

Anthony Potts

David H. Friedel, Jr.

PROGRAMMING LANGUAGE
HANDBOOK

Publisher Keith Weiskamp

Editor Keith Weiskamp

Proofreader Kirsten Dewey

Cover Design Gary Smith

Interior Design Michelle Stroup

Layout Production Kim Eoff

Indexer Kirsten Dewey

Trademarks: Java is a registered trademark of Sun Microsystems, Inc. All other
brand names and product names included in this book are trademarks, registered
trademarks, or trade names of their respective holders.

Copyright © 1996 by The Coriolis Group, Inc.

All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
section 107 or 108 of the 1976 United States Copyright Act without the written
permission of the copyright owner is unlawful. Requests for permission or
further information should be addressed to The Coriolis Group.

The Coriolis Group
7339 E. Acoma Drive, Suite 7
Scottsdale, AZ 85260
Phone: (602) 483-0192
Fax: (602) 483-0193
Web address: www.coriolis.com

ISBN 1-883577-77-2 : $24.99

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To my wife who has been there through it all.
Anthony Potts

To my sister Beth, who has helped make this book possible.
Dave Friedel

Acknowledgments
To Keith Weiskamp who really should be listed as a co-author for all the devel-
opmental and editorial work he did for this book.

To John Rodley for helping us get started with Java.

To Neil Bartlett, Alex Leslie, and Steve Simkin for all their help and for letting
us have a sneak peek at their book, Java Programming EXplorer.

And, to Sun for creating a really cool alternative!

Contents
Foreword The Crazy Years are

Here Again xv

Chapter 1 Introducing Java 1
The World of Java 4

The Java Development Platform 7

The Roots of Java 8
The Power of Distributed Software 10

The Challenges of Security 12

Java and C++ 12
Object-Oriented Quick Tour 12
What’s Missing? 13
Gone: Pointers 13
Gone: Header Files 13
Gone: Multiple Inheritance 14
What’s New? 14
Garbage Collection 15
Security 15
Exceptions 15
Strings versus Character Arrays 16
The Super Class 16
New Modifiers 16
The instanceof Operator 17
Helper Programs 17

Chapter 2 Writing Your First
Java Applet 19

Introducing the TickerTape Applet 22
Running the Applet 25
Where’s the Main Program? 27
Introducing Java Comments 30

v

vi Contents

What’s in a Package? 30
Classes, Inheritance, and Interfaces 32
Types, Objects, and Constructors 35
Thank Goodness for Garbage Collection 37
Using Methods 38
Methods and Method Overriding 43
Graphic Methods 46
Working with Threads 49
Processing User Input 52

One Last Thing 53
That’s It—Run It 54

Chapter 3 Java Language
Fundamentals 55

What Makes a Java Program? 58
Lexical Structure 58

Comments 59
Identifiers 65
Keywords 68
Literals 71
Operators 74
Separators 75

Types and Variables 76
byte 76
short 76
int 77
long 77
float 78
double 78
boolean 78
char 79
string 79

Variable Declarations 79
Using Arrays 82

Declaring Arrays 82
Sizing Arrays 83
Accessing Array Elements 83
Multidimensional Arrays 85

Using Command-Line Arguments 86

Contents vii

Passing Arguments 87
Reading in Arguments 87
Accessing Arguments 88
Dealing with Numeric Arguments 89

Chapter 4 Operators,
Expressions, and Control
Structures 91

Using Java Operators 93
Operator Precedence 93
Assignment Operators 95
Integer Operators 97
Boolean Operators 100
Floating-Point Number Operators 102

Using Casts 103
Writing Expressions and Statements 104
Control Flow Statements 106

if..else 106
while and do..while 108
switch 109
for 110
labels 111
Moving Ahead 112

Chapter 5 Java Classes
and Methods 113

Understanding Classes 115
Declaring a Class 116

Using a Class 117

Components of a Class Declaration 118
Documentation Comment 119
Class Modifiers 119
Class Identifiers 124
Extending Classes 124
Using the implements Clause to Create

Class Interfaces 126

viii Contents

Class Body 128

Methods 130
Declaring a Method 130

Components of a Method Declaration 130
Method Modifiers 131
Return Type of a Method 133
Parameter Lists for a Method 133
Method Throws 133
Method Body 134
Using the this and super Keywords 135
Overloading and Overriding Methods 137

Constructors—The Special Methods 138
Components of a Constructor Declaration 140
Parameter List and Throws Clause 146
Constructor Body 146
Object Creation 148

Variables for Classes 148
The Art of Casting with Classes 150

Chapter 6 Interfaces and
Packages 155

Understanding Interfaces 158
Declaring an Interface 161
Implementing an Interface 161
The Art of Casting with Interfaces 165
Tips on Implementing Interfaces 167

Creating and Using Packages 168
Naming and Referencing Packages 170
Declaration for Creating Packages 171

Using Packages 174
Declaration for Importing Packages 176
Standard Java Packages 177
Hiding Classes Using the Wild Card 177

Chapter 7 Java Exceptions 179
Understanding Exceptions 182
Do You Really Need Exceptions? 183

Defining a Try Clause 186

Contents ix

Using the catch Statement 187
When to Use the finally Statement 189
The Hierarchy of Exceptions 190
Declaring a Method Capable

of Throwing Exceptions 194
Throwing Exceptions 197
When to Catch and When to Throw 198

Knowing When to Create Your
Own Exceptions 200

Chapter 8 Threads 203
What Is a Thread? 205

Creating a Thread 210
Subclassing the Thread Class 210
Implementing the Runnable Interface 211

Initializing a Thread 213
Who Goes First; Who Finishes Last? 214
Priority versus FIFO Scheduling 215

Controlling the Life of a Thread 216
The start() Method 216
The run() Method 217
The sleep() Method 218
The suspend() Method 218
The resume() Method 218
The yield() Method 219
The stop() Method 219
The destroy() Method 220

Multiple Objects Interacting
with One Source 220
Synchronizing Revisited 220

Wait() a Second... Notify() Me When... 222
Grouping Your Threads 223

Chapter 9 The Java AWT 225
Introducing the AWT 227

Introducing the Layout Manager 228
What About Menus? 229

The AWT Hierarchy 229

x Contents

The Component Class 231
Key Component Class Methods 231

The Frame Class 235
Hierarchy for Frame 235
Declaration for Frame 235
Methods for the Frame Class 237

The Panel Class 238
Hierarchy for Panel 240
Declaration for Panel 240
Methods for Panel 241

The Label Class 241
Hierarchy for Label 241
Declaration for Label 241
Methods for Label 242

Button Class 243
Hierarchy for Button 243
Declaration for Button 243
Methods for Button 244

The Canvas Class 244
Hierarchy for Canvas 244
Declaration for Canvas 245
Methods for Canvas 245

The Checkbox Class 245
Hierarchy for Checkbox 246
Methods for Checkbox 247

The Choice Class 247
Hierarchy for Choice 248
Declaration for Choice 248
Methods for Choice 248

The List Class 250
Hierarchy for List 250
Declaration for List 251
Methods for List 251

TextField and TextArea Classes 253
Hierarchy for TextField and TextArea 254
Declaration for TextField and TextArea 254
Methods for TextField and TextArea 255

The Scrollbar Class 258
Hierarchy for Scrollbar 260

Contents xi

Declaration for Scrollbar 260
Methods for Scrollbar 260

Building Menus 261
The MenuBar Class 262

Hierarchy for MenuBar 262
Declaration for MenuBar 262
Methods for MenuBar 262

The Menu Class 263
Hierarchy for Menu 263
Declaration for Menu 264
Methods for Menu 264

The MenuItem Class 265
Hierarchy for MenuItem 266
Declaration for MenuItem 266
Methods for MenuItem 267

Creating a Sample Menu Application 268
Working with the Layout Manager 270
The FlowLayout Class 271

Declaration for FlowLayout 271
Methods for FlowLayout 273

The BorderLayout Class 274
Declaration for BorderLayout 275
Methods for BorderLayout 275

The GridLayout Class 276
Declaration for GridLayout 277
Methods for GridLayout 277

The GridBagLayout Class 278
Declaration for GridBagLayout 281
Methods for GridBagLayout 281

The CardLayout Class 282
Declaration for CardLayout 282
Methods for CardLayout 282

Chapter 10 Java Applet
Programming Techniques 285

Applet Basics 287
Hiererachy of the Applet Class 288

xii Contents

Applet Drawbacks 291
Let’s Play 293

Interacting with the Browser 294
Changing the Status Bar 296
Playing Sounds 297
Displaying Images 298

Chapter 11 Event Handling 301
Introducing Events 303

Event Types 304

The Event Class 304
Mouse Events 307
Keyboard Events 311
Hierarchy of Events 313
Processing System Events 315

Chapter 12 Streams and
File I/O 319

Introducing the System Class 321
Different Flavors of Streams 323

InputStream and OutputStream Classes 324
BufferedInputStream and

BufferedOutputStream Classes 326
ByteArrayInputStream and ByteArrayOutputStream Classes 328
DataInputStream and DataOutputStream Classes 330
FileInputStream and FileOutputStream Classes 333
FilterInputStream and

FilterOutputStream Classes 335
LineNumberInputStream Class 337
PipedInputStream and

PipedOutputStream Classes 339
PrintStream Class 340
PushbackInputStream Class 342

SequenceInputStream Class 342
StringBufferInputStream Class 343

Contents xiii

Chapter 13 Networking with
Java 345

Understanding the Basics of Networking 347
TCP/IP 348
SMTP 348
FTP 349
HTTP 349
NNTP 349
Finger 349
WhoIs 349
The Client/Server Model 350
Ports of Interest 350

Introducing the java.net Package 352
Networking Applications 353

Working with Internet Addressing 353

The Role of the Client 355
Creating a Socket 355
Using Sockets 355
Creating a Sample Client Application 356

Bring on the Server 360
Creating a Sample Server Application 361

Web Content Only Please 364
Using the URLConnection Class 366

Networking between Applets 367
Passing Information to a Fellow Applet 367

Appendix A Online Java
Resources 375

Appendix B Java Database
Connectivity (JDBC) 387

Index 403

Foreword
The Crazy Years Are
Here Again
By Jeff Duntemann

As a brand new magazine editor at the end of 1984, I surveyed the IBM PC field
and commented under my breath, “These are the Crazy Years.” The IBM PC
world had begun exploding in 1983; PC Magazine hit 800 pages; new compa-
nies were forming every minute and spending huge amounts of money launch-
ing new products into an astonishingly hungry and immature market. The
machines of the time were almost unimaginably underpowered. 5Mhz. 8 bits.
256K of RAM. Only rich people had hard drives. And yet everyone spoke of
their miserable little IBM PCs as though they could do the work of mainframes—
we just hadn’t yet figured out quite how.

History doesn’t repeat itself—but it echoes, it echoes. Here we sit, eleven years
later, I’m still a magazine editor (though not nearly as new) and the Crazy Years
are back again. This time, plug the Internet into the place the IBM PC occupied
in 1984. Our PCs really are mainframes now; those 166 Mhz Pentiums that we
take for granted can handle anything we throw at them. What we’re enraptured
with today is the ability to connect to a server and bounce around the world like
manic pinballs, grabbing a Web page here, a shareware file there, a picture of
Cindy Crawford somewhere else. New Internet magazines are appearing weekly,
enormous sums of money are being spent and earned on Internet technology
companies, and Internet books have crowded almost everything else off of the
computer book shelves at the superstores. The Internet will become the OS of
the future. Applications will be fragmented and distributed around the world; a
piece in Britain, a piece in Finland; a piece in Rio. Faithful agent software will
wander around the globe, sniffing out what we want and paying for it with
digital cash. Our Internet boxes will be our phones, our faxes, our stereos, our
game platforms, and our personal bank machines.

xv

xvi Foreword

Yikes! Aren’t we getting maybe just a little bit ahead of ourselves?

Sure. But admitting we’re ahead of ourselves doesn’t mean that we won’t catch up.

And that’s why things are so crazy. Somewhere south of our conscious minds
we understand that this is the way the world is going, even if the results in the
here and now fall just a touch short of spectacular. We’re making this up as we
go along—there’s no established body of technical knowledge to fall back on—
so everything’s being tried, and everything’s being trumpeted as the ultimate
Magic Bullet.

The trick, of course, is to get behind the right bullet. (Which is always better
than being in front of it...) The game is far from over (especially with that Big
Rich Guy still knocking around in the upper left corner of the country, making
trouble) but if you want my penny and a half, the bullet to get behind for the
Internet game is Java.

You can look at Java in a number of different ways, from C++ with all the barbed
wire stripped out of it, to the ultimate global cross-platform integration script-
ing language. That’s a strong element of its success: Good magic bullets are
never too specific, or the Atari personal computers (which were muscular game
boxes) would have knocked the underpowered but protean IBM PC right out of
the ring. Again, there is that never-quite-fully-expressed feeling that Java was
created with exactly the right balance of power and specificity, and that it can
rise to whatever challenges we might put in front of it, given time for us to pry
the devil out of the details and toss him in the junk drawer.

No, there isn’t enough bandwidth on the Internet to do all we want to do. This
year.

No, the majority of people do not have fast, always-there connections to the
Internet. This year.

No, there is no clean, standard, and acceptably secure way for people to pay for
electronic deliverables over the Internet. This year.

Care to place bets on next year? Or (for higher stakes yet) the year after that?

I didn’t think so.

Whatever you do, avoid the Clifford Stoll Trap. Stoll, one of the original archi-
tects of the Internet, wrote an entire book about how the Internet was a major

Foreword xvii

shuck, that it was ruining all our lives, that he was giving it up forever, and don’t
expect him to come back and rescue us from ourselves, farewell, good bye for-
ever, I’m leaving and I’m serious, don’t try to stop me, and on and on and on.

We waved good-bye. Now he’s gone. And not only is he not especially missed, I
doubt that one person in a hundred even remembers who he was. That’s how
our business works. If you stand back and let the train go by, you will not be
missed, and the train generally passes through your station only once.

That’s why I encourage you to stick with this stuff, no matter how crazy it gets. As
best we can tell right now, Java is the brand of pipe that we’ll be using to plumb
global communications software for the foreseeable future. No, we don’t have the
whole foundation poured, and no, we don’t have a stack of plans to go by. Still,
without the pipes in place, it won’t work. You have to develop the skills you’ll need
to do the work next year and the year after. What better time than now?

You’ve got the book in hand to take you through the Java language and make it
stick. So do it!

Or heads will bounce.

Chapter 1
Introducing
Java

3

1Introducing
Java
Java has swept the computer industry with
its promise to deliver executable content to
the vast sea of computers connected to the
World Wide Web. Here’s a look at why
you’ll want to start developing with this
language as soon as you can.

In just a few months, Java has moved from the R&D labs at Sun Microsystems
to the center stage of the World Wide Web. Never before had a simple program-
ming language garnered so much attention and captured the imaginations of so
many software developers and computer users alike so quickly. Some cynics think
that the best part about Java is its name, which is also the reason they think Java
gets so much attention in the press. But most experts who follow Web develop-
ment think that Java is the most significant thing that has been developed or
announced for the Web.

Why has Java taken over so quickly? The short answer is found in its platform
independence and potential to turn the Web into a much more dynamic and
interactive environment—something that is badly needed. Other reasons are
because of Java’s similarity to C++ and its support of popular object-oriented
programming techniques, making it easier for hundreds of thousands of C and
C++ programmers to quickly master Java’s powerful features.

Our goal in this chapter is to set the stage for Java, exploring where this language
has come from and where it is going. We’ll introduce the key features of Java,
give you some insight into why Java was developed in the first place, and exam-
ine some of the key similarities between Java and C++. We think it is important
to spend as much time as possible looking at Java through the lenses of a C++
programmer because the syntax and object-oriented features are very similar.

4 Chapter 1

The World of Java
“Java may be overhyped, but it also may be as significant to the computer world
as television was to broadcasting.”
—U.S. News and World Report

In the old days of computer languages (less than six months ago), programs were
designed to run under a single operating system, more or less, and the name of
the game was to create programs that could run as fast as possible. Almost over-
night, the World Wide Web and Java have changed this notion of operating
system-based language environments to platform independent network-driven
languages and systems. Java represents the sea change of distributed program-
ming and application development that is taking place in the computer industry
today. Languages like Java are radically shifting the computing burden from
local desktop computers to servers that deliver executable content to users.

Programmers have accepted Java very quickly because it provides everything
that is needed in a modern day language including:

• Object-Oriented Features

• Multithreading

• Garbage Collection (Automatic Memory Management)

• Networking and Security Features

• Platform Independence (Architecture Neutral)

• Internet/Web Development Features

(If you are unfamiliar with some of this terminology, make sure you read the
Java Jargon Survival Guide included in this chapter.) Popular languages like
Smalltalk and C++ have been moving programmers away from top-down struc-
tured programming methods and into the more flexible and adaptable object-
oriented paradigm for years. Java greatly contributes to this evolution and even
enhances some of the shortcomings found in object-oriented languages like C++.

What is most remarkable about Java is that it is the first language that allows
developers to create robust cross-platform networked software for the Internet.
Once you start using Java, you can throw away the notion that all software must
first be developed on a specific platform to be run on the same platform and
then ported if it needs to run on other systems.

Introducing Java 5

If you have seen Java in action by using your Web browser to view Web pages
that contain Java applets, you already know some of the types of programs you
can write. But Java applets are only half of the story. The Java language can be
used to write both applets and standalone applications. Applets are incorporated
into Web pages using a special <APPLET> HTML tag and they are downloaded
and launched automatically when their pages are displayed by a Java-enabled
Web browser. This process is similar to the way in which a Web browser might
process and display other elements such as images and hyperlinked text. The big
difference with an applet is that the browser processes dynamic executable content
instead of static data.

A Java application, on the other hand, looks suspiciously like a C++ program. It
can run on its own and perform a myriad of tasks from performing calculations
to specialized file I/O operations. The only problem with writing Java applica-
tions at the moment is that Java is an interpreted language, and thus programs
written in Java require the Java Virtual Machine in order to execute. Fortu-
nately, work is underway to develop compilers that enable Java applications to
run quicker and more independently.

Java Jargon Survival Guide

Architecture-Natural This is a term language designers
use to describe languages like Java that are truly portable across
different operating systems. Programs written in architecture-
natural languages typically run under bytecode interpreters that
are capable of running on any type of computer.

Bytecodes The entire language design of Java is based on
the notion of bytecode interpreters, which can efficiently run
(“interpret”) programs at runtime and perform operations like
error handling and memory management. To create and use
bytecodes, a compiler must first translate a program into a se-
ries of codes which are then executed by an interpreter which
converts the general bytecode instructions into local actions.

Classes Java utilizes the basic object technology found in
C++, which in turn was heavily influenced by Smalltalk. Object-
oriented features are implemented in these languages using basic
building blocks called classes. Essentially, a class is a structure

6 Chapter 1

that allows you to combine data and the code that must operate
on the data under one roof. Once classes have been defined,
they can easily be used to derive other classes.

Distributed Programming This emerging field of software
development involves the techniques of writing programs that
can be executed across networks like the Internet. In traditional
programming, applications run on a single computer and only
data is distributed across networks. In distributed programming,
programs can be downloaded from networks and executed at
the same time. As you might guess, this approach opens the
door wide for ways in much software can be shared and distrib-
uted.

Garbage Collection This is the memory management tech-
nique that Java programs use to handle dynamic memory allo-
cation. In traditional compiled languages like C and C++,
memory for dynamic variables and objects (pointers), must be
allocated and deallocated manually by the programmer. In Java,
memory allocation is handled by the Java runtime environment,
thus eliminating the need for explicit memory allocation and
pointers. Garbage collection is one key feature that many pro-
grammers claim make “Java a better and safer C++.”

HotJava This is Sun’s Web browser written in the Java lan-
guage. It contains the Java Virtual Machine and can download
and play any Java applet. Originally, HotJava was the rage on
the Web but since Netscape has licensed and incorporated the
Java Virtual Machine into Netscape Navigator, most Web users
have forgotten about HotJava.

Java Applet These are small programs written in Java that
can execute remotely over networks. They are downloaded from
the Web via a Java-enabled Web browser and then they are
executed from within the shell of the browser. An applet can be
anything from animations to search engines to games. In the
short time that Java has been available, hundreds of applets
have appeared on the Web written by programmers from all
around the world.

Java Virtual Machine This is the code that serves as the
engine or interpreter for Java programs. Any application that is
capable of running Java programs requires the use of the Java

Introducing Java 7

Virtual Machine (VM). The process for running a Java applet
involves compiling the applet into a sequence of bytecodes which
are then interpreted by the Java VM at runtime. Sun has aggres-
sively licensed the Java VM to many companies, such as
Netscape, Oracle, and Borland, to help expand the developer
base for Java.

Java-Enabled A term used to indicate if Internet applica-
tions like Web browsers are capable of running Java applica-
tions, in particular, Java applets.

