
Visual C++ and MFC Fundamentals Table of Contents

© FunctionX, Inc. 1

an action creates a document and this document must reside somewhere.

Visual C++ and MFC
Programming

Table of Contents Visual C++ and MFC Fundamentals

2 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Table of Contents

© FunctionX, Inc. 3

Table of Contents

TABLE OF FIGURES ...13

CHAPTER 1: INTRODUCTION TO MICROSOFT VISUAL C++...........15
1.1 The Microsoft Visual C++ Environment...16

1.1.1 Introduction..16
1.1.2 The Integrated Development Environment ..17
1.1.3 The Title Bar..17
1.1.4 The Main Menu...18
1.1.5 The Toolbars..21
1.1.6 The Studio Windows..23

1.2 Floatable and Dockable Windows ..26
1.2.1 Description...26

1.3 Visual C++ Projects and Files ...27
1.3.1 Creating a New Project ..27
1.3.2 Creating Files...28
1.3.3 Adding Existing Files to a Project ...29
1.3.4 Adding Classes ..30
1.3.5 Opening Files...31
1.3.6 Opening Existing Projects ...33

1.4 Getting Help ...34
1.4.1 Online Help ..34
1.4.2 Other Help Types..35

CHAPTER 2: INTRODUCTION TO MFC ...37
2.1 The Microsoft Foundation Class Library ..38

2.1.1 Introduction..38
2.1.2 CObject, the Ancestor..38
2.1.3 The Basic Application..39

2.2 Frames Fundamentals ...42
2.2.1 Introduction..43
2.2.2 Reference to the Main Window..44
2.2.3 Introduction to Macros...47
2.2.4 Windows Styles...48
2.2.5 Windows Location..51
2.2.6 Windows Size ..53
2.2.7 Windows Dimensions..54
2.2.8 Windows Parents ..57

2.3 Message Boxes...58
2.3.1 Definition ...58
2.3.2 Message Box Creation ...59
2.3.3 Message Box Implementation ..59
2.3.4 The Box’ Message..60
2.3.5 The Message’ Title ...62
2.3.6 Message Box Options ..63
2.3.7 The Message’s Return Value..66

CHAPTER 3: WINDOWS RESOURCES ..69

Table of Contents Visual C++ and MFC Fundamentals

4 © FunctionX, Inc.

3.1 Introduction to Resources ..70
3.1.1 Introduction..70
3.1.2 Converting a Resource Identifier ...71

3.2 Icons...73
3.2.1 Icons Overview ...73
3.2.2 Icons Design..74

3.3 Menu Fundamentals ..80
3.3.1 Overview..80
3.3.2 The Main Menu...80
3.3.3 Main Menu Design...81

3.4 Toolbars...85
3.4.1 Overview..85
3.4.2 Creating a Toolbar..85

3.5 Accelerators..85
3.5.1 Access Keys...86
3.5.2 Shortcuts ...86
3.5.3 Accelerator Table ..87

3.6 Version Information..88
3.6.1 Overview..88
3.6.2 The Version Information Editor...88

3.7 Cursors ..89
3.7.1 Overview..89
3.7.2 Creating and Using Cursors ..90

3.8 The String Table ..92
3.8.1 Description...92
3.8.2 Creating and Using a String Table ...92

3.9 Other Techniques of Creating Windows ...94
3.9.1 Window Registration and Standard Resources..................................94
3.9.2 Window Registration and Custom Resources....................................95
3.9.3 Frame Loading ..97

CHAPTER 4: MESSAGES AND EVENTS ..101
4.1 Introduction to Messages .. 102

4.1.1 Overview... 102
4.1.2 A Map of Messages ... 102

4.2 Windows Messages .. 104
4.2.1 Window Creation... 105
4.2.2 Window's Showing State.. 106
4.2.3 Window Activation ... 108
4.2.4 Window Painting ... 112
4.2.5 Window Sizing... 114
4.2.6 Window Moving.. 116
4.2.7 Window Destruction ... 119

4.3 Command Messages .. 119
4.3.1 Definition .. 120
4.3.2 Creating a Command Message.. 120

4.4 Keyboard Messages ... 120
4.4.1 Introduction... 120
4.4.2 The Key Down Effect ... 122
4.4.3 The Key Up Effect... 124

4.5 Mouse Messages... 124
4.5.1 Introduction... 124
4.5.2 Mouse-Down Messages.. 124
4.5.3 The Mouse-Up Messages ... 127
4.5.4 The Double-Click Message.. 129

Visual C++ and MFC Fundamentals Table of Contents

© FunctionX, Inc. 5

4.5.5 Mouse Moving... 130
4.6 Anytime Messages ... 130

4.6.1 Introduction... 130
4.6.2 Sending Messages.. 131

CHAPTER 5: THE DOCUMENT/VIEW ARCHITECTURE....................133
5.1 Overview of the Document/View Architecture....................................... 134

5.1.1 Introduction... 134
5.1.2 The View... 134
5.1.3 The Document .. 134
5.1.4 The Frame ... 134
5.1.5 The Document/View Approach... 135

5.2 The Single Document Interface (SDI).. 136
5.2.1 Overview... 136
5.2.2 Creating a Single Document Interface ... 137

5.3 SDI Improvements ... 143
5.3.1 SDI Improvements: The Application ... 143
5.3.2 SDI Improvements: The Document.. 146
5.3.3 SDI Improvements: The Frame ... 150
5.3.4 SDI Improvements: The View... 151

5.4 The Multiple Document Interface (MDI)... 151
5.4.1 Overview... 151
5.4.2 Creating a Multiple Document Interface ... 154
5.4.3 The Visual C++ AppWizard .. 157

5.5 The AppWizard... 157
5.5.1 An SDI With AppWizard ... 158
5.5.2 An MDI With AppWizard .. 161

CHAPTER 6: THE GRAPHICAL DEVICE INTERFACE........................163
6.1 Introduction to the GDI ... 164

6.1.1 The Device Context ... 164
6.1.2 Grabbing the Device Context .. 164

6.2 The Process of Drawing .. 165
6.2.1 Getting a Device Context ... 165
6.2.2 Starting a Device Context's Shape.. 165

6.3 GDI Lines and Shapes ... 167
6.3.1 Lines... 167
6.3.2 Polylines .. 170
6.3.3 Multiple Polylines.. 173
6.3.4 Polygons.. 175
6.3.5 Multiple Polygons.. 176
6.3.6 Rectangles and Squares .. 177
6.3.7 A Rectangle With Edges... 179
6.3.8 Ellipses and Circles ... 180
6.3.9 Round Rectangles and Round Squares .. 183
6.3.10 ..Pies ... 184
6.3.11 ..Arcs.. 185
6.3.12 ..The Arc's Direction ... 187
6.3.13 ..Angular Arcs .. 190
6.3.14 ..Chords ... 191
6.3.15 ..Bézier Curves ... 192

CHAPTER 7: GDI ACCESSORIES AND TOOLS197
7.1 Colors ... 198

Table of Contents Visual C++ and MFC Fundamentals

6 © FunctionX, Inc.

7.1.1 Overview... 198
7.1.2 The Color as a Data Type... 199
7.1.3 Color Palettes.. 200

7.2 Drawing With Colors ... 201
7.2.1 Coloring a Pixel.. 201
7.2.2 Rectangles With 3-D Effect ... 201
7.2.3 Drawing Text .. 202

7.3 Bitmaps... 205
7.3.1 Introduction... 205
7.3.2 Bitmap Creation ... 206

7.4 Fonts ... 209
7.4.1 Introduction... 209
7.4.2 Font Selection... 209
7.4.3 Font Creation .. 209
7.4.4 Font Retrieval... 215

7.5 Pens... 216
7.5.1 Introduction... 216
7.5.2 The Fundamentals of a Pen .. 216
7.5.3 Creating and Selecting a Pen ... 216
7.5.4 Retrieving a Pen ... 220

7.6 Brushes... 220
7.6.1 Introduction... 220
7.6.2 Solid Brushes .. 221
7.6.3 Hatched Brushes .. 225
7.6.4 Patterned Brushes .. 227
7.6.5 Logical Brushes.. 229

CHAPTER 8: GDI ORIENTATION AND TRANSFORMATIONS231
8.1 The Default Coordinate System... 232

8.1.1 Introduction... 232
8.1.2 Changing the Coordinate System.. 234

8.2 The Mapping Modes .. 238
8.2.1 Mapping Mode Choices.. 238
8.2.2 Unit and Coordinate Systems Options... 243

CHAPTER 9: STRINGS ...249
9.1 Fundamentals of Strings.. 250

9.1.1 Null-Terminated Strings ... 250
9.1.2 The Standard string Class... 251
9.1.3 The Length of a String .. 252
9.1.4 String Formatting... 253

9.2 Operations of Strings... 255
9.2.1 String Copy... 255
9.2.2 String Concatenation... 257

9.3 The Characters of a String .. 259
9.3.1 Access to Characters ... 259
9.3.2 Sub-Strings.. 260

9.4 The CString Class... 260
9.4.1 Introduction... 260
9.4.2 String Initialization.. 261
9.4.3 The String and its Length... 261

9.5 Working with Individual Characters ... 263
9.5.1 Character Indexing .. 263
9.5.2 Character Insertion .. 264
9.5.3 Finding a Character ... 264

Visual C++ and MFC Fundamentals Table of Contents

© FunctionX, Inc. 7

9.5.4 Character Identification .. 265
9.5.5 Removing Characters .. 265

9.6 Sub Strings... 266
9.6.1 Introduction... 266
9.6.2 Finding a Sub String.. 267
9.6.3 Character and String Removal... 268
9.6.4 Replacing String Occurrences ... 268
9.6.5 String Formatting... 269

9.7 Operations on Strings... 270
9.7.1 About Constructing a String .. 270
9.7.2 String Assignment ... 270
9.7.3 String Copy... 271
9.7.4 Strings and Their Cases .. 271

9.8 String Comparisons.. 272
9.8.1 Case Sensitivity.. 272
9.8.2 Case Insensitivity... 273

CHAPTER 10: CHARACTERISTICS OF A WINDOW'S FRAME........277
10.1 Introduction to Win32 Library .. 278

10.1.1 ..Overview... 278
10.1.2 ..The Framework.. 279
10.1.3 ..A Window's Instance.. 280
10.1.4 ..The Command Line... 281
10.1.5 ..Frame Display Options... 282
10.1.6 ..Window Class Initialization .. 282
10.1.7 ..Window Registration .. 291

10.2 Window Creation... 292
10.2.1 ..The Main Window .. 292
10.2.2 ..The Window Class Name... 294
10.2.3 ..The Window Name ... 296
10.2.4 ..Windows Styles ... 297
10.2.5 ..Window's Location and Size ... 298
10.2.6 ..Window's Parenting .. 305
10.2.7 ..The Window's Menu... 306
10.2.8 ..Window Display.. 309
10.2.9 ..Considering Window's Messages ... 310

10.3 The Mini Frame Window... 314
10.3.1 ..Introduction.. 314
10.3.2 ..Creation of a Miniframe Window... 314

CHAPTER 11: INTRODUCTION TO WINDOWS CONTROLS317
11.1 Controls Fundamentals ... 318

11.1.1 ..Introduction.. 318
11.1.2 ..The Parent-Child Window Relationship.. 320

11.2 Parent Controls ... 321
11.2.1 ..Definition .. 321
11.2.2 ..Parent Windows Styles... 321

11.3 Windows Controls ... 321
11.3.1 ..Introduction.. 322
11.3.2 ..Control Creation Options... 322
11.3.3 ..The Control's Class Name .. 325
11.3.4 ..The Control's Window Name .. 327

11.4 Controls Styles and Common Properties... 327
11.4.1 ..Childhood.. 327
11.4.2 ..Visibility.. 328

Table of Contents Visual C++ and MFC Fundamentals

8 © FunctionX, Inc.

11.4.3 ..Availability ... 329
11.4.4 ..Borders .. 330
11.4.5 ..Tab Sequence... 331

11.5 Extended Styles.. 332
11.5.1 ..Introduction.. 332
11.5.2 ..Left Text Alignment.. 333
11.5.3 ..Right Text Alignment... 333
11.5.4 ..Extended Borders .. 334
11.5.5 ..Controls Location and Dimensions.. 336
11.5.6 ..Parenthood.. 339
11.5.7 ..Control Identification.. 339

CHAPTER 12: DIALOG-BASED WINDOWS ...343
12.1 Dialog Boxes .. 344

12.1.1 ..Overview... 344
12.1.2 ..Dialog Box Creation ... 346
12.1.3 ..Dialog Box Location... 347
12.1.4 ..Dialog Box Dimensions... 348
12.1.5 ..Windows Styles for a Dialog Box.. 350
12.1.6 ..Dialog Box Styles.. 355
12.1.7 ..Extended Windows Styles for a Dialog Box.................................. 356
12.1.8 ..Creating the Dialog Resource File .. 359
12.1.9 ..Creating a Class for the Dialog ... 360
12.1.10 Dialog Box Methods... 361

12.2 Modal Dialog Boxes ... 362
12.2.1 ..Dialog-Based Applications.. 362
12.2.2 ..The MFC Wizard for a Dialog-Based Application........................ 364
12.2.3 ..A Modal Dialog Box in an Application... 366

12.3 Property Sheets and Wizards... 367
12.3.1 ..Introduction to Property Pages .. 367
12.3.2 ..Creating Property Pages ... 368
12.3.3 ..Property Sheets .. 374
12.3.4 ..Wizard Pages.. 378

CHAPTER 13: CONTROL DESIGN ..381
13.1 Forms ... 382

13.1.1 ..Introduction.. 382
13.1.2 ..Form Creation .. 382

13.2 Dialog Box Messages and Events... 384
13.2.1 ..The Dialog Box as a Control Initializer... 384
13.2.2 ..Other Dialog-Based Windows Messages .. 388
13.2.3 ..Control-Related Messages ... 389

13.3 Floating Windows ... 389
13.3.1 ..Introduction.. 390
13.3.2 ..The Modeless Dialog Box.. 390
13.3.3 ..Modeless Property Sheets.. 395

13.4 Control Design... 399
13.4.1 ..Controls Selection and Addition... 399
13.4.2 ..Control’s Location and Size Using Grids.. 400
13.4.3 ..Control’s Location and Size Without Grids.................................... 401
13.4.4 ..Selecting Controls on a Parent Window.. 404
13.4.5 ..Controls Resizing .. 406
13.4.6 ..Controls Positions.. 408
13.4.7 ..Tab Ordering .. 409

Visual C++ and MFC Fundamentals Table of Contents

© FunctionX, Inc. 9

CHAPTER 14: CONTROLS FUNCTIONALITY ...411
14.1 Handling Controls ... 412

14.1.1 ..Introduction.. 412
14.1.2 ..Control's Control Variables:.. 414
14.1.3 ..The Control’s Data Exchange ... 417
14.1.4 ..Control’s Value Variables.. 418
14.1.5 ..Controls Event Handlers .. 420

14.2 Controls Management... 421
14.2.1 ..Control’s Identification .. 421
14.2.2 ..The Client Area.. 424
14.2.3 ..The Screen and Client Coordinates .. 428
14.2.4 ..The Window: Its Location and Dimensions................................... 432
14.2.5 ..The Handle or Pointer to a Window... 435
14.2.6 ..The Text of a Control.. 436
14.2.7 ..Controls Values Update.. 441
14.2.8 ..Window’s Focus.. 443
14.2.9 ..The Window’s Visibility.. 444
14.2.10 The Window’s Availability ... 446

14.3 Access to a Controls Instance and Handle .. 447
14.3.1 ..The Instance of an Application ... 447
14.3.2 ..The Handle to a Window ... 447

14.4 Getting Access to a Control... 448
14.4.1 ..Retrieving Control Information... 449
14.4.2 ..Changing Control Information.. 450

CHAPTER 15: FUNDAMENTAL CONTROLS ..453
15.1 Static Controls .. 454

15.1.1 ..Introduction.. 454
15.1.2 ..Static Control Properties .. 454
15.1.3 ..The Picture Control... 456

15.2 Animation Controls ... 458
15.2.1 ..Overview... 458
15.2.2 ..Animation Control and Properties .. 459
15.2.3 ..Animation Methods... 460

15.3 Group Boxes... 463
15.3.1 ..Introduction.. 463
15.3.2 ..Group Box Properties and Data Exchange...................................... 463

15.4 Command Buttons... 464
15.4.1 ..Overview... 464
15.4.2 ..Command Buttons Properties and Methods.................................... 464
15.4.3 ..Buttons Messages .. 467

15.5 Property Sheet and Wizard Buttons... 471
15.5.1 ..Property Sheet Buttons... 471
15.5.2 ..Wizard Buttons.. 483

15.6 Bitmap Buttons .. 485
15.6.1 ..Overview... 486
15.6.2 ..Bitmap Button Implementation... 486

CHAPTER 16: TEXT-BASED CONTROLS ...491
16.1 Labels .. 492

16.1.1 ..Overview... 492
16.1.2 ..Drawn Labels ... 494
16.1.3 ..Static Labels ... 496

16.2 Edit Controls .. 498

Table of Contents Visual C++ and MFC Fundamentals

10 © FunctionX, Inc.

16.2.1 ..Introduction.. 498
16.2.2 ..Edit Control Characteristics... 500
16.2.3 ..Multiline Edit Boxes ... 509
16.2.4 ..Edit Control Messages.. 510

16.3 The Rich Edit Control... 514
16.3.1 ..Overview... 514
16.3.2 ..A Rich Edit Control .. 514
16.3.3 ..Rich Edit Properties .. 516

CHAPTER 17: TRACK-BASED CONTROLS ...523
17.1 Spin Button... 524

17.1.1 ..Overview... 524
17.1.2 ..Creating a Spin Button ... 526
17.1.3 ..The Spin Button Properties.. 528
17.1.4 ..Methods of Managing an UpDown Control 529
17.1.5 ..The Spin Button Events.. 535

17.2 The UpDown Control ... 538
17.2.1 ..Overview... 538
17.2.2 ..Using an UpDown Control .. 540
17.2.3 ..The UpDown Control Events .. 543

17.3 Slider Controls ... 545
17.3.1 ..Overview... 545
17.3.2 ..Slider Creation ... 550
17.3.3 ..Slider Properties... 551
17.3.4 ..Slider Methods... 554
17.3.5 ..Slider Events .. 557

CHAPTER 18: PROGRES S-BASED CONTROLS559
18.1 Timers.. 560

18.1.1 ..Overview... 560
18.1.2 ..The Timer Control... 561
18.1.3 ..The Timer Messages and Methods... 562
18.1.4 ..The Tick Counter... 564

18.2 Progress Controls... 567
18.2.1 ..Overview... 567
18.2.2 ..Progress Bar Properties .. 568
18.2.3 ..Progress Control Methods and Events ... 569

18.3 Progress Bars.. 572
18.3.1 ..Introduction.. 572
18.3.2 ..Creating Progress Bars ... 572
18.3.3 ..Progress Bars Methods and Events .. 575

18.4 Scroll Bars .. 577
18.4.1 ..Introduction.. 577
18.4.2 ..Creating Scroll Bars on Views and Dialog Boxes 578
18.4.3 ..Creating a Scroll Bar Control.. 583
18.4.4 ..ScrollBar Properties .. 586
18.4.5 ..Scroll Bar Methods.. 589
18.4.6 ..Scroll Bar Events... 593

18.5 Flat Scroll Bars .. 596
18.5.1 ..Overview... 596
18.5.2 ..Flat Scroll Bar Properties ... 596
18.5.3 ..Flat Scroll Bar Methods and Events... 598

CHAPTER 19: SELECTION-BASED CONTROLS599

Visual C++ and MFC Fundamentals Table of Contents

© FunctionX, Inc. 11

19.1 Radio Buttons... 600
19.1.1 ..Introduction.. 600
19.1.2 ..Creating Radio Buttons.. 602
19.1.3 ..Radio Button Properties ... 604
19.1.4 ..Radio Buttons Methods.. 607
19.1.5 ..Radio Buttons Events.. 611

19.2 Check Boxes... 618
19.2.1 ..Introduction.. 618
19.2.2 ..Check Box Properties ... 620
19.2.3 ..Check Box Methods.. 623
19.2.4 ..Check Box Events ... 627

CHAPTER 20: LIST-BASED CONTROLS ...633
20.1 List Boxes ... 634

20.1.1 ..Overview... 634
20.1.2 ..List Box Fundamentals ... 635
20.1.3 ..List Box Methods .. 636
20.1.4 ..List Box Messages and Events.. 643

20.2 Combo Boxes ... 650
20.2.1 ..Overview... 650
20.2.2 ..Combo Box Properties.. 652
20.2.3 ..Combo Box Methods.. 654
20.2.4 ..Combo Box Messages and Events.. 656

20.3 Image Lists ... 657
20.3.1 ..Introduction.. 657
20.3.2 ..Image List Creation... 658

CHAPTER 21: TREE AND LIST CONTROLS ...663
21.1 The Tree Control ... 664

21.1.1 ..Overview... 664
21.1.2 ..Tree List Properties ... 667
21.1.3 ..Tree Controls Methods... 669
21.1.4 ..Tree Control Messages ... 675
21.1.5 ..Tree Control With Bitmaps or Icons.. 679

21.2 The Tree View... 681
21.2.1 ..Overview... 681
21.2.2 ..Tree View Implementation .. 681

21.3 The List Control... 682
21.3.1 ..Overview... 682
21.3.2 ..List Control Creation .. 683
21.3.3 ..Items of a List Control.. 687
21.3.4 ..The Report View... 689
21.3.5 ..Views Transition.. 693
21.3.6 ..List Control and Icons .. 694

21.4 The List View... 696
21.4.1 ..Overview... 697
21.4.2 ..List View Implementation ... 697

CHAPTER 22: CUSTOM LIBRARIES ..705
22.1 Introduction to Libraries... 706

22.1.1 ..Overview... 706
22.1.2 ..Libraries Characteristics... 706

22.2 General Static Libraries .. 706
22.2.1 ..Introduction.. 706

Table of Contents Visual C++ and MFC Fundamentals

12 © FunctionX, Inc.

22.2.2 ..Creation of a Static Library ... 707
22.3 MFC Static Libraries... 713

22.3.1 ..Introduction.. 713
22.3.2 ..Creation of an MFC Static Library ... 713
22.3.3 ..MFC Static Library Test .. 716

22.4 Win32 DLL .. 719
22.4.1 ..Introduction.. 719
22.4.2 ..Fundamentals of a DLL.. 720
22.4.3 ..Win32 DLL Test.. 722

22.5 DLL Module-Definition Files ... 725
22.5.1 ..Definition File Fundamentals .. 725
22.5.2 ..Usage of a Definition File DLL .. 728

INDEX ..733

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 13

Table of Figures

Figure 1: Microsoft Visual Studio IDE...17
Figure 2: Open Workspace...19
Figure 3: Customizing the IDE Resources...22
Figure 4: The Workspace Window..24
Figure 5: The Resource View...25
Figure 6: The ResourceView tab of the Worskpace...25
Figure 7: The Source Code Editor..26
Figure 8: Moving a Dockable Window ..27
Figure 9: Creating a New Project - Exercise1...28
Figure 10: Win32 Application Wizard - Exercise1..28
Figure 11: Adding a C++ Class..31
Figure 12: File Opening in Visual Studio ..32
Figure 13: Opening a File With the Open Dialog Box..33
Figure 14: A Microsoft Visual C++ Message Box...33
Figure 15: The Options Dialog Box..34
Figure 16: New Project - Windows Fundamentals ...40
Figure 17: Win32 Application Wizard - Windows Fundamentals ...41
Figure 18: Window Frame Property Pages ..41
Figure 19: ADd New Item - Windows Fundamentals ..42
Figure 20: Microsoft Development Environment - Message Box...42
Figure 21: Window Illustration..43
Figure 22: A Window Frame with Title Bar..44
Figure 23: A Window Frame with no Caption..44
Figure 24: Windows Application...46
Figure 25: The Title Bar of a Frame ...49
Figure 26: A Frame with System Menu ...49
Figure 27: A Frame with a Minimize Button ..50
Figure 28: A Frame with a Maximize Button..50
Figure 29: Windows Application - Resizing ...51
Figure 30: Illustration of Window Origin ..52
Figure 31: Illustration of Window Location ..53
Figure 32: Illustration of Window Origin and Location...55
Figure 33: Illustration of Window Location, Origin, and Size ...56
Figure 34: A Simple Message Box..58
Figure 35: An Elaborate Message Box...58
Figure 36: Components of a Message Box..59
Figure 37: A Simple Message Box with MessageBox()..61
Figure 38: A Message's Box on Various Lines ...61
Figure 39: Creating a Multiline Message Box...62

Chapter 1: Introduction to Visual C++ Visual C++ and MFC Fundamentals

14 © FunctionX, Inc.

Figure 40: A Message Box with Various Buttons ..63
Figure 41: A Message Box with an Icon..64
Figure 42: Creating a Message Box..65
Figure 43: Creating an Elaborate Message Box..66
Figure 44: Add Resource - Icon...70
Figure 45: Add Resource - Icon...75
Figure 46: Simple Menu..84
Figure 47: Version Table...89
Figure 48: Resource Symbols ...93
Figure 49: New Symbol..93
Figure 50: Notepad as an SDI ... 137
Figure 51: New Project - DocView1.. 138
Figure 52: Win32 Application Wizard - DocView1 ... 139
Figure 53: DocView1 Property Pages.. 139
Figure 54: Adding an Icon Resource.. 140
Figure 55: Icon Design - DocView1 .. 140
Figure 56: Icon Design - DocView2 .. 140
Figure 57: A Tree List With One Root.. 664
Figure 58: A Tree List With Various Roots.. 664
Figure 59: A Newly added Tree Control... 666
Figure 60: A Tree List With All Items As Roots... 670

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 15

Chapter 1:
Introduction to Microsoft
Visual C++

? The: Microsoft Visual C++ Environment

? Floatable and Dockable Windows

? Visual C++ Projects and Files

? Help

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

16 © FunctionX, Inc.

1.1 The Microsoft Visual C++ Environment

1.1.1 Introduction
Microsoft Visual C++ is a programming environment used to create applications for the
Microsoft Windows operating systems . To use this ebook, you must have installed either
Microsoft Visual C++ 6.0 or Microsoft Visual Studio 6.0.

Although Microsoft Visual C++ .Net provides two programming environments for the
price of one, in this book, we will use Microsoft Visual Studio 6.0 and we will cover only
Microsoft Foundation Class (MFC) library programs.

After installing it, to use the programming environment, you must first open it. To do
that, you would click Start -> (All) Programs -> Microsoft Visual Studio 6.0 -> Microsoft
Visual Studio 6.0.

If you were using version 6, to open it, you would click Start -> (All) Programs ->
Microsoft Visual Studio 6.0 -> Microsoft Visual C++ 6.0

This book uses the -> arrow for the menu requests.
From now on, in this book,
Request Example Means
Edit -> Copy Click Edit then click Copy
View -> Toolbars -> Custom Click View position the mouse on Toolbars, and then

click Custom

 Practical Learning: Launching Microsoft Visual C++

?? To start Microsoft Visual C++ or Visual Studio, on the Taskbar, click Start (All)
Programs -> Microsoft Visual Studio 6.0 -> Microsoft Visual Studio 6.0

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 17

Figure 1: Microsoft Visual Studio IDE

1.1.2 The Integrated Development Environment
After Microsoft Visual Studio has been opened, the screen you look at is called an
Integrated Development Environment or IDE. The IDE is the set of tools you use to
create a program. The IDE design of Microsoft Visual C++ 6 and Microsoft Visual
Studio .Net is significantly different. While version 6 had its unique design as compared
to Microsoft Visual Basic, the programming environments of Microsoft share the same
look in the 2002 and 2003 releases.

1.1.3 The Title Bar

1. The system icon is used to identify the application that you are using. Almost
every application has its own system icon. The system icon holds its own list of
actions; for example, it can be used to move, minimize, maximize or close (when
double-clicked) a window.

To see its list of actions, click it

2. To see an example, while the system menu is displaying, click Minimize. To bring
back the IDE, on the Task bar, click Microsoft Visual C++

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

18 © FunctionX, Inc.

3. The main section of the title bar displays Microsoft Visual C++. This starting title
displays in the beginning until you decide to create a particular type of application,
then the title changes. You will experience it once we start some programming
assignments.

4. The main section of the title bar is also used to move, minimize, maximize the top
section of the IDE, or to close Visual Studio. On the right section of the title bar,
there are three system buttons with the following roles

Button Role

Minimizes the window

 Maximizes the window

Restores the window

Closes the window

1.1.4 The Main Menu
Under the title bar, there is a range of words located on a gray bar. This is called the
menu or main menu.

 In this ebook, the expression “Main Menu” refers to the menu on top of the IDE.
MSVC means Microsoft Visual C++
MSVC 6 means Microsoft Visual C++ 6.0
MSVC 7 means Microsoft Visual C++ 2003

To use a menu, you click one of its words and the menu expands.

If an item is missing from the main menu, you can customize it.

1 Click File. There are four main types of menus you will encounter.

 When clicked, the behavior of a menu that stands alone
depends on the actions prior to clicking it. Under the File menu, examples include
Close, Save All, or Exit. For example, if you click Close, Microsoft Visual Studio
will find out whether the current file had been saved already. If it has been, the file
would be closed; otherwise, you would be asked whether you want to save it before
closing it

2 To see an example, click Exit.

3 Start Microsoft Visual C++ the same way we did earlier

4 A menu that is disabled is not accessible at the moment.
This kind of menu depends on another action or the availability of something else.
To see an example, one the main menu, click Window:

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 19

5 A menu with three dots means that an intermediary
action is required in order to apply its assigned behavior. Usually, this menu would
call a dialog box where the user would have to make a decision.
As an example, on the main menu, position the mouse on File and click Open
Workspace...

6 On the dialog box, locate the folder that has your downloaded exercises. Locate and
display the Exercise1 folder in the Look In combo box:

Figure 2: Open Workspace

7 Click Exercise1 and click Open.

8 A menu with an arrow holds a list of menu
items under it. A menu under another menu is called a submenu. To use such a
menu, you would position the mouse on it to display its submenu.

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

20 © FunctionX, Inc.

For example, on the main menu, click Project and position the mouse on Add To
Project...

9 To dismiss the menu, click Project

10 Notice that, on the main menu (and any menu), there is one letter underlined on each
word. Examples are F in File, E in Edit, V in View, etc. The underlined letter is
called an access key. It allows you to access the same menu item using the keyboard.
In order to use an access key, the menu should have focus first. The menu is given
focus by pressing either the Alt or the F10 keys.

11 To see an example, press Alt

12 Notice that one of the items on the menu, namely File, has its borders raised. This
means that the menu has focus.

13 Press t and notice that the Tools menu is expanded.

14 When the menu has focus and you want to dismiss it, you can press Esc.

For example, press Esc.

15 Notice that the Tools menu has collapsed but the menu still has focus.

16 Press f then press o. Notice that the Open dialog box displays.

17 To dismiss the Open dialog box, press Esc

18 On some menu items, there is a key or a combination of keys we call a shortcut. This
key or this combination allows you to perform the same action on that menu using
the keyboard.

If the shortcut is made of one key only, you can just press it. If the shortcut is made
of two keys, press and hold the first one, while you are holding the first, press the
second key once and release the first key. Some shortcuts are a combination of three
keys.

To apply an example, press and hold Ctrl, then press o, and release Ctrl.

19 Notice that the Open dialog box opens. To dismiss it, press Esc

 From now on, in this book,
 Press Means
 T Press the T key
 Alt, G Press and release Alt. Then press G
 Ctrl + H Press and hold Ctrl. While you are still holding Ctrl, press H once.

Then release Ctrl
 Ctrl + Shift + E Press and hold Ctrl. Then press and hold Shift. Then press E once.

Release Ctrl and Shift

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 21

 One of the differences between Microsoft Visual C++ 6 and Microsoft Visual Studio
.Net is that, on version 6, the menu bar can be moved to any section on the IDE. To do
this, you can click and hold on the small vertical grab bars on the left side of the File
menu, then drag to any location of your choice. In the 2002 and 2003 versions, the
menu bar cannot be moved.
In all versions, the main menu is customizable. This means that you can add and remove
items from the menu.

1.1.5 The Toolbars
A toolbar is an object made of buttons. These buttons provide the same features you
would get from the (main) menu, only faster. Under the main menu, the IDE is equipped
with an object called the Standard toolbar. For example, to create a new project, on the
main menu, you could click File -> New -> Project… On the other hand, the Standard
toolbar is equipped with a button to perform the same action a little faster.

By default, the Standard toolbar is positioned under the main menu but you can position
it anywhere else on the IDE. Like the menu, the toolbars can be customized.

1. Click and drag the gripper on the Standard toolbar down and right:

2. Notice that the toolbar has moved.

3. Once moved, you can resize the toolbar. To do that, position the mouse on the right
border of the toolbar. Click and drag in the left direction:

4. To restore the toolbar to its previous position, double-click its title bar.

5. You can get a list of the toolbars that are available if you right-click any button on
any toolbar or menu.
For example, right-click a toolbar and notice the list

6. To dismiss the menu, press Esc.
In this book, every toolbar is referred to by its name

7. A toolbar is equipped with buttons that could be unfamiliar. Just looking at one is not
obvious. The solution into knowing what a button is used for is to position the mouse
on top of it. A tool tip will come up and display for a few seconds.
As an example, position the mouse (do not click) on the second button from left on
the Standard toolbar:

8. Without clicking, move the mo use to another button and to other buttons

 From now on, each button on any toolbar will be named after its tool tip. This
means that, if a tool tip displays "Hungry", its button will be called the Hungry
Button. If a tool tip display "Exercises and Assignments", its button will be called
the Exercises and Assignments button. If you are asked to click a button, position

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

22 © FunctionX, Inc.

your mouse on different buttons until one displays the referred to name.

9. To use a toolbar’s button, you click it. For example, click the Open button .
Notice that the action calls the Open dialog box.

10. Press Esc to dismiss the New Project dialog box.

11. Some buttons present an arrow on their right side. This arrow represents a menu.
To see an example, position the mouse on the Wizard Bar Actions button and click
the arrow on the right side. Observe the menu:

12. Press Esc to dismiss the menu.

13. To customize the Standard toolbar by adding buttons to it, right-click anything on the
menu bar or the toolbar and click Customize...

14. On the Customize dialog box, click the Commands tab.

15. In the Categories list, select File

16. Under the Buttons combo box, click and drag the New button. Position it to be the
most left button on the Standard toolbar

Figure 3: Customizing the IDE Resources

17. Release the mouse

18. To add another toolbar button, while the Customize dialog box is still displaying, on
the main menu, click File

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 23

19. Press and hold Ctrl. Click and hold Open Workspace… Then drag it and position it
anywhere on the Standard toolbar

20. Release Ctrl and click File to dismiss its menu

21. On the Standard toolbar, click and drag Open Workspace… to position it to the right
of the New button

22. On the Standard toolbar, right-click Open Workspace and click Button
Appearance…

23. Click the Image Only radio button. In the Images section, click the icon on 2nd
column – 4th row

24. Click OK on the Button Appearance dialog box

25. Click the Close button on the Customize dialog box

1.1.6 The Studio Windows
When creating your applications, you will use a set of windows that each accomplishes a
specific purpose. In some windows, information is organized in a tree list equipped with
+ or – buttons. To expand a list, you can click its + button. To collapse a list, click its –
sign

The workspace is divided into individual windows that, by default, are docked together as
an ensemble:

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

24 © FunctionX, Inc.

Figure 4: The Workspace Window

The FileView tab of is used to display the project name and its categories of files. The
categories are organized as folders and include the Source Files, the Header Files and the
Resource Files. They can also display other dependent files.

The Class View is used to display the classes, independent functions and variables used
by the project:

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 25

Figure 5: The Resource View

The Resource View displays an organized tree list of the resources used on a project:

Figure 6: The ResourceView tab of the Worskpace

 Practical Learning: Using the Studio Windows
1. In the Workspace, click the ClassView tab and, if necessary, click the + button of

Exercise to expand it

2. Notice that the names of classes start with C

3. Double-click CMainFrame

4. Notice that this displays the contents of the CMainFrame class in the Code Editor

5. Also notice that the name of the file displays on the title bar, is MainFrm.h

6. To show the source file of the CMainFrame class, expand the class and double-click
OnCreate to display its listing in the Code Editor:

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

26 © FunctionX, Inc.

Figure 7: The Source Code Edi tor

1.2 Floatable and Dockable Windows

1.2.1 Description

An object, called a window, is referred to as dockable when it can assume different
"gluable" or floating positions on the screen. This means that such a window can be
moved and glued to another or it can simply be placed independently of other windows of
the same application. Windows that are dockable indicate this by the presence of
"grippers", which are 3-D lines or bars on the left side of the window.

To move a window, find its gripper(s). Click and drag it in the desired direction. To dock
a window is to glue it either to one side of the IDE or to another window. To do this, drag
its gripper(s) to the desired side or the necessary window and release the mouse.

 Practical Learning: Docking and Floating Windows
1. Click and hold the mouse on top of the Workspace

Drag to the center of the window

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 27

Figure 8: Moving a Dockable Window

2. To position the window to its previous position, double-click its title bar

1.3 Visual C++ Projects and Files

1.3.1 Creating a New Project
Microsoft Visual C++ allows creating various types of projects ranging from regular
applications to complex libraries, from Win32 applications to communications modules
or multimedia assignments.

Various options are available to create a project:

?? On the main menu, you can click File -> New…

?? The shortcut to create a new project is Ctrl + N

Any of these actions displays the New Project dialog box from where you can select the
type of project you want.

 Practical Learning: Creating a Microsoft Visual C++ Project
1. On the main menu, click File -> New…

2. In the New dialog box, click the Projects tab

3. In the list, click Win32 Console Application

4. In the Location edit box, replace the text with C:\MSVC

5. In the Name edit box, type Exercise2

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

28 © FunctionX, Inc.

Figure 9: Creating a New Project - Exercise1

6. Click OK

7. In the Win32 Console Application – Step 1 of 1, click An Empty Project

Figure 10: Win32 Application Wizard - Exercise1

8. Click Finish and click OK

1.3.2 Creating Files
Although the most popular files used in Visual C++ are header and source files, this IDE
allows you to create various other types of files that are not natively C++ types.

To create a file, on the main menu, you can click File -> New… This would open the
New dialog box from where you can select the desired type of file and click Open. By
default, the new file would open in the Source Code Editor. If you want to open the file

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 29

otherwise, after selecting it in the New dialog box, click the arrow of the Open As combo
box

 Practical Learning: Creating a C++ File

1. On the main menu, click File -> New…

2. Make sure the Files tab is selected. Click C++ Source File

3. In the Name edit box, type Main and press Enter

4. In the emp ty file, type the following:

#include <iostream>
#include <string>
using namespace std;

int main()
{
 cout << "Welcome to College Park - Auto Parts\n";

 return 0;
}

5. To save everything, on the Standard toolbar, click the Save All button

1.3.3 Adding Existing Files to a Project
If a file had already been created and exists on a separate folder, drive, directory or
project, you can import and add it to your application. When you decide to adding an
existing file to a project, because Visual allows you a great level of flexibility on the
types of files you can add, it is your responsibility to check that the file is “valid”,
especially if the file was neither created using MSVC nor compiled in Visual C++.

If you copy a file from somewhere and paste it in the folder that contains your project, the
file is still not considered as part of the project. You must explicitly add it. Before adding
an existing file to your project:

?? On the main menu, you can click File -> Add Existing Item…

?? On the main menu, you can also click Project -> Add Existing Item…

?? In the Solution Explorer, you can right-click the name of the project, position
your mouse on Add and click Add Existing Item…

Any of these actions would open the Add Existing Item dialog box. This requires you to
locate the item and select it. Once the item is ready, to add it to the project, click the
Open button. If you want to open it first, click the arrow of the Open button and specify
how you want to open the file.

 Practical Learning: Adding a File to a Project
1. On the main menu, click Project -> Add To Project -> Files…

2. Locate the folder that contains the exercises that accompany this book and display it
in the Look In combo box.

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

30 © FunctionX, Inc.

3. In the list of files, click Main.h and click Open

4. In the FileView tab of the Workspace, if necessary, expand the Header Files node.
Double-click Main.h to display it in the Source Code Editor

1.3.4 Adding Classes
To add a class to your project, you have various options. You can separately create a
header file then create a source file. You can also import an existing header file and a
source file from any valid path.

Microsoft Visual C++ makes it easy to create a C++ class. When doing this, a header and
a source files are prepared. A (default) constructor and a destructor are added. You can
delete or completely change the supplied constructor and/or the destructor. Also, Visual
C++ includes the name of the header file in the source file so you would not have
forgotten to do this.

Most classes in Visual C++ have their names starting with the letter C. Although this is
only a suggestion, and any valid class name would work fine, to keep some harmony, in
this book, we will follow this convention.

To create a new class and add it to your project:

?? On the main menu, you can click Insert -> New Class …

?? In the ClassView tab of the Workspace, you can right-click the name of the
project and click New Class…

Any of these actions would open the New Class dialog box. From here, you can specify
the type of class you want to create and click Open. You will then be asked to provide a
name for the class.

 Practical Learning: Creating a Class
1. To create a new class, in the ClassView tab, right-click Exercise2 and click New

Class…

2. In the New Class dialog box, in the Name edit box, type CPart

Note
In this book, we will
not follow the
famous “hungarian”
naming convention
because nobody
seems to be able to
follow or keep up
with it, not even
programmers from
Microsoft.

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 31

Figure 11: Adding a C++ Class

3. Click OK

4. To save everything, on the Standard toolbar, click Save All

1.3.5 Opening Files
A file is a series of computer bits that are aligned in the computer memory as one entity
to constitute a document. To open a file, simply display the Open dialog box and proceed
as you would for any other computer application that can be used to open a file.

If you had previously created or opened a file, Visual C++ keeps a list of the most
recently used (MRU) file under its File menu. To control the maximum number of files
that can be listed:

?? If you are using MSVC 6, display the Options dialog box and access its Workspace
property page. Then change the value of the Recent File List Contains edit box

?? If you are using MSVC 7, open the Options dialog box and, under the Environment
node, click the General link. Then, change the value of the second Display line

Its ability to open various types of files allows you to view a word processing document,
a spreadsheet or a presentation.

When opening a file that is not a “native” C++ or Visual C++ file, the main menu and
toolbar of its parent application take over the top area of the Visual C++ environment.
This gives you all the features of the application. For example, you can open a word

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

32 © FunctionX, Inc.

processing document and use it as if you were working from the application in which the
document was created. Here is a Microsoft Word document opened in Visual C++:

Figure 12: File Opening in Visual Studio

This means that C++ files are not the only files you are able to view in Visual C++.
Although you can open various types of document, this does not imply that any of them
would display easily. Some of them may have rules to follow. That is why the Open
dialog box of Visual C++ is equipped with the Open As combo box. For example, when
opening a file that has the .rc extension, which is a resource file, you have the option of
opening it automatically or as a text file and the result would be different depending on
the selection option.

 Practical Learning: Opening Files

1. To open a new file, on the main menu, click File -> Open…

2. Locate the exercises that accompany this book and display the Exercise1 folder in
the Look In combo box

3. Make sure the Files of Type is set to C++ Files (.c;, cpp:, .cxx;, .tli;, .h;, .tlh;, .inl;,
.rc) or All Files.
Click Exercise1View.cpp and click Open

4. To open another file, on the Standard toolbar, click the Open button

5. Click Exercise1.rc

6. Click the arrow of the Open As combo box and select Text

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 33

Figure 13: Opening a File With the Open Dialog Box

7. Click Open

8. Notice that the file was opened as text although it is a resource file, just like the
previous one

9. To close the file, using the main menu, click Window -> Close

10. To close the project, on the main menu, click File -> Close Workspace

11. When asked whether you want to close all documents, click Yes. Also, agree to save
the Main.cpp file

1.3.6 Opening Existing Projects
A project is made of various files and subject to the environment in which it was created.
A project itself is a file but it is used to “connect” all the other files that compose its
particular application.

There is a limit on the types of projects you can open in Visual C++. This is not an
anomaly. Every computer-programming project is created using a particular environment
and each environment configures and arranges its project as its judges it necessary. For
example, the files necessary to create a Borland Delphi project are not the same for a
Visual C++ project and Visual C++ would not need to use such a project. Therefore, any
attempt to open an unrecognizable project would produce an error. Here is a message box
resulting from trying to open a Delphi project:

Figure 14: A Microsoft Visual C++ Message Box

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

34 © FunctionX, Inc.

Visual C++ is configured to easily open its own Visual C++ projects that have the .dsw or
.mdp extensions. Additionally, you can open a Win32 project that was created using
Visual C++ (you may not be able to open a Win32 project created using Borland C++
Builder). You can also open Visual C++ and Win32 projects created with previous
versions of Visual C++.

To open a project, if you have used it as one of the previous 8 projects, when Visual
Studio opens and displays the Start Page, you should see a list of the last 8 projects used.
You can then click it to open it. As done with files, Visual Studio keeps a list of the
previous projects on its File menu. Therefore, to open one of the previously used projects,
you can click File -> Recent Projects. If you see the project you are looking for, you can
click it. If you write a lot of projects regularly, you may want to increase the list of files
and/or projects that the file menu keeps. To do this, on the main menu, you can click
Tools -> Options… In the Options dialog box, click the General node under Environment
and set the number desired for the Display edit boxes:

Figure 15: The Options Dialog Box

 Practical Learning: Opening a Project
1. To open a project, on the main menu, click File

2. Position the mouse on Recent Workspaces and click Exercise2

1.4 Getting Help

1.4.1 Online Help

While working on your projects, you will usually need to figure out how something can
be done and sometimes why it is done like that. This is where you will need help. There
are three primary types of help you can use: online, Microsoft, and others.

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 35

When Microsoft Visual C++ 6 gets installed, it asks you whether you want to install the
MSDN library. This is because, besides the CDs that hold Visual C++ or Visual Studio
installation files or the DVD, additional CDs are provided to you just for the help files. In
some cases, the help files are packed in one an additional DVD. If you decide to install
the MSDN library, it would be installed as an independent program but would be
internally linked to Visual Studio. Because this library is particularly huge, you
can/should keep it on the CDs or the DVD and access it only when needed. The help files
that are installed with Visual Studio constitute what is referred to as Online Help.

Microsoft Visual Studio .Net installs its help files along with the programming
environment and creates one to three tabs for them on the Solution Explorer window.

To get help on an MFC class while you are working in the Code Editor, click the class
and press F1, the HTML Help window would display help on the topic. You can also
access the online directly in the HTML Help window or the help tabs of MSVC .Net

 Practical Learning: Getting Online Help
1. Open the Exercise application from the exercises that accompany this book

2. In the Class View, double-click CMainFrame to display its header file.

3. In the Code Editor window, click CFrameWnd and press F1

4. Notice that a description of the CFrameWnd class displays

5. On the main menu, click Help -> Index...

6. Type WinMain and press Enter

1.4.2 Other Help Types

Among the C++ programming environments, Microsoft Visual C++ is the most
documented on the internet. The primary place of help is on the MSDN library web site.
Besides the information you receive on the Visual C++ CDs or DVD, this Microsoft web
site is updated regularly.

There many other sites dedicated to Visual C++. We also provide ours and a site that
supports this book.

The other type of help available is through newsgroups, coworkers, or friends.

Chapter 2: Introduction to MFC Visual C++ and MFC Fundamentals

36 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 1: Introduction to Visual C++

© FunctionX, Inc. 37

Chapter 2:
Introduction to MFC

? The Microsoft Foundation Class Library

? Frames Fundamentals

? Message Boxes

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

38 © FunctionX, Inc.

2.1 The Microsoft Foundation Class Library

2.1.1 Introduction
The Microsoft Foundation Class (MFC) library provides a set of functions, constants ,
data types , and classes to simplify creating applications for the Microsoft Windows
operating systems . To implement its functionality, the MFC is organized as a hierarchical
tree of classes, the ancestor of which is CObject. Although you can create C++ classes
for your applications, most of the classes you will use throughout this book descend
directly or indirectly from CObject.

2.1.2 CObject, the Ancestor
The CObject class lays a valuable foundation that other classes can build upon. Using
the rules of inheritance, the functionality of CObject can be transparently applied to
other classes as we will learn little by little. Some of the features that CObject provides
are: performing value streaming for saving or opening contents of files, controlling
dynamic creation and destruction of its inherited classes, checking the validity of
variables of classes, etc.

You will hardly, use CObject directly in your program. Instead, you may create your
own classes that are based on CObject. An example would be:

class CStudent : public CObject
{
public:
 CStudent();
 char *Make;
 char *Model;
 int Year;
 long Mileage;
 int Doors;
 double Price;
};
CObject Methods

When inheriting a class from CObject, your object can take advantage of the features of
its parent CObject. This means that you will have available the functionality laid by its
methods. Some of the methods of the CObject class are:

CObject(): This constructor allows you to use an instance of CObject. If you have
created a class based on CObject, when you declared an instance of your object, the
default CObject constructor is available and gives you access to the CObject methods.

CObject(const CObject &Src): If you want to copy a variable of your CObject derived
class to use in your program, for example to assign it to another variable, you can use the
inherited copy constructor. Since the object is derived from CObject, the compiler would
make a copy of the variable on the member-by-member basis.

Serialize(): This method allows you to stream the values of the members of your objects.

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 39

AssertValid(): This method is used to check your class. Because an inherited class is
usually meant to provide new functionality based on the parent class, when you create a
class based on CObject, you should provide a checking process of your variables. In this
case you should provide your own implementation of the AssertValid() method. You can
use it for example to check that an unsigned int variable is always positive.

The objects of an applications send messages to the operating system to specify what they
want. The MFC provides a special class to manage these many messages. The class is
called CCmdTarget. We will come back to it when dealing with messages.

2.1.3 The Basic Application
To create a program, also called an application, you derive a class from the MFC's
CWinApp. CWinApp stands for Class For A Windows Application.

Here is an example of deriving a class from CWinApp:

struct CSimpleApp : public CWinApp
{
};

Because the CWinApp class is defined in the AFXWIN.H header file, make sure you
include that file where CWinApp is being used. To make your application class available
and accessible to the objects of your application, you must declare a global variable from
it and there must be only one variable of your application:

struct CSimpleApp : public CWinApp
{
};

CSimpleApp theApp;

The CWinApp class is derived from the CWinThread class. The CWinApp class
provides all the basic functionality that an application needs. It is equipped with a method
called InitInstance(). To create an application, you must override this method in your
own class. Its syntax is:

virtual BOOL InitInstance();

This method is used to create an application. If it succeeds, it returns TRUE or a non-
zero value. If the application could not be created, it returns FALSE or 0. Here is an
example of implementing it:

struct CSimpleApp : public CWinApp
{
 BOOL InitInstance() { return TRUE; }
};

Based on your knowledge of C++, keep in mind that the method could also have been
implemented as:

struct CSimpleApp : public CWinApp
{
 BOOL InitInstance()
 {

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

40 © FunctionX, Inc.

 return TRUE;
 }
};

or:

struct CSimpleApp : public CWinApp
{
 BOOL InitInstance();
};

BOOL CSimpleApp::InitInstance()
{
 return TRUE;
}

 Practical Learning: Building a Simple Application
1. Start Microsoft Visual Studio or Microsoft Visual C++

2. On the main menu, click File -> New...

3. In the Project tab, click Win32 Application

Specify the Name to Windows Fundamentals

Figure 16: New Project - Windows Fundamentals

4. Click OK

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 41

5. In the Win32 Application – Step 1 of 1, click the An Empty Project radio button

Figure 17: Win32 Application Wizard - Windows Fundamentals

6. Click Finish and click OK

7. To make sure that this application uses MFC, on the main menu, click Project ->
Settings...

8. In Project Settings dialog box, in the General tab, in the Microsoft Foundation
Classes combo box, select Use MFC In A Shared DLL Use MFC in a Shared DLL

Figure 18: Window Frame Property Pages

9. Click OK

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

42 © FunctionX, Inc.

10. Create a C++ Source File and Name it Exercise

Figure 19: ADd New Item - Windows Fundamentals

11. Click Open

12. To create the application, change the file as follows:

#include <afxwin.h>

struct CSimpleApp : public CWinApp
{
 BOOL InitInstance() { return TRUE; }
};

CSimpleApp theApp;

13. To test the application, press Ctrl + F5

Figure 20: Microsoft Development Environment - Message Box

14. When asked whether you would like to build the project, click Yes

15. Nothing will appear because we did not define an expected behavior

2.2 Frames Fundamentals

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 43

2.2.1 Introduction
The basic functionality of a window is defined in a class called CWnd. An object created
from CWnd must have a parent. In other words, it must be a secondary window, which is
a window called from another, existing, window.

The CWnd class gives birth to a class called CFrameWnd. This class actually describes
a window or defines what a window looks like. The description of a window includes
items such as its name, size , location, etc. To create a window using the CFrameWnd
class, you must create a class derived from the CFrameWnd class.

Figure 21: Window Illustration

As in real world, a Microsoft Windows window can
be identified on the monitor screen because it has a
frame. To create such a window, you can use the
CFrameWnd class. CFrameWnd provides various
alternatives to create a window. For example, it is
equipped with a method called Create(). The Create()
method uses a set of arguments that define a complete
window.

The syntax of the CFrameWnd::Create() method is
as follows:

BOOL Create(
 LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle = S_OVERLAPPEDWINDOW,
 const RECT& rect = rectDefault,
 CWnd* pParentWnd = NULL,
 LPCTSTR lpszMenuName = NULL,
 DWORD dwExStyle = 0,
 CCreateContext* pContext = NULL);

As you can see, only two arguments are necessary to
create a window, the others, though valuable, are
optional.

As you should have learned from C++, every class in a program has a name. The name
lets the compiler know the kind of object to create. The name of a class follows the
conventions used for C++ names. That is, it must be a null-terminated string. Many
classes used in Win32 and MFC applications are already known to the Visual C++
compiler. If the compiler knows the class you are trying to use, you can specify the
lpszClassName as NULL. In this case, the compiler would use the characteristic of the
CFrameWnd object as the class' name. Therefore, the Create() member function can be
implemented as follows:

Create(NULL);

Every object in a computer has a name. In the same way, a window must have a name.
The name of a window is specified as the lpszWindowName argument of the Create()
method. In computer applications, the name of a window is the one that displays on the
top section of the window. This is the name used to identify a window or an application.
For example, if a window displays Basic Windows Application, then the object is called
the "Basic Windows Application Window". Here is an example:

Create(NULL, "Basic Windows Application");

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

44 © FunctionX, Inc.

Figure 22: A Window Frame with Title Bar

In all of your windows, you should specify a window name. If you omit it, the users of
your window would have difficulty identifying it. Here is an example of such a window:

Figure 23: A Window Frame with no Caption

2.2.2 Reference to the Main Window
After creating a window, to let the application use it, you can use a pointer to the class
used to create the window. In this case, that would be (a pointer to) CFrameWnd. To use
the frame window, assign its pointer to the CWinThread::m_pMainWnd member
variable. This is done in the InitInstance() implementation of your application.

At any time, to get a pointer to m_pMainWnd anywhere in your program, you can call
the AfxGetMainWnd() function. Its syntax is:

CWnd* AfxGetMainWnd();

This function simply returns a pointer to CWnd. Because all MFC’s window objects are
based on the CWnd class, this function can give you access to the main class used for the
application.

 Practical Learning: Creating a Simple Window
1. To create a frame for the window, in the file, type the following:

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 45

#include <afxwin.h>

class CSimpleFrame : public CFrameWnd
{
public:
 CSimpleFrame()
 {
 // Create the window's frame
 Create(NULL, "Windows Application");
 }
};

struct CSimpleApp : public CWinApp
{
 BOOL InitInstance()
 {
 // Use a pointer to the window's frame for the application
 // to use the window
 CSimpleFrame *Tester = new CSimpleFrame ();
 m_pMainWnd = Tester;

 // Show the window
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
 }
};

CSimpleApp theApp;

2. Save the file.

3. To implement the methods outside of their classes, change the file as follows:

#include <afxwin.h>

class CSimpleFrame : public CFrameWnd
{
public:
 CSimpleFrame();
};

CSimpleFrame::CSimpleFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application");
}

struct CSimpleApp : public CWinApp
{
 BOOL InitInstance();
};

BOOL CSimpleApp::InitInstance()
{

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

46 © FunctionX, Inc.

 // Use a pointer to the window's frame for the application
 // to use the window
 CSimpleFrame *Tester = new CSimpleFrame ();
 m_pMainWnd = Tester;

 // Show the window
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CSimpleApp theApp;

Figure 24: Windows Application

4. Test the program

5. To close the window, click its system Close button and return to MSVC

6. To provide a checking process with the CObject::AssertValid() method and to
diagnosis services using the CObject::Dump() method, change the file as follows:

#include <afx.h>
#include <afxwin.h>

class CSimpleFrame : public CFrameWnd
{
public:
 CSimpleFrame();

#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
};

struct CSimpleApp : public CWinApp

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 47

{
 BOOL InitInstance();
};

CSimpleFrame::CSimpleFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application");
}

// Frame diagnostics

#ifdef _DEBUG
void CSimpleFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CSimpleFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}
#endif // _DEBUG

BOOL CSimpleApp::InitInstance()
{
 CSimpleFrame *Tester = new CSimpleFrame();
 m_pMainWnd = Tester;

 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CSimpleApp theApp;

7. Test the program and return to MSVC

2.2.3 Introduction to Macros
When creating objects that derive directly or indirectly from CObject, such as
CFrameWnd, you should let the compiler know that you want your objects to be
dynamically created. To do this, use the DECLARE_DYNCREATE and the
IMPLEMENT_DYNCREATE macros. The DECLARE_DYNCREATE macro is
provided in the class' header file and takes as argument the name of your class. An
example would be DECLARE_DYNCREATE(CTheFrame). Before implementing the
class or in its source file, use the IMPLEMENT_DYNCREATE macro, passing it two
arguments: the name of your class and the name of the class you derived it from.

We mentioned that, to access the frame, a class derived from CFrameWnd, from the
application class, you must use a pointer to the frame's class. On the other hand, if you
want to access the application, created using the CWinApp class, from the windows
frame, you use the AfxGetApp() global function.

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

48 © FunctionX, Inc.

 Practical Learning: Creating a Simple Window

1. To use the dynamic macros, change the file as follows:

#include <afx.h>
#include <afxwin.h>

class CSimpleFrame : public CFrameWnd
{
public:
 CSimpleFrame();
 DECLARE_DYNCREATE(CSimpleFrame)

#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
};

struct CSimpleApp : public CWinApp
{
 BOOL InitInstance();
};

IMPLEMENT_DYNCREATE(CSimpleFrame, CFrameWnd)

CSimpleFrame::CSimpleFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application");
}

 . . .

CSimpleApp theApp;

2. Test the application and return to MSVC.

2.2.4 Windows Styles
Windows styles are characteristics that control such features as its appearance, its
borders, its minimized, its maximized, or its resizing states, etc.

After creating a window, to display it to the user, you can apply the WS_VISIBLE style
to it. Here is an example:

Create(NULL, "Windows Application", WS_VISIBLE);

The top section of a window has a long bar called the title bar. This is a section we
referred to above and saw that it is used to display the name of the window. This bar is
added with the WS_CAPTION value for the style argument. Here is an example:

Create(NULL, "W indows Application", WS_CAPTION);

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 49

Figure 25: The Title Bar of a Frame

A window is identified by its size which can be seen by its borders. Borders are given to
a window through the WS_BORDER value for the style. As you can see from the above
window, using the WS_CAPTION style also gives borders to a window.

A shortcut to creating a window that has a caption and a border is done by using the
WS_OVERLAPPED style:

Create(NULL, "Windows Application", WS_OVERLAPPED);

As you will see shortly, various styles can be applied to the same window. To combine
styles, you use the bitwise OR operator represented by the beam symbol |. For example, if
you have a style called WS_ONE and you want to combine it with the WS_OTHER
style, you can use WS_ONE | WS_OTHER.

The title bar serves various purposes. For example, it displays the name of the window. In
this case the window is called Window Application. The title bar also allows the user to
move a window. To do this, the user would click and drag a section of the title bar while
moving in the desired direction.

After using a window, the user may want to close it. This is made possible by using or
adding the WS_SYSMENU style. This style adds a button with X that is called the

System Close button or . Here is an example:

Create(NULL, "Windows Application", WS_VISIBLE | WS_SYSMENU);

Figure 26: A Frame with System Menu

When a window displays, it occupies a certain area of the screen. To access other
windows, for example to reveal a window hidden behind, the user can shrink the size of
the window completely and make it disappear from the screen without closing the
window. This is referred to as minimizing the window. The ability to minimize a window

is made possible with the presence of a system button called Minimize or . To
allow this, you provide or add the WS_MINIMIZEBOX style:

Create(NULL, "Windows Application", WS_VISIBLE | WS_SYSMENU |
WS_MINIMIZEBOX);

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

50 © FunctionX, Inc.

Figure 27: A Frame with a Minimize Button

As opposed to minimizing the window, the user can change its size to use the whole area
of the screen. This is referred to as maximizing the window. This feature is provided

through the system Maximize button or . To allow this functionality, provide or
add the WS_MAXIMIZEBOX style.

If you create a window with the WS_SYSMENU and the WS_MINIMIZEBOX style
but not the WS_MAXIMIZEBOX style, the Maximize button would be disabled and the
user would not be able to maximize the window:

Create(NULL, "Windows Application", WS_VISIBLE | WS_SYSMENU |
WS_MINIMIZEBOX);

Figure 28: A Frame with a Maximize Button

On the other hand, if you do not want the user to be able to minimize the window, create
a window with the WS_SYSMENU and the WS_MINIMIZEBOX without the
WS_MAXIMIZEBOX styles:

Create(NULL, "Windows Application", WS_VISIBLE | WS_SYSMENU | WS_MAXIMIZEBOX);

Therefore, if you want to provide all three system buttons, provide their styles.

You can also control whether the window appears minimized or maximized when it
comes up. To minimize the window at startup, apply the WS_MINIMIZE style. On the
other hand, to have a maximized window when it launches, use the WS_MAXIMIZE
style. This style also provides a window with borders. If you had not specified the
WS_CAPTION, you can make sure that a window has borders using the WS_BORDER
value.

One of the effects the user may want to control on a window is its size. For example, the
user may want to narrow, enlarge, shrink, or heighten a window. To do this, the user
would position the mouse on one of the borders, click and drag in the desired direction.
This action is referred to as resizing a window. For the user to be able to change the size

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 51

of a window, the window must have a special type of border referred to as a thick frame.
To provide this border, apply or add the WS_THICKFRAME style:

Create(NULL, "Windows Application",
 WS_VISIBLE | WS_SYSMENU | WS_MINIMIZEBOX |
 WS_MAXIMIZEBOX | WS_THICKFRAME);

Because many windows will need this functionality, a special style can combine them
and it is called WS_OVERLAPPEDWINDOW. Therefore, you can create a resizable
window as follows:

Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW);

 Practical Learning: Building a Regular Window
1. To create a resizable window, change the file as follows:

CSimpleFrame::CSimpleFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW);
}

2. Test the program. When the window comes up, minimize, maximize, restore, and
resize it:

Figure 29: Windows Application - Resizing

3. To close the window, click its system Close button

2.2.5 Windows Location

To locate things that display on the monitor screen, the computer uses a coordinate
system similar to the Cartesian's but the origin is located on the top left corner of the

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

52 © FunctionX, Inc.

screen. Using this coordinate system, any point can be located by its distance from the
top left corner of the screen of the horizontal and the vertical axes:

Figure 30: Illustration of Window Origin

To manage such distances, the operating system uses a point that is represented by the
horizontal and the vertical distances. The Win32 library provides a structure called
POINT and defined as follows:

typedef struct tagPOINT {
 LONG x;
 LONG y;
} POINT;

The x member variable is the distance from the left border of the screen to the point. The
y variable represents the distance from the top border of the screen to the point.

Besides the Win32's POINT structure, the Microsoft Foundation Class (MFC) library
provides the CPoint class. This provides the same functionality as the POINT structure.
As a C++ class, it adds more functionality needed to locate a point.

The CPoint::CPoint() default constructor can be used to declare a point variable
without specifying its location. If you know the x and y coordinates of a point, you can
use the following constructor to create a point:

CPoint(int X, int Y);

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 53

2.2.6 Windows Size
While a point is used to locate an object on the screen, each window has a size. The size
provides two measurements related to an object. The size of an object can be represented
as follows:

Figure 31: Illustration of Window Location

The width of an object, represented as CX, is the distance from its left to its right borders
and is provided in pixels .

The height of an object, represented as CY is the distance from its top to its bottom
borders and is given in pixels.

To represent these measures, the Win32 library uses the SIZE structure defined as
follows:

typedef struct tagSIZE {
 int cx;
 int cy;
} SIZE;

Besides the Win32's SIZE structure, the MFC provides the CSize class. This class has
the same functionality as SIZE but adds features of a C++ class. For example, it provides
five constructors that allows you to create a size variable in any way of your choice. The
constructors are:

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

54 © FunctionX, Inc.

CSize();
CSize(int initCX, int initCY);
CSize(SIZE initSize);
CSize(POINT initPt);
CSize(DWORD dwSize);

The default constructor allows you to declare a CSize variable whose values are not yet
available. The constructor that takes two arguments allows you to provide the width and
the height to create a CSize variable. If you want another CSize or a SIZE variables, you
can use the CSize(SIZE initSize) constructor to assign its values to your variable. You
can use the coordinates of a POINT or a CPoint variable to create and initialize a CSize
variable. When we study the effects of the mouse, we will know you can use the
coordinates of the position of a mouse pointer. These coordinates can help you define a
CSize variable.

Besides the constructors, the CSize class is equipped with different methods that can be
used to perform various operations on CSize and SIZE objects. For example, you can
add two sizes to get a new size. You can also compare two sizes to find out whether they
are the same.

2.2.7 Windows Dimensions
When a window displays, it can be identified on the screen by its location with regards to
the borders of the monitor. A window can also be identified by its width and height.
These characteristics are specified or controlled by the rect argument of the Create()
method. This argument is a rectangle that can be created through the Win32 RECT
structure or the MFC's CRect class. First, you must know how Microsoft Windows
represents a rectangle.

A rectangle is a geometric figure with four sides or borders: top, right, bottom, and left. A
window is also recognized as a rectangle. Therefore, it can be represented as follows:

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 55

Figure 32: Illustration of Window Origin and Location

Microsoft Windows represents items as a coordinate system whose origin (0, 0) is located
on the top-left corner of the screen. Everything else is positioned from that point.
Therefore:

?? the distance from the left border of the screen to left border of a window represents
the left measurement

?? the distance from the top border of the screen to the top border of a window is the
top measurement.

?? the distance from the left border of the screen to the right border of a window
represents the right measurement

?? the distance from the top border of the screen to the bottom border of a window is
the top measurement.

To represent these distances, the Win32 API provides a structure called RECT and
defined as follows:

typedef struct _RECT {
 LONG left;
 LONG top;
 LONG right;
 LONG bottom;
} RECT, *PRECT;

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

56 © FunctionX, Inc.

This structure can be used to control the location of a window on a coordinate system. It
can also be used to control or specify the dimensions of a window. To use it, specify a
natural numeric value for each of its member variables and pass its variable as the rect
argument of the Create() method. Here is an example:

RECT Recto;

Recto.left = 100;
Recto.top = 120;
Recto.right = 620;
Recto.bottom = 540;

Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW, Recto);

Besides the Win32 RECT structure, the MFC provides an alternate way to represent a
rectangle on a window. This is done as follows:

Figure 33: Illustration of Window Location, Origin, and Size

Besides the left, top, right, and bottom measurements, a window is also recognized for its
width and its height. The width is the distance from the left to the right borders of a
rectangle. The height is the distance from the top to the bottom borders of a rectangle. To
recognize all these measures, the Microsoft Foundation Classes library provides a class
called CRect. This class provides various constructors for almost any way of
representing a rectangle. The CRect class provides the following constructors:

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 57

CRect();
CRect(int l, int t, int r, int b);
CRect(const RECT& srcRect);
CRect(LPCRECT lpSrcRect);
CRect(POINT point, SIZE size);
CRect(POINT topLeft, POINT bottomRight);

The default constructor is used to declare a CRect variable whose dimensions are not
known. On the other hand, if you know the left, the top, the right, and the bottom
measures of the rectangle, as seen on the RECT structure, you can use them to declare
and initialize a rectangle. In the same way, you can assign a CRect, a RECT, a pointer to
CRect, or a pointer to a RECT variable to create or initialize a CRect instance.

If you do not know or would not specify the location and dimension of a window, you
can specify the value of the rect argument as rectDefault. In this case, the compiler would
use its own internal value for this argument.

 Practical Learning: Controlling a Window's Size
1. To specify the location and the size of the window, change the MainFrm.cpp file as

follows:

CSimpleFrame::CSimpleFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480));
}

2. Test the application. After viewing the window, close it and return to your
programming environment.

2.2.8 Windows Parents
Many applications are made of different windows, as we will learn eventually. When an
application uses various windows, most of these objects depend on a particular one. It
could be the first window that was created or another window that you designated. Such a
window is referred to as the parent window. All the other windows depend on it directly
or indirectly.

If the window you are creating is dependent of another, you can specify that it has a
parent. This is done with the pParentWnd argument of the CFrameWnd::Create()
method. If the window does not have a parent, pass the argument with a NULL value.

 Practical Learning: Specifying a Window's Parent
1. To specify that the current window does not have a parent, change the Create()

method as follows:

CSimpleFrame::CSimpleFrame()
{
 // Create the window's frame

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

58 © FunctionX, Inc.

 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

2. Test the application and return to Visual Studio

2.3 Message Boxes

2.3.1 Definition
A message box is a bordered rectangular window that displays a short message to the
user. The message can be made of one sentence, various lines, or a few paragraphs. The
user cannot change the text but can only read. A message box is created either to inform
the user about something or to request his or her decision about an issue. When a dialog
box displays from an application, the user must close it before continuing using the
application. This means that, as long as the message box is displaying, the user cannot
access any other part of the application until the message box is first dismissed.

The simplest message box is used to display a message to the user. This type of message
box is equipped with only one button, labelled OK. Here is an example:

Figure 34: A Simple Me ssage Box

A more elaborate or detailed message box can display an icon and/or can have more than
one button.

Figure 35: An Elaborate Message Box

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 59

2.3.2 Message Box Creation
To create a message box, the Win32 library provides a global function called
MessageBox. Its syntax is:

int MessageBox(HWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, UINT uType);

If you want to use this version from Win32, because it is defined outside of MFC, you
should start it with the scope access operator “::” as follows:

::MessageBox(…);

As we will see shortly, the Win32’s MessageBox() function requires a handle (not
necessarily difficult to provide but still…), to make the creation of a message a little
easier, the CWnd class provides its own version of the MessageBox() function. Its
syntax is:

int MessageBox(LPCTSTR lpszText, LPCTSTR lpszCaption = NULL, UINT nType = MB_OK);

To still make it easier, Visual C++ (actually a concept called the Framework) provides a
function called AfxMessageBox also used to create a message box. Although this
function also is global, its scope is limited to MFC applications (this means that you can
use the Win32’s global MessageBox() function with any compiler used on the Microsoft
Windows operating systems but you cannot use the MFC’s global AfxMessageBox()
function with any compiler other Visual C++). The syntaxes of the AfxMessageBox()
function are:

int AfxMessageBox(LPCTSTR lpszText, UINT nType = MB_OK, UINT nIDHelp = 0);
int AFXAPI AfxMessageBox(UINT nIDPrompt, UINT nType = MB_OK,
 UINT nIDHelp = (UINT) -1);

Based on the above functions, a message box can be illustrated as follows:

Figure 36: Components of a Message Box

2.3.3 Message Box Implementation
As seen above, you have the choice among three functions to create a message. There is
no valid reason that makes one of them better than the other. They do exactly the same
thing. The choice will be based on your experience and factors beyond our
understanding.

If you decide to use the Win32’s MessageBox() function, you must specify the handle to
the application that created the message box. As we will learn eventually when we study

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

60 © FunctionX, Inc.

controls, you can get a handle to a (CWnd-derived) control with a call to m_hWnd. For
example, if a button on a dialog box initiates the message box, you can start this function
as follows:

::MessageBox(m_hWnd, …);

We also saw that you can get a pointer to the main window by calling the MFC’s global
AfxGetMainWnd() function. This function only points you to the application. To get a
handle to the application, you can call the same m_hWnd member variable. In this case,
the message box can be started with:

::MessageBox(AfxGetMainWnd()->m_hWnd, …);

If you are creating a message but do not want a particular window to own it, pass this
hWnd argument as NULL.

 Practical Learning: Using a Message Box
1. Create a new Win32 Project name it MsgBox

2. Create it as a Windows Application Empty Project

3. Specify that you want to Use MFC in a Shared DLL

4. Create a C++ file and name it Exercise

5. In the empty file, initialize the application as follows:

#include <afxwin.h>

class CExerciseApp : public CWinApp
{
public:
 BOOL InitInstance();
};

CExerciseApp theApp;

BOOL CExerciseApp::InitInstance()
{
 return TRUE;
}

6. Save All

2.3.4 The Box’ Message
For all these functions, the Text argument a null-terminated string. It specifies the text
that would be displayed to the user. This argument is required for all these functions.
Here is an example that use the CWnd::MessageBox() function:

void Whatever()
{
 // TODO: Add your control notification handler code here
 MessageBox("The name you entered is not in our records");
}

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 61

Figure 37: A Simple Message Box with MessageBox()

If you want to display the message on various lines, you can separate sections with the
new line character '\n'. Here is an example:

void Whatever()
{
 // TODO: Add your control notification handler code here
 MessageBox("If you think there is a mistake,\nplease contact HR");
}

Figure 38: A Message's Box on Various Lines

If the message you are creating is too long to fit on one line, you can separate lines by
ending each with a double-quote and starting the next line with a new qouble-quote. As
long as you have not closed the function, the string would be considered as one entity.
You can also use string editing and formatting techniques to create a more elaborate
message. This means that you can use functions of the C string library to create your
message.

 Practical Learning: Displaying a Message

1. To prepare a message for the user, in the InitInstance() member function, call the
AfxMessageBox() function as follows:

#include <afxwin.h>

class CExerciseApp : public CWinApp
{
public:
 BOOL InitInstance();
};

CExerciseApp theApp;

BOOL CExerciseApp::InitInstance()
{
 CWnd *Msg = new CWnd;
 Msg->MessageBox("The name you entered is not in our records.\n"

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

62 © FunctionX, Inc.

 "If you think there is a mistake, please contact HR.\n"
 "You can also send an email to humanres@functionx.com");

 return TRUE;
}

2. Test the application

Figure 39: Creating a Multiline Message Box

3. Click OK to close the message box and return to MSVC.

2.3.5 The Message’ Title
The caption of the message box is the text that displays on its title bar. If you create a
message box using the CWnd::MessageBox() method or the AfxMessageBox()
function, which allow you to specify only one argument, namely the text to display to the
user, which is the value of the Text argument, the title bar of the message box would
display the name of the application that "owns" the message box. If you want to display a
more meaningful title, specify the second argument.

The Caption argument is a null-terminated string that would display on the title bar of the
message box. Here is an example:

void CDialog1Dlg::OnBnClickedBtnMsg1()
{
 // TODO: Add your control notification handler code here
 MessageBox("Due to an unknown internal error, this application will now close.",
 "Regular Warning");
}

Although the Caption argument is optional for the CWnd::MessageBox() method and
the AfxMessageBox() function, it is required for the Win32’s MessageBox() function.
Because it is in fact a pointer, you can pass it as NULL. In this case, the title bar of the
message box would display Error. This caption may not be friendly on most application
and could appear freightening to the user. Therefore, unless you are in a hurry, you
should strive to provide a friendly and more appropriate title.

 Practical Learning: Displaying a Message’s Caption

1. To display a caption for the message box, change the MessageBox() call as follows:

BOOL CExerciseApp::InitInstance()
{
 CWnd *Msg = new CWnd;
 Msg->MessageBox("The name you entered is not in our records.\n"
 "If you think there is a mistake, please contact HR.\n"
 "You can also send an email to humanres@functionx.com",

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 63

 "Failed Logon Attempt");

 return TRUE;
}

2. Test the application and return to MSVC

2.3.6 Message Box Options
The uType argument is used to provide some additional options to the message box. First,
it is used to display one or a few buttons. The buttons depend on the value specified for
the argument. If this argument is not specified, the message box displays (only) OK.
Otherwise, you can display a message box with a combination of selected buttons.

To display one or more buttons, the uType argument uses a constant value that controls
what button(s) to display. The values and their buttons can be specified as follows:

Constant Buttons

MB_OK
MB_OKCANCEL
MB_ABORTRETRYIGNORE
MB_YESNOCANCEL
MB_YESNO
MB_RETRYCANCEL
MB_HELP

Here is an example:

BOOL Whatever()
{
 MessageBox("Due to an unknown internal error, this application will now close.\n"
 "Do you want to save the file before closing?",
 "Application Warning",
 MB_YESNO);
}

Figure 40: A Message Box with Various Buttons

Besides the buttons, the message box can also display an icon that accompanies the
message. Each icon is displayed by specifying a constant integer. The values and their
buttons are as follows:

Value Icon Suited when

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

64 © FunctionX, Inc.

MB_ICONEXCLAMATION
MB_ICONWARNING

Warning the user of an action
performed on the application

MB_ICONINFORMATION
MB_ICONASTERISK

Informing the user of a non-critical
situation

MB_ICONQUESTION

Asking a question that expects a Yes
or No, or a Yes, No, or Cancel answer

MB_ICONSTOP
MB_ICONERROR
MB_ICONHAND

A critical situation or error has
occurred. This icon is appropriate
when informing the user of a
termination or deniability of an action

The icons are used in conjunction with the buttons constant. To combine these two flags,
use the bitwise OR operator “|”. Here is an examp le:

void CExerciseDlg::OnMsgBox()
{
 // TODO: Add your control notification handler code here
 MessageBox("Due to an unknown internal error, this application will now close.\n"
 "Do you want to save the file before closing?",
 "Regular Warning",
 MB_YESNO | MB_ICONWARNING);
}

Figure 41: A Message Box with an Icon

When a message box is configured to display more than one button, the operating system
is set to decide which button is the default. The default button has a thick border that sets
it apart from the other button(s). If the user presses Enter, the message box would behave
as if the user had clicked the default button. Fortunately, if the message box has more
than one button, you can decide what button would be the default.

To specify the default button, add one of the following constants to the uType
combination:

Value
If the message box has more
than one button, the default

button would be
MB_DEFBUTTON1 The first button
MB_DEFBUTTON2 The second button
MB_DEFBUTTON3 The third button
MB_DEFBUTTON4 The fourth button

To specify the default button, use the bitwise OR operator "|" to combine the constant
integer of the desired default button with the button's constant and the icon.

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 65

 Practical Learning: Using a Message Box

1. To display an combination of buttons on the message box, change the InitInstance()
member function as follows:

BOOL CExerciseApp::InitInstance()
{
 ::MessageBox(NULL,
 "The username you entered is not in our records.\n"
 "Do you wish to contact Human Resources?",
 "Failed Logon Attempt",
 MB_YESNO);

 return TRUE;
}

2. Test the application

Figure 42: Creating a Message Box

3. Close it and return to MSVC

4. To display the message box with an icon, change InitInstance() as follows:

BOOL CExerciseApp::InitInstance()
{
 CWnd *Msg = new CWnd;

 Msg->MessageBox("The credentials you entered are not in our records.\n"
 "What do you want to do? Click:\n"
 "Yes\tto contact Human Resources\n"
 "No\tto close the application\n"
 "Cancel\tto try again\n",
 "Failed Logon Attempt",
 MB_YESNOCANCEL | MB_ICONQUESTION);

 return TRUE;
}

5. Test the application

Chapter 2 Variables and Identifiers Visual C++ and MFC Fundamentals

66 © FunctionX, Inc.

Figure 43: Creating an Elaborate Message Box

6. Close it and return to MSVC

2.3.7 The Message’s Return Value
After using the message box, the user must close it by clicking a button on it. Clicking
OK usually means that the user acknowledged the message. Clicking Cancel usually
means the user is changing his or her mind about the action performed previously.
Clicking Yes instead of No usually indicates that the user agrees with whatever is going
on.

In reality, the message box only displays a message and one or a few buttons. The
function used to create the message box returns a natural number that you can use as you
see fit. The return value itself is a registered constant integer and can be one of the
following:

Displayed Button(s)
If the user

clicked
The return

value is

 IDOK

 IDOK

 IDCANCEL

 IDABORT

 IDRETRY

 IDIGNORE

 IDYES

 IDNO

 IDCANCEL

 IDYES

 IDNO

 IDRETRY

 IDCANCEL

Visual C++ and MFC Fundamentals Chapter 2: Introduction to MFC

© FunctionX, Inc. 67

Here is an example:

void CExerciseDlg::OnMsgBox()
{
 // TODO: Add your control notification handler code here
 int Answer;

 Answer = MessageBox("Due to an unknown internal error, "
 "this application will now close.\n"
 "Do you want to save the file before closing?",
 "Regular Warning",
 MB_YESNO | MB_ICONWARNING | MB_DEFBUTTON2);

 if(Answer == IDNO)
 return;
}

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

68 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 69

Chapter 3:
Windows Resources

? Introduction to Resources

? Icons

? Menu Fundamentals

? Toolbars

? Accelerators

? Version Information

? Cursors

? String Tables

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

70 © FunctionX, Inc.

3.1 Introduction to Resources

3.1.1 Introduction
A resource is a text file that allows the compiler to manage such objects as pictures,
sounds, mouse cursors, dialog boxes, etc. Microsoft Visual C++ makes creating a
resource file particularly easy by providing the necessary tools in the same environment
used to program, meaning you usually do not have to use an external application to create
or configure a resource file.

Although an application can use various resources that behave independently of each
other, these resources are grouped into a text file that has the .rcextension. You can create
this file manually and fill out all necessary parts but it is advantageous to let Visual C++
created it for you. To do this, you add or create one resource at a time when designing it.
After saving a resource, it is automatically added to the .rc file. To make your resource
recognizable to the other files of the program, you must also create a header file usually
called resource.h. This header file must provide a constant integer that identifies each
resource and makes it available to any part that needs it. This als o means that most, if not
all, of your resources will be represented by an identifier.

Because resources are different entities, they are created one at a time. They can also be
imported from existing files. Most resources are created by selecting the des ired one from
the Add Resource dialog box:

Figure 44: Add Resource - Icon

The Add Resource dialog box provides an extensive list of resources to accommodate
almost any need. Still, if you do not see a resource you need and know you can use it, you
can add it manually to the .rc file before executing the program.

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 71

3.1.2 Converting a Resource Identifier
An identifier is a constant integer whose name usually starts with ID. Although in Win32
programming you usually can use the name of a resource as a string, in MFC
applications, resources are usually referred to by their identifier. To make an identifier
name (considered a string) recognizable to an MFC (or Win32) function, you use a macro
called MAKEINTERESOURCE. Its syntax is:

LPTSTR MAKEINTRESOURCE(WORD IDentifier);

This macro takes the identifier of the resource and returns a string that is given to the
function that called it.

In the strict sense, after creating the resource file, it must be compiled to create a new file
that has the extension .res. Fortunately, Visual C++ automatically compiles the file and
links it to the application.

 Practical Learning: Creating an Application
1. Start Microsoft Visual Studio or Microsoft Visual C++

2. Create a new Win32 Project named Resources

3. Click OK and specify the Windows Application as an Empty Project

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

72 © FunctionX, Inc.

4. Click Finish

5. In the Solution Explorer, Resource View, or Class View, right-click the Resources
node and click Properties

6. Specify that you want to Use MFC as a Shared DLL for your application and click

OK

7. Add a new item as a C++ file and name it Exercise

8. Change its content as follows:

#include <afxwin.h>

class CResApp : public CWinApp
{
public:
 BOOL InitInstance();
};

BOOL CResApp::InitInstance()
{
 return TRUE;
}

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 73

CResApp theApp;

9. Save All

3.2 Icons

3.2.1 Icons Overview
An icon is a small picture used on a window. It is used in two main scenarios. On a
window's frame, it display on the left side of the window name on the title bar. In
Windows Explorer, on the Desktop, in My Computer, or in the Control Panel windows,
an icon is used to represent an application:

On a window, the icon is a 16x16 pixels size of picture to accommodate the standard
height of the title bar. In window displays such as Windows Explorer or My Computer,
the applications can be represented as tiles or as a list. Each display uses a different size
of icon. Therefore, an icon is created in two sizes that share the same name but the
operating system can manage that concept. This means that you will sometimes create
two designs for one icon, a 16x16 pixel and a 32x32 pixel.

An icon is a graphical object made of two categories of colors. One category represents
the artistic side of the design. The other is the color that would be used as background so
that if the icon is positioned on top of another picture, the background color would be
used as the transparent color to show the sections that are not strictly part of the icon. In
reality, Microsoft Windows imposes the color that is used as background on an icon. You
will find what the icon is.

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

74 © FunctionX, Inc.

3.2.2 Icons Design
So far, we were not specifying an icon for our window. Therefore, Visual C++ was using
a default icon for the title bar:

This icon is 16x16 pixels. If you want to display a custom icon on the title bar, you can
design your own 16x16 pixel icon as a resource.

If you want your application to display a big icon in the thumbnails or tiles views of
Windows Explorer or My Computer, design an icon with a 32x32 pixel dimension and
using the same name as the 16x16 pixel icon.

To create an icon or add a new one, you can right-click the project name in the Solution
Explorer, position the mouse on Add and click Add Resource. This displays the Add
Resource dialog box where you can double-click Icon.

To design an icon, you use a set of tools that allow you to draw lines, curves, points, etc.
These tools are available from the Graphics toolbar. Each tool is called to by the text of
its tool tip. To know the name of a tool, position the mouse on it for a few seconds.

Tool Name Description

 Rectangle Selection Used as an outline to select a rectangular area

 Irregular Selection Used to draw freehand selection but a rectangle is
drawn from the starting selection to the end

 Select Color Used to select a color

Erase Used to erase color on an area

 Fill Fills a section with a color, only the same pixels with
the same color are filled

 Magnify Zooms an area of the picture

Pencil Draws lines

Brush Used to draw predefined lines, small squares or large

lines

 Airbrush Assigns a color to random pixels on the picture

 Line Used to draw a line

 Curve Draws a curve in a multiple step process

Text Allows drawing text

Rectangle Used to draw a rectangular shape specifying only the

border color

 Outlined Rectangle Draws a rectangle with one color for the border (pen)
and another color for the inside (brush)

Filled Rectangle Used to draw a rectangle filling it with an interior color

while the border color is ignored

 Round Rectangle Used to draw a round rectangular shape specifying only
the border color

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 75

Outlined Round
Rectangle

Draws a round rectangle with one color for the border
(pen) and another color for the inside (brush)

Filled Round
Rectangle

Used to draw a round rectangle filling it with an interior
color while the border color is ignored

 Ellipse Used to draw an ellipse or a circle

Outlined Ellipse Draws an ellipse or a circle with one color for the

border (pen) and another color for the inside (brush)

 Filled Ellipse Used to draw an ellipse or a circle filling it with an
interior color while the border color is ignored

To use a particular tool, click it to select. Then click on the icon.

To design your icon, you can choose colors from the Colors toolbar. Because an icon
uses a background color, the default is set as green. The default icon is represented by a
small monitor icon.

To use a color, first select a tool on the Graphics toolbar, then click the desired color and
draw.

After creating an icon, you can use it for your application. There are two solutions you
can use. The default icon used by MSVC is called AFX_IDI_STD_FRAME. Therefore,
after designing your icon, you can simply set its name as this default.

 Practical Learning: Creating an Icon
1. To create an icon, on the main menu, click Project -> Insert Resource...

2. In the Add Resource dialog box, click Icon

Figure 45: Add Resource - Icon

3. Click New

4. In the Resource View, right-click IDI_ICON1 and click Properties.

5. In the Properties window, click the arrow of the ID combo box and select
AFX_IDI_STD_FRAME

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

76 © FunctionX, Inc.

6. On the Properties window, click Filename. Type diamond and press Enter

7. On the Image Editor toolbar, click the Line Tool button

8. In the Colors window, click the blue color (7th column, 2nd row)

9. In the empty drawing area, count 15 pixels from the top left to the right. On the 16th
box, click and drag right and down for an angle of 45° for 7 boxes. Release the
mouse

10. Click the same top blue box and drag left and down at 45° for 7 boxes:

11. Draw a diamond under the first one as follows:

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 77

12. On the Colors window, click the red color (3rd column, 2nd row).

13. Draw a reverse graphic with regard to the above dialog as follows:

14. Using the blue and the red colors, design the other diamonds as follows:

15. On the Colors window, click the white button

16. Using the Line Tool, draw four borders as follows:

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

78 © FunctionX, Inc.

17. Still using the Line Tool and the white color, draw new white lines as follows:

18. On the Image Editor toolbar, click the Fill Tool button .

19. Using the white, red, and blue colors, fill the icon as follows:

20. To create the smaller equivalent icon, on the main menu, click Image -> New Image

Type...

21. Make sure that 16x16, 16 Colors is selected and click OK.

22. Using the same above approach, design the icon as follows:

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 79

23. To save the icon, click the system Close button of the window that is displaying
the icon

24. Change the Exercise.cpp file as follows:

#include <afxwin.h>
#include "ResourceDlg.h"

class CResApp: public CWinApp
{
public:
 BOOL InitInstance();
};

class CResFrame : public CFrameWnd
{
public:
 CResFrame()
 {
 Create(NULL, "Resources Fundamentals");
 }
};

BOOL CResApp::InitInstance()
{
 m_pMainWnd = new CResFrame;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CResApp theApp;

25. Test the application:

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

80 © FunctionX, Inc.

26. Close the window and return to MSVC

27. Create another icon identified as IDI_APP_ICO and design it follows:

28. Save All

3.3 Menu Fundamentals

3.3.1 Overview
A menu is a list of actions the user can perform on an application. Each item of the list is
primarily a word or a group of words on a line. Different menu items are used for
different reasons. For example, some menu items simply display a word or a group of
words. Some other items display a check mark. This indicates that the item toggles the
availability or disappearance of an object.

When a menu item is only meant to lead to a sub-menu, such a menu item is call a popup
menu. There are two types of popup menus. If the menu displays on top of a window,
which is the type of menu under the title bar, the word on top, which represents a
category of menu, is a popup menu. If a menu item is equipped with an arrow in its right

, which means the menu item has a submenu, such a
menu item is also a popup menu. Popup menus are used only to represent a submenu. No
inherent action is produced by clicking them, except that, when placed on top, such menu
items allow opening the submenu.

To create menus that belong to a group, menu items are separated by a horizontal line
called a separator. Separators are created differently in MSVC 6 and MSVC 7.

There are two primary types of menus in most applications: a main menu and a popup
menu.

3.3.2 The Main Menu
A menu is considered a main menu, when it carries most or all of the actions the user can
perform on an application. Such a menu is positioned on the top section of the main

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 81

window in which it is used. A main menu is divided in categories of items and each
category is represented by a word. Here is an example:

On the Visual Studio IDE, the categories of menus are File , Edit, View, Project, etc. To
use a menu, the user first clicks one of the words that displays on top. Upon clicking, the
menu expands and displays a list of items that belong to that category. Here is an
example where the View menu of WordPerfect was clicked and got expanded:

There is no strict rule on how a menu is organized, only suggestions. For example,
actions that are related to file processing, such as creating a new file, opening an existing
file, saving a file, printing the open file, or closing the file usually stay under a category
called File. In the same way, actions related to viewing things can be listed under a View
menu.

3.3.3 Main Menu Design
There are two ways you can create a main menu. You can use the Win32 approach in
which case you would create or open your .rc file and create a section as follows:

IDR_MAINFRAME MENU
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New", IDM_FILENEW
 MENUITEM "&Open", IDM_FILEOPEN
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_FILEEXIT
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About", IDM_HELPABOUT
 END
END

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

82 © FunctionX, Inc.

If you create your file manually, you must also remember to create or edit the resource.h
file in order to specify an identifier for each menu. The alternative, which we will use, is
to "visually" create the menu in Visual Studio. When doing this, the studio itself would
update the resource.h as items are added or removed.

To create a menu, first add a resource of type Menu. To create a popup menu that would
display on top of the main menu, click the item on top and type the desired string in the
Caption field of the Properties window. Such a popup menu item would not use a specify
identifier.

To create a menu item, click the line under the popup menu, provide an identifier and a
caption. The arrow for the popup menu is readily available so you can use or ignore it.

 Practical Learning: Creating a Main Menu
1. On the main menu, click Project -> Add Resource...

2. On the Add Resource dialog box, double-click Menu

3. In the Resource View, click IDR_MENU1 to select it and change its identifier to
IDR_MENU_RES

4. In the main window, click the top box (in MSVC .Net, it displays Type Here), type
Family and press Enter

5. Click the item under Family. Type Father and press Enter

6. Type Mother and press Enter

7. To add a separator, click the item under mother, type - and press Enter

8. Complete the menu as follows (remember to add the lower separator):

9. To move the Grand-Child item and position it under the lower separator, click and

hold the mouse on Grand-Child, then drag in the bottom direction until the selection
is in the desired position:

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 83

10. Release the mouse.

11. To create another main menu item, click the box on the right side of Family, type
Category and press Enter

12. Click the item under Category, type Parent and press Enter.

13. Type Child and press Enter

14. To move the Category menu and position it to the left side of Family, click and drag
Category in the left direction

15. When it is positioned to the left of Family, release the mouse. Notice that the popup
menu and its submenus moved.

16. To create a new main menu item, click the box on the right side of Family, type
Job Functions and press Enter

17. Click the box under Job Functions and type Level

18. While Level is still selected, click the box on the right side of Level

19. Type Executive and press Enter

20. Complete the popup menu as follows:

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

84 © FunctionX, Inc.

Figure 46: Simple Menu

21. To use the new menu, open the Exercise.cpp file and change the
CFrameWnd::Create() method as follows:

#include <afxwin.h>
#include "resource.h"

class CResApp: public CWinApp
{
public:
 BOOL InitInstance();
};

class CResFrame : public CFrameWnd
{
public:
 CResFrame()
 {
 Create(NULL, "Resources Fundamentals",
 WS_OVERLAPPEDWINDOW, CRect(200, 120, 640, 400),
 NULL,
 MAKEINTRESOURCE(IDR_MENU_RES));
 }
};

BOOL CResApp::InitInstance()
{
 m_pMainWnd = new CResFrame;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CResApp theApp;

22. Test the application

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 85

23. Close the window and return to MSVC

3.4 Toolbars

3.4.1 Overview
A toolbar is a Windows control that allows the user to perform some actions on a form by
clicking a button instead of using a menu. A toolbar provides a convenient group of
buttons that simplifies the user's job by bringing the most accessible actions as buttons so
that, instead of performing various steps to access a menu, a button on a toolbar can bring
such common actions closer to the user.

Toolbars usually display under the main menu. They can be equipped with buttons but
sometimes their buttons or some of their buttons have a caption. Toolbars can also be
equipped with other types of controls

3.4.2 Creating a Toolbar
To create a toolbar, from the Add Resource dialog box, click Toolbar and click New.

A toolbar is only a container and does not provide much role by itself. To make a toolbar
efficient, you should equip it with the necessary controls.

The most common control used on a toolbar is a button. After adding a new toolbar, it is
equipped with a gray button. You can simply start designing that button as you see fit.
Once you start designing a button, a new one is added. You can keep designing the
buttons until you get as many buttons as you need. If you design a button but do not need
it anymore, to delete it, drag it away from the toolbar. The space between two buttons is
called a separator. To put a separator between two buttons, drag one away from the other
just a little.

3.5 Accelerators

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

86 © FunctionX, Inc.

3.5.1 Access Keys
An access key is a letter that allows the user to perform a menu action faster by using the
keyboard instead of the mouse. This is usually faster because the user would not need to
position the mouse anywhere, which reduces the time it takes to perform the action.

The most basic accelerator keys allow the user to access each item of the menu with a
key. To do this, the user must first give focus to the menu. This is done by pressing the
F10 function key or Alt . Once the menu has focus, you can provide a unique letter that
the user can press to activate the menu. Each main popup menu must have a unique letter
that serves as access key. The letter is underlined to show that it the access key for that
particular menu.

As a suggestion, when creating the access keys, use the first letter of the menu item, as in
File, Edit, or View. If you have another menu item that starts with a letter already used,
as Format after File, use the next letter that has not been used already. This can result in
File, Edit, View, Format, Insert, Efficiency. Only items in the same category should
follow this rule. The menu items under a popup menu use access keys that are
independent of another category. This means that, under File, you can use a submenu that
uses the letter E as access key even though Edit on top is using it.

To use access keys, the user press F10 or Alt and presses the underlined letter, which
opens the menu category. Then the user can click the desired underlined letter in the
displayed list.

To create an access key, type an ampersand "&" on the left of the menu item.

 Practical Learning: Creating Access Keys
1. In the Resource View, double-click the identifier of the menu to display the menu.

2. Right-click Category and click Properties

3. In the Caption box, click to left of Category, type & and press Enter

4. Complete the menu with the following captions:

&Category &Family &Job Functions
&Parent &Father &Level
&Child &Mother &Executive
 &Son &Senior
 &Daughter &Junior
 &Grand-child &Assistant

5. Test the application and return to MSVC

3.5.2 Shortcuts
A shortcut key is a key or a combination of keys the user presses to perform an action
that would otherwise be done on a menu item. Most shortcuts are made of the Ctrl key
simultaneously pressed with a letter key. Examples are Ctrl + N, Ctrl + O, or Ctrl + D.
Some applications, such as Adobe Photoshop or Macromedia Flash, use a shortcut made
of only one key.

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 87

To create a shortcut, on the right side of the string that makes up a menu caption, type \t
followed by the desired combination.

 Practical Learning: Creating Shortcut Keys
1. In the Resource View, click Category, right-click Parent, and click Properties

2. In the Caption box, click to right side of Parent, type \tCtrl+R

3. In the same way, set the shortcut of Child to Ctrl+D

4. Test the application and return to MSVC

3.5.3 Accelerator Table
An Accelerator Table is a list of items where each item of the table combines an
identifier, a (shortcut) key, and a constant number that specifies the kind of accelerator
key. Each item is a variable of the ACCEL class whose syntax is:

typedef struct tagACCEL {
 BYTE fVirt;
 WORD key;
 WORD cmd;
} ACCEL, *LPACCEL;

Using a variable or variables of type ACCEL, you can create as many items as needed.
Then declare an HACCEL variable. HACCEL is a handle to a ACCEL and is used to
pass the ACCEL table to the program. This would allow the compiler to translate the
items of the accelerator to keys that the program can use.

Just like the other resources, an accelerator table can be created manually in a .rc file but
MSVC simplifies the process by allowing you to "visually" create the table.

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

88 © FunctionX, Inc.

 Practical Learning: Creating an Accelerator Table
1. On the main menu of Visual Studio, click Insert -> Resource... or Project -> Add

Resource...

2. In the Add Resource dialog box, double-click Accelerator

3. In the Properties window, click the arrow of the ID combo box and select
ID_CATEGORY_PARENT

4. Click the Key box and type R

5. Make sure the Ctrl check box is checked or that the Ctrl field is set to True. Also,
make sure the Type is set to VIRTKEY

6. In the same way, create an accelerator item for the Child menu:

7. To use the accelerator, change the program as follows:

class CResFrame : public CFrameWnd
{
public:
 HACCEL m_hAccel;

 CResFrame()
 {
 m_hAccel = ::LoadAccelerators(AfxGetInstanceHandle(),
 MAKEINTRESOURCE (IDR_ACCELTEST));

 Create(NULL, "Resources Fundamentals",
 WS_OVERLAPPEDWINDOW,
 CRect(200, 120, 640, 400), NULL,
 MAKEINTRESOURCE(IDR_TEST));
 }
};

8. Test the application and return to MSVC

3.6 Version Information

3.6.1 Overview
The version of a computer program allows to have some information about the product
such as it official name , a release number, the person or company that owns its copyright,
the year of the current release, etc.

3.6.2 The Version Information Editor
To create the pieces of information that make up the version information, you can use the
Version Information Editor.

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 89

 Practical Learning: Creating Version Information
1. On the main menu of MSVC, click Project -> Add Resource

2. In the Add Resource dialog box, click Version and click New. Notice that a
complete file is generated for you

3. To change the first key, double-click the top 1, 0, 0, 1 and edit it to display 1, 3, 1, 1

4. Double-click PRODUCTVERSION and type 1, 2, 2, 3

5. Double-click Comments and type This program is primarily intended as an
introduction to Windows resources

6. To add a new string, right-click in the window and click New Version Info Block

Figure 47: Version Table

7. Save All

3.7 Cursors

3.7.1 Overview
A cursor is a small picture that represents the position of the mouse on a Windows object.
Because Windows is a graphic operating system, when it installs, it creates a set of
standard or regularly used cursors. These can be seen by opening the Control Panel
window and double-clicking the Mouse icon. This opens the Mouse Properties dialog box
where you can click the Pointers tab to see a list of standard cursors installed by
Windows:

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

90 © FunctionX, Inc.

3.7.2 Creating and Using Cursors
Microsoft Windows installs a wide array of cursors for various occasions. Like all other
resources, a cursor is identified by a constant integer that can be communicated to other
files that need it.

Essentially, a cursor uses only two colors, black and white. This is because a cursor is
only used as an indicator of the presence or position of the mouse pointer on the screen.
Based on this (limitation), you ought to be creative. The minimum you can give a cursor
is a shape. This can be a square, a rectangle, a circle, an ellipse, a triangle, or any shape
of your choice. You can make the cursor fully black by painting it with that color. If you
decide to make the cursor completely white, make sure you draw borders.

Between the black and white colors, two gray degrees are provided to you. In reality
these two colors are used to give transparency to the cursor so the background can be
seen when the mouse passes over a section of the document.

After designing a cursor, you should define its hot spot . A cursor's hot spot is the point
that would be used to touch the specific point that the mouse must touch to perform the
action expected on the mouse. The hot spot must be an area, namely a spot, on the cursor
but it could be anywhere on that cursor. You should specify the hot spot in the most
intuitive section of the cursor. In other words, the user should easily identify it since it is
not otherwise visible.

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 91

If you do not want to show a cursor, you can use the Wind32 API ShowCursor()
function. Its syntax is:

int ShowCursor(BOOL bShow);

To hide a cursor, specify the argument as FALSE.

 Practical Learning: Creating a Cursor
1. To create a new cursor, on the main menu, click Project -> Add Resource

2. In the Insert Resource or Add Resource dialog box, click Cursor and click New

3. In the Resource View, right-click the name of the cursor and click Properties

4. Change its ID to IDC_APP_CURS and its Filename to appcurs.cur

5. On the Toolbox, click the Line tool and select the black color

6. Design the cursor as follows:

7. To define the hot spot, on the toolbar of the editor, click the Set Hot Spot button

. Click the middle of the square:

8. Save All

9. Close the Cursor Properties window.

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

92 © FunctionX, Inc.

3.8 The String Table

3.8.1 Description
A string table is a list of all object strings that are part of an application. It allows any part
of the program to refer to that table when a common string is needed. The advantage of a
string table is that it can be used as a central place when to store or retrieve strings that
any other objects of the application may need. These can include the titles or captions of
Windows controls, the formatting strings used inside of functions or controls.

3.8.2 Creating and Using a String Table
When you install Microsoft Visual C++, it also installs a lot of strings that are readily
available for your applications. Most of the time, you will also need to create additional
or your own strings. To create a string table, from the Add Resource dialog box, click
String Table and click New. Each item of the table is made of three sections: an
identifier, a constant natural number, and a caption.

To add a new item, you can right-click in the String Table window and click New String.
You can also double-click the last empty row in the window. You can also press Insert.
Either case, the String Properties window would display.

You can either type a new ID or select an existing ID from the ID combo box. Then type
the associated string in the Caption box. Continually, you would have created a String
Table:

The identifier, ID, is the same type of ID used when creating the resources earlier. In fact,
most of the IDs used on a string table are shared among resources, as we will learn when
reviewing the CFrameWnd::LoadFrame() method.

The value column contains a constant LONG integer for each identifier. You will not
need to specify this number when using the String Table window; Visual C++
automatically and independently creates and manages those numbers. If you want to
create a string and specify your own number, on the main menu of MSVC 6, you can
click View -> Resource Symbols...

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 93

Figure 48: Resource Symbols

In the Resource Symbols window, to create a new string, click the New... button to
display the New Symbol dialog box:

Figure 49: New Symbol

You can then type an IDentifier in the Name edit box and the desired number in the
Value edit box. Over all, you should only use numbers between 101 and 127 and avoid
numbers over 57344.

To edit an item from the String Table window, double-click the row needed to display the
String Properties window with the selected item.

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

94 © FunctionX, Inc.

3.9 Other Techniques of Creating Windows

3.9.1 Window Registration and Standard Resources
The CFrameWnd::Create() method we have used so far provides a quick mechanism to
create a window. Unfortunately, it is not equipped to recognize custom resources. In
reality, this method is only used to create a window, not to receive resources. As we saw
in its syntax, its first argument, lpszClassName is used to get a window that has been
built, that is, a window whose resources have been specified. If you do not specify these
resources, that is, if you pass the lpszClassName argument as NULL, the compiler would
use internal default values for the window. These default are: a window that can be
redrawn when the user moves or resizes it, a white background for the main area of the
window, the arrow cursor, and the Windows "flat" icon, called IDI_APPLICATION .

To use your own resources, you must first create then register them. To register the
resources, you can call the AfxRegisterWndClass() global function. Its syntax is:

LPCTSTR AFXAPI AfxRegisterWndClass(UINT nClassStyle,
 HCURSOR hCursor = 0,
 HBRUSH hbrBackground = 0,
 HICON hIcon = 0);

As you can see, this function is used to register, the window style, a cursor, a color for the
background, and an icon. After registering the window's style or the style and the
resources, this function returns a (constant) string that can be passed as the first argument
of the CFrameWnd::Create() method.

 Practical Learning: Using Standard Resources
1. To use the AfxRegisterWndClass() function with default values, change the

Exercise.cpp file as follows:

class CResFrame : public CFrameWnd
{
public:
 CResFrame()
 {
 const char *RWC = AfxRegisterWndClass(NULL, NULL,
 (HBRUSH)::GetStockObject(WHITE_BRUSH),
 NULL);
 Create(RWC, "Resources Fundamentals", WS_OVERLAPPEDWINDOW,
 CRect(200, 120, 640, 400), NULL);
 }
};

2. Test the application

3. After viewing the window, close it and return to MSVC

4. To use a standard cursor and a standard icon, change the Exercise.cpp file as follows:

CResFrame()
{

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 95

 HCURSOR hCursor;
 HICON hIcon;

 hCursor = AfxGetApp()->LoadStandardCursor(IDC_SIZEALL);
 hIcon = AfxGetApp()->LoadStandardIcon(IDI_EXCLAMATION);

 const char *RWC = AfxRegisterWndClass(CS_VREDRAW | CS_HREDRAW,
 hCursor,
 (HBRUSH)GetStockObject(BLACK_BRUSH),
 hIcon);
 Create(RWC, "Resources Fundamentals", WS_OVERLAPPEDWINDOW,
 CRect(200, 120, 640, 400), NULL);
}

5. Test the application

6. After viewing the window, close it and return to MSVC

3.9.2 Window Registration and Custom Resources
If the standard cursors and/or icons are not enough, you can create your own. To create
your own cursor, display and select Cursor from the Add Resource dialog box. A starting
but empty cursor would be displayed. Design the cursor to your liking.

To use a custom cursor, you can retrieve its identifier and pass it to the
CWinApp::LoadCursor() method. It is overloaded as follows:

HCURSOR LoadCursor(LPCTSTR lpszResourceName) const;
HCURSOR LoadCursor(UINT nIDResource) const;

To use a custom icon, you can pass its identifier to the CWinApp::LoadIcon() method
overloaded as follows:

HICON LoadIcon(LPCTSTR lpszResourceName) const;
HICON LoadIcon(UINT nIDResource) const;

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

96 © FunctionX, Inc.

When calling one of these methods, you can simply pass its identifier as argument. You
can also specify the resource identifier as a constant string. To do this, pass the name of
the icon to the MAKEINTRESOURCE macro that would convert its identifier to a
string.

 Practical Learning: Using Custom Resources
1. To use a custom cursor and a custom icon, change the Exercise.cpp file as follows:

#include <afxwin.h>
#include "resource.h"

class CResFrame : public CFrameWnd
{
public:
 CResFrame()
 {
 HCURSOR hCursor;
 HICON hIcon;

 hCursor = AfxGetApp()->LoadCursor(IDC_APP_CURS);
 hIcon = AfxGetApp()->LoadIcon(IDI_APP_ICO);

 const char *RWC = AfxRegisterWndClass(CS_VREDRAW | CS_HREDRAW,
 hCursor,
 (HBRUSH)GetStockObject(BLACK_BRUSH),
 hIcon);
 Create(RWC, "Custom Resources", WS_OVERLAPPEDWINDOW,
 CRect(200, 120, 640, 400), NULL);
 }
};

class CResApp: public CWinApp
{
public:
 BOOL InitInstance()
 {
 m_pMainWnd = new CResFrame;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
 }
};

CResApp theApp;

2. Test the application:

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 97

3. After viewing the window, close it and return to MSVC.

3.9.3 Frame Loading
So far, in order to create a window, we learned to use the CFrameWnd::Create()
method. Because that method does not recognize resources, we resolved to use the
AfxRegisterWndClass() function to register the necessary resources before calling the
CFrameWnd::Create() method. The MFC library provides another, simpler, technique
to create a window. This is done using the CFrameWnd::LoadFrame() method.

To create a window with one simple call, first create the necessary resources, namely an
accelerator table, a menu, an icon, a string table (and possible a toolbar). The only rule to
follow is that all of these resources must have the same name. As a habit, the common
name used for resources is IDR_MAINFRAME.

The syntax of the LoadFrame() method is:

BOOL LoadFrame(UINT nIDResource,
 DWORD dwDefaultStyle = WS_OVERLAPPEDWINDOW | FWS_ADDTOTITLE,
 CWnd* pParentWnd = NULL,
 CCreateContext* pContext = NULL);

The only required argument to the LoadFrame() method is the identifier shared by the
resources. Like the Create() method, you can use LoadFrame() to specify the style of
the window. Its characteristics are specified as the dwDefaultStyle argument. If this
window has a parent, you can specify it using the pParentWnd argument.

 Practical Learning: Loading a Frame
1. Create a new project named Frame Loader and stored in C:\Programs \MSVC

Exercises
Make sure you create it as a Windows Application with an Empty Project

2. Access the application's settings or properties and specify that you want to use MFC
As A Shared DLL

Chapter 3: Windows Resources Visual C++ and MFC Fundamentals

98 © FunctionX, Inc.

3. Add a new menu resource as follows:

4. Change the ID of the menu from IDR_MENU1 to IDR_MAINFRAME and save the
resource as FrmLoad.rc
If using MSVC 6, add the .rc file to the project (Project -> Add to Project -> File,
Form Loader.rc)

5. Create a new Icon identified as IDR_MAINFRAME and design it as follows:

6. Create a new accelerator table identified as IDR_MAINFRAME as follows:

7. Create a String Table and add a string identified as IDR_MAINFRAME with a

Caption as Combined Resources

8. Create a new C++ source file and name it Main

9. In the Main.cpp file, create the application as follows:

Visual C++ and MFC Fundamentals Chapter 3: Windows Resources

© FunctionX, Inc. 99

#include <afxwin.h>
#include "resource.h"

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ()
 {
 LoadFrame(IDR_MAINFRAME);
 }
};

class CMainApp: public CWinApp
{
public:
 BOOL InitInstance()
 {
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
 }
};

CMainApp theApp;

10. Test the application.

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

100 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 101

Chapter 4:
Messages and Events

? Introduction to Messages

? Windows Messages

? Command Messages

? Keyboard Messages

? Mouse Messages

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

102 © FunctionX, Inc.

4.1 Introduction to Messages

4.1.1 Overview

Some of your applications will be made of various objects. Most of the time, more than
one application is running on the computer. These two scenarios mean that the operating
system is constantly asked to perform some assignments. Because there can be so many
requests presented unpredictably, the operating system leaves it up to the objects to
specify what they want, when they want it, and what behavior or result they expect.

The Microsoft Windows operating system cannot predict what kinds of requests one
object would need to be taken care of and what type of assignment another object would
need. To manage all these assignments and requests, the objects send messages, one
message at a time, to the operating system. For this reason, Microsoft Windows is said to
be a message-driven operating system.

The messages are divided in various categories but as mentioned already, each object has
the responsibility to decided what message to send and when. Therefore, most of the
messages we will review here are part of a window frame. Others will be addressed when
necessary.

Once a control has composed a message, it must send it to the right target which could be
the operating system. In order to send a message, a control must create an event. It is also
said to fire an event. To make a distinction between the two, a message's name usually
starts with WM_ which stands for Window Message. The name of an event usually starts
with On which indicates an action. Remember, the message is what needs to be sent. The
event is the action of sending the message.

4.1.2 A Map of Messages

For the compiler to manage messages, they should be included in the class definition. The
list of messages starts on a section driven by, but that ends with, the
DECLARE_MESSAGE_MAP macro. The section can be created as follows:

#include <afxwin.h>

class CSimpleFrame : public CFrameWnd
{
public:
 CSimpleFrame();

 DECLARE_MESSAGE_MAP()
};

The DECLARE_MESSAGE_MAP macro should be provided at the end of the class
definition. The actual messages (as we will review them shortly) should be listed just
above the DECLARE_MESSAGE_MAP line. This is just a rule. In some
circumstances, and for any reason, you may want, or have, to provide one message or a
few messages under the DECLARE_MESSAGE_MAP line.

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 103

To implement the messages, you should/must create a table of messages that your
program is using. This table uses two delimiting macros. Its starts with a
BEGIN_MESSAGE_MAP and ends with an END_MESSAGE_MAP macros. The
BEGIN_MESSAGE_MAP macro takes two arguments, the name of your class and the
MFC class you derived your class from. An example would be:

BEGIN_MESSAGE_MAP(CSimpleFrame, CFrameWnd)

Like the DECLARE_MESSAGE_MAP macro, END_MESSAGE_MAP takes no
argument. Its job is simple to specify the end of the list of messages. The table of
messages can be created as follows:

#include <afxwin.h>
#include "resource.h"

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ();

 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 LoadFrame(IDR_MAINFRAME);
}

class CMainApp: public CWinApp
{
public:
 BOOL InitInstance();
};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

END_MESSAGE_MAP()

BOOL CMainApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CMainApp theApp;

There various categories of messages the operating system receives. Some of them come
from the keyboard, some from the mouse, and some others from various other origins.
For example, some messages are sent by the application itself while some other messages
are controlled by the operating.

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

104 © FunctionX, Inc.

 Practical Learning: Creating a Map of Messages
1. Create a new and empty Win32 Project located in C:\Programs \MSVC Exercises and

set its the Name to Messages1

2. Specify that you want to Use MFC in a Shared DLL

3. Create a C++ file and name it Exercise

4. To create a frame for the window, in the Exercise.cpp file, type the following:

#include <afxwin.h>

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ();

protected:

 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

class CExerciseApp: public CWinApp
{
public:
 BOOL InitInstance();
};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

END_MESSAGE_MAP()

BOOL CExerciseApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CExerciseApp theApp;

5. Test the application and return to MSVC

4.2 Windows Messages

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 105

4.2.1 Window Creation
WM_CREATE: When an object, called a window, is created, the frame that creates the
objects sends a message identified as ON_WM_CREATE. Its syntax is:

afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

This message calls the CFrameWnd::Create() method to create a window. To do that, it
takes one argument, which is a pointer to a CREATESTRUCT class. The
CREATESTRUCT class provides all the information needed to create a window. It is
defined as follows:

typedef struct tagCREATESTRUCT {
 LPVOID lpCreateParams;
 HANDLE hInstance;
 HMENU hMenu;
 HWND hwndParent;
 int cy;
 int cx;
 int y;
 int x;
 LONG style;
 LPCSTR lpszName;
 LPCSTR lpszClass;
 DWORD dwExStyle;
} CREATESTRUCT;

This class provides the same types of information as the WNDCLASS object. When
sending the OnCreate() message, the class is usually created without your intervention
but when calling it, you should check that the window has been created. This can be done
by checking the result returned by the OnCreate() message from the parent class. If the
message returns 0, the window was created. If it returns -1, the class was not created or it
would simply be destroyed. This can be done as follows:

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 // Create the window and make sure it doesn't return -1
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 // else is implied
 return 0;
}

To use this message, in the class definition, type its syntax. In the message table, type the
name of the message ON_WM_CREATE():

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
END_MESSAGE_MAP()

 Practical Learning: Creating a Window
1. To create an ON_WM_CREATE message, change the file as follows:

#include <afxwin.h>

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

106 © FunctionX, Inc.

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ();

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

class CExerciseApp: public CWinApp
{
public:
 BOOL InitInstance();
};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
END_MESSAGE_MAP()

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 // Call the base class to create the window
 if(CFrameWnd::OnCreate(lpCreateStruct) == 0)
 {
 // If the window was successfully created, let the user know
 MessageBox("The window has been created!!!");
 // Since the window was successfully created, return 0
 return 0;
 }
 // Otherwise, return -1
 return -1;
}

BOOL CExerciseApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CExerciseApp theApp;

2. Test the application and return to MSVC

4.2.2 Window's Showing State

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 107

WM_SHOWWINDOW: After creating a window, it needs to be displayed. Also, if the
window was previously hidden, you can decide to show it. On the other hand, if a
window is displaying, you may want to hide it, for any reason you judge necessary. To
take any of these actions, that is, to show or hide a window, you must send the
ON_WM_SHOWWINDOW message. The syntax of this message is:

afx_msg void OnShowWindow(BOOL bShow, UINT nStatus);

When using this message, bShow is a Boolean argument determines what state to apply to
the window. If it is TRUE, the window needs to be displayed. If it is FALSE, the
window must be hidden.

nStatus is a positive integer that can have one of the following values:

Value Description

SW_PARENTCLOSING

If the window that sent this message is a frame, the
window is being minimized.
If the window that sent this message is hosted by another
window, the window is being hidden.

