MATLAB can use up to 100% of the RAM (not including virtual memory) of your computer
to allocate memory for arrays, and if an array size would exceed that threshold, then MATLAB
produces an error. For example, this code attempts to create an array whose size exceeds the
maximum array size limit.

B = rand(1e6);

Requested 1000000x1000000 (7450.6GB) array exceeds maximum array size preference (63.7GB). This might cause MATLAB to become
unresponsive.

If you turn off the array size limit in MATLAB Workspace Preferences, attempting to create an
unreasonably large array might cause MATLAB to run out of memory, or it might make MATLAB or
even your computer unresponsive due to excessive memory paging (that is, moving memory pages
between RAM and disk).

B = rand(1e6);

Out of memory.

Possible Solutions
No matter how you run into memory limits, MATLAB provides several solutions depending on your
situation and goals. For example, you can improve the way your code uses memory, leverage
specialized data structures such as datastores and tall arrays, take advantage of pooled resources
within a computing cluster, or make adjustments to your settings and preferences.

Note The solutions presented here are specific to MATLAB. To optimize system-wide memory
performance, consider adding more physical memory (RAM) to your computer or making adjustments
at the operating system level.

Clear Variables When No Longer Needed

Make it a practice to clear variables when they are no longer needed. To clear items from memory,
use the clear function.

32 Memory Usage

32-6

Before After
A = rand(1e4);
disp(max(A,[],"all"))
B = rand(1e4);

A = rand(1e4);
disp(max(A,[],"all"))
clear A
B = rand(1e4);

For more information, see “Strategies for Efficient Use of Memory” on page 32-2.

Use Appropriate Data Storage

Memory requirements differ for MATLAB data types. You might be able to reduce the amount of
memory used by your code by using the appropriate data type and storage. For more information
about the solutions in this section, see “Strategies for Efficient Use of Memory” on page 32-2.

Use the Appropriate Numeric Class

The numeric class you should use depends on your intended actions. In MATLAB, double is the
default numeric data type and provides sufficient precision for most computational tasks:

• If you want to perform complicated math such as linear algebra, use floating-point numbers in
either double-precision (double) or single-precision (single) format. Numbers of type single
require less memory than numbers of type double, but are also represented to less precision.

• If you just need to carry out simple arithmetic and you represent the original data as integers, use
the integer classes in MATLAB.

Class (Data Type) Bytes Supported Operations
single 4 Most math
double 8 All math
logical 1 Logical/conditional operations
int8, uint8 1 Arithmetic and some simple functions
int16, uint16 2 Arithmetic and some simple functions
int32, uint32 4 Arithmetic and some simple functions
int64, uint64 8 Arithmetic and some simple functions

Reduce the Amount of Overhead When Storing Data

When you create a numeric or character array, MATLAB allocates a block of memory to store the
array data. MATLAB also stores information about the array data, such as its class and dimensions, in
a small, separate block of memory called a header. Because simple numeric and character arrays
have the least overhead, use them whenever possible. Use other data structures only for data that is
too complex to store in a simple array.

For structures and cell arrays, MATLAB creates a header not only for the array, but also for each field
of the structure or each cell of the cell array. Therefore, the amount of memory required to store a
structure or cell array depends not only on how much data it holds, but also on how it is constructed.
As a result, cell arrays with many small elements or structures with many fields containing little
content have large overhead and should be avoided.

 Resolve “Out of Memory” Errors

32-7

Before After
% S has 15,000 fields (3 fields per array element)
for i = 1:100
 for j = 1:50
 S(i,j).R = 0; % Each field contains a numeric scalar
 S(i,j).G = 0;
 S(i,j).B = 0;
 end
end

% S has 3 fields
S.R = zeros(100,50); % Each field contains a numeric array
S.G = zeros(100,50);
S.B = zeros(100,50);

Make Arrays Sparse When Possible

A good practice is to store matrices with few nonzero elements using sparse storage. When a full
matrix has a small number of nonzero elements, converting the matrix to sparse storage typically
improves memory usage and code execution time. MATLAB has several functions that support sparse
storage. For example, you can use the speye function to create a sparse identity matrix.

Before After
I = eye(1000); I = speye(1000);

Import Data Using the Appropriate MATLAB Class

When reading data from a binary file with fread, a common mistake is to specify only the class of the
data in the file and not the class of the data MATLAB uses once it is in the workspace. If you do not
specify the class of the data in memory, MATLAB uses double even if you read 8-bit values.

Before After
fileID = fopen("large_file_of_uint8s.bin","r");
A = fread(fileID,1e3,"uint8");

fileID = fopen("large_file_of_uint8s.bin","r");
A = fread(fileID,1e3,"uint8=>uint8");

Avoid Unnecessary Copies of Data

To improve memory usage and execution speed, make sure your code does not result in unnecessary
copies of data. For more information about the solutions in this section, see “Avoid Unnecessary
Copies of Data” on page 32-16 and “Strategies for Efficient Use of Memory” on page 32-2.
Avoid Creating Temporary Arrays

Avoid creating temporary arrays when they are not necessary. For example, instead of creating an
array of zeros as a temporary variable and then passing that variable to a function, use one command
to do both operations.

Before After
A = zeros(1e6,1);
As = single(A);

As = zeros(1e6,1,"single");

Preallocate Memory

When you work with large data sets, repeatedly resizing arrays might cause your program to run out
of memory. If you expand an array beyond the available contiguous memory of its original location,
MATLAB must make a copy of the array and move the copy into a memory block with sufficient space.
During this process, two copies of the original array exist in memory. You can improve the memory
usage and code execution time by preallocating the maximum amount of space required for the array.
For more information, see “Preallocation” on page 30-14.

32 Memory Usage

32-8

Before After
x = 0;
for k = 2:1000000
 x(k) = x(k-1) + 5;
end

x = zeros(1,1000000);
for k = 2:1000000
 x(k) = x(k-1) + 5;
end

Use Nested Functions to Pass Fewer Arguments

When calling a function, MATLAB typically makes a temporary copy of the variable in the caller's
workspace if the function modifies its value. MATLAB applies various techniques to avoid making
unnecessary copies, but avoiding a temporary copy of an input variable is not always possible.

One way to avoid temporary copies in function calls is to use nested functions. A nested function
shares the workspace of all outer functions, so you do not need to pass a copy of variables in the
function call. For more information, see “Nested Functions” on page 21-10.

Load Only as Much Data as You Need

One way to fix memory issues is to import into MATLAB only as much of a large data set as you need
for the problem you are trying to solve. Data set size is not usually a problem when importing from
sources such as a database, where you can explicitly search for elements matching a query. But it is a
common problem with loading large flat text or binary files.

The datastore function lets you work with large data sets incrementally. Datastores are useful any
time you want to load only some portions of a data set into memory at a time.

To create a datastore, provide the name of a file or a directory containing a collection of files with
similar formatting. For example, with a single file, use the following.

ds = datastore("path/to/file.csv");

Or with a collection of files in a folder, use the following.

ds = datastore("path/to/folder/");

You also can use the wildcard character * to select all files of a specific type.

ds = datastore("path/to/*.csv");

Datastores support a wide variety of file formats (tabular data, images, spreadsheets, and so on). For
more information, see “Select Datastore for File Format or Application”.

Aside from datastores, MATLAB also has several other functions to load parts of files. This table
summarizes the functions by the type of files they operate on.

File Type Partial Loading
MAT-file Load part of a variable by indexing into an object

that you create with the matfile function. For
more information, see “Save and Load Parts of
Variables in MAT-Files”.

 Resolve “Out of Memory” Errors

32-9

File Type Partial Loading
Text Use the textscan function to access parts of a

large text file by reading only the selected
columns and rows. If you specify the number of
rows or a repeat format number with textscan,
MATLAB calculates the exact amount of memory
required beforehand.

Binary You can use low-level binary file I/O functions,
such as fread, to access parts of any file that has
a known format. For binary files of an unknown
format, try using memory mapping with the
memmapfile function.

Image, Audio, Video, and HDF Many of the MATLAB functions that support
loading from these types of files allow you to
select portions of the data to read. For details,
see the function reference pages listed in
“Supported File Formats for Import and Export”.

Use Tall Arrays

Tall arrays help you work with data sets that are too large to fit in memory. MATLAB works with small
blocks of the data at a time, automatically handling all of the data chunking and processing in the
background. You can use tall arrays in two primary ways:

• If you have a large array that fits in memory, but you run out of memory when you try to perform
calculations, you can cast the array to a tall array.

t = tall(A);

This approach lets you work with large arrays that can fit in memory, but that consume too much
memory to allow for copies of the data during calculations. For example, if you have 8 GB of RAM
and a 5 GB matrix, casting the matrix to a tall array enables you to perform calculations on the
matrix without running out of memory. For an example of this usage, see tall.

• If you have file- or folder-based data, you can create a datastore and then create a tall array on top
of the datastore.

ds = datastore("path/to/file.csv");
t = tall(ds);

This approach gives you the full power of tall arrays in MATLAB. The data can have any number of
rows and MATLAB does not run out of memory. And because datastore works with both local
and remote data locations, the data you work with does not need to be on the computer you use to
analyze it. See “Work with Remote Data” for more information.

To learn more about tall arrays, see “Tall Arrays for Out-of-Memory Data”.

Use Memory of Multiple Machines

If you have a cluster of computers, you can use distributed arrays (requires Parallel Computing
Toolbox) to perform calculations using the combined memory of all the machines in the cluster.
Depending on how your data fits in memory, different ways to partition data among workers of a
parallel pool exist. For more information, see “Distributing Arrays to Parallel Workers” (Parallel
Computing Toolbox).

32 Memory Usage

32-10

Adjust Settings and Preferences

Generally, rewriting code is the most effective way to improve memory performance. However, if you
cannot make changes to your code, these solutions might provide it with the required amount of
memory.

Start MATLAB Without Java Virtual Machine or Decrease the Java Heap Size

If you either start MATLAB without the Java Virtual Machine (JVM™) software or decrease the Java
heap size, you can increase the available workspace memory. To start MATLAB without JVM, use the
command-line option -nojvm. For information on how to decrease the Java heap size, see “Java Heap
Memory Preferences”.

Using -nojvm comes with a penalty in that you lose several features that rely on JVM, such as the
desktop tools and graphics. Starting MATLAB with the -nodesktop option does not save any
substantial amount of memory.

Adjust the Array Size Limit

If you face an error stating that the array size exceeds the maximum array size preference, you can
adjust this array size limit in MATLAB. For information on adjusting the array size limit, see
“Workspace and Variable Preferences”. This solution is helpful only if the array you want to create
exceeds the current maximum array size limit but is not too large to fit in memory. Even if you turn
off the array size limit, attempting to create an unreasonably large array might cause MATLAB to run
out of memory, or it might make MATLAB or even your computer unresponsive due to excessive
memory paging.

See Also
memory | whos | datastore | tall

Related Examples
• “How MATLAB Allocates Memory” on page 32-12
• “Strategies for Efficient Use of Memory” on page 32-2
• “Avoid Unnecessary Copies of Data” on page 32-16
• “Large Files and Big Data”

 Resolve “Out of Memory” Errors

32-11

How MATLAB Allocates Memory

This topic provides information on how MATLAB® allocates memory when working with variables.
This information, like any information on how MATLAB treats data internally, is subject to change in
future releases.

Memory Allocation for Arrays

When you assign a numeric or character array to a variable, MATLAB allocates a contiguous block of
memory and stores the array data in that block. MATLAB also stores information about the array
data, such as its class and dimensions, in a small, separate block of memory called a header. For most
arrays, the memory required to store the header is insignificant. However, there could be some
advantage to storing large data sets in a small number of large arrays as opposed to a large number
of small arrays. This is because fewer arrays require fewer array headers.

If you add new elements to an existing array, MATLAB expands the array in memory in a way that
keeps its storage contiguous. This usually requires finding a new block of memory large enough to
hold the expanded array. MATLAB then copies the contents of the array from its original location to
this new block in memory, adds the new elements to the array in this block, and frees up the original
array location in memory.

If you remove elements from an existing array, MATLAB keeps the memory storage contiguous by
removing the deleted elements, and then compacting its storage in the original memory location.

Copying Arrays

When you assign an array to a second variable (for instance, when you execute B = A), MATLAB
does not allocate new memory right away. Instead, it creates a copy of the array reference. As long as
you do not modify the contents of the memory block being referenced by A and B, there is no need to
store more than one copy of data. However, if you modify any elements of the memory block using
either A or B, MATLAB allocates new memory, copies the data into it, and then modifies the created
copy.

On Windows® systems, the memory function enables you to inspect the memory details. To see how
copying arrays affects memory usage on your Windows system, create the function memUsed in a file
in your current folder. The function calls memory to return the amount of memory used by your
MATLAB process in megabytes.

function y = memUsed
usr = memory;
y = usr.MemUsedMATLAB/1e6;

Call memUsed to display the current memory usage.

format shortG
memUsed

ans =
 3966.1

Create a 2000-by-2000 numeric array and observe the change in memory usage. The array uses about
32 MB of memory.

32 Memory Usage

32-12

A = magic(2000);
memUsed

ans =
 3998.1

Make a copy of A in B. Because there is no need to have two copies of the array data, MATLAB only
makes a copy of the array reference. This requires no significant additional memory.

B = A;
memUsed

ans =
 3998.1

Now modify B by removing half of its rows. Because A and B no longer point to the same data,
MATLAB must allocate a separate memory block to B. As a result, the amount of memory used by the
MATLAB process increases by the size of B, which is about 16 MB (one half of the 32 MB required for
A).

B(1001:2000,:) = [];
memUsed

ans =
 4014.1

Function Arguments

MATLAB handles arguments passed in function calls in the same way that it handles arrays being
copied. When you pass a variable to a function, you actually pass a reference to the data that the
variable represents. As long as the data is not modified by the called function, the variable in the
calling function or script and the variable in the called function point to the same location in memory.
If the called function modifies the value of the input data, then MATLAB makes a copy of the original
variable in a new location in memory, updates that copy with the modified value, and points the input
argument in the called function to this new location.

For example, consider the function myfun, which modifies the value of the array passed to it.
MATLAB makes a copy of A in a new location in memory, sets the variable X as a reference to this
copy, and then sets one row of X to zero. The array referenced by A remains unchanged.

A = magic(5);
myfun(A)

function myfun(X)
X(4,:) = 0;
disp(X)
end

If the calling function or script needs the modified value of the array it passed to myfun, you need to
return the updated array as an output of the called function.

Data Types and Memory

Memory requirements differ for MATLAB data types. You might be able to reduce the amount of
memory used by your code by learning how MATLAB treats various data types.

 How MATLAB Allocates Memory

32-13

Numeric Arrays

MATLAB allocates 1, 2, 4, or 8 bytes to 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers,
respectively. It represents floating-point numbers in either double-precision (double) or single-
precision (single) format. Because MATLAB stores numbers of type single using 4 bytes, they
require less memory than numbers of type double, which use 8 bytes. However, because they are
stored with fewer bits, numbers of type single are represented to less precision than numbers of
type double. In MATLAB, double is the default numeric data type and provides sufficient precision
for most computational tasks. For more information, see “Floating-Point Numbers” on page 4-6.

Structure and Cell Arrays

While numeric arrays must be stored in a contiguous block of memory, structures and cell arrays can
be stored in noncontiguous blocks. For structures and cell arrays, MATLAB creates a header not only
for the array, but also for each field of the structure or each cell of the cell array. Therefore, the
amount of memory required to store a structure or cell array depends not only on how much data it
holds, but also on how it is constructed.

For example, consider a scalar structure S1 with fields R, G, and B, where each field contains a 100-
by-50 array. S1 requires one header to describe the overall structure, one header for each unique
field name, and one header for each field. This makes a total of seven headers for the entire
structure.

S1.R = zeros(100,50);
S1.G = zeros(100,50);
S1.B = zeros(100,50);

On the other hand, consider a 100-by-50 structure array S2 in which each element has scalar fields R,
G, and B. In this case, S2 needs one header to describe the overall structure, one header for each
unique field name, and one header for each field of the 5,000 elements, making a total of 15,004
array headers for the entire structure array.

for i = 1:100
 for j=1:50
 S2(i,j).R = 0;
 S2(i,j).G = 0;
 S2(i,j).B = 0;
 end
end

Use the whos function to compare the amount of memory allocated to S1 and S2 on a 64-bit system.
Even though S1 and S2 hold the same data, S1 uses significantly less memory.

whos S1 S2

 Name Size Bytes Class Attributes

 S1 1x1 120504 struct
 S2 100x50 1680192 struct

Complex Arrays

MATLAB uses an interleaved storage representation of complex numbers, where the real and
imaginary parts are stored together in a contiguous block of memory. If you make a copy of a complex
array, and then modify only the real or imaginary part of the array, MATLAB creates an array
containing both real and imaginary parts. For more information about the representation of complex
numbers in memory, see “MATLAB Support for Interleaved Complex API in MEX Functions”.

32 Memory Usage

32-14

Sparse Matrices

It is a good practice to store matrices with few nonzero elements using sparse storage. When a full
matrix has a small number of nonzero elements, converting the matrix to sparse storage typically
improves memory usage and code execution time. You can convert a full matrix to sparse storage
using the sparse function.

For example, let matrix A be a 1,000-by-1,000 full storage identity matrix. Create B as a sparse copy
of A. In sparse storage, the same data uses a significantly smaller amount of memory.

A = eye(1000);
B = sparse(A);
whos A B

 Name Size Bytes Class Attributes

 A 1000x1000 8000000 double
 B 1000x1000 24008 double sparse

Working with Large Data Sets

When you work with large data sets, repeatedly resizing arrays might cause your program to run out
of memory. If you expand an array beyond the available contiguous memory of its original location,
MATLAB must make a copy of the array and move the copy into a memory block with sufficient space.
During this process, there are two copies of the original array in memory. This temporarily doubles
the amount of memory required for the array and increases the risk of your program running out of
memory. You can improve the memory usage and code execution time by preallocating the maximum
amount of space required for the array. For more information, see “Preallocation” on page 30-14.

See Also
memory | whos

Related Examples
• “Strategies for Efficient Use of Memory” on page 32-2
• “Resolve “Out of Memory” Errors” on page 32-6
• “Avoid Unnecessary Copies of Data” on page 32-16

 How MATLAB Allocates Memory

32-15

Avoid Unnecessary Copies of Data

In this section...
“Passing Values to Functions” on page 32-16
“Why Pass-by-Value Semantics” on page 32-19
“Handle Objects” on page 32-19

Passing Values to Functions
When calling a function with input arguments, MATLAB copies the values from the calling function’s
workspace into the parameter variables in the function being called. However, MATLAB applies
various techniques to avoid making copies of these values when it is not necessary.

MATLAB does not provide a way to define a reference to a value, as in languages like C++. Instead,
MATLAB allows multiple output as well as multiple input parameters so that you know what values
are going into a function and what values are coming out of the function.

Copy-on-Write

If a function does not modify an input argument, MATLAB does not make a copy of the values
contained in the input variable.

For example, suppose that you pass a large array to a function.

A = rand(1e7,1);
B = f1(A);

The function f1 multiplies each element in the input array X by 1.1 and assigns the result to the
variable Y.

function Y = f1(X)
Y = X.*1.1; % X is a shared copy of A
end

Because the function does not modify the input values, the local variable X and the variable A in the
caller's workspace share the data. After f1 executes, the values assigned to A have not changed. The
variable B in the caller's workspace contains the result of the element-wise multiplication. The input
is passed by value. However, no copy is made when calling f1.

The function f2 does modify its local copy of the input variable, causing the local copy to be unshared
with input A. The value of X in the function is now an independent copy of the input variable A in the
caller's workspace. When f2 returns the result to the caller's workspace, the local variable X is
destroyed.

A = rand(1e7,1);
B = f2(A);

function Y = f2(X)
X = X.*1.1; % X is an independent copy of A
Y = X; % Y is a shared copy of X
end

32 Memory Usage

32-16

Passing Inputs as MATLAB Expressions

You can use the value returned from a function as an input argument to another function. For
example, use the rand function to create the input for the function f2 directly.

B = f2(rand(1e7,1));

The only variable holding the value returned by rand is the temporary variable X in the workspace of
the function f2. There is no shared or independent copy of these values in the caller's workspace.
Directly passing function outputs saves the time and memory required to create a copy of the input
values in the called function. This approach makes sense when the input values are not used again.

Assigning In-Place

When you do not need to preserve the original input values, you can assign the output of a function to
the same variable that you provided as input.

A = f2(A);

In-place assignment follows the copy-on-write behavior described previously: modifying the input
variable values results in a temporary copy of those values.

MATLAB can apply memory optimizations under certain conditions. Consider the following example.
The canBeOptimized function creates a large array of random numbers in the variable A. Then it
calls the local function fLocal, passing A as the input, and assigning the output of the local function
to the same variable name.

function canBeOptimized
A = rand(1e7,1);
A = fLocal(A);
end
function X = fLocal(X)
X = X.*1.1;
end

Because the call to the local function, A = fLocal(A), assigns the output to the variable A, MATLAB
does not need to preserve the original value of A during execution of the function. Modifications made
to X inside fLocal do not result in a copy of the data. The assignment X = X.*1.1 modifies X in
place, without allocating a new array for the result of the multiplication. Eliminating the copy in the
local function saves memory and improves execution speed for large arrays.

However, MATLAB cannot apply this optimization if the assignment in the local function requires
array indexing. For example, modifying the cell array created in updateCells requires indexing into
the array X in the local function gLocal. The looped assignment in the form X{i} = X{i}*1.1
creates a copy of the data in X{i}. For each element of the cell array, there are two copies in the
workspace of gLocal.

function updateCells
C = num2cell(rand(1e7,1));
C = gLocal(C);
end
function X = gLocal(X)
for i = 1:length(X)
 X{i} = X{i}*1.1;
end
end

 Avoid Unnecessary Copies of Data

32-17

Several additional restrictions apply. MATLAB cannot apply memory optimization when it is possible
to use the variable after the function throws an error. Therefore, this optimization is not applied in
scripts, on the command line, in calls to eval, or to code inside try/catch blocks. Also, MATLAB
does not apply memory optimization when the original variable is directly accessible during execution
of the called function. For example, if fLocal was a nested function, MATLAB could not apply the
optimization because variables can be shared with the parent function. Finally, MATLAB does not
apply memory optimization when the assigned variable is declared as global or persistent.

Debugging Code That Uses In-Place Assignment

When MATLAB applies in-place optimization to an assignment statement, the variable on the left side
of the assignment is set to a temporary state that makes it inaccessible before MATLAB executes the
right side of the assignment statement. If MATLAB stops in the debugger before the result of
executing the right-side of the statement has been assigned to the variable, examining the left-side
variable can produce an error indicating that the variable is unavailable.

For example, this function has a mismatch in the dimensions of variables A and B.

function A = inPlace
A = rand(100);
B = rand(99);
dbstop if error
A = A.*B;
end

Executing the function throws an error and stops in the debugger.

inPlace

Matrix dimensions must agree.

Error in inPlace (line 5)
A = A.*B;

5 A = A.*B;

Attempting to see the value of the variable A while in debug mode results in an error because the
variable is temporarily unavailable.

K>> A

Variable "A" is inaccessible. When a variable appears on both sides of
an assignment statement, the variable may become temporarily
unavailable during processing.

To gain more flexibility when debugging, refactor your code to remove the in-place assignment. For
example, assign the result to another variable.

function A = inPlace
A = rand(100);
B = rand(99);
dbstop if error
% Assign result to C instead of A
C = A.*B;
A = C;
end

Then the variable A is visible while in the debugger.

32 Memory Usage

32-18

Why Pass-by-Value Semantics
MATLAB uses pass-by-value semantics when passing arguments to functions and returning values
from functions. In some cases, pass-by-value results in copies of the original values being made in the
called function. However, pass-by-value semantics provides certain advantages.

When calling functions, you know that the input variables are not modified in the caller's workspace.
Therefore, you do not need to make copies of inputs inside a function or at a call site just to guard
against the possibility that these values might be modified. Only the variables assigned to returned
values are modified.

Also, you avoid the possibility of corrupting workspace variables if an error occurs within a function
that has been passed a variable by reference.

Handle Objects
There are special kinds of objects called handles. All variables that hold copies of the same handle
can access and modify the same underlying object. Handle objects are useful in specialized
circumstances where an object represents a physical object such as a window, plot, device, or person
rather than a mathematical object like a number or matrix.

Handle objects derive from the handle class, which provides functionality such as events and
listeners, destructor methods, and support for dynamic properties.

For more information about values and handles, see “Comparison of Handle and Value Classes” and
“Which Kind of Class to Use”.

See Also
handle

Related Examples
• “Handle Object Behavior”
• “Avoid Copies of Arrays in MEX Functions”
• “Strategies for Efficient Use of Memory” on page 32-2

 Avoid Unnecessary Copies of Data

32-19

Custom Help and Documentation

• “Create Help for Classes” on page 33-2
• “Check Which Programs Have Help” on page 33-8
• “Create Help Summary Files — Contents.m” on page 33-10
• “Customize Code Suggestions and Completions” on page 33-12
• “Display Custom Documentation” on page 33-21
• “Display Custom Examples” on page 33-29

33

Create Help for Classes
In this section...
“Help Text from the doc Command” on page 33-2
“Custom Help Text” on page 33-3

Help Text from the doc Command
When you use the doc command to display help for a class, MATLAB automatically displays
information that it derives from the class definition.

For example, create a class definition file named someClass.m with several properties and methods,
as shown.

classdef someClass
 % someClass Summary of this class goes here
 % Detailed explanation goes here

 properties
 One % First public property
 Two % Second public property
 end
 properties (Access=private)
 Three % Do not show this property
 end

 methods
 function obj = someClass
 % Summary of constructor
 end
 function myMethod(obj)
 % Summary of myMethod
 disp(obj)
 end
 end
 methods (Static)
 function myStaticMethod
 % Summary of myStaticMethod
 end
 end

end

View the help text and the details from the class definition using the doc command.

doc someClass

33 Custom Help and Documentation

33-2

Custom Help Text
You can add information about your classes that both the doc command and the help command
include in their displays. The doc command displays the help text at the top of the generated HTML
pages, above the information derived from the class definition. The help command displays the help
text in the Command Window. For details, see:

• “Classes” on page 33-3
• “Methods” on page 33-4
• “Properties” on page 33-5
• “Enumerations” on page 33-5
• “Events” on page 33-6

Classes

Create help text for classes by including comments on lines immediately after the classdef
statement in a file. For example, create a file named myClass.m, as shown.

classdef myClass
 % myClass Summary of myClass
 % This is the first line of the description of myClass.
 % Descriptions can include multiple lines of text.
 %
 % myClass Properties:
 % a - Description of a
 % b - Description of b
 %
 % myClass Methods:

 Create Help for Classes

33-3

 % doThis - Description of doThis
 % doThat - Description of doThat

 properties
 a
 b
 end

 methods
 function obj = myClass
 end
 function doThis(obj)
 end
 function doThat(obj)
 end
 end

end

Lists and descriptions of the properties and methods in the initial comment block are optional. If you
include comment lines containing the class name followed by Properties or Methods and a colon
(:), then MATLAB creates hyperlinks to the help for the properties or methods.

View the help text for the class in the Command Window using the help command.

help myClass

 myClass Summary of myClass
 This is the first line of the description of myClass.
 Descriptions can include multiple lines of text.

 myClass Properties:
 a - Description of a
 b - Description of b

 myClass Methods:
 doThis - Description of doThis
 doThat - Description of doThat

Methods

Create help for a method by inserting comments immediately after the function definition statement.
For example, modify the class definition file myClass.m to include help for the doThis method.

 function doThis(obj)
 % doThis Do this thing
 % Here is some help text for the doThis method.
 %
 % See also DOTHAT.

 disp(obj)
 end

View the help text for the method in the Command Window using the help command. Specify both
the class name and method name, separated by a dot.

help myClass.doThis

33 Custom Help and Documentation

33-4

 doThis Do this thing
 Here is some help text for the doThis method.

 See also doThat.

Properties

There are two ways to create help for properties:

• Insert comment lines above the property definition. Use this approach for multiline help text.
• Add a single-line comment next to the property definition.

Comments above the definition have precedence over a comment next to the definition.

For example, modify the property definitions in the class definition file myClass.m.

 properties
 a % First property of myClass

 % b - Second property of myClass
 % The description for b has several
 % lines of text.
 b % Other comment
 end

View the help for properties in the Command Window using the help command. Specify both the
class name and property name, separated by a dot.

help myClass.a

 a - First property of myClass

help myClass.b

 b - Second property of myClass
 The description for b has several
 lines of text.

Enumerations

Like properties, there are two ways to create help for enumerations:

• Insert comment lines above the enumeration definition. Use this approach for multiline help text.
• Add a single-line comment next to the enumeration definition.

Comments above the definition have precedence over a comment next to the definition.

For example, create an enumeration class in a file named myEnumeration.m.

classdef myEnumeration
 enumeration
 uno, % First enumeration

 % DOS - Second enumeration
 % The description for DOS has several
 % lines of text.
 dos % A comment (not help text)

 Create Help for Classes

33-5

 end
end

View the help in the Command Window using the help command. Specify both the class name and
enumeration member, separated by a dot.

help myEnumeration.uno

uno - First enumeration

help myEnumeration.dos

 dos - Second enumeration
 The description for dos has several
 lines of text.

Events

Like properties and enumerations, there are two ways to create help for events:

• Insert comment lines above the event definition. Use this approach for multiline help text.
• Add a single-line comment next to the event definition.

Comments above the definition have precedence over a comment next to the definition.

For example, create a class in a file named hasEvents.m.

classdef hasEvents < handle
 events
 Alpha % First event

 % Beta - Second event
 % Additional text about second event.
 Beta % (not help text)
 end

 methods
 function fireEventAlpha(h)
 notify(h,'Alpha')
 end

 function fireEventBeta(h)
 notify(h,'Beta')
 end
 end
end

View the help in the Command Window using the help command. Specify both the class name and
event, separated by a dot.

help hasEvents.Alpha

 Alpha - First event

help hasEvents.Beta

 Beta - Second event
 Additional text about second event.

33 Custom Help and Documentation

33-6

See Also
help | doc

More About
• “Role of Classes in MATLAB”
• “User-Defined Classes”

 Create Help for Classes

33-7

Check Which Programs Have Help

To determine which of your programs files have help text, you can use the Help Report.

In the Help Report, you specify a set of help components for which you want to search, such as
examples or See Also lines. For each file searched, MATLAB displays the help text for the
components it finds. Otherwise, MATLAB displays a highlighted message to indicate that the
component is missing.

To generate a Help Report, in the Current Folder browser, navigate to the folder you want to check,
click , and then select Reports > Help Report. The Help Report displays in the MATLAB web
browser.

Note You cannot run reports when the path is a UNC (Universal Naming Convention) path; that is, a
path that starts with \\. Instead, use an actual hard drive on your system, or a mapped network
drive.

This table describes the available options for Help Reports.

Help Report Option Description
Show class methods Include methods in the report. If you do not select this option, then the

report includes results for classes, but not for methods within a class
definition file.

33 Custom Help and Documentation

33-8

Help Report Option Description
Show all help Display all help text found in each file. If you also select individual help

components, such as Description, then help text appears twice in the
report for each file: once for the overall help text, and once for the
component.

If your program has the same name as other programs on the MATLAB
search path, then the help command generates a list of those overloaded
items. MATLAB automatically adds links to the help for those items.

Description Check for an initial, nonempty comment line in the file. This line is
sometimes called the H1 line.

Examples Check for examples in the help text. The Help Report performs a case-
insensitive search for a help line with a single-word variant of example.
The report displays that line and subsequent nonblank comment lines,
along with the initial line number.

See Also Check for a line in the help that begins with the words See also. The
report displays the text and the initial line number.

If the programs listed after See also are on the search path, then the
help command generates hyperlinks to the help for those programs. The
Help Report indicates when a program in the See also line is not on the
path.

Copyright Check for a comment line in the file that begins with the word
Copyright. When there is a copyright line, the report also checks
whether the end year is current. The date check requires that the
copyright line includes either a single year (such as 2012) or a range of
years with no spaces (such as 2001-2012).

The recommended practice is to include a range of years from the year
you created the file to the current year.

See Also

Related Examples
• “Add Help for Your Program” on page 21-5
• “Create Help Summary Files — Contents.m” on page 33-10

 Check Which Programs Have Help

33-9

Create Help Summary Files — Contents.m

In this section...
“What Is a Contents.m File?” on page 33-10
“Create a Contents.m File” on page 33-10
“Check an Existing Contents.m File” on page 33-11

What Is a Contents.m File?
A Contents.m file provides a summary of the programs in a particular folder. The help, doc, and
ver functions refer to Contents.m files to display information about folders.

Contents.m files contain only comment lines. The first two lines are headers that describe the folder.
Subsequent lines list the program files in the folder, along with their descriptions. Optionally, you can
group files and include category descriptions. For example, view the functions available in the
codetools folder:

help codetools

 Commands for creating and debugging code
 MATLAB Version 9.3 (R2017b) 24-Jul-2017

 Editing and publishing
 edit - Edit or create a file
 grabcode - Copy MATLAB code from published HTML
 mlint - Check files for possible problems
 publish - Publish file containing cells to output file
 snapnow - Force snapshot of image for published document

 Directory tools
 mlintrpt - Run mlint for file or folder, reporting results in browser
 visdiff - Compare two files (text, MAT, or binary) or folders

 ...

If you do not want others to see a summary of your program files, place an empty Contents.m file in
the folder. An empty Contents.m file causes help foldername to report No help found for
foldername. Without a Contents.m file, the help and doc commands display a generated list of all
program files in the folder.

Create a Contents.m File
When you have a set of existing program files in a folder, the easiest way to create a Contents.m file
is to use the Contents Report. The primary purpose of the Contents Report is to check that an
existing Contents.m file is up-to-date. However, it also checks whether Contents.m exists, and can
generate a new file based on the contents of the folder. Follow these steps to create a file:

1 In the Current Folder browser, navigate to the folder that contains your program files.
2 Click , and then select Reports > Contents Report.
3 In the report, where prompted to make a Contents.m file, click yes. The new file includes the

names of all program files in the folder, using the description line (the first nonempty comment
line) whenever it is available.

4 Open the generated file in the Editor, and modify the file so that the second comment line is in
this form:

33 Custom Help and Documentation

33-10

 % Version xxx dd-mmm-yyyy

Do not include any spaces in the date. This comment line enables the ver function to detect the
version information.

Note MATLAB does not include live scripts or functions when creating a Contents Report.

Check an Existing Contents.m File
Verify whether your Contents.m file reflects the current contents of the folder using the Contents
Report, as follows:

1 In the Current Folder browser, navigate to the folder that contains the Contents.m file.
2 Click , and then select Reports > Contents Report.

Note You cannot run reports when the path is a UNC (Universal Naming Convention) path; that is, a
path that starts with \\. Instead, use an actual hard drive on your system, or a mapped network
drive.

The Contents Report performs the following checks.

Check Whether the Contents.m File... Details
Exists If there is no Contents.m file in the folder, you

can create one from the report.
Includes all programs in the folder Missing programs appear in gray highlights. You

do not need to add programs that you do not
want to expose to end users.

Incorrectly lists nonexistent files Listed programs that are not in the folder appear
in pink highlights.

Matches the program file descriptions The report compares file descriptions in
Contents.m with the first nonempty comment line
in the corresponding file. Discrepancies appear in
pink highlights. You can update either the
program file or the Contents.m file.

Uses consistent spacing between file names and
descriptions

Fix the alignment by clicking fix spacing at the
top of the report.

You can make all the suggested changes by clicking fix all, or open the file in the Editor by clicking
edit Contents.m.

See Also
doc | help | ver

 Create Help Summary Files — Contents.m

33-11

Customize Code Suggestions and Completions
To customize code suggestions and completions for your functions and classes, provide MATLAB with
information about your function signatures. Function signatures describe the acceptable syntaxes
and allowable data types for a function. MATLAB uses this information to display code suggestions
and completions in the Editor, Live Editor, and Command Window. Define this function information in
a JSON-formatted file called functionSignatures.json.

For MATLAB to detect the function signature information, you must place
functionSignatures.json in the folder that contains the function code. If you define information
for a class method or package function, you must place functionSignatures.json in the parent
folder of the outermost class or package folder. For example, to define information for a method of
myClass, place functionSignatures.json in the folder myFolder for these class and package
structures:
 myFolder/+myPackage/@myClass
 myFolder/+myPackage/+mySubpackage/@myClass

For classes located outside of class or package folders, place functionSignatures.json in the
folder that contains the class code. You can define signatures for multiple functions in the same file.

The functionSignatures.json file contains a single JSON object. JSON uses braces to define
objects, and refers to objects as collections of name and value pairs. Since these terms are
overloaded in context of function signatures, "property" is used instead of "name." The JSON object in
functionSignatures.json contains an optional schema version and a list of function objects.
Each function object contains a list of signature objects, and each signature object contains an array
of argument objects. JSON uses brackets to define arrays.

To specify the optional schema version use _schemaVersion as the first property and the version
number as its value. Specify the version number as a JSON string in the format
major#.minor#.patch#, with each number specified as a nonnegative integer. The current schema
version is 1.0.0. If the file does not specify a schema version, MATLAB assumes version 1.0.0.

33 Custom Help and Documentation

33-12

If functionSignatures.json contains syntax errors, MATLAB displays an error message in the
Command Window when it reads the file. Use the validateFunctionSignaturesJSON function to
validate the functionSignatures.json file against the JSON schema and the MATLAB function
signature schema.

Function Objects
To define information for a function, create a property that is the same as the function name. Its value
is a signature object on page 33-13.
{
 "functionName1": { signatureObj1 },
 "functionName2": { signatureObj2 }
}

To define information for a class constructor, class method, or package function, use the full name of
the function or method. For example, define a class constructor, class method myMethod, and a
package function myFunction.
{
 "myClass.myClass": { signatureObj },
 "myClass.myMethod": { signatureObj },
 "myPackage.myFunction": { signatureObj }
}

You can define multiple function signatures for the same function or method by defining multiple
function objects with the same property (function or method name). For more information, see
“Multiple Signatures” on page 33-19.

Signature Objects
A signature object defines the input and output arguments and supported platforms for the function.
The value of each property, except for the platforms property, is an array of argument objects on
page 33-14.
{
 "functionName1":
 {
 "inputs": [argumentObj1, argumentObj2]
 }
}

If you specify an instance method such as myClass.myMethod in the JSON file, one of the elements
in inputs must be an object of myClass. Typically, this object is the first element. MATLAB supports
code suggestions and completions for a specified method when you call it using either dot notation (b
= myObj.myMethod(a)) or function notation (b = myMethod(myObj,a)) syntax.

Each signature in the JSON file can include the following properties.

Property Description JSON Data Type of
Value

inputs List of function input arguments. MATLAB uses this
property for code suggestions and completions.

Array of argument
objects

outputs List of function output arguments. MATLAB uses this
property to refine code suggestions and completions.

Array of argument
objects

 Customize Code Suggestions and Completions

33-13

Property Description JSON Data Type of
Value

platforms List of platforms that support the function. MATLAB
does not present custom code suggestions and
completions if the platform does not support the
function.

The default is all platforms. Elements of the list must
match an archstr returned from the computer
function. The list can be inclusive or exclusive, but not
both. Example values are "win64,maci64" or "-
win64,-maci64".

String of comma-
separated values

Argument Objects
Argument objects define the information for each of the input and output arguments.
{
 "functionName1":
 {
 "inputs":
 [
 {"name":"in1", "kind":"required", "type":["numeric"]},
 {"name":"in2", "kind":"required", "type":["numeric","integer","scalar"]}
]
 }
}

The order that the inputs appear in the JSON file is significant. For example, in a call to the
functionName1 function, in1 must appear before in2.

Each argument object can include the following properties.

name – Name of argument

The name of the input or output argument, specified as a JSON string. This property and value is
required. The name property does not need to match the argument name in the source code, but it is
a best practice for it to match any help or documentation.

Example: "name":"myArgumentName"

kind – Kind of argument

The kind of argument, specified as a JSON string with one of the following values. MATLAB uses the
value of the kind property to determine if and when to display the arguments within the function
signature.

Value Description
required Argument is required, and its location is relative to other required arguments in

the signature object.
ordered Argument is optional, and its location is relative to the required and preceding

optional arguments in the signature object.
namevalue Argument is an optional name-value pair. Name-value pair arguments occur at

the end of a function signature, but the pairs can be specified in any order.

33 Custom Help and Documentation

33-14

Arguments that are required and ordered appear first in the function signature, and are followed
by any namevalue arguments.

required, ordered, and namevalue arguments are most common. You can also specify the
following values for kind.

• positional – Argument is optional if it occurs at the end of the argument list, but becomes
required to specify a subsequent positional argument. Any positional arguments must appear
with the required and ordered arguments, before any namevalue arguments.

• flag – Argument is an optional, constant string, typically used as a switch. For example,
'ascend' or 'descend'. Flags occur at the end of a function signature. All flag arguments
must appear before any namevalue arguments.

• properties – Argument is optional and is used to specify public, settable properties of a different
MATLAB class. Indicate the class using the argument object type property. In code suggestions,
these properties appear as name-value pairs. Any properties arguments must be the last
argument in the signature.

Example: "kind":"required" or "kind":"namevalue"

type – Class and/or attributes of argument

Class or attributes of the argument, specified as a JSON string, list, or list of lists.

The type property can define what class the argument is and what attributes the argument must
have.

• To match one class or attribute, use a single JSON string. For example, if an argument must be
numeric, then specify "type":"numeric".

• To match all classes or attributes, use a list of JSON strings. For example, if an argument must be
both numeric and positive, then specify "type":["numeric", ">=0"].

• To match any of multiple classes or attributes, use a list of lists of JSON strings. For the inner lists,
MATLAB uses a logical AND of the values. For the outer list, MATLAB uses a logical OR of the
values. For example, if an argument must be either a positive number or a containers.Map
object, then specify "type":[["numeric", ">=0"],["containers.Map"]].

Value Argument Description
"classname" Must be an object of class classname, where classname is the name of the

class returned by the class function. For example, "double" or
"function_handle".

"choices=expressio
n"

Must be a case-insensitive match to one of the specified choices.
expression is any valid MATLAB expression that returns a cell of character
vectors, string array, or cell of integer values. For example,
"choices={'on','off'}" or "choices={8, 16, 24}".

expression can refer by name to other input arguments that appear in the
argument list. Since expression is evaluated at run time, allowable choices
can vary dynamically with the value of other input arguments.

"file=*.ext,..." Must be a string or character vector that names an existing file with the
specified extension. File names are relative to the current working folder.
For example, to allow all .m and .mlx files in the current folder, use
"file=*.m,*.mlx". To match all files in the current folder, use "file".

 Customize Code Suggestions and Completions

33-15

Value Argument Description
"folder" Must be a string or character vector that is the name of an existing folder

relative to the current working folder.
"matlabpathfile=*.
ext,..."

Must be a string or character vector that names an existing file on the
MATLAB path. This value requires at least one file extension. For example,
to allow all .mat files on the path, use "matlabpathfile=*.mat".

"size=size1,size2,
…,sizeN"

Must match size constraints. This value requires two or more dimensions.
Each size dimension must be either a positive integer that indicates the
allowable size of the dimension, or a colon to allow any size. For example,
"size=2,:,2" constrains the argument to have a size of 2 in the 1st and
3rd dimensions.

"numel=integerValu
e"

Must have a specified number of elements.

"nrows=integerValu
e"

Must have a specified number of rows.

"ncols=integerValu
e"

Must have a specified number of columns.

"numeric" Must be numeric. A numeric value is one for which the isa function with
the 'numeric' class category returns true.

"logical" Must be numeric or logical.
"real" Must be a real-valued numeric or a character or logical value.
"scalar" Must be scalar.
"integer" Must be an integer of type double.
"square" Must be a square matrix.
"vector" Must be a column or row vector.
"column" Must be a column vector.
"row" Must be a row vector.
"2d" Must be 2-dimensional.
"3d" Must have no more than three dimensions.
"sparse" Must be sparse.
"positive" Must be greater than zero.
">expression" Must be numeric and satisfy the inequality. expression must return a full

scalar double.">=expression"
"<expression"
"<=expression"
@(args) expression Must satisfy the function handle. For a value to satisfy the function handle,

the handle must evaluate to true.

repeating – Specify argument multiple times

Indicator that an argument can be specified multiple times, specified as a JSON true or false
(without quotes). The default is false. If specified as true, the argument or set of arguments (tuple)

33 Custom Help and Documentation

33-16

can be specified multiple times. A required repeating argument must appear one or more times, and
an optional repeating argument can appear zero or more times.

Example: "repeating":true

purpose – Description of argument

Description of argument, specified as a JSON string. Use this property to communicate the purpose of
the argument.

Example: "purpose":"Product ID"

For more complicated function signatures, the following properties are available for each argument
object.

platforms – List of supported platforms

List of platforms that support the argument, specified as a JSON string. The default is all platforms.
Elements of the list must match an archstr returned from the computer function. The list can be
inclusive or exclusive, but not both.

Example: "platforms":"win64,maci64" or "platforms":"-maci64"

tuple – Definition of set of arguments

Definition of a set of arguments that must always appear together, specified as a list of argument
objects. This property is only used to define sets of multiple repeating arguments. For these function
signatures, define tuples and set the repeating property to true.

mutuallyExclusiveGroup – Definition of set of exclusive arguments

Definition of a set of sets of arguments that cannot be used together, specified as a list of argument
objects. This property is used to provide information about functions with multiple function
signatures. However, typically it is easier to define multiple function signatures using multiple
function objects. For more information, see “Multiple Signatures” on page 33-19.

Create Function Signature File
This example describes how to create custom code suggestions and completions for a function.

Create a function whose signature you will describe in a JSON file in later steps. The following
function accepts:

• Two required arguments
• One optional positional argument via varargin
• Two optional name-value pair arguments via varargin

myFunc is presented to demonstrate code suggestions and does not include argument checking.
% myFunc Example function
% This function is called with any of these syntaxes:
%
% myFunc(in1, in2) accepts 2 required arguments.
% myFunc(in1, in2, in3) also accepts an optional 3rd argument.
% myFunc(___, NAME, VALUE) accepts one or more of the following name-value pair
% arguments. This syntax can be used in any of the previous syntaxes.
% * 'NAME1' with logical value

 Customize Code Suggestions and Completions

33-17

% * 'NAME2' with 'Default', 'Choice1', or 'Choice2'
function myFunc(reqA,reqB,varargin)
 % Initialize default values
 NV1 = true;
 NV2 = 'Default';
 posA = [];

 if nargin > 3
 if rem(nargin,2)
 posA = varargin{1};
 V = varargin(2:end);
 else
 V = varargin;
 end
 for n = 1:2:size(V,2)
 switch V{n}
 case 'Name1'
 NV1 = V{n+1};
 case 'Name2'
 NV2 = V{n+1}
 otherwise
 error('Error.')
 end
 end
 end
end

In the same folder as myFunc, create the following function signature description in a file called
functionSignatures.json. The input names do not match the names in the body of myFunc, but
are consistent with the help text.
{
 "_schemaVersion": "1.0.0",
 "myFunc":
 {
 "inputs":
 [
 {"name":"in1", "kind":"required", "type":["numeric"], "purpose":"ID of item"},
 {"name":"in2", "kind":"required", "type":["numeric"], "purpose":"# Items"},
 {"name":"in3", "kind":"ordered", "type":["numeric"], "purpose":"Input Value"},
 {"name":"Name1", "kind":"namevalue", "type":["logical","scalar"],"purpose":"Option"},
 {"name":"Name2", "kind":"namevalue", "type":["char", "choices={'Default','Choice1','Choice2'}"]}
]
 }
}

MATLAB uses this function signature description to inform code suggestions and completion.

How Function Signature Information is Used
MATLAB uses the function signature information in the JSON file to display matching syntaxes as you
type. You also can complete partially typed text by pressing the Tab key. In the Command Window,
MATLAB does not use the JSON file to display matching syntaxes as you type.

To experiment with code suggestions, start to call myFunc from a script or live script. The names and
purposes from the JSON file appear. MATLAB indicates when arguments are optional and if there are
multiple suggestions available (such as the third positional argument or a name-value pair). Name-
value pairs options are listed.

33 Custom Help and Documentation

33-18

When adding a name-value pair argument to the function call, MATLAB presents the choices from the
JSON file. Since 'Name1' is defined as a logical scalar, MATLAB populates the choices automatically
(true or false). MATLAB takes the three values for the 'Name2' argument from the JSON file.

Multiple Signatures
If a function has many syntaxes, it can be helpful for code suggestions to group syntaxes as multiple
function signatures (regardless of the implementation of the function). To provide code suggestions
and completions for multiple signatures, create multiple function objects with the same property in
the JSON file.

Consider the following function that follows different code paths depending on the class of the second
input. This function is presented as an example for code suggestions, and, therefore, does not
perform any computations or error checking.

function anotherFunc(arg1,arg2,arg3)
 switch class(arg2)
 case 'double'
 % Follow code path 1
 case {'char','string'}
 % Follow code path 2
 otherwise
 error('Invalid syntax.')
 end
end

From a code suggestions perspective, consider the function as having two function signatures. The
first signature accepts two required numeric values. The second signature accepts a required
numeric, followed by a character or string, and finally a required numeric. To define multiple function
signatures, define multiple function objects in the JSON file with the same property (function name).
{
 "_schemaVersion": "1.0.0",
 "anotherFunc":
 {
 "inputs":
 [
 {"name":"input1", "kind":"required", "type":["numeric"]},
 {"name":"input2", "kind":"required", "type":["numeric"]}
]
 },
 "anotherFunc":
 {
 "inputs":
 [
 {"name":"input1", "kind":"required", "type":["numeric"]},
 {"name":"input2", "kind":"required", "type":[["char"],["string"]]},
 {"name":"input3", "kind":"required", "type":["numeric"]}
]
 }
}

 Customize Code Suggestions and Completions

33-19

Alternatively, you can define multiple function signatures using the mutuallyExclusiveGroup
property of the argument object. Typically, it is easier and more readable to implement multiple
function objects, but using mutually exclusive groups enables reuse of common argument objects,
such as input1.
{
 "_schemaVersion": "1.0.0",
 "anotherFunc":
 {
 "inputs":
 [
 {"name":"input1", "kind":"required", "type":["numeric"]},
 {"mutuallyExclusiveGroup":
 [
 [
 {"name":"input2", "kind":"required", "type":["numeric"]}
],
 [
 {"name":"input2", "kind":"required", "type":[["char"],["string"]]},
 {"name":"input3", "kind":"required", "type":["numeric"]}
]
]
 }
]
 }
}

See Also
validateFunctionSignaturesJSON

More About
• “Check Syntax as You Type”

External Websites
• https://www.json.org/

33 Custom Help and Documentation

33-20

https://www.json.org/

Display Custom Documentation
In this section...
“Overview” on page 33-21
“Create HTML Help Files” on page 33-22
“Create info.xml File” on page 33-23
“Create helptoc.xml File” on page 33-24
“Build a Search Database” on page 33-26
“Address Validation Errors for info.xml Files” on page 33-27

Overview
If you create a toolbox that works with MathWorks products, even if it only contains a few functions,
you can include custom documentation in the form of HTML help files. Custom documentation for
your toolbox can include figures, diagrams, screen captures, equations, and formatting to make your
toolbox help more usable.

To display properly, your custom documentation must contain these files:

• HTML help files — These files contain your custom documentation information.
• info.xml file — This file enables MATLAB to find and identify your HTML help files.
• helptoc.xml file — This file contain the Table of Contents for your documentation that displays

in the Contents pane of the Help browser. This file must be stored in the folder that contains your
HTML help files.

• Search database (optional) — These files enable searching in your HTML help files.

To view your custom documentation, open the Help browser and navigate to the home page. At the
bottom of the home page, under Supplemental Software, click the name of your toolbox. Your help
opens in the current window.

 Display Custom Documentation

33-21

Create HTML Help Files
You can create HTML help files in any text editor or web publishing software. To create help files in
MATLAB, use either of these two methods:

• Create a live script (*.mlx) and export it to HTML. For more information, see “Share Live Scripts
and Functions” on page 20-56.

• Create a script (*.m), and publish it to HTML. For more information, see “Publish and Share
MATLAB Code” on page 24-2.

Store all your HTML help files and any additional custom documentation files (such as PNG and CSS
files) for your toolbox in one folder, such as an html subfolder in your toolbox folder. This folder must
be:

• On the MATLAB search path
• Outside the matlabroot folder
• Outside any installed hardware support package help folder

Documentation sets often contain:

33 Custom Help and Documentation

33-22

• A roadmap page (that is, an initial landing page for the documentation)
• Examples and topics that explain how to use the toolbox
• Function or block reference pages

Create info.xml File
The info.xml file describes your custom documentation, including the name to display for your
documentation. It also identifies where to find your HTML help files and the helptoc.xml file.
Create a file named info.xml for each toolbox you document.

To create info.xml to describe your toolbox, you can adapt this template:
<productinfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="optional">
 <?xml-stylesheet type="text/xsl"href="optional"?>

 <matlabrelease>R2016b</matlabrelease>
 <name>MyToolbox</name>
 <type>toolbox</type>
 <icon></icon>
 <help_location>html</help_location>

</productinfo>

You can also create info.xml by using the template info_template.xml included with the
MATLAB documentation. To create and edit a copy of the template file in your current folder, run this
code in the command window:
copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','templates','info_template.xml'),pwd)
fileattrib('info_template.xml','+w')
edit('info_template.xml')

The following table describes the required elements of the info.xml file.

XML Tag Description Value in Template Notes
<matlabrelease> Release of

MATLAB
R2016b Indicates when you added help

files. Not displayed in the browser.
<name> Title of toolbox MyToolbox The name to display for your

custom documentation in the
browser Contents pane.

<type> Label for the
toolbox

toolbox Allowable values: matlab,
toolbox, simulink, blockset,
links_targets, other.

<icon> Icon for the
Start button
(not used)

none No longer used, but the <icon>
element is still required for
MATLAB to parse the info.xml
file.

 Display Custom Documentation

33-23

XML Tag Description Value in Template Notes
<help_location> Location of help

files
html Name of the subfolder containing

helptoc.xml, HTML help files,
and any other custom
documentation files (such as PNG
and CSS files) for your toolbox. If
the help location is not a subfolder
of the info.xml file location,
specify the path to
help_location relative to the
info.xml file. If you provide
HTML help files for multiple
toolboxes, the help_location in
each info.xml file must be a
different folder.

<help_contents_icon> Icon to display
in Contents
pane

none Ignored in MATLAB R2015a and
later. Does not cause error if it
appears in the info.xml file, but is
not required.

You also can include comments in your info.xml file, such as copyright and contact information.
Create comments by enclosing the text on a line between <!-- and -->.

When you create the info.xml file, make sure that:

• You include all required elements.
• The entries are in the same order as in the preceding table.
• File and folder names in the XML exactly match the names of your files and folders and are

capitalized identically.
• The info.xml file is in a folder on the MATLAB search path.

Note MATLAB parses the info.xml file and displays your documentation when you add the
folder that contains info.xml to the path. If you created an info.xml file in a folder already on
the path, remove the folder from the path. Then add the folder again, so that MATLAB parses the
file. Make sure that the folder you are adding is not your current folder.

Create helptoc.xml File
The helptoc.xml file defines the hierarchy of help files displayed in the Contents pane of the
Supplemental Software browser.

You can create a helptoc.xml file by using the template included with the MATLAB documentation.
To create and edit a copy of the template file helptoc_template.xml in your current folder, run
this code in the Command Window:
copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','templates','helptoc_template.xml'),pwd)
fileattrib('helptoc_template.xml','+w')
edit('helptoc_template.xml')

Place the helptoc.xml file in the folder that contains your HTML documentation files. This folder
must be referenced as the <help_location> in your info.xml file.

33 Custom Help and Documentation

33-24

Each <tocitem> entry in the helptoc.xml file references one of your HTML help files. The first
<tocitem> entry in the helptoc.xml file serves as the initial landing page for your documentation.

Within the top-level <toc> element, the nested <tocitem> elements define the structure of your
table of contents. Each <tocitem> element has a target attribute that provides the file name. File
and path names are case-sensitive.

When you create the helptoc.xml file, make sure that:

• The location of the helptoc.xml files is listed as the <help_location> in your info.xml file.
• All file and path names exactly match the names of the files and folders, including capitalization.
• All path names use URL file path separators (/). Windows style file path separators (\) can cause

the table of contents to display incorrectly. For example, if you have an HTML help page
firstfx.html located in a subfolder called refpages within the main documentation folder, the
<tocitem> target attribute value for that page would be refpages/firstfx.html.

Example helptoc.xml File

Suppose that you have created the following HTML files:

• A roadmap or starting page for your toolbox, mytoolbox.html.
• A page that lists your functions, funclist.html.
• Three function reference pages: firstfx.html, secondfx.html, and thirdfx.html.
• An example, myexample.html.

Include file names and descriptions in a helptoc.xml file as follows:
<?xml version='1.0' encoding="utf-8"?>
<toc version="2.0">

 <tocitem target="mytoolbox.html">My Toolbox
 <tocitem target="funclist.html">Functions
 <tocitem target="firstfx.html">first</tocitem>
 <tocitem target="secondfx.html">second</tocitem>
 <tocitem target="thirdfx.html">third</tocitem>
 </tocitem>
 <tocitem target="myexample.html">My Example
 </tocitem>
 </tocitem>

</toc>

This helptoc.xml file, paired with a properly formulated info.xml file, produced this display in the
Help browser.

 Display Custom Documentation

33-25

Build a Search Database
To make your documentation searchable, create a search database, also referred to as a search index,
using the builddocsearchdb function. When using this function, specify the complete path to the
folder that contains your HTML files.

For example, suppose that your HTML files are in C:\MATLAB\MyToolbox\html. This command
creates a searchable database for those files:

builddocsearchdb('C:\MATLAB\MyToolbox\html')

builddocsearchdb creates a subfolder of C:\MATLAB\MyToolbox\html named helpsearch-v4,
which contains the database files.

To search for terms in your toolbox, open the Help browser, and in the Search Documentation field,
enter the term you want to search for. Then, on the left side of the page, under Refine by Source,
select Supplemental Software to view the results for your toolbox.

Beginning with MATLAB R2014b, you can maintain search indexes side by side. To ensure the
documentation for the custom toolbox is searchable in a given release, run builddocsearchdb

33 Custom Help and Documentation

33-26

against your help files using that release of MATLAB. If you run builddocsearchdb using R2021b
or a previous release, builddocsearchdb creates the subfolder helpsearch-v3 to contain the
search database files. Maintain both the helpsearch-v4 subfolder and the helpsearch-v3
subfolder side by side. Then, when you run any MATLAB release, the Help browser automatically uses
the appropriate database for searching your documentation.

Address Validation Errors for info.xml Files

What Are XML Validation Errors?

When MATLAB finds an info.xml file on the search path or in the current folder, it automatically
validates the file against the supported schema. If there is an invalid construct in the info.xml file,
MATLAB displays an error in the Command Window. The error is typically of the form:

Warning: File <yourxmlfile.xml> did not validate.
...

An info.xml validation error can occur when you start MATLAB or add folders to the search path.

The primary causes of an XML file validation error are:

• Entities are missing or out of order in the info.xml file.
• An unrelated info.xml file exists.
• Syntax errors in the info.xml file.
• MATLAB is trying to access an outdated info.xml file for a MathWorks product.

Entities Missing or Out of Order in info.xml

If you do not list required XML elements in the prescribed order, you receive an XML validation error:
Often, errors result from incorrect ordering of XML tags. Correct the error by updating
the info.xml file contents to follow the guidelines in the MATLAB help documentation.

For a description of the elements you need in an info.xml file and their required ordering, see
“Create info.xml File” on page 33-23.

Unrelated info.xml File

Suppose that you have a file named info.xml that has nothing to do with custom documentation.
Because this info.xml file is an unrelated file, if it causes an error, you can safely ignore it. To
prevent the error message from reoccurring, rename the unrelated info.xml file. Alternatively,
ensure that the file is not on the search path or in the current folder.

Syntax Errors in the info.xml File

Use the error message to isolate the problem or use any XML schema validator. For more information
about the structure of the info.xml file, consult its schema at matlabroot/sys/namespace/
info/v1/info.xsd.

Outdated info.xml File for a MathWorks Product

If you have an info.xml file from a different version of MATLAB, that file could contain constructs
that are not valid with your version. To identify an info.xml file from another version, look at the
full path names reported in the error message. The path usually includes a version number, for

 Display Custom Documentation

33-27

example, ...\MATLAB\R14\.... In this situation, the error is not actually causing any problems, so
you can safely ignore the error message. To ensure that the error does not reoccur, remove the
offending info.xml file. Alternatively, remove the outdated info.xml file from the search path and
out of the current folder.

See Also
builddocsearchdb

Related Examples
• “Display Custom Examples” on page 33-29
• “Create and Share Toolboxes” on page 26-14
• “Add Help for Your Program” on page 21-5

33 Custom Help and Documentation

33-28

Display Custom Examples

In this section...
“How to Display Examples” on page 33-29
“Elements of the demos.xml File” on page 33-30

How to Display Examples
To display examples such as videos, published program scripts, or other files that illustrate the use of
your programs in the MATLAB help browser, follow these steps:

1 Create your example files. To create examples from scripts or functions, you can convert the files
to formatted HTML files in MATLAB using either of these two methods:

• Create a live script (*.mlx) and export it to HTML. For more information, see “Share Live
Scripts and Functions” on page 20-56.

• Create a script (*.m), and publish it to HTML. For more information, see “Publish and Share
MATLAB Code” on page 24-2.

Store all your example files and any supporting files (such as PNG and CSS files) for your toolbox
in the folder (of a subfolder of the folder) that contains your demos.xml file. This folder must be:

• On the MATLAB search path
• Outside the matlabroot folder
• Outside any installed hardware support package help folder

2 Create a demos.xml file that describes the name, type, and display information for your
examples. Place the file in the folder (or a subfolder of the folder) that contains your info.xml
file. For more information about creating an info.xml file, see “Display Custom Documentation”
on page 33-21.

For example, suppose that you have a toolbox named My Sample, which contains a script named
my_example that you published to HTML. This demos.xml file allows you to display
my_example:
<?xml version="1.0" encoding="utf-8"?>
<demos>
 <name>My Sample</name>
 <type>toolbox</type>
 <icon>HelpIcon.DEMOS</icon>
 <description>This text appears on the main page for your examples.</description>
 <website>Link to your Web site</website>

 <demosection>
 <label>First Section</label>
 <demoitem>
 <label>My Example Title</label>
 <type>M-file</type>
 <source>my_example</source>
 </demoitem>
 </demosection>

</demos>

3 View your examples.

 Display Custom Examples

33-29

In the Help browser, navigate to the home page. At the bottom of the page, under Supplemental
Software click the link for your example. Your example opens in the main help window.

If your examples do not display under Supplemental Software, the demos.xml file might
contain an invalid construct.

Elements of the demos.xml File
Within the demos.xml file, you can include general information in the <demos> tag, define individual
examples using the <demoitem> tag, and optionally define categories using the <demosection> tag.

Include General Information Using <demos> Tag

Within the demos.xml file, the root tag is <demos>. This tag includes elements that determine the
contents of the main page for your examples.

XML Tag Notes
<name> Name of your toolbox or collection of examples.
<type> Possible values are matlab, simulink, toolbox, or blockset.
<icon> Ignored in MATLAB R2015a and later.

In previous releases, this icon was the icon for your example. In
those releases, you can use a standard icon, HelpIcon.DEMOS. Or,
you can provide a custom icon by specifying a path to the icon
relative to the location of the demos.xml file.

<description> The description that appears on the main page for your examples.

Starting in R2021a, character data is not supported in the
description of the demos.xml file. If your demos.xml file contains
character data such as <, >, ', ", and & in
the description, the description does not appear correctly in the Help
browser. To automatically replace existing character data with non-
character data, use the patchdemoxmlfile function.

<website> (Optional) Link to a website. For example, MathWorks examples
include a link to the product page at https://
www.mathworks.com.

Define Examples Using <demoitem> Tag

XML Tag Notes
<label> Defines the title to display in the browser.
<type> Possible values are M-file, model, M-GUI, video, or other.

Typically, if you published your example using the publish function,
the appropriate <type> is M-file.

<source> If <type> is M-file, model, M-GUI, then <source> is the name of
the associated .m file or model file, with no extension. Otherwise, do
not include a <source> element, but include a <callback>
element.

33 Custom Help and Documentation

33-30

XML Tag Notes
<file> Use this element only for examples with a <type> value other than

M-file when you want to display an HTML file that describes the
example. Specify a relative path from the location of demos.xml.

<callback> Use this element only for examples with a <type> value of video or
other to specify an executable file or a MATLAB command to run
the example.

<dependency> (Optional) Specifies other products required to run the example,
such as another toolbox. The text must match a product name
specified in an info.xml file that is on the search path or in the
current folder.

Define Categories Using <demosection> Tag

Optionally, define categories for your examples by including a <demosection> for each category. If
you include any categories, then all examples must be in categories.

Each <demosection> element contains a <label> that provides the category name, and the
associated <demoitem> elements.

See Also
patchdemoxmlfile

Related Examples
• “Display Custom Documentation” on page 33-21

 Display Custom Examples

33-31

Projects

• “Create Projects” on page 34-2
• “Automate Startup and Shutdown Tasks” on page 34-8
• “Set MATLAB Projects Preferences” on page 34-10
• “Determine Order for Resolving Conflicts Using Dependency Analyzer” on page 34-13
• “Manage Project Files” on page 34-15
• “Find Project Files” on page 34-17
• “Create Shortcuts to Frequent Tasks” on page 34-19
• “Add Labels to Project Files” on page 34-21
• “Create Custom Tasks” on page 34-23
• “Componentize Large Projects” on page 34-25
• “Share Projects” on page 34-28
• “Upgrade Projects” on page 34-32
• “Analyze Project Dependencies” on page 34-35
• “Clone Remote Git Repository into New Project” on page 34-51
• “Use Source Control with Projects” on page 34-52
• “Create and Edit Projects Programmatically” on page 34-62
• “Explore an Example Project” on page 34-69

34

Create Projects

What Are Projects?
A project is a scalable environment where you can manage MATLAB files, data files, requirements,
reports, spreadsheets, tests, and generated files together in one place.

Projects can help you organize your work and collaborate. Projects promote productivity and
teamwork by helping you with common tasks.

• Find all the files that belong with your project.
• Create standard ways to set up and shut down the MATLAB environment across a team.
• Create, store, and easily access common operations.
• View and label modified files for peer review workflows.
• Share projects using built-in integration with Git™, Subversion® (SVN), or using external source

control tools.

Create Project
To create a blank project, on the Home tab, click New > Project > Blank Project. To create a
project from an existing folder, on the Home tab, click New > Project > From Folder.

The New Project dialog box opens. Enter a project name, select a project folder, and click Create.

Open Project
To open an existing project, on the Home tab, click Open and browse to an existing project .prj file.
Alternatively, in the Current Folder browser, double-click the project .prj file.

Note To avoid conflicts, you can have only one project open at a time. If you open another project,
any currently open project closes.

To open a recent project, on the Home tab, click the Open arrow and select your project under the
Recent Projects list.

34 Projects

34-2

Set up Project
After you create a project, the Welcome to your project dialog box opens and prompts you to set up
the project.

1 Click Set Up Project to begin setting up your project.

2 In the Set Up Project (Step 1 of 2) dialog box, you can choose folders to add to the project path.
Adding project folders to the project path ensures that all users of the project can access the files
within them. MATLAB adds these folders to the search path when you open the project, and
removes them when you close the project.

To add all the folders in project folder to the project path, click Add with Subfolders and then
select the root project folder containing all your subfolders.

For more information about adding folders to the project path, including how to add them after
completing the project setup, see “Specify Project Path” on page 34-8.

 Create Projects

34-3

3 After specifying the project path, click the Next button to continue.
4 In the Set Up Project (Step 2 of 2) dialog box, you can specify startup and shutdown files. Startup

files help you set up the environment for your project. Shutdown files help you clean up the
environment when you are done. Use shutdown files to undo the setup that occurs in startup
files.

Use the Add and Remove buttons to manage the startup and shutdown file lists. The files run
from the top down. If the order in which the files are run is important, use the arrow buttons to
move files up or down in the list.

For more information about specifying startup and shutdown files, including how to specify them
after completing the project setup, see “Specify Startup and Shutdown Files” on page 34-8.

34 Projects

34-4

5 Click Finish to complete the project setup and open your new project.

Add Files to Project
The Files view shows the list of files in the project. Notice that, after creating a new project, the list
is empty. Files in the project root folder are not included in the project until you add them.

To create a new file or folder in the project, in the Files view, right-click in white space and select
New Folder or New File. The new file or folder is created and added to the project.

To add existing files to a project, on the Project tab, click the down arrow to expand the Tools
gallery. Under Project Files, click Add Files. Then, select from the list of files in the project folder
that are not yet added to the project. To add existing files from the Files view, click All. Then, right-
click one or more files and folders, and select Add to Project or Add Folder to Project (Including
Child Files). To add existing files from a file browser or the Current Folder browser, cut and paste or
drag and drop the files into the project Files view. If you drag a file from outside the project root
folder, this moves the file and adds it to your project. Drag files within the project root to move them.

To add and remove project files programmatically, use the addFile function.

You might not want to include all files in your project. For example, you might want to exclude some
files in the project root folder, such as SVN or CVS source control folders. To determine which files
need to be included in your project, see “Analyze Project Dependencies” on page 34-35.

 Create Projects

34-5

Other Ways to Create Projects
There are several alternative ways to create a project. You can:

• Create a project from an archived project.
• Create a project using a Simulink template.
• Create a project using files retrieved from an existing source control repository. For more

information on this last alternative, see “Use Source Control with Projects” on page 34-52.

Create a Project from an Archived Project

Some projects are shared as archived projects. An archived project is useful for sharing with users
who do not have access to a connected source control tool. To view and edit the contents of an
archived project, create a new project from the archived project.

To create a new project from an archived project, in the Current Folder browser, double-click the
archived project file which has an .mlproj extension. The Extract Project dialog box opens. Specify
the location for the new project and click Select Folder. For example, C:\myNewProject.

The new project opens. The current folder (for example, C:\myNewProject) contains the imported
project folders. If the archived project contains referenced projects, MATLAB imports files into two
subfolders, mains and refs. The mains project folder (for example, C:\myNewProject\mains)
contains the project folders. The refs folder (for example C:\myNewProject\refs) contains the
referenced project folders.

Create a Project Using Simulink

If you have Simulink, you can use a Simulink template to create and reuse a standard project
structure.

To create a project from a Simulink template created in R2014b or later:

1 On the Home or Project tab, click New > Project > From Simulink Template. The Simulink
Start Page opens.

2 The start page shows all project templates (*.sltx) on the MATLAB path. Select a template in
the list to read the template description.

If your templates do not appear, locate them by clicking Open. In the Open dialog box, make
*.sltx files visible by setting the file type to All MATLAB files, and browse to your template.

3 Select a template and click Create Project. The Create Project dialog box opens.

Templates created in R2017b or later warn you if required products are missing. Click the links
to open Add-On Explorer and install required products.

4 Specify the root project folder, edit the project name, and click Create Project.

To use project templates created in R2014a or earlier (.zip files), upgrade them to .sltx files using
Simulink.exportToTemplate.

34 Projects

34-6

See Also

More About
• “Manage Project Files” on page 34-15
• “Analyze Project Dependencies” on page 34-35
• “Share Projects” on page 34-28
• “Use Source Control with Projects” on page 34-52
• “Create and Edit Projects Programmatically” on page 34-62

 Create Projects

34-7

Automate Startup and Shutdown Tasks

When you open a project, MATLAB adds the project path to the MATLAB search path and then runs
or loads specified startup files. The project path and startup files help you set up the environment for
your project. Similarly, when you close a project, MATLAB removes the project path from the
MATLAB search path and runs specified shutdown files. Shutdown files help you clean up the
environment for your project. Use shutdown files to undo the setup that occurs in startup files.

More specifically, when you open a project, MATLAB changes the current folder to the project startup
folder, and runs (.m and .p files) or loads (.mat files) any specified startup file. For more information
about configuring the startup folder, see “Set Startup Folder” on page 34-8.

Specify Project Path
You can add or remove folders from the project path. Adding a project folder to the project path
ensures that all users of the project can access the files within it.

To add a folder to the project path, on the Project tab, in the Environment section, click Project
Path. Click Add Folder and select the folder that you want to add. To add a folder and all of its
subfolders, click Add with Subfolders.

To remove a folder from the project path, select the folder from the displayed list and click Remove.

You also can add or remove a folder from the project Files view. Right-click the folder, select Project
Path, and select from the available options.

Folders on the project path appear with the project path icon in the Status column of the Files
view.

Set Startup Folder
When you open the project, the current working folder changes to the project startup folder. By
default, the startup folder is set to the project root.

To edit the project startup folder, on the Project tab, in the Environment section, click Details.
Then, in the Start up section, enter a path for the project startup folder.

Specify Startup and Shutdown Files
To configure a file to run when you open your project, right-click the file and select Run at Startup.
To configure a file to run when you close your project, right-click the file and select Run at
Shutdown. The Status column displays an icon indicating whether the file runs at startup or
shutdown.

To stop a file from running at startup or shutdown, right-click the file and select Remove from
Startup or Remove from Shutdown.

Alternatively, go to the Project tab and click Startup Shutdown. Then, in the Manage Project
Startup and Shutdown dialog box, use the Add and Remove buttons to manage the startup and

34 Projects

34-8

shutdown file lists. The files run from the top down. If the order in which the files are run is
important, use the arrow buttons to move files up or down in the list.

Note Startup and shutdown files are included when you commit modified files to source control.
When you configure startup and shutdown files, they run for all other project users.

Startup files can have any name except startup.m. A file named startup.m on the MATLAB path
runs when you start MATLAB. If your startup.m file calls the project, an error occurs because the
project is not yet loaded. For more information about using startup.m files, see “Startup Options in
MATLAB Startup File”.

To create new startup and shutdown files programmatically, see addStartupFile and
addShutdownFile.

In Simulink, you can specify additional project startup options. For more information, see “Automate
Startup Tasks” (Simulink).

See Also
addStartupFile

More About
• “Manage Project Files” on page 34-15
• “Create and Edit Projects Programmatically” on page 34-62
• “What Is the MATLAB Search Path?”

 Automate Startup and Shutdown Tasks

34-9

Set MATLAB Projects Preferences

You can set MATLAB projects preferences to specify project definition files type, detect project files
shadowed by open models, and detect project-wide references when renaming, removing and
deleting files.

On the Home tab, in the Environment section, click Preferences. Select MATLAB > Project.
Then, adjust preference options as described in this table. Not all project preferences are available in
MATLAB Online.

Preference Usage
New Projects To specify where to create new projects, in Default folder, browse to a

folder on your system.
To specify the Project definition files type for new projects, select an
option based on your use case:

• Use multiple project files (fixed path length) is preferable if you
need to work with long paths (default).

• Use multiple project files helps to avoid file conflicts when
performing merge on shared projects.

• Use a single project file (not recommended for source control) is
fast but likely causes merge issues when two users submit changes in
the same project to a source control tool.

For details, see “Project Definition Files” on page 34-57.
The Project definition folder, relative to the project root, is used to
store the project metadata files. Select one of the available options to
specify the folder name.
To open the project welcome page after you create a new project, select
Show the welcome dialog after new project creation.

Project Startup To receive a warning about files shadowed by open models when opening
a project, select Detect project files shadowed by open models.

For details, see “Manage Shadowed and Dirty Models and Other Project
Files” (Simulink).

Project Shutdown To receive a warning about files with unsaved changes when closing a
project, select Interrupt project close if there are dirty project files.
To automatically close project models when closing a project unless the
project models contain unsaved changes, select Check for open project
models and close them, unless they are dirty.

File Management To disable the message that lists which files have changed after calling
update to get the latest revisions from your SVN repository, clear Show
changes on source control updates.

34 Projects

34-10

Preference Usage
To disable automatic updates when renaming, deleting, or removing files
in a project, clear Detect project-wide references when renaming,
removing and deleting files.

For details, see “Manage Project Files” on page 34-15.
To disable the project prompt and analysis when renaming buses or bus
elements while keeping automatic updates enabled for other files, clear
Detect project-wide references when renaming Simulink buses and
bus elements.

This option is only available if you have Simulink installed.
To specify what happens when you attempt to modify Read-only project
files, select an option based on your use case:

• Ask when a read-only project file needs to be modified (default)
• Set writable using the file system
• Checkout using source control
When opening a file, you can have a project check for conflict markers
that the source control tool inserted. This check helps identify conflicted
files and offers a fix to rescue binary files, such as SLX files, from
corruption.

To choose what files a project should check for conflict markers, specify
Conflict marker detection when loading project files. Select one of
the available options:

• Only check conflicted files (default)
• Check all files
• Never check files
When adding project files to a folder that is not on the path, you can
choose whether MATLAB notifies you before adding the folder to the
project path. In Update project path when adding files to a folder
that is not on the path, select one of the available options:

• Ask before adding folder to project path (default)
• Always update project path
• Never update project path

This preference is only available in MATLAB Online.
Warnings Calling SVN update to get the latest revision overwrites all of your files.

To receive a warning before overwriting the files, select Warn about
updating from source control.

 Set MATLAB Projects Preferences

34-11

Preference Usage
To receive a warning when you perform an action that a project cannot
reverse, select Warn when performing an action that the project
cannot undo.

For example, a project cannot undo extracting a folder to a referenced
project.
Only one project can be open at a time. To receive a warning that the
current project will close when you open a reference project as a top-level
project, select Warn when opening a project reference that the
current project will be closed.
To receive a warning when you remove a reference to another project,
select Warn when removing references to another project.

Logging To save the Java stack trace in a log file whenever project shows an error
dialog, select Log errors.
To save project action messages, such as how long shortcuts take to start
up, select Log messages.
To specify where to store your projects log files, in Log folder, browse to
a folder on your system.

See Also

More About
• “Create Projects” on page 34-2
• “Manage Project Files” on page 34-15
• “Project Definition Files” on page 34-57
• “Manage Shadowed and Dirty Models and Other Project Files” (Simulink)

34 Projects

34-12

Determine Order for Resolving Conflicts Using Dependency
Analyzer

When collaborating on a project, a branch merge can lead to conflicted files. For a smoother merge,
you can determine the optimal order in which to resolve conflicts by running a dependency analysis.
Conflicts in files that are used by other files should be resolved first. Conflicts in files that do not have
dependencies do not affect other files, so the conflict resolve order does not matter.

Note If the project dependency graph contains circular dependencies, there might not be an optimal
order in which to resolve conflicts.

You can use the Dependency Analyzer to programmatically determine the optimal order in which to
resolve conflicts. In the MATLAB Command Window, run the getProjectResolveOrder function.

function fileOrder = getProjectResolveOrder()
 import matlab.sourcecontrol.Status;
 p = currentProject;
 conflictingFiles = p.Files([p.Files.SourceControlStatus] == Status.Conflicted);
 updateDependencies(p);
 graph = p.Dependencies;

 if ~isdag(graph)
 error("Unable to recommend an optimal resolve order. The dependency graph contains circular dependencies.")
 end

 topologicalOrder = toposort(graph);
 topologicalFiles = graph.Nodes.Name(topologicalOrder);
 fileIndices = ismember(topologicalFiles, [conflictingFiles.Path]);
 files = flip(topologicalFiles(fileIndices));
 nodependencyFiles = setdiff(cellstr([conflictingFiles.Path])',files);

 Determine Order for Resolving Conflicts Using Dependency Analyzer

34-13

 fileOrder = [files;nodependencyFiles];
end

getProjectResolveOrder

ans =

 5×1 cell array

 {'C:\workSpace\examples\TimesTableApp\source\timesTableGame.m' }
 {'C:\workSpace\examples\TimesTableApp\source\timestable.mlapp' }
 {'C:\workSpace\examples\TimesTableApp\tests\tAnswerIsCorrect.m' }
 {'C:\workSpace\examples\TimesTableApp\utilities\openRequirementsDocument.m'}
 {'C:\workSpace\examples\TimesTableApp\utilities\runTheseTests.m' }

Resolve conflicts according to the listed order. For more details, see “Commit Modified Project Files”
on page 34-58.

See Also

More About
• “Set Up Git Source Control” on page 35-12
• “Commit Modified Project Files” on page 34-58
• “Analyze Project Dependencies” on page 34-35
• “Explore an Example Project” on page 34-69

34 Projects

34-14

Manage Project Files
This table shows how to add, move, rename, and open project files and folders. Some of these actions
can also lead to automatic updates that affect other files. All can be undone and redone.

Action Procedure
View project files. In the Files view, click Project to display only the files and

folders that are included in the project.
View all files in a project folder. To display all files and folders in the project folder, in the Files

view, click All.

You might not want to include all files in your project. For
example, you might want to exclude SVN or CVS source control
folders. For more information, see “Work with Derived Files in
Projects” on page 34-60.

Create a new project folder. In the Files view, right-click in white space, and then click New
> Folder.

Add files to a project. On the Project tab, click the down arrow to expand the Tools
gallery. Under Project Files, click Add Files. Select from the
list of unmanaged files in the project folder.

You also can paste or drag files and folders from your operating
system file browser or the Current Folder browser to the
project Files view. When you drag a file to the Files view,
MATLAB adds the file to the project.

To add a file programmatically, use the addFile and
addFolderIncludingChildFiles functions. For example, to
add a file named myfile.m to the proj project object, type
addFile(proj,'myfile.m');.

Remove project files or folders. In the Files view, right-click the file, and then select Remove
from Project.

To remove a file programmatically, use the removeFile
function.

Move project files or folders. Cut and paste or drag the files in the project.
Rename project files or folders. In the Files view, right-click the file, and then click Rename.
Open project files. In the Files view, right-click the file, and then click Open.

You also can double-click the file.
Preview project file contents
without opening the file.

In the Files view, select the file. The panel in the bottom right
of the Files view displays the file information and labels. To
restore the panel if it is minimized, click the Restore button.

Delete a project file or folder. In the Files view, right-click the file, and then click Delete.

 Manage Project Files

34-15

Action Procedure
Undo or redo an action

Click or at the upper right corner of the toolstrip.

If you are using source control, you also can revert to a
particular version of a file or project. For more information, see
“Revert Changes” on page 34-60.

Automatic Updates When Renaming, Deleting, or Removing Files
When you rename, delete, or remove files or folders in a project, the project runs a dependency
analysis to check for effects on other project files. When the analysis is complete, the project displays
the affected files. If you have not yet run a dependency analysis on the project, the analysis may take
some time to run. Subsequent analyses are incremental updates, and so they run faster.

When renaming files, the project offers to automatically update references to the file. Automatically
updating references to a file when renaming prevents errors that result from changing names or
paths manually and overlooking or mistyping the name.

For example:

• When renaming a class, the project offers to automatically update all classes that inherit from it.
• When renaming a .m or .mlx file, the project offers to automatically update files and callbacks

that call it. The project does not automatically update .mlx files. You need to update them
manually.

• When renaming a C file, the project prompts you to update the S-function that uses it.

You can disable the automatic updates when renaming, deleting, or removing files in a project. On the
MATLAB Home tab, in the Environment section, click Preferences. Select MATLAB > Project and
clear the Detect project-wide references when renaming, removing, and deleting files option.

For more information about automatic updates when renaming, deleting, or removing Simulink files
such as library links, model references, and model callbacks, see “Automatic Updates When
Renaming, Deleting, or Removing Files” (Simulink).

See Also

More About
• “Find Project Files” on page 34-17
• “Add Labels to Project Files” on page 34-21
• “Create Custom Tasks” on page 34-23

34 Projects

34-16

Find Project Files
There are several ways to find files and folders in projects. You can:

• Group and sort project files.
• Search for and filter project files.
• Search the content in project files.

Group and Sort Project Files
To change how files and folder are grouped or sorted in the Files view, select from the options in the
Layout field and the Actions menu .

For example, to group files by type, in the Layout field, select List. Then, click the Actions button
and select Group By > Type. To sort the grouped files by size, click the actions button and select
Sort By > Size.

Search for and Filter Project Files
You can search for project files and folders in the Files view.

To search for a file or folder, in the search field at the top of the view, begin typing the file or folder
name. The asterisk character (*) is a wildcard. For example, to show only file names that begin with
coll and have a .m extension, type coll*.m.

To filter the files and folders in the current view, click the Filter button next to the search field. In
the Filter Builder dialog box, select the names, file types, project statuses, and labels to filter by.

The Filter Builder displays the resulting filter. For example:
Filter = type=='MATLAB Code files (*.m, *.mlx)' AND project status=='In project'
AND label=='Classification:Test'

Click Apply to filter the files and folders in the current view. The search field displays the applied
filter.

To clear a search or filter, click the Clear button to the right of the search field.

Search the Content in Project Files
You can search for text inside MathWorks product files (such as MATLAB files, Simulink model files,
and data dictionaries) and some other kinds of project files (such as PDF and Microsoft Word files).
MATLAB only searches in files in the project. To search the content of files in a referenced project,
open the referenced project.

To search the content of project files:

 Find Project Files

34-17

1 On the Project tab, click the down arrow to expand the Tools gallery. Under Project Files, click
Search. The Search Inside Project Files dialog box opens.

2 Enter the text to search. MATLAB searches the project files for the exact text in the search field
and displays the results.

Avoid using quotes around phrases.
3 Expand a result in the result list to view the match and surrounding context inside the search

window.
4 Double-click the search result to open the file and locate the match.
5 Click Filters at the bottom left of the results to refine the results by file type, status, or label.

See Also

More About
• “Manage Project Files” on page 34-15
• “Create Shortcuts to Frequent Tasks” on page 34-19
• “Add Labels to Project Files” on page 34-21

34 Projects

34-18

Create Shortcuts to Frequent Tasks
You can create shortcuts in projects to perform common project tasks, such as opening important
files and loading data.

Run Shortcuts
To run a shortcut, in the Project Shortcuts tab, click the shortcut. Clicking a shortcut in the Project
Shortcuts tab performs the default action for the file type. For example, MATLAB runs .m shortcut
files and loads .mat shortcut files. If the shortcut file is not on the path, MATLAB changes the current
folder to the parent folder of the shortcut file, runs the shortcut, and then changes the current folder
back to the original folder.

Alternatively, in the Files view, you can right-click the shortcut file and select Run. If the script is not
on the path, then MATLAB asks if you want to change folder or add the folder to the path.

Create Shortcuts
To create a shortcut from an existing project file:

1 In the Files view, right-click the file and select Create Shortcut. Alternatively, on the Project
Shortcuts tab, click New Shortcut and browse to select a file.

The Create New Shortcut dialog box opens.
2 Select an icon and enter a name. If using shortcuts to define steps in a workflow, consider

prefixing their names with numbers.
3 To add the shortcut to an existing group, in the Group field, select a group from the drop-down

list. For more information about shortcut groups, see “Organize Shortcuts” on page 34-19.
4 Click OK.

The shortcut appears with the selected name and icon on the Project Shortcuts tab. In the Files
view, the Status column displays an icon indicating that the file is a shortcut.

Note Shortcuts are included when you commit your modified files to source control, so you can share
shortcuts with other project users.

Organize Shortcuts
You can organize shortcuts by categorizing them into groups. For example, you might create one
group of shortcuts for loading data, another for opening files, another for generating code, and
another for running tests.

To create a shortcut group:

1 On the Project Shortcuts tab, click Organize Groups.
2 Click the Create button.
3 Enter a name for the group and click OK.

The new shortcut group appears on the Project Shortcuts tab.

 Create Shortcuts to Frequent Tasks

34-19

To move a shortcut into a group:

1 On the Project Shortcuts tab, right-click a shortcut and select Edit Shortcut. Alternatively, in
the Files view, right-click a file and select Edit Shortcut.

The Create New Shortcut dialog box opens.
2 In the Group field, select a group from the drop-down list and click OK.

Shortcuts are organized by group in the Project Shortcuts tab.

See Also

More About
• “Manage Project Files” on page 34-15
• “Find Project Files” on page 34-17
• “Add Labels to Project Files” on page 34-21

34 Projects

34-20

Add Labels to Project Files
You can use labels to organize project files and communicate information to project users.

Add Labels
To add a label to a project file, in the Files view, select the file. Then, drag the desired label from the
Labels panel at the bottom left of the project into the Label Editor panel for the selected file. The
Label Editor panel is located at the bottom right of the Files view. To restore the panel if it is
minimized, click the icon.

To add a label to multiple project files, in the Files view or in the Dependency Analyzer graph, select
the files, right-click, and select Add Label. Choose a label from the list and click OK.

Note After you add a label to a file, the label persists across file revisions.

To add labels programmatically (for example, in custom task functions) see addLabel.

