
www.it-ebooks.info

http://www.it-ebooks.info/


UnrealScript Game 
Programming 
Cookbook

Discover how you can augment your game development 
with the power of UnrealScript

Dave Voyles

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/


UnrealScript Game Programming Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,  
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 1080213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-556-5

www.packtpub.com

Cover Image by Dave Voyles (dnvoyles@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/


Credits

Author
Dave Voyles

Reviewers
Kolby Brooks

John P. Doran

William Gaul

Dan Weiss

Acquisition Editor
Erol Staveley

Lead Technical Editor
Arun Nadar

Technical Editors
Pooja Prakashan

Veronica Fernandes

Project Coordinator
Arshad Sopariwala

Proofreader
Maria Gould

Indexer
Tejal R. Soni

Graphics
Valentina D'silva

Aditi Gajjar

Production Coordinator 
Nitesh Thakur

Cover Work
Nitesh Thakur

www.it-ebooks.info

http://www.it-ebooks.info/


About the Author

Dave Voyles has worked as a coordinator for the last two Indie Games Uprisings on Xbox 
Live, an annual event organized to highlight the talented developers and their titles on Xbox 
Live Indie Games. Additionally, he has released a title of his own, Piz-ong on XBLIG, as well  
as projects using Unity and the Unreal Engine for game jams.

He's proficient in C# and UnrealScript, and all facets of the Unreal Engine, as well as a number 
of 3D modeling suites, including 3DS Max and Maya.

He has also worked as a technical reviewer on Unreal Development Kit Game Programming 
with UnrealScript: Beginner's Guide, Packt Publishing and  Unreal Development Kit Beginner's 
Guide, Packt Publishing. Moreover, he works as managing editor at Armless Octopus, a site 
dedicated to cover Indie game development with an emphasis on XNA and XBLIG. You can  
find him on Twitter under the handle @DaveVoyles or at www.About.me/DaveVoyles.

I'd like to thank my mother and father, for always supporting my gaming 
habit as a child, despite my poor taste in Sega CD era FMV games.

www.it-ebooks.info

http://www.it-ebooks.info/


About the Reviewers

Kolby Brooks took a strong interest to programming at the young age of seven, getting his 
start by modifying games such as Unreal, Dirt Track Racing, and Half-Life.

He now has over 14 years of growing experience in multiple game-related fields including, but 
not limited to, multiplayer anti-cheat solutions, game programming, and engine development. 
As a hobby, he develops and maintains multiple third-party solutions for games such as server 
tools, utilities, and modification frameworks.

You can contact Kolby by e-mail at brooks.kolby@gmail.com.

I would like to thank my family, especially my mother and father, for their 
continued support over the years. In addition, I would like to thank Jason 
Ismail and Draco Rat for being great friends and gaming buddies.

John P. Doran is a technical game designer who has been creating games for over  
10 years. He has worked on an assortment of games in student, mod, and professional 
projects independently as well as in teams having up to or over 70 members.

He previously worked at LucasArts on Star Wars: 1313 as a game design intern, the only 
junior designer on a team of seniors. He later graduated from DigiPen Institute of Technology  
in Redmond, WA, with a Bachelor of Science in Game Design.

He is currently a software engineer at DigiPen's Singapore campus while at the same time 
tutoring and assisting students with difficulties in Computer Science concepts, programming, 
linear algebra, game design, and advanced usage of UDK, Flash, Unity, and Actionscript in a 
development environment.

www.it-ebooks.info

http://www.it-ebooks.info/


He is the author of Mastering UDK Game Development Hotshot, Packt Publishing and is the 
co-author of UDK iOS Game Development Beginner's Guide, Packt Publishing.

He can be found online at http://johnpdoran.com and can be contacted at john@
johnpdoran.com.

Thanks so much to the author for allowing me to give him my thoughts while 
writing the book, I hope that they helped. 
 
I'd also like to thank my brother, Chris Doran, and my girlfriend Hannah Mai 
for being there for me whenever I needed them and being patient while I 
was working on this. 
 
I'd also like to thank Arun Nadar, Arshad Sopariwala, and all the lovely 
people at Packt for all of their support and knowhow!

William Gaul is an aspiring game developer working primarily in the Unreal Development 
Kit (UDK). Since 2008, he has learned a wide range of skills in the industry, and maintains 
an active YouTube channel (http://www.youtube.com/user/willyg302) and blog 
(http://willyg302.wordpress.com/) dedicated to game development.

His programming knowledge includes Java, C/C++, UnrealScript, BASIC, HTML/CSS, and 
LaTeX. He also specializes in a variety of media solutions, with experience in the Adobe 
Creative Suite, Blender, and FL Studio.

Dan Weiss is currently a programmer working at Psyonix Studios in San Diego, CA. He is a 
2010 graduate of DigiPen Institute of Technology, having worked on titles such as Attack of 
the 50ft Robot! during his time there. He has been working in the Unreal Engine since 2004, 
independently producing the mod Unreal Demolition for Unreal Tournament 2004 and Unreal 
Tournament 3. At Psyonix, he has been involved with Unreal Engine work on mobile devices, 
having released ARC Squadron for iOS devices.

www.it-ebooks.info

http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to  
your book. 

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up  
for a range of free newsletters and receive exclusive discounts and offers on Packt books  
and eBooks.

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can access, read and search across Packt's entire library of books. 

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials for 
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents
Preface	 1
Chapter 1: Development Environments	 7

Introduction	 7
Using UnCodeX	 8
Dungeon Defenders to save the day	 12
Unreal Script IDE	 14
nFringe	 16
Unreal X-Editor	 19
Editing runtime values with Remote Control	 26

Chapter 2: Archetypes and Prefabs	 33
Introduction	 33
Constructing a leaking pipe prefab	 34
Adding particles to our prefab	 37
Adding audio effects to our prefab	 39
Creating a PointLight archetype	 40
Creating a subarchetype from an archetype	 47

Chapter 3: Scripting a Camera System	 53
Introduction	 53
Configuring the engine and editor for a custom camera	 55
Writing the TutorialCamera class	 58
Camera properties and archetypes	 63
Creating a first person camera	 68
Creating a third person camera	 72
Creating a side-scrolling camera	 75
Creating a top-down camera	 81

www.it-ebooks.info

http://www.it-ebooks.info/


ii

Table of Contents

Chapter 4: Crafting Pickups	 89
Introduction	 89
Creating our first pickup	 92
Creating a base for our pickup to spawn from	 96
Animating our pickup	 99
Altering what our pickup does	 100
Allowing vehicles to use a pickup	 105

Chapter 5: AI and Navigation	 111
Introduction	 111
Laying PathNodes on a map	 114
Laying NavMeshes on a map	 118
Adding a scout to create NavMesh properties	 121
Adding an AI pawn via Kismet	 124
Allowing a pawn to wander randomly around a map	 130
Making a pawn patrol PathNodes on a map	 134
Making a pawn randomly patrol PathNodes on a map	 138
Allowing a pawn to randomly patrol a map with NavMeshes	 139
Making a pawn follow us around the map with NavMeshes	 143

Chapter 6: Weapons	 149
Introduction	 149
Creating a gun that fires homing missiles	 150
Creating a gun that heals pawns	 168
Creating a weapon that can damage over time	 170
Adding a flashlight to a weapon	 174
Creating an explosive barrel	 177
Creating a landmine	 186

Chapter 7: HUD	 189
Introduction	 189
Displaying a bar for the player's health	 190
Drawing text for a player's health	 197
Displaying a bar for the player's ammo	 201
Drawing text for the player's ammo	 205
Drawing the player's name on screen	 208
Creating a crosshair	 211

www.it-ebooks.info

http://www.it-ebooks.info/


iii

Table of Contents

Chapter 8: Miscellaneous Recipes	 217
Introduction	 217
Creating an army of companions	 217
Having enemies flash quickly as their health decreases	 221
Creating a crosshair that uses our weapon's trace	 224
Changing the crosshair color when aiming at a pawn	 230
Drawing a debug screen	 232
Drawing a bounding box around pawns	 242

Index	 251

www.it-ebooks.info

http://www.it-ebooks.info/


iv

Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/


Preface
The Unreal Engine was first introduced to the gaming landscape in 1998 through Epic's  
first-person shooter, Unreal. While the core of it is written in C++, Epic managed to craft  
a language of their own, called UnrealScript, which is similar to Java in a number of ways.

In November 2009, Epic released the Unreal Development Kit, an SDK utilizing the Unreal 
Engine, which allows developers to write and release games of their own. Many of this 
generation's leading AAA titles utilize the Unreal Engine, including the Mass Effect,  
BioShock, and Gears of War franchises.

My plan with this book is to allow you to have the ability to craft worlds of your own, by 
teaching you how to program for the industry's leading 3D engine for AAA development.

What this book covers
Chapter 1, Development Environments, will take us through several development 
environments which can handle UnrealScript, define some of the perks and pitfalls of each, 
and highlight the benefits of understanding the source code, through UncodeX and the 
Dungeon Defenders Development Kit.

Chapter 2, Archetypes and Prefabs, will show you that as a programmer, one of your tasks 
is to assist the level designers. This can be done in a number of ways, but one of the most 
useful ways is to create what are known as prefabs and archetypes. By creating templates  
for objects and actors and only exposing the variables that a designer will find to be useful, 
you can make your work, and that of a designer, far more efficient.

Chapter 3, Scripting a Camera System, tells us about cameras in UDK that are an essential 
part of gameplay. They can simultaneously be one of the most frustrating yet rewarding 
things to program, as once they are working correctly they can completely change a player's 
experience, because you control their window to the world.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

2

Chapter 4, Crafting Pickups, tells us that artificial intelligence can cover a variety of things in 
UDK, so we won't delve too far down that path, at least not in this chapter. Here, we'll briefly 
cover it, and how the AI interacts with pickups throughout the game, specifically what attracts 
them to certain pickups. Furthermore, we'll dive into creating our own pickups and how they 
interact with our pawn's inventory.

Chapter 5, AI and Navigation, shows us that the Unreal Engine has two ways of handling path 
finding. They both have their pros and cons, despite being somewhat similar. They can simply 
be broken down into waypoints and navigation meshes. Each offer their own sets of perks  
and pitfalls, so we'll explore the pros and cons of both.

Chapter 6, Weapons, walks you through the weapons in UDK that are inventory items, which 
can be handled by the player, and are generally used to fire a projectile. On the surface, the 
default weapon system found in Unreal Engine 3 may appear to be catered to creating various 
types of guns as is common in most FPS games; but it's actually pretty easy to create various 
sorts of weapons and usable inventory items, which may be found in other types of games 
such as healing projectiles, bombs, landmines, or flashlights, as in the case with Alan Wake.

Chapter 7, HUD, shows us that heads-up display, or HUD, in addition to a user interface (UI), 
offers a means for providing information to a player to allow them to interact with the game 
world. UDK offers two methods for creating a HUD. The first, and far more simple method 
that we'll be covering here is the canvas. The other method, which requires knowledge of the 
flash language and some fancy art skills, allows UDK to make use of a third-party tool called 
ScaleForm to draw the HUD.

Chapter 8, Miscellaneous Recipes, walks you through the recipes that are going to cover 
things which may not necessarily fit in one particular chapter, but are still very valuable in  
a number of applications. We'll go over a new scheme for aiming our weapons and drawing  
a crosshair, as well as allowing our pawn to flash continuously as its health depreciates, 
among other useful items.

What you need for this book
For this book you will need the following items to get started:

ff The latest build of the Unreal Development Kit, which can be found at  
http://www.unrealengine.com/udk/downloads/

ff An integrated development environment

ff A solid understanding of object oriented programming basics

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

3

Who this book is for
This book is designed for users who have a solid understanding of object oriented 
programming and want to get introduced to a powerful yet unique language using a well 
established framework. Although the Unreal Development Kit offers an extensive schema  
for first-person shooters, it can be so much more if harnessed correctly. Prior experience  
with 3D Math or other 3D engines will certainly be helpful as well.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds  
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "A player's view into the world is determined by the 
Camera class."

A block of code is set as follows:

classTutorialGame extends UTGame;

defaultproperties
{
  PlayerControllerClass=class'Tutorial.TutorialPlayerController'
  DefaultPawnClass=class'Tutorial.TutorialPawn'
  DefaultInventory(0)=class'UTWeap_ShockRifle'
}

New terms and important words are shown in bold. Words that you see on the screen, 
in menus or dialog boxes for example, appear in the text like this: "Scroll down to World 
Properties, and left-click on that".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,  
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help  
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes  
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you find 
any errata, please report them by visiting http://www.packtpub.com/submit-errata, 
selecting your book, clicking on the errata submission form link, and entering the details of 
your errata. Once your errata are verified, your submission will be accepted and the errata  
will be uploaded on our website, or added to any list of existing errata, under the Errata 
section of that title. Any existing errata can be viewed by selecting your title from  
http://www.packtpub.com/support.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.  
At Packt, we take the protection of our copyright and licenses very seriously. If you come 
across any illegal copies of our works, in any form, on the Internet, please provide us with  
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


1
Development 

Environments

In this chapter, we will be covering the following recipes:

ff Using UnCodeX

ff Dungeon Defenders to save the day

ff Unreal Script IDE

ff nFringe

ff Unreal X-Editor

ff Editing runtime values with Remote Control

Introduction
Working with UnrealScript can be a daunting task at first glance, especially because it has 
years' worth of extensive improvements and iterations, in spite of being a language only used 
for this application. To make things worse, UDK does not include a development environment 
out of the box, so we're forced to find one that best suits our needs. Fortunately there are 
several out there, each of which bears many pros and cons.

In this chapter, we will look at several development environments which can handle 
UnrealScript, define some of the perks and pitfalls of each, and highlight the benefits  
of understanding the source code, through UnCodeX and the Dungeon Defenders 
Development Kit.

So with that, let's talk about integrated development environments.

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

8

Integrated development environments
An integrated development environment (IDE) sounds far more complicated than it is, 
as it simply serves as a way for a developer to talk to the machine and write code for an 
application. It usually consists of three components, a source code editor, build automation 
tools, and a debugger. The IDEs we'll cover in this chapter provide all three.

Using UnCodeX
Now that we know what IDEs are and how they work, how do we use the code provided 
by Epic? It's there for the taking, but we need an easy way to sift through it. That's where 
UnCodeX comes in. Let's take a closer look.

UnCodeX is an open source tool which provides an easy interface to browse through the  
code, analyzes UnrealScript, and is capable of producing a Javadoc like documentation  
of the source code.

Every good programmer knows their source material. That doesn't mean you need to know 
the engine inside out, but at least take some time to understand where your most important 
classes are extending from, and what's available to you. There's no sense in reinventing the 
wheel if someone has done it for you already, right?

Getting ready
The first thing we'll need to do is acquire a copy of it for ourselves. Let's head over to  
http://sourceforge.net/projects/uncodex/ and download it.

Once you have it downloaded and installed, open it up. Personally, I keep it pinned to my 
taskbar as it is a constant point of reference for my work that I find myself accessing day  
in and day out, along with my other Unreal tools.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

9

How to do it…
On the left-hand side of the screen, you'll see the package browser. This allows us to see all 
of the packages currently contained within your UDK directory of choice.

This can be updated manually by clicking on the Tree menu in the top-left corner of the 
browser, and then clicking on Rebuild and Analyse. It may take a few moments to rebuild 
the package, as it is sorting through any changes you may have made since the last time you 
wrote any code. You can check the current status of the operation in the bottom-left corner  
of the program.

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

10

Adjacent to the package browser is the class tree browser. Most of the IDEs we'll be working 
with will include a class tree as well. The tree browser allows us to dig deeper into the code  
by seeing exactly how each and every class in UDK are connected to one another.

You'll notice that all classes in UDK extend from the Object class. It's the base class for 
everything in the game and allows for everything in the game to share some common 
properties and functions. Actor is perhaps the class you will be most concerned with 
however, as it is the base class for all gameplay objects in UDK.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

11

It can be a bit overwhelming at first, especially when you see precisely how many classes are 
there. Most of what is there you will never use, but it still makes for an incredible reference. 
It's not what you know, but more importantly it's about knowing where to find what you're 
looking for.

To the right of the class tree you'll see the class browser. Double-click on one of the classes 
from the class tree to view its contents to the right. Other classes will be underlined and 
colored blue, just like when you create a URL in a web browser or word document.

Hovering the mouse cursor over any of the underlined text in the class browser will draw  
a pop up on the screen, which illustrates the location on your hard drive where you can find 
that class. This is a great way to help visualize how UDK's classes are interconnected and 
assist you in understanding how to best utilize them to create your own.

There's more...
UnCodeX is an essential part of any UnrealScript programmer's tool belt. It can not only help 
you understand what is currently running under the hood, but also help you understand the 
best practices for extending from its base classes to create your own.

As a rule of thumb, you don't need to know the base code inside out, but it's essential that  
you at least have an understanding of the work Epic has laid at your fingertips. This includes 
the functions such as Tick, PostBeginStart.PostBeginPlayt, and the default 
properties block.

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

12

There are a number of other great resources to find additional content and help for UDK  
and UnrealScript. These include:

ff Epic's UnrealScript forum at http://forums.epicgames.com/forums/367-
Programming-and-Unrealscript

ff Eat 3D's UnrealScript reference at http://eat3d.com/unrealscript

ff Epic's UDK Gems at http://udn.epicgames.com/Three/
DevelopmentKitGems.html

Dungeon Defenders to save the day
Epic isn't the only team to offer a plethora of knowledge at your fingertips. Trendy 
Entertainment, the development studio behind Dungeon Defenders, was also kind  
enough to release much of their source code and development kit, in what is known  
as Dungeon Defenders Development Kit (DDDK). Similar to UnCodeX, this source code 
allows you to have a far greater understanding of how an entire game is pieced together.

Getting ready
The DDDK can be found by downloading and installing the Steam client at http://store.
steampowered.com/about/. Once installed, click on View, which is at the top of your 
screen, then select Tools. The DDDK is actually a piece of DLC, and can be found here.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

13

How to do it...
One of the largest contrasts you'll find between the Dungeon Defenders source and that of 
UDK is their use of cameras and the player controller, as that game utilized a third person 
perspective. Take a few moments to sift through the code and understand the path that 
Trendy Entertainment took.

It's well documented too, so even a novice should be able to sift through the code and see 
how things are connected. Even better, Epic's UDK forums are filled with questions from 
other developers asking questions about that particular set of code, in addition to code 
from other resources, so there are chance that many of your questions have been previously 
answered there. Take a look at http://forums.epicgames.com/forums/367-UDK-
Programming-and-Unrealscript and see for yourself. The search bar can prove to  
be an invaluable tool when sifting through the forums as well, considering they are rather  
dense and filled with subforums from a number of Epic's properties, such as Gears of War.

Moreover, some of their programmers are extremely active in the UDK forums and often 
provide a bit more introspection on the code and how it is used.

How it works...
As license holders, Trendy Entertainment utilizes a custom version of the Unreal Engine, 
thereby allowing the developers of the DDDK to have far more control of the engine than 
we could without the license. This wasn't always the case however, so much of the original 
UDK code is still in place. With the DDDK you can either create modifications for Dungeon 
Defenders, or total conversions to the entire game.

See also
So why did Trendy Entertainment release their source code for free? Well, publicity could  
be one reason. Epic heavily promoted Dungeon Defenders at launch and lauded it as an 
excellent example of how to utilize the engine to create something different from what  
they created it to do.

Copies of the game are very affordable nowadays, sometimes running even as low as a few 
dollars during a Steam sale, and the original demo is still free. So I'd suggest picking up a 
copy and seeing how it compliments all of that code you've just sifted through. Even if you 
don't own the game, the source is still available as free DLC through Steam or can be found  
at http://www.unrealengine.com/showcase/udk/dungeon_defense/.

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

14

Unreal Script IDE
The Unreal Script IDE is a professional development framework, utilizing the Visual Studio 
shell. If you're a .NET developer, then you should feel right at home with this IDE. It will be our 
tool of choice for this book for a number of reasons, but most notably for a few of the features 
which aren't found in any other development environment, such as the following:

ff Debugging

ff Conditional Breakpoints

ff Go To Declaration

ff IntelliSense

ff Find All References

There are many other reasons I prefer this environment over the others, but those are just 
some of the highlights. IntelliSense in particular is extremely useful, as it auto completes 
your code as you write. Furthermore, it makes for easy disambiguation for functions, methods, 
and variables. Find All References is also notable, as it locates any instance of a particular 
variable or function within UDK, and shows you where and how it's used. This is outstanding 
for learning the source material.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

15

Getting ready
Head over to http://uside.codeplex.com/ to grab a copy of this free open source tool. 
You won't need your own copy of Visual Studio either, as this runs in an isolated shell. Bear in 
mind, you must have UDK installed before installing the IDE.

How to do it…
When installing the IDE, it's important to remember to select the UDK Win32 binaries 
folder correctly. Additionally, the source folder must be listed as C:\UDK\UDK-Date\
Development\Src\; otherwise your project will appear empty when you open the solution.

This is the default installation path. Yours may be different.

From there, your Unreal Script IDE should be populated with your current project, and update 
itself automatically as you make changes.

There's more…
Even better, the Unreal Script IDE allows you to continue to use extensions! Head to  
http://visualstudiogallery.msdn.microsoft.com/, to find the ones which  
work best for you. Afterwards, extract the content into the Extensions folder found at  
C:\Program Files (x86)\Mr O. Duzhar\Unreal Script IDE (UDKDevKit)  
VS 2010 Isolated Shell\.

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

16

nFringe
Just like the Unreal Script IDE, nFringe is a complete IDE that also uses the Visual Studio 
shell. Similarly, it offers many of the features that Unreal Script IDE does, but many require 
a commercial license of the Unreal Engine, such as Goto Native Definition for native script 
functions. For this reason, I prefer to use the former tool.

Pixel Mine is the development team behind this product, which comes in both premium, indie, 
and commercial licenses, although it can get a bit costly, as indie licenses start at $350 a 
seat. A trial version is available however, so you may want to consider that before taking the 
step into the premium pond.

Many professional AAA studios prefer to use this IDE, so focusing your efforts here may not be 
a bad idea. Furthermore, nFringe includes an excellent debugger, which can prove invaluable 
when trying to troubleshoot critical errors in your programming.

nFringe will not work with Visual Studio 2012 right out of the box. You'll need 
to make some changes for it to work properly, as noted in the following site:
http://forums.epicgames.com/threads/874296-debug-
Unreal-Script-error-at-vs2011

Getting ready
Head over to http://pixelminegames.com/nfringe/ to pick up a copy for yourself.  
It's one small download and a pretty straightforward installation process.

How to do it…
Just as Unreal Script IDE used a Visual Studio shell, nFringe does too, but it is based on the 
2008 version. Even if you don't own Visual Studio, you're still in the clear as you can run 
it through the shell. For those of you who do have a copy of Visual Studio, nFringe simply 
installs like an extension, and allows you to create new projects from your current installation. 
Moreover, you can also use Visual Studio Express, which is the free version of the program.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

17

Starting a new project is as simple as opening up Visual Studio, selecting the installed 
UnrealEngine3 Licensee Project template, and you have all of the features of nFringe 
available at your fingertips. Setting up the new project is a bit more work however, as  
you'll need to carefully follow these instructions to do so.

Configuring the directories is the first step in creating your own project scripts:

1.	 Within your UDK install directory (that is, C:\UDK\July) browse to the 
Development\Src folder and create a folder of your own. In this example  
we'll use Tutorial.

2.	 Create a Classes folder inside your Tutorial folder.

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

18

All of your scripts will be stored in here. You cannot create more 
folders within your Classes folder for organizational purposes. 
You can however create various packages within UDK to neatly 
separate your classes.

3.	 Now we need to notify the engine that you'll be adding a new package, or  
collection of scripts, and that they should be compiled each time you build the  
game. The configuration files stored inside of UDKGame\Config are the ones  
which inform the engine of this package. Browse over to that folder and open  
the DefaultEngine.ini file.

4.	 Once inside, scroll down to [UnrealEd.EditorEngine] and add the name of  
our own game package. It should now read +EditPackages=Tutorial.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

19

The order in which the packages are loaded into UDK are directly related 
to the order in which they appear in this .ini file. If your package relies 
on any of the UTGame or UTGameContent scripts (and if you extend from 
anything within UDK, then your package certainly does), then your package 
must be loaded after those scripts.

How it works…
That's all there is to it. Another reason I prefer Unreal Script IDE and even the forthcoming 
Unreal X-Editor is because all of this work is done for you during the initial installation, 
because you pointed the install towards your UDK directory.

There's more…
Extensions also work with nFringe, so most of the ones you already have installed should 
seamlessly integrate with your new UDK project.

Unreal X-Editor
A strong contender for the most intuitive IDE is the Unreal X-Editor. While the editor has come 
a long way since its initial release, it's still in its infancy, as the tool is less than one year old at 
the time of this writing.

Unreal X-Editor offers a number of features that makes it stand out, including the following:

ff Class Tree Viewer
ff Autocomplete
ff Code Folding
ff C# Style Commenting
ff Syntax Highlighting
ff Basic Preset Scripts
ff Run UDK Editor / UDK Game
ff Compile/Full Compile Scripts
ff Various Skins to change the Look And Feel

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

20

Getting ready
Head over to http://unrealxeditor.wordpress.com/ to download the latest version 
of Unreal X-Editor. Setting up the IDE is pretty straightforward as well, so no explanation is 
needed here.

Once you have it installed, scroll over to the Workspace Page tab, then left-click on the 
Settings button. A pop up should appear on screen, allowing you to customize your settings. 
We're looking to set your UDK installation directory, so click on that and browse to the folder 
where you placed UDK.

Unreal X-Editor will then have access to all of the content in that folder, including the UDK 
executable and any folders containing the .ini files, the UnrealScript source code, and  
your new folders.

That's it! This is by far the easiest tool to get up and running.

How to do it…
Unreal X-Editor offers a number of customization options, including additional skins, various 
font colors, and the ability to work without the GUI ribbon, thereby offering an interface more 
akin to our Visual Studio alternatives.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

21

As far as simplicity goes, this IDE offers just about everything a programmer could want, and 
does so with a slick interface. Those of you who prefer the extra real estate and want to work 
without a ribbon can do that as well by doing the following:

1.	 Right-click on the desktop shortcut and select Properties.

2.	 In Properties, select the Shortcut tab and in the Target box add the command  
line -noribbon.

An Access Denied dialog may appear, declaring that you will need to 
provide administrator permission to make these changes. If so, simply 
click on Continue, and then click on Apply and OK.

There's more...
Unreal X-Editor is perhaps the greatest IDE for those starting off with UnrealScript, and for a 
number of reasons. It streamlines the often intimidating and convoluted process of making 
changes to a game utilizing UDK.

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

22

Let's take a look at the Unreal Weapon Wizard. This tool allows us to create a weapon class 
with the help of visual editor. Currently only the weapon class is included, although other 
classes such as character and game are planned for the future as well.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

23

All you need to do is copy and paste the names of various weapon related properties, such 
as mesh, muzzle flash, and pick up sound from the UDK Content Browser to the appropriate 
fields in the wizard and click on Next.

This is a great way to get started with learning how weapons work and are 
constructed in UDK. Compare and contrast your new weapon with some of 
those which come packaged with UDK to really get a feel of how to develop 
some weapons of your own without the wizard.

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

24

Afterwards, you'll be greeted with another screen for constructing your attachment class, 
which extends UTWeaponAttachment. This class determines how the weapon connects  
with your pawn when in a third person perspective.

The preceding screenshot shows the wizard for your ammunition. This is the easiest class 
to create, as it only requires a mesh, default starting count, and sound effect for when it is 
picked up. It extends UTAmmoPickupFactory, which we'll touch on more in a later tutorial.

The definitions of some of these properties can be a bit confusing, so I'll clarify these in  
the following list:

ff Make Splash: This displays a splash effect for the player when the projectile hits water.

ff 3P Mesh: This is the skeletal mesh for this socket. Generally left empty.

ff Muzzle Flash Socket: This determines where the flash will occur in relation to the 
weapon when it is fired.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

25

Often weapons have multiple sockets (that is, rocket launchers, 
double-barreled shotguns), so that's why this option is there.

The final step of the process is to create the damage class, which covers a few properties  
you may not be familiar with, so let's walk through some of them:

ff GibPeterbation is a Boolean, and means that when it is active the chunks will fly  
off in random directions

ff Bullet Hit? notifies the target that it was hit by a bullet

ff Complain Friendly Fire? determines whether teammates should complain about 
friendly fire with this damage type

ff Vehicle Damage Scaling determines whether or not a weapon should do more 
damage to be in proportion with increased health and armor of a vehicle, as  
opposed to just firing at a pawn

ff Damage Impulse determines the size of impulse to apply when doing radial damage

Once that's all finished, you have the option of opening all of your newly created classes to 
explore your creation. Take a look and see how they compare to the default weapons created 
in UDK and how they are assembled!

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

26

See also
There are a number of visual customizations that you can make to the editor as well,  
from fonts and backgrounds to panel layout. Find one that suits you best!

In addition to the visual configuration, the Unreal Frontend is available from within the Unreal 
X-Editor, which allows you to compile scripts, cook a level, and package a game, all from Epic's 
supplied interface.

Editing runtime values with Remote Control
As an UnrealScript programmer, one of your main tasks is often to assist level designers and 
artists by creating tools to streamline their work. While UDK comes with a robust system for 
adding and editing content in game, sometimes you just want to create a weapon or item to 
be used in game and only expose certain properties to the level creators.

We'll use a weapon as an example. Not every property is applicable to what a level designer 
may want or need, therefore we'll hide some of those from the designer's editor to provide 
a clean interface for them to work with and serve as a means to streamline their weapon 
creation process through the use of prefabs, which we'll touch more on later. First we'll  
need to understand how UDK natively allows us to do this.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

27

UDK already provides a way for developers to alter properties at runtime through a feature 
called Remote Control. This allows you to make alterations to which statistics are being 
captured, alterations to graphics settings, as well as to scrutinize and edit actors in a scene.  
A plethora of console commands that allow you to edit most instantiated objects, archetypes, 
or actors at runtime are also at your fingertips.

When tweaking the values of a particular object within your game, for example, a pawn,  
the Remote Control can prove invaluable. Rather than going through the arduous process 
of changing code within the IDE, compiling scripts, then launching the game, you can make 
these small adjustments within Remote Control while the game is running. This is perfect 
for those moments when you want to quickly iterate and lock down the values that make a 
character feel just right, for example, a particular running speed, or jumping height. Once 
you've found the value you're looking for, you can always go back into the UnrealScript code 
and permanently make those changes.

Getting ready
To launch the game with Remote Control enabled, you'll need to edit your UDK launch batch 
file by adding -remotecontrol as an argument to the end of your UDK.exe file, just as we 
did for the ribbonless version of Unreal X-Editor.

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

28

Upon launching the game, it may state that your scripts are out of date and ask you to rebuild 
them. Just click on OK and let them compile. Once that is completed, you'll start the game as 
you normally do, except that there will now be another panel next to your game. This is where 
you'll be able to make all of your changes.

How to do it...
With Remote Control now available we can begin to create objects for level designers to work 
with. Let's start by creating a simple weapon:

1.	 Open Unreal X-Editor.

2.	 Click on the bottom half of the UDK Game icon to make the game's options  
editor appear.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

29

3.	 Adjust your settings so that they match the ones shown in the following screenshot. 
Be sure to check the checkbox marked Enable Remote Control!

4.	 Click the top half of the UDK Game icon to launch the game.

5.	 When your game launches, you should see the Remote Control panel appear  
to the left of the screen. Fire your Link Gun and then select your Actors tab.

6.	 Click on the refresh icon to update Remote Control and allow it to list the latest 
actors into the scene.

www.it-ebooks.info

http://www.it-ebooks.info/


Development Environments

30

The Link Gun won't appear in your Actors tab, until you actually fire 
it and hit refresh to load everything that may have occurred since the 
map's initialization. That's why we're having you perform these actions.

7.	 Scroll down to the UTWeap_LinkGun folder, open up the folder, and double-click  
on UTWeap_LinkGun_#. An in-game editor window should now appear.

# can be any number, but is generally 0. If there are pawns that spawn 
into your scene, then the window may not appear immediately as that 
gun may be assigned to one of them. Continue to select the different 
UTWeap_LinkGun until the window appears for you.

8.	 Scroll down to the Display tab in this new editor and take a look at the properties 
here. This is where you'll be able to adjust the appearance of the gun from your 
perspective. Feel free to play with various properties and see what they do.

9.	 Checking the Hidden checkbox will hide your weapon from view.

10.	 Click on the Display Scale 3D tab to bring down the X, Y, Z values for where your 
weapon is drawn in 3D space.

Want to see what your weapon would look like if you were left handed?
We know that 0 is the center of the screen, so we'll need to negate the 
value to move it to the left-hand side. Change the value in the Y scale to 
a negative number to do this.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

31

You'll notice that when firing our weapon, the locations where the 
projectiles and beam start no longer line up with our weapon. That's 
because we haven't changed those values.
I also can't tell you the exact values to change, as the appearance of the 
weapon in the game will depend largely on the resolution with which you 
are running.

11.	 From here you'll want to scroll down to the Weapon tab and look for Fire Offset. 
These values will allow you to adjust how the projectiles will appear to fire from  
your weapon.