SW_PARENTOPENING

If the window that sent this message is a frame, the
window is being restored.
If the window that sent this message is hosted by another
window, the window is displaying

0 The message was sent from a CWnd::ShowWindow()
method

 Practical Learning: Showing a Window
1. To maximize the window at startup, change the program as follows:

#include <afxwin.h>

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ();

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnShowWindow(BOOL bShow, UINT nStatus);
 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

class CExerciseApp: public CWinApp
{
public:
 BOOL InitInstance();
};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

108 © FunctionX, Inc.

 ON_WM_CREATE()
 ON_WM_SHOWWINDOW()
END_MESSAGE_MAP()

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 // Call the base class to create the window
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 return 0;
}

void CMainFrame::OnShowWindow(BOOL bShow, UINT nStatus)
{
 CFrameWnd::OnShowWindow(bShow, nStatus);

 // TODO: Add your message handler code here
 ShowWindow(SW_MAXIMIZE);
}

BOOL CExerciseApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CExerciseApp theApp;

2. Test the program and return to MSVC

4.2.3 Window Activation
WM_ACTIVATE: When two or more windows are running on the computer, only one
can receive input from the user, that is, only one can actually be directly used at one
particular time. Such a window has a title bar with the color identified in Control Panel as
Active Window. The other window(s), if any, display(s) its/their title bar with a color
called Inactive Window:

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 109

To manage this setting, the windows are organized in a 3-dimensional coordinate system
and they are incrementally positioned on the Z coordinate, which defines the (0, 0, 0)
origin on the screen (actually on the top-left corner of your monitor) with Z coordinate
coming from the screen towards you.

In order to use a window other than the one that is active, you must activate it. To do this,
you can send a message called ON_WM_ACTIVATE. The syntax of this message is:

afx_msg void OnActivate(UINT nState, CWnd* pWndOther, BOOL bMinimized);

This message indeed does two things: it activates a window of your choice, or brings it to
the front, and deactivates the other window(s) or sends it/them to the back of the window
that is being activates. The nState argument specifies what action to apply. It is a
constant that can assume of the following values:

Value Description
WA_ACTIVE Used to activate a window without using the mouse, may be by

pressing Alt + Tab
WA_INACTIVE Used to deactivate a window
WA_CLICKACTIVE Used to activate a window using the mouse

If this message was sent by the window that is being activated, pWndOther designates the
other window, the one being deactivated. If this message was sent by the window that is
being deactivated, pWndOther designates the other window, the one being activated.

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

110 © FunctionX, Inc.

If the window that sent this message is being restored from its deactivation, pass the
bMinimized value as TRUE.

When calling this message, before implementing the custom behavior you want, first call
its implementation from the parent class:

void CMainFrame::OnActivate(UINT nState, CWnd* pWndOther, BOOL bMinimized)
{
 CFrameWnd::OnActivate(nState, pWndOther, bMinimized);

 // TODO: Add your message handler code here
}

 Practical Learning: Activating a Window
1. To activate a window that has been created, change the file as follows:

#include <afxwin.h>

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ();

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnShowWindow(BOOL bShow, UINT nStatus);
 afx_msg void OnActivate(UINT nState, CWnd* pWndOther,
 BOOL bMinimized);
 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

class CExerciseApp: public CWinApp
{
public:
 BOOL InitInstance();
};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
 ON_WM_SHOWWINDOW()
 ON_WM_ACTIVATE()
END_MESSAGE_MAP()

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 // Call the base class to create the window
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 return 0;
}

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 111

void CMainFrame::OnShowWindow(BOOL bShow, UINT nStatus)
{
 CFrameWnd::OnShowWindow(bShow, nStatus);

 // TODO: Add your message handler code here
 //ShowWindow(SW_SHOW);
}

void CMainFrame::OnActivate(UINT nState, CWnd* pWndOther, BOOL bMinimized)
{
 CFrameWnd::OnActivate(nState, pWndOther, bMinimized);

 // TODO: Add your message handler code here
 switch(nState)
 {
 case WA_ACTIVE:
 MessageBox("This window has been activated, without the mouse!");
 break;
 case WA_INACTIVE:
 MessageBox("This window has been deactivated and cannot be changed now!!");
 break;
 case WA_CLICKACTIVE:
 MessageBox("This window has been activated using the mouse!!!");
 break;
 }
}

BOOL CExerciseApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CExerciseApp theApp;

2. Test the application. While it is displaying, open Notepad

3. Display each window using the mouse. Then activate your window using Alt+Tab

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

112 © FunctionX, Inc.

4. Return to MSVC

4.2.4 Window Painting
WM_PAINT: Whether you have just created a window or you want to show it, you must
ask the operating system to display it, showing its appearance. To display such a window,
the operating system would need its location (left and top measures) and its dimension
(width and height). This is because the window must be painted. Also, if the window was
hidden somewhere such as behind another another window or was minimized, when it
comes up, the operating system needs to paint it. To do this, the window that needs to be
painted must send a message called ON_WM_PAINT. This message does not return
anything but in its body, you can define what needs to be painted and how you want the
job to be done. The syntax of this message is simply:

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 113

afx_msg void OnPaint()

 Practical Learning: Using the Paint Message
1. To use the structure of the WM_PAINT message, change the program as follows:

#include <afxwin.h>

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ();

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnShowWindow(BOOL bShow, UINT nStatus);
 afx_msg void OnActivate(UINT nState, CWnd* pWndOther, BOOL bMinimized);
 afx_msg void OnPaint();
 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

class CExerciseApp: public CWinApp
{
public:
 BOOL InitInstance();
};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
 ON_WM_SHOWWINDOW()
 ON_WM_ACTIVATE()
 ON_WM_PAINT()
END_MESSAGE_MAP()

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 return 0;
}

void CMainFrame::OnShowWindow(BOOL bShow, UINT nStatus)
{
 CFrameWnd::OnShowWindow(bShow, nStatus);

 // TODO: Add your message handler code here
 //ShowWindow(SW_SHOW);
}

void CMainFrame::OnActivate(UINT nState, CWnd* pWndOther, BOOL bMinimized)
{

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

114 © FunctionX, Inc.

 CFrameWnd::OnActivate(nState, pWndOther, bMinimized);

 // TODO: Add your message handler code here
 switch(nState)
 {
 case WA_ACTIVE:
 MessageBox("This window has been activated, without the mouse!");
 break;
 case WA_INACTIVE:
 MessageBox("This window has been deactivated and cannot be
changed now!!");
 break;
 case WA_CLICKACTIVE:
 MessageBox("This window has been activated using the mouse!!!");
 break;
 }
}

void CMainFrame::OnPaint()
{
 CFrameWnd::OnPaint();

 MessageBox("The window has been painted<==>");
}

BOOL CExerciseApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CExerciseApp theApp;

2. Test the application and return to MSVC

4.2.5 Window Sizing

WM_SIZE: When using an application, one of the actions a user can perform on a
window is to change its size, provided the window allows this. Also, some time to time, if
the window allows it, the user can minimize, maximize, or restore a window. Whenever
any of these actions occur, the operating system must keep track of the size of a window.
When the size of a window has changed, the window sends the ON_WM_SIZE message.
Its syntax is:

afx_msg void OnSize(UINT nType, int cx, int cy);

The nType argument specifies what type of action to take. It can have one of the
following values:

Value Description
SIZE_MINIMIZED The window has been minimized
SIZE_MAXIMIZED The window has been maximized
SIZE_RESTORED The window has been restored from being maximized or

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 115

minimized
SIZE_MAXHIDE Another window, other than this one, has been maximized
SIZE_MAXSHOW Another window, other than this one, has been restored from

being maximized or minimized

The cx argument specifies the new width of the client area of the window
The cy argument specifies the new height of the client area of the window.
To use this message, you should first call its implementation in the parent class before
implementing the behavior you want. This can be done as follows:

void CAnyWindow::OnSize(UINT nType, int cx, int cy)
{
 CParentClass::OnSize(nType, cx, cy);

 // TODO: Add your message handler code here
}

WM_SIZING: While the user is changing the size of a window, a message called
ON_WM_SIZING is being sent. Its syntax is:

afx_msg void OnSizing(UINT nSide, LPRECT lpRect);

When a user is resizing a window, he or she typically drags one of the borders or corners
on a direction of his or her choice. The first argument, nSize, indicates what edge is being
moved when resizing the window. It can have one of the following values:

Value Description
WMSZ_BOTTOM Bottom edge
WMSZ_BOTTOMLEFT Bottom-left corner
WMSZ_BOTTOMRIGHT Bottom-right corner
WMSZ_LEFT Left edge
WMSZ_RIGHT Right edge
WMSZ_TOP Top edge
WMSZ_TOPLEFT Top-left corner
WMSZ_TOPRIGHT Top-right corner

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

116 © FunctionX, Inc.

The second argument, lpRect, is the new rectangle that will enclose the window after the
window has been moved, resized, or restored.

4.2.6 Window Moving
WM_MOVE: When a window has been moved, the operating system needs to update its
location. Therefore, the window sends a message called ON_WM_MOVE. Its syntax is:

afx_msg void OnMove(int x, int y);

The first argument of this message specifies the left horizontal location of the left border
of the window after the window has been moved. The second argument represents the
vertical position of the top border of the window after the window has been moved.
If you want to send this message, you should first call its implementation in the parent
class

WM_MOVING: While the user is moving a window, it (the window sends) an
ON_WM_MOVING message. Its syntax is:

afx_msg void OnMoving(UINT nSide, LPRECT lpRect);

The first argument, nSide, is the edge of the window that is being moved. It is the same
as for the ON_MOVE message.
The lpRect is the target dimension of the window that is being moved. That is, it contains
the new dimensions of the window as it is being moved.

 Practical Learning: Moving a Window
1. To see the effect of moving a window, change the file as follows:

#include <afxwin.h>

class CMainFrame : public CFrameWnd

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 117

{
public:
 CMainFrame ();

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnShowWindow(BOOL bShow, UINT nStatus);
 afx_msg void OnActivate(UINT nState, CWnd* pWndOther, BOOL bMinimized);
 afx_msg void OnPaint();
 afx_msg void OnSize(UINT nType, int cx, int cy);
 afx_msg void OnMove(int x, int y);
 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

class CExerciseApp: public CWinApp
{
public:
 BOOL InitInstance();
};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
 ON_WM_SHOWWINDOW()
 ON_WM_ACTIVATE()
 ON_WM_PAINT()
 ON_WM_SIZE()
 ON_WM_MOVE()
END_MESSAGE_MAP()

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 return 0;
}

void CMainFrame::OnShowWindow(BOOL bShow, UINT nStatus)
{
 CFrameWnd::OnShowWindow(bShow, nStatus);

 // TODO: Add your message handler code here
 //ShowWindow(SW_SHOW);
}

void CMainFrame::OnActivate(UINT nState, CWnd* pWndOther, BOOL bMinimized)
{
 CFrameWnd::OnActivate(nState, pWndOther, bMinimized);

 // TODO: Add your message handler code here
 switch(nState)
 {
 case WA_ACTIVE:

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

118 © FunctionX, Inc.

 MessageBox("This window has been activated, without the mouse!");
 break;
 case WA_INACTIVE:
 MessageBox("This window has been deactivated and cannot be
changed now!!");
 break;
 case WA_CLICKACTIVE:
 MessageBox("This window has been activated using the mouse!!!");
 break;
 }
}

void CMainFrame::OnPaint()
{
 CFrameWnd::OnPaint();

 MessageBox("The window has been painted<==>");
}

void CMainFrame::OnSize(UINT nType, int cx, int cy)
{
/* CMainFrame::OnSize(nType, cx, cy);

 // TODO: Add your message handler code here
 char *MsgToShow = new char[20];
 char *MsgCoord = new char[20];

 switch(nType)
 {
 case SIZE_MINIMIZED:
 strcpy(MsgToShow, "Minimized ");
 break;
 case SIZE_MAXIMIZED:
 strcpy(MsgToShow, "Maximized ");
 break;
 case SIZE_RESTORED:
 strcpy(MsgToShow, "Restored ");
 break;
 case SIZE_MAXHIDE:
 strcpy(MsgToShow, "Maximized Not Me ");
 break;
 case SIZE_MAXSHOW:
 strcpy(MsgToShow, "Restored Not Me ");
 break;
 }

 sprintf(MsgCoord, "Left = %d | Top = %d", cx, cy);
 strcat(MsgToShow, MsgCoord);
 MessageBox(MsgToShow);
*/
}

void CMainFrame::OnMove(int x, int y)
{
 CFrameWnd::OnMove(x, y);

 // TODO: Add your message handler code here
 char *MsgCoord = new char[20];

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 119

 sprintf(MsgCoord, "Left = %d | Top = %d", x, y);

 MessageBox(MsgCoord);
}

BOOL CExerciseApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CExerciseApp theApp;

2. Test the application:

3. Return to MSVC

4.2.7 Window Destruction
WM_DESTROY: Once the window has been used and the user has closed it, the
window must send a message to the operating system to destroy it. The message sent is
called ON_WN_DESTROY and its syntax is:

afx_msg void OnDestroy();

This message takes no argument but you can use its body to do any last minute
assignment as needed. For example, you can use it either to prevent the window from
being closed or you can enquire whether the user really wants to close the window.

4.3 Command Messages

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

120 © FunctionX, Inc.

4.3.1 Definition
One of the main features of a graphical application is to present Windows controls and
resources that allow the user to interact with the machine. Examples of controls that we
will learn are buttons, list boxes, combo boxes, etc. One type of resource we introduced
in the previous lesson is the menu. Such controls and resources can initiate their own
messages when the user clicks them. A message that emanates from a Windows control
or a resource is called a command message.

4.3.2 Creating a Command Message
You can start by declaring a framework method. Here is an example:

afx_msg void OnLetItGo();

Then you can define the method as you see fit:

void CMainFrame::OnLetItGo()
{
 // Something to do here
}

The framework allows you to associate a member function to a command message. This
is done using the ON_COMMAND macro. Its syntax:

ON_COMMAND(IDentifier, MethodName)

The first argument, IDentifier, of this macro must be the identifier of the menu item or
Windows control you want to associate with a method.
The second argument, MethodName, must be the name of the member function that will
implement the action of the menu item or Windows control such a button.
Imagine you have a menu item IDentified as ID_ACTION_LETITGO that you want to
associate with the above OnLetItGo() method. You can use the ON_COMMAND macro
as follows:

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_COMMAND(ID_ACTION_LETITGO, OnLetItGo)
END_MESSAGE_MAP()

In the same way, you can create as many command messages as necessary.

4.4 Keyboard Messages

4.4.1 Introduction
A keyboard is a hardware object attached to the computer. By
default, it is used to enter recognizable symbols, letters, and other
characters on a control. Each key on the keyboard displays a
symbol, a letter, or a combination of those, to give an indication of
what the key could be used for.

The user typically presses a key, which sends a signal to a program.

The signal is analyzed to find its meaning. If the program or control that has focus is

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 121

equipped to deal with the signal, it may produce the expected result. If the program or
control cannot figure out what to do, it ignores the action.

Each key has a code that the operating system can recognize. This code is known as the
virtual key code and they are as follows:

Virtual Key Used for Virtual Key Used for
VK_F1 F1 VK_F2 F2
VK_F3 F3 VK_F4 F4
VK_F5 F5 VK_F6 F6
VK_F7 F7 VK_F8 F8
VK_F9 F9 VK_F10 F10
VK_F11 F11 VK_F12 F12
VK_SCROLL Scroll Lock VK_SNAPSHOT Prt Scrn (Depends on keyboard)
VK_PAUSE Pause/Break VK_TAB Tab
VK_BACK Backspace VK_CAPITAL Caps Lock
VK_SHIFT Shift VK_CONTROL Ctrl
VK_MENU Alt VK_ESCAPE Escape
VK_RETURN Enter VK_SPACE Space Bar
VK_INSERT Insert VK_HOME Home
VK_PRIOR Page Up VK_DELETE Delete
VK_END End VK_NEXT Page Down
VK_UP Up Arrow Key VK_RIGHT Right Arrow Key
VK_DOWN Down Arrow Key VK_LEFT Left Arrow Key
VK_LWIN Left Windows Key VK_RWIN Right Windows Key
VK_APPS Applications Key
The following keys apply to the Numeric Keypad
VK_NUMLOCK Num Lock
VK_NUMPAD0 0 VK_NUMPAD1 1
VK_NUMPAD2 2 VK_NUMPAD3 3
VK_NUMPAD4 4 VK_NUMPAD5 5
VK_NUMPAD6 6 VK_NUMPAD7 7
VK_NUMPAD8 8 VK_NUMPAD9 9
VK_DIVIDE / VK_MULTIPLY *
VK_SUBTRACT - VK_ADD +
VK_SEPARATOR VK_DECIMAL .

There are actually more keys than that but the above are the most frequently used.

 Practical Learning: Introducing Keyboard Messages
1. Create a new and empty Win32 Project located in C:\Programs \MSVC Exercises and

set its the Name to Messages2

2. Specify that you want to Use MFC in a Shared DLL

3. Create a C++ file and name it Exercise

4. To create a frame for the window, in the Exercise.cpp file, type the following:

#include <afxwin.h>

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ();

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

122 © FunctionX, Inc.

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

class CExerciseApp: public CWinApp
{
public:
 BOOL InitInstance();
};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
END_MESSAGE_MAP()

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 return 0;
}

BOOL CExerciseApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CExerciseApp theApp;

5. Test the application and return to MSVC

4.4.2 The Key Down Effect
When we think of the keyboard, the first thing that comes in mind if to press a key. When
a keyboard key is pressed, a message called WM_KEYDOWN. Its syntax is:

afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);

The first argument, nChar, specifies the virtual code of the key that was pressed.
The second argument, nRepCnt, specifies the number of times counted repeatedly as the
key was held down.
The nFlags argument specifies the scan code, extended-key flag, context code, previous
key-state flag, and transition-state flag.

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 123

 Practical Learning: Sending Key Down Messages
1. To experiment with the ON_KEYDOWN message, change the file as follows:

#include <afxwin.h>

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ();

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);

 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

class CExerciseApp: public CWinApp
{
public:
 BOOL InitInstance();
};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
 ON_WM_KEYDOWN()
END_MESSAGE_MAP()

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 return 0;
}

void CMainFrame::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 switch(nChar)
 {
 case VK_RETURN:
 MessageBox("You pressed Enter");
 break;
 case VK_F1:
 MessageBox("Help is not available at the moment");
 break;
 case VK_DELETE:
 MessageBox("Can't Delete This");
 break;
 default:
 MessageBox("Whatever");
 }

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

124 © FunctionX, Inc.

}

BOOL CExerciseApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CExerciseApp theApp;

2. Test the application and return to MSVC

4.4.3 The Key Up Effect
When we think of the keyboard, the first thing that comes in mind might refer to typing,
which consists of pressing a key and releasing it immediately. As this is done, a key is
pressed down and brought back up. When the user is releasing a key a WM_KEYUP
message is sent. Its syntax is:

afx_msg void OnKeyUp(UINT nChar, UINT nRepCnt, UINT nFlags);

The first argument, nChar, is the code of the key that was pressed.
The second argument, nRepCnt, specifies the number of times counted repeatedly as the
key was held down.
The nFlags argument specifies the scan code, extended-key flag, context code, previous
key-state flag, and transition-state flag.

4.5 Mouse Messages

4.5.1 Introduction
The mouse is another object that is attached to the computer allowing the user to interact
with the machine. The mouse and the keyboard can each accomplish some tasks that are
not normally available on the other and both can accomplish some tasks the same way.

The mouse is equipped with two, three, or more buttons. When a mouse has two buttons,
one is usually located on the left and the other is located on the right. When a mouse has
three buttons, one is in the middle of the other two. The mouse is used to select a point or
position on the screen. Once the user has located an item, which could also be an empty
space, a letter or a word, he or she would position the mouse pointer on it. To actually use
the mouse, the user would press either the left, the middle (if any), or the right button. If
the user presses the left button once, this action is called Click. If the user presses the
right mouse button, the action is referred to as Right-Click. If the user presses the left
button twice and very fast, the action is called Double-Click.

4.5.2 Mouse-Down Messages

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 125

Imagine the user has located a position or an item on a document and presses one of the
mouse buttons. While the button is pressed and is down, a button-down message is sent,
depending on the button that was pressed.

If the left mouse button was pressed, an ON_WM_LBUTTONDOWN message is sent.
The syntax of this message is:

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

If the right mouse button was pressed, an ON_WM_RBUTTONDOWN message is sent.
Its syntax is:

afx_msg void OnRButtonDown(UINT nFlags, CPoint point);

The first argument, nFlags, specifies what button is down or what keyboard key and what
mouse button are down. It is a constant integer that can have one of the following values:

Value Description
MK_CONTROL A Ctrl key is held down
MK_LBUTTON The left mouse button is down
MK_MBUTTON The middle mouse button is down
MK_RBUTTON The right mouse button is down
MK_SHIFT A Shift key is held down

The point argument specifies the measure from the left and the top borders of the window
to the mouse pointer.

 Practical Learning: Sending a Mouse Down Message
1. To experiment with the mouse down effect, change the program as follows:

#include <afxwin.h>

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ();

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

class CExerciseApp: public CWinApp
{
public:
 BOOL InitInstance();

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

126 © FunctionX, Inc.

};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
 ON_WM_KEYDOWN()
 ON_WM_LBUTTONDOWN()
END_MESSAGE_MAP()

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 return 0;
}

void CMainFrame::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 switch(nChar)
 {
 case VK_RETURN:
 MessageBox("You pressed Enter");
 break;
 case VK_F1:
 MessageBox("Help is not available at the moment");
 break;
 case VK_DELETE:
 MessageBox("Can't Delete This");
 break;
 default:
 MessageBox("Whatever");
 }
}

void CMainFrame::OnLButtonDown(UINT nFlags, CPoint point)
{
 char *MsgCoord = new char[20];

 sprintf(MsgCoord, "Left Button at P(%d, %d)", point.x, point.y);

 MessageBox(MsgCoord);
}

BOOL CExerciseApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CExerciseApp theApp;

2. Test the program:

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 127

3. Return to MSVC

4.5.3 The Mouse-Up Messages
After pressing a mouse button, the user usually releases it. While the button is being
released, a button-up message is sent and it depends on the button, left or right, that was
down.

If the left mouse is being released, the ON_WM_LBUTTONUP message is sent. Its
syntax is:

afx_msg void OnLButtonUp(UINT nFlags, CPoint point);

If the right mouse is being released, the ON_WM_TBUTTONUP message is sent. Its
syntax is:

afx_msg void OnRButtonUp(UINT nFlags, CPoint point);

The first argument, nFlags, specifies what button, right or middle, is down or what
keyboard key and what mouse button were down. It is a constant integer that can have
one of the following values:

Value Description
MK_CONTROL A Ctrl key was held down
MK_MBUTTON The middle mouse button was down
MK_RBUTTON The right mouse button was down
MK_SHIFT A Shift key was held

The point argument specifies the measure from the (0, 0) origin of the window to the
mouse pointer.

 Practical Learning: Sending a Mouse Down Message
1. To experiment with a mouse up message, change the program as follows:

#include <afxwin.h>

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

128 © FunctionX, Inc.

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame ();

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnRButtonUp(UINT nFlags, CPoint point);

 DECLARE_MESSAGE_MAP()
};

CMainFrame::CMainFrame()
{
 // Create the window's frame
 Create(NULL, "Windows Application", WS_OVERLAPPEDWINDOW,
 CRect(120, 100, 700, 480), NULL);
}

class CExerciseApp: public CWinApp
{
public:
 BOOL InitInstance();
};

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
 ON_WM_KEYDOWN()
 ON_WM_LBUTTONDOWN()
 ON_WM_RBUTTONUP()
END_MESSAGE_MAP()

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 return 0;
}

void CMainFrame::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 switch(nChar)
 {
 case VK_RETURN:
 MessageBox("You pressed Enter");
 break;
 case VK_F1:
 MessageBox("Help is not available at the moment");
 break;
 case VK_DELETE:
 MessageBox("Can't Delete This");
 break;
 default:
 MessageBox("Whatever");
 }
}

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 129

void CMainFrame::OnLButtonDown(UINT nFlags, CPoint point)
{
 char *MsgCoord = new char[20];

 sprintf(MsgCoord, "Left Button at P(%d, %d)", point.x, point.y);

 MessageBox(MsgCoord);
}

void CMainFrame::OnRButtonUp(UINT nFlags, CPoint point)
{
 MessageBox("Right Mouse Button Up");
}

BOOL CExerciseApp::InitInstance()
{
 m_pMainWnd = new CMainFrame ;
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

CExerciseApp theApp;

2. Execute the program. To test it, click in the middle of the window and hold the
mouse down

3. Then release the mouse. Notice that the title bar displays the new message only when
the mouse is up.

4. Return to MSVC

4.5.4 The Double-Click Message
Instead of pressing and simply releasing a mouse button, a classic action the user can
perform with the mouse is to double-click an object. When this is done, a double-click
message is sent. The message to consider actually depends on the button that was double-
pressed.

If the double-click was performed using the left mouse button, the
WM_LBUTTONDBLCLK message is sent and its syntax is:

afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point);

If the action was performed using the right mouse button, the WM_RBUTTONDBLCLK
message would be sent. Its syntax is:

afx_msg void OnRButtonDblClk(UINT nFlags, CPoint point);

In both cases the nFlags argument specifies the button that was double-clicked. This
argument can have one of the following values:

Value Description
MK_CONTROL A Ctrl key was held down when the user double-clicked
MK_LBUTTON The left mouse button is down

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

130 © FunctionX, Inc.

MK_MBUTTON The middle mouse button is down
MK_RBUTTON The right mouse button is down
MK_SHIFT A Shift key was held down when the user double-clicked

The point argument specifies the location of the mouse pointer in x (horizontal) and y
(vertical) coordinates.

4.5.5 Mouse Moving
After pressing one of the mouse buttons, depending on the requirement, the use may not
need to immediately release the button. Another action performed with the mouse
consists of clicking and holding the mouse button down, then dragging in a chosen
direction. This action refers to the mouse moving. When this is done a
WM_MOUSEMOVE message is sent. Its syntax is:

afx_msg void OnMouseMove(UINT nFlags, CPoint point);

The nFlags argument specifies what button is held down or what key is pressed in
combination with the button that is held down while the mouse pointer is moving. This
argument can have one of the following values:

Value While the mouse is moving
MK_CONTROL A Ctrl key is held down
MK_LBUTTON The left mouse button is down
MK_MBUTTON The middle mouse button is down
MK_RBUTTON The right mouse button is down
MK_SHIFT A Shift key was held down

The point argument specifies the current location of the mouse pointer in x (horizontal)
and y (vertical) coordinates at the time the message is captured.

4.6 Anytime Messages

4.6.1 Introduction
The messages we have used so far belong to specific events generated at a particular time
by a window. Sometimes in the middle of doing something, you may want to send a
message regardless of what is going on. This is made possible by a function called
SendMessage(). Actually, there are two SendMessage() versions available.

The Win32 API version of the SendMessage() function has the following syntax:

LRESULT SendMessage(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam);

The MFC version is carried by the CWnd class and declared as follows:

LRESULT SendMessage(UINT Msg, WPARAM wParam, LPARAM lParam);

Because the Win32 version is considered global, if you want to use it, you must precede
it with the scope access operator "::" as in:

::SendMessage(WhatToDo);

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 131

The hWnd argument is the object or control that is sending the message.
The Msg argument is the message to be sent.
The wParam and the lParam values depend on the message that is being sent.

4.6.2 Sending Messages
The advantage of using the SendMessage() function is that, when sending this message,
it would target the procedure that can perform the task and this function would return
only after its message has been processed. Because this (member) function can
sometimes universally be used, that is by any control or object, the application cannot
predict the type of message that SendMessage() is carrying. Therefore, (the probable
disadvantage is that) you must know the (name or identity of the) message you are
sending and you must provide accurate accompanying items (like sending a letter with
the right stamp; imagine you send a sexy letter to your grand-mother in Australia about
her already dead grand grand-father who is celebrating his first job while he has just
become 5 years old).

In order to send a message using the SendMessage() function, you must know what
message you are sending and what that message needs in order to be complete. For
example, to change the caption of a window at any time, you can use the
WM_SETTEXT message. The syntax to use would be:

SendMessage(WM_SETTEXT, wParam, lParam);

Obviously you would need to provide the text for the caption you are trying to change.
This string is carried by the lParam argument as a null-terminated string. For this
message, the wParam is ignored.

 Practical Learning: Sending Messages
1. To process a message using the SendMessage() function, change the OnRButtonUp()

event as follows:

void CMainFrame::OnRButtonUp(UINT nFlags, CPoint point)
{
 const char *Msg = "This message was sent";
 SendMessage(WM_SETTEXT, 0, (LPARAM)(LPCTSTR)Msg);
}

2. Test the application and return to MSVC

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

132 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 133

Chapter 5:
The Document/View
Architecture

? Overview of the Document/View Architecture

? The Single Document Interface

? SDI Improvements

? The Multiple Document Interface

? The AppWizard

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

134 © FunctionX, Inc.

5.1 Overview of the Document/View Architecture

5.1.1 Introduction
The Document/View architecture is the foundation used to create applications based on
the Microsoft Foundation Classes library. It allows you to make distinct the different
parts that compose a computer program including what the user sees as part of your
application and the document a user would work on. This is done through a combination
of separate classes that work as an ensemble.

The parts that compose the Document/View architecture are a frame, one or more
documents, and the view. Put together, these entities make up a usable application.

5.1.2 The View
A view is the platform the user is working on to do his or her job. For example, while
performing word processing, the user works on a series of words that compose the text. If
a user is performing calculations on a spreadsheet application, the interface the user is
viewing is made of small boxes called cells. Another user may be in front of a graphic
document while drawing lines and other geometric figures. The thing the user is starring
at and performing changes is called a view. The view also allows the user to print a
document.

To let the user do anything on an application, you must provide a view, which is an
object based on the CView class. You can either directly use one of the classes derived
from CView or you can derive your own custom class from CView or one of its child
classes.

5.1.3 The Document

A document is similar to a bucket. It can be used to hold or carry water and that water can
be retrieved when needed. For a computer application, a document holds the user's data.
For example, after working on a text processor, the user may want to save the file. Such
an action creates a document and this document must reside somewhere. In the same
way, to use an existing file, the user must locate it, open it, and make it available to the
application. These two jobs and many others are handled behind the scenes as a
document.

To create the document part of this architecture, you must derive an object from the
CDocument class.

5.1.4 The Frame
As its name suggests, a frame is a combination of the building blocks, the structure (in
the English sense), and the borders of an item. A frame gives "physical" presence to a
window. A frame defines the location of an object with regards to the Windows desktop.
A frame provides borders to a window, borders that the user can grab to move, size, and
resize the object. The frame is also a type of desk that holds the tools needed on an
application.

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 135

An application cannot exist without a frame. As we saw in previous lessons, to provide a
frame to an application, you can derive a class from CFrameWnd.

5.1.5 The Document/View Approach
To create an application, you obviously should start by providing a frame. This can be
taken care of by deriving a class from CFrameWnd. Here is an example:

class CMainFrame : public CFrameWnd
{
 DECLARE_DYNCREATE(CMainFrame)

 DECLARE_MESSAGE_MAP()
};

To give "physical" presence to the frame of an application, you can declare an OnCreate()
method. Here is an example:

class CMainFrame : public CFrameWnd
{
 DECLARE_DYNCREATE(CMainFrame)

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 DECLARE_MESSAGE_MAP()
};

The easiest way you can implement this method is to call the parent class, CFrameWnd,
to create the window. As we have seen in the past, if this method returns 0, the frame has
been created. It returns -1, this indicates that the window has been destroyed. Therefore,
you can create a frame as follows:

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 // Call the base class to create the window
 if(CFrameWnd::OnCreate(lpCreateStruct) == 0)
 return 0;

 // else is implied
 return -1;
}

To allow users to interact with your application, you should provide a document. To do
this, you can derive a class from CDocument so you can take advantage of this class. If
you do not plan to do anything with the document, you can just make it an empty class.
Here is an example:

class CExerciseDoc : public CDocument
{
 DECLARE_DYNCREATE(CExerciseDoc)

 DECLARE_MESSAGE_MAP()
};

Besides the few things we have learned so far, your next big decision may consist on the
type of application you want to create. This is provided as a view. The most fundamental
class of the view implementations in the MFC is CView. Because CView is an abstract

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

136 © FunctionX, Inc.

class, you cannot directly use it in your application. You have two main alternatives. You
can derive your own class based on CView (the CView class itself is based on CWnd) or
you can use one of the many view classes that the MFC provides. The classes that are
readily available to you are:

Class Description
CEditView Used for a basic text editing application

CRichEditView Allows creating rich documents that perform text and paragraph
formatting

CScrollView Provides the ability to scroll a view horizontally and vertically
CListVie w Provides a view that can display a list of items
CTreeView Allows displaying a list of items arranged as a tree

CFormView Used to create a view that resembles a dialog box but provides the
document/view features

CDaoRecordView Provides a view that resembles a dialog box but used for database
controls

CCtrlView Provides parental guidance to the CEditView, CListView,
CTreeView, and CRichEditView

 As we move on, we will study these classes as needed.

Once you have a frame, a document, and a view, you can create an application, which, as
we have learned so far, is done by deriving a class from CWinApp and overriding the
InitInstance() method. In the InitInstance() implementation, you must let the compiler
know how a document is created in your application. To do this, you must provide a
sample document, called a template, that defines the parts that constitute a document for
your particular type of application. This is done using a pointer variable declared from
CDocTemplate or one of its derived classes.

5.2 The Single Document Interface (SDI)

5.2.1 Overview
The expression Single Document Interface or SDI refers to a document that can present
only one view to the user. This means that the application cannot display more than one
document at a time. If the user wants to view another type of document of the current
application, he or she must another instance of the application. Notepad and WordPad are
examples of SDI applications:

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 137

Figure 50: Notepad as an SDI

Notepad can be used to open only one document such as an HTML file, to view another
file, the user would either replace the current document or launch another copy of
Notepad.

To create an SDI, Microsoft Visual C++ provides the MFC wizard which provides all the
basic functionality that an application needs, including the resources and classes.

5.2.2 Creating a Single Document Interface
As mentioned earlier, after creating a frame, a document, and a view, you can create an
application by deriving a class from CWinApp and overriding the virtual InitInstance()
member function. In InitInstance(), you must provide a template for your type of
application. This is done using a CDocTemplate type of object.

To create an SDI, the CDocTemplate class provides the CSingleDocTemplate class
used to create an application that provides only one view. Therefore, you can declare a
pointer variable to CSingleDocTemplate . Using this pointer and the new operator, use
the CSingleDocTemplate constructor to provide the template. The syntax of the
CSingleDocTemplate constructor is:

CSingleDocTemplate(UINT nIDResource,
 CRuntimeClass* pDocClass,
 CRuntimeClass* pFrameClass,
 CRuntimeClass* pViewClass);

The CSingleDocTemplate constructor needs the common identifier for the resources of
your application. We saw in Lesson 3 that this can be done by using IDR_MAINFRAME
as the common name of most or all main resources of an application. This is provided as
the nIDResource argument.

The second argument, pDocClass, is the name of the class you derived from
CDocument , as mentioned earlier.

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

138 © FunctionX, Inc.

The third argument, pFrameClass, if the frame class you derived from either
CFrameWnd or one of its children.

The pViewClass argument can be an MFC CView-derived class. It can also be a class
you created based on CView.

Each of these arguments must be passed as a pointer to CRuntimeClass. This can be
taken care of by using the RUNTIME_CLASS macro. Its syntax is:

RUNTIME_CLASS(ClassName);

Each one of the classes you want to use must be provided as the ClassName argument.
The RUNTIME_CLASS macro in turn returns a pointer to CRuntimeClass. To
effectively use the RUNTIME_CLASS macro, you should make sure that the (each)
class is created and implemented using the DECLARE_DYNAMIC , the
DECLARE_DYNCREATE, or the DECLARE_SERIAL macros.

To actually create the application so it can be displayed to the user, the CWinApp class is
equipped with the AddDocTemplate() method. Therefore, After creating a template, pass
the CSingleDocTemplate pointer to the CWinApp::AddDocTemplate() method. Its
syntax is:

void AddDocTemplate(CDocTemplate *pTemplate);

Everything else is subject to how you want your application to provide a useful
experience to the user.

 Practical Learning: Creating a Document/View Application
1. If necessary, start Microsoft Visual Studio or Visual C++

2. Create a new empty Win32 application named DocView1

Figure 51: New Project - DocView1

3. Click OK

4. Specify that you want to create an empty document:

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 139

Figure 52: Win32 Application Wizard - DocView1

5. Click Finish

Figure 53: DocView1 Property Pages

6. Specify that you will Use MFC In A Shared DLL

7. To create an icon, display the Add Resource dialog box and click Icon

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

140 © FunctionX, Inc.

Figure 54: Adding an Icon Resource

8. Click New

9. Design the 32x32 icon as follows:

Figure 55: Icon Design - DocView1

10. Add a 16x16 icon and design it as follows:

Figure 56: Icon Design - DocView2

11. Using the Properties window, change the ID of the icon to IDR_MAINFRAME

12. Display the Add Resource dialog box and double-click Menu

13. Change the ID of the menu from IDR_MENU1 to IDR_MAINFRAME

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 141

14. Create the menu items as follows:

15. (If you are using MSVC 5 or 6, first close both the menu and the icon windows. You

will be asked to save the resource script and accept to save it. Save it as DocView.
Then, on the main menu, click Project -> Add To Project -> Files... Select the
DocView.rc file and click OK.

16. Add a new header file named Exercise and, in it, create the necessary classes as
follows:

#include <afxext.h> // For CEditView
#include "resource.h"

class CExerciseApp : public CWinApp
{
 BOOL InitInstance();

 DECLARE_MESSAGE_MAP()
};

class CMainFrame : public CFrameWnd
{
 DECLARE_DYNCREATE(CMainFrame)

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 DECLARE_MESSAGE_MAP()
};

class CExerciseDoc : public CDocument
{
 DECLARE_DYNCREATE(CExerciseDoc)

 DECLARE_MESSAGE_MAP()
};

class CExerciseView : public CEditView
{
 DECLARE_DYNCREATE(CExerciseView)

 DECLARE_MESSAGE_MAP()
};

17. Add a new source file named Exercise and, in it, implement the classes as follows:

#include <afxwin.h>
#include "Exercise.h"

BEGIN_MESSAGE_MAP(CExerciseApp, CWinApp)

END_MESSAGE_MAP()

BOOL CExerciseApp::InitInstance()
{
 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

142 © FunctionX, Inc.

 RUNTIME_CLASS(CExerciseDoc),
 RUNTIME_CLASS(CMainFrame),
 RUNTIME_CLASS(CExerciseView));
 AddDocTemplate(pDocTemplate);

 CCommandLineInfo cmdInfo;

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized, so show and update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

// -- Frame Map -- //
IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)
BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
END_MESSAGE_MAP()

// -- Document Map -- //
IMPLEMENT_DYNCREATE(CExerciseDoc, CDocument)
BEGIN_MESSAGE_MAP(CExerciseDoc, CDocument)

END_MESSAGE_MAP()

// -- View Map --
IMPLEMENT_DYNCREATE(CExerciseView, CEditView)
BEGIN_MESSAGE_MAP(CExerciseView, CEditView)

END_MESSAGE_MAP()

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 // Call the base class to create the window
 if(CFrameWnd::OnCreate(lpCreateStruct) == 0)
 return 0;

 return -1;
}

CExerciseApp theApp;

18. Test the application

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 143

19. Close it using its System Close button and return to MSVC

5.3 SDI Improvements

5.3.1 SDI Improvements: The Application
To make your programming experience a little faster and efficient, the framework
provides many other features for each class used in an application.

The Application: The programs we will create in this book use classes of the Microsoft
Foundation Classes (MFC) library. MFC classes are created is various libraries called
DLLs. In order to use MFC objects in your application as opposed to non-MFC objects,
you must let the compiler know. This is done by specifying that you want to Use MFC In
A Shared DLL, as we have done so far. Additionally, if you want your windows to have a
3-D appearance, call the Enable3dControls() method. If you do not want the 3-D
appearance, call the Enable3dControlsStatic() method. The best way to deal with this is
to ask the compiler to check if you had allowed using MFC in a shared DLL or not, and
then tell the compiler which of these two functions to execute. This is done using a #ifdef
preprocessor in your InitInstance() method. Here is an example:

#include <afxwin.h>

class CSimpleFrame : public CFrameWnd
{
public:
 CSimpleFrame()
 {
 // Create the window's frame
 Create(NULL, "Windows Application");
 }
};

class CSimpleApp : public CWinApp
{
public:
 BOOL InitInstance();

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

144 © FunctionX, Inc.

};

BOOL CSimpleApp::InitInstance()
{
#ifdef _AFXDLL
 Enable3dControls();
#else
 Enable3dControlsStatic();
#endif

 CSimpleFrame *Tester = new CSimpleFrame ();
 m_pMainWnd = Tester;

 Tester->ShowWindow(SW_SHOW);
 Tester->UpdateWindow();

 return TRUE;
}

CSimpleApp theApp;

To provide your application the ability to create a new document, the CWinApp class
provides the OnFileNew() method. Its syntax is:

afx_msg void OnFileNew();

To use this method, create a menu item identified as ID_FILE_NEW. You should also
create a prompt for it so the menu item can be added to the string table. This menu item is
traditionally and obviously added to the File menu. After creating this menu item, in the
message table of the application's source, invoke the CWinApp::OnFileNew() method
using the ON_COMMAND() macro. This can be done as follows:

BEGIN_MESSAGE_MAP(CExoApp, CWinApp)
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
END_MESSAGE_MAP()

CWinApp also provides an application the ability to easily open a document. This is done
using the OnFileOpen() method. In the same way, it can help with printing a document.
Here is a summary:

Menu ID CWinApp Message Map
ID_FILE_NEW ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
ID_FILE_OPEN ON_COMMAND(ID_FILE_OPEN,

CWinApp::OnFileOpen)
ID_FILE_PRINT_SETUP ON_COMMAND(ID_FILE_PRINT_SETUP,

CWinApp::OnFilePrintSetup

One of the last minute assignment you may need to perform when the user is closing an
application is to check if the displayed document is "dirty", that is, if the document has
been changed since it was last accessed. To help with this, simply create a menu item
identified as ID_APP_EXIT and set a caption accordingly, such as the Exit menu we
created in the previous Practical Learning section. It is always helpful to add a prompt to
a menu item.

These command messages are implemented in the CWinApp class and can be helpful for
your application. If their behavior does not fulfill your goal, you can write your own
intended implementation of these menu items.

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 145

When using an application over and over, sometimes a user may want to open the last
accessed document or at least see a list of the last documents opened on an application.
To provide this functionality, create a menu item called ID_FILE_MRU_FILE1 and set
its prompt to a string such as Recent File. This menu item is usually added to the File
menu above the Exit or quit. The actual list of recent files is stored in an INI file that
accompanies your application. To make this list available, you must call the
LoadStdProfileSettings() method of the CWinApp class in your InitInstance() method.
The syntax of this method is:

void LoadStdProfileSettings(UINT nMaxMRU = _AFX_MRU_COUNT);

By default, this allows the list to display up to four names of documents. This method
takes one argument as the number of document names to be displayed in the list. If you
do not want the default of 4, specify the nMaxMRU value to your liking.

 Practical Learning: Improving the Application
1. To provide new functionality to the application, in the Resource View, change the

IDentifier of the Exit menu item to ID_APP_EXIT and set its Prompt to Quit the
application

2. Add the following menu item under File:

Caption ID Prompt
&New\tCtrl+N ID_FILE_NEW Create a new document
&Open...\tCtrl+O ID_FILE_OPEN Open an existing document
-
P&rint Setup... ID_FILE_PRINT_SETUP Change the printer and printing

options
-
Recent file ID_FILE_MRU_FILE1 Open this file
-
E&xit ID_APP_EXIT Quit the application; prompt the

save document

3. To allow the application to treat documents, change the InitInstance()
implementation as follows:

BEGIN_MESSAGE_MAP(CExerciseApp, CWinApp)
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
 ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP()

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

146 © FunctionX, Inc.

BOOL CExerciseApp::InitInstance()
{
#ifdef _AFXDLL
 Enable3dControls();
#else
 Enable3dControlsStatic();
#endif
 LoadStdProfileSettings(6);

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CExerciseDoc),
 RUNTIME_CLASS(CMainFrame),
 RUNTIME_CLASS(CExerciseView));
 AddDocTemplate(pDocTemplate);

 CCommandLineInfo cmdInfo;

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 m_pMainWnd->ShowWindow(m_nCmdShow);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

4. Test the application and click the various menu items

5.3.2 SDI Improvements: The Document
The document is actually the object that holds the contents of a file. Based on this role, it
is its responsibility to validate the creation of a new file or to store a file that is being
saved. To perform these tasks and others, the CDocument class provides various methods
you can conveniently add to your application or add and customize their behavior.

Earlier, we saw that, to give the user a convenient means of creating a new document,
you can add an ID_FILE_NEW menu identifier and connect it to your application class in
the InitInstance() method. Clicking this menu item only allows to initiate the action, the
document that is the base of file contents must be aware and validate this action. When a
user decides to create a new document or when the application opens and is about to
create a new document, you may want to make sure that there is no existing document or
you may want to delete the existing one. To take care of this, the CDocument class
provides the virtual OnNewDocument() method. Its syntax is:

virtual BOOL OnNewDocument();

When a new file is about to be created, this method is called to initiate it. If everything
goes fine and the file is created, the OnNewDocument() method returns TRUE. If the file
cannot be initialized, this method returns FALSE or 0. This method, which really behaves
like an event, does not create a new file. It is launched when a new file is going to be
created and allows you to make it happen or to prevent the creation of a new file.

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 147

When a new file has been created, it displays as empty. Such a document is referred to as
"clean".

We also saw earlier that, to help the user open an existing document, you can create a
menu item identified as ID_FILE_OPEN and associate it with the
CWinApp::OnFileOpen() method in your InitInstance() method. This time also, the menu
item only provides a convenient way to perform the action. It makes the document
available to the application and not to the document. Once a user has initiated the action
of opening an existing file, you may want to check that the document not only exists but
also can be opened and make its contents available to the user. This job can be handled
by the OnOpenDocument() virtual method of the CDocument class. Its syntax is:

virtual BOOL OnOpenDocument(LPCTSTR lpszPathName);

This method usually results from the user clicking File -> Open... on the main menu,
communicating a desire to open a file. When this action is initiated, the
OnOpenDocument() method retrieves the path of the file as the lpszPathName argument.
If the path is valid, that is, if the file exists, you can then check it or perform a last minute
task before the file is opened. For example you can use this method to decide how the
contents of the file will be displayed or dealt with by the document. You can also use to
prevent the user from opening any file or to prevent the user from opening any file at all.
You can also use this method to allow the user to open a type of file that your
CDocument-derived class would not expect.

If the user has opened an existing file but has not (yet) changed anything in the
document, the file is also called "clean". As we will learn eventually, some files can be
changed and some do not allow modification. If a document allows the user to change it,
he or she can manipulate it as necessary, including adding, deleting, or moving items.
Once a user has changed anything on the document, the file is referred to as "dirty". You
may want to keep track of such change(s) so you would know eventually if the document
needs to be saved. To help you with this, the CDocument class provides the
SetModifiedFlag() method. Its syntax is:

void SetModifiedFlag(BOOL bModified = TRUE);

To mark a document as clean or dirty, call the SetModifiedFlag() method. If you pass the
bModified argument as TRUE, the document has been changed. Since the TRUE
constant is its default value, you can also call the method simply as SetModifiedFlag().
To specify that the document is clean, pass the argument as FALSE. You can call this
method whenever you judge necessary. For example, if the user saves the document
while working on it but makes another change, you can mark it clean when it has just
been saved and mark it dirty if the user changes anything again. At any time, you can
check whether the document is dirty or clean using the CDocument::IsModified()
method. Its syntax is:

BOOL IsModified();

This method simply checks the document to find out if it has been modified since the last
time it was accessed. If the document has been modified, this method would return
TRUE. If the document is clean, it returns FALSE.

Another action the user can perform on a document is to send it electronically to an email
recipient. To allow the user to send the current document as an email attachment, first an
email client (such as MS Outlook) must be installed on the user's computer. Therefore,
add a menu item IDentified as ID_FILE_SEND_MAIL. Then, in the message table of
your document implementation, add the following two macros:

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

148 © FunctionX, Inc.

BEGIN_MESSAGE_MAP(CTestDoc, CDocument)
 ON_COMMAND(ID_FILE_SEND_MAIL, OnFileSendMail)
 ON_UPDATE_COMMAND_UI(ID_FILE_SEND_MAIL, OnUpdateFileSendMail)
END_MESSAGE_MAP

Once a user has finished using a document, he or she would need to close it, which is
done by either clicking the System Close button or using the main menu (File -> Exit). If
the user clicks the System Close button , the application would need to close the frame.
At this time, the document would call the OnCloseDocument() method. Its syntax is:

virtual void OnCloseDocument();

You can use this method (which really behave as an event) to decide what to do before a
frame is closed.

When the user decides to close an application, the document class checks the file to know
whether the file is "dirty". If the file is dirty, you may want to ask the user to save or not
save the document. As we saw earlier with the ID_APP_EXIT pre-configured menu, the
framework can check this setting for you. Also, while using a file, the user may want to
save it. If the user is working on a document that was opened from a drive, the document
may be saved immediately behind the scenes. If the user is working on a brand new
document and decides to save it, you may want to check first if this is possible and what
needs to be done in order to save the document.

To help the user save a document, you can create a menu item. Using the
Document/View architecture, add a menu item with the identifier ID_FILE_SAVE in the
IDR_MAINFRAME common resource name. It is that simple. This menu is usually
positioned under File with a caption of &Save.

If the user wants to save a document with a different name and/or a different location,
which is usually done by clicking File -> Save As... from the main menu, create a menu
item with the ID_FILE_SAVE_AS identifier. This menu item is usually placed under
Save in the File main menu. If the user is working on a new document (that has not been
saved previously), or if the user working on a document that is marked as Read-Only, or
if the user decides to close the application after working on a new document, and if the
user decides to save the document, the action would initiate the File -> Save As action.

When the user has decided to save a document, if the document is dirty, a message box
would display to the user for a decision. If the user decides to save the document, the
CDocument class provides the OnSaveDocument() method to validate the action. The
syntax of this method is:

virtual BOOL OnSaveDocument(LPCTSTR lpszPathName);
To save a document, the user must specify where the document would reside. This is
communicated as the lpszPathName argument). In reality, as its name suggests, this
method is not used to save a document. It allows you to validate the action or desire to
save a document. For example, if the user clicks File -> Save on the main menu or if the
user is attempting to close a dirty document, you can use this method to check what is
going or to deny saving the file.

Serialization is the ability to store data on a drive. Therefore, to actually save a file, the
CObject class provides the Serialize() method to its children. To store data of the file, its
information is held by a class called CArchive. When saving a file, a CArchive object is
passed to the Serialize method as reference, which modifies its value.

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 149

CArchive is used to either save the current document or open an existing one. To take
care of each, it uses two methods (ReadObject() and WriteObject()). These methods are
actually implemented using the extraction operators (>> and <<). Whenever you need to
perform serialization in an application, add a method called Serialize() to your document
class and pass it a CArchive object reference. The syntax of this method is:

virtual void Serialize(CArchive& ar);

The implementation of this method may depend on the document.

 Practical Learning: Improving the Document
1. In the Resource View, add the follo wing menu items under the File menu:

Caption ID Prompt
&New\tCtrl+N ID_FILE_NEW Create a new document
&Open...\tCtrl+O ID_FILE_OPEN Open an existing document
&Save \tCtrl+S ID_FILE_SAVE Save the current document
Save &As... ID_FILE_SAVE_AS Save the current document with

a new name or location
-
P&rint Setup... ID_FILE_PRINT_SETUP Change the printer and printing

options
-
Recent file ID_FILE_MRU_FILE1 Open this file
-
E&xit ID_APP_EXIT Quit the application; prompt the

save document

2. To use a CDocument method, in the header file, add the OnNewDocument() function
to the document as follows:

class CExerciseDoc : public CDocument
{
 DECLARE_DYNCREATE(CExerciseDoc)

 virtual BOOL OnNewDocument();
 DECLARE_MESSAGE_MAP()
};

3. In the source file, implement the method as follows:

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

150 © FunctionX, Inc.

...

BOOL CExerciseDoc::OnNewDocument()
{
 return CDocument::OnNewDocument();
}

CExerciseApp theApp;

4. Test the application. Change the content of the empty file and save it

5. Close the application and return to MSVC.

5.3.3 SDI Improvements: The Frame
The CWnd::OnCreate() method is used to create a window and it is usually meant to do
this using its default configured features. Therefore, anything you want to display on the
frame when the application displays, you can do so when creating the application.
Therefore, the frame is typically used to create and display the toolbar(s), dialog bar(s),
and status bar.

After the frame has been created, if you want to modified something on it, you can do so
after it has been created but before it is displayed to the user. To do this, you can use the
PreCreateWindow() method of the CWnd class. Its syntax is:

virtual void PreCreateWindow(CREATESTRUCT& cs);

This method takes a reference to CREATESTRUCT class, modifies and returns it with
the new characteristics. For example, you can use this method to remove the Minimize
and the Maximize system buttons on the title bar as follows:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 cs.style &= ~(WS_MAXIMIZEBOX | WS_MINIMIZEBOX);

 return CFrameWnd::PreCreateWindow(cs);
}

 Practical Learning: Improving the Frame
1. To use the CWnd::PreCreateWindow() virtual method, in the header file, declare it

as follows:

class CMainFrame : public CFrameWnd
{
 DECLARE_DYNCREATE(CMainFrame)

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 DECLARE_MESSAGE_MAP()
};

2. To modify the dimensions of the window at start up, implement the method as
follows:

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 151

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // cs.style &= ~(WS_MAXIMIZEBOX | WS_MINIMIZEBOX);
 cs.cx = 450; // Change the width
 cs.cy = 350; // Change the height

 return CFrameWnd::PreCreateWindow(cs);
}

3. Test the application and return to MSVC

5.3.4 SDI Improvements: The View
As mentioned already, the object that holds a file's data is the document which is an
object of CDocument type. To make this document available to the user to view it, in
your view derived class, you should declare a pointer to the document class. The syntax
used is:

CDocument* GetDocument() const;

When implementing this method, simply ask the application to return a pointer to the
document class used in your application. This can be done by casting the global
m_pDocument variable to your document class:

CExerciseDoc* CExe rciseView::GetDocument()
{
 return (CExerciseDoc*)m_pDocument;
}

You can use this GetDocument() method in your view class to access the document. For
example, the view class can access the contents of the class

If you want to allow the user to print a document, you can add a menu item identified as
ID_FILE_PRINT. Then, in the message table of the view class, use the ON_COMMAND
macro to associate it to the view parent class of your derived class. You can use this same
approach to allow the user to preview document. The identifier for this action is called
ID_FILE_PRINT_PREVIEW.

5.4 The Multiple Document Interface (MDI)

5.4.1 Overview
An application is referred to as Multiple Document Interface, or MDI, if the user can
open more than one document in the application without closing it. to provide this
functionality, the application provides a parent frame that acts as the main frame of the
computer program. Inside of this frame, the application allows creating views that each
uses its own frame, making it distinct from the other. Here is Microsoft Word 97
displaying as a classic MDI application:

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

152 © FunctionX, Inc.

When using an MDI application, a user can create a document, open another while the
first is still displaying, and even create new documents or open additional ones. The
documents are stacked in a Z-order axis of a 3-D coordinate system. There are two ways
to display the documents of an MDI. If one document is maximized, all documents are
maximized. In this case, the main menu of the application would display the system
buttons on its right, which creates two ranges of system buttons:

If no document is maximized, each document can assume one of two states: minimized or
restored. While the child documents are confined to the borders of the main frame, if a
document is or gets minimized, it would display its button inside the main frame. If a
document is not minimized, it would display inside the main frame either with its original
size or the size the user had given it:

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 153

There are two main ways the user can access the different documents of an MDI. If they
are maximized (remember that if the user maximizes one document, all the others get
maximized also), the menu of the main frame, which we always call the main menu in
this book, has an item called Window. When the Window menu item is accessed, it
would display a list of the currently opened documents. The user can then select from that
list:

The separation of the parent and the child frames allows the user to close one child
document or all documents. This would still leave the main frame of the application but

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

154 © FunctionX, Inc.

the user cannot use it as a document. Still, the main frame allows the user to either create
a new document or open an existing one.

To manage the differentiation between the parent and its children, the application uses
two different menus: one for the main frame and one for a (or each) child. Both menus
use the same menu bar, meaning that the application cannot display two frame menus at
one time. It displays either the parent menu or a (the) child menu. When at least one
document is displaying, the menu applies to the document. If no document is displaying,
the main frame is equipped with a simplified menu with limited but appropriate
operations. The user can only create a new document, only open an existing document, or
simply close the application.

5.4.2 Creating a Multiple Document Interface
We have mentioned that an MDI is an application made of a parent frame and at least one
child. Therefore, to create an MDI, because it requires a frame of its own, you should first
create a series of resource objects that share a common name as IDR_MAINFRAME. A
basic application should have an icon and a menu. The icon can be designed any way you
like and you are recommended to create one made of a 32x32 and a 16x16 versions. The
menu, since it will be used only when no document is available, should provide
functionality that does not process a document. It should allow the user to create a new
document, to open an existing document, and to quit the application. Such a menu can
have the following items:

As done since Lesson 3 (when we studied resources), these two resources are sufficient
to create an application since you can call the CFrameWnd::LoadFrame() method. To
create a frame for a Multiple Document Interface, you must derive your frame class from
CMDIFrameWnd:

BOOL CExercise1App::InitInstance()
{
 // Create a frame for the window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 m_pMainWnd = pMainFrame;

 CCommandLineInfo cmdInfo;

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 155

 return TRUE;
}

The above code allows only creating a window fra me for the parent window. To allow
the user to interact with the computer through your MDI, you must provide a template for
a document. The child document must have its own frame, distinct from that of the
parent. To provide this frame, you have two main alternatives. You can directly use the
CMDIChildWnd class or you can derive your own class from CMDIChildWnd:

class CChildFrame : public CMDIChildWnd
{
 DECLARE_DYNCREATE(CChildFrame)

 DECLARE_MESSAGE_MAP()
};

As opposed to a Single Document Interface application, to create a Multiple Document
Interface (MDI) application, you use the CMultiDocTemplate class which, like the
CSingleDocTemplate class, is derived from CDocTemplate. Therefore, you must declare
a pointer variable to CMultiDocTemplate using the new operator, then use its constructor
to initialize the template. The syntax of the CMultiDocTemplate constructor is:

CMultiDocTemplate(UINT nIDResource,
 CRuntimeClass* pDocClass,
 CRuntimeClass* pFrameClass,
 CRuntimeClass* pViewClass);

To make a document different from the parent, you must create an additional series of
resources that share a common name other than IDR_MAINFRAME. The most basic
resources you should create are a menu and an icon. There are two main types of MDI
applications.

One kind of application may use only one particular category of documents such as only
text -based. Because text -based documents can include ASCII text files, rich text
documents (RTF), HTML files, script-based documents (JavaScript, VCScript, Perl,
PHP, etc), etc, such an application may be configured to open only that type of document.
To create such an MDI application, in the constructor of the CMultiDocTemplate object
that you are using, specify a CView derived class (CEditView, CListView, etc) or your
own class you derived from CView or one of its children. Here is an example:

BOOL CMultiEdit1App::InitInstance()
{
 CMultiDocTemplate* pDocEdit;
 pDocEdit = new CMultiDocTemplate(
 IDR_EDITTYPE,
 RUNTIME_CLASS(CMultiEdit1Doc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CEditView));
 AddDocTemplate(pDocEdit);

 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 m_pMainWnd = pMainFrame;

 CCommandLineInfo cmdInfo;

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

156 © FunctionX, Inc.

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

 return TRUE;
}

In this case, the user can create and/or open as many text files as the computer memory
would allow.

Another type of MDI application you can create would allow the user to create or open
more than one type of document. To provide this functionality, you must specify a
template for each type. Again, there are various types of techniques you can use. You can
ask the user to select the type of document he or she wants to create when the application
starts:

To do this, you can create a template for each type of document using a
CDocMultiDocTemplate constructor for each:

BOOL CMultiEdit1App::InitInstance()
{
 CMultiDocTemplate* pDocEdit;
 pDocEdit = new CMultiDocTemplate(
 IDR_EDITTYPE,
 RUNTIME_CLASS(CMultiEdit1Doc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CEditView));
 AddDocTemplate(pDocEdit);

 CMultiDocTemplate* pDocForm;
 pDocForm = new CMultiDocTemplate(
 IDR_FORMTYPE,
 RUNTIME_CLASS(CMultiEdit1Doc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CEmplRecords));
 AddDocTemplate(pDocForm);

 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 m_pMainWnd = pMainFrame;

 CCommandLineInfo cmdInfo;

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 157

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

 return TRUE;
}

You can also display an empty main frame when the application starts and let the user
create a document based on the available types from the main menu. Here is such a menu
from Borland Image Editor:

As you can see, creating an MDI is not necessarily too difficult but it can involve a few
more steps than an SDI. Therefore, whenever we need an MDI, unless specified
otherwise, we ill use the AppWizard.

5.4.3 The Visual C++ AppWizard
Microsoft Visual C++ provides various wizards to assist you with performing some tasks.
Particularly, to create an application, it offers the AppWizard. AppWizard offers a
convenient step-by-step series of choices to create various types of applications such as
an SDI or an MDI (it offers many other choices of applications).

5.5 The AppWizard

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

158 © FunctionX, Inc.

5.5.1 An SDI With AppWizard
To get help in creating a single document interface application, you can use the Visual
C++' AppWizard. to do this, from the New Project dialog box (MSVC .Net) or the
Projects property page of the New dialog box (MSVC), select MFC Application or MFC
AppWizard (exe), specify the name and location, then click OK. On the next dialog box,
you must specify the Application Type as Single Document. One of the decisions you
must make is to specify the view of application you are creating, that is, you must select
CView or one of its children as the base class and click Finish. MFC's AppWizard offers
various options to create a starting application as complete as possible. We will view
these when needed.

 Practical Learning: Creating an SDI
1. To create a new application, display the New or the New Project dialog box

2. Select MFC Application or MFC AppWizard (exe)

3. Specify the application Name as SDI1

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 159

4. Click OK

5. Specify the application type as Single Document:

6. Specify the Base Class as CeditView

Chapter 5: The Document/View Architecture Visual C++ and MFC Fundamentals

160 © FunctionX, Inc.

7. Click Finish

8. Test the application

Visual C++ and MFC Fundamentals Chapter 5: The Document/View Architecture

© FunctionX, Inc. 161

9. Close the window and return to MSVC

 From now on, when you are asked to create an SDI, refer to this section.

5.5.2 An MDI With AppWizard
To reduce the amount of work involved with creating an MDI, you can use the MFC's
AppWizard. To do this, in the MFC AppWizard, select the Multiple Document radio
button.

If you want to create an application that would use a single type of document, select the
desired base class.

If you want to create a Windows Explorer type of application, you should select a Single
Document application type and select the project style as Windows Explorer. Then, in the
Generated Classes section or the MFC AppWizard Step 6, specify a class for the left
frame and another base class for the right frame. A classic example would have
TreeView class for the left pane and a CListView class for the right side.

If you have created an SDI, you can change it into a multi-view application by adding a
CView-derived class to the application. For example, in MSVC 6, if you had created an
SDI based on a tree view and you want to create a second view as a form for the right
frame, right-click the first node in Class View and click New Form.

Chapter 6: The Graphical Device Interface Visual C++ and MFC Fundamentals

162 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 6: The Graphical Device Interface

© FunctionX, Inc. 163

Chapter 6:
The Graphical Device Interface

? Introduction to the GDI

? The Process of Drawing

? GDI Lines and Shapes

Chapter 6: The Graphical Device Interface Visual C++ and MFC Fundamentals

164 © FunctionX, Inc.

6.1 Introduction to the GDI

6.1.1 The Device Context
Imagine you want to draw an orange. You can pick up a piece of stone and start drawing
somewhere. If you draw on the floor, the next rain is likely to wipe your master piece
away. If you draw on somebody's wall, you could face a law suit. Nevertheless, you
realize that, to draw, you need at least two things besides your hands and your
imagination: a platform to draw on and a tool to draw with.

As it happens, drawing in a studio and drawing on the computer have differences. To
draw in real life, the most common platform is probably a piece of paper. Then, you need
a pen that would show the evolution of your work. Since a pen can have or use only one
color, depending on your goal, one pen may not be sufficient, in which case you would
end up with quite a few of them. Since the human hand sometimes is not very stable, if
you want to draw straight line, you may need a ruler. Some other tools can also help you
draw geometric figures faster.

A device context is everything under one name. It is an orchestra, an ensemble of what
need in order to draw. It includes the platform you draw on, the dimensioning of the
platform, the orientation and other variations of your drawing, the tools you need to draw
on the platform, the colors, and various other accessories that can complete your
imagination.

When using a computer, you certainly cannot position tools on the table or des ktop for
use as needed. To help with drawing on the Windows operating system, Microsoft
created the Graphical Device Interface, abbreviated as GDI. It is a set of classes,
functions, variables, and constants that group all or most of everything you need to draw
on an application. The GDI is provided as a library called Gdi.dll and is already installed
on your computer.

6.1.2 Grabbing the Device Context
As mentioned already, in order to draw, you need at least two things: a platform and a
tool. The platform allows you to know what type of object you are drawing on and how
you can draw on it. On a Windows application, you get this platform by creating a device
context.

A device context is actually a whole class that provides the necessary drawing tools to
perform the job. For example, it provides functions for selecting the tool to use when
drawing. It also provides functions to draw text, lines, shapes etc. To select the platform
on which to draw, that is, to create a device context, the MFC provides various classes:

CDC: This is the most fundamental class to draw in MFC. It provides all of the primary
functions used to perform the basic drawing steps. In order to use this class, first declare a
variable from it. Then call the BeginPaint() function to initialize the variable using the
PAINSTRUCT class. Once the variable has been initialized, you can use it to draw. After
using the device context call the EndPaint() function to terminate the drawing.

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 165

CPaintDC: Unlike the CDC object, the CPaintDC inherently initializes its drawing by
calling the BeginPaint() function when you declare a CPaintDC variable. When the
drawing with this class is over, it calls the EndPaint() to terminate the drawing.

CClientDC: This class is used when you want to draw in the client area of a window.

CMetaFileDC: This class is used to create Windows metafiles.

6.2 The Process of Drawing

6.2.1 Getting a Device Context
In order to draw using a device context, you must first declare a variable of the CDC
class. This can be done as follows:

CDC dc;

To help with this, the CView class provides a virtual member function that can carry the
drawing assignments on a program. The method provided is OnDraw() and its syntax is:

void OnDraw(CDC* pDC) = 0;

This means that each class that derives from CView mu st provides its own
implementation of this method. If you use AppWizard to create an application and select
a CView-derived base class, the AppWizard would define a basic implementation of
OnDraw() for you. For a CView-based application, this can be a good place to perform a
lot of your drawing.

As you can see, the OnDraw() method is passed a pointer to CDC. This allows you to use
the pDC pointer as a variable and draw on the view object with it.

Declaring a CDC variable or receiving it as an argument to a function gives you a device
context (DC) you can use. This DC initializes the drawing with some default objects such
as a pen to draw the most basic points or lines.

6.2.2 Starting a Device Context's Shape
To keep track of the various drawings, the device context uses a coordinate system that
has its origin (0, 0) on the top-left corner of the desktop:

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

166 © FunctionX, Inc.

Anything that is positioned on the screen is based on this origin. This coordinate system
can get the location of an object using a horizontal and a vertical measurements. The
horizontal measures are based on an x axis that moves from the origin to the right right
direction. The vertical measures use a y axis that moves from the origin to the bottom
direction:

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 167

This means that, if you start drawing something such as a line, it would start on the origin
and continue where you want it to stop.

 Practical Learning: Starting a Drawing

Start Microsoft Visual C++ and create a Single Document application called GDI1 and based on the CView
class

6.3 GDI Lines and Shapes

6.3.1 Lines
A line is a junction of two points. This means that a line has a beginning and an end:

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

168 © FunctionX, Inc.

The beginning and the end are two distinct points that can be either POINT, CPoint, or a
mix of a POINT and a CPoint values. In real life, before drawing, you should define
where you would start. To help with this, the CDC class provides the MoveTo() method.
It comes in two versions that are:

CPoint MoveTo(int x, int y);
CPoint MoveTo(POINT point);

The origin of a drawing is specified as a CPoint value. You can provide its horizontal and
vertical measures as x and y or you can pass it as a POINT or a CPoint value.

To end the line, you use the CDC::LineTo() method. It comes it two versions declared as
follows:

BOOL LineTo(int x, int y);
BOOL LineTo(POINT point);

The end of a line can be defined by its horizontal (x) and its vertical measures (y). It can
also be provided as a POINT or a CPoint value. The last point of a line is not part of the
line. The line ends just before reaching that point.

Here is an example that draws a line starting at a point defined as (10, 22) coordinates
and ending at (155, 64):

void CExoView::OnDraw(CDC* pDC)
{
 pDC->MoveTo(10, 22);
 pDC->LineTo(155, 64);
}

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 169

We have mentioned that the CDC::MoveTo() method is used to set the starting position
of a line. When using LineTo(), the line would start from the MoveTo() point to the
LineTo() end. As long as you do not call MoveTo(), any subsequent call to LineTo()
would draw a line from the previous LineTo() to the new LineTo() point. You can use
this property of the LineTo() method to draw various lines. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->MoveTo(60, 20);
 pDC->LineTo(60, 122);
 pDC->LineTo(264, 122);
 pDC->LineTo(60, 20);
}

 Practical Learning: Drawing Lines

Access the OnPaint event of your view class and implement it as follows:
 void CView1View::OnPaint()
{
 CPaintDC dc(this); // device context for painting

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

170 © FunctionX, Inc.

 // TODO: Add your message handler code here
 CPoint PtLine[] = { CPoint(50, 50), CPoint(670, 50),
 CPoint(670, 310), CPoint(490, 310),
 CPoint(490, 390), CPoint(220, 390),
 CPoint(220, 310), CPoint(50, 310),
 CPoint(50, 50) };

 dc.MoveTo(PtLine[0]);
 dc.LineTo(PtLine[1]);
 dc.LineTo(PtLine[2]);
 dc.LineTo(PtLine[3]);
 dc.LineTo(PtLine[4]);
 dc.LineTo(PtLine[5]);
 dc.LineTo(PtLine[6]);
 dc.LineTo(PtLine[7]);
 dc.LineTo(PtLine[8]);
 // Do not call CView::OnPaint() for painting messages
}

Test the application

6.3.2 Polylines
A polyline is a series of connected lines. The lines are stored in an array of POINT or
CPoint values. To draw a polyline, you use the CDC::Polyline() method. Its syntax is:

BOOL Polyline(LPPOINT lpPoints, int nCount);

The lpPoints argument is an array of points that can be of POINT or CPoint types. The
nCount argument specifies the number of members of the array. When executing, the
compiler moves the starting point to lpPoints[0]. The first line is drawn from lpPoints[0]
to lpPoints[1] as in:

void CExoView::OnDraw(CDC* pDC)
{
 CPoint Pt[] = { CPoint(60, 20), CPoint(60, 122) };
 pDC->MoveTo(Pt[0]);
 pDC->LineTo(Pt[1]);
}

To draw a polyline, you must have at least two points. If you define more than two
points, each line after the first would be drawn from the previous point to the next point
until all points have been included. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CPoint Pt[7];
 Pt[0] = CPoint(20, 50);
 Pt[1] = CPoint(180, 50);
 Pt[2] = CPoint(180, 20);
 Pt[3] = CPoint(230, 70);
 Pt[4] = CPoint(180, 120);
 Pt[5] = CPoint(180, 90);
 Pt[6] = CPoint(20, 90);

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 171

 pDC->Polyline(Pt, 7);
}

Besides the Polyline() method, the CDC class provides the PolylineTo() member
function. Its syntax is:

BOOL PolylineTo(const POINT* lpPoints, int nCount);

The lpPoints argument is the name of an array of POINT or CPoint objects. The nCount
argument specifies the number of points that would be included in the figure. Here is an
example:

void CExoView::OnDraw(CDC* pDC)
{
 CPoint Pt[7];

 Pt[0] = CPoint(20, 50);
 Pt[1] = CPoint(180, 50);
 Pt[2] = CPoint(180, 20);
 Pt[3] = CPoint(230, 70);
 Pt[4] = CPoint(180, 120);
 Pt[5] = CPoint(180, 90);
 Pt[6] = CPoint(20, 90);

 pDC->PolylineTo(Pt, 7);
}

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

172 © FunctionX, Inc.

While the Polyline() method starts the first line at lpPoints[0], the PolylineTo() member
function does not control the beginning of the first line. Like the LineTo() method, it
simply starts drawing, which would mean it starts at the origin (0, 0). For this reason, if
you want to control the starting point of the PolylineTo() drawing, you can use the
MoveTo() method:

void CExoView::OnDraw(CDC* pDC)
{
 CPoint Pt[7];

 Pt[0] = CPoint(20, 50);
 Pt[1] = CPoint(180, 50);
 Pt[2] = CPoint(180, 20);
 Pt[3] = CPoint(230, 70);
 Pt[4] = CPoint(180, 120);
 Pt[5] = CPoint(180, 90);
 Pt[6] = CPoint(20, 90);

 pDC->MoveTo(20, 30);
 pDC->PolylineTo(Pt, 7);
 pDC->LineTo(20, 110);
}

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 173

 Practical Learning: Drawing Polylines

To draw a polyline, change the event as follows:
 void CView1View::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 // TODO: Add your message handler code here
 CPoint PtLine[] = { CPoint(50, 50), CPoint(670, 50),
 CPoint(670, 310), CPoint(490, 310),
 CPoint(490, 390), CPoint(220, 390),
 CPoint(220, 310), CPoint(50, 310),
 CPoint(50, 50) };
 CPoint PlLine[] = { CPoint(55, 55), CPoint(665, 55),
 CPoint(665, 305), CPoint(485, 305),
 CPoint(485, 385), CPoint(225, 385),
 CPoint(225, 305), CPoint(55, 305),
 CPoint(55, 55) };

 dc.MoveTo(PtLine[0]);
 dc.LineTo(PtLine[1]);
 dc.LineTo(PtLine[2]);
 dc.LineTo(PtLine[3]);
 dc.LineTo(PtLine[4]);
 dc.LineTo(PtLine[5]);
 dc.LineTo(PtLine[6]);
 dc.LineTo(PtLine[7]);
 dc.LineTo(PtLine[8]);

 dc.Polyline(PlLine, 9);
 // Do not call CView::OnPaint() for painting messages
}

Test the application

6.3.3 Multiple Polylines
The above polylines were used each as a single entity. That is, a polyline is a combination
of lines. If you want to draw various polylines in one step, you can use the
CDC::PolyPolyline() method. By definition, the PolyPolyline() member function is used
to draw a series of polylines. Its syntax is:

BOOL PolyPolyline(const POINT* lpPoints, const DWORD* lpPolyPoints, int nCount);

Like the above Polyline() method, the lpPoints argument is an array of POINT or CPoint
values. The PolyPolyline() method needs to know how many polylines you would be
drawing. Each polyline will use the points of the lpPoints value but when creating the
array of points, the values must be incremental. This means that PolyPolyline() will not
access their values at random. It will retrieve the first point, followed by the second,
followed by the third, etc. Therefore, your first responsibility is to decide where one
polyline starts and where it ends. The good news (of course depending on how you see it)

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

174 © FunctionX, Inc.

is that a polyline does not start where the previous line ended. Each polyline has its own
beginning and its own ending point.

Unlike Polyline(), here, the nCount argument is actually the number of shapes you want
to draw and not the number of points (reme mber that each polyline "knows" or controls
its beginning and end).

The lpPolyPoints argument is an array or positive integers (unsigned long). Each member
of this array specifies the number of vertices (lines) that its corresponding polyline will
have. For example, imagine you want to draw M, followed by L, followed by Z. The
letter M has 4 lines but you need 5 points to draw it. The letter L has 2 lines and you need
3 points to draw it. The letter Z has 3 lines so 4 points are necessary to draw it. You can
store this combination of lines in an array defined as { 5, 3, 4 }.

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CPoint Pt[15];
 DWORD lpPts[] = { 4, 4, 7 };

 // Left Triangle
 Pt[0] = Pt[3] = CPoint(50, 20);
 Pt[1] = CPoint(20, 60);
 Pt[2] = CPoint(80, 60);

 // Second Triangle
 Pt[4] = Pt[7] = CPoint(70, 20);
 Pt[5] = CPoint(100, 60);
 Pt[6] = CPoint(130, 20);

 // Hexagon
 Pt[8] = Pt[14] = CPoint(145, 20);
 Pt[9] = CPoint(130, 40);
 Pt[10] = CPoint(145, 60);
 Pt[11] = CPoint(165, 60);
 Pt[12] = CPoint(180, 40);
 Pt[13] = CPoint(165, 20);

 pDC->PolyPolyline(Pt, lpPts, 3);
}

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 175

6.3.4 Polygons
The polylines we have used so far were drawn by defining the starting point of the first
line and the end point of the last line and there was no relationship or connection between
these two extreme points. A polygon is a closed polyline. In other words, it is a polyline
defined so that the end point of the last line is connected to the start point of the first line.

To draw a polygon, you can use the CDC::Polygon() method. Its syntax is:

BOOL Polygon(LPPOINT lpPoints, int nCount);

This member function uses the same types of arguments as the Polyline() method. The
only difference is on the drawing of the line combination. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CPoint Pt[7];
 Pt[0] = CPoint(20, 50);
 Pt[1] = CPoint(180, 50);
 Pt[2] = CPoint(180, 20);
 Pt[3] = CPoint(230, 70);
 Pt[4] = CPoint(180, 120);
 Pt[5] = CPoint(180, 90);
 Pt[6] = CPoint(20, 90);

 pDC->Polygon(Pt, 7);
}

 Practical Learning: Drawing Polygons

To draw some polygons, change the program as follows:
 void CView1View::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 // TODO: Add your message handler code here
 CPoint PtLine[] = { CPoint(50, 50), CPoint(670, 50),
 CPoint(670, 310), CPoint(490, 310),
 CPoint(490, 390), CPoint(220, 390),
 CPoint(220, 310), CPoint(50, 310),
 CPoint(50, 50) };

 CPoint Bedroom1[] = { CPoint(55, 55), CPoint(175, 55),
 CPoint(175, 145), CPoint(55, 145)};
 CPoint Closets[] = { CPoint(55, 150), CPoint(145, 150),
 CPoint(145, 205), CPoint(55, 205) };
 CPoint Bedroom2[] = { CPoint(55, 210), CPoint(160, 210),
 CPoint(160, 305), CPoint(55, 305) };

 dc.MoveTo(PtLine[0]);
 dc.LineTo(PtLine[1]);
 dc.LineTo(PtLine[2]);
 dc.LineTo(PtLine[3]);
 dc.LineTo(PtLine[4]);

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

176 © FunctionX, Inc.

 dc.LineTo(PtLine[5]);
 dc.LineTo(PtLine[6]);
 dc.LineTo(PtLine[7]);
 dc.LineTo(PtLine[8]);

 dc.Polygon(Bedroom1, 4);
 dc.Polygon(Closets, 4);
 dc.Polygon(Bedroom2, 4);
 // Do not call CView::OnPaint() for painting messages
}

Test the application and return to MSVC

6.3.5 Multiple Polygons
If you want to draw multiple polygons, you can use the CDC::PolyPolygon() method
whose syntax is:

BOOL PolyPolygon(LPPOINT lpPoints, LPINT lpPolyCounts, int nCount);

Like the Polygon() method, the lpPoints argument is an array of POINT or CPoint values.
The PolyPolygon() method needs to know the number of polygons you would be
drawing. Each polygon uses the points of the lpPoints values but when creating the array
of points, the values must be incremental. This means that PolyPolygon() will not
randomly access the values of lpPoints. Each polygon has its own set of points.

Unlike Polygon(), the nCount argument of PolyPolygon() is the number of polygons you
want to draw and not the number of points.

The lpPolyCounts argument is an array or integers. Each member of this array specifies
the number of vertices (lines) that its polygon will have..

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CPoint Pt[12];
 int lpPts[] = { 3, 3, 3, 3 };

 // Top Triangle
 Pt[0] = CPoint(125, 10);
 Pt[1] = CPoint(95, 70);
 Pt[2] = CPoint(155, 70);

 // Left Triangle
 Pt[3] = CPoint(80, 80);
 Pt[4] = CPoint(20, 110);
 Pt[5] = CPoint(80, 140);

 // Bottom Triangle
 Pt[6] = CPoint(95, 155);
 Pt[7] = CPoint(125, 215);
 Pt[8] = CPoint(155, 155);

 // Right Triangle
 Pt[9] = CPoint(170, 80);

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 177

 Pt[10] = CPoint(170, 140);
 Pt[11] = CPoint(230, 110);

 pDC->PolyPolygon(Pt, lpPts, 4);
}

6.3.6 Rectangles and Squares
A rectangle is a geometric figure made of four sides that compose four right angles. Like
the line, to draw a rectangle, you must define where it starts and where it ends. This can
be illustrated as follows:

The drawing of a rectangle typically starts from a point defined as (X1, Y1) and ends at
another point (X2, Y2).

To draw a rectangle, you can use the CDC::Rectangle() method. Its syntax is:

BOOL Rectangle(int x1, int y1, int x2, int y2);

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

178 © FunctionX, Inc.

As seen on the figure and the formula, a rectangle spans from coordinates (x1, y1) to (x2,
y2). Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->Rectangle(20, 20, 226, 144);
}

When drawing a rectangle, if the value of x2 is less than that of x1, then the x2 coordinate
would mark the left beginning of the figure. This scenario would also apply if the y2
coordinate were lower than y1.

To draw a rectangle, you can also use a RECT or a CRect object. The syntax you would
use is:

BOOL Rectangle(LPCRECT lpRect);

In this case, you must have defined a RECT or a CRect value and pass it as a pointer to
the Rectangle() method. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CRect Recto(328, 125, 48, 25);
 pDC->Rectangle(&Recto);
}

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 179

A square is a rectangle whose sides are all equal. Therefore, to draw a square, when
specifying the arguments of the Rectangle() method, make sure that |x1 - x2| = |y1 - y2|.

 Practical Learning: Drawing Rectangles

6.3.7 A Rectangle With Edges
The CDC class provides another function member you can use to draw a rectangle. This
time you can control how the edges of the rectangle would be drawn. The method used is
called DrawEdge and its syntax is:

BOOL DrawEdge(LPRECT lpRect, UINT nEdge, UINT nFlags);

The lpRect argument is passed as a pointer to a RECT or CRect, which is the rectangle
that would be drawn.

The nEdge value specifies how the interior and the exterior of the edges of the rectangle
would be drawn. It can be a combination of the following constants:

Value Description
BDR_RAISEDINNER The interior edge will be raised
BDR_SUNKENINNER The interior edge will be sunken
BDR_RAISEDOUTER The exterior edge will be raised
BDR_SUNKENOUTER The exterior edge will be sunken

These values can be combined using the bitwise OR operator. On the other hand, you can
use the following constants instead:

Value Used For
EDGE_DUMP BDR_RAISEDOUTER | BDR_SUNKENINNER
EDGE_ETCHED BDR_SUNKENOUTER | BDR_RAISEDINNER
EDGE_RAISED BDR_RAISEDOUTER | BDR_RAISEDINNER
EDGE_SUNKEN BDR_SUNKENOUTER | BDR_SUNKENINNER

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

180 © FunctionX, Inc.

The nFlags value specifies what edge(s) would be drawn. It can have one of the following
values:

Value Description
BF_RECT The entire rectangle will be drawn
BF_TOP Only the top side will be drawn
BF_LEFT Only the left side will be drawn
BF_BOTTOM Only the bottom side will be drawn
BF_RIGHT Only the right side will be drawn
BF_TOPLEFT Both the top and the left sides will be drawn
BF_BOTTOMLEFT Both the bottom and the left sides will be

drawn
BF_TOPRIGHT Both the top and the right sides will be

drawn
BF_BOTTOMRIGHT Both the bottom and the right sides will be

drawn
BF_DIAGONAL_ENDBOTTOMLEFT A diagonal line will be drawn from the top-

right to the bottom-left corners
BF_DIAGONAL_ENDBOTTOMRIGHT A diagonal line will be drawn from the top-

left to the bottom-right corners
BF_DIAGONAL_ENDTOPLEFT A diagonal line will be drawn from the

bottom-right to the top-left corners
BF_DIAGONAL_ENDTOPRIGHT A diagonal line will be drawn from the

bottom-left to the top-right corners

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CRect Recto(20, 20, 225, 115);
 pDC->DrawEdge(&Recto, BDR_RAISEDOUTER | BDR_SUNKENINNER, BF_RECT);
}

6.3.8 Ellipses and Circles

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 181

An ellipse is a closed continuous line whose points are positioned so that two points
exactly opposite each other have the exact same distant from a central point. It can be
illustrated as follows:

Because an ellipse can fit in a rectangle, in GDI programming, an ellipse is defined with
regards to a rectangle it would fit in. Therefore, to draw an ellipse, you specify its
rectangular corners. The syntax used to do this is:

BOOL Ellipse(int x1, int y1, int x2, int y2);

The arguments of this method play the same roll as those of the Rectangle() method:

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->Ellipse(20, 20, 226, 144);
}

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

182 © FunctionX, Inc.

Like the rectangle, you can draw an ellipse using a RECT or CRect object it would fit in.
The syntax you would use is:

BOOL Ellipse(LPCRECT lpRect);

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CRect Recto(328, 125, 48, 25);
 pDC->Ellipse(&Recto);
}

A circle is an ellipse whose all points have the same distance with regards to a central
point.

 Practical Learning: Drawing Ellipses

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 183

6.3.9 Round Rectangles and Round Squares
A rectangle qualifies as round if its corners do not form straight angles but rounded
corners. It can be illustrated as follows:

To draw such a rectangle, you can use the CDC::RoundRect() method. Its syntaxes are:

BOOL RoundRect(int x1, int y1, int x2, int y2, int x3, int y3);
BOOL RoundRect(PCRECT lpRect, POINT point);

When this member function executes, the rectangle is drawn from the (x1, y1) to the (x2,
y2) points. The corners are rounded by an ellipse whose width would be x3 and the
ellipse's height would be x3.

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->RoundRect(20, 20, 275, 188, 42, 38);
}

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

184 © FunctionX, Inc.

A round square is a square whose corners are rounded.

 Practical Learning: Drawing Round Rectangles

6.3.10 Pies
A pie is a fraction of an ellipse delimited by two lines that span from the center of the
ellipse to one side each. It can be illustrated as follows:

To draw a pie, you can use the CDC::Pie() method whose syntaxes are:

BOOL Pie(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);
BOOL Pie(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

The (x1, y1) point determines the upper-left corner of the rectangle in which the ellipse
that represents the pie fits. The (x2, y2) point is the bottom-right corner of the rectangle.

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 185

These two points can also be combined in a RECT or a CRect variable and passed as the
lpRect value.

The (x3, y3) point, that can also supplied as a POINT or CPoint for lpStart argument,
specifies the starting corner of the pie in a default counterclockwise direction.

The (x4, y4) point, or ptEnd argument, species the end point of the pie.

To complete the pie, a line is drawn from (x3, y3) to the center and from the center to the
(x4, y4) points.

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->Pie(40, 20, 226, 144, 155, 32, 202, 115);
}

6.3.11 Arcs
An arc is a portion or segment of an ellipse, meaning an arc is a non-complete ellipse.
Because an arc must confirm to the shape of an ellipse, it is defined as it fits in a
rectangle and can be illustrated as follows:

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

186 © FunctionX, Inc.

To draw an arc, you can use the CDC::Arc() method whose syntax is:

BOOL Arc(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);

Besides the left (x1, y1) and the right (x2, y2) borders of the rectangle in which the arc
would fit, an arc must specify where it starts and where it ends. These additional points
are set as the (x3, y3) and (x4, y4) points of the figure. Based on this, the above arc can
be illustrated as follows:

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->Arc(20, 20, 226, 144, 202, 115, 105, 32);
}

An arc can also be drawn using the location and size of the rectangle it would fit in. Such
a rectangle can be passed to the Arc() method as a RECT or a CRect object. In this case,
you must define the beginning and end of the arc as two POINT or CPoint values. The
syntax used is:

BOOL Arc(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

Here is an example that produces the same result as above:

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 187

void CExoView::OnDraw(CDC* pDC)
{
 CRect Recto(20, 20, 226, 144);
 CPoint Pt1(202, 115);
 CPoint Pt2(105, 32);
 pDC->Arc(Recto, Pt1, Pt2);
}

Besides the Arc() method, the CDC class provides the ArcTo() member function used to
draw an arc. It also comes in two syntaxes as follows:

BOOL ArcTo(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);
BOOL ArcTo(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

This method uses the same arguments as Arc(). The difference is that while Arc() starts
drawing at (x3, y3), ArcTo() does not inherently control the drawing starting point. It
refers to the current point, exactly like the LineTo() (and the PolylineTo()) method.
Therefore, if you want to specify where the drawing should start, can call
CDC::MoveTo() before ArcTo(). Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CRect Recto(20, 20, 226, 144);
 CPoint Pt1(202, 115);
 CPoint Pt2(105, 32);

 pDC->MoveTo(207, 155);
 pDC->ArcTo(Recto, Pt1, Pt2);
}

6.3.12 The Arc's Direction
Here is and arc we drew earlier with a call to Arc():

void CExoView::OnDraw(CDC* pDC)
{
 pDC->Arc(20, 20, 226, 144, 202, 115, 105, 32);

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

188 © FunctionX, Inc.

}

You may wonder why the arc is drawn to the right side of a vertical line that would cross
the center of the ellipse instead of the left. This is because the drawing of an arc is
performed from right to left or from bottom to up, in the opposite direction of the clock.
This is known as the counterclockwise direction. To control this orientation, the CDC
class is equipped with the SetArcDirection() method. Its syntax is:

int SetArcDirection(int nArcDirection);

This method specifies the direction the Arc() method should follow from the starting to
the end points. The argument passed as nArcDirection controls this orientation. It can
have the following values:

 Value Orientation
AD_CLOCKWISE The figure is drawn clockwise
AD_COUNTERCLOCKWISE The figure is drawn counterclockwise

The default value of the direction is AD_COUNTERCLOCKWISE. Therefore, this
would be used if you do not specify a direction. Here is an example that uses the same
values as above with a different orientation:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->SetArcDirection(AD_CLOCKWISE);

 pDC->Arc(20, 20, 226, 144, 202, 115, 105, 32);
}

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 189

After calling SetArcDirection() and changing the previous direction, all drawings would
use the new direction to draw arcs using Arc() or ArcTo() and other figures (such as
chords, ellipses, pies, and rectangles). Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->SetArcDirection(AD_COUNTERCLOCKWISE);

 pDC->Arc(20, 20, 226, 144, 202, 115, 105, 32);

 pDC->Arc(10, 10, 250, 155, 240, 85, 24, 48);
}

If you want to change the direction, you must call SetArcDirection() with the desired
value. Here is an example;

void CExoView::OnDraw(CDC* pDC)
{
 pDC->SetArcDirection(AD_COUNTERCLOCKWISE);
 pDC->Arc(20, 20, 226, 144, 202, 115, 105, 32);

 pDC->SetArcDirection(AD_CLOCKWISE);

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

190 © FunctionX, Inc.

 pDC->Arc(10, 10, 250, 155, 240, 85, 24, 48);
}

At any time, you can find out the current direction used. This is done by calling the
GetArcDirection() method. Its syntax is:

int GetArcDirection() const;

This method returns the current arc direction as AD_CLOCKWISE or
AD_COUNTERCLOCKWISE

6.3.13 Angular Arcs
You can (also) draw an arc using the CDC::AngleArc() method. Its syntax is:

BOOL AngleArc(int x, int y, int nRadius, float fStartAngle, float fSweepAngle);

This member function draws a line and an arc connected. The arc is based on a circle and
not an ellipse. This implies that the arc fits inside a square and not a rectangle. The circle
that would be the base of the arc is defined by its center located at C(x, y) with a radius of
nRadius. The arc starts at an angle of fStartAngle. The angle is based on the x axis and
must be positive. That is, it must range from 0° to 360°. If you want to specify an angle
that is below the x axis, such as -15°, use 360º-15°=345°. The last argument,
fSweepAngle, is the angular area covered by the arc.

The AngleArc() method does not control where it starts drawing. This means that it starts
at the origin, unless a previous call to MoveTo() specified the beginning of the drawing.

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->MoveTo(52, 28);
 pDC->AngleArc(120, 45, 142, 345, -65);
}

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 191

6.3.14 Chords
The arcs we have drawn so far are considered open figures because they are made of a
line that has a beginning and an end (unlike a circle or a rectangle that do not). A chord is
an arc whose two ends are connected by a straight line. In other words, a chord is an
ellipse that is divided by a straight line from one side to another:

To draw a chord, you can use the CDC::Chord() method. It is defined as follows:

BOOL Chord(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);
BOOL Chord(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

The x1, y1, x2, and y2 are the coordinates of the rectangle in which the chord of the
circle would fit. This rectangle can also be defined as a RECT or a CRect value.

These x3 and y3 coordinates specify where the arc that holds the chord starts. These
coordinates can also be defined as the ptStart argument.

The x4 and y4 that can also be defined as ptEnd specify the end of the arc.

To complete the chord, a line is drawn from (x3, y3) to (x4, y4).

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

192 © FunctionX, Inc.

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->Chord(20, 20, 226, 144, 202, 115, 105, 32);
}

6.3.15 Bézier Curves
A bézier line is an arc that is strictly based on a set number of points instead of on an
ellipse. A bézier curve uses at least four points to draw on. A bézier line with four points
can be illustrated as follows:

To draw this line (with four points), the compiler would draw a curve from the first to the
fourth points. Then it would bend the curve by bringing each middle (half-center) side
close to the second and the third points respectively, of course without touching those
second and third points. For example, the above bézier curve could have been drawn
using the following four points:

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 193

PolyBezier(): To draw a bézier curve, the CDC provides the PolyBezier() method. Its
syntax is:

BOOL PolyBezier(const POINT* lpPoints, int nCount);

The lpPoints argument is an array of POINT or CPoint values. The nCount argument
specifies the number of points that will be used to draw the line. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CPoint Pt[4] = { CPoint(20, 12), CPoint(88, 246),
 CPoint(364, 192), CPoint(250, 48) };

 pDC->PolyBezier(Pt, 4);
}

In the same way, you can draw a series of complicated subsequent lines. This is done by
adding reference points to the array. To do this, you must add points in increments of
three. After drawing the first curve based on the first four points, to draw the next line,
the function would use the fourth point as the starting point. Since the bézier line requires

Chapter 7: GDI Accessories and Tools Visual C++ and MFC Fundamentals

194 © FunctionX, Inc.

4 points, you must add three more. You can continue adding points by three to draw the
bézier curve. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CPoint Pt[] = {CPoint(20, 12), CPoint(88, 246),
 CPoint(364, 192), CPoint(250, 48),
 CPoint(175, 38), CPoint(388, 192), CPoint(145, 125) };

 pDC->PolyBezier(Pt, 7);
}

PolyBezierTo(): The CDC::PolyBezier() method requires at least four points to draw its
curve. This is because it needs to know where to start drawing. Another way you can
control where the curve would start is by using the CDC::PolyBezierTo() method. Its
syntax is:

BOOL PolyBezierTo(const POINT* lpPoints, int nCount);

The PolyBezierTo() method draws a bézier curve. Its first argument is a pointer to an
array of POINT or CPoint values. This member function requires at least three points. It
starts drawing from the current line to the third point. If you do not specify the current
line, it would consider the origin (0, 0). The first and the second lines are used to control
the curve. The nCount argument is the number of points that would be considered. Here
is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CPoint Pt[] = { CPoint(320, 120), CPoint(88, 246), CPoint(364, 122) };

 pDC->PolyBezierTo(Pt, 3);
}

Visual C++ and MFC Fundamentals Chapter 7: GDI Accessories and Tools

© FunctionX, Inc. 195

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

196 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 197

Chapter 7:
GDI Accessories and Tools

? Colors

? Drawing with Colors

? Bitmaps

? Fonts

? Pens

? Brushes

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

198 © FunctionX, Inc.

7.1 Colors

7.1.1 Overview
The color is one the most fundamental objects that enhances the aesthetic appearance of
an object. The color is a non-spatial object that is added to an object to modify some of
its visual aspects. The MFC library, combined with the Win32 API, provides various
actions you can use to take advantage of the various aspects of colors.

Three numeric values are used to create a color. Each one of these values is 8 bits. The
first number is called red. The second is called green. The third is called blue:

 Bits

Red 7 6 5 4 3 2 1 0

Green 7 6 5 4 3 2 1 0

Blue 7 6 5 4 3 2 1 0

Converted to decimal, each one of these numbers would produce:

 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20
= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1
= 255

Therefore, each number can have a value that ranges from 0 to 255 in the decimal system.
These three numbers are combined to produce a single number as follows:

Color
Value

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Blue Green Red

Converted to decimal, this number has a value of 255 * 255 * 255 = 16581375. This
means that we can have approximately 16 million colors available. The question that
comes to mind is how we use these colors, to produce what effect.

You computer monitor has a surface that resembles a series of tinny horizontal and
vertical lines. The intersection of a one horizontal line and a vertical line is called a pixel.
This pixel holds, carries, or displays one color.

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 199

As the pixels close to each other have different colors, the effect is a wonderful distortion
that creates an aesthetic picture. It is by changing the colors of pixels that you produce
the effect of color variances seen on pictures and other graphics.

7.1.2 The Color as a Data Type
Microsoft Windows considers that a color is a 32-bit numeric value. Therefore, a color is
actually a combination of 32 bits:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The bits of the most significant byte (the left byte) are reserved for the operating system's
internal use and must be set to 0. Based on this, each color is characterized by its
combination of a red, a green, and a blue values.

When all three numbers have their lowest value, which is 0, the color is called black.
When the numbers are at their highest value, which is 255, the color is called white. Not
all color combinations have a name. In fact, in MS Windows programming, the names
are very limited. For this reason, color are rarely called by a name and usually, a name
would depend on who is using it. Nevertheless, there are popular names that most people
recognize. Examples are Black, White, Red, Green, Blue, Yellow. Except for black and
white, each color can assume different variations. For example, when all three numbers
have the same value but neither 0 nor 255, the color is called Gray by there are more than
250 possible combinations. Sometimes the combination is called Silver (each value is
192) or Gray (values=128).

The 32-bit numeric value used to characterize a color is defined by the COLORREF data
type in Microsoft Windows programming. It can be used to declare a color value. Here is
an example:

void CExoView::OnDraw(CDC* pDC)
{

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

200 © FunctionX, Inc.

 COLORREF NewColor;
}

When of after declaring such a variable, you can initialize it with a 32-bit decimal value.
Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 COLORREF NewColor = 16711935;
}

Although the above number (16711935) is a legitimate color value, it does not mean
much. To create a color value, the Win32 API provides the RGB macro. Its syntax is:

COLORREF RGB(BYTE byRed, BYTE byGreen, BYTE byBlue);

The RGB macro behaves like a function and allows you to pass three numeric values
separated by a comma. Each value must be between 0 and 255. Therefore, the above
initia lization can be done as follows:

void CExoView::OnDraw(CDC* pDC)
{
 COLORREF NewColor = RGB(255, 0, 255);
}

Whether a color was initialized by a 32-bit integer or using the RGB macro, if you want
to retrieve the red, green, and blue values of a color, you can use the GetRValue(), the
GetGValue(), of the GetBValue() macros to extract the value of each. The syntaxes of
these macros are:

BYTE GetRValue(DWORD rgb);
BYTE GetGValue(DWORD rgb);
BYTE GetBValue(DWORD rgb);

Each macro takes a 32-bit value as argument, arg. The GetRValue() macro returns the red
value of the rgb number. The GetGValue() macro returns the green value of the rgb
number. The GetBValue() macro returns the blue value of the rgb number.

7.1.3 Color Palettes
Device independence is the ability for an application to draw its intended figures, text,
shapes, and display colors regardless of the device on which the drawing is performed.
One way to take care of this is to manage colors at the operating system level so that
Microsoft Windows can select the right color to render an object or portion of it. In some
cases, a device, such as a monitor or a printer, may need to take care of the coloring
details of the jobs it is asked to perform.

A color palette is a list of colors that a device can display. For example, one device may
be able to handle only two colors; such is the case for a black and white printer. Another
device could be able to use more colors than that. To control this situation, Microsoft
Windows keeps track of the color palette of each device installed on the computer.

There are two types of color palettes. The default color palette is a list of colors that the
operating system would use on a device unless notified otherwise. There are typically 20

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 201

reserved colors as default. A logical palette is a palette that an application creates for a
specific device context.

7.2 Drawing With Colors

7.2.1 Coloring a Pixel
As mentioned above, a pixel is the real object that holds a color. Although it is so small,
you can access a pixel and change its color. The pixels are stored in an array of [x][y]
value. In fact, when you try accessing a pixel, you would be asked to provide a color for
it. To change the color of a pixel, you can call the CDC::SetPixel() method. Its syntaxes
are:

COLORREF SetPixel(int x, int y, COLORREF crColor);
COLORREF SetPixel(POINT point, COLORREF crColor);

The pixel you want to access is defined by its x and y coordinates, which can also be
specified with a POINT or CPoint object as the point argument. The color you want to
specify is the crColor argument.

7.2.2 Rectangles With 3-D Effect
Using colors, you can draw a rectangle with a 3-D effect. To do this, the CDC class
provides the Draw3dRect() method. Its syntaxes are:

void Draw3dRect(LPCRECT lpRect,

 COLORREF clrTopLeft, COLORREF clrBottomRight);
void Draw3dRect(int x, int y, int cx, int cy,
 COLORREF clrTopLeft, COLORREF clrBottomRight);

The rectangle to draw can be provided by its location and size through the x, y, cx, and cy
arguments. You can also pass it as a pointer to RECT or CRect for the lpRect argument.
Specify a color for the top and left sides of the rectangle as the clrTopLeft argument. The
clrBottomRight argument holds the color of the right and bottom sides of the rectangle.

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 pDC->Draw3dRect(20, 24, 238, 108, RGB(192, 192, 192), RGB(128, 128, 128));
}

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

202 © FunctionX, Inc.

7.2.3 Drawing Text
By default, the CDC class is able to draw text using a font pre-selected, known as the
System Font. To draw text, you can use the CDC::TextOut() method. Its syntax is:

virtual BOOL TextOut(int x, int y, LPCTSTR lpszString, int nCount);

To us this method, you must specify where the text would start. This location is
determined from the (0, 0) origin to the right (x) and to the bottom (y). The text to display
is the lpszString. The nCount value is the length of the text. Here is an example:
void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(50, 42, "Johnny Carson", 13);
}

If you want to control the color used to draw the text, use the CDC::SetTextColor()
method whose syntax is:

virtual COLORREF SetTextColor(COLORREF crColor);

The argument can be provided as a COLORREF variable or by calling the RGB macro. is
an example:

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 203

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetTextColor(RGB(255, 25, 2));
 pDC->TextOut(50, 42, "Johnny Carson", 13);
}

As you will learn from now on concerning the device context, once you change one of its
characteristics, it stays there until you change it again. It is similar to picking a spoon and
start eating. As long as you are eating, you can use only the spoon and only that spoon. It
you want to cut the meat, you must replace the spoon in your hand with a knife. In the
same way, if you change the color of text and draw more than one line of text, all of them
would use the same color. If you want to use a different color, you must change the color
used by calling the SetTextColor() method again. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetTextColor(RGB(255, 25, 2));
 pDC->TextOut(50, 42, "Johnny Carson", 13);

 pDC->SetTextColor(RGB(12, 25, 255));
 pDC->TextOut(50, 80, "The once king of late-night", 27);
}

If you want to highlight the text, which is equivalent to changing its background, you can
call the CDC::SetBkColor() method. Its syntax is:

virtual COLORREF SetBkColor(COLORREF crColor);

You must provide the color you want to use as the crColor argument. If this method
succeed, it changes the background of the next text that would be drawn and it returns the
previous background color, which you can restore at a later time. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

204 © FunctionX, Inc.

 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetTextColor(RGB(255, 25, 2));
 pDC->TextOut(50, 42, "Johnny Carson", 13);

 pDC->SetBkColor(RGB(0, 0, 128));
 pDC->SetTextColor(RGB(128, 255, 255));
 pDC->TextOut(50, 60, "The once king of late-night", 27);
}

If you want to know the background color applied on the object drawn, you can call the
CDC::GetBkColor() method. Its syntax is:

COLORREF GetBkColor() const;

This member function returns the color used to highlight the text, if the text is
highlighted. The highlighting of text is actually controlled by the CDC::SetBkMode()
method whose syntax is:

int SetBkMode(int nBkMode);

This method specifies whether the background color should be applied or not. This is set
by the nBkMode argument. It can have one of two values. If it is:

OPAQUE: the background would be drawn using the crColor value
TRANSPARENT: the background would not be drawn

If you want to find out what background mode is applied to the object(s) drawn, you can
call the CDC::GetBkMode() method. It is declared as follows:

int GetBkMode() const;

You can also draw text and include it in a (colored) rectangle. This can be done using the
CDC::ExtTextOut() method. Its syntax is:

virtual BOOL ExtTextOut(int x, int y, UINT nOptions, LPCRECT lpRect,

 LPCTSTR lpszString, UINT nCount, LPINT lpDxWidths);

The x and y values specify the location of the first character of the text to be drawn.
The nOptions argument holds a constant that determines how the rectangle will be drawn.
It can be:

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 205

ETO_OPAQUE: in this case the color set by SetBkColor() would be used to fill the
rectangle
ETO_CLIPPED : the color previously specified by SetBkColor() will only highlight the
text

The lpRect is a RECT or CRect rectangle that will be drawn behind the text.
The lpszString value is the text to be drawn.
The nCount is the number of characters of lpszString.
The lpDxWidths argument is an array of integers that specifies the amount of empty
spaces that will be used between each combination of two characters. Unless you know
what you are doing, set this argument as 0, in which case the regular space used to
separate characters would be used.

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetTextColor(RGB(25, 55, 200));
 pDC->SetBkColor(RGB(128, 255, 255));
 pDC->ExtTextOut(50, 42, ETO_OPAQUE, CRect(20, 28, 188, 128), "Johnny Carson",
13, NULL);
}

7.3 Bitmaps

7.3.1 Introduction
A bitmap is a series of points (bits) arranged like a map so that, when put together, they
produce a picture that can be written to, copied from, re -arranged, changed, manipulated,
or stored as a a computer file. Bitmaps are used to display pictures on graphical
applications, word processors, database files, or audience presentations. To display its
product on a device such as a monitor or a printer, a bitmap holds some properties and
follows a set of rules.

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

206 © FunctionX, Inc.

There are various types of bitmap, based on the number of colors that the bitmap can
display. First of all, a bitmap can be monochrome in which case each pixel corresponds
to 1 bit. A bitmap can also be colored. The number of colors that a bitmap can display is
equal to 2 raised to the number of pits/pixel. For example, a simple bitmap uses only 4
pits/pixel or 4 bpp can handle only 24 = 16 colors. A more enhanced bitmap that requires
8 bpp can handle 28 = 256 colors. Bitmaps are divided in two categories that control their
availability to display on a device.

A device-independent bitmap (DIB) is a bitmap that is designed to be loaded on any
application or display on any device and produce the same visual effect. To make this
possible, such a bitmap contains a table of colors that describes how the colors of the
bitmap should be used on pixels when displaying it. The characteristics of a DIB are
defined by the BITMAPINFO structure.

A device-dependent bitmap (DDB) is a bitmap created from the BITMAP structure the
dimensions of the bitmap.

7.3.2 Bitmap Creation
Unlike the other GDI tools, creating a bitmap usually involves more steps. For example,
you may want to create a bitmap to display on a window. You may create another bitmap
to paint a geometric area, in which case the bitmap would be used as a brush.

Before creating a bitmap as a GDI object, you should first have a bitmap. You can do this
by defining an array of unsigned hexadecimal numbers. Such a bitmap can be used for a
brush.

To create and manipulate bitmaps, the MFC library provides the CBitmap class. The use
of this class depends on the type of bitmap you want to create and how you want to use
that bitmap. One way you can use a bitmap is to display a picture on a window. To do
this, you must first have a picture resource. Although the Image Editor built -in Microsoft
Visual C++ is meant to help with regular application resources, it has a problem handling
a bitmap that displays more than 16 colors. The remedy used is to import the bitmap you
want to use. Once your bitmap is ready, call the CBitmap::LoadBitmap() method. Its
syntaxes:

BOOL LoadBitmap(UINT nIDResource);
BOOL LoadBitmap(LPCTSTR lpszResourceName);

The first version takes, as argument, the identifier of the bitmap you want to use. If the
bitmap is recognized by its name, you can use the second version of this method and
provide the lpszResourceName argument.

Before selecting the newly created bitmap object, allocate a block of computer memory
that would hold the bitmap and can then copy it to the actual device. This job can be
taken care of by the CDC::CreateCompatibleDC() method. Its syntax is:

virtual BOOL CreateCompatibleDC(CDC* pDC);

This method takes a pointer to a device context. If it is successful, it returns TRUE or a
non-zero value. If it is not, it returns FALSE or 0.

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 207

 Practical Learning: Loading a Bitmap
1. Start a new project and name it Bitmap1

2. Create it as a Single Document application based on CView

3. In the Class View, expand everything and access the
CMainFrame::PreCreateWindow() method

4. Change its code as follows:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;

 // The new width of the window's frame
 cs.cx = 480;
 // The new height of the window's frame
 cs.cy = 490;
 // Remove the Untitled thing
 cs.style &= ~FWS_ADDTOTITLE;

 return TRUE;
}

5. In the Resource View, display the string table and change the IDR_MAINFRAME
Caption to
Lady on Phone\n\nBitmap\n\n\nBitmap1.Document\nBitmap Document

6. Right-click any folder and click Import...

7. In the Import Resource dialog box, change the Files of Type to All Files and, in the
Look In combo box, change the folder to the one that holds the accompanying
exercises for this book.

8. Select lady.bmp

9. Click Import. After the bitmap has been imported, you may receive a message box,

click OK

10. Right-click the new IDB_BITMAP1 resource and click Properties

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

208 © FunctionX, Inc.

11. Change its ID to IDB_LADY

12. Add a message handler of the WM_PAINT message for the CBitmap1View class
and implement it as follows:

void CBitmap1View::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 // TODO: Add your message handler code here
 CBitmap BmpLady;
 CDC MemDCLady;

 // Load the bitmap from the resource
 BmpLady.LoadBitmap(IDB_LADY);
 // Create a memory device compatible with the above CPaintDC variable
 MemDCLady.CreateCompatibleDC(&dc);
 // Select the new bitmap
 CBitmap *BmpPrevious = MemDCLady.SelectObject(&BmpLady);

 // Copy the bits from the memory DC into the current dc
 dc.BitBlt(20, 10, 436, 364, &MemDCLady, 0, 0, SRCCOPY);

 // Restore the old bitmap
 dc.SelectObject(BmpPrevious);
 // Do not call CView::OnPaint() for painting messages
}

13. Test the application

14. Return to MSVC

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 209

7.4 Fonts

7.4.1 Introduction
A font is a list of symbols that can be drawn on a device context to produce a message. A
font is designed by an artis t but usually follows a specific pattern. For example a font
designed to produce symbols readable in the English language must be designed by a set
of predetermined and agreed upon symbols. These English symbols are grouped in an
entity called the English alphabet. When designing such a font, the symbols created must
conform to that language. This also implies that one font can be significantly different
from another and a font is not necessarily a series of readable symbols.

Just like everything else in the computer, a font must have a name. To accommodate the
visual needs, a font is designed to assume different sizes.

7.4.2 Font Selection
Before using a font to draw text in a device, the font must have been installed. Microsoft
Windows installs many fonts during setup. To handle its various assignments, the
operating system uses a particular font known as the System Font. This is the font used to
display the menu items and other labels for resources in applications. If you want to use a
different font to draw text in your application, you must select it.

Selecting a font, as well as selecting any other GDI object we will use from now on, is
equivalent to specifying the characteristics of a GDI object you want to use. To do this,
you must first create the object, unless it exists already. To select an object, pass it as a
pointer to the CDC::SelectObject() method. For example, to select a font, the syntax you
would use is:

virtual CFont* SelectObject(CFont* pFont);

This method takes as argument the font you want to use, pFont. It returns a pointer to the
font that was previously selected. If there was a problem when selecting the font, the
method returns NULL. As you can see, you must first have a font you want to select.

7.4.3 Font Creation
A font is created as a variable of the CFont class (of course, you can also use the Win32
API's HFONT class). The CFont class is based on CGdiObject. To declare a CFont
variable, you can use the default constructor of this class. This can be easily done as
follows:

CFont NewFont;

After declaring a CFont variable, you must initialize it. This can be done by calling one
of the Create member functions. The easiest technique of creating a font is done with the
CreatePointFont() method. Its syntax is:

BOOL CreatePointFont (int nPointSize, LPCTSTR lpszFaceName, CDC* pDC =
NULL);

The nPointSize is the height of the font. It is supplied as a multiple of 1/10.

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

210 © FunctionX, Inc.

This method requires two value. The name of the font is specified with the lpszFaceName
value. If you do not want to specify a font, you can pass the argument as NULL. If you
have a CDC variable that can be used convert the value of the height to logical units. If
you do not have this value, set it to NULL.
Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CFont font;

 font.CreatePointFont(920, "Garamond");
 CFont *pFont = pDC->SelectObject(&font);
 pDC->TextOut(20, 18, "Christine", 9);

 pDC->SelectObject(pFont);
 font.DeleteObject();
}

To control the color applied when drawing the text, you can call the
CDC::SetTextColor() method. For example, the above name can be drawn in blue as
follows:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CFont font;

 font.CreatePointFont(920, "Garamond");
 CFont *pFont = pDC->SelectObject(&font);

 pDC->SetTextColor(RGB(0, 125, 250));
 pDC->TextOut(20, 18, "Christine", 9);

 pDC->SelectObject(pFont);

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 211

 font.DeleteObject();
}

To produce a shadow effect, you can add another copy of the same text on a slightly
different location and call the CDC::SetBkMode() method. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CFont font;

 font.CreatePointFont(920, "Garamond");
 CFont *pFont = pDC->SelectObject(&font);

 pDC->SetBkMode(TRANSPARENT);

 pDC->SetTextColor(RGB(110, 185, 250));
 pDC->TextOut(26, 24, "Christine", 9);

 pDC->SetTextColor(RGB(0, 0, 255));
 pDC->TextOut(20, 18, "Christine", 9);

 pDC->SelectObject(pFont);
 font.DeleteObject();
}

One of the most complete means of creating a font is by using the CFont::CreateFont()
method. Its syntax is:

BOOL CreateFont(int nHeight,
 int nWidth,
 int nEscapement,
 int nOrientation,
 int nWeight,
 BYTE bItalic,
 BYTE bUnderline,
 BYTE cStrikeOut,

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

212 © FunctionX, Inc.

 BYTE nCharSet,
 BYTE nOutPrecision,
 BYTE nClipPrecision,
 BYTE nQuality,
 BYTE nPitchAndFamily,
 LPCTSTR lpszFacename);

The nHeight argument is the height applied to the text.
The nWidth value is the desired width that will be applied on the text.
The nEscapement is the angle used to orient the text. The angle is calculated as a multiple
of 0.1 and oriented counterclockwise.
The nOrientation is the angular orientation of the text with regards to the horizontal axis.
The nWeight is used to attempt to control the font weight of the text because it is affected
by the characteristics of the font as set by the designer. It holds values that displays text
from thin heavy bold. The possible values are:

Constant Value Constant Value
FW_DONTCARE 0 FW_THIN 100
FW_EXTRALIGHT 200 FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400 FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600 FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800 FW_ULTRABOLD 800
FW_BLACK 900 FW_HEAVY 900

The bItalic specifies whether the font will be italicized (TRUE) or not (FALSE).
The bUnderline is used to underline (TRUE) or not underline (FALSE) the text.
The cStrikeOut is specifies whether the text should be stroke out (TRUE) or not (FALSE)
with a line.
The nCharSet, specifies the character set used. The possible values are:

Constant Value
ANSI_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2
SHIFTJIS_CHARSET 128
OEM_CHARSET 255

The nOutPrecision controls the amount precision used to evaluate the numeric values
used on this function for the height, the width, and angles. It can have one of the
following values: OUT_CHARACTER_PRECIS, OUT_STRING_PRECIS,
OUT_DEFAULT_PRECIS, OUT_STROKE_PRECIS, OUT_DEVICE_PRECIS,
OUT_TT_PRECIS, OUT_RASTER_PRECIS

If some characters may be drawn outside of the area in which they are intended, the
nClipPrecision is used to specify how they may be clipped. The possible value used are
CLIP_CHARACTER_PRECIS, CLIP_MASK, CLIP_DEFAULT_PRECIS,
CLIP_STROKE_PRECIS, CLIP_ENCAPSULATE, CLIP_TT_ALWAYS,
CLIP_LH_ANGLES.