View and Edit Label Data
When you select a project file in the Files view, the file labels appear in the Label Editor view.

To change a label that belongs to a single-valued category, select the new value from the label list.

You can add additional annotations to labels from categories that you create. In the Label Editor
panel, click a label and insert or modify text. Then, click Apply.

 Add Labels to Project Files

34-21

Create Labels
Labels exist in two types of categories:

• Single-valued — You can attach only one label from the category to a file.
• Multi-valued — You can attach multiple labels from the category to a file.

All projects contain a built-in label category called Classification with several built-in labels. These
built-in labels are read-only.

To create your own label categories:

1 In the Labels panel at the bottom left of the project, right-click and select Create New
Category. The Create Category dialog box opens.

2 Enter a name for the new category.
3 To create a single-valued label category, select the Single Valued check box. Otherwise,

MATLAB creates a multi-valued label category.
4 To specify a label data type other than the default String data type, from the Type list, select

from the available options.
5 Click Create.

To create your own labels in a label category:

1 In the Labels panel at the bottom left of the project, right-click the label category and select
Create New Label. The Create Label dialog box opens.

2 Enter a name for the new label and click OK.

To rename or delete a category or label, right-click it and select Rename or Remove.

To create a new label or label category programmatically, see createLabel or createCategory.

See Also

More About
• “Manage Project Files” on page 34-15
• “Find Project Files” on page 34-17

34 Projects

34-22

Create Custom Tasks
Custom tasks are MATLAB functions that allow you to perform a series of operations on one or more
files. You can create a custom task function and then run the custom task on a select set of files in
your project. For example, you can create a custom task to check all the code files for errors or to run
all the tests in the project.

Create a Custom Task Function
To create a custom task function:

1 On the Project tab, click the down arrow to expand the Tools gallery. Under Project Checks,
click Custom Tasks. In the Custom Task dialog box, click Manage.

2 Click Add and then select Add Using New Function. If you want to add an existing script as a
custom task, select Add Using Existing Function.

3 Specify a file name for the script and save the new file on the MATLAB path. The MATLAB Editor
opens the new file containing an example custom task function.

4 Edit the function to perform the desired action on each file. Use the instructions at the top of the
file to guide you to create a custom task with the correct function signature. Your custom tasks
must accept a full path to a file as the single input argument and return a single output
argument.

For example, this custom task function extracts Code Analyzer information for each file using the
checkcode function.

[~,~,ext] = fileparts(file);
switch ext
 case {'.m', '.mlx', '.mlapp'}
 result = checkcode(file, '-string');
 otherwise
 result = [];
end

5 Save the file.

You can use the MATLAB editor to set breakpoints and debug a custom task function, just as with any
other MATLAB function.

Run a Custom Task
To run a custom task on a select set of files in your project:

1 On the Project tab, click the down arrow to expand the Tools gallery. Under Project Checks,
click Custom Tasks.

2 In the Include column of the table, select which project files you want to run the custom task on.

To include or exclude multiple files in the table at once, press the Shift or Ctrl key, select the
files, and then right-click and select Include or Exclude. If the custom task function can identify
the files to operate on, include all files.

3 In the Custom task field, select from the available custom task functions. You also can enter the
name of a task directly in the field, or click Browse.

 Create Custom Tasks

34-23

4 Click Run Task to run the task. The Custom Task Report window displays the results.
5 Examine the Results column in the table to ensure that the custom task ran correctly on all files.

To view detailed result information for a file, select the file in the table. The results pane at the
bottom of the Custom Task Report displays the details.

Save Custom Task Report
Saving a Custom Task Report is useful if you want to save a record of the custom task results, or if
you want to share the results with others.

To save the Custom Task Report, click the Publish Report button at the bottom of the Custom Task
Report. You can either save the report as an HTML file or a Microsoft Word file. If you have MATLAB
Report Generator™, you also can save the report as a PDF file.

To see the report file and add it to your project, switch to the All files view.

See Also

More About
• “Create Shortcuts to Frequent Tasks” on page 34-19
• “Manage Project Files” on page 34-15

34 Projects

34-24

Componentize Large Projects

MATLAB supports large-scale project componentization by allowing you to reference other projects
from a parent project. Organizing large projects into components facilitates code reuse, modular and
team-based development, unit testing, and independent release of components. For more information,
watch How to Organize Large Projects into Components (3 min, 32 sec).

Projects can reference multiple other projects in a hierarchical manner. The project reference
hierarchy appears as a tree in the References view.

From a parent project, you can

• Access the project paths, entry-point shortcuts, and source control information for all referenced
projects.

• View, edit, and run files that belong to a referenced project.
• Detect changes in referenced projects using checkpoints.

Add or Remove Reference to a Project
You can add new components to a project by referencing other projects.

To add a reference to a project:

1

On the Project tab, in the Environment section, click References. The Add Reference
dialog box opens.

2 Browse to select the required project (.prj) file.
3 In the Reference type field, select either Relative or Absolute. Select Relative if your project

hierarchy has a well-defined root relative to your project root. For example, your project root
might be a folder under source control. Select Absolute if the project you want to reference is in
a location accessible to your computer, for example, a network drive.

4 To create a checkpoint when you add the project, select Set a checkpoint to detect future
changes. For more information about checkpoints, see “Manage Changes in Referenced Project
Using Checkpoints” on page 34-26.

5 Click Add.

When the referenced project loads, MATLAB adds the referenced project path to the MATLAB search
path and then runs or loads specified startup files. Similarly, when the referenced project closes,
MATLAB removes the project path from the search path and runs specified shutdown files. MATLAB
loads referenced projects before their parent projects. This allows the parent project to access the
referenced project in startup and shutdown files.

To remove a referenced project from your project hierarchy, in the References tree, right-click the
referenced project and select Remove Reference.

View, Edit, or Run Referenced Project Files
If you have a project that references other projects, you can view, modify, or run the files that belong
to the referenced projects directly from the parent project.

 Componentize Large Projects

34-25

https://www.youtube.com/watch?v=nUnRC2uwpHo

To view a referenced project, in the parent project, select the References view. In the References
tree, select a referenced project.

To display the referenced project files, at the top right of the References view, click Show Files.

To modify or run a file, right-click the file and select from the list of available options.

Extract Folder to Create a Referenced Project

You can extract an existing folder in a project to create a referenced project. After extracting a folder,
file and folder contents and shortcuts in the referenced project remain accessible from the parent
project.

To extract a folder from a project and convert the folder into a referenced project:

1 In the Files view, right-click the folder and select Extract to Referenced Project. The Extract
Folder to New Project dialog box opens.

2 Specify a project name and location
3 In the Reference type field, select either Relative or Absolute. Select Relative if you specify

the new project location with reference to the current project root. Select Absolute if you specify
the full path for the new location, which is, for example, on a network drive

4 To disable any of the default content migration actions, click More Options and clear the
corresponding check boxes.

5 Click Extract.
6 In the two Warning dialog boxes that open, click OK.

The selected folder and its contents are removed from the project. On the Project Shortcuts tab, the
Referenced Projects section shows a new shortcut for the referenced project.

Manage Changes in Referenced Project Using Checkpoints
To detect and compare changes in a referenced project, create checkpoints. You then can compare
the referenced project against the checkpoint to detect changes.

By default, MATLAB creates a checkpoint when you add a reference to a project. To create additional
checkpoints:

1 In the parent of the referenced project, select the References view.
2

To create a checkpoint, go to the References tab, and in the Checkpoint section, click
Update. In the Details view, the Checkpoint field displays the timestamp of the latest check
point.

To detect changes in a referenced project, go to the References tab, and in the Checkpoint section,

click Checkpoint Report. The Difference to Checkpoint dialog box displays the files that have
changed on disk since you created the checkpoint.

To remove the checkpoint, in the Checkpoint section of the References tab, click Clear.

34 Projects

34-26

See Also

More About
• How to Organize Large Projects into Components (3 min, 32 sec)
• “Organize Projects into Components Using References and Git Submodules” (Simulink)
• “Create Projects” on page 34-2
• “Share Projects” on page 34-28

 Componentize Large Projects

34-27

https://www.youtube.com/watch?v=nUnRC2uwpHo

Share Projects
You can collaborate with others by packaging and sharing projects. You can also control which files
are included in a shared project by using labels and an export profile. (For more information, see
“Create an Export Profile” on page 34-31.)

This table describes the ways of packaging a project.

Way to Share Projects Procedure
Create an archive to share. You can convert your project to a .mlproj or ZIP archive and

share the archive with collaborators. Sharing an archive is useful
when working with someone who does not have access to a
connected source control tool.

To archive a project:

1 With the project loaded, on the Project tab, click Share >
Archive.

2 If you want to export only a set of specified files, choose an
Export profile. For more information, see “Create an Export
Profile” on page 34-31.

3 If you have referenced projects and want to export the
referenced project files, select Include referenced projects.

4 Click Save As and specify a file path.
5 In the Save as type field, select the archived project file type.

By default, MATLAB archives the project as an .mlproj file.
You can choose to archive the project as a ZIP file.

6 Click Save to create the project archive.

You can now share the archive file the way you would any other
file.

34 Projects

34-28

Way to Share Projects Procedure
Email an .mlproj archive in
one step.

On Windows systems, you can generate an .mlproj archive and
attach it to an email in one step. Sharing an archive is useful when
working with someone who does not have access to a connected
source control tool.

To email a project as an .mlproj file:

1 With the project loaded, on the Project tab, select Share >
Email.

2 If you want to export only a set of specified files, choose an
Export profile. For more information, see “Create an Export
Profile” on page 34-31.

3 If you have referenced projects and want to export the
referenced project files, select the Include referenced
projects check box.

4 Click Attach to Email. MATLAB opens a new email in your
default email client with the project attached as an .mlproj
file.

5 Edit and send the email.
Create a toolbox to share. You can create a toolbox from your project and share the toolbox

with collaborators.

To create a toolbox from your project:

1 With a project loaded, on the Project tab, select Share >
Toolbox.

The packager adds all project files to the toolbox and opens
the Package a Toolbox dialog box.

2 The Toolbox Information fields are populated with the
project name, author, and description. Edit the information as
needed.

3 To include files not already included in the project files, edit
the excluded files and folders.

4 Click Package.

You can now share the toolbox file the way you would any other
file.

 Share Projects

34-29

Way to Share Projects Procedure
Publish on GitHub®. You can share a project by making it publicly available on GitHub.

You must first have a GitHub account.

Sharing a project on GitHub adds Git source control to the project.
If your project is already under source control, sharing replaces
the source control configuration with Git, and GitHub becomes the
project's remote repository.

Note If you do not want to change your current source control in
the open project, share the project in another way.

To share a project on GitHub:

1 With a project loaded, on the Project tab, select Share >
GitHub. The Create GitHub Repository dialog box opens.

If GitHub is not an option in the Share menu, select Share >
Change Share Options. Then, in the Manage Sharing dialog
box, select GitHub and click Close.

2 Enter your GitHub user name and personal access token, and
edit the name for the new repository. Click Create.

A warning prompts you to confirm that you want to create a
public repository and modify the current project’s remote
repository location. To continue, click Yes.

3 The Create GitHub Repository dialog box displays the URL for
the new repository. Click the link to view the new repository
on the GitHub website. The repository contains the initial
commit of your project files.

4 The source control in your current project now references the
new repository on GitHub as the remote repository. To use the
project with the new repository, in the Create GitHub
Repository dialog box, click Reload Project.

To view the URL for the remote repository, on the Project tab, in
the Source Control section, click the Git Details button.

You can use Git without any additional installation. To perform
merging operations in Git, additional setup steps are required. For
more information, see “Set Up Git Source Control” on page 35-
12.

Collaborate using source
control.

You can collaborate using source control within projects. For more
information, see “Use Source Control with Projects” on page 34-
52.

Before sharing a project with others, it can be useful to examine the required add-ons for your project
by performing a dependency analysis. For more information, see “Find Required Products and Add-
Ons” on page 34-46.

34 Projects

34-30

Create an Export Profile
If you want to exclude files from a project before sharing it, create an export profile. An export profile
allows you to exclude files with particular labels. For more information about creating labels and
adding them to project files, see “Create Labels” on page 34-22.

To create an export profile:

1 On the Project tab, click Share > Manage Export Profiles.
2 Click + and specify a name for the export profile.
3 In the Files pane, click + and select the labels for the files you do not want to export, and then

click OK.
4 In the Labels pane click + and select the custom labels you do not want to export, and then click

OK.
5 Click Apply and close the Manage Export Profiles dialog box.

Note Export profiles do not apply changes to referenced projects. When you share your project,
MATLAB exports the entire referenced projects.

See Also

More About
• “Add Labels to Project Files” on page 34-21
• “Create Projects” on page 34-2
• “Analyze Project Dependencies” on page 34-35

 Share Projects

34-31

Upgrade Projects

The Upgrade Project tool helps you check for compatibility issues or upgrade your project to the
current MATLAB release. The tool applies fixes automatically when possible and produces a report.

Tip To perform an upgrade that you can later revert if necessary, add source control to your project
before upgrading. For more information, see “Use Source Control with Projects” on page 34-52.

Run Upgrade Project Tool
• For projects that contain only MATLAB files, you can check for compatibility issues with the

current MATLAB release. On the Project tab, click the down arrow to expand the Tools gallery.
Under Project Checks, click Upgrade Project.

Click Upgrade to check for compatibility issues.
• For projects that also contain Simulink models and libraries, you can apply fixes and automatically

upgrade your project to the current release. On the Project tab, click the down arrow to expand
the Tools gallery. Under Project Checks, click Upgrade Project.

If you want to run the Project Upgrade tool without applying fixes automatically, clear Apply
upgrades automatically.

If you want to specify which files to upgrade and which checks to run, click Change Options. In
the Upgrade Options dialog box, clear the check box for any file or check that you want to exclude

34 Projects

34-32

from the upgrade. For example, you might want to exclude checks that require performing an
update diagram, as this can be time consuming.

The Upgrade Project tool displays the results of the compatibility check or upgrade in the Upgrade
Project Report.

Examine Upgrade Project Report
After upgrading a project, examine the Upgrade Project Report to ensure that the upgrade occurred
as planned.

The summary shows how many files passed all of the upgrade checks and how many files require
attention. To view the upgrade results for a file, select the file in the left file list. By default, the file
list shows any files that need attention. To change which files are shown, select from the options in
the Show drop-down.

For each file in the Project Upgrade Report, examine the checks marked as needing attention. These
files are marked with an orange circle icon in the Result column. Select a check in the Check Name
column to display the check results and any automatically applied fixes in the lower panel.

To see the differences before and after the upgrade, in the Upgrade Project Report, click View
Changes. If your project is under source control, you also can see the differences by comparing the
before and after versions of the file.

 Upgrade Projects

34-33

MATLAB saves an HTML report of the upgrade results in the project root folder. To open the saved
report, click the Report link at the top of the Upgrade Project Report.

See Also

More About
• “Use Source Control with Projects” on page 34-52
• “Analyze Project Dependencies” on page 34-35

34 Projects

34-34

Analyze Project Dependencies
Use the Dependency Analyzer to perform a dependency analysis on your project. You can run a
dependency analysis at any point in your workflow. In a collaborative environment, you typically
check dependencies:

• When you set up or explore a project for the first time
• When you run tests to validate changes to your design
• Before you submit a version of your project to source control
• Before you share or package your project

To explore a project and visualize its structure using different views, see “Explore the Dependency
Graph, Views, and Filters” on page 34-37.

To find and fix problems in your project, see “Investigate and Resolve Problems” on page 34-43.

To assess how a change will affect other project files, see “Find File Dependencies” on page 34-47.

To find add-ons and products required by your project to run properly, see “Find Required Products
and Add-Ons” on page 34-46.

Run a Dependency Analysis
Before running a dependency analysis on a project, make sure that you have added all your files to
the project. For more information, see “Add Files to Project” on page 34-5.

To start analyzing your project, on the Project tab, in the Tools gallery, click Dependency Analyzer.
Alternatively, in the project Views pane, select Dependency Analyzer and click Analyze.

To analyze the dependencies of specific files, in the dependency graph, select the files. In the Impact
Analysis section, click All Dependencies or use the context menu and select Find All
Dependencies.

To analyze the dependencies inside add-ons, select Analyze > Add-Ons. For more details about
available options, see “Analysis Scope” (Simulink).

You can also check dependencies directly in Project. In the Project Files view, right-click the project
files you want to analyze and select Find Dependencies.

 Analyze Project Dependencies

34-35

The dependency graph shows:

• Your project structure and its file dependencies, including how files such as models, libraries,
functions, data files, source files, and derived files relate to each other.

• Required products and add-ons.
• Relationships between source and derived files (such as .m and .p files, .slx and .slxp, .ssc

and .sscp, or .c and .mex files), and between C/C++ source and header files. You can see what
code is generated by each model, and find what code needs to be regenerated if you modify a
model.

• Warnings about problem files, such as missing files, files not in the project, files with unsaved
changes, and out-of-date derived files.

You can examine project dependencies and problem files using the File List. In the toolstrip, click
File List.

After you run the first dependency analysis of your project, subsequent analyses incrementally update
the results. The Dependency Analyzer determines which files changed since the last analysis and
updates the dependency data for those files. However, if you update add-ons or installed products and
want to discover dependency changes in them, you must perform a complete analysis. To perform a
complete analysis, in the Dependency Analyzer, click Analyze > Reanalyze All.

34 Projects

34-36

For more information about running a dependency analysis on Simulink models and libraries, see
“Perform an Impact Analysis” (Simulink).

Explore the Dependency Graph, Views, and Filters
The dependency graph displays your project structure, dependencies, and how files relate to each
other. Each item in the graph represents a file and each arrow represents a dependency. For more
details, see “Investigate Dependency Between Two Files” on page 34-37.

By default, the dependency graph shows all files required by your project. To help you investigate
dependencies or a specific problem, you can simplify the graph using one of the following filters:

• Use the filtered Views to color the files in the graph by type, class, source control status, and
label. See “Color Files by Type, Status, or Label” on page 34-38.

• Use the check boxes in the Legend pane to filter out a group of files.
• Use the Impact Analysis tools to simplify the graph. See “Find File Dependencies” on page 34-

47.

Select, Pan, and Zoom

• To select an item in the graph, click it.

To select multiple files, press Shift and click the files.

To select all files of a certain type, hover the pointer over the corresponding item in the Legend
pane and click the Add to selection icon.

To clear all selection, click the graph background.

To remove all files of a certain type from the current selection, hover the pointer over the
corresponding item in the Legend pane and click the Remove from selection icon.

• To open a file, double-click it.
• To pan the dependency graph, hold the Space key, click and drag the mouse. Alternatively, press

and hold the mouse wheel and drag.

For large graphs, navigate using the Overview pane.
• To zoom in and out, in the Navigate section, click Zoom In and Zoom Out. Alternatively, use the

mouse wheel.
• To center and fit the dependency graph to view, in the Navigate section, click Fit to View.

Alternatively, press the Space bar.

Investigate Dependency Between Two Files

To see more information about how two files are related, select their dependency arrow. In the
Properties pane, in the Details section, you can see the full paths of the files you are examining, the
dependency type (such as function call, inheritance, and property type), and where the dependency is
introduced.

 Analyze Project Dependencies

34-37

To open the file and highlight where the dependency is introduced, in the Details section, click the
link under Impacted.

Color Files by Type, Status, or Label

Explore the different views in the Views section of the Dependency Analyzer toolstrip to explore your
project files dependencies.

• The MATLAB Files view shows only MATLAB files (such as .m, .mlx, .p, .mlapp, .fig, .mat,
and .mex) in the view and colors them by type.

34 Projects

34-38

• The Class Hierarchy view shows the class inheritance graph and colors the files by type (class,
enumeration class, or abstract class). If the class is not on the search path, the Dependency
Analyzer cannot determine the class type.

 Analyze Project Dependencies

34-39

• The Classification view shows all files in the graph and colors them by file label (such as test,
design, and artifact).

Use the classification view to identify which tests you need to run to validate the changes in your
design. For more information, see “Identify Tests to Run” on page 34-48.

34 Projects

34-40

• The Source Control view shows all files in the graph and colors them by source control status.
This view is only enabled if your project is under source control.

Use the source control view to find modified files in your project and to examine the impact of
these changes on the rest of the project files. For more information, see “Investigate Impact of
Modified Files” on page 34-47.

 Analyze Project Dependencies

34-41

• Restore to Default clears all filters.

This is equivalent to manually removing all of the filters. Filters appear at the top of the graph. For
example, if you have the Source Control view selected, you can remove it by clicking

.

Apply and Clear Filters

In large projects, when investigating problems or dependencies, use the different filters to show only
the files you want to investigate:

• To filter out a subgroup of files from the graph, such as files labeled test or modified files, use the
check boxes in the Legend pane. To remove the legend filter, click the Legend Filter

.
• To color the files in the graph by type, class, label, or source control status, use the Views. To

remove the view filter, click View: viewName at the top of the graph . For example, if you have the

Source Control view selected, you can remove it by clicking .

34 Projects

34-42

• To show only the dependencies of a specific file, select the file and, in the Impact Analysis
section, click All Dependencies. The graph shows the selected file and all its dependencies. To
reset the graph to show all project dependencies, remove the filter at the top of the graph. For
example, if you filtered by all dependencies of timestable.mlapp, to remove the filter click

.
• To clear all filters and restore the graph to show all analyzed dependencies in the project, click

Restore to Default. Alternatively, manually remove all filters at the top of the graph.

Investigate and Resolve Problems
When you run a dependency analysis, the Dependency Analyzer identifies problems, such as missing
files, files not in the project, unsaved changes, and out-of-date derived files. You can examine problem
files using the dependency graph or the file list. When no file is selected, the Properties pane on the
right shows the add-ons dependencies and a list of problems for the entire project.

Use the graph to investigate problem files graphically.

1 In the Properties pane, in the Problems section, point to a problem, such as File not in

project, and click the magnifying glass icon . The graph highlights the files with this
specific problem.

To go through these files, use the arrows in the search box (e.g., Problem: File not in
project).

To undo the highlighting, close the search box.

 Analyze Project Dependencies

34-43

2 To see more information about a specific problem file, select the file in the graph. In the
Properties pane, in the Problems section, you can see details including the path, type, and the
problems for this file.

For example, if a file is File not in project, right-click the problem file in the graph and
select Add to Project.

3 Investigate the next problem listed in the Problems section. Repeat the steps until you resolve
all problems. For more details on how to fix problems, see “Resolve Problems” on page 34-44.

To update the graph and the Problems list, click Analyze.

Tip For large projects, viewing the results in a list can make navigation easier.

For large projects, use the File List to investigate your project problem files.

1 In the Dependency Analyzer toolstrip, click File List.
2 In the Properties pane, in the Problems section, point to a problem, such as File not in

project, and click the magnifying glass icon .

The File List shows only files with the specific problem. Select all the files in the list and use the
context menu to Add to Project.

3 Investigate the next problem listed in the Problems section, for example Missing file. Repeat
the steps until you resolve all problems.

To update the graph and the Problems list, click Analyze.

Resolve Problems

For each problem file, take actions to resolve the problem. This table lists common problems and
describes how to fix them.

Problem
Message

Description Fix

File not in project The file is not in the project. Right-click the problem file in the
graph and select Add to Project.

To remove a file from the problem list
without adding it to the project, right-
click the file and select Hide
Warnings.

Missing file The file is in the project but does not
exist on disk.

Create the file or recover it using
source control.

34 Projects

34-44

Problem
Message

Description Fix

The file or variable cannot be found. If this status is acceptable, right-click
the file and select Hide Warnings.

Depending on the way you call an
object method, the Dependency
Analyzer might confuse a method with
a function and report a missing
dependency. See “Analysis Limitations”
(Simulink).

In unreferenced
project

The file is within a project that is not
referenced by the current project.

Add the project containing the file as a
project reference

Outside project
root

The file is outside the project root
folder.

If this status is acceptable, right-click
the file and select Hide Warnings.
Otherwise, move it under the project
root.

If required files are outside your
project root, you cannot add these files
to your project. This dependency might
not indicate a problem if the file is on
your path and is a utility or resource
that is not part of your project. Use
dependency analysis to ensure that you
understand the design dependencies.

Unsaved changes The file has unsaved changes in the
MATLAB and Simulink editors.

Save the file.

Derived file out of
date

The derived file is older than the source
file it was derived from.

Regenerate the derived file. If it is a .p
file, you can regenerate it automatically
by running the project checks. In
MATLAB, on the Project tab, click the
down arrow to expand the Tools
gallery. Under Project Checks, click
Check Project.

If you rename a source file, the project
detects the impact to the derived file
and prompts you to update it.

File with syntax
error

The file contains a syntax error or the
Dependency Analyzer cannot parse the
file. For example, the file is an .m file
that contains a syntax error. The
Dependency Analyzer warns and does
not analyze the file.

If this status is acceptable, right-click
the file and select Hide Warnings.
Otherwise, fix the syntax error and
save the file.

 Analyze Project Dependencies

34-45

Problem
Message

Description Fix

Product not
installed

The project has a dependency on a
missing product.

Install the missing product.

Note If you use parfor or spmd but
do not have the Parallel Computing
Toolbox installed, the corresponding
code runs sequentially. The
Dependency Analyzer reports a
problem in the Problems section.

Find Required Products and Add-Ons
After running a dependency analysis on a project, the graph shows the required add-ons for the whole
project or for selected files. You can see which products are required to use the project or find which
file is introducing a product dependency.

In the Dependency Analyzer, in the Properties pane, the Product section displays the required
products for the whole project. To view products required by a specific file, select a file by clicking
the graph.

To find which file is introducing a product dependency, point to the product name and click the

magnifying glass icon . The graph highlights the files that use the selected product.

To go through these files, use the arrows in the search box (e.g., Files using "productName").

To undo the highlighting, close the search box.

To undo the highlighting, close the search box.

34 Projects

34-46

To investigate further, you can list the files that use a product and examine where in these files the
dependency is introduced. In the Products section, in the Properties pane, point to product and

click the search folder icon .

If a required product is missing, the products list labels it as missing. The product is also listed in the
Problems section as productName not installed. To resolve a missing product, install the product
and rerun the dependency analysis.

Find File Dependencies
To investigate the dependencies of a file after running a dependency analysis, in the dependency
graph, select a file.

• In the Impact Analysis section, click All Dependencies. The graph shows the selected file and
all its dependencies.

• To show only files needed by the selected file to run properly, click Required.
• To show only files impacted by a potential change to the selected file, click Impacted.

Finding these dependencies can help you identify the impact of a change and identify the tests you
need to run to validate your design before committing the changes.

To investigate the dependencies of multiple files, click files while holding the Shift key. The Impact
Analysis section displays how many files are selected.

To reset the graph, click the filter at the top of the graph. For example, if you had filtered by files

impacted by timestable.mlapp, click .

Investigate Impact of Modified Files

To examine the impact of the changes you made on the rest of the project files, perform an impact
analysis on the modified files in your project.

1 In the Views section, select the Source Control view. The graph colors the files by their source
control status. The modified files are in light blue.

2 Select all the modified files in the graph.

Alternatively, add all modified files to selection by clicking the Add to selection icon of an item
in the Legend pane.

Tip If you changed a large number of files, you can also use the file list.

In the Dependency Analyzer toolstrip, click File List. Point to Status and click the arrow to sort
the list by the source control status. Select all the modified files.

 Analyze Project Dependencies

34-47

3 In the Impact Analysis section, click Impacted. Alternatively, use the context menu and select
Find Impacted.

Identify Tests to Run

To identify the tests you need to run to validate your design before committing the changes, use the
Classification view when you perform an impact analysis on the file you changed.

1 In the Views section, select the Classification view. The graph colors the files by their project
label.

2 Select the file you changed, for example timesTableGame.m.
3 In the Impact Analysis section, click Impacted. Alternatively, use the context menu and select

Find Impacted.

The example graph shows three tests you need to run to qualify the change made to
timesTableGame.m.

34 Projects

34-48

Export Dependency Analysis Results
To export all the files displayed in the dependency graph, click the graph background to clear the
selection on all files. In the Dependency Analyzer toolstrip, in the Export section, click Export. Select
from the available options:

• Save to Workspace — Save file paths to a variable in the workspace.
• Generate Dependency Report — Save dependency analysis results in a printable report (HTML,

Word, or PDF).
• Package As Archive — Export files in the graph as an archive.
• Save As GraphML — Save dependency analysis results as a GraphML file.

Tip You can compare different analysis results without having to repeat the analysis. To compare
previously saved graphs, in MATLAB, in the Current Folder, right-click two GraphML files and
select Compare Selected Files/Folders.

• Save As Image — Save displayed dependency graph as an image.

To export a subset of files in the graph, select the files, then click Export.

• Use the Legend check boxes, the filtered Views, or the Impact Analysis tools to simplify the
graph.

• To select multiple files, press Shift and select the files.
• To select all files in the filtered graph, press Ctrl+A.

The menu displays how many files are selected. The Dependency Analyzer exports only the selected
files.

Note When you use Package As Archive, the Dependency Analyzer includes the selected files and
all their dependencies in the archive.

 Analyze Project Dependencies

34-49

Send Files to Project Tools

You can send files to other Project tools using the Project menu. The Dependency Analyzer exports
only the selected files in the current filtered view.

Select the desired files. In the Dependency Analyzer toolstrip, in the Export section, click Project.
Select from the available options:

• Show in Project — Switch to the project Files view with the files selected.
• Send to Custom Task — Run a project custom task on the selected files.

See Also

More About
• “Share Projects” on page 34-28
• “Use Source Control with Projects” on page 34-52

34 Projects

34-50

Clone Remote Git Repository into New Project
To create a new project from an existing repository:

1 On the Home tab, click New > Project > From Git. The New Project From Source Control
dialog box opens.

2 Enter your HTTPS repository path into the Repository path field.
3 In the Sandbox field, select the working folder where you want to put the retrieved files for your

new project.
4 Click Retrieve.

If an authentication dialog box for your repository appears, enter the login information for your
Git repository account -- for instance, your GitHub user name and personal access token.

If your repository already contains a project, the project is ready when the tool finishes retrieving
files to your selected sandbox folder.

If your sandbox does not yet contain a project, then a dialog box asks whether you want to create
a project in the folder. To create a project, specify a project name and click OK. The Welcome
screen appears to help you set up your new project. For more information about setting up a
project, see “Set up Project” on page 34-3.

You can now add, delete, and modify your project files. For details on how to commit and push the
modified project files, see “Commit Modified Project Files” on page 34-58.

Tip Alternatively, to prevent frequent login prompts when you interact with your remote repository,
you can clone a remote repository using SSH instead of HTTPS or install a credential helper. To avoid
problems connecting using SSH, set the HOME environment variable and use it to store your SSH
keys. For more information, see “Configure MATLAB to Use Git SSH Authentication” on page 35-13
and “Install Git Credential Helper” on page 35-17.

If you encounter errors like OutOfMemoryError: Java heap space when cloning large Git
repositories, edit your MATLAB preferences to increase the heap size.

1 On the Home tab, in the Environment section, click Preferences.
2 Select MATLAB > General > Java Heap Memory.
3 Move the slider to increase the heap size, and then click OK.
4 Restart MATLAB.

See Also

Related Examples
• “Configure MATLAB to Use Git SSH Authentication” on page 35-13
• “Commit Modified Project Files” on page 34-58

 Clone Remote Git Repository into New Project

34-51

Use Source Control with Projects
You can use projects to work with files under source control. Source control stores files in a
repository, lets you check files out of the repository to work on and back into it to preserve changes,
and lets you see the history of the different versions of files that have been checked in. For more
information about using source control in MathWorks products, see “Source Control Integration in
MATLAB” on page 35-2.

Projects integrate with two source control systems, Git and Subversion (SVN).

To set up a project with source control, use any of these workflows:

• Create a new project from an existing repository.
• Add an existing project to source control.
• Create a new project in a folder already under source control.
• Create a new GitHub repository for a new or an existing project.

Then, when your project is under source control, you can perform operations from within MATLAB
such as checking files in and out, running checks, and committing and reverting changes.

In MATLAB Online, Subversion integration is not supported.

Setup Source Control
There are four ways to set up a project with source control.

Create New Project from Existing Repository

Create a new local copy of a project from an existing repository by retrieving files from source
control. You can clone a Git repository, or check out files from an SVN repository, or use another
source control integration.

To create a new project from an existing repository:

1 On the Home tab, click New > Project > From Git or New > Project > From SVN. The New
Project From Source Control dialog box opens.

2 If you know your repository location, paste it into the Repository path field.

Otherwise, to browse for and validate the repository path to retrieve files from, click Change.

a In the dialog box, specify the repository URL by entering or pasting a URL into the field, by

selecting from the list of recent repositories, or by clicking the button.
b Click Validate to check the repository path. If the path is invalid, check the URL against

your source control repository browser.
c If you see an authentication dialog box for your repository, enter login information to

continue.
d If necessary, select a deeper folder in the repository tree. With SVN, you might want to check

out from trunk or a branch folder under tags.
e When you have finished specifying the URL path you want to retrieve, click OK. The dialog

box closes and you return to the New Project From Source Control dialog box.

34 Projects

34-52

3 In the Sandbox field, select the working folder where you want to put the retrieved files for your
new project. With SVN, use a local folder for best results, because using a network folder is slow.

4 Click Retrieve.

If your repository already contains a project, the project is ready when the tool finishes retrieving
files to your selected sandbox folder.

If your sandbox does not yet contain a project, then a dialog box asks whether you want to create
a project in the folder. To create a project, specify a project name and click OK. The Welcome
screen appears to help you set up your new project. For more information about setting up a
project, see “Set up Project” on page 34-3.

If you encounter errors like OutOfMemoryError: Java heap space when cloning large Git
repositories, edit your MATLAB preferences to increase the heap size.

1 On the Home tab, in the Environment section, click Preferences.
2 Select MATLAB > General > Java Heap Memory.
3 Move the slider to increase the heap size, and then click OK.
4 Restart MATLAB.

Add Existing Project to Source Control

If you have an existing project, you can add it to Git or SVN source control.

To add a project to source control:

1 On the Project tab, in the Source Control section, click Use Source Control. The Source
Control Information dialog box opens.

2 Click the Add Project to Source Control button. The Add to Source Control dialog box opens.
3 In the Source control tool list, select the right tool for your repository. If you choose Git, then

skip step 4 and go straight to step 5.
4

If you are using an SVN remote repository, to specify an existing repository, click the button
to browse for your repository, paste a URL into the field, or use the list to select a recent
repository.

Click Validate to check the path to the selected repository, and then click OK.
5 Click Convert to finish adding the project to source control.

The project runs integrity checks.
6 After the integrity checks run, click Open Project to return to your project.

The project displays details of the current source control tool and the repository location.
7 If you created a new repository, select the Files > Modified view and click Commit to commit

the first version of your files to the new repository. In the dialog box, enter a comment if you
want, and click Submit.

If you want to merge branches with Git, you need to follow additional setup steps. For more
information, see “Set Up Git Source Control” on page 35-12.

If you want to use a version of SVN other than the built-in version, see “Set Up SVN Source Control”
on page 35-33.

 Use Source Control with Projects

34-53

Create New Project in Folder Already Under Source Control

If you create a new project from a folder that is already under source control, MATLAB automatically
adds the new project to source control. For more information about creating a project from a folder,
see “Create Projects” on page 34-2.

Create New GitHub Repository

Creating a GitHub repository adds Git source control to your new or existing project. The GitHub
repository you create becomes the project remote repository. To create a GitHub repository, you must
have a GitHub account.

To create a blank project and a GitHub remote repository:

1 On the Home tab, click New > Project > From Git.
2 Select New > GitHub Repository. In the GitHub dialog box, enter your User name and

Personal access token. Fill the Repository name and Description fields and click Create.

MATLAB creates a new public GitHub repository and populates the Repository path field with
information in the https://github.com/myusername/mynewrepository format.

3 In the Sandbox field, specify the location for your sandbox. The selected folder must be empty.
Click Retrieve to create the sandbox.

To confirm the project name and creation, click OK.

After creating the GitHub repository and sandbox, add your files to the sandbox. Commit the first
version of your files to your local repository, then push all modifications to your remote GitHub
repository. For more information, see “Use Git in MATLAB” on page 35-5.

Tip If you want to create a remote GitHub repository for an existing project, share your project to
GitHub instead.

With your project loaded, on the Project tab, select Share > GitHub. For detailed instructions, see
Publish on GitHub in “Share Projects” on page 34-28.

Perform Source Control Operations
Retrieve Versions and Checkout Project Files

This table shows how to check for modified project files, update revisions, get and manage file locks,
and tag project files.

Action Procedure
Refresh status of project files. To check for locally modified files, on the Project tab, in the

Source Control section, click Refresh. Refreshing queries the
local sandbox state and checks for changes made with another tool
outside of MATLAB.

For more information, see “Update SVN File Status and Revision”
on page 35-40 or “Use Git in MATLAB” on page 35-5.

34 Projects

34-54

Action Procedure
Check for modifications in
project files.

To find out if there is a new version of the project in the repository,
in the Files view, right-click the file and select Source Control >
Check for Modifications.

With SVN, this option contacts the repository to check for external
modifications. The project compares the revision numbers of the
local file and the repository version. If the revision number in the
repository is larger than that in the local sandbox folder, then the
project displays (not latest) next to the revision number of the local
file.

Update all project files. Using SVN, to get the latest changes of all project files, go to the
Project tab, and in the Source Control section, click Update. The
project displays a dialog box listing all the files that have changed
on disk. You can control this behavior using the project preference
Show changes on source control update. For more information,
see “Update SVN File Status and Revision” on page 35-40.

Using Git, to get the latest changes for all project files from a
source control repository and merge them into your current
branch, go to the Project tab, and in the Source Control section,
click Pull. To get changes and merge manually, on the Project tab,
in the Source Control section, click Fetch. This updates all of the
origin branches in the local repository. When you click Fetch, your
sandbox files are not changed. To see the changes from others,
merge in the origin changes to your local branches. For more
information, see “Use Git in MATLAB” on page 35-5.

Update revision for selected
project files.

To update a selected set of files, in the Files view, right-click the
files, and select the Source Control > Update command for the
source control system you are using. For example, if you are using
SVN, select Source Control > Update from SVN to get fresh
local copies of the selected files from the repository.

Clear SVN login information. To clear any stored login credentials, on the Project tab, in the
Source Control section, click Clear Login.

Get SVN file locks. To get SVN file locks, in the Files view, select the files that you
want to check out. Right-click the selected files and select Source
Control > Get File Lock. A lock symbol appears in the SVN
source control column. Other users do not see the lock symbol in
their sandboxes, but they cannot get a file lock or check in a
change when you have the lock. To view or break locks, on the
Project tab, click Locks.

Get File Lock is only for SVN. Git does not have locks.
Manage SVN repository locks. To manage global SVN locks for a repository, on the Project tab, in

the Source Control section, click Locks. For more information,
see “Get SVN File Locks” on page 35-41.

 Use Source Control with Projects

34-55

Action Procedure
Tag versions of project files. To identify specific revisions of all project files, on the Project tab,

in the Source Control section, click Tag. Specify the tag text and
click OK. The tag is added to every project file. Errors appear if
you do not have a tags folder in your repository. For more
information, see “Set Up SVN Source Control” on page 35-33.

Review Changes in Project Files

You can review changes in project files using the Files > Modified view. This table shows how to
view the list of modified project files, review the history of a file, and compare two files' revisions.

Action Procedure
View modified project files. In the Files view, select the Modified (number of files) tab. The

Files > Modified view is visible only if you are using source
control with your project.

Tip Use the List layout to view files without needing to expand
folders.

You can identify modified or conflicted folder contents using the
source control summary status. In the Files view, folders display
rolled-up source control status. This makes it easier to locate
changes in files, particularly conflicted files. You can hover over
the source control status (for instance, the Git or SVN column) for
a folder to view a tooltip displaying how many files inside are
modified, conflicted, added, and deleted.

Update modified files list. To update the modified files list, on the Project tab, in the Source
Control section, click Refresh.

View revision history. In the Files view, right-click a file and select Source Control >
Show Revisions.

To browse and compare files within committed SVN change sets,
on the Project tab, in the Source Control section, select Show
Log. In the File Revisions dialog box, select a revision to view a list
of modified files. Right-click files in the lower list to view changes
or save revisions.

Compare revisions. In the Files view, right-click a file and select Compare >
Compare to Ancestor to run a comparison against the local
repository (Git) or against the last checked-out version in the
sandbox (SVN). The Comparison Tool displays a report.

To compare other revisions of a file, select Compare > Compare
to Revision.

To view a comparison report, select the revisions you want to
compare and click Compare Selected. Or, select a revision and
click Compare to Local. For more information, see “Compare
Files and Folders and Merge Files”.

34 Projects

34-56

Project Definition Files

The files in the resources/project folder are project definition files generated when you first
create or make changes to your project. The project definition files enable you to add project
metadata to files without checking them out. Some examples of metadata you can change this way
are shortcuts, labels, and project descriptions. Project definition files also specify the files added to
your project. These files are not part of the project.

Any changes you make to your project generate changes in the resources/project folder. These
files store the definition of your project in XML files whose format is subject to change.

You do not need to view project definition files directly, except when the source control tool requires a
merge. The files are shown so that you know about all the files being committed to the source control
system.

Starting in R2020b, the default project definition file type is Use multiple project files (fixed-path
length). To change the project definition file management from the type selected when the project
was created, use matlab.project.convertDefinitionFiles.
matlab.project.convertDefinitionFiles preserves the source control history of your project.

Warning To avoid merge issues, do not convert the definition file type more than once for a project.

For releases before R2020b, if you want to change the project definition file management from the
type selected when the project was created:

1 On the Home tab, in the Environment section, click Preferences. Select MATLAB > Project
and in the New Projects section, select one of the options under Project definition files:

• Use multiple project files - Helps to avoid file conflicts when performing merge on shared
projects

• Use multiple project files (fixed-path length) - Is better if you need to work with long
paths

• Use a single project file (not recommended for source control) - Is faster but is likely to
cause merge issues when two users submit changes in the same project to a source control
tool

2 Create a project archive file (.mlproj). For more information, see “Share Projects” on page 34-
28 or export.

3 Create a new project from the archived project. For more information, see “Create Projects” on
page 34-2.

To stop managing your folder with a project and delete the resources/project folder, see
matlab.project.deleteProject.

Run Project Checks

To run checks for a project, on the Project tab, click the down arrow to expand the Tools gallery.
Under Project Checks, click Check Project. The project checks for problems with project integrity
such as missing files, unsaved files, or files not under source control. A dialog box reports the results.
You can click for details and follow prompts to fix problems.

If you want to check for required files, click Dependency Analyzer to analyze the dependencies of
the modified files. Use the dependency tools to analyze the structure of your project.

 Use Source Control with Projects

34-57

For details on problems the checks can fix, see “Work with Derived Files in Projects” on page 34-60,
and “Analyze Project Dependencies” on page 34-35.

Commit Modified Project Files

After reviewing changes and running project checks, you are ready to commit your modified project
files to source control. This table shows how to commit modified project files.

Action Procedure
Commit all modified files to
source control.

In the Files view, select the Modified (number of files) tab. On
the Project tab, in the Source Control section, click Commit.
Enter comments in the dialog box, and click Submit. If you are
using Git source control, this commits to your local repository. If
you are using SVN source control, this commits changes to your
repository.

A message appears if you cannot commit because the repository
has moved ahead. Before you can commit the file, you must update
its revision up to the current HEAD revision. If you are using Git
source control, click Pull. If you are using SVN source control,
click Update. Resolve any conflicts before you commit.

Commit selected files to source
control.

In the Files view, select the files, right-click, and select Source
Control > Commit.

If you commit individual files, you risk not committing the related
project definition files that keep track of your files. To avoid this,
commit all modified files.

Push project files with Git. To send local commits to the remote repository, on the Project tab,
in the Source Control section, click Push. A message appears if
you cannot push your changes directly because the repository has
moved on. Click Fetch to fetch all changes from the remote
repository. Merge branches and resolve conflicts, and then you can
push your changes. For more information, see “Use Git in
MATLAB” on page 35-5.

Push empty project folders with
Git.

You cannot add empty folders to Git source control, so you cannot
click Push and then clone an empty folder. You can create an
empty folder in a project, but if you push changes and then sync a
new sandbox, the empty folder does not appear in the new
sandbox. Instead, run Check Project, which creates the empty
folder for you.

Alternatively, to push empty folders to the repository for other
users to sync, create a gitignore file in the folder and then push
your changes.

Create Git stashes. Git stashes store uncommitted changes for later use. To create a
stash, on the Project tab, in the Source Control section, click
Stashes. The Stashes dialog box opens. Click New Stash to create
a stash containing your currently modified files. For more
information, see “Store Uncommitted Changes Using Git Stashes”
on page 35-11.

34 Projects

34-58

Action Procedure
Create a branch with Git. To create a branch, on the Project tab, in the Source Control

section, click Branches. The Branches dialog box appears, where
you can view, switch, create, and merge branches.

Select a source for the new branch. Click a node in the Branch
Browser diagram, or enter a unique identifier in the Source text
box. You can enter a tag, branch name, or a unique prefix of the
SHA1 hash (for example, 73c637) to identify a specific commit.
Leave the default values to create a branch from the head of the
current branch. Enter a name in the Branch name text box and
click Create.

Switch, compare, save, and
merge branches with Git.

To switch, compare, save, and merge branches, on the Project tab,
in the Source Control section, click Branches. The Branches
dialog box appears, where you can view, switch, create, and merge
branches. For more information, see “Branch and Merge with Git”
on page 35-19.

Resolve conflicts. If you and another user change the same file in different sandboxes
or on different branches, a conflict message appears when you try
to commit your modified files. Extract conflict markers if
necessary, compare the differences causing the conflict, and
resolve the conflict. If you have several conflicted files, see
“Determine Order for Resolving Conflicts Using Dependency
Analyzer” on page 34-13.

Look for conflicted files in the Files > Modified view. Identify
conflicted folder contents using the source control summary
status. Folders display the rolled-up source control status. This
makes it easier to locate changes in files, particularly conflicted
files. You can hover over the source control status for a folder to
view a tooltip displaying how many files inside are modified,
conflicted, added, and deleted.

Tip Use the List layout to view files without needing to expand
folders.

Check the source control status column (Git or SVN) for files with
a red warning symbol, which indicates a conflict. Right-click the
conflicted file and select View Conflicts to compare versions. A
comparison report opens showing the differences between the
conflicted files.

When you have resolved the changes and want to commit the
version in your sandbox, right-click the file and select Source
Control > Mark Conflict Resolved.

For Git, the Branch status in the Git pane changes from
MERGING to SAFE.

Select the Files > Modified view to check changes.

 Use Source Control with Projects

34-59

Revert Changes

This table shows how to revert changes in project files. For more information about reverting
changes, see “Revert Changes in SVN Source Control” on page 35-32 and “Use Git in MATLAB” on
page 35-5.

Action Procedure
Revert local changes. To release locks and revert to the version in the last sandbox

update (that is, the last version you synchronized or retrieved from
the repository), in the Files view, right-click the files to revert and
select Source Control > Discard Local Changes and Release
Locks.

To discard local changes when using Git, right-click a file and
select Source Control > Revert Local Changes. To remove all
local changes, click Branches in the Git pane and click Revert to
Head.

Revert a file to a specified
revision

To revert a file to a specified revision, right-click a file and select
Source Control > Revert using SVN or Source Control >
Revert using Git.

In the Revert Files dialog box, choose a revision to revert to. Select
a revision to view information about the change, such as the
author, date, log message. Click Revert.

If you revert a file to an earlier revision and then make changes,
you cannot commit the file until you resolve the conflict with the
repository history.

Revert a project to a specified
revision.

To revert a project to a specified revision, on the Project tab, in
the Source Control section, click Revert Project. In the Revert
Files dialog box, choose a revision to revert to.

Each revision in the list is a change set of modified files. Select a
revision to view information about the change such as the author,
date, and the log message.

Once you have chosen a revision and are satisfied that the
information is correct, click Revert.

Work with Derived Files in Projects
In general, it is a best practice to omit derived and temporary files from your project or exclude them
from source control. To check for derived or temporary files, on the Project tab, click the down arrow
to expand the Tools gallery. Under Project Checks, click Check Project. If you add the slprj
folder to a project, the project checks advise you to remove this from the project and offer to make
the fix.

It is also a best practice to exclude derived files such as .mex*, the contents of the slprj folder,
sccprj folder, or other code generation folders from source control, because they can cause
problems. For example:

34 Projects

34-60

• With a source control system that can do file locking, you can encounter conflicts. If slprj is
under source control and you generate code, most of the files under slprj change and become
locked. Other users cannot generate code because of file permission errors. The slprj folder is
also used for simulation via code generation, so locking these files can have an impact on a team.
The same problems arise with binaries, such as .mex*.

• Deleting slprj is often required. However, deleting slprj causes problems such as “not a
working copy“ errors if the folder is under some source control tools (for example, SVN).

• If you want to check in the generated code as an artifact of the process, it is common to copy some
of the files out of the slprj cache folder and into a separate location that is part of the project.
That way, you can delete the temporary cache folder when you need to. Use the packNGo function
to list the generated code files, and use the project API to add them to the project with
appropriate metadata.

• The slprj folder can contain many small files. This can affect performance with some source
control tools when each of those files is checked to see if it is up-to-date.

Find Project Files With Unsaved Changes
You can check your project for files with unsaved changes. On the Project tab, click the down arrow
to expand the Tools gallery. Under Project Checks, click Show Unsaved Changes.

In the Unsaved Changes dialog box, you can see the project files with unsaved changes. Project only
detects unsaved changes edited in the MATLAB and Simulink editors. Manually examine changes
edited in other tools. If you have referenced projects, files are grouped by project. You can save or
discard all detected changes.

Manage Open Files When Closing a Project
When you close a project, if there are files with unsaved changes, a message prompts you to save or
discard changes. You can see all files with unsaved changes, grouped by project if you have
referenced projects. To avoid losing work, you can save or discard changes by file, by project, or
globally.

To control this behavior, on the Home tab, in the Environment section, click Preferences. Go to
MATLAB > Project and in the Project Shutdown section, select or clear the check box labeled
Check for open project models and close them, unless they are dirty.

See Also

More About
• “Source Control Integration in MATLAB” on page 35-2
• “Set Up Git Source Control” on page 35-12
• “Use Git in MATLAB” on page 35-5
• “Set Up SVN Source Control” on page 35-33

 Use Source Control with Projects

34-61

Create and Edit Projects Programmatically

This example shows how to use the Project API to create a new project and automate project tasks for
manipulating files. It covers how to create a project from the command line, add files and folders, set
up the project path, define project shortcuts, and create a reference to the new project in another
project. It also shows how to programmatically work with modified files, dependencies, shortcuts, and
labels.

Set Up the Example Files

Create a working copy of the Times Table App example project files and open the project. MATLAB®
copies the files to an examples folder so that you can edit them. The project puts the files under Git™
source control. Use currentProject to create a project object from the currently loaded project.

matlab.project.example.timesTable
mainProject = currentProject;

Examine Project Files

Examine the files in the project.

files = mainProject.Files

files=1×15 object
 1×15 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Use indexing to access files in this list. For example, get file number 10. Each file has properties
describing its path and attached labels.

mainProject.Files(10)

ans =
 ProjectFile with properties:

 Path: "C:\Work\examples\TimesTableApp\tests\tCurrentQuestion.m"
 Labels: [1×1 matlab.project.Label]
 Revision: "348524438ce7578683c1c1ed72745e4e91aef0d4"
 SourceControlStatus: Unmodified

Get Git latest revision of the tenth file.

mainProject.Files(10).Revision

ans =
"348524438ce7578683c1c1ed72745e4e91aef0d4"

Examine the labels of the tenth file.

mainProject.Files(10).Labels

34 Projects

34-62

ans =
 Label with properties:

 File: "C:\Work\examples\TimesTableApp\tests\tCurrentQuestion.m"
 DataType: 'none'
 Data: []
 Name: "Test"
 CategoryName: "Classification"

Get a particular file by name.

myfile = findFile(mainProject,"source/timestable.mlapp")

myfile =
 ProjectFile with properties:

 Path: "C:\Work\examples\TimesTableApp\source\timestable.mlapp"
 Labels: [1×1 matlab.project.Label]
 Revision: "348524438ce7578683c1c1ed72745e4e91aef0d4"
 SourceControlStatus: Unmodified

Create New Project

Create the Times Table Game project. This project will store the game logic behind the Times Table
App. The Times Table Game project will be used by the Times Table App project through a project
reference.

Create the project and set the project name.

timesTableGameFolder = fullfile(mainProject.RootFolder,"refs","TimesTableGame");
timesTableGame = matlab.project.createProject(timesTableGameFolder);
timesTableGame.Name = "Times Table Game";

Move the Times Table App game logic from the main project folder to the new project folder, and add
it to the Times Table Game project. Then, remove the file from the Times Table App project.

movefile("..\..\source\timesTableGame.m");
addFile(timesTableGame,"timesTableGame.m");

reload(mainProject);
removeFile(mainProject,"source\timesTableGame.m");

Add the Times Table Game project root folder to the Times Table Game project path. This makes the
timesTableGame.m file available when the Times Table App project or any project that references
the Times Table App project is loaded.

reload(timesTableGame);
addPath(timesTableGame,timesTableGame.RootFolder);

Add a Project Reference

Add the new Times Table Game project to the Times Table App project as a project reference. This
allows the Time Table App project to view, edit, and run files in the Times Table Game project.

reload(mainProject);
addReference(mainProject,timesTableGame);

 Create and Edit Projects Programmatically

34-63

Get Modified Files

Get all the modified files in the Times Table App project. Compare this list with the Files > Modified
view in the project. You can see the files for the new Times Table Game project, as well as the
removed and modified files in the Times Table App project.

modifiedfiles = listModifiedFiles(mainProject)

modifiedfiles=1×40 object
 1×40 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Get the second modified file in the list. Observe that the SourceControlStatus property is Added.
The listModifiedFiles function returns any files that are added, modified, conflicted, deleted,
and so on.

modifiedfiles(2)

ans =
 ProjectFile with properties:

 Path: "C:\Work\examples\TimesTableApp\refs\TimesTableGame\resources\project\EEtUlUb-dLAdf0KpMVivaUlztwA\s8lvPU67RGQvYF1uvqJJUjnHPEUd.xml"
 Revision: ""
 SourceControlStatus: Added

Refresh the source control status before querying individual files. You do not need to do this before
calling listModifiedFiles.

refreshSourceControl(mainProject)

Get all the project files that are Unmodified. Use the ismember function to get an array of logicals
stating which files in the Times Table App project are unmodified. Use the array to get the list of
unmodified files.

unmodifiedStatus = ismember([mainProject.Files.SourceControlStatus],matlab.sourcecontrol.Status.Unmodified);
mainProject.Files(unmodifiedStatus)

ans=1×10 object
 1×10 ProjectFile array with properties:

 Path
 Labels
 Revision
 SourceControlStatus

Get File Dependencies

Run a dependency analysis to update the known dependencies between project files.

updateDependencies(mainProject)

34 Projects

34-64

Get the list of dependencies in the Times Table App project. The Dependencies property contains
the graph of dependencies between project files, stored as a MATLAB digraph object.

g = mainProject.Dependencies

g =
 digraph with properties:

 Edges: [5×1 table]
 Nodes: [9×1 table]

Get the files required by the timestable.mlapp file.

requiredFiles = bfsearch(g, which('source/timestable.mlapp'))

requiredFiles = 2×1 cell
 {'C:\Work\examples\TimesTableApp\source\timestable.mlapp' }
 {'C:\Work\examples\TimesTableApp\refs\TimesTableGame\timesTableGame.m'}

Get the top-level files of all types in the graph. The indegree function finds all the files that are not
depended on by any other file.

top = g.Nodes.Name(indegree(g)==0)

top = 7×1 cell
 {'C:\Work\examples\TimesTableApp\requirements\TimesTableRequirements.mlx'}
 {'C:\Work\examples\TimesTableApp\tests\tAnswerIsCorrect.m' }
 {'C:\Work\examples\TimesTableApp\tests\tCurrentQuestion.m' }
 {'C:\Work\examples\TimesTableApp\tests\tNewTimesTable.m' }
 {'C:\Work\examples\TimesTableApp\utilities\editTimesTable.m' }
 {'C:\Work\examples\TimesTableApp\utilities\openRequirementsDocument.m' }
 {'C:\Work\examples\TimesTableApp\utilities\runTheseTests.m' }

Get the top-level files that have dependencies. The indegree function finds all the files that are not
depended on by any other file, and the outdegree function finds all the files that have dependencies.

top = g.Nodes.Name(indegree(g)==0 & outdegree(g)>0)

top = 4×1 cell
 {'C:\Work\examples\TimesTableApp\requirements\TimesTableRequirements.mlx'}
 {'C:\Work\examples\TimesTableApp\tests\tAnswerIsCorrect.m' }
 {'C:\Work\examples\TimesTableApp\tests\tCurrentQuestion.m' }
 {'C:\Work\examples\TimesTableApp\tests\tNewTimesTable.m' }

Find impacted (or "upstream") files by creating a transposed graph. Use the flipedge function to
reverse the direction of the edges in the graph.

transposed = flipedge(g)

transposed =
 digraph with properties:

 Edges: [5×1 table]
 Nodes: [9×1 table]

 Create and Edit Projects Programmatically

34-65

impacted = bfsearch(transposed,which('source/timestable.mlapp'))

impacted = 2×1 cell
 {'C:\Work\examples\TimesTableApp\source\timestable.mlapp' }
 {'C:\Work\examples\TimesTableApp\requirements\TimesTableRequirements.mlx'}

Get information on the project files, such as the number of dependencies and orphans.

averageNumDependencies = mean(outdegree(g));
numberOfOrphans = sum(indegree(g)+outdegree(g)==0);

Change the sort order of the dependency graph to show project changes from the bottom up.

ordered = g.Nodes.Name(flip(toposort(g)));

Query Shortcuts

You can use shortcuts to save frequent tasks and frequently accessed files, or to automate startup and
shutdown tasks.

Get the Times Table App project shortcuts.

shortcuts = mainProject.Shortcuts

shortcuts=1×4 object
 1×4 Shortcut array with properties:

 Name
 Group
 File

Examine a shortcut in the list.

shortcuts(2)

ans =
 Shortcut with properties:

 Name: "Edit Times Table App"
 Group: "Launch Points"
 File: "C:\Work\examples\TimesTableApp\utilities\editTimesTable.m"

Get the file path of a shortcut.

shortcuts(3).File

ans =
"C:\Work\examples\TimesTableApp\utilities\openRequirementsDocument.m"

Examine all the files in the shortcuts list.

{shortcuts.File}'

ans=4×1 cell array
 {["C:\Work\examples\TimesTableApp\source\timestable.mlapp"]}
 {["C:\Work\examples\TimesTableApp\utilities\editTimesTable.m"]}
 {["C:\Work\examples\TimesTableApp\utilities\openRequirementsDocument.m"]}

34 Projects

34-66

 {["C:\Work\examples\TimesTableApp\utilities\runTheseTests.m"]}

Label Files

Create a new category of labels of type char. In the Times Table App project, the new Engineers
category appears in the Labels pane.

createCategory(mainProject,'Engineers','char')

ans =
 Category with properties:

 Name: "Engineers"
 SingleValued: 0
 DataType: "char"
 LabelDefinitions: [1×0 matlab.project.LabelDefinition]

Define a new label in the new category.

category = findCategory(mainProject,'Engineers');
createLabel(category,'Bob');

Get the label definition object for the new label.

ld = findLabel(category,'Bob')

ld =
 LabelDefinition with properties:

 Name: "Bob"
 CategoryName: "Engineers"

Attach a label to a project file. If you select the file in the Times Table App project, you can see this
label in the Label Editor pane.

myfile = findFile(mainProject,"source/timestable.mlapp");
addLabel(myfile,'Engineers','Bob');

Get a particular label and attach text data to it.

label = findLabel(myfile,'Engineers','Bob');
label.Data = 'Email: Bob.Smith@company.com'

label =
 Label with properties:

 File: "C:\Work\examples\TimesTableApp\source\timestable.mlapp"
 DataType: 'char'
 Data: 'Email: Bob.Smith@company.com'
 Name: "Bob"
 CategoryName: "Engineers"

Retrieve the label data and store it in a variable.

mydata = label.Data

 Create and Edit Projects Programmatically

34-67

mydata =
'Email: Bob.Smith@company.com'

Create a new label category with data type double, the type MATLAB commonly uses for numeric
data.

createCategory(mainProject,'Assessors','double');
category = findCategory(mainProject,'Assessors');
createLabel(category,'Sam');

Attach the new label to a specified file and assign data value 2 to the label.

myfile = mainProject.Files(10);
addLabel(myfile, 'Assessors', 'Sam', 2)

ans =
 Label with properties:

 File: "C:\Work\examples\TimesTableApp\tests\tNewTimesTable.m"
 DataType: 'double'
 Data: 2
 Name: "Sam"
 CategoryName: "Assessors"

Close Project

Close the project to run shutdown scripts and check for unsaved files.

close(mainProject)

See Also
currentProject

More About
• “Create Projects” on page 34-2
• “Manage Project Files” on page 34-15
• “Analyze Project Dependencies” on page 34-35

34 Projects

34-68

Explore an Example Project

This example uses the Times Table App example project to explore how project tools can help you
organize your work.

Using the Times Table App example, we will explore how to:

1 Set up and browse some example project files under source control.
2 Examine project shortcuts to access frequently used files and tasks.
3 Analyze dependencies in the project and locate required files that are not yet in the project.
4 Modify some project files, find and review modified files, compare them to an earlier version, and

commit modified files to source control.
5 Explore views of project files only, modified files, and all files under the project root folder.

Set Up the Example Files

Create a working copy of the Times Table App example project files and open the project. MATLAB®
copies the files to an examples folder so that you can edit them. The project puts the files under Git™
source control.

matlab.project.example.timesTable

View, Search, and Sort Project Files

You can view, search, and sort project files by using the Files view.

To view the files in the project, in the Files view, click Project (number of files). When the view
is selected, only the files in your project are shown.

To see all the files in your project folder, click All. This view shows all the files that are under the
project root, not just the files that are in the project. As a result, this view is useful for adding files to
the project.

To view files as a list instead of a tree, in the Layout field at the top right of the Files view, select
List.

There are several ways to find files and folders in projects:

• To search for particular files or file types by name, in any file view, type in the search box or click
the Filter button. For example, in the search field, enter the text timestable. The project

returns all files and folders that contain the word timestable. Click the to clear the search.
• To search the content of files, go to the Project tab and click the Search button. Enter a value in

the search field and click Enter. For example, enter the word tests. The project displays all files

and folders that contain the word tests. Click the to clear the search.
• To change how files are grouped or sorted, and to customize the columns, click the actions

button and select from the available options.

 Explore an Example Project

34-69

Open and Run Frequently Used Files

You can use shortcuts to make files easier to find in a large project. View and run shortcuts on the
Project Shortcuts tab. You can organize the shortcuts into groups.

The Times Table App project contains several shortcuts, including a shortcut to open the project
requirements, and another to run all the tests in the project. The shortcuts make these tasks easier
for users of the project.

To perform an action, on the Project Shortcuts tab, click the associated shortcut. For example, to
open project requirements, click Documentation > Requirements. To run tests, click Test > Run
All Tests.

To create a new shortcut, select the Files view, right-click a file, and select Create Shortcut.

Add Folder to Project

Create a new folder and add it to the project path. Adding a project folder to the project path ensures
that all users of the project can access the files within it.

1 Select the Files view.
2 Right-click in white space and then select New > Folder. Enter a name for the folder. The folder

is automatically added to the project.
3 Right-click the new folder and select Project Path > Add to the Project Path (Including

Subfolders).

Review Changes in Modified Files

Open files, make changes, and review the changes.

1 Select the Files view. View folders using the tree layout, and then expand the utilities folder.
2 Right-click source/timesTableGame.m and select Open.
3 Make a change in the Editor, such as adding a comment, and save the file.
4 In the Files view, select the Modified (number of files) tab. After editing the file, you see

Modified (2). The file you changed appears in the list.
5 To review changes, right-click source/timesTableGame.m in the Modified files view and

select Compare > Compare to Ancestor. The MATLAB Comparison Tool opens a report
comparing the modified version of the file in your sandbox to its ancestor stored in version
control. The comparison report type can differ depending on the file you select. If you select a
Simulink® model to compare, this command runs a Simulink model comparison.

* Note - When you open the Times Table App example project, the project shows a modified file in the
resources folder. This is a side effect of opening the example project. When editing files in your own
projects, only changes that affect file metadata, such as adding a label to a file, create modified files
in the resources folder.

Analyze Dependencies

To check that all required files are in the project, run a file dependency analysis on the modified files.

1 On the Project tab, click the down arrow to expand the Tools gallery. Under Apps, click
Dependency Analyzer.

34 Projects

34-70

2 The dependency graph displays the structure of all analyzed dependencies in the project. The
right pane lists required add-ons and any problem files. Observe that there are no problem files
listed.

Now, remove one of the required files. Select the project Files view, right click the source/
timesTableGame.m file, and select Remove from Project. Click Remove in the Remove from
Project dialog box.

The Dependency Analyzer automatically updates the graph and the Problems section in the
Properties pane.

Check again for problems.

1 In the Dependency Analyzer, in the Properties pane, point to the problem message, Not in
project, under Problems and click the magnifying glass . The graph updates to highlight the
problem file, timesTableGame.m.

2 To view the dependencies of the problem file, in the Impact Analysis section, click All
Dependencies.

Now that you have seen the problem, fix it by returning the missing file to the project. Right-click the
file and select Add to Project. The next time you run a dependency analysis, the file does not appear
as a problem file.

After running a dependency analysis, to investigate the dependencies of modified files, perform an
impact analysis.

1 In the Views section, click Source Control. The graph colors the files by source control status.
2 Select the modified files in the graph or in the File List.
3 To view the dependencies of the modified files, in the Impact Analysis section, click All

Dependencies.

Run Project Integrity Checks

To make sure that your changes are ready to commit, check your project. To run the project integrity
checks, on the Project tab, click the down arrow to expand the Tools gallery. Under Project Checks,
click Check Project. The checks look for missing files, files to add to source control or retrieve from
source control, and other issues. The Checks dialog box offers automatic fixes to problems found,
when possible. When you click a Details button in the Checks dialog box, you can view recommended
actions and decide whether to make the changes.

Commit Modified Files

After you modify files and you are satisfied with the results of the checks, you can commit your
changes to the source control repository.

1 In the Files view, select the Modified (number of files) tab. The files you changed appear in
the list.

2 To commit your changes to source control, on the Project tab, in the Source Control section,
click Commit.

3 Enter a comment for your submission, and click Submit. Watch the messages in the status bar as
the source control commits your changes. In Git, you can have both local and remote
repositories. These instructions commit to the local repository. To commit to the remote
repository, in the Source Control section, click Push.

 Explore an Example Project

34-71

View Project and Source Control Information

To view and edit project details, on the Project tab, in the Environment section, click Details. View
and edit project details such as the name, description, project root, startup folder, and location of
folders containing generated files.

To view details about the source control integration and repository location, on the Project tab, in
the Source Control section, click Git Details. The Times Table App example project uses Git source
control.

Close the Project

Click the at the top right corner of the project window to close the project.

proj = currentProject;
close(proj);

See Also

More About
• “Create Projects” on page 34-2
• “Manage Project Files” on page 34-15
• “Analyze Project Dependencies” on page 34-35

34 Projects

34-72

Source Control Interface

The source control interface provides access to your source control system from MATLAB.

• “Source Control Integration in MATLAB” on page 35-2
• “Set Source Control Preferences” on page 35-4
• “Use Git in MATLAB” on page 35-5
• “Set Up Git Source Control” on page 35-12
• “Branch and Merge with Git” on page 35-19
• “Add Git Submodules” on page 35-23
• “Review Changes in SVN Source Control” on page 35-25
• “Mark Files for Addition to SVN Source Control” on page 35-26
• “Move, Rename, or Delete Files Under SVN Source Control” on page 35-27
• “Resolve SVN Source Control Conflicts” on page 35-28
• “Commit Modified Files to SVN Source Control” on page 35-31
• “Revert Changes in SVN Source Control” on page 35-32
• “Set Up SVN Source Control” on page 35-33
• “Check Out from SVN Repository” on page 35-38
• “Update SVN File Status and Revision” on page 35-40
• “Get SVN File Locks” on page 35-41
• “Continuous Integration Using MATLAB Projects and Jenkins” on page 35-42
• “Customize External Source Control to Use MATLAB for Diff and Merge” on page 35-46
• “MSSCCI Source Control Interface” on page 35-51
• “Set Up MSSCCI Source Control” on page 35-52
• “Check Files In and Out from MSSCCI Source Control” on page 35-57
• “Additional MSSCCI Source Control Actions” on page 35-59
• “Access MSSCCI Source Control from Editors” on page 35-65
• “Troubleshoot MSSCCI Source Control Problems” on page 35-66

35

Source Control Integration in MATLAB
You can use MATLAB to work with files under source control. You can perform operations such as
update, commit, merge changes, and view revision history directly from the Current Folder browser.

MATLAB integrates with:

• Git
• Subversion (SVN)

In MATLAB Online, Subversion integration is not supported.

To get started using Git source control in MATLAB see “Use Git in MATLAB” on page 35-5. To get
started using SVN source control, see “Check Out from SVN Repository” on page 35-38 and “Mark
Files for Addition to SVN Source Control” on page 35-26.

Additional source control integrations, such as Microsoft Source-Code Control Interface (MSSCCI),
are available for download from the Add-On Explorer. For more information, see “Get and Manage
Add-Ons”.

Classic and Distributed Source Control
This diagram represents the classic source control workflow (for example, using SVN).

Benefits of classic source control:

• Locking and user permissions on a per-file basis (e.g., you can enforce locking of model files)
• Central server, reducing local storage needs
• Simple and easy to learn

This diagram represents the distributed source control workflow (for example, using Git).

35 Source Control Interface

35-2

Benefits of distributed source control:

• Offline working
• Local repository, which provides full history
• Branching
• Multiple remote repositories, enabling large-scale hierarchical access control

To choose classic or distributed source control, consider these tips.

Classic source control can be helpful if:

• You need file locks.
• You are new to source control.

Distributed source control can be helpful if:

• You need to work offline, commit regularly, and need access to the full repository history.
• You need to branch locally.

 Source Control Integration in MATLAB

35-3

Set Source Control Preferences

MathWorks source control integration, accessible through Projects and the Current Folder browser, is
on by default.

To disable source control, on the Home tab, in the Environment section, click Preferences. Select
MATLAB > General > Source Control and click None.

When you disable source control, MATLAB does not destroy repository information. For example, it
does not remove the .svn folder. You can put the folder back under source control by enabling the
source control integration again.

Set Git Preferences in MATLAB Online

In MATLAB Online, you can use the Git source control preferences to specify your user name and
email, remember credentials for the current MATLAB session, and enable SSH authentication.

On the Home tab, in the Environment section, click Preferences. Select MATLAB > Source
Control > Git. Then, adjust preference options as described in this table.

Preference Usage
User Specify your user name and email in Name and Email. This overrides

information you already specified in your global Git configuration file.
Credentials To configure MATLAB Online to remember user names and passwords

when using Git, select Remember credentials for the current
MATLAB session.

SSH SSH authentication is disabled by default in MATLAB Online. To enable
the use of SSH keys, select Enable SSH. This requires you to store the
public and private key files on MATLAB Drive. Make sure your Key is
pass-phrase protected when you generate your SSH keys.
To specify the Public key file, browse to or paste the path to your public
key file. For example, /MATLAB Drive/.ssh/id_rsa.pub.
To specify the Private key file, browse to or paste the path to your
private key file. For example, /MATLAB Drive/.ssh/id_rsa.
To enable the use of a pass-phrase and receive a prompt once per session,
select Key is pass-phrase protected.

See Also

More About
• “Use Git in MATLAB” on page 35-5

35 Source Control Interface

35-4

Use Git in MATLAB
You can use Git source control in MATLAB to manage your files and collaborate with others. Using
Git, you can track changes to your files and recall specific versions later. From the MATLAB Current
Folder browser, you can clone an existing remote repository, add files to the local repository, commit
changes, and push and pull changes to and from the remote repository.

Once you have cloned a remote Git repository, the basic workflow for working with the remote
repository is:

1 Pull the latest changes from the remote repository.
2 Edit existing files in your working folder.
3 Mark new files for addition to the local repository.
4 Review the changes.
5 Commit modified files to the local repository.
6 Push changes to the remote repository.

Alternatively, to track changes to your files without sharing with others, you can create a local Git
repository that is not synced with a remote repository. The same basic workflow applies when
working with a local repository that is not synced with a remote repository, except for the omission of
the Pull and Push actions.

Note Before using Git in MATLAB, to setup your system and avoid file corruption, follow the steps
described in “Set Up Git Source Control” on page 35-12.

Clone Remote Git Repository
You can clone a remote Git repository (for example, from GitHub or GitLab®) using HTTPS or SSH.

To clone a remote Git repository:

1 In the Current Folder browser, right-click the white space and select Source Control > Manage
Files. MATLAB opens the Manage Files Using Source Control dialog box.

2 Set the Source control integration option to Git.
3 Click the Change button next to the Repository path field. MATLAB opens the Select a

Repository dialog box.
4 Enter the path to the remote repository.

 Use Git in MATLAB

35-5

5 Click the Validate button to check the remote repository path. If prompted, enter the login
information for the remote repository (for example, your GitHub user name and personal access
token). If the path is valid, click OK to select the remote repository and return to the Manage
Files Using Source Control dialog box.

6 In the Sandbox field, enter the path of the working folder in which to store the retrieved files.
The specified folder must be empty.

7 Click the Retrieve button. If prompted, enter the login information for the remote repository.

After cloning a remote repository, to change the path to the remote repository, right-click in the
working folder, select Source Control > Remote, and specify the new path.

To prevent frequent login prompts when you interact with your remote repository using HTTPS,
configure a Git credential manager to remember credentials. For more information, see “Install Git
Credential Helper” on page 35-17. Alternatively, you can add a new public key and clone the remote
repository using SSH instead. For more information, see “Configure MATLAB to Use Git SSH
Authentication” on page 35-13.

You also can clone a remote repository into a new project. For more information, see “Clone Remote
Git Repository into New Project” on page 34-51.

Mark Files for Addition
To add the files in your working folder to source control, mark them for addition. MATLAB indicates
files that have not been added to source control using the Not Under Source Control icon () in the
Git column of the Current Folder browser.

To mark a file for addition, right-click the file in the Current Folder browser and select Source
Control > Add to Git. MATLAB indicates the file is marked for addition using the Added icon ().

Review Changes
When you make changes to a file in your working folder, MATLAB indicates that the file is modified

using the Modified icon () in the Git column of the Current Folder browser. The Unmodified icon

() indicates that a file has no changes.

35 Source Control Interface

35-6

Before committing a modified file, review the changes to the file using one of the methods described
in this table:

Action Procedure
Compare the changed file to the
latest revision of the file in your
local repository.

Right-click the file in the Current Folder browser and select
Source Control > Compare to Ancestor. The Comparison Tool
displays the differences.

Compare the changed file to a
revision of the file in your local
repository.

Right-click the file in the Current Folder browser and select
Source Control > Compare to Revision. Then, select a revision
to compare the modified file to and click the Compare to Local
button. The Comparison Tool displays the differences.

Compare two previous revisions
of a file in your local repository.

Right-click the file in the Current Folder browser and select
Source Control > Compare to Revision. Then, select the two
revisions to compare and click the Compare Selected button. The
Comparison Tool displays the differences.

Browse the revisions for a file in
the local repository.

Right-click the file in the Current Folder browser and select
Source Control > Show Revisions. You can view information
about who previously committed the file, when they committed it,
the log messages, and the list of files in each change set. You can
select multiple files and view revision history for each file.

Commit Modified Files
To record and save the current state of new and modified files in your working folder, commit them to
your local repository.

To commit files to your local repository:

1 In the Current Folder browser, right-click and select Source Control > View and Commit
Changes. The View and Commit Changes dialog box opens.

2 Select the files to commit.
3 Enter a comment in the Comment section.
4 Click the Commit button.

If the remote repository has moved ahead, you are prompted to update the revision of your files. To
update the revision, right-click in the Current Folder browser and select Source Control > Pull.
Resolve any conflicts before you commit.

 Use Git in MATLAB

35-7

Push Files
If your local repository contains committed changes that are not in your remote repository, you can
push those changes to your remote repository. To check whether your local repository contains
changes that are not in your remote repository, right-click in the Current Folder browser and select
Source Control > View Details. The Git information field indicates whether your committed local
changes are ahead of, behind, or coincident with the remote repository.

If your local repository is ahead of your remote repository, to push the changes, right-click in the
Current Folder browser and select Source Control > Push. A message appears if you cannot push
your changes directly because the repository has moved on. To continue, pull the latest changes from
the remote repository into your local repository.

Git does not support empty folders in remote repositories. Therefore, if you create an empty folder in
MATLAB and push the changes to the remote repository, when you clone the remote repository into a
new local repository, the empty folder is not included. To push empty folders to the remote repository
for other users to use, create an empty gitignore file in the folder and then push your changes.

Pull Files

If your remote repository has moved on and your local repository is behind, you can pull the latest
changes into your local repository. To pull the latest changes, in the Current Folder browser, right-
click and select Source Control > Pull. Pull might fail if you have conflicts. With a complicated
change, consider creating a branch from the origin (local repository), making some changes, and then
merging that branch into the main tracking branch.

A pull action fetches the latest changes and merges them into your current branch. If you are not
sure what is going to come in from the repository, fetch the files first to examine the changes and
then merge the changes manually.

Fetch Files

To fetch the latest changes from your remote repository, in the Current Folder browser, right-click
and select Source Control > Fetch. Fetch updates all of the origin branches into your local
repository. Your working folder files do not change. To see the changes from the remote repository,
you must merge in the origin changes to your local branches.

To check whether your local repository contains fetched changes that need to be merged, right-click
in the Current Folder browser and select Source Control > View Details. The Git information
field indicates whether your committed local changes are ahead of, behind, or coincident with the
remote repository. If your committed local changes are behind, you need to fetch and merge in the
latest changes from the remote repository.

For example, if you are on the main branch, get all changes from the main branch in the remote
repository.

1 Right-click in the Current Folder browser and select Source Control > Fetch.
2 Right-click in the Current Folder browser and select Source Control > Branches.
3 In the Branches dialog box, select origin/main in the Branches list.
4 Click Merge. The origin branch changes merge into the main branch in your working folder.

To check whether the merge was successful, right-click in the Current Folder browser and select
Source Control > View Details. If the Git information field indicates Coincident with /

35 Source Control Interface

35-8

origin/main, the changes were merged successfully, and you can now view the changes that you
fetched and merged from the remote repository in your working folder.

Resolve Conflicts
If you and another user change the same file in different working folders or on different branches, a
conflict message appears when you try to commit your modified files. To resolve the conflict, compare
the differences causing the conflict and then merge or overwrite the conflicting changes. After
resolving the conflict, you can mark it resolved and commit the file.

MATLAB indicates conflicts in the Git column of the Current Folder browser with a red warning icon

(). To resolve conflicts in a file:

1 Right-click the conflicted file and select Source Control > View Conflicts. The Comparison Tool
opens and shows the differences between the two conflicting revisions of the file.

2 Use the Comparison Tool to determine how to resolve the conflicts. To merge changes between
the two revisions, see “Compare Files and Folders and Merge Files”.

3 After you have resolved the conflicts, in the Current Folder browser, right-click the file and select
Source Control > Mark Conflict Resolved.

4 Commit the modified files.

Extract Conflict Markers

If you are working with files that are not registered as binary (text files, for example), Git might insert
conflict markers into those files. Conflict markers have this format:

<<<<<<<["mine" file descriptor]
["mine" file content]
=======
["theirs" file content]
<<<<<<<["theirs" file descriptor]

You can use MATLAB to extract the conflict markers from a file before resolving the conflicts.

When you open a conflicted file or select View Conflicts, MATLAB checks the file for conflict
markers. If the file contains conflict markers, the Conflict Marker Found dialog box opens. Follow the
prompts to extract the conflict markers and fix the file.

To view the conflict markers, in the Conflict Markers Found dialog box, click Load File. Do not try to
open the file because MATLAB does not recognize conflict markers. Instead, click Fix File to extract
the conflict markers.

Files that do not have a conflict can still contain conflict markers. This situation can happen if a file
with conflicts is marked as resolved and committed to the local repository. If you see conflict markers
in a file that is not marked conflicted, you can extract the conflict markers manually.

1 In the Current Folder browser, right-click the file and select Source Control > Extract Conflict
Markers to File.

2 In the Extract Conflict Markers to File dialog box, ensure that the default option to copy "mine"
file version over the conflicted file and the Compare extracted files option are selected.

3 Click Extract.

 Use Git in MATLAB

35-9

4 Use the Comparison Tool to resolve any conflicts.

Manage Files
There are several actions that you can take to manage the files in your local Git repository from the
Current Folder browser. You can refresh the source control status of your files, as well as move,
rename, delete, and revert the files.

This table describes the actions that you can take to manage your files.

Action Procedure
Refresh source control status of
one or more files

In the Current Folder browser, select one or more files, right-click
and select Source Control > Refresh Git status.

Refresh source control status of
all files in local repository

In the Current Folder browser, right-click the white space and
select Source Control > Refresh Git status.

Move file In the Current Folder browser, right-click the file, select Source
Control > Move, and enter a new file location.

Rename file In the Current Folder browser, right-click the file, select Source
Control > Rename, and enter a new file name.

Delete file from local repository
and retain a copy in working
folder

In the Current Folder browser, right-click the file and select
Source Control > Delete from Git. When the file is marked for
deletion from source control, the symbol changes to Deleted ().
The file is removed from the repository at the next commit.

Delete file from local repository
and from working folder

In the Current Folder browser, right-click the file and select
Source Control > Delete from Git and disk. The file disappears
from the Current Folder browser and is immediately deleted from
your working folder. The file is removed from the repository at the
next commit.

Revert changes to file in local
repository

In the Current Folder browser, right-click the file and select
Source Control > Revert Local Changes.

Revert local changes to all files
in local repository

In the Current Folder browser, right-click the white space and
select Source Control > Branches. In the Branches dialog box,
click Revert to Head.

Revert file to specified revision In the Current Folder browser, right-click the file and select
Revert using Git. Then, select a revision and click the Revert
button. If you revert a file to an earlier revision and then make
changes, you cannot commit the file until you resolve the conflict
with the repository history.

Create Local Git Repository
If you want to add version control to your files without sharing with another user, you can create a
local Git repository and working folder on your system without linking it to a remote repository.

To create a local Git repository and working folder:

1 In the Current Folder browser, right-click the white space and select Source Control > Manage
Files. MATLAB opens the Manage Files Using Source Control dialog box.

35 Source Control Interface

35-10

2 Set the Source control integration option to Git.
3 Click the Change button next to the Repository path field. MATLAB opens the Select a

Repository dialog box.
4 Click the Create a Git repository on disk button.
5 Select the folder in which to create and store the local repository and click Select Folder. The

selected folder must be empty.
6 Click the Validate button to validate the repository path. If the path is valid, click the OK button

to return to the Manage Files Using Source Control dialog box.
7 Enter the path of the working folder in which to store your files in the Sandbox field. The

specified folder must be empty.
8 Click the Retrieve button.

After creating a local repository and working folder, to change the path of the local repository, right-
click in the working folder, select Source Control > Remote, and specify the new path.

To use a Git server for the repository on your local system, you can use a Git server hosting solution
or set up your own Apache™ Git server.

Note In a production environment, do not rely on remote repositories via the file system using the
file:/// protocol. The file protocol is not safe. Concurrent access might corrupt repositories.

Store Uncommitted Changes Using Git Stashes
To store modified files for later use without committing them, create a Git stash. You also can use a
stash to move changes to files easily to a new branch.

To create a stash, in the Current Folder browser, right-click the white space in your working folder
and select Source Control > Stashes. Then, click the New Stash button.

To view modified files in a stash, in the Current Folder browser, right-click the white space and select
Source Control > Stashes. In the Available Stashes section, select a stash and then right-click a
modified file to view the changes or save a copy.

To apply the stash to your current branch and then delete the stash, click Pop. To apply the stash and
keep it, click Apply.

To delete the stash, click Drop.

See Also

Related Examples
• “Set Up Git Source Control” on page 35-12
• “Branch and Merge with Git” on page 35-19
• “Add Git Submodules” on page 35-23
• “Clone Remote Git Repository into New Project” on page 34-51

 Use Git in MATLAB

35-11

Set Up Git Source Control
You can use Git source control in MATLAB to manage your files and collaborate with others. Using
Git, you can track changes to your files and recall specific versions later. For more information, see
“Use Git in MATLAB” on page 35-5.

Before using Git, follow these steps to set it up for MATLAB:

• Register your binary files with Git to avoid file corruption. (Required for all systems)
• Configure MATLAB for Git on a Windows system. (Recommended for Windows Systems)
• Configure MATLAB to use Git SSH authentication or install a Git credential helper to prevent

frequent login prompts. (Optional)
• Disable compression for Simulink models to reduce your Git repository size. (Optional)
• Configure Git to use Git LFS if you are working with large files. (Optional)
• Configure Git to use MATLAB for Diff and Merge. (Optional)

Before R2020b, a command-line Git client must be installed to use Git to merge branches in MATLAB.
For more information, see “Install Command-Line Git Client” on page 35-18.

Register Binary Files with Git
If you use third-party source control tools, you must register your MATLAB and Simulink file
extensions such as .mlx, .mat, .fig, .mlapp, .mdl, .slx, .mdlp, .slxp, .sldd, and .p as binary
formats. Also register extensions for MEX files, such as .mexa64, .mexmaci64, and .mexw64. If you
do not register the extensions, these tools can corrupt your files when you submit them by changing
end-of-line characters, expanding tokens, substituting keywords, or attempting to automerge.
Corruption can occur if you use the source control tools outside of MATLAB or if you try submitting
files from MATLAB without first registering your file formats.

Also check that other file extensions are registered as binary to avoid corruption at check-in. Check
and register file extensions such as .xlsx, .jpg, .pdf, .docx, and so on.

To register your binary file extensions with Git, add them to a .gitattributes file. If you create a
new project that uses Git source control or switch an existing project from another source control
system to Git source control, MATLAB automatically creates a .gitattributes file and populates it
with a list of common binary files to register.

If a .gitattributes file is not automatically created, you can create one that contains the list of
common binary files to register. In the MATLAB Command Window, enter:
copyfile(fullfile(matlabroot,'toolbox','shared','cmlink','git','auxiliary_files', ...
'mwgitattributes'),fullfile(pwd,'.gitattributes'))

Alternatively, to create a blank .gitattributes file, enter:

edit .gitattributes

To register binary files that are not already included in the .gitattributes file, add a line to the
file for each file type that you need. For example, *.mlapp binary.

Configure MATLAB for Git on Windows

35 Source Control Interface

35-12

On Windows systems, if you are working with files that have long paths, enable support for long
paths. In addition, to use Git hooks with MATLAB, install Cygwin and add it to the MATLAB library
path. Git hooks are custom scripts that can be triggered by operations such as committing, merging,
and receiving pushed commits.

Enable Support for Long Paths (Recommended)

To enable support for long paths on a Windows system, run this command in MATLAB:

!git config --global core.longpaths true

Install Cygwin (Optional)

To install Cygwin on a Windows system and add it to the MATLAB library path:

1 Download and run the installer from https://www.cygwin.com/.
2 In MATLAB, open librarypath.txt.

edit(fullfile(matlabroot,"toolbox","local","librarypath.txt"))
3 Add the Cygwin bin folder location to the end of librarypath.txt, for example,

C:\cygwin64\bin.

##
FILE: librarypath.txt
##
Entries:
o path_to_jnifile
o [alpha,glnx86,sol2,unix,win32,mac]=path_to_jnifile
o $matlabroot/path_to_jnifile
o $jre_home/path_to_jnifile
##
$matlabroot/bin/$arch
$matlabroot/sys/jxbrowser/$arch/lib
C:\cygwin64\bin

If you do not have permission to edit the librarypath.txt file, see “Locate Native Method
Libraries”.

4 Restart MATLAB.

Configure MATLAB to Use Git SSH Authentication

To prevent frequent login prompts when you interact with your remote repository using HTTPS, add a
new public key and clone the repository using SSH instead. This table provides instructions on how to
configure MATLAB to use SSH authentication based on your operating system.

 Set Up Git Source Control

35-13

https://www.cygwin.com/

Operating
System

Instructions

Windows 1 Install a command-line Git client and make it available system-wide. To check if
Git is installed, enter the command !git in the MATLAB Command Window. If
the command does not return anything, you need to install command-line Git. For
more information, see “Install Command-Line Git Client” on page 35-18.