There's more...
You can also call objects and actors by their names using the command line. Hitting the Tab 
key during gameplay and typing EditObject <nameofobject> during play will allow you  
to create an instance of most objects.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


2
Archetypes and Prefabs

In this chapter, we will be covering the following recipes:

ff Construct a leaking pipe prefab

ff Adding particles to our prefab

ff Adding audio effects to our prefab

ff Create a PointLight archetype

ff Create a subarchetype from an archetype

Introduction
As a programmer, one of your tasks is to assist the level designers. This can be done  
in a number of ways, but one of the most useful ways is to create what are known as  
prefabs and archetypes. By creating templates for objects and actors and only exposing  
the variables that a designer will find to be useful, you can make your work, and that of a 
designer, far more efficient.

So with that, let's talk about prefabs.

Prefabs
A prefab is a combination of multiple actors into one unit. This allows us to easily manipulate 
the properties and visuals of multiple objects on screen at once.

For example, if you wanted to use a torch in a game, you could grab a particle effect for the 
fire, another for the smoke, then a static mesh for the torch handle, a sound effect instance 
for the crackling sound, and finally a light source for the lighting. Or you could combine all of 
these objects into one actor and call it a torch.

www.it-ebooks.info

http://www.it-ebooks.info/


Archetypes and Prefabs

34

Prefabs are tied to the original assets through references, therefore if you make a change to 
an asset, the next time you load UDK the changes will be applied to the prefab. This allows for 
quick and dynamic prototyping, as you can create a prefab ahead of time, using placeholder 
objects that you know you'll need, and adjust the aesthetics at a later time when the assets 
are ready from the artist or modeler on your team.

That's the purpose of a prefab, to simplify your life and streamline the development process.

Constructing a leaking pipe prefab
Prefabs are simply a combination of multiple objects and actors within a scene. We can 
combine virtually any item in UDK to create one.

Getting ready
We'll begin by loading the map that contains our example prefab. This will allow you to see the 
various components used to create one, as well as teach you to create one of your own. Along 
the way you'll have to manipulate certain objects such as rotating a pipe or adjusting the scale 
of a waterfall, but this won't be anything overly complicated.

How to do it...
To get things started, let's open up a new map called Chapter2 under the Tutorials  
folder. This will have the chapter's prefab and archetype already in place for you, so that  
you can see the end result of your work, and what it should look like. Fortunately, all of our  
in-game assets can be accessed through the ever useful content browser. Let's begin by 
looking in the following:

1.	 Open the Content Browser tab and drag the static mesh S_HU_Deco_Pipes_SM_
PipeSet_B01 into the scene. This will serve as the static mesh for the pipe itself.

2.	 Rotate the pipe by 90 degrees, so that it is horizontal, to match the following 
screenshot. Pressing the Space bar allows the widget to change from translation  
to rotation.

3.	 Our pipe is looking pretty bland by itself, so let's add some flowing water to it. Also 
under static meshes, you'll find S_UN_Liquid_SM_Waterfall_02. Drag that into 
the scene as well.

4.	 Line up the center of the waterfall with the center of the pipe. It's still a bit too large 
for the pipe, but we'll fix that in the next step.

5.	 Adjust the scale of the waterfall on the x plane, so that it appears small enough to 
actually be falling from the pipe.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

35

So now we have all of our assets lined up and drawn to the correct scale. Our last 
task is to group them as a prefab, so that we can easily create more and use them 
throughout the level.

6.	 Select both of your objects and right-click on them to bring up the options menu. 
Scroll down and left-click on Create prefab....

Ctrl + Alt + left-click and drag in viewport will allow you to marquee select 
items, which can save a great deal of time. Alternatively, Ctrl + left-click will 
allow you to select multiple items at once.

7.	 When the prompt to save the prefab appears, I saved mine under the  
following settings:

Package: TutorialPackage

Grouping: Prefabs

Name: Pre_LeakingPipe

www.it-ebooks.info

http://www.it-ebooks.info/


Archetypes and Prefabs

36

If you see a white box with a red P in the center, then you've successfully created  
a prefab!

We've essentially created our first prefab. It's still a bit bland though, so we'll add more  
to it in the next chapter.

When saving the prefab, it is important to center it within your viewport, 
as that image will be saved in the content browser for when you have to 
reference it later.

How it works...
A prefab is a combination of multiple actors in one unit. This allows us to easily  
manipulate the properties and visuals of multiple objects on screen at once.

We can combine virtually any actors within UDK and create a prefab from them.  
For simplicity's sake, we've only used static meshes in this example, but we'll soon  
include more advanced components.

There's more...
Prefabs keep a record of whenever a property is altered when used in the editor, so you can 
edit one prefab and not worry about how it will affect the rest of them. Alternatively, you can 
carry the change you just made to one prefab and apply it to all of them across the scene as 
well. This is both a time and labor saving process, so give it a try yourself.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

37

Adding particles to our prefab
Our prefab only needs two items for it to actually be called prefab, but it looks a bit plain  
at the moment. Let's spice things up a bit by adding some subtle particle effects to it.

Getting ready
We only need to open up the prefab we just made, as we'll be building off of that.

How to do it...
This will be an easy recipe; we're only going to drag-and-drop a particle effect onto our prefab, 
and combine the results. It's easy to create or edit particles on your own, but that isn't covered 
in the scope of this book. The content browser is where we'll begin most of our recipes in this 
chapter, as it offers easy access to all of our in-game assets. Let's begin by opening that.

1.	 Back in the Content Browser tab, under particles, select P_WaterSplash_02  
and drag it into the scene.

You'll have to be careful when using particles, as they are costly in terms 
of computing overhead and can quickly bog down your system if too many 
are on screen at once.

www.it-ebooks.info

http://www.it-ebooks.info/


Archetypes and Prefabs

38

2.	 Align the particles in front of the pipe, so that it is nearly overlapping with the water. 
We want to create an effect to appear as though there is hot steam radiating from  
the front of the pipe. Adjust the scale of the particle accordingly.

3.	 Be sure to save your changes again.

How it works...
The content browser allows us to easily add components to our prefab by simply searching 
for it within the browser, and dragging it into a map. Selecting our prefab and an additional 
component at the same time allows the two (or more) items to be connected, and in turn,  
part of the prefab from then on.

There's more...
Mix and match some particle effects until you find some that really work for you. Although it's 
beyond the stretch of this tutorial, spending some time with the particle editor can really add 
a sense, so that you have some trickling water to the pipe. Just be sure to take it easy when 
adding too many particles as overdoing it can quickly bog down a system due to the intense 
load on the CPU.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

39

Adding audio effects to our prefab
Our prefab is nearly complete! We've got all of the visual aesthetics for our prefab in place,  
but it's still not very believable within the game because we don't hear any sound coming  
from it. Let's change that.

Getting ready
We only need to open up the prefab we just made, as we'll be building off of that.

How to do it...
The changes here will be minor, but similar to what we've done with the particles in the 
previous recipe. UDK offers extensive audio capabilities, but those are over the scope of this 
tutorial, so we won't cover them here, but you can find a number of resources at the Unreal 
Development Network site, http://udn.epicgames.com/Three/AudioHome.html.

1.	 Head back to the Content Browser tab and search for the final piece to make this 
work, that is, the Waterfall_Medium_02_Cue sound effect. Drag it into the scene 
and align it closely with the other objects for our leaking pipe.

www.it-ebooks.info

http://www.it-ebooks.info/


Archetypes and Prefabs

40

2.	 Align the sound cue beneath the pipe. When you hit the PIE button, you'll notice that 
the sound gradually decreases as you move further from the pipe as well.

3.	 Be sure to save your changes again.

How it works...
Just as before, the content browser offers quite a bit of value to our level designer, as it allows 
him or her to quickly parse through our library of assets and drag content onto our map. Prefabs 
can be created at any point when we select two or more components at the same time.

See also
Try adding some water beneath the piping, so that your stream is flowing into a pool of water. 
How do you think the sound of the water would change? See if you can find an appropriate 
sound cue for water splashing against another water source.

Creating a PointLight archetype
Archetypes and prefabs share a number of similarities, but most noticeably in that we use them 
to create instances of an object. All instances of an archetype on a map will update when an 
archetype is stored in a package, and that's one of the convenient reasons for using them.

Furthermore, if you chose to only alter an instance of an archetype, then the rest of those on 
the map will remain the same! So you have both ends of the spectrum, all within one tool. 
Archetypes also allow us to create physical representations of our code, to be manipulated 
and edited within the UDK editor, and later used in the game itself.

Archetypes are different from prefabs in three distinct ways:

ff Prefabs can be composed of archetypes

ff Prefabs can contain sequences (Kismet)

ff Prefabs preserve and translate object references within the prefab

In the editor, archetypes are represented as placeable items, much like how classes are 
placeable resources. Archetypes are often thought of as "script less classes", in that their 
purpose is to provide a way for designers to drop an actor that uses a set of default property 
values, which are different from the actor's class defaults. They also appear in the content 
browser, and provide the same functionality as any other resource type.

By default, the scripts and classes you write for UDK will appear in the Actor Classes tab, 
adjacent to the Classes Browser tab in the editor. By converting our classes to archetypes we 
can visually edit properties for these classes, thereby allowing for changes on the fly, instead of 
constantly having to change code in the IDE, rebuild, and then view our changes in the editor.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

41

We'll be creating an archetype in UnrealScript to allow the level designers to use it in the 
editor. To have a better understanding of how archetypes work within the editor in UDK  
visit http://udn.epicgames.com/Three/UsingArchetypes.html.

To streamline the prototyping process and eliminate clutter from archetypes, we'll also be 
hiding certain properties from the level designer. Alternatively, we can expose new variables 
as well and organize them within categories. This allows us to remove properties that 
generally wouldn't be beneficial or of any use to a level designer. If your designer ever  
wanted more control over an archetype, it is as simple as changing one line of code.

Getting ready
We'll begin by loading the map that contains our example archetype. Much like our prefab, 
this will allow you to see the various components used to create one, as well as teach you  
to create one of your own.

To get things started, let's open up a new DefaultMap under the Tutorials folder. 
Alternatively, if you want to see the end result of this chapter, load the map in the Chapter 2 
folder called Ch2_Archetypes.

How to do it...
We're going to start by creating an archetype from a PointLight, which is already provided 
by UDK. Since the development kit offers a plethora of excellent and professional assets 
available to us, we'll use these for most of our recipes.

1.	 Open the Actor Classes tab, and left-click on Lights to open the pull-down list.

www.it-ebooks.info

http://www.it-ebooks.info/


Archetypes and Prefabs

42

2.	 From there scroll to PointLight and left-click on the + to open up all of the lights under 
that category. Right-click on PointLight to bring up the Create Archetype... menu.

3.	 Left-click on Create Archetype... and bring up the Enter Package Name  
pop-up window.

4.	 I've entered the following information into the fields:

Package: TutorialPackage

Grouping: Archetypes

Name: Arc_Pointlight

5.	 Now head to your content browser, and under your TutorialPackages  
folder you should see a group called Archetypes, and it is filled with your new  
Arc_PointLight object. With that selected, press F4 to bring up its properties.

You now have a new instance of a PointLight archetype, which you can use  
as a template for future lights in your game.

We have quite a few properties exposed here though, and things look a bit cluttered. 
Our level designer probably won't need access to all of these things, such as the 
static mesh actor, collision, and debug. It is only a light, after all.

Let's head back to our IDE and make a brief change to the class.

6.	 Save your package by right-clicking on your folder marked Tutorial in your content 
browser. If you see a * next to the package then you know that you haven't saved 
since you last made a change.

7.	 Close the editor and use your IDE to create a new class. We're going to extend from 
the PointLight class, as we've just used it in the editor, and it seemed to fit our 
needs. Create a new class called Tut_PointLight. Your code should look like  
the following:
classTut_PointLight extends PointLight;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

43

8.	 We've got our class created, but now we need to hide some properties from  
the editor. Add the following code beneath where you declared your class:
/** Hides categories that we won't be needing from the  
archetype */

HideCategories(Object, Debug, Advanced, Mobile, Physics,  
Movement, Attachment, Physics, Collision);

Recompile the code. Be careful to note, however, that you must remove the 
semicolon after extends PointLight, otherwise you'll receive an error.  
With this done, we can now head back to the editor and create a new archetype.

9.	 Save your class and open the UDK editor.

10.	 Create a new archetype from your new Tut_PointLight class. Use the same 
naming scheme as we had used before, so that it overwrites the one we've  
previously made, as we won't be needing it anymore.

Make sure that the checkboxes for Use Actor As Parent, Placeable 
Classes Only, and Show Categories are not marked, otherwise your 
class will not be shown.

www.it-ebooks.info

http://www.it-ebooks.info/


Archetypes and Prefabs

44

11.	 Drag your new archetype into the map and press F4 to bring up its properties again.

You'll immediately notice that many of those properties that were cluttering our 
screen before are now gone!

12.	 Let's continue by altering some values. Let's adjust our light so that it emits a red 
glow. Under the light gray colored Light Component tab, select the indented, dark 
gray colored Light Component tab.

13.	 In bold letters you will see Light Color and it is currently white. Left-click anywhere on 
the color bar to enable the Select a Color window, which is similar to the color wheel 
you would see in other art programs like Photoshop. Left-click on the red area and find 
a value that suits you. I've gone with 1.00 for S (Saturation) and 1.00 for V (Brightness).

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

45

14.	 Let's change the radius of our light as well. Open the indented dark gray colored tab 
marked Point Light Component to expose the Radius property. Let's cut it in half, 
from the default value of 1024 down to 512 to give us a more concentrated light.

15.	 We should also shrink the Falloff Exponent property, so that the light source has 
a sharper decline from its brightest point to its lowest. Cutting this in half, from its 
default value of two and changing it to one, will suit our purpose.

You can see these changes in real time by dragging your archetype into 
the scene at any point. Notice that our adjustments to the Radius and 
Falloff Exponent properties shrink the light blue spherical lines around 
our PointLight when viewed from the wireframe mode in the editor.

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.PacktPub.com. If you 
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

How it works...
The best way to look at archetypes is to consider them as templates. You are inheriting all of 
the values from one parent class and simply adjusting the default properties to what you feel 
suits the needs for your current application.

www.it-ebooks.info

http://www.it-ebooks.info/


Archetypes and Prefabs

46

There are a number of occasions when you may need to make use of archetypes, so let's  
go through a few of them:

ff Multiple deviations of an actor or object is necessary (that is, a ball which has  
an assortment of colors)

ff Altering objects within the editor, thereby making a level designer's role easier,  
as they will not have to access the UnrealScript to make these changes

ff Reduction of compile-time and load-time overhead, that is, you can have multiple 
instances of the same object and the Unreal Engine simply sees it as one object,  
thus lower computational overhead

Multiple deviations of an actor or object is necessary
Inheritance, or extending from a parent class, is a common practice in object-oriented 
programming languages. This allows us to inherit all of the properties from a parent class, 
as well as make changes to those properties in our new child class, while adding some new 
functionality of our own.

If you want your functionality to stay the same but are looking to make content or data  
driven differences (colors, particle effects, damage, and so on), then archetypes are an 
excellent solution.

A simple enemy of multiple classes is an excellent example to use. Say you want to have a 
scout class and a heavy weapons class in your game. Many of these changes are cosmetic, 
so you may just be altering the clothing color so that they appear different, but you want 
the scout to obviously run much faster than the heavy weapons, while also having a smaller 
amount of health. Simply changing the default maximum hit points and run speed of these 
two characters will create a great difference as well.

Altering objects within the editor
Like I mentioned before, with using Remote Control, tweaking values during runtime or while 
in the editor is a quick way to iterate and allow non-programmers to make adjustments 
without ever seeing the code.

You may find yourself in a situation where art assets for a project are not yet available, but you 
understand the functionality you'll want out of an object. Therefore you can use placeholder 
art, which will later be replaced with the final product, but in the mean time your time can be 
spent putting the prototype into place.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

47

By opening the archetype properties within the level editor, a designer can quickly change  
how objects and actors appear and interact with a level.

Reduction of compile-time and load-time overhead
Unreal Engine 3 loads everything before it is needed, so it may take some time to build scripts 
and compile a project each time you make a change to the code, especially if you have a large 
number of references to content. There are ways around this, however, in case of dynamically 
loading an object, it loads everything during the runtime.

See also
Feel free to edit more parameters or even grab other actors to create archetypes from, such 
as weapons. With the assets UDK provides, you can create something such as a rocket 
launcher that fires pulse beams and has a particle emitter from the shock rifle.

Creating a subarchetype from an archetype
An archetype is a set of property values which will be assigned to a newly created object, a 
template. There may be a time when you want to extend from those values and create another 
template with similar properties. The March 2012 update of UDK Epic allowed that to happen 
with the addition of subarchetypes.

Getting ready
We're going to create a subarchetype from a weapon pickup factory, so the only thing you'll 
need to get started is to open up a fresh map within the editor.

How to do it...
Think of it as extending from a class, just as we would do with an IDE, but instead we are 
extending from an actor from within the editor. To do this we'll need to go back to our Actor 
Classes Browser, which is necessary whenever creating archetypes of any sort.

1.	 Open the Actor Classes tab and in the Search bar type Weapon to bring up the  
list of applicable actors.

www.it-ebooks.info

http://www.it-ebooks.info/


Archetypes and Prefabs

48

2.	 Right-click on the actor marked UTWeaponPickupFactory and then left-click on 
Create Archetype... to bring up the dialog box for storing your content.

3.	 Enter the following information in the dialog box:

Package: TutorialPackage

Grouping: archetypes

Name: Arc_WeaponFactory

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

49

4.	 Go back to the content browser and left-click on the newly created archetype,  
then press F4 to bring up its properties. We're going to keep things simple and only 
change one property here, and that is which weapon this pickup factory spawns.

5.	 Under UTWeapon Pickup Factory | Weapon Pickup Class, scroll down to UTWeap_
Shockrifle and left-click the weapon to select it. This pickup factory will now spawn 
the shock rifle.

6.	 To test it out, drag-and-drop your archetype into the map and press the PIE button  
to play. When you run towards the pickup now, you'll see that it has a shock rifle 
floating above it. Run over it to pick it up.

www.it-ebooks.info

http://www.it-ebooks.info/


Archetypes and Prefabs

50

7.	 Time to create our subarchetype. Back in the content browser, right-click on your 
archetype. One of the options that appears should read Create Subarchetype....  
Left-click on that option.

8.	 Another dialog box will appear. Enter the following information:

Package: TutorialPackage

Grouping: archetypes

Name: Sub_Arc_WeaponFactory

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

51

9.	 Your new subarchetype should appear in the content browser. Left-click on it, then 
hit F4 again to bring up its properties. You'll see that the Weapon Pickup Class is 
already set on the shock rifle!

How it works...
Subarchetypes inherit the properties and values of their parent archetype, just as classes 
receive all of the properties and values from their parent classes. This allows us to place  
a number of actors onto a map that share common characteristics.

We use archetypes instead of just code, as it allows our actors to be easily manipulated  
within the editor.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


3
Scripting a Camera 

System

In this chapter, we will be covering the following recipes:

ff Configuring the engine and editor for a custom camera

ff Writing the TutorialCamera class

ff Camera properties and archetypes

ff Creating a first person camera

ff Creating a third person camera

ff Creating a side-scrolling camera

ff Creating a top-down camera

Introduction
Cameras in UDK are an essential part of gameplay. They can simultaneously be one of the 
most frustrating yet rewarding things to program, as once they are working correctly they  
can completely change a player's experience, because you control their window to the world.

So with that, let's talk about cameras.

Understanding the camera
The camera system for UDK is comprised of three key classes: Camera, Pawn, and 
PlayerController. All of these classes interact to control the rotation, position, and 
special effects that should be applied to the player's camera during the course of a game.

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

54

A reference to the Camera class is being held in the PlayerController class, as 
well as the Pawn class being controlled. The input from the player is received from the 
PlayerController class and used to update the positions and rotation of the pawn  
it is controlling. The Camera class passes its update to the Pawn class, which in turn  
updates the rotation and position back to the camera.

By altering one or more of these classes and the way they interact, the player's camera can 
be set to show the world to the player using any perspective. By default, the player's camera 
uses a first-person perspective with the option to toggle it to a third-person over-the-shoulder 
perspective. We're going to create our own camera system which will allow us to do all of that, 
and more.

A player's view into the world is determined by the Camera class. The camera's rotation  
and position determines the viewpoint from which the scene is rendered when displayed  
on screen. Additionally, the Camera class holds properties for controlling the way the world  
is seen, such as setting the aspect ratio, field of view, and so on.

Cameras also have special effects that can be applied to the Camera class, thus allowing 
things such as post processing, camera animations, lens effects, and camera modifiers. While 
we won't discuss those special effects here, I, at least, wanted to bring them to your attention.

The PlayerController class
Responsibility for translating player input into game actions, such as moving a pawn or 
controlling the camera, is passed off to the PlayerController class. It's not unusual for 
the player controller's rotation to drive the camera rotation, although there are other ways to 
handle this, such as having our target pawn implement CalcCamera. We will not be taking 
that approach, however. There are some negatives associated with this path, including the 
loss of some functionality, such as camera animations and post processing effects.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

55

When creating new camera perspectives, it may be necessary to update or override some 
functionality within the PlayerController class, as the player's input is translated into the 
orientation and the movement of the pawn can differ with each type of camera and perspective.

Now how exactly does this tie into the pawn? The player's physical representation in the 
world is not only handled by the pawn, but it can also be responsible for controlling the 
position and rotation of the player's camera. By overriding certain functions, you can create 
new camera perspectives. This is exactly what we're going to do with our Camera and 
PlayerController classes.

Configuring the engine and editor for a 
custom camera

All of our recipes will require a new custom GametTypegametype class to tell UDK to use our 
new Pawn and PlayerController classes.

Getting ready
We'll be using the same game type and player controller for all of these cameras, so we'll 
begin this chapter's recipes by explaining them here. Begin this lesson by extending our  
game from UTGame:

class TutorialGame extends UTGame;

defaultproperties
{
  PlayerControllerClass=class'Tutorial.TutorialPlayerController'
  DefaultPawnClass=class'Tutorial.TutorialPawn'
  DefaultInventory(0)=class'UTWeap_ShockRifle'
}

We set the default properties which include our new custom TutorialPlayerController 
class and TutorialPawn class. I choose to use UTWeap_ShockRifle as my weapon of 
choice, but you can place whatever you'd like here.

We'll need to modify the DefaultGameEngine.ini and DefaultGame.ini files as well, to 
tell the editor and engine to use the new game type as the default. These files can be found in 
your directory under the path, UDKGame/Config.

DefaultGameEngine.ini

[UnrealEd.EditorEngine]
+EditPackages=UTGame
+EditPackages=UTGameContent

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

56

+EditPackages=Tutorial

DefaultGame.ini

[Engine.GameInfo]
DefaultGame=Tutorial.TutorialGame
DefaultServerGame=Tutorial.TutorialGame

With that out of the way, we can finally get to make our prototype camera system work  
within the editor.

It may be necessary to delete your UDKGame.ini and UDKEngine.ini 
files after modifying the default ones, as we have done here. Our game 
runs off of the UDK versions; if they're still there, they'll be used without 
our modifications.

How to do it...
With our game configured correctly, we need to make sure we have the correct map and game 
type loaded when we start the UDK editor. We really only have to change the game type from a 
menu, so that UDK knows to look for our custom game, instead of its default setting of Unreal 
Tournament as explained in the following steps:

1.	 Load the UDK editor and open our DefaultMap.udk.

2.	 Afterwards, left-click on the View tab at the top-left corner, which will bring down  
its contents.

3.	 Scroll down to World Properties, and left-click on that.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

57

4.	 The WorldInfo_0 Properties dialog box should appear. Look for the Game Type tab, 
which will contain our Default Game Type and Game Type for PIE (Play In Editor).

5.	 Change Default Game Type and Game Type for PIE to TutorialGame.

Now when we hit the PIE or Play In Viewport buttons, our game will load our 
TutorialGame, which as we learned before, is what sets the elements we 
need to have loaded for our camera, pawn, and player controller in motion.

How it works...
When changing the default gametype and adding packages to UDK, we'll always need to 
configure the .ini files accordingly. These .ini, or standard configuration files, are what  
the engine checks before compiling our projects, and are the ones which instruct the engine 
to look for specific packages.

Once we've made those changes, so that it looks for our new game type and package  
of classes, we just need to change the game type for our specific map.

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

58

Writing the TutorialCamera class
With our game type in place, we now need to write the code for our TutorialCamera 
and TutorialCameraProperties classes. The properties class includes the variables 
we will expose to the UDK editor. Coming back around to the archetypes we spoke 
about earlier, our camera will now be made into one, which is what allows its properties 
(TutorialCameraProperties.uc) to be manipulated in the editor.

Getting ready
We'll need to launch our IDE of choice here, and create the TutorialCamera class by 
creating a file called TutorialCamera.uc class in our Classes folder (C:\UDK\July\
Development\Src\Tutorial\Classes).

How to do it...
The first thing we'll need is a Camera class to store all of our variables and functions in. We'll 
use these throughout the rest of our tutorials, and they'll hold the values for manipulating how 
the camera interacts with the environment. We can do this by creating one new class.

1.	 We'll begin by creating our TutorialCamera class. As UDK's camera class already 
offers much of what we'll need for our own camera, we'll just extend from theirs. We'll 
also need to have access to our TutorialCameraProperties class, and we do so 
by declaring a variable for it.
class TutorialCamera extends Camera;

// Reference to the camera properties
var const TutorialCameraProperties CameraProperties;

2.	 Immediately following that, we'll include some code which will be written to our log file 
when the camera is first initialized. This allows us to verify that our camera is actually 
being called.
/** Lets us know that the class is being called, for debugging 
purposes */
simulated event PostBeginPlay()
{
    super.PostBeginPlay();
    'Log("Tutorial Camera up");
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

59

I cannot overstate the importance of using the 'Log function when 
building code. It will save you an enormous amount of frustration, 
especially when debugging, as you will know immediately whether or not 
your code you're looking at had ever been called.
We place this in our PostBeginPlay() method as it will be one of 
the first things executed before a class is fully initialized. The super.
PostBeginPlay() method above our 'Log function indicates that we 
want our parent class' PostBeginPlay method to be called first, then 
execute ours, wherein our parent class is Camera.

3.	 Now we've got to build the meat and potatoes of our class with our 
UpdateViewTarget method, as well as declare our local variables that we'll be using:
/***************************************************************** 
Query ViewTarget and outputs Point Of View.
 *
 * @param    OutVT        ViewTarget to use.
 * @param    DeltaTime    Delta Time since last camera 
                          update in seconds
*****************************************************************/
functionUpdateViewTarget 
(out TViewTargetOutVT, float DeltaTime)
{
  local Pawn   Pawn;
  local Vector V, PotentialCameraLocation, HitLocation,  
                  HitNormal;
  local Actor HitActor;

4.	 The next if statement is used for blending what the camera sees as we begin to 
move around:
  /** If there is an interpolation, don't update outgoing 
       viewtarget */
  if (PendingViewTarget.Target!=None&& 
  OutVT==ViewTarget&&BlendParams.bLockOutgoing)
  {
  return;
   }

Pawn refers to our game pawn. We'll have a number of vectors to define,  
but it is simple if we break it down:

�� The first one, V, is simply a placeholder and of no use to us. The 
GetActorEyesViewPoint method required a vector as one of its 
parameters and we had to put something in there, so we used V. When  
a vector's properties are not defined it simply defaults to X=0, Y=0, Z=0.

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

60

�� PotentialCameraLocation is where we actually want the camera to be.

�� The HitLocation and HitNormal variables are used for our trace.  
This comes into play when our camera bumps into a wall, and rather than 
clipping through the wall, allows the camera to be offset, so that it still 
displays our pawn without interrupting the gameplay experience.

�� Finally, the HitActor variable declares what we've just hit when doing  
our trace.

5.	 If we know which pawn socket name we'd like to use, then declare it, otherwise  
we'll use the pawn's eyes as our default starting point for what we see (that is, 
we draw our viewpoint from where the weapon is pointing instead, using the 
WeaponSocket socket):
  /** Our pawn will be where we are grabbing our  
  perspective from */ 
  Pawn = Pawn(OutVT.Target);

  /** If our pawn is alive*/
  if (Pawn != None)
  {

    /** Start the camera location from a valid socket name,  
             if set correctly in the camera properties */
    // (i.e. WeaponSocket)
    if (Pawn.Mesh!=None&&Pawn.Mesh.GetSocketByName 
    (CameraProperties.PawnSocketName)!=None)
    {
      Pawn.Mesh.GetSocketWorldLocationAndRotation 
      (CameraProperties.PawnSocketName, OutVT.POV.Location,  
      OutVT.POV.Rotation);
    }
    /** Otherwise grab it from the target eye view point */
    else
    {
      OutVT.Target.GetActorEyesViewPoint 
      (OutVT.POV.Location, OutVT.POV.Rotation);
    }

The weapon socket is one of the properties we'll declare in the 
TutorialCameraProperties class, so we won't have to 
worry about hardcoding it here just yet.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

61

6.	 We generally want to use the rotation of our target, in this case our pawn, so that  
we view the world as it would. If that's the case, we'll want to have this turned on.
/** If the camera properties forces the camera to always  
use the target rotation, then extract it now */
    if (CameraProperties.UseTargetRotation)
    {
      OutVT.Target.GetActorEyesViewPoint(V,  
      OutVT.POV.Rotation);
    }

    //CameraProperties.UseTargetRotation = false;

This is another Boolean, which we can select to have on or off in the 
TutorialCameraProperties class.

7.	 We will want to offset the rotation of our camera from its default socket location.  
This is what allows us to create first, third, and virtually any other camera we'd  
like to use. We'll also need to do the applicable math for the calculation.
/** Offset the camera */
  OutVT.POV.Rotation+=CameraProperties.CameraRotationOffset;

    /** Do the math for the potential camera location */
PotentialCameraLocation=OutVT.POV.Location+ 
(CameraProperties.CameraOffset>>OutVT.POV.Rotation);

Technical editor William Gaul described the whole process as follows:
Put simply, A >> B rotates vector A in the way described by rotator B. One 
Unreal rotation unit is 32,768/Pi radians, however people tend to think 
in degrees. For reference, check the following:

ff 65,536 = 360 degrees
ff 32,768 = 180 degrees
ff 16,384 = 90 degrees
ff 8,192 = 45 degrees
ff 182 = 1 degree

What occurs here is a coordinate system transformation. We take the 
local CameraOffset and adjust it to global space so it can be applied 
to the out vector.

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

62

8.	 This is where our trace will come into play. We need to check and see if our potential 
camera location will work, meaning that it won't put us in a wall. If we do run into a 
collision issue, the camera will automatically offset itself by the value of the normal  
of what we hit. This is perhaps the most complicated part of the code, as it involves 
so much math:
/** Draw a trace to see if the potential camera location will 
work*/
    HitActor=Trace(HitLocation, HitNormal,  
    PotentialCameraLocation, OutVT.POV.Location, true,,,  
    TRACEFLAG_BULLET);

    /** Will the trace hit world geometry? If so then use  
        the hit location and offset it by the hit normal */
    if (HitActor!=None&&HitActor.bWorldGeometry)
    {
      OutVT.POV.Location=HitLocation+HitNormal*16.f;
    }
    else
    {
      OutVT.POV.Location=PotentialCameraLocation;
    }

9.	 Our last piece of code makes us declare the archetype that we will be using to access 
our camera's properties. We'll cover exactly where we get this file path at the end of 
our TutorialCameraProperties tutorial.

defaultproperties
{
  /** This sets our camera to use the settings we create in the 
editor */
CameraProperties=TutorialCameraProperties'TutorialPackage. 
archetypes.Arc_TutorialCamera'
}

How it works...
Flipping back and forth between an IDE and the editor to determine the exact numbers for 
variables such as offset, rotation, and distance for our camera system can be a frustrating 
and time consuming. By scripting one prototyping camera system from our IDE, we will be 
allowed to change values on the fly from within the UDK editor. This way, we can not only save 
valuable time and avoid frustration, but also quickly prototype new camera systems and see 
how our current ones work.

We've created a camera system and exposed certain properties to the UDK editor to avoid 
cluttering our editor, while at the same time allowing for easy manipulation of important 
properties, such as rotation and vector.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

63

Camera properties and archetypes
With our Camera class in place, we now need to create a class for our publicly exposed 
properties, as well as the archetype that we'll physically interact with, inside the UDK editor.

Getting ready
Open your IDE and prepare to create a new class.

How to do it...
Exposing properties to the editor can be a far easier way to make tweaks and changes to 
actors like our camera. Without this archetype we are about to build, we'd have to manually 
change the variable within our IDE, compile the project, then view our results in the editor.  
We plan on making the life of your level designer much easier with this simple fix.

