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Chapter 1

Introducing R

1.1 Introduction

The purpose of this monograph is to provide a reference for scientists and
programmers working on problems in bioinformatics and computational bi-
ology. It may also appeal to programmers who want to improve their pro-
gramming skills or programmers who have been working in bioinformatics
and computational biology but are familiar with languages other than R. A
reasonable level of programming skill is presumed as is some familiarity with
some of the basic tasks that need to be carried out in bioinformatics. We
concentrate on programming tools and there is no discussion of either graph-
ics or of the multitude of software for fitting models or carrying out machine
learning. Reasonable coverage of these topics would result in a much longer
monograph and to some extent they are orthogonal to our purpose.

Bioinformatics blossomed as a scientific discipline in the 1990s when a num-
ber of technological innovations appeared that revolutionized biology. Sud-
denly, data on the complete genomic sequence of many different organisms
were available, microarrays could measure the abundance of tens of thou-
sands of mRNA species, and other arrays and technologies made it possible to
study protein interactions and many other cellular processes at the molecular
level. Basically, biology moved from a small data discipline to one with large
complex data sets, virtually overnight.

Faced with these sudden challenges, scientific programmers grabbed what-
ever tools were available and made use of them to help address some of the
many problems. Perl was perhaps the most widely used and it remains a
dominant player to this date. Other popular programming languages such as
Java and Python are also used.

R is an implementation of the S language (Becker et al., 1988; Chambers
and Hastie, 1992; Chambers, 1998). S has been a favorite tool for statisticians
and data analysts since the early 1980s when John Chambers and colleagues
started to release versions of it from Bell Labs. It is now becoming one of
the most widely used software tools for bioinformatics. This is mainly due
to its flexibility and data handling and modeling capabilities. Some of these
have been exposed through the Bioconductor Project (Gentleman et al., 2004)
but many users simply find it a useful tool for doing analyses. However, our
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2 R Programming for Bioinformatics

experience is that it is easy to write inefficient programs, and often the basic
programming idioms are missed or ignored.

In Chapter 2 we discuss the general properties of the R language and some
of the unique aspects of programming in it. In Chapter 3 we discuss object-
oriented programming in R. The paradigm is quite different and may take
some getting used to, but like all object-oriented systems, mastering these
topics is essential to writing good maintainable software. Then Chapter 4 dis-
cusses methods for getting data in and out, for interacting with databases and
includes a discussion of XML, SOAP and other data mark-up and web-services
languages and tools. Chapter 5 discusses different aspects of string handling
and manipulations, including many of the standard sequence similarity tools
that play a prominent role in computational biology. In Chapter 6 we con-
sider interacting with foreign languages, primarily on C, but we also consider
FORTRAN, Perl and Python. In Chapter 7 we describe how to write your
own software packages that can be used locally or distributed more broadly.
Finally we finish with Chapter 9, which discusses debugging and profiling of
R code.

R comes with a substantial amount of documentation. Specifically there
are five manuals: An Introduction to R, The R Language Definition, R In-
stallation and Administration, Writing R Extensions, and R Data Import
and Export. We will draw on material in these manuals throughout this
monograph, and readers who want more detail or alternative examples should
consult them. We will rely most on the Writing R Extensions Manual, which
we abbreviate to R Extensions. R News is a good source of information on R
packages and on aspects of the language written at an accessible level. Read-
ers are encouraged to browse the back issues for more information on topics
that are just touched on in this volume. Venables and Ripley (2000) is another
reference for programming in the S language, as is Chambers (2008).

1.2 Motivation

There are many good reasons to prefer R to other languages for scientific
computation. The existence of a substantial collection of good statistical
algorithms, access to high-quality numerical routines, and integrated data
visualization tools are perhaps the most obvious ones. But as we have been
trying to show through the Bioconductor Project (www.bioconductor.org),
there are many more.

Reproducibility is an essential part of any scientific investigation, but to
date very little attention has been paid to this topic. Our efforts are R-based
(Gentleman, 2005) and make use of the Sweave system (Leisch, 2002). Indeed,
as we discuss later, this entire book has been written so that every example
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is reproducible on the reader’s machine. The ability to integrate text and
software into a single document greatly facilitates the writing of scientific
papers and helps to ensure that all figures, tables and facts are based on the
same data, and are essentially reproducible by the reader.

A second strong motivation for using R is its ability to interoperate with
many other languages. Algorithms that have been written in another language
seldom need to be reimplemented for use in R. Typically one need merely write
a small amount of interface code and the routines can be accessed from within
R (this is described in Chapter 6). This approach also helps to ensure maximal
code reuse.

And finally, R supports the creation and use of self-describing data struc-
tures. In the Bioconductor Project we have relied heavily on this capability in
our design and use of the ExpressionSet class. This data structure is designed
to hold the output of a microarray experiment as well as detailed informa-
tion on the experimental design, other covariates that are available for the
samples that were run and links to information on the genes that correspond
to the spots on the array. While this has been successful in that context,
we have reused this data structure with similar benefits for other data types
such as those that arise in proteomic studies (the PROcess package) and flow
cytometry (the flowCore package).

1.3 A note on the text

This monograph was written using the Sweave system (Leisch, 2002), which
is a tool that allows authors to integrate text (using LATEX) and computer code
for the R language. Hence, all examples are reproducible by the reader and
readers can obtain complete source code (but not the text) on a per-chapter
basis from the web site for this monograph. There are a number of exercises
given and solutions for some of them are available in the online supplements.

The examples themselves are often shown integrated into the text of the
chapters. Not all code is displayed; in many cases preliminary computations,
loading of libraries and other mundane tasks are not displayed in the text
version; they are included in the R code for the chapters. Any example that
relies on simulation or the use of a random number generator will have a call
to the set.seed function as a preliminary command. The sole reason for this
is to ensure reproducibility of the output on the user’s machine.

In cases where the code is intended to signal an error, the call is enclosed in
either a call to try or more often in a call to tryCatch. This is done because any
error signaled by R interrupts the Sweave process and causes typesetting to
fail. Details on the behavior of try and tryCatch can be found in Section 2.11.

Markup is used to distinguish some entities. For example, functions are
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marked up like mean, R packages using Biobase, function arguments, myarg,
R classes with ExpressionSet , and R objects using x. When R prints a value
that corresponds to a vector, some indexing information is provided. In the
example below, we print a vector of integers from 1 to 30. The first thing
printed is [1], which indicates that the first value on that line is the first
value in the vector, and on the second printed line the [18] indicates that the
first value in that line corresponds to the 18th element of the vector. The grey
background is used for all code examples that were processed by the Sweave
system.

> 1:30

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
[18] 18 19 20 21 22 23 24 25 26 27 28 29 30

It is essential that the reader follow along and experiment with some of the
examples given, so two basic strategies are advised. First, make use of the help
system, either by constructs such as help("[") or the shorthand, equivalent,
?"[". Many special functions and symbols need to be quoted. All help pages
should have examples and these can be run using the function example, e.g.,
example("[")). The second basic strategy is to investigate the code itself,
and for this purpose get is most useful; for example, try get("mode") and see
if you can better understand how it works.

1.4 Acknowledgments

Many people have contributed, both directly and indirectly, to the cre-
ation of this book. Both the R and Bioconductor development teams have
contributed substantially to my understanding, and many members of those
projects have provided examples, clarified misunderstandings and provided a
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group have contributed to many aspects; in particular, J. Gentry, S. DebRoy,
H. Pagés, M. Morgan, N. Li, T.-Y. Liu, M. Carlson, P. Aboyoun, D. Sarkar,
F. Hahne and S. Falcon have contributed many ideas, examples and helped
clarify issues. Wolfgang Huber and Vincent Carey made extensive comments
and recommendations. All errors remain my own and I will attempt to remedy
those that are found and reported, in a timely fashion.



Chapter 2

R Language Fundamentals

2.1 Introduction

In this chapter we introduce the basic language data types and discuss
their capabilities and structures. Then topics such as flow-control, iteration,
subsetting and exception handling will be presented. R directly supports two
different object-oriented programming (OOP) paradigms, which are discussed
in detail in Chapter 3. Many operations in R are vectorized, and understand-
ing and using vectorization is an essential component of becoming a proficient
programmer.

The R language was primarily designed as a language for data manipula-
tion, modeling and visualization, and many of the data structures reflect this
view. However, R is itself a full-fledged programming language, with its own
idioms – much like any other programming language. In some ways R can be
considered as a functional programming language, although it is not purely
functional. R supports a form of lexical scope that provides a useful paradigm
for encapsulating computations.

R is an implementation of the S language (Becker et al., 1988; Chambers and
Hastie, 1992; Chambers, 1998). There is another commercial implementation
available from Insightful Corporation, called S-PLUS. The two implementa-
tions are quite similar, and much of the material covered here can be used in
either. However, there are many R-specific extensions that are used in this
monograph and users of R are our intended audience.

2.1.1 A brief introduction to R

We presume a reasonable familiarity with R but there are a few points that
will help to clarify some of the discussion. When R is started, a workspace is
created and that workspace is where the user creates and manipulates vari-
ables. This workspace is an environment, and an environment is a set of
bindings of names, or symbols, to values. The top-level workspace can be
accessed through its name, which is .GlobalEnv.

Assignment of value to a variable is generally done with either the = (equals)
character, or a special symbol that is the concatenation of less than and mi-
nus, <-. Assignment creates a binding between a symbol and a value, in a

5
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particular environment. Removal of bindings is done with the function rm. In
the next code chunk, we create a symbol x and assign to it the value 10. We
then create a second symbol and assign the same value as x has.

> x = 10
> y = x

The value associated with y is a copy of the value associated with x, and
changes to x do not affect y.

The semantics of rm(x) are that the association between x and its value
is broken and the symbol x is removed from the environment, but nothing is
done to the value that x referred to. If this value can be accessed in other
ways, it will remain available. We provide an example in Section 2.2.4.3.

Valid variable names, sometimes referred to as syntactic names, are any
sequence of letters, digits, the period and the underscore, but they cannot
begin with a digit or the underscore. If they begin with a period, the second
character cannot be a digit. Variable names that violate these rules must be
quoted (see the Quotes manual page) and the preferred quote is the backtick.

> _foo = 10
> "10:10" = 20
> ls()

[1] "10:10" "Rvers" "_foo" "basename"
[5] "biocUrls" "repos" "x" "y"

2.1.2 Attributes

Attributes can be attached to any R object except NULL and they are used
quite extensively. Attributes are stored, by name, in a list. All attributes can
be retrieved using attributes, or any particular attribute can be accessed or
modified using the attr function. Attributes can be used by programmers to
attach any sort of information they want to any R object. R uses attributes
for many things; the S3 class system is based largely on attributes, dimensions
of arrays, and names on vectors, to name but a few.

In the code below, we attach an attribute to x and then show how the
printing of x changes to reflect the fact that it has an attribute.

> x = 1:10
> attr(x, "foo") = 11
> x
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[1] 1 2 3 4 5 6 7 8 9 10
attr(,"foo")
[1] 11

2.1.3 A very brief introduction to OOP in R

In order to fully explain some of the concepts in this chapter, the reader will
need a little familiarity with the basic ideas in object oriented-programming
(OOP), as they are implemented in R. A more comprehensive treatment of
these topics is given in Chapter 3. There are two components: one is a class
system that is used to define the class of different objects, and the second
is the notion of a generic function with methods. R has two OOP systems:
one is referred to as S3, and it mainly supports generic functions; the other is
referred to as S4, and it has support for classes as well as generic functions,
although these are somewhat different from the S3 variants. We will only
discuss S3 here.

In S3, the class system is very lax, and one creates an object (typically called
an instance) from a class by attaching a class attribute to any R object. As a
result, no checking is done, or can easily be done, to ensure common structure
of different instances of the same class. A generic function is essentially a
dispatching mechanism, and in S3 the dispatch is handled by concatenating
the name of the generic function with that of the class. An example of a
generic function is mean.

> mean

function (x, ...)
UseMethod("mean")
<environment: namespace:base>

The general form of a generic function, as seen in the example above, is for
a single expression, which is the call to UseMethod, which is the mechanism
that helps to dispatch to the appropriate method. We can see all the defined
methods for this function using the methods command.

> methods("mean")

[1] mean.Date mean.POSIXct mean.POSIXlt
[4] mean.data.frame mean.default mean.difftime
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And see that they all begin with the name mean, then a period. When
the function mean is called, R looks at the first argument and determines
whether or not that argument has a class attribute. If it does, then R looks
for a function whose name starts with mean. and then has the name of the
class. If one exists, then that method is used; and if one does not exist, then
mean.default is used.

2.1.4 Some special values

There are a number of special variables and values in the language and
before embarking on data structures we will introduce these. The value NULL

is the null object. It has length zero and disappears when concatentated with
any other object. It is the default value for the elements of a list.

> length(NULL)

[1] 0

> c(1, NULL)

[1] 1

> list("a", NULL)

[[1]]
[1] "a"

[[2]]
NULL

Since R has its roots in data analysis, the appropriate handling of missing
data items is important. There are special missing data values for all atomic
types and these are commonly referred to by the symbol NA. And similarly
there are special functions for identifying these values, such as is.na, and many
modeling routines have special methods for dealing with missing values. It is
worth emphasizing that there is a distinct missing value (NA) for each basic
type and these can be accessed through constants such as NA_integer_.

> typeof(NA)

[1] "logical"

> as.character(NA)
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[1] NA

> as.integer(NA)

[1] NA

> typeof(as.integer(NA))

[1] "integer"

Note that the character string formed by concatenating the characters N
and A is not a missing value.

> is.na("NA")

[1] FALSE

The appropriate representation of values such as infinity and not a number
(NaN) is provided. There are accompanying functions, is.finite, is.infinite
and is.nan, that can be used to determine whether a particular value is one of
these special values. All mathematics functions should deal with these values
appropriately, according to the ANSI/IEEE 754 floating-point standard.

> y = 1/0
> y

[1] Inf

> -y

[1] -Inf

> y - y

[1] NaN

2.1.5 Types of objects

An important data structure in R is the vector. Vectors are ordered collec-
tions of objects, where all elements are of the same type. Vectors can be of
any length (including zero), up to some maximum allowable, which is deter-
mined by the storage capabilities of the machine being used. Vectors typically
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represent a form of contiguous storage (character vectors are an exception).
R has six basic vector types: logical, integer, real, complex, string (or charac-
ter) and raw. The type of a vector can be queried by using one of the three
functions mode, storage.mode or typeof.

> typeof(y)

[1] "double"

> typeof(is.na)

[1] "builtin"

> typeof(mean)

[1] "closure"

> mode(NA)

[1] "logical"

> storage.mode(letters)

[1] "character"

There are also a number of predicate functions that can be used to test
whether a value corresponds to one of the basic vector types. The code chunk
below demonstrates the use of several of the predicate functions available.

> is.integer(y)

[1] FALSE

> is.character(y)

[1] FALSE

> is.double(y)

[1] TRUE

> is.numeric(y)

[1] TRUE
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Exercise 2.1
What does the typeof is.na mean? Why is it different from that of mean?

2.1.6 Sequence generating and vector subsetting

It is also helpful to discuss a couple of functions operators before beginning
the general discussion, as they will help make the exposition easier to follow.
Some of these, such as the subsetting operator [, we will return to later for a
more complete treatment.

The colon, :, indicates a sequence of values, from the number that is to its
left, to the number on the right, in steps of 1. We will also need to make some
use of the subset operator, [. This operator takes a subset of the vector it is
applied to according to the arguments inside the square brackets.

> 1:3

[1] 1 2 3

> 1.3:3.2

[1] 1.3 2.3

> 6:3

[1] 6 5 4 3

> x = 11:20
> x[4:5]

[1] 14 15

These are just ordinary functions, and one can invoke them as if they are.
The usual infix notation, with the : between the lower and upper bounds on
the sequence, may lead one to believe that this is not an ordinary function.
But that is not true, and one can also invoke this function using a somewhat
more standard notation, ":"(2,4)". Quotes are needed around the colon to
ensure it is not interpreted in an infix context by the parser.

Exercise 2.2
Find help for the colon operator; what does it do? What is the type of its
return value? Use the predicate testing functions to determine the storage
mode of the expressions 1:3 and 1.3:4.2.
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2.1.7 Types of functions

This section is slightly more detailed and can be skipped. In R there are ba-
sically three types of functions: builtins, specials and closures. Users can only
create closures (unless they want to modify the internals of R), and these are
the easiest functions to understand since they are written in R. The other two
types of functions are interfaces that attempt to pass the calculations down to
internal (typically C) routines for efficiency reasons. The main difference be-
tween the two types of internal functions is whether or not they evaluate their
arguments; specials do not. More details on the internals of R are available
in the R Language Definition (R Development Core Team, 2007b).

2.2 Data structures

2.2.1 Atomic vectors

Atomic vectors are the most basic of all data structures. An atomic vector
contains some number of values of the same type; that number could be zero.
Atomic vectors can contain integers, doubles, logicals or character strings.
Both complex numbers and raw (pure bytes) have atomic representations (see
the R documentation for more details on these two types). Character vectors
in the S language are vectors of character strings, not vectors of characters.
For example, the string "super" would be represented as a character vector
of length one, not of length five (for more details on character handling in R,
see Chapter 5). A dim attribute can be added to an atomic vector to create a
matrix or an array.

> x = c(1, 2, 3, 4)
> x

[1] 1 2 3 4

> dim(x) = c(2, 2)
> x

[,1] [,2]
[1,] 1 3
[2,] 2 4

> typeof(x)

[1] "double"
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> y = letters[1:10]
> y

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

> dim(y) = c(2, 5)
> y

[,1] [,2] [,3] [,4] [,5]
[1,] "a" "c" "e" "g" "i"
[2,] "b" "d" "f" "h" "j"

> typeof(y)

[1] "character"

A logical value is either TRUE, FALSE or NA.
The elements of a vector can have names, and a matrix or array can have

names for each of its dimensions. If a dim attribute is added to a named
vector, the names are discarded but other attributes are retained (and dim is
added as an attribute).

Vectors can be created using the function c, which is short for concatenate.
Vectors for a particular class can be created using the functions numeric,
double, character integer or logical; all of these functions take a single argu-
ment, which is interpreted as the length of the desired vector. The returned
vector has initial values, appropriate for the type.

The function seq can be used to generate patterned sequences of values.
There are two variants of seq that can be very efficient: seq_len that generates
a sequence from 1 to the value provided as its argument, and seq_along that
returns a sequence of integers of the same length as its argument. If that
argument is of zero length, then a zero length integer vector is returned,
otherwise the sequence starts at 1.

The different random number generating functions (e.g., rnorm, runif) can
be used to generate random vectors. sample can be used to generate a vec-
tor sampled from its input. Notice in the following example that the result
of typeof( c( 1, 3:5 )) is "double", whereas typeof( c( 1, "a" )) is
"character". This is because all elements of a vector must have the same
type, and R coerces all elements of c(1, "a") to character.

> c(1, 3:5)

[1] 1 3 4 5

> c(1, "c")



14 R Programming for Bioinformatics

[1] "1" "c"

> numeric(2)

[1] 0 0

> character(2)

[1] "" ""

> seq(1, 10, by = 2)

[1] 1 3 5 7 9

> seq_len(2.2)

[1] 1 2

> seq_along(numeric(0))

integer(0)

> sample(1:100, 5)

[1] 59 89 49 66 10

S regards an array as consisting of a vector containing the array’s elements,
together with a dimension (or dim) attribute. A vector can be given dimensions
by using the functions matrix (two-dimensional data) or array (any number
of dimensions), or by directly attaching them with the dim function. The
elements in the underlying vector correspond to the elements of the array.
For matrices, the first column is stored first, followed by the second column
and so on.

Array extents can be named by using the dimnames function or the dimnames

argument to matrix or array. Extent names are given as a list, with each list
element being a vector of names for the corresponding extent.

Exercise 2.3
Create vectors of each of the different primitive types. Create matrices and
arrays by attaching dim attributes to those vectors. Look up the help for
dimnames and attach dimnames to a matrix with two rows and five columns.

2.2.1.1 Zero length vectors

In some cases the behavior of zero length vectors may seem surprising. In
Section 2.6 we discuss vectorized computations in R and describe the rules
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that apply to zero length vectors for those computations. Here we describe
their behavior in other settings.

Functions such as sum and prod take as input one or more vectors and pro-
duce a value of length one. It is helpful if simple rules, such as
sum(c(x,y)) = sum(x) + sum(y), hold. Similarly for prod we expect
prod(c(x,y)) = prod(x)*prod(y). For these to hold, we require that the
sum of a zero length vector be zero and that the product of a zero length
vector be one.

> sum(numeric())

[1] 0

> prod(numeric())

[1] 1

For other mathematical functions, such as gamma or log, the same logic
suggests that these functions should return a zero length result when invoked
with an argument of zero length.

2.2.2 Numerical computing

One of the strengths of R is its various numerical computing capabilities. It
is important to remember that computers cannot represent all numbers and
that machine computation is not identical to computation with real numbers.
Readers unaware of the issues should consult a reference on numerical com-
puting, such as Thisted (1988) or Lange (1999) for more complete details or
Goldberg (1991). The issue is also covered in the R FAQ, where the following
information is provided.

The only numbers that can be represented exactly in R’s numeric
type are (some) integers and fractions whose denominator is a
power of 2. Other numbers have to be rounded to (typically) 53
binary digits accuracy. As a result, two floating point numbers
will not reliably be equal unless they have been computed by the
same algorithm, and not always even then.

And a classical example of the problem is given in the code below.

> a = sqrt(2)
> a * a == 2

[1] FALSE
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> a * a - 2

[1] 4.440892e-16

The numerical characteristics of the computer that R is running on can
be obtained from the variable named .Machine. These values are determined
dynamically. The manual page for that variable provides explicit details on
the quantities that are presented.

The function all.equal compares two objects using a numeric tolerance of
.Machine$double.eps^0.5. If you want much greater accuracy than this,
you will need to consider error propagation carefully.

Exercise 2.4
What is the largest integer that can be represented on your computer? What
happens if you add one to this number? What is the smallest negative integer
that can be represented?

2.2.3 Factors

Factors reflect the S language’s roots in statistical application. A factor
is useful when a potentially large collection of data contains relatively few,
discrete levels. Such data are usually referred to as a categorical variable.
Examples include variables like sex, e.g., male or female. Some factors have
a natural ordering of the levels, e.g., low, medium and high, and these are
called ordered factors. While one can often represent factors by integers
directly, such practice is not recommended and can lead to hard to detect
errors. Factors are generally used, and are treated specially, in different sta-
tistical modeling functions such as lm and glm. Factors are not vectors and,
in particular, is.vector returns FALSE for a factor.

A factor is represented as an object of class factor , which is an integer
vector of codes and an attribute with name levels. In the code below, we
first set the random seed to ensure that all readers will get the same values if
they run the code on their own machines.

> set.seed(123)
> x = sample(letters[1:5], 10, replace = TRUE)
> y = factor(x)
> y

[1] b d c e e a c e c c
Levels: a b c d e

> attributes(y)
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$levels
[1] "a" "b" "c" "d" "e"

$class
[1] "factor"

The creation of factors typically either happens automatically when reading
data from disk, e.g., read.table does automatic conversion, or by converting
a character vector to a factor through a call to the function factor unless the
option stringsAsFactors has been set to FALSE. When factor is invoked, the
following algorithm is used. If no levels argument is provided, then the levels
are assigned to the unique values in the first argument, in the order in which
they appear. Values provided in the exclude argument are removed from the
supplied levels argument. Then if x[i] equals the jth value in the levels

argument, the ith element of the result is j. If no match is found for x[i] in
levels, then the ith element of the result is set to NA.

To obtain the integer values that are used for the encoding, use either
as.integer or unclass. If the levels of the factor are themselves numeric, and
you want to revert to the original numeric values (which do not need to cor-
respond to the codes), the use of as.numeric(levels(f))[f] is recommended.

Great caution should be used when comparing factors since the interpreta-
tion depends on both the codes and the levels attribute. One should only
compare factors that have the same sets of levels, in the same order. One
scenario where comparison might be reasonable is to compare values between
two different subsets of a larger data set, but here still caution is needed. You
should ensure that unused levels are not dropped, as this will invalidate any
automatic comparisons.

There are two tasks that are often performed on factors. One is to drop
unused levels; this can be achieved by a call to factor since factor(y) will
drop any unused levels from y if y is a factor. The second task is to coarsen
the levels of a factor, that is, group two or more of them together into a single
new level. The code below demonstrates one method for doing this.

> y = sample(letters[1:5], 20, rep = T)
> v = as.factor(y)
> xx = list(I = c("a", "e"), II = c("b", "c",
+ "d"))
> levels(v) = xx
> v

[1] I II II II I I II I II I I II II I II II II
[18] II II I
Levels: I II
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Things are quite similar for ordered factors. They can be created by either
by using the ordered argument to factor or with ordered.

Factors are instances of S3 classes. Ordinary factors have class factor and
ordered factors have a class vector of length two with ordered as the additional
element. An example of the use of an ordered factor is given below.

> z = ordered(y)
> class(z)

[1] "ordered" "factor"

Using a factor as an argument to the functions matrix or array coerces it
to a character vector before creating the matrix.

2.2.4 Lists, environments and data frames

In this section we consider three different data structures that are designed
to hold quite general objects. These data structures are sometimes called
recursive since they can hold other R objects. The atomic vectors discussed
above cannot.

There are actually two types of lists in R: pairlists and lists. We will
not discuss pairlists in any detail. They exist mainly to support the internal
code and workings of R. They are essentially lists as found in Lisp or Scheme
(of the car, cdr, cons, variety) and are not particularly well adapted for use
in most of the problems we will be addressing. Instead we concentrate on the
list objects, which are somewhat more vector-like in their implementation
and semantics.

2.2.4.1 Lists

Lists can be used to store items that are not all of the same type. The
function list can be used to create a list. Lists are also referred to as generic
vectors since they share many of the properties of vectors, but the elements
are allowed to have different types.

> y = list(a = 1, 17, b = 4:5, c = "a")
> y

$a
[1] 1

[[2]]
[1] 17
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$b
[1] 4 5

$c
[1] "a"

> names(y)

[1] "a" "" "b" "c"

Lists can be of any length, and the elements of a list can be named, or not.
Any R object can be an element of a list, including another list, as is shown
in the code below. We leave all discussion of subsetting and other operations
to Section 2.5.

> l2 = list(mn = mean, var = var)
> l3 = list(l2, y)

Exercise 2.5
Create a list of length 4 and then add a dim attribute to it. What happens?

2.2.4.2 Data frames

A data.frame is a special kind of list. Data frames were created to provide
a common structure for storing rectangular data sets and for passing them to
different functions for modeling and visualization. In many cases a data set
can be thought of as a rectangular structure with rows corresponding to cases
and columns corresponding to the different variables that were measured on
each of the cases. One might think that a matrix would be the appropriate
representation, but that is only true if all of the variables are of the same
type, and this is seldom the case. For example, one might have height in
centimeters, city of residence, gender and so on. When constructing the data
frame, the default behavior is to transform character input into factors. This
behavior can be controlled using the option stringsAsFactors.

Data frames deal with this situation. They are essentially a list of vectors,
with one vector for each variable. It is an error if the vectors are not all of
the same length. Data frames can often be treated like matrices, but this is
not always true, and some operations are more efficient on data frames while
others are less efficient.

Exercise 2.6
Look up the help page for data.frame and use the example code to create a
small data frame.
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2.2.4.3 Environments

An environment is a set of symbol-value pairs, where the value can be any R
object, and hence they are much like lists. Originally environments were used
for R’s internal evaluation model. They have slowly been exposed as an R
version of a hash table, or an associative array. The internal implementation
is in fact that of a hash table. The symbol is used to compute the hash index,
and the hash index is used to retrieve the value. In the code below, we create
an environment, create the symbol value pair that relates the symbol a to the
value 10 and then list the contents of the hash table.

> e1 = new.env(hash = TRUE)
> e1$a = 10
> ls(e1)

[1] "a"

> e1[["a"]]

[1] 10

Environments are different from lists in two important ways, and we will
return to this point later in Section 2.5. First, for environments, the values
can only be accessed by name; there is no notion of linear order in the hash
table. Second, environments, and their contents, are not copied when passed
as arguments to a function. Hence they provide one mechanism for pass-by-
reference semantics for function arguments, but if used for that one should be
cautious of the potential for problems. Perhaps one of the greatest advantages
of the pass-by-value semantics for function calls is that in that paradigm
function calls are essentially atomic operations. A failure, or error, part way
through a function call cannot corrupt the inputs, but when an environment
is used, any error part way through a function evaluation could corrupt the
inputs.

The elements of an environment can be accessed using either the dollar
operator, $, or the double square bracket operator. The name of the value
desired must be supplied, and unlike lists partial matching is not used. In
order to retrieve multiple values simultaneously from an environment, the
mget function should be used.

In many ways environments are special. And as noted above they are not
copied when used in function calls. This has at times surprised some users and
here we give a simple example that demonstrates that these semantics mean
that attributes really cannot be used on environments. In the code below,
when e2 is assigned, no copy is made, so both e1 and e2 point to the same
internal object. When e2 changes the attribute, it is changed for e1 as well.
This is not what happens for most other types.
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> e1 = new.env()
> attr(e1, "foo") = 10
> e1

<environment: 0x2b50b64>
attr(,"foo")
[1] 10

> e2 = e1
> attr(e2, "foo") = 20
> e1

<environment: 0x2b50b64>
attr(,"foo")
[1] 20

In the next code segment, an environment, e1, is created and has some
values assigned in to it. Then a function is defined and that function has
some free variables (variables that are not parameters and are not defined
in the function). We then make e1 be the environment associated with the
function and then the free variables will obtain values from e1. Then we
change the value of one of the free variables by accessing e1 and that changes
the behavior of the function, which demonstrates that no copy of e1 was made.

> e1 = new.env()
> e1$z = 10
> f = function(x) {
+ x + z
+ }
> environment(f) = e1
> f(10)

[1] 20

> e1$z = 20
> f(10)

[1] 30

Next, we demonstrate the semantics of rm in this context. If we remove e1,
what should happen to f? If the effect of the command environment(f) = e1

was to make a copy of e1, then rm(e1) should have no effect, but we know
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that no copy was made and yet, as we see, removing e1 appears to have no
effect.

> rm(e1)
> f(10)

[1] 30

> f

function (x)
{

x + z
}
<environment: 0x1f9f3b8>

What rm(e1) does is to remove the binding between the symbol e1 and the
internal data structure that contains the data, but that internal data structure
is itself left alone. Since it can also be reached as the environment of f, it will
remain available.

2.3 Managing your R session

The capabilities and properties of the computer that R is running on can
be obtained from a number of builtin variables and functions. The vari-
able R.version$platform is the canonical name of the platform that R was
compiled on. The function Sys.info provides similar information. The vari-
able .Platform has information such as the file separator. The function
capabilities indicates whether specific optional features have been compiled
in, such as whether jpeg graphics can be produced, or whether memory pro-
filing (see Chapter 9) has been enabled.

> capabilities()

jpeg png tcltk X11 aqua http/ftp
TRUE TRUE TRUE TRUE TRUE TRUE

sockets libxml fifo cledit iconv NLS
TRUE TRUE TRUE FALSE TRUE TRUE

profmem cairo
TRUE FALSE
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A typical session using R involves starting R, loading packages that will
provide the necessary tools to perform the analysis you intend and then load-
ing data, and manipulating that data in a variety of ways. For every R session
you have a workspace (often referred to as the global environment) where any
variables you create will be stored. As an analysis proceeds, it is often es-
sential that you are able to manage your session and see what packages are
attached, what variables you have created and often inspect them in some
way to find an object you previously created, or to remove large objects that
you no longer require.

You can find out what packages are on the search path using the search

function and much more detailed information can be found using sessionInfo.
In the code below, we load a Bioconductor package and then examine the
search path. We use ls to list the contents of our workspace, and finally use
ls to look at the objects that are stored in the package that is in position 2
on the search path. objects is a synonym for ls and both have an argument
all.names that can be used to list all objects; by default, those that begin
with a period are not shown.

> library("geneplotter")
> search()

[1] ".GlobalEnv" "package:geneplotter"
[3] "package:annotate" "package:xtable"
[5] "package:AnnotationDbi" "package:RSQLite"
[7] "package:DBI" "package:lattice"
[9] "package:Biobase" "package:tools"
[11] "package:stats" "package:graphics"
[13] "package:grDevices" "package:utils"
[15] "package:datasets" "package:methods"
[17] "Autoloads" "package:base"

> ls(2)

[1] "GetColor" "Makesense"
[3] "alongChrom" "cColor"
[5] "cPlot" "cScale"
[7] "closeHtmlPage" "dChip.colors"
[9] "densCols" "greenred.colors"
[11] "histStack" "imageMap"
[13] "make.chromOrd" "multidensity"
[15] "multiecdf" "openHtmlPage"
[17] "panel.smoothScatter" "plotChr"
[19] "plotExpressionGraph" "saveeps"
[21] "savepdf" "savepng"
[23] "savetiff" "smoothScatter"
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Most of the objects on the search path are packages, and they have the
prefix package, but there are also a few special objects. One of these is
.GlobalEnv, the global environment. As noted previously, environments are
bindings of symbols and values.

Exercise 2.7
What does sessionInfo report? How do you interpret it?

2.3.1 Finding out more about an object

Sometimes it will be helpful to find out about an object. Obvious functions
to try are class and typeof. But many find that both str and object.size

are more useful.

> class(cars)

[1] "data.frame"

> typeof(cars)

[1] "list"

> str(cars)

data.frame : 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist : num 2 10 4 22 16 10 18 26 34 17 ...

> object.size(cars)

[1] 1248

The functions head and tail are convenience functions that list the first
few, or last few, rows of a matrix.

> head(cars)

speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10
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> tail(cars)

speed dist
45 23 54
46 24 70
47 24 92
48 24 93
49 24 120
50 25 85

2.4 Language basics

Programming in R is carried out, primarily, by manipulating and modifying
data structures. These different transformations and calculations are carried
out using functions and operators. In R, virtually every operation is a function
call and though we separate our discussion into operators and function calls,
the distinction is not strong and the two concepts are very similar. The R
evaluator and many functions are written in C but most R functions are
written in R itself.

The code for functions can be viewed, and in most cases modified, if so
desired. In the code below we show the code for the function colSums. To
view the code for any function you simply need to type its name and the
prompt and the function will be displayed. Functions can be edited using fix.

> colSums

function (x, na.rm = FALSE, dims = 1)
{

if (is.data.frame(x))
x <- as.matrix(x)

if (!is.array(x) || length(dn <- dim(x)) < 2)
stop(" x must be an array of at least two dimensions")

if (dims < 1 || dims > length(dn) - 1)
stop("invalid dims ")

n <- prod(dn[1:dims])
dn <- dn[-(1:dims)]
z <- if (is.complex(x))

.Internal(colSums(Re(x), n, prod(dn), na.rm)) + (0+1i) *
.Internal(colSums(Im(x), n, prod(dn), na.rm))

else .Internal(colSums(x, n, prod(dn), na.rm))
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if (length(dn) > 1) {
dim(z) <- dn
dimnames(z) <- dimnames(x)[-(1:dims)]

}
else names(z) <- dimnames(x)[[dims + 1]]
z

}
<environment: namespace:base>

Some functions cannot be accessed in this manner because the evaluator
will attempt to parse them. For such functions you can use get to retrieve the
function definition. The arithmetic operators fall into this category and next
we show how to retrieve the definition for addition, +.

> get("+")

function (e1, e2) .Primitive("+")

The body of this function is quite simple; it consists of one line, a call to
.Primitive. And if you examine the body of colSums, you will notice that
after some preliminaries there is a call to .Internal. These two functions,
.Primitive and .Internal, provide fairly direct links between R level code and
the internal C code that R is written in. Some functions are primitives for
efficiency reasons and others for historical reasons. For such functions, users
wanting to study the underlying code must explore the relevant C source code.
Details and advice on such an investigation are provided in Appendix A of
the R Extensions manual (R Development Core Team, 2007c).

Should you ever need to link C or other foreign language code to R, you
will not use these functions; they are reserved for communications with the
internal code for the R language. The appropriate user-level interfaces are
discussed in Chapter 6.

2.4.1 Operators

In Table 2.1 we describe the different unary and binary operators in R. They
are listed from highest precedence to lowest precedence. Operators on the
same line are comma separated and have equal precedence. When operators
of equal precedence occur in an expression, they are evaluated from left to
right. This list can also be obtained from the manual page for Syntax.

As noted above, operators are a special syntax for ordinary function calls
but the syntax of an operator is often more appealing. In the code below, we
demonstrate this using the addition operator.
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Operator Description
[, [[ subscripting and subsetting
::, ::: name space access
$, @ access named components, access slots
^ exponentiation
+, - unary plus and minus
: sequence operator
%any% special operators
*, / multiply and divide
+, - binary addition and subtract
< > <=, >=, == != comparisons
! negation
&, && and
|, || or
~ define formulae
= , = > right assignment
= left assignment
= , < = left assignment
? help (both unary and binary)

Table 2.1: R operators, listed in precedence order.

> x = 1:4
> x + 5

[1] 6 7 8 9

> myP = get("+")
> myP

function (e1, e2) .Primitive("+")

> myP(x, 5)

[1] 6 7 8 9

One class of operators of some interest is the set of operators of the form
%any%. Some of these, such as %*%, are part of R but users can define their
own using any text string in place of any. The function should be a function of
two arguments, although currently this is not checked. In the example below
we define a simple operator that pastes together its two arguments.
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> "%p%" = function(x, y) paste(x, y, sep = "")
> "hi" %p% "there"

[1] "hithere"

2.5 Subscripting and subsetting

The S language has its roots in the Algol family of languages and has
adopted some of the general vector subsetting and subscripting techniques that
were available in languages such as APL. This is perhaps the one area where
programmers more familiar with other languages fail to make appropriate use
of the available functionality. Spending a few hours to completely familiarize
yourself with the power of the subsetting functionality will be rewarded by
code that runs faster and is easier to read.

There are slight differences between subsetting of vectors, arrays, lists,
data.frames and environments that can sometimes catch the unwary. But
there are also many commonalities. One thing to keep in mind is that the
effect of NA will depend on the type of NA that is being used.

Subsetting is carried out by three different operators: the single square
bracket [, the double square bracket [[, and the dollar, $. We note that each
of these three operators are actually generic functions and users can write
methods that extend and override them, see Chapter 3 for more details on
object-oriented programming.

One way of describing the behavior of the single bracket operator is that the
type of the return value matches the type of the value it is applied to. Thus, a
single bracket subset of a list is itself a list. Thesingle bracket operator can be
used to extract any number of values. Both [[ and $ extract a single value.
There are some differences between these two; $ does not evaluate its second
argument while [[ does, and hence one can use expressions. The $ operator
uses partial matching when extracting named elements but [ and [[ do not.

> myl = list(a1 = 10, b = 20, c = 30)
> myl[c(2, 3)]

$b
[1] 20

$c
[1] 30
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> myl$a

[1] 10

> myl["a"]

$<NA>
NULL

> f = "b"
> myl[[f]]

[1] 20

> myl$f

NULL

Notice that the first subsetting operation does indeed return a list, then
that the $ subscript uses partial matching (since there is no element of myl

named a) and that [ does not. Finally, we showed that [[ evaluates its second
argument and $ does not.

2.5.1 Vector and matrix subsetting

Subsetting plays two roles in the S language. One is an extraction role,where
a subset of a vector is identified by a set of supplied indices and the resulting
subset is returned as a value. Venables and Ripley (2000) referto this as
indexing. The second purpose is subset assignment, where the goal is to
identify a subset of values that should have their values changed; we call this
subset assignment.

There are four basic types of subscript indices: positive integers, negative
integers, logical vectors and character vectors. These four typescannot be
mixed; only one type may be used in any one subscript vector. For matrix
and array subscripting, one can use different types of subscripts for the dif-
ferent dimensions. Not all vectors, or recursive objects, support all types of
subscripting indices. For example, atomic vectors cannot be subscripted us-
ing $, while environments cannot be subscripted using [. Missing values can
appear in the index vector and generally cause a missing value to appear in
the output.

2.5.1.0.1 Subsetting with positive indices Perhaps the most common
form of subsetting is with positive indices. Typically, a vector containing
the integer subscripts corresponding to the desired values is used. Thus, to
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extract entries one, three and five from a vector, one can use the approach
demonstrated in the next code chunk.

> x = 11:20
> x[c(1, 3, 5)]

[1] 11 13 15

The general rules for subsetting with positive indices are:

A subscript consisting of a vector of positive integer values is taken to
indicate a set of indexes to be extracted.

A subscript that is larger than the length of the vector being subsetted
produces an NA in the returned value.

Subscripts that are zero are ignored and produce no corresponding values
in the result.

Subscripts that are NA produce an NA in the result.

If the subscript vector is of length zero, then so is the result.

Some of these rules are demonstrated next.

> x = 1:10
> x[1:3]

[1] 1 2 3

> x[9:11]

[1] 9 10 NA

> x[0:1]

[1] 1

> x[c(1, 2, NA)]

[1] 1 2 NA

Exercise 2.8
Use the seq function to generate a subscript vector that selects those elements
of a vector that have even-numbered subscripts.
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2.5.1.0.2 Subsetting with negative indices In many cases it is simpler
to describe the values that are not wanted, than to specify those that are. In
this case, users can use negative subscript indices; the general rules are listed
below.

A subscript consisting of a vector of negative integer values is taken to
indicate the indexes that are not to be extracted.

Subscripts that are zero are ignored and produce no corresponding values
in the result.

NA subscripts are not allowed.

A zero length subscript vector produces a zero length answer.

Positive and negative subscripts cannot be mixed.

Exercise 2.9
Use the function seq to generate a sequence of indices so that those elements of
a vector with odd-numbered indices can be excluded. Verify this on the built-
in letters data. Verify the statement about zero length subscript vectors.

2.5.1.0.3 Subsetting with character indices Character indices can be
used to extract elements of named vectors, lists. While technically having
a names attribute is not necessary, the only possible result if the vector has
no names is NA. There is no way to raise an error or warning with character
subscripting of vectors or lists; for vectors NA is returned and for lists NULL

is returned. Subsetting of matrices and arrays with character indices is a bit
different and is discussed in more detail below.

For named vectors, those elements whose names match one of the names
in the subscript are returned. If names are duplicated, then only the value
corresponding to the first one is returned. NA is returned for elements of the
subscript vector that do not match any name. A character NA subscript returns
an NA.

If the vector has duplicated names that match a subscript, only the value
with the lowest index is returned. One way to extract all elements with the
same name is to use %in% to find all occurrences and then subset by position,
as demonstrated in the example below.

> x = 1:5
> names(x) = letters[1:5]
> x[c("a", "d")]

a d
1 4
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> names(x)[3] = "a"
> x["a"]

a
1

> x[c("a", "a")]

a a
1 1

> names(x) %in% "a"

[1] TRUE FALSE TRUE FALSE FALSE

Exercise 2.10
Verify that vectors can have duplicated names and that if a subscript matches
a duplicated name, only the first value is returned. What happens with x[NA],
and why does that not contradict the claims made here about NA subscripts?
Hint: it might help to look back at Section 2.1.4.

Lists subscripted by NA, or where the character supplied does not correspond
to the name of any element of the list, return NULL.

2.5.1.0.4 Subsetting with logical indices A logical vector can also be
used to subset a vector. Those elements of the vector that correspond to
TRUE values in the subscript vector are selected, those that correspond to
FALSE values are excluded and those that correspond to NA values are NA. The
subscript vector is repeated as many times as necessary and no warning is
given if the length of the vector being subscripted is not a multiple of the
subscript vector.

If the subscript vector is longer than the target, then any entries in the
subscript vector that are TRUE or NA generate an NA in the output.

> (letters[1:10])[c(TRUE, FALSE, NA)]

[1] "a" NA "d" NA "g" NA "j"

> (1:5)[rep(NA, 6)]

[1] NA NA NA NA NA NA
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Exercise 2.11
Use logical subscripts to extract the even-numbered elements of the letters

vector.

2.5.1.0.5 Matrix and array subscripts Empty subscripts are most of-
ten used for matrix or array subsetting. An empty subscript in any dimension
indicates that all entries in that dimension should be selected. We note that
x[] is valid syntax regardless of whether x is a list, a matrix, an array or a
vector.

> x = matrix(1:9, nc = 3)
> x[, 1]

[1] 1 2 3

> x[1, ]

[1] 1 4 7

One of the peculiarities of matrix and array subscripting is that if the re-
sulting value is such that the result has only one dimension of length larger
than one, and hence is a vector, then the dimension attribute is dropped and
the result is returned as a vector. This behavior often causes hard-to-find and
hard-to-diagnose bugs. It can be avoided by the use of the drop argument to
the subscript function, [. Its use is demonstrated in the code below.

> x[, 1, drop = FALSE]

[,1]
[1,] 1
[2,] 2
[3,] 3

> x[1, , drop = FALSE]

[,1] [,2] [,3]
[1,] 1 4 7

Since arrays and matrices can be treated as vectors, and indeed that is how
they are stored, it is important to know the relationship between the vector
indices and the array indices. Arrays and matrices in S are stored in column
major order. This is the form of storage used by FORTRAN and not that
used by C. Thus the first, or left-most, index moves the fastest and the last,
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or right-most, index the slowest, so that a matrix is filled column by column
(the row index changes). This is often referred to as being in column major
order. The function matrix has an option named byrow that allows the matrix
to be filled row by row, rather than column by column.

Exercise 2.12
Let x be a vector of length 10 and has a dimension attribute so that it is a
matrix with 2 columns and 5 rows. What is the matrix location of the 7th
element of x? That is, which row and column is it in? Alternatively, which
element of x is in the second row, first column?

Finally, an array may be indexed by a matrix. If the array has k dimensions,
then the matrix must be of dimension l by k and must contain integers in the
range 1 to k. Each row of the index array is interpreted as identifying a single
element of the array. Thus the subscripting operation returns l values. A
simple example is given below. If the matrix of subscripts is either a character
matrix or a matrix of logical values, then it is treated as if it were a vector
and the dimensioning information is ignored.

> x = array(1:27, dim = c(3, 3, 3))
> y = matrix(c(1, 2, 3, 2, 2, 2, 3, 2, 1), byrow = TRUE,
+ ncol = 3)
> x[y]

[1] 22 14 6

Character subscripting of matrices is carried out on the row and column
names, if present. It is an error to use character subscripts if the row and
column names are not present. Attaching a dim attribute to a vector removes
the names attribute if there was one. If a dimnames attribute is present, but
one or more of the supplied character subscripts is not present, a subscript
out of bounds error is signaled, which is quite different from the way vectors
are treated. Arrays are treated similarly, but with respect to the names on
each of the dimensions.

For data.frames the effects are different. Any character subscript for a row
that is not a row name returns a vector of NAs. Any subscript of a column
with a name that is not a column name raises and error.

Exercise 2.13
Verify the claims made for character subsetting of matrices and data.frames.

Arrays and matrices can always be subscripted singly, in which case they
are treated as vectors and the dimension information is disregarded (as are the
dimnames). Analogously, if a data.frame is subscripted with a single subscript,
it is interpreted as list subscripting and the appropriate column is selected.
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2.5.1.0.6 Subset assignments Subset expressions can appear on the left
side of an assignment. If the subset is specified using positive indices, then
the given subset is assigned the values on the right, recycling the values if
necessary. Zero subscripts and NA subscripts are ignored.

> x[1:3] = 10
> x

, , 1

[,1] [,2] [,3]
[1,] 10 4 7
[2,] 10 5 8
[3,] 10 6 9

, , 2

[,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18

, , 3

[,1] [,2] [,3]
[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27

Negative subscripts can appear on the the left side of an assignment. In this
case the given subset is assigned the values on the right side of the assignment,
recycling the values if necessary. Zero subscripts are ignored and NA subscripts
are not permitted.

> x = 1:10
> x[-(2:4)] = 10
> x

[1] 10 2 3 4 10 10 10 10 10 10

For character subscripts, the selected subset is assigned the values from the
right side of the assignment, recycling if necessary. Missing values (character
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NA) create a new element of the vector, even if there is already an element
with the name NA. Note that this is quite different from the effect of a logical
NA, which has no effect on the vector.

Exercise 2.14
Verify the claims made about negative subscript assignments. Create a named
vector, x, and set one of the names to NA. What happens if you execute
x[NA]=20 and why does that not contradict the statements made above?
What happens if you use x[as.character(NA)]=20?

In some cases leaving all dimensions out can be useful. For example, x[],
selects all elements of the vector x and it does not change any attributes.

> x = matrix(1:10, nc = 2)
> x[] = sort(x)

2.5.1.0.7 Subsetting factors There is a special method for the single
bracket subscript operator on factors. For this method the drop argument
indicates whether or not any unused levels should be dropped from the return
value. The [[ operator can be applied to factors and returns a factor of length
one containing the selected element.

2.6 Vectorized computations

By vectorized computations we mean any computation, by the application
of a function call, or an operator (such as addition), that when applied to
a vector automatically operates directly on all elements of the vector. For
example, in the code below, we add 3 to all elements of a simple vector.

> x = 11:15
> x + 3

[1] 14 15 16 17 18

There was no need to make use of a for loop to iterate over the elements of
x. Many R functions and most R operators are vectorized. In the code below
nchar is invoked with a vector of months names and the result is a vector with
the number of characters in the name of each month; there is no need for an
explicit loop.
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> nchar(month.name)

[1] 7 8 5 5 3 4 4 6 9 7 8 8

2.6.1 The recycling rule

Since vectorized computations occur on most arithmetic operators we may
encounter the problem of adding together two vectors of different lengths and
some rule is needed to describe what will happen in that situation. This is
often referred to as the recycling rule.

The recycling rule states that the shorter vector is replicated enough times
so that the result has at least the length of the longer vector and then the
operator is applied to the resulting elements, of that modified vector, that
correspond to elements of the longer vector. If the shorter vector is not an
even multiple of the longer vector, a warning will be signaled.

> 1:10 + 1:3

[1] 2 4 6 5 7 9 8 10 12 11

When a binary operation is applied to two or more matrices and arrays, they
must be conformable, which means that they must have the same dimensions.
If only one operand is a matrix or array and the other operands are vectors,
then the matrix or array is treated as a vector. The result has the dimensions
of the matrix or array. Dimension names, and other attributes, are transferred
to the output.

In general the attributes of the longest element, when considered as a vector,
are retained for the output. If two elements of the operation are of the same
length, then the attributes of the first one, when the statement is parsed left
to right, are retained.

Any vector or array computation where the recycling rule applies and one
of the elements has length zero returns a zero length result. Some examples
of these behaviors are given below.

> 1:3 + numeric()

numeric(0)

> 1:3 + NULL

numeric(0)
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> x = matrix(1:10, nc = 2)
> x + (1:2)

[,1] [,2]
[1,] 2 8
[2,] 4 8
[3,] 4 10
[4,] 6 10
[5,] 6 12

2.7 Replacement functions

In R it is sometimes helpful to appear to directly change a variable. We
saw some examples of this with subassignment; e.g., x[2] = 10 gives the
impression of having changed the value of x. Similarly, changing the names
on a vector can be handled using names(x) = newVal. Some reflection on the
fact that R is a pass-by-value language and that all operations are function
calls means that, in principle, such an operation is not possible. That is, it is
not possible to change x, since the function operates on a copy of x.

Following Venables and Ripley (2000), any assignment where the left-hand
side is not a simple identifier will be described as a replacement function.
These functions achieve their objective by rewriting the call in such a way
that the named variable (x in the examples above) is explicitly reassigned.

We show how these two commands would be rewritten, below. You can
make these calls directly, if you wish, and all functions are documented and
can be inspected, just like any other functions.

> x = 1:4
> x = [<- (x, 2, value = 10)
> x

[1] 1 10 3 4

And for the names example:

> names(x) = letters[1:4]
> names(x)

[1] "a" "b" "c" "d"
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> x = "names<-"(x, LETTERS[1:4])
> x

A B C D
1 10 3 4

Without the explicit assignment, the value of x cannot be changed because
the functions [<- and names<- work on copies of their arguments.

To write a replacement function, you must make sure that the last two
characters of the name are <-, and usually that means you will need to enclose
the name in double quotes to prevent the evaluator from attempting to carry
out an explicit assignment. You must also make sure that the return value is
the modified copy of the object you wanted to modify. R will automatically
rewrite the code to carry out an assignment, so the return value must be
appropriate for that operation. If it is not, no error will be signaled but the
result will probably not be useful.

The last argument to a replacement function must be named value and it
will be matched to the value of the right-hand side of the assignment.

Exercise 2.15
Write a replacement function, called rowrep, that replaces the indicated row
of a matrix, x say, with the value on the right-hand side of the assignment.
That is, we want a syntax like rowrep(x, 4) = c(11, 12) to replace the fourth
row of x with the values 11 and 12.

2.8 Functional programming

In many ways R can be considered as a functional programming language.
Functions can be passed as arguments to functions, and returned as values.
But other aspects of functional programming are also available in R. The func-
tions are written in R, and hence do not provide performance improvements
over performing the computations from first principles, but that could change.
They do however provide useful abstractions and can yield code that is easier
to comprehend. It is instructive to look at the implementations.

There are four functions that are part of R that implement some of the
ideas of functional programming.

Reduce Reduce takes a function of two arguments and an input vector, and
successively combines the elements of that vector.

Filter Filter extracts the elements of a vector conditional on a logical func-
tion, returning true when applied to that element.



40 R Programming for Bioinformatics

Map Map applies a function to the corresponding elements of an arbitrary
number of input vectors.

Negate Negate creates a negation of a given function.

Map is a lot like the apply family of functions (Section 8.2.2), and if named
arguments are given, where the names match the name of a formal argument
to the function being mapped, it is used.

> Map(paste, 1:4, letters[1:4], sep = "_")

[[1]]
[1] "1_a"

[[2]]
[1] "2_b"

[[3]]
[1] "3_c"

[[4]]
[1] "4_d"

Filter is also similar to the apply family of functions, with the distinction
that it filters out values that fail the predicate. A standard idiom for remov-
ing missing values from a vector is to find them, and then remove them via
subsetting. In the code below, we first construct a vector with some missing
values, and then demonstrate two ways of removing NAs.

> set.seed(123)
> x = rnorm(1000)
> x = ifelse(abs(x) > 2.2, NA, x)
> y = x[!is.na(x)]
> y2 = Filter(Negate(is.na), x)
> all(y == y2)

[1] TRUE
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2.9 Writing functions

A very powerful aspect of the R language is the fact that it is easy to write
your own functions and to make use of them. All functions take inputs, which
are referred to as the arguments, and return a single value. In R the value
returned by a function is either the value that is explicitly returned by a call
to the function return or it is simply the value of the last expression.

A function is defined by using the keyword function, which is followed by
an opening parenthesis, (, then a comma separated list of formal arguments, a
closing ), and then the expressions that form the body of the function. If there
is a single expression, it can be entered directly and when there are several
expressions, or statements that will be executed, they must be enclosed in
braces ({}).

In the code below we define two simple functions to compute the square of
their input values. In both cases there is a single formal argument, named
x. Since both functions contain a single line, no braces were used, and in sq1

there is an explicit call to return, while in the second case we rely on the
fact that the value returned by the function is the value of the last statement
executed.