JavaScript This is an object-oriented scripting language de-
veloped by both Sun and Netscape. The language was designed
to be used as a scripting language to customize Netscape brows-
ers and control Java applets running under Netscape. Origi-
nally, Netscape called their scripting language “LiveScript” but
the name was changed to JavaScript. Rumor has it that Netscape’s
stock rose $20 per share in one day after announcing the name
change. You can think of JavaScript as the “glue” between Java
applets and Netscape browser features such as plug-ins, HTML,
and special events.

Just-in-Time Compiler This is new compiler technology that
is being developed for Java so that Java applications can be
custom compiled for a particular platform as they are down-
loaded from networks.

Methods These are the functions (operations) that are included
in Java classes to operate on data.

Multithreading To allow Java applications and applets to
run efficiently even tough they must be executed by a Java inter-
preter, Java supports a technique called multithreading that al-
lows different processes to execute at the same time.

The Java Development Platform
As we’ve mentioned, a Java-enabled browser such as HotJava or Netscape 2 is
needed in order to run Java applets. You can also use the appletviewer utility
which is provided with Sun’s Java Development Kit (JDK). For any Java pro-
gramming that you wish to do, you’ll need the JDK because it provides the
compiler for compiling Java applets and applications (javac), an interpreter for

8 Chapter 1

running standalone Java applications (java), and a debugger (jdbg). But don’t be
surprised to find that each of these development tools are somewhat primitive
and must be run from the command line. In the near future, we should have
much better Java visual development tools. If you don’t currently have the JDK,
you can visit Sun’s Java Web site to download a copy (http://www.javasoft.com/).
The syntax and command options for using the tools in the JDK are presented
with the Java Programming Language reference card included at the end of this
book.

 All of the tools included in the JDK are designed to support Sun’s notion of
what the Java language is all about including:

• A compiler for the Java language that generates architecture-neutral bytecodes

• The Java Virtual Machine that interprets bytecodes at runtime.

• A set of class libraries to help Java programmers create applications. Some of
these libraries include interface tools, I/O, applet development, networking,
and so on.

• A Java runtime environment that supports bytecode verification,
multithreading, and garbage collection

• Java development support tools including a debugger, documentation gen-
erator, and so on.

The Roots of Java
“Java has become perhaps the first programming language to move the stock
market.”
—Application Development Trends

Whether or not you believe all the hype surrounding Java, no one will deny that
Java is going places. Already numerous major software and hardware companies
have licensed Java, including Netscape, IBM (Lotus), Borland, Adobe, Fujitsu,
Mitsubishi, Symantec, Spyglass, Macromedia, and even Microsoft. But before
we look at the key elements of Java and where it is going, let’s explore its roots to
give you some perspective. Like many great technological creations, Java’s devel-
opment progressed with a number of twists and turns in the road.

The origins of Java began in April 1991 with a small development team at Sun
headed by James Gosling. Gosling had developed quite a reputation in the past
as a legendary Unix programmer for creating the first C version of a popular

Introducing Java 9

Unix editor named Emacs. He also developed the innovative Postscript-based
windowing environment for Sun OS called NEWS. In the early days, Gosling’s
team operated as an independent unit from Sun. They went by the name “the
Green group” and Sun eventually set this group up as a separate company called
First Person. (Don’t you wish you owned stock in this company?) Their initial
charter was to develop software that could be sold to consumer electronics com-
panies. Sun felt that many consumer-driven technologies, such as PDAs, set-top
boxes, and so on, were up and coming technologies worth pursuing to enhance
their base of software sales.

Soon after the Green group set up shop, they discovered that the success of
creating widely-distributed software for consumer products would only come if
a platform-independent development environment were created. They began
work in this area by trying to extend existing C++ development tools and com-
pilers but this turned out to be a dead end of sorts because of the complexity of
C++. C and C++ have always been promoted as highly portable languages, but
when it comes right down to it, trying to create general purpose, portable, and
robust code in these languages is not so easy.

When you run into a wall in software development, the best thing to do is develop
a language that provides the solutions you need. And that’s exactly what Gosling
and the Green group did. Their new language was originally called Oak—named
after a tree outside Gosling’s office. Because Oak could not be trademarked by
Sun, a new name emerged—Java—after a brainstorming session or two.

The overriding goal of Java’s developers was simple but ambitious: Design a pro-
gramming language that can run on anything connected to a network. This would
include Sun workstations, PCs, Macs, PDAs, and even television sets and toasters.
To meet these goals, they borrowed heavily from existing languages such as C++,
Objective-C, Smalltalk, Eiffel, and Cedar-Mesa. Java’s developers also wanted to
make sure their language achieved an entirely new level of robustness, not found
in languages like C++ because of all the dangerous features like pointers, operator
overloading, and dynamic memory allocation. One writer in a popular computer
developer’s journal summed this goal up nicely when he wrote that Java’s develop-
ers wanted to “get rid of all the complicated, dangerous, and/or stupid crud in
C++.” The end result is that you won’t find features like the following in Java:

• Header files

• #defines

10 Chapter 1

• typedefs or structs

• Pointer arithmetic

• Multiple inheritance of classes

• General functions (Only methods are supported)

On May 23, 1995, Sun introduced the Java language and its corresponding
browser HotJava. The language and its associated development tools only took
about four years to create, but as the Green group proved, four years was ample
time to create a new standard for the rest of the world to follow. Soon after the
announcement of Java, alpha versions of the language started appearing across
the World Wide Web. Another noteworthy date to mark on your calendar is
December 7, 1995—the date Microsoft agreed to license Java, an endorsement
that has helped to accelerate Java’s popularity. (If you owned any of Sun’s stock,
you probably noticed that their stock increased by $336 million on that day!)

The Power of Distributed Software
“I have seen the future of the World Wide Web, and it is executable content.”
—Ray Valdes, Dr Dobb’s Developer Update

Before Java was unleashed on the world, most Web development and interactivity
was accomplished using Common Gateway Interface (CGI) scripting. For the
past year, the key scripting contender has been Perl. The processing model for
CGI is completely client-server based. For example, a user on a client computer
running a software program like Netscape fills out a form on a Web page and the
data is sent to a server. Then, the server reads and processes the data and sends a
response back to the client. The disadvantage of this approach is that the client
operates almost like a dumb terminal; most of the key processing tasks are per-
formed by a central computer—the server. And if the server is busy (which
happens a lot in the Web world), the client must wait and wait and wait.

In the world of distributed software, networks are used to send executable code,
often called executable content, to client computers which are capable of running
the software locally. For many software developers and users, this is a dream
come true. In fact over the past year, many leading software development com-
panies have been trying to create standards for delivering executable content.
Some of the more noteworthy attempts include Macromedia’s Shockwave,
NEXT’s WebObjects, and Microsoft’s new ActiveX controls.

Introducing Java 11

The visual benefits of running distributed software like Java applets are only the
tip of the iceberg. Of course, it is impressive to see a well-designed animated applet
dance across a Web page as its code is being downloaded across a network and
executed locally, but Java programmers are already looking forward to the day in
the not so distant future when they can develop major applications that can run
across networks. This dynamic flexibility will open up new possibilities for both
updatable entertainment and business-related software. And the best part is that
programmers will no longer have to write applications that they have to port to
multiple platforms. The same program written in Java can run on any type of
computer that can connect to a network and run the Java Virtual Machine.

But the best part is that you can use Java today in its current form and take
advantage of some of the key benefits the distributed software paradigm has
over the CGI client-server approach:

Develop Interactive Web Interfaces With Java you can create much more in-
teractive interfaces to the Web than you can with CGI languages like Perl. Applets
that you customize for Web pages can allow users to move objects on the screen,
view animations, and control multimedia features, such as sound and music.

Utilize Local Resources With the CGI model, a server is limited to processing
the data it has on hand. With Java, on the other hand, you can write applica-
tions that truly take advantage of resources available on a user’s local system. For
example, a Java program might use local hardware features in a way that a CGI
program never could. The Java approach allows the local computer to take full
control over how and where code is executed.

Greater Internet/Web Access One of the biggest problems with the Internet
and the Web is that content is scattered all over the place in a somewhat chaotic
fashion. Using Java, you can write better front-ends to the Web, such as agents
and search engines, to better access the Web.

Reduce the Cost of Distributing Software The software industry has rapidly
turned into a “hits” based business, which means that computer software outlets
typically only carry the major blockbuster products. One of the reasons this has
occurred is that the cost and risks of selling and distributing software have greatly
increased over the past five years. With distributed software, users can purchase
and download the software they need instead of having to order from a direct
mail catalog or buying it in a store. This approach of getting software from a
publisher or developer to a user also is ideal for updating software. If you need a
new version of your favorite tax program to get your taxes done by April 15, you
can simply point to the right place on the Web and quickly access the software

12 Chapter 1

you need.

The Challenges of Security
Along with the promises and opportunities of distributed software, come the
risks of security. Think about it. The programs you run on your desktop com-
puter are ones that you’ve decided to buy or download. Once you install them,
you can check them for viruses and remove them if they cause problems on your
system. Distributed programs such as Java applets, on the other hand, reside on
someone else’s computer. When you run them you are essentially downloading
executable code from another computer, of which you have no control over.

Fortunately, the underlying philosophy behind Java’s design is security. Bytecodes
that are downloaded from a network are passed to a bytecode verifier which attempts
to weed out bad code that could damage a local computer. Because Java has no
pointers or programmer-driven memory allocation routines, Java code is less likely
to go off track and crash a local computer due to illegal memory access operations.
The absence of pointers also keeps troublesome hackers from writing code that ac-
cesses a local computer’s system memory to get unauthorized privileges.

By design, the Java Virtual Machine assumes that code downloaded from a net-
work should be trusted less than code that is resident on a local computer. To
enhance security, Java provides built-in classes that check for security related
conflicts. As a final measure, Java allows its user layer of security to be configurable.
For example, a user can specify exactly which directories applets can read from
and write to. Applets can also be limited to accessing sockets on other machines.

Java and C++
If you haven’t noticed already, Java is very similar to C++. If you are an accom-
plished C++ programmer, moving to Java will be easy for you. However, there
are a few important things you should know that we will present in this chapter.
If you are new to both C++ and Java, you may have a little more catching up to
do to understand the object-oriented nature of the Java language.

Object-Oriented Quick Tour
Let’s start by looking at some key object-oriented programming issues. First of
all, C++ is not a “true” object-oriented (OO) language but Java is much closer.
Why? Because everything in Java is a class and all method calls are done via a

Introducing Java 13

method invocation of a Java class object. In C++ you can use stand-alone func-
tions, header files, global variables, and so on. This is an extremely important
point, so don’t gloss over it. The only thing in Java not placed in a class is inter-
faces, although they are used like classes but without implementations.

This strict OO nature means that you won’t be able to port C++ code as easily.
You will need to change the basic structure of your C++ applications, although
you should be able to keep the logic as long as you are not using any of the
features that have been removed.

What’s Missing?
As we’ve mentioned, one of big goals for the developers of Java was to look at all
the other programming languages and pull the best features of each and dump the
rest. Since C/C++ has such a large installed base of programmers, it is obvious why
they chose to mimic so much of its syntax and structure. There are, however,
several features that C++ has that Java does not implement. Many of these subtrac-
tions were made for security reasons, since Java was designed as a Web language.
Other features were left out because the Java creators thought they were to difficult
to use or just plain useless. Let’s look at some of the important subtractions.

Gone: Pointers
Pointer arithmetic is the bane of everyone who hates C++. For the few program-
mers who have mastered pointers, we salute you. For the rest of us, good riddance.
The major reason pointers are not used with Java is security. If a Java applet had
the ability to access memory directly, it could easily cause some real problems. By
forcing the Java interpreter to handle memory allocation and garbage collection, it
relieves you of a big burden and lessens the chance that anyone can do bad things
to your computer through a Java program.

There are a few areas where pointers seem necessary for performing certain op-
erations. But since we don’t have them in Java, we need to find a way around
them. In Java, objects are passed as arguments directly instead of passing a pointer
to an object’s memory space. You must also use indices to manipulate arrays
rather than accessing the values directly.

Gone: Header Files
To C++ users, header files are a mainstay of programming life. However, if you
look closely at how most programmers use header files, you’ll find that the big-

14 Chapter 1

gest use is for prototyping and documentation. To examine the interface to a
certain member function, you can read a header file and find the function. By
just looking at the header files from a C++ class, you can figure out a lot about
what that class does—without ever seeing any of the implementation.

In Java there is no way to do this since the implementation for classes and meth-
ods must reside in the same place. The implementation always follows the dec-
laration in Java. Of course, you can add all the comments you want to aid in
understanding your code, but your code may run on for pages and pages. It is
not always easy to look at a Java class and understand how it can be used.

So, why doesn’t Java use header files? There are two reasons. First, it is not pos-
sible to use a library that declares a method but does not implement it. Second,
it is more difficult to program using files that are out of synchronization with
the implementation.

Gone: Multiple Inheritance
Very often in object-oriented programming, an object needs to inherit the func-
tionality of more than one class. In C++ this is accomplished using multiple
inheritance, a technique allowing a single class to subclass as many classes as it
needs. Multiple inheritance can get extremely complicated and is one of the
leading causes of C++ bugs (and programmer suicide). Java’s answer to multiple
inheritance is interfaces. Interfaces are the only item in Java that are not a class.
They are simply templates for a class to follow. They list method declarations
with no implementation (no guts). Any class that implements an interface must
use the methods declared in the interface.

Interfaces work well, but they do have some limitations. The big drawback is
that you must write the code for each method that an interface declares. Mul-
tiple inheritance in C++ allows you to override the methods that you chose and
then you can just use the parent’s implementation of the methods for the others.

Interfaces are much easier to understand and master than multiple inheritance.
Check Chapter 6 for an in-depth look at interfaces. With the right program-
ming strategy, you can get almost all of the functionality of multiple inherit-
ance. And hopefully, you won’t have all the problems.

What’s New?
Since Java is supposed to be the next step in the evolution of programming
languages you would expect some advancements. Most of the new features focus

Introducing Java 15

on security and making programming easier.

Garbage Collection
When you finish using a resource in a C++ program, you must explicitly tell the
computer when to release the memory it was using. This is accomplished with
pointers. Since Java does not use pointers for security reasons, it needs a way to
clean up resources when they are not needed any more. That’s where garbage
collection comes in.

Garbage collection is a threaded run-time environment that keeps track of all
the parts of your program and automatically de-allocates the memory used when
the memory is no longer needed. For example, when you declare a variable,
memory is allocated to store its value. The garbage collection engine looks at
what scope of the program is seen by this variable. When the program leaves
that scope, the memory is cleared.

Lets look at a specific example. Here is a simple for loop:

for (int x; x < 10; ++x) System.out.println(x);

The integer we are using to count to ten is actually declared within the declara-
tion of the loop. As soon as the expression is met and the loop ends, the x
variable’s memory space is cleared and put back into the shared memory pool.
This same idea works at all levels of the Java environment.

Security
Security was an issue that the creators of C++ did not have to deal with—they
left that up to individual programmers. However, since Java is designed to be a
distributed programming language, security is a prime concern. Java includes
many features that aid in preventing security problems. The omission of point-
ers is a key issue that reduces security risks. The functionality you lose is made
up for in the robustness of your applications and applets. Now, it’s just up to
browser creators to develop programs that can’t be hacked!

Exceptions
Exceptions are not really new—they were used in C++. However, using them was
difficult at best. In Java, exceptions are used heavily. Exceptions are error condi-
tions that are not expected during the course of a standard program run. Situa-

16 Chapter 1

tions like missing files will result in exceptions in Java.

In Java, exceptions are actually part of the language; they have their own classes,
interfaces, and so on. In C++, exceptions were more of an add-on that was never
fully implemented. Look at Chapter 7 for a detailed look at exceptions.

Strings versus Character Arrays
In C++, strings are simply arrays of characters. In Java, strings can be handled as
strings. They are not officially a primitive type but are in fact a class which is
instanced as an object whenever you use strings. So, whenever you handle strings,
you are actually handling a String object that has its own methods. Instead of
calling methods that act upon your string (C++), you are actually calling meth-
ods of your string object that act upon itself.

If you choose to, you could still use an array of chars to act like a string, but you
would lose much of the easy functionality built in to the String class.

The Super Class
If you have used C++ much, you are familiar with the this keyword that is used to
reference the current object. Java implements the this operator to, but also adds the
super operator, which tells Java to find the class that our current class extended. You
can use super to make explicit calls to the superclass of the current class.

New Modifiers
In C++, modifiers are used quite heavily. Java takes many of the C++ modifiers
and adds new ones. Most of the new modifiers are needed to help support secu-
rity issues. Table 1.1 provides a list of the new modifiers:
Table 1.1 Some of the New Java Modifiers

Modifier Descriptions

abstract Used to define classes and methods that must be subclassed or overridden to be useful.

synchronized Tells Java that a method can only be called by one object at a time.

native Used to create calls to languages like C.

final Tells Java that a class cannot be subclassed.

Introducing Java 17

The instanceof Operator
The instanceof operator is an extremely handy operator to use when you are
dealing with objects and you are not sure of their type. You will probably find
yourself using this operator most often in conjunction with the Abstract Win-
dows Toolkit (AWT).

Helper Programs
The Java Developer’s Kit (JDK) ships with two helpful programs: javadoc and
javap. javadoc is an automatic documentation program that creates HTML files
automatically to list your classes methods, interfaces, variables, and so on. We
discuss this program in greater detail in Chapter 3 so we won’t repeat it here.
The entire API documentation that shipped with the 1.0 JDK was created using
this program. Javadoc can only be used with source files.

Another useful utility is javap, a disassembler program that prints class signa-
tures. javap is used with the compiled class files. When javap is run, it outputs a
simple listing of a classes public methods and variables. Here is an example:

 Compiled from /home/weisblat/C.java
 private class C extends java/lang/Object {
 static int a;
 static int b;
 public static void main(java/lang/String []);
 public C();
 static void ();
 }

As you can see, this program can be very useful when trying to figure out how to
use a class that has little documentation or that you do not have the source for.

Chapter2
Writing Your First
Java Applet

21

Writing Your
First Java
Applet
The best way to learn the elements of the
Java language is to dive in head first and
create a real-world applet.

2
Before we get into the down and dirty details behind the Java language, let’s
create a simple program that will introduce you to many of the basic concepts
of Java.

Once we decided to put a tutorial program at the beginning of this book, we tried
to find one that included many of the major programming elements that you will
encounter while coding your own programs. We had to decide if the program
would be an application or an applet. Applications and applets are very different
things. Creating one over the other is not as simple as changing a couple of lines of
code and recompiling. Java applications are free-standing programs; therefore, they
must create their own “space” to work within. Java applets, on the other hand, are
run from within another program, usually a Web browser. Applets have many
parts of their code already written for them and ready to go. For example, if you
wanted to display a graphic in a stand-alone Java application, you would first have
to create a window to run the program in, a frame, then the graphics you might
need. With an applet, most of that work is done for you. A simple call to a graphic
method can load an image into your applet’s space.

Does that mean that applets are better? Not necessarily, they are simply “differ-
ent.” Both applets and applications have their place in the programming world.
The one you use depends on your needs and the needs of the people who will
use your programs.

22 Chapter 2

We decided to use an applet as a tutorial mostly because of their emerging popu-
larity. Java applets are popping up on the Web faster than Trekies show up at a Star
Trek convention. The concepts and programming techniques we present as we
discuss our applet can be used in any program you create. We’ll start out by show-
ing you the code for the applet and then we’ll take it apart, piece-by-piece. As we
dissect it, you’ll begin to see how straightforward the Java language really is.

Introducing the TickerTape Applet
Our first applet is called TickerTape. It scrolls a custom message across the applet
space (like a ticker tape). You will be able to specify a couple of parameters,
including the text that is displayed and the speed at which the text moves across
the screen.