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 213

The nQuality specifies how the function will attempt to match the font's characteristics.
The possible values are DEFAULT_QUALITY, PROOF_QUALITY, and
DRAFT_QUALITY.
The nPitchAndFamily specifies the category of the font used. It combines the pitch and
the family the intended font belongs to. The pitch can be specified with
DEFAULT_PITCH, VARIABLE_PITCH, or FIXED_PITCH. The pitch is combined
using the bitwise OR operator with one of the following values:

Value Description
FF_DECORATIVE Used for a decorative or fancy font
FF_DONTCARE Let the compiler specify
FF_MODERN Modern fonts that have a constant width
FF_ROMAN Serif fonts with variable width
FF_SCRIPT Script-like fonts
FF_SWISS Sans serif fonts with variable width

The lpszFacename is the name of the font used.

Once you have created a font, you can select it into the device context and use it it for
example to draw text.

After using a font, you should delete it to reclaim the memory space its variable was
using. This is done by calling the CGdiObject::DeleteObject() method.

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CFont font;

 font.CreateFont(46, 28, 215, 0,
 FW_NORMAL, FALSE, FALSE, FALSE, ANSI_CHARSET,
 OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_ROMA N, "Times New Roman");

 CFont *pFont = pDC->SelectObject(&font);
 pDC->TextOut(20, 128, "Euzhan Palcy", 12);

 pDC->SelectObject(pFont);
 font.DeleteObject();
}

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

214 © FunctionX, Inc.

Remember that once an object such as a font has been selected, it remains in the device
context until further notice. For example, if you have created and selected a font, any text
you draw would follow the characteristics of that font. If you want another font, you must
change the previously selected font.

The computer uses the default black color to draw the text. Once again, if you want to
draw text with a different color, you can first call the CDC::SetTextColor() method and
specify the color of your choice.

The CFont::CreateFont() method is used to specify all characteristics of a font in one
step. Alternatively, if you want to specify each font property, you can declare a
LOGFONT variable and initialize it. It is defined as follows:

typedef struct tagLOGFONT {
 LONG lfHeight;
 LONG lfWidth;
 LONG lfEscapement;
 LONG lfOrientation;
 LONG lfWeight;
 BYTE lfItalic;
 BYTE lfUnderline;
 BYTE lfStrikeOut;
 BYTE lfCharSet;
 BYTE lfOutPrecision;
 BYTE lfClipPrecision;
 BYTE lfQuality;
 BYTE lfPitchAndFamily;
 TCHAR lfFaceName[LF_FACESIZE];
} LOGFONT, *PLOGFONT;

This time, you do not have to provide a value for each member of the structure and even
if you do, you can supply values in the order of your choice. For any member whose
value is not specified, the compiler would use a default value but you may not like some
of the default values. Therefore, you should specify as many values as possible.

After initializing the LOGFONT variable, call the CFont::CreateFontIndirect() method.
Its syntax is:

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 215

BOOL CreateFontIndirect(const LOGFONT* lpLogFont);

When calling this member function, pass the LOGFONT variable as a pointer,
lpLogFont.

To select the selected font, call the CDC::SelectObject() method. Once done, you can use
the new font as you see fit. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CFont font;
 LOGFONT LogFont;

 LogFont.lfStrikeOut = 0;
 LogFont.lfUnderline = 0;
 LogFont.lfHeight = 42;
 LogFont.lfEscapement = 0;
 LogFont.lfItalic = TRUE;

 font.CreateFontIndirect(&LogFont);
 CFont *pFont = pDC->SelectObject(&font);
 pDC->TextOut(20, 18, "James Kolowski", 14);

 pDC->SelectObject(pFont);
 font.DeleteObject();
}

7.4.4 Font Retrieval
If some text is displaying and you want to get the font properties of that text, you can call
the CDC::GetLogFont() method. Its syntax is:

int GetLogFont(LOGFONT * pLogFont);

To get the current font characteristics on a device context, pass a LOGFONT variable as
pointer to this method. After execution, it returns the LOGFONT argument with these
characteristics. If this method succeeds, it returns TRUE or non-zero. It it fails, it returns
FALSE or 0.

Here is an example:

void CAboutDlg::OnButton1()
{
 CFont *font;

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

216 © FunctionX, Inc.

 LOGFONT LogFont;

 font = this->GetFont();
 font ->GetLogFont(&LogFont);
 char StrFont[40];

 strcpy(StrFont, LogFont.lfFaceName);

 CClientDC dc(this);
 dc.TextOut(58, 120, StrFont, strlen(StrFont));
}

7.5 Pens

7.5.1 Introduction
In the previous lesson, we mentioned that, in order to draw, two primary objects are
needed: a platform and a tool. So far, we were using the platform, called a device context.
We introduced the main device context class as the CDC class. To draw, we have been
using a pointer to CDC. Now, we need to realize that, declaring a CDC variable does not
just give us access to the device context, it also initializes it.

The device context is a combination of the platform on which the drawing is performed
and the necessary tools to draw on it. As such, when declaring a CDC variable, it also
creates and selects a black pen. This is why we have been able to draw lines and other
shapes so far.

7.5.2 The Fundamentals of a Pen
A pen is a tool used to draw lines and curves on a device context. In the graphics
programming, a pen is also used to draw the borders of a geometric closed shape such as
a rectangle or a polygon.

To make it an efficient tool, a pen must produce some characteristics on the lines it is
asked to draw. These characteristics can range from the width of the line drawn to their
colors, from the pattern applied to the level of visibility of the lines. To manage these
properties, Microsoft Windows considers two types of pens: cosmetic and geometric.

A pen is referred to as cosmetic when it can be used to draw only simple lines of a fixed
width, less than or equal to 1 pixel.

A pen is geometric when it can assume different widths and various ends.

7.5.3 Creating and Selecting a Pen
When you declare a CDC variable, it creates and selects a pen that can draw a 1-pixel
width black line. If you want a more refined pen, the MFC provides the CPen class.
Therefore, the first step in creating a pen is to declare a variable of CPen type, which can
be done using the default constructor as follows:

CPen NewPen;

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 217

To create a pen, you must specify the desired characteristics. This can be done with
another CPen constructor declared as follows:

CPen(int nPenStyle, int nWidth, COLORREF crColor);

Alternatively, if you want to use a variable declared using the default constructor, you
can then call the CPen::CreatePen() method. Its syntax is:

BOOL CreatePen(int nPenStyle, int nWidth, COLORREF crColor);

The arguments of the second constructor and the CreatePen() method are used to specify
the properties that the pen should have:

The Style: This characteristic is passed as the nPenStyle argument. The possible values of
this argument are:

Value Illustration Description

PS_SOLID
A continuous solid line

PS_DASH
A continuous line with dashed
interruptions

PS_DOT
A line with a dot interruption at every
other pixel

PS_DASHDOT
A combination of alternating dashed and
dotted points

PS_DASHDOTDOT
A combination of dash and double dotted
interruptions

PS_NULL No visible line

PS_INSIDEFRAME
A line drawn just inside of the border of a
closed shape

To specify the type of pen you are creating, as cosmetic or geometric, use the bitwise OR
operator to combine one of the above styles with one of the following:

?? PS_COSMETIC: used to create a cosmetic pen

?? PS_GEOMTERIC: used to create a geometric pen

If you are creating a cosmetic pen, you can also add (bitwise OR) the PS_ALTERNATE
style to to set the pen at every other pixel.

The Width: The nWidth argument is the width used to draw the lines or borders of a
closed shape. A cosmetic pen can have a width of only 1 pixel. If you specify a higher
width, it would be ignored. A geometric pen can have a width of 1 or more pixels but the
line can only be solid or null. This means that, if you specify the style as PS_DASH,
PS_DOT, PS_DASHDOT, or PS_DASHDOTDOT but set a width higher than 1, the
line would be drawn as PS_SOLID.

The Color: The default color of pen on the device context is black. If you want to control
the color, specify the desired value for the crColor argument.

Based this, using the second constructor, you can declare and initialize a CPen variable as
follows:

CPen NewPen(PS_DASHDOTDOT, 1, RGB(255, 25, 5));

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

218 © FunctionX, Inc.

The same pen can be created using the CreatePen() method as follows:

CPen NewPen;

NewPen.CreatePen(PS_DASHDOTDOT, 1, RGB(255, 25, 5));

After creating a pen, you can select it into the desired device context variable and then
use it as you see fit, such as drawing a rectangle. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CPen NewPen;

 NewPen.CreatePen(PS_DASHDOTDOT, 1, RGB(255, 25, 5));

 pDC->SelectObject(&NewPen);

 pDC->Rectangle(20, 22, 250, 125);
}

Once a pen has been selected, any drawing performed and that uses a pen would use the
currently selected pen. If you want to use a different pen, you can either create a new pen
or change the characteristics of the current pen.

After using a pen, between exiting the function or event that created it, you should get rid
of it and restore the pen that was selected previously. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CPen NewPen;

 NewPen.CreatePen(PS_DASHDOTDOT, 6, RGB(255, 25, 5));

 CPen* pPen = pDC->SelectObject(&NewPen);

 pDC->Rectangle(20, 22, 250, 125);

 // Restore the previous pen
 pDC->SelectObject(pPen);
}

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 219

The Win32 API provides the LOGPEN structure that you can use to individually specify
each characteristics of a pen. The LOGPEN structure is created as follows:

typedef struct tagLOGPEN {
 UINT lopnStyle;
 POINT lopnWidth;
 COLORREF lopnColor;
} LOGPEN, *PLOGPEN;

To use this structure, declare a variable of LOGPEN type or a pointer. Then initialize
each member of the structure. If you do not, its default values would be used and the line
not be visible.

The lopnStyle argument follows the same rules we reviewed for the nPenStyle argument
of the second constructor and the CreatePen() method.

The lopnWidth argument is provided as a POINT or a CPoint value. Only the POINT::x
or the CPoint::x value is considered.

The lopnColor argument is a color and can be provided following the rules we reviewed
for colors.

After initializing the LOGPEN variable, call the CPen::CreatePenIndirect() member
function to create a pen. The syntax of the CreatePenIndirect() method is:

BOOL CreatePenIndirect(LPLOGPEN lpLogPen);

The LOGPEN value is passed to this method as a pointer. After this call, the new pen is
available and can be selected into a device context variable for use. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CPen NewPen;
 LOGPEN LogPen;

 LogPen.lopnStyle = PS_SOLID;

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

220 © FunctionX, Inc.

 LogPen.lopnWidth = CPoint(1, 105);
 LogPen.lopnColor = RGB(235, 115, 5);

 NewPen.CreatePenIndirect(&LogPen);

 CPen* pPen = pDC->SelectObject(&NewPen);

 pDC->Ellipse(60, 40, 82, 80);
 pDC->Ellipse(80, 20, 160, 125);
 pDC->Ellipse(158, 40, 180, 80);

 pDC->Ellipse(100, 60, 110, 70);
 pDC->Ellipse(130, 60, 140, 70);
 pDC->Ellipse(100, 90, 140, 110);

 // Restore the previous pen
 pDC->SelectObject(pPen);
}

7.5.4 Retrieving a Pen
If you want to know the currently selected pen used on a device context, you can call the
CPen::GetLogPen() member function. Its syntax is:

int GetLogPen(LOGPEN* pLogPen);

To get the characteristics of the current pen, pass a pointer to the LOGPEN structure to
this GetLogPen() method. The returned pLogPen value would give you the style, the
width, and the color of the pen.

7.6 Brushes

7.6.1 Introduction
A brush is a drawing tool used to fill out closed shaped or the interior of lines. A brush
behaves like picking up a bucket of paint and pouring it somewhere. In the case of
computer graphics, the area where you position the brush is called the brush origin. The

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 221

color (or picture) that the brush holds would be used to fill the whole area until the brush
finds a limit set by some rule.

A brush can be characterized by its color (if used), its pattern used to fill the area, or a
picture (bitmap) used as the brush.

To create a brush, the MFC provides the CBrush class. Therefore, to start, you can
declare a variable of this type using the default constructor as follows:

CBrush NewBrush;

Because there can be so many variations of brushes, there are different member functions
for the various possible types of brushes you would need. The easiest brush you can
create is made of a color.

7.6.2 Solid Brushes

A brush is referred to as solid if it is made of a color simply used to fill a closed shaped.
To create a solid brush, you can use the following constructor:

CBrush(COLORREF crColor);

The color to provide as the crColor argument follows the rules we reviewed for colors.

To use the newly created brush, you can select it into the device context by calling the
CDC::SelectObject(). Once this is done. Any closed shape you draw (ellipse, rectangle,
polygon) would be filled with the color specified. After using the brush, you can dismiss
it and restore the previous brush. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBrush NewBrush(RGB(250, 25, 5));

 CBrush *pBrush = pDC->SelectObject(&NewBrush);
 pDC->Rectangle(20, 20, 250, 125);

 pDC->SelectObject(pBrush);
}

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

222 © FunctionX, Inc.

Once a brush has been selected, it would be used on all shapes that are drawn under it,
until you delete or change it. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBrush NewBrush(RGB(255, 2, 5));
 CBrush *pBrush;

 CPoint Pt[3];

 // Top Triangle
 Pt[0] = CPoint(125, 10);
 Pt[1] = CPoint(95, 70);
 Pt[2] = CPoint(155, 70);

 pBrush = pDC->SelectObject(&NewBrush);
 pDC->Polygon(Pt, 3);

 // Left Triangle
 Pt[0] = CPoint(80, 80);
 Pt[1] = CPoint(20, 110);
 Pt[2] = CPoint(80, 140);

 pDC->Polygon(Pt, 3);

 // Bottom Triangle
 Pt[0] = CPoint(95, 155);
 Pt[1] = CPoint(125, 215);
 Pt[2] = CPoint(155, 155);

 pDC->Polygon(Pt, 3);

 // Right Triangle
 Pt[0] = CPoint(170, 80);
 Pt[1] = CPoint(170, 140);
 Pt[2] = CPoint(230, 110);

 pDC->Polygon(Pt, 3);

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 223

 pDC->SelectObject(pBrush);
}

If you want to use a different brush, you should create a new one. Here is an examp le:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBrush BrushGreen(RGB(0, 125, 5));
 CBrush BrushRed(RGB(255, 2, 5));
 CBrush BrushYellow(RGB(250, 255, 5));
 CBrush BrushBlue(RGB(0, 2, 255));
 CBrush *pBrush;

 CPoint Pt[3];

 // Top Triangle
 Pt[0] = CPoint(125, 10);
 Pt[1] = CPoint(95, 70);
 Pt[2] = CPoint(155, 70);

 pBrush = pDC->SelectObject(&BrushGreen);
 pDC->Polygon(Pt, 3);

 // Left Triangle
 Pt[0] = CPoint(80, 80);
 Pt[1] = CPoint(20, 110);
 Pt[2] = CPoint(80, 140);

 pBrush = pDC->SelectObject(&BrushRed);
 pDC->Polygon(Pt, 3);

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

224 © FunctionX, Inc.

 // Bottom Triangle
 Pt[0] = CPoint(95, 155);
 Pt[1] = CPoint(125, 215);
 Pt[2] = CPoint(155, 155);

 pBrush = pDC->SelectObject(&BrushYellow);
 pDC->Polygon(Pt, 3);

 // Right Triangle
 Pt[0] = CPoint(170, 80);
 Pt[1] = CPoint(170, 140);
 Pt[2] = CPoint(230, 110);

 pBrush = pDC->SelectObject(&BrushBlue);
 pDC->Polygon(Pt, 3);

 pDC->SelectObject(pBrush);
}

If you had declared a CBrush variable using the default constructor, you can initialize it
with a color by calling the CBrush::CreateSolidBrush() method. Its syntax is:

BOOL CreateSolidBrush(COLORREF crColor);

This member function can be used in place of the second constructor. It takes the same
type of argument, a color as crColor and produces the same result. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBrush BrushOlive;
 CBrush *pBrush;

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 225

 BrushOlive.CreateSolidBrush(RGB(255, 2, 5));
 pBrush = pDC->SelectObject(&BrushOlive);

 pDC->Ellipse(20, 20, 226, 144);
 pDC->SelectObject(pBrush);
}

7.6.3 Hatched Brushes
A hatch brush is one that uses a drawn pattern to regularly fill an area. Microsoft
Windows provides 6 preset patterns for such a brush. To create a hatched brush, you can
use the following constructor:

CBrush(int nIndex, COLORREF crColor);

If you had declared a CBrush variable using the default constructor, you can call the
CreateHatchBrush() member function to initialize it. The syntax of this method is:

BOOL CreateHatchBrush(int nIndex, COLORREF crColor);

In both cases, the nIndex argument specifies the hatch pattern that must be used to fill the
area. The possible values to use are HS_BDIAGONAL, HS_CROSS, HS_DIAGCROSS,
HS_FDIAGONAL, HS_ HORIZONTAL, or HS_VERTICAL.
The crColor argument specifies the color applied on the drawn pattern.
Here is an example:
void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBrush brBDiagonal(HS_BDIAGONAL, RGB(0, 0, 255));
 CBrush brCross;
 CBrush brDiagCross(HS_DIAGCROSS, RGB(0, 128, 0));
 CBrush brFDiagonal;
 CBrush brHorizontal(HS_HORIZONTAL, RGB(255, 128, 0));
 CBrush brVertical;

 CBrush *pBrush;

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

226 © FunctionX, Inc.

 pBrush = pDC->SelectObject(&brBDiagonal);
 pDC->RoundRect(20, 30, 160, 80, 10, 10);

 brFDiagonal.CreateHatchBrush(HS_FDIAGONAL, RGB(0, 128, 192));
 pBrush = pDC->SelectObject(&brFDiagonal);
 pDC->RoundRect(180, 30, 320, 80, 10, 10);

 pBrush = pDC->SelectObject(&brDiagCross);
 pDC->RoundRect(340, 30, 480, 80, 10, 10);

 brVertical.CreateHatchBrush(HS_VERTICAL, RGB(255, 0, 255));
 pBrush = pDC->SelectObject(&brVertical);
 pDC->RoundRect(20, 120, 160, 170, 10, 10);

 pBrush = pDC->SelectObject(&brHorizontal);
 pDC->RoundRect(180, 120, 320, 170, 10, 10);

 brCross.CreateHatchBrush(HS_CROSS, RGB(200, 0, 0));
 pBrush = pDC->SelectObject(&brCross);
 pDC->RoundRect(340, 120, 480, 170, 10, 10);

 pDC->SetTextColor(RGB(0, 0, 255));
 pDC->TextOut(40, 10, "HS_BDIAGONAL", 12);
 pDC->SetTextColor(RGB(0, 128, 192));
 pDC->TextOut(205, 10, "HS_FDIAGONAL", 12);
 pDC->SetTextColor(RGB(0, 128, 0));
 pDC->TextOut(355, 10, "HS_DIAGCROSS", 12);
 pDC->SetTextColor(RGB(255, 0, 255));
 pDC->TextOut(44, 100, "HS_VERTICAL", 11);
 pDC->SetTextColor(RGB(255, 128, 0));
 pDC->TextOut(195, 100, "HS_HORIZONTAL", 13);
 pDC->SetTextColor(RGB(200, 0, 0));
 pDC->TextOut(370, 100, "HS_CROSS", 8);

 pDC->SelectObject(pBrush);
}

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 227

7.6.4 Patterned Brushes

A pattern brush is one that uses a bitmap or (small) picture to fill out an area. To create
DDB bitmap, you can first create an array of WORD values. Then call the
CBitmap::CreateBitmap() method to initialize it. As this makes the bitmap ready, call
the CBrush::CreatePatternBrush() method to initialize the brush. The syntax of this
member function is:

BOOL CreatePatternBrush(CBitmap* pBitmap);

Once the brush has been defined, you can select in into a device context and use it as you
see fit. For example, you can use it to fill a shape. Here is an example:

void CCView4View::OnDraw(CDC* pDC)
{
 CCView4Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBitmap Bmp;
 CBrush brBits;
 WORD wBits[] = { 0x00, 0x22, 0x44, 0x88, 0x00, 0x22, 0x44, 0x88,
 0x22, 0x44, 0x88, 0x00, 0x22, 0x44, 0x88, 0x00,
 0x44, 0x88, 0x00, 0x22, 0x44, 0x88, 0x00, 0x22,
 0x88, 0x00, 0x22, 0x44, 0x88, 0x00, 0x22, 0x44 };

 Bmp.CreateBitmap(32, 32, 1, 1, wBits);

 brBits.CreatePatternBrush(&Bmp);
 CBrush* pOldBrush = (CBrush*)pDC->SelectObject(&brBits);

 pDC->Rectangle(20, 20, 400, 400);

 pDC->SelectObject(&Bmp);
}

Another technique you can use to create a pattern brush consists of using a bitmap
resource. Before creating a pattern, you must first have a picture, which can be done by
creating a bitmap. For example, imagine you create the following bitmap:

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

228 © FunctionX, Inc.

To create a brush based on a bitmap, you can use the following constructor:

CBrush(CBitmap* pBitmap);

If you had declared a CBrush variable using the default constructor, you can call the
CBrush::CreatePatternBrush() member function to initialize it. Its syntax is:
BOOL CreatePatternBrush(CBitmap* pBitmap);

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBrush brPattern;
 CBitmap Bmp;
 CBrush *pBrush;

 Bmp.LoadBitmap(IDB_BITMAP1);//"C:\\Programs\\woman2.bmp");

 brPattern.CreatePatternBrush(&Bmp);

 pBrush = pDC->SelectObject(&brPattern);
 pDC->Rectangle(46, 46, 386, 386);

 pDC->SelectObject(pBrush);
}

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 229

7.6.5 Logical Brushes
The Win32 library provides the LOGBRUSH structure that can be used to create a brush
by specifying its characteristics. LOGBRUSH is defined as follows:

typedef struct tagLOGBRUSH {
 UINT lbStyle;
 COLORREF lbColor;
 LONG lbHatch;
} LOGBRUSH, *PLOGBRUSH;

The lbStyle member variable specifies the style applied on the brush.
The lbColor is specified as a COLORREF value.
The lbHatch value represents the hatch pattern used on the brush.
Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBrush *pBrush;
 CBrush brLogBrush;
 LOGBRUSH LogBrush;

 LogBrush.lbStyle = BS_HATCHED;
 LogBrush.lbColor = RGB(255, 0, 255);
 LogBrush.lbHatch = HS_DIAGCROSS;

 brLogBrush.CreateBrushIndirect(&LogBrush);
 pBrush = pDC->SelectObject(&brLogBrush);

 pDC->Rectangle(20, 12, 250, 175);

 pDC->SelectObject(pBrush);
}

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

230 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 8 GDI Orientation and Transformations

© FunctionX, Inc. 231

Chapter 8:
GDI Orientation and
Transformations

? Default Coordinate System

? Mapping Modes

Chapter 8 GDI Orientation and Transformations Visual C++ and MFC Fundamentals

232 © FunctionX, Inc.

8.1 The Default Coordinate System

8.1.1 Introduction
When drawing on Microsoft Windows, the coordinates of the drawing area are located on
the upper-left corner of the screen. Everything positioned on the screen takes its reference
on that point, as we have seen in Lesson 6. That point can be illustrated in a Cartesian
coordinate system as (0,0) where the horizontal axis moves from (0,0) to the right and the
vertical axis moves from (0,0) down:

This starting origin is only the default coordinate system of the operating system.
Therefore, if you draw a shape with the following call, Ellipse(-100, -100, 100, 100), you
would get a circle whose center is positioned on the top-left corner of the screen. In this
case, only the lower-right 3/4 of the circle would be seen:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CPen PenBlue;

 // Blue solid pen width = 1
 PenBlue.CreatePen(PS_SOLID, 1, RGB(0, 12, 255));

 CPen *pOld = pDC->SelectObject(&PenBlue);
 pDC->Ellipse(-100, -100, 100, 100);
 pDC->SelectObject(pOld);
}

Visual C++ and MFC Fundamentals Chapter 9: Strings

© FunctionX, Inc. 233

In the same way, you can draw any geometric or non-geometric figure you want, using
one of the CDC methods or creating functions of your choice. For example, the following
code draws a vertical and a horizontal lines that cross each other in the center middle of
the view:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CPen PenBlue;
 CPen *pOld;

 PenBlue.CreatePen(PS_SOLID, 1, RGB(0, 12, 255));
 pOld = pDC->SelectObject(&PenBlue);
 pDC->Ellipse(-100, -100, 100, 100);

 CPen PenBlack;
 PenBlack.CreatePen(PS_SOLID, 1, BLACK_PEN);
 pOld = pDC->SelectObject(&PenBlack);

 pDC->MoveTo(220, 0);
 pDC->LineTo(220, 370);
 pDC->MoveTo(0, 160);
 pDC->LineTo(460, 160);

 pDC->SelectObject(pOld);
}

Chapter 9 Strings Visual C++ and MFC Fundamentals

234 © FunctionX, Inc.

8.1.2 Changing the Coordinate System
As seen above, the default coordinate system has its origin set on the top-left section of
the screen. The horizontal axis moves positively from the origin to the right direction.
The vertical axis moves from the origin to the bottom direction. To illustrate this, we will
draw a circle with a radius whose center is at the origin (0, 0) with a radius of 50 units.
We will also draw a line from the origin (0, 0) to (100, 100):

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // A circle whose center is at the origin (0, 0)
 pDC->Ellipse(-50, -50, 50, 50);

 // A line that starts at (0, 0) and ends at (100, 100)
 pDC->MoveTo(0, 0);
 pDC->LineTo(100, 100);
}

Visual C++ and MFC Fundamentals Chapter 9: Strings

© FunctionX, Inc. 235

This default origin is fine for most, if not all regular, operations performed on graphics
applications. Sometimes, you will need to control the position of the origin of the
coordinate system. For example, most CAD applications, including AutoCAD, allow the
user to set this origin.

The MFC library provides various functions to deal with the coordinates positions and
extents of the drawing area, including functions used to set the origin of the coordinate
system anywhere you want on the screen. Since you are drawing on a device context, all
you need to do is simply call the CDC::SetViewportOrg() method. It is overloaded with
two versions, which allow you to use either the X and the Y coordinates or a defined
point. The syntaxes of this method are:

SetViewportOrg(int X, int Y);
SetViewportOrg(CPoint Pt);

When calling this member function, simply specify where you want the new origin to be.
If using the second version, the argument can be a Win32 POINT structure or an MFC
CPoint class. To see the effect of this function, we will move the origin 200 units in the
positive direction of the X axis and 150 units in the positive direction of the vertical axis
without changing the circle and the line. Our OnDraw() method would look like this:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetViewportOrg(200, 150);

 // A circle whose center is at the origin (0, 0)
 pDC->Ellipse(-50, -50, 50, 50);

 // A line that starts at (0, 0) and ends at (100, 100)
 pDC->MoveTo(0, 0);
 pDC->LineTo(100, 100);
}

Chapter 9 Strings Visual C++ and MFC Fundamentals

236 © FunctionX, Inc.

By the way, as you probably know already, you can change the dimensions of the
window with a code similar to the following:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;

 // The new width of the window's frame
 cs.cx = 450;
 // The new height of the window's frame
 cs.cy = 370;
 // Remove the Untitled thing
 cs.style &= ~FWS_ADDTOTITLE;

 return TRUE;
}

Now that we know how to control the origin, we will position it at a fixed point, 320 units
to the right and 220 units down. We can also easily draw the (Cartesian) axes now:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetViewportOrg(220, 150);

 // Use a red pen
 CPen PenRed(PS_SOLID, 1, RGB(255, 0, 0));
 CPen *pOld = pDC->SelectObject(&PenRed);

 // A circle whose center is at the origin (0, 0)
 pDC->Ellipse(-100, -100, 100, 100);

 // Use a blue pen
 CPen PenBlue(PS_SOLID, 1, RGB(0, 0, 255));
 pOld = pDC->SelectObject(&PenBlue);

 // Horizontal axis
 pDC->MoveTo(-320, 0);
 pDC->LineTo(320, 0);
 // Vertical axis
 pDC->MoveTo(0, -220);
 pDC->LineTo(0, 220);

 pDC->SelectObject(pOld);
}

Visual C++ and MFC Fundamentals Chapter 9: Strings

© FunctionX, Inc. 237

As seen already, the SetViewportOrg() member function can be used to change the origin
of the device context. It also uses an orientation of axes so that the horizontal axis moves
positively from (0, 0) to the right. The vertical axis moves positively from (0, 0) down:

To illustrate this, we will draw a green line at 45° from the origin:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetViewportOrg(220, 150);

 // Use a red pen
 CPen PenRed(PS_SOLID, 1, RGB(255, 0, 0));
 CPen *pOld = pDC->SelectObject(&PenRed);

 // A circle whose center is at the origin (0, 0)
 pDC->Ellipse(-100, -100, 100, 100);

 // Use a blue pen
 CPen PenBlue(PS_SOLID, 1, RGB(0, 0, 255));
 pOld = pDC->SelectObject(&PenBlue);

Chapter 9 Strings Visual C++ and MFC Fundamentals

238 © FunctionX, Inc.

 // Horizontal axis
 pDC->MoveTo(-320, 0);
 pDC->LineTo(320, 0);
 // Vertical axis
 pDC->MoveTo(0, -220);
 pDC->LineTo(0, 220);

 // An orange pen
 CPen PenGreen(PS_SOLID, 1, RGB(64, 128, 128));
 pOld = pDC->SelectObject(&PenGreen);

 // A diagonal line at 45 degrees
 pDC->MoveTo(0, 0);
 pDC->LineTo(120, 120);

 pDC->SelectObject(pOld);
}

As you can see, our line is not at 45º. Instead of being in the first quadrant, it is in the
fourth. This is due to the default orientation of the coordinate system.

8.2 The Mapping Modes

8.2.1 Mapping Mode Choices
 To control the orientation of the axes of the device context, you use a member function
of the CDC class called SetMapMode(). Its syntax is:

int SetMapMode(int nMapMode);
As you are about to see, this member function can be used to do two things, depending on
the value of the argument. It can control the orientation of the coordinate system you

Visual C++ and MFC Fundamentals Chapter 9: Strings

© FunctionX, Inc. 239

want to use for your application. It also helps with the unit system you would prefer to
use.

The argument of this member function is a constant integer that species the mapping
mode used. The possible values are MM_TEXT, MM_LOENGLISH, MM_HIENGLISH,
MM_ANISOTROPIC, MM_HIMETRIC, MM_ISOTROPIC, MM_LOMETRIC, and
MM_TWIPS.

The default map mode used is the MM_TEXT. In other words, if you do not specify
another, this is the one your application would use. With this map mode, the dimensions
or measurements you specify in your CDC member functions are respected and kept "as
is". Also, the axes are oriented so the horizontal axis moves from (0, 0) to the right and
the vertical axis moves from (0, 0) down. For example, the above OnDraw() method can
be re-written as follows and produce the same result:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetMapMode(MM_TEXT);
 pDC->SetViewportOrg(220, 150);

 // Use a red pen
 CPen PenRed(PS_SOLID, 1, RGB(255, 0, 0));
 CPen *pOld = pDC->SelectObject(&PenRed);

 . . . No Change

 pDC->SelectObject(pOld);
}

The MM_LOENGLISH, like some of the other mapping modes (excluding MM_TEXT
as seen above), performs two actions. It changes the orientation of the vertical axis: the
positive y axis would move from (0, 0) up:

Also, each unit of measure is multiplied by 0.01 inch, which means that each unit you
provide is divided by 100 (unit/100). This also means that the units are reduced from their
stated measures by a 100th. Observe the effect of the MM_LOENGLISH map mode on
the above OnPaint() event :

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();

Chapter 9 Strings Visual C++ and MFC Fundamentals

240 © FunctionX, Inc.

 ASSERT_VALID(pDoc);

 pDC->SetMapMode(MM_LOENGLISH);
 pDC->SetViewportOrg(220, 150);

 . . . No Change

 pDC->SelectObject(pOld);
}

As you can see, now the lines are drawn respecting the positive and the negative
orientations of the axes, fulfilling the requirements of a Cartesian coordinate system. At
the same time, the lengths we used have been reduced: the circle is smaller and the lines
are shorter.

Like the MM_LOENGLISH map mode, the MM_HIENGLISH sets the orientation so the
vertical axis moves from (0, 0) up. Also, unlike the MM_LOENGLISH, the
MM_HIENGLISH map mode reduces each unit by a factor of 0.001 inch. This means
that each unit is divided by 1000 (1/1000 = 1000th) which is significant and can change
the display of a drawing. Here is its effect:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetMapMode(MM_HIENGLISH);
 pDC->SetViewportOrg(220, 150);

 . . . No Change

 pDC->SelectObject(pOld);
}

Visual C++ and MFC Fundamentals Chapter 9: Strings

© FunctionX, Inc. 241

Notice that we are still using the same dimensions for our lines and circle.

The MM_LOMETRIC map mode uses the same axes orientation as the previous two
modes. By contrast, the MM_LOMETRIC multiplies each unit by 0.1 millimeter. This
means that each unit is reduced by 10%. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetMapMode(MM_LOMETRIC);
 pDC->SetViewportOrg(220, 150);

 . . . No Change

 pDC->SelectObject(pOld);
}

Chapter 9 Strings Visual C++ and MFC Fundamentals

242 © FunctionX, Inc.

The MM_HIMETRIC mapping mode uses the same axes orientation as the above three
modes. Its units are gotten by multiplying each of the given units by 0.01 millimeter.
Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->SetMapMode(MM_HIMETRIC);
 pDC->SetViewportOrg(220, 150);

 . . . No Change

 pDC->SelectObject(pOld);
}

The MM_TWIPS map mode divides each logical unit by 20. Actually a twip is
equivalent to 1/1440 inch. Besides this unit conversion, the axes are oriented so the
horizontal axis moves from the origin (0, 0) to the right while the vertical axis moves
from the origin (0, 0) up. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDo c);

 pDC->SetMapMode(MM_TWIPS);
 pDC->SetViewportOrg(220, 150);

 . . . No Change

 pDC->SelectObject(pOld);
}

Visual C++ and MFC Fundamentals Chapter 9: Strings

© FunctionX, Inc. 243

8.2.2 Unit and Coordinate Systems Options
The mapping modes we have used so far allowed us to select the orientation of the axes,
especially the y axis. Nevertheless, we could not influence any conversion unit for the
dimensions we specified on our drawings. This is because each one of these mapping
modes (MM_TEXT, MM_HIENGLISH, MM_LOENGLISH, MM_HIMETRIC,
MM_LOMETRIC, and MM_TWIPS) has a fixed set of attributes such as the orientation
of its axes and the conversion used on the provided dimensions.

Consider the following OnDraw() method. It draws a 200x200 pixels square with a red
border and an aqua background. The square starts at 100x100 pixels on the negative sides
of both axes and it continues 100x100 pixels on the positive sides of both axes. For better
illustration, the event also draws a diagonal line at 45º starting at the origin (0, 0):

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CPen PenRed(PS_SOLID, 1, RGB(255, 0, 0));
 CBrush BrushAqua(RGB(0, 255, 255));
 CBrush *brOld;
 CPen *pnOld;

 pnOld = pDC->SelectObject(&PenRed);
 brOld = pDC->SelectObject(&BrushAqua);

 // Draw a square with a red border and an aqua background
 pDC->Rectangle(-100, -100, 100, 100);

 CPen BluePen(PS_SOLID, 1, RGB(0, 0, 255));
 pnOld = pDC->SelectObject(&BluePen);

 // Diagonal line at 45 degrees starting at the origin (0, 0)
 pDC->MoveTo(0, 0);
 pDC->LineTo(200, 200);

 pDC->SelectObject(pnOld);

Chapter 9 Strings Visual C++ and MFC Fundamentals

244 © FunctionX, Inc.

 pDC->SelectObject(brOld);
}

This would produce:

As you can see, we get only the the lower-right 3/4 portion of the square and the line is
pointing in the 3 to 6 quadrant of a clock .

Imagine that you want the origin (0, 0) to be positioned at the (220, 150) point. We saw
already that you can use the CDC::SetViewportOrg() (keep in mind that this member
function only changes the origin of the coordinate system; it does not influence the
orientation of the axes nor does it control the units or dimensions) method to specify the
origin. Here is an example (we are not specifying the mapping mode because MM_TEXT
can be used as the default):

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CPen PenRed(PS_SOLID, 1, RGB(255, 0, 0));
 CBrush BrushAqua(RGB(0, 255, 255));
 CBrush *brOld;
 CPen *pnOld;

 pnOld = pDC->SelectObject(&PenRed);
 brOld = pDC->SelectObject(&BrushAqua);

 pDC->SetViewportOrg(220, 150);

 // Draw a square with a red border and an aqua background
 pDC->Rectangle(-100, -100, 100, 100);

 CPen BluePen(PS_SOLID, 1, RGB(0, 0, 255));
 pnOld = pDC->SelectObject(&BluePen);

 // Diagonal line at 45 degrees starting at the origin (0, 0)
 pDC->MoveTo(0, 0);
 pDC->LineTo(120, 120);

Visual C++ and MFC Fundamentals Chapter 9: Strings

© FunctionX, Inc. 245

 pDC->SelectObject(pnOld);
 pDC->SelectObject(brOld);
}

To control your own unit system, the orientation of the axes or how the application
converts the units used on your application, use either the MM_ISOTROPIC or the
MM_ANISOTROPIC mapping modes. The first thing you should do is to call the
CDC::SetMapMode() member function and specify one of these two constants (either
MM_ISOTROPIC or MM_ANISOTROPIC). Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CPen PenRed(PS_SOLID, 1, RGB(255, 0, 0));
 CBrush BrushAqua(RGB(0, 255, 255));
 CBrush *brOld;
 CPen *pnOld;

 pnOld = pDC->SelectObject(&PenRed);
 brOld = pDC->SelectObject(&BrushAqua);

 pDC->SetMapMode(MM_ISOTROPIC);
 pDC->SetViewportOrg(220, 150);

 // Draw a square with a red border and an aqua background
 pDC->Rectangle(-100, -100, 100, 100);

 CPen BluePen(PS_SOLID, 1, RGB(0, 0, 255));
 pnOld = pDC->SelectObject(&BluePen);

 // Diagonal line at 45 degrees starting at the origin (0, 0)
 pDC->MoveTo(0, 0);
 pDC->LineTo(120, 120);

 pDC->SelectObject(pnOld);
 pDC->SelectObject(brOld);
}

Chapter 9 Strings Visual C++ and MFC Fundamentals

246 © FunctionX, Inc.

You should not rely on the above picture. After calling the CDC::SetMapMode() function
with MM_ISOTROPIC (or MM_ANISOTROPIC) as argument, you are not supposed to
stop there. The purpose of these two map modes is to let you control the orientation of the
axes and the conversion of the units.

The difference between both mapping modes is that, when using the MM_ISOTROPIC
map mode, one unit in the horizontal axis is equivalent to one unit in the vertical axis.
This is not the case for the MM_ANISOTROPIC map mode which allows you to control
however the units should be converted on each individual axis.

Therefore, after calling SetMapMode() and specifying the MM_ISOTROPIC (or
MM_ANISOTROPIC), you must call the CDC:SetWindowExt() member function. This
method specifies how much each new unit will be multiplied by the old or default unit
system. The CDC::SetWindowExtEx() member function comes in two versions with the
following syntaxes:

CSize SetWindowExt(int cx, int cy);
CSize SetWindowExt(SIZE size);

If using the first version, the first argument to this function, cx, specifies the logical
conversion mu ltiplier used for each unit on the horizontal axis. The second argument, cy,
specifies the logical conversion multiplier used for each unit on the vertical axis.

The second version of the method can be used if you know the desired logical width and
height as a SIZE structure. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CPen PenRed(PS_SOLID, 1, RGB(255, 0, 0));
 CBrush BrushAqua(RGB(0, 255, 255));
 CBrush *brOld;
 CPen *pnOld;

 pnOld = pDC->SelectObject(&PenRed);
 brOld = pDC->SelectObject(&BrushAqua);

Visual C++ and MFC Fundamentals Chapter 9: Strings

© FunctionX, Inc. 247

 pDC->SetMapMode(MM_ISOTROPIC);
 pDC->SetViewportOrg(220, 150);
 pDC->SetWindowExt(640, 640);

 // Draw a square with a red border and an aqua background
 pDC->Rectangle(-100, -100, 100, 100);

 CPen BluePen(PS_SOLID, 1, RGB(0, 0, 255));
 pnOld = pDC->SelectObject(&BluePen);

 // Diagonal line at 45 degrees starting at the origin (0, 0)
 pDC->MoveTo(0, 0);
 pDC->LineTo(120, 120);

 pDC->SelectObject(pnOld);
 pDC->SelectObject(brOld);
}

After calling the SetWindowExt() member function, you should call the
SetViewportExt() method. Its job is to specify the horizontal and vertical units of the
device context being used. It comes in two versions with the following syntaxes:

CSize SetViewportExt(int cx, int cy);
CSize SetViewportExt(SIZE size);

To use the first version of this function, you must provide the units of device conversion
as cx for the horizontal axis and as cy for the vertical axis.

If you know the size as a width/height combination of the device unit conversion, you can
use the second version of the function and supply this size argument.

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CPen PenRed(PS_SOLID, 1, RGB(255, 0, 0));

Chapter 9 Strings Visual C++ and MFC Fundamentals

248 © FunctionX, Inc.

 CBrush BrushAqua(RGB(0, 255, 255));
 CBrush *brOld;
 CPen *pnOld;

 pnOld = pDC->SelectObject(&PenRed);
 brOld = pDC->SelectObject(&BrushAqua);

 pDC->SetMapMode(MM_ISOTROPIC);
 pDC->SetViewportOrg(220, 150);
 pDC->SetWindowExt(640, 640);
 pDC->SetViewportExt(480, -480);

 // Draw a square with a red border and an aqua background
 pDC->Rectangle(-100, -100, 100, 100);

 CPen BluePen(PS_SOLID, 1, RGB(0, 0, 255));
 pnOld = pDC->SelectObject(&BluePen);

 // Diagonal line at 45 degrees starting at the origin (0, 0)
 pDC->MoveTo(0, 0);
 pDC->LineTo(120, 120);

 pDC->SelectObject(pnOld);
 pDC->SelectObject(brOld);
}

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 249

Chapter 9: Strings

? Fundamentals of Strings

? Operations on Strings

? Characters of a String

? The CString Class

? Working with Individual Characters

? Sub Strings

Chapter 9 Strings Visual C++ and MFC Fundamentals

250 © FunctionX, Inc.

9.1 Fundamentals of Strings

9.1.1 Null-Terminated Strings
A string is a group of printable letters or symbols . The symbol can be used as a single
character or some symbols can be combined to produce a word or a sentence. The
symbols are aligned in the computer memory in a consecutive manner so the last symbol
is the null character. Here is an example:

M a t h e m a t i c s \0

Such a value is called a null-terminated string because the last symbol is the null-
terminated character "\0". When allocating space for such a string, the space must be
provided as the number of its characters + 1.

Like most other variables, to use a string, you can first declare a variable that would hold
it. To declare a string variable, you can use the char data type and create an array of
symbols. Here are two examples:

char StrName[20];
char *Sentence;

The easiest way to initialize one of these variables is to give it a value when the variable
is declared. Once it has been initialized, such a variable can be used in any function that
can take advantage of it. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 char *StrName = "Euzhan Palcy";

 pDC->TextOut(20, 22, StrName, 12);
}

When a string variable has been initialized, the string the variable holds is called its
value. In the example above, Euzhan Palcy is the string value, or simply the value, of the
StrName variable.

When writing applications for Microsoft Windows, you can also declare a string using
the CHAR data type. Here is an example:

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 251

void CExoView::OnDraw(CDC* pDC)
{
 CHAR *StrName = "Euzhan Palcy";

 pDC->TextOut(20, 22, StrName, 12);
}

If you are writing for an international audience and involve unicode in your application,
you can declare the string using the TCHAR data type:

void CExoView::OnDraw(CDC* pDC)
{
 TCHAR *StrName = "Euzhan Palcy";

 pDC->TextOut(20, 22, StrName, 12);
}

Alternatively, you can use _TCHAR to declare such a variable. Normally, to initialize a
null-terminated string variable for an international audience, you should use the _T, the
TEXT or the _TEXT macros. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 char *StrName = _T("Euzhan Palcy");

 pDC->TextOut(20, 22, StrName, 12);
}

You can also initialize a string variable with a value that spans various lines. To do this,
when creating the string, end each line with a double-quote and start the other with
another double-quotes. Here is an example:

void CExerciseDlg::OnMsgBox()
{
 // TODO: Add your control notification handler code here
 char Sentence[] = "The name you entered is not in our records.\n"
 "If you think there is a mistake, please contact HR.\n"
 "You can also send an email to humanres@functionx.com";
 MessageBox(Sentence);
}

9.1.2 The Standard string Class
The Standard Template Library (STL) provides a class that can be used for string
manipulation. This class is called basic_string and it was type-defined as string . To use

Chapter 9 Strings Visual C++ and MFC Fundamentals

252 © FunctionX, Inc.

this class, on top of the file where you will need access to it, include the string library
and call the std namespace. To do this, you would type:

#include <string>
using namespace std;

Therefore, to declare a variable using the STL's string class, use one of its constructors.
For example, you can use the default constructor as follows:

string FirstName;

To initialize a string variable, you can provide its value between parentheses. Here is an
example:

string FullName(“Jules Andong”);

The STL's string class is not natively supported in MFC applications. Therefore, in order
to use it, you must convert its value to a null-terminated string. To allow this, the string
class provides the c_str() member function. Its syntax is:

const E *c_str() const;

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 string StrName("Central African Republic");

 pDC->TextOut(20, 22, StrName.c_str(), 24);
}

9.1.3 The Length of a String
The length of a string is the number of characters that the string contains. To get the
length of a string declared using the char, the CHAR, the TCHAR, the _TCHAR or one
of the Win32 API's data types, you can use the strlen() function. Its syntax is:

size_t strlen(const char *String);

This function returns the number of characters of the String argument. Here is an
example:

void CExoView::OnDraw(CDC* pDC)
{
 char StrName[] = "Euzhan Palcy";
 int Len = strlen(StrName);

 pDC->TextOut(20, 22, StrName, Len);
}

To get the length of a string declared using the string class, call the length() member
function. Its syntax is:

size_type length() const;

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 253

You can also get the same result by calling the size() method whose syntax is:

size_type size() const;

Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 string StrName("Central African Republic");

 int Len = StrName.length();
 pDC->TextOut(20, 22, StrName.c_str(), Len);
}

9.1.4 String Formatting
Formatting a string consists of telling the compiler how to adjust, before using such as
displaying, the string. Imagine you declare a null-terminated string as follows:

char Represents[20];

To format a null-terminated string, you can call the sprintf() function. Its syntax is:

int sprintf(char* Buffer, const char* S, Arguments…);

This function takes at least two arguments but can take as manu as necessary. The first
argument, Buffer , is a null-terminated string variable:

char Represents[20];
sprintf(Represents,

To display a value as part of the Buffer variable, provide the second argument starting it
with a double-quote followed by a string if any, followed by the % sign, followed by one
of the following characters:

Character Type of Data Used for

c char A single character
d int Any signed decimal integer (int, short)
i int Any signed decimal integer (int, short)

o
Signed
Integers

An unsigned octal integer

u Unsigned
Any unsigned decimal integer (unsigned,
unsigned int)

x Unsigned
Any unsigned lowercase hexadecimal integer
(abcdef)

X Unsigned
Any unsigned uppercase hexadecimal integer
(ABCDEF)

e double
Scientific representation of a signed value used
to display the lowercase exponent

E double
Scientific representation of a signed value used
to display the uppercase exponent

f double
Representation of a floating point number with
a specific number of characters to the right of

Chapter 9 Strings Visual C++ and MFC Fundamentals

254 © FunctionX, Inc.

the separator

g double
Representation of a number using either the e
or the f format

G double
Representation of a number using either the E
or the f format

s String String representation
S String String representation

An example would be:

char Represents[20];
sprintf(Represents, "%f",);

If you want to display your own, unformatted words as part of the new string, you can
type anything before the % operator or after the formatting character:

char Represents[20];
sprintf(Represents, "The number is %f",);

If you are formatting a floating point number, you can specify the number of digits to
appear as the separator. To do this, type a period on the right side of the % symbol
followed by a number. For example, to produce a number with a precision of 4 digits,
you would type:

sprintf(Represents, "The number is %.4f",);

To create a longer or more advanced string, you can add as many combinations of % and
characters as necessary.

The % symbol used in the S argument is used as a place holder, informing the compiler
that an external value will be needed for that position. To specify a value for a place
holder, provide it as a third argument. Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 char Represents[20];
 double Number = 125.55;
 sprintf(Represents, "The number is %.4f", Number);
}

If you created more than one combination of % and character, you can provide a value
for each, separated by a comma. Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 char FirstName[] = "Ferdinand";
 char LastName[] = "Coly";
 char FullName[40];

 sprintf(FullName, "Full Name: %s %s", FirstName, LastName);

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 255

}

After formatting the string, the Buffer argument holds the new string. You can then use it
as you see fit. For example, you can pass it to another function such as displaying it on a
view as follows:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 char FirstName[] = "Ferdinand";
 char LastName[] = "Coly";
 char FullName[40];

 sprintf(FullName, "Full Name: %s %s", FirstName, LastName);
 int Len = strlen(FullName);

 pDC->TextOut(20, 20, FullName, Len);
}

9.2 Operations of Strings

9.2.1 String Copy
Copying a string is equivalent to assigning all of its characters to another string. After
copying, both strings would have the same value. To copy a null-terminated string, you
can use the strcpy() function. Its syntax is:

char *strcpy(char *strDestination, const char *strSource);

The strDestination argument is the target string. The strSource argument holds the value
of the string that needs to be copied. During execution, the strSource value would be
assigned to the strDestination variable. After execution, this function returns another
string that has the same value as strDestination.

Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 char Artist[] = _T("Arsene Wendt");
 char Producer[40];

Chapter 9 Strings Visual C++ and MFC Fundamentals

256 © FunctionX, Inc.

 strcpy(Producer, Artist);

 int Len = strlen(Producer);
 pDC->TextOut(20, 20, Producer, Len);
}

To make a copy of a string variable, you can use the assignment operator. The primary
technique applied to this operator can be used to initialize a string variable declared using
the default constructor. Here is an example:

void CCView1View::OnDraw(CDC* pDC)
{
 CCView1Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 // TODO: add draw code for native data here
 string StrName = "Central African Republic";

 int Len = StrName.length();
 pDC->TextOut(20, 22, StrName.c_str(), Len);
}

Using the assignment operator, you can copy one string variable into another. To do this,
simply assign one variable to another. Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 string Artist = _T("Arsene Wendt");
 string Producer;

 Producer = Artist;

 int Len = Producer.length();
 pDC->TextOut(20, 20, Producer.c_str(), Len);
}

Besides the assignment operator, to copy a string variable or to assign the value of one
string to another, you can also use the string::assign() method to assign a string. It is
provides in various syntaxes as follows:

basic_string& assign(const E *s);
basic_string& assign(const E *s, size_type n);
basic_string& assign(const basic_string& str, size_type pos, size_type n);
basic_string& assign(const basic_string& str);
basic_string& assign(size_type n, E c);
basic_string& assign(const_iterator first, const_iterator last);

Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 string Artist = _T("Arsene Wendt");

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 257

 string Producer;

 Producer.assign(Artist);

 int Len = Producer.length();

 pDC->TextOut(20, 20, Producer.c_str(), Len);
}

9.2.2 String Concatenation
String concatenation consists of adding one string to another. To add one null-terminated
string to another, you can use the strcat() function. Its syntax is:

char *strcat(char *Destination, const char *Source);

The strcat() function takes two arguments. The second argument, Source, is the string to
add to the right side of the first string, Destination. Here is an example:

void CExerciseDlg::OnMsgBox()
{
 // TODO: Add your control notification handler code here
 static char Msg[] = "This application has performed an illegal operation ";
 strcat(Msg, "and it will be shut down");
 strcat(Msg, "\nDo you want to save the last changes you made to the current file?");
 const char Title[] = "Application Global Error";
 UINT Option = MB_YESNO | MB_ICONSTOP;

 ::MessageBox(NULL, Msg, Title, Option);
}

Like the strcat() function, the strncat() function is used to append one string to another.
The difference is that, while the strcat() considers all characters of the source string, the
strncat() function allows you to specify the number of characters from the source string
that you want to append to the destination string. This means that, if the source string has
12 characters, you can decide to append only a set number of its characters. The syntax of
the strncat() function is:

char* strncat(char* Destination, const char* Source, int Number);

Besides the same arguments as the strcat() function, the Number argument is used to
specify the number of characters considered from Source. To perform the concatenation,
the compiler would count Number characters from left to right of the Source string. These
characters would be added to the right of the Destination string. Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{

Chapter 9 Strings Visual C++ and MFC Fundamentals

258 © FunctionX, Inc.

 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 char Make[] = "Ford ";
 int LengthMake = strlen(Make);
 char Model[] = "Explorer";
 int LengthModel = strlen(Model);

 char *Car = strncat(Make, Model, 3);
 int LengthCar = strlen(Car);

 pDC->TextOut(10, 20, Make, LengthMake);
 pDC->TextOut(10, 40, Model, LengthModel);
 pDC->TextOut(10, 60, Car, LengthCar);
}

The string class provides its own mechanism to add two strings. It uses the addition
operator. To do this, simply add one string value or variable to another string value or
variable and assign the result to the target string variable. Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 string Make = "Ford ";
 string Model = "Explorer";

 string Car = Make + Model;
 int LengthCar = Car.length();

 int LengthMake = Make.length();
 int LengthModel = Model.length();

 pDC->TextOut(10, 10, Make.c_str(), LengthMake);
 pDC->TextOut(10, 30, Model.c_str(), LengthModel);
 pDC->TextOut(10, 50, Car.c_str(), LengthCar);
}

Alternatively, to add two strings, you can call the append() method. It comes in various
versions as follows:

basic_string& append(const E *s);
basic_string& append(const E *s, size_type n);
basic_string& append(const basic_string& str,
 size_type pos, size_type n);
basic_string& append(const basic_string& str);

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 259

basic_string& append(size_type n, E c);
basic_string& append(const_iterator first, const_iterator last);

In the following example, we use the first versions that takes a string variable as
argument and add the value of that argument to the right side of the string variable that
called it. After this version executes, it modifies the value of the string that made the call:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 string Make = "Ford ";
 string Model = "Explorer";

 string Car = Make.append(Model);
 int LengthCar = Car.length();

 int LengthMake = Make.length();
 int LengthModel = Model.length();

 pDC->TextOut(10, 10, Make.c_str(), LengthMake);
 pDC->TextOut(10, 30, Model.c_str(), LengthModel);
 pDC->TextOut(10, 50, Car.c_str(), LengthCar);
}

If you want to append only a specific number of characters, use the second version of the
append() method.

9.3 The Characters of a String

9.3.1 Access to Characters
As mentioned earlier, the characters of a null-terminated string are stored in an array. To
access an individual character of a null-terminated string, use the square brackets
operator. For example, if you had declared and initialized a string using

char FirstName[] = _T("Arsene");

you can access the third character using FirstName[2];

The strchr() function looks for the first occurrence of a certain character in a null-
terminated string. Its syntax is:

Chapter 9 Strings Visual C++ and MFC Fundamentals

260 © FunctionX, Inc.

char* strchr(const char* S, char c);

This function takes two arguments. The second argument, c, specifies what character to
look for in the first argument, S, which is a string. If character c appears in string S, the
function would return a new string whose value starts at the first occurrence of c in S. If
the character c does not appear in the string S, then the function would return NULL.

The strrchr() function examines a string starting at the end (right side) of the string and
looks for the first occurrence of a certain character. Its syntax is:

char* strrchr(const char* S, char c);

The first argument is the string that needs to be examined. The function will scan string S
from right to left. Once it finds the first appearance of the character c in the string, it
would return a new string whose value starts at that first occurrence. If the character c
does not appear in the string S, then the function would return NULL.

9.3.2 Sub-Strings
The strstr() function looks for the first occurrence of a sub-string in another string and
returns a new string as the remaining string. Its syntax is:

char* strstr(const char* Main, const char *Sub);

The first argument of the function is the main string that would be examined. The
function would look for the second argument, the Sub string appearance in the Main
string. If the Sub string is part of the Main string, then the function would return a string
whose value starts at the first appearance of Sub and make it a new string. If Sub is not
part of the Main string, the function would return a NULL value.

9.4 The CString Class

9.4.1 Introduction
The MFC library provides its own data types and a class for string manipulation. The
class is called CString . To declare a string with the CString class, you can use one of its
constructors. To initialize a string when declaring it, you can pass a string to one of the
following constructors:

CString(const unsigned char* psz);
CString(LPCWSTR lpsz);
CString(LPCSTR lpsz);

These constructors take a null-terminated string as argument. Once the variable has been
declared, an amount of memory space is assigned for its use. If for any reason the
memory or enough memory could not be allocated, an exception would occur. If the
space allocated for the variable is higher than necessary, at any time, you can reduce it by
calling the CString::FreeExtra() method. Its syntax is:

void FreeExtra();

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 261

9.4.2 String Initialization
So, to deaclare and initialize a CString variable, you can use one of the above
constructors. Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString Term("Information Superhighway");

 pDC->TextOut(20, 20, Term);
}

The above constructors mainly allow you to supply a null-terminated string as the initial
value of the variable. In fact, you can first declare a null-terminated C string and pass it
as argument to the constructor to initialize the string. Here is an exa mple:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 const char *Ville("Antananarivo");
 CString Capital(Ville);

 pDC->TextOut(10, 20, Ville);
 pDC->TextOut(10, 40, Capital);
}

You can also create a string using the String Table and specifying its value. To initialize a
CString variable for such a string, call the CString::LoadString() method. Its syntax is:

BOOL LoadString(UINT nID);

The nID argument is the identifier of the item created in the String Table

9.4.3 The String and its Length
After initializing a string, it assumes a length that represents its number of characters. To
get the length of a string, you can call the CString::GetLength() method whose syntax
is:

int GetLength() const;

However you have declared and initialized the CString variable using one of the above
constructors, if you want to retrieve the value stored in the variable, you can call the
CString::GetBuffer() method. Its syntax is:

LPTSTR GetBuffer(int nMinBufLength);

The nMinBufLength argument specifies the minimum number of characters to consider
from the string. Here is an example:

void CExerciseView::OnDraw(CDC* pDC)

Chapter 9 Strings Visual C++ and MFC Fundamentals

262 © FunctionX, Inc.

{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString Country("Cote d'Ivoire");
 const char *Area = Country.GetBuffer(2);

 pDC->TextOut(10, 10, Country);
 pDC->TextOut(10, 30, Area);
}

If you want to specify the number of characters to consider when retrieving the buffer,
use the CString::GetBufferSetLength() method. Its syntax is:

LPTSTR GetBufferSetLength(int nNewLength);

The nNewLength argument specifies the new length of the buffer.

To declare a CString variable that has a single character, use the following constructor:

CString(TCHAR ch, int nRepeat = 1);

The character can be included between single-quotes. Here is an example:

void CExoView::OnDraw(CDC* pDC)
{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString Letter('A');

 pDC->TextOut(20, 22, Letter);
}

If you want the character to be repeated more than once, you can pass a second argument
as nRepeat that holds the number of times that the ch character must be repeated. Here is
an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString Letter('A');
 pDC->TextOut(20, 20, Letter);

 CString Character('$', 25);
 pDC->TextOut(20, 40, Character);

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 263

}

9.5 Working with Individual Characters

9.5.1 Character Indexing
The characters or symbols that compose a CString variable are stored in an array of
characters. To get to the character or symbol at a specific position, you can use the square
brackets, the same way you would proceed for an array. This is possible because the
square bracket operator is loaded for the CString class:

TCHAR operator [](int nIndex) const;

Like an array, the characters of a CString value are stored in a 0-based index, meaning
the first character is at index 0, the second at 2, etc. Imagine you have a string declared
and initialized as:

CString Capital(“Antananarivo”);

To get the 5th character of this string, you could write:

CString Fifth = Capital[4];

Here si an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString Capital("Antananarivo");
 CString Fifth = Capital[4];

 pDC->TextOut(10, 20, Capital);
 pDC->TextOut(10, 40, Fifth);
}

Besides the square brackets, to access the character stored at a certain position in a string,
you can call the GetAt(). Its syntax is:

TCHAR GetAt(int nIndex) const;

Here is an example of using it :

Chapter 9 Strings Visual C++ and MFC Fundamentals

264 © FunctionX, Inc.

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString Capital("Antananarivo");
 CString Fifth = Capital.GetAt(4);

 pDC->TextOut(10, 20, Capital);
 pDC->TextOut(10, 40, Fifth);
}

9.5.2 Character Insertion
As stated already, a CString value is in fact an array of characters. This allows you to
locate a position in the string and change its character. To do this, you can use the
SetAt() method. Its syntax is:

void SetAt(int nIndex, TCHAR ch);

Here is an example:

#include <afxwin.h>
#include <iostream>
using namespace std;

int main()
{
 CString Object("Wall");

 cout << "Object: " << (LPCTSTR)Object << endl;
 Object.SetAt(1, 'e');
 cout << "Name: " << (LPCTSTR)Object << endl;

 return 0;
}

9.5.3 Finding a Character
Scanning a string consists of visiting or examining each one of its characters. One of the
reasons you would do this is to look for a particular character that may be part of the
string.

To scan a string for a character, you can call the CString::Find() method. It is
overloaded as follows:

int Find(TCHAR ch) const;
int Find(TCHAR ch, int nStart) const;

To look for a single character in the string, pass a character value or variable as argument.
In this case, the string would be examined from the most left character to the right. If you
want the scanning to start at a certain position instead of from the most left character,
besides the character to look for, pass a second argument as nStart. If the character is

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 265

found in the string, this method returns the position of its first occurrence. If you want the
get the last occurrence of the character, call the ReverseFind() instead. Its syntax is:

int ReverseFind(TCHAR ch) const;

These two versions of the Find() method are used to find a particular character in a
string. Alternatively, you can specify a group of characters and try to find, at least, any
one of them in the string. This operation is performed using the FindOneOf() method. Its
syntax is:

int FindOneOf(LPCTSTR lpszCharSet) const;

The lpszCharSet argument is passed as a string which is a group of characters in any
order. If the compiler finds any character of the lpszCharSet argument in the string, it
returns its position. If none of the lpszCharSet characters is in the string, this method
returns –1.

9.5.4 Character Identification
Every time the user types a character in a text -based control, this is referred to as a
keystroke. When performing data entry, even if the user presses two keys simultaneously
(to enter an uppercase letter or to type a special character), only one character is entered
at a time. You can find out what character the user had entered in your application using
appropriate functions. Some functions are used to categorize the types of characters on
the keyboard. The functions used for these validations are as follows:

Function Meaning
int isalpha(int c); Returns true if c is an alphabetic character. Otherwise, returns false
int islower(int c); Returns true if c is an alphabetic character in lowercase. Otherwise,

returns false.
int isupper(int c); Returns true if c is an alphabetic character in uppercase. Otherwise,

returns false
int isdigit(int c); Returns true if c is a digit. Otherwise, returns false
int isxdigit(int c); Returns true if c is a hexadecimal digit. c must be one of the

following 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, or
F. Otherwise, returns false.

int isalnum(int c); Returns true is c is between 0 and 9 or if c is between a and z or if c
is between A and Z. Otherwise, returns false.

int isascii(int c); Returns true if c is an ASCII character. Otherwise, returns false
int ispunct(int c); Returns true if c is a punctuation character. Otherwise, returns false.
int isprint(int c); Returns true if c is a printable character. Otherwise, returns false.
int isgraph(int c); Returns true if c is a printable character and is not an empty space.
int isspace(int c); Returns true if c is an empty space

9.5.5 Removing Characters
Besides the CString::SetAt() method, you can also use the Replace() method to replace
a character of the string with another character. The syntax of the Replace() method is:

int Replace(TCHAR chOld, TCHAR chNew);

The Replace() method replaces each occurrence of the chOld argument. Whenever it
finds it, it replaces it with the chNew character.

Chapter 9 Strings Visual C++ and MFC Fundamentals

266 © FunctionX, Inc.

9.6 Sub Strings

9.6.1 Introduction
A sub string is a character or a group of characters that is part of another string.
Therefore, to create a string, you must first have a string as basis.

When declaring and initializing a CString variable, although you can provide as many
characters as posible, you may want the variable to actually hold only part of the string
value. Based on this, to create a sub string when declaring a CString variable, you can use
the following constructor:

CString(LPCTSTR lpch, int nLength);

When using this constructor, provide the whole string as a the null-terminated lpch string.
To specify the number of characters for the sub string variable, provide an integer value
for the nLength argument. Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString CofV = "Commonwealth of Virginia";
 CString Sub(CofV, 12);

 pDC->TextOut(10, 20, Sub);
}

As you may realize from this constructor, its sub string is built from the left side of the
string and starts counting characters towards the right. Once it reaches the nLength
number of characters, it creates the new string and ignores the characters beyond
nLength.

If the string has already been initialized and you want to create a sub string made of some
characters from its left side, you can call the CString::Left() method. Its syntax is:

CString Left(int nCount) const;

This method starts counting characters from the left to nCount characters and returns a
new string made of those nCount characters. Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 267

 CString Common = "Commonwealth of Virginia";
 CString Sub = Common.Left(12);

 pDC->TextOut(10, 20, Sub);
}

As the Left() method considers the characters from the left position, if you want the
characters of the end of a string, you can call the CString::Right() to create a new string.
Its syntax is:

CString Right(int nCount) const;

Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString Common = "Commonwealth of Virginia";
 CString Sub = Common.Right(8);

 pDC->TextOut(10, 20, Sub);
}

Alternatively, you can create a sub string using any range of characters from a string. To
do this, call the CString::Mid() method whose syntaxes are:

CString Mid(int nFirst) const;
CString Mid(int nFirst, int nCount) const;

To create the sub string start from any character in the string, use the first version whose
nFirst argument specifies where the new string would start. In this case, the method
would return a string made of characters from the nFirst position to the last character of
the string.

To create a sub string using a specific number of characters, use the second version. The
nFirst argument specifies where the new string would start. The nCount argument is the
number of characters that would be used from the main string to create the new string.

9.6.2 Finding a Sub String
To scan a string for a group of characters, you can call the following versions of the
CString::Find() method:

int Find(LPCTSTR lpszSub) const;
int Find(LPCTSTR pstr, int nStart) const;

To find a sub string in a string, pass the desired sub string as the lpszSub argument. As
done with the single character, you can specify the position to start looking by providing
a second argument as nStart and use the fourth version of this method. If the sub string is
found, this method returns the position of its first character in the string.

If the character or the sub string is not found, the method returns –1.

Chapter 9 Strings Visual C++ and MFC Fundamentals

268 © FunctionX, Inc.

9.6.3 Character and String Removal
Besides the CString(LPCTSTR lpch, int nLength) constructor, the Left(), the Mid(),
and the Right() method, another technique you can use to create a sub string consists of
deleting characters from an existing string. This can be done by calling the
CString::Delete() method. Its syntax is:

int Delete(int nIndex, int nCount = 1);

The nIndex argument specifies the first character of the range. If you pass only this
argument, only the character at position nIndex will be deleted. If you want to delete
more than one character, pass the desired number as the nCount argument. If the value of
nCount is higher than the remaining number of characters from nIndex position, all
characters to the right will be deleted.

If you want to remove all occurrences of a particular character in a string, you can call the
Remove() method. Its syntax is:

int CString::Remove(TCHAR ch);

This method scans the string looking for the ch character. Whenever it finds it, it deletes
it. This operation is performed using case sensitivity. This means that only the exact
match with case of ch would be deleted.

9.6.4 Replacing String Occurrences
Besides the CString::SetAt() method, you can also use the Replace() method to replace
a character of the string with another character. The syntaxes of the Replace() method
are:

int Replace(TCHAR chOld, TCHAR chNew);
int Replace(LPCTSTR lpszOld, LPCTSTR lpszNew);

The Replace() method replaces each occurrence of the chOld argument. Whenever it
finds it, it replaces it with the chNew character. Here is an example:

void CExerciseDlg::OnMsgBox()
{
 // TODO: Add your control notification handler code here
 CString Msg("The name you entered is not in our records.\n"
 "If you think there is a mistake, please contact HR.\n"
 "You can also send an email to humanres@functionx.com");
 Msg.Replace("HR", "Human Resources");
 Msg.Replace(".com", ".net");

 MessageBox(Msg, "Failed Logon Attempt");
}

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 269

9.6.5 String Formatting
The sprintf() function we reviewed earlier is provided by the C/C++ language. The
CString class provides its own function for formatting a string. This is done using the
CString::Format() whose syntax are:

void Format(LPCTSTR lpszFormat, ...);
void Format(UINT nFormatID, ...);

The lpFormat argument follows the exact same rules as the second argument to the
sprintf() function seen earlier. The nFormatID argument is an identifier that can have
been created using the String Table

The third and subsequent arguments follow the same rules as the … argument of the
sprintf() function. There are many examples of the CString::Format() method in this
book.

While the sprintf() function and the CString::Format() methods follow the order of the
%Character combinations to format a message, the CString class provides a method that
can also be used to format a string but it allows you to list the parameters if the order of
your choice.

Here is an example:

void CExerciseDlg::OnMsgBox()
{
 // TODO: Add your control notification handler code here
 const char *DeptToContat = "Human Resources";
 const char EmailContact[] = "humanres@functionx.net";
 const int StartShift = 8;
 const int EndShift = 6;
 CString Msg;

 Msg.Format("The name you entered is not in our records.\n"
 "If you think there is a mistake, please contact %s "
 "every week day from %d AM to %d PM.\n"
 "You can also send an email to %s",
 DeptToContat, StartShift, EndShift, EmailContact);

 MessageBox(Msg, "Failed Logon Attempt");
}

Chapter 9 Strings Visual C++ and MFC Fundamentals

270 © FunctionX, Inc.

9.7 Operations on Strings

9.7.1 About Constructing a String
The constructors we have used so far were meant to initialize a string when declaring it.
Normally, if you do not have an initial value when declaring the string variable, you can
use the default constructor:

CString();

The default constructor is used to declare an empty string that can be initialized later on.
If thevariable already contains a value but you want it to be empty, you can call the
CString::Empty() method. Its syntax is:

void Empty();

This method removes all characters, if there are any, from a string variable and restores
the memory it was using. If you think the string contains empty spaces to its left side and
you think this could compromise an operation on the string, to remove such empty
spaces, call the TrimLeft() method whose syntax is:

void TrimLeft();

To remove empty spaces from the right side of a string, call the TrimRight() method. Its
syntax is:

void TrimRight();

If at one time you want to find out whether a string is empty or not, call the
CString::IsEmpty() method. Its syntax is:

BOOL IsEmpty() const

This method returns TRUE if the string is empty. Otherwise, it returns FALSE.

9.7.2 String Assignment
We saw earlier that you can declare an empty CString variable using the default
constructor. To initialize it, you can assign it a string value of your choice. Here is an
example:

void CExoView::OnDraw(CDC* pDC)

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 271

{
 CExoDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString Term = "Information Superhighway";

 pDC->TextOut(20, 22, Term);
}

9.7.3 String Copy
Making a copy of a string consists of providing its value to another string. If you already
have a CString initialized and you want to copy its value into another CString variable,
you can use the following constructor:

CString(const CString& stringSrc);

This constructor is used to declare a CString variable and provide it with the value of
another CString variable. Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString Term = "Information Superhighway";
 CString Description(Term);

 pDC->TextOut(20, 22, Description);

}

9.7.4 Strings and Their Cases
In US English, the following alphabetical letters are referred to as lowercase a, b, c, d, e,
f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z. Their equivalents in uppercase are A,
B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z. The digits 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, and the other characters are considered “as is”.

To convert a lowercase CString variable to uppercase, you can call the MakeUpper()
method. Its syntax is:

void MakeUpper();

When executed, this method would examine each character of the string. If a character is
a lowercase letter, it would be converted to uppercase. If a character is already in
uppercase, it be left in uppercase. If the character is not a letter, it would be left intact. On
the other hand, to convert the characters of a string to lowercase, call the MakeLower()
method. Its syntax is:

void MakeLower();

Chapter 9 Strings Visual C++ and MFC Fundamentals

272 © FunctionX, Inc.

If a character is an uppercase letter, it would be converted to lowercase. If a character is
already in lowercase, it be left in lowercase. The digits and other characters are left “as
is”.

9.8 String Comparisons

9.8.1 Case Sensitivity
String comparison consists of finding out whether the values of two strings are identical
or not. Toperform such a comparison, the CString class provides the Collate() method.
Its syntax is:

int Collate(LPCTSTR lpsz) const;

The string that called this method is compared with the lpsx argument, character by
character and with regards to the case of each combination of charcaters. To perform the
comparison, this method refers to the Regional Settings of Control Panel on the user’s
computer concerning the numeric, the date, the time, and the currency systems used

The comparison starts with the left character for most latin languages, including US
English:

?? If the character at the first position ([0]) of the string (the string that called this
method) has the same ANSI value as the first character at position [0] of the
other string (the lpsz argument), the method skips this position and continues the
comparison with the next position of characters. If all characters of the
corresponding positions of both strings are exactly the same as set on the ANSI
map, this method returns 0, meaning the strings are equal

?? If a character at one position x has an ANSI value higher than the corresponding
character at the same position x on the other string, the method returns a positive
value and stops the comparison

?? If a character at one position x has an ANSI value lower than the corresponding
character at the same position x on the other string, the method returns a
negative value and stops the comparison

Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString CS = "Charles Stanley";
 CString AS = "charles Stanley";

 int Result = CS.Collate(AS);

 if(Result > 0)
 pDC->TextOut(10, 20, "Charles Stanley is Higher than charles Stanley");
 else if(Result == 0)
 pDC->TextOut(10, 20, "Charles Stanley and charles Stanley are equal");
 else // if(Result < 0)
 pDC->TextOut(10, 20, "Charles Stanley is Lower than charles Stanley");

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 273

}

Besides the Collate() method, the CString class provides the Compare() method to
perform a case-sensitive comparison of characters of two strings. Its syntax is:

int Compare(LPCTSTR lpsz) const;

This method compares the character at a position x to the character at the same position x
of the other, lpsz, string. The approach used to perform the comparisons is the same with
the difference that the Compare() method does not refer the user’s Regional Settings.

9.8.2 Case Insensitivity
As seen above, the Collate() method considers the cases of characters during comparison
and refers to the Regional Settings of the user. If you just want a simple comparison to
find if two strings are identical regardless of the cases of their characters, you can call the
CString::CollateNoCase() method. Its syntax is;

int CollateNoCase(LPCTSTR lpsz) const;

This member function considers that the alphabet is made of characters of a single case,
implying that the character a is exactly the same as the character A. The other symbols
and digits are considered “as is”. It proceeds as follows:

?? The character at a position x of one string is compared with the corresponding
character at the same position on the other string. If both characters are the
same, the comparison continues with the next character. If all characters at the
same positions on both strings are the same and the strings have the same length,
this method returns 0, indicating that the strings are identical:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString CS = "Charles Stanley";
 CString AS = "charles Stanley";

 int Result = CS.CollateNoCase(AS);

 if(Result > 0)
 pDC->TextOut(10, 20, "Charles Stanley is Higher than charles Stanley");
 else if(Result == 0)
 pDC->TextOut(10, 20, "Charles Stanley and charles Stanley are equal");
 else // if(Result < 0)
 pDC->TextOut(10, 20, "Charles Stanley is Lower than charles Stanley");
}

Chapter 9 Strings Visual C++ and MFC Fundamentals

274 © FunctionX, Inc.

?? If a character at one position x has an ordered value higher than the
corresponding character at the same position x on the other string, the method
returns a positive value and stops the comparison

?? If a character at one position x has an ordered value lower than the
corresponding character at the same position x on the other string, the method
returns a negative value and stops the comparison

Here is an example:

void CExerciseView::OnDraw(CDC* pDC)
{
 CExerciseDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CString YS = "Jeremy Stanley";
 CString IS = "Jeremie Andy";

 int Result = YS.CollateNoCase(IS);

 if(Result > 0)
 pDC->TextOut(10, 20, "Jeremy Stanley is Higher than Jeremie Stanley");
 else if(Result == 0)
 pDC->TextOut(10, 20, "Jeremy Stanley and Jeremie Stanley are equal");
 else // if(Result < 0)
 pDC->TextOut(10, 20, "Jeremy Stanley is Lower than Jeremie Stanley");
}

Alternatively, to perform case-insensitive string comparison on CString variables, you
can use the CompareNoCase() method. Its syntax is:

int CompareNoCase(LPCTSTR lpsz) const;

The Comp areNoCase() method does not refer to the user’s Regional Settings when
performing its comparison.

Besides the CollateNoCase() and the CompareNoCase() methods, the CString class
provides an easier and probably more familiar means of performing value comparisons.
Character insensitive comparisons on CString variables can be performed using Boolean
operators ==, !=, <, <=, >, >=. Any of these operators can be applied on two CString

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 275

variables or a combination of a CString and a null-terminated string variables. The
operators are overloaded as follows:

BOOL operator ==(const CString& s1, const CString& s2);
BOOL operator ==(const CString& s1, LPCTSTR s2);
BOOL operator ==(LPCTSTR s1, const CString& s2);
BOOL operator !=(const CString& s1, const CString& s2);
BOOL operator !=(const CString& s1, LPCTSTR s2);
BOOL operator !=(LPCTSTR s1, const CString& s2);
BOOL operator <(const CString& s1, const CString& s2);
BOOL operator <(const CString& s1, LPCTSTR s2);
BOOL operator <(LPCTSTR s1, const CString& s2);
BOOL operator >(const CString& s1, const CString& s2);
BOOL operator >(const CString& s1, LPCTSTR s2);
BOOL operator >(LPCTSTR s1, const CString& s2);
BOOL operator <=(const CString& s1, const CString& s2);
BOOL operator <=(const CString& s1, LPCTSTR s2);
BOOL operator <=(LPCTSTR s1, const CString& s2);
BOOL operator >=(const CString& s1, const CString& s2);
BOOL operator >=(const CString& s1, LPCTSTR s2);
BOOL operator >=(LPCTSTR s1, const CString& s2);

These operators work exactly as you are used to dealing with conditional statements
except that the operands must be string values.

Chapter 9 Strings Visual C++ and MFC Fundamentals

276 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 10: Characteristics of a Window's Frame

© FunctionX, Inc. 277

Chapter 10:
Characteristics of a Window's
Frame

? Overview of Windows Frames

? Window Creation

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

278 © FunctionX, Inc.

10.1 Introduction to Win32 Library

10.1.1 Overview
Win32 is a library made of data types, variables, constants, functions, and classes (mostly
structures) that can be used to create applications for the Microsoft Windows operating
systems. A typical application is made of at least two objects: a control and a host object
on which the control is positioned.

To create a Win32 application using Microsoft Visual C++, display the New (5 and 6
versions) or New Project (7 version) dialog box and select Win32 application (5 and 6) or
Win32 Project (7) item.

Just like a C++ program always has a main() function, a Win32 program uses a central
function called WinMain. The syntax of that function is:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow);

Unlike the C++ main() function, the arguments of the WinMain() function are not
optional. Your program will need them to communicate with the operating system.

To create an application using the Microsoft Foundation Class (MFC) library, we have
seen that we can create a class derived from CWinApp. The CWinApp class implements
the role of the WinMain() function. To provide functionality as complete as possible, this
class is equipped with appropriate variables and methods.

Pratical Learning: Exploring the Win32 Library
1. Start Microsoft Visual C++ or Visual Studio and display either the New dialog box

and its Projects property page (MSVC 6) or the New Project dialog box (MSVC 7)

2. Set the Project Type as either Win32 Application or Win32 Project

3. Set the name as Win32B and click OK

4. Set the project as An Empty Project for a Windows Application and click Finish

5. Create a C++ Source File named Exercise

6. In the empty file, type:

#include <windows.h>

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 return 0;
}

7. Save All

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 279

10.1.2 The Framework
Instead of creating an application using "raw" Win32 classes and functions, the
document/view architecture simplifies this process by providing a mechanism called the
framework. The framework is a set of classes, functions, and techniques used to create an
application as complete as possible with as few lines of code as possible. To provide all
this functionality, the framework works behind the scenes with the CWinApp class to
gather the necessary MFC classes and functions, to recognize and reconcile the Win32
classes that the application needs. This reconciliation is also made possible by a set of
global functions. These functions have names that start with Afx... Some of these
functions are:

?? AfxFormatString1
?? AfxFormatString2
?? AfxMessageBox
?? AfxFreeLibrary
?? AfxGetApp
?? AfxGetAppName
?? AfxGetInstanceHandle
?? AfxGetMainWnd
?? AfxGetResourceHandle
?? AfxInitRichEdit
?? AfxLoadLibrary
?? AfxMessageBox
?? AfxRegisterWndClass
?? AfxSocketInit
?? AfxSetResourceHandle
?? AfxRegisterClass
?? AfxBeginThread
?? AfxEndThread
?? AfxGetThread
?? AfxWinInit

So far, we have seen that, after an application is created by deriving a class from
CWinApp, you must declare a global variable of your application class to make it
available to the rest of your application. An example of declaring that variable is:

CExerciseApp theApp;

To get a pointer to this variable from anywhere in your application, call the AfxGetApp()
function. Its syntax is:

CWinApp* AfxGetApp();

To implement the role of the Win32's WinMain() function, the framework uses its own
implementation of this function and the MFC provides it as AfxWinInit(). It is declared
as follows:

BOOL AFXAPI AfxWinInit(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPTSTR lpCmdLine, int nCmdShow);

As you can see, the Win32's WinMain() and the MFC's AfxWinInit() functions use the
same arguments.

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

280 © FunctionX, Inc.

10.1.3 A Window's Instance
When you start an application such as Notepad, you are said to have created an instance
of the application. In the same way, when you declare a variable of a class, an instance of
the class is created and made available to the project. The WinMain() function also
allows you to create an instance of an application, referred to as the hInstance argument
of the WinMain() function. The instance is created as an HINSTANCE.

The CWinApp class provides a corresponding instance variable called m_hInstance.
This variable can let you get a handle to the instance of your application. Alternatively, to
get a handle to the instance of your application, you can call the
AfxGetInstanceHandle() global function. Its syntax is:

HINSTANCE AfxGetInstanceHandle();

Even more, to get a handle to your application, you can call the Win32 API’s
GetWindowLong() function.

Suppose you have opened Notepad to view the source code of an HTML document. This
is said that you have an instance of Notepad. Imagine that you want to open a text
document using Notepad without closing the first instance of Notepad. To do this, you
must open another copy of Notepad. This second copy of Notepad is another instance. In
this case, the first instance is referred to as a previous instance. For a Win32 application,
the previous instance would be the hPrevInstance argument of the WinMain() function.
For a Win32 application, the hPrevInstance argument always has the NULL value. If you
want to find out whether a previous instance of an application already exists, you can call
the CWnd::FindWindow() method. Its syntax is:

static CWnd* PASCAL FindWindow(LPCTSTR lpszClassName, LPCTSTR lpszWindowName);

If you created the window or if it is a window you know for sure, in which case it could
be a WNDCLASS or WNDCLASSEX object, specify it as the lpszClassName
argument. If you do not know its name with certainty, set this argument as NULL.

The lpszWindowName argument is the possible caption of the window you are looking
for. Imagine you position a button on a dialog box and you want the user to launch
Notepad with that button and imagine that, if Notepad is already opened, there would be
no reason to create another instance of it. In the following code, when the user clicks the
button, the application checks if Notepad is already opened and displays a message
accordingly:

void CFindWindowDlg::OnFindNotepad()
{
 // TODO: Add your control notification handler code here
 CWnd *ExistsAlready = FindWindow(NULL, "Untitled - Notepad");

 if(ExistsAlready)
 AfxMessageBox("An instance of Notepad is already available");
 else
 AfxMessageBox("No instace of Notepad could be found");
}

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 281

10.1.4 The Command Line
To execute a program, you must communicate its path and possibly some additional
parameters to the compiler. This information is called the command line information and
it is supplied as a string. You need to keep that in mind although all programs of this
book will be compiled inside of Visual C++. The command line information is supplied
to the compiler as the lpCmdLine argument of the WinMain() function. Internally, Visual
C++ creates the path and communicates it to the compiler when you execute the program.
If you want to find out what command line was used to execute your program, you can
call the Win32's GetCommandLine() function. Its syntax is:

LPTSTR GetCommandLine(VOID);

This function takes no argument but returns the command line of an application as null-
terminated string. Here is an example:

void CCommandLineDlg::OnBtnCmdLine()
{
 // TODO: Add your control notification handler code here
 char CmdLine[80];
 char CmdResult[80];

 strcpy(CmdLine, GetCommandLine());
 sprintf(CmdResult, "%s", CmdLine);
 m_CommandLine.Format("%s", CmdResult);

 UpdateData(FALSE);
}

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

282 © FunctionX, Inc.

10.1.5 Frame Display Options
The nCmdShow argument of the WinMain() function specifies whether and how you
want to display the window when the user attempts to open it. This is a constant value
that is actually passed to a function that is in charge of displaying the window.

Its possible values are:

Value Description
SW_SHOW Displays a window and makes it visible
SW_SHOWNORMAL Displays the window in its regular size. In most

circumstances, the operating system keeps track of the
last location and size a window such as Internet
Explorer or My Computer had the last time it was
displaying. This value allows the OS to restore it.

SW_SHOWMINIMIZED Opens the window in its minimized state, representing
it as a button on the taskbar

SW_SHOWMAXIMIZED Opens the window in its maximized state
SW_SHOWMINNOACTIVE Opens the window but displays only its icon. It does

not make it active
SW_SHOWNA As previous
SW_SHOWNOACTIVATE Retrieves the window's previous size and location and

displays it accordingly
SW_HIDE Used to hide a window
SW_MINIMIZE Shrinks the window and reduces it to a button on the

taskbar
SW_MAXIMIZE Maximizes the window to occupy the whole screen

area
SW_RESTORE If the window was minimized or maximized, it would

be restored to its previous location and size

One of the ways you can use this value is to pass it to the WinExec() Win32 function
which can be used to open an application. The syntax of this function is:

UINT WinExec(LPCSTR lpCmdLine, UINT nCmdShow);

The lpCmdLine argument is a null-terminated string that specifies either the name of the
application or its complete path.

In the following example, the SW_MAXIMIZE nCmdShow value is passed to the
WinExec() function to open Solitaire maximized:

void CWindowDlg::OnOpenSolitaire()
{
 WinExec("SOL.EXE", SW_MAXIMIZE);
}

10.1.6 Window Class Initialization
A win32 application is built using either the WNDCLASS or the WNDCLASSEX
classes.

The WNDCLASS class is defined as follows:

typedef struct _WNDCLASS {
 UINT style;

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 283

 WNDPROC lpfnWndProc;
 int cbClsExtra;
 int cbWndExtra;
 HINSTANCE hInstance;
 HICON hIcon;
 HCURSOR hCursor;
 HBRUSH hbrBackground;
 LPCTSTR lpszMenuName;
 LPCTSTR lpszClassName;
} WNDCLASS, *PWNDCLASS;

If you are creating an MFC application, you can declare a WNDCLASS variable in your
frame constructor. Here is an example:

#include <afxwin.h>

// The application class
class CExerciseApp : public CWinApp
{
public:
 // Used to instantiate the application
 BOOL InitInstance();
};

// The class that displays the application's window
// and gives it "physical" presence (Real Estate)
class CMainFrame : public CFrameWnd
{
public:
 // The window class will be created in this constructor
 CMainFrame();
};

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;
}

BOOL CExerciseApp::InitInstance()
{
 // Initialize the main window object
 m_pMainWnd = new CMainFrame();

 // Hoping everything is fine, return TRUE
 return TRUE;
}

// The global application object
CExerciseApp theApp;

Upon declaring a WNDCLASS variable, the compiler allocates an amount of memory
space for it, as it does for all other variables. If you think you will need more memory
than allocated, assign the number of extra bytes to the cbClsExtra member variable.
Otherwise, the compiler initializes this variable to 0. If you do not need extra memory for
your WNDCLASS variable, initialize this member with 0. If you are creating an MFC
application, you can omit initializing the cbClsExtra member variable. Otherwise, you
can do it as follows:

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

284 © FunctionX, Inc.

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;

 WndCls.cbClsExtra = 0;
}

Creating an application, as we saw earlier, is equivalent to creating an instance for it. To
communicate to the WinMain() function that you want to create an instance for your
application, which is, to make it available as a resource, assign the WinMain()'s hInstance
argument to your WNDCLASS variable. We saw earlier that, to get an instance for your
application, you can call the AfxGetInstanceHandle(). You can use the return value of
this function to initialize the hInstance member variable of your WNDCLASS object:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;

 WndCls.cbClsExtra = 0;
 WndCls.hInstance = AfxGetInstanceHandle();
}

If you omit doing this, the framework would initialize it with the main instance of the
application. For this reason, you do not have to initialize the WNDCLASS::hInstance
variable.

When an application has been launched and is displaying on the screen, which means an
instance of the application has been created, the operating system allocates an amount of
memory space for that application to use. If you think that your application's instance
would need more memory than that, you can request that extra memory bytes be
allocated to it. Otherwise, you can let the operating system handle this instance memory
issue and initialize the cbWndExtra member variable to 0. For an MFC application, if you
want to specify the amount of extra memory your application's instance would need,
assign the desired number the same way:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;

 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = AfxGetInstanceHandle();
}

The style member variable specifies the primary operations applied on the window class.
The actual available styles are constant values. For example, if a user moves a window or
changes its size, you would need the window to be redrawn to get its previous
characteristics. To redraw the window horizontally, you would apply the
CS_HREDRAW. In the same way, to redraw the window vertically, you can apply the
CS_VREDRAW.

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 285

The styles are combined using the bitwise operator OR (|). The CS_HREDRAW and the
CS_VREDRAW styles can be combined and assigned to the style member variable as
follows:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;

 WndCls.style = CS_VREDRAW | CS_HREDRAW;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = AfxGetInstanceHandle();
}

On a regular basis, while the application is running, its controls will receive instructions
from the user. This happens when the user clicks a mouse button or presses a keyboard
keys. These actions produce messages that must be sent to the operating system to do
something. Since there can be various messages for different reasons at any time, the
messages are processed in a global function pointer called a window procedure. To define
this behavior, you can create a pointer to function, also called a callback function. In this
case, the function must return a 32-bit value specially intended for window procedures. It
is called LRESULT. The name of the function is not important but it must carry some
required pieces of information that make a message relevant and complete. For a Win32
application, the message must provide the following four pieces of information:

?? The control that sent the message: Every object you will need in your program,
just like everything in the computer, must have a name. The operating system
needs this name to identify every object, for any reason. An object in Microsoft
Windows is identified as a Handle. For Win32 controls, the handle is called
HWND

?? The type of message: The object that sends a message must let the operating
system know what message it is sending. As we saw in Lesson 4 on Messages,
there are various types of messages for different circumstances. Nevertheless, to
make matters a little easier, we saw that each message is a constant positive
natural number (unsigned int) identified with a particular name. The message
identifier is passed as UINT

?? Accompanying items: Because there are so many types of messages, you must
provide two additional pieces of information to help process the message. These
two items depend on the type of message and could be different from one type
of message to another. The first accompanying item is a 32-bit type (unsigned
int) identified as WPARAM. The second accompanying item is a 32-bit type of
value (long) identified as LPARAM. Remember that these two can be different
things for different messages. For a Win32 application, the messages can be
carried in a function defined as follows:

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam);

For a Win32 application, the hWnd argument is required because it specifies what
Windows control sent the message. On an MFC application, the class that manages the
controls knows what control sent the message, which means that you do not have to
specify the window handle. Therefore, the window procedure would be declared as
follows, omitting the HWND object because it is specified by the window that is sending
the message:

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

286 © FunctionX, Inc.

virtual LRESULT WindowProcedure(UINT message, WPARAM wParam, LPARAM lParam);

To process the messages, and because there can be so many of them, the window
procedure typically uses a switch control to list all necessary messages and process each
one in turn (some of the messages are those we reviewed in Lesson 4). After processing a
message, its case must return a value indicating whether the message was successfully
processed or not and how the message was processed.

Regardless of the number of messages you process, there will still be messages that you
did not deal with. It could be because they were not sent even though they are part of the
Windows control(s) used in your application. If you did not process some messages, you
should/must let the operating system take over and process it. This is done because the
operating system is aware of all messages and it has a default behavior or processing for
each one of them. Therefore, you should/must return a value for this to happen. The value
returned is typically placed in the default section of the switch condition and must simply
be a DefWindowProc() function. For a Win32 application, its syntax is:

LRESULT DefWindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

For an MFC application, the syntax used for this function is:

virtual LRESULT DefWindowProc(UINT message, WPARAM wParam, LPARAM lParam);

This function is returned to Windows, saying "There are messages I couldn't process. Do
what you want with them". The operating system would simply apply a default
processing to them. The values returned by the DefWindowProc() function should be the
same passed to the procedure.

The most basic message you can process is to make sure a user can close a window after
using it. This can be done with a function called PostQuitMessage(). Its syntax is:

VOID PostQuitMessage(int nExitCode);

This function takes one argument which is the value of the LPARAM argument. To
close a window, you can pass the argument as WM_QUIT.

The name of the window procedure must be assigned to the lpfnWndProc member
variable of the WNDCLASS variable.

Because we are using MFC to visually build our applications, you usually will not need
to define a window procedure to process Windows messages, unless the control you are
using is lacking a message that you find relevant. The Windows controls we will use in
this book have messages and notifications that apply the most regular behaviors they
need to offer. If you do not process all messages of a control, which will happen most of
the time, their default behavior are part of the AfxWndProc procedure. Therefore, you
can simply assign it to the lpfnWndProc member variable of your WNDCLASS variable:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;

 WndCls.style = CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = AfxWndProc;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 287

 WndCls.hInstance = AfxGetInstanceHandle();
}

In Lesson 3, we saw that an icon can be used to represent an application in My Computer
or Windows Explorer. To assign this small picture to your application, you can either use
an existing icon or design your own. To make your programming a little faster, Microsoft
Windows installs a few icons. The icon is assigned to the hIcon member variable using
the LoadIcon() function. For a Win32 application, the syntax of this function is:

HICON LoadIcon(HINSTANCE hInstance, LPCTSTR lpIconName);

The hInstance argument is a handle to the file in which the icon was created. This file is
usually stored in a library (DLL) of an executable program. If the icon was created as part
of your application, you can use the hInstance of your application. If your are using one
of the icons below, set this argument to NULL.

The lpIconName is the name of the icon to be loaded. This name is added to the resource
file when you create the icon resource. It is added automatically if you add the icon as
part of your resources; otherwise you can add it manually when creating your resource
script. Normally, if you had created and designed an icon and gave it an identifier, you
can pass it using the MAKEINTRESOURCE macro.

To make your programming a little faster, Microsoft Windows installs a few icons you
can use for your application. These icons have identification names that you can pass to
the LoadIcon() function as the lpIconName argument. The icons are:

ID Picture
IDI_APPLICATION
IDI_INFORMATION
IDI_ASTERISK
IDI_QUESTION
IDI_WARNING
IDI_EXCLAMATION
IDI_HAND
IDI_ERROR

If you designed your own icon (you should make sure you design a 32x32 and a 16x16
versions, even for convenience), to use it, specify the hInstance argument of the
LoadIcon() function to the instance of your application. Then use the
MAKEINTRESOURCE macro to convert its identifier to a null-terminated string. This
can be done as follows:

WndCls.hIcon = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_STAPLE));

If you are creating an MFC application, to use a standard icon, you can call the
CWinApp::LoadIcon() method. It is provided in two versions as follows:

HICON LoadIcon(LPCTSTR lpszResourceName) const;
HICON LoadIcon(UINT nIDResource) const;

The icon can be specified by its name, which would be a null-terminated string passed as
lpszResourceName . If you had designed your icon and gave it an ID, you can pass this
identifier to the LoadIcon() method.

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

288 © FunctionX, Inc.

The LoadIcon() member function returns an HICON object that you can assign to the
hIcon member variable of your WNDCLASS object. Here is an example:

CMainFrame::CMainFrame()
{
 WNDCLASS WndCls;

 WndCls.style = CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = AfxWndProc;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = AfxGetInstanceHandle();
 WndCls.hIcon = LoadIcon(NULL, IDI_WARNING);
}

You can also declare an HICON handle and initialize it with
CWinApp::LoadStandardIcon() method as follows:

AfxGetApp()->LoadStandardIcon(StdIcon);

A cursor is used to locate the position of the mouse pointer on a document or the screen.
To use a cursor, call the Win32 LoadCursor() function. Its syntax is:

HCURSOR LoadCursor(HINSTANCE hInstance, LPCTSTR lpCursorName);

The hInstance argument is a handle to the file in which the cursor was created. This file is
usually stored in a library (DLL) of an executable program. If the cursor was created as
part of your application, you can use the hInstance of your application. If your are using
one of the below cursors, set this argument to NULL.

When Microsoft Windows installs, it also installs various standard cursors you can use in
your program. Each one of these cursors is recognized by an ID which is simply a
constant integers. The available cursors are:

ID Picture Description

IDC_APPSTARTING

Used to show that something undetermined is going on or the
application is not stable

IDC_ARROW

This standard arrow is the most commonly used cursor

IDC_CROSS
The crosshair cursor is used in various circumstances such as drawing

IDC_HAND

The Hand is standard only in Windows 2000. If you are using a
previous operating system and need this cursor, you may have to create
your own.

IDC_HELP
The combined arrow and question mark cursor is used when providing
help on a specific item on a window object

IDC_IBEAM
The I-beam cursor is used on text -based object to show the position of
the caret

IDC_ICON This cursor is not used anymore
IDC_NO

This cursor can be used to indicate an unstable situation

IDC_SIZE This cursor is not used anymore

IDC_SIZEALL
The four arrow cursor pointing north, south, east, and west is highly
used to indicate that an object is selected or that it is ready to be moved

IDC_SIZENESW
The northeast and southwest arrow cursor can be used when resizing an
object on both the length and the height

IDC_SIZENS
The north - south arrow pointing cursor can be used when shrinking or
heightening an object

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 289

heightening an object

IDC_SIZENWSE
The northwest - southeast arrow pointing cursor can be used when
resizing an object on both the length and the height

IDC_SIZEWE
The west - east arrow pointing cursor can be used when narrowing or
enlarging an object

IDC_UPARROW
The vertical arrow cursor can be used to indicate the presence of the
mouse or the caret

IDC_WAIT

The Hourglass cursor is usually used to indicate that a window or the
application is not ready

To use one of these cursors, if you are creating an MFC application, you can call the
CWinApp::LoadCursor() method to assign one of the above standard cursors to your
application. This method comes in two versions as follows:

HCURSOR LoadCursor(LPCTSTR lpszResourceName) const;
HCURSOR LoadCursor(UINT nIDResource) const;

The cursor can be specified using its name, which would be a null-terminated string
passed as lpszResourceName. If you had designed your cursor and gave it an ID, you can
pass this identifier to the LoadCursor() method.

The LoadCursor() member function returns an HCURSOR value. You can assign it to the
hCursor member variable of your WNDCLASS object. Here is an example:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;

 WndCls.style = CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = AfxWndProc;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = AfxGetInstanceHandle();
 WndCls.hIcon = LoadIcon(NULL, IDI_WARNING));
 WndCls.hCursor = LoadCursor(NULL, IDC_CROSS);
}

You can also call the CWinApp::LoadStandardCursor() method using the AfxGetApp()
function. Its syntax is:

HCURSOR LoadStandardCursor(LPCTSTR lpszCursorName) const;

To paint the work area of the window, you must specify what color will be used to fill it.
This color is created as an HBRUSH and assigned to the hbrBackground member
variable of your WNDCLASS object. The color you are using must be a valid HBRUSH
or you can cast a known color to HBRUSH. The Win32 library defines a series of colors
known as stock objects. To use one of these colors, call the GetStockObject() function.
For example, to paint the windows background in black, you can pass the
BLACK_BRUSH constant to the GetStockObject() function, cast it to HBRUSH and
assign the result to hbrBackground.

In addition to the stock objects, the Microsoft Windows operating system provides a
series of colors for its own internal use. These are the colors used to paint the borders of
frames, buttons, scroll bars, title bars, text, etc. The colors are named (you should be able
to predict their appearance or role from their name):

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

290 © FunctionX, Inc.

COLOR_ACTIVEBORDER,COLOR_ACTIVECAPTION,
COLOR_APPWORKSPACE, COLOR_BACKGROUND, COLOR_BTNFACE,
COLOR_BTNSHADOW, COLOR_BTNTEXT, COLOR_CAPTIONTEXT,
COLOR_GRAYTEXT, COLOR_HIGHLIGHT, COLOR_HIGHLIGHTTEXT,
COLOR_INACTIVEBORDER, COLOR_INACTIVECAPTION, COLOR_MENU,
COLOR_MENUTEXT, COLOR_SCROLLBAR, COLOR_WINDOW,
COLOR_WINDOWFRAME, and COLOR_WINDOWTEXT.

To use one of these colors, cast it to HBRUSH and add 1 to its constant to paint the
background of your window:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;
 const char *StrWndName = "Windows Fundamentals";

 WndCls.style = CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = AfxWndProc;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = AfxGetInstanceHandle();
 WndCls.hIcon = AfxGetApp()->LoadStandardIcon(IDI_WARNING);
 WndCls.hCursor = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
 WndCls.hbrBackground = (HBRUSH)(COLOR_ACTIVECAPTION+1);
 WndCls.hCursor = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
}

To get the value of a system color, call the GetSysColor() function. Its syntax is:

DWORD GetSysColor(int nIndex);

The nIndex argument should be a valid name of one of the system color constants such as
COLOR_ACTIVECAPTION. When this function has executed, it returns the
COLORREF value of the nIndex color. If you provide a wrong or unrecognized value as
the nIndex argument, this function returns 0, which is also a color and can therefore
produce an unexpected result. If you want to consider only existing valid colors, call the
GetSysColorBrush() function instead. Its syntax is:

HBRUSH GetSysColorBrush(int nIndex);

This function returns the color value of the system color that is passed as nIndex. If the
value of nIndex is not valid, the function returns NULL, which is not 0 and therefore is
not a color, producing a more predictable result.

 Practical Learning: Building a Window Class
1. Change the contents of the file as follows:

#include <windows.h>
//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam);
//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 291

 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);
 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
 WndClsEx.lpfnWndProc = WndProc;
 WndClsEx.cbClsExtra = 0;
 WndClsEx.cbWndExtra = 0;
 WndClsEx.hInstance = hInstance;
 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndClsEx.hCursor = LoadCursor(NULL, IDC_CROSS);
 WndClsEx.hbrBackground = (HBRUSH)(COLOR_BACKGROUND + 1);
 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 return 0;
}
//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

2. Save All

10.1.7 Window Registration
After initializing the window class, you must make it available to the other controls that
will be part of your application. This process is referred to as registration. If you are
creating a Win32 application using the WNDCLASS structure, to register the window
class, call the RegisterClass(). If you created your window class using the
WNDCLASSEX structure, call the RegisterClassEx() function. Their syntaxes are:

ATOM RegisterClass(CONST WNDCLASS *lpWndClass);
ATOM RegisterClassEx(CONST WNDCLASSEX *lpwcx);

The function simply takes as argument a pointer to a WNDCLASS or WNDCLASSEX .

If you are working on an MFC application, to register your window class, call the
AfxRegisterWndClass() function. Its syntax is:

LPCTSTR AFXAPI AfxRegisterWndClass(UINT nClassStyle, HCURSOR hCursor = 0,
 HBRUSH hbrBackground = 0, HICON hIcon = 0);

This function expects the window class, the cursor to use to indicate the position of the
mouse, the color to paint the background, and an icon that represents the application.

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

292 © FunctionX, Inc.

These are the same values used to initialize the window class. Using these values as
initialized above, you can register the window class as follows:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;

 WndCls.style = CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = AfxWndProc;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = AfxGetInstanceHandle();
 WndCls.hIcon = AfxGetApp()->LoadStandardIcon(IDI_WARNING);
 WndCls.hCursor = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
 WndCls.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
 WndCls.hCursor = AfxGetApp()->LoadStandardCursor(IDC_CROSS);

 AfxRegisterWndClass(WndCls.style, WndCls.hCursor,
 WndCls.hbrBackground, WndCls.hIcon);
}

 Practical Learning: Registering a Window
1. Just above the return line of the WinMain() function, register the class using the

RegisterClassEx() function:

//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASSEX WndClsEx;

 . . .

 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 RegisterClassEx(&WndClsEx);

 return 0;
}
//---

2. Save All

10.2 Window Creation

10.2.1 The Main Window
The WNDLCLASS and the WNDCLASSEX classes are only used to initialize the
application window class. To display a window, that is, to give the user an object to work
with, you must create a window object. This window is the object the user uses to interact
with the computer.

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 293

If you are creating a Win32 application, to create a window, you can call either the
CreateWindow() or the CreateWindowEx() function. Their syntaxes are:

HWND CreateWindow(
 LPCTSTR lpClassName,
 LPCTSTR lpWindowName,
 DWORD dwStyle,
 int x,
 int y,
 int nWidth,
 int nHeight,
 HWND hWndParent,
 HMENU hMenu,
 HINSTANCE hInstance,
 LPVOID lpParam
);

HWND CreateWindowEx(
 DWORD dwExStyle,
 LPCTSTR lpClassName,
 LPCTSTR lpWindowName,
 DWORD dwStyle,
 int x,
 int y,
 int nWidth,
 int nHeight,
 HWND hWndParent,
 HMENU hMenu,
 HINSTANCE hInstance,
 LPVOID lpParam
);

You can simply call this function and specify its arguments after you have registered the
window class. Here is an example:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASS WndCls;

 . . .

 RegisterClass(&WndCls);

 CreateWindow(. . .);
}

If you are planning to use the window further in your application, you should retrieve the
result of the CreateWindow() or the CreateWindowEx() function, which is a handle to the
window that is being created. To do this, you can declare an HWND variable and
initialize it with the create function. This can be done as follows:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 HWND hWnd;
 WNDCLASS WndCls;

 . . .

 RegisterClass(&WndCls);

 hWnd = CreateWindow(. . .);
}

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

294 © FunctionX, Inc.

If you are working on an MFC application, you can derive a class from CFrameWnd, as
we have done so far. Each window that can display on the computer screen is based on a
class equipped with a method called Create. The structure of this method is different from
one type of window to another. Nevertheless, because all window objects are based on
CWnd, the CWnd class provides the primary functionality used by all the other window
controls.

The process of creating a frame window in an MFC application is done by using the
class' constructor and calling its Create() method. As we have seen in the past, the main
window object you must create is a frame because it gives presence to your application.
The most basic frame is created using the CFrameWnd class. We have learned that this
is done by deriving your own class from CFrameWnd. Therefore, in the constructor of
your CFrameWnd-derived class, call the Create() method. As a reminder from Lesson
2, the syntax of the CFrameWnd::Create() method is as follows:

BOOL Create(LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle = WS_OVERLAPPEDWINDOW,
 const RECT& rect = rectDefault,
 CWnd* pParentWnd = NULL,
 LPCTSTR lpszMenuName = NULL,
 DWORD dwExStyle = 0,
 CCreateContext* pContext = NULL);

If the method succeeds in creating the window, it returns TRUE. If it fails, it returns
FALSE.

 Practical Learning: Initiating Window Creation
1. Declare a handle to a window object as HWND and initialize it with the

CreateWindowEx() function:

//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 HWND hWnd;
 WNDCLASSEX WndClsEx;

 . . .

 RegisterClassEx(&WndClsEx);

 hWnd = CreateWindowEx();

 return 0;
}
//---

2. Save All

10.2.2 The Window Class Name
To create a window, you must provide its name as everything else in the computer has a
name. There are two main types of class names you will use in your applications. If the

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 295

window you are creating is a known type of window, its class is already registered with
the operating system. In this case you can provided it. If you are creating your own fresh
class, which means you are in charge of its characteristics (properties), then define a null-
terminated string as the class' name.

For a Win32 application, the class name of your main window must be provided to the
lpszClassName member variable of your WNDCLASS or WNDCLASSEX variable.
You can provide the name to the variable or declare a global null-terminated string. The
name must also be passed to the lpClassName argument of either the CreateWindow()
or the CreateWindowEx() functions. Here is an example:

If you are creating an MFC application, the class name is passed as the first argument of
the CFrameWnd::Create() method. You can use a null terminated string as done for the
CreateWindow() or the CreateWindowEx() function. If you have initialized the
window class and registered it using AfxRegisterWndClass(), you may remember that
this function returns a null-terminated string. Therefore, you can pass its return value to
the Create() method. This can be done as follows:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;

 . . .

 const char *StrClass = AfxRegisterWndClass(WndCls.style, WndCls.hCursor,
 WndCls.hbrBackground, WndCls.hIcon);

 Create(StrClass, ;
}

Once an application is created, although you can, you should refrain from ever changing
the name of a class. It may take more than simply assigning a new value to the
AfxRegisterWndClass() function.

 Practical Learning: Naming a Window Class
1. To provide a name for the window being created, declare a null-terminated string

variable. Initialize the lpszClassName member variable of your window application
and pass it to the CreateWindowEx() function:

#include <windows.h>
//---
char StrClassName[] = "Win32Exercise";
//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM
lParam);
//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 HWND hWnd;
 WNDCLASSEX WndClsEx;

 . . .
 WndClsEx.hbrBackground = (HBRUSH)(COLOR_ BACKGROUND + 1);

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

296 © FunctionX, Inc.

 WndClsEx.lpszClassName = StrClassName;
 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 RegisterClassEx(&WndClsEx);

 hWnd = CreateWindowEx(0,
 StrClassName,);

 return 0;
}
//---

2. Save All

10.2.3 The Window Name
We saw in Lesson 2 that every window should have a name to easily identify it. For a
main window, the name displays on the title bar of the frame.

The name is passed as the lpWindowName argument of either the CreateWindow() or
the CreateWindowEx() functions. To do this, you can provide a null-terminated string to
the argument or declare a global string. Here is an example:

const char *ClsName = "WndFund";
const char *WndName = "Application Name";

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASS WndCls;

 . . .

 RegisterClass(&WndCls);

 CreateWindow(ClsName, WndName,
}

If you are creating an MFC application, to provide a name for the window, pass a null-
terminated string as the second argument of the CFrameWnd::Create() method:

CMainFrame::CMainFrame()
{
 WNDCLASS WndCls;
 const char *StrWndName = "Application Name";

 . . .

 const char *StrClass = AfxRegisterWndClass(WndCls.style, WndCls.hCursor,
 WndCls.hbrBackground, WndCls.hIcon);

 Create(StrClass, StrWndName);
}

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 297

 Practical Learning: Setting the Window Name
1. To provide a name for the window, declare and initialize a null-terminated string and

pass its value as the lpWindowName argument of the CreateWindowEx() function:

#include <windows.h>
//---
char StrClassName[] = "Win32Exercise";
char StrWndName[] = "Simple Win32 Application";
//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM
lParam);
//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 HWND hWnd;
 WNDCLASSEX WndClsEx;

 . . .

 RegisterClassEx(&WndClsEx);

 hWnd = CreateWindowEx(0,
 StrClassName,
 StrWndName,);

 return 0;
}
//---

2. Save All

10.2.4 Windows Styles
We had a formal introduction to windows styles in Lesson 2 and we reviewed all
necessary styles to apply or not apply to a main window. Once again, a
WS_OVERLAPPEDWINDOW has a caption that displays the window name (if any). It
is also equipped with the system menu, a thick frame, a system Minimize button, a
system Maximize button, and a system Close button.

For a Win32 application, you can apply the WS_OVERLAPPEDWINDOW style as
follows:

CreateWindow(ClsName, WndName, WS_OVERLAPPEDWINDOW,

For an MFC application, this style can be added as follows:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;
 const char *StrWndName = "Windows Fundamentals";

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

298 © FunctionX, Inc.

 . . .

 const char *StrClass = AfxRegisterWndClass(WndCls.style, WndCls.hCursor,
 WndCls.hbrBackground, WndCls.hIcon);

 Create(StrClass, StrWndName, WS_OVERLAPPEDWINDOW);
}

Remember that, to apply a combination of styles, use the bitwise OR operator.

If you are designing a form or a dialog box, you can use the Properties window to
visually select the styles you want to apply to the window:

 Practical Learning: Creating an Overlapped Window
1. To create borders and a title bar for the window, apply the

WS_OVERLAPPEDWINDOW style as follows:

//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 . . .

 hWnd = CreateWindowEx(0,
 StrClassName,
 StrWndName,
 WS_OVERLA PPEDWINDOW,);

 return 0;
}
//---

2. Save all

10.2.5 Window's Location and Size
As we learned in Lesson 2, the location of a window is defined by the distance from the
left border of the monitor to the window's left border and its distance from the top border
of the monitor to its own top border. The size of a window is its width and its height.
These can be illustrated for a main window frame as follows:

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 299

For a Win32 application, the original distance from the left border of the monitor is
passed as the x argument to the CreateWindow() or the CreateWindowEx() function.
The distance from top is specified using the y argument. The x and y arguments define
the location of the window. The distance from the left border of the monitor to the right
border of the window is specified as the nWidth argument. The distance from the top
border of the monitor to the lower border of the window is specified with the nHeight
value.

If you cannot make up your mind for these four values, you can use the
CW_USEDEFAULT (when-Creating-the-Window-USE-the-DEFAULT-value) constant
for either one or all four arguments. In such a case, the compiler would select a value for
the argument.

For an MFC application, when calling the CFrameWnd::Create() method, the location
and size of the frame window is specified as a RECT or CRect rectangle as we saw in
Lesson 2. As done with the CW_USEDEFAULT constant, you can let the compiler
decide on the rectangle by passing the rect argument as rectDefault. Here is an example:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;
 const char *StrWndName = "Windows Fundamentals";

 . . .

 const char *StrClass = AfxRegisterWndClass(WndCls.style, WndCls.hCursor,

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

300 © FunctionX, Inc.

 WndCls.hbrBackground, WndCls.hIcon);

 Create(StrClass, StrWndName, WS_OVERLAPPEDWINDOW, rectDefault);
}

At any time you can find out the location and size of a rectangle by calling the
CWnd::GetWindowRect() method. Its syntax is:

void GetWindowRect(LPRECT lpRect) const;

To use this method, pass it a RECT or a CRect variable as lpRect. The method returns
the rectangle properties of the window. Here is an example:

void CMainFrame::OnViewLocationandsize()
{
 // TODO: Add your command handler code here
 CRect Recto;
 GetWindowRect(&Recto);

 char Str[80];
 sprintf(Str, "The window rectangle is:\nLeft: %d\nTop:
 %d\nWidth: %d\nHeight: %d",
 Recto.left, Recto.top, Recto.Width(), Recto.Height());
 MessageBox(Str);
}

If you created your application using AppWizard, it sets a default rectangle for the frame
(actually the left and top values are randomly selected). Whether you created the frame
using the CFrameWnd::Create() method or AppWizard, you can redefine its location
and size from the PreCreateWindow() event. Because this event is called after
CFrameWnd::Create but before the window is displayed, its values are applied to the
window. The syntax of the CWnd::PreCreateWindow() event is (this event is inherited
from CWnd but CFrameWnd, like any other class that needs it, overrides it and provides
its own functionality as it relates to a window frame):

virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

This event takes as argument a CREATESTRUCT object. This structure is defined as
follows:

typedef struct tagCREATESTRUCT {
 LPVOID lpCreateParams;
 HANDLE hInstance;
 HMENU hMenu;
 HWND hwndParent;

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 301

 int cy;
 int cx;
 int y;
 int x;
 LONG style;
 LPCSTR lpszName;
 LPCSTR lpszClass;
 DWORD dwExStyle;
} CREATESTRUCT;

As you can see, the member variables of this structure are very similar to the arguments
of the Win32's CreateWindow() and CreateWindowEx() functions. Its member variables
correspond as follows:

CREATESTRUCT
CreateWindow

and
CreateWindowEx

Meaning

x x Distance from left border of monitor to left border of
window frame

Y y Distance from top border of monitor to top border of
window frame

cx nWidth Distance from left border of monitor to right border of
window frame

cy nHeight Distance from top border of monitor to bottom border of
window frame

Therefore, in your CFrameWnd::PreCreateWindow() event, assign the desired values
for the location and size of the window. In the following example, the original
dimensions of the window are set to 450x325 (width x height):

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 cs.cx = 450;
 cs.cy = 325;

 return TRUE;
}

Of course, you can also use the PreCreateWindow() event to customize the appearance
of the window frame.

Once a regular window, that is, an overlapped window, has been created, it displays a
title bar, its system buttons, and borders. As stated already, if you created an application
using AppWizard, the window may appear in a random location, which you can control.
If you want the window to be positioned in the center of the screen, call the
CWnd::CenterWindow() method. Its syntax is:

void CenterWindow(CWnd* pAlternateOwner = NULL);

By default, this window positioned the caller (the window that called it) in the middle-
center of the main window, also called its owner. For a main frame of a window, the
owner would be the monitor screen. As long as the window is owned by another, the

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

302 © FunctionX, Inc.

compiler can find out and position it accordingly. For this reason, you can omit the
pAlternateOwner argument.

You should call the CenterWindow() method in the event that creates the window. For a
frame this would be the OnCreate event. Here is an example:

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;
 // . . .

 CenterWindow();

 return 0;
}

If you want the caller to be centrally positioned relative to another window, obtain a
handle to that window and pass it as the pAlternateOwner argument.