In the following recipe we'll need to create a new class, in addition to an archetype within  
the UDK editor, so that our level designers can reference our class without ever having to 
open up an IDE:

1.	 Create TutorialCameraProperties.uc in our Classes folder (C:\UDK\July\
Development\Src\Tutorial\Classes).

2.	 As we're simply making an archetype, we'll be extending our class from the most 
basic of all UDK classes, Object.
class TutorialCameraProperties extends Object

3.	 Moreover, we want to keep our editor as clean as possible, so we'll be hiding all  
of the camera's properties with this next step.
/** We don't want to clutter up the editor, so hide Object  
    categories */
HideCategories(Object);

4.	 Moving on, we'll want to expose only the variables we've created in our 
TutorialCamera class. This allows us to easily and quickly make changes  
to nearly anything we would want to change for our camera. All of these variables 
were previously defined in our TutorialCamera class.
/** Camera offset to apply */
var(Camera) const Vector CameraOffset;
/** Camera rotational offset to apply */
var(Camera) const Rotator CameraRotationOffset;
/** Pawn socket to attach the camera to */
var(Camera) const Name PawnSocketName;
/** If true, then always use the target rotation */
var(Camera) constboolUseTargetRotation;

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

64

The PawnSocketName variable is any socket located on the pawn.  
You can even create your own! For the most part though, we'll be sticking 
with either WeaponSocket or HeadShotGoreSocket (pawn's eyes).

5.	 We don't have information to place in our default properties, but we're required  
to have it regardless.
defaultproperties
{
}

6.	 Our next goal is to get the archetype created within the UDK editor. Launch the  
editor and open your Actor Browser.

I like to add the –log parameter to my editor, so that I can see the debug 
screen as I'm making changes. To do the same, have your launch path look 
like the following:
C:\UDK\July|Binaries\UDKLift editor -log

7.	 Make sure that Use 'Actor' As Parent, Placeable Classes Only, and Show 
Categories are not checked, otherwise our camera will not appear in our search.  
In the search field, enter Camera, and you will see it appear.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

65

8.	 Right-click on Camera to display the Create Archetype pop-up. Left-click to bring  
up the dialog box for archetype options.

9.	 Yours should now read as the following:

Package: Tutorial Package

Grouping: Archetypes

Name: Arc_TutorialCamera

10.	 With that completed, your newly created archetype will be available to you in 
the content browser. Left-clicking on it will cause the dialog box for the camera 
properties to display, which illustrates all of the variables we exposed in our 
TutorialCameraProperty class.

11.	 Hit the PIE or Play in Viewport button in your editor (F8 works too), and the pawn  
will spawn. Adjusting any of the values in your archetype will now yield new results  
for your camera!

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

66

Once you've hardcoded some values that seem to work for a new camera system (that is, third 
person), you can then create a Boolean in these properties that allow you to quickly switch it 
on and off with the touch of a button.

Add the following to the variables section of your TutorialCameraProperties class:

/** If true, then use the third person settings */
var(Camera) constboolUseThirdPerson;

Afterward, add the following to your TutorialCamera class, just 
beneath where we've stated If (Pawn != None):

  /** Be sure to set the values in your camera within the editor  
      to 0! Otherwise this will not work correctly! If the  
      camera properties forces the camera into third person,  
      then extract it now */
    if (CameraProperties.UseThirdPerson)
    {
      OutVT.POV.Location.X += 120;
      OutVT.POV.Location.Y += 50;
      OutVT.POV.Location.Z += 35;

      OutVT.POV.Rotation.Roll += 0.0f;
      OutVT.POV.Rotation.Pitch += 0.0f;
      OutVT.POV.Rotation.Yaw += 10.0f;
            // Hide the pawn's "first person" weapon
            if(Pawn.Weapon != none)
            {
                Pawn.Weapon.SetHidden(true);
            }
    }

Selecting the checkbox in your editor within the game will now instantly transform your 
camera into a third person view!

How it works...
Our camera properties class is simply an object that attaches to our Camera class and allows 
us to alter our camera's properties from within the editor. We've created an archetype from 
our CameraProperties class, so that we can reference it from UScript and attach it to our 
Camera class through our default properties.

Attaching our CameraProperties archetype to our camera allows us to make changes on 
the fly within the editor, and remove the frustration of needing to go back and forth between 
our IDE, recompiling, and then the editor to see any changes take place.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

67

There's more...
In the default properties for our Camera class, we listed the path to our camera archetype.  
Now that we've created our archetype, we can fill in our default property with the proper location:

1.	 Right-click on Arc_TutorialCamera in your Content Browser and scroll down to 
Copy full name to clipboard.

2.	 With the name copied, go to TutorialCamera.uc and in default properties our 
TutorialCamera will now grab its values from what we set in the editor, and your 
class should look like the following:

defaultproperties
{
/** This sets our camera to use the settings we create in  
    the editor */
CameraProperties=TutorialCameraProperties'TutorialPackage. 
archetypes.Arc_TutorialCamera'
}

See also
You can add sockets to your pawn at any time to make offsetting your camera even easier.  
The following is an image illustrating the five sockets available to our pawn by default:

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

68

Creating a first person camera
While a first person camera comes standard with UDK, we've crafted a camera system  
that is modular, and allows us to easily adjust our perspective while still avoiding clipping 
through objects.

We'll take all that we've learned from our previous lessons and apply it to this one. We'll be 
hardcoding a first person camera, based on the property values I've found to be consistent 
with what we are looking for.

Getting ready
Our next few lessons will all require one similar change, all of which will occur with 
TutorialPlayerCotroller class. Under defaultproperties, we'll need to  
change the following:

CameraClass = Class'Name_Of_Camera_Class'

So, for this tutorial it should read as follows:

CameraClass = Class'FirstPersonCam'

With this completed, our player controller will now ignore any change we make to the 
CameraProperties archetype we've created and instead use the values we write in 
FirstPersonCam.uc.

Moreover, our new camera system will look very similar to our tutorial camera, so I won't  
go over everything again in much detail.

Rather than rely on the values we've entered in our archetype, our camera will now be built 
around hardcoded numbers which we've deemed to best suit our needs. Of course, you could 
alter them at any time through code.

How to do it...
UDK comes with a first person camera right out of the box, but we want to create one that fits 
in with our modular camera system. We'll be creating a new class, which is very similar to our 
previous camera class in many aspects. Additionally, we'll need to bind this new camera class 
to our player controller so that we can actually utilize it, which is explained as follows:

1.	 We'll start by creating a new class called FirstPersonCam, extending from Camera, 
just as we did with our previous camera system.
class FirstPersonCam extends Camera;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

69

2.	 Follow that up by declaring the two new variables that we'll need, CamOffset,  
which is of type Vector, and CamOffsetRotation, which is of type Rotator.

Instead of relying on our archetype for values, we'll write them in 
default properties and store them in these two variables.

/** Hardcoded vector offset we will use, rather than tweaking 
values in the editor's CameraProperties */
varconst Vector CamOffset;
/** Hardcoded rotator offset we will use, rather than tweaking 
values in the editor's CameraProperties */
varconst Rotator CamOffsetRotation;

3.	 Our PostBeginPlay function is the same as before. However, now that we're  
using a first person view, we'll want to hide the third person mesh, otherwise it  
will constantly be clipping into the view of our camera. Therefore, we add this  
bit of code to our UpdateViewTarget function:
Pawn = Pawn(OutVT.Target);
    if (Pawn != None)
    {
    /** To hide the third person mesh */
        Pawn.SetHidden(true);

/**********************************************************
 * If you know the name of the bone socket you want to use,
 * then replace 'WeaponPoint' with yours.
 * Otherwise, just use the Pawn's eye view point as your  
 * starting point.
**********************************************************/

4.	 This next part is new. We now want to declare where our point of view will begin by 
using a socket. For the third person and over the shoulder views, the weapon works 
well; but for first person, the pawn's head works best. The offset values, we declare 
later, will all be from the socket point we declare here. If you aren't sure of which 
socket to use, then the camera will start from our pawn's eyes by default.
/** socket not found, use the other way of updating vectors */
if(Pawn.Mesh.GetSocketWorldLocationAndRotation('HeadShotGoreSock
et', OutVT.POV.Location, OutVT.POV.Rotation) == false) 
{
  /** Start the camera location from the target eye  
  view point */
  OutVT.Target.GetActorEyesViewPoint 
  (OutVT.POV.Location, OutVT.POV.Rotation);
}

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

70

5.	 This part is slightly different from what we've seen before. Rather than offer  
the option of choosing to use the target's rotation or not, we're just declaring  
that we will indeed use the target's (pawn's) rotation.
/** Force the camera to use the target's rotation */
OutVT.Target.GetActorEyesViewPoint(V,  
OutVT.POV.Rotation);
/** Add the camera offset */
OutVT.POV.Rotation += CamOffsetRotation;

/** Math for the potential camera location */
PotentialCameraLocation = OutVT.POV.Location +  
(CamOffset>>OutVT.POV.Rotation);

/** Draw a trace to see if the potential camera location will work 
*/
HitActor = Trace(HitLocation, HitNormal,  
PotentialCameraLocation, OutVT.POV.Location, true,,,  
TRACEFLAG_BULLET);

/** Will the trace hit world geometry? If so then use the hit 
location and offset it by the hit normal */
if (HitActor != None && HitActor.bWorldGeometry)
{
  OutVT.POV.Location = HitLocation + HitNormal * 16.f;
}
else
{
  OutVT.POV.Location = PotentialCameraLocation;
}

6.	 Our hardcoded values for our camera's offset and rotation will be defined in the class' 
default properties, CamOffsetRotation=(Pitch=16384, Roll=0, Yaw=0), 
which is the Unreal unity equivalent to 90 degrees.
/** Hardcoded vector & rotator values for our camera */
defaultproperties
{
    CamOffset=(x=+10,y=0,z=0)
    CamOffsetRotation=(Pitch=0, Roll=0, Yaw=0)
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

71

I've included a reference as well, to give you a better understanding of 
how the Unreal Engine converts degree rotations into Unreal rotator units. 
I've also added 10 to our x value, because if we don't, then we're able to 
see the back of the gun's model.

So, if we wanted our pitch to be turned up 90 degrees, we would write, 
CamOffsetRotation=(Pitch=16384, Roll=0, Yaw=0).

With our class completed, all you need to do is compile the project, launch the editor,  
and you'll have a first person camera!

How it works...
There was no need to reference our CameraProperties archetype in this example,  
as we've hardcoded our values based on what worked with our easy tutorial camera.

To start things off, we needed our player controller to use our first person camera,  
so we made the appropriate change in our default properties block.

Our FirstPersonCam extends our Camera class, and allows for more freedom down  
the road, as opposed to using CalcCamera. While our method requires a bit more work,  
we are now free to use camera animations and post processing effects.

For the most part, the code is very similar to what we had in our TutorialCamera class, 
but instead of variables for things like camera offset and rotation being read from our 
CameraProperties archetype, we are hardcoding them in the default properties block  
of our FirstPersonCam class.

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

72

Creating a third person camera
UDK now comes with a third person camera built into the kit, but we'd still prefer to use our 
own modular camera system. Epic's popular Gears of War franchise uses this camera style, 
and then zooms into an over-the-shoulder view when sprinting. We'll cover more of that in  
our next recipe.

Getting ready
As with our previous recipe, we'll require one similar change in the 
TutorialPlayerCotroller class. Under defaultproperties,  
we'll need to change it so that it reads as the following:

CameraClass = Class'ThirdPersonCam'

Our code looks nearly identical to that of our first person camera, minus a few simple changes 
that I'll highlight. Most notably, we're looking to hide our first person mesh, so that only our 
third person mesh is exposed to the camera.

In the end, you may notice that your projectiles are not firing from the correct mesh. Not to 
worry, this isn't an issue with the camera, but a simple change that we need to make in the 
weapon class, which we'll highlight in the chapter about weapons.

If your game is using our Tut_Pawn, Tutorial_ShockWeapon, and Tut_Attachment_
Shockweapon classes, then you'll be fine, and you can see the exact functions that allow  
our projectiles to fire from the proper location.

How to do it...
Rather than rely on the values we've entered in our archetype, our camera will now be built 
around hardcoded numbers which we've deemed to best suit our needs, just as we did with 
the first person camera. For this recipe we'll be creating a new class for our third person 
camera, and then binding it to our player controller:

1.	 Create a new class called ThirdPersonCam and have it extend from the  
Camera class:
class ThirdPersonCam extends Camera

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

73

2.	 Remember when we hid our pawn from view before? Well this time we're  
going to allow the pawn to be shown, but hide our first person weapon:
Pawn = Pawn(OutVT.Target);
    if (Pawn != None)
    {
      /** Hide the pawn's "extra" weapon */
      if(Pawn.Weapon != none)
      {
        Pawn.Weapon.SetHidden(true);
      }
    }

There are a number of reasons as to why we do this, most notably, due to the fact 
that designers want to limit the detail of the weapons and pawns as the camera gets 
further away. There's no reason to have a high poly model present if the player never 
sees it. This allows better graphical efficiency as the distance between the pawn or 
weapon increases.

3.	 In our first person camera we used the pawn's eyes as the socket point from which 
our offset would be based. This time however, we're going to be using the weapon's 
socket, simply titled WeaponSocket.
/**********************************************************
* If you know the name of the bone socket you want to use,
* then replace 'WeaponPoint' with yours.
* Otherwise, just use the Pawn's eye view point as your  
starting point.
**********************************************************/
/*socket not found, use the other way of updating vectors 
  */
if (Pawn.Mesh.GetSocketWorldLocationAndRotation
('WeaponPoint',OutVT.POV.Location, OutVT.POV.Rotation) == false)
{
  /*Start the camera location from the target eye  
  view point */
  OutVT.Target.GetActorEyesViewPoint 
  (OutVT.POV.Location, OutVT.POV.Rotation);
}

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

74

4.	 Where the magic happens is in the default properties. We're shifting the camera  
so that it gives us the third person view we're looking for:
/** Hardcoded vector & rotator values for our camera */
defaultproperties
{
    CamOffset=(x=-100,y=15,z=20)
    CamOffsetRotation=(Pitch=-2048)
}

You may notice that we don't have values for Roll and Yaw. That's because 
any values which aren't declared in a Rotator are assumed to be zero.

How it works...
There was no need to reference our CameraProperties archetype in this example,  
as we've hardcoded our values based on what worked with our easy tutorial camera.

To start things off, we needed our player controller to use our third person camera,  
so we made the appropriate change in our default properties block.

For the most part, the code is nearly identical to what we had in our FirstPersonCam  
class, except for the hardcoded values declared in our default properties block, which  
are now adjusted to work for a third person view.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

75

Creating a side-scrolling camera
Side-scrolling games have been a hit for decades, and some of gaming's largest franchises 
have taken advantage of it. While we don't often see games using UDK take advantage of  
the side-scrolling perspective, one high profile title published by Epic, Shadow Complex 
certainly did, although with a bit more of a pulled back, Metroidvania style about it. For  
those not familiar with the term Metroidvania, it is a 2D side-scroller style of game with  
an emphasis on a non-linear, exploratory action-adventure structure; it inherits its name  
from the Metroid and Castlevaniaseries.

We'll be hardcoding our values again. Much of what you'll see next is similar to the code  
found in the third person camera code.

We'll also have to make a few changes to the PlayerController class for a number of 
reasons. Specifically, we want our pawn to only be able to move forward and back, thereby 
removing the ability to strafe left and right. Moreover, our system requires that the right side  
of the screen is always considered forward.

For this purpose, we will want to create a new player controller class, called 
TutorialPlayerControllSSC.

Just as we did with the third person camera, we'll want the first person weapon mesh  
to remain hidden, and continue to expose the third person weapon and pawn meshes  
to the camera.

Getting ready
We're going to make a whole new player controller class for this tutorial, as we need  
to add a new function to it. Create a new class called TutorialPlayerControllerSSC 
(side-scrolling camera) and have it extend from the PlayerController class:

class TutorialPlayerControllerSSC extends PlayerController;

How to do it...
With our new TutoriaPlayerControlerSSC class made, we can begin filling it with the 
functions we need:

1.	 For now, add this code, which you should already be familiar with by now, as it 
appears in our TutorialPlayerController.uc class:
/** Lets us know that the class is being called, for  
debugging purposes */
simulated event PostBeginPlay()
{

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

76

    super.PostBeginPlay();
    'Log("TutorialPlayerControllerSSC up");
}

/********************************************************** 
*** FOR ALL CAMERAS *** 
* Rotator where the pawn will be aiming the weapon.
* Will be different, depending on which camera system we
* are using.
************************************************************/
function Rotator GetAdjustedAimFor 
(Weapon W, vector StartFireLoc)
{
  returnPawn.GetBaseAimRotation();
}

2.	 The next function we add allows our projectiles to fire in the correct direction. We are 
overriding UpdateRotation, so that the projectiles use the pawn's rotation and not 
the camera's rotation when firing. Without this, you'll notice that projectiles always fire 
in the same direction, and towards the camera. The following is that bit of code:
/**************************************************************
* Forces the weapon to fire in the direction the pawn is  
facing
**************************************************************/
functionUpdateRotation( float DeltaTime )
{
  local Rotator DeltaRot, newRotation, ViewRotation;

  ViewRotation = Rotation;

  /** Calculate Delta to be applied on ViewRotation */
  DeltaRot.Pitch = PlayerInput.aLookUp;
  ProcessViewRotation( DeltaTime, ViewRotation, DeltaRot );
  SetRotation(ViewRotation);
  NewRotation = ViewRotation;

  if ( Pawn != None )
    Pawn.FaceRotation(NewRotation, deltatime);
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

77

3.	 This next bit seems long-winded, but it is essentially one function (really, a state) that 
we are overriding from Pawn.uc. It is identical to the one found in that class, except 
that we are altering this bit of code:
/** The only change for the side scrolling camera to this 
function. Update acceleration - pawn can only move forward and 
back now */
NewAccel.Y = -1 * PlayerInput.aStrafe * DeltaTime * 100 *  
PlayerInput.MoveForwardSpeed;

/** Set to 0 to not allow movement on the X or Z axes */
NewAccel.X = 0;
NewAccel.Z = 0;

This controls the movement of our pawn, based on the direction it is facing. Hitting 
the left and right (or A and D) keys on the keyboard will now force your pawn to move 
forward and back across the screen. Previously, you would have to hit the up and 
down keys to make the pawn move forward and back.

Moreover, setting NewAccel to 0 on both the X and Z axes prevents the pawn from 
strafing left and right. With our plane of movement locked, we can now create a true 
side-scroller.

4.	 In the following code, we are overriding the state, PlayerWalking, found in the 
PlayerController.uc class. Our goal is to update the acceleration to allow only 
forward/back movement.
/*****************************************************************
* Player movement, overriding the one found in  
PlayerController.UC
* We are updating the acceleration to allow for only  
forward/back movement
*****************************************************************/
state PlayerWalking
{
  ignores SeePlayer, HearNoise, Bump;

  function PlayerMove(floatDeltaTime)
  {
  localvector   X,Y,Z, NewAccel;
  localeDoubleClickDir DoubleClickMove;
  localrotator OldRotation;
  localbool bSaveJump;

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

78

  if( Pawn == None )
  {
    GotoState('Dead');
  }
    else
    {
      GetAxes(Pawn.Rotation,X,Y,Z);

      /** The only change for the side scrolling camera to  
      this function. Update acceleration - pawn can only  
      move forward and back now */
      NewAccel.Y=-1*PlayerInput.aStrafe*DeltaTime*  
      100*PlayerInput.MoveForwardSpeed;

      /** Set to 0 to not allow movement on the X or Z axes  
      */
      NewAccel.X=0;
      NewAccel.Z=0;

  if(IsLocalPlayerController())
  {
    AdjustPlayerWalkingMoveAccel(NewAccel);
  }

  DoubleClickMove=PlayerInput.CheckForDoubleClickMove 
  ( DeltaTime/WorldInfo.TimeDilation );

  /** Update rotation. */
  OldRotation = Rotation;
  UpdateRotation( DeltaTime );
  bDoubleJump=false;

  if( bPressedJump&&Pawn.CannotJumpNow())
  {
    bSaveJump=true;
    bPressedJump=false;
  }
  else
     {
       bSaveJump=false;
     }

  if( Role < ROLE_Authority ) // then save this move and  
                                 replicate it
  {

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

79

    ReplicateMove(DeltaTime, NewAccel, DoubleClickMove,  
    OldRotation - Rotation);
  }
    else
     {
       ProcessMove(DeltaTime, NewAccel, DoubleClickMove,  
       OldRotation - Rotation);
     }
      bPressedJump=bSaveJump;
    }
  }
}

5.	 All that's left now is our default property, where we set the camera we'll be using,  
in this case, our side-scrolling camera:
defaultproperties
{
  CameraClass = Class'SideScrollingCam'
}

With our player controller configured, we can now move on to the actual camera itself.

6.	 Make a new class called SideScrollingCamand, and have it extend from Camera:
class SideScrollingCam extends Camera;

7.	 The rest of our code will be nearly identical to that found in our other camera classes. 
I did change the socket that the camera is based off of, however. Previously, we were 
using the WeaponSocket socket, which is where the pawn grips the weapon. This 
time I prefer to use the pawn's HeadShotGoreSocket, as I feel it gives me a better 
perspective of the world.
/** socket not found, use the other way of updating vectors */
if (Pawn.Mesh.GetSocketWorldLocationAndRotation 
('HeadShotGoreSocket', OutVT.POV.Location,  
OutVT.POV.Rotation) == false)

8.	 We don't want to see our pawn's first person weapon again, now that we're using  
a perspective outside of the pawn's eyes, so let's hide that as well. Place this code 
just above where you placed the code for step 7:
/** Hide the pawn's third person weapaon */
if(Pawn.Weapon != none)
{
  Pawn.Weapon.SetHidden(true);
}

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

80

Furthermore, it allows the camera to clip beneath the ground and turn it invisible.  
If we continue to use the WeaponSocket socket, the camera pulls itself in, towards 
the pawn, as we get closer to the ground. Use the one that best suits your needs.

9.	 Finally, we change our hardcoded default properties:
/** Hardcoded vector & rotator values for our camera */
defaultproperties
{
    CamOffset=(x=-340,y=70,z=0)
    CamOffsetRotation=(Yaw=53000)
}

Again, this is purely a matter of preference. Adjust it accordingly.

10.	 There is one final change to make, and that's in our TutorialPawn class. We 
need to change our GetBaseAimRotation method. This function is called by 
GetAdjustedAimFor in the player controller, which is the rotator for where the 
pawn will be aiming its shots. Essentially, we are telling the game to use the direction 
the pawn is facing for firing shots, and not the camera's. Add the following code:
/*****************************************************************
** USED FOR SIDE SCROLLING **
* Forces the weapon to use the pawn's direction for aiming,  
and not the camera's.
* shots will be fired in the direction the gun is pointed.  
Used by PlayerController
* Comment this out if you are not using the Side Scrolling  
Camera. 
* @return POVRot.
*****************************************************************/
simulated singular event Rotator GetBaseAimRotation()
{
  local rotator  POVRot;

  /** We simply use our rotation */
  POVRot = Rotation;

  /** If our Pitch is 0, then use RemoveViewPitch */
  if( POVRot.Pitch == 0 )
  {
    POVRot.Pitch = RemoteViewPitch << 8;
  }
  return POVRot;
}

11.	 Compile the project and take a look at your results!

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

81

How it works...
There was no need to reference our CameraProperties archetype in this example,  
as we've hardcoded our values based on what worked with our easy tutorial camera.

To start things off, we needed our player controller to use our side-scrolling camera,  
so we made the appropriate change in our default properties block. We also had to make  
a few changes to the PlayerController class. Specifically, we wanted our pawn to only  
be able to move forward and back, thereby removing the ability to strafe left and right. 
Moreover, our system requires that the right side of the screen is always considered forward.

We also had to override the GetBaseAimRotation function in our pawn class and 
GetAdjustedAimFor function in our player controller class. These changes tell the  
game to use the direction the pawn is facing for firing shots, and not the camera's.

Other than the player controller though, the code is nearly identical to what we had in  
our FirstPersonCam class, except for the hardcoded values declared in our default 
properties block, which are now adjusted to work for a side-scrolling view.

See also
Don't forget to go back to TutorialGame.uc and change your default properties so that 
the game is using our new TutorialPlayerControllerSSC class, and not our old 
TutorialPlayerController class!

Creating a top-down camera
The top-down camera is popular with RTS games or shooters, as it offers a perspective that 
allows players to easily see approaching enemies. With our top-down camera we'll have our 
pitch locked, so that the player cannot look up or down, and therefore also locks the camera 
from being raised or lowered.

We will still allow the player to freely yaw left and right, and therefore rotate around the world, 
although the camera will follow the pawn from a fixed perspective.

We'll be hardcoding our values again. Much of what you'll see next is similar to the code  
found in the side-scrolling camera code. We'll be using another custom player controller  
as well, which is only marginally different from that of the side-scroller's.

For this purpose, we will want to create a new player controller class, called 
TutorialPlayerControllTDC.

Just as we did with the third person camera, we'll want the first person weapon mesh  
to remain hidden, and continue to expose the third person weapon and pawn meshes  
to the camera.

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

82

Getting ready
We're going to make a whole new PlayerController class for this tutorial, as we need  
to add a new function to it. Create a new class called TutorialPlayerControllerTDC 
(top-down camera) and have it extend from PlayerController. For this recipe we'll be 
creating a new player controller class so that our pawn's aim is not affected by the new 
camera system we've implemented. Otherwise, our pawn's aim would be way off target  
as it would not be using our player's rotation, but our camera's.

class TutorialPlayerControllerTDC extends PlayerController;

How to do it...
The first thing we'll want to do here is to adjust the aiming for our pawn. Without this, our 
pawn's aim would follow where our camera is pointed, and not where our pawn is facing.

1.	 Let's add the code for that now. This is identical to the code found in 
TutorialPlayerControllerSSC.uc.
/********************************************************* * USED 
FOR ALL CAMERAS *** 
* Rotator where the pawn will be aiming the weapon.
* Will be different, depending on which camera system we  
are using
**********************************************************/
function Rotator GetAdjustedAimFor(Weapon W, vector StartFireLoc)
{
  returnPawn.GetBaseAimRotation();
}

2.	 The next part is nearly identical to that in the side-scrolling camera as well, and is the 
only change we've made to this class. Add the following code, then I'll explain:
/**********************************************************
* Forces the weapon to fire in the direction the pawn is  
facing
**********************************************************/
function UpdateRotation( float DeltaTime )
{
  local Rotator DeltaRot, newRotation, ViewRotation;

  ViewRotation = Rotation;

  // Stop the player from adjusting the pitch of the camera 
  DeltaRot.Pitch  = 0;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

83

  // Allows the pawn to rotate left and right
  DeltaRot.Yaw = PlayerInput.aTurn;
  ProcessViewRotation( DeltaTime, ViewRotation, DeltaRot );
  SetRotation(ViewRotation);
  NewRotation = ViewRotation;

  if ( Pawn != None )
    Pawn.FaceRotation(NewRotation, deltatime);
}

Let's focus on the important change that we've made within that block of code:
  /** Stop the player from adjusting the pitch of the  
  camera */
  DeltaRot.Pitch = 0;
  /** Allows the pawn to rotate left and right */
  DeltaRot.Yaw = PlayerInput.aTurn;

Our Pitch is set to 0, just as it was for the side-scroller, because we don't want the 
camera or pawn to be able to look up or down.

At the same time, we are tying the yaw of the pawn (and by connection, the camera) 
to the yaw of the mouse. If the player moves the mouse left and right, the pawn and 
camera will follow.

3.	 Our default properties are left empty as shown in the following code snippet:
defaultproperties
{
}

4.	 Next up, we need to create our TopDownCam class. Have it extend from Camera as 
shown as follows:
class TopDownCam extends Camera;

5.	 Just as we've done with all of our other cameras, we'll add the code for this. It looks 
identical to the side-scrolling camera. First we'll add our variables as shown in the 
following code snippet:
/** Hardcoded vector offset we will use, rather than  
tweaking values in the editor's CameraProperties */
var constVector  CamOffset;

/** Hardcoded rotator offset we will use, rather than  
tweaking values in the editor's CameraProperties */
var constRotator CamOffsetRotation;

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

84

6.	 Now add our functions as shown in the following code snippet:
/*****************************************************************
* Query ViewTarget and outputs Point Of View.
* @paramOutVTViewTarget to use.
* @paramDeltaTime  Delta Time since last camera update (in  
seconds)
*****************************************************************/
functionUpdateViewTarget 
(outTViewTargetOutVT,floatDeltaTime)
{
  local Pawn Pawn;
  local Vector V, PotentialCameraLocation, HitLocation,  
                  HitNormal;
  localActor  HitActor;

  /** UpdateViewTarget for the camera class we're extending  
      from */
  Super.UpdateViewTarget(OutVT, DeltaTime);

  /** If there is an interpolation, don't update outgoing  
     viewtarget */
  if (PendingViewTarget.Target!=None&&OutVT== 
     ViewTarget&&BlendParams.bLockOutgoing)
  {
    return;
  }

  Pawn = Pawn(OutVT.Target);
  if (Pawn != None)
  {
    /** Hide the pawn's "extra" weapon */
    if(Pawn.Weapon!=none)
    {
      Pawn.Weapon.SetHidden(true);
    }
/*****************************************************************
* If you know the name of the bone socket you want to use,  
then
* replace 'WeaponPoint' with yours.
* Otherwise, just use the Pawn's eye view point as your  
starting 
* point.
*****************************************************************/

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

85

/**socket not found, use the other way of updating vectors */
    if(Pawn.Mesh.GetSocketWorldLocationAndRotation 
    ('WeaponPoint', OutVT.POV.Location,  
    OutVT.POV.Rotation)==false) 
    {
      /** Start the cam location from the target eye view  
      point */
      OutVT.Target.GetActorEyesViewPoint 
      (OutVT.POV.Location, OutVT.POV.Rotation);
    }

    /** Force the camera to use the target's rotation */
    OutVT.Target.GetActorEyesViewPoint 
    (V, OutVT.POV.Rotation);

    /** Add the camera offset */
    OutVT.POV.Rotation+=CamOffsetRotation;

    /** Math for the potential camera location */
    PotentialCameraLocation=OutVT.POV.Location  
    +(CamOffset>>OutVT.POV.Rotation);

    /** Draw a trace to see if the potential camera  
    location will work */
    HitActor=Trace(HitLocation, HitNormal,  
    PotentialCameraLocation, OutVT.POV.Location, true,,, 
    TRACEFLAG_BULLET);

    /**  Will the trace hit world geometry? If so then use  
    the hit location and offset it by the hit normal */

    if (HitActor!=None&&HitActor.bWorldGeometry)
    {
      OutVT.POV.Location=HitLocation+HitNormal*16.f;
    }
    else
    {
      OutVT.POV.Location=PotentialCameraLocation;
    }
  }
}

Our default properties are the only changes to this class, when compared to the  
side-scroller's. I found these values by using the tutorial camera and adjusting  
the values with the archetype until I found what I deemed to be appropriate.

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting a Camera System

86

I used a pitch of -80 degrees to have the camera point down at the pawn. You'll notice 
that my pitch says -14000 here though. That's because of UDK's rotation system that 
I mentioned earlier which is based on radians, remember? A pitch of -80 degrees is 
roughly equivalent to 14000 of Unreal's unit of measurement.

/** Hardcoded vector & rotator values for our camera */
defaultproperties
{
    CamOffset=(x=-700,y=0,z=0)
    CamOffsetRotation=(Pitch=-14000)
}

7.	 Next up, we need to make a change to our TutorialPawn class. There is only one 
small change here from the changes we made during our side-scroller tutorial. We're 
going to override the GetBaseAimRotation function found in the Pawn.uc class 
again to have it suit our needs. Add the following code:
/*****************************************************************
** USED FOR TOP DOWN Camera**
* Forces the weapon to use the pawn's direction for aiming,  
and not the camera's.
* shots will be fired in the direction the gun is pointed.  
Used by PlayerController.
* Comment this out if you are not using the Side Scrolling  
Camera.
* @return POVRot.
*****************************************************************/
simulated singular event Rotator GetBaseAimRotation()
{
  local rotator POVRot, tempRot;

  tempRot = Rotation;
  SetRotation(tempRot);
  POVRot = Rotation;

  /** Stops the player from being able to adjust the pitch  
   of the shot, forcing the camera to always point down  
   towards the pawn
  * We can still rotate left and right, however.*/
  POVRot.Pitch = 0;

  returnPOVRot;
}

As you can see, we've set our POVRot to use the rotation of our pawn. Therefore, our 
camera's rotation will follow the pawn's rotation. Additionally, we've set our Pitch to 
0, so that the player no longer has any control over the pitch of either the pawn, and 
by extension, the camera.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

87

8.	 The final change we need to make is in the TuorialGame class. Be sure to  
change the following code in your defaultproperties, so that your game  
uses your new controller:
PlayerControllerClass=class'Tutorial.TutorialPlayerControll 
erTDC'

9.	 Compile the project and take a look!

How it works...
We wanted to hardcode our values again. Much of what we saw was similar to the code  
found in the side-scrolling camera. We also made use of another custom player controller  
as well, which is only marginally different from that of the side-scroller's.

Just as we did with the third person camera, we hid the first person weapon mesh and 
continued to expose the third person weapon and pawn meshes to the camera.

We also had to override the GetBaseAimRotation function in our pawn class and 
GetAdjustedAimFor function in our player controller. These changes tell the game  
to use the direction the pawn is facing for firing shots, and not the camera's direction.  
We've also locked our pawn so that it cannot look up or down when firing shots.