> sq1 = function(x) return(x * x)
> sq2 = function(x) x * x

These functions are vectorized. Try evaluating both versions with inputs
1:10. What values do you get?

Exercise 2.16
Write a function that takes a string as input and returns that string with a
caret prepended. If you name your function ppc then we want ppc("xx") to
return "^xx". You will probably find the function paste helpful.

Many more details on writing functions are given in other texts, such as
(Becker et al., 1988; Chambers, 1998; Venables and Ripley, 2000) and we will
not repeat those details here. We briefly note that it is possible to set default
values for the formal arguments and remind readers that there is a special for-
mal argument, represented by three dots, that allows for an arbitrary number
of arguments to be passed to a function. There are specific rules (described
in the references given) for argument matching, etc. Partial matching is used,
and when an . . . argument appears as a formal argument, then any arguments
that appear after it must be matched exactly.
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An example

One of the tasks that often needs to be carried out is some form of standard-
izing of data. In the gene expression context we often want to subtract some
notion of the center, and divide by some notion of the variability. Typically
this is done on a gene by gene basis (and hence on the rows of the expression
matrix).

In R, there is a function called scale that performs a specific type of cen-
tering and scaling but on the columns, rather than the rows (the reason for
this is that the usual form of statistical data is to have the cases represented
as rows; gene expression data are an exception to this, where the cases are the
columns). There is another R function, sweep, that can be used to do more
general forms of standardization.

Exercise 2.17
Write an R function that takes a matrix as input and standardizes each row
by subtracting the median and dividing by the MAD. You might want to look
at the functions mad and median. Next, generalize your function so that these
are the default values, but allow the user to select other measures of the center
and spread, should they want to use them.

2.10 Flow control

Carrying out a specific computation for each element of a vector or a list is
one of the fundamental computational tasks that must be performed in any
computer program. In some languages, iteration is the main tool that is used
but in others recursion is more common. In R, both recursion and iteration
can be used, and which will be more efficient depends to some extent on
the data structures that are being used. In this section we primarily discuss
iteration; recursion is presented later in this chapter. We also note that one
of the primary tools for data processing is the apply family of functions. We
defer discussion of these functions to Chapter 8.

In many other computer languages, explicit iteration is needed to operate
on all of the elements of a vector, but in R it is generally more efficient to
make use of vectorized computations (as described in Section 2.6).

There are three basic paradigms for iteration: for, repeat and while. These
functions need to be quoted when invoking the help system to find out more
about them. The syntax of these is given below.

for (var in seq) expr
while (cond) expr
repeat expr
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In these constructs:

expr is any valid R expression, and is often a compound expression, which is
a series of expressions contained with in curly braces.

cond is a length one logical value, although in recent versions of R, length
one numeric values also work, where zero corresponds to FALSE and any
non-zero value corresonds to TRUE.

var is a dummy variable, that takes values in seq and can be used within
expr. In R, this variable remains after the for loop has finished and
retains the last value it had.

seq is any vector or list.

Each of these three functions evaluates the expression expr repeatedly. The
first, for, iterates through the values in seq; the latter two rely on the expr
changing state, or the explicit use of break to break out of the iteration. In
addition to these three functions, there are two special values, break and next,
that can be used to control the iteration. The use of break halts the execution
of the inner-most loop and passes control to the next statement. The use of
next halts the execution of the current expr and begins the next evaluation.
When using either repeat or while, some care is needed to avoid an infinite
loop, that is, a loop that iterates without end.

The most common idiom used with the for loop is for(i in 1:n), but in
such cases the use of for(i in seq_len(n)) is better. The form
for(var in seq), where var assumes the value of each element of seq in
turn, may be more efficient in some cases.

> for (i in 1:3) print(i)

[1] 1
[1] 2
[1] 3

> for (i in 1:5) if (i > 3) break
> i

[1] 4

Exercise 2.18
Use repeat, next and break to print the odd integers between 1 and 10. Repeat
this exercise using while, instead of repeat, and print the even integers.
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2.10.1 Conditionals

There are three functions that can be used for conditional evaluation: if,
ifelse and switch. The syntax of the if statement is

if( cond ) expr1 else expr2

where cond and expr are as described previously.
The condition cond is evaluated, and if it evaluates to TRUE, then expr1

is evaluated; if cond evaluates to FALSE, then expr2 is evaluated. In recent
versions of R, if cond evaluates to zero, then it is treated as FALSE; and if cond
evaluates to any non-zero number, it is treated as if it were TRUE. If the length
of cond is larger than one, a warning is signaled and only the first element is
used in determining which expression to evaluate.

The else clause is optional. If the command is run at the command prompt
and there is an else clause, then either all the expressions must be enclosed
in curly braces or the else must be on the same line as expr1. The reason for
this behavior is quite simple; since the else clause is optional and since R does
not use end of statement syntax, the R evaluator must conclude that it has
a syntactically valid statement (after parsing expr1) and it will evaluate it.
When the same code is used inside of a function, there is no need for the else

clause to be on the same line as expr1, since in this case the parser will have
access to the whole function and can determine whether there is a following
else clause or not.

The function ifelse takes three arguments, test, yes and no, and if needed
replicates values for yes and no so that they are the same length as test.
All elements of test that evaluate to TRUE are replaced by the corresponding
value in yes and those values of test that evaluate to FALSE are replaced
by the corresponding values in no. Additionally, if test has a dimension
attribute, it is retained. All of the arguments are evaluated, so constructs such
as ifelse(x<0, 0, log(x)) will produce warnings since log is performed on
all values of x.

> x = matrix(1:10, nc = 2)
> ifelse(x < 2, x, c(10, 11, 12))

[,1] [,2]
[1,] 1 12
[2,] 11 10
[3,] 12 11
[4,] 10 12
[5,] 11 10

Exercise 2.19
Explain the output in the preceding code chunk.
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We conclude the discussion of conditional evaluation with the function
switch. The first argument to switch is an expression to evaluate. Any num-
ber of additional arguments can be supplied, and they can be either named
or not. If the value of the expression is numeric, then the corresponding
additional argument is evaluated and returned. If the expression returns a
character value, then the additional argument with the matching name will
be evaluated and returned. If no argument has a matching name, then the
value of the first unnamed argument is returned.

Partial matching can be problematic when using switch. Since the first
argument is named EXPR, any named argument that partially matches this
could be inadvertently used as the expression. Always specifically naming the
EXPR is a good defensive strategy.

The code chunk below is taken from the manual page for the function switch

and exemplifies many of the uses this function is put to.

> centre = function(x, type) {
+ switch(type, mean = mean(x), median = median(x),
+ trimmed = mean(x, trim = 0.1))
+ }
> x = rcauchy(10)
> centre(x, "mean")

[1] 2.829261

> centre(x, "median")

[1] 0.4971483

> centre(x, "trimmed")

[1] 0.7449222

Exercise 2.20
Many implementations of switch include a capability to return a default value
if there is no match. Show that this can be done in R using switch and named
arguments, but that for numbered arguments this is not possible.

2.11 Exception handling

Exception handling is the process of dealing with the failure of a computa-
tion to complete successfully and in some cases to allow the user to interrupt
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computations. R has a number of tools that allow for very general exception
handling. Here we restrict our attention to some of the more basic uses and
encourage interested readers to investigate the available resources for more
details and examples if the coverage here is not sufficient.

The two most common sorts of exceptions are errors and warnings. Errors
can be raised by a call to stop and warnings can be raised by a call to warning.
The typical behavior for an error is to halt the current evaluation and return
control to the top-level R prompt. However, in many situations this may not
be desired. A common situation is where a large simulation is being run and
the failure of one run should not halt the entire simulation. Control over error
and warning handling is provided by the exception handling system.

The default behavior for warnings is to wait until the current evaluation
is finished and to then print the warnings that occurred during the evalu-
ation process. Users can control the behavior by making use of various R
options. In particular, the options warn, error and show.error.messages can
be used, but there are other options that control other aspects. Their values
can be changed by calling the function options with the appropriate argu-
ments. More detailed discussion of settings for the error option that allow
for debugging and inspecting the evaluation process are provided in Chap-
ter 9. The present discussion focuses on programming paradigms to ensure
that evaluation proceeds as desired when an exception is signaled.

Perhaps the simplest interface to use is the function try, which takes two
arguments, expr and silent. The first of these is an expression to evaluate.
When invoked, try will evaluate the expression provided. If the expression
evaluates without error, then the value is returned. Otherwise, an instance of
the class try-error is returned. More details on the class system are provided
in Chapter 3 but for now simply consider that a different value is returned if
the evaluation of the provided expression causes an error. The built-in error
handling system will cause the error to be printed at the console unless either
the show.error.messages option has been set to FALSE or the second argument
to try has been set to TRUE. The return value must be explicitly tested to see
if it is a try-error . Recently, try was reimplemented using tryCatch, which is
described below.

One example of its use is in the function testBioCConnection in the Biobase
package. The goal is to see whether the user has access to the Internet and can
find and successfully read from the Bioconductor repository. A small piece of
the relevant code is given below.

> { top = options(show.error.messages=FALSE)
+ test = try(readLines(biocURL)[1])
+ options(top)
+ if (inherits(test,"try-error"))
+ return(FALSE)
+ else



R Language Fundamentals 47

+ close(biocURL)
+ return(TRUE)
+ }

We see that first, the option that controls showing error messages is set to
FALSE, then there is a call to try, the option is restored to its previous value
and then we test to see if the attempt to read was successful.

There are a few interesting points here, among them the practice of assign-
ing the return value from a call to options. This allows you to then reset that
value, regardless of its initial value. For this example, regardless of whether
show.error.messages was set to TRUE or FALSE on entry to the function, it will
have the save value on exit.

A second, and in some ways simpler, mechanism for conditionally evalu-
ating expressions is provided by the tryCatch function; the first argument is
evaluated and if it returns without raising a condition, then its value is re-
turned. If a condition is raised, or signaled due to the evaluation of the first
argument, then the other named arguments are searched to see if any one
of them has a name that corresponds to the class of the condition that was
raised. If a match is found, then the handler supplied is invoked.

In the code below we demonstrate the use of tryCatch on a simple example.
In the first two cases, two handlers are established: one for errors and the
other for warnings.

> foo = function(x) {
+ if (x < 3)
+ list() + x
+ else {
+ if (x < 10)
+ warning("ouch")
+ else 33
+ }
+ }
> tryCatch(foo(2), error = function(e) "an error",
+ warning = function(e) "a warning")

[1] "an error"

> tryCatch(foo(5), error = function(e) "an error",
+ warning = function(e) "a warning")

[1] "a warning"

> tryCatch(foo(29))

[1] 33
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tryCatch has an additional argument named finally, which is an expres-
sion to be evaluated before returning and exiting. The finally expression is
evaluated in the context in which the call tryCatch was made and hence none
of the handlers are established.

Users can define new classes of conditions and these classes can be handled
by tryCatch by setting appropriate handler functions. For example, in the code
below we define a condition that is appropriate when a file is not found. When
this signal is thrown, the user interface could invoke a file browser allowing the
user to select the appropriate file interactively. In the code chunk below, we
first present a function that can be used to create the appropriate conditions,
then we create a condition that can be signaled. In the call to tryCatch, we
signal the condition and it is then handled by one of the established handlers.

The order in which the character strings provided in the class attribute is
important. We discuss the properties of the S3 object system in more detail
in Chapter 3 but for now it is sufficient to know that the order is important.
The handler that is invoked by tryCatch is determined by this order, the first
one that matches an element of the class attribute of the condition is used.

> FNFcondition = function (message, call = NULL){
+ class = c("fileNotFound", "error", "condition")
+ structure(list(message = as.character(message),
+ call = call), class = class)
+ }
> v1 = FNFcondition("file not found")
> tryCatch( signalCondition(v1), fileNotFound = function(e) e )

<fileNotFound: file not found>

> tryCatch( signalCondition(v1),
+ condition = function(e) "condition" )

[1] "condition"

Another important aspect of control of evaluation of a program is the correct
handling of signals. Signals are a software mechanism that allows for the
reporting of exceptional situations (out of memory, or invalid memory access)
as well as reporting and detecting asynchronous events. They are often raised
by the operating system but there are many ways processes can use them
to communicate with other processes. When users want to interrupt a long
running computation, or break out of an infinite loop, they commonly attempt
to use an interrupt (ctrl-C), which is a signal that is raised when the user hits
the control and C keys simultaneously. In the code below, the expression
repeat(readline()) results in an infinite loop, which can be broken out of
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by sending a user interrupt (ctrl-C), which is caught by the interrupt handler
defined in the call to tryCatch.

> tryCatch(repeat(readline()),
+ interrupt=function(e) print("howdy"))

Restarts are another part of the condition handling system in R. Making
use of the restart requires that the user set an error handler that will enter
the browser, or more generally, a calling handler that looks at the available
restarts. The example below is adapted from a talk by L. Tierney in 2003.
The function establishes a restart and then attempts to download a file, and
if it fails, then the restart is available.

> downloadWithRestarts = function(url, destfile, ...){
+ repeat
+ withRestarts(return(download.file(url, destfile, ...)),
+ retryDownload = function() NULL,
+ tryNewUrl = function(newUrl)
+ url <<- newUrl)
+ }

If we then establish this within a call to withCallingHandlers, then if an er-
ror occurs, the user will be placed into the browser and can call invokeRestart
to access one of the two restarts that were established; namely, retryDownload
and tryNewUrl.

> withCallingHandlers(downloadWithRestarts("http://foo.bar.org",
+ "xyz"), error = function(e) {
+ cat("Error:", conditionMessage(e), "\n")
+ browser()
+ })

Since the URL does not exist, the result is to signal an error, which then
invokes the browser and the user can then call the retryDownload restart to
try to download again, or the tryNewUrl restart to supply a new URL to try.

The code below is based on an example posted to the R help mailing list.
It demonstrates another use of withCallingHandlers. If an error is signaled,
it is caught by the error handler that invokes the skipError restart, which
returns NULL and the for loop continues.
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> even = function(i) i %% 2 == 0
> testEven = function(i) if (even(i) ) i else stop("not even")
> vals = NULL
> withCallingHandlers({
+ for (i in seq_len(10)) {
+ val = withRestarts(testEven(i),
+ skipError=function() return(NULL))
+ if (!is.null(val))
+ vals = c(vals, val)
+ }},
+ error=function(e) invokeRestart("skipError"))
> vals

[1] 2 4 6 8 10

2.12 Evaluation

Computer languages provide a level of abstraction that allows programmers,
and users, the ability to express certain ideas symbolically. In many cases
the symbolic statements constitute a program, or a function that may be
evaluated many times, with potentially different inputs. In other cases, with
interactive languages such as R, users will type statements directly in the
evaluator and immediately see the consequences of their commands. In this
section we consider the process of evaluating statements in R. Since evaluation
is a major component of computer use, it is essential that programmers both
understand the model that is used in any language and that they be able to
control the evaluation process to reliably get the intended answers.

R is a pass-by-value language. That means that when a function call is
made, the arguments are copied. For efficiency reasons the actual implemen-
tation attempts to only duplicate if any modification is made to the supplied
argument and so is sometimes described as copy on modify.

Consider the expression: 1+10. In this expression there are three distinct
symbols, 1, + and 10. The first and third we think of as representing values:
the numbers one and ten, respectively. But what about +? Perhaps we have
seen this so much that we feel that it too is really a value – but in reality it
is merely a symbol, and the correct value, which may be a function, must be
obtained.

While we will not get into the explicit detail of how the parser works,
we note that many of the details are described in Writing R Extensions (R
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Development Core Team, 2007c). The expression 1+10 is parsed into a call
to the function + with two arguments: 1 and 10. And the result is, of course,
11. The main point of this example is to draw attention to the fact that
everything is a symbol and that all symbols must be resolved to obtain values.
Some values are functions that will be invoked, while others are values that
are returned and printed.

2.12.1 Standard evaluation

The rules that R uses for associating values with symbols are relatively
straightforward. We begin by describing what happens on interactive use,
and follow that with a description of the evaluation process during function
invocation. So we return to our simple example of evaluating 1+10.

The search path plays an important role in the evaluation process (see
Section 2.3 for more details). When the R evaluator is looking for a value to
associate with the symbol +, it traverses the search path from the first element
to the last. In most cases the first instance of a symbol + that is encountered
will be used. However, when R knows the type of the object it is looking for,
in this case a function, it will skip over bindings to values that are not of the
correct type. We can determine which version of a symbol will be used by
using the function find, and we can examine the associated value using get.
If other elements of the search path contain a binding for the symbol being
sought, they are said to be masked by the first definition.

The search path is intrinsically dynamic in nature. Function calls can have
the side effect of attaching new packages and hence of altering the bindings
that will be used. Packages can also be detached and function definitions can
be made in the global environment at virtually any time. Programmers are
cautioned not to rely on the order in which packages are attached; explicit
use of name spaces and lexical scope should be preferred.

> find("+")

[1] "package:base"

> get("+")

function (e1, e2) .Primitive("+")

Users are free to override system functions, at their own risk. In the next
code chunk we first assign a new value for + and then evaluate some example
code and then remove the value we have assigned, since we do not want to
interfere with the usual definition of +.
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> assign("+", function(e1, e2) print("howdy"))
> 1 + 10

[1] "howdy"

> rm("+")
> 1 + 10

[1] 11

The binding of the symbol + occurs in the .GlobalEnv, and so removing it
will restore the standard system function.

The function find will find all instances of a symbol on the search path,
and has arguments that allow you to specify the type of object that you are
searching for. The one that is closest to the start of the search path (nearest
to position 1) will be used, under normal conditions. The other bindings
are said to be masked. This process is essentially the same for all function
lookups, including those defined in system functions. This has some potential
for problems and for naming conflicts between unrelated packages. Name
spaces provide a mechanism that allows programmers more control over which
bindings will be used, and we review those details in Section 2.12.7.

2.12.2 Non-standard evaluation

In R, there are a number of functions that do not use the standard eval-
uation rules. The use of non-standard evaluation is discouraged, and users
should only make use of it if there are compelling reasons. Some functions
have retained their behavior for compatibility reasons. You should avoid using
non-standard rules. Readers interesed in this topic should consult T. Lum-
ley’s document developer.r-project.org/nonstandard-eval.pdf, which
details the current non-standard evaluation paradigms and some of the pit-
falls that should be considered. Here, we very briefly show one method that
is used in some functions, mostly so that the reader is aware of how this code
works, and not to encourage the use of this paradigm.

Perhaps the most common non-standard situation is where a function does
not evaluate its argument, but rather makes use of the name provided when
the function is invoked. The misnamed library function does just this. You
should have wondered how the following code works.

> library(tools)

Since tools is not a symbol, and it is not a character literal (enclosed in
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quotes), then this evaluation should, under standard evaluation rules, fail
since the first thing that should happen is for the arguments to be evaluated.
Instead, the following code, extracted from library,

if (!character.only)
package = as.character(substitute(package))

shows how standard evaluation is bypassed. This is a fairly standard paradigm
in R. The use of substitute on a formal argument to a function retrieves
the actual symbol that was supplied. And substitute is documented to not
evaluate its arguments, so in this case the formal argument package is never
evaluated.

Non-standard evaluation also arises quite often in functions that fit various
models to data, such as lm and glm.

2.12.3 Function evaluation

Function evaluation is essentially the same as that of evaluation of state-
ments typed directly to the evaluator. The major differences arise due to
the fact that when one function is invoked, it is very likely that there are
many other functions that are currently being evaluated and that any func-
tion can have an associated environment. These two additional complexities
can sometimes be slightly confusing.

When a function is evaluated, a new environment or frame is created specif-
ically for that evaluation. The global environment is always recorded as frame
0 and other frames count up from there. The frame provides bindings between
the formal arguments for the function and the user-supplied values. It is also
where any local variables have their bindings stored.

The parent frame of a function evaluation is the environment from which
the function was invoked or called. It is not necessarily numbered one less
than the frame number of the current evaluation, although that is usually the
case. Symbols in the parent frame have no effect on evaluation of the current
function. In some programming languages these symbols do and the language
is often said to have dynamic scope, but this is not the case in R.

However, programmers have access to the entire call stack and virtually all
objects and frames that are defined on it. Access is obtained through a set of
related functions all with the prefix sys.; sys.frame and sys.parent are the
the more commonly used. Programmers should avoid the use of these tools as
they can make it difficult to understand or reason about a program. One of
the common idioms is the use of sys.frame(sys.parent()) to obtain access to
variable bindings that are present in the environment that the current function
has been invoked from. For this task, the special syntax of parent.frame should
be preferred.
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2.12.4 Indirect function invocation

Functions can be passed as arguments to functions and evaluated directly,
but this is sometimes not convenient or, in some cases, the appropriate func-
tion name must be constructed. We now consider the problem of invoking a
function when only a character string is available. If all arguments are known,
then one can make use of the function get as is shown in the code chunk below.

> b = get("foo")
> b(23)

[1] 33

In other cases it may not be possible to directly invoke the function. In
such cases, do.call can be used. The arguments to do.call are the name of
the function, or a function itself and an optionally named list of arguments.
Argument matching is carried out in a manner analogous to that of the usual
argument matching.

Another mechanism for controlling evaluation is the function with. The
syntax is with(data, expr), where data can be a list, an environment or a
data frame. In all cases, the values must be named and expr is evaluated in a
specially created evaluation environment whose parent frame is the evaluation
environment that with was called from. All variables named in data are bound
in the environment.

One thing to note is that any assignments made in expr take place in the
specially constructed evaluation environment and hence are local. They will
be discarded at the completion of the call to with unless they have been
assigned into a more permanent memory location. with is most often useful
for evaluation of formulae and other modeling functions where the current
evaluation semantics are somewhat peculiar.

2.12.5 Evaluation on exit

In many situations it is helpful to be able to ensure that certain values
are reset or file handles closed when exiting from a function. Typically these
actions should happen whether the function is exited normally or via an error
or other condition. The on.exit can be used to establish a set of expressions
that will be evaluated when the function containing the call to on.exit exits.

on.exit takes two arguments: the expression to be evaluated and add, which
must be a logical variable. If add is TRUE, then the expression is added to the
list of expressions to be evaluated; and if FALSE, then the provided expression
replaces the currently established expression.
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2.12.6 Other topics

One should be careful to differentiate between a side effect and a value.
A simple example of that difference comes from the print function. In the
following code we will use print to print the value of an object, which is a side
effect, and then we will show that the return value of the call to print is the
object itself. Hence, we have both a side effect and a value. All R functions
return values; sometimes the value is NULL, but a value is always returned. If
the last statement in the body of the function is a call to invisible, then the
value will not be printed, but it is still returned.

The code below is very simple; first we print the string a and notice that it
is printed, but that the function print does not print any value after returning
control to the console. However, if we assign the return value from print, we
see that there is one and that it is the value that was printed.

> print("a")

[1] "a"

> v = print("a")

[1] "a"

> v

[1] "a"

The function eval evaluates an expression in an environment. The user can
provide an environment or make use of the default values. Since eval evalu-
ates its first argument, it can be problematic to evaluate complex expressions
and very often these are wrapped in a call to quote that, when evaluated,
simply returns its argument. The alternate form, evalq, does the quoting
automatically, and this is the more common form of usage.

Notice the difference in evaluation of the quoted argument and the argument
itself. We first assign to the symbol x the expression 1:10. Then when we
call eval(x), the first evaluation is to replace x with its value; the second
evaluation is to evaluate that value and we see that the output is the vector
of integers from 1 to 10. In the call to evalq, there is (at least conceptually)
no first evaluation and so the evaluation that does occur is the replacement
of the symbol x with its value, and that is what is printed in the call to evalq.

> x = expression(1:10)
> x
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expression(1:10)

> eval(x)

[1] 1 2 3 4 5 6 7 8 9 10

> evalq(x)

expression(1:10)

> eval(quote(x))

expression(1:10)

Often, you would like the evaluation to take place in the context of a par-
ticular environment. This can be handled by supplying the argument as an
additional argument to eval. Note that we are not evaluating in that envi-
ronment, but rather, using it as the first location to look for bindings between
symbols in the expression provided as the first argument to eval.

> e = new.env()
> e$x = 10
> evalq(x, envir = e)

[1] 10

The function local provides a form of encapsulation that is related to the
let capabilities in Lisp and Lisp-like languages. local evaluates an expression
in a specially constructed environment and hence all bindings and changes to
bindings are kept within that environment.

In the code segment below, essentially taken from the corresponding R
manual page, we demonstrate the construction of mutually recursive functions.
The value associated with gg is the value of the last expression, which is an
anonymous version of f. This function has as its evaluation environment the
specially constructed environment that was created by the call to local. In
that environment there are two bindings, one for f and one for k. Both of these
are functions and both have this environment as their evaluation environment
and hence they are mutually recursive.

> gg = local({
+ k = function(y) f(y)
+ f = function(x) if (x)
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+ x * k(x - 1)
+ else 1
+ })
> gg

function (x)
if (x) x * k(x - 1) else 1
<environment: 0x2edff6c>

> ls(environment(gg))

[1] "f" "k"

> for (i in 1:5) print(gg(i))

[1] 1
[1] 2
[1] 6
[1] 24
[1] 120

The use of local ensures that the correct version of f is found when k is
invoked. This process is often referred to as name space management and we
consider that topic in more detail in the next section.

2.12.7 Name spaces

Name spaces play an important role in good software design in R. A name
space is typically associated with a package. The use of a name space allows
the author to explicitly import symbols and their bindings from other packages
as well as to explicitly export symbols and their values. Users of a package
with a name space should only use those symbols that are explicitly exported.

When a package with a name space imports bindings from another pack-
age, that second package is not, generally, placed on the search path. This
can greatly reduce the amount clutter on the search path and can further
help alleviate difficulties encountered by masking, or as it is sometimes called
shadowing. A detailed description of name spaces and how to implement them
in R can be found in Tierney (2003) and R Development Core Team (2007c).
Here we consider only their impact on the evaluation process.

A name space allows the programmer to explicitly control the bindings
between symbols and values. For example, the symbol pi is defined in the
base, but it could be inadvertently overridden by an assignment in the user’s
workspace, perhaps referring to p sub i, with some potential for unintended
results.
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A name space changes the evaluation process. When a symbol is being
sought in a name space, first the internal definitions are searched, second any
explicitly imported symbols are considered and finally the base is considered.
After that, the usual rules, using the search path, are followed.

A registry of loaded name spaces is maintained and can be examined using
the loadedNamespaces function.

Accessing symbols, or variables, exported by a package with a name space
can be done using a fully qualified variable reference. Fully qualified variable
references consist of the package name and the variable name separated by
a double colon. Exported variables may also be accessed by variable name,
but would then be subject to masking if other definitions were to precede
them on the search path. By making use of the fully qualified variable name,
users can ensure that they have obtained the desired binding. When a fully
qualified variable name is used, the associated name space is loaded (but
not attached). In the code chunk below we query to see which name spaces
have been loaded and then access the lda, linear discriminant analysis, in the
MASS package. Afterwards we again query for the loaded name spaces and
then for the current search list and see that while the name space for MASS
has been loaded, MASS is not on the search path.

> loadedNamespaces()

[1] "AnnotationDbi" "Biobase" "DBI"
[4] "KernSmooth" "RColorBrewer" "RSQLite"
[7] "annotate" "base" "geneplotter"
[10] "grDevices" "graphics" "grid"
[13] "lattice" "methods" "stats"
[16] "tools" "utils" "xtable"

> MASS::lda

function (x, ...)
UseMethod("lda")
<environment: namespace:MASS>

> loadedNamespaces()

[1] "AnnotationDbi" "Biobase" "DBI"
[4] "KernSmooth" "MASS" "RColorBrewer"
[7] "RSQLite" "annotate" "base"
[10] "geneplotter" "grDevices" "graphics"
[13] "grid" "lattice" "methods"
[16] "stats" "tools" "utils"
[19] "xtable"

> search()
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[1] ".GlobalEnv" "package:geneplotter"
[3] "package:annotate" "package:xtable"
[5] "package:AnnotationDbi" "package:RSQLite"
[7] "package:DBI" "package:lattice"
[9] "package:Biobase" "package:tools"
[11] "package:stats" "package:graphics"
[13] "package:grDevices" "package:utils"
[15] "package:datasets" "package:methods"
[17] "Autoloads" "package:base"

While it is possible, and sometimes desirable, to make use of variables from
other packages using fully qualified names, it is generally better to import
the symbols explicitly in the NAMESPACE file. The main reason for this is
that it is possible to determine package dependencies programmatically from
the package DESCRIPTION file and NAMESPACE file, but dependencies
that arise from fully qualified variable names are much harder to detect. One
exception to this rule is when a package wants to make use of functionality
from another package only when that other package is available. Then, ex-
plicit inclusion of the second package in either the DESCRIPTION file or the
NAMESPACE file would cause all users to have the second package available,
which may not be the intention.

2.13 Lexical scope

One of the main differences between R and S-Plus is lexical scoping, which
R has and S-Plus does not. When properly used, lexical scope provides a
powerful mechanism for controlling evaluation and ensuring that the intended
sets of bindings between symbols and values are used. We begin with a very
simple example that demonstrates the issues.

The code below defines a function named foo with no formal arguments.
In foo, a local variable named y is defined and bound to the value 10. And a
function is returned. In that function the symbol y is used; but since it is not
a formal argument to the function, it is a free variable. Then foo is evaluated
and the return value is stored in the variable named bar. Note that bar is
itself a function. Hence, bar can be evaluated. The concern here is: what is
an appropriate binding for the symbol y? In some computer languages this
would be an error, but in many others, the binding for y is defined to be that
binding that was present (if any) when the function was created. So, in the
present example, that binding would be to the value 10 and we see that that
is consistent with the output.
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> foo = function() {
+ y = 10
+ function(x) x + y
+ }
> bar = foo()
> bar

function (x)
x + y
<environment: 0x2d3c580>

> is.function(bar)

[1] TRUE

> bar(3)

[1] 13

Functions, such as foo in the preceding example, that have an enclosing
environment are often referred to as closures. A closure can either be created,
as in that example, by the explicit creation of a function in an environment
other than the global environment or they can be created explicitly by at-
taching an environment to a function using env = and then populating that
environment, as is shown in the next example.

> bar2 = function(x) x + z
> e1 = new.env()
> e1$z = 20
> tryCatch(bar2(11), error = function(x) "bar2 failed")

[1] "bar2 failed"

> environment(bar2) = e1
> tryCatch(bar2(11), error = function(x) "bar2 failed")

[1] 31

In R, functions can be used anywhere a value is needed. Functions can be
passed to other functions as arguments, and functions can be returned as the
value of a function. The use of lexical scope is a predominant method for
controlling evaluation in Lisp and Scheme.
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We now consider two somewhat more realistic examples adapted from Gen-
tleman and Ihaka (2000). One involves the use of likelihood functions and
the other the not unrelated concept of function optimization – typically one
is interested in obtaining maximum likelihood estimates.

2.13.1 Likelihoods

Suppose we observe a sample of size n that we believed to be from the
Exponential density f(x) = µ exp(−xµ), where both µ and x must be positive.
In order to estimate µ, one can use the likelihood principle. The log likelihood
function for a sample, (x1, . . . , xn), from an Exponential(µ) distribution is
l(µ) = n log(µ) − µ

∑
(xi). The maximum likelihood estimate is the value of

µ that maximizes this function.
Likelihood functions are commonly used in both research and teaching. It

would be convenient to have some means of creating a likelihood function.
This means that we want to have some function, which we will call a creator,
that we pass data to and get back a likelihood function. We will call this
function the returned function. This likelihood function would then take as
arguments values of the parameter (µ in the case above) and return the like-
lihood at that point for the data that was supplied to the creator. To do so,
the returned function needs to have access to the values of the data that were
passed to the creator.

If the programming language has lexical scope, there is no problem because
the returned function is created inside the creator and hence has access to all
variable definitions that were in effect at the time that it was created.

In the following example, Rmlfun is a creator. It sets up several local vari-
ables that will be needed by the likelihood function and whose values depend
on the data supplied. Then the likelihood function is created and returned.
The environment associated with the returned function is the environment
that was created by the invocation of Rmlfun, which means that the variables
n and sumx will have bindings in that environment.

> Rmlfun = function(x) {
+ sumx = sum(x)
+ n = length(x)
+ function(mu) n * log(mu) - mu * sumx
+ }

Subsequent evaluation of Rmlfun causes the creation of a new environment
with bindings to n and sumx that depend on the arguments supplied to Rmlfun.
This environment does not interfere in any way with any environment created
by previous invocations of Rmlfun.



62 R Programming for Bioinformatics

> efun = Rmlfun(1:10)
> efun(3)

[1] -154.0139

> efun2 = Rmlfun(20:30)
> efun2(3)

[1] -812.9153

> efun(3)

[1] -154.0139

2.13.2 Function optimization

In this section we extend the example given above to indicate one of the
areas where lexical scope can provide great simplifications of the code. We
will use simple examples and naive implementations of them so that the points
regarding lexical scope are not lost amid the complexity of function optimiza-
tion. For the reader this can be paraphrased as: do not use these methods;
they are only examples and there are better ways to solve these problems.
However, even the better solutions benefit from lexical scope so we lose noth-
ing and gain simplicity for our purpose.

Optimization problems frequently arise in all areas of statistics and one com-
mon problem is in finding the maximum likelihood estimate. In many cases
the likelihood is convex in the parameters and hence has a single maximum.
In that case the maximum likelihood estimate can be obtained by finding the
place where the score function (the first derivative of the likelihood) is zero.

One simple method for finding the zero of an arbitrary function, f(x), of
one variable is Newton’s method. If a is an initial guess as to the value of x
such that f(x) = 0, then an improved guess is obtained via

xnew = a− f(a)/f ′(a). (2.1)

This process can then be iterated until a value of xnew is obtained such that
f(xnew) is sufficiently close to zero.

In most of the problems that arise in statistics, the function being optimized
depends not only on the parameter that we are optimizing over, but also on
many other variables (usually the data). Because of that, one can never really
use the simple form of Equation 2.1. In most implementations there must be
some means of passing the extra information to the optimizer. This generally
complicates the code and often results in a solution that is not easily extended.
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However, when the language has lexical scope, the simple form can be
used for many problems. Consider the slightly extended likelihood function
generator given below.

> Rmklike = function(data) {
+ n = length(data)
+ sumx = sum(data)
+ lfun = function(mu) n * log(mu) - mu *
+ sumx
+ score = function(mu) n/mu - sumx
+ d2 = function(mu) -n/mu^2
+ list(lfun = lfun, score = score, d2 = d2)
+ }

In this function we return not only the likelihood function, but also functions
to obtain the score and the second derivative.

The optimizer can then be written in the following way:

> newton = function(lfun, est, tol = 1e-07, niter = 500) {
+ cscore = lfun$score(est)
+ if (abs(cscore) < tol)
+ return(est)
+ for (i in 1:niter) {
+ new = est - cscore/lfun$d2(est)
+ cscore = lfun$score(new)
+ if (abs(cscore) < tol)
+ return(new)
+ est = new
+ }
+ stop("exceeded allowed number of iterations")
+ }

The function newton can be used to find the zero of any univariate function
provided that the function passed in adheres to the protocol that the zero
function is stored in the list as score and its derivative is stored in the list as
d2.

2.13.2.1 Other considerations

Lexical scope is implemented by associating an environment with a function.
That environment can contain bindings for any unbound symbols in the body
of the function, and these bindings will be used first when the function is
evaluated.
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Environments can be directly assigned to functions and values can be in-
serted directly into those functions for use. Standard tools for assigning and
changing values in environments can be used, and work as documented.

In the code chunk below we first create an environment e1 and bind the
symbol a to the value 10. Next the function foo is defined; it has one formal
argument, x, and one unbound value, a. Then e1 is assigned as the environ-
ment of foo. Now, when foo is evaluated, e1 will be used to provide a binding
for the symbol a.

> e1 = new.env()
> e1$a = 10
> foo = function(x) x + a
> environment(foo) = e1
> foo(4)

[1] 14

The environment e1 can be manipulated directly, as we see in the next
code chunk. The value associated with the symbol a can be changed and that
change is propagated.

> e1$a = 20
> foo(4)

[1] 24

> e1[["a"]]

[1] 20

2.14 Graphics

One of the real strengths of the R language is its comprehensive graphics ca-
pabilities. Since these have substantial supporting documentation, and there
are books devoted to the graphics systems, (Murrell, 2005; Sarkar, 2008), we
give them only a cursory treatment here, and recommend that the interested
reader consult the resources cited here for a more substantial treatment of the
topics.
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There are three different systems that can be used, with some substantial
overlap between them. There is a basic, or old-style graphics system, and a
newer system called grid that gives more control over some tools. These two
graphics systems are well documented in Murrell (2005). The function demo

can be used to see some online examples and the grid package has a number
of vignettes.

The third system of note is implemented in the lattice package. It primar-
ily provides tools to help visualize a number of related plots simultaneously.
There is a book (Sarkar, 2008) and a demo that can be accessed via the demo

function.
The R graphics system is device oriented. At any one time, a single device

is active and accepts input. Some devices (typically those that render on a
computer screen) also have some interactive capabilities. In particular, the
functions locator and identify are available. During an interactive session, it
is possible to have several on-screen devices presenting different plots, but at
any one time, only one is active.

There are other devices, such as pdf, for producing documents in the portable
document format, postscript for producing plots in Postscript, as well as
bitmap, xfig and pictex devices are always available. Other devices such as
X11, png and jpg will be available if the necessary software has been installed
on the corresponding machine. To initialize a device, one simply invokes the
appropriate function, and from that point on all plotting commands are di-
rected to the new device, at least until it is closed or another device opened.

In order to navigate the different devices, there are a number of different
functions that can be used; these are listed below.

dev.cur returns the identity of the active device.

dev.list lists all active devices.

dev.next makes the next device in the list active.

dev.set makes the specified device active.

dev.copy copies the graphics contents of the active device to the specified
device.

In order to view multiple plots simultaneously, users can either maintain
multiple active devices, or place multiple plots on the same device. The graph-
ics parameters (see the manual page for par for more details) mfrow and mfcol

can be used to set up the active graphics device so that multiple plots will
appear. For more complex arrangements, see the heatmap function for one
example, use the layout command to obtain more control over the shapes and
size of the plotting regions.

The graphics parameters control many different aspects of how plots are
rendered, including setting margins, controlling whether a plot is overlayed
on an existing plot, and whether the user should be queried for input before



66 R Programming for Bioinformatics

erasing a plot. There are far more parameters than we can easily describe,
and interested readers are encouraged to explore these different settings them-
selves.

Exercise 2.21
Produce a bitmap image of a plot. Which parameters must you set?
Which parameters are optional?

Use layout to create a scatterplot with histograms on the sides. Hint:
see the manual page.

Use dev.copy to copy this to a PDF device and then open the resulting
PDF document using your favorite viewer.

What does the graphics parameter cex do?

Can you find the size of the figure? What units (e.g., pixels, inches, etc.)
can this be obtained in?



Chapter 3

Object-Oriented Programming in R

3.1 Introduction

Object-oriented programming (OOP) has become a widely used and valu-
able tool for software engineering. Much of its value derives from the fact
that it is often easier to design, write and maintain software when there is
some clear separation of the data representation from the operations that are
to be performed on it. In an OOP system, real physical things (like airline
passengers or the data from a microarray experiment) are generally repre-
sented by classes, and methods (functions) are written to handle the different
manipulations that need to be performed on the objects.

The views that many people have of OOP have been based largely on expo-
sure to languages like Java, where the system can be described as class-centric.
In a class-centric system, classes define objects and are repositories for the
methods that act on those objects. In contrast, languages such as Dylan
(Shalit, 1996), Common Lisp (Steele, 1990), and R separate the class specifi-
cation from the specification of generic functions, and could be described as
being function-centric systems.

R currently supports two internal OOP systems, and several others are
available as add-on packages. In this chapter we discuss the two internal sys-
tems. The first, called S3, is documented in Chambers and Hastie (1992)
while the second, S4, was first described in Chambers (1998) and later up-
dated in Chambers (2008). R has become very popular and is now being used
for projects that require substantial software engineering as well as its con-
tinued widespread use as an interactive environment for data analysis. This
essentially means that there are two masters – reliability and ease of use. S3
is indeed easy to use, but can be made unreliable through nothing other than
bad luck, or a poor choice of names, and hence is not a suitable paradigm
for constructing large systems. S4, on the other hand, is better suited for
developing large software projects but has an increased complexity of use.

Freidman et al. (2001) list four general elements that an object-oriented
programming language should support.

objects: encapsulate state information and control behavior.

classes: describe general properties for groups of objects.

67
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inheritance: new classes can be defined in terms of existing classes.

polymorphism: a (generic) function has different behaviors, although simi-
lar outputs, depending on the class of one or more of its arguments.

Virtually every OOP language implements these in different ways. In S3, there
is no formal specification for classes and hence there is, at best, weak control
of objects and inheritance. The emphasis of the S3 system was on generic
functions and polymorphism. In S4, formal class definitions were included in
the language and based on these, more controlled software tools and paradigms
for the creation of objects and the handling of inheritance were introduced.

We also note that when using OOP, much of the important detail in the
programs are contained in the class hierarchy and in understanding which
classes have specific methods available for them. Thus, tools for inspecting
and visualizing this structure are invaluable in understanding how a program
functions. We touch on this topic in Section 3.9.

3.2 The basics of OOP

One can separate a discussion of OOP into two related but distinct sets
of concepts. First are the classes, which describe the objects that will be
represented in computer code. A class specification details all the properties
that are needed to describe an object. An object is an instance of exactly
one class and it is the class definition and representation that determine the
properties of the object. Instances of a class differ only in their state. New
classes can be defined in terms of existing classes through an operation called
inheritance. Inheritance allows new classes to extend, often by adding new
slots or by combining two or more existing classes into a single composite
entity. If a class A extends the class B , then we say that A is a superclass
of B , and equivalently that B is a subclass of A. No class can be its own
subclass. A class is a subclass of each of its superclasses.

If the language only allows a class to extend, at most, one class, then we
say that language has single inheritance. Computing the class hierarchy is
then very simple, since the resulting hierarchy is a tree and there is a single
unique path from any node to the root of the tree. This path yields the class
linearization. In the S3 system, the class of an instance is determined by the
values in the class attribute, which is a vector, and hence is also linear. If the
language allows a class to directly extend several classes, then we say that the
language supports multiple inheritance and computing the class linearization
is more difficult. S4 supports multiple dispatch.

A method is a type of function that is invoked depending on the class of one
or more of its arguments and this process is called dispatch. While in some
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systems, such as S3, methods can be invoked directly, it is more common
for them to be invoked via a generic function. When a generic function is
invoked, the set of methods that might apply must be sorted into a linear
order, with the most specific method first and the least specific method last.
This is often called method linearization and computing it depends on being
able to linearize the class hierarchy. If the language supports dispatching on
a single argument, then we say it has single dispatch. Both Java and the
S3 system use single dispatch. When the language supports dispatching on
several arguments, we say that the language supports multiple dispatch and
the set of specific classes of the arguments for each formal parameter of the
generic function is called the signature. S4 supports multiple dispatch. With
multiple dispatch, the additional complication of precedence of the arguments
arises. In particular, when method selection depends on inheritance, there
may be more than one superclass for which a method has been defined. In
this case, a concept of the distance between the class and its superclasses
is used to guide selection; more details on method linearization are given in
Section 3.2.2.

The evaluation process for a call to a generic function is roughly as follows.
The actual classes of supplied arguments that match the signature of the
generic function are determined. Based on these, the available methods are
ordered from most specific to least. Then, after evaluating any code supplied
in the generic, control is transferred to the most specific method. In S4, a
generic function has a fixed set of named formal arguments and these form
the basis of the signature. Any call to the generic will be dispatched with
respect to its signature. There can be arguments to the generic that are
not part of the signature and are not used to determine dispatch. Provided
the generic function uses the . . . argument, methods can have fairly arbitrary
non-signature arguments.

Single inheritance and single dispatch yields an easy to understand and easy
to implement paradigm that solves about 90% of all programming problems
and hence is popular; but when it is not sufficient, the convolutions needed
to overcome its deficiencies can be substantial. For example, the visitor pat-
tern described in Gamma et al. (1995) is essentially a mechanism to support
multiple dispatch in a language with only single inheritance.

One of the advantages of an OOP paradigm is that relatively little checking
of the input values is needed. The reason is that the class of an object is
known if we dispatch on it. And since instances of a class differ only in their
state (i.e., they generally have the same slots and the same classes of values
in those slots), we can write the method with very strong assumptions about
the inputs.

3.2.1 Inheritance

One of the advantages of a class system is the concept of inheritance. Con-
sider as an example the modeling of airline passengers. One implementation



70 R Programming for Bioinformatics

would define the Passenger class as having slots for passenger name (which
might itself be a class), an origin and a destination. Now, to implement a new
class for frequent flyers, e.g., FreqFlyer , we do not want to create a whole new
set of class definitions, but rather we can extend the Passenger by adding
one or more slots to describe new properties that will be recorded only for
frequent flyers. We then say that the FreqFlyer is a subclass of Passenger and
that Passenger is a superclass of FreqFlyer .

The inheritance relationships imply a form of polymorphism. Any instance
of the subclass, in our example the FreqFlyer , can be used in place of an
instance of the superclass, in our example Passenger . This must be true since
the FreqFlyer class has every slot that an instance of the Passenger class has.
The relationship between a subclass and its superclasses should be an is a
relationship. Every frequent flyer is a passenger and not all passengers are
frequent flyers.

Sometimes the notion of subclass and superclass can be confusing. One
reason that the more specialized class is called a subclass is because the set of
objects that can be used exchangeably with the FreqFlyer class are a subset
of those that can be used exchangeably with the Passenger class. In the
example below, we provide a very basic S4 implementation of the Passenger
and FreqFlyer classes.

> setClass("Passenger", representation(name = "character",
+ origin = "character", destination = "character"))

[1] "Passenger"

> setClass("FreqFlyer", representation(ffnumber = "numeric"),
+ contains = "Passenger")

[1] "FreqFlyer"

> getClass("FreqFlyer")

Slots:

Name: ffnumber name origin
Class: numeric character character

Name: destination
Class: character

Extends: "Passenger"

> subClassNames("Passenger")

[1] "FreqFlyer"
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> superClassNames("FreqFlyer")

[1] "Passenger"

Exercise 3.1
Define a class for passenger names that has slots for the first name, middle
initial and last name. Change the definition of the Passenger class to reflect
your new class. Does this change the inheritance properties of the Passenger
class or the FreqFlyer class?

3.2.2 Dispatch

We must also briefly digress to consider some of the issues involved in ap-
plying methods to objects. A method is a specialized function that can be
applied to instances of one or more classes. The process of determining the
appropriate method to invoke is called dispatch. A call to a function, such as
plot, will invoke a method that is determined by the class of the first argument
in the call to plot.

When a generic function is called, it must examine the supplied arguments
and determine the applicable methods. All applicable methods are ordered;
details on how this is done for S4 are given in Section 3.4.9, while for S3 the hi-
erarchy is intrinsically linear and hence has an obvious order. In both systems,
the applicable methods are arranged from most specific to least specific and
the most specific method is invoked. During evaluation, control may be passed
to less specific methods by calling NextMethod in S3 and via callNextMethod for
S4. This strategy tends to help simplify the code. If we return to our frequent
flyer example, we can imagine a print method for passengers that prints their
names and flight details. A print method for frequent flyers could simply in-
voke the passenger method, and then add a line indicating the frequent flyer
number. Using this approach, very little additional code is needed; and if
the printing of passenger information is changed, the update is automatically
applied to printing of frequent flyer information.

Exercise 3.2
Write a simple show method for the Passenger class. Write a show method
for theFreqFlyer class that makes use of the show method for passengers. For
S4 you will want to use setMethod and callNextMethod, while for an S3 im-
plementation you will need to use NextMethod and name the print methods
print.Passenger and print.FreqFlyer.

With both S3 and S4, dispatching is implemented through the use of generic
functions. In the S3 system, the generic function typically only examines the
first argument and dispatches depending on its class. In S3, methods are not
explicitly registered but are determined by a function naming convention that
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is described later. S4, on the other hand, requires explicit method registration.
In S4, when the generic function is invoked, it examines the classes of all
arguments in its signature and then linearizes the methods, invoking the most
specific one.

3.2.3 Abstract data types

In some discussions there is confusion between the use of abstract data
types (ADT) and OOP. It is useful to realize that the ADT paradigm can be
adopted in any language, regardless of whether or not it supports OOP.

Every time a decision is made about how to represent a set of quantities,
either simple ones, such as the time of day, or more complex ones, such as
the output of a DNA microarray experiment, a new data type is created. The
data must be stored in some format and any processing of the data relies on
manipulating that data. At some time in the future it may become important
to change the format the data are stored in. In order not to have to rewrite
all code that manipulates the data, the notion of an ADT can be used. By
this we simply mean that we conceptually separated the representation of the
object from the interface to the object. The representation provides specific
details for storage of the data, and details of the implementation should not
be relied on to access the data. All users of the data type must restrict their
operations to those defined by the interface.

It is quite obvious why ADT and OOP are often mistaken for each other.
At one level, OOP is merely a set of software tools that help to adopt an ADT
approach. A class specification can be thought of as the data representation,
while the methods define the interface. But, it is possible to use ADT without
a class system.

Consider the following simple example, in S4. Suppose that we have a
Rectangle class and that this class should respond to requests that ask for
the area of the rectangle. We first define a class for rectangle that includes
a specific slot for the area. We next define a generic function for area, and
define a method for the Rectangle class.

> setClass("Rectangle", representation(h = "numeric",
+ w = "numeric", area = "numeric"))

[1] "Rectangle"

> myr = new("Rectangle", h = 10, w = 20, area = 200)
> setGeneric("area", function(shape) standardGeneric("area"))

[1] "area"

> setMethod("area", signature(shape = "Rectangle"),
+ function(shape) shape@area)
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[1] "area"

> myr@area

[1] 200

> area(myr)

[1] 200

Any user can either access the area directly by accessing the slot with
myr@area or by calling the area generic function. Accessing the slot breaks
the data type abstraction; you are relying on the implementation. Using the
generic function makes use of the ADT. If the representation were to change
to that shown below, any code relying on the generic function will continue
to work and any code relying on slot access will fail. By using ADTs, it is
simpler to change the representation of data types as a project evolves.

> setClass("Rectangle", representation(h = "numeric",
+ w = "numeric"))

[1] "Rectangle"

> setMethod("area", "Rectangle", function(shape) shape@h *
+ shape@w)

[1] "area"

3.2.4 Self-describing data

One of the major uses of OOP within the Bioconductor Project is in the
construction of self-describing data classes. The most widely used is the
ExpressionSet class defined in the Biobase package. Our goal is to define
a self-describing data object that can be used to carry out a reasonable anal-
ysis of the data. If all information is stored in a single object it is easier to
save it, to share it with others, or to use it as input to a function. This is
consistent with the notion that you would like to place all data relevant to
the experiment into a single file folder and to place it into a filing cabinet so
that later you can find all the information you need in one place.

The data might be stored in either a matrix or a data.frame. And while
informative row and column labels can be used, it is difficult to encode all
relevant information about the variables in the labels. One solution is to
create a compound object that holds both the data and the metadata about
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the variables, and possibly about the samples. Defining a suitable class yields
self-describing data.

The major benefits that we have found to programming with self-describing
data are that it is easy to return to a project after some months and re-do an
analysis. We have also found that it is relatively easy to hand off a project
from one analyst to another. But perhaps the greatest benefit has come from
defining specialized subsetting methods, that is, methods for [ that help to
construct an appropriate subset of the object, with all variables correctly
aligned.

3.3 S3 OOP

The S3 system is relatively easy to describe and to use. It is particularly well
suited to interactive use but is not particularly robust. Generic functions and
methods are quite widely used but there is little use of inheritance and classes
are quite loosely defined. In some sense, all objects in R are instances of some
class. Some classes are internal or implicit and others are specified explicitly,
typically by using the class attribute. In the S3 system, one determines the
class of an object using the function class, and for most purposes this is suf-
ficient; however, there are some important exceptions that arise with respect
to internal functions. While there is no formal mechanism for organizing or
representing instances of a class, they are typically lists, where the different
slots are represented as named elements in the list. Using setOldClass will
register an S3 class as an S4 class.

The class attribute is a vector of character values, each of which specifies
a particular class. The most specific class comes first, followed by any less
specific classes. For our frequent flyer example from Section 3.2.1, the class
vector should always have FreqFlyer first and Passenger second. The recom-
mended way of testing whether an S3 object is an instance of a particular class
is to use the inherits function. Direct inspection of the class attribute is not
recommended since implicit classes, such as matrix and array , are not listed
in the class attribute. Notice in the code below that the class of x changes
when a dimension attribute is added, that there is no class attribute, and
that once x is a matrix it is no longer considered to be an integer .

> x = 1:10
> class(x)

[1] "integer"

> dim(x) = c(2, 5)
> class(x)
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[1] "matrix"

> attr(x, "class")

NULL

> inherits(x, "integer")

[1] FALSE

In the next example we return to our FreqFlyer example and provide an S3
implementation.

> x = list(name = "Josephine Biologist", origin = "SEA",
+ destination = "YXY")
> class(x) = "Passenger"
> y = list(name = "Josephine Physicist", origin = "SEA",
+ destination = "YVR", ffnumber = 10)
> class(y) = c("FreqFlyer", "Passenger")
> inherits(x, "Passenger")

[1] TRUE

> inherits(x, "FreqFlyer")

[1] FALSE

> inherits(y, "Passenger")

[1] TRUE

A major problem with this approach is that there is no mechanism that
programmers can use to ensure that all instances of the Passenger or FreqFlyer
classes have the correct slots, the correct types of values in those slots, and the
correct class attribute. One can easily produce an object with these classes
that has none of the slots we have defined. And as a result, one typically has
to do a great deal of checking of arguments in every S3 method.

The function is.object tests whether or not an R object has a class at-
tribute. This is somewhat important as the help page for class indicates that
some dispatch is restricted to objects for which is.object is true.

> x = 1:10
> is.object(x)
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[1] FALSE

> class(x) = "myint"
> is.object(x)

[1] TRUE

3.3.1 Implicit classes

The earliest versions of the S language predate the widespread use of object-
oriented programming and hence the class representations for some of the
more primitive or basic classes do not use the class attribute. For example,
functions and closures are implicitly of class function while matrices and arrays
are implicitly of classes matrix and array , respectively.

> x = matrix(1:10, nc = 2)
> class(x) = "matrix"
> x

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10

> is.object(x)

[1] FALSE

> oldClass(x) = "matrix"
> x

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
attr(,"class")
[1] "matrix"

> is.object(x)

[1] TRUE
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Exercise 3.3
The S3 system has been used for some years and a very extensive set of tools
for statistical modeling has been developed based on this system (Chambers
and Hastie, 1992). Among the builtin classes is glm. Fit a simple generalized
linear model (using an example from the help page for glm is the easiest way)
and examine its structure. What classes does glm extend? What are the slots
in a glm instance?

3.3.2 Expression data example

In this section we consider constructing something similar to the
ExpressionSet class used in Bioconductor entirely within the S3 system. We
first define a class that will relate variable names and their descriptions. This
will be a named vector, where the names correspond to the names we will use
for the variables in the data.frame and the values are the textual descriptions
of the variables. In the code below we create such an object and call it class
VARLS3 .