2 Close all MATLAB sessions.
3 Generate an SSH key using the ssh-keygen command. For example, at a

Windows command prompt, enter this command:

ssh-keygen -t ed25519 -C "your_email@example.com"

ssh-keygen prompts you to confirm where to save the key and asks for a
passphrase. If you do not want to type a password when you use the key, leave
the passphrase empty.

If you already have keys in the specified folder, ssh-keygen asks if you want to
override them.

Before R2021a, specify the -m PEM option to generate an SSH key in the RSA
format. Otherwise, ssh-keygen creates the SSH key using the default OpenSSH
format, which is not supported in MATLAB versions before R2021a. For example,
at a Windows command prompt, enter this command:

ssh-keygen -m PEM

If you generate an SSH key without specifying the -m PEM option, you can
convert your key to the supported RSA format using this command, where
~/.ssh/id_rsa is the name of the SSH key file.

ssh-keygen -p -m PEM -f ~/.ssh/id_rsa

4 Place your keys in the USERPROFILE/.ssh or HOME/.ssh folder. To verify
which USERPROFILE folder MATLAB is working with, in the MATLAB Command
Window, enter:

getenv('USERPROFILE')

Before R2021a, if you created the SSH key using the -m PEM option, you can
skip step 5.

5 To make sure that MATLAB detects the SSH keys, in the MATLAB Command
Window, enter:

git = settings().matlab.sourcecontrol.git;
git.PrivateKeyFile.PersonalValue = "C:\Users\username\.ssh\id_ed25119";
git.PublicKeyFile.PersonalValue = "C:\Users\username\.ssh\id_ed25119.pub";

If you entered a passphrase when generating the SSH key, configure MATLAB to
use the passphrase and receive a prompt only once per session. To do so, use
Pageant or, in the MATLAB Command Window, enter:

git.KeyHasPassphrase.PersonalValue = true;

35 Source Control Interface

35-14

Operating
System

Instructions

To use multiple keys, use Pageant as the SSH agent. If Pageant is running,
MATLAB looks for keys in Pageant before looking in USERPROFILE/.ssh.

6 Configure your GitHub or GitLab account to use the SSH keys. To do so, go to
the .ssh folder and copy the contents of the .pub file. Then, go to your account
settings, and in the SSH keys section, paste the contents of the .pub file into
the Add SSH key field.

 Set Up Git Source Control

35-15

Operating
System

Instructions

Linux and
macOS

1 Close all MATLAB sessions.
2 Generate an SSH key using the ssh-keygen command. For example, in a

Terminal window, enter this command:

ssh-keygen -t ed25519 -C "your_email@example.com"

ssh-keygen prompts you to confirm where to save the key and asks for a
passphrase. If you do not want to type a password when you use the key, leave
the passphrase empty.

If you already have keys in the specified folder, ssh-keygen asks if you want to
override them.

Before R2021a, specify the -m PEM option to generate an SSH key in the RSA
format. Otherwise, ssh-keygen creates the SSH key using the default OpenSSH
format, which is not supported in MATLAB versions before R2021a. For example,
in a Terminal window, enter this command:

ssh-keygen -m PEM

If you generate an SSH key without specifying the -m PEM option, you can
convert your key to the supported RSA format using this command, where
~/.ssh/id_rsa is the name of the SSH key file.

ssh-keygen -p -m PEM -f ~/.ssh/id_rsa
3 Place your keys in the HOME/.ssh folder. To verify which HOME folder MATLAB is

working with, in the MATLAB Command Window, enter:

getenv('HOME')

Before R2021a, if you created the SSH key using the -m PEM option, you can
skip step 4.

4 To make sure that MATLAB detects the SSH keys, in the MATLAB Command
Window, enter:

git = settings().matlab.sourcecontrol.git;
git.PrivateKeyFile.PersonalValue = "~/.ssh/id_ed25119";
git.PublicKeyFile.PersonalValue = "~/.ssh/id_ed25119.pub";

If you entered a passphrase when generating the SSH key, configure MATLAB to
use the passphrase and receive a prompt only once per session. To do so, use an
SSH agent or, in the MATLAB Command Window, enter:

git.KeyHasPassphrase.PersonalValue = true;

To use multiple keys, use an SSH agent. If an SSH agent is running, MATLAB
looks for keys in the agent before looking in HOME/.ssh.

5 Configure your GitHub or GitLab account to use the SSH keys. To do so, go to
the .ssh folder and copy the contents of the .pub file. Then, go to your account
settings, and in the SSH keys section, paste the contents of the .pub file into
the Add SSH key field.

35 Source Control Interface

35-16

Install Git Credential Helper

To configure MATLAB to remember user names and passwords when using Git, install a credential
helper. The recommended credential helper for all platforms is Git Credential Manager Core.

For example, to install Git Credential Manager Core on a Windows system, download and run the Git
for Windows installer using the instructions described in “Install Command-Line Git Client” on page
35-18. In the Choose a credential helper section of the installer, select Git Credential Manager
Core as the credential helper.

To delete saved login information for Git repositories, follow instructions based on your operating
system.

Operating System Instructions
Windows To reset the Git credentials for your repository, in the Credential

Manager, in the Windows Credentials tab, delete the entries
under Generic Credentials.

Linux and macOS To reset the Git credentials for your repository, enter:

echo "url=https://github.com/myrepo.git" | git credential reject

Disable Compression for Simulink Models
You can reduce your Git repository size by saving Simulink models without compression. Turning off
compression results in larger SLX files on disk but reduces repository size.

To use this setting with new SLX files, create your models using a model template with SLX
Compression set to none. For existing SLX files, set the compression and then save the model. For
more information, see “Set SLX Compression Level” (Simulink).

Configure Git to Use Git LFS
If you are working with large files, configure Git to use Git Large File Storage (LFS) by installing
command-line Git and setting up LFS.

For example, to use Git LFS on a Windows system, download and run the Git for Windows installer
using the instructions described in “Install Command-Line Git Client” on page 35-18. In the Select
Components section of the Git for Windows installer, select the Git LFS (Large File Support) and
Associate .sh files to be run with Bash options.

MATLAB does not support Git LFS locking. In addition, MATLAB does not support LFS commands
such as git lfs track. Use !git lfs track instead.

Note Git LFS uses Git hooks. Make sure that you have Cygwin installed. For more information, see
“Configure MATLAB for Git on Windows” on page 35-12.

Configure Git to use MATLAB for Diff and Merge
You can configure Git to use the MATLAB Comparison Tool for diff and merge. The MATLAB
Comparison Tool provides tools for merging MathWorks files such as live scripts, MAT, SLX, or MDL

 Set Up Git Source Control

35-17

files. You can use the automerge tool with Git to automatically merge branches that contain changes
in different subsystems in the same SLX file.

For more information about how to configure Git to use the MATLAB Comparison Tool, see
“Customize External Source Control to Use MATLAB for Diff and Merge” on page 35-46.

Install Command-Line Git Client
To use Git LFS or a credential helper, you must install a command-line Git client and make it available
system-wide. Before R2020b, a command-line Git client must be installed to use Git to merge
branches in MATLAB.

To check if Git is installed, enter the command !git in the MATLAB Command Window. If the
command does not return anything, you need to install command-line Git. This table provides
instructions on how to install command-line Git based on your operating system.

Operating System Instructions
Windows 1 Download and run the installer from https://

gitforwindows.org/.
2 In the Adjusting your PATH environment section, choose

the install option Git from the command line and also
from 3rd-party software. This option adds Git to your PATH
variable and makes it available system-wide so that MATLAB
can communicate with Git.

3 In the section for configuring the line-ending conversions,
choose the Checkout Windows-style, commit Unix-style
line endings option. The line-ending format is not enforceable
between machines and users, but you can support consistent
line endings for text files in the .gitattributes file of each
repository.

4 Restart your system for the changes to take effect.
Linux Git is available for most distributions. Install Git for your

distribution. For example, on Debian®, install Git by entering:

sudo apt-get install git

macOS On Mavericks (10.9) or above, run Git from a Terminal window. If
you do not have Git installed already, it will prompt you to install
Xcode Command Line Tools. For more information, see https://git-
scm.com/doc.

See Also

Related Examples
• “Use Git in MATLAB” on page 35-5
• “Branch and Merge with Git” on page 35-19
• “Customize External Source Control to Use MATLAB for Diff and Merge” on page 35-46

35 Source Control Interface

35-18

https://gitforwindows.org/
https://gitforwindows.org/
https://git-scm.com/doc
https://git-scm.com/doc

Branch and Merge with Git

In this section...
“Create Branch” on page 35-19
“Switch Branch” on page 35-20
“Compare Branches” on page 35-21
“Merge Branches” on page 35-21
“Revert to Head” on page 35-21
“Delete Branches” on page 35-22

Create Branch
1 From within your Git repository folder, right-click the white space of the Current Folder browser

and select Source Control > Branches. In the Branches dialog box, you can view, switch,
create, and merge branches.

Tip You can inspect information about each commit node. Select a node in the Branch Browser
diagram to view the author, date, commit message, and changed files.

The Branch Browser in this figure shows an example branch history.

 Branch and Merge with Git

35-19

2 Select a source for the new branch. Click a node in the Branch Browser diagram, or enter a
unique identifier in the Source text box. You can enter a tag, branch name, or a unique prefix of
the SHA1 hash (for example, 73c637 to identify a specific commit). Leave the default to create a
branch from the head of the current branch.

3 Enter a name in the Branch name text box and click Create.
4 To work on the files on your new branch, switch your project to the branch.

In the Branches drop-down list, select the branch you want to switch to and click Switch.
5 Close the Branches dialog box and work on the files on your branch.

Switch Branch
1 From within your Git repository folder, right-click the white space of the Current Folder browser

and select Source Control > Branches.
2 In the Branches dialog box, in the Branches drop-down list, select the branch you want to and

click Switch.
3 Close the Branches dialog box and work on the files on your branch.

35 Source Control Interface

35-20

Compare Branches
From within your Git repository folder, right-click the white space of the Current Folder browser and
select Source Control > Branches.

• To examine differences in a file between the current revision and its parent, right-click a file in the
tree under Differences from parent and select Show Difference.

• To examine differences in a file between any two revisions including revisions on two different
development branches, hold the Ctrl key and select the two different revisions. Right-click a file in
the tree under Differences from selection and select Show Difference.

MATLAB opens a comparison report. You can save a copy of the selected file on either revision. Right-
click a file and select Save As to save a copy of the file on the selected revision. Select Save Original
As to save a copy of the file on the prior revision. This is useful if you want to test how the code ran in
previous revisions or on other branches.

Merge Branches
To merge any branches:

1 From within your Git repository folder, right-click the white space of the Current Folder browser
and select Source Control and Branches.

2 In the Branches dialog box, from the Branches drop-down list, select a branch you want to
merge into the current branch, and click Merge.

3 Close the Branches dialog box and work on the files on your branch.

If the branch merge causes a conflict that Git cannot resolve automatically, an error dialog box
reports that automatic merge failed. Resolve the conflicts before proceeding.

Caution Do not move or delete files outside of MATLAB because this can cause errors on merge.

Keep Your Version

1 To keep your version of the file, right-click the file and select Mark Conflict Resolved.
2 Click Commit Modified Files to commit your change that marks the conflict resolved.

View Conflicts in Branch Versions

If you merge a branch and there is a conflict in a file, Git marks the file as conflicted and does not
modify the contents. Right-click the file and select Source Control > View Conflicts. A comparison
report opens that shows the differences between the file on your branch and the branch you want to
merge into. Decide how to resolve the conflict. See “Resolve SVN Source Control Conflicts” on page
35-28.

Revert to Head
1 From within your Git repository folder, right-click the white space of the Current Folder browser

and select Source Control > Branches.
2 In the Branches dialog box, click Revert to Head to remove all local changes.

 Branch and Merge with Git

35-21

Delete Branches
1 In the Branches dialog box under Branch Browser, expand the Branches drop-down list, and

select the branch you want to delete.
2 On the far right, click the down arrow and select Delete Branch.

Caution You cannot undo branch deletion.

See Also

Related Examples
• “Set Up Git Source Control” on page 35-12
• “Use Git in MATLAB” on page 35-5
• “Customize External Source Control to Use MATLAB for Diff and Merge” on page 35-46

35 Source Control Interface

35-22

Add Git Submodules
To reuse code from another repository, you can specify Git submodules.

To clone an external Git repository as a submodule:

1 Right-click in the MATLAB Current Folder browser, and select Source Control > Submodules.
2 In the Submodules dialog box, click Add.
3 In the Add Submodule dialog box, in the Remote box, specify a repository location. Optionally,

click Validate.
4 In the Path box, specify a location for the submodule and click OK. The Submodules dialog box

displays the status and details of the submodule.
5 Check the status message, and click Close.

Tip You can use Git submodules to populate a referenced project. For more information, see
“Organize Projects into Components Using References and Git Submodules” (Simulink) and watch
How to Organize Large Projects into Components (3 min, 32 sec).

Update Submodules
After using Pull to get the latest changes from a remote repository, check that submodules are up to
date by clicking Submodules and then click Update. If any submodule definition have changed, then
the update ensures that the submodule folder contains the correct files. Update applies to all child
submodules in the submodule hierarchy.

Use Fetch and Merge with Submodules
When you want to manage the added submodule, open the Submodules dialog box.

1 To get the latest version of a submodule, in the Submodules dialog box, click Fetch.
2 After fetching, you must merge. Check the Status message in the Submodules dialog box for

information about your current branch relative to the remote tracking branch in the repository.
When you see the message Behind, you need to merge in changes from the repository to your
local branch.

3 Click Branches and merge in the origin changes to your local branch using the Branches dialog
box.

Use Push to Send Changes to the Submodule Repository
If you make changes in your submodule and want to send changes back to the repository:

1 Perform a local commit in the parent folder.
2 Open the Submodules dialog box and click Push.

If you want other users to obtain your changes in the submodule when they clone the parent folder,
make sure the index and head match.

 Add Git Submodules

35-23

https://www.youtube.com/watch?v=nUnRC2uwpHo

1 In the Submodules dialog box, check the index and head values. The index points to the head
commit at the time you first cloned the submodule, or when you last committed the parent folder.
If the index and head do not match, you must update the index.

2 To update the index, commit your changes in the parent folder, and then click Push in the
Submodules dialog box. This action makes the index and head the same.

See Also

Related Examples
• “Set Up Git Source Control” on page 35-12
• “Use Git in MATLAB” on page 35-5
• How to Organize Large Projects into Components (3 min, 32 sec)

35 Source Control Interface

35-24

https://www.youtube.com/watch?v=nUnRC2uwpHo

Review Changes in SVN Source Control
The files under source control that you have changed display the Modified File symbol in the
Current Folder browser. Right-click the file in the Current Folder browser, select Source Control,
and select:

• Show Revisions to open the File Revisions dialog box and browse the history of a file. You can
view information about who previously committed the file, when they committed it, the log
messages, and the list of files in each change set. You can select multiple files and view revision
history for each file.

You also can select a revision and browse the lower list of files in the change set. Right-click files
to view changes or save revisions.

• Compare to Revision to open a dialog box where you can select the revisions you want to
compare and view a comparison report. You can either:

• Select a revision and click Compare to Local.
• Select two revisions and click Compare Selected.

You also can select a revision and browse the lower list of files in the change set. Right-click files
to view changes or save revisions.

• Compare to Ancestor to run a comparison with the last checked-out version in the sandbox. The
Comparison Tool displays a report.

If you need to update the status of the modified files, see “Update SVN File Status and Revision” on
page 35-40.

See Also

Related Examples
• “Resolve SVN Source Control Conflicts” on page 35-28
• “Commit Modified Files to SVN Source Control” on page 35-31
• “Revert Changes in SVN Source Control” on page 35-32

 Review Changes in SVN Source Control

35-25

Mark Files for Addition to SVN Source Control
When you create a new file in a folder under source control, the Not Under Source Control symbol
appears in the status column of the Current Folder browser. To add a file to source control, right-click
the file in the Current Folder browser, and select Source Control > Add to SVN.

When the file is marked for addition to source control, the symbol changes to Added .

35 Source Control Interface

35-26

Move, Rename, or Delete Files Under SVN Source Control
Move, rename, or delete files using the MATLAB Source Control context menu options or another
source control client application.

To move a file under source control, right-click the file in the Current Folder browser, select Source
Control > Move, and enter a new file location.

To rename a file under source control, right-click the file in the Current Folder browser, select
Source Control > Rename, and enter a new file name.

To delete a file from the repository, mark the file for deletion.

• To mark a file for deletion from the repository and retain a local copy, right-click the file in the
Current Folder browser. Select Source Control > Delete from SVN. When the file is marked for
deletion from source control, the symbol changes to Deleted . The file is removed from the
repository at the next commit.

• To mark a file for deletion from the repository and from your disk, right-click the file in the
Current Folder browser. Select Source Control > Delete from SVN and disk. The file
disappears from the Current Folder browser and is immediately deleted from your disk. The file is
removed from the repository at the next commit.

See Also

Related Examples
• “Mark Files for Addition to SVN Source Control” on page 35-26
• “Commit Modified Files to SVN Source Control” on page 35-31

 Move, Rename, or Delete Files Under SVN Source Control

35-27

Resolve SVN Source Control Conflicts
Examining and Resolving Conflicts
If you and another user change the same file in different sandboxes or on different branches, a
conflict message appears when you try to commit your modified files. Follow the procedure “Resolve
Conflicts” on page 35-28 to extract conflict markers if necessary, compare the differences causing
the conflict, and resolve the conflict.

To resolve conflicts you can:

• Use the Comparison Tool to merge changes between revisions.
• Decide to overwrite one set of changes with the other.
• Make changes manually by editing files.

For details on using the Comparison Tool to merge changes, see “Merge Text Files” on page 35-28.

After you are satisfied with the file that is marked conflicted, you can mark the conflict resolved and
commit the file.

Resolve Conflicts
1 Look for conflicted files in the Current Folder browser.
2 Check the SVN status column for files with a red warning symbol , which indicates a conflict.
3 Right-click the conflicted file and select Source Control > View Conflicts to compare versions.
4 Examine the conflict. A comparison report opens that shows the differences between the file and

the version of the file in conflict.
5 Use the Comparison Tool report to determine how to resolve the conflict.

You can use the Comparison Tool to merge changes between revisions, as described in “Merge
Text Files” on page 35-28.

6 When you have resolved the changes and want to commit the version in your sandbox, in the
Current Folder browser, right-click the file and select Source Control > Mark Conflict
Resolved.

7 Commit the modified files.

Merge Text Files
When comparing text files, you can merge changes from one file to the other. Merging changes is
useful when resolving conflicts between different versions of files.

If you see conflict markers in a text comparison report like this:

<<<<<<< .mine

then extract the conflict markers before merging, as described in “Extract Conflict Markers” on page
35-29.

Tip You can merge only from left to right. When comparing to another version in source control, the
right file is the version in your sandbox. The left file is either a temporary copy of the previous version

35 Source Control Interface

35-28

or another version causing a conflict (e.g., filename_theirs). Observe the file paths of the left and
right file at the top of the comparison report. Merge differences from the left (temporary copy) file to
the right file to resolve conflicts.

1 In the Comparison Tool report, select a difference in the report and click Replace Content. The
selected difference is copied from the left file to the right file.

To undo the content replacement, click Undo.

Alternatively, use the inline Replace Content and Undo icons.

The merged file name at the top of the report displays the dirty flag (filename.m*) to show you
that the file contains unsaved changes.

2 Click Accept & Close to save the merge changes and mark the conflicts resolved.

Extract Conflict Markers
What Are Conflict Markers?

Source control tools can insert conflict markers in files that you have not registered as binary (e.g.,
text files). You can use MATLAB to extract the conflict markers and compare the files causing the
conflict. This process helps you to decide how to resolve the conflict.

Caution Register files with source control tools to prevent them from inserting conflict markers and
corrupting files. For more information, see “Register Binary Files with SVN” on page 35-33. If your
files already contains conflict markers, the MATLAB tools can help you to resolve the conflict.

Conflict markers have the following form:

<<<<<<<["mine" file descriptor]
["mine" file content]
=======
["theirs" file content]
<<<<<<<["theirs" file descriptor]

If you try to open a file containing conflict markers, the Conflict Markers Found dialog box opens.
Follow the prompts to fix the file by extracting the conflict markers. After you extract the conflict
markers, resolve the conflicts as described in “Examining and Resolving Conflicts” on page 35-28.

To view the conflict markers, in the Conflict Markers Found dialog box, click Load File. Do not try to
load files, because MATLAB does not recognize conflict markers. Instead, click Fix File to extract the
conflict markers.

MATLAB checks only conflicted files for conflict markers.

 Resolve SVN Source Control Conflicts

35-29

Extract Conflict Markers

When you open a conflicted file or select View Conflicts, MATLAB checks files for conflict markers
and offers to extract the conflict markers. MATLAB checks only conflicted files for conflict markers.

However, some files that are not marked as conflicted can still contain conflict markers. This can
happen if you or another user marked a conflict resolved without removing the conflict markers and
then committed the file. If you see conflict markers in a file that is not marked conflicted, you can
extract the conflict markers.

1 In the Current Folder browser, right-click the file, and select Source Control > Extract Conflict
Markers to File.

2 In the Extract Conflict Markers to File dialog box, leave the default option to copy "mine" file
version over the conflicted file. Leave the Compare extracted files check box selected. Click
Extract.

3 Use the Comparison Tool report as usual to continue to resolve the conflict.

35 Source Control Interface

35-30

Commit Modified Files to SVN Source Control
Before you commit modified files, review changes and mark any new files for addition into source
control. The files under source control that you can commit to a repository display the Added to
Source Control symbol or the Modified File symbol in the Current Folder browser.

1 Right-click in the Current Folder browser and select Source Control > View and Commit
Changes. In the View and Commit Changes dialog box, select the files to commit to the
repository.

2 Enter comments in the dialog box, and click Commit.
3 A message appears if you cannot commit because the repository has moved ahead. Before you

can commit the file, you must update the revision up to the current HEAD revision.

To update the revision, right-click in the Current Folder browser and select Source Control >
Update All from SVN. Resolve any conflicts before you commit.

See Also

Related Examples
• “Mark Files for Addition to SVN Source Control” on page 35-26
• “Review Changes in SVN Source Control” on page 35-25
• “Resolve SVN Source Control Conflicts” on page 35-28
• “Update SVN File Status and Revision” on page 35-40

 Commit Modified Files to SVN Source Control

35-31

Revert Changes in SVN Source Control

Revert Local Changes
To roll back local changes in a file under SVN source control, right-click the file and select Source
Control > Revert Local Changes and Release Locks. This command releases locks and reverts to
the version in the last sandbox update (that is, the last version you synchronized or retrieved from the
repository). If your file is not locked, the menu option is Source Control > Revert Local Changes.
To abandon all local changes, select all the files in the Current Folder browser before you select the
command.

Revert a File to a Specified Revision
1 Right-click a file in the Current Folder browser and select Source Control > Revert using

SVN.
2 In the Revert Files dialog box, choose a revision to revert to. Select a revision to view information

about the change such as the author, date, and log message.
3 Click Revert.

If you revert a file to an earlier revision and then make changes, you cannot commit the file until you
resolve the conflict with the repository history.

See Also

Related Examples
• “Resolve SVN Source Control Conflicts” on page 35-28

35 Source Control Interface

35-32

Set Up SVN Source Control
MATLAB provides built-in SVN integration for use with Subversion (SVN) sandboxes and repositories.
Because the implementation is built in to MATLAB, you do not need to install SVN. The built-in SVN
integration supports secure logins. This integration ignores any existing SVN installation.

SVN Source Control Options
To use the version of SVN provided with MATLAB, when you retrieve a file from source control, select
SVN in the Source control integration list. For instructions, see “Check Out from SVN Repository”
on page 35-38. When you create a new sandbox using the MATLAB built-in SVN integration, the new
sandbox uses the latest version of SVN provided by MATLAB.

Caution Before using source control, you must register binary files with the source control tools to
avoid corruption. See “Register Binary Files with SVN” on page 35-33.

If you need to use a version of SVN other than the built-in version, you can create a repository using
the Command-Line SVN Integration (compatibility mode) Source control integration
option, but you must also install a command-line SVN client.

Command-line SVN integration communicates with any Subversion (SVN) client that supports the
command-line interface. With Command-Line SVN Integration (compatibility mode), if you
try to rename a file or folder to a name that contains an @ character, an error occurs because
command-line SVN treats all characters after the @ symbol as a peg revision value.

Register Binary Files with SVN
If you use third-party source control tools, you must register your MATLAB and Simulink file
extensions such as .mlx, .mat, .fig, .mlapp, .mdl, .slx, .mdlp, .slxp, .sldd, and .p as binary
formats. Also register extensions for MEX files, such as .mexa64, .mexmaci64, and .mexw64. If you
do not register the extensions, these tools can corrupt your files when you submit them by changing
end-of-line characters, expanding tokens, substituting keywords, or attempting to automerge.
Corruption can occur if you use the source control tools outside of MATLAB or if you try submitting
files from MATLAB without first registering your file formats.

Also check that other file extensions are registered as binary to avoid corruption at check-in. Check
and register file extensions such as .xlsx, .jpg, .pdf, .docx, and so on.

You must register binary files if you use any version of SVN, including the built-in SVN integration
provided by MATLAB. If you do not register your extensions as binary, SVN might add annotations to
conflicted MATLAB files and attempt automerge. To avoid this problem when using SVN, register file
extensions.

1 Locate your SVN config file. Look for the file in these locations:

• C:\Users\myusername\AppData\Roaming\Subversion\config or C:\Documents and
Settings\myusername\Application Data\Subversion\config on Windows

• ~/.subversion on Linux or macOS
2 If you do not find a config file, create a new one. See “Create SVN Config File” on page 35-34.

 Set Up SVN Source Control

35-33

3 If you find an existing config file, you have previously installed SVN. Edit the config file. See
“Update Existing SVN Config File” on page 35-34.

Create SVN Config File

1 If you do not find an SVN config file, create a text file containing these lines:

[miscellany]
enable-auto-props = yes
[auto-props]
*.mlx = svn:mime-type=application/octet-stream
*.mat = svn:mime-type=application/octet-stream
*.fig = svn:mime-type=application/octet-stream
*.mdl = svn:mime-type=application/octet-stream
*.slx = svn:mime-type= application/octet-stream
*.mlapp = svn:mime-type= application/octet-stream
*.p = svn:mime-type=application/octet-stream
*.mdlp = svn:mime-type=application/octet-stream
*.slxp = svn:mime-type=application/octet-stream
*.sldd = svn:mime-type=application/octet-stream
*.slxc = svn:mime-type=application/octet-stream
*.mlproj = svn:mime-type=application/octet-stream
*.mldatx = svn:mime-type=application/octet-stream
*.slreqx = svn:mime-type=application/octet-stream
*.sfx = svn:mime-type=application/octet-stream
*.sltx = svn:mime-type=application/octet-stream

2 Check for other file types you use that you also need to register as binary to avoid corruption at
check-in. Check for files such as MEX-files
(.mexa64, .mexmaci64, .mexw64), .xlsx, .jpg, .pdf, .docx, etc. Add a line to the config
file for each file type you need. Examples:

*.mexa64 = svn:mime-type=application/octet-stream
*.mexw64 = svn:mime-type=application/octet-stream
*.mexmaci64 = svn:mime-type=application/octet-stream
*.xlsx = svn:mime-type=application/octet-stream
*.docx = svn:mime-type=application/octet-stream
*.pdf = svn:mime-type=application/octet-stream
*.jpg = svn:mime-type=application/octet-stream
*.png = svn:mime-type=application/octet-stream

3 Name the file config and save it in the appropriate location:

• C:\Users\myusername\AppData\Roaming\Subversion\config or C:\Documents and
Settings\myusername\Application Data\Subversion\config on Windows

• ~/.subversion on Linux or macOS.

After you create the SVN config file, SVN treats new files with these extensions as binary. If you
already have binary files in repositories, see “Register Files Already in Repositories” on page 35-35.

Update Existing SVN Config File

If you find an existing config file, you have previously installed SVN. Edit the config file to register
files as binary.

1 Edit the config file in a text editor.
2 Locate the [miscellany] section, and verify the following line enables auto-props with yes:

35 Source Control Interface

35-34

enable-auto-props = yes

Ensure that this line is not commented (that is, that it does not start with #). Config files can
contain example lines that are commented out. If there is a # character at the beginning of the
line, delete it.

3 Locate the [auto-props] section. Ensure that [auto-props] is not commented. If there is a #
character at the beginning, delete it.

4 Add the following lines at the end of the [auto-props] section:

*.mlx = svn:mime-type=application/octet-stream
*.mat = svn:mime-type=application/octet-stream
*.fig = svn:mime-type=application/octet-stream
*.mdl = svn:mime-type=application/octet-stream
*.slx = svn:mime-type= application/octet-stream
*.mlapp = svn:mime-type= application/octet-stream
*.p = svn:mime-type=application/octet-stream
*.mdlp = svn:mime-type=application/octet-stream
*.slxp = svn:mime-type=application/octet-stream
*.sldd = svn:mime-type=application/octet-stream
*.slxc = svn:mime-type=application/octet-stream
*.mlproj = svn:mime-type=application/octet-stream
*.mldatx = svn:mime-type=application/octet-stream
*.slreqx = svn:mime-type=application/octet-stream
*.sfx = svn:mime-type=application/octet-stream
*.sltx = svn:mime-type=application/octet-stream

These lines prevent SVN from adding annotations to MATLAB and Simulink files on conflict and
from automerging.

5 Check for other file types you use that you also need to register as binary to avoid corruption at
check-in. Check for files such as MEX-files
(.mexa64, .mexmaci64, .mexw64), .xlsx, .jpg, .pdf, .docx, etc. Add a line to the config
file for each file type you use. Examples:

*.mexa64 = svn:mime-type=application/octet-stream
*.mexw64 = svn:mime-type=application/octet-stream
*.mexmaci64 = svn:mime-type=application/octet-stream
*.xlsx = svn:mime-type=application/octet-stream
*.docx = svn:mime-type=application/octet-stream
*.pdf = svn:mime-type=application/octet-stream
*.jpg = svn:mime-type=application/octet-stream
*.png = svn:mime-type=application/octet-stream

6 Save the config file.

After you create or update the SVN config file, SVN treats new files as binary. If you already have
files in repositories, register them as described in “Register Files Already in Repositories” on page
35-35.

Register Files Already in Repositories

Caution Changing your SVN config file does not affect files already committed to an SVN
repository. If a file is not registered as binary, use svn propset to manually register the files as
binary.

 Set Up SVN Source Control

35-35

To manually register a file in a repository as binary, use the following command with command-line
SVN:

svn propset svn:mime-type application/octet-stream binaryfilename

Standard Repository Structure
Create your repository with the standard tags, trunk, and branches folders, and check out files
from trunk. The Subversion project recommends this structure. See https://svn.apache.org/repos/asf/
subversion/trunk/doc/user/svn-best-practices.html.

After you create a repository with this structure, you can click Tag in the Source Control context
menu to add tags to all of your files. For more information, see “Tag Versions of Files” on page 35-
36.

Tag Versions of Files
With SVN, you can use tags to identify specific revisions of all files. To use tags with SVN, you need
the standard folder structure in your repository and you need to check out your files from trunk. See
“Standard Repository Structure” on page 35-36.

1 Right-click in the Current Folder browser, and select Source Control > Tag.
2 Specify the tag text and click Submit. The tag is added to every file in the folder. Errors appear if

you do not have a tags folder in your repository.

Note You can retrieve a tagged version of your files from source control, but you cannot tag them
again with a new tag. You must check out from trunk to create new tags.

Enforce Locking Files Before Editing
To require that users remember to get a lock on files before editing, configure SVN to make files with
specified extensions read only. When your files are read only, you need to select Right-click in the
Current Folder browser, and select Source Control > Get File Lock before you can edit them. This
setting prevents editing of files without getting the file lock. When the file has a lock, other users
know the file is being edited, and you can avoid merge issues.

To enforce locking files, modify entries in the SVN config file. To locate your SVN config file, see
“Register Binary Files with SVN” on page 35-33.

1 To make files with a .m extension read only, add a property to your SVN config file in the
[auto-props] section. If there is no entry for files with a .m extension, add one with the
needs-lock property.

*.m = svn:needs-lock=yes

If an entry exists, you can combine properties in any order, but multiple entries must be on a
single line separated by semicolons.

2 To make files with a .mlx extension read only, add a property to your SVN config file in the
[auto-props] section. Since you must register files with a .mlx extension as binary, there is an
entry for the file type. Add the needs-lock property to the entry in any order, but on the same
line and separated by a semicolon.

35 Source Control Interface

35-36

https://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html
https://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html

*.mlx = svn:mime-type=application/octet-stream;svn:needs-lock=yes
3 Re-create the sandbox for the configuration to take effect.

With this setting, you need to select Get File Lock before you can edit files with a .m extension. See
“Get SVN File Locks” on page 35-41.

Share a Subversion Repository

When you want to share a repository, you need to set up a server. You can use svnserve or the
Apache SVN module. See the Web page references:
https://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.svnserve
https://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.httpd

Note In a production environment, do not rely on remote repositories via the file system using the
file:/// protocol. The file protocol is not safe. Concurrent access might corrupt repositories.

See Also

Related Examples
• “Check Out from SVN Repository” on page 35-38

 Set Up SVN Source Control

35-37

https://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.svnserve
https://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.httpd

Check Out from SVN Repository
Create a new local copy of a repository by retrieving files from source control.

1 Right-click in the white space (any blank area) in the Current Folder browser and select Source
Control > Manage Files.

2 In the Manage Files Using Source Control dialog box, select the source control interface from the
Source control integration list. To use SVN, leave the default SVN.

3 If you know your repository location, paste it into the Repository path field.

Otherwise, to browse for and validate the repository path to retrieve files from, click Change.

a In the Specify SVN Repository URL dialog box, specify the repository URL by entering a URL
in the box, using the list of recent repositories.

b Click Validate to check the repository path.

If you see an authentication dialog box for your repository, enter the login information to
continue.

c If the path is invalid, check the URL against your source control repository browser.

If necessary, select a deeper folder in the repository tree. You might want to check out from
trunk or from a branch folder under tags, if your repository contains tagged versions of
files. You can check out from a branch, but the built-in SVN integration does not support
branch merging. Use an external tool such as TortoiseSVN to perform branch merging.

d When you have finished specifying the URL path you want to retrieve, click OK. The dialog
box closes and you return to the Manage Files Using Source Control dialog box.

4 In the Manage Files Using Source Control dialog box, select the sandbox folder to store the
retrieved files and click Retrieve.

If you see an authentication dialog box for your repository, enter the login information to
continue.

Caution Use local sandbox folders. Using a network folder with SVN slows source control
operations.

The Manage Files Using Source Control dialog box displays messages as it retrieves the files
from source control.

Note To update an existing sandbox from source control, see “Update SVN File Status and Revision”
on page 35-40.

Retrieve Tagged Version of Repository
To use tags with SVN, you need the standard folder structure in your repository. For more
information, see “Standard Repository Structure” on page 35-36.

1 Right-click in the white space in the Current Folder browser, and select Source Control >
Manage Files.

35 Source Control Interface

35-38

2 In the Manage Files Using Source Control dialog box, select the source control interface from the
Source control integration list. To use SVN, leave the default SVN.

3 Click Change to select the repository path that you want to retrieve files from.
4 In the Specify SVN Repository URL dialog box:

a
Select a recent repository from the Repository list, or click the Repository button to
browse for the repository location.

b Click Validate to show the repository browser.
c Expand the tags folder in the repository tree, and select the tag version you want. Navigate

up a level in the repository if the URL contains the trunk.
d Click OK to continue and return to the Manage Files Using Source Control dialog box.

5 Select the sandbox folder to receive the tagged files. You must use an empty sandbox folder or
specify a new folder.

6 Click Retrieve.

See Also

Related Examples
• “Set Up SVN Source Control” on page 35-33
• “Update SVN File Status and Revision” on page 35-40

 Check Out from SVN Repository

35-39

Update SVN File Status and Revision
In this section...
“Refresh Status of Files” on page 35-40
“Update Revisions of Files” on page 35-40

Refresh Status of Files
To refresh the source control status of files, select one or more files in the Current Folder browser,
right-click and select Source Control > Refresh SVN status.

To refresh the status of all files in a folder, right-click the white space of the Current Folder browser
and select Source Control > Refresh SVN status.

Note For SVN, refreshing the source control status does not contact the repository. To get the latest
revisions, see “Update Revisions of Files” on page 35-40.

Update Revisions of Files
To update the local copies of selected files, select one or more files in the Current Folder browser,
right-click and select Source Control > Update Selection from SVN.

To update all files in a folder, right-click the Current Folder browser and select Source Control >
Update All from SVN.

See Also

Related Examples
• “Check Out from SVN Repository” on page 35-38
• “Review Changes in SVN Source Control” on page 35-25

35 Source Control Interface

35-40

Get SVN File Locks
It is good practice to get a file lock before editing a file. The lock tells other users that the file is being
edited, and you can avoid merge issues. When you set up source control, you can configure SVN to
make files with certain extensions read only. Users must get a lock on these read-only files before
editing.

In the Current Folder browser, select the files you want to check out. Right-click the selected files and

select Source Control > Get File Lock. A lock symbol appears in the source control status
column. Other users cannot see the lock symbol in their sandboxes, but they cannot get a file lock or
check in a change when you have the lock. To view or break locks, right-click in the Current Folder
browser and select Source Control > Locks.

If you see an SVN message reporting a working copy locked error, remove stale locks. In the
Current Folder browser, right-click and select Source Control > SVN Cleanup. SVN uses working
copy locks internally and they are not the file locks you control using Source Control > Get File
Lock.

Note Starting in R2020a Update 5, SVN cleanup only removes stale locks and unfinished
transactions. It does not remove unversioned or ignored files.

You can manually remove unversioned and ignored files.

1 In the Current Folder browser, click the SVN header to sort files by their SVN status.
2 Select the Not Under Source Control files.
3 Right-click and select Delete.

Manage SVN Repository Locks
To manage global SVN locks for a repository, from the top-level repository folder, right-click the white
space (any blank area) in the Current Folder browser and select Source Control > Locks.

In the SVN Repository Locks dialog box, you can:

• View which users have locks on files.
• Right-click to break locks.
• Group locks by user or file.

See Also

Related Examples
• “Enforce Locking Files Before Editing” on page 35-36

 Get SVN File Locks

35-41

Continuous Integration Using MATLAB Projects and Jenkins
In this section...
“Prerequisites” on page 35-42
“Set Up MATLAB Project for Continuous Integration in Jenkins” on page 35-42
“Reduce Test Runtime Using Dependency Cache and Impact Analysis” on page 35-43
“Enhance Workflow” on page 35-44

This example shows how to set up a MATLAB project for continuous integration and run a suite of
MATLAB unit tests with Jenkins®.

• Configure a freestyle Jenkins project to access a MATLAB project hosted in a remote repository.
• Add a build step to the Jenkins project to run all project tests.
• Add a build step to the Jenkins project to run tests impacted by the latest change.
• Add a post-build step to archive and reuse the dependency analysis cache file to reduce test suite

runtime when qualifying a change.
• Build the project and examine the test results.

Note You can use different continuous integration (CI) platforms such as Azure® DevOps, Bamboo®,
and GitHub Actions to run MATLAB code and Simulink models as part of your automated workflow.
For a list of supported CI platforms, see “Continuous Integration with MATLAB on CI Platforms” on
page 36-221

Prerequisites
Before you start:

1 Install Jenkins. See https://www.jenkins.io/doc/book/installing/.
2 Install the MATLAB plugin for Jenkins:

a From within Jenkins, on the Manage Jenkins page, click Manage Plugins.
b On the Available tab, search for "MATLAB".
c Download and install the plugin.

For more information, see Plugin Configuration Guide (GitHub).
3 Put your MATLAB project under Git source control and share on GitHub:

a With the project loaded, on the Project tab, select Share > GitHub.
b Enter your GitHub user name and personal access token, and edit the name for the new

repository. Click Create.

Your MATLAB project is publicly available on GitHub. You can make your repository private by
changing the settings in your GitHub account.

Set Up MATLAB Project for Continuous Integration in Jenkins
Create a new Jenkins project:

35 Source Control Interface

35-42

https://www.jenkins.io/doc/book/installing/
https://github.com/jenkinsci/matlab-plugin/blob/master/CONFIGDOC.md

1 In the Jenkins interface, in the left pane, click New Item.
2 Enter a name for your Jenkins project, select Freestyle project, and click OK.

Configure your Jenkins project. In the left pane, click Configure.

1 In the Source Code Management section, specify the Repository URL that hosts your
MATLAB project. For example, https://github.com/username/Airframe-Example.git.

2 In the Build Triggers section, you can specify when and how frequently you want to run builds.
For example, to build your project after every GitHub push notification, select GitHub hook
trigger for GITScm polling.

3 In the Build Environment section, select Use MATLAB Version and specify the MATLAB
root, for example, C:\Program Files\MATLAB\R2022a.

4 To specify the test suite you want to run, in the Build section, select Add Build Step > Run
MATLAB Tests. To run all tests stored in a specific folder, select By folder name and specify
the test folder name. For example, tests. By default, Run MATLAB Tests runs all test files in
the MATLAB project.

Alternatively, use the Run MATLAB Command step to run all tests using the MATLAB project
label. In the Build section, select Add Build Step > Run MATLAB Command. In the
Command field, enter this script.

proj = openProject("ProjectAirframeExample.prj");
files = proj.Files;
testFiles = [findLabel(files,"Classification","Test").File];

runtests(testFiles)

5 To save the Jenkins project configuration, click Save.
6 To build your project and run all tests, click Build Now. Jenkins triggers a build, assigns it a

number under Build History, and runs the build. If the build is successful, a blue circle icon
appears next to the build number. If the build fails, a red circle icon appears. For more
information, see Run MATLAB Tests on Jenkins Server (GitHub).

Reduce Test Runtime Using Dependency Cache and Impact Analysis
You can share the dependency cache file to reduce qualification time on local machines and CI
servers. Using a prepopulated dependency cache file, you can perform an incremental impact
analysis and run only the tests impacted by a change.

Set MATLAB Project Dependency Cache File

To set the project dependency cache file, in MATLAB, on the Project tab, in the Environment
section, click Details. In Dependency cache file, browse to and specify a GraphML file. If the cache
file does not exist, the project creates it for you when you run a dependency analysis.

Alternatively, you can create and set the project dependency cache programmatically.
proj = currentProject;
proj.DependencyCacheFile = "work/dependencyanalysis/projectcache.graphml";

Commit and push the change to make it available on GitHub and Jenkins. On the Project tab, in the
Source Control section, click Commit, then click Push.

 Continuous Integration Using MATLAB Projects and Jenkins

35-43

https://github.com/jenkinsci/matlab-plugin/blob/master/examples/Run-MATLAB-Tests.md

Generate and Archive Dependency Cache File on Jenkins

To configure your Jenkins project to generate and archive the dependency analysis cache file, on your
Jenkins project configuration page:

1 Add a new build step. In the Build section, select Add Build Step > Run MATLAB Command.
In the Command field, enter this script.

proj = openProject("ProjectAirframeExample.prj");
updateDependencies(proj);

This script launches MATLAB, loads your MATLAB project, runs a dependency analysis, and
caches the results in the dependency cache file.

2 In the Post-build Actions section, under Archive the artifacts, in the Files to archive field,
enter: work/dependencyanalysis/*.graphml. After the build, Jenkins copies the GraphML
file from the Jenkins workspace to the build archive location.

Share Cache for Faster Dependency Analysis on Local Machines

If you configured Jenkins to perform frequent builds, team members can sync their working copy
based on the last successful build. Team members check out the design changes from Git, retrieve the
associated dependency cache file from the build archive area, and place the GraphML file in the
specified location.

On a local machine, MATLAB projects use the prepopulated dependency cache file to run an
incremental dependency analysis. This action saves time for workflows running a dependency
analysis in the background, such as automatic renaming, sharing a project, and performing an impact
analysis.

Run Impacted Tests and Reduce Qualification Runtime on CI Servers

On a CI server, for large projects, you can use the prepopulated dependency cache to perform an
incremental impact analysis. You can configure your project build to run only impacted tests and
significantly reduce runtime when qualifying a code change.

To configure your Jenkins project to only run tests impacted by the last change, in the Build section,
select Add Build Step > Run MATLAB Command. In the Command field, enter this script.
proj = openProject("ProjectAirframeExample.prj");
[status,modifiedFiles] = system("git diff --name-only HEAD~1..HEAD :!resources");
updateDependencies(proj);
modifiedFiles = split(modifiedFiles);
modifiedFiles = modifiedFiles(1:(end-1))';
impactedFiles = listImpactedFiles(proj,modifiedFiles);
files = proj.Files;
testFiles = [findLabel(files,"Classification","Test").File];
impactedTests = intersect(testFiles,impactedFiles);

runtests(impactedTests)

This script launches MATLAB, loads your MATLAB project, retrieves the list of files that changed in
the last commit, runs an impact analysis to determine the subset of tests you need to run to qualify
the change, and runs the list of impacted tests.

Enhance Workflow
You can apply several additional steps to improve the workflow and make building and qualifying the
project faster.

35 Source Control Interface

35-44

• Similar to the GraphML file, you also can generate and archive SLXC files to reuse and reduce
simulation time. For more information, see “Share Simulink Cache Files for Faster Simulation”
(Simulink).

• To easily manage SLXC and GraphML files from multiple Jenkins builds, you can use a database or
a repository management tool such as JFrog Artifactory. For more information, see https://
www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory.

• You can set up a script to automatically retrieve the associated dependency cache file and place a
copy in your working copy.

See Also

More About
• “Analyze Project Dependencies” on page 34-35
• “Develop and Integrate Software with Continuous Integration” on page 36-213
• “Continuous Integration with MATLAB on CI Platforms” on page 36-221

 Continuous Integration Using MATLAB Projects and Jenkins

35-45

https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory
https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory

Customize External Source Control to Use MATLAB for Diff and
Merge

In this section...
“Finding the Full Paths for MATLAB Diff, Merge, and AutoMerge” on page 35-46
“Integration with Git” on page 35-47
“Integration with SVN” on page 35-48
“Integration with Other Source Control Tools” on page 35-49

You can customize external source control tools to use the MATLAB Comparison Tool for diff and
merge. If you want to compare MATLAB files such as live scripts, MAT, SLX, or MDL files from your
source control tool, then you can configure your source control tool to open the MATLAB Comparison
Tool. For a more complete list of supported files, see visdiff. The MATLAB Comparison Tool
provides tools for merging MathWorks files and is compatible with popular software configuration
management and version control systems. You can use the automerge tool with Git to automatically
merge branches that contain changes in different subsystems in the same SLX file.

To set up your source control tool to use MATLAB as the application for diff and merge, you must first
determine the full paths of the mlDiff, mlMerge, and mlAutoMerge executable files, and then
follow the recommended steps for the source control tool you are using.

Finding the Full Paths for MATLAB Diff, Merge, and AutoMerge
To get the required file paths and enable external source control tools to reuse open MATLAB
sessions, run this command in MATLAB:

comparisons.ExternalSCMLink.setup()

This command sets the MATLAB preference, under Comparison, called Allow external source
control tools to use open MATLAB sessions for diffs and merges.

This command also displays the file paths to copy and paste into your source control tool setup:

• On Windows:

Diff: matlabroot\bin\win64\mlDiff.exe

Merge: matlabroot\bin\win64\mlMerge.exe

AutoMerge: matlabroot\bin\win64\mlAutoMerge.bat
• On Linux:

Diff: matlabroot/bin/glnxa64/mlDiff

Merge: matlabroot/bin/glnxa64/mlMerge

AutoMerge: matlabroot/bin/glnxa64/mlAutoMerge
• On Mac:

Diff: matlabroot/bin/maci64/mlDiff

35 Source Control Interface

35-46

Merge: matlabroot/bin/maci64/mlMerge

AutoMerge: matlabroot/bin/maci64/mlAutoMerge

where matlabroot is replaced with the full path to your installation, for example, C:\Program
Files\MATLAB\R2020b.

Note Your diff and merge operations use open MATLAB sessions when available, and only open
MATLAB when necessary. The operations only use the specified MATLAB installation.

Integration with Git
Command Line

To configure MATLAB diff and merge tools with command-line Git:

1 Run this command in MATLAB.

comparisons.ExternalSCMLink.setupGitConfig()

This command displays the full paths of the mlDiff, mlMerge, and mlAutoMerge executable
files. It also automatically populates the global .gitconfig file. For example:
[difftool "mlDiff"]
 cmd = \"C:/Program Files/MATLAB/R2020b/bin/win64/mlDiff.exe\" $LOCAL $REMOTE
[mergetool "mlMerge"]
 cmd = \"C:/Program Files/MATLAB/R2020b/bin/win64/mlMerge.exe\" $BASE $LOCAL $REMOTE $MERGED
[merge "mlAutoMerge"]
 driver = \"C:/Program Files/MATLAB/R2020b/bin/win64/mlAutoMerge.bat\" %O %A %B %A

Note You need to do step 1 only once for your Git setup.
2 Configure your repository to use the mlAutoMerge executable file. Open the .gitattributes

file in your repository and add:

*.slx binary merge=mlAutoMerge

Now, when you merge branches that contain changes in different subsystems in the same SLX
file, MATLAB handles the merge automatically.

To run the MATLAB diff and merge tools from command-line Git, use git difftool and git
mergetool:

• To compare two revisions of a model using the MATLAB diff tool, type:
git difftool -t mlDiff <revisonID1> <revisionID2> myModel.slx

If you do not provide revision IDs, git difftool compares the working copy to the repository
copy.

If you do not specify which model you want to compare, command-line Git will go through all
modified files and ask you if you want to compare them one by one.

• To resolve a merge conflict in a model using the MATLAB merge tool, type:
git mergetool -t mlMerge myModel.slx

If you do not specify which model you want to merge, command-line Git will go through all files
and ask you if you want to merge them one by one.

 Customize External Source Control to Use MATLAB for Diff and Merge

35-47

SourceTree

SourceTree is an interactive GUI tool that visualizes and manages Git repositories for Windows and
Mac.

1 Configure the MATLAB diff and merge tools as SourceTree external tools:

a With SourceTree open, click Tools > Options.
b On the Diff tab, under External Diff / Merge, fill the fields with the following information:

External Diff tool: Custom
Diff Command: C:\Program Files\MATLAB\R2020b\bin\win64\mlDiff.exe
Arguments: $LOCAL $REMOTE
Merge tool: Custom
Merge Command: C:\Program Files\MATLAB\R2020b\bin\win64\mlMerge.exe
Arguments: $BASE $LOCAL $REMOTE $MERGED

2 Configure your repository to automerge changes in different subsystems in the same SLX file
using the mlAutoMerge executable file:

a Open the global .gitconfig file and add:
[merge "mlAutoMerge"]
 driver = \"C:/Program Files/MATLAB/R2020b/bin/win64/mlAutoMerge.bat\" %O %A %B %A

b Open the .gitattributes file in your repository and add:

*.slx binary merge=mlAutoMerge

Tip Customize the full path of the mlDiff, mlMerge, and mlAutoMerge executables to match both
the MATLAB installation and the operating system you are using. For more information, see “Finding
the Full Paths for MATLAB Diff, Merge, and AutoMerge” on page 35-46.

To use the MATLAB diff tool from within SourceTree, right-click a modified file under Unstaged files
and select External Diff.

To use the MATLAB merge tool when SourceTree detects a merge conflict, select the Uncommitted
changes branch, right-click a modified file, and select Resolve Conflicts > Launch External
Merge Tool.

Integration with SVN
TortoiseSVN

With TortoiseSVN, you can customize your diff and merge tools based on the file extension. For
example, to use MATLAB diff and merge tools for SLX files:

1 Right-click in any file explorer window and select TortoiseSVN > Settings to open TortoiseSVN
settings.

2 In the Settings sidebar, select Diff Viewer. Click Advanced to specify the diff application based
on file extensions.

3 Click Add and fill the fields with the extension and the mlDiff executable path:
Filename, extension or mime-type: .slx
External Program: "C:\Program Files\MATLAB\R2020b\bin\win64\mlDiff.exe" %base %mine

4 Click OK and repeat the same steps to add another file extension.

35 Source Control Interface

35-48

5 In the Settings sidebar, select Diff ViewerMerge Tool. Click Advanced to specify the merge
application based on file extensions.

6 Click Add and fill the fields with the extension and mlMerge executable path:
Filename, extension or mime-type: .slx
External Program: "C:\Program Files\MATLAB\R2020b\bin\win64\mlMerge.exe" %base %mine %theirs %merged

7 Click OK and repeat the same steps to add another file extension.

You can now use the MATLAB tools for diff and merge the same way you would use the TortoiseSVN
default diff and merge applications.

Note Automerging binary files with SVN , such as SLX files, is not supported.

Integration with Other Source Control Tools
Perforce P4V

With Perforce® P4V, you can customize your diff and merge tools based on the file extension. To use
MATLAB diff and merge tools for SLX files, for example:

1 In Perforce, click Edit > Preferences.
2 In the Preferences sidebar, select Diff. Under Specify diff application by extension

(overrides default), click Add.
3 In the Add File Type dialog box, enter the following information:

Extension: .slx
Application: C:\Program Files\MATLAB\R2020b\bin\win64\mlDiff.exe
Arguments: %1 %2

4 Click Save.
5 In the Preferences sidebar, select Merge. Under Specify merge application by extension

(overrides default), click Add.
6 In the Add File Type dialog box, enter the following information:

Extension: .slx
Application: C:\Program Files\MATLAB\R2020b\bin\win64\mlMerge.exe
Arguments: %b %2 %1 %r

7 Click Save and repeat the steps for other file extensions.

Tip Customize the full path of the mlDiff and mlMerge executables to match both the MATLAB
installation and the operating system you are using. For more information, see “Finding the Full
Paths for MATLAB Diff, Merge, and AutoMerge” on page 35-46.

You can now use the MATLAB tools for diff and merge the same way you would use the Perforce
default diff and merge applications.

See Also

Related Examples
• “Compare Files and Folders and Merge Files”

 Customize External Source Control to Use MATLAB for Diff and Merge

35-49

• “Automatically Merge Models” (Simulink)
• “Three-Way AutoMerge Solution for Requirement Set and Link Set” (Requirements Toolbox)
• “Compare and Merge MAT-Files”
• “Merge Simulink Models from the Comparison Report” (Simulink)

35 Source Control Interface

35-50

MSSCCI Source Control Interface

Note MSSCCI support has been removed. Replace this functionality with one of the following
options.

• Use a source control system that is part of the MathWorks “Source Control Integration” with the
Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source control.
• Use the MATLAB system function to access the command-line API for your source control tool.

This option does not provide integration with the MATLAB Current Folder browser menus or
source control status column.

If you use source control systems to manage your files, you can interface with the systems to perform
source control actions from within the MATLAB, Simulink, and Stateflow products. Use menu items in
the MATLAB, Simulink, or Stateflow products, or run functions in the MATLAB Command Window to
interface with your source control systems.

The source control interface on Windows works with any source control system that conforms to the
Microsoft Common Source Control standard, Version 1.1. If your source control system does not
conform to the standard, use a Microsoft Source Code Control API wrapper product for your source
control system so that you can interface with it from the MATLAB, Simulink, and Stateflow products.

This documentation uses the Microsoft Visual SourceSafe® software as an example. Your source
control system might use different terminology and not support the same options or might use them
in a different way. Regardless, you should be able to perform similar actions with your source control
system based on this documentation.

Perform most source control interface actions from the Current Folder browser. You can also perform
many of these actions for a single file from the MATLAB Editor, a Simulink model window, or a
Stateflow chart window—for more information, see “Access MSSCCI Source Control from Editors” on
page 35-65.

 MSSCCI Source Control Interface

35-51

Set Up MSSCCI Source Control

Note MSSCCI support has been removed. Replace this functionality with one of the following
options.

• Use a source control system that is part of the MathWorks “Source Control Integration” with the
Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source control.
• Use the MATLAB system function to access the command-line API for your source control tool.

This option does not provide integration with the MATLAB Current Folder browser menus or
source control status column.

In this section...
“Create Projects in Source Control System” on page 35-52
“Specify Source Control System with MATLAB Software” on page 35-53
“Register Source Control Project with MATLAB Software” on page 35-54
“Add Files to Source Control” on page 35-56

Create Projects in Source Control System
In your source control system, create the projects that your folders and files will be associated with.

All files in a folder must belong to the same source control project. Be sure the working folder for the
project in the source control system specifies the correct path to the folder on disk.

Example of Creating Source Control Project

This example uses the project my_thesis_files in Microsoft Visual SourceSafe. This illustration of
the Current Folder browser shows the path to the folder on disk, D:\my_thesis_files.

35 Source Control Interface

35-52

The following illustration shows the example project in the source control system.

To set the working folder in Microsoft Visual SourceSafe for this example, select my_thesis_files,
right-click, select Set Working Folder from the context menu, and specify D:\my_thesis_files in
the resulting dialog box.

Specify Source Control System with MATLAB Software

In MATLAB, specify the source control system you want to access. On the Home tab, in the
Environment section, click Preferences > MATLAB > General > Source Control.

The currently selected system is shown in the Preferences dialog box. The list includes all installed
source control systems that support the Microsoft Common Source Control standard.

Select the source control system you want to interface with and click OK.

 Set Up MSSCCI Source Control

35-53

MATLAB remembers preferences between sessions, so you only need to perform this action again
when you want to access a different source control system.

Source Control with 64-Bit Versions of MATLAB

If you run a 64-bit version of MATLAB and want MATLAB to interface with your source control
system, your source control system must be 64-bit compliant. If you have a 32-bit source control
system, or if you have a 64-bit source control system running in 32-bit compatibility mode, MATLAB
cannot use it. In that event, MATLAB displays a warning about the problem in the Source Control
preference pane.

Register Source Control Project with MATLAB Software
Register a source control system project with a folder in MATLAB, that is, associate a source control
system project with a folder and all files in that folder. Do this only one time for any file in the folder,
which registers all files in that folder:

1 In the MATLAB Current Folder browser, select a file that is in the folder you want to associate
with a project in your source control system. For example, select D:\my_thesis_files
\wind.m. This will associate all files in the my_thesis_files folder.

2 Right-click, and from the context menu, select Source Control > Register
Name_of_Source_Control_System Project with MATLAB. The
Name_of_Source_Control_System is the source control system you selected using preferences
as described in “Specify Source Control System with MATLAB Software” on page 35-53.

The following example shows Microsoft Visual SourceSafe.

35 Source Control Interface

35-54

3 In the resulting Name_of_Source_Control_System Login dialog box, provide the user name
and password you use to access your source control system, and click OK.

4 In the resulting Choose project from Name_of_Source_Control_System dialog box, select the
source control system project to associate with the folder and click OK. This example shows
my_thesis_files.

 Set Up MSSCCI Source Control

35-55

The selected file, its folder, and all files in the folder, are associated with the source control
system project you selected. For the example, MATLAB associates all files in
D:\my_thesis_files with the source control project my_thesis_files.

Add Files to Source Control
Add files to the source control system. Do this only once for each file:

1 In the Current Folder browser, select files you want to add to the source control system.
2 Right-click, and from the context menu, select Source Control > Add to Source Control.
3 The resulting Add to source control dialog box lists files you selected to add. You can add text

in the Comments field. If you expect to use the files soon, select the Keep checked out check
box (which is selected by default). Click OK.

If you try to add an unsaved file, the file is automatically saved upon adding.

35 Source Control Interface

35-56

Check Files In and Out from MSSCCI Source Control

Note MSSCCI support has been removed. Replace this functionality with one of the following
options.

• Use a source control system that is part of the MathWorks “Source Control Integration” with the
Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source control.
• Use the MATLAB system function to access the command-line API for your source control tool.

This option does not provide integration with the MATLAB Current Folder browser menus or
source control status column.

In this section...
“Check Files Into Source Control” on page 35-57
“Check Files Out of Source Control” on page 35-57
“Undoing the Checkout” on page 35-58

Before checking files into and out of your source control system from the MATLAB desktop, be sure to
set up your system for use with MATLAB as described in “Set Up MSSCCI Source Control” on page
35-52.

Check Files Into Source Control
After creating or modifying files using MATLAB software or related products, check the files into the
source control system by performing these steps:

1 In the Current Folder browser, select the files to check in. A file can be open or closed when you
check it in, but it must be saved, that is, it cannot contain unsaved changes.

2 Right-click, and from the context menu, select Source Control > Check In.
3 In the resulting Check in file(s) dialog box, you can add text in the Comments field. If you want

to continue working on the files, select the check box Keep checked out. Click OK.

If a file contains unsaved changes when you try to check it in, you will be prompted to save the
changes to complete the checkin. If you did not keep the file checked out and you keep the file open,
note that it is a read-only version.

Check Files Out of Source Control
From MATLAB, to check out the files you want to modify, perform these steps:

1 In the Current Folder browser, select the files to check out.
2 Right-click, and from the context menu, select Source Control > Check Out.
3 The resulting Check out file(s) dialog box lists files you selected to check out. Enter comment

text in the Comments field, which appears if your source control system supports comments on
checkout. Click OK.

 Check Files In and Out from MSSCCI Source Control

35-57

After checking out a file, make changes to it in MATLAB or another product, and save the file. For
example, edit a file in the Editor.

If you try to change a file without first having checked it out, the file is read-only, as seen in the title
bar, and you will not be able to save any changes. This protects you from accidentally overwriting the
source control version of the file.

If you end the MATLAB session, the file remains checked out. You can check in the file from within
MATLAB during a later session, or folder from your source control system.

Undoing the Checkout

You can undo the checkout for files. The files remain checked in, and do not have any of the changes
you made since you last checked them out. To save any changes you have made since checking out a
particular file click Save on the Editor or Live Editor tab, select Save As, and supply a different
file name before you undo the checkout.

To undo a checkout, follow these steps:

1 In the MATLAB Current Folder browser, select the files for which you want to undo the checkout.
2 Right-click, and from the context menu, select Source Control > Undo Checkout.

The MATLAB Undo checkout dialog box opens, listing the files you selected.

3 Click OK.

35 Source Control Interface

35-58

Additional MSSCCI Source Control Actions

Note MSSCCI support has been removed. Replace this functionality with one of the following
options.

• Use a source control system that is part of the MathWorks “Source Control Integration” with the
Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source control.
• Use the MATLAB system function to access the command-line API for your source control tool.

This option does not provide integration with the MATLAB Current Folder browser menus or
source control status column.

In this section...
“Getting the Latest Version of Files for Viewing or Compiling” on page 35-59
“Removing Files from the Source Control System” on page 35-60
“Showing File History” on page 35-60
“Comparing the Working Copy of a File to the Latest Version in Source Control” on page 35-61
“Viewing Source Control Properties of a File” on page 35-62
“Starting the Source Control System” on page 35-63

Getting the Latest Version of Files for Viewing or Compiling
You can get the latest version of a file from the source control system for viewing or running. Getting
a file differs from checking it out. When you get a file, it is write protected so you cannot edit it, but
when you check out a file, you can edit it.

To get the latest version, follow these steps:

1 In the MATLAB Current Folder browser, select the folders or files that you want to get. If you
select files, you cannot select folders too.

2 Right-click, and from the context menu, select Source Control > Get Latest Version.

The MATLAB Get latest version dialog box opens, listing the files or folders you selected.

3 Click OK.

You can now open the file to view it, run the file, or check out the file for editing.

 Additional MSSCCI Source Control Actions

35-59

Removing Files from the Source Control System
To remove files from the source control system, follow these steps:

1 In the MATLAB Current Folder browser, select the files you want to remove.
2 Right-click, and from the context menu, select Source Control > Remove from Source

Control.

The MATLAB Remove from source control dialog box opens, listing the files you selected.

3 Click OK.

Showing File History
To show the history of a file in the source control system, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want to view the history.
2 Right-click, and from the context menu, select Source Control > History.

A dialog box, which is specific to your source control system, opens. For Microsoft Visual
SourceSafe, the History Options dialog box opens, as shown in the following example
illustration.

3 Complete the dialog box to specify the range of history you want for the selected file and click
OK. For example, enter my_name for User.

The history presented depends on your source control system. For Microsoft Visual SourceSafe,
the History dialog box opens for that file, showing the file's history in the source control system.

35 Source Control Interface

35-60

Comparing the Working Copy of a File to the Latest Version in Source
Control
You can compare the current working copy of a file with the latest checked-in version of the file in the
source control system. This highlights the differences between the two files, showing the changes you
made since you checked out the file.

To view the differences, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want to view differences.
This is a file that has been checked out and edited.

2 Right-click, and from the context menu, select Source Control > Differences.

A dialog box, which is specific to your source control system, opens. For Microsoft Visual
SourceSafe, the Difference Options dialog box opens.

3 Review the default entries in the dialog box, make any needed changes, and click OK. The
following example is for Microsoft Visual SourceSafe.

 Additional MSSCCI Source Control Actions

35-61

The method of presenting differences depends on your source control system. For Microsoft
Visual SourceSafe, the Differences for dialog box opens. This highlights the differences between
the working copy of the file and the latest checked-in version of the file.

Viewing Source Control Properties of a File
To view the source control properties of a file, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want to view properties.
2 Right-click, and from the context menu, select Source Control > Properties.

A dialog box, which is specific to your source control system, opens. The following example shows the
Microsoft Visual SourceSafe properties dialog box.

35 Source Control Interface

35-62

Starting the Source Control System
All the MATLAB source control actions automatically start the source control system to perform the
action, if the source control system is not already open. If you want to start the source control system
from MATLAB without performing a specific action source control action,

1 Right-click any folder or file in the MATLAB Current Folder browser
2 From the context menu, select Source Control > Start Source Control System.

The interface to your source control system opens, showing the source control project associated
with the current folder in MATLAB. The following example shows the Microsoft Visual SourceSafe
Explorer interface.

 Additional MSSCCI Source Control Actions

35-63

35 Source Control Interface

35-64

Access MSSCCI Source Control from Editors

Note MSSCCI support has been removed. Replace this functionality with one of the following
options.

• Use a source control system that is part of the MathWorks “Source Control Integration” with the
Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source control.
• Use the MATLAB system function to access the command-line API for your source control tool.

This option does not provide integration with the MATLAB Current Folder browser menus or
source control status column.

You can create or open a file in the Editor, the Simulink or Stateflow products and perform most
source control actions from their File > Source Control menus, rather than from the Current Folder
browser. Following are some differences in the source control interface process when you use the
Editor, Simulink, or Stateflow:

• You can perform actions on only one file at time.
• Some of the dialog boxes have a different icon in the title bar. For example, the Check out file(s)

dialog box uses the MATLAB Editor icon instead of the MATLAB icon.
• You cannot add a new (Untitled) file, but must instead first save the file.
• You cannot register projects from the Simulink or Stateflow products. Instead, register a project

using the Current Folder browser, as described in “Register Source Control Project with MATLAB
Software” on page 35-54.

 Access MSSCCI Source Control from Editors

35-65

Troubleshoot MSSCCI Source Control Problems

Note MSSCCI support has been removed. Replace this functionality with one of the following
options.

• Use a source control system that is part of the MathWorks “Source Control Integration” with the
Current Folder browser.

• Use the Source Control Software Development Kit to create a plug-in for your source control.
• Use the MATLAB system function to access the command-line API for your source control tool.

This option does not provide integration with the MATLAB Current Folder browser menus or
source control status column.

In this section...
“Source Control Error: Provider Not Present or Not Installed Properly” on page 35-66
“Restriction Against @ Character” on page 35-67
“Add to Source Control Is the Only Action Available” on page 35-67
“More Solutions for Source Control Problems” on page 35-67

Source Control Error: Provider Not Present or Not Installed Properly
In some cases, MATLAB software recognizes your source control system but you cannot use source
control features for MATLAB. Specifically, when you select MATLAB > General > Source Control
in the Preferences dialog box, MATLAB lists your source control system, but you cannot perform any
source control actions. Only the Start Source Control System item is available, and when you
select it, MATLAB displays this error:
Source control provider is not present or not installed properly.

Often, this error occurs because a registry key that MATLAB requires from the source control
application is not present. Make sure this registry key is present:

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\
InstalledSCCProviders

The registry key refers to another registry key that is similar to

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SourceSafe\SccServerPath

This registry key has a path to a DLL-file in the file system. Make sure the DLL-file exists in that
location. If you are not familiar with registry keys, ask your system administrator for help.

If this does not solve the problem and you use Microsoft Visual SourceSafe, try running a client setup
for your source control application. When SourceSafe is installed on a server for a group to use, each
machine client can run a setup but is not required to do so. However, some applications that interface
with SourceSafe, including MATLAB, require you to run the client setup. Run the client setup, which
should resolve the problem.

If the problem persists, access source control outside of MATLAB.

35 Source Control Interface

35-66

Restriction Against @ Character
Some source control systems, such as Perforce and Synergy™, reserve the @ character. Perforce, for
example, uses it as a revision specifier. Therefore, you might experience problems if you use these
source control systems with MATLAB files and folders that include the @ character in the folder or file
name.

You might be able to work around this restriction by quoting nonstandard characters in file names,
such as with an escape sequence, which some source control systems allow. Consult your source
control system documentation or technical support resources for a workaround.

Add to Source Control Is the Only Action Available
To use source control features for a file in the Simulink or Stateflow products, the file's source control
project must first be registered with MATLAB. When a file's source control project is not registered
with MATLAB, all MATLAB > General > Source Control menu items on the Preferences dialog box
are disabled except Add to Source Control. You can select Add to Source Control, which registers
the project with MATLAB, or you can register the project using the Current Folder browser, as
described in “Register Source Control Project with MATLAB Software” on page 35-54. You can then
perform source control actions for all files in that project (folder).

More Solutions for Source Control Problems
The latest solutions for problems interfacing MATLAB with a source control system appear on the
MathWorks Web page for support at https://www.mathworks.com/support/. Search Solutions
and Technical Notes for “source control.”

 Troubleshoot MSSCCI Source Control Problems

35-67

https://www.mathworks.com/support.html

Unit Testing

• “Write Test Using Live Script” on page 36-3
• “Write Script-Based Unit Tests” on page 36-6
• “Write Script-Based Test Using Local Functions” on page 36-11
• “Extend Script-Based Tests” on page 36-14
• “Run Tests in Editor” on page 36-17
• “Write Function-Based Unit Tests” on page 36-20
• “Write Simple Test Case Using Functions” on page 36-24
• “Write Test Using Setup and Teardown Functions” on page 36-27
• “Extend Function-Based Tests” on page 36-32
• “Author Class-Based Unit Tests in MATLAB” on page 36-36
• “Write Simple Test Case Using Classes” on page 36-39
• “Write Setup and Teardown Code Using Classes” on page 36-42
• “Table of Verifications, Assertions, and Other Qualifications” on page 36-45
• “Tag Unit Tests” on page 36-48
• “Write Tests Using Shared Fixtures” on page 36-52
• “Create Basic Custom Fixture” on page 36-55
• “Create Advanced Custom Fixture” on page 36-57
• “Use Parameters in Class-Based Tests” on page 36-62
• “Create Basic Parameterized Test” on page 36-68
• “Create Advanced Parameterized Test” on page 36-73
• “Use External Parameters in Parameterized Test” on page 36-80
• “Define Parameters at Suite Creation Time” on page 36-84
• “Create Simple Test Suites” on page 36-91
• “Run Tests for Various Workflows” on page 36-93
• “Programmatically Access Test Diagnostics” on page 36-96
• “Add Plugin to Test Runner” on page 36-97
• “Write Plugins to Extend TestRunner” on page 36-100
• “Create Custom Plugin” on page 36-103
• “Run Tests in Parallel with Custom Plugin” on page 36-108
• “Write Plugin to Add Data to Test Results” on page 36-116
• “Write Plugin to Save Diagnostic Details” on page 36-121
• “Plugin to Generate Custom Test Output Format” on page 36-125
• “Analyze Test Case Results” on page 36-128
• “Analyze Failed Test Results” on page 36-131
• “Rerun Failed Tests” on page 36-133

36

• “Dynamically Filtered Tests” on page 36-136
• “Create Custom Constraint” on page 36-142
• “Create Custom Boolean Constraint” on page 36-145
• “Overview of App Testing Framework” on page 36-149
• “Write Tests for an App” on page 36-154
• “Write Tests That Use App Testing and Mocking Frameworks” on page 36-158
• “Overview of Performance Testing Framework” on page 36-163
• “Test Performance Using Scripts or Functions” on page 36-167
• “Test Performance Using Classes” on page 36-171
• “Measure Fast Executing Test Code” on page 36-177
• “Create Mock Object” on page 36-180
• “Specify Mock Object Behavior” on page 36-187
• “Qualify Mock Object Interaction” on page 36-192
• “Ways to Write Unit Tests” on page 36-198
• “Compile MATLAB Unit Tests” on page 36-201
• “Generate Code Coverage Report in HTML Format” on page 36-204
• “Insert Test Code Using Editor” on page 36-209
• “Develop and Integrate Software with Continuous Integration” on page 36-213
• “Generate Artifacts Using MATLAB Unit Test Plugins” on page 36-217
• “Continuous Integration with MATLAB on CI Platforms” on page 36-221

36 Unit Testing

36-2

Write Test Using Live Script

This example shows how to test a function that you create by writing a live script,
'TestRightTriLiveScriptExample.mlx'. The example function computes the angles of a right
triangle, and you create a live-script-based unit test to test the function.

A live-script-based test must adhere to the following conventions:

• The name of the test file must start or end with the word 'test', which is case-insensitive. If the file
name does not start or end with the word 'test', the tests in the file might be ignored in certain
cases.

• Place each unit test into a separate section of the live-script file. If a section has a heading in the
Heading 1 style, the heading becomes the name of the test element. Otherwise, MATLAB® assigns
a name to the test.

• Consider how you are running your live-script-based test. If you run the test using the Run
buttons in the Live Editor and MATLAB encounters a test failure, then it stops execution of the
script and does not run any remaining tests. If you run the live script using the unit testing
framework, such as with the runtests function, then if MATLAB encounters a test failure, it still
runs remaining tests.

• When a live script runs as a test, variables defined in one test are not accessible within other
tests. Similarly, variables defined in other workspaces are not accessible to the tests.

Outside of this example, in your current MATLAB folder, create a function in a file, rightTri.m. This
function takes lengths of two sides of a triangle as input and returns the three angles of the
corresponding right triangle. The input sides are the two shorter edges of the triangle, not the
hypotenuse.

type rightTri.m

function angles = rightTri(sides)

A = atand(sides(1)/sides(2));
B = atand(sides(2)/sides(1));
hypotenuse = sides(1)/sind(A);
C = asind(hypotenuse*sind(A)/sides(1));

angles = [A B C];

end

Test: Small Angle Approximation

You can include equations and images in your live script to help document the test. Create the
following test for the small angle approximation. Typically, when you compare floating-point values,
you specify a tolerance for the comparison.

The rightTri function should return values consistent with the small angle approximation, such that
sin(θ) ≈ θ.

 Write Test Using Live Script

36-3

angles = rightTri([1 1500]);
smallAngleInRadians = (pi/180)*angles(1); % convert to radians
approx = sin(smallAngleInRadians);
assert(abs(approx-smallAngleInRadians) <= 1e-10, 'Problem with small angle approximation')

Test: Sum of Angles

∑
k

ak = 180∘

You can have multiple assert statements in the same test. However, if the first assertion fails, the
MATLAB does not evaluate the remaining statements.

The sum of all angles of the resulting right triangle should always be 180 degrees.

angles = rightTri([7 9]);
assert(sum(angles) == 180)

angles = rightTri([4 4]);
assert(sum(angles) == 180)

angles = rightTri([2 2*sqrt(3)]);
assert(sum(angles) == 180)

Test: 30-60-90 Triangle

Test that the sides of the triangle reduce to 1 and 3. In which case, the angles are 30∘, 60∘, and 90∘.

tol = 1e-10;
angles = rightTri([2 2*sqrt(3)]);
assert(abs(angles(1)-30) <= tol)
assert(abs(angles(2)-60) <= tol)
assert(abs(angles(3)-90) <= tol)

Test: Isosceles Triangles

For isosceles triangles, both of the non-right angles must be 45 degrees; otherwise assert throws an
error.

Test that two sides of the triangle are equal. In which case, the corresponding angles are equal.

angles = rightTri([4 4]);
assert(angles(1) == 45)
assert(angles(1) == angles(2))

To run your tests, best practice is to use the testing framework via the runtests function instead of
the Run button in the Live Editor. The testing framework provides additional diagnostic information.
In the event of a test failure, the framework runs subsequent tests but the Run button in the Live

36 Unit Testing

36-4

Editor does not. For example, to run this test at the MATLAB command prompt, type result =
runtests('TestRightTriLiveScriptExample'). For more information, see runtests.

See Also
runtests | assert

Related Examples
• “Write Script-Based Unit Tests” on page 36-6
• “Write Function-Based Unit Tests” on page 36-20

 Write Test Using Live Script

36-5

Write Script-Based Unit Tests

This example shows how to write a script that tests a function that you create. The example function
computes the angles of a right triangle, and you create a script-based unit test to test the function.

Create rightTri Function to Test

Create this function in a file, rightTri.m, in your current MATLAB® folder. This function takes
lengths of two sides of a triangle as input and returns the three angles of the corresponding right
triangle. The input sides are the two shorter edges of the triangle, not the hypotenuse.

function angles = rightTri(sides)

A = atand(sides(1)/sides(2));
B = atand(sides(2)/sides(1));
hypotenuse = sides(1)/sind(A);
C = asind(hypotenuse*sind(A)/sides(1));

angles = [A B C];

end

Create Test Script

In your working folder, create a new script, rightTriTest.m. Each unit test checks a different
output of the rightTri function. A test script must adhere to the following conventions:

• The name of the test file must start or end with the word 'test', which is case-insensitive. If the file
name does not start or end with the word 'test', the tests in the file might be ignored in certain
cases.

• Place each unit test into a separate section of the script file. Each section begins with two percent
signs (%%), and the text that follows on the same line becomes the name of the test element. If no
text follows the %%, MATLAB assigns a name to the test. If MATLAB encounters a test failure, it
still runs remaining tests.

• In a test script, the shared variable section consists of any code that appears before the first
explicit code section (the first line beginning with %%). Tests share the variables that you define in
this section. Within a test, you can modify the values of these variables. However, in subsequent
tests, the value is reset to the value defined in the shared variables section.

• In the shared variables section (first code section), define any preconditions necessary for your
tests. If the inputs or outputs do not meet this precondition, MATLAB does not run any of the
tests. MATLAB marks the tests as failed and incomplete.

• When a script is run as a test, variables defined in one test are not accessible within other tests
unless they are defined in the shared variables section (first code section). Similarly, variables
defined in other workspaces are not accessible to the tests.

• If the script file does not include any code sections, MATLAB generates a single test element from
the full contents of the script file. The name of the test element is the same as the script file name.
In this case, if MATLAB encounters a failed test, it halts execution of the entire script.

36 Unit Testing

36-6

In rightTriTest.m, write four tests to test the output of rightTri. Use the assert function to
test the different conditions. In the shared variables section, define four triangle geometries and
define a precondition that the rightTri function returns a right triangle.

% test triangles
tri = [7 9];
triIso = [4 4];
tri306090 = [2 2*sqrt(3)];
triSkewed = [1 1500];

% preconditions
angles = rightTri(tri);
assert(angles(3) == 90,'Fundamental problem: rightTri not producing right triangle')

%% Test 1: sum of angles
angles = rightTri(tri);
assert(sum(angles) == 180)

angles = rightTri(triIso);
assert(sum(angles) == 180)

angles = rightTri(tri306090);
assert(sum(angles) == 180)

angles = rightTri(triSkewed);
assert(sum(angles) == 180)

%% Test 2: isosceles triangles
angles = rightTri(triIso);
assert(angles(1) == 45)
assert(angles(1) == angles(2))

%% Test 3: 30-60-90 triangle
angles = rightTri(tri306090);
assert(angles(1) == 30)
assert(angles(2) == 60)
assert(angles(3) == 90)

%% Test 4: Small angle approximation
angles = rightTri(triSkewed);
smallAngle = (pi/180)*angles(1); % radians
approx = sin(smallAngle);
assert(approx == smallAngle, 'Problem with small angle approximation')

Test 1 tests the summation of the triangle angles. If the summation is not equal to 180 degrees,
assert throws an error.

Test 2 tests that if two sides are equal, the corresponding angles are equal. If the non-right angles are
not both equal to 45 degrees, the assert function throws an error.

Test 3 tests that if the triangle sides are 1 and sqrt(3), the angles are 30, 60, and 90 degrees. If this
condition is not true, assert throws an error.

Test 4 tests the small-angle approximation. The small-angle approximation states that for small angles
the sine of the angle in radians is approximately equal to the angle. If it is not true, assert throws an
error.

 Write Script-Based Unit Tests

36-7

Run Tests

Execute the runtests function to run the four tests in rightTriTest.m. The runtests function
executes each test in each code section individually. If Test 1 fails, MATLAB still runs the remaining
tests. If you execute rightTriTest as a script instead of by using runtests, MATLAB halts
execution of the entire script if it encounters a failed assertion. Additionally, when you run tests using
the runtests function, MATLAB provides informative test diagnostics.

result = runtests('rightTriTest');

Running rightTriTest
..
==
Error occurred in rightTriTest/Test3_30_60_90Triangle and it did not run to completion.

 Error ID:

 'MATLAB:assertion:failed'

 Error Details:

 Error using rightTriTest (line 31)
 Assertion failed.
==
.
==
Error occurred in rightTriTest/Test4_SmallAngleApproximation and it did not run to completion.

 Error ID:

 ''

 Error Details:

 Error using rightTriTest (line 39)
 Problem with small angle approximation
==
.
Done rightTriTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 rightTriTest/Test3_30_60_90Triangle X X Errored.

 rightTriTest/Test4_SmallAngleApproximation X X Errored.

The test for the 30-60-90 triangle and the test for the small-angle approximation fail in the
comparison of floating-point numbers. Typically, when you compare floating-point values, you specify
a tolerance for the comparison. In Test 3 and Test 4, MATLAB throws an error at the failed assertion
and does not complete the test. Therefore, the test is marked as both Failed and Incomplete.

To provide diagnostic information (Error Details) that is more informative than 'Assertion
failed' (Test 3), consider passing a message to the assert function (as in Test 4). Or you can also
consider using function-based unit tests.

36 Unit Testing

36-8

Revise Test to Use Tolerance

Save rightTriTest.m as rightTriTolTest.m, and revise Test 3 and Test 4 to use a tolerance. In
Test 3 and Test 4, instead of asserting that the angles are equal to an expected value, assert that the
difference between the actual and expected values is less than or equal to a specified tolerance.
Define the tolerance in the shared variables section of the test script so it is accessible to both tests.

For script-based unit tests, manually verify that the difference between two values is less than a
specified tolerance. If instead you write a function-based unit test, you can access built-in constraints
to specify a tolerance when comparing floating-point values.

% test triangles
tri = [7 9];
triIso = [4 4];
tri306090 = [2 2*sqrt(3)];
triSkewed = [1 1500];

% Define an absolute tolerance
tol = 1e-10;

% preconditions
angles = rightTri(tri);
assert(angles(3) == 90,'Fundamental problem: rightTri not producing right triangle')

%% Test 1: sum of angles
angles = rightTri(tri);
assert(sum(angles) == 180)

angles = rightTri(triIso);
assert(sum(angles) == 180)

angles = rightTri(tri306090);
assert(sum(angles) == 180)

angles = rightTri(triSkewed);
assert(sum(angles) == 180)

%% Test 2: isosceles triangles
angles = rightTri(triIso);
assert(angles(1) == 45)
assert(angles(1) == angles(2))

%% Test 3: 30-60-90 triangle
angles = rightTri(tri306090);
assert(abs(angles(1)-30) <= tol)
assert(abs(angles(2)-60) <= tol)
assert(abs(angles(3)-90) <= tol)

%% Test 4: Small angle approximation
angles = rightTri(triSkewed);
smallAngle = (pi/180)*angles(1); % radians
approx = sin(smallAngle);
assert(abs(approx-smallAngle) <= tol, 'Problem with small angle approximation')

Rerun the tests.

 Write Script-Based Unit Tests

36-9

result = runtests('rightTriTolTest');

Running rightTriTolTest
....
Done rightTriTolTest

All the tests pass.

Create a table of test results.

rt = table(result)

rt =

 4×6 table

 Name Passed Failed Incomplete Duration Details
 ___ ______ ______ __________ _________ ____________

 {'rightTriTolTest/Test1_SumOfAngles' } true false false 0.02373 {1×1 struct}
 {'rightTriTolTest/Test2_IsoscelesTriangles' } true false false 0.0047332 {1×1 struct}
 {'rightTriTolTest/Test3_30_60_90Triangle' } true false false 0.0051982 {1×1 struct}
 {'rightTriTolTest/Test4_SmallAngleApproximation'} true false false 0.0049869 {1×1 struct}

See Also
runtests | assert

Related Examples
• “Write Script-Based Test Using Local Functions” on page 36-11
• “Write Function-Based Unit Tests” on page 36-20

36 Unit Testing

36-10

Write Script-Based Test Using Local Functions

This example shows how to write a script-based test that uses local functions as helper functions. The
example function approximates the sine and cosine of an angle. The script-based test checks the
approximation using local functions to check for equality within a tolerance.

Create approxSinCos Function to Test

Create this function in a file, approxSinCos.m, in your current MATLAB folder. This function takes
an angle in radians and approximates the sine and cosine of the angle using Taylor series.

function [sinA,cosA] = approxSinCos(x)
% For a given angle in radians, approximate the sine and cosine of the angle
% using Taylor series.
sinA = x;
cosA = 1;
altSign = -1;
for n = 3:2:26
sinA = sinA + altSign*(x^n)/factorial(n);
cosA = cosA + altSign*(x^(n-1))/factorial(n-1);
altSign = -altSign;
end

Create Test Script

In your current MATLAB folder, create a new script, approxSinCosTest.m.

Note: Including functions in scripts requires MATLAB® R2016b or later.

%% Test 0rad
% Test expected values of 0
[sinApprox,cosApprox] = approxSinCos(0);
assertWithAbsTol(sinApprox,0)
assertWithRelTol(cosApprox,1)

%% Test 2pi
% Test expected values of 2pi
[sinApprox,cosApprox] = approxSinCos(2*pi);
assertWithAbsTol(sinApprox,0)
assertWithRelTol(cosApprox,1)

%% Test pi over 4 equality
% Test sine and cosine of pi/4 are equal
[sinApprox,cosApprox] = approxSinCos(pi/4);
assertWithRelTol(sinApprox,cosApprox,'sine and cosine should be equal')

%% Test matches MATLAB fcn
% Test values of 2pi/3 match MATLAB output for the sin and cos functions
x = 2*pi/3;
[sinApprox,cosApprox] = approxSinCos(x);
assertWithRelTol(sinApprox,sin(x),'sin does not match')
assertWithRelTol(cosApprox,cos(x),'cos does not match')

 Write Script-Based Test Using Local Functions

36-11

function assertWithAbsTol(actVal,expVal,varargin)
% Helper function to assert equality within an absolute tolerance.
% Takes two values and an optional message and compares
% them within an absolute tolerance of 1e-6.
tol = 1e-6;
tf = abs(actVal-expVal) <= tol;
assert(tf, varargin{:});
end

function assertWithRelTol(actVal,expVal,varargin)
% Helper function to assert equality within a relative tolerance.
% Takes two values and an optional message and compares
% them within a relative tolerance of 0.1%.
relTol = 0.001;
tf = abs(expVal - actVal) <= relTol.*abs(expVal);
assert(tf, varargin{:});
end

Each unit test uses assert to check different output of the approxSinCos function. Typically, when
you compare floating-point values, you specify a tolerance for the comparison. The local functions
assertWithAbsTol and assertWithRelTol are helper functions to compute whether the actual
and expected values are equal within the specified absolute or relative tolerance.

• Test 0rad tests whether the computed and expected values for an angle of 0 radians are within
an absolute tolerance of 1e-6 or a relative tolerance 0.1%. Typically, you use absolute tolerance to
compare values close to 0.

• Test 2pi tests whether the computed and expected values for an angle of radians are equal
within an absolute tolerance of 1e-6 or a relative tolerance 0.1%.

• Test pi over 4 equality tests whether the sine and cosine of are equal within a relative
tolerance of 0.1%.

• Test matches MATLAB fcn tests whether the computed sine and cosine of are equal to
the values from the sin and cos functions within a relative tolerance of 0.1%.