Once a window is displaying on the screen, the user can change its location by dragging
its title bar. This would change its CREATESTRUCT::x or its rect::left argument. If you
do not want the user to change the location of a window, one thing you can do is to
prevent the mouse from capturing, that is, taking ownership, of the title bar. This can be
done calling the Win32's ReleaseCapture() function. Its syntax is:

BOOL ReleaseCapture(VOID);

When this function is called, the event in which it is accessed prevents the mouse from
capturing the object on which the mouse is positioned. Nevertheless, if the function
succeeds, it returns TRUE. If for some reason it fails, it returns FALSE. Because a
WM_MOVE message is sent when a window is moved, you can use it to call this
function. Here is an example:

void CMainFrame::OnMove(int x, int y)
{
 CFrameWnd::OnMove(x, y);

 ReleaseCapture();
 // TODO: Add your message handler code here
}

To change the dimensions of a window, the user can click and drag one of its borders.
Imagine you do not want the user to change the size of the window. If you remove the
system buttons and/or the system menu(

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 cs.style &= ~WS_SYSMENU;

 return TRUE;
}

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 303

), the user is still able to resize it. One solution you can use is to call the
ReleaseCapture() function on the WM_SIZE event. That way, every time the user grabs
a border and starts dragging, the mouse would lose control of the border:

void CMainFrame::OnSize(UINT nType, int cx, int cy)
{
 CFrameWnd::OnSize(nType, cx, cy);

 ReleaseCapture();
 // TODO: Add your message handler code here
}

Another way the user change the size of a window consists of minimizing it. As you
surely know already, to minimize the window, the user clicks the system Minimize
button . If at two time you want to find out whether a window is minimized, you can
call the CWnd::IsIconic() method. Its syntax is:

BOOL IsIconic() const;

This method returns TRUE if the window is minimized. Otherwise it returns FALSE.

If you do not want the user to be able to minimize a wndow, you can omit the
WS_MINIMIZEBOX style when creating the window.

If you want the user to be able to ma ximize the window, add the WS_ MAXIMIZEBOX
style. This can be done as follows:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;
 const char *StrWndName = "Windows Fundamentals";

 . . .

 const char *StrClass = AfxRegisterWndClass(WndCls.style, WndCls.hCursor,
 WndCls.hbrBackground, WndCls.hIcon);

 Create(StrClass, StrWndName,
 WS_OVERLAPPED | WS_CAPTION |
 WS_SYSMENU | WS_THICKFRAME |
 WS_MAXIMIZEBOX, rectDefault);
}

7.

At any time, to find out if the window is maximized, you can call the
CWnd::IsZoomed() method. Its syntax is:

BOOL IsZoomed() const;

This method returns TRUE if the window is maximized. Otherwise, it returns FALSE.

If you created the application using AppWizard, all system buttons are added to the
frame. If you want to remove a style, use the CFrameWnd::PreCreateWindow() event.
In the following example, the system Minimize button is removed on the frame:

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

304 © FunctionX, Inc.

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 cs.style &= ~WS_MINIMIZEBOX;

 return TRUE;
}

In the same way, you can remove the system maximize button.

If you allow the system buttons, the user can minimize and maximize the window at will.
To do this, besides using the system buttons, the user can also double-click the title bar of
the window or click its Maximize menu item either from the window's system icon or
after right-clicking its button on the Taskbar. When the window is maximized, the frame
is resized to occupy the whole monitor area, starting from the top-left corner as the
origin.

When the user decides to maximize a window, the frame sends a
WM_GETMINMAXINFO message which appears like "The user wants to maximize
me. What should I do?". This message produces the OnGetMinMaxInfo() event. If the
application does not give any specific instruction, the window gets maximized. If you
want to do something before the window is formally maximized, you can intercept
OnGetMinMaxInfo() event. Remember that, if you want to prevent the window from
being minimized or maximized, you should remove the Minimize
(WS_MINIMIZEBOX) or the Maximize (WS_MAXIMIZEBOX) buttons from its
style.

If you want to control the minimum and/or maximum size that a window can have when
the user wants to maximize it, set the desired size in the OnGetMinMaxInfo() event. It
syntax is:

afx_msg void OnGetMinMaxInfo(MINMAXINFO FAR* lpMMI);

The information pertinent to a window's maximized size, including the maximum size it
can have, is stored in a structure called MINMAXINFO. The MINMAXINFO structure is
defined as follows:

typedef struct tagMINMAXINFO {
 POINT ptReserved;
 POINT ptMaxSize;
 POINT ptMaxPosition;
 POINT ptMinTrackSize;
 POINT ptMaxTrackSize;
} MINMAXINFO;

A variable of MINMAXINFO type is passed to the OnGetMinMaxInfo() event.

The ptReserved member variable is reserved and never used.

The ptMaxSize value is the maximum width and the maximum height. To specify this
value, you can call the x member variable of the point value of ptMaxSize and assign the
desired value. Here is an example:

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 305

void CMainFrame::OnGetMinMaxInfo(MINMAXINFO FAR* lpMMI)
{
 // TODO: Add your message handler code here and/or call default
 lpMMI->ptMaxSize.x = 450;
 lpMMI->ptMaxSize.y = 325;

 CFrameWnd::OnGetMinMaxInfo(lpMMI);
}

The ptMaxPosition member variable is the location of the window when it gets
maximized. Normally, when the window gets maximized, it starts occupying the monitor
screen from the top-left corner. The ptMaxPosition allows you to change that default
behavior. The ptMaxPosition.x is the distance from the left border of the monitor to the
left border of the maximized window. The ptMaxPosition.y is the distance from the top
border of the monitor to the top border of the maximized window.

The ptMinTrackSize member variable is the minimum size the window must assume
when it gets maximized. No rmally, when a window frame gets maximized, it occupies
the whole screen area. This member variable can be used to control that size. The
ptMinTrackSize.x is the minimum width. The ptMinTrackSize.y is the minimum height.

The ptMaxTrackSize member variable is the maximum size the window must have when
it is maximized. The ptMaxTrackSize.x is the minimum width. The ptMaxTrackSize.y is
the minimum height.

 Practical Learning: Setting the Window Location and Dimensions
1. Apply the default location and dimensions to the window with the

CW_USEDEFAULT constant as follows:

//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 . . .

 hWnd = CreateWindowEx(0,
 StrClassName,
 StrWndName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,);

 return 0;
}
//---

2. Save All

10.2.6 Window's Parenting
If the window you are creating has a parent, obtain its handle and pass it as the
hWndParent argument of the CreateWindow() or the CreateWindowEx() functions for a

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

306 © FunctionX, Inc.

Win32 application. If you are creating the main window of your application, it does not
have a parent. In this case, pass the hWndParent as NULL.

If you are creating an MFC application, pass the handle of the parent as the pParentWnd
argument of the Create() method. For a main frame, the kind we have created so far,
specify this argument as NULL:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;
 const char *StrWndName = "Windows Fundamentals";

 . . .

 Create(StrClass, StrWndName, WS_OVERLAPPEDWINDOW, rectDefault, NULL);
}

 Practical Learning: Parenting the Application
1. Since the current window does not have a parent or owner, pass the NULL constant

as the parent:

//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 . . .

 hWnd = CreateWindowEx(0,
 StrClassName,
 StrWndName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,);

 return 0;
}
//---

2. Save All

10.2.7 The Window's Menu
If you want the window to display a menu, first create or design the resource menu.
Visual C++ provides a convenient way to design a basic menu. To do this, display the
Add Resource dialog box and select Menu. Then add the desired items.

After creating the menu, assign its name to the lpszMenuName name to your
WNDCLASS variable for a Win32 variable. If you had created the menu and gave it an
identifier, use the MAKEINTRRESOURCE macro to convert it. If the window you are
creating is a child window that will need to display its particular menu when that child
window is displaying, create its menu and pass its handle as the hMenu argument of the

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 307

CreateWindow() or CreateWindowEx() functions. Otherwise, pass this argument as
NULL.

If you are creating an MFC application and want the main window to display a menu,
design the menu as you see fit and create its resource. Then pass the menu name as the
lpszMenuName argument of the Create() method. If you want to use the identifier of the
menu, pass its ID to the MAKEINTRESOURCE macro. This can be done as follows:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;
 const char *StrWndName = "Windows Fundamentals";

 WndCls.style = CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = AfxWndProc;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = AfxGetInstanceHandle();
 WndCls.hIcon = AfxGetApp()->LoadStandardIcon(IDI_WARNING);
 WndCls.hCursor = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
 WndCls.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndCls.hCursor = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
 WndCls.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);

 const char *StrClass = AfxRegisterWndClass(WndCls.style, WndCls.hCursor,
 WndCls.hbrBackground, WndCls.hIcon);

 Create(StrClass, StrWndName, WS_OVERLAPPEDWINDOW, rectDefault,
 NULL, MAKEINTRESOURCE(IDR_MENU1));
}

To make sure that the window was created, you can check its return value.

If the CreateWindow() or the CreateWindowEx() functions of a Win32 application
succeeds in creating the window, it returns a handle to the window that was created. You
can check this validity using an if conditional statement. Here is an example:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 HWND hWnd;
 WNDCLASS WndCls;

 . . .

 RegisterClass(&WndCls);

 hWnd = Creat eWindow(ClsName,
 WndName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

308 © FunctionX, Inc.

 NULL);

 if(!hWnd) // If the window was not created,
 return 0; // stop the application
}

For an MFC application, a Create() method returns TRUE if the window was created.
Otherwise, it returns FALSE. Therefore, you can use an if conditional statement to find
out whether the window was successfully created or not. Here is an example:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;
 const char *StrWndName = "Windows Fundamentals";

 WndCls.style = CS_VREDRAW | CS_HREDRAW;
 WndCls.lpfnWndProc = AfxWndProc;
 WndCls.cbClsExtra = 0;
 WndCls.cbWndExtra = 0;
 WndCls.hInstance = AfxGetInstanceHandle();
 WndCls.hIcon = AfxGetApp()->LoadStandardIcon(IDI_WARNING);
 WndCls.hCursor = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
 WndCls.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 WndCls.hCursor = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
 WndCls.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);

 const char *StrClass = AfxRegisterWndClass(WndCls.style, WndCls.hCursor,
 WndCls.hbrBackground, WndCls.hIcon);

 if(!Create(StrClass, StrWndName, WS_OVERLAPPEDWINDOW, rectDefault,
 NULL, MAKEINTRESOURCE(IDR_MENU1)))
 return;
}

 Practical Learning: Finalizing Window Creation
1. To finalize the creation of the window, change the WinMain() function as follows:

//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 HWND hWnd;
 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);
 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
 WndClsEx.lpfnWndProc = WndProc;
 WndClsEx.cbClsExtra = 0;
 WndClsEx.cbWndExtra = 0;
 WndClsEx.hInstance = hInstance;
 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndClsEx.hCursor = LoadCursor(NULL, IDC_CROSS);
 WndClsEx.hbrBackground = (HBRUSH)(COLOR_BACKGROUND + 1);
 WndClsEx.lpszMenuName = NULL;
 WndClsEx.lpszClassName = StrClassName;
 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 309

 RegisterClassEx(&WndClsEx);

 hWnd = CreateWindowEx(0,
 StrClassName,
 StrWndName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);
 if(!hWnd)
 return 0;

 return 0;
}
//---

2. Save All

10.2.8 Window Display
Once a window has been created and if this was done successfully, you can display it to
the user. This is done by calling the ShowWindow() function. The Win32 version of this
function has the following syntax:

BOOL ShowWindow(HWND hWnd, int nCmdShow);

The hWnd argument is a handle to the window that you want to display. It could be the
window returned by the CreateWindow() or the CreateWindowEx() function.

The nCmdShow specifies how the window must be displayed. It uses one of the
nCmdShow values above.

To show its presence on the screen, the window must be painted. This can be done by
calling the UpdateWindow() function. Its syntax is:

BOOL UpdateWindow(HWND hWnd);

This function simply wants to know what window needs to be painted. This window is
specified by its handle.

 Practical Learning: Displaying the Window

1. To show the window, call the ShowWindow() and the UpdateWindow() functions
as follows:

//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 HWND hWnd;

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

310 © FunctionX, Inc.

 WNDCLASSEX WndClsEx;

 . . .

 if(!hWnd)
 return 0;

 ShowWindow(hWnd, nCmdShow);
 UpdateWindow(hWnd);

 return 0;
}
//---

2. Save All

10.2.9 Considering Window's Messages
Once a window has been created, the user can use it. This is done by the user clicking
things with the mouse or pressing keys on the keyboard. A message that a window sends
is received by the application. This application must analyze, translate, and decode the
message to know what object sent the message and what the message consists of. To do
this, the application uses the GetMessage() function. Its syntax is:

BOOL GetMessage(LPMSG lpMsg, HWND hWnd, UINT wMsgFilterMin, UINT
wMsgFilterMax);

The lpMsg argument is a pointer to the MSG structure.

The hWnd argument identifies which window sent the message. If you want the messages
of all windows to be processed, pass this argument as NULL.

The wMsgFilterMin and the wMsgFilterMax arguments specify the message values that
will be treated. If you want all messages to be considered, pass each of them as 0.

The MSG structure is defined as follows:

typedef struct tagMSG {
 HWND hwnd;
 UINT message;
 WPARAM wParam;
 LPARAM lParam;
 DWORD time;
 POINT pt;
} MSG, *PMSG;

Once a message has been sent, the application analyzes it using the TranslateMessage()
function. Its syntax is:

BOOL TranslateMessage(CONST MSG *lpMsg);

This function takes as argument the MSG object that was passed to the GetMessage()
function and analyzes it. If this function successfully translates the message, it returns
TRUE. If it cannot identify and translate the message, it returns FALSE.

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 311

Once a message has been decoded, the application must send it to the window procedure.
This is done using the DispatchMessage() function. Its syntax is:

LRESULT DispatchMessage(CONST MSG *lpMsg);

This function also takes as argument the MSG object that was passed to GetMessage()
and analyzed by TranslateMessage(). This DispatchMessage() function sends the lpMsg
message to the window procedure. The window procedure processes it and sends back
the result, which becomes the return value of this function. Normally, when the window
procedure receives the message, it establishes a relationship with the control that sent the
message and starts treating it. By the time the window procedure finishes with the
message, the issue is resolved (or aborted). This means that, by the time the window
procedure returns its result, the message is not an issue anymore. For this reason you will
usually, if ever, not need to retrieve the result of the DispatchMessage() function.

This translating and dispatching of messages is an on-going process that goes on as long
as your application is running and as long as somebody is using it. For this reason, the
application uses a while loop to continuously check new messages. This behavior can be
implemented as follows:

while(GetMessage(&Msg, NULL, 0, 0))
{
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
}

If the WinMain() function successfully creates the application and the window, it returns
the wParam value of the MSG used on the application.

 Practical Learning: Completing the Application
1. To finalize the application, complete it as follows:

#include <windows.h>
//---
char StrClassName[] = "Win32Exercise";
char StrWndName[] = "Simple Win32 Application";
//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam);
//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MSG Msg;
 HWND hWnd;
 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);
 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;
 WndClsEx.lpfnWndProc = WndProc;
 WndClsEx.cbClsExtra = 0;
 WndClsEx.cbWndExtra = 0;
 WndClsEx.hInstance = hInstance;
 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndClsEx.hCursor = LoadCursor(NULL, IDC_CROSS);
 WndClsEx.hbrBackground = (HBRUSH)(COLOR_BACKGROUND + 1);

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

312 © FunctionX, Inc.

 WndClsEx.lpszMenuName = NULL;
 WndClsEx.lpszClassName = StrClassName;
 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 RegisterClassEx(&WndClsEx);

 hWnd = CreateWindowEx(0,
 StrClassName,
 StrWndName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);
 if(!hWnd)
 return 0;

 ShowWindow(hWnd, nCmdShow);
 UpdateWindow(hWnd);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return 0;
}
//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 switch(Msg)
 {
 case WM_DESTROY:
 PostQuitMessage(WM_QUIT);
 break;
 default:
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

2. To test the application, if you are using MSVC 6, on the main menu, click Build ->
Set Active Configuration and, on the Set Active Project Configuration dialog box,
click Win32B Win32 Release:

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 313

If you are using MSVC 7, on the main menu, click Build -> Configuration Manager.
The Configuration Manager dialog box, click the arrow of the Active Solution
Configuration combo box and select Release

3. Click OK or Close

4. Execute the application

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

314 © FunctionX, Inc.

5. Return the MSVC and save everything

10.3 The Mini Frame Window

10.3.1 Introduction
A mini frame is a window that is mostly used as a floating object that accompany another
window the main object of an application. It appears as a normal frame window we have
seen so far with borders and a client area but a mini frame window is used a tool instead
of as a main window. For this functionality, it does not have the System minimize and
maximize buttons. As a tool window, it appears with a short title bar and is equipped with
a system close button.

10.3.2 Creation of a Miniframe Window
The miniframe window is based on the CMiniFrameWnd class. To create a miniframe
window, first declare a variable or a pointer to CMiniFrameWnd. You can define its
class using the AfxRegisterWndClass() function. You can then pass the return value of
that function to its Create() method. The syntax of this method is:

virtual BOOL Create(
 LPCTSTR lpClassName,
 LPCTSTR lpWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd = NULL,
 UINT nID = 0
);

The lpClassName parameter should be a value returned from the
AfxRegisterWndClass() function.

The lpWindowName is the caption displayed in the title bar of the window.

The dwStyle parameter is the style to apply to the window. Normally, it would use the
regular styles of a normal window but many styles are invalid. For exa mple, whether you

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 315

add the Minimize and the Maximize buttons or not, they cannot be displayed. You should
use only the following combination: WS_POPUP | WS_CAPTION | WS_SYSMENU.
Besides the regular window styles, you should combine them with one or more of the
following special styles:

?? MFS_MOVEFRAME: With this style, if the user clicks and drags one (any) edge
of the frame, the frame would start moving with the same reaction as if the user were
dragging the title bar. If you apply this style, the user cannot resize the frame even if
another style would allow it

?? MFS_4THICKFRAME: This style prevents the user from resizing the mini frame

?? MFS_SYNCACTIVE: This style makes sure that the mini frame is activated when
its parent window is activated

?? MFS_THICKFRAME: This creates a thick frame and allows the user to resize it if
necessary, provided the MFS_MOVEFRAME is not used

?? MFS_BLOCKSYSMENU: This disables access to the system menu

The rect parameter specifies the location and dimensions of the frame window.

The pParentWnd argument is the CWnd parent of the window. This argument is not
required.

The nID argument is the identifier of the mini frame window. It is not required.

Besides the Create() method, the CMiniFrameWnd class also provides the CreateEx()
member function to create a miniframe window.

Here is an example:

void CMiniFrame2Dlg::OnBnClickedMiniframeBtn()
{
 // TODO: Add your control notification handler code here
 CMiniFrameWnd *MFW = new CMiniFrameWnd;
 CString StrClassName = AfxRegisterWndClass(
 CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS,
 LoadCursor(NULL, IDC_ARROW),
 (HBRUSH)GetStockObject(COLOR_BTNFACE+1),
 LoadIcon(NULL, IDI_APPLICATION));

 MFW->CreateEx(0,
 StrClassName,
 "Small Application",
 WS_POPUP | WS_CAPTION | WS_SYSMENU |
 MFS_BLOCKSYSMENU,
 CRect(100, 100, 350, 420));

 MFW->ShowWindow(SW_SHOW);
}

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

316 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 317

Chapter 11:
Introduction to Windows
Controls

? Controls Fundamentals

? Parent Controls

? Windows Controls

? Controls Styles and Common Properties

? Extended Styles

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

318 © FunctionX, Inc.

11.1 Controls Fundamentals

11.1.1 Introduction
A Windows control, in this book called a control, is an object that displays or is part of an
application and allows the user to interact with the computer. There are various types of
controls as we will see in this book:

?? A text -based control is an object whose main function is to display to, or request
text from, the user

?? A list-based control displays a list of items

?? A progress-based control is used to show the progress of an action

?? a static control can be used to show colors, a picture or something that does not
regularly fit in the above categories

To make your application as efficient as possible, you will add controls as you judge
them necessary. Some and most controls are already available so you can simply
customize their behavior and appearance. Sometimes you will need a control for a
specific task or for a better look. If such a control is not available, you may have to create
your own.

There are two main ways a control is made part of your application. At design time,
which is referred to the time you are visually creating an application, you will select
controls and place them on a host. Another technique, referred to as run time, consists of
creating control programmatically. In this case you must write all the code that specifies
the control's appearance and behavior.

 Practical Learning: Introducing Controls
1. Start Visual Studio or Visual C++ and create a new Empty Win32 Project named

Win32C

2. Create a C++ Source file named Exercise and type the following in it:

#include <windows.h>
//---
char StrClassName[] = "WndCtrls";
char StrWndName[] = "Windows Controls";
//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg,
 WPARAM wParam, LPARAM lParam);
//---
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MSG Msg;
 HWND hWnd;
 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);
 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 319

 WndClsEx.lpfnWndProc = WndProc;
 WndClsEx.cbClsExtra = 0;
 WndClsEx.cbWndExtra = 0;
 WndClsEx.hInstance = hInstance;
 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);
 WndClsEx.hbrBackground = (HBRUSH)(COLOR_BTNFACE + 1);
 WndClsEx.lpszMenuName = NULL;
 WndClsEx.lpszClassName = StrClassName;
 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 RegisterClassEx(&WndClsEx);

 hWnd = CreateWindowEx(0, StrClassName, StrWndName,
 WS_OVERLAPPEDWINDOW ,
 340, 200,
 240, 320,
 NULL, NULL, hInstance, NULL);

 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);

 while(GetMessage(&Msg, NULL, 0, 0))
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }

 return 0;
}
//---
LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam)
{
 switch(Msg)
 {
 case WM_DESTROY :
 PostQuitMessage(WM_QUIT);
 break;
 default :
 return DefWindowProc(hWnd, Msg, wParam, lParam);
 }
 return 0;
}
//---

3. Test the application

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

320 © FunctionX, Inc.

4. Close it and return to MSVC

11.1.2 The Parent-Child Window Relationship
There are two types of windows or controls you will deal with in your applications. The
type referred to here is defined by the relationship a window has with regards to other
windows that are part of an application:

?? Parent: a window is referred to as a parent when there are, or there can be, other
windows that depend on it. For example, if you look at the toolbar of Visual
C++, it is equipped with the buttons. The toolbar is a parent to the buttons.
When a parent is created, it "gives life" to other windows that can depend on it.
The most regular parents you will use are forms and dialog boxes.

?? Child: A window is referred to as child when its existence and especially its
visibility depend on another window called its parent. When a parent is created,
made active, or made visible, it gives existence and visibility to its children.
When a parent gets hidden, it also hides its children. If a parent moves, it moves
with its children. The children keep their positions and dimensions inside the
parent. When a parent is destroyed, it also destroys its children (sometimes it
does not happen so smoothly; a parent may make a child unavailable but the
memory space the child was occupying after the parent has been destroyed may
still be use, sometimes filled with garbage, but such memory may not be
available to other applications until you explicitly recover it).

Child controls depend on a parent because the parent "carries", "holds", or hosts
them. All of the Windows controls you will use in your applications are child
controls. A child window can also be a parent of another control. For example,
the Standard toolbar of Visual Studio is the parent of the buttons on it. If you
close or hide the toolbar, its children disappear. At the same time, the toolbar is
a child of the application's frame. If you close the application, the toolbar
disappears, along with its own children. In this example, the toolbar is a child of
the frame but is a parent to its buttons.

 It is important to understand that this discussion refers to parents and children as

windows, not as classes:

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 321

?? The CButton class is based on CWnd. Therefore, CWnd is the parent class of
CButton

?? When a button is placed on a form, the form, which is based on CView
(indirectly) is the window parent of the button and not its class parent

If you are creating an independent window, as we have done with the frames so far, you
can simply call its Create() method and define its characteristics. Such a class or window
is a prime candidate for parenthood.

11.2 Parent Controls

11.2.1 Definition
An object is referred to as a parent or container when its main job is to host other
controls. This is done by adding controls to it. Besides all of the characteristics of
WNDCLASS, the WNDCLASSEX structure requires that you specify the size of the
structure and it allows you to set a small icon for your application.

Besides the CreateWindow() function, the Win32 library provides the
CreateWindowEx() function you can use to create a window. Once again, the
CreateWindowEx() function has the followsing syntax:

HWND CreateWindowEx(
 DWORD dwExStyle,
 LPCTSTR lpClassName,
 LPCTSTR lpWindowName,
 DWORD dwStyle,
 int x,
 int y,
 int nWidth,
 int nHeight ,
 HWND hWndParent ,
 HMENU hMenu,
 HINSTANCE hInstance,
 LPVOID lpParam
);

11.2.2 Parent Windows Styles
The role of a parent object is very important to the other controls it is hosting. Based on
this, the parent window must possess some valuable characteristics. For example, you
must provide a way to close the parent window. If necessary, you can also allow moving
the parent. This is usually done by the user dragging the title bar of a frame or a dialog
box. If the parent is a toolbar, you can make it dockable, in which case it can be moved
and positioned to various parts of the frame window. You can also allow the user to move
a parent such as a dialog box by dragging its body. We will review the characteristics of
parent window when studying dialog boxes

11.3 Windows Controls

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

322 © FunctionX, Inc.

11.3.1 Introduction
To create a control, you can use either the CreateWindow() or the CreateWindowEx()
Win32 functions. When doing this, you must specify the control’s name. To help with
this, the Win32 library provides already defined names of classes you can use to create a
control.

We already saw that, when creating a window, you need to declare its handle and
initialize it with the CreateWindow() or the CreateWindowEx() functions. If the
window is created successfully, the function returns a window handle. If the control
created was a parent, its handle can be used as the hWndParent argument. This would be
done as follows:

HWND hWndParent;

// Create the parent window
hWndParent = CreateWindowEx(0, ClassName, StrWndName,
 WS_OVERLAPPEDWINDOW,
 0, 100, 140, 320,
 NULL, NULL, hInstance, NULL);

// Create a window
CreateWindowEx(0, WndClassName, CaptionOrText,
 ChildStyle, Left, Top, Width, Height ,
 hWndParent, NULL, hInstance, NULL);

The reason you declare a handle to the parent window is to allow you to refer to it later
on. In the same way, if you need to refer to any control that is part of your application,
you should define its own handle:

HWND hWndParent, hWndChild;

// Create the parent window
hWndParent = CreateWindowEx(0, ClassName, StrWndName,
 WS_OVERLAPPEDWINDOW,
 0, 100, 140, 320,
 NULL, NULL, hInstance, NULL);

// Create a window
hWndChild = CreateWindowEx(0, WndClassName, CaptionOrText,
 ChildStyle, Left, Top, Width, Height ,
 hWndParent, NULL, hInstance, NULL);

11.3.2 Control Creation Options
To allow the user to interact with the computer, you equip your application with the
necessary controls. The controls are positioned on the client area of the parent window.
The easiest technique used to add a control to an application consists of picking it up
from the Controls toolbox and positioning it on a parent window. To help with this,
Visual C++ provides a series or ready-made objects on the Controls toolbox:

Visual C++ 6 Controls Visual C++ 7 Controls

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 323

The second option used to add a control to an application consists of programmatically
creating it. To do this, you can call either the CreateWindow() or the
CreateWindowEx() functions.

All visible controls of the MFC library are based on the CWnd class. This class is
equipped with all the primary functionality that a regular window object needs. As the
parent of all visible window classes, it provides the other controls with properties and
methods to implement their appearance and behavior. To use the CWnd class you have
various options:

?? You can directly derive a class from CWnd

?? You can use one of the CWnd-derived classes (CView, CFrameWnd, etc)

?? You can derive a class from one of the CWnd-derived classes; for example you
can create a class based on CStatic

?? You can directly declare a CWnd variable in your application and initialize it
with the class of your choice

To create a control using a known class, you must declare a variable of the class on which
the control is based. Every control is based on a specific class, and that class is directly or
indirectly derived from CWnd. An example of such a declaration would be:

void CParentLoader::TodaysMainEvent()
{
 CStatic Label;
}

You can also declare the variable as a pointer. In this case, make sure that you initialize
the class using the new operator. An example would:

void CParentLoader::TodaysMainEvent()
{
 CStatic *Label = new CStatic;

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

324 © FunctionX, Inc.

}

Based on the rules of inheritance and polymorphism, you can also declare the pointer as
CWnd but initialize it with the desired class. Here is an example:

void CParentLoader::TodaysMainEvent()
{
 CWnd *Panel = new CStatic;
}

After declaring the variable, you can call the CWnd::Create() method to initialize the
control. The syntax of this method is:

virtual BOOL Create(LPCTSTR lpszClassName, LPCTSTR lpszWindowName,
 DWORD dwStyle, const RECT& rect , CWnd* pParentWnd,
 UINT nID, CCreateContext* pContext = NULL);

To create a fancier control, you can use the CWnd::CreateEx() method.

The availability of a child window to other parts of a program is defined by the scope in
which the control is created. If you create a control in an event or a method of a parent
class, it can be accessed only inside of that event. Trying to access it outside would
produce an error. If you want to access a child or dependent window from more than one
event or method, you must create it globally. This is usually done by declaring the
variable or pointer in the class of the parent.

After declaring the variable, to initialize it, call its Create() method. The syntax of this
method depends on the class you are using to create the window. After initializing the
window, it may become alive, depending on the style or properties you assigned to it.

The other technique you can use is to derive a class from the control whose behavior and
appearance can serve as a foundation for your control. For example, you can derive a
control as follows:

class CColoredLabel : public CStatic
{
public:
 CColoredLabel();
 virtual ~CColoredLabel();

 DECLARE_MESSAGE_MAP()
};

Such a class as the above CColoredLabel gives you access to the public and protected
properties and methods of the base class. To use the new class in your application,
declare a variable from it and call the Create() method.

 Practical Learning: Introducing Controls

1. To create a new application, on the main menu, click File -> New ->Project…

2. Click MFC Application. Set the application Name as Controls and click OK

3. Set the Application Type to Dialog Based and click Finish

4. On the dialog, click the TODO line and press Delete on the keyboard

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 325

5. Change the design of the IDR_MAINFRAME icon as follows:

6. Display the dialog box

11.3.3 The Control's Class Name
To create a control, you must specify its name. To do this, you have various options. The
Win32 library provides already defined names of classes you can use to create a control.
These classes are:

Class Name Description
STATIC A static control can be used to display text, a drawing, or a

picture
EDIT As it name suggests, an edit control is used to display text to the

user, to request text from the user, or both
RichEdit Like an edit box, a rich edit control displays text, requests it, or

does both. Besides all the capabilities of the edit control, this
control can display formatted text with characters or words that
use different colors or weight. The paragraphs can also be
individually aligned. The RichEdit class name is used to create a
rich edit control using the features of Release 1.0 of its class

RICHEDIT_CLASS This control is used for the same reasons as the RichEdit class
name except that it provides a few more text and paragraph
formatting features based on Release 2.0

LISTBOX A list box is a control that displays items, such as text, arranged
so each item, displays on its own line

COMBOBOX A combo box is a combination of an edit control and a list box.
It holds a list of items so the current selection displays in the edit
box part of the control

SCROLLBAR A scroll bar is a rectangular object equipped with a bar
terminated by an arrow at each end. It is used to navigate left
and right or up and down on a document

BUTTON A button is an object that the user clicks to initiate an action
MDICLIENT This class name is used to create a child window frame for an

MDI application

To use one of these classes, you have various options. At design time, on the Controls

toolbox, you can click the Custom Control button and click the dialog box or form.

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

326 © FunctionX, Inc.

After placing the control on the host. This would display the Properties window that
allows you to visually set the characteristics of the control.

In Visual C++ .Net, the Properties window displays, by default, to the lower right side of
the IDE.

If you are creating or designing a control using the Custom button, on the Properties
window and in the Class Name box, you can type the desired name as above for the
control.

If you are programmatically creating the control, pass its name as string to the
lpszClassName argument of the Create() or the CreateEx() methods. Here is an example
that would start an edit box:

void CSecondDlg::OnThirdControl()
{
 // TODO: Add your control notification handler code here
 CWnd *Memo = new CWnd;

 Memo->Create("BUTTON",);
}

Another option you have is to either declare a WNDCLASS variable and initialize it, or
call the AfxRegisterWndClass() function and pass it the desired values. As we saw in
the previous lesson, this function returns a string. You can pass that string to the
CWnd::Create() method as the class name. Here is an example:

void Whatever()
{
 // TODO: Add your control notification handler code here
 CWnd *First = new CWnd;
 CString StrClsName = AfxRegisterWndClass(
 CS_VREDRAW | CS_HREDRAW,
 LoadCursor(NULL, IDC_CROSS),
 (HBRUSH)GetStockObject(BLACK_BRUSH),
 LoadIcon(NULL, IDI_WARNING));
 First->Create(StrClsName,);
}

The other option you have is to specify the class name as NULL. In this case, the
compiler would use a default name:

void Whatever ()
{
 // TODO: Add your control notification handler code here
 CWnd *Second = new CWnd;

 Second->Create(NULL,);
}

 Practical Learning: Creating a Control

1. On the Controls toolbox, click the Custom Control button and click on the top
left section of the dialog box (you do not need to be precise, anywhere you place it
will be fine)

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 327

2. On the dialog box, click the custom control to select it

3. On the Properties window, click the Class box, type Static and press Enter

4. Test the application and return to MSVC

11.3.4 The Control's Window Name
The window name is a default string that displays on the control when the control comes
up. In the previous lessons, we saw that this string displays as caption on the title bar of a
window frame or a dialog box. This property is different for various controls.

To set the default text of a control, you can either do this when creating the control or
change its text at any time. Again, this can depend on the control. To set the default text
when programmatically creating the control, pass a string value as the lpszWindowName
argument of the Create() or CreateEx() method. Here is an example:

void CSecondDlg::OnThirdControl()
{
 // TODO: Add your control notification handler code here
 CWnd *Memo = new CWnd;

 Memo->Create("EDIT", "Voice Recorder",);
}

Many (even most) controls do not use a window name. Therefore, you can pass it as
NULL.

 Practical Learning: Setting a Caption
1. On the dialog box, click the custom button. Then, on the Properties window, delete

the content of the Caption field. Then, in the Class field, type ListBox

2. Test the application and return to MSVC

11.4 Controls Styles and Common Properties

11.4.1 Childhood
A style is a characteristic that defines the appearance, and can set the behavior, of a
control. The styles are varied from one control to another although they share some of the
characteristics common to most Windows controls.

All of the controls you will create need to be hosted by another control. During design,
once you position a control on a dialog box or a form, it automatically gets the status of
child. If you are programmatically creating a control, to specify that it is a child, add the
WS_CHILD to the dwStyle argument. Here are examples:

void CSecondDlg::OnFirstControl()
{
 // TODO: Add your control notification handler code here
 CWnd *First = new CWnd;

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

328 © FunctionX, Inc.

 CString StrClsName = AfxRegisterWndClass(
 CS_VREDRAW | CS_HREDRAW,
 LoadCursor(NULL, IDC_CROSS),
 (HBRUSH)GetStockObject(BLACK_BRUSH),
 LoadIcon(NULL, IDI_WARNING));

 First->Create(StrClsName, NULL, WS_CHILD,);
}

void CSecondDlg::OnSecondControl()
{
 // TODO: Add your control notification handler code here
 CWnd *Second = new CWnd;

 Second->Create(NULL, NULL, WS_CHILD,);
}

void CSecondDlg::OnThirdCont rol()
{
 // TODO: Add your control notification handler code here
 CWnd *Memo = new CWnd;

 Memo->Create("EDIT", "Voice Recorder", WS_CHILD,);
}

void CSecondDlg::OnFourthControl()
{
 // TODO: Add your control notification handler code here
 CStatic *Label = new CStatic;

 Label->Create("United Nations", WS_CHILD,);
}

The WS_CHILD style is defined in the Win32 library as:

 #define WS_CHILD 0x40000000L

11.4.2 Visibility
If you want to display a control to the user when the parent window comes up, at design
time, set the Visible property to True. If you are programmatically creating the control,
add the WS_VISIBLE style. Here is an example:

void CSecondDlg::OnSecondControl()
{
 // TODO: Add your control notification handler code here
 CWnd *Second = new CWnd;

 Second->Create(NULL, NULL, WS_CHILD | WS_VISIBLE,);
}

The visibility style is defined as:

#define WS_VISIBLE 0x10000000L

The child style combined with the visibility style produces:

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 329

 4000 0000
1000 0000
= 5000 0000

 Practical Learning: Displaying a Control
1. After making sure the custom control is selected on the dialog box, on the Properties

window, set the Class name to Edit

2. To apply childhood and visibility to a control, , in the Style field, type 0x50000000
and press Enter

3. Test the application. In the edit box, type a name:

4. Close it and return to MSVC

11.4.3 Availability
By default, after a control has been created, it is available to the user. If it is a non-static
control, the user can possibly select or change its value. If you do not want the control to
be immediately usable but do not want to hide it, you can disable it. To do this, if you are
designing the control, you can set its Disable property to True or checked. If you are
programmatically creating the control, add the WS_DISABLED style as follows:

void CSecondDlg::OnSecondControl()
{
 // TODO: Add your control notification handler code here
 CWnd *Second = new CWnd;

 Second->Create(NULL, NULL, WS_CHILD | WS_VISIBLE | WS_DISABLED,);
}

The dis abled style is defined as follows:

#define WS_DISABLED 0x08000000L

The above combination would produce:

 4000 0000
| 1000 0000
0800 0000

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

330 © FunctionX, Inc.

= 5800 0000

BOOL EnableWindow(BOOL bEnable = TRUE);

 Practical Learning: Disabling a Control

1. To disable the custom control, change its style to a value of 0x58000000

2. Test the application and trying typing in the edit box again

3. Close it and return to MSVC

11.4.4 Borders
One of the visual features you can give a control is to draw its borders. As it happens,
most Microsoft Windows controls have a 3-D look by default. Some other controls must
explicitly be given a border. To add a border to a control, at design time, set its Border
property to True. If you are programmatically creating the control, add the
WS_BORDER style to it:

void CSecondDlg::OnSecondControl()
{
 // TODO: Add your control notification handler code here
 CWnd *Second = new CWnd;

 Second->Create(NULL, NULL, WS_CHILD | WS_VISIBLE | WS_BORDER,);
}

The border style is defined as:

#define WS_BORDER 0x00800000L

To raised the borders of such a control, add the WS_THICKFRAME to its styles:

BOOL CBordersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CtrlBorders->Create(NULL, NULL,
 WS_CHILD | WS_VISIBLE | WS_THICKFRAME,);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 331

The thick frame style is defined as

#define WS_THICKFRAME 0x00040000L

 Practical Learning: Adding Borders to a Control
1. Change the Class name to static

2. To add a simple border to the custom control, combine the child, the visible and the
thick frame styles to give a value of 0x50040000 to its Style field

3. Test the application

4. Close it and return to MSVC

11.4.5 Tab Sequence
When using the controls of a dialog, the user may choose to press Tab to navigate from
one control to another. This process follows a sequence of controls that can receive input
in an incremental order. To include a control in this sequence, at design time, set its Tab
Stop property to True.

If you are creating your control with code, to make sure that it can fit in the tab sequence,
add the WS_TABTOP style. Here is an example:

void CSecondDlg::OnThirdControl()
{
 // TODO: Add your control notification handler code here

 Memo->Create("EDIT", "Voice Recorder",
 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,);

 CWnd *CanTab = new CWnd;

 CanTab->Create("BUTTON", "&Apply",

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

332 © FunctionX, Inc.

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,);
}

The tab stop style is defined as:

#define WS_TABSTOP 0x00010000L

11.5 Extended Styles

11.5.1 Introduction
Besides the above regular styles and properties used on controls, if you want to add a
more features to a window, you can create it using the CWnd::CreateEx() method. It
comes in two versions as follows:

BOOL CreateEx(DWORD dwExStyle, LPCTSTR lpszClassName, LPCTSTR lpszWindowName,
 DWORD dwStyle, int x, int y, int nWidth, int nHeight,
 HWND hwndParent, HMENU nIDorHMenu, LPVOID lpParam = NULL);

BOOL CreateEx(DWORD dwExStyle, LPCTSTR lpszClassName, LPCTSTR lpszWindowName,
 DWORD dwStyle, const RECT& rect, CWnd* pParentWnd,
 UINT nID, LPVOID lpParam = NULL);

In Visual C++ 6, some of the extended styles are on the Styles tab of the Properties
window and some others are in the Extended Styles tab:

In Visual C++ 7, all styles are listed in the Properties window's vertical list:

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 333

11.5.2 Left Text Alignment

Text -based controls (such as the static label, the edit box, or the rich edit control) align
their text to the left by default. This means that when the control displays, its text starts
on the left side of its area (for US English and other Latin-based versions of Microsoft
Windows). To align text to the left on a control that allows it, at design time, select the
Left value in the Align Text combo box.

The default text alignment of a text -based control is to the left. This is because the
WS_EX_LEFT extended style is applied to it. If you want to reinforce this, you can add
that style as the dwExStyle argument of the CreateEx() method. This can be done as
follows:

void CSecondDlg::OnThirdControl()
{
 // TODO: Add your control notification handler code here

 Memo->CreateEx(WS_EX_LEFT, "EDIT", "Voice Recorder",
 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,);
}

The extended left text alignment is defined as:

#define WS_EX_LEFT 0x00000000L

11.5.3 Right Text Alignment
Many text -based controls, including the button, allow you to set their text close to the
right border of their confined rectangle. To do this at design time, select the Right value
in the Align Text combo box.

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

334 © FunctionX, Inc.

If you are programmatically creating the control, to align its text to the right, set or add
the WS_EX_RIGHT extended style. Here is an example:

void CSecondDlg::OnThirdControl()
{
 // TODO: Add your control notification handler code here
 CWnd *CanTab = new CWnd;

 CanTab->CreateEx(WS_EX_RIGHT, "BUTTON", "&Apply",
 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,);
}

The extended left text alignment is defined as:

#define WS_EX_RIGHT 0x00001000L

 Practical Learning: Right-Aligning Text

1. Set the Caption of the Custom control to Leo and change its ExStyle value to
0x00001000

2. Test the application

3. Return to MSVC

11.5.4 Extended Borders
Besides the border features of the dwStyle argument of the Create() member function, the
CreateEx() method provides other border drawings to apply to a control.

Static Borders: To give a 3-D appearance to a control, especially one that does not
receive input from the user (such as a static control), you can apply a static edge to it. To
do this, at design time, set the Static Edge property to True. At run time, you can set or
add the WS_EX_STATICEDGE extended style. Here is an example:

BOOL CBordersDlg::OnInitDialog()
{

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 335

 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CWnd* Panel = new CStatic;

 Panel->CreateEx(WS_EX_STATICEDGE, "STATIC", NULL,
 WS_CHILD | WS_VISIBLE,);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Sunken Borders: You can further sink the borders of a control, give them an advanced
3-D appearance. To apply this effect at design time, set the Client Edge property to True.
If you are programmatically creating a control, add the WS_EX_CLIENTEDGE
extended style. Here is an example:

BOOL CBordersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CWnd* Panel = new CStatic;

 Panel->CreateEx(WS_EX_CLIENTEDGE, "STATIC", NULL,
 WS_CHILD | WS_VISIBLE,);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Raised Borders: A control appears raised when it borders come out of the client area.
This creates the effect of light left and top borders while the right and bottom borders
appear darker. To apply this property, at design time, set the Modal Frame property to
True or, at run time, add the WS_EX_DLGMODALFRAME extended style. Here is an
example:

BOOL CBordersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

336 © FunctionX, Inc.

 // TODO: Add extra initialization here
 CWnd* Panel = new CStatic;

 Panel->CreateEx(WS_EX_DLGMODALFRAME, "STATIC", NULL,
 WS_CHILD | WS_VISIBLE,);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

To raise only the borders of a control without including the body of the control, you can
combine WS_EX_CLIENTEDGE and the WS_EX_DLGMODALFRAME extended
styles. Here is an example:

 Practical Learning: Extending a Control’s Borders
1. To create a fancy static control, delete its Caption field and change its ExStyle value

to 0x201

2. Test the application

3. Return to MSVC

11.5.5 Controls Location and Dimensions
One of the main roles of a parent window is its ability to host other controls. Such
controls are called its children because the parent carries them when it is moved. The
parent also controls the children’s visibility and their availability. These controls are also
called its clients because they request the parental service from it.

The controls are confined to the area of the body offered by the parent window. After
visually adding it to a host, the control assumes a location and takes some dimensions in
a rectangular body of its parent. The origin of this rectangular area is on the upper-left

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 337

corner of the parent window. The horizontal measurements move from the origin to the
right. The vertical measurements move from the origin to the bottom:

If you are programmatically creating the control, to set its location, if you are using the
CreateWindow(), the CreateWindowEx() functions, or the first version of the
CreateEx() method, specify the value for the distance from the left border of the body of
the parent to the left border of the control, and pass the desired value for the upper
distance from the top border of the body of the parent to the top border of the control.
Here is an example:

BOOL CBordersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CWnd* Panel = new CStatic;

 Panel->CreateEx(NULL, "STATIC", NULL,
 WS_CHILD | WS_VISIBLE | WS_BORDER,
 32, 15,);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

338 © FunctionX, Inc.

If you specify negative values for the left and top distances, either the left or the top
borders, respectively, will be hidden.

To set the dimensions of the control, if you are using the CreateWindow(), the
CreateWindowEx() functions, or the first version of the CreateEx() member function,
specify the nWidth for the width and the nHeight for the height of the control. If you
specify measures that are higher than the width of the body of the parent - x or the height
of the of the parent - y, the right border or the bottom border, respectively, of the control
will be hidden.

To specify the location and the dimensions of the control at the same time, pass a RECT
or a CRect variable as the rect argument of the Create() or the second version of the
CreateEx() methods. Here are examples:

BOOL CBordersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CWnd* btnApply = new CWnd;
 RECT Recto = {12, 16, 128, 64};
 btnApply->Create("BUTTON", "&Apply", WS_CHILD | WS_VISIBLE,
 Recto,);

 CWnd *btnDismiss = new CWnd;
 btnDismiss->Create("BUTTON", "&Dismiss", WS_CHILD | WS_VISIBLE,
 CRect(12, 68, 128, 120),);

 CWnd* Panel = new CStatic;
 Panel->CreateEx(WS_EX_DLGMODALFRAME, "STATIC", NULL,
 WS_CHILD | WS_VISIBLE | WS_BORDER,
 132, 16, 220, 120,);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 339

11.5.6 Parenthood
After specifying that the control you are creating is a child, which is done by placing the
control on a form or a dialog box or by using or adding the WS_CHILD style, you must
specify what window is the parent of your control. The parenthood of a control is
automatically set when the control is placed on a host: the host becomes the parent and
the parent is responsible for destroying the children when it is closed.

If you are programmatically creating the control, you can specify its parent by passing a
window handle as the pParentWnd argument of the the CreateWindow(), the
CreateWindowEx() functions, the Create() , or the second version of the CreateEx()
member functions. If you are creating the control in a member function or an event of the
parent window that is a descendent of CWnd, you can pass this argument as the this
pointer. Here is an example:

void CSecondDlg::OnFirstControl()
{
 // TODO: Add your control notification handler code here
 CWnd *First = new CWnd;
 CString StrClsName = AfxRegisterWndClass(CS_VREDRAW | CS_HREDRAW,
 LoadCursor(NULL, IDC_CROSS),
 (HBRUSH)GetStockObject(BLACK_BRUSH)
 LoadIcon(NULL, IDI_WARNING));

 First->Create(StrClsName, NULL,WS_CHILD | WS_VISIBLE | WS_BORDER,
 CRect(20, 20, 120, 60), this,);
}

Specifying the parent as the this pointer indicates that when the parent is destroyed, it
will also make sure the child control is destroyed. If you want the application to be the
parent and owner of the control, use the first version of the CreateEx() method and pass
the handle of your application as the hwndParent argument.

11.5.7 Control Identification
After adding a control to your application, you must identify it. An identifier is not a
string, it is a constant integer that is used to identify the control. Therefore, it is not the
name of the control.

If you have just added the control, Visual C++ would assign a default identifier. If the
control is static, it would have the IDC_STATIC identifier. Every other control gets an
identifier that mimics its class name followed by a number. An example would be

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

340 © FunctionX, Inc.

IDC_EDIT1. If you add another control of the same kind, it would receive an identifier
with an incremental number.

To have a better idea of each control, you should change its ID to make it more intuitive.
To do this, if you are visually adding the control, first display the Properties window:

The identifier can be a word or a hexadecimal number. Here are the rules you must
follow when assigning identifiers:

If you decide to use a word If you decide to use a hexadecimal number

?? The identifier must start with an
underscore or a letter

?? The identifier must be in one word

?? After the first character, the identifier can
have letters, underscores, and digits in
any combination

?? The identifier must not have non-
alphanumeric characters

?? The identifier cannot have space(s)

?? The identifier must start with a digit or one of the
following letters: a, b, c, d, e, f, A, B, C, D, E, or
F

?? The identifier can have only digits and the above
letters except this: if the identifier starts with 0,
the second character can be x or X followed by
the above letters and digits so that, when
converted to decimal, it must have a value
between -32768 and 65535

Here are suggestions you should follow:

?? The identifier should be in all uppercase

?? The identifier should have a maximum of 30 characters

?? If the object is a form or dialog box, its identifier should start with IDD_ followed by
a valid name. Examples: IDD_EMPLOYEES or IDD_EMPL_RECORS

?? If you are creating a control, the identifier should start with IDC_ followed by a
name. Examples are: IDC_ADDRESS or IDC_FIRST_NAME

?? If you are creating a static control but plan to use it in your code, (you must) change
its identifier to something more meaningful. If the static control will hold text and
you plan to change that text , you can identify it with IDC_LABEL. For a static
control used to display a picture of employees, you can identify it as
IDC_EMPL_PICTURE

The identifiers of the controls used in your application must be listed in a header file.
This file is usually called Resource.h

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 341

If you visually add controls to your application, their identifiers are automatically added
to this file. Even if you change the identifier of the control, Visual C++ updates this file.
You can also manually add identifiers to this file, provided you know why you are doing
that.

If you are programmatically creating a control using the CreateWindow() or the
CreateWindowEx() functions, you do not need to specify the identifier. If you are
programmatically creating a control, you can locally set an identifier by specifying a
(randomly selected) decimal or hexadecimal number as the nID argument of the Create()
or the second version of the CreateEx() methods. Here are examples:

BOOL CBordersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CWnd* btnApply = new CWnd;
 RECT Recto = {12, 16, 128, 64};
 btnApply->Create("BUTTON", "&Apply", WS_CHILD | WS_VISIBLE,
 Recto, this, 0x10);

 CWnd *btnDismiss = new CWnd;
 btnDismiss->Create("BUTTON", "&Dismiss", WS_CHILD | WS_VISIBLE,
 CRect(12, 68, 128, 120), this, 258);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

342 © FunctionX, Inc.

Alternatively, you can first create an identifier in the String Table. We saw how to do this
in Lesson 3. You can also create an identifier using the Resource Symbols dialog box.
Then use that identifier for your control. Here is an example:

BOOL CBordersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CWnd *btnDismiss = new CWnd;
 btnDismiss->Create("BUTTON", "&Dismiss", WS_CHILD | WS_VISIBLE,
 CRect(12, 68, 128, 120), this, IDN_DISMISS);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

 Practical Learning: Completing the Control
1. To create an identifier, in the Resource View, right-click the name of the appication,

(MSVC 6) Controls resources or (MSVC 7) Controls, and click Resource Symbols…

2. In the Resource Symbols dialog box, click the New… button

3. Set the Name to IDC_PANEL

4. Click OK and click Close

5. On the dialog box, click the Custom control to select it. On the Properties window,
click the arrow of the ID combo box and select IDC_PANEL

6. Test the application and return to MSVC

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 343

Chapter 12:
Dialog-Based Windows

? Introduction to Dialog Boxes

? Modal Dialog Boxes

? Property Sheets and Wizards

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

344 © FunctionX, Inc.

12.1 Dialog Boxes

12.1.1 Overview
A dialog box is a rectangular window whose main role is to host or hold other Windows
controls. For this reason, a dialog box is referred to as a container. It is the primary
interface of user interaction with the computer. By itself, a dialog box means nothing.
The controls it hosts accomplish the role of dialog between the user and the machine.
Here is an example of a dialog box:

A dialog box has the following characteristics:

?? It is equipped with the system Close button . As the only system button, this
button allows the user to dismiss the dialog and ignore whatever the user would
have done on the dialog box.

?? It cannot be minimized, maximized, or restored. A dialog box does not have any
other system button but Close.

?? It is usually modal, in which case the user is not allowed to continue any other
operation until the dialog box is dismissed.

?? It provides a way for the user to close or dismiss the dialog. Most dialog boxes
have the OK and the Cancel buttons, although this depends on the application
developer. When the dialog has the OK and the Cancel buttons, the OK button is
configured to behave as if the user had pressed Enter. In that case, whatever the
user had done would be acknowledged and transferred to the hosting dialog box,
window, or application. Pressing Esc applies the same behavior as if the user
had clicked Cancel.

 Practical Learning: Creating an Application
1. Start Microsoft Visual C++ or Microsoft Visual Studio

2. Create a new Win32 Application or Win32 Project named ExoDialog1

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 345

3. Make sure you create the Windows Application in An Empty Project and click OK

or Finish

4. If you are using MSVC 6, on the main menu, click Project -> Settings…
If you are using MSVC 7, in the Solution Explorer, right-click ExoDialog1 and click
Properties...

5. In the Property Pages, specify that you want to Use MFC in a Shared DLL

6. Click OK

7. To create the application class of the project, on the main menu, click File -> New or
Project -> Add New Item...

8. In the Files property page or int the Templates section, click C++ (Source) File. Set
the File Name to Exercise and click OK or Open.

9. To create the application, change the file as follows:

#include <afxwin.h>

class CExerciseApp : public CWinApp
{
public:
 BOOL InitInstance();

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

346 © FunctionX, Inc.

};

BOOL CExerciseApp::InitInstance()
{
 return TRUE;
}

CExerciseApp theApp;

10. Save All

12.1.2 Dialog Box Creation
To create a dialog box in MSVC, from the Add Resources dialog box, simply select the
Dialog node and click New. Then you can manipulate its characteristics using the
Properties window.

In reality, unlike most or all other controls, a dialog box requires some preparation before
actually programmatically creating it. While most other controls can be easily added to a
host, a dialog box must already “exist” before it is asked to display. Based on this, a
dialog box can first be manually created as a text file. This is called a resource file. In the
file, you create a section for the dialog box. This section itslef is divided in lines each
serving a specific purpose.

Like most other controls, a dialog box must be identified. The identifer of a dialog box
usually starts with IDD_ wher the second D stands for dialog. An example of a dialog
identifer would be IDD_SCHOOL_SURVEY. Therefore, the section of the dialog box in
the file can start with:

IDD_SCHOOL_SURVEY

At design time, the identifier of the dialog box is specified using the ID combo box.

When having our introduction to controls, we saw that the Win32 library provides a
series of ready-made names of classes to create controls. In the same way, a dialog box
has two types of classes used to create a dialog box. The DIALOG statement was
primarily used to create a dialog box. It has been updated and replaced by the
DIALOGEX name. Therefore, to indicate in the file that the section you are creating is
for a dialog box, type DIALOGEX. Here is an example:

IDD_SCHOOL_SURVEY DIALOGEX

Practical Learning: Creating a Dialog Box
1. To create a dialog box, on the main menu, click Insert -> Resource… or Project ->

Add Resource...

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 347

2. In the Add Resource dialog box, click Dialog and click New
3. Click OK on the dialog box and press Delete twice to dismiss the OK and the Cancel

buttons
If you are using MSVC 6 and the Properties window is not displaying, right-click the
dialog box and click Properties

4. In the Properties window, select IDD_DIALOG1. Type IDD_EXERCISE_DLG
and press Enter

12.1.3 Dialog Box Location
Like the other controls and as we have reviewed their primary characteristics so far, a
dialog box must be “physically” located on an application. Because a dialog box is
usually created as a parent to other controls, its location depends on its relationship to its
parent window or to the desktop. The location of a dialog box is defined by x for the
distance from the left border of the monitor to the left border of the dialog box and by y
for the distance from the top border of the monitor to the top border of the dialog box:

IDD_SCHOOL_SURVEY DIALOGEX x , y,

At design time, the x value is set using the X Pos field of the Properties window. The y
value is set using the Y Pos value in the Properties window.

If you specify these two dimensions as 0, the left and top borders of the dialog box would
be set so the object appears in the center-middle of the screen:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0,

If you set the value of x or X Pos property to a number less than or equal to 0, the left
border of the dialog box would be aligned with the left border of the monitor. If you set
the value of x or of the X Pos property higher than 0, the value would be used as the
distance, in Dialog Box Unit (DLU), from the left border of the screen to the left border
of the dialog box. This scenario also applies for the y value or the Y Pos property.

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

348 © FunctionX, Inc.

12.1.4 Dialog Box Dimensions
The dimensions of a dialog box are its width and its height. At design time, to set the
desired width, position the mouse to its right border until the mouse pointer appears as a
horizontal double arrow Then click and drag left or right.

To set the desired height, position the mouse to the bottom border until the mouse cursor

appears as a vertical double arrow . Then click and drag up or down.

To set both the width and the height in one operation, position the mouse in the bottom-
right corner until the mouse pointer becomes a North-West – South-East diagonal double

arrow . Then click and drag up, down, left, or right as necessary.

While dragging in any of these operations, you can refer to the right section of the status
bar to get the current width and height. In the resource file, the width and the height of
the dialog box follow the location values. Here is an example:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268

There are other items that can be entered on this first line but the identifier, the
DIALOGEX statement, the location, and the dimensions are required.

 Practical Learning: Setting Dialog Box Dimensions

1. If you are using MSVC 6, close the Properties window
Position the mouse to the right border of the dialog box with a horizontal mouse
cursor

2. Click and hold the mouse. Then drag in the right direction. Meanwhile, observe the
change of the width on the Status Bar

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 349

3. When the width value gets to 250, release the mouse

4. Position the mouse to the right border of the dialog box with a vertical mouse cursor

5. Click and hold the mouse. Then drag in the right direction. Meanwhile, observe the
change of the height on the Status Bar

Width

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

350 © FunctionX, Inc.

6. When the height values gets to 150, release the mouse

7. If you are using MSVC 6, display the Properties window

12.1.5 Windows Styles for a Dialog Box
As the most regular used parent of Windows controls, a dialog box must have some
characteristics that would allow it to be as efficient as possible. The characteristics of a
dialog box, as done with the controls, are referred to as its styles. In the resource file, to
specify these aspects, start a line with the STYLE keyword:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE

WS_CAPTION: Because a dialog box serves only to hold other objects, it should
indicate what it is used for. The top side of a dialog box is made of a horizontal section
that we call the title bar. To have a title bar on a dialog box, it must be created with the
WS_CAPTION style:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION

Height

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 351

The main area of this bar contains a word or a group of words forming a sentence called a
caption. There are various ways you can change it. At design time, on the Properties
window, change the value of the Caption field. If you are creating a resource file, start a
new line with the CAPTION keyword and provide the word or group of words as a null-
terminated string. Here is an example:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION
CAPTION “School Survey – For Teachers Only”

WS_SYSMENU: By convention, a dialog box is equipped with only the system Close
button on its title bar. This is made possible by adding the WS_SYSMENU style:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU
CAPTION “School Survey – For Teachers Only”

WS_MINIMIZEBOX: The Minimize and Maximize buttons are omitted. If you want to
add the Minimize button , at design time, set the Minimize Box property to True or
checked. This is equivalent to adding the WS_MINIMIZEBOX style to the class.

WS_MINIMIZE: If you create a dialog box and equip it with the Minimize button so the
user can shrink it to the Taskbar, if you want the dialog box to be minimized when it
comes, you can open the resource file and add the WS_MINIMIZE style. This would be
done as follows:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX | WS_MINIMIZE
CAPT ION “School Survey – For Teachers Only”

Remember that a dialog box can be minimized only if its system menu indicates so.

WS_MAXIMIZEBOX: If you want the Maximize button , set the Maximize Box
property to True or checked. This is equivalent to adding the WS_MAXIMIZEBOX
style.

WS_MAXIMIZE: If you create a dialog box equipped with the Maximize button, if you
want the dialog box to be automatically maximized when it displays, you can add the
WS_MAXIMIZE style to the resource file. This would be done as follows:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX | WS_MINIMIZE |

 WS_MINIMIZEBOX | WS_MINIMIZE
CAPTION “School Survey – For Teachers Only”

Remember that a window box can be maximized only if it includes the
WS_MAXIMIZEBOX style.

Setting one of these two system button properties to True or checked or adding either
WS_MAXIMIZEBOX or WS_MINIMIZEBOX and not the other would disable the
other system button. Therefore, here are the combinations you can get:

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

352 © FunctionX, Inc.

System Menu = False

There is no system button

System Menu = True
Minimize Box = False
Maximize Box = True

The Minimize button is disabled

System Menu = True
Minimize Box = True
Maximize Box = False

The Maximize button is
disabled

System Menu = True
Minimize Box = True
Maximize Box = True

Both the Minimize and
Maximize buttons are
enabled

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 353

System Menu = True
Minimize Box = False
Maximize Box = False

Only the Close button is
available

BS_BORDER : The borders of a control allow you and the user to “physically” locate it
on the screen. This can be done by adding the WS_BORDER to a control. For a dialog
box, the type of border used on the object is controlled by the Border combo box

WS_THICKFRAME: Based on the Microsoft Windows standards and suggestions, a
dialog box usually uses constant dimensions. This means that the user should not change
its width and/or height. If you want to give the user the ability to resize a dialog box,
change its Border value to Resizing . With this type of object, the user can position the
mouse on of its borders or corners, click, hold down the mouse and drag in the desired
direction to change its dimensions:

In the resource file, this can also be done by creating the dialog box with the
WS_THICKFRAME style:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU | WS_POPUP | WS_THICKFRAME
CAPTION “School Survey – For Teachers Only”

A Thin value gives a thin border to the dialog box.

WS_POPUP: A window is referred to as popup if it can be displayed on the screen. That
is, if it can be "physically" located. To create a popup dialog box, at design time, select
Popup from the Style combo box. In a resource file, this can be done by adding the
WS_POPUP style:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU | WS_POPUP
CAPTION “School Survey – For Teachers Only”

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

354 © FunctionX, Inc.

If you do not want borders at all on the dialog box, set its Border value to None . This
also removes the title bar and thus the system buttons:

This is equivalent to using only the WS_POPUP style:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_POPUP
CAPTION “School Survey – For Teachers Only”

WS_CHILD: A window is referred to as child if its appearance is dependent of the
appearance of another window. All of the Windows controls that we will be placing on
our dialog boxes are child controls. As we will see when studying property sheets and
wizards, a dialog box that is designed to be “embedded” in a property sheet or a wizard
must be created as a child. To specify that a dialog box is a child of another window, at
design time, select the Child value on the Style combo box. This characteristic can be
applied by adding the WS_CHILD style.

WS_OVERLAPPED : A window is called overlapped if it has the following
characteristics:

?? It has a title bar equipped with a caption and at least one of the system buttons
(usually at least the system Close button)

?? It has borders

To get an overlapped dialog box, at design time, open the Style comb box and select the
Overlapped value. This is equivalent to the WS_OVERLAPPED style.

WS_OVERLAPPEDWINDOW : To create a dialog box equipped with a title bar, a
system menu, the ability to popup, and a border, instead of combining the
WS_CAPTION, the WS_SYSMENU, the WS_POPUP, and the WS_BORDER styles,
use the WS_OVERLAPPEDWINDOW value, which combines them all.

 Practical Learning: Changing a Dialog Style
1. In the properties window, delete the value in the Caption field and replace it with

Aerobics Exercises and press Enter

2. Click the arrow of the Style combo box and select Overlapped

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 355

12.1.6 Dialog Box Styles
DS_CONTEXTHELP : We saw already how to manage the title bar and its system
buttons. If you are creating a strict dialog box, one that is equipped with only the system

close button , if you intend to provide help on the dialog box, you can add a context -
sensitive help button to the left of the close button. To do this, set its Context Help
property to True or create it with the DS_CONTEXTHELP style:

DS_MODALFRAME: By design, a dialog box has thick borders and cannot be resized
from its borders or corners, even if the system buttons are available. This characteristic of
dialog boxes is controlled by the Border property. The default border of a dialog box is
Dialog Frame. This is the same as applying the DS_MODALFRAME dialog style:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU | WS_POPUP | DS_MODALFRAME
CAPTION “School Survey – For Teachers Only”

DS-3DLOOK: In previous versions of MS Windows, namely Windows NT 3.51, to get a
3-dimensional appearance, you needed to apply the DS-3DLOOK style. At this time, this
style is added by default.

DS_ABSALIGN : Earlier, when reviewing the techniques of setting the location of a
dialog box, we mentioned that, if the x and the y values, or the X Pos and the Y Pos
properties, are set to 0, the dialog box is positioned in the middle of the screen. This is
because, like all other controls that can act as children of a parent window, the location of
a dialog box is set according to its parent. That is, the location of a dialog box is based on
its ability to be a client (also called child) of another window (called a parent). This
system is referred to as Client Coordinate. If you are creating an application based on a
dialog box, that is, an application whose main or even only container is the dialog box,
such a dialog box does not have a parent. In this case, it does not have a referential
window to base its location on. Consequently, it gets positioned to the middle of the
screen. If you want the location of the dialog box to be based on the monitor screen, set
its Absolute Align property to True. In a resource file, this would be done by adding the
DS_ABSALIGN style. This system is referred as the Screen Coordinate.

DS_CENTER: Based on the coordinate system you decide to use, screen or client, when
the dialog box of a dialog-based application comes up, if you want the dialog to be
centered on the monitor screen, even if you are using the screen coordinate system with
the DS_ABSALIGN style, set its Center property to True or checked. This is also done
by adding the DS_CENTER style. If the dialog box is participating in an application that
is view-based, if you set its Center property to True, it would be centered with regard to
the window that called it.

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

356 © FunctionX, Inc.

DS_CENTERMOUSE: We have described how to control the location of the dialog box
when it comes up, depending on the coordinate system you are using, and the
DS_CENTER style. Alternatively, if you want the dialog box to be displayed based on
the location of the user’s mouse cursor, set its Center Mouse property to True or checked.
In this case, when the dialog box comes up, it would find the mouse pointer and position
itself so the mouse cursor would be in the middle -center of the dialog box. This ability is
also applied by adding the DS_CENTERMOUSE style.

Font: To display its controls, the dialog box uses a predefined font known as MS Shell
Dlg. To change it at design time, if you are using MSVC 6, click the Font button in the
General property page of the Properties window. In MSVC 7, you can click the ellipsis
button of the Font (Size) field. The font characteristics are managed through the
DS_SHELLFONT, the DS_SETFONT, and the DS_FIXEDSYS styles. The section of
the resource file that specifies the general font starts with the FONT keyword:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU | WS_POPUP | DS_MODALFRAME
CAPTION “School Survey – For Teachers Only”
FONT

The FONT keyword is followed by the characteristics of the font using the following
syntax:

FONT size, name, weight, italic, charset

Here is an example:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU | WS_POPUP | DS_MODALFRAME
CAPTION “School Survey – For Teachers Only”
FONT 8, “MS Shell Dlg”, 400, 0, 0x1

If you want to manage the fonts, weights, and colors of the controls on the dialog box of
an MFC application, you must do this programmatically.

 Practical Learning: Using Dialog Box Properties
1. In the properties window, click the arrow of the Border combo box and select

Resizing

2. Click the Center check box or set it to True

12.1.7 Extended Windows Styles for a Dialog Box
Windows extended styles are used to improve the appearance or the role of a dialog box
on an application. To use these styles in the resource file, start a new line with the
EXSTYLE keyword:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU | WS_POPUP | DS_MODALFRAME
EXSTYLE
CAPTION “School Survey – For Teachers Only”
FONT 8, “MS Shell Dlg”, 400, 0, 0x1

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 357

WS_EX_TOOLWINDOW: A tool window is a parent object mostly used to float, like a
toolbar, on a frame of another window. It has a short title bar that displays its caption. It
can neither be minimized nor maximized but it can be equipped with a circumstantial
system menu:

To create a tool window, when designing the dialog box, check the Tool Window check
box or set it to True. This can also be applied by adding the WS_EX_TOOLWINDOW
extended style:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU | WS_POPUP | DS_MODALFRAME
EXSTYLE WS_EX_TOOLWINDOW
CAPTION “School Survey – For Teachers Only”
FONT 8, “MS Shell Dlg”, 400, 0, 0x1

If you want the user to be able to resize the tool window by dragging its borders or
corners, at design time, set its Border value to Resizing or create it with the
WS_THICKFRAME style. If you do not want the user to be able to resize the tool
window, at design time, set its Border to either Thin or Dialog Frame. In the resource file,
you can also do this by creating it with the WS_CAPTION and WS_SYSMENU style:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 HWND hWnd;
 MSG Msg;
 WNDCLASSEX WndClsEx;

 . . .

 RegisterClassEx(&WndClsEx);

 hWnd = CreateWindowEx(WS_EX_TOOLWINDOW,
 ClsName,
 WndName,
 WS_CAPTION | WS_SYSMENU,
 . . .,
);
}

WS_EX_APPWINDOW : As mentioned already, a window without the system
Minimize button cannot be minimized. This, of course, is the same for a tool window.
Also, by default, a tool window does not display a button on the taskbar. If you are
creating a window that will depend on a main window such as a frame, you should keep

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

358 © FunctionX, Inc.

that default. If for any reason you want to display a button on the Taskbar for the tool
window, add the WS_EX_APPWINDOW extended style.

WS_EX_TOPMOST: If you want your window to stay on top of another or other
windows, you have two choices. If the window you are creating, such as a dialog box, is
being added to a frame -based or a form-based application and you want that window to
always be on top of its parent window, add the WS_VISIBLE style to it and display it
using ShowWindow(SW_SHOW). If you want the window to always be on top of all
other windows regardless of their applications, add the WS_EX_TOPMOST extended
style to it.

WS_EX_CLIENTEDGE: A window appears sunken when its body is sunk with regards
to its borders. To create a dialog box with a sunken body, at design time, check its Client
Edge check box or set it to True:

This is equivalent to applying the WS_EX_CLIENTEDGE style

WS_EX_WINDOWEDGE: A window can have an inside body that appears to be raised
with regards to its borders. Such a window can be created by adding the
WS_EX_WINDOWEDGE style.

WS_EX_STATICEDGE: To create a window with a 3-dimensional thin border, at
design time, check its Static Edge check box or set it to True. This is the same as adding
the WS_EX_STATICEDGE.

WS_EX_PALETTEWINDOW : To create a dialog box that has a raised border and
stays on top of others, which is equivalent to combining the WS_EX_WINDOWEDGE
and the WS_EX_TOPMOST styles, in the resource file, add the
WS_EX_PALETTEWINDOW value in the EXSTYLE line

WS_EX_OVERLAPPEDWINDOW : A window is referred to as overlapped when it
presents a combination of a sunk and a raised edge. Such a window can be created by
either combining the WS_EX_CLIENTEDGE and the WS_EX_WINDOWEDGE
styles or by using the WS_EX_OVERLAPPEDWINDOW.

WS_EX_ACCEPTFILES : If you are creating a dialog box that will be accepting files
dragged from other window, at design time, check the Accept Files check box or set it to
True. You can also do this in the resource file by adding the WS_EX_ACCEPTFILES
extended style.

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 359

 Practical Learning: Creating a Top-Most Window
1. To create the dialog box with a thin border, check its Static Edge check box or set it

to True

2. To indicate that this dialog can accept dragged files, check its Accept Files check
box or set it to True

12.1.8 Creating the Dialog Resource File
As mentioned already, a dialog box means nothing except for the controls it is created to
host. The controls are listed in a section that starts with the BEGIN and ends with the
END keywords. Here is an example:

IDD_SCHOOL_SURVEY DIALOGEX 0, 0, 340, 268
STYLE WS_CAPTION | WS_SYSMENU | WS_POPUP | DS_MODALFRAME
EXSTYLE WS_EX_TOOLWINDOW
CAPTION “School Survey – For Teachers Only”
FONT 8, “MS Shell Dlg”, 400, 0, 0x1
BEGIN
END

If you design a dialog box and the first object of your application, you must save it before
using it. Even if you had decided to manually create the dialog box as a text file, you
must save it before using it. In both cases, whether saving the dialog box designed or the
text file, saving it results in creating a resource file. This file should have the .rc
extension.

If your resource file is using some identifiers, which is the case for most or all controls
you will use in your application, you must list them in a header file. This file is
traditionally called Resource.h or resource.h. Each identifier must be listed using the
following syntax:

#define Identifier Constant

When you save the resource file, Visual C++ automatically creates the resource header
file and names it resource.h

After saving the resource file, it is still considered external to the application. If you are
using MSVC 6, you must add it to your project. After it has been added to your project,
you can continue working on the dialog box, adding, deleting, or manipulating the
controls. After doing that, if you save the resource, Visual C++ automatically makes the
appropriate changes in the resource and the resource header files.

 Practical Learning: Saving the Resource File
1. If you are using MSVC 7, on the Standard toolbar, click the Save All button

If you are using MSVC 6:

a. To save the dialog box, click the system Close button of the window that holds
the dialog box.

b. This will display a window with a tree view that starts with Script1. Close its
window also.

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

360 © FunctionX, Inc.

c. You will receive a message box asking you whether you want to save the script.
Click Yes

d. Locate the ExoDialog1 folder that was used to create the current project.
Display it in the Save In combo box.
Change the name in the File Name with ExoDialog1

e. Click Save

2. To add the resource to your application, on the main menu, click Project -> Add To
Project -> Files…

3. Click ExoDialog1.rc and click OK

4. To verify that the dialog box has been added, in the Workspace, click the
ResourceView tab and expand the ExoDialog1 Resources node. Then expand the
Dialog folder and double-click IDD_EXERCISE_DLG

5. If you are using MSVC 7, on the Standard toolbar, the Save All. Then

12.1.9 Creating a Class for the Dialog
After creating the resource for the dialog box, you must create a class that will be used to
handle its assignment. To do this, you must derive a class from CDialog. In the header
file of the dialog’s class, define an enumerator whose only member is called IDD and
initialize it with the identifier of the dialog box. Because the identifier is listed in the
resource header file, you must include this resource header in the file in which you are
using the dialog’s identifier.

 Practical Learning: Create the Dialog’s Class

1. To create a class for the dialog box, open the Exercise.cpp created earlier and add the
following:

#include <afxwin.h>
#include <afxdlgs.h>
#include "resource.h"

class CExerciseApp : public CWinApp
{
public:

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 361

 BOOL InitInstance();
};

class CExerciseDlg : public CDialog
{
public:
 enum { IDD = IDD_EXERCISE_DLG };
};

BOOL CExerciseApp::InitInstance()
{
 return TRUE;
}

CExerciseApp theApp;

2. Save All

12.1.10 Dialog Box Methods
A dialog box is based on the CDialog class. As seen above, when creating your dialog
box, you can derive a class from CDialog . The CDialog class itself provides three
constructors as follows:

CDialog();
CDialog(UINT nIDTemplate, CWnd* pParentWnd = NULL);
CDialog(LPCTSTR lpszTemplateName, CWnd* pParentWnd = NULL);

The default constructor, CDialog(), can be used to declare a variable whose behavior is
not yet known or, for one reason or another, cannot yet be defined. When creating your
class, you should also declare at least a default constructor.

The identifier of the dialog box, such as IDD_DIALO G1, can be used as the first
argument, nIDTemplate, of a CDialog() constructor to create a dialog box from an
existing resource.

If you are using a Win32 template to create your dialog box, pass the name of this
template as a string to a CDialog() constructor, lpszTemplateName .

When implementing your default constructor, initialize the parent CDialog constructor
with the IDD enumerator declared in your class. If your dialog box has an owner, specify
it as the pParentWnd argument. If you set it to NULL, the application will be used as the
dialog’s parent.

If you dynamically create objects for your application using your dialog class, it is a good
idea to also declare and define a destructor. This would be used to destroy such dynamic
objects.

Most other methods of a dialog box depend on circumstances we have not yet reviewed

Practical Learning: Creating a Dialog Box
1. Declare a default constructor and a destructor for your dialog class and implement

them as follows:

class CExerciseDlg : public CDialog

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

362 © FunctionX, Inc.

{
public:
 enum { IDD = IDD_EXERCISE_DLG };

 CExerciseDlg();
 ~CExerciseDlg();
};

CExerciseDlg::CExerciseDlg()
 : CDialog(CExerciseDlg::IDD)
{
}

CExerciseDlg::~CExerciseDlg()
{
}

2. Before using the new class, declare a variable of it as follows:

BOOL CExerciseApp::InitInstance()
{
 CExerciseDlg Dlg;

 m_pMainWnd = &Dlg;

 return TRUE;
}

3. Save All

12.2 Modal Dialog Boxes

12.2.1 Dialog-Based Applications
There are two types of dialog boxes: modal and modeless. A Modal dialog box is one that
the user must first close in order to have access to any other framed window or dialog
box of the same application.

One of the scenarios in which you use a dialog box is to create an application that is
centered around a dialog box. In this case, if either there is no other window in your
application or all the other windows depend on this central dialog box, it must be created
as modal. Such an application is referred to as dialog-based

There are two main techniques you can use to create a dialog-based application: from
scratch or using one of Visual C++ wizards. After creating a dialog resource and deriving
a class from CDialog, you can declare a variable of your dialog class. To display your
dialog box as modal, you can call the CDialog::DoModal() method in your
CWinApp::InitInstance() method. Its syntax is:

virtual int DoModal();

This method by itself does nothing more than displaying a dialog box as modal. We will
learn that you can use this method to find out how the user had closed such a dialog box.

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 363

 Practical learning: Displaying a Modal Dialog Box
1. To display the dialog box as modal, in the InitInstance() event of your CWinApp

derived class, call the DoModal() method using your dialog variable:

#include <afxwin.h>
#include <afxdlgs.h>
#include "resource.h"

class CExerciseApp : public CWinApp
{
public:
 BOOL InitInstance();
};

class CExerciseDlg : public CDialog
{
public:
 enum { IDD = IDD_EXERCISE_DLG };

 CExerciseDlg();
 ~CExerciseDlg();
};

CExerciseDlg::CExerciseDlg()
 : CDialog(CExerciseDlg::IDD)
{
}

CExerciseDlg::~CExerciseDlg()
{
}

BOOL CExerciseApp::InitInstance()
{
 CExerciseDlg Dlg;

 m_pMainWnd = &Dlg;
 Dlg.DoModal();

 return TRUE;
}

CExerciseApp theApp;

2. Test the application

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

364 © FunctionX, Inc.

3. Close it and return to MSVC

12.2.2 The MFC Wizard for a Dialog-Based Application
Microsoft Visual C++ provides an easier way to create an application that is mainly
based on a dialog box. To use this technique, start a new project and specify that you
want to create an MFC Application. In the MFC Application Wizard, set the Application
Type to Dialog Based

 Practical Learning: Using the Wizard to create a Dialog-Based Application
1. On the main menu, click File -> New -> Project...

2. In the New Project dialog box, in the Templates list, click MFC Application

3. Set the Project Name to ExoDialog2

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 365

4. Click OK

5. In the MFC Application Wizard dialog box, click Application Type and, on the right
side, click the Dialog Based radio button

6. Click User Interface Features and click About Box to remove its check box

7. Under Dialog Title, select the text and replace it with Dialog Box Exercise

8. Click Advance Features to see its content

9. Click Generated Classes

10. In the Generated Classes list, click CExoDialog2App and, in the Class Name, replace
the text with CExerciseApp

11. In the Generated Classes list, click CExoDialog2Dlg
In the Class Name, replace the name with CExerciseDlg
In the .h file edit box, replace the name of the file with ExerciseDlg.h
In the .cpp file edit box, replace the name of the file with ExerciseDlg.cpp
Make sure the Base Class is set to CDialog

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

366 © FunctionX, Inc.

12. Click Finish

13. Test the application and return to MSVC

12.2.3 A Modal Dialog Box in an Application
Some applications require various dialog boxes to complete their functionality. When in
case, you may need to call one dialog box from another and display it as modal. Here is
an example:

The Paragraph dialog box of
WordPad is a modal dialog box:
when it is displaying, the user
cannot use any other part of
WordPad unless he or she
closes this object first

Since a dialog box is created using a class, the first thing you must do is to include the
header file of the CDialog object whose box you want to call.

To call one dialog box from another window, select the event (or message) from where
you would make the call. Declare a variable of the other class and use the
CDialog::DoModal() method to display the other object as a modal dialog box.

Calling a dialog box from the menu of a frame-based application is done the same way as
calling it from a dialog box

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 367

 Practical Learning: Adding a Dialog Box to an Existing Application
1. Start a new MFC Application project named SDIAndDlg

2. Create it as a Single Document and click Finish
3. To add a dialog box, on the main menu, click Project -> Add Resource…
4. In the Add Resource dialog box, double-click Dialog

5. To create a class for the new dialog box, right-click it and click Add Class…
6. In the MFC Class Wizard, specify the Class Name as CExerciseDlg
7. In the Base Class combo box, select CDialog and click Finish

8. Display the menu by double-clicking IDR_MAINFRAME under the Menu folder of
the Resource View tab

9. Click View and click the first empty item under it. Type – and press Enter to add a
separator.

10. In the menu item under the new separator, type &Exercise… and press Enter
11. Right-click the new Exercise menu item and click Add Event Handler…

12. In the Message Type, access the COMMAND item. In the Class List, click
CMainFrame. Accept the Function Handler Name then click Finish Add And Edit

13. Change the file as follows:

#include "stdafx.h"
#include "SDIAndDlg.h"

#include "MainFrm.h"
#include "ExerciseDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

. . .

void CMainFrame::OnViewExercise()
{
 // TODO: Add your command handler code here
 CExerciseDlg Dlg;

 Dlg.DoModal();
}

14. Execute the application. On its main menu, click View -> Exercise…

15. After using the dialog box, close it and close the application to return to MSVC

12.3 Property Sheets and Wizards

12.3.1 Introduction to Property Pages
In some applications, you may want to add many but necessary and useful controls to a
dialog box. You can solve this problem in three main ways:

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

368 © FunctionX, Inc.

?? You may have to tremendously increase the width and the height of your dialog
box. Although this solution works sometimes, it may have the disadvantage of
producing a highly crowded dialog box

?? You can hide some controls and display them only when needed, such as in
response to a user clicking a button. The concept of this type of application
involves an unpredictable and non-practical design. It also eventually requires a
lot of coding

?? The third solution involves the user of property pages

A property page is a dialog box, that can be positioned in front of, or behind of, another.
This has the advantage of providing various dialog boxes that are “physically” grouped as
one entity. Each part is represented by a tab. The tabs are usually positioned in the top
section and each is used to identify a particular page:

To use a property page, the user clicks one. The page clicked besomes positioned in front
of the other(s). The user can click another tab to select a different page:

12.3.2 Creating Property Pages
A property page is designed from a dialog box and it must have the following
characteristics:

?? Style: Child or WS_CHILD

?? Border: Thin or WS_POPUP

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 369

?? Title Bar: True or WS_CAPTION

?? System Menu: False or no WS_SYSMENU

?? Visible: False or no WS_VIS IBLE

?? Disabled: True or WS_DISABLED

You can create each property page like that and with the same size. If you create dialog
boxes that have different sizes, the dimensions of the taller and/or wider will be applied
to all the other property pages when they come up.

Visual C++ makes it easy to create resources for property pages by displaying the Add
Resource dialog box, expanding the Dialog node and selecting one of the
IDD_PROPPAGE_X items.

After adding the resource for the property page, as done for a dialog box, you can add a
class for it. Unlike the regular dialog box, a property page is based on the
CPropertyPage class which itself is based on CDialog. The CPropertyPage class is
declared in the afxdlgs.h header file.

 Practical Learning: Creating Property Pages

1. Using either MFC AppWizard (exe) or MFC Application, start a New Project named
Geometry

2. Create it as Dialog-Based with no About Box and set the Dialog Title to
Quadrilateral

3. Change the Class Name of the dialog to CQuadrilateral

4. Change the name of the header of the dialog to Quadrilateral.h and the name of the
source file to Quadrilateral.cpp

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

370 © FunctionX, Inc.

5. Click Finish

6. On the dialog, click TODO and press Delete three times to delete the TODO line, the
OK and the Cancel buttons

7. While the dialog box is displaying, access its properties.
Change its ID to IDD_QUADRILATERAL
If necessary, change its Caption to Quadrilateral
Change its Style value to Child
Change its Border to Thin
Remove the check mark of the System Menu check box or set it to False
Set its Visible property to False or remove its check mark
If necessary, remove the check mark of the Disabled check box or set it to False

8. Save All

9. From the Controls toolbox, click the Edit Box button and click anywhere in the
dialog box

10. Open the header file of the dialog
Change its base class to CPropertyPage
Change the value of the IDD to IDD_QUADRILATERAL

class CQuadrilateral : public CPropertyPage
{
// Construction
public:
 CQuadrilateral(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CQuadrilateral)
 enum { IDD = IDD_QUADRILATERAL };
 // NOTE: the ClassWizard will add data members here
 //}}AFX_DATA

11. Change the source file of the CQuadrilateral class as follows:

// Quadrilateral.cpp : implementation file
//

#include "stdafx.h"
#include "Geometry.h"
#include "Quadrilateral.h"

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 371

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CQuadrilateral dialog

CQuadrilateral::CQuadrilateral(CWnd* pParent /*=NULL*/)
 : CPropertyPage(CQuadrilateral::IDD)
{
 //{{AFX_DATA_INIT(CQuadrilateral)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

void CQuadrilateral::DoDataExchange(CDataExchange* pDX)
{
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CQuadrilateral)
 // NOTE: the ClassWizard will add DDX and DDV calls here
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CQuadrilateral, CPropertyPage)
 //{{AFX_MSG_MAP(CQuadrilateral)
 ON_WM_PAINT()
 ON_WM_QUERYDRAGICON()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CQuadrilateral message handlers

BOOL CQuadrilateral::OnInitDialog()
{
 CPropertyPage::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

 return TRUE; // return TRUE unless you set the focus to a control
}

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CQuadrilateral::OnPaint()
{
 if (IsIconic())
 {
 CPaintDC dc(this); // device context for painting

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

372 © FunctionX, Inc.

 SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

 // Center icon in client rectangle
 int cxIcon = GetSystemMetrics(SM_CXICON);
 int cyIcon = GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon + 1) / 2;
 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 CPropertyPage::OnPaint();
 }
}

HCURSOR CQuadrilateral::OnQueryDragIcon()
{
 return (HCURSOR) m_hIcon;
}

12. Save All

13. On the main menu, click either Insert -> Resource… (MSVC 6) or Project -> Add
Resource… (MSVC 7)

14. In the Add Resource dialog box, click the + button of Dialog to expand it

15. Click IDD_PROPPAGE_LARGE

16. Click New

17. Delete the TODO line

18. Change the ID of the new dialog to IDD_CIRCULAR and its Caption to Circular

19. On the Controls toolbox, click the Slider button and click anywhere on the
dialog box

20. If you are using MSVC 6, right-click the Circular dialog box and click ClassWizard.
A message box will display. Read it. Select Create A New Class and click OK.

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 373

Type CCircular and, in the Base Class combo box, select CPropertyPage

Click OK twice

If you are using MSVC 7, right-click the dialog box and click Add Class…
Type the Class Name as CCircular and, in the Base Class combo box, select
CPropertyPage

Click Finish

21. Add another IDD_PROPPAGE_LARGE property page. Delete its TODO line.
Change its ID to IDD_G3D and its Caption to 3-Dimensions

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

374 © FunctionX, Inc.

22. On the Controls toolbox, click the Check Box button and click anywhere on the
dialog

23. Create or Add A New Class for the IDD_G3D dialog box
Name it CGeome3D
Base it on the CPropertyPage class

24. Change the design of the IDR_MAINFRAME icon as follows:

25. Save All

12.3.3 Property Sheets
To implement its functionality, the property pages are put together and kept as an entity
by an object called a property sheet. The property sheet acts as their parent. Like other
controls, we will see that the property pages must be added to a property sheet.

There is no resource to create for a property sheet. A property sheet is based on the
CPropertySheet class, which is not based on CDialog but it provides the same
functionality as dialog. Therefore, a property sheet is sometimes called, or referred to as,
a dialog box. Instead, CPropertySheet is based on the CWnd class. Therefore, to
implement your property page(s), you can simply declare a CPropertySheet variable and
use it to display the application or you can programmatically derive a class from
CPropertySheet. The CPropertySheet class is declared in the afxdlgs.h header file.

If you decide to directly use the CPropertySheet class, declare a variable for it where the
application will need to be displayed or instantiated, which could be in the
CWinApp::InitInstance() event. To display the property sheet, call its DoModal()
method. This could be done as follows:

BOOL CMyApp::InitInstance()
{
 CPropertySheet MySheet;

 MySheet.DoModal();
}

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 375

To specify your property pages as belonging to the property page, declare a variable for
each one of them. Then, call the CPropertySheet::AddPage() method to add each
property page. The syntax of this method is:

void AddPage(CPropertyPage *pPage);

This method takes the variable of each page and adds it as part of the property sheet. Here
is an example:

BOOL CmyApp::InitInstance()
{
 CPropertySheet MySheet;

CFirstPage First;
CSecondPage Second;

MySheet.AddPage(&First);
MySheet.AddPage(&Second);

 MySheet.DoModal();
}

If you want to have better access to the property sheet as a class, you should derive your
own class from CPropertySheet. You will have the ability to use any or a combination
of these constructors:

CPropertySheet();
CPropertySheet(UINT nIDCaption, CWnd *pParentWnd=NULL, UINT iSelectPage=0);
CPropertySheet(LPCTSTR pszCaption, CWnd *pParentWnd=NULL, UINT iSelectPage=0);

The default constructor is used in the same circumstance as the CPropertySheet variable
declared above. Its allows you to create a CPropertySheet instance and change its
characteristics later. Both the second and the third constructors allow you to specify a
caption for the property. If you want to use the first, create a string with an identifier in a
String Table and use that ID as the argument. Otherwise, when declaring a variable using
the second constructor, you can directly provide a null-terminated string as argument.

If you want to specify a title for the property sheet, you can call the
CPropertySheet::SetTitle() method. Its syntax is:

void SetTitle(LPCTSTR lpszText, UINT nStyle = 0);

The first argument is a null terminated string that will be the new title. If you want the
caption to display the string starting with “Properties for”, pass a second argument as
PSH_PROPTITLE.

 Practical Learning: Creating a Property Sheet
1. In the Class View, right-click Geometry and click either New Class or Add -> Add

Class…

2. If you are using MSVC 6, set the Class Type to MFC Class
If you are using MSVC 7, click MFC Class and click Open
Set the name of the class to CGeomeSheet

3. In the Base Class combo box, select CPropertySheet

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

376 © FunctionX, Inc.

4. Click OK or Finish

5. Change the source code of the CGeometryApp class as follows:

// Geometry.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "Geometry.h"
#include "Quadrilateral.h"
#include "GeomeSheet.h"
#include "Circular.h"
#include "Geome3D.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CGeometryApp

BEGIN_MESSAGE_MAP(CGeometryApp, CWinApp)
 //{{AFX_MSG_MAP(CGeometryApp)
 //}}AFX_MSG
 ON_COMMAND(ID_HELP, CWinApp::OnHelp)
END_MESSAGE_MAP()

///
// CGeometryApp construction

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 377

CGeometryApp::CGeometryApp()
{
}

///
// The one and only CGeometryApp object

CGeometryApp theApp;

///
// CGeometryApp initialization

BOOL CGeometryApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a
shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 CGeomeSheet GeoSheet("Geometric Calculations");

 CQuadrilateral Quad;
 CCircular Circ;
 CGeome3D G3D;

 GeoSheet.AddPage(&Quad);
 GeoSheet.AddPage(&Circ);
 GeoSheet.AddPage(&G3D);

 m_pMainWnd = &GeoSheet;
 int nResponse = GeoSheet.DoModal();

 if (nResponse == IDOK)
 {
 }
 else if (nResponse == IDCANCEL)
 {
 }

 // Since the dialog has been closed, return FALSE so that we exit the
 // application, rather than start the application's message pump.
 return FALSE;
}

6. Test the application

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

378 © FunctionX, Inc.

7. Return to MSVC and close the project (MSVC 6: File -> Close Workspace; MSVC
7: File -> Close Solution)

12.3.4 Wizard Pages
A wizard, like a property sheet, is a series of dialog boxes that are considered as one
entity, tremendously saving the available space. When put together, the dialog boxes are
referred to as wizard pages. Like the property pages, the wizard pages can help the
programmer add more Windows controls than a single dialog box with the same
dimension would allocate. While the property pages are positioned one in front of the
others in a z-axis, the wizard pages are positioned so that, when one displays, the others
are completely hidden. While a property page can be accessed by the user clicking its tab
to bring it to the front and send the others to the back, a wizard is equipped with buttons
such as Back or Next.

A wizard is created using the exact same approach as the property sheet. Each involved
dialog box is created with the same properties:

?? Style: Child

?? Border: Thin

?? Title Bar: True

?? System Menu: False

?? Visible: False

?? Disabled: True

Each page is based on the CPropertyPage class. To display the wizard, use the
CPropertySheet class in the exact same way as seen for the property pages above. The
only difference is that, to make this a wizard, you must call the
CPropertySheet::SetWizardMode() method before calling DoModal(). The syntax of
the SetWizardMode() member function is:

void SetWizardMode();

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 379

 Practical Learning: Creating a Wizard

1. Open Windows Explorer or My Computer and display the contents of the parent
folder that holds the previous exercise

2. In the right frame, right-click Geometry and click Copy

3. Right-click an unoccupied area in the same right frame and click Paste

4. Rename Copy of Geometry to WizardPages

5. Open the WizardPages project or solution

6. Access the CGeometry::InitInstance() event and change it as follows:

BOOL CGeometryApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 CGeomeSheet GeoSheet("Geometric Calculations");

 CQuadrilateral Quad;
 CCircular Circ;
 CGeome3D G3D;

 GeoSheet.AddPage(&Quad);
 GeoSheet.AddPage(&Circ);
 GeoSheet.AddPage(&G3D);

 m_pMainWnd = &GeoSheet;

 GeoSheet.SetWizardMode();

 int nResponse = GeoSheet.DoModal();
 if (nResponse == IDOK)
 {
 }
 else if (nResponse == IDCANCEL)
 {
 }

 // Since the dialog has been closed, return FALSE so that we exit the
 // application, rather than start the application's message pump.
 return FALSE;
}

7. Test the application

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

380 © FunctionX, Inc.

8. Return to MSVC

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 381

Chapter 13: Control Design

? Forms

? Dialog Box’ Messages and Events

? Floating Windows

? Control Design

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

382 © FunctionX, Inc.

13.1 Forms

13.1.1 Introduction
Like a dialog box, a form is the primary object used to host Windows controls to allow
user interaction with the computer. Like a dialog box, a form does not mean anything
except for the controls it is hosting. This means that a form by itself does not present any
significant functionality but it can be equipped with characteristics that make it a valuable
alternative to other view types.

When using a form, the user typically interacts with the controls it is hosting. These
controls can be positioned anywhere on the form. If there are too many controls or the
controls are positioned so the occupied area is larger than the form can display at one
time, the form would be equipped with scroll bars.

A form is created using the CFormView class which is derived indirectly from CView
through CScrollView.

13.1.2 Form Creation
There are three main ways you can provide a form to an application.

The easiest way to create a form is by using the AppWizard. To do this, when creating
the application, set the Base Class to CFormView. A document/view application would
be created with its view based on the CFormView class. The wizard would have created
a Child window with no borders and no title bar (over all, you should not attempt to
change the properties of this window). Also, if you create an application that supports
databases, AppWizard would create a form that can be used on that database.

If you have already created an application, for example based on CView, you can either
add a form view to the application, change the application's base view class into form
view, or replace its view class with a form view. If you add a form view to the
application, the user would be prompted to select one of both documents when the
applications comes up.

The last option you have, which you should hardly do is to work from scratch in creating
a form view-based application. The reason you should not spend time doing this is the
amount of work involved that would not necessarily improve your application.

 Practical Learning: Creating a Form-Based Application
1. Display the New or the New Project dialog box and specify that you want to use

MFC AppWizard or MFC Application

2. Set the Project Name to FormBased1

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 383

3. Click OK

4. Specify that you want to create a Single Document type of application

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

384 © FunctionX, Inc.

5. In the last step, in the Base Class combo box, select CformView

6. Click Finish

7. To display the form, in the Resource View, expand the Dialog folder and double-
click IDD_FORMBASED1_FORM

8. In the Properties window, notice that its Style is set to Child and its Border is set to
None

9. Press Ctrl + F5 to test the application

10. After viewing it, return to MSVC

11. Controls Designs on Forms and Dialog Boxes

13.2 Dialog Box Messages and Events

 In this section, unless specified otherwise, the expressions “dialog box” or “dialog-
based object” refer to the regular dialog box, the property sheet, the property page, or
the flat dialog-window that composes a form.

13.2.1 The Dialog Box as a Control Initializer
As the most regularly used host of Windows Controls, a dialog box most be able to
handle messages that not only pertain to its own existence but also to the availability,
visibility, and behaviors of the controls it is holding. For example, if you create a control
and position it on the dialog box, sometimes you will need to initialize, give it primary
values. Although the dialog box provides a constructor and even inherits the
WM_CREATE message along with the PreCreateWindow() event from its parent the
CWnd class, if you need to initialize a control, the CDialog box and its cousins
CPropertySheet, CPropertyPage, and the form provide a special event you can use to do
this.

WM_INITDIALOG: The WM_INITDIALOG message fires the OnInitDialog() event
after a dialog, a property sheet, a property page, or a form has been created but before this
window is displayed. It is the equivalent of the PreCreateWindow() event used by other
frame and view-based window. This event should be your favorite place to initialize a
control that is hosted by the dialog-based object. Do not initialize controls in your

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 385

dialog’s constructor. Use the constructor only to allocate memory space for a dynamic
control using the new operator.

If you create a dialog-based or a form-based application, AppWizard automatically
generates the WM_INITDIALOG message for you. If you add a dialog box, a form, a
proeprty sheet, or a property page to an existing application, this message may not be
added automatically. You would have to fire it. In reality, the WM_INITDIALOG
message is inherited from the CDialog class. Therefore, you would only be overriding it.

 Practical Learning: Generating Dialog Messages
1. Start a new MFC Application and name it DialogMessages

2. Create it as a Single Document and click Finish

3. To add a new object, display the Add Resource dialog box and double-click Dialog

4. Change its ID to IDD_DYNAMIC_DLG and its Caption to Dynamic Objects

5. Add a class for it. Name it CDynamicDlg and base it on the CDialog class. Click
Finish

6. To make sure you can display the dialog box, display the IDR_MAINFRAME menu.
Under View, add a separator. Then add a menu item with the caption as
&Dynamic… and press Enter

8. Right-click the Dynamic menu item and click Add Event Handler…

9. Accept the Message type as COMMAND. Accept the suggested Function Handler
Name. In the Class List, click CMainFrame then click Add and Edit

10. Implement the event as follows:

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "DialogMessages.h"

#include "MainFrm.h"
#include "DynamicDlg.h"
. . .

void CMainFrame::OnViewDynamic()
{
 // TODO: Add your command handler code here
 CDynamicDlg Dlg;

 Dlg.DoModal();
}

11. Test the application and return to MSVC

12. Click the Class View tab and, if necessary, expand the DynamicMessages node.
Right-click CDynamicDlg and click Add Variable…

13. In the Variable Type combo box, type CWnd * and, in the Variable Name edit box,
type m_Panel

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

386 © FunctionX, Inc.

14. Click Finish

15. In the constructor of the dialog, use the new operator to allocate memory for the
dynamic control. Then, in the destructor, destroy the control using the delete
operator:

CDynamicDlg::CDynamicDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CDynamicDlg::IDD, pParent)
 , m_Panel(NULL)
{
 m_Panel = new CWnd;
}

CDynamicDlg::~CDynamicDlg()
{
 delete m_Panel;
}

7. To fire the OnInitDialog event for the dialog, in the combo box of the Properties
window, CDynamicDlg should be displaying. If not, in Class View, click
CDynamicDlg

In the Properties window, click the Overrides button

8. Scroll down in the Proeprties window and click OnInitDialog. Click its arrow and
click <Add> OnInitDialog

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 387

9. Implement the event as follows:

BOOL CDynamicDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CRect Recto(10, 10, 176, 138);

 m_Panel->Create("STATIC", NULL,
 WS_CHILD | WS_VISIBLE | WS_DLGFRAME,
 Recto, this, 0x166, NULL);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

10. Execute the application and display the Dynamic Objects dialog box using the main
menu:

11. To close the dialog box, click its system Close button or . Also, close the
application and return to MSVC

12. Open the Geometry application. If you do not have it, open the Geometry1
application from the exercises that accompany this book

13. As done for the above CDynamicDlg class, Add the OnInitDialog() event for the
CGeomeSheet, the CCircular, and the CGeome3D classes

14. Save All

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

388 © FunctionX, Inc.

13.2.2 Other Dialog-Based Windows Messages

WM_PAINT: After creating the dialog box, if you want to paint it or draw something on
it, such as changing its background color, use the WM_PAINT message. If you create a
dialog or form-based application, this message is automatically generated by the wizard.
If you add a dialog-based object to your application and need the OnPaint() event, you
would have to add it yourself

WM_CLOSE: As mentioned already, a regular dialog box, including a property sheet or
a wizard, is equipped with the system Close button on its title bar. This allows the
user to close it any time. As a programmer, one of your jobs is to control your
application, be able to predict “bad moves” from the user. From example, imagine you
create a dialog-based object without a Cancel button but with OK (like the most basic
message box). If the user clicks the system Close button , you may not know what the
user did. The WM_CLOSE message fires the OnClose() event when the user clicks the
system Close button . It is important to understand that WM_CLOSE is a message
and not a method, meaning it sends a message, it does not take an action. This implies
that the OnClose() event fires when the user makes an attempt to close the dialog but
before the dialog is actually closed.

You can use the OnClose() event to find out what has been done on the dialog prior to
the user’s attempt to closing it. You can also use it to deny closing the dialog, to warn the
user about something, or to do anything that you judge necessary. If you perform some
processing, such as validating some values, when the user attempts to close the dialog
box, if you still want to close the dialog, call the parent event handler with
CDialog::OnClose() . In fact, this line of code is added to the event if you generate it
using the wizard. If you want to conditionally close the dialog, you can write a
conditional statement that can check whether something is written in order to close it. If
you do not want to close the dialog box, do not call the parent CDialog::OnClose()
event.

WM_DESTROY: Once a dialog, in fact any (CWnd) window object, has been closed, it
must be destroy so the memory it was using can be reclaimed. If you want to do
something before the object is destroyed, use the WM_DESTROY to fire the
OnDestroy() event.

 Practical Learning: Firing Windows Events
1. Open the DialogMessages application created above

In the Class View tab, click CDynamicDlg to display it in the combo box of the
Properties window.
To access the WM_CLOSE messages, in the Properties window, click the Messages

button

2. Click the WM_CLOSE item to display its combo box. Click the arrow of the combo
box and click <Add> OnClose

3. To prevent the user from closing the dialog box using the system Close button,
implement the event as follows:

void CDynamicDlg::OnClose()
{

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 389

 // TODO: Add your message handler code here and/or call default
 MessageBox("In order to dismiss this dialog box, "
 "click either OK or Cancel");

// CDialog::OnClose();
}

16. Execute the application. Display the Dynamic Objects dialog and click its system
Close button to close

4. Close the dialog box using either the OK or the Cancel buttons. Also, close the

application and return to MSVC

5. Open the Geometry application. If you do not have it, open the Geometry1
application that accompanies this book

6. As done for the CDynamicDlg class above, add a WM_PAINT message for the
CQuadrilateral, the CCircular, and the CGeome3D classes

7. Save all

13.2.3 Control-Related Messages
WM_CTLCOLOR: Once a control has been created, it can be displayed on the screen.
At any time, whether before the control is displayed or after it has been displayed, if you
need to perform some type of drawing such as changing its color, you can use the
WM_CTLCOLOR message which fires the OnCtlColor() event.

Scroll Bar Messages : As we will learn when studying scroll bars and thumb -based
controls, a dialog-based object can be equipped with scroll bars, just like a frame of a
view-based application. We will also see that these controls do not handle their own
scrolling messages. Ther rely on their host.

If a dialog object is equipped with one or two scroll bars or one of its controls is based on
scrolling operations, when the user clicks a scroll bar, the OnHScroll() or the
OnVScroll() event is sent based on the WM_HSCROLL or the WM_VSCROLL
messages respectively.

13.3 Floating Windows

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

390 © FunctionX, Inc.

13.3.1 Introduction
A floating window is an object that is part of an application and behave as a semi-dialog
box. Such a window does not constitute an application by itself. It is used to complete the
application it is part of. A floating window behaves like a dialog box with the main
difference that the user does not have to close the floating window in order to access the
rest of the application, which is the case for a modal dialog box. Here is an application
that uses many floating windows:

There are various types of floating windows used on different applications. They include
modeless dialog boxes, tool bars, and dialog bars.

 Practical Learning: Introducing Floating Windows
1. Start a new project named Floating

2. Create it as a Single Document and click Finish

13.3.2 The Modeless Dialog Box
A modeless dialog box allows the user to access the main application or any other
possible object of the application even if this dialog box is displaying. The user can
decide to close it when the object is not needed anymore or keep it on as long as
necessary. Here is an example:

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 391

The Find dialog
box of WordPad is
an example of a
modeless dialog
box. Although it is
displaying on this
picture, the user
can still click and
activate any of the
windows in the
background

Because a modeless dialog box is closed when the user judges it necessary, making it
possible to forget, the operating system needs to make sure that this object closes when
its parent application closes so its memory resource can be freed and made available to
other applications. Based on this, the creation of a modeless dialog is a little different
than that of the modal dialog box.

There are two main techniques you can use to create a modeless dialog box. You can first
declare a DLGTEMPLATE variable and “fill it up”. This structure is defined as follows:

typedef struct {
 DWORD style;
 DWORD dwExtendedStyle;
 WORD cdit;
 short x;
 short y;
 short cx;
 short cy;
} DLGTEMPLATE, *LPDLGTEMPLATE;

After building the template from its variable, you can call the CDialog::CreateIndirect()
method to create the modeless object. This method comes in two versions as follows:

BOOL CreateIndirect(LPCDLGTEMPLATE lpDialogTemplate, CWnd* pParentWnd = NULL);
BOOL CreateIndirect(HGLOBAL hDialogTemplate, CWnd* pParentWnd = NULL);

Because of the amount of work involved with using this type of dialog box, we will
ignore it.

Another technique you can use consists of first creating a dialog resource and associating
a class to it. To formally create a modeless dialog box and make it part of the application,
you can call the Create() method of the CDialog c lass. It is provided in two syntaxes that
are:

BOOL Create(UINT nIDTemplate, CWnd* pParentWnd = NULL);
BOOL Create(LPCTSTR lpszTemplateName, CWnd* pParentWnd = NULL);

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

392 © FunctionX, Inc.

As done with the CDialog constructor, the nIDTemplate parameter is the identifier you
used when visually creating the dialog resource. If you are using a dialog box from a
template, specify its name as the lpszTemplateName argument. In order to effectively use
a modeless dialog box, it must be called from another window. Otherwise you can just
create a regular dialog box. The object from which you will be calling the dialog box is
also responsible for closing it (or "cleaning" it). Therefore, the class that calls the
modeless dialog box "owns" it. This means that you can specify it as the pParentWnd
argument.

When creating a modeless dialog box, declare a pointer to its class. Then call the
Create() method, passing the identifier or the template being used. You can do this in the
constructor of the class that will be its parent. Here is an exa mple:

CDialog5Dlg::CDialog5Dlg(CWnd* pParent /*=NULL*/)
 : CDialog(CDialog5Dlg::IDD, pParent)
{
 CCoolMode* Cool = new CCoolMode();

 Cool->Create(IDD_DLG_MDLS,this);
}

To formally display the object, you have various options. When creating it, at design
time, you can set its Visible property to True (actually you would be applying the
WS_VISIBLE style). If you did not make it visible, or if the modeless dialog box is
hidden at a particular time, you can programmatically display it.

 Practical Learning: Using Dialog Box Methods
1. To add a new dialog box, display the Add Resource dialog box and double-click

Dialog

2. Click the OK button and press Delete twice to dismiss both the OK and the Cancel
buttons

3. Using the Properties window, change the ID of the dialog box to
IDD_DLG_FLOATER and its Caption to Floater

4. Check the Visible check box or set it to True

5. Check the Tool Window check box or set it to True

6. Set the Border property to Resizing

7. Add a class for the dialog box. Call it CFloaterDlg and base it on the CDialog class

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 393

8. Click OK

9. To prevent the floating window from being closed, in the Class View, click

CFloaterDlg to select it. In the Properties window, click the Messages button

10. Click the arrow of the WM_CLOSE combo box and select the only item in the list

11. When the user tries to close the window, we will hide it instead since the window
will be closed when the parent application closes. Therefore, implement the event as
follows:

void CFloaterDlg::OnClose()
{
 // TODO: Add your message handler code here and/or call default
 ShowWindow(FALSE);

 CDialog::OnClose();
}

12. Display the MainFrm.h header file and declare a CFloaterDlg variable named Floater

//
#pragma once
#include "FloaterDlg.h"

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

394 © FunctionX, Inc.

// Operations
public:
 CFloaterDlg *Floater;

13. Display the MainFrm.cpp file and initialize the Floater variable using the new
operator. Then, use the OnCreate() event to create the floating window:

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here
 Floater = new CFloaterDlg;
}

. . .

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 . . .

 Floater->Create(IDD_DLG_FLOATER, this);

 return 0;
}

14. To give the user the ability to display or hide the Floater window, display the
IDR_MAINFRAME menu and click View

15. Add a separator under the Status Bar menu item. In the box under the new separator,
add a menu item with a caption of &Floater…and press Enter

16. Right-click the Floater menu item and click Add Event Handler…

17. Accept the Message type as COMMAND. Accept the suggested Function Handler
Name. In the Class List, click CMainFrame then click Add and Edit

18. Change the MainFrm.cpp file as follows:

void CMainFrame::OnViewFloater()
{
 // TODO: Add your command handler code here
 // Display the window, even if it is already displaying
 Floater->ShowWindow(SW_SHOW);
}

19. Test the application

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 395

20. Return to MSVC

13.3.3 Modeless Property Sheets
Like a regular dialog box, a property sheet can be created as a floating window. A
modeless property sheet does not display the OK, the Cancel or the Apply button. It
provides property pages that can be used to better manage available space.

A modeless property sheet is created using the same approach as a modal property sheet.
You can start by creating dialog boxes to be used as property pages. The dialog boxes
must have the same characteristics as those of a modal property sheet and you should
create a class for each one of them; a class based on CPropertyPage. After creating the
pages and their classes, you will need a property sheet class. You can directly use the
CPropertySheet class or derive your own class from it. To display the property sheet as
modeless, instead of calling the DoModal() method, use the CPropertySheet::Create()
member function. Its syntax is:

BOOL Create(CWnd* pParentWnd = NULL,
 DWORD dwStyle = (DWORD)–1, DWORD dwExStyle = 0);

The pParentWnd argument is the object that owns the property sheet. This is usually the
class that calls or displays the property sheet. If you pass this argument with a NULL
value, then the desktop owns the property sheet.

The dwStyle argument allows you to specify the style used to display the property sheet.
You can use the same window styles we reviewed for the dialog box. You do not have to
provide a value for this argument. In that case, you can pass it as –1. This would provide
a title bar with the system Close button, a frame, and a border to the property sheet by
combining the WS_CAPTION , the WS_SYSMENU, the DS_MODALFRAME, the
WS_POPUP , the WS_VISIBLE, and the DS_CONTEXT_HELP styles

The dwExStyle argument allows you to specify the extended styles to use on the property
sheet. If you do not pass this argument or pass it as 0, the property sheet would have a
border based on the default WS_EX_DLGMODALFRAME style.

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

396 © FunctionX, Inc.

 Practical Learning: Creating a Floating Property Sheet
1. Display the Add Resource dialog box. Expand the Dialog node and double-click

IDD_PROPPAGE_SMALL. Delete its TODO line. Change its ID to
IDD_SMALL_PAGE and its Caption to Small. Add a class for the dialog box.
Name it CSmallPge and base it on CPropertyPage

2. In the same way, add another IDD_PROPPAGE_SMALL dialog box. Delete its
TODO line. Change its ID to IDD_MEDIUM_PAGE and its Caption to Medium.
Add a class for the dialog box. Name it CMediumPge and base it on
CPropertyPage

3. Add a class named CFloatingSheet and based on CPropertySheet

17. Change the header file as follows:

#pragma once

#include "SmallPage.h"
#include "MediumPage.h"

// CFloatingSheet

class CFloatingSheet : public CPropertySheet
{
 DECLARE_DYNAMIC(CFloatingSheet)

public:
// CFloatingSheet(UINT nIDCaption, CWnd* pParentWnd = NULL, UINT iSelectPage
= 0);
 CFloatingSheet(LPCTSTR pszCaption, CWnd* pParentWnd = NULL, UINT
iSelectPage = 0);
 virtual ~CFloatingSheet();

protected:
 DECLARE_MESSAGE_MAP()
public:
 afx_msg void OnClose();
 CSmallPage pgSmall;
 CMediumPage pgMedium;
};

4. In its source file, add each page as follows:

// FloatingSheet.cpp : implementation file
//

#include "stdafx.h"
#include "Floating.h"
#include "FloatingSheet.h"

// CFloatingSheet

IMPLEMENT_DYNAMIC(CFloatingSheet, CPropertySheet)
/*
CFloatingSheet::CFloatingSheet(UINT nIDCaption, CWnd* pParentWnd, UINT
iSelectPage)
 :CPropertySheet(nIDCaption, pParentWnd, iSelectPage)
{
}

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 397

*/
CFloatingSheet::CFloatingSheet(LPCTSTR pszCaption, CWnd* pParentWnd, UINT
iSelectPage)
 :CPropertySheet(pszCaption, pParentWnd, iSelectPage)
{
 AddPage(&pgSmall);
 AddPage(&pgMedium);
}

CFloatingSheet::~CFloatingSheet()
{
}

BEGIN_MESSAGE_MAP(CFloatingSheet, CPropertySheet)
 ON_WM_CLOSE()
END_MESSAGE_MAP()

// CFloatingSheet message handlers

void CFloatingSheet::OnClose()
{
 // TODO: Add your message handler code here and/or call default
 ShowWindow(FALSE);

 // CPropertySheet::OnClose();
}

5. Display the IDR_MAINFRAME menu and, under the Floater menu item of the View
menu, add a new item with a caption of Fl&oating and press Enter

6. Right-click the Floating menu item and click Add Event Handler…

7. Accept the Message type as COMMAND. Accept the suggested Function Handler
Name. In the Class List, click CMainFrame then click Add and Edit

8. Access the MainFrm.h header file. Then, declare a pointer to the property sheet class
and name it Fsheet:

// MainFrm.h : interface of the CMainFrame class
//
#pragma once
#include "FloaterDlg.h"
#include "FoatingSheet.h"

class CMainFrame : public CFrameWnd
{

protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:
 CFloaterDlg *Floater;
 CFloatingSheet *FSheet;

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

398 © FunctionX, Inc.

9. In the constructor of the CMainFrame class, initialize the CFloatingSheet pointer
using the new operator:

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here
 Floater = new CFloaterDlg;
 FSheet = new CFloatingSheet("Properties");
}

10. On the CMainFrame::OnCreate() event, create and and display the property sheet
with the followsing:

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 . . .

 Floater->Create(IDD_DLG_FLOATER, this);
 FSheet->Create(this,
 WS_CHILD | WS_POPUP | WS_CAPTION |
 WS_SYSMENU | WS_VIS IBLE,
 WS_EX_TOOLWINDOW);

 return 0;
}

11. Implement the OnViewFloating() event as follows:

void CMainFrame::OnViewFloating()
{
 // TODO: Add your command handler code here
 // Display the property sheet, even if it is already displaying
 FSheet->ShowWindow(SW_SHOW);
}

12. Test the application

13. Return to MSVC

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 399

13.4 Control Design

13.4.1 Controls Selection and Addition
The controls used to provide functionality to your application are provided by an object
called the Controls toolbox. The Controls toolbox of both MSVC 6 and MSVC 7 gives
access to 25 controls:

Visual C++ 6 Controls Visual C++ 7 Controls

More objects, called ActiveX controls, can be accessed and added to the Controls toolbox
but such additional objects are made available only to the current application. To make
Windows controls available to your users, you will add them to their host object also
called a parent. To do this, you mostly click the desired control from the Controls toolbox
and click an area on the host. You can keep adding controls on the dialog box as
necessary.

If you want to add a control over and over again, press and hold Ctrl. Then click the
control on the Controls toolbox and release Ctrl. Then click in the desired area on the
host. Every time you click, the control would be added to the form or dialog box. Once
you have added enough controls, click the control again on the Controls toolbox to
deselect it. You can also press Esc.

You cannot select more than one control to add on a host.

Another technique you can use to visually add a control is to “design” it. To do this, after
clicking the control from the Controls toolbox, you can click and hold the mouse on the
parent window, then drag left, up, right, or down. While you are dragging, you can refer
to the right section of the status bar for the current location and dimensions of the control:

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

400 © FunctionX, Inc.

13.4.2 Control’s Location and Size Using Grids
To help position the controls you are adding at design time, you can display some guiding

grid dots. To do this, you can click the Toggle Grid button . In this case, the control
can be positioned and resized anywhere in the area inside the borders of the parent
window, using the grids as guides, as seen on the above red rectangle. No control can be
positioned outside of the client area. The dots on this view control the location and
position of the control:

When you click the body of the parent, the top-left corner of the control would be
positioned on a dot and the dimensions (width and height) of the control would align with
the next dots on its right and bottom. To avoid this default behavior, before clicking the
body of the parent, press and hold Alt; then click and drag to draw a rectangle shape of

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 401

the control. The location would be where you clicked, even if you clicked between two
dots . The dimensions would stop where you released the mouse, even it if was between
two dots.

After placing a control on a parent window that displays grids, the borders of the child
control can only be aligned with the black dots. The grids are separated using a measure
called the Dialog Box Unit or DLU. By default, two vertically aligned dots are separated
by a height of 5 DLUs. Two horizontally aligned dots are separated by a width of 5
DLUs. If these measures are too high, there are two options you can use:
?? After placing the control, to control its location with more precision, press the up,

left, right, or down arrow keys (on the keyboard). In this case, the control would
move by one pixel in the direction of your choice. To control its size, press and hold
Shift. Then press the up or down arrow keys to move only the bottom border of the
control; or press the left or right keys to move the right border of the control.