> ex1VL = c("Sex, M=MALE, F=FEMALE", "Age in years")
> names(ex1VL) = c("Sex", "Age")
> class(ex1VL) = "VARLS3"

Next we simulate data for n = 10 samples and G = 100 genes. We first set
the seed to ensure reproducibility.

> set.seed(123)
> simExprs = matrix(rgamma(10000, 500), nc = 10,
+ nr = 100)
> simS = sample(c("M", "F"), 10, rep = TRUE)
> simA = sample(30:45, 10, rep = TRUE)
> simPD = data.frame(Sex = simS, Age = simA)

Now that we have simulated data, we can construct an instance of our
class. For S4 classes there is a builtin function new that can be used, but for
S3 there is no such mechanism; however, we will write a constructor function
as it can then be used to make other instances. One thing to notice is just
how much of new.EXPRS3 is merely checking the types of the inputs; in an S4
implementation, this extensive checking would not be needed for any argument
that was dispatched on.
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> new.EXPRS3 = function(Class, eData, pData,
+ cDesc) {
+ if (!is.matrix(eData))
+ stop("invalid expression data")
+ if (!is.data.frame(pData))
+ stop("invalid phenotypic data")
+ if (!inherits(cDesc, "VARLS3"))
+ stop("invalid cov description")
+ ncE = ncol(eData)
+ nrP = nrow(pData)
+ if (ncE != nrP)
+ stop("incorrect dimensions")
+ pD = list(pData = pData, varLabels = cDesc)
+ class(pD) = "PHENODS3"
+ ans = list(exprs = eData, phenoData = pD)
+ class(ans) = class(Class)
+ ans
+ }

And we can create new instances of the class EXPRS3 by calling the func-
tion new.EXPRS3.

> myES3 = new.EXPRS3("EXPRS3", simExprs, simPD,
+ ex1VL)

Readers should treat this example as being solely pedagogical; the
ExpressionSet class in the Biobase package provides a much richer and more
extensive implementation of these ideas.

3.3.3 S3 generic functions and methods

In S3, the generic function is responsible for setting up the evaluation en-
vironment and for initiating dispatch. A generic function does this through
a call to UseMethod that initiates the dispatch on a single argument, usually
the first argument to the generic function. The generic is typically a very
simple function with only two formal arguments, one often named x and the
other the . . . argument. If the . . . argument is not used in the generic, then no
method can have a formal argument that is not also a formal argument of the
generic. Thus, it is good practice for all methods to include all arguments to
the generic and for all generic functions to include the . . . argument since this
ensures that methods that may be added later have sufficient flexibility to add



Object-Oriented Programming in R 79

new arguments that are appropriate to the computations they will perform.
A disadvantage of this approach is that mistakes in naming arguments will
be silently ignored. The mis-typed name will not match any formal argument
and hence is placed in the . . . argument, where it is never used.

In R, UseMethod dispatches on the class as returned by class, not that
returned by oldClass. Not all method dispatch honors implicit classes. In
particular, group generics (Section 3.3.5) and internal generics do not. Group
generics dispatch on the oldClass for efficiency reasons, and internal generics
only dispatch on objects for which is.object is TRUE. An internal generic is a
function that calls directly to C code (a primitive or internal function), and
there checks to see if it should dispatch. To make use of these, you will need to
explicitly set the class attribute. You can do that using class<-, oldClass<-
or by setting the attribute directly using attr<-.

For most generic functions, a default method will be needed. The default
method is invoked if no applicable methods are found, or if the least specific
method makes a call to NextMethod.

Methods are regular functions and are identified by their name, which is a
concatenation of the name of the generic and the name of the class that they
are intended to apply to, separated by a dot. A simple generic function named
fun and a default method are shown below. The string default is used as
if it were a class and indicates that the method is a default method for the
generic.

> fun = function(x, ...) UseMethod("fun")
> fun.default = function(x, ...) print("In the default method")
> fun(2)

[1] "In the default method"

Next, consider a class system with two classes, Foo which extends Bar .
Then we define two methods: fun.Foo and fun.Bar. We have them print out
a message, call the function NextMethod and then print out a second message.

> fun.Foo = function(x) {
+ print("start of fun.Foo")
+ NextMethod()
+ print("end of fun.Foo")
+ }
> fun.Bar = function(x) {
+ print("start of fun.Bar")
+ NextMethod()
+ print("end of fun.Bar")
+ }
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Now we can show how dispatch occurs by creating an instance that has
both classes and calling fun with that instance as the first argument.

> x = 1
> class(x) = c("Foo", "Bar")
> fun(x)

[1] "start of fun.Foo"
[1] "start of fun.Bar"
[1] "In the default method"
[1] "end of fun.Bar"
[1] "end of fun.Foo"

Notice that the call to NextMethod transfers control to the next most specific
method. This is one of the benefits of using an OOP paradigm. Typically,
less code needs to be written, and it is easier to maintain as the methods for
Foo do not need to know much about Bar and vice versa, as a specific method
for that class can handle the computations.

Exercise 3.4
Returning to our ExpressionSet example, Section 3.3.2, instances of EXPRS3
can be very large and we want to control the default information that is printed
by R. Write S3 print methods for the PHENODS3 and EXPRS3 classes.

3.3.3.1 Finding methods

Due to the somewhat simple nature of the S3 system, there is very little
introspection or reflection possible. The function methods reports on all avail-
able methods for a given generic function but it does this simply by looking
at the names. We demonstrate its use on the S3 generic function mean in the
code below.

> methods("mean")

[1] mean.Date mean.POSIXct mean.POSIXlt
[4] mean.data.frame mean.default mean.difftime

One can also use methods to find all available methods for a given class. In
the code below we find all methods for the class glm.

> methods(class = "glm")
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[1] add1.glm* anova.glm
[3] confint.glm* cooks.distance.glm*
[5] deviance.glm* drop1.glm*
[7] effects.glm* extractAIC.glm*
[9] family.glm* formula.glm*
[11] influence.glm* logLik.glm*
[13] model.frame.glm predict.glm
[15] print.glm residuals.glm
[17] rstandard.glm rstudent.glm
[19] summary.glm vcov.glm*
[21] weights.glm*

Non-visible functions are asterisked

To retrieve the definition of a method, even those that are not exported
from a name space, the function getS3method can be used, as can the more
general function getAnywhere.

There is no simple way to determine which S3 classes are defined nor much
about those classes.

3.3.4 Details of dispatch

This section provides a detailed discussion of how S3 dispatch works, and
can be skipped by readers who are not interested in the inner workings of that
system.

As we noted above, methods are identified based solely on their names so
a function named plot.Foo would be interpreted as a plot method for objects
from the class Foo, whether or not that is what the author of that function
intended. This can lead to problems, as different package authors may use
what they believe are perfectly innocent function names, such as plot.Foo,
never intending for them to be dispatched on. For this reason it is advised
that you not use function names with an embedded ‘.’ unless they are intended
to be S3 methods.

S3 dispatch works essentially as follows. A call to the function UseMethod

finds the most specific method and creates a new function call with arguments
in the same order and with the same names as they were supplied to the generic
function. Any local variables defined in the body of the generic function,
before the call to UseMethod, are retained in the evaluation environment. Any
statements in the body of the generic function after the call to UseMethod will
not be evaluated as UseMethod does not return. UseMethod dispatches on the
value returned by class.

In the example below we redefine the Foo method for the function fun in
order to demonstrate that some special variables have been installed into the
evaluation environment of the method.
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> fun.Foo = function(x, ...) print(ls(all = TRUE))
> y = 1
> class(y) = c("Foo", "Zip", "Zoom")
> fun(y)

[1] "..." ".Class"
[3] ".Generic" ".GenericCallEnv"
[5] ".GenericDefEnv" ".Method"
[7] "x"

We examine three of these special variables in a bit more detail in the code
example below. They are .Class, .Generic and .Method; all special variables
are documented and you may make use of them in your code if you wish or
need to – but be careful.

> fun.Foo = function(x, ...) {
+ print(paste(".Generic =", .Generic))
+ print(paste(".Class =", paste(.Class,
+ collapse = ", ")))
+ print(paste(".Method =", .Method))
+ }
> fun(y)

[1] ".Generic = fun"
[1] ".Class = Foo, Zip, Zoom"
[1] ".Method = fun.Foo"

NextMethod invokes the next most specific method as determined by the
class attribute of the first argument to the generic function. This is achieved
by creating a special call frame for that method. The arguments will be the
same in number, order and name as those to the current method but their
values will be promises to evaluate their name in the current method and
environment. Any arguments matched to . . . are handled specially. They are
passed on as the promise that was supplied as an argument to the current
environment. If they have been evaluated in the current (or a previous en-
vironment), they remain evaluated. Since NextMethod relies on some of the
special variables described above to determine dispatch, any function that
contains a call to NextMethod should not be invoked directly.

Name spaces affect the availability of methods and generic functions, and
are described more fully in Section 7.3.4. But briefly, S3 methods are exported
from a name space by using the S3Method directive in the NAMESPACE file.
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Group Functions
Math abs, acos, acosh, asin, asinh, atan,

atanh, ceiling, cos, cosh, cumsum, exp,
floor, gamma, lgamma, log, log10, round,
signif, sin, sinh, tan, tanh, trunc

Summary all, any, max, min, prod, range, sum
Ops +, -, *, /, ^, < , >, <=, >=, !=, ==, %%,

%/%, &, |, !

Table 3.1: Group generic functions.

Generic functions require no special markup, but must be exported if they
are intended for others to use.

3.3.5 Group generics

The S3 object system also has the capability for defining methods for groups
of functions simultaneously. These tools are mainly used to define methods
for three defined sets of operators. For several types of builtin functions, R
provides a dispatching mechanism for operators. This means that operators
such as == or < can have their behavior modified for members of special
classes. The functions and operators have been grouped into three categories
and group methods can be written for each of these categories. There is
currently no mechanism to add groups. It is possible to write methods specific
to any function within a group and then a method defined for a single member
of group takes precedence over the group method.

The three groups of operators (Table 3.1) are called Math, Summary and
Ops. The online help system provides more detail, as do R Development Core
Team (2007b), Chambers and Hastie (1992), Venables and Ripley (2000), and
Chambers (2008).

Determining which method to use for operators in the Ops group is deter-
mined as follows. If both operands correspond to the same method or if one
operand corresponds to a method that takes precedence over that of the other
operand, then that method is used. If both operands have methods and the
methods are conflicting, then the default method is used. If either operand
has no corresponding method, then the method for the other operand is used.
Class methods dominate group methods.

3.3.6 S3 replacement methods

It is possible in R to have a complex statement as the left-hand side of an
assignment, and such an assignment is referred to as a replacement function;
see Section 2.7 for more details. The general idea is easily extended to generic
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functions and methods, and there are very many replacement methods already
available in R. In the code below we want to find all replacement functions
that have been written for the $ operator. The generic function is $<-, and
it is an internal generic. In order to write a replacement function, you must
determine the names of the arguments to the generic. This is somewhat tricky,
and perhaps the easiest way is to find another assignment method and copy
it. The last argument to the assignment version is always named value.

In the example below we request all methods for the $<- replacement func-
tion and find $<-.data.frame, which is a replacement method for objects of
class data.frame.

> methods("$<-")

[1] $<-.data.frame

Exercise 3.5
Write a replacement method for the following problem. Let x be a matrix
with named rows. Define x$a = y to mean that the row of x named a be
set to y. Because $ is an internal generic, it will only dispatch on objects for
which is.object is TRUE, so you will need to set the oldClass.

3.4 S4 OOP

The S4 system was designed to overcome some of the deficiencies of the
S3 system as well as to provide other functionality that was simply missing
from the S3 system. Some of the tensions that arise from mixing the two
are discussed in Section 3.8. Among the major changes between S3 and S4
are the explicit representation of classes, together with tools that support
programmatic inspection of the class definitions and properties. Multiple
dispatch is supported in S4, but not in S3, and S4 methods are registered
directly with the appropriate generic. These changes greatly increase the
stability of the system and make it much more likely that code will perform
as intended by its authors. This comes with some costs, however; code is
slightly slower (since all aspects are slightly more complex) and it is more
difficult to design and modify a system interactively.

The discussion is separated into two main parts. In the first, the imple-
mentation and tools for S4 classes are discussed and in the second, generic
functions and methods are considered. Subsequent to that are brief discussions
on using S4 methods in packages (more details are presented in Chapter 7)
and documentation.
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3.4.1 Classes

A class definition specifies the structure, inheritance and initialization of
instances of that class. A class is defined by a call to the function setClass.
Classes are instances of the classRepresentation class, and are first-class ob-
jects in the language. They can be created by users and existing classes can
typically be extended or subclassed. Classes can be instantiable or virtual ;
instances can be created for instantiable classes but not for virtual classes.
The following arguments can be specified (there are others as well) in the call
to setClass:

Class a character string naming the class.

representation a named vector of types or classes. The names correspond
to the slot names in the class and the types indicate what type of value
can be stored in the slot.

contains a character vector of class names, indicating the classes extended
or subclassed by the new class.

prototype an object (usually a list) providing the default data for the slots
specified in the representation.

validity a function that checks the validity of instances of the class. It must
return either TRUE or a character vector describing how the object is
invalid.

Once a class has been defined by a call to setClass, it is possible to create
instances of the class through calls to new. The prototype argument can be
used to define default values to use for the different components of the class.
Prototype values can be overridden by expressly setting the value for the slot
in the call to new.

In the code below, we create a new class named A that has a single slot,
s1, that contains numeric data and we set the prototype for that slot to be 0.

> setClass("A", representation(s1 = "numeric"),
+ prototype = prototype(s1 = 0))

[1] "A"

> myA = new("A")
> myA

An object of class "A"
Slot "s1":
[1] 0
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> m2 = new("A", s1 = 10)
> m2

An object of class "A"
Slot "s1":
[1] 10

We can create a second class B that contains A, so that B is a direct
subclass of A or, put another way, B inherits from class A. Any instance
of the class B will have all the slots in the A class and any additional ones
defined specifically for B . Duplicate slot names are not allowed, so the slot
names for B must be distinct from those for A.

> setClass("B", contains = "A", representation(s2 = "character"),
+ prototype = list(s2 = "hi"))

[1] "B"

> myB = new("B")
> myB

An object of class "B"
Slot "s2":
[1] "hi"

Slot "s1":
[1] 0

Classes can be removed using the function removeClass. However, this is
not especially useful since you cannot remove classes from attached packages.
The removeClass is most useful when experimenting with class creation in-
teractively. But in most cases, users are developing classes within packages,
and the simple expedient of removing the class definition and rebuilding the
package is generally used instead. We demonstrate the use of this function on
a user-defined class in the code below.

> setClass("Ohno", representation(y = "numeric"))

[1] "Ohno"

> getClass("Ohno")
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Slots:

Name: y
Class: numeric

> removeClass("Ohno")

[1] TRUE

> tryCatch(getClass("Ohno"), error = function(x) "Ohno is gone")

[1] "Ohno is gone"

3.4.1.1 Introspection

Once a class has been defined, there are a number of software tools that
can be used to find out about that class. These include getSlots that will
report the slot names and types, the function slotNames that will report only
the slot names. These functions are demonstrated using the class A defined
above.

> getSlots("A")

s1
"numeric"

> slotNames("A")

[1] "s1"

The class itself can be retrieved using getClass.The function extends can
be called with either the name of a single class, or two class names. If called
with two class names, it returns TRUE if its first argument is a subclass of its
second argument. If called with a single class name, it returns the names of
all subclasses, including the class itself. However, this is slightly confusing
and additional helper functions have been defined in the RBioinf package,
superClassNames and subClassNames, to print the names of the superclasses
and of the subclasses, respectively. The use of these functions is shown in the
code below.

> extends("B")

[1] "B" "A"
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> extends("B", "A")

[1] TRUE

> extends("A", "B")

[1] FALSE

> superClassNames("B")

[1] "A"

> subClassNames("A")

[1] "B"

These functions also provide information about builtin classes that have
been converted via setOldClass.

> getClass("matrix")

No Slots, prototype of class "matrix"

Extends:
Class "array", directly
Class "structure", by class "array", distance 2
Class "vector", by class "array", distance 3, with explicit co
erce

Known Subclasses:
Class "array", directly, with explicit test and coerce

> extends("matrix")

[1] "matrix" "array" "structure" "vector"

To determine whether or not a class has been defined, use isClass. You
can test whether or not an R object is an instance of an S4 class using isS4.
All S4 objects should also return TRUE for is.object, but so will any object
with a class attribute.
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3.4.1.2 Coercion

The standard mechanism for coercing objects from one class to another is
the function as, which has two forms. One form is coercion where an instance
of one class is coerced to the other class, and the second form is an assignment
version, where a portion of the object supplied is coerced. The second form is
really only applicable to situations where one class is a subclass of the other.

In the example below, we first create an instance of B , then coerce it to
be an instance of A. The method for this is automatically available since the
classes are nested, and in fact you can also coerce from the superclass to the
subclass, with missing slots being filled in from the prototype.

> myb = new("B")
> as(myb, "A")

An object of class "A"
Slot "s1":
[1] 0

The second form is the assignment form where we replace the A part of myb
with the new values in mya.

> mya = new("A", s1 = 20)
> as(myb, "A") <- mya
> myb

An object of class "B"
Slot "s2":
[1] "hi"

Slot "s1":
[1] 20

When classes are not nested, the user must provide an explicit version of
the coercion function, and optionally of the replacement function. The syntax
is setAs(from, to, def, replace), where the from and to are the names
of the classes between which coercion is being defined. The coercion function
is supplied as the argument def and it must be a function of one argument,
an instance of the from class and return an instance of the to class.

In the example below we show the call to setAs that defines the coercion
between the graphAM class, from the graph package, and the matrix class.
The graphAM class is a class that represents a graph in terms of an adjacency
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matrix, so the coercion is quite straightforward. The coercion in the other
direction is more complicated.

> setAs(from = "graphAM", to = "matrix", function(from) {
if ("weight" %in% names(edgeDataDefaults(from))) {

tm <- t(from@adjMat)
tm[tm != 0] <- unlist(edgeData(from, attr = "weight"))
m <- t(tm)

}
else {

m <- from@adjMat
}
rownames(m) <- colnames(m)
m

})

Calls to setAs install a method, constructed from the supplied function,
on the generic function coerce. You can view the available methods using
showMethods.

3.4.1.3 Creation of new instances

Once a class has been defined, users will want to create instances of that
class. The creation of instances is controlled by three separate but related
tools: the specification of a prototype for the class, the creation of an initialize

method, or through values supplied in the call to new. It is essential that the
value returned by the initialize method is a valid object of the class being
initialized and in general this is a suitably transformed version of the .Object

parameter. Alternatively, and for complex objects, or large objects, we rec-
ommend creating your own constructor function since calls to new tend to be
somewhat fragile and can be inefficient.

When a call to new is made, the following procedure is used. First the class
prototype is used to create an initial instance; that prototype is then passed
to the initialize method hierarchy. Provided any user-supplied initialize

methods have a call to callNextMethod, this hierarchy will be traversed until
the default method is encountered. In this method the value is modified
according to the arguments supplied to new and the result is returned.

The prototype can be set using either a list or a call to prototype. In the
example below, we define a class, Ex1 , whose prototype has a random sample
of values from the N(0, 1) distribution in its s1 slot.

> setClass("Ex1", representation(s1 = "numeric"),
prototype = prototype(s1 = rnorm(10)))
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[1] "Ex1"

> b = new("Ex1")
> b

An object of class "Ex1"
Slot "s1":
[1] -1.3730 -0.5483 0.2648 0.0487 1.4423 0.0283 1.1793
[8] -1.6695 -0.0536 0.0729

Exercise 3.6
What happens if you generate a second instance of the Ex1 class? Why
might this not be desirable? Examine the prototype for the class and see
if you can understand what has happened. Will changing the prototype to
list(s1=quote(rnorm(10))) fix the problem?

When a subclass, such as B from our previous example, is defined, then a
prototype is constructed from the prototypes of the superclasses for slots that
are not specified in the prototype for the subclass. We see, below, that the
prototype for B has a value for the s1 slot, even though none was formally
supplied, and that value is the one for the superclass A.

> bb = getClass("B")
> bb@prototype

<S4 Type Object>
attr(,"s2")
[1] "hi"
attr(,"s1")
[1] 0

If desired, one can define an initialize method for a class. The default
initialize method takes either named arguments, where the names are those
of slots, or one or more unnamed arguments that correspond to instances of
any superclass. It is an error to have more than one instance of any superclass
or to have the same named argument twice. In constructing the object, the
procedure is to first use all values corresponding to superclasses and then the
named arguments are applied. Thus, named arguments take precedence.

In the example below, we define two new classes, one a simple class, W ,
and then a class that is a subclass of both A, defined earlier, and W . When
creating new instances of W and A, we made use of named arguments to the
initialize method, but when creating a new instance of the WA class, we used
the unnamed variant and supplied instances of the superclasses.
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> setClass("W", representation(c1 = "character"))

[1] "W"

> setClass("WA", contains = (c("A", "W")))

[1] "WA"

> a1 = new("A", s1 = 20)
> w1 = new("W", c1 = "hi")
> new("WA", a1, w1)

An object of class "WA"
Slot "s1":
[1] 20

Slot "c1":
[1] "hi"

In the next example we define an initialize method that takes a value for one
of the slots and computes the value for the other, depending on the value of
the supplied argument. While we named the formal argument to the initialize
method b1, that was not necessary and any other name will work. However, we
find it helpful to use the slot name if the intention is that the value corresponds
to a slot. The user-supplied initialize method overrides the default method,
and you can no longer use the slot names, or an instance of a subclass, in the
call to new.

> setClass("XX", representation(a1 = "numeric",
b1 = "character"),
prototype(a1 = 8, b1 = "hi there"))

[1] "XX"

> new("XX")

An object of class "XX"
Slot "a1":
[1] 8

Slot "b1":
[1] "hi there"
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> setMethod("initialize", "XX", function(.Object, ..., b1) {
callNextMethod(.Object, ..., b1 = b1, a1 = nchar(b1))

})

[1] "initialize"

> new("XX", b1="yowser")

An object of class "XX"
Slot "a1":
[1] 6

Slot "b1":
[1] "yowser"

In our example, it might have been a good idea to include an . . . argument
so that anyone extending the XX class could have some freedom to make use
of additional arguments. This comes with the minor cost of confusing your
users. If the . . . argument is used, and a user supplies a value named a, not
knowing that we have supplanted the standard initialize method, they are
going to have to work fairly hard to find the problem.

In the code chunk below we establish two classes: Capital , which holds only
strings in capital letters, and CountedCapital , which holds both the string
and its length. We then define two initialize methods, one for each class.
Important aspects of these methods are the use of . . . in the signature to
allow for other extensions of the class, and the fact that each method only
deals with slots that are specific to its class, leaving the handling of other slots
to the classes where they are specified.

> setClass("Capital",
representation=representation(
string="character"))

[1] "Capital"

> setClass("CountedCapital",
contains="Capital",
representation=representation(
length="numeric"))

[1] "CountedCapital"

> setMethod("initialize",
"Capital",
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function(.Object, ..., string=character(0)) {
string <- toupper(string)
callNextMethod(.Object, ..., string=string)

})

[1] "initialize"

> setMethod("initialize",
"CountedCapital",
function(.Object, ...) {
.Object <- callNextMethod()
.Object@length <- nchar(.Object@string)
.Object

})

[1] "initialize"

> new("Capital", string="MiXeD")

An object of class "Capital"
Slot "string":
[1] "MIXED"

> new("CountedCapital", string="MiXeD")

An object of class "CountedCapital"
Slot "length":
[1] 5

Slot "string":
[1] "MIXED"

> new("CountedCapital", string=c("MiXeD", "MeSsaGe"))

An object of class "CountedCapital"
Slot "length":
[1] 5 7

Slot "string":
[1] "MIXED" "MESSAGE"

3.4.1.4 Validity

As noted above, validity methods are stored as part of the class definition
and can be defined during a call to setClass or by calling setValidity at some
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later time. The validity checking function, if supplied, must return either TRUE
or one or more character strings describing the failures if the object is not a
valid instance of its class. The validity of an object can be tested by calling
validObject. Validity testing is done in essentially a bottom-up manner: first
the validity of all slots are tested and then for each superclass, the validity
method for that class is called, if there is one, and finally the validity method
for the class of the object being tested is invoked.

Validity checking can be problematic. First, it can be expensive and, second,
some transformations will not be atomic with respect to the state of the object,
so premature validity checking will result in a failure. Therefore, by default,
validity is checked when the default initialize method is called; so if there is a
user-defined initialize method that does not call callNextMethod, then validity
will not be checked. Users can call validObject directly.

Serializing and deserializing seem like natural places to test validity, but
this is not currently being done.

Exercise 3.7
Return to the first representation of the Rectangle class example of Sec-
tion 3.2.3 and write a validity method that ensures that the value placed
in the area slot is indeed the product of the width and the height.

3.4.1.5 Classes without explicit slots

It is possible to define classes without explicit slots. These classes are
defined by providing a prototype but no representation in the call to setClass.
The example below is taken directly from Chambers (1998).

> setClass("seq", contains="numeric",
prototype=prototype(numeric(3)))

[1] "seq"

> s1 = new("seq")
> s1

An object of class "seq"
[1] 0 0 0

> slotNames(s1)

[1] ".Data"

Instances of these classes are basically copies of the prototype with a class

attribute. initialize methods can be defined for these classes as is shown
below.
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> setMethod("initialize", "seq", function(.Object) {
.Object[1] = 10
.Object

})

[1] "initialize"

> new("seq")

An object of class "seq"
[1] 10 0 0

Another use for classes with no slots is to define user-controlled extensions
of R’s internal classes so that methods can be defined for them. It is an error
to try and define some methods such as $ and [[ on certain builtin classes.
But these classes can be trivially extended and then methods can be defined
on the extensions. The code below first shows that we fail to attach our
method when it is defined for the integer class, but that we can set methods
on the extended class.

> tryCatch(setMethod("[", signature("integer"),
function(x, i, j, drop) print("howdy")),

error = function(e)
print("we failed"))

[1] "we failed"

> setClass("Myint", representation("integer"))

[1] "Myint"

> setMethod("[", signature("Myint"),
function(x, i, j, drop) print("howdy"))

[1] "["

> x = new("Myint", 4:5)
> x[3]

[1] "howdy"
[1] "howdy"

In the Bioconductor Project, we initially created metadata packages that
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consisted of a set of R environments; see Section 2.2.4.3 for more details on
this data type. These environments were used as hash tables and access to the
data was through functions such as mget and the operators $ and [[. However,
as the metadata have grown and become more complex, this approach is
no longer tenable and a switch to a lightweight database implementation is
underway. For more details on database interfaces, see Chapter 8.4.

The implementation of the database interface has relied on the use of func-
tions to directly access the underlying data tables. But such use is not con-
sistent with using the $ and [[ operators. A simple solution is to extend the
usual function class so that these operators can be used. The code below
demonstrates how such an extension can be created.

> setClass("DBFunc", "function")

[1] "DBFunc"

> setMethod("$", signature = c("DBFunc", "character"),
function(x, name) x(name))

[1] "$"

Since there is no prototype for this class, we create an instance of the
DBFunc class by first creating a function in the usual way and then using
that value in a call to new to create an instance of the DBFunc class.

> mytestFun = function(arg) print(arg)
> mtF = new("DBFunc", mytestFun)
> mtF$y

[1] "y"
[1] "y"

> is(mtF, "function")

[1] TRUE

An alternative approach is to define a class that contains a function as one
of its slots and to then define $ and [[ methods for that class. The basic
difference between the two approaches is that the one we have used has is-a
semantics, mtF is a function, while the other approach yields has-a semantics.
The second approach is needed for any of the reference-like objects in R, such
as environments and external pointers.
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3.4.2 Types of classes

A class can be instantiable or virtual. Direct instances of virtual classes
cannot be created. One can test whether or not a class is virtual using
isVirtualClass. But note that if the value given is not either the name of
an S4 class, or an S4 classRepresentation object, this function always returns
TRUE. Thus, it will often be beneficial to precede this test with a direct ascer-
tainment of whether or not the class is actually an S4 class.

Currently there is some support for sealed classes in S4. One may either
seal an S4 class at the time it is created by using the sealed argument to
setClass. Alternatively, the class can be sealed through a call to sealClass.
A class that is sealed cannot be redefined, and any call to setClass will fail
when called with the name of a sealed class. Sealing also prevents calls to
setIs with the sealed class as the first argument. We discuss the semantics
and other considerations of setIs in Section 3.4.12.2.

3.4.3 Attributes

Due to the way that S4 is currently implemented, attributes should be
used with extreme caution. The problem is that basically the S4 system
has been implemented via attributes, but without any name mangling, or
sequestering of the attributes, so that users can inadvertently make instances
non-functional.

In the example below, we examine the attributes on an instance of the A
class, defined in Section 3.4.1, and see that it has two: one representing the
slot s1 and the other a class attribute.

> mya = new("A", s1 = 20)
> class(mya)

[1] "A"
attr(,"package")
[1] ".GlobalEnv"

> attributes(mya)

$s1
[1] 20

$class
[1] "A"
attr(,"package")
[1] ".GlobalEnv"
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And then directly setting that attribute, via attr, subverts all of the stan-
dard checking for consistency of slots, etc. In the example below, we set
the value in the s1 slot to the letter L, which is not valid. The slot should
only hold numeric values, and the object is altered, with no error or warning.
Now, one is unlikely to do this intentionally but the chance of it occurring
unintentionally should be reduced.

> attr(mya, "s1") <- "L"
> mya

An object of class "A"
Slot "s1":
[1] "L"

3.4.4 Class unions

An R-level construct that allows for the creation of virtual classes that have
a given set of classes as subclasses is quite valuable. In S4, this capability is
provided by the function setClassUnion. A class may be defined as the union
of other classes, that is, as a virtual class defined as a superclass of several
other classes. Another way to think of a class union is that the relationship
between classes is defined by specifying what the subclasses are. When using
setClass, the relationship is generally defined by specifying the superclasses.
Class unions are useful in method signatures or as slot types in other classes
when we want to allow one of several classes to be supplied. As shown below,
a fairly common construct is to define a class that allows for either a list or
NULL to be used.

> setClassUnion("lorN", c("list", "NULL"))

[1] "lorN"

> subClassNames("lorN")

[1] "list" "NULL"

> superClassNames("lorN")

character(0)

> isVirtualClass("lorN")

[1] TRUE

> isClassUnion("lorN")

[1] TRUE
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3.4.5 Accessor functions

Accessing slots directly using the @ operator relies on the implementation
details of the class, and such access will make it very difficult to change that
implementation. In many cases it will be advantageous to provide accessor
functions for some, or all, of the components of an object. Suppose that the
class Foo has a slot named a. To create an accessor function for this slot, we
create a generic function named a and a method for instances of the class Foo.

> setClass("Foo", representation(a = "ANY"))

[1] "Foo"

> setGeneric("a", function(object) standardGeneric("a"))

[1] "a"

> setMethod("a", "Foo", function(object) object@a)

[1] "a"

> b = new("Foo", a = 10)
> a(b)

[1] 10

3.4.6 Using S3 classes with S4 classes

S3 classes can be used to describe the contents of a slot in an S4 class,
and they can be used for dispatch in S4 methods by first creating an S4
virtualization of the class. This is done with a call to setOldClass, and many
such classes are created when the methods package is attached.

> setOldClass("mymatrix")
> getClass("mymatrix")

Virtual Class

No Slots, prototype of class "S4"

Extends: "oldClass"

The resulting S4 classes are virtual classes, so that instances cannot be
created directly; instead, you create instances, as for other S3 classes, by
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directly manipulating the class attribute. S3 instances will be dispatched on
correctly and can be used to populate the slots of an S4 object that uses them.
All classes created by a call to setOldClass inherit from the class oldClass.

> setClass("myS4mat", representation(m = "mymatrix"))

[1] "myS4mat"

> x = matrix(1:10, nc = 2)
> class(x) = "mymatrix"
> m4 = new("myS4mat", m = x)

The set of all exposed S3 classes that have been converted to S4 classes in
the methods package can be obtained by using the fact that they all inherit
from the oldClass class. One might expect this to find all such classes, but
unfortunately classes defined in other packages do not register with the class
definition, so they need to be searched for via other methods.

> head(subClassNames(getClass("oldClass")))

[1] "data.frame" "factor" "table"
[4] "summary.table" "lm" "POSIXt"

Exercise 3.8
Write a function that searches every package on the search path for any class
that extends oldClass.

3.4.7 S4 generic functions and methods

Generic functions are created by calls to setGeneric and, once created,
methods can be associated with them through calls to setMethod. The argu-
ments of the method must conform, to some extent, with those of the generic
function. The method definition indicates the class of each of the formal argu-
ments and this is called the signature of the method. There can be, at most,
one method with any signature.

In most cases the call to setGeneric will follow a very simple pattern. There
are a number of arguments that can be specified when calling setGeneric and
we begin by describing the first two: the name argument specifies the name
of the generic function while the def argument provides the definition for
the generic function. In almost all cases the body of the function supplied
as the def argument will be a call to standardGeneric since this function is
used to both dispatch to methods based on the supplied arguments to the
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generic function and it also establishes a default method that will be used if
no function with matching signature is found.

The syntax is quite straightforward. The def argument is a function, each
named argument can be dispatched on, and the . . . argument should be used
if other arguments to the generic will be permitted. These arguments cannot
be dispatched on, however. So in the code below, the generic function has two
named arguments, object and x, and methods can be defined that indicate
different signatures for these two arguments.

> setGeneric("foo", function(object, x) standardGeneric("foo"))

[1] "foo"

> setMethod("foo", signature("numeric", "character"),
function(object, x) print("Hi, I m method one"))

[1] "foo"

Exercise 3.9
Define another method for the generic function foo defined above, with a
different signature. Test that the correct method is dispatched to for different
arguments.

Any argument passed through the . . . argument cannot be dispatched on.
It is possible to have named arguments that are not part of the signature of
the generic function. This is achieved by explicitly stating the signature for
the generic function using the signature argument in the call to setGeneric,
as is demonstrated below. In that case it may make sense for a method to
provide default values for the arguments not in the signature.

> setGeneric("genSig", signature = c("x"), function(x,
y = 1) standardGeneric("genSig"))

[1] "genSig"

> setMethod("genSig", signature("numeric"), function(x,
y = 20) print(y))

[1] "genSig"

> genSig(10)

[1] 20
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Unlike S3, where dispatch using UseMethod does not return, in S4 control
will return to the generic function so post-processing is possible. The code
below gives a simple example demonstrating that control has returned.

> setGeneric("foo", function(x, y, ...) {
y = standardGeneric("foo")
print("I m back")
y

})

[1] "foo"

> setMethod("foo", "numeric", function(x, y, ...) {
print("I m gone")

})

[1] "foo"

> foo(1)

[1] "I m gone"
[1] "I m back"
[1] "I m gone"

Whether or not a function is a generic function can be determined using
isGeneric. Generic functions can be removed using removeGeneric, but this is
not too useful since only generic functions defined in the user’s workspace are
easily removed.

We want to dispel a prevalent misconception about generic functions, or any
other R objects for that matter. There is a belief that for any given name (such
as plot, for example), there can be only one generic function. This is not true,
and generic functions are no different than any other function. Every package
can define its own generic function foo and there is no need for the argument
lists to agree in any way. When a call to foo is evaluated, which generic
function is used is determined by the usual scoping rules; see Section 2.12.1
for more details. And when a method is defined and associated with a generic
function, using a call to setMethod, for example, the programmer must be
careful to ensure that the method is associated with the intended generic
function.

To find all generic functions that are defined, and the packages that they are
defined in, use the function getGenerics, with no arguments. This function
relies on data in a table stored in the methods package. If getGenerics is called
with an argument that corresponds to a package, then it will list all generic
functions for which there is a method defined in the package, not just the
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generic functions defined in that package. In the example below, we load the
Biobase package and then try to find all generic functions that are defined
in it.

> library("Biobase")
> allG = getGenerics()
> allGs = split(allG@.Data, allG@package)
> allGBB = allGs[["Biobase"]]
> length(allGBB)

[1] 78

Next we use the where argument to only get generic functions defined in
Biobase. But we see that there are more generic functions reported than
above. This is because in using this approach, we are getting all generic
functions that have a method defined for them in the package, not all generic
functions defined in the package. If we restrict these generic functions to those
whose package description is Biobase, then we get the same answer as above.

> allGbb = getGenerics("package:Biobase")
> length(allGbb)

[1] 90

3.4.7.1 Evaluation model for generic functions

When the generic function is invoked, the supplied arguments are matched
to the arguments of the generic function; those that correspond to arguments
in the signature of the generic are evaluated. This eager evaluation of ar-
guments in the signature is a substantial change from the lazy evaluation
semantics that are used for standard function invocation.

Once evaluation of the generic function begins, all methods registered with
the generic function are inspected and the applicable methods are determined.
A method is applicable if for all arguments in its signature, the class speci-
fied in the method either matches the class of the supplied argument or is a
superclass of the class of the supplied argument. The applicable methods are
ordered from most specific to least specific. Dispatch is entirely determined
by the signature and the registered methods at the time evaluation of the
generic function begins.
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3.4.8 The syntax of method declaration

Methods are declared and assigned to generic functions through calls to
setMethod. They can be removed through a call to either removeMethod or
removeMethods. The method should have one argument matching each argu-
ment in the signature of the generic function. These arguments can correspond
to any defined class or they can be either of the two special classes ANY and
missing . Use ANY if the method will accept any value for that argument.
The class missing is appropriate when the method will handle some, but not
all, of the arguments in the signature of the generic.

Exercise 3.10
Write different methods for the generic function foo defined above, that make
use of ANY, and missing in the signature. Test these methods to be sure they
behave as you expect.

When . . . is an argument to the generic function, you can define methods
with named arguments that will be handled by the . . . argument to the generic
function. But some care is needed because these arguments, in some sense,
do not count. There can be only one method, with any given signature (set of
classes defined for the formal arguments to the generic), regardless of whether
or not other argument names match.

> setGeneric("bar", function(x, y, ...) standardGeneric("bar"))

[1] "bar"

> setMethod("bar", signature("numeric", "numeric"),
function(x, y, d) print("Method1"))

[1] "bar"

> ##removes the method above
> setMethod("bar", signature("numeric", "numeric"),

function(x, y, z) print("Method2"))

[1] "bar"

> bar(1,1,z=20)

[1] "Method2"

> bar(2,2,30)

[1] "Method2"

> tryCatch(bar(2,4,d=20), error=function(e)
print("no method1"))

[1] "no method1"



106 R Programming for Bioinformatics

If setMethod is called on a function for which there is no corresponding
S4 generic function, one is created automatically and the existing function is
established as the default method for that generic function.

3.4.9 The semantics of method invocation

When a generic function is invoked, the classes of all supplied arguments
that are in the signature of the generic function form the target signature. A
method is said to be applicable for this target signature if for every argument
in the signature the class specified by the method is the same as the class of
the corresponding supplied argument, a superclass of that class, or has class
ANY. To order the applicable methods, we need a metric on the classes. And
a simple one is that if the classes are the same, the distance is zero; if the
class in the signature of the method is a direct superclass of the class of the
supplied argument, then the distance is one, and so on. The distance from
a class to ANY is chosen to be larger than any other distance. The distance
between an applicable method and the target signature can then be computed
by summing up the distances over all arguments in the signature of the generic
function, and these distances can then be used to order the methods.

Once the the ordered list of methods has been computed, control is passed
to the most specific method. Evaluation is essentially the same as for any
function, except that the formal arguments to the generic have already been
evaluated. Evaluation of the body of the method is carried out in essentially
the same way as the evaluation of any ordinary function. But, if the body of
a method contains a call to callNextMethod, then control is passed to the next
method in the linearization that was computed by the generic function. The
arguments to the generic are rematched (but not reevaluated) to the next
method, and the body of that method is evaluated. Control will return to
the calling method, so a more specific method can choose to either perform
preprocessing or post-processing.

The next method is invoked with the same set of arguments as the current
method, but with the values of those arguments being the values that corre-
spond to their values in the current method. Named arguments to the generic
are only evaluated once, at the time the generic function is invoked. Any ar-
gument that is missing in the current call is missing in the next method. The
effect is essentially that the evaluation of the next method uses the current
evaluation environment for bindings to all formal arguments. Other symbols
in the current evaluation argument are not available.

Methods are lexically scoped. That means if the function, or closure, that
is used for the method, was created in such a way as to have an enclosing
environment (see Section 2.13 for a more detailed description of closures and
lexical scope in R), then that information is retained with the method.
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3.4.10 Replacement methods

Replacement functions were discussed in Section 2.7, and S3 replacement
functions were discussed in Section 3.3.6. S4 replacement methods are quite
similar. They require that an appropriate S4 generic function be defined;
usually its name is of the form genfun<-. You must ensure that the method
returns the whole object and that the last argument is named value. This
ensures that R can always identify the value that is going to be assigned.

We continue the example given above and define a method that will change
the value in the slot named a. We first define an appropriate generic function
and then use setReplaceMethod to define the replacement method.

> setGeneric("a<-", function(x, value) standardGeneric("a<-"))

[1] "a<-"

> setReplaceMethod("a", "Foo", function(x, value) {
x@a = value
x

})

[1] "a<-"

> a(b) = 32
> b

An object of class "Foo"
Slot "a":
[1] 32

3.4.11 Finding methods

One of the strengths of R is the ability to program on the language. In order
to do that, we need to be able to do more than simply determine whether a
generic function exists. We will often need to be able to determine which
methods are registered with a particular generic function. At other times
we will want to be able to determine whether a particular signature will be
handled by a generic. Functionality of this sort is provided by the functions
listed next. In all cases there are more parameters and details than can be
presented here, so interested readers are referred to the online manual for a
more comprehensive treatment.

showMethods shows the methods for one or more generic functions. The
class argument can be used to ask for all methods that have a particular
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class in their signature. The output is printed to stdout by default and
cannot easily be captured for programmatic use.

getMethod returns the method for a specific generic function whose signa-
ture is congruent with the specified signature. An error is thrown if no
such method exists.

findMethod returns the packages in the search path that contain a definition
for the generic and signature specified.

selectMethod returns the method for a specific generic function and signa-
ture, but differs from getMethod in that inheritance is used to identify a
method.

existsMethod tests for a method with a congruent signature (to that pro-
vided) registered with the specified generic function. No inheritance is
used. Returns either TRUE or FALSE.

hasMethod tests for a method with a congruent signature for the specified
generic function. It seems that this would always return TRUE (since
there must be a default method). It does return FALSE if there is no
generic function, but it seems that there are better ways to handle that.

3.4.12 Advanced topics

3.4.12.1 Setting methods on $

The $ operator is special in R and, as discussed in Section 2.5, this operator
does not evaluate its second argument. But S4 generic functions evaluate all
arguments in their signature, so this argument cannot be in the signature and
cannot be dispatched on. But further, if the method intends to use the $
operator, then some effort is needed to construct the call. In the example
below we show how this was achieved in the Biobase package.

> setMethod("$", "eSet", function(x, name) {
eval(substitute(phenoData(x)$NAME_ARG,

list(NAME_ARG = name)))
})

3.4.12.2 setIs

The S4 system also allows users to establish an inheritance relationship
between two classes even when there is not a direct inclusion. This is accom-
plished through the setIs function. The relationships that can be described
by setIs have the potential to be problematic,and one should use this function
with caution. Perhaps the only somewhat innocuous use of setIs is to add
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classes to a class union. More details and examples on its use are given in
Chambers (2008).

3.4.12.3 Dispatching on . . .

Recently the issue of whether to dispatch on the . . . argument has been
raised. The justification for such dispatch is that for some functions, such as
c, there is a reasonable model for dispatching on a collection of values supplied
via the . . . argument. One implementation, proposed by L. Tierney, is shown
in the code below. Dispatch is handled by recursively dividing the values
supplied in the . . . formulation into sets of two, and using a helper function
with two named arguments that can be dispatched on.

> cnew = function(x, ...) {
if (nargs() < 3)

c2(x, ...)
else c2(x, cnew(...))

}

We have defined a new function, cnew, rather than use c so as not to interfere
with regular dispatch.

> setGeneric("c2", function(x, y) standardGeneric("c2"))

[1] "c2"

And methods can be written for c2. So, for example we could write a
method to add numeric values, as is shown below. Other methods could be
written to deal with other types of data.

> setMethod("c2", signature("numeric", "numeric"),
function(x, y) x + y)

[1] "c2"

> cnew(1, 2, 3, 4)

[1] 10
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3.5 Using classes and methods in packages

An area where there is not yet consensus on what should happen and how
is the problem of having a package provide a method for a generic function
that is defined elsewhere. If the generic exists in a known package then things
are straightforward. The where argument in the call to setMethod should be
used to ensure that the appropriate generic is used. Recall that there can be
multiple generic functions with the same names, so it is your responsibility to
ensure that the method is attached to the correct one.

Things are less clear if the method is to be attached to a non-generic func-
tion, say one from the base package. Because then, you will not be able to
easily tell where some other package has already created a local generic. You
can search for a generic function with the name you want, but it is not easy to
be sure that is defined for the function you want to use. If a package defines
a method for a generic that exists in another package, then the association
of that method with the appropriate generic function must occur at package
load time. If these computations are carried out at package build time, the
net effect is to create a new generic function within the package and register
the method with it and dispatch will not occur as intended.

3.6 Documentation

3.6.1 Finding documentation

Either a direct call to help or the use of the ? operator will obtain the help
page for most functions. To find out about classes an infix syntax is used,
where the word class precedes the question mark. The syntax for displaying
the help page for the graph class, from the graph package is shown below.

class?graph
help("graph-class")

Help for generic functions requires no special syntax; one just looks for help
on the name of the generic function. Finding help for methods is less easy.
There several syntactic variants, but none are completely satisfactory. We
show the syntax for two different ways to find the help page for a method for
the nodes generic function, for an argument of class graphNEL.

method?nodes("graphNEL")
help("nodes,graphNEL-method")
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For the RBioinf package, we have developed a function that provides a dif-
ferent, and hopefully easier to use, interface to the help system. The function
is called S4Help, and currently takes the name of either a S4 generic function
or a S4 class and provides a selection menu to choose a help page. If the
supplied name is a class, then that class and any superclass can be selected.
If the supplied name corresponds to a generic function, then that function,
or any of its methods, can be selected. See the help page for S4Help for more
details.

3.6.2 Writing documentation

Documenting S4 classes and methods is quite similar to documenting other
R objects, but there are some important differences; many of them are detailed
in Writing R Extensions (R Development Core Team, 2007c). Here we outline
some of the basic concepts. The current state of formal organization for
documenting S4 classes and methods is relatively incomplete and we consider
some extensions and improvements as well. There are two functions that
provide shell documentation: promptClass for classes and promptMethods for
the methods of a supplied generic function.

Documentation of a class should require the specification of all of the argu-
ments that can be supplied to setClass.

Generic functions are just like any other functions and should be docu-
mented as such. It would be nice if there was some automatic way to inte-
grate the documentation of methods with that of the corresponding generic
functions when packages are attached and detached, but that is not possible
with R’s current documentation system.

For packages, the author could document both the generic and all defined
methods on a single manual page. Method documentation should always link
to the corresponding manual page for the generic. It should make it clear
which arguments have been specialized and describe the manner in which this
specialization has affected computations and return values, if at all. For any
specialized arguments, the manual page for the method should link to the
appropriate class documentation pages.

3.7 Debugging

While general debugging is discussed in Chapter 9, we provide some specific
advice on how to debug S4 methods. First, it is not possible to use debug

directly because the methods are not available in a form that allows users
to easily request that the method be debugged. One can debug the generic
function but that is typically not very satisfactory, and there is no easy way
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to step into the method that is dispatched to.
Instead, the function trace can be used to debug S4 methods. This function

is discussed in more detail in Section 9.3.5 and so here we will simply give
the syntax for debugging a particular method. In the code below, the first
command shows how to begin debugging on entry into the dim method with
signature eSet. The second command also places a call to browser on exit
from the method.

trace("dim", browser, signature = c("eSet"))
trace("dim", browser, exit=browser, signature = c("eSet"))
untrace("dim", signature = c("eSet"))

3.8 Managing S3 and S4 together

Perhaps one of the more unfortunate aspects of OOP in R is that users
are left to manage rather a lot of the interface between S3 and S4. Here we
describe some of the tools that can be used to help detect and work around
issues that might arise.

Testing for inheritance is done differently between S3 and S4. The former
uses the function inherits while the latter uses is. The unfortunate part
is that both inherits and is give partial answers (not errors) if applied to
instances from the other class system. In the example below, x is an S3
instance, so inherits does correctly indicate the inheritance relationship but
is does not.

> x = 1
> class(x) = c("C1", "C2")
> is(x, "C2")

[1] TRUE

> inherits(x, "C2")

[1] TRUE

Exercise 3.11
Show that for S4 classes, is gets the inheritance correctly while inherits does
not.

Now one can make use of setOldClass to basically tell S4 what the class
relationships should be. And if this is done, then is is indeed able to correctly
identify the inheritance relationships.
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> setOldClass(c("C1", "C2"))
> is(x, "C2")

[1] TRUE

The function isS4 returns TRUE for an instance of an S4 class. For primitive
functions that support dispatch, S4 methods are restricted to S4 objects. The
function asS4 can be used to allow an instance of an S3 class to be passed to
an S4 method.

In the next example we show that when x is an S3 instance, we do not
dispatch to the S4 method, but once we use asS4, then dispatch to the S4
method occurs.

> x = 1
> setClass("A", representation(s1 = "numeric"))

[1] "A"

> setMethod("+", c("A", "A"), function(e1, e2) print("howdy"))

[1] "+"

> class(x) = "A"
> x + x

[1] 2
attr(,"class")
[1] "A"

> asS4(x) + x

[1] "howdy"
[1] "howdy"

3.8.1 Getting and setting the class attribute

Another difference between the S3 and S4 systems comes from the return
value for the class function. For instances of S3 classes, the class attribute
should hold the names of all classes that the object inherits from and this
vector is returned. For instances of S4 objects, the class attribute is always
of length one, the most specific class, and this is returned. Inheritance is
determined from the existing class definitions. Use of the oldClass mechanism
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muddies the water somewhat as the instances are S3, but they need only have
length one class attributes since all inheritance can be determined from the S4
class definitions that are created as a result of setting up the oldClass. The
basic message is that the class function is only reliable for finding the most
specific class of an instance. To find out about inheritance, you should use is

for instances of S4 classes, including those S3 classes that have an oldClass

specification. You should use inherits for all other instances of S3 classes.
One place where the paradigm described above might fail is if an S4 method

dispatches on a class that is a subclass of class for which there is an S3
method. Then the method for the subclass will be preferred over the method
for the superclass, and that is not what should happen. In that case, you
have little choice but to translate the S3 method into an S4 method. If the S3
method does not rely on any of the S3 dispatch mechanisms such as variables
like .Generic, and it has no calls to NextMethod, then this can be done quite
simply. One need only call setMethod with the appropriate signature and
the S3 method as an argument. Chambers (2008) suggests that the explicit
calling of the S3 method is preferred in some settings and that is an alternative.
Pseudo-code for these two cases is shown below.

> setMethod("foo", "myclass", myS3Method)
> setMethod("foo", "myclass", function(x, y, ...) myS3Method(x,

y, ...))

3.8.2 Mixing S3 and S4 methods

Having a generic function that can dispatch to either S3 or S4 methods
is reasonably straightforward. This is achieved using an S4 generic function
with a default method that contains a call to the S3 function UseMethod. If
there is an existing S3 generic function, then calling setGeneric with its name
as the argument will create an S4 generic with the existing S3 generic as its
default method. Dispatch is then first carried out for S4 and if no method is
found, then the default method is reached and S3 dispatch begins.

In the example below, we create an S3 generic for a simple class, then create
and S4 generic, and finally show that the S3 generic is indeed the default
method for the S4 generic.

> testG = function(x, ...) UseMethod("testG")
> setGeneric("testG")

[1] "testG"

> getMethod("testG", signature = "ANY")
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Method Definition (Class "derivedDefaultMethod"):

function (x, ...)
UseMethod("testG")

Signatures:

target
defined

3.9 Navigating the class and method hierarchy

We now discuss the tools that are available for navigating and understand-
ing the class and method hierarchy. The main use case is that of trying to
understand how the classes in a particular package are associated with each
other, and to understand the method hierarchy of a given generic function.
We have written some tools that are supplied in the RBioinf package to
carry out these tasks. We will use the graph package as our example and rely
on functions from both the RBGL package and the Rgraphviz package to
manipulate and render the resulting graphs. To obtain all of the classes that
are defined in a particular package, use getClasses, which can be either given
the position of the package in the search path or the name space. The former
gives all exported classes while the latter should give all classes, whether they
are exported or not.

> graphClasses = getClasses("package:graph")
> head(graphClasses)

[1] "attrData" "bzfile" "clusterGraph"
[4] "connection" "distGraph" "edgeSet"

We would then like to get a better sense of how they are interrelated and
what the complete class hierarchy is. We can most easily do that by visualizing
the class hierarchy, and to do that we construct a graph based on all of the
classes in the graph package.

> graphClassgraph = classList2Graph(graphClasses)
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Once we have the graph, we can interrogate it and then render some of
the interesting parts of it using Rgraphviz. We first find out how many
connected components there are, and then examine how big each is.

> ccomp = connectedComp(graphClassgraph)
> complens = sapply(ccomp, length)
> length(ccomp)

[1] 7

> table(complens)

complens
1 3 5 6
4 1 1 1

There are four components of size 1; that means that they are classes with
no subclasses and no superclasses. We can print their names.

> unlist(ccomp[complens == 1], use.names = FALSE)

[1] "graph:attrData" "graph:multiGraph" "graph:renderInfo"
[4] "graph:simpleEdge"

Next we might want to plot the larger components to see what the set of is-a
relationships are. In the code below we select the largest connected component
and create a subgraph that contains only those nodes. When rendering, we
set the shape of the nodes to be ellipses so that the text is more easily read.

> subGnodes = ccomp[[which.max(complens)]]
> subG = subGraph(subGnodes, graphClassgraph)
> nodeRenderInfo(subG) <- list(shape="ellipse")
> attrs = list(node=list(fixedsize = FALSE))
> x = layoutGraph(subG, attrs = attrs)
> renderGraph(x)

The largest is-a hierarchy arises from a set of S3 classes for connections that
was extended in order to allow dispatching on it.

Exercise 3.12
Plot the graph that corresponds to the second largest connected component.
What classes does it contain?
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graph:bzfile

graph:connection

methods:oldClass

graph:file graph:gzfile graph:url

FIGURE 3.1: The graph of all subclass and superclass relationships in the
graph package.

The inheritance graph, or set of is-a relationships, is only part of the story.
We will also need to examine the has-a relationships to get a complete view
of the class hierarchy. In this case we are interested in the graph that again
uses all classes to define the nodes, but a directed edge is drawn from class A
to class B if A has a slot that contains an instance of class B.

Exercise 3.13
Write a function to compute the has-a relationships between all classes in a
package. You will probably want to also include classes that are not defined in
the package, but appear in slot specifications. You might not want to worry
too much about classUnions at this point, but a comprehensive solution would
need to deal with them.