The best part about this applet is that it will introduce you to a number of Java
programming language features all at once, including:

• Comments

• Packages

• Classes

• Class Inheritance

• Variables

• Parameters

• Constructors

• Threads

• Overriding Methods

• Graphic Double-Buffering

• Basic Operators

• Interfaces

• Exceptions

And, here is the moment we’ve been waiting for—the applet itself:

// TickerTape Applet

import java.applet.*;
import java.awt.*;

Writing Your First Java Applet 23

// TickerTape Class
public class TickerTape extends Applet implements Runnable {
 // Declare Variables
 String inputText;
 String animSpeedString;
 Color color = new Color(255, 255, 255);
 int xpos;
 int fontLength;
 int fontHeight;
 int animSpeed;
 Font font;
 Thread ttapeThread = null;
 Image im;
 Graphics osGraphics;
 boolean suspended = false;

 // Initialize Applet
 public void init(){
 inputText = getParameter("TEXT");
 animSpeedString = getParameter("SPEED");
 animSpeed = Integer.parseInt(animSpeedString);
 im=createImage(size().width, size().height);
 osGraphics = im.getGraphics();
 xpos = size().width;
 fontHeight = 4 * size().height / 5;
 font = new Font("Helvetica", 1, fontHeight);
 }

 // Override Applet Class' paint method
 public void paint(Graphics g){
 paintText(osGraphics);
 g.drawImage(im, 0, 0, null);
 }

 // Draw background and text on buffer image
 public void paintText(Graphics g){
 g.setColor(Color.black);
 g.fillRect(0, 0, size().width, size().height);
 g.clipRect(0, 0, size().width, size().height);
 g.setFont(font);
 g.setColor(color);
 FontMetrics fmetrics = g.getFontMetrics();
 fontLength = fmetrics.stringWidth(inputText);
 fontHeight = fmetrics.getHeight();
 g.drawString(inputText, xpos, size().height - fontHeight / 4);
 }

24 Chapter 2

 // Start Applet as thread
 public void start(){
 if(ttapeThread == null){
 ttapeThread = new Thread(this);
 ttapeThread.start();
 }
 }

 // Animate coordinates for drawing text
 public void setcoord(){
 xpos = xpos - animSpeed;
 if(xpos <- fontLength){
 xpos = size().width;
 }
 }

 // Change coordinates and repaint
 public void run(){
 while(ttapeThread != null){
 try {Thread.sleep(50);} catch (InterruptedException e){}
 setcoord();
 repaint();
 }
 }

 // Re-paint when buffer is updated
 public void update(Graphics g) {
 paint(g);
 }

 // Handle mouse clicks
 public boolean handleEvent(Event evt) {
 if (evt.id == Event.MOUSE_DOWN) {
 if (suspended) {
 ttapeThread.resume();
 } else {
 ttapeThread.suspend();
 }
 suspended = !suspended;
 }
 return true;
 }

 // Stop thread then clean up before close
 public void stop(){
 if(ttapeThread != null)

Writing Your First Java Applet 25

 ttapeThread.stop();
 ttapeThread = null;
 }

} // End TickerTape

Before we discuss how the program works, why don’t you try it out and see how
it looks. You can type the code in for yourself and compile it or head up to the
Coriolis Group Web site at http://coriolis.com and download this applet as well as
all the other code examples listed in this book (look in the “What’s Free” sec-
tion). You can also view this entire chapter on-line by going into the Coriolis
books section on the site and searching for this book. There you can choose the
“sample chapter” option where you will see this chapter.

Running the Applet
Because our program is set up to be an applet, it cannot run on its own. It needs
the help of a Web browser. To run the program from your personal system,
you’ll need to follow these steps:

1. Use a text editor to type in the applet code. Save the file as TickerTape.java.

2. Compile the program. This will create the file TickerTape.class. To compile
the program, you’ll need access to the Java Developer’s Kit.

3. Move the file into the same directory where you store your HTML files.

4. Create an HTML (HyperText Markup Language) file or edit an existing
one, and add the following instructions:

<APPLET CODE=TickerTape.class WIDTH=600 HEIGHT=50>
<PARAM NAME=TEXT VALUE="The Java TickerTape Applet...">
<PARAM NAME=SPEED VALUE="4">
</APPLET>

Recall that HTML is the language used to create Web pages. Each statement
in the language specifies one specific formatting, file processing or hypertext
(linking) operation, such as loading and displaying a graphic image, defin-
ing a hypertext link, displaying a word or sentence in bold, or loading and
playing a Java applet. (We’ll look at the HTML instructions for playing our
applet in much more detail in a moment.) If you are creating a new HTML
file, you might want to name it TTAPE.HTML.

26 Chapter 2

5. Start a Web browser like Netscape 2 that is capable of running Java applets.
Then, load in the HTML file you just created. Keep in mind that not all
Web browsers can run Java applets. If nothing happens after you load in
the HTML file, first check to make sure that you entered the HTML
instructions carefully. Then, check to make sure that you are using a Java-
playable browser.

After you open the HTML file that includes the required instructions, you should
see a screen similar to one shown in Figure 2.1. Once you get the applet to run,
you can experiment with it by changing the text and speed parameters. Just
replace the strings listed after each VALUE statement. For example, if you changed
the third HTML statement to be:

<PARAM NAME=TEXT VALUE="Buy stock in Java">

You would see the string “Buy stock in Java” scrolled across the screen. For the
SPEED parameter, lower numbers produce slower but smoother animation and
higher numbers create faster but sometimes jerky animation.

Even if you have created Web pages using HTML instructions, you might be
unfamiliar with the Java applet-specific HTML tags. (If you need to brush up
on the general techniques of creating Web pages with HTML, we suggest you
get a copy of a good tutorial book such as The Coriolis Group’s Netscape and

Figure 2.1
The TickerTape applet in action.

Writing Your First Java Applet 27

HTML Explorer.) The <APPLET> ... </APPLET> tag pair tells a Java-enabled
Web browser, such as Netscape 2, that a specified applet should be loaded and
played. Notice that in our example, one HTML line does this work for us:

<APPLET CODE=TickerTape.class WIDTH=600 HEIGHT=50>

The CODE parameter specifies the name of the applet—in this case it is the
name of our file, TickerTape.class. If you used a different filename, you would
need to change this instruction. The WIDTH and HEIGHT parameters specify
the width and height of the window or “space” that will be used to play the
applet. The dimensions are specified in units of screen pixels. Since our applet
needs to simulate a ticker tape-like device, we’ve defined it to be very wide but
short. The other HTML instructions, <PARAM>, are used to specify the pa-
rameters for our applet:

<PARAM NAME=TEXT VALUE="The Java TickerTape Applet...">
<PARAM NAME=SPEED VALUE="4">

Notice that each parameter has a name and a value. The name must correspond
with the name of the parameter used in the Java applet. The VALUE clause
handles the work of assigning the parameter a default value. Later in this chapter
we’ll show you how parameters are processed using special Java functions. If you
change the values for either of these parameters and reload the HTML file,
you’ll see the effect of the changes immediately.

Where’s the Main Program?
After taking a quick look at our applet, the first question you might have is
where the heck is the main program? That is, which code is executed first? If you
have experience programming with a language like C/C++ or Pascal, you’re prob-
ably looking for a program entry point like this:

main() // The starting point for a C++ program
{
 inputText = getParameter("TEXT");
 animSpeedString = getParameter("SPEED");
 animSpeed = Integer.parseInt(animSpeedString);
 im=createImage(size().width, size().height);
 ...
 }

28 Chapter 2

Don’t look too hard because you won’t find such a “main function” in a Java
applet. Instead, Java applets really are designed to run “inside” another applica-
tion—in our case the Netscape browser. You can think of an applet as if it were
a plug-in or component. This means that the routines and methods in a Java
applet are executed by the controlling program (the browser). Let’s step through
our applet to better understand how this process works.

The TickerTape applet contains a number of functions, which are actually called
methods in Java. (This terminology is borrowed directly from C++.) Take a
moment to look over the applet and you’ll find methods like init(), paintText(),
start(), run(), stop(), and so on. Some of these are standard Java applet methods
(they have names and perform operations that are pre-defined); and others are
user-defined (we made them up). When the applet runs, the browser running
the applet knows which methods are used and in which order to call them.
Figure 2.2 shows the order of how the methods are called. Notice, first that the
browser calls the init() method. Each statement in init() executes until the method

Figure 2.2
How the methods are controlled in the Java applet.

getParameter()

ttapeThread.start();

Thread.sleep(50)

ttapeThread.resume()

ttapeThread.suspend()

ttapeThread.stop()

repaint()

setcoord()

paintText()

init()

start()

run()

paint()

stop()

handleEvent()

Applet
Methods

New Methods

Applet(TickerTape)

Overidden
Methods

Browser

Writing Your First Java Applet 29

finishes. If you look closely, you’ll see that init() doesn’t call any of the other
TickerTape class methods. What gives?

To understand what happens next, keep in mind that the browser is the control-
ling program—not the applet itself. After init() is called, the start() method is
then called by the Web browser. start() sets up TickerTape as a thread. You’ll
learn more about threads later on, but for now you can think of a thread as a
mechanism for handing off control. If the applet were not set up as a thread, it
would run inefficiently and the browser performance would suffer as well. Once
the TickerTape applet is set up as a thread, the browser will know what to do
when events occur such as the mouse button being clicked, a window being
moved, and so on.

After start() has done its job of setting up the thread, typically the run() method
would be called next by the browser. This methods acts as a loop that keeps the
program in motion—in other words, it drives the operations to make our text
move across the screen. Table 2.1 provides a summary of each of the key meth-
ods used in the TickerTape applet. The methods like paint(), which are standard
Java applet methods, can be redefined to perform different operations. For ex-

Table 2.1 Methods Used in the TickerTape Applet

Method Description

init() A standard Java applet method that is used to initialize variables and objects
defined for the TickerTape applet.

paint() A standard Java applet method that is called whenever a browser has recognized
that something has changed, such as a window being moved or resized, text
being drawn on a window, and so on.

paintText() A user defined method that refreshes text for the ticker tape in a buffer.

start() A standard Java applet method that turns the applet into a thread.

setcoord() A user defined method that is called by the run() method at every program cycle
to update the position of the text.

run() A standard Java applet method that serves as the heart of the program. Without
the run() method, the applet would not perform any actions.

update() A standard Java applet method that calls the paint() method to update the screen.

handleEvent() A standard Java applet method that process mouse activity.

stop() A standard Java applet method that stops the thread, which in turn terminates the
execution of the applet.

30 Chapter 2

ample, in our TickerTape applet we redefine paint() to process updates to the
screen in a more efficient way. We could add additional features (code) to this
method to handle other tasks such as adding a border around the ticker tape,
adding a frame counter, and so on.

Introducing Java Comments
Like any good programming language, Java allows you to include comments along
with your programming statements. You can see Java’s connection to C/C++ right
off, since it supports both the C and C++ comment styles. For example:

int i; /* This is a C-style comment */

int i; // This is a C++-style comment

Java also provides a new type of comment syntax that can be used to automati-
cally generate formatted documentation. This new syntax looks like this:

/** Documentation comment. Comments listed between these symbols will be
used to automatically create documentation. */

Back to our program, the first line of the code is actually just a comment that
tells us about the program:

// TickerTape Applet

Although Java allows us to use any or all of these styles within a single program,
we will only use the // notation in our TickerTape program. After all, we don’t
want to make things more complicated than they need to be.

What’s in a Package?
The next two lines of our applet are used to reference packages that contain
classes that contain the methods we wish to use. This may sound like a mouthful,
but the concepts involved are actually quite simple. Here’s the code in question:

import java.applet.*;
import java.awt.*;

Writing Your First Java Applet 31

Packages are used to group related classes for use in other programs. This is a
direct extension of the object-oriented techniques that languages like C++ pro-
vide for programmers.

There are several class packages that come with Java. Table 2.2 provides the
current set of them.

By default, every Java application imports the classes contained within the
java.lang package, so you do not have to manually import this package.

The Import Statement for C Users
Using the import statement to include packages is similar in
concept to using the include statement in C to include header
files.

If you look closely at our import statements in the TickerTape program, you’ll
notice that the * character is used. This character tells the Java byte-code com-
piler to use all the classes stored within the package. You could also specify which
classes to use; but since you usually need many classes within a single package, it
is easier to simply use the asterisk. Also, the Java compiler is smart enough to
figure out which classes are used and which ones aren’t so that using the asterisk
does not eat up any additional memory.

In our program we import the applet package because we are creating an applet.
We also need to import the awt package because we want to use its graphics

Table 2.2 Standard Java Classes

Java Class Description

java.lang Contains essential Java classes.

java.io Contains classes used to perform input/output to different sources.

java.util Contains utility classes for items such as tables and vectors.

java.net Contains classes that aid in connecting over networks. These can be used in
conjunction with java.io to read and write information to files over a network.

java.awt Contains classes that let you write platform-independent graphic applications. It
includes classes for creating buttons, panels, text boxes, and so on.

java.applet Contains classes that let you create Java applets that will run within Java-enabled browsers.

32 Chapter 2

capabilities. This package contains the classes we need so that we can display our
ticker tape-like graphics.

The AWT package was developed to aid in creating windowed applications and
applets. It does for Java what Visual C++ does for C. Instead of having to manu-
ally define graphical user elements like buttons, windows, and menus, and then
manually having to write code to handle mouse events, the AWT package takes
care of it for you.

The Mystery of the AWT Package

Now that you know a bit about the Java programming lan-
guage, it’s time for a little quiz. What does AWT stand for?

A. Another Window Toolkit

B. Abstract Window Types

C. Abstract Window Toolkit

D. Advanced Window Toolikit

E. Abstract Windowing Toolkit

The answer is C. (If you guessed right, you may have a future in
Java programming after all.) According to the official AWT tu-
torial, this acrynom stands for the Abstract Window Toolkit. (An-
other Window Toolkit came in a close second.) We think all the
extra names came about because the name got passed on from
programmer to programmer without the aid of any official docu-
mentation. As people referred to the package, using different
names, no one knew who was correct anymore.

Classes, Inheritance, and Interfaces
If you have done any programming in C++, you already know how important
classes are. Java is no exception. Most of the Java programming work you will be
doing involves writing classes from scratch and deriving more powerful classes
from your existing classes.

To see how classes are defined in Java, let’s return to our TickerTape program.
After the two key packages have been included, we define our first class:

Writing Your First Java Applet 33

// TickerTape Class
public class TickerTape extends Applet implements Runnable {
 // Declare Variables
 String inputText;
 String animSpeedString;
 Color color = new Color(255, 255, 255);
 int xpos;
 ...

We’re not showing the complete class here but it contains the following compo-
nents:

• Definition

• Variables

• Methods

The first line of code that actually sets up the class definition is illustrated in
Figure 2.3. Let’s take a close look at each section.

Class Modifier A class modifier tells the Java compiler how and where a class
can be used. The two main types of classes are called public and private. A public
class can be accessed from other packages, either directly or by using an import
statement. If you omit the public modifier at the beginning of the class defini-
tion, the class would become private and use of the class would be limited to the
package in which it is declared.

The two other modifiers that can be used to define classes are abstract and final.
We’ll cover these class modifiers in detail in Chapter 4.

Figure 2.3
Setting up a class definition in Java.

public class TickerTape extends Applet implements Runnable {

Class Modifier
Name Space

Superclass Specification
Interface

34 Chapter 2

Name Space The name space in a class declaration is simply the name of the
class. In our case the name space is “TickerTape.”

Superclass The keyword extends indicates that we are inheriting all of the
methods, variables, and field declarations from the Applet class. Applet becomes
the superclass of our TickerTape class. This means that we can use any of the
methods and variables from the Applet class.

If we did not include the superclass specifier, the program would derive itself
from the Object class by default.

Applet Package vs. Applet Class
Don’t get confused by the applet package and the Applet class.
At the beginning of the program we imported the applet pack-
age with the import command. This gave us access to all the
classes within the package, which in turn means that we can
then subclass the Applet class.

The applet package has other classes in it that help in creating
applets. The Applet class has methods in it that we must use in
all applets.

Interface An interface is a collection of method declarations, but without imple-
mentations. An interface simply sets up a template that all classes that use it
must follow. For instance, if we set up an interface that has two methods, start
and stop, then any class that implements that interface must have start and stop
methods within it.

The interface Runnable is used here via the implements keyword. Interfaces
solves some of the same problems that are solved by multiple-inheritance in
C++. You can implement many interfaces if you want. Here’s an example:

TickerTape extends Applet implements Runnable, Stoppable, Pausable

Once again, you must implement every method in the interface you are using.
Interface Runnable contains only the method run().

Writing Your First Java Applet 35

Types, Objects, and Constructors
Now that we have declared the class for our TickerTape applet we need to set up
a few variables that we will need to store various strings, numbers, dimensions,
and so on. Table 2.3 lists the basic types supported by the Java language.

Let’s now use a few of these data types to declare our variables. These variables
will be the ones that are used throughout our class, so we place them directly
after the class declaration as shown here:

public class TickerTape extends Applet implements Runnable {
 String inputText;
 String animSpeedString;
 Color color = new Color(255, 255, 255);
 int xpos;
 int fontLength;
 int fontHeight;
 2int animSpeed;
 Font font;
 Thread ttapeThread = null;
 Image im;
 Graphics osGraphics;
 boolean suspended = false;

Let’s take a few of these variable declarations and break them down into their
components. As shown in Figure 2.4, a standard variable declaration consists of
a data type, variable name, and optional value.

Table 2.3 The Basic Data Types Supported by Java

Data Type Description

boolean A true or false value. You cannot convert between booleans and any other basic
types.

byte 8-bit signed value

short 16-bit signed value

char 16-bit unicode character

int 32-bit signed value

float 32-bit IEEE754 floating-point

double 64-bit IEEE754 floating-point

long 64-bit signed value

36 Chapter 2

The typename in a standard declaration needs to be one of the basic Java types
listed in Table 2.3. One potential problem to watch out for here is capitaliza-
tion. Spelling boolean with a capital B can really cause some errors. With the
current state of Java debuggers, don’t expect them to help much.

The variableName can be any ASCII string. You can even make the variablename
the same as the class name. Be careful though; this can get very confusing. Vari-
able names are also case-sensitive. This means the variable String1 is different
from the variable string1. You also cannot include spaces or any other whitespace
characters in your variable names.

When you declare a variable, you can also assign it a value at the same time. This
is a very useful feature that was introduced with the C language, which Java
heavily steals from. You can even perform a calculation or call a method to
obtain values while you are declaring a variable. However, the value sections of
any declaration do not need to be set when they are declared—they can be given
values later in your program. Here are some examples:

// declare a variable and assign a value
int xpos = 10;

// use a calculation in a declaration
int fontLength = 30 + xpos;

// call a method to obtain a value during a declaration
int fontHeight = getvalue();

Variables can also use modifiers like classes do. However, there are several more
modifiers for variables, including static, final, transient, and volatile. We’ll cover
all of the variable modifiers in detail in Chapter 4.

Figure 2.4
Standard Java variable declaration.

typename
variablename

Value

 boolean suspended = false;

Writing Your First Java Applet 37

VARIABLE DECLARATIONS USING A CONSTRUCTOR

If you look closely at the variable declarations in the TickerTape class, you’ll see
that most of them are quite simple. But there is one that looks a little different:

Color color = new Color(255, 255, 255);

In this declaration, a device called a constructor is used. The constructor actu-
ally serves as a special type of method that is responsible for initializing new
objects. Constructors are used to create custom and/or complex objects other
than the basic types. In this case, the Color constructor (a method in the AWT
package) is passed the three integers (255,255,255). Then a value
“java.awt.Color[r=255,g=255,b=255]” is returned to the variable color. The ac-
tual components used in this type of declaration are illustrated in Figure 2.5.

This constructor initializes an instance of the variable color that represents a
color by its RGB values.

Thank Goodness for Garbage Collection
One of the biggest headaches in creating large programs with languages like C
or C++ is keeping track of resources and disposing of them when they are not
needed. An unruly C program that does not properly clean up after itself can
quickly eat up a lot of memory (and a lot of your time trying to debug it). For
example, if you write a C++ program that allocates a big block of memory for a
dynamic data structure, but you forget to release the memory after the data
structure is no longer used, your program could make a mess of things. Or if you
use pointers in a program and you don’t allocate, access, manage, or release them
properly, you could end up spending a number of late nights debugging your
code. The trouble with these type of resource allocation problems is that they

Figure 2.5
Using a constructor in a variable declaration.

typename
variablename

Object
Value

 Color color = new Color(255, 255, 255);

38 Chapter 2

are very difficult to detect. Anyone who is active in the software development
industry is keenly aware of intermittent errors in their software that can cause
their release dates to slip. Every year millions of dollars are spent and lost be-
cause of extensive software testing that is required to find the errors caused by
troublesome pointers and mismanaged memory allocation.

So is there is a solution to this crippling problem? The answer is garbage collection.
Garbage collection is not a new invention, recently created for Java programmers.
It has been around for years; in fact, programmers who have used languages like
Lisp, Smalltalk, and Prolog, have been writing amazing programs that really push
this technology to the limit. The basic idea behind garbage collection is to offload
the work of managing memory and other resources to the program itself. If memory
is needed for a new data structure or object, the program automatically takes care
of this task and automatically releases the resources when they are no longer needed.
This frees the programmer from a number of complex tasks, such as declaring
pointers to access memory, passing pointers as arguments to functions, setting up
memory buffers to swap the contents of data structures, and so on.

Of course there is a price to pay for all of this convenience. Programming lan-
guages that use garbage collection tend to be bigger and run slower than programs
written in “the programmer does it all by hand” languages such as C and C++.

In developing Java, the language designers at Sun wanted to make it as flexible
yet robust as possible. They reasoned that a smart compiler, even for a language
that has a syntax like C++, could figure out for itself which program elements
require memory allocation and perform memory management operations auto-
matically. In Java, memory taken up by objects, methods, and variables is allo-
cated and then cleared when those items are no longer needed. This garbage
collection was designed not only to make life easier for programmers but be-
cause it is required for creating programs that can run on many different plat-
forms and allocate memory in the same way.