Other than the player controller though, the code is very similar to what we had in 
our side-scrolling camera class, except for the hardcoded values declared in our 
defaultproperties block, which are now adjusted to work for a top-down view.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


4
Crafting Pickups

In this chapter, we will be covering the following recipes:

ff Creating our first pickup

ff Creating a base for our pickup to spawn from

ff Animating our pickup

ff Altering what our pickup does

ff Allowing vehicles to use a pickup

Introduction
Artificial intelligence can cover a variety of things in UDK, so we won't delve too far down  
that path, at least not in this chapter. Here, we'll briefly cover it, and how the AI interacts with 
pickups throughout the game, specifically what attracts them to certain pickups. Furthermore, 
we'll dive into creating our own pickups and how they interact with our pawn's inventory.

So with that, let's talk about AI.

Understanding AI
The main class that handles player actions in UDK is the PlayerController class. 
Similarly, actions are controlled by the AIController class. Considering that they both 
inherit Controller, they share quite a bit of functionality. For the most part, AI controllers 
don't necessarily need a pawn, just like a player controller.

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

90

Moving is one of the categories in which actions for AI fall into, while the other is anything 
that is not moving. Moving may be as simple as following another pawn, or tracking a freshly 
spawned health pickup, while the other category contains things such as aiming or firing  
a weapon.

The bots, or computer controlled pawns, can be configured to have a multitude of 
preconfigured attitudes or reactions towards events. For example, you can write a script that 
instructs the bot to run for cover after taking damage, or to only fire after being fired upon.

We won't cover any of that in depth, but we will cover how to attract pawns towards our  
newly created pickups in this chapter, and we'll get more in depth with their intelligence  
in the following chapter.

Pickups
Pickups in UDK are similar to pickups in just about any other game; however, they can serve  
a variety of purposes. In a first person area shooter, such as the Unreal Tournament series  
or Quake III Arena, they can be used to adjust a pawn's properties by temporarily increasing  
a weapon's damage, providing invulnerability, or even invisibility.

They are generally used in games to add an item to a pawn's inventory, such as ammunition 
for a particular weapon, additional armor for protection, or restoring a player's health, like the 
following example:

We can not only change what a pickup offers a player, but also how it looks, whether or not it 
is animated, who can/cannot acquire the item, and how attracted an AI bot is to it. We'll be 
covering all of those things in the following chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

91

Fortunately, UDK has provided a great template for us to work from, so we'll be using what 
they've provided and make additional changes to suit our needs.

Let's start by tracing the classes that our pickups will inherit from:

Actor is the base class of all gameplay objects. It offers functions for the animation, physics, 
sounds, and networking for objects in UDK, which is explained as follows:

ff NavigationPoint is organized into a network to provide AIControllers the 
ability to determine paths to destinations throughout a level.

ff PickupFactory is where our class finds begin to take shape. It becomes active when 
touched by a valid toucher, or actor that we define should be able to accept this pickup.

ff UDKPickupFactory is largely responsible for how our pickup is perceived inside the 
game. Our materials are created from this class, as are other aesthetics such as how 
frequently the base of our pickup pulses and whether or not our pickup can rotate.

ff UTPickupFactory provides much of what is necessary for a first person shooter, 
that is, it updates the player's HUD and inventory in Unreal Tournament, and an 
additional bot AI is illustrated here.

From those base classes the PickupFactory splits into four distinct classes, each of which 
provides unique functionality. These are given as follows:

ff UTWeaponLocker and UTWeaponPickupFactory: Similar classes are used for 
picking up new weapons

ff UTPowerupPickupFactory: This adds power-ups, such as improved jumping,  
quad damage, and temporary invulnerability

ff UTItemPickupFactory: This contains health, ammo, and armor

The trick with creating your own pickups, or UnrealScript in general, is to find a template  
that best suits your need, and either extend from that and override the functions and default 
properties you need to change, or create your own pickup class that extends from UT or UDK 
pickup factories.

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

92

Creating our first pickup
We're going to create our first pickup by extending from one of the excellent ones already 
provided by UDK. In this case, we'll be extending from UTAmmoPickupFactory to create  
our own ammo pickup.

Getting ready
We'll need to open up our IDE and create a new class extending from our 
UTAmmoPickupFactory class.

class Tut_AmmoPickup extends UTAmmoPickupFactory

Afterwards we'll make some tweaks so that it suits our needs, and the tutorials that follow  
will really make this a personalized pickup, as we adjust a pawn's desire to head towards it, 
the animations it performs, and who can and cannot pick it up.

Now that we've got a class extending from UTAmmoPickupFactory, we've also inherited  
all of that class's properties, including its functionality. For this recipe, we won't have to  
make any changes to the functions, but we will be altering some of its default properties.

We won't need every category in our class to be accessible within the editor once we  
create an archetype for the class, so let's clean things up by adding the following code  
to keep things neat:

// Hides categories that we won't be needing from the archetype
HideCategories(Object, Debug, Advanced, Mobile, Physics);

You'll also need to remove the semicolon (;) from your class declaration, 
otherwise you'll receive an error. The top of your class should now read  
as follows:
 Class Tut_AmmoPickup extends UTAmmoPickupFactory
For reference, all of our classes will be saved under the following directory:
C:\UDK\July\Development\Src\Tutorial

It follows the format given next:
HardDrive\UDK\MonthOfTheBuild\Development\Src\
FolderName

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

93

How to do it...
1.	 In the defaultproperties block at the bottom of your class, add the  

following code:
// How many rounds will be added to our weapon type
  AmmoAmount=10
  // The type of weapon that this pickup will supply ammo  
     for
  TargetWeapon=class'UTWeap_ShockRifle'

This simply declares the amount of ammo that will be added to the pawn's  
inventory, as well as for which weapon class when it is picked up.

2.	 Moving on, add the following code for the sound the pickup will make when  
it is acquired, respawn time, and the desirability for a bot to pick it up:
// The sound effect triggered when the pickup is acquired
PickupSound=SoundCue'A_Pickups.Ammo.Cue. 
A_Pickup_Ammo_Rocket_Cue'

/** The value at which an AI bot desires the pickup. Higher  
value = will lean towards this pickup */
MaxDesireability=0.3

// Time (seconds) before the pickup respawns
RespawnTime=10.0

Desirability is a bot's attraction to a particular object in UDK. It can be 
anything from ammo or health, to a specific weapon. Bots can also be 
programmed to have a preferred weapon, and seek ammunition for that 
above all else. The higher the desirability, the more likely a pawn is to 
ignore other objects (and often pawns) to go after it.
This is especially effective when changing an AI's routine during a 
particular gameplay type. In capture, if the flag matches, you can often 
tell your AI companions to either defend your flag, attack the enemy flag, 
or roam about and seek enemies.

We really could use any sound here, so for the sake of variety let's use the rocket 
launcher's pickup sound.

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

94

3.	 Next, we need to add the light environment for our pickup. Write this code in your 
defaultproperties block:
/** Offers a light around our texture so that it can be  
seen within the game and editor*/
Begin Object Name=PickupLightEnvironment
    AmbientGlow=(R=1.0f,G=1.0f,B=1.0f,A=1.0f)
End Object

Without a light environment you would have a very dark texture, and it would be 
nearly unrecognizable. We'll use an ambient glow and set all values (red, green,  
blue, and alpha (transparency)) to one. If you want more of a washed out look,  
feel free to increase the values across the board.

Perhaps you'd like to bask your pickup in a glow that represents the current 
environment or atmosphere of a level. If you were in a stage filled with lava 
and fire, it may be wise to have a stronger red value than green or blue. 
Stages surrounded by water would be best suited to have a blue hue, so 
consider raising the blue value.

4.	 With our light environment taken care of, we can now add the visible mesh for  
our ammunition.
/** The static mesh, or object you physically see within  
the editor and game */
Begin Object Name=AmmoMeshComp
    StaticMesh=StaticMesh'Pickups. 
Ammo_Link.Mesh.S_Ammo_LinkGun'

/** Slight offset, to allow for the mesh and base to line on 
center */
   Translation=(Y=-10.0)

    Rotation=(Roll=16384)
End Object

I always thought that the link gun's ammo looked pretty neat, so let's add that in 
there. The rotation value does exactly what you would imagine; it rotates the ammo 
in place. If you remember from our camera tutorial, UDK uses its own system for 
rotation, as illustrated in the camera tutorial.

That's all there is to scripting an ammo pickup. We'll now need to create an archetype 
for it in the editor, so that we can place it in a level.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

95

5.	 Compile the code and launch the editor. Within the Actor Classes browser, make sure 
that none of the boxes are checked, and access our newly created class by typing 
Tut_AmmoPickup in the search field.

6.	 Right-click on Tut_AmmoPickup when it appears, and when the Create Archetype... 
dialog appears, left-click on it to create an archetype.

7.	 Enter the following information into the fields:

Package: TutorialPackage

Group: Archetypes

Name: Arc_Tut_AmmoPickup

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

96

8.	 With that done we now have a pickup that we can drag-and-drop into an editor.  
Drag your archetype onto the screen and it should appear like the following image:

We've created our first pickup!

How it works...
By extending from a parent class, which offered a considerable amount of base functionality 
to build from, we were able to easily add our own properties to make a working pickup.

Rather than create our own assets, we chose to use those already packed in with UDK.  
We aren't limited to just using static meshes that other pickups use, however. Nothing  
is stopping us from shrinking a truck down and using it as an RC sized pickup to represent  
a larger vehicle.

We want to use the class we wrote in the UDK editor, so we've created an archetype for it, 
which references the Tut_AmmoPickup class.

Creating a base for our pickup to spawn 
from

Now that we have our first pickup created, we'll want to really customize it to suit our 
purposes. Our pickup seems kind of boring if it is just floating by itself. Arena style shooters 
generally have a row of four or five small health or ammo packs adjacent to one another,  
but what if we want to make our pickup seem more important, at least visually?

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

97

Adding a base mesh to a pickup is a great way to emphasize that a particular pickup  
is important. By adding a base mesh, our pickup is no longer floating from thin air,  
but actually appears to spawn from a device of some sort.

We may want a weapon or a power-up, such as quad damage to be highlighted on  
the level, so we'll add a static mesh beneath it.

Getting ready
Open up our Tut_AmmoPickup class in your IDE and we'll begin to make those changes.

How to do it...
Once again we will need to start by making changes within our defaultproperties block, 
as that is where most of our pickup's functionality can be adjusted easily:

1.	 At the bottom of your class, inside of your defaultproperties block, add the 
following code:
defaultproperties
{
......
/** Name of the base mesh that sits beneath our pickup */
Begin Object Name=BaseMeshComp
StaticMesh=StaticMesh'Pickups. 
Health_Large.Mesh.S_Pickups_Base_Health_Large'

/** We want to drop it down a bit beneath the pickup to  
allow for a particle to rest between the pickup and the  
base */
  Translation=(Z=-44)
  Scale=.8
End Object
......
}

We've just added a base mesh to sit beneath our pickup. The reason we translate 
on the z axis is because we want to have some room to add a particle effect in our 
next step, otherwise our base would look kind of bland. We also scale it to 0.8, as 
otherwise there would be a slight offset applied to the base mesh. You could have  
the base mesh at full size, but you would need to translate on the x axis to 
compensate for the offset.

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

98

2.	 Beneath that block, let's add some code for our particle effect:

defaultproperties
{
....
/** Particle class component between our base and pickup */
Begin Object Class=UTParticleSystemComponent  
Name=ParticleGlow

    Template=ParticleSystem'Pickups.Health_Large. 
    Effects.P_Pickups_Base_Health_Glow'

    /** Slight translation to allow for the particle to sit  
    between the base mesh and the pickup */
    Translation=(Z=-50.0)

End Object
Components.Add(ParticleGlow)
Glow=ParticleGlow
....
}

This is added the same way that we've added the base and pickup meshes. We add  
a small translation on the z axis here too, because we want it to appear as though it 
is sprouting from the base mesh, and finishing around where our pickup will sit.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

99

How it works...
All game-related objects are derived from the base class, Actor, in the Unreal Engine. 
ActorComponents define numerous lightweight components that provide an interface  
for modularity of actor collision and rendering. An ActorComponent object is an object  
which can be attached to an actor, and subclass can override some or all of the default 
properties of the component.

In this example, we're adding a particle component to our pickup, which allows for the  
viewing and alteration of particles when the pickup is spawned.

We've also added a component for our base mesh, which allows us to easily swap out the 
static resting beneath our pickup. Both of these aesthetic changes can make it easy for 
players to discern what purpose a pickup serves from a distance (that is, health, armor, 
weapons, and so on).

Animating our pickup
Our pickup is moving towards almost completed, but there are a few more additions we can 
make to it, to allow for a bit more life behind breathe life into our object. Let's add a rotation 
and bob to our pickup, so that it really grabs our eye with some animation.

Getting ready
Open up your Tut_AmmoPickup class in your IDE and we can begin.

How to do it...
This is very straightforward. We start off by adding a rotation to our pickup, and then add an 
animated bobbing motion. Just as we did with our previous tutorials, we'll need to alter our 
defaultproperties block as explained in the following steps:

1.	 In the defaultproperties block write the following code:
defaultproperties
{
....
/** If true, our pickup will rotation in place */
bRotatingPickup=true
/** How quickly the pickup rotates */
YawRotationRate=16384
/** if true, the pickup mesh floats (bobs) slightly */
bFloatingPickup=true

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

100

/** How fast should it bob */
BobSpeed=1.0
/** How far to bob.  It will go from +/- this number */
BobOffset=5.0
....
}

2.	 Your pickup will now rotate in place, based on the pivot point of your static mesh. 
Adjust the rotation rate to a number that best suits your needs by adjusting the 
rotation rate. This will also allow our pickup to bob up and down.

Static meshes may not always have their pivot point centered on the object 
(that is, a door generally uses a corner) so you may have to offset yours a 
bit. You can edit it with var vector PivotTranslation;.

With the bFloatingPickup set to true our pickup will now bob in place, while BobSpeed 
and BobOffset are variables to fine-tune the animation itself. Increasing or decreasing the 
offset will force the pickup to drop and raise to lower and higher points respectively, as though 
it were riding on a wave.

How it works...
The parent classes of our pickup offer Booleans for whether or not our pickup can be 
animated in a number of ways. By default their values are set to false, or off, and we are 
simply turning them on. Additionally, we can easily manipulate the animation properties by 
adjusting the BobSpeed and BobOffset variables.

Play with some of these values to really create something completely different, like a quickly 
spinning pickup that spawns a particle effect when picked up.

Altering what our pickup does
Now that we have a pickup which offers ammo to the player, and know how to alter a  
variety of the pickup variables and aesthetics, let's take a moment to create a pickup  
that now offers health.

Getting ready
Open up IDE and create a new class called Tut_HealthPickup. Have it extend from 
UTHealthPickupFactory.

class Tut_HealthPickup extends UTHealthPickupFactory

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

101

How to do it...
This is a bit more complicated than our previous recipes. We'll have to create a new pickup 
class in our IDE, as well as an archetype in the editor, so that we're able to access the class 
and its variables within the editor. This is essential when working with level designers who  
are not familiar with code.

1.	 Firstly, we want to have a sleek interface when we play with our pickup in the editor, 
so add the following code, beneath your class declaration:
class Tut_HealthPickup extends UTHealthPickupFactory
/** Hides categories that we won't be needing from the  
    archetype */
HideCategories(Object, Debug, Advanced, Mobile, Physics);

2.	 The rest of the code will be going in the defaultproperties block:
defaultproperties
{
  /** The value at which an AI bot desires the pickup.  
Higher value = will lean towards this pickup */
  MaxDesireability=0.700000
  /** How much this pickup will heal the pawn for */
  HealingAmount=20

  /** sound played when the pickup becomes available */
  RespawnSound=SoundCue'A_Pickups.Health.Cue. 
  A_Pickups_Health_Respawn_Cue'
  /** Time (seconds) before health pickup respawns */
  RespawnTime=10.000000

  /** Pickup will rotate */
  bRotatingPickup=true 
  /** Speed of the rotation */
  YawRotationRate=16384
  /** if true, the pickup mesh floats (bobs) slightly */
  bFloatingPickup=true
  /** How fast should it bob */
  BobSpeed=7.0
  /** How far to bob. It will go from +/- this number */
  BobOffset=2.5
}

This is the same code from the previous recipe, albeit some of the values have 
changed and we've now added a new variable, HealingAmount. This does  
exactly what you think it does.

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

102

3.	 Finally, we're going to add the static mesh code for the pickup and the base,  
along with the particle system that rests between those two items:
/** Base mesh */
Begin Object Name=BaseMeshComp
  StaticMesh=StaticMesh'Pickups.WeaponBase. 
  S_Pickups_WeaponBase'
  Translation=(Z=-44)
  Rotation=(Yaw=16384)
  Scale=0.8
End Object

/** Health Mesh */
Begin Object Name=HealthPickUpMesh
  StaticMesh=StaticMesh'Pickups.Ammo_Shock.Mesh. 
  S_Ammo_ShockRifle'
  MaxDrawDistance=7000
  Materials(0)=Material'Pickups.Ammo_Shock.Materials. 
  M_Ammo_ShockRifle'
End Object

/** Particle System */
Begin Object Class=UTParticleSystemComponent  
Name=ParticleGlow
  Template=ParticleSystem'Pickups.Health_Large.Effects. 
  P_Pickups_Base_Health_Glow'
  Translation=(Z=-50.0)
  SecondsBeforeInactive=1.0f
End Object
Components.Add(ParticleGlow)
Glow=ParticleGlow

4.	 Build your script, then launch the UDK editor. We're going to create an archetype  
for this, just as we did for the ammo pickup.

5.	 Open the Actor Classes browser, uncheck all of the boxes for Use Actor as Parent, 
Placeable Classes Only, and Show Categories.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

103

6.	 Search for the name of our new pickup class, Tut_HealthPickup, and when  
it appears, right-click on it to see the Create Archetype... pop-up appear, and  
left-click to accept.

Enter the following information for the package, group, and object name:

Package: Tutorial Package

Grouping: Archetypes

Name: Arc_Tut_HealthPickup

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

104

7.	 With our newly created archetype ready, we can now drag-and-drop it into the editor's 
window and see the reward for our hard work.

We're done! Our pickup will now offer health instead of ammo. If you were to create another 
health pickup which offers more health, some subtle changes can go a long way.

I'd suggest placing a new static mesh for the pickup, and consider increasing the scale of 
the mesh, along with increasing the health value. Furthermore, bots generally desire health 
pickups more than ammo, so if you do create a pickup which offers more health, be sure to 
increase the bot desirability as well.

How it works...
By extending from a different class, UTHealthPickupFactory, we are able to easily  
change the purpose of our pickup. Rather than have one which drops ammo, we can now 
have a pickup which spawns health. We can just as easily create a pickup which spawns 
armor as well.

Again, we've created an archetype, so that our pickup class can be referenced and used  
in the UDK editor and placed in our level.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

105

Allowing vehicles to use a pickup
By default, vehicles in UDK cannot make use of pickups. If you had a game that relied heavily 
on vehicle use however, I'm sure you'd love to find a way to repair your vehicle's health, or 
increase its dwindling ammunition reserves.

Getting ready
Vehicles in UDK cannot pickup items and add them to their inventory by default. The process 
of allowing vehicles to make use of the pickup inventory is incredibly simple, and we'll start by 
creating our own vehicle class, along with its content class.

Make the first class, Tut_Vehicle_Scorpion_Content, and have it extend from 
UTVehicle_Scorpion_Content.

class Tut_Vehicle_Scorpion_Content extends UTVehicle_Scorpion_Content;

The only information in this class is found within the defaultproperties block, and should 
read as follows:

defaultproperties
{
  bCanPickupInventory=true
}

This is what allows our vehicle to use pickups. We use a vehicle's content class, because 
that's where all of the data for the aesthetics, weapons, and attributes are held, while the 
vehicle class generally holds the gameplay functions and mechanics for the vehicle.

Create another class, specifically for the vehicle, and call it Tut_Vehicle_Scorpion.  
It should extend from UTVehicleFactory. Now let's begin.

How to do it...
This is perhaps the most daunting of our recipes so far. We'll have to create a few classes, 
in addition to archetypes, and place them throughout the level for our use. This will include 
creating a new vehicle class, as well as a content class for the vehicle, which is where it 
inherits most of its default properties from, such as the aesthetics, sounds, and even part  
of the physics behavior. Additionally, we'll be creating a pickup class that allows our vehicle  
to drive over and acquire the pickup as explained in the following steps:

1.	 In the defaultproperties block for Tut_Vehicle_Scorpion, add the  
following code:
defaultproperties
{

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

106

  /** Vehicle's skeletal mesh. What you actually see in the  
  game and editor */
  Begin Object Name=SVehicleMesh
    SkeletalMesh=SkeletalMesh'VH_Scorpion.Mesh. 
    SK_VH_Scorpion_001'
    Translation=(X=0.0,Y=0.0,Z=-70.0)
  End Object

  /** Removes the sprite from the in game editor. We see  
  the actual skeletal mesh instead of a sprite */
  Components.Remove(Sprite)

  Begin Object Name=CollisionCylinder
    CollisionHeight=+80.0
    CollisionRadius=+120.0
    Translation=(X=-45.0,Y=0.0,Z=-10.0)
  End Object

  /** Path to our custom made scorpion content, which can  
  now pickup items */
  VehicleClassPath="Tutorial.Tut_Vehicle_Scorpion_Content"
  /** Default scale for the object to appear in game */
  DrawScale=1.2
}

This is almost identical to the scorpion used in UDK. The only changes I've made were 
the comments and the VehicleClassPath variable. This now leads to the custom 
scorpion content that we made at the beginning of this recipe, as it allows  
our scorpion to use pickups.

Our vehicle now has the ability to gather pickups throughout a level. The problem  
now however, is that UDK doesn't come with any vehicle pickups! So we must  
create one ourselves.

2.	 Now that we've made several pickups in the previous recipes, this part should be 
easy. We'll just be editing the functional part of the pickup, and leave the aesthetics 
as they are for now. For this, create a new class called Tut_Vehicle_Health_
Pickup and have it extend from UTHealthPickupFactory as shown in the 
following code:
class Tut_Vehicle_Health_Pickup extends  
UTHealthPickupFactory

// Hides categories that we won't be needing from the archetype
HideCategories(Object, Debug, Advanced, Mobile, Physics);
In the default properties block, add the following code:
Defaultproperties 
{
  /** The value at which an AI bot desires the pickup. Higher 
value = will lean towards this pickup */

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

107

  MaxDesireability=0.700000
  /** How much this pickup will heal the vehicle for */
  HealingAmount=20
  /** The sound effect triggered when the pickup is  
  acquired */
  PickupSound=SoundCue'A_Pickups.Ammo.Cue. 
  A_Pickup_Ammo_Rocket_Cue'

  /** Time (seconds) before health pickup respawns */
  RespawnTime=10.000000

  /** Pickup will rotate */
  bRotatingPickup=true 
  /** Speed of the rotation */
  YawRotationRate=16384
  /** if true, the pickup mesh floats (bobs) slightly */
  bFloatingPickup=true
  /** How fast should it bob */
  BobSpeed=1.0
  /** How far to bob. It will go from +/- this number */
  BobOffset=5.0
}

These are all the same properties and values that we used for our pawn's  
pickup as well.

3.	 Now we'll add the appearance of the pickup:
/** Base Mesh */
  Begin Object Name=BaseMeshComp
    StaticMesh=StaticMesh'Pickups.WeaponBase. 
    S_Pickups_WeaponBase'
    Translation=(Z=-44)
    Rotation=(Yaw=16384)
    Scale=0.8
  End Object

/** Health mesh */
  Begin Object Name=HealthPickUpMesh
    StaticMesh=StaticMesh'Pickups.Health_Medium.Mesh. 
    S_Pickups_Health_Medium'
    MaxDrawDistance=7000
  End Object

/** Particle */
  Begin Object Class=UTParticleSystemComponent  
  Name=ParticleGlow
    Template=ParticleSystem'Pickups.Health_Large.Effects. 
    P_Pickups_Base_Health_Glow'
    Translation=(Z=-50.0)
    SecondsBeforeInactive=1.0f

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

108

  End Object
  Components.Add(ParticleGlow)
  Glow=ParticleGlow
}

Again, this is identical to our pawn's health pickup, except that we'll change the 
mesh for the pickup, so that it stands out from the pawn's health. I've swapped out 
the shock rifle ammo's static mesh (which was serving as a placeholder) with the 
medium health pickup static mesh, as seen in the following line:

'Pickups.Health_Medium.Mesh.S_Pickups_Health_Medium'

4.	 We've got our vehicle class, vehicle content class, and health pickup scripts all 
written, but now we need to get the vehicle and pickup within the UDK editor. As 
we've been doing with all of our other classes in this book, we'll be using archetypes.

Open up the UDK editor and scroll over to your Actor Classes browser. Create an 
archetype for your vehicle (NOT the content class) and another archetype for your 
health pickup. For the vehicle enter the following information:

Package: TutorialPackage

Grouping: Archetypes

Name: Arc_Tut_Vehicle_HealthPickup

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

109

5.	 With our archetypes created we can now drag-and-drop them into the map and use 
them from there.

Included with the chapter are all of the archetypes, scripts, and a map 
with all of these objects placed in them. Feel free to peruse through the 
map if you are confused at any point.

6.	 Drag-and-drop your two new classes into the map, then press the PIE button to  
spawn your character into the map.

7.	 Hop into the scorpion, then exit it, and shoot it for a bit to damage it.

8.	 Hop back into the scorpion, and drive over the health pickup. Notice how your  
health is suddenly increased by 20 points.

If you're using the Scaleform version of the HUD, you'll immediately notice 
here that the damage applied to the vehicle doesn't display correctly on the 
HUD. For some reason your health percentage will remain at 100, but your 
ammo will drop as you take damage. At least it is displayed that way.
The reason you need to hop into your scorpion for the first time seems silly 
as well, but it's necessary as the vehicles are invulnerable to damage until a 
pawn enters it for the first time!

With that in place, we've completed our first pickup for our vehicles!

www.it-ebooks.info

http://www.it-ebooks.info/


Crafting Pickups

110

How it works...
This process required a few steps. First, we had to create Tut_Vehicle_Scorpion_
Content and have it extend from UTVehicle_Scorpion_Content. This allowed 
us to create a copy of the scorpion content class, without worrying about our changes 
affecting the original. Within this new class, we only changed the default property of 
bCanPickupInventory and set it to true, so that our vehicle can now pickup items 
throughout a map.

Once we've told the game's scorpion to use our new scorpion content class, we were able to 
move onto the pickup, which is made in the exact same manner as we made the pickups for 
our pawn. Again, an archetype was created for our pickup, so that the class can be placed in 
the editor and used on the map.

www.it-ebooks.info

http://www.it-ebooks.info/


5
AI and Navigation

In this chapter, we will be covering the following recipes:

ff Laying PathNodes on a map

ff Laying NavMeshes on a map

ff Adding a scout to create NavMesh properties

ff Adding an AI Pawn via Kismet

ff Allowing a pawn to wander randomly around a map

ff Making a pawn patrol PathNodes on a map

ff Making a pawn randomly patrol PathNodes on a map

ff Allowing a pawn to randomly patrol a map with NavMeshes

ff Making a pawn follow us around the map with NavMeshes

Introduction
The Unreal Engine has two ways of handling pathfinding. They both have their pros and cons, 
despite being somewhat similar. Quite simply, they can be broken down into WayPoints and 
navigation meshes.

WayPoints
Pathfinding in the Unreal Engine is based on a pre-generated path network, which is laid down 
by the developer. The path network doesn't cover 100 percent of the area the AI may navigate. 
Therefore the AI also needs to be able to perform localized evaluation and routing of the 
environment. The AI does this by using collision (ray) traces to determine how far objects  
are and whether or not they are passable.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

112

NavigationPoints are laid on a map by the designer, and are used to illustrate where they do 
and do not wish for pawns to be able to move to. When the level is built, the NavigationPoints 
will produce ReachSpecs between them. The ReachSpec data is then used by the game's 
pathfinding, which in turn allows AI to pathfind from one point to the next and judge the most 
efficient way of maneuvering about it. Path searches are initialized from Anchors, which 
are navigation points that the AI can reach directly, without having to perform pathfinding. 
Pathfinding starts by searching for a start and end point and then calculating the most 
efficient way to navigate the points between the two to reach the end goal.

WayPoints make use of the FindPathToward function, which will determine the path 
network route from the anchor to goal. First, it checks to see if the pawn is valid and then 
takes a glance at all of the nodes across a path. This information is then stored in the 
RouteCache of the AI Controller.

PathNodes can be anything from a PlayerStart (subclass of NavigationPoint), as well as any 
of those pickups we've created in the previous tutorials. As a general rule, PathNodes should 
be less than 1200 Unreal units apart to prevent issues with the AI not being able to find 
the path, although this can be modified in MAXPATHDIST, which is an internal variable of 
NavigationPoint. Essentially, level designers want to place PathNodes throughout an entire 
map in order to allow the AI to better navigate the playable area and not waste any time 
creating art and assets that players will never see or use.

Benefits of WayPoints
While WayPoints may be a bit more work and cause a bit more clutter on a map, they are 
great when you want to tell the AI precisely where to go. For example, if you wanted to create a 
scenario where you have AI pawns flanking on either side of you, this could easily be arranged 
by assigning them to make use of pre-set WayPoints when you run over a trigger.

Moreover, WayPoints are great for when you have actors of different sizes making use of 
a tight environment. Perhaps you only want pawns to be able to access an area and not a 
vehicle. Well then, WayPoints are the way to go for relaying this information to the game.

Above all else, WayPoints are all about precision and allow you to have complete control  
over how pawns can traverse an environment. You tell them exactly where they can and 
cannot explore.

NavMeshes
NavMeshes take an alternative approach to pathfinding. NavMeshes attempt a more accurate 
representation of an AI's configuration space via a connected graph of convex polygons, as 
opposed to representing the world as a series of connected points. Through the use of a node, 
which is essentially a polygon, the AI can maneuver from any point in that node, or any other 
point in any connected node, due to its convexity.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

113

A path represented by a series of polygons illustrates not only the direction your pawn 
can travel, but also the space the pawn can occupy. Rather than needing to touch each 
point precisely along a waypoint-graph generated path as we would have had to do with 
the WayPoints, all of the information associated with the interface between nodes of the 
navigation mesh is provided to the AI. This benefits us twofold: it provides a more accurate 
and natural looking movement, in addition to eliminating corner cutting.

Benefits of NavMeshes
The overall graph density goes down as we can now use polygons instead of numerous  
nodes in a given area to represent a movable area. These are just a few of the benefits  
of this approach:

ff Memory footprint reduction coincides with the decrease in nodes being stored

ff As the density of the graph being indexed decreases, pathfinding time goes down

ff Fewer nodes means less time wasted correcting cross-level pathing information

Additional benefits are listed in the next section.

Improved representation of the environment
A constant representation of the walkable area is advantageous for many other types of space 
searches an AI might do.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

114

If you were to build a game that used squads, the process of determining a location to remain 
in squad formation is improved immensely, as you can actually check to see if the desired 
formation location is in the mesh and thus walkable or not. Previously, developers relied on 
the expensive work of finding the nearest path node to the formation location. Finally, the 
location's nearest path node is not necessarily very near the formation position, and often 
looks unrealistic.

Additionally, if your game uses walls which have the ability to be mantled over, the AI can 
perform this at any point along the wall rather than having to go to a discrete PathNode  
which represents a "mantle-able" location.

No more raycasts
Much of the raycasting AI does can be eliminated by using the data we generate into the 
navigation mesh. When an AI attempts to make an initial move, performed in order to 
determine if the AI can go directly to its destination and avoid pathfinding on the network,  
a raycast is performed.

There are two reasons to why this is eliminated, both of which are cheaper than raycasting. If 
a point can be directly reached, in most cases it will be in the same polygon navigation mesh 
as the AI, then in most cases, it will be the same polygon navigation mesh the AI is currently 
standing in. From there it's only a matter of seeking the polygon which contains our goal, and 
identifying that it is in fact the same polygon and identifying that they are the same.

Moreover, the obstacle mesh serves as a backup on which we can perform a low-overhead 
linecheck to determine if we can directly reach an area.

The navigation mesh is a rough representation of the potential space the AI can walk on,  
so it would be a simple task to project onto the mesh and do a single raycast to correctly  
align the AI onto the visible geography, as opposed to the number of raycasts per frame 
PHYS_Walking does.

The potential to handle more crowd actors at a time by snapping them to the navigation mesh 
rather than doing collision checks against world geometry with WayPoints is another benefit. 
We can now handle more AI on screen at once, as the overhead for doing so is far lower.

Laying PathNodes on a map
WayPoints use PathNodes for navigation. We will start by creating a new simple map with 
PathNodes for our AI pawns to follow.

Getting ready
In the UDK editor, create a new map by going to File | New Level. When the pop-up for 
Choose a map template appears, select any of the lighting samples.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

115

When your new map appears, we'll be ready to advance.

How to do it...
With our new map, we can begin by adding some geometry for our pawn to navigate around.