Chapter 4

Input and Output in R

4.1 Introduction

Reading and writing data, either on the local computer or over the Internet,
is often an important part of a computational task. In this chapter we discuss
the different ways in which R interacts with the file system and other external
resources. There are a number of functions specifically oriented toward reading
and writing from files, some specifically designed for reading formatted data
and others for a variety of other interactions. There is some fragmentation
and redundancy, and almost all tasks can be carried out using connections.

There is substantial material provided in the R Data Import/Export manual
(R Development Core Team, 2007a) that comes with every copy of R. You
may want to consult that reference and the help files for some of the more
gory details. Among the topics covered there, and not here, are the importing
of data from other software systems such as SAS. Discussion of the use of
XML and access to relational databases is deferred to Chapter 8.

The notion of a file system, and accessing it, has become somewhat more
general in recent times. We are seldom ever restricted to only the system
on the local machine since almost all computer users, regardless of operating
system, use some form of network file system that shares files across a variety
of different computers. Further, the advent of the Internet and the notions of
URLs and URIs have led to the use of web addresses as reasonable surrogates
for local file names. And finally, debates on whether or not there is a real
difference between a file system and a database continue. In many ways this
is quite useful, since it helps programmers realize the commonalities between
these external types of storage and internal storage. By internal storage, we
mean storage, or memory that is under the direct control of the program or
system being used; in our case, R.

Users of R and Bioconductor will want to read data from different sources,
combine them and process them. This procedure will often result in the
generation of intermediate data resources that may be stored in a database,
written to a file system or stored in R’s internal format. Loading packages, see
Chapter 7, requires the reading and processing of files from the file system,
while downloading and installing packages requires Internet access and the
resolution of Internet addresses. When users quit from R and want to save
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their intermediate results, a file is written on the local file system. Somewhat
less obviously, interactions with the terminal, where R commands are typed
as input and various answers and values printed as output, can be treated in
much the same way; see Section 4.5 for more details.

4.2 Basic file handling

R provides many file handling capabilities. Reading files on the local sys-
tem requires knowing either the relative or absolute path to those files. We
distinguish between files and directories; a directory is also referred to as a
folder on some systems. Most file systems are organized with a specific hi-
erarchy of directories, each of which may contain files and other directories.
When R is running, there is always a working directory and relative paths are
defined with respect to the working directory. The function getwd returns a
string with the path to the current working directory. This is the directory
that R will use as a default location to read or write files. On Unix systems
the current working directory is the directory R was invoked from, while on
Windows the initial working directory is the location of the R binary. The
current working directory can be changed by a call to setwd with the path to
the new directory, either absolute or relative, as the sole argument. An error
is signaled if the new directory is inaccessible or nonexistent, while the current
directory is returned, invisibly, if the change in working directory is successful.
Any function that changes the current working directory should reset it to the
location it had on entry into the function. In the example below, we show
how to access the current working directory using the getwd function.

> getwd()

[1] "/Users/robert/RG/Lab/RBioinf"

There are times when it will be necessary to access files that have been
provided with R or with one of the add-on packages that are installed. The
R.home function returns the home directory for the version of R that is cur-
rently running. This is the top-level installation directory of R, and system
files provided with R can be accessed using this as the starting point. For
files in R packages or files supplied with R, the system.file function should
be used to obtain the appropriate path.

Exercise 4.1
What is the location reported by R.home on your system? What is the path
to the stats package?
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Once the appropriate name, including the path, has been obtained, the
next step is to open the file for reading or writing, or both. Opening a
file, from within R, is handled by the function file. Syntax of the form
file("test1", open="rw") will open the file named test1 for both reading
and writing. In R there are a fairly small number of file handles available so
it is important that when a file is no longer needed, its file handle be closed,
typically using a call to close. It is often also useful to use functionality de-
scribed in Section 2.12.5 to ensure that files and other file system resources
opened during a function call are closed, regardless of how the function is
exited.

The simplest function for reading data is readLines, which reads lines of
text from a connection into a character vector. No processing of the lines is
done, so the user has complete control over how the input data are parsed and
interpreted. In the code shown below, we open a file named test1, which is
supplied with the RBioinf package, and read its contents.

> fp = system.file("extdata/test1", package = "RBioinf")
> f1 = file(fp, open = "r")
> readLines(f1)

[1] "asdf" "adf" "ss,bb"

> close(f1)

Exercise 4.2
What does system.file return if there is no file with the specified name? How
many lines were in the file test1?

A slightly more user-friendly interface is provided by the function scan,
which accepts the name of a file or a connection and reads white-space sep-
arated values. scan has many options that allow fairly sophisticated control
of the reading, including skip for skipping initial lines in the file, comment to
indicate a comment character, and what to control the types of the return
values. scan can also be used at the command line, interactively to read in
data from the keyboard. On the other hand, readLines allows for line-by-line
processing, which is very similar to the way in which Perl processes files.

> scan(fp, what = "")

[1] "asdf" "adf" "ss,bb"

One of the major problems that arises when writing platform-independent
software, such as R packages, is the fact that many aspects of the file systems
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are often quite different. For example, whether or not the file system is case
sensitive, or the file separator; some systems use a forward slash while others
use a backward slash. On any system, the file separator can be found by
accessing .Platform$file.sep. Since opening files is an important part of
many different tasks, there is a system-independent way of specifying the
path to a file. The routine file.path accepts a set of comma-separated inputs
and concatenates them using the value of the fsep argument, which by default
is set to .Platform$file.sep. This is the safest way to construct paths to files.
The path to files in R packages can be found using system.file.

> file.path(R.home(), "doc")

[1] "/Users/robert/R/R27/doc"

> system.file(package = "RBioinf")

[1] "/Users/robert/R/R27/library/RBioinf"

Files in any directory can be listed using the list.files function. By
default, the current working directory is used, but any other directory can be
specified using the path argument. The dir function is an alias for list.files

and can be used in exactly the same way.
list.files has the following formal arguments:

path a character vector of full path names; the default is the current working
directory.

pattern an optional regular expression. Only file names that match the reg-
ular expression will be returned. The default is NULL, which matches
everything.

all.files a logical value. If FALSE, only the names of visible files are re-
turned. If TRUE, all file names will be returned. The default is FALSE.

full.names a logical value. If TRUE, the directory path is prepended to the
file names. If FALSE, only the file names are returned. The default is
FALSE.

In the code chunk below, we demonstrate the use of a few of the options
available for the list.files function. First, we set the path to the top-level
installation directory for R (you should see the same outputs as are listed here
if you run these same commands on your computer). Notice that we obtain
the current working directory from the initial call to setwd and then restore
it in one of the later code chunks.
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> cd = setwd(R.home())
> list.files(path = "doc")

[1] "AUTHORS" "COPYING" "COPYING.LIB"
[4] "COPYRIGHTS" "CRAN_mirrors.csv" "FAQ"
[7] "KEYWORDS" "KEYWORDS.db" "Makefile"
[10] "Makefile.in" "R.1" "R.aux"
[13] "RESOURCES" "Rscript.1" "THANKS"
[16] "html" "manual"

> list.files(pattern = "Make")

[1] "Makeconf" "Makeconf.in" "Makefile"
[4] "Makefile.bak" "Makefile.in" "Makefrag.cc"
[7] "Makefrag.cc_lo" "Makefrag.cxx" "Makefrag.m"

> list.files(pattern = "Make", full.names = TRUE)

[1] "./Makeconf" "./Makeconf.in" "./Makefile"
[4] "./Makefile.bak" "./Makefile.in" "./Makefrag.cc"
[7] "./Makefrag.cc_lo" "./Makefrag.cxx" "./Makefrag.m"

Information about files, such as their size, modification date, etc., is pro-
vided by the file.info function. This function can be used to distinguish a
file from a directory. In the code below, some of the file.info capabilities are
demonstrated. First, we make use of setwd to change the working directory.
Since setwd accepts relative paths, the net effect of the first command is to
change the working directory to the doc subdirectory of the R home directory
(we set the R home directory as the active directory in the code chunk above).

> setwd("doc")
> getwd()

[1] "/Users/robert/R/R27/doc"

> file.info("KEYWORDS")$isdir

[1] FALSE

> file.info("manual")$isdir

[1] TRUE
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You can put this together with some of the commands above to create
sets of files or directories that can be used for other tasks. In the example
below, we obtain a list of files in the current directory and then remove the
directories from that list. The variable files contains the names of the files;
all directories have been excluded.

> x = list.files()
> x

[1] "AUTHORS" "COPYING" "COPYING.LIB"
[4] "COPYRIGHTS" "CRAN_mirrors.csv" "FAQ"
[7] "KEYWORDS" "KEYWORDS.db" "Makefile"
[10] "Makefile.in" "R.1" "R.aux"
[13] "RESOURCES" "Rscript.1" "THANKS"
[16] "html" "manual"

> files = x[!file.info(x)$isdir]
> files

[1] "AUTHORS" "COPYING" "COPYING.LIB"
[4] "COPYRIGHTS" "CRAN_mirrors.csv" "FAQ"
[7] "KEYWORDS" "KEYWORDS.db" "Makefile"
[10] "Makefile.in" "R.1" "R.aux"
[13] "RESOURCES" "Rscript.1" "THANKS"

> setwd(cd)

In other cases you might want to know whether you have permission to read,
write or execute particular files. This information can be obtained by using
the file.access function. Be careful though, as it has non-standard return
values, 0 for success and −1 for failure. While one might be tempted to use
this function to test for the ability to access a file, there are some reasons why
that will not always work, and either try or tryCatch (Section 2.11) should
be used to gracefully deal with a failure to open a named file.

Exercise 4.3
Find the location of the library directory for your version of R. How many
directories are there? How many plain files? How many directories can you
execute?

4.2.1 Viewing files

There are many different strategies that can be used to view the contents
of a file from within R. The function file.show uses the same tools that the
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help system uses to display the file in the R console. Alternatively, one could
use the system function to directly access a command such as cat or more.
The following simple method extends the head function to support external
files.

> head.file = function(x, n = 6, ...) readLines(x,
+ n)

Exercise 4.4
Write a similar function to implement tail functionality for files in R.

4.2.2 File manipulation

R maintains a per-session temporary directory for use, and the path to this
directory is found using tempdir. By default, tempfile returns a file name,
which is the complete path for a file within the temporary directory. Note
that tempfile does not actually create the file; it merely provides an available
file name. There have been reports of collisions, and users who want genuinely
unique file names should consider using the Ruuid package to generate a name
that is guaranteed to be unique.

In the code below, we first use the function tempdir to obtain the location
of a per-session temporary directory that the user has permission to write to.
This temporary directory is deleted when the R session is terminated and so
is not a suitable location for files that are intended to be used after the R
session is ended. The two calls to tempfile generate file names within the
directory identified by tempdir. The call to tempfile produces the name of
the file but does not create a file on the local file system.

> tempdir()

[1] "/tmp/RtmpHPmzRh"

> tmp1 = tempfile()
> tmp2 = tempfile()
> tmp1

[1] "/tmp/RtmpHPmzRh/filebc5816b"

> tmp2

[1] "/tmp/RtmpHPmzRh/file353f7788"
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Exercise 4.5
Verify the claim that the calls to tempfile do not create files.

Now we will demonstrate a series of file manipulation functions, all of
which are fairly self-explanatory. First, using file.create, we create the
file /tmp/RtmpHPmzRh/filebc5816b; then we test to see if it exists using
file.exists. We next test whether we can write to it using file.access and
then remove the file using file.remove; and finally we test, again, for its exis-
tence. All file manipulation functions expand path names using path.expand

and take a vector of file names whose values are operated on simultaneously.
In general, the functions return logical values, either TRUE or FALSE, indicating
whether they succeeded or failed, with file.access being an exception to that
rule.

Some caution in using file.create is needed, since it will either create the
file, if it does not exist, or truncate it (i.e., empty it) if it does; thus, you can
easily and inadvertently remove a file. We first use tempfile to get a name
for a temporary file and then show how to create it, test for its existence and
remove it.

> tmp1 = tempfile()
> file.create(tmp1)

[1] TRUE

> file.exists(tmp1)

[1] TRUE

> file.access(tmp1, 2)

/tmp/RtmpHPmzRh/file21980f48
0

> file.remove(tmp1)

[1] TRUE

> file.exists(tmp1)

[1] FALSE

As shown in the next code chunk, the function path.expand will expand the
tilde, ∼, on platforms that support it. The functionality is somewhat more
limited than the expansion in the shell; only paths relative to the user’s home
directory will be expanded. Finding the path to your home directory is done
in a somewhat peculiar fashion by using only the tilde as the argument.
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In the code below, we show how to use path.expand to find the location of my
home directory and then create a variable with the path to my R executable
using file.path.

> myhome = path.expand("~")
> myhome

[1] "/Users/robert"

> toR = file.path(myhome, "bin", "R")
> toR

[1] "/Users/robert/bin/R"

There are other path manipulation functions beyond file.path that can be
useful. The function basename returns the substring of the supplied argument
that appears after the last file separator, while dirname returns everything up
to, but not including, the last file separator.

> basename(toR)

[1] "R"

> dirname(toR)

[1] "/Users/robert/bin"

Exercise 4.6
Using the function strsplit, write your own vectorized versions of both the
basename function and the dirname functions. Include a sep argument that
defaults to the value from .Platform, and use path.expand to handle input of
the form ~/foo.

In the next example, we demonstrate how to create files, rename them,
copy them and test for their existence. file.append uses the standard sub-
script recycling rules in trying to align its two arguments. Unfortunately, the
order of the formal arguments that correspond to from and to is different for
file.append than it is for all the other functions, so some caution is needed
when using it.

> z = file.path(tempdir(), "foo")
> z
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[1] "/tmp/RtmpHPmzRh/foo"

> file.create(tmp1)

[1] TRUE

> file.rename(tmp1, z)

[1] TRUE

> file.exists(tmp1, z)

[1] FALSE TRUE

> file.copy(z, tmp1)

[1] TRUE

> file.exists(tmp1, z)

[1] TRUE TRUE

> file.symlink(z, tmp2)

[1] TRUE

> file.exists(tmp2)

[1] TRUE

> fiz = file.info(z)
> fitmp2 = file.info(tmp2)
> all.equal(fiz, fitmp2)

[1] "Attributes: < Component 2: 1 string mismatch >"

file.rename renames the file specified by its first argument with the name
given as its second argument. Symbolic links can be created using the
file.symlink function.

Lastly, one can create and manipulate directories themselves. The function
dir.create will create a directory, which at that point can be manipulated like
any other file. Note, however, that if the directory is not empty, file.remove
will not remove it and will return FALSE. To remove directories that contain
files, one must use the unlink function. unlink also works on plain files, but
file.remove is probably more intuitive and slightly less dangerous. Note that
incautious use of unlink can irretrievably remove important files.
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In the example below, we demonstrate the use of some of these functions.
We do most of the reading and writing to R temporary directory.

> newDir = file.path(tempdir(), "newDir")
> newDir

[1] "/tmp/RtmpHPmzRh/newDir"

> newFile = file.path(newDir, "blah")
> newFile

[1] "/tmp/RtmpHPmzRh/newDir/blah"

> dir.create(newDir)
> file.create(newFile)

[1] TRUE

> file.exists(newDir, newFile)

[1] TRUE TRUE

> unlink(newDir, recursive = TRUE)

Setting the recursive argument to unlink to TRUE is needed to remove non-
empty directories. If this argument has its default value, FALSE, then the
command would fail to remove a non-empty directory the same as file.remove
does. Unix users will recognize this as the equivalent of typing rm -r from the
command line, so be careful! You can remove files and directories that you
did not intend to and they generally cannot easily be retrieved or restored.

The function file.choose prompts the user, interactively, to select a file,
and then returns that file’s name as a character vector. On Windows, users
are presented with a standard file selection dialogue; on Unix-like operating
systems, they are expected to type the name at the command line.

4.2.3 Working with R’s binary format

R objects can be saved in a standard binary format, which is related to
XDR (Eisler, 2006), and is platform independent. An arbitrary number of R
objects can be saved into a single file using the save command. They can be
reloaded into R using the load command. These files can be copied to any
other computer and loaded into R without any translation. When an archive
has been loaded, the return value of load is the name of all objects that were
loaded.
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Both save and load allow the caller to specify a specific environment in
which to find the bindings or in which to store the restored bindings.

4.3 Connections

As indicated above, all data input and output can be performed via connec-
tions. Connections are basically an extension of the notion of file and provide
a richer set of tools for reading and writing data. Connections provide an
abstraction of an input data source. Using connections allows a function to
work in essentially the same way for data obtained from a local file, an R
character vector, or a file on the Internet. Connections are implemented using
the S3 class system and the base class is connection, which different types of
connections extend. There are both summary and print methods for connec-
tions.

The most commonly used connection is a file, which can be opened for
reading or writing data. The set of possible values that can be specified for
the open argument is detailed in the manual page. Other types of connections
are the FIFO, pipe and socket. These are all described in some detail below.
Connections can be used to read from zipped files, using one of gzfile, bzfile
or unz, depending on what tool was used to compress the file. These con-
nections can be supplied to readLines or read.delim, which then simply read
directly from the compressed files.

Of some general interest is the function showConnections that will show all
connections and their status. With the default settings, only user-created open
connections are displayed. This can be helpful in ensuring that a
connection is open and ready or for finding connections that have been opened
and forgotten.

> showConnections(all = TRUE)

description class mode text isopen can read
0 "stdin" "terminal" "r" "text" "opened" "yes"
1 "stdout" "terminal" "w" "text" "opened" "no"
2 "stderr" "terminal" "w" "text" "opened" "no"
3 "RIO.tex" "file" "w+" "text" "opened" "yes"
4 "" "file" "w+" "text" "opened" "yes"
can write

0 "no"
1 "yes"
2 "yes"
3 "yes"
4 "yes"
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Some connections support the notion of pushing character strings back onto
the connection. One might presume that the function pushBack can only push
back things that have been read; this is similar to the notion of rewinding
a file, but this is not true. You can push back any character vector onto a
connection that supports pushing back.

Not all operating systems support all connections. In order to determine
whether your system has support for sockets, pipes or URLs the capabilities

function can be used.

> capabilities()

jpeg png tcltk X11 aqua http/ftp sockets
TRUE TRUE TRUE TRUE TRUE TRUE TRUE

libxml fifo cledit iconv NLS profmem cairo
TRUE TRUE FALSE TRUE TRUE TRUE FALSE

4.3.1 Text connections

A text connection is essentially a device for reading from, or writing to,
an R character vector. The code below is taken from the manual page for
textConnection and it demonstrates some of the basic operations that can be
carried out on a textConnection that is being used for input. The connection
can be used as input for any of the input functions, such as readLines and
scan, but it also supports pushing data onto the connection.

> zz = textConnection(LETTERS)
> readLines(zz, 2)

[1] "A" "B"

> showConnections(all = TRUE)

description class mode text isopen can read
0 "stdin" "terminal" "r" "text" "opened" "yes"
1 "stdout" "terminal" "w" "text" "opened" "no"
2 "stderr" "terminal" "w" "text" "opened" "no"
3 "RIO.tex" "file" "w+" "text" "opened" "yes"
4 "" "file" "w+" "text" "opened" "yes"
5 "LETTERS" "textConnection" "r" "text" "opened" "yes"
can write

0 "no"
1 "yes"
2 "yes"
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3 "yes"
4 "yes"
5 "no"

> scan(zz, "", 4)

[1] "C" "D" "E" "F"

> pushBack(c("aa", "bb"), zz)
> scan(zz, "", 4)

[1] "aa" "bb" "G" "H"

> close(zz)

One can also write to a textConnection, and the effect is to create a character
vector with the specified name; but you must be sure to use open="w" so that
it is open for writing. You almost surely want to set local=TRUE; otherwise,
the text connection is created in the top-level workspace. Since R’s input and
output can be redirected to a connection, this allows users to capture function
output and store it in a computable form.

In the code below, we create a text connection that can be written to,
then carry out some computations and use sink to divert the output of the
command to the text connection. Since we did not set local=TRUE, creating the
text connection creates a global variable named foo. We did set split=TRUE

so that the output of the commands would be shown in the terminal and
collected into the text connection. Other text can be written directly to the
text connection using cat or other similar functions.

> savedOut = textConnection("foo", "w")
> sink(savedOut, split = TRUE)
> print(1:10)

[1] 1 2 3 4 5 6 7 8 9 10

> cat("That was my first command \n")

That was my first command

> letters[1:4]

[1] "a" "b" "c" "d"

> sink()
> close(savedOut)
> cat(foo, sep = "\n")
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Another alternative for capturing the output of commands is the sugges-
tively named capture.output. Unlike using sink, the commands for which the
output is wanted are passed explicitly to capture.output.

4.3.2 Interprocess communications

Being able to pass data from one process to another can lead to substantial
benefits and should often be considered as an alternative to reimplementation
or other, more drastic solutions. One of the more popular methods of sharing
data between processes has been the use of intermediate files; one process
writes a file and the other reads it. However, if the mechanics are left to the
programmer, this procedure is fraught with danger and often fails in rather
peculiar ways. Fortunately, there are a wide number of programmatic solu-
tions that allow software to handle most of the organizational details, thereby
freeing the programmer to concentrate on the conceptual details.

Some of the different connections and mechanisms for interprocess commu-
nication (IPC) have implementations as R connections, and we discuss those
here. We also make some more general comments, and it is likely the future
versions of R will include more refined IPC tools. A very sophisticated and
detailed discussion of many of the concepts mentioned here is given in Stevens
and Rago (2005), particularly Chapters 15 and 17 of that reference.

4.3.2.1 Socket connections

You can use the capabilities function to determine whether sockets and
hence socketConnections are supported by your version of R. If they are, then
the discussion in this section will be relevant. If they are not supported, then
you will not be able to use them.

Sockets are a mechanism that can be used to support interprocess com-
munications. Each of the two processes establishes a connection to a socket,
which is merely one end of the intercommunication process. One process is
typically the server and the other the client.

In the example below, we demonstrate how to establish a socket connection
between two running R processes. For simplicity we presume that they are
both running on the same computer, but that is not necessary; and in the
general case, the processes can be on different computers. Furthermore, there
is no requirement that both ends be R processes.

The default for socket connections is to be in non-blocking mode. That
means that they will return as soon as possible. On input, they return with
the available input, possibly nothing; and on output, they return regardless
of whether the write succeeded.

The first R process sets up a socket connection on a named port in server
mode. The port number is not important but you need to select one that is
high enough not to conflict with a port that is in use.

serverCon = socketConnection(port = 6543, server=TRUE)
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writeLines(LETTERS, serverCon)
close(serverCon)

Then, the second R process opens a connection to the same port but, this
time, in client mode. Since the client mode is not blocking, we must poll
until we have a complete input. The call to Sys.sleep ensures that some time
elapses between calls to readLines and allows other processes to be run.

clientCon = socketConnection(port = 6534)
readLines(clientCon)
while(isIncomplete(clientCon)) {

Sys.sleep(1)
readLines(clientCon)}

close(clientCon)

Unfortunately, connections are not exposed at the C level so there is no
opportunity for accessing them directly at that level.

4.3.2.2 Pipes

A pipe is a shell command where the standard input can be written from
R and the standard output can be read from R. A call to pipe creates a
connection that can be opened by writing to it, or by reading from it. The
pipe can be used as a connection for any function that reads and writes from
connections. In the example below, the system function cal is used to get a
calendar.

> p1 = pipe("cal 1 2006")
> p1

description class mode text
"cal 1 2006" "pipe" "r" "text"

opened can read can write
"closed" "yes" "yes"

> readLines(p1)

[1] " January 2006" " S M Tu W Th F S"
[3] " 1 2 3 4 5 6 7" " 8 9 10 11 12 13 14"
[5] "15 16 17 18 19 20 21" "22 23 24 25 26 27 28"
[7] "29 30 31" ""

It is reasonably simple to extend this to provide a function that returns
the calendar for either the current month, or any other month or year. The
function is provided in RBioinf , and the code is shown below.
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> library("RBioinf")
> Rcal

function (month, year)
{

pD = function(x) pipe(paste("date \"+%", x, "\"", sep = ""))
if (missing(month))

month = readLines(pD("m"))
if (missing(year))

year = readLines(pD("Y"))
cat(readLines(pipe(paste("cal ", month, year))), sep = "\n")

}
<environment: namespace:RBioinf>

An alternative to the use of pipe is available using the intern argument
for system. Notice that the following calls are equivalent. But pipe is more
general, and system could easily be written in terms of pipe. Further, there is
no real reason why a pipe cannot be bidirectional; Stevens and Rago (2005)
refer to these as STREAMS-based pipes, which are opened for both read-
ing and writing, but only unidirectional pipes have been implemented in
R. Basically this means that to capture the output of any pipe opened for
writing, you will need to redirect the output to file, or perhaps a socket or
FIFO, and then read from that using a separate connection. On OS X, users
can read and write from the system clipboard using pipe("pbpaste") and
pipe("pbcopy", "w"), respectively.

> ww = system("ls -1", intern = T)
> xx = readLines(pipe("ls -1"))
> all.equal(ww, xx)

[1] TRUE

Another advantage to pipes over calls to system is that one can pass values
to the system call via pipe after the subprocess has been started. With calls
to system, the entire command must be assembled and sent at one time.

Exercise 4.7
Rewrite Rcal to use system.

Exercise 4.8
The following code establishes a pipe to the system command wc, which counts
words, characters and lines. What happens to the output? How would you
modify the commands to retrieve the output of wc?
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WC = pipe("wc", open="w")
writeLines(letters,WC)

4.3.2.3 FIFOs

A FIFO is a special kind of file that stores data that are written to it.
FIFO is an acronym for first-in, first-out, and FIFOs are also often referred
to as named pipes. The next program to read the FIFO extracts the first
record that was written, as the name suggests. Once a record has been read,
it is automatically removed. Thus, the FIFO only retains data that have
been written, but not yet read. FIFOs can thus be used for interprocess
communication (as can socketConnections); but since FIFOs are named files,
the communication channel is via the file system. Not all platforms support
FIFOs. Most Unix-based versions and OS X do support fifo.

Pipes can only be used to communicate between processes that share a
common ancestor that created the pipe. When unrelated processes want to
communicate, they must make use of some other mechanism, and often the
appropriate tool is a FIFO. Stevens and Rago (2005) give two different uses
for FIFOs: first as a way for shell commands to pass data without creating
intermediate temporary files and second as a rendezvous point for client-server
applications to pass data between clients and servers.

4.3.3 Seek

Some connections support direct interactions with the location of the cur-
rent read and write positions. If the connection supports these interactions,
isSeekable will return TRUE and seek can be used to find the current position
and to alter it. In the code chunk below, we create a file, write to it, and then
manipulate the reading position using seek. Notice that the part of the file
read is repeated. The connection is closed and the file is unlinked at the end
of the code chunk.

> fName = file.path(tempdir(), "test1")
> file.create(fName)

[1] TRUE

> sFile = file(fName, open = "r+w")
> cat(1:10, sep = "\n", file = sFile)
> seek(sFile)

[1] 21

> readLines(sFile, 3)

[1] "1" "2" "3"
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> seek(sFile, 2)

[1] 6

> readLines(sFile)

[1] "2" "3" "4" "5" "6" "7" "8" "9" "10"

> close(sFile)
> unlink(fName)

Thus, using seek, one can treat a large file as random access memory.
However, the cost can be quite high as reading and writing tends to be a
bit slow. Other alternatives are to read the data in and use internal tools or
database tools such as those described in Chapter 8.

4.4 File input and output

The most appropriate tool for reading and writing from files will generally
depend on the contents of the file, and the purpose to which those contents
will be put. The most general low-level reading function is scan. Perhaps
two of the most general commands for file input/output are readLines and
writeLines. As their names suggest, the former is used to read input and the
latter to write output. Both functions take a parameter con, which will take
either the name of a file or a connection. The default for this parameter is to
read/write from stdin and stdout, respectively. From here on, however, they
differ.

readLines has the following formal arguments:

n the (maximal) number of lines to read. Negative values indicate reading to
the end of the connection. Default is -1.

ok a logical value indicating whether it is OK to reach the end of the connec-
tion before n > 0 lines are read. If not, an error will be generated. The
default of this is TRUE.

warn a logical value indicating whether or not to warn the user if a text file
is missing a final end-of-line character.

encoding the encoding that is assumed for the input.

writeLines has the following formal arguments:

text a character vector.
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sep a string to be written to the connection after each line of text. Default is
the new line character, "\n".

> a = readLines(con = system.file("CONTENTS", package = "base"),
+ n = 2)
> a

[1] "Entry: Arithmetic"
[2] "Aliases: + - * ** / ^ %% %/% Arithmetic"

> writeLines(a)

Entry: Arithmetic
Aliases: + - * ** / ^ %% %/% Arithmetic

A rather frequent question on the R mailing list is how to create files and
write to those files within a loop. For example, suppose that there is some
interest in carrying out a permutation test and saving the permutations in
separate files. In the code below, we show how to do this for a small example
with 10 permutations. The files are written into the temporary directory in
this example so that they will be removed when R exits. You should choose
some other location to write to, but that will depend on your local file system.

> mydir = tempdir()
> for (i in 1:10) {
+ fname = paste("perm", i, sep = "")
+ prm = sample(1:10, replace = FALSE)
+ write(prm, file = file.path(mydir, fname))
+ }

Exercise 4.9
Select a location on your local file system and use the code above to write files
in that location. How would you modify the code to write a comma-separated
set of numbers? What seed was used to generate the permutations? Can you
set a seed so you always get the same permutations?

4.4.1 Reading rectangular data

In many cases the data to be read in are in the form of a rectangular,
or nearly rectangular, array. For those cases, there are specialized func-
tions (read.table, read.delim and read.csv) with variants (read.csv2 and
read.delim2) that are tailored to European norms for representing numbers.
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These functions will take either the name of a file or a connection and at-
tempt to read data from that. There are three primary ways in which they
differ: what is considered to be a separator of the data items, the character
used to delimit quoted strings, and what character is used for the decimal
indicator. The most general of these is read.table and, in fact, the others
are merely wrappers to read.table with appropriate values set for the argu-
ments. However, comma-separated values (.csv) occur often enough that it
is worthwhile to have the convenience function.

Among the more important arguments to read.table are:

as.is by default, character variables are turned into factors; setting as.is to
TRUE, they are left as character values. The transforming of strings into
factors can be controlled using the option stringsAsFactors.

na.strings a vector of strings that are to be interpreted as missing values and
hence any corresponding entries will be converted to NA during process-
ing.

fill if set to TRUE and some rows have unequal lengths, shorter rows are
padded.

comment a single character indicating the comment character. for any line of
the input file, all characters after the comment character are skipped.

sep the record separator.

header a logical value indicating whether or not the first line of the file con-
tains the variable names.

When the data do not appear to be read in correctly, the three most common
causes are: the quote character is used in the file for something other than
a quotation, and hence the symbols are not matched (for biological data 3’
and 5’ are often culprits); the comment character appears in the file, not
as a comment; or there are some characters in the file that have an unusual
encoding and have caused confusion.

The default behavior of these different routines is to turn character variables
(columns) into factors. If this is not desired, and very often it is not, then
either the as.is argument should be used or the more general colClasses

should be used. colClasses can be used to specify classes for all columns. If
a column has a NULL value for colClasses, then that column is skipped and
not read into R.

4.4.2 Writing data

Since R’s roots are firmly in statistical applications where data have a rect-
angular form, typically with rows corresponding to cases and columns to vari-
ables, there are specialized tools for writing rectangular data. Some of these
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are aimed at producing a table that is suitable for being imported into a
spreadsheet application such as Gnumeric or Microsoft’s Excel.

The function write can be used to write fairly arbitrary objects. While it
has a number of arguments that are useful for writing out matrices, it does not
deal with data frames. For writing out data frames, there are three separate
functions: the very general write.table and two specialized interfaces to the
same functionality, write.csv and write.csv2.

Another way to write R objects to a file is with the function cat. The
transformation of R objects to character representations suitable for printing
is different from those carried out by either write or print. By default, cat
writes to the standard output connection, but the file argument can be any
connection, the name of a file or the special form "|cmd", in which case the
output of cat is sent to the system function named. In the code chunk below,
we use this feature to send the output of cat to the cal function.

> cat("10 2005", file = "|cal")

Other functions that are of interest include writeBin and readBin for reading
and writing binary data, as well as writeChar and readChar for reading and
writing character data. Readers are referred to the relevant manual pages and
the R Data Import/Export Manual for more details on these functions.

4.4.3 Debian Control Format (DCF)

Debian Control Format (DCF) is used for some of the package-specific files
in R (see Chapter 7); in particular, the DESCRIPTION file in all R packages
and the CONTENTS file for installed packages. The functions read.dcf and
write.dcf, are available in R to read and write files in this format. For a
description of DCF, see help("read.dcf").

> x = read.dcf(file = system.file("CONTENTS", package = "base"),
+ fields = c("Entry", "Description"))
> head(x, n = 3)

Entry
[1,] "Arithmetic"
[2,] "AsIs"
[3,] "Bessel"

Description
[1,] "Arithmetic Operators"
[2,] "Inhibit Interpretation/Conversion of Objects"
[3,] "Bessel Functions"
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> write.dcf(x[1:3, ], file = "")

Entry: Arithmetic
Description: Arithmetic Operators

Entry: AsIs
Description: Inhibit Interpretation/Conversion of

Objects

Entry: Bessel
Description: Bessel Functions

read.dcf returns a matrix, while write.dcf takes a matrix and transforms
it into DCF formatted output; the empty string "" as the file parameter tells
the system to output to the console instead of specifying a particular file.

4.4.4 FASTA Format

Biological sequence data are available in a very wide range of formats. The
FASTA format is probably the most widely used, but there are many oth-
ers. A FASTA file consists of one or more biological sequences. Each se-
quence is preceded by a single line, beginning with a >, which provides a
name and/or a unique identifier for the sequence and often other informa-
tion. The description line can be followed by one or more comment lines,
which are distinguished by a semicolon at the beginning of the line. After
the header line and comments, the sequence is represented by one or more
lines. Sequences may correspond to protein sequences or DNA sequences and
should make use of the IUPAC codes; these can be found in many places, in-
cluding http://en.wikipedia.org/wiki/Fasta_format. All lines should be
shorter than 80 characters. Functions for reading and writing in the FASTA
format are provided in the Biostrings package as readFASTA and writeFASTA,
respectively.

Exercise 4.10
Modify the function readFASTA in the Biostrings package, or any other FASTA
reading function, to (1) transform the data to uppercase, (2) check that only
IUPAC symbols are contained in the sequence data, and (3) check the line
lengths to see if they are shorter than 80 characters.

Exercise 4.11
There is a file in the Biostrings package, in a folder named extdata, named
exFASTA.mfa. Using the system.file and readLines functions, process this
file to answer the following questions. How many records are in the file? How
long, in number of characters, are the different records? Can you tell if they
are DNA or protein sequences that have been encoded?
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Compare your approach with that in the readFASTA function. What are the
differences? Run a timing comparison to see which is faster (you might want
to refer to Section 9.5 for details on how to do that).

4.5 Source and sink: capturing R output

While the standard interactions with R are primarily carried out by users
typing commands to the command line and subsequently viewing the out-
puts that those commands generate, there are many situations where more
programmatic interactions are important. Often, users will want to either
supply input to R in some other way, or they may want to capture the out-
put of a command into a file or variable so that it can be programmatically
manipulated or simply for future reference.

The main interface for input is source, which reads, parses and evaluates
R commands. The input can be a file or a connection. Since the input is
parsed, there is generally code rearrangement and in particular, by default,
comments are dropped. The argument keep.source can be used to override
this behavior, and there is also a global option, of the same name, that can be
used to set behavior for the entire session. When source is run, it first reads,
then parses, and finally evaluates, so no command will be evaluated if there
is a syntax error in the file.

Users can also carry out the three steps themselves, if they choose. They
can first use scan to read in the commands as text; then use parse to parse
but not evaluate those commands; and finally use eval to evaluate the set of
parsed expressions. Such a strategy allows for much more fine-grained control
over the process, although it is seldom ever needed.

In other cases it will be quite helpful to capture the output of different
commands issued to R. One example is the function printWithNumbers dis-
cussed in Chapter 9, which provides appropriate line numbers for R functions
so that the at argument for trace can be more easily used. To implement this
function, we used capture.output, which can be used to capture, as text, the
output of a set of provided R expressions.

Alternatively, R’s standard output can be diverted using sink. A call to sink

will divert all standard output, but not error or warning messages, nor one
presumes other conditions (e.g. Section 2.11). To divert error and warning
messages, set the argument type to "messages". This capability should be
used with caution, however, since it will not be easy to determine when errors
are being signaled. Note that the requirements for the file argument are
different when the messages are being diverted, than when output is being
diverted. To turn off the redirection, simply call sink as second time with a
NULL argument. The redirections established by sink form a stack, with new
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redirections added to the top, and calls to sink with NULL arguments popping
the top redirection off of the stack. The function sink.number can be used
to determine how many redirections are in use. It is also possible to both
capture the output, via a redirection, and to continue to have it displayed on
the screen. This is achieved by setting the split argument in the call to sink.

4.6 Tools for accessing files on the Internet

R functions that can be used to obtain files from the Internet include
download.file and url, which opens a connection and allows for reading from
that connection. The function url.show renders the remote file in the console.

There are R functions for encoding URLs, URLencode and URLdecode, that
can be used to encode and decode URL names. URLs have a set of reserved
characters, and not all characters are valid. An invalid character needs to be
preceeded by a % sign if it is contained in a URL.

The RCurl package provides an extensive interface to libcURL. The
libcURL library supports transferring files via a wide variety of protocols
including FTP, FTPS, HTTP, HTTPS, GOPHER, TELNET, DICT, FILE
and LDAP. libcURL also supports HTTPS certificates, HTTP POST, HTTP
PUT, FTP uploading, Kerberos, HTTP form-based upload, proxies, cookies,
user+password authentication, file transfer resume, and http proxy tunneling.

This package supports a very wide range of interactions with web resources
and in particular is very helpful in posting and retrieving data from forms.
Many bioinformatic databases and tools provide forms-based interfaces. These
are often used interactively, by basically pointing a browser to the appropri-
ate page and filling in values. However, one can post and retrieve answers
programmatically. Alternatively, many provide Biomart interfaces, and the
tools described in Section 8.6.3 can be used to obtain the data.

RCurl can eliminate manual work (“screen-scraping”) with web pages to
obtain data that have not been made available through standard web services.
For example, when data can be obtained interactively using text input, radio
button settings, and check-box selections, code resembling the following can
be used to obtain that same data programmatically:

> postForm("http://www.speakeasy.net/main.php",
+ "some_text" = "Duncan", "choice" = "Ho",
+ "radbut" = "eep", "box" = "box1, box2" )

The resulting data must be parsed, but the htmlTreeParse function can be
very helpful for this. More details on XML and HTML parsing are given in
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Section 8.5.
The next example and its solution are based on a discussion from the R

help mailing list. The Worldwide Protein Data Bank (wwPDB) is an online
source for PDB data. The mission of the wwPDB is to maintain a single
Protein Data Bank (PDB) Archive of macromolecular structural data that
is freely and publicly available to the global community. The web site is at
http://www.wwpdb.org/, and data can be downloaded from that site. How-
ever, there are an enormous number of files, and one might want to be some-
what selective in downloading. The code below shows how to obtain all the
file names. Individual files can then be obtained using wget or other similar
functions. The calls to strsplit and gsub split the string on the new line char-
acter and remove any \r (carriage return) characters that are present. We
could have done that in one step by using a regular expresssion (Section 5.3)
but then strsplit becomes painfully slow.

> library("RCurl")
> url = "ftp://ftp.wwpdb.org/pub/pdb/data/structures/all/pdb/"
> fileNames = getURL(url,
+ .opts = list(customrequest = "NLST *.gz") )
> fileNames = strsplit(fileNames, "\n", fixed=TRUE)[[1]]
> fileNames = gsub("\r", "", fileNames)
> length(fileNames)

[1] 51261

The file names are informative, as they encode PDB identifiers, and given
a map to these, say from some genes of interest, perhaps using biomaRt,
Section 8.6.3, one can download individual files of interest. In the code below,
we download the first file in the list using download.file.

> fileNames[1]

[1] "pdb100d.ent.gz"

> download.file(paste("ftp://ftp.wwpdb.org/pub/pdb/data/",
+ "structures/all/pdb/pdb100d.ent.gz", sep = ""),
+ destfile = "pdb100d.ent.gz")



Chapter 5

Working with Character Data

5.1 Introduction

Working with character data is fundamental to many tasks in computational
biology, but is not that common of a problem in statistical applications. The
tools that are available in R are more oriented to the processing of data
into a form that is suitable for statistical analysis, or to format outputs for
publication. There is an increased awareness, and corresponding capabilities,
for dealing with different languages and file encodings, but we will not do
more than briefly touch on this subject. In this chapter we review the builtin
capabilities in R, but then turn our attention to some problems that are more
fundamental to biological applications.

In biological applications there are a number of different alphabets that
are relevant; perhaps the best known of them is the four letter alphabet that
describes DNA, but there are others. The basic problems are exact matching
of one or more query sequences in a target sequence, inexact matching of se-
quences, and the alignment of two or more sequences. There is also substantial
interest in text mining applications, but we will not cover that subject here.
Our primary focus will be on the methodology provided in the Biostrings
package, but there are a number of other packages that have a biological focus,
including seqinR, annotate, matchprobes, GeneR and aaMI.

String matching problems exist in many different contexts, and have re-
ceived a great deal of attention in the literature. Cormen et al. (1990) provide
a nice introduction to the methods while Gusfield (1997) gives a much more
in depth discussion with many biological applications. One can either search
for exact matches of one string in another, or for inexact matches. Inexact
matching is more difficult and often more computationally expensive.

The chapter is divided into three main sections. First we describe the
builtin functions for string handling and manipulation, plus some generic
string handling issues. Next we discuss regular expressions and tools such
as grep and agrep, and finally we present more detail on the biological prob-
lems and present a number of concrete examples.

145
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5.2 Builtin capabilities

Character vectors are one of the basic vector types in R (see Chapter 2 for
more details). A character vector consists of zero or more character strings.
Only the vector can be easily manipulated at the R level and most functions
are vectorized. The string "howdy" will be stored as a length one character
vector with the first element having five characters. In the code below, we
construct a character vector of length three. Then we use nchar to ask how
many characters there are in each of the strings. The function nchar returns
the length of the elements of its argument. There are three different ways
to measure length: bytes, chars and width. These are generally the same, at
least in locales with single-byte characters.

> mychar = c("as", "soon", "as possible")
> mychar

[1] "as" "soon" "as possible"

> nchar(mychar)

[1] 2 4 11

Like other basic types, a character vector can be of length zero; and in
the code below we demonstrate the difference between a character vector of
length zero and a character string of length zero. The variable x represents a
zero length character vector, while y represents a length one character vector,
whose single element is the empty string.

> x = character(0)
> length(x)

[1] 0

> nchar(x)

integer(0)

> y = ""
> length(y)

[1] 1

> nchar(y)

[1] 0



Working with Character Data 147

To access substrings of a character vector, use either substr or substring.
These two functions are very similar but handle recycling of arguments dif-
ferently. The first three arguments are the character vector, a set of starting
indices and a vector of ending indices. For substr, the length of the returned
value is always the length of its first argument (x). For substring, it is the
length of the longest of these three supplied arguments; the other arguments
are recycled to the appropriate length.

> substr(x, 2, 4)

character(0)

> substr(x, 2, rep(4, 5))

character(0)

> substring(x, 2, rep(4, 5))

character(0)

A biological application of substring is to build a function to translate
DNA into the corresponding amino acid sequence. We can use substring to
split an input DNA sequence into triples, which are then used to index into
the GENETIC_CODE variable, and finally we paste the amino acid sequences
together. The GENETIC_CODE variable presumes that the sequence given is
the sense strand.

> rD = randDNA(102)
> rDtriples = substring(rD, seq(1, 102, by = 3),
+ seq(3, 102, 3))
> paste(GENETIC_CODE[rDtriples])

[1] "V" "R" "N" "Y" "P" "S" "K" "A" "L" "C" "*" "Q" "V"
[14] "A" "C" "L" "Q" "*" "S" "N" "M" "D" "D" "L" "Q" "Q"
[27] "L" "S" "N" "L" "V" "C" "L" "H"

Exercise 5.1
Using the code above, create a simple function that maps from DNA to the
amino acid sequence.

It is also possible to modify a string and the replacement versions of substr
and substring are used for this purpose. In the example below, we demon-
strate some differences between the two functions. These functions are evalu-
ated for their side effects, which are changes to the character strings contained
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in their first argument. There are no default values for either the starting po-
sition or the ending position in substr. For substring there is a default value
for the stopping parameter.

> substring(x, 2, 4) = "abc"
> x

character(0)

> x = c("howdy", "dudey friend")
> substr(x, 2, 4) = "def"
> x

[1] "hdefy" "ddefy friend"

> substring(x, 2) <- c("..", "+++")

Exercise 5.2
What happens if the stop, or last, argument to substr or substring is larger
than the number of characters? Is it different for the replacement version? In
the replacement version, what happens if the length of the string to assign is
longer than the character vector.

Character strings can be appended using paste. paste takes any number of
arguments and coerces them to be character vectors first. The usual recycling
rules for function arguments apply, in that all arguments are treated as vectors,
and if necessary those that are shorter than the longest supplied argument are
replicated until all arguments are of length equal to the longest input vector.
The return value is a character vector of length equal to that of the longest
input, with all inputs concatenated.

In the code below, we paste three vectors; the first is of length three, the
second of length one, and the third of length two. They are replicated different
times to yield a vector of length three (the length of the longest input). In
the second example, we demonstrate the use of the sep argument.

> paste(1:3, "+", 4:5)

[1] "1 + 4" "2 + 5" "3 + 4"

> paste(1:3, 1:3, 4:6, sep = "+")

[1] "1+1+4" "2+2+5" "3+3+6"
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In some cases, the desire is to reduce a character vector with multiple char-
acter strings to one with a single character string, and the collapse argument
can be used to reduce, or collapse, the input vector.

> paste(1:4, collapse = "=")

[1] "1=2=3=4"

The reverse operation, that of splitting a long string into substrings, is
performed using the strsplit function. strsplit takes any character string or
a regular expression as the splitting criterion and returns a list, each element
of which contains the splits for the corresponding element of the input. If
the input string is long, be sure to either use Perl regular expressions or set
fixed=TRUE, as the standard regular expression code is painfully slow. To split
a string into single characters, use the empty string or character(0). While
the help page recommends the use of either character(0) or NULL, these can
be problematic if the second argument to strsplit is of length more than one.
Compare the two outputs in the example below.

> strsplit(c("ab", "cde", "XYZ"), c("Y", ""))

[[1]]
[1] "ab"

[[2]]
[1] "c" "d" "e"

[[3]]
[1] "X" "Z"

> strsplit(c("ab", "cde", "XYZ"), c("Y", NULL))

[[1]]
[1] "ab"

[[2]]
[1] "cde"

[[3]]
[1] "X" "Z"

It is sometimes important to output text strings so that they look nice on the
screen or in a document. There are a number of functions that are available,
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and we have produced yet another one that is designed to interact with the
Sweave system. Two builtin functions are strtrim, which trims strings to a
fixed width, and strwrap, which introduces line breaks into a text string.

To trim strings to fit into a particular width, say for text display, use
strtrim. The arguments to strtrim are the character vector and a vector
of widths. The widths are interpreted as the desired width in a monospaced
font. To wrap text use strwrap, which honors a number of arguments including
the width, indentation, and a user-supplied prefix.

> x <- paste(readLines(file.path(R.home(), "COPYING")),
+ collapse = "\n")
> strwrap(x, 30, prefix = "myidea: ")[1:10]

[1] "myidea: GNU GENERAL PUBLIC"
[2] "myidea: LICENSE Version 2,"
[3] "myidea: June 1991"
[4] "myidea: "
[5] "myidea: Copyright (C) 1989,"
[6] "myidea: 1991 Free Software"
[7] "myidea: Foundation, Inc. 51"
[8] "myidea: Franklin St, Fifth"
[9] "myidea: Floor, Boston, MA"
[10] "myidea: 02110-1301 USA"

> writeLines(strwrap(x, 30, prefix = "myidea: ")[1:5])

myidea: GNU GENERAL PUBLIC
myidea: LICENSE Version 2,
myidea: June 1991
myidea:
myidea: Copyright (C) 1989,

When using Sweave to author documents, such as this book, the author will
often need to ensure that no output text string is wider than the margins.
While one might anticipate strwrap would facilitate such requests, it does
not. We have written a separate simple function, strbreak, in the Biobase
package, to carry out this task.

Exercise 5.3
Compare the function strbreak with strwrap and strtrim. What are the
differences in terms of the output generated?
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5.2.1 Modifying text

Text can be transformed; calls to toupper and tolower change all characters
in the supplied arguments to upper case and lower case, respectively. Non-
alphabetic characters are ignored by these two functions. For general trans-
lation from one set of characters to another, use chartr. In the code chunk
below we present a small function to translate from the DNA representation
to the RNA representation. Basically, DNA is represented as a sequence of the
letters A, C, T, G, while for RNA, U is substituted for T. We first transform
the input to upper case, and then use chrtr to transform all instances of T
into U. Notice that the function is vectorized, since we have only made use
of functions that are themselves vectorized. We use the randDNA function to
generate random DNA strings.

> dna2rna = function(inputStr) {
+ if (!is.character(inputStr))
+ stop("need character input")
+ is = toupper(inputStr)
+ chartr("T", "U", is)
+ }
> x = c(randDNA(15), randDNA(12))
> x

[1] "TCATCCATTCGTGGG" "GTTGGTCCATAG"

> dna2rna(x)

[1] "UCAUCCAUUCGUGGG" "GUUGGUCCAUAG"

Exercise 5.4
Write a function for translating from RNA to DNA. Test it and dna2rna on a
vector of inputs.

The function chartr can translate from one set of values to another. Hence it
is simple to write a function that computes the complementary sequence for
either DNA or RNA.

> compSeq = function(x) chartr("ACTG", "TGAC",
+ x)
> compSeq(x)

[1] "AGTAGGTAAGCACCC" "CAACCAGGTATC"
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Exercise 5.5
Write a function to test whether a sequence is a DNA sequence or an RNA
sequence. Modify the function compSeq above to use the test and perform the
appropriate translation, depending on the type of input sequence.

Users can also use sub and gsub to perform character conversions, and these
functions are described more fully in Section 5.3. One limitiation of chartr

is that it does strict exchange of characters, and for some problems you will
want to either remove characters or replace a substring with a longer or shorter
substring, which cannot be done with chartr but can be done with sub or gsub.

While complement sequences are of some interest in biological applications,
reverse complementing is more common as it reflects the act of transcrip-
tions. Tools for performing this manipulation on DNA and RNA sequences
are provided in the matchprobes and Biostrings packages.

Exercise 5.6
Look at the manual page for strsplit to get an idea of how to write a function
that reverses the order of characters in the character strings of a character
vector. Use this to write a reverseComplement function.

5.2.2 Sorting and comparing

The basis for ordering of character strings is lexicographic order in the cur-
rent locale, which can be determined by a call to Sys.getlocale. Comparisons
are done one character at a time; if one string is shorter than the other and
they match up to the length of the shorter string, the longer string will be
sorted larger. The arithmetic operators <, >, ==, and != can all be applied to
character vectors. And hence other functions such as max, min and order can
also be used.

> set.seed(123)
> x = sample(letters[1:10], 5)
> x

[1] "c" "h" "d" "g" "f"

> sort(x)

[1] "c" "d" "f" "g" "h"

> x < "m"

[1] TRUE TRUE TRUE TRUE TRUE
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5.2.3 Matching a set of alternatives

Searching or matching a set of input character strings in a reference list or
table can be performed using one of match, pmatch or charmatch. Each of these
has different capabilities, but all work in a more or less similar manner. The
first argument is the set of strings that matches are desired for; the second
is the table in which to search. The returned value from these functions is a
vector of the same length as the first argument that contains the index of the
matching value in the second argument, or the value of the nomatch parameter
if no match is found. The function %in% is similar to match but returns a
vector of logical values, of the same length as its left operand indicating which
elements were found in the right operand. The first argument (left operand
in the case of %in%) is converted to a character vector (using as.character)
prior to evaluation.

> exT = c("Intron", "Exon", "Example", "Chromosome")
> match("Exon", exT)

[1] 2

> "Example" %in% exT

[1] TRUE

Both pmatch and charmatch perform partial matching. Partial matching
is similar to that used for arguments to functions, where matching is done
per character, left to right. For both functions, the elements of the first
argument are compared to the values in the second argument. First, exact
matches are determined. Then, any remaining arguments are tested to see
if there is an unambiguous partial match and, if so, that match is used. By
default, the elements of the table argument are used only once; for pmatch,
this behavior can be changed by setting the duplicates.ok argument to TRUE.
These functions do not accept regular expressions. For matching using regular
expressions, see the discussion in Section 5.3.

The functions differ in how they deal with non-matches versus ambiguous
partial matches, but otherwise are very similar. With pmatch, the empty
string, "" matches nothing, not even the empty string, while with charmatch

it does match the empty string. charmatch reports ambiguous partial matches
as 0 and non-matches as NA, while pmatch uses NA for both.

In the example below, the first partial match fails because two different
values in exT begin with a capital E. The second call identifies the second
element since enough characters were supplied to uniquely identify that value.
The third example succeeds since there is only one value in exT that begins
with a capital I, and the fourth example demonstrates the use of the very
similar function charmatch..
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> pmatch("E", exT)

[1] NA

> pmatch("Exo", exT)

[1] 2

> pmatch("I", exT)

[1] 1

> charmatch("I", exT)

[1] 1

Exercise 5.7
Test the claims made above about matching of the empty string; show that
with pmatch there is no match, while with charmatch there is.

The behavior is a bit different if multiple elements of the input list match a
single element of the table, versus when one element of the input list matches
multiple elements in the table. In the first example below, even though more
characters matched for the second string, it is not used as the match; thus
all partial matches are equal, regardless of the quality of the partial match.
Using either duplicates.ok=TRUE or charmatch will find all partial matches in
the table.

> pmatch(c("I", "Int"), exT)

[1] 1 NA

> pmatch(c("I", "Int"), exT, duplicates.ok = TRUE)

[1] 1 1

> charmatch(c("I", "Int"), exT)

[1] 1 1

If there are multiple exact matches of an input string to the table, then
pmatch returns the index of the first, while charmatch returns 0, indicating
ambiguity.
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> pmatch(c("ab"), c("ab", "ab"))

[1] 1

> charmatch(c("ab"), c("ab", "ab"))

[1] 0

5.2.4 Formatting text and numbers

Formatting text and numbers can be accomplished in a variety of different
ways. Formatting character strings or numbers, including interpolation of
values into character strings, can be accomplished using paste and sprintf.
Formatting of numbers can be achieved using either format or formatC. Use
the xtable package for formatting R objects into LATEXor HTML tables. The
function sprintf is an interface to the C routine sprintf, which supports all
of the functionality of that routine, with R-style vectorization. The function
formatC formats numbers using C style format specifications. But it does so
on a per-number basis; for common formatting of a vector of numbers, you
should use format. format is a generic function with a number of specialized
methods for different types of inputs, including matrices, factors and dates.