Using Methods
Now we’re ready to get into the meat of our program by exploring the imple-
mentation section of the applet:

public void init(){
 inputText = getParameter("TEXT");

Writing Your First Java Applet 39

 animSpeedString = getParameter("SPEED");
 animSpeed = Integer.parseInt(animSpeedString);
 im=createImage(size().width, size().height);
 osGraphics = im.getGraphics();
 xpos = size().width;
 fontHeight = 4 * size().height / 5;
 font = new Font("Helvetica", 1, fontHeight);
}

 We learned earlier that this code actually shows the definition of what is called
a method. (We’ll be looking at methods in more detail a little later.) The method
defined here is named init(). As we discussed earlier, it is the starting point for
all applets. Remember that it is called by the browser whenever the applet is first
loaded. You can think of this method as serving a similar role to the one carried
out by a main() function in a C program. When the applet is first loaded into a
runtime environment like a Web browser, the program execution will begin
with the first statement in the init() method.

The public modifier in front of this method tells us that this method may be
called from any object, and the void modifier states that the applet will not
return any values.

Init() performs a number of tasks. First, it loads in the two parameters used by
the applet. Then, it calculates the animation speed for the ticker tape using the
SPEED parameter. The remaining statements in this method are needed to set
up variables to support the graphics and text fonts used in the applet. Let’s look
at all of this code in a little more detail.

PROCESSING PARAMETERS
Many times when you create applets you will want the user to be able to specify
options such as font size or animation speed. If we were creating an application,
instead of an applet, these values could be passed as command line arguments.
Applets do not have command line arguments, but they do have parameters. As
we introduced earlier, parameters are embedded in HTML tags that reside be-
tween the opening and closing <APPLET> tags like this:

<APPLET CODE=TickerTape.class Width=600 Height=50>
<PARAM NAME=TEXT VALUE="The Java TickerTape Applet...">
<PARAM NAME=SPEED VALUE="4">
</APPLET>

40 Chapter 2

The idea behind parameters is very similar to arguments, but parameters allow
you a little more flexibility. Since parameters have a name associated with them,
they can be put in any order. It is also easier to determine if a parameter has been
left out and if so, which one.

When a getParameter() method executes in a applet, the method searches a
parameter list to locate a parameter with the corresponding NAME field. In our
applet, we need to read in the text that will be displayed in the applet and a
speed setting that effects how fast the text scrolls across the screen. Thus, notice
that the init() method contains two calls to getParameter():

inputText = getParameter("TEXT");
animSpeedString = getParameter("SPEED");

After these methods are called, the variable inputText will contain the string “The
Java TickerTape Applet...” and animSpeedString will contain the value “4.” But
there is one catch: All parameters must be read in as strings. Since the variable we
declared for animation speed animSpeed in the TickerTape class is an integer

int animSpeed;

we need to convert the speed parameter from a string to its integer representa-
tion. To perform the conversion, we use the parseInt() method of the Integer
class that resides in the java.lang package. (Make sure that you use the correct
capitalization here, or you will get errors when you try and compile the pro-
gram.) The code that performs this operation looks like this:

animSpeed = Integer.parseInt(animSpeedString);

Notice that the syntax for calling this method involves using the name of the
Integer class. The parseInt() method takes a string as its argument and returns a
32-bit signed integer. For larger numbers you could use the parseLong() method
that can return a 64-bit signed integer. The value of the converted string, 4, is
stored in the variable animSpeed—right where we want it.

COMPLETING THE INITIALIZATIONS
To code our applet so that it provides smooth animation, we use a popular
programming trick called buffering. The idea is that we don’t want to write every
pixel on the screen as changes occur. With buffering, we send data to a hold-

Writing Your First Java Applet 41

ing area that is constructed until we are ready to update the screen. Then, we
blast the entire contents of the image buffer to the screen at once. To under-
stand how this process works in more detail, see the sidebar Double Buffering.

Fortunately, an image buffer is easy to set in a Java applet. In fact, we only need
a few lines of code. The following two lines in init() perform the work of setting
up the image buffer component that will store all the changes we make to the
graphics until we want to blast it onto the screen:

im=createImage(size().width, size().height);
osGraphics = im.getGraphics();

This code creates a graphics object called im with a width and height equal to
the size of the applet. We use the size().width and size().height objects to return
information about the applet’s client space. In this case, size().width and
size().height will always be equal to the width and height values we used when
we called the applet in our HTML file:

<APPLET CODE=TickerTape.class Width=600 Height=50>

Our final bit of business for creating the buffer is to use the getGraphics() method
to initialize the graphics and clear the buffer.

The next two lines of code in init() are used to set the values of the xpos and
fontHeight variables.

xpos = size().width;
fontHeight = 4 * size().height / 5;

 The xpos variable will be used to track the current position of the left side of the
text. We start the applet with xpos equal to the width of the applet (size().width)
so that as it starts, the text begins scrolling from off of the applet. Figure 2.6
shows how this process works for scrolling the text to the left.

The fontHeight variable is used to store the height of the text. In this case, we
are setting the height of the text to be 80% of the height of the applet. By doing
this, we allow the HTML programmer to change the size of the applet and have
the size of the text reflect that change. You could also use another parameter to
input the size of the text, but our method is simpler and saves a step or two. Figure
2.7 shows you how all the applet and text sizes correspond with each other.

42 Chapter 2

The final line of code in init() is used to initialize our font object:

font = new Font("Helvetica", 1, fontHeight);

Recall that we already created this variable in our declaration section at the be-
ginning of the applet (the TickerTape class) but we gave it no value. Here we are
setting up the name of the font (Helvetica), the style (sum of constants PLAIN,
BOLD, and/or ITALIC), and the size (points or pixels).

Notice also that we are using a constructor again. Recall that the new statement
tells Java that we want a “new” object, in this case with all the characteristics of
the standard Font class.

Figure 2.7
Coordinates in our applet.

Have a cup of Java

size().height

fontheight= 80% of size ().height

Figure 2.6
Starting the text off of the visible part of the applet.

Have a cup of Java

Applet space
Text string

Writing Your First Java Applet 43

Using Fonts with Java Applets
Here is something you should keep in mind when using dif-
ferent fonts with your Java applets: Not all fonts will work with
Java. Be careful when you choose a font name that it is a stan-
dard font. You may have strange fonts on your system that are
not available to everyone else, so choose them wisely. If your
applet requests a font that is not present on the user’s system,
it will use a default font.

Methods and Method Overriding
As we’ve seen, methods are the object-oriented equivalent to functions in C. They
are much more powerful, however, because they allow you to access the internal
components of an object. For example, in our TickerTape applet, we use methods
like init(), paint(), and paintText() to access some of the key data elements like
animSpeed (the animation speed for a ticker tape), font (the font used to display
text), and xpos (the position of the ticker tape text). Because of the object-oriented
nature of the Java language, we are able to organize our programs in such a way
that details can be hidden away and protected from being accessed by only those
parts of the program that need to have access. In the world of object-oriented
programming, this technique is called encapsulation.

But hiding details and controlling access is only part of the story. The real power
of object-oriented programming comes from the ability to take existing code
and derive new code from it. Most programmers spend way too much time
writing the same functions or routines over and over again, changing them ever
so slightly so that they can be used in different applications.

To take advantage of the potential of object-oriented programming, Java, like its
C++ counterpart, supports a concept called method overriding. The idea behind
method overriding is that you can take an existing method and derive a new one
from it. The new method would have the same name as the original but its
behavior—the actions it performs—could be entirely different.

As you’ve learned already, Java applets provide a number of methods that are
predefined for you. Some of these include init(), paint(), start(), and stop().
When you create an applet, it becomes your job to decide which methods to
override and how to make them do what you need.

44 Chapter 2

Method Overriding with Classes

The technique of method overriding has quite an impact on how
you use classes in Java to derive other classes. Whenever you
“subclass” a class, you also have access to all the original class’
methods. Many times though, the whole point of subclassing is
to change how the class interacts or responds to certain events.
For example, let’s say you created a class to process mouse
events. In particular, you could define a class that responds to a
mouse click by performing the action of playing a sound, among
other things. Now, maybe you want another class that will per-
form another action, such as displaying a graphic, when a mouse
button is clicked. You could either create a new class and dupli-
cate your work or use the sound class as a base class and sim-
ply use method overriding to create a new method to respond to
the user input.

In the new class, all you have to do is create a method with the
same name as the corresponding method in the superclass. Of
course, you must change its behavior (how it reacts to the user
input—displaying a graphic instead of playing sound).

When working with applets, you will be doing a lot of method
overriding because the Applet class that you extend already
has many methods built into it. Many of these methods perform
little, if anything; but they need to be there to capture all the
possible calls the browser may send.

INTRODUCING THE PAINT() METHOD
Now that you know a little about method overriding, we are ready to dig in and
look at the paint() method. This method is called by the browser whenever the
browser thinks something needs to be repainted. Events that might trigger the
paint() method include displaying text or graphics, re-sizing a component, and
so on. Since we don’t “write” directly to our applet, it will never initiate the
paint() method on its own; so we will call it later. We use method overriding to
create our own paint() method that will handle all the painting chores that
would usually be handled automatically by Java.

For our applet we only need two calls in the paint() method:

Writing Your First Java Applet 45

public void paint(Graphics g){
 paintText(osGraphics);
 g.drawImage(im, 0, 0, null);
}

The declaration of the argument Graphics g may look a little strange. It sets up
the applet background to be printed to. (Java will set up the device context of
the applet itself as g.) The first line of this method calls another method,
paintText(), which prints the text onto the buffer image. The paintText() method
is a user-defined method that takes a single argument. In this case that argument
is the graphics object we want the text drawn onto—the osGraphics object.

Finally, we call the drawImage() method that copies the buffer data (im) onto
the applet space on the browser (g) for the user to see.

Double Buffering

Double buffering is an extremely powerful concept that has
helped make some of today’s flicker-free animation and game
play possible. It reduces flicker by performing all the graphics
functions on a hidden image that resides in memory instead of
drawing directly to the screen. Then, the entire image is dis-
played all at once instead of having to update the screen every
time a new bit of graphics is drawn.

If we removed the double buffering technique from our applet,
you would see the screen flicker every time the text moved even a
little bit. (As an experiment, you might want to try changing the
applet code so that the double buffering gets disabled.) If we
were drawing any extra graphics or additional text, you would
also see flickers for each of those events. These flashes and flick-
ers occur because the screen is updated multiple times during the
drawing of the object and the Applet class’ paint() method clears
the screen before it redraws it. With text, the screen can some-
times be redrawn for each letter! This causes the flicker and can
actually slow things down if you are drawing many items.

Double buffering improves performance because the graphics
can be drawn into memory faster than they can be drawn onto
the screen. Even with the extra step of blasting the graphics to
the screen, double buffering is still much faster. Figure 2.8 illus-

46 Chapter 2

trates how double-buffering speeds display by reducing calls to
the paint() method.

The double buffering technique we used in our TickerTape applet
is very general, and you can apply it to many of the applets that
you write that need to perform flicker free animation. We sug-
gest you experiment with these concepts—you may come up
some of your own for writing optimized applets.

Graphic Methods
Now that we are aware of the basics involved in overriding methods, let’s re-
turn to our applet and explore the other methods used to perform all of the
graphics drawing operations. Our next step is to see how the applet will print
our text onto the image buffer. This work is accomplished by the user-defined
paintText() method:

Figure 2.8
Double buffering the applet display to reduce flicker.

Writing Your First Java Applet 47

public void paintText(Graphics g){
 g.setColor(Color.black);
 g.fillRect(0, 0, size().width, size().height);
 g.clipRect(0, 0, size().width, size().height);
 g.setFont(font);
 g.setColor(color);
 FontMetrics fmetrics = g.getFontMetrics();
 fontLength = fmetrics.stringWidth(inputText);
 fontHeight = fmetrics.getHeight();
 g.drawString(inputText, xpos, size().height - fontHeight / 4);
 }

First, keep in mind that paintText() is a method that we created from scratch. In
other words, we did not create this method by overriding one that already exists
with Java.

This set of method calls found in paintText() start by setting the current pen
color to black by using the setColor() method. Then, we call the fillRect() method
to draw a filled rectangle that fills the applet. Next, comes the clipRect() method
that tells Java to clip any data or graphics that are written outside the given
boundaries, which in this case is the same as the size of the black rectangle. This
set of initializations is illustrated in Figure 2.9.

Next we set the font of the graphics buffer equal to the font we set up in the init()
method. We also need to change the pen color to something other than black so
that our text shows up. For this task, we use the color object we set up earlier.

Figure 2.9
Setting up the rectangle for displaying the ticker tape text.

Have a cup of Java
(width, height)

1) Set pen color to black

2) Fill rectangle with black color

(0,0)

3) Set clipping regions

48 Chapter 2

g.setFont(font);
g.setColor(color);

Now that we are set to print, we need to determine where to print. Recall that
we previously initialized a variable named xpos to keep track of the text posi-
tion. Thus, we can use this variable to tell us where to begin printing. Now we
need to find out how tall and long the text we want to print is. We will use this
data to center the text vertically and to tell us how long the text is so we can reset
the location of the text when it is done scrolling.

To accomplish these tasks, we use the FontMetrics constructor. Using font metrics
is an easy way to gather information about the physical characteristics of text as
it is related to certain components at certain font sizes, types, and so on:

FontMetrics fmetrics = g.getFontMetrics();
fontLength = fmetrics.stringWidth(inputText);
fontHeight = fmetrics.getHeight();

To actually print the text onto the graphics buffer, we use the drawString()
method. This method takes several arguments as shown:

g.drawString(inputText, xpos, size().height - fontHeight / 4);

First, we must tell drawString() what string we want to print. In this case, inputText.
Next, we tell it where to start printing along the x-coordinate. Finally we send it
the vertical component to tell it where the bottom of the text should be. Figure
2.10 illustrates how drawString() sets up the required components. Here, we want
the height to be a quarter of the difference of the height of the applet and the
height of the text. This does a nice job of centering at any applet size.

Figure 2.10
Placing text in the buffer with drawString().

Have a cup of Java

size().height
fontHeight

xpos

Writing Your First Java Applet 49

In looking over the call to the drawString() method, don’t get confused by the
use of g as the name of our graphic object. In the paint() method we used the g
variable to reference the applet’s device context. Here you should notice that g is
referencing the osGraphics object we created to act as an image buffer. This is an
example of how scoping works with variables in Java. Scoping is basically the
same as it is in other languages but we wanted to make sure you were aware of
what is going on here. Since the g variable is not declared anywhere outside the
methods, but simply declared within the method declaration as an argument, it
is available only to the method where it was created.

Working with Threads
Now we get to a complex but powerful part of Java—threads. As we mentioned
earlier, a thread is a special type of process that is used by a Java interpreter to
control how a particular applet is executed. Fortunately, our TickerTape applet
only needs a single thread to run smoothly, so our job is easy here. In Chapter 8 we
will cover threads in much more detail, but for now we need to cover some basics
so that you can follow the magic that is occurring in our TickerTape applet.

Here are the three methods that are responsible for handling our thread:

public void start(){
 if(ttapeThread == null){
 ttapeThread = new Thread(this);
 ttapeThread.start();
 }
}

public void run(){
 while(ttapeThread != null){
 try {Thread.sleep(50);} catch (InterruptedException e){}
 setcoord();
 repaint();
 }
}

public void stop(){
 if(ttapeThread != null)
 ttapeThread.stop();
 ttapeThread = null;
}

50 Chapter 2

As you might have guessed, each of these methods is predefined in Java and they
have been overridden by our applet. The start() method is called after the init()
method finishes; start() actually belongs to the applet. It is called whenever the
applet is started, such as when the Web page the applet is assigned to is first
loaded and every time the page is referenced again from a Web browser.

The start() method checks to see if the thread for the applet has been created by
asking if the thread is equal to a null value. (A null value indicates that it has not
been created.) If the thread has not been created, Java creates a new thread using
the this keyword to tell Java to turn the current applet class we are running into
a thread. Then, start() calls the start() method of the thread to initiate its execu-
tion. We know this sounds weird! But make sure you understand that this start()
method is different then the start() method of the applet. Otherwise, you might
think this call will create an infinite loop.

The run() thread method is called repeatedly as the thread runs. It is the only
method that we were required to have because of the use of the runnable interface:

public void run(){
 while(ttapeThread != null){
 try {Thread.sleep(50);} catch (InterruptedException e){}
 setcoord();
 repaint();
 }
}

We use the sleep() method to pause the thread for a few milliseconds to slow it
down a little. This gives us a refresh rate of ten frames per second maximum. It
also gives the thread time to check for mouse clicks.

We then increment the xpos object to facilitate animation by calling the user-
defined setcoord() method. Here we also need to stop and check to see if the
text has gone completely off the left edge of the applet. We do this by checking
to see if xpos is less than negative fontLength:

public void setcoord(){
 xpos = xpos - animSpeed;
 if(xpos < -fontLength){
 xpos = size().width;
 }
}

Writing Your First Java Applet 51

Finally, we come to the stop() thread method, which is called whenever some-
one leaves the current Web page the applet is assigned to or otherwise closes the
applet.

public void stop(){
 if(ttapeThread != null)
 ttapeThread.stop();
 ttapeThread = null;
}

In stop(), we check again to see if the thread is equal to null. If the thread is
active, we stop it using the thread’s stop() method. Then, we kill the thread by
setting it equal to null. You may think that garbage collection would take care of
killing the thread for us, but this is one case where you would not want to rely
on garbage collection. Why? There may be situations where you want to keep a
thread active as people move from page to page in the browser (of course, clos-
ing the browser will kill all applet threads).

At this point, the applet is ready to run. However, it would be nice to be able to start
and stop the TickerTape with a mouse click, so let’s add support for user input.

Threading Java Applets

Trying to understand, not to mention program, multitasking and
threaded applications is tricky until you get a good grasp of the
basics. One good place to start is to try to understand why thread-
ing is required in the first place.

Making your applets use threads is extremely important. If you
don’t use them and your applets are not very “friendly,” the
browser’s performance can suffer dramatically. What causes this?
Current browsers like Netscape 2.0 give applets as much of the
system resources it can. So, if you create an applet that uses a
loop to control its operations, the applet would suck up all the
processing time the browser can give it. The net effect is that the
browser becomes very unresponsive.

If you are creating a sample applet that only performs a single
operation and requires little or no interaction, you may not need
to use threading. For example, assume you are creating an applet
that simply plays a sound when you click on something. When

52 Chapter 2

this applet is not playing a sound, it is not doing anything other
than waiting. Thus, it is not using resources and it does not need
to be a thread. However, if the same program had a loop that
checked to see when the sound stopped playing, then displayed
a message, the loop used to wait for the end of the sound could
use considerable resources no matter how simple it is. Instead of
using a controlling loop, you would want to set up the applet as
a thread—just as we’ve done with the TickerTape applet.

In setting up threads the method you will use most is run(). This
method is called by the browser every cycle. If you have mul-
tiple applets or multiple classes, each with its own run() method,
they will all be called at the same time.

How does the browser know to call the run() method? That’s
where interfaces come in. If you want the run() method to be
called by the browser then you must implement the runnable
interface, as we’ve done with our TickerTape applet. By doing
this, the browser can query the applet to see if it has imple-
mented the runnable interface. If it has, the browser knows it
can call the run() method of the applet.

Processing User Input
Allowing people to gain control over a program is a very powerful means of
interacting with users. Simply being able to start and stop the TickerTape applet
is enough to give people the feeling of interactivity rather than passive viewing.

Here is the code that adds user interaction to our applet:

public boolean handleEvent(Event evt) {
 if (evt.id == Event.MOUSE_DOWN) {
 if (suspended) {
 ttapeThread.resume();
 } else {
 ttapeThread.suspend();
 }
 suspended = !suspended;
 }
 return true;
}

Writing Your First Java Applet 53

This handleEvent() method can be used for everything from mouse clicks to
key presses, to drag and drop functions. It is automatically called by the browser
whenever it senses that the user is trying to interact with the applet. The argu-
ment evt is the crucial part of this method. It tells us what event has occurred
and allows us to react accordingly.

Since we are filtering for all mouse clicks, we simply use an if..then statement to
check and see it the evt argument ever equals Event.MOUSE_DOWN. When
it does, we know that a button has been pressed. Since Java is a cross-platform
language, we do not have the ability to determine which button was pressed,
just that one was indeed pressed. If you are a Windows programmer only, it may
be possible to create code in C that detects the other mouse button clicks and
then passes that on to a Java program, but that’s more than we can get into here.

When we receive the word that a button has been pressed, we check to see if the
TickerTape is in motion (suspended is False or True). If it is not in motion, we
start it by calling the thread’s suspend() method. If it is already suspended, we
use the thread’s resume() method to start it back up again. Finally, we switch the
suspended Boolean object to be the opposite of what it was before the mouse
button was pressed.

One Last Thing
If this is your first time working with Java, we need to fill you in on how to
compile your applet. The process of compiling takes your source code (.java file)
and turns it into bytecodes (.class file). The bytecodes are an interim form of the
code that can be read by many different operating systems. The bytecodes will
then be used by the Java Virtual Machine (VM) built in to the Web browser that
actually interprets the code and runs the program.