1.	 Create some simple geometry by adding some Binary Space Partition (BSP) brushes 
throughout the level. Left-click on the BSP brush in the center of your level, and hold 
the Alt key while dragging to create copies. Release the left mouse button and the Alt 
key for a copy to be made.

As you can see in the previous map, there is some simple geometry for the pawn 
to navigate through. The map offers us the ability to block line-of-sight, as we'll be 
needing that later on.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

116

2.	 From here we can lay PathNodes, which our pawn will use to navigate. Open your 
Actor Classes browser and type in PathNode to bring up the available actors.

3.	 With the PathNode selected, left-click and drag it onto the map. It should spawn the 
node in the center of the map, along with the translation widget. Move it accordingly, 
while creating new copies along the way.

I've aligned mine in such a way that the pawn will search the perimeter of the map, 
while still offering a path down the middle of the map, between the BSP.

Also be sure that you have a PlayerStart navigation point on your map. There should 
be one in place on your map by default as UDK places it there automatically, but it's 
important to be aware of its exact location, as that will come into play later.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

117

4.	 When we're finished laying PathNodes, we can rebuild our map. Because we have 
new BSP, we'll need to rebuild geometry, lighting, and PathNodes. Left-click on the 
Build All button at the top of the editor.

With everything rebuilt, you should now see a series of connected PathNodes, 
marked by the white lines between them. The editor may give you a warning stating 
that we haven't built the map with production lighting. Because this isn't a finished 
map, that's fine, as we're simply trying to speed up the rebuilding process by using 
preview lighting.

If you don't see the lines, hit P on your keyboard to allow the editor 
to draw paths.

You should now have a map that looks like the following:

With that complete, we can move on to creating a map with our alternative navigation method, 
NavMeshes! You can view my copy of the map at any time, as it is included with this book and 
titled Ch5_PathNodes2.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

118

How it works...
WayPoints are all about precision and allow a designer to have complete control over how 
pawns can traverse an environment. You tell them exactly where they can and cannot explore.

By dropping PathNode actors from the Actor Browser throughout the map we can create  
a network of paths for a pawn to traverse. Selecting the Rebuild Paths button from the  
editor connects all paths which are directly reachable, and creates a network for our  
pawn to travel along.

See also
ff More information regarding the colored lines can be found at the Unreal 

Developer Network (UDN) (http://udn.epicgames.com/Three/
NavigationMeshPathDebugging.html)

Laying NavMeshes on a map
With one means of navigation out of the way, we can work on building another map, albeit 
using NavMeshes for maneuvering through an environment.

Getting ready
To keep things simple, we'll use our existing map, as the geometry also suits this lesson well. 
Start by deleting the PathNodes that you've created, so that we're starting from a clean slate.

With that done, we're ready to start laying our NavMeshes.

How to do it...
We've covered how NavMeshes work, along with their benefits and potential pitfalls. It's now 
time for us to actually implement them into our map so you can see the results for yourself!

1.	 In our Actor Classes browser, search for Pylon. With Pylon highlighted, drag-and-drop 
it onto the map. It should appear in the center of the map, along with the translation 
widget, just as we saw with the PathNode.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

119

2.	 Drag the pylon toward the top-left corner of the map. You'll notice that the bounds for 
the pylon extend past the bounds of our map. That is fine.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

120

3.	 Create three more copies of the NavMesh, and spread them out in a similar manner, 
so that all corners of the map are covered. We want to make sure that none of 
our pylons fall into the boundary lines of another pylon, as the map will not build 
correctly. However, it is perfectly fine if the bounds for the pylons overlap.

4.	 Rebuild paths by selecting the Rebuild Paths button at the top of the editor. If you 
laid your pylons down correctly, you should see a series of polygons, illustrating the 
walkable area that your AI pawn may traverse, along with a yellow line (it appears as 
the thickest set of lines, shaped like a square in this figure) connecting the pylons, as 
they can be seen by line-of-sight.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

121

If we switch to a perspective view, we can see that the height of our NavMeshes doesn't 
extend very far. This could potentially be an issue if we ever use a pawn that is taller 
than the NavMesh. Not to worry though, as we're going to correct this in our recipe!

You can find my version of this map with the included materials 
under the name Ch5_NavMesh2.

How it works...
While NavMeshes don't offer the precise control that PathNodes do, they do decrease the 
memory footprint, and allow for more natural movements.

We lay NavMeshes on a map in the same manner as we do with PathNodes: by dragging them 
onto the map from the Actor Browser. Rebuilding paths allows the mesh to create a network, 
so that the pawn doesn't have to calculate it at runtime and can easily avoid obstacles.

Adding a scout to create NavMesh 
properties

The height for a NavMesh is actually not found in the properties for the NavMesh itself, oddly 
enough. Unreal relies on a Scout class to determine this. The Scout class is designed to be 
a basic pawn with enough logic just to navigate around your map and see if it can get from 
one node to another, and therefore generating pathfinding information.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

122

If we were to ever use a pawn whose height is greater than that of the scout's NavMesh, then 
upon spawning into a map, the pawn would instantly fall asleep and refuse to move. We're 
going to resolve this before it ever becomes an issue by creating our own Scout class.

Getting ready
We're going to extend from Scout.uc and create our own version of the Scout class. This 
Scout class is essentially what UDK uses for measuring how high the walls need to be in 
order to be used by the engine's navigation system. If our scout class is smaller than the size 
of our pawn, then the pawn will not be able to maneuver around the map correctly, as the 
maximum wall height recognized by our navigation image is based on the height of our scout.

Start off by creating a new class called TutScout and have it extend from Scout.

class TutScout extends Scout;

We're ready to begin working on our new class.

How to do it...
We're only going to alter the default properties for our custom Scout class, as all of the 
methods inside of it suit our needs well.

1.	 In your default properties, add the following code:
defaultproperties
{
  PathSizes.Empty
  /** Clears out any paths that may previously have been
      there. We will be using the size of our pawn as a
      template for how tall and wide our paths should 
      be */
  PathSizes.Add((Desc=Human,Radius=180,Height=330))  
  NavMeshGen_EntityHalfHeight=165

/** Subtract this from our MaxPolyHeight to get the final  
  height for our NavMesh bounds */
  NavMeshGen_StartingHeightOffset=140

/** This number needs to be larger than the size of your  
  default pawn */ 
  NavMeshGen_MaxPolyHeight=175
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

123

2.	 The current setting of 175 for NavMeshGen_MaxPolyHeight may cause some 
issues for us if we use a pawn larger than our default pawn. Let's increase this  
value to 300.
/** This number needs to be larger than the size of your  
  default
  pawn
NavMeshGen_MaxPolyHeight=300

We need to tell the engine to use our TutScout class instead of the engine's  
default Scout class.

3.	 In your DefaultEngine.ini, change ScoutClassName=UTGame.UTScout  
to ScoutClassName=YourGamePackage.YourScoutClassName.

4.	 Go back into the UDK editor, open up our map again, and rebuild paths. You  
should now see that our NavMesh's geometry height has increased quite a bit,  
extending over the top of our BSP!

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

124

How it works...
NavMeshes use a Scout class to determine its default properties for things such as height. If 
any pawn we use on our map has a larger collision cylinder than the scout, then it will not able 
to successfully pathfind and make use of our NavMeshes.

By creating our own Scout class and altering its properties so that it allows for larger pawns 
on the map, we can avoid potential errors in the future. To ensure that the engine makes use 
of our custom Scout class we needed to make a change to the DefaultEngine.ini file 
with the editor.

Adding an AI pawn via Kismet
With our means for navigating a level out of the way, we can finally work on adding a pawn 
who will take advantage of the things we've built, and allow the pawn to wander around the 
level. Later on we're even going to add functionality so that it follows us around the map.

Getting ready
We're going to create a new bot, which is really just an AI controller for pathfinding, by 
extending from UDKBot.

Class TutBot extends UDKBot;

As we move along, we'll begin to add more functionality to it such as the ability to wander 
using the PathNodes or NavMeshes, as well as follow our pawn.

How to do it...
One of Kismet's many useful functions is the ability to spawn bots and pawns. In Chapter 8, 
Miscellaneous Recipes we'll cover how to do spawn objects from code, but for now we'll stick 
to Kismet. This recipe  
is one that we'll have to use frequently throughout the rest of this chapter as well.

1.	 As always, we'll want to add debugging information. This is more important than ever, 
as there are a number of things that could go wrong within this class and which may 
cause confusion. Start by adding a simple log function that allows us to see whether 
or not our pawn is ever even spawned.
/** Lets us know that the class is being called, for  
  debugging purposes */
simulated event PostBeginPlay()

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

125

{
  super.PostBeginPlay();
  'Log("TutBot up");
}

That's all we're going to add to the pawn right now. It has plenty of functionality from 
the UDKBot class, so we're going to leave it alone for now. Right now our focus is on 
getting this pawn to spawn within our map.

2.	 Open up the map you made with the PathNodes. We're going to use Kismet for the 
first time to create a spawn point for our custom bot.

3.	 Open Kismet by selecting the Kismet icon within the UDK editor.

4.	 When the Kismet dialog box appears, right-click anywhere in the blank space and 
you'll notice that the submenus appear. Scroll over to New Event | Level Loaded,  
and left-click to create a new Level Loaded node.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

126

5.	 Follow the same procedure for creating an Actor Factory by right-clicking on a blank 
space on the canvas, and selecting New Action | Actor | Actor Factory.

6.	 Right-click on your Actor Factory to bring the properties for the node. Under Seq Act 
Actor Factory, there is a dropdown for Factory. Left-click on the downward blue arrow 
marked Create New Object and select ActorFactoryAI from the top of the list.

7.	 A new series of properties for Factory should appear. For Controller Class, select 
TutBot. For Pawn Class, we'll just use our TutorialPawn. Our Actor Factory is now  
told to spawn our newly created TutBot when we call it into action.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

127

8.	 We now need to attach an event for our Actor Factory using Kismet. Again, right-click 
on a blank space on the canvas and select New Action | Event | Attach to Event.

9.	 The event we are going to be connecting to this is the AI pawn's death. Should the AI 
pawn die, we'd like for it to respawn. Therefore, we need to create the event of the 
actual pawn dying. In the canvas, right-click and select New Event | Pawn | Death.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

128

10.	 Only two more steps to go with Kismet. From the Spawned node in our Actor Factory, 
we need to attach an object. This object, quite simply, is our pawn.

11.	 Now that our pawn has the ability to respawn within the map, we need to create  
an actual location for it to restart at. Left-click on any of the PathNodes in your  
map. Once it is highlighted, it can be now be referenced within Kismet. Right-click  
on an open space in Kismet and select select New Object Var Using Pathnode_1 
(could be 2, 3, 4, and so on).

Our pawn will now spawn from that location. This also works with 
PlayerStart nodes too.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

129

12.	 Our final step is to connect all of the nodes appropriately. In total, it should look  
like this:

�� Level Loaded | Loaded and Visible is connected to Actor Factory | Spawn Actor

�� PathNode is connected to Actor Factory | Spawn Point

�� ??? is connected to Actor Factory | Spawned

�� Death | Out is connected to Actor Factory | Spawn Actor

�� Death | Instigator is connected to ???

�� Attach To Event | Event is connected to Death

�� Actor Factory | Finished is connected to Attach To Event | In

�� ??? is connected to Attach To Event | Attachee

13.	 Rebuild the map, and press PIE or Play | In Editor to play in the editor. You should 
now see another pawn on the map! Shoot it a bit to destroy it, and watch as it spawns 
back to life at the same node.

Be sure to change View | World Properties | Game Type so that it 
uses our TutorialGame.
Perform these same tasks in your map using NavMashes as well, 
otherwise your new AI pawn won't spawn.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

130

How it works...
There are numerous ways to spawn bots on a level, including UnrealScript, making a pawn 
placeable, or using Kismet. To make things easy for us, we've gone the Kismet route, which 
allows us to quickly adjust the spawn location, pawn, and controller from within the editor.

We can spawn our bot from any PathNode or PlayerStart node on a map by using it as 
an object within Kismet. Moreover, the ActorFactory within Kismet allows us to select the 
controller and pawn, which will be spawned at that location.

While there are a number of ways to manipulate how our bots spawn, such as having multiple 
bots at once, creating a timer to have them spawn at a set rate, or only allowing a certain 
number of pawns on the map at once, we've decided to keep it simple and only have one  
bot spawn immediately after the map is loaded. The Level Loaded node makes this possible.

Essentially I've just used Kismet in this chapter, so that we can quickly iterate on what we've 
done and make changes to the pawn within the editor.

If we did this in code, we'd have to close the editor, go to the IDE, and change the code so that 
it spawns the appropriate bot, along with the correct controller (AI) that we want to use. With 
Kismet we can simply use the ActorFactory to see all of the bots and controllers are at our 
disposal, then press Enter to have them spawn.

Allowing a pawn to wander randomly around 
a map

With our PathNodes laid throughout our map and our bot now having the ability to spawn on 
the map, we're ready to start adding functionality to the bot so that it has artificial intelligence.

Getting ready
Load up your IDE and prepare to create a new class.

 How to do it...
This recipe will be the starting point for our topic on AI. We'll start by simply creating a bot that 
randomly wanders around a map before moving onto more advanced things, such as creating 
a bot which takes advantage of our pathfinding system.

1.	 We're going to start by creating a new class for our bot, called simply, WanderBot. 
We don't need all of the complicated functionality behind the UDK and UT bot,  
so we'll be extending from GameAIController, and only add what we need.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

131

class WanderBot extends GameAIController;

We only need one global variable, and that's TargetLocation.

var Vector TargetLocation;

2.	 We'll need to override the GameAIController's PostBeginPlay() function and add 
the SetTimer() function. This tells our pawn to run the MoveRandom() function 
every 2.5 seconds. Without this, our bot would constantly be searching for a new 
target location without ever taking a break.
/*======================================================= 
  
 * Called right after the map loads 
========================================================*/
simulated event PostBeginPlay()
{
  /** Calls all of the PostBeginPlay functions from 
    parent classes */
  super.PostBeginPlay();
  /** Frequency at which the bot will begin looking for a  
    new path */
  SetTimer(2.5, true,'MoveRandom');
}

The timer creates a more natural movement. For example, if you wanted your bot to 
move to a random location, and twiddle his thumbs for 5 seconds before contusing, 
this function is what would allow that to happen.

3.	 The Possess event tells our pawn to begin moving as soon as the map loads. 
SetMovementPhysics() is key here, as it automatically makes the pawn walk. 
Without this our pawn would need some sort of impulse, such as receiving damage, 
before moving.
/*======================================================= 
  
 * Forces the pawn to begin moving as soon as the map  
  loads 
=======================================================*/
event Possess(Pawn inPawn, bool bVehicleTransition)
{
  super.Possess(inPawn, bVehicleTransition); 
  Pawn.SetMovementPhysics();
}

4.	 We need a function to handle all of the math for where our bot currently is, and  
where we want it to be. We're using local variables for the offset, as we won't need 
them outside of this function.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

132

The OffsetX and OffsetY variables tell us how far to the left and right, and then 
forward and backward, we want our bot to move each time the function is called.  
Our target location is where we want to set the bot. We're simply taking our current 
pawn's location, and subtracting it from the offset, that is, where we want the bot to 
be going. Each time MoveRandom() is called, it will pick a random integer between 
the minimum and maximum values you've set.

At the end of this function we're informing the bot to go to the wander state.

/*=======================================================
* Math for our wandering state 
=======================================================*/
function MoveRandom()
{   
  local int OffsetX;
  local int OffsetY;
  
  // set a random number for our X value
  OffsetX = Rand(1300)-Rand(700);		

  // set a random number for our Y value
  OffsetY = Rand(1100)-Rand(1100);
  // distance left or right of the pawn
  TargetLocation.X = Pawn.Location.X + OffsetX;
  // distance in front of or behind the pawn
  TargetLocation.Y = Pawn.Location.Y + OffsetY;
  /** prevents the pawn from quickly aiming up and down  
  the Z axis while moving */
  TargetLocation.Z = Pawn.Location.Z;

  // move to the random location
  GoToState('Wander');
}

5.	 The wander state only has one function, and that is MoveTo(TargetLocation). 
The math for the target location (a vector) was previously done in our MoveRandom() 
function.
/*=====================================================
* Tells the pawn to start wandering
=======================================================*/
state Wander
{
  Begin:

  // move to a location (vector)
  MoveTo(TargetLocation); 
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

133

6.	 Our final addition to this class is in the default properties. We'll add this to all  
of our AIController classes, as it tells the game that the pawn is either a player,  
or a player-bot.
defaultproperties
{
  // Pawn is a player or a player-bot
  bIsPlayer = true
}

We'll need to make some changes to our TutorialPawn class before we can 
advance. Because our TutorialPawn class was previously just controlled by us,  
we didn't have to worry about falling off ledges. AIControllers will now be using the 
pawn, so we need to add some code to instruct it not to fall off the ledges, or the 
edge of our map.

7.	 In the default properties block for our TutorialPawn.uc file, add these two lines:
defaultproperties
{
  bAvoidLedges=true // don't get too close to ledges
  bStopAtLedges=true // if bAvoidLedges and  
  bStopAtLedges, Pawn doesn't try to walk 
  along the edge at all
}

8.	 Rebuild scripts and start up the editor.

In our Ch5_PathNodes2.udk map and in Kismet, change the player controller to 
WanderBot and pawn to use our TutorialPawn. Press the PIE button to play in the 
editor and you should see your bot on the map. After one moment he'll begin to 
wander from place to place!

How it works...
This is about as simple as bot AI can ever get, and therefore, is an excellent starting point for 
us. We're simply taking our bot's current location and then informing the bot of where we want 
it to be. This math is done by taking a random integer, clamping the minimum and maximum 
values, and then applying it to where we want our bot to be.

After our bot reaches its target location, we then instruct it to wait for 2.5 seconds before 
deciding on a new location to reach.

We also found it necessary to add two booleans in the default properties block for our 
TutorialPawn, as we want to prevent our pawn from falling off ledges.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

134

There's more...
There are two console commands which will make you understand how the bots operate  
and what is going through their mind.

While playing a game within the editor, press the console key (~ or Tab) to bring up the 
console. Enter the command ViewBot to change your perspective to that of the bot.  
Type ViewSelf to bring it back to your pawn's camera.

ShoweDebug will display all of the debug features for your pawn. This is extremely useful  
for displaying information such as which state your pawn is in, its next goal, a ray trace  
toward the next goal, and whether or not it has detected any enemies.

Making a pawn patrol PathNodes on a map
Our movement in the last recipe was very random, but we didn't have much control over 
where the bot went. With PathNodes, we can have precise control over where the bot can  
and cannot go.

We'll start by creating an AI Controller that allows our bot to wander from PathNode to 
PathNode in the order they were laid on the map.

Getting ready
Open your IDE and prepare to create a new class.

How to do it...
We've covered some simple AI up until this point, but now we want to take advantage of the 
PathNodes we've laid on a map. In this recipe we'll have our pawns maneuver the map using 
the scripts we've written.

1.	 Create a new class called PatrolNodeBot and have it extend from UDKBot.  
We're extending from UDKBot because we'll need the PathNode functionality  
included with it.
class PatrolNodeBot extends UDKBot;

2.	 We'll need three variables to go along with it. WayPoints will store our PathNodes 
in an array, while _PathNode is the number (integer) of PathNodes on our map. 
CloseEnough is an integer that defines how close our pawn needs to be to a node 
before it starts looking for a new one.
// PathNode Array
var array<Pathnode>  WayPoints;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

135

// declare it at the start so you can use it throughout the script 
Var int _PathNode;
/** Distance our pawn needs to get to the node before it starts  
    looking for a new one */
var int CloseEnough;

3.	 We need to override PostBeginPlay() in our class as well. All we're doing here 
is storing all of the PathNodes on a map to our array with the line WayPoints.
AddItem( Current );.
/*======================================================
 * Called right after the map loads 
=======================================================*/
simulated function PostBeginPlay()
{
  local PathNode Current;

  /** Calls all of the PostBeginPlay functions from  
  parent classes*/
  super.PostBeginPlay();
  //add the PathNodes to the array
  foreach WorldInfo.AllActors(class'Pathnode',Current)
  {
    WayPoints.AddItem( Current );
  }
}

4.	 Just as we had for our last AI Controller, we need to add event Posses.  
This tells our pawn to start moving as soon as the map loads.
/*=======================================================
  * Forces the pawn to begin moving as soon as the map  
  loads 
=======================================================*/
event Possess(Pawn inPawn, bool bVehicleTransition)
  {
    super.Possess(inPawn, bVehicleTransition); 
    Pawn.SetMovementPhysics();
  }

5.	 We also need to override Tick(), which is called every frame. All it does is check 
that our pawn exists, and if it does, call our PathFind() function each frame.
/*=======================================================
 * Called each frame
=======================================================*/
simulated function Tick(float DeltaTime)
{

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

136

  // Calls all of the Tick functions from parent classes
  super.Tick(DeltaTime);

  // If there is a pawn on the map....
  if (Pawn != None)
  {
    /** Then call this method, which initializes our  
      Pathfinding*/
    PathFind();
  }
}

The PathFind() function is where all of the math for our pathfinding occurs.  
We're making use of that Distance variable (integer), and defining it as the 
difference in distance between our bot's current location and the location of  
the PathNodes in our array.

If we are within a predetermined distance (the CloseEnough variable), then 
we instruct the bot to move towards the next node in the array, as noted by _
PathNode++;. If we've iterated through each of the nodes, then start back  
at 0. Once that is done we move to the PathFinding state.

/*=======================================================
* The meat-and-potatoes of the class.
* This is where all of the logic occurs
=======================================================*/
simulated function PathFind()
{
  local int Distance;
  
  /** Distance between our pawn's current location and  
  the next  
  PathNode in our array */
  Distance = VSize2D(Pawn.Location -  
    WayPoints[_PathNode].Location);

  if (Distance <= CloseEnough)
  {
    // Interate through the next node in our array
    _PathNode++;
  }

  // If we've gone through all of the nodes in our  
  //array...
  if (_PathNode >= WayPoints.Length)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

137

  {
    // Then set it back to zero and begin again
    _PathNode = 0;
  }
  // Go to the Pathfinding state
  GoToState('Pathfinding');
}

6.	 The PathFinding state has the prefix Auto to denote that this is the default 
state the bot will start in. It checks if there are PathNodes in our array, and if there  
is one, starts moving towards it.

We use the function MoveToward() as it accepts an actor as a 
parameter, and therefore we begin to move toward the actor. If we 
wanted to use a vector instead, we would use the MoveTo() function.

/*=======================================================
* Auto state for our PathNode navigation. 
=======================================================*/
auto state Pathfinding
{
  Begin:
  // Move to PathNode if one exists 
  if (WayPoints[_PathNode] != None)
  {
  MoveToward(WayPoints[_PathNode], WayPoints[_PathNode],  
  128);
  } 
}

7.	 The final bit to add is in the default properties block. CloseEnough is the integer  
we used earlier, and we've seen bIsPlayer before as well.
DefaultProperties
{
  // Once we're within this man UU's of our Node....
  CloseEnough	= 200
  // Pawn is a player or a player-bot
  bIsplayer = True
}

8.	 Load up our Ch5_PathNodes2.udk map, set Kismet to use our new controller and 
watch as the bot wanders from PathNode to PathNode in the same order you laid the 
nodes on the map!

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

138

How it works...
The key component here was adding PathNodes to our array. We created a variable to  
store our array (WayPoints) and then created an integer to iterate through each one  
(_PathNode). The first thing our pawn does upon spawning is add the PathNodes to  
our array through waypints.AddItems(Current); in PostBeginPlay().

Once they are in our array, we then iterate through them, one by one, until we've gone  
through them all and determined that one of them is close enough, based on our 
CloseEnough variable.

Making a pawn randomly patrol PathNodes 
on a map

PathNodes are designed so that we can have complete control over how our bots progress 
through a map. The problem with having a bot patrol PathNodes in a set path is that it doesn't 
look very realistic, unless your bot is a guard patrolling a prison.

For that reason we want to create a bot that can patrol our PathNodes at random.

Getting ready
Open up your IDE and prepare to create a new class.

How to do it...
Our goal here is similar to what we did with our first recipe in the chapter. We want to  
create a bot that wanders again, but this time we want it to take advantage of the PathNodes 
we've laid throughout the map. This gives us far more control over the landscapes the bot 
can traverse, as opposed to the previous manner, which gave the bot access to nearly every 
location on the map.

1.	 Start by creating a new class called RandomNodeBot. Have it extend from UDKBot.
class RandomNodeBot extends UDKBot;

From here on, our class is identical to the PatrolNodeBot class in every way  
except for the PathFind() function.

2.	 Rather than iterate through each node, we're going to set _
PathNode=Rand(WayPoints.length);, which selects a random  
PathNode in our array.
/*=======================================================
* The meat-and-potatoes of the class.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

139

* This is where all of the logic occurs
=======================================================*/
simulated function PathFind()
{
  local int Distance;

  /** Distance between our pawn's current location and  
  the next   
  PathNode in our array */
  Distance = VSize2D(Pawn.Location -  
    WayPoints[_PathNode].Location);

  if (Distance <= CloseEnough)
  {
    // Head towards a random PathNode in our array
    _PathNode=Rand(WayPoints.length);
  }
  GoToState('Pathfinding');
}

3.	 Load our Ch5_PathNodes2.udk map and in your Kismet Actor Factory, set your 
controller and pawn to RandomNodeBot and TutorialPawn classes, as this tells  
the factory to now spawn those. You can do this by selecting the pull down, which  
will list the various classes available to us.

4.	 Press the PIE button and play in the editor. Your bot should now patrol from node  
to node!

How it works...
This was a very straightforward recipe, as we were only required to make changes to one 
function for our new functionality. Making use of UDK's Rand() function allowed us to  
pick a random PathNode along the array we created when the bot was spawned.

Allowing a pawn to randomly patrol a map 
with NavMeshes

We've been working with bots that operate on maps with PathNodes lately. Sometimes  
we may find that NavMeshes better suit our needs. In that case, we'll need a bot who can 
wander around a map while pathfinding. This prevents the bot from running into walls and 
objects along the way.

If the bot does collide with something along its journey, it will pick a different path.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

140

Getting ready
Open your IDE and prepare to create a new class.

How to do it...
This recipe will be slightly different from our most recent one. Again, we're trying to take 
advantage of all that UDK offers in terms of pathfinding, so we'll be creating a bot which 
randomly patrols a map, but uses NavMeshes. NavMeshes are probably more common  
in UDK development at this point, due to their ease of use and flexibility, so this recipe can  
prove invaluable in future AI endeavors.

1.	 Create a new class called PatrollingNavMeshBot, and have it extend from 
AIController.
class PatrollingNavMeshBot extends AIController;

2.	 We'll only need two variables here, one to store our temporary destination,  
and another to store our final one.
var Vector TempDest;
var vector FinalDest;

3.	 As usual, we'll need to add the Possess() function.
/*=======================================================
 * Forces the pawn to begin moving as soon as the map  
  loads 
  =====================================================*/
event Possess(Pawn inPawn, bool bVehicleTransition)
{
  super.Possess(inPawn, bVehicleTransition); 
  Pawn.SetMovementPhysics();  
} 

4.	 Our PatrolNavMesh state is where all of the functionality occurs in this class.

We set it to ignore SeePlayer so that it doesn't pay attention to any other pawns on 
the map. The function FineNavMeshPath() is where we tell the bot to clear any 
paths it may have previously had, along with any constraints. Afterwards, we create 
constraints, EnforceTwoWayEdges and FindRandom, which prevent our bot from 
getting stuck, and also allow it to find a random path to our goal.

Finally, we tell it to find a path to its destination with the FindPath() function.

FindNavMeshPath is only called once we begin our state. Once it does begin,  
we define a random point on the map, draw a debug line to the point, in addition  
to a red sphere. This allows us to easily view what's going through our bot's mind.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

141

Again, if our bot realized that it can't directly access the point on the map, it will draw 
a new one and move towards it. At the end of the function we tell the bot to rest for 
half a second, and then start from the beginning again.
/*=======================================================
* Patrols a map's NavMeshes using direct movetoward if  
  player is reachable and pathfinding if not.
=======================================================*/

auto state PatrolNavMesh
{
  // If we see a player or pawn, ignore it
  ignores SeePlayer;

  function bool FindNavMeshPath()
  {
    // Clear cache and constraints 
    NavigationHandle.PathConstraintList = none;
    NavigationHandle.PathGoalList = none;
    NavigationHandle.bDebugConstraintsAndGoalEvals =  
      true;

    
    /** this makes sure the bot wont wander into an area  
    where it will get stuck */
    class'NavMeshPath_EnforceTwoWayEdges'.static. 
      EnforceTwoWayEdges(NavigationHandle);

    /** Tells the bot to set a random goal.  
    There are 2 optional
    variables you can pass, a float or int representing  
    the range 
    to search, and an int representing how many polys  
    away he can 
    move to */    
    class'NavMeshGoal_Random'.static.FindRandom 
    (NavigationHandle);    
    // set his goal. 
      
    // Find path
    return NavigationHandle.FindPath();
  } 
  Begin:
  if(FindNavMeshPath())
  {

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

142

    NavigationHandle.SetFinalDestination 
      (NavigationHandle.PathCache_GetGoalPoint());

    // The random point is any area within the NavMesh
    FinalDest = NavigationHandle. 
      FinalDestination.Position;

    // Draw the line to our pawn
    DrawDebugLine(Pawn.Location, FinalDest,255,0,0,true);
    /** Draw a red sphere to illustrate the next location  
    the bot
    will stop at */		    
    DrawDebugSphere(FinalDest,16,20,255,0,0,true);

The debug information is now drawn on screen so that we can see where our bot will 
go. This visualization makes it far easier to understand if our bot is handling our code 
correctly or not, especially the pathfinding.

5.	 The following code represents what goes on behind the scenes, or within our bot's 
mind as it is looking for a new path. All of the pathfinding code is as follows:
  // While our bot hasn't reached the random point yet... 
  while(!pawn.ReachedPoint(FinalDest, none))
  {
    /** If the bot realizes it can't reach this point 
        directly...*/
    
    if(!NavigationHandle.PointReachable(FinalDest))
    {
      // Get out of here and pick another point
      break;
    }
    // Otherwise...
    else
    {
      // Move to the random point
      MoveTo(FinalDest);
    }
    // Rest for (X) seconds before picking a new point
    Sleep(0.5);
  }
  // Start from the beginning again
  goto 'Begin';
  }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

143

6.	 The final piece of the puzzle is the default properties block.
defaultproperties
{
  // Pawn is a player or a player-bot
  bIsPlayer = true
}

With all of this in place, load up the Ch5_NavMesh2.udk map. Open up Kismet  
and select the Actor Factory that we created earlier. Select the pulldown which allows 
you to select your PatrollingNavMeshBot and TutorialPawn as the pawn and 
controller to be used.

7.	 Press the PIE button and play in the editor. Your bot should now wander around the 
map and draw red spheres around the map while doing so!

How it works...
NavMeshes allow for a more natural movement for AI bots. If the bot finds that it will collide 
with something along its journey it will pick a different point to reach.

Most of our bot's logic is handled in one function, in combination with a state. We start  
by clearing any paths or constraints our bot may have previously had, then declare some  
of our own. In our case, we want our bot to steer clear of edges and find a random path to 
move towards.

The bot performs pathfinding on the NavMesh to see if the random path will be blocked by 
some sort of geometry, and if it senses that this is true, the bot will return another random 
path. Once the bot reaches that point, it draws another path.

Making a pawn follow us around the map 
with NavMeshes

We started to see the benefit of using NavMeshes with our last recipe, as it allowed our bot  
to determine whether or not a destination was reachable before it began to move to it.

Now we're going to take it to the next step, and have our bot follow us around the map.  
This time however, when the bot detects that we are too far away, or it can't reach us  
directly, it will create a path of its own to reach us.

Getting ready
Open your IDE and prepare to create a new class.

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

144

How to do it...
We've covered enough wandering and patrolling up to this point. Why not create an AI which 
is more friendly, and can follow us around a map? I'm sure you've played a game where one 
character follows another, whether it is the shadow ninjas in Ninja Gaiden on the NES, or the 
president's daughter following Leon in the more recent Resident Evil franchise. Ever wonder 
how the characters do that? It's time to explain how.

1.	 Create a new class called FollowBot. Have it extend from AI Controller.
class FollowBot extends AIController;

2.	 We're going to need four variables for this one. Some of them we've already seen 
from previous examples, but they are all pretty well explained in the comments.
/** Whatever target we'd like to use. In this case, our  
      pawn */
var Actor target;

/** The temporary destination the pawn will be headed  
    toward 
  (PathFinding) */
var() Vector   TempDest;

/** PathNode Array */
var array<Pathnode> WayPoints;

/** Distance our pawn needs to get to the node before it  
    starts 
  looking for a new one */
var int CloseEnough;

3.	 Add the event for Possess, just as we've done with our other bots.
/*=======================================================
 * Forces the pawn to begin moving as soon as the map  
  loads 
=======================================================*/
event Possess(Pawn inPawn, bool bVehicleTransition)
{
  super.Possess(inPawn, bVehicleTransition);  
  Pawn.SetMovementPhysics();
} 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

145

4.	 Just as we added PathNodes to our array for our bots to use, we need to add the 
WayPoints that NavMeshes use to our array. Add the PostBeginPlay() function  
to your class.
/*=======================================================
 * Called right after the map loads 
=======================================================*/
simulated function PostBeginPlay()
{
  local PathNode Current;

  /** Calls all of the PostBeginPlay functions from  
  parent classes */
  super.PostBeginPlay();
  
  // Add the PathNodes to the array
  foreach WorldInfo.AllActors(class'Pathnode',Current)
  {
    WayPoints.AddItem(Current);
  }
}

5.	 Let's add our Idle state, which informs our bot that we want it to remain still until  
it detects another pawn to follow.