5.2.5 Special characters and escaping

A string literal is a notation for representing sets of characters, or strings,
within a computer language. In order to specify the extent of the string, a
common solution is the use of delimiters. These are usually quotation marks
and in R either single, , or double, ", quotes can be used to delimit a string.
The delimiters are not part of the string, so the problem of how to have a
string with either a single or double quote in it arises. In one sense this is easy
to solve, since strings delimited with double quotes can contain a single quote,
and vice versa, but that does not entirely preclude the need for a mechanism
for indicating that a character is to be treated specially. A fairly widely used
solution is the use of an escape character. The meaning of the escape character
is to convey the intention that the next character be treated specially. In R,
the escape character is the backslash, \.

Both strings below are valid inputs in R, and they are two distinct literals
representing the same string.

> I\ m a string

[1] "I m a string"
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> "I m a string"

[1] "I m a string"

The next problem that arises is how to have the escape character appear in
a string. But we have essentially solved that problem too: simply escape the
escape character.

> s = "I m a backslash: \\"
> s

[1] "I m a backslash: \\"

The printed value shows the escape character. That is because the print

function shows the string literal that this variable is equal to, in the sense that
it could be copied into your R session and be valid. To see the string literal,
you can use cat. Notice that there are no quotes and that only one backslash
appears in the output.

> cat(s)

I m a backslash: \

You can print a string without additional quotes around it using the
noquote function, but that is not the same as using cat; you will still see
the R representation of the string. Notice in the example that there is a
double backslash printed, unlike the output of cat.

> noquote(s)

[1] I m a backslash: \\

Special characters represent non-printing characters, such as new lines and
tabs. These control characters are single characters. You can check this using
the function nchar. Octal and hexidecimal codes require an escape as well.
More details are given in Section 10.3.1 of R Development Core Team (2007b).

> nchar(s)
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[1] 18

> strsplit(s, NULL)[[1]]

[1] "I" " " "m" " " "a" " " "b" "a" "c" "k"
[11] "s" "l" "a" "s" "h" ":" " " "\\"

> nchar("\n")

[1] 1

> charToRaw("\n")

[1] 0a

The backslash was not escaped and so it is interpreted with its special
meaning in the third line, and R correctly reports that there is a single char-
acter. On the fourth line, we convert the character code into raw bytes and see
the ASCII representation for the new line character. All would be relatively
easy, except that the backslash character sometimes gets used for different
things; and on Windows, it turns out to be the file separator. Even that is
fine, although when creating pathnames in R, you must remember to escape
the backslashes, as is done in the example below. Of course, one should use
both file.path and system.file to construct file paths and then the correct
separator is used.

> fn = "c:\\My Documents\\foo.bar"
> fn

[1] "c:\\My Documents\\foo.bar"

Now, if there is a desire to change the backslashes to forward slashes, that
can be handled by a number of different R functions such as either chartr or
gsub.

> old = "\\"
> new = "/"
> chartr(old, new, fn)

[1] "c:/My Documents/foo.bar"

With gsub, the solution is slightly more problematic, since the string created
in R will be passed to another program that also requires escaping. In the first



158 R Programming for Bioinformatics

call to gsub below, we must double each backslash so that the string, when
passed to the Perl regular expression library (PCRE), has the backslashes
escaped. In the second line, where we state that fixed=TRUE, only one escape
is needed.

> gsub("\\\\", new, fn)

[1] "c:/My Documents/foo.bar"

> gsub("\\", new, fn, fixed = TRUE)

[1] "c:/My Documents/foo.bar"

5.2.6 Parsing and deparsing

Parsing is the act of translating a textual description of a set of commands
into a representation that is suitable for computation. When you type a
set of commands at the console, or read in function definitions from a file,
the parser is invoked to translate the textual description into the internal
representation. The inverse operation is called deparsing – which turns the
internal representation into a text string. In the code below, we first parse a
simple function call, and then show that the parsed value is indeed executable
in R and then deparse it to get back a text representation. The parsed quantity
is an expression and

> v1 = parse(text = "mean(1:10)")
> v1

expression(mean(1:10))

> eval(v1)

[1] 5.5

> deparse(v1)

[1] "expression(mean(1:10))"

> deparse(v1[[1]])

[1] "mean(1:10)"

Other functions that are commonly used for printing or displaying data are



Working with Character Data 159

cat, print and show. In order to control the width of the output string, either
strwrap or strtrim can be used.

5.2.7 Plotting with text

When creating a plot, one often wants to add text to the output device. Our
treatment is quite cursory since there are other more comprehensive volumes
(Murrell, 2005; Venables and Ripley, 2002) that deal with the topic of plotting
data and working with the R graphics system.

We would like to draw attention to the notion of tool-tips. An implemen-
tation of them is in the imageMap function of the geneplotter package, which
creates an HTML page and a MAP file that, when rendered in a browser, has
user-supplied tool-tips embedded.

5.2.8 Locale and font encoding

String handling is affected by the locale and indeed what is a valid character,
and hence what is a valid identifier in R is determined by the locale. Locale set-
tings facilitate the use of R with different alphabets, monetary units and times.
The locale can be queried and set using Sys.getlocale and Sys.setlocale.

> Sys.getlocale()

[1] "C"

These capabilities have been greatly expanded in recent versions of R, and
many users in countries with multi-byte character sets, e.g., UTF-8 encod-
ings, are able to work with those encodings. We will not cover these issues
here. Users who want to explore native language support should examine the
functions iconv and gettext. The former translates strings from one encoding
into another while the latter describes the tools R uses to translate error and
warning messages. Section 1.9 of R Development Core Team (2007c) should
also be consulted.

5.3 Regular expressions

Regular expressions have become widely used in applied computing, spawn-
ing a POSIX standard as well as a number of books, including Friedl (2002)
and Stubblebine (2007). Their uses include validation of input sequences, such
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as email addresses and genomic sequences, as well as a variety of search and
optionally replace problems such as finding words or sentences with specific
beginnings or endings. A regular expression is a pattern that describes a set
of character strings.

In R, there are three different types of regular expressions that you can use:
extended regular expressions, basic regular expressions and Perl-like regular
expressions. The first two types of regular expressions are implemented using
glibc, while the third is implemented using the Perl-compatible regular ex-
pressions (PCRE) library. We will present a view of the capabilities in R that
is based on the description in the manual page for regular expressions which
you can access via the command, ?regex, that is itself based on the manual
pages for GNU grep and the PCRE manual pages.

Among the functions that facilitate the use of regular expressions are grep,
sub, gsub regexp and gregexpr. While agrep provides some similar capabilities,
it does not use regular expressions, but rather depends on metrics between
strings. The functions strsplit, apropos and browseEnv also allow the use
of regular expressions. In the examples below, we mainly use regexpr and
gregexpr since they show both the position and the length of the match, and
that is pedagogically useful.

We do not have the space to cover all possible uses or examples of regular ex-
pressions and rather focus on those tasks that seem to recur often in handling
biological strings. Readers should consult the R manual pages, any of the
many books (Friedl, 2002; Stubblebine, 2007), or online resources dedicated
to regular expressions for more details.

5.3.1 Regular expression basics

All letters and digits, as well as many other single characters, are regu-
lar expressions that match themselves. Some characters have special mean-
ing and are referred to as meta-characters. Which characters are meta-
characters depends on the type of regular expression. The following are
meta-characters for extended regular expressions and for Perl regular expres-
sions: . \ | ( ) [ { ^ $ * + ?. For basic regular expressions, the char-
acters ? { | ( ), and + lose their special meaning and will be matched like
any other character. Any meta-character that is preceded by a backslash is
said to be quoted and will match the character itself; that is, a quoted meta-
character is not interpreted as a meta-character. Notice that in the discussion
in Section 5.2.5, we referred to essentially the same idea as escaping. There is
syntax that indicates that a regular expression is to be repeated some number
of times and this is discussed in more detail in Section 5.3.1.3

Regular expressions are constructed analogously to arithmetic expressions
by using various operators to combine smaller expressions. Concatenating reg-
ular expressions yields a regular expression that matches any string formed by
concatenating strings that match the concatenated subexpressions. Of some
specific interest is alternation using the | operator, quantifiers that determine
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how many times a construct may be applied (see below), and grouping of reg-
ular expressions using brackets (parentheses), (). For example, the regular
expression (foo|bar) matches either the string foo or the string bar. The
precedence order of the operations is that repetition is highest, then concate-
nation and then alternation. Enclosing specific subexpressions in parentheses
overrides these precedence rules.

5.3.1.1 Character classes

A character class is a list of characters listed between square brackets, [
and ], and it matches any single character in that list. If a caret, ^, is the first
character of the list, then the match is to any character not in the list. For
example, [AGCT] matches any one of A, G, C or T, while [^123] matches any
character that is not a 1, 2 or 3. A range of characters may be specified by
giving the first and last characters, separated by a dash, such as [1-9], which
represents all single digits between 1 and 9. Character ranges are interpreted
in the collation order of the current locale. The following rules apply to meta-
characters that are used in a character class: a literal ] can be included by
placing it first; a literal ^ can be included by placing it anywhere but first; a
literal -, must be placed either first or last. Alternation does not work inside
character classes because | has its literal meaning.

The period . matches any single character except a new line, and is some-
times referred to as the wild card character. Special shorthand notation
for different sets of characters are often available; for example, \d repre-
sents any decimal digit, \s is shorthand for any space character, and their
upper-case versions represent their negation. The symbol \w is a synonym for
[[:alnum:]_], the alphanumeric characters plus the underscore, and \W is its
negation.

Exercise 5.8
Write a function that takes a character vector as input and checks to see which
elements have only nucleotide characters in them.

The set of POSIX character classes is given in Table 5.1. These POSIX
character classes only have their special interpretation within a regular ex-
pression character class; for example, [[:alpha:]] is the same as [A-Za-z].

5.3.1.2 Anchors, lookaheads and backreferences

An anchor does not match any specific character, but rather matches a
position within the text string, such as a word boundary, a place between
characters, or the location where a regular expression matches. Anchors are
zero-width matches. The symbols \< and \>, respectively, match the empty
string at the beginning and end of a word. In the example below, we use
gregexpr to show all the beginnings and endings of words. Notice that the
length of the match is always zero.
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[:alnum:] alphanumeric characters: [:alpha:] and [:digit:].
[:alpha:] alphabetic characters: [:lower:] and [:upper:].
[:blank:] blank characters, space and tab.
[:cntrl:] control characters. In ASCII, these characters have

octal codes 000 through 037, and 177 (DEL).
[:digit:] the digits: 0 1 2 3 4 5 6 7 8 9.
[:graph:] graphical characters: [:alnum:] and [:punct:].
[:lower:] lower-case letters in the current locale.
[:print:] printable characters: [:alnum:], [:punct:] and space.
[:punct:] punctuation characters: ^ ! ” # $ % & ’ ( ) * + , − . / : ;

< = > ? @ [ ] \ _ { | } * and ∼
[:space:] space characters: tab, newline, vertical tab, form feed,

carriage return, and space.
[:upper:] upper-case letters in the current locale.
[:xdigit:] hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F

a b c d e f.

Table 5.1: Predefined, POSIX, character classes.

> gregexpr("\\<", "my first anchor")

[[1]]
[1] 1 4 10
attr(,"match.length")
[1] 0 0 0

> gregexpr("\\>", "my first anchor")

[[1]]
[1] 3 9 16
attr(,"match.length")
[1] 0 0 0

The caret ^ and the dollar sign $ are meta-characters that, respectively,
match at the beginning and end of a line. The symbol \b matches the empty
string at the edge of a word (either the start or the end); and \B matches the
empty string provided it is not at the edge of a word. In the code below, we
show that \b is equivalent to both \> and \<, and that ^ and $ match only
once per string.

> gregexpr("\\b", "once upon a time")
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[[1]]
[1] 1 5 6 10 11 12 13 17
attr(,"match.length")
[1] 0 0 0 0 0 0 0 0

> gregexpr("\\>", "once upon a time")

[[1]]
[1] 5 10 12 17
attr(,"match.length")
[1] 0 0 0 0

> gregexpr("\\<", "once upon a time")

[[1]]
[1] 1 6 11 13
attr(,"match.length")
[1] 0 0 0 0

> gregexpr("^", "once upon a time")

[[1]]
[1] 1
attr(,"match.length")
[1] 0

> gregexpr("$", "once upon a time")

[[1]]
[1] 17
attr(,"match.length")
[1] 0

The notion of lookaheads and lookbehinds was introduced in Perl 5, and to
use them, you will need to set perl=TRUE in the function calls. One of the
problems that they can help to solve is the problem of finding one specified
regular expression that is not followed by another specified regular expres-
sion. The syntax is (?...) for matching lookahead, (?!...), for negative
lookahead, (?<=...) for lookbehind, and (?<!...) for negative lookbehind.
Implementations differ but it is easier to deal with lookahead, so it tends to
allow more general regular expressions than lookbehind.

If you consider the problem of finding some letter, say an r, that is not
followed by an r, then the solution without lookaheads is a bit more convoluted
than with them. The problem is detecting an r at the end of a string since in
that case, the usual regular expression does not match; as we see in the code
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below, the first two lines use the regular expression r[^r], but as we see it
fails in the second example, where r is the last character, and this is because
the regular expression [^r] has to match something. With a lookahead, we
find both matches.

> regexpr("r[^r]", "asffrb", perl = TRUE)

[1] 5
attr(,"match.length")
[1] 2

> regexpr("r[^r]", "asffr", perl = TRUE)

[1] -1
attr(,"match.length")
[1] -1

> regexpr("r(?!r)", "asffrb", perl = TRUE)

[1] 5
attr(,"match.length")
[1] 1

> regexpr("r(?!r)", "asffr", perl = TRUE)

[1] 5
attr(,"match.length")
[1] 1

There are, of course, other ways to solve this problem, usually involving
alternation; for example, r[^r]|r$ would also solve the problem as stated.

The backreference \N, where N is a single digit, matches the substring previ-
ously matched by the Nth parenthesized subexpression of the regular expres-
sion. So, for example, this regular expression would find pairs of upper-case
letters ([A-Z])\1. While this problem (finding pairs of letters) can be solved
in other ways, the use of backreferences makes it particularly simple.

> gregexpr("([A-Z])\\1", "ABBBZZ")

[[1]]
[1] 2 5
attr(,"match.length")
[1] 2 2
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? The preceding item is optional and will be matched at most once.
* The preceding item will be matched zero or more times.
+ The preceding item will be matched one or more times.

{n} The preceding item is matched exactly n times.
{n,} The preceding item is matched n or more times.
{n,m} The preceding item is matched at least n times,

but not more than m times.

Table 5.2: Repetition operators for regular expressions.

5.3.1.3 Quantifiers

While matching specific patterns is often all that is needed, there are many
cases where special handling of repeated instances of the regular expres-
sion is useful. For example, one can identify a white-space character using
[:blank:], but sometimes you want to identify all contiguous white-space
characters. The Classical problems involve finding either one or none of some-
thing, finding at least one of something and so on. To address these problems,
there are several repetition quantifiers. The repetition quantifier comes after
the regular expression. Some of the more common methods of specifying rep-
etition are given in Table 5.2. Repetition is greedy, so the maximal possible
number of repeats is used.

One minor difference between PCRE and extended regular expressions is
that if a quantifier is followed by a ?, then in PCRE the matching is not
greedy. The difference is demonstrated in the example below. In the first call
to regexpr, the match is to five characters, while in the second it is only three
characters long.

> regexpr("AB{2,4}?", "ABBBBB")

[1] 1
attr(,"match.length")
[1] 5

> regexpr("AB{2,4}?", "ABBBBB", perl = T)

[1] 1
attr(,"match.length")
[1] 3
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5.3.2 Matching

For each regular expression, each input sequence is traversed from left to
right; when a match is found, the regular expression engine returns. In R,
there are functions that will find all matches, and either report them or per-
form substitution on them. However, the convention that has been adopted
in R (borrowed from Perl) is that no overlapping matches are detected. This
is somewhat problematic for some biological problems, such as finding tran-
scription factor binding sites, as these often overlap.

Different implementations may return different matches to the same regular
expression. Typical differences arise due to whether a longer sequence has
preference over a shorter one, as is shown in the example below. In the first
call using extended regular expressions, the match is to foobar, while in the
second call, using PCRE, the match is to the left-most query string.

> regexpr("foo|foobar", "myfoobar")

[1] 3
attr(,"match.length")
[1] 6

> regexpr("foo|foobar", "myfoobar", perl = TRUE)

[1] 3
attr(,"match.length")
[1] 3

Another problem that arises with application to biological sequence match-
ing is shown by the convention used by gregexpr, which finds all non-overlapping
matches to the input regular expression. In the example below, gregexpr re-
ports only one match, since the second match begins at position 7, which is
inside the first match. On the other hand, gregexpr2 from the Biostrings
package reports both. The current version of gregexpr2 only supports exact
matching and does not support any form of regular expression matching.

> testS = "ACTACCACTACCACT"
> gregexpr("ACTACCACT", testS)

[[1]]
[1] 1
attr(,"match.length")
[1] 9

> gregexpr2("ACTACCACT", testS)
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[[1]]
[1] 1 7

5.3.3 Using regular expressions

We now consider a few examples; the first is adapted from Stubblebine
(2007). They suggest using ^\d\d\/\d\d/\d\d\d\d$ to match the
MM/DD/YYYY format. But that is not quite specific enough, since months
can only range from 1 to 12 and days from 1 to 31. In the first example, the
date is fine, but in the second, both the month and the day are not valid, and
it might be nice to check that too.

> regexpr("\\d\\d\\/\\d\\d\\/\\d\\d\\d\\d",
"today is 12/01/1977", perl = TRUE)

[1] 10
attr(,"match.length")
[1] 10

> regexpr("\\d\\d\\/\\d\\d\\/\\d\\d\\d\\d",
"today is 21/41/1977", perl = TRUE)

[1] 10
attr(,"match.length")
[1] 10

Exercise 5.9
Create a valid regular expression that checks to make sure that both the month
and day specifications are correct.

Our next example is a small function that strips leading or trailing white
space from its input value.

> strwhite = function(x, lead = TRUE, trail = TRUE) {
if (lead)

x = sub("^[[:blank:]]*", "", x, perl = TRUE)
if (trail)

sub("[[:blank:]]*$", "", x, perl = TRUE)
else x

}
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Exercise 5.10
What is the purpose of the * in the regular expressions? Can you extend this
to deal with white space as defined by [:space:]? Write a function similar to
strwhite that replaces two or more leading blanks with a single space. Modify
strwhite to also strip \n from the end of a line.

Regular expressions, although using a different syntax, have been used by
the Prosite database to describe protein motifs. An example of a Prosite mo-
tif is given below. The pattern for this motif is given on the line that begins
with PA, and is [RK]-x(2,3)-[DE]-x(2,3)-Y. The syntax for a Prosite reg-
ular expression is that either x or X matches any amino acid, the dash - is a
separator and has no meaning, square brackets contain lists of characters to
match and curly braces contain lists of characters that cannot match. Repe-
tition is specified using brackets (, ). The one-argument version specifies the
number of repetitions; with the two-argument version, the minimum number
is specified first, the maximum number second. The period at the end of the
Prosite regular expression is ignored.

ID TYR_PHOSPHO_SITE; PATTERN.
AC PS00007;
DT APR-1990 (CREATED); APR-1990 (DATA UPDATE); APR-1990

(INFO UPDATE).
DE Tyrosine kinase phosphorylation site.
PA [RK]-x(2,3)-[DE]-x(2,3)-Y.
CC /TAXO-RANGE=??E?V;
CC /SITE=5,phosphorylation;
CC /SKIP-FLAG=TRUE;
CC /VERSION=1;
DO PDOC00007;
//

A Prosite pattern can be turned into a regular expression quite simply using
gsub, as we show in the code below. We first strip out the dashes and the
period that indicates the end of the pattern. Next, we translate the Prosite
wild card character to the regular expression wild card character and change
the brackets that surround the repetition indicator.

> prositeM = "[RK]-x(2,3)-[DE]-x(2,3)-Y."
> regexM = gsub("-|\\.", "", prositeM)
> regexM = chartr("xX()", "..{}", regexM)

And in the code example below, we test whether our translation worked.
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> testP = "ACRDRACDTUYACRD"
> testN = "ACRDRAXXCDTUYACRD"
> regexpr(regexM, testP)

[1] 5
attr(,"match.length")
[1] 7

> regexpr(regexM, testN)

[1] -1
attr(,"match.length")
[1] -1

5.3.4 Globbing and regular expressions

On Unix-like systems, globbing expands file names using a pattern-matching
notation similar to that of regular expressions. However, the capabilities are
much more limited, and the uses are typcially for finding files with particular
endings, e.g., ls *.pdf to list all files that end with .pdf. The glob2rx

function translates globbing patterns into corresponding regular expressions.

5.4 Prefixes, suffixes and substrings

There are a number of classical string finding problems that have broad
application. They are the problems of finding the longest common prefix,
suffix or substring across a set of strings. A related problem is that of finding
the longest repeated string in a series of strings, where here that repeated
string could be entirely within one of the set of strings, or it could be in two
or more.

The first two problems are quite easy to solve, as one simply starts at one
end of the strings, or the other, and compares characters until they do not
match. There are functions in the Biobase package, lcPrefix and lcSuffix,
that address the suffix and prefix problems. But the longest common substring
problem, and the longest repeated substring problems, are much harder, and
one elegant solution makes use of a data structure known as a suffix tree.
Suffix trees are discussed in many places, such as Cormen et al. (1990) and
Gusfield (1997); among the more interesting approaches is that in Chapter 15
of Bentley (1999). Suffix trees are widely used in Bioinformatics and underly
the MUMmer technology (Kurtz et al., 2004).
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In the code below, we demonstrate the use of the suffix and prefix functions.
Notice that white space is considered to be part of the prefix or suffix.

> library("Biobase")
> str1 = c("not now", "not as hard as wow", "not something new")
> lcPrefix(str1)

[1] "not "

> lcSuffix(str1)

[1] "w"

For any string, then, the set of suffixes is of the same length as the string;
the first suffix is the whole string, the second suffix is the string starting at
the second letter, and so on. Consider the work biology, which has seven
characters, and hence seven suffixes:

1] biology
2] iology
3] ology
4] logy
5] ogy
6] gy
7] y

And these can then be sorted into lexicographic order to yield:

1] biology
2] iology
3] gy
4] logy
5] ology
6] ogy
7] y

And now the longest repeated subsequence, or substring, can be found by
comparing adjacent pairs of suffixes. In this case it is very short; the letter o
appears twice. The package Rlibstree, available from the Omegahat Project,
provides some tools for computing with suffix trees.

> library("Rlibstree")
> s1 = "biology"
> getLongestSubstring(s1)

[1] "o"
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5.5 Biological sequences

The genome of every organism is encoded in chromosomes that consist of
either DNA or RNA. High throughput sequencing technology has made it pos-
sible to determine the sequence of the genome for virtually any organism, and
there are many that are currently available. Chromosomes for many organ-
isms can be thought of as very long strings from a relatively small alphabet.
DNA is a double-stranded molecule, where bases on opposite strands are com-
plementary, in that A is complementary to T, and C is complementary to G.
The RNA alphabet is very similar, with U representing uracil, which is found
in RNA but not DNA. However, in many cases, either the exact nucleotide at
any location is unknown, or is variable, and the International Union of Pure
and Applied Chemistry (IUPAC) has provided a standard nomenclature suit-
able for representing such sequences. The alphabet for dealing with protein
sequences is based on the 20 amino acids.

The discussion here is based on code provided in the Biostrings package.
The basic class used to hold strings is the BString class, which has been de-
signed to be efficient in its handling of large character strings. Subclasses
include DNAString , RNAString and AAString (for holding amino acid se-
quences). The BStringViews class holds a set of views on a single BString
instance; each view is essentially a substring of the underlying BString in-
stance. Alignments are stored using the BStringAlign class.

Fundamental operations, and the corresponding Biostrings functions, on
DNA and RNA sequences are listed next.

complement replace each base in the input string with its complementary
base.

reverse return a string with the bases in the reverse order.

reverseComplement both reverse and complement the input string.

transcribe given an input DNA sequence, return the value of the RNA se-
quence that would result from transcribing the input.

cDNA given an input RNA sequence, return the complementary
DNA (cDNA) sequence that gave rise to it.

In the example below, we begin with the RNA sequence for a human mi-
croRNA and determine the DNA sequence that gave rise to it.

> st1 = RNAString("UCUCCCAACCCUUGUACCAGUG")
> cD = cDNA(st1)
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The matchprobes package was written primarily to deal with Affymet-
rix GeneChips and hence focuses on them. The functions provided include
basecontent, complementSeq and reverseSeq. In the code below, we demon-
strate one method for obtaining the mismatch probe.

> library("matchprobes")
> seq <- c("CGACTGAGACCAAGACCTACAACAG",

"CCCGCATCATCTTTCCTGTGCTCTT")
> complementSeq(seq, start=13, stop=13)

[1] "CGACTGAGACCATGACCTACAACAG" "CCCGCATCATCTATCCTGTGCTCTT"

Exercise 5.11
Write a version of complementSeq that works for either DNA or RNA us-
ing chartr. How does the speed compare with that of the version in the
matchprobes package? Write a version of reverseSeq using strsplit, rev

and paste. How does the speed of that function compare with the one in the
matchprobes package?

5.5.1 Encoding genomes

A number of complete genomes, represented as DNAString objects, are
provided through the Bioconductor Project. They rely on infrastructure in
the BSgenome package, and all such packages have names that begin with
BSgenome. You can find the list of available genomes using the
available.genomes function. In the code below, we load build 18 of the human
genome, and show what data are contained in the package.

> library("BSgenome.Hsapiens.UCSC.hg18")
> Hsapiens

Human genome
|
| organism: Homo sapiens
| provider: UCSC
| provider version: hg18
| release date: Mar. 2006
| release name: NCBI Build 36.1
|
| single sequences (see ?seqnames ):
| chr1 chr2 chr3 chr4
| chr5 chr6 chr7 chr8
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| chr9 chr10 chr11 chr12
| chr13 chr14 chr15 chr16
| chr17 chr18 chr19 chr20
| chr21 chr22 chrX chrY
| chrM chr5_h2_hap1 chr6_cox_hap1 chr6_qbl_hap2
| chr1_random chr2_random chr3_random chr4_random
| chr5_random chr6_random chr7_random chr8_random
| chr9_random chr10_random chr11_random chr13_random
| chr15_random chr16_random chr17_random chr18_random
| chr19_random chr21_random chr22_random chrX_random
|
| multiple sequences (see ?mseqnames ):
| upstream1000 upstream2000 upstream5000
|
| (use the $ or [[ operator to access a given sequence)

As you see in the output, all chromosomes are present, as are other pieces.
In many genomic sequences, there are regions that are known not to be be

of interest for a specific task. These include regions where the sequence is
unknown (coded as an N in genomic sequences), or regions with short repeats.
These can be masked using the mask function, which will mask features based
either on their position or on their content. The basic idea used is to create a
view on the original string that only contains the regions that are not masked.
In the example below, we mask all Ns on human Chromosome 22; we also
report the proportion of Ns.

> chr22NoN <- mask(Hsapiens$chr22, "N")
> alphabetFrequency(Hsapiens$chr22, freq = TRUE)["N"]

N
0.299

5.6 Matching patterns

The Biostrings package provides three basic matching methods. One
method does exact matching of a single query sequence against a single refer-
ence sequence (matchPattern); a second matches patterns that are of the form
left-gap-right (matchLRPattern), allowing for different numbers of mismatches
in the left and right patterns, and for specifying the maximum number of
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characters in the gap. The third method (matchPDict) compares a large li-
brary of query sequences to a single reference sequence. It supports different
length query sequences and both exact and inexact matching. Extensions and
improvements are planned, so it is important to read the documentation for
the Biostrings package to determine what the current capabilities are.

5.6.1 Matching single query sequences

A motif is a short sequence pattern that occurs repeatedly in a group of
related DNA or RNA sequences or that occurs in protein or peptide sequences.
The existence of a motif is suggestive of a conserved function. For DNA and
RNA, motifs are often indicators of promotor binding sites (the famous TATA
box) or of transcription factor binding sites, or of splicing signals. In protein
sequences, motifs usually reflect structural or functional conservation.

Among the more famous motifs in DNA sequences is the so-called TATA
box consensus sequence (TATAAAA), which is involved in guiding RNA poly-
merase II to the initiation site for transcription. One can either search for
exact matches, as in the code below, or for some number of mismatches. If
you only want to know how many matches there are, not where they are, then
use the countPattern function.

> TATA = "TATAAAA"
> mT = matchPattern(TATA, chr22NoN)
> countPattern(TATA, chr22NoN)

[1] 5276

While one might expect that matching to the masked version of Chromo-
some 22 would be faster, this need not be the case. The issue is primarily
due to the current implementation where a masked sequence is just a set of
views on the original sequences and matchPattern is called on each view in an
R for loop. The cost of this surpasses the benefit that you get from reduc-
ing the length of the target sequence. Using chr22NoN is reasonable because
the number of views is small, but with a very fragmented masked sequence
(thousands of views), things would be much worse.

Typically one might be willing to live with some number of mismatches, and
that too can be accommodated using matchPattern (although the function
becomes appreciably slower as more mismatches are allowed). In the code
below, we also demonstrate the use of the mismatch function that shows the
location of the mismatch(es) in each of the patterns. The value is a zero length
integer vector if there are no mismatches.
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> mmT = matchPattern(TATA, chr22NoN, max.mismatch = 1)
> length(mmT)

[1] 102104

> mismatch(TATA, mmT[1:3])

[[1]]
[1] 2

[[2]]
[1] 5

[[3]]
[1] 7

5.6.2 Matching many query sequences

Matching a huge number of query sequences to a single target sequence is a
problem that is now relevant due to high throughput sequencing technologies.
These technologies typically yield a large number, sometimes in the tens of
millions, of short reads. One of the bioinformatic tasks is to match these to a
known genome. And the function matchPDict can be used for this. It is based
on the Aho-Corasick algorithm.

The following example is taken from the matchPDict manual page. Except
here, we match probes from the Affymetrix HG-U95Av2 GeneChip to Chro-
mosome 22. First the library containing the probe information is loaded, then
we create a dictionary (preprocess the approximately 200,000 25-mers), and
finally match that to Chromosome 22. One might want to also search for the
mismatch probes, which are not stored in the probe packages since they are
easily obtained by taking each probe and replacing its 13th nucleotide with
its complement; this can easily be achieved with the complementSeq function
from the matchprobes package.

> library(hgu95av2probe)
> dict <- hgu95av2probe$sequence
> length(dict)

[1] 201800

> unique(nchar(dict))

[1] 25
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> dict[1:5]

[1] "TGGCTCCTGCTGAGGTCCCCTTTCC" "GGCTGTGAATTCCTGTACATATTTC"
[3] "GCTTCAATTCCATTATGTTTTAATG" "GCCGTTTGACAGAGCATGCTCTGCG"
[5] "TGACAGAGCATGCTCTGCGTTGTTG"

> pdict <- PDict(dict)
> vindex <- matchPDict(pdict, Hsapiens$chr22)
> length(vindex)

[1] 201800

> count_index <- countIndex(vindex)
> sum(count_index)

[1] 53280

> table(count_index)

count_index
0 1 2 3 4 5 6 7

198516 2855 185 84 56 12 6 6
8 10 11 13 15 35 52 68
3 1 2 1 1 1 1 1
90 147 152 179 186 190 194 196
1 1 1 1 1 1 1 1

197 205 214 249 264 274 283 289
1 1 1 1 1 1 1 1

297 309 310 324 330 333 335 338
1 1 1 1 1 1 1 1

365 384 413 417 421 444 453 460
2 1 1 1 1 1 1 1

461 467 479 486 492 502 514 517
1 1 2 1 1 1 1 1

788 823 857 886 904 921 932 953
1 1 1 1 1 1 1 1

973 1146 1147 1173 1206 1227 1269 1270
1 1 1 1 1 1 1 1

1283 1297 1299 1303 1305 1309 1315 1957
1 1 1 1 1 1 1 1

2127 2757 2771
1 1 1

Most of the 25-mers do not match at all, but some match a very large
number of times, suggesting that they are not that specific. Note that we
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have only matched to one strand of Chromosome 22, and expect most 25-
mers to match at some other location in the genome. We can confirm our
results using countPattern, as is shown in the example below.

> dict[count_index == max(count_index)]

[1] "CTGTAATCCCAGCACTTTGGGAGGC"

> countPattern("CTGTAATCCCAGCACTTTGGGAGGC", Hsapiens$chr22)

[1] 2771

The functions startIndex and endIndex get the starting and ending indices,
respectively.

5.6.3 Palindromes and paired matches

Palindromes are words or sequences of characters that read the same for-
ward as they do backward, such as the word madam. While there are natural
language applications, finding palindromes, or sequences like palindromes,
have important biological applications. We extend the definition of palin-
drome a little so that it is more relevant. The variants we are interested in
are composed of a left arm of the palindrome, a loop of some number of char-
acters, followed by the right arm of the palindrome. In addition there will be
cases where we would like to find left and right arms that are reverse com-
plements of each other (and hence may hybridize). If the loop is zero, then
these are the complemented palindromes defined in Gusfield (1997), but the
loop plays an important role in some applications. The Biostrings package
has two functions for finding palindromes: findPalindromes and
findComplementedPalindromes. The latter can only be used on sequences such
as DNA or RNA where the notion of complement is sensible.

The example below is based on the manual page for findPalindromes. How-
ever, we use human chromosome 22.

> chr22_pals = findPalindromes(chr22NoN, min.armlength = 40,
max.looplength = 20)

> nchar(chr22_pals)

[1] 83 96 107 94 81 90 88 91 88 136 91 88 106 100
[15] 100 88 97 81 82 81 85 89 93 97 101 105 109 111
[29] 107 103 99 95 91 87 83 81 86 83 85 91 83 89
[43] 113 83 96 98 97 127 95 80 85 88 83 100 97 94
[57] 87 83 105 104 81 83 93
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> palindromeArmLength(chr22_pals)

[1] 83 96 107 94 81 43 88 40 40 64 40 40 106 43
[15] 43 40 40 81 82 81 85 89 93 97 101 105 109 111
[29] 107 103 99 95 91 87 83 81 86 83 85 91 83 89
[43] 47 83 96 98 97 127 95 80 85 88 83 40 40 41
[57] 41 83 105 104 81 83 93

> palindromeLeftArm(chr22_pals)

Views on a 49691432-letter DNAString subject
subject: NNNNNNNNNNNNNNNNNNNNNNNNN...NNNNNNNNNNNNNNNNNNNNNNNNN
views:

start end width
[1] 14668595 14668677 83 [GCGCGTGCGGCGTG...GTGCGGCGTGCGCG]
[2] 14668595 14668690 96 [GCGCGTGCGGCGTG...GTGCGGCGTGCGCG]
[3] 14668596 14668702 107 [CGCGTGCGGCGTGC...CGTGCGGCGTGCGC]
[4] 14668609 14668702 94 [CGCGTGCGGCGTGC...CGTGCGGCGTGCGC]
[5] 14668622 14668702 81 [CGCGTGCGGCGTGC...CGTGCGGCGTGCGC]
[6] 17158213 17158255 43 [ATAGATAGATAGAT...TAGATAGATAGATA]
[7] 17158216 17158303 88 [GATAGATAGATAGA...AGATAGATAGATAG]
[8] 18530077 18530116 40 [ACCACCACCACCAC...CACCACCACCACCA]
[9] 18530368 18530407 40 [ACCACCACCACCAC...CACCACCACCACCA]
... ... ... ... ...
[55] 35557739 35557778 40 [TTCTTCTTCTTCTT...CTTCTTCTTCTTCT]
[56] 35557742 35557782 41 [TTCTTCTTCTTCTT...TTCTTCTTCTTCTC]
[57] 36054993 36055033 41 [CTCTCTCTCTCTCC...TCTCTCTCTCTCTC]
[58] 40665769 40665851 83 [AAAGAAAGAAAGAA...AAGAAAGAAAGAAA]
[59] 41828847 41828951 105 [ATATACATATATAC...CATATATACATATA]
[60] 42640359 42640462 104 [CTTCTTCTTCCTTC...CTTCCTTCTTCTTC]
[61] 47175937 47176017 81 [AAGAAAGAAAGAAA...AAAGAAAGAAAGAA]
[62] 47175938 47176020 83 [AGAAAGAAAGAAAG...GAAAGAAAGAAAGA]
[63] 47948015 47948107 93 [TATATATATATATA...ATATATATATATAT]

> ans = alphabetFrequency(chr22_pals,
base = TRUE)

> head(ans, n = 15)

A C G T other
[1,] 0 26 45 12 0
[2,] 0 30 52 14 0
[3,] 0 34 57 16 0
[4,] 0 30 50 14 0
[5,] 0 26 43 12 0
[6,] 46 0 21 23 0
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[7,] 44 0 22 22 0
[8,] 31 54 0 6 0
[9,] 30 52 0 6 0
[10,] 46 80 0 10 0
[11,] 31 54 0 6 0
[12,] 30 52 0 6 0
[13,] 36 62 0 8 0
[14,] 33 59 0 8 0
[15,] 34 57 0 9 0

We see from the frequency counts that the palindromic regions have some-
what unusual frequencies. Typically, one base is not present at all, and the
other bases form some sort of repeated sequences.

Exercise 5.12
Find all of the palindromes that have all four bases present. Are their se-
quences also highly repetitive?

Exercise 5.13
Find all the complemented palindromes on Chromosome 22.

Palindromes are a special case of paired matches. For a paired match, one
specifies a left pattern, a right pattern and a maximum distance between the
left pattern and the right pattern. This type of matching is handled by the
matchLRPatterns function.

> Lpattern <- "CTCCGAG"
> Rpattern <- "GTTCACA"
> LRans = matchLRPatterns(Lpattern, Rpattern, 500,

Hsapiens$chr22)
> length(LRans)

[1] 21

And we see that there are 21 places on Chromosome 22 where the left
pattern occurs within 500 bases of the right pattern.

5.6.4 Alignments

One of the major tasks in Bioinformatics is sequence alignment. Both Gus-
field (1997) and Haubold and Wiehe (2006) give reasonable coverage of the
problems, and the methods used to solve them. Our covarage is quite brief.
There are many algorithms that can be used to perform alignments, and many
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different tasks, such as motif finding, aligning multiple sequences, aligning
genes, aligning genomes, local versus global alignments, and all often require
slightly different tools. The tools currently available in Bioconductor are lim-
ited and currently only support pairwise global alignment. There are two
basic types of algorithms that are widely used: optimal alignment that typ-
ically relies on dynamic programming and heuristic alignments that do not
necessarily provide an optimal solution but are fast and allow users to work
on large problems.

Two, possibly related, biological sequences can differ in a number of ways.
One typically thinks of the relatedness as coming from evolutionary time,
where the sequences shared some common ancestor. The simple sorts of
changes that can occur are point mutations, insertions and deletions (the
latter two are referred to as indels). Choosing the optimal alignment involves
some form of scoring; and for amino acid alignments, substitution matrices
are used. For aligning DNA and RNA, one typically uses some score for mu-
tations and another score for insertions or deletions, although modifications
are somewhat straightforward. Most researchers believe that some form of
affine penalty for indels is better than a simple penalty per nucleotide.

The alignment of protein sequences relies on a substitution matrix, which
provides penalties for the different substitutions. A good discussion of the
current methodology used to create these matrices is given in Eddy (2004).
The example below shows how to align two amino acid sequences using the
needwunsQS function, and one of the available substitution matrices (look for
help on substitution.matrices to find all the predefined ones). It is impor-
tant to emphasize that this implementation of the Needleman-Wunsch algo-
rithm does not support the affine model for gap penalties; all gaps are treated
the same.

> aa1 <- AAString("HXBLVYMGCHFDCXVBEHIKQZ")
> aa2 <- AAString("QRNYMYCFQCISGNEYKQN")
> needwunsQS(aa1, aa2, "BLOSUM62", gappen = 3)

Global Pairwise Alignment
1: HXBLVYMGCHFDCXV-BEHIKQZ
2: QRN--YMYC-FQCISGNEY-KQN
Score: 39

> needwunsQS(aa1, aa2, "BLOSUM62", gappen = 8)

Global Pairwise Alignment
1: HXBLVYMGCHFDCXVBEHIKQZ
2: QRN--YMYC-FQCISGNEYKQN
Score: 17



Working with Character Data 181

Aligning DNA is a slightly different problem; here the scoring is usually
handled more simply with a negative score given for mismatches, and a gap
penalty. In the example below, we load the sequence for two genes, of known
homology in two different yeast strains, S. cerevisae and S. paradoxus; the
standard name for the gene in S. cerevisae is YDL143W. In the second call
to needwunsQS, we made the gap penalty larger than the mismatch penalty,
with the consequence that the aligned sequence is now shorter, since it is more
expensive to add a gap than it is to have a mismatch. The data are in the
extdata directory of the Biostrings package, so we first read them in and
then align them, using different gap penalites.

> oldD = setwd(system.file("extdata", package = "Biostrings"))
> Sc = readFASTA("Sc.fa", )[[1]]$seq
> Sp = readFASTA("Sp.fa")[[1]]$seq
> setwd(oldD)
> mat <- matrix(-5L, nrow = 4, ncol = 4)
> for (i in seq_len(4)) mat[i, i] <- 0L
> rownames(mat) <- colnames(mat) <- DNA_ALPHABET[1:4]
> dnaAlign1 = needwunsQS(Sc, Sp, mat, gappen = 1)
> nchar(dnaAlign1)

[1] 1704

In the example above, the gap penalty was much smaller than the mutation
penalty, so gaps will be preferred over mutations. If we increase the gap
penalty, so that gaps become more expensive, then mutations will be favored.

> dnaAlign2 = needwunsQS(Sc, Sp, mat, gappen = 6)
> nchar(dnaAlign2)

[1] 1587

Exercise 5.14
Over evolutionary time methylated cytosines (C) are converted to thymines
(T) due to spontaneous deamination. Modify the penalty matrix mat above
to penalize less for this conversion than for the others. How does that change
the two alignments?

Some investigators want to find the longest subsequence that is common to
both strings (this is sometimes referred to as the maximum unique match).
This is easily handled using the Rlibstree package.
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> library("Rlibstree")
> tree = SuffixTree(c(Sc, Sp))
> MUM = getLongestCommonSubstring(tree)
> nchar(MUM)

[1] 89

The consensus matrix for any alignment can be obtained using the consmat

function. The consensus matrix is simply the matrix where rows correspond to
characters in the alphabet, columns correspond to positions in the sequence,
and for each column the proportion of each letter found in that position is
reported. It is of somewhat limited value for pair-wise alignments, but we
provide a brief example below.

> consmat(dnaAlign1)[, 1:20]

pos
letter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

- 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0.5 0.5 0 0 0
A 1 0 0 0 0 0 0 0 0 1 1 0.0 0.5 0 0 0.0 0.0 0 0 1
C 0 0 0 0 1 0 0 1 0 0 0 0.0 0.0 0 0 0.5 0.0 1 1 0
G 0 0 1 0 0 0 1 0 0 0 0 0.5 0.0 1 0 0.0 0.0 0 0 0
T 0 1 0 1 0 1 0 0 1 0 0 0.0 0.0 0 1 0.0 0.5 0 0 0



Chapter 6

Foreign Language Interfaces

6.1 Introduction

In this chapter we discuss some of the many different interfaces to functions
and libraries written in other languages. There are several reasons for wanting
to interact with software written in other languages. The two main reasons
are efficiency and access to existing code bases. Since R is not compiled,
in some situations its performance can be substantially improved by writing
code in a compiled language. There are also reasons not to write code in other
languages, and in particular we caution against premature optimization, pro-
totyping in R is often cost effective. And in our experience very few routines
need to be implemented in other languages for efficiency reasons. Another
substantial reason not to use an implementation in some other language is
increased complexity. The use of another language almost always results in
higher maintenance costs and less stability. In addition, any extensions or
enhancements of the code will require someone that is proficient in both R
and the other language.

We focus most of our attention on writing and linking to C code since it
is the most widely used interface and because it is the mechanism used to
interface with other languages as well. In large part, the popularity of the
C interface is due to the fact that R itself is largely written in C and it
is easy to make use of the internal data structures, macros and code from
routines written in C. We will briefly discuss FORTRAN, Perl, and Python,
but their treatment is not in-depth and readers are referred to other sources,
such as the R Extensions manual (R Development Core Team, 2007c) and the
documentation supplied with a package that they want to use.

The organization of this chapter, after a brief overview, follows the basic
tasks that a programmer will need to carry out to successfully use software
written in a foreign language. They will need to write the R code, write the
C code, correctly compile and link the C code, ensure that a library is placed
in an appropriate location and that the correct entry point is found when the
code in the R function is evaluated in R. These tasks can be quite complex
and we recommend that developers who access routines written in foreign
languages place that code in a package; see Chapter 7 for details on how to
write R packages. There is substantial support in the package building and
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loading mechanism for using calls to C and other languages. It is possible
to call directly to appropriately built libraries but this approach tends to be
quite cumbersome, and we do not discuss it.

6.1.1 Overview

We begin with a brief overview of the basic tasks that must be carried out in
order to use software written in another language from within R. The basic set
of operations that must be carried out are reasonably well known. There must
be some mechanism for finding the the appropriate software entry point, there
must be some mechanism to translate R data structures into data structures
used by the language being invoked, there must be some mechanism to initiate
the call, and finally there must be some mechanism for getting return values
and passing them back to R. It is helpful if there is also a mechanism for
detecting and handling exceptions such as errors.

Perhaps the most important thing to realize is that when interacting with
code written in another language, there must be some translation of data
structures from one language to the other. Any data structure that can be
translated can be passed from one language to the other. When using the
.C interface, for example, there is a one-to-one correspondence between data
representations in R and C; see Table 6.1 for more details. And in this case
the developer has the option of either copying the data or not.

Some attention should also be paid to issues of memory management. R
has a sophisticated internal garbage collection system, which can be used
for many programming problems. But working with the memory manager
requires that the program follow the appropriate paradigms. On the other
hand, using language-specific calls to allocate memory (e.g., malloc in C) can
impose a substantial burden on the developer. Forgetting to free memory can
lead to memory leaks, and such purpose-allocated memory cannot easily be
used for variables that are passed back to R.

In general, one does not call the interface functions such as .C or .Call

directly, but rather embeds these calls inside larger functions that set up the
appropriate calling sequence, invoke the foreign function and then process the
return values.

The foreign function itself is contained in some form of dynamic library that
will be loaded into R, either directly by a call to dyn.load or when the package
containing the C code is loaded. When one of these functions is called, R looks
through the set of dynamically loaded libraries for one with the appropriate
symbol and invokes it. Since it is not uncommon for two authors to use
similar names for functions, there are real chances for inadvertently invoking
the wrong C routine. Using R packages for any external libraries and the use
of the registration mechanism ensure that the correct code is called.

It is important when writing functions that you take advantage of as much
of the internal code in R as possible. The R API is discussed in Section 6.4.
There are many functions for creating R objects and for duplicating R objects.
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Other functions, such as the internal versions of subscripting, sorting and,
most importantly, random number generation, can be called directly in your
code. We strongly recommend that you make use of as much of the internal
code as possible.

6.1.2 The C programming language

We presume that the reader is familiar with programming in C. If not, there
are many good books that describe C; perhaps the best and most widely used
is Kernighan and Ritchie (1988). There are also a number of interesting books
with algorithms and code examples written in C. Among these are Sedgewick
(2001), which is a very good reference.

In C, definitions and declarations that need to be shared between files are
declared in header files. Header files are then included in each file that requires
access to the definitions. Header files have a .h suffix. When interfacing with
R, you will generally need to include some of the R header files so that your
code can make use of internal R data structures and functions. These are
described in Section 6.4.1.

The C language supports pointers, and these are used extensively in the
internals of R, as are macros and structures. These various topics are well
described in Kernighan and Ritchie (1988), and readers unfamiliar with them
are advised to spend some time studying them.

6.2 Calling C and FORTRAN from R

There are a number of different interfaces that can be used to call C from
R. They include .Call, .External, and .C. The first pass down pointers to
internal R objects, which can then be manipulated in C. But that requires
that the C code be written using R internal data structures, and familiarity
with the R internals will be essential. The other interface, .C, passes down
pointers to C data structures and is suitable for calling C code that is not
aware of R’s internal data structures. Details on the specific conversions are
listed in Table 6.1. These interfaces also differ in their return values. .C

and .Fortran do not return any value, but rather rely on altering the values
that were passed out and having the calling function process them on return.
For .Call and .External, the return value is an R object (the C functions
must return a SEXP), and for these functions the values that were passed are
typically not modified. If they must be modified, then making a copy in R,
prior to invoking the C code, is necessary.

The first argument to all interface functions is name, which is the name of the
foreign function to be invoked. This is the name of the C routine as it appears
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in your C code (or the name of the FORTRAN subroutine). Some compilers
prepend underscores or perform other operations on the names of functions
(name-mangling). There is no need for you to perform any name-mangling.
R detects when and how the names will be mangled, for each platform, and
performs the name-mangling automatically.

The second argument to all interface functions is the . . . argument and the
values supplied here are passed down to the function being called. The order
in this list is the order in which they will be passed to the external function.
Any names in the list are ignored during the call to .C or .Fortran, but can
be used to extract components of the returned value.

For functions within a package with a name space, the PACKAGE argument
to all foreign interface functions should be omitted. This will ensure that the
dynamic-link library (DLL) for the correct version of the package is found and
used.

So, a first design decision is whether to pass down basic C data structures,
or whether more complex objects, such as lists, or instances of classes, etc.,
will be needed at the C level. If the former, then using .C will be the easiest
approach. We note that this is also a reasonable approach when developing
an interface to an existing set of C functions. Alternatively, one can write a
small interface routine and use .Call.

There are a number of advantages to using the .Call interface that by far
outweigh the slightly increased complexity of use. Among these is the fact that
it is much easier to check and ensure that the types, lengths (or sizes), etc.,
of the arguments are correct, thereby providing more security against errors
at the C level. Since R data objects are largely self-describing, they can be
queried in the C code so an error can be thrown if a problem is encountered.
By contrast, the .C interface essentially passes pointers to C data structures,
which are not self-describing. Thus the external C code must presume that
the input values are of the correct size and type, since no direct validation is
possible.

There are some examples in the package RBioinf that accompanies this
monograph. In particular, simpleRand and simpleSort demonstrate some uses
of the .Call interface, and the implementation is discussed in some detail in
Section 6.4.

6.2.1 .C and .Fortran

The first argument to these functions is the name of the routine to be called,
as it appears in the source file. The next formal argument is the . . . argument,
and values passed via the . . . arguments are supplied to the native routine,
in the order given. Values can be named anything other than the four names
discussed in the next paragraph, but the names are ignored in the call to the
foreign function. There is a limit of 65 arguments that can be passed to a
native routine. If a value is named, then the names can be used to extract
the relevant components from the return value.
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R Storage Mode C Type FORTRAN Type SEXPTYPE
logical int * INTEGER LGLSXP
integer int * INTEGER INTSXP
double double * DOUBLE PRECISION REALSXP
single single * SINGLE PRECISION SINGLESXP
complex Rcomplex * DOUBLE COMPLEX CPLXSXP
character char ** CHARACTER*255 STRSXP
raw char * none RAWSXP
list SEXP not supported VECSXP
other SEXP not supported none

Table 6.1: Type conversions between internal R types and C and FORTRAN
types. Note that the single type only exists in R as a means to pass values
out to C or FORTRAN.

The calls to both .C and .Fortran include four arguments: DUP, NAOK,
PACKAGE and ENCODING. These must be named arguments in the call, and
no partial matching is used. DUP controls whether or not the arguments are
copied before being passed to the external function. Not copying is generally
done for efficiency reasons but can be dangerous. Since nothing is returned
from these functions, they must modify at least one of the supplied arguments.
It is somewhat safer to modify copies of objects, as that ensures that internal
R data objects are not altered. If NAOK is set to TRUE, then missing values,
NAs, and other non-finite values, such as Inf, are passed out to the external
function; otherwise an error is signaled. NAOK should be set to FALSE when
calling routines that were not specifically written to interface with R, since
it is unlikely that they will appropriately accommodate these special values.
The PACKAGE argument specifies the name of the package and limits the search
for the function to the DLL that is associated with the named package. The
ENCODING argument can be used to provide encoding information for character
data that is being passed to the external code.

6.2.2 Using .Call and .External

These functions provide access to C code that is R-aware, and hence their
calling sequence is much simpler. The first argument is the name of the C
function that will be invoked, followed by the . . . argument and then the
PACKAGE argument. Both the . . . argument and the PACKAGE argument behave
as described above. Neither .Call nor .External copy their arguments, so
values passed down through these interfaces should be treated as read-only;
altering them will be reflected in the corresponding values at the R level and
hence violate the pass-by-value semantics of the language. Of course one can
always copy them in the C code using Rf_duplicate.
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6.3 Writing C code to interface with R

The command R CMD SHLIB can be used to create a shared library suitable
for loading into R from a collection of C or FORTRAN program files. When
including source code in an R package, the recommended method is to place
all code in a subdirectory named src, and then the appropriate shared library
will be constructed when the package is installed.

6.3.1 Registering routines

One of the most important new developments in R is the ability to register
foreign routines. Registration provides a mechanism to help ensure that the
correct code is evaluated, and it also provides mechanisms for specifying the
type, but not currently the lengths, of different arguments. When the mech-
anism is used, only registered routines can be invoked and only those in the
dynamic library supplied with the package. Thus name collisions between dif-
ferent packages are avoided, and routines that are defined, but not registered,
cannot be inadvertently used. The stats package, supplied with R, provides
an exemplar where all routines are registered. Various Bioconductor packages
also make use of the registration mechanism.

The registration mechanism is relatively straightforward. The developer
must provide the appropriate C code for registration; then when the dynamic
library is loaded, that code will be invoked. This can be achieved by making
use of the fact that R will search for a C function named R_init_mylib and
invoke it when the shared library is loaded; see Section 6.5 for more details.
These are sometimes called initialization routines.

Routines are registered through a call to the C function R_registerRoutines.
This is typically done when the DLL is first loaded by placing a call to
R_registerRoutines within the initialization routine for the shared library.
R_registerRoutines takes five arguments. The first is the DllInfo object passed
by R to the initialization routine. This structure is used to store all the infor-
mation about the different C and FORTRAN routines in the shared library
as well as other information about the shared library. You should not make
changes to the entries in this structure directly, but rather use the interface
routines provided. The remaining four arguments to R_registerRoutines are
arrays describing the routines for each of the four different interfaces: .C,
.Call, .Fortran and .External. Each argument is a NULL-terminated array
of the element types; see Table 6.2. For each one of the four interfaces that
your package or shared library uses, you will need to create a structure that
contains the appropriate information. That is, functions that are accessed by
.C will be described in a R_CMethodDef structure, while those that are accessed
by .External will be described in a R_ExternalMethodDef structure. Both the
R_CMethodDef structure and the R_FortranMethodDef structures have additional
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Interface Type
.C R_CMethodDef
.Call R_CallMethodDef
.Fortran R_FortranMethodDef
.External R_ExternalMethodDef

Table 6.2: Registration structures.

fields; one of which allows the developer to specify the types of the arguments.
If the types are specified, then they will be checked whenever the function is
invoked and an error will be signaled if one of the arguments has the wrong
type.