The Java compiler is activated by executing the JAVAC program. You also need
to supply a few arguments including the name of the file you are compiling and
whether or not you want to use the debugger.

Here are a few different compile commands that will all work for the TickerTape
applet:

javac TickerTape // Standard compile
javac TickerTape -g // Compile with debugging information on
javac TickerTape -d c:\java // Compiles the file to the c:\java directory
// Overrides your default classpath
javac TickerTape -classpath .;c:\java\classes

54 Chapter 2

If you do not have the Java Development Kit (JDK), check the Javasoft site
(http://www.javasoft.com). Read the online instructions to learn how to install
the JDK. Check out the resource guide from Appendix A for more information.

That’s It—Run It
Go ahead and compile the complete program, then run it. How does it look?
Try changing the parameters and the applet size. Does the text scale to the height
of the applet? If something does not work correctly go back and verify that all
your code is correct, recompile, and run the applet again. Make sure that when
you recompile an applet that you restart your browser. Many browsers, includ-
ing Netscape 2.0, do not reload Java applets when you hit the reload button.
They do however reread the HTML file. So, if you only made changes to the
parameters or size of the applet then you do not need to restart the browser.

Well, what do you think? Is Java going to rule the world? We can’t answer that,
but in just a few pages we have shown you how to create a fairly useful applet
that can be put to use immediately.

Now that we have hit many of the basics of Java programming, let’s look at the
details of the language. Over the next several chapters we will delve into the Java
language and explore the details of its structure and syntax.

Chapter3
Java Language
Fundamentals

57

3Java Language
Fundamentals
The language building blocks of Java are
similar to those found in C++, but keep a
close eye out because there are some subtle
differences.

After following the ticker tape adventure in the previous chapter, you should
now have a basic understanding of the Java language and its grammar—at least
you’ll know how to write a simple applet that can scroll text across the screen!
Unfortunately, we covered a number of Java programming features very quickly,
and we didn’t get a chance to explain the main language features in sufficient
detail. In this chapter and the ones that follow, we’ll slow down the pace a little and
uncover the key Java language features that you’ll need to know to write useful Java
programs. In particular, we’ll explain the basic Java language components in this
chapter—everything from comments to variable declarations. Then we’ll move
ahead and cover operators, expressions, and control structures in Chapter 4.

For those of you who are already familiar with programming, especially C or
C++ programming, this chapter and Chapter 4 should serve as a good hands-on
review. As we discuss Java, we’ll point out the areas in which Java differs from
other languages. If you don’t have much experience using structured program-
ming languages, this chapter will give you a good overview of the basic compo-
nents required to make programming languages like Java come alive.

The actual language components featured in this chapter include:

• Comments

• Identifiers

• Keywords

• Data types

• Variable declarations

58 Chapter 3

What Makes a Java Program?
Before we get into the details of each Java language component, let’s stand back
ten steps and look at how many of the key language components are used in the
context of a Java program. Figure 3.1(shown later) presents a complete visual
guide. Here we’ve highlighted components such as variable declarations, Java
keywords, operators, literals, expressions, and control structures. As we work
our way through the next two chapters, you’ll learn how these components are
defined and used.

In case you’re wondering, the output for this program looks like this:

Hello John my name is Anthony
That's not my name!
Let's count to ten....
1 2 3 4 5 6 7 8 9 10
Now down to zero by two.
10 8 6 4 2 0
Finally, some arithmetic:
10 * 3.09 = 30.9
10 * 3.09 = 30 (integer cast)
10 / 3,09 = 3.23625
10 / 3.09 = 3 (integer cast)

Lexical Structure
The lexical structure of a language refers to the elements of code that make the
code easy for us to understand, but have no effect on the compiled code. For
example, all the comments you place in a program to help you understand
how it works are ignored by the Java compiler. You could have a thousand
lines of comments for a twenty line program and the compiled bytecodes for
the program would be the same size if you took out all the comments. This
does not mean that all lexical structures are optional. It simply means that
they do not effect the bytecodes.

The lexical structures will discuss include:

• Comments

• Identifiers

• Keywords

• Separators

Java Language Fundamentals 59

Comments
Comments make your code easy to understand, modify, and use. But adding
comments to an application only after it is finished is not a good practice. More
often than not, you won’t remember what the code you write actually does after
you get away from it for a while. Unfortunately, many programmers follow this
time-honored tradition. We suggest you try to get in the habit of adding com-
ments as you write your code.

Java supports three different types of comment styles. The first two are taken
directly from C and C++. The third type of comment is a new one that can be
used to automatically create class and method documentation.

COMMENT STYLE #1

/* Comments here... */

This style of commenting comes to us directly from C. Everything between the
initial slash-asterisk and ending asterisk-slash is ignored by the Java compiler. This
style of commenting can be used anywhere in a program, even in the middle of
code (not a good idea). This style of commenting is useful when you have multiple
lines of comments because your comment lines can wrap from one line to the
next, and you only need to use one set of the /* and */ symbols. Examples:

/*
This program was written by Joe Smith.
It is the greatest program ever written!
*/

while (i <= /* comments can be placed here */ maxnum)
{
 total += i;
 i++;
}

In the second example, the comment line is embedded within the program state-
ment. The compiler skips over the comment text, and thus the actual line of
code would be processed as:

while (i <= maxnum)
...

60 Chapter 3

/**

 * Sample Java Application

 * @author Anthony Potts

 * @version 1.0

 */

class Test extends Object { // Begin Test class

 // Define class variables

 static int i = 10;

 static final double d = 3.09;

 /*

 The main() method is automatically called when

 the program is run. Any words typed after the program

 name when it is run are placed in the args[] variable

 which is an array of strings.

 For this program to work properly, atleast one word must

 be typed after the program name or else an error will occur.

 */

 public static void main(String args[]) {

 Test thisTest = new Test(); // Create instance (object) of class

 String myName = "Anthony";

 boolean returnValue;

 System.out.println("Hello " + args[0] + " my name is " + myName);

 if(thisTest.sameName(args[0], myName)) {

 System.out.println("Your name is the same as mine!");

 } else {

 System.out.println("That's not my name!");

 }

 System.out.println("Let's count to ten....");

 for (int x = 1; x < 11; x++) {

 System.out.print(x + " ");

 }

unique Java style comment

standard C++ style comment

standard data type
variable

literal

variable
declarations

declaration and assignment
assignment operator

string data type

if-then-else
control structureincrement operator

expression

superclass

Java Language Fundamentals 61

Figure 3.1
A visual guide to the key Java language components.

 System.out.println("\nNow down to zero by two.");

 while (i > -1) {

 System.out.print(i + " ");

 i -= 2;

 }

 System.out.println("\nFinally, some arithmetic:");

 thisTest.doArithmetic();

 }

 // This method compares the two names sent to it and

 // returns true if they are the same and false if they are not

 public boolean sameName(String firstName, String secondName) {

 if (firstName.equals(secondName)) {

 return true;

 } else {

 return false;

 }

 }

 // This method performs a few computations and prints the result

 public void doArithmetic(){

 i = 10;

 System.out.println(i + " * " + d + " = " + (i * d));

 System.out.println(i + " * " + d + " = " +

 (int)(i * d) + " (Integer)");

 System.out.println(i + " / " + d + " = " + (i / d));

 System.out.println(i + " / " + d + " = " +

 (int)(i / d) + " (Integer)");

 }

 } // End of class

logical expression
while control
statement

assignment expression

method call

returns value to
calling class

method
modifier

62 Chapter 3

Programmers occasionally use this style of commenting while they are testing and de-
bugging code. For example, you could comment out part of an equation or expression:

sum = i /* + (base - 10) */ + factor;

COMMENT STYLE #2

// Comment here...

This style of commenting is borrowed from C++. Everything after the double
slash marks is ignored by the Java compiler. The comment is terminated by a
line return, so you can’t use multiple comment lines unless you start each line
with the double-slash. Examples:

// This program was written by Joe Smith.
// It is the greatest program ever written!

while (i <= // this won't work maxnum)
{
 total += i;
 i++;
}

base = 20;
// This comment example also won't work because the Java
 compiler will treat this second line as a line of code
value = 50;

The comment used in the second example won’t work like you might intend
because the remainder of the line of code would be commented out (everything
after i <=). In the third example, the second comment line is missing the start-
ing // symbols, and the Java compiler will get confused because it will try to
process the comment line as if it were a line of code. Believe it or not, this type
of commenting mistake occurs often—so watch out for it!

COMMENT STYLE #3

/** Doc Comment here... */

This comment structure may look very similar to the C style of commenting,
but that extra asterisk at the beginning makes a huge difference. Of course,
remember that only one asterisk must be used as the comment terminator. The

Java Language Fundamentals 63

Java compiler still ignores the comment; but another program called
JAVADOC.EXE that ships with the Java Development Kit uses these comments
to construct HTML documentation files that describe your packages, classes,
and methods as well as all the variables they use.

Let’s look at the third style of commenting in more detail. If implemented cor-
rectly and consistently, this style of commenting can provide you with numer-
ous benefits. Figure 3.2 shows what the output of the JAVADOC program looks
like when run on a typical Java source file.

Figure 3.2
Sample output from the JAVADOC program.

64 Chapter 3

If you have ever looked at the Java API documentation on Sun’s Web site, Figure
3.2 should look familiar to you. In fact, the entire API documentation was cre-
ated this way.

JAVADOC will work if you have created comments or not. Figure 3.3 shows the
output from this simple application:

class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World");
 }
}

To add a little more information to our documentation, all we have to do is add
this third style of comments. If we change the little HelloWorld application and
add a few key comments, the code will look like this:

Figure 3.3
Simple output from the JAVADOC program.

Java Language Fundamentals 65

/**
 * Welcome to HelloWorld
 * @author Anthony Potts
 * @version 1.1
 * @see java.lang.System
 */
class helloworld {
 /**
 * Main method of helloworld
 */
 public static void main(String args[]) {
 System.out.println("Hello World!");
 }
}

If you now run JAVADOC, the browser will display what you see in Figure 3.4.
As you can see, this gives us much more information. This system is great for
producing documentation for public distribution. Just like all comments though,
it is up to you to make sure that the comments are accurate and plentiful enough
to be helpful. Table 3.1 lists the tags you can use in your class comments.

Identifiers
Identifiers are the names used for variables, classes, methods, packages, and in-
terfaces to distinguish them to the compiler. In the sample program from Chap-
ter 2 the identifier for the applet’s class was TickerTape. We also used identifiers
like fontHeight and fontWidth to name some of the variables.

Identifiers in the Java language should always begin with a letter of the alphabet,
either upper or lower case. The only exceptions to this rule are the underscore
symbol (_) and the dollar sign ($), which may also be used. If you try to use any
other symbol or a numeral as the initial character, you will receive an error.

After the initial character you are allowed to use numbers, but not all symbols.
You can also use almost all of the characters from the Unicode character set. If
you are not familiar with the Unicode character set or you get errors, we suggest
that you stick with the standard alphabetic characters.

The length of an identifier is basically unlimited. We managed to get up to a few
thousand characters before we got bored. It’s doubtful you will ever need nearly
that many characters, but it is nice to know that the Java compiler won’t limit

66 Chapter 3

you if you want to create long descriptive names. The only limit you may en-
counter involves creating class names. Since class names are also used as file
names, you need to create names that will not cause problems with your operat-
ing system or anyone who will be using your program.

You must also be careful not to use any of the special Java keywords listed in the
next section. Here are some examples of valid identifiers:

HelloWorld $Money TickerTape
_ME2 Chapter3 ABC123

Figure 3.4
The new JAVADOC output.

Java Language Fundamentals 67

And here are some examples of invalid identifiers:

3rdChapter #Hello -Main

COMMON ERRORS WITH USING IDENTIFIERS
As you are defining and using identifiers in your Java programs, you are bound
to encounter some errors from time-to-time. Let’s look at some of the more
common error messages that the Java compiler displays. Notice that we’ve in-
cluded the part of the code that is responsible for generating the error, the error
message, as well as a description of the message so that you can make sense of it.

Code Example:
public class 1test {
}

Table 3.1 Tags Used in Class Comments

Tag Description

@see classname Adds a hyperlinked “See Also” to your class. The
classname can be any other class.

@see fully-qualified-classname Also adds a “See Also” to the class, but this time you
need to use a fully qualified class name like
“java.awt.window.”

@see fully-qualified-classname#methodname Also adds a “See Also” to the class, but now you are
pointing to a specific method within that class.

@version version-text Adds a version number that you provide. The version
number can be numbers or text.

@author author-name - Adds an author entry. You can use multiple author tags.

The tags you can use in your method comments include
all of the “@see” tags as well as the following:

@param paramter-name description... Used to show which parameters the method accepts.
Multiple “@param” tags are acceptable.

@return description... Used to describe what the method returns.

@exception fully-qualified-classname description... Used to add a “throw” entry that describes what type of
exceptions this method can throw. Multiple
”@exception“ tags are acceptable. (Don’t worry about
exceptions and throws too much yet. We will discuss
these in detail in Chapter 7.)

68 Chapter 3

Error Message:
D:\java\lib\test.java:1: Identifier expected.

Description:
An invalid character has been used in the class identifier. You will see this error
when the first character is invalid (especially when it is a number).

Code Example:
public class te?st {
}

Error Message:
D:\java\lib\test.java:1: '{' Expected

Description:
This is a common error that occurs when you have an invalid character in the
middle of an identifier. In this case, the question mark is invalid, so the compiler
gets confused where the class definition ends and its implementation begins.

Code Example:
public class #test {
}

Error Message:
D:\java\lib\test.java:1: Invalid character in input.

Description:

Here, the error stems from the fact that the initial character is invalid.

Code Example:
public class catch {
}

Error Message:
D:\java\lib\test.java:1: Identifier expected.

Description:
This error shows up when you use a protected keyword as an identifier.

Keywords
In Java, like other languages, there are certain keywords or “tokens” that are re-
served for system use. These keywords can’t be used as names for your classes,
variables, packages, or anything else. The keywords are used for a number of tasks
such as defining control structures (if, while, and for) and declaring data types (int,
char, and float). Table 3.2 provides the complete list of the Java keywords.

Java Language Fundamentals 69

Table 3.2 Java Language Keywords

Keyword Description

abstract Class modifier

boolean Used to define a boolean data type

break Used to break out of loops

byte Used to define a byte data type

byvalue * Not implemented yet

cast Used to translate from type to type

catch Used with error handling

char Used to define a character data type (16-bit)

class Used to define a class structure

const * Not implemented yet

continue Used to continue an operation

default Used with the switch statement

do Used to create a do loop control structure

Double Used to define a floating-point data type (64-bit)

else Used to create an else clause for an if statement

extends Used to subclass

final Used to tell Java that this class can not be subclassed

finally Used with exceptions to determine the last option before exiting. It guarantees
that code gets called if an exception does or does not happen.

float Used to define a floating-point data type (32-bit)

for Used to create a for loop control structure

future * Not implemented yet

generic * Not implemented yet

goto * Not implemented yet

if Used to create an if-then decision-making control structure

implements Used to define which interfaces to use

import Used to reference external Java packages

inner Used to create control blocks

instanceof Used to determine if an object is of a certain type

int Used to define an integer data type (32-bit values)

interface Used to tell Java that the code that follows is an interface

continued

70 Chapter 3

Table 3.2 Java Language Keywords (Continued)

long Used to define an integer data type (64-bit values)

native Used when calling external code

new Operator used when creating an instance of a class (an object)

null Reference to a non-existent value

operator * Not implemented yet

outer Used to create control blocks

package Used to tell Java what package the following code belongs to

private Modifier for classes, methods, and variables

protected Modifier for classes, methods, and variables

public Modifier for classes, methods, and variables

rest * Not implemented yet

return Used to set the return value of a class or method

short Used to define an integer data type (16-bit values)

static Modifier for classes, methods, and variables

super Used to reference the current class’ parent class

switch Block statement used to pick from a group of choices

synchronized Modifier that tells Java that only one instance of a method can be run at one
time. It keeps Java from running the method a second time before the first is
finished. It is especially useful when dealing with files to avoid conflicts.

this Used to reference the current object

throw Statement that tells Java what exception to pass on an errors

transient Modifier that can access future Java code

try Operator that is used to test for exceptions in code

var * Not implemented yet

void Modifier for setting the return value of a class or method to nothing

volatile Variable modifier

while Used to create a while loop control structure.

The words marked with an asterisk (*) are not currently used in the Java lan-
guage, but you still can’t use them to create your own identifiers. More than
likely they will be used as keywords in future versions of the Java language.

Java Language Fundamentals 71

Literals
Literals are the values that you assign when entering explicit values. For ex-
ample, in an assignment statement like this:

i = 10;

the value 10 is a literal. But do not get literals confused with types. Even though
they usually go hand in hand, literals and types are not the same.

Types are used to define what type of data a variable can hold, while literals are
the values that are actually assigned to those variables.

Literals come in three flavors: numeric, character, and boolean. Boolean literals
are simply True and False

NUMERIC LITERALS
Numeric literals are just what they sound like—numbers. We can subdivide the
numeric literals further into integers and floating-point literals.

Integer literals are usually represented in decimal format although you can use
the hexadecimal and octal format in Java. If you want to use the hexadecimal
format, your numbers need to begin with an 0x or 0X. Octal integers simply
begin with a zero (0).

Integer literals are stored differently depending on their size. The int data type is
used to store 32-bit integer values ranging from -2,147,483,648 to 2,147,483,648
(decimal). If you need to use even larger numbers, Java switches over to the long data
type, which can store 64 bits of information for a range of - 9.223372036855e+18
to 9.223372036855e+18. This would give you a number a little larger than 9 mil-
lion trillion—enough to take care of the national debt! To specify a long integer, you
will need to place an “l” or “L” at the end of the number. Don’t get confused by our
use of the terms int and long. There are many other integer data types used by Java,
but they all use int or longliterals to assign values. Table 3.3 provides a summary of
the two integer literals.

Table 3.3 Summary of Integer Literals

Integer Literals Ranges Negative Minimum Positive Maximum

int data type -2,147,483,648 2,147,483,648

long data type -9.223372036855e+18 9.223372036855e+18

72 Chapter 3

Here are some examples of how integer literals can be used to assign values in
Java statements:

int i;
i = 1; // All of these literals are of the integer type
i= -9;
i = 1203131;

i = 0xA11; // Using a hexadecimal literal
i = 07543; // Using an octal literal

i = 4.5; // This would be illegal because a floating-point
 // literal can't be assigned to an integer type
long lg;
lg = 1L; // All of these literals are of the long
 // integer type
lg = -9e15;
lg = 7e12;

The other type of numeric literal is the floating-point literal. Floating-point
values are any numbers that have anything to the right of the decimal place.
Similar to integers, floating-point values have 32-bit and 64-bit representations.
Both data types conform to IEEE standards. Table 3.4 provides a summary of
the two floating-ponit literals.

Here are some examples of how floating-point literals can be used to assign
values in Java statements:

float f;
f = 1.3; // All of these literals are of the floating-point
 // type float (32-bit)
f = -9.0;
f = 1203131.1241234;

double d;
d = 1.0D; // All of these literals are of the floating-
 // point type double(32-bit)
d = -9.3645e235;
d = 7.0001e52D;

Java Language Fundamentals 73

Table 3.5 Special Character Combinations in Java

Character Standard Description
Combination Designation

\ <newline> Continuation

\n NL or LF New Line

\b BS Backspace

\r CR Carriage Return

\f FF Form Feed

\t HT Horizontal Tab

\\ \ Backslash

\’ ‘ Single Quote

\” “ Double Quote

\xdd 0xdd Hex Bit Pattern

\ddd 0ddd Octal Bit Pattern

\uddd 0xdddd Unicode Character

CHARACTER LITERALS

The second type of literal that you need to know about is the character literal. Char-
acter literals include single characters and strings. Single character literals are en-
closed in single quotation marks while string literals are enclosed in double quotes.

Single characters can be any one character from the Unicode character set. There
are also a few special two-character combinations that are non-printing characters
but perform important functions. Table 3.5 shows these special combinations.

The string character literal are any number of characters enclosed in The charac-
ter combinations from Table 3.5 also apply to strings. Here are some examples
of how character and string literals can be used in Java statements:

Table 3.4 Summary of Floating-Point Literals

Floating-Point Ranges Negative Minimum Positive Maximum

float data type 1.40239846e-45 3.40282347e38

double data type 4.94065645841246544e-324 1.79769313486231570e308

74 Chapter 3

char ch;
ch = 'a'; // All of these literals are characters
ch = \n; // Assign the newline character
ch = \'; // Assign a single quote
ch = \x30; // Assign a hexadecimal character code

String str;
str = "Java string";

Operators
Operators are used to perform computations on one or more variables or ob-
jects. You use operators to add values, comparing the size of two numbers, as-
signing a value to a variable, incrementing the value of a variable, and so on.
Table 3.6 lists the operators used in Java. Later in this chapter, we’ll explain in
detail how each operator works; and we’ll also explain operator precedence.

continued

Table 3.6 Operators Used in Java

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

++ Increment

— Decrement

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

! Logical NOT

&& Logical AND

|| Logical OR

& Bitwise AND

Java Language Fundamentals 75

Separators
Separators are used in Java to delineate blocks of code. For example, you use curly
brackets to enclose a method’s implementation, and you use parentheses to en-
close arguments being sent to a method. Table 3.7 lists the seperators used in Java.