This is the first time that we use two states in our class. We use the keyword auto  
to denote that this is the state that our pawn will be in as soon as it spawns on the 
map. Previously, we told our bot to ignore SeePlayer, but now we want it to be 
actively aware of other players on the map. We're setting our target variable to  
the first pawn the bot sees. This target variable is what we'll be passing around  
to the other functions for finding the location we want our bot to head towards.

/*=======================================================
 * We want the pawn to remain still until our player   
 * crosses its path
=======================================================*/ 
auto state Idle
{
  event SeePlayer (Pawn Seen)
  {
    super.SeePlayer(Seen);
    target = Seen;

    /** If our pawn is spotted, go to the function that 
        follows him */    
    GotoState('Follow');
  }
  Begin:
}

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

146

Now it's time to create our follow state. We're going to write the function for 
FindNavMeshPath() first, which is nearly identical to the one we used in our 
previous recipe. However, we are creating new constraints here. We're passing  
in our target variable, which was defined previously in our idle state, as the pawn  
our bot has just seen. We then tell the bot to find the most appropriate path to our 
pawn by returning the NavigationHandle.FindPath function.
/*=======================================================
 * Nav Mesh code for following our pan
======================================================*/  
state Follow
{
  ignoresSeePlayer;
  functionboolFindNavMeshPath()
  {
    
    /** Clear cache and constraints (ignore recycling  
        for the  moment) */
    NavigationHandle.PathConstraintList = none;
    NavigationHandle.PathGoalList = none;
 
    // Create constraints
    class'NavMeshPath_Toward'.static.TowardGoal 
    (NavigationHandle,target);
   
    class'NavMeshGoal_At'.static.AtActor 
    (NavigationHandle, target,32);
 
    // Find path to our pawn
    return NavigationHandle.FindPath();
  }

6.	 The second half of our follow state is where the state actually begins.

If we can reach our pawn directly, then we just move toward it without needing to 
perform any sort of pathfinding. Otherwise, if the bot determines that it can't reach 
our pawn directly then it's time to perform pathfinding. The bot will now create a path 
to its target Actor.

 With the DrawPathCache() function, we draw lines to each point in our path 
cache, from our current location to where our bot is. Afterwards, we move to the first 
node on that path. The two lines of debug code that follow determine the color of our 
lines, as well as the color of the sphere at our next location.

Once we've reached our pawn, go back to the beginning of the state again. If at any 
point we've determined that we can't reach the pawn, whether through pathfinding 
or not, we go back to our idle state to prevent an infinite loop, which would create a 
game crashing bug.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

147

  Begin:
  
  // If we can reach our pawn....
  if(NavigationHandle.ActorReachable(target))
  {
    /** Clear any debug lines that would otherwise be 
        drawn*/
    FlushPersistentDebugLines();    

    /** Move directly toward our pawn */
    MoveToward(target,target);
  }
  else if( FindNavMeshPath())
  {
    // Our end goal is to reach our pawn
    NavigationHandle.SetFinalDestination 
      (target.Location);
 
    /** Clear any debug lines that would otherwise be  
        drawn */ 
    
    FlushPersistentDebugLines();
    // Draw lines for how to reach our pawn 
    NavigationHandle.DrawPathCache(,TRUE);
 
    // Move to the first node on the path
    if(NavigationHandle.GetNextMoveLocation 
      (TempDest, Pawn.GetCollisionRadius()))
    {
      // Draw the line to our pawn
      DrawDebugLine(Pawn.Location,TempDest,255,0,0,true);

      /** Draw a red sphere to illustrate the next 
          location the bot will stop at */
      DrawDebugSphere(TempDest,16,20,255,0,0,true);
 
      /** Move directly to this red sphere, without 
          pathfinding */

      MoveTo(TempDest, target);}
  }
  else
  {
    /** We can't follow the pawn, so exit this state 
        otherwise we'll enter an infinite loop. */
    GotoState('Idle');
  }
  // Go back to the beginning of this state
  goto 'Begin';
}

www.it-ebooks.info

http://www.it-ebooks.info/


AI and Navigation

148

How it works...
The major benefit of using NavMeshes is that they can provide for more natural movements. 
Furthermore, they allow for pathfinding if our bot cannot find a direct route to its target. This is 
particularly useful for areas where there are a large number of narrow walls, such as a maze.

If our pawn can't find a direct route to its target, whether it is a vector when we are using 
the MoveTo() function or actor when we use the MoveToward() function, pathfinding can 
automatically generate an efficient route.

By setting a list of constraints, such as avoiding edges of walls or finding a random target,  
we can create natural movements and prevent our pawn from getting stuck. Along the way  
we have our pawn create a list of points it needs to reach before it can arrive at our target,  
in addition to displaying a red sphere at its next destination for debugging purposes.

See also
Additional resources for this chapter can be found at the following locations:

ff http://udn.epicgames.com/Three/AIAndNavigationHome.html

ff http://romerounrealscript.blogspot.com/2012/04/ai-navigation-
in-unrealscript.html

ff http://x9productions.com/blog/?page_id=521

www.it-ebooks.info

http://www.it-ebooks.info/


6
Weapons

In this chapter, we will be covering the following recipes:

ff Creating a gun that fires homing missiles

ff Creating a gun that heals pawns

ff Creating a weapon that can damage over time

ff Adding a flashlight to a weapon

ff Creating an explosive barrel

ff Creating a landmine

Introduction
Weapons in UDK are inventory items which can be handled by the player, and are generally 
used to fire a projectile. On the surface, the default weapon system found in Unreal Engine 
3 may appear to be catered to create various types of guns that are common in most FPS 
games; but it's actually pretty easy to create various sorts of weapons and usable inventory 
items, which may be found in other types of games, such as healing projectiles, bombs, 
landmines, or flashlights, as in the case with Alan Wake.

Rather than reinvent the wheel, we're simply going to extend from the shock rifle for many of 
our weapons, as its default abilities offer quite a bit of flexibility. We could dedicate an entire 
book to creating an excellent base weapon and archetypes to extend from, but for simplicity's 
sake we're going to create some practical examples in the following chapter. This knowledge 
will allow you to easily create other similar types of weapons and devices.

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

150

Creating a gun that fires homing missiles
UDK already has a homing rocket launcher packaged with the dev kit (UTWeap_
RocketLauncher). The problem however, is that it isn't documented well; it has  
a ton of excess code only necessary for multiplayer games played over a network,  
and can only lock on when you have loaded three rockets.

We're going to change all of that, and allow our homing weapon to lock onto a pawn and fire 
any projectile of our choice. We also need to change a few functions, so that our weapon fires 
from the correct location and uses the pawn's rotation and not the camera's. These are the 
same functions which we added to our ShockRifle class in Chapter 3, Scripting a Camera 
System. We'll need to create two classes for this first, so let's get started!

Getting ready
As I mentioned earlier, our main weapon for this chapter will extend from the UTWeap_
ShockRifle, as that gun offers a ton of great base functionality which we can build from.

Let's start by opening your IDE and creating a new weapon called MyWeapon, and have it 
extend from UTWeap_ShockRifle as shown as follows:

class MyWeapon extends UTWeap_ShockRifle;

How to do it...
We need to start by adding all of the variables that we'll be needing for our lock on feature. 
There are quite a few here, but they're all commented in pretty great detail. Much of this code 
is straight from UDK's rocket launcher, that is why it looks familiar. In this recipe, we'll be 
creating a base weapon which extends from one of the Unreal Tournament's most commonly 
used weapons, the shock rifle, and base all of our weapons from that.

1.	 I've gone ahead and removed an unnecessary information, added comments, and 
altered functionality so that we can lock onto pawns with any weapon, and fire only 
one missile while doing so.
/********************************************************
* Weapon lock on support
********************************************************/
/** Class of the rocket to use when seeking */
var class<UTProjectile> SeekingRocketClass;

/** The frequency with which we will check for a lock */
var(Locking) float    LockCheckTime;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

151

/** How far out should we be considering actors for a lock */
var float    LockRange;

/** How long does the player need to target an actor to lock on to 
it*/
var(Locking) float    LockAcquireTime;

/** Once locked, how long can the player go without painting the 
object before they lose the lock */
var(Locking) float    LockTolerance;

/** When true, this weapon is locked on target */
var bool         bLockedOnTarget;

/** What "target" is this weapon locked on to */
var Actor        LockedTarget;

var PlayerReplicationInfo LockedTargetPRI;

/** What "target" is current pending to be locked on to */
var Actor        PendingLockedTarget;

/** How long since the Lock Target has been valid */
var float          LastLockedOnTime;

/** When did the pending Target become valid */
var float        PendingLockedTargetTime;

/** When was the last time we had a valid target */
var float        LastValidTargetTime;

/** angle for locking for lock targets */
var float         LockAim;

/** angle for locking for lock targets when on Console */
var float         ConsoleLockAim;

/** Sound Effects to play when Locking */
var SoundCue       LockAcquiredSound;
var SoundCue       LockLostSound;

/** If true, weapon will try to lock onto targets */
var bool bTargetLockingActive;

/** Last time target lock was checked */
var float LastTargetLockCheckTime;

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

152

2.	 With our variables in place, we can now move onto the weapon's functionality. The 
InstantFireStartTrace() function is the same function we added in our weapon 
during our Chapter 3, Scripting a Camera System. It allows our weapon to start its trace 
from the correct location using the GetPhysicalFireStartLoc() function.

As mentioned before, this simply grabs the rotation of the weapon's muzzle flash 
socket, and tells the weapon to fire projectiles from that location, using the socket's 
rotation. The same goes for GetEffectLocation(), which is where our muzzle 
flash will occur.

The v in vector for the InstantFireStartTrace() function is not 
capitalized. The reason being that vector is actually of struct type, 
and not a function, and that is standard procedure in UDK.

/********************************************************
* Overriden to use GetPhysicalFireStartLoc() instead of 
* Instigator.GetWeaponStartTraceLocation()
* @returns position of trace start for instantfire()
********************************************************/
simulated function vector InstantFireStartTrace()
{
  return GetPhysicalFireStartLoc();
}

/********************************************************
* Location that projectiles will spawn from. Works for secondary 
fire on 
* third person mesh
********************************************************/
simulated function vector GetPhysicalFireStartLoc(optional vector 
AimDir)
{
  Local SkeletalMeshComponent AttachedMesh;
  local vector SocketLocation;
  Local TutorialPawn TutPawn;

  TutPawn = TutorialPawn(Owner);
  AttachedMesh = TutPawn.CurrentWeaponAttachment.Mesh;
/** Check to prevent log spam, and the odd situation win  
    which a cast to type TutPawn can fail */
if (TutPawn != none)
{
    AttachedMesh.GetSocketWorldLocationAndRotation 
    (MuzzleFlashSocket, SocketLocation);
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

153

    return SocketLocation;
}

/********************************************************
* Overridden from UTWeapon.uc
* @return the location + offset from which to spawn effects 
(primarily tracers) 
********************************************************/
simulated function vector GetEffectLocation()
{
  Local SkeletalMeshComponent AttachedMesh;
  local vector SocketLocation;
  Local TutorialPawn TutPawn;
  TutPawn = TutorialPawn(Owner);
  AttachedMesh = TutPawn.CurrentWeaponAttachment.Mesh;
  if (TutPawn != none)
  {
    AttachedMesh.GetSocketWorldLocationAndRotation 
    (MuzzleFlashSocket, SocketLocation);
  }
  MuzzleFlashSocket, SocketLocation);
  return SocketLocation;
}

3.	 Now we're ready to dive into the parts of code that are applicable to the actual 
homing of the weapon. Let's start by adding our debug info, which allows us to 
troubleshoot any issues we may have along the way.
*********************************************************
* Prints debug info for the weapon
********************************************************/
simulated function GetWeaponDebug( out Array<String> DebugInfo )
{
  Super.GetWeaponDebug(DebugInfo);

  DebugInfo[DebugInfo.Length] = "Locked:  
  "@bLockedOnTarget@LockedTarget@LastLockedontime@ 
  (WorldInfo.TimeSeconds-LastLockedOnTime);
  DebugInfo[DebugInfo.Length] =  
  "Pending:"@PendingLockedTarget@PendingLockedTargetTime 
  @WorldInfo.TimeSeconds;
}

Here we are simply stating which target our weapon is currently locked onto, in 
addition to the pending target. It does this by grabbing the variables we've listed 
before, after they've returned from their functions, which we'll add in the next part.

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

154

4.	 We need to have a default state for our weapon to begin with, so we mark it  
as inactive.
/********************************************************
* Default state. Go back to prev state, and don't use our  
* current tick
********************************************************/
auto simulated state Inactive
{
  ignores Tick;

  simulated function BeginState(name PreviousStateName)
  {
    Super.BeginState(PreviousStateName);

    // not looking to lock onto a target
    bTargetLockingActive = false;

    // Don't adjust our target lock
    AdjustLockTarget(None);
}

We ignore the tick which tells the weapon to stop updating any of its homing 
functions. Additionally, we tell it not to look for an active target or adjust its  
current target, if we did have one at the moment.

5.	 While on the topic of states, if we finish our current one, then it's time to move  
onto the next:
/********************************************************
 * Finish current state, & prepare for the next one
********************************************************/
  simulated function EndState(Name NextStateName)

  {
    Super.EndState(NextStateName);

    // If true, weapon will try to lock onto targets
    bTargetLockingActive = true;
  }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

155

6.	 If our weapon is destroyed or we are destroyed, then we want to prevent the  
weapon from continuing to lock onto a target.
/********************************************************
 * If the weapon is destroyed, cancel any target lock
********************************************************/
simulated event Destroyed()
{

// Used to adjust the LockTarget.
  AdjustLockTarget(none);

  //Calls the previously defined Destroyed function
  super.Destroyed();
}

7.	 Our next chunk of code is pretty large, but don't let it intimidate you. Take your time 
and read it through to have a thorough understanding of what is occurring. When it 
all boils down, the CheckTargetLock() function verifies that we've actually locked 
onto our target.

We start by checking that we have a pawn, a player controller, and that we are  
using a weapon which can lock onto a target. We then check if we can lock onto  
the target, and if it is possible, we do it. At the moment we only have the ability  
to lock onto pawns.
/*****************************************************************
* Have we locked onto our target?
****************************************************************/
function CheckTargetLock()
{
  local Actor BestTarget, HitActor, TA;
  local UDKBot BotController;
  local vector StartTrace, EndTrace, Aim, HitLocation,  
  HitNormal;
  local rotator AimRot;
  local float BestAim, BestDist;

  if((Instigator == None)||(Instigator.Controller ==  
  None)||(self != Instigator.Weapon) )
  {
    return;
  }

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

156

  if ( Instigator.bNoWeaponFiring)
  // TRUE indicates that weapon firing is disabled for this  
  pawn
  {
    // Used to adjust the LockTarget.
    AdjustLockTarget(None);

    // "target" is current pending to be locked on to 
    PendingLockedTarget = None;
    return;
  }
  // We don't have a target
  BestTarget = None;
  BotController = UDKBot(Instigator.Controller);

  // If there is BotController...
  if ( BotController != None )
  {
    // only try locking onto bot's target
    if((BotController.Focus != None) &&  
    CanLockOnTo(BotController.Focus) )
    {
      // make sure bot can hit it
      BotController.GetPlayerViewPoint 
      ( StartTrace, AimRot );
      Aim = vector(AimRot);

      if((Aim dot Normal(BotController.Focus.Location -  
      StartTrace)) > LockAim )
      {
        HitActor = Trace(HitLocation, HitNormal,  
        BotController.Focus.Location, StartTrace, true,,,  
        TRACEFLAG_Bullet);
        if((HitActor == None)|| 
        (HitActor == BotController.Focus) )
        {
          // Actor being looked at
          BestTarget = BotController.Focus;
        }
      }
    }
  }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

157

Immediately after that, we do a trace to see if our missile can hit the target, and 
check for anything that may be in the way. If we determine that we can't hit our  
target then it's time to start looking for a new one.

  else
  {
    // Trace the shot to see if it hits anyone
    Instigator.Controller.GetPlayerViewPoint 
    ( StartTrace, AimRot );
    Aim = vector(AimRot);

    // Where our trace stops
    EndTrace = StartTrace + Aim * LockRange;

    HitActor = Trace 
    (HitLocation, HitNormal, EndTrace, StartTrace,  
    true,,, TRACEFLAG_Bullet);

    // Check for a hit	
    if((HitActor == None)||!CanLockOnTo(HitActor) )
    {
      /** We didn't hit a valid target?  Controller  
       attempts to pick a good target */
      BestAim = ((UDKPlayerController 
      (Instigator.Controller)!=None)&& 
      UDKPlayerController(Instigator.Controller). 
      bConsolePlayer) ? ConsoleLockAim : LockAim;
      BestDist = 0.0;
      TA = Instigator.Controller.PickTarget 
       (class'Pawn', BestAim, BestDist, Aim, StartTrace,  
      LockRange);
      if ( TA != None && CanLockOnTo(TA) )
      {
        /** Best target is the target we've locked */
        BestTarget = TA;
      }
    }

    // We hit a valid target
    else
    {
      // Best Target is the one we've done a trace on
      BestTarget = HitActor;
    }
  }

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

158

8.	 If we have a possible target, then we note its time mark for locking onto it. If we can 
lock onto it, then start the timer. The timer can be adjusted in the default properties 
and determines how long we need to track our target before we have a solid lock.
  // If we have a "possible" target, note its time mark
  if ( BestTarget != None )
  {
    LastValidTargetTime = WorldInfo.TimeSeconds;

    // If we're locked onto our best target
    if ( BestTarget == LockedTarget )
    {
      /** Set the LLOT to the time in seconds since  
       level began play */

      LastLockedOnTime = WorldInfo.TimeSeconds;
    }

Once we have a good target, it should turn into our current one, and start 
our lock on it. If we've been tracking it for enough time with our crosshair 
(PendingLockedTargetTime), then lock onto it.
    else
    {
      if ( LockedTarget != None&&( 
      (WorldInfo.TimeSeconds - LastLockedOnTime >  
      LockTolerance)||!CanLockOnTo(LockedTarget)) )
      {
        // Invalidate the current locked Target
        AdjustLockTarget(None);
      }

      /** We have our best target, see if they should  
          become our current target Check for a new  
          pending lock */
      if (PendingLockedTarget != BestTarget)

      {
        PendingLockedTarget = BestTarget;
        PendingLockedTargetTime =  
        ((Vehicle(PendingLockedTarget) != None) 
        &&(UDKPlayerController 
        (Instigator.Controller)!=None) 
        &&UDKPlayerController(Instigator.Controller). 
        bConsolePlayer) 
          ? WorldInfo.TimeSeconds + 0.5*LockAcquireTime
          : WorldInfo.TimeSeconds + LockAcquireTime;
      }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

159

      /** Otherwise check to see if we have been 
          tracking the pending lock long enough */
      else if (PendingLockedTarget == BestTarget  
      && WorldInfo.TimeSeconds = PendingLockedTargetTime )
      {
        AdjustLockTarget(PendingLockedTarget);
        LastLockedOnTime = WorldInfo.TimeSeconds;
        PendingLockedTarget = None;
        PendingLockedTargetTime = 0.0;
      }
    }
  }

Otherwise, if we can't lock onto our current or our pending target, then cancel  
our current target, along with our pending target.
  else
  {
    if ( LockedTarget != None&&((WorldInfo.TimeSeconds -  
    LastLockedOnTime > LockTolerance)|| 
    !CanLockOnTo(LockedTarget)) )
    {
      // Invalidate the current locked Target
      AdjustLockTarget(None);
    }

    // Next attempt to invalidate the Pending Target
    if ( PendingLockedTarget != None&&
    ((WorldInfo.TimeSeconds - LastValidTargetTime >  
    LockTolerance)||!CanLockOnTo(PendingLockedTarget)) )
    {
      // We are not pending another target to lock onto
      PendingLockedTarget = None;
    }
  }
}

That was quite a bit to digest. Don't worry, because the functions from here on  
out are pretty simple and straightforward.

9.	 As with most other classes, we need a Tick() function to check for something  
in each frame. Here, we'll be checking whether or not we have a target locked in  
each frame, as well as setting our LastTargetLockCheckTime to the number  
of seconds passed during game-time.
/********************************************************
* Check target locking with each update 
********************************************************/
event Tick( Float DeltaTime )

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

160

{
  if ( bTargetLockingActive && ( WorldInfo.TimeSeconds >  
  LastTargetLockCheckTime + LockCheckTime ) )
  {
    LastTargetLockCheckTime = WorldInfo.TimeSeconds;
    // Time, in seconds, since level began play	
    CheckTargetLock();
    // Checks to see if we are locked on a target
  }
}

10.	 As I mentioned earlier, we can only lock onto pawns. Therefore, we need a function  
to check whether or not our target is a pawn.
/********************************************************
* Given an potential target TA determine if we can lock on to it.  
By 
* default, we can only lock on to pawns.
********************************************************/
simulated function bool CanLockOnTo(Actor TA)
{
  if ( (TA == None) || !TA.bProjTarget || TA.bDeleteMe ||  
  (Pawn(TA) == None) || (TA == Instigator) ||  
  (Pawn(TA).Health <= 0) )
  {
    return false;
  }
  return ( (WorldInfo.Game == None) ||  
  !WorldInfo.Game.bTeamGame || (WorldInfo.GRI == None) ||  
  !WorldInfo.GRI.OnSameTeam(Instigator,TA) );
}

11.	 Once we have a locked target we need to trigger a sound, so that the player is  
aware of the lock. The whole first half of this function simply sets two variables  
to not have a target, and also plays a sound cue to notify the player that we've  
lost track of our target.
/********************************************************
* Used to adjust the LockTarget.
********************************************************/
function AdjustLockTarget(actor NewLockTarget)
{
  if ( LockedTarget == NewLockTarget )
  {
    // No need to update
    return;
  }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

161

  if (NewLockTarget == None)
  {
    // Clear the lock
    if (bLockedOnTarget)
    {
      // No target
      LockedTarget = None;
      // Not locked onto a target
      bLockedOnTarget = false; 
      if (LockLostSound != None && Instigator != None &&  
      Instigator.IsHumanControlled() )
      {
        // Play the LockLostSound if we lost track of the  
           target
        PlayerController(Instigator.Controller). 
        ClientPlaySound(LockLostSound);
      }
    }
  }
  else
  {
    // Set the lock
    bLockedOnTarget = true;
    LockedTarget = NewLockTarget;
    LockedTargetPRI = (Pawn(NewLockTarget) != None) ?  
    Pawn(NewLockTarget).PlayerReplicationInfo : None;
    if ( LockAcquiredSound != None && Instigator != None &&  
    Instigator.IsHumanControlled() )
    {
      PlayerController(Instigator.Controller). 
      ClientPlaySound(LockAcquiredSound);
    }
  }
}

12.	 Once it looks like everything has checked out we can fire our ammo! We're just setting 
everything back to 0 at this point, as our projectile is seeking our target, so it's time to 
start over and see whether we will use the same target or find another one.
/********************************************************
* Everything looks good, so fire our ammo!
********************************************************/
simulated function FireAmmunition()
{
  Super.FireAmmunition();
  AdjustLockTarget(None);

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

162

  LastValidTargetTime = 0;
  PendingLockedTarget = None;
  LastLockedOnTime = 0;
  PendingLockedTargetTime = 0;
}

13.	 With all of that out of the way, we can finally work on firing our projectile, or in our 
case, our missile. ProjectileFile() tells our missile to go after our currently 
locked target, by setting the SeekTarget variable to our currently locked target.
/********************************************************
* If locked on, we need to set the Seeking projectile's
* LockedTarget.
 ********************************************************/
simulated function Projectile ProjectileFire()
{
  local Projectile SpawnedProjectile;

  SpawnedProjectile = super.ProjectileFire();
  if (bLockedOnTarget &&  
  UTProj_SeekingRocket(SpawnedProjectile) != None)
  {
    /** Go after the target we are currently locked  
        onto */
    UTProj_SeekingRocket(SpawnedProjectile).SeekTarget =  
    LockedTarget;
  }
  return SpawnedProjectile;
}

14.	 Really though, our projectile could be anything at this point. We need to tell our 
weapon to actually use our missile (or rocket, they are used interchangeably) which 
we will define in our defaultproperties block.
/********************************************************
* We override GetProjectileClass to swap in a Seeking Rocket if we 
are 
* locked on.
 ********************************************************/
function class<Projectile> GetProjectileClass()
{
  // if we're locked on...
  if (bLockedOnTarget)
  {
    // use our homing rocket
    return SeekingRocketClass;
  }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

163

  // Otherwise...
  else
  {
    // Use our default projectile
    return WeaponProjectiles[CurrentFireMode];
  }
}

If we don't have a SeekingRocketClass class defined, then we just use the 
currently defined projectile from our CurrentFireMode array.

15.	 The last part of this class involves the defaultproperties block. This is the same 
thing we saw in our Camera class. We're setting our muzzle flash socket, which is 
used for not only firing effects, but also weapon traces, to actually use our muzzle 
flash socket.
defaultproperties
{
    // Forces the secondary fire projectile to fire from  
    the weapon attachment */
    MuzzleFlashSocket=MuzzleFlashSocket
}

Our MyWeapon class is complete. We don't want to clog our defaultproperties 
block and we have some great base functionality, so from here on out our weapon 
classes will generally be only changes to the defaultproperties block. Simplicity!

16.	 Create a new class called MyWeapon_HomingRocket. Have it extend from 
MyWeapon.
class MyWeapon_HomingRocket extends MyWeapon;

17.	 In our defaultproperties block, let's add our skeletal and static meshes. We're 
just going to keep using the shock rifle mesh. Although it's not necessary to do this, 
as we're already a child class of (that is, inheriting from)  UTWeap_ShockRifle, I 
still want you to see where you would change the mesh if you ever wanted to.
defaultproperties
{
  // Weapon SkeletalMesh
  Begin Object class=AnimNodeSequence Name=MeshSequenceA
  End Object

  // Weapon SkeletalMesh
  Begin Object Name=FirstPersonMesh
    SkeletalMesh= 
    SkeletalMesh'WP_ShockRifle.Mesh.SK_WP_ShockRifle_1P'
    AnimSets(0)= 
    AnimSet'WP_ShockRifle.Anim.K_WP_ShockRifle_1P_Base'

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

164

    Animations=MeshSequenceA
    Rotation=(Yaw=-16384)
    FOV=60.0
  End Object

  // PickupMesh
  Begin Object Name=PickupMesh
    SkeletalMesh= 
    SkeletalMesh'WP_ShockRifle.Mesh.SK_WP_ShockRifle_3P'
  End Object

  // Attachment class
  AttachmentClass= 
  class'UTGameContent.UTAttachment_ShockRifle'

18.	 Next, we want to declare the type of projectile, the type of damage it does, and the 
frequency at which it can be fired. Moreover, we want to declare that each shot fired 
will only deplete one round from our inventory. We can declare how much ammo the 
weapon starts with too.
// Defines the type of fire for each mode
  WeaponFireTypes(0)=EWFT_InstantHit
  WeaponFireTypes(1)=EWFT_Projectile
  WeaponProjectiles(1)=class'UTProj_Rocket'

  // Damage types
  InstantHitDamage(0)=45
  FireInterval(0)=+1.0
  FireInterval(1)=+1.3
  InstantHitDamageTypes(0)=class'UTDmgType_ShockPrimary'
  InstantHitDamageTypes(1)=None
  // Not an instant hit weapon, so set to "None"

  // How much ammo will each shot use?
  ShotCost(0)=1
  ShotCost(1)=1

  // # of ammo gun should start with
  AmmoCount=20

  // Initial ammo count if weapon is locked
  LockerAmmoCount=20

// Max ammo count
  MaxAmmoCount=40

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

165

19.	 Our weapon will use a number of sounds that we didn't previously need,  
such as locking onto a pawn, as well as losing lock. So let's add those now.
  // Sound effects
  WeaponFireSnd[0] =  
  SoundCue'A_Weapon_ShockRifle.Cue.A_Weapon_SR_FireCue'
  WeaponFireSnd[1]=SoundCue'A_Weapon_RocketLauncher.Cue. 
  A_Weapon_RL_Fire_Cue'
  WeaponEquipSnd= 
  SoundCue'A_Weapon_ShockRifle.Cue.A_Weapon_SR_RaiseCue'
  WeaponPutDownSnd= 
  SoundCue'A_Weapon_ShockRifle.Cue.A_Weapon_SR_LowerCue'
  PickupSound=SoundCue'A_Pickups.Weapons.Cue. 
  A_Pickup_Weapons_Shock_Cue'
  LockAcquiredSound=SoundCue'A_Weapon_RocketLauncher.Cue. 
  A_Weapon_RL_SeekLock_Cue'
  LockLostSound=SoundCue'A_Weapon_RocketLauncher.Cue. 
  A_Weapon_RL_SeekLost_Cue'

20.	 We won't be the only one to use this weapon, as bots will be picking it up during 
Deathmatch style games as well. Therefore, we want to declare some logic for the 
bots, such as how strongly they will desire it, and whether or not they can use it for 
things like sniping.
 // AI logic
  MaxDesireability=0.65      // Max desireability for bots
  AIRating=0.65
  CurrentRating=0.65
  bInstantHit=false         // Is it an instant hit weapon?
  bSplashJump=false

  // Can a bot use this for splash damage?
  bRecommendSplashDamage=true

  // Could a bot snipe with this?
  bSniping=false

     // Should it fire when the mouse is released? 
  ShouldFireOnRelease(0)=0

  // Should it fire when the mouse is released?  
  ShouldFireOnRelease(1)=0

21.	 We need to create an offset for the camera too, otherwise the weapon wouldn't 
display correctly as we switch between first and third person cameras.
  // Holds an offset for spawning projectile effects 
  FireOffset=(X=20,Y=5)

  // Offset from view center (first person)
  PlayerViewOffset=(X=17,Y=10.0,Z=-8.0)

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

166

22.	 Our homing properties section is the bread and butter of our class. This is where 
you'll alter the default values for anything to do with locking onto pawns.
  // Homing properties
  /** angle for locking for lock
      targets when on Console */
  ConsoleLockAim=0.992 

/** How far out should we be before considering actors for   
    a lock? */
LockRange=9000 

// Angle for locking, for lockTarget
LockAim=0.997 

// How often we check for lock
LockChecktime=0.1

// How long does player need to hover over actor to lock?
LockAcquireTime=.3

// How close does the trace need to be to the actual target
LockTolerance=0.8 

 SeekingRocketClass=class'UTProj_SeekingRocket'

23.	 Animations are an essential part of realism, so we want the camera to shake  
when firing a weapon, in addition to an animation for the weapon itself.
// camera anim to play when firing (for camera shakes)
  FireCameraAnim(1)=CameraAnim'Camera_FX.ShockRifle. 
  C_WP_ShockRifle_Alt_Fire_Shake'

  // Animation to play when the weapon is fired
  WeaponFireAnim(1)=WeaponAltFire

24.	 While we're on the topic of visuals, we may as well add the flashes at the muzzle,  
as well as the crosshairs for the weapon.
  // Muzzle flashes
  MuzzleFlashPSCTemplate=WP_ShockRifle.Particles. 
  P_ShockRifle_MF_Alt

  MuzzleFlashAltPSCTemplate=WP_ShockRifle.Particles. 
  P_ShockRifle_MF_Alt

  MuzzleFlashColor=(R=200,G=120,B=255,A=255)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

167

  MuzzleFlashDuration=0.33
  MuzzleFlashLightClass= 
  class'UTGame.UTShockMuzzleFlashLight'
  CrossHairCoordinates=(U=256,V=0,UL=64,VL=64)
  LockerRotation=(Pitch=32768,Roll=16384)

  // Crosshair
  IconCoordinates=(U=728,V=382,UL=162,VL=45)
  IconX=400
  IconY=129
  IconWidth=22
  IconHeight=48

  /** The Color used when drawing the Weapon's Name on the 
    HUD */
  WeaponColor=(R=160,G=0,B=255,A=255)

25.	 Since weapons are part of a pawn's inventory, we need to declare which slot this 
weapon will fall into (from one to nine).
// Inventory
InventoryGroup=4    // The weapon/inventory set, 0-9
GroupWeight=0.5     // position within inventory group.  
                        (used by prevweapon and nextweapon)

26.	 Our final piece of code has to do with rumble feedback with the Xbox gamepad.  
This is not only used on consoles, but also it is generally reserved for it.
  /** Manages the waveform data for a forcefeedback device,  
      specifically for the xbox gamepads. */
  Begin Object Class=ForceFeedbackWaveform  
  Name=ForceFeedbackWaveformShooting1
    Samples(0)=(LeftAmplitude=90,RightAmplitude=40, 
    LeftFunction=WF_Constant, 
    RightFunction=WF_LinearDecreasing,Duration=0.1200)
  End Object

  // controller rumble to play when firing
  WeaponFireWaveForm=ForceFeedbackWaveformShooting1 
}

27.	 All that's left to do is to add the weapon to your pawn's default inventory. You 
can easily do this by adding the following line to your TutorialGame class's 
defaultproperties block:

defaultproperties
{
  DefaultInventory(0)=class'MyWeapon_HomingRocket'
}

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

168

Load up your map with a few bots on it, hold your aiming reticule over it for a brief moment 
and when you hear the lock sound, fire away!