For our example we will use one of the routines provided in the stats pack-
age. The function cor.test provides a number of different tests for association,
among them Kendall’s tau. The test itself is computed in C and is accessed
via the .C interface. The code below first shows an R implementation, then
the different pieces needed for registering routines. Much of the code has been
omitted and readers are referred to the file init.c in the stats package. We
do note that the C function takes three arguments: an integer, a real and an
integer. These types are stored in an R_NativePrimitiveArgType array, where
the values are SEXPTYPES. The appropriate SEXPTYPE can be determined
from the entries in Table 6.1.

The call to R_registerRoutines registers routines accessed through the .C in-
terface, the .Fortran interface and the .Call interface. The call to
R_useDynamicSymbols indicates that if the correct C entry point is not found
in the shared library, then an error should be signaled. Currently, the default
behavior in R is to search all other loaded shared libraries for the symbol,
which is fairly dangerous behavior. If you have registered all routines in your
library, then you should set this to FALSE as is done in the stats package.

The code shown in Program 6.1 is based on code in the stats package and
shows an R implementation of a function that computes distribution function
for Kendall’s tau.

In Program 6.2 we show an edited version of the relevant C routines. For
the complete versions of this code, readers should obtain a source version of
the stats package and investigate it.

6.3.2 Dealing with special values

In this section we address some of the solutions for dealing with special
values such as missing values, infinity and NaNs. We discuss three separate
topics here: first we discuss the special values that correspond to missing
values and non-finite values, then we discuss passing out single precision values
to C and lastly we discuss passing out matrices and arrays.
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##R Code
pkendall = function(q, n) {

.C("pkendall",
length(q),
p = as.double(q),
as.integer(n),
PACKAGE = "stats")$p

}

Program 6.1: R code for pkendall.

/* define argument types */
static R_NativePrimitiveArgType pkendall_t[3] = {INTSXP, REALSXP,

INTSXP};

/*list the name, C entry point, number of arguments
and their types */
static const R_CMethodDef CEntries[] = {
...
{"pkendall", (DL_FUNC) &pkendall, 3, pkendall_t},
...
}

/* do the registration */
void R_init_stats(DllInfo *dll)
{

R_registerRoutines(dll, CEntries, CallEntries, FortEntries,
NULL);

R_useDynamicSymbols(dll, FALSE);
}

Program 6.2: Edited C code relevant to the pkendall example.
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We previously mentioned that for calls through .C and .Fortran, the user
can set a flag, at the R level, that will prevent vectors containing missing
values, or infinite values from being passed down. When writing C it is often
helpful to deal with special values such as missing values or infinite values.
R represents these special values differently, depending on the type of the
vector, so users must both test and set values according to the type of the
vector being processed.

For vectors of mode double, there are a number of macros that can be used:
ISNA tests for NA, ISNAN tests for NaN or NA, and R_FINITE tests for NA and
all the special values. Otherwise, direct comparison to the constants R_NaN,
R_PosInf, R_NegInf and R_NaReal can be used. To test for integer missing
values, compare to NA_INTEGER, for logicals compare to NA_LOGICAL and for
character values compare to NA_STRING. These values and NA_REAL can be
used to set elements of R vectors to be missing.

6.3.3 Single precision

All real values stored in R are stored in double-precision (the C data type is
double), but in some cases it is desirable to use single precision at the C level,
such as when a legacy implementation is being used. There are two R-level
functions that can be used to indicate that the vector should be coerced to
single precision when it is passed to C or FORTRAN. The first of these is
as.single, and it attaches an attribute to the vector named Csingle with the
value TRUE. Otherwise, empty vectors can be generated by a call to single,
which produces a vector of zeros with the Csingle attribute set to TRUE.
When a vector is passed out to either FORTRAN or C through the .Fortran

or .C interface, it is checked for the existence of a Csingle attribute, and if
that attribute exists and is set to TRUE, then the vector is coerced to single
precision before the call is made.

6.3.4 Matrices and arrays

Neither FORTRAN nor C has an inherent notion of the matrix data struc-
ture, but rather the artifice of such a data structure can be maintained by
the use of appropriate indexing into a one-dimensional array. This is precisely
what R does for its internal data structures. However, C and FORTRAN
differ in their notion of how the values in the vector are to be extracted. C
uses what is called row major order, while FORTRAN uses column major or-
der. The S language uses column major order, so when a matrix or an array
is passed out through either .C or .Fortran, the function being called gets a
vector and it must decide how to extract and manipulate the contents. Since
these vectors are not self-describing, you will also need to pass out information
about the number of rows and the number of columns, or more generally the
extents of all dimensions. From these quantities the lengths of the vector can
be deduced.
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In the code below we provide a simple demonstration of the relationship
between indices in R, and those needed to manipulate the same data in C.
We first load the RBioinf package, since it has a number of simple functions
predefined for just this purpose. We make use of the function simplePVect,
which takes as input any vector, matrix or array of numeric values and passes
that array out to C, where it is printed, in order from the first value stored
to the last, regardless of the dimensioning information.

> library("RBioinf")
> x = matrix(1:6, nc = 2)
> x

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

> simplePVect(x)

Wherein we see that the values are stored column by column. In printing
the values from C, we retain C’s use of zero-based subscripting, as you will
need to deal with this in any computations you make. Thus, to find the value
in the C vector that corresponds to the entry x[i,j], you will use the formula
index = (i-1) + (j-1) * nrow.

Exercise 6.1
What is the correct formula for finding the entry x[i,j,k] if x is a three-
dimensional array? Can you find the general formula for arrays of any dimen-
sions?

Exercise 6.2
Write a C-level routine that computes row sums of a matrix. This is essentially
a reimplementation of the rowSums function, so you can use it or apply to test
your results. See the psuedo-code below for some help.

We provide some pseudo-code for the case where the matrix has nrow rows
and ncol columns.

for(i=0; i<nrow; i++)
for(j=0; j<ncol; j++)
ans[i] += inmat[i+j*nrow];

So the values in the vector ans are the sums across all values in the corre-
sponding rows. There are ncol values in each row, and those in row one of
the matrix are found in positions 0, nrow, 2nrow, . . . , (ncol − 1)(nrow). On
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the other hand, the elements of the first column (there are nrow of them)
are found as the first nrow elements of the vector inmat. For higher dimen-
sional arrays, it is always the left-most index that moves fastest, in the sense
that x[1,1,1] is the first element in the array and x[2,1,1] is the second
(provided of course the first dimension is larger than 1).

6.3.5 Allowing interrupts

One of the many things that occurs in R, by default, when calling to foreign
functions is the turning off of all signal handling. For a very detailed discussion
of signal handling under Unix, see Chapter 10 of Stevens and Rago (2005).
Basically, by turning off the signal handling, it is no longer possible for a user
to interrupt the running program. If your computations are likely to be long
and involved, you should consider making use of the provided mechanisms to
allow R to check for interrupts.

In C you must include the header file R_ext/Utils.h, and the name of
the C routine to call is R_CheckUserInterrupt(void). Placing calls to this
function within your code will pass control back to R, where signals, such
as those induced by control-C, are checked. You should be aware that this
function may not return. If a signal has been raised, then typically R’s error
handling system is invoked and control is returned to the top-level prompt.

In FORTRAN, developers should use the subroutine rchkusr().

Exercise 6.3
Implement and test checking for user interrupts in one of the C routines
provided in the package RBioinf.

6.3.6 Error handling

One of the important, although often underdeveloped, areas of software
engineering is providing informative error messages to the user. R has a very
sophisticated error handling mechanism, although it is not well documented.
We provide details of the functions available at the R-level in Section 2.11 and
many of those R-level routines have corresponding C-level interfaces. Users
can call either error or warning, with the same call sequences as to the C
function printf.

6.3.7 R internals

R itself is primarily written in C. The overall design is reasonably simple,
and the initial implementation began with a small Scheme interpreter, along
the lines described in Kamin (1990). On top of that, a number of differ-
ent data structures were layered, and then other functionality was gradually
added. Essentially all language objects, data and virtually every object that
is manipulated by the R interpreter are stored in a flexible structure, which
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we will refer to as a SEXP. A number of these are detailed in the fourth col-
umn of Table 6.1. Understanding the R internals or writing your own code to
interact with the R internals requires at least a basic understanding of these
different data types; see Section 6.3.7 for more details on R internals.

R manages its own memory, so creation of new instances of the different
data structures involves calling specific internal functions to carry out the
actual allocation. The design also requires that any routine that requests new
storage be responsible for ensuring that the memory is marked as being in
use. This is generally done by either assigning the new object into an object
that is known to be marked or by explicitly using a macro, named PROTECT,
to protect memory. Before exiting the routine, all calls to PROTECT must
have a corresponding UNPROTECT. More details on the R internals are given in
Section 6.3.7.

Some basic description of R internals is important, and here we provide
a fairly cursory description of them. R has essentially one type of internal
object, which is defined by the SEXPREC typedef. This structure is quite flex-
ible and can represent almost all language structures and data structures.
Most programming is done with SEXPs, which are pointers to SEXPRECs. The
acronym SEXP stands for S expression, or Symbolic expression, and has its
roots in Lisp (Steele, 1990) and Scheme (Abelson and Sussman, 1996) pro-
gramming. The SEXPREC type provides a place to attach attributes as well
as a number of other locations for linking together SEXPRECs to create some
of the more complex data structures used in R. A partial list of the types
available is given in Table 6.3.

The function allocVector should be used to allocate a vector of the de-
sired type and length. Attributes can be added to these vectors to create
different specialized types, e.g., adding a dim attribute modifies the vector to
be an array. Generic vectors, VECSXPs, and strings, STRSXPs, are a little bit
different than the other vectors. Essentially these two objects are collections
of SEXPRECs of the requested length. The elements of the generic vector are
then, themselves SEXPRECs. For STRSXPs, only CHARSXPs can be placed into
the vector. CHARSXPs are special and should never be exposed directly at the
R level; they should only ever be used as elements of STRSXPs.

Setting and getting values from REALSXPs, INTSXPs and LGLSXPs can be done
by using the REAL macro for the first and the INTEGER macro for the second
two. A small code segment demonstrating the use is given in Program 6.3.
We demonstrate the use of three different types of simple vectors and the
two more complicated types: generic vectors and strings. The only slightly
tricky point is the use of pointers to reference the actual storage and their
assignment outside of the first for loop. The reason you should consider this
approach is that the macros REAL and INTEGER are real function calls, in user
defined code, and hence incur a cost, which good optimizing compilers may
be able to identify and remove.

R has a sophisticated garbage collection scheme and users should avoid,
where possible, direct calls to malloc and other C-specific memory allocation



Foreign Language Interfaces 195

int *ivp, *lvp;
double *rvp;

PROTECT( iv = allocVector(INTSXP, 10) );
PROTECT( rv = allocVector(REALSXP, 10) );
PROTECT( lv = allocVector(LGLSXP, 10) );

ivp = INTEGER(iv); rvp = REAL(rv); lvp = INTEGER(lv);
for(i=0; i<10; i++ ) {
ivp[i] = i;
rvp[i] = i+10.0;
lvp[i] = i % 1;

}

PROTECT( ml = allocVector(VECSXP, 3) );
SET_VECTOR_ELT(ml, 0, iv);
SET_VECTOR_ELT(ml, 1, rv);
SET_VECTOR_ELT(ml, 2, lv);

UNPROTECT(4);
PROTECT(ml);

PROTECT(sv = allocVector(STRSXP, 2) );
SET_STRING_ELT(sv, 0, mkChar("abc"));
SET_STRING_ELT(sv, 1, mkChar("def"));

Program 6.3: Pseudo-code showing how to access various internal R storage
representations.
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Name Type
REALSXP numeric with storage mode double
INTSXP integer
CPLXSXP complex
LGLSXP logical
STRSXP vector of character
VECSXP list (generic vector)
LISTSXP dotted-pair list
DOTSXP a . . . object
NILSXP NULL (R_NilValue)
SYMSXP a name or symbol
CLOSXP function or function closure
ENVSXP environment

Table 6.3: Some of the more widely used SEXPREC types.

mechanisms, as the memory obtained in that manner is of limited usefulness,
and failure to explicitly free it can result in memory leaks.

R maintains two separate types of storage: one for the language struc-
tures (SEXPRECs) and the other for vector storage (primarily for storing data).
When a request for memory is made, R first checks to see if there is allocated
but unused memory available. If there is none, then a garbage collection is
performed. Basically, memory that is in use is determined by tracing all sym-
bols and also by examining values on a few special lists. One of those lists
is the protection stack, and we shall describe its use shortly. After a garbage
collection, any unused memory is identified as being available. If no memory
is identified as being available, then new memory is requested from the sys-
tem. If this fails, then R reports that more memory has been requested than
is available and halts the current computation.

Because R manages memory, any author of C routines who wants to make
use of R data structures must exercise discipline in their programming to
ensure that all memory in use is clearly identified, and that when memory is
no longer needed, it is made available back to the system. Carrying out these
tasks is relatively simple and requires the use of two macros: PROTECT and
UNPROTECT. A call to PROTECT with an SEXP as an argument places the object
pointed to onto the protection stack. Note that the SEXPREC is protected, not
the SEXP, so some care must be used to ensure that the pointer is not reused.
Calls to UNPROTECT take an integer argument, and they pop the specified
number of pointers off of the protection stack.

Protection is only needed if there are calls that could cause a garbage col-
lection event. It is only when this happens that memory could be released or
identified as free and reused for some other purpose. Thus, if there is only
your own C code being used, there is no need to use the protect mechanism.
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But, if you make any calls to R internal functions, and most often you will,
then you must use the protect mechanism since you will not know whether
those functions can trigger a garbage collection event.

Any function that has been invoked by either .External or .Call will have
all of its arguments protected already. You do not need to protect them, and
as mentioned above, they were not duplicated and should be treated as read-
only values. If an object is protected, then so are all of its sub-components,
including attributes, list or string elements and so on. For calls to .C and
.Fortran, there is no need to worry about protecting or unprotecting. All
arguments are protected prior to the call; and in most cases, the external
routine will not have received the SEXP, but rather a pointer to some specific
memory location, so that protection is not possible.

6.3.8 S4 OOP in C

OOP is an important programming paradigm and in R there are a number
of macros that can be used to create and manipulate S4 classes and meth-
ods; see Chapter 3 for more details on S4. The macros are MAKE CLASS,
NEW OBJECT, SET SLOT and GET SLOT.

The MAKE CLASS macro retrieves the class definition for the named class.
The class must be defined; this call merely retrieves that definition, which can
then be used as input in the call to NEW OBJECT. NEW OBJECT creates
an instance of the class supplied. The macros SET SLOT and GET SLOT
can be used to access or modify the contents of the named slot.

An example of the use of most of these macros, from the Biostrings pack-
age, is given in Program 6.4.

SEXP mkBString(const char *class, SEXP data, int offset,
int length)

{
SEXP class_def, ans;

class_def = MAKE_CLASS(class);
PROTECT(ans = NEW_OBJECT(class_def));
SET_SLOT(ans, mkChar("data"), data);
SET_SLOT(ans, mkChar("offset"), ScalarInteger(offset));
SET_SLOT(ans, mkChar("length"), ScalarInteger(length));
UNPROTECT(1);
return ans;

}

Program 6.4: An example from the Biostrings package that uses several
of the S4 macros in C code.
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6.3.9 Calling R from C

There are many situations where it will be convenient to be able to evaluate
an R function from inside computations being carried out in C. We discuss
this topic in some detail in Section 6.6.2.

6.4 Using the R API

The R application programming interface (API) is defined by the R Exten-
sions manual and the information provided in the header file, Rinternals.h,
provided with every R installation.

We now describe some ways in which you can simplify the task of writing
C code. Perhaps the most important observation is that R contains very
many utility routines that are widely tested and efficiently implemented. In
most cases you should make use of these routines rather than reimplement
them. Some additional reasons for using these routines are simplicity, less
code development, no need to build rigorous testing paradigms, and by using
routines in the R API you gain consistency because your answers from the C
code will match answers obtained from prototype implementations in R.

Many of the details for making use of the R API are documented in the R
Extensions manual. In this section we discuss some simple examples that are
provided in the RBioinf package. These examples describe some interactions
with the R API. Two of the most commonly needed tools are sorting and the
generation of random numbers. There are two functions, simpleSort and
simpleRand, provided.

The R API provides a variety of tools for sorting, sorting with indices and
partial sorting. For random number generation, there are tools for generating
Uniform, Normal and Exponential random variables. Users cannot directly
access some of the RNG state information except through calls to R functions,
and so our example here demonstrates calling back in to R.

6.4.1 Header files

Header files are also often referred to as include files since they are included
in other C program files using the include directive. All R header files are in
the src/include subdirectory of the source tree. Some of these header files
are intended to be private to R, while others are intended to be public and used
by developers who want to make use of R’s internal data structures. When
R is built, some of these header files are moved to R_HOME/include. The two
main files are R.h and Rinternals.h. The first is needed when writing code
to use the .C interface and the second is needed if any of R’s internal data
structures (e.g., SEXPs) will be manipulated. A number of other include files
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can be found in the R_ext subdirectory. You will need to include these if you
want to make use of the corresponding functionality in R. For example, if the
C registration mechanism, discussed below, is used, then R_ext/Rdynload.h
must also be included.

6.4.2 Sorting

The function simpleSort, in Program 6.5, takes as input a vector of real-
valued numbers, say x, and returns the index vector ind such that x[ind] is
sorted from smallest to largest.

The C code is in the file src/rand.c of the source package for RBioinf . It
is repeated below. The first computation is to check that the inputs are of the
correct type. It is essential that these checks be carried out in C as it is very
difficult to ensure that the function was invoked with the correct arguments.
As the C registration mechanism becomes richer and more widely used, such
checking will become less important. Next, the storage for the return value,
ans, is allocated and initialized. When ans was initialized, we made sure to
use one based indexing since that is what is used in R. Next we duplicated the
input argument, since the sorting is destructive, and the input to simpleSort
is not copied, we must make a copy. We do not protect the duplicated value,
although we could, because there are no other memory allocations after it.
The source code for rsort_with_index must be checked to be sure of that,
and it may be better to be defensive and protect all duplicated values.

Exercise 6.4
Modify the C code in simple sort so that other types of input values can be
used. Note that there is no easy way to directly access routines for sorting
character vectors. Can you explain why that might be the case?

Exercise 6.5
Create a new function, for addition into the RBioinf package, that does
partial sorting. Define a suitable interface (possibly with a simple use-case
scenario) and provide R and C implementations together with a manual page.

6.4.3 Random numbers

Many of the pseudo-random number generating tools from R are directly
available at the C level. Most do not require the use of R’s internal data struc-
tures (e.g., SEXP) and can be accessed directly from C. The different functions
available are well documented in the R Extensions manual and include simple
functions for generating Normal, Uniform and Exponential random variates.
Direct access to most of the specialized functions for different distribution
functions (e.g., dnorm, pnorm, rnorm and qnorm) is also available.

Technically, all random number generators in R are pseudo-random number
generators, but we will drop the prefix pseudo in our discussion and remind
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SEXP simpleSort(SEXP inVec)
{

SEXP ans, tmp;
int i;

if( !isReal(inVec) )
error("expected a double vector");

/* allocate the answer */
PROTECT(ans = allocVector(INTSXP, length(inVec)));

for(i=0; i<=length(inVec); i++)
INTEGER(ans)[i] = i + 1; /* R uses one-based indexing */

/* we need a copy since the sorting is destructive
and inVec is not a copy */

tmp = Rf_duplicate(inVec);

rsort_with_index(REAL(tmp), INTEGER(ans), length(inVec));
UNPROTECT(1);
return(ans);

}

Program 6.5: simpleSort.
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the reader that it is assumed. There are a number of different random number
generators available, and which is deemed the best can change. If simulations
are an important part of your application, some care should be taken to select
an appropriate random number generator, possibly to allow the user to make
his own choice, and to provide tools to manage the seed.

Pseudo-random number generators depend on a seed, and in R the seed
is stored in the user’s workspace as the variable .Random.seed. When R is
started, there is no seed, and by default a random value is selected when
any R function is used to generate random variates. Pseudo-random number
generators are guaranteed to provide the same values if the generator is started
with the same set of seeds. Users should be careful to manage seeds, and
some tools are provided to make this possible. At the R level, the functions
set.seed and RNGkind can be used to set a seed and to select the random
number generator, respectively.

When calling any of the random number generating functions from C, or
other external languages, it is the responsibility of the calling program to
manage the seeds. All calls should be prefaced by a call to the C function
GetRNGstate and followed by a call to SetRNGstate. The first of these calls sets
up a random seed, if one does not exist. It will either create a new object or
it will make use of the existing value to set up the random number generator.
After random numbers have been generated, a call to SetRNGstate replaces the
current value of .Random.seed with the appropriate value obtained from the
random number generator. Without a call to SetRNGstate, the information
about the state of the random number generator will be lost. The decision
to have these functions manipulate a global variable, .Random.seed, is slightly
unfortunate as it makes it somewhat more difficult to manage several different
random number streams simultaneously.

In the RBioinf package there is an example of accessing some of the random
number generating features from C. The example code shows how to access
one of the random number generators and includes an example of calling back
into R to determine what random number generator is in use. As noted above,
the method used is perhaps better described as invoking a call to R’s evaluator
through the C function eval.

/*create the language structure needed to call R */
PROTECT(Rc = lang1(install("RNGkind")));
PROTECT(tmp = eval(Rc, R_GlobalEnv));

Program 6.6: Code showing how to determine which random number gen-
erator is in use.

In the code segment shown in Program 6.6, a language structure is allocated,
and the symbol for the function we intend to call is made the first element
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of the LANGSXP. Since the default values of all arguments for the R function
RNGkind will be used, only the name of the function is used. The returned
value, Rc, is PROTECTed because the call to eval will require some allocation
and hence could trigger a garbage collection event. To ensure that the memory
addressed by Rc is not garbage collected, it is protected. The return value
from eval is also protected, since it will have been newly allocated, and it is
the responsibility of the calling function to protect return values. Interested
readers should examine the source code for the entire C function simpleRand

for further details.

Exercise 6.6
Modify the C and R source code, as well as the manual pages, for simpleRand

so that the user can specify one of the three basic random number generators
at the C level.

Harder: Modify the C source code so that the user can set the type of
random number generator through a call to eval for RNGkind.

Exercise 6.7
Modify the C and R sources for simpleRand so that it manages its own seed.
Care must be taken to save the global seed, replace it with the supplied one,
generate random numbers, save the seed, restore the global seed and return a
data structure with the seed in it.

6.5 Loading libraries

Shared libraries can be loaded into R using the dyn.load function. In many
cases the shared library is part of a package and then library.dynam is pre-
ferred, and it calls dyn.load after carrying out some other computations appro-
priate for loading R packages. When the shared library is no longer required,
it can be detached using dyn.unload, and for packages the equivalent func-
tion is library.dynam.unload. More details on building packages with C or
FORTRAN code are provided in Chapter 7.

When dyn.load is invoked, say as dyn.load("xxx.so"), then a shared library
is loaded into R. Once that is completed, R looks for a function, or entry point,
with prefix R_init_ and with suffix the name of the object loaded, without
the system-specific suffix for shared libraries, and invokes it. Hence in our
example, R would look for a C function named R_init_xxx, and if it exists,
it will be run. This provides a mechanism that allows the developer of the
C code to provide initialization routines and to perform any computations
needed before the code is ready to use.

There is a similar mechanism that can be used to carry out computations
when a shared library is unloaded or detached. R looks for a C function named
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R_unload_ with suffix the name of the shared library. So, in our example, R
would look for a C routine named R_unload_xxx, and if it is found, it will be
invoked.

Both of the routines, R_init_ and R_unload_, are called with a single
argument, which is a pointer to a DllInfo structure. This structure contains
relevant information for the shared library, and the load and unload code can
make use of any information contained in it.

Exercise 6.8
In the Exercises directory of the RBioinf package there is a template file
named xxx.c. Use this file, together with R CMD SHLIB, to build a shared
library, and load it into R. What happens? Rename the file to be foo.c and
repeat. What happens, and why?

6.5.1 Inspecting DLLs

R provides tools that let the user find out which DLLs are loaded, and for
any of those to obtain the set of registered routines. The set of loaded DLLs
is found by calling getLoadedDLLs.

> getLoadedDLLs()

Filen
ame

base b
ase
methods /Users/robert/R/R27/library/methods/libs/methods
.so
grDevices /Users/robert/R/R27/library/grDevices/libs/grDevices
.so
stats /Users/robert/R/R27/library/stats/libs/stats
.so
cluster /Users/robert/R/R27/library/cluster/libs/cluster
.so
tools /Users/robert/R/R27/library/tools/libs/tools
.so
graph /Users/robert/R/R27/library/graph/libs/graph
.so
RBioinf /Users/robert/R/R27/library/RBioinf/libs/RBioinf
.so
Biobase /Users/robert/R/R27/library/Biobase/libs/Biobase
.so

Dynamic.Lookup
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base FALSE
methods FALSE
grDevices FALSE
stats FALSE
cluster FALSE
tools FALSE
graph TRUE
RBioinf TRUE
Biobase TRUE

Once the DLL is loaded, then getDLLRegisteredRoutines can be used to
obtain information on the registered routines that are contained in the DLL.
This can be quite helpful for debugging purposes.

6.6 Advanced topics

In this section we discuss a few subjects that are of a more advanced nature
but which are often useful when writing C, or other code, to interface with
R. The topics include allowing users to interrupt long-running processes, a
discussion of external references and a more detailed discussion of constructing
R expressions in C and evaluating them.

6.6.1 External references and finalizers

This section is primarily based on the notes Simple References with Fi-
nalization provided by L. Tierney and parts of both the semantics and the
implementation have not been completely worked out yet. However, the sys-
tem is useful and provides an important tool when working with large data,
or other objects where it is useful to have reference semantics. Reference
semantics can also be achieved using environments in a structured way.

An external reference is an R object, of type EXTPTRSXP, that holds a ref-
erence, or pointer, to an external resource. There is no R-level interface;
all interactions are at the C level. At the R level, these objects have type
externalptr. They, like environments, are not copied, so there is only one
version of them. It should be noted that this affects the usefulness of at-
tributes on such objects, as they too are not copied. Thus, if you want to
create an R object that contains one of these and on which attributes, etc.,
can be usefully attached, then they should be either enclosed in a list or placed
into an S4 style object.

At the C level, an external pointer is constructed by calling
R_MakeExternalPtr with three arguments: the pointer value, a tag SEXP, and a
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value (an SEXP) to be protected. The prot argument is protected from garbage
collection for the life of the external pointer, and as we shall see below, this
provides a useful way to create external pointers using memory allocated by
R. The tag can be used to attach other information such as type, length, etc.
to the pointer. The values of each of these three elements should be accessed
using the accessor functions defined in the code shown in Program 6.7.

The precise semantics of saving and restoring external references are not yet
defined, so some care should be exercised when using them in settings that
might involve quitting from R and starting again at a later time.

SEXP R_MakeExternalPtr(void *p, SEXP tag, SEXP prot);

void *R_ExternalPtrAddr(SEXP s);
SEXP R_ExternalPtrTag(SEXP s);
SEXP R_ExternalPtrProtected(SEXP s);

SEXP R_AllocatePtr(size_t nmemb, size_t size, SEXP tag)
{

SEXP data, val;
int bytes;
if (INT_MAX / size < nmemb)

error("allocation request is too large");
bytes = nmemb * size;
PROTECT(data = allocString(bytes));
memset(CHAR(data), 0, bytes);
val = R_MakeExternalPtr(CHAR(data), tag, data);
UNPROTECT(1);
return val;

}

/* Finalizer Code */

typedef void (*R_CFinalizer_t)(SEXP);

void R_RegisterFinalizer(SEXP s, SEXP fun);
void R_RegisterCFinalizer(SEXP s, R_CFinalizer_t fun);

Program 6.7: Code snippets for external references and finalizers, largely
repeated from Tierney (2002).

The C function R_AllocatePtr shows how to use this system to allocate
memory using R, in this case the allocString function was used, and to
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create an external vector using that memory.

6.6.1.1 Finalizers

A finalizer is a piece of code, generally a function, that is run when an object
has ended its useful life and is about to be garbage collected. In R, finalizers
can be registered for either environments or for external references. When the
corresponding object is identified as no longer being in use, the finalizer will
be run. However, there is no guarantee as to the order in which finalizers are
run. It is also important to realize that finalizers may not be run when an R
session is ended. Explicit invocation of a garbage collection, via a call to gc,
will cause all identified finalizers to run.

Finalizers are useful for ensuring that some cleaning up is done. For exam-
ple, should the memory allocated in an external pointer be allocated using a
call to malloc, then it will need to be explicitly freed and the finalizer can be
set up to do that.

6.6.2 Evaluating R expressions from C

It is sometimes helpful to be able to evaluate R expressions from within C,
or other foreign language, interfaces. This process is sometimes referred to
as calling R, but it seems to be more precise to describe it as evaluating R
expressions. This is a fairly complex task and definitely not one for beginners.
While there is an interface provided, via call_R, this is seldom used because
direct access and manipulation is generally much easier and more effective. We
take that same view and describe how to carry out such direct manipulations.

Some of the steps that you will need to carry out include:

creating R expressions

defining symbols within an R environment

evaluating an R expression within an R environment

6.6.2.1 Creating R variables in environments

This is a reasonably easy task. In R, symbols, such as x, are linked to
values via their bindings in environments. To look up the value of a symbol,
you often must first translate from a character representation to the actual
internal R symbol.

Program 6.8 defines a small C function that takes as input an environ-
ment, rho, and looks for a value bound to the symbol x in that environment.
You should recall, from Chapter 2, that environments have parents; and if a
value for x is not found in rho, then the parent of rho will be searched and
so on. If you do not want this behavior, then you can use the C function
findVarInFrame, which only looks in the environment provided.
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The second part of the code in the example accesses the symbol y, creates
an integer vector of length 1, assigns the value 10 into that vector, and then
assigns that as the value of y in the environment rho. Since there is some
chance that new memory will need to be allocated in the call to defineVar,
we must protect the allocated memory (assigned to Rv) from garbage collection
until it is safely stored in rho. We do assume that rho itself will not be garbage
collected.

SEXP getX(SEXP rho)
{
SEXP Rsym, Rval, Rv;

Rsym = install("x");
Rval = findVar(Rsym, rho);

Rsym = install("y");
PROTECT(Rv = allocVector(INTSXP, 1));
INTEGER(Rv)[0] = 10;
defineVar(Rsym, Rv, rho);
UNPROTECT(1);

return(Rval);
}

Program 6.8: Pseudo-code for finding symbols.

6.6.2.2 Evaluation

We now consider the process of evaluating an expression in a foreign lan-
guage. We will hold off on function evaluation for a little while.

Program 6.9 defines a very simple function, evalExpr. We assume that an
expression is passed to this function as well as an environment in which to
evaluate it. Suppose we have compiled and made this C function available in
R, and then invoke it with the following sets of commands.

> e1 = new.env()
> e1$x = 1:10
> .Call("evalExpr", quote(sum(x)), e1)

Exercise 6.9
What will the answer be? Can you explain why we used quote? In fact,
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this function is available through the RBioinf package. Try a more complex
evaluation, say adding together values for x and y.

SEXP evalExpr(SEXP expr, SEXP rho)
{
return(eval(expr, rho))

}

Program 6.9: Pseudo-code showing how to evaluate an expression in C.

6.6.2.3 Constructing function calls

In R, there are essentially two types of lists: the one used most often at
the R level is essentially a generic vector, while the other is a Lisp-style list
that is sometimes referred to as a pairlist. While seldom used at the R level,
most of R’s internals are written using pairlists. And in particular, this is the
internal representation used for functions, expressions, calls and other objects.
To understand how to construct and manipulate these at the C level, we first
provide a very brief description of how they work.

Each element of a pairlist consists of three parts: the CAR, the CDR and
the TAG. By convention, the CAR points to the value stored in that element,
the CDR points to the next element in the list (or R_NilValue if there is no
next element), and the TAG contains the name associated with the value, if
there is one. There are a variety of macros that can be used to access these
elements. The most widely used are CAR, CDR and TAG, but others such
as CADR (the CAR of the CDR) and CDDR (the CDR of the CDR) are also
defined and should be used.

R language elements are essentially pairlists but they have a different
type, typically LANGSXP objects. To construct a language element, you can
either call one of the builtin langX functions (X can be any integer between
1 and 4) or create a pairlist of the desired length using allocList and then
set its type to be LANGSXP (e.g., SET_TYPEOF(s, LANGSXP)).

A function call requires a LANGSXP of length equal to one plus the number
of actual arguments. The symbol that identifies the function goes in the first
element and actual arguments fill the remaining elements of the pairlist. In
Program 6.10 we show some pseudo-code for setting up a function call with
three arguments, two of them named. When we first allocate the pairlist,
we protect it from garbage collection, since we will be making some future
allocations and hence could trigger a garbage collection.

We make use of an additional pointer, t, as if we must keep track of where



Foreign Language Interfaces 209

the top of the pairlist is, the only access to that is through myfun. The values
put into the TAG components are symbols, and hence we must use install
to get those.

SEXP myfun, t;

PROTECT(t = myfun = allocList(4));
SET_TYPEOF(myfun, LANGSXP);
CAR(myfun) = install("mean");
t = CDR(t); CAR(t) = allocVector(REALSXP, 1);
REAL(CAR(t))[0] = 101; TAG(t) = install("v1");
t=CDR(t); CAR(t) = allocVector(REALSXP, 2);
REAL(CAR(t))[0] = 9; REAL(CAR(t))[1] = 12.5;
TAG(t) = install("v2"); t = CDR(t);
CAR(t) = allocVector(REALSXP, 1);
REAL(CAR(t))[0] = -2;

eval(myfun, rho);

Program 6.10: Pseudo-code for creating a function call.

Exercise 6.10
Implement the zero finding algorithm discussed in the R Extensions manual.

6.7 Other languages

Our treatment of this topic is brief and readers are referred to Chapter
12 of Chambers (2008) for a more extensive discussion. There are interfaces
between R and Java, Perl, and Python that are somewhat widely used. But
it should be noted that these interfaces rely on the R-C interface, and that
they are typically implemented via a C language interface. For example,
to communicate between R and Python, the RSPython package uses the
function .Python, whose definition is shown below.

This uses the .Call interface, and shows that there is a C-level interface
that is used.

Duncan Temple Lang is the author of several of foreign language interface
packages, and his packages can be obtained from the Omegahat web site,
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.Python =
#
# Invoke a Python function.
#
#
function(func, ..., .module = NULL, .convert = TRUE)
{
isPythonInitialized(TRUE)

args = list(...)
.Call("RPy_callPython", as.character(func), args, names(args),

as.character(.module), as.logical(.convert), FALSE)
}

www.omegahat.org. A comprehensive listing of all packages available through
Omegahat can be obtained using the first command below. The same URL
can be used in download.packages, install.packages, or update.packages to
obtain copies of the most recent versions.

> available.packages(contrib.url("http://www.omegahat.org/R",
type = "source"))

The three packages RSJava, RSPerl and RSPython are all bidirectional.
That is, they provide an interface that either allows R to call into the other
language, or code in the other language to call R.

The RPy was inspired by the RSPython package, but implements only
the interface from Python to R and cannot be used from R to call Python
code.

Simon Urbanek provides JRI and rJava. The former provides an interface
from Java to R, while the latter provides an interface from R to Java. They
seem to be somewhat easier to use and more robust than the RSJava package,
although the latter provides a more comprehensive foreign language interface.
In all cases, the major issues users report tend to be related to having the
correct CLASSPATH set for Java and appropriate environment variables set
for R.



Chapter 7

R Packages

An R package typically consists of a coherent collection of functions and data
structures that are suitable for addressing a particular problem. Packages
are easy to distribute and share with others, and in many ways writing a
package is the best and most effective way to share your software and ideas
with others. Learning to move away from collections of scripts, or functions,
that get sourced to software organized in packages is very enabling. Writing
your first package can be a challenge, but the second and third are simpler.
There are many advantages to writing a package, including the fact that
everyone you collaborate with can be using precisely the same code and all
can contribute to its quality and usability.

In many cases, developers will either have access to existing code written
in some other language, or they may find that they need to implement some
parts of their software in C, or some other compilable language, for efficiency.
This topic is covered in Chapter 6.

The many hundreds of contributed packages provide a great resource, and
for many problems you will simply want to find, download, install and use
packages written by others. There are currently three main repositories for
R packages: CRAN, Bioconductor and Omegahat. CRAN contains the most
R packages (over 1000) while Bioconductor and Omegahat are smaller. The
number of packages is somewhat overwhelming and two related innovations,
CRAN Task Views (the ctv package) and the biocViews packages, provide
tools that can be used to provide overviews of packages suitable for different
subject areas. Both approaches use restricted sets of terms to help orga-
nize packages. We will discuss in Section 7.2.1 some of the ways in which
biocViews can be used and readers who visit the Bioconductor web site will
see it in action, as the biocViews terms are used to organize the Bioconductor
packages.

In this chapter we first review some of the available functionality for using
packages and then discuss how to write your own packages. For most of the
topics we will discuss, the R Extensions Manual (R Development Core Team,
2007c) is a more comprehensive reference.

211
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7.1 Package basics

An R package is basically a collection of folders that contain the R code, the
help pages, data, other documentation such as vignettes, code written in other
languages such as C or FORTRAN, and a number of files that provide direc-
tives used to help install the package. Packages should run on all platforms
supported by R and there are a number of tools to help authors modify their
package to run on different platforms. All packages must have an R directory
and a man directory. If they provide data sets, then they have a data direc-
tory; and if they have source code for another language, then they will have an
src directory. Vignettes go in the inst/doc directory and this is required for
packages submitted to the Bioconductor project. Both the man directory and
the R directories can contain system-specific files in subdirectories named unix
and windows. All packages must contain a DESCRIPTION file, which contains
information on the package such as version number, author, maintainer, and
dependencies. Packages can have a NAMESPACE file that is used to restrict the
symbols that are exported, and to import functionality from other packages;
name spaces are discussed in more detail in Section 7.3.4.

It is common for packages to depend on other packages for some functional-
ity. Dependencies can be specified in two different ways. First, there are two
fields in the DESCRIPTION file, Depends and Suggests, that can be used to list
other packages that provide important functionality. With the introduction of
name spaces came another way to indicate functional dependencies and that
is to use an import directive in the NAMESPACE file, and packages named here
should also be listed in the Imports field of the DESCRIPTION file. It is also
possible to implicitly import a package by using the double colon (::) oper-
ator in R code contained in the package, but this is discouraged as it makes
it difficult to programmatically detect the dependencies. Perhaps the major
difference between depending on a package and importing it is that for the
former, the package is attached to the search path, while for the latter it is
loaded but does not appear on the search path. We will make the distinction
clearer later in this chapter.

A recent innovation is support for a NEWS file that can either be located in
the top-level package folder or in the inst directory. This file should document
changes in the package so that users can easily find out what improvements
or modifications have been made. The format should be the same as that of
the NEWS file that comes with R.

7.1.1 The search path

There is a small set of default packages that are attached every time R is
started interactively. Currently, they consist of methods, stats, graphics,
grDevices, utils, datasets and base. When R is run in batch mode, not
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all of these packages will be attached. You can find out what packages are
currently attached to the search path by using the function search, and more
detailed information can be obtained by using sessionInfo.

> search()

[1] ".GlobalEnv" "package:stats"
[3] "package:graphics" "package:grDevices"
[5] "package:utils" "package:datasets"
[7] "package:methods" "Autoloads"
[9] "package:base"

Earlier, in Chapter 2, we discussed the evaluation model used by R. We
now need to distinguish between attaching a package to the search path and
loading a package. The two terms used to be used interchangeably, but now
we need to make a distinction. Packages are attached to the search path by
direct calls to either library or require. When a package is attached, then all
of its dependencies (as determined by the Depends field in its DESCRIPTION
file) are also attached. Such packages are part of the evaluation environment
and will be searched. But, another way to satisfy dependencies is to use an
import statement in the NAMESPACE file. Such packages are said to be loaded,
but are not attached. And the main distinction is that imported packages do
not appear on the search path and are essentially available only to the package
that imports them.

7.1.2 Package information

Many functions can generate information about packages that have already
been installed on the user’s system. A vector listing the base names of packages
that are currently attached can be obtained using .packages. The return value
of .packages is invisible, so we first assign it to a temporary variable, as in
the example below.

> z = .packages()
> z

[1] "Biobase" "tools" "stats" "graphics"
[5] "grDevices" "utils" "datasets" "methods"
[9] "base"

Exercise 7.1
Compare the output of .packages, search and sessionInfo.
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The path, or full location, of a package can be obtained using the system.file
function. This can be particularly useful for finding documentation, or addi-
tional files that have been supplied with the package.

> system.file(package = "tools")

[1] "/Users/robert/R/R27/library/tools"

The contents of a package’s DESCRIPTION file can be obtained using the
function packageDescription.

> packageDescription("base")

Package: base
Version: 2.7.0
Priority: base
Title: The R Base Package
Author: R Development Core Team and contributors

worldwide
Maintainer: R Core Team <R-core@r-project.org>
Description: Base R functions
License: GPL (>= 2)
Built: R 2.7.0; ; Mon Jun 9 10:37:52 PDT 2008; unix

-- File: /Users/robert/R/R27/library/base/Meta/package.rds

> packageDescription("base", fields = c("Package",
"Maintainer"))

Package: base
Maintainer: R Core Team <R-core@r-project.org>

-- File: /Users/robert/R/R27/library/base/Meta/package.rds
-- Fields read: Package, Maintainer

The fields argument restricts the returned values to only those fields that
are specified.
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7.1.3 Data and demos

There are three functions that search all packages for specific types of infor-
mation. The three types of information are data files, which can be searched
for using the data function; demo files, which can be searched for using the
demo function; and vignettes, which can be searched for using the R function
vignette. We briefly describe the first two of these, as they are somewhat
more well established, and fairly easy to describe, and spend more time on
vignettes in the next section.

Data files are often supplied with different packages. They are typically
used to demonstrate the use of different statistical methods. Prior to the
development of the lazy loading mechanism, one had to access a data set
through a call to data with the name of the data set wanted as an argument.
If the package containing the data set of interest has set LazyData to true
(Section 7.3.1), then the data set can be accessed by name; there is no need to
invoke data. However, even in this case, there is sometimes a need to use data

with the data set name as an argument. For example, if you have altered the
data set and want to retrieve the original version, you must use data, since
simply typing the name of the data set can only retrieve the altered version.

Demos are R scripts that can be run from inside of R. They typically demon-
strate the use of some of the software in a package. Particularly nice examples
are the demos in the graphics and lattice packages.

7.1.4 Vignettes

A vignette is a document that integrates code and text and describes how
to perform a specific task. The help pages for a package should tell a user how
to call specific functions that are included in the package, but they typically
are a poor medium in which to express the use of the different package com-
ponents in a coordinated way to carry out a particular analysis. Vignettes
were developed as part of the Bioconductor Project primarily for this purpose.
They have since been well established as part of the R system.

The function Sweave from the utils package is perhaps the most widely used
tool for literate programming in R. The relax package provides a different
interface, relying on Tcl/Tk to provide an easy-to-use interface. More recently,
the odfWeave has been made available. It provides Sweave processing of Open
Document Format files.

The weaver package provides additional tools and extensions that can ease
some of the pain of authoring an Sweave document. In particular, it provides
a mechanism that caches the computations for code chunks, so that on subse-
quent runs code chunks that have not changed do not need to be re-evaluated.
Without the weaver package, every code chunk is evaluated every time the
document is processed, even if only the text was altered.

In Gentleman and Temple Lang (2007) and Gentleman (2005), we extended
the concept of an interactive document to the notion of a compendium. A
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compendium is essentially a collection of code, data and text that can be used
to recreate a specific analysis in complete detail. One implementation of a
compendium is as an R package, where there are structured ways to include
code, data and a literate document, such as an Sweave document.

The vignette function has a print method that will open the PDF version
of a vignette for reading. It also has an edit method that will extract the code
chunks from the vignette and open them in an editor, thereby facilitating cut
and paste operations.

In the tools package, there is a function pkgVignettes, which can be used
to locate the vignettes and provides directory path details on all vignettes in
a package.

> library("genefilter")
> pkgVignettes("genefilter")

$docs
[1] "/Users/robert/R/R27/library/genefilter/doc/howtogenefilte
r.Rnw"
[2] "/Users/robert/R/R27/library/genefilter/doc/howtogenefinde
r.Rnw"

$dir
[1] "/Users/robert/R/R27/library/genefilter/doc"

attr(,"class")
[1] "pkgVignettes"

Exercise 7.2
How many vignettes are provided with the Biobase package? Open one of
these in a PDF viewer, and a different one using the edit method.

7.2 Package management

Collections of packages are stored in libraries. The most common location
for a library folder is the default library that is installed when R is. Its location
can easily be determined by calling system.file with no arguments, which will
report the location of the base package. Other libraries can be created simply
by creating a folder and instructing R to install packages in that location.
If packages are being installed from the command line, then the -library
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flag can be used. If packages are being installed using install.packages the
argument lib can be set appropriately.

Users of Bioconductor are strongly urged to use biocLite, as described on
the Bioconductor web site. It greatly simplifies the interactions with packages
and ensures that the packages you obtain are suitable for the version of R you
have installed. But in many cases you will need to interact directly with the
R package management system, and it is described next.

The package management system provides a series of functions to install,
update and remove packages, as well as other tasks. These packages require
that a repository (an online source for downloadable software) be specified.
The option repos can be set to the appropriate URL or the repositories can
be selected using the setRepositories function. On some platforms, selecting
a repository and downloading packages from it can be done using the menu
system, or Tcl\Tk widgets.

Once a repository has been specified, a variety of tools can be used for
automatically updating, downloading and installing software from them.

download.packages downloads specified packages from the repository.

install.packages installs the specified packages from the repository.

update.packages checks to see if any installed packages are out of date
with respect to the available packages in the repository, and updates
if necessary.

remove.packages uninstalls the specified packages.

available.packages returns a matrix containing information about available
packages in a repository.

old.packages compares the output of available.packages to that of
installed.packages and reports those installed packages for which newer
versions are available.

new.packages does the same comparison as old.packages but reports unin-
stalled packages that are available.

installed.packages lists packages installed on the user’s system.

There are a number of functions in the tools package that can be used
to determine whether package dependencies are met, or can be met from a
specified repository. The easiest to use, for working with a single package,
is pkgDepends. The function package.dependencies should be used for testing
many packages.

> library("Biobase")
> pkgDepends("Biobase")
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$Depends
[1] "methods" "tools" "utils"

$Installed
[1] "methods" "tools" "utils"

$Found
list()

$NotFound
character(0)

$R
[1] "R (>= 2.7.0)"

attr(,"class")
[1] "DependsList" "list"

A comprehensive and graphical overview of the package dependencies can be
obtained using the pkgDepTools package. This package parses information
from a CRAN-style package repository and uses that to build a dependency
graph based on the Depends field, the Suggests field or both. Then tools
in the graph, RBGL and Rgraphviz packages can be used to find paths
through the graph, locate subgraphs, reverse the order of edges to find the
packages that depend on a specified package and many other tasks.

7.2.1 biocViews

All contributors to the Bioconductor Project are asked to choose a set
of terms from the set of terms that are currently available. These can be
found under the Developer link at the Bioconductor web site. The terms are
arranged in a hierarchy.

These are then included in the DESCRIPTION file. Below we show the
relevant entry for the limma package, which is one of the longer ones.

biocViews: Microarray, OneChannel, TwoChannel, DataImport,
QualityControl, Preprocessing, Statistics,
DifferentialExpression, MultipleComparisons, TimeCourse

These specifications are then used when constructing the web pages used
to find and download packages. An interested user can select topics and view
only that subset of packages that has the corresponding biocViews term.
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7.2.2 Managing libraries

In many situations it makes sense to maintain one or more libraries in
addition to the standard library. One case is when there is a system level R
that all users access, but all users are expected to maintain their own sets of
add-on packages. The location of the default library can be obtained from
the variable .Library, while the current library search path can be accessed,
or modified, via the .libPaths function.

> .Library

[1] "/Users/robert/R/R27/library"

> .libPaths()

[1] "/Users/robert/R/R27/library"

The environment variable R_LIBS is used to initialize the library search path
when R is started. The value should be a colon-separated list of directories. If
the environment variable R_LIBS_USER is defined, then the directories listed
there are added after those defined in R_LIBS. It is possible to define version-
specific information so that different libraries are used for different versions
of R, in R_LIBS_USER. Site-specific libraries should be specified by the envi-
ronment variable R_LIBS_SITE, and that controls the value of the R variable
.Library.site. Explicit details are given in the R Extensions manual.

7.3 Package authoring

Authoring a package requires that all of the different components of a pack-
age, many described above, be created and assembled appropriately. One easy
way to start is to use the package.skeleton function, which can be used when
creating a new package. This function creates a skeleton directory structure,
which can then be filled in. A list of functions or data objects that you would
like to include in the package can be specified and appropriate entries in the
R and data directories will be made, as will stub documentation files. It will
also create a Read-and-delete-me file in the directory that details further
instructions. The R Extensions manual provides very detailed and explicit
information on the requirements of package building. In this section we will
concentrate on providing some general guidance and in describing the strate-
gies we have used to create a large number of packages. Perhaps the easiest
way to create a package is to examine an existing package and to modify it to
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suit your needs.
If you have published a paper describing your package, or have a particular

way that you want to have your package cited, then you should use the func-
tionality provided by the citation function. If you provide a CITATION file,
then it will be accessed by the citation function.

7.3.1 The DESCRIPTION file

Every R package must contain a DESCRIPTION file. The format of the
DESCRIPTION file is as an ASCII file with field names followed by a colon
and followed by the field values. Continuation lines must begin with a space
or a tab. The Package, Version, License, Description, Title, Author, and
Maintainer fields are mandatory, all other fields are optional. Widely used
optional fields are Depends, which lists packages that the package depends
on, Collate which specifies the order in which to collate the files in the R
subdirectory.

Packages listed in the Depends field are attached in the order in which they
are listed in that field, and prior to attaching the package itself. This ensures
that all dependencies are further down the search path than the package being
attached. The Imports field should list all packages that will be imported,
either explicitly via an imports directive in the NAMESPACE file, or implicitly
via a call to the double-colon operator. The Suggests field should contain
all packages that are needed for package checking, but are not needed for the
package to be attached.

Lazy loading (Ripley, 2004) is a method that allows R to load either data or
code, essentially on demand. Whether or not your package uses lazy loading
for data is controlled by the LazyData field, while lazy loading of code is
controlled by the LazyLoad field; use either yes or true to turn lazy loading
on, and either no or false to ensure it is not used. If your package contains S4
classes or makes use of the methods package, then you should set LazyLoad
to yes so that the effort of constructing classes and generic functions is done
at install time and not every time the package is loaded or attached.

If the LazyLoad field in the DESCRIPTION file is set to true, then when the
package is installed all code is parsed and a database consisting of two binary
files, filebase.rdb, which contains the objects, and filebase.rdx, which
contains an index, is created.

7.3.2 R code

All R code for a package goes into the R subdirectory. The organization
there is entirely up to the author. We have found it useful to place all class
definitions in one file and to place all generic function definitions in one file.
This makes them easy to find, and it is then relatively easy to determine the
class structure and capabilities of a package.
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In some cases, some files will need to be loaded before others; classes need
to be defined before their extensions or before any method that dispatches
on them is defined. To control the order in which the files are collated, for
loading into R, use the Collate directive in the DESCRIPTION file.

If there is code that is needed on a specific platform, it should be placed in
an appropriately named subdirectory of the R directory. The possible names
are unix and windows. There should be corresponding subdirectories of the
man directory to hold the help pages for functions defined only for a specific
platform, or where the argument list or some other features of the function
behave in a platform-specific manner.

In addition, there are often operations that must occur at the time that the
package is loaded into R, or when it is built. There are different functions
that can be used, depending on whether or not the package has a name space.
These are described in Section 7.4.

7.3.3 Documentation

The importance of good documentation cannot be overemphasized. It is
unfortunate that this is often the part of software engineering that is over-
looked, left to last, and seldom updated. Fortunately the R package building
and checking tools do comparisons between code and documentation and find
many errors and omissions.

We divide our discussion of documentation into two parts; one has to do
with the documentation of functions and their specific capabilities while the
other has to do with documenting how to make use of the set of functions that
are provided in an R package. Function documentation should concentrate
on describing what the inputs are and what outputs are generated by any
function, while vignettes should concentrate on describing the sorts of tasks
that the code in the package can perform. Vignettes should describe how the
functions work together, possibly with code from other packages, to achieve
particular analyses or computational objectives. It is reasonable for a package
to have a number of vignettes if the code can be used for different purposes.

In R, the standard is to have one help page per function, data set, or
important variable, although sometimes similar concepts will be discussed on
a single help page. These help pages use a well-defined syntax that is similar to
that of LATEX and is often referred to as Rd format, since that is the suffix that
is used for R documentation files. The Rd format is exhaustively documented
in the R Extensions manual. It is often useful to include at least one small
data set with your package so that it can be used for the examples.

Once the R code has been written, a template help page is easily constructed
using the prompt function. The help page files created by prompt require hand
editing to tailor them to the capabilities and descriptions of the specific func-
tions. The function promptPackage can be used to provide a template file of
documentation for the package. Other specialized prompt functions include
promptClass and promptMethods for documenting S4 classes and methods.
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\name{channel}
\alias{channel}
\title{Create a new ExpressionSet instance by selecting

a specific channel}
\description{
This generic function extracts a specific element from an
object, returning a instance of the ExpressionSet class.

}
\usage{
channel(object, name, ...)
}
\arguments{
\item{object}{An S4 object, typically derived from class
\code{\link{eSet}}}

\item{name}{The name of the channel,
a (length one) character vector.}

\item{...}{Additional arguments.}
}
\value{
An instance of class \code{\link{ExpressionSet}}.

}
\author{Biocore}
\examples{
obj <- new("NChannelSet",

R=matrix(runif(100), 20, 5),
G=matrix(runif(100), 20, 5))

##the G channel as an ExpressionSet
channel(obj, "G")
}

\keyword{manip}

Program 7.1: The manual page for the channel function in the Biobase
package.
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The documentation for every function should include one or more realistic
examples that show how to use it, on a variety of inputs. These examples
perform two functions: first they allow the user to see how to call the function
and, second, through the R CMD check procedure these examples are run and
thus they also form part of the quality control procedures. These are very
important and you should make some effort to choose examples that ensure
that your code is performing as expected. If, at some later date, you make
changes to the underlying code, a failure in R CMD check will alert you to
potential problems for your users that should be remedied.

In Program 7.1 we show the help page for the channel function from the
Biobase package. While many developers use file names that correspond to
the name of the object being documented, the file name is irrelevant and you
should feel free to name them as you like. Every help page must contain a
\name field, and this name must be unique within a package, but it is used for
internal purposes and also does not need to correspond to the name of any
object being documented. Every object that is documented in a file needs
to have a \alias entry and these names are used when users request the
help page, either using the ? operator or via a call to the help function. The
exact format of these depends on the type of object being documented and
S4 classes and methods have a special markup.
Rd format supports marking up text in different fonts. For example, you

can use \kbd to denote keyboard input and help users distinguish between
what they should type and what the response will be. There are facilities
for tables, sections, and for including mathematical formulae and equations.
You can also cross-reference other documentation via the \link markup. For
example, \code{\link{foo}}) will produce a hyperlink to the help page for
object foo. You can also be more specific and use optional arguments such as
\link[pkg]{foo} and \link[pkg:bar]{foo} to link to the package pkg with
topic foo and bar, respectively. The syntax for linking to class, or method-
specific documentation, across packages is:
\code{\link[arules:transactions-class]{transactions}}, which links
to the class documentation.