Table 3.6 Operators Used in Java (Continued)

^ Bitwise exclusive OR

| Bitwise OR

~ Bitwise complement

<< Left shift

>> Right shift

>>> Zero fill right shift

= Assignment

+= Assignment with addition

-= Assignment with subtraction

*= Assignment with multiplication

/= Assignment with division

%= Assignment with modulo

&= Assignment with bitwise AND

|= Assignment with bitwise OR

^= Assignment with bitwise exclusive OR

<<= Assignment with left shift

>>= Assignment with right shift

>>>= Assignment with zero fill right shift

Table 3.7 Separators Used in Java

Separator Description

() Used to define blocks of arguments

[] Used to define arrays

{ } Used to hold blocks of code

, Used to separate arguments or variables in a declaration

; Used to terminate lines of contiguous code

76 Chapter 3

Types and Variables
Many people confuse the terms types and variables, and use them synonymously.
They are, however, not the same. Variables are basically buckets that hold infor-
mation, while types describe what type of information is in the bucket.

A variable must have both a type and an identifier. Later in this chapter we will
cover the process of declaring variables. For now, we just want to guide you through
the details of how you decide which types to use and how to use them properly.

Similar to literals, types can be split into several different categories including the nu-
meric types—byte, short, int, long, float, and double—and the char and boolean
types. We will also discuss the string type. Technically, the string type is not a type—it
is a class. However, it is used so commonly that we decided to include it here.

All of the integer numeric types use signed two’s-complement integers for storing
data. Table 3.8 provides a summary of the ranges for each of the key Java data types.

byte
The byte type can be used for variables whose value falls between -256 and 255.
byte types have an 8-bit length. Here are some examples of byte values:

-7 5 238

short
The short numeric type can store values ranging from -32768 to 32767. It has a
16-bit depth. Here are some examples:

-7 256 -29524

Table 3.8 Summary of the Java Data Types

Data Type Negative Minimal Positive Maximal

byte -256 255

short -32768 32767

int -2147483648 2147483647

long -9223372036854775808 9223372036854775807

float 1.40239846e-45 3.40282347e38

double 4.94065645841246544e-324 1.79769313486231570e308

boolean False True

Java Language Fundamentals 77

int
The int data type takes the short type to the next level. It uses a 32-bit signed
integer value that takes our minimal and maximal value up to over 2 billion.
Because of this tremendous range, it is one of the most often used data types
for integers.

Often, unskilled programmers will use the int data type even though they
don’t need the full resolution that this data type provides. If you are using
smaller integers, you should consider using the short data type. The rule of
thumb to follow is if you know exactly the range of values a certain variable will
store, use the smallest data type possible. This will let your program use less memory
and therefore run faster, especially on slower machines or machines with lim-
ited RAM.

Here are some examples of int values:

-7 256 -29523234 1321412422

long
The long data type is the mother of all integer types. It uses a full 64-bit data
path to store values that reach up to over 9 million trillion. But be extremely
careful when using variables of the long type. If you start using many of them or
God forbid, an array of longs, you can quickly eat up a ton of resources.

The Danger of Using long
Java provides useful garbage collection tools, so when you are
done with these large data types, they will be disposed of and
their resources reclaimed. But if you are creating large arrays
of long integers you could really be asking for trouble. For
example, if you created a two-dimensional array of long inte-
gers that had a 100x100 grid, you would be using up about
100 kilobytes of memory.

Here are some examples of long values:

-7 256 -29523234 1.835412e15 -3e18

78 Chapter 3

float
The float data type is one of two types used to store floating-point values. The
float type is compliant with the IEEE 754 conventions. The floating-point types
of Java can store gargantuan numbers. We do not have enough room on the page
to physically show you the minimal and maximal values the float data type can
store, so we will use a little bit of tricky sounding lingo taken from the Java manual.

“The finite nonzero values of type float are of the form s * m * 2e , where s is +1
or -1, m is a positive integer less than 2^24 and e is an integer between -149 and
104, inclusive.”

Whew, that’s a mouthful. Here are a few examples to show you what the float
type might look like in actual use:

-7F 256.0 -23e34 23e100

double
As if the float type could not hold enough, the double data type gives you even
bigger storage space. Let’s look again at Sun’s definition of the possible values for
a double.

“The finite nonzero values of type float are of the form s * m * 2e , where s is +1
or -1, m is a positive integer less than 2^53 and e is an integer between -1045
and 1000, inclusive.”

Again, you can have some truly monstrous numbers here. But when you start
dealing with hard core programming, this type of number becomes necessary
from time to time, so it is wise to understand its ranges. Here are a few examples:

-7.0D 256.0D -23e424 23e1000

boolean
In other languages, the boolean data type has been represented by an integer
with a nonzero or zero value to represent True and False, respectively. This method
works well because it gives the user the ability to check for all kinds of values and
perform expression like this:

x=2;
if x then...

Java Language Fundamentals 79

This can be handy when performing parsing operations or checking string lengths.
In Java, however, the boolean data type has its own True and False literals that
do not correspond to other values. In fact, as you will learn later in this chapter,
Java does not even allow you to perform casts between the boolean data type
and any others. There are ways around this limitation that we will discuss in a
few pages when we talk about conversion methods.

char
The char data type is used to store single characters. Since Java uses the Unicode
character set, the char type needs to be able to store the thousands of characters,
so it uses a 16-bit signed integer. The char data type has the ability to be cast or
converted to almost all of the others, as we will show you in the next section.

string
The string type is actually not a primitive data type; it is a class all its own. We
decided to talk about it a little here because it is used so commonly that it might
as well be considered a primitive. In C and C++, strings are stored in arrays of
chars. Java does not use the char type for this but instead has created its own
class that handles strings. In Chapter 5, when we get into the details of declaring
variables within classes, you will see the difference between declaring a primitive
variable and declaring an instance of a class type.

One big advantage to using a class instead of an array of char types is that we are
more or less unlimited in the amount of information we want to place in a string
variable. In C++, the array of chars was limited, but now that limitation is taken
care of within the class, where we do not care how it is handled.

Variable Declarations
Declaring variables in Java is very similar to declaring variables in C/C++ as long
as you are using the primitive data types. As we said before, almost everything in
Java is a class—except the primitive data types. We will show you how to instan-
tiate custom data types (including strings) in Chapter 5. For now, let’s look at
how primitive data types are declared.

Here is what a standard declaration for a primitive variable might look like:

int i;

80 Chapter 3

We have just declared a variable “i” to be an integer. Here are a few more
examples:

byte i, j;
int a=7, b = a;
float f = 1.06;
String name = "Tony";

These examples illustrate some of the things you can do while declaring vari-
ables. Let’s look at each one individually.

int i;

This is the most basic declaration, with the data type followed by the variable
you are declaring.

byte i, j;

In this example, we are declaring two byte variables at one time. There is no
limit to the number of variables you can declare this way. All you have to do is
add a comma between each variable you wish to declare of the given type, and
Java takes care of it for you.

You also have the ability to assign values to variables as you declare them. You can
even use a variable you are declaring as part of an expression for the declaration of
another variable in the same line. Before we confuse you more, here is an example:

int i = 1;
int j = i, k= i + j;

Here we have first declared a variable i as int and assigned it a value of 1. In the
next line, we start by declaring a variable j to be equal to i. This is perfectly legal.
Next, on the same line, we declare a variable k to be equal to i plus j. Once again,
Java handles this without a problem. We could even shorten these two state-
ments to one line like this:

int i = 1, j = i, k= i + j;

One thing to watch out for is using variables before they have been declared.
Here’s an example:

Java Language Fundamentals 81

int j = i, k= i + j; // i is not defined yet
int i = 1;

This would cause an “undefined variable” error because Java does not know to
look ahead for future declarations. Let’s look at another example:

float f = 1.06;

Does this look correct? Yes, but it’s not. This is a tricky one. By default, Java
assumes that numbers with decimal points are of type double. So, when you try
and declare a float to be equal to this number, you receive the following error:

Incompatible type for declaration. Explicit cast needed to convert double
to float.

Sounds complicated, but all this error message means is that you need to explicitly
tell Java that the literal value 1.06 is a float and not a double. There are two ways
to accomplish this. First, you can cast the value to a float like this:

float f = (float)1.06;

This works fine, but can get confusing. Java also follows the convention used by
other languages of placing an “f” at the end of the literal value to indicate explicitly
that it is a float. This also works for the double data type, except that you would
use a “d.” (By the way, capitalization of the f and d does not make a difference.)

float f = 1.06f;
double d = 1.06d;

You should realize that the “d” is not needed in the double declaration because
Java assumes it. However, it is better to label all of your variables when possible,
especially if you are not sure.

We will cover variables and declarations in more detail in Chapter 5, but you
should have enough knowledge now to be able to run a few basic programs and
will delve deeper into the Java fundamentals and look at operators, expressions,
and control statements.

82 Chapter 3

Using Arrays
It’s difficult to imagine creating any large application or applet without having
an array or two. Java uses arrays in a much different manner than other lan-
guages. Instead of being a structure that holds variables, arrays in Java are actu-
ally objects that can be treated just like any other Java object.

The powerful thing to realize here is that because arrays are objects that are
derived from a class, they have methods you can call to retrieve information
about the array or to manipulate the array. The current version of the Java lan-
guage only supports the length method, but you can expect that more methods
will be added as the language evolves.

One of the drawbacks to the way Java implements arrays is that they are only
one dimensional. In most other languages, you can create a two-dimensional
array by just adding a comma and a second array size. In Java, this does not
work. The way around this limitation is to create an array of arrays. Because this
is easy to do, the lack of built-in support for multi-dimensional arrays shouldn’t
hold you back.

Declaring Arrays
Since arrays are actually instances of classes (objects), we need to use construc-
tors to create our arrays much like we did with strings. First, we need to pick a
variable name and declare it as an array object and also specify which data type
the array will hold. Note that an array can only hold a single data type—you
can’t mix strings and integers within a single array. Here are a few examples of
how array variables are declared:

int intArray[];
String Names[];

As you can see, these look very similar to standard variable declarations, except
for the brackets after the variable name. You could also put the brackets after the
data type if you think this approach makes your declarations more readable:

int[] intArray;
String[] Names;

Java Language Fundamentals 83

Sizing Arrays
There are three ways to set the size of arrays. Two of them require the use of the
new operator. Using the new operator initializes all of the array elements to a
default value. The third method involves filling in the array elements with val-
ues as you declare it.

The first method involves taking a previously declared variable and setting the
size of the array. Here are a few examples:

int intArray[]; // Declare the arrays
String Names[];

intArray[] = new int[10]; // Size each array
Names[] = new String[100];

Or, you can size the array object when you declare it:

int intArray[] = new int[10];
String Names[] = new String[100];

Finally, you can fill in the array with values at declaration time:

String Names[] = {"Tony", "Dave", "Jon", "Ricardo"};
int[] intArray = {1, 2, 3, 4, 5};

Accessing Array Elements
Now that you know how to initialize arrays, you’ll need to learn how to fill them
with data and then access the array elements to retrieve the data. We showed you
a very simple way to add data to arrays when you initialize them, but often this just
is not flexible enough for real-world programming tasks. To access an array value,
you simply need to know its location. The indexing system used to access array
elements is zero-based, which means that the first value is always located at posi-
tion 0. Let’s look at a little program that first fills in an array then prints it out:

public class powersOf2 {

 public static void main(String args[]) {
 int intArray[] = new int[20];
 for (int i = 0; i < intArray.length; i++) {

84 Chapter 3

 intArray[i] = 1;
 for(int p = 0; p < i; p++) intArray[i] *= 2 ;
 }
 for (int i = 0; i < intArray.length; i++)
 System.out.println("2 to the power of " + i + " is " +
 intArray[i]);
 }
}

The output of this program looks like this:

2 to the power of 0 is 1
2 to the power of 1 is 2
2 to the power of 2 is 4
2 to the power of 3 is 8
2 to the power of 4 is 16
2 to the power of 5 is 32
2 to the power of 6 is 64
2 to the power of 7 is 128
2 to the power of 8 is 256
2 to the power of 9 is 512
2 to the power of 10 is 1024
2 to the power of 11 is 2048
2 to the power of 12 is 4096
2 to the power of 13 is 8192
2 to the power of 14 is 16384
2 to the power of 15 is 32768
2 to the power of 16 is 65536
2 to the power of 17 is 131072
2 to the power of 18 is 262144
2 to the power of 19 is 524288

So, how does the program work? We first create our array of integer values and
assign it to the intArray variable. Next, we begin a loop that goes from zero to
intArray.length. By calling the length method of our array, we find the number
of indexes in the array. Then, we start another loop that does the calculation and
stores the result in the index specified by the i variable from our initial loop.

Now that we have filled in all the values for our array, we need to step back
through them and print out the result. We could have just put the print state-
ment in the initial loop, but the approach we used gives us a chance to use
another loop that references our array.

Java Language Fundamentals 85

Here is the structure of an index call:

arrayName[index];

Pretty simple. If you try and use an index that is outside the boundaries of the
array, a run-time error occurs. If we change the program to count to an index of
21 instead of the actual array length of 20, we would end up getting an error
message like this:

java.lang.ArrayIndexOutOfBoundsException: 20
 at powersOf2.main(powersOf2.java:10)

This is a pretty common error in any programming language. You need to use
some form of exception handling to watch for this problem unless you are posi-
tive you can create code that never does this (in your dreams). See Chapter 7 for
additional information on exception handling.

Multidimensional Arrays
Multidimensional arrays are created in Java in using arrays of arrays. Here are a
few examples of how you can implement multidimensional arrays:

int intArray[][];
String Names[][];

We can even do the same things we did with a single dimension array. We can
set the array sizes and even fill in values while we declare the arrays:

int intArray[][] = new int[10][5];
String Names[][] = new String[25][3];

int intArray[][] = {{2, 3, 4} {1, 2, 3}};
String Names[][] = {{"Jon", "Smith"}{"Tony", "Potts"}{"Dave", "Friedel"}};

We can also create arrays that are not “rectangular” in nature. That is, each array within
the main array can have a different number of elements. Here are a few examples:

int intArray[][] = {{1, 2} {1, 2, 3} {1, 2, 3, 4}};
String Names[][] = {{"Jon", "Smith"} {"Tony","A", "Potts"} {"Dave", "H",
 "Friedel", "Jr."}};

86 Chapter 3

Accessing the data in a multidimensional array is not much more difficult than
accessing data in a single-dimensional array. You just need to track the values for
each index. Be careful though, as you add dimensions, it becomes increasingly
easy to create out of bounds errors. Here are a few examples of how you can
declare multidimensional arrays, assign values, and access array elements:

int intArray[][] = new int[10][5]; // Declare the arrays
String Names[][] = new String[25][3];

intArray[0][0] = 5; // Assign values
intArray[7][2] = 37;
intArray[7][9] = 37; // This will cause an out of bounds error!
Names[0][0] = "Bill Gates";
// Access an array element in a Java statement
System.out.println(Names[0][0]);

We will cover variables and declarations in more detail in Chapter 5, but you
should have enough knowledge now to be able to run a few basic programs and
get the feel for Java programming.

Using Command-Line Arguments
Programming with command-line arguments is not a topic you’d typically ex-
pect to see in a chapter on basic data types and variable declarations. However,
because we’ve been using command-line arguments with some of the sample
programs we’ve been introducing, we thought it would be important to discuss
how this feature works in a little more detail.

Command-line arguments are only used with Java applications. They provide a
mechanism so that the user of an application can pass in information to be used
by the program. Java applets, on the other hand, read in parameters using HTML
tags as we learned in Chapter 2. Command-line arguments are common with
languages like C and C++, which were originally designed to work with com-
mand-line operating systems like Unix.

The advantage of using command-line arguments is that they are passed to a
program when the program first starts, which keeps the program from having to
query the user for more information. Command-line arguments are great for
passing custom initialization data.

Java Language Fundamentals 87

Passing Arguments
The syntax for passing arguments themselves to a program is extremely simple.
Just start your programs as you usually would and add any number of argu-
ments to the end of the line with each one separated by a space. Here is a sample
call to a program named “myApp”:

Java myApp open 640 480

In this case, we are calling the Java run-time interpreter and telling it to run he class
file “myApp.” We then are passing in three arguments: “open,” “640,” and “480.”

If you wanted to pass in a longer string with spaces as an argument, you could.
In this case, you enclose the string in quotation marks and Java will treat it as a
single argument. Here is an example:

Java myApp "Nice program!" "640x480"

Once again the name of the program is “myApp.” However, this time we are
only sending it two arguments: “Nice program!” and “640x480.” Note that the
quotes themselves are not passed, just the string between the quotes.

Reading in Arguments
Now that we know how to pass arguments, where are they stored? How can we
see them in our application? If you’ll recall, all applications have a main() method.
You should also notice that this method has an interesting argument structure:

public static void main(String args[]) {
 ...
}

Here, main() indicates that it takes an array named args[] of type String. Java
takes any command-line arguments and puts them into the args[] string array.
The array is dynamically resized to hold just the number of arguments passed,
or zero if none are passed. Note that the use of the args identifier is completely
arbitrary. You can use any word you want as long as it conforms to the Java
naming rules. You can even get a little more descriptive, like this:

88 Chapter 3

public static void main(String commandLineArgumentsArray[]) { ...

That may be a bit much, but you will never get confused as to what is in the array!

Accessing Arguments
Once we’ve passed in the arguments to an application and we know where they
are stored, how do we get to them? Since the arguments are stored in an array,
we can access them just like we would access strings in any other array. Let’s look
at a simple application that takes two arguments and prints them out:

class testArgs {
 public static void main(String args[]) {
 System.out.println(args[0]);
 System.out.println(args[1]);
 }
}

If we use this command line statement to run the application

java testArgs hello world

we’d get this output:

hello
world

Now, try this command line:

java testArgs onearg

Here is the result:

onearg
java.lang.ArrayIndexOutOfBoundsException: 1
 at testArgs.main(testArgs.java:4)

What happened? Since we only were passing a single argument, the reference to
args[1] is illegal and produces an error.

Java Language Fundamentals 89

So, how do we stop from getting an error? Instead of calling each argument in
line, we can use a for loop to step through each argument. We can check the
args.length variable to see if we have reached the last item. Our new code will
also recognize if no arguments have been passed and will not try and access the
array at all. Enough talking, here is the code:

class testArgs {
 public static void main(String args[]) {
 for (int i = 0; i < args.length; i++) {
 System.out.println(args[i]);
 }
 }
}

Now, no matter how many arguments are passed (or none) the application can
handle it.

Indexing Command-Line Arguments
Don’t forget that Java arrays are zero based, so the first com-
mand-line argument is stored at position 0 not position 1.
This is different than some other languages like C where the
first argument would be at position 1. In C, position 0 would
store the name of the program.

Dealing with Numeric Arguments
One more thing we should cover here is how to deal with numeric arguments. If
you remember, all arguments are passed into an array of strings so we need to
convert those values into numbers.

This is actually very simple. Each data type has an associated class that pro-
vides methods for dealing with that data type. Each of these classes has a method
that creates a variable of that type from a string. Table 3.9 presents a list of
those methods.

Make sure you understand the difference between the parse*() methods and
the valueOf() methods. The parsing methods return just a value that can be
plugged into a variable or used as part of an expression. The valueOf() meth-
ods return an object of the specified type that has an initial value equal to the
value of the string.

90 Chapter 3

Table 3.9 Classes and Their Associated Methods for Handling Data Types

Class Method Return

Integer parseInt(String) An integer value

Integer valueOf(String) An Integer object initialized to the value
represented by the specified String

Long parseLong(String) A long value

Long valueOf(String) A Long object initialized to the value rep
resented by the specified String

Double valueOf(String) A Double object initialized to the value
represented by the specified String

Float valueOf(String) A Float object initialized to the value rep
resented by the specified String

Chapter4
Operators,
Expressions,
and Control
Structures

93

Operators,
Expressions,
and Control
Structures
To build useful Java programs you’ll need to
master the art of using operators, expres-
sions, and control structures.

4
N ow that you know about the types of data you can use in Java, you need to
learn how to manipulate your data. The tools for manipulating data fall into
three categories—operators, expressions, and control structures—each playing a
more powerful role as you move up the ladder. In this chapter, we’ll discuss each
of the key Java operators—everything from assignment statements to bitwise
operators. Although Java operators are very similar to C/C++ operators, there
are a few subtle differences which we’ll point out. Next, we’ll show you the
basics for creating expressions with Java. Finally, in the last part of the chapter,
we’ll investigate the world of Java control structures.