How it works...
To keep things simple we extend from UTWeap_ShockRifle. This gave us a great bit of base 
functionality to work from. We created a MyWeapon class which offers not only everything that 
the shock rifle does, but also the ability to lock onto targets.

When we aim our target reticule over an enemy bot, it checks for a number of things. First, 
it verifies that it is an enemy and also whether or not the target can be reached. It does this 
by drawing a trace and returns any actors which may fall in our weapon's path. If all of these 
things check out, then it begins to lock onto our target after we've held the reticule over the 
enemy for a set period of time. We then fire our projectile, which is either the weapon's firing 
mode, or in our case, a rocket.

We didn't want to clutter the defaultproperties block for MyWeapon; so we create a 
child class called MyWeapon_HomingRocket that makes use of all the functionality and 
only changes the defaultproperties block, which will influence the weapon's aesthetics, 
sound effects, and even some functionality with the target lock.

Creating a gun that heals pawns
UDK has built-in functionality for healing players through pickups such as health packs,  
but there is no way for one player to heal another.

In the following recipe, we'll create an instant hit weapon that heals a target for 10 points  
of health each time it is shot.

Getting ready
Start by creating a new class called MyWeapon_HealingInstantHit and have it extend 
from MyWeapon.

class MyWeapon_HealingInstantHit extends MyWeapon;

How to do it...
1.	 The great thing about setting up our MyWeapon class is that adding additional 

functionality to it is a breeze. This class has only one function. Let's add the 
ProcessInstantHit() function now.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

169

First, we define the pawn that is being hit. Then, it takes the 
ProcessInstantHit() function and rather than have it apply damage to a pawn, 
it applies additional health by calling our pawn's HealDamage() function. The first 
parameter used by HealDamage() is an integer, which declares exactly how much 
health each shot will heal a pawn for. We've set it to the modest value of 10.

We use a log for debugging again and have it output our pawn's health each time  
it is shot, through the call to P.Health.

/********************************************************
* Heals a pawn with an instant hit weapon
* Doesn't allow pawn's health to exceed maximum (100)
********************************************************/
simulated function ProcessInstantHit(byte FiringMode, ImpactInfo 
Impact, optional int NumHits)
{
  local Pawn P;

  if (Impact.HitActor != None &&  
  (Impact.HitActor).IsA('Pawn'))
  {
    // Defining the pawn
    P = Pawn(Impact.HitActor);

    // Increase health by 10
    P.HealDamage(10, Instigator.Controller,  
                 InstantHitDamageTypes[1]);

    // Log for debugging
    'Log("***Pawn Health:" @P.Health);
  }
}

2.	 We still need to make one alteration to our DefaultProperties block.

DefaultProperties
{
  // Do not perform any damage
  InstantHitDamageTypes(1)=None
}

We're telling the game that despite us using an instant hit weapon, we do not want it 
to perform any damage. Therefore, we set the damage type to None.

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

170

How it works...
By overriding UTWeapon's ProcessInstantHit(), we remove its default functionality 
of performing damage on a pawn and instead do just the opposite; heal it! Alternatively, you 
could set a function that causes damage to a pawn to a negative number, and that could also 
heal the pawn.

We simply heal the pawn, let it know which pawn is performing the heal, and finally assign a 
firing mode to the function. In our case, this is the secondary function for our new weapon. 
Don't forget, arrays in UDK start at 0, so 0 is really the first firing mode, and 1 is the second.

Also don't forget to change your pawn's default inventory, so that it 
uses your new weapon!

There's more...
See if you can make the weapon rapid fire by increasing its firing speed. This can be done in 
the default properties again. You may want to decrease how much health each shot is worth, 
however, otherwise you can increase a pawn's health to maximum capacity instantly.

Creating a weapon that can damage over 
time

Damage over Time (DoT) weapons have been a staple in gaming for decades. They can  
be anything from a pawn taking acid damage, falling into a pool of lava, drowning, or even 
being poisoned.

Our next recipe will have us creating a weapon that allows our pawn to take a set amount of 
damage over a brief period of time. This will require both a weapon, as well as a number of 
changes to our pawn.

Getting ready
Start by creating a new class called MyWeapon_PoisonDamage and have it extend  
from MyWeapon.

class MyWeapon_PoisonDamage extends MyWeapon;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

171

How to do it...
We're only going to add one function to this class.

1.	 Just as we did with our healing weapon, we need to override the UTWeapon  
class's ProcessInstantHit() function. We're not going to do any sort  
of healing again though.
simulated function ProcessInstantHit(byte FiringMode, ImpactInfo 
Impact, optional int NumHits)
{
  local TutorialPawn TP;

  if (Impact.HitActor != None &&  
  (Impact.HitActor).IsA('Pawn'))
  {
    // Defining the pawn
    TP = TutorialPawn(Impact.HitActor);

/** Calls the poison function in the TutorialPawn 
    class */
    TP.PoisonPlayer();

// Log for debugging 
    'Log("***Pawn Health:" @TP.Health);

  }
}

First we perform a check to see whether our projectile has hit an actor. Immediately 
after that, we check to see if that  actor is a pawn. We don't want to apply our 
poison damage to something non-living like a vehicle or a barrel. Afterwards, we 
check to see if the pawn is of our TutorialPawn class. From there, we call the 
PoisonPlayer() function from our TutorialPawn class. This is what actually 
poisons the pawn. Finally, we add our standard log which tracks our tutorial pawn's 
health, to verify that our function is actually having some kind of an effect.

2.	 Now it's time to head to our TutorialPawn class. Let's start by adding a variable  
to hold the amount of time ticking by, as our pawn is poisoned:
var int PoisonCountdown;

3.	 Our PoisonPlayer() function is what is actually being called by our weapon.  
This simple function resets our poison counter to 0, and prevents our damage  
from stacking.

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

172

Next we use a standard SetTimer() function, which you will find is frequently  
used throughout UDK. We're telling the game to call the PoisonDmg() function  
every .5 seconds. This is the actual tick that damages our pawn. We could easily 
increase the amount of damage done by increasing the frequency at which 
PoisonDmg() is called.
/********************************************************
* Called by MyWeapon_PoisonDamge when the pawn is shot
********************************************************/
function PoisonPlayer()
{
  // Reset Poison Counter
  PoisonCountdown = 0;

  // Every .5 seconds PoisonDmg() will be called
  SetTimer(0.5, true, 'PoisonDmg');
}

Let's take a look at what PoisonDmg() actually does:
/********************************************************
* Actually does the damage to the pawn
********************************************************/
function PoisonDmg()
{
  // Does 5 damage to the pawn of type UTDmgType_Burning
  TakeDamage( 5, None, Location, vect(0,0,0) ,  
  class'UTDmgType_Burning');
  PoisonCountdown=PoisonCountdown+1;
  // Increment timer
  'Log("***Pawn Health:" @Health);
  // Log for debugging

  // clear the infinitely looping 0.5 second timer after 10  
    counts of damage
  if(PoisonCountdown >= 10)
  {
    ClearTimer('PoisonDmg');
  }
}

We start by calling the TakeDamage() function and informing the pawn how 
much damage it is taking (5), where it is being hit (Location), any momentum 
to be applied (None, as our vector reads 0,0,0) and finally the type of damage 
(UTDmgType_Burning). Burning is a DoT as well, so rather than create a new 
damage type, we just stick with what UDK provides.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

173

Our PoisonCoundown variable, which we created in the preceding code, is now 
being used as well. Each time the function is called (in our case, every 0.5 seconds), 
we add one to the count. Next, we create an if statement that clears our timer once 
we've accumulated 10 seconds worth of damage.

Want to have the DoT effect last longer?
Simply set the integer in our if(PoisonCountdown >= 10) 
statement to be greater than 10!

4.	 Change your pawn's default inventory, so that it uses our new weapon and give it a 
spin! Once hit, you'll notice that the pawn flashes red very briefly, each time damage 
is received. Take a look at your log to see exactly how much health is drained with 
each hit.

How it works...
Because our MyWeapon class is so modular, we're able to create brand new functionality 
by only having to override one function within the class. When our instant hit projectile 
(ProcessInstantHit()) hits our TutorialPawn, it calls the PoisonPlayer()  
function within that class.

PoisonPlayer() then calls our PoisonDmg() function every half second. PoisonDmg() 
then sets a number of attributes, such as the amount of damage taken during each hit,  
where the pawn is hit, and how long the effect will last.

There's more...
Now that we have a projectile, which poisons our enemies, what's stopping us from creating  
a grenade that does the same, or even a pickup? See if you can create an object that causes 
poison damage when the pawn picks it up with the use function, or if a pawn  
runs it over (collides).

Looking further down the road, one excellent idea would be to create a grenade or  
explosive that heals people over time.

Take a look at the Bump() and Touch() functions in your pawn.

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

174

Adding a flashlight to a weapon
Flashlights have been man's best friend to combat darkness since the invention of electricity. 
A flashlight can even be turned into a weapon, as we saw with 2010's release of Remedy's 
Alan Wake.

In the following recipe, we'll be creating a flashlight that can attach to the pawn, as well as a 
weapon, and be toggled on and off with any key of your choice.

Getting ready
Start by creating a new class called WeaponFlashlight and have it extend from 
SpotLightMovable. Also make it non placeable. Non placeable means that it cannot be 
dropped onto the map. Essentially it's there to keep things clean for the level designers, and 
avoid confusion as to how something should or should not be used.

For this recipe, we'll have to make small modifications to our TutoialPawn class, in addition 
to creating one new class, which is our actual flashlight.

class WeaponFlashlight extends SpotLightMovable
      notplaceable;

How to do it...
1.	 SpotlightMoveable already has all of the functionality that we'll need, so we're 

only going to adjust a few of the default properties.
DefaultProperties
{
  Begin Object Name=SpotLightComponent0
  // Sets the light color
    LightColor=(R=200,G=200,B=200)
    InnerConeAngle=10.0
    OuterConeAngle=20.0
  End Object
  // Cannot be deleted during play.
  bNoDelete=false
}

We decrease the RGB value of the light down from a full 255 to 200 so that we don't 
have a blinding white light. I prefer a softer white with a subtle shadow. The inner and 
outer cone angles will also greatly affect how the light is displayed on screen. Play 
with the values for a bit to really get a feel for what works best for your needs.

The only things left to do from here are additions and alterations to our 
TutorialPawn class.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

175

2.	 Start off by declaring a variable to reference our WeaponFlashlight.
var WeaponFlashlight Flashlight;

3.	 We also need to add some functionality in our PostBeginPlay() function:
simulated event PostBeginPlay()
{
  Super.PostBeginPlay();
  'Log("================");
  'Log("Tutorial Pawn up");

  //***** Used for the flashlight *****//
  // Spawns the light on the player, setting self as owner
  Flashlight = Spawn(class'WeaponFlashlight', self);

  // Sets the lights base on at the player
  Flashlight.SetBase(self);

// Light is off by default
  Flashlight.LightComponent.SetEnabled(false);

  // Starts at 75% brightness
  Flashlight.LightComponent.SetLightProperties(0.75);
}

We're doing a few things here. First, we're spawning our WeaponFlashlight and 
setting our pawn as the owner. Afterwards, we're attaching the light to our pawn, 
keeping it toggled to off by default, and dropping the brightness down to 75 percent.

4.	 The flashlight is attached to our pawn, but we need it to rotate when our pawn 
rotates, so let's do that now:
/********************************************************
* Forces the flashlight to use our pawn's rotation
********************************************************/
event UpdateEyeHeight( float DeltaTime )
{
    Super.UpdateEyeHeight(DeltaTime);

    // Flaslight will use our controller's rotation
    Flashlight.SetRotation(Controller.Rotation);

    /* Offset the light slightly, so that it looks as 
       though it is coming from our pawn's eyes/helmet */
    Flashlight.SetRelativeLocation 
    (Controller.RelativeLocation + vect(20, 0, 25));
}

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

176

UpdateEyeHeight() takes Deltatime as a parameter and updates each frame. 
With Flashlight.SetRotation() we set the rotation to use Controller.
Rotation, and then offset it slightly so that it appears as though the light is  
coming from our pawn's helmet.

5.	 We've got our flashlight set to our pawn, but we need a way to turn it on and off now. 
Add the following function to your class:
/********************************************************
* Turns the light on and off
********************************************************/
exec function ToggleFlashlight()
{
    // If the light is off...
    if(!Flashlight.LightComponent.bEnabled) 
    {
      // Then turn it on
      Flashlight.LightComponent.SetEnabled(true);
      'log("TOGGLE FLASHLIGHT ON");
    }
    else        // If it's already on
    {
      Flashlight.LightComponent.SetEnabled(false);
      // Turn it off
      'log("TOGGLE FLASHLIGHT OFF");
    }
}

exec function tells us that this function can be called by the player  
through a key press. We're stating that if the light is off, then when we select  
our ToggleFlashlight key that we're about to define, and then turn it on. 
Otherwise, if it's already on, then turn it off.

We need a way to toggle the flashlight on now though! This is a quick fix.  
Browse to your .ini files. We're going to be looking for DefaultInput.ini.

This can be generally found under the file path, UDKGame/Config.

6.	 Open up that file and scroll down until you see the key configurations. Right above  
the text marked BINDINGS THAT ARE REMOVED FROM BASEINPUT.INI add  
the following code:
;--------------------------------------------------------
; CUSTOM BINDINGS FOR TUTORIALS

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

177

;--------------------------------------------------------
.Bindings=(Name="GBA_ToggleFlashlight" 
,Command="ToggleFlashlight")
.Bindings=(Name="X" ,Command="GBA_ToggleFlashlight")

The first line is setting our ToggleFlashlight function to the name GBA_
ToggleFlashlight and the next line is binding our GBA_ToggleFlashlight 
command to the X key.

7.	 Rebuild scripts and hop into the game. Ch5_PathNodes2.udk should work fine. 
Run towards the block in the center of the map, hit the X key on your keyboard,  
and watch as you have a flashlight that can now toggle on and off!

It may be wise to delete your UDKInput.ini file before rebuilding, 
otherwise the engine may not use your changes. This way, during the next 
rebuild, it will grab your update file and use that as the default settings.

How it works...
UDK provides a plethora of classes that we can subclass from. As SpotLightMovable suits 
our needs well, we've just extended from that and only adjusted a few minor default properties 
for our flashlight.

Afterwards, we attached the light to our pawn, then slightly offset the starting point of the 
cone to begin from our pawn's eyes, before finally telling it to follow our controller's rotation,  
so that it always faces the same direction our pawn is looking at.

Finally, we set a new input command in our DefaultInput.ini file, and bound our X key  
to execute the function ToggleFlashlight.

Creating an explosive barrel
Guns aren't the only weapons we can make use of in UDK. It's time to think outside the box 
for a bit and come up with some other creative weapons. For this next recipe, we'll create a 
weapon that makes use of our environment, an explosive barrel.

Since the early days of gaming, the explosive barrel has been a primary tool in every level 
designer's tool belt. Granted, I've never seen an explosive barrel in my life, but games would 
lead you to believe otherwise.

With that in mind, let's create our barrel.

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

178

Getting ready
Open your IDE and start by creating a new class called ExplosiveBarrel and have it extend 
from DynamicSMActor.

Because our barrel is an item that will probably be heavily used by a level designer, let's hide 
many of the properties from the editor, as it will just clutter up the screen. Hide Movement, 
Attachment, Debug, Advanced, Mobile, and Physics.

We also want to make our barrel placeable within a level.

class ExplosiveBarrel extends DynamicSMActor
  HideCategories(Movement, Attachment, Debug, Advanced, Mobile,  
                 Physics)
      placeable;

How to do it...
For this recipe, we'll be creating a new class, unlike any we've encountered yet. We'll be using 
timers to call specific functions at set intervals, detonating and respawning explosives, and 
triggering particle effects. And best of all, this is done by creating only one class!

1.	 It's time to add our variables. We have quite a few here, but they are commented 
pretty clearly, so don't worry.
/** Explodes when damaged. */
var()  bool    bDestroyOnDmg;

/** Explodes when a player walks over it */
var()  bool    bDestroyOnPlayerTouch;

/** Explodes when a vehicle drives over it */
var()  bool    bDestroyOnVehicleTouch;

/** Mesh to swap in when destroyed. */
var()  StaticMesh    MeshOnDestroy;

/** How long the spawned physics object should last. */
var()  float    SpawnPhysMeshLifeSpan;

/** Initial linear velocity for spawned phys obj. */
var()  vector    SpawnPhysMeshLinearVel;

/** initial angular velocity for spawned physics object. 
var()  vector    SpawnPhysMeshAngVel;

/** Sound to play when destroyed. */

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

179

var()  SoundCue    SoundOnDestroy;

/** Particles to play when destroyed. */
var()  ParticleSystem    ParticlesOnDestroy;

/** Allows particles to be turned on/off. */
var()  ParticleSystemComponent    PSC;

/** Static mesh to spawn as physics object when destroyed. */
var()  StaticMesh    SpawnPhysMesh;

/** Time between being destroyed & respawning. */
var()  float    RespawnTime;

/** Set the mesh back to the original upon respawning */
var StaticMesh    RespawnSM;

/** Is the barrel currently destroyed? */
var bool    bDestroyed;

/** Time before we are going to respawn. */
var float    TimeToRespawn;

2.	 Our first function is simply PostBeginPlay(). Here we set RespawnSM  
(respawn static mesh) to use our static mesh component.
/********************************************************
* Setting respawn mesh to use our static mesh
********************************************************/
simulated function PostBeginPlay()
{
  Super.PostBeginPlay();

// Uses this mesh when respawning
  RespawnSM = StaticMeshComponent.StaticMesh;
}

When our barrel explodes, we'll need a way to set it back to its original condition 
when it respawns. We do this with the RespawnDestructable() function. Here, 
we reset the static mesh and then reattach the static mesh component. Additionally, 
we turn off the particle system, so that we no longer see the smoke and fire from the 
previously destroyed barrel.

/********************************************************
* Place destroyed item back in original condition
********************************************************/

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

180

simulated function RespawnDestructible()
{
  // Turns off fire/smoke particles
  PSC.DeactivateSystem();

  // Reset static mesh & re-attach SM component.
  StaticMeshComponent.SetStaticMesh(RespawnSM);
  if(!StaticMeshComponent.bAttached)
  {
    AttachComponent(StaticMeshComponent);
  }
  bDestroyed = FALSE;
}

3.	 The main part of this class is the barrel exploding, which we simply name 
Explode(). Within Explode() you'll find the HurtRadius() function, to which 
we pass parameters for the base damage, radius, damage type, momentum applied 
to the explosion, location, and whether or not it can apply full damage to the pawn. 
Most, if not all, area-effect weapons in UDK use this function.
/********************************************************
* Called when damage is taken or it is touched
********************************************************/
simulated function Explode()
{
  local UTSD_SpawnedKActor PhysMesh;

  HurtRadius(30.0, 200.0, class'UTDamageType', 300.0,  
             Location,,, True);

  // Swap or hide mesh when destroyed
  if(MeshOnDestroy != None)
  {
    StaticMeshComponent.SetStaticMesh(MeshOnDestroy);
  }
  else
  {
    StaticMeshComponent.SetStaticMesh(None);
    DetachComponent(StaticMeshComponent);
  }

  // Play sfx after object is destroyed
  if(SoundOnDestroy != None)
  {
    PlaySound(SoundOnDestroy, TRUE);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

181

  }

  //Generate fire particle after object destruction
  if(ParticlesOnDestroy != None)
  {
    PSC = WorldInfo.MyEmitterPool.SpawnEmitter 
         (ParticlesOnDestroy, Location, Rotation);
  }

  // Spawn physics mesh
  if(SpawnPhysMesh != None)
  {
    PhysMesh = spawn(class'UTSD_SpawnedKActor',,,Location,  
                     Rotation);
    PhysMesh.StaticMeshComponent.SetStaticMesh 
    (SpawnPhysMesh);
    PhysMesh.StaticMeshComponent.SetRBLinearVelocity 
    (SpawnPhysMeshLinearVel, FALSE);
    PhysMesh.StaticMeshComponent.SetRBAngularVelocity 
    (SpawnPhysMeshAngVel, FALSE);
    PhysMesh.StaticMeshComponent.WakeRigidBody();

    // Collides with the world but, not players or vehicles
    PhysMesh.SetCollision(FALSE, FALSE);
    PhysMesh.StaticMeshComponent.SetRBChannel 
    (RBCC_Default);
    PhysMesh.StaticMeshComponent.SetRBCollidesWithChannel 
    (RBCC_Default, TRUE);

    // Set lifespan
    PhysMesh.LifeSpan = SpawnPhysMeshLifeSpan;
  }
  bDestroyed = TRUE;
  TimeToRespawn = RespawnTime;

    // It will respawn after (X) seconds
    SetTimer(RespawnTime, FALSE, 'RespawnDestructible');
}

Next, if our static mesh is destroyed, we need to either hide it, or replace it with a 
destroyed version of our mesh. This is particularly useful when dealing with larger 
objects, such as vehicles. When a vehicle explodes surely there must be something 
left behind, right? Because we are using a static mesh natively supplied from UDK, 
we don't have a replacement mesh. We simply tell the mesh to disappear.

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

182

This would be an excellent time to add more functionality to this, such as having the 
mesh fracture into pieces. UDK offers a great tool for doing exactly this, although it's 
beyond the scope of this recipe, so we'll pass over it for the moment.

We then trigger our sound effect and particle effect for the explosion. The current 
particle effect is great, as it allows for a slow roasting flame along with smoke to 
continue where the barrel was for quite some time after detonation. The spawning  
of our physics mesh follows shortly after, and this kinetic actor is what allows the 
barrel to be moved and manipulated within the world.

Finally, we call RespawnTime, which is actually defined in the default properties.  
The barrel will respawn after a set number of seconds defined there.

4.	 What good is an explosive barrel if it doesn't explode when hit? We need to create  
a way for our barrel to explode when it takes damage, so the next function does 
exactly that.
/********************************************************
* Called when the object is shot or damaged 
********************************************************/
simulated function TakeDamage 
(int DamageAmount, Controller EventInstigator, vector  
HitLocation, vector Momentum, class<DamageType> DamageType,  
optional TraceHitInfo HitInfo, optional Actor DamageCauser)
{
  if(!bDestroyed && bDestroyOnDmg)
  {
    Explode();
  }
}

We check to see if our barrel is not destroyed and if it is to be destroyed when taking 
damage. If both are true, call Explode()!

5.	 That's not the only way to detonate our barrel though. We also have the option to 
have it explode if it is touched, either by a vehicle or a pawn. Let's add that function:
/********************************************************
*  Called when a pawn/vehicle touches it
********************************************************/
simulated function Touch(Actor Other, PrimitiveComponent 
OtherComp, vector HitLocation, vector HitNormal)
{
  // Ignore if destroyed.
  if(bDestroyed)
  {
    return;
  }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

183

  if( Vehicle(Other) != None )
  {
    // If a vehicle touches it...
    if(bDestroyOnVehicleTouch)
    {
      // Explode
      Explode();
    }
  }
  else
  {
    // If a player touches it...
    if(bDestroyOnPlayerTouch && Pawn(other) !=None)
    {
      // Explode
      Explode();
    }
  }
}

For now, it will only detonate when run over (touched) by a vehicle. We can easily  
turn this on or off, as well as for a pawn, in the defaultproperties block.

6.	 The last part of this class is the defaultproperties block. Let's define our  
values now:
defaultproperties
{
  bCollideActors=TRUE
  bProjTarget=TRUE
  bPathColliding=FALSE
  bNoDelete=TRUE
  Begin Object Name=MyLightEnvironment
      bEnabled=TRUE
      bDynamic=FALSE
  End Object

  // Mesh for the object
  Begin Object Name=StaticMeshComponent0 
    StaticMesh=StaticMesh'E3_Demo.Meshes.SM_Barrel_01'
  End Object

  ParticlesOnDestroy[0]= 
  ParticleSystem'Castle_Assets.FX.P_FX_Fire_SubUV_01'

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

184

  SoundOnDestroy=SoundCue'A_Character_BodyImpacts. 
  BodyImpacts.A_Character_RobotImpact_BodyExplosion_Cue'

  MeshOnDestroy= 
  StaticMesh'Envy_Effects.VH_Deaths.S_Envy_Rocks'

  RespawnTime=30.0

  // How long the spawned physics object should last
  SpawnPhysMeshLifeSpan=500.0

  // Destroyed when damaged 
  bDestroyOnDmg=TRUE

  // Destroyed when touched by player 
  bDestroyOnPlayerTouch=FALSE

  // Destroyed when touched by vehicle
  bDestroyOnVehicleTouch=TRUE

  // Blocks other nonplayer actors 
  bBlockActors=TRUE;
}

It is all very straightforward, and most of the properties are the ones commonly used 
within UDK. With our explosive barrel built, it's now time to hop into our map and 
place the barrel.

7.	 Start the UDK editor and head to your Actors Browser. Enter Explosive Barrel  
in the search bar and your barrel will be present. Drag-and-drop it into the map.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

185

Like I mentioned earlier, we have hidden a number of properties from the barrel to 
make a slick interface for our level designers. There is no need for them to ever have 
to access code to make changes to the properties, as properties such as the static 
mesh, sound cue, and particle effects can be swapped in here as well.

Our barrel won't go off if we get too close to it, although it will detonate if we fire a  
few rounds at it!

A slick particle effect comes in place of our barrel when it is detonated. See if you 
can add a bit more realism to the effect by triggering another explosive to detonate 
just before our fire particle turns on. Also try adding some appropriate debris at the 
location where the particle is emitted.

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

186

How it works...
We extend our barrel from DynamicSMActor, because we want players to be able to  
interact with it. Dynamic, or kinematic actors, allow for movement and manipulation at 
runtime. From there we simply create a placeable dynamic static mesh, which can be 
destroyed when touched.

The Touched() function is key here, because it allows detonation to occur either when a 
pawn or vehicle touches it, or when it takes damage. You may have also noticed that this 
function is used pretty frequently within UDK, especially for taking damage.

Finally, we make it easy for our level designers to alter the properties of the barrel by  
exposing ones such as particles, sound cue, and static mesh within the editor.

Creating a landmine
The explosive barrel is a nice touch in any environment, but let's build something for a  
more specific application. What if we were to set a trap and have it spring when a character 
comes within a close enough proximity? Even better, a landmine in an open environment like 
a battlefield.

With that in mind, let's get to building a landmine that detonates when touched.

Getting ready
Open your IDE and start by creating a new class called Landmine and have it extend from 
ExplosiveBarrel.

Because our mine is an item that will probably be heavily used by a level designer, let's 
again hide many of the properties from the editor, as it will just clutter up the screen. Hide 
Movement, Attachment, Debug, Advanced, Mobile, and Physics.

We also want to make our Landmine placeable within a level.

class Landmine extends DynamicSMActor
  HideCategories(Movement, Attachment, Debug, Advanced, Mobile,  
                 Physics)
      placeable;

How to do it...
Our class was made with modularity in mind, so we really only need to change a few default 
properties to really get a new, albeit similar, object.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

187

defaultproperties
{
  bCollideActors=TRUE
  bProjTarget=TRUE
  bPathColliding=FALSE
  bNoDelete=TRUE

  Begin Object Name=MyLightEnvironment
    bEnabled=TRUE
    bDynamic=FALSE
  End Object

// Mesh for the object
  Begin Object Name=StaticMeshComponent0
    StaticMesh=StaticMesh'Pickups.WeaponBase. 
    S_Pickups_WeaponBase'
    Scale=0.5
  End Object

  ParticlesOnDestroy[0]= 
  ParticleSystem'Castle_Assets.FX.P_FX_Fire_SubUV_01'
  SoundOnDestroy=SoundCue'A_Vehicle_Cicada.SoundCues. 
  A_Vehicle_Cicada_Explode'
  MeshOnDestroy= 
  StaticMesh'Envy_Effects.VH_Deaths.S_Envy_Rocks'

  RespawnTime=30.0

// How long the spawned physics object should last
  SpawnPhysMeshLifeSpan=500.0

// Destroyed when damaged 
  bDestroyOnDmg=TRUE

// Destroyed when touched by player
  bDestroyOnPlayerTouch=TRUE

// Destroyed when touched by vehicle 
  bDestroyOnVehicleTouch=TRUE

// Blocks other nonplayer actors 
  bBlockActors=FALSE;
}

www.it-ebooks.info

http://www.it-ebooks.info/


Weapons

188

We've changed a few values here from the explosive barrel. Most notably, we use a different 
static mesh, and instead of a collision cylinder we use a rough approximation of the mesh's 
size. To see the difference during runtime, enter Show Collision into the command line 
when running the editor. We've also changed the sound effect.

We didn't have our explosive barrel detonate when touched by the pawn, but we do want that 
to occur with the landmine, so we've set that value to TRUE here. We also do not want the 
mine to block actors like the barrel did, so we set that to FALSE.

Other than that, our landmine is identical to the explosive barrel. Play with some of the 
properties for a bit and see what you're able to create as well!

How it works...
Just as we did with our explosive barrel, we extend our landmine from ExplosiveBarrel, 
because we want players to be able to interact with it. We've also made it placeable again,  
so that our level editors can manipulate it within the editor.

The Touched() function is the key here too, because it allows detonation to occur either 
when a pawn or vehicle touches it, as well as when it takes damage. You may have also 
noticed that this function is used pretty frequently within UDK, especially for taking damage.

Finally, we make it easy for our level designers to alter the properties of the Landmine class 
by exposing properties such as particles, sound cues, and static meshes within the editor.

www.it-ebooks.info

http://www.it-ebooks.info/


7
HUD

In this chapter, we will cover:

ff Displaying a bar for the player's health

ff Drawing text for the player's health

ff Displaying a bar for the player's ammo

ff Drawing text for the player's ammo

ff Drawing the player's name on screen

ff Creating a crosshair

Introduction
A heads-up display, or HUD, in addition to providing a user interface (UI), offers a means  
of providing information to a player to allow them to interact with the game world.

UDK offers two methods for creating a HUD. The first and most simple method which  
we'll be covering here is Canvas. The other method, which requires knowledge of the  
flash language ActionScript and some fancy art skills, allows UDK to make use of a  
third-party tool called Scaleform to draw the HUD.

Scaleform is probably what you see in most TripleA games, as it offers a far more impressive 
and professional aesthetic, albeit at a greater time commitment, in addition to an expensive 
suite of tools. There are a number of free flash editors available, however, including Ajax 
Animator, FlashDevelop, and Open Dialect.

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

190

We'll be sticking with Canvas for our purposes, as it suits our needs well and only requires 
knowledge of UnrealScript. Canvas offers a plethora of functions for depicting elements to 
the screen, including materials, shapes, images, and text. Combining these elements we can 
make an attractive, cohesive, and useful interface.

Canvas is not without its limitations though. On the PC or a console material drawing, it works 
fine; but it is not currently supported on mobile. Therefore, if you're considering UDK for 
mobile games, you may want to take a deeper look into Scaleform.

Displaying a bar for the player's health
One of the most important bits of information to display on screen is that of the player's 
health. Developers have also begun to think outside the box and come up with creative 
ways to illustrate a player's health other than just through text or a standard HUD. Capcom's 
Resident Evil franchise often has characters appear visibly different, such as characters 
walking with a limp and moving at a slower pace when injured. Dead Space uses the player's 
space suit to illustrate the current health by drawing a health bar on the back, although this is 
done with Scaleform.

Regardless, the generic HUD doesn't seem to be leaving at any time soon, so let's start by 
illustrating our most important information, a health bar.

Getting ready
Start the same as we always do, that is, with our IDE open and a new class created. This time 
we're going to create a new class called TutorialHUD and have it extend from MobileHUD.

class TutorialHUD extends MobileHUD;

How to do it...
Our goal is to use what UDK has provided for us and create a simple HUD of our own. In this 
recipe, we'll be adding a health bar which changes color depending on the amount of health 
our pawn currently has. When full, the bar will be tinted green; but when the pawn's health is 
critically low, it will become red.