?? To modify the distance between dotted grids, display the Guide Settings dialog box
available from the Layout (MSVC 6) or Format (MSVC 7) menu then modify the
Width and/or Height values in the Grid Spacing section:

13.4.3 Control’s Location and Size Without Grids
Visual C++ also allows you to position controls without using grids. If you do not want to

use the grids, you can hide them. This is done by clicking the Toggle Guides button ,
a (blue dotted) rectangle appears in the client area:

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

402 © FunctionX, Inc.

This (blue dotted) rectangle allows you to effectively control the area available to your
controls. To set the location and dimensions of the available area, click one of the (blue
dotted) rectangle borders or corners and drag in the desired direction. If a control is
positioned on a border that is moving, the control would be repositioned accordingly:

After setting the (blue dotted) rectangular location and area, you can add but cannot move
a control outside of that (blue dotted) rectangle. The idea is to allow you to design a
control or a group of controls in a (temporary) confined area. The (blue dotted) rectangle
provides an effective means of aligning controls. After using it, if you want to add and
manipulate controls outside of it, you should display the grids.

 Practical Learning: Adding Controls to a Dialog Box
1. Create a new dialog-based application and name it Dialog11a

2. Click the Toggle Grid button

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 403

3. On the Controls window, click the button control and click somewhere (no
precision necessary) in the top left corner of the dialog box:

4. On the Controls window, click the Edit Box control

5. On the dialog box, click and hold the mouse in the middle-left (no precision needed)
section of the dialog box

6. Drag down and right (no precision necessary):

7. Release the mouse

8. From the Controls window, click the Vertical Scroll Bar control and release the
Ctrl key

9. On the dialog box, click three times an unoccupied area (no precision necessary) of
the dialog box

10. To de select the Vertical Scroll Bar control , press Esc

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

404 © FunctionX, Inc.

13.4.4 Selecting Controls on a Parent Window
To visually manipulate a control, you will first need to select it. To select a control,
simply click it. A control that is selected is surrounded with 8 (blue) handles.

To select more than one control in the same area, click on the dialog box and draw a
"fake" rectangle that encloses all of the needed controls. The first control from the
selected group has 8 (blue) handles while the other control(s) from the same selected
group has (have) 8 white handles (each).

To select controls at random, click one of them. Press and hold either Shift or Ctrl. Then
click each one of the needed controls.

 Practical Learning: Selecting Controls on a Parent
1. Open the Form11a application

2. If the form is not displaying, in the Resource View, expand the Form11a resources
and expand the Dialog folder. Then double-click IDD_FORM11A_FORM
On the form, click the lower Edit box. Notice that it displays 8 handles around:

3. To select controls in a range, click and hold the mouse from the upper left section of

the dialog box. Then drag down and to the right, drawing a rectangle that includes all
three buttons in the top section of the dialog box:

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 405

4. Notice that the first control of the selection has 8 blue handles around:

5. Click an unoccupied area on the dialog box to unselect everything

6. To select controls at random, click the Button1 in the top-left section

7. Press and hold Shift

8. Then click the lower-right scroll bar. Click the lower left edit control

9. Release Shift

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

406 © FunctionX, Inc.

10. Click an empty area on the form to deselect the controls

13.4.5 Controls Resizing
After you have added a control to a dialog box, it assumes either its default size or the
size you drew it with. To help with the sizes of controls on the form or dialog box, Visual
C++ provides a visual grid made of black points. To can display or hide the grid by

clicking the Toggle Grid button . The dimensions of grid points are in dialog box
units (DLUs) and are set at a default value of 5. To change this spacing, display the
Guide Settings dialog box from the Layout menu and set the desired values.

To change the size of a control, first select it. Then position the mouse on one of its
handles. The mouse would assume a sizing cursor that indicates the possible type of
resizing you can apply. The mouse cursors are:

Cursor Description

 Moves the seized border in the North-West <-> South-East direction

Shrinks or heightens the control

 Moves the seized border in the North-East <-> South-West direction

 Narrows or enlarges the control

 To resize a control, that is, to give it a particular width or height, position the mouse on
one of the handles and drag in the desired direction.

If the Toggle Grid button is down, in which case the dialog or form would display the
grid indicators, a control can be moved or resized only on the dotted lines. If you do not
want to follow the grid indicators, you have two alternatives. You can hide the grid
indicators by Toggle Guides button. On the other hand, you can press and hold Alt, then
click the control or one its sizing handles and drag in the desired direction.

To resize more than one control at the same time. Firs select them. Then use the
following buttons from the Dialog toolbar:

Button Name Description

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 407

 Make Same Width
Applies the same width to all selected controls
The width used will be be that of the last control
selected

 Make Same Height
Applies the same height to all selected controls.
The height used will be be that of the last control
selected

 Make Same Size

Applies the same width and height to all selected
controls.
The height used will be be that of the last control
selected

 Practical Learning: Resizing Controls
1. Click the lower large Edit box to select it.

2. Position the mouse on the middle handle of the lower border:

3. Click and drag up until the guiding horizontal line is in the middle of the control:

4. Release the mouse

5. Open the Dialog11b application

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

408 © FunctionX, Inc.

6. Display the dialog and click the Toggle Grid button

7. Click the top Edit control. Then press and hold Ctrl

8. Click the middle Edit control and click the bottom Edit control. Release Ctrl

9. On the Dialog toolbar, click the Make Same Width button

13.4.6 Controls Positions
The controls you position on a dialog box or a form assume their given place. Most of the
time, these positions are not practical. You can move them around to any positions of
your choice.

To move a control, click and drag it, while the mouse cursor is a cross , in the desired
direction until it reaches the intended position.

To move a group of controls, first select them. Then drag the selection to the desired
location.

To help with positioning the controls, Visual C++ provides the Dialog toolbar with the
following buttons:

Button Name Button Name Button Name

 Align Left Align Tops Vertical

 Align Right
Align
Bottoms Horizontal

 Across Down

 Practical Learning: Moving Controls
1. While the edit controls are still selected, on the Dialog toolbar, click the Down

button

Visual C++ and MFC Fundamentals Chapter 12: Dialog-Based Windows

© FunctionX, Inc. 409

2. Click an empty area on the dialog box to deselect everything.

3. Click the lower Edit control. Then press and hold Shift

4. Click the middle Edit control and click the top Edit control then release Shift

5. On the Dialog toolbar, click the Align Left button

6. Save everything and close the application

13.4.7 Tab Ordering
The controls you add to a form or a dialog box are positioned in a sequence that follows
the order they were added. When you add a control on the host that already has other
controls, regardless of the section or area you place the new control, it is sequentially
positioned at the end of the existing controls. If you do not fix it, the user would have a
hard time navigating the controls.

The sequence of controls navigation is called the tab order. While designing a form or a
dialog box, to change the sequential order of controls, on the main menu, click Layout or
Format and click Tab Order or press Ctrl + D.

 Practical Learning: Controlling Tab Order
1. On the main menu, click Layout (Visual C++ 6) or Format (Visual C++ 7) and click

Tab Order

Chapter 12: Dialog-Based Windows Visual C++ and MFC Fundamentals

410 © FunctionX, Inc.

2. To change the order or sequence of controls, click the top Edit control. Notice that its

order changes to 1

3. Click the middle Edit control, then the lower Edit control

4. Save everything

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 411

Chapter 14:
Controls Functionality

? Handling Controls

? Controls Management

? Controls Instance and Handle

? Access to Controls Information

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

412 © FunctionX, Inc.

14.1 Handling Controls

14.1.1 Introduction
There are two particularly important pieces of information about every control of your
application. The information stored in the control and the action or type of action the user
can perform on that control. At its most basic level, at one time in the life of an
application, a control holds a value that can be of particular interest either to you or to the
user. On the other hand, when interacting with the computer, based on your application,
the user will usually face different types of controls that do various things and produce
different results. These are two features of controls (their values and the actions the user
can perform on them) that you should know as much as possible, about the controls you
choose to involve in your application.

 Practical Learning: Introducing Controls Variables
1. Open the Geometry application. If you do not have it, open the Geometry1

application from the accompanying exercises of this book

2. Test the application to make sure it is working fine. Then close it and return to
MSVC

3. Click the Resourve View tab, expand the Dialog folder and double-click
IDD_QUADRILATERAL. Delete the existing control on the dialog box

4. On the Controls toolbox, click the Custom Control button and click in the top
center section of the dialog box. On the Properties window:
Change its ID to IDC_LBL_SSIDE
Set its Caption to &Side:
Set the Class name as Static

5. Using only the Custom Control object, design the rest of the property page as follows
(the controls are listed from left to right then from up -> down):

ID Caption Class Style ExStyle

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 413

IDC_LBL_SSIDE &Side: Static 0x50010000 0x0
IDC_EDT_SSIDE Edit 0x50810000 0x0
IDC_BTN_SCALC &Calculate Button 0x50010000 0x0
IDC_LBL_SPRM &Perimeter: Static 0x50010000 0x0
IDC_EDT_SPRM Edit 0x50810000 0x1
IDC_LBL_SAREA &Area: Static 0x50010000 0x0
IDC_EDT_SAREA Edit 0x50800000 0x1
IDC_LBL_RLENGTH &Length: Static 0x50010000 0x0
IDC_EDT_RLENGTH Edit 0x50810000 0x0
IDC_LBL_RHEIGHT &Height: Static 0x50010000 0x0
IDC_EDT_RHEIGHT Edit 0x50810000 0x0
IDC_BTN_RCALC Calc&ulate Button 0x50010000 0x0
IDC_LBL_RPRM P&erimeter: Static 0x50010000 0x0
IDC_EDT_RPRM Edit 0x50810000 0x1
IDC_LBL_RAREA A&rea: Static 0x50010000 0x0
IDC_EDT_RAREA Edit 0x50810000 0x1

6. Save All

7. Click anywhere on the dialog box to make sure it has focus. Press Ctrl + A to select
all controls. Press Ctrl + C to copy the selection

8. Open the IDD_CIRCULAR dialog box. Delete its control and drag its lower-right
corner to give a 320 x 200 size

9. Click anywhere in the body of the dyalog box. Press Ctrl + V to paste the selection

10. Change the IDs and captions of the controls as follows (from left to right and up ->
down):

ID Caption Class Style ExStyle
IDC_LBL_CRADIUS &Radius: Static 0x50010000 0x0
IDC_EDT_CRADIUS Edit 0x50810000 0x0
IDC_BTN_CCALC &Calculate Button 0x50010000 0x0
IDC_LBL_CCIRC Circum&ference: Static 0x50010000 0x0
IDC_EDT_CCIRC Edit 0x50810000 0x1
IDC_LBL_CAREA &Area: Static 0x50010000 0x0
IDC_EDT_CAREA Edit 0x50800000 0x1
IDC_LBL_VRADIUS Radiu&s: Static 0x50010000 0x0
IDC_EDT_VRADIUS Edit 0x50810000 0x0
IDC_LBL_HRADIUS Ra&dius: Static 0x50010000 0x0
IDC_EDT_HRADIUS Edit 0x50810000 0x0
IDC_BTN_ECALC Calc&ulate Button 0x50010000 0x0
IDC_LBL_ECIRC Circu&mference: Static 0x50010000 0x1
IDC_EDT_ECIRC Edit 0x50810000 0x1
IDC_LBL_EAREA Ar&ea: Static 0x50010000 0x0
IDC_EDT_EAREA Edit 0x50810000 0x0

11. Save All. Just in case you may have change the contents of the clipboard, click the
body of the dialog box, press Ctrl + A and press Ctrl + C

12. Open the IDD_G3D dialog box. Delete its control and set its size to 320 x 210. Then,
click its body

13. Press Ctrl + V to paste

14. Select a left and right combination of controls on the dialog box. Copy and past them
under the existing controls

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

414 © FunctionX, Inc.

15. Change the IDs, captions and styles of the controls as follows (from left to right and
up -> down):

ID Caption Class Style ExStyle
IDC_LBL_USIDE &Side: Static 0x50010000 0x0
IDC_EDT_USIDE Edit 0x50810000 0x0
IDC_BTN_UCALC &Calculate Button 0x50010000 0x0
IDC_LBL_UAREA &Area: Static 0x50010000 0x0
IDC_EDT_UAREA Edit 0x50810000 0x1
IDC_LBL_UVOL &Volume: Static 0x50010000 0x0
IDC_EDT_UVOL Edit 0x50800000 0x1
IDC_LBL_BLENGTH &Length: Static 0x50010000 0x0
IDC_EDT_BLENGTH Edit 0x50810000 0x0
IDC_LBL_BHEIGHT &Height: Static 0x50010000 0x0
IDC_EDT_BHEIGHT Edit 0x50810000 0x0
IDC_LBL_BWIDTH &Width Static 0x50010000 0x0
IDC_EDT_BWIDTH Edit 0x50810000 0x0
IDC_BTN_BCALC Calc&ulate Button 0x50010000 0x0
IDC_LBL_BAREA A&rea: Static 0x50010000 0x1
IDC_EDT_BAREA Edit 0x50810000 0x1
IDC_LBL_BVOL V&olume: Static 0x50010000 0x0
IDC_EDT_BVOL Edit 0x50810000 0x0

16. Close MSVC completely. When asked to save, click Yes as many times as you are
asked.

14.1.2 Control's Control Variables:
After visually adding a control to your application, if you want to refer to it in your code,
you can declare a variable based on, or associated with, that control. The MFC library
allows you to declare two types of variables for some of the controls used in an
application: a value or a control variables.

A control variable is a variable based on the class that manages the control. For example,
a static control is based on the CStatic c lass. Therefore, if you add a static control to your

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 415

application and you want to refer to it later on, you can declare a CStatic variable in the
header of its parent window. Here is an example:

class CExchangeDlg : public CDialog
{
 . . .
public:
 CStatic stcAdvanced;
};

The control variable is available for all controls.

 It is a habit for Visual C++ programmers to start the name of a control variable with m_

 Practical Learning: Adding Control Variables
1. Open MSVC again and open the Geometry application created above. If you do not

have it, open the Geometry2 application that accompanies this book

2. Open the IDD_QUADRILATERAL dialog box and adjust the locations and
dimensions as you see fit or open the Geometry2 application that accompanies this
book

3. To declare a control variable, on the dialog box, right-click the edit box on the right
side of Side and click Add Variable…

4. In the Add Member Variable Wizard,
in the Variable Type combo box, select CEdit
in the Category combo box, select Control
in the Va riable Name edit box, type m_SquareSide

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

416 © FunctionX, Inc.

5. Click Finish

6. In the same way, Add a CEdit Control Variable for each edit box on the propety
page and name them, from top to bottom, as m_SquarePerimeter, m_SquareArea,
m_RectLength , m_RectHeight , m_RectPerimeter, and m_RectArea

7. Open the Quadrilateral.h file and check that the variables were added:

// Quadrilateral.h : header file
//

#pragma once
#include "afxwin.h"

// CQuadrilateral dialog
class CQuadrilateral : public CPropertyPage
{
// Construction
public:
 CQuadrilateral(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 enum { IDD = IDD_QUADRILATERAL };

 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

// Implementation
protected:
 HICON m_hIcon;

 // Generated message map functions
 virtual BOOL OnInitDialog();
 afx_msg void OnPaint();
 afx_msg HCURSOR OnQueryDragIcon();
 DECLARE_MESSAGE_MAP()
public:
 // The control variables for the square
 CEdit m_SquareSide;
 CEdit m_SquarePerimeter;
 CEdit m_SquareArea;
 // The control variables for the rectangle
 CEdit m_RectLength;

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 417

 CEdit m_RectHeight;
 CEdit m_RectPerimeter;
 CEdit m_RectArea;
};

8. Save All

14.1.3 The Control’s Data Exchange
After declaring the variable, you must “map” it to the control it is referring to, otherwise
the variable would behave just like any other and it cannot directly access the control you
wanted it to refer to. To specify what control your variable refers to, you must call the
DDX_Control() framework function. The syntax of this function is:

void AFXAPI DDX_Control(CDataExchange* pDX, int nIDC, CWnd& rControl);

The first argument, pDX, is a pointer to CDataExchange. The nIDC argument is the
identifier of the control your variable will refer to. The rControl argument is the name
you gave to your variable. An example of calling this function would be:

DDX_Control(pDX, IDC_STATIC_ADV, stcAdvanced);

The pDX argument in reality handles the mapping. It creates the relationship between
your rControl variable and the nIDC control that rControl must refer to. Besides that,
pDX insures that information can flow easily between both entities. The CDataExchange
class, to which the pDX argument points, is a parent-less class, meaning it is based
neither on CObject nor on CWnd.

The DDX_Control() function can be called for each variable you intend to map to a
control. When calling any of these functions, the mappings must be performed in the
CWnd::DoDataExchange() event. Its syntax is:

virtual void DoDataExchange(CDataExchange* pDX);

As you can see, this event is passed a CDataExchange pointer. This pointer in turn will
become the first argument to the DDX_Control() function. Behind the scenes, this allows
the dialog box, the parent of the controls to better manage the exchange of information
between the application and the controls.

This review helps to have an idea of how variables would be declared and associated with
the intended controls. In reality, this job is usually, and should always be, handled by
Visual C++ for you. When you create a dialog-based object, such as a dialog box, a form,
a property sheet, or a property page, the CDialog::DoDataExchange() event is created
and made ready for you. To declare a variable you want to associate to a control, unless
you have a good reason to proceed manually, use either the ClassWizard in MSVC 6 or
the Add Member Variable Wizard in MSVC 7 to add the variable. When you do this, the
wizard will take care of all the mapping for you.

 After adding a variable using a wizard and once the variable mapping has been
performed, if you change the name of the variable in the header file, you must manually
change its name in the DoDataExchange() event.

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

418 © FunctionX, Inc.

 Practical Learning: Checking Control Variables
1. Open the Quadrilateral.cpp file and check the DoDataExchange event:

void CQuadrilateral::DoDataExchange(CDataExchange* pDX)
{
 CPropertyPage::DoDataExchange(pDX);
 DDX_Control(pDX, IDC_EDT_SSIDE, m_SquareSide);
 DDX_Control(pDX, IDC_EDT_SPRM, m_SquarePerimeter);
 DDX_Control(pDX, IDC_EDT_SAREA, m_SquareArea);
 DDX_Control(pDX, IDC_EDT_RLENGTH, m_RectLength);
 DDX_Control(pDX, IDC_EDT_RHEIGHT, m_RectHeight);
 DDX_Control(pDX, IDC_EDT_RPRM, m_RectPerimeter);
 DDX_Control(pDX, IDC_EDT_RAREA, m_RectArea);
}

2. Save All

14.1.4 Control’s Value Variables
Another type of variable you can declare for a control is the value variable. Not all
controls provide a value variable. The value variable must be able to handle the type of
value stored in the control it is intended to refer to. For example, because a text -based
control is used to handle text, you can declare a text -based data type for it. This would
usually be a CString variable. Here is an example:

class CExchangeDlg : public CDialog
{
 . . .
public:
 CStatic stcAdvanced;
 CString strFullName;
};

On the other hand, as we will learn that some controls handle a value that can be true or
false at one time, namely the check box, you can declare a Boolean variable for such
controls. Some other controls are used to hold a numeric value such as a natural or a
floating-point number. You can declare an integer-based or a float-based value variable
for such controls. Some other controls are not meant to hold an explicit or recognizable
type of data, an example would be the tab control. For such controls, there is no value
variable available. For such controls, you can only declare a control variable.

After declaring the value variable, as done with the control variable, you must “map” it to
the intended control. To do this, you must call an appropriate framework function. The
functions are categorized based on the type of data held by the variable. For example, if
the control holds text and you had declared a CString value variable for it, you can call
the DDX_Text() function to map it. The DDX_Text() function is provided in various
versions as follows:

void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, BYTE& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, short& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, int& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, UINT& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, long& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, DWORD& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, CString& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, float& value);

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 419

void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, double& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, COleCurrency& value);
void AFXAPI DDX_Text(CDataExchange* pDX, int nIDC, COleDateTime& value);

The first argument, pDX, is a pointer to CDataExchange. The second argument, nIDC, is
the identifier the of the control you want to refer to. The third argument, value, if the
name of the value variable you had previously declared.

If a control holds a valid value, you can declare both a control variable and a value
variable if you need them. Here is an example:

class CExchangeDlg : public CDialog
{
 . . .
public:
 CStatic stcAdvanced;
 CString valAdvanced;
 CString strFullName;
};

When mapping such variable, make a call to DDX_Control() for the control variable and
a separate call to DDX_X() for the value variable. Because there are various types of
DDX_ functions for the controls, X stands for the type of control referred to.

Like the DDX_Control(), the DDX_X() function can be called for each variable you
intend to map to a control and this is performed in the CWnd::DoDataExchange()
event. This CDataExchange pointer is passed as the first argument to the DDX_ X()
functions. This argument allows the dialog box to update the values held by the controls.

Once again, avoid declaring and mapping value variables manually. Instead, use either
(MSVC 6) the ClassWizard or (MSVC 7) the Add Member Variable Wizard to add a
variable that you want to associate with a control on a dialog-based object.

 Practical Learning: Adding Value Variables
1. From the Resource View tab, open the IDD_CIRCULAR dialog box and adjust the

locations and dimensions of the controls as you see fit

2. To declare a value variable, on the dialog box, right-click the edit box on the right
side of the top Radius and click Add Variable…

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

420 © FunctionX, Inc.

3. Click the arrow of the Category combo box and select Value
In the Variable Type combo box, if necessary, select CString
In the Variable Name edit box, type m_szCircleRadi us

4. Click Finish

5. In the same way, Add a CString Value Variable for each edit box. From top to
bottom, name them m_szCircleCircumference, m_szCircleArea,
m_szEllipseradius , m_szEllipseRadius , m_szEllipseCircumference , and
m_szEllipseArea respectively

6. Open the Circular.h header file and check the new value variable

7. Also open the Circular.cpp source file and check the content of the
DoDataExchange() event.

14.1.5 Controls Event Handlers
As we reviewed when introduced messages, an event is an action resulting from a
generated message. As there are various types of controls, there are also different types of
messages available on controls and even the type of window considered. After adding a
control to your application, whether you visually added it or created it dynamically, you
will also decide how the handle the possible actions that the user can perform on the
control.

There are various ways you can write an event for a message. If the message is sent from
a class, first select the class in Class View. Then, in the Properties window, click either

the Events , the Messages , or the Overrides button, depending on the type
of member function you want to write.

Some of the most regular actions the user can perform on a control is to click it. Object
that receive click messages range from static controls to command buttons, as we will see
eventually. To generate code for a control that is positioned on a dialog-based object,
display its parent window. Then, right-click the control and, on the context menu, click
Add Event Handler. This would display the Event Handler Wizard with as much
information as you need to set or select to configure the event. Once you have finish
specifying the necessary items for the event, click Add And Edit. This would take you to
the new event in the Code Editor where you can write the rest of the code for the event. If
you use the wizard to generate the event, the necessary arguments and part of the code for

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 421

the event would be supplied to you. If you decide to write the event from scratch, you
will need to especially remember the arguments of the event, otherwise the code may not
work at all.

 Practical Learning: Generating Events

1. From the Resource View tab, display the IDD_QUADRILATERAL dialog box
On the dialog, right-click the edit box on the right side of Side and click Add Event
Handler…

2. See the types of messages for the edit box. Click Cancel

3. Right-click the top Calculate control and click Add Event Handler…

4. Read and accept everything that is set on the wizard

5. Click Add And Edit

6. In the same way, generate an event for all Calculate controls of the
IDD_QUADRILATERAL, the IDD_CIRCULAR, and the IDD_G3D dialog boxes

7. Save All

14.2 Controls Management

14.2.1 Control’s Identification
So far, we have seen various techniques of visually adding or dynamically creating
controls for your application. We also saw that every control should have identification.
In fact, if you want to avoid providing an identification for a control, you may have to use
the Win32 API’s CreateWindow() or CreateWindowEx() function to create the control.
We saw that the identifier can be created either using the Properties window, using the
Resources Symbols dialog box, using the String Table, or when dynamically creating the
control. We also saw how to declare or add a control variable for an MFC control.

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

422 © FunctionX, Inc.

Imagine a control with its identifier has already been added to a dialog box but you want
to change that identifier, for any reason you judge necessary. To do this, you would call
the CWnd::SetDlgCtrlID() method. Its syntax is:

int SetDlgCtrlID(int nID);

This method assigns or changes the identifier of the control that called it. Imagine the
control variable of a control is named m_Edition, you can assign a new identifier to it as
follows:

BOOL CDlgControls::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here

 m_Edition.SetDlgCtrlID(0x1882);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

If a control has been created and you need its identifier, you can find it out by calling the
CWnd::GetDlgCtrlID() method. Its syntax is:

int GetDlgCtrlID() const;

This method simply returns the identifier of the control that called it. The value is
returned as an integer. You will mostly use this method to find out if the identifier of a
control matches the one the user has just accessed.

 Practical Learning: Using Controls Identifiers

1. Start a new MFC Application named Identification and create it as Dialog Based
without an About Box

2. Delete the TODO line, the OK and the Cancel buttons

3. From the Controls toolbox, add four Custom Controls and draw them
horizontally on the dialog box as follows:

4. Set the Class name of the top three custom controls to ScrollBar

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 423

5. Set the Class name of the bottom custom control to Static and change its Caption to
Burkina Faso

6. Add a CScrollBar Control Variable to the top control and name it m_ScrollRed (if
you are using some versions of MSVC 7 and the class name is not selected as
CScrollBar, you may have to type it; if you are using MSVC 6, you should only
select the class name as CScrollBar)

7. Add a CScrollBar Control Variable to the second control from top and name it
m_ScrollGreen

8. Add a CScrollBar Control Variable to the third control fro m top and name it
m_ScrollBlue

9. A CStatic Control Variable (if you are using some versions of MSVC 7 and the
class name is not selected as CStatic, you can to type it; if you are using MSVC 6,
you should select the CStatic class name) to the bottom control and name it
m_Country

10. To change the identifiers of the top three controls, access the OnInitDialog() event
of the dialog box and call the SetDlgCtrlID() method for each control giving the
1804, 6255, and 42 values respectively:

BOOL CIdentificationDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_ScrollRed.SetDlgCtrlID(1804);
 m_ScrollGreen.SetDlgCtrlID(6255);
 m_ScrollBlue.SetDlgCtrlID(42);

 return TRUE; // return TRUE unless you set the focus to a control
}

11. When the user clicks one of the scroll bars, we will need to know which one was
clicked and display a message accordingly

Using the Messages button , generate the WM_HSCROLL message for the
dialog box to <Add> an OnHScroll event.

12. Implement it as follows:

void CIdentificationDlg::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
{
 // TODO: Add your message handler code here and/or call default
 CFont font;

 // Change the font of the label based on which scroll bar was clicked
 if(pScrollBar->GetDlgCtrlID() == 1804)
 {
 font.CreatePointFont(260, "Garamond");
 m_Country.SetFont(&font);
 }
 else if(pScrollBar->GetDlgCtrlID() == 6255)
 {
 font.CreatePointFont(220, "Arial");
 m_Country.SetFont(&font);

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

424 © FunctionX, Inc.

 }
 else if(pScrollBar->GetDlgCtrlID() == 42)
 {
 font.CreatePointFont(180, "Wingdings");
 m_Country.SetFont(&font);
 }

 CDialog::OnHScroll(nSBCode, nPos, pScrollBar);
}

13. Test the application by executing it and trying to click the arrow buttons on the scroll
bar controls

14. Close the application and return to MSVC

14.2.2 The Client Area
Besides the identifier, we learned that, to create a control, you must provide it with
“physical” presence. If you add the control visually, it assumes the position where you
place it. If you are programmatically creating the control, you must know how much
space its parent window is making available to its children before even deciding about its
location and dimensions.

To provide its parental support to the child controls, the parent window allocates an
amount of space in a rectangular shape called the client area:

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 425

The controls you add are confined to the client area offered by the parent window. After
visually adding a control to a parent window, it assumes a location and takes some
dimensions in this area. The origin of the rectangular client area is on the upper-left
corner of the parent window. The horizontal measurements move from the origin to the
right. The vertical measurements move from the origin to the bottom:

A control can be added only in the client area. To find out how much room a parent
window is making available to its children, that is, to get the dimensions (and screen
location) of the client area, you can call the CWnd::GetClientRect() member function.
Its syntax is:

void GetClientRect(LPRECT lpRect) const;

This member function takes as argument a RECT or CRect variable and stores the
location and dimension of the client rectangular area in it. In the following example, the

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

426 © FunctionX, Inc.

GetClientRect() function is called to get the dimensions of the view’s client area of a
frame -based application and use the resulting rectangle to paint that area:

void CCView1View::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 // TODO: Add your message handler code here
 CRect Recto;
 CBrush SelectedBrush(SelectedColor);
 CPen SelectedBlue(PS_SOLID, 1, SelectedColor);

 GetClientRect(&Recto);
 CBrush *pOldBrush = dc.SelectObject(&SelectedBrush);
 CPen *pOldPen = dc.SelectObject(&SelectedBlue);

 dc.Rectangle(Recto);

 dc.SelectObje ct(pOldBrush);
 // Do not call CView::OnPaint() for painting messages
}

Once the control is already positioned on the client area, to get its location and
dimensions, you can call the CWnd::GetWindowRect() method. Here is an example:

void CTabDlg::OnBtnInfo()
{
 // TODO: Add your control notification handler code here
 CRect Recto;
 char LocDim[80];

 m_Panel.GetWindowRect(&Recto);

 sprintf(LocDim, " - Panel Information -\nLeft: %d,"
 "\nTop: %d,\nWidth: %d,\nHeight: %d",
 Recto.left, Recto.top, Recto.Width(), Recto.Height());

 MessageBox(LocDim);
}

 Practical Learning: Using the Client Area

1. Open the Geometry application you were working on earlier

2. Open the Quadrilateral.cpp source file and change its OnPaint() event as follows:

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 427

void CQuadrilateral::OnPaint()
{
 CPaintDC dc(this); // device context for painting
 CRect Recto;

 // Create a light green brush
 CBrush BrushLightGreen(RGB(212, 235, 235));
 // Create a navy pen
 CPen PenNavy(PS_SOLID, 1, RGB(0, 0, 128));
 // Create a green brush
 CBrush BrushGreen(RGB(100, 175, 180));
 // Create a dark green pen
 CPen PenGreen(PS_SOLID, 2, RGB(0, 115, 115));

 // Get the location and dimensions of the client rectangle
 GetClientRect(&Recto);

 // Select the light green brush
 CBrush *pOldBrush = dc.SelectObject(&BrushLightGreen);
 // Select the navy pen
 CPen *pOldPen = dc.SelectObject(&PenNavy);

 // Draw a rectangular shape on the left side of the property page
 dc.Rectangle(0, 0, 162, Recto.Height());

 // Select the green brush
 pOldBrush = dc.SelectObject(&BrushGreen);
 // Select the dark green pen
 pOldPen = dc.SelectObject(&PenGreen);

 // Draw the square
 dc.Rectangle(40, 40, 120, 100);
 // Draw the rectangle
 dc.Rectangle(20, 170, 140, 240);

 // Set the back mode to transparent for the text
 dc.SetBkMode(TRANSPARENT);
 // Display indicative labels
 dc.TextOut(60, 105, "Square");
 dc.TextOut(45, 250, "Rectangle");

 // Restore the old GDI tools
 dc.SelectObject(pOldPen);
 dc.SelectObject(pOldBrush);

 if (IsIconic())
 {

 SendMessage(WM_ICONERASEBKGND,
reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0);

 // Center icon in client rectangle
 int cxIcon = GetSystemMetrics(SM_CXICON);
 int cyIcon = GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon + 1) / 2;
 int y = (rect.Height() - cyIcon + 1) / 2;

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

428 © FunctionX, Inc.

 // Draw the icon
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 CPropertyPage::OnPaint();
 }
}

3. Test the application:

4. Close the application and return to MSVC

14.2.3 The Screen and Client Coordinates
When calling either the GetClientRect() or the GetWindowRect() methods to get the
location and the dimensions of a control or another object, it is important to know the
origin of the produced rectangle. By default, the rectangle returned by the
GetWindowRect() method called by a control has its origin on the top left corner of the
monitor and not on the top-left corner of the parent window. Consider the following
event. It gets the location and dimensions of a control and stores them in a CRect
variable. Then it paints a rectangle (it is supposed to paint the control) located on, and
equal to the dimensions of, the control:

void CTabDlg::OnBtnInfo()
{
 // TODO: Add your control notification handler code here
 CRect Recto;

 m_Panel.GetWindowRect(&Recto);

 CClientDC dc(this);
 CBrush BlueBrush(RGB(0, 128, 192));

 CBrush *pOldBrush = dc.SelectObject(&BlueBrush);
 dc.Rectangle(Recto);

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 429

 dc.SelectObject(pOldBrush);
}

After executing the program and moving the dialog box somewhere to the middle center
of the screen and clicking the button, the result is as follows:

After moving the dialog box close to the top-left section of the screen and clicking the
button again, the result is the following:

This demonstrates that, although the control is a child of the dialog box, the rectangle
returned by the GetWindowRect() method is based on the screen and not the client
coordinates of the parent window. This is not an anomaly. It is purposely done so you can
specify what origin you want to consider.

As seen in previous lessons, the origin of the screen is positioned on the top-left corner of
the monitor. This is referred to as, or is said that the location uses, screen coordinates.
The origin of a client area is placed on its top-left corner. This is referred to as, or is said
that the location uses, client coordinates. For example, the origin used by the above
GetWindowRect() method is based on the screen. If you want the rectangle resulting
from a call to either the GetClientRect() or the GetWindowRect() methods to be based
on the client area (on client coordinates) of the control that called it, you can transfer the
origin from the screen to the client. This is conveniently done with a call to the
CWnd::ClientToScreen() method. It is overloaded as follows:

void ClientToScreen(LPPOINT lpPoint) const;
void ClientToScreen(LPRECT lpRect) const;

If the location you had requested is a point, pass its POINT or its CPoint variable to the
ClientToScreen() method. If the value you requested is a rectangle, pass its RECT or its
CRect variable. Here is an example:

void CTabDlg::OnBtnInfo()
{
 // TODO: Add your control notification handler code here

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

430 © FunctionX, Inc.

 CRect Recto;

 m_Panel.GetWindowRect(&Recto);

 CClientDC dc(this);
 CBrush BlueBrush(RGB(0, 128, 192));

 CBrush *pOldBrush = dc.SelectObject(&BlueBrush);

 ScreenToClient(Recto);
 dc.Rectangle(Recto);

 dc.SelectObject(pOldBrush);
}

This time, even if the dialog box moves, the GetWindowRect() method returns the same
rectangle.

If the location and/or dimension are given in client coordinates, to convert them to screen
coordinates, call the ScreenToClient() method. It is overloaded as follows:

void ScreenToClient(LPPOINT lpPoint) const;
void ScreenToClient(LPRECT lpRect) const;

This method follows the opposite logic of the ClientToScreen() method.

 Practical Learning: Using Client and Screen Coordinates
1. The Geometry application should still be opened.

From the Resource View tab open the IDD_CIRCULAR dialog box

2. On the Controls toolbox, click the Picture control and draw a rectangular shape
on the left side of the dialog box

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 431

3. Change the ID of the new control to IDC_SHP_CIRCULAR and Add a Control
Variable for it named m_ShapeCircular

4. Access the OnPaint event of the CCircular class and implement it as follows:

void CCircular::OnPaint()
{
 CPaintDC dc(this); // device context for painting
 // TODO: Add your message handler code here
 // Do not call CPropertyPage::OnPaint() for painting messages

 // The location and dimension variable for the control
 CRect ShapeRect;
 // Create a cream color brush
 CBrush BrushCream(RGB(255, 230, 205));
 // Create an orange brush
 CBrush BrushOrange(RGB(255, 128, 64));
 // Create a brown pen
 CPen PenBrown(PS_SOLID, 2, RGB(128, 0, 0));

 // Get the location and dimension of the control
 m_ShapeCirc.GetWindowRect(&ShapeRect);

 // Convert the location and dimensions to client coordinates
 ScreenToClient(&ShapeRect);

 // Select the cream brush to use
 CBrush *pOldBrush = dc.SelectObject(&BrushCream);
 // Paint the control's background to light blue
 dc.Rectangle(ShapeRect);

 // Select the brown pen to paint
 CPen *pOldPen = dc.SelectObject(&PenBrown);
 // Select an orange brush
 pOldBrush = dc.SelectObject(&BrushOrange);

 // Draw the circle
 dc.Ellipse(40, 30, 120, 110);

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

432 © FunctionX, Inc.

 // Draw the ellipse
 dc.Ellipse(20, 170, 140, 240);

 // Set the back mode to transparent for the text
 dc.SetBkMode(TRANSPARENT);
 // Display indicative labels
 dc.TextOut(60, 115, "Circle");
 dc.TextOut(55, 250, "Ellipse");

 // Dismiss the GDI objects and restore the originals
 dc.SelectObject(pOldBrush);
 dc.SelectObject(pOldPen);
}

5. Test the application

6. Close it and return to MSVC

14.2.4 The Window: Its Location and Dimensions
We have reviewed various ways of specifying a control’s location and its dimensions,
eitther at design or run time. Once a window or a control has been positioned on the
screen or in its confined client area, it keeps these attributes until specified otherwise.
When dealing with a main window, such as the frame of an application, a dialog box, a
property sheet, or a wizard, the user can move it around the screen as necessary and if
possible. This is usually done by dragging the title bar.

When the user grabs the title bar of a window and starts dragging to move it, the window
sends the WM_MOVING message as we saw in Lesson 4. The WM_MOVING event
fires the OnMoving() event. This event is usually left alone as it allows the user to use an
application as regularly as possible. The syntax of the OnMoving() event is:

afx_msg void OnMoving(UINT nSide, LPRECT lpRect);

The OnMoving() event fires while the window is being moved. The nSide argument
specifies the side of window that is moving. As the window is moving, this event returns
its location and dimensions as the values of the lpRect member variables.

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 433

If you create a certain type of window and you do not want the user to move it around,
you can write code for the WM_MOVING message. In the following example, the user
cannot move the window as its location and dimensions are restored with any attempt to
move it (if you want to write the OnMoving event for a dialog box in MSVC 6, you may
have to manually declare and define the event as follows):

class CTabDlg : public CDialog
{
// Construction
public:
 CTabDlg(CWnd* pParent = NULL); // standard constructor

. . .

// Implementation
protected:

 // Generated message map functions
 //{{AFX_MSG(CTabDlg)
 virtual BOOL OnInitDialog();
 afx_msg void OnMoving(UINT nSide, LPRECT lpRect);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

. . .

BEGIN_MESSAGE_MAP(CTabDlg, CDialog)
 //{{AFX_MSG_MAP(CTabDlg)
 ON_WM_MOVING()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()
. . .
void CTabDlg::OnMoving(UINT nSide, LPRECT lpRect)
{
 CRect CurRect;

 // Find out the location and the dimensions of the window
 GetWindowRect(&CurRect);

 // You ain't moving nothin'
 lpRect->left = CurRect.left;
 lpRect->top = CurRect.top;
 lpRect->right = CurRect.right;
 lpRect->bottom = CurRect.bottom;
}

To programmatically move a window, call the CWnd::SetWindowPos() method. Its
syntax is:

BOOL SetWindowPos(const CWnd* pWndInsertAfter,
 int x, int y, int cx, int cy, UINT nFlags);

The pWndInsertAfter argument is used to specify the window that will positioned in the Z
coordinate on top of the window that called this method. If you have the class name or
the CWnd name of the other window, pass it as the pWndInsertAfter argument.
Otherwise, this argument can have one of the following values:

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

434 © FunctionX, Inc.

Value Description

wndBottom This window will be positioned under all the other windows, unless
it is already at the bottom. If this window is a topmost window, it
will not be anymore

wndTop This window will be positioned on top of all the other windows,
unless it is already on top

wndTopMost This window becomes positioned on top of all other window as if it
were created with the WS_EX_TOPMOST extended style. In
other words, even if its parent window is sent under other window,
this particular one stays on top.

wndNoTopMost If this window is not a top most window, it becomes positioned on
top of all other windows, except the window that is top most.
If this window was top most when it called this method, it is not
top most anymore. If there is another top most window on the
screen, that one becomes top most but this one becomes positioned
under that one.

If you are not trying to reposition the window in the Z coordinate, pass this argument as
NULL or include the SWP_NOZORDER value for the nFlags argument.

The nFlags argument is used to define how the location arguments (x and y) and the
dimensions (cx and cy) will be dealt with. These other arguments have the following
roles:

Argument Description
The argument is
ignored if nFlags has
the following value

x This specifies the new distance from the left
border of the parent to the left border of this
window. This depends on the type of window
and the type of parent.

SWP_NOMOVE

y This specifies the new distance from the top
border of the parent to the top border of this
window. This depends on the type of window
and the type of parent.

SWP_NOMOVE

cx This is the new width of this window SWP_NOSIZE
cy The argument is the new height of this

window
SWP_NOSIZE

Additionally, the nFlags argument can have one of the following values or one of the
above nFlags values can be combined with the following values:

Value Description
SWP_DRAWFRAME Draws a frame around the window
SWP_FRAMECHANGED This value sends a WM_NCCALCSIZE message to the

window
SWP_HIDEWINDOW Hides this window
SWP_NOACTIVATE If the pWndInsertAfter value specified that the window

should be reposositioned and activated, which is done if
the window is to be positioned on top of another, this

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 435

value lets the pWndInsertAfter be performed but the
window will not be activated

SWP_NOCOPYBITS Normally, after a window has been repositioned, its
controls are restored to their corresponding relative
locations and dimensions. It you want this validation to
be ignored, pass this value

SWP_NOOWNERZORDER
SWP_NOREPOSITION

If this value is passed, this method will not reposition
the windows in the z coordinate

SWP_NOREDRAW When this value is set, the client area of the window
will not be redrawn

SWP_NOSENDCHANGING When this value is set, the window cannot receive a
WM_WINDOWPOSCHANGING message

SWP_SHOWWINDOW Displays the window

In the following example, a window named m_Panel is repositioned and resized:

void CTestDialog::OnBtnMovePanel()
{
 // TODO: Add your control notification handler code here
 m_Panel.SetWindowPos(NULL, 40, 72, 100, 86, SWP_NOZORDER);
}

14.2.5 The Handle or Pointer to a Window
Once a control has been created, its identifier set, its location and its dimensions
specified, you and your users can exploit it. On one hand, the user can type a value, select
text, scroll or control or click something. One of your jobs as a programmer is to predict
as many actions as the user may want to perform on your control(s) and take appropriate
actions. We have learned that one good way you can refer to a control in your code
consists of first providing it with an identifier. Another prerequisite you can take is to
declare and associate a control and/or a value variable for your control. Sometimes you
will not have declared a control variable for a control but at one time you need to refer to
it. One way you can do this is to use the control’s identifier and cast it to its
corresponding class. This can be taken care of by calling the CWnd::GetDlgItem()
method. It comes in two versions as follows:

CWnd* GetDlgItem(int nID) const;
void CWnd::GetDlgItem(int nID, HWND* phWnd) const;

By providing the nID argument as the identifier of the control to this method, you can
get a pointer to its class. To do this, you can declare a pointer to the class of the control,
then call the GetDlgItem() method. Because GetDlgItem() returns a CWnd pointer, using
the features of inheritance, cast this return value to the class of the control.

 Practical Learning: Accessing a Window’s Handle
1. The Geometry application should still be opened.

Open the OnClickedBnUcalc() event of the CGeom3D class

2. To get handles to the edit boxes on the dialog, implement the event as follows:

void CGeome3D::OnBnClickedBtnUcalc()
{
 // TODO: Add your control notification handler code here
 // Related Calculations of the cube

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

436 © FunctionX, Inc.

 CEdit *edtCubeSide, *edtCubeArea, *edtCubeVolume;

 edtCubeSide = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_USIDE));
 edtCubeArea = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_UAREA));
 edtCubeVolume = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_UVOL));
}

3. Change the content of theOnBnClickedBcalc event as follows:

void CGeome3D::OnBnClickedBtnBcalc()
{
 // TODO: Add your control notification handler code here

 // Related Calculations of the box
 CEdit *edtBoxLength, *edtBoxWidth, *edtBoxHeight,
 *edtBoxArea, *edtBoxVolume;

 edtBoxLength = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_BLENGTH));
 edtBoxWidth = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_BHEIGHT));
 edtBoxHeight = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_BWIDTH));
 edtBoxArea = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_BAREA));
 edtBoxVolume = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_BVOL));
}

4. Save All

14.2.6 The Text of a Control
For you the programmer, the control identifier may be one of the most important
properties of a window. For the user, this is not the case. For a text -based control, the
most important part, as far as the user is concerned, may be its text. For example, if the
user is filling an employment application, the text entered on the fields is what would
make the difference. Many controls use text. In fact, one of the most obvious items on
most windows such as frames or dialog-based objects is the text they display. This text
allows the user to identify a window or an object on the screen.

Some controls only display text that the user can/must read in order to use an application.
Some other controls allow the user to change their text. Regardless of what such text is
used for, you should exercise a good deal of control on the text that a control would
display or receive.

When we started reviewing controls, we saw that some of the controls that use text would
allow you to change the Caption property at design time. On the other hand, while a using
is interacting with your application, depending on various circumstances, at a certain time
you may want to change the text that a window or control is displaying or holding; that is,
if the control is meant to display text. Changing the text of a window or a control can be
taken care of by calling the CWnd::SetWindowText() method. Its syntax is:

void SetWindowText(LPCTSTR lpszString);

The lpszString argument is a null-terminated string that holds the value you want to
display. It can be configured using any of the valid null-terminated string operations
available. Here is an example that changes the title of a dialog box when the window
displays. The text is provided as a null-terminated string passed to the method:

BOOL CDismissDlg::OnInitDialog()
{

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 437

 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 SetWindowText("Windows Fundamentals");

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Another technique you can use consist of first declaring a null-terminated string variable,
assign it a value, and then pass it the lpszString argument to the SetWindowText()
function.

If you are using resources in your MFC application, you can also create a global value in
the string table to be used as the window name:

You can call the string of such an identifier, store it in a CString variable, and then pass
it to the CWnd::SetWindowText() method. Here is an example:

CMainFrame::CMainFrame()
{
 // Declare a window class variable
 WNDCLASS WndCls;
 const char *StrWndName = "Application Name";

 . . .

 const char *StrClass = AfxRegisterWndClass(WndCls.style, WndCls.hCursor,
 WndCls.hbrBackground, WndCls.hIcon);

 Create(StrClass, StrWndName);

 CString Str;
 Str.LoadString(IDS_CURAPPNAME);
 SetWindowText(Str);
}

To change the name of a window, instead of calling SetWindowText(), you can call the
CWnd::SendMessage() method. Since you want to change the text, the message
argument must be WM_SETTEXT. The wParam argument is not used. The lParam
argument holds the string that will be the new value of the window name. You must cast
the string to LPARAM. Here is an example that allows the user to click a menu item that
changes the title of the frame window:

void CMainFrame::OnEditChangeTitle()

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

438 © FunctionX, Inc.

{
 // TODO: Add your command handler code here

 char NewTitle[] = "Introduction to Windows Programming";

 SendMessage(WM_SETTEXT, NULL, reinterpret_cast<LPARAM>(NewTitle));
}

To retrieve the name of a window (always remember that the name of a window is not
the name of a class) or the text stored in a control, you can call the
CWnd::GetWindowText() function. Its syntax is:

int GetWindowText(LPTSTR lpszStringBuf, int nMaxCount) const;

The lpszStringBuf is the null-terminated string that will store the window name. The
nMaxCount is the minimum number of characters of the lpszStringBuf. If you specify
more characters than the name is made of, the compiler would reduce this number to the
actual length of the string. Therefore, it is safe to provide a high number.

 Practical Learning: Changing a Control’s Text
1. The Geometry application should still be opened.

To perform window text operations, change the Quadrilateral.cpp source file as
follows:

// Quadrilateral.cpp : implementation file
//

. . .

// CQuadrilateral message handlers

BOOL CQuadrilateral::OnInitDialog()
{
 CPropertyPage::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_SquareSide.SetWindowText("0.00");
 m_SquarePerimeter.SetWindowText("0.00");
 m_SquareArea.SetWindowText("0.00");
 m_RectLength.SetWindowText("0.00");
 m_RectHeight.SetWindowText("0.00");
 m_RectPerimeter.SetWindowText("0.00");
 m_RectArea.SetWindowText("0.00");

 return TRUE; // return TRUE unless you set the focus to a control
}

. . .

void CQuadrilateral::OnBnClickedBtnScalc()
{

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 439

 // TODO: Add your control notification handler code here
 double SquareSide, SquarePerimeter, SquareArea;
 char StrSquareSide[10], StrSquarePerimeter[10], StrSquareArea[10];

 m_SquareSide.GetWindowText(StrSquareSide, 10);
 SquareSide = atof(StrSquareSide);
 SquarePerimeter = SquareSide * 4;
 SquareArea = SquareSide * SquareSide;

 sprintf(StrSquarePerimeter, "%.3f", SquarePerimeter);
 sprintf(StrSquareArea, "%.3f", SquareArea);

 m_SquarePerimeter.SetWindowText(StrSquarePerimeter);
 m_SquareArea.SetWindowText(StrSquareArea);
}

void CQuadrilateral::OnBnClickedBtnRcalc()
{
 // TODO: Add your control notification handler code here

 double RectLength, RectHeight, RectPerimeter, RectArea;
 char StrRectLength[10], StrRectHeight[10],
 StrRectPerimeter[10], StrRectArea[10];

 m_RectLengt h.GetWindowText(StrRectLength, 10);
 RectLength = atof(StrRectLength);
 m_RectHeight.GetWindowText(StrRectHeight, 10);
 RectHeight = atof(StrRectHeight);

 RectPerimeter = 2 * (RectLength + RectHeight);
 RectArea = RectLength * RectHeight;

 sprintf(StrRectPerimeter, "%.3f", RectPerimeter);
 sprintf(StrRectArea, "%.3f", RectArea);

 m_RectPerimeter.SetWindowText(StrRectPerimeter);
 m_RectArea.SetWindowText(StrRectArea);
}

2. Completer the controls events of the Geome3D.cpp source as follows:

// Geome3D.cpp : implementation file
//

. . .

// CGeome3D message handlers
void CGeome3D::OnBnClickedBtnUcalc()
{
 // TODO: Add your control notification handler code here
 // Related Calculations of the cube
 double CubeSide, CubeArea, CubeVolume;
 CEdit *edtCubeSide, *edtCubeArea, *edtCubeVolume;
 char StrCubeSide[10], StrCubeArea[10], StrCubeVolume[10];

 edtCubeSide = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_USIDE));
 edtCubeArea = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_UAREA));
 edtCubeVolume = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_UVOL));

 edtCubeSide->GetWindowText(StrCubeSide, 10);

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

440 © FunctionX, Inc.

 CubeSide = atof(StrCubeSide);

 CubeArea = CubeSide * 6;
 CubeVolume = CubeSide * CubeSide * CubeSide;

 sprintf(StrCubeArea, "%.3f", CubeArea);
 sprintf(StrCubeVolume, "%.3f", CubeVolume);

 edtCubeArea->SetWindowText(StrCubeArea);
 edtCubeVolume->SetWindowText(StrCubeVolume);
}

void CGeome3D::OnBnClickedBtnBcalc()
{
 // TODO: Add your control notification handler code here

 // Related Calculations of the box
 double BoxLength, BoxWidth, BoxHeight, BoxArea, BoxVolume;
 CEdit *edtBoxLength, *edtBoxWidth, *edtBoxHeight,
 *edtBoxArea, *edtBoxVolume;
 char StrLength[10], StrWidth[10], StrHeight[10],
 StrArea[10], StrVolume[10];

 edtBoxLength = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_BLENGTH));
 edtBoxWidth = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_BHEIGHT));
 edtBoxHeight = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_BWIDTH));
 edtBoxArea = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_BAREA));
 edtBoxVolume = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDT_BVOL));

 edtBoxLength->GetWindowText(StrLength, 10);
 edtBoxWidth->GetWindowText(StrWidth, 10);
 edtBoxHeight->GetWindowText(StrHeight, 10);

 BoxLength = atof(StrLength);
 BoxWidth = atof(StrWidth);
 BoxHeight = atof(StrHeight);

 BoxArea = 2 * ((BoxLength + BoxWidth) +
 (BoxLength + BoxHeight) +
 (BoxWidth + BoxHeight));
 BoxVolume = BoxLength * BoxWidth * BoxHeight;

 sprintf(StrArea, "%.3f", BoxArea);
 sprintf(StrVolume, "%.3f", BoxVolume);

 edtBoxArea->SetWindowText(StrArea);
 edtBoxVolume->SetWindowText(StrVolume);
}

3. Execute the application. Test the controls in the Quadrilateral property page by
providing numeric values in the Side, the Length, and the Height edit boxes before
clicking their corresponding button

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 441

4. Also test the calculations of the 3-Dimensions property page

5. After using it, close the application and return to MSVC

14.2.7 Controls Values Update
The controls used in your application are designed to work as an ensemble, exchanging
data with one another and with the window that hosts them. For their various operations
to work, the dialog-based object that is hosting the controls needs to be able to update
their values. If you are using control variables, because these controls are based on
CWnd, they can perform their own validations.

If you are using value controls, and if the user must be able to change the values held by a
dialog’s controls, you can decide how and when the values should be updated by the
parent window. This can be done by calling the CWnd::UpdateData() method. Its
syntax is:

BOOL UpdateData(BOOL bSaveAndValidate = TRUE);

The bSaveAndValidate argument specifies whether the parent window, usually a dialog-
based object, must update the values of variables at the time this method is called. This
member variable works in conformance with the CDialog::DoDataExchange() event of
the dialog that owns the controls. If it is called with no argument or the TRUE default
value, this indicates that the dialog is ready to communicate with the variables mapped in
DoDataExchange(). After such a call, you can let the user do what is necessary on the
controls. When this method is called a FALSE value for the bSaveAndValidate argument,
it indicates that the dialog box can take ownership of operations and the controls have
stopped updating their information.You can handle this when the user clicks a button
such as Submit or OK after changing values on controls. Normally, the call with a
FALSE argument means that the dialog box is being either initialized or reinitialized,
which is done when its OnInitDialog() event fires.

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

442 © FunctionX, Inc.

 Practical Learning: Updating Controls Data
1. To see examples of updating data, implement the events of the Circular.cpp source

file as follows:

// Circular.cpp : implementation file
//

#include "stdafx.h"
#include "Geometry1.h"
#include "Circular.h"

const double PIValue = 3.14159;
// CCircular dialog

IMPLEMENT_DYNAMIC(CCircular, CPropertyPage)
CCircular::CCircular()
 : CPropertyPage(CCircular::IDD)
 , m_szCircleRadius(_T("0.00"))
 , m_szCircleCircumference(_T("0.00"))
 , m_szCircleArea(_T("0.00"))
 , m_szEllipseradius(_T("0.00"))
 , m_szEllipseRadius(_T("0.00"))
 , m_szEllipseCircumference(_T("0.00"))
 , m_szEllipseArea(_T("0.00"))
{
}

CCircular::~CCircular()
{
}

void CCircular::DoDataExchange(CDataExchange* pDX)
{
 CPropertyPage::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_EDT_CRADIUS, m_szCircleRadius);
 DDX_Text(pDX, IDC_EDT_CCIRC, m_szCircleCircumference);
 DDX_Text(pDX, IDC_EDT_CAREA , m_szCircleArea);
 DDX_Text(pDX, IDC_EDT_VRADIUS, m_szEllipseradius);
 DDX_Text(pDX, IDC_EDT_HRADIUS, m_szEllipseRadius);
 DDX_Text(pDX, IDC_EDT_CCIRC2, m_szEllipseCircumference);
 DDX_Text(pDX, IDC_EDT_EAREA, m_szEllipseArea);
}

BEGIN_MESSAGE_MAP(CCircular, CPropertyPage)
 ON_BN_CLICKED(IDC_BTN_CCALC, OnBnClickedBtnCcalc)
 ON_BN_CLICKED(IDC_BTN_ECALC, OnBnClickedBtnEcalc)
END_MESSAGE_MAP()

// CCircular message handlers

void CCircular::OnBnClickedBtnCcalc()
{
 // TODO: Add your control notification handler code here
 UpdateData();

 double Radius, Circumference, Area;

 Radius = atof(m_szCircleRadius);

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 443

 Circumference = Radius * 2 * PIValue;
 Area = Radius * Radius * PIValue;

 m_szCircleCircumference.Format("%.3f", Circumference);
 m_szCircleArea.Format("%.3f", Area);

 UpdateData(FALSE);
}

void CCircular::OnBnClickedBtnEcalc()
{
 // TODO: Add your control notification handler code here
 UpdateData();

 double radius, Radius, Circumference, Area;

 radius = atof(m_szEllipseradius);
 Radius = atof(m_szEllipseRadius);

 Circumference = (radius + Radius) * PIValue;
 Area = radius * Radius * PIValue;

 m_szEllipseCircumference.Format("%.3f", Circumference);
 m_szEllipseArea.Format("%.3f", Area);

 UpdateData(FALSE);
}

2. Test the application by changing the values of the Circular property pages

3. After using it, close the application and return to MSVC

14.2.8 Window’s Focus
A control is said to have focus if it is ready to receive input from the user. For example, if
a text control, such as an edit box, has focus and the user presses a character key, the
corresponding character would be displayed in the control.

Controls show different ways of having focus. For example, when an edit box has focus,
a caret is blinking in it:

When a button has focus, it displays a dotted rectangle around its caption:

There are two main ways a control receives focus: based on a user’s action or an explicit
request from you. To give focus to a control, the user usually presses Tab, which allows
navigating from one control to another. To programmatically give focus to a control, call
the CWnd::SetFocus() method.

CWnd* SetFocus();

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

444 © FunctionX, Inc.

This method gives focus to the control that called it. In the following example, an edit
box identified as IDC_EDIT1 will receive focus when the user clicks the button:

void CFormView1View::OnButton2()
{
 // TODO: Add your control notification handler code here
 CButton *btnFirst;

 btnFirst = (CButton *)GetDlgItem(IDC_EDIT1);
 btnFirst->SetFocus();
}

Once a control receives focus, it initiates a WM_SETFOCUS message, which fires an
OnSetFocus() event. The syntax of the CWnd::OnSetFocus() event is:

afx_msg void OnSetFocus(CWnd* pOldWnd);

You can use this event to take action when, or just before, the control receives focus. In
the following example, when an edit box receives focus, a message box is displayed:

void CFormView1View::OnSetFocusEdit3()
{
 // TODO: Add your control notification handler code here
 MessageBox("The Result edit box should not receive focus!!!");
}

At anytime, to find out what control has focus, call the CWnd::GetFocus() method. Its
syntax is:

static CWnd* PASCAL GetFocus();

This method returns a handle to the control that has focus at the time the method is called.
While the user is interracting with your application, the focus changes constantly. For this
reason, you should avoid using the return type of this method from various events or
member functions. In other words, do not globally declare a CWnd variable or pointer,
find out what control has focus in an event Event1 and use the returned value in another
event Event2 because, by the time you get to Event2, the control that had focus in Event1
may have lost focus. In fact, the dialog box that holds the control or the main application
may have lost focus. Therefore, use the GetFocus() method only locally.

14.2.9 The Window’s Visibility
After a window or a control has been created, for the user to take advantage of it, it must
be made visible. As we will learn in other lessons, when it comes to their visibility, there
are two types of windows: those the user can see and interact with, and those invisible
conttrols that work only behind the scenes and cannot be displayed to the user.

During control design and when we reviewed their styles, we saw that a window can be
made displayed to the user by setting its Visible property to True or by adding it the
WS_VISIBLE style.

If you did not set the Visible property to True or did not add the WS_VISIBLE style, the
control would be hidden (but possibly available). Therefore, if at any time a window is
hidden, you can display it by calling the CWnd::ShowWindow() method. Its syntax is:

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 445

BOOL ShowWindow(int nCmdShow);

This method is used to display or hide any window that is a descendent of CWnd. Its
argument, nCmdShow, specifies what to do with the appearance or disappearance of the
object. Its possible values are:

Value Description

SW_SHOW Displays a window and makes it visible
SW_SHOWNORMAL Displays the window in its regular size. In most

circumstances, the operating system keeps track of the
last location and size a window such as Internet
Explorer or My Computer had the last time it was
displaying. This value allows the OS to restore it

SW_SHOWMINIMIZED Opens the window in its minimized state, representing
it as a button on the taskbar

SW_SHOWMAXIMIZED Opens the window in its maximized state
SW_SHOWMINNOACTIVE Opens the window but displays only its icon. It does

not make it active
SW_SHOWNA As previous
SW_SHOWNOACTIVATE Retrieves the window's previous size and location and

displays it accordingly
SW_HIDE Used to hide a window
SW_MINIMIZE shrinks the window and reduces it to a button on the

taskbar
SW_RESTORE If the window was minimized or maximized, it would

be restored to its previous location and size

To use one of these constants, pass it to the ShowWindow() method. For example, to
minimize a window that is minimizable, you would use code as follows:

ShowWindow(SW_SHOWMINIMIZED);

Remember that this method is used to either hide or to display a control by passing the
appropriate constant, SW_HIDE to hide and SW_SHOW to display it. Here is an
example that displays a control that missed the WS_VISIBLE property when it was
created:

void CSecondDlg::OnFirstControl()
{
 // TODO: Add your control notification handler code here
 CWnd *First = new CWnd;
 CString StrClsName = AfxRegisterWndClass(CS_VREDRAW | CS_HREDRAW,
 LoadCursor(NULL, IDC_CROSS),
 (HBRUSH)GetStockObject(BLACK_BRUSH),
 LoadIcon(NULL, IDI_WARNING));

 First->Create(StrClsName, NULL, WS_CHILD);
 First->ShowWindow(SW_SHOW);
}

When the ShowWindow() method is called with the SW_SHOW value, if the control
was hidden, it would become visible; if the control was already visible, nothing would

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

446 © FunctionX, Inc.

happen. In the same way, when this method is called with the SW_HIDE argument, the
control would be hidden, whether it was already hidden or not.

If you want to check the visibility of a control before calling the ShowWindow() method,
you can call the CWnd::IsWindowVisible() method. Its syntax is:

BOOL IsWindowVisible() const;

This method returns TRUE if the control that called it is already visible. If the control is
hidden, the method returns FALSE.

14.2.10 The Window’s Availability
We saw that when a control has been created, it is available to the user who can interact
with its value. This is because a control usually has its Disable property to False or
unchecked. A control is referred to as disabled if the user can see it but cannot change its
value.

If for any reason a control is disabled, to enable it, you can call the
CWnd::EnableWindow() method. In fact, the EnableWindow() method is used either
to enable or to disable a window. Its syntax is:

BOOL EnableWindow(BOOL bEnable = TRUE);

Here is an example that disables a control called Memo:

void CSecondDlg::OnDisableMemo()
{
 // TODO: Add your control notification handler code here
 Memo->EnableWindow(FALSE);
}

When calling the EnableWindow() method, if you pass the FALSE value, the control is
disabled, whether it was already disabled or not. If you pass the TRUE constant, it gets
enabled even it was already enabled. Sometimes you may want to check first whether the
control is already enabled or disabled. This can be accomplished by calling the
CWnd::IsWindowEnabled(). Its syntax is:

BOOL IsWindowEnabled() const;

This method checks the control that called it. If the control is enabled, the member
function returns TRUE. If the control is disabled, this method returns FALSE. Here is an
example:

void CSecondDlg::OnDisableMemo()
{
 // TODO: Add your control notification handler code here
 if(Memo->IsWindowEnabled() == TRUE)
 Memo->EnableWindow(FALSE);
 else // if(!Memo ->IsWindowEnabled())
 Memo->EnableWindow();
}

Here is a simplified version of the above code:

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 447

void CSecondDlg::OnDisableMemo()
{
 // TODO: Add your control notification handler code here

 Memo->EnableWindow(!Memo->IsWindowEnabled());
}

14.3 Access to a Controls Instance and Handle

14.3.1 The Instance of an Application
When you create a Win32 application using the WinMain() function, or if you create an
MFC application using the CWinApp class, when the application comes up, it creates an
instance, which is usually the hInstance argument of the WinMain() function. In the
same way, when you create an MFC application, which is done using a class based on
CWinApp, and when the application comes up, it creates an instance. Sometimes you
will need to refer to the instance of your application. We have already mentioned that
you can do this by calling the CWinApp::m_hInstance member variable. Alternatively,
for an MFC application, you can call the AfxGetInstanceHandle() global function to get
a handle to the instance of your application. This could be accessed as follows:

BOOL CDialog1Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 HINSTANCE InstanceOfThisApp = AfxGetInstanceHandle();

 return TRUE; // return TRUE unless you set the focus to a control
}

14.3.2 The Handle to a Window
We saw with Win32 applications that, when creating a parent window, if you want to
refer to that parent control, you should use the value returned by the CreateWindow() or
the CreateWindowEx() function, which is an HWND value. If you are creating an MFC
application, you usually call the Create() method of the window you are creating. As the
parent of all window classes of an MFC application, CWnd provides a member variable
called m_hWnd. It is defined as follows:

HWND m_hWnd;

This public variable is inherited by all classes that are based on CWnd, which includes
all MFC window objects. Consequently, m_hWnd gives you access to the handle to the
window you have created. For example, the CDialog class, which is based on CWnd but
is the most used host of Windows controls, can provide its m_hWnd variable as the
parent of its control. Here is an example:

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

448 © FunctionX, Inc.

BOOL CClientAreaDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

 CWnd* stcLogo = new CWnd;

 stcLogo->CreateEx(WS_EX_DLGMODA LFRAME, "STATIC", NULL,
 WS_CHILD | WS_VISIBLE | WS_BORDER,
 240, 90, 90, 40, m_hWnd, 0x1888);

 return TRUE; // return TRUE unless you set the focus to a control
}

In the same way, to get a handle to any control of your application, access its m_hWnd
member variable.

If you had created a window using the Win32 API’s CreateWindow() or
CreateWindowEx() function, or if for any reason an HWND object exists in your
application, you can convert such a window to a CWnd pointer using the
CWnd::FromHandle() method. Its syntax is:

static CWnd* PASCAL FromHandle(HWND hWnd);

Here is an example:

BOOL CDialog1Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 HWND ThisWnd;

 ThisWnd = CreateWindow("EDIT", NULL,
 WS_CHILD | WS_VISIBLE | WS_BORDER,
 20, 100, 140, 200, m_hWnd, NULL, AfxGetInstanceHandle(), NULL);

 CWnd *NewWnd;

 NewWnd->FromHandle(ThisWnd);

 return TRUE; // return TRUE unless you set the focus to a control
}

14.4 Getting Access to a Control

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 449

14.4.1 Retrieving Control Information
To get information about a control, you can call the GetWindowLong() function. Its
syntax is:

LONG GetWindowLong(HWND hWnd, int nIndex);

After this function executes, it returns a LONG value. If you prefer to get a pointer and if
you are working on a 64-bit environ, use the GetWindowLongPtr() function instead. Its
syntax is:

LONG_PTR GetWindowLongPtr(HWND hWnd, int nIndex);

The first argument, hWnd, is a handle to the control whose information you are seeking.
The nIndex argument specifies the type of information you are looking for. Its possible
values are:

nIndex Value
GetWindowLong() GetWindowLongPtr()

Description

GWL_EXSTYLE This is used to get information about the extended
style(s) used on the control

GWL_STYLE This is used to get information about the style(s)
used on the control

GWL_WNDPROC GWLP_WNDPROC Remember that a window procedure is a function
pointer. If such a procedure was used to handle the
message(s) for the hWnd control, use this constant
to get the address of that procedure

GWL_HINSTANCE GWLP_HINSTANCE This gives access to the handle to the current
application

GWL_HWNDPARENT GWLP_HWNDPARENT This constant can be used to get a handle to the
parent window. For example, you can use it the
get a handle to a dialog box that is hosting the
hWnd control.

GWL_ID GWLP_ID This gives you the ID of the hWnd control
GWL_USERDATA GWLP_USERDATA This gives you a 32-bit value used by the current

application

If the hWnd argument represents a dialog box, nIndex can use the following values:

nIndex Value
GetWindowLong GetWindowLongPtr

Description

DWL_DLGPROC DWLP_DLGPROC This provides the address of, or a pointer, to the
procedure of the dialog box

DWL_MSGRESULT DWLP_MSGRESULT This provides the return value of the dialog box’
procedure

DWL_USER DWLP_USER This provides additional information about the
application

After calling this function and specifying the type of information you need, it returns a
(constant) value you can use as you see fit. Here are two methods of getting a handle to
the instance of the application. The second example uses the GetWindowLong()
function:

BOOL CDialog1Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

Chapter 15: Fundamental Controls Visual C++ and MFC Fundamentals

450 © FunctionX, Inc.

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 HINSTANCE Instance1 = AfxGetInstanceHandle();
 LONG Instance2 = GetWindowLong(m_hWnd, GWL_HINSTANCE);

 m_Instance1.Format("%ld", Instance1);
 m_Instance2.Format("%ld", Instance2);
 UpdateData(FALSE);

 return TRUE; // return TRUE unless you set the focus to a control
}

14.4.2 Changing Control Information
We have seen how easy it can be to define the properties, styles, and other characteristics
when creating a control. While the user is interacting with the computer using your
application, you may need to change some of these attributes of a window. To change the
value of an aspect of the window, you can call the SetWindowLong() function. Its
syntax is:

LONG SetWindowLong(HWND hWnd, int nIndex, LONG dwNewLong);

If you want to work with a pointer instead of a value, you can use the
SetWindowLongPtr() function. Its syntax is:

LONG_PTR SetWindowLongPtr(HWND hWnd, int nIndex, LONG_PTR dwNewLong);

The hWnd argument is a handle to the window whose informtation you want to change.
The value of nIndex species the type of information you want to change. It can have the
following values:

nIndex Value
GetWindowLong GetWindowLongPtr

Description

GWL_EXSTYLE Allows changing the extended style(s) of the
window or control

GWL_STYLE Allows changing the style(s) of the window or
control

GWL_WNDPROC GWLP_WNDPROC Allows changing the procedure of the control
GWL_HINSTANCE GWLP_HINSTANCE Changes the application instance of the control
GWL_ID GWLP_ID Allows changing the ID value of the control
GWL_USERDATA GWLP_USERDATA Gives access to a 32-bit value associated with the

window, allowing it to be changed

If the hWnd argument represents a dialog box, the nIndex argument can also have the
following values:

nIndex Value
GetWindowLong GetWindowLongPtr

Description

DWL_DLGPROC DWLP_DLGPROC Allows changing the procedure of the dialog box
DWL_MSGRESULT DWLP_MSGRESULT Allows changing the return value of the procedure

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 451

DWL_USER DWLP_USER Allows changing additional information

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

452 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 453

Chapter 15:
Fundamental Controls

? Static Controls

? Animation Controls

? Group Boxes

? Command Buttons

? Property Sheets and Wizard Buttons

? Bitmap Buttons

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

454 © FunctionX, Inc.

15.1 Static Controls

15.1.1 Introduction
A static control is an object that displays information to the user without his or her direct
intervention. A static control can be used to display text, a geometric shape, or a picture
such as an icon, a bitmap, or an animation. Normally, a user cannot change the value of a
static control. For example, if a static control displays text, the user cannot directly
change it. In the same way, if a static control is used to show a picture, the user cannot
inherently change the picture.

Visual C++ (along with MFC) offers various types of static controls: the Picture control,
the Static Text control, and the Group Box control. In the strict sense of the current
context, to add a static control to your application, from the Controls toolbox, click the

Picture button and click the parent. To programmatically create a static control,
declare a pointer to CStatic using the new operator. Then call its Create() method to
initialize it.

15.1.2 Static Control Properties

To create a static control, the MFC library provides the CStatic class. Like any other
control, there are various ways you can create this control. During design, you can add a
Picture control to a form or a dialog box:

The Picture control is the most classic static control of the MFC library. To exploit a
static control, you can manipulate some of its characteristics. These characteristics are
referred to as its style. The styles applicable on a static control are:

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 455

Colored border:
You can surround
the borders of the
control with a
black, a gray or a
white color.
During design,
specify the Type
as Frame and set
the color
accordingly using
the Color combo
box. These
characteristics are
set as
SS_BLACKFRA
ME,
SS_GRAYFRAM
E, and
SS_WHITEFRA
ME respectively.

The control is
filled with either a
black, a gray, or a
white color. These
characteristics are
based on the
SS_BLACKRECT,
SS_GRAYRECT,
and
SS_WHITERECT
values
respectively. At
design time, set the
Type combo box to
Rectangle and
select one of these
colors in the Color
combo box.

A static control can also be used
to display a bitmap. To make this
possible, at design time, set the
Type to Bitmap and, in the Image
combo box, select a bitmap.
These properties are controlled
through the SS_ICON or
SS_BITMAP

If you want to manipulate the properties of a static control, you should change its
identifier from IDC_STATIC to a more meaningful name.

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

456 © FunctionX, Inc.

 Practical Learning: Using a Static Control

1. Open the Geometry application. If you do not have it, open the Geometry3
application that accompany this book

2. On the main menu, click either Insert -> Resource or Project -> Add Resource…

7. In the Add Resource dialog box, click the Import button.

8. Locate the folder that hold the exercises for this book and display its Pictures folder
in the Look In combo box

9. Click Geome3D and click Open

10. In Resource View, and using the Properties window, change the bitmap’s ID to
IDB_GEOME3D

11. Display the IDD_G3D dialog box

On the Controls toolbox, click the Picture button and click on the top left
section of the dialog box

12. On the Properties window, change the Type to Bitmap

13. Click the arrow of the Image combo box and select IDB_GEOME3D

14. Test the application

15. Close the dialog box and return to MSVC

15.1.3 The Picture Control
If you need to display a picture for your application, Visual C++ provides a special
control for that purpose. To do this, you can use Microsoft Picture Clip Control available
from the Insert ActiveX Control. After adding it to your application, use its Picture
property page to specify the picture you want to display.

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 457

 Practical Learning: Displaying a Picture
1. Create a new Dialog-based application named PictClip and set the Dialog Title to

Picture Clip Display

2. Delete the TODO line, the OK, and the Cancel buttons

3. Right-click anywhere on the dialog box and click Insert ActiveX Control…

4. In the Insert ActiveX Control dialog box, scroll down and click Microsoft Picture
Clip Control, (Version 6):

5. Click OK

6. If you are using MSVC 6, display the Properties window and click the Picture
property page. Click the Browse… button.
If you are using MSVC 7, in the Properties window, click the Picture field. Then
click the ellipsis button

7. Locate the folder that contains the exercises for this book and display its Pictures
folder in the Look In combo box

8. Click GoodDay and click Open

9. Resize the dialog box as you see fit and test the application:

Note
Because of the
way bitmaps are
dealt with in
MSVC 7, the
following
program will not
work as expected
in MSVC 7

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

458 © FunctionX, Inc.

10. Close the dialog and return to MSVC

15.2 Animation Controls

15.2.1 Overview
An animation is a series of pictures put together to produce a video clip. It can be used to
display the evolution of an ongoing task to the user. This makes such tasks less boring.
For example, making a copy of a CD is usually a long process that can take minutes. To
let the user know when such a task is being performed, you can display an animation.

Microsoft Windows provides a few small animations you can use for your applications.
These animations, just like many other resources of Visual Studio or Visual C++, are not
installed by default. During setup, you can install them if necessary. If you forgot to
install them and you need them, run Setup again and select the Add/Remove button. Then
click the check box of the Options checked list box. If you want only the videos or some
resources, click the Graphics items and click the Change Options, and select the items
you want. You can then click Continue to install the videos.

If you need an animation other than those supplied, you may have to create it. Visual
C++ is not the place to create an animation. You may need a graphics software to do this.

To use a regular animation, the video must be a standard Microsoft Windows audio/video
format: Audio Video Interleaved or AVI. Therefore, it must be a file with the avi
extension. If the file has both audio and video, only the video part would be considered.

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 459

 Practical Learning: Introducing Animations
1. Create a New Dialog-based Project called Video1

2. Delete the TODO line and the OK button

3. Change the caption of the Cancel button to &Close

15.2.2 Animation Control and Properties
An animation first originates from an avi file created by an external application.
Therefore, you must already have the video you want to play in your application. To
provide an animation for your application, at design time, from the Controls toolbox,

click the Animate button and click the desired area on the host.

To represent the frame of animation on the dialog box or form, the control draws a
rectangular shape. Normally, the animation would be played inside of the area. The
person who created the animation likely did not use the same rectangular dimensions
when creating the video. Consequently, when it is asked to play, the animation’s upper-
left corner would be set to correspond to your rectangle’s upper-left corner. If you want
the animation to be centered in your assigned rectangle, set the control’s Center property
to True. This is equivalent to adding the ACS_CENTER style. In this case, the center of
the video would match the center of your rectangle, even though the animation may still
not exactly match the dimensions of your rectangle.

When playing the video, you have the option of displaying the original background color
of the video or seeing through. When creating a video, its author can do it with
transparency to allow seeing the color of the host. In this case, to display the color of the
host while the video is playing, set the Transparent property to True. If you are creating
the control programmatically, add the ACS_TRANSPARENT style.

If you want the video to start displaying immediately once its host (the dialog box or
form) comes up, set its Auto Play property to True. If you are dynamically creating the
control and you want its video to play as soon as its parent comes up, add the
ACS_AUTOPLAY style

 Practical Learning: Animating a Video

1. From the Controls toolbox, click the Animation button and draw a rectangle
from the upper left section of the dialog box to the right-middle

2. Using the Properties window, set the Border value to False or uncheck it

3. Set the Auto Play, the Center, and the Transparent values to True or check them

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

460 © FunctionX, Inc.

4. Add a (Control) variable for the Animator control and name it m_Animator

15.2.3 Animation Methods
The Animator control is based on the CAnimatorCtrl class. Therefore, if you want to
programmatically create an animation, you must first declare a variable of type, or a
pointer to, CAnimationCtrl. You can do this in the view or the dialog class. After
declaring the variable or pointer, to initialize the object, call its Create() method. Here is
an example:

class CControlsDlg : public CDialog
{
// Construction
public:
 CControlsDlg(CWnd* pParent = NULL); // standard constructor
 ~CControlsDlg();

 . . .

private:
 CAnimateCtrl *Player;
};

CControlsDlg::CControlsDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CControlsDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CControlsDlg)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT

 Player = new CAnimateCtrl;
}

CControlsDlg::~CControlsDlg()
{
 delete Player;
}

. . .

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 RECT Recto = { 5, 5, 360, 360 };

 Player->Create(WS_CHILD | WS_VISIBLE |
 ACS_TRANSPARENT | ACS_AUTOPLAY,
 Recto, this, 0x1884);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

After creating the control, you must provide a video to play. This is done by opening a
video file using the CAnimateCtrl::Open() method. It is overloaded with two versions
as follows:

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 461

BOOL Open(LPCTSTR lpszFileName);
BOOL Open(UINT nID);

The first version expects the path of the video file. Alternatively, you can first add the file
as a resource to your project and use its identifier as argument to the second version. Here
is an example:

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 RECT Recto = { 5, 5, 360, 360 };

 Player->Create(WS_CHILD | WS_VISIBLE | ACS_TRANSPARENT,
 Recto, this, 0x1884);
 Player->Open("res\\clock.AVI");

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

As mentioned already, an animation is made of various pictures. Each picture is called a
frame. The number of frames that make up an animation can influence its length. A video
to play as animation is a file that puts these pictures together. Once you have the video,
you can play it in an animation. If you want the animation to start playing as soon as its
parent window comes up, you can create it with the ACS_AUTOPLAY style. Otherwise,
to play the animation, you can call the CAnimateCtrl::Play() method. Its syntax is:

BOOL Play(UINT nFrom, UINT nTo, UINT nRep);

?? The nFrom argument specifies the index numb er of the first frame to play. The
frames are stored as a zero-based array. The first frame is 0, the second is 1, etc

?? The nTo argument is the last frame to play from the list of frames. If you want to
play the video to the end, pass this argument with a value of -1

?? The nRep is the number of times the video should be played before stopping. If
you want the video to play until you explicitly decide to stop it, pass this
argument as -1

Suppose you have a long video or one made of various special pictures, if you want to
display just one particular frame of the video, you can call the CAnimateCtrl::Seek()
method whose syntax is:

BOOL Seek(UINT nTo);

This method allows the animation to just straight to the nTo frame number.

At any time, you can stop the video playing by calling the CAnimateCtrl::Stop()
method. Its syntax is:

BOOL Stop();

This member function simply stops the animation.

If you had added your Animator control at design time to the dialog box or form or other
parent window, when the parent goes out of scope, it takes the Animator control with it.

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

462 © FunctionX, Inc.

If you dynamically created the control, you should make sure that the control is destroyed
when its parent also is. This is usually taken care of with the delete operator as done
above. Furthermore, when it comes to the Animator control, after using it, to free the
memory space it space, you should call the CAnimateCtrl::Close() method. Its syntax
is:

BOOL Close();

 Practical Learning: Playing a Video File
1. In the OnInitDialog() event of the dialog class, load the video with the following line

of code:

BOOL CAnimation1Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_Animateur.Open("C:\\Program Files\\Microsoft Visual
Studio\\Common\\Graphics\\Videos\\FileDel.AVI");

 return TRUE; // return TRUE unless you set the focus to a control
}

2. To close and destroy the animation when the user closes the dialog box, add a
WM_CLOSE message to the dialog box and implement it as follows:

void CAnimation1Dlg::OnClose()
{
 // TODO: Add your message handler code here and/or call default
 m_Animator.Stop();
 m_Animator.Close();

 CDialog::OnClose();
}

3. Test the application

4. Return to MSVC

5. To give the user the ability to suspend video playing, add WM_RBUTTONDOWN
message to the dialog box and implement it as follows:

void CAnimation1Dlg::OnRButtonDown(UINT nFlags, CPoint point)
{
 // TODO: Add your message handler code here and/or call default
 m_Animator.Stop();

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 463

 CDialog::OnRButtonDown(nFlags, point);
}

6. To allow the user to resume playing the video, add a WM_LBUTTONDBLCLK
message and implement its as follows:

void CAnimation1Dlg::OnLButtonDblClk(UINT nFlags, CPoint point)
{
 // TODO: Add your message handler code here and/or call default
 m_Animator.Play(0, -1, -1);

 CDialog::OnLButtonDblClk(nFlags, point);
}

7. Test the application and return to MSVC

15.3 Group Boxes

15.3.1 Introduction
A group box is a static control used to set a visible or programmatic group of controls. A
group box primarily draws a rectangular box where it is positioned. This creates an
impression of controls that would be treated as a group. A group can then be used for its
ability to show a limiting box that encompasses some controls on the dialog box or form
but, as we will see when studying radio buttons, a group box can be used to create a
group of controls where such controls should or must be treated as one entity.

15.3.2 Group Box Properties and Data Exchange
To create a group box, from the Controls toolbox, click the Group Box button and click
the desired area on the form or dialog box. To programmatically create a group box,
declare a pointer to CWnd, initialize it with the new operator, and call the Create()
method. Specify the class name as STATIC. In most circumstances, you can use a group
control without referring to it programmatically. If you had visually added the control to
your application and you plan to refer to it in your code, you should change its identifier
to something other than IDC_STATIC

As stated already, one of the most regular roles of a group box is to create a group of
controls visibly delimited by a rectangular frame. To indicate what the group represents,
the group box is equipped with a Caption property for which you supply a string. By
default, the text of the group box’ caption is aligned to the left. Alternatively, you can
position it to the center or the right by selecting the desired value in the Horizontal
Alignment combo box of the Properties window:

Horizontal Alignment: Default
Horizontal Alignment: Left

Horizontal Alignment: Center Horizontal Alignment: Right

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

464 © FunctionX, Inc.

To programmatically change the caption of the control, call the
CWnd::SetWindowText() method.

All other properties of a group box are those of a STATIC control.

15.4 Command Buttons

15.4.1 Overview
A Button is a Windows control used to initiate an action. From the user’s standpoint, a
button is useful when clicked, in which case the user positions the mouse on it and
presses one of the mouse’s buttons.

There are various kinds of buttons. The most common and regularly used is a rectangular
object that the user can easily recognize. In some programming environments, this classic
type is called a Command Button. There are other controls that can serve as click controls
and initiate the same behavior as if a button were clicked.

From the programmer’s standpoint, a button needs a host, such as a dialog box. To add a
button to a dialog box, click it on the Toolbox and click in the desired location on the
dialog box.

By default, when you visually create a dialog box, Microsoft Visual C++ adds two
buttons: OK and Cancel. If you do not need these buttons, click one and press Delete

15.4.2 Command Buttons Properties and Methods
The most popular button used in Windows applications is a rectangular control that
displays a word or a short sentence that directs the user to access, dismiss, or initiate an
action or a suite of actions. In Visual C++ applications, this control is implemented using

the Button control from the Controls toolbox window. Therefore, to add a button to

a container, click the Button control and click on the host, which can be a dialog
box or a form. Once you have added the control to your application, you can set its
properties using the Properties window.

Like every Window control, a button is recognized by its IDentifier. Because a button is a
control, by convention, its identifier's name starts with IDC (the C stands for Control).

From the user’s point of view, the only things important about a button are the message it
displays and the action it performs. The word or sentence that displays on top of a button

Note
The MFC library
categorizes
various controls
as buttons. This
includes the
classic command
button, the radio
button, and the
check box.

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 465

is its Caption . By default, after adding a button to a form, the Caption property has
focus. Therefore, if you start typing, the caption would be changed. At design time, you
can set the caption with the necessary string on the Caption field of the Properties
window. At run time, to change the caption of a button, call the
CWnd::SetWindowText() method and pass it the necessary string as argument. Here is
an example:

BOOL CDialog5Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_Submit.SetWindowText("Submit");

 return TRUE; // return TRUE unless you set the focus to a control
}

If you want to access the properties of a control without using an associated variable, you
may have to call the CWnd::GetDlgItem() method. It comes in two versions as follows:

CWnd* GetDlgItem(int nID) const;
void CWnd::GetDlgItem(int nID, HWND* phWnd) const;

When calling this method, the first version allows you to assign a CWnd (or derived
class) to it. The second returns a handle to the window passed as pointer. In both cases,
you must pass the identifier of the control that you want access to. When using the first
version, if the control is not a CWnd object, you must cast it its native class. Then you
can manipulate the property (or properties) of your choice. Here is an example that
accesses a button and changes its caption:

BOOL CDialog5Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add ext ra initialization here
 m_Submit.SetWindowText("Submit");

 CButton *btnWhatElse = reinterpret_cast<CButton
*>(GetDlgItem(IDC_BUTTON3));
 btnWhatElse->SetWindowText("What Else?");

 return TRUE; // return TRUE unless you set the focus to a control
}

The second version requires a pointer to a child window that you want to access.

The most popular button captions are OK and Cancel.

The OK caption is set for a dialog box that informs the user of an error, an intermediary
situation, or an acknowledgement of an action that was performed on the dialog that hosts
the button. Visual C++ makes it easy to add an OK button because in Windows

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

466 © FunctionX, Inc.

applications, the OK object has a special meaning. To use an OK button, add a button to a
form and, from the ID combo box, select the IDOK identifier. What makes this constant
special is that the MFC library recognizes that, when the user clicks it, if the dialog box is
modal, the user is acknowledging the situation. If this dialog box was called from another
window using the DoModal() method, you can find out if the user had clicked OK and
then you can take further action. Therefore, when the user clicks OK, the dialog box calls
the OnOK() method. Its syntax is:

virtual void OnOK();

Although it looks like a simple method (and it is) the OnOK() method carries the
constant value IDOK that you can use as a return value of the DoModal() method.
Therefore, in one step, you can use the DoModal() method to display a modal dialog box
and find out whether the user clicked OK.

When a dialog box is equipped with an OK button, you should allow the user to press
Enter and perform the OK clicking. This is taken care of by setting the Default Button
property to True or checked.

The Cancel caption is useful on a button whose parent (the dialog box) would ask a
question or request a follow-up action from the user. A Cancel button is also easy to
create by simply adding a button to a dialog box and selecting IDCANCEL as its
identifier in the ID combo box. Setting a button's identifier to IDCANCEL also allows
the user to press Esc to dismiss the dialog box.

The scenarios described for the OK and the Cancel buttons are made possible only if the
compiler is able to check or validate the changes made on a dialog box. To make this
validation possible, in your class, you must overload the CWnd::DoDataExchange()
method. Its syntax is:

virtual void DoDataExchange(CDataExchange* pDX);

This method is used internally by the application (the framework) to find out if data on a
dialog box has been changed since the object was displayed. This method does two things
it ensure the exchange of data among controls and it validates the values of those
controls. In reality, it does not inherently perform data validation, meaning it would not
allow or disallow value on a control. Instead, the compiler uses it to create a table of the
controls on the dialog box, their variables and values, allowing other controls to refer to it
for data exchange and validating. If you want to find out the data a user would have typed
or selected in a control, you would have to write the necessary code.

By default, the caption on a button is positioned in the middle and the center of the
control. At design time, you can control this position using the Horizontal and the
Vertical Alignments on the Properties window:

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 467

 Horz Align: Default

Vert Align: Top

Horz Align: Left
Vert Align: Default

Horz Align: Default or Center
Vert Align: Default or Center

Horz Align: Right
Vert Align: Default

 Horz Align: Default
Vert Align: Bottom

After creating a control, to make sure that it displays when its host control comes up, set
its Visible property to True or checked (the default). Otherwise, if you want it to be
hidden for example to wait for an intermediary action from the user, you can set its
Visible property to False or unchecked. For example, to display a control, whether it is
hidden or not, call the CWnd::ShowWindow() method and pass SW_SHOW as its
argument:

BOOL CDialog5Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_Submit.ShowWindow(SW_SHOW);
 return TRUE; // return TRUE unless you set the focus to a control
}

In the same way, to hide a control, call it by passing the SW_HIDE constant as argument.

For the user to be able to use a control such as clicking a button, the control must allow it.
This characteristic of Windows objects is controlled by the CWnd::EnableWindow()
method. Its syntax is:

BOOL EnableWindow(BOOL bEnable = TRUE);

This method is used to enable or disable a control. The default value of the argument
bEnable is set to TRUE, which would display a control. To disable a control, set the
argument to FALSE. He re is an example:

void CDialog5Dlg::OnLetItBe()
{
 // TODO: Add your control notification handler code here
 m_Submit.EnableWindow(FALSE);
}

15.4.3 Buttons Messages
The most regular action users perform on a button is to click it. When a user does this, the
button sends a BN_CLICKED message. In some but rare circumstances, you may also
ask the user to double-click a button. Over all, you will take care of most message
handling when the user clicks a button.

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

468 © FunctionX, Inc.

There are other messages that you can handle through a button.

To close a dialog box, you can use the Win32 API's PostQuitMessage() function. Its
syntax is:

VOID PostQuitMessage(int nExitCode);

This function takes one argument, which is an integer. The argument could be set to
almost any integer value although it should be WM_QUIT. Here is an example:

void CDialog5Dlg::OnBtnClose()
{
 // TODO: Add your control notification handler code here
 PostQuitMessage(125);
}

Although the MFC provides enough messages associated with the various controls, in
some circumstances you will need use a message that is not necessarily associated with
the control. In such a case, you can call the CWnd::SendMessage() method. Its syntax
is:

LRESULT SendMessage(UINT message, WPARAM wParam = 0, LPARAM lParam = 0);

The first argument of this method can be a Win32 message or constant. Examples would
be WM_CLOSE or WM_ACTIVATE. The wParam and lParam arguments can be
additional (Win32) messages.

The WinExec() function is used to run an application. Its syntax is:

UINT WinExec(LPCSTR lpCmdLine, UINT uCmdShow);

The lpCmdLine argument specifies the name or path of the application you want to
display. The uCmdShow specifies how the application should be displayed. It uses the
same values as the CWnd::ShowWindow() method.

 Practical Learning: Using Buttons
1. Create a new Dialog Based application named AppLauncher

2. On the dialog, delete the TODO line, the OK, and the Cancel buttons

3. On the Controls window, click the Button control and click in the lower section
of the dialog box

4. Display the button's Properties window and change its IDentifier to
IDC_BTN_CLOSE

5. Right-click the button and click Add Variable

6. Set the Variable Name to m_BtnClose and make sure the Variable Type is CButton

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 469

7. Click Finish

8. In the OnInitDialog() event, set the caption of the button to "Close" as follows:

BOOL CDialog2Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_BtnClose.SetWindowText("Close");

 return TRUE; // return TRUE unless you set the focus to a control
}

9. Test the application

10. To close the dialog box, click its System Close button

11. Display the dialog box. Right-click the button and click Add Event Handler

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

470 © FunctionX, Inc.

12. In the Event Handler Wizard, make sure the Message Type is set to BN_CLICKED

and the Class List is set to CDialog2Dlg. Then click the Add And Edit button

13. Implement the OnClick event as follows:

void CDialog2Dlg::OnBnClickedBtnClose()
{
 // TODO: Add your control notification handler code here
 PostQuitMessage(WM_QUIT);
}

14. To programmatically change the caption of the dialog box, access the OnInitDialog()
event and set the Caption of the dialog box to "Application Launcher" as follows:

BOOL CDialog2Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_BtnClose.SetWindowText("Close");
 this->SetWindowText("Application Launcher");

 return TRUE; // return TRUE unless you set the focus to a control
}

15. Add a new button to the upper left section of the dialog box

16. Set it ID to IDC_BTN_WORDPAD and its Caption to WordPad

17. Double-click the WordPad button and implement its OnClick event as follows:

void CDialog2Dlg::OnBnClickedBtnWordpad()
{
 // TODO: Add your control notification handler code here
 WinExec("Write.exe", SW_NORMAL);
}

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 471

18. Test the application. When the dialog box displays, click the WordPad button to see
it launch

19. Close the dialog box and return to MSVC

15.5 Property Sheet and Wizard Buttons

15.5.1 Property Sheet Buttons
There are two types of property sheets: modal and modeless. A modeless property sheet
does not display buttons.

A modal property sheet is equipped with command buttons that allow the user to make a
decision after selecting items on the pages or changing the values of the page’s controls.
By default, after creating a property sheet, it is equipped with the OK, the Cancel, and the
Apply buttons.

By design, the CPropertySheet class, which is the implementer of the property sheet,
has a member variable called m_psh. This member represents the
PROPSHEETHEADER structure, which is the Win32 implementer of a property sheet.
One way you can use the m_psh member variable is to hide the Apply button if you do
not need it in your application. Otherwise, this button is available by default on a
property sheet.

Here is an example from the Components dialog box of Microsoft Visual Basic:

In this classic design, the functionality of the buttons is commonly standardized:

?? The OK button allows the user to validate any change(s) made on the control(s)
of the property page(s) and close the dialog box. For example, if the user
changes text from an edit box and clicks OK, the application that called the
dialog will have the opportunity to acknowledge the change and act accordingly,
and the property sheet would be closed

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

472 © FunctionX, Inc.

?? If the user clicks Cancel, the change(s) made on the property page’s control(s)
would be discarded, not taken into consideration, and the property sheet would
be closed

?? When the property sheet comes up, the Apply button on the property page is
disabled. If the user changes something on the controls of the property page(s),
the Apply button would become enabled:

Once the Apply button is enabled, the user can use it. If the user clicks the
Apply button, 1) any change(s) made on the control(s) is(are) sent to the object
that called the property sheet, 2) the Apply button becomes disabled again, 3)
the dialog box remains opened.

This description is conform to the standards or suggestions of the Microsoft
Windows operating system. In reality, you are completely free to do what you
want with the buttons on the property sheet:

?? You can hide them

?? you can display them

?? you can completely delete (destroy) any unneeded button

?? you can add as many buttons as you judge necessary and as the bottom
area can afford

?? you can change the captions of the buttons

Some of these issues we already know how to do. We already know that each control of
an MFC application has an identifier. The buttons automatically added to a property sheet
are identified as IDOK for the OK button, IDCANCEL for the Cancel button,
ID_APPLY_NOW for the Apply button, and IDHELP for the Help button. Therefore,
to manipulate any of these buttons, you can call the CWnd::GetDlgItem() method to get
a handle to the desired button and do what you want with it. Suppose you had created the
Geometry application we dealt with in Chapter 13. Here is an example code you can use
to change the caption of a button, hide another button, or simply destroy another:

BOOL CGeomeSheet::OnInitDialog()

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 473

{
 BOOL bResult = CPropertySheet::OnInitDialog();

 // TODO: Add your specialized code here
 // Change the caption of the OK button
 CButton *btnOK;

 btnOK = reinterpret_cast<CButton *>(GetDlgItem(IDOK));
 btnOK->SetWindowText("Sumbit");

 // Hide the Apply button
 CButton *btnApply;

 btnApply = reinterpret_cast<CButton *>(GetDlgItem(ID_APPLY_NOW));
 btnApply->ShowWindow(FALSE);

 // Destroy the Help button
 CButton *btnHelp;

 btnHelp = reinterpret_cast<CButton *>(GetDlgItem(IDHELP));
 btnHelp->DestroyWindow();

 return bResult;
}

To add a button, declare a pointer to CButton and call its Create() method to initialize.
We have seen various examples of how to dynamically create a control. If you decide to
dynamically create a button, some of the issues you would have to deal with here are the
location and probably the size of the new button, which have little to do with
programming but with geometry. Here is an exa mple:

BOOL CGeomeSheet::OnInitDialog()
{
 BOOL bResult = CPropertySheet::OnInitDialog();

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

474 © FunctionX, Inc.

 // TODO: Add your specialized code here
 // A pointer to button we will need
 CButton *btnApply;
 // We will need to location and dimensions of the Apply button
 CRect RectAppl;

 // Get a handle to the Apply button
 btnApply = reinterpret_cast<CButton *>(GetDlgItem(ID_APPLY_NOW));
 // Get the location and the dimensions of the Apply button
 btnApply->GetWindowRect(&RectApply);

 // Convert the location and dimensions to screen coordinates
 ScreenToClient(&RectApply);

 CButton *Whatever = new CButton;

 Whatever->Create("&Whatever", WS_CHILD | WS_VISIBLE,
 CRect(6, RectApply.top, 85,
 RectApply.top+RectApply.Height()),
 this, 0x188);
 return bResult;
}

Another issue you would deal with is each of the messages sent by your dynamic button.

As seen on the above picture, manipulating one button has no influence on the other(s).
For example, if you destroy the Cancel button, the OK button does not move to the right.
You would have to reposition any button as you judge it necessary.

We have already mentioned that, by standard and by design, the Apply button is disabled
when the property sheet comes up. It is supposed to become enabled once the user gets
any control “dirty”, that is, once a control, any control, is not the same as it was when the
dialog box came up, the Apply button becomes available. To enable this control

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 475

programmatically, once a control becomes dirty, call the
CPropertyPage::SetModified(). Its syntax is:

void SetModified(BOOL bChanged = TRUE);

This method is called by the control whose value you want to validate once the user has
modified it.

When the user clicks the OK button, the CPropertyPage::OnOK() event fires. By
design, the changes made on the controls are acknowledged. The controls receive the
status of “clean”. The property sheet closes.

When the user clicks the Cancel button, the CPropertyPage::OnCancel() event fires.
By design, the changes made on the controls are dismissed. The controls values are kept
as they were when the property sheet displayed as long as the user did not previously
click Apply since the property sheet was opened. The property sheet closes.

When the user clicks the Apply button, the CPropertyPage::OnApply() event fires. The
changes that were made on the controls are acknowledged. The property sheet stays
opened.

Once again, these behaviors are the default suggested by the standard but you can change
them as you wish, although you should remain with these suggestions because your users
may be more familiar with them.

 Practical Learning: Manipulating Property Sheet Buttons
1. Open the Geometry application. If you do not have it, locate the exercises that

accompany this book and open the Geometry4 application

2. Execute the application to review its interface:

3. Close it and return to MSVC

4. To delete the Apply and the Help buttons, call their DestroyWindow() method.
Then move the OK and the Cancel buttons to the right where the other buttons were.
To do this, implement the OnInitDialog event as follows:

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

476 © FunctionX, Inc.

BOOL CGeomeSheet::OnInitDialog()
{
 BOOL bResult = CPropertySheet::OnInitDialog();

 // TODO: Add your specialized code here
 // A pointer to each button we will need
 CButton *btnOK, *btnCancel, *btnApply, *btnHelp;
 // We will need to location and dimensions of Apply and Help
 CRect RectApply, RectHelp;

 // Get handles to the OK and Cancel buttons
 btnOK = reinterpret_cast<CButton *>(GetDlgItem(IDOK));
 btnCancel = reinterpret_cast<CButton *>(GetDlgItem(IDCANCEL));

 // Get a handle to the Apply button
 btnApply = reinterpret_cast<CButton *>(GetDlgItem(ID_APPLY_NOW));
 // Get the location and the dimensions of the Apply button
 btnApply->GetWindowRect(&RectApply);

 // Get a handle to the Help button
 btnHelp = reinterpret_cast<CButton *>(GetDlgItem(IDHELP));
 // Get the location and the dimensions of the Help button
 btnHelp->GetWindowRect(&RectHelp);

 // Dismiss the Apply and the Help buttons
 btnApply->DestroyWindow();
 btnHelp->DestroyWindow();

 // Convert the location and dimensions to screen coordinates
 ScreenToClient(&RectApply);
 ScreenToClient(&RectHelp);

 // Put the OK button where the Apply button was
 btnOK->SetWindowPos(NULL, RectApply.left, RectApply.top, 0, 0,
 SWP_NOSIZE | SWP_NOZORDER | SWP_SHOWWINDOW);
 // Put the Cancel button where the Help button was
 btnCancel->SetWindowPos(NULL, RectHelp.left, RectHelp.top, 0, 0,
 SWP_NOSIZE | SWP_NOZORDER | SWP_SHOWWINDOW);

 return bResult;
}

5. Test the application

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 477

6. Close the application and return to MSVC

7. In order to enable the Apply button, we need to have it.
To redisplay the Apply button, change the CGeomeSheet::OnInitDialog() event as
follows:

BOOL CGeomeSheet::OnInitDialog()
{
 BOOL bResult = CPropertySheet::OnInitDialog();

 // TODO: Add your specialized code here
 // A pointer to each button we will need
 CButton *btnOK, *btnCancel, *btnApply, *btnHelp;
 // We will need to location and dimensions of Apply and Help
 CRect RectCancel, RectApply, RectHelp;

 // Get handles to all buttons
 btnOK = reinterpret_cast<CButton *>(GetDlgItem(IDOK));
 btnCancel = reinterpret_cast<CButton *>(GetDlgItem(IDCANCEL));
 btnApply = reinterpret_cast<CButton *>(GetDlgItem(ID_APPLY_NOW));
 btnHelp = reinterpret_cast<CButton *>(GetDlgItem(IDHELP));

 // Get the location and the dimensions of the buttons
 btnCancel->GetWindowRect(&RectCancel);
 btnApply->GetWindowRect(&RectApply);
 btnHelp->GetWindowRect(&RectHelp);

 // Destroy the Help button
 btnHelp->DestroyWindow();

 // Convert the location and dimensions to screen coordinates
 ScreenToClient(&RectCancel);
 ScreenToClient(&RectApply);
 ScreenToClient(&RectHelp);

 // Put the Apply button where the Help button was
 btnApply->SetWindowPos(NULL, RectHelp.left, RectHelp.top, 0, 0,
 SWP_NOSIZE | SWP_NOZORDER | SWP_SHOWWINDOW);
 // Put the Cancel button where the Apply button was

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

478 © FunctionX, Inc.

 btnCancel->SetWindowPos(NULL, RectApply.left, RectApply.top, 0, 0,
 SWP_NOSIZE | SWP_NOZORDER | SWP_SHOWWINDOW);
 // Put the OK button where the Cancel button was
 btnOK->SetWindowPos(NULL, RectCancel.left, RectCancel.top, 0, 0,
 SWP_NOSIZE | SWP_NOZORDER | SWP_SHOWWINDOW);

 return bResult;
}

8. We will enable the Apply button when any control on the property pages changes
value.
Display the IDD_QUADRILATERAL dialog box and double-click the Side edit
control. If you are using MSVC 6, accept the suggest Member Function Name and
click OK. Implement the event as follows:

void CQuadrilateral::OnEnChangeEdtSside()
{
 // TODO: Add your control notification handler code here
 SetModified();
}

9. Display the IDD_G3D dialog box and double-click the Side edit box. If you are
using MSVC 6, accept the suggest Member Function Name and click OK

void CGeome3D:: OnEnChangeEdtUside()
{
 // TODO: Add your control notification handler code here
 SetModified();
}

10. Test the application and return to MSVC

11. Using either MFC AppWizard (exe)(MSVC 6) or MFC Application (MSVC 7),
create a new application named Associates

12. Create it as a Single Document without Printing And Print Preview

13. Change the design of the IDR_MAINFRAME as follows:

14. Access the CMainFrame::PreCreateWindow() event and, to remove the Untitled
word from the title bar, type the following:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 479

 // the CREATESTRUCT cs
 cs.style &= ~FWS_ADDTOTITLE;

 return TRUE;
}

15. Test the application. Then close it and return to MSVC

16. Open the IDR_MAINFRAME menu and change the Caption of the New menu item
under File to &New…\tCtrl+N

17. Display the Add Resource dialog box and expand the Dialog node. Double-click
IDD_PROPPAGE_MEDIUM

18. Delete its TODO line. Change its Caption to Company Forms and its ID to
IDD_COMPANY_FORMS

19. Add A New Class for the new dialog box. Name it CCompanyForms and base it on
CPropertyPage

20. Add another IDD_PROPPAGE_ MEDIUM dialog. Delete its TODO line. Change its
Caption to Projects and its ID to IDD_COMPANY_PROJECTS

21. Add A New Class for the new dialog box. Name it CCompanyProjects and base it
on CPropertyPage

22. Add a New MFC Class named CCompanySheet and based on CPropertySheet

23. In the header of the property sheet class, delete the constructor that takes a null-

terminated string and add the previously created property page classes in the header
of the:

#pragma once
#include "CompanyForms.h"
#include "CompanyProjects.h"

// CCompanySheet

class CCompanySheet : public CPropertySheet
{
 DECLARE_DYNAMIC(CCompanySheet)

public:
 CCompanySheet(UINT nIDCaption, CWnd* pParentWnd = NULL, UINT
iSelectPage = 0);

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

480 © FunctionX, Inc.

 //CCompanySheet(LPCTSTR pszCaption, CWnd* pParentWnd = NULL, UINT
iSelectPage = 0);
 virtual ~CCompanySheet();

protected:
 DECLARE_MESSAGE_MAP()

public:
 CCompanyForms Forms;
 CCompanyProjects Projects;
};

24. Use the constructor to add each page and remove the Apply button:

CCompanySheet::CCompanySheet(UINT nIDCaption, CWnd* pParentWnd, UINT
iSelectPage)
 :CPropertySheet(nIDCaption, pParentWnd, iSelectPage)
{
 m_psh.dwFlags |= PSH_NOAPPLYNOW;
 AddPage(&Forms);
 AddPage(&Projects);
}

25. Access the String Table and change the caption of AFX_IDS_APP_TITLE to
The Associates - Employment Agency

26. Add an COMMAND (MSVC 6) or an Event Handler (MSVC 7) event for the
ID_FILE_NEW menu identifier associated with the CMainFrame class and
implement it as follows:

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "Associates.h"

#include "MainFrm.h"
#include "CompanySheet.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

. . .

// CMainFrame message handlers

void CMainFrame::OnFileNew()
{
 // TODO: Add your command handler code here
 CCompanySheet CompSheet(AFX_IDS_APP_TITLE);

 CompSheet.DoModal();
}

27. Test the application

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 481

28. Close it and return to MSVC

29. Add an IDD_PROPPAGE_ LARGE dialog. Delete its TODO line. Change its
Caption to Personal Information and its ID to IDD_PERS_INFO

30. Add A New Class for the new dialog box. Name it CPersonalInfo and base it on
CPropertyPage

31. Add another IDD_PROPPAGE_ LARGE dialog. Delete its TODO line. Change its
Caption to Education and Experience and its ID to IDD_EDUC_EXP

32. Add A New Class for the new dialog box. Name it CEducExperience and base it on
CPropertyPage

33. Add another IDD_PROPPAGE_ LARGE dialog. Delete its TODO line. Change its
Caption to New Employee Survey and its ID to IDD_EMPL_SURVEY

34. Add A New Class for the new dialog box. Name it CEmplSurvey and base it on
CPropertyPage

35. Add an OnInitDialog event for each of the classes we have previously added to the
application (MSVC 6: display the ClassWizard, select the class such as
CCompanyForms in the Object IDs and, in the Messages list, double-click
WM_INITDIALOG. MSVC 7: in the Class View, click the class such as

CCompanyForms and, in the Properties window, click the Overrides button ;
then, in the OnInitDialog combo box, select the only item in the lis t)

36. Add A New MFC Class named CEmplAppSheet and based on CPropertySheet

37. In the header of the new property sheet class, delete the constructor that takes a null-
terminated string as argument and add the previously created property page:

#pragma once
#include "EducExperience.h"
#include "PersonalInfo.h"
#include "EmplSurvey.h"

// CEmplAppSheet

class CEmplAppSheet : public CPropertySheet
{
 DECLARE_DYNAMIC(CEmplAppSheet)

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

482 © FunctionX, Inc.

public:
 CEmplAppSheet(UINT nIDCaption, CWnd* pParentWnd = NULL, UINT
iSelectPage = 0);
// CEmplAppSheet(LPCTSTR pszCaption, CWnd* pParentWnd = NULL, UINT
iSelectPage = 0);
 virtual ~CEmplAppSheet();

protected:
 DECLARE_MESSAGE_MAP()

public:
 CPersonalInfo PersInfo;
 CEducExperience EducExp;
 CEmplSurvey Survey;
};

38. Use the constructor to add each page:

CEmplAppSheet::CEmplAppSheet(UINT nIDCaption, CWnd* pParentWnd, UINT
iSelectPage)
 :CPropertySheet(nIDCaption, pParentWnd, iSelectPage)
{
 AddPage(&PersInfo);
 AddPage(&EducExp);
 AddPage(&Survey);
}

39. To start the wizard when the user clicks OK on the property sheet, we wil laccess the
OnOK() event of the CCompanyForms class.
If you are using MSVC 6, display the ClassWizard. In the Class Name combo box
and in the Object IDs list, select CCompanyForms. In the Messages list, double-click
WM_OnOK
If you are using MSVC 7, in the Class View, click CCompanyForms. In the

Properties window, click the Overrides button . In the OnOK combo box, select
the only item in the list

40. Implement it as follows (in reality, the wizard should be displayed based on an item
the user had selected in a property page but we have not covered any of the
necessary controls that would be used to apply such a behavior):

// CompanyForms.cpp : implementation file
//

#include "stdafx.h"
#include "Associates.h"
#include "CompanyForms.h"
#include "EmplAppSheet.h"

. . .

void CCompanyForms::OnOK()
{
 // TODO: Add your specialized code here and/or call the base class
 CEmplAppSheet EmplSheet(AFX_IDS_APP_TITLE);

 EmplSheet.SetWizardMode();
 EmplSheet.DoModal();

 CPropertyPage::OnOK();

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 483

}

41. Test the application

15.5.2 Wizard Buttons
Like a property sheet, a wizard can be made of one or more pages (it is possible but not
practical to have a wizard with only one page). A wizard you have just created may have
the Back, Next, Cancel, and Help buttons:

To exploit it, the user would click a Next or Back buttons. The Next button allows the
user to access the page that succeeds the current one. The Back button implements the
opposite, allowing the user to access the previous page. If the wizard is equipped with a
Cancel button, the user can close and dismiss it at any time. This, by default allows you
to ignore anything the user did on the wizard.

As with anything else in the world or programming, you should make your wizard
intuitive and friendly. For example, on the first page, since there is no reason for the user
to access the previous page, you should disable it. On the other hand, when the user gets
to the last page, since there is no succeeding page, there is no need for a Next button.
Consequently, you should replace it with a Finish button. Fortunately, the display of these
buttons is not the most difficult thing to manage on a wizard.

In order to decide what button(s) should be available when a particular page is accessed,
generate its CPropertyPage::OnSetActive() event. Its syntax is:

virtual BOOL OnSetActive();

This event fires when a page of your choice is accessed, allowing you to do what you
want on the wizard page. One of the actions you can take when a page displays is to
decide what button(s) should be displayed on the wizard. The buttons of a wizard are
managed through the CPropertySheet::SetWizardButtons() method. Its syntax is:

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

484 © FunctionX, Inc.

void SetWizardButtons(DWORD dwFlags);

The dwFlags argument is a constant or a combination of values that defines the buttons to
display. The possible values are PSWIZB_BACK for the Back button, PSWIZB_NEXT
for the Next button, PSWIZB_FINISH for the Finish button, and
PSWIZB_DISABLEDFINISH to disable Finish button disabled.

On the first page, to display the Next button while disabling the Back button, you can
pass only the PSWIZB_NEXT value. On the last page, you should display the Back and
the Finish buttons. All pages between the first and the last should display the Back and
the Next buttons, unless you have a reason to do otherwise.

To add your own button to the wizard, you can use the same approach we saw earlier.
Here is an example:

CmyWizardSheet::OnInitDialog()
{
 BOOL bResult = CPropertySheet::OnInitDialog();

CButton *btnWhatever = new CButton;

BtnWhatever->Create(“Whatever”, WS_CHILD | WS_VISIBLE,
 Crect(10, 362, 126, 385), this, 0x122);

Return bResult;

}

When the user clicks the Back button, the CPropertyPage::OnWizardBack() event
fires, giving you the opportunity to do what you judge necessary. Its syntax is:

virtual LRESULT OnWizardBack();

You should use this event on a page that has the Back button and if this button is enabled.
When the user clicks the Next button, the CPropertyPage::OnWizardNext() event fires,
allowing you to take appropriate measures. Its syntax is:

virtual LRESULT OnWizardNext();

You should use this event on a page that has the Next button. When the user clicks the
Finish button, the CPropertyPage::OnWizardFinish() event fires. Its syntax is:

virtual BOOL OnWizardFinish();

This event should be implement when either the user is on the last page that has the
Finish button or at any time if the wizard has a permanent Finish button available on all
pages.

 Practical Learning: Implementing Wizard Buttons
1. Access the events of the CPersonalInfo class and fire its OnSetActive.

2. Implement it as follows:

BOOL CPersonalInfo::OnSetActive()
{
 // TODO: Add your specialized code here and/or call the base class
 CPropertySheet *EmplSheet = reinterpret_cast<CPropertySheet *>(GetParent());

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 485

 EmplSheet->SetWizardButtons(PSWIZB_NEXT);

 return CPropertyPage::OnSetActive();
}

3. In the same way, fire the OnSetActive event of the CEducExperience class and
implement it as follows:

BOOL CEducExperience::OnSetActive()
{
 // TODO: Add your specialized code here and/or call the base class
 CPropertySheet *EmplSheet = reinterpret_cast<CPropertySheet *>(GetParent());

 EmplSheet->SetWizardButtons(PSWIZB_BACK | PSWIZB_NEXT);

 return CPropertyPage::OnSetActive();
}

4. Once more fire the OnSetActive event of the CEmplSurveyclass and implement it as
follows:

BOOL CEmplSurvey::OnSetActive()
{
 // TODO: Add your specialized code here and/or call the base class
 CPropertySheet *EmplSheet = reinterpret_cast<CPropertySheet *>(GetParent());

 EmplSheet->SetWizardButtons(PSWIZB_BACK | PSWIZB_FINISH);

 return CPropertyPage::OnSetActive();
}

5. Test the application

6. Close it and return to MSVC

15.6 Bitmap Buttons

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

486 © FunctionX, Inc.

15.6.1 Overview
A bitmap button is a button that display a picture or a picture and text on its face. This is
usually intended to make the button a little explicit. There are two ways you can create a
bitmap button: with or without an existing resource identifier.

A bitmap button is created using the CBitmapButton class, which is derived from
CButton, which in turn is a descendent of the CWnd class.

Because the bitmap button is in fact a customized version of a button, you must first
declare a variable or pointer of it:

CBitmapButton *btnMap = new CBitmapButton;

Using the variable or pointer, you can call the Create() method to formally create the
button. Here is an example:

BOOL CDialog6Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 . . .

 // TODO: Add extra initialization here
 CBitmapButton *btnMap = new CBitmapButton;

 btnMap->Create(NULL, WS_CHILD | WS_VISIBLE,
 CRect(10,10,100,100), this, IDC_BTN_NEW);

 return TRUE; // return TRUE unless you set the focus to a control
}

15.6.2 Bitmap Button Implementation
Creating a bitmap button without an identifier is considered creating it from scratch.
Creating a bitmap button using an existing identifier is more practical because you can
easily use the messages of such a button and refer to it in code. Therefore, before creating
a bitmap button, you can first add a button to a dialog box and specify its identifier. For a
button to display a picture, it must have the BS_OWNERDRAW style. This means that
you should check or set to True the Owner Draw option.

Visually, the most appealing aspect of a bitmap button is the picture it displays. The
bitmap can be designed following the same tools and instructions we reviewed for the
icons. To give a 3-D or realistic appearance to the button, you should mimic the focus
effect when designing the bitmaps.