Using Java Operators
Operators allow you to perform tasks such as addition, subtraction, multiplica-
tion, and assignment. Operators can be divided into three main categories: assign-
ment, integer, and boolean operators. We’ll explore each Java operator in detail by
examining each of the three categories. But first, let’s cover operator precedence.

Operator Precedence
As you are writing your code, you need to keep in mind which operators have
precedence over the others—the order in which operators take effect. If you are

94 Chapter 4

an experienced programmer or you can remember some of the stuff you learned
in your high school algebra classes, you shouldn’t have any problem with under-
standing the principles of operator precedence. The basic idea is that the out-
come or result of an expression like this

x = 5 * (7+4) - 3;

is determined by the order in which the operators are evaluated by the Java com-
piler. In general, all operators that have the same precedence are evaluated from
left to right. If the above expression were handled in this manner, the result
would be 36 (multiply 5 by 7, add 4, and then subtract 3). Because of prece-
dence, we know that some operators, such as (), are evaluated before operators
such as *. Therefore, the real value of this expression would be 52 (add 7 and 4,
multiply by 5, and then subtract 3).

The actual rules for operator precedence in Java are nearly identical to those
found in C/C++. The only difference is that C/C++ includes a few operators,
such as ->, that are not used in Java. Table 4.1 lists the major operators in order
of precedence. Notice that some operator symbols such as (-) show up twice.

Table 4.1 Operator Precedence with Java

Operators Operator Type

() [] . Expression

++ -- ! - ~ Unary

* / % Multiplicative

+ - Additive

<< >> >>> Shift

< <= > >= Relational (inequality)

== != Relational (equality)

& Bitwise ADD

^ Bitwise XOR

| Bitwise OR

&& Logical AND

|| Logical OR

?: Conditional

= *= /= %= += -= <<= >>= &= |= ^= Assignment

Operators, Expressions, and Control Structures 95

The reason for this is because the operator has different meanings depending on
how it is used in an expression. For example, in an expression like this

x = 7 + -3;

the (-) operator is used as a unary operator to negate the value 3. In this case, it
would have a higher precedence than a standard additive operator (+ or -). In an
expression like this, on the other hand,

x = 7 - 3 + 5;

the (-) operator is used as a binary additive operator, and it shares the same
precedence with the (+) operator.

Which Operators Are Missing?
If you are an experienced C/C++ programmer, you’re prob-
ably wondering what operators used in C/C++ are not avail-
able in Java. The ones missing are the four key data access and
size operators shown in Table 4.2. These operators are not
needed because Java does not support pointers and does not
allow you to access memory dynamically. As we learned in
Chapter 2, Java uses garbage collection techniques to provide
its own internal system of memory management.

Assignment Operators
The most important and most often used operator is the assignment operator
(=). This operator does just what it looks like it should do; it takes whatever
variable is on the left and sets it equal to the expression on the right:

i = 35;

Table 4.2 C/C++ Operators Missing from Java

Operator Description

* Performs pointer indirection

& Calculates the memory address of a variable

-> Allows a pointer to select a data structure

sizeof Determines the size of an allocated data structure

96 Chapter 4

The expression on the right can be any valid Java expression—a literal, an equa-
tion with operands and operators, a method call, and so on. When using an
assignment operator, you must be careful that the variable you are using to re-
ceive the expression is the correct size and type to receive the result of the expres-
sion on the right side. For example, statements like the following could cause
you a lot of headaches:

short count;
// This number is way too big for a short type!
count = 500000000000;

char ch;
// Oops! We should be assigning a character here
ch = 100;

In the first example, the variable count is declared as a short, which means that
the variable can only hold a number as large as 32767. Obviously, the number
being assigned to the variable is way too large. In the second example, the vari-
able ch expects to receive a character but in reality is assigned something else
entirely.

If you look closely at the last line in Table 4.1, you’ll see that Java offers a num-
ber of variations of the standard assignment statement. They are all borrowed
from the C language. An assignment statement like this

num *= 5;

would be equivalent to this expression:

num = num * 5;

The combination assignment operators turn out to be very useful for writing
expressions inside loops that perform counting operations. Here’s an example:

While (i <= count)
{
 i += 2; // Increment the counting variable
 ...
}

Operators, Expressions, and Control Structures 97

In this case i is used as the loop “counting” control variable, and it is incremented
by using a combination assignment statement.

Integer Operators
In the category of integer operators, there are two flavors to choose from: unary
and binary. A unary operator performs a task on a single variable at a time.
Binary operators, on the other hand, must work with two variables at a time.
Let’s start with the unary operators.

UNARY OPERATORS
There are four integer unary operators: negation, bitwise complement, increment,
and decrement. They are used without an assignment operation. They simply
perform their operation on a given variable, changing its value appropriately.

NEGATION (-)
Unary negation changes the sign of an integer. You must be careful when reach-
ing the lower limits of integer variables because the negative limit is always one
greater than the positive limit. So, if you had a variable of type byte with a value
of -256 and you performed a unary negation on it, an error will occur because
the byte data type has a maximum positive value of 255. Here are some ex-
amples of how this operator can be used:

- k;
-someInt;
x = -50 + 10;

As we learned earlier, the negation operator is at the top end of the precedence
food chain; thus, you can count on operands that use it to be evaluated first.

BITWISE COMPLEMENT (~)
Performing a bitwise complement on a variable flips each bit of the variable—all
1s become 0s and all 0s become 1s. For strict decimal calculations, this operator
is not used very often. But if you are working with values that represent bit
settings, such as an index into a color palette, this type of operator is invaluable.
Here is an example of the unary complement operator in action:

// input: byte type variable bitInt = 3 (00000011 in binary)
~bitInt;
// Output: bitInt = 252 (11111100 in binary)

98 Chapter 4

INCREMENT (++) AND DECREMENT (- -)
The increment and decrement operators are very simple operators that simply
increase or decrease an integer variable by 1 each time they are used. These
operators were created as a shortcut to saying x=x+1. As we’ve already men-
tioned, they are often used in loops where you want a variable incremented or
decremented by one each time a loop is completed. Here is an example of how
each operator is used:

++intIncrement;
--intDecrement;

BINARY OPERATORS
When you need to perform operations that involve two variables, you will be
dealing with binary operators. Simple addition and subtraction are prime ex-
amples of binary operators. These operators do not change the value of either of
the operands, instead they perform a function between the two operands that is
placed into a third. Table 4.3 lists the complete set of the binary integer opera-
tors. Let’s look at each of these operators in detail.

ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION
These operators are the standard binary operators that we have all used since
we started programming. We won’t explain the theory behind algebra be-

Table 4.3 The Binary Integer Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<< Left Shift

>> Right Shift

>>> Zero-Fill Right Shift

Operators, Expressions, and Control Structures 99

cause we assume you already know this stuff. We will, however, give you a
few examples:

// X=12 and Y=4
Z = X + Y; // Answer = 16
Z = X - Y; // Answer = 8
Z = X * Y; // Answer = 48
Z = X / Y; // Answer = 3

MODULUS
The modulus operator divides the first operand by the second operand and
returns the remainder:

// X=11 and Y=4
Z = X % Y; // Answer = 3

BITWISE OPERATORS
The bitwise binary operators perform operations at the binary level on integers.
They act much like custom if..then statements. They compare the respective bits
from each of the operands and set the corresponding bit of the return variable to
a 1 or 0 depending on which operator is used. The AND operator works as
follows: “if both bits are 1 then return a 1, otherwise return a 0.” The OR
operators works like this: “if either bit is a 1 then return a 1, otherwise return a
0.” Finally, the XOR operator works like this: “if the bits are different return a 1,
if they are the same return a 0.” Table 4.4 provides a set of examples that illus-
trate how each bitwise operator works.

And here are some code examples to show you how to incorporate bitwise op-
erators into your Java statements:

// X=3 (00000011)
// Y=2 (00000010)
Z = X & Y; // Answer: Z = 2X 00000011

 // Y 00000010
 // Z 00000010

Z = X | Y; // Answer: Z = 3X 00000011
 // Y 00000010
 // Z 00000011

Z = X ^ Y; // Answer: Z = 1X 00000011
 // Y 00000010
 // Z 00000001

100 Chapter 4

Boolean Operators
The boolean data type adds several new operators to the mix. All of the opera-
tors that can be used on boolean values are listed in Table 4.5.

BOOLEAN NEGATION (!)
Negation of a boolean variable simply returns the opposite of the boolean value.
As you might have guessed, boolean negation is a unary operation. Here’s an
example:

// Bool1 = True
!Bool1; // Answer: Bool1 = False

LOGICAL AND (&), OR (|), & XOR (^)
The AND, OR, and XOR operators work identically to the way they do with
integer values. However, they only have a single bit to worry about:

Bool2 = true;
Bool3 = true;

Table 4.4 Using the Java Bitwise Operators

Operand 1 Operand 2 Bitwise Operator Return

1 1 AND True

1 0 AND False

0 1 AND False

0 0 AND False

1 1 OR True

1 0 OR True

0 1 OR True

0 0 OR False

1 1 XOR False

1 0 XOR True

0 1 XOR True

0 0 XOR False

Operators, Expressions, and Control Structures 101

Bool4 = False;
Bool5 = False;
Bool1 = Bool2 & Bool3; // Answer: Bool1 = True
Bool1 = Bool2 & Bool4; // Answer: Bool1 = False
Bool1 = Bool2 | Bool3; // Answer: Bool1 = False
Bool1 = Bool2 | Bool4; // Answer: Bool1 = True
Bool1 = Bool3 ^ Bool4; // Answer: Bool1 = False
Bool1 = Bool4 ^ Bool5; // Answer: Bool1 = True

EVALUATION AND (&&) AND OR (||)
The evaluation AND and OR are a little different than the logical versions. Using
these operators causes Java to avoid evaluation of the righthand operands if it is
not needed. In other words, if the answer can be derived by only reading the first
operand, Java will not bother to read the second. Here are some examples:

// op1 = True op2 = False
result = op1 && op2; // result=False-both ops are evaluated
result = op2 && op1; // result=False-only first op is evaluated

result = op1 || op2; // result=True-only first op is evaluated
result = op2 || op1; // result=True-both ops are evaluated

Table 4.5 Java Boolean Operators

Operator Operation

! Negation

& Logical AND

| Logical OR

^ Logical XOR

&& Evaluation AND

|| Evaluation OR

== Equal to

!= Not Equal to

&= And Assignment

|= OR Assignment

^= XOR Assignment

?: Ternary (Conditional)

102 Chapter 4

EQUAL TO (==) AND NOT EQUAL TO (!=)
These operators are used to simply transfer a boolean value or transfer the oppo-
site of a boolean value. Here are a few examples:

op1 = True;
if (result == op1); // Answer: result = true
if (result != op1); // Answer: result = false

ASSIGNMENT BOOLEAN OPERATORS (&=), (|=), (^=)
Boolean assignment operators are a lot like the assignment operators for inte-
gers. Here is an example of an assignment being used on both an integer and a
boolean so that you can compare the two:

i += 5; // Same as int = int + 5
bool &= true; // Same as bool = bool & true
bool |= true; // Same as bool = bool | true
bool ^= false; // Same as bool = bool ^ false

TERNARY OPERATOR

This powerful little operator acts like an extremely condensed if..then statement. If
you look at the example below you will see that if the operand is True, the expres-
sion before the colon is evaluated. If the operand is False, the expression after the
colon is evaluated. This type of coding may look a little strange at first. But once
you understand the logic, you’ll begin to see just how useful this operator can be.
In the following example, the parentheses are not actually needed, but when you
use more complicated expressions they will make the code much easier to follow:

// op1 = True op2 = False
op1 ? (x=1):(x=2); // Answer: x=1
op2 ? (x=1):(x=2); // Answer: x=2

Floating-Point Number Operators
Almost all of the integer operators work on floating-point numbers as well, with a
few minor changes. Of course, all the standard arithmetic operators (+, -, *, /)
work as well as the assignment operators (+=, -=, *=, /=). Modulus (%) also works;
however, it only evaluates the integer portion of the operands. The increment and
decrement operators work identically by adding or subtracting 1.0 from the inte-
ger portion of the numbers. Be careful when using relational operators on float-
ing-point numbers. Do not make assumptions about how the numbers will

Operators, Expressions, and Control Structures 103

behave just because integers behave a certain way. For example, just because an
expression like a==b may be true for two floating-point values, don’t assume that
an expression like a<b || a>b will be true. This is because floating-point values
are not ordered like integers. You also have to deal with the possibility of a
floating-point variable being equal to negative or positive infinity, -Inf and Inf,
respectively. You can get a positive or negative Inf when you perform an opera-
tion that returns an overflow.

Using Casts
In some applications you may need to transfer one type of variable to another.
Java provides us with casting methods to accomplish this. Casting refers to the
process of transforming one variable of a certain type into another data type.

Casting is accomplished by placing the name of the data type you wish to cast a
particular variable into in front of that variable in parentheses. Here is an ex-
ample of how a cast can be set up to convert a char into an int:

int a;
char b;
b = 'z';
a = (int) b;

Since the variable a is declared as an int, it expects to be assigned an int value.
The variable b, on the other hand, is declared as a char. To assign the contents of
b to a, the cast is used on the right side of the assignment statement. The con-
tents of b, the numeric value of the character ‘z’ is safely assigned to the variable
a as an integer. If you wanted to, you could perform the cast in reverse:

short a;
char b;
a = 40;
b = (char) a; // Convert value 40 into a character

Casting is extremely simple when you are using the primitive data types—int,
char, short, double, and so on. You can also cast classes and interfaces in Java,
which we’ll show you how to do in Chapter 5.

The most important thing to remember when using casts is the space each vari-
able has to work with. Java will let you cast a variable of one data type into a

104 Chapter 4

variable of a different data type if the size of the data type of the target variable is
smaller than the other data type, but you may not like the result. Does this sound
confusing? Let’s explain this a little better. If you had a variable of type long, you
should only cast it into another variable of type float or double because these data
types are the only other two primitives with at least 64-bits of space to handle your
number. On the other hand, if you had a variable of type byte, then you could cast
it into any of the other primitives except boolean because they all have more space
than the lowly byte. When you are dealing with double variables, you are stuck,
since no other data type offers as much space as the double.

If you have to cast a variable into another variable having less space, Java will do
it. However, any information in the extra space will be lost. On the plus side
though, if the value of a larger variable is less than the maximum value of the
variable you are casting into, no information will be lost.

Writing Expressions and Statements
So far we’ve been more or less looking at operators, literals, and data types in a
vacuum. Although we’ve used these components to write expressions, we haven’t
formally defined what Java expressions are. Essentially, expressions are the Java
statements that make your code work; they are the guts of your programs. A basic
expressions contains operands and operators. For example, in this expression

i = x + 10;

the variable x and the literal 10 are the operands and + is the operator. The evalu-
ation of an expression performs one or more operations that return a result. The
data type of the result is always determined by the data types of the operands(s).

When multiple operands are combined, they are referred to as a compound ex-
pression. The order in which the operators are evaluated is determined by the
precedence of the operators that act upon them. We discussed precedence earlier
and showed you the relative precedence of each Java operator.

The simplest form of expression is used to calculate a value, which in turn is
assigned to a variable in an assignment statement. Here are a few assignment
statements that use expressions that should look very familiar to you by now:

i = 2;
thisString = "Hello";

Operators, Expressions, and Control Structures 105

Here are a few assignment statements that are a little more involved:

Bool1 != Bool2;
i += 2;
d *= 1.9
Byte1 ^= Byte2;

An assignment expression involves a variable that will accept the result, followed
by a single assignment operator, followed by the operand that the assignment
operator is using.

The next step up the ladder is to create expressions that use operators like the
arithmetic operators we have already discussed:

i = i + 2;
thisString = "Hello";

Expressions with multiple operands are probably the most common type of ex-
pressions. They still have a variable that is assigned the value of the result pro-
duced by evaluating the operands and operators to the right of the equal sign.
You can also have expressions with many operators and operands like this:

i = i + 2 - 3 * 9 / 3;
thisString = "Hello" + "World, my name is " + myName;

The art of programming in Java involves using operators and operands to build
expressions, which are in turn used to build statements. Of course, the assign-
ment statement is just one type of statement that can be constructed. You can
also create many types of control statements, such as while and for loops, if-then
decision making statements, and so on. (We’ll look at all of the control state-
ments that can be written in Java in the last part of this chapter.)

There are essentially two types of statements you can write in Java: simple and com-
pound. A simple statement performs a single operation. Here are some examples:

int i; // Variable declaration
i = 10 * 5; // Assignment statement
if (i = 50) x = 200; // if-then decision statement

The important thing to remember about simple statements in Java is that they
are always completed with a semicolon (;). (Some of the others like class declara-

106 Chapter 4

tions and compound if..else statements don’t need semicolons, but if you leave it
off the end of an expression, you’ll get an error.)

Compound statements involve the grouping of simple statements. In this case,
the characters ({ }) are used to group the separate statements into one compound
statement. Here are a few examples:

while (x < 10)
{
 ++x;
 if (sum < x) printline();
}

if (x < 10)
{
 i = 20;
 p = getvalue(i);
}

Notice that the (;) terminating character is not used after the final (}). The braces
take care of this for us.

Control Flow Statements
Control flow is what programming is all about. What good are basic data types,
variables, and casting if you don’t have any code that can make use of them? Java
provides several different types of control flow structures. These structures pro-
vide your application with direction. They take an input, decide what to do
with it and how long to do it, and then let expressions handle the rest.

Let’s look at each of these structures in detail. If you have done any program-
ming before, all of these should look familiar. Make sure you study the syntax so
that you understand exactly how they work in Java as compared to how they
work in other languages.

Table 4.6 lists all of the standard control flow structures, and it shows you what
the different parts of their structure represent.

if..else
The if..else control structure is probably used more than all the others com-
bined. How many programs have you written that didn’t include one? Not very
many, we’ll wager.

Operators, Expressions, and Control Structures 107

In its simplest terms, the if..else structure performs this operation: if this is true
then do that otherwise do something else. Of course, the “otherwise” portion is
optional. Since you probably already know what if..else statements are used for,
we will just show you a few examples so you can see how they work in Java.

Here is the structure labeled with standard terms:

if (boolean) statement
else statement;

Here is a sample of what an if..else statement might look like with actual code:

if (isLunchtime) {
 Eat = true;
 Hour = 12;
}
else {
 Eat = False;
 Hour = 0;
}

Table 4.6 Control Flow Structures

Structure Expression

if..else if (boolean = true) statement

else statement;

while while (boolean = true) statement;

do..while do statement while (boolean = true);

switch switch (expression) {

case expression: statement;

case expression: statement;

...

default: statement;

}

for for (expression1; expression2; expression3)

statement;

label label: statement

break label;

continue label;

108 Chapter 4

You can also use nested if..else statements:

if (isLunchtime) {
 Eat = true;
 Hour = 12;
}
else if (isBreakfast) {
 Eat = true;
 Hour = 6;
 }
 else if (isDinner) {
 Eat = true;
 Hour = 18;
 }
 else {
 Eat = false;
 Hour = 0;
 }

The curly braces are used when multiple statements need to take place for each
option. If we were only performing a single operation for each part of the if..else
statement, we would not need the braces. Here is an example of an if..else state-
ment that uses curly braces for one part but not the other:

if (isLunchtime) {
 Eat = true;
 Hour = 12;
}
else Eat = False;

while and do..while
The while and do..while loops perform the same function. The only difference
is that the while loop verifies the expression before executing the statement, and
the do..while loop verifies the expression after executing the statement. This is a
major difference that can be extremely helpful if used properly.

Here are the structures labeled with standard terms:

while (boolean) {
 statement;
}

Operators, Expressions, and Control Structures 109

do {
 statement
} while(boolean);

while and do..while loops are used if you want to repeat a certain statement or
block of statements until a certain expression becomes false. For example, as-
sume you wanted to send e-mail to all of the people at a particular Web site. You
could set up a while loop that stepped through all the people, one-by-one, send-
ing them e-mail until you reached the last person. When the last person is reached,
the loop is terminated and the program control flow moves on to the statement
following the loop. Here is what that loop might look like in very simple terms:

boolean done = false;

while (!done){
 emailUser();
 goNextuser();
 if (noNewuser) done = true;
}

switch
The switch control flow structure is useful when you have a single expression
with many possible options. The same thing can be done using recursed if..else
statments, but that can get very confusing when you get past just a few options.
The if..else structure is also difficult to change when it becomes highly nested.

The swtich statement is executed by comparing the value of an initial expression
or variable with other variables or expressions. Let’s look at the labeled structure:

switch(expression) {
 case expression: statement;
 case expression: statement;
 case expression: statement;
 default: statement;
}

Now let’s look at a real piece of code that uses the switch structure:

char age;

110 Chapter 4

System.out.print("How many computers do you own? ");
age = System.in.read();
switch(age) {
 case '0':
 System.out.println("\nWhat are you waiting for?");
 break;
 case '1':
 System.out.println("\nIs that enough these days?");
 break;
 case '2':
 System.out.println("\nPerfect!");
 break;
 default:
 System.out.println("\nToo much free time on you hands!");
}

The break statement is extremely important when dealing with switch struc-
tures. If the switch finds a case that is true, it will execute the statements for that
case. When it is finished with that case, it will move on to the next one. This
process continues until a match is found or the default statement is reached.
The break statement tells the switch “OK, we found a match, let’s move on.”