Run Tests

Execute the runtests function to run the four tests in approxSinCosTest.m. The runtests
function executes each test individually. If one test fails, MATLAB still runs the remaining tests. If you
execute approxSinCosTest as a script instead of using runtests, MATLAB halts execution of the
entire script if it encounters a failed assertion. Additionally, when you run tests using the runtests
function, MATLAB provides informative test diagnostics.

results = runtests('approxSinCosTest');

Running approxSinCosTest
....
Done approxSinCosTest

All the tests pass.

Create a table of test results.

rt = table(results)

36 Unit Testing

36-12

rt =

 4x6 table

 Name Passed Failed Incomplete Duration Details
 ___ ______ ______ __________ ________ ____________

 {'approxSinCosTest/Test0rad' } true false false 0.48646 {1x1 struct}
 {'approxSinCosTest/Test2pi' } true false false 0.043785 {1x1 struct}
 {'approxSinCosTest/TestPiOver4Equality' } true false false 0.055102 {1x1 struct}
 {'approxSinCosTest/TestMatchesMATLABFcn'} true false false 0.070052 {1x1 struct}

See Also
runtests | assert

Related Examples
• “Write Script-Based Unit Tests” on page 36-6

More About
• “Add Functions to Scripts” on page 19-12

 Write Script-Based Test Using Local Functions

36-13

Extend Script-Based Tests
In this section...
“Test Suite Creation” on page 36-14
“Test Selection” on page 36-14
“Programmatic Access of Test Diagnostics” on page 36-15
“Test Runner Customization” on page 36-15

Typically, with script-based tests, you create a test file, and pass the file name to the runtests
function without explicitly creating a suite of Test objects. If you create an explicit test suite, there
are additional features available in script-based testing. These features include selecting tests and
using plugins to customize the test runner. For additional functionality, consider using “Function-
Based Unit Tests” or “Class-Based Unit Tests”.

Test Suite Creation
To create a test suite from a script-based test directly, use the testsuite function. For a more
explicit test suite creation, use the matlab.unittest.TestSuite.fromFile method of
TestSuite. Then you can use the run method instead of the runtests function to run the tests. For
example, if you have a script-based test in a file rightTriTolTest.m, these three approaches are
equivalent.

% Implicit test suite
result = runtests('rightTriTolTest.m');

% Explicit test suite
suite = testsuite('rightTriTolTest.m');
result = run(suite);

% Explicit test suite
suite = matlab.unittest.TestSuite.fromFile('rightTriTolTest.m');
result = run(suite);

Also, you can create a test suite from all the test files in a specified folder using the
matlab.unittest.TestSuite.fromFolder method. If you know the name of a particular test in
your script-based test file, you can create a test suite from that test using
matlab.unittest.TestSuite.fromName.

Test Selection
With an explicit test suite, use selectors to refine your suite. Several of the selectors are applicable
only for class-based tests, but you can select tests for your suite based on the test name:

• Use the 'Name' name-value pair argument in a suite generation method, such as
matlab.unittest.TestSuite.fromFile.

• Use a selectors instance and optional constraints instance.

Use these approaches in a suite generation method, such as
matlab.unittest.TestSuite.fromFile, or create a suite and filter it using the selectIf
method. For example, in this listing, the four values of suite are equivalent.

36 Unit Testing

36-14

import matlab.unittest.selectors.HasName
import matlab.unittest.constraints.ContainsSubstring
import matlab.unittest.TestSuite.fromFile

f = 'rightTriTolTest.m';
selector = HasName(ContainsSubstring('Triangle'));

% fromFile, name-value pair
suite = TestSuite.fromFile(f,'Name','*Triangle*')

% fromFile, selector
suite = TestSuite.fromFile(f,selector)

% selectIf, name-value pair
fullSuite = TestSuite.fromFile(f);
suite = selectIf(fullSuite,'Name','*Triangle*')

% selectIf, selector
fullSuite = TestSuite.fromFile(f);
suite = selectIf(fullSuite,selector)

If you use one of the suite creation methods with a selector or name-value pair, the testing framework
creates the filtered suite. If you use the selectIf method, the testing framework creates a full test
suite and then filters it. For large test suites, this approach can have performance implications.

Programmatic Access of Test Diagnostics
In certain cases, the testing framework uses a DiagnosticsRecordingPlugin plugin to record
diagnostics on test results. The framework uses the plugin by default if you do any of these:

• Run tests using the runtests function.
• Run tests using the testrunner function with no input.
• Run tests using the run method of the TestSuite or TestCase classes.
• Run performance tests using the runperf function.
• Run performance tests using the run method of the TimeExperiment class.

After you run tests, you can access recorded diagnostics using the DiagnosticRecord field in the
Details property on the TestResult object. For example, if your test results are stored in the
variable results, then result(2).Details.DiagnosticRecord contains the recorded
diagnostics for the second test in the suite.

The recorded diagnostics are DiagnosticRecord objects. To access particular types of test
diagnostics for a test, use the selectFailed, selectPassed, selectIncomplete, and
selectLogged methods of the DiagnosticRecord class.

By default, the DiagnosticsRecordingPlugin plugin records qualification failures and logged
events at the matlab.unittest.Verbosity.Terse level of verbosity. For more information, see
DiagnosticsRecordingPlugin and DiagnosticRecord.

Test Runner Customization
Use a TestRunner object to customize the way the framework runs a test suite. With a TestRunner
object you can:

 Extend Script-Based Tests

36-15

• Produce no output in the command window using the withNoPlugins method.
• Run tests in parallel using the runInParallel method.
• Add plugins to the test runner using the addPlugin method.

For example,use test suite, suite, to create a silent test runner and run the tests with the run
method of TestRunner.

runner = matlab.unittest.TestRunner.withNoPlugins;
results = runner.run(suite);

Use plugins to customize the test runner further. For example, you can redirect output, determine
code coverage, or change how the test runner responds to warnings. For more information, see “Add
Plugin to Test Runner” on page 36-97 and the plugins classes.

See Also
plugins | selectors | matlab.unittest.constraints | TestRunner | TestSuite

Related Examples
• “Add Plugin to Test Runner” on page 36-97

36 Unit Testing

36-16

Run Tests in Editor
When you open a function-based test file in the MATLAB Editor or Live Editor, or when you open a
class-based test file in the Editor, you can interactively run all tests in the file or run the test at your
cursor location. This example shows how to run tests while working in the Editor or Live Editor.

In your current folder, create a function-based test file sampleTest.m (or sampleTest.mlx).

function tests = sampleTest
tests = functiontests(localfunctions);
end

function testA(testCase)
verifyEqual(testCase,2+3,5)
end

function testB(testCase)
verifyGreaterThan(testCase,42,13)
end

function testC(testCase)
verifySubstring(testCase,"Hello World!","llo")
end

When you save the test file, the Run section in the Editor (or Live Editor) tab changes and lets you
run the tests in the file.

Click the Run Tests icon. MATLAB displays the command it uses to run the tests in the Command
Window, and runs all the tests in the file.

runtests("sampleTest")

Running sampleTest
...
Done sampleTest

ans =

 1×3 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:

 Run Tests in Editor

36-17

 3 Passed, 0 Failed, 0 Incomplete.
 0.45951 seconds testing time.

Now, place your cursor in the testB function and click Run Current Test. MATLAB runs testB only.

runtests("sampleTest","ProcedureName","testB")

Running sampleTest
.
Done sampleTest

ans =

 TestResult with properties:

 Name: 'sampleTest/testB'
 Passed: 1
 Failed: 0
 Incomplete: 0
 Duration: 0.0037
 Details: [1×1 struct]

Totals:
 1 Passed, 0 Failed, 0 Incomplete.
 0.0036537 seconds testing time.

In addition to running tests, you can customize the test run by using the test options under Run
Tests. To access the full list of test options, click the down arrow under Run Tests, and then click
Customize Test Run. MATLAB uses the selected test options whether you run all the tests in a file
or just the test at your cursor location. When you select a test option, the selection persists for the
duration of your current MATLAB session.

Test Option Description
Clear Output Before Running Tests Clears the Command Window before running

tests.
Strict Applies strict checks when running tests. For

example, the framework generates a qualification
failure if a test issues a warning.

Selecting this option is the same as specifying the
Strict name-value argument of runtests as
true.

Parallel Runs tests in parallel. This option is available
only if Parallel Computing Toolbox is installed.

Selecting this option is the same as specifying the
UseParallel name-value argument of
runtests as true.

36 Unit Testing

36-18

Test Option Description
Debug Applies debugging capabilities when running

tests. For example, the framework pauses test
execution and enters debug mode if it encounters
a test failure or uncaught error.

Selecting this option is the same as specifying the
Debug name-value argument of runtests as
true.

Output Detail Controls the amount of event detail displayed for
a test run.

Selecting a value for this option is the same as
specifying the OutputDetail name-value
argument of runtests as that value.

Logging Level Displays diagnostics logged by the log
(TestCase) or log (Fixture) methods at the
specified verbosity level and below.

Selecting a value for this option is the same as
specifying the LoggingLevel name-value
argument of runtests as that value.

See Also
runtests

More About
• “Insert Test Code Using Editor” on page 36-209

 Run Tests in Editor

36-19

Write Function-Based Unit Tests
In this section...
“Create Test Function” on page 36-20
“Run the Tests” on page 36-22
“Analyze the Results” on page 36-23

Create Test Function
Your test function is a single MATLAB file that contains a main function and your individual local test
functions. Optionally, you can include file fixture and fresh fixture functions. File fixtures consist of
setup and teardown functions shared across all the tests in a file. These functions are executed once
per test file. Fresh fixtures consist of setup and teardown functions that are executed before and after
each local test function.

Create the Main Function

The main function collects all of the local test functions into a test array. The name of the main
function corresponds to the name of your test file and should start or end with the word 'test', which
is case-insensitive. If the file name does not start or end with the word 'test', the tests in the file
might be ignored in certain cases. In this sample case, the MATLAB file is exampleTest.m. The main
function needs to make a call to functiontests to generate a test array, tests. Use
localfunctions as the input to functiontests to automatically generate a cell array of function
handles to all the local functions in your file. This is a typical main function.

function tests = exampleTest
tests = functiontests(localfunctions);
end

Create Local Test Functions

Individual test functions are included as local functions in the same MATLAB file as the main (test-
generating) function. These test function names must begin or end with the case-insensitive word,
‘test’. Each of the local test functions must accept a single input, which is a function test case object,
testCase. The testing framework automatically generates this object. For more information on
creating test functions, see “Write Simple Test Case Using Functions” on page 36-24 and “Table of
Verifications, Assertions, and Other Qualifications” on page 36-45. This is a typical example of
skeletal local-test functions.

function testFunctionOne(testCase)
% Test specific code
end

function testFunctionTwo(testCase)
% Test specific code
end

Create Optional Fixture Functions

Setup and teardown code, also referred to as test fixture functions, set up the pretest state of the
system and return it to the original state after running the test. There are two types of these
functions: file fixture functions that run once per test file, and fresh fixture functions that run before

36 Unit Testing

36-20

and after each local test function. These functions are not required to generate tests. In general, it is
preferable to use fresh fixtures over file fixtures to increase unit test encapsulation.

A function test case object, testCase, must be the only input to file fixture and fresh fixture
functions. The testing framework automatically generates this object. The TestCase object is a
means to pass information between setup functions, test functions, and teardown functions. Its
TestData property is, by default, a struct, which allows easy addition of fields and data. Typical
uses for this test data include paths and graphics handles. For an example using the TestData
property, see “Write Test Using Setup and Teardown Functions” on page 36-27.

File Fixture Functions

Use file fixture functions to share setup and teardown functions across all the tests in a file. The
names for the file fixture functions must be setupOnce and teardownOnce, respectively. These
functions execute a single time for each file. You can use file fixtures to set a path before testing, and
then reset it to the original path after testing. This is a typical example of skeletal file fixture setup
and teardown code.

function setupOnce(testCase) % do not change function name
% set a new path, for example
end

function teardownOnce(testCase) % do not change function name
% change back to original path, for example
end

Fresh Fixture Functions

Use fresh fixture functions to set up and tear down states for each local test function. The names for
these fresh fixture functions must be setup and teardown, respectively. You can use fresh fixtures to
obtain a new figure before testing and to close the figure after testing. This is typical example of
skeletal test function level setup and teardown code.

function setup(testCase) % do not change function name
% open a figure, for example
end

function teardown(testCase) % do not change function name
% close figure, for example
end

Program Listing Template

%% Main function to generate tests
function tests = exampleTest
tests = functiontests(localfunctions);
end

%% Test Functions
function testFunctionOne(testCase)
% Test specific code
end

function testFunctionTwo(testCase)
% Test specific code
end

 Write Function-Based Unit Tests

36-21

%% Optional file fixtures
function setupOnce(testCase) % do not change function name
% set a new path, for example
end

function teardownOnce(testCase) % do not change function name
% change back to original path, for example
end

%% Optional fresh fixtures
function setup(testCase) % do not change function name
% open a figure, for example
end

function teardown(testCase) % do not change function name
% close figure, for example
end

Run the Tests
When you run function-based tests, the testing framework executes these tasks:

1 Create an array of tests specified by local test functions.
2 If the setupOnce function is specified, set up the pretest state of the system by running the

function.
3 For each test, run the corresponding local test function. If the setup function is specified, run it

before running the local test function. If the teardown function is specified, run it after running
the local test function.

4 If the teardownOnce function is specified, return the pretest state of the system to the original
state by running the function.

To run tests from the command prompt, use the runtests function with your MATLAB test file as
input. For example:

results = runtests('exampleTest.m')

Alternatively, you can run tests using the run function.

results = run(exampleTest)

For more information on running tests see runtests and “Run Tests for Various Workflows” on page
36-93.

36 Unit Testing

36-22

Analyze the Results
To analyze the test results, examine the output structure from runtests or run. For each test, the
result contains the name of the test function, whether it passed, failed, or did not complete, and the
time it took to run the test. For more information, see “Analyze Test Case Results” on page 36-128
and “Analyze Failed Test Results” on page 36-131.

See Also
runtests | functiontests | localfunctions

Related Examples
• “Write Simple Test Case Using Functions” on page 36-24
• “Write Test Using Setup and Teardown Functions” on page 36-27

 Write Function-Based Unit Tests

36-23

Write Simple Test Case Using Functions

You can test your MATLAB® program by defining unit tests within a single file that contains a main
function and local test functions. In a function-based test, each local function executes a portion of
the software and qualifies the correctness of the produced result. For more information about
function-based tests, see “Write Function-Based Unit Tests” on page 36-20.

This example shows how to write a function-based test to qualify the correctness of a function defined
in a file in your current folder. The quadraticSolver function takes as inputs the coefficients of a
quadratic polynomial and returns the roots of that polynomial. If the coefficients are specified as
nonnumeric values, the function throws an error.

function roots = quadraticSolver(a,b,c)
% quadraticSolver returns solutions to the
% quadratic equation a*x^2 + b*x + c = 0.

if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')
 error('quadraticSolver:InputMustBeNumeric', ...
 'Coefficients must be numeric.');
end

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);
roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

end

Create Tests

To test the quadraticSolver function, create the test file quadraticSolverTest.m in your
current folder. Then, define a main function and two local functions in the file to test
quadraticSolver against real and imaginary solutions. The name of the main and local functions
must start or end with the word "test", which is case-insensitive. Additionally, the name of the main
function must correspond to the name of your test file.

Define Main Function

To run function-based unit tests, you must define a main function that collects all of the local test
functions into a test array. Define the main function quadraticSolverTest in your test file. The
main function calls functiontests to generate the test array tests. Pass localfunctions to
functiontests to automatically generate a cell array of function handles to the local functions in
your file.

function tests = quadraticSolverTest
tests = functiontests(localfunctions);
end

Define Local Test Functions

Add local functions to the test file to test the quadraticSolver function against real and imaginary
solutions. The order of the tests within the file does not matter. Each local function must accept a
single input testCase, which is a matlab.unittest.FunctionTestCase object. The testing
framework automatically generates this object. The function uses the object to perform qualifications
for testing values and responding to failures.

36 Unit Testing

36-24

Define a local function testRealSolution to verify that quadraticSolver returns the correct real
solutions for specific coefficients. For example, the equation x2− 3x + 2 = 0 has real solutions x = 1
and x = 2. The function calls quadraticSolver with the coefficients of this equation. Then, it uses
the verifyEqual qualification function to compare the actual output actSolution to the expected
output expSolution.

function tests = quadraticSolverTest
tests = functiontests(localfunctions);
end

function testRealSolution(testCase)
actSolution = quadraticSolver(1,-3,2);
expSolution = [2 1];
verifyEqual(testCase,actSolution,expSolution)
end

Define a second local function testImaginarySolution to verify that quadraticSolver returns
the correct imaginary solutions for specific coefficients. For example, the equation x2 + 2x + 10 = 0
has imaginary solutions x = − 1 + 3i and x = − 1− 3i. Just like the previous function, this function
calls quadraticSolver with the coefficients of this equation, and then uses the verifyEqual
qualification function to compare the actual output actSolution to the expected output
expSolution.

function tests = quadraticSolverTest
tests = functiontests(localfunctions);
end

function testRealSolution(testCase)
actSolution = quadraticSolver(1,-3,2);
expSolution = [2 1];
verifyEqual(testCase,actSolution,expSolution)
end

function testImaginarySolution(testCase)
actSolution = quadraticSolver(1,2,10);
expSolution = [-1+3i -1-3i];
verifyEqual(testCase,actSolution,expSolution)
end

Run Tests in Test File

Use the runtests function to run the tests defined in the quadraticSolverTest.m file. In this
example, both of the tests pass.

results = runtests('quadraticSolverTest.m')

Running quadraticSolverTest
..
Done quadraticSolverTest

results =
 1×2 TestResult array with properties:

 Name
 Passed
 Failed

 Write Simple Test Case Using Functions

36-25

 Incomplete
 Duration
 Details

Totals:
 2 Passed, 0 Failed, 0 Incomplete.
 0.051763 seconds testing time.

You also can run tests using the run function.

results = run(quadraticSolverTest)

Running quadraticSolverTest
..
Done quadraticSolverTest

results =
 1×2 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 2 Passed, 0 Failed, 0 Incomplete.
 0.0051289 seconds testing time.

See Also
runtests | functiontests | localfunctions

More About
• “Write Function-Based Unit Tests” on page 36-20
• “Table of Verifications, Assertions, and Other Qualifications” on page 36-45
• “Analyze Test Case Results” on page 36-128
• “Create Simple Test Suites” on page 36-91

36 Unit Testing

36-26

Write Test Using Setup and Teardown Functions

This example shows how to write unit tests for a couple of MATLAB® figure properties using file
fixtures and fresh fixtures.

Create axesPropertiesTest.m File

Create a file containing the main function that tests figure properties and include two test functions.
One function verifies that the x-axis limits are correct, and the other one verifies that the face color of
a surface is correct.

In a folder on your MATLAB path, create axesPropertiesTest.m. In the main function of this file,
have functiontests create an array of tests from each local function in axesPropertiesTest.m
with a call to the localfunctions function.

function tests = axesPropertiesTest
tests = functiontests(localfunctions);
end

Create File Fixture Functions

File fixture functions are setup and teardown code that runs a single time in your test file. These
fixtures are shared across the test file. In this example, the file fixture functions create a temporary
folder and set it as the current working folder. They also create and save a new figure for testing.
After tests are complete, the framework reinstates the original working folder and deletes the
temporary folder and saved figure.

In this example, a helper function creates a simple figure — a red cylinder. In a more realistic
scenario, this code is part of the product under test and is computationally expensive, thus motivating
the intent to create the figure only once and to load independent copies of the result for each test
function. For this example, however, you want to create this helper function as a local function to
axesPropertiesTest. Note that the test array does not include the function because its name does
not start or end with ‘test’.

Write a helper function that creates a simple red cylinder and add it as a local function to
axesPropertiesTest.

function f = createFigure
f = figure;
ax = axes('Parent',f);
cylinder(ax,10)
h = findobj(ax,'Type','surface');
h.FaceColor = [1 0 0];
end

You must name the setup and teardown functions of a file test fixture setupOnce and
teardownOnce, respectively. These functions take a single input argument testCase into which the
testing framework automatically passes a function test case object. This test case object contains a
TestData structure that allows data to pass between setup, test, and teardown functions. In this
example, the TestData structure uses assigned fields to store the original path, the temporary folder
name, and the figure file name.

Create the setup and teardown functions as local functions to axesPropertiesTest.

 Write Test Using Setup and Teardown Functions

36-27

function setupOnce(testCase)
% Create and change to temporary folder
testCase.TestData.origPath = pwd;
testCase.TestData.tmpFolder = "tmpFolder" + ...
 string(datetime('now','Format',"yyyyMMdd'T'HHmmss"));
mkdir(testCase.TestData.tmpFolder)
cd(testCase.TestData.tmpFolder)
% Create and save a figure
testCase.TestData.figName = 'tmpFig.fig';
aFig = createFigure;
saveas(aFig,testCase.TestData.figName)
close(aFig)
end

function teardownOnce(testCase)
delete(testCase.TestData.figName)
cd(testCase.TestData.origPath)
rmdir(testCase.TestData.tmpFolder)
end

Create Fresh Fixture Functions

Fresh fixtures are function-level setup and teardown code that runs before and after each test
function in your file. In this example, the functions open the saved figure and find the handles. After
testing, the framework closes the figure.

You must name fresh fixture functions setup and teardown, respectively. Similar to the file fixture
functions, these functions take a single input argument testCase. In this example, these functions
create a new field in the TestData structure that includes handles to the figure and to the axes. This
allows information to pass between setup, test, and teardown functions.

Create the setup and teardown functions as local functions to axesPropertiesTest. Open the
saved figure for each test to ensure test independence.

function setup(testCase)
testCase.TestData.Figure = openfig(testCase.TestData.figName);
testCase.TestData.Axes = findobj(testCase.TestData.Figure, ...
 'Type','Axes');
end

function teardown(testCase)
close(testCase.TestData.Figure)
end

In addition to custom setup and teardown code, the testing framework provides some classes for
creating fixtures. For more information, see matlab.unittest.fixtures.

Create Test Functions

Each test is a local function that follows the naming convention of having ‘test’ at the beginning or
end of the function name. The test array does not include local functions that do not follow this
convention. Similar to setup and teardown functions, individual test functions must accept a single
input argument testCase. Use this test case object for verifications, assertions, assumptions, and
fatal assertions.

The testDefaultXLim function verifies that the x-axis limits are large enough to display the
cylinder. The lower limit needs to be less than -10, and the upper limit needs to be greater than 10.

36 Unit Testing

36-28

These values come from the figure generated in the helper function — a cylinder with a 10 unit radius
centered on the origin. This test function opens the figure created and saved in the setupOnce
function, queries the axes limit, and verifies the limits are correct. The qualification functions
verifyLessThanOrEqual and verifyGreaterThanOrEqual take as inputs the test case, the
actual value, the expected value, and optional diagnostic information to display in the case of failure.

Create the testDefaultXLim function as a local function to axesPropertiesTest.

function testDefaultXLim(testCase)
xlim = testCase.TestData.Axes.XLim;
verifyLessThanOrEqual(testCase,xlim(1),-10, ...
 'Minimum x-limit was not small enough')
verifyGreaterThanOrEqual(testCase,xlim(2),10, ...
 'Maximum x-limit was not large enough')
end

The surfaceColorTest function accesses the figure that you created and saved in the setupOnce
function. surfaceColorTest queries the face color of the cylinder and verifies that it is red. The
color red has an RGB value of [1 0 0]. The qualification function verifyEqual takes as inputs the
test case, the actual value, the expected value, and optional diagnostic information to display in the
case of failure. Typically when using verifyEqual on floating-point values, you specify a tolerance
for the comparison. For more information, see matlab.unittest.constraints.

Create the surfaceColorTest function as a local function to axesPropertiesTest.

function surfaceColorTest(testCase)
h = findobj(testCase.TestData.Axes,'Type','surface');
co = h.FaceColor;
verifyEqual(testCase,co,[1 0 0],'Face color is incorrect')
end

Now the axesPropertiesTest.m file is complete with a main function, a helper function, file fixture
functions, fresh fixture functions, and two test functions. You are ready to run the tests.

Run Tests

The next step is to run the tests using the runtests function. In this example, the call to runtests
results in the following steps:

1 The main function creates a test array.
2 The file fixture setup records the working folder, creates a temporary folder, sets the temporary

folder as the working folder, then generates and saves a figure.
3 The fresh fixture setup opens the saved figure and finds the handles.
4 The testDefaultXLim test runs.
5 The fresh fixture teardown closes the figure.
6 The fresh fixture setup opens the saved figure and finds the handles.
7 The surfaceColorTest test runs.
8 The fresh fixture teardown closes the figure.
9 The file fixture teardown deletes the saved figure, changes back to the original path, and deletes

the temporary folder.

At the command prompt, generate and run the test suite.

 Write Test Using Setup and Teardown Functions

36-29

results = runtests('axesPropertiesTest.m')

Running axesPropertiesTest
..
Done axesPropertiesTest

results =
 1×2 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 2 Passed, 0 Failed, 0 Incomplete.
 0.5124 seconds testing time.

Create Table of Test Results

To access functionality available to tables, create one from the TestResult objects.

rt = table(results)

rt=2×6 table
 Name Passed Failed Incomplete Duration Details
 _______________________________________ ______ ______ __________ ________ ____________

 {'axesPropertiesTest/testDefaultXLim' } true false false 0.35239 {1×1 struct}
 {'axesPropertiesTest/surfaceColorTest'} true false false 0.16001 {1×1 struct}

Sort the test results by increasing duration.

sortrows(rt,'Duration')

ans=2×6 table
 Name Passed Failed Incomplete Duration Details
 _______________________________________ ______ ______ __________ ________ ____________

 {'axesPropertiesTest/surfaceColorTest'} true false false 0.16001 {1×1 struct}
 {'axesPropertiesTest/testDefaultXLim' } true false false 0.35239 {1×1 struct}

Export the test results to an Excel® spreadsheet.

writetable(rt,'myTestResults.xls')

See Also
matlab.unittest.fixtures | matlab.unittest.constraints

36 Unit Testing

36-30

More About
• “Write Function-Based Unit Tests” on page 36-20
• “Table of Verifications, Assertions, and Other Qualifications” on page 36-45

 Write Test Using Setup and Teardown Functions

36-31

Extend Function-Based Tests
In this section...
“Fixtures for Setup and Teardown Code” on page 36-32
“Test Logging and Verbosity” on page 36-33
“Test Suite Creation” on page 36-33
“Test Selection” on page 36-33
“Test Running” on page 36-34
“Programmatic Access of Test Diagnostics” on page 36-34
“Test Runner Customization” on page 36-35

Typically, with function-based tests, you create a test file and pass the file name to the runtests
function without explicitly creating a suite of Test objects. However, if you create an explicit test
suite, additional features are available in function-based testing. These features include:

• Test logging and verbosity
• Test selection
• Plugins to customize the test runner

For additional functionality, consider using “Class-Based Unit Tests”.

Fixtures for Setup and Teardown Code
When writing tests, use the applyFixture method to handle setup and teardown code for actions
such as:

• Changing the current working folder
• Adding a folder to the path
• Creating a temporary folder
• Suppressing the display of warnings

These fixtures take the place of manually coding the actions in the setupOnce, teardownOnce,
setup, and teardown functions of your function-based test.

For example, if you manually write setup and teardown code to set up a temporary folder for each
test, and then you make that folder your current working folder, your setup and teardown functions
could look like this.

function setup(testCase)
% store current folder
testCase.TestData.origPath = pwd;

% create temporary folder
testCase.TestData.tmpFolder = ['tmpFolder' datestr(now,30)];
mkdir(testCase.TestData.tmpFolder)

% change to temporary folder
cd(testCase.TestData.tmpFolder)
end

36 Unit Testing

36-32

function teardown(testCase)
% change to original folder
cd(testCase.TestData.origPath)

% delete temporary folder
rmdir(testCase.TestData.tmpFolder)
end

However, you also can use a fixture to replace both of those functions with just a modified setup
function. The fixture stores the information necessary to restore the initial state and performs the
teardown actions.
function setup(testCase)
% create temporary folder
f = testCase.applyFixture(matlab.unittest.fixtures.TemporaryFolderFixture);

% change to temporary folder
testCase.applyFixture(matlab.unittest.fixtures.CurrentFolderFixture(f.Folder));
end

Test Logging and Verbosity
Your test functions can use the log method. By default, the test runner reports diagnostics logged at
verbosity level 1 (Terse). Use the matlab.unittest.plugins.LoggingPlugin.withVerbosity
method to respond to messages of other verbosity levels. Construct a TestRunner object, add the
LoggingPlugin, and run the suite with the run method. For more information on creating a test
runner, see “Test Runner Customization” on page 36-35.

Test Suite Creation
Calling your function-based test returns a suite of Test objects. You also can use the testsuite
function or the matlab.unittest.TestSuite.fromFile method. If you want a particular test and
you know the test name, you can use matlab.unittest.TestSuite.fromName. If you want to
create a suite from all tests in a particular folder, you can use
matlab.unittest.TestSuite.fromFolder.

Test Selection
With an explicit test suite, use selectors to refine your suite. Several of the selectors are applicable
only for class-based tests, but you can select tests for your suite based on the test name:

• Use the 'Name' name-value pair argument in a suite generation method, such as
matlab.unittest.TestSuite.fromFile.

• Use a selectors instance and optional constraints instance.

Use these approaches in a suite generation method, such as
matlab.unittest.TestSuite.fromFile, or create a suite and filter it using the selectIf
method. For example, in this listing, the four values of suite are equivalent.

import matlab.unittest.selectors.HasName
import matlab.unittest.constraints.ContainsSubstring
import matlab.unittest.TestSuite.fromFile

f = 'rightTriTolTest.m';
selector = HasName(ContainsSubstring('Triangle'));

 Extend Function-Based Tests

36-33

% fromFile, name-value pair
suite = TestSuite.fromFile(f,'Name','*Triangle*')

% fromFile, selector
suite = TestSuite.fromFile(f,selector)

% selectIf, name-value pair
fullSuite = TestSuite.fromFile(f);
suite = selectIf(fullSuite,'Name','*Triangle*')

% selectIf, selector
fullSuite = TestSuite.fromFile(f);
suite = selectIf(fullSuite,selector)

If you use one of the suite creation methods with a selector or name-value pair, the testing framework
creates the filtered suite. If you use the selectIf method, the testing framework creates a full test
suite and then filters it. For large test suites, this approach can have performance implications.

Test Running
There are several ways to run a function-based test.

To Run All Tests Use Function
In a file runtests with the name of the test file
In a suite run with the suite
In a suite with a custom test
runner

run. (See “Test Runner Customization” on page 36-35.)

For more information, see “Run Tests for Various Workflows” on page 36-93.

Programmatic Access of Test Diagnostics
In certain cases, the testing framework uses a DiagnosticsRecordingPlugin plugin to record
diagnostics on test results. The framework uses the plugin by default if you do any of these:

• Run tests using the runtests function.
• Run tests using the testrunner function with no input.
• Run tests using the run method of the TestSuite or TestCase classes.
• Run performance tests using the runperf function.
• Run performance tests using the run method of the TimeExperiment class.

After you run tests, you can access recorded diagnostics using the DiagnosticRecord field in the
Details property on the TestResult object. For example, if your test results are stored in the
variable results, then result(2).Details.DiagnosticRecord contains the recorded
diagnostics for the second test in the suite.

The recorded diagnostics are DiagnosticRecord objects. To access particular types of test
diagnostics for a test, use the selectFailed, selectPassed, selectIncomplete, and
selectLogged methods of the DiagnosticRecord class.

36 Unit Testing

36-34

By default, the DiagnosticsRecordingPlugin plugin records qualification failures and logged
events at the matlab.unittest.Verbosity.Terse level of verbosity. For more information, see
DiagnosticsRecordingPlugin and DiagnosticRecord.

Test Runner Customization
Use a TestRunner object to customize the way the framework runs a test suite. With a TestRunner
object you can:

• Produce no output in the command window using the withNoPlugins method.
• Run tests in parallel using the runInParallel method.
• Add plugins to the test runner using the addPlugin method.

For example,use test suite, suite, to create a silent test runner and run the tests with the run
method of TestRunner.

runner = matlab.unittest.TestRunner.withNoPlugins;
results = runner.run(suite);

Use plugins to customize the test runner further. For example, you can redirect output, determine
code coverage, or change how the test runner responds to warnings. For more information, see “Add
Plugin to Test Runner” on page 36-97 and the plugins classes.

See Also
matlab.unittest.TestCase | matlab.unittest.TestSuite |
matlab.unittest.qualifications | matlab.unittest.constraints |
matlab.unittest.diagnostics | matlab.unittest.selectors

Related Examples
• “Run Tests for Various Workflows” on page 36-93
• “Add Plugin to Test Runner” on page 36-97

 Extend Function-Based Tests

36-35

Author Class-Based Unit Tests in MATLAB
To test a MATLAB program, write a unit test using qualifications that are methods for testing values
and responding to failures.

The Test Class Definition
A test class must inherit from matlab.unittest.TestCase and contain a methods block with the
Test attribute. The methods block contains functions, each of which is a unit test. A general, basic
class definition follows.

%% Test Class Definition
classdef MyComponentTest < matlab.unittest.TestCase

 %% Test Method Block
 methods (Test)
 % includes unit test functions
 end
end

The Unit Tests
A unit test is a method that determines the correctness of a unit of software. Each unit test is
contained within a methods block. The function must accept a TestCase instance as an input.

%% Test Class Definition
classdef MyComponentTest < matlab.unittest.TestCase

 %% Test Method Block
 methods (Test)

 %% Test Function
 function testASolution(testCase)
 %% Exercise function under test
 % act = the value from the function under test

 %% Verify using test qualification
 % exp = your expected value
 % testCase.<qualification method>(act,exp);
 end
 end
end

Qualifications are methods for testing values and responding to failures. This table lists the types of
qualifications.

Verificati
ons

Use this qualification to produce
and record failures without
throwing an exception. The
remaining tests run to
completion.

matlab.unittest.qualifications.Verifiable

36 Unit Testing

36-36

Assumpti
ons

Use this qualification to ensure
that a test runs only when
certain preconditions are
satisfied. However, running the
test without satisfying the
preconditions does not produce a
test failure. When an assumption
failure occurs, the testing
framework marks the test as
filtered.

matlab.unittest.qualifications.Assumable

Assertio
ns

Use this qualification to ensure
that the preconditions of the
current test are met.

matlab.unittest.qualifications.Assertable

Fatal
assertion
s

Use this qualification when the
failure at the assertion point
renders the remainder of the
current test method invalid or
the state is unrecoverable.

matlab.unittest.qualifications.FatalAssert
able

The MATLAB unit testing framework provides approximately 25 qualification methods for each type
of qualification. For example, use verifyClass or assertClass to test that a value is of an
expected class, and use assumeTrue or fatalAssertTrue to test if the actual value is true. For a
summary of qualification methods, see “Table of Verifications, Assertions, and Other Qualifications”
on page 36-45.

Often, each unit test function obtains an actual value by exercising the code that you are testing and
defines the associated expected value. For example, if you are testing the plus function, the actual
value might be plus(2,3) and the expected value 5. Within the test function, you pass the actual
and expected values to a qualification method. For example:

testCase.verifyEqual(plus(2,3),5)

For an example of a basic unit test, see “Write Simple Test Case Using Classes” on page 36-39.

Additional Features for Advanced Test Classes
The MATLAB unit testing framework includes several features for authoring more advanced test
classes:

• Setup and teardown methods blocks to implicitly set up the pretest state of the system and return
it to the original state after running the tests. For an example of a test class with setup and
teardown code, see “Write Setup and Teardown Code Using Classes” on page 36-42.

• Advanced qualification features, including actual value proxies, test diagnostics, and a constraint
interface. For more information, see matlab.unittest.constraints and
matlab.unittest.diagnostics.

• Parameterized tests to combine and execute tests on the specified lists of parameters. For more
information, see “Create Basic Parameterized Test” on page 36-68 and “Create Advanced
Parameterized Test” on page 36-73.

• Ready-to-use fixtures for handling the setup and teardown of frequently used testing actions and
for sharing fixtures between classes. For more information, see matlab.unittest.fixtures
and “Write Tests Using Shared Fixtures” on page 36-52.

 Author Class-Based Unit Tests in MATLAB

36-37

• Ability to create custom test fixtures. For more information see “Create Basic Custom Fixture” on
page 36-55 and “Create Advanced Custom Fixture” on page 36-57.

See Also

Related Examples
• “Write Simple Test Case Using Classes” on page 36-39
• “Write Setup and Teardown Code Using Classes” on page 36-42
• “Create Simple Test Suites” on page 36-91
• “Run Tests for Various Workflows” on page 36-93
• “Analyze Test Case Results” on page 36-128
• “Analyze Failed Test Results” on page 36-131

36 Unit Testing

36-38

Write Simple Test Case Using Classes

You can test your MATLAB® program by defining unit tests within a test class that inherits from the
matlab.unittest.TestCase class. A unit test in a class-based test is a method that determines the
correctness of a unit of software. It is defined within a methods block with the Test attribute and
can use qualifications for testing values and responding to failures. For more information about class-
based tests, see “Author Class-Based Unit Tests in MATLAB” on page 36-36.

This example shows how to write class-based unit tests to qualify the correctness of a function
defined in a file in your current folder. The quadraticSolver function takes as inputs the
coefficients of a quadratic polynomial and returns the roots of that polynomial. If the coefficients are
specified as nonnumeric values, the function throws an error.

function roots = quadraticSolver(a,b,c)
% quadraticSolver returns solutions to the
% quadratic equation a*x^2 + b*x + c = 0.

if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')
 error('quadraticSolver:InputMustBeNumeric', ...
 'Coefficients must be numeric.');
end

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);
roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

end

Create SolverTest Class

In a file named SolverTest.m in your current folder, create the SolverTest class by subclassing
the matlab.unittest.TestCase class. This class provides a place for tests for the
quadraticSolver function. Add three unit tests inside a methods block with the Test attribute.
These test the quadraticSolver function against real solutions, imaginary solutions, and error
conditions. Each Test method must accept a TestCase instance as an input. The order of the tests
within the block does not matter.

First, create a Test method realSolution to verify that quadraticSolver returns the correct
real solutions for specific coefficients. For example, the equation x2− 3x + 2 = 0 has real solutions
x = 1 and x = 2. The method calls quadraticSolver with the coefficients of this equation. Then, it
uses the verifyEqual method of matlab.unittest.TestCase to compare the actual output
actSolution to the expected output expSolution.

classdef SolverTest < matlab.unittest.TestCase
 methods(Test)
 function realSolution(testCase)
 actSolution = quadraticSolver(1,-3,2);
 expSolution = [2 1];
 testCase.verifyEqual(actSolution,expSolution)
 end
 end
end

Create a second Test method imaginarySolution to verify that quadraticSolver returns the
correct imaginary solutions for specific coefficients. For example, the equation x2 + 2x + 10 = 0 has

 Write Simple Test Case Using Classes

36-39

imaginary solutions x = − 1 + 3i and x = − 1− 3i. Just like the previous method, this method calls
quadraticSolver with the coefficients of this equation, and then uses the verifyEqual method to
compare the actual output actSolution to the expected output expSolution.

classdef SolverTest < matlab.unittest.TestCase
 methods(Test)
 function realSolution(testCase)
 actSolution = quadraticSolver(1,-3,2);
 expSolution = [2 1];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function imaginarySolution(testCase)
 actSolution = quadraticSolver(1,2,10);
 expSolution = [-1+3i -1-3i];
 testCase.verifyEqual(actSolution,expSolution)
 end
 end
end

Finally, add a Test method nonnumericInput to verify that quadraticSolver produces an error
for nonnumeric coefficients. Use the verifyError method of matlab.unittest.TestCase to test
that the function throws the error specified by 'quadraticSolver:InputMustBeNumeric' when
it is called with inputs 1, '-3', and 2.

classdef SolverTest < matlab.unittest.TestCase
 methods(Test)
 function realSolution(testCase)
 actSolution = quadraticSolver(1,-3,2);
 expSolution = [2 1];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function imaginarySolution(testCase)
 actSolution = quadraticSolver(1,2,10);
 expSolution = [-1+3i -1-3i];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function nonnumericInput(testCase)
 testCase.verifyError(@()quadraticSolver(1,'-3',2), ...
 'quadraticSolver:InputMustBeNumeric')
 end
 end
end

Run Tests in SolverTest Class

To run all of the tests in the SolverTest class, create a TestCase object from the class and then
call the run method on the object. In this example, all three tests pass.

testCase = SolverTest;
results = testCase.run

Running SolverTest
...
Done SolverTest

results =
 1×3 TestResult array with properties:

36 Unit Testing

36-40

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 3 Passed, 0 Failed, 0 Incomplete.
 2.0136 seconds testing time.

You also can run a single test specified by one of the Test methods. To run a specific Test method,
pass the name of the method to run. For example, run the realSolution method.

result = run(testCase,'realSolution')

Running SolverTest
.
Done SolverTest

result =
 TestResult with properties:

 Name: 'SolverTest/realSolution'
 Passed: 1
 Failed: 0
 Incomplete: 0
 Duration: 0.0114
 Details: [1×1 struct]

Totals:
 1 Passed, 0 Failed, 0 Incomplete.
 0.011409 seconds testing time.

See Also
matlab.unittest.TestCase

Related Examples
• “Author Class-Based Unit Tests in MATLAB” on page 36-36
• “Table of Verifications, Assertions, and Other Qualifications” on page 36-45
• “Analyze Test Case Results” on page 36-128
• “Create Simple Test Suites” on page 36-91

 Write Simple Test Case Using Classes

36-41

Write Setup and Teardown Code Using Classes
In this section...
“Test Fixtures” on page 36-42
“Test Case with Method-Level Setup Code” on page 36-42
“Test Case with Class-Level Setup Code” on page 36-43

Test Fixtures
Test fixtures are setup and teardown code that sets up the pretest state of the system and returns it
to the original state after running the test. Setup and teardown methods are defined in the TestCase
class by the following method attributes:

• TestMethodSetup and TestMethodTeardown methods run before and after each test method.
• TestClassSetup and TestClassTeardown methods run before and after all test methods in the

test case.

The testing framework guarantees that TestMethodSetup and TestClassSetup methods of
superclasses are executed before those in subclasses.

It is good practice for test authors to perform all teardown activities from within the
TestMethodSetup and TestClassSetup blocks using the addTeardown method instead of
implementing corresponding teardown methods in the TestMethodTeardown and
TestClassTeardown blocks. This guarantees the teardown is executed in the reverse order of the
setup and also ensures that the test content is exception safe.

Test Case with Method-Level Setup Code
The following test case, FigurePropertiesTest, contains setup code at the method level. The
TestMethodSetup method creates a figure before running each test, and TestMethodTeardown
closes the figure afterwards. As discussed previously, you should try to define teardown activities with
the addTeardown method. However, for illustrative purposes, this example shows the
implementation of a TestMethodTeardown block.

classdef FigurePropertiesTest < matlab.unittest.TestCase

 properties
 TestFigure
 end

 methods(TestMethodSetup)
 function createFigure(testCase)
 testCase.TestFigure = figure;
 end
 end

 methods(TestMethodTeardown)
 function closeFigure(testCase)
 close(testCase.TestFigure)
 end
 end

36 Unit Testing

36-42

 methods(Test)
 function defaultCurrentPoint(testCase)
 cp = testCase.TestFigure.CurrentPoint;
 testCase.verifyEqual(cp,[0 0], ...
 'Default current point is incorrect')
 end

 function defaultCurrentObject(testCase)
 import matlab.unittest.constraints.IsEmpty
 co = testCase.TestFigure.CurrentObject;
 testCase.verifyThat(co,IsEmpty, ...
 'Default current object should be empty')
 end
 end

end

Test Case with Class-Level Setup Code
The following test case, BankAccountTest, contains setup code at the class level.

To setup the BankAccountTest, which tests the BankAccount class example described in
“Developing Classes That Work Together”, add a TestClassSetup method,
addBankAccountClassToPath. This method adds the path to the BankAccount example file.
Typically, you set up the path using a PathFixture. This example performs the setup and teardown
activities manually for illustrative purposes.
classdef BankAccountTest < matlab.unittest.TestCase
 % Tests the BankAccount class

 methods(TestClassSetup)
 function addBankAccountClassToPath(testCase)
 p = path;
 testCase.addTeardown(@path,p)
 addpath(fullfile(matlabroot,'help','techdoc','matlab_oop', ...
 'examples'))
 end
 end

 methods(Test)
 function testConstructor(testCase)
 b = BankAccount(1234,100);
 testCase.verifyEqual(b.AccountNumber,1234, ...
 'Constructor failed to correctly set account number')
 testCase.verifyEqual(b.AccountBalance,100, ...
 'Constructor failed to correctly set account balance')
 end

 function testConstructorNotEnoughInputs(testCase)
 import matlab.unittest.constraints.Throws
 testCase.verifyThat(@()BankAccount, ...
 Throws('MATLAB:minrhs'))
 end

 function testDeposit(testCase)
 b = BankAccount(1234,100);
 b.deposit(25)
 testCase.verifyEqual(b.AccountBalance,125)
 end

 function testWithdraw(testCase)
 b = BankAccount(1234,100);
 b.withdraw(25)
 testCase.verifyEqual(b.AccountBalance,75)
 end

 function testNotifyInsufficientFunds(testCase)
 callbackExecuted = false;
 function testCallback(~,~)

 Write Setup and Teardown Code Using Classes

36-43

 callbackExecuted = true;
 end
 b = BankAccount(1234,100);
 b.addlistener('InsufficientFunds',@testCallback);
 b.withdraw(50)
 testCase.assertFalse(callbackExecuted, ...
 'The callback should not have executed yet')
 b.withdraw(60)
 testCase.verifyTrue(callbackExecuted, ...
 'The listener callback should have fired')
 end
 end

end

See Also
matlab.unittest.TestCase | addTeardown

Related Examples
• “Author Class-Based Unit Tests in MATLAB” on page 36-36
• “Write Simple Test Case Using Classes” on page 36-39

36 Unit Testing

36-44

Table of Verifications, Assertions, and Other Qualifications
There are four types of qualifications for testing values and responding to failures: verifications,
assumptions, assertions, and fatal assertions.

• Verifications — Produce and record failures without throwing an exception. When a verification
failure occurs, the remaining tests run to completion.

• Assumptions — Ensure that the test environment meets preconditions that otherwise do not result
in a test failure. When an assumption failure occurs, the testing framework marks the test as
filtered.

• Assertions — Ensure that the preconditions of the current test are met. When an assertion failure
occurs, the framework marks the current test as failed and incomplete. However, the failure does
not prevent proper execution of subsequent tests.

• Fatal assertions — Ensure that the remainder of the current test session is valid and the state is
recoverable. When a fatal assertion failure occurs, the testing framework aborts the test session.

These qualification types have parallel methods for the same types of tests. The methods use a
common naming convention. For instance, the methods that test for a true value use the form
<qualify>True, where <qualify> can be verify, assume, assert, or fatalAssert. That is:

• verifyTrue — Verify value is true.
• assumeTrue — Assume value is true.
• assertTrue — Assert value is true.
• fatalAssertTrue — Fatally assert value is true.

General Purpose

Type of Test Form of Method Name Example
Value is true. <qualify>True verifyTrue
Value is false. <qualify>False verifyFalse
Value is equal to the specified
value.

<qualify>Equal verifyEqual

Value is not equal to the
specified value.

<qualify>NotEqual verifyNotEqual

Two values are handles to the
same instance.

<qualify>SameHandle verifySameHandle

Value is not a handle to the
specified instance.

<qualify>NotSameHandle verifyNotSameHandle

Function returns true. <qualify>ReturnsTrue verifyReturnsTrue
Test produces an unconditional
failure.

<qualify>Fail verifyFail

Value meets the specified
constraint.

<qualify>That verifyThat

 Table of Verifications, Assertions, and Other Qualifications

36-45

Errors and Warnings

Type of Test Form of Method Name Example
Function throws the specified
exception.

<qualify>Error verifyError

Function issues the specified
warning.

<qualify>Warning verifyWarning

Function issues no warnings. <qualify>WarningFree verifyWarningFree

Inequalities

Type of Test Form of Method Name Example
Value is greater than the
specified value.

<qualify>GreaterThan verifyGreaterThan

Value is greater than or equal to
the specified value.

<qualify>GreaterThanOrEq
ual

verifyGreaterThanOrEqual

Value is less than the specified
value.

<qualify>LessThan verifyLessThan

Value is less than or equal to the
specified value.

<qualify>LessThanOrEqual verifyLessThanOrEqual

Array Size

Type of Test Form of Method Name Example
Value is empty. <qualify>Empty verifyEmpty
Value is not empty. <qualify>NotEmpty verifyNotEmpty
Value has the specified size. <qualify>Size verifySize
Value has the specified length. <qualify>Length verifyLength
Value has the specified element
count.

<qualify>NumElements verifyNumElements

Type

Type of Test Form of Method Name Example
Class of value is the specified
class.

<qualify>Class verifyClass

Value is an instance of the
specified class.

<qualify>InstanceOf verifyInstanceOf

Strings

Type of Test Form of Method Name Example
Value contains the specified
string.

<qualify>Substring verifySubstring

Value matches the specified
regular expression.

<qualify>Matches verifyMatches

36 Unit Testing

36-46

See Also
matlab.unittest.qualifications.Verifiable |
matlab.unittest.qualifications.Assumable |
matlab.unittest.qualifications.Assertable |
matlab.unittest.qualifications.FatalAssertable | matlab.unittest.qualifications

 Table of Verifications, Assertions, and Other Qualifications

36-47

Tag Unit Tests
You can use test tags to group tests into categories and then run tests with specified tags. Typical test
tags identify a particular feature or describe the type of test.

Tag Tests
To define test tags, use a cell array of meaningful character vectors or a string array. For example,
TestTags = {'Unit'} or TestTags = ["Unit","FeatureA"].

• To tag individual tests, use the TestTags method attribute.
• To tag all the tests within a class, use the TestTags class attribute. If you use the TestTags class

attribute in a superclass, tests in the subclasses inherit the tags.

This sample test class, ExampleTagTest, uses the TestTags method attribute to tag individual
tests.

classdef ExampleTagTest < matlab.unittest.TestCase
 methods (Test)
 function testA (testCase)
 % test code
 end
 end
 methods (Test, TestTags = {'Unit'})
 function testB (testCase)
 % test code
 end
 function testC (testCase)
 % test code
 end
 end
 methods (Test, TestTags = {'Unit','FeatureA'})
 function testD (testCase)
 % test code
 end
 end
 methods (Test, TestTags = {'System','FeatureA'})
 function testE (testCase)
 % test code
 end
 end
end

Several of the tests in class ExampleTagTest are tagged. For example, testD is tagged with
'Unit' and 'FeatureA'. One test, testA, is not tagged.

This sample test class, ExampleTagClassTest, uses a TestTags class attribute to tag all the tests
within the class, and a TestTags method attribute to add tags to individual tests.

classdef (TestTags = {'FeatureB'}) ...
 ExampleTagClassTest < matlab.unittest.TestCase
 methods (Test)
 function testF (testCase)
 % test code
 end

36 Unit Testing

36-48

 end
 methods (Test, TestTags = {'FeatureC','System'})
 function testG (testCase)
 % test code
 end
 end
 methods (Test, TestTags = {'System','FeatureA'})
 function testH (testCase)
 % test code
 end
 end
end

Each test in class ExampleTagClassTest is tagged with 'FeatureB'. Additionally, individual tests
are tagged with various tags including 'FeatureA', 'FeatureC', and 'System'.

Select and Run Tests
There are three ways of selecting and running tagged tests:

• “Run Selected Tests Using runtests” on page 36-49
• “Select Tests Using TestSuite Methods” on page 36-50
• “Select Tests Using HasTag Selector” on page 36-50

Run Selected Tests Using runtests

Use the runtests function to select and run tests without explicitly creating a test suite. Select and
run all the tests from ExampleTagTest and ExampleTagClassTest that include the 'FeatureA'
tag.
results = runtests({'ExampleTagTest','ExampleTagClassTest'},'Tag','FeatureA');

Running ExampleTagTest
..
Done ExampleTagTest

Running ExampleTagClassTest
.
Done ExampleTagClassTest

runtests selected and ran three tests.

Display the results in a table.

table(results)

ans =

 3×6 table

 Name Passed Failed Incomplete Duration Details
 ___________________________ ______ ______ __________ __________ ____________

 'ExampleTagTest/testE' true false false 0.00039529 [1×1 struct]

 Tag Unit Tests

36-49

 'ExampleTagTest/testD' true false false 0.00045658 [1×1 struct]
 'ExampleTagClassTest/testH' true false false 0.00043899 [1×1 struct]

The selected tests are testE and testD from ExampleTagTest, and testH from
ExampleTagClassTest.

Select Tests Using TestSuite Methods

Create a suite of tests from the ExampleTagTest class that are tagged with 'FeatureA'.

import matlab.unittest.TestSuite
sA = TestSuite.fromClass(?ExampleTagTest,'Tag','FeatureA');

Create a suite of tests from the ExampleTagClassTest class that are tagged with 'FeatureC'.

sB = TestSuite.fromFile('ExampleTagClassTest.m','Tag','FeatureC');

Concatenate the suite and view the names of the tests.

suite = [sA sB];
{suite.Name}'

ans =

 3×1 cell array

 'ExampleTagTest/testE'
 'ExampleTagTest/testD'
 'ExampleTagClassTest/testG'

Select Tests Using HasTag Selector

Create a suite of all the tests from the ExampleTagTest and ExampleTagClassTest classes.

import matlab.unittest.selectors.HasTag
sA = TestSuite.fromClass(?ExampleTagTest);
sB = TestSuite.fromFile('ExampleTagClassTest.m');
suite = [sA sB];

Select all the tests that do not have tags.

s1 = suite.selectIf(~HasTag)

s1 =

 Test with properties:

 Name: 'ExampleTagTest/testA'
 ProcedureName: 'testA'
 TestClass: "ExampleTagTest"
 BaseFolder: 'C:\work'
 Parameterization: [0×0 matlab.unittest.parameters.EmptyParameter]
 SharedTestFixtures: [0×0 matlab.unittest.fixtures.EmptyFixture]
 Tags: {1×0 cell}

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Select all the tests with the 'Unit' tag and display their names.

36 Unit Testing

36-50

s2 = suite.selectIf(HasTag('Unit'));
{s2.Name}'

ans =

 3×1 cell array

 'ExampleTagTest/testD'
 'ExampleTagTest/testB'
 'ExampleTagTest/testC'

Select all the tests with the 'FeatureB' or 'System' tag using a constraint.

import matlab.unittest.constraints.IsEqualTo
constraint = IsEqualTo('FeatureB') | IsEqualTo('System');
s3 = suite.selectIf(HasTag(constraint));
{s3.Name}'

ans =

 4×1 cell array

 'ExampleTagTest/testE'
 'ExampleTagClassTest/testH'
 'ExampleTagClassTest/testG'
 'ExampleTagClassTest/testF'

See Also
matlab.unittest.constraints | matlab.unittest.selectors.HasTag |
matlab.unittest.TestSuite | runtests | matlab.unittest.TestCase

 Tag Unit Tests

36-51

Write Tests Using Shared Fixtures
This example shows how to use shared fixtures when creating tests. You can share test fixtures across
test classes using the SharedTestFixtures attribute of the TestCase class. To exemplify this
attribute, create multiple test classes in a subdirectory of your current working folder. The test
methods are shown only at a high level.

The two test classes used in this example test the DocPolynom class and the BankAccount class.
You can access both classes in MATLAB, but you must add them to the MATLAB path. A path fixture
adds the directory to the current path, runs the tests, and removes the directory from the path. Since
both classes require the same addition to the path, the tests use a shared fixture.

Create a Test for the DocPolynom Class

Create a test file for the DocPolynom class. Create the shared fixture by specifying the
SharedTestFixtures attribute for the TestCase and passing in a PathFixture.

DocPolynomTest Class Definition File
classdef (SharedTestFixtures={matlab.unittest.fixtures.PathFixture(...
 fullfile(matlabroot,'help','techdoc','matlab_oop','examples'))}) ...
 DocPolynomTest < matlab.unittest.TestCase
 % Tests the DocPolynom class.

 properties
 msgEqn = 'Equation under test: ';
 end

 methods (Test)
 function testConstructor(testCase)
 p = DocPolynom([1, 0, 1]);
 testCase.verifyClass(p, ?DocPolynom)
 end

 function testAddition(testCase)
 p1 = DocPolynom([1, 0, 1]);
 p2 = DocPolynom([5, 2]);

 actual = p1 + p2;
 expected = DocPolynom([1, 5, 3]);

 msg = [testCase.msgEqn,...
 '(x^2 + 1) + (5*x + 2) = x^2 + 5*x + 3'];
 testCase.verifyEqual(actual, expected, msg)
 end

 function testMultiplication(testCase)
 p1 = DocPolynom([1, 0, 3]);
 p2 = DocPolynom([5, 2]);

 actual = p1 * p2;
 expected = DocPolynom([5, 2, 15, 6]);

 msg = [testCase.msgEqn,...
 '(x^2 + 3) * (5*x + 2) = 5*x^3 + 2*x^2 + 15*x + 6'];
 testCase.verifyEqual(actual, expected, msg)
 end

36 Unit Testing

36-52

 end
end

Create a Test for the BankAccount Class

Create a test file for the BankAccount class. Create the shared fixture by specifying the
SharedTestFixtures attribute for the TestCase and passing in a PathFixture.

BankAccountTest Class Definition File

classdef (SharedTestFixtures={matlab.unittest.fixtures.PathFixture(...
 fullfile(matlabroot, 'help', 'techdoc', 'matlab_oop', ...
 'examples'))}) BankAccountTest < matlab.unittest.TestCase
 % Tests the BankAccount class.

 methods (Test)
 function testConstructor(testCase)
 b = BankAccount(1234, 100);
 testCase.verifyEqual(b.AccountNumber, 1234, ...
 'Constructor failed to correctly set account number')
 testCase.verifyEqual(b.AccountBalance, 100, ...
 'Constructor failed to correctly set account balance')
 end

 function testConstructorNotEnoughInputs(testCase)
 import matlab.unittest.constraints.Throws
 testCase.verifyThat(@()BankAccount, ...
 Throws('MATLAB:minrhs'))
 end

 function testDeposit(testCase)
 b = BankAccount(1234, 100);
 b.deposit(25)
 testCase.verifyEqual(b.AccountBalance, 125)
 end

 function testWithdraw(testCase)
 b = BankAccount(1234, 100);
 b.withdraw(25)
 testCase.verifyEqual(b.AccountBalance, 75)
 end

 function testNotifyInsufficientFunds(testCase)
 callbackExecuted = false;
 function testCallback(~,~)
 callbackExecuted = true;
 end

 b = BankAccount(1234, 100);
 b.addlistener('InsufficientFunds', @testCallback);

 b.withdraw(50)
 testCase.assertFalse(callbackExecuted, ...
 'The callback should not have executed yet')
 b.withdraw(60)
 testCase.verifyTrue(callbackExecuted, ...
 'The listener callback should have fired')

 Write Tests Using Shared Fixtures

36-53

 end
 end
end

Create the Test Suite

The classes DocPolynomTest.m and BankAccountTest.m are in your working directory. Create a
test suite from your current working directory. If you have additional tests, they are included in the
suite when you use the TestSuite.fromFolder method. Create the test suite at the command
prompt.

import matlab.unittest.TestSuite
suiteFolder = TestSuite.fromFolder(pwd);

Run the Tests

At the command prompt, run the tests in the test suite.

results = run(suiteFolder);

Setting up PathFixture
Done setting up PathFixture: Added 'C:\Program Files\MATLAB\R2022a\help\techdoc\matlab_oop\examples' to the path.

Running BankAccountTest
.....
Done BankAccountTest

Running DocPolynomTest
...
Done DocPolynomTest

Tearing down PathFixture
Done tearing down PathFixture: Restored the path to its original state.

The testing framework sets up the test fixture, runs all the tests in each file, and then tears the
fixture down. If the path fixture was set up and torn down using TestClassSetup methods, the
fixture is set up and torn down twice—once for each test file.

See Also
matlab.unittest.TestCase | matlab.unittest.fixtures |
matlab.unittest.fixtures.PathFixture

36 Unit Testing

36-54

Create Basic Custom Fixture
This example shows how to create a basic custom fixture that changes the display format to
hexadecimal representation. The example also shows how to use the fixture to test a function that
displays a column of numbers as text. After the testing completes, the framework restores the display
format to its pretest state.

Create FormatHexFixture Class Definition

In a file in your working folder, create a new class, FormatHexFixture that inherits from the
matlab.unittest.fixtures.Fixture class. Since we want the fixture to restore the pretest state
of the MATLAB display format, create an OriginalFormat property to keep track of the original
display format.

classdef FormatHexFixture < matlab.unittest.fixtures.Fixture
 properties (Access = private)
 OriginalFormat
 end
end

Implement Setup and Teardown Methods

Subclasses of the Fixture class must implement the setup method. Use this method to record the
pretest display format, and set the format to 'hex'. Use the teardown method to restore the
original display format. Define the setup and teardown methods in the methods block of the
FormatHexFixture class.

classdef FormatHexFixture < matlab.unittest.fixtures.Fixture
 properties (Access = private)
 OriginalFormat
 end
 methods
 function setup(fixture)
 fixture.OriginalFormat = format;
 format hex
 end
 function teardown(fixture)
 format(fixture.OriginalFormat)
 end
 end
end

Apply Custom Fixture

In a file in your working folder, create the following test class, SampleTest.m.

classdef SampleTest < matlab.unittest.TestCase
 methods (Test)
 function test1(testCase)
 testCase.applyFixture(FormatHexFixture)
 actStr = getColumnForDisplay([1;2;3],'Small Integers');
 expStr = ['Small Integers '
 '3ff0000000000000'
 '4000000000000000'
 '4008000000000000'];
 testCase.verifyEqual(actStr,expStr)
 end

 Create Basic Custom Fixture

36-55

 end
end

function str = getColumnForDisplay(values,title)
elements = cell(numel(values)+1,1);
elements{1} = title;
for idx = 1:numel(values)
 elements{idx+1} = displayNumber(values(idx));
end
str = char(elements);
end

function str = displayNumber(n)
str = strtrim(evalc('disp(n);'));
end

This test applies the custom fixture and verifies that the displayed column of hexadecimal
representation is as expected.

At the command prompt, run the test.

run(SampleTest);

Running SampleTest
.
Done SampleTest

See Also
matlab.unittest.fixtures.Fixture

Related Examples
• “Create Advanced Custom Fixture” on page 36-57
• “Write Tests Using Shared Fixtures” on page 36-52

36 Unit Testing

36-56

Create Advanced Custom Fixture
This example shows how to create a custom fixture that sets an environment variable. Prior to
testing, this fixture will save the current UserName variable.

Create UserNameEnvironmentVariableFixture Class Definition

In a file in your working folder, create a new class, UserNameEnvironmentVariableFixture that
inherits from the matlab.unittest.fixtures.Fixture class. Since you want to pass the fixture a
user name, create a UserName property to pass the data between methods.
 properties (SetAccess = private)
 UserName
 end

Define Fixture Constructor

In the methods block of the UserNameEnvironmentVariableFixture.m file, create a constructor
method that validates the input and defines the SetupDescription. Have the constructor accept a
character vector and set the fixture’s UserName property.
 methods
 function fixture = UserNameEnvironmentVariableFixture(name)
 validateattributes(name, {'char'}, {'row'}, '','UserName')
 fixture.UserName = name;
 fixture.SetupDescription = sprintf(...
 'Set the UserName environment variable to "%s".',...
 fixture.UserName);
 end
 end

Implement setup Method

Subclasses of the Fixture class must implement the setup method. Use this method to save the
original UserName variable. This method also defines the TeardownDescription and registers the
teardown task of setting the UserName to the original state after testing.

Define the setup method within the methods block of the
UserNameEnvironmentVariableFixture.m file.
 methods
 function setup(fixture)
 originalUserName = getenv('UserName');
 fixture.assertNotEmpty(originalUserName, ...
 'An existing UserName environment variable must be defined.')
 fixture.addTeardown(@setenv, 'UserName', originalUserName)
 fixture.TeardownDescription = sprintf(...
 'Restored the UserName environment variable to "%s".',...
 originalUserName);
 setenv('UserName', fixture.UserName)
 end
 end

Implement isCompatible Method

Classes that derive from Fixture must implement the isCompatible method if the constructor is
configurable. Since you can configure the UserName property through the constructor,
UserNameEnvironmentVariableFixture must implement isCompatible.

The isCompatible method is called with two instances of the same class. In this case, it is called
with two instances of UserNameEnvironmentVariableFixture. The testing framework considers
the two instances compatible if their UserName properties are equal.

 Create Advanced Custom Fixture

36-57

In a new methods block within UserNameEnvironmentVariableFixture.m, define an
isCompatible method which returns logical 1 (true) or logical 0 (false).
 methods (Access = protected)
 function bool = isCompatible(fixture, other)
 bool = strcmp(fixture.UserName, other.UserName);
 end
 end

Fixture Class Definition Summary

Below are the complete contents of UserNameEnvironmentVariableFixture.m.
classdef UserNameEnvironmentVariableFixture < ...
 matlab.unittest.fixtures.Fixture

 properties (SetAccess = private)
 UserName
 end

 methods
 function fixture = UserNameEnvironmentVariableFixture(name)
 validateattributes(name, {'char'}, {'row'}, '','UserName')
 fixture.UserName = name;
 fixture.SetupDescription = sprintf(...
 'Set the UserName environment variable to "%s".',...
 fixture.UserName);
 end

 function setup(fixture)
 originalUserName = getenv('UserName');
 fixture.assertNotEmpty(originalUserName, ...
 'An existing UserName environment variable must be defined.')
 fixture.addTeardown(@setenv, 'UserName', originalUserName)
 fixture.TeardownDescription = sprintf(...
 'Restored the UserName environment variable to "%s".',...
 originalUserName);
 setenv('UserName', fixture.UserName)
 end
 end

 methods (Access = protected)
 function bool = isCompatible(fixture, other)
 bool = strcmp(fixture.UserName, other.UserName);
 end
 end
end

Apply Custom Fixture to Single Test Class

In a file in your working folder, create the following test class, ExampleTest.m.

classdef ExampleTest < matlab.unittest.TestCase
 methods(TestMethodSetup)
 function mySetup(testCase)
 testCase.applyFixture(...
 UserNameEnvironmentVariableFixture('David'));
 end
 end

 methods (Test)
 function t1(~)
 fprintf(1, 'Current UserName: "%s"', getenv('UserName'))
 end
 end
end

36 Unit Testing

36-58

This test uses the UserNameEnvironmentVariableFixture for each test in the ExampleTest
class.

At the command prompt, run the test.

run(ExampleTest);

Running ExampleTest
Current UserName: "David".
Done ExampleTest

Apply Custom Fixture as Shared Fixture

In your working folder, create three test classes using a shared fixture. Using a shared fixture allows
the UserNameEnvironmentVariableFixture to be shared across classes.

Create testA.m as follows.

classdef (SharedTestFixtures = {...
 UserNameEnvironmentVariableFixture('David')}) ...
 testA < matlab.unittest.TestCase
 methods (Test)
 function t1(~)
 fprintf(1, 'Current UserName: "%s"', getenv('UserName'))
 end
 end
end

Create testB.m as follows.

classdef (SharedTestFixtures = {...
 UserNameEnvironmentVariableFixture('Andy')}) ...
 testB < matlab.unittest.TestCase
 methods (Test)
 function t1(~)
 fprintf(1, 'Current UserName: "%s"', getenv('UserName'))
 end
 end
end

Create testC.m as follows.

classdef (SharedTestFixtures = {...
 UserNameEnvironmentVariableFixture('Andy')}) ...
 testC < matlab.unittest.TestCase
 methods (Test)
 function t1(~)
 fprintf(1, 'Current UserName: "%s"', getenv('UserName'))
 end
 end
end

At the command prompt, run the tests.

runtests({'testA','testB','testC'});

Setting up UserNameEnvironmentVariableFixture
Done setting up UserNameEnvironmentVariableFixture: Set the UserName environment variable to "David".

 Create Advanced Custom Fixture

36-59

Running testA
Current UserName: "David".
Done testA

Tearing down UserNameEnvironmentVariableFixture
Done tearing down UserNameEnvironmentVariableFixture: Restored the UserName environment variable to "Kim".

Setting up UserNameEnvironmentVariableFixture
Done setting up UserNameEnvironmentVariableFixture: Set the UserName environment variable to "Andy".

Running testB
Current UserName: "Andy".
Done testB

Running testC
Current UserName: "Andy".
Done testC

Tearing down UserNameEnvironmentVariableFixture
Done tearing down UserNameEnvironmentVariableFixture: Restored the UserName environment variable to "Kim".

Recall that the fixtures are compatible if their UserName properties match. The tests in testA and
testB use incompatible shared fixtures, since 'David' is not equal to 'Andy'. Therefore, the
framework invokes the fixture teardown and setup methods between calls to testA and testB.
However, the shared test fixture in testC is compatible with the fixture in testB, so the framework
does not repeat fixture teardown and setup before testC.

Alternative Approach to Calling addTeardown in setup Method

An alternate approach to using the addTeardown method within the setup method is to implement a
separate teardown method . Instead of the setup method described above, implement the following
setup and teardown methods within UserNameEnvironmentVariableFixture.m.

Alternate UserNameEnvironmentVariableFixture Class Definition
classdef UserNameEnvironmentVariableFixture < ...
 matlab.unittest.fixtures.Fixture

 properties (Access = private)
 OriginalUser
 end
 properties (SetAccess = private)
 UserName
 end

 methods
 function fixture = UserNameEnvironmentVariableFixture(name)
 validateattributes(name, {'char'}, {'row'}, '','UserName')
 fixture.UserName = name;
 fixture.SetupDescription = sprintf(...
 'Set the UserName environment variable to "%s".',...
 fixture.UserName);
 end

36 Unit Testing

36-60

 function setup(fixture)
 fixture.OriginalUser = getenv('UserName');
 fixture.assertNotEmpty(fixture.OriginalUser, ...
 'An existing UserName environment variable must be defined.')
 setenv('UserName', fixture.UserName)
 end

 function teardown(fixture)
 fixture.TeardownDescription = sprintf(...
 'Restored the UserName environment variable to "%s".',...
 fixture.OriginalUser);
 setenv('UserName', fixture.OriginalUser)

 end
 end

 methods (Access = protected)
 function bool = isCompatible(fixture, other)
 bool = strcmp(fixture.UserName, other.UserName);
 end
 end
end

The setup method does not contain a call to addTeardown or a definition for
TeardownDescription. These tasks are relegated to the teardown method. The alternative class
definition contains an additional property, OriginalUser, which allows the information to be passed
between methods.

See Also
matlab.unittest.fixtures.Fixture

Related Examples
• “Create Basic Custom Fixture” on page 36-55
• “Write Tests Using Shared Fixtures” on page 36-52

 Create Advanced Custom Fixture

36-61

Use Parameters in Class-Based Tests
Often, you need to run a series of tests that are different only in terms of test data. For example, you
might want to test that a function produces the expected outputs for different inputs. In this case, the
test logic is the same and the only difference between tests is the actual and expected values for each
function call. With parameterized testing, you can implement code to iteratively run tests using
different data values. When a method is parameterized, the testing framework automatically invokes
the method for each parameter value. Therefore, you are not required to implement a separate
method for each value.

The testing framework enables you to parameterize your test class at different levels. Additionally,
when you call a test class method with multiple parameters, you can specify how the method should
be invoked for different combinations of the parameters.

How to Write Parameterized Tests
Classes that derive from the matlab.unittest.TestCase class can implement test
parameterization using framework-specific property and method attributes. To provide data as
parameters in your class-based test, specify the data using a properties block with an appropriate
parameterization attribute. Then, pass the parameterization property as an input argument to one or
more methods.

For example, consider the SampleTest class. The class defines a parameterized test because it
specifies properties within a properties block with the TestParameter attribute. The properties
are passed to Test methods and are used to perform qualifications.

classdef SampleTest < matlab.unittest.TestCase
 properties (TestParameter)
 numericArray = {int16(1),single(zeros(1,4)),magic(3)};
 functionHandle = {@false,@() size([])};
 end
 methods (Test)
 function test1(testCase,numericArray)
 testCase.verifyNotEmpty(numericArray)
 end
 function test2(testCase,functionHandle)
 testCase.verifyWarningFree(functionHandle)
 end
 end
end

The test class results in a parameterized test suite with five elements.

suite = testsuite("SampleTest");
{suite.Name}'

ans =

 5×1 cell array

 {'SampleTest/test1(numericArray=int16_1)' }
 {'SampleTest/test1(numericArray=1x4_single)' }
 {'SampleTest/test1(numericArray=3x3_double)' }
 {'SampleTest/test2(functionHandle=@false)' }
 {'SampleTest/test2(functionHandle=function_handle)'}

36 Unit Testing

36-62

The value assigned to a parameterization property must be either a nonempty cell array or a scalar
structure with at least one field. The testing framework uses the property value to specify parameter
names and values in the test suite:

• If the property value is a cell array, the framework generates descriptive parameter names from
the elements of the cell array by taking into account their values, types, and dimensions.

• If the property value is a structure, the structure fields represent the parameter names and the
structure values represent the parameter values. To have full control over parameter names in the
suite, define the parameters using a structure instead of a cell array.

How to Initialize Parameterization Properties
When you define a parameterization property, you must initialize the property so that MATLAB can
generate parameter names and values. You can initialize the property at either test class load time or
test suite creation time:

• Class load time: If the property value can be determined at the time MATLAB loads the test class
definition, initialize the property using a default value. You can specify the default value in the
properties block or using a local function in the classdef file. For more information about
assigning values in a class definition, see “Evaluation of Expressions in Class Definitions”.

When you initialize a parameterization property at class load time, the parameters associated with
the property remain fixed for different test runs. Each time you create a suite from the
parameterized test class, the framework uses the same parameter names and values to run the
tests. See “Create Basic Parameterized Test” on page 36-68 for an example that uses
parameterization properties with default values.

• Suite creation time: If you cannot or do not want to determine the parameters at class load
time, initialize the property at suite creation time using a static method with the
TestParameterDefinition attribute. When you initialize a parameterization property with a
TestParameterDefinition method, the parameters associated with the property can vary for
different test runs. Each time you create a suite from the parameterized test class, the framework
generates fresh parameter names and values to run the tests. For more information, see “Define
Parameters at Suite Creation Time” on page 36-84.

Once you assign a value to a parameterization property, do not modify it. For example, when you
initialize a parameterization property using a default value, you cannot use a
TestParameterDefinition method to overwrite the default value.

A parameter might be used by several unit tests. Tests using the same parameter must run
independently, without accidentally affecting one another. In addition, a running test must not affect
subsequent reruns of the same test. To ensure test run independence, initialize your parameterization
properties with value objects. Using handle objects (such as MATLAB graphics objects) as parameter
values is not recommended. For more information about the behavior of value and handle objects, see
“Comparison of Handle and Value Classes”.

If you need to test handle objects in your parameterized test, consider constructing them indirectly
by using function handles as parameter values and invoking those function handles in tests. For
example, write a parameterized test to test the default current point of figures created with the
figure and uifigure functions.

classdef FigureTest < matlab.unittest.TestCase
 properties (TestParameter)
 figureType = {@figure,@uifigure};

 Use Parameters in Class-Based Tests

36-63

 end
 methods (Test)
 function defaultCurrentPoint(testCase,figureType)
 fig = figureType();
 testCase.addTeardown(@close,fig)
 cp = fig.CurrentPoint;
 testCase.verifyEqual(cp,[0 0])
 end
 end
end

Specify Parameterization Level
You can parameterize a test class at three levels: class setup, method setup, and test. Parameterizing
at each level requires the parameterization properties to have a specific property attribute. For
example, at the highest level, a TestClassSetup method can be parameterized using a property
defined in a properties block with the ClassSetupParameter attribute. At the lowest level, a
Test method can be parameterized using a property defined in a properties block with the
TestParameter attribute.

This table shows different parameterization levels and the required method and property attributes
for each level.

Parameterization
Level

Parameterization Definition Accessible
Parameterization
PropertiesMethod Attribute Property Attribute

Class-setup level TestClassSetup ClassSetupParamete
r

ClassSetupParamete
r

Method-setup level TestMethodSetup MethodSetupParamet
er

MethodSetupParamet
er and
ClassSetupParamete
r

Test level Test TestParameter TestParameter,
MethodSetupParamet
er, and
ClassSetupParamete
r

A parameterized method can access parameterization properties depending on the level at which the
method is defined:

• A parameterized TestClassSetup method can access parameterization properties only with the
ClassSetupParameter attribute.

• A parameterized TestMethodSetup method can access parameterization properties only with the
MethodSetupParameter or ClassSetupParameter attributes.

• A parameterized Test method can access any parameterization properties.

For an example of how to parameterize a test class at different levels, see “Create Advanced
Parameterized Test” on page 36-73.

36 Unit Testing

36-64

Specify How Parameters Are Combined
When you pass more than one parameterization property to a method, you can use the
ParameterCombination method attribute to specify how parameters are combined. The testing
framework invokes the method for the specified combinations.

This table shows different parameter combination strategies.

ParameterCombination
Attribute

Method Invocation

"exhaustive" (default) Methods are invoked for all combinations of parameter values. The
testing framework uses this default combination if you do not specify
the ParameterCombination attribute.

"sequential" Methods are invoked with corresponding values from each parameter.
Each parameter must contain the same number of values. For example,
if a method is provided with two parameterization properties and each
property specifies three parameter values, then the framework invokes
the method three times.

 Use Parameters in Class-Based Tests

36-65

ParameterCombination
Attribute

Method Invocation

"pairwise" Methods are invoked for every pair of parameter values at least one
time. Compared with the "exhaustive" combination, the
"pairwise" combination typically results in fewer tests and therefore
faster test execution.

For example, this test uses the "pairwise" combination to test the
size of different matrices.

classdef ZerosTest < matlab.unittest.TestCase
 properties (TestParameter)
 rowCount = struct("r1",1,"r2",2,"r3",3);
 columnCount = struct("c1",2,"c2",3,"c3",4);
 type = {'single','double','uint16'};
 end
 methods (Test,ParameterCombination="pairwise")
 function testSize(testCase,rowCount,columnCount,type)
 testCase.verifySize(zeros(rowCount,columnCount,type), ...
 [rowCount columnCount])
 end
 end
end

Create a test suite from the class. One possible outcome contains the
ten elements listed below.

suite = testsuite("ZerosTest");
{suite.Name}'

ans =

 10×1 cell array

 {'ZerosTest/testSize(rowCount=r1,columnCount=c1,type=single)'}
 {'ZerosTest/testSize(rowCount=r1,columnCount=c2,type=double)'}
 {'ZerosTest/testSize(rowCount=r1,columnCount=c3,type=uint16)'}
 {'ZerosTest/testSize(rowCount=r2,columnCount=c1,type=double)'}
 {'ZerosTest/testSize(rowCount=r2,columnCount=c2,type=single)'}
 {'ZerosTest/testSize(rowCount=r2,columnCount=c3,type=single)'}
 {'ZerosTest/testSize(rowCount=r3,columnCount=c1,type=uint16)'}
 {'ZerosTest/testSize(rowCount=r3,columnCount=c2,type=single)'}
 {'ZerosTest/testSize(rowCount=r3,columnCount=c3,type=double)'}
 {'ZerosTest/testSize(rowCount=r2,columnCount=c2,type=uint16)'}

The testing framework guarantees that the testSize method is
invoked for every combination of parameter values specified by any
two properties. For instance, for the rowCount and columnCount
properties, this table shows the TestSuite array indices
corresponding to parameter value combinations. Every combination is
represented by at least one Test element.

— columnCount Property
c1 c2 c3

36 Unit Testing

36-66

ParameterCombination
Attribute

Method Invocation

rowCount
Property

r1 1 2 3
r2 4 5, 10 6
r3 7 8 9

While the framework guarantees that tests are created for every pair
of values at least one time, you should not rely on the suite size,
ordering, or specific set of test suite elements.

You can combine parameters at class-setup, method-setup, and test levels. For example, use the two
method attributes TestMethodSetup,ParameterCombination="sequential" to specify
sequential combination of the method-setup-level parameters defined in the properties block with
the MethodSetupParameter attribute.

For examples of how to combine test parameters, see “Create Basic Parameterized Test” on page 36-
68 and “Create Advanced Parameterized Test” on page 36-73.

Use External Parameters in Tests
When you create a parameterized test, you can redefine the parameters by injecting inputs into your
class-based test. To provide data that is defined outside of the test file, create a Parameter instance
and use the ExternalParameter name-value argument when creating your test suite. For more
information, see “Use External Parameters in Parameterized Test” on page 36-80.

See Also
matlab.unittest.parameters | matlab.unittest.parameters.Parameter |
matlab.unittest.TestCase

More About
• “Create Basic Parameterized Test” on page 36-68
• “Create Advanced Parameterized Test” on page 36-73
• “Define Parameters at Suite Creation Time” on page 36-84
• “Use External Parameters in Parameterized Test” on page 36-80

 Use Parameters in Class-Based Tests

36-67

Create Basic Parameterized Test
This example shows how to create a parameterized test to test the output of a function in terms of
value, class, and size.

Create Function to Test

In your current folder, create a function in the file sierpinski.m. This function returns a matrix
representing an image of a Sierpinski carpet fractal. It takes as input the fractal level and an optional
data type.

function carpet = sierpinski(levels,classname)
if nargin == 1
 classname = 'single';
end

msize = 3^levels;
carpet = ones(msize,classname);

cutCarpet(1,1,msize,levels) % Begin recursion

 function cutCarpet(x,y,s,cl)
 if cl
 ss = s/3; % Define subsize
 for lx = 0:2
 for ly = 0:2
 if lx == 1 && ly == 1
 % Remove center square
 carpet(x+ss:x+2*ss-1,y+ss:y+2*ss-1) = 0;
 else
 % Recurse
 cutCarpet(x+lx*ss,y+ly*ss,ss,cl-1)
 end
 end
 end
 end
 end
end

Create TestCarpet Test Class

In a file in your current folder, create the TestCarpet class to test the sierpinski function. Define
the properties used for parameterized testing in a properties block with the TestParameter
attribute.

classdef TestCarpet < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 level = struct('small',2,'medium',4,'large',6);
 side = struct('small',9,'medium',81,'large',729);
 end
end

The type property contains the different data types you want to test. The level property contains
the different fractal levels you want to test. The side property contains the number of rows and
columns in the Sierpinski carpet matrix and corresponds to the level property.

36 Unit Testing

36-68

Define Test methods Block

In a methods block with the Test attribute, define three test methods:

• The testRemainPixels method tests the output of the sierpinski function by verifying that
the number of nonzero pixels is the same as expected for a particular level. This method uses the
level property and, therefore, results in three test elements—one for each value in level.

• The testClass method tests the class of the output from the sierpinski function with each
combination of the type and level parameter values (that is, exhaustive parameter
combination). The method results in nine test elements.

• The testDefaultL1Output method does not use a TestParameter property and, therefore, is
not parameterized. The method verifies that the level 1 matrix contains the expected values.
Because the test method is not parameterized, it results in one test element.

classdef TestCarpet < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 level = struct('small',2,'medium',4,'large',6);
 side = struct('small',9,'medium',81,'large',729);
 end

 methods (Test)
 function testRemainPixels(testCase,level)
 expPixelCount = 8^level;
 actPixels = find(sierpinski(level));
 testCase.verifyNumElements(actPixels,expPixelCount)
 end

 function testClass(testCase,type,level)
 testCase.verifyClass(...
 sierpinski(level,type),type)
 end

 function testDefaultL1Output(testCase)
 exp = single([1 1 1; 1 0 1; 1 1 1]);
 testCase.verifyEqual(sierpinski(1),exp)
 end
 end
end

Define Test methods Block with ParameterCombination Attribute

Define the testNumel method to ensure that the matrix returned by the sierpinski function has
the correct number of elements. Set the ParameterCombination attribute for the method to
'sequential'. Because the level and side properties each specify three parameter values, the
testNumel method is invoked three times — one time for each of the 'small', 'medium', and
'large' values.

classdef TestCarpet < matlab.unittest.TestCase
 properties (TestParameter)
 type = {'single','double','uint16'};
 level = struct('small',2,'medium',4,'large',6);
 side = struct('small',9,'medium',81,'large',729);
 end

 methods (Test)

 Create Basic Parameterized Test

36-69

 function testRemainPixels(testCase,level)
 expPixelCount = 8^level;
 actPixels = find(sierpinski(level));
 testCase.verifyNumElements(actPixels,expPixelCount)
 end

 function testClass(testCase,type,level)
 testCase.verifyClass(...
 sierpinski(level,type),type)
 end

 function testDefaultL1Output(testCase)
 exp = single([1 1 1; 1 0 1; 1 1 1]);
 testCase.verifyEqual(sierpinski(1),exp)
 end
 end

 methods (Test, ParameterCombination = 'sequential')
 function testNumel(testCase,level,side)
 import matlab.unittest.constraints.HasElementCount
 testCase.verifyThat(sierpinski(level), ...
 HasElementCount(side^2))
 end
 end
end

Run All Tests

At the command prompt, create a suite from TestCarpet.m. The suite has 16 test elements.
MATLAB includes parameterization information in the names of the suite elements.

suite = matlab.unittest.TestSuite.fromFile('TestCarpet.m');
{suite.Name}'

ans =

 16×1 cell array

 {'TestCarpet/testNumel(level=small,side=small)' }
 {'TestCarpet/testNumel(level=medium,side=medium)'}
 {'TestCarpet/testNumel(level=large,side=large)' }
 {'TestCarpet/testRemainPixels(level=small)' }
 {'TestCarpet/testRemainPixels(level=medium)' }
 {'TestCarpet/testRemainPixels(level=large)' }
 {'TestCarpet/testClass(type=single,level=small)' }
 {'TestCarpet/testClass(type=single,level=medium)'}
 {'TestCarpet/testClass(type=single,level=large)' }
 {'TestCarpet/testClass(type=double,level=small)' }
 {'TestCarpet/testClass(type=double,level=medium)'}
 {'TestCarpet/testClass(type=double,level=large)' }
 {'TestCarpet/testClass(type=uint16,level=small)' }
 {'TestCarpet/testClass(type=uint16,level=medium)'}
 {'TestCarpet/testClass(type=uint16,level=large)' }
 {'TestCarpet/testDefaultL1Output' }

Run the tests.

suite.run

36 Unit Testing

36-70

Running TestCarpet
..........
Done TestCarpet

ans =

 1×16 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 16 Passed, 0 Failed, 0 Incomplete.
 2.459 seconds testing time.

Run Tests with level Property Named 'small'

Use the selectIf method of TestSuite to select test elements that use a particular
parameterization. Select all test elements that use the parameter name 'small' in the level
parameterization property list. The filtered suite has five elements.

s1 = suite.selectIf('ParameterName','small');
{s1.Name}'

ans =

 5×1 cell array

 {'TestCarpet/testNumel(level=small,side=small)' }
 {'TestCarpet/testRemainPixels(level=small)' }
 {'TestCarpet/testClass(type=single,level=small)'}
 {'TestCarpet/testClass(type=double,level=small)'}
 {'TestCarpet/testClass(type=uint16,level=small)'}

Run the filtered test suite.

s1.run;

Running TestCarpet
.....
Done TestCarpet

Alternatively, you can create the same test suite directly using the fromFile method of TestSuite.

import matlab.unittest.selectors.HasParameter
s1 = matlab.unittest.TestSuite.fromFile('TestCarpet.m', ...
 HasParameter('Name','small'));

See Also
matlab.unittest.TestCase | matlab.unittest.selectors.HasParameter |
matlab.unittest.TestSuite

 Create Basic Parameterized Test

36-71

Related Examples
• “Use Parameters in Class-Based Tests” on page 36-62
• “Create Advanced Parameterized Test” on page 36-73
• “Define Parameters at Suite Creation Time” on page 36-84
• “Use External Parameters in Parameterized Test” on page 36-80

36 Unit Testing

36-72

Create Advanced Parameterized Test
This example shows how to create a test that is parameterized in the TestClassSetup,
TestMethodSetup, and Test methods blocks. The example test class tests random number
generation.

Create TestRand Test Class

In a file in your current folder, create the TestRand class to test various aspects of random number
generation. Define the properties used for parameterized testing.

classdef TestRand < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 generator = {'twister','combRecursive','multFibonacci'};
 end

 properties (MethodSetupParameter)
 seed = {0,123,4294967295};
 end

 properties (TestParameter)
 dim1 = struct('small',1,'medium',2,'large',3);
 dim2 = struct('small',2,'medium',3,'large',4);
 dim3 = struct('small',3,'medium',4,'large',5);
 type = {'single','double'};
 end
end

In the TestRand class, each properties block corresponds to parameterization at a particular
level. The class setup-level parameterization defines the type of random number generator. The
method setup-level parameterization defines the seed for the random number generator, and the test-
level parameterization defines the data type and size of the random values.