Therefore, you should create one to four bitmaps for the control. Here is how they would
work:

?? If you create one bitmap, it would be used for all clicks of the button. Since the
button would always appear the same, you should avoid using only one picture

?? If you create two bitmaps, the first would display as the regular picture for the
button. That is, when the button is not being clicked. The second would be used
when the button is clicked and the mouse is down on the button

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 487

?? If you create three bitmaps, the first would display when the button is not being
accessed and another control has focus. The second picture would display when
the user is clicking the button and as long as the mouse is down on the button.
The third would be used when the button has focus but it is not being used

?? If you create four bitmaps, the first would display when the button is not being
accessed and another control has focus. The second picture would display when
the user is clicking the button and as long as the mouse is down on the button.
The third would be used when the button has focus but it is not being used or
pressed. The fourth would be used when the button is disabled

With these options, to use a bitmap button to its fullest, you should strive to provide four
bitmaps. After creating the bitmaps, you can load them into the button. This is done using
the LoadBitmaps() method. It comes in two versions as follows:

BOOL LoadBitmaps(LPCTSTR lpszBitmapResource,
 LPCTSTR lpszBitmapResourceSel = NULL,
 LPCTSTR lpszBitmapResourceFocus = NULL,
 LPCTSTR lpszBitmapResourceDisabled = NULL);
BOOL LoadBitmaps(UINT nIDBitmapResource,
 UINT nIDBitmapResourceSel = 0,
 UINT nIDBitmapResourceFocus = 0,
 UINT nIDBitmapResourceDisabled = 0);

Each version takes four arguments. The first version uses the bitmaps as string resources
while the second version uses resource identifiers.

As stated above, you can use one to four bitmaps. The first argument must specify the
first or default bitmap and is required. The second argument is the name or identifier of
the bitmap that would be used when the button is selected. The third is used when the
button has focus. The last bitmap is used when the button is disabled. Here is an example:

BOOL CDialog6Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 . . .

 // TODO: Add extra initialization here
 CBitmapButton *btnMap = new CBitmapButton;

 btnMap->Create(NULL, WS_CHILD|WS_VISIBLE|BS_OWNERDRAW,
 CRect(10,10,100,100), this, IDC_BTN_NEW);
 btnMap->LoadBitmaps(IDB_BMP_BTN1, IDB_BMP_BTN2, IDB_BMP_BTN3,
IDB_BMP_BTN4);

 return TRUE; // return TRUE unless you set the focus to a control
}

It is very likely that you may not be able to design the button on one hand and the
bitmaps on the other hand at exactly the same dimensions. To adjust these measures, the
CBitmapButton class is equipped with the SizeToContent() method. Its syntax is:

void SizeToContent();

When this method is called on the button, it resizes it to the size of the bitmaps. If one
bitmap is larger and/or taller than the others, and if you had loaded more than one, this
method would resize the button to the larger or largest and taller or tallest bitmap. For

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

488 © FunctionX, Inc.

this reason, always make sure that you design bitmaps that have the same dimension.
Here is an example of using this method:

BOOL CDialog6Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 . . .

 // TODO: Add extra initialization here
 CBitmapButton *btnMap = new CBitmapButton;

 btnMap->Create(NULL, WS_CHILD|WS_VISIBLE|BS_OWNERDRAW,
 CRect(10,10,100,100), this, IDC_BTN_NEW);
 btnMap->LoadBitmaps(IDB_BMP_BTN1, IDB_BMP_BTN2,
 IDB_BMP_BTN3, IDB_BMP_BTN4);
 btnMap->SizeToContent();

 return TRUE; // return TRUE unless you set the focus to a control
}

As you may realize, if you create a bitmap button strictly using this approach, it may not
work. The suggestion is to "subclass" your button class so the messages sent to the
bitmap button would be applied effectively. The function used to do this is the
CWnd::SubclassDlgItem() method and its syntax is:

BOOL SubclassDlgItem(UINT nID, CWnd* pParent);

The first argument is the resource ID of the existing button. The second argument is the
control that is hosting the button; this is usually the dialog box but it can be another
control container.

 Practical Learning: Creating Bitmap Buttons

1. Continue from the Associates application.
To add a help button, in the constructor of the CCompanyForms class, add the
PSP_HASHELP flag as follows:

CCompanyForms::CCompanyForms()
 : CPropertyPage(CCompanyForms::IDD)
{
 m_psp.dwFlags |= PSP_HASHELP;
}

2. From the resources that accompany this book, import the following bitmaps and
change their IDs as follows

File ID File ID
canceldis .bmp IDB_CANCEL_DIS cancelfoc.bmp IDB_CANCEL_FOC
cancelnrm.bmp IDB_CANCEL_NRM cancelsel.bmp IDB_CANCEL_SEL
helpdis.bmp IDB_HELP_DIS helpfoc.bmp IDB_HELP_FOC
helpnrm.bmp IDB_HELP_NRM helpsel.bmp IDB_HELP_SEL
okdef.bmp IDB_OK_DEF okdis.bmp IDB_OK_DIS
okfoc.bmp IDB_OK_FOC oksel.bmp IDB_OK_SEL

3. In the header of the CCompanySheet class, declare three CBitmapButton variables as
follows:

Visual C++ and MFC Fundamentals Chapter 15: Fundamental Controls

© FunctionX, Inc. 489

private:
 CBitmapButton btnBmpOK, btnBmpCancel, btnBmpHelp;
};

4. Use the constructor to load the bitmaps of each button:

CCompanySheet::CCompanySheet(UINT nIDCaption, CWnd* pParentWnd, UINT
iSelectPage)
 :CPropertySheet(nIDCaption, pParentWnd, iSelectPage)
{
 m_psh.dwFlags |= PSH_NOAPPLYNOW;
 AddPage(&Forms);
 AddPage(&Projects);

 btnBmpOK.LoadBitmaps(IDB_OK_DEF, IDB_OK_SEL,
 IDB_OK_FOC, IDB_OK_DIS);
 btnBmpCancel.LoadBitmaps(IDB_CANCEL_NRM, IDB_CANCEL_SEL,
 IDB_CANCEL_FOC, IDB_CANCEL_DIS);
 btnBmpHelp.LoadBitmaps(IDB_HELP_NRM, IDB_HELP_SEL,
 IDB_HELP_FOC, IDB_HELP_DIS);
}

5. To customize the existing buttons, implement the OnInitDialog event of the
CCompanySheet class as follows (most of the code is used because the buttons were
already created by default; this means that we have to manually change their style):

BOOL CCompanySheet::OnInitDialog()
{
 BOOL bResult = CPropertySheet::OnInitDialog();

 // TODO: Add your specialized code here
 // We need a handle to each
 CButton *btnOK, *btnCancel, *btnHelp;

 // Get a handle to each of the existing buttons
 btnOK = reinterpret_cast<CButton *>(GetDlgItem(IDOK));
 btnCancel = reinterpret_cast<CButton *>(GetDlgItem(IDCANCEL));
 btnHelp = reinterpret_cast<CButton *>(GetDlgItem(IDHELP));

 // Get the style of the button(s)
 LONG GWLOK = GetWindowLong(btnOK->m_hWnd, GWL_STYLE);
 LONG GWLCancel = GetWindowLong(btnCancel->m_hWnd, GWL_STYLE);
 LONG GWLHelp = GetWindowLong(btnHelp->m_hWnd, GWL_STYLE);

 // Change the button's style to BS_OWNERDRAW
 SetWindowLong(btnOK->m_hWnd, GWL_STYLE, GWLOK | BS_OWNERDRAW);
 SetWindowLong(btnCancel->m_hWnd, GWL_STYLE, GWLCancel |
BS_OWNERDRAW);
 SetWindowLong(btnHelp->m_hWnd, GWL_STYLE, GWLHelp |
BS_OWNERDRAW);

 // Subclass each button
 btnBmpOK.SubclassDlgItem(IDOK, this);
 btnBmpCancel.SubclassDlgItem(IDCANCEL, this);
 btnBmpHelp.SubclassDlgItem(IDHELP, this);

 return bResult;
}

6. Test the application:

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

490 © FunctionX, Inc.

7. After using it, close it and return to MSVC

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 491

Chapter 16:
Text-Based Controls

? Labels

? Edit Controls

? Rich Edit Controls

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

492 © FunctionX, Inc.

16.1 Labels

16.1.1 Overview
A label is a static control that serves as a guide to the user. It displays text that the user
cannot change but can read to get information about a message from the programmer or
an indication about another control on the dialog box or form. Most controls on the form
or dialog box are not explicit at first glance and the user would not know what they are
used for. Therefore, you can assign a label to the control as a help to the user.

 Practical Learning: Creating a Label-Based Application

1. Start a new MFC Application named Clarksville Ice Scream1

2. Set the Application Type to Single Document

3. Remove the check mark of Printing and Print Preview

4. Remove the Minimize Box and the Maximize Box

5. Change the view Class Name to CExerciseView

6. Change its header file to Exercise.h and its source file to Exercise.cpp

7. Set the Base Class to CFormView

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 493

4. Click Finish.

5. If you are using MSVC 7, in the Resource View, expand the Dialog folder
Click the TODO line and press Delete

6. In the Class View, click the view node and, in the Properties window, click the

Overrides button

7. Click OnDraw to display its combo box. Click the arrow and select <Add> OnDraw

8. Implement it as follows:

 void CExerciseView::OnDraw(CDC* pDC)
{
 // TODO: Add your specialized code here and/or call the base class
 CBrush BrushWhite(RGB(255, 255, 255));
 CPen PenWhite(PS_SOLID, 1, RGB(255, 255, 255));
 CPen PenNavy(PS_SOLID, 2, RGB(0, 64, 128));
 CRect Recto;

 // We need the current width of the client area
 GetClientRect(&Recto);

 // Select a color for the brush and the pen
 CPen *pnOld = pDC->SelectObject(&PenWhite);
 CBrush *brOld = pDC->SelectObject(&BrushWhite);
 // Draw a rectangle
 pDC->Rectangle(0, 0, Recto.Width(), 68);

 // Draw a (heavy) line under the rectangle
 pnOld = pDC->SelectObject(&PenNavy);
 pDC->MoveTo(0, 68);
 pDC->LineTo(Recto.Width(), 68);

 // Restore the GDI tools
 pDC->SelectObject(pnOld);
 pDC->SelectObject(brOld);
}

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

494 © FunctionX, Inc.

9. Access the CMainFrame::PreCreateWindow() method and change it as follows to
remove the unnecessary title:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreat eWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 cs.style = WS_OVERLAPPED | WS_CAPTION | FWS_ADDTOTITLE
 | WS_THICKFRAME | WS_SYSMENU;
 cs.style &= ~FWS_ADDTOTITLE;

 return TRUE;
}

10. Test the application

11. Return to MSVC

16.1.2 Drawn Labels

There are two main types of labels you can use in your application. One type of label you
can add to a form or dialog box is to draw text. We have learned how to do this in Lesson
7.

 Practical Learning: Drawing Labels

1. To draw text used as a label, change the OnDraw() method of the view class as
follows:

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 495

void CExerciseView::OnDraw(CDC* pDC)
{
 // TODO: Add your specialized code here and/or call the base class
 CFont font;
 CBrush BrushWhite(RGB(255, 255, 255));
 CPen PenWhite(PS_SOLID, 1, RGB(255, 255, 255));
 CPen PenNavy(PS_SOLID, 2, RGB(0, 64, 128));
 CRect Recto;

 // Create a bold font
 font.CreateFont(42, 14, 0, 0,
 FW_HEAVY, FALSE, FALSE, FALSE, ANSI_CHARSET,
 OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
 DEFAULT_QUALITY, DEFAULT_PITCH | FF_ROMAN,
 "Times New Roman");

 CFont *pFont = pDC->SelectObject(&font);
 // We need the current width of the client area
 GetClientRect(&Recto);

 // Create a string label and get its length
 const char *lblEmplApp = "Employment Application";
 int Len = strlen(lblEmplApp);

 GetClientRect(&Recto);

 // Select a color for the brush and the pen
 CPen *pnOld = pDC->SelectObject(&PenWhite);
 CBrush *brOld = pDC->SelectObject(&BrushWhite);
 // Draw a rectangle
 pDC->Rectangle(0, 0, Recto.Width(), 68);

 // Draw a (heavy) line under the rectangle
 pnOld = pDC->SelectObject(&PenNavy);
 pDC->MoveTo(0, 68);
 pDC->LineTo(Recto.Width(), 68);

 // We want the text to be transparent
 pDC->SetBkMode(TRANSPARENT);

 // Draw the label
 pDC->SetTextColor(RGB(192, 192, 192));
 pDC->TextOut(16, 10, lblEmplApp, Len);
 // Draw the label's shadow
 pDC->SetTextColor(RGB(0, 0, 255));
 pDC->TextOut(10, 8, lblEmplApp, Le n);

 // Restore the GDI tools
 pDC->SelectObject(pFont);
 font.DeleteObject();
 pDC->SelectObject(pnOld);
 pDC->SelectObject(brOld);
}

2. Test the application

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

496 © FunctionX, Inc.

3. Return to MSVC

16.1.3 Static Labels

Another type of label you can add to a form or dialog box consis ts of clicking the Static
Text button from the Controls toolbar and clicking on the host. The Static Text control is
based on the CStatic class.

A user cannot directly change any aspect of a label. For this reason, you will usually not
be concerned with a label's IDentifier. In fact, as we will see in this lesson, all controls
that are static type have an identifier called IDC_STATIC. If, for any reason, you want to
refer to a label in your code, you must first change its identifier from IDC_STATIC to
something else.

As stated already, the most important aspect of a label is the text it displays. This is the
Caption property. If the label is used to identify another control, you can help the user
access that control using an indicator called an access key. An access key is a underlined
letter on the label so that, when clicked, it gives access to the accompanying control. To
create an access key, choose a letter on the label and precede it with the ampersand
character “&”. Form example L&etter would produce Letter. When there are many
access keys on a form or dialog box, you should make sure that no two access keys are
the same. That is, you should not use the same letter on various labels, although this is
allowed. Because you can forget to follow this rule, after creating the access keys, you
can ask Visual Studio to check for access key duplicates. To do this, right-click the form
or dialog box and click Check Mnemonics:

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 497

If there are duplicate access keys, you would receive a message accordingly:

If you possible, you should correct by changing one of the access keys without using one
that exists already.

To use the access keys, the user presses Alt and the letter that corresponds to the access
key.

The text of the caption follows a line alignment that can assume one of three values: Left,
Center, or Right . By default, text of a label is aligned to the left. At design time, to
change it, select the desired value using the Align Text combo box from the Styles
property page of the Properties window.

To apply a fancy appearance to a label, you can use the Extended Styles of the Properties
window.

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

498 © FunctionX, Inc.

 Practical Learning: Using Static Labels
1. From the Dialog folder of the Resource View, double-click the

IDD_CLARKSVILLEICESCREAM1_FORM form to display it

2. On the Controls toolbox, click Static Text and click on the form.

3. On the Properties window, click Caption and type &Date Hired:

4. Using the Static Text control, complete the form as follows:

5. Test the application and return to MSVC

16.2 Edit Controls

16.2.1 Introduction

An edit box is a Windows control used to display text or get it from the user. To provide
its functionality, the control displays a box, whose background is white by default,
surrounded by a black line. If the box is empty, the user may be expected to enter some
letters, numbers, or other characters into it. If the box contains some text, the user should
be able to edit it. Another edit box may be used to present text to the user without his or
her being able to change it. The text that displays in an edit box is referred to as its value.

Like most other controls, the role of an edit box is not obvious at first glance. That is why
it should (always) be accompanied by a label that defines its purpose. From the user’s
standpoint, an edit box is named after the label closest to it. Such a label is usually
positioned to the left or the top side of the edit box. From the programmer’s point of
view, an edit box is a place holder used for various things. For example, you can show or
hide it as you see fit.

To create an edit box, click the Edit Box button from the Controls toolbox and click the
desired area on a form or a dialog box.

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 499

 Practical Learning: Creating Edit Boxes
1. Display the form

2. On the Controls toolbox, click the Edit Control button and click on the right
side of the Date Hired label

3. Using the Edit Control and additional labels, complete the form as follows:

4. On the main menu, click Layout or Format and click Tab Order

5. Click the Date Hired edit box to place the number 1 in it and arrange the rest of the
tab sequence as follows:

6. Test the application

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

500 © FunctionX, Inc.

7. Return to MSVC

16.2.2 Edit Control Characteristics
An edit box is a control based on the CEdit class. Therefore, to programmatically create
an edit box, declare a variable of CEdit type using its (default) constructor. To define the
characteristics of this control, you can call the CEdit::Create() method. Its syntax is:

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT nID);

The content of an edit box, that is, its value, is a string. It could be considered as null-
terminated constant (LPCTSTR) or a CString value.

Like every other control added during design, you should give some attention to the
identifier of an edit box. The first edit box placed on a form or dialog box receives an
identifier of IDC_EDIT1. The second would be identified as IDC_EDIT2, etc. It is highly
recommended that you give a meaningful and friendly identifier to each control. For
example, if an edit box is used to receive or display an address, you can set its identifier
to IDC_ADDRESS. If an edit box is used to enter an email address, you can change its
ID to IDC_EMAILADDRESS or IDC_EMAIL_ADDRESS. An identifier should have a
maximum of 30 characters. Notice that the ID contains C, which stands for Control.

If you plan to access an edit box in your code, you should create a variable for it. The
variable can be a CEdit or a CString object. The difference is that, if you want to access
the control as an MFC class, you should create the variable as a CEdit object. If you are
more interested with the value (as a string) of the control, you should declare the variable
as CString . Fortunately, you can add two variables for the same control.

Probably the most important characteristic of an edit control for both the programmer and
the user is the text it is displaying or that it can display. When you add an Edit control,
Visual C++ 6 displays Edit and Visual C++ 7 displays Sample edit box. This text is not
part of the control and does not show when the control comes up. It is only an indicator.

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 501

If the user wants to change the text of an edit box and if the control allows changes, he or
she must first click in the control, which places a caret in the edit box. The caret is a
blinking I beam that serves as a reminder that lets the user know what edit control would
receive any change made. This means that if the user starts typing, the edit control in
which the caret is positioned would display a change in its value. The edit box that has
the caret is said to have focus. As mentioned already, the user gives focus to an edit box
by clicking it. Remember that if a label that accompanies an edit box has an access key,
the user can also give focus to the edit control by pressing the access key. Also remember
that you can programmatically give focus to an edit control by calling the SetFocus()
method.

At any time, you can find out what text is in an edit control and there are various
techniques you can use. We saw already how to get a handle to a control by calling the
CWnd::GetDlgItem() method. After calling this method, you can use the
CWnd::GetWindowText() method to find out what text an edit box holds. Here is an
example:

void CEditBoxDlg::CreateName()
{
 CEdit *edtFirstName, *edtLastName, *edtFullName;
 CString FirstName, LastName;
 char FullName[40];

 edtFirstName = reinterpret_cast<CEdit *>(GetDlgItem(IDC_FIRST_NAME));
 edtLastName = reinterpret_cast<CEdit *>(GetDlgItem(IDC_LAST_NAME));
 edtFullName = reinterpret_cast<CEdit *>(GetDlgItem(IDC_FULL_NAME));

 edtFirstName->GetWindowText(FirstName);
 edtLastName ->GetWindowText(LastName);

 sprintf(FullName, "%s %s", FirstName, LastName);
 edtFullName->SetWindowText(FullName);
}
void CEditBoxDlg::OnLButtonDblClk(UINT nFlags, CPoint point)
{
 // TODO: Add your message handler code here and/or call default
 CreateName();

 CDialog::OnLButtonDblClk(nFlags, point);
}

Another technique you can use to get the text of an edit control consists of calling the
CWnd::GetDlgItemText() method. It is provided in two syntaxes as follows:

int GetDlgItemText(int nID, LPTSTR lpStr, int nMaxCount) const;
int GetDlgItemText(int nID, CString& rString) const;

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

502 © FunctionX, Inc.

The nID argument is the identifier of the control whose text you want to retrieve. The
lpStr or the rString is the returned value of the text in the edit box. It must be provided as
a string variable. If you are using a null-terminated variable, pass a third argument as
nMaxCount that specifies the maximum length of the string. Here is an example:

void CFormView1View::OnButton1()
{
 // TODO: Add your control notification handler code here
 CString Edit1, Edit2, Result;

 GetDlgItemText(IDC_EDIT1, Edit1);
 GetDlgItemText(IDC_EDIT2, Edit2);
 Result = Edit1 + " " + Edit2;

 SetDlgItemText(IDC_EDIT3, Result);
}

As mentioned already, an edit box can be used to request information from the user. If
you want to prevent the user from changing the value of an edit box, you can make it
read-only. This is taken care of by setting the Read-Only property to True or checking its
check box. To do this programmatically, call the CEdit::SetReadOnly() method.

If an edit box is not “read-only”, that is, if it allows the user to change its value, the user
must first give it focus. When an edit box has focus, it displays a blinking caret. By
default, the carret is an I beam. If you want to use a different caret, you have various
options. You can change the caret from an I beam to a wider or taller gray caret by
calling the CWnd::CreateGrayCaret() method. Its syntax is:

void CreateGrayCaret(int nWidth, int nHeight);

This method allows you to specify a width and a height for a gray blinking caret. After
creating the caret, to display it, call the CWnd::ShowCaret() method. Its syntax is:

void ShowCaret();

Here is an example:

BOOL CSolidCaretDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 m_Username.CreateGrayCaret(5, 15);
 m_Username.ShowCaret();

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 503

The above caret appears gray. If you want the caret to be completely black, you can call
the CWnd::CreateSolidCaret() method. Its syntax is:

void CreateSolidCaret(int nWidth, int nHeight);

This method creates a rectangular caret of nWidth x nHeight dimensions. Here is an
example:

BOOL CSolidCaretDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 m_Username.CreateSolidCaret(5, 15);
 m_Username.ShowCaret();

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

To provide a better designed caret, you can call the CWnd::CreateCaret() method. Its
syntax is:

void CreateCaret(CBitmap* pBitmap);

Before calling this method, you can first design a bitmap, load it, and then pass it as the
pBitmap argument. After initializing and loading the bitmap, to display it in the edit box,
call the CWnd::ShowCaret() method. Here is an example:

BOOL CDialogCaret::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CEdit *edtBookTitle;
 CBitmap *pBitmap = new CBitmap;

 edtBookTitle = reinterpret_cast<CEdit *>(GetDlgItem(IDC_BOOK_TITLE));

 pBitmap->LoadBitmap(IDB_BMP_CARET);
 edtBookTitle->CreateCaret(pBitmap);
 edtBookTitle->ShowCaret();

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

504 © FunctionX, Inc.

If an edit box is editable and the user starts typing in it, the new characters would display.
As the user is typing, the caret moves from left to right (for US English). The user can
also move the caret back and forth using the Backspace, Delete, Home, End, or the arrow
keys. At any time you can find out the current position of the caret by calling the
CWnd::GetCaretPos() method. Its syntax is:

static CPoint PASCAL GetCaretPos();

This method retrieves the left (x) and bottom (y) coordinates of the caret in the control
that called it. These coordinates represent the member variables of a CPoint that this
method returns. The measures are relative to the control and not the control’s parent.

Here is an example:

void CDialogCaret::CaretPosition(void)
{
 CEdit *edtBookTitle;
 CStatic *stcCaretPos;
 CPoint CrtPos;
 char Msg[40];

 edtBookTitle = reinterpret_cast<CEdit *>(GetDlgItem(IDC_BOOK_TITLE));
 stcCaretPos = reinterpret_cast<CStatic *>(GetDlgItem(IDC_CARET_POS));

 CrtPos = edtBookTitle->GetCaretPos();
 sprintf(Msg, "Caret Position: (%d, %d)", CrtPos.x, CrtPos.y);

 stcCaretPos->SetWindowText(Msg);
}

void CDialogCaret::OnLButtonDown(UINT nFlags, CPoint point)
{
 // TODO: Add your message handler code here and/or call default
 CaretPosition();

 CDialog::OnLButtonDown(nFlags, point);
}

If want to hide the characters that display in an edit box, you can set the Password
property to True. To do this programmatically, add the ES_PASSWORD style to the edit
control. This style makes the edit control displays each character, or changes each one of
its characters into an asteris k. If you prefer another symbol for the password style, call
the CEdit::SetPassword() method. Its syntax is:

void SetPasswordChar(TCHAR ch);

This method takes as argument the character that you want to use.

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 505

If an edit box is configured to display an asterisk character and you want to find out what
that character is, call the CEdit::GetPasswordChar(). Its syntax is:

TCHAR GetPasswordChar() const;

This method takes no argument but returns the symbol used to mask the characters of a
password-configured edit box.

By default, an edit box is configure to display or receive text of any alphabetic and non-
alphabetic character. The alphabetical letters are received by their case and kept like that,
uppercase and lowercase. If you want to convert an edit box' characters to uppercase, set
the Uppercase property to True or programmatically add the ES_UPPERCASE style. In
the same way, to convert the characters to lowercase, either at design time set the
Lowercase property to True or programmatically add the ES_LOWERCASE style. The
non-alphabetical characters are not treated by their case.

If you want, you can configure the edit box to allow only numeric characters. This is
done by setting the Number property to True.

By default, the characters entered in an edit box start their positioning to the left, which is
the default for regular text. You can align its value to the center or the right by selecting
the desired value from the Align Text combo box. Any of these three alignment modes
can also be set programmatically by adding either the ES_LEFT, the ES_CENTER , or
the ES_RIGHT style.

As mentioned above, the value of an edit box is of high interest to you and your users. If
you want to retrieve the value of an edit box, call the CWnd::GetWindowText()
method. If you want to display or change the text of an edit box, call the
CWnd::SetWindowText() method. As we have seen in the past, SetWindowText() takes
a constant pointer to null-terminated string (LPCTSTR) and displays its value in the edit.
This method is very convenient if you had add a CEdit variable to your edit control. If
you have added the variable as a CString , you can use the CString::Format() method to
change or format the value to display in an edit box.

 Practical Learning: Configuring Edit Boxes

1. The Clarksville Ice Scream1 application should still be opened
Using the Add Resource dialog box, add a new dialog:

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

506 © FunctionX, Inc.

2. Design the dialog box as follows:

Control ID Caption Other Properties
Dialog Box IDD_DLG_ACCOUNT Employee Account Setup
Static Text &Full Name
Edit Box IDC_FULL_NAME Read-Only = True
Static Text &Suggested Username:
Edit Box IDC_USERNAME Lowercase = True
Static Text &Password
Edit Box IDC_PASSWORD Password = True
Static Text &Confirm Password
Edit Box IDC_CONF_PASSWORD Password = True
Button IDC_BTN_VALIDATE &Validate

3. Create a class for the dialog box and name it CAccountDlg

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 507

4. Display the new dialog box, right-click the Suggested Username edit box and click

Add Variable

5. Set the Variable Name to m_StrUsername

6. Set its Category to Value

7. Set the Maximum Characters to 5

8. Add control and value variables to the controls as follows:

Control ID Control
Variable

Value Variable Max
Chars

Edit Box IDC_FULL_NAME m_StrFullName
Edit Box IDC_USERNAME m_Username m_StrUsername 5
Edit Box IDC_PASSWORD m_Password m_StrPassword 14
Edit Box IDC_CONF_PASSWORD m_StrConfPassword

9. Display the main form.

10. Add a button under the Web Site edit box and its Caption to Account Setu&p

11. Change the Identifiers of the edit boxes and the button from left to right and from top
to bottom as follows: IDC_DATE_HIRED, IDC_EMPLOYEE_NBR,
IDC_FIRST_NAME, IDC_MI, IDC_LAST_NAME, IDC_ADDRESS, IDC_SUITE,
IDC_CITY, IDC_STATE, IDC_ZIP_CODE, IDC_HOME_PHONE,
IDC_WORK_PHONE, IDC_EMAIL_ADDRESS, IDC_WEB_SITE,
IDC_BTN_ACCOUNT

12. Set the Disabled property of the Account Setup button to True

13. Set the Uppercase of the MI edit box to True

14. Add some CString value and a CButton Control variables to the controls as follows:

Control Identifier Value Variable Control Variable Max Chars
Edit Box IDC_FIRST_NAME m_StrFirstName
Edit Box IDC_MI m_StrMI 1
Edit Box IDC_LAST_NAME m_StrLastName
Button IDC_BTN_ACCOUNT m_BtnAccount

15. Add a BN_CLICKED Event Handler to the button associated with the view class
and implement it as follows:

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

508 © FunctionX, Inc.

void CExerciseView::OnBnClickedBtnAccount()
{
 // TODO: Add your control notification handler code here
 // Take over from the application
 UpdateData();

 // Get the full name by appending the last name to the first
 CString FullName = m_StrFirstName + " " + m_StrLastName;
 // Create a temporary username made of the
 // first letter of the first name + the last name
 CString TempUsername = m_StrFirstName.Left(1) + m_StrLastName;
 // Make an attempt to create a username made of 5 letters
 CString SuggestedUsername = TempUsername.Left(5);

 // What if the attempted username is less than 5 characters
 if(TempUsername.GetLength() < 5)
 {
 // Since the username is < 5 characters,
 // add some digits to make it valid
 SuggestedUsername = TempUsername + "1234";
 // now that we have a username with at least 5 letters,
 // Retrieve only the first 5 to create a new username
 SuggestedUsername = SuggestedUsername.Left(5);
 }

 // It is time to access the Employee Account Setup dialog box
 CAccountDlg Dlg;

 // Transfer the the full name to the Employee Account Setup dialog box
 Dlg.m_StrFullName.Format("%s", FullName);
 Dlg.m_StrUsername.Format("%s", SuggestedUsername);

 // Display the Employe e Account Setup dialog box
 Dlg.DoModal();

 // Hand the operations back to the application
 UpdateData(FALSE);
}

16. On top of the current source file, include the AccountDlg.h header file

#include "stdafx.h"
#include "Clarksville Ice Scream1.h"

#include "ExerciseDoc.h"
#include "ExerciseView.h"
#include "AccountDlg.h"

17. Test the application and return to MSVC

18. Open the Geometry application. If you do not have it, open one the Geometry4
application that accompanies this book.

19. Open each IDD_CIRCULAR dialog

20. Click the top Radius edit box. Press and hold Ctrl. Then click each one of the other
boxes to select them. Then release Ctrl

21. On the Properties window, set the Align Text property to Right

22. In the same way, set the Align Text property of the edit boxes of the IDD_ G3D and
the IDD_QUADRILATERAL dialog boxes to Right

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 509

23. Test the application and return to MSVC

16.2.3 Multiline Edit Boxes
By default, an edit box is used to display a single line of text. An edit box is referred to as
multiline when it can display its text on more than one line.

To create a multiline edit box, use the same Edit control as the above single line Edit box.
To make this a multiline edit box, set its Multiline property to True. To do this at run
time, add the ES_MULTILINE style to the CEdit. At design time, to make it obvious
that the control can display more than one line of text, heighten it:

If the user is typing text in an edit control and press Enter, the control, usually a button,
that is the default would be activated. This feature is valuable for a single line edit box. If
you are creating a multiline edit box, you should allow the user to press Enter while
entering text into the control. This would prevent the default button from being activated
and would transfer the caret to the next line. To provide this functionality, add the
ES_WANTRETURN style or, at design time, set the Want Return property to True.

If the text of the edit control is longer than the edit control can display at one time, you
should equip it with scroll bars. To do this , at design time, set the Horizontal and/or the
Vertical Scroll properties to True. At run time, add the WS_HSCROLL and/or the
WS_VSCROLL properties.

 Practical Learning: Designing Edit Boxes

1. Reopen the Clarksville Ice Scream1 application and display the form

2. Add an Edit Control at the bottom section of the form

3. On the Properties window, check the Multiline check box or set its value to True

4. Check the Want Return check box or set its value to True

5. Check the Vertical Scroll check box or set its value to True

6. Check the Modal Frame check box or set its value to True:

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

510 © FunctionX, Inc.

7. Test the application

8. Close the application and return to MSVC

16.2.4 Edit Control Messages
To manage its role on a form or dialog box, an edit control is equipped with some
messages known as notifications. These notifications messages are:

ON_EN_SETFOCUS: The event name for this notification is called OnSetFocus. It is
sent when an edit box receives focus. This happens when the user clicks the edit box or
after previously pressing Tab, to give focus to the control:

BEGIN_MESSAGE_MAP(CDialog3aDlg, CDialog)
 //{{AFX_MSG_MAP(CDialog3aDlg)
 ON_WM_SYSCOMMAND()
 ON_WM_PAINT()

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 511

 ON_WM_QUERYDRAGICON()
 ON_EN_SETFOCUS(IDC_LAST_NAME, OnSetFocusLastName)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

...

void CDialog3aDlg::OnSetFocusLastName()
{
 // TODO: Add your control notification handler code here
 m_Message.SetWindowText("The First Name has focus");
}

ON_EN_CHANGE: The OnChange event of this notification occurs as the user is typing
text in the edit control. This happens as the user is changing the content of an edit control,
which sends a message that the content of the edit box has changed. You can use this
event to check, live, what the user is doing in the edit box. For example, if you create a
dialog box or a form with a first and last names edit boxes, you can use another edit box
to display the full name. You can implement the OnChange events of the edit boxes as
follows:

BEGIN_MESSAGE_MAP(CDialog3aDlg, CDialog)
 //{{AFX_MSG_MAP(CDialog3aDlg)
 ON_WM_SYSCOMMAND()
 ON_WM_PAINT()
 ON_WM_QUERYDRAGICON()
 ON_EN_SETFOCUS(IDC_LAST_NAME, OnSetFocusLastName)
 ON_EN_CHANGE(IDC_FIRST_NAME, OnChangeFirstName)
 ON_EN_CHANGE(IDC_LAST_NAME, OnChangeLastName)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

...

void CDialog3aDlg::OnChangeFirstName()
{
 // TODO: Add your control notification handler code here
 m_FirstName.GetWindowText(m_strFirstName);
 m_LastName.GetWindowText(m_strLastName);
 CString FullName = m_strFirstName + " " + m_strLastName;

 m_FullName.SetWindowText(FullName);
}

void CDialog3aDlg::OnChangeLastName()
{

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

512 © FunctionX, Inc.

 // TODO: Add your control notification handler code here
 m_FirstName.GetWindowText(m_strFirstName);
 m_LastName.GetWindowText(m_strLastName);
 CString FullName = m_strFirstName + " " + m_strLastName;

 m_FullName.SetWindowText(FullName);
}

ON_EN_UPDATE: The OnUpdate() event is sent after the content of an edit box has
changed but before the text is formally displayed.

ON_EN_MAXTTEXT: When adding a variable for the edit control, you can specify the
maximum allowable number of characters the user can enter. If the user attempts
exceeding this maximum, an OnMaxtext() event is sent. You can catch this event to let
the user know about the problem. If you set up the Maximum Characters fine, you do not
need to perform any "if" or "while" checking. The edit control would do it itself.

ON_EN_ERRSPACE: The OnErrSpace() event is event is sent if the compiler
encountered a problem when attempting to allocate memory space to the control.

ON_EN_KILLFOCUS : The OnExit() event occurs when the control loses focus. In the
case of an edit box, this could happen if the control has focus and the user presses Tab;
the edit box would lose focus.

 Practical Learning: Using Edit Box Notifications
1. The Clarksville Ice Scream1 application should still be opened

Display the Employee Account Setup dialog box

2. If you are using MSVC 6, display the Message Maps property page of the
ClassWizard dialog box. Then click IDC_USERNAME
If you are using MSVC 7, right-click the Suggested Username edit box and click
Add Event Handler

3. Add an event handler for the EN_MAXTEXT message and click either Edit Code or
Finish

4. Implement the event as follows:

void CAccountDlg::OnEnMaxtextUsername()
{
 // TODO: Add your control notification handler code here
 MessageBox("A username must have a maximum of 5 characters");
}

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 513

5. Add an event handler to the Validate button and implement it as follows:

void CAccountDlg::OnBnClickedBtnValidate()
{
 // TODO: Add your control notification handler code here
 UpdateData();

 // In case the user decided to change the username,
 // make sure the username is = 5 characters
 if(m_StrUsername.GetLength() == 5)
 {
 // Since the username is 5 characters, check the password
 if(m_StrPassword.GetLength() == 0)
 {
 MessageBox("Blank passwords are not allowed");
 m_Password.SetFocus();
 }
 else if(m_StrPassword == m_StrConfPassword)
 MessageBox("The account is ready\n"
 "To create the account, click OK.\n"
 "To stop the account processing, click Cancel.");
 else // if(m_StrPassword != m_StrConfPassword)
 {
 MessageBox("The passwords do not match");
 m_Password.SetWindowText("");
 m_Password.SetFocus();
 }
 }
 // Since the username specified less than 3 characters, display a message
accordingly
 // Set the focus to the Username edit box
 else
 {
 MessageBox("A username must have 5 characters");
 m_Username.SetFocus();
 }
 UpdateData(FALSE);
}

6. Display the main form

7. Set the Disabled property of the Account Setup button to True

8. As done for the EN_MAXTEXT, add an EN_UPDATE event handler to the First
Name edit box

9. Also add an EN_UPDATE event handler to the Last Name edit box

10. Implement both events as follows:

void CExerciseView::OnUpdateFirstName()
{
 // TODO: Add your control notification handler code here
 // Let the edit boxes take over
 UpdateData();

 // Make sure both the First Name and the Last Name edit boxes are not empty
 // If one of them is, the account cannot be created.
 // In which case, disable the the Account Setup button
 if((m_FirstName.GetLength() == 0) || (m_LastName.GetLength() == 0))
 m_BtnAccount.EnableWindow(FALSE);

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

514 © FunctionX, Inc.

 else
 m_BtnAccount.EnableWindow(TRUE);

 // The dialog box can take over now
 UpdateData(FALSE);
}

void CExerciseView::OnEnUpdateLastName()
{
 // TODO: Add your control notification handler code here
 UpdateData();

 if((m_FirstName.GetLength() == 0) || (m_LastName.GetLength() == 0))
 m_BtnAccount.EnableWindow(FALSE);
 else
 m_BtnAccount.EnableWindow(TRUE);

 UpdateData(FALSE);
}

11. Test the application

12. Return to MSVC

16.3 The Rich Edit Control

16.3.1 Overview
A rich edit control is a Windows object that resembles an edit box but can handle text
that is formatted. This mean that it can display text with various characters formats and
can show paragraphs with different alignments. A rich edit control can also allow a user
to change the formatting on characters and control the alignment of paragraphs.

16.3.2 A Rich Edit Control
To create a rich edit control, you ca use the Rich Edit button from the Controls toolbox.
You can also programmatically create this control using the CRichEditCtrl class. To do
this, use its (default) constructor:

CRichEditCtrl RichEditor;

After declaring this variable, you can define the characteristics of the control using the
CRichEd itCtrl::Create() method. Its syntax is:

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT nID);

The dwStyle argument specifies the window style to apply to the control. Since the rich
edit control is not a container, it is usually posit ioned on another control such as a form or
dialog box. Therefore, the primary style you must apply is WS_CHILD. To display the
control to the user, also add the WS_VISIBLE style. This primary style can be defined as
follows:

DWORD RichStyle = WS_CHILD | W S_VISIBLE;

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 515

Although a rich edit control can be used as a single-line text object, to make it more
efficient, you should make it use various lines. This can be taken care of by setting the
Multiline property to True or adding the ES_MULTILINE style. An exa mple would be:

DWORD RichStyle = WS_CHILD | WS_VISIBLE | ES_MULTILNE;

Once a rich edit can display multiple lines of text, if the text is longer than the control can
display, you should equip it with scroll bars. The vertical scroll bar is made available by
adding checking the Vertical Scroll check box or setting it to True. This can be done
programmatically by adding the WS_VSCROLL window style. Here is an example:

DWORD RichStyle = WS_CHILD | WS_VISIBLE | WS_VSCROLL | ES_MULTILNE;

The horizontal scroll bar is made possible by setting the Horizontal Scroll property to
True. To do this programmatically, add the WS_HSCROLL window style.

If you do not want the user to change the text in the rich edit control, you can set the
Read-Only property to True. This can also be done by adding the ES_READONLY style.

The rect argument specifies the location and dimensions of the control.

The pParentWnd argument is the control that is hosting the rich edit control. It is usually
a form or a dialog box.

The nID is an identifier for the rich edit control.

 Practical Learning: Creating a Rich Edit Application
1. Create a Dialog Based Application Type project named Richer and based on

CformView

2. Delete the TODO line and the OK button

3. Change the caption of the Cancel button to Close

4. On the Control toolbox, click the Rich Edit button and draw a rectangle from the left
border to the left of the Cancel

5. On the Properties window, change its ID to IDC_RICHER

6. Set the following properties to True: Multiline, Want Return, Vertical Scroll

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

516 © FunctionX, Inc.

7. Add a Control variable (of type CRichEditCtrl) to the rich edit control and name it
m_Richer

16.3.3 Rich Edit Properties
At first glance, a rich edit appears like a regular edit control. Its ability to format text and
paragraph sets them apart. To change the appearance of a letter, a word or a paragraph,
you can change its size, height, or weight. This can be done by calling the
CRichEditCtrl::SetSelectionCharFormat() method. Its syntax is:

BOOL SetSelectionCharFormat(CHARFORMAT& cf);

This simply means that the rich edit control relies on the Win32 API's CHARFORMAT
structure to format text. This structure is defined as follows:

typedef struct _charformat {
 UINT cbSize;
 DWORD dwMask;
 DWORD dwEffects;
 LONG yHeight;
 LONG yOffset;
 COLORREF crTextColor;
 BYTE bCharSet;
 BYTE bPitchAndFamily;
 TCHAR szFaceName[LF_FACESIZE];
} CHARFORMAT;

To format the characters, declare a variable of this structure and take its size. Then
initialize the necessary me mber variables, ignoring those you do not need. To start,
initialize dwMask with the type of formatting you want to apply or the type of operation
you want to perform. The possible values are:

Value Used to
CFM_BOLD Make the character(s) bold
CFM_ITA LIC Italicize the character(s)
CFM_UNDERLINE Underline the character(s)
CFM_STRIKEOUT Strike out the character(s)
CFM_SIZE Change the size the character(s)
CFM_CHARSET Access character set
CFM_COLOR Change the color of the text
CFM_FACE Set the font name
CFM_OFFSET Offset the character(s)
CFM_PROTECTED Protect the character(s)

You can apply the actual text formatting using the dwEffects member variable. Its
possible values are: CFE_AUTOCOLOR , CFE_BOLD, CFE_ITALIC,
CFE_STRIKEOUT , CFE_UNDERLINE, and CFE_PROTECTED . These effects can
be combined as needed using the bitwise OR operator. For example, you can combine
CFE_BOLD and CFE_ITALIC as CFE_BOLD | CFE_ITALIC to have text that is
both in bold and italic.

The yHeight variable is used to set the new height of the text.

The yOffset variable is used to create a superscript or subscript effect.

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 517

The crTextColor variable is used to set the color for the text.

The bCharSet variable is used to the character set value as defined for the Win32's
LOGFONT structure.

The bPitchAndFamily member variable is the same as set for the LOGFONT structure.

The szFaceName variable is used to specify the name of the font to apply to the text.

If you want to find out what formatting is applied on a character or text, call the
CRichEditCtrl::GetSelectionCharFormat() method. Its syntax is:

DWORD GetSelectionCharFormat(CHARFORMAT& cf) const;

This method returns the type of dwMask of the CHARFORMAT structure applied on
the character or text.

To control the alignment of a paragraph on a right edit control, you can call the
CRichEditCtrl::SetParaFormat() method. Its syntax is:

BOOL SetParaFormat(PARAFORMAT& pf);

The actual paragraph formatting is set using the Win32 API's PARAFORMAT structure.
It is created as follows:

typedef struct _paraformat {
 UINT cbSize;
 DWORD dwMask;
 WORD wNumbering;
 WORD wReserved;
 LONG dxStartIndent;
 LONG dxRightIndent;
 LONG dxOffset;
 WORD wAlignment;
 SHORT cTabCount;
 LONG rgxTabs[MAX_TAB_STOPS];
} PARAFORMAT;

To define the necessary values for this structure, first declare a variable from it and
retrieve its size. This is done with the cbSize member variable. Secondly, use the dwMask
member variable to specify what formatting you want to perform. For example, to control
paragraph alignment, initialize dwMask with PFM_ALIGNMENT. On the other hand, if
you want to set or remove a bullet on a paragraph, initialize the dwMask variable with
PFM_NUMBERING.

The wNumbering member variable is used to apply or remove the bullet from a
paragraph.

You will need to use wReserved. Therefore, you can either ignore it or set its value to 0.

The dxStartIndent , the dxRightIndent , and the dxOffset member variables are used to
indent text.

If you had initialized dwMask with PFM_ALIGNMENT, you can use wAlignment to
specify the alignment of the paragraph. The possible values are:

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

518 © FunctionX, Inc.

Value Description
PFA_LEFT The paragraph will be aligned to the left
PFA_CENTER The paragraph will be aligned to the center
PFA_RIGHT The paragraph will be aligned to the right

The cTabCount and the rgxTabs member variables are used to control tab separation.

To retrieve the paragraph formatting applied on a paragraph, you can call the
CRichEditCtrl::GetParaFormat() method. Its syntax is:

DWORD GetParaFormat(PARA FORMAT& pf) const;

This method returns formatting applied on the selected paragraph.

 Practical Learning: Using Rich Edit Properties

1. Add the following 8 buttons:

ID Caption
IDC_BTN_BOLD B
IDC_BTN_ITALIC I
IDC_BTN_UNDERLINE U
IDC_BTN_STRIKEOUT S
IDC_BTN_LEFT <
IDC_BTN_CENTER =
IDC_BTN_RIGHT >
IDC_BTN_BULLET :

2. Add a BN_CLICKED event handler for each button and implement the events as
follows:

void CRicher1Dlg::OnBnClickedBtnBold()
{
 // TODO: Add your control notification handler code here
 CHARFORMAT Cfm;

 m_Richer.GetSelectionCharFormat(Cfm);

 Cfm.cbSize = sizeof(CHARFORMAT);
 Cfm.dwMask = CFM_BOLD;
 Cfm.dwEffects ^= CFE_BOLD;

 m_Richer.SetSelectionCharFormat(Cfm);
 m_Richer.SetFocus();

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 519

}

void CRicher1Dlg::OnBnClickedBtnItalic()
{
 // TODO: Add your control notification handler code here
 CHARFORMAT Cfm;

 m_Richer.GetSelectionCharFormat(Cfm);

 Cfm.cbSize = sizeof(CHARFORMAT);
 Cfm.dwMask = CFM_ITALIC;
 Cfm.dwEffects ^= CFE_ITALIC;

 m_Richer.SetSelectionCharFormat(Cfm);
 m_Richer.SetFocus();
}

void CRicher1Dlg::OnBnClickedBtnUnderline()
{
 // TODO: Add your control notification handler code here
 CHARFORMAT Cfm;

 m_Richer.GetSelectionCharFormat(Cfm);

 Cfm.cbSize = sizeof(CHARFORMAT);
 Cfm.dwMask = CFM_UNDERLINE;
 Cfm.dwEffects ^= CFE_UNDERLINE;

 m_Richer.SetSelectionCharFormat(Cfm);
 m_Richer.SetFocus();
}

void CRicher1Dlg::OnBnClickedBtnStrikeout()
{
 // TODO: Add your control notification handler code here
 CHARFORMAT Cfm;

 m_Richer.GetSelectionCharFormat(Cfm);

 Cfm.cbSize = sizeof(CHARFORMAT);
 Cfm.dwMask = CFM_STRIKEOUT;
 Cfm.dwEffects ^= CFE_STRIKEOUT;

 m_Richer.SetSelectionCharFormat(Cfm);
 m_Richer.SetFocus();
}

void CRicher1Dlg::OnBnClickedBtnLeft()
{
 // TODO: Add your control notification handler code here
 PARAFORMAT Pfm;

 Pfm.cbSize = sizeof(PARAFORMAT);
 Pfm.dwMask = PFM_ALIGNMENT;
 Pfm.wAlignment = PFA_LEFT;

 m_Richer.SetParaFormat(Pfm);
 m_Richer.SetFocus();
}

Chapter 16: Text -Based Controls Visual C++ and MFC Fundamentals

520 © FunctionX, Inc.

void CRicher1Dlg::OnBnClickedBtnCenter()
{
 // TODO: Add your control notification handler code here
 PARAFORMAT Pfm;

 Pfm.cbSize = sizeof(PARAFORMAT);
 Pfm.dwMask = PFM_ALIGNMENT;
 Pfm.wAlignment = PFA_CENTER;

 m_Richer.SetParaFormat(Pfm);
 m_Richer.SetFocus();
}

void CRicher1Dlg::OnBnClickedBtnRight()
{
 // TODO: Add your control notification handler code here
 PARAFORMAT Pfm;

 Pfm.cbSize = sizeof(PARAFORMAT);
 Pfm.dwMask = PFM_ALIGNMENT;
 Pfm.wAlignment = PFA_RIGHT;

 m_Richer.SetParaFormat(Pfm);
 m_Richer.SetFocus();
}

void CRicher1Dlg::OnBnClickedBtnBullet()
{
 // TODO: Add your control notification handler code here
 PARAFORMAT Pfm;

 m_Richer.GetParaFormat(Pfm);
 Pfm.cbSize = sizeof(PARAFORMAT);
 Pfm.dwMask = PFM_NUMBERING;

 Pfm.wNumbering ^= PFN_BULLET;

 m_Richer.SetParaFormat(Pfm);
 m_Richer.SetFocus();
}

3. Test the application

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 521

4. Return to MSVC

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

522 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 523

Chapter 17:
Track-Based Controls

? Spin Buttons

? Updown Controls

? Slider Controls

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

524 © FunctionX, Inc.

17.1 Spin Button

17.1.1 Overview

A spin button is a Windows control equipped with two opposite arrows . The user
clicks one of the arrows at one time to increase or decrease the current values of the
control. The value held by the control is also called its position. The values of a spin
button range from a minimum to a maximum. When the up arrow is clicked the value of
the control increases. If the user clicks and holds the mouse on the up pointing arrow. The
value of the control keeps increasing until it reaches its maximum and stops. The
opposite behavior applies when the user clicks or holds the mouse on the down-pointing
arrow.

Because a spin button is only equipped with arrows, it does not inherently show its
current value. Therefore, this control is usually accompanied by another, text -based,

control, usually an edit box, that indicates its position .

We are going the create a dialog box equipped with a large static control and three spin
buttons. The background color will change when the spin buttons change values:

 Practical Learning: Introducing a Spin Button

1. Create a new Dialog-Based application with no About Box and name it
ColorPreview

2. Set the Dialog Title to Color Preview and click Finish

3. Delete the TODO line and the OK button

4. Change the Caption of the Cancel button to Close

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 525

5. On the Controls toolbox, click the Picture button and draw a rectangular object
on the dialog box

6. Change its ID to IDC_PREVIEW

7. Add a CStatic Control variable for the picture object and name it m_Preview

8. In the header file of the CColorPreviewDlg class, declare a private COLORREF
variable named PreviewColor and a member function named UpdatePreview of
type void

private:
 COLORREF PreviewColor;
 void UpdatePreview();
};

9. In the OnInitDialog event of the dialog, initialize the PreviewColor variable with a
gray color as follows:

 PreviewColor = RGB(192, 192, 192);
 return TRUE; // return TRUE unless you set the focus to a control
}

10. In the source file of the dialog box, implement the UpdatePreview() method as
follows:

void CColorPreviewDlg::UpdatePreview()
{
 CClientDC dc(this); // device context for painting

 // TODO: Add your message handler code here
 CBrush BrushBG(PreviewColor);
 CRect RectPreview;

 m_Preview.GetWindowRect(&RectPreview);
 CBrush *pOldBrush = dc.SelectObject(&BrushBG);

 ScreenToClient(&RectPreview);
 dc.Rectangle(RectPreview);

 dc.SelectObject(pOldBrush);
}

11. Save All

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

526 © FunctionX, Inc.

12. To set the starting color of the preview picture, access the OnPain() event of the
CcolorPreviewDlg class and change it as follows:

void CColorPreviewDlg::OnPaint()
{
 CPaintDC dc(this); // device context for painting
 CRect RectPreview;
 CBrush BrushGray(PreviewColor);

 m_Preview.GetWindowRect(&RectPreview);
 CBrush *pOldBrush = dc.SelectObject(&BrushGray);

 ScreenToClient(&RectPreview);
 dc.Rectangle(RectPreview);

 dc.SelectObject(pOldBrush);

 if (IsIconic())
 {
 SendMessage(WM_ICONERASEBKGND,
reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0);

 // Center icon in client rectangle
 int cxIcon = GetSystemMetrics(SM_CXICON);
 int cyIcon = GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon + 1) / 2;
 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 CDialog::OnPaint();
 }
}

13. Test the application and return to MSVC

17.1.2 Creating a Spin Button

To create a spin button, at design time, you can click the Spin button on the Controls
toolbox and click the desired area on the intended host.

A spin button control is based on the CSpinButtonCtrl class. Therefore, to
programmatically create a spin button, declare a pointer to CSpinButtonCtrl then call its
Create() method to initialize it. The syntax of the CSpinButtonCtrl::Create() method
is:

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT nID);

Because a spin button cannot be a parent, the minimum style you must apply is
WS_CHILD. If you want the control to be visible upon creating, add the WS_VISIBLE
style. Here is an example:

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 527

BOOL CSpinDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CSpinButtonCtrl *SpinCtrl = new CSpinButtonCtrl;

 SpinCtrl->Create(WS_CHILD | WS_VISIBLE, CRect(60, 10, 80, 35), this, 0x128);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

 Practical Learning: Creating Spin Buttons

Here is the dialog box as we will design it:

1. On the Controls toolbox, click the Edit Box button and click under the picture
control and on the left side of the dialog box

2. On the Control toolbox, click the Spin button and click to the right side of the
IDC_EDIT1 control on the dialog box

3. While the spin button is still selected, press and hold Ctrl. Click the previously added
edit box and release Ctrl

4. Press Ctrl + C to copy and press Ctrl + V to paste

5. Move the newly two pasted controls to the right

6. Press Ctrl + V to paste again and move the new controls to the right side of the
others

7. Using the properties window, change the identifiers of the controls, from left to right,
to IDC_EDIT_RED , IDC_SPIN_RED , IDC_EDIT_GREEN ,
IDC_SPIN_GREEN , IDC_EDIT_BLUE, and IDC_SPIN_BLUE

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

528 © FunctionX, Inc.

17.1.3 The Spin Button Properties
By default, a spin button appears with an up and a down pointing arrows. If you want the
arrows to be horizontally directed, change the value of the Orientation property from
Vertical (the default) to Horizontal. If you are programmatically creating the control, add
the UDS_HORZ style to it. Here is an example:

SpinCtrl->Create(WS_CHILD | WS_VISIBLE | UDS_HORZ,
 CRect(60, 10, 80, 35), this, 0x128);

We mentioned already that the value of the spin changes as the user clicks or holds the
mouse on one arrow of the control. In the same way, if you want the user to be able to
increment or decrement the value of the control using the up and down arrow keys of the
keyboard, set the Arrow Keys property to True at design time or add the
UDS_ARROWKEYS style.

As stated already, a spin button cannot display its value to the user. If you want to inform
the user about the value of the control as it is being incremented or decremented, you can
add another, usually text -based, control, such as an edit box. This control is called the
buddy window of the spin button. The control should be positioned on one horizontal
side of the spin button. After adding that new control, you should let the spin button
know on what side the accompanying control is positioned, left or right. To do this, select
the appropriate value in the Alignment property.

If you are programmatically creating the control, to position the spin button to the left
edge of the buddy window, add the UDS_ALIGNLEFT style. On the other hand, if you
want the spin button on the right side of the buddy window, apply the
UDS_ALIGNRIGHT style instead. Just like at design time you cannot apply both styles,
at run time, do not add both the UDS_ALIGNLEFT and the UDS_ALIGNRIGHT
styles.

If you want the spin button to use an already existing and previously added control as its
buddy window, set the Auto Buddy property to True or apply the UDS_AUTOBUDDY
style. In this case, the control that was just previously added to the host, before adding the
spin button, would be used as its buddy.

After specifying what control would be the buddy window of the spin button, when the
user clicks the arrows of the button, the buddy would display its current value. If you
want to make sure that the buddy window display only integral values, whether decimal
or hexadecimal, change the Set Buddy Integer property to True. If you are
programmatically creating the control, you can add the UDS_SETBUDDYINT style:

SpinCtrl->Create(WS_CHILD | WS_VISIBLE | UDS_SETBUDDYNT,
 CRect(60, 10, 80, 35), this, 0x128);

When the buddy window displays the values of the spin button and when the value gets
over 999, if you want the number to be separated by a comma, set the No Thousands
property to True. To apply this property with code, add the UDS_NOTHOUSANDS
style. If you do not want the thousand sections to be separated by comma, set the No
Thousands property to False or omit the UDS_NOTHOUSANDS style.

Imagine you create a spin button and specify its range of values from 3 to 22 with an
incremental of 5. When the control is incremented to 20 and the user clicks the up arrow
button or presses the up arrow key, you can decide that the incrementing should stop at
20 or wrap to 22, although 22 is not a valid incremental value for this scenario. The

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 529

ability to control this behavior is set by changing the Wrap property to True or by adding
the UDS_WRAP style. This behavior applies also if the value has been fully
decremented.

 Practical Learning: Designing an UpDown control

1. Arrange the tab sequence as follows:

2. Click one of the spin buttons to select it. Then press and hold Ctrl. Click the other
two spin buttons to select them, and release Ctrl

3. On the Properties window, click the arrow of the Alignment combo box and select
Right

4. Check the Auto Buddy check box or set its value to True

5. Check the Set Buddy Integer check box or set its value to True

6. Test the application

7. Close the dialog box and return to MSVC

17.1.4 Methods of Managing an UpDown Control
We have already mentioned that a spin button is based on the CSpinButtonCtrl class.
This class is equipped with a default constructor used to declare a CSpinButtonCtrl
variable or pointer and the Create() method used to initialize the control. Here is an
example:

BOOL CSpinDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CSpinButtonCtrl *SpinCtrl = new CSpinButtonCtrl;

 SpinCtrl->Create(WS_CHILD | WS_VISIBLE | UDS_SETBUDDYINT,
 CRect(60, 10, 80, 35), this, 0x128);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

530 © FunctionX, Inc.

}

After creating the control, to indicate what control would display the value of the spin
button, we saw that you can use the Alignment or the Auto Buddy properties. If you did
not do this at design time, and if you want to explicitly specify the name of the control
that would act as the buddy window, you can call the CSpinButtonCtrl::SetBuddy()
method. Its syntax is:

CWnd* SetBuddy(CWnd* pWndBuddy);

The pWndBuddy argument is the new control that would serve as buddy. Here is an
example that sets an existing label on the dialog box (the label was created as a Static
Text control and identified as IDC_SPIN_BUDDY) as the spin button’s buddy window:

BOOL CSpinDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CSpinButtonCtrl *SpinCtrl = new CSpinButtonCtrl;
 CStatic *SpinBuddy;

 SpinCtrl->Create(WS_CHILD | WS_VISIBLE | UDS_SETBUDDYINT,
 CRect(60, 10, 80, 35), this, 0x128);

 SpinBuddy = reinterpret_cast<CStatic *>(GetDlgItem(IDC_SPIN_BUDDY));
 SpinCtrl->SetBuddy(SpinBuddy);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

If the buddy window has already been set and you want to find what control performs
that role, you can call the CSpinButtonCtrl::GetBuddy() method. Its syntax is:

CWnd* GetBuddy() const;

This method returns a handle to the control that acts as the buddy window of the spin
button that called it.

One of the most important actions you should perform after creating a spin button is to
specify its lowest and its highest values. The default range is 100 (lowest) to 0 (highest).
This causes the spin button to count in decrement. If you do not want this (bizarre)
behavior, you must explicitly set the lower and higher values.

To set the minimum and maximum values of a spin button, call either the
CSpinButtonCtrl::SetRange() or the CSpinButtonCtrl::SetRange32() methods. Their
syntaxes are:

void SetRange(int nLower, int nUpper);
void SetRange32(int nLower, int nUpper);

In both cases the nLower argument holds the minimum value and the nUpper argument
specifies the maximum value. Here is an example:

BOOL CSpinDlg::OnInitDialog()
{

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 531

 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CSpinButtonCtrl *SpinCtrl = new CSpinButtonCtrl;

 SpinCtrl->Create(WS_CHILD | WS_VISIBLE | UDS_SETBUDDYINT,
 CRect(60, 10, 80, 35), this, 0x128);

 SpinCtrl->SetRange(-12, 1244);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

If the control exists already and you want to get its minimum and maximum values, call
either the CSpinButtonCtrl::GetRange() or the CSpinButtonCtrl::GetRange32()
methods. The possible syntaxes used are:

DWORD GetRange() const;
void GetRange(int &lower, int& upper) const;
void GetRange32(int &lower, int &upper) const;

Based on the range of values that a spin button can handle, the user can increment and
decrement the control’s value. By default, the values are are incremented by adding 1 and
decrement by adding –1 to the current value. If you want to increment and decrement by
a different value, you have two main options. You can write a routine to take care of this,
or call the CSpinButtonCtrl::SetAccel() method. Its syntax is:

BOOL SetAccel(int nAccel, UDACCEL* pAccel);

The SetAccel() method takes a UDACCEL value and its size as arguments. The
UDACCEL class is defined as follows:

typedef struct {
 UINT nSec;
 UINT nInc;
}UDACCEL, FAR *LPUDACCEL;

The nSec member variable is a semi-timer that ticks at a specified rate of seconds.
The nInc member variable of this structure defines the incremental value to apply when
the nSec value has passed.

The nAccel argument of the SetAccel() method is the size of the UDACCEL class.

In the following example, a spin button was added to a dialog box and a control variable
named m_Spin was added for it. When the user clicks the arrow buttons or presses the
arrow keys, the value of the spin button is incremented by 5:

BOOL CDlgSpin::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 UDACCEL udAccel;

 int SizeOfAccel = sizeof(UDACCEL);
 udAccel.nSec = 100;

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

532 © FunctionX, Inc.

 udAccel.nInc = 5;

 m_Spin.SetAccel(SizeOfAccel, &udAccel);
 m_Spin.SetRange(12, 168);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

If a spin button has been created already, to find its incremental value, you can call the
CSpinButtonCtrl::GetAccel() method. Its syntax is:

UINT GetAccel(int nAccel, UDACCEL* pAccel) const;

Normally, the values of a spin button are decimal integers. Alternatively, if you prefer the
values to be given in hexadecimal format, set the range accordingly and call the
CSpinButtonCtrl::SetBase() method. Its syntax is:

int SetBase (int nBase);

Using this method, if you want the value to be decimal, pass the nBase argument as 10. If
you want hexadecimal values, pass the argument as 16. Here is an example:

BOOL CSpinDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CSpinButtonCtrl *SpinCtrl = new CSpinButtonCtrl;
 CStatic *SpinBuddy;

 SpinCtrl->Create(WS_CHILD | WS_VISIBLE | UDS_SETBUDDYINT,
 CRect(60, 10, 80, 35), this, 0x128);
 SpinCtrl->SetRange(0x04, 0xFF06);
 SpinCtrl->SetBase(16);

 SpinBuddy = reinterpret_cast<CStatic *>(GetDlgItem(IDC_SPIN_BUDDY));
 SpinCtrl->SetBuddy(SpinBuddy);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

To find out the current base, decimal or hexadecimal, that a spin button is using for its
values, call the CSpinButtonCtrl::GetBase() method. Its syntax:

UINT GetBase() const;

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 533

Once a spin button is ready to hold values, its default value is the lowest specified with
the SetRange() or the SetRange32() method. For example, if you create a spin button
that can hold values from 15 to 62, when the control dis plays at startup, it would assume
a value of 15. The value held by a spin button is referred to as its position. If you want the
control to have a value different than the lowest, that is, to hold a different position, call
the CSpinButtonCtrl::SetPos() method. Its syntax:

int SetPos(int nPos);

This method takes as argument the new value of the spin button. The value must be in the
range set with the SetRange() or the SetRange32() methods. Here is an example:

BOOL CSpinDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CSpinButtonCtrl *SpinCtrl = new CSpinButtonCtrl;
 CStatic *SpinBuddy;

 SpinCtrl->Create(WS_CHILD | WS_VISIBLE | UDS_SETBUDDYINT,
 CRect(60, 10, 80, 35), this, 0x128);

 SpinCtrl->SetRange(4, 64);
 SpinCtrl->SetBase(10);

 SpinCtrl->SetPos(36);

 SpinBuddy = reinterpret_cast<CStatic *>(GetDlgItem(IDC_SPIN_BUDDY));
 SpinCtrl->SetBuddy(SpinBuddy);
 SpinBuddy->SetWindowText("4");

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

To explore the spin button, the user click one of its arrow buttons or presses the arrow
keys to increase or decrease the control’s value. The only actual thing the spin button
provides is the value it holds. It is up to you to decide what to do with such a value. This
means that, on a regular basis, you will need to retrieve the current value of the control
and do whatever you want with it.. To get the position of a spin button, call the
CSpinButtonCtrl::GetPos() method. Its syntax is:

int GetPos() const;

This method returns the value of the spin button at the time the method is called.

 Practical Learning: Using a Spin Button

1. If you are using MSVC 6, press Ctrl + W to access the Class Wizard. Click the
Member Variables property page. Click IDC_SPIN_RED and click Add Variable…
If you are using MSVC 7, on the dialog box, right-click the most left spin button and
click Add Variable…

2. Set the name of the variable to m_SpinRed

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

534 © FunctionX, Inc.

3. Click OK or Finish

4. In the same way, add a Control variable for the IDC_SPIN_GREEN control named
m_SpinGreen and a Control variable for the IDC_SPIN_BLUE control named
m_SpinBlue

5. For MSVC 6, click the Message Maps property page. In the Member Functions list
box, clic k OnInitDialog and click Edit Code

In the OnInitDialog event of the CcolorPreviewDlg class, set the range of the spin
buttons to (0, 255) and set its initial value to 192

BOOL CColorPreviewDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_SpinRed.SetRange(0, 255);
 m_SpinGreen.SetRange(0, 255);
 m_SpinBlue.SetRange(0, 255);

 m_SpinRed.SetPos(192);
 m_SpinGreen.SetPos(192);
 m_SpinBlue.SetPos(192);

 PreviewColor = RGB(192, 192, 192);

 return TRUE; // return TRUE unless you set the focus to a control
}

6. Execute the application. Test the spin buttons and make sure they are working fine.
Then close the dialog box and return to MSVC

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 535

17.1.5 The Spin Button Events
When the user clicks one of the arrow buttons of a spin button or presses an up or a down
arrow key when the control has focus, the operaing sends a UDN_DELTAPOS message
to the parent window of the spin button, notifying this parent that the position (the value)
of the control is about to be changed. The syntax of the event fired by the
UDN_DELTAPOS message is:

OnDeltaPosSpin(NMHDR* pNMHDR, LRESULT* pResult)

Because this event is fired before the value of the spin button is changed, you can use it
to check, validate, allow or deny the change. The first argument, pNMHDR , is an
NMHDR structure value. The NMHDR structure is sometimes used to carry information
about a message. It is defined as follows:

typedef struct tagNMHDR {
 HWND hwndFrom;
 UINT idFrom;
 UINT code;
} NMHDR;

The hwndFrom member variable is a handle to the window that is sending the message.
The idFrom is the identifier of the control that is sending the message. The code member
is the actual notification code.

When implementing the event of the UDN_DELTAPOS message, instead of using the
value of the NMHDR argument, Visual C++ takes the liberty of casting the pNMHDR
pointer into a pointer to NM_UPDOWN. Therefore, the event provided to you appears as
follows:

void CDlgSpin::OnDeltaPosSpinNew(NMHDR* pNMHDR, LRESULT* pResult)
{
 NM_UPDOWN* pNMUpDown = (NM_UPDOWN*)pNMHDR;
 // TODO: Add your control notification handler code here

 *pResult = 0;
}

The NM_UPDOWN structure is defined as follows:

typedef struct _NM_UPDOWN {
 NMHDR hdr;
 int iPos;
 int iDelta;
} NMUPDOWN, FAR *LPNMUPDOWN;

This structure was specifically created to carry notification information for a spin button.
The first member variable of the NM_UPDOWN structure, hdr, is an NMHDR. The hdr
itself carries additional information about the message being sent, as mentioned above.
The iPos member variable is the value of the current position of the spin button. The
iDelta member is the intended change that would be performed on the spin button.

 Practical Learning: Using the Spin Button Events
1. If you are using MSVC 6, display the ClassWizard and the Message Maps property

page. Click IDC_SPIN_RED. In the Messages list, double-click UDN_DELTAPOS .

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

536 © FunctionX, Inc.

Accept the suggested name of the function and click OK. Then click Edit Code…
If you are using MSVC 7, click the most left spin button on the dialog box and, on

the Properties window, click the Controls Events button . Click the arrow of the
UDN_DELTAPOS combo box and select the only item in the list

2. Implement the event as follows:

void CColorPreviewDlg::OnDeltaposSpinRed(NMHDR *pNMHDR, LRESULT *pResult)
{
 LPNMUPDOWN pNMUpDown = reinterpret_cast<LPNMUPDOWN>(pNMHDR);
 // TODO: Add your control notification handler code here
 int RColor = m_SpinRed.GetPos();
 int GColor = m_SpinGreen.GetPos();
 int BColor = m_SpinBlue.GetPos();

 PreviewColor = RGB(RColor, GColor, BColor);
 UpdatePreview();

 *pResult = 0;
}

3. In the same way, add the UDN_DELTAPOS event of the IDC_SPIN_GREEN and
the IDC_SPIN_BLUE controls and implement them as follows:

void CColorPreviewDlg::OnDeltaposSpinGreen(NMHDR *pNMHDR, LRESULT *pResult)
{
 LPNMUPDOWN pNMUpDown = reinterpret_cast<LPNMUPDOWN>(pNMHDR);
 // TODO: Add your control notification handler code here
 int RColor = m_SpinRed.GetPos();
 int GColor = m_SpinGreen.GetPos();
 int BColor = m_SpinBlue.GetPos();

 PreviewColor = RGB(RColor, GColor, BColor);
 UpdatePreview();

 *pResult = 0;
}

void CColorPreviewDlg::OnDeltaposSpinBlue(NMHDR *pNMHDR, LRESULT *pResult)
{
 LPNMUPDOWN pNMUpDown = reinterpret_cast<LPNMUPDOWN>(pNMHDR);
 // TODO: Add your control notification handler code here
 int RColor = m_SpinRed.GetPos();
 int GColor = m_SpinGreen.GetPos();
 int BColor = m_SpinBlue.GetPos();

 PreviewColor = RGB(RColor, GColor, BColor);
 UpdatePreview();

 *pResult = 0;
}

4. Test the application:

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 537

5. After testing the spin buttons, close the dialog box and return to MSVC

6. Now we will implement an exercise that exploits the pNMHDR argument of the
UDN_DELTAPOS message.
Create a new Dialog-based application named SpinEvent without the About Box

7. Delete the TODO line

8. Change the caption of the Cancel button to Close

9. Add an Edit Box control to the top-left section of the dialog box and change its
ID to IDC_EDIT

10. Add a Spin button to the right side of the edit box and change only its ID to
IDC_SPIN

11. Add a Control variable for the edit box and name it m_Edit

12. Add a Control variable for the spin button and name it m_Spin

13. As done in the previous exercise, fire the UDN_DELTAPOS event for the spin
button.

14. Change the OnInitDialog event of the dialog box and implement the event of the
UDN_DELTAPOS message as follows:

BOOL CSpinEventDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_Spin.SetRange(12, 185);

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

538 © FunctionX, Inc.

 m_Edit.SetWindowText("26");

 return TRUE; // return TRUE unless you set the focus to a control
}

. . .

void CSpinEventDlg::OnDeltaposSpin(NMHDR *pNMHDR, LRESULT *pResult)
{
 LPNMUPDOWN pNMUpDown = reinterpret_cast<LPNMUPDOWN>(pNMHDR);
 // TODO: Add your control notification handler code here

 // Declare a pointer to a CSpinButtonCtrl;
 CSpinButtonCtrl *Spinner;

 // Get a pointer to our spin button
 Spinner = reinterpret_cast<CSpinButtonCtrl *>(GetDlgItem(IDC_SPIN));

 // Found out if it is our spin button that sent the message
 // This conditional statement appears useless but so what?
 if(pNMHDR->hwndFrom == Spinner->m_hWnd)
 {
 // Get the current value of the spin button
 int CurPos = pNMUpDown->iPos;

 // Convert the value to a string
 char StrPos[20];

 sprintf(StrPos, "%d", CurPos);

 // Display the value into the accompanying edit box
 m_Edit.SetWindowText(StrPos);
 }

 *pResult = 0;
}

15. Test the application

16. Close it and return to MSVC

17.2 The UpDown Control

17.2.1 Overview
Besides the spin button, Visual C++ ships with an ActiveX control that provides the same
functionality. To use this object, you can add it from the Insert ActiveX Control dialog

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 539

box and it is named Microsoft UpDown Control. If there are two versions provided, you
should select the latest, which usually has a higher version number.

The Microsoft UpDown control is simply a spin button but with true visual accessibility
and rapid application development (RAD) concept. Like the spin button, it is equipped
with two buttons. Each button has a small picture (a bitmap) that displays an arrow.

The application we are about to develop is for a CD publishing small business. This
company manufactures compact discs for self-promoting musicians and small business
that want to sell their own CDs. When taking an order of a new CD, the company
charges:

?? $20/CD if the customer is ordering less than 20 units

?? $15/CD if the customer is ordering up to 50 units

?? $12/CD if the customer is ordering up to 100 units

?? $8/CD if the customer is ordering up to 500 units

?? $5/CD for any order over 500 units

 Practical Learning: Using UpDown Controls

1. Create a new Dialog-based application named CDPublisher and set its title to
Compact Disc Publisher

2. Delete the TODO line and the OK button

3. Change the Caption of the Cancel button to Close

4. Add a Picture control to the dialog box. Set its Color property to Etched and
check its Modal Frame check box

5. Design the dialog box as follows:

The names of the edit boxes from left to right are IDC_EDIT_QTY,
IDC_UNITPRICE, and IDC_TOTALPRICE

6. Add a CString variable for the IDC_EDIT_QTY control and name it
m_EditQuantity

7. Add a CString variable for the IDC_ UNITPRICE control and name it m_UnitPrice

8. Add a CString variable for the IDC_ TOTALPRICE control and name it
m_TotalPrice

9. Access the source code of the CCDPublisherDlg class and, in its constructor,
initialize the edit boxes to 1 or $20.00

CCDPublisherDlg::CCDPublisherDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CCDPublisherDlg::IDD, pParent)
{

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

540 © FunctionX, Inc.

 //{{AFX_DATA_INIT(CCDPublisherDlg)
 m_EditQuantity = _T("1");
 m_UnitPrice = _T("$20.00");
 m_TotalPrice = _T("$20.00");
 //}}AFX_DATA_INIT
 // Note that LoadIcon does not require a subsequent DestroyIcon in W in32
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

10. Save All

17.2.2 Using an UpDown Control
To provide an UpDown control to your application, display the Insert ActiveX Control
dialog box, select Microsoft UpDown Control 6.0 and click OK. If you plan to refer to
the control in your code, you can add a variable for it. When you do this, Visual C++
would create and even implement its class, giving all of its code (its header and source
files). You can then find out that the UpDown control is based on the CUpDown class
which itself is based on CWnd, making it convenient to use CWnd properties and
methods.

Like the spin button, the UpDown control cannot display its value to the user. If you want
an accompanying control to play that role, you should place the new UpDown control
next to a text -based control such as an edit box. You have the option of positioning the
UpDown control to the left or the right side of its buddy control.

After placing the UpDown control on the parent window, by default, its arrow buttons
point up and down. If you want the arrows to point left and right, change the value of the
Orientation property.

To make the UpDown control easier to configure, you can set its range value visually.
The minimum value is set using the Min edit box the ma ximum value is set on the Max
edit box. To programmatically change the minimum value, call the SetMin() method. In
the same way, the maximum value can be changed by calling the SetMax() method. Here
is an example:

void CDlgSpin::OnConfigureUpDown()
{
 // TODO: Add your control notification handler code here
 m_UpDown.SetMin(12);
 m_UpDown.SetMax(250);
}

To get the minimum value of an UpDown control, call the GetMin() method. To get the
maximum value of an UpDown control, call the GetMax() method.

After setting the minimum and the maximum values, you can specify the initial value the
UpDown control would hold when the application comes up. This value is set using the
Value edit box and it must be in the range (Min, Max). To change the value with code,
call the SetValue() method and pass it the desired but valid value. Here is an example:

void CDlgSpin:: OnConfigureUpDown()
{
 // TODO: Add your control notification handler code here
 m_UpDown.SetMin(12);
 m_UpDown.SetMax(250);

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 541

 m_UpDown.SetValue(88);
}

To get the value of an UpDown control, call its GetValue() method.

When using the UpDown control by clicking one of its buttons, its value increases or
decreases by one. If you want a different incremental value, specify it using the
Increment edit box.

To programmatically set an incremental value, call the SetIncrement() method. Here is
an example:

void CDlgSpin:: OnConfigureUpDown()
{
 // TODO: Add your control notification handler code here
 m_UpDown.SetMin(12);
 m_UpDown.SetMax(250);

 m_UpDown.SetValue(88);

 m_UpDown.SetIncrement(5);
}

To know what increment value an UpDown control is using, call its GetIncrement()
method.

 Practical Learning: Using UpDown Controls

1. Right-click in the middle of the dialog box and click Insert ActiveX Control

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

542 © FunctionX, Inc.

2. Click OK

3. Position the new control to the right side of the Number of CDs edit box and resize
it:

4. Using the Properties window, change its ID to IDC_QUANTITY

5. Set the values of the Min edit box 1 and the Max edit box to 5000

6. Add a variable to the UpDown control. You may receive a message box informing
you that the control needs to be inserted into your project:

Click OK.

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 543

Click OK again

Set the name of the variable to m_Quantity

7. Click OK twice

8. In Class View, expand CUpDown and double-click it to display its source code

17.2.3 The UpDown Control Events
The UpDown control makes an object distinction between its button components. For
example, when the user clicks the up pointing arrow button, the control fires the

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

544 © FunctionX, Inc.

UpClick() event. On the other hand, when the user clicks the down pointing arrow
button, the control sends a DownClick() event. These allow you to treat each event
separately if you want.

If you are more interested in the value of the UpDown control, when the user clicks either
of its buttons, the value of the control changes. Once the value of the control has been
modified, it fires a Change() event.

The UpDown control provides bonus events related to the mouse. When the mouse
arrives to passes over this control, the MouseMove() event is fired. If the user presses a
mouse button on the control. It fires the MouseDown() event. When the user releases the
mouse button, the MouseUp() event is fired.

 Practical Learning: Configuring an UpDown Control

1. If you are using MSVC 6, display the ClassWizard and the Message Maps property
page. Click the IDC_QUANTITY. In the Messages section, double-click Change,
click OK and click Edit Code
If you are using MSVC 7, display the dialog box and click the UpDown control. On

the Property window, click the Control Events button . Click the arrow of the
Change combo box and select the only item in the list

2. Implement the event as follows:

void CCDPublisherDlg::OnChangeQuantity()
{
 // TODO: Add your control notification handler code here
 int Quantity;
 double UnitPrice, TotalPrice;

 Quantity = m_Quantity.GetValue();

 if(Quantity < 20)
 UnitPrice = 20;
 else if(Quantity < 50)
 UnitPrice = 15;
 else if(Quantity < 100)
 UnitPrice = 12;
 else if(Quantity < 500)
 UnitPrice = 8;
 else
 UnitPrice = 5;

 TotalPrice = Quantity * UnitPrice;

 m_EditQuantity.Format("%d", Quantity);
 m_UnitPrice.Format("$%.2f", UnitPrice);
 m_TotalPrice.Format("$%.2f", TotalPrice);

 UpdateData(FALSE);
}

3. Test the application

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 545

4. Close it and return to MSVC

17.3 Slider Controls

17.3.1 Overview
A slider is a Windows control equipped with a small bar, also called a thumb, which
slides along a visible line. There are two types of sliders: horizontal and vertical:

To use the slider control, the user can drag the thumb in one of two directions. If the
slider is horizontal, the user can drag the thumb left or right. The thumb of a vertical
slider can be dragged up or down. This changes the position of the thumb. The user can
also click the desired position along the line to place the thumb at the desired location.
Alternatively, when the slider has focus, the user can also use the arrow keys of the
keyboard to move the thumb.

A slider is configured with a set of values from a minimum to a maximum. Therefore, the
user can make a selection included in that range. Optionally, a slider can be equipped
with small indicators called ticks:

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

546 © FunctionX, Inc.

The ticks can visually guide the user for the available positions of the thumb mark. A
slider can be used to let the user specify a value that conforms to a range. When equipped
with ticks, a slider can be used to control exact values that the user can select in a range,
preventing the user from setting just any desired value.

 Practical Learning: Introducing Slides
1. Start a new Dialog-based application named CarInventory1 with no About Box and

set the Dialog Title to Car Inventory

2. Redesign the IDR_MAINFRAME icons as follows:

3. Delete the TODO line and the OK button

4. Change the caption of the Cancel button to Close

5. Move the Close button to the bottom-right section of the dialog box

6. On the main menu, click Insert -> Resource or Project -> Add Resource…

7. On the Add Resource dialog box, click Import…

8. From the resources that accompany this book, locate the Cars folder, click Civic and
click Open

9. Change the ID of the new bitmap to IDB_CIVIC

10. In the same way, import the Elantra, Escape, Escort, Focus, GdMarquis, Mystique,
Navigator, Sentra, and Sephia

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 547

11. Change their IDs to IDB_ELANTRA, IDB_ESCAPE, IDB_ESCORT, IDB_FOCUS,
IDB_MARQUIS, IDB_MYSTIQUE, IDB_NAVIGATOR, IDB_SENTRA, and
IDB_SEPHIA respectively

12. Add a Picture control to the middle side of the dialog box and change its ID to
IDC_PREVIEW

13. Set its Type to Bitmap and set its Bitmap to IDB_CIVIC

14. Add a Control variable for the picture control and name it m_Picture

15. Complete the dialog design as follows:

16. Set the IDs of the edit boxes from top to bottom to IDC_MAKE, IDC_MODEL ,

IDC_YEAR, and IDC_DOORS

17. Add a Value control to each edit box and name them m_Make, m_Model, m_Year,
and m_Doors respectively

18. To store the values for the controls on the dialog box, in the header file of the dialog
box, create a structure named LisOfCars and declare a private array for it in the
dialog’s class as follows:

// CarInventory1Dlg.h : header file
//

#pragma once
// A class for each car
struct CListOfCars
{
 CString Make;
 CString Model;
 UINT CarYear;
 UINT Doors;
 UINT CarPicture;
};
// CCarInventory1Dlg dialog
class CCarInventory1Dlg : public CDialog
{
// Construction
public:
 CCarInventory1Dlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

548 © FunctionX, Inc.

 enum { IDD = IDD_CARINVENTORY1_DIALOG };

 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

// Implementation
protect ed:
 HICON m_hIcon;

 // Generated message map functions
 virtual BOOL OnInitDialog();
 afx_msg void OnPaint();
 afx_msg HCURSOR OnQueryDragIcon();
 DECLARE_MESSAGE_MAP()

private:
 CListOfCars Car[10];
};

19. To initialize the array, type the following in the OnInitDialog event:

BOOL CCarInventory1Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 Car[0].Make = "Honda";
 Car[0].Model = "Civic";
 Car[0].CarYear = 1998;
 Car[0].Doors = 4;
 Car[0].CarPicture = IDB_CIVIC;

 Car[1].Make = "Hyundai";
 Car[1].Model = "Elantra";
 Car[1].CarYear = 1996;
 Car[1].Doors = 4;
 Car[1].CarPicture = IDB_ELANTRA;

 Car[2].Make = "Ford";
 Car[2].Model = "Escape";
 Car[2].CarYear = 2003;
 Car[2].Doors = 5;
 Car[2].CarPicture = IDB_ESCAPE;

 Car[3].Make = "Ford";
 Car[3].Model = "Escort";
 Car[3].CarYear = 1997;
 Car[3].Doors = 2;
 Car[3].CarPicture = IDB_ESCORT;

 Car[4].Make = "Mercury";
 Car[4].Model = "Grand Marquis";
 Car[4].CarYear = 2001;
 Car[4].Doors = 4;

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 549

 Car[4].CarPicture = IDB_MARQUIS;

 Car[5].Make = "Mercury";
 Car[5].Model = "Mystique";
 Car[5].CarYear = 2000;
 Car[5].Doors = 4;
 Car[5].CarPicture = IDB_MYSTIQUE;

 Car[6].Make = "Lincoln";
 Car[6].Model = "Navigator";
 Car[6].CarYear = 2003;
 Car[6].Doors = 5;
 Car[6].CarPicture = IDB_NAVIGATOR;

 Car[7].Make = "Nissan";
 Car[7].Model = "Sentra";
 Car[7].CarYear = 1997;
 Car[7].Doors = 2;
 Car[7].CarPicture = IDB_SENTRA;

 Car[8].Make = "Ford";
 Car[8].Model = "Focus";
 Car[8].CarYear = 2002;
 Car[8].Doors = 4;
 Car[8].CarPicture = IDB_FOCUS;

 Car[9].Make = "Kia";
 Car[9].Model = "Sephia";
 Car[9].CarYear = 2003;
 Car[9].Doors = 4;
 Car[9].CarPicture = IDB_SEPHIA;

 return TRUE; // return TRUE unless you set the focus to a control
}

20. To display default values in the dialog box, on top of its OnPaint() event, type the
following:

void CCarInventory1Dlg::OnPaint()
{
 CBitmap Bmp;

 Bmp.LoadBitmap(Car[0].CarPicture);

 m_Make.Format("%s", Car[0].Make);
 m_Model.Format("%s", Car[0].Model);
 m_Year.Format("%d", Car[0].CarYear);
 m_Doors.Format("%d", Car[0].Doors);
 m_Picture.SetBitmap(Bmp);
 UpdateData(FALSE);

 if (IsIconic())
 {
 . . .
 }
}

21. Test the application:

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

550 © FunctionX, Inc.

22. Close it and return to MSVC

17.3.2 Slider Creation
To provide a slider to an application, from the Controls toolbox, click the Slider button

 and click the desired area on the dialog box or the form.

To programmatically create a slider, declare a pointer to CSliderCtrl using the new
operator. To initialize the control, call its Create() method. Here is an example:

BOOL CDlgSlide::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CSliderCtrl *TrackBar = new CSliderCtrl;

 TrackBar->Create(WS_CHILD | WS_VISIBLE,
 CRect(15, 20, 222, 50), this, 0x14);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

 Practical Learning: Creating a Slider

1. On the Controls toolbox, click the Slider button and click in lower-left section
of the dialog box

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 551

2. Save All

17.3.3 Slider Properties
After placing a slider control on a form or other host, by default, it assumes a horizontal
position. If you want a vertical slider, change the value of the Orientation property. If
you were dynamically creating the control, its default orientation would be horizontal
whose style is TBS_HORZ. If you want a vertical slider, apply the TBS_VERT style:

BOOL CDlgSlide::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CSliderCtrl *Taskbar = new CSliderCtrl;

 Taskbar->Create(WS_CHILD | WS_VISIBLE | TBS_VERT,
 CRect(20, 20, 50, 250), this, 0x14);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

The new slider appears as one line, horizontal or vertical, that guides the user with the
area to slide the thumb. When sliding the thumb along the line, the user can set only the
value where the thumb is positioned. Alternatively, if you want the user to be able to
select a range of values instead of just a value, at design time, you can set the Enable
Selection property to True. This is equivalent to adding the
TBS_ENABLESELECTION style. A slider equipped with this style displays a 3-D
“whole” in the body of the slider:

The selection area allows the user to select a range of values.

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

552 © FunctionX, Inc.

The thumb of a slider can assume one of three shapes. By default, it appears as a
rectangular box. Alternatively, you can convert one of its shorter borders to appear as an
arrow. The shape of the thumb is controlled at design time by the Point property. Its
default value is Both, which gives it a rectangular shape. You can get this same shape by
omitting or adding the TBS_BOTH value.

For a horizontal slider, you can make the thumb ’s arrow point to the left by changing the
Point property to Top/Left. If the slider were horizontal, this Point value would orient
the thumb arrow to the top:

To make the thumb of a dynamically created horizontal slider point up, add the
TBS_TOP . If the slider is vertical, to point its thumb to the left, add the TBS_LEFT
style to it.

If you want the thumb to point down for a horizontal slider, set the Point property to
Bottom/Right. This same value would make the thumb of a vertical slider point n the
right direction:

To point the thumb up for a horizontal slider you are programmatically creating, add the
TBS_BOTTOM. For the thumb of a vertical slider to point right, add the TBS_RIGHT
to it.

If you want to guide the user with some ticks on the control, at design time, set the Tick
Marks property to True. If you are dynamically creating the slider and you want it to
display ticks, simply adding the either the TBS_VERT or the TBS_HORZ style equips

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 553

the slider with ticks. If you do not want to display the ticks at all, at design time, clear the
Tick Marks property or set its value to False.

The ticks are positioned on the side the thumb is pointing. If the slider is created with the
Both value for the Point property or the TBS_BOTH style, the ticks would appear on
both sides the thumb.

The thumb of a slider is used to scroll from one minimum value to another. The range of
these extreme values can be divided in regular increments that can further guide the user
with value selection. To display where these increments are set, at design time, set the
Auto Ticks property to True or add the TBS_AUTOTICKS style:

 Practical Learning: Designing a Track Bar

1. While the slider control is selected on the dialog box, on the Properties window,
change its ID to IDC_SLIDER

2. Check its Auto Ticks check box or set it to True

3. Check its Tick Marks check box or set it to True

4. Set its Point property to Top/Left

5. Set to True the Tooltips property of the slider control

6. Add a Control variable for the slider and name it m_CarSlider

7. Test the application and return to MSVC

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

554 © FunctionX, Inc.

17.3.4 Slider Methods
As seen earlier, the slider control is based on the CSliderCtrl class. Therefore, we saw
that we can dynamically create a slider by declaring pointer to CSliderCtrl and call its
Create() method to initialize it. Once a slider has been designed and received the desired
style, you can programmatically use it and provide the necessary feedback to the user.

A slider is a control that provides a range of values between which the user can navigate
using the control’s thumb or by clicking on the slider’s line. Usually, the first aspect you
may need to configure on your control is to specify its limit values. To specify the
minimum value of a slider control, you can call the CSliderCtrl::SetRangeMin()
method. Its syntax is:

void SetRangeMin(int nMin, BOOL bRedraw = FALSE);

The nMin value is the new minimum value that the slider can assume. The control is
typically redrawn once the new value has been set. If you do not want the control to be
redrawn, pass a second argument with the FALSE value. If the lowest value of the
control has already been set and you want to find out what that value is, you can call the
CSliderCtrl::GetRangeMin() method. Its syntax is:

int GetRangeMin() const;

This method simply returns the lowest value that the slider can assume when the user has
dragged the thumb to the extreme left or bottom.

To set the highest value of a slider control, you can call the SliderCtrl::SetRangeMax()
method. Its syntax is:

void SetRangeMax(int nMax, BOOL bRedraw = FALSE);

The nMax argument holds the new maximum value for the control. Here is an example:

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 m_Slider.SetRangeMin(0);
 m_Slider.SetRangeMax(50);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

If the maximum value of the control had previously been set, you can find it out by
calling the SliderCtrl::GetRangeMax() method. Its syntax is:

int GetRangeMax() const;

This method returns the highest value that the slider control can have.

To set both the minimum and the maximum values of the slider with one line of code,
you can call the CSliderCtrl::SetRange() method. Its syntax is:

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 555

void SetRange(int nMin, int nMax, BOOL bRedraw = FALSE);

The nMin and the nMax arguments hold the lowest and the highest respective values of
the control. Here is an example:

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 m_Slider.SetRange(0, 50);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

If the control is already functioning and you want to know its limit values, you can call
the CSliderCtrl::SetRange() method whose syntax is:

void GetRange(int& nMin, int& nMax) const;

This method returns two values, namely the lowest value, as nMin, and the highest value,
as nMax.

Once the minimum and maximum values have been set, the user can slide the thumb to
select a value or a range. This value is what mostly interests you. While sliding the
thumb, the value of the slider is called its position. At startup or at any time, you can set a
specific position for the thumb. This can be done by calling the CSliderCtrl::SetPos()
method. Its syntax is:

void SetPos(int nPos);

The nPos argument holds the new position of the slider. Here is an example:

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 m_Slider.SetRange(0, 50);
 m_Slider.SetPos(32);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

The value specified using the SetPos() method should be in the range nMax – nMin of the
SetRange() method. If there is a possibility that this value is outside the valid range, you
can call the CSliderCtrl::VerifyPos() method to check it. Its syntax is:

void VerifyPos();

When the position of the thumb has change and you want to find out what it is, call the
CSliderCtrl::GetPos() method whose syntax is:

int GetPos() const;

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

556 © FunctionX, Inc.

If the slider control was specified to let the user select a range, you can define your own
selected range at any time by calling the CSliderCtrl::SetSelection() method. Its syntax
is:

void SetSelection(int nMin, int nMax);

When calling this method, make sure you specify the nMin and the nMax values so that
this nMin is greater than the minimum value of the slider and this nMax is less than the
highest possible value of the slider. Furthermore, the value of this nMin must be less than
that of nMax. This relationship can be illustrated as follows:

Minimum <= nMin < nMax <= Maximum

Here is an example:

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 m_Slider.SetRange(0, 50);
 m_Slider.SetPos(32);
 m_Slider.SetSelection(22, 42);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

If a selected range has been performed on the slider, if you want to get the minimum and
the maximum values of the selection, you can call the CSliderCtrl::GetSelection()
method whose syntax is:

void GetSelection(int& nMin, int& nMax) const;

This method returns two values, the minimum as nMin and the maximum as nMax.

If the slider control is configured to display ticks, you can specify their frequency with a
call to the CSliderCtrl::SetTicFreq() method. Its syntax is:

void SetTicFreq(int nFreq);

 Practical Learning: Using Track Bar Events
1. In the OnInitDialog event of the dialog class, set the range of values of the slider to 0

to 9 and the frequency of its ticks to:

 m_CarSlider.SetRange(1, 10);
 m_CarSlider.SetTicFreq(1);

Visual C++ and MFC Fundamentals Chapter 17: Track-Based Controls

© FunctionX, Inc. 557

 return TRUE; // return TRUE unless you set the focus to a control
}

2. Test the application and return to MSVC

17.3.5 Slider Events
On its own, the slider controls can send three notification messages:

?? The NM_OUTOFMEMORY message is sent when the slider has run out of
memory and could not complete a task

?? The NM_RELEASECAPTURE message is sent when the user releases the
mouse on the slider

?? The NM_CUSTOMDRAW message is used if you want to draw something on
the slider or you want to customize the appearance of the slider beyond what
Visual C++ proposes

For its functionality, the slider highly relies on its parent. When the user clicks the thumb
or any part of the slider, which causes it to slide, a scroll event is fired. If the slider is
horizontal, the CWnd::OnHScroll() event is sent. If the slider is vertical, the
CWnd::OnVScroll() event is sent.

 Practical Learning: Scrolling a Slider Control

1. Change the OnPaint() event of the dialog class as follows:

void CCarInventory1Dlg::OnPaint()
{
 int CurPos = m_CarSlider.GetPos() - 1;
 CBitmap Bmp;

 Bmp.LoadBitmap(Car[CurPos].CarPicture);

 m_Make.Format("%s", Car[CurPos].Make);
 m_Model.Format("%s", Car[CurPos].Model);
 m_Year.Format("%d", Car[CurPos].CarYear);
 m_Doors.Format("%d", Car[CurPos].Doors);
 m_Picture.SetBitmap(Bmp);
 UpdateData(FALSE);

 . . .
}

2. Using either the ClassWizard (MSVC 6) or the Messages button , for the dialog,
generate the WM_HSCROLL message and implement it as follows:

void CSlider1Dlg::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
{
 // TODO: Add your message handler code here and/or call default
 Invalidate();

 CDialog::OnHScroll(nSBCode, nPos, pScrollBar);
}

3. Test the application

Chapter 17: Track-Based Controls Visual C++ and MFC Fundamentals

558 © FunctionX, Inc.

4. Return to MSVC

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 559

Chapter 18:
Progress-Based Controls

? Timers

? Progress Controls

? Progress Bars

? Scroll Bars

? Flat Scroll Bars

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

560 © FunctionX, Inc.

18.1 Timers

18.1.1 Overview
A timer is a non-spatial object that uses recurring lapses of time from a computer or from
your application. To work, every lapse of period, the control sends a message to the
operating system. The message is something to the effect of "I have counted the number
of lapses you asked me to count".

As opposed to the time set on your computer, a timer is partly but greatly under your
control. Users do not see nor use a timer as a control. As a programmer, you decide if,
why, when, and how to use this control.

 Practical Learning: Introducing the Timer Control
1. Start MSVC and create a new project named RandShapes

2. Create it as a Dialog Based application with no About box

3. Delete the TODO line, the OK, and the Cancel buttons

4. Set the Border style to None

5. In the header file of the dialog box, declare two integer variables named DlgWidth
and DlgHeight

public:
 int DlgWidth;
 int DlgHeight;
};

6. To make the dialog box occupy the whole screen when it comes up, change the
OnInitDialog() event as follows:

BOOL CRandShapesDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 DlgWidth = GetSystemMetrics(SM_CXSCREEN);
 DlgHeight = GetSystemMetrics(SM_CYSCREEN);

 SetWindowPos(&wndTopMost, 0, 0, DlgWidth, DlgHeight , SWP_SHOWWINDOW);

 return TRUE; // return TRUE unless you set the focus to a control
}

7. Because you cannot close System Menu-less window, to make sure you can close it
by moving the mouse, generate the WM_MOUSEMOVE message for the dialog
box and implement its OnMouseMove() event as follows:

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 561

void CRandShapesDlg::OnMouseMove(UINT nFlags, CPoint point)
{
 // TODO: Add your message handler code here and/or call default
 static int MoveCounter = 0;

 if(MoveCounter >= 20)
 DestroyWindow();
 MoveCounter++;

 CDialog::OnMouseMove(nFlags, point);
}

8. To change the background of the dialog box to black, change the OnPaint() event as
follows:

void CRandShapesDlg::OnPaint()
{
 CPaintDC dc(this); // device context for painting
 CRect ScreenRecto;

 GetClientRect(&ScreenRecto);
 CBrush BrushBlack(RGB(0, 0, 0));

 CBrush *pOldBrush = dc.SelectObject(&BrushBlack);

 dc.Rectangle(ScreenRecto);
 dc.SelectObject(pOldBrush);

 if (IsIconic())
 {
 SendMessage(WM_ICONERASEBKGND,
 reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0);

 // Center icon in client rectangle
 int cxIcon = GetSystemMetrics(SM_CXICON);
 int cyIcon = GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon + 1) / 2;
 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 CDialog::OnPaint();
 }
}

9. Test the application and return to MSVC

10. To hide the cursor, at the end of the OnInitDialog() event, just before the return line,
call the ShowCursor() function with a FALSE argument.

18.1.2 The Timer Control
Unlike most other controls, the MFC timer has neither a button to represent it nor a class.
To create a timer, you simply call the CWnd::SetTimer() method. Its syntax is:

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

562 © FunctionX, Inc.

UINT SetTimer(UINT nIDEvent , UINT nElapse,
 void (CALLBACK EXPORT* lpfnTimer)(HWND, UINT, UINT, DWORD));

This function call creates a timer for your application. Like the other controls, a timer
uses an identifier. This is passed as the nIDEvent argument. As mentioned already, when
it is accessed, a timer starts counting up to a set value. Once it reaches that value, it stops
and starts counting again. The nElapse argument specifies the number of milliseconds
that the timer must count before starting again. The lpfnTimer argument is the name of a
procedure that handles the timing event of the control. This argument can be set to
NULL, in which case the timing event would rest on the CWnd’s responsibility.

 Practical Learning: Using Timer Controls

1. To create a timer, in the OnInitDialog() event, before the return line, type
SetTimer(1, 200, 0); :

BOOL CRandShapesDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 DlgWidth = GetSystemMetrics(SM_CXSCREEN);
 DlgHeight = GetSystemMetrics(SM_CYSCREEN);

 SetWindowPos(&wndTopMost, 0, 0, DlgWidth, DlgHeight,
 SWP_SHOWWINDOW);

 SetTimer(1, 200, 0);

 return TRUE; // return TRUE unless you set the focus to a control
}

2. Save All

18.1.3 The Timer Messages and Methods
When a timer is accessed or made available, it starts counting. Once the nElapse value of
the CWnd::SetTimer() method is reached, its sends a WM_TIMER message to the
application.

We saw that a timer is initiated with a call to SetTimer(). When you do not need the
timer anymore, call the CWnd::KillTimer() method. Its syntax is:

BOOL KillTimer(int nIDEvent);

The nIDEvent argument identifies the timer that was created with a previous call to
SetTimer().

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 563

 Practical Learning: Using the OnTimer Event
1. To generate the OnTimer() event, in the Class View tab, click the CRandShapesDlg

class. In the Properties window, click the Messages button

2. Click the WM_TIMER field and click the arrow of its combo box. Select <Add>
OnTimer and implement the event as follows:

void CRandShapesDlg::OnTimer(UINT nIDEvent)
{
 // TODO: Add your message handler code here and/or call default
 CClientDC dc(this);

 int x = (rand() % DlgWidth) + 10;
 int y = (rand() % DlgHeight) + 10;
 CBrush BrushRand(RGB(rand() % 255, rand() % 255, rand() % 255));
 CPen PenRand(PS_SOLID, 1, RGB(rand() % 255,
 rand() % 255, rand() % 255));

 CBrush *pOldBrush = dc.SelectObject(&BrushRand);
 CPen *pOldPen = dc.SelectObject(&PenRand);

 switch(rand() % 5)
 {
 case 0:
 dc.Ellipse(x, abs(y-200), abs(y-x), y);
 break;
 case 1:
 dc.Rectangle(y, x, abs(y-x), (x+y)%255);
 break;
 case 2:
 dc.RoundRect(y, x, y, x, abs(x-y), x+y);
 break;
 case 3:
 dc.Ellipse(y, x, abs(x-y), x+y);
 break;
 case 4:
 dc.Rectangle(x, y, abs(x-y), x+y);
 break;
 }

 dc.SelectObject(pOldBrush);
 dc.SelectObject(pOldPen);

 CDialog::OnTimer(nIDEvent);
}

3. To generate a random seed and to hide the cursor, in the OnInitDialog() event, call
ShorCursor(FALSE) and srand():

BOOL CRandShapesDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

564 © FunctionX, Inc.

 DlgWidth = GetSystemMetrics(SM_CXSCREEN);
 DlgHeight = GetSystemMetrics(SM_CYSCREEN);

 SetWindowPos(&wndTopMost, 0, 0, DlgWidth, DlgHeight,
 SWP_SHOWWINDOW);

 ShowCursor(FALSE);

 srand((unsigned)time(NULL));

 SetTimer(1, 200, 0);

 return TRUE; // return TRUE unless you set the focus to a control
}

4. Test the application and return to MSVC

18.1.4 The Tick Counter
The Win32 library provides a special function used to count a specific number of lapses
that have occurred since you started your computer. This information or counter is
available through the GetTickCount() function. Its syntax is:

DWORD GetTickCount(VOID);

This function takes no argument. If it succeeds in performing its operation, which it
usually does, it provides the number of milliseconds that have elapsed since you started
your computer. Just like the timer control, what you do with the result of this function is
up to you and it can be used in various circumstances. For example, computer games and
simulations make great use of this function.

After retrieving the value that this function provides, you can display it in a text -based
control.

 Practical Learning: Counting the Computer's Ticks

1. Start a new MFC Application named TickCounter

2. Create it as Dialog Based with no About Box

3. Change the design of the IDR_MAINFRAME icon as follows:

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 565

Here is how we will design the dialog box:

4. Add a Group Box control to the dialog box and set its Caption to Elapsed Time

5. Add a long Static Text control to the group box. Change its ID to
IDC_COMP_TIME and its Caption to
This computer has been ON for XXXXXXXXXXXXXXXXXXXXX

6. Add another Static Text control to the group box. Change its ID to IDC_APP_TIME
and its Caption to
This application has been running for XXXXXXXXXXXXXXXXXXXX

7. Add a Value Variable for the IDC_COMP_TIME identifier and name it
m_CompTime

8. Add a Value Variable for the IDC_COMP_TIME identifier and name it
m_AppTime

9. In the header file of the dialog box, declare an unsigned integer as follows:

public:
 CString m_CompTime;
 CString m_AppTime;
 unsigned int CompTime;
};

10. To create a timer control, in the OnInitDialog() event, call the SetTimer() method
and initialize the CompTime variable as follows:

BOOL CTickCounterDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

566 © FunctionX, Inc.

 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 CompTime = GetTickCount();
 SetTimer(1, 100, NULL);

 return TRUE; // return TRUE unless you set the focus to a control
}

11. Generate the WM_TIMER message for the dialog class and implement it as
follows:

void CTickCounterDlg::OnTimer(UINT nIDEvent)
{
 // TODO: Add your message handler code here and/or call default
 unsigned long CurTickValue = GetTickCount();
 unsigned int Difference = CurTickValue - CompTime;

 m_CompTime.Format("This computer has been ON for %d", CurTickValue);
 m_AppTime.Format("This application has been running for %d", Difference);
 UpdateData(FALSE);

 CDialog::OnTimer(nIDEvent);
}

12. Test the application

13. After testing the application, close it and return to MSVC

14. To make the values easier to read, change the code of the OnTimer event as follows:

void CTickCounterDlg::OnTimer(UINT nIDEvent)
{
 // TODO: Add your message handler code here and/or call default
 unsigned long CurTickValue = GetTickCount();
 unsigned int Difference = CurTickValue - CompTime;

 unsigned int ComputerHours, ComputerMinutes, ComputerSeconds;
 unsigned int ApplicationHours, ApplicationMinutes, ApplicationSeconds;

 ComputerHours = (CurTickValue / (3600 * 999)) % 24;
 ComputerMinutes = (CurTickValue / (60 * 999)) % 60;
 ComputerSeconds = (CurTickValue / 999) % 60;
 ApplicationHours = (Difference / (3600 * 999)) % 24;
 ApplicationMinutes = (Difference / (60 * 999)) % 60;
 ApplicationSeconds = (Difference / 999) % 60;

 m_CompTime.Format("This computer has been ON for %d hours, %d minutes
%d seconds", ComputerHours, ComputerMinutes, ComputerSeconds);
 m_AppTime.Format("This application has been running for %d hours, %d
minutes %d seconds", ApplicationHours, ApplicationMinutes, ApplicationSeconds);

 UpdateData(FALSE);

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 567

 CDialog::OnTimer(nIDEvent);
}

15. Test the application

16. After testing the application, close it

18.2 Progress Controls

18.2.1 Overview
The Progress control is used to display the evolution of an activity, especially for a long
operation. Like a label control, a progress control is used only to display information to
the user who cannot directly change it.

 Practical Learning: Introducing Progress Bars
1. Start a new MFC Application named PClock

2. Create it as Dialog Box without an About Box

3. Delete the TODO line and change the design of the IDR_MAINFRAME as follows:

4. Add three Static Text controls to the left section of the dialog box with captions from
top down as Hours:, Minutes:, and Seconds respectively

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

568 © FunctionX, Inc.

18.2.2 Progress Bar Properties
To create a progress control, on the Controls toolbox, you can click the Progress button

 and click the desired area on the parent window. The progress control is based on
the CProgressCtrl class, which can help you dynamically create the control.

After adding a progress control to a host, it assumes a horizontal orientation by default. If
you want the progress control to be vertical, check its Vertical property or set it to True.
If you are dynamically creating the control and you want it vertical, add the
PBS_VERTICAL style to it.

A progress bar displays regular small rectangles inside a longer or taller rectangle. This
outside rectangle serves as their border. If you do not want the border that delimits the
control, uncheck its default checked Border property or set it to False. The small
rectangles appear distinct from one another. If you do not want the small rectangles
visible, you can create a smooth progress bar by checking the Smooth property or setting
it to True. This is equivalent to adding the PBS_SMOOTH style.

 Practical Learning: Creating a Progress Bar

1. From the Controls toolbox, click the Progress button and click on the right side
of the Hours label

2. Using the Properties window, check its Smooth check box or set it to True

3. Change its ID to IDC_PRGS_HOURS

4. In the same way, add a Smooth progress bar to the right side of the Minutes label.
Change its ID to IDC_PRGS_MINUTES

5. Once more, add a Smooth progress control to the right side of the Seconds static
control and change its ID to IDC_PRGS_SECONDS

6. Add a Static Text control to the right side of the Hours progress control and change
its ID to IDC_VAL_HOURS

7. Add another Static Text control to the right side of the Minutes progress bar and
change its ID to IDC_VAL_MINUTES

8. Add another Static Text control to the right side of the Seconds progress bar and
change its ID to IDC_VAL_SECONDS

9. Add a Static Text to the top right section of the dialog box and set its Caption to
Time

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 569

10. Add a Control Variable for the progress controls and name them from top down as:
m_ProgressHours , m_ProgressMinutes , and m_ProgressSeconds respectively

11. Add a CString Value Variable for the IDC_VAL_HOURS, the
IDC_VAL_MINUTES, and the IDC_VAL_SECONDS identifiers and name them
m_ValueHours , m_ValueMinutes , and m_ValueSeconds respectively

12. Test the application and return to MSVC

18.2.3 Progress Control Methods and Events
We mentioned already, an MFC progress bar is based on the CProgressCtrl class.
Therefore, to dynamically create a progress bar, you can declare a variable or a pointer to
CProgressCtrl using its constructor. To initialize it, call its Create() method and set the
necessary characteristics. Here is an example:

BOOL CDlgProgress1Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 CProgressCtrl *Progress = new CProgressCtrl;

 Progress->Create(WS_CHILD | WS_VISIBLE, CRect(10, 10, 288, 35), this,0x16);

 return TRUE; // return TRUE unless you set the focus to a control
}

To express its evolution, a progress bar uses values from a minimum to a maximum.
These limit values are set using the CProgressCtrl::SetRange() or the
CProgressCtrl::SetRange32() methods. Their syntaxes are:

void SetRange(short nLower, short nUpper);
void SetRange32(int nLower, int nUpper);

The nLower argument sets the minimum value for the control. The nUpper argument is
the maximum value of the control. Here is an example:

BOOL CDlgProgress1Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 CProgressCtrl *Progress = new CProgressCtrl;

 Progress->Create(WS_CHILD | WS_VISIBLE, CRect(10, 10, 288, 35), this,0x16);
 Progress->SetRange(1, 100);

 return TRUE; // return TRUE unless you set the focus to a control
}

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

570 © FunctionX, Inc.

If the range of values has already been set and you want to find it out, you can call the
CProgressCtrl::GetRange() method. Its syntax is:

void GetRange(int& nLower, int& nUpper);

This member function returns two values: nLower is the current minimum value of the
control while nUpper is returned as its maximum value.

Once a progress control has been created and when it comes up, it assumes its minimum
value. While the control is working, it keeps changing its value by stepping to the next
value. By default, its next value is set to 10. If you want to specify a different incremental
value, call the CProgressCtrl::SetStep() method whose syntax is:

int SetStep(int nStep);

The nStep argument is the value set to increment the position of the progress control.
Once this value is set, when the control is progressing, it increments its value by that
value to get to the next step. If you want to explicitly ask it to step to the next incremental
value, call the CProgressCtrl::StepIt() method. Its syntax is:

int StepIt();

Although the user cannot directly modify it, you can change the value of a progress bar
by calling the CProgressCtrl::SetPos() method whose syntax is:

int SetPos(int nPos);

This method can be called either to set the initial value of the control or to simply change
it at any time. Here is an example:

BOOL CDlgProgress1Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 CProgressCtrl *Progress = new CProgressCtrl;

 Progress->Create(WS_CHILD | WS_VISIBLE, CRect(10, 10, 288, 35), this,0x16);
 Progress->SetRange(1, 100);
 Progress->SetPos(38);

 return TRUE; // return TRUE unless you set the focus to a control
}

While the control is working, if you want to find out the value it is holding, you can call
the CProgressCtrl::GetPos() method. Its syntax is:

int GetPos();

This method returns the current position of the progress control.

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 571

 Practical Learning: Using a Progress Bar
1. To specify the initial values of the progress controls, set their range appropriately in

the OnInitDialog() event. Also, create a timer control

BOOL CPClockDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_ProgressHours.SetRange(0, 23);
 m_ProgressHours.SetStep(1);
 m_ProgressMinutes.SetRange(0, 59);
 m_ProgressMinutes.SetStep(1);
 m_ProgressSeconds.SetRange(0, 59);
 m_ProgressSeconds.SetStep(1);

 SetTimer(1, 40, NULL);

 return TRUE; // return TRUE unless you set the focus to a control
}

2. Generate the WM_TIMER message for the dialog box and implement it as follows:

void CPClockDlg::OnTimer(UINT nIDEvent)
{
 // TODO: Add your message handler code here and/or call default
 // Get the current time of the computer
 CTime CurTime = CTime::GetCurrentTime();

 // Find the hour, the minute, and the second values of the time
 int ValHours = CurTime.GetHour();
 int ValMinutes = CurTime.GetMinute();
 int ValSeconds = CurTime.GetSecond();

 // Change each progress bar accordingly
 m_ProgressHours.SetPos(ValHours);
 m_ProgressMinutes.SetPos(ValMinutes);
 m_ProgressSeconds.SetPos(ValSeconds);

 // Display the position of the progress in the right label
 m_ValueHours.Format("%d", m_ProgressHours.GetPos());
 m_ValueMinutes.Format("%d", m_ProgressMinutes.GetPos());
 m_ValueSeconds.Format("%d", m_ProgressSeconds.GetPos());
 UpdateData(FALSE);

 CDialog::OnTimer(nIDEvent);
}

3. Test the application

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

572 © FunctionX, Inc.

4. Close it and return to MSVC

18.3 Progress Bars

18.3.1 Introduction
Besides the Progress control, Visual C++ provides two other progress-oriented controls:
the Microsoft Progress Control Version 5.0 and the Microsoft Progress Control Version
6.0 with the main difference on their ability to assume one or two orientations.

 Practical Learning: Introducing Progress Bars
1. Start a new MFC Application named BodyMonitor and create it as Dialog Based

2. Delete the TODO line and move the buttons to the bottom section of the dialog

18.3.2 Creating Progress Bars
To add a progress bar to your application, from the Insert ActiveX Control dialog box,
select the desired one. For this lesson, because everything available in Version 5.0 is also
available in Version 6.0, we will use the later.

After adding a progress bar to a parent window, it assumes a horizontal display. This is
controlled by the Orientation property (not available in Version 5.0) whose default value
is 0 – ccOrientationHorizontal . If you want the progress bar to be vertical, change this
property to a 1 – ccOrientationVertical value.

The range of values that a progress bar can assume is set using the Min property for the
minimum value and the Max field for the highest value.

 Practical Learning: Creating Progress Bars

1. Right-click anywhere on the dialog box and click Insert ActiveX Control

2. In the ActiveX Control list of the Insert ActiveX Control dialog box, click Microsoft
ProgressBar Control, version 6.0 and click OK

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 573

3. Using the Properties window, change its Orientation property to
1 – ccOrientationVertical

4. On the dialog box, right-click the ProgressBar and click Copy. Right-click anywhere
on the dialog box and click Paste many times until you get 10 ProgressBar controls

5. Design the dialog box as follows:

6. Change the IDs of the top Static Text controls and Add a CString Value Variable for

each. Also, set the IDs of the ProgressBar controls and add a Control Variable for
each as follows:

Control ID to Set Caption Align
Text

Control
Variable

Value Variable

Static Text IDC_VAL_BLOOD 000 Center m_ValBlood
Static Text IDC_VAL_HEART 000 Center m_ValHeart
Static Text IDC_VAL_KIDNEY 000 Center m_ValKidney
Static Text IDC_VAL_BRAIN 000 Center m_ValBrain
Static Text IDC_VAL_LLUNG 000 Center m_ValLLung
Static Text IDC_VAL_RLUNG 000 Center m_ValRLung
Static Text IDC_VAL_PANCREAS 000 Center m_ValPancreas

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

574 © FunctionX, Inc.

Static Text IDC_VAL_LIVER 000 Center m_ValLiver
Static Text IDC_VAL_BLADDER 000 Center m_ValBladder
Static Text IDC_VAL_STOMACH 000 Center m_ValStomach
ProgressBar IDC_PRGR_BLOOD m_Blood
ProgressBar IDC_PRGR_HEART m_Heart
ProgressBar IDC_PRGR_KIDNEY m_Kidney
ProgressBar IDC_PRGR_BRAIN m_Brain
ProgressBar IDC_PRGR_LLUNG m_LLung
ProgressBar IDC_PRGR_RLUNG m_RLung
ProgressBar IDC_PRGR_PANCREAS m_Pancreas
ProgressBar IDC_PRGR_LIVER m_Liver
ProgressBar IDC_PRGR_BLADDER m_Bladder
ProgressBar IDC_PRGR_STOMACH m_Stomach

7. Using the Resource Symbols dialog box, add ten new identifiers as IDT_BLOOD ,
IDT_HEART, IDT_KIDNEY, IDT_BRAIN , IDT_LLUNG, IDT_RLUNG,
IDT_PANCREAS , IDT_LIVER , IDT_BLADDER , and IDT_STOMACH

8. In the OnInitDialog() event of the dialog class, create the following timers and

generate a random seed:

BOOL CBodyMonitorDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 SetTimer(IDT_BLOOD, 650, NULL);
 SetTimer(IDT_HEART, 200, NULL);
 SetTimer(IDT_KIDNEY, 450, NULL);
 SetTimer(IDT_BRAIN, 1000, NULL);
 SetTimer(IDT_LLUNG, 750, NULL);

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 575

 SetTimer(IDT_RLUNG, 850, NULL);
 SetTimer(IDT_PANCREAS, 800, NULL);
 SetTimer(IDT_LIVER, 1200, NULL);
 SetTimer(IDT_BLADDER, 550, NULL);
 SetTimer(IDT_STOMACH, 1500, NULL);

 srand(static_cast<unsigned>(time(NULL)));

 return TRUE; // return TRUE unless you set the focus to a control
}

9. Save All

18.3.3 Progress Bars Methods and Events
The values of a progress bar are float, unlike the progress control that mostly uses
integers. To set the minimum value for the progress bar, call its SetMin() method. To set
the maximum value, call the SetMax() method. These two methods expects a float
number as argument. If these values have already been set, you can retrieve them by
calling the GetMin() or the GetMax() methods respectively.