The default clause serves as the “catch-all” statement. If all of the other cases fail,
the default clause will be executed.

for
for loops are another programming standard that would be tough to live with-
out. The idea behind a for loop is that we want to step through a sequence of
numbers until a limit is reached. The loop steps through our range in whatever
step increment we want, checking at the beginning of each loop to see if we have
caused our “quit” expression to become true.

Here is the labeled structure of a for loop:

for (variable ; expression1 ; expression2);

The variable we use can either be one we have previously created, or it can be
declared from within the for structure. Expression1 from the above example is
the expression we need to stay true until the loop is finished. More often than
not, this expression is something like x<10 which means that we will step through

Operators, Expressions, and Control Structures 111

the loop until x is equal to 10 at which time the expression (x<10) becomse false
and drops us out of the loop.

Here is an example of a for loop that actually works:

for (int x = 0 ; x < 10 ; x++) {
System.out.println(x);

}

If you put this code into an empty main method you should get the following
output:

0
1
2
3
4
5
6
7
8
9

For loops are used for many different applications. They are a necessity when dealing
with arrays and can really help when creating lookup tables or indexing a database.

labels
Java labels provide a means of controlling different kinds of loops. Sometimes,
when you create a loop, you need to be able to break out of it before it finishes
on its own and satisfies its completion expression. This is where labels come in
very handy.

The key to labels is the break statement that you learned to use with the switch
statement. You can also use the break statement to exit out of any loop. It is
great for breaking out of for loops and while loops especially.

However, sometimes you have embedded loops and you need to be able to break
out of a certain loop. A great example of this is two embedded for loops that are
setting values in an array. If an error occurs or you get a strange value, you may
want to be able to break out of one loop or another. It gets confusing if you have

112 Chapter 4

all these embedded loops and break statements all over with no apparent link to
one loop or another. labels rectify this situation.

To use a label, you simply place an identifier followed by a colon at the beginning
of the line that initiates a loop. Let’s look at an example before we go further:

outer: for (int x = 0 ; x < 10 ; x++) {
 inner: for (int y = 0 ; y < 10 ; y++) {

 System.out.println(x + y);
 if (y=9) {
 break outer:
 } else {
 continue outer:
 }
 }
}

Labels are probably new to most of you, so you may not see a need for them
right away. However, as your programs become more complicated you should
think about using lables where appropriate to make your code simple and
more readable.

Moving Ahead
We covered a lot of ground in this chapter and the previous one. If you are
new to Java programming and have little C or C++ background, make sure
you understand these concepts well so that you do not get confused in the
upcoming chapters.

Let’s now move on and discuss another basic structure of Java programming. In
fact, we would have to call it the basic structure of Java programming—the class.

Index

A
Abstract classes, 33, 121, 158
Abstract methods, 132
Abstract Window Toolkit, 32
Action() method, 294
Add method, 274
Addition, 98
Addressing

Internet, 353
Animation

buffering, 40
speed, 26

API documentation, 64
Applet class

hierarchy, 288
methods available, 288
methods derived, 290

Applets, 5, 6
browser interaction, 294
class, 287
closing, 51
compiling, 53
defined, 21
drawbacks, 291
file access, 292
file execution, 292
fonts, 43
images, 298
navigation sample, 293
network communication, 292
package, 31

parameters, 39
passing information, 367
sounds, 297
tags, 39
threading, 51
ticker tape sample, 22
vs. applications, 21

Appletviewer, 7
Applications

command line arguments, 86
defined, 21
networking, 353
sample menu, 268
vs. applets, 21

Architecture natural, 5
Arguments

accessing, 88
indexing, 89
numeric, 89
passing, 87
reading, 87

Arrays, 16, 82
accessing data, 86
declaring, 82
elements, 83
indexing, 85
multidimensional, 85
sizing, 83

Assignment boolean operators, 102
Assignment operators, 93, 95
Audio clips, 297
AWT, 31, 227

AWTError, 191

403

404 Index

class hierarchy, 230
components, 229
defined, 32
importing, 228
layout manager, 228
menus, 229

B
Bandwidth considerations, 360
Binary, 97
Binary integer operators, 99
Binary operators, 98
Bitwise complement, 97
Bitwise operators, 99
Blocking, 217
Body (class), 128
Boolean data type, 78
Boolean operators

assignment, 102
evaluation, 101
logical, 100
negation, 100
ternary, 102

BorderLayout class, 274
declaration, 275
methods, 275

Break statement, 110
Browsers

HotJava, 6
Netscape, 26

BufferedInput Stream class, 327
BufferedOutputStream class, 327
Buffering, 40, 45
Button class

declaration, 243
getLabel(), 244
hierarchy, 243
setLabel(), 244

Buttons, 32
Byte streams, 321
Byte type, 76
ByteArrayInputStream class, 328

ByteArrayOutputStream class, 328
Bytecodes, 5, 53

C
Canvas class

declaration, 245
hierarchy, 244
paint(), 245

CardLayout class, 282
declaration, 282
methods, 282

Case-sensitivity
declarations, 36
package names, 171
parameters, 40
variable names, 36

Casting
interfaces, 165
vs. creating, 151

Casts, 103
Catch statements, 187
Catch() method, 185
Catching errors, 186
CGI. See Common Gateway

Interface
Char data type, 79
Character arrays, 16
Character literals, 73
Checkbox class, 245

declaration, 246
getCheckboxGroup(), 247
getLabel(), 247
getState(), 247
hierarchy, 246
setCheckboxGroup(), 247
setLabel(), 247
setState(), 247

Choice class, 247
addItem(), 249
countItems(), 249
declaration, 248, 251
getItem(), 249

Index 405

getSelectedIndex(), 249
getSelectedItem(), 249
hierarchy, 248, 250
methods, 251
select(), 250

Classes, 5
abstract, 33, 121, 158
advantages, 116
applet, 287
body, 128
bufferedInputStream, 328
bufferedOutputStream, 327
button, 243
byteArrayInputStream, 328
byteArrayOutputStream, 328
canvas, 244
casting, 150
checkbox, 245
choice, 247
component, 290
container, 290
dataInputStream, 330
dataOutputStream, 330
declaring, 116
defined, 32
documenting, 63
error, 191
event, 304
exception, 193
extending, 124
fileInputStream, 333
fileOutputStream, 333
filterInputStream, 335
filterOutputStream, 335
final, 33, 123
flowLayout, 271
frame, 235
fully qualified name, 118
hiding, 177
identifiers, 124
importing packages, 176
InetAddress, 354
inputStream, 325
label, 241

lineNumberInputStream, 337
list, 250
menuItem, 265
modifiers, 33, 119
name space, 34, 129
naming, 124
networking, 353
object, 34
outputStream, 325
panel, 238
pipedInputStream, 339
pipedOutputStream, 339
printStream, 340
private, 33
protocols, 158
public, 33, 120
pushbackInputStream, 342
runtime, 194
scrollbar, 258
sequenceInputStream, 342
socket, 355
stringBufferInputStream, 343
super(), 142
superclass, 34
System, 321
textArea, 253
textField, 253
throwable, 182
URL, 364
variables, 148
WriteAFile, 185

CLASSPATH, 171, 173, 174
Client, 350
Client/server technology, 350
Code parameter, 27
Color method, 37
Command line arguments, 86

indexing, 89
numeric, 89
passing arguments, 87
reading, 87

Comments, 30
styles, 59
tags, 67

406 Index

Common Gateway Interface, 10
Compilers, 7, 53
Component class

bounds(), 232
disable(), 232
enable([Boolean]), 232
getFontMetrics(), 232
getGraphics(), 232
getParent, 232
handleEvent(Event evt), 232
hide(), 233
inside(int x, int y), 233
isEnabled(), 233
isShowing(), 233
isVisible(), 233
locate(int x, int y), 233
location(), 233
move(int x, int y), 233
repaint(), 233
resize(), 234
setFont(), 234
show([Boolean]), 234
size(), 235

Components, 60
Compound expressions, 104
Compound statements, 106
Constructors, 37, 138

body, 146
calling, 140
declaring, 140
FontMetrics, 48
Java default, 142
modifiers, 143
object creation, 148
protected, 143
public, 143
return type, 139

Container class, 290
Control flow, 106
Control structures

do...while, 108
for, 110
if...else, 106
labels, 111

list of, 107
switch, 109
while, 108

Controls, 229
buttons, 243
canvas, 244
checkbox, 245
components, 231
frame, 235
label, 241
layout manager, 270
lists, 250
menus, 229, 263
panel, 238
pop-up menus, 247
scrollbar, 258
text areas, 253
text fields, 253

Converting values
casting, 150

D
Data types, 35

boolean, 78
byte, 76
casting, 103
char, 79
double, 78
float, 78
int, 71, 77
long, 71, 77
separators, 75
short, 76
string, 79
variables, 76

DataInputStream class, 330
DataOutputStream class, 330
Debugging, 181
Decrement operator, 98
Destroy() method, 222
Developers Kit, 17
Directories

Index 407

search path, 174
Disassembler program, 17
Distributed programming, 6
Distributed software, 10
Division, 98
Do...while, 108
Doc comment clauses, 119
Documenting classes, 63
Double buffering, 45
Double data type, 78

E
Encapsulation, 43
Equal to operators, 102
Error handling, 181
Errors

catching, 186
checking, 323
file not found, 189
input/output, 185
throws, 133
try clauses, 186

Evaluation operators, 101
Event class, 304

methods, 306
variables, 305

Event handling, 53
Events

hierarchy, 313
processing problems, 318
system, 315
types, 304

Exceptions, 15, 181, 182
class, 193
creating, 200
error, 191
file not found, 189
finally statements, 189
handler, 182
IOException, 185
try clauses, 186
URL, 364

Executable content, 10
Export statement, 228
Expressions

assignment, 105
writing, 104

Extending classes, 124
Extends keyword, 34

F
Fatal errors, 191
File

access, 292
execution, 292
input/output, 321
saving, 173

File Transfer Protocol. See FTP
FileInputStream class, 333
FileOutputStream class, 333
FilterInputStream, 335
FilterOutputStream class, 335
Final classes, 33
Final methods, 132
Finally statement, 189
Finger protocol, 349
Float data type, 78
Floating-point, 72

operators, 102
FlowLayout class, 271

declaration, 271
methods, 273

Font metrics, 48
Fonts, 43
For loops, 110
Frame class, 235

declaration, 235
dispose(), 237
getIconImage(), 237
getMenuBar, 237
getTitle(), 237
hierarchy, 235
isResizable(), 238
remove(), 238

408 Index

setCursor(), 238
setIconImage(), 238
setMenuBar(), 238
setResizeable(), 238
setTitle(), 238

FTP, 349

G
Garbage collection, 6, 15, 37
Gateways, 355
Graphical User Interface

button class, 243
canvas class, 244
checkbox class, 245
choice class, 247
component class, 231
frame class, 235
label class, 241
lists, 250
menu class, 263
menu items, 265
menuBar class, 261
panel class, 238
scrollbar class, 258
text areas, 253
text fields, 253

Graphics methods, 46
GridBagLayout class, 278

declaration, 281
methods, 281
variables to customize, 278

GridLayout class, 276
declaration, 277
methods, 277

H
Header files, 13
Height parameter, 27
Helper programs, 17
Hexadecimal format, 71

History of Java, 8
HotJava, 6, 10
HTML. See Hyper Text Markup

Language
applet tags, 39

HTTP, 349
Hyper Text Markup Language, 25
Hyper Text Transfer Protocol. See HTTP

I
Identifiers, 65

class, 118
classes, 124
errors, 67

If...else, 106
Image buffer, 41
Images, 298
Implements clause, 126
Implements keywords, 34
Import statements, 31, 228
Including packages, 31
Increment operator, 98
Index, 84
InetAddress class, 354
Init(), 130
Input streams, 321, 324
InputStream class, 325

methods, 325
Instanceof operator, 17, 168
Int data type, 77
Integers, 71

literals, 72
operators, 93, 97

Interfaces, 34, 158
casting, 165
class, 126
declaring, 161
design issues, 160
implementation tips, 167
implementing, 161
implements clauses, 126
keyword, 161

Index 409

layout manager, 271
runnable, 34
tips on using, 165

Internet
addressing, 353
java.net package, 352
Request for Comments, 351

IOException, 324

J
Java language

advantages, 4
benefits, 11
compared to C++, 9
developer’s kit, 7, 17
history, 8
interfaces, 158
jargon, 5
tools, 8
virtual machine, 6

JAVAC, 7, 53
JAVADOC.EXE, 63
Java-enabled, 7
JAVAP, 17
JavaScript, 7
Just-in-Time compiler, 7

K
Keyboard events, 311

keyDown(), 311
keyUp(), 311

Keywords, 68
class, 124
extends, 34, 124
implements, 34, 162
interface, 161
list of keywords, 69
super, 135
this, 50, 135

L
Label class, 241

declaration, 241
getAlignment(), 242
getText(), 242
hierarchy, 241
setAlignment(), 242
setText(), 243

Labels, 111
Layout manager, 228, 270

borderLayout class, 274
cardLayout class, 282
flowLayout class, 271
gridBagLayout class, 278
gridLayout class, 276

Lexical structures, 58
comments, 59
identifiers, 65
keywords, 68
separators, 75

LineNumberInputStream class, 337
List class, 250
Literals, 71

character, 73
numeric, 71

Logical operators, 100
Long data type, 77
Long integers, 71

M
Main programs, 27
Menu class, 263

declaration, 264
hierarchy, 263
methods, 264

MenuBar class, 262
declaration, 262
hierarchy, 262
methods, 262

MenuItem class, 265

410 Index

declaration, 266
hierarchy, 266
methods, 267

Menus, 32
creating, 229

Methods, 7, 38, 130
abstract, 132
action(), 294
add(), 274
applet class, 288
body, 134
catch(), 185
color, 37
constructors, 138
createImage(), 230
declaring, 130
defined, 28
destroy(), 222
disable(), 230
documenting, 63
drawString(), 48
final, 132
getGraphics(), 41
getMessage, 198
getParameter(), 40
graphics, 46
handleEvent(), 53
hide(), 230
init(), 28, 130
main(), 87
modifiers, 131
native, 132, 292
overloading, 137
overriding, 43, 137, 170
paint(), 29, 44
parameter lists, 133
parse(), 89
private, 132
protected, 131
public, 131
resume(), 220
return type, 133
Run(), 29, 214

sleep(), 50
start(), 29
static, 132
stop(), 51, 221
suspend(), 220
synchronized, 132
throwing an exception, 194
throws, 133
valueOf(), 89
write(), 184
yield, 221

Modifiers
abstract, 121
constructor, 143
final, 123, 150
method, 131
modifiers, 33, 119
public, 120
transient, 150
volatile, 150

Modulus operator, 99
Mouse events, 304, 307

mouseDown(), 307
mouseDrag(), 309
mouseEnter(), 310
mouseExit(), 310
mouseMove(), 309
mouseUp(), 308

Multidimensional arrays, 85
Multiple inheritance, 14
Multiplication, 98
Multithreading, 7, 208

grouping, 226
synchronizing, 222

N
Name space, 129
Native methods, 132, 292
Negation operator, 97
Netscape

applet, 294
Network communication, 292

Index 411

Network News Transfer Protocol.
See NNTP

Networking, 347
between applets, 367
classes, 353
client/server, 350
concerns, 360
java.net, 352
ports, 350
protocols, 348
sockets, 355
URLs, 364

New lines, 356
NNTP, 349
Not equal to operators, 102
Numeric literals, 71

O
Object-oriented programming, 12
Objects

arrays, 82
class, 34
creation, 148
declaring, 118

Octal integers, 71
Operators, 74, 93

addition, 98
assignment, 95, 102
binary, 98
binary integer, 99
bitwise, 99
bitwise complement, 97
boolean negation, 100
compound expressions, 104
decrement, 98
division, 98
equal to, 102
evaluation, 101
floating-point, 102
increment, 98
instanceof, 17, 168
integer, 97

logical AND, 100
modulus, 99
multiplication, 98
negation, 97
not equal, 102
precedence, 93
subtraction, 98
ternary, 102

Output streams, 324
class, 325

Overloading methods, 137
Overriding methods, 137

P
Packages, 30

applet, 31
awt, 31
case sensitivity, 171
classes, 30
creating, 168
documenting, 63
import keyword, 169
java.io, 322
java.lang, 30
java.net, 352
naming, 170
public classes, 172
standard Java, 177

Paint() method, 44
Panel class, 238

declaration, 240
hierarchy, 240
setlayout(), 241

Parameter lists
constructor, 146

Parameters, 39
code, 27
height, 27
speed, 26
values, 27
width, 27

Parsing, 89

412 Index

Performance issues
threading, 51

PipedInputStream class, 339
PipedOutputStream class, 339
Pointers, 13
Ports, 350

Internet, 351
numbers, 350

Precedence (operators), 93
PrintStream class, 340
Private

constructors, 143
methods, 132

Processing parameters, 39
Protected

constructors, 143
methods, 131

Protocols
class, 158
finger, 349
FTP, 349
Internet, 351
NNTP, 349
Request for Comments, 351
SMTP, 348
TCP/IP, 348
WhoIs, 349

Public
classes, 33, 120
constructors, 143
keyword, 162
method, 131

PushbackInputStream class, 342

R
Request for Comments. See Request for

Comments
Resizing, 239
Resource allocation, 37
Resume() method, 220
Return type, 133
Returns, 356

RFCs. See Request for Comments
Run method, 214
Runnable interface, 213
Runtime class, 194

S
Savings files, 173
Scripting language, 7
Scrollbar class, 258

hierarchy, 260
methods, 260

Security, 12, 15, 292
Seprators, 75
SequenceInputStream class, 342
Servers, 350

sample, 361
setting up, 360

ServerSocket class, 360
Shadowing, 129
Short type, 76
Simple Mail Transfer Protocol.

See SMTP
Simple statements, 105
Single inheritance, 121
Sleep() method, 50, 219
Socket class, 360
Sockets, 355
Sounds, 297
Source code

saving, 173
Statements, 105

catch, 187
compound, 106
control flow, 106
finally, 189
simple, 105
switch, 109
using semi-colons, 106
writing, 104

Static methods, 132
Status bar, 296
Stop() method, 221

Index 413

Streams, 321
inputStream, 324
outputStream, 324

String arrays, 16
String type, 79
StringBufferInputStream class, 343
Subclasses, 44
Subtraction, 98
Super classes, 16
Super keyword, 135
Super(), 142
Suspend() method

suspending execution, 220
Switch, 109
Synchronized methods, 132
System class, 321

system.in, 322
System events, 315

action(), 317
handleEvent(), 317

T
Tags, 67
TCP/IP, 348
Ternary operators, 102
TextArea class, 253

declaration, 254
hierarchy, 254
methods, 255

TextField class, 253
declaration, 254
hierarchy, 254
methods, 255

This keyword, 50, 135
ThreadGroup, 226
Threads, 29, 49, 182, 207, 212

blocking, 217
creating, 211
destroy() method, 222
first in first out, 217
grouping, 226
initializing, 215

life cycle, 218
priority, 217
resuming, 220
run() method, 219
runnable interface, 213
sleep() method, 219
start() method, 219
stop() method, 221
subclassing, 212
suspending execution, 220
synchronizing, 222
when to use, 210
while loops, 210
yield() method, 221

Throws, 133
constructor, 146
exceptions, 194

Transient modifiers, 150
Transmission Control Protocol.

See TCP/IP
Try clauses, 186
Types, 76

U
Unary, 97
Unicode, 73
Uniform Resource Locator. See URLs
URLs, 364
User input, 52
User interface

component class, 231
layout manager, 271
menus, 229

V
Variable declarations, 35
Variables

constructors, 37
declarations, 79
modifiers, 149
naming, 36

414 Index

static, 149
variables, 148
vs. types, 76

Virtual machine, 6, 210
Volatile modifiers, 150

W
Web sites

Coriolis, 25
Javasoft, 54

While, 108

While loops, 210
WhoIs protocol, 349
Widening, 151
Width parameter, 27
Wild cards

hiding classes, 177
Windows, 32

Y
Yield() method, 221

	Acknowledgments
	Contents
	Forward
	Chapter 1 - Introducing Java
	The World of Java
	The Roots of Java
	The Power of Distributed Software
	Java and C++

	Chapter 2 - Writing Your First Java Applet
	Introducing the Ticker Tape Applet
	One Last Thing

	Chapter 3 - Java Language Fundamentals
	What Makes a Java Program?
	Lexical Structure
	Types and Variables
	Variable Declarations
	Using Arrays
	Using Command-Line Arguments

	Chapter 4 - Operators, Expressions, and Control Structures
	Using Java Operators
	Using Casts
	Writing Expressions and Statements
	Control Flow Statements

	Index