7.3.3.1 Documenting S4 classes and methods

There are specialized prompt functions, promptMethods and promptClass,
that can be used to provide template documentation files for S4 classes and
methods. One strategy that seems to work reasonably well is to document
all classes and generic functions with their own help pages. Documenting
methods, especially when the package provides a method for a generic function
that is defined in some other R package, can be problematic. The Rd system
does not facilitate duplicate documentation, nor is it dynamic in the sense that
documentation files cannot be updated as packages are attached or detached.
These restrictions make it quite difficult to provide documentation for methods
that users can find. The S4Help from the RBioinf package is designed to
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alleviate some of the problems of finding S4 documentation.

7.3.4 Name spaces

R packages are the de facto level at which names, or symbols, are managed.
It is not possible to have two different objects that share the same name in the
same package. A name space is a tool that is used to control which symbols
are visible and which values are used during evaluation. Name spaces in R
are described in some detail in Tierney (2003).

A name space allows the author of a package to decide what functionality to
export and allow users access to and which parts of the implementation to keep
private. For example, name spaces allow developers to adopt a development
strategy that makes use of many helper functions, without having to document
or expose those functions. Name spaces provide a clearer interface for users
and state explicitly what functions are part of the API. At the same time
they allow the developer to experiment with different implementations and
data structures, and to make other changes that are then transparent to the
end user.

Name spaces ensure that the values associated with symbols in the base
package are not shadowed by other definitions, or bindings, unless the pack-
age author makes such changes explicitly. Further, name spaces allow access
to variables and their values without necessarily attaching the corresponding
package to the search path, thus reducing the overhead in searching for sym-
bols and decreasing the probability that a variable binding is inadvertently
shadowed.

With name spaces it is necessary to distinguish between loading a package
and attaching a package. Loading a package makes the code and variables in
it available, but does not place the package on the search path. Attaching a
package both loads and attaches the package onto the search path. Initializa-
tion is discussed in Section 7.4.

A name space is added to a package by the inclusion of a NAMESPACE file
in the top folder of the package. The NAMESPACE file contains a number of
different directives, most of which are listed below.

export specifies which symbols are to be exported.

exportPattern a regular expression that indicates which symbols are to be
exported.

exportClasses describes the S4 classes exported.

exportMethods describes the S4 methods that are exported.

import specifies package names from which all symbols are imported.

importFrom first the name of the package to import from, followed by the
names of all symbols to be imported.
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importMethodsFrom indicates which generic functions are imported from
the named package.

importClassesFrom indicates which classes are imported from the named
package.

S3method allows the author to export an S3 method. For example,
S3method("write", "tlp") exports the method write.tlp and allows
for dispatch to work on this S3 method.

useDynLib specifies the name of a shared object library that should be
loaded and used by the package for calling C, FORTRAN or code in
some other compiled language.

A name space is sealed. Sealing prevents changes to the bindings and once
a package with a name space is loaded, it is not possible to add or remove
variables or to change the values of variables defined in a name space. If it is
important to have variables with mutable bindings, the recommended strategy
is to place those variables inside an environment within the name space. The
bindings in the environment can be altered, and in most cases access to them
can be controlled, thereby providing a very useful mechanism for managing
state information.

It is possible to obtain non-exported values from a name space but this
practice should be avoided and the functionality is really intended to support
debugging during development. The main functions in this area are the triple-
colon operator, :::, so that foo:::bar says to get the value associated with the
symbol bar in the name space foo. The function getFromNamespace performs
a similar role and is more flexible. Other functions such as assignInNamespace

and fixInNamespace provide a way to change values in a name space, the
latter playing a role similar to the function fix, which allows the user to edit
a function definition and replace the existing value with the edited definition.

Name spaces are implemented using R environments. A name space consists
of three static frames. The first static frame contains the local definitions
for the package, the second static frame contains the imports and the third
static frame contains the definitions in the base package. The third static
frame ensures that the global variables from the base package will not be
shadowed by definitions on the search path. Developers who want to shadow
definitions in base can do so by defining new values in their code, or by
explicitly importing the symbols from some other package.

Data sets are explicitly excluded from the name space and cannot be ac-
cessed via the double-colon operator. This design decision was taken to de-
crease the likelihood of collisions between data sets and functions with the
same names.
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7.3.5 Finding out about name spaces

There are a number of functions that can be used to find out about a name
space. These provide a form of reflection that allows users and developers
to assess which name spaces are loaded, what they import and export, and
which packages make use of a package by importing it. In the code below we
load the Biobase package and see what it imports, then find out which name
spaces are using, or relying on, the tools package.

> library("Biobase")
> getNamespaceImports("Biobase")

$base
[1] TRUE

$tools
[1] TRUE

> getNamespaceUsers("tools")

[1] "Biobase"

7.4 Initialization

Many package developers want to have a message printed when the package
is attached. And that is perfectly reasonable for interactive use, but there can
be situations where it is particularly problematic. In order to make it easy
for others to suppress your start-up message, you should construct it using
packageStartupMessage and then suppressPackageStartupMessages can be used
to suppress the message if needed.

When the code in a package is assembled into a form suitable for use with
R, via the package building system, there are some computations that can
happen once, at build time, others that must happen at the time the package
is installed, and still others that must happen every time the package is at-
tached or loaded. Construction of internal class hierarchies, for S4 classes and
methods, where all elements are either in the recommended packages or in the
package being built, can be performed at build time. Finding and linking to
system libraries must be done at install time, and in many cases again at load
time.

If the function .First.lib is defined in a package, it is called with arguments
libname and pkgname after the package is loaded and attached. While it is
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rare to detach packages, there is a corresponding function .Last.lib, which if
defined will be called when a package is detached.

When a NAMESPACE file is present, the package can be either loaded or at-
tached. Since there is a difference between loading and attaching the single
initialization function, .First.lib is no longer sufficient. A package with a
name space can provide two functions: .onLoad and .onAttach. These func-
tions, if defined, should not be exported. Many packages will not need either
function, since import directives take the place of calls to require and use-
DynLib directives can replace direct calls to library.dynam.

When a package with a name space is supplied as an argument to the
library function, first loadNamespace is invoked and then attachNamespace. If
a package with a name space is loaded due to either an import directive or
the double-colon operator, then only loadNamespace is called. loadNamespace

checks whether the name space is already loaded and registered with the inter-
nal registry of loaded name spaces. If so, the loaded name space is returned,
and it is not loaded a second time. Otherwise, loadNamespace is called on all
imported name spaces, and definitions of exported variables of these packages
are copied to the imports frame for the package being loaded. Then either
the package code is loaded and run or the binary image is loaded, if it exists.
Finally, the .onLoad function is run, if the package defined one.

7.4.1 Event hooks

A set of functions is available that can be used to set actions that should
be performed before packages are attached or detached, and similarly before
name spaces are loaded or unloaded. These functions are getHook, setHook

and packageEvent. Among other things, these hooks allow users to have some
level of control over what happens when a package is attached or detached.
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Data Technologies

8.1 Introduction

Handling data efficiently and effectively is an essential task in Bioinformat-
ics. In this chapter we present some of the many tools that are available for
dealing with data. The R Data Import/Export Manual (R Development Core
Team, 2007a) should also be consulted for other topics and in many cases for
more details regarding different technologies and their interfaces in R. The
solution to many bioinformatic tasks will require some use of web-oriented
technologies. Generating requests, posting and reading forms data, as well as
locating and using web services are programming tasks that are likely to arise.

We begin our discussion by describing a range of tools that have been im-
plemented in R and that can be used to process and transform data. Next we
discuss the different interfaces to databases that are available but focus our dis-
cussion on SQLite as it is used extensively within the Bioconductor Project.
We then discuss capabilities for interacting with data sources in XML. We
conclude this chapter by considering the usage of different bioinformatic data
sources via web protocols and in particular discuss some resources available
from the NCBI and also demonstrate some basic usage of the biomaRt pack-
age.

8.1.1 A brief description of GO

GO (The Gene Ontology Consortium, 2000) is a valuable bioinformatic re-
source that consists of an ontology, or restricted vocabulary, of terms that
are ordered as a directed acyclic graph (DAG). We will use GO as the basis
for a number of examples in this chapter and hence give a brief treatment.
GO is described in more detail in Gentleman et al. (2004) and Hahne et al.
(2008). There are three separate components: molecular function (MF), bi-
ological process (BP) and cellular component (CC). GO uses its own set of
identifiers and for each term, detailed information is available. A separate
project (Camon et al., 2004) maps genes, really proteins, to GO terms. There
are a number of evidence codes that are used to explain the reason that a gene
was mapped to a particular term.

229



230 R Programming for Bioinformatics

8.2 Using R for data manipulation

We have seen many of the different capabilities of R in Chapter 2. Here,
we take a slightly different approach and concern ourselves mainly with data
processing, that is, with those tasks that take as input one or more data sets
and process them to provide a new, processed output data set that can be used
for other purposes. There are many different solutions to most of these tasks,
and our goal is to provide some broad coverage of the different capabilities.

We will make use of data from one of the metadata packages to demon-
strate some of the different computations. Using these data, one is typically
interested in counting things, such as “How many probes on a microarray
correspond to genes that lie on chromosome 7?”, or in dividing the probes
according to chromosomal location, or selecting one probe to represent each
distinct Entrez Gene ID.

8.2.1 Aggregation and creating tables

Aggregating data and computing simple summaries are common tasks, and
there are specialized efficient functions for performing many of them. We first
load the hgu95av2 metadata package and then will extract the information
about which chromosome each probe is located on. This is a bit cumbersome
and would not be how you should approach this problem in practice, since
there are other tools (see Section 8.2.2) that are more appropriate.

> library("hgu95av2")
> chrVec = unlist(as.list(hgu95av2CHR))
> table(chrVec)

chrVec
1 10 11 12 13 14 15 16 17 18 19

1234 453 692 698 225 408 349 500 724 171 745
2 20 21 22 3 4 5 6 7 8 9

807 309 147 350 661 448 537 716 573 419 426
X Y

499 41

> class(chrVec)

[1] "character"

Exercise 8.1
Which chromosome has the the most probe sets and which has the fewest?
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Next, we might want to know the identities of those genes on the Y chromo-
some. We can solve this problem in many different ways, but since we might
want to ultimately plot values in chromosome coordinates, we will make use
of the function split. In the code below, we split the names of chrVec because
they correspond to the different chromosomes. The return value is a list of
length 25 where each element has all the Affymetrix probe IDs for the probes
that correspond to genes located in the chromosome. We then use the sapply

to check our results, and can compare the answer with that found above using
table.

> byChr = split(names(chrVec), chrVec)
> sapply(byChr, length)

1 10 11 12 13 14 15 16 17 18 19
1234 453 692 698 225 408 349 500 724 171 745

2 20 21 22 3 4 5 6 7 8 9
807 309 147 350 661 448 537 716 573 419 426
X Y

499 41

Then we can list all of the probe sets that are found on any given chromo-
some simply by subsetting byChr appropriately.

> byChr[["Y"]]

[1] "629_at2" "39168_at2" "34215_at2"
[4] "31415_at" "40342_at" "32930_f_at"
[7] "31911_at" "31601_s_at" "35930_at"
[10] "1185_at2" "32991_f_at" "40436_g_at2"
[13] "36553_at2" "33593_at" "31412_at"
[16] "35885_at" "35929_s_at" "32677_at"
[19] "41108_at2" "41138_at2" "31414_at"
[22] "36321_at" "38182_at" "40097_at"
[25] "31534_at" "40030_at" "41214_at"
[28] "38355_at" "32864_at" "40435_at2"
[31] "36554_at2" "35073_at2" "34477_at"
[34] "31411_at" "34753_at2" "35447_s_at2"
[37] "32428_at" "37583_at" "33665_s_at2"
[40] "34172_s_at2" "31413_at"
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apply matrices, arrays, data.frames
lapply lists, vectors
sapply lists, vectors
tapply atomic objects, typically vectors
by similar to tapply

eapply environments
mapply multiple values
rapply recursive version of lapply
esApply ExpressionSets, defined in Biobase

Table 8.1: Different forms of the apply functions.

8.2.2 Apply functions

There are a number of functions, listed in Table 8.1, that can be used to
apply a function, iteratively, to a set of inputs. The apply function operates
on arrays, matrices or data.frames where one would like to apply a function to
each row, or each column; and in the case of arrays, to any other dimension.
The notion is easily extended to lists, where lapply and sapply are appropri-
ate, or to ragged arrays, tapply, or to environments, eapply. If the problem
requires that a function be applied to two or more inputs, then mapply may be
appropriate. When possible, the return value of the apply functions is simpli-
fied. These functions are not particularly efficient and for large matrices more
efficient alternatives are discussed in Section 8.2.3. One of the main reasons
to prefer the use of an apply-like function, over explicitly, using a for loop
is that it more clearly and succinctly indicates what is happening and hence
makes the code somewhat easier to read and understand.

The return value from apply will be simplified if possible, in that if all values
are vectors of the same length, then a matrix will be returned. The matrix will
have one column for each computation and one row for each value returned.
Thus, if a matrix has two columns and five rows and a function that returns
three values is applied to the rows, the return value will be a matrix with
three rows and five columns.

The function tapply takes as input an atomic vector and a list of one or
more vectors (usually factors) of the same length as the first argument. The
first argument is split according to the unique values of the supplied factors,
and the specified summary statistic is computed for those values in each group.
For tapply, users can specify whether or not to try and simplify the return
value using the simplify argument.

For lists, lapply will apply a function to each element, and it does not
attempt to simplify the return value, which will always be a list of the same
length as the list that was operated on. One cannot use an S4 class that
is coercible to a list in a call to lapply; that is because S4 methods set on
as.list will not be detected when the code is evaluated, so that the user-
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defined conversion will not be used. To obtain a simplified result, for example
if all return values are the same length, then use sapply. If you want to
operate on a subset of the values in the list, leaving others unchanged, then
rapply can be used. With rapply you can specify the class of objects to be
operated on; the other elements can either be left unchanged, or replaced by
a user-supplied default value.

To apply a function to every element of an environment, use eapply. The
order of the output is not guaranteed, as there is no ordering of values in the
environment. By default, objects in the environment whose names begin with
a dot are not included.

In the Biobase package, a function named esApply is provided to simplify
the process of applying a function to either the rows or columns of the ex-
pression data contained within the ExpressionSet . It also simplifies the use of
phenotypic data, from the pData slot in the function being applied.

8.2.2.1 An eapply example

The hgu95av2MAP contains the mappings between Affymetrix identifiers and
chromosome band locations. For example, in the code below we find the
chromosome band that the gene for probe 1001_at (TIE1) maps to.

> library("hgu95av2")
> hgu95av2MAP$"1001_at"

[1] "1p34-p33"

We can extract all of the map locations for a particular chromosome or part
of a chromosome by using regular expressions (Section 5.3) and the apply
family of functions. Suppose we want to find all genes that map to the p
arm of chromosome 17. Then we know that their map positions will all start
with the characters 17p. This is a simple regular expression, ^17p, where the
caret, ^, means that we should match the start of the word. We do this in
two steps. First we use eapply and grep and ask for grep to return the value
that matched.

> myPos = eapply(hgu95av2MAP, function(x) grep("^17p",
+ x, value = TRUE))
> myPos = unlist(myPos)
> length(myPos)

[1] 190
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Exercise 8.2
Use the function ppc from Exercise 2.16 to create a new function that can find
and return the probes that map to any chromosome (just prepend the caret
to the chromosome number) or the chromosome number with a p or a q after
it.

8.2.3 Efficient apply-like functions

While the apply family of functions provides a very useful abstraction and
a succinct notation, its generality precludes a truly efficient implementation.
For this reason there are other, more efficient functions, for tasks that are
often performed, provided in R and in some add-on packages. These include
rowSums, rowMeans, colSums and colMeans, which compute, per row or column,
sums and means for numeric arrays. If the input array is a data.frame, then
these functions first attempt to coerce it to a matrix and if successful then the
operations are carried out directly on the matrix. From Biobase, a number
of other functions for finding quantiles are implemented based on the function
rowQ, which finds specified sample quantiles on a per-row basis for numeric
arrays. Based on this function, other often-wanted summaries, rowMin, rowMax,
etc. have been implemented.

For statistical operations, the functions rowttests, rowFtests and rowpAUCs,
all from the genefilter package, provide very efficient tools for computing t-
tests, F-tests and various quantities related to receiver operator curves (ROCs)
in a row-wise fashion. There are methods for matrices and ExpressionSets.

8.2.4 Combining and reshaping rectangular data

Data in the form of a rectangular array, either a matrix or a data.frame, can
be combined into new rectangular arrays in many different ways. The most
commonly used functions are rbind and cbind. The first joins arrays row-wise;
any number of input arrays can be specified, but they must all have the same
number of columns. The row names are retained, and the column names are
obtained from the first argument (left to right) that has column names. For
cbind, the arrays must all have the same number of rows, and otherwise the
operation is symmetric to that of rbind; an example of their use is given in
the next code chunk.

> x = matrix(1:6, nc = 2, dimnames = list(letters[1:3],
+ LETTERS[1:2]))
> y = matrix(21:26, nc = 2, dimnames = list(letters[6:8],
+ LETTERS[3:4]))
> cbind(x, y)

A B C D
a 1 4 21 24
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b 2 5 22 25
c 3 6 23 26

> rbind(x, y)

A B
a 1 4
b 2 5
c 3 6
f 21 24
g 22 25
h 23 26

Data matrices with row, or column, names can be merged to form a new
combined data set. The operation is similar to the join capability of most
databases and is accomplished using function merge. The function supports
merging data frames or matrices on the basis of either shared row or column
names, as well as on other values.

In some settings it is of interest to reshape an input data matrix. This
commonly arises in the analysis of repeated measures and other statistical
problems, but a similar issue arises in bioinformatics when dealing with some
of the different metadata resources. The function reshape helps to transform
a data set from the representation where different measurements on the same
individual are represented by different rows, to one where the different mea-
surements are represented by columns.

One other useful function is stack, which can be used to concatenate vectors
and simultaneously compute a factor that indicates the original input vector
each value corresponds to. stack expects either a named list or a data frame
as its first argument and, further, that each entry of that list or data frame is
itself a vector. It returns a data frame with two columns and as many rows
as there are values in the input, where the columns are named values and
ind. The function unstack expects an input data frame with two columns and
attempts to undo the stacking. If all vectors are the same length, then the
return value from unstack is a data frame.

> s1 = list(a = 1:3, b = 11:12, c = letters[1:6])
> ss = stack(s1)
> ss

values ind
1 1 a
2 2 a
3 3 a
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4 11 b
5 12 b
6 a c
7 b c
8 c c
9 d c
10 e c
11 f c

> unsplit(s1, ss[, 2])

[1] "1" "2" "3" "11" "12" "a" "b" "c" "d" "e"
[11] "f"

8.3 Example

We now provide a somewhat detailed and extended example, using many
of the tools and functions described to map data to chromosome bands. This
information is available in all Bioconductor metadata packages; the suffix for
the appropriate environment is MAP. In our example we will make use of the
HG-U95Av2 GeneChip so the appropriate data environment is hgu95av2MAP.

In the next code chunk we extract the MAP locations and then carry out a
few simple quality assessment procedures; we look to see if many probe sets
are mapped to multiple locations and also to see how many probe sets have
no MAP location.

> mapP = as.list(hgu95av2MAP)
> mLens = unlist(eapply(hgu95av2MAP, length))

Then we can use table to summarize the results.

> mlt = table(mLens)
> mlt

mLens
1 2 3

12438 185 2
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And we see that there are some oddities, in that some probe sets are anno-
tated at several positions. There are several reasons for this. One is that there
is a homologous region shared between chromosomes X and Y, and another
is that not all gene locations are known precisely. The two probe sets that
report three locations correspond to a single gene, ACTN1. In the code below
we see that the three reported locations are all relatively near each other and
most likely reflect difficulties in mapping.

> len3 = mLens[mLens == 3]
> hgu95av2SYMBOL[[names(len3)[1]]]

[1] "ACTN1"

> hgu95av2MAP[[names(len3)[1]]]

[1] "14q24.1-q24.2" "14q24" "14q22-q24"

Exercise 8.3
How many genes are in the homologous region shared by chromosomes X and
Y.

In the next example we show that there are 532 probe sets that do not have
a map position.

> missingMap = unlist(eapply(hgu95av2MAP,
+ function(x) any(is.na(x))))
> table(missingMap)

missingMap
FALSE TRUE
12093 532

Next, we can see what the distribution of probe sets per map position is.
For those probe sets that have multiple map positions, we will simply select
the first one listed.

> mapPs = sapply(mapP, function(x) x[1])
> mapPs = mapPs[!is.na(mapPs)]
> mapByPos = split(names(mapPs), mapPs)
> table(sapply(mapByPos, length))

1 2 3 4 5 6 7 8 11 13
36 26 9 5 1 1 1 1 1 1



238 R Programming for Bioinformatics

Exercise 8.4
Which chromosome band has the most probe sets contained in it? How many
chromosome bands are from chromosome 2? How many are on the p-arm and
how many on the q-arm?

8.4 Database technologies

Relational databases are commonplace and provide a very useful mechanism
for storing data in structured tables. A standard mechanism for querying
relational databases is the Structured Query Language (SQL). This section
is not a tutorial on either of these topics; interested readers should consult
some of the very many books and other resources that describe both relational
databases and SQL. Rather, we concentrate on describing the R interfaces to
relational databases. R software for relational databases is covered in Section
4 of the R Data Import/Export manual R Development Core Team (2007a).
There is a database special interest group (SIG) that has its own mailing list
that can be used to discuss topics of interest to those using databases.

Databases for which there are existing R packages include SQLite
(RSQLite), Postgres (RdbiPgSQL), MySQL (RMySQL) and Oracle
(ROracle). In addition there is an interface to the Open Database Connectiv-
ity (ODBC) standard via the RODBC package. Most of these rely on there
being an instance of the particular database already installed, RSQLite being
an exception. Three of these packages, RSQLite, RMySQL and ROracle,
use the DBI interface and hence depend on the DBI package. The Postgres
driver has not been updated to the DBI interface. The DBI package provides
a common interface to all supported databases, thereby allowing users to use
their favorite database and have the R code be relatively unchanged. Ideally
one should be able to write code in R that will perform well, regardless of
which database engine was actually used.

There are two basic reasons to want to interact with a database from within
R. One is to allow for access to large, existing data collections that are stored
in a database. For these sorts of interactions, the database typically already
exists and a user will need to have an account and access permission to connect
to the database. The user then typically make requests for specific subsets of
the data. A second common usage is for more interactive usage, where data are
transferred from R to the database and vice versa. Recently the Bioconductor
Project has begun moving annotation data packages into a relational database
format, relying primarily on SQLite. In addition, as the size of microarray
and other high throughput data sets increases, it will become problematic
to retain all data in memory and database interactions will likely be used to
help manage very large data sets. It will seldom be sensible to create large
database tables from R. Most databases have specialized import routines that
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will substantially reduce the time required to install and create large tables.

8.4.1 DBI

DBI provides a number of classes and generic functions (see Chapter 3
for more details on object-oriented programming) for database interactions.
Different packages then support specific implementations of methods for par-
ticular databases. Some functions are required, and every package must im-
plement them in order to be DBI compliant; other functions are optional and
packages can implement the underlying functionality or not.

In the next code chunk we demonstrate the DBI equivalent of HelloWorld,
using SQLite. In this example, we attach the SQLite package, then initialize
a DBI driver and establish a connection. For SQLite, a database can be a file
on the local system; and in the code below, if the database named test does
not exist, it will be created.

> library("RSQLite")
> m = dbDriver("SQLite")
> con = dbConnect(m, dbname = "test")
> data(USArrests)
> dbWriteTable(con, "USArrests", USArrests, overwrite = TRUE)

[1] TRUE

> dbListTables(con)

[1] "USArrests"

One of the important features of the DBI interface is the notion of a result
set. The function dbSendQuery submits and executes the SQL statement, but
does not extract any records; rather, these are retained on the database side
until they are requested via a call to fetch. The result set remains open
until it is explicitly cleared via a call to dbClearResult. If you forget to save
the result set, it can be obtained by calling dbListResults on the connection
object. Result sets allow users to perform queries that may result in very
large data sets and still control their transfer to R. As seen in the code below,
setting the parameter n to a negative value in a call to fetch retrieves all
remaining records.

> rs = dbSendQuery(con, "select * from USArrests")
> d1 = fetch(rs, n = 5)
> d1
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row_names Murder Assault UrbanPop Rape
1 Alabama 13.2 236 58 21.2
2 Alaska 10.0 263 48 44.5
3 Arizona 8.1 294 80 31.0
4 Arkansas 8.8 190 50 19.5
5 California 9.0 276 91 40.6

> dbHasCompleted(rs)

[1] FALSE

> dbListResults(con)

[[1]]
<SQLiteResult:(2687,0,7)>

> d2 = fetch(rs, n = -1)
> dbHasCompleted(rs)

[1] TRUE

> dbClearResult(rs)

[1] TRUE

One can circumvent dealing with result sets by using dbGetQuery instead of
dbSendQuery. dbGetQuery performs the query and returns all of the selected
data in a data frame, dealing with fetching and result sets internally.

A call to dbListTables will show all tables in the database, regardless of the
type of database. The syntax required is quite different for different databases;
hence DBI helps to simplify some aspects of database interaction. We show
the SQLite variant below.

> dbListTables(con)

[1] "USArrests"

> dbListFields(con, "USArrests")

[1] "row_names" "Murder" "Assault" "UrbanPop"
[5] "Rape"

Exercise 8.5
Is there a DBI generic function that will retrieve an entire table in a single
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command. If so, what is its name, and what is its return value?

A SQLite-specific way of listing all tables is given in the example below.

> query = paste("SELECT name FROM sqlite_master WHERE",
+ "type= table ORDER BY name;")
> rs = dbSendQuery(con, query)
> fetch(rs, n = -1)

name
1 USArrests

Exercise 8.6
Select all entries from the USArrests database where the murder rate is larger
than 10.

8.4.2 SQLite

SQLite is a very lightweight relational database, with a number of advanced
features such as the ability to store Binary Large Objects (BLOBs) and to
create prepared statements. SQLite stores each database as a file, the for-
mat of which is platform independent, so these files can be moved to other
computers and will work on those platforms and hence it is well suited as a
method for storing large data files.

In the code below we load the SQLite package, initialize a driver and
then open a database that has been supplied with the RBioinf package that
accompanies this volume. The database contains a number of tables that map
between identifiers on the Affymetrix HG-U95Av2 GeneChip and different
quantities of interest such as GO categories or PubMed IDs (that map to
published papers that discuss the corresponding genes). We then list the
tables in that database.

> library("RSQLite")
> m = dbDriver("SQLite")
> testDB = system.file("extdata/hgu95av2-sqlite.db",
+ package = "RBioinf")
> con = dbConnect(m, dbname = testDB)
> tabs = dbListTables(con)
> tabs

[1] "acc" "go_evi" "go_ont"
[4] "go_ont_name" "go_probe" "pubmed"

> dbListFields(con, tabs[2])
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Table Name Description Field Names
acc map between Affymetrix and affy_id, acc_num

Genbank
go_evi descriptions of evidence codes evi, description
go_ont map from GO ID to Ontology go_id, ont
go_ont_name long names of GO Ontologies ont, ont_name
go_probe map from Affymetrix ID to GO, affy_id, go_id, evi

with evidence codes
pubmed map from Affymetrix IDs to affy_id, pm_id

PubMed IDs

Table 8.2: Description of the tables in the test database supplied with the
RBioinf package.

[1] "evi" "description"

The database has six tables and they are described in Table 8.2. The
different tables map between Affymetrix identifiers, GO identifiers and labels,
as well one table that maps to PubMed identifiers.

Exercise 8.7
For each table in the hgu95av2.db database, determine the type of each field.

Exercise 8.8
How many GO evidence codes are there, and what are they?

8.4.2.1 Inner joins

The go_ont table maps GO IDs to the appropriate GO ontology, one of
BP, MF or CC. We can extract data from the go_ont_name table to get the
more descriptive listing of the ontology for each GO identifier. This requires
an inner join, which is demonstrated in the code below. We first use paste

to construct the query, which will then be used in the call to dbSendQuery.
The inner join is established in the WHERE clause, where we require the two
references to be identical. We only fetch and show the first three results.

> query = paste("SELECT go_ont.go_id, go_ont.ont,",
+ "go_ont_name.ont_name FROM go_ont,",
+ "go_ont_name WHERE (go_ont.ont = go_ont_name.ont)")
> rs = dbSendQuery(con, query)
> f3 = fetch(rs, n=3)
> f3
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go_id ont ont_name
1 GO:0004497 MF Molecular Function
2 GO:0005489 MF Molecular Function
3 GO:0005506 MF Molecular Function

> dbClearResult(rs)

[1] TRUE

Exercise 8.9
Use an inner join to relate GenBank IDs to GO ontology codes.

8.4.2.2 Self joins

The following compound statement selects all Affymetrix probes annotated
at GO ID GO:0005737 with evidence codes IDA and ISS. This uses a self join
and demonstrates a common abbreviation syntax for table names.

> query = paste("SELECT g1.*, g2.evi FROM go_probe g1,",
+ "go_probe g2 WHERE (g1.go_id = GO:0005737 ",
+ "AND g2.go_id = GO:0005737 ) ",
+ "AND (g1.affy_id = g2.affy_id) ",
+ "AND (g1.evi = IDA AND g2.evi = ISS )")
> rs = dbSendQuery(con, query)
> fetch(rs)

affy_id go_id evi evi
1 41306_at GO:0005737 IDA ISS
2 1069_at GO:0005737 IDA ISS
3 38704_at GO:0005737 IDA ISS
4 39501_f_at GO:0005737 IDA ISS

8.4.3 Using AnnotationDbi

As of release 2.2 of Bioconductor, most annotation packages have been
produced using SQLite and infrastructure in the AnnotationDbi package.
This infrastructure provides increased flexibility and makes linking various
data sources simpler. The implementation provides access to data objects in
the usual way, but it also provides direct access to the tables and provides a
number of more powerful functions.

Before presenting examples using this package, we first digress slightly to
provide details on some of the concepts that underly the AnnotationDbi
package. First, a bimap consists of two sets of objects, the left objects and
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the right objects, where the names are unique within a set. There can be
any number of links between the left objects and the right objects, and these
can be thought of as edges. The edges can be tagged or named. Both the left
objects and the right objects can have named attributes associated with them.
In other words, a bimap is a bipartite graph and it represents the relationships
between two sets of identifiers. Bimaps can handle one-to-one relationships, as
well as one-to-many, and many-to-many relationships. Bimaps are represented
by the Bimap class. An example of a bimap would be to have probe IDs as
the left keys, GO IDs as the right keys, and edges, tagged by evidence codes,
as the edges between the probe IDs and the GO IDs.

We will demonstrate the use of the AnnotationDbi interface using the
hgu95av2.db package. Every annotation package provides a function that
can be used to access the SQLite connection directly. The name of that
function is concatenation of the basename of the package, hgu95av2 in this
case, and the string dbconn, separated by an underscore. Name mangling
ensures that multiple databases can be attached at the same time. This
function can be used to reopen the connection to the database if needed. We
first load the database and establish a connection.

> library("hgu95av2.db")
> mycon = hgu95av2_dbconn()

You can then query the tables in the database directly. In a slight abuse of
the idea, you can conceptualize tables in the database as arrays. However, they
are really bimaps, and we can use specialized tools to extract information from
the bimap. The toTable function displays all of the information in a map that
includes both the left and right values along with any other attributes that
might be attached to those values. The left and right keys can be extracted
using Lkeys and Rkeys, respectively.

> colnames(hgu95av2GO)

[1] "probe_id" "go_id" "Evidence" "Ontology"

> toTable(hgu95av2GO)[1:10, ]

probe_id go_id Evidence Ontology
1 1000_at GO:0006468 IDA BP
2 1000_at GO:0006468 IEA BP
3 1000_at GO:0007049 IEA BP
4 1001_at GO:0006468 IEA BP
5 1001_at GO:0007165 TAS BP
6 1001_at GO:0007498 TAS BP
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7 1003_s_at GO:0006928 TAS BP
8 1003_s_at GO:0007165 IEA BP
9 1003_s_at GO:0007186 TAS BP
10 1003_s_at GO:0042113 IEA BP

> Lkeys(hgu95av2GO)[1:10]

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at"
[5] "1004_at" "1005_at" "1006_at" "1007_s_at"
[9] "1008_f_at" "1009_at"

> Rkeys(hgu95av2GO)[1:10]

[1] "GO:0008152" "GO:0006953" "GO:0006954" "GO:0019216"
[5] "GO:0006928" "GO:0007623" "GO:0006412" "GO:0006419"
[9] "GO:0008033" "GO:0043039"

The links function returns a data frame with one row for each link, or edge,
in the bimap that it is applied to. It does not report attribute information.

> links(hgu95av2GO)[1:10, ]

probe_id go_id Evidence
1 1000_at GO:0006468 IDA
2 1000_at GO:0006468 IEA
3 1000_at GO:0007049 IEA
4 1001_at GO:0006468 IEA
5 1001_at GO:0007165 TAS
6 1001_at GO:0007498 TAS
7 1003_s_at GO:0006928 TAS
8 1003_s_at GO:0007165 IEA
9 1003_s_at GO:0007186 TAS
10 1003_s_at GO:0042113 IEA

A common programming task is to invert the mapping, which typically goes
from probes, or genes, to other quantities, such as their symbol. The reversed
map then goes from symbol to probe or gene ID. With the old-style annotation
packages, this was most easily accomplished using the reverseSplit function
from Biobase. But with the new database annotation packages the operations
are much simpler. The revmap can be used to reverse most maps. It takes
as input an instance of the Bimap class and returns a function that can be
queried using keys from that correspond to values in the original mapping. In
the example below, we reverse the map from probes to symbols and then use
the returned function to find all probes associated with the symbol ABL1.
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> is(hgu95av2SYMBOL, "Bimap")

[1] TRUE

> rmMAP = revmap(hgu95av2SYMBOL)
> rmMAP$ABL1

[1] "1635_at" "1636_g_at" "1656_s_at" "2040_s_at"
[5] "2041_i_at" "39730_at"

The revmap function can also be used on lists and there uses the reverseSplit
function. A simple example is shown below.

> myl = list(a = "w", b = "x", c = "y")
> revmap(myl)

$w
[1] "a"

$x
[1] "b"

$y
[1] "c"

8.4.3.1 Mapping symbols

In this section we address a more advanced topic. The material is based
on, and similar to, the presentation in Hahne et al. (2008), but the problem is
important and common. We want to map from gene symbols to some other
form of identifier, perhaps because the symbols were obtained from a paper, or
other report, and we would like to see whether we can obtain similar findings
using other data sources. But since most other sources do not use symbols
for mapping, we must first map the available symbols back to some identifier,
such as EntrezGene ID.

The code consists of four functions, three helpers and the main function
findEGs that maps from symbols to Entrez Gene IDs. We need to know
about the table structure to write the helper functions as they are basically
R wrappers around SQL statements. The hgu95av2_dbschema function can be
used to obtain all the information about the schema.
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> queryAlias = function(x) {
+ it = paste("( ", paste(x, collapse = " , "),
+ " ", sep = "")
+ paste("select _id, alias_symbol from alias",
+ "where alias_symbol in", it, ");")
+ }
> queryGeneinfo = function(x) {
+ it = paste("( ", paste(x, collapse = " , "),
+ " ", sep = "")
+ paste("select _id, symbol from gene_info where",
+ "symbol in", it, ");")
+ }
> queryGenes = function(x) {
+ it = paste("( ", paste(x, collapse = " , "),
+ " ", sep = "")
+ paste("select * from genes where _id in",
+ it, ");")
+ }
> findEGs = function(dbcon, symbols) {
+ rs = dbSendQuery(dbcon, queryGeneinfo(symbols))
+ a1 = fetch(rs, n = -1)
+ stillLeft = setdiff(symbols, a1[, 2])
+ if (length(stillLeft) > 0) {
+ rs = dbSendQuery(dbcon, queryAlias(stillLeft))
+ a2 = fetch(rs, n = -1)
+ names(a2) = names(a1)
+ a1 = rbind(a1, a2)
+ }
+ rs = dbSendQuery(dbcon, queryGenes(a1[,
+ 1]))
+ ans = merge(a1, fetch(rs, n = -1))
+ dbClearResult(rs)
+ ans
+ }

The logic is to first look to see if the symbol is current, and if not, to then
search the alias table to see if there are other less current symbols. Each
of the first two queries within the findEGs function returns the symbol (the
second columns of a1 and a2) and an identifier that is internal to the SQLite
database (the first columns). The last query uses those internal IDs to extract
the corresponding Entrez Gene IDs.
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> findEGs(mycon, c("ALL1", "AF4", "BCR", "ABL"))

_id symbol gene_id
1 20 ABL 25
2 540 BCR 613
3 3758 AF4 4299
4 3921 ABL 4547

The three columns in the return are the internal ID, the symbol and the
Entrez Gene ID (gene_id).

8.4.3.2 Combining data from different annotation packages

By using a real database to store the annotation data, we can take advan-
tage of its capabilities to combine data from different annotation packages, or
indeed from any SQLite database. Being able to select items from multiple
tables does rely on their being a common value that can be used to identify
those entries that are the same. It is important to realize that the internal
IDs used in the AnnotationDbi packages cannot be used to map between
packages.

In the example here, we join tables from the hgu95av2.db package and the
GO.db package. And we use GO identifiers as the link across the two data
packages. We attach the GO database to the HG-U95Av2 database, but could
just as well have done it the other way around. In this section we are using
the term attach to mean attaching using the SQL function ATTACH, not the R
function, or concept, of attaching. We rely on some knowledge of where the
GO database is located and its name, together with the system.file function,
to construct the path to that database. The hgu95av2.db package is already
attached and we now use the connection to it, mycon, to pass the SQL query
that will attach the two databases.

> GOdbloc = system.file("extdata", "GO.sqlite", package="GO.db")
> attachSql = paste("ATTACH ", GOdbloc, " as go;", sep = "")
> dbGetQuery(mycon, attachSql)

NULL

Next, we are going to select some data, based on the GO ID, from two
tables, one in the HG-U95Av2 database and one in the GO database. We
limit the query to ten values. The WHERE clause on the last line of the SQL
query is the part of the query that requires the GO identifiers be the same.
The other parts of the query, the first five lines, set up what variables to
extract and what to name them.
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> sql = paste("SELECT DISTINCT a.go_id AS hgu95av2.go_id ,",
+ "a._id AS hgu95av2._id ,",
+ "g.go_id AS GO.go_id , g._id AS GO._id ,",
+ "g.ontology",
+ "FROM go_bp_all AS a, go.go_term AS g",
+ "WHERE a.go_id = g.go_id LIMIT 10;")
> dataOut = dbGetQuery(mycon, sql)
> dataOut

hgu95av2.go_id hgu95av2._id GO.go_id GO._id
1 GO:0000002 255 GO:0000002 13
2 GO:0000002 1633 GO:0000002 13
3 GO:0000002 3804 GO:0000002 13
4 GO:0000002 4680 GO:0000002 13
5 GO:0000003 41 GO:0000003 14
6 GO:0000003 43 GO:0000003 14
7 GO:0000003 81 GO:0000003 14
8 GO:0000003 83 GO:0000003 14
9 GO:0000003 104 GO:0000003 14
10 GO:0000003 105 GO:0000003 14

ontology
1 BP
2 BP
3 BP
4 BP
5 BP
6 BP
7 BP
8 BP
9 BP
10 BP

The query combines the go_bp_all table from the HG-U95Av2 database
with the go_term table from the GO database, based on the go_id. For
illustration purposes, internal ID (_id) and the go_id from both tables are
included in the output. This makes it clear that the go_ids can be used to join
these tables but the internal IDs cannot. The internal IDs, _id, are suitable
for joins within a single database but cannot be used across databases.

8.4.3.3 Metadata about metadata

In order to appropriately combine tables from various databases, users are
encouraged to look at the standard schema definitions. The latest schemas are
the 1.0 schemas, and these can be found in the inst/DBschemas/schemas_1.0
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directory of the AnnotationDbi package. These schemas can also be ob-
tained interactively using the corresponding dbschema function, as shown be-
low. Because all output is merely cated to the screen, we use capture.output

to collect it and print only the first few tables.

> schema = capture.output(hgu95av2_dbschema())
> head(schema, 18)

[1] "--"

[2] "-- HUMANCHIP_DB schema"

[3] "-- ==================="

[4] "--"

[5] ""

[6] "-- The \"genes\" table is the central table."

[7] "CREATE TABLE genes ("

[8] " _id INTEGER PRIMARY KEY,"

[9] " gene_id VARCHAR(10) NOT NULL UNIQUE -- Entre
z Gene ID"
[10] ");"

[11] ""

[12] "-- Data linked to the \"genes\" table."

[13] "CREATE TABLE probes ("

[14] " probe_id VARCHAR(80) PRIMARY KEY, -- manuf
acturer ID"
[15] " accession VARCHAR(20) NULL, -- GenBa
nk accession number"
[16] " _id INTEGER NULL, -- REFER
ENCES genes"
[17] " FOREIGN KEY (_id) REFERENCES genes (_id)"

[18] ");"
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The above example prints the schema used for the HG-U95Av2 database
into your R session. Each database has three tables that describe the con-
tents of that database, as well as where the information contained in the
database originated. The metadata table describes the package itself and
gives information such as the schema name, schema version, chip name and a
manufacturer URL. This schema information is useful for telling users which
version of the schema they should consult if they want to make queries that
join different databases together, like the compound query described above.
The map_metadata table lists the various maps provided by the package and
where the data for each map was obtained. And finally, the map_counts table
gives the number of values that are contained in that map.

A summary of the tables, number of elements that are mapped, information
on the schema, and on the data used to create the package are printed by
calling a function that has the same name as the package.

> qcdata = capture.output(hgu95av2())
> head(qcdata, 20)

[1] "Quality control information for hgu95av2:"
[2] ""
[3] ""
[4] "This package has the following mappings:"
[5] ""
[6] "hgu95av2ACCNUM has 12625 mapped keys (of 12625 keys)"
[7] "hgu95av2ALIAS2PROBE has 36833 mapped keys (of 36833 keys)"
[8] "hgu95av2CHR has 12117 mapped keys (of 12625 keys)"
[9] "hgu95av2CHRLENGTHS has 25 mapped keys (of 25 keys)"
[10] "hgu95av2CHRLOC has 11817 mapped keys (of 12625 keys)"
[11] "hgu95av2ENSEMBL has 11156 mapped keys (of 12625 keys)"
[12] "hgu95av2ENSEMBL2PROBE has 8286 mapped keys (of 8286 keys)"
[13] "hgu95av2ENTREZID has 12124 mapped keys (of 12625 keys)"
[14] "hgu95av2ENZYME has 1957 mapped keys (of 12625 keys)"
[15] "hgu95av2ENZYME2PROBE has 709 mapped keys (of 709 keys)"
[16] "hgu95av2GENENAME has 12124 mapped keys (of 12625 keys)"
[17] "hgu95av2GO has 11602 mapped keys (of 12625 keys)"
[18] "hgu95av2GO2ALLPROBES has 8383 mapped keys (of 8383 keys)"
[19] "hgu95av2GO2PROBE has 5898 mapped keys (of 5898 keys)"
[20] "hgu95av2MAP has 12093 mapped keys (of 12625 keys)"

Alternatively, the contents of the map_counts table can be obtained from
the MAPCOUNTS object, while the contents of the metadata table can be obtained
by calling the appropriate dbInfo function, as demonstrated below.
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> hgu95av2MAPCOUNTS
> hgu95av2_dbInfo()

8.4.3.4 Making new data packages with SQLForge

Included in the AnnotationDbi package is a collection of functions that
can be used to make new microarray annotation packages. Making a chip
annotation package is a two-step process. In simple terms, a file containing the
mapping between the chip identifiers and some standard biological identifiers
is used, in conjunction with a special intermediate database, to construct a
chip-specific database. The second step wraps that chip-specific database into
an R package.

In more detail, the first step is to construct an SQLite database that con-
forms to a schema for the organism that the chip is designed for. Conforming
to a standard schema is essential as it allows the new package to integrate
with all other annotation packages, such as GO.db and KEGG.db. This
database building step requires two inputs. It requires an input file that maps
probe IDs to another known ID, typically a tab delimited file. If the chip is
an Affymetrix chip and you have one of their csv files, you can use that as
an input instead. If a tab delimited file is used, then this file must have two
columns, where the first column is the probe ID and the second column is the
other ID and no header should be used; the first line in the file should be the
first pair of mappings. The other ID can be an Entrez Gene ID, a RefSeq ID,
a Gene Bank ID, a Unigene ID or a mixture of Gene Bank and RefSeq IDs. If
there is other information in the form of alternate IDs that are also matched
to the probe IDs, these can also be included as other, optional, files.

The second required input is an intermediate database. This database con-
tains information for all genes in the model organism, and many different
biological entities, such as Entrez Gene, KEGG, GO, and Uniprot. These
databases are provided as Bioconductor packages and there is one package
for each supported model organism. These packages are very large, and are
not required unless you want to make annotation packages for the organism
in question. Packages can be downloaded using biocLite, as is shown be-
low for the intermediate package needed to construct annotation for human
microarrays.

> source("http://bioconductor.org/biocLite.R")
> biocLite("human.db0")

For demonstration purposes, a file mapping probes on the HG-U95Av2
GeneChip to GenBank IDs is provided in the extdata directory of
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AnnotationDbi. In the example below, we first obtain the path to that file
and then set up the appropriate metadata. Details on what terms to use for
each of the model organisms are given in the vignette for the AnnotationDbi
package.

> hgu95av2_IDs = system.file("extdata",
"hgu95av2_ID",
package="AnnotationDbi")

> #Then specify some of the metadata for my database
> myMeta = c("DBSCHEMA" = "HUMANCHIP_DB",

"ORGANISM" = "Homo sapiens",
"SPECIES" = "Human",
"MANUFACTURER" = "Affymetrix",
"CHIPNAME" = "Affymetrix Human Genome U95 Set Version 2",
"MANUFACTURERURL" = "http:www.affymetrix.com")

We then create a temporary directory to hold the database, and construct
one.

> tmpout = tempdir()
> popHUMANCHIPDB(affy = FALSE, prefix = "hgu95av2Test",

fileName = hgu95av2_IDs, metaDataSrc = myMeta,
baseMapType = "gb", outputDir = tmpout,
printSchema = TRUE)

In the above example, setting the DBSCHEMA value is especially important as it
specifies the schema to be used for the database. The function popHUMANCHIPDB

actually populates the database and its name reflects the schema that it sup-
ports. To create a mouse chip package, you would use popMOUSECHIPDB.

The second phase of making an annotation data package is wrapping these
SQLite databases into an AnnotationDbi-compliant source package. We
need to specify the schema, PkgTemplate, the version number, Version, as well
as other details. Once that has been done, the function makeAnnDbPkg is used
to carry out the computations and its output is a fully formed R package that
can be installed and used by anyone.

> seed <- new("AnnDbPkgSeed", Package = "hgu95av2Test.db",
Version = "1.0.0", PkgTemplate = "HUMANCHIP.DB",
AnnObjPrefix = "hgu95av2Test")

> makeAnnDbPkg(seed, file.path(tmpout, "hgu95av2Test.sqlite"),
dest_dir = tmpout)
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Creating package in /tmp/Rtmpv0RzTT/hgu95av2Test.db

In order to simplify the process, there is a wrapper function that performs
both steps; it makes the intermediate SQLite database and then constructs
a complete annotation package. In most cases this would be preferred to the
two-step option previously discussed.

> makeHUMANCHIP_DB(affy=FALSE,
prefix="hgu95av2",
fileName=hgu95av2_IDs,
baseMapType="gb",
outputDir = tmpout,
version="2.1.0",
manufacturer = "Affymetrix",
chipName = "Affymetrix Human Genome U95 Set Version 2",
manufacturerUrl = "http://www.affymetrix.com")

Functions are available for six of the major model organisms:
makeHUMANCHIP_DB, makeMOUSECHIP_DB, makeRATCHIP_DB, makeFLYCHIP_DB,
makeYEASTCHIP_DB, makeARABIDOPSISCHIP_DB.

8.5 XML

The eXtensible Markup Language (XML) is a widely used standard for
marking up data and text in a structured way. It is an important tool for
communication between different clients and servers on the World Wide Web,
where servers and clients use XML dialects to negotiate queries on service
availability, to submit requests, and to encode the results of requested com-
putations. Readers unfamiliar with XML should consult one of the many ref-
erences available, such as Skonnard and Gudgin (2001) or Harold and Means
(2004). There are many other related tools and paradigms that can be used
to interact with XML documents. In particular, XSL, which is a stylesheet lan-
guage for XML, and XSL Transformations (XSLT,
http://www.w3.org/TR/xslt), which can be used to transform XML doc-
uments from one form to another. The Sxslt package, available from Omega-
hat, provides an interface to an XSLT translator. Also of interest is the XPath
language (http://www.w3.org/TR/xpath), which was designed for addressing
parts of an XML document.
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An XML document is tree-like in structure. It consists of a series of ele-
ments, which we will sometimes also refer to as nodes. An example is given in
Program 8.1. Normally each element has both an opening tag and a closing
tag, but in some circumstances these can be collapsed into a single tag. The
syntax for an opening tag is to have the name of the element enclosed between
a less-than sign, <, and a greater-than sign, >. Following the element name,
and before the closing >, there can be any number of named attributes. The
end of the element is signaled using a similar syntax except that here the name
of the node is preceded by a forward slash. Between the opening and closing
tags there can be other XML elements, plaintext, or a few other constructs,
but we will only consider the simple case of plaintext here and refer the reader
to the specialized references already mentioned for more details on the XML
format. The most basic value of an XML element is the sub-document rooted
at that element. When an element has no XML children, the value is the
textual content between the opening and closing tag.

A small extract from one of the files supplied by the IntAct database (Ker-
rien et al., 2006) is shown in Program 8.1. In this example the first element is
named participantList and that element has no attributes, but one child,
participant, which has an attribute named id. The participant element
itself has a subelement, named interactorRef. The interactorRef element
has no attributes but it does have a value, in this case the number 803.

<participantList>
<participant id="807">
<interactorRef>803</interactorRef>
</participant>
...
</participantList>

Program 8.1: An XML snippet.

Typically, but not necessarily, a schema or DTD is used to describe a spe-
cific XML format. The schema describes the allowable tags and provides
information on what content is allowed. XML documents are strictly hierar-
chical and essentially tree-like. Each element in the document may have one
or more child elements. The schema describes the set of required and allowed
child elements for any given element. The only real benefit to using XML over
any other form of markup is that there are good parsers, validators and many
other tools that have been written in just about every computer language that
can be used; neither you nor those working with you will need to write that
sort of low level code.

XML name spaces are described in most books on XML as well as at
http://www.w3.org/TR/REC-xml-names/. The use of name spaces allows
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the reuse of tags in different contexts. A simple example of a name space,
taken from the web site named above is shown below. In this example there
are two name spaces, bk and isbn. These can then be used as a prefix on the
tag names in the document, e.g., bk:title and isbn:number.

<?xml version="1.0"?>
<!-- both namespace prefixes are available throughout -->
<bk:book xmlns:bk= urn:loc.gov:books

xmlns:isbn= urn:ISBN:0-395-36341-6 >
<bk:title>Cheaper by the Dozen</bk:title>
<isbn:number>1568491379</isbn:number>

</bk:book>

Program 8.2: An example of a name space in XML.

There are two basic methods for parsing XML documents. One is the
document object model, or DOM, parsing and the other is event-style, or SAX,
parsing. The DOM approach is to read the entire document into memory and
to operate on it as a whole. The SAX approach is to parse the document and
to act on different entities as the document is parsed. SAX parsing can be
much more efficient for large files as it is seldom necessary to have the entire
document in memory at one time.

8.5.1 Simple XPath

Our tutorial on XPath is very brief, and is intended only to make the further
examples comprehensible. Readers should consult a more definitive reference
if they are going to make extensive use of XPath.

//participant selects all participant elements.

//participant/interactorRef selects all interactorRef elements that are
children of a participant element.

//@id selects all attributes that are named id.

//participant[@id ] selects all participant elements that have an attribute
named id.

There are many more capabilities; elements can be selected on the value of
an attribute, the first child of an element, the last child, children with specific
properties and many other criteria can be used.
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8.5.2 The XML package

Processing of XML documents in R can be done with the XML package.
The package is extensive and provides interfaces to most tools that you will
need to efficiently process XML documents. While the XML package has
relatively little explicit documentation, it has a very large number of examples
that can be studied to get a better idea of the extensive capabilities that
are contained in that package. These files can be found in the examples
subdirectory for the installed package.

Given the structure of an XML document, a convenient and flexible way
to process the document is to process each element with a function that is
specialized to deal with that particular element. Such functions are sometimes
referred to as handlers, and this is the approach that the XML package has
taken.

DOM-style parsing is done by the xmlTreeParse function while SAX, or
stream, style parsing is handled by the xmlEventParse function. In either
case, handler functions can be defined and supplied. These handlers are then
invoked, when appropriate, and facilitate appropriate processing of the docu-
ment.

With xmlTreeParse, the value returned by the handler is then placed into
the saved version of the XML document. A rather convenient way to re-
move elements is to provide a handler that returns NULL. The return value
from xmlTreeParse is an object of class XMLDocument . The return value for
xmlEventParse is the handler’s argument that was supplied. It is presumed
that this is a closure, and that the handlers have processed the elements and
stored the quantities of interest in local variables that can be extracted later.

8.5.3 Handlers

Basically, handlers can be specified for any type of element and when a
element is encountered, during parsing, the appropriate handler is invoked.
Handlers can be specialized to either the start of element processing, or they
can be run after the element has been processed, but before the next element
is read.

For DOM processing using xmlTreeParse, either a named list of handlers or
a single function can be supplied. If a single function is supplied, then it is
called on every element of the underlying DOM tree.

For SAX processing, xmlEventParse, the handlers are more extensive. The
standard function or handler names are startElement, endElement, comment,
getEntity, entityDeclaration, processingInstruction, text, cdata,
startDocument and endDocument. In addition you can provide handler func-
tions for specific tags such as <myTag> by giving the handler the name myTag.
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8.5.4 Example data

An XML file containing data from the IntAct database (Kerrien et al.,
2006) is supplied as part of the RBioinf package. We will use it for our
XML parsing examples. More extensive examples, and a reasonably complete
solution for dealing with IntAct, is provided in the RIntact package (Chiang
et al., 2007).

In the code below we find the location of that file, so that it can be parsed.