1.	 With our class created, we can focus on adding the variables now.
/** Holds the scaled width and height of the viewport, which 
adjusts with the res */
var float    ResScaleX, ResScaleY;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

191

/** Texture for HP bar*/
var const Texture2D    BarTexture;

/** Current owner of the HUD */
var Pawn    PawnOwner;

/** Sets owner of the current TutorialPawn */
var TutorialPawn    TutPawnOwner;

/** Positoning for HP bar and text */
var vector2D    HPPosition, HPTextOffset;
var TextureCoordinates	     BarCoords;

2.	 Next we need the PostRender() function, which is responsible for caching the 
value of our variables, and is part of the main draw loop.
/**********************************************************
* Caches values for variables. Also the main draw loop
**********************************************************/
event PostRender()
{
  Super.PostRender();

  /** Sets the pawn owner */
  PawnOwner = Pawn(PlayerOwner.ViewTarget);
  if ( PawnOwner == None )
  {
    PawnOwner = PlayerOwner.Pawn;
  }
  TutPawnOwner = TutorialPawn(PawnOwner); 
  
  if (TutPawnOwner != None)
  {
    /** Sets the size of the screen based on resolution*/
    ResScaleX = Canvas.ClipX/1024;
    ResScaleY = Canvas.ClipY/768;
  }
}

We won't use PostRender as heavily as Unreal Tournament does, but it is important 
to understand that it's essential for using Scaleform as it allows for additional things 
to be drawn on screen, including animated crosshairs and overlays that mobile 
devices, such as iOS, require.

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

192

3.	 Adding the DrawHUD function is the next step. This is part of the game's main loop 
and is called by each frame. We'll be putting any function here for drawing the HUD, 
and you'll understand how heavily it is utilized in the coming recipes.
/**********************************************************
* Draws the HUD
**********************************************************/
function DrawHUD()
{
    super.DrawHUD();
    DrawHealthText();
}

4.	 The next function, despite being called DrawHealthText(), actually sets some 
variables that we'll need for our health bar, in addition to calling DrawHealthbar().
/**********************************************************
* Draws the health text bar
**********************************************************/
function DrawHealthText()
{
  local Vector2D    TextSize, POS, HPTextOffsetPOS;
  local int    HPAmount, HPAmountMax;

  /** Sets the bar position */
  POS = CorrectedHudPOS 
  (HPPosition,BarCoords.UL,BarCoords.VL);

  /** Offsets the text from the bar */  
  HPTextOffsetPOS = HudOffset(POS, HPTextOffset,);

  /** Sets the pawn's health amount */
  HPAmount = PlayerOwner.Pawn.Health;
  HPAmountMax = PlayerOwner.Pawn.HealthMax;

  /** Draws health bar */
  DrawHealthBar(POS.X, POS.Y, HPAmount, HpAmountMax, 80,  
  Canvas);
}

You'll also see that we're setting the bar position by using a variable called POS and 
setting it to the CorrectedHudPos function. This will be explained shortly. We will 
be creating a DrawHealthBar() function which takes an integer as its third and 
fourth parameters. We've set our HPAmount and HPAmountMax variables to grab  
our pawn's hit points, and we'll use that as our parameter.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

193

5.	 Now we need to draw the actual bar graph to represent our health. We'll be using  
the same function to draw a bar for both our health and ammo.
/**********************************************************
* Draw bar graph for health / ammo and background HP bar.
* Called by DrawHealth()and DrawAmmo().
**********************************************************/
simulated function DrawBarGraph(float X, float Y, float  
Width, float MaxWidth, float Height, Canvas DrawCanvas,  
Color BarColor, Color BackColor)
{
  /** Draw the dark bar behind our current one */
  if ( MaxWidth > 24.0 )
  {
    DrawCanvas.DrawColor = BackColor;
    DrawCanvas.SetPos(X,Y);
    DrawCanvas.DrawTile(BarTexture,MaxWidth*2,Height, 
    407,479,FMin(MaxWidth,118),16);
  }

  /** Draw the bar */
  DrawCanvas.DrawColor = BarColor;
  DrawCanvas.SetPos(X, Y);
  DrawCanvas.DrawTile(BarTexture,Width*2,Height, 
  BarCoords.U,BarCoords.V,BarCoords.UL,BarCoords.VL);
}

We're really going to be drawing two bars here. The first one is going to be a light  
gray color and will represent our full health. This is always drawn and the value  
will not change.

Beneath that, we'll be drawing another bar which represents our health in its current 
state. If we lose health, then this bar shrinks in size as well.

6.	 We need a function to draw our distinct health bar now. When the time comes to draw 
our ammo bar, you'll see that we've created a similar function for that as well. This 
bar will change color too, depending on our current health values. It's always nice to 
have a bit of a warning when our health is getting low.
/**********************************************************
* Draw player's health. Adjusts the bar color based on health
**********************************************************/
simulated function DrawHealthBar(float X, float Y, float  
Width, float MaxWidth, float Height,Canvas DrawCanvas,  
optional byte Alpha=255)
{
  local float    HealthX;
  local color    DrawColor, BackColor;

// Color of bar relies on the player's current HP
HealthX = Width/MaxWidth;

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

194

  // Set default color to white
  DrawColor = Default.WhiteColor;
  DrawColor.B = 16;

  // If our HP is > 80%, decrease the amount of red
  if (HealthX > 0.8)
  {
    DrawColor.R = 112;
  }

// If our HP is < 40%, decrease the amount of green
  else if (HealthX < 0.4 )
  {
    DrawColor.G = 80;
  }

  DrawColor.A = Alpha;
  BackColor = default.WhiteColor;
  BackColor.A = Alpha;

  /** Health bar texture */
  DrawBarGraph(X,Y,Width,MaxWidth,Height, 
  DrawCanvas,DrawColor,BackColor);
}

In the preceding code, you'll see that we've set our default color to white, but 
immediately after we've subtracted the amount of blue from 255 (full color)  
to 15. We could have just created our own variable for this, for example, full 
color; but this works just as well.

If our health is higher than 80 percent, then decrease the amount of red, thereby 
giving this a bit of an orange/yellow tint. That's what actually allows for this to look 
green when we have a full health bar. The next if statement declares that if we drop 
dangerously low to 40 percent of health or less, then we need to decrease the green 
value and paint the bar red.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

195

7.	 With all of our drawing functions for the bar in place, we need a way to align  
it on screen.
/**********************************************************
* Returns corrected HUD position based on current res.
*
* @Param Position    Default position based on 1024x768 res
* @Param Width       Width of image based on 1024x768
* @Param Height      Height of image based on 1024x768
*
* @returns FinalPOS 
**********************************************************/
function Vector2D CorrectedHudPOS(vector2D Position, float Width, 
float Height)
{
  local vector2D  FinalPos;

  FinalPos.X = (Position.X < 0) ? Canvas.ClipX -  
  (Position.X * ResScaleY) - (Width * ResScaleY)  : 
                             Position.X * ResScaleY;
  FinalPos.Y = (Position.Y < 0) ? Canvas.ClipY -  
  (Position.Y * ResScaleY) - (Height * ResScaleY) :
                             Position.Y * ResScaleY;

  return FinalPos;
}

CorrectedHudPOS() verifies that our HUD looks the same regardless of resolution. 
Now that UDK is supported on a number of mobile devices, this is more necessary than 
ever. Console developers generally only have a handful of resolutions to contend with, 
while iOS and Android developers now add a whole new set of problems into the mix.

This function scales the location of our HUD based on the resolution and handles 
that sticky math for us.

8.	 With our functions out of the way, the only thing left to do in this class is to add the 
default properties.
DefaultProperties
{
  // Texture for HP bar 
  BarTexture=Texture2D'UI_HUD.HUD.UI_HUD_BaseA'	

  /** Hit Points */
  /** Corner Position of bar. + / - to X / Y changes which 
      corner it is in */
  HPPosition=(X=0,Y=1)	
  // Coords for the HP bar
  BarCoords=(U=277,V=494,UL=4,VL=13)
}

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

196

9.	 We now have a fully functioning HUD that displays our health bar in the  
top-left corner! There's still one last step, however. We need to tell our game  
to use our new HUD. In our TutorialGame class, add the following code in  
the DefaultProperties block:

DefaultProperties
{
  HUDType=class'Tutorial.TutorialHUD'
}

Notice how our bar changes to a red color when our health is dangerously low.  
You can also now see the first bar drawn, which illustrates the maximum capacity  
for our hit points.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

197

How it works...
We start off by defining the size of our screen based on resolution. Our PostRender() 
function dynamically scales our HUD based on the default screen size of 1024 x 768. Our 
DrawHUD() function gets called during each frame of the main game loop, so it's constantly 
updating the screen every time the game itself becomes updated, based on changed 
information, such as the pawn's health.

We then added a function to draw our health bar. Really though, UDK calls this a tile with its 
DrawTile() function, but we prefer to call it a bar. This same function will be used for our 
ammo bar.

Our health bar needs a specific value to be drawn, however, to represent both the maximum 
and current health. We define and then use those in the DrawHealthText() function, and 
use those parameters in the DrawHealthBar() function.

The bar itself is drawn in the top-left corner of the screen, as defined by CorrectedHudPos(). 
It's a lot thrown at you at once, so bear with me. In DrawHealthText(), we define our  
position with the Vector2D variable POS. POS is actually set to the CorrectedHudPos(),  
which takes our HPPosition variable as a Vector2D parameter, then applies the  
math within CorrectedHudPos() to draw our text at the given position.

You'll see in our DefaultParameters block that we define what our HPPosition variable 
is. Setting the Y value to 1 will place the bar in the top of the screen, while setting it to -1 will 
place it in the bottom. Setting the X value to 1 will place our bar against the top of the screen, 
and a negative value will do just the opposite! How convenient is that?

Drawing text for a player's health
Sure, it's great to have a bar to represent our health, but what if we want something more 
accurate? It's like reading the gas meter on your car, are you really teetering on empty, or  
can you push it just a tiny bit longer?

Because I don't condone living so dangerously, I suggest we draw an actual number on screen 
so that we know exactly how much health we are left with. We're going to take our existing 
functions and make only a few changes to allow this.

Getting ready
Open your IDE and have your TutorialHUD class available. We're going to make  
some additions.

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

198

How to do it...
For this recipe, we'll take what we learned in our previous recipe and add more functionality 
onto it. A colored health bar is great, but sometimes it's nice to know the exact amount of health 
remaining. Therefore we're going to add an integer next to our bar to give an exact number.

1.	 Let's start by adding our new variables.
/** Stores the HUD font*/
var Font    TutFont;

/** Stores how large the text should be displayed on screen*/
var float    TextScale;

2.	 We need to make some additions to our DrawHealthText() function.
  /** Draws text */
  Canvas.Font = TutFont;
  Canvas.SetDrawColorStruct(WhiteColor);
  Canvas.SetPos(HPTextOffsetPOS.X,HPTextOffsetPOS.Y);
  Canvas.DrawText 
  (HPAmount,,TextScale * ResScaleY,TextScale * ResScaleY);
  Canvas.TextSize(HPAmount, TextSize.X, TextSize.Y);

We're calling a number of functions from the Canvas class here. We're setting the 
font as TutFont, which in our Defaultproperties block we will later declare to 
be I_Fonts.MultiFonts.MF_HudLarge. Then we set the position of our text, 
using HPTextPoffsetPOS, which we grab from our HudOffset() function.  
We'll cover this shortly.

We want to draw our text, so we define what our HPAmount and HpAmountMax 
variables are with the following bit of code:
HPAmount = PlayerOwner.Pawn.Health;
HpAmountMax = PlayerOwner.Pawn.HealthMax;

We also needed to define a size for the text though, so we multiply our TextScale 
variable by the ResScaleY variable, which is the resolution size of the game.

The whole function should now look like the following code snippet:

/**********************************************************
* Draws the health text and bar
**********************************************************/
function DrawHealthText()
{
  local Vector2D    TextSize, POS, HPTextOffsetPOS;
  local int    HPAmount, HPAmountMax;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

199

  /** Sets the bar position */
  POS = CorrectedHudPOS 
  (HPPosition,BarCoords.UL,BarCoords.VL);

  /** Offsets the text from the bar */
  HPTextOffsetPOS = HudOffset(POS, HPTextOffset,);

  /** Sets the pawn's health amount */
  HPAmount = PlayerOwner.Pawn.Health;
  HpAmountMax = PlayerOwner.Pawn.HealthMax;

  /** Draws text */
  Canvas.Font = TutFont;
  Canvas.SetDrawColorStruct(WhiteColor);
  Canvas.SetPos(HPTextOffsetPOS.X,HPTextOffsetPOS.Y);
  Canvas.DrawText 
  (HPAmount,,TextScale * ResScaleY,TextScale * ResScaleY);
  Canvas.TextSize(HPAmount, TextSize.X, TextSize.Y);

  /** Draws health bar */
  DrawHealthBar 
  (POS.X, POS.Y, HPAmount, HpAmountMax, 80, Canvas);
}

3.	 One more function is necessary to offset the text from our bar, and looks nearly 
identical to our CorrectedHudPos() function. It takes CorrectedHudPos  
and offsets it by a value defined in the DefaultProperties block.
/**********************************************************
* Offsets HUD and places the bottom/right portion of image
* at coords if. If offset is great than 0, & if width /
* height are supplied @Param Position Default position
* based on 1024x768 res
* @Param Offset Value to offset the text from the texture
* @returns FinalPOS
**********************************************************/
function Vector2D HudOffset(vector2D HUDPosition, vector2D  
Offset, optional float Width, optional float Height)
{
  local vector2D FinalPos;

  FinalPos.X = (Offset.X < 0 && Width != 0) ?  
  HUDPosition.X - (Width * ResScaleY) +  
  (Offset.X * ResScaleY) :  
  HUDPosition.X + (Offset.X * ResScaleY);

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

200

  FinalPos.Y = (Offset.Y < 0 && Height != 0) ?  
  HUDPosition.Y - (Height * ResScaleY) +  
  (Offset.Y * ResScaleY) :  
  HUDPosition.Y + (Offset.Y * ResScaleY);

  return FinalPos;
}

4.	 Let's define a few values in our DefaultProperties block.
DefaultProperties
{
....
  /** Hit Points */
  // Offsets text from bar
  HPTextOffset=(X=220,Y=0)

  // Text scale
  TextScale=0.25

// Font used for the text
  TutFont="UI_Fonts.MultiFonts.MF_HudLarge"
....
}

The X value in our offset is what offsets the text from our bar. With X set to 220,  
it will move the text 220 bars over to the right of our current text position.

5.	 Compile the code and take a look.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

201

Our current health is displayed on the top-right corner of our health bar. Let's take  
a look at how it changes as our health decreases as well:

As you can see, the integer in the corner certainly makes it a bit easier to quickly 
digest exactly how much health is remaining. In the next two recipes we'll cover  
how to do this with our ammo!

How it works...
Not much is going on here. We add a few necessary variables to our DrawHealthText() 
function to allow the text to be displayed. From there we're calling various Canvas  
functions to perform activities such as drawing the actual text, coloring, positioning  
on screen, and sizing.

We do add a new function to the mix here, however, with the addition of HudOffset().  
The purpose of this is to align our text in the same corner as our health bar, and then  
offset it by a given value which we declare in our DefaultProperties block.

Displaying a bar for the player's ammo
Visualizing our player's health is essential, but their ammunition count is nearly just as 
important. Games in recent memory have taken alternative approaches to illustrate this kind 
of information, including the Halo series, which displays the current ammo count on the end 
of the rifle.

We could mimic this with Scaleform, but again, that's a discussion for another day. We're 
going to keep things simple again, as we aren't using Scaleform. So let's get started with 
displaying our ammo bar!

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

202

Getting ready
Open your IDE and have it ready to edit our TutorialHUD class again. We're only going to 
make changes to this class, all of which will be similar to what we've done already as now 
we've established a solid base to work from.

How to do it...
This is going to be very similar to the steps we took in the recipe for our health. The only  
major change we need to make here is to the properties we'll be accessing and using.  
Rather than displaying our pawn's health, we'll be using the ammo property for our  
pawn's currently equipped weapon.

1.	 Let's begin by adding our variables. We won't need many, as we have a solid 
foundation already.
/** Positoning for Ammo bar and text */
var vector2d    AmmoPosition, AmmoTextOffset;
var TextureCoordinates    AmmoCoords;

2.	 We need a function to draw our ammo. For now we'll just call it DrawAmmoText(), as 
it will be used to draw text in the next recipe.
/**********************************************************
* Draws the ammo text and bar
**********************************************************/
function DrawAmmoText()
{
  local Vector2D    POS;
  local Int    AmmoCount, MaxAmmo;

  /** Sets the variables */
  AmmoCount = UTWeapon(PawnOwner.Weapon).AmmoCount;
  MaxAmmo = UTWeapon(PawnOwner.Weapon).MaxAmmoCount;

  /** Sets the current bar position */
  POS = CorrectedHudPOS 
  (AmmoPosition,AmmoCoords.UL,AmmoCoords.VL);

  /** Draws Ammo Bar */
  DrawAmmoBar 
  (POS.X, POS.Y, AmmoCount, MaxAmmo, 80, Canvas);
}

This looks very similar to our DrawHealthBarText() function used in the previous 
chapter. We set our AmmoCount and MaxAmmo variables by pulling these values  
from our pawn's currently selected weapon.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

203

We offset the bar's position again by using the CorrectedHudPOS() function we 
used in the last recipe as well. This time however, the bar will be in the top-right 
corner of the screen.

At the bottom of the function, we have a call to our DrawAmmoBar()  
function, which we'll get to know in the next step. It looks nearly identical  
to our DrawHealthBar() function, except that we're using our AmmoCount  
and MaxAmmo variables as parameters.

3.	 Let's create that DrawAmmoBar() function. It appears and operates just like  
our DrawHealthBar() function in the previous recipe.
/**********************************************************
* Draw player's ammo. Adjusts the bar color based on 
* available ammo
**********************************************************/
simulated function DrawAmmoBar(float X, float Y, float  
Width, float MaxWidth, float Height, Canvas DrawCanvas,  
optional byte Alpha=255)
{
  local float AmmoX;
  local color DrawColor, BackColor;

// Color of bar relies on the player's current ammo
  AmmoX = Width/MaxWidth;

  // Set default color to white
  DrawColor = Default.WhiteColor;

  // Decrease the amount of blue
  DrawColor.B = 16;

  // If our ammo is > 80%, decrease the amount of red
  if (AmmoX > 0.8)
  {
    DrawColor.R = 112;
  }

// If our ammo is < 40%, decrease the amount of green
  else if (AmmoX < 0.4 )
  {
    DrawColor.G = 80;
  }
  DrawColor.A = Alpha;
  BackColor = default.WhiteColor;
  BackColor.A = Alpha;

  /** Ammo bar texture */
  DrawBarGraph(X,Y,Width,MaxWidth,Height, 
  DrawCanvas,DrawColor,BackColor);
}

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

204

This should look identical to our DrawHealthBar() function, except we've changed 
the parameters for health and turned them into ammo. Our ammo bar will now 
change color as we continue to drain our ammo supply.

4.	 Let's make our DrawHud() function call DrawHealthText(), which will put 
everything in motion. The whole function should now look like this:
/*********************************************************
* Draws the HUD
**********************************************************/
function DrawHUD()
{
  super.DrawHUD();
  DrawHealthText();
  DrawAmmoText();
}

5.	 Finally, let's add the default properties as shown in the following code snippet:
/** Ammo */
/** Corner position of bar. + / - to X / Y changes which
 corner it appears in */ 
AmmoPosition=(X=-1,Y=1)
// Coordinates of ammo bar
AmmoCoords=(U=277,V=494,UL=76,VL=126)

6.	 Compile the code and test it out for yourself. You'll see that the ammo bar is located 
in the top-right corner. Remember, changing the X value for the AmmoPosition 
parameter from -1 to 1 will adjust which corner the bar sits in.

You'll also notice that our bar starts half full and is colored yellow. That's fine. Our 
weapon's default ammo is half of its maximum capacity, so it will continue to look this 
way until we locate more ammo.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

205

How it works...
The process is done in the same manner as our health bar. We start off by adding a function 
to draw our ammo bar. Really though, UDK calls this a tile with its DrawTile() function, but 
we prefer to call it a bar.

Our ammo bar needs a specific value to be drawn, however, to represent both the maximum 
and current ammo. We define and then use those in the DrawAmmoText() function, and  
use those parameters in the DrawAmmoBar() function.

The bar itself is drawn in the top-right corner of the screen, as defined by 
CorrectedHudPos(). It's a lot thrown at you at once, so bear with me. In 
DrawAmmoText(), we define our position on screen with the Vector2D variable POS. 
POS is actually set to our CorrectedHudPos() function which is a function that takes 
AmmoPosition as a Vector2D parameter and uses that information to determine where  
the ammo will be drawn on screen.

Drawing text for the player's ammo
We've got a bar to illustrate our current ammo count against our maximum capacity, but it's 
always useful to see exact values. Therefore we're going to add text for both of these values, 
similar to how we did it for our health.

Getting ready
Open your IDE and have your TutorialHUD class ready to be altered.

How to do it...
This is going to be very similar to the steps we took in the recipe for displaying an integer to 
represent our pawn's health. The only major change we need to make here is to the properties 
that we'll be accessing and using. Rather than displaying our pawn's health, we'll be using the 
ammo property for our pawn's currently equipped weapon.

1.	 Let's start by adding the only variable we'll need for this one. It stores the offset we 
apply to the text from our ammo bar.
/** Positioning for Ammo bar and text */
var vector2d    AmmoTextOffset;

2.	 In our DrawAmmoText() function, let's add our new local variables and Canvas 
functions to draw the text.
/**********************************************************
* Draws the ammo text and bar

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

206

**********************************************************/
function DrawAmmoText()
{
  local Vector2D    TextSize, AmmoTextOffsetPOS;
  local String    Text;

  /** Sets the variables */
  Text = AmmoCount @ "|" @ MaxAmmo;

  //** Offsets the text from the bar */
  AmmoTextOffsetPOS = HudOffset(POS, AmmoTextOffset,);

  //** Draws text */
  Canvas.Font = TutFont;
  Canvas.SetDrawColorStruct(WhiteColor);
  Canvas.SetPos(AmmoTextOffsetPOS.X,AmmoTextOffsetPOS.Y);
  Canvas.DrawText 
  (Text,,TextScale * ResScaleY,TextScale * ResScaleY);
  Canvas.TextSize(AmmoCount, TextSize.X, TextSize.Y);
}

Our entire function should now look like this:
/**********************************************************
* Draws the ammo text and bar
**********************************************************/
function DrawAmmoText()
{
  local Vector2D    TextSize, POS, AmmoTextOffsetPOS;
  local Int    AmmoCount, MaxAmmo;
  local String    Text;

  /** Sets the variables */
  AmmoCount = UTWeapon(PawnOwner.Weapon).AmmoCount;
  MaxAmmo = UTWeapon(PawnOwner.Weapon).MaxAmmoCount;
  Text = AmmoCount @ "|" @ MaxAmmo;

  /** Sets the current bar position */
  POS = CorrectedHudPOS 
  (AmmoPosition,AmmoCoords.UL,AmmoCoords.VL); 

  /** Offsets the text from the bar */
  AmmoTextOffsetPOS = HudOffset(POS, AmmoTextOffset,);

  /** Draws text */
  Canvas.Font = TutFont;
  Canvas.SetDrawColorStruct(WhiteColor);
  Canvas.SetPos(AmmoTextOffsetPOS.X,AmmoTextOffsetPOS.Y);
  Canvas.DrawText 
  (Text,,TextScale * ResScaleY,TextScale * ResScaleY);
  Canvas.TextSize(AmmoCount, TextSize.X, TextSize.Y);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

207

  /** Draws Ammo Bar */
  DrawAmmoBar 
  (POS.X, POS.Y, AmmoCount, MaxAmmo, 80, Canvas);
}

This should look very similar to what we have for our health bar text. Again, we're 
using our AmmoCount and MaxAmmo count, just as we did for our ammo bar. We are 
offsetting the text from our ammo bar,  but because the bar is on the right side of the 
screen we won't have any room to display the text to the right. Therefore, we're going 
to offset it to the left.

Our Text variable consists of our pawn's weapon's current ammo, followed by the @ 
sign, which concatenates the string. I've placed a | character in quotes to divide the 
current ammo variable from the maximum ammo variable as well.

3.	 Of course, let's not forget to add our variable to our DefaultProperties block. 
We'll be offsetting our text -108 pixels from the right-hand corner of our ammo bar, 
so that the text is placed right where the bar ends.

-108 pixels may not always be enough space to fit your ammo count; you 
may want to consider offsetting it by a different value if you are using a 
weapon whose ammo count may be more than five characters in length.

// Offsets text from bar
AmmoTextOffset=(X=-108, Y=0)

4.	 Compile the code and take a look; we've got text on screen to represent our  
current and maximum ammo capacity!

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

208

How it works...
This is almost identical to our DrawHealthText() function. We add one variable to our 
DrawAmmoText() function to allow the text to be displayed. From there we're calling various 
Canvas functions to perform activities such as drawing the text, coloring, positioning on 
screen, and sizing.

Again, we use HudOffset() to align our text in the same corner as our ammo bar, and then 
offset it by a given value which we declare in our defaultproperties block.

Drawing the player's name on screen
When I think of drawing the player's name on screen the Doom guy always comes to my 
mind. The image of his mug shot centered on the bottom of my screen is perhaps burned 
into my mind forever. With that in mind, I thought it would be nice to display our pawn's name 
on screen in the same manner. Of course, we could always replace the pawn's name with 
something like an image of its face just as easily.

Sometimes it's nice to know exactly which player you are controlling, especially in a multiplayer 
game. Often you'll just want to know if you are LocalPlayer01 or LocalPlayer02. You could, of 
course, have a user input their name before a game starts and then grab that data and draw 
it on screen as well. Let's discover exactly how to draw this on screen.

Getting ready
Open your IDE and have your TutorialHUD class ready to be altered.

Things are going to be pretty simple in this chapter, as we've done most of this work in our 
previous recipes.

How to do it...
Drawing a player's name on screen isn't much different from drawing an integer to represent 
the pawn's health or ammo count. We're going to store texture coordinates for our name, along 
with a position in 2D space for where it will be displayed on screen. From there we grab the local 
player controller's name and draw it on screen using the coordinates we stored earlier.

1.	 Just as we did before, let's begin by adding the variables for our new text.
/** Position the name text */
var Vector2D    NamePosition;
var TextureCoordinates	     NameCoords;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

209

2.	 We need a function to draw the player's name on the screen.
/**********************************************************
* Draws the text for the pawn's name
**********************************************************/
function DrawPawnNameText()
{
  local Vector2D    TextSize, POS;
  local String    PlayerName;

  /** Sets the player name */
  PlayerName =  
  PlayerOwner.PlayerReplicationInfo.PlayerName;

  /** Sets the name position */
  POS = CorrectedHudPOS 
  (NamePosition,NameCoords.UL,NameCoords.VL);

  /** Draws the text */
  Canvas.Font = TutFont;
  Canvas.SetDrawColorStruct(WhiteColor);
  Canvas.SetPos(0.9f *(Canvas.ClipX/2), POS.Y);
  Canvas.DrawText 
  (PlayerName,,TextScale / RatioX,TextScale / RatioY);
  Canvas.TextSize(PlayerName, TextSize.X, TextSize.Y);
}

We have a Vector2D variable to store the size of our text as well as the position  
on screen. Moreover, we have a string to store our player's name.

 Our name is grabbed from our PlayerController class, in our case 
PlayerOwner. If you look into HUD.uc, which is what our TutorialHUD  
class extends from, you'll see that PlayerOwner is a player controller, and  
defined as the player controller that this HUD belongs to.

We cut the screen in half with the call to Canvas.SetPos(), which places our 
text in the middle of the screen. The problem, however, is that it centers the origin 
of the text, which is the top-left corner. Because of this we need to offset it slightly. 
Therefore, we use the float 0.9 to compensate for this difference, as seen by the  
line Canvas.SetPos(0.9f *(Canvas.ClipX/2), POS.Y);.

3.	 Of course, we don't want to forget to have DrawHud() call our function either.  
It should now look like this:
/**********************************************************
* Draws the HUD
**********************************************************/
function DrawHUD()

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

210

{
  super.DrawHUD();
  DrawHealthText();
  DrawPawnNameText();
  DrawAmmoText();
}

4.	 The final step is to add some information pertaining to our two new variables in the 
defaultproperties block as shown in the following code snippet:
  /** Name */
  /** Corner Position of name text. + / - to X / Y changes 
    which corner it is in */
  NamePosition=(X=0, Y=0) 

  // Coordinates for the player name text
  NameCoords=(U=0,V=0,UL=0,VL=0)

You'll see that our X and Y value for NamePosition are set to 0. We do this because 
we want the name to be centered on the screen and flash with the health and ammo 
bars at the top.

5.	 Compile the code and yield the results!

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

211

How it works...
This is very similar to our DrawHealthText() and DrawAmmoText() functions. We add two 
functions to allow the text to be displayed. From there we're calling various Canvas functions 
to perform activities such as drawing the text, coloring, positioning on screen, and sizing.

Again, we use HudOffset() to align our text with the top of the health bars and on the 
center of the screen.

Creating a crosshair
One of the most valuable bits of information in a first person shooter is the crosshair.  
This is obviously important for knowing exactly where our shots will land and where  
our pawn is focusing its attention.

We're going to be drawing a crosshair directly in the center of the screen, which is precisely 
where our projectiles will be firing.

Getting ready
Open your IDE and have the TutorialHUD class ready to edit. We're going to be adding quite 
a few variables here.

How to do it...
To create crosshairs we'll need to declare variables which store our data, as well as a function 
to draw the actual crosshair. We'll then take our newly created DrawWeaponCrosshair() 
function and add it to DrawHUD(), so that it gets drawn on screen with the rest of our HUD.

1.	 Let's start by declaring our variables.
/**********************************************************
* Crosshairs
**********************************************************/
/** Used for scaling the size of the crosshair */
var float    ConfiguredCrosshairScaling;

/** Coordinates for crosshairs */
var UIRoot.TextureCoordinates    CrossHairCoordinates;

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

212

/** Holds the image to use for the crosshair */
var Texture2D    CrosshairImage;

/** Various colors */
var const color    BlackColor;

/** color to use when drawing the crosshair */
var config color    CrosshairColor;

We're going to use much of the same code that Epic uses for drawing the crosshair. 
Rather than go through the convoluted processes of drawing the crosshair through 
PostRender() and doing a number of checks, we're just going to draw the crosshair 
at all times.

2.	 We'll call our function, DrawWeaponCrosshair();, and begin by defining the  
local variables.
/**********************************************************
* Draws the crosshair
**********************************************************/
simulated function DrawWeaponCrosshair()
{
  local vector2d    CrosshairSize;
  local float    x,y,ScreenX, ScreenY;
  local MyWeapon    W;
  local float    TargetDist;

  /** Set weapon and target distance */
  W = MyWeapon(PawnOwner.Weapon);
  TargetDist = W.GetTargetDistance();

  /** Sets crosshair size */
  CrosshairSize.Y = ConfiguredCrosshairScaling *  
  CrossHairCoordinates.VL * Canvas.ClipY/720;

  CrosshairSize.X = CrosshairSize.Y *  
  ( CrossHairCoordinates.UL / CrossHairCoordinates.VL );

  /** Sets screen dimensions */
  X = Canvas.ClipX * 0.5;
  Y = Canvas.ClipY * 0.5;
  ScreenX = X - (CrosshairSize.X * 0.5);
  ScreenY = Y - (CrosshairSize.Y * 0.5);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

213

We start by setting the weapon and the weapon's target distance. This is simply 
used for the Z value when we call the Canvas.SetPosition() function in our 
next set of code. We also set the crosshair size through a number of factors. Our 
crosshair scaling float is defined in our defaultproperties block;  it's currently 
set to 1. We then multiply it by the crosshair coordinates (also defined in the 
defaultproperties block), and again by the canvas size.

The screen dimensions are then set after that. The Y and X values are set to half of 
the screen clipping size. The screen clip essentially determines where the edges of 
the screen are.  Cutting this in half lets us know where the middle of the screen is. 
Finally, we set ScreenX and ScreenY to be our previous value, minus half of the 
crosshair size. This finds the center point of our crosshair.

3.	 Let's add the second half of the function as shown in the following code:
  if ( CrosshairImage != none )
  {
    /** Draw crosshair drop shadow */
    Canvas.DrawColor = BlackColor;

    Canvas.SetPos( ScreenX+1, ScreenY+1, TargetDist );

    Canvas.DrawTile(CrosshairImage,CrosshairSize.X,  
    CrosshairSize.Y, CrossHairCoordinates.U,  
    CrossHairCoordinates.V, CrossHairCoordinates.UL,  
    CrossHairCoordinates.VL);

    /** Draw crosshair */
    CrosshairColor = Default.CrosshairColor;

    Canvas.DrawColor = CrosshairColor;

    Canvas.SetPos(ScreenX, ScreenY, TargetDist);

    Canvas.DrawTile(CrosshairImage,CrosshairSize.X,  
    CrosshairSize.Y, CrossHairCoordinates.U,  
    CrossHairCoordinates.V, CrossHairCoordinates.UL, 
    CrossHairCoordinates.VL);
  }

We're going to draw our crosshair twice in this example. The first time is to add a nice 
drop shadow to the crosshairs by offsetting our values by one pixel and shading the 
crosshair black.

In the next step, we draw the actual crosshair which we will see. Our Drawcolor 
parameter is defined in our defaultproperties block. We are setting the position 
to be the center of the screen, and using the CrosshairImage (also defined in the 
properties block) as the texture to be drawn.

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

214

4.	 Let's add those default properties