To set the initial value of the progress bar or to change its value any timer, you can call
the SetValue() method. Also, at anytime, you can retrieve the position of the control by
calling the GetValue() method.

Because the user cannot change the value of a progress bar, it does not fire value-related
events. On the other hand, it provides you with the ability to do something when the user
clicks or positions the mouse over the control. If you user simply positions the mouse or
moves it on top of the progress bar, it fires the MouseMove() event. At the same time, if
the user presses a mouse button on the progress bar, it fires the MouseDown() event.
When the user releases the mouse, the MouseUp() event is sent. Clicking the progress
bar causes it to fire the Click() event.

 Practical Learning: Using a ProgressBar Control
1. Generate a WM_TIMER message for the dialog box and implement it as follows:

void CBodyMonitorDlg::OnTimer(UINT nIDEvent)
{
 // TODO: Add your message handler code here and/or call default
 float Blood = static_cast<float>(rand() % 100);
 float Heart = static_cast<float>(rand() % 100);
 float Kidney = static_cast<float>(rand() % 100);
 float Brain = static_cast<float>(rand() % 100);
 float LeftLung = static_cast<float>(rand() % 100);
 float RightLung = static_cast<float>(rand() % 100);
 float Pancreas = static_cast<float>(rand() % 100);
 float Liver = static_cast<float>(rand() % 100);
 float Bladder = static_cast<float>(rand() % 100);
 float Stomach = static_cast<float>(rand() % 100);

 if(nIDEvent == IDT_BLOOD)
 {
 m_Blood.put_Value(Blood);
 // Make a sound if the value of the heart is too high
 if(Blood >= 85)

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

576 © FunctionX, Inc.

 MessageBeep(MB_ICONEXCLAMATION);
 }
 if(nIDEvent == IDT_HEART)
 m_Heart.put_Value(Heart);
 if(nIDEvent == IDT_KIDNEY)
 m_Kidney.put_Value(Kidney);
 if(nIDEvent == IDT_BRAIN)
 m_Brain.put_Value(Brain);
 if(nIDEvent == IDT_LLUNG)
 m_LLung.put_Value(LeftLung);
 if(nIDEvent == IDT_RLUNG)
 m_RLung.put_Value(RightLung);
 if(nIDEvent == IDT_PANCREAS)
 m_Pancreas.put_Value(Pancreas);
 if(nIDEvent == IDT_LIVER)
 m_Liver.put_Value(Liver);
 if(nIDEvent == IDT_BLADDER)
 m_Bladder.put_Value(Bladder);
 if(nIDEvent == IDT_STOMACH)
 m_Stomach.put_Value(Stomach);

 m_ValBlood.Format("%.f.%d", m_Blood.get_Value(), rand()%99);
 m_ValHeart.Format("%.f\260", m_Heart.get_Value());
 m_ValKidney.Format("%.f\045", m_Kidney.get_Value());
 m_ValBrain.Format("<%.f", m_Brain.get_Value());
 m_ValLLung.Format("%.f'%d\"", m_LLung.get_Value(), 2+rand()%9);
 m_ValRLung.Format("%.f\261", m_RLung.get_Value());
 m_ValPancreas.Format("\273%.f", m_Pancreas.get_Value());
 m_ValLiver.Format("%.f\260", m_Liver.get_Value());
 m_ValBladder.Format("\247%.f\252", m_Bladder.get_Value());
 CString SCode;
 switch(rand()%3)
 {
 case 0:
 SCode.Format("%s", "\274");
 break;
 case 1:
 SCode.Format("%s", "\275");
 break;
 case 2:
 SCode.Format("%s", "\276");
 break;
 }
 m_ValStomach.Format("%.f%s", m_Stomach.get_Value(), SCode);

 UpdateData(FALSE);

 CDialog::OnTimer(nIDEvent);
}

2. Test the application

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 577

3. Close it and return to MSVC

18.4 Scroll Bars

18.4.1 Introduction
A scroll bar is a control that allows the user to navigate a document in two directions
along a control by clicking an arrow. This control can assume one of two directions:
horizontal or vertical. For its functionality, a scroll bar is made of three parts:

?? An arrow on each side of the control: up and down pointing for a vertical scroll
bar, or left and right pointing for a horizontal scroll bar

?? A thumb

?? A scrolling region

To use the scroll bar, the user can click one of the arrows. This action moves the thumb
towards the arrow being clicked. Another way to use a scroll bar is to click and hold the

Arrows

Scrolling
Region

Thumb

Thumb

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

578 © FunctionX, Inc.

thumb, then slide in the desired direction. Yet another technique the user ca apply
consists of clicking in the scrolling region.

18.4.2 Creating Scroll Bars on Views and Dialog Boxes
A scroll bar is usually applied in one of two scenarios. On a document, the view can be
equipped with one or two scroll bars. A vertical scroll bar can be positioned to the right
side of the view and associated with the frame. Such a scroll bar allows the user to
navigate up and down if the view cannot completely display its document. Here is an
example of a vertical scroll bar on Notepad:

To provide this scroll bar, create the frame with the WS_VSCROLL style. Here is an
example:

#include <afxwin.h>

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame()
 {
 // Create the window's frame
 Create(NULL, "Windows Application",
 WS_OVERLAPPEDWINDOW | WS_VSCROLL,
 CRect(120, 100, 420, 320));
 }
};

class CSimpleApp : public CWinApp
{
public:
 BOOL InitInstance()
 {
 m_pMainWnd = new CMainFrame();

Vertical
Scroll Bar

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 579

 // Show the window
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
 }
};

CSimpleApp theApp;

To equip your frame with a horizontal scroll bar, create it with the WS_HSCROLL
style:

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame()
 {
 // Create the window's frame
 Create(NULL, "Windows Application",
 WS_OVERLAPPEDWINDOW | WS_HSCROLL,
 CRect(120, 100, 420, 320));
 }
};

To get both scroll bars, combine both styles:

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

580 © FunctionX, Inc.

class CMainFrame : public CFrameWnd
{
public:
 CMainFrame()
 {
 // Create the window's frame
 Create(NULL, "Windows Application",
 WS_OVERLAPPEDWINDOW |
 WS_VSCROLL | WS_HSCROLL,
 CRect(120, 100, 420, 320));
 }
};

Suppose you created your application using AppWizard. If you created a CView-based
application, to add a vertical scroll bar, in your CView::PreCreateWindow() event, add
the WS_VSCROLL style to the CREATESTRUCT object. Here is an example:

BOOL CFrame3View::PreCreateWindow(CREATESTRUCT& cs)
{
 // Keep the existing styles but add the WS_VSCROLL value
 cs.style |= WS_VSCROLL;

 return CView::PreCreateWindow(cs);
}

In the same way, you can add only the WS_HSCROLL value to get only the horizontal
scroll bar:

BOOL CFrame3View::PreCreateWindow(CREATESTRUCT& cs)
{
 // Keep the existing styles but add the WS_VSCROLL value
 cs.style |= WS_HSCROLL;

 return CView::PreCreateWindow(cs);
}

If you want both scroll bars, combine both the WS_VSCROLL and the WS_HSCROLL
values:

BOOL CFrame3View::PreCreateWindow(CREATESTRUCT& cs)
{
 // Keep the existing styles but add the WS_VSCROLL value

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 581

 cs.style |= WS_VSCROLL | WS_HSCROLL;

 return CView::PreCreateWindow(cs);
}

If you are creating a dialog box and you want to equip it with a vertical scroll bar, at
design time, set its Vertical Scroll property to True:

To equip the dialog box with only a horizontal scroll bar, set its Horizontal Scroll
property to True. In the same way, to provide both scroll bars to a dialog box, set both
properties to True:

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

582 © FunctionX, Inc.

 Practical Learning: Introducing Scroll Bar Controls
1. Start a new MFC Application named Previewer

2. Create it as Dialog Based without an About Box

3. Move the OK and the Cancel buttons to the bottom section of the dialog box

4. Add a Picture control and draw a rectangle on the top left section of the dialog
box. Change the Picture’s ID to IDC_PREVIEW

5. Add a CStatic Control Variable for the picture control and name it m_Preview

6. In the header file of the dialog, declare three integer variables named ColorRed,
ColorGreen, and ColorBlue

7. Also, declare a member function of type void and named PaintPreviewArea

private:
 int ColorRed;
 int ColorGreen;
 int ColorBlue;
public:
 void PaintPreviewArea(void);
};

8. Implement the method as follows:

void CPreviewerDlg::PaintPreviewArea(void)
{
 CClientDC dc(this);

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 583

 CRect RectPreview;
 // Create a brush to use
 CBrush BrushColor(RGB(ColorRed, ColorGreen, ColorBlue));

 // Get the location and dimensions of the picture control
 m_Preview.GetWindowRect(&RectPreview);
 // Select the brush
 CBrush *pOldBrush = dc.SelectObject(&BrushColor);

 // Use the client coordinates
 ScreenToClient(&RectPreview);
 // Draw or update the background of the picture control
 dc.Rectangle(&RectPreview);

 // Restore the previous brush
 dc.SelectObject(pOldBrush);
}

9. In the source file, initialize each member variable with 192

CPreviewerDlg::CPreviewerDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CPreviewerDlg::IDD, pParent)
{
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

 ColorRed = 192;
 ColorGreen = 192;
 ColorBlue = 192;
}

10. Save All

18.4.3 Creating a Scroll Bar Control
The scroll bars we have added to the view classes above are inherently provided by the
operating system and can sometimes transparently added to a view of an application with
little of your intervention. Alternatively, Visual C++ provides two scroll bar controls you
can add to a dialog box or a form and positioned anywhere you judge necessary.

To add a vertical scroll bar control to a dialog box or a form at design time, on the

Controls toolbox, click the Vertical Scroll Bar button and click an area on the host.
In the same way, to add a horizontal scroll bar control, on the Controls toolbox, click the

Horizontal Scroll Bar button and click the body of dialog box or that of the form.

After adding the control, it assumes a default size. You can resize it as you would do with
any other control. Here is an example:

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

584 © FunctionX, Inc.

To dynamically create a scroll bar control, declare a pointer to CScrollBar using the the
new operator and call its Create() method to initialize it. Here is an example:

class CScrollingDlg : public CDialog
{
// Construction
public:
 CScrollingDlg(CWnd* pParent = NULL); // standard constructor
 virtual ~CScrollingDlg();

 . . .

// Implementation
protect ed:

 // Generated message map functions
 //{{AFX_MSG(CScrollingDlg)
 virtual BOOL OnInitDialog();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

private:
 CScrollBar *Scroller;
};

. . .

// ScrollingDlg.cpp : implementation file
//

#include "stdafx.h"
#include "Frame3.h"
#include "ScrollingDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CScrollingDlg dialog

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 585

CScrollingDlg::CScrollingDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CScrollingDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CScrollingDlg)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT

 Scroller = new CScrollBar;
}

CScrollingDlg::~CScrollingDlg()
{
 delete Scroller;
}

. . .

///
// CScrollingDlg message handlers

BOOL CScrollingDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 Scroller->Create(WS_CHILD | WS_VISIBLE,
 CRect(200, 15, 320, 148), this, 0x16);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

 Practical Learning: Creating Scro ll Bars

1. On the Controls toolbox, click the Vertical Scroll Bar button and click on the
right side of the picture control. Resize it to have the same height as the picture
control and change its ID to IDC_SCROLL_RED

2. Add a Control Variable for the new scroll bar control and name it m_ScrollRed

3. Add a Static Text under the new scroll bar
CChange its ID to IDC_VAL_RED
Add a CString Value Variable for the new label and name it m_ValRed

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

586 © FunctionX, Inc.

4. Add another Vertical Scroll Bar to the right of the erxisting one
Change its ID to IDC_SCROLL_GREEN
Add a Control Variable for the new scroll bar and name it m_ScrollGreen

5. Add a Static Text under the new scroll bar
CChange its ID to IDC_VAL_GREEN
Add a CString Value Variable for the new label and name it m_ValGreen

6. Add one more scroll bar control to the right of the others
Change its ID to IDC_SCROLL_BLUE
Add a Control Variable for it and name it m_ScrollBlue

7. Add a Static Text under the new scroll bar
CChange its ID to IDC_VAL_BLUE
Add a CString Value Variable for the new label and name it m_ValBlue

8. Save All

18.4.4 ScrollBar Properties
There are two forms of the scroll bars. The horizontal scroll bar allows the user to scroll
in the left and right directions. The vertical scroll bar allows scrolling up and down.
Visual C++ allows you to visual select the desired one and add to it a host. If you are
programmaticall creating the control, you can add the SBS_HORZ style to get horizontal
scroll bar. This is also the default, meaning that it you do not specify the orientation, the
scroll bar would be horizontal. If you want a vertical scroll bar instead, add the
SBS_VERT style:

BOOL CScrollingDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here

 Scroller->Create(WS_CHILD | WS_VISIBLE | SBS_VERT,
 CRect(200, 15, 320, 148), this, 0x16);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 587

}

As mentioned already, you can resize a scroll bar control to have the dimensions of your
choice. If you are programmatically creating the control, it would assume the size
allocated during design or the nWidth and the nHeight members of the rect argument of
the Create() method. Internally, the operating system has a default width for a vertical
scroll bar and a default height for a horizontal scroll bar. If you prefer to use those default
values, you have various options.

If you are visually creating the scroll bar, change the value of the Align property. Imagine
you resize the scroll bar as follows:

If you set the Align property to Top/Left for a horizontal scroll bar, it would keep its top
border and bring its border up to get the default height set by the operating system:

If you select this same value for a vertical scroll bar, it would keep its left border and
narrow the control to assume the default width of the operating system:

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

588 © FunctionX, Inc.

In the same way, you can set the Align property to a Bottom/Right value to keep the
bottom border for a horizontal scroll bar or the right border for a vertical scroll bar and
resize them to the default height or width respectively.

If you are programmaticall creating the control, to resize a horizontal scroll bar to assume
the default height known to the operating system combine the SBS_HORZ with the
SBS_TOPALIGN and possibly the SBS_BOTTOMALIGN values to its style. On the
other hand, to get the default width of a vertical scroll bar, besides the SBS_VERT style,
add the SBS_LEFTALIGN and the SBS_RIGHTALIGN values:

BOOL CScrollingDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here

 Scroller->Create(WS_CHILD | WS_VISIBLE |
 SBS_VERT | SBS_LEFTALIGN | SBS_RIGHTALIGN,
 CRect(200, 15, 320, 148), this, 0x16);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

We mentioned already that the operating system keeps a default height for a horizontal
scroll bar and a default width for a vertical scroll bar. To get these default values and
apply them to your scroll bar control, call the GetSystemMetrics() function and pass it
either the SM_CXVSCROLL or the SM_CXHSCROLL value. Then add the value to
the x member of the rect argument for the Create() method. Here is an example:

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 589

BOOL CScrollingDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 int ButtonWidth = GetSystemMetrics(SM_CXHSCROLL);

 Scroller->Create(WS_CHILD | WS_VISIBLE |
 SBS_VERT,
 CRect(200, 15, 200+ButtonWidth, 148), this, 0x16);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

18.4.5 Scroll Bar Methods
A scroll bar is based on the CScrollBar class. We already that, to programatically create
this control, you can declare a pointer to its class and initialize it using its Create()
method. Since a scroll bar is a value-range control, you must specify its minimum and
maximum values from which extremes the thumb can be navigated. To set the range of
values of a scroll bar, you can call the CScrollBar::SetScrollRange() method. Its syntax
is:

void SetScrollRange(int nMinPos, int nMaxPos, BOOL bRedraw = TRUE);

The nMinPos argument specifies the minimum value of the control. The nMaxPos
argument is the maximum value of the range. The difference between nMaxPos and
nMinPos must not be greater than 32,767. When the values have been changed, you may
want to refresh the control to reflect the change. This is the default bahavior. If for some
reason you do not want the control to be redrawn, pass a third argument as FALSE.

Here is an example:

BOOL CScrollingDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 m_Scroller.SetScrollRange(8, 120);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

If the range of a values has already been set for a scroll bar and you want to get its
minimum and its maximum possible values, call the CScrollBar::GetScrollRange()
method. Its syntax is:

void GetScrollRange(LPINT lpMinPos, LPINT lpMaxPos) const;

This method returns two values, lpMinPos and lpMaxPos. Here is an example:

void CScrollingDlg::OnBtnInfo()
{

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

590 © FunctionX, Inc.

 // TODO: Add your control notification handler code here
 int Min, Max;

 m_Scroller.GetScrollRange(&Min, &Max);
 m_MinValue.Format("%d", Min);
 m_MaxValue.Format("%d", Max);

 UpdateData(FALSE);
}

Once the control has been created and it has the minimum and maximum values set, its
thumb would appear in the minimum position. If you want it to assume another position
within the range, call the CScrollBar::SetScrollPos() method. Its syntax is:

int SetScrollPos(int nPos, BOOL bRedraw = TRUE);

The nPos argument hold the value of the new position for the thumb. This value must be
between the nMinPos and the nMaxPos values of the SetScrollRange() method. You
may need the control to be redraw after this value has been set to reflect the new change,
which is the default behavior. If you do not want the control the control to be redrawn,
pass the FALSE value as a second argument.

Here is an example:

BOOL CScrollingDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 Scroller->Create(WS_CHILD | WS_VISIBLE |
 SBS_VERT | SBS_LEFTALIGN | SBS_RIGHTALIGN,
 CRect(200, 15, 240, 148), this, 0x16);

 Scroller->SetScrollRange(12, 248);
 Scroller->SetScrollPos(165);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 591

If the position of the thumb on a scroll bar control has changed, which happens while the
user is scrolling,, you can get the current position of the thumb by calling the
CScrollBar::GetScrollPos() method. Its syntax is:

int GetScrollPos() const;

This method returns the position of the thumb on the scroll bar.

To set the minimum and the maximum values of a scroll bar, as well as the initial
position of the thumb, you can call the CScrollBar::SetScrollInfo() method. Its syntax is:

BOOL SetScrollInfo(LPSCROLLINFO lpScrollInfo, BOOL bRedraw = TRUE);

The new values to be passed to this method are stored in a SCROLLINFO variable.
Therefore, you should first build that variable. The SCROLLINFO structure is defined as
follows:

typedef struct tagSCROLLINFO {
 UINT cbSize;
 UINT fMask;
 int nMin;
 int nMax;
 UINT nPage;
 int nPos;
 int nTrackPos;
} SCROLLINFO, *LPSCROLLINFO;
typedef SCROLLINFO CONST *LPCSCROLLINFO;

The cbSize member variable is the size of the structure in bytes. The fMask value
specifies the type of value that you want to set. The possible values of fMask are:

Value Description

SIF_RANGE Used to set only the minimum and the ma ximum values
SIF_POS Used to set only the initial position of the scroll thumb
SIF_PAGE Used to set the page size to scroll when using the control
SIF_DISABLENOSCROLL Used to disable the scroll bar
SIF_ALL Used to perform all allowed operations

The nMin value is used to set the minimum value of the scroll bar while nMax specifies
its maximum value. The nPage value holds the value of the page scrolling. The nPos is
used to set the initial position of the thumb. The nTrackPos member variable must be
ignored if you are setting values for the scroll bar.

Here is an example:

BOOL CScrollingDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 SCROLLINFO ScrInfo;

 ScrInfo.cbSize = sizeof(SCROLLINFO);
 ScrInfo.fMask = SIF_ALL;
 ScrInfo.nMin = 25;

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

592 © FunctionX, Inc.

 ScrInfo.nMax = 368;
 ScrInfo.nPage = 2;
 ScrInfo.nPos = 186;

 m_Scroller.SetScrollInfo(&ScrInfo);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

If a scroll bar has already been initialized, even it was not initialized using the
SetScrollInfo() method, to get information about its values, you can call the
CScrollBar::GetScrollInfo(). Its syntax is:

BOOL GetScrollInfo(LPSCROLLINFO lpScrollInfo, UINT nMask);

This method returns a SCROLLINFO value that holds the values of the scroll bar. The
possible values of the SCROLLINFO::fMask member variable are:

Value Description

SIF_RANGE Used to retrieve the minimum and the maximum values

SIF_POS

Used to retrieves the current position of the scroll thumb.
The thumb should not be scrolling when the
GetScrollInfo() method is called to get the value
associated with this mask

SIF_PAGE
Used to retrieve the page size to scroll when using the
control

SIF_TRACKPOS
Used to retrieve the current position of the thumb while
the user is scrolling

SIF_ALL Used to retrieve all above values

 Practical Learning: Using Scroll Bars

1. Using the OnInitDialog() event, set the range of each scroll bar to (0, 255) and set
their initial values to 192

BOOL CPreviewerDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_ScrollRed.SetScrollRange(0, 255);
 m_ScrollRed.SetScrollPos(63);
 m_ScrollGreen.SetScrollRange(0, 255);
 m_ScrollGreen.SetScrollPos(63);
 m_ScrollBlue.SetScrollRange(0, 255);
 m_ScrollBlue.SetScrollPos(63);
 return TRUE; // return TRUE unless you set the focus to a control
}

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 593

2. Save All

18.4.6 Scroll Bar Events
As described already, to use a scroll bar, the user clicks either one of its buttons, a thumb
or the scrolling region. When the user clicks, the scroll bar sends a message to its parent
or host, which can be a view, a dialog box, or a form. If the scroll bar is horizontal, the
message sent is WM_HSCROLL, which fires an OnHScroll() event. The CWnd class,
as the parent of all MFC Windows controls and views, carries this event and makes it
available to the child classes (and controls) that can perform the scrolling. The syntax of
the OnHScroll() event is:

afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar);

The nSBCode argument is the type of scrolling that is being performed. Its possible
values are:

Value Description Role
SB_THUMBTRACK The thumb is being dragged to a

specific position

SB_LEFT The thumb has been positioned to the
minimum value of the scroll bar, to
the extreme left.

Used to position the thumb to the
lowest value of the range

SB_LINELEFT The thumb is scrolling to the left one,
character or column at a time

Used to decrease the position of the
thumb, usually by subtracting 1 to the
current value, unless the thumb is
already positioned there

SB_PAGELEFT The thumb is scrolling to the left, one
page at a time

Refers to the page size of the
SCROLLINFO value to decrease the
current position by one page

SB_PAGERIGHT The thumb is scrolling to the right,
one page at a time

Refers to the page size of the
SCROLLINFO value to increase the
current position by one page

SB_LINERIGHT The thumb is scrolling to the right
one, character or column at a time

Used to increase the position of the
thumb, usually by adding 1, unless
the thumb is already positioned there

SB_RIGHT The thumb has been positioned to the
maximum value of the scroll bar, to
the extreme right

Used to position the thumb to the
highest value of the range, unless the
thumb is already positioned there

SB_THUMBPOSITION Absolute postion
SB_ENDSCROLL End Scroll Used to determine the end of the

scrolling

The nPos argument is used in connection with the SB_THUMBTRACK and the
SB_THUMBPOSITION values of the nSBCode argument. The value of nPos specifies
how much scrolling should be done.

The pScrollBar argument can be used to identify the particular scroll bar control needs to
be dealt with on this OnHScroll() event.

If your scroll bar control is vertical, when the user clicks it, it sends a WM_VSCROLL
message which fires the OnVScroll() event. Its syntax is:

afx_msg void OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar);

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

594 © FunctionX, Inc.

The nSBCode argument is the type of scrolling that is being performed. Its possible
values are:

Value Description Role
SB_THUMBTRACK The thumb is being dragged to a

specific position

SB_UP The thumb has been positioned to the
maximum value of the scroll bar, to
the extreme right

Used to position the thumb to the
highest value of the range, unless the
thumb is already positioned there

SB_LINEUP The thumb is scrolling up, one line at
a time

Used to increase the position of the
thumb, usually by adding 1, unless
the thumb is already positioned there

SB_PAGEUP The thumb is scrolling up, one page
at a time

Refers to the page size of the
SCROLLINFO value to increase the
current position by one page

SB_PAGEDOWN The thumb is scrolling to the bottom,
one page at a time

Refers to the page size of the
SCROLLINFO value to decrease the
current posit ion by one page

SB_LINEDOWN The thumb is scrolling to the bottom,
one line at a time

Used to decrease the position of the
thumb, usually by subtracting 1 to the
current value, unless the thumb is
already positioned there

SB_BOTTOM The thumb has been positioned to the
minimum value of the scroll bar, to
the bottom side of the scroll bar

Used to position the thumb to the
lowest value of the range

SB_THUMBPOSITION Absolute postion
SB_ENDSCROLL End Scroll Used to determine the end of the

scrolling

The nPos argument is used in connection with the SB_THUMBTRACK and the
SB_THUMBPOSITION values of the nSBCode argument. The value of nPos specifies
how much scrolling should be done.

The pScrollBar argument can be used to identify the particular scroll bar control needs to
be dealt with on this OnHScroll() event.

 Practical Learning: Using the Scroll Bar Events
1. Generate the WM_VSCROLL message of the dialog box and implement it as

follows:

void CPreviewerDlg::OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
{
 // TODO: Add your message handler code here and/or call default
 int CurPos = pScrollBar->GetScrollPos();

 switch (nSBCode)
 {
 case SB_TOP:
 CurPos = 0;
 break;

 case SB_LINEUP:
 if (CurPos > 0)

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 595

 CurPos--;
 break;

 case SB_LINEDOWN:
 if (CurPos < 255)
 CurPos++;
 break;

 case SB_BOTTOM:
 CurPos = 255;
 break;

 case SB_ENDSCROLL:
 break;

 case SB_THUMBPOSITION:
 CurPos = nPos;
 break;

 case SB_THUMBTRACK:
 CurPos = nPos;
 break;
 }

 // Set the new position of the thumb (scroll box).
 pScrollBar->SetScrollPos(CurPos);

 // Update each color based on the positions of the scroll bar controls
 ColorRed = 255 - m_ScrollRed.GetScrollPos();
 ColorGreen = 255 - m_ScrollGreen.GetScrollPos();
 ColorBlue = 255 - m_ScrollBlue.GetScrollPos();

 CDialog::OnVScroll(nSBCode, nPos, pScrollBar);
}

2. Create a timer in the OnInitDialog() event as follows:

 SetTimer(1, 40, NULL);

 return TRUE; // return TRUE unless you set the focus to a control
}

3. Generate a WM_TIMER message for the dialog box and implement it as follows:

void CPreviewerDlg::OnTimer(UINT nIDEvent)
{
 // TODO: Add your message handler code here and/or call default
 PaintPreviewArea();

 CDialog::OnTimer(nIDEvent);
}

4. Test the application

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

596 © FunctionX, Inc.

5. Close it and return to MSVC

18.5 Flat Scroll Bars

18.5.1 Overview
Besides the Controls toolbox’ regular scroll bar controls, the Win32 and the MFC
libraries provide a more elaborate and friendlier object called the flat scroll bar. This
control provides the same functionality and and features as the above scroll bars but tends
to be friendlier.

18.5.2 Flat Scroll Bar Properties
To add a flat scroll bar control to your application, from the Insert ActiveX dialog box,
double-click Microsoft Flat Scroll Bar Control

Visual C++ and MFC Fundamentals Chapter 18: Progress-Based Controls

© FunctionX, Inc. 597

When a Microsoft Flat Scroll Bar control has been added to a parent window, it appears
flat, its buttons and its thumb have no borders. This display is controlled by the
Appearance property whose default value is 1 – fsbFlat. With this value, a simple line is
drawn around each button and the central thumb. To add a visual effect, you can change
the Appearance’s value to the 2 – fsbTrack3D value. In this case, when the mouse is
positioned on top of a button or the thumb, the button or the thumb’s borders are raised,
creating a 3-D effect:

If you prefer the classic 3-D look with borders permentently raised on the buttons and the
thumb, set the Appearance to 0 – fsb3D.

By default, a newly added flat scroll control is oriented horizontally on its parent window
and display a left and a right pointing arrow buttons. The direction of this control is set
using the Orientation combo box. The default value is 1 – cc2OrientationHorizontal . If
you want a vertical scroll bar, change the Orientation value to 0 -
cc2OrientationVertical .

Like the regular scroll bar, this flat control displays a button equipped with an arrow at
each end and a thumb in the middle. The user can click or hold a button to scroll in the
desired direction. The flat scroll bar control allows you to decide what arrow button the
user would be allowed to use. This can be controlled using the Arrows property. Because
the user can scroll by default in both directions, this property has a 0 – cc2Both value. If
you do not want the user to scroll left on a horizontal scroll bar or to scroll up on a
vertical scroll bar, you can set the Arrows property to 1 – cc2LeftUp. In the same way,
to prevent the user from scrolling in the right direction for a horizontal scroll bar or from
scrolling in the bottom direction for a vertical scroll bar, set the Arrows property to 2 –
cc2RightDown.

The limiting values of the flat scroll bar are set using the Min field for the lowest value
and the Max field for the highest value. The value must be in the range of a short integer,
from 0 to 32767. The Min value should be set lower than the Max value.

Chapter 18: Progress-Based Controls Visual C++ and MFC Fundamentals

598 © FunctionX, Inc.

When a newly added scroll bar has been added to a parent window, it gets the position of
its lowest or Min value. To set a different initial value, use the Value field.

One of the ways the user explores a scroll bar is by clicking one of the arrow buttons.
This causes the middle thumb to move towards the arrow being clicked. By default, one
click corresponds to one unit, which could be one line of text. To control how much value
should be incremented when the user clicks one of the arrow buttons or presses the arrow
keys, change the value of the SmallChange property.

Another way the user can use a scroll bar is by clicking between an arrow button and the
thumb or by pressing either Page Up or Page Down. To control how many units should
be covered by this move, change the value of the LargeChange property.

18.5.3 Flat Scroll Bar Methods and Events
The Microsoft Scroll Bar Control is based on the CFlatSB class which itself is derived
from CWnd.

If the user clicks or holds one of the arrow buttons to scroll, the Flat Scroll Bar fires the
Scroll() event

When the user clicks or holds one of the buttons, the value of the scroll bar changes. The
value changes also if the user drags the thumb. This change of the Value property causes
the Flat Scroll Bar to fire the Change() event.

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 599

Chapter 19:
Selection-Based Controls

? Radio Buttons

? Check Boxes

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

600 © FunctionX, Inc.

19.1 Radio Buttons

19.1.1 Introduction
A radio button is a control that appears as a (proportionately big) dot surrounded by a

round box ? . In reality, a radio button is accompanied by one or more other radio buttons
that appear and behave as a group. The user decides which button is valid by selecting
only one of them. When he or she clicks one button, its round box fills with a (big) dot:

? . When one button is selected, the other round buttons of the (same) group are empty ? .
The user can select another by clicking a new choice, which empties the previous
selection. This technique of selecting is referred to as mutually-exclusive.

To indicate what a radio butto is used for, each one of them is accompanied by a label.
The label is simply a string and it can be positioned to the left, above, to the right, or
under the round box.

Practical Learning: Introducing Radio Buttons
1. Start Microsoft Visual Studio or Visual C++ if necessary.

Open the Clarksville Ice Scream1 application. If you did not create, then create a
Single Document Interface application named Clarksville Ice Scream1

2. To add a new object, display the Add Resource dialog box and double-click Dialog

3. Change the Caption of the dialog box to
Clarksville Ice Scream – Customer Order

4. Change its ID to IDD_ICESCREAM_ORDER

5. Add a class for the new dialog box and name it CIceScreamOrderDlg
Make sure the class is based on CDialog

6. Press Enter

7. Display the menu editor and change the caption of the first menu item under File
from &New\tCtrl+N to &New Order…\tCtrl+N

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 601

8. Change its Prompt to Process a new ice scream order\nNew

9. Add an Event Handler to the New Order item associated with the document class:

10. Implement the event as follows:

#include "stdafx.h"
#include "Clarksville Ice Scream1.h"

#include "ExerciseDoc.h"
#include "IceScreamOrderDlg.h"

. . .

void CExerciseDoc::OnFileNew()
{
 // TODO: Add your command handler code here
 CIceScreamOrderDlg Dlg;

 Dlg.DoModal();
}

11. Test the application and return to MSVC

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

602 © FunctionX, Inc.

19.1.2 Creating Radio Buttons
Because they come in a group, to create radio buttons, on the Controls toolbox, click the

Radio Button button and click the desired area on the host window. In the same
way, add one or more radio buttons:

To indicate that the radio buttons belong to a group, you should (with emphasis) place
them inside of a frame, the most common of which is the Group Box control.
Alternatively, you can add them to a Picture frame (other allowed but unlikely frames are
a Static control or an Animation box):

The main advantage of a Group Box control, which explains why it is the most common
container of radio buttons, is that it inherently provides a caption you can use to indicate
what its set of radio buttons is used for.

Two properties are of particular importance to both you and the user: the label and the
state of the control. The label is text that specifies what a particular radio button is used
for. The label should be explicit enough for the user to figure out the role of an item in
the group.

To change the label of a radio button, after adding the control, replace the value of the
Caption field in the Properties window. If the control exists already, to change its
caption, call the CWnd::SetWindowText() method.

Pratical Learning: Creating Radio Buttons

1. From the Controls toolbox, click the Group Box button and click on the upper
left section of the dialog box.

2. Change its Caption to Flavor

3. From the Controls toolbox, click the Radio Button and click inside the Flavor
group box

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 603

4. Change its Caption to &Vanilla and change its ID to IDC_FLAVORS

5. Complete the design of the dialog box as follows (when adding the radio buttons,
start with the Vanilla and add those under it. Then add the Container group box and
add its radio buttons. Then add the Ingredient group box and its radio buttons.
Finally, add the Scoops group box followed by its radio buttons. If you do not,
neglect to, or forget to, follow this order, when you have finished, display the Tab
Order and reorder th sequence. This is because we will keep this sequence in mind
when creating the groups in the next section):

Except for the last Edit control, all controls on this table are radio buttons

ID Caption ID Caption
IDC_FLAVORS &Vanilla IDC_CONTAINER Cu&p
IDC_RDO_CREAMOFCOCOA &Cream of Cocoa IDC_RDO_CONE C&one
IDC_RDO_CHOCOLATE C&hocolate Chip IDC_RDO_BOWL Bo&wl
IDC_RDO_BUTTERPECAN &Butter Pecan IDC_INGREDIENT &None
IDC_RDO_CHUNKYBUTTER Ch&unky Butter IDC_RDO_MM &M && M
IDC_RDO_STRAWVAN &Strawberry Vanilla IDC_RDO_MIXEDNUTS Mi&xed Nuts
IDC_RDO_CHOCOCOOKIES Chocol&ate Cookies
IDC_SCOOPS On&e
IDC_SCOOPS_ TWO &Two
IDC_SCOOPS_ THREE Th&ree IDC_PRICE

6. From the resources that accompany this book, import the cup.bmp picture. If you are
using MSVC 6, you will receive a message box. Simply click OK
Change its ID to IDB_CUP

7. In the same way, import the cone.bmp picture and change its ID to IDB_CONE

8. Import the bowl.bmp picture and change its ID to IDB_BOWL

9. Add a Picture control to the right side of the dialog box and change its ID to
IDC_PICTURE

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

604 © FunctionX, Inc.

10. Set its Type to Bitmap and, in its Image combo box, select IDB_CUP

11. Set its Center Image property to True

12. Add a Control variable for the Picture control and name it m_Picture

13. Save All

19.1.3 Radio Button Properties
As described already, to select a radio button, the user clicks it. To indicate to the user
that a button has been selected, it should display a dot in its round box. To display this
dot automatically, set the Auto property to True.

When adding a radio button to a host, it displays a text label to the right side of its round
box. If you prefer to position the label to the left of the small circle, set the Left Text
property to True or, at run time, add the BS_LEFTTEXT style:

The label that accompanies a radio button is static text that is included in a rectangular
shape. Since the radio button by default is configured to display one line of text, the
round box is locate to the left side of the label. If you plan to use multiple lines of text for
the label, at design time, change the rectangular area of the control accordingly:

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 605

If you are programmatically creating the control, specify an appropriate rect value to the
Create() method. Then, set the Multiline property to True or, at run time, add the
BS_MULTILINE style:

Once the text can fit in the allocated area, you can accept the default alignment of the
label or change it as you see fit. The alignment of text is specified using the Horizontal
Alignment and the Vertical Alignment properties. Here are the possible combinations:

Left Text: False
Horz Align: Default or Left
Vert Align: Top

Left Text: False
Horz Align: Default or Left
Vert Align: Default or Center

Left Text: False
Horz Align: Default or Left
Vert Align: Bottom

Left Text: True
Horz Align: Default or Left
Vert Align: Top

Left Text: True
Horz Align: Default or Left
Vert Align: Default or Center

Left Text: True
Horz Align: Default or Left
Vert Align: Bottom

In the same way, you can add other radio buttons and individually configure each. For
harmony, all radio of a group should have the same design.

For either the user or the programmer, radio buttons must behave as entities of one group.
When you freshly add radio buttons to a host, they are created as a group. If your form or
dialog box will be made of only a few radio buttons, you may not need to do much. If
you plan to use more than one set of radio buttons, then you must separate them into
groups. To do that, set the Group property of each new button of a group to True.

Imagine you will use two sets of group buttons on a dialog box. Add the first radio button
and set its Group property to True (checked) or add the WS_GROUP value to its style;
then, add the other radio buttons of the set but set their Group property to False
(unchecked) or do not add the WS_GROUP value to their styles.

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

606 © FunctionX, Inc.

When starting the new set, add a new radio button and set its Group property to True
(checked). Add the other radio buttons with the Group property set to False (unchecked)
or without the WS_GROUP style.

Once the radio buttons belong to the same group, if the user clicks one that is empty ? , it

gets filled with a big dot ? and all the others become empty ? . This is the default and
most common appearance these controls can assume. Alternatively, you can give them
the appearance of a regular command button with 3-D borders. To do this, set the Push-
Like property to True. When the radio buttons appear as command buttons, the control
that is selected appear pushed or down while the others are up:

If you do not want the default 3-D design of radio buttons, you can make them flat by
setting the Flat property to True.

 Practical Learning: Configuring Radio Buttons
1. On the dialog box, click the Vanilla radio button and, on the Properties window,

check the Group check box or set its value to True:

2. In the same way check the Group property of the Cup, None, and One radio buttons

or set this property to True for them

3. Set the Group box of all the other radio buttons to unchecked or False

4. Except for the radio buttons in the Flavor group, check the Left Text property of all
the other radio buttons and set their Left Text value to True

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 607

5. Execute the application to test the radio buttons

6. Close the dialog box and return to MSVC

19.1.4 Radio Buttons Methods
As a Windows control, the radio button is based on the CButton class which, like all
other constrols, is based on CWnd. As far as the Win32 and the MFC libraries are
concerned, a radio button is first of all, a button. Therefore, to programmatically create a
radio button, declare a variable or a pointer to CButton using its default constructor. Like
all other MFC controls, the CButton class provides a Create() method to initialize it. The
syntax of this method for a button is:

BOOL Create(LPCTSTR lpszCaption, DWORD dwStyle, const RECT& rect , CWnd*
pParentWnd, UINT nID);

The lpszCaption argument is the string of the label that accomponies the radio button.
The differences of radio buttons are set using the dwStyle argument. A radio button must
have the BS_RADIOBUTTON value.

When setting the rect argument, provide enough space for the control because, by default ,
it will be confined to that rectangle and cannot display beyond that. Here are two
examples:

BOOL CDialog12Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

608 © FunctionX, Inc.

 // TODO: Add extra initialization here
 CButton *btnSmall = new CButton;
 CButton *btnMedium = new CButton;

 btnSmall->Create("&Small",
 WS_CHILD | WS_VISIBLE | BS_RADIOBUTTON,
 CRect(130, 40, 200, 50), this, 0x12);
 btnMedium->Create("&Medium",
 WS_CHILD | WS_VISIBLE | BS_RADIOBUTTON,
 CRect(130, 70, 200, 80), this, 0x14);

 return TRUE; // return TRUE unless you set the focus to a control
}

If you want the radio button to get filled with a dot when it has been selected and to
remove the dot from the other radio buttons of the same group, create it with the
BS_AUTORADIOBUTTON style.

While using the radio buttons, the user is presented with the controls and requested to
select one. To make a selection, the user must click the desired choice. The control

selected fills its circle with a (big) dot ? . To programmatically change the state of a radio
button, you have various options.

The easiest way to select a radio button consists of calling the
CWnd::CheckRadioButton() method (actually, you should call this method as
CDialog::CheckRadioButton()). Its syntax is:

void CheckRadioButton(int nIDFirstButton, int nIDLastButton, int nIDCheckButton);

To use this method, you must know the identifiers of the radio buttons involved. The
nIDFirstButton is the identifier of the first radio button of the group. The nIDLastButton
is the identifier of the last radio button of the group. The last argument, nIDCheckButton
is the identifier of the radio button that must be selected. Here is an example:

void CDialog12Dlg::OnBtnSelect2()
{
 // TODO: Add your control notification handler code here
 CheckRadioButton(IDC_RADIO1, IDC_RADIO3, IDC_RADIO3);
}

To change the state of a radio button, you can call the CButton::SetCheck() method. Its
syntax is:

void SetCheck(int nCheck);

The nCheck value indicates how to fill the control’s circle. To fill it with the selection
dot, pass the value of 0. To deselect a radio button, pass the argument as 1. Here is an
example:

void CDialog12Dlg::OnBtnSelect2()
{
 // TODO: Add your control notification handler code here
 CButton *btnSecond;

 btnSecond = reinterpret_cast<CButton *>(GetDlgItem(IDC_RADIO2));
 btnSecond->SetCheck(1);

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 609

}

To find out what radio button of a group is selected, you can call the
CWnd::GetCheckedRadioButton(). Its syntax is:

int GetCheckedRadioButton(int nIDFirstButton, int nIDLastButton);

When calling this method, you must specify the identifier of the first radio button of the
group as nIDFirstButton and the identifier of the last radio button of the group as
nIDLastButton. The method returns the identifier of the radio button whose circle is
filled.

Alternatively, to find the selected radio button, call the CButton::GetCheck() method.
Its syntax is:

int GetCheck() const;

This method returns 0 if the radio button is not selected. Otherwise, it returns 1 if the
radio button is selected.

If you want to want to find whether a particular radio button is currently selected, you can
call the CWnd::IsDlgButtonChecked() method. Its syntax:

UINT IsDlgButtonChecked(int nIDButton) const;

When calling this method, pass the identifier of the radio button as the nIDButton
argument. This member function will check the state of the radio button. If the radio
button is selected, the method will return 1. If the radio button is not selected, the method
returns 0.

Practical Learning: Selecting Radio Buttons
1. Add a Control variable for the IDC_FLAVORS radio button and name it m_Flavors

2. In the same way, add a Control variable for the IDC_CONTAINER,

IDC_INGREDIENT, and IDC_SCOOPS named m_ Container, m_Ingredient, and
m_Scoops respectively

3. Add a CString value variable for the IDC_PRICE edit control and name it m_Price

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

610 © FunctionX, Inc.

4. When the clerk is about to process a new ice scream order, some radio buttons

should be selected already, those that would be the default.
To select the default radio buttons, display the OnInitDialog() event of the dialog
box and change it as follows:

// IceScreamOrderDlg.cpp : implementation file
//

#include "stdafx.h"
#include "Clarksville Ice Scream1.h"
#include "IceScreamOrderDlg.h"

// CIceScreamOrderDlg dialog

IMPLEMENT_DYNAMIC(CIceScreamOrderDlg, CDialog)
CIceScreamOrderDlg::CIceScreamOrderDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CIceScreamOrderDlg::IDD, pParent)
 , m_Price(_T("$2.60"))
{
}

CIceScreamOrderDlg::~CIceScreamOrderDlg()
{
}

void CIceScreamOrderDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Control(pDX, IDC_FLAVORS, m_Flavors);
 DDX_Control(pDX, IDC_RDO_CUP, m_Container);
 DDX_Control(pDX, IDC_IGR_NONE, m_Ingredient);
 DDX_Control(pDX, IDC_SCOOPS_ONE, m_Scoops);
 DDX_Text(pDX, IDC_PRICE, m_Price);
}

BEGIN_MESSAGE_MAP(CIceScreamOrderDlg, CDialog)
END_MESSAGE_MAP()

// CIceScreamOrderDlg message handlers

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 611

BOOL CIceScreamOrderDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 m_Flavors.SetCheck(1);
 m_Container.SetCheck(1);
 m_Ingredient.SetCheck(1);
 m_Scoops.SetCheck(1);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

5. Test the application

6. Return to MSVC

19.1.5 Radio Buttons Events
Because a radio is first of all a control of CButton type, when it is clicked, it generates
the BN_CLICKED message. You can use this message to take action in response to the
user’s.

We have mentioned already that a control can have two types of variables: Control or
Value. For a radio button, you can declare or add either a CButton or a regular C++
variable. If you decide to use a CButton variable as done in the previous exercise, you
can call the necessary method to take advantage of the class. On the other hand, if you
want to use a value instead. You can add a variable for only the first radio button of the
group, the radio button that has the Group property set to true. The variable should be an
integer, such as int. In such a case, each radio button of the group can be referred to using

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

612 © FunctionX, Inc.

a number. The first radio button of the group would have the index 0, the second would
be 1, etc.

Here is an example:

#pragma once

// CControlsDlg dialog

class CControlsDlg : public CDialog
{
 DECLARE_DYNAMIC(CControlsDlg)

public:
 CControlsDlg(CWnd* pParent = NULL); // standard constructor
 virtual ~CControlsDlg();

// Dialog Data
 enum { IDD = IDD_DLG_CONTROLS };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

 DECLARE_MESSAGE_MAP()
public:
 CString m_Value;
 int m_Gender;
 void UpdateChoice();
 afx_msg void OnBnClickedRdoMale();
 afx_msg void OnBnClickedRdoFemale();
 afx_msg void OnBnClickedRdoDontknow();
};

// ControlsDlg.cpp : implementation file
//

#include "stdafx.h"
#include "Dialog1.h"
#include "ControlsDlg.h"

// CControlsDlg dialog

IMPLEMENT_DYNAMIC(CControlsDlg, CDialog)

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 613

CControlsDlg::CControlsDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CControlsDlg::IDD, pParent)
 , m_Value(_T(""))
 , m_Gender(0)
{
}

CControlsDlg::~CControlsDlg()
{
}

void CControlsDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_VALUE, m_Value);
 DDX_Radio(pDX, IDC_RDO_MALE, m_Gender);
}

BEGIN_MESSAGE_MAP(CControlsDlg, CDialog)
 ON_BN_CLICKED(IDC_RDO_MALE, OnBnClickedRdoMale)
 ON_BN_CLICKED(IDC_RDO_FEMALE, OnBnClickedRdoFemale)
 ON_BN_CLICKED(IDC_RDO_DONTKNOW, OnBnClickedRdoDontknow)
END_MESSAGE_MAP()

// CControlsDlg message handlers
void CControlsDlg::UpdateChoice()
{
 UpdateData();
 int Value;

 switch(m_Gender)
 {
 case 0:
 Value = 0;
 break;
 case 1:
 Value = 1;
 break;
 case 2:
 Value = 2;
 break;
 }

 m_Value.Format("%d", Value);

 UpdateData(FALSE);
}

void CControlsDlg::OnBnClickedRdoMale()
{
 // TODO: Add your control notification handler code here
 UpdateChoice();
}

void CControlsDlg::OnBnClickedRdoFemale()
{
 // TODO: Add your control notification handler code here
 UpdateChoice();
}

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

614 © FunctionX, Inc.

void CControlsDlg::OnBnClickedRdoDontknow()
{
 // TODO: Add your control notification handler code here
 UpdateChoice();
}

Practical Learning: Implementing Radio Buttons
1. When the clerk clicks a Container radio button, we will change the right picture

based on the selected container.
In the header file of the Customer Order dialog box class, declare a member variable
named ContSelected and of type int

private:
 int Selected;
};

2. Generate the WM_PAINT message of the dialog box and implement it as follows:

void CIceScreamOrderDlg::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 // TODO: Add your message handler code here
 // Do not call CDialog::OnPaint() for painting messages
 CBitmap Bmp;

 switch(Selected)
 {
 case 0:
 Bmp.LoadBitmap(IDB_CUP);
 m_Picture.SetBitmap(Bmp);
 break;
 case 1:
 Bmp.LoadBitmap(IDB_CONE);
 m_Picture.SetBitmap(Bmp);
 break;
 case 2:
 Bmp.LoadBitmap(IDB_BOWL);
 m_Picture.SetBitmap(Bmp);
 break;
 }
}

3. On the dialog box, right-click the Cup radio button
If you are using MSVC 6, click Events
If you are using MSVC 7, click Add Event Handler

4. Select the Message Type as BN_CLICKED. Accept the name of the event as
OnBnClickedContainer

5. If you are using MSVC 6, click Add Handler, accept the name and click Edit
Existing
If using MSVC 7, click Edit Code

6. In the same way, add a BN_CLICKED event for the Cone and the Bowl radio
buttons

7. Implement the events as follows:

void CIceScreamOrderDlg::OnBnClickedContainer()

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 615

{
 // TODO: Add your control notification handler code here
 // The first radio button was selected
 Selected = 0;

 // Get the rectangle that holds the picture
 CRect PictArea;
 m_Picture.GetWindowRect(&PictArea);
 // Repaint the picture
 InvalidateRect(&PictArea);
}

void CIceScreamOrderDlg::OnBnClickedRdoCone()
{
 // TODO: Add your control notification handler code here
 // The second radio button was selected
 Selected = 1;

 // Get the rectangle that holds the picture
 CRect PictArea;
 m_Picture.GetWindowRect(&PictArea);
 // Repaint the picture
 InvalidateRect(&PictArea);
}

void CIceScreamOrderDlg::OnBnClickedRdoBowl()
{
 // TODO: Add your control notification handler code here
 // The third radio button was selected
 Selected = 2;

 // Get the rectangle that holds the picture
 CRect PictArea;
 m_Picture.GetWindowRect(&PictArea);
 // Repaint t he picture
 InvalidateRect(&PictArea);
}

8. Execute the application and test the Container radio buttons

9. To process an order, add a new Member Function to the CIceScreamOrderDlg
class. Set its type as void and its name as ProcessOrder

10. Implement the method as follows:

// This is the central function that the other controls will refer to

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

616 © FunctionX, Inc.

void CIceScreamOrderDlg::ProcessOrder(void)
{
 double PriceFlavor, PriceContainer, PriceIngredient;
 double TotalPrice;

 int ContainerSelected = GetCheckedRadioButton(IDC_CONTAINER, IDC_RDO_BOWL);

 if(ContainerSelected == IDC_CONTAINER)
 PriceContainer = 0.35;
 else if(ContainerSelected == IDC_RDO_CONE)
 PriceContainer = 0.55;
 else if(ContainerSelected == IDC_RDO_BOWL)
 PriceContainer = 0.75;

 int IngredientSelected = GetCheckedRadioButton(IDC_INGREDIENT, IDC_RDO_MIXEDNUTS);

 if(IngredientSelected == IDC_INGREDIENT)
 PriceIngredient = 0.00;
 else if(IngredientSelected == IDC_RDO_MM)
 PriceIngredient = 0.55;
 else if(IngredientSelected == IDC_RDO_MIXEDNUTS)
 PriceIngredient = 0.75;

 int NumberOfScoops = GetCheckedRadioButton(IDC_SCOOPS, IDC_SCOOPS_THREE);
 if(NumberOfScoops == IDC_SCOOPS)
 PriceFlavor = 2.25;
 else if(NumberOfScoops == IDC_SCOOPS_TWO)
 PriceFlavor = 3.50;
 else if(NumberOfScoops == IDC_SCOOPS_THREE)
 PriceFlavor = 4.25;

 TotalPrice = PriceContainer + PriceFlavor + PriceIngredient;

 m_Price.Format("$%.2f", TotalPrice);
 UpdateData(FALSE);
}

11. To make sure the new member function is called whenever the user clicks a radio
button, double-click each radio button on the dialog and accept the suggested name
for the eventWhen a customer is passing an order and request his or her ice scream
on a cone or a cup, because of the size of the cone or the cup, it cannot contain three
scoops. Therefore, if the clerk selects the Cone or the Cup radio buttons upon the
customer’s request, we can disable the Three radio button. While doing this, we must
check whether the user had previously selected the Three radio button. If that button
was selected, we should deselect it and select the One radio, giving the clerk the time
to select the One or Two radio button.
To implement this behavior, change the above events as follows:

void CIceScreamOrderDlg::OnBnClickedContainer()
{
 // TODO: Add your control notification handler code here
 // The first radio button was selected
 Selected = 0;

 // Get the rectangle that holds the picture
 CRect PictArea;
 m_Picture.GetWindowRect(&PictArea);
 // Repaint the picture

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 617

 InvalidateRect(&PictArea);

 CButton *rdoThree;

 rdoThree = reinterpret_cast<CButton *>(GetDlgItem(IDC_SCOOPS_THREE));
 rdoThree->EnableWindow(FALSE);

 // Check whether it is checked
 int CheckedButton = rdoThree->GetCheck();

 // If it is checked
 if(CheckedButton == 1) // then select the One radio button
 CheckRadioButton(IDC_SCOOPS, IDC_SCOOPS_THREE, IDC_SCOOPS);

 ProcessOrder();
}

void CIceScreamOrderDlg::OnBnClickedRdoCone()
{
 // TODO: Add your control notification handler code here
 // The second radio button was selected
 Selected = 1;
 // Let the UpdatePicture() method change the picture

 CRect PictArea;
 m_Picture.GetWindowRect(&PictArea);
 InvalidateRect(&PictArea);

 CButton *rdoThree;

 rdoThree = reinterpret_cast<CButton *>(GetDlgItem(IDC_SCOOPS_THREE));
 rdoThree->EnableWindow(FALSE);

 // Check whether it is checked
 int CheckedButton = rdoThree->GetCheck();

 // If it is checked
 if(CheckedButton == 1) // then select the One radio button
 CheckRadioButton(IDC_SCOOPS, IDC_SCOOPS_THREE, IDC_SCOOPS);

 ProcessOrder();
}

void CIceScreamOrderDlg::OnBnClickedRdoBowl()
{
 // TODO: Add your control notification handler code here
 // The third radio button was selected
 Selected = 2;

 CRect PictArea;
 m_Picture.GetWindowRect(&PictArea);
 InvalidateRect(&PictArea);

 CButton *rdoThree;

 // Get a handle to the Three radio button
 rdoThree = reinterpret_cast<CButton *>(GetDlgItem(IDC_SCOOPS_THREE));

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

618 © FunctionX, Inc.

 // Disable the Three radio button
 rdoThree->EnableWindow(TRUE);

 ProcessOrder();
}

12. Call the above member function in EACH event. Here is one example (to save
printing paper):

void CIceScreamOrderDlg::OnBnClickedFlavors()
{
 // TODO: Add your control notification handler code here
 ProcessOrder();
}

13. Test the application

14. Return to MSVC

19.2 Check Boxes

19.2.1 Introduction
A check box is a Windows control that allows the user to set or change the value of an
item as true or false. The control appears as a small square ?. When this empty square is
clicked, it gets marked by a check symbol ?. These two states control the check box as
checked ? or unchecked ?.

Like the radio button, the check box does not indicate what it is used for. Therefore, it is
usually accompanied by a label that displays an explicit and useful string. The label can

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 619

be positioned on either part of the square box, depending on the programmer who
implemented it.

Unlike the radio buttons that implement a mutual-exclusive choice, a check box can
appear by itself or in a group. When a check box appears in a group with other similar
controls, it assumes a completely independent behavior and it must be implemented as its
own entity. This means that clicking a check box has no influence on the other controls.

 Practical Learning: Introducing Check Boxes
1. Start a new Dialog Based application named FastFood and set the Dialog Title as

Fast Food Restaurant – Customer Menu

2. Delete the TODO line

3. Design the dialog box as follows:

Control ID Caption Other Property
Group Box Don’t Care Bread
Radio Button IDC_BREAD &Bun Group = True

Left Text = True
Radio Button IDC_ROLL &Roll Left Text = True
Group Box Don’t Care Meat
Radio Button IDC_MEAT Bee&f Patty Group = True

Left Text = True
Radio Button IDC_GRILLED_CHICKEN &Grilled Chicken Left Text = True
Radio Button IDC_CHICKEN_BREAST &Chicken Breast Left Text = True
Group Box Don’t Care Ingredients

4. Change the designs of the IDR_MAINFRAME icon as follows:

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

620 © FunctionX, Inc.

5. Save All

19.2.2 Check Box Properties
To provide a check box to an application, on the Controls toolbox, click the Check Box

button and click the desired area on the dialog box or form. If you require more than
one check box, you can keep adding them as you judge necessary.

Like the radio button, a check box is a button with just a different style. Therefore, it
shares the same characteristics as the radio button. This means that we can simply avoid
repeating the descriptions we reviewed for the radio control.

Like the radio button, the accompanying label of the check box can appear on the left or
the right side of the square box. Also, you can control the horizontal and the vertical
alignments of its label using the Horizontal Alignment or the Vertical Alignment
properties.

We saw that a radio button can appear as a regular command button with 3-D borders.
This feature is also available for check boxes. When a check box with the Push-Like
property is up and then clicked, it stays down until it is clicked again, regardless of the
appearance of the other controls. Remember that a check box behaves independently of
the other controls even if it appears in a group.

A check box can be checked or unchecked. The check box as a control adds a third state
for its appearance. Instead of definitely appearing as checked or unchecked, a check box
can appear “half-checked”. This is considered as a third state. To apply this behavior to a
check box, set its Tri-State property to True or add the BS_3STATE style to it:

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 621

A check box that has the Tri-State property set or the BS_3STATE style, can appear
checked, unchecked, or dimmed. When using this kind of check box, the user may have
to click the control three times in order to get the necessary state.

 Practical Learning: Creating Check Boxes
1. Add a new Dialog resource to the application

2. Change its ID to IDD_INGREDIENTS and its Caption to Ingredients Selection
Here is how you will design it:

3. Add a Group Box control to the dialog box and delete its caption

4. On the Controls toolbox, click the Check Box button and click inside the newly
added group box

5. Change its ID to IDC_CHK_LETTUCE and change its Caption to &Lettuce

6. Set its Left Text to True or checked

7. Add another check box under the first one. Set its ID to IDC_CHK_ONION , its
Caption to &Onion, and its Left Text property to True

8. Add another check box under the first one. Set its ID to IDC_CHK_TOMATO, its
Caption to &Tomato, and its Left Text property to True

9. Add another check box under the first one. Set its ID to IDC_CHK_PICKLES , its
Caption to &Pickle, and its Left Text property to True

10. Add a class for the dialog box based on CDialog and named CIngredientsDlg

11. Add a Value variable for each check box as follows:

ID Value Variable ID Value Variable
IDC_CHK_LETTUCE m_bLettuce IDC_CHK_ONION m_bOnion

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

622 © FunctionX, Inc.

IDC_CHK_TOMATO m_bTomato IDC_CHK_PICKLES m_bPickles

12. Display the main dialog box (Customer Menu)

13. In the top section inside the Ingredients group box, add a check box

14. Set the ID of the new control to IDC_CHK_REGULARS

15. Change its Caption to &Regulars

16. Set its Left Text property to True or checked

17. Set its Tri-State property to True

18. Complete the design of the dialog box as follows:

Control ID Caption Other Property
Group Box Ingredients Ingredients
Check Box IDC_CHK_REGULARS &Regulars Left Text = True
Check Box IDC_CHK_SWEETENER &Sweetener Left Text = True
Check Box IDC_CHK_CHEESE C&heese Left Text = True
Check Box IDC_CHK_BACON B&acon Left Text = True
Group Box Don’t Care Options
Button IDC_INGREDIENTS &Ingredients
Radio Button IDC_OPTIONS &Mayonnaise Group = True

Left Text = True
Radio Button IDC_KETHUP &Ketchup Left Text = True
Radio Button IDC_MUSTARD Mus&tard Left Text = True
Picture Color = Etched

Modal Frame = True
Static Total Price:
Edit Box IDC_TOTAL_PRICE Align Text = Right

19. Add a Control variable for all non-IDC_STATIC controls with the following names:

ID Control Variable ID Control Variable
IDC_BREAD m_Bread IDC_MEAT M_Meat
IDC_REGULARS m_Regulars IDC_SWEETENER m_Sweetener
IDC_CHEESE m_Cheese IDC_BACON m_Bacon

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 623

IDC_INGREDIENTS m_Ingredients IDC_OPTIONS M_SweetOptions
IDC_TOTAL_PRICE m_TotalPrice

20. To create a basic sandwich based on what we know so far, in the OnInitDialog()
event of the main dialog class, type the following:

BOOL CFastFoodDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 . . .

 // TODO: Add extra initialization here
 m_Bread.SetCheck(1);
 m_Meat.SetCheck(1);
 m_SweetOptions.SetCheck(1);
 m_TotalPrice.SetWindowText("$2.35");

 return TRUE; // return TRUE unless you set the focus to a control
}

21. Add a BN_CLICKED event for the Ingredients button and implement it as follows:

// FastFoodDlg.cpp : implementation file
//

#include "stdafx.h"
#include "FastFood1.h"
#include "FastFoodDlg.h"
#include "IngredientsDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

. . .

void CFastFoodDlg::OnBnClickedBtnIngredients()
{
 // TODO: Add your control notification handler code here
 CIngredientsDlg Dlg;

 Dlg.DoModal();
}

22. Test the application

19.2.3 Check Box Methods
Like the radio button, a check box is based on the CButton class. Therefore, to
programmatically create a check box, declare CButton variable or pointer using its
constructor. Here is an example:

CButton *HotTempered = new CButton;

After declaring a variable or a pointer to CButton, you can call its Create() method to
initialize the control. The syntax is the same as for the radio button. To make the button a

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

624 © FunctionX, Inc.

check box, its style must include the BS_CHECKBOX style. If you want the control to
display or hide a check mark when it gets clicked, create it with the
BS_AUTOCHECKBOX style.

BOOL CCheckBoxes::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CButton *chkDay[5];

 chkDay[0] = new CButton;
 chkDay[0]->Create("&Monday", WS_CHILD | WS_VISIBLE |
 BS_AUTOCHECKBOX | BS_LEFTTEXT,
 CRect(20, 40, 140, 55), this, 0x11);
 chkDay[1] = new CButton;
 chkDay[1]->Create("&Tuesday", WS_CHILD | WS_VISIBLE |
 BS_AUTOCHECKBOX | BS_LEFTTEXT,
 CRect(20, 60, 140, 75), this, 0x12);
 chkDay[2] = new CButton;
 chkDay[2]->Create("&Wednesday", WS_CHILD | WS_VISIBLE |
 BS_AUTOCHECKBOX | BS_LEFTTEXT,
 CRect(20, 80, 140, 95), this, 0x13);
 chkDay[3] = new CButton;
 chkDay[3]->Create("&Thursday", WS_CHILD | WS_VISIBLE |
 BS_AUTOCHECKBOX | BS_LEFTTEXT,
 CRect(20, 100, 140, 115), this, 0x14);
 chkDay[4] = new CButton;
 chkDay[4]->Create("&Friday", WS_CHILD | WS_VISIBLE |
 BS_AUTOCHECKBOX | BS_LEFTTEXT,
 CRect(20, 120, 140, 135), this, 0x15);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

We mentioned already that a check box can assume one of three states: checked,
unchecked, or dimmed. If you want to apply one of the states to such a check box, that is,
to programmatically check, uncheck, or dim it, you can call the
CWnd::CheckDlgButton() method whose syntax is:

void CheckDlgButton(int nIDButton, UINT nCheck);

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 625

The nIDButton argument is the identifier of the check box whose state you want to
modify. The nCheck argument is the value to apply. It can have one of the following
values:

State Value Description
BST_UN CHECKED The check mark will be completely removed
BST_ CHECKED The button will be checked
BST_INDETERMINATE A dimmed checked mark will appear in the control’s

square. If the Tri-State property is not set or the
BS_3STATE style is not applied to the control, this value
will be ignored

Here is an example that automatically sets a check box to a dimmed appearance when the
dialog box comes up:

BOOL CCheckBoxes::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CheckDlgButton(IDC_CHECK_PHYSICAL, BST_INDETERMINATE);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Alternatively, to change the state of a check box, you can call the CButton::SetCheck()
and pass of the above state values. For a check box, to set a dimmed check mark, here is
an example:

BOOL CCheckBoxes::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CButton *ChkPhysical = new CButton;

 ChkPhysical = reinterpret_cast<CButton *>(GetDlgItem(IDC_CHECK_PHYSICAL));
 ChkPhysical->SetCheck(BST_INDETERMINATE);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPT ION: OCX Property Pages should return FALSE
}

To get the current state of a check box, you can call the CWnd::IsDlgButtonChecked()
method. If a check mark appears in the square box, this method will return 1. If the
square box is empty, this method returns 0. If the check box control has the BS_3STATE
style, the method can return 2 to indicate that the check mark that appears in the square
box is dimmed.

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

626 © FunctionX, Inc.

 Practical Learning: Implementing Check Boxes
1. To show that at least one sweetener sauce is selected, in the OnInitDialog() event of

the main (Customer Menu) dialog box, call the CheckDlgButton() method. Pass it
the ID of the Sweetener control and the BST_CHECKED constant

2. To show that some ingredients are selected by default for a sandwich, call the
CheckDlgButton() method. Pass it the ID of the Regulars control and the
BST_INDETERMINATE constant:

BOOL CFastFoodDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 . . .

 // TODO: Add extra initialization here
 m_Bread.SetCheck(1);
 m_Meat.SetCheck(1);
 m_SweetOptions.SetCheck(1);
 m_TotalPrice.SetWindowText("$2.35");

 CheckDlgButton(IDC_CHK_SWEETENER, BST_CHECKED);
 CheckDlgButton(IDC_CHK_REGULARS, BST_INDETERMINATE);

 return TRUE; // return TRUE unless you set the focus to a control
}

3. Test the application:

4. Close the dialog and return to MSVC

5. Add an OnInitDialog event for the Ingredients dialog box (If you are using MSVC 6,
display the ClassWizard, select the CIngredientsDlg class and, in the Messages list,
double-click WM_INITDIALOG. If you are using MSVC 7, in Class View, click

CIngredientsDlg and, in the Properties window, click the Overrides button ; then
click the arrow of the OnInitDialog combo box and select the only item in the combo
box

6. Implement the event as follows:

BOOL CIngredientsDlg::OnInit Dialog()

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 627

{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CheckDlgButton(IDC_CHK_LETTUCE, BST_CHECKED);
 CheckDlgButton(IDC_CHK_TOMATO, BST_CHECKED);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

7. Execute the program and click the Ingrdients button:

8. Return to MSVC

19.2.4 Check Box Events
Like all other MFC buttons, the check box can natively send only the click and the
double-click messages. These messages respectively are BN_CLICKED and
BN_DOUBLECLICKED , which originate when the user clicks or double-clicks the
control. If you need to, you can use either the events of the parent window or hand code
the messages yourself.

 Practical Learning: Using Check Boxes Messages

1. If the user completely removes the check mark on the Sweetener control, this
suggests that the customer does not want this item on the sandwich. Consequently,
the radio buttons in the Options group should be disabled. When the user clicks a
check box, whether the control was already checked or not, the BN_CLICKED
message is sent. Therefore, in this case, the first thing you should do it to check the
state of the check button and then implement a behavior accordingly.
Display the Customer Menu dialog box. Right-click the Sweetener control

2. If you are using MSVC 6, click Events
If you are using MSVC 7, click Add Event Handler

3. If you are using MSVC 6, double-click BN_CLICKED. Accept the suggested name.
Click OK and click Add And Edit
If you are using MSVC 7, make sure the Message Type is set to BN_CLICKED and
the Class List is set to CfastFoodDlg. Then click Add And Edit

4. Implement the event as follows:

void CFastFoodDlg::OnBnClickedChkSweetener()
{

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

628 © FunctionX, Inc.

 // TODO: Add your control notification handler code here
 // Get the state of the Sweetener check box
 int CurState = IsDlgButtonChecked(IDC_CHK_SWEETENER);

 // Get a handle to the radio buttons of the Options group
 CWnd *rdoKetchup, *rdoMustard;

 rdoKetchup = reinterpret_cast<CButton *>(GetDlgItem(IDC_KETCHUP));
 rdoMustard = reinterpret_cast<CButton *>(GetDlgItem(IDC_MUSTARD));

 // If the Sweetener check box is not checked
 if(CurState == 0)
 {
 // Disable the Options radio buttons
 m_SweetOptions.EnableWindow(FALSE);
 rdoKetchup->EnableWindow(FALSE);
 rdoMustard->EnableWindow(FALSE);
 }
 else
 {
 // Otherwise, enable the Options radio buttons
 m_SweetOptions.EnableWindow(TRUE);
 rdoKetchup->EnableWindow(TRUE);
 rdoMustard->EnableWindow(TRUE);
 }
}

5. Now, we will give complete or more control to the user with regards to the
ingredients. When the Regulars check box is not checked at all, no basic ingredient is
selected, when this control is checked, all ingredients will be added to the sandwich.
If at least one ingredient is selected and at least one ingredient is not selected, the
Regulars check box should appear dimmed.
To implement this, first access the OnInitDialog() event of the CIngredientsDlg
class and delete the initializations of its check boxes:

BOOL CIngredientsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
// CheckDlgButton(IDC_CHK_LETTUCE, BST_CHECKED);
// CheckDlgButton(IDC_CHK_TOMATO, BST_CHECKED);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

6. When the user clicks the Ingredients button, we will display the Ingredients Selection
dialog box and allow the user to select the ingredients. If the user clicks OK to
dismiss the dialog box, we will apply the above scenario.
Access the OnBnClickedBtnIngredients() event of the main dialog box and change
its code as follows:

void CFastFoodDlg::OnBnClickedBtnIngredients()
{
 // TODO: Add your control notification handler code here
 // Check the Ingredients check box state
 int IngredientState = IsDlgButtonChecked(IDC_CHK_REGULARS);

 // A variable for the Ingredients dialog box

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 629

 CIngredientsDlg Dlg;// = new CIngredientsDlg;

 // Before displaying the dialog box, synchronize its
 // check boxes with the state of the Ingredients check box
 // If the Ingredients check box is not checked at all
 if(IngredientState == 0)
 {
 // then uncheck all the check boxes of the Ingredients dialog
 Dlg.m_bLettuce = FALSE;
 Dlg.m_bOnion = FALSE;
 Dlg.m_bTomato = FALSE;
 Dlg.m_bPickles = FALSE;
 } // If the Ingredients check box is checked
 else if(IngredientState == 1)
 {
 // then check all the check boxes of the Ingredients dialog
 Dlg.m_bLettuce = TRUE;
 Dlg.m_bOnion = TRUE;
 Dlg.m_bTomato = TRUE;
 Dlg.m_bPickles = TRUE;
 } // Since the Ingredients check box appears indeterminate,
 else if(IngredientState == 2)
 {
 // select the lettuce and the tomato
 Dlg.m_bLettuce = TRUE;
 Dlg.m_bOnion = FALSE;
 Dlg.m_bTomato = TRUE;
 Dlg.m_bPickles = FALSE;
 }
 // Now is the time to display the dialog box

 // Call the Ingregients Selection dialog box for the user
 // If the user clicked OK when closing the dialog box,
 if(Dlg.DoModal() == IDOK)
 {
 // if no check box is checked
 if((Dlg.m_bLettuce == FALSE) &&
 (Dlg.m_bOnion == FALSE) &&
 (Dlg.m_bTomato == FALSE) &&
 (Dlg.m_bPickles == FALSE))
 m_Regulars.SetCheck(0); // then uncheck this one
 // if all check boxes are checked
 else if((Dlg.m_bLettuce == TRUE) &&
 (Dlg.m_bOnion == TRUE) &&
 (Dlg.m_bTomato == TRUE) &&
 (Dlg.m_bPickles == TRUE))
 m_Regulars.SetCheck(1); // then check this one
 else // if at least one check box is checked and at one is unchecked
 m_Regulars.SetCheck(2); // then set this one as indeterminate
 }
 // If the user clicked Cancel, don't do nothing
}

7. Now we can calculate the price of the sandwich.
In the CFastFoodDlg class, declare a member function of type void and named
EvaluatePrice

private:
 void EvaluatePrice(void);
};

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

630 © FunctionX, Inc.

8. Implement the method as follows:

void CFastFoodDlg::EvaluatePrice(void)
{
 double PriceBread, PriceMeat,
 PriceCheese, PriceBacon, TotalPrice;

 // The price of bread is $0.85
 PriceBread = 0.85;

 // To get the price of the meat, find out what button
 // is selected in the Meat group box
 switch(GetCheckedRadioButton(IDC_MEAT, IDC_CHICKEN_BREAST))
 {
 case IDC_MEAT:
 // The beef patty is $1.50
 PriceMeat = 1.50;
 break;
 case IDC_GRILLED_CHICKEN:
 case IDC_CHICKEN_BREAST:
 // Cheicken breast and grilled chicken are $1.80 each
 PriceMeat = 1.80;
 break;
 default: // Why are we adding this?
 PriceMeat = 0.00;
 }

 // There is no extra cost for the Regular ingredients
 // and nothing to add for the sweetener

 // On the other hand,
 // if the customer wants cheese, $0.30 is added to the price
 if(IsDlgButtonChecked(IDC_CHK_CHEESE) == 1)
 PriceCheese = 0.30;
 else // otherwise, the customer don't want no cheese
 PriceCheese = 0.00;
 // If the customer wants bacon, $0.45 is added to the price
 if(IsDlgButtonChecked(IDC_CHK_BACON) == 1)
 PriceBacon = 0.45;
 else
 PriceBacon = 0.00;

 // Now, we can calculte the total price
 TotalPrice = PriceBread + PriceMeat + PriceCheese + PriceBacon;
 // Convert the price to a null-terminated string
 char StrTotalPrice[10];
 sprintf(StrTotalPrice, "$%.2f", TotalPrice);
 // Display the price
 m_TotalPrice.SetWindowText(StrTotalPrice);
}

9. To update the price and its display live whenever the user makes a new selection,
generate a BN_CLICKED message for the IDC_MEAT, the
IDC_GRILLED_CHICKEN, the IDC_CHICKEN_BREAST, the
IDC_CHK_CHEESE, and the IDC_CHK_BACON check boxes

10. In the body of each, simply call the above EvaluatePrice() method. Here are two
examples to save printing paper:

void CFastFoodDlg::OnBnClickedGrilledChicken()

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 631

{
 // TODO: Add your control notification handler code here
 EvaluatePrice();
}

void CFastFoodDlg::OnBnClickedChickenBreast()
{
 // TODO: Add your control notification handler code here
 EvaluatePrice();
}

void CFastFoodDlg::OnBnClickedChkCheese()
{
 // TODO: Add your control notification handler code here
 EvaluatePrice();
}

void CFastFoodDlg::OnBnClickedChkBacon()
{
 // TODO: Add your control not ification handler code here
 EvaluatePrice();
}

11. Test the application

12. Close the dialog and retun to MSVC

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

632 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 633

Chapter 20:
List-Based Controls

? List Boxes

? Combo Boxes

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

634 © FunctionX, Inc.

20.1 List Boxes

20.1.1 Overview

A list box presents a list of items to choose from.
Each item displays on a line. The user makes a
selection by clicking in the list. Once clicked, the
item or line on which the mouse landed becomes
highlighted, indicating that the item is the current
choice. Once an item is selected, to make a different
selection, the user would click another. The user can
also press the up and down arrow keys to navigate
through the list and make a selection.

As far as item selection is concerned, there are two
types of list boxes: single selection and multiple
selection.

One of the main reasons for using a list box is to

display a list of items to the user. Sometimes the list would be very large. If the list is longer than the
available space on the control, the operating system would provide a scroll bar that allows the user to
navigate up and down to access all items of the list. Therefore, you will have the option of deciding how
many items to display on the list.

 Practical Learning: Introducing List Boxes

1. Start a new MFC Application named TableWizard

2. Create it as Dialog Based and set the Dialog Title to Table Wizard

3. On the Toolbox, click the Group Box control and click on the Top left section
of the dialog

4. Change its Caption to Categories

5. On the Toolbox, click the Radio Button control and click in the group box on
the dialog box

6. Change its ID to IDC_RDO_BUSINESS and its Caption to &Business

7. Check the Group property of the radio button or set this property to True

8. Add a CButton Control Variable for IDC_RDO_BUSINESS. Name it
m_SelectBusiness

9. Add another radio button under the Business control. Change its ID to
IDC_RDO_PERSONAL ant its Caption to &Personal

10. Check the Group check box of the radio button or set the Group property to True

11. Add a CButton Control Variable for the new radio button named
m_SelectPersonal

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 635

12. Uncheck the Group property of the IDC_RDO_PERSONAL radio button or set this
property to False

13. On the Toolbox, click the Static Text button and click on the dialog under the
group box

14. Change its Caption to Sample Tables

20.1.2 List Box Fundamentals
To include a list box in your application, from the Controls toolbox, you can click the

List Box button and click on a parent window. The MFC list box is based on the
CListBox class. A newly added list box appears as a rectangular empty box with a white
background.

After creating the list box, the user can select an item by clicking it in the list. The newly
selected item becomes highlighted. If the user clicks another item, the previous one
looses its highlighted color and the new item becomes highlighted. By default, the user
can select only one item at a time. The ability to select one or more items is controlled by
the Selection property whose default value is Single. If you do not want the user to be
able to select any item from the list, you have two main alterrnatives. If you set the
Selection property to None, when the user clicks an item, a rectangle is drawn around the
item but the highlighted color is not set. Alternatively, you can create the control with the
Disabled property set to True.

If you want the user to be able to select more than one item, at design time, set the
Selection property to Multiple. If you are programmatically creating the control, you can
provide this ability by adding the LBS_MULTIPLESEL style. When a list box is
created with the Multiple Selection set, to select an item, the user would click it. To
select an additional item, the user can click it subsequently. If the user clicks an item that
is highlighted, meaning it was already selected, the item becomes selected, loosing its
highlighted color. The user can continue using this feature to build the desired list.

Microsoft Windows allows a user to select items on a list box (in fact on many other list-
based controls or views) by using a combination of mouse click and the keyboard. To
select items in a range, the user can press and hold Shift. Then click an item from the
other range and release Shift. All items between both clicks would be selected. To select
items at random, the user can press and hold Ctrl. Then click each desired item, which
creates a series of cumulative selections. To provide this ability, at design time, you can
set the Selection property to Extended. If you are programmatically creating the list box,
add the LBS_EXTENDEDSEL style to it.

When building the list of items of a list box, by default, the items are rearranged in
alphabetical order. Even if you add an item to an already created list, the new item is
added to the right order. This arrangement means that the list is sorted. The ability to sort
a list box or not is controlled by the LBS_SORT style. If you want the items to keep their
position as they are added, set the Sort property to True.

 Practical Learning: Creating List Boxes

1. On the Toolbox, click the List Box button and click on the dialog under the
group box.

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

636 © FunctionX, Inc.

2. Change its ID to IDC_SAMPLE_TABLES

3. Remove the check box on the Sort property or set it to False

4. Add a Control Variable for the IDC_SAMPLE_TABLES list box and name it
m_SampleTables

5. In the header file of the CTableWizardDlg class, declare two constant CString
arrays as follows:

const CString Business[] = { "Contacts", "Customers", "Employees",
 "Products", "Orders", "Suppliers",
 "Payments", "Invoices","Projects",
 "Events", "Transactions" };

const CString Personal[] = { "Addresses", "Video Collection",
 "Authors", "Books", "Categories",
 "Music Collection", "Investments" };

6. At the end of the class, declare two private integer variables as follows:

private:
 // Variables used to hold the number of items in their respective array
 int SizeBusiness;
 int SizePersonal;
};

7. Save All

20.1.3 List Box Methods
A list box is based on the CListBox class. Therefore, if you want to programmatically
create a list box, declare a CListBox variable or pointer using its constructor. To initialize
the control, call its Create() method. Here is an example:

void CExoListBox1View::OnInitialUpdate()
{
 CFormView::OnInitialUpdate();
 GetParentFrame()->RecalcLayout();
 ResizeParentToFit();

 CListBox *m_SimpleList = new CListBox;

 m_SimpleList->Create(WS_CHILD | WS_VISIBLE | WS_VSCROLL,
 CRect(20, 20, 120, 120), this, 0x118);

After adding a list box, you can “fill” it up with items. This is done by calling the
CListBox::AddString() method. Its syntax is:

int AddString(LPCTSTR lpszItem);

This method expects a null-terminated string as argument and adds this argument to the
control. To add more items, you must call this method for each desired item. Here is an
example:

void CExoListBox1View::OnInitialUpdate()
{
 CFormView::OnInitialUpdate();
 GetParentFrame()->RecalcLayout();

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 637

 ResizeParentToFit();

 m_ListOfStudents.AddString("Jules Nsang");
 m_ListOfStudents.AddString("George Young");
 m_ListOfStudents.AddString("Christine Larson");
 m_ListOfStudents.AddString("James Carlton");
 m_ListOfStudents.AddString("Annette Simms");
 m_ListOfStudents.AddString("Ernestine Whitfield");
 m_ListOfStudents.AddString("Paulin Ngono");
 m_ListOfStudents.AddString("Lester Gramms");
 m_ListOfStudents.AddString("Daniella Parent");
 m_ListOfStudents.AddSt ring("Hermine Krantz");
 m_ListOfStudents.AddString("Faustin Nguyen");
}

The items of a list box are arranged as a zero-based array. The top item has an index of
zero. The second item as an index of 1, etc. Although the items seem to be added
randomly to the list, their new position depends on whether the list is sorted or not. If the
list is sorted, each new item is added to its alphabetical position. If the list is not sorted,
each item is added on top of the list as if it were the first item. The other items are then
“pushed down”. If the list is not sorted, you can add an item in the position of your
choice. This is done using the CListBox::InsertString() method whose syntax is:

int InsertString(int nIndex, LPCTSTR lpszItem);

The lpszItem argument is the string to be added to the list. The nIndex argument specifies
the new position in the zero-based list. If you pass it as 0, the lpszItem item would be
made the first in the list. If you pass it as –1, lpszItem would be added at the end of the
list, unless the list is empty.

Based on this, to delete an item from the list, pass its index to the
CListBox::DeleteString() method. Its syntax is:

int DeleteString(UINT nIndex);

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

638 © FunctionX, Inc.

For example, to delete the second item of the list, pass a 1 value to this method. If you
want to delete all items of the control, call the CListBox::ResetContent() method. ITs
syntax is:

void ResetContent();

This method simply dismisses the whole content of the list box.

At any time, if you want to know the number of items that a list box holds, call the
CListBox::GetCount() method whose syntax is:

int GetCount() const;

This method simply returns a count of the items in the list.

Once a list has been created, you and your users can use its items. For example, to select
an item, the user clicks it. To programmatically select an item, you can call the
CListBox::SetCurSel() method. Its syntax is:

int SetCurSel(int nSelect);

The nSelect argument specifies the item to select. To select the fifth item from a list box,
you can pass the nSelect argument with a value of 4

void CExoListBox1View::OnInitialUpdate()
{
 CFormView::OnInitialUpdate();
 GetParentFrame()->RecalcLayout();
 ResizeParentToFit();

 . . .

 m_ListOfStudents.SetCurSel(4);
}

If an item is selected in the list and you want to find out which one, you can call the
CListBox::GetCurSel() method. Its syntax is:

int GetCurSel() const;

 Practical Learning: Using List Box Methods

1. Change the OnInitDialog() member function as follows:

BOOL CTableWizardDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 // Select the Business radio button
 m_SelectBusiness.SetCheck(1);

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 639

 // Get the number of items in the array
 SizeBusiness = sizeof(Business) / sizeof(CString);
 SizePersonal = sizeof(Personal) / sizeof(CString);

 // Fill out the Sample Tables list with the Business items
 for(int i = 0; i < SizeBusiness; i++)
 m_SampleTables.AddString(Business[i]);

 // Select the first item in the Sample Tables list box
 m_SampleTables.SetCurSel(0);

 return TRUE; // return TRUE unless you set the focus to a control
}

2. Test your program

3. After testing the dialog box, close it and return to MSVC.

4. Add a BN_CLICKED Event Handler for the IDC_RDO_BUSINESS radio button
and change the name of the function to OnSelectBusiness

5. Add a BN_CLICKED Event Handler for the IDC_RDO_PERSONAL radio button
and change the name of the function to OnSelectPersonal

6. Implement both events as follows:

void CTableWizardDlg::OnSelectBusiness()
{
 // TODO: Add your control notification handler code here
 // Empty the list
 m_SampleTables.ResetContent();

 // Fill out the list with Business items
 for(int i = 0; i < SizeBusiness; i++)
 m_SampleTables.AddString(Business[i]);

 // Select the first item in the list
 m_SampleTables.SetCurSel(0);
}

void CTableWizardDlg::OnSelectPersonal()
{

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

640 © FunctionX, Inc.

 // TODO: Add your control notification handler code here
 // Empty the lists
 m_SampleTables.ResetContent();

 // Fill out the list
 for(int i = 0; i < SizePersonal; i++)
 m_SampleTables.AddString(Personal[i]);

 // Select the first item in the list
 m_SampleTables.SetCurSel(0);
}

7. Execute the program to test it. Click the radio buttons and make sure that the content
of the Sample Tables list box changes based on the selected radio button.

8. After testing the dialog box, close it and return to MSVC.

9. Add a new Static Text to the right side of the group box with a caption of
Sample Fields

10. Add a new List Box under the Sample Fields label. Set its ID to
IDC_SAMPLEFIELDS and remove the check box on its Sort property or set it to
False

11. Add a CListBox Control Variable to the IDC_SAMPLEFIELDS control and name
it m_SampleFields

12. In the header file of CTableWizardDlg class, declare additional CString arrays as
follows:

const CString Business[] = { "Contacts", "Customers", "Employees",
 "Products", "Orders", "Suppliers",
 "Payments", "Invoices", "Projects",
 "Events", "Transactions" };

const CString Personal[] = { "Addresses", "Video Collection",
 "Authors", "Books", "Categories",
 "Music Collection", "Investments" };

const CString Contacts[] = { "MailingListID", "SocialTitle", "FirstName",
 "MiddleName", "LastName", "Suffix",
 "Nickname", "HomeAddress", "City",

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 641

 "StateOrProvince", "PostalCode",
 "CountryOrRegion", "HomePhone", "WorkPhone",
 "Extension", "MobileNumber", "EmergencyName",
 "EmergencyPhone", "Notes" };

const CString Customers[] = { "CustomerID", "CompanyName",
 "CompanyAddress", "CompanyCity",
 "CompanyState", "companyZIPCode",
 "CompanyCountry", "CompanyPhone",
 "BillingAddress", "FaxNumber",
 "WebSite", "ContactPhone", "ContactEMail" };

const CString Employees[] = { "EmployeeID", "EmployeeNumber",
 "DateHired", "Title", "FirstName",
 "MI", "LastName", "Address",
 "City", "State", "ZIPCode", "Country",
 "HomePhone", "WorkPhone", "Extension",
 "CellPhone", "EmergencyName",
 "EmergencyPhone", "Comments" };

const CString Addresses[] = { "AddressID", "FirstName", "LastName",
 "MaritalStatus", "Address", "City",
 "StateOrProvince", "PostalCode",
 "CountryOrRegion", "EmergencyName",
 "EmergencyPhone", "Notes" };

const CString VideoCollection[] = { "VideoID", "VideoTitle",
 "CategoryID", "Director", "Rating",
 "Length", "VideoReview" };

const CString Categories[] = { "CategoryID", "Category", "Description" };

const CString Authors[] = { "AuthorID", "FullName", "Nationality",
 "BirthDate", "BirthPlace",
 "AliveDead", "Comments" };

const CString Books[] = { "BookID", "BookTitle", "Author", "CategoryID",
 "Publisher", "YearPublished", "NumberOfPages",
 "ISBNNumber", "BookReview" };

13. In the private section of the class, add new integer variables to hold the dimensions
of the arrays as follows:

private:
 int SizeBusiness;
 int SizePersonal;
 int SizeContacts;
 int SizeEmployees;
 int SizeAddresses;
 int SizeCustomers;
 int SizeVideoCollection;
 int SizeCategories;
 int SizeAuthors;
 int SizeBooks;
};

14. Access the TableWizardDlg.cpp source file.
To make sure that the Sample Fields list is initially filled up with the right fields,
change the OnInitDialog() function as follows:

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

642 © FunctionX, Inc.

BOOL CTableWizardDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 // Select the Business radio button
 m_SelectBusiness.SetCheck(1);

 // Get the number of items in the array
 SizeBusiness = sizeof(Business) / sizeof(CString);
 SizePersonal = sizeof(Personal) / sizeof(CString);
 SizeContacts = sizeof(Contacts) / sizeof(CString);
 SizeAddresses = sizeof(Addresses) / sizeof(CString);
 SizeEmployees = sizeof(Business) / sizeof(CString);
 SizeCustomers = sizeof(Business) / sizeof(CString);
 SizeVideoCollection = sizeof(VideoCollection) / sizeof(CString);
 SizeCategories = sizeof(Categories) / sizeof(CString);
 SizeAuthors = sizeof(Authors) / sizeof(CString);
 SizeBooks = sizeof(Books) / sizeof(CString);

 // Fill out the Sample T ables list with the Business items
 for(int i = 0; i < SizeBusiness; i++)
 m_SampleTables.AddString(Business[i]);

 // Select the first item in the Sample Tables list box
 m_SampleTables.SetCurSel(0);

 // Fill out the Sample Fields list box
 for(int j = 0; j < SizeContacts; j++)
 m_SampleFields.AddString(Contacts[j]);

 // Select the first item in the Sample Fields list box
 m_SampleFields.SetCurSel(0);

 return TRUE; // return TRUE unless you set the focus to a control
}

15. To make sure that the Sample Fields list is updated when one of the radio buttons is
selected, change the OnSelectBusiness() and the OnSelectPersonal() functions as
follows:

void CTableWizardDlg::OnSelectBusiness()
{
 // TODO: Add your control notification handler code here
 // Empty the list
 m_SampleTables.ResetContent();
 m_SampleFields.ResetContent();

 // Fill out the list with Business items
 for(int i = 0; i < SizeBusiness; i++)
 m_SampleTables.AddString(Business[i]);

 // Select the first item in the list
 m_SampleTables.SetCurSel(0);

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 643

 // Fill out the Sample Fields list and select the first item
 for(int j = 0; j < SizeContacts; j++)
 m_SampleFields.AddString(Contacts[j]);
 m_SampleFields.SetCurSel(0);

}

void CTableWizardDlg::OnSelectPersonal()
{
 // TODO: Add your control notification handler code here
 // Empty the lists
 m_SampleTables.ResetContent();
 m_SampleFields.ResetContent();

 // Fill out the list
 for(int i = 0; i < SizePersonal; i++)
 m_SampleTables.AddString(Personal[i]);

 // Select the first item in the list
 m_SampleTables.SetCurSel(0);

 // Fill out the Sample Fields list and select the first item
 for(int j = 0; j < SizeAddresses; j++)
 m_SampleFields.AddString(Addresses[j]);
 m_SampleFields.SetCurSel(0);
}

16. Test your program and return to MSVC

20.1.4 List Box Messages and Events
In order to user the list box as a control, it must first receive focus. This can be visible by
either the first item having a rectangle drawn around it or at least on the items being
selected. When the list box receives focus, it sends the LBN_SETFOCUS notification
message. On the other hand, once the user clicks another control or another application,
the list box loses focus and consequently sends the LBN_KILLFOCUS notification
message.

As clicking is the most performed action on a list box, when the user clicks an item, it
becomes selected. If the user clicks another item of a non-Multiple Selection list box, as
the selection is going to be changed, the LBN_SELCHANGE notification message is
sent. If the selection is cancelled, the LBN_SELCANCEL notification message is sent.

If the user double-clicks an item in the list box, the LBN_DBLCLK notification message
is sent.

 Practical Learning: Exploring List Boxes
1. When the user clicks a table in the Sample Tables list box, we must change the

content of the Sample Fields list box and fill it out with the fields that are part of the
selected table.
Right-click the IDC_SAMPLE_TABLES list box and click Add Event Handler

2. In the Messages Type list, click LBN_SELCHANGE and, in the Class Lis t, make
sure CTableWizardDlg is selected

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

644 © FunctionX, Inc.

3. In the Function Handler Name edit box, change the name to OnChangeSampleTables

4. Click Add and Edit

5. Implement the function as follows:

void CTableWizardDlg::OnChangeSampleTables()
{
 // TODO: Add your control notification handler code here
 // Before filling out the Sample Fields list box, empty it first
 m_SampleFields.ResetContent();

 // This string variable will identify the selected table
 CString ItemSelected;

 // Get the name of the item selected in the Sample Tables list box
 // and store it in the CString variable declared above
 m_SampleTables.GetText(m_SampleTables.GetCurSel(), ItemSelected);

 // Fill out the Sample Fields list box according to the selected table
 if(ItemSelected == "Contacts")
 {
 for(int i = 0; i < SizeContacts; i++)
 m_SampleFields.AddString(Contacts[i]);
 }
 else if(ItemSelected == "Customers")
 {
 for(int i = 0; i < SizeCustomers; i++)
 m_SampleFields.AddString(Customers[i]);
 }
 else if(ItemSelected == "Employees")
 {
 for(int i = 0; i < SizeEmployees; i++)
 m_SampleFields.AddString(Employees[i]);
 }
 else if(ItemSelected == "Addresses")
 {
 for(int i = 0; i < SizeAddresses; i++)
 m_SampleFields.AddString(Addresses[i]);
 }
 else if(ItemSelected == "VideoCollection")
 {
 for(int i = 0; i < SizeVideoCollection; i++)

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 645

 m_SampleFields.AddString(VideoCollection[i]);
 }
 else if(ItemSelected == "Categories")
 {
 for(int i = 0; i < SizeCategories; i++)
 m_SampleFields.AddString(Categories[i]);
 }
 else if(ItemSelected == "Authors")
 {
 for(int i = 0; i < SizeAuthors; i++)
 m_SampleFields.AddString(Authors[i]);
 }
 else if(ItemSelected == "Books")
 {
 for(int i = 0; i < SizeBooks; i++)
 m_SampleFields.AddString(Books[i]);
 }
 else // If we didn't create a list for the selected table, show nothing
 m_SampleFields.ResetContent();

 // Select the first item, if any, in the Sample Fields list box
 m_SampleFields.SetCurSel(0);
}

6. Test the program. Click different radio buttons and click different tables in the
Sample Tables list

7. Return to MSVC and design the dialog as follows:

8. Add a new Static Text to the top right section of the dialog and set its caption to
Selected Fields

9. Add a new List Box under the Selected Fields label.

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

646 © FunctionX, Inc.

10. Change its ID to IDC_SELECTEDFIELDS and remove the check mark of its Sort
property or set it to False

11. Add a CListBox Control Variables for the IDC_SELECTEDFIELDS control and
name it m_SelectedFields

12. Add a Button between the right list boxes. Set its ID to
IDC_BTN_SELECTONE and its Caption to >

13. Add a CButton Control Variable for the > button and name it m_SelectOne

14. Add another Button under the previous one. Set its ID to
IDC_BTN_SELECTALL and its Caption to >>

15. Add a CButton Control Variable for the >> button and name it m_SelectAll

16. Add another Button under the previous one. Set its ID to
IDC_BTN_REMOVEONE and its Caption to <

17. Add a CButton Control Variable for the < button and name it m_RemoveOne

18. Add another Button under the previous one. Set its ID to
IDC_BTN_REMOVEALL and its Caption to <<

19. Add a CButton Control Variable for the << button and name it m_RemoveAll

20. First of all, when the dialog box opens, the Selected Fields list is empty, which
means the Remove buttons are not useful. Therefore, we should disable them. To do
this , add the following two lines to the OnInitDialog() member function:

 // Since the Selected Field list box is empty, disable the Remove buttons
 m_RemoveOne.EnableWindow(FALSE);
 m_RemoveAll.EnableWindow(FALSE);

 return TRUE; // return TRUE unless you set the focus to a control
}

21. Add a BN_CLICKED Event Handler for the > button and name it OnSelectOne

22. To be able to select an item from the Sample Fields list and transfer it to the Selected
Fields list box, implement the function as follows:

void CTableWizardDlg::OnSelectOne()
{
 // TODO: Add your control notification handler code here
 // Variable that identifies what item is selected in the sample fields
 CString SourceSelected;

 // Find out what item is selected
 // Store it in the above variable
 m_SampleFields.GetText(m_SampleFields.GetCurSel(), SourceSelected);

 // Add the item to the Selected Fields list box
 m_SelectedFields.AddString(SourceSelected);
}

23. To enhance the application, we need to make sure that the user can double-click an
item in the Sample Fields list box and obtain the same behavior as if the > button had
been clicked
Therefore, add an LBN_DBLCLK for the IDC_SAMPLEFIELDS list box and name
it OnDblClkSampleFields

24. Implement it as follows:

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 647

void CTableWizardDlg::OnDblClkSampleFields()
{
 // TODO: Add your control notification handler code here
 OnSelectOne();
}

25. Test the application and return to MSVC

26. One of the problems we have at this time is that the user can select the same item
more than once, which is not practical for a database's table. Therefore, when the
user selects an item, we first need to check whether the Selected Fields list box
already contains the item. If it does, we will not allow adding the item. We will
provide an alternate solution shortly. Also, once at least one item has been added to
the Selected Fields list, we can enable the Remove buttons.
Change the content of the OnSelectOne() function as follows:

void CTableWizardDlg::OnSelectOne()
{
 // Variable that identifies what item is selected in the sample fields
 CString SourceSelected;

 // Find out what item is selected
 // Store it in the above variable
 m_SampleFields.GetText(m_SampleFields.GetCurSel(), SourceSelected);

 // Find out if the Selected Fields list is empty
 if(m_SelectedFields.GetCount() == 0)
 {
 // Since the list is empty, add the selected item
 m_SelectedFields.AddString(SourceSelected);
 // Select the newly added item
 m_SelectedFields.SetCurSel(0);
 }
 else // Since the list is not empty
 {
 // Look for the selected item in the Selected Fields list
 int Found = m_SelectedFields.FindString(0, SourceSelected);

 // If the item is not yet in the Selected Fields list, prepare to add it
 if(Found == -1)
 {
 // Because there is always an item selected in any of our list,
 // get the index of the currently selected item
 int CurrentlySelected = m_SelectedFields.GetCurSel();

 // Add the new item under the selected one
 m_SelectedFields.InsertString(CurrentlySelected + 1,
SourceSelected);

 // Select the newly added item
 m_SelectedFields.SetCurSel(CurrentlySelected + 1);
 }
 }

 // Since an item has been selected, enable the Remove buttons
 m_RemoveOne.EnableWindow();
 m_RemoveAll.EnableWindow();
}

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

648 © FunctionX, Inc.

27. Execute the program to test it. Double-click various items in the Sample Fields list
box and observe the behavior.

28. After using it, close the dialog box and return to MSVC

29. Add a BN_CLICKED Event Handler for the >> button and name it OnSelectAll

30. We need to let the user select all items in the Sample Fields list and copy them to the
Selected Fields list. As previously, we need to avoid duplicating the names of fields
in the same table. Therefore, to add the items to the list, first select one at a time,
look for it in the Selected Fields list. If it doesn't exist, then add it. If it already exists,
ignore it and consider the next item. This behavior can be performed in a for loop
that is used to navigate the items in an array.
Implement the OnSelectAll() event as follows:

void CTableWizardDlg::OnSelectAll()
{
 // TODO: Add your control notification handler code here
 // This string will represent an item in the Sample Fields list
 CString Item;

 // This "for" loop will be used to navigate the Sample Fields list
 for(int i = 0; i < m_SampleFields.GetCount(); i++)
 {
 // Consider an item in the Sample Fields list
 // Store it in the above declared Item variable
 m_SampleFields.GetText(i, Item);

 // Look for the item in the Selected Fields list
 // Make sure you start at the beginning of the list, which is item 0
 int Found = m_SelectedFields.FindString(0, Item);

 // If the item is not yet in the Selected Fields list, prepare to add it
 if(Found == -1)
 {
 // Add the new item at the end of the Selected Fields list
 m_SelectedFields.AddString(Item);

 // Select the last item of the Selected Fields list
 m_SelectedFields.SetCurSel(m_SelectedFields.GetCount() - 1);
 } // Consider the next item
 }

 // Since there is at least one item in the Selected Fields list,
 // enable the Remove buttons
 m_RemoveOne.EnableWindow();
 m_RemoveAll.EnableWindow();
}

31. Test your program and return to MSVC

32. Add a BN_CLICKED Event Handler for the < button and name it OnRemoveOne

33. The < button works by removing, from the Selected Fields list box, the item that is
selected. To do this, we first need to make sure that an item is selected. All the
previous code took care of selecting an item in each list. The problem is that, this
time, the selected item is removed. Therefore, we have the responsibility of selecting
a new item.
When an item has been re moved, we will select the item that was under it. What if
we had removed the item that was at the bottom of the list? In that case, we will

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 649

select the new last item in the list.
To do this, implement the OnRemoveOne() event as follows:

void CTableWizardDlg::OnRemoveOne()
{
 // TODO: Add your control notification handler code here
 // Based on previous code, an item should be selected
 // in the Selected Fields list
 // Get the index of the currently selected item
 int CurrentlySelected = m_SelectedFields.GetCurSel();

 // Remove the item from the list
 m_SelectedFields.DeleteString(CurrentlySelected);

 // Find out whether the list has just been emptied or not
 // If the Selected Fields list is empty,
 if(m_SelectedFields.GetCount() == 0)
 {
 // then disable the Remove buttons
 m_RemoveOne.EnableWindow(FALSE);
 m_RemoveAll.EnableWindow(FALSE);
 }
 else // Since the Selected Fields list still contains something
 {
 // Find out if the item that has just been removed was the last in the list
 if(CurrentlySelected == m_SelectedFields.GetCount())
 {
 // Select the last item in the list
 m_SelectedFields.SetCurSel(m_SelectedFields.GetCount() - 1);
 }
 else // Otherwise
 {
 // Select the item that was above the one that was just deleted
 m_SelectedFields.SetCurSel(CurrentlySelected);
 }
 }
}

34. We also want the user to be able to remove an item by double-clicking it. Of course,
this is not only optional but also application dependent because another program
would have a different behavior when the item is double-clicked.
Add an LBN_DBLCLK Event Handler for the IDC_SELECTEDFIELDS list box
and name it OnDblClkSelectedFields

35. Implement it as follows:

void CTableWizardDlg::OnDblClkSelectedFields()
{
 // When the user double-clicks an item in the Select ed Fields list,
 // behave as if the < button has been clicked
 OnRemoveOne();
}

36. Test your program and return to MSVC

37. Add a BN_CLICKED Event Handler for the << button and name it OnRemoveAll.

38. The << button is used to simply empty the Selected Fields list. It does not perform
any checking of any kind. The only thing we need to do is to disable the Remove
buttons after the Selected Fields list has been emptied.
Therefore, implement the function as follows:

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

650 © FunctionX, Inc.

void CTableWizardDlg::OnRemoveAll()
{
 // TODO: Add your control notification handler code here
 m_SelectedFields.ResetContent();

 // Since the Selected Fields list is now empty,
 // disable the Remove buttons
 m_RemoveOne.EnableWindow(FALSE);
 m_RemoveAll.EnableWindow(FALSE);
}

39. Test your program

40. Return to MSVC.

20.2 Combo Boxes

20.2.1 Overview
A combo box is a Windows control that holds a list of items. Each item can be a null-
terminated string or it can be made of a bitmap and a string. A combo box shares a lot of
characteristics with a list but there are more variances of a combo box.

As far as looks are concerned, there are two types of
combo boxes. The most regularly used combo box is
made of two sections. The main part is an edit box.
On the right of the edit box, there is a button with a
down pointing arrow:

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 651

To use this type of combo box, the user would click the down
pointing arrow button. This causes a list of items to display. If the
user finds the desired item in the list, he or she can click it. The item
clicked becomes the selection and it gets in the edit box side of the
combo box:

If the user does not find the desired item, he or she can click the down pointing arrow. In
this case, no selection is made and the combo box remains as it was before the button was
clicked, whether it had an item or not.

A combo box is called “Drop Down” or Drop List if
it is made of an edit box and a down pointing arrow,
as described above. Another type of combo box is
referred to as Simple. This kind displays its items
like a list box. The user does not have to click an
arrow button to display the list. When a simple
combo box displays, the user can locate the desired
item in the list and click it. The selected item
becomes the value of the edit side.

Like a list box or a group of radio buttons, a combo box is used to display a list of items
to the user to select from. Like a series of radio buttons, a combo box allows the user to
select only one item from the list. Like the list box control, if the number of items is
higher than the allocated space can accommodate, the combo box is equipped with a
vertical scroll bar, whether it is a drop type or a simple kind:

Over a list box, a combo box (especially the drop kinds) has the advantage of saving
space as it can use only as much space as a combination of an edit box and a small
button.

 Practical Learning: Introduction to Combo Boxes
1. Start a new MFC Application and name it Clarksville Ice Scream2

2. Create it as a Dialog Based without the About Box. Set the Dialog Title to
Clarksville Ice Scream

3. Click Finish

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

652 © FunctionX, Inc.

20.2.2 Combo Box Properties

To create a combo box, you can click the Combo Box button on the Controls
toolbox and click the parent window. After adding a combo box, if you want to
immediately create its strings, in the Properties window, click the Data field. To create
the list of items, type the items separated by a semi -colon

By default, a newly added combo box is of drop down type. The kind of display is
controlled by the Type combo box of the Properties window and its default value is
Dropdown. This is programmatically equivalent to adding the CBS_DROPDOWN
style. A drop down combo box allows the user to type a new value if the desired string is
not in the list. To do this, the user can click the edit side of the control and start typing. If
the user types a string that is longer than the width of the edit box part, the control would
cause the computer to start making a beep sound, indicating that the user cannot type
beyond the allocated length. If you want the user to be able to type a long string, check or
set to True the Auto HScroll property. If you are programmatically creating the control,
you can do this by adding the CBS_AUTOHSCROLL style.

If you do not want the user to be able to type a new string, set the Type property to Drop
List or create the control with a CBS_DROPDOWNLIST style. With this type, whether
the user clicks the edit part or the arrow button, the list would drop. If the user finds the
desired value and clicks it, the list retracts and the new selection displays in the edit part
of the control. If the user does not find the desired item in the list, he or she can click the
edit box or the arrow button. In this case, the selection would not be changed. If you want
the list part of the combo box to always display, like the list box control, set the Type
property to Simple or create it with the CBS_SIMPLE style.

As described above, when the list of items is too long for the reserved rectangular area of
the list side to display, the control gets automatically equipped with a vertical scroll bar.
This is because its Vertical Scroll check box or property is automatically checked or set
to True. If you allow or add this style, if the list is not too long and can be accomodated
by the rectangle, no scroll bar would be displayed. If the list is too long and you set this
property, then a vertical scroll bar would automatically appear on the control. If you insist
on displaying a vertical scroll bar even if the rectangle is long enough to display all items,
check the Disable No Scroll check box or set it to True. In this case, if the rectangle can
accommodate all items, a disabled vertical scroll bar would appear on the control. y either
checking the (or setting it to True) or creating the combo box with the WS_HSCROLL
window style. Based on this convenience, unless you have a strong reason to do
otherwise, you should always allow the vertical scroll bar.

The combo boxes we have mentioned so far are created by their control, in which case
the combo boxes are responsible for creating and updating their list. You can create a
combo box that relies on its owner for all related operations. Such a combo box is
referred to as owner draw. When an owner is responsible for drawing the items of a
combo box, it can set the value of each item as it sees fit. For example, different items of
the same list can use different fonts. They can display different types of items and they
can even draw anything on their line. The ability to feature a combo box as owner draw
or not is specified using the Owner Draw combo box of the Properties window. Its
default value is No. To create an owner draw combo box where all items have the same
height, set this property to the Fixed value. This is equivalent to adding the
CBS_OWNERDRAWFIXED style to a dynamic combo box. On the other hand, if you
want items to have different heights, set the Owner Draw value to Variable or create he
control with a CBS_OWNERDRAWVARIABLE style.

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 653

 Practical Learning: Adding Combo Boxes

1. From the Controls toolbox, click the Group Box button and draw a large
rectangle on the left side of the dialog box

2. On the Controls toolbox, click the Combo Box button and click inside the
previously added group box

3. Design the dialog box as follows:

Control ID Caption Other Properties
Group Box Products
Static Text Container:
Combo Box IDC_CONTAINER Type: Drop List

Data: Cone;Cup; Bowl
Sort: False

Static Text Topping:
Combo Box IDC_TOPPING Data:

None;Cookies;Peanuts;M&M
Sort: False

Static Text Scoops:
Combo Box IDC_SCOOPS Data: One;Two;Three

Sort: False
Group Box Flavor
Combo Box IDC_FLAVORS Type: Simple
Group Box Order Summary
Static Text Tax Rate:
Edit Box IDC_TAX_RATE Align Text: Right
Static Text Sub Total:
Edit Box IDC_SUB_TOTAL Align Text: Right
Static Text Tax Amount:
Edit Box IDC_TAX_AMOUNT Align Text: Right
Static Text Order Total:
Edit Box IDC_ORDER_TOTAL Align Text: Right
Button IDC_CALCULATE_BTN C&alculate

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

654 © FunctionX, Inc.

4. To declare and associate a variable for a control, right-click the Container combo
box and click Add Variable

5. In the Category combo box, select Value

6. In the Variable Type combo box, select int

7. In the Variable Name, type m_ContainerValue

8. Click Finish

9. On the dialog box, right-click the Flavor combo box and click Add Variable

10. In the Category combo box, accept the Control selected. In the Variable Name, type
m_Flavors and press Enter

11. Add the following variables for the other controls (all the Value Variables are
CString type):

ID Control Variable Value Variable
IDC_TOPPING m_Topping
IDC_SCOOPS m_Scoops
IDC_TAX_RATE m_TaxRate
IDC_SUB_TOTAL m_SubTotal
IDC_TAX_AMOUNT m_TaxAmount
IDC_ORDER_TOTAL m_OrderTotal

12. Save All

20.2.3 Combo Box Methods
A combo box is based on the CComboBox class. Therefore, if you want to dynamically
create this control, declare a variable or a pointer to CComboBox using its default
constructor. To initialize the control, call its Create() method. Here is an example:

BOOL CExerciseDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 655

 // TODO: Add extra initialization here
 CComboBox *Majors = new CComboBox;

 Majors->Create(WS_CHILD | WS_VISIBLE |
 WS_VSCROLL | CBS_DROPDOWNLIST,
 CRect(10, 50, 100, 150), this, 0x1448);

 return TRUE; // return TRUE unless you set the focus to a control
}

After creating the control, probably the next action to take consists of creating its items.
To add a string to a combo box, you can call the CComboBox::AddString() method that
uses the same syntax as the CListBox::AddString() member function. Here is an
example:

BOOL CExerciseDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 CComboBox *Majors = new CComboBox;

 Majors->Create(WS_CHILD | WS_VISIBLE |
 WS_VSCROLL | CBS_DROPDOWNLIST,
 CRect(10, 50, 100, 150), this, 0x1448);

 Majors->AddString("Accounting");
 Majors->AddString("Art Education");
 Majors->AddString("Finance");
 Majors->AddString("Biology");

 return TRUE; // return TRUE unless you set the focus to a control
}

Most other methods are implemented as they are for the CListBox class.

 Practical Learning: Using Combo Box Methods
1. To create the list of flavors, in the OnInitDialog() event of the dialog class, type the

following:

CClarksvilleIceScream2Dlg::CClarksvilleIceScream2Dlg(CWnd* pParent /*=NULL*/)
 : CDialog(CClarksvilleIceScream2Dlg::IDD, pParent)
 , m_ContainerValue(0)
 , m_TaxRate(_T("0.00"))
 , m_SubTotal(_T("0.00"))
 , m_TaxAmount(_T("0.00"))
 , m_OrderTotal(_T("0.00"))
{
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

. . .

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

656 © FunctionX, Inc.

BOOL CClarksvilleIceScream2Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 m_Topping.SetCurSel(0);
 m_Scoops.SetCurSel(0);

 m_Flavors.AddString("French Vanilla");
 m_Flavors.AddString("Cream of Cocoa");
 m_Flavors.AddString("Chocolate Chip");
 m_Flavors.AddString("Cherry Coke");
 m_Flavors.AddString("Butter Pecan");
 m_Flavors.AddString("Chocolate Cooky");
 m_Flavors.AddString("Chunky Butter");
 m_Flavors.AddString("Vanilla Strawberry");
 m_Flavors.AddString("Macedoine");
 m_Flavors.AddString("Mint Chocolate");
 m_Flavors.SetCurSel(6);

 return TRUE; // return TRUE unless you set the focus to a control
}

2. Save All

20.2.4 Combo Box Messages and Events
When you add or create a combo box, an amount of space is allocated and during the
lifetime of your application, the combo box uses some memory to processing its
assignments. If at one time there is not enough memory for these processings, the combo
box sends an ON_CBN_ERRSPACE message.

Like any control, for the user to use the combo box, it must first have focus. This can be
done by the user clicking its edit part , its list part (for a Simple combo box) or its down
pointing arrow (for a drop type combo box). When the combo box receives focus, its
sends the ON_CBN_SETFOCUS message.

Once the control has focus, if the user clicks or had clicked the edit side of the combo
box that already had a selected item, if the user starts typing, which would modify the
string of the item that was already selected, the combo box would send the
ON_CBN_EDITCHANGE message (remember that the user can change the string only
if the comb o box was not created as Drop List). If the user finishes typing or changing the
string, just before the altered string is validated, the combo box sends the
ON_CBN_EDITUPDATE message.

To select an item from a drop type combo box, the user usually clicks the down pointing
arrow button to display the control’s list. When the user clicks that button, just before the
list displays, the control sends the ON_CBN_DROPDOWN message. After this click
and this message, the list part of a drop combo box displays and the user must make a
decision:

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 657

?? If the user finds the desired item in the list, he or she must let the combo box
know. This is done by highlighiting it. To do this, the user can either click (with
the mouse) or press the arrow keys (on the keyboard) to indicate his or her
choice. When this highlighting occurs, the combo box sends the
ON_CBN_SELCHANGE message, notifying the application that the combo
box’ selection may be changed soon

?? Once the user has found the desired item and has possibly highlighted it, if using
the mouse, he or she can click to select it. If using the keyboard, after locating
the item, the user can press Enter. Clicking the desired item or pressing Enter on
the highlighted string means that the user has made a definite selection. This
causes the control to send an ON_CBN_SELENDOK message, notifying the
application that the user has made his or her decision.

?? If the user did not find the desired item, he or she may want to dismiss the
combo box without making a selection. There are three ma in ways the user can
invalidate a selection. If the user clicks another control or another application, if
the list was displaying, it would retract and not selection would be made, event
if the user had already highlighted an item. If the user clicks either the edit box
part of the combo box for a Drop List type or the down pointing button, the
selection is dismissed and if the list of a drop type was displaying, it would
retract. If the user presses Esc, the selection would be dismissed.
Any of these actions causes the selection to be dismissed or the user to cancel
the selection action. This causes the combo box to send an
ON_CBN_SELENDCANCEL message.

Once the user has clicked an item or pressed Enter to validate a selection, if the combo
box was created not as Simple, the list part of the controls retracts to hide itself. At this
time, the combo box sends an ON_CBN_CLOSEUP message.

If the user finishes using the combo box and moves to another control, the combo box
sends an ON_CBN_KILLFOCUS message, notifying the application that it (the combo
box) has lost focus.

20.3 Image Lists

20.3.1 Introduction
An image list is an array of pictures of the same size. The pictures are created as a single
icon or bitmap and each icon or bitmap can be located using its index. The array is zero-
based, meansing that the first picture has an index of 0. The second has an index of 1, etc.

An image list is not a traditional control. It does not display to the user who in fact is
never aware of it. It is used to complement a control that needs a series of pictures for its
own display.

 Practical Learning: Introducing Image Lists

1. Start a new MFC Application and name it AirCraft1

2. Create it as a Single Document based on CView, without the initial toolbar, and
change the Main Frame Caption to Air Craft Review

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

658 © FunctionX, Inc.

3. Access the PreCreateWindow() event of the CMainFrame class and change it as
follows:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 cs.style &= ~FWS_ADDTOTITLE;
 cs.cx = 420;
 cs.cy = 280;

 return TRUE;
}

4. Test the application and return to MSVC

20.3.2 Image List Creation
In an MFC application, an image list is based on the CImageList class. This object is
created in two main steps that do not necessarily follow each other. On one hand, you
must have the pictures that will make the list. On the other hand, you must have a
CImageList variable or pointer.

The easiest way is probaly to first create the picture. There are two kinds: masked or
nonmasked. A nonmasked image list is designed as an array of pictures where all pictures
have the same width and the same height but the pictures do not have to be square. Here
is an example:

A masked image list contains two pictures of the same with and height. Unlike the
unmasked image list, both pictures of the masked image normally represent the same
illustration. The first picture is in color and the second would be monochrome. Here is an
example:

To actually create an image list, declare a CImageList variable or pointer and call one of
its Create() methods to initialize it. It is provided in various versions as follows:

BOOL Create(int cx, int cy, UINT nFlags, int nInitial, int nGrow);
BOOL Create(UINT nBitmapID, int cx, int nGrow , COLORREF crMask);
BOOL Create(LPCTSTR lpszBitmapID, int cx, int nGrow , COLORREF crMask);
BOOL Create(CImageList& imagelist1, int nImage1,

 CImageList& imagelist2, int nImage2, int dx, int dy);
BOOL Create(CImageList* pImageList);

The first version of this method allows you to describe the type of image list that will be
created. This is done by specifying the width (cx) of each picture, the height (cy) of each
picture, and a flag for the type of image list to create. The nInitial argument is the number

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 659

of images that the image list will contain. The nGrow argument represents the number of
images by which the image list can grow.

If you had designed an unmasked bitmap using the image editor and you want to
initialize it, call the second or the third versions of the Create() method. The nBitmapID
argument is the identifier of the bitmap. If you want to provide the string that contains the
identifiers of the images, pass it as the lpszBitmapID argument. The cx value represents
the width of each picture. The crMask is the color used to mask the transparency of the
picture. Each pixel of the picture that matches this color will turn to black. Here is an
example of using this Create() method:

BOOL CAnimation1Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 CImageList ImgList;

 ImgList.Create(IDB_IMGLIST, 48, 4, RGB(255, 55, 5));

 return TRUE; // return TRUE unless you set the focus to a control
}

Besides, or instead of using, the Create() method, you can call CImageList::Add() to
add a bitmap to the CImageList variable. Its syntaxes are:

int Add(CBitmap* pbmImage, CBitmap* pbmMask);
int Add(CBitmap* pbmImage, COLORREF crMask);
int Add(HICON hIcon);

The pbmImage argument represents the bitmap to be added, unless you want to add an
icon, in which case you would use the third version. The pbmMask argument is the
bitmap that will be used to mask the image list. You can use a color instead, in which
case you would pass a COLORREF value as the second argument to the second version.

If you want to remove a picture from the image list, call the CImageList::Remove()
method. Its syntax:

BOOL Remove(int nImage);

The nImage argument is the index of the picture to be removed. Instead of removing a
picture, you can just replace it with another picture. This is done using the
CImageList::Replace() method whose syntaxes are:

BOOL Replace(int nImage, CBitmap* pbmImage, CBitmap* pbmMask);
int Replace(int nImage, HICON hIcon);

Once an image list is ready, you can use it directly in an application or make it available
to a control that can use it. One way you can use an image list is to display one or more of
its pictures on a dialog box, a form, or a view. To do this, you would call the
CImageList::Draw() method. Its syntax is:

BOOL Draw(CDC* pdc, int nImage, POINT pt , UINT nStyle);

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

660 © FunctionX, Inc.

The first argument, pdc, specifies the device context on which you are drawing. The
nImage argument is the index of the picture you want to draw. The pt argument is a
POINT or a CPoint value that specifies the location of the new picture. The nStyle
argument is a flag that specifies how the picture will be drawn.

 Practical Learning: Using an Image List
1. From the AirCraft folder that accompanies this book, import the following bitmaps

and change their IDs as follows:

File ID
AH64.bmp IDB_AH64
AH64SIDE.bmp IDB_AH64SIDE
AKIOWA.bmp IDB_AKIOWA
COMANCHE.bmp IDB_COMANCHE

2. In the header file of the view class, declare a private CImageList variable and name
it ImgList

3. In the header file of the view class, declare another private int variable and name it
nImage

4. In the constructor of the view class, initialize the image list and the nImage variable
as follows:

CAirCraft1View::CAirCraft1View()
{
 // TODO: add construction code here
 ImgList.Create(400, 180, ILC_COLOR, 4, 1);

 CBitmap Bmp[4];

 Bmp[0].LoadBitmap(IDB_AH64);
 ImgList.Add(&Bmp[0], RGB(0, 0, 0));
 Bmp[1].LoadBitmap(IDB_AH64SIDE);
 ImgList.Add(&Bmp[1], RGB(0, 0, 0));
 Bmp[2].LoadBitmap(IDB_AKIOWA);
 ImgList.Add(&Bmp[2], RGB(0, 0, 0));
 Bmp[3].LoadBitmap(IDB_COMANCHE);
 ImgList.Add(&Bmp[3], RGB(0, 0, 0));

 nImage = 0;
}

5. In the OnPaint() event of the view class, display an image by calling the
CImageList::Draw() method as follows:

void CAirCraft1View::OnDraw(CDC* pDC)
{
 CAirCraft1Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 ImgList.Draw(pDC, nImage, CPoint(255, 255, 255), ILD_NORMAL);
 // TODO: add draw code for native data here
}

6. Open the IDR_MAINFRAME menu. Under the Status Bar menu item of View, add a
separator, followed by a new menu item captioned as &AH64 and press Enter

Visual C++ and MFC Fundamentals Chapter 20: List-Based Controls

© FunctionX, Inc. 661

7. Right-click the new menu item and click Add Event Handler…

8. Accept the Message Type as COMMAND. In the Class List, click CAirCraft1View.
Accept the name of the function. Then click Add And Edit and implement the event
as follows:

void CAirCraft1View::OnViewAh64()
{
 // TODO: Add your command handler code here
 nImage = 0;
 Invalidate();
}

9. Again, under the View menu, create a new menu item with a caption as
A&H64 Side and press Enter

10. Add a COMMAND Event Handler for the new menu item. Associate it with the
view class and implement it as follows:

void CAirCraft1View::OnViewAh64side()
{
 // TODO: Add your command handler code here
 nImage = 1;
 Invalidate();
}

11. Again, under the View menu, create a new menu item with a caption as A&kiowa
and press Enter

12. Add a COMMAND Event Handler for the new menu item. Associate it with the
view class and implement it as follows:

void CAirCraft1View::OnViewAkiowa()
{
 // TODO: Add your command handler code here
 nImage = 2;
 Invalidate();
}

13. Again, under the View menu, create a new menu item with a caption as
&Commanche and press Enter

14. Add a COMMAND Event Handler for the new menu item. Associate it with the
view class and implement it as follows:

void CAirCraft1View::OnViewCommanche()
{
 // TODO: Add your command handler code here
 nImage = 3;
 Invalidate();
}

15. Test the application

Chapter 20: List-Based Controls Visual C++ and MFC Fundamentals

662 © FunctionX, Inc.

16. Close it and return to MSVC

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 663

Chapter 21:
Tree and List Controls

? The Tree Control

? The Tree View

? The List Control

? The List View

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

664 © FunctionX, Inc.

21.1 The Tree Control

21.1.1 Overview
A tree control is an object that displays a hierarchical list of items arranged as a physical
tree but a little upside down. The items display in a parent-child format to show those that
belong to interrelated categories, such as parent to child and child to grandchild, etc; or
folder to subfolder to file. Here is an example of a tree list:

Figure 57: A Tree List With One Root

The starting item of the tree is sometimes called the root and represents the beginning of
the tree. While most tree list have one root, it is not unusual to have a tree list that has
many roots, as long as the tree creator judges it necessary. Here is an example:

Figure 58: A Tree List With Various Roots

Each item, including the root, that belongs to the tree is referred to as a node. An item
that belongs to, or depends on, another can also be called a leaf. In the following charts,
the down arrow means, "has the following child or children":

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 665

A tree list is not limited to a one-to-one correspondence. Not only can an item have more
than one dependency, but also a child can make the tree stop at any category. Categories
of a tree list are organized by levels. The most used trees have one parent. Here is an
example representing the world and some countries:

The children of a parent are recognized by their belonging to the same level but can have
different behaviors; for example, while one child might have another child (or other
children), an item on the same level does not necessarily abide by a set rule. Everything
usually depends on the tree designer.

The concept of a tree list is implemented in the MFC library by the CTreeCtrl. To create
a tree list on a dialog box or a form, at design time, on the Controls toolbox, click the

Tree Control button and click the desired area on a dialog box or a form:

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

666 © FunctionX, Inc.

Figure 59: A Newly added Tree Control

Alternatively, to programmatically create a tree list, declare a variable or a pointer to
CTreeCtrl. To initialize the control, call its Create() method. Here is an example:

private:
 CTreeCtrl *TreeSoft;
};

CControlsDlg::CControlsDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CControlsDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CControlsDlg)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

 TreeSoft = new CTreeCtrl;
}

CControlsDlg::~CControlsDlg()
{
 delete TreeSoft;
}

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 TreeSoft ->Create(WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,
 CRect(10, 10, 240, 280), this, 0x1221);

 return TRUE; // return TRUE unless you set the focus to a control
}

 Practical Learning: Creating a Tree List
1. Create a new Dialog Based MFC Application named CarInventory2 without the

About Box and set the Dialog Title to Car Inventory

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 667

2. Resize the dialog box to 430 x 230

3. On the dialog box, delete the TODO line and the OK button

4. Change the caption of the Cancel button to Close

5. From the Controls toolbox, click the Tree Control button and click on the left
area of the dialog box

6. Change its ID to IDC_CAR_TREE

7. Set its location to 7, 7 and its dimensions to 114 x 216

21.1.2 Tree List Properties

As mentioned already, a tree list is meant to
display items in a list driven by a root and
followed by one or more leaves. The items are
mainly made of text. Optionally, to display a
check box on the left side of the text, set the
Check Boxes property to True or add the
TVS_CHECKBOXES style (if you are using
MSVC 6 and you had added the Tree Control
button to the form or dialog box, open the
resource file as text and manually add this style
because it may not be available on the
Properties window).

To guide the user with the tree items, the control uses tool tips. If you will need access to
the information stored in tool tips, set the Info Tip property to True or add the
TVS_INFOTIP style. If you do not want to display tool tips, set the Tool Tips property
to False or create it with the TVS_NOTOOLTIPS style.

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

668 © FunctionX, Inc.

When a node has children or leaves, to show this, you
may want to display lines connecting these
relationships. To do this at design time, set the Has
Lines proeprty to True:

If you are programmatically creating the control and
you want to display lines among related nodes, add
the TVS_HASLINES style.

A node that has dependent children can display or
hides them. To display its leaves, a node must be
expanded. To hide its leaves, a node must collapse.
These operations must be obvious to the user but
something should indicate whether a node has
dependent or not. This can be illustrated by a button
that accompany such a node. To add these buttons to
the control, at design time, set the Has Buttons
property to True. This is equivalent to dynamically
creating a tree list with the TVS_HASBUTTONS
style:

Unless you have a reason to do otherwise, it is usually
a good idea to combine both the Has Buttons (or
TVS_HASBUTTONS) and the Has Lines (or
TVS_HASLINES) styles:

To show which item is the root, or which items play the roles of roots, of the tree list, you
can display a line from the root(s) to the child(ren). To do this, at design time, set the
Lines At Root property to True or add the TVS_LINESATROOT style. The line from
the root(s) to to the child(ren) can display only if the control has the Has Lines property
set to True or the TVS_HASLINES style.

When using the list, the user typically selects an item
by clicking it. If you want the mouse cursor to turn into
a pointer finger and to underline the item when the
mouse is over the node, set the Track Select property
to True or create the control with the
TVS_TRACKSELECT style.

Once the mouse pointer is on top of the desired item,
the user can click to select it.

When the user clicks another control or another application, the node that was selected
would lose its selection as the tree control would have lost focus. If you want the tree to
always show the selected item even if the control loses focus, set its Show Selection

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 669

Always property to True or create the control with the TVS_SHOWSELALWAYS
style.

Besides selecting an item, when a node has children, to expand it, the user can double-
click the node or click its button if available. Simply selecting the node does not expand
it. If you want the selected node to automatically expand without the user having to
double-click or click its button, set its Single Expand property to True or create it with
the TVS_SINGLEEXPAND style.

When the items of a tree control display or when the nodes expand, they may span
beyond the allocated rectangle of the control. When this happens, a vertical and/or a
horizontal scroll bars may automatically display. This is because, by default, the Scroll
property is set to True. If you do not want any scroll bar, set the Scroll property to False
or create the control with the TVS_NOSCROLL style.

Another operation the user can perform on a node consists of changing its text. If you
want to allow this, set the control’s Edit Labels to True or add the TVS_EDITLABELS
style to it.

A user can be allowed to add items to the list by drag-n-drop operations. If you want to
prevent this, set the Disable Drag Drop property to True or create the control with the
TVS_DISABLEDRAGDROP style.

 Practical Learning: Configuring a Tree Control
1. On the dialog box, click the tree control to select it. On the Properties window set the

Has Buttons , the Has Lines and the Lines At Root properties to True

2. Also set the Client Edge and the Modal Frame properties to True

3. Add a Control Variable to the tree object and name it m_CarTree

4. Save All

21.1.3 Tree Controls Methods
After adding or creating a tree control, you may want to fill it with the necessary items.
Each node of the control is an HTREEITEM. To create a new node, call the
CTreeCtrl::InsertItem() method. It comes in various versions. One of them is:

HTREEITEM InsertItem(LPCTSTR lpszItem, HTREEITEM hParent = TVI_ROOT,
HTREEITEM hInsertAfter = TVI_LAST);

The easiest way to add an item consists of calling the InsertItem() method with a null-
terminated string as argument because this is the only required argument of this version.
Here is an example:

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 TreeSoft ->Create(WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP |

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

670 © FunctionX, Inc.

 TVS_HASLINES | TVS_HASBUTTONS | TVS_LINESATROOT |
 TVS_SINGLEEXPAND | TVS_SHOWSELALWAYS |
 TVS_TRACKSELECT,
 CRect(10, 10, 200, 100), this, 0x1221);

 TreeSoft ->InsertItem("Office Production");

 return TRUE; // return TRUE unless you set the focus to a control
}

In this case, the item would appear as the root. You can add as many nodes like that and
each would appear as a root:

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 TreeSoft ->Create(WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP |
 TVS_HASLINES | TVS_HASBUTTONS | TVS_LINESATROOT |
 TVS_SINGLEEXPAND | TVS_SHOWSELALWAYS |
 TVS_TRACKSELECT,
 CRect(10, 10, 200, 100), this, 0x1221);

 TreeSoft ->InsertItem("Office Production");//, TVI_ROOT);
 TreeSoft ->InsertItem("Company Management");
 TreeSoft ->InsertItem("Software Development");
 TreeSoft ->InsertItem("Human Interaction");

 return TRUE; // return TRUE unless you set the focus to a control
}

Figure 60: A Tree List With All Items As Roots

When calling this version of the InsertItem() method, if you do not pass the second
argument, the node is created as root. This is because the root item has an HTREEITEM
value of TVI_ROOT, which is passed as default. You can also pass the second argument
as NULL, which would produce the same effect.

The InsertItem() method returns an HTREEITEM value. You can use this value as a
parent to a leaf item. This is done by passing it as the second argument when creating a
leaf. Here is an example:

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 671

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 TreeSoft ->Create(WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP |
 TVS_HASLINES | TVS_HASBUTTONS | TVS_LINESATROOT |
 TVS_SINGLEEXPAND | TVS_SHOWSELALWAYS |
 TVS_TRACKSELECT,
 CRect(10, 10, 200, 200), this, 0x1221);

 HTREEITEM hTree, hCompany;

 hTree = TreeSoft ->InsertItem("Software Production", TVI_ROOT);
 hCompany = TreeSoft ->InsertItem("Microsoft", hTree);
 TreeSoft ->InsertItem("Office", hCompany);
 TreeSoft ->InsertItem("Visual Studio", hCompany);
 TreeSoft ->InsertItem("Servers", hCompany);
 hCompany = TreeSoft ->InsertItem("Jasc", hTree);
 TreeSoft ->InsertItem("Paint Shop Pro", hCompany);
 TreeSoft ->InsertItem("Animation Shop", hCompany);
 hCompany = TreeSoft ->InsertItem("Lotus", hTree);
 TreeSoft ->InsertItem("Notes", hCompany);
 TreeSoft ->InsertItem("Smart Office", hCompany);
 hCompany = TreeSoft ->InsertItem("Macromedia", hTree);
 TreeSoft ->InsertItem("Flash", hCompany);

 return TRUE; // return TRUE unless you set the focus to a control
}

When using the InsertItem() method as we have done so far, the items are added in the
order of their appearance. Besides creating new nodes, the InsertItem() methods also
allows you to control the order in which to insert the new item. The new leaf can be
added as the first or the last child of a node. To do this, pass a third argument to this
version of the InsertItem() method and give it the TVI_FIRST to be the first child or
TVI_LAST to be the last child of the current parent node. Consider the following
example:

BOOL CControlsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

672 © FunctionX, Inc.

 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 TreeSoft ->Create(WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP |
 TVS_HASLINES | TVS_HASBUTTONS | TVS_LINESATROOT |
 TVS_SINGLEEXPAND | TVS_SHOWSELALWAYS |
 TVS_TRACKSELECT,
 CRect(10, 10, 220, 200), this, 0x1221);

 HTREEITEM hTree, hCompany;

 hTree = TreeSoft ->InsertItem("Software Production", TVI_ROOT);
 hCompany = TreeSoft ->InsertItem("Microsoft", hTree);
 TreeSoft ->InsertItem("Office", hCompany);
 TreeSoft->InsertItem("Graphics Manipulation", hCompany, TVI_LAST);
 TreeSoft ->InsertItem("Project Management", hCompany);
 TreeSoft ->InsertItem("Software Develoment", hCompany);
 TreeSoft->InsertItem("Operating Systems", hCompany, TVI_FIRST);
 TreeSoft ->InsertItem("Software Documentation", hCompany);

 hCompany = TreeSoft ->InsertItem("Jasc", hTree);
 TreeSoft ->InsertItem("Paint Shop Pro", hCompany);
 TreeSoft ->InsertItem("Animation Shop", hCompany);
 hCompany = TreeSoft ->InsertItem("Lotus", hTree);
 TreeSoft ->InsertItem("Notes", hCompany);
 TreeSoft ->InsertItem("Smart Office", hCompany);
 hCompany = TreeSoft ->InsertItem("Macromedia", hTree);
 TreeSoft ->InsertItem("Flash", hCompany);

 return TRUE; // return TRUE unless you set the focus to a control
}

 Practical Learning: Configuring a Tree Control

1. To create the items for the tree control, access the OnInitDialog() event of the
CCarInventory2Dlg class and type the following:

BOOL CCarInventory2Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 673

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 HTREEITEM hItem, hCar;

 hItem = m_CarTree.InsertItem("Car Listing", TVI_ROOT);

 hCar = m_CarTree.InsertItem("Economy", hItem);
 m_CarTree.InsertItem("BH-733", hCar);
 m_CarTree.InsertItem("SD-397", hCar);
 m_CarTree.InsertItem("JU-538", hCar);
 m_CarTree.InsertItem("DI-285", hCar);
 m_CarTree.InsertItem("AK-830", hCar);

 hCar = m_CarTree.InsertItem("Compact", hItem);
 m_CarTree.InsertItem("HG-490", hCar);
 m_CarTree.InsertItem("PE-473", hCar);
 hCar = m_CarTree.InsertItem("Standard", hItem);
 m_CarTree.InsertItem("SO-398", hCar);
 m_CarTree.InsertItem("DF-438", hCar);
 m_CarTree.InsertItem("IS-833", hCar);

 hCar = m_CarTree.InsertItem("Full Size", hItem);
 m_CarTree.InsertItem("PD-304", hCar);

 hCar = m_CarTree.InsertItem("Mini Van", hItem);
 m_CarTree.InsertItem("ID-497", hCar);
 m_CarTree.InsertItem("RU-304", hCar);
 m_CarTree.InsertItem("DK-905", hCar);

 hCar = m_CarTree.InsertItem("SUV", hItem);
 m_CarTree.InsertItem("FE-948", hCar);
 m_CarTree.InsertItem("AD-940", hCar);

 hCar = m_CarTree.InsertItem("Truck", hItem);
 m_CarTree.InsertItem("HD-394", hCar);

 return TRUE; // return TRUE unless you set the focus to a control
}

2. Execute the program to test the tree control

3. Close it and return to MSVC

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

674 © FunctionX, Inc.

4. Import the cars from the Cars folder that accompany this book and change their IDs
accordingly to their file name. An example would be IDB_CIVIC for the civic.mdb

5. Design the rest of the dialog box with additional controls as follows:

Control ID Caption Other Properties
Picture 238 x 216
Static Text Make:
Edit Box IDC_MAKE
Static Text Model:
Edit Box IDC_MODEL
Static Text Year:
Edit Box IDC_YEAR Align Text: Right

Number: True
Static Text Doors:
Edit Box IDC_DOORS Align Text: Right

Number: True
Static Text Mileage:
Edit Box IDC_MILEAGE Align Text: Right

Number: True
Static Text Transmission:
Combo Box IDC_TRANSMISSION Type: Drop List

Data: Automatic;Manual
Group Box Options
Check Box IDC_AC Air Condition Left Text: True
Check Box IDC_AIR_BAGS Air Bags Left Text: True
Check Box IDC_CRUISE_CONTROL Cruise Control Left Text: True
Check Box IDC_CONVERTIBLE Convertible Left Text: True
Check Box IDC_CASSETTE Cassette Left Text: True
Check Box IDC_CD_PLAYER CD Player Left Text: True
Picture IDC_PICTURE Type: Bitmap

Image: IDB_ESCORT
Center Image: True
Dimensions: 210x 86

6. Add a variable to each non-static control as follows:

Value Variable Control Variable ID
Type Name Type Name

IDC_MAKE CString m_Make
IDC_MODEL CString m_Model

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 675

IDC_YEAR int m_Year
IDC_DOORS int m_Doors
IDC_MILEAGE long m_Mileage
IDC_TRANSMISSION int m_Transmission
IDC_AC BOOL m _AC
IDC_AIR_BAGS BOOL m _AirBags
IDC_CRUISE_CONTROL BOOL m _CruiseControl
IDC_CONVERTIBLE BOOL m _Convertible
IDC_CASSETTE BOOL m _Cassette
IDC_CD_PLAYER BOOL m _CDPlayer
IDC_PICTURE BOOL CStatic m_Picture

7. Save All

21.1.4 Tree Control Messages
Most messages of the tree controls are notification messages that are sent to its parent
window. For example, the NM_CLICK message is sent to the dialog box or the form,
that acts as the parent, that the tree control has been clicked. If the click was done with
the right mouse button, the NM_RCLICK message is sent instead. In the same way, if
the user double-clicks the control an NM_DBLCLK message is sent. If the user double-
clicked with the right mouse button, the NM_CDBLCLK message is sent.

As mentioned already, the user has the ability to expand a node that has at least one child.
When the user initiates an action that would expand a node, the tree control sends a
TVN_ITEMEXPANDING. After the item has expanded, the control sends the
TVN_ITEMEXPANDED message.

 Practical Learning: Using Tree Control Messages
1. On the dialog box, right-click the tree control and click Add Event Handler…

2. In the Message Type list box, click TVN_SELCHANGED . In the Class List, make
sure CCarInventory2Dlg is selected

3. In the Function Handle Name, change the name to OnCarSelectedChange and click
Add And Edit

4. Implement the OnPaint and the OnCarSelectedChange events as follows:

void CCarInventory2Dlg::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 // Change the car picture based on the selected tag
 CTreeCtrl *pTree = re interpret_cast<CTreeCtrl
*>(GetDlgItem(IDC_CAR_TREE));
 HTREEITEM hTree = pTree->GetSelectedItem();

 CString ItemSelected;
 CBitmap Bmp;

 ItemSelected = pTree->GetItemText(hTree);

 if(ItemSelected == "BH-733")

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

676 © FunctionX, Inc.

 {
 Bmp.LoadBitmap(IDB_FOCUS);
 m_Picture.SetBitmap(Bmp);
 }
 else if(ItemSelected == "HD-394")
 {
 Bmp.LoadBitmap(IDB_EMPTY);
 m_Picture.SetBitmap(NULL);
 }
 else if(ItemSelected == "SD-397")
 {
 Bmp.LoadBitmap(IDB_EMPTY);
 m_Picture.SetBitmap(NULL);
 }
 else if(ItemSelected == "PD-304")
 {
 Bmp.LoadBitmap(IDB_GRANDMARQUIS);
 m_Picture.SetBitmap(Bmp);
 }
 else
 {
 Bmp.LoadBitmap(IDB_EMPTY);
 m_Picture.SetBitmap(NULL);
 }

 if (IsIconic())
 {
 SendMessage(WM_ICONERASEBKGND,
reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0);

 // Center icon in client rectangle
 int cxIcon = GetSystemMetrics(SM_CXICON);
 int cyIcon = GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon + 1) / 2;
 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 CDialog::OnPaint();
 }
}

// The system calls this function to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CCarInventory2Dlg::OnQueryDragIcon()
{
 return static_cast<HCURSOR>(m_hIcon);
}

void CCarInventory2Dlg::OnCarSelectedChange(NMHDR *pNMHDR, LRESULT
*pResult)
{
 LPNMTREEVIEW pNMTreeView = reinterpret_cast<LPNMTREEVIEW>(pNMHDR);
 // TODO: Add your control notification handler code here

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 677

 *pResult = 0;

 CTreeCtrl *pTree = reinterpret_cast<CTreeCtrl
*>(GetDlgItem(IDC_CAR_TREE));
 HTREEITEM hTree = pTree->GetSelectedItem();

 CString ItemSelected;
 CBitmap Bmp;

 ItemSelected = pTree->GetItemText(hTree);

 if(ItemSelected == "BH-733")
 {
 m_Make.Format("%s", "Ford");
 m_Model.Format("%s", "Focus");
 m_Year = 2000;
 m_Doors = 4;
 m_Mileage = 72804;
 m_Transmission = 1;
 m_AC = TRUE;
 m_AirBags = TRUE;
 m_CruiseControl = FALSE;
 m_Convertible = FALSE;
 m_Cassette = FALSE;
 m_CDPlayer = FALSE;
 }
 else if(ItemSelected == "HD-394")
 {
 m_Make.Format("%s", "Ford");
 m_Model.Format("%s", "F150");
 m_Year = 2002;
 m_Doors = 4;
 m_Mileage = 28845;
 m_Transmission = 0;
 m_AC = TRUE;
 m_AirBags = TRUE;
 m_CruiseControl = FALSE;
 m_Convertible = FALSE;
 m_Cassette = TRUE;
 m_CDPlayer = FALSE;
 }
 else if(ItemSelected == "SD-397")
 {
 m_Make.Format("%s", "Daewoo");
 m_Model.Format("%s", "Lanos");
 m_Year = 2000;
 m_Doors = 4;
 m_Mileage = 94508;
 m_Transmission = 1;
 m_AC = TRUE;
 m_AirBags = TRUE;
 m_CruiseControl = FALSE;
 m_Convertible = FALSE;
 m_Cassette = TRUE;
 m_CDPlayer = FALSE;
 }
 else if(ItemSelected == "PD-304")
 {
 m_Make.Format("%s", "Mercury");

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

678 © FunctionX, Inc.

 m_Model.Format("%s", "Grand Marquis");
 m_Year = 2000;
 m_Doors = 4;
 m_Mileage = 109442;
 m_Transmission = 0;
 m_AC = TRUE;
 m_AirBags = TRUE;
 m_CruiseControl = TRUE;
 m_Convertible = FALSE;
 m_Cassette = TRUE;
 m_CDPlayer = FALSE;
 }
 else
 {
 m_Make.Format("%s", "");
 m_Model.Format("%s", "");
 m_Year = 0;
 m_Doors = 0;
 m_Mileage = 0;
 m_Transmission = 0;
 m_AC = FALSE;
 m_AirBags = FALSE;
 m_CruiseControl = FALSE;
 m_Convertible = FALSE;
 m_Cassette = FALSE;
 m_CDPlayer = FALSE;
 }

 CRect RectPicture;

 m_Picture.GetWindowRect(&RectPicture);
 ScreenToClient(&RectPicture);
 InvalidateRect(&RectPicture);

 UpdateData(FALSE);
}

5. Test the application

6. Close it and return to MSVC

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 679

21.1.5 Tree Control With Bitmaps or Icons
Bitmaps can be used to enhanced the display of items on a tree control. Each tree item
can be configured to display or not to display a small picture on its left. To do this , you
can declare a CImageList variable and add pictures to it. Once the image list is ready, you
can call the CTreeCtrl::SetImageList() method. Its syntax is:

CImageList* SetImageList(CImageList * pImageList, int nImageListType);

The first argument, pImageList, is a pointer to a CImageList variable. The
nImageListType argument specifies the type of image list that will be used. The possible
values are:

Value Type Description
LVSIL_NORMAL The image list is made of large icons
LVSIL_SMALL The image list is made of small icons
LVSIL_STATE The image list is made of state images

To specify the pictures used for a tree item, call one of the following versions of the
CTreeCtrl:: InsertItem() methods:

HTREEITEM InsertItem(UINT nMask, LPCTSTR lpszItem, int nImage,
 int nSelectedImage, UINT nState,
 UINT nStateMask, LPARAM lParam,
 HTREEITEM hParent, HTREEITEM hInsertAfter);
HTREEITEM InsertItem(LPCTSTR lpszItem, int nImage, int nSelectedImage,
 HTREEITEM hParent = TVI_ROOT,
 HTREEITEM hInsertAfter = TVI_LAST);

The nMask argument specifies the type of value used to set on the list item. As seen
already, the lpszItem is the text that will be displayed for the current item.

The value of nImage is the index of the image used for the item being inserted from the
image list. The nSelectedImage value is the index of the image that will display when the
inserted item is selected or has focus.

 Practical Learning: Using an Image List on a Tree Control
1. Display the Add Resource dialog box and double-click Bitmap

2. On the Properties, change its ID to IDB_IMGTREE

3. Design is as follows:

4. In the header file of the dialog, declare a private CImageList variable and name it

ImgList

5. To assign the pictures to the tree items, change the OnInitDialog() event of the dialog
box as follows:

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

680 © FunctionX, Inc.

BOOL CCarInventory2Dlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 HTREEITEM hItem, hCar;

 m_Picture.SetBitmap(NULL);
 ImgList.Create(IDB_IMGTREE, 16, 6, RGB(0, 0, 0));
 m_CarTree.SetImageList(&ImgList, TVSIL_NORMAL);

 hItem = m_CarTree.InsertItem("Car Listing", 0, 1, TVI_ROOT);
 hCar = m_CarTree.InsertItem("Economy", 2, 3, hItem);
 m_CarTree.InsertItem("BH-733", 4, 5, hCar); //
 m_CarTree.InsertItem("SD-397", 4, 5, hCar); //
 m_CarTree.InsertItem("JU-538", 4, 5, hCar);
 m_CarTree.InsertItem("DI-285", 4, 5, hCar);
 m_CarTree.InsertItem("AK-830", 4, 5, hCar);

 hCar = m_CarTree.InsertItem("Compact", 2, 3, hItem);
 m_CarTree.InsertItem("HG-490", 4, 5, hCar);
 m_CarTree.InsertItem("PE-473", 4, 5, hCar);
 hCar = m_CarTree.InsertItem("Standard", 2, 3, hItem);
 m_CarTree.InsertItem("SO-398", 4, 5, hCar);
 m_CarTree.InsertItem("DF-438", 4, 5, hCar);
 m_CarTree.InsertItem("IS-833", 4, 5, hCar);

 hCar = m_CarTree.InsertItem("Full Size", 2, 3, hItem);
 m_CarTree.InsertItem("PD-304", 4, 5, hCar);

 hCar = m_CarTree.InsertItem("Mini Van", 2, 3, hItem);
 m_CarTree.InsertItem("ID-497", 4, 5, hCar);
 m_CarTree.InsertItem("RU-304", 4, 5, hCar);
 m_CarTree.InsertItem("DK-905", 4, 5, hCar);

 hCar = m_CarTree.InsertItem("SUV", 2, 3, hItem);
 m_CarTree.InsertItem("FE-948", 4, 5, hCar);
 m_CarTree.InsertItem("AD-940", 4, 5, hCar);

 hCar = m_CarTree.InsertItem("Truck", 2, 3, hItem);
 m_CarTree.InsertItem("HD-394", 4, 5, hCar);

 return TRUE; // return TRUE unless you set the focus to a control
}

6. Test the application

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 681

7. Close it and return to MSVC

21.2 The Tree View

21.2.1 Overview
A tree view is a frame -based application whose view uses the characteristics of a tree
control. To create such an application, you can work from scratch and derive a class from
CTreeView. Alternatively, you can use the MFC Application wizard to create the
application.

As a tree control is based on the CTreeCtrl class, a tree view application uses the
Document/View Architecture to implement its behavior rather than using a dialog box.
This class simply implements the tree control on a application and provides all the
functionality of the CTreeCtrl class.

21.2.2 Tree View Implementation
To create a tree view application, you can create a form-based application, place a tree
control on it, and do anything reviewed above. Alternatively, you can derive your own
class from CTreeView. Instead, the MFC provides a faster and better means of creating a
tree view, using the MFC Application wizard for which you would select CTreeView as
the Base Class.

We saw that a tree control can be programmatically created by calling the
CTreeCtrl::Create() method. This allows you to define the style used on the control.
When using the tree view, you can specify the initial style in the PreCreateWindow()
event of the view class. Here is an example:

BOOL CExoTV2View::PreCreateWindow(CREATESTRUCT& cs)
{
 cs.style |= TVS_HASLINES | TVS_HASBUTTONS |
 TVS_LINESATROOT | TVS_EDITLABELS;

 return CTreeView::PreCreateWindow(cs);
}

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

682 © FunctionX, Inc.

After creating the view, you should initiale it. This is usually done in the
OnInitialUpdate() event of the view class. In order to take advantage of the features of
the list control, you should obtain a reference to the CTreeCtrl class that controls the tree
view. Once you have accessed that reference, you can do anything you would do with a
CTreeCtrl variable or pointer. Here is an example of creating a feww items of a tree
view:

void CExerciseView::OnInitialUpdate()
{
 CTreeView::OnInitialUpdate();

 CTreeCtrl& trCtrl = GetTreeCtrl();

 HTREEITEM hItem;

 hItem = trCtrl.InsertItem("Cameroon", 0, 2);
 trCtrl.InsertItem("Yaounde", 1, 3, hItem);
 trCtrl.InsertItem("Douala", 1, 3, hItem);
 trCtrl.InsertItem("Ebolowa", 1, 3, hItem);
 hItem = trCtrl.InsertItem("U.S.A.", 0, 2);
 trCtrl.InsertItem("Washington, DC", 1, 3, hItem);
 trCtrl.InsertItem("New York", 1, 3, hItem);
 hItem = trCtrl.InsertItem("Germany", 0, 2);
 trCtrl.InsertItem("Bonn", 1, 3, hItem);
 trCtrl.InsertItem("Francfort", 1, 3, hItem);
}

21.3 The List Control

21.3.1 Overview
A list control consists of using one of four views to display a list of items. The list is
typically equipped with icons that indicate what view is displaying. There are four views
used to display items:

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 683

Icons: The control displays a list of items using icons with a 32x32 pixels size of icons.
This is the preferred view when the main idea consists of giving an overview of the items

Small Icons: Like the other next two views, it uses 16x16 pixel icons to display a
simplified list of the items. Once more, no detail is provided about the items of this list.
The list is organized in disparate columns with some on top of others. If the list is
supposed to be sorted, the alphabetical arrangement is organized from left to right.

List: This list, using small icons, is also organized in columns; this time, the columns are
arranged so that the first column gets filled before starting the second. If the list is sorted,
the sorting is arranged in a top-down manner.

Report: This view displays arranged columns of items and provides as many details as
the list developer had arranged it.

21.3.2 List Control Creation
A list control is implemented in the MFC library by the CListCtrl class. At design time,

to create a list control, on the Controls toolbox, click the List Control button and
click the desired area on a dialog box or a form. Normally, you should expand its
dimensions beyond the default assigned because a list control is usually used to display
its items on a wide rectangle.

To programmatically create a list control, declare a variable or a pointer to CListCtrl. To
initialiaze the control, call its Create() method. Here is an example:

BOOL CPictureDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 CListCtrl *lstCtrl = new CListCtrl;

 lstCtrl->Create(WS_CHILD | WS_VISIBLE,
 CRect(10, 10, 320, 280), this, 0x285);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

As mentioned already, a list control can display its items in one of four views. To specify
the desired view at design time, on the Properties window, select a value from the View
combo box. The default value is Icon. The possible values are:

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

684 © FunctionX, Inc.

Icon: To get this value
when programmatically
creating the control, add
the LVS_ICON style:

Small Icon: This is the
same as adding the
LVS_SMALLICON
style to a dynamic list
control

List: You can get the
same result when
creating the control with
code by adding the
LVS_LIST style:

Report: This view
displays the items in
explicit columns. It is
the same as adding the
LVS_REPORT style

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 685

Besides the regular styles, the Win32 library provides extended styles for a list control.
To apply an extended style, call the CListCtrl::SetExtendedStyle() method. Its syntax
is:

DWORD SetExtendedStyle(DWORD dwNewStyle);

When calling this method, pass the desired extended style or a combination of these
styles as argument. Some of the values are:

LVS_EX_CHECKBOXES : The items of the control will display a check box on their
left side:

LVS_EX_FULLROWSELECT: This style allows the whole row of a Report view to be
selected instead of just the item:

LVS_EX_GRIDLINES : The control’s items in Report view will display with horizontal
grid lines that separate items and vertical grid lines that separate columns items or
categories:

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

686 © FunctionX, Inc.

LVS_EX_TRACKSELECT: When this style is set, if the user positions the mouse on
an item for a few seconds without clicking, the item would be automatically selected.

The items of a list control can display only within the control, if there are too many of
them or the total width of the items is larger than the control can display, it would be
equipped with either a vertical scroll bar, a horizontal scroll bar, or both. If you want to
prevent scroll bars from displaying even if the list’s items go beyond the allocated
rectangle, set the No Scroll property to True or create the control with the
LVS_NOSCROLL style.

Once the list has been created, the user can select an item by clicking it. To select more
than one item, the user can press and hold either Ctrl for random selection or Shift for
range selection. Here is an example of a random selection:

If you do not want the user to be able to select more than one item at a time, set the
Single Selection property to True or create the control with the LVS_SINGLESEL
style.

Any item that is selected is highlighted. When the user clicks another control or another
application, you can decide whether you want the item(s) selected to still show its (their)
selection. State. This characteristic is controlled at design time by the Show Selection
Always property. By default, it is set to False, meaning that when the control looses focus
or its parent application is deactivated, an item that is selected would not show it.
Otherwise, you can set this property to True to indicate the selected item even when the
control is not active. This property is available through the LVS_SHOWSELALWAYS
style.

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 687

When creating the list, its items are sorted in alphabetical order using the items text as
reference. Even if you add items later on, they are inserted in the appropriate order. This
sorting feature is controlled at design time by the Sort combo box box. By default, the
items of a list control are sorted in alphabetical order using the Ascending value or the
LVS_SORTASCENDING style. If you want items to be sorted in reverse alphabetical
order, set this property to Descending or create the control with the
LVS_SORTDESCENDING style.

21.3.3 Items of a List Control
After visually adding or dynamically creating a list control, the next action you probably
would take is to populate the control with the desired items. This can be taken care of by
calling the CListCtrl::InsertItem() method. One of its syntaxes is as follows:

int InsertItem(const LVITEM* pItem);

This version requires an LVITEM pointer as argument. The LVITEM structure is
defined as follows:

typedef struct _LVITEM {
 UINT mask;
 int iItem;
 int iSubItem;
 UINT state;
 UINT stateMask;
 LPTSTR pszText;
 int cchTextMax;
 int iImage;
 LPARAM lParam;
#if (_WIN32_IE >= 0x0300)
 int iIndent;
#endif
} LVITEM, FAR *LPLVITEM;

The mask member variable is used to specify the types of values you want to set for the
current item.

The value of iItem specifies the index of the item that is being changed. The first item
would have an index of 0. The second would be 1, etc. The iSubItem member variable is
the index of the sub item for the current value. If the current item will be the leader, the
iSubItem is stored in a 0-based array. If it is a sub item, then it is stored in a 1-based
array.

The pszText member variable is the string that will display as the item. You can specify
the length of this text by assigning a value to the cchTextMask variable.

After initializing the LVITEM variable, you can pass it to the InsertItem() method to
add it as a new item to the list. Here is an example that creates items and displays as a
List view:

BOOL COthersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 LVITEM lvItem;

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

688 © FunctionX, Inc.

 lvItem.mask = LVIF_TEXT;
 lvItem.iItem = 0;
 lvItem.iSubItem = 0;
 lvItem.pszText = "Sandra C. Anschwitz";
 m_List.InsertItem(&lvItem);

 lvItem.mask = LVIF_TEXT;
 lvItem.iItem = 1;
 lvItem.iSubItem = 0;
 lvItem.pszText = "Roger A. Miller";
 m_List.InsertItem(&lvItem);

 lvItem.mask = LVIF_TEXT;
 lvItem.iItem = 2;
 lvItem.iSubItem = 0;
 lvItem.pszText = "Marie-Julie W. Gross";
 m_List.InsertItem(&lvItem);

 lvItem.mask = LVIF_TEXT;
 lvItem.iItem = 3;
 lvItem.iSubItem = 0;
 lvItem.pszText = "Ella Pius Roger";
 m_List.InsertItem(&lvItem);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

The state member variable of the LVITEM structure specifies what to do with the new
item. For example, once the item has been added, you may want to prepare it for deletion
prior to a cut-and-paste operation, in which case you would give it a value of
LVIS_CUT. If the item is involved in a drag-and-drop operation, you can assign it a state
value of LVIS_DROPHILIGHTED . To give focus to the item, set its state value to
LVIS_FOCUSED . An item with an LVIS_SELECTED state value will be selected.

Besides the above version of the CListCtrl::InsertItem() method, the CListCtrl class
provides this other version:

int InsertItem(int nItem, LPCTSTR lpszItem);

This is a good simplification of the earlier version. The nItem argument is the index of
the new item to de added. Like the LVITEM::iItem member variable, the value of this

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 689

argument is 0 if the item will be the leader. The lpszItem value is the string that will be
used to lead the current item.

21.3.4 The Report View
Whether you use the first or the second version, the InsertItem() method allows you to
create the item that will display for the Icon, the Small Icon, or the List views of the
control. If you plan to display the list in Report view (or to allow the user to transition
from various views) and you want to provide more information for each item, you must
“create” a report of information for each item.

Among the possible views available for a list control, one of them can display columns.
This view is called the report view. This view is not required for a list view but it is the
only one that provides more detailed information about the items of the list. If you plan to
display that view on your list control, then you should create columns. (Alternatively, you
can omit creating columns and instead provide headers of columns separately, which can
be done using the CHeaderCtrl class. Otherwise, the list control provides the means of
creating columns for its report view.)

To create the column(s) of a list control, you can use the CListCtrl::InsertColumn()
method. One of its syntaxes is:

int InsertColumn(int nCol, const LVCOLUMN* pColumn);

The nCol argument is the index of the column that this call will create.

The pColumn argument is an LVCOLUMN pointer. This structure is defined as follows:

typedef struct _LVCOLUMN {
 UINT mask;
 int fmt;
 int cx;
 LPTSTR pszText;
 int cchTextMax;
 int iSubItem;
#if (_WIN32_IE >= 0x0300)
 int iImage;
 int iOrder;
#endif
} LVCOLUMN, FAR *LPLVCOLUMN;

The mask member variable is used to specify what attribute of the column you want to
define with this LVCOLUMN variable.

The fmt member variable formats the text of the column. For example, it can be used to
align the text of the column to the left (the default) (LVCFMT_LEFT), the center
(LVCFMT_CENTER), or the right (LVCFMT_RIGHT). If you do not set a value for
this member variable, the text will be aligned to the left. If you plan to set a value for this
variable, then add the LVCF_FMT value for the mask member variable.

The cx variable is used to specify the width occupied by the text of the column. If you do
not set a value for this property, the column would initially appear so narrow its text
would not display. Therefore, unless you have a good reason to omit it, you should
always specify the value of this variable. If you plan to set a value for this property, then
add the LVCF_WIDTH value to the mask member variable.

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

690 © FunctionX, Inc.

The pszText is the string that will appear as the text of the column. Just like all the other
member variables, this one is not required but, besides the rectangle that limits the
column header, this member is probably the most important characteristic of a column
because it informs the user as to what this column is used for. The string of this variable
can be provided as a null-terminated value. Like all other strings used in an MFC
application, this string can also be a value of a String Table item. It can also be retrieved
from an array of strings. To set a value for this member variable, add the LVCF_TEXT
value to the mask variable. The length of this string can be specified by assigning a value
to the cchTextMax member variable.

After initializing the LVCOLUMN variable, pass it as the CListCtrl::InsertColumn()
second argument. Here is an example:

BOOL COthersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 LVCOLUMN lvColumn;
 int nCol;

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.cx = 120;
 lvColumn.pszText = "Full Name";
 nCol = m_List.InsertColumn(0, &lvColumn);

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.cx = 100;
 lvColumn.pszText = "Profession";
 m_List.InsertColumn(1, &lvColumn);

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.cx = 80;
 lvColumn.pszText = "Fav Sport";
 m_List.InsertColumn(2, &lvColumn);

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.cx = 75;
 lvColumn.pszText = "Hobby";
 m_List.InsertColumn(3, &lvColumn);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 691

The iOrder member variable is used to identify the column addressed by the
LVCOLUMN variable.

Besides, or instead of, the above version of the CListCtrl::InsertColumn() method, you
can use the following version to create columns for the control:

int InsertColumn(int nCol, LPCTSTR lpszColumnHeading, int nFormat = LVCFMT_LEFT,
 int nWidth = -1, int nSubItem = -1);

This version simplifies the first a little bit. The nCol argument is the index of the column
that will be configured. The second argument, lpszColumnHeading, is the string that will
be displayed on the column header. It follows the same rules as the
LVCOLUMN ::pszText member variable.

The optional nFormat argument is used to specify the horizontal alignment of the
lpszColumnHeading text. It can be set to LVCFMT_LEFT for left alignment (the
default), LVCFMT_CENTER for center alignment, or LVCFMT_RIGHT for right
alignment. If you do not specify this argument, the text would be aligned to the left. The
nWidth ardument is used to set the width of the column header in pixels. If you do not
want to specify this argument, pass it at –1. The nSubItem is used to set the index of the
sub item used on the current column.

With the columns configured, you must provide a string that will be displayed under a
particular column header for an item. To do this, you must first specify which item will
use the information you are going to add. The InsertColumn() method returns an integer
that is the index of the new item. You can use this returned value to identify the column
whose information you are adding. Then to specify a string for each column of the
current item, call the CListCtrl::SetItemText() method. Its syntax is:

BOOL SetItemText(int nItem, int nSubItem, LPTSTR lpszText);

The nItem argument is the index of the column whose information you are adding. It can
be the return value of a previously called InsertColumn(). The pieces of information for
each item are stored in a 0-based array. The index of the current sub item is specified
using the nSubItem argument. The lpszText is the actual text that will display under the
column for the current item.

Here is an example:

BOOL COthersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

692 © FunctionX, Inc.

 // TODO: Add extra initialization here
 LVCOLUMN lvColumn;

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.cx = 120;
 lvColumn.pszText = "Full Name";
 m_List.InsertColumn(0, &lvColumn);

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.cx = 75;
 lvColumn.pszText = "Profession";
 m_List.InsertColumn(1, &lvColumn);

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.cx = 80;
 lvColumn.pszText = "Fav Sport";
 m_List.InsertColumn(2, &lvColumn);

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.cx = 75;
 lvColumn.pszText = "Hobby";
 m_List.InsertColumn(3, &lvColumn);

 LVITEM lvItem;
 int nItem;

 lvItem.mask = LVIF_TEXT;
 lvItem.iItem = 0;
 lvItem.iSubItem = 0;
 lvItem.pszText = "Sandra C. Anschwitz";
 nItem = m_List.InsertItem(&lvItem);

 m_List.SetItemText(nItem, 1, "Singer");
 m_List.SetItemText(nItem, 2, "HandBall");
 m_List.SetItemText(nItem, 3, "Beach");

 lvItem.mask = LVIF_TEXT;
 lvItem.iItem = 1;
 lvItem.iSubItem = 0;
 lvItem.pszText = "Roger A. Miller";
 nItem = m_List.InsertItem(&lvItem);

 m_List.SetItemText(nItem, 1, "Footballer");
 m_List.SetItemText(nItem, 2, "Tennis");
 m_List.SetItemText(nItem, 3, "Teaching");

 lvItem.mask = LVIF_TEXT;
 lvItem.iItem = 2;
 lvItem.iSubItem = 0;
 lvItem.pszText = "Marie-Julie W. Gross";
 nItem = m_List.InsertItem(&lvItem);

 m_List.SetItemText(nItem, 1, "Student");
 m_List.SetItemText(nItem, 2, "Boxing");

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 693

 m_List.SetItemText(nItem, 3, "Programming");

 lvItem.mask = LVIF_TEXT;
 lvItem.iItem = 3;
 lvItem.iSubItem = 0;
 lvItem.pszText = "Ella Pius Roger";
 nItem = m_List.InsertItem(&lvItem);

 m_List.SetItemText(nItem, 1, "Architect");
 m_List.SetItemText(nItem, 2, "Ping-Pong");
 m_List.SetItemText(nItem, 3, "Songo");

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

21.3.5 Views Transition
You can create a list control that displays its items in a single view or you can allow the
user to change from one view to another. As mentioned already, at design time or when
programmatically creating the list control, you can set the initial view using either the
View combo box to select a view’s value or by adding one of the view styles. If you want
to display only that initial view, you can stop there. Otherwise, you can provide a means
of changing views.

Because the view displayed on a list control is part of its style, in order to
programmatically change its view mode, you can first retrieve the control’s style using
the GetWindowLong() function. The GetWindowLong() function only retrieves the
current style of the control. You may need to check it first before changing it. This can be
done by ANDing the value of the GetWindowLong() function with the
LVS_TYPEMASK constant. After checking the view of the control, you can then
change its style by calling the SetWindowLong() function. Here is an example:

void COthersDlg::OnIconBtn()
{
 // TODO: Add your control notification handler code here
 LONG mListStyle = GetWindowLong(m_List.m_hWnd, GWL_STYLE);
 mListStyle &= ~LVS_TYPEMASK;
 mListStyle |= LVS_ICON;
 SetWindowLong(m_List.m_hWnd, GWL_STYLE, mListStyle);
}

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

694 © FunctionX, Inc.

void COthersDlg::OnSmallIconBtn()
{
 // TODO: Add your control notification handler code here
 LONG mListStyle = GetWindowLong(m_List.m_hWnd, GWL_STYLE);
 mListStyle &= ~LVS_TYPEMASK;
 mListStyle |= LVS_SMALLICON;
 SetWindowLong(m_List.m_hWnd, GWL_STYLE, mListStyle);
}

void COthersDlg::OnListBtn()
{
 // TODO: Add your control notification handler code here
 LONG mListStyle = GetWindowLong(m_List.m_hWnd, GWL_STYLE);
 mListStyle &= ~LVS_TYPEMASK;
 mListStyle |= LVS_LIST;
 SetWindowLong(m_List.m_hWnd, GWL_STYLE, mListStyle);
}

void COthersDlg::OnReportBtn()
{
 // TODO: Add your control notification handler code here
 LONG mListStyle = GetWindowLong(m_List.m_hWnd, GWL_STYLE);
 mListStyle &= ~LVS_TYPEMASK;
 mListStyle |= LVS_REPORT;
 SetWindowLong(m_List.m_hWnd, GWL_STYLE, mListStyle);
}

21.3.6 List Control and Icons
A list control can be configured to display pictures that accompany either the columns,
the list items, or both. If you want to display a bitmap on the column, you should declare
and initialize a CImageList variable. Then call the CListCtrl::SetImageList() method
and pass it as argument. If you plan to do this, and if you are using the first version of the
CListCtrl::InsertColumn() method that takes an LVCOLUMN pointer as argument, then
add the LVCF_IMAGE value to the mask variable and add the LVCFMT_IMAGE
value to the fmt variable. To specify the image that will display on the column header,
assign its index to the value of the iImage variable. Here is an example:

BOOL COthersDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 LVCOLUMN lvColumn;

 CImageList *ImgHeaders = new CImageList;

 ImgHeaders->Create(16, 16, ILC_MASK, 1, 1);
 ImgHeaders->Add(AfxGetApp()->LoadIcon(IDI_UP));
 ImgHeaders->Add(AfxGetApp()->LoadIcon(IDI_LOSANGE));

 m_List.SetImageList(ImgHeaders, LVSIL_SMALL);

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH | LVCF_IMAGE;
 lvColumn.fmt = LVCFMT_LEFT | LVCFMT_IMAGE;
 lvColumn.cx = 120;
 lvColumn.pszText = "Full Name";

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 695

 lvColumn.iImage = 0;
 m_List.InsertColumn(0, &lvColumn);

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.cx = 100;
 lvColumn.pszText = "Profession";
 m_List.InsertColumn(1, &lvColumn);

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH | LVCF_IMAGE;
 lvColumn.fmt = LVCFMT_LEFT | LVCFMT_IMAGE;
 lvColumn.iImage = 1;
 lvColumn.cx = 80;
 lvColumn.pszText = "Fav Sport";
 m_List.InsertColumn(2, &lvColumn);

 lvColumn.mask = LVCF_FMT | LVCF_TEXT | LVCF_WIDTH;
 lvColumn.fmt = LVCFMT_LEFT;
 lvColumn.cx = 75;
 lvColumn.pszText = "Hobby";
 m_List.InsertColumn(3, &lvColumn);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

To use bitmaps or icons on a list control’s items, you should first create bitmaps or icons.
If you do not plan to use the Report view and you want to use bitmaps, you can create a
long bitmap that will made of small pictures of the same size. Each picture will be used
for each item. Normally, each picture should have a size of 16x16 or less. An example
would be:

This bitmap is made of 6 pictures of the same dimensions. If you do not plan to use the
Report view and you plan to use icons, create each icon with a 16x16 size.

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

696 © FunctionX, Inc.

If you plan to display the control’s items in Report view and you want to use bitmaps,
you can create a long bitmap that will made of small pictures of the same size and each
picture will be used for each item. Each picture should have a size of 32x32.

If you plan to display the control’s items in Report view and other views, if you want to
use bitmaps, you should create two long bitmaps. One would be made of pictures that are
16x16 size. Such pictures would be used for the Small Icon, the List, and the Report
views. You should also create the second bitmap made of pictures of 32x32 size. These
pictures would be used for the List view.

After creating the bitmap and/or icons, you should declare a variable or a pointer to
CImageList class and initialize it using the CImageList::Create() method. To make the
image list available to the list control, call the CListCtrl::SetImageList() method. Its
syntax is:

CImageList* SetImageList(CImageList* pImageList, int nImageList);

The pImageList argument is a CImageList variable or pointer previously initialized. The
nImageList is a flag that specifies the type of image list used. It can have one of the
following values:

Value Description
LVSIL_NORMAL The image list is made of large bitmap or icons, typically 32x32
LVSIL_SMALL The image list is made of small bitmap or icons, typically 16x16
LVSIL_STATE The image list is made of pictures that will be used as mask

To associate a picture with a list item, you can use one of the following versions of the
CListCtrl::InsertItem() methods:

int InsertItem(int nItem, LPCTSTR lpszItem, int nImage);
int InsertItem(UINT nMask, int nItem, LPCTSTR lpszItem, UINT nState, UINT nStateMask,
 int nImage, LPARAM lParam);

The nImage argument is the index of the image used for the item.

The nMask argument is the same as the LVITEM::mask member variable introduced
earlier. It is simply used to specify what information you need to specify on the item. The
nState argument is the same as the LVITEM::state member variable introduced earlier
and used to specify what to do with the item, whether to select it, give it focus, getting it
ready for a cut-and-paste operation, or highlighted for a drag-and-drop operation. The
nStateMask argument is used in conjunction with the nState argument. It is used to
specify what exact type of information, defined by the state flag, that will be changed or
retrieved on the item.

The lParam argument, as well as the lParam member variable of the TVITEM structure
are used to perform a specific operation on the item, such as involving it in a sort
algorithm or finding an item.

21.4 The List View

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 697

21.4.1 Overview
The list control we have used so far is a regular control added to a dialog box or a form.
The Document/View Architecture of the MFC allows you to create a broader frame-
based application whose view is an implementation of the list control. This is called the
List View.

The list view application is a program based on the CListView class. There are various
ways you can create such an application. You can work from scratch. In this case, you
would derive a class from CListView. Alternatively, you can create a form-based
application, then add a list control that uses part or its whole client area. Fortunately,
Visual C++ provides a good starting point to create a list view application. This is done
by using the MFC Application wizard.

To create a list view, you can start a new MFC Application and, on the Based Class,
select CListView. If you open the header file of the view class, you would notice that it is
based on CListView.

 Practical Learning: Creating a List View-Based Application

1. Start a new MFC Application and name it Countries1

2. Set the Application Type to Single Document

3. Change the Main Frame Caption to Countries Listing

4. Remove the Printing And Print Preview option

5. Set the Base Class to CListView

6. Click Finish

21.4.2 List View Implementation
The list view is simply a technique of implementing a list control on a frame -based
application using the Document/View architecture. All of the functionality emanates
from the CListCtrl class. Therefore, in order to do anything, you should obtain a
reference to the underlying CListCtrl already available by deriving a class from
CListView.

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

698 © FunctionX, Inc.

Creating a class based on CListView only makes the list control available. You must still
initialize it, specify the necessary style(s) or extended style(s), and configure it as you see
fit using the apprpriate events.

The best place to initialize the list view is probably the CListView::OnInitialUpdate()
event. Here is an example:

void CExoLVView::OnInitialUpdate()
{
 CListView::OnInitialUpdate();

 CListCtrl& lCtrl = GetListCtrl();
}

Once you have a reference to the ClistCtrl that controls the view, you can use everything
else we covered earlier with regards to the list control. For example, to create columns,
call any of the CListCtrl::InsertColumn() methods. To create the items that compose
the list, call any of the CListCtrl::InsertItem() methods and use the
CListCtrl::SetItemText() method to create sub items. The bitmaps or icons are used in
the same way.

 Practical Learning: Configuring a List View

1. To create columns for the list view and display it in report mode, change the
OnInitialUpdate() event of the view class as follows:

void CCountriesView::OnInitialUpdate()
{
 CListView::OnInitialUpdate();

 // TODO: You may populate your ListView with items by directly accessing
 // its list control through a call to GetListCtrl().
 CListCtrl& lCtrl = GetListCtrl();

 lCtrl.InsertColumn(0, "Name", LVCFMT_LEFT, 120);
 lCtrl.InsertColumn(1, "Area km\262", LVCFMT_CENTER, 80);
 lCtrl.InsertColumn(2, "Population", LVCFMT_LEFT, 120);
 lCtrl.InsertColumn(3, "Capital", LVCFMT_LEFT, 100);
 lCtrl.InsertColumn(4, "Code", LVCFMT_CENTER, 40);
 lCtrl.InsertColumn(5, "Independance", LVCFMT_CENTER, 88);

 lCtrl.SetExtendedStyle(LVS_EX_GRIDLINES | LVS_EX_FULLROWSELECT);

 ModifyStyle(0, LVS_REPORT);
}

2. Test the application:

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 699

3. To populate the list, change the OnInitialUpdate() event of the view class as follows:

void CCountriesView::OnInitialUpdate()
{
 CListView::OnInitialUpdate();

 // TODO: You may populate your ListView with items by directly accessing
 // its list control through a call to GetListCtrl().
 CListCtrl& lCtrl = GetListCtrl();

 lCtrl.InsertColumn(0, "Name", LVCFMT_LEFT, 100);
 lCtrl.InsertColumn(1, "Area km\262", LVCFMT_RIGHT, 80);
 lCtrl.InsertColumn(2, "Population", LVCFMT_RIGHT, 100);
 lCtrl.InsertColumn(3, "Capital", LVCFMT_LEFT, 80);
 lCtrl.InsertColumn(4, "Independance", LVCFMT_RIGHT, 115);
 lCtrl.InsertColumn(5, "Code", LVCFMT_CENTER, 40);

 lCtrl.SetExtendedStyle(LVS_EX_GRIDLINES | LVS_EX_FULLROWSELECT);

 ModifyStyle(0, LVS_REPORT);

 int nItem;

 nItem = lCtrl.InsertItem(0, "Libya");
 lCtrl.SetItemText(nItem, 1, "1,759,540"); lCtrl.SetItemText(nItem, 2, "5,499,074");
 lCtrl.SetItemText(nItem, 3, "Tripoli"); lCtrl.SetItemText(nItem, 4, "24 December 1951");
 lCtrl.SetItemText(nItem, 5, "ly");

 nItem = lCtrl.InsertItem(0, "Senegal");
 lCtrl.SetItemText(nItem, 1, "196,190"); lCtrl.SetItemText(nItem, 2, "10,580,307");
 lCtrl.SetItemText(nItem, 3, "Dakar"); lCtrl.SetItemText(nItem, 4, "4 April 1960");
 lCtrl.SetItemText(nItem, 5, "sn");

 nItem = lCtrl.InsertItem(0, "Cuba");
 lCtrl.SetItemText(nItem, 1, "110,860"); lCtrl.SetItemText(nItem, 2, "11,263,429");
 lCtrl.SetItemText(nItem, 3, "Havana"); lCtrl.SetItemText(nItem, 4, "20 May 1902");
 lCtrl.SetItemText(nItem, 5, "cu");

 nItem = lCtrl.InsertItem(0, "Spain");
 lCtrl.SetItemText(nItem, 1, "504,782"); lCtrl.SetItemText(nItem, 2, "40,217,413");
 lCtrl.SetItemText(nItem, 3, "Pilot"); lCtrl.SetItemText(nItem, 4, "");
 lCtrl.SetItemText(nItem, 5, "es");

 nItem = lCtrl.InsertItem(0, "Indonesia");
 lCtrl.SetItemText(nItem, 1, "1,919,440"); lCtrl.SetItemText(nItem, 2, "234,893,453");
 lCtrl.SetItemText(nItem, 3, "Jakarta"); lCtrl.SetItemText(nItem, 4, "17 August 1945");
 lCtrl.SetItemText(nItem, 5, "id");

 nItem = lCtrl.InsertItem(0, "Russia");

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

700 © FunctionX, Inc.

 lCtrl.SetItemText(nItem, 1, "17,075,200"); lCtrl.SetItemText(nItem, 2, "144,526,278");
 lCtrl.SetItemText(nItem, 3, "Moscow"); lCtrl.SetItemText(nItem, 4, "24 August 1991");
 lCtrl.SetItemText(nItem, 5, "ru");

 nItem = lCtrl.InsertItem(0, "Armenia");
 lCtrl.SetItemText(nItem, 1, "29,800"); lCtrl.SetItemText(nItem, 2, "3,326,448");
 lCtrl.SetItemText(nItem, 3, "Yerevan"); lCtrl.SetItemText(nItem, 4, "21 September 1991");
 lCtrl.SetItemText(nItem, 5, "am");

 nItem = lCtrl.InsertItem(0, "Iran");
 lCtrl.SetItemText(nItem, 1, "1.648 mil"); lCtrl.SetItemText(nItem, 2, "68,278,826");
 lCtrl.SetItemText(nItem, 3, "Tehran"); lCtrl.SetItemText(nItem, 4, "1 April 1979");
 lCtrl.SetItemText(nItem, 5, "ir");

 nItem = lCtrl.InsertItem(0, "Colombia");
 lCtrl.SetItemText(nItem, 1, "1,138,910"); lCtrl.SetItemText(nItem, 2, "41,662,073");
 lCtrl.SetItemText(nItem, 3, "Bogota"); lCtrl.SetItemText(nItem, 4, "20 July 1810");
 lCtrl.SetItemText(nItem, 5, "co");

 nItem = lCtrl.InsertItem(0, "Angola");
 lCtrl.SetItemText(nItem, 1, "1,246,700"); lCtrl.SetItemText(nItem, 2, "10,766,471");
 lCtrl.SetItemText(nItem, 3, "Luanda "); lCtrl.SetItemText(nItem, 4, "11 November 1975");
 lCtrl.SetItemText(nItem, 5, "ao");
}

4. Test the application

5. Close it and return to MSVC

6. To prepare the view for display transition, in the header file of the view, declare two
member functions as follows:

public:
 DWORD GetViewType(void);
 BOOL SetViewType(DWORD dwViewType);
};

7. In the source file of the view, implement the member functions as follows:

DWORD CCountriesView::GetViewType(void)
{
 return (GetStyle() & LVS_TYPEMASK);
}

BOOL CCountriesView::SetViewType(DWORD dwViewType)
{

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 701

 return (ModifyStyle(LVS_TYPEMASK, dwViewType & LVS_TYPEMASK));
}

8. From the Resource View tab, display the IDR_MAINFRAME menu. In the View
category, add a separator in the first empty item

9. Click the next empty field and, in the Properties window, click the ID field. Then
click its arrow to select ID_VIEW_LARGEICON. Set its Caption to Large &Icons

10. In the same way, set the ID of the next item to ID_VIEW_SMALLICICON and set
its Caption to S&mall Icons

11. In the same way, set the ID of the next item to ID_VIEW_LIST and set its Caption
to &List

12. In the same way, set the ID of the next item to ID_VIEW_DETAILS and set its
Caption to &Details

13. To allow the user to change views, right-click the Large Icons menu item and click
Add Event Handler…

14. In the Message Type list, accept the COMMAND message. In the Class List, click
the view class. In the Function Handler Name, change the name to
OnViewLargeIcon

15. Click Add And Edit and implement the message as follows:

void CCountriesView::OnViewLargeIcon()
{
 // TODO: Add your command handler code here
 if(GetViewType() != LVS_ICON)
 SetViewType(LVS_ICON);
}

16. In the same way, Add An Event Handler for the Small Icons menu item. Associate
its COMMAND message with the view class. Change its name to
OnViewSmallIcon

17. Implement it as follows:

void CCountriesView::OnViewSmallicon()
{
 // TODO: Add your command handler code here
 if(GetViewType() != LVS_SMALLICON)
 SetViewType(LVS_SMALLICON);
}

18. In the same way, Add An Event Handler for the List menu item. Associate its
COMMAND message with the view class and implement it as follows:

void CCountriesView::OnViewList()
{
 // TODO: Add your command handler code here
 if(GetViewType() != LVS_LIST)
 SetViewType(LVS_LIST);
}

19. In the same way, Add An Event Handler for the List menu item. Associate its
COMMAND message with the view class and implement it as follows:

void CCountriesView::OnViewDetails()
{
 // TODO: Add your command handler code here
 if(GetViewType() != LVS_REPORT)
 SetViewType(LVS_REPORT);

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

702 © FunctionX, Inc.

}

20. Test the application and return to MSVC

21. Display the Add Resource dialog box and double-click Bitmap

22. On the Properties window, change the ID of the bitmap to IDB_LARGE and change
its dimensions 320x32

23. Design the bitmap as follows or import the Large.bmp file from the resources that
accompany this book:

24. Add another bitmap. Change its ID to IDB_SMALL and change its dimensions
160x32

25. Design the bitmap as follows or import the small.bmp bitmap it from the resources
that accompany this book:

26. In the header file of the view class, declare two CImageList variables named
m_Large and m_Small

protected:
 CImageList m_Large;
 CImageList m_Small;

// Generated message map functions
protected:

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 703

 DECLARE_MESSAGE_MAP()
};

27. To use the new bitmaps, change the OnInitialUpdate() event of the view class as
follows:

void CCountriesView::OnInitialUpdate()
{
 CListView::OnInitialUpdate();

 // TODO: You may populate your ListView with items by directly accessing
 // its list control through a call to GetListCtrl().
 CListCtrl& lCtrl = GetListCtrl();

 lCtrl.InsertColumn(0, "Name", LVCFMT_LEFT, 100);
 lCtrl.InsertColumn(1, "Area km\262", LVCFMT_RIGHT, 80);
 lCtrl.InsertColumn(2, "Population", LVCFMT_RIGHT, 100);
 lCtrl.InsertColumn(3, "Capital", LVCFMT_LEFT, 80);
 lCtrl.InsertColumn(4, "Independance", LVCFMT_RIGHT, 115);
 lCtrl.InsertColumn(5, "Code", LVCFMT_CENTER, 40);

 lCtrl.SetExtendedStyle(LVS_EX_GRIDLINES | LVS_EX_FULLROWSELECT);

 ModifyStyle(0, LVS_REPORT);

 m_Small.Create(IDB_SMALL, 16, 0, RGB(226, 174, 87));
 m_Large.Create(IDB_LARGE, 32, 0, RGB(192, 192, 192));

 lCtrl.SetImageList(&m_Small, LVSIL_SMALL);
 lCtrl.SetImageList(&m_Large, LVSIL_NORMAL);

 int nItem;

 nItem = lCtrl.InsertItem(0, "Libya", 8);
 lCtrl.SetItemText(nItem, 1, "1,759,540"); lCtrl.SetItemText(nItem, 2, "5,499,074");
 lCtrl.SetItemText(nItem, 3, "Tripoli"); lCtrl.SetItemText(nItem, 4, "24 December 1951");
 lCtrl.SetItemText(nItem, 5, "ly");

 nItem = lCtrl.InsertItem(0, "Senegal", 7);
 lCtrl.SetItemText(nItem, 1, "196,190"); lCtrl.SetItemText(nItem, 2, "10,580,307");
 lCtrl.SetItemText(nItem, 3, "Dakar"); lCtrl.SetItemText(nItem, 4, "4 April 1960");
 lCtrl.SetItemText(nItem, 5, "sn");

 nItem = lCtrl.InsertItem(0, "Cuba", 6);
 lCtrl.SetItemText(nItem, 1, "110,860"); lCtrl.SetItemText(nItem, 2, "11,263,429");
 lCtrl.SetItemText(nItem, 3, "Havana"); lCtrl.SetItemText(nItem, 4, "20 May 1902");
 lCtrl.SetItemText(nItem, 5, "cu");

 nItem = lCtrl.InsertItem(0, "Spain", 5);
 lCtrl.SetItemText(nItem, 1, "504,782"); lCtrl.SetItemText(nItem, 2, "40,217,413");
 lCtrl.SetItemText(nItem, 3, "Pilot"); lCtrl.SetItemText(nItem, 4, "");
 lCtrl.SetItemText(nItem, 5, "es");

 nItem = lCtrl.InsertItem(0, "Indonesia", 4);
 lCtrl.SetItemText(nItem, 1, "1,919,440"); lCtrl.SetItemText(nItem, 2, "234,893,453");
 lCtrl.SetItemText(nItem, 3, "Jakarta"); lCtrl.SetItemText(nItem, 4, "17 August 1945");
 lCtrl.SetItemText(nItem, 5, "id");

 nItem = lCtrl.InsertItem(0, "Russia", 9);
 lCtrl.SetItemText(nItem, 1, "17,075,200"); lCtrl.SetItemText(nItem, 2, "144,526,278");

Chapter 21: Tree and List Controls Visual C++ and MFC Fundamentals

704 © FunctionX, Inc.

 lCtrl.SetItemText(nItem, 3, "Moscow"); lCtrl.SetItemText(nItem, 4, "24 August 1991");
 lCtrl.SetItemText(nItem, 5, "ru");

 nItem = lCtrl.InsertItem(0, "Armenia", 1);
 lCtrl.SetItemText(nItem, 1, "29,800"); lCtrl.SetItemText(nItem, 2, "3,326,448");
 lCtrl.SetItemText(nItem, 3, "Yerevan"); lCtrl.SetItemText(nItem, 4, "21 September 1991");
 lCtrl.SetItemText(nItem, 5, "am");

 nItem = lCtrl.InsertItem(0, "Iran", 3);
 lCtrl.SetItemText(nItem, 1, "1.648 mil"); lCtrl.SetItemText(nItem, 2, "68,278,826");
 lCtrl.SetItemText(nItem, 3, "Tehran"); lCtrl.SetItemText(nItem, 4, "1 April 1979");
 lCtrl.SetItemText(nItem, 5, "ir");

 nItem = lCtrl.InsertItem(0, "Colombia", 2);
 lCtrl.SetItemText(nItem, 1, "1,138,910"); lCtrl.SetItemText(nItem, 2, "41,662,073");
 lCtrl.SetItemText(nItem, 3, "Bogota"); lCtrl.SetItemText(nItem, 4, "20 July 1810");
 lCtrl.SetItemText(nItem, 5, "co");

 nItem = lCtrl.InsertItem(0, "Angola", 0);
 lCtrl.SetItemText(nItem, 1, "1,246,700"); lCtrl.SetItemText(nItem, 2, "10,766,471");
 lCtrl.SetItemText(nItem, 3, "Luanda "); lCtrl.SetItemText(nItem, 4, "11 November 1975");
 lCtrl.SetItemText(nItem, 5, "ao");
}

28. Test the application and return to MSVC

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 705

Chapter 22:
Custom Libraries

? The Tree Control

? The Tree View

? The List Control

? The List View

Index Visual C++ and MFC Fundamentals

706 © FunctionX, Inc.

22.1 Introduction to Libraries

22.1.1 Overview
A library is a group of functions, classes, or other resources that can be made available to
programs that need already implemented entities without the need to know how these
functions, classes, or resources were created or how they function. Although a library can
appear as a complete program, in the strict sense, it is not. For example, it cannot be
executed by a casual user and it cannot execute its own program. A library makes it easy
for a programmer to use a function or functions, a class or classes, a resource or resources
created by another person or company and trust that this external source is reliable and
efficient. Although the issue or creating or implementing a library may appear
intimidating, it is absolutely not. There are only two difficult aspects of a library: 1)Why
do you need a library? And what do you want to put in a library? As you see, these two
“difficult” aspects we mention have nothing to do with programming. We can also state
that we do not have an answer to either of these questions: it will be up to you. What we
will do here is to show HOW to create a library, not why. We will also show how to
include things in a library. We will not define WHY you should put this function and not
that one in a library because, from our experience, it always depends on the programmer,
the project, or a group of people working on an application.

22.1.2 Libraries Characteristics
A library is created and functions like a normal regular program, using functions or other
resources and communicating with other programs. To implement its functionality, a
library contains functions that other programs would need to complete their functionality.
At the same time, a library may use some functions that other programs would not need.
For this reason, there are two types of functions you will create or include in your
libraries. An internal function is one used only by the library itself: the program that use
the library, also called the clients of the library, will not need access to these functions.
External functions are those that can be accessed by the clients of the library.

There are two broad categories of libraries you will deal with in your programs: static
libraries and dynamic libraries. The process of creating each makes the biggest
difference, not necessarily their functionalities. Even so, there are various techniques
used to create each category (once again, we insist on stating that the process of creating
a library will be the least difficult of your tasks).

Microsoft Visual C++ 6 already brought various options for creating or configuring a
library. Visual C++ .Net has gone even further by providing a lot more choices and
improvements. The types available are static libraries, Win32 dynamic link libraries
(DLLs) and MFC DLLs.

22.2 General Static Libraries

22.2.1 Introduction
A static library is a file that contains functions, classes, or resources that an external
program can use to complement its functionality. To use a library, the programmer has to

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 707

create a link to it. The project can be a console application, a Win32 or an MFC
application. The library file has the lib extension.

22.2.2 Creation of a Static Library
To create a static library, you can open the New Project dialog box and select Win32
Project as the type of application. In the Win32 Application Wizard, select the Static
Library radio button in the Application Type section. The following options are also
available:

?? If you do not check the Precompiled Header option, an empty project would be
created for you

?? If you check the Precompiled Header option, the wizard would generate a StdAfx.h
header file and a StdAfx.cpp source file for the project. This allows you to include
common header files in StdAfx.h and omit those common header files in every file
of the project. When necessary, the compiler would retrieve the needed header file
from StdAfx.h

After laying the foundation of a static library, you can add functions, classes, and/or
resources that will be part of the library.

 Practical Learning: Creating a Static Library
1. Start Microsoft Visual Studio if necessary and display the New Project dialog box

2. In the Project Types list, make sure you select the Visual C++ Projects node. In the
Templates list, click Win32 Project. In the Name edit box, replace the content with
BusMath

3. Click OK

4. In the Win32 Application Wizard, click Application Settings. In the Application
Type section, click Static Library

Index Visual C++ and MFC Fundamentals

708 © FunctionX, Inc.

5. Click Finish

6. To add a header file, on the main menu, click Project -> Add New Item… In the Add
New Item – BusMath dialog box, in the Templates lis t, click Header File (.h).
Replace the content of the Name edit box with bmcalc and click Open

7. In the empty file, declare the following functions:

#ifndef _BUSINESSMATH_H_
#define _BUSINESSMATH_H_

double Min(const double *Numbers, const int Count);
double Max(const double *Numbers, const int Count);
double Sum(const double *Numbers, const int Count);
double Average(const double *Numbers, const int Count);
long GreatestCommonDivisor(long Nbr1, long Nbr2);

#endif // _BUSINESSMATH_H_

8. To add a source file, on the main menu, click Project -> Add New Item… In the
Templates lis of the Add New Item – BusMath dialog box, click Source File (.cpp).
Replace the content of the Name edit box with bmcalc and click Open

9. Implement the functions as follows:

#include "StdAfx.h"
#include "bmcalc.h"

double Min(const double *Nbr, const int Total)
{
 double Minimum = Nbr[0];

 for(int i = 0; i < Total; i++)
 if(Minimum > Nbr[i])
 Minimum = Nbr[i];
 return Minimum;
}

double Max(const double *Nbr, const int Total)
{
 double Maximum = Nbr[0];

 for(int i = 0; i < Total; i++)
 if(Maximum < Nbr[i])

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 709

 Maximum = Nbr[i];
 return Maximum;
}

double Sum(const double *Nbr, const int Total)
{
 double S = 0;

 for(int i = 0; i < Total; i++)
 S += Nbr[i];

 return S;
}

double Average(const double *Nbr, const int Total)
{
 double avg, S = 0;

 for(int i = 0; i < Total; i++)
 S += Nbr[i];
 avg = S / Total;

 return avg;
}

long GreatestCommonDivisor(long Nbr1, long Nbr2)
{
 while(true)
 {
 Nbr1 = Nbr1 % Nbr2;
 if(Nbr1 == 0)
 return Nbr2;

 Nbr2 = Nbr2 % Nbr1;
 if(Nbr2 == 0)
 return Nbr1;
 }
}

10. To create the library, on the main menu, click Build -> Build BusMath

11. To prepare a test for a console application, display the New Project dialog box. In the
Project Type, click Visual C++ Projects and, in the Templates list, click Win32
Project. In the Name edit box, type BusMathTest1 and press Enter

12. In the Win32 Application Wizard, click Application Settings. In the Application
Type section, click the Windows Application radio button. In the Additional Options
section, click the Empty Project check box

Index Visual C++ and MFC Fundamentals

710 © FunctionX, Inc.

13. Click Finish

14. Create a new C++ source file (Project -> Add New Item… -> C++ File (.cpp)) and
Name it Exercise

15. Open Windows Explorer or My Computer

16. Locate the folder that contains the above project: BusMath. Open its Debug folder
and copy the BusMath.lib file. Display the contents of the BusMathTest1 folder and
open the BusMathTest1 folder inside of it. Notice that it contains Exercise.cpp. Paste
the BusMath.lib file in the same folder that contains Exercise.cpp

17. From the BusMath project, copy the bmcalc.h header file. Still in Windows Explorer
or My Computer, paste bmcalc.h it in the same folder that contains BusMath.lib and
Exercise.cpp

18. Back in Visual Studio, to add the library to the current project, on the main menu,
click Project -> Add Existing Item. In the Files of Type combo box, select All Files

19. In the list of files, click BusMath.lib

20. Click Open

21. Type the following in the empty Exercise.cpp file

#include <iostream>
#include "bmcalc.h"
using namespace std;

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 711

int main()
{
 double Numbers[] = { 12.55, 94.68, 8.18, 60.37, 104.502, 75.05 };
 int Count = sizeof(Numbers) / sizeof(double);

 double Total = Sum(Numbers, Count);
 double Avg = Average(Numbers, Count);
 double Low = Min(Numbers, Count);
 double High = Max(Numbers, Count);

 cout << "Characteristics of the list";
 cout << "\nMinimum: " << Low;
 cout << "\nMaximum: " << High;
 cout << "\nTotal: " << Total;
 cout << "\nAverage: " << Avg << endl;

 return 0;
}

22. Test the application:

Characteristics of the list
Minimum: 8.18
Maximum: 104.502
Total: 355.332
Average: 59.222
Press any key to continue

23. Close it and retur to MSVC

24. To test the library with a GUI application, display the New Project dialog box. In the
Project Types list, make sure Visual C++ Projects is selected. In the Templates list,
click MFC Application

25. In the Name edit box, type BusMathTest2 and press Enter

26. Set the Application Type as Dialog Based. Set the Dialog Title to Business
Mathematics and remove the About Box check box. Click Finish

27. In Windows Explorer or My Computer, one after the other, copy th BusMath.lib and
bmcalc.h files from the BusMath project to the BusMathTest2 folder inside the main
BusMathTest2 folder

28. Delete the OK button and design the dialog box as follows:

Control ID Caption
Static Text Number &1:
Edit Control IDC_NUMBER1
Static Text Number &2:
Edit Control IDC_NUMBER2

Index Visual C++ and MFC Fundamentals

712 © FunctionX, Inc.

Button IDC_CALCULATE C&alculate
Static Text GCD:
Edit Control IDC_GCD
Button IDCANCEL &Close

29. Add a Value variable for the IDC_NUMBER1 control and name it m_Number1

30. Add a Value variable for the IDC_NUMBER2 control and name it m_Number2

31. Add a Value variable for the IDC_GCD control and name it m_GCD

32. To add the library to the current project, on the main menu, click Project -> Add
Existing Item… and select BusMath.lib

33. On the dialog box, double-click the Calculate button and implement it OnClick event
as follows:

// BusMathTest2Dlg.cpp : implementation file
//

#include "stdafx.h"
#include "BusMathTest2.h"
#include "BusMathTest2Dlg.h"
#include ".\busmathtest2dlg.h"
#include "bmcalc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CBusMathTest2Dlg dialog

CBusMathTest2Dlg::CBusMathTest2Dlg(CWnd* pParent /*=NULL*/)
 : CDialog(CBusMathTest2Dlg::IDD, pParent)
 , m_Number1(_T("0"))
 , m_Number2(_T("0"))
 , m_GCD(_T("0"))
{
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

. . .

void CBusMathTest2Dlg::OnBnClickedCalculate()
{
 // TODO: Add your control notification handler code here
 int Nbr1, Nbr2, Result;

 UpdateData(TRUE);

 Nbr1 = atoi(m_Number1);
 Nbr2 = atoi(m_Number2);
 Result = GreatestCommonDivisor(Nbr1, Nbr2);

 m_GCD.Format("%d", Result);

 UpdateData(FALSE);
}

34. Test the application. Here is an example:

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 713

35. Close it and return to MSVC

22.3 MFC Static Libraries

22.3.1 Introduction
An MFC static library is a library file that includes MFC functions or classes. Such a
library natively supports MFC strings (such as CString , CTime, etc), lists, and any other
C/C++ or MFC global functions. Because this library is an MFC type, it can be used only
by an MFC-based application.

22.3.2 Creation of an MFC Static Library
To create an MFC static library, from the New Project dialog box, select Win32 Project.
Then, in the Win32 Application Wizard, select the Static Library radio button in the
Application Type section and, in the Add Support For section, click the MFC check box.
The following two options are available:

?? If you do not select the Precompiled Header radio button, an empty project would be
created

?? If you select the Precompiled Header radio button, the wizard will generate a
StdAfx.h header file and a StdAfx.cpp source file for the project. The wizard will
also include the afx.h and the afxwin.h files in the StdAfx.h header file. You can still
add any necessary header file in StdAfx.h

 Practical Learning: Creating a Static MFC Library

1. To start a new project, on the main menu, click File -> New…

2. In the New dialog box, click the Projects property page

3. In the list, click Win32 Static Library

4. In the Project Name edit box, type MFCExt

Index Visual C++ and MFC Fundamentals

714 © FunctionX, Inc.

5. Click OK

6. In the Win32 Static Library – Step 1 of 1, click both check boxes and click Finish
then click OK

7. To add a new header file, on the main menu, click File -> New…

8. In the Files property page of the New dialog box, click C/C++ Header File. In the
File Name edit box, type mfcextent and click OK

9. In the empty file, type the following:

#ifndef MFCEXT_H_
#define MFCEXT_H_

namespace MFCExtensions
{
 BOOL IsNatural(const CString Str);
 BOOL IsNumeric(const CString Str);
 int StringToInt(const CString Str);
 double StringToFloat(const CString Str);
}

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 715

#endif // MFCEXT_H

10. To add a new source file, on the main menu, click File -> New… In the Files
property page of the New dialog box, click C++ Source File. In the File Name edit
box, type mfcextent and click OK

11. In the empty file, type the following:

#include "stdafx.h"
#include " mfcextent.h"

namespace MFCExtensions
{
 BOOL IsNatural(const CString Str)
 {
 // Check each character of the string
 // If a character at a certain position is not a digit,
 // then the string is not a valid natural number
 for(int i = 0; i < Str.GetLength(); i++)
 {
 if(Str[i] < '0' || Str[i] > '9')
 return FALSE;
 }

 return TRUE;
 }

 BOOL IsNumeric(const CString Str)
 {
 // Make a copy of the original string to test it
 CString WithoutSeparator = Str;
 // Prepare to test for a natural number
 // First remove the decimal separator, if any
 WithoutSeparator.Replace(".", "");

 // If this number were natural, test it
 // If it is not even a natural number, then it can't be valid
 if(IsNatural(WithoutSeparator) == FALSE)
 return FALSE; // Return Invalid Number

 // Set a counter to 0 to counter the number of decimal separators
 int NumberOfSeparators = 0;

 // Check each charcter in the original string
 for(int i = 0; i < Str.GetLength(); i++)
 {
 // If you find a decimal separator, count it
 if(Str[i] == '.')
 NumberOfSeparators++;
 }

 // After checking the string and counting the decimal separators
 // If there is more than one decimal separator,
 // then this cannot be a valid number
 if(NumberOfSeparators > 1)
 return FALSE; // Return Invalid Number
 else // Otherwise, this appears to be a valid decimal number
 return TRUE;
 }

Index Visual C++ and MFC Fundamentals

716 © FunctionX, Inc.

 int StringToInt(const CString Str)
 {
 // First check to see if this is a valid natural number
 BOOL IsValid = IsNatural(Str);

 // If this number is valid, then convert it
 if(IsValid == TRUE)
 return atoi(Str);
 else
 {
 // Return 0 to be nice
 return 0;
 }
 }

 double StringToFloat(const CString Str)
 {
 // First check to see if this is a valid number
 BOOL IsValid = IsNumeric(Str);

 // If this number is valid, then convert it
 if(IsValid == TRUE)
 return atof(Str);
 else
 {
 // Return 0 to be nice
 return 0;
 }
 }
}

12. To create the library, on the main menu, click Build -> Build MFCExt.lib
The Output window will indicate that a file with .lib extension was created

22.3.3 MFC Static Library Test
Like the regular static library we saw above, you can use an MFC static library either on
a console or a graphical application. The main difference is that the application must be
able use MFC. Therefore, when creating the application, specify that you will use MFC
either In A Shared DLL or In A Static DLL.

 Practical Learning: Testing an MFC Static Library
1. To start a new application, on the main menu, click File -> New…

2. In the Projects tab of the New dialog box, click MFC AppWizard. In the Project
Name edit box, type MFCExtTest and click OK

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 717

3. Set the project type to Dialog Based and click Next

4. Remove the check box of the About Box. Set the Title to
MFC Extension Library then click Finish and click OK

5. Design the dialog box as follows:

Control ID Caption Addition Properties
Static Text Number &1:
Edit Control IDC_NUMBER1 Align Text: Right
Static Text Number &2:
Edit Control IDC_NUMBER2 Align Text: Right
Button IDC_CALCULATE C&alculate Default Button: True
Static Text Result:
Edit Control IDC_RESULT Align Text: Right
Button IDCANCEL &Close

6. Press Ctrl + W to access the ClassWizard. In the Member Variables tab, Add a
Variable for each edit box as follows:

7. Using Windows Explorer or My Computer, copy the MFCExt.lib and the
mfcextent.h files from the folder of the previously created library and paste them in
the folder of the current project (the lib and the h files are in different folder but you
should paste them in the main folder of the current project)

8. To include the library in the current project, on the main menu, click Project -> Add
To Project -> Files…

9. Change the Files Of Type to Library Files (.lib). Select the MFCExt.lib file and click
OK

Index Visual C++ and MFC Fundamentals

718 © FunctionX, Inc.

10. Display the dialog box. Double -click the Calculate button. Accept the suggested
name of the function and click OK

11. Implement the event as follows:

// MFCExtTestDlg.cpp : implementation file
//

#include "stdafx.h"
#include "MFCExtTest.h"
#include "MFCExtTestDlg.h"

#include "mfcextent.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMFCExtTestDlg dialog

CMFCExtTestDlg::CMFCExtTestDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CMFCExtTestDlg::IDD, pParent)
{
 //{{AFX_DATA_INIT(CMFCExtTestDlg)
 m_Number1 = _T("0.00");
 m_Number2 = _T("0.00");
 m_Result = _T("0.00");
 //}}AFX_DATA_INIT
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

. . .

void CMFCExtTestDlg::OnCalculateBtn()
{
 // TODO: Add your control notification handler code here
 double Number1, Number2, Result;

 UpdateData();

 // Evaluate the content of each operand edit box
 if(MFCExtensions::IsNumeric(m_Number1) == TRUE)
 {
 Number1 = MFCExtensions::StringToFloat(m_Number1);
 }
 else
 {
 AfxMessageBox("Invalid Number");
 Number1 = 0.00;
 }

 if(MFCExtensions::IsNumeric(m_Number2) == TRUE)
 {
 Number2 = MFCExtensions::StringToFloat(m_Number2);
 }
 else
 {

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 719

 AfxMessageBox("Invalid Number");
 Number2 = 0.00;
 }

 Result = Number1 + Number2;

 m_Result.Format("%.2f", Result);
 UpdateData(FALSE);
}

12. Test the application

22.4 Win32 DLL

22.4.1 Introduction
A Win32 DLL is a library that can be made available to programs that run on a Microsoft
Windows computer. As a normal library, it is made of functions and/or other resources
grouped in a file. The DLL abbreviation stands for Dynamic Link Library. This means
that, as opposed to a static library, a DLL allows the programmer to decide on when and
how other applications will be linked to this type of library. For example, a DLL allows
difference applications to use its library as they see fit and as necessary. In fact,
applications created on different programming environments can use functions or
resources stored in one particular DLL. For this reason, an application dynamically links
to the library.

You create a DLL like any other application, as a project. This project must contain at
least one file. From your experience, you probably know that each C++ program contains
the main() function and each Win32 application contains a WinMain() function. These
are referred to as entry-points because the compiler always looks for these functions as
the starting point of an application. In the same way, a Win32 DLL must contain an entry
point function. The most regularly used function as the entry point is called DllMain.
Unlike a C++ program that uses main() and unlike a Win32 application that uses
WinMain(), a DLL can have a different function as the entry-point but it must have an
entry point. When building your DLL, you will need to communicate your entry-point to
the compiler.

When creating the DLL, you must provide a way for external applications to access the
functions or resources included in the DLL. There are two main ways you will do this:
using a statement that indicates that a particular function will be exported, or by creating
an additional specially configured file that will accompany the DLL.

Index Visual C++ and MFC Fundamentals

720 © FunctionX, Inc.

22.4.2 Fundamentals of a DLL
We have mentioned that a DLL is created as a project that contains at least one source
file and this source file should present an entry-point. After creating the DLL, you will
build and distribute it so other programs can use it. When building it, you must create a
library file that will accompany the DLL. This library file will be used by other programs
to import what is available in the DLL:

When the import library is created, it contains information about where each available
function is included in the DLL and can locate it. When an application needs to use a
function contained in the DLL, it presents its request to the import library. The import
library checks the DLL for that function. If the function exists, the client program can use
it. If it does not, the library communicates this to the application and the application
presents an error.

Normally, the import library is created when building the DLL but you must provide a
mechanism for the compiler to create it. There are two main ways you do this. You can
use a calling convention that allows the compiler to detect what function will be
accessible to the clients of the DLL. In this case, each one of these functions will start
with the _declspec modifier. When creating the DLL, the _declspec modifier must take
as argument the dllexport keyword.

The functions do not have to be included in the main file that contains the entry-point; it
may simply be convenient to do it that way.

 Practical Learning: Creating a DLL
1. To start a new project, on the main menu, click File -> Project…

2. In the New Project dialog box, in the Project Type list, select Visual C++. In the
Templates list, click Win32 Project

3. In the Name edit box, type MomentOfInertia

DLL
Import
Library

Client
Application

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 721

4. Click OK

5. In the Win32 Application Wizard, in the left frame, click Application Settings. In the
Application Type section, click the DLL radio button

6. Click Finish

7. Change the contents of the MomentOfInertia.cpp file as follows:

// MomentOfInertia.cpp : Defines the entry point for the DLL application.
//

#include "stdafx.h"
// Calculation of the moment of inertia
// Rectangle
extern "C" _declspec(dllexport)double MOIRectangle(double b, double h);
// Semi-Circle
extern "C" _declspec(dllexport)double MOISemiCircle(double r);
// Triangle
extern "C" _declspec(dllexport)double MOITriangle(double b, double h, int);

BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,

Index Visual C++ and MFC Fundamentals

722 © FunctionX, Inc.

 LPVOID lpReserved
)
{
 return TRUE;
}

double MOIRectangle(double b, double h)
{
 return b * h * h * h / 3;
}

double MOISemiCircle(double r)
{
 const double PI = 3.14159;

 return r * r * r * r * PI / 8;
}

double MOITriangle(double b, double h, int)
{
 return b * h * h * h / 12;
}

8. To create the DLL, on the main menu, click Build -> Build MomentOfInertia

9. Open Windows Explorer and open the Debug folder of the current project. Notice
that a file with dll extension and another file with lib extension have been created

22.4.3 Win32 DLL Test
Naturally you should test your DLL to make sure it behaves as expected, before
distributing it to other applications. For an application to be able to use the DLL, it must
be able to locate its dll and its lib files. The simplest way to do this is to simply copy and
paste these files in the client project. Some other times, the DLL and its library will need
to reside in the system directory. To make the DLL available to an application, you must
import the DLL into the application. Although there are various ways to do this, the
simplest consists of adding it to the project by using the main menu where you would
click Project -> Add Existing Item…, and selecting the lib file.

We mentioned that, when creating the DLL, you should use the _declspec(dllexport)
modifier for each function that will be accessed outside of the DLL. In the project that is
using the DLL, each function that will be accessed must be declared using the
_declspec(dllimport) modifier.

 Practical Learning: Testing a DLL
1. To start a new project, display the New Project dialog box

2. In the Project Types, click Visual C++ Projects. In the Templates, click MFC
Application

3. In the Name edit box, type MOITest and press Enter

4. In the MFC Application Wizard, create the application as Dialog Based without an
About Box and set the Dialog Title to Moment Of Inertia DLL Test

5. Click Finish

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 723

6. Open Windows Explorer or My Computer. Locate the folder that contains the
MomentOfInertia project

7. Select and copy both the MomentOfInertia.dll and the MomentOfInertia.lib files

8. Locate the folder that contains the current new project then paste the dll and the lib
files:

9. Back in MSVC, on the main menu, click Project -> Add Existing Item…

10. In the Add Existing Item dialog box, change the Files of Type to All Files

11. In the list of files, click MomentOfInertia.lib

Index Visual C++ and MFC Fundamentals

724 © FunctionX, Inc.

12. Click Open

13. Delete the TODO line on the dialog box. Add a new Button. Change its Caption to
MOI Test

14. Double-click the new button to initiate its BN_CLICKED message

15. Implement it as follows:

// MOITestDlg.cpp : implementation file
//

#include "stdafx.h"
#include "MOITest.h"
#include "MOITestDlg.h"
#include ".\moitestdlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// Calculation of the moment of inertia
// Rectangle
extern "C" _declspec(dllimport)double MOIRectangle(double b, double h);
// Semi-Circle
extern "C" _declspec(dllimport)double MOISemiCircle(double r);
// Triangle
extern "C" _declspec(dllimport)double MOITriangle(double b, double h, int);
// CMOITestDlg dialog

CMOITestDlg::CMOITestDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CMOITestDlg::IDD, pParent)
{
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

. . .

void CMOITestDlg::OnBnClickedButton1()
{
 // TODO: Add your control notification handler code here
 double MOI = MOIRectangle(3.25, 2.65);
 char Sentence[40];

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 725

 sprintf(Sentence, "Moment of Inertia: %.3f", MOI);
 MessageBox(Sentence);
}

16. Test the application

17. Close the dialog box and return to MSVC

22.5 DLL Module-Definition Files

22.5.1 Definition File Fundamentals
We mentioned that a dll must provide a means of importing its functions and making
them available to client applications. We learned above how to help the compiler create
the import library by preceding at least one function with the _declspec(dllexport)
modifier. Microsoft Windows allows another technique. Instead of preceding your
functions with a modifier, you can instead add another object called the Module-
Definition file.

A definition file is a text file that has the extension def. It must contain at least two
sections. The first section is made of one line. It starts with the LIBRARY word followed
by the name of the DLL. It is important that the name you specify be the same name as
the DLL that will be made available to other applications. The second section starts with
the EXPORTS word and contains a list of the functions that will be exported.

In the following exercise, we will create a DLL that can be used to calculate the moment
of inertia using the following illustrations and formulas:

Index Visual C++ and MFC Fundamentals

726 © FunctionX, Inc.

Rectangle

Semi -Circle

Triangle

 Practical Learning: Creation a Definition DLL
1. To start a new application, open the New Project dialog box and, in the Project

Types list, click Visual C+ Projects

2. In the Templates list, click Win32 Project. In the Name box, type MomentInertia and
press Enter

3. In the Win32 Application Wizard, click Application Settings. Click the DLL radio
button and click Finish

4. To add a header file, on the main menu, click Project -> Add New Item…

5. In the Add New Item dialog box, click Header File (.h). In the Name edit box, type
MomentOfInertia and press Enter

6. In the empty file, type the following:

// MomentOfInertia.cpp : Defines the entry point for the DLL application.
//
#pragma once

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 727

// Calculation of the moment of inertia
// Rectangle
double MOIRectX(double b, double h);
double MOIRectY(double b, double h);
double MOIRectXC(double b, double h);
double MOIRectYC(double b, double h);

// Circle
double MOICircleXC(double r);
double MOICircleYC(double r);

// Semi-Circle
double MOISemiCircleX(double r);
double MOISemiCircleXC(double r);
double MOISemiCircleYC(double r);

// Triangle
double MOITriangleX(double b, double h, int);
double MOITriangleXC(double b, double h, int);

7. To add the accompanying source file, display the Add New Item dialog box and
select C++ File (.cpp). In the Na me edit box, type MomentOfInertia and press Enter

8. In the empty file, type the following:

#include "stdafx.h"
#include "MomentOfInertia.h"

const double PI = 3.14159;

// Rectangle
double MOIRectX(double b, double h)
{
 return b * h * h * h / 3;
}
double MOIRectY(double b, double h)
{
 return h * b * b * b / 3;
}
double MOIRectXC(double b, double h)
{
 return b * h * h * h / 12;
}
double MOIRectYC(double b, double h)
{
 return h * b * b * b / 12;
}

// Circle
double MOICircleXC(double r)
{
 return PI * r * r * r * r / 4;
}
double MOICircleYC(double r)
{
 return PI * r * r * r * r / 4;
}

// Semi-Circle

Index Visual C++ and MFC Fundamentals

728 © FunctionX, Inc.

double MOISemiCircleX(double r)
{
 return r * r * r * r * PI / 8;
}
double MOISemiCircleXC(double r)
{
 return 0.110 * r * r * r * r;
}
double MOISemiCircleYC(double r)
{
 return MOISemiCircleX(r);
}

// Triangle
double MOITriangleX(double b, double h, int)
{
 return b * h * h * h / 12;
}
double MOITriangleXC(double b, double h, int)
{
 return b * h * h * h / 36;
}

9. To add a definition file, display the Add New Item dialog box again. In the
Templates list, click Module-Definition File (.def)

10. In the Name edit box, type MomentInertia and press Enter

11. Change the file as follows:

LIBRARY MomentInertia

EXPORTS
 MOIRectX
 MOIRectY
 MOIRectXC
 MOIRectYC

 MOICircleXC
 MOICircleYC

 MOISemiCircleX
 MOISemiCircleXC
 MOISemiCircleYC;

 MOITriangleX
 MOITriangleXC

12. To create the DLL, on the main menu, click Build -> Build MomentInertia

22.5.2 Usage of a Definition File DLL
Although we mentioned that you can create a definition file to have an import library,
you do not have to use it, although you can. The technique we used above allows the
compiler to know that you need an import library. This means that there are at least two
different ways you can make use of a definition file (as we stated already, the most
difficult aspect of DLL is based on decisions, not how to create a library).

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 729

Once again, you can use the dll and lib files in the client applications of your DLL, as we
did already. If you do not want to use the definition file, you must provide a mechanism
for a client application to locate the function that is included in your DLL. This time also,
there are different ways you can do this. When a client application wants to use a
function, it can declare the function in the file that will call the function. The declaration
is done as a normal C++ function declaration. The function must be listed as it appears in
the DLL. This is why you should (honestly you must) always provide documentation for
your DLL: other people or comp anies should spend time predicting or guessing what
your DLL is used for or what it contains. In the following example, a function called
Number() is called from main(). The function is only declared but it is not defined
because this was already taken care of in a DLL:

#include <iostream>
using namespace std;

double Number();

int main()
{
 double Nbr = Number();

 cout << "Number: " << Nbr << endl;
 return 0;
}

Another technique consists of including the header file that contains the function
definitions from the DLL. This means that, besides the dll and the lib files, if you
distribute your library, you must also distribute the header file (provided you are not
distributing the def file, although you can distribute both).

 Practical Learning: Using a Module Definition DLL
1. To start a new application, display the New Project dialog box and select MFC

application

2. In the Name edit box, type MOIDefTest and press Enter

3. In the MFC Application Wizard, create the application as Dialog Based without an
About Bo x and set the Dialog Title to DLL Definition File Test

4. Click Finish

5. Open Windows Explorer or My Computer. Locate the folder that contains the
MomentInertia project

6. Select and copy both the MomentInertia.dll and the MomentInertia.lib files

7. Locate the folder that contains the current new project then paste the dll and the lib
files

8. Back in MSVC, on the main menu, click Project -> Add Existing Item…

9. In the Add Existing Item dialog box, change the Files of Type to All Files

10. In the list of files, click MomentInertia.lib

11. Click Open

12. Delete the TODO line on the dialog box. Add a new button. Change its Caption to
Moment Of Inertia

13. Double-click the new button to initiate its BN_CLICKED message

Index Visual C++ and MFC Fundamentals

730 © FunctionX, Inc.

14. Implement it as follows:

// MOIDefTestDlg.cpp : implementation file
//

#include "stdafx.h"
#include "MOIDefTest.h"
#include "MOIDefTestDlg.h"
#include ".\moideftestdlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

double MOIRectX(double b, double h);

// CMOIDefTestDlg dialog

CMOIDefTestDlg::CMOIDefTestDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CMOIDefTestDlg::IDD, pParent)
{
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

. . .

void CMOIDefTestDlg::OnBnClickedButton1()
{
 // TODO: Add your control notification handler code here
 double MOI = MOIRectX(3.25, 2.15);
 char Sentence[40];

 sprintf(Sentence, "Moment of Inertia: %.3f", MOI);
 MessageBox(Sentence);
}

15. Test the application

16. Close the dialog box and return to MSVC

17. To use the header file, return to Windows Explorer or My Computer

18. Locate the folder that contains the MomentInertia project and copy the
MomentOfInertia.h header file

19. Paste the MomentOfInertia.h file in the folder that contains the current project

20. Change the above file as follows:

#include "stdafx.h"

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 731

#include "MOIDefTest.h"
#include "MOIDefTestDlg.h"
#include ".\moideftestdlg.h"
#include "MomentOfInertia.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CMOIDefTestDlg dialog

CMOIDefTestDlg::CMOIDefTestDlg(CWnd* pParent /*=NULL*/)
 : CDialog(CMOIDefTestDlg::IDD, pParent)
{
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

21. Test the application. Then close it and return to MSVC

Index Visual C++ and MFC Fundamentals

732 © FunctionX, Inc.

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 733

Index

%

% 242

A

ACCEL...81
accelerator..80
Accelerator Table ...81
accessible ...79
ACS_AUTOPLAY.................................... 444, 446
ACS_CENTER .. 444
ACS_TRANSPARENT...................................... 444
activate..80
Add Resource..64
Add/Remove... 443
advantage...32
AFX_IDI_STD_FRAME......................................69
AfxGetApp() ...43
AfxGetMainWnd() ...39
AfxMessageBox() ..54
AfxRegisterWndClass()88, 312
AFXWIN.H ...33
alive.. 310
Alt...15, 80
alternative...76
appearance... 304, 309
application...43, 64
applications..32
Applications...12
area... 308
argument..51, 85
arrow keys... 617
Ascending... 670
AssertValid()...33
Audio Video Interleaved.................................... 443
audio/video... 443
Auto Play .. 444
availability ..14, 310
AVI .. 443
axes ...47

B

background..88
bitwise ..44
black..84
BN_CLICKED... 611
BN_DOUBLECLICKED................................... 611
Border.. 341
bottom..49, 51

break .. 305
BS_3STATE.. 604, 605
BS_AUTOCHECKBOX 608
BS_CHECKBOX .. 608
Built-In Classes

CPoint...47
CSize ..48

Built-In Structures
POINT ..47

button...59, 79
BUTTON .. 311
Buttons

Close...44
Hot Spot ...85
Minimize ..44
New Project...17

C

candidate... 307
Caption ..80, 337
Cartesian...46
case... 305
categories .. 304
Categories ..17
Category ...80
cbClsExtra ... 305
CBS_AUTOHSCROLL 635
CBS_DROPDOWN.. 635
CBS_DROPDOWNLIST................................... 635
cbSize .. 304
CButton... 607
cbWndExtra .. 305
CCmdTarget ..33
CCreateContext .. 310
CD...30
CDialog ... 347
Center .. 444
CFrameWnd ...30, 38

Create() ..88
character.. 239
characteristics... 307
check...33
checking process...33
Class View...18
classes ...32
Classes

ACCEL ..81
clip .. 443
CListCtrl.. 666
Close...14

Index Visual C++ and MFC Fundamentals

734 © FunctionX, Inc.

CObject...32
collapse...18
colors ... 304
Combo Box... 635
COMBOBOX... 311
common..86
company...82
compiler.. 38, 64, 81
computer..46, 239
consecutive... 239
constant...64
constants...32
constructor..32, 47
container..79, 307
contents...32
control..51, 304
Control Panel...83
Controls

Animate... 444
Combo Box.. 635
Group Box.. 617
List Box... 618
Radio Button.. 617

Controls Styles
ACS_AUTOPLAY................................ 444, 446
ACS_CENTER.. 444
ACS_TRANSPARENT 444
BS_3STATE.. 605
BS_AUTOCHECKBOX................................ 608
BS_CHECKBOX .. 608
Combo Box

CBS_AUTOHSCROLL 635
CBS_DROPDOWN................................... 635
CBS_DROPDOWNLIST.......................... 635

LBS_MULTIPLESEL.................................... 618
List Box

LBS_EXTENDEDSEL 618
LVS_ICON... 667
LVS_LIST .. 667
LVS_NOSCROLL.. 669
LVS_REPORT .. 667
LVS_SHOWSELALWAYS 669
LVS_SINGLESEL.. 669
LVS_SMALLICON 667
LVS_SORTASCENDING 670

coordinate system...46
copy...32
Copy..14
copy constructor..32
copyright ..82
corner...46, 444
CPoint...47

CPoint()..47
CreateWindow() .. 307
creation...32
creative ...84

Ctrl ... 618
current release...82
cursor..83
cursors ..64
custom..89
Custom Control.. 312
Customize ..17
Cut...14
CWnd

GetClientRect().. 411
CWnd..38

CheckDlgButton()... 608
CX...48
CY...48

D

data types ...32
Data Types

char .. 239
LPTSTR...65

declaration... 309
DECLARE_DYNCREATE..................................42
default .. 305
default button...59
Definitions

Accelerator Key..81
Acces Key..80
Animation... 443
Check Box.. 602
Child .. 306
Combo Box.. 633
Cursor...83
height..51
Hot Spot ...84
Identifier ..65
List Box... 617
List Control .. 665
Menu Separator ..79
Message Box...53
Parent... 306
Shortcut Key ...80
String Table ...86
Toolbar...79
Version...82
width...51
Windows Resources...64

DefWindowProc() ... 305
Delete... 310
dependent.. 310
derive ...42, 309
description..38
destruction..32
dialog box..53
dialog boxes...64
Dialog Boxes

Add New Item...37

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 735

Add Resource..64
Customize ..18
Project Settings...37
Resource Symbols ..87
Win32 Application Wizard...............................34

dimensions...51
discussion.. 306
DispatchMessage().. 305
display ... 304
distance..48, 50
dockable .. 307
down .. 617
Drop List... 635
Dropdown ... 635
DVD..30
dwDefaultStyle..91
dwExStyle.. 307
DWORD.. 307
dwStyle.. 307, 310
dynamic ..32

E

Edit ..75
EDIT .. 311
efficient..79, 304
Enter..30
environment...64
Environment ..12
equip ...79
error.. 310
Esc...15
event... 310
Events

BN_DOUBLECLICKED 611
evolution.. 443
example ..75
existence.. 306
Exit ..14
expand ..18
extension..64
Extensions

avi... 443
external...64

F

F1...30
F10 ...15, 80
FALSE..33
features ...32
File ..75
file processing...75
form.. 306
formatting...86
foundation... 310
four..49
frame .. 306

Framework ...54
Framework Functions

AfxGetMainWnd()...55
AfxMessageBox()..54
AfxRegisterWndClass()....................................91

function.. 304
functionality...32, 47, 309
functions...32

G

garbage.. 306
geometric ..49
GetClientRect() .. 411
GetMessage() ... 305
graphics ... 443
gripper ..16

H

handle .. 308
hbrBackground... 305
hCursor.. 305
header file ..64
Header Files...18
height ..48
Help ...30
hIcon.. 305
hIconSm .. 305
hInstance.. 304, 307
HINSTANCE .. 304, 307
hMenu.. 307
HMENU.. 307
horizontal ...47
Horizontal Alignment ... 604
host.. 307, 444
hot spot...84
hPrevInstance... 304
HTML Help ...30
HWND... 304
hWndParent.. 307

I

icon... 307
IDABORT ..61
IDCANCEL...61
identifier..65, 76
IDI_APPLICATION..88
IDIGNORE..61
IDNO ..61
IDOK ..61
IDRETRY..61
IDYES ..61
IMPLEMENT_DYNCREATE............................42
independent... 307
Index... ..30
indicator..84

Index Visual C++ and MFC Fundamentals

736 © FunctionX, Inc.

information ..82
inheritance...32, 310
initialize ... 309
InitInstance() ...33
instance...32
int.. 307
integer...64
Integrated Development Environment................13
intuitive...84
items ... 304

J

job... 307

K

keyboard...80
keys...80

L

left ..49, 51
library ...32, 47, 307
Library ..12
line...76
list box... 443
List Box... 618
list control ... 665
list-based ... 304
LISTBOX.. 311
locate...47
location... 38, 47, 49
LPARAM.. 305
lpClassName... 307
LPCTSTR... 307
lpfnWndProc .. 305
lpParam... 307
LPSTR... 304
lpszClassName 38, 88, 305, 310, 312
lpszMenuName .. 305
lpszWindowName ...38
LPTSTR...65
LPVOID.. 307
lpWindowName .. 307
LVS_SHOWSELALWAYS 669
LVS_SORTASCENDING................................. 670

M

m_hWnd...55
m_pMainWnd ...39
macro ..42
Macros

MAKEINTERESOURCE.................................65
main ... 304
main menu ...74
MAKEINTERESOURCE.....................................65
manage..64

Maximize ...45
Maximize Box.. 338
maximized window..45
MDICLIENT .. 311
measurements..48
members ...32
memory... 239, 306
menu ...74
Menu

Customize... ...17
Debug...17

Message Boxes
Microsoft Development Environment37

messages...33
Messages

BN_CLICKED .. 611
method..38
Methods

Create() ..39
MFC ..12
MFC Classes

CButton... 306
CCmdTarget..33
CFrameWnd...38, 309

Create()..38, 52, 88, 91
LoadFrame() ...91

CListBox... 618
CListCtrl ... 666
CObject ..32

AssertValid()..33
Serialize()..32

CStatic ... 309
CView.. 306, 309
CWinApp...33

InitInstance() ..33
LoadCursor() ..89
LoadIcon() ..89

CWinThread..33
m_pMainWnd ..39

CWnd ..38, 306
CheckDlgButton() 608

MFC Functions
AfxRegisterWndClass().............................88, 91

MFC Library Classes
CDialog... 347

MFClasses
CButton... 607

Microsoft..12
Microsoft Development Environment13
Microsoft Foundation Class..................................12
Microsoft Foundation Class (MFC)32, 47
Microsoft Windows..32
Minimize ...13, 44
Minimize Box... 337
minimum..84
monitor ... 38, 46, 49

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 737

mouse...64, 80
Mouse...83
move .. 307
MSDN library..30
MSG... 304
Multiple Selection ... 618
mutual-exclusive.. 603

N

name ..38
navigate... 617
nCheck ... 609
nCmdShow ... 304
necessary..79
New Symbol..87
newsgroups..30
nFrom .. 446
nHeight.. 307
nIDButton.. 609
nRep ... 446
nTo ... 446
NULL ...38
null-terminated..38

Definition.. 239
nWidth ... 307

O

object ...32, 304
objects...64
official name ..82
Online Help ...30
Open Solution... ..14
opening...32
operating system...47
operating systems ...32
Operating Systems ..12
operator..44, 309
option... 309
Options.. 443
OR...44
origin ...50
overlapped... 340
overloaded..89

P

parent ..32
parenthood.. 307
part ..64
Paste..14
pContext .. 310
perform...79
person...82
picture .. 304
Picture Frame ... 446
pictures ..64, 443

pixels ...48
POINT ..47
Pointers...83
polymorphism.. 310
Popup... 339
popup menu ...76
position...84
positive...33
possess... 307
PostQuitMessage() .. 305
pParentWnd..52, 91
precise.. 312
presence..84
prime .. 307
process..81
produce.. 443
product..82
program ..64
Programming...12
progress-based.. 304
Project...75
Projects

Clarksville Ice Scream2 634
Controls ... 310
Exercise1 ...22
MsgBox..55
Resources...65
TableWizard ... 617
Win32C... 304
Windows Fundamentals34

properties... 309
Properties ...80

Auto Play.. 444
Border.. 341
Center .. 444
Combo Box

Auto HScroll ... 635
Data... 635
Type.. 635

Disabled .. 618
Horizontal A lignment..................................... 604
List Box

Selection... 618
List Control

No Scroll .. 669
Show Selection Always............................. 669
Single Selection .. 669
Sort .. 670

Push-Like .. 604
Transparent... 444
Tri-State ... 604, 605
Vertical Alignment.. 604

protected.. 310
public ... 310
Push-Like .. 604

Index Visual C++ and MFC Fundamentals

738 © FunctionX, Inc.

R

rc 64
recover... 306
rect ...49, 310
rectangle ...49
rectDefault ...52
Redo..14
RegisterClassEx() .. 305
relationship ... 306
release number ..82
request... 304
Request...12
Resource Files ...18
Resource View..19
resource.h..64, 76
return.. 305
returns...33
RichEdit... 311
RICHEDIT_CLASS.. 311
right..49, 51
role ... 307
rule ..75
rules.. 310

S

Save All ..14
saving..32
scope.. 310
screen...38, 46
SCROLLBAR.. 311
seconds ...68
section..74, 312
sentence... 239
separator...79
Serialize()...32
series .. 443
shape...84
Shift .. 618
shortcut key ...80
show... 304
Show Selection Always...................................... 669
ShowCursor() ..85
ShowWindow() .. 305
Simple .. 634
Single ... 618
Single Selection ... 669
size ..38, 48, 307
Solution Explorer...18, 30
sounds...64
Source Files ...18
space ... 306, 617
sprintf().. 242
square... 602
standard cursors ..83
Start ...12

static... 304
STATIC... 311
stream ...32
streaming..32
strict ..75
string...38
String

Definition.. 239
String Table ...86
structure...51, 307
style.. 310
Style ... 340
Styles

BS_3STATE.. 604
WS_BORDER..44
WS_MAXIMIZE...45
WS_MAXIMIZEBOX......................................45
WS_MINIMIZE...45
WS_MINIMIZEBOX..45
WS_OVERLAPPED ...44
WS_SYSMENU ...44
WS_THICKFRAME ...46
WS_VISIBLE...43

suggestions...75
switch... 305
symbol..44
symbols.. 239
syntax..38
System..44
System Buttons

Close...14
Maximize ...14
Minimize ..14
Restore ...14

System Icon ...13
System Menu.. 338

T

task.. 304, 443
Taskbar...12
technique... 308
text -based .. 304
time ...80
title bar...44, 307
tool tip...17
toolbar.. 306
Toolbar

Definition...16
Standard ...16

top...49, 51
translate..81
TranslateMessage() ... 305
transparency...84
Transparent... 444
Tri-State.. 604, 605
TRUE..33

Visual C++ and MFC Fundamentals Chapter 21: Tree and List Controls

© FunctionX, Inc. 739

U

UINT.. 305
Undo ...14
unsigned int ...33
up.. 617
UpdateWindow() ... 305
upper-left ... 444
Use MFC in a Shared DLL...................................37
user... 304
uType ..58

V

validity..32
valuable ... 307
variable ...32, 47, 309
variables ...32
version..82
Version Information Editor...................................82
vertical..47
Vertical Alignment.. 604
video .. 443
View..75
visibility... 306
visible .. 309
Visual C++..12, 54
Visual Studio ...12
Visual Studio IDE ..75

W

web site...30
white ..84, 88
width ...48
Win32 ..38, 47

Win32 Functions
CreateWindow().. 307
MessageBox()...54
RegisterClassEx().. 305
ShowCursor()..85

Win32 Structures
POINT ..48

Windows ..12
WinMain ..30
WM_DESTROY ... 305
WNDCLASS .. 307
WNDCLASSEX .. 307
WordPerfect...75
WPARAM .. 305
WS_BORDER ..44
WS_CAPTION ...43
WS_MAXIMIZE..45
WS_MAXIMIZEBOX ..45
WS_MINIMIZE...45
WS_OVERLAPPED ..44
WS_OVERLAPPEDWINDOW 305
WS_SYSMENU ...44
WS_THICKFRAME..46
WS_VISIBLE ...43

X

x 47, 307

Y

y 47, 307
year..82