Define Test Class and Test Method Setup Methods

Define the setup methods at the test class and test method levels. These methods register the initial
random number generator state. After the framework runs the tests, the methods restore the original
state. The classSetup method defines the type of random number generator, and the methodSetup
method seeds the generator.

classdef TestRand < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 generator = {'twister','combRecursive','multFibonacci'};
 end

 properties (MethodSetupParameter)
 seed = {0,123,4294967295};
 end

 properties (TestParameter)
 dim1 = struct('small',1,'medium',2,'large',3);
 dim2 = struct('small',2,'medium',3,'large',4);
 dim3 = struct('small',3,'medium',4,'large',5);
 type = {'single','double'};
 end

 methods (TestClassSetup)

 Create Advanced Parameterized Test

36-73

 function classSetup(testCase,generator)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(0,generator)
 end
 end

 methods (TestMethodSetup)
 function methodSetup(testCase,seed)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(seed)
 end
 end
end

Define Test Method with Sequential Parameter Combination

Define the testSize method in a methods block with the Test and ParameterCombination =
'sequential' attributes.

classdef TestRand < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 generator = {'twister','combRecursive','multFibonacci'};
 end

 properties (MethodSetupParameter)
 seed = {0,123,4294967295};
 end

 properties (TestParameter)
 dim1 = struct('small',1,'medium',2,'large',3);
 dim2 = struct('small',2,'medium',3,'large',4);
 dim3 = struct('small',3,'medium',4,'large',5);
 type = {'single','double'};
 end

 methods (TestClassSetup)
 function classSetup(testCase,generator)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(0,generator)
 end
 end

 methods (TestMethodSetup)
 function methodSetup(testCase,seed)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(seed)
 end
 end

 methods (Test, ParameterCombination = 'sequential')
 function testSize(testCase,dim1,dim2,dim3)
 testCase.verifySize(rand(dim1,dim2,dim3),[dim1 dim2 dim3])
 end

36 Unit Testing

36-74

 end
end

The method tests the size of the output for each corresponding parameter value in dim1, dim2, and
dim3. For a given TestClassSetup and TestMethodSetup parameterization, the framework calls
the testSize method three times — one time for each of the 'small', 'medium', and 'large'
values. For example, to test with all of the 'medium' values, the framework uses
testCase.verifySize(rand(2,3,4),[2 3 4]).

Define Test Method with Pairwise Parameter Combination

Define the testRepeatable method in a methods block with the Test and
ParameterCombination = 'pairwise' attributes.

classdef TestRand < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 generator = {'twister','combRecursive','multFibonacci'};
 end

 properties (MethodSetupParameter)
 seed = {0,123,4294967295};
 end

 properties (TestParameter)
 dim1 = struct('small',1,'medium',2,'large',3);
 dim2 = struct('small',2,'medium',3,'large',4);
 dim3 = struct('small',3,'medium',4,'large',5);
 type = {'single','double'};
 end

 methods (TestClassSetup)
 function classSetup(testCase,generator)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(0,generator)
 end
 end

 methods (TestMethodSetup)
 function methodSetup(testCase,seed)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(seed)
 end
 end

 methods (Test, ParameterCombination = 'sequential')
 function testSize(testCase,dim1,dim2,dim3)
 testCase.verifySize(rand(dim1,dim2,dim3),[dim1 dim2 dim3])
 end
 end

 methods (Test, ParameterCombination = 'pairwise')
 function testRepeatable(testCase,dim1,dim2,dim3)
 state = rng;
 firstRun = rand(dim1,dim2,dim3);
 rng(state)
 secondRun = rand(dim1,dim2,dim3);

 Create Advanced Parameterized Test

36-75

 testCase.verifyEqual(firstRun,secondRun)
 end
 end
end

The method verifies that the random number generator results are repeatable. For a given
TestClassSetup and TestMethodSetup parameterization, the framework calls the
testRepeatable method 10 times to ensure testing with each pair of parameter values specified by
dim1, dim2, and dim3. If the parameter combination were exhaustive, the framework would call the
method 3³ = 27 times.

Define Test Method with Exhaustive Parameter Combination

Define the testClass method in a methods block with the Test attribute. Because the
ParameterCombination attribute is not specified, the parameter combination is exhaustive by
default.

classdef TestRand < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 generator = {'twister','combRecursive','multFibonacci'};
 end

 properties (MethodSetupParameter)
 seed = {0,123,4294967295};
 end

 properties (TestParameter)
 dim1 = struct('small',1,'medium',2,'large',3);
 dim2 = struct('small',2,'medium',3,'large',4);
 dim3 = struct('small',3,'medium',4,'large',5);
 type = {'single','double'};
 end

 methods (TestClassSetup)
 function classSetup(testCase,generator)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(0,generator)
 end
 end

 methods (TestMethodSetup)
 function methodSetup(testCase,seed)
 orig = rng;
 testCase.addTeardown(@rng,orig)
 rng(seed)
 end
 end

 methods (Test, ParameterCombination = 'sequential')
 function testSize(testCase,dim1,dim2,dim3)
 testCase.verifySize(rand(dim1,dim2,dim3),[dim1 dim2 dim3])
 end
 end

 methods (Test, ParameterCombination = 'pairwise')
 function testRepeatable(testCase,dim1,dim2,dim3)

36 Unit Testing

36-76

 state = rng;
 firstRun = rand(dim1,dim2,dim3);
 rng(state)
 secondRun = rand(dim1,dim2,dim3);
 testCase.verifyEqual(firstRun,secondRun)
 end
 end

 methods (Test)
 function testClass(testCase,dim1,dim2,type)
 testCase.verifyClass(rand(dim1,dim2,type),type)
 end
 end
end

The method verifies that the class of the output from rand is the same as the expected class. For a
given TestClassSetup and TestMethodSetup parameterization, the framework calls the
testClass method 3×3×2 = 18 times to ensure testing with each combination of dim1, dim2, and
type parameter values.

Create Suite from Test Class

At the command prompt, create a suite from the TestRand class.

suite = matlab.unittest.TestSuite.fromClass(?TestRand)

suite =

 1×279 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 17 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

For a given TestClassSetup and TestMethodSetup parameterization, the framework creates
3+10+18 = 31 test elements. These 31 elements are called for each TestMethodSetup
parameterization (resulting in 3×31 = 93 test elements for each TestClassSetup
parameterization). There are three TestClassSetup parameterizations; therefore, the suite has a
total of 3×93 = 279 test elements.

Query the name of the first test element.

suite(1).Name

ans =

 'TestRand[generator=twister]/[seed=0]testClass(dim1=small,dim2=small,type=single)'

The name of the first element is composed of these parts:

• Test class — TestRand

 Create Advanced Parameterized Test

36-77

• Class setup property and parameter name — [generator=twister]
• Method setup property and parameter name — [seed=0]
• Test method name — testClass
• Test method property and parameter names — (dim1=small,dim2=small,type=single)

Run Suite Created Using Selector

At the command prompt, create a selector to select test elements that test the 'twister' generator
for 'single' precision. Create a suite by omitting test elements that use properties with the
'large' parameter name.

import matlab.unittest.selectors.HasParameter
s = HasParameter('Property','generator','Name','twister') & ...
 HasParameter('Property','type','Name','single') & ...
 ~HasParameter('Name','large');

suite2 = matlab.unittest.TestSuite.fromClass(?TestRand,s)

suite2 =

 1×12 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 9 Unique Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

If you first generate the full suite from the TestRand class, you can construct the same filtered suite
using the selectIf method.

suite = matlab.unittest.TestSuite.fromClass(?TestRand);
suite2 = selectIf(suite,s);

Run the filtered test suite.

suite2.run;

Running TestRand
.......... ..
Done TestRand

Run Suite from Method Using Selector

Create a selector that omits test elements that use properties with the 'large' or 'medium'
parameter names. Limit results to test elements from the testRepeatable method.
import matlab.unittest.selectors.HasParameter
s = ~(HasParameter('Name','large') | HasParameter('Name','medium'));

suite3 = matlab.unittest.TestSuite.fromMethod(?TestRand,'testRepeatable',s);
{suite3.Name}'

36 Unit Testing

36-78

ans =

 9×1 cell array

 {'TestRand[generator=twister]/[seed=0]testRepeatable(dim1=small,dim2=small,dim3=small)' }
 {'TestRand[generator=twister]/[seed=123]testRepeatable(dim1=small,dim2=small,dim3=small)' }
 {'TestRand[generator=twister]/[seed=4294967295]testRepeatable(dim1=small,dim2=small,dim3=small)' }
 {'TestRand[generator=combRecursive]/[seed=0]testRepeatable(dim1=small,dim2=small,dim3=small)' }
 {'TestRand[generator=combRecursive]/[seed=123]testRepeatable(dim1=small,dim2=small,dim3=small)' }
 {'TestRand[generator=combRecursive]/[seed=4294967295]testRepeatable(dim1=small,dim2=small,dim3=small)'}
 {'TestRand[generator=multFibonacci]/[seed=0]testRepeatable(dim1=small,dim2=small,dim3=small)' }
 {'TestRand[generator=multFibonacci]/[seed=123]testRepeatable(dim1=small,dim2=small,dim3=small)' }
 {'TestRand[generator=multFibonacci]/[seed=4294967295]testRepeatable(dim1=small,dim2=small,dim3=small)'}

Run the test suite.

suite3.run;

Running TestRand
.........
Done TestRand

Run All Double Precision Tests

At the command prompt, run all of the test elements from the TestRand class that use the 'double'
parameter name.

runtests('TestRand','ParameterName','double');

Running TestRand
..........
..........
Done TestRand

See Also
matlab.unittest.TestSuite | matlab.unittest.TestCase |
matlab.unittest.selectors.HasParameter

Related Examples
• “Use Parameters in Class-Based Tests” on page 36-62
• “Create Basic Parameterized Test” on page 36-68
• “Define Parameters at Suite Creation Time” on page 36-84
• “Use External Parameters in Parameterized Test” on page 36-80

 Create Advanced Parameterized Test

36-79

Use External Parameters in Parameterized Test

You can inject variable inputs into your existing class-based test. To provide test data that is defined
outside the test file and that should be used iteratively by the test (via parameterized testing), create
an array of Parameter instances, and then use the ExternalParameters name-value argument
with TestSuite creation methods such as fromClass.

Create the cleanData function. The function accepts an array, vectorizes the array, removes 0, NaN,
and Inf, and then sorts the array.

function Y = cleanData(X)
 Y = X(:); % Vectorize array
 Y = rmmissing(Y); % Remove NaN
 % Remove 0 and Inf
 idx = (Y==0 | Y==Inf);
 Y = Y(~idx);
 % If array is empty, set to eps
 if isempty(Y)
 Y = eps;
 end
 Y = sort(Y); % Sort vector
end

Create a parameterized test to test the cleanData function. The test repeats each of the four Test
methods for the two data sets that are defined in the properties block.

classdef TestClean < matlab.unittest.TestCase
 properties (TestParameter)
 Data = struct("clean",[5 3 9;1 42 5;32 5 2], ...
 "needsCleaning",[1 13;NaN 0;Inf 42]);
 end
 methods (Test)
 function classCheck(testCase,Data)
 act = cleanData(Data);
 testCase.assertClass(act,"double")
 end
 function sortCheck(testCase,Data)
 act = cleanData(Data);
 testCase.verifyTrue(issorted(act))
 end
 function finiteCheck(testCase,Data)
 import matlab.unittest.constraints.IsFinite
 act = cleanData(Data);
 testCase.verifyThat(act,IsFinite)
 end
 function noZeroCheck(testCase,Data)
 import matlab.unittest.constraints.EveryElementOf
 import matlab.unittest.constraints.IsEqualTo
 act = cleanData(Data);
 testCase.verifyThat(EveryElementOf(act),~IsEqualTo(0))
 end
 end

36 Unit Testing

36-80

end

Run the tests. The framework runs the eight parameterized tests using the data defined in the test
file.

import matlab.unittest.TestSuite
suite1 = TestSuite.fromClass(?TestClean);
results = suite1.run;
table(results)

Running TestClean
........
Done TestClean

ans =

 8×6 table

 Name Passed Failed Incomplete Duration Details
 ___ ______ ______ __________ _________ ____________

 {'TestClean/classCheck(Data=clean)' } true false false 0.66469 {1×1 struct}
 {'TestClean/classCheck(Data=needsCleaning)' } true false false 0.0066959 {1×1 struct}
 {'TestClean/sortCheck(Data=clean)' } true false false 0.0039298 {1×1 struct}
 {'TestClean/sortCheck(Data=needsCleaning)' } true false false 0.003343 {1×1 struct}
 {'TestClean/finiteCheck(Data=clean)' } true false false 0.055924 {1×1 struct}
 {'TestClean/finiteCheck(Data=needsCleaning)'} true false false 0.0017951 {1×1 struct}
 {'TestClean/noZeroCheck(Data=clean)' } true false false 0.90772 {1×1 struct}
 {'TestClean/noZeroCheck(Data=needsCleaning)'} true false false 0.007801 {1×1 struct}

Create a data set external to the test file.

A = [NaN 2 0;1 Inf 3];

Create an array of Parameter instances from the external data set. The fromData method accepts
the name of the parameterization property from the properties block in TestClean and the new
data as a cell array (or structure).

import matlab.unittest.parameters.Parameter
newData = {A};
param = Parameter.fromData("Data",newData);

Create a new test suite using the external parameters. The framework appends the characters #ext
to the end of the parameter names, indicating that the parameters are defined externally.

suite2 = TestSuite.fromClass(?TestClean,"ExternalParameters",param);
{suite2.Name}'

ans =

 4×1 cell array

 {'TestClean/classCheck(Data=2x3_double#ext)' }

 Use External Parameters in Parameterized Test

36-81

 {'TestClean/sortCheck(Data=2x3_double#ext)' }
 {'TestClean/finiteCheck(Data=2x3_double#ext)'}
 {'TestClean/noZeroCheck(Data=2x3_double#ext)'}

To have full control over parameter names in the suite, define the parameters using a structure. Then,
run the tests.

newData = struct("commandLineData",A);
param = Parameter.fromData("Data",newData);
suite2 = TestSuite.fromClass(?TestClean,"ExternalParameters",param);
{suite2.Name}'
results = suite2.run;

ans =

 4×1 cell array

 {'TestClean/classCheck(Data=commandLineData#ext)' }
 {'TestClean/sortCheck(Data=commandLineData#ext)' }
 {'TestClean/finiteCheck(Data=commandLineData#ext)'}
 {'TestClean/noZeroCheck(Data=commandLineData#ext)'}

Running TestClean
....
Done TestClean

Create another data set that is stored in an ASCII-delimited file.

B = rand(3);
B(2,4) = 0;
writematrix(B,"myFile.dat")
clear B

Create parameters from the stored data set and A, and then create a test suite.

newData = struct("commandLineData",A,"storedData",readmatrix("myFile.dat"));
param2 = Parameter.fromData("Data",newData);
suite3 = TestSuite.fromClass(?TestClean,"ExternalParameters",param2);

To run the tests using parameters defined in the test file and externally, concatenate the test suites.
View the suite element names and run the tests.

suite = [suite1 suite3];
{suite.Name}'
results = suite.run;

ans =

 16×1 cell array

 {'TestClean/classCheck(Data=clean)' }
 {'TestClean/classCheck(Data=needsCleaning)' }
 {'TestClean/sortCheck(Data=clean)' }
 {'TestClean/sortCheck(Data=needsCleaning)' }

36 Unit Testing

36-82

 {'TestClean/finiteCheck(Data=clean)' }
 {'TestClean/finiteCheck(Data=needsCleaning)' }
 {'TestClean/noZeroCheck(Data=clean)' }
 {'TestClean/noZeroCheck(Data=needsCleaning)' }
 {'TestClean/classCheck(Data=commandLineData#ext)' }
 {'TestClean/classCheck(Data=storedData#ext)' }
 {'TestClean/sortCheck(Data=commandLineData#ext)' }
 {'TestClean/sortCheck(Data=storedData#ext)' }
 {'TestClean/finiteCheck(Data=commandLineData#ext)'}
 {'TestClean/finiteCheck(Data=storedData#ext)' }
 {'TestClean/noZeroCheck(Data=commandLineData#ext)'}
 {'TestClean/noZeroCheck(Data=storedData#ext)' }

Running TestClean
........
Done TestClean

Running TestClean
........
Done TestClean

See Also
matlab.unittest.TestSuite | matlab.unittest.parameters.Parameter.fromData

Related Examples
• “Use Parameters in Class-Based Tests” on page 36-62
• “Create Basic Parameterized Test” on page 36-68
• “Create Advanced Parameterized Test” on page 36-73
• “Define Parameters at Suite Creation Time” on page 36-84

 Use External Parameters in Parameterized Test

36-83

Define Parameters at Suite Creation Time

Parameterized tests let you run the same test procedure repeatedly, using different data values each
time. In a parameterized test, these data values are called parameters and are represented by
parameterization properties of the test class. MATLAB® uses parameterization properties to
generate the parameter names and values for each test run.

In most cases, MATLAB can determine the value of a parameterization property when it loads the test
class definition. Therefore, you can initialize the property using a default value. When you initialize a
parameterization property with a default value, the parameters associated with the property remain
fixed for different test runs. Each time you create a suite from the parameterized test class, the
testing framework uses the same parameter names and values to run the tests.

In some cases, MATLAB cannot determine the value of a parameterization property when it loads the
test class definition. For example, sometimes a parameterization property depends on another
property defined at a higher parameterization level. Or you might not want the parameters to be
determined at class load time. For instance, if parameters represent files in a folder, you might want
to refresh the parameters each time you create a suite to test the files. When you cannot or do not
want to initialize a parameterization property at class load time, initialize it at suite creation time
using a static method with the TestParameterDefinition attribute. When you initialize a
parameterization property using a TestParameterDefinition method, the parameters associated
with the property can vary for different test runs. In other words, each time you create a test suite
from the parameterized test class, the framework generates fresh parameter names and values to run
the tests.

This example shows how to use parameterization properties with default and nondefault values to
verify that the public properties of a group of classes in your current folder are nonempty. In it, you
define a parameterized test class named PropertiesTest in the test subfolder of your current
folder. You define three classes to test, named ClassA, ClassB, and ClassC, in the source
subfolder of your current folder. For a summary of these three classes, see Classes in source
Subfolder on page 36-89.

Create PropertiesTest Class

To test the public properties of classes defined in the source subfolder, create the PropertiesTest
class in the test subfolder. This class takes three specified classes, retrieves all properties of each
class, and verifies that they are nonempty. To iterate over the classes to test, parameterize
PropertiesTest at the class-setup level. To iterate over the properties of each class specified by a
given class-setup-level parameterization, parameterize PropertiesTest at the test level.

Define the properties used for parameterized testing:

• List the classes for the framework to iterate over in a property named classToTest. Because this
example assumes that the classes in the source subfolder are fixed and known at the time
MATLAB loads the test class definition, initialize the property using a default value. In order to
specify the class to test before running any Test methods, make classToTest a
ClassSetupParameter property.

• Define a TestParameter property named propertyToTest that you can use to iterate over the
properties of whatever class the framework is currently testing. Because its value depends on the
class being tested, do not assign it a default value. Instead, initialize it at suite creation time using
a TestParameterDefinition method.

36 Unit Testing

36-84

• To store the value of different properties on an instance of the class being tested, define a
property named ObjectToTest.

classdef PropertiesTest < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 classToTest = {'ClassA','ClassB','ClassC'};
 end

 properties (TestParameter)
 propertyToTest
 end

 properties
 ObjectToTest
 end
end

Define Method to Initialize Test-Level Parameterization Property

In the PropertiesTest class, propertyToTest has a different value for each class being tested.
Therefore, you cannot assign a default value to it. Instead, you must initialize it at suite creation time.
To implement this requirement, add a TestParameterDefinition method named
initializeProperty. Because a TestParameterDefinition method must be static, use the
combined method attributes TestParameterDefinition,Static to define the method.

The initializeProperty method accepts the class-setup-level parameterization property as an
input and uses it in a call to the properties function to return property names in a cell array of
character vectors.

classdef PropertiesTest < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 classToTest = {'ClassA','ClassB','ClassC'};
 end

 properties (TestParameter)
 propertyToTest
 end

 properties
 ObjectToTest
 end

 methods (TestParameterDefinition,Static)
 function propertyToTest = initializeProperty(classToTest)
 propertyToTest = properties(classToTest);
 end
 end
end

In the initializeProperty method, both the input argument classToTest and the output
argument propertyToTest are parameterization properties defined in the PropertiesTest class.
Any time you define a TestParameterDefinition method, all inputs to the method must match
parameterization properties defined in the same class or one of its superclasses. Also, all outputs of
the method must match parameterization properties defined in the same class.

In the initializeProperty method, the input argument classToTest is defined at the highest
parameterization level. This puts it higher than the output argument propertyToTest, which is

 Define Parameters at Suite Creation Time

36-85

defined at the lowest parameterization level. Any time you define a TestParameterDefinition
method that accepts inputs, the inputs must be at a higher parameterization level relative to the
outputs of the method. For more information about parameterization levels, see “Use Parameters in
Class-Based Tests” on page 36-62.

Define Test Class Setup Method

To test for nonempty property values, you must first create an object of the class being tested so that
you can retrieve the property values. To implement this requirement, add the parameterized
classSetup method to the PropertiesTest class. In order to have the object ready before running
any Test methods, make classSetup a TestClassSetup method.

The classSetup method creates an instance of the class being tested and stores it in the
ObjectToTest property. Tests can later retrieve the property values from ObjectToTest. In this
example, the framework runs the tests by calling the classSetup method three times—one time for
each of ClassA, ClassB, and ClassC.

classdef PropertiesTest < matlab.unittest.TestCase
 properties (ClassSetupParameter)
 classToTest = {'ClassA','ClassB','ClassC'};
 end

 properties (TestParameter)
 propertyToTest
 end

 properties
 ObjectToTest
 end

 methods (TestParameterDefinition,Static)
 function propertyToTest = initializeProperty(classToTest)
 propertyToTest = properties(classToTest);
 end
 end

 methods (TestClassSetup)
 function classSetup(testCase,classToTest)
 constructor = str2func(classToTest);
 testCase.ObjectToTest = constructor();
 end
 end
end

Test for Nonempty Property Values

To test that the properties on ObjectToTest are nonempty, add a Test method named
testProperty. In order for the method to iterate over the properties of ObjectToTest, make the
method parameterized, and pass it propertyToTest.

During each test, the testProperty method retrieves the value of a property on ObjectToTest.
Then, it uses a call to the verifyNotEmpty qualification method to verify that the value is not empty.
For a given class-setup-level parameterization, the framework calls testProperty once for each
property on the class being tested.

classdef PropertiesTest < matlab.unittest.TestCase
 properties (ClassSetupParameter)

36 Unit Testing

36-86

 classToTest = {'ClassA','ClassB','ClassC'};
 end

 properties (TestParameter)
 propertyToTest
 end

 properties
 ObjectToTest
 end

 methods (TestParameterDefinition,Static)
 function propertyToTest = initializeProperty(classToTest)
 propertyToTest = properties(classToTest);
 end
 end

 methods (TestClassSetup)
 function classSetup(testCase,classToTest)
 constructor = str2func(classToTest);
 testCase.ObjectToTest = constructor();
 end
 end

 methods (Test)
 function testProperty(testCase,propertyToTest)
 value = testCase.ObjectToTest.(propertyToTest);
 testCase.verifyNotEmpty(value)
 end
 end
end

Create Parameterized Test Suite and Run Tests

Now that the PropertiesTest class definition is complete, you can create a parameterized test
suite and run the tests. To do this, make sure that the source and test subfolders are on the path.

addpath("source","test")

Create a suite from the PropertiesTest class.

suite = testsuite("PropertiesTest");

The test suite includes eight elements. Each element corresponds to a property defined within the
source subfolder. Return the name of the first suite element.

suite(1).Name

ans =
'PropertiesTest[classToTest=ClassA]/testProperty(propertyToTest=PropA1)'

The name of the first element is composed of these parts:

• PropertiesTest — Test class name
• [classToTest=ClassA] — Class-setup-level property and parameter name
• testProperty — Test method name

 Define Parameters at Suite Creation Time

36-87

• (propertyToTest=PropA1) — Test-level property and parameter name

Run the tests. Because two properties in the source subfolder are empty, two of the tests fail.

suite.run

Running PropertiesTest
..
==
Verification failed in PropertiesTest[classToTest=ClassA]/testProperty(propertyToTest=PropA3).

 Framework Diagnostic:

 verifyNotEmpty failed.
 --> The value must not be empty.
 --> The value has a size of [0 0].

 Actual Value:
 []

 Stack Information:

 In C:\TEMP\Examples\matlab-ex41465327\test\PropertiesTest.m (PropertiesTest.testProperty) at 30
==
....
==
Verification failed in PropertiesTest[classToTest=ClassC]/testProperty(propertyToTest=PropC1).

 Framework Diagnostic:

 verifyNotEmpty failed.
 --> The value must not be empty.
 --> The value has a size of [0 0].

 Actual Value:
 []

 Stack Information:

 In C:\TEMP\Examples\matlab-ex41465327\test\PropertiesTest.m (PropertiesTest.testProperty) at 30
==
..
Done PropertiesTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 PropertiesTest[classToTest=ClassA]/testProperty(propertyToTest=PropA3) X Failed by verification.

 PropertiesTest[classToTest=ClassC]/testProperty(propertyToTest=PropC1) X Failed by verification.

ans =
 1×8 TestResult array with properties:

 Name
 Passed

36 Unit Testing

36-88

 Failed
 Incomplete
 Duration
 Details

Totals:
 6 Passed, 2 Failed (rerun), 0 Incomplete.
 0.2348 seconds testing time.

Run Tests for Specific Class

Run only the tests for ClassB. To do this, use the selectIf method of the
matlab.unittest.TestSuite class to select test suite elements that use a particular
parameterization. The resulting test suite is a filtered suite and has only three elements.

suite2 = suite.selectIf("ParameterName","PropB*");
{suite2.Name}'

ans = 3×1 cell
 {'PropertiesTest[classToTest=ClassB]/testProperty(propertyToTest=PropB1)'}
 {'PropertiesTest[classToTest=ClassB]/testProperty(propertyToTest=PropB2)'}
 {'PropertiesTest[classToTest=ClassB]/testProperty(propertyToTest=PropB3)'}

Run the filtered suite.

suite2.run;

Running PropertiesTest
...
Done PropertiesTest

Alternatively, you can run the same tests by creating a selector that filters the test suite by
parameterization.

import matlab.unittest.selectors.HasParameter
import matlab.unittest.constraints.StartsWithSubstring
suite3 = matlab.unittest.TestSuite.fromClass(?PropertiesTest, ...
 HasParameter("Name",StartsWithSubstring("PropB")));
suite3.run;

Running PropertiesTest
...
Done PropertiesTest

Classes in source Subfolder

This section provides the contents of the classes in the source subfolder.

ClassA has three properties. Two of its properties have nonempty values.

classdef ClassA
 properties
 PropA1 = 1;
 PropA2 = 2;
 PropA3

 Define Parameters at Suite Creation Time

36-89

 end
end

ClassB has three properties. All of its properties have nonempty values.

classdef ClassB
 properties
 PropB1 = 1;
 PropB2 = 2;
 PropB3 = 'a';
 end
end

ClassC has two properties. One of its properties has a nonempty value.

classdef ClassC
 properties
 PropC1
 PropC2 = [1 2 3];
 end
end

See Also
matlab.unittest.TestSuite | matlab.unittest.selectors.HasParameter |
matlab.unittest.TestCase

Related Examples
• “Use Parameters in Class-Based Tests” on page 36-62
• “Create Basic Parameterized Test” on page 36-68
• “Create Advanced Parameterized Test” on page 36-73
• “Use External Parameters in Parameterized Test” on page 36-80

36 Unit Testing

36-90

Create Simple Test Suites
This example shows how to combine tests into test suites, using the SolverTest test case. Use the
static from* methods in the matlab.unittest.TestSuite class to create suites for combinations
of your tests, whether they are organized in packages and classes or files and folders, or both.

Create Quadratic Solver Function

Create the following function that solves roots of the quadratic equation in a file,
quadraticSolver.m, in your working folder.

function roots = quadraticSolver(a, b, c)
% quadraticSolver returns solutions to the
% quadratic equation a*x^2 + b*x + c = 0.

if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')
 error('quadraticSolver:InputMustBeNumeric', ...
 'Coefficients must be numeric.');
end

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);
roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

end

Create Test for Quadratic Solver Function

Create the following test class in a file, SolverTest.m, in your working folder.

classdef SolverTest < matlab.unittest.TestCase
 % SolverTest tests solutions to the quadratic equation
 % a*x^2 + b*x + c = 0

 methods (Test)
 function testRealSolution(testCase)
 actSolution = quadraticSolver(1,-3,2);
 expSolution = [2,1];
 testCase.verifyEqual(actSolution,expSolution);
 end
 function testImaginarySolution(testCase)
 actSolution = quadraticSolver(1,2,10);
 expSolution = [-1+3i, -1-3i];
 testCase.verifyEqual(actSolution,expSolution);
 end
 end

end

Import TestSuite Class

At the command prompt, add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite

Make sure the SolverTest class definition file is on your MATLAB path.

 Create Simple Test Suites

36-91

Create Suite from SolverTest Class

The fromClass method creates a suite from all Test methods in the SolverTest class.

suiteClass = TestSuite.fromClass(?SolverTest);
result = run(suiteClass);

Create Suite from SolverTest Class Definition File

The fromFile method creates a suite using the name of the file to identify the class.

suiteFile = TestSuite.fromFile('SolverTest.m');
result = run(suiteFile);

Create Suite from All Test Case Files in Current Folder

The fromFolder method creates a suite from all test case files in the specified folder. For example,
the following files are in the current folder:

• BankAccountTest.m
• DocPolynomTest.m
• FigurePropertiesTest.m
• IsSupportedTest.m
• SolverTest.m

suiteFolder = TestSuite.fromFolder(pwd);
result = run(suiteFolder);

Create Suite from Single Test Method

The fromMethod method creates a suite from a single test method.

suiteMethod = TestSuite.fromMethod(?SolverTest,'testRealSolution')'
result = run(suiteMethod);

See Also
matlab.unittest.TestSuite

Related Examples
• “Write Simple Test Case Using Classes” on page 36-39

36 Unit Testing

36-92

Run Tests for Various Workflows
In this section...
“Set Up Example Tests” on page 36-93
“Run All Tests in Class or Function” on page 36-93
“Run Single Test in Class or Function” on page 36-93
“Run Test Suites by Name” on page 36-94
“Run Test Suites from Test Array” on page 36-94
“Run Tests with Customized Test Runner” on page 36-95

Set Up Example Tests
To explore different ways to run tests, create a class-based test and a function-based test in your
current working folder. For the class-based test file use the DocPolynomTest example test presented
in the matlab.unittest.qualifications.Verifiable example. For the function-based test file
use the axesPropertiesTest example test presented in “Write Test Using Setup and Teardown
Functions” on page 36-27.

Run All Tests in Class or Function
Use the run method of the TestCase class to directly run tests contained in a single test file. When
running tests directly, you do not need to explicitly create a Test array.

% Directly run a single file of class-based tests
results1 = run(DocPolynomTest);

% Directly run a single file of function-based tests
results2 = run(axesPropertiesTest);

You can also assign the test file output to a variable and run the tests using the functional form or dot
notation.

% Create Test or TestCase objects
t1 = DocPolynomTest; % TestCase object from class-based test
t2 = axesPropertiesTest; % Test object from function-based test

% Run tests using functional form
results1 = run(t1);
results2 = run(t2);

% Run tests using dot notation
results1 = t1.run;
results2 = t2.run;

Alternatively, you can run tests contained in a single file by using runtests or from the Editor.

Run Single Test in Class or Function
Run a single test from within a class-based test file by specifying the test method as an input
argument to the run method. For example, only run the test, testMultiplication, from the
DocPolynomTest file.

 Run Tests for Various Workflows

36-93

results1 = run(DocPolynomTest,'testMultiplication');

Function-based test files return an array of Test objects instead of a single TestCase object. You
can run a particular test by indexing into the array. However, you must examine the Name field in the
test array to ensure you run the correct test. For example, only run the test, surfaceColorTest,
from the axesPropertiesTest file.

t2 = axesPropertiesTest; % Test object from function-based test
t2(:).Name

ans =

axesPropertiesTest/testDefaultXLim

ans =

axesPropertiesTest/surfaceColorTest

The surfaceColorTest test corresponds to the second element in the array.

Only run the surfaceColorTest test.

results2 = t2(2).run; % or results2 = run(t2(2));

Alternatively, you can run a single test from the Editor.

Run Test Suites by Name
You can run a group, or suite, of tests together. To run the test suite using runtests, the suite is
defined as a cell array of character vectors representing a test file, a test class, a package that
contains tests or a folder that contains tests.

suite = {'axesPropertiesTest','DocPolynomTest'};
runtests(suite);

Run all tests in the current folder using the pwd as input to the runtests function.

 runtests(pwd);

Alternatively, you can explicitly create Test arrays and use the run method to run them.

Run Test Suites from Test Array
You can explicitly create Test arrays and use the run method in the TestSuite class to run them.
Using this approach, you explicitly define TestSuite objects and, therefore, can examine the
contents. The runtests function does not return the TestSuite object.

import matlab.unittest.TestSuite
s1 = TestSuite.fromClass(?DocPolynomTest);
s2 = TestSuite.fromFile('axesPropertiesTest.m');

% generate test suite and then run
fullSuite = [s1 s2];
result = run(fullSuite);

36 Unit Testing

36-94

Since the suite is explicitly defined, it is easy for you to perform further analysis on the suite, such as
rerunning failed tests.

failedTests = fullSuite([result.Failed]);
result2 = run(failedTests);

Run Tests with Customized Test Runner
You can specialize the test running by defining a custom test runner and adding plugins. The run
method of the TestRunner class operates on a TestSuite object.

import matlab.unittest.TestRunner
import matlab.unittest.TestSuite
import matlab.unittest.plugins.TestRunProgressPlugin

% Generate TestSuite.
s1 = TestSuite.fromClass(?DocPolynomTest);
s2 = TestSuite.fromFile('axesPropertiesTest.m');
suite = [s1 s2];

% Create silent test runner.
runner = TestRunner.withNoPlugins;

% Add plugin to display test progress.
runner.addPlugin(TestRunProgressPlugin.withVerbosity(2))

% Run tests using customized runner.
result = run(runner,[suite]);

See Also
runtests | run (TestCase) | run (TestSuite) | run (TestRunner)

More About
• “Run Tests in Editor” on page 36-17

 Run Tests for Various Workflows

36-95

Programmatically Access Test Diagnostics
In certain cases, the testing framework uses a DiagnosticsRecordingPlugin plugin to record
diagnostics on test results. The framework uses the plugin by default if you do any of these:

• Run tests using the runtests function.
• Run tests using the testrunner function with no input.
• Run tests using the run method of the TestSuite or TestCase classes.
• Run performance tests using the runperf function.
• Run performance tests using the run method of the TimeExperiment class.

After you run tests, you can access recorded diagnostics using the DiagnosticRecord field in the
Details property on the TestResult object. For example, if your test results are stored in the
variable results, then result(2).Details.DiagnosticRecord contains the recorded
diagnostics for the second test in the suite.

The recorded diagnostics are DiagnosticRecord objects. To access particular types of test
diagnostics for a test, use the selectFailed, selectPassed, selectIncomplete, and
selectLogged methods of the DiagnosticRecord class.

By default, the DiagnosticsRecordingPlugin plugin records qualification failures and events
logged at a Terse level. To configure the plugin to record passing diagnostics or other logged
messages at different verbosity levels, configure an instance of DiagnosticsRecordingPlugin and
add it to the test runner.

See Also
matlab.unittest.plugins.DiagnosticsRecordingPlugin |
matlab.unittest.plugins.diagnosticrecord.DiagnosticRecord |
matlab.unittest.TestResult

Related Examples
• “Add Plugin to Test Runner” on page 36-97

36 Unit Testing

36-96

Add Plugin to Test Runner

This example shows how to add a plugin to the test runner. The
matlab.unittest.plugins.TestRunProgressPlugin displays progress messages about a test
case. This plugin is part of the matlab.unittest package. MATLAB® uses it for default test
runners.

Create a Test for the BankAccount Class

In a file in your working folder, create a file for the BankAccount class.

type BankAccount.m

classdef BankAccount < handle
 properties (Access = ?AccountManager)
 AccountStatus = 'open';
 end
 properties (SetAccess = private)
 AccountNumber
 AccountBalance
 end
 properties (Transient)
 AccountListener
 end
 events
 InsufficientFunds
 end
 methods
 function BA = BankAccount(accNum,initBal)
 BA.AccountNumber = accNum;
 BA.AccountBalance = initBal;
 BA.AccountListener = AccountManager.addAccount(BA);
 end
 function deposit(BA,amt)
 BA.AccountBalance = BA.AccountBalance + amt;
 if BA.AccountBalance > 0
 BA.AccountStatus = 'open';
 end
 end
 function withdraw(BA,amt)
 if (strcmp(BA.AccountStatus,'closed')&& ...
 BA.AccountBalance < 0)
 disp(['Account ',num2str(BA.AccountNumber),...
 ' has been closed.'])
 return
 end
 newbal = BA.AccountBalance - amt;
 BA.AccountBalance = newbal;
 if newbal < 0
 notify(BA,'InsufficientFunds')
 end
 end
 function getStatement(BA)
 disp('-------------------------')
 disp(['Account: ',num2str(BA.AccountNumber)])
 ab = sprintf('%0.2f',BA.AccountBalance);

 Add Plugin to Test Runner

36-97

 disp(['CurrentBalance: ',ab])
 disp(['Account Status: ',BA.AccountStatus])
 disp('-------------------------')
 end
 end
 methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 accNum = s.AccountNumber;
 initBal = s.AccountBalance;
 obj = BankAccount(accNum,initBal);
 else
 obj.AccountListener = AccountManager.addAccount(s);
 end
 end
 end
end

Also create a test file for the BankAccount class.

type BankAccountTest.m

classdef BankAccountTest < matlab.unittest.TestCase
 % Tests the BankAccount class.

 methods (Test)
 function testConstructor(testCase)
 b = BankAccount(1234, 100);
 testCase.verifyEqual(b.AccountNumber, 1234, ...
 'Constructor failed to correctly set account number');
 testCase.verifyEqual(b.AccountBalance, 100, ...
 'Constructor failed to correctly set account balance');
 end

 function testConstructorNotEnoughInputs(testCase)
 import matlab.unittest.constraints.Throws;
 testCase.verifyThat(@()BankAccount, ...
 Throws('MATLAB:minrhs'));
 end

 function testDeposit(testCase)
 b = BankAccount(1234, 100);
 b.deposit(25);
 testCase.verifyEqual(b.AccountBalance, 125);
 end

 function testWithdraw(testCase)
 b = BankAccount(1234, 100);
 b.withdraw(25);
 testCase.verifyEqual(b.AccountBalance, 75);
 end

 function testNotifyInsufficientFunds(testCase)
 callbackExecuted = false;
 function testCallback(~,~)
 callbackExecuted = true;
 end

36 Unit Testing

36-98

 b = BankAccount(1234, 100);
 b.addlistener('InsufficientFunds', @testCallback);

 b.withdraw(50);
 testCase.assertFalse(callbackExecuted, ...
 'The callback should not have executed yet');
 b.withdraw(60);
 testCase.verifyTrue(callbackExecuted, ...
 'The listener callback should have fired');
 end
 end
end

Create Test Suite

At the command prompt, create a test suite, ts, from the BankAccountTest test case.

ts = matlab.unittest.TestSuite.fromClass(?BankAccountTest);

Show Results with No Plugins

Create a test runner with no plugins.

runner = matlab.unittest.TestRunner.withNoPlugins;
res = runner.run(ts);

No output displayed.

Customize Test Runner

Add the custom plugin, TestRunProgressPlugin.

import matlab.unittest.plugins.TestRunProgressPlugin
runner.addPlugin(TestRunProgressPlugin.withVerbosity(2))
res = runner.run(ts);

Running BankAccountTest
.....
Done BankAccountTest

MATLAB displays progress messages about BankAccountTest.

See Also
matlab.unittest.plugins

 Add Plugin to Test Runner

36-99

Write Plugins to Extend TestRunner
In this section...
“Custom Plugins Overview” on page 36-100
“Extending Test Session Level Plugin Methods” on page 36-100
“Extending Test Suite Level Plugin Methods” on page 36-101
“Extending Test Class Level Plugin Methods” on page 36-101
“Extending Test Level Plugin Methods” on page 36-102

Custom Plugins Overview
TestRunnerPlugin methods have four levels: test session, test suite, test class, and test. At each
level, you implement methods to extend the running of tests. Additionally, you implement methods at
the test suite, test class, and test levels to extend the creation, setup, and teardown of tests or test
fixtures.

At the test suite, test class, and test levels, the reportFinalizedResult method enables the
TestRunner to report finalized test results. A test result is finalized when no remaining test content
can modify it. The TestRunner determines if it invokes the reportFinalizedResult method at
each level. At the test session level, the reportFinalizedSuite method enables the TestRunner
to report test results once the test suite is finalized.

The TestRunner runs different methods as shown in the figure.

The creation methods are the only set of TestRunnerPlugin methods with an output argument.
Typically, you extend the creation methods to listen for various events originating from the test
content at the corresponding level. Since both TestCase and Fixture instances inherit from the
handle class, you add listeners using the addlistener method. The methods that set up, run, and
tear down test content extend the way the TestRunner evaluates the test content.

Extending Test Session Level Plugin Methods
The TestRunnerPlugin methods at the test session level extend the running and reporting of the
test suite passed to the TestRunner. These methods fall within the scope of the runSession
method.

36 Unit Testing

36-100

The run method at this level, runTestSuite, extends the running of a portion of the entire
TestSuite array that the testing framework passes to the TestRunner. The
reportFinalizedSuite method extends the reporting of a test suite that has been finalized by
runTestSuite.

Extending Test Suite Level Plugin Methods
The TestRunnerPlugin methods at the test suite level extend the creation, setup, running, and
teardown of shared test fixtures. These methods fall within the scope of the runTestSuite method.

Type of Method Test Level Falls Within Scope of runTestSuite
creation method createSharedTestFixture
setup method setupSharedTestFixture
run method runTestClass
teardown method teardownSharedTestFixture

At this level, the createSharedTestFixture method is the only plugin method with an output
argument. It returns the Fixture instances for each shared fixture required by a test class. These
fixture instances are available to the test through the getSharedTestFixtures method of
TestCase.

The run method at this level, runTestClass, extends the running of tests that belong to the same
test class or the same function-based test, and incorporates the functionality described for the test
class level plugin methods.

Extending Test Class Level Plugin Methods
The TestRunnerPlugin methods at the test class level extend the creation, setup, running, and
teardown of test suite elements that belong to the same test class or the same function-based test.
These methods apply to a subset of the full TestSuite array that the TestRunner runs.

Type of Method Test Level Falls Within Scope of runTestClass
creation method createTestClassInstance
setup method setupTestClass
run method runTest
teardown method teardownTestClass

At this level, the createTestClassInstance method is the only plugin method with an output
argument. It returns the TestCase instances created at the class level. For each class, the testing
framework passes the instance into any methods with the TestClassSetup or
TestClassTeardown attribute.

A test class setup is parameterized if it contains properties with the ClassSetupParameter
attribute. In this case, the testing framework evaluates the setupTestClass and
teardownTestClass methods as many times as the class setup parameterization dictates.

The run method at this level, runTest, extends the running of a single TestSuite element, and
incorporates the functionality described for the test level plugin methods.

 Write Plugins to Extend TestRunner

36-101

The testing framework evaluates methods at the test class level within the scope of the
runTestClass method. If the TestClassSetup code completes successfully, it invokes the
runTest method one time for each element in the TestSuite array. Each TestClassSetup
parameterization invokes the creation, setup, and teardown methods a single time.

Extending Test Level Plugin Methods
The TestRunnerPlugin methods at the test level extend the creation, setup, running, and teardown
of a single test suite element. A single Test element consists of one test method or, if the test is
parameterized, one instance of the test parameterization.

Type of Method Test Level Falls Within Scope of runTest
creation method createTestMethodInstance
setup method setupTestMethod
run method runTestMethod
teardown method teardownTestMethod

At this level, the createTestMethodInstance method is the only plugin method with an output
argument. It returns the TestCase instances created for each Test element. The testing framework
passes each of these instances into the corresponding Test methods, and into any methods with the
TestMethodSetup or TestMethodTeardown attribute.

The testing framework evaluates methods at the test level within the scope of the runTest method.
Provided the framework completes all TestMethodSetup work, it invokes the plugin methods at this
level a single time per Test element.

See Also
matlab.unittest.plugins.TestRunnerPlugin | matlab.unittest.plugins.OutputStream
| matlab.unittest.TestCase | matlab.unittest.TestRunner |
matlab.unittest.fixtures.Fixture | addlistener | matlab.unittest.TestSuite |
matlab.unittest.plugins.Parallelizable

Related Examples
• “Create Custom Plugin” on page 36-103
• “Run Tests in Parallel with Custom Plugin” on page 36-108
• “Plugin to Generate Custom Test Output Format” on page 36-125
• “Write Plugin to Save Diagnostic Details” on page 36-121

36 Unit Testing

36-102

Create Custom Plugin
This example shows how to create a custom plugin that counts the number of passing and failing
assertions when the TestRunner is running a test suite. The plugin prints a brief summary at the
end of the testing. To extend the TestRunner, the plugin subclasses and overrides select methods of
the matlab.unittest.plugins.TestRunnerPlugin class.

Create AssertionCountingPlugin Class

In a file in your current folder, create the custom plugin class AssertionCountingPlugin, which
inherits from the TestRunnerPlugin class. For the complete code for
AssertionCountingPlugin, see AssertionCountingPlugin Class Definition Summary on page 36-
0 .

To keep track of the number of passing and failing assertions, define two read-only properties,
NumPassingAssertions and NumFailingAssertions, within a properties block.

 properties (SetAccess = private)
 NumPassingAssertions
 NumFailingAssertions
 end

Extend Running of TestSuite

Implement the runTestSuite method in a methods block with protected access.

 methods (Access = protected)
 function runTestSuite(plugin, pluginData)
 suiteSize = numel(pluginData.TestSuite);
 fprintf('## Running a total of %d tests\n', suiteSize)

 plugin.NumPassingAssertions = 0;
 plugin.NumFailingAssertions = 0;

 runTestSuite@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);

 fprintf('## Done running tests\n')
 plugin.printAssertionSummary()
 end
 end

The testing framework evaluates this method one time. It displays information about the total number
of tests, initializes the properties used by the plugin to generate text output, and invokes the
superclass method. After the framework completes evaluating the superclass method, the
runTestSuite method displays the assertion count summary by calling the helper method
printAssertionSummary (see Define Helper Methods on page 36-0).

Extend Creation of Shared Test Fixtures and TestCase Instances

Add listeners to AssertionPassed and AssertionFailed events to count the assertions. To add
these listeners, extend the methods used by the testing framework to create the test content. The test
content includes TestCase instances for each Test element, class-level TestCase instances for the
TestClassSetup and TestClassTeardown methods, and Fixture instances used when a
TestCase class has the SharedTestFixtures attribute.

 Create Custom Plugin

36-103

Invoke the corresponding superclass method when you override the creation methods. The creation
methods return the content that the testing framework creates for each of their respective contexts.
When implementing one of these methods using the incrementPassingAssertionsCount and
incrementFailingAssertionsCount helper methods on page 36-0 , add the listeners required
by the plugin to the returned Fixture or TestCase instance.

Add these creation methods to a methods block with protected access.

 methods (Access = protected)
 function fixture = createSharedTestFixture(plugin, pluginData)
 fixture = createSharedTestFixture@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 fixture.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 fixture.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end

 function testCase = createTestClassInstance(plugin, pluginData)
 testCase = createTestClassInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 testCase.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end

 function testCase = createTestMethodInstance(plugin, pluginData)
 testCase = createTestMethodInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 testCase.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end
 end

Extend Running of Single Test Suite Element

Extend runTest to display the name of each test at run time. Include this method in a methods
block with protected access. Like all plugin methods, the runTest method requires you to invoke
the corresponding superclass method.

 methods (Access = protected)
 function runTest(plugin, pluginData)
 fprintf('### Running test: %s\n', pluginData.Name)

 runTest@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);
 end
 end

36 Unit Testing

36-104

Define Helper Methods

In a methods block with private access, define three helper methods. These methods increment the
number of passing or failing assertions, and print the assertion count summary.

 methods (Access = private)
 function incrementPassingAssertionsCount(plugin)
 plugin.NumPassingAssertions = plugin.NumPassingAssertions + 1;
 end

 function incrementFailingAssertionsCount(plugin)
 plugin.NumFailingAssertions = plugin.NumFailingAssertions + 1;
 end

 function printAssertionSummary(plugin)
 fprintf('%s\n', repmat('_', 1, 30))
 fprintf('Total Assertions: %d\n', ...
 plugin.NumPassingAssertions + plugin.NumFailingAssertions)
 fprintf('\t%d Passed, %d Failed\n', ...
 plugin.NumPassingAssertions, plugin.NumFailingAssertions)
 end
 end

AssertionCountingPlugin Class Definition Summary

The following code provides the complete contents of AssertionCountingPlugin.
classdef AssertionCountingPlugin < ...
 matlab.unittest.plugins.TestRunnerPlugin

 properties (SetAccess = private)
 NumPassingAssertions
 NumFailingAssertions
 end

 methods (Access = protected)
 function runTestSuite(plugin, pluginData)
 suiteSize = numel(pluginData.TestSuite);
 fprintf('## Running a total of %d tests\n', suiteSize)

 plugin.NumPassingAssertions = 0;
 plugin.NumFailingAssertions = 0;

 runTestSuite@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);

 fprintf('## Done running tests\n')
 plugin.printAssertionSummary()
 end

 function fixture = createSharedTestFixture(plugin, pluginData)
 fixture = createSharedTestFixture@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 fixture.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 fixture.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end

 function testCase = createTestClassInstance(plugin, pluginData)
 testCase = createTestClassInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);

 Create Custom Plugin

36-105

 testCase.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end

 function testCase = createTestMethodInstance(plugin, pluginData)
 testCase = createTestMethodInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 testCase.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end

 function runTest(plugin, pluginData)
 fprintf('### Running test: %s\n', pluginData.Name)

 runTest@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);
 end
 end

 methods (Access = private)
 function incrementPassingAssertionsCount(plugin)
 plugin.NumPassingAssertions = plugin.NumPassingAssertions + 1;
 end

 function incrementFailingAssertionsCount(plugin)
 plugin.NumFailingAssertions = plugin.NumFailingAssertions + 1;
 end

 function printAssertionSummary(plugin)
 fprintf('%s\n', repmat('_', 1, 30))
 fprintf('Total Assertions: %d\n', ...
 plugin.NumPassingAssertions + plugin.NumFailingAssertions)
 fprintf('\t%d Passed, %d Failed\n', ...
 plugin.NumPassingAssertions, plugin.NumFailingAssertions)
 end
 end
end

Create Example Test Class

In your current folder, create a file named ExampleTest.m containing the following test class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase) % Test fails
 testCase.assertEqual(5, 4)
 end
 function testTwo(testCase) % Test passes
 testCase.verifyEqual(5, 5)
 end
 function testThree(testCase) % Test passes
 testCase.assertEqual(7*2, 14)
 end
 end
end

Add Plugin to TestRunner and Run Tests

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner

suite = TestSuite.fromClass(?ExampleTest);

36 Unit Testing

36-106

Create a TestRunner instance with no plugins. This code creates a silent runner and gives you
control over the installed plugins.

runner = TestRunner.withNoPlugins;

Run the tests.

result = runner.run(suite);

Add AssertionCountingPlugin to the runner and run the tests.

runner.addPlugin(AssertionCountingPlugin)
result = runner.run(suite);

Running a total of 3 tests
Running test: ExampleTest/testOne
Running test: ExampleTest/testTwo
Running test: ExampleTest/testThree
Done running tests

Total Assertions: 2
 1 Passed, 1 Failed

See Also
matlab.unittest.plugins.TestRunnerPlugin | matlab.unittest.plugins.OutputStream
| matlab.unittest.TestCase | matlab.unittest.TestRunner |
matlab.unittest.fixtures.Fixture | addlistener

Related Examples
• “Write Plugins to Extend TestRunner” on page 36-100
• “Run Tests in Parallel with Custom Plugin” on page 36-108
• “Write Plugin to Save Diagnostic Details” on page 36-121

 Create Custom Plugin

36-107

Run Tests in Parallel with Custom Plugin
This example shows how to create a custom plugin that supports running tests in parallel. The
custom plugin counts the number of passing and failing assertions for a test suite. To extend the
TestRunner, the plugin overrides select methods of the
matlab.unittest.plugins.TestRunnerPlugin class. Additionally, to support running tests in
parallel, the plugin subclasses the matlab.unittest.plugins.Parallelizable interface. To run
tests in parallel, you need Parallel Computing Toolbox.

Create Plugin Class

In a file in your current folder, create the parallelizable plugin class AssertionCountingPlugin,
which inherits from both the TestRunnerPlugin and Parallelizable classes. For the complete
code for AssertionCountingPlugin, see Plugin Class Definition Summary on page 36-0 .

To keep track of the number of passing and failing assertions, define four read-only properties within
a properties block. Each MATLAB worker on the current parallel pool uses
NumPassingAssertions and NumFailingAssertions to track the number of passing and failing
assertions when running a portion of the TestSuite array. The MATLAB client uses
FinalizedNumPassingAssertions and FinalizedNumFailingAssertions to aggregate the
results from different workers and to report the total number of passing and failing assertions at the
end of the test session.

 properties (SetAccess = private)
 NumPassingAssertions
 NumFailingAssertions
 FinalizedNumPassingAssertions
 FinalizedNumFailingAssertions
 end

Extend Running of Test Session

To extend the running of the entire TestSuite array, override the runSession method of
TestRunnerPlugin in a methods block with protected access. The testing framework evaluates
this method one time on the client.

 methods (Access = protected)
 function runSession(plugin, pluginData)
 suiteSize = numel(pluginData.TestSuite);
 fprintf('## Running a total of %d tests\n\n', suiteSize);
 plugin.FinalizedNumPassingAssertions = 0;
 plugin.FinalizedNumFailingAssertions = 0;

 runSession@matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 fprintf('## Done running tests\n')
 plugin.printAssertionSummary()
 end
 end

runSession displays information about the total number of Test elements, initializes the properties
used by the plugin to generate text output, and invokes the superclass method to trigger the entire
test run. After the framework completes evaluating the superclass method, runSession displays the
assertion count summary by calling the helper method printAssertionSummary (see Define Helper
Methods on page 36-0).

36 Unit Testing

36-108

Extend Creation of Shared Test Fixtures and TestCase Instances

Add listeners to AssertionPassed and AssertionFailed events to count the assertions. To add
these listeners, extend the methods used by the testing framework to create the test content. The test
content includes TestCase instances for each Test element, class-level TestCase instances for the
TestClassSetup and TestClassTeardown method blocks, and Fixture instances used when a
TestCase class has the SharedTestFixtures attribute.

Invoke the corresponding superclass method when you override the creation methods. The creation
methods return the content that the testing framework creates for each of their respective contexts.
When implementing one of these methods using the incrementPassingAssertionsCount and
incrementFailingAssertionsCount helper methods on page 36-0 , add the listeners required
by the plugin to the returned Fixture or TestCase instance.

Add these creation methods to a methods block with protected access.

 methods (Access = protected)
 function fixture = createSharedTestFixture(plugin, pluginData)
 fixture = createSharedTestFixture@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 fixture.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 fixture.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end

 function testCase = createTestClassInstance(plugin, pluginData)
 testCase = createTestClassInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 testCase.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end

 function testCase = createTestMethodInstance(plugin, pluginData)
 testCase = createTestMethodInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 testCase.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end
 end

Extend Running of Test Suite Portion

The testing framework divides the entire TestSuite array into different groups and assigns them to
workers for processing. Each worker can run one or more test suite portions. To customize the
behavior of workers, override the runTestSuite method of TestRunnerPlugin in a methods
block with protected access.

Extend the TestRunner to display the identifier of each test group that a worker runs along with the
number of Test elements within the group. Additionally, store the number of passing and failing

 Run Tests in Parallel with Custom Plugin

36-109

assertions in a buffer so that the client can retrieve these values to produce the finalized results. Like
all plugin methods, the runTestSuite method requires you to invoke the corresponding superclass
method at an appropriate point. In this case, invoke the superclass method after initializing the
properties and before storing the worker data. The testing framework evaluates runTestSuite on
the workers as many times as the number of test suite portions.

 methods (Access = protected)
 function runTestSuite(plugin, pluginData)
 suiteSize = numel(pluginData.TestSuite);
 groupNumber = pluginData.Group;
 fprintf('### Running a total of %d tests in group %d\n', ...
 suiteSize, groupNumber);
 plugin.NumPassingAssertions = 0;
 plugin.NumFailingAssertions = 0;

 runTestSuite@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);

 assertionStruct = struct('Passing', plugin.NumPassingAssertions, ...
 'Failing', plugin.NumFailingAssertions);
 plugin.storeIn(pluginData.CommunicationBuffer, assertionStruct);
 end
 end

To store test-specific data, the implementation of runTestSuite contains a call to the storeIn
method of the Parallelizable interface. Use storeIn along with retrieveFrom when workers
must report to the client. In this example, after returning from the superclass method,
NumPassingAssertions and NumFailingAssertions contain the number of passing and failing
assertions corresponding to a group of tests. Because storeIn accepts the worker data as only one
input argument, assertionStruct groups the assertion counts using two fields.

Extend Reporting of Finalized Test Suite Portion

Extend reportFinalizedSuite to aggregate the assertion counts by retrieving test data for each
finalized test suite portion. To retrieve the stored assertionStruct for a test suite portion, invoke
the retrieveFrom method within the scope of reportFinalizedSuite. Add the field values to the
corresponding class properties, and invoke the superclass method. The testing framework evaluates
this method on the client as many times as the number of test suite portions.

 methods (Access = protected)
 function reportFinalizedSuite(plugin, pluginData)
 assertionStruct = plugin.retrieveFrom(pluginData.CommunicationBuffer);
 plugin.FinalizedNumPassingAssertions = ...
 plugin.FinalizedNumPassingAssertions + assertionStruct.Passing;
 plugin.FinalizedNumFailingAssertions = ...
 plugin.FinalizedNumFailingAssertions + assertionStruct.Failing;

 reportFinalizedSuite@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);
 end
 end

Define Helper Methods

In a methods block with private access, define three helper methods. These methods increment the
number of passing or failing assertions within each running test suite portion, and print the assertion
count summary.

36 Unit Testing

36-110

 methods (Access = private)
 function incrementPassingAssertionsCount(plugin)
 plugin.NumPassingAssertions = plugin.NumPassingAssertions + 1;
 end

 function incrementFailingAssertionsCount(plugin)
 plugin.NumFailingAssertions = plugin.NumFailingAssertions + 1;
 end

 function printAssertionSummary(plugin)
 fprintf('%s\n', repmat('_', 1, 30))
 fprintf('Total Assertions: %d\n', plugin.FinalizedNumPassingAssertions + ...
 plugin.FinalizedNumFailingAssertions)
 fprintf('\t%d Passed, %d Failed\n', plugin.FinalizedNumPassingAssertions, ...
 plugin.FinalizedNumFailingAssertions)
 end
 end

Plugin Class Definition Summary

The following code provides the complete contents of AssertionCountingPlugin.
classdef AssertionCountingPlugin < ...
 matlab.unittest.plugins.TestRunnerPlugin & ...
 matlab.unittest.plugins.Parallelizable

 properties (SetAccess = private)
 NumPassingAssertions
 NumFailingAssertions
 FinalizedNumPassingAssertions
 FinalizedNumFailingAssertions
 end

 methods (Access = protected)
 function runSession(plugin, pluginData)
 suiteSize = numel(pluginData.TestSuite);
 fprintf('## Running a total of %d tests\n\n', suiteSize);
 plugin.FinalizedNumPassingAssertions = 0;
 plugin.FinalizedNumFailingAssertions = 0;

 runSession@matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 fprintf('## Done running tests\n')
 plugin.printAssertionSummary()
 end

 function fixture = createSharedTestFixture(plugin, pluginData)
 fixture = createSharedTestFixture@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 fixture.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 fixture.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end

 function testCase = createTestClassInstance(plugin, pluginData)
 testCase = createTestClassInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 testCase.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end

 function testCase = createTestMethodInstance(plugin, pluginData)

 Run Tests in Parallel with Custom Plugin

36-111

 testCase = createTestMethodInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testCase.addlistener('AssertionPassed', ...
 @(~,~)plugin.incrementPassingAssertionsCount);
 testCase.addlistener('AssertionFailed', ...
 @(~,~)plugin.incrementFailingAssertionsCount);
 end

 function runTestSuite(plugin, pluginData)
 suiteSize = numel(pluginData.TestSuite);
 groupNumber = pluginData.Group;
 fprintf('### Running a total of %d tests in group %d\n', ...
 suiteSize, groupNumber);
 plugin.NumPassingAssertions = 0;
 plugin.NumFailingAssertions = 0;

 runTestSuite@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);

 assertionStruct = struct('Passing', plugin.NumPassingAssertions, ...
 'Failing', plugin.NumFailingAssertions);
 plugin.storeIn(pluginData.CommunicationBuffer, assertionStruct);
 end

 function reportFinalizedSuite(plugin, pluginData)
 assertionStruct = plugin.retrieveFrom(pluginData.CommunicationBuffer);
 plugin.FinalizedNumPassingAssertions = ...
 plugin.FinalizedNumPassingAssertions + assertionStruct.Passing;
 plugin.FinalizedNumFailingAssertions = ...
 plugin.FinalizedNumFailingAssertions + assertionStruct.Failing;

 reportFinalizedSuite@matlab.unittest.plugins.TestRunnerPlugin(...
 plugin, pluginData);
 end
 end

 methods (Access = private)
 function incrementPassingAssertionsCount(plugin)
 plugin.NumPassingAssertions = plugin.NumPassingAssertions + 1;
 end

 function incrementFailingAssertionsCount(plugin)
 plugin.NumFailingAssertions = plugin.NumFailingAssertions + 1;
 end

 function printAssertionSummary(plugin)
 fprintf('%s\n', repmat('_', 1, 30))
 fprintf('Total Assertions: %d\n', plugin.FinalizedNumPassingAssertions + ...
 plugin.FinalizedNumFailingAssertions)
 fprintf('\t%d Passed, %d Failed\n', plugin.FinalizedNumPassingAssertions, ...
 plugin.FinalizedNumFailingAssertions)
 end
 end
end

Create Example Test Class

In your current folder, create a file named ExampleTest.m containing the following parameterized
test class. This class results in 300 Test elements, 100 of which are assertion tests that compare
pseudorandom integers between 1 and 10.

classdef ExampleTest < matlab.unittest.TestCase

 properties (TestParameter)
 num1 = repmat({@()randi(10)}, 1, 10);
 num2 = repmat({@()randi(10)}, 1, 10);
 end

36 Unit Testing

36-112

 methods(Test)
 function testAssert(testCase, num1, num2)
 testCase.assertNotEqual(num1(), num2())
 end
 function testVerify(testCase, num1, num2)
 testCase.verifyNotEqual(num1(), num2())
 end
 function testAssume(testCase, num1, num2)
 testCase.assumeNotEqual(num1(), num2())
 end
 end
end

Add Plugin to TestRunner and Run Tests

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner

suite = TestSuite.fromClass(?ExampleTest);

Create a TestRunner instance with no plugins. This code creates a silent runner and gives you
control over the installed plugins.

runner = TestRunner.withNoPlugins;

Add AssertionCountingPlugin to the runner and run the tests in parallel. You can also run the
same tests in serial mode if you invoke the run method on the runner.

runner.addPlugin(AssertionCountingPlugin)
result = runner.runInParallel(suite);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
Running a total of 300 tests

Split tests into 18 groups and running them on 6 workers.

Finished Group 6

Running a total of 18 tests in group 6

Finished Group 1

Running a total of 20 tests in group 1

Finished Group 2

Running a total of 20 tests in group 2

Finished Group 3

Running a total of 19 tests in group 3

 Run Tests in Parallel with Custom Plugin

36-113

Finished Group 4

Running a total of 19 tests in group 4

Finished Group 5

Running a total of 18 tests in group 5

Finished Group 7

Running a total of 18 tests in group 7

Finished Group 8

Running a total of 17 tests in group 8

Finished Group 9

Running a total of 17 tests in group 9

Finished Group 10

Running a total of 17 tests in group 10

Finished Group 11

Running a total of 16 tests in group 11

Finished Group 12

Running a total of 16 tests in group 12

Finished Group 15

Running a total of 15 tests in group 15

Finished Group 14

Running a total of 15 tests in group 14

Finished Group 17

Running a total of 14 tests in group 17

Finished Group 16

36 Unit Testing

36-114

Running a total of 14 tests in group 16

Finished Group 13

Running a total of 15 tests in group 13

Finished Group 18

Running a total of 12 tests in group 18

Done running tests

Total Assertions: 100
 88 Passed, 12 Failed

See Also
matlab.unittest.plugins.TestRunnerPlugin | matlab.unittest.TestCase |
matlab.unittest.TestRunner | matlab.unittest.fixtures.Fixture |
matlab.unittest.plugins.Parallelizable | matlab.unittest.TestSuite | addlistener
| runInParallel | matlab.unittest.TestResult

Related Examples
• “Write Plugins to Extend TestRunner” on page 36-100
• “Create Custom Plugin” on page 36-103

 Run Tests in Parallel with Custom Plugin

36-115

Write Plugin to Add Data to Test Results
This example shows how to create a plugin that adds data to TestResult objects. The plugin
appends the actual and expected values in an assertion to the Details property of the TestResult
object. To extend the TestRunner, the plugin overrides select methods of the
matlab.unittest.plugins.TestRunnerPlugin class.

Create Plugin Class

In a file in your current folder, create the custom plugin class DetailsRecordingPlugin, which
inherits from the TestRunnerPlugin class. For the complete code for DetailsRecordingPlugin,
see DetailsRecordingPlugin Class Definition Summary on page 36-0 .

To store the actual and expected values in TestResult objects, define two constant properties,
ActField and ExpField, within a properties block. Set the value of ActField to the name of the
field of the Details structure that contains the actual value. Set the value of ExpField to the name
of the field that contains the expected value.

 properties (Constant, Access = private)
 ActField = 'ActualValue';
 ExpField = 'ExpectedValue';
 end

Add Fields to Details Property

To add new fields to the Details property of all TestResult objects belonging to the test session,
override the runSession method of TestRunnerPlugin in a methods block with protected
access. runSession adds two empty fields to the Details structure of TestResult objects and
invokes the superclass method to trigger the entire test run.

 methods (Access = protected)
 function runSession(plugin,pluginData)
 resultDetails = pluginData.ResultDetails;
 resultDetails.append(plugin.ActField,{})
 resultDetails.append(plugin.ExpField,{})
 runSession@matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData);
 end
 end

To add the fields, the implementation of runSession contains calls to the append method of the
matlab.unittest.plugins.plugindata.ResultDetails class. Each call adds an empty field to
the Details structure.

Extend Creation of Shared Test Fixtures and TestCase Instances

Add listeners for the AssertionPassed and AssertionFailed events by extending the methods
used by the testing framework to create the test content. The test content includes TestCase
instances for each Test element, class-level TestCase instances for the TestClassSetup and
TestClassTeardown method blocks, and Fixture instances used when a TestCase class has the
SharedTestFixtures attribute.

Invoke the corresponding superclass method when you override the creation methods. The listeners
that you add to the returned Fixture or TestCase instances cause the reactToAssertion helper
method on page 36-0 to execute whenever an assertion is performed. To add assertion data to test
results, pass the result modifier instance along with the assertion event listener data to the helper
method.

36 Unit Testing

36-116

Add these creation methods to a methods block with protected access.

 methods (Access = protected)
 function fixture = createSharedTestFixture(plugin, pluginData)
 fixture = createSharedTestFixture@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);
 resultDetails = pluginData.ResultDetails;
 fixture.addlistener('AssertionPassed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 fixture.addlistener('AssertionFailed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 end

 function testCase = createTestClassInstance(plugin,pluginData)
 testCase = createTestClassInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData);
 resultDetails = pluginData.ResultDetails;
 testCase.addlistener('AssertionPassed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 testCase.addlistener('AssertionFailed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 end

 function testCase = createTestMethodInstance(plugin,pluginData)
 testCase = createTestMethodInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData);
 resultDetails = pluginData.ResultDetails;
 testCase.addlistener('AssertionPassed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 testCase.addlistener('AssertionFailed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 end
 end

Define Helper Method

In a methods block with private access, define the helper method reactToAssertion. This
method uses the QualificationEventData instance to extract the actual and expected values in
assertions based on the IsEqualTo constraint, converts the extracted values to cell arrays, and
appends the cell arrays to the fields of the corresponding TestResult object.

 methods (Access = private)
 function reactToAssertion(plugin,evd,resultDetails)
 if ~isa(evd.Constraint,'matlab.unittest.constraints.IsEqualTo')
 return
 end
 resultDetails.append(plugin.ActField,{evd.ActualValue})
 resultDetails.append(plugin.ExpField,{evd.Constraint.Expected})
 end
 end

DetailsRecordingPlugin Class Definition Summary

This code provides the complete contents of DetailsRecordingPlugin.
classdef DetailsRecordingPlugin < matlab.unittest.plugins.TestRunnerPlugin
 properties (Constant, Access = private)
 ActField = 'ActualValue';
 ExpField = 'ExpectedValue';

 Write Plugin to Add Data to Test Results

36-117

 end

 methods (Access = protected)
 function runSession(plugin,pluginData)
 resultDetails = pluginData.ResultDetails;
 resultDetails.append(plugin.ActField,{})
 resultDetails.append(plugin.ExpField,{})
 runSession@matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData);
 end

 function fixture = createSharedTestFixture(plugin, pluginData)
 fixture = createSharedTestFixture@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);
 resultDetails = pluginData.ResultDetails;
 fixture.addlistener('AssertionPassed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 fixture.addlistener('AssertionFailed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 end

 function testCase = createTestClassInstance(plugin,pluginData)
 testCase = createTestClassInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData);
 resultDetails = pluginData.ResultDetails;
 testCase.addlistener('AssertionPassed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 testCase.addlistener('AssertionFailed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 end

 function testCase = createTestMethodInstance(plugin,pluginData)
 testCase = createTestMethodInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData);
 resultDetails = pluginData.ResultDetails;
 testCase.addlistener('AssertionPassed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 testCase.addlistener('AssertionFailed',...
 @(~,evd)plugin.reactToAssertion(evd,resultDetails));
 end
 end

 methods (Access = private)
 function reactToAssertion(plugin,evd,resultDetails)
 if ~isa(evd.Constraint,'matlab.unittest.constraints.IsEqualTo')
 return
 end
 resultDetails.append(plugin.ActField,{evd.ActualValue})
 resultDetails.append(plugin.ExpField,{evd.Constraint.Expected})
 end
 end
end

Create Example Test Class

In your current folder, create a file named ExampleTest.m containing the following parameterized
test class. The class results in a test suite with 25 elements, each corresponding to an experiment
performed using a different seed for the random number generator. In each experiment, the testing
framework creates a 1-by-100 vector of normally distributed random numbers and asserts that the
magnitude of the difference between the actual and expected sample means is within 0.1.

classdef ExampleTest < matlab.unittest.TestCase
 properties
 SampleSize = 100;
 end

 properties (TestParameter)
 seed = num2cell(randi(10^6,1,25));
 end

36 Unit Testing

36-118

 methods(Test)
 function testMean(testCase,seed)
 import matlab.unittest.constraints.IsEqualTo
 import matlab.unittest.constraints.AbsoluteTolerance
 rng(seed)
 testCase.assertThat(mean(randn(1,testCase.SampleSize)),...
 IsEqualTo(0,'Within',AbsoluteTolerance(0.1)));
 end
 end
end

Add Plugin to TestRunner and Run Tests

At the command prompt, create a test suite from the ExampleTest class.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner

suite = TestSuite.fromClass(?ExampleTest);

Create a TestRunner instance with no plugins. This code creates a silent runner and gives you
control over the installed plugins.

runner = TestRunner.withNoPlugins;

Add DetailsRecordingPlugin to the runner and run the tests.

runner.addPlugin(DetailsRecordingPlugin)
result = runner.run(suite)

result =

 1×25 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 18 Passed, 7 Failed (rerun), 7 Incomplete.
 0.12529 seconds testing time.

To retrieve more information about the behavior of random number generation, create a structure
array from the Details structures of the test results.
details = [result.Details]

details =

 1×25 struct array with fields:

 ActualValue
 ExpectedValue

 Write Plugin to Add Data to Test Results

36-119

Create an array containing the difference between the actual and expected values in each test and
then display the error values in a bar graph. The seven bars with a length greater than 0.1
correspond to the failed tests.
errorInMean = cell2mat([details.ExpectedValue]) - cell2mat([details.ActualValue]);

bar(errorInMean)
xlabel('Experiment')
ylabel('Error')

See Also
matlab.unittest.plugins.TestRunnerPlugin | matlab.unittest.TestRunner |
matlab.unittest.fixtures.Fixture | matlab.unittest.TestSuite | addlistener |
matlab.unittest.TestResult | matlab.unittest.plugins.plugindata.ResultDetails

Related Examples
• “Write Plugins to Extend TestRunner” on page 36-100
• “Create Custom Plugin” on page 36-103

36 Unit Testing

36-120

Write Plugin to Save Diagnostic Details
This example shows how to create a custom plugin to save diagnostic details. The plugin listens for
test failures and saves diagnostic information so you can access it after the framework completes the
tests.

Create Plugin

In a file in your working folder, create a class, myPlugin, that inherits from the
matlab.unittest.plugins.TestRunnerPlugin class. In the plugin class:

• Define a FailedTestData property on the plugin that stores information from failed tests.
• Override the default createTestMethodInstance method of TestRunnerPlugin to listen for

assertion, fatal assertion, and verification failures, and to record relevant information.
• Override the default runTestSuite method of TestRunnerPlugin to initialize the

FailedTestData property value. If you do not initialize value of the property, each time you run
the tests using the same test runner, failed test information is appended to the FailedTestData
property.

• Define a helper function, recordData, to save information about the test failure as a table.

The plugin saves information contained in the PluginData and QualificationEventData objects.
It also saves the type of failure and timestamp.

classdef DiagnosticRecorderPlugin < matlab.unittest.plugins.TestRunnerPlugin

 properties
 FailedTestData
 end

 methods (Access = protected)
 function runTestSuite(plugin, pluginData)
 plugin.FailedTestData = [];
 runTestSuite@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);
 end

 function testCase = createTestMethodInstance(plugin, pluginData)
 testCase = createTestMethodInstance@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin, pluginData);

 testName = pluginData.Name;
 testCase.addlistener('AssertionFailed', ...
 @(~,event)plugin.recordData(event,testName, 'Assertion'));
 testCase.addlistener('FatalAssertionFailed', ...
 @(~,event)plugin.recordData(event,testName, 'Fatal Assertion'));
 testCase.addlistener('VerificationFailed', ...
 @(~,event)plugin.recordData(event,testName, 'Verification'));
 end
 end

 methods (Access = private)
 function recordData(plugin,eventData,name,failureType)
 s.Name = {name};
 s.Type = {failureType};
 if isempty(eventData.TestDiagnosticResult)

 Write Plugin to Save Diagnostic Details

36-121

 s.TestDiagnostics = 'TestDiagnostics not provided';
 else
 s.TestDiagnostics = eventData.TestDiagnosticResult;
 end
 s.FrameworkDiagnostics = eventData.FrameworkDiagnosticResult;
 s.Stack = eventData.Stack;
 s.Timestamp = datetime;

 plugin.FailedTestData = [plugin.FailedTestData; struct2table(s)];
 end
 end
end

Create Test Class

In your working folder, create the file ExampleTest.m containing the following test class.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase)
 testCase.assertGreaterThan(5,10)
 end
 function testTwo(testCase)
 wrongAnswer = 'wrong';
 testCase.verifyEmpty(wrongAnswer,'Not Empty')
 testCase.verifyClass(wrongAnswer,'double','Not double')
 end

 function testThree(testCase)
 testCase.assertEqual(7*2,13,'Values not equal')
 end
 function testFour(testCase)
 testCase.fatalAssertEqual(3+2,6);
 end
 end
end

The fatal assertion failure in testFour causes the framework to halt and throw an error. In this
example, there are no subsequent tests. If there was a subsequent test, the framework would not run
it.

Add Plugin to Test Runner and Run Tests

At the command prompt, create a test suite from the ExampleTest class, and create a test runner.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner

suite = TestSuite.fromClass(?ExampleTest);
runner = TestRunner.withNoPlugins;

Create an instance of myPlugin and add it to the test runner. Run the tests.

p = DiagnosticRecorderPlugin;
runner.addPlugin(p)
result = runner.run(suite);

Error using ExampleTest/testFour (line 16)
Fatal assertion failed.

36 Unit Testing

36-122

With the failed fatal assertion, the framework throws an error, and the test runner does not return a
TestResult object. However, the DiagnosticRecorderPlugin stores information about the tests
preceding and including the test with the failed assertion.

Inspect Diagnostic Information

At the command prompt, view information about the failed tests. The information is saved in the
FailedTestData property of the plugin.

T = p.FailedTestData

T =

 5×6 table

 Name Type TestDiagnostics FrameworkDiagnostics Stack Timestamp
 _______________________ _________________ ______________________________ __ ____________ ____________________

 'ExampleTest/testOne' 'Assertion' 'TestDiagnostics not provided' 'assertGreaterThan failed.↵--> The value must be greater than the minimum value.↵↵Actual Value:↵ 5↵Minimum Value (Exclusive):↵ 10' [1x1 struct] 17-Jul-2017 12:41:18
 'ExampleTest/testTwo' 'Verification' 'Not Empty' 'verifyEmpty failed.↵--> The value must be empty.↵--> The value has a size of [1 5].↵↵Actual char:↵ wrong' [1x1 struct] 17-Jul-2017 12:41:18
 'ExampleTest/testTwo' 'Verification' 'Not double' 'verifyClass failed.↵--> The value's class is incorrect.↵ ↵ Actual Class:↵ char↵ Expected Class:↵ double↵↵Actual char:↵ wrong' [1x1 struct] 17-Jul-2017 12:41:18
 'ExampleTest/testThree' 'Assertion' 'Values not equal' 'assertEqual failed.↵--> The values are not equal using "isequaln".↵--> Failure table:↵ Actual Expected Error RelativeError ↵ ______ ________ _____ __________________↵ ↵ 14 13 1 0.0769230769230769↵↵Actual Value:↵ 14↵Expected Value:↵ 13' [1x1 struct] 17-Jul-2017 12:41:18
 'ExampleTest/testFour' 'Fatal Assertion' 'TestDiagnostics not provided' 'fatalAssertEqual failed.↵--> The values are not equal using "isequaln".↵--> Failure table:↵ Actual Expected Error RelativeError ↵ ______ ________ _____ __________________↵ ↵ 5 6 -1 -0.166666666666667↵↵Actual Value:↵ 5↵Expected Value:↵ 6' [1x1 struct] 17-Jul-2017 12:41:18

There are many options to archive or post-process this information. For example, you can save the
variable as a MAT-file or use writetable to write the table to various file types, such as .txt, .csv,
or .xls.

View the stack information for the third test failure

T.Stack(3)

ans =

 struct with fields:

 file: 'C:\Work\ExampleTest.m'
 name: 'ExampleTest.testTwo'
 line: 9

Display the diagnostics that the framework displayed for the fifth test failure.

celldisp(T.FrameworkDiagnostics(5))

ans{1} =

fatalAssertEqual failed.
--> The values are not equal using "isequaln".
--> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ __________________

 5 6 -1 -0.166666666666667

Actual Value:
 5

 Write Plugin to Save Diagnostic Details

36-123

Expected Value:
 6

See Also
matlab.unittest.plugins.TestRunnerPlugin | matlab.unittest.TestCase |
matlab.unittest.TestRunner | addlistener

Related Examples
• “Write Plugins to Extend TestRunner” on page 36-100
• “Create Custom Plugin” on page 36-103
• “Plugin to Generate Custom Test Output Format” on page 36-125

36 Unit Testing

36-124

Plugin to Generate Custom Test Output Format
This example shows how to create a plugin that uses a custom format to write finalized test results to
an output stream.

Create Plugin

In a file in your working folder, create a class, ExampleCustomPlugin, that inherits from the
matlab.unittest.plugins.TestRunnerPlugin class. In the plugin class:

• Define a Stream property on the plugin that stores the OutputStream instance. By default, the
plugin writes to standard output.

• Override the default runTestSuite method of TestRunnerPlugin to output text that indicates
the test runner is running a new test session. This information is especially useful if you are
writing to a single log file, as it allows you to differentiate the test runs.

• Override the default reportFinalizedResult method of TestRunnerPlugin to write finalized
test results to the output stream. You can modify the print method to output the test results in a
format that works for your test logs or continuous integration system.

classdef ExampleCustomPlugin < matlab.unittest.plugins.TestRunnerPlugin
 properties (Access=private)
 Stream
 end

 methods
 function p = ExampleCustomPlugin(stream)
 if ~nargin
 stream = matlab.unittest.plugins.ToStandardOutput;
 end
 validateattributes(stream,...
 {'matlab.unittest.plugins.OutputStream'},{})
 p.Stream = stream;
 end
 end

 methods (Access=protected)
 function runTestSuite(plugin,pluginData)
 plugin.Stream.print('\n--- NEW TEST SESSION at %s ---\n',...
 char(datetime))
 runTestSuite@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData);
 end

 function reportFinalizedResult(plugin,pluginData)
 thisResult = pluginData.TestResult;
 if thisResult.Passed
 status = 'PASSED';
 elseif thisResult.Failed
 status = 'FAILED';
 elseif thisResult.Incomplete
 status = 'SKIPPED';
 end
 plugin.Stream.print(...
 '### YPS Company - Test %s ### - %s in %f seconds.\n',...
 status,thisResult.Name,thisResult.Duration)

 Plugin to Generate Custom Test Output Format

36-125

 reportFinalizedResult@...
 matlab.unittest.plugins.TestRunnerPlugin(plugin,pluginData)
 end
 end
end

Create Test Class

In your working folder, create the file ExampleTest.m containing the following test class. In this test
class, two of the tests pass and the others result in a verification or assumption failure.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testOne(testCase)
 testCase.assertGreaterThan(5,1)
 end
 function testTwo(testCase)
 wrongAnswer = 'wrong';
 testCase.verifyEmpty(wrongAnswer,'Not Empty')
 testCase.verifyClass(wrongAnswer,'double','Not double')
 end
 function testThree(testCase)
 testCase.assumeEqual(7*2,13,'Values not equal')
 end
 function testFour(testCase)
 testCase.verifyEqual(3+2,5);
 end
 end
end

Add Plugin to Test Runner and Run Tests

At the command prompt, create a test suite from the ExampleTest class, and create a test runner.

import matlab.unittest.TestSuite
import matlab.unittest.TestRunner

suite = TestSuite.fromClass(?ExampleTest);
runner = TestRunner.withNoPlugins;

Create an instance of ExampleCustomPlugin and add it to the test runner. Run the tests.

import matlab.unittest.plugins.ToFile
fname = 'YPS_test_results.txt';
p = ExampleCustomPlugin(ToFile(fname));

runner.addPlugin(p)
result = runner.run(suite);

View the contents of the output file.

type(fname)

--- NEW TEST SESSION at 26-Jan-2015 10:41:24 ---
YPS Company - Test PASSED ### - ExampleTest/testOne in 0.123284 seconds.
YPS Company - Test FAILED ### - ExampleTest/testTwo in 0.090363 seconds.
YPS Company - Test SKIPPED ### - ExampleTest/testThree in 0.518044 seconds.
YPS Company - Test PASSED ### - ExampleTest/testFour in 0.020599 seconds.

36 Unit Testing

36-126

Rerun the Incomplete tests using the same test runner. View the contents of the output file.

suiteFiltered = suite([result.Incomplete]);
result2 = runner.run(suiteFiltered);

type(fname)

--- NEW TEST SESSION at 26-Jan-2015 10:41:24 ---
YPS Company - Test PASSED ### - ExampleTest/testOne in 0.123284 seconds.
YPS Company - Test FAILED ### - ExampleTest/testTwo in 0.090363 seconds.
YPS Company - Test SKIPPED ### - ExampleTest/testThree in 0.518044 seconds.
YPS Company - Test PASSED ### - ExampleTest/testFour in 0.020599 seconds.

--- NEW TEST SESSION at 26-Jan-2015 10:41:58 ---
YPS Company - Test SKIPPED ### - ExampleTest/testThree in 0.007892 seconds.

See Also
matlab.unittest.plugins.TestRunnerPlugin | matlab.unittest.plugins.OutputStream
| ToFile | ToStandardOutput

Related Examples
• “Write Plugins to Extend TestRunner” on page 36-100
• “Write Plugin to Save Diagnostic Details” on page 36-121

 Plugin to Generate Custom Test Output Format

36-127

Analyze Test Case Results

This example shows how to analyze the information returned by a test runner created from the
SolverTest test case.

Create Quadratic Solver Function

Create the following function that solves roots of the quadratic equation in a file,
quadraticSolver.m, in your working folder.

type quadraticSolver.m

function roots = quadraticSolver(a,b,c)
% quadraticSolver returns solutions to the
% quadratic equation a*x^2 + b*x + c = 0.

if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')
 error('quadraticSolver:InputMustBeNumeric', ...
 'Coefficients must be numeric.');
end

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);
roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

end

Create Test for Quadratic Solver Function

Create the following test class in a file, SolverTest.m, in your working folder.

type SolverTest.m

classdef SolverTest < matlab.unittest.TestCase
 methods(Test)
 function realSolution(testCase)
 actSolution = quadraticSolver(1,-3,2);
 expSolution = [2,1];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function imaginarySolution(testCase)
 actSolution = quadraticSolver(1,2,10);
 expSolution = [-1+3i, -1-3i];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function nonnumericInput(testCase)
 testCase.verifyError(@()quadraticSolver(1,'-3',2), ...
 'quadraticSolver:InputMustBeNumeric')
 end
 end
end

Run SolverTest Test Case

Create a test suite, quadTests.

quadTests = matlab.unittest.TestSuite.fromClass(?SolverTest);
result = run(quadTests);

36 Unit Testing

36-128

Running SolverTest
...
Done SolverTest

All tests passed.

Explore Output Argument, result

The output argument, result, is a matlab.unittest.TestResult object. It contains information
of the two tests in SolverTest.

whos result

 Name Size Bytes Class Attributes

 result 1x3 7613 matlab.unittest.TestResult

Display Information for One Test

To see the information for one value, type:

result(1)

ans =
 TestResult with properties:

 Name: 'SolverTest/realSolution'
 Passed: 1
 Failed: 0
 Incomplete: 0
 Duration: 0.0065
 Details: [1×1 struct]

Totals:
 1 Passed, 0 Failed, 0 Incomplete.
 0.0065241 seconds testing time.

Create Table of Test Results

To access functionality available to tables, create one from the TestResult object.

rt = table(result)

rt=3×6 table
 Name Passed Failed Incomplete Duration Details
 ________________________________ ______ ______ __________ _________ ____________

 {'SolverTest/realSolution' } true false false 0.0065241 {1×1 struct}
 {'SolverTest/imaginarySolution'} true false false 0.0036673 {1×1 struct}
 {'SolverTest/nonnumericInput' } true false false 0.0074686 {1×1 struct}

Sort the test results by duration.

sortrows(rt,'Duration')

ans=3×6 table
 Name Passed Failed Incomplete Duration Details

 Analyze Test Case Results

36-129

 ________________________________ ______ ______ __________ _________ ____________

 {'SolverTest/imaginarySolution'} true false false 0.0036673 {1×1 struct}
 {'SolverTest/realSolution' } true false false 0.0065241 {1×1 struct}
 {'SolverTest/nonnumericInput' } true false false 0.0074686 {1×1 struct}

Export test results to a CSV file.

writetable(rt,'myTestResults.csv','QuoteStrings',true)

See Also

Related Examples
• “Write Simple Test Case Using Classes” on page 36-39

36 Unit Testing

36-130

Analyze Failed Test Results
This example shows how to identify and rerun failed tests.

Create an Incorrect Test Method

Using the SolverTest test case, add a method, testBadRealSolution. This test, based on
testRealSolution, calls the quadraticSolver function with inputs 1,3,2, but tests the results
against an incorrect solution, [2,1].

function testBadRealSolution(testCase)
 actSolution = quadraticSolver(1,3,2);
 expSolution = [2,1];
 testCase.verifyEqual(actSolution,expSolution)
end

Run New Test Suite

Save the updated SolverTest class definition and rerun the tests.

quadTests = matlab.unittest.TestSuite.fromClass(?SolverTest);
result1 = run(quadTests);

Running SolverTest
..
==
Verification failed in SolverTest/testBadRealSolution.

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".
 --> Failure table:
 Index Actual Expected Error RelativeError
 _____ ______ ________ _____ _____________

 1 -1 2 -3 -1.5
 2 -2 1 -3 -3

 Actual Value:
 -1 -2
 Expected Value:
 2 1

 Stack Information:

 In C:\work\SolverTest.m (SolverTest.testBadRealSolution) at 19
==
.
Done SolverTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 SolverTest/testBadRealSolution X Failed by verification.

Analyze Results

The output tells you SolverTest/testBadRealSolution failed. From the Framework
Diagnostic you see the following:

 Actual Value:
 -1 -2

 Analyze Failed Test Results

36-131

 Expected Value:
 2 1

At this point, you must decide if the error is in quadraticSolver or in your value for expSolution.

Correct Error

Edit the value of expSolution in testBadRealSolution:

expSolution = [-1 -2];

Rerun Tests

Save SolverTest and rerun only the failed tests.

failedTests = quadTests([result1.Failed]);
result2 = run(failedTests)

Running SolverTest
.
Done SolverTest

result2 =

 TestResult with properties:

 Name: 'SolverTest/testBadRealSolution'
 Passed: 1
 Failed: 0
 Incomplete: 0
 Duration: 0.0108
 Details: [1x1 struct]

Totals:
 1 Passed, 0 Failed, 0 Incomplete.
 0.010813 seconds testing time.

Alternatively, you can rerun failed tests using the (rerun) link in the test results.

See Also

More About
• “Rerun Failed Tests” on page 36-133

36 Unit Testing

36-132

Rerun Failed Tests
If a test failure is caused by incorrect or incomplete code, it is useful to rerun failed tests quickly and
conveniently. When you run a test suite, the test results include information about the test suite and
the test runner. If there are test failures in the results, when MATLAB displays the test results there
is a link to rerun the failed tests.

Totals:
 1 Passed, 1 Failed (rerun), 0 Incomplete.
 0.25382 seconds testing time.

This link allows you to modify your test code or your code under test and quickly rerun failed tests.
However, if you make structural changes to your test class, using the rerun link does not pick up the
changes. Structural changes include adding, deleting, or renaming a test method, and modifying a
test parameter property and its value. In this case, recreate the entire test suite to pick up the
changes.

Create the following function in your current working folder. The function is meant to compute the
square and square root. However, in this example, the function computes the cube of the value
instead of the square.

function [x,y] = exampleFunction(n)
 validateattributes(n,{'numeric'},{'scalar'})

 x = n^3; % square (incorrect code, should be n^2)
 y = sqrt(n); % square root
end

Create the following test in a file exampleTest.m.

function tests = exampleTest
 tests = functiontests(localfunctions);
end

function testSquare(testCase)
 [sqrVal,sqrRootVal] = exampleFunction(3);
 verifyEqual(testCase,sqrVal,9);
end

function testSquareRoot(testCase)
 [sqrVal,sqrRootVal] = exampleFunction(100);
 verifyEqual(testCase,sqrRootVal,10);
end

Create a test suite and run the tests. The testSquare test fails because the implementation of
exampleFunction is incorrect.

suite = testsuite('ExampleTest.m');
results = run(suite)

Running exampleTest

==
Verification failed in exampleTest/testSquare.

 Framework Diagnostic:

 verifyEqual failed.
 --> The values are not equal using "isequaln".

 Rerun Failed Tests

36-133

 --> Failure table:
 Actual Expected Error RelativeError
 ______ ________ _____ _____________

 27 9 18 2

 Actual Value:
 27
 Expected Value:
 9

 Stack Information:

 In C:\Work\exampleTest.m (testSquare) at 7
==
..
Done exampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 exampleTest/testSquare X Failed by verification.

results =

 1×2 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 1 Passed, 1 Failed (rerun), 0 Incomplete.
 0.24851 seconds testing time.

Update the code in exampleFunction to fix the coding error.

function [x,y] = exampleFunction(n)
 validateattributes(n,{'numeric'},{'scalar'})

 x = n^2; % square
 y = sqrt(n); % square root
end

Click the (rerun) link in the command window to rerun the failed test. You cannot rerun failed tests
if the variable that stores the test results is overwritten. If the link is no longer in the Command
Window, you can type results at the prompt to view it.

Running exampleTest
.
Done exampleTest

ans =

 TestResult with properties:

 Name: 'exampleTest/testSquare'
 Passed: 1
 Failed: 0
 Incomplete: 0
 Duration: 0.0034

36 Unit Testing

36-134

 Details: [1×1 struct]

Totals:
 1 Passed, 0 Failed, 0 Incomplete.
 0.0033903 seconds testing time.

MATLAB stores the TestResult array associated with tests that you rerun in the ans variable.
results is a 1x2 array that contains all the tests in exampleTest.m, and ans is a 1x1 array that
contains the rerun results from the one failed test.

whos

 Name Size Bytes Class Attributes

 ans 1x1 664 matlab.unittest.TestResult
 results 1x2 1344 matlab.unittest.TestResult
 suite 1x2 96 matlab.unittest.Test

To programmatically rerun failed tests, use the Failed property on the TestResult object to create
and run a filtered test suite.

failedTests = suite([results.Failed]);
result2 = run(failedTests);

Running exampleTest
.
Done exampleTest

To ensure that all passing tests continue to pass, rerun the full test suite.

See Also

More About
• “Analyze Failed Test Results” on page 36-131

 Rerun Failed Tests

36-135

Dynamically Filtered Tests
In this section...
“Test Methods” on page 36-136
“Method Setup and Teardown Code” on page 36-138
“Class Setup and Teardown Code” on page 36-139

Assumption failures produce filtered tests. In the matlab.unittest.TestResult class, such a test
is marked Incomplete.

Since filtering test content through the use of assumptions does not produce test failures, it has the
possibility of creating dead test code. Avoiding this requires monitoring of filtered tests.

Test Methods
If an assumption failure is encountered inside of a TestCase method with the Test attribute, the
entire method is marked as filtered, but MATLAB runs the subsequent Test methods.

The following class contains an assumption failure in one of the methods in the Test block.

classdef ExampleTest < matlab.unittest.TestCase
 methods(Test)
 function testA(testCase)
 testCase.verifyTrue(true)
 end
 function testB(testCase)
 testCase.assumeEqual(0,1)
 % remaining test code is not exercised
 end
 function testC(testCase)
 testCase.verifyFalse(true)
 end
 end
end

Since the testB method contains an assumption failure, when you run the test, the testing
framework filters that test and marks it as incomplete. After the assumption failure in testB, the
testing framework proceeds and executes testC, which contains a verification failure.

ts = matlab.unittest.TestSuite.fromClass(?ExampleTest);
res = ts.run;

Running ExampleTest
.
==
ExampleTest/testB was filtered.
Details
==
.
==
Verification failed in ExampleTest/testC.

 Framework Diagnostic:

 verifyFalse failed.
 --> The value must evaluate to "false".

36 Unit Testing

36-136

 Actual logical:
 1

 Stack Information:

 In C:\work\ExampleTest.m (ExampleTest.testC) at 11
==
.
Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testB X Filtered by assumption.
 --
 ExampleTest/testC X Failed by verification.

If you examine the TestResult, you notice that there is a passed test, a failed test, and a test that
did not complete due to an assumption failure.

res

res =

 1×3 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 1 Passed, 1 Failed, 1 Incomplete.
 2.4807 seconds testing time.

The testing framework keeps track of incomplete tests so that you can monitor filtered tests for
nonexercised test code. You can see information about these tests within the TestResult object.

res([res.Incomplete])

ans =

 TestResult with properties:

 Name: 'ExampleTest/testB'
 Passed: 0
 Failed: 0
 Incomplete: 1
 Duration: 2.2578
 Details: [1×1 struct]

Totals:
 0 Passed, 0 Failed, 1 Incomplete.
 2.2578 seconds testing time.

To create a modified test suite from only the filtered tests, select incomplete tests from the original
test suite.

 Dynamically Filtered Tests

36-137

tsFiltered = ts([res.Incomplete])

tsFiltered =

 Test with properties:
 Name: 'ExampleTest/testB'
 ProcedureName: 'testB'
 TestClass: "ExampleTest"
 BaseFolder: 'C:\work'
 Parameterization: [0×0 matlab.unittest.parameters.EmptyParameter]
 SharedTestFixtures: [0×0 matlab.unittest.fixtures.EmptyFixture]
 Tags: {1×0 cell}

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Method Setup and Teardown Code
If an assumption failure is encountered inside a TestCase method with the TestMethodSetup
attribute, MATLAB filters the method which was to be run for that instance. If a test uses
assumptions from within the TestMethodSetup block, consider instead using the assumptions in the
TestClassSetup block, which likewise filters all Test methods in the class but is less verbose and
more efficient.

One of the methods in the following TestMethodSetup block within ExampleTest.m contains an
assumption failure.

 methods(TestMethodSetup)
 function setupMethod1(testCase)
 testCase.assumeEqual(1,0)
 % remaining test code is not exercised
 end
 function setupMethod2(testCase)
 disp('* Running setupMethod2 *')
 testCase.assertEqual(1,1)
 end
 end

Updated ExampleTest Class Definition

classdef ExampleTest < matlab.unittest.TestCase
 methods(TestMethodSetup)
 function setupMethod1(testCase)
 testCase.assumeEqual(1,0)
 % remaining test code is not exercised
 end
 function setupMethod2(testCase)
 disp('* Running setupMethod2 *')
 testCase.assertEqual(1,1)
 end
 end

 methods(Test)
 function testA(testCase)
 testCase.verifyTrue(true)
 end
 function testB(testCase)

36 Unit Testing

36-138

 testCase.assumeEqual(0,1)
 % remaining test code is not exercised
 end
 function testC(testCase)
 testCase.verifyFalse(true)
 end
 end
end

When you run the test, you see that the framework completes executes all the methods in the
TestMethodSetup block that do not contain the assumption failure, and it marks as incomplete all
methods in the Test block.

ts = matlab.unittest.TestSuite.fromClass(?ExampleTest);
res = ts.run;

Running ExampleTest

==
ExampleTest/testA was filtered.
 Details
==
* Running setupMethod2 *
.
==
ExampleTest/testB was filtered.
 Details
==
* Running setupMethod2 *
.
==
ExampleTest/testC was filtered.
 Details
==
* Running setupMethod2 *
.
Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testA X Filtered by assumption.
 --
 ExampleTest/testB X Filtered by assumption.
 --
 ExampleTest/testC X Filtered by assumption.

The Test methods did not change but all 3 are filtered due to an assumption failure in the
TestMethodSetup block. The testing framework executes methods in the TestMethodSetup block
without assumption failures, such as setupMethod2. As expected, the testing framework executes
setupMethod2 3 times, once before each Test method.

Class Setup and Teardown Code
If an assumption failure is encountered inside of a TestCase method with the TestClassSetup or
TestClassTeardown attribute, MATLAB filters the entire TestCase class.

The methods in the following TestClassSetup block within ExampleTest.m contains an
assumption failure.

 methods(TestClassSetup)
 function setupClass(testCase)
 testCase.assumeEqual(1,0)
 % remaining test code is not exercised

 Dynamically Filtered Tests

36-139

 end
 end

Updated ExampleTest Class Definition

classdef ExampleTest < matlab.unittest.TestCase
 methods(TestClassSetup)
 function setupClass(testCase)
 testCase.assumeEqual(1,0)
 % remaining test code is not exercised
 end
 end

 methods(TestMethodSetup)
 function setupMethod1(testCase)
 testCase.assumeEqual(1,0)
 % remaining test code is not exercised
 end
 function setupMethod2(testCase)
 disp('* Running setupMethod2 *')
 testCase.assertEqual(1,1)
 end
 end

 methods(Test)
 function testA(testCase)
 testCase.verifyTrue(true)
 end
 function testB(testCase)
 testCase.assumeEqual(0,1)
 % remaining test code is not exercised
 end
 function testC(testCase)
 testCase.verifyFalse(true)
 end
 end
end

When you run the test, you see that the framework does not execute any of the methods in the
TestMethodSetup or Test.

ts = matlab.unittest.TestSuite.fromClass(?ExampleTest);
res = ts.run;

Running ExampleTest

==
All tests in ExampleTest were filtered.
 Details
==

Done ExampleTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 ExampleTest/testA X Filtered by assumption.
 --
 ExampleTest/testB X Filtered by assumption.

36 Unit Testing

36-140

 --
 ExampleTest/testC X Filtered by assumption.

The Test and TestMethodSetup methods did not change but everything is filtered due to an
assumption failure in the TestClassSetup block.

See Also
matlab.unittest.qualifications.Assumable | matlab.unittest.TestCase |
matlab.unittest.TestResult

 Dynamically Filtered Tests

36-141

Create Custom Constraint
This example shows how to create a custom constraint that determines if a given value has the same
size as an expected value.

In a file in your current folder, create a class named HasSameSizeAs that derives from the
matlab.unittest.constraints.Constraint class. The class constructor accepts an expected
value whose size is compared to the size of an actual value. The expected value is stored in the
ValueWithExpectedSize property. The recommended practice is to make Constraint
implementations immutable, so set the property SetAccess attribute to immutable.

classdef HasSameSizeAs < matlab.unittest.constraints.Constraint

 properties(SetAccess = immutable)
 ValueWithExpectedSize
 end

 methods
 function constraint = HasSameSizeAs(value)
 constraint.ValueWithExpectedSize = value;
 end
 end

end

In a methods block with private access, define a helper method sizeMatchesExpected that
determines if the actual and expected values have the same size. This method is invoked by other
constraint methods.

 methods(Access = private)
 function bool = sizeMatchesExpected(constraint,actual)
 bool = isequal(size(actual),size(constraint.ValueWithExpectedSize));
 end
 end

Classes that derive from the matlab.unittest.constraints.Constraint class must override
the satisfiedBy method. This method must contain the comparison logic and return a logical value.
Within a methods block, implement satisfiedBy by invoking the helper method. If the actual size
and the expected size are equal, the method returns true.

 methods
 function bool = satisfiedBy(constraint,actual)
 bool = constraint.sizeMatchesExpected(actual);
 end
 end

Classes that derive from the matlab.unittest.constraints.Constraint class must also
override the getDiagnosticFor method. This method must evaluate the actual value against the
constraint and provide a Diagnostic object. In this example, getDiagnosticFor returns a
StringDiagnostic object.

 methods
 function diag = getDiagnosticFor(constraint,actual)
 import matlab.unittest.diagnostics.StringDiagnostic
 if constraint.sizeMatchesExpected(actual)
 diag = StringDiagnostic('HasSameSizeAs passed.');

36 Unit Testing

36-142

 else
 diag = StringDiagnostic(sprintf(...
 'HasSameSizeAs failed.\nActual Size: [%s]\nExpectedSize: [%s]',...
 int2str(size(actual)),...
 int2str(size(constraint.ValueWithExpectedSize))));
 end
 end
 end

HasSameSizeAs Class Definition

This is the complete code for the HasSameSizeAs class.
classdef HasSameSizeAs < matlab.unittest.constraints.Constraint

 properties(SetAccess = immutable)
 ValueWithExpectedSize
 end

 methods
 function constraint = HasSameSizeAs(value)
 constraint.ValueWithExpectedSize = value;
 end

 function bool = satisfiedBy(constraint,actual)
 bool = constraint.sizeMatchesExpected(actual);
 end

 function diag = getDiagnosticFor(constraint,actual)
 import matlab.unittest.diagnostics.StringDiagnostic
 if constraint.sizeMatchesExpected(actual)
 diag = StringDiagnostic('HasSameSizeAs passed.');
 else
 diag = StringDiagnostic(sprintf(...
 'HasSameSizeAs failed.\nActual Size: [%s]\nExpectedSize: [%s]',...
 int2str(size(actual)),...
 int2str(size(constraint.ValueWithExpectedSize))));
 end
 end
 end

 methods(Access = private)
 function bool = sizeMatchesExpected(constraint,actual)
 bool = isequal(size(actual),size(constraint.ValueWithExpectedSize));
 end
 end

end

Test for Expected Size

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase
testCase = TestCase.forInteractiveUse;

Test a passing case.

testCase.verifyThat(zeros(5),HasSameSizeAs(repmat(1,5)))

Verification passed.

Test a failing case.

testCase.verifyThat(zeros(5),HasSameSizeAs(ones(1,5)))

 Create Custom Constraint

36-143

Verification failed.

 Framework Diagnostic:

 HasSameSizeAs failed.
 Actual Size: [5 5]
 ExpectedSize: [1 5]

See Also
matlab.unittest.constraints.Constraint | satisfiedBy | getDiagnosticFor |
matlab.unittest.diagnostics.StringDiagnostic |
matlab.unittest.diagnostics.Diagnostic

Related Examples
• “Create Custom Boolean Constraint” on page 36-145

36 Unit Testing

36-144

Create Custom Boolean Constraint
This example shows how to create a custom Boolean constraint that determines if a given value has
the same size as an expected value.

In a file in your current folder, create a class named HasSameSizeAs that derives from the
matlab.unittest.constraints.BooleanConstraint class. The class constructor accepts an
expected value whose size is compared to the size of an actual value. The expected value is stored in
the ValueWithExpectedSize property. The recommended practice is to make
BooleanConstraint implementations immutable, so set the property SetAccess attribute to
immutable.
classdef HasSameSizeAs < matlab.unittest.constraints.BooleanConstraint

 properties(SetAccess = immutable)
 ValueWithExpectedSize
 end

 methods
 function constraint = HasSameSizeAs(value)
 constraint.ValueWithExpectedSize = value;
 end
 end

end

In a methods block with private access, define a helper method sizeMatchesExpected that
determines if the actual and expected values have the same size. This method is invoked by other
constraint methods.

 methods(Access = private)
 function bool = sizeMatchesExpected(constraint,actual)
 bool = isequal(size(actual),size(constraint.ValueWithExpectedSize));
 end
 end

The matlab.unittest.constraints.BooleanConstraint class is a subclass of the
matlab.unittest.constraints.Constraint class. Therefore, classes that derive from the
BooleanConstraint class must override the methods of the Constraint class. Within a methods
block, override the satisfiedBy and getDiagnosticFor methods. The satisfiedBy
implementation must contain the comparison logic and return a logical value. The
getDiagnosticFor implementation must evaluate the actual value against the constraint and
provide a Diagnostic object. In this example, getDiagnosticFor returns a StringDiagnostic
object.

 methods
 function bool = satisfiedBy(constraint,actual)
 bool = constraint.sizeMatchesExpected(actual);
 end

 function diag = getDiagnosticFor(constraint,actual)
 import matlab.unittest.diagnostics.StringDiagnostic
 if constraint.sizeMatchesExpected(actual)
 diag = StringDiagnostic('HasSameSizeAs passed.');
 else
 diag = StringDiagnostic(sprintf(...
 'HasSameSizeAs failed.\nActual Size: [%s]\nExpectedSize: [%s]',...
 int2str(size(actual)),...
 int2str(size(constraint.ValueWithExpectedSize))));
 end

 Create Custom Boolean Constraint

36-145

 end
 end

Classes that derive from BooleanConstraint must implement the getNegativeDiagnosticFor
method. This method must provide a Diagnostic object when the constraint is negated.

Override getNegativeDiagnosticFor in a methods block with protected access.
 methods(Access = protected)
 function diag = getNegativeDiagnosticFor(constraint,actual)
 import matlab.unittest.diagnostics.StringDiagnostic
 if constraint.sizeMatchesExpected(actual)
 diag = StringDiagnostic(sprintf(...
 ['Negated HasSameSizeAs failed.\nSize [%s] of '...
 'Actual Value and Expected Value were the same '...
 'but should not have been.'],int2str(size(actual))));
 else
 diag = StringDiagnostic('Negated HasSameSizeAs passed.');
 end
 end
 end

In exchange for implementing the required methods, the constraint inherits the appropriate and, or,
and not overloads, so it can be combined with other BooleanConstraint objects or negated.

HasSameSizeAs Class Definition

This is the complete code for the HasSameSizeAs class.
classdef HasSameSizeAs < matlab.unittest.constraints.BooleanConstraint

 properties(SetAccess = immutable)
 ValueWithExpectedSize
 end

 methods
 function constraint = HasSameSizeAs(value)
 constraint.ValueWithExpectedSize = value;
 end

 function bool = satisfiedBy(constraint,actual)
 bool = constraint.sizeMatchesExpected(actual);
 end

 function diag = getDiagnosticFor(constraint,actual)
 import matlab.unittest.diagnostics.StringDiagnostic

 if constraint.sizeMatchesExpected(actual)
 diag = StringDiagnostic('HasSameSizeAs passed.');
 else
 diag = StringDiagnostic(sprintf(...
 'HasSameSizeAs failed.\nActual Size: [%s]\nExpectedSize: [%s]',...
 int2str(size(actual)),...
 int2str(size(constraint.ValueWithExpectedSize))));
 end
 end
 end

 methods(Access = protected)
 function diag = getNegativeDiagnosticFor(constraint,actual)
 import matlab.unittest.diagnostics.StringDiagnostic
 if constraint.sizeMatchesExpected(actual)
 diag = StringDiagnostic(sprintf(...
 ['Negated HasSameSizeAs failed.\nSize [%s] of '...
 'Actual Value and Expected Value were the same '...
 'but should not have been.'],int2str(size(actual))));
 else
 diag = StringDiagnostic('Negated HasSameSizeAs passed.');
 end
 end

36 Unit Testing

36-146

 end

 methods(Access = private)
 function bool = sizeMatchesExpected(constraint,actual)
 bool = isequal(size(actual),size(constraint.ValueWithExpectedSize));
 end
 end

end

Test for Expected Size

At the command prompt, create a test case for interactive testing.

import matlab.unittest.TestCase
import matlab.unittest.constraints.HasLength
testCase = TestCase.forInteractiveUse;

Test a passing case. The test passes because one of the or conditions, HasLength(5), is true.

testCase.verifyThat(zeros(5),HasLength(5) | ~HasSameSizeAs(repmat(1,5)))

Verification passed.

Test a failing case. The test fails because one of the and conditions,
~HasSameSizeAs(repmat(1,5)), is false.

testCase.verifyThat(zeros(5),HasLength(5) & ~HasSameSizeAs(repmat(1,5)))

Verification failed.

 Framework Diagnostic:

 AndConstraint failed.
 --> + [First Condition]:
 | HasLength passed.
 |
 | Actual Value:
 | 0 0 0 0 0
 | 0 0 0 0 0
 | 0 0 0 0 0
 | 0 0 0 0 0
 | 0 0 0 0 0
 | Expected Length:
 | 5
 --> AND
 + [Second Condition]:
 | Negated HasSameSizeAs failed.
 | Size [5 5] of Actual Value and Expected Value were the same but should not have been.
 -+---------------------

See Also
matlab.unittest.constraints.BooleanConstraint |
matlab.unittest.constraints.Constraint | satisfiedBy | getDiagnosticFor |
getNegativeDiagnosticFor | matlab.unittest.diagnostics.StringDiagnostic |
matlab.unittest.diagnostics.Diagnostic

 Create Custom Boolean Constraint

36-147

Related Examples
• “Create Custom Constraint” on page 36-142

36 Unit Testing

36-148

Overview of App Testing Framework
Use the MATLAB app testing framework to test App Designer apps, or apps built programmatically
using the uifigure function. The app testing framework lets you author a test class that
programmatically performs a gesture on a UI component, such as pressing a button or dragging a
slider, and verifies the behavior of the app.

App Testing
Test Creation – Class-based tests can use the app testing framework by subclassing
matlab.uitest.TestCase. Because matlab.uitest.TestCase is a subclass of
matlab.unittest.TestCase, your test has access to the features of the unit testing framework,
such as qualifications, fixtures, and plugins. To experiment with the app testing framework at the
command prompt, create a test case instance using
matlab.uitest.TestCase.forInteractiveUse.

Test Content – Typically, a test of an app programmatically interacts with app components using a
gesture method of matlab.uitest.TestCase, such as press or type, and then performs a
qualification on the result. For example, a test might press one check box and verify that the other
check boxes are disabled. Or it might type a number into a text box and verify the app correctly
computes a result. These types of tests require understanding of the properties of the app being
tested. To verify a button press, you must know where in the app object MATLAB stores the status of
a button. To verify the result of a computation, you must know how to access the result within the
app.

Test Clean Up – It is a best practice to include a teardown action to delete the app after the test.
Typically, the test method adds this action using the addTeardown method of
matlab.unittest.TestCase.

App Locking – When an app test creates a figure, the framework locks the figure immediately to
prevent external interactions with the components. The app testing framework does not lock UI
components if you create an instance of matlab.uitest.TestCase.forInteractiveUse for
experimentation at the command prompt.

To unlock a figure for debugging purposes, use the matlab.uitest.unlock function.

Dismissing Alerts – In some cases, an app displays modal alert dialog boxes, which make it
impossible to interact with app components. Accessing the figure behind a dialog box might require
you to close the dialog box. To programmatically close an alert dialog box in the figure window, use
the dismissAlertDialog method.

Gesture Support of UI Components
The gesture methods of matlab.uitest.TestCase support various UI components.

Component Typical
Creation
Function

matlab.uitest.TestCase Gesture Method
press choose drag type hover chooseCon

textMenu
Axes axes ✔ ✔ ✔ ✔

Button uibutton ✔ ✔

 Overview of App Testing Framework

36-149

Button
Group

uibuttong
roup

 ✔

Check Box uicheckbo
x

✔ ✔ ✔

Date Picker uidatepic
ker

 ✔ ✔

Discrete
Knob

uiknob ✔ ✔

Drop Down uidropdow
n

 ✔ ✔ ✔

Edit Field
(Numeric,
Text)

uieditfie
ld

 ✔ ✔

Image uiimage ✔ ✔

Knob uiknob ✔ ✔ ✔

List Box uilistbox ✔ ✔

Menu uimenu ✔
Panel uipanel ✔ ✔ ✔

Polar Axes polaraxes ✔ ✔ ✔

Push Tool uipushtoo
l

✔

Radio
Button

uiradiobu
tton

✔ ✔ ✔

Slider uislider ✔ ✔ ✔

Spinner uispinner ✔ ✔ ✔

State
Button

uibutton ✔ ✔ ✔

Switch
(Rocker,
Slider,
Toggle)

uiswitch ✔ ✔ ✔

Tab uitab ✔
Tab Group uitabgrou

p
 ✔

Table uitable ✔ ✔ ✔

Text Area uitextare
a

 ✔ ✔

Toggle
Button

uitoggleb
utton

✔ ✔ ✔

Toggle Tool uitogglet
ool

✔ ✔

36 Unit Testing

36-150

Tree Node uitreenod
e

 ✔ ✔

UI Axes uiaxes ✔ ✔ ✔ ✔

UI Figure uifigure ✔ ✔ ✔ ✔

Write a Test for an App
This example shows how to write a test for an app that provides options to change the sample size
and colormap of a plot. To programmatically interact with the app and qualify the results, use the app
testing framework combined with the unit testing framework.

At the command prompt, make the app accessible by adding the folder that includes the app to the
MATLAB search path.

addpath(fullfile(matlabroot,'examples','matlab','main'))

To explore the properties of the app prior to testing, create an instance of the app at the command
prompt.

app = ConfigurePlotAppExample;

This step is not necessary for the tests, but it is helpful to explore the properties used by the app
tests. For example, use app.UpdatePlotButton to access the Update Plot button within the app
object.

Create a test class that inherits from matlab.uitest.TestCase.

classdef testConfigurePlotAppExample < matlab.uitest.TestCase

 methods (Test)

 end

end

Create a test method test_SampleSize to test the sample size. The test method modifies the
sample size, updates the plot, and verifies that the surface uses the specified sample size. The call to
addTeardown deletes the app after the test is complete.

classdef testConfigurePlotAppExample < matlab.uitest.TestCase

 methods (Test)
 function test_SampleSize(testCase)
 app = ConfigurePlotAppExample;
 testCase.addTeardown(@delete,app);

 testCase.type(app.SampleSizeEditField,12);
 testCase.press(app.UpdatePlotButton);

 ax = app.UIAxes;
 surfaceObj = ax.Children;
 testCase.verifySize(surfaceObj.ZData,[12 12]);
 end
 end

 Overview of App Testing Framework

36-151

end

Create a second test method test_Colormap to test the colormap. The test method selects a
colormap, updates the plot, and verifies that the plot uses the specified colormap. The full code is
now as follows.

classdef testConfigurePlotAppExample < matlab.uitest.TestCase

 methods (Test)
 function test_SampleSize(testCase)
 app = ConfigurePlotAppExample;
 testCase.addTeardown(@delete,app);

 testCase.type(app.SampleSizeEditField,12);
 testCase.press(app.UpdatePlotButton);

 ax = app.UIAxes;
 surfaceObj = ax.Children;
 testCase.verifySize(surfaceObj.ZData,[12 12]);
 end

 function test_Colormap(testCase)
 app = ConfigurePlotAppExample;
 testCase.addTeardown(@delete,app);

 testCase.choose(app.ColormapDropDown,'Winter');
 testCase.press(app.UpdatePlotButton);

 expectedMap = winter;
 ax = app.UIAxes;
 testCase.verifyEqual(ax.Colormap,expectedMap);
 end
 end

end

At the command prompt, run the tests.

results = runtests('testConfigurePlotAppExample')

Running testConfigurePlotAppExample
..
Done testConfigurePlotAppExample

results =

 1×2 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

36 Unit Testing

36-152

Totals:
 2 Passed, 0 Failed, 0 Incomplete.
 5.0835 seconds testing time.

See Also
matlab.uitest.TestCase

More About
• “Write Tests for an App” on page 36-154
• “Write Tests That Use App Testing and Mocking Frameworks” on page 36-158
• “App Building Components”

 Overview of App Testing Framework

36-153

Write Tests for an App
This example shows how to write tests for an App Designer app. To interact with the app
programmatically and qualify the results, use the app testing framework and the unit testing
framework.

At the command prompt, make the app accessible by adding the folder that includes the app to the
MATLAB search path.

addpath(fullfile(matlabroot,'examples','matlab','main'))

To explore the properties of this app prior to testing, create an instance of the app at the command
prompt.

app = PatientsDisplay;

This step is not necessary for the tests, but it is helpful to explore the properties used by the app
tests. For example, use app.BloodPressureSwitch to access the Blood Pressure switch within
the app object.

Create a test class that inherits from matlab.uitest.TestCase. To test the tab switching
functionality, create a test method test_tab. The test method chooses the Data tab and then verifies
that the selected tab has the correct title. The TestMethodSetup method creates an app for each
test and deletes it after the test is complete.
classdef TestPatientsDisplay < matlab.uitest.TestCase
 properties
 App
 end

 methods (TestMethodSetup)
 function launchApp(testCase)
 testCase.App = PatientsDisplay;
 testCase.addTeardown(@delete,testCase.App);
 end
 end

 methods (Test)
 function test_tab(testCase)
 % Choose Data Tab
 dataTab = testCase.App.DataTab;
 testCase.choose(dataTab)

 % Verify Data Tab is selected
 testCase.verifyEqual(testCase.App.TabGroup.SelectedTab.Title,'Data')
 end

 end
end

Create a test_plottingOptions method that tests various plotting options. The test method
presses the Histogram radio button and verifies that the x-label changed. Then, it changes the Bin
Width slider and verifies the number of bins.
classdef TestPatientsDisplay < matlab.uitest.TestCase
 properties
 App
 end

 methods (TestMethodSetup)
 function launchApp(testCase)
 testCase.App = PatientsDisplay;
 testCase.addTeardown(@delete,testCase.App);
 end
 end

 methods (Test)
 function test_plottingOptions(testCase)

36 Unit Testing

36-154

 % Press the histogram radio button
 testCase.press(testCase.App.HistogramButton)

 % Verify xlabel updated from 'Weight' to 'Systolic'
 testCase.verifyEqual(testCase.App.UIAxes.XLabel.String,'Systolic')

 % Change the Bin Width to 9
 testCase.choose(testCase.App.BinWidthSlider,9)

 % Verify the number of bins is now 4
 testCase.verifyEqual(testCase.App.UIAxes.Children.NumBins,4)
 end

 function test_tab(testCase) ...

 end
end

Create a test_bloodPressure method that tests blood pressure data and display. The test method
verifies the y-axis label and the values of the scatter points. Then it changes to Diastolic readings,
and verifies the label and data again.
classdef TestPatientsDisplay < matlab.uitest.TestCase
 properties
 App
 end

 methods (TestMethodSetup)
 function launchApp(testCase)
 testCase.App = PatientsDisplay;
 testCase.addTeardown(@delete,testCase.App);
 end
 end

 methods (Test)
 function test_bloodPressure(testCase)
 % Extract blood pressure data from app
 t = testCase.App.DataTab.Children.Data;
 t.Gender = categorical(t.Gender);
 allMales = t(t.Gender == 'Male',:);
 maleDiastolicData = allMales.Diastolic';
 maleSystolicData = allMales.Systolic';

 % Verify ylabel and that male Systolic data shows
 ax = testCase.App.UIAxes;
 testCase.verifyEqual(ax.YLabel.String,'Systolic')
 testCase.verifyEqual(ax.Children.YData,maleSystolicData)

 % Switch to 'Diastolic' reading
 testCase.choose(testCase.App.BloodPressureSwitch,'Diastolic')

 % Verify ylabel changed and male Diastolic data shows
 testCase.verifyEqual(ax.YLabel.String,'Diastolic')
 testCase.verifyEqual(ax.Children.YData,maleDiastolicData);
 end

 function test_plottingOptions(testCase) ...

 function test_tab(testCase) ...

 end
end

Create a test_gender method that tests gender data and display. The test method verifies the
number of male scatter points and then presses the check box to include female data. It verifies that
two data sets are plotted and the color of the female data is red. Finally, it clears the male data check
box and verifies the number of plotted data sets and scatter points. This test fails because there are
53 female scatter points instead of 50. To take a screenshot when the test fails, use a
ScreenshotDiagnostic with the onFailure method.
classdef TestPatientsDisplay < matlab.uitest.TestCase
 properties
 App
 end

 methods (TestMethodSetup)

 Write Tests for an App

36-155

 function launchApp(testCase)
 testCase.App = PatientsDisplay;
 testCase.addTeardown(@delete,testCase.App);
 end
 end

 methods (Test)
 function test_gender(testCase)
 import matlab.unittest.diagnostics.ScreenshotDiagnostic
 testCase.onFailure(ScreenshotDiagnostic);

 % Verify 47 male scatter points
 ax = testCase.App.UIAxes;
 testCase.verifyNumElements(ax.Children.XData,47);

 % Enable the checkbox for female data
 testCase.choose(testCase.App.FemaleCheckBox);

 % Verify two data sets display and the female data is red
 testCase.assertNumElements(ax.Children,2);
 testCase.verifyEqual(ax.Children(1).CData,[1 0 0]);

 % Disable the male data
 testCase.choose(testCase.App.MaleCheckBox,false);

 % Verify one data set displays and number of scatter points
 testCase.verifyNumElements(ax.Children,1);
 testCase.verifyNumElements(ax.Children.XData,50);
 end

 function test_bloodPressure(testCase)
 % Extract blood pressure data from app
 t = testCase.App.DataTab.Children.Data;
 t.Gender = categorical(t.Gender);
 allMales = t(t.Gender == 'Male',:);
 maleDiastolicData = allMales.Diastolic';
 maleSystolicData = allMales.Systolic';

 % Verify ylabel and that male Systolic data shows
 ax = testCase.App.UIAxes;
 testCase.verifyEqual(ax.YLabel.String,'Systolic')
 testCase.verifyEqual(ax.Children.YData,maleSystolicData)

 % Switch to 'Diastolic' reading
 testCase.choose(testCase.App.BloodPressureSwitch,'Diastolic')

 % Verify ylabel changed and male Diastolic data shows
 testCase.verifyEqual(ax.YLabel.String,'Diastolic')
 testCase.verifyEqual(ax.Children.YData,maleDiastolicData);
 end

 function test_plottingOptions(testCase)
 % Press the histogram radio button
 testCase.press(testCase.App.HistogramButton)

 % Verify xlabel updated from 'Weight' to 'Systolic'
 testCase.verifyEqual(testCase.App.UIAxes.XLabel.String,'Systolic')

 % Change the Bin Width to 9
 testCase.choose(testCase.App.BinWidthSlider,9)

 % Verify the number of bins is now 4
 testCase.verifyEqual(testCase.App.UIAxes.Children.NumBins,4)
 end

 function test_tab(testCase)
 % Choose Data Tab
 dataTab = testCase.App.DataTab;
 testCase.choose(dataTab)

 % Verify Data Tab is selected
 testCase.verifyEqual(testCase.App.TabGroup.SelectedTab.Title,'Data')
 end

 end
end

Run the tests.

results = runtests('TestPatientsDisplay');

36 Unit Testing

36-156

Running TestPatientsDisplay

==
Verification failed in TestPatientsDisplay/test_gender.

 Framework Diagnostic:

 verifyNumElements failed.
 --> The value did not have the correct number of elements.

 Actual Number of Elements:
 53
 Expected Number of Elements:
 50

 Actual Value:
 Columns 1 through 49

 131 133 119 142 142 132 128 137 129 131 133 117 137 146 123 143 114 126 137 138 137 118 128 135 121 136 135 147 124 134 130 130 127 141 111 134 137 136 130 137 127 127 115 131 126 120 132 120 123

 Columns 50 through 53

 141 129 124 134

 Additional Diagnostic:

 Screenshot captured to:
 --> C:\Temp\83292efd-b703-46ef-8c41-00e20167321d\Screenshot_c025020f-281e-483c-8ca8-f1c857421fde.png

 Stack Information:

 In C:\Work\TestPatientsDisplay.m (TestPatientsDisplay.test_gender) at 34
==
....
Done TestPatientsDisplay

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 TestPatientsDisplay/test_gender X Failed by verification.

See Also
matlab.uitest.TestCase

More About
• “Overview of App Testing Framework” on page 36-149
• “Write Tests That Use App Testing and Mocking Frameworks” on page 36-158

 Write Tests for an App

36-157

Write Tests That Use App Testing and Mocking Frameworks
This example shows how to write a test that uses the app testing framework and the mocking
framework. The app contains a file selection dialog box and a label indicating the selected file. To test
the app programmatically, use a mock object to define the behavior of the file selector.

Create App
Create the launchApp app in your current working folder. The app allows a user to select an input
file and displays the name of the file in the app. The file selection dialog box is a blocking modal
dialog box that waits for user input.

function app = launchApp
 f = uifigure;
 button = uibutton(f,'Text','Input file');
 button.ButtonPushedFcn = @(src,evt)pickFile;
 label = uilabel(f,'Text','No file selected');
 label.Position(1) = button.Position(1) + button.Position(3) + 25;
 label.Position(3) = 200;

 % Add components to an App struct for output
 app.UIFigure = f;
 app.Button = button;
 app.Label = label;

 function file = pickFile()
 [file,folder,status] = uigetfile('*.*');
 if status
 label.Text = file;
 end
 end
end

To explore the properties of this app prior to testing, create an instance of the app at the command
prompt. This step is not necessary for the tests, but it is helpful to explore the properties used by the
app tests. For example, use app.Button to access the Input file button within the app object.

app = launchApp;

36 Unit Testing

36-158

Test App With Manual Intervention
Create the LaunchAppTest class without using mocks. The test assumes the file input2.txt exists
in your current working folder. If it does not exist, create it. The test presses the Input file button
programmatically and verifies that the label matches 'input2.txt'. You must manually select the
file.

classdef LaunchAppTest < matlab.uitest.TestCase
 properties
 TestFile = 'input2.txt';
 end
 methods(TestClassSetup)
 function checkTestFiles(tc)
 import matlab.unittest.constraints.IsFile
 tc.assumeThat(tc.TestFile,IsFile)
 end
 end
 methods (Test)
 function testInputButton(tc)
 app = launchApp;
 tc.addTeardown(@close,app.UIFigure);

 tc.press(app.Button);

 Write Tests That Use App Testing and Mocking Frameworks

36-159

 tc.verifyEqual(app.Label.Text,tc.TestFile)
 end
 end
end

Run the test. When the file selection dialog box appears, select input2.txt to allow MATLAB to
proceed with the test. Selecting any other file results in a test failure.

results = runtests('LaunchAppTest');

Running LaunchAppTest
.
Done LaunchAppTest

Create Fully Automated Test
To test the app without manual intervention, use the mocking framework. Modify the app to accept a
file-choosing service instead of implementing it in the app (dependency injection).

Create a FileChooser service with an Abstract method that implements the file selection
functionality.

classdef FileChooser
 % Interface to choose a file
 methods (Abstract)
 [file,folder,status] = chooseFile(chooser,varargin)
 end
end

Create a default FileChooser that uses the uigetfile function for file selection.

classdef DefaultFileChooser < FileChooser
 methods
 function [file,folder,status] = chooseFile(chooser,varargin)
 [file,folder,status] = uigetfile(varargin{:});
 end
 end
end

Change the app to accept an optional FileChooser object. When called with no inputs, the app uses
an instance of DefaultFileChooser.

function app = launchApp(fileChooser)
 if nargin==0
 fileChooser = DefaultFileChooser;
 end
 f = uifigure;
 button = uibutton(f,'Text','Input file');
 button.ButtonPushedFcn = @(src,evt)pickFile(fileChooser);
 label = uilabel(f,'Text','No file selected');
 label.Position(1) = button.Position(1) + button.Position(3) + 25;
 label.Position(3) = 200;

 % Add components to an App struct for output
 app.UIFigure = f;
 app.Button = button;

36 Unit Testing

36-160

 app.Label = label;

 function file = pickFile(fileChooser)
 [file,folder,status] = fileChooser.chooseFile('*.*');
 if status
 label.Text = file;
 end
 end
end

Make the following modifications to LaunchAppTest.

• Change the test to inherit from both matlab.uitest.TestCase and matlab.mock.TestCase.
• Remove the properties block and the TestClassSetup block. Because the mock defines the

output of the chooseFile method call, the test does not rely on the existence of an external file.
• Change the testInputButton test method so that it will do these things.

• Create a mock object of the FileChooser.
• Define mock behavior such that when the chooseFile method is called with the input '*.*',

the outputs are the test file name ('input2.txt'), the current working folder, and a selected
filter index of 1. These outputs are analogous to the outputs from the uigetfile function.

• Press the button and verify the selected file name. These steps are the same as in the original
test, but the mock assigns the output values, so you do not need to interact with the app to
continue testing.

• To test the Cancel button, add a test method testInputButton_Cancel so that it will do these
things.

• Create a mock object of the FileChooser.
• Define mock behavior such that when the chooseFile method is called with the input '*.*',

the outputs are the test file name ('input2.txt'), the current working folder, and a selected
filter index of 0. These outputs are analogous to the outputs from the uigetfile function if a
user selects a file and then chooses to cancel.

• Press the button and verify that the test calls the chooseFile method and that the label
indicates that no file was selected.

classdef LaunchAppTest < matlab.uitest.TestCase & matlab.mock.TestCase
 methods (Test)
 function testInputButton(tc)
 import matlab.mock.actions.AssignOutputs
 fname = 'myFile.txt';

 [mockChooser,behavior] = tc.createMock(?FileChooser);
 when(behavior.chooseFile('*.*'),AssignOutputs(fname,pwd,1))

 app = launchApp(mockChooser);
 tc.addTeardown(@close,app.UIFigure);

 tc.press(app.Button);

 tc.verifyEqual(app.Label.Text,fname);
 end

 function testInputButton_Cancel(tc)
 import matlab.mock.actions.AssignOutputs

 [mockChooser, behavior] = tc.createMock(?FileChooser);
 when(behavior.chooseFile('*.*'),AssignOutputs('myFile.txt',pwd,0))

 app = launchApp(mockChooser);
 tc.addTeardown(@close,app.UIFigure);

 Write Tests That Use App Testing and Mocking Frameworks

36-161

 tc.press(app.Button);

 tc.verifyCalled(behavior.chooseFile('*.*'));
 tc.verifyEqual(app.Label.Text,'No file selected');
 end
 end
end

Run the tests. The tests run to completion without manual file selection.

results = runtests('LaunchAppTest');

Running LaunchAppTest
..
Done LaunchAppTest

See Also
matlab.mock.TestCase | matlab.uitest.TestCase

More About
• “Overview of App Testing Framework” on page 36-149
• “Write Tests for an App” on page 36-154
• “Create Mock Object” on page 36-180

36 Unit Testing

36-162

Overview of Performance Testing Framework

In this section...
“Determine Bounds of Measured Code” on page 36-163
“Types of Time Experiments” on page 36-164
“Write Performance Tests with Measurement Boundaries” on page 36-164
“Run Performance Tests” on page 36-165
“Understand Invalid Test Results” on page 36-165

The performance test interface leverages the script, function, and class-based unit testing interfaces.
You can perform qualifications within your performance tests to ensure correct functional behavior
while measuring code performance. Also, you can run your performance tests as standard regression
tests to ensure that code changes do not break performance tests.

Determine Bounds of Measured Code
This table indicates what code is measured for the different types of tests.

Type of Test What Is Measured What Is Excluded
Script-based Code in each section of the

script
• Code in the shared variables

section
• Measured estimate of the

framework overhead
Function-based Code in each test function • Code in the following

functions: setup,
setupOnce, teardown, and
teardownOnce

• Measured estimate of the
framework overhead

Class-based Code in each method tagged
with the Test attribute

• Code in the methods with the
following attributes:
TestMethodSetup,
TestMethodTeardown,
TestClassSetup, and
TestClassTeardown

• Shared fixture setup and
teardown

• Measured estimate of the
framework overhead

Class-based deriving from
matlab.perftest.TestCase
and using startMeasuring
and stopMeasuring methods

Code between calls to
startMeasuring and
stopMeasuring in each
method tagged with the Test
attribute

• Code outside of the
startMeasuring/
stopMeasuring boundary

• Measured estimate of the
framework overhead

 Overview of Performance Testing Framework

36-163

Type of Test What Is Measured What Is Excluded
Class-based deriving from
matlab.perftest.TestCase
and using the keepMeasuring
method

Code inside each
keepMeasuring-while loop in
each method tagged with the
Test attribute

• Code outside of the
keepMeasuring-while
boundary

• Measured estimate of the
framework overhead

Types of Time Experiments
You can create two types of time experiments.

• A frequentist time experiment collects a variable number of measurements to achieve a specified
margin of error and confidence level. Use a frequentist time experiment to define statistical
objectives for your measurement samples. Generate this experiment using the runperf function
or the limitingSamplingError static method of the TimeExperiment class.

• A fixed time experiment collects a fixed number of measurements. Use a fixed time experiment to
measure first-time costs of your code or to take explicit control of your sample size. Generate this
experiment using the withFixedSampleSize static method of the TimeExperiment class.

This table summarizes the differences between the frequentist and fixed time experiments.

 Frequentist time experiment Fixed time experiment
Warm-up measurements 4 by default, but configurable

through
TimeExperiment.limitingS
amplingError

0 by default, but configurable
through
TimeExperiment.withFixed
SampleSize

Number of samples Between 4 and 256 by default,
but configurable through
TimeExperiment.limitingS
amplingError

Defined during experiment
construction

Relative margin of error 5% by default, but configurable
through
TimeExperiment.limitingS
amplingError

Not applicable

Confidence level 95% by default, but configurable
through
TimeExperiment.limitingS
amplingError

Not applicable

Framework behavior for invalid
test result

Stops measuring a test and
moves to the next one

Collects specified number of
samples

Write Performance Tests with Measurement Boundaries
If your class-based tests derive from matlab.perftest.TestCase instead of
matlab.unittest.TestCase, then you can use the startMeasuring and stopMeasuring
methods or the keepMeasuring method multiple times to define boundaries for performance test
measurements. If a test method has multiple calls to startMeasuring, stopMeasuring and
keepMeasuring, then the performance testing framework accumulates and sums the measurements.

36 Unit Testing

36-164

The performance testing framework does not support nested measurement boundaries. If you use
these methods incorrectly in a Test method and run the test as a TimeExperiment, then the
framework marks the measurement as invalid. Also, you still can run these performance tests as unit
tests. For more information, see “Test Performance Using Classes” on page 36-171.

Run Performance Tests
There are two ways to run performance tests:

• Use the runperf function to run the tests. This function uses a variable number of measurements
to reach a sample mean with a 0.05 relative margin of error within a 0.95 confidence level. It runs
the tests four times to warm up the code and between 4 and 256 times to collect measurements
that meet the statistical objectives.

• Generate an explicit test suite using the testsuite function or the methods in the TestSuite
class, and then create and run a time experiment.

• Use the withFixedSampleSize method of the TimeExperiment class to construct a time
experiment with a fixed number of measurements. You can specify a fixed number of warm-up
measurements and a fixed number of samples.

• Use the limitingSamplingError method of the TimeExperiment class to construct a time
experiment with specified statistical objectives, such as margin of error and confidence level.
Also, you can specify the number of warm-up measurements and the minimum and maximum
number of samples.

You can run your performance tests as regression tests. For more information, see “Test Performance
Using Classes” on page 36-171.

Understand Invalid Test Results
In some situations, the MeasurementResult for a test result is marked invalid. A test result is
marked invalid when the performance testing framework sets the Valid property of the
MeasurementResult to false. This invalidation occurs if your test fails or is filtered. Also, if your test
incorrectly uses the startMeasuring and stopMeasuring methods of
matlab.perftest.TestCase, then the MeasurementResult for that test is marked invalid.

When the performance testing framework encounters an invalid test result, it behaves differently
depending on the type of time experiment:

• If you create a frequentist time experiment, then the framework stops measuring for that test and
moves to the next test.

• If you create a fixed time experiment, then the framework continues collecting the specified
number of samples.

See Also
runperf | testsuite | matlab.perftest.TimeExperiment |
matlab.unittest.measurement.MeasurementResult

Related Examples
• “Test Performance Using Scripts or Functions” on page 36-167

 Overview of Performance Testing Framework

36-165

• “Test Performance Using Classes” on page 36-171

36 Unit Testing

36-166

Test Performance Using Scripts or Functions
This example shows how to create a script or function-based performance test that times the
preallocation of a vector using four different approaches.

Write Performance Test

Create a performance test in a file, preallocationTest.m, in your current working folder. In this
example, you can choose to use either the following script-based test or the function-based test. The
output in this example is for the function-based test. If you use the script-based test, then your test
names will be different.

Script-Based Performance Test Function-Based Performance Test
vectorSize = 1e7;

%% Ones Function
x = ones(1,vectorSize);

%% Indexing With Variable
id = 1:vectorSize;
x(id) = 1;

%% Indexing On LHS
x(1:vectorSize) = 1;

%% For Loop
for i=1:vectorSize
 x(i) = 1;
end

function tests = preallocationTest
tests = functiontests(localfunctions);
end

function testOnes(testCase)
vectorSize = getSize();
x = ones(1,vectorSize());
end

function testIndexingWithVariable(testCase)
vectorSize = getSize();
id = 1:vectorSize;
x(id) = 1;
end

function testIndexingOnLHS(testCase)
vectorSize = getSize();
x(1:vectorSize) = 1;
end

function testForLoop(testCase)
vectorSize = getSize();
for i=1:vectorSize
 x(i) = 1;
end
end

function vectorSize = getSize()
vectorSize = 1e7;
end

Run Performance Test

Run the performance test using runperf.

results = runperf('preallocationTest.m')

Running preallocationTest
..........
Done preallocationTest

 Test Performance Using Scripts or Functions

36-167

results =

 1×4 TimeResult array with properties:

 Name
 Valid
 Samples
 TestActivity

Totals:
 4 Valid, 0 Invalid.
 10.2561 seconds testing time.

The results variable is a 1-by-4 TimeResult array. Each element in the array corresponds to one of
the tests defined in the code section in preallocationTest.m.

Display Test Results

Display the measurement results for the second test. Your results might vary.

results(2)

ans =

 TimeResult with properties:

 Name: 'preallocationTest/testIndexingWithVariable'
 Valid: 1
 Samples: [4×7 table]
 TestActivity: [8×12 table]

Totals:
 1 Valid, 0 Invalid.
 1.2274 seconds testing time.

As indicated by the size of the TestActivity property, the performance testing framework collected
8 measurements. This number of measurements includes four measurements to warm up the code.
The Samples property excludes warm-up measurements.

Display the sample measurements for the second test.

results(2).Samples

>> results(2).Samples

ans =

 4×7 table

 Name MeasuredTime Timestamp Host Platform Version RunIdentifier
 __ ____________ ____________________ ___________ ________ __ ____________________________________

 preallocationTest/testIndexingWithVariable 0.15271 24-Jun-2019 16:13:33 MY-HOSTNAME win64 9.7.0.1141441 (R2019b) Prerelease Update 2 9a6ee247-b49d-4e29-8b63-ba13c2eead27
 preallocationTest/testIndexingWithVariable 0.15285 24-Jun-2019 16:13:33 MY-HOSTNAME win64 9.7.0.1141441 (R2019b) Prerelease Update 2 9a6ee247-b49d-4e29-8b63-ba13c2eead27
 preallocationTest/testIndexingWithVariable 0.15266 24-Jun-2019 16:13:33 MY-HOSTNAME win64 9.7.0.1141441 (R2019b) Prerelease Update 2 9a6ee247-b49d-4e29-8b63-ba13c2eead27
 preallocationTest/testIndexingWithVariable 0.15539 24-Jun-2019 16:13:34 MY-HOSTNAME win64 9.7.0.1141441 (R2019b) Prerelease Update 2 9a6ee247-b49d-4e29-8b63-ba13c2eead27

36 Unit Testing

36-168

Compute Statistics for Single Test Element

Display the mean measured time for the second test. To exclude data collected in the warm-up runs,
use the values in the Samples field.

sampleTimes = results(2).Samples.MeasuredTime;
meanTest2 = mean(sampleTimes)

meanTest2 =

 0.1534

The performance testing framework collected four sample measurements for the second test. The test
took an average of 0.1534 second.

Compute Statistics for All Test Elements

Determine the average time for all the test elements. The preallocationTest test includes four
different methods for allocating a vector of ones. Compare the time for each method (test element).

Since the performance testing framework returns a Samples table for each test element,
concatenate all these tables into one table. Then group the rows by test element Name, and compute
the mean MeasuredTime for each group.

fullTable = vertcat(results.Samples);
summaryStats = varfun(@mean,fullTable,...
 'InputVariables','MeasuredTime','GroupingVariables','Name')

summaryStats =

 4×3 table

 Name GroupCount mean_MeasuredTime
 __ __________ _________________

 preallocationTest/testOnes 4 0.041072
 preallocationTest/testIndexingWithVariable 4 0.1534
 preallocationTest/testIndexingOnLHS 4 0.04677
 preallocationTest/testForLoop 4 1.0343

Change Statistical Objectives and Rerun Tests

Change the statistical objectives defined by the runperf function by constructing and running a time
experiment. Construct a time experiment with measurements that reach a sample mean with an 8%
relative margin of error within a 97% confidence level.

Construct an explicit test suite.

suite = testsuite('preallocationTest');

Construct a time experiment with a variable number of sample measurements, and run the tests.

import matlab.perftest.TimeExperiment
experiment = TimeExperiment.limitingSamplingError('NumWarmups',2,...
 'RelativeMarginOfError',0.08, 'ConfidenceLevel', 0.97);
resultsTE = run(experiment,suite);

Running preallocationTest
..........

 Test Performance Using Scripts or Functions

36-169

Done preallocationTest

Compute the statistics for all the test elements.

fullTableTE = vertcat(resultsTE.Samples);
summaryStatsTE = varfun(@mean,fullTableTE,...
 'InputVariables','MeasuredTime','GroupingVariables','Name')

summaryStatsTE =

 4×3 table

 Name GroupCount mean_MeasuredTime
 __ __________ _________________

 preallocationTest/testOnes 4 0.040484
 preallocationTest/testIndexingWithVariable 4 0.15187
 preallocationTest/testIndexingOnLHS 4 0.046224
 preallocationTest/testForLoop 4 1.0262

See Also
runperf | testsuite | matlab.perftest.TimeExperiment | matlab.perftest.TimeResult |
matlab.unittest.measurement.DefaultMeasurementResult

36 Unit Testing

36-170

Test Performance Using Classes
This example shows how to create a performance test and regression test for the fprintf function.

Write Performance Test

Consider the following unit (regression) test. You can run this test as a performance test using
runperf('fprintfTest') instead of runtests('fprintfTest').

classdef fprintfTest < matlab.unittest.TestCase
 properties
 file
 fid
 end
 methods(TestMethodSetup)
 function openFile(testCase)
 testCase.file = tempname;
 testCase.fid = fopen(testCase.file,'w');
 testCase.assertNotEqual(testCase.fid,-1,'IO Problem')

 testCase.addTeardown(@delete,testCase.file);
 testCase.addTeardown(@fclose,testCase.fid);
 end
 end

 methods(Test)
 function testPrintingToFile(testCase)
 textToWrite = repmat('abcdef',1,5000000);
 fprintf(testCase.fid,'%s',textToWrite);
 testCase.verifyEqual(fileread(testCase.file),textToWrite)
 end

 function testBytesToFile(testCase)
 textToWrite = repmat('tests_',1,5000000);
 nbytes = fprintf(testCase.fid,'%s',textToWrite);
 testCase.verifyEqual(nbytes,length(textToWrite))
 end
 end
end

The measured time does not include the time to open and close the file or the assertion because these
activities take place inside a TestMethodSetup block, and not inside a Test block. However, the
measured time includes the time to perform the verifications. Best practice is to measure a more
accurate performance boundary.

Create a performance test in a file, fprintfTest.m, in your current working folder. This test is
similar to the regression test with the following modifications:

• The test inherits from matlab.perftest.TestCase instead of matlab.unittest.TestCase.
• The test calls the startMeasuring and stopMeasuring methods to create a boundary around

the fprintf function call.

classdef fprintfTest < matlab.perftest.TestCase
 properties
 file
 fid

 Test Performance Using Classes

36-171

 end
 methods(TestMethodSetup)
 function openFile(testCase)
 testCase.file = tempname;
 testCase.fid = fopen(testCase.file,'w');
 testCase.assertNotEqual(testCase.fid,-1,'IO Problem')

 testCase.addTeardown(@delete,testCase.file);
 testCase.addTeardown(@fclose,testCase.fid);
 end
 end

 methods(Test)
 function testPrintingToFile(testCase)
 textToWrite = repmat('abcdef',1,5000000);

 testCase.startMeasuring();
 fprintf(testCase.fid,'%s',textToWrite);
 testCase.stopMeasuring();

 testCase.verifyEqual(fileread(testCase.file),textToWrite)
 end

 function testBytesToFile(testCase)
 textToWrite = repmat('tests_',1,5000000);

 testCase.startMeasuring();
 nbytes = fprintf(testCase.fid,'%s',textToWrite);
 testCase.stopMeasuring();

 testCase.verifyEqual(nbytes,length(textToWrite))
 end
 end
end

The measured time for this performance test includes only the call to fprintf, and the testing
framework still evaluates the qualifications.

Run Performance Test

Run the performance test. Depending on your system, you might see warnings that the performance
testing framework ran the test the maximum number of times, but did not achieve a 0.05 relative
margin of error with a 0.95 confidence level.

results = runperf('fprintfTest')

Running fprintfTest
..........
Done fprintfTest

results =

 1×2 TimeResult array with properties:

 Name
 Valid

36 Unit Testing

36-172

 Samples
 TestActivity

Totals:
 2 Valid, 0 Invalid.
 4.1417 seconds testing time.

The results variable is a 1-by-2 TimeResultarray. Each element in the array corresponds to one of
the tests defined in the test file.

Display Test Results

Display the measurement results for the first test. Your results might vary.

results(1)

ans =

 TimeResult with properties:

 Name: 'fprintfTest/testPrintingToFile'
 Valid: 1
 Samples: [4×7 table]
 TestActivity: [8×12 table]

Totals:
 1 Valid, 0 Invalid.
 2.7124 seconds testing time.

As indicated by the size of the TestActivity property, the performance testing framework collected
8 measurements. This number includes 4 measurements to warm up the code. The Samples property
excludes warm-up measurements.

Display the sample measurements for the first test.

results(1).Samples

ans =

 4×7 table

 Name MeasuredTime Timestamp Host Platform Version RunIdentifier
 ______________________________ ____________ ____________________ ___________ ________ __ ____________________________________

 fprintfTest/testPrintingToFile 0.067729 24-Jun-2019 16:22:09 MY-HOSTNAME win64 9.7.0.1141441 (R2019b) Prerelease Update 2 62991eef-5570-47b0-ade5-b8a805245e8f
 fprintfTest/testPrintingToFile 0.067513 24-Jun-2019 16:22:09 MY-HOSTNAME win64 9.7.0.1141441 (R2019b) Prerelease Update 2 62991eef-5570-47b0-ade5-b8a805245e8f
 fprintfTest/testPrintingToFile 0.068737 24-Jun-2019 16:22:09 MY-HOSTNAME win64 9.7.0.1141441 (R2019b) Prerelease Update 2 62991eef-5570-47b0-ade5-b8a805245e8f
 fprintfTest/testPrintingToFile 0.068576 24-Jun-2019 16:22:10 MY-HOSTNAME win64 9.7.0.1141441 (R2019b) Prerelease Update 2 62991eef-5570-47b0-ade5-b8a805245e8f

Compute Statistics for Single Test Element

Display the mean measured time for the first test. To exclude data collected in the warm-up runs, use
the values in the Samples field.

sampleTimes = results(1).Samples.MeasuredTime;
meanTest = mean(sampleTimes)

 Test Performance Using Classes

36-173

meanTest =

 0.0681

Compute Statistics for All Test Elements

Determine the average time for all the test elements. The fprintfTest test includes two different
methods. Compare the time for each method (test element).

Since the performance testing framework returns a Samples table for each test element,
concatenate all these tables into one table. Then group the rows by test element Name, and compute
the mean MeasuredTime for each group.

fullTable = vertcat(results.Samples);
summaryStats = varfun(@mean,fullTable,...
 'InputVariables','MeasuredTime','GroupingVariables','Name')

summaryStats =

 2×3 table

 Name GroupCount mean_MeasuredTime
 ______________________________ __________ _________________

 fprintfTest/testPrintingToFile 4 0.068139
 fprintfTest/testBytesToFile 9 0.071595

Both test methods write the same amount of data to a file. Therefore, some of the difference between
the mean values is attributed to calling the fprintf function with an output argument.

Change Statistical Objectives and Rerun Tests

Change the statistical objectives defined by the runperf function by constructing and running a time
experiment. Construct a time experiment with measurements that reach a sample mean with a 3%
relative margin of error within a 97% confidence level. Collect 4 warm-up measurements and up to 16
sample measurements.

Construct an explicit test suite.

suite = testsuite('fprintfTest');

Construct a time experiment with a variable number of sample measurements, and run the tests.
import matlab.perftest.TimeExperiment
experiment = TimeExperiment.limitingSamplingError('NumWarmups',4,...
 'MaxSamples',16,'RelativeMarginOfError',0.03,'ConfidenceLevel',0.97);
resultsTE = run(experiment,suite);

Running fprintfTest
..........Warning: Target Relative Margin of Error not met after running the MaxSamples for fprintfTest/testPrintingToFile.

Done fprintfTest

In this example output, the performance testing framework is not able to meet the stricter statistical
objectives with the specified number of maximum samples. Your results might vary.

Compute the statistics for all the test elements.

36 Unit Testing

36-174

fullTableTE = vertcat(resultsTE.Samples);
summaryStatsTE = varfun(@mean,fullTableTE,...
 'InputVariables','MeasuredTime','GroupingVariables','Name')

summaryStatsTE =

 2×3 table

 Name GroupCount mean_MeasuredTime
 ______________________________ __________ _________________

 fprintfTest/testPrintingToFile 16 0.069482
 fprintfTest/testBytesToFile 4 0.067902

Increase the maximum number of samples to 32 and rerun the time experiment.
experiment = TimeExperiment.limitingSamplingError('NumWarmups',4,...
 'MaxSamples',32,'RelativeMarginOfError',0.03,'ConfidenceLevel',0.97);
resultsTE = run(experiment,suite);

Running fprintfTest
..........
Done fprintfTest

Compute the statistics for all the test elements.

fullTableTE = vertcat(resultsTE.Samples);
summaryStatsTE = varfun(@mean,fullTableTE,...
 'InputVariables','MeasuredTime','GroupingVariables','Name')

summaryStatsTE =

 2×3 table

 Name GroupCount mean_MeasuredTime
 ______________________________ __________ _________________

 fprintfTest/testPrintingToFile 4 0.067228
 fprintfTest/testBytesToFile 4 0.067766

The testing framework achieves the statistical objectives for both tests with 4 samples.

Measure First-Time Cost

Start a new MATLAB session. A new session ensures that MATLAB has not run the code contained in
your tests.

Measure the first-time cost of your code by creating and running a fixed time experiment with zero
warm-up measurements and one sample measurement.

Construct an explicit test suite. Since you are measuring the first-time cost of the function, run a
single test. To run multiple tests, save the results and start a new MATLAB session between tests.

suite = testsuite('fprintfTest/testPrintingToFile');

Construct and run the time experiment.

 Test Performance Using Classes

36-175

import matlab.perftest.TimeExperiment
experiment = TimeExperiment.withFixedSampleSize(1);
results = run(experiment,suite);

Running fprintfTest
.
Done fprintfTest

Display the results. Observe the TestActivity table to ensure there are no warm-up samples.

fullTable = results.TestActivity

fullTable =

 1×12 table

 Name Passed Failed Incomplete MeasuredTime Objective Timestamp Host Platform Version TestResult RunIdentifier
 ______________________________ ______ ______ __________ ____________ _________ ____________________ ___________ ________ __ ________________________________ ____________________________________

 fprintfTest/testPrintingToFile true false false 0.071754 sample 24-Jun-2019 16:31:27 MY-HOSTNAME win64 9.7.0.1141441 (R2019b) Prerelease Update 2 [1×1 matlab.unittest.TestResult] 045394eb-e722-4241-8da2-1d17a97ac90a

The performance testing framework collects one sample for each test.

See Also
runperf | testsuite | matlab.perftest.TimeExperiment | matlab.perftest.TestCase |
matlab.unittest.measurement.DefaultMeasurementResult |
matlab.perftest.TimeResult

36 Unit Testing

36-176

Measure Fast Executing Test Code
Performance tests that execute too quickly for MATLAB to measure accurately are filtered with an
assumption failure. With the keepMeasuring method, the testing framework can measure
significantly faster code by automatically determining the number of times to iterate through code
and measuring the average performance.

In your current working folder, create a class-based test, PreallocationTest.m, that compares
different methods of preallocation. Since the test methods include qualifications, use the
startMeasuring and stopMeasuring methods to define boundaries for the code you want to
measure.

classdef PreallocationTest < matlab.perftest.TestCase
 methods(Test)
 function testOnes(testCase)
 testCase.startMeasuring
 x = ones(1,1e5);
 testCase.stopMeasuring
 testCase.verifyEqual(size(x),[1 1e5])
 end

 function testIndexingWithVariable(testCase)
 import matlab.unittest.constraints.IsSameSetAs
 testCase.startMeasuring
 id = 1:1e5;
 x(id) = 1;
 testCase.stopMeasuring
 testCase.verifyThat(x,IsSameSetAs(1))
 end

 function testIndexingOnLHS(testCase)
 import matlab.unittest.constraints.EveryElementOf
 import matlab.unittest.constraints.IsEqualTo
 testCase.startMeasuring
 x(1:1e5) = 1;
 testCase.stopMeasuring
 testCase.verifyThat(EveryElementOf(x),IsEqualTo(1))
 end

 function testForLoop(testCase)
 testCase.startMeasuring
 for i=1:1e5
 x(i) = 1;
 end
 testCase.stopMeasuring
 testCase.verifyNumElements(x,1e5)
 end
 end
end

Run PreallocationTest as a performance test. Two tests are filtered because the measurements
are too close to the precision of the framework.

results = runperf('PreallocationTest');

Running PreallocationTest
........
==

 Measure Fast Executing Test Code

36-177

PreallocationTest/testOnes was filtered.
 Test Diagnostic: The MeasuredTime should not be too close to the precision of the framework.
Details
==
..
==
PreallocationTest/testIndexingOnLHS was filtered.
 Test Diagnostic: The MeasuredTime should not be too close to the precision of the framework.
Details
==
...... ..
Done PreallocationTest

Failure Summary:

 Name Failed Incomplete Reason(s)
 ==
 PreallocationTest/testOnes X Filtered by assumption.
 --
 PreallocationTest/testIndexingOnLHS X Filtered by assumption.

To instruct the framework to automatically loop through the measured code and average the
measurement results, modify PreallocationTest to use a keepMeasuring-while loop instead of
startMeasuring and stopMeasuring.

classdef PreallocationTest < matlab.perftest.TestCase
 methods(Test)
 function testOnes(testCase)
 while(testCase.keepMeasuring)
 x = ones(1,1e5);
 end
 testCase.verifyEqual(size(x),[1 1e5])
 end

 function testIndexingWithVariable(testCase)
 import matlab.unittest.constraints.IsSameSetAs
 while(testCase.keepMeasuring)
 id = 1:1e5;
 x(id) = 1;
 end
 testCase.verifyThat(x,IsSameSetAs(1))
 end

 function testIndexingOnLHS(testCase)
 import matlab.unittest.constraints.EveryElementOf
 import matlab.unittest.constraints.IsEqualTo
 while(testCase.keepMeasuring)
 x(1:1e5) = 1;
 end
 testCase.verifyThat(EveryElementOf(x),IsEqualTo(1))
 end

 function testForLoop(testCase)
 while(testCase.keepMeasuring)
 for i=1:1e5
 x(i) = 1;
 end
 end
 testCase.verifyNumElements(x,1e5)
 end
 end
end

36 Unit Testing

36-178

Rerun the tests. All the tests complete.

results = runperf('PreallocationTest');

Running PreallocationTest
..........
Done PreallocationTest

View the results.

sampleSummary(results)

ans =

 4×7 table

 Name SampleSize Mean StandardDeviation Min Median Max
 __ __________ __________ _________________ __________ __________ __________

 PreallocationTest/testOnes 4 3.0804e-05 1.8337e-07 3.0577e-05 3.0843e-05 3.0953e-05
 PreallocationTest/testIndexingWithVariable 4 0.00044536 1.7788e-05 0.00042912 0.00044396 0.00046441
 PreallocationTest/testIndexingOnLHS 4 5.6352e-05 1.8863e-06 5.5108e-05 5.5598e-05 5.9102e-05
 PreallocationTest/testForLoop 4 0.0097656 0.00018202 0.0096181 0.0097065 0.010031

See Also
runperf | keepMeasuring

Related Examples
• “Overview of Performance Testing Framework” on page 36-163
• “Test Performance Using Classes” on page 36-171

 Measure Fast Executing Test Code

36-179

Create Mock Object
When unit testing, you are often interested in testing a portion of a complete system, isolated from
the components it depends on. To test a portion of the system, we can substitute mock objects to
replace the depended-on components. A mock object implements at least part of the same interface
as the production object, but often in a manner that is simple, efficient, predictable, and controllable.
When you use the mocking framework, the component under test is unaware of whether its
collaborator is a "real" object or a mock object.

For example, suppose you want to test an algorithm for buying stock, but you do not want to test the
entire system. You could use a mock object to replace the functionality of looking up the stock price,
and another mock object to verify that the trader purchased the stock. The algorithm you are testing
does not know that it is operating on mock objects, and you can test the algorithm isolated from the
rest of the system.

Using a mock object, you can define behavior (a process known as stubbing). For example, you can
specify that an object produces predefined responses to queries. You can also intercept and
remember messages sent from the component under test to the mock object (a process known as
spying). For example, you can verify that a particular method was called or a property was set.

The typical workflow to test a component in isolation is as follows:

1 Create mocks for the depended-on components.
2 Define behaviors of the mocks. For example, define the outputs that a mocked method or

property returns when it is called with a particular set of inputs.
3 Test the component of interest.

36 Unit Testing

36-180

4 Qualify interactions between the component of interest and the mocked components. For
example, verify that a mocked method was called with particular inputs, or that a property was
set.

Depended on Components

In this example, the component under test is a simple day-trading algorithm. It is the part of the
system you want to test independent of other components. The day-trading algorithm has two
dependencies: a data service to retrieve the stock price data and a broker to purchase the stock.

In a file DataService.m in your current working folder, create an abstract class that includes a
lookupPrice method.

classdef DataService
 methods (Abstract,Static)
 price = lookupPrice(ticker,date)
 end
end

In production code, there could be several concrete implementations of the DataService class, such
as a BloombergDataService class. This class uses the Datafeed Toolbox™. However, since we
create a mock of the DataService class, you do not need to have the toolbox installed to run the
tests for the trading algorithm.

classdef BloombergDataService < DataService
 methods (Static)
 function price = lookupPrice(ticker,date)
 % This method assumes you have installed and configured the
 % Bloomberg software.
 conn = blp;
 data = history(conn,ticker,'LAST_PRICE',date-1,date);
 price = data(end);
 close(conn)
 end
 end
end

In this example, assume that the broker component has not been developed yet. Once it is
implemented, it will have a buy method that accepts a ticker symbol and a specified number of shares
to buy, and returns a status code. The mock for the broker component uses an implicit interface, and
does not derive from a superclass.

Component Under Test

In a file trader.m in your current working folder, create a simple day trading algorithm. The trader
function accepts as inputs a data service object that looks up the price of the stock, a broker object
that defines how the stock is bought, a ticker symbol, and a number of shares to purchase. If the
price from yesterday is less than the price two days ago, instruct the broker to buy the specified
number of shares.

function trader(dataService,broker,ticker,numShares)
 yesterday = datetime('yesterday');
 priceYesterday = dataService.lookupPrice(ticker,yesterday);
 price2DaysAgo = dataService.lookupPrice(ticker,yesterday-days(1));

 if priceYesterday < price2DaysAgo
 broker.buy(ticker,numShares);

 Create Mock Object

36-181

 end
end

Mock Objects and Behavior Objects

The mock object is an implementation of the abstract methods and properties of the interface
specified by a superclass. You can also construct a mock without a superclass, in which case the mock
has an implicit interface. The component under test interacts with the mock object, for example, by
calling a mock object method or accessing a mock object property. The mock object carries out
predefined actions in response to these interactions.

When you create a mock, you also create an associated behavior object. The behavior object defines
the same methods as the mock object and controls mock behavior. Use the behavior object to define
mock actions and qualify interactions. For example, use it to define values a mocked method returns,
or verify that a property was accessed.

At the command prompt, create a mock test case for interactive use. Using the mock in a test class
instead of at the command prompt is presented later in this example.

import matlab.mock.TestCase
testCase = TestCase.forInteractiveUse;

Create Stub to Define Behavior

Create a mock for the data service dependency and examine the methods on it. The data service
mock returns predefined values, replacing the implementation of the service that provides actual
stock prices. Therefore, it exhibits stubbing behavior.

[stubDataService,dataServiceBehavior] = createMock(testCase,?DataService);
methods(stubDataService)

Methods for class matlab.mock.classes.DataServiceMock:

Static methods:

lookupPrice

In the DataService class, the lookupPrice method is abstract and static. The mocking framework
implements this method as concrete and static.

Define behavior for the data service mock. For ticker symbol "FOO", it returns the price yesterday as
$123 and anything before yesterday is $234. Therefore, according to the trader function, the broker
always buys stock "FOO". For the ticker symbol "BAR", it returns the price yesterday as $765 and
anything before yesterday is $543. Therefore, the broker never buys stock "BAR".

import matlab.unittest.constraints.IsLessThan
yesterday = datetime('yesterday');

testCase.assignOutputsWhen(dataServiceBehavior.lookupPrice(...
 "FOO",yesterday),123);
testCase.assignOutputsWhen(dataServiceBehavior.lookupPrice(...
 "FOO",IsLessThan(yesterday)),234);

36 Unit Testing

36-182

testCase.assignOutputsWhen(dataServiceBehavior.lookupPrice(...
 "BAR",yesterday),765);
testCase.assignOutputsWhen(dataServiceBehavior.lookupPrice(...
 "BAR",IsLessThan(yesterday)),543);

You can now call the mocked lookupPrice method.

p1 = stubDataService.lookupPrice("FOO",yesterday)
p2 = stubDataService.lookupPrice("BAR",yesterday-days(5))

p1 =

 123

p2 =

 543

While the assignOutputsWhen method on testCase is convenient to specify behavior, there is
more functionality if you use the AssignOutputs action. For more information, see “Specify Mock
Object Behavior” on page 36-187.

Create Spy to Intercept Messages

Create a mock for the broker dependency and examine the methods on it. Since the broker mock is
used to verify interactions with the component under test (the trader function), it exhibits spying
behavior. The broker mock has an implicit interface. While the buy method is not currently
implemented, you can create a mock with it.

[spyBroker,brokerBehavior] = createMock(testCase,'AddedMethods',{'buy'});
methods(spyBroker)

Methods for class matlab.mock.classes.Mock:

buy

Call the buy method of the mock. By default it returns empty.

s1 = spyBroker.buy
s2 = spyBroker.buy("inputs",[13 42])

s1 =

 []

s2 =

 []

 Create Mock Object

36-183

Since the trader function does not use the status return code, the default mock behavior of
returning empty is acceptable. The broker mock is a pure spy, and does not need to implement any
stubbing behavior.

Call Component Under Test

Call the trader function. In addition to the ticker symbol and the number of shares to buy, the
trader function takes as inputs the data service and the broker. Instead of passing in actual data
service and broker objects, pass in the spyBroker and stubDataService mocks.

trader(stubDataService,spyBroker,"FOO",100)
trader(stubDataService,spyBroker,"FOO",75)
trader(stubDataService,spyBroker,"BAR",100)

Verify Function Interactions

Use the broker behavior object (the spy) to verify that the trader function calls the buy method, as
expected.

Use the TestCase.verifyCalled method to verify that the trader function instructed the buy
method to buy 100 shares of the FOO stock.

import matlab.mock.constraints.WasCalled;
testCase.verifyCalled(brokerBehavior.buy("FOO",100))

Verification passed.

Verify that FOO stock was purchased two times, regardless of the specified number of shares. While
the verifyCalled method is convenient to specify behavior, there is more functionality if you use
the WasCalled constraint. For example, you can verify that a mocked method was called a specified
number of times.

import matlab.unittest.constraints.IsAnything
testCase.verifyThat(brokerBehavior.buy("FOO",IsAnything), ...
 WasCalled('WithCount',2))

Verification passed.

Verify that the buy method was not called requesting 100 shares of the BAR stock.

testCase.verifyNotCalled(brokerBehavior.buy("BAR",100))

Verification passed.

Although the trader function was called requesting 100 shares of BAR stock, the stub defined
yesterday's price for BAR to return a higher value than all days prior to yesterday. Therefore, the
broker never buys stock "BAR".

Test Class for trader Function

The interactive test case is convenient to experiment with at the command prompt. However, it is
typical to create and use mocks within a test class. In a file in your current working folder, create the
following test class that incorporates the interactive testing from this example.

classdef TraderTest < matlab.mock.TestCase
 methods(Test)
 function buysStockWhenDrops(testCase)
 import matlab.unittest.constraints.IsLessThan

36 Unit Testing

36-184

 import matlab.unittest.constraints.IsAnything
 import matlab.mock.constraints.WasCalled
 yesterday = datetime('yesterday');

 % Create mocks
 [stubDataService,dataServiceBehavior] = createMock(testCase,...
 ?DataService);
 [spyBroker,brokerBehavior] = createMock(testCase,...
 'AddedMethods',{'buy'});

 % Set up behavior
 testCase.assignOutputsWhen(dataServiceBehavior.lookupPrice(...
 "FOO",yesterday),123);
 testCase.assignOutputsWhen(dataServiceBehavior.lookupPrice(...
 "FOO",IsLessThan(yesterday)),234);

 % Call function under test
 trader(stubDataService,spyBroker,"FOO",100)
 trader(stubDataService,spyBroker,"FOO",75)

 % Verify interactions
 testCase.verifyCalled(brokerBehavior.buy("FOO",100))
 testCase.verifyThat(brokerBehavior.buy("FOO",IsAnything),...
 WasCalled('WithCount',2))
 end
 function doesNotBuyStockWhenIncreases(testCase)
 import matlab.unittest.constraints.IsLessThan
 yesterday = datetime('yesterday');

 % Create mocks
 [stubDataService,dataServiceBehavior] = createMock(testCase,...
 ?DataService);
 [spyBroker,brokerBehavior] = createMock(testCase, ...
 'AddedMethods',{'buy'});

 % Set up behavior
 testCase.assignOutputsWhen(dataServiceBehavior.lookupPrice(...
 "BAR",yesterday),765);
 testCase.assignOutputsWhen(dataServiceBehavior.lookupPrice(...
 "BAR",IsLessThan(yesterday)),543);

 % Call function under test
 trader(stubDataService,spyBroker,"BAR",100)

 % Verify interactions
 testCase.verifyNotCalled(brokerBehavior.buy("BAR",100))
 end
 end
end

Run the tests and view a table of the results.

results = runtests('TraderTest');
table(results)

Running TraderTest
..
Done TraderTest

 Create Mock Object

36-185

ans =

 2×6 table

 Name Passed Failed Incomplete Duration Details
 ___ ______ ______ __________ ________ ____________

 'TraderTest/buysStockWhenDrops' true false false 0.24223 [1×1 struct]
 'TraderTest/doesNotBuyStockWhenIncreases' true false false 0.073614 [1×1 struct]

See Also

36 Unit Testing

36-186

Specify Mock Object Behavior
In this section...
“Define Mock Method Behavior” on page 36-187
“Define Mock Property Behavior” on page 36-188
“Define Repeating and Subsequent Behavior” on page 36-189
“Summary of Behaviors” on page 36-191

When you create a mock, you create an associated behavior object that controls mock behavior. Use
this object to define mock method and property behavior (stub). For more information on creating a
mock, see “Create Mock Object” on page 36-180.

The mock object is an implementation of the abstract methods and properties of the interface
specified by a superclass. You can also construct a mock without a superclass, in which case the mock
has an implicit interface.

Create a mock with an implicit interface. The interface includes Name and ID properties and a
findUser method that accepts an identifier and returns a name. While the interface is not currently
implemented, you can create a mock with it.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behaviorObj] = testCase.createMock('AddedProperties', ...
 {'Name','ID'},'AddedMethods',{'findUser'});

Define Mock Method Behavior
You can specify that a mock method returns specific values or throws an exception in different
situations.

Specify that when the findUser method is called with any inputs, it returns "Unknown". By default,
MATLAB returns an empty array when you call the findUser method.

• The assignOutputsWhen method defines return values for the method call.
• The mocked method call (behaviorObj.findUser) implicitly creates a MethodCallBehavior

object.
• The withAnyInputs method of the MethodCallBehavior object specifies that the behavior

applies to a method call with any number of inputs with any value.

testCase.assignOutputsWhen(withAnyInputs(behaviorObj.findUser),"Unknown")
n = mock.findUser(1)

n =

 "Unknown"

Specify that when the input value is 1701, the mock method returns "Jim". This behavior supersedes
the return of "Unknown" for the input value of 1701 only because it was defined after that
specification.

testCase.assignOutputsWhen(behaviorObj.findUser(1701),"Jim")
n = mock.findUser(1701)

 Specify Mock Object Behavior

36-187

n =

 "Jim"

Specify that when the findUser method is called with only the object as input, the mock method
returns "Unspecified ID". The withExactInputs method of the MethodCallBehavior object
specifies that the behavior applies to a method call with the object as the only input value.

testCase.assignOutputsWhen(withExactInputs(behaviorObj.findUser), ...
 "Unspecified ID")
n = mock.findUser % equivalent to n = findUser(mock)

n =

 "Unspecified ID"

You can use classes in the matlab.unittest.constraints package to help define behavior.
Specify that findUser throws an exception when it is called with an ID greater than 5000.

import matlab.unittest.constraints.IsGreaterThan
testCase.throwExceptionWhen(behaviorObj.findUser(IsGreaterThan(5000)));
n = mock.findUser(5001)

Error using
matlab.mock.internal.MockContext/createMockObject/mockMethodCallback (line 323)
The following method call was specified to throw an exception:
 findUser([1×1 matlab.mock.classes.Mock], 5001)

You can define behavior based on the number of outputs requested in a method call. If the method
call requests two output values, return "??" for the name and -1 for the ID.

testCase.assignOutputsWhen(withNargout(2, ...
 withAnyInputs(behaviorObj.findUser)),"??",-1)
[n,id] = mock.findUser(13)

n =

 "??"

id =

 -1

Define Mock Property Behavior
When a mock property is accessed, you can specify that it returns specific or stored property values.
When it is set, you can specify when the mock stores the property value. You can also define when the
testing framework throws an exception for mock property set or access activities.

When defining mock property behavior, keep in mind that displaying a property value in the command
window is a property access (get) operation.

Similar to defining mock method behavior, defining mock property behavior requires an instance of
the PropertyBehavior class. The framework returns an instance of this class when you access a
mock property. To define access behavior, use an instance of PropertyGetBehavior by calling the
get method of the PropertyBehavior class. To define set behavior, use an instance of the

36 Unit Testing

36-188

PropertySetBehavior by calling the set or setToValue method of the PropertyBehavior
class.

Specify that when the Name property is set to any value, the testing framework throws an exception.

• The throwExceptionWhen method instructs the framework to throw an exception for a specified
behavior.

• Accessing a property on the behavior object PropertyBehavior class (behaviorObj.Name)
creates a PropertyBehavior class instance.

• The call to the set method of the PropertyBehavior class creates a PropertySetBehavior.

testCase.throwExceptionWhen(set(behaviorObj.Name))
mock.Name = "Sue";

Error using matlab.mock.internal.MockContext/createMockObject/mockPropertySetCallback (line 368)
The following property set was specified to throw an exception:
 <Mock>.Name = "Sue"

Allow the mock to store the value when the property is set to "David".

testCase.storeValueWhen(setToValue(behaviorObj.Name,"David"));
mock.Name = "David"

mock =

 Mock with properties:

 Name: "David"
 ID: []

Define Repeating and Subsequent Behavior
The matlab.mock.TestCase methods are convenient for defining behavior. However, there is more
functionality when you use a class in the matlab.mock.actions package instead. Using these
classes, you can define behavior that repeats the same action multiple times and specify subsequent
actions. To define repeating or subsequent behavior, pass an instance of a class in the
matlab.mock.actions package to the when method of the behavior class.

Assign the value of 1138 to the ID property and then throw an exception for property access.

import matlab.mock.actions.AssignOutputs
import matlab.mock.actions.ThrowException
when(get(behaviorObj.ID),then(AssignOutputs(1138),ThrowException))
id = mock.ID
id = mock.ID

id =

 1138

Error using matlab.mock.internal.MockContext/createMockObject/mockPropertyGetCallback (line 346)
The following property access was specified to throw an exception:
 <Mock>.ID

Assign the value of 1138 and then 237 to the ID property. Then, throw an exception for property
access. Each call to the then method accepts up to two actions. To specify more subsequent actions,
use multiple calls to then.

 Specify Mock Object Behavior

36-189

when(get(behaviorObj.ID),then(AssignOutputs(1138), ...
 then(AssignOutputs(237),ThrowException)))
id = mock.ID
id = mock.ID
id = mock.ID

id =

 1138

id =

 237

Error using matlab.mock.internal.MockContext/createMockObject/mockPropertyGetCallback (line 346)
The following property access was specified to throw an exception:
 <Mock>.ID

If the object is the only input value, specify the findUser function return the value of "Phil" twice.

when(withExactInputs(behaviorObj.findUser),repeat(2,AssignOutputs("Phil")))
n = mock.findUser
n = mock.findUser

n =

 "Phil"

n =

 "Phil"

Call the function a third time. If you repeat an action, and do not follow it with a call to the then
method, the mock continues to return the repeated value.

n = mock.findUser

n =

 "Phil"

Define behavior for setting the value of Name. Throw an exception the first two times and then store
the value.

import matlab.mock.actions.StoreValue
when(set(behaviorObj.Name),then(repeat(2,ThrowException),StoreValue))
mock.Name = "John"

Error using matlab.mock.internal.MockContext/createMockObject/mockPropertySetCallback (line 368)
The following property set was specified to throw an exception:
 <Mock>.Name = "John"

mock.Name = "Penny"

Error using matlab.mock.internal.MockContext/createMockObject/mockPropertySetCallback (line 368)
The following property set was specified to throw an exception:
 <Mock>.Name = "Penny"

36 Unit Testing

36-190

mock.Name = "Tommy"

mock =

 Mock with properties:

 Name: "Tommy"

Summary of Behaviors
Behavior TestCase Method matlab.mock.Actions Class

(Allows for Definition of
Repeat and Subsequent
Behavior)

Return specified values for
method call and property
access.

assignOutputsWhen AssignOutputs

Return stored value when
property is accessed.

returnStoredValueWhen ReturnStoredValue

Store value when property is
set.

storeValueWhen StoreValue

Throw exception when method
is called or when property is set
or accessed.

throwExceptionWhen ThrowException

See Also
matlab.mock.TestCase | matlab.mock.actions.AssignOutputs |
matlab.mock.actions.ReturnStoredValue | matlab.mock.actions.StoreValue |
matlab.mock.actions.ThrowException

Related Examples
• “Create Mock Object” on page 36-180

 Specify Mock Object Behavior

36-191

Qualify Mock Object Interaction
When you create a mock, you create an associated behavior object that controls mock behavior. Use
this object to access intercepted messages sent from the component under test to the mock object (a
process known as spying). For more information on creating a mock, see “Create Mock Object” on
page 36-180.

In the mocking framework, qualifications are functions used to test interactions with the object.
There are four types of qualifications:

• Verifications — Produce and record failures without throwing an exception. Since verifications do
not throw exceptions, all test content runs to completion even when verification failures occur.
Typically verifications are the primary qualifications for a unit test since they typically do not
require an early exit from the test. Use other qualification types to test for violation of
preconditions or incorrect test setup.

• Assumptions — Ensure that the test environment meets preconditions that otherwise do not result
in a test failure. Assumption failures result in filtered tests, and the testing framework marks the
tests as Incomplete.

• Assertions — Ensure that a failure condition invalidates the remainder of the current test content,
but does not prevent proper execution of subsequent test methods. A failure at the assertion point
marks the current test method as failed and incomplete.

• Fatal Assertions — Abort the test session upon failure. These qualifications are useful when the
failure mode is so fundamental that there is no point in continuing testing. These qualifications are
also useful when fixture teardown does not restore the MATLAB state correctly and it is preferable
to abort testing and start a fresh session.

The mock object is an implementation of the abstract methods and properties of the interface
specified by a superclass. You can also construct a mock without a superclass, in which case the mock
has an implicit interface. Create a mock with an implicit interface for a dice class. The interface
includes Color and NumSides properties and a roll method that accepts a number of dice and
returns a value. While the interface is not currently implemented, you can create a mock with it.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behaviorObj] = testCase.createMock('AddedProperties', ...
 {'NumSides','Color'},'AddedMethods',{'roll'});

Qualify Mock Method Interaction
Since the mock records interactions sent to it, you can qualify that a mock method was called. Roll
one die.

val = mock.roll(1);

Verify that the roll method was called with 1 die.

testCase.verifyCalled(behaviorObj.roll(1))

Interactive verification passed.

Verify that the roll method was called with 3 dice. This test fails.

testCase.verifyCalled(behaviorObj.roll(3), ...
 'roll method should have been called with input 3.')

36 Unit Testing

36-192

Interactive verification failed.

Test Diagnostic:

roll method should have been called with input 3.

Framework Diagnostic:

verifyCalled failed.
--> Method 'roll' was not called with the specified signature.
--> Observed method call(s) with any signature:
 out = roll([1×1 matlab.mock.classes.Mock], 1)

Specified method call:
 MethodCallBehavior
 [...] = roll(<Mock>, 3)

Verify that the roll method was not called with 2 dice.

testCase.verifyNotCalled(behaviorObj.roll(2))

Interactive verification passed.

Since the withAnyInputs, withExactInputs, and withNargout methods of the
MethodCallBehavior class return MethodCallBehavior objects, you can use them in
qualifications. Verify that the roll method was called at least once with any inputs.

testCase.verifyCalled(withAnyInputs(behaviorObj.roll))

Interactive verification passed.

Verify that the roll method was not called with 2 outputs and any inputs.

testCase.verifyNotCalled(withNargout(2,withAnyInputs(behaviorObj.roll)))

Interactive verification passed.

Qualify Mock Property Interaction
Similar to method calls, the mock records property set and access operations. Set the color of the
dice.

mock.Color = "red"

mock =

 Mock with properties:

 NumSides: []
 Color: "red"

Verify that the color was set.

testCase.verifySet(behaviorObj.Color)

Interactive verification passed.

 Qualify Mock Object Interaction

36-193

Verify the color was accessed. This test passes because there is an implicit property access when
MATLAB displays the object.

testCase.verifyAccessed(behaviorObj.Color)

Interactive verification passed.

Assert that the number of sides was not set.

testCase.assertNotSet(behaviorObj.NumSides)

Interactive assertion passed.

Use Mock Object Constraints
The matlab.mock.TestCase methods are convenient for spying on mock interactions. However,
there is more functionality when you use a class in the matlab.mock.constraints package
instead. To use a constraint, pass the behavior object and constraint to the verifyThat,
assumeThat, assertThat or fatalAssertThat method.

Create a new mock object.

testCase = matlab.mock.TestCase.forInteractiveUse;
[mock,behaviorObj] = testCase.createMock('AddedProperties', ...
 {'NumSides','Color'},'AddedMethods',{'roll'});

Roll 2 dice. Then use a constraint to verify that the roll method was called at least once with two
dice.

val = mock.roll(2);

import matlab.mock.constraints.WasCalled
testCase.verifyThat(behaviorObj.roll(2),WasCalled)

Interactive verification passed.

Roll one die. Then verify that the roll method was called at least twice with any inputs.

val = mock.roll(1);

testCase.verifyThat(withAnyInputs(behaviorObj.roll), ...
 WasCalled('WithCount',2))

Interactive verification passed.

Verify that NumSides was not accessed.

import matlab.mock.constraints.WasAccessed
testCase.verifyThat(behaviorObj.NumSides,~WasAccessed)

Interactive verification passed.

Set the color of the dice. Then verify the property was set once.

mock.Color = "blue";

import matlab.mock.constraints.WasSet
testCase.verifyThat(behaviorObj.Color,WasSet('WithCount',1))

36 Unit Testing

36-194

Interactive verification passed.

Access the Color property. Then verify that it was not accessed exactly once. This test fails.

c = mock.Color

testCase.verifyThat(behaviorObj.Color,~WasAccessed('WithCount',1))

c =

 "blue"

Interactive verification failed.

Framework Diagnostic:

Negated WasAccessed failed.
--> Property 'Color' was accessed the prohibited number of times.

 Actual property access count:
 1
 Prohibited property access count:
 1

Specified property access:
 PropertyGetBehavior
 <Mock>.Color

Set the number of sides. Then, verify that the number of sides was set to 22.

mock.NumSides = 22;
testCase.verifyThat(behaviorObj.NumSides,WasSet('ToValue',22))

Interactive verification passed.

Use a constraint from the matlab.unittest.constraints package to assert that the number of
dice sides isn't set to more than 20. This test fails.

import matlab.unittest.constraints.IsLessThanOrEqualTo
testCase.verifyThat(behaviorObj.NumSides, ...
 WasSet('ToValue',IsLessThanOrEqualTo(20)))

Interactive verification failed.

Framework Diagnostic:

WasSet failed.
--> Property 'NumSides' was not set to the specified value.
--> Observed property set(s) to any value:
 <Mock>.NumSides = 22

Specified property set:

 Qualify Mock Object Interaction

36-195

 PropertySetBehavior
 <Mock>.NumSides = <IsLessThanOrEqualTo constraint>

Summary of Qualifications
Type of
Qualification

TestCase Method matlab.mock.constraints Class
Use
matlab.unittest.TestCas
e Method

With
matlab.mock.constra
ints Class

Method was
called

verifyCalled or
verifyNotCalled

verifyThat WasCalled or
Occurred

assumeCalled or
assumeNotCalled

assumeThat

assertCalled or
assertNotCalled

assertThat

fatalAssertCalled
or
fatalAssertNotCal
led

fatalAssertThat

Method was
called a certain
number of times

Not applicable verifyThat, assumeThat,
assertThat, or
fatalAssertThat

WasCalled

Property was
accessed

verifyAccessed or
verifyNotAccessed

verifyThat WasAccessed or
Occurred

assumeAccessed or
assumeNotAccessed

assumeThat

assertAccessed or
assertNotAccessed

assertThat

fatalAssertAccess
ed or
fatalAssertNotAcc
essed

fatalAssertThat

Property was
accessed a
certain number
of times

Not applicable verifyThat, assumeThat,
assertThat, or
fatalAssertThat

WasAccessed

Property was set verifySet or
verifyNotSet

verifyThat WasSet or Occurred

assumeSet or
assumeNotSet

assumeThat

assertSet or
assertNotSet

assertThat

fatalAssertSet or
fatalAssertNotSet

fatalAssertThat

36 Unit Testing

36-196

Type of
Qualification

TestCase Method matlab.mock.constraints Class
Use
matlab.unittest.TestCas
e Method

With
matlab.mock.constra
ints Class

Property was set
a certain number
of times

Not applicable verifyThat, assumeThat,
assertThat, or
fatalAssertThat

WasSet

Property was set
to a certain value

Not applicable verifyThat, assumeThat,
assertThat, or
fatalAssertThat

WasSet or Occurred

Methods were
called and
properties were
accessed or set
in a particular
order

Not applicable verifyThat, assumeThat,
assertThat, or
fatalAssertThat

Occurred

See Also

 Qualify Mock Object Interaction

36-197

Ways to Write Unit Tests
To guide software development and monitor for regressions in code functionality, you can write unit
tests for your programs. The MATLAB unit testing framework supports three test authoring schemes:

• Script-based unit tests: Write each unit test as a separate section of a test script file. You can
perform basic qualifications, access the diagnostics that the framework records on test results,
refine the test suite by selecting the tests you want to run, and customize the test run by creating
and configuring a TestRunner object.

• Function-based unit tests: Write each unit test as a local function within a test function file.
Function-based tests subscribe to the xUnit testing philosophy. In addition to supporting the
functionality provided by script-based tests, function-based tests give you access to a rich set of
test authoring features. For example, you can use advanced qualification features, including
constraints, tolerances, and test diagnostics.

• Class-based unit tests: Write each unit test as a Test method within a class definition file. In
addition to supporting the functionality provided by script-based and function-based tests, class-
based tests provide you with several advanced test authoring features and give you access to the
full framework functionality. For example, you can use shared test fixtures, parameterize tests,
and reuse test content.

Script-Based Unit Tests
With script-based tests, you can:

• Define variables to share among tests or preconditions necessary for tests.
• Perform basic qualifications using the assert function. For example, you can use

assert(isequal(actVal,expVal)) to assert that actual and expected values are equal.
(Advanced qualification features are supported only for function-based and class-based tests.)

• Access test diagnostics recorded by the framework. For more information, see “Programmatically
Access Test Diagnostics” on page 36-96. (Advanced diagnostic actions are supported only for
function-based and class-based tests.)

Typically, with script-based tests, you create a test file, and pass the file name to the runtests
function without explicitly creating a suite of Test elements. If you create an explicit test suite (using
the testsuite function or a method of the matlab.unittest.TestSuite class), there are
additional features available in script-based testing. With an explicit test suite, you can:

36 Unit Testing

36-198

• Refine your suite, for example, using the classes in the matlab.unittest.selectors package.
(Several of the selectors are applicable only for class-based tests.)

• Create a TestRunner object and customize it to run your tests. You can add the plugin classes in
the matlab.unittest.plugins package to the test runner.

For more information about script-based tests, see “Write Script-Based Unit Tests” on page 36-6 and
“Extend Script-Based Tests” on page 36-14.

Function-Based Unit Tests
Function-based tests support the functionality provided by script-based tests. In addition, with
function-based tests, you can:

• Set up the pretest state of the system and return it to the original state after running the test. You
can perform these tasks once per test file or once per unit test. For more information, see “Write
Test Using Setup and Teardown Functions” on page 36-27.

• Use the fixture classes in the matlab.unittest.fixtures package (with the applyFixture
method) to handle the setup and teardown of frequently used testing actions.

• Record diagnostic information at a certain verbosity level by using the log method.
• Use the full library of qualifications in the matlab.unittest.qualifications package. To

determine which qualification to use, see “Table of Verifications, Assertions, and Other
Qualifications” on page 36-45.

• Use advanced qualification features, including constraints, actual value proxies, tolerances, and
test diagnostics. You can use the classes in the matlab.unittest.constraints and
matlab.unittest.diagnostics packages in your qualifications.

For more information about function-based tests, see “Write Function-Based Unit Tests” on page 36-
20 and “Extend Function-Based Tests” on page 36-32.

Class-Based Unit Tests
Class-based tests support the functionality provided by script-based and function-based tests. In
addition, with class-based tests, you can:

• Use setup and teardown method blocks to implicitly set up the pretest environment state and
return it to the original state after running the tests. For more information, see “Write Setup and
Teardown Code Using Classes” on page 36-42.

• Share fixtures among classes. For more information, see “Write Tests Using Shared Fixtures” on
page 36-52.

• Group tests into categories and then run the tests with specified tags. For more information, see
“Tag Unit Tests” on page 36-48.

• Write parameterized tests to combine and execute tests on specified lists of parameters. For more
information, see “Use Parameters in Class-Based Tests” on page 36-62.

• Use subclassing and inheritance to share and reuse test content. For example, you can reuse the
parameters and methods defined in a test class by deriving subclasses. For more information, see
“Hierarchies of Classes — Concepts”.

For more information about class-based tests, see “Author Class-Based Unit Tests in MATLAB” on
page 36-36.

 Ways to Write Unit Tests

36-199

Extend Unit Testing Framework
The unit testing framework provides test tool authors the ability to extend test writing through
custom constraints, diagnostics, fixtures, and plugins. For example, you can create a custom plugin
and use it to extend the test runner when you run your script-based, function-based, or class-based
unit tests. For more information, see “Extend Unit Testing Framework”.

See Also

More About
• “Write Script-Based Unit Tests” on page 36-6
• “Write Function-Based Unit Tests” on page 36-20
• “Author Class-Based Unit Tests in MATLAB” on page 36-36

External Websites
• xUnit
• xUnit Patterns: Four-Phase Test

36 Unit Testing

36-200

https://en.wikipedia.org/wiki/XUnit
http://xunitpatterns.com/Four%20Phase%20Test.html

Compile MATLAB Unit Tests
When you write tests using the MATLAB unit testing framework, you can create a standalone
application (requires MATLAB Compiler) to run your tests on target machines that do not have
MATLAB installed:

• To compile your MATLAB code, run the compiler.build.standaloneApplication or mcc
command, or use the Application Compiler app.

• To run standalone applications, install the MATLAB Runtime. (If you use the Application
Compiler app, you can decide whether to include the MATLAB Runtime installer in the generated
application.) For more information, see “Install and Configure MATLAB Runtime” (MATLAB
Compiler).

MATLAB Compiler supports only class-based unit tests. (You cannot compile script-based or function-
based unit tests.) In addition, MATLAB Compiler currently does not support tests authored using the
performance testing framework.

Run Tests with Standalone Applications
This example shows how to create a standalone application from your unit tests and run the
generated application from a terminal window (on a Microsoft Windows platform).

In a file named TestRand.m in your current folder, create a parameterized test class that tests the
MATLAB random number generator (see “TestRand Class Definition Summary” on page 36-202).

In your current folder, create the runMyTests function. This function creates a test suite from the
TestRand class, runs the tests, and displays the test results.

function runMyTests
suite = matlab.unittest.TestSuite.fromClass(?TestRand);
runner = matlab.unittest.TestRunner.withNoPlugins;
results = runner.run(suite);
disp(results)
end

Compile the runMyTests function into a standalone application by running the mcc command in the
Command Window. MATLAB Compiler generates an application in your current folder.

mcc -m runMyTests

Open a terminal window, navigate to the folder into which you packaged your standalone application,
and run the application.

C:\work>runMyTests
 1x1200 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:

 Compile MATLAB Unit Tests

36-201

 1200 Passed, 0 Failed, 0 Incomplete.
 3.11 seconds testing time.

For more information on how to create and run standalone applications, see “Create Standalone
Application from MATLAB” (MATLAB Compiler).

Run Tests in Parallel with Standalone Applications
Starting in R2020b, you can create standalone applications that support running tests in parallel
(requires Parallel Computing Toolbox). This feature requires you to use the directive %#function
parallel.Pool in the file that triggers the test run. The %#function pragma informs MATLAB
Compiler that a parallel.Pool object must be included in the compilation to provide access to the
parallel pool.

For example, consider the tests in the file TestRand.m. You can create a standalone application to
run these tests in parallel by compiling this function.

function runMyTestsInParallel
%#function parallel.Pool
results = runtests('TestRand.m','UseParallel',true);
disp(results)
end

Compile the function into a standalone application using the mcc command. To instruct MATLAB
Compiler to include the test file in the application, specify the file name using the -a option.

mcc -m runMyTestsInParallel -a TestRand.m

TestRand Class Definition Summary
This code provides the complete contents of the TestRand class.

classdef TestRand < matlab.unittest.TestCase
 properties (TestParameter)
 dim1 = createDimensionSizes;
 dim2 = createDimensionSizes;
 dim3 = createDimensionSizes;
 type = {'single','double'};
 end

 methods (Test)
 function testRepeatable(testCase,dim1,dim2,dim3)
 state = rng;
 firstRun = rand(dim1,dim2,dim3);
 rng(state)
 secondRun = rand(dim1,dim2,dim3);
 testCase.verifyEqual(firstRun,secondRun);
 end
 function testClass(testCase,dim1,dim2,type)
 testCase.verifyClass(rand(dim1,dim2,type),type)
 end
 end
end

function sizes = createDimensionSizes
% Create logarithmically spaced sizes up to 100

36 Unit Testing

36-202

sizes = num2cell(round(logspace(0,2,10)));
end

See Also
mcc | run (TestRunner) | run (TestSuite) | runtests | runInParallel |
compiler.build.standaloneApplication

More About
• “Ways to Write Unit Tests” on page 36-198
• “Create Standalone Application from MATLAB” (MATLAB Compiler)

 Compile MATLAB Unit Tests

36-203

Generate Code Coverage Report in HTML Format
When you generate an HTML code coverage report using the CoverageReport class, the report
displays coverage metrics that let you perform a detailed analysis of the source code covered by your
tests. This topic provides an overview of the supported types of code coverage, as well as an example
of how to generate and analyze a coverage report.

Statement Coverage for MATLAB Source Code
Statement coverage identifies the source code statements that are executed when the tests run. Use
this type of coverage to see whether every statement in your source code is executed at least once.

To report statement coverage metrics, MATLAB divides the source code into statements that are
separated by a comma, semicolon, or newline character. For example, this code has three statements
that are terminated by a comma, semicolon, and newline character, respectively.

b = 1, a = 2 * (b + 10);
x = (b ~= 0) && (a/b > 18.5)

MATLAB divides control flow statements into smaller units for code coverage reporting. For example,
MATLAB reports coverage for five units in the following code: if x > 0, elseif x < 0, and three
calls to the disp function. To achieve 100% statement coverage, you need tests that execute each
unit.

if x > 0
 disp("x is positive.")
elseif x < 0
 disp("x is negative.")
else
 disp("x is either zero or NaN.")
end

A keyword followed by an expression forms a unit for which MATLAB reports coverage. Among
keywords that do not require an expression, MATLAB reports coverage for break, catch, continue,
return, and try, and ignores keywords such as else, end, and otherwise.

In general, MATLAB reports coverage for statements that perform some action on program data or
affect the flow of the program. It ignores code that defines functions, classes, or class members (such
as function [y1,...,yN] = myfun(x1,...,xM) or classdef MyClass).

Function Coverage for MATLAB Source Code
Function coverage identifies the functions defined in the source code that are executed when the
tests run. Use this type of coverage to see whether every function in your source code is called at
least once.

For example, the following code contains three defined functions: f, root, and square. To achieve
100% function coverage, you need tests that result in each of these functions being called.

function f(x)
if x >= 0
 root
else
 square

36 Unit Testing

36-204

end
disp(x)

 function root
 x = sqrt(x);
 end
 function square
 x = x.^2;
 end
end

Generate and Analyze HTML Coverage Report
This example shows how to generate and analyze an HTML code coverage report for the
QuadraticPolynomial class definition file. The class represents quadratic polynomials. Its
constructor first validates that the coefficients of the polynomial are numeric values and then uses
those values to initialize the class properties. The class includes the solve method to return the
roots of the specified quadratic polynomial, and the plot method to plot the polynomial around its
axis of symmetry. To view the complete code for QuadraticPolynomial, see “QuadraticPolynomial
Class Definition” on page 36-207.

In your current folder, save the QuadraticPolynomial class definition in a file named
QuadraticPolynomial.m. Then, create the QuadraticPolynomialTest test class in your current
folder. Add two Test methods to the class that test the solve method against real and imaginary
solutions.

classdef QuadraticPolynomialTest < matlab.unittest.TestCase
 methods(Test)
 function realSolution(testCase)
 p = QuadraticPolynomial(1,-3,2);
 actSolution = p.solve();
 expSolution = [1 2];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function imaginarySolution(testCase)
 p = QuadraticPolynomial(1,2,10);
 actSolution = p.solve();
 expSolution = [-1-3i -1+3i];
 testCase.verifyEqual(actSolution,expSolution)
 end
 end
end

At the command prompt, create a test suite from the QuadraticPolynomialTest class.

suite = testsuite("QuadraticPolynomialTest");

Create a test runner with a plugin that outputs an HTML code coverage report for the source code in
the file QuadraticPolynomial.m.

import matlab.unittest.plugins.CodeCoveragePlugin
runner = testrunner("textoutput");
runner.addPlugin(CodeCoveragePlugin.forFile("QuadraticPolynomial.m"))

Run the tests. The plugin generates a code coverage report in a temporary folder.

results = runner.run(suite);

 Generate Code Coverage Report in HTML Format

36-205

Running QuadraticPolynomialTest
..
Done QuadraticPolynomialTest

Code coverage report has been saved to:
 C:\TEMP\tp16c9a437_b675_4739_a5de_338f0063ddb5\index.html

Open the report, which displays statement and function coverage metrics, and uses different colors to
highlight the executed or missed statements and functions. In this example, the function coverage is
75% because the tests miss one of the four methods in the class (plot). Additionally, the statement
coverage is low because the tests miss the code that throws an error and the code within the plot
method.

You can achieve 100% statement and function coverage by adding a Test method that tests against
nonnumeric inputs and another Test method that tests properties of a plotted polynomial.

36 Unit Testing

36-206

classdef QuadraticPolynomialTest < matlab.unittest.TestCase
 methods(Test)
 function realSolution(testCase)
 p = QuadraticPolynomial(1,-3,2);
 actSolution = p.solve();
 expSolution = [1 2];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function imaginarySolution(testCase)
 p = QuadraticPolynomial(1,2,10);
 actSolution = p.solve();
 expSolution = [-1-3i -1+3i];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function nonnumericInput(testCase)
 testCase.verifyError(@()QuadraticPolynomial(1,"-3",2), ...
 "QuadraticPolynomial:InputMustBeNumeric")
 end
 function plotPolynomial(testCase)
 p = QuadraticPolynomial(1,-3,2);
 fig = figure;
 testCase.addTeardown(@close,fig)
 ax = axes(fig);
 p.plot(ax)
 actYLabelText = ax.YLabel.String;
 expYLabelText = '1.00x^2-3.00x+2.00';
 testCase.verifyEqual(actYLabelText,expYLabelText)
 end
 end
end

QuadraticPolynomial Class Definition
This code provides the complete contents of the QuadraticPolynomial class.

classdef QuadraticPolynomial
 properties
 A,B,C % Coefficients of a*x^2 + b*x + c
 end

 methods
 function obj = QuadraticPolynomial(a,b,c)
 if ~isa(a,"numeric") || ~isa(b,"numeric") || ~isa(c,"numeric")
 error("QuadraticPolynomial:InputMustBeNumeric", ...
 "Coefficients must be numeric.")
 else
 obj.A = a; obj.B = b; obj.C = c;
 end
 end

 function roots = solve(obj)
 % Return solutions to a*x^2 + b*x + c = 0
 delta = calculateDelta(obj);
 roots(1) = (-obj.B - sqrt(delta)) / (2*obj.A);
 roots(2) = (-obj.B + sqrt(delta)) / (2*obj.A);
 end

 Generate Code Coverage Report in HTML Format

36-207

 function plot(obj,ax)
 % Plot a*x^2 + b*x + c around its axis of symmetry
 delta = calculateDelta(obj);
 x0 = -obj.B/(2*obj.A);
 x1 = abs(sqrt(delta))/obj.A;
 x = x0 + linspace(-x1,x1);
 y = obj.A*x.^2 + obj.B*x + obj.C;
 plot(ax,x,y)
 xlabel("x")
 ylabel(sprintf("%.2fx^2%+.2fx%+.2f",obj.A,obj.B,obj.C))
 end
 end

 methods (Access = private)
 function delta = calculateDelta(obj)
 delta = obj.B^2 - 4*obj.A*obj.C;
 end
 end
end

See Also
matlab.unittest.plugins.CodeCoveragePlugin |
matlab.unittest.plugins.codecoverage.CoverageReport |
matlab.unittest.plugins.codecoverage.CoberturaFormat

Related Examples
• “Profile Your Code to Improve Performance” on page 30-4

36 Unit Testing

36-208

Insert Test Code Using Editor
MATLAB lets you create and run test classes interactively. You can create a test class from a
template, and then use the code insertion options in the toolstrip to add methods and
parameterization properties to the class. You can choose whether to add a method or property at the
test level, method-setup level, or class-setup level.

This example shows how to use the MATLAB Editor to write and run a simple parameterized test for a
function. To set up the example, define the cleanData function in a file named cleanData.m in your
current folder. The function accepts a numeric array and returns a cleaned and sorted version of the
array. It vectorizes the array, removes the NaN, 0, and Inf entries, and finally sorts the vector.

function y = cleanData(X)
 y = X(:); % Vectorize the array
 y = rmmissing(y); % Remove NaN entries
 % Remove 0 and Inf entries
 idx = (y == 0 | y == Inf);
 y = y(~idx);
 % If the vector is empty, set it to eps
 if isempty(y)
 y = eps;
 end
 y = sort(y); % Sort the vector
end

Create Test Class
To test the cleanData function, create a test class from a template. On the Editor tab, select New >
Test Class. Name the class CleanDataTest, and save it in a file named CleanDataTest.m in your
current folder.

The template provides a TestClassSetup methods block, a TestMethodSetup methods block,
and a Test methods block that defines a simple Test method. The test class in this example
requires one test-level parameterization property and two parameterized Test methods. Because it
does not require any setup and teardown code, remove the TestClassSetup and
TestMethodSetup methods blocks.

classdef CleanDataTest < matlab.unittest.TestCase

 methods (Test)
 % Test methods

 function unimplementedTest(testCase)
 testCase.verifyFail("Unimplemented test");
 end
 end

end

Add Parameters and Methods
Starting in R2022b, when you save or open a test class definition file, the Test section appears on the
Editor tab. Use this section to insert code that defines a method or parameterization property:

 Insert Test Code Using Editor

36-209

•
To insert code that defines a Test method, click . To access the full list of options, click Insert
Method. These options let you add a method at the test level, method-setup level, or class-setup
level. You can change the name of the method and implement it after it is inserted.

•
To insert code that defines a test-level parameterization property, click . To access the full list
of options, click Insert Parameters. These options let you add a property at the test level,
method-setup level, or class-setup level. You can change the name and value of the property after
it is inserted.

When you insert code for a method or property at the test level, method-setup level, or class-setup
level, the code is added to the methods or properties block with the corresponding attribute. If the
block does not exist, MATLAB creates it.

Add data Property

To test the cleanData function with different inputs, add a test-level parameterization property to
the CleanDataTest class. With the test class code visible in the Editor, go to the Editor tab and in

the Test section, click . MATLAB adds a property in a properties block with the
TestParameter attribute. Rename the property as data and initialize it using a structure with four
fields. The testing framework generates parameter names and values from the property value. For
more information about parameterized tests, see “Use Parameters in Class-Based Tests” on page 36-
62.

classdef CleanDataTest < matlab.unittest.TestCase

 properties (TestParameter)
 data = struct("empty",[],"scalar",0, ...
 "vector",[13 NaN 0],"matrix",[NaN 2 0; 1 Inf 3]);
 end

 methods (Test)
 % Test methods

 function unimplementedTest(testCase)
 testCase.verifyFail("Unimplemented test");
 end
 end

end

Add sortTest Method

The test class template includes a simple Test method named unimplementedTest. Modify this
method to test an aspect of the cleanData function:

1 Rename the method as sortTest.

36 Unit Testing

36-210

2 Parameterize the method by passing the data property as the second input argument to the
method.

3 Add code to the method to verify that the cleanData function correctly sorts the array passed to
it.

classdef CleanDataTest < matlab.unittest.TestCase

 properties (TestParameter)
 data = struct("empty",[],"scalar",0, ...
 "vector",[13 NaN 0],"matrix",[NaN 2 0; 1 Inf 3]);
 end

 methods (Test)
 % Test methods

 function sortTest(testCase,data)
 actual = cleanData(data);
 testCase.verifyTrue(issorted(actual))
 end
 end

end

Add nonemptyTest Method

To test if the cleanData function returns a nonempty value, add another Test method to the class

by clicking in the Test section. Implement the method by following these steps:

1 Rename the method as nonemptyTest.
2 Parameterize the method by passing the data property as the second input argument to the

method.
3 Add code to the method to verify that the cleanData function returns a nonempty value.

Save the file. This code provides the complete contents of the CleanDataTest class.

classdef CleanDataTest < matlab.unittest.TestCase

 properties (TestParameter)
 data = struct("empty",[],"scalar",0, ...
 "vector",[13 NaN 0],"matrix",[NaN 2 0; 1 Inf 3]);
 end

 methods (Test)
 % Test methods

 function sortTest(testCase,data)
 actual = cleanData(data);
 testCase.verifyTrue(issorted(actual))
 end
 function nonemptyTest(testCase,data)
 actual = cleanData(data);
 testCase.verifyNotEmpty(actual)
 end
 end

end

 Insert Test Code Using Editor

36-211

Run Tests in Test Class
You can run the tests in the CleanDataTest class interactively. With the test class code visible in the

Editor, go to the Editor tab and in the Run section, click . In this example, all the tests pass.

For more information on how to run tests and customize your test run interactively, see “Run Tests in
Editor” on page 36-17.

See Also
matlab.unittest.TestCase

Related Examples
• “Author Class-Based Unit Tests in MATLAB” on page 36-36
• “Use Parameters in Class-Based Tests” on page 36-62
• “Run Tests in Editor” on page 36-17

36 Unit Testing

36-212

Develop and Integrate Software with Continuous Integration
Continuous integration (CI) is the practice of integrating code changes into a shared repository on a
frequent basis. It improves team throughput and software quality by automating and standardizing
activities such as building code, testing, and packaging. For example, each time a developer pushes
new committed changes to the remote repository, the continuous integration platform can
automatically run a suite of tests to ensure that the changes do not cause any conflicts in the target
branch of the remote repository.

The benefits of continuous integration include:

• Finding problems in software and fixing them soon after they are introduced.
• Adding more features while reducing the resources required for debugging code.
• Minimizing integration and deployment overheads by performing integration on a continuous

basis.
• Clearly communicating the state of software and the changes that have been made to it.

Continuous Integration Workflow
A typical software development workflow using continuous integration involves several steps:

1 Cloning the remote repository and creating a feature branch
2 Editing files and committing the changes to the local repository
3 Pushing the committed changes to the remote repository (which triggers an automated pipeline

of tasks such as compiling MEX files, running tests, and packaging toolboxes on the CI platform)
4 Analyzing the reports generated by the CI platform and fixing the errors within the pipeline
5 Merging the remote feature branch into the main branch through a pull request (which triggers

another automated pipeline of tasks on the CI platform)
6 Analyzing the reports generated by the CI platform and resolving the merge failures

This figure shows an example of the development cycle using the Jenkins CI server and open-source
source code management tools such as Git and GitHub. For information on how to interface MATLAB
with Jenkins, see Run MATLAB Tests on Jenkins Server.

 Develop and Integrate Software with Continuous Integration

36-213

https://github.com/jenkinsci/matlab-plugin/blob/master/examples/Run-MATLAB-Tests.md

Phase 1: Develop and Qualify Feature in Local Repository

Develop a feature and commit your changes to the local repository:

1 Clone the GitHub repository and create a new feature branch.
2 Make changes to the existing files or add new files as appropriate.
3 Run MATLAB and Simulink tests to qualify the changes and commit them to the local repository.

Phase 2: Run Automated Pipeline on Continuous Integration Platform

Run an automated pipeline of tasks (including testing) when you push your changes to the remote
repository or when you make a pull request:

1 Trigger an automated pipeline of tasks on Jenkins by pushing the committed changes to GitHub
or by making a pull request to merge the remote feature branch into the main branch.

2 Jenkins runs the automated pipeline, including MATLAB and Simulink tests, and generates
artifacts as specified in the project configuration.

36 Unit Testing

36-214

Phase 3: Investigate and Resolve Failures

If you do not succeed in pushing your changes or making a pull request, follow these steps:

1 Inspect the automated pipeline results and the generated test artifacts. Make appropriate
changes to your code.

2 Trigger a new pipeline on Jenkins by pushing your changes to GitHub or by making a pull
request.

Integration engineers can use Jenkins test artifacts to decide when to merge the feature branch into
the main branch.

Continuous Integration with MathWorks Products
You can perform continuous integration with MATLAB on various continuous integration platforms.
You can run and test your MATLAB code and Simulink models, generate artifacts, and publish your
results to the platforms. For more information, see “Continuous Integration with MATLAB on CI
Platforms” on page 36-221.

In addition to MATLAB, different toolboxes support continuous integration workflows. This table lists
common continuous integration use cases for models and code.

Toolbox Use Case More Information
Simulink • Build and test models and

projects
• Cache files for simulation

and code generation

“About Source Control with
Projects” (Simulink)

“Using a Project with Git”
(Simulink)

“Share Simulink Cache Files for
Faster Simulation” (Simulink)

“Simulink Model Comparison
for GitHub Pull Requests”
(Simulink)

Simulink Test™ Run test files on CI platforms
and collect CI-compatible
coverage using Simulink
Coverage™

“Continuous Integration”
(Simulink Test)

Simulink Check™ Use Jenkins to detect metric
threshold violations in a model

“Fix Metric Threshold Violations
in a Continuous Integration
Systems Workflow” (Simulink
Check)

Requirements Toolbox™ Summarize requirements
verification results for tests run
on CI platforms

“Include Results from External
Sources in Verification Status”
(Requirements Toolbox)

 Develop and Integrate Software with Continuous Integration

36-215

Toolbox Use Case More Information
Polyspace® Bug Finder™
Server™, Polyspace Code Prover™
Server

• Run a Polyspace analysis on
C/C++ code as part of
continuous integration, for
instance with Jenkins

• Upload the analysis results
(bugs, run-time errors, or
coding standard violations)
for review in the Polyspace
Access web interface

• Send e-mail notifications
with Polyspace Bug Finder
or Polyspace Code Prover
results

“Set Up Bug Finder Analysis on
Servers During Continuous
Integration” (Polyspace Bug
Finder)

“Set Up Code Prover Analysis
on Servers During Continuous
Integration” (Polyspace Code
Prover)

See Also
matlab.unittest.plugins Package

More About
• “Set Up Git Source Control” on page 35-12
• “Use Source Control with Projects” on page 34-52
• “Explore an Example Project” on page 34-69
• “Continuous Integration with MATLAB on CI Platforms” on page 36-221

External Websites
• MathWorks Blogs: Developer Zone – Continuous Integration

36 Unit Testing

36-216

https://blogs.mathworks.com/developer/category/continuous-integration/

Generate Artifacts Using MATLAB Unit Test Plugins

The MATLAB® unit testing framework enables you to customize your test runner using the plugin
classes in the matlab.unittest.plugins package. You can use some of these plugin classes to
generate test reports and artifacts compatible with continuous integration (CI) platforms:

• matlab.unittest.plugins.TestReportPlugin creates a plugin that directs the test runner
to produce a test result report. Using this plugin, you can produce readable and archivable test
reports.

• matlab.unittest.plugins.TAPPlugin creates a plugin that produces a Test Anything
Protocol (TAP) stream.

• matlab.unittest.plugins.XMLPlugin creates a plugin that produces JUnit-style XML output.
• matlab.unittest.plugins.CodeCoveragePlugin creates a plugin that produces a coverage

report for MATLAB source code.

You also can generate CI-compatible artifacts when you run Simulink® Test™ test cases. For more
information, see “Output Results for Continuous Integration Systems” (Simulink Test).

Run Tests with Customized Test Runner

This example shows how to create a test suite and customize the test runner to report on test run
progress and produce CI-compatible artifacts.

In a file in your current folder, create the function quadraticSolver, which returns the roots of
quadratic polynomials.

function roots = quadraticSolver(a,b,c)
% quadraticSolver returns solutions to the
% quadratic equation a*x^2 + b*x + c = 0.

if ~isa(a,"numeric") || ~isa(b,"numeric") || ~isa(c,"numeric")
 error("quadraticSolver:InputMustBeNumeric", ...
 "Coefficients must be numeric.")
end

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);
roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

end

To test quadraticSolver, create the test class SolverTest in your current folder.

classdef SolverTest < matlab.unittest.TestCase
 methods(Test)
 function realSolution(testCase)
 actSolution = quadraticSolver(1,-3,2);
 expSolution = [2 1];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function imaginarySolution(testCase)
 actSolution = quadraticSolver(1,2,10);

 Generate Artifacts Using MATLAB Unit Test Plugins

36-217

 expSolution = [-1+3i -1-3i];
 testCase.verifyEqual(actSolution,expSolution)
 end
 function nonnumericInput(testCase)
 testCase.verifyError(@()quadraticSolver(1,"-3",2), ...
 "quadraticSolver:InputMustBeNumeric")
 end
 end
end

At the command prompt, create a test suite from the SolverTest class.

suite = testsuite("SolverTest");

Create a TestRunner instance that produces output using the
matlab.unittest.TestRunner.withTextOutput method. This method enables you to set the
maximum verbosity level for logged diagnostics and the display level for test event details. In this
example, the test runner displays test run progress at the
matlab.unittest.Verbosity.Detailed level (level 3).

import matlab.unittest.TestRunner
runner = TestRunner.withTextOutput("OutputDetail",3);

Create a TestReportPlugin instance that sends output to the file testreport.pdf and add the
plugin to the test runner.

import matlab.unittest.plugins.TestReportPlugin
pdfFile = "testreport.pdf";
p1 = TestReportPlugin.producingPDF(pdfFile);
runner.addPlugin(p1)

Create an XMLPlugin instance that writes JUnit-style XML output to the file
junittestresults.xml. Then, add the plugin to the test runner.

import matlab.unittest.plugins.XMLPlugin
xmlFile = "junittestresults.xml";
p2 = XMLPlugin.producingJUnitFormat(xmlFile);
runner.addPlugin(p2)

Create a plugin that outputs a Cobertura code coverage report for the source code in the file
quadraticSolver.m. Instruct the plugin to write its output to the file cobertura.xml and add the
plugin to the test runner.

import matlab.unittest.plugins.CodeCoveragePlugin
import matlab.unittest.plugins.codecoverage.CoberturaFormat
sourceCodeFile = "quadraticSolver.m";
reportFile = "cobertura.xml";
reportFormat = CoberturaFormat(reportFile);
p3 = CodeCoveragePlugin.forFile(sourceCodeFile,"Producing",reportFormat);
runner.addPlugin(p3)

Run the tests.

results = runner.run(suite)

 Running SolverTest
 Setting up SolverTest

36 Unit Testing

36-218

 Done setting up SolverTest in 0 seconds
 Running SolverTest/realSolution
 Done SolverTest/realSolution in 0.0074445 seconds
 Running SolverTest/imaginarySolution
 Done SolverTest/imaginarySolution in 0.0040311 seconds
 Running SolverTest/nonnumericInput
 Done SolverTest/nonnumericInput in 0.014596 seconds
 Tearing down SolverTest
 Done tearing down SolverTest in 0 seconds
 Done SolverTest in 0.026071 seconds

Generating test report. Please wait.
 Preparing content for the test report.
 Adding content to the test report.
 Writing test report to file.
Test report has been saved to:
 C:\work\testreport.pdf

results =

 1×3 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 3 Passed, 0 Failed, 0 Incomplete.
 0.026071 seconds testing time.

List the files in your current folder. The three specified artifacts are stored in your current folder.

dir

.

..
GenerateArtifactsUsingMATLABUnitTestPluginsExample.m
SolverTest.m
cobertura.xml
doc
html
junittestresults.xml
metadata
quadraticSolver.m
testreport.pdf

You can process the generated artifacts on CI platforms. You also can view the contents of the
generated artifacts. For example, open the PDF test report.

 Generate Artifacts Using MATLAB Unit Test Plugins

36-219

open("testreport.pdf")

See Also
matlab.unittest.TestRunner | matlab.unittest.plugins Package |
matlab.unittest.plugins.TAPPlugin | matlab.unittest.plugins.XMLPlugin |
matlab.unittest.plugins.CodeCoveragePlugin |
matlab.unittest.plugins.TestReportPlugin

More About
• “Develop and Integrate Software with Continuous Integration” on page 36-213
• “Continuous Integration with MATLAB on CI Platforms” on page 36-221
• “Output Results for Continuous Integration Systems” (Simulink Test)

36 Unit Testing

36-220

Continuous Integration with MATLAB on CI Platforms
You can use different continuous integration (CI) platforms to run MATLAB code and Simulink models
as part of your automated pipeline of tasks. In addition, the MATLAB unit testing framework enables
you to create a test suite and a test runner, and customize your test runner for continuous integration
workflows with the plugin classes in the matlab.unittest.plugins package.

To facilitate running and testing software with continuous integration, MATLAB seamlessly integrates
with several CI platforms, such as Azure DevOps, CircleCI®, and Jenkins. You can use these platforms
to:

• Run MATLAB scripts, functions, and statements in your pipeline.
• Run MATLAB and Simulink tests and generate artifacts, such as JUnit test results and Cobertura

code coverage reports.

Depending on the CI platform, you might:

• Configure your pipeline using a script or user interface.
• Set up the platform to run MATLAB on premises or in the cloud.

Azure DevOps
To perform continuous integration with MATLAB on Azure DevOps, install an extension to your Azure
DevOps organization. To run MATLAB in your pipeline, use the extension to author your pipeline
YAML in a file named azure-pipelines.yml in the root of your repository. You can run your
pipeline using a Linux agent in the cloud or a self-hosted agent. For more information, see the
extension on Visual Studio Marketplace.

Bamboo
To perform continuous Integration with MATLAB on Bamboo, install a plugin on your Bamboo CI
server. The plugin provides you with tasks to run MATLAB scripts, functions, statements, and tests as
part of your build. For more information, see Continuous Integration with MATLAB on Bamboo.

CircleCI
To perform continuous Integration with MATLAB on CircleCI, opt-in to using third-party orbs in your
organization security settings. To run MATLAB in your pipeline, import the appropriate orb to author
your pipeline YAML in a file named .circleci/config.yml in the root of your repository. You can
run your pipeline using a Linux machine executor in the cloud. For more information, see the orb on
CircleCI Orb Registry.

GitHub Actions
To perform continuous integration with MATLAB on GitHub Actions, make sure GitHub Actions is
enabled for your repository. To run MATLAB in your workflow, use the appropriate actions when you
define your workflow in the .github/workflows directory of your repository. You can run your
workflow using a Linux runner in the cloud or a self-hosted runner. For more information, see Use
MATLAB with GitHub Actions.

 Continuous Integration with MATLAB on CI Platforms

36-221

https://marketplace.visualstudio.com/items?itemName=MathWorks.matlab-azure-devops-extension
https://github.com/mathworks/matlab-bamboo-plugin/blob/main/README.md
https://circleci.com/developer/orbs/orb/mathworks/matlab
https://circleci.com/developer/orbs/orb/mathworks/matlab
https://github.com/matlab-actions/overview/blob/main/README.md
https://github.com/matlab-actions/overview/blob/main/README.md

GitLab CI/CD
To perform continuous integration with MATLAB on GitLab CI/CD, you can use a template to author
your pipeline YAML in a file named .gitlab-ci.yml in the root of your repository. The template
provides you with jobs to run MATLAB scripts, functions, statements, and tests as part of your build.
For more information, see Use MATLAB with GitLab CI/CD.

Jenkins
To perform continuous integration with MATLAB on Jenkins, install a plugin on your Jenkins agent.
Then, you can use an interface to run MATLAB in freestyle and multi-configuration (matrix) projects.
You also can configure your pipeline as code checked into source control. For more information, see
the plugin on Jenkins Plugins Index.

Travis CI
To perform continuous integration with MATLAB on Travis CI, specify the MATLAB language when
you author your pipeline YAML in a file named .travis.yml in the root of your repository. You can
run your pipeline using a Linux agent in the cloud. For more information, see the language in Travis
CI Documentation.

Other Platforms
To perform continuous integration with MATLAB on other CI platforms, use the matlab command
with the -batch option in your pipeline. You can use matlab -batch to run MATLAB scripts,
functions, and statements noninteractively. For example, matlab -batch "myscript" starts
MATLAB noninteractively and runs the commands in a file named myscript.m. MATLAB terminates
automatically with exit code 0 if the specified script, function, or statement executes successfully
without error. Otherwise, MATLAB terminates with a nonzero exit code.

See Also
matlab.unittest.plugins Package

More About
• “Develop and Integrate Software with Continuous Integration” on page 36-213
• “Generate Artifacts Using MATLAB Unit Test Plugins” on page 36-217

External Websites
• Continuous Integration Examples for MATLAB

36 Unit Testing

36-222

https://github.com/mathworks/matlab-gitlab-ci-template/blob/main/README.md
https://plugins.jenkins.io/matlab/
https://docs.travis-ci.com/user/languages/matlab/
https://docs.travis-ci.com/user/languages/matlab/
https://github.com/mathworks/ci-configuration-examples

Build Automation

• “Overview of MATLAB Build Tool” on page 37-2
• “Create and Run Tasks Using Build Tool” on page 37-4

37

Overview of MATLAB Build Tool
The build tool provides a standard programming interface to create and run software-build tasks in a
uniform and efficient way. For example, you can create tasks that identify code issues, run tests, and
package a toolbox in a single build file in your project root folder, and then invoke the build tool to
run these tasks.

Create Plan with Tasks
The recommended approach to defining a build is to create a build file with a main function and task
functions. A build file creates a plan that contains the tasks. Each task in the plan represents a single
unit of work in a build and has three fundamental characteristics:

• Name — The name of a task uniquely identifies the task in the plan.
• Dependencies — The dependencies of a task are other tasks in the plan that must run before the

task runs.
• Actions — The actions of a task define functions that execute when the task runs.

To create a plan with tasks using a build file, implement these functions in the build file:

• Main function — Create a plan containing the tasks that correspond to the task functions with
buildplan(localfunctions). Additionally, you can specify any default tasks or task
dependencies.

• Task functions — Specify the name, optional description, and action of each task. Task functions
are local functions in the build file whose names end with the word "Task", which is case
insensitive.

For example, in your current folder, create the file buildfile.m with a main function and three task
functions.

function plan = buildfile
plan = buildplan(localfunctions);
plan.DefaultTasks = "archive";
plan("archive").Dependencies = ["check" "test"];
end

function checkTask(~)
% Identify code issues
issues = codeIssues;
assert(isempty(issues.Issues),formattedDisplayText(issues.Issues))
end

function testTask(~)
% Run unit tests
results = runtests(IncludeSubfolders=true,OutputDetail="terse");
assertSuccess(results);
end

function archiveTask(~)
% Create archive for sharing
zipFileName = "source_" + ...
 string(datetime("now",Format="yyyyMMdd'T'HHmmss"));
zip(zipFileName,"*")
end

37 Build Automation

37-2

For more information on how to create a build file, see “Create and Run Tasks Using Build Tool” on
page 37-4.

Run Tasks in Plan
You can run the tasks in your plan with either the buildtool command or the run method of the
matlab.buildtool.Plan class:

• buildtool command — Use this command to run the tasks defined in the file buildfile.m in
your current folder. You also can use the command buildtool -tasks to list the tasks in your
plan. Do not use buildtool if you create or modify your plan outside of the file buildfile.m in
your current folder, or if you want to programmatically access the result of the build.

• run method — Use this method if you create or modify your plan outside of the file buildfile.m
in your current folder, or if you want to programmatically access the result of the build. The
method returns a matlab.buildtool.BuildResult object, which includes information about
the build as well as each task that was expected to run.

To run a task, the build runner first runs all its dependencies and then performs actions of the task in
the order they appear in the Actions property of the corresponding Task object.

For example, run the default task in the plan created by the file buildfile.m in your current folder.
The build tool first runs the "check" and "test" tasks because the "archive" task depends on
them. Your results might vary, depending on the files contained in your current folder and its
subfolders.

buildtool

** Starting check
** Finished check

** Starting test
...
** Finished test

** Starting archive
** Finished archive

See Also
buildplan | buildtool | codeIssues

More About
• “Create and Run Tasks Using Build Tool” on page 37-4

 Overview of MATLAB Build Tool

37-3

Create and Run Tasks Using Build Tool
The build tool provides a standard programming interface to create and run software-build tasks,
such as identifying code issues, running tests, and packaging a toolbox. This example shows how to
use the build tool to create a simple plan with tasks, visualize task dependencies, and then run the
tasks. In this example, you create a build file containing one main function and three local functions.
The main function creates a plan of tasks whose actions are specified by the local functions. When
you invoke the build tool on the build file, it runs the tasks by taking into account their dependencies.

Create Build File
In your current folder, create a build file named buildfile.m that contains a main function and
three local functions. Use the main function to create the plan and specify the default task and task
dependencies. Use the local functions to specify the action each task performs when it runs. For the
complete code in the build file, see “Summary of Build File” on page 37-5.

Add Main Function

In the build file, define a main function that creates a plan using the buildplan function. Call the
buildplan function with localfunctions as the input so that the build tool adds tasks to the plan
based on the local task functions you define.

function plan = buildfile
plan = buildplan(localfunctions);
end

The main function of the build file returns a Plan object that contains the Task objects
corresponding to the task functions.

Add Task Functions

Specify the tasks in the plan by adding task functions to the build file. Task functions are local
functions in the build file whose names end with the word "Task", which is case insensitive. Make
sure the first input to the task function is a TaskContext object, which the task can ignore if its
action does not require it. The build tool automatically creates this object, which includes information
about the plan as well as the task being run.

For example, add a task function to identify code issues in the current folder and its subfolders and
fail the build if any issues are found.

function checkTask(~)
% Identify code issues
issues = codeIssues;
assert(isempty(issues.Issues),formattedDisplayText(issues.Issues))
end

Add a task function to run the tests in the current folder and its subfolders and fail the build if any of
the tests fail.

function testTask(~)
% Run unit tests
results = runtests(IncludeSubfolders=true,OutputDetail="terse");
assertSuccess(results);
end

37 Build Automation

37-4

Add a task function to create an archive of the current folder for sharing.

function archiveTask(~)
% Create archive for sharing
zipFileName = "source_" + ...
 string(datetime("now",Format="yyyyMMdd'T'HHmmss"));
zip(zipFileName,"*")
end

Specify Default Tasks and Task Dependencies

After adding the task functions, specify the default task and task dependencies in the main function.
The name of the task is the name of the task function without the "Task" suffix. For example, the task
function archiveTask results in a task named "archive". Make the "archive" task the default
task in the plan. Also, make the "archive" task dependent on the "check" and "test" tasks. The
order of task names does not matter. Before the build tool runs a task, it first runs its depended-on
tasks.

function plan = buildfile
plan = buildplan(localfunctions);
plan.DefaultTasks = "archive";
plan("archive").Dependencies = ["check" "test"];
end

Summary of Build File
This code shows the complete contents of the file buildfile.m in your current folder.

function plan = buildfile
plan = buildplan(localfunctions);
plan.DefaultTasks = "archive";
plan("archive").Dependencies = ["check" "test"];
end

function checkTask(~)
% Identify code issues
issues = codeIssues;
assert(isempty(issues.Issues),formattedDisplayText(issues.Issues))
end

function testTask(~)
% Run unit tests
results = runtests(IncludeSubfolders=true,OutputDetail="terse");
assertSuccess(results);
end

function archiveTask(~)
% Create archive for sharing
zipFileName = "source_" + ...
 string(datetime("now",Format="yyyyMMdd'T'HHmmss"));
zip(zipFileName,"*")
end

 Create and Run Tasks Using Build Tool

37-5

Visualize Task Dependencies
To visualize the task dependencies, you can create a dependency graph of the plan using the plot
method. Graph nodes represent tasks and edges represent dependencies. In this case, there are three
tasks and two dependencies.

plan = buildfile;
plot(plan)

When calling the main function of the build file directly, make sure your current folder is the folder
containing the build file so that any relative paths used by the main function resolve correctly.
Alternatively, use the load static method to load a plan from the build file.

Run Tasks in Plan
When you create a plan with tasks using the file buildfile.m in your current folder, you can list or
run the tasks in the plan with the buildtool command.

First, list the available tasks. The list includes task names and descriptions. The build tool treats the
first help text line, often called the H1 line, of the task function as the task description.

buildtool -tasks

archive - Create archive for sharing
check - Identify code issues
test - Run unit tests

37 Build Automation

37-6

Run the "test" task. The build tool performs the action specified by the testTask task function. In
this example, all the tests pass, and the task runs successfully. Your results might vary, depending on
the tests contained in your current folder and its subfolders.

buildtool test

** Starting test
...
** Finished test

Now, run the default task in the plan. When you invoke the build tool without specifying a task, the
build tool runs the default tasks. In this example, the build tool first runs both dependencies of the
"archive" task and then performs the action specified by the archiveTask task function.

buildtool

** Starting check
** Finished check

** Starting test
...
** Finished test

** Starting archive
** Finished archive

Alternatively, if you want to programmatically access the result of the build, use the run method to
run the plan.

result = run(plan);

See Also
buildplan | buildtool | matlab.buildtool.Plan | matlab.buildtool.Task

More About
• “Overview of MATLAB Build Tool” on page 37-2

 Create and Run Tasks Using Build Tool

37-7

System object Usage and Authoring

• “What Are System Objects?” on page 38-2
• “System Objects vs MATLAB Functions” on page 38-5
• “System Design in MATLAB Using System Objects” on page 38-7
• “Define Basic System Objects” on page 38-11
• “Change the Number of Inputs” on page 38-13
• “Validate Property and Input Values” on page 38-16
• “Initialize Properties and Setup One-Time Calculations” on page 38-18
• “Set Property Values at Construction Time” on page 38-20
• “Reset Algorithm and Release Resources” on page 38-22
• “Define Property Attributes” on page 38-24
• “Hide Inactive Properties” on page 38-26
• “Limit Property Values to Finite List” on page 38-28
• “Process Tuned Properties” on page 38-32
• “Define Composite System Objects” on page 38-34
• “Define Finite Source Objects” on page 38-36
• “Save and Load System Object” on page 38-38
• “Define System Object Information” on page 38-41
• “Handle Input Specification Changes” on page 38-43
• “Summary of Call Sequence” on page 38-45
• “Detailed Call Sequence” on page 38-48
• “Tips for Defining System Objects” on page 38-50
• “Insert System Object Code Using MATLAB Editor” on page 38-53
• “Analyze System Object Code” on page 38-58
• “Use Global Variables in System Objects” on page 38-61
• “Create Moving Average System Object” on page 38-65
• “Create New System Objects for File Input and Output” on page 38-70
• “Create Composite System Object” on page 38-76

38

What Are System Objects?
In this section...
“Running a System Object” on page 38-3
“System Object Functions” on page 38-3

A System object is a specialized MATLAB object. Many toolboxes include System objects. System
objects are designed specifically for implementing and simulating dynamic systems with inputs that
change over time. Many signal processing, communications, and controls systems are dynamic. In a
dynamic system, the values of the output signals depend on both the instantaneous values of the
input signals and on the past behavior of the system. System objects use internal states to store that
past behavior, which is used in the next computational step. As a result, System objects are optimized
for iterative computations that process large streams of data in segments, such as video and audio
processing systems. This ability to process streaming data provides the advantage of not having to
hold large amounts of data in memory. Use of streaming data also allows you to use simplified
programs that use loops efficiently.

For example, you could use System objects in a system that reads data from a file, filters that data
and then writes the filtered output to another file. Typically, a specified amount of data is passed to
the filter in each loop iteration. The file reader object uses a state to track where in the file to begin
the next data read. Likewise, the file writer object tracks where it last wrote data to the output file so
that data is not overwritten. The filter object maintains its own internal states to ensure that the
filtering is performed correctly. This diagram represents a single loop of the system.

These advantages make System objects well suited for processing streaming data.

Many System objects support:

• Fixed-point arithmetic (requires a Fixed-Point Designer™ license)
• C code generation (requires a MATLAB Coder™ or Simulink Coder license)
• HDL code generation (requires an HDL Coder™ license)
• Executable files or shared libraries generation (requires a MATLAB Compiler license)

Note Check the product documentation to confirm fixed-point, code generation, and MATLAB
Compiler support for the specific System objects you want to use.

System objects use a minimum of two commands to process data:

• Creation of the object (such as, fft256 = dsp.FFT)
• Running data through the object (such as, fft256(x))

This separation of creation from execution lets you create multiple, persistent, reusable objects, each
with different settings. Using this approach avoids repeated input validation and verification, allows

38 System object Usage and Authoring

38-2

for easy use within a programming loop, and improves overall performance. In contrast, MATLAB
functions must validate parameters every time you call the function.

In addition to the System objects provided with System Toolboxes, you can create your own System
objects. See “Create System Objects”.

Running a System Object
To run a System object and perform the operation defined by its algorithm, you call the object as if it
were a function. For example, to create an FFT object that uses the dsp.FFT System object, specifies
a length of 1024, and names it dft, use:

dft = dsp.FFT('FFTLengthSource','Property','FFTLength',1024);

To run this object with the input x, use:

dft(x);

If you run a System object without any input arguments, you must include empty parentheses. For
example, asysobj().

When you run a System object, it also performs other important tasks related to data processing,
such as initialization and handling object states.

Note An alternative way to run a System object is to use the step function. For example, for an
object created using dft = dsp.FFT, you can run it using step(dft,x).

System Object Functions
After you create a System object, you use various object functions to process data or obtain
information from or about the object. The syntax for using functions is <object function
name>(<system object name>), plus possible extra input arguments. For example, for
txfourier = dsp.FFT, where txfourier is a name you assign, you call the reset function using
reset(txfourier).

Common Object Functions

All System objects support the following object functions. In cases where a function is not applicable
to a particular object, calling that function has no effect on the object.

 What Are System Objects?

38-3

Function Description
Run the object function, or
step

Runs the object to process data using the algorithm defined by that
object.

Example: For the object dft = dsp.FFT;, run the object via:

• y = dft(x)
• y = step(dft,x)

As part of this processing, the object initializes resources, returns
outputs, and updates the object states as necessary. During execution,
you can change only tunable properties. Both ways of running a System
object return regular MATLAB variables.

release Release resources and allow changes to System object property values
and additional characteristics that are limited while the System object is
in use.

reset Resets the System object to the initial values for that object.
nargin Returns the number of inputs accepted by the System object algorithm

definition. If the algorithm definition includes varargin, the nargin
output is negative.

nargout Returns the number of outputs accepted by the System object algorithm
definition. If the algorithm definition includes varargout, the nargout
output is negative.

clone Creates another object of the same type with the same property values
isLocked Returns a logical value indicating whether the object has been called

and you have not yet called release on the object.
isDone Applies only to source objects that inherit from

matlab.system.mixin.FiniteSource. Returns a logical value
indicating whether the end of the data file has been reached. If a
particular object does not have end-of-data capability, this function
value always returns false.

See Also
matlab.System

Related Examples
• “System Objects vs MATLAB Functions” on page 38-5
• “System Design in MATLAB Using System Objects” on page 38-7
• “System Design in Simulink Using System Objects” (Simulink)

38 System object Usage and Authoring

38-4

System Objects vs MATLAB Functions
In this section...
“System Objects vs. MATLAB Functions” on page 38-5
“Process Audio Data Using Only MATLAB Functions Code” on page 38-5
“Process Audio Data Using System Objects” on page 38-6

System Objects vs. MATLAB Functions
Many System objects have MATLAB function counterparts. For simple, one-time computations, use
MATLAB functions. However, if you need to design and simulate a system with many components, use
System objects. Using System objects is also appropriate if your computations require managing
internal states, have inputs that change over time or process large streams of data.

Building a dynamic system with different execution phases and internal states using only MATLAB
functions would require complex programming. You would need code to initialize the system, validate
data, manage internal states, and reset and terminate the system. System objects perform many of
these managerial operations automatically during execution. By combining System objects in a
program with other MATLAB functions, you can streamline your code and improve efficiency.

Process Audio Data Using Only MATLAB Functions Code
This example shows how to write MATLAB function-only code for reading audio data.

The code reads audio data from a file, filters it, and plays the filtered audio data. The audio data is
read in frames. This code produces the same result as the System objects code in the next example,
allowing you to compare approaches.

Locate source audio file.

fname = 'speech_dft_8kHz.wav';

Obtain the total number of samples and the sampling rate from the source file.

audioInfo = audioinfo(fname);
maxSamples = audioInfo.TotalSamples;
fs = audioInfo.SampleRate;

Define the filter to use.

b = fir1(160,.15);

Initialize the filter states.

z = zeros(1,numel(b)-1);

Define the amount of audio data to process at one time, and initialize the while loop index.

frameSize = 1024;
nIdx = 1;

Define the while loop to process the audio data.

 System Objects vs MATLAB Functions

38-5

while nIdx <= maxSamples(1)-frameSize+1
 audio = audioread(fname,[nIdx nIdx+frameSize-1]);
 [y,z] = filter(b,1,audio,z);
 sound(y,fs);
 nIdx = nIdx+frameSize;
end

The loop uses explicit indexing and state management, which can be a tedious and error-prone
approach. You must have detailed knowledge of the states, such as, sizes and data types. Another
issue with this MATLAB-only code is that the sound function is not designed to run in real time. The
resulting audio is choppy and barely audible.

Process Audio Data Using System Objects
This example shows how to write System objects code for reading audio data.

The code uses System objects from the DSP System Toolbox™ software to read audio data from a file,
filter it, and then play the filtered audio data. This code produces the same result as the MATLAB
code shown previously, allowing you to compare approaches.

Locate source audio file.

fname = "speech_dft_8kHz.wav";

Define the System object to read the file.

audioIn = dsp.AudioFileReader(fname,'OutputDataType','single');

Define the System object to filter the data.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Define the System object to play the filtered audio data.

audioOut = audioDeviceWriter('SampleRate',audioIn.SampleRate);

Define the while loop to process the audio data.

while ~isDone(audioIn)
 audio = audioIn(); % Read audio source file
 y = filtLP(audio); % Filter the data
 audioOut(y); % Play the filtered data
end

This System objects code avoids the issues present in the MATLAB-only code. Without requiring
explicit indexing, the file reader object manages the data frame sizes while the filter manages the
states. The audio device writer object plays each audio frame as it is processed.

38 System object Usage and Authoring

38-6

System Design in MATLAB Using System Objects
In this section...
“System Design and Simulation in MATLAB” on page 38-7
“Create Individual Components” on page 38-7
“Configure Components” on page 38-8
“Create and Configure Components at the Same Time” on page 38-8
“Assemble Components Into System” on page 38-9
“Run Your System” on page 38-9
“Reconfiguring Objects” on page 38-10

System Design and Simulation in MATLAB
System objects allow you to design and simulate your system in MATLAB. You use System objects in
MATLAB as shown in this diagram.

1 “Create Individual Components” on page 38-7 — Create the System objects to use in your
system. “Create Individual Components” on page 38-7. In addition to the System objects
provided with System Toolboxes, you can also create your own System objects. See “Create
System Objects”.

2 “Configure Components” on page 38-8 — If necessary, change the objects’ property values to
model your particular system. All System object properties have default values that you may be
able to use without changing them. See “Configure Components” on page 38-8.

3 “Assemble Components Into System” on page 38-9 — Write a MATLAB program that includes
those System objects, connecting them using MATLAB variables as inputs and outputs to
simulate your system. See “Connecting System Objects” on page 38-9.

4 “Run Your System” on page 38-9 — Run your program. You can change tunable properties
while your system is running. See “Run Your System” on page 38-9 and “Reconfiguring
Objects” on page 38-10.

Create Individual Components
The example in this section shows how to use System objects that are predefined in the software. If
you use a function to create and use a System object, specify the object creation using conditional
code. Conditionalizing the creation prevents errors if that function is called within a loop. You can
also create your own System objects, see “Create System Objects”.

This section shows how to set up your system using predefined components from DSP System Toolbox
and Audio Toolbox™:

 System Design in MATLAB Using System Objects

38-7

• dsp.AudioFileReader — Read the file of audio data
• dsp.FIRFilter — Filter the audio data
• audioDeviceWriter — Play the filtered audio data

First, create the component objects, using default property settings.

audioIn = dsp.AudioFileReader;
filtLP = dsp.FIRFilter;
audioOut = audioDeviceWriter;

Configure Components
When to Configure Components

If you did not set an object's properties when you created it and do not want to use default values,
you must explicitly set those properties. Some properties allow you to change their values while your
system is running. See “Reconfiguring Objects” on page 38-10 for information.

Most properties are independent of each other. However, some System object properties enable or
disable another property or limit the values of another property. To avoid errors or warnings, you
should set the controlling property before setting the dependent property.

Display Component Property Values

To display the current property values for an object, type that object’s handle name at the command
line (such as audioIn). To display the value of a specific property, type
objecthandle.propertyname (such as audioIn.FileName).

Configure Component Property Values

This section shows how to configure the components for your system by setting the component
objects’ properties.

Use this procedure if you have created your components separately from configuring them. You can
also create and configure your components at the same time, as described in a later example.

For the file reader object, specify the file to read and set the output data type.

For the filter object, specify the filter numerator coefficients using the fir1 function, which specifies
the low pass filter order and the cutoff frequency.

For the audio device writer object, specify the sample rate. In this case, use the same sample rate as
the input data.

audioIn.Filename = "speech_dft_8kHz.wav";
audioIn.OutputDataType = "single";
filtLP.Numerator = fir1(160,.15);
audioOut.SampleRate = audioIn.SampleRate;

Create and Configure Components at the Same Time
This example shows how to create your System object components and configure the desired
properties at the same time. Specify each property with a 'Name', Value argument pair.

38 System object Usage and Authoring

38-8

Create the file reader object, specify the file to read, and set the output data type.

audioIn = dsp.AudioFileReader("speech_dft_8kHz.wav",...
 'OutputDataType',"single");

Create the filter object and specify the filter numerator using the fir1 function. Specify the low pass
filter order and the cutoff frequency of the fir1 function.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Create the audio player object and set the sample rate to the same rate as the input data.

audioOut = audioDeviceWriter('SampleRate',audioIn.SampleRate);

Assemble Components Into System
Connecting System Objects

After you have determined the components you need and have created and configured your System
objects, assemble your system. You use the System objects like other MATLAB variables and include
them in MATLAB code. You can pass MATLAB variables into and out of System objects.

The main difference between using System objects and using functions is that System objects use a
two-step process. First you create the object and set its parameters and then, you run the object.
Running the object initializes it and controls the data flow and state management of your system. You
typically call a System object within a code loop.

You use the output from an object as the input to another object. For some System objects, you can
use properties of those objects to change the inputs or outputs. To verify that the appropriate number
of inputs and outputs are being used, you can use nargin and nargout on any System object. For
information on all available System object functions, see “System Object Functions” on page 38-3.

Connect Components in a System

This section shows how to connect the components together to read, filter, and play a file of audio
data. The while loop uses the isDone function to read through the entire file.

while ~isDone(audioIn)
 audio = audioIn(); % Read audio source file
 y = filtLP(audio); % Filter the data
 audioOut(y); % Play the filtered data
end

Run Your System
Run your code by either typing directly at the command line or running a file containing your
program. When you run the code for your system, data is processed through your objects.

What You Cannot Change While Your System Is Running

The first call to a System object initializes and runs the object. When a System object has started
processing data, you cannot change nontunable properties.

Depending on the System object, additional specifications might also be restricted:

 System Design in MATLAB Using System Objects

38-9

• Input size
• Input complexity
• Input data type
• Tunable property data types
• Discrete state data types

If the System object author has restricted these specifications, you get an error if you try to change
them while the System object is in use.

Reconfiguring Objects
Change Properties

When a System object has started processing data, you cannot change nontunable properties. You
can use isLocked on any System object to verify whether the object is processing data. When
processing is complete, you can use the release function to release resources and allow changes to
nontunable properties.

Some object properties are tunable, which enables you to change them even if the object is in use.
Most System object properties are nontunable. Refer to the object’s reference page to determine
whether an individual property is tunable.

Change Input Complexity, Dimensions, or Data Type

During object usage, after you have called the algorithm, some System objects do not allow changes
in input complexity, size, or data type. If the System object restricts these specifications, you can call
release to change these specifications. Calling release also resets other aspects of the System
object, such as states and Discrete states.

Change a Tunable Property in Your System

This example shows how to change the filter type to a high-pass filter as the code is running by
modifying the Numerator property of the filter object. The change takes effect the next time the
object is called.

reset(audioIn);% Reset audio file
Wn = [0.05,0.1,0.15,0.2];
for x=1:4000
 Wn_X = ceil(x/1000);
 filtLP.Numerator = fir1(160,Wn(Wn_X),'high');
 audio = audioIn(); % Read audio source file
 y = filtLP(audio); % Filter the data
 audioOut(y); % Play the filtered data
end

38 System object Usage and Authoring

38-10

Define Basic System Objects
This example shows how to create a basic System object that increments a number by one. The class
definition file used in the example contains the minimum elements required to define a System object.

Create System Object Class
You can create and edit a MAT-file or use the MATLAB Editor to create your System object. This
example describes how to use the New menu in the MATLAB Editor.

1 In MATLAB, on the Editor tab, select New > System Object > Basic. A simple System object
template opens.

2 Subclass your object from matlab.System. Replace Untitled with AddOne in the first line of
your file.

classdef AddOne < matlab.System

System objects are composed of a base class, matlab.System and may include one or more
mixin classes. You specify the base class and mixin classes on the first line of your class definition
file.

3 Save the file and name it AddOne.m.

Define Algorithm
The stepImpl method contains the algorithm to execute when you run your object. Define this
method so that it contains the actions you want the System object to perform.

1 In the basic System object you created, inspect the stepImpl method template.

methods (Access = protected)
 function y = stepImpl(obj,u)
 % Implement algorithm. Calculate y as a function of input u and
 % discrete states.
 y = u;
 end
end

The stepImpl method access is always set to protected because it is an internal method that
users do not directly call or run.

All methods, except static methods, require the System object handle as the first input argument.
The default value, inserted by MATLAB Editor, is obj. You can use any name for your System
object handle.

By default, the number of inputs and outputs are both one. Inputs and outputs can be added
using Inputs/Outputs. You can also use a variable number of inputs or outputs, see “Change the
Number of Inputs” on page 38-13.

Alternatively, if you create your System object by editing a MAT-file, you can add the stepImpl
method using Insert Method > Implement algorithm.

2 Change the computation in the stepImpl method to add 1 to the value of u.

methods (Access = protected)

 Define Basic System Objects

38-11

 function y = stepImpl(~,u)
 y = u + 1;
 end

Tip Instead of passing in the object handle, you can use the tilde (~) to indicate that the object
handle is not used in the function. Using the tilde instead of an object handle prevents warnings
about unused variables.

3 Remove unused methods that are included by default in the basic template.

You can modify these methods to add more System object actions and properties. You can also
make no changes, and the System object still operates as intended.

The class definition file now has all the code necessary for this System object.

classdef AddOne < matlab.System
% ADDONE Compute an output value one greater than the input value

 % All methods occur inside a methods declaration.
 % The stepImpl method has protected access
 methods (Access = protected)

 function y = stepImpl(~,u)
 y = u + 1;
 end
 end
end

See Also
stepImpl | getNumInputsImpl | getNumOutputsImpl | matlab.System

Related Examples
• “Change the Number of Inputs” on page 38-13
• “System Design and Simulation in MATLAB” on page 38-7

38 System object Usage and Authoring

38-12

Change the Number of Inputs

This example shows how to set the number of inputs for a System object™ with and without using
getNumInputsImpl.

If you have a variable number of inputs or outputs and you intend to use the System object in
Simulink®, you must include the getNumInputsImpl or getNumOutputsImpl method in your class
definition.

These examples show modifications for the number of inputs. If you want to change the number of
outputs, the same principles apply.

As with all System object Impl methods, you always set the getNumInputsImpl and
getNumOutputsImpl method's access to protected because they are internal methods that are
never called directly.

Allow up to Three Inputs

This example shows how to write a System object that allows the number of inputs to vary.

Update the stepImpl method to accept up to three inputs by adding code to handle one, two, or
three inputs. If you are only using this System object in MATLAB, getNumInputsImpl and
getNumOutputsImpl are not required.

Full Class Definition

classdef AddTogether < matlab.System
 % Add inputs together

 methods (Access = protected)
 function y = stepImpl(~,x1,x2,x3)
 switch nargin
 case 2
 y = x1;
 case 3
 y = x1 + x2;
 case 4
 y = x1 + x2 + x3;
 otherwise
 y = [];
 end
 end
 end
end

Run this System object with one, two, and three inputs.

addObj = AddTogether;
addObj(2)

ans =

 Change the Number of Inputs

38-13

 2

addObj(2,3)

ans =

 5

addObj(2,3,4)

ans =

 9

Control the Number of Inputs and Outputs with a Property

This example shows how to write a System object that allows changes to the number of inputs and
outputs before running the object. Use this method when your System object will be included in
Simulink:

• Add a nontunable property NumInputs to control the number of inputs.
• Implement the associated getNumInputsImpl method to specify the number of inputs.

Full Class Definition

classdef AddTogether2 < matlab.System
 % Add inputs together. The number of inputs is controlled by the
 % nontunable property |NumInputs|.

 properties (Nontunable)
 NumInputs = 3; % Default value
 end
 methods (Access = protected)
 function y = stepImpl(obj,x1,x2,x3)
 switch obj.NumInputs
 case 1
 y = x1;
 case 2
 y = x1 + x2;
 case 3
 y = x1 + x2 + x3;
 otherwise
 y = [];
 end
 end
 function validatePropertiesImpl(obj)
 if ((obj.NumInputs < 1) ||...
 (obj.NumInputs > 3))
 error("Only 1, 2, or 3 inputs allowed.");
 end
 end

38 System object Usage and Authoring

38-14

 function numIn = getNumInputsImpl(obj)
 numIn = obj.NumInputs;
 end
 end
end

Run this System object with one, two, and three inputs.

addObj = AddTogether2;
addObj.NumInputs = 1;
addObj(2)

ans =

 2

release(addObj);
addObj.NumInputs = 2;
addObj(2,3)

ans =

 5

release(addObj);
addObj.NumInputs = 3;
addObj(2,3,4)

ans =

 9

See Also
getNumInputsImpl | getNumOutputsImpl

Related Examples
• “Validate Property and Input Values” on page 38-16
• “Define Basic System Objects” on page 38-11
• “Using ~ as an Input Argument in Method Definitions” on page 38-50

 Change the Number of Inputs

38-15

Validate Property and Input Values
This example shows how to verify that the inputs and property values given to your System object are
valid.

Validate a Single Property
To validate a property value, independent of other properties, use MATLAB class property validation.
This example shows how to specify a logical property, a positive integer property, and a string
property that must be one of three values.
 properties
 UseIncrement (1,1) logical = false
 WrapValue (1,1) {mustBePositive, mustBeInteger} = 1
 Color (1,1) string {mustBeMember(Color, ["red","green","blue"])} = "red"
 end

Validate Interdependent Properties
To validate the values of two or more interdependent properties, use the
validatePropertiesImpl. This example shows how to write validatePropertiesImpl to verify
that a logical property (UseIncrement) is true and the value of WrapValue is larger than
Increment.

 methods (Access = protected)
 function validatePropertiesImpl(obj)
 if obj.UseIncrement && obj.WrapValue > obj.Increment
 error("Wrap value must be less than increment value");
 end
 end
 end

Validate Inputs
To validate input values, use the validateInputsImpl method. This example shows how to validate
that the first input is a numeric value.

methods (Access = protected)
 function validateInputsImpl(~,x)
 if ~isnumeric(x)
 error("Input must be numeric");
 end
 end
end

Complete Class Example
This example is a complete System object that shows examples of each type of validation syntax.

classdef AddOne < matlab.System
% ADDONE Compute an output value by incrementing the input value

 % All properties occur inside a properties declaration.
 % These properties have public access (the default)
 properties

38 System object Usage and Authoring

38-16

 UseIncrement (1,1) logical = false
 WrapValue (1,1) {mustBePositive, mustBeInteger} = 10
 Increment (1,1) {mustBePositive, mustBeInteger} = 1
 end

 methods (Access = protected)
 function validatePropertiesImpl(obj)
 if obj.UseIncrement && obj.WrapValue > obj.Increment
 error("Wrap value must be less than increment value");
 end
 end

 % Validate the inputs to the object
 function validateInputsImpl(~,x)
 if ~isnumeric(x)
 error("Input must be numeric");
 end
 end

 function out = stepImpl(obj,in)
 if obj.UseIncrement
 out = in + obj.Increment;
 else
 out = in + 1;
 end
 end
 end
end

See Also
validateInputsImpl | validatePropertiesImpl

Related Examples
• “Define Basic System Objects” on page 38-11
• “Change Input Complexity, Dimensions, or Data Type” on page 38-10
• “Summary of Call Sequence” on page 38-45
• “Property Set Methods”
• “Using ~ as an Input Argument in Method Definitions” on page 38-50

 Validate Property and Input Values

38-17

Initialize Properties and Setup One-Time Calculations
This example shows how to write code to initialize and set up a System object.

In this example, you allocate file resources by opening the file so the System object can write to that
file. You do these initialization tasks one time during setup, rather than every time you run the object.

Define Public Properties to Initialize

In this example, you define the public Filename property and specify the value of that property as
the nontunable character vector, default.bin. Users cannot change nontunable properties after the
setup method has been called.

properties (Nontunable)
 Filename = "default.bin"
end

Define Private Properties to Initialize

Users cannot access private properties directly, but only through methods of the System object. In
this example, you define the pFileID property as a private property. You also define this property as
hidden to indicate it is an internal property that never displays to the user.

properties (Hidden,Access = private)
 pFileID;
end

Define Setup

You use the setupImpl method to perform setup and initialization tasks. You should include code in
the setupImpl method that you want to execute one time only. The setupImpl method is called
once the first time you run the object. In this example, you allocate file resources by opening the file
for writing binary data.

methods
 function setupImpl(obj)
 obj.pFileID = fopen(obj.Filename,"wb");
 if obj.pFileID < 0
 error("Opening the file failed");
 end
 end
end

Although not part of setup, you should close files when your code is done using them. You use the
releaseImpl method to release resources.

Complete Class Definition File with Initialization and Setup

classdef MyFile < matlab.System
% MyFile write numbers to a file

 % These properties are nontunable. They cannot be changed
 % after the setup method has been called or the object
 % is running.
 properties (Nontunable)
 Filename = "default.bin" % the name of the file to create
 end

38 System object Usage and Authoring

38-18

 % These properties are private. Customers can only access
 % these properties through methods on this object
 properties (Hidden,Access = private)
 pFileID; % The identifier of the file to open
 end

 methods (Access = protected)
 % In setup allocate any resources, which in this case
 % means opening the file.
 function setupImpl(obj)
 obj.pFileID = fopen(obj.Filename,'wb');
 if obj.pFileID < 0
 error("Opening the file failed");
 end
 end

 % This System object™ writes the input to the file.
 function stepImpl(obj,data)
 fwrite(obj.pFileID,data);
 end

 % Use release to close the file to prevent the
 % file handle from being left open.
 function releaseImpl(obj)
 fclose(obj.pFileID);
 end
 end
end

See Also
setupImpl | releaseImpl | stepImpl | matlab.System Constructor

Related Examples
• “Release System Object Resources” on page 38-22
• “Define Property Attributes” on page 38-24
• “Summary of Call Sequence” on page 38-45

 Initialize Properties and Setup One-Time Calculations

38-19

Set Property Values at Construction Time
This example shows how to define a System object constructor and allow it to accept name-value
property pairs as input.

Set Properties to Use Name-Value Pair Input

Define the System object constructor, which is a method that has the same name as the class (MyFile
in this example). Within that method, you use the setProperties method to make all public
properties available for input when the user constructs the object. nargin is a MATLAB function that
determines the number of input arguments. varargin indicates all of the object’s public properties.

methods
 function obj = MyFile(varargin)
 setProperties(obj,nargin,varargin{:});
 end
end

Complete Class Definition File with Constructor Setup

classdef MyFile < matlab.System
% MyFile write numbers to a file

 % These properties are nontunable. They cannot be changed
 % after the setup method has been called or while the
 % object is running.
 properties (Nontunable)
 Filename ="default.bin" % the name of the file to create
 Access = 'wb' % The file access character vector (write, binary)
 end

 % These properties are private. Customers can only access
 % these properties through methods on this object
 properties (Hidden,Access = private)
 pFileID; % The identifier of the file to open
 end

 methods
 % You call setProperties in the constructor to let
 % a user specify public properties of object as
 % name-value pairs.
 function obj = MyFile(varargin)
 setProperties(obj,nargin,varargin{:});
 end
 end

 methods (Access = protected)
 % In setup allocate any resources, which in this case is
 % opening the file.
 function setupImpl(obj)
 obj.pFileID = fopen(obj.Filename,obj.Access);
 if obj.pFileID < 0
 error("Opening the file failed");
 end
 end

 % This System object writes the input to the file.

38 System object Usage and Authoring

38-20

 function stepImpl(obj,data)
 fwrite(obj.pFileID,data);
 end

 % Use release to close the file to prevent the
 % file handle from being left open.
 function releaseImpl(obj)
 fclose(obj.pFileID);
 end
 end
end

See Also
nargin | setProperties

Related Examples
• “Define Property Attributes” on page 38-24
• “Release System Object Resources” on page 38-22

 Set Property Values at Construction Time

38-21

Reset Algorithm and Release Resources

In this section...
“Reset Algorithm State” on page 38-22
“Release System Object Resources” on page 38-22

Reset Algorithm State
When a user calls reset on a System object, the internal resetImpl method is called. In this
example, pCount is an internal counter property of the Counter System object. When a user calls
reset, pCount resets to 0.

classdef Counter < matlab.System
% Counter System object that increments a counter

 properties (Access = private)
 pCount
 end

 methods (Access = protected)
 % Increment the counter and return
 % its value as an output
 function c = stepImpl(obj)
 obj.pCount = obj.pCount + 1;
 c = obj.pCount;
 end

 % Reset the counter to zero.
 function resetImpl(obj)
 obj.pCount = 0;
 end
 end
end

Release System Object Resources
When release is called on a System object, the internal releaseImpl method is called if step or
setup was previously called (see “Summary of Call Sequence” on page 38-45). This example shows
how to implement the method that releases resources allocated and used by the System object. These
resources include allocated memory and files used for reading or writing.

This method allows you to clear the axes on the Whiteboard figure window while keeping the figure
open.

 function releaseImpl(obj)
 cla(Whiteboard.getWhiteboard());
 hold on
 end

For a complete definition of the Whiteboard System object, see “Create a Whiteboard System
Object” on page 38-29.

38 System object Usage and Authoring

38-22

See Also
resetImpl | releaseImpl

More About
• “Summary of Call Sequence” on page 38-45
• “Initialize Properties and Setup One-Time Calculations” on page 38-18

 Reset Algorithm and Release Resources

38-23

Define Property Attributes
Property attributes, which add details to a property, provide a layer of control to your properties. In
addition to the MATLAB property attributes and property validation, System objects can use
Nontunable or DiscreteState. To specify multiple attributes, separate them with commas.

Specify Property as Nontunable
By default all properties are tunable, meaning the value of the property can change at any time.

Use the Nontunable attribute for a property when the algorithm depends on the value being
constant once data processing starts. Defining a property as nontunable may improve the efficiency
of your algorithm by removing the need to check for or react to values that change. For code
generation, defining a property as nontunable allows the memory associated with that property to be
optimized. You should define all properties that affect the number of input or output ports as
nontunable.

When you use the System object, you can only change nontunable properties before calling the object
or after calling the release function. For example, you define the InitialValue property as
nontunable and set its value to 0.

properties (Nontunable)
 InitialValue = 0;
end

Specify Property as DiscreteState
If your algorithm uses properties that hold state, you can assign those properties the
DiscreteState attribute. Properties with this attribute display their state values via the
getDiscreteStateImpl when users call getDiscreteState. The following restrictions apply to a
property with the DiscreteState attribute,

• Numeric, logical, or fi value, but not a scaled double fi value
• Does not have any of these attributes: Nontunable, Dependent, Abstract, Constant.
• No default value
• Not publicly settable
• GetAccess = Public by default
• If you define the property as discrete state, you do not need to manually save or overwrite the

object using saveObjectImpl or loadObjectImpl.

For example, you define the Count property as a discrete state:

properties (DiscreteState)
 Count;
end

Example Class with Various Property Attributes
This example shows two nontunable properties, a discrete state property, and also MATLAB class
property validation to set property attributes.

38 System object Usage and Authoring

38-24

classdef Counter < matlab.System
% Counter Increment a counter to a maximum value

 % These properties are nontunable. They cannot be changed
 % after the setup method has been called or while the
 % object is running.
 properties (Nontunable)
 % The initial value of the counter
 InitialValue = 0
 % The maximum value of the counter, must be a positive integer scalar
 MaxValue (1, 1) {mustBePositive, mustBeInteger} = 3
 end

 properties
 % Whether to increment the counter, must be a logical scalar
 Increment (1, 1) logical = true
 end

 properties (DiscreteState)
 % Count state variable
 Count
 end

 methods (Access = protected)
 % Increment the counter and return its value
 % as an output

 function c = stepImpl(obj)
 if obj.Increment && (obj.Count < obj.MaxValue)
 obj.Count = obj.Count + 1;
 else
 disp(['Max count, ' num2str(obj.MaxValue) ' ,reached'])
 end
 c = obj.Count;
 end

 % Setup the Count state variable
 function setupImpl(obj)
 obj.Count = 0;
 end

 % Reset the counter to one.
 function resetImpl(obj)
 obj.Count = obj.InitialValue;
 end
 end
end

See Also

More About
• “Class Attributes”
• “Property Attributes”
• “What You Cannot Change While Your System Is Running” on page 38-9
• “Summary of Call Sequence” on page 38-45

 Define Property Attributes

38-25

Hide Inactive Properties
To display only active System object properties, use the isInactivePropertyImpl method. This
method specifies whether a property is inactive. An inactive property is a property that does not
affect the System object because of the value of other properties. When you pass the
isInactiveProperty method a property and the method returns true, then that property is
inactive and does not display when the disp function is called.

Specify Inactive Property
This example uses the isInactiveProperty method to check the value of a dependent property.
For this System object, the InitialValue property is not relevant if the UseRandomInitialValue
property is set to true. This isInactiveProperty method checks for that situation and if
UseRandomInitialValue is true, returns true to hide the inactive InitialValue property.

methods (Access = protected)
 function flag = isInactivePropertyImpl(obj,propertyName)
 if strcmp(propertyName,'InitialValue')
 flag = obj.UseRandomInitialValue;
 else
 flag = false;
 end
 end
end

Complete Class Definition File with Inactive Properties Method
classdef Counter < matlab.System
 % Counter Increment a counter

 % These properties are nontunable. They cannot be changed
 % after the setup method has been called or when the
 % object is running.
 properties (Nontunable)
 % Allow the user to set the initial value
 UseRandomInitialValue = true
 InitialValue = 0
 end

 % The private count variable, which is tunable by default
 properties (Access = private)
 pCount
 end

 methods (Access = protected)
 % Increment the counter and return its value
 % as an output
 function c = stepImpl(obj)
 obj.pCount = obj.pCount + 1;
 c = obj.pCount;
 end

 % Reset the counter to either a random value or the initial
 % value.
 function resetImpl(obj)

38 System object Usage and Authoring

38-26

 if obj.UseRandomInitialValue
 obj.pCount = rand();
 else
 obj.pCount = obj.InitialValue;
 end
 end

 % This method controls visibility of the object's properties
 function flag = isInactivePropertyImpl(obj,propertyName)
 if strcmp(propertyName,'InitialValue')
 flag = obj.UseRandomInitialValue;
 else
 flag = false;
 end
 end
 end
end

See Also
isInactivePropertyImpl

 Hide Inactive Properties

38-27

Limit Property Values to Finite List
When you want to create a System object property with a limited set of acceptable values, you can
either use enumerations or property validation.

For a System object that is used in a MATLAB System block in Simulink you can use enumerations or
property validation. If you use enumerations, enumerations can also derive from
Simulink.IntEnumType. You use this type of enumeration to add attributes (such as custom
headers) to the input or output of the MATLAB System block. See “Use Enumerated Data in Simulink
Models” (Simulink).

Property Validation with mustBeMember
To limit property values with property validation, you use the mustBeMember validation function.

This example defines a Style property that can have the values solid, dash, or dot. The default
value is solid and the (1,1) defines the property as a scalar.
 properties
 Style (1,1) string {mustBeMember(Style, ["solid","dash","dot"])} = "solid";
 end

To support case-insensitive match, use matlab.system.mustBeMember instead.
 properties
 Style (1,:) char {matlab.system.mustBeMember(Style, ["solid","dash","dot"])} = "solid";
 end

Enumeration Property
To use enumerated data in a System object, you refer to the enumerations as properties in your
System object class definition and define your enumerated class in a separate class definition file.

To create an enumerated property, you need:

• A System object property set to the enumeration class.
• The associated enumeration class definition that defines all possible values for the property.

This example defines a color enumeration property for a System object. The definition of the
enumeration class ColorValues is:

classdef ColorValues < int32
 enumeration
 blue (0)
 red (1)
 green (2)
 end
end

The ColorValues class inherits from int32 for code generation compatibility. Enumeration values
must be valid MATLAB identifiers on page 1-5.

In the System object, the Color property is defined as a ColorValues object with blue as the
default. The (1,1) defines the Color property as a scalar:

38 System object Usage and Authoring

38-28

properties
 Color (1, 1) ColorValues = ColorValues.blue
end

Create a Whiteboard System Object

This example shows the class definition of a Whiteboard System object™, two types of finite list
properties, and how to use the object. Each time you run the whiteboard object, it draws a line on a
whiteboard.

Definition of the Whiteboard System Object

type Whiteboard.m

classdef Whiteboard < matlab.System
 % Whiteboard Draw lines on a figure window
 %

 properties(Nontunable)
 Color (1, 1) ColorValues = ColorValues.blue
 Style (1,1) string {mustBeMember(Style, ["solid","dash","dot"])} = "solid";
 end

 methods (Access = protected)
 function stepImpl(obj)
 h = Whiteboard.getWhiteboard();
 switch obj.Style
 case "solid"
 linestyle = "-";
 case "dash"
 linestyle = "--";
 case "dot"
 linestyle = ":";
 end
 plot(h, randn([2,1]), randn([2,1]), ...
 "Color",string(obj.Color), "LineStyle",linestyle);
 end

 function releaseImpl(~)
 cla(Whiteboard.getWhiteboard());
 hold on
 end
 end

 methods (Static)
 function a = getWhiteboard()
 h = findobj('tag','whiteboard');
 if isempty(h)
 h = figure('tag','whiteboard');
 hold on
 end
 a = gca;
 end
 end
end

 Limit Property Values to Finite List

38-29

Construct the System object.

greenInk = Whiteboard;
blueInk = Whiteboard;

Change the color and set the blue line style.

greenInk.Color = "green";
blueInk.Color = "blue";
blueInk.Style = "dot";

Draw a few lines.

for i=1:3
 greenInk();
 blueInk();
end

Clear the whiteboard.

release(greenInk);
release(blueInk);

38 System object Usage and Authoring

38-30

See Also

Related Examples
• “Validate Property Values”
• “Enumerations”
• “Code Generation for Enumerations” (MATLAB Coder)

 Limit Property Values to Finite List

38-31

Process Tuned Properties
This example shows how to specify the action to take when a tunable property value changes during
simulation.

The processTunedPropertiesImpl method is useful for managing actions to prevent duplication.
In many cases, changing one of multiple interdependent properties causes an action. With the
processTunedPropertiesImpl method, you can control when that action is taken so it is not
repeated unnecessarily.

Control When a Lookup Table Is Generated

This example of processTunedPropertiesImpl causes the pLookupTable to be regenerated
when either the NumNotes or MiddleC property changes.

methods (Access = protected)
 function processTunedPropertiesImpl(obj)
 propChange = isChangedProperty(obj,'NumNotes')||...
 isChangedProperty(obj,'MiddleC')
 if propChange
 obj.pLookupTable = obj.MiddleC *...
 (1+log(1:obj.NumNotes)/log(12));
 end
 end
end

Complete Class Definition File with Tuned Property Processing

classdef TuningFork < matlab.System
 % TuningFork Illustrate the processing of tuned parameters
 %

 properties
 MiddleC = 440
 NumNotes = 12
 end

 properties (Access = private)
 pLookupTable
 end

 methods (Access = protected)
 function resetImpl(obj)
 obj.MiddleC = 440;
 obj.pLookupTable = obj.MiddleC * ...
 (1+log(1:obj.NumNotes)/log(12));
 end

 function hz = stepImpl(obj,noteShift)
 % A noteShift value of 1 corresponds to obj.MiddleC
 hz = obj.pLookupTable(noteShift);
 end

 function processTunedPropertiesImpl(obj)
 propChange = isChangedProperty(obj,'NumNotes')||...
 isChangedProperty(obj,'MiddleC')
 if propChange

38 System object Usage and Authoring

38-32

 obj.pLookupTable = obj.MiddleC *...
 (1+log(1:obj.NumNotes)/log(12));
 end
 end
end

See Also
processTunedPropertiesImpl

 Process Tuned Properties

38-33

Define Composite System Objects
This example shows how to define System objects that include other System objects. Define a
bandpass filter System object from separate highpass and lowpass filter System objects.

Store System Objects in Properties

To define a System object from other System objects, store those other objects in your class definition
file as properties. In this example, the highpass and lowpass filters are the separate System objects
defined in their own class-definition files.

properties (Access = private)
 % Properties that hold filter System objects
 pLowpass
 pHighpass
end

Complete Class Definition File of Bandpass Filter Composite System Object

classdef BandpassFIRFilter < matlab.System
% Implements a bandpass filter using a cascade of eighth-order lowpass
% and eighth-order highpass FIR filters.

 properties (Access = private)
 % Properties that hold filter System objects
 pLowpass
 pHighpass
 end

 methods (Access = protected)
 function setupImpl(obj)
 % Setup composite object from constituent objects
 obj.pLowpass = LowpassFIRFilter;
 obj.pHighpass = HighpassFIRFilter;
 end

 function yHigh = stepImpl(obj,u)
 yLow = obj.pLowpass(u);
 yHigh = obj.pHighpass(yLow);
 end

 function resetImpl(obj)
 reset(obj.pLowpass);
 reset(obj.pHighpass);
 end
 end
end

Class Definition File for Lowpass FIR Component of Bandpass Filter

classdef LowpassFIRFilter < matlab.System
% Implements eighth-order lowpass FIR filter with 0.6pi cutoff

 properties (Nontunable)
 % Filter coefficients
 Numerator = [0.006,-0.0133,-0.05,0.26,0.6,0.26,-0.05,-0.0133,0.006];
 end

38 System object Usage and Authoring

38-34

 properties (DiscreteState)
 State
 end

 methods (Access = protected)
 function setupImpl(obj)
 obj.State = zeros(length(obj.Numerator)-1,1);
 end

 function y = stepImpl(obj,u)
 [y,obj.State] = filter(obj.Numerator,1,u,obj.State);
 end

 function resetImpl(obj)
 obj.State = zeros(length(obj.Numerator)-1,1);
 end
 end
end

Class Definition File for Highpass FIR Component of Bandpass Filter

classdef HighpassFIRFilter < matlab.System
% Implements eighth-order highpass FIR filter with 0.4pi cutoff

 properties (Nontunable)
 % Filter coefficients
 Numerator = [0.006,0.0133,-0.05,-0.26,0.6,-0.26,-0.05,0.0133,0.006];
 end

 properties (DiscreteState)
 State
 end

 methods (Access = protected)
 function setupImpl(obj)
 obj.State = zeros(length(obj.Numerator)-1,1);
 end

 function y = stepImpl(obj,u)
 [y,obj.State] = filter(obj.Numerator,1,u,obj.State);
 end

 function resetImpl(obj)
 obj.State = zeros(length(obj.Numerator)-1,1);
 end
 end
end

See Also
nargin

 Define Composite System Objects

38-35

Define Finite Source Objects
This example shows how to define a System object that performs a specific number of steps or
specific number of reads from a file.

In this section...
“Use the FiniteSource Class and Specify End of the Source” on page 38-36
“Complete Class Definition File with Finite Source” on page 38-36

Use the FiniteSource Class and Specify End of the Source
1 Subclass from finite source class.

 classdef RunTwice < matlab.System & ...
 matlab.system.mixin.FiniteSource

2 Specify the end of the source with the isDoneImpl method. In this example, the source has two
iterations.

 methods (Access = protected)
 function bDone = isDoneImpl(obj)
 bDone = obj.NumSteps==2
 end

Complete Class Definition File with Finite Source
classdef RunTwice < matlab.System & ...
 matlab.system.mixin.FiniteSource
 % RunTwice System object that runs exactly two times
 %
 properties (Access = private)
 NumSteps
 end

 methods (Access = protected)
 function resetImpl(obj)
 obj.NumSteps = 0;
 end

 function y = stepImpl(obj)
 if ~obj.isDone()
 obj.NumSteps = obj.NumSteps + 1;
 y = obj.NumSteps;
 else
 y = 0;
 end
 end

 function bDone = isDoneImpl(obj)
 bDone = obj.NumSteps==2;
 end
 end
end

38 System object Usage and Authoring

38-36

See Also
matlab.system.mixin.FiniteSource

More About
• “Subclassing Multiple Classes”
• “Using ~ as an Input Argument in Method Definitions” on page 38-50

 Define Finite Source Objects

38-37

Save and Load System Object
This example shows how to load and save a System object.

Save System Object and Child Object
Define a saveObjectImpl method to specify that more than just public properties should be saved
when the user saves a System object. Within this method, use the default
saveObjectImpl@matlab.System to save public properties to the struct, s. Use the saveObject
method to save child objects. Save protected and dependent properties, and finally, if the object has
been called and not released, save the object state.

methods (Access = protected)
 function s = saveObjectImpl(obj)
 s = saveObjectImpl@matlab.System(obj);
 s.child = matlab.System.saveObject(obj.child);
 s.protectedprop = obj.protectedprop;
 s.pdependentprop = obj.pdependentprop;
 if isLocked(obj)
 s.state = obj.state;
 end
 end
end

Load System Object and Child Object
Define a loadObjectImpl method to load a previously saved System object. Within this method, use
the loadObject to load the child System object, load protected and private properties, load the state
if the object was called and not released, and use loadObjectImpl from the base class to load
public properties.

methods (Access = protected)
 function loadObjectImpl(obj,s,isInUse)
 obj.child = matlab.System.loadObject(s.child);

 obj.protectedprop = s.protectedprop;
 obj.pdependentprop = s.pdependentprop;

 if isInUse
 obj.state = s.state;
 end

 loadObjectImpl@matlab.System(obj,s,isInUse);
 end
end

Complete Class Definition Files with Save and Load
The Counter class definition file sets up an object with a count property. This counter is used in the
MySaveLoader class definition file to count the number of child objects.

classdef Counter < matlab.System
 properties(DiscreteState)
 Count

38 System object Usage and Authoring

38-38

 end
 methods (Access=protected)
 function setupImpl(obj, ~)
 obj.Count = 0;
 end
 function y = stepImpl(obj, u)
 if u > 0
 obj.Count = obj.Count + 1;
 end
 y = obj.Count;
 end
 end
end

classdef MySaveLoader < matlab.System

 properties (Access = private)
 child
 pdependentprop = 1
 end

 properties (Access = protected)
 protectedprop = rand;
 end

 properties (DiscreteState = true)
 state
 end

 properties (Dependent)
 dependentprop
 end

 methods
 function obj = MySaveLoader(varargin)
 obj@matlab.System();
 setProperties(obj,nargin,varargin{:});
 end

 function set.dependentprop(obj, value)
 obj.pdependentprop = min(value, 5);
 end

 function value = get.dependentprop(obj)
 value = obj.pdependentprop;
 end
 end

 methods (Access = protected)
 function setupImpl(obj)
 obj.state = 42;
 obj.child = Counter;
 end
 function out = stepImpl(obj,in)
 obj.state = in + obj.state + obj.protectedprop + ...
 obj.pdependentprop;
 out = obj.child(obj.state);
 end

 Save and Load System Object

38-39

 end

 % Serialization
 methods (Access = protected)
 function s = saveObjectImpl(obj)
 % Call the base class method
 s = saveObjectImpl@matlab.System(obj);

 % Save the child System objects
 s.child = matlab.System.saveObject(obj.child);

 % Save the protected & private properties
 s.protectedprop = obj.protectedprop;
 s.pdependentprop = obj.pdependentprop;

 % Save the state only if object called and not released
 if isLocked(obj)
 s.state = obj.state;
 end
 end

 function loadObjectImpl(obj,s,isInUse)
 % Load child System objects
 obj.child = matlab.System.loadObject(s.child);

 % Load protected and private properties
 obj.protectedprop = s.protectedprop;
 obj.pdependentprop = s.pdependentprop;

 % Load the state only if object is in use
 if isInUse
 obj.state = s.state;
 end

 % Call base class method to load public properties
 loadObjectImpl@matlab.System(obj,s,isInUse);
 end
 end
end

See Also
saveObjectImpl | loadObjectImpl

38 System object Usage and Authoring

38-40

Define System Object Information
This example shows how to define information to display for a System object.

Define System Object Info

You can define your own info method to display specific information for your System object. The
default infoImpl method returns an empty struct. This infoImpl method returns detailed
information when info is called using info(x,'details') or only count information if it is called
using info(x).

methods (Access = protected)
 function s = infoImpl(obj,varargin)
 if nargin>1 && strcmp('details',varargin(1))
 s = struct('Name','Counter',
 'Properties', struct('CurrentCount',obj.Count, ...
 'Threshold',obj.Threshold));
 else
 s = struct('Count',obj.Count);
 end
 end
end

Complete Class Definition File with InfoImpl

classdef Counter < matlab.System
 % Counter Count values above a threshold

 properties
 Threshold = 1
 end

 properties (DiscreteState)
 Count
 end

 methods (Access = protected)
 function setupImpl(obj)
 obj.Count = 0;
 end

 function resetImpl(obj)
 obj.Count = 0;
 end

 function y = stepImpl(obj,u)
 if (u > obj.Threshold)
 obj.Count = obj.Count + 1;
 end
 y = obj.Count;
 end

 function s = infoImpl(obj,varargin)
 if nargin>1 && strcmp('details',varargin(1))
 s = struct('Name','Counter',...
 'Properties', struct('CurrentCount', ...
 obj.Count,'Threshold',obj.Threshold));

 Define System Object Information

38-41

 else
 s = struct('Count',obj.Count);
 end
 end
 end
end

See Also
infoImpl

38 System object Usage and Authoring

38-42

Handle Input Specification Changes
This example shows how to control the input specifications for a System object. You can control what
happens when an input specification changes.

You can also restrict whether the input complexity, data type, or size can change while the object is in
use. Whichever aspects you restrict cannot change until after the user calls release.

React to Input Specification Changes
To modify the System object algorithm or properties when the input changes size, data type, or
complexity, implement the processInputSpecificationChangeImpl method. Specify actions to
take when the input specification changes between calls to the System object.

In this example, processInputSpecificationChangeImpl changes the isComplex property
when either input is complex.

properties(Access = private)
 isComplex (1,1) logical = false;
end

methods (Access = protected)
 function processInputSpecificationChangeImpl(obj,input1,input2)
 if(isreal(input1) && isreal(input2))
 obj.isComplex = false;
 else
 obj.isComplex = true;
 end
 end
end

Restrict Input Specification Changes
To specify that the input complexity, data type, and size cannot change while the System object is in
use, implement the isInputComplexityMutableImpl, isInputDataTypeMutableImpl, and
isInputSizeMutableImpl methods to return false. If you want to restrict only some aspects of
the System object input, you can include only one or two of these methods.

methods (Access = protected)
 function flag = isInputComplexityMutableImpl(~,~)
 flag = false;
 end
 function flag = isInputSizeDataTypeImpl(~,~)
 flag = false;
 end
 function flag = isInputSizeMutableImpl(~,~)
 flag = false;
 end
end

Complete Class Definition File

This Counter System object restricts all three aspects of the input specification.

classdef Counter < matlab.System
 %Counter Count values above a threshold

 Handle Input Specification Changes

38-43

 properties
 Threshold = 1
 end

 properties (DiscreteState)
 Count
 end

 methods
 function obj = Counter(varargin)
 setProperties(obj,nargin,varargin{:});
 end
 end

 methods (Access=protected)
 function resetImpl(obj)
 obj.Count = 0;
 end

 function y = stepImpl(obj, u1)
 if (any(u1 >= obj.Threshold))
 obj.Count = obj.Count + 1;
 end
 y = obj.Count;
 end

 function flag = isInputComplexityMutableImpl(~,~)
 flag = false;
 end

 function flag = isInputDataTypeMutableImpl(~,~)
 flag = false;
 end

 function flag = isInputSizeMutableImpl(~,~)
 flag = false;
 end
 end
end

See Also
isInputSizeMutableImpl

Related Examples
• “What You Cannot Change While Your System Is Running” on page 38-9

38 System object Usage and Authoring

38-44

Summary of Call Sequence

In this section...
“Setup Call Sequence” on page 38-45
“Running the Object or Step Call Sequence” on page 38-45
“Reset Method Call Sequence” on page 38-46
“Release Method Call Sequence” on page 38-47

The diagrams show an abstract view of which actions are performed when you call a System object.
The background color or each action indicates the type of call.

• Grey background — Internal actions
• Green background — Author-implemented method
• White background — User-accessible functions

If you want a more detailed call sequence, see “Detailed Call Sequence” on page 38-48.

Setup Call Sequence
This hierarchy shows the actions performed when you call the setup function.

Running the Object or Step Call Sequence
This hierarchy shows the actions performed when you call the step function.

 Summary of Call Sequence

38-45

Reset Method Call Sequence
This hierarchy shows the actions performed when you call the reset function.

38 System object Usage and Authoring

38-46

Release Method Call Sequence
This hierarchy shows the actions performed when you call the release function.

See Also
setupImpl | stepImpl | releaseImpl | resetImpl

Related Examples
• “Release System Object Resources” on page 38-22
• “Reset Algorithm State” on page 38-22
• “Set Property Values at Construction Time” on page 38-20
• “Define Basic System Objects” on page 38-11

 Summary of Call Sequence

38-47

Detailed Call Sequence
In this section...
“setup Call Sequence” on page 38-48
“Running the Object or step Call Sequence” on page 38-48
“reset Call Sequence” on page 38-49
“release Call Sequence” on page 38-49

The call sequence diagrams show the order in which internal methods are called when you run the
specified method. If your System object does not overwrite a specified method, the default
implementation of that method is used.

If you want a more abstract view of the method calls, see “Summary of Call Sequence” on page 38-45.

setup Call Sequence
When you run a System object for the first time, setup is called to perform one-time set up tasks.
This sequence of methods is called:

1 If the System object is not in use, release on page 38-49
2 validatePropertiesImpl
3 isDiscreteStateSpecificationMutableImpl
4 isInputDataTypeMutableImpl
5 isInputComplexityMutableImpl
6 isInputSizeMutableImpl
7 isTunablePropertyDataTypeMutableImpl
8 validateInputsImpl
9 If the System object uses nondirect feedthrough methods, call

isInputDirectFeedthroughImpl
10 setupImpl

Running the Object or step Call Sequence
When you run a System object in MATLAB, either by calling the object as a function or calling step,
this sequence of methods is called:

1 If the System object is not in use (object was just created or was released),

a release on page 38-47
b setup on page 38-48
c reset on page 38-49

Else, if the object is in use (object was called and release was not called)

a If tunable properties have changed

i validatePropertiesImpl

38 System object Usage and Authoring

38-48

ii processTunedPropertiesImpl
b If the input size, data type, or complexity has changed

i validateInputsImpl
ii processInputSpecificationChangeImpl

reset Call Sequence
When reset is called, these actions are performed.

1 If the object is in use (object was called and not released), call resetImpl

release Call Sequence
When release is called, these actions are performed.

1 If the object is in use (object was called and not released), call releaseImpl

See Also
setupImpl | stepImpl | releaseImpl | resetImpl

Related Examples
• “Release System Object Resources” on page 38-22
• “Reset Algorithm State” on page 38-22
• “Set Property Values at Construction Time” on page 38-20
• “Define Basic System Objects” on page 38-11

 Detailed Call Sequence

38-49

Tips for Defining System Objects
A System object is a specialized MATLAB object that is optimized for iterative processing. Use System
objects when you need to run an object multiple times or process data in a loop. When defining your
own System object, use the following suggestions to help your System object run more quickly.

General
• Define all one-time calculations in the setupImpl method and cache the results in a private

property. Use the stepImpl method for repeated calculations.
• Specify Boolean values using true or false instead of 1 or 0, respectively.
• If the variables in a method do not need to retain their values between calls, use local scope for

those variables in that method.

Inputs and Outputs
• Some methods use the stepImpl algorithm inputs as their inputs, such as setupImpl,

updateImpl, validateInputsImpl, isInputDirectFeedThroughImpl, and
processInputSpecificationChangeImpl. The inputs must match the order of inputs to
stepImpl, but do not need to match the number of inputs. If your implementation does not
require any of the inputs to the System object, you can leave them all off.

• For the getNumInputsImpl and getNumOutputsImpl methods, if you set the return argument
from an object property, that object property must have the Nontunable attribute.

Using ~ as an Input Argument in Method Definitions
All methods, except static methods, expect the System object handle as the first input argument. You
can use any name for your System object handle. The code inserted by the MATLAB Editor menu uses
obj.

In many examples, instead of passing in the object handle, ~ is used to indicate that the object handle
is not used in the function. Using ~ instead of an object handle prevents warnings about unused
variables.

Properties
• For properties that do not change, define them in as Nontunable properties. Tunable properties

have slower access times than Nontunable properties
• Whenever possible, use the protected or private attribute instead of the public attribute for

a property. Some public properties have slower access times than protected and private
properties.

• If properties are accessed more than once in the stepImpl method, cache those properties as
local variables inside the method. A typical example of multiple property access is a loop. Iterative
calculations using cached local variables run faster than calculations that must access the
properties of an object. When the calculations for the method complete, you can save the local
cached results back to the properties of that System object. Copy frequently used tunable
properties into private properties. This best practice also applies to the updateImpl and
outputImpl methods.

38 System object Usage and Authoring

38-50

For example, in this code k is accessed multiple times in each loop iteration, but is saved to the
object property only once.

function y = stepImpl(obj,x)
 k = obj.MyProp;
 for p=1:100
 y = k * x;
 k = k + 0.1;
 end
 obj.MyProp = k;
end

• Default values of properties are shared across all instances of an object. Two instances of a class
can access the same default value if that property has not been overwritten by either instance.

Text Comparisons
Do not use character vector comparisons or character vector-based switch statements in the
stepImpl method. Instead, create a method handle in setupImpl. This handle points to a method in
the same class definition file. Use that handle in a loop in stepImpl.

This example shows how to use method handles and cached local variables in a loop to implement an
efficient object. In setupImpl, choose myMethod1 or myMethod2 based on a character vector
comparison and assign the method handle to the pMethodHandle property. Because there is a loop
in stepImpl, assign the pMethodHandle property to a local method handle, myFun, and then use
myFun inside the loop.

classdef MyClass < matlab.System
 function setupImpl(obj)
 if strcmp(obj.Method, 'Method1')
 obj.pMethodHandle = @myMethod1;
 else
 obj.pMethodHandle = @myMethod2;
 end
 end
 function y = stepImpl(obj,x)
 myFun = obj.pMethodHandle;
 for p=1:1000
 y = myFun(obj,x)
 end
 end
 end
 function y = myMethod1(x)
 y = x+1;
 end
 function y = myMethod2(x)
 y = x-1;
 end
end

Simulink
For System objects being included in Simulink, add the StrictDefaults attribute. This attribute
sets all the MutableImpl methods to return false by default.

 Tips for Defining System Objects

38-51

Code Generation
For information about System objects and code generation, see “System Objects in MATLAB Code
Generation” (MATLAB Coder).

38 System object Usage and Authoring

38-52

Insert System Object Code Using MATLAB Editor
In this section...
“Define System Objects with Code Insertion” on page 38-53
“Create a Temperature Enumeration” on page 38-55
“Create Custom Property for Freezing Point” on page 38-56
“Add Method to Validate Inputs” on page 38-57

Define System Objects with Code Insertion
You can define System objects from the MATLAB Editor using code insertion options. When you select
these options, the MATLAB Editor adds predefined properties, methods, states, inputs, or outputs to
your System object. Use these tools to create and modify System objects faster, and to increase
accuracy by reducing typing errors. The GUI has slight difference in MATLAB online but the
functionality is the same.

To access the System object editing options, create a new System object, or open an existing one.

To add predefined code to your System object, select the code from the appropriate menu. For
example, when you click Insert Property > Numeric, the MATLAB Editor adds the following code:

 properties(Nontunable)
 Property
 end

The MATLAB Editor inserts the new property with the default name Property, which you can
rename. If you have an existing properties group with the Nontunable attribute, the MATLAB Editor
inserts the new property into that group. If you do not have a property group, the MATLAB Editor
creates one with the correct attribute.

 Insert System Object Code Using MATLAB Editor

38-53

Insert Options

Properties Properties of the System object: Numeric, Logical, Enumeration, Positive Integer, Tunable
Numeric, Private, Protected, and Custom. When you select Enumeration or Custom Properties, a
separate dialog box opens to guide you in creating these properties.

Methods Methods commonly used in System object definitions. The MATLAB Editor creates only the
method structure. You specify the actions of that method.

The Insert Method menu organizes methods by categories, such as Algorithm, Inputs and
Outputs, and Properties and States. When you select a method from the menu, the MATLAB
Editor inserts the method template in your System object code. In this example, selecting Insert
Method > Release resources inserts the following code:

 function releaseImpl(obj)
 % Release resources, such as file handles
 end

If a method from the Insert Method menu is present in the System object code, that method is
shown shaded on the Insert Method menu:

States Properties containing the DiscreteState attribute.

38 System object Usage and Authoring

38-54

Inputs /
Outputs

Inputs, outputs, and related methods, such as Validate inputs and Disallow input size
changes.

When you select an input or output, the MATLAB Editor inserts the specified code in the
stepImpl method. In this example, selecting Insert > Input causes the MATLAB Editor to
insert the required input variable u2. The MATLAB Editor determines the variable name, but
you can change it after it is inserted.

 function y = stepImpl(obj,u,u2)
 % Implement algorithm. Calculate y as a function of
 % input u and discrete states.
 y = u;
 end

Create a Temperature Enumeration
1 Open a new or existing System object.
2 In the MATLAB Editor, select Insert Property > Enumeration.
3 In the Enumeration dialog box, enter:

a Property Name with TemperatureUnit.
b Enumeration Name with TemperatureUnitValues.

4 Select the Create new enumeration check box.
5 Remove the existing enumeration values with the - (minus) button.
6 Add three an enumeration values with the + (plus) button and the following values:

• Fahrenheit
• Celsius
• Kelvin

7 Select Fahrenheit as the default value by clicking Default.

The dialog box now looks as shown:

 Insert System Object Code Using MATLAB Editor

38-55

8 To create this enumeration and the associated class, click Insert.
9 In the MATLAB Editor, an additional class file with the enumeration definition is created. Save

the enumeration class definition file as TemperatureUnitValues.m.

classdef TemperatureUnitValues < int32
 enumeration
 Fahrenheit (0)
 Celsius (1)
 Kelvin (2)
 end
end

In the System object class definition, the following code was added:

 properties(Nontunable)
 TemperatureUnit (1, 1) TemperatureUnitValues = TemperatureUnitValues.Fahrenheit
 end

For more information on enumerations, see “Limit Property Values to Finite List” on page 38-28.

Create Custom Property for Freezing Point
1 Open a new or existing System object.
2 In the MATLAB Editor, select Insert Property > Custom Property.
3 In the Custom Property dialog box, under System Object Attributes, select Nontunable.

Under MATLAB Property Attributes, select Constant. Leave GetAccess as public.
SetAccess is grayed out because properties of type constant cannot be set using System object
methods.

38 System object Usage and Authoring

38-56

4 Click Insert and the following code is inserted into the System object definition:

 properties(Nontunable, Constant)
 Property
 end

5 Replace Property with your property.

 properties(Nontunable, Constant)
 FreezingPointFahrenheit = 32;
 end

Add Method to Validate Inputs
1 Open a new or existing System object.
2 In the MATLAB Editor, select Insert Method > Validate inputs.

The MATLAB Editor inserts this code into the System object:

 function validateInputsImpl(obj,u)
 % Validate inputs to the step method at initialization
 end

See Also

Related Examples
• “Analyze System Object Code” on page 38-58

 Insert System Object Code Using MATLAB Editor

38-57

Analyze System Object Code
View and navigate System object code using the Analyzer.

The Analyzer displays an outline of all elements in the System object code.

• Navigate to a specific input, output, property, state, or method by clicking the name of that
element.

• Expand or collapse element sections with the arrow buttons.
• Identify access levels for properties and custom methods with the + (public), # (protected), and –

(private) symbols.

For example:

1 Open an existing System object.
2 In the MATLAB toolstrip, in the System Object section, click Inspect.
3 In the Analyzer dialog box that opens, click the resetImpl method.

The cursor in the MATLAB Editor window goes to the resetImpl method.

38 System object Usage and Authoring

38-58

The Analyzer provides warnings for legacy base classes, properties with legacy attributes, and
redundant methods. When a System object contains legacy code, the Analyzer displays an Update
button that helps you replace or remove the legacy code.

The warnings and Update button are not available in MATLAB Online.

When you click Update, the Analyzer:

• Converts legacy System object attributes, such as Stringsets, Logical, and
PositiveInteger

• Deletes obsolete System object mixin superclasses, such as
matlab.system.mixin.SampleTime, matlab.system.mixin.Nondirect, and
matlab.system.mixin.Propagates

• Deletes obsolete authoring methods, such as processInputSizeChangeImpl(obj,u,...)
• Deletes redundant authoring methods, such as isInputDataTypeMutableImpl,

isInputSizeMutableImpl, isInputComplexityMutableImpl,

 Analyze System Object Code

38-59

isDiscreteStateSpecificationMutableImpl, and
isTunablePropertyDataTypeMutableImpl when both of these conditions are met:

• The System object defines or inherits StrictDefaults.
• The parent class of the System object does not define these authoring methods.

When the update modifies the System object code, a prompt lets you compare the updated code with
the previous version.

See Also
sysobjupdate

Related Examples
• “Insert System Object Code Using MATLAB Editor” on page 38-53

38 System object Usage and Authoring

38-60

Use Global Variables in System Objects
Global variables are variables that you can access in other MATLAB functions or Simulink blocks.

System Object Global Variables in MATLAB
For System objects that are used only in MATLAB, you define global variables in System object class
definition files in the same way that you define global variables in other MATLAB code (see “Global
Variables” on page 21-12).

System Object Global Variables in Simulink
For System objects that are used in the MATLAB System block in Simulink, you also define global
variables as you do in MATLAB. However, to use global variables in Simulink, you must declare global
variables in the stepImpl, updateImpl, or outputImpl method if you have declared them in
methods called by stepImpl, updateImpl, or outputImpl, respectively.

You set up and use global variables for the MATLAB System block in the same way as you do for the
MATLAB Function block (see “Data Stores” (Simulink) and “Share Data Globally” (Simulink)). Like
the MATLAB Function block, you must also use variable name matching with a Data Store Memory
block to use global variables in Simulink.

For example, this class definition file defines a System object that increments the first row of a matrix
by 1 at each time step. You must include getGlobalNamesImpl if the class file is P-coded.

classdef GlobalSysObjMatrix < matlab.System
 methods (Access = protected)
 function y = stepImpl(obj)
 global B;
 B(1,:) = B(1,:)+1;
 y = B;
 end

 % Include getGlobalNamesImpl only if the class file is P-coded.
 function globalNames = getGlobalNamesImpl(~)
 globalNames = {"B"};
 end
 end
end

This model includes the GlobalSysObjMatrix object in a MATLAB System block and the associated
Data Store Memory block.

 Use Global Variables in System Objects

38-61

38 System object Usage and Authoring

38-62

 Use Global Variables in System Objects

38-63

See Also

38 System object Usage and Authoring

38-64

Create Moving Average System Object

This example shows how to create a System object™ that implements a moving average filter.

Introduction

System objects are MATLAB® classes that derive from matlab.System. As a result, System objects
all inherit a common public interface, which includes standard methods:

• setup — Initialize the object, typically at the beginning of a simulation
• reset — Clear the internal state of the object, bringing it back to its default post-initialization

status
• release — Release any resources (memory, hardware, or OS-specific resources) used internally

by the object

When you create new kinds of System objects, you provide specific implementations for all the
preceding methods to determine its behavior.

In this example, you create and use the movingAverageFilter System object.
movingAverageFilter is a System object that computes the unweighted mean of the previous
WindowLength input samples. WindowLength is the length of the moving average window.
movingAverageFilter accepts single-precision and double-precision 2-D input matrices. Each
column of the input matrix is treated as an independent (1-D) channel. The first dimension of the
input defines the length of the channel (or the input frame size). movingAverageFilter
independently computes the moving average of each input channel over time.

Create the System Object File

In the MATLAB Home tab, create a new System object class by selecting New > System Object >
Basic. The basic template for a System object opens in the MATLAB editor to guide you as you create
the movingAverageFilter System object.

Rename the class movingAverageFilter and save the file as movingAverageFilter.m. To ensure
you can use the System object, make sure you save the System object in a folder that is on the
MATLAB path.

For your convenience, a complete movingAverageFilter System object file is available with this
example. To open the completed class, enter:

edit movingAverageFilter.m

Add Properties

This System object needs four properties. First, add a public property WindowLength to control the
length of the moving average window. Because the algorithm depends on this value being constant
once data processing begins, the property is defined as nontunable. Additionally, the property only
accepts real, positive integers. To ensure input satisfies these conditions, add property validators (see
“Validate Property Values”). Set the default value of this property to 5.

properties(Nontunable)
 WindowLength (1,1){mustBeInteger,mustBePositive} = 5
end

 Create Moving Average System Object

38-65

Second, add two properties called State and pNumChannels. Users should not access either
property, so use the Access = private attribute. State saves the state of the moving average
filter. pNumChannels stores the number of channels in your input. The value of this property is
determined from the number of columns in the input.

properties(Access = private)
 State;
 pNumChannels = -1;
end

Finally, you need a property to store the FIR numerator coefficients. Add a property called
pCoefficients. Because the coefficients do not change during data processing and you do not want
users of the System object to access the coefficients, set the property attributes as Nontunable,
Access = private.

properties(Access = private, Nontunable)
 pCoefficients
end

Add Constructor for Easy Creation

The System object constructor is a method that has the same name as the class
(movingAverageFilter in this example). You implement a System object constructor to allow
name-value pair inputs to the System object with the setProperties method. For example, with the
constructor, users can use this syntax to create an instance of the System object: filter =
movingAverageFilter('WindowLength',10). Do not use the constructor for anything else. All
other setup tasks should be written in the setupImpl method.

methods
 function obj = movingAverageFilter(varargin)
 % Support name-value pair arguments when constructing object
 setProperties(obj,nargin,varargin{:})
 end
end

Set Up and Initialization in setupImpl

The setupImpl method sets up the object and implements one-time initialization tasks. For this
System object, modify the default setupImpl method to calculate the filter coefficients, the state,
and the number of channels. The filter coefficients are computed based on the specified
WindowLength. The filter state is initialized to zero. (Note that there are WindowLength-1 states
per input channel.) Finally, the number of channels is determined from the number of columns in the
input.

For setupImpl and all Impl methods, you must set the method attribute Access = protected
because users of the System object do not call these methods directly. Instead the back-end of the
System object calls these methods through other user-facing functions.

function setupImpl(obj,x)
 % Perform one-time calculations, such as computing constants
 obj.pNumChannels = size(x,2);
 obj.pCoefficients = ones(1,obj.WindowLength)/obj.WindowLength;
 obj.State = zeros(obj.WindowLength-1,obj.pNumChannels,'like',x);
end

38 System object Usage and Authoring

38-66

Define the Algorithm in stepImpl

The object's algorithm is defined in the stepImpl method. The algorithm in stepImpl is executed
when the user of the System object calls the object at the command line. In this example, modify
stepImpl to calculate the output and update the object's state values using the filter function.

function y = stepImpl(obj,u)
 [y,obj.State] = filter(obj.pCoefficients,1,u,obj.State);
end

Reset and Release

The state reset equations are defined in the resetImpl method. In this example, reset states to zero.
Additionally, you need to add a releaseImpl method. From the Editor toolstrip, select Insert
Method > Release resources. The releaseImpl method is added to your System object. Modify
releaseImpl to set the number of channels to -1, which allows new input to be used with the filter.

function resetImpl(obj)
 % Initialize / reset discrete-state properties
 obj.State(:) = 0;
end
function releaseImpl(obj)
 obj.pNumChannels = -1;
end

Validate Input

To validate inputs to your System object, you must implement a validateInputsImpl method. This
method validates inputs at initialization and at each subsequent call where the input attributes (such
as dimensions, data type, or complexity) change. From the toolstrip, select Insert Method >
Validate inputs. In the newly inserted validateInputsImpl method, call validateattributes
to ensure that the input is a 2-D matrix with floating-point data.

function validateInputsImpl(~, u)
 validateattributes(u,{'double','single'}, {'2d',...
 'nonsparse'},'','input');
end

Object Saving and Loading

When you save an instance of a System object, saveObjectImpl defines what property and state
values are saved in a MAT-file. If you do not define a saveObjectImpl method for your System
object class, only public properties and properties with the DiscreteState attribute are saved.
Select Insert Method > Save in MAT-file. Modify saveObjectImpl so that if the object is locked,
the coefficients and number of channels is saved.

function s = saveObjectImpl(obj)
 s = saveObjectImpl@matlab.System(obj);
 if isLocked(obj)
 s.pCoefficients = obj.pCoefficients;
 s.pNumChannels = obj.pNumChannels;
 end
end

loadObjectImpl is the companion to saveObjectImpl because it defines how a saved object
loads. When you load the saved object, the object loads in the same locked state. Select Insert

 Create Moving Average System Object

38-67

Method > Load from MAT-file. Modify loadObjectImpl so that if the object is locked, the
coefficients and number of channels are loaded.

function loadObjectImpl(obj,s,wasLocked)
 if wasLocked
 obj.pCoefficients = s.pCoefficients;
 obj.pNumChannels = s.pNumChannels;
 end
 loadObjectImpl@matlab.System(obj,s,wasLocked);
end

Use movingAverageFilter in MATLAB

Now that you have defined the System object, you can use the object in MATLAB. For example, use
movingAverageFilter to remove noise from a noisy pulse sequence.

movingAverageFilter = movingAverageFilter('WindowLength',10);

t = (1:250)';
signal = randn(250,1);
smoothedSignal = movingAverageFilter(signal);

plot(t,signal,t,smoothedSignal);
legend(["Input","Satlaboothed input"])

38 System object Usage and Authoring

38-68

Extend Your System Object for Simulink

To use your System object in Simulink®, see “Create Moving Average Filter Block with System
Object” (Simulink).

 Create Moving Average System Object

38-69

Create New System Objects for File Input and Output

This example shows how to create and use two different System objects to facilitate the streaming of
data in and out of MATLAB®: TextFileReader and TextFileWriter.

The objects discussed in this example address a number of realistic use cases, and they can be
customized to achieve more advanced and specialized tasks.

Introduction

System objects are MATLAB classes that derive from matlab.System. As a result, System objects all
inherit a common public interface, which includes standard methods:

• setup — Initialize the object, typically at the beginning of a simulation
• reset — Clear the internal state of the object, bringing it back to its default post-initialization

status
• release — Release any resources (memory, hardware, or OS-specific resources) used internally

by the object

When you create new kinds of System objects, you provide specific implementations for all the
preceding methods to determine its behavior.

In this example we discuss the internal structure and the use of the following two System objects:

• TextFileReader
• TextFileWriter

To create these System objects for streaming data in and out of MATLAB, this example uses standard
low-level file I/O functions available in MATLAB (like fscanf, fread, fprintf, and fwrite). By
abstracting away most usage details of those functions, they aim to make the task of reading and
writing streamed data simpler and more efficient.

This example includes the use of a number of advanced constructs to author System objects. For a
more basic introduction to authoring System objects, see “Create System Objects”.

Definition of the Class TextFileReader

The TextFileReader class includes a class definition, public and private properties, a constructor,
protected methods overridden from the matlab.System base class, and private methods. The
TextFileWriter class is similarly structured.

Class Definition

The class definition states that the TextFileReader class is derived from both matlab.System and
matlab.system.mixin.FiniteSource.

 classdef (StrictDefaults)TextFileReader < matlab.System & matlab.system.mixin.FiniteSource

• matlab.System is required and is the base class for all System objects
• matlab.system.mixin.FiniteSource indicates this class is a signal source with a finite

number of data samples. For this type of class, in addition to the usual interface, the System
object™ will also expose the isDone function. When isDone returns true, the object reached the
end of the available data.

38 System object Usage and Authoring

38-70

Public Properties

Public properties can be changed by the user to adjust the behavior of the object to his or her
particular application. TextFileReader has two nontunable public properties (they can only be
changed before the first call to the object) and four tunable public properties. All the public
properties have a default value. Default values are assigned to the corresponding properties when
nothing else is specified by the user.

 properties (Nontunable)
 Filename = 'tempfile.txt'
 HeaderLines = 4
 end

 properties
 DataFormat = '%g'
 Delimiter = ','
 SamplesPerFrame = 1024
 PlayCount = 1
 end

Private Properties

Private properties are not visible to the user and can serve a number of purposes, including

• To hold values computed only occasionally, then used with subsequent calls to the algorithm. For
example, values used at initialization time, when setup is called or the object is called for the first
time. This can save recomputing them at runtime and improve the performance of the core
functionality

• To define the internal state of the object. For example, pNumEofReached stores the number of
times that the end-of-file indicator was reached:

 properties(Access = private)
 pFID = -1
 pNumChannels
 pLineFormat
 pNumEofReached = 0
 end

Constructor

The constructor is defined so that you can construct a TextFileReader object using name-value
pairs. The constructor is called when a new instance of TextDataReader is created. The call to
setProperties within the constructor allows setting properties with name-value pairs at
construction. No other initialization tasks should be specified in the constructor. Instead, use the
setupImpl method.

 methods
 function obj = TextFileReader(varargin)
 setProperties(obj, nargin, varargin{:});
 end
 end

Overriding matlab.System Base Class Protected Methods

The public methods common to all System objects each have corresponding protected methods that
they call internally. The names of these protected methods all include an Impl postfix. They can be
implemented when defining the class to program the behavior of your System object.

 Create New System Objects for File Input and Output

38-71

For more information on the correspondence between the standard public methods and their internal
implementations, please refer to “Summary of Call Sequence” on page 38-45.

For example, TextFileReader overrides these Impl methods:

• setupImpl
• resetImpl
• stepImpl
• releaseImpl
• isDoneImpl
• processTunedPropertiesImpl
• loadObjectImpl
• saveObjectImpl

Private Methods

Private methods are only accessible from within other methods of the same class. They can be used to
make the rest of the code more readable. They can also improve code reusability, by grouping under
separate routines code that is used multiple times in different parts of the class. For
TextFileReader, private methods are created for:

• getWorkingFID
• goToStartOfData
• peekCurrentLine
• lockNumberOfChannelsUsingCurrentLine
• readNDataRows

Write and Read Data

This example shows how you can use TextFileReader and TextFileWriter by:

• Creating a text file containing the samples of two different sinusoidal signals using
TextFileWriter

• Read from the text file using TextFileReader.

Create a Simple Text File

Create a new file to store two sinusoidal signals with frequencies of 50 Hz and 60 Hz. For each signal,
the data stored is composed of 800 samples at a sampling rate of 8 kHz.

Create data samples:

fs = 8000;
tmax = 0.1;
t = (0:1/fs:tmax-1/fs)';
N = length(t);
f = [50,60];
data = sin(2*pi*t*f);

Form a header string to describe the data in a readable way for future use (optional step):

38 System object Usage and Authoring

38-72

fileheader = sprintf(['The following contains %d samples of two ',...
 'sinusoids,\nwith frequencies %d Hz and %d Hz and a sample rate of',...
 ' %d kHz\n\n'], N, f(1),f(2),fs/1000);

To store the signal to a text file, create a TextFileWriter object. The constructor of
TextFileWriter needs the name of the target file and some optional parameters, which can be
passed in as name-value pairs.

TxtWriter = TextFileWriter('Filename','sinewaves.txt','Header',fileheader)

TxtWriter =
 TextFileWriter with properties:

 Filename: 'sinewaves.txt'
 Header: 'The following contains 800 samples of two sinusoids,...'
 DataFormat: '%.18g'
 Delimiter: ','

TextFileWriter writes data to delimiter-separated ASCII files. Its public properties include:

• Filename — Name of the file to be written. If a file with this name already exists, it is
overwritten. When operations start, the object begins writing to the file immediately following the
header. The object then appends new data at each subsequent call to the object, until it is
released. Calling reset resumes writing from the beginning of the file.

• Header — Character string, often composed of multiple lines and terminated by a newline
character (\n). This is specified by the user and can be modified to embed human-readable
information that describes the actual data.

• DataFormat — Format used to store each data sample. This can take any value assignable as
Conversion Specifier within the formatSpec string used by the built-in MATLAB function
fprintf. DataFormat applies to all channels written to the file. The default value for this
property is '%.18g', which allows saving double precision floating point data in full precision.

• Delimiter — Character used to separate samples from different channels at the same time
instant. Every line of the written file maps to a time instant, and it includes as many samples as
the number of channels provided as input (in other words, the number of columns in the matrix
input passed to the object).

To write all the available data to the file, a single call to can be used.

TxtWriter(data)

Release control of the file by calling the release function.

release(TxtWriter)

The data is now stored in the new file. To visually inspect the file, type:

edit('sinewaves.txt')

Because the header takes up three lines, the data starts on line 4.

In this simple case, the length of the whole signal is small, and it fits comfortably on system memory.
Therefore, the data can be created all at once and written to a file in a single step.

There are cases when this approach is not possible or practical. For example, the data might be too
large to fit into a single MATLAB variable (too large to fit on system memory). Alternatively, the data

 Create New System Objects for File Input and Output

38-73

might be created cyclically in a loop or streamed into MATLAB from an external source. In all these
cases, streaming the data into the file can be done with an approach similar to the following example.

Use a streamed sine wave generator to create a frame of data per loop. Run the desired number of
iterations to create the data and store it into the file:

frameLength = 32;
tmax = 10;
t = (0:1/fs:tmax-1/fs)';
N = length(t);
data = sin(2*pi*t*f);
numCycles = N/frameLength;

for k = 1:10 % Long running loop when you replace 10 with numCycles.
 dataFrame = sin(2*pi*t*f);
 TxtWriter(dataFrame)
end

release(TxtWriter)

Read from Existing Text File

To read from the text file, create an instance of TextFileReader.

TxtReader = TextFileReader('Filename','sinewaves.txt','HeaderLines',3,'SamplesPerFrame',frameLength)

TxtReader =
 TextFileReader with properties:

 Filename: 'sinewaves.txt'
 HeaderLines: 3
 DataFormat: '%g'
 Delimiter: ','
 SamplesPerFrame: 32
 PlayCount: 1

TextFileReader reads numeric data from delimiter-separated ASCII files. Its properties are similar
to those of TextFileWriter. Some differences follow

• HeaderLines — Number of lines used by the header within the file specified in Filename. The
first call to the object starts reading from line number HeaderLines+1. Subsequent calls to the
object keep reading from the line immediately following the previously read line. Calling reset
will resume reading from line HeaderLines+1.

• Delimiter — Character used to separate samples from different channels at the same time
instant. In this case, the delimiter is also used to determine the number of data channels stored in
the file. When the object is first run, the object counts the number of Delimiter characters at
line HeaderLines+1, say numDel. Then for every time instant, the object reads numChan =
numDel+1 numeric values with format DataFormat. The matrix returned by the algorithm has
size SamplesPerFrame-by-numChan.

• SamplesPerFrame — Number of lines read by each call to the object. This value is also the
number of rows of the matrix returned as output. When the last available data rows are reached,
there might be fewer than the required SamplesPerFrame. In that case, the available data are
padded with zeros to obtain a matrix of size SamplesPerFrame-by-numChan. Once all the data
are read, the algorithm simply returns zeros(SamplesPerFrame,numChan) until reset or
release is called.

38 System object Usage and Authoring

38-74

• PlayCount — Number of times the data in the file is read cyclically. If the object reaches the end
of the file, and the file has not yet been read a number of times equal to PlayCount, reading
resumes from the beginning of the data (line HeaderLines+1). If the last lines of the file do not
provide enough samples to form a complete output matrix of size SamplesPerFrame-by-numChan,
then the frame is completed using the initial data. Once the file is read PlayCount times, the
output matrix returned by the algorithm is filled with zeros, and all calls to isDone return true
unless reset or release is called. To loop through the available data indefinitely, PlayCount
can be set to Inf.

To read the data from the text file, the more general streamed approach is used. This method of
reading data is also relevant to dealing with very large data files. Preallocate a data frame with
frameLength rows and 2 columns.

dataFrame = zeros(frameLength,2,'single');

Read from the text file and write to the binary file while data is present in the source text file. Notice
how the method isDone is used to control the execution of the while loop.

while(~isDone(TxtReader))
 dataFrame(:) = TxtReader();
end

release(TxtReader)

Summary

This example illustrated how to author and use System objects to read from and write to numeric
data files. TextFileReader and TextFileWriter can be edited to perform special-purpose file
reading and writing operations. You can also combine these custom System objects with built-in
System objects such as dsp.BinaryFileWriter and dsp.BinaryFileReader.

For more information on authoring System objects for custom algorithms, see “Create System
Objects”.

See Also

More About
• “Create Moving Average System Object” on page 38-65
• “Tips for Defining System Objects” on page 38-50
• “Define Basic System Objects” on page 38-11

 Create New System Objects for File Input and Output

38-75

Create Composite System Object

This example shows how to create a System object™ composed of other System objects. This System
object uses two moving average System objects to find the cross-correlation of two independent
samples. The “Create Moving Average System Object” on page 38-65 example explains in detail how
to create a System object. This example focuses on how to use a System object within another System
object.

System Objects as Private Properties

The ability to create more than one instance of a System object and having each instance manage its
own state is one of the biggest advantages of using System objects over functions. The private
properties MovingAverageFilter1 and MovingAverageFilter2 are used to store the two moving
average filter objects.

properties (Access=private)
 % This example class contains two moving average filters (more can be added
 % in the same way)
 MovingAverageFilter1
 MovingAverageFilter2
end

Set Up the Moving Average Filter

In the setupImpl method, create the two moving average System objects and initialize their public
properties.

function setupImpl(obj,~)
 % Set up moving average objects with default values
 obj.MovingAverageFilter1 = movingAverageFilter('WindowLength',obj.WindowLength1);
 obj.MovingAverageFilter2 = movingAverageFilter('WindowLength',obj.WindowLength2);
end

Work with Dependent Properties

The WindowLength public property from the movingAverageFilter System object is implemented
as a dependent property in this example.

properties(Nontunable,Dependent)
 % WindowLength Moving window length
 WindowLength1;
 WindowLength2;
end

Whenever you assign a value to one of the dependent properties, the value is set in the corresponding
moving average filter. When you read one of the dependent properties, the value is read from the
corresponding moving average filter.

function set.WindowLength1(obj,WindowLength1)
 % Set the window length of one moving average filter
 obj.MovingAverageFilter1.WindowLength = WindowLength1;
end
function WindowLength = get.WindowLength1(obj)
 % Read window length from one of the moving average filters
 WindowLength = obj.MovingAverageFilter1.WindowLength;
end

38 System object Usage and Authoring

38-76

function set.WindowLength2(obj,WindowLength2)
 % Set the window length of one moving average filter
 obj.MovingAverageFilter2.WindowLength = WindowLength2;
end
function WindowLength = get.WindowLength2(obj)
 % Read window length from one of the moving average filters
 WindowLength = obj.MovingAverageFilter2.WindowLength;
end

Use the Cross-Correlation Object in MATLAB

Create random variables to calculate the cross-correlation of their moving averages, then view the
results in a stem plot.

x = rand(20,1);
y = rand(20,1);
crossCorr = crossCorrelationMovingAverages('WindowLength1',1,'WindowLength2',5);

for iter = 1:100
 x = rand(20,1);
 y = rand(20,1);
 [corr,lags] = crossCorr(x,y);
 stem(lags,corr)
end

 Create Composite System Object

38-77

More About
• “Create Moving Average System Object” on page 38-65
• “Tips for Defining System Objects” on page 38-50

38 System object Usage and Authoring

38-78

	Language
	Syntax Basics
	Continue Long Statements on Multiple Lines
	Name=Value in Function Calls
	Ignore Function Outputs
	Variable Names
	Valid Names
	Conflicts with Function Names

	Case and Space Sensitivity
	Choose Command Syntax or Function Syntax
	Command Syntax and Function Syntax
	Avoid Common Syntax Mistakes
	How MATLAB Recognizes Command Syntax

	Resolve Error: Undefined Function or Variable
	Issue
	Possible Solutions

	Program Components
	MATLAB Operators and Special Characters
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Special Characters
	String and Character Formatting

	Array vs. Matrix Operations
	Introduction
	Array Operations
	Matrix Operations

	Compatible Array Sizes for Basic Operations
	Inputs with Compatible Sizes
	Inputs with Incompatible Sizes
	Examples

	Array Comparison with Relational Operators
	Array Comparison
	Logic Statements

	Operator Precedence
	Precedence of AND and OR Operators
	Overriding Default Precedence

	Average Similar Data Points Using a Tolerance
	Group Scattered Data Using a Tolerance
	Bit-Wise Operations
	Perform Cyclic Redundancy Check
	Conditional Statements
	Loop Control Statements
	Regular Expressions
	What Is a Regular Expression?
	Steps for Building Expressions
	Operators and Characters

	Lookahead Assertions in Regular Expressions
	Lookahead Assertions
	Overlapping Matches
	Logical AND Conditions

	Tokens in Regular Expressions
	Introduction
	Multiple Tokens
	Unmatched Tokens
	Tokens in Replacement Text
	Named Capture

	Dynamic Regular Expressions
	Introduction
	Dynamic Match Expressions — (??expr)
	Commands That Modify the Match Expression — (??@cmd)
	Commands That Serve a Functional Purpose — (?@cmd)
	Commands in Replacement Expressions — ${cmd}

	Comma-Separated Lists
	What Is a Comma-Separated List?
	Generating a Comma-Separated List
	Assigning Output from a Comma-Separated List
	Assigning to a Comma-Separated List
	How to Use Comma-Separated Lists
	Fast Fourier Transform Example
	Troubleshooting Operations with Comma-Separated Lists

	Alternatives to the eval Function
	Why Avoid the eval Function?
	Variables with Sequential Names
	Files with Sequential Names
	Function Names in Variables
	Field Names in Variables
	Error Handling

	Classes (Data Types)
	Overview of MATLAB Classes
	Fundamental MATLAB Classes
	Detect States of Variables Using is* Functions

	Numeric Classes
	Integers
	Integer Classes
	Creating Integer Data
	Arithmetic Operations on Integer Classes
	Largest and Smallest Values for Integer Classes

	Floating-Point Numbers
	Double-Precision Floating Point
	Single-Precision Floating Point
	Creating Floating-Point Data
	Arithmetic Operations on Floating-Point Numbers
	Largest and Smallest Values for Floating-Point Classes
	Accuracy of Floating-Point Data
	Avoiding Common Problems with Floating-Point Arithmetic

	Create Complex Numbers
	Infinity and NaN
	Infinity
	NaN

	Identifying Numeric Classes
	Display Format for Numeric Values
	Integer Arithmetic
	Single Precision Math

	The Logical Class
	Find Array Elements That Meet a Condition
	Reduce Logical Arrays to Single Value

	Characters and Strings
	Text in String and Character Arrays
	Create String Arrays
	Cell Arrays of Character Vectors
	Create Cell Array of Character Vectors
	Access Character Vectors in Cell Array
	Convert Cell Arrays to String Arrays

	Analyze Text Data with String Arrays
	Test for Empty Strings and Missing Values
	Formatting Text
	Fields of the Formatting Operator
	Setting Field Width and Precision
	Restrictions on Using Identifiers

	Compare Text
	Search and Replace Text
	Build Pattern Expressions
	Convert Numeric Values to Text
	Convert Text to Numeric Values
	Unicode and ASCII Values
	Hexadecimal and Binary Values
	Frequently Asked Questions About String Arrays
	Why Does Using Command Form With Strings Return An Error?
	Why Do Strings in Cell Arrays Return an Error?
	Why Does length() of String Return 1?
	Why Does isempty("") Return 0?
	Why Does Appending Strings Using Square Brackets Return Multiple Strings?

	Update Your Code to Accept Strings
	What Are String Arrays?
	Recommended Approaches for String Adoption in Old APIs
	How to Adopt String Arrays in Old APIs
	Recommended Approaches for String Adoption in New Code
	How to Maintain Compatibility in New Code
	How to Manually Convert Input Arguments
	How to Check Argument Data Types
	Terminology for Character and String Arrays

	Dates and Time
	Represent Dates and Times in MATLAB
	Specify Time Zones
	Convert Date and Time to Julian Date or POSIX Time
	Set Date and Time Display Format
	Formats for Individual Date and Duration Arrays
	datetime Display Format
	duration Display Format
	calendarDuration Display Format
	Default datetime Format

	Generate Sequence of Dates and Time
	Sequence of Datetime or Duration Values Between Endpoints with Step Size
	Add Duration or Calendar Duration to Create Sequence of Dates
	Specify Length and Endpoints of Date or Duration Sequence
	Sequence of Datetime Values Using Calendar Rules

	Share Code and Data Across Locales
	Write Locale-Independent Date and Time Code
	Write Dates in Other Languages
	Read Dates in Other Languages

	Extract or Assign Date and Time Components of Datetime Array
	Combine Date and Time from Separate Variables
	Date and Time Arithmetic
	Compare Dates and Time
	Plot Dates and Times
	Core Functions Supporting Date and Time Arrays
	Convert Between Text and datetime or duration Values
	Replace Discouraged Instances of Serial Date Numbers and Date Strings
	Convert Serial Date Numbers and Date Strings
	Replace Functions That Use Date Numbers
	Discouraged Syntaxes for Date and Time Components
	Guidelines for Updating Your Own Functions

	Carryover in Date Vectors and Strings
	Converting Date Vector Returns Unexpected Output

	Categorical Arrays
	Create Categorical Arrays
	Convert Text in Table Variables to Categorical
	Plot Categorical Data
	Compare Categorical Array Elements
	Combine Categorical Arrays
	Combine Categorical Arrays Using Multiplication
	Access Data Using Categorical Arrays
	Select Data By Category
	Common Ways to Access Data Using Categorical Arrays

	Work with Protected Categorical Arrays
	Advantages of Using Categorical Arrays
	Natural Representation of Categorical Data
	Mathematical Ordering for Character Vectors
	Reduce Memory Requirements

	Ordinal Categorical Arrays
	Order of Categories
	How to Create Ordinal Categorical Arrays
	Working with Ordinal Categorical Arrays

	Core Functions Supporting Categorical Arrays

	Tables
	Create Tables and Assign Data to Them
	Add and Delete Table Rows
	Add, Delete, and Rearrange Table Variables
	Clean Messy and Missing Data in Tables
	Modify Units, Descriptions, and Table Variable Names
	Add Custom Properties to Tables and Timetables
	Access Data in Tables
	Summary of Table Indexing Syntaxes
	Table Indexing with Specified Rows and Variables
	Find Rows Where Values Meet Logical Conditions
	Dot Notation with Any Variable Name or Expression
	Extract Data from Specified Rows and Variables

	Calculations on Data in Tables
	Split Data into Groups and Calculate Statistics
	Perform Calculations by Group in Table
	Advantages of Using Tables
	Grouping Variables To Split Data
	Grouping Variables
	Group Definition
	The Split-Apply-Combine Workflow
	Missing Group Values

	Changes to DimensionNames Property in R2016b
	Data Cleaning and Calculations in Tables
	Grouped Calculations in Tables and Timetables

	Timetables
	Create Timetables
	Resample and Aggregate Data in Timetable
	Combine Timetables and Synchronize Their Data
	Retime and Synchronize Timetable Variables Using Different Methods
	Select Times in Timetable
	Clean Timetable with Missing, Duplicate, or Nonuniform Times
	Using Row Labels in Table and Timetable Operations
	Loma Prieta Earthquake Analysis
	Preprocess and Explore Time-Stamped Data Using timetable
	Add Events from External Data to Timetable
	Find Events in Timestamped Data

	Structures
	Structure Arrays
	Create Scalar Structure
	Access Values in Fields
	Index into Nonscalar Structure Array

	Concatenate Structures
	Generate Field Names from Variables
	Access Data in Nested Structures
	Access Elements of a Nonscalar Structure Array
	Ways to Organize Data in Structure Arrays
	Plane Organization
	Element-by-Element Organization

	Memory Requirements for Structure Array

	Cell Arrays
	What Is a Cell Array?
	Create Cell Array
	Access Data in Cell Array
	Add Cells to Cell Array
	Delete Data from Cell Array
	Combine Cell Arrays
	Pass Contents of Cell Arrays to Functions
	Preallocate Memory for Cell Array
	Cell vs. Structure Arrays
	Multilevel Indexing to Access Parts of Cells

	Function Handles
	Create Function Handle
	What Is a Function Handle?
	Creating Function Handles
	Anonymous Functions
	Arrays of Function Handles
	Saving and Loading Function Handles

	Pass Function to Another Function
	Call Local Functions Using Function Handles
	Compare Function Handles

	Dictionaries
	Map Data with Dictionaries
	Dictionaries and Custom Classes
	Hash Equivalence
	Overload keyHash and keyMatch for Custom Classes

	Map Containers
	Overview of Map Data Structure
	Description of Map Class
	Properties of Map Class
	Methods of Map Class

	Create Map Object
	Construct Empty Map Object
	Construct Initialized Map Object
	Combine Map Objects

	Examine Contents of Map
	Read and Write Using Key Index
	Read From Map
	Add Key/Value Pairs
	Build Map with Concatenation

	Modify Keys and Values in Map
	Remove Keys and Values from Map
	Modify Values
	Modify Keys
	Modify Copy of Map

	Map to Different Value Types
	Map to Structure Array
	Map to Cell Array

	Combining Unlike Classes
	Valid Combinations of Unlike Classes
	Combining Unlike Integer Types
	Overview
	Example of Combining Unlike Integer Sizes
	Example of Combining Signed with Unsigned

	Combining Integer and Noninteger Data
	Combining Cell Arrays with Non-Cell Arrays
	Empty Matrices
	Concatenation Examples
	Combining Single and Double Types
	Combining Integer and Double Types
	Combining Character and Double Types
	Combining Logical and Double Types

	Using Objects
	Copying Objects
	Two Copy Behaviors
	Handle Object Copy
	Value Object Copy Behavior
	Handle Object Copy Behavior
	Testing for Handle or Value Class

	Defining Your Own Classes

	Scripts and Functions
	Scripts
	Create Scripts
	Add Comments to Code
	Create and Run Sections in Code
	Divide Your File into Sections
	Run Sections
	Navigate Between Sections
	Behavior of Sections in Functions
	Behavior of Sections in Loops and Conditional Statements

	Scripts vs. Functions
	Add Functions to Scripts
	Create a Script with Local Functions
	Run Scripts with Local Functions
	Restrictions for Local Functions and Variables
	Access Help for Local Functions

	Live Scripts and Functions
	What Is a Live Script or Function?
	Differences with Plain Code Scripts and Functions
	Requirements
	Unsupported Features

	Create Live Scripts in the Live Editor
	Create Live Script
	Add Code
	Run Code
	Display Output
	Change View
	Format Text
	Save Live Scripts as Plain Code

	Modify Figures in Live Scripts
	Explore Data
	Add Formatting and Annotations
	Update Code with Figure Changes
	Save and Print Figure

	Format Text in the Live Editor
	Change Fonts
	Autoformatting

	Insert Equations into the Live Editor
	Insert Equation Interactively
	Insert LaTeX Equation
	Supported LaTeX Commands

	Add Interactive Controls to a Live Script
	Insert Controls
	Modify Control Labels
	Link Variables to Controls
	Specify Default Values
	Modify Control Execution
	Create Live Script with Multiple Interactive Controls
	Share Live Script

	Add Interactive Tasks to a Live Script
	What Are Live Editor Tasks?
	Insert Tasks
	Run Tasks and Surrounding Code
	Modify Output Argument Name
	View and Edit Generated Code
	Custom Live Editor Tasks

	Create Live Functions
	Create Live Function
	Add Code
	Add Help
	Run Live Function
	Save Live Functions as Plain Code

	Add Help for Live Functions
	Share Live Scripts and Functions
	Hide Code Before Sharing

	Live Code File Format (.mlx)
	Benefits of Live Code File Format
	Source Control

	Introduction to the Live Editor
	Accelerate Exploratory Programming Using the Live Editor
	Create an Interactive Narrative with the Live Editor
	Create Interactive Course Materials Using the Live Editor
	Create Examples Using the Live Editor
	Create an Interactive Form Using the Live Editor
	Create a Real-Time Dashboard Using the Live Editor
	Acknowledgments

	Function Basics
	Create Functions in Files
	Syntax for Function Definition
	Contents of Functions and Files
	End Statements

	Add Help for Your Program
	Configure the Run Button for Functions
	Base and Function Workspaces
	Share Data Between Workspaces
	Introduction
	Best Practice: Passing Arguments
	Nested Functions
	Persistent Variables
	Global Variables
	Evaluating in Another Workspace

	Check Variable Scope in Editor
	Use Automatic Function and Variable Highlighting
	Example of Using Automatic Function and Variable Highlighting

	Types of Functions
	Local and Nested Functions in a File
	Private Functions in a Subfolder
	Anonymous Functions Without a File

	Anonymous Functions
	What Are Anonymous Functions?
	Variables in the Expression
	Multiple Anonymous Functions
	Functions with No Inputs
	Functions with Multiple Inputs or Outputs
	Arrays of Anonymous Functions

	Local Functions
	Nested Functions
	What Are Nested Functions?
	Requirements for Nested Functions
	Sharing Variables Between Parent and Nested Functions
	Using Handles to Store Function Parameters
	Visibility of Nested Functions

	Resolve Error: Attempt to Add Variable to a Static Workspace.
	Issue
	Possible Solutions

	Private Functions
	Function Precedence Order
	Change in Rules For Function Precedence Order

	Update Code for R2019b Changes to Function Precedence Order
	Identifiers cannot be used for two purposes inside a function
	Identifiers without explicit declarations might not be treated as variables
	Variables cannot be implicitly shared between parent and nested functions
	Change in precedence of wildcard-based imports
	Fully qualified import functions cannot have the same name as nested functions
	Fully qualified imports shadow outer scope definitions of the same name
	Error handling when import not found
	Nested functions inherit import statements from parent functions
	Change in precedence of compound name resolution
	Anonymous functions can include resolved and unresolved identifiers

	Indexing into Function Call Results
	Example
	Supported Syntaxes

	Function Arguments
	Find Number of Function Arguments
	Support Variable Number of Inputs
	Support Variable Number of Outputs
	Validate Number of Function Arguments
	Checking Number of Arguments in Nested Functions
	Ignore Inputs in Function Definitions
	Check Function Inputs with validateattributes
	Parse Function Inputs
	Input Parser Validation Functions

	Debugging MATLAB Code
	Debug MATLAB Code Files
	Display Output
	Debug Using Run to Here
	View Variable Value While Debugging
	Pause a Running File
	Step Into Functions
	Add Breakpoints and Run Code
	End Debugging Session
	Debug by Using Keyboard Shortcuts or Functions

	Set Breakpoints
	Standard Breakpoints
	Conditional Breakpoints
	Error Breakpoints
	Breakpoints in Anonymous Functions
	Invalid Breakpoints
	Disable Breakpoints
	Clear Breakpoints

	Examine Values While Debugging
	View Variable Value
	View Variable Value Outside Current Workspace

	Presenting MATLAB Code
	Publish and Share MATLAB Code
	Create and Share Live Scripts in the Live Editor
	Publish MATLAB Code Files (.m)
	Add Help and Create Documentation

	Publishing Markup
	Markup Overview
	Sections and Section Titles
	Text Formatting
	Bulleted and Numbered Lists
	Text and Code Blocks
	External File Content
	External Graphics
	Image Snapshot
	LaTeX Equations
	Hyperlinks
	HTML Markup
	LaTeX Markup

	Output Preferences for Publishing
	How to Edit Publishing Options
	Specify Output File
	Run Code During Publishing
	Manipulate Graphics in Publishing Output
	Save a Publish Setting
	Manage a Publish Configuration

	Coding and Productivity Tips
	Save and Back Up Code
	Save Code
	Back Up Code
	Recommendations on Saving Files
	File Encoding

	Check Code for Errors and Warnings Using the Code Analyzer
	Enable Continuous Code Checking
	View Code Analyzer Status for File
	View Code Analyzer Messages
	Fix Problems in Code
	Create a Code Analyzer Message Report
	Adjust Code Analyzer Message Indicators and Messages
	Understand Code Containing Suppressed Messages
	Understand the Limitations of Code Analysis
	Enable MATLAB Compiler Deployment Messages

	Edit and Format Code
	Column Selection
	Change Case
	Automatically Complete Code
	Refactor Code
	Indent Code
	Fold Code
	Change the Right-Side Text Limit Indicator

	Find and Replace Text in Files and Go to Location
	Find and Replace Any Text in Current File
	Find and Replace Functions or Variables in Current File
	Automatically Rename All Variables or Functions in a File
	Find Text in Multiple File Names or Files
	Go To Location in File

	Add Reminders to Files
	Working with TODO/FIXME Reports

	MATLAB Code Analyzer Report
	Run the Code Analyzer Report
	Change Code Based on Code Analyzer Messages
	Other Ways to Access Code Analyzer Messages

	MATLAB Code Compatibility Analyzer
	Open the Code Compatibility Analyzer
	Programmatic Use
	Unsupported Functionality

	Code Generation Readiness Tool
	Issues Tab
	Files Tab

	Programming Utilities
	Identify Program Dependencies
	Simple Display of Program File Dependencies
	Detailed Display of Program File Dependencies
	Dependencies Within a Folder

	Security Considerations to Protect Your Source Code
	Create P-Code Files
	Build Standalone Executables
	Use Model Protection
	Convert Code to Native Code
	Host Compiled Application on Remote Protected Server
	Utilize Secure OS Services

	Create a Content-Obscured File with P-Code
	Create P-Code Files
	Invoke P-Code Files
	Run Older P-Code Files on Later Versions of MATLAB

	Create Hyperlinks that Run Functions
	Run a Single Function
	Run Multiple Functions
	Provide Command Options
	Include Special Characters

	Create and Share Toolboxes
	Create Toolbox
	Share Toolbox

	Run Parallel Language in MATLAB
	Run Parallel Language in Serial
	Use Parallel Language Without a Pool

	Function Argument Validation
	Function Argument Validation
	Introduction to Argument Validation
	Where to Use Argument Validation
	arguments Block Syntax
	Examples of Argument Validation
	Kinds of Arguments
	Required and Optional Positional Arguments
	Repeating Arguments
	Name-Value Arguments
	Robust Handling of Name-Value Arguments
	Name-Value Arguments from Class Properties
	Order of Argument Validation
	Avoiding Class and Size Conversions
	nargin in Argument Validation
	Restrictions on Variable and Function Access
	Debugging Arguments Blocks

	Argument Validation Functions
	Numeric Value Attributes
	Comparison with Other Values
	Data Types
	Size
	Membership and Range
	Text
	Define Validation Functions

	Transparency in MATLAB Code
	Writing Transparent Code

	Software Development
	Error Handling
	Exception Handling in a MATLAB Application
	Overview
	Getting an Exception at the Command Line
	Getting an Exception in Your Program Code
	Generating a New Exception

	Throw an Exception
	Suggestions on How to Throw an Exception

	Respond to an Exception
	Overview
	The try/catch Statement
	Suggestions on How to Handle an Exception

	Clean Up When Functions Complete
	Overview
	Examples of Cleaning Up a Program Upon Exit
	Retrieving Information About the Cleanup Routine
	Using onCleanup Versus try/catch
	onCleanup in Scripts

	Issue Warnings and Errors
	Issue Warnings
	Throw Errors
	Add Run-Time Parameters to Your Warnings and Errors
	Add Identifiers to Warnings and Errors

	Suppress Warnings
	Turn Warnings On and Off

	Restore Warnings
	Disable and Restore a Particular Warning
	Disable and Restore Multiple Warnings

	Change How Warnings Display
	Enable Verbose Warnings
	Display a Stack Trace on a Specific Warning

	Use try/catch to Handle Errors

	Program Scheduling
	Schedule Command Execution Using Timer
	Overview
	Example: Displaying a Message

	Timer Callback Functions
	Associating Commands with Timer Object Events
	Creating Callback Functions
	Specifying the Value of Callback Function Properties

	Handling Timer Queuing Conflicts
	Drop Mode (Default)
	Error Mode
	Queue Mode

	Performance
	Measure the Performance of Your Code
	Overview of Performance Timing Functions
	Time Functions
	Time Portions of Code
	The cputime Function vs. tic/toc and timeit
	Tips for Measuring Performance

	Profile Your Code to Improve Performance
	What Is Profiling?
	Profile Your Code
	Profile Multiple Statements in Command Window
	Profile an App

	Techniques to Improve Performance
	Environment
	Code Structure
	Programming Practices for Performance
	Tips on Specific MATLAB Functions

	Preallocation
	Preallocating a Nondouble Matrix

	Vectorization
	Using Vectorization
	Array Operations
	Logical Array Operations
	Matrix Operations
	Ordering, Setting, and Counting Operations
	Functions Commonly Used in Vectorization

	Background Processing
	Asynchronous Functions
	Asynchronous Code
	Background Workers

	Run MATLAB Functions in Thread-Based Environment
	Run Functions in the Background
	Run Functions on a Thread Pool
	Automatically Scale Up
	Check Thread Supported Functions

	Create Responsive Apps by Running Calculations in the Background
	Open App Designer App
	Add a Future Array to the Properties
	Create y-axis Data in the Background
	Automatically Update Plot After Data Is Calculated in the Background
	Make Your App More Responsive by Canceling the Future Array
	Responsive App That Calculates and Plots Simple Curves

	Run Functions in Background
	Update Wait Bar While Functions Run in the Background

	Memory Usage
	Strategies for Efficient Use of Memory
	Use Appropriate Data Storage
	Avoid Temporary Copies of Data
	Reclaim Used Memory

	Resolve “Out of Memory” Errors
	Issue
	Possible Solutions

	How MATLAB Allocates Memory
	Avoid Unnecessary Copies of Data
	Passing Values to Functions
	Why Pass-by-Value Semantics
	Handle Objects

	Custom Help and Documentation
	Create Help for Classes
	Help Text from the doc Command
	Custom Help Text

	Check Which Programs Have Help
	Create Help Summary Files — Contents.m
	What Is a Contents.m File?
	Create a Contents.m File
	Check an Existing Contents.m File

	Customize Code Suggestions and Completions
	Function Objects
	Signature Objects
	Argument Objects
	Create Function Signature File
	How Function Signature Information is Used
	Multiple Signatures

	Display Custom Documentation
	Overview
	Create HTML Help Files
	Create info.xml File
	Create helptoc.xml File
	Build a Search Database
	Address Validation Errors for info.xml Files

	Display Custom Examples
	How to Display Examples
	Elements of the demos.xml File

	Projects
	Create Projects
	What Are Projects?
	Create Project
	Open Project
	Set up Project
	Add Files to Project
	Other Ways to Create Projects

	Automate Startup and Shutdown Tasks
	Specify Project Path
	Set Startup Folder
	Specify Startup and Shutdown Files

	Set MATLAB Projects Preferences
	Determine Order for Resolving Conflicts Using Dependency Analyzer
	Manage Project Files
	Automatic Updates When Renaming, Deleting, or Removing Files

	Find Project Files
	Group and Sort Project Files
	Search for and Filter Project Files
	Search the Content in Project Files

	Create Shortcuts to Frequent Tasks
	Run Shortcuts
	Create Shortcuts
	Organize Shortcuts

	Add Labels to Project Files
	Add Labels
	View and Edit Label Data
	Create Labels

	Create Custom Tasks
	Create a Custom Task Function
	Run a Custom Task
	Save Custom Task Report

	Componentize Large Projects
	Add or Remove Reference to a Project
	View, Edit, or Run Referenced Project Files
	Extract Folder to Create a Referenced Project
	Manage Changes in Referenced Project Using Checkpoints

	Share Projects
	Create an Export Profile

	Upgrade Projects
	Run Upgrade Project Tool
	Examine Upgrade Project Report

	Analyze Project Dependencies
	Run a Dependency Analysis
	Explore the Dependency Graph, Views, and Filters
	Investigate and Resolve Problems
	Find Required Products and Add-Ons
	Find File Dependencies
	Export Dependency Analysis Results

	Clone Remote Git Repository into New Project
	Use Source Control with Projects
	Setup Source Control
	Perform Source Control Operations
	Work with Derived Files in Projects
	Find Project Files With Unsaved Changes
	Manage Open Files When Closing a Project

	Create and Edit Projects Programmatically
	Explore an Example Project

	Source Control Interface
	Source Control Integration in MATLAB
	Classic and Distributed Source Control

	Set Source Control Preferences
	Set Git Preferences in MATLAB Online

	Use Git in MATLAB
	Clone Remote Git Repository
	Mark Files for Addition
	Review Changes
	Commit Modified Files
	Push Files
	Resolve Conflicts
	Manage Files
	Create Local Git Repository
	Store Uncommitted Changes Using Git Stashes

	Set Up Git Source Control
	Register Binary Files with Git
	Configure MATLAB for Git on Windows
	Configure MATLAB to Use Git SSH Authentication
	Install Git Credential Helper
	Disable Compression for Simulink Models
	Configure Git to Use Git LFS
	Configure Git to use MATLAB for Diff and Merge
	Install Command-Line Git Client

	Branch and Merge with Git
	Create Branch
	Switch Branch
	Compare Branches
	Merge Branches
	Revert to Head
	Delete Branches

	Add Git Submodules
	Update Submodules
	Use Fetch and Merge with Submodules
	Use Push to Send Changes to the Submodule Repository

	Review Changes in SVN Source Control
	Mark Files for Addition to SVN Source Control
	Move, Rename, or Delete Files Under SVN Source Control
	Resolve SVN Source Control Conflicts
	Examining and Resolving Conflicts
	Resolve Conflicts
	Merge Text Files
	Extract Conflict Markers

	Commit Modified Files to SVN Source Control
	Revert Changes in SVN Source Control
	Revert Local Changes
	Revert a File to a Specified Revision

	Set Up SVN Source Control
	SVN Source Control Options
	Register Binary Files with SVN
	Standard Repository Structure
	Tag Versions of Files
	Enforce Locking Files Before Editing
	Share a Subversion Repository

	Check Out from SVN Repository
	Retrieve Tagged Version of Repository

	Update SVN File Status and Revision
	Refresh Status of Files
	Update Revisions of Files

	Get SVN File Locks
	Manage SVN Repository Locks

	Continuous Integration Using MATLAB Projects and Jenkins
	Prerequisites
	Set Up MATLAB Project for Continuous Integration in Jenkins
	Reduce Test Runtime Using Dependency Cache and Impact Analysis
	Enhance Workflow

	Customize External Source Control to Use MATLAB for Diff and Merge
	Finding the Full Paths for MATLAB Diff, Merge, and AutoMerge
	Integration with Git
	Integration with SVN
	Integration with Other Source Control Tools

	MSSCCI Source Control Interface
	Set Up MSSCCI Source Control
	Create Projects in Source Control System
	Specify Source Control System with MATLAB Software
	Register Source Control Project with MATLAB Software
	Add Files to Source Control

	Check Files In and Out from MSSCCI Source Control
	Check Files Into Source Control
	Check Files Out of Source Control
	Undoing the Checkout

	Additional MSSCCI Source Control Actions
	Getting the Latest Version of Files for Viewing or Compiling
	Removing Files from the Source Control System
	Showing File History
	Comparing the Working Copy of a File to the Latest Version in Source Control
	Viewing Source Control Properties of a File
	Starting the Source Control System

	Access MSSCCI Source Control from Editors
	Troubleshoot MSSCCI Source Control Problems
	Source Control Error: Provider Not Present or Not Installed Properly
	Restriction Against @ Character
	Add to Source Control Is the Only Action Available
	More Solutions for Source Control Problems

	Unit Testing
	Write Test Using Live Script
	Write Script-Based Unit Tests
	Write Script-Based Test Using Local Functions
	Extend Script-Based Tests
	Test Suite Creation
	Test Selection
	Programmatic Access of Test Diagnostics
	Test Runner Customization

	Run Tests in Editor
	Write Function-Based Unit Tests
	Create Test Function
	Run the Tests
	Analyze the Results

	Write Simple Test Case Using Functions
	Write Test Using Setup and Teardown Functions
	Extend Function-Based Tests
	Fixtures for Setup and Teardown Code
	Test Logging and Verbosity
	Test Suite Creation
	Test Selection
	Test Running
	Programmatic Access of Test Diagnostics
	Test Runner Customization

	Author Class-Based Unit Tests in MATLAB
	The Test Class Definition
	The Unit Tests
	Additional Features for Advanced Test Classes

	Write Simple Test Case Using Classes
	Write Setup and Teardown Code Using Classes
	Test Fixtures
	Test Case with Method-Level Setup Code
	Test Case with Class-Level Setup Code

	Table of Verifications, Assertions, and Other Qualifications
	Tag Unit Tests
	Tag Tests
	Select and Run Tests

	Write Tests Using Shared Fixtures
	Create Basic Custom Fixture
	Create Advanced Custom Fixture
	Use Parameters in Class-Based Tests
	How to Write Parameterized Tests
	How to Initialize Parameterization Properties
	Specify Parameterization Level
	Specify How Parameters Are Combined
	Use External Parameters in Tests

	Create Basic Parameterized Test
	Create Advanced Parameterized Test
	Use External Parameters in Parameterized Test
	Define Parameters at Suite Creation Time
	Create Simple Test Suites
	Run Tests for Various Workflows
	Set Up Example Tests
	Run All Tests in Class or Function
	Run Single Test in Class or Function
	Run Test Suites by Name
	Run Test Suites from Test Array
	Run Tests with Customized Test Runner

	Programmatically Access Test Diagnostics
	Add Plugin to Test Runner
	Write Plugins to Extend TestRunner
	Custom Plugins Overview
	Extending Test Session Level Plugin Methods
	Extending Test Suite Level Plugin Methods
	Extending Test Class Level Plugin Methods
	Extending Test Level Plugin Methods

	Create Custom Plugin
	Run Tests in Parallel with Custom Plugin
	Write Plugin to Add Data to Test Results
	Write Plugin to Save Diagnostic Details
	Plugin to Generate Custom Test Output Format
	Analyze Test Case Results
	Analyze Failed Test Results
	Rerun Failed Tests
	Dynamically Filtered Tests
	Test Methods
	Method Setup and Teardown Code
	Class Setup and Teardown Code

	Create Custom Constraint
	Create Custom Boolean Constraint
	Overview of App Testing Framework
	App Testing
	Gesture Support of UI Components
	Write a Test for an App

	Write Tests for an App
	Write Tests That Use App Testing and Mocking Frameworks
	Create App
	Test App With Manual Intervention
	Create Fully Automated Test

	Overview of Performance Testing Framework
	Determine Bounds of Measured Code
	Types of Time Experiments
	Write Performance Tests with Measurement Boundaries
	Run Performance Tests
	Understand Invalid Test Results

	Test Performance Using Scripts or Functions
	Test Performance Using Classes
	Measure Fast Executing Test Code
	Create Mock Object
	Specify Mock Object Behavior
	Define Mock Method Behavior
	Define Mock Property Behavior
	Define Repeating and Subsequent Behavior
	Summary of Behaviors

	Qualify Mock Object Interaction
	Qualify Mock Method Interaction
	Qualify Mock Property Interaction
	Use Mock Object Constraints
	Summary of Qualifications

	Ways to Write Unit Tests
	Script-Based Unit Tests
	Function-Based Unit Tests
	Class-Based Unit Tests
	Extend Unit Testing Framework

	Compile MATLAB Unit Tests
	Run Tests with Standalone Applications
	Run Tests in Parallel with Standalone Applications
	TestRand Class Definition Summary

	Generate Code Coverage Report in HTML Format
	Statement Coverage for MATLAB Source Code
	Function Coverage for MATLAB Source Code
	Generate and Analyze HTML Coverage Report
	QuadraticPolynomial Class Definition

	Insert Test Code Using Editor
	Create Test Class
	Add Parameters and Methods
	Run Tests in Test Class

	Develop and Integrate Software with Continuous Integration
	Continuous Integration Workflow
	Continuous Integration with MathWorks Products

	Generate Artifacts Using MATLAB Unit Test Plugins
	Continuous Integration with MATLAB on CI Platforms
	Azure DevOps
	Bamboo
	CircleCI
	GitHub Actions
	GitLab CI/CD
	Jenkins
	Travis CI
	Other Platforms

	Build Automation
	Overview of MATLAB Build Tool
	Create Plan with Tasks
	Run Tasks in Plan

	Create and Run Tasks Using Build Tool
	Create Build File
	Summary of Build File
	Visualize Task Dependencies
	Run Tasks in Plan

	System object Usage and Authoring
	What Are System Objects?
	Running a System Object
	System Object Functions

	System Objects vs MATLAB Functions
	System Objects vs. MATLAB Functions
	Process Audio Data Using Only MATLAB Functions Code
	Process Audio Data Using System Objects

	System Design in MATLAB Using System Objects
	System Design and Simulation in MATLAB
	Create Individual Components
	Configure Components
	Create and Configure Components at the Same Time
	Assemble Components Into System
	Run Your System
	Reconfiguring Objects

	Define Basic System Objects
	Create System Object Class
	Define Algorithm

	Change the Number of Inputs
	Validate Property and Input Values
	Validate a Single Property
	Validate Interdependent Properties
	Validate Inputs
	Complete Class Example

	Initialize Properties and Setup One-Time Calculations
	Set Property Values at Construction Time
	Reset Algorithm and Release Resources
	Reset Algorithm State
	Release System Object Resources

	Define Property Attributes
	Specify Property as Nontunable
	Specify Property as DiscreteState
	Example Class with Various Property Attributes

	Hide Inactive Properties
	Specify Inactive Property
	Complete Class Definition File with Inactive Properties Method

	Limit Property Values to Finite List
	Property Validation with mustBeMember
	Enumeration Property
	Create a Whiteboard System Object

	Process Tuned Properties
	Define Composite System Objects
	Define Finite Source Objects
	Use the FiniteSource Class and Specify End of the Source
	Complete Class Definition File with Finite Source

	Save and Load System Object
	Save System Object and Child Object
	Load System Object and Child Object
	Complete Class Definition Files with Save and Load

	Define System Object Information
	Handle Input Specification Changes
	React to Input Specification Changes
	Restrict Input Specification Changes

	Summary of Call Sequence
	Setup Call Sequence
	Running the Object or Step Call Sequence
	Reset Method Call Sequence
	Release Method Call Sequence

	Detailed Call Sequence
	setup Call Sequence
	Running the Object or step Call Sequence
	reset Call Sequence
	release Call Sequence

	Tips for Defining System Objects
	General
	Inputs and Outputs
	Using ~ as an Input Argument in Method Definitions
	Properties
	Text Comparisons
	Simulink
	Code Generation

	Insert System Object Code Using MATLAB Editor
	Define System Objects with Code Insertion
	Create a Temperature Enumeration
	Create Custom Property for Freezing Point
	Add Method to Validate Inputs

	Analyze System Object Code
	Use Global Variables in System Objects
	System Object Global Variables in MATLAB
	System Object Global Variables in Simulink

	Create Moving Average System Object
	Create New System Objects for File Input and Output
	Create Composite System Object