> Yeastfn = system.file("extdata", "yeast_small-01.xml",
package = "RBioinf")

No matter what type of processing you do, you will need to ascertain some
basic facts about the XML document being processed. Among these is find-
ing out what name spaces are being used as this will be needed in order to
properly process the document. This information can be obtained using the
xmlNamespaceDefinitions function. A default name space has no name, and
can be retrieved using the getDefaultNamespace function. We save the default
name space in a variable named namespace and pass that to any function that
needs to know the default name space. In the code below we read in the
document and then ascertain whether it is using a name space, and if so what
it is. This will be important for parsing the document.

> yeastIntAct = xmlTreeParse(Yeastfn)
> nsY = xmlNamespaceDefinitions(xmlRoot(yeastIntAct))
> ns = getDefaultNamespace(xmlRoot(yeastIntAct))
> namespaces = c(ns = ns)

Exercise 8.10
How many name space definitions are there for the XML document that was
parsed? What are the URIs for each of them?

8.5.5 DOM parsing

DOM-style parsing basically retrieves the entire XML document into mem-
ory. It can then be processed in different ways. The simplest way to invoke
DOM-style parsing is to use the xmlTreeParse function, which was done above.
This results in a large object that is stored as a list. Since we are not interested
in all of the contents of this file, we can specify handlers for the elements that
are not of interest and drop them. Since the default return value is the han-
dlers, you must be sure to ask for the tree to be returned. In the code below we
remove all elements named sequence, organism, primaryRef, secondaryRef
and names. We see that the resulting document is much smaller.
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> nullf = function(x, ...) NULL
> yeast2 = xmlTreeParse(Yeastfn,

handlers = list(sequence = nullf,
organism = nullf, primaryRef = nullf,
secondaryRef = nullf,
names = nullf), asTree=TRUE)

We can easily compare the size of the two documents and see that the
second is much smaller.

> object.size(yeastIntAct)

[1] 47253568

> object.size(yeast2)

[1] 11793648

If instead, it is desirable to obtain the entire tree so that it can later be ma-
nipulated and queried, it may be beneficial to set the argument
useInternalNodes to TRUE. This causes the document to be stored in an inter-
nal, to the XML package, format rather than to convert it into an R object.
This tends to be faster, since no conversion is done, but also restricts the sort
of processing that can be done. However, one can use XPath expressions via
the function getNodeSet to process the data.

Since the XML file is using a default name space, we must use it when refer-
encing the elements in any call to getNodeSet. We make use of the namespaces

object created above. Recall that it has a value named ns, and that is used
to replace the ns in "//ns:attributeList with the appropriate URI. Re-
call from Section 8.5.1 that the XPath directive selects all elements in the
document named attributeList.

> yeast3 = xmlTreeParse(Yeastfn, useInternalNodes = TRUE)
> f1 = getNodeSet(yeast3, "//ns:attributeList", namespaces)
> length(f1)

[1] 10

We see that there are ten elements named attributeList in the document.
But our real goal is to find all protein-protein interactions and we next attempt
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to do just that. As in almost all cases of interacting with XML files, we need to
know a reasonable amount about how the document is actually constructed
to be able to extract the relevant information. We will make use of both
the xmlValue function and the xmlAttr functions to extract values from the
elements.

We first obtain the interaction detection methods; in this case all interac-
tions are two hybrid, which is a method for detecting physical protein inter-
actions (Fields and Song, 1989). We then obtain the name of the organism
being studied, Saccharomyces cerevisiae.

> iaM = getNodeSet(yeast3,
"//ns:interactionDetectionMethod//ns:fullName",
namespaces)

> sapply(iaM, xmlValue)

[1] "two hybrid"

> f4 = getNodeSet(yeast3, "//ns:hostOrganism//ns:fullName",
namespaces)

> sapply(f4, xmlValue)

[1] "Saccharomyces cerevisiae"

We can obtain the interactors and the interactions in a similar way. We first
use getNodeSet and an XPath specification to obtain the elements of the XML
document that contain the information we want, and then can use sapply and
xmlValue to extract the quantities of interest. In this case we first obtain the
interactors and then the interactions they participate in.

> interactors = getNodeSet(yeast3,
"//ns:interactorList//ns:interactor",
namespaces)

> length(interactors)

[1] 503

> interactions = getNodeSet(yeast3,
"//ns:interactionList/ns:interaction",
namespaces)

> length(interactions)

[1] 524
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There are 503 different interactors that are involved in 524 different inter-
actions.

An alternative is to use xpathApply to perform both operations in a single
operation.

> interactors = xpathApply(yeast3,
"//ns:interactorList//ns:interactor",
xmlValue, namespaces = namespaces)

A similar, but different functionality is provided by xmlApply. The function
operates on the children of the node passed as an argument.

8.5.6 XML event parsing

We now discuss using the XML package to perform event-based parsing of
an XML document. One of the advantages of this approach is that the entire
document does not need to be processed and stored in R, but rather, it is
processed an element at a time. To take full advantage of the event parsing
model, we will rely on lexical scope (Section 2.13).

In the code below we create a few simple functions for parsing different
elements in the XML file. The name of the function is irrelevant and can
be whatever you want. The functions should take two arguments; the first
will be the name of the element, the second will be the XML attributes.
In the code below we define three separate handlers and in this example
they are essentially unrelated to each other. The first one is called entSH

and it first prints out the name of the element and then saves the values of
two attributes, level and minorVersion. We have it print as a debugging
mechanism that allows us to be sure that nodes are being handled. Then we
create an environment that will be used to store these values and make it the
environment of the function entSH.

> entSH = function(name, attrs, ...) {
cat("Starting", name, "\n")
level <<- attrs["level"]
minorVersion <<- attrs["minorVersion"]

}
> e2 = new.env()
> e2$level = NULL
> e2$minorVersion = NULL
> environment(entSH) = e2
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In the next code, we create two more handlers, one to extract the taxon-
imic ID and the other to count the number of interactions. They share an
environment, but that is only for expediency; there is no data sharing in the
example.

> hOrg = function(name, attrs, ...) {
taxid <<- c(attrs["ncbiTaxId"], taxid)

}
> e3 = new.env()
> e3$taxid = NULL
> environment(hOrg) = e3
> hInt = function(name, attrs, ...) numInt <<- numInt +

1
> e3$numInt = 0
> environment(hInt) = e3

And now we can use these handlers to parse the data file and then print
out the values. The name of the handler function is irrelevant since the link
between XML element name and any particular handler function is determined
by the name used in the handlers list. So, in the code chunk below, we
have installed handlers for three specific types of elements, namely entrySet,
hostOrganism and interactor.

> s1 = xmlEventParse(Yeastfn, handlers = list(entrySet = entSH,
hostOrganism = hOrg, interactor = hInt))

Starting entrySet

> environment(s1$entrySet)$level

level
"2"

> environment(s1$hostOrganism)$taxid

ncbiTaxId
"4932"

> environment(s1$interactor)$numInt

[1] 503
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8.5.7 Parsing HTML

HTML is another markup language and, if machine generated, can often be
parsed automatically, however, many HTML documents do not have closing
tags or use non-standard markup, which can make parsing very problematic.
The function htmlTreeParse can be used to parse HTML documents. This
function can be quite useful for some screen-scraping activities.

For example, we can use htmlTreeParse to parse the Bioconductor build
reports (see code example below). The return value is a list of length three
and the actual HTML has been converted to XML in the children sublist.
This can now be processed using the standard XML tools discussed previously.
In the call to htmlTreeParse, we set useInternalNodes to TRUE so that we will
be able to use XPath syntax to extract elements of interest.

> url = paste("http://www.bioconductor.org/checkResults/",
"2.1/bioc-LATEST/", sep = "")

> s1 = htmlTreeParse(url, useInternalNodes = TRUE)
> class(s1)

[1] "XMLInternalDocument"

For example, we can extract all of the package names. To do this, we will
use the getNodeSet function, together with XPath syntax to quickly identify
the elements we want. By looking at the source code for the check page, we
see that the packages are listed as the value of an element and in particular
the syntax is

<a href="/packages/2.1/bioc/html/spikeLI.html">spikeLI</a>

so we first look for elements in the tree that are named A and have an href
attribute. This is done using XPath syntax in the first line of the code chunk
(note that currently it seems that XML translates all element names to lower
case; so you must specify them in lower case). We see that there are many
more such elements than there are packages, so we will need to do some more
work to retrieve the package names.

> f1 = getNodeSet(s1, "//a[@href]")
> length(f1)

[1] 4243

There are two different approaches that can be taken at this point. One is to
use the function xmlGetAttr to retrieve the values for the href attributes; these



264 R Programming for Bioinformatics

can then be processed by grep and sub to find those that refer to Bioconductor
packages. A second approach is to return to the HTML source and there we
notice that the elements we are interested in are always subelements of b
elements. In the code below we refine our XPath query to select only those a
elements that are direct descendants of b elements.

> f2 = getNodeSet(s1, "//b/a[@href]")
> p2 = sapply(f2, xmlValue)
> length(p2)

[1] 261

> p2[1:10]

[1] "lamb1" "wilson2" "wellington" "liverpool"
[5] "lemming" "pitt" "A" "ABarray"
[9] "aCGH" "ACME"

We can compare our results to the web page and see that this procedure
has indeed largely retrieved the package names as desired. While the process
requires some manual intervention, using htmlTreeParse and tools provided
with the XML package greatly simplifies the process of retrieving values from
HTML, when that is necessary.

Exercise 8.11
Carry out the first suggestion above. That is, starting with f1, retrieve the
element attributes and then process them via grep and gsub to find the names
of the packages. Compare your results with those above.

8.6 Bioinformatic resources on the WWW

Many bioinformatic resources provide support for the remote automated
retrieval of data. Several different mechanisms are used, including SOAP,
responses to queries (often in XML) and the BioMart system. Examples
of service providers are the NCBI, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Ensemble. In this section we discuss and provide
some simple examples that make use of these resources. In most cases there
are specific R packages that provide and support the required interface.
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8.6.1 PubMed

The National Library of Medicine (NLM) provides support for a number
of different web services. We have developed a set of tools that can be used
to query PubMed. The software is contained in the annotate package, and
more details and documentation are provided as part of that package. Some
of our earlier work in this area was reported in Gentleman and Gentry (2002).

Some functions in annotate that provide support for accessing online data
resources are itemized below.

genbank users specify GenBank identifiers and can request the related links
to be rendered in the browser or returned in XML.

pubmed users specify PubMed identifiers and can request them to be rendered
in the browser or returned in XML.

pm.getabst the abstracts for the specified PubMed IDs will be downloaded
for processing.

pm.abstGrep supports processing downloaded abstracts via grep to find terms
contained in the abstract, such as the name of your favorite gene.

8.6.2 NCBI

In this example, we initiate a request to the EInfo utility to provide a list
of all the databases that are available through the NCBI system. These can
then be queried in turn to determine what their contents are. And indeed,
it is possible to build a system, in R, for querying the NCBI resources that
would largely parallel the functionality supplied by the biomaRt package,
which is discussed in some detail in Section 8.6.3.

> ezURL = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/"
> t1 = url(ezURL, open = "r")
> if (isOpen(t1)) {

z = xmlTreeParse(paste(ezURL, "einfo.fcgi",
sep = ""), isURL = TRUE, handlers = NULL,
asTree = TRUE)

dbL = xmlChildren(z[[1]]$children$eInfoResult)$DbList
dbNames = xmlSApply(dbL, xmlValue)
length(dbNames)
dbNames[1:5]

}

DbName DbName DbName DbName
"pubmed" "protein" "nucleotide" "nuccore"
DbName

"nucgss"
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We see that at the time the query was issued, there were 37 databases. The
names of five of them are listed, and the others can be retrieved from the
dbNames object. Parsing of the XML is handled by fairly standard tools, and
in particular we want to draw attention to the apply-like functions. Because
XML document objects have complex R representations, the use of XPath
and xmlApply will generally simplify the code that needs to be written.

8.6.3 biomaRt

BioMart is a query-oriented data system that is being developed by the
European Bioinformatics Institute (EBI) and the Cold Spring Harbor Labo-
ratory (CSHL). The biomaRt package provides an interface to BioMart.

> library("biomaRt")
> head(listMarts())

biomart
1 ensembl
2 compara_mart_homology_49
3 compara_mart_pairwise_ga_49
4 compara_mart_multiple_ga_49
5 snp
6 genomic_features

version
1 ENSEMBL 49 GENES (SANGER)
2 ENSEMBL 49 HOMOLOGY (SANGER)
3 ENSEMBL 49 PAIRWISE ALIGNMENTS (SANGER)
4 ENSEMBL 49 MULTIPLE ALIGNMENTS (SANGER)
5 ENSEMBL 49 VARIATION (SANGER)
6 ENSEMBL 49 GENOMIC FEATURES (SANGER)

Users can then select one of the BioMart databases to query; we will select
the ensembl mart. We can then query that mart to find out which data sets
it supports, and we will choose to use the human one.

> ensM = useMart("ensembl")
> ensData = head(listDatasets(ensM))
> dim(ensData)

[1] 6 3

> ensMH = useDataset("hsapiens_gene_ensembl", mart = ensM)
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If you know both the name of the BioMart server and data set in advance,
you can make the whole request in one step.

> ensMH = useMart("ensembl",
dataset = "hsapiens_gene_ensembl")

Now we are ready to make data requests. biomaRt supports many more
interactions than we will be able to cover, so interested readers should refer
to the package vignette for more details and examples.

To understand biomaRt’s query API, we must understand what the terms
filter and attribute mean. A filter defines a restriction on a query; for example,
you might obtain results for a subset of genes, filtered by a gene identifier.
Attributes define the values we want to retrieve, for instance, GO identifiers; or
PFAM identifiers for the selected genes. You can get a listing of available filters
with listFilters and a listing of the available attributes with listAttributes.

> filterSummary(ensMH)

category group
1 FILTERS GENE:
2 FILTERS EXPRESSION:
3 FILTERS REGION:
4 FILTERS GENE ONTOLOGY:
5 FILTERS PROTEIN:
6 FILTERS SNP:
7 FILTERS MULTI SPECIES COMPARISONS:

> lfilt = listFilters(ensMH, group = "GENE:")
> nrow(lfilt)

[1] 166

> head(lfilt)

name description
1 affy_hc_g110 Affy hc g 110 ID(s)
2 affy_hc_g110-2 Affy hc g 110 ID(s)
3 affy_hg_focus Affy hg focus ID(s)
4 affy_hg_focus-2 Affy hg focus ID(s)
5 affy_hg_u133_plus_2 Affy hg u133 plus 2 ID(s)
6 affy_hg_u133_plus_2-2 Affy hg u133 plus 2 ID(s)
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We can see that there are several types of filters. There are two filters in
the GENE group. We next query the attributes to see which ones are available.

> head(attributeSummary(ensMH))

category group
1 Features EXTERNAL:
2 Features GENE:
3 Features EXPRESSION:
4 Features PROTEIN:
5 Features GENOMIC REGION:
6 Homologs AEDES ORTHOLOGS:

> lattr = listAttributes(ensMH, group = "PROTEIN:")
> lattr

name description
1 family Ensembl Family ID
2 family_description Family Description
3 interpro Interpro ID
4 interpro_description Interpro Description
5 interpro_short_description Interpro Short Description
6 pfam PFAM ID
7 prints PRINTS ID
8 prosite Prosite ID
9 prot_smart SMART ID
10 signal_domain Signal domain

8.6.3.1 A small example

We will begin with a small set of three Entrez Gene IDs: 983 (CDC2), 3581
(IL9R) and 1017 (CDK2). The function getGene can be used to retrieve the
corresponding records. Note that it returns one record per Ensembl transcript
ID, which is often more than the number of Entrez Gene IDs. In the code
below, we use getGene to retrieve gene-level data, and print out the symbols
for the three genes. Note that the order of the genes in the return value need
not be in the same order as in the request. Also, the getGene interface provides
a limited set of values; if you want more detailed information, you will need to
use getBM and the attributes and filters, described above, or one of the other
helper functions in biomaRt such as getGO.

> entrezID = c("983", "3581", "1017")
> rval = getGene(id = entrezID, type = "entrezgene",
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mart = ensMH)
> unique(rval$hgnc_symbol)

[1] "CDK2" "IL9R" "CDC2"

Exercise 8.12
What other data were returned by the call to getGene?

In order to obtain other information on the quantities of interest, the getBM

function provides a very general interface. In the code below we show how to
obtain Interpro domains for the same set of query genes as we used above.

> ensembl = useMart("ensembl",
dataset = "hsapiens_gene_ensembl")

> ipro = getBM(attributes=c("entrezgene","interpro",
"interpro_description"),

filters = "entrezgene", values = entrezID,
mart = ensembl)

> ipro

entrezgene interpro
1 1017 IPR000719
2 1017 IPR008271
3 1017 IPR001245
4 1017 IPR008351
5 1017 IPR002290
6 3581 IPR003531
7 983 IPR000719
8 983 IPR001245
9 983 IPR002290
10 983 IPR008271

interpro_description
1 Protein kinase, core
2 Serine/threonine protein kinase, active site
3 Tyrosine protein kinase
4 JNK MAP kinase
5 Serine/threonine protein kinase
6 Short hematopoietin receptor, family 1
7 Protein kinase, core
8 Tyrosine protein kinase
9 Serine/threonine protein kinase
10 Serine/threonine protein kinase, active site
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8.6.4 Getting data from GEO

The Gene Expression Omnibus (GEO) is a repository for gene expression
or molecular abundance data. The repository has an online interface where
users can select and download data sets of interest. The GEOquery package
provides a useful set of interface tools that support downloading of GEO
data and their conversion into ExpressionSet and other Bioconductor data
structures suitable for analysis.

The main function in that package is getGEO, which is invoked with the name
of the data set that you would like to download. It may be advantageous to
use the destdir argument to store the downloaded file in a permanent location
on your local file system as the default location is removed when the R session
ends. In the code below, we download a GEO data set and then convert it
into an expression set.

> library(GEOquery)
> gds = getGEO("GDS1")

File stored at:
/tmp/Rtmpv0RzTT/GDS1.soft

> eset = GDS2eSet(gds, do.log2 = TRUE)

File stored at:
/tmp/Rtmpv0RzTT/GPL5.soft

The conversion to an ExpressionSet is quite complete and all reporter and
experiment information is copied into the appropriate locations, as is shown
in the example below.

> s1 = experimentData(eset)
> abstract(s1)
> s1@pubMedIds

Experiment data
Experimenter name:
Laboratory:
Contact information:
Title: Testis gene expression profile
URL:
PMIDs: 11116097
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Abstract: A 28 word abstract is available. Use abstract me
thod.
notes:
:

able_begin
channel_count:

1
description:

Adult testis gene expression profile and gene discovery.
Examines testis, whole male minus gonads, ovary and who
le female minus gonads from adult, 12-24 hours post-eclo
sion, genotype y w[67c1].

feature_count:
3456

order:
none

platform:
GPL5

platform_organism:
Drosophila melanogaster

platform_technology_type:
spotted DNA/cDNA

pubmed_id:
11116097

reference_series:
GSE462

sample_count:
8

sample_organism:
Drosophila melanogaster

sample_type:
RNA

title:
Testis gene expression profile

type:
gene expression array-based

update_date:
Aug 17 2006

value_type:
count
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8.6.5 KEGG

The Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto, 2000)
provides a great deal of biological and bioinformatic information. Much of it
can be downloaded and processed locally, but they also provide a web service
that uses the Simple Object Access Protocol (SOAP). This protocol uses
XML to structure requests and responses for web service interactions. The
SOAP protocol includes rules for encapsulating requests and responses (e.g.,
rules for specifying addresses, selecting methods or specifying error handling
actions), and for encoding complex data types that form parts of requests and
responses (e.g., encoding arrays of floating point numbers).

SOAP services are provided in R through the SSOAP package, available
from the Omegahat project. And the Bioconductor package KEGGSOAP
provides an interface to some of the data resources provided by KEGG.

In the example below we obtain the genes in the Riboflavin metabolism
pathway in Saccharomyces cerevisiae. We then compare the online answer
with the answer that can be obtained from data in the KEGG package.

> library("KEGG")
> library("KEGGSOAP")
> KEGGPATHID2NAME$"00740"

[1] "Riboflavin metabolism"

> SoapAns = get.genes.by.pathway("path:sce00740")
> SoapAns

[1] "sce:YAR071W" "sce:YBL033C" "sce:YBR092C" "sce:YBR093C"
[5] "sce:YBR153W" "sce:YBR256C" "sce:YDL024C" "sce:YDL045C"
[9] "sce:YDR236C" "sce:YDR487C" "sce:YHR215W" "sce:YOL143C"
[13] "sce:YPR073C"

Notice that the species abbreviation has been prepended to all gene names.
We will use gsub to remove the prefix. Then we can use setdiff to see if there
are any differences between the two.

> SA = gsub("^sce:", "", SoapAns)
> localAns = KEGGPATHID2EXTID$sce00740
> setdiff(SA, localAns)

character(0)



Chapter 9

Debugging and Profiling

9.1 Introduction

In this chapter we provide some guidance on tools and strategies that should
make debugging your code easier and faster. Basically, you must first try to
identify the source of the error. While it is generally easy to find where the
program actually failed, that is not usually the place where the programming
error occurred. Some bugs are reproducible; that is, they occur every time a
sequence of commands is executed on all platforms, and others can be more
elusive; they arise intermittently and perhaps only under some operating sys-
tems. One of the first things that you should do when faced with a likely bug
is to try and ensure its reproducibility. If it is not easily reproduced, then
your first steps should be to find situations where it is, as only then is there
much hope of finding the problem.

One of the best debugging strategies is to write code so that bugs are
less likely to arise in the first place. You should prefer the use of simple
short functions, each performing a particular task. Such functions are easy to
understand and errors are often obvious. Long, convoluted functions tend to
both give rise to more bugs and to be more difficult to debug.

This chapter is divided into several sections. First we discuss the browser

function, which is the main tool used in debugging code in R. R functions such
as debug, trace and recover make use of browser as a basic tool. The debugging
tools are all intended primarily for interactive use and most require some form
of user input. We then discuss debugging in R, beginning by recommending
that static code analysis using functions from the codetools package be used,
and then covering some of the basic tools that are available in R. Then we cover
debugging procedures that can be applied to detect problems with underlying
compiled code. We conclude by discussing tools and methods for profiling
memory and the execution of R functions.
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9.2 The browser function

The browser function is the building block for many R debugging techniques.
A call to browser halts evaluation and starts a special interactive session where
the user can inspect the current state of the computations and step through
the code one command at a time. The browser can be called from inside any
function, and there are ways to invoke the browser when an error or other
exception is raised.

Once in the browser, users can execute any R command; they can view
the local environment by using ls; and they can set new variables, or change
the values assigned to variables simply by using the standard methods for
assigning values to variables. The browser also understands a small set of
commands specific to it. A summary of the available browser commands
and other useful R commands are given in Table 9.1 and Table 9.2. Of these,
perhaps the most important to remember for new users is Q, which causes R to
quit the debugger and to return control to the command line. Any user input
is first parsed to see if it is consistent with a special debugger instruction and,
if so, the debugger instruction will be performed. Most of these commands
consist of a single letter and are described below. Any local variable with the
same name as one of these commands cannot be viewed by simply typing its
name, as is standard practice in R, but rather will need to be wrapped in a
call to print.

ls() list the variables defined inside the function

x print the value of variable x

print(x) print the value of variable x – useful when x is one of n, l, Q or cont

where print the call stack

Q stop the current execution and return to the top-level R interpreter
prompt

Table 9.1: Browser commands with non-modal functionalities.

When the browser is active, the prompt changes to Browse[i]> for some
positive integer i. The browser can be invoked while a browser session is
active, in which case the integer is incremented. Any subsequent calls to
browser are nested and control returns to the previous level once a session has
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Initial Mode Step through Debugger
Mode

n start the step through debug-
ger

execute the next step in the
function

c continue execution continue execution; if inside a
loop, execute until the loop
ends

cont same as c same as c

carriage return same as c same as n

Table 9.2: Browser commands with modal functionalities.

finished. Currently the browser only provides access to the active function;
there are no easy ways to investigate the evaluation environments of other
functions on the call stack. The browser command where can be used to print
out the current call stack. To change evaluation environments, you can use
direct calls to recover from inside of the debugger, but be warned that the set
of selections offered may be confusing since for this usage many of the active
functions relate to the operation of the browser and not to the evaluation of
the function you are interested in.

9.2.1 A sample browser session

Here we show a sample browser session. We first modify the function
setVNames from the RBioinf package so that it starts with a call to browser.

> setVNames = function(x, nm) {
+ browser()
+ names(x) = nm
+ asSimpleVector(x, "numeric")
+ }

Then, when setVNames is invoked, as is shown below, the evaluation of the
function call browser() halts the execution at that point and a prompt for
the browser is printed in the console.
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> x = 1:10
> x = setVNames(x, letters[1:10])
Browse[1]>

At the browser prompt, the user can type and execute almost any valid
R expression, with the exception of the browser commands described in Ta-
bles 9.1 and 9.2, which, if used, will have the interpretation described there.

Sometimes, the user may unintentionally start a large number of nested
browser sessions. For example, if the prompt is currently Browse[2]>, then
the user is at browser level 2. Typing c at the prompt will generally continue
evaluation of that expression until completion, at which point the user is back
at browser level 1 and the prompt will change to Browse[1]>. Typing Q will
exit from the browser; no further expressions will be evaluated and the user
is returned to the top-level R interpreter, where the prompt is >.

9.3 Debugging in R

In this section we describe methods that can be used to debug code that
is written in R. As described in the introduction, an important first step is
to use tools for static code analysis to try and detect bugs while developing
software, rather than at runtime. One aspect of carefully investigating your
code for unforeseen problems is the use of the functionality embodied in the
codetools package. The tools basically inspect R functions and packages and
ascertain which variables are local and which are global. They can be used to
find variables that are never used or that have no local or global binding, and
hence are likely to cause errors.

In the example below, we define a function, foo, that we use to demonstrate
the use of the codetools package by finding all the global variables referenced
in the function.

> foo = function(x, y) {
+ x = 10
+ z = 20
+ baz(100)
+ }
> library("codetools")
> findGlobals(foo)

[1] "=" "baz" "{"
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findGlobals reports that there are three global symbols in this function: =,
{ and baz. The symbols x and y are formal arguments, and hence not global
symbols. The numbers, 10, 20 and 100, are constants and hence not symbols,
either local or global. And z is a local variable, since it is defined and assigned
a value in the body of foo.

In the next code chunk we can find the local variables in the body of the
function foo.

> findLocals(body(foo))

[1] "x" "z"

Notice that x is reported as a local variable, even though it is an argument
to foo. The reason is that it is assigned to in the body so that the argument,
if supplied, is ignored; and if the argument is not supplied, then x will indeed
be local.

The functions that you are likely to use the most are checkUsage and
checkUsagePackage. The first checks a single function or closure while the
latter checks all functions within the specified package. In the code below, we
run checkUsage on the function foo, defined above. Note that the fact that
there is no definition for baz is detected as is the fact that z is created but
does not seem to be used.

> checkUsage(foo, name = "foo", all = TRUE)

foo: no visible global function definition for baz
foo: parameter x changed by assignment
foo: parameter y may not be used
foo: local variable z assigned but may not be used

Making use of the tools provided in the codetools package can help find a
number of problems with your code and using it is well worth the effort. The
package checking code, R CMD check, uses codetools and reports potential
issues.

9.3.1 Runtime debugging

When an error, or unintended outcome, occurs while the program is run-
ning, the first step is to locate the source of the error and this is often done in
two stages. First you must locate where R has detected the error, and then
usually look back from that point to determine where the problem actually
occurred. One might think that the important thing is to know which line of
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which function gave rise to the error. But in many cases, the error arises not
because of that particular line, but rather because of some earlier manipula-
tion of the data that rendered it incorrect. Hence, it is often helpful to know
which functions are active at the time the error was thrown; by active we
mean that the body of the function is being evaluated. In R (and most other
computer languages), when a function is invoked, the statements in the body
of the function are evaluated sequentially. Since each of those statements typ-
ically involves one or more calls to other functions, the set of functions that
is being evaluated simultaneously can be quite large. When an error occurs,
we would like to see a listing of all active functions, generally referred to as
the call stack.

While our emphasis, and that of most users, is on dealing with errors that
arise, the methods we describe here can be applied to other types of exceptions,
such as warnings, which we discuss in Section 9.3.2. But some tools, such as
traceback, are specific to errors.

The variable .Traceback stores the call stack for the last uncaught error.
Errors that are caught using try or tryCatch do not modify .Traceback. By
default, traceback prints the value in .Traceback in a somewhat more user-
friendly way. Consider the example below, which makes use of functions
supplied in the RBioinf package.

> x = convertMode(1:4, list())

Error in asSimpleVector(from, mode(to)) : invalid mode list

> traceback()

3: stop("invalid mode ", mode)
2: asSimpleVector(from, mode(to))
1: convertMode(1:4, list())

Each line starting with a number in the output from traceback represents
a new function call. Because of lazy evaluation, the sequence of function calls
can sometimes be a little odd. Since line numbers are not given, it is not
always clear where the error occurred, but at least the user has some sense
of which calls were active, and that can greatly help to narrow down the
potential causes of the error.

9.3.2 Warnings and other exceptions

Sometimes, instead of getting an error, we get an unexpected warning. Just
like unexpected errors, we want to know where they occurred. There are two
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strategies that you can use. First, you can turn all warnings to errors by
setting the warn option, as is done in the example below.

> saveopt = options(warn = 2)

Now any warning will be turned into an error. Later you can restore the
settings using the value that was saved when the option was set.

> options(saveopt)

The second strategy is to use the function withCallingHandlers, which pro-
vides a very general mechanism for catching errors, warnings, or other condi-
tions and invoking different R functions to debug them. In the example below,
we handle warnings; other exceptions can be included by simply adding han-
dlers for them to the call to withCallingHandlers.

> withCallingHandlers(expression,
+ warning=function(c) recover())

9.3.3 Interactive debugging

There are a number of different ways to invoke the browser. Users can
have control transferred to the browser on error, they can have the browser
invoked on entry to a specific function, and more generally the trace function
provides a number of capabilities for monitoring when functions are entered
or exited. Both debug and trace interact fairly gracefully with name spaces.
They allow the user to debug or trace evaluation within the name space and
do not require editing of the source code and rebuilding the package, and so
are generally the preferred methods of interacting with code in packages with
name spaces.

9.3.3.1 Entering the browser on error

By setting the error option, users can request that the browser be invoked
when an error is signaled. This can be much simpler than editing the code
and placing direct calls to the browser function in the code. In the code chunk
below, we can set the error option to the function recover.



280 R Programming for Bioinformatics

> options(error = recover)

From this point onwards, until you reset the error option, whenever an
error is thrown, R will call the function recover with no arguments. When
called, the recover function prints a listing of the active calls and asks the
user to select one of them. On selection of a particular call, R starts a browser

session inside that call. If the user exits the browser session by typing c, she
is again asked to select a call. At any time when making the call selection,
the user can return to the R interpreter prompt by selecting 0.

Here is an example session with recover:

> x = convertMode(1:4, list())

Error in asSimpleVector(from, mode(to)) : invalid mode list

Enter a frame number, or 0 to exit
1:convertMode(1:4, list())
2:asSimpleVector(from, mode(to))

Selection: 2

Called from: eval(expr, envir, enclos)

Browse[1]> ls()

[1] "mode" "x"

Browse[1]> mode

[1] "list"

Browse[1]> x

[1] 1 2 3 4

Browse[1]> c

Enter a frame number, or 0 to exit
1:convertMode(1:4, list())
2:asSimpleVector(from, mode(to))

Selection: 1

Called from: eval(expr, envir, enclos)
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Browse[1]> ls()

[1] "from" "to"

Browse[1]> to

list()

Browse[1]> Q

9.3.4 The debug and undebug functions

It is sometimes useful to enter the browser whenever a particular function
is invoked. This can be achieved using the debug function. We will again use
the setVNames function, which must first be restored to its original state; this
can be done by removing the copy from your workspace, so that the one in
the RBioinf package will again be found.

> rm("setVNames")

Then we execute the code below, testing to see if we managed to set the
names as intended.

> x = matrix(1:4, nrow = 2)
> names(setVNames(x, letters[1:4]))

NULL

We see that the names have not been set. Notice also that there is no error,
but our program is not performing as we would like it to. We suspect the
error is in asSimpleVector. So we can apply the function debug to it. This
function does nothing more than set a flag on the function that requests that
the debugger be entered whenever the function supplied as an argument is
invoked.

> debug(asSimpleVector)

Now any call to asSimpleVector, either directly from the command line or
from another function, will start a browser session at the start of the call to
asSimpleVector in the step-through debugging mode.



282 R Programming for Bioinformatics

> names(setVNames(x, letters[1:4]))

debugging in: asSimpleVector(x, "numeric")
debug: {

if (!(mode %in% c("logical", "integer", "numeric",
"double", "complex", "character")))
stop("invalid mode ", mode)

Dim = dim(x)
nDim = length(Dim)
Names = names(x)
if (nDim > 0)

DimNames = dimnames(x)
x = as.vector(x, mode)
names(x) = Names
if (nDim > 0) {

dim(x) = Dim
dimnames(x) = DimNames

}
x

}

Browse[1]> where

where 1: asSimpleVector(x, "numeric")
where 2: setVNames(x, letters[1:4])

Browse[1]>

debug: if (!(mode %in% c("logical", "integer", "numeric",
"double", "complex", "character"))) stop("invalid mode ",
mode)

Browse[1]> x

[,1] [,2]
[1,] 1 3
[2,] 2 4
attr(,"names")
[1] "a" "b" "c" "d"

As we suspected, at entry, the parameter x has the names attribute set. So
the error must be somewhere inside this function. We continue the debugging
and examining the value of x.
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Browse[1]>

debug: Dim = dim(x)

Browse[1]>

debug: nDim = length(Dim)

Browse[1]> Dim

[1] 2 2

Browse[1]>

debug: Names = names(x)

Browse[1]> nDim

[1] 2

Browse[1]>

debug: if (nDim > 0) DimNames = dimnames(x)

Browse[1]> Names

[1] "a" "b" "c" "d"

Browse[1]>

debug: x = as.vector(x, mode)

Browse[1]>

debug: names(x) = Names

Browse[1]> x

[1] 1 2 3 4

Browse[1]>

debug: if (nDim > 0) {
dim(x) = Dim
dimnames(x) = DimNames

}

Browse[1]> x

a b c d
1 2 3 4
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We have correctly set the value of x back.

Browse[1]>

debug: dim(x) = Dim

Browse[1]>

debug: dimnames(x) = DimNames

Browse[1]> x

[,1] [,2]
[1,] 1 3
[2,] 2 4

However, after setting the dimension, the names attribute gets removed.
Now we know where the error is — we should set the name attribute after set-
ting the dimension and the dimnames. We first go to the end of the function.

Browse[1]>

debug: dimnames(x) = DimNames

Browse[1]> x

[,1] [,2]
[1,] 1 3
[2,] 2 4

Browse[1]>

debug: x

Then we verify that setting the names does not disturb the dimension and
then quit from the browser.

Browse[1]> names(x) = Names
Browse[1]> x

[,1] [,2]
[1,] 1 3
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[2,] 2 4
attr(,"names")
[1] "a" "b" "c" "d"

Browse[1]> Q

After finishing debugging, we undebug asSimpleVector, and now the debug-
ger will not be called on entry to asSimpleVector.

> undebug(asSimpleVector)

There is no easy way to find out which functions are currently being de-
bugged.

9.3.5 The trace function

The trace function provides all the functionality of the debug function and
it can do some other useful things. First of all, it can be used to just print all
calls to a particular function when it is entered and exited.

> trace(asSimpleVector)
> x = list(1:3, 4:5)
> for (i in seq(along = x)) {
+ x[[i]] = asSimpleVector(x[[i]], "complex")
+ }

trace: asSimpleVector(x[[i]], "complex")
trace: asSimpleVector(x[[i]], "complex")

> untrace(asSimpleVector)

Each time the function being traced is called, a line is printed starting with
trace: and followed by the call. Here the asSimpleVector function was called
twice inside the for loop. That is why we see two lines starting with trace:.
A call to untrace stops the tracing.

Secondly, it can be used like debug — but to only start the browsing at a
particular point inside the function. Suppose we want to start the browser
just before we enter the if block that sets the dimension and the dimnames.
We can use the function printWithNumbers to print asSimpleVector with ap-
propriate line numbers, the index of that place in the function. The function
is printed in the code chunk below and break points can be set for any line
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that has a number. When set, the tracer function will be evaluated just prior
to the evaluation of the specified line number.

> printWithNumbers(asSimpleVector)

function (x, mode = "logical")
1: {
2: if (!(mode %in% c("logical", "integer", "numeric", "dou
ble",

"complex", "character")))
stop("invalid mode ", mode)

3: Dim <- dim(x)
4: nDim <- length(Dim)
5: Names <- names(x)
6: if (nDim > 0)

DimNames <- dimnames(x)
7: x <- as.vector(x, mode)
8: names(x) <- Names
9: if (nDim > 0) {

dim(x) <- Dim
dimnames(x) <- DimNames

}
10: x

}
<environment: namespace:RBioinf>

By default, a call to trace prints the call. We can make it call browser by
supplying the tracer argument. We can start the tracing at a particular place
inside the function by supplying the at argument. To start tracing at the
beginning of the if block setting the dimension, we used at=9 in our call to
trace.

> trace(asSimpleVector, tracer = browser, at = 9)

[1] "asSimpleVector"

And now when the debugger is invoked at the line number requested, all
statements above that one have been evaluated and users can query and mod-
ify values, as for any other invocation of the browser.
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> names(setVNames(1:4, letters[1:4]))

Tracing asSimpleVector(x, "numeric") step 9
Called from: asSimpleVector(x, "numeric")

Browse[1]> ls()

[1] "Dim" "Names" "mode" "nDim" "x"

Browse[1]> x

a b c d
1 2 3 4

Browse[1]> Q

We halt tracing by calling untrace with the function we want to stop tracing
as an argument.

> untrace(asSimpleVector)

Finally, the trace function can also be used to debug calls to a particular
method for a S4 generic function (Section 3.7). To demonstrate that, we turn
the subsetAsCharacter function into an S4 generic function.

> setGeneric("subsetAsCharacter")

[1] "subsetAsCharacter"

In addition to creating a generic from the existing subsetAsCharacter func-
tion, this command also sets the original function as the default method. We
define an additional method for character vectors and simple subscripts.

> setMethod("subsetAsCharacter", signature(x = "character",
i = "missing", j = "missing"), function(x,
i, j) x)

[1] "subsetAsCharacter"
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Now we will use trace to debug the subsetAsCharacter generic only when
x is of class "character".

> trace("subsetAsCharacter", tracer = browser,
signature=c(x = "numeric"))

[1] "subsetAsCharacter"

Note that, in this particular case, there was no specific subsetAsCharacter

method with this signature. So the tracing will occur for the default method
— but only when the signature matches the one given to trace.

> subsetAsCharacter(1.5, 1:2)

Tracing subsetAsCharacter(1.5, 1:2) on entry
Called from: subsetAsCharacter(1.5, 1:2)

Browse[1]> ls()

[1] "i" "j" "x"

Browse[1]> x

[1] 1.5

Browse[1]> c

[1] "1.5" NA

> subsetAsCharacter(1 + (0+0i), 1:2)

[1] "1+0i" NA

> subsetAsCharacter("x")

[1] "x"

> untrace("subsetAsCharacter")
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9.4 Debugging C and other foreign code

Debugging compiled code is quite complex and generally requires some
knowledge of programming, how compiled programs are evaluated and other
rather esoteric details. In this section we presume a fairly high standard of
knowledge and recommend that if you have not used any of the tools de-
scribed here, or similar tools, you should consider consulting a local expert
for advice and guidance. URLs are given for the different software discussed,
and readers are referred to those locations for complete documentation of the
tools presented. The R Extensions Manual also provides some more detailed
examples and discussions that readers may want to consult.

The most widely used debugger for compiled code is gdb (see
http://www.gnu.org/software/gdb). It can be used on Windows (provided
you have installed the tools for building and compiling your own version of
R and R packages), Unix, Linux and OS X. The ddd(http://www.gnu.org/
software/ddd/) graphical interface to gdb can be quite helpful for users not
familiar with gdb.

In order to make use of gdb, you must compile R, and all compiled code
that you want to inspect, using the appropriate compiler flags. The compiler
flags can be set in the file R_HOME/config.site. We suggest turning off all
optimization; to yield the best results, do not use -O2 or similar, and use the
-g flag . While gdb is supposed to be able to deal with optimized compiled
code, there are often small glitches, and using no optimization removes this
potential source of confusion.

If you change these flags, you will need to remake all of R, typically by issu-
ing the make clean directive, followed by make. Any libraries that have been
installed and that have source code will need to have the source recompiled
using the new flags, if you intend to debug them.

R can be invoked with the ddd debugger by using the syntax R -d ddd, or
equivalently R --debugger=ddd. Similar syntax is used for other debuggers.
Options can be passed through to the debugger by using the --debugger-args
option as well.

Unix-like systems can make use of valgrind (http://valgrind.org) to
check for memory leaks and other memory problems. The code given below
runs valgrind while evaluating the code in the file someCode.R. Valgrind can
make your code run quite slowly, so be patient when using it.

R -d "valgrind --tool=memcheck --leak-check=yes"
--vanilla < someCode.R
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9.5 Profiling R code

There are often situations where code written in R takes rather a long
time to run. In very many cases, the problem can be overcome simply by
making use of more appropriate tools in R, by rearranging the code so that
the computations are more efficient, or by vectorizing calculations. In some
cases, when even after all efforts have been expended, the code is still too slow
to be viable, rewriting parts of the code in C or some other foreign language
(see Chapter 6 for more complete details) may be appropriate. However, in
all cases, it is still essential that a correct diagnosis of the problem be made.
That is, it is essential to determine which computations are slow and in need
of improvement. This is especially important when considering writing code
in a compiled language, since the diagnosis can help to greatly reduce the
amount of foreign code that is needed and in some cases can help to identify
a particular programming construct that might valuably be added to R itself.

Another tool that is often used is timing comparison. That is, two different
implementations are run and the time taken for each is recorded and reported.
While this can be valuable, some caution in interpreting results is needed.
Since R carries out its own memory management, it is possible that one version
will incur all of the costs of memory allocation and hence look much slower.

The functions Rprof and summaryRprof can be used to profile R commands
and to provide some insight into where the time is being spent. In the next
code chunk, we make use of Rprof to profile the computation of the median
absolute deviation about the median (or MAD) on a large set of simulated
data. The first call to Rprof initiates profiling. Rprof takes three optional
arguments: first the name of the file to print the results to, second a logical
argument indicating whether to overwrite or append to the existing file, and
third the sampling interval, in seconds. Setting this too small, below what
the operating system supports, will lead to peculiar outputs. We make use of
the default settings in our example.

> Rprof()
> mad(runif(1e+07))

[1] 0.371

> Rprof(NULL)

The second call to Rprof, with the argument NULL, turns profiling off. The
contents of the file Rprof.out are the active calls, computed every interval

seconds. These can be summarized by a call to summaryRprof, which tabulates
them and reports on the time spent in different functions.
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> summaryRprof()

$by.self
self.time self.pct total.time total.pct

"sort.int" 0.20 35.7 0.24 42.9
"is.na" 0.14 25.0 0.14 25.0
"runif" 0.10 17.9 0.10 17.9
"-" 0.06 10.7 0.06 10.7
"abs" 0.04 7.1 0.04 7.1
"list" 0.02 3.6 0.02 3.6
"<Anonymous>" 0.00 0.0 0.56 100.0
"Sweave" 0.00 0.0 0.56 100.0
"doTryCatch" 0.00 0.0 0.56 100.0
"evalFunc" 0.00 0.0 0.56 100.0
"try" 0.00 0.0 0.56 100.0
"tryCatch" 0.00 0.0 0.56 100.0
"tryCatchList" 0.00 0.0 0.56 100.0
"tryCatchOne" 0.00 0.0 0.56 100.0
"eval.with.vis" 0.00 0.0 0.54 96.4
"mad" 0.00 0.0 0.54 96.4
"median" 0.00 0.0 0.44 78.6
"median.default" 0.00 0.0 0.34 60.7
"mean" 0.00 0.0 0.24 42.9
"sort" 0.00 0.0 0.24 42.9
"sort.default" 0.00 0.0 0.24 42.9

$by.total
total.time total.pct self.time self.pct

"<Anonymous>" 0.56 100.0 0.00 0.0
"Sweave" 0.56 100.0 0.00 0.0
"doTryCatch" 0.56 100.0 0.00 0.0
"evalFunc" 0.56 100.0 0.00 0.0
"try" 0.56 100.0 0.00 0.0
"tryCatch" 0.56 100.0 0.00 0.0
"tryCatchList" 0.56 100.0 0.00 0.0
"tryCatchOne" 0.56 100.0 0.00 0.0
"eval.with.vis" 0.54 96.4 0.00 0.0
"mad" 0.54 96.4 0.00 0.0
"median" 0.44 78.6 0.00 0.0
"median.default" 0.34 60.7 0.00 0.0
"sort.int" 0.24 42.9 0.20 35.7
"mean" 0.24 42.9 0.00 0.0
"sort" 0.24 42.9 0.00 0.0
"sort.default" 0.24 42.9 0.00 0.0
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"is.na" 0.14 25.0 0.14 25.0
"runif" 0.10 17.9 0.10 17.9
"-" 0.06 10.7 0.06 10.7
"abs" 0.04 7.1 0.04 7.1
"list" 0.02 3.6 0.02 3.6

$sampling.time
[1] 0.56

The output has three components. There are two arrays, the first sorted
by self-time and the second sorted by total-time. The third component of the
response is the total time spent in the execution of the commands.

Given the command, it is no surprise that all of the total-time was spent in
the function mad. However, since the self-time for that function is zero, we can
conclude that computational effort was expended elsewhere. When looking
at self-time, we see that the bulk of the time is spent in sort.int, runif and
is.na. And, since we know that there are no missing values, it does seem
that some savings are available, as there is no need to run the is.na function.
Although one is able to control checking for NAs in the call to mad, no such
fine-grained control is possible with sort. Hence, you must either live with
the inefficiency or write your own version of sort that does allow the user to
turn off checking for missing values.

9.5.1 Timings

The basic tool for timing is system.time. This function returns a vector
of length five, but only three of the values are normally printed. The three
elements are the user cpu time, system cpu time, and elapsed time. Times
are reported in seconds, the resolution is system specific, but is typically to
1/100th of a second.

In the output shown below, the same R code was run three times, simulta-
neously, in a pristine R session. As you can see, there is about a 5% difference
between the system time for the first evaluation and those of the subsequent
evaluations. So when comparing the execution time of different methods, it is
prudent to change the order, and to repeat the calculations in different ways,
to ensure that the observed effects are real and important.

> system.time(mad(runif(10000000)))

user system elapsed
1.821 0.663 2.488

> system.time(mad(runif(10000000)))
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user system elapsed
1.817 0.635 2.455

> system.time(mad(runif(10000000)))

user system elapsed
2.003 0.632 2.638

The optional argument gcFirst is TRUE by default and ensures that R’s
garbage collector is run prior to the evaluation of the supplied expression. By
running the garbage collector first, it is likely that more consistent timings
will be produced.

9.6 Managing memory

There are some tools available in R to monitor memory usage. In R, memory
is divided into two separate components: memory for atomic vectors (e.g.,
integers, characters) and language elements. The language elements are the
SEXPs described in Chapter 6, while vector storage is contiguous storage for
homogeneous elements. Vector storage is further divided into two types: the
small vectors, currently less than 128 bytes, which are allocated by R (which
obtains a large chunk of memory, and then parcels it out as needed) and larger
vectors for which memory is obtained directly from the operating system.

R attempts to manage memory effectively and has a generational garbage
collector. Explicit details on the functioning of the garbage collector are given
in the R Internals manual (R Development Core Team, 2007d). During normal
use, the garbage collector runs automatically whenever storage requests exceed
the current free memory available. A user can trigger garbage collection with
the gc command, which will report the number of Ncells (SEXPs) used and
the number of Vcells (vector storage) used, as well as a few other statistics.
The function gcinfo can be used to have information print every time the
garbage collector runs.

> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 318611 8.6 597831 16 407500 10.9
Vcells 165564 1.3 29734436 227 35230586 268.8

One can also find out how many of the Ncells are allocated to each of
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the different types of SEXPs using memory.profile. In the example below,
we obtain the output of memory.profile and sort it, from largest to smallest.
This should be approximately equal to the value for Ncells used by gc, but
minor discrepancies are likely to occur to reflect the creation of new objects
or the effects of garbage collection.

> ss = memory.profile()
> sort(ss, decreasing = TRUE)

pairlist language character char symbol
176473 48112 41736 9838 7242
integer list logical promise closure

5974 5336 5124 4934 4579
double builtin environment S4 externalptr
3045 2035 1675 1654 513

special weakref complex expression NULL
224 121 3 2 1
... raw any bytecode
1 1 0 0

> sum(ss)

[1] 318623

9.6.1 Memory profiling

Memory profiling has an adverse effect on performance, even if it is not
being used, and hence is implemented as a compile time option. To use
memory profiling, R must be compiled with it enabled. This means that
readers will have to ensure that their version of R has been compiled to allow
for memory profiling if they want to follow the examples in this section.

There are three different strategies that can be used to profile memory us-
age. You can incorporate memory usage information in the output created by
Rprof by setting the argument memory.profiling to TRUE. And in that case, in-
formation about total memory usage is reported for each sampling time. The
information can then be summarized in different ways using summaryRprof.
There are four options for summarizing the output; none (the default) ex-
cludes memory usage information, while both requests that memory usage
information be printed with the other profiling information.

Two more advanced options are tseries and stats, which require that a
second argument, index, also be specified. The index argument specifies how
to summarize the calls on the stack trace. In the code below, we examine
memory usage from performing RMA on the Dilution data. First we load the
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necessary packages, then set up profiling and run the code we want to profile.

> library("affy")
> library("affydata")
> data(Dilution)
> Rprof(file = "profRMA", memory.profiling = TRUE)
> r1 = rma(Dilution)

Background correcting
Normalizing
Calculating Expression

> Rprof(NULL)

And in the next code segment, we read in the profiling data and display
selected parts of it. By setting memory to "tseries", the return value is a data
frame with one row for each sampling time, and values that help track usage
of vector storage (both large and small), language elements (nodes), calls to
duplicate, and the call stack at the time the data were sampled.

> pS = summaryRprof(file = "profRMA", memory = "tseries")
> names(pS)

[1] "vsize.small" "vsize.large" "nodes"
[4] "duplications" "stack:2"

Users can then examine these statistics to help identify potential inefficien-
cies in their code. For example, we plot the number of calls to duplicate.
What is quite remarkable in this plot is that there are a few spikes in calls
to duplicate, which are in the thousands. While such duplication may be
necessary, it is likely that it is not. Further tracking down the source of this
and making sure it is necessary could greatly speed up the processing time
and possibly decrease memory usage.

9.6.2 Profiling memory allocation

Another mechanism for memory profiling is provided by the Rprofmem func-
tion, which collects and prints information on the call stack whenever a large
(as determined by the user) object is allocated. The argument threshold

sets the size threshold, in bytes, for recording the memory allocation. This
tool can help to identify inefficiencies that arise due to copying large objects
without getting overwhelmed by the total number of copies. As observed in
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FIGURE 9.1: Time series view of calls to duplicate during the processing of
Affymetrix data.
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Figure 9.1, there are very many calls to duplicate during the evaluation of
the rma function. It is not clear whether these are large or small objects.

In the next code segment, we request that allocation of objects larger than
10000 bytes be recorded. Once the computations are completed, we view the
first five lines of the output file. The functions being called suggest that there
is a lot of allocation begin performed to retrieve the probe names. In the
example, we needed to trim the output, using strtrim, so that it fits on the
page; readers would not normally do that.

> Rprofmem(file = "rma2.out", threshold = 1e+05)
> s2 = rma(Dilution)

Background correcting
Normalizing
Calculating Expression

> Rprofmem(NULL)

> noquote(readLines("rma2.out", n = 5))

[1] new page:".deparseOpts" "deparse" "eval" "match.arg" ".loc
al" "indexProbes" "indexProbes" ".local" "pmindex" "pmindex" "
.local" "probeNames" "probeNames" "rma" "eval.with.vis" "doTry
Catch" "tryCatchOne" "tryCatchList" "tryCatch" "try" "evalFunc
" "<Anonymous>" "Sweave"

[2] new page:"switch" "<Anonymous>" "data" "cleancdfname" "cdf
FromLibPath" "switch" "getCdfInfo" ".local" "indexProbes" "ind
exProbes" ".local" "pmindex" "pmindex" ".local" "probeNames" "
probeNames" "rma" "eval.with.vis" "doTryCatch" "tryCatchOne" "
tryCatchList" "tryCatch" "try" "evalFunc" "<Anonymous>" "Sweav
e"
[3] new page:"match" "cleancdfname" "cdfFromLibPath" "switch"
"getCdfInfo" ".local" "indexProbes" "indexProbes" ".local" "pm
index" "pmindex" ".local" "probeNames" "probeNames" "rma" "eva
l.with.vis" "doTryCatch" "tryCatchOne" "tryCatchList" "tryCatc
h" "try" "evalFunc" "<Anonymous>" "Sweave"

[4] new page:"file.info" ".find.package" "cdfFromLibPath" "swi
tch" "getCdfInfo" ".local" "indexProbes" "indexProbes" ".local
" "pmindex" "pmindex" ".local" "probeNames" "probeNames" "rma"
"eval.with.vis" "doTryCatch" "tryCatchOne" "tryCatchList" "tr
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yCatch" "try" "evalFunc" "<Anonymous>" "Sweave"

[5] new page:"as.vector" ".local" "indexProbes" "indexProbes"
".local" "pmindex" "pmindex" ".local" "probeNames" "probeNames
" "rma" "eval.with.vis" "doTryCatch" "tryCatchOne" "tryCatchLi
st" "tryCatch" "try" "evalFunc" "<Anonymous>" "Sweave"

> length(readLines("rma2.out"))

[1] 6239

Exercise 9.1
Write a function to parse the output of Rmemprof and determine the total
amount of memory allocated. Use the names from the call stack to assign the
memory allocation to particular functions.

9.6.3 Tracking a single object

The third mechanism that is provided is to trace a single object and deter-
mine when and where it is duplicated. The function tracemem is called with
the object to be traced, and subsequently, whenever the object (or a natural
descendant) is duplicated, a message is printed.

In the code below, we first trace duplication of Dilution in the call to
rma, but find that there is none; and there should be none, so that is good.
When subsetting an instance of the ExpressionSet class, however, it seems
that around four copies are made and none should be, so there are definitely
some inefficiencies that could be fixed.

> tracemem(Dilution)

[1] "<0x2e2da40>"

> s3 <- rma(Dilution)

Background correcting
Normalizing
Calculating Expression

> tracemem(s3)

[1] "<0x8420bc0>"
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> s2 = s3[1:100,]

tracemem[0x6367894 -> 0x5759994]: [ [
tracemem[0x5759994 -> 0x6517df0]: featureData<-
tracemem[0x6517df0 -> 0x55de304]: [ [
tracemem[0x55de304 -> 0x560156c]: assayData<-

Exercise 9.2
Trace memory usage on an instance of the ExpressionSet class when setting
the sample names. How many copies are made?
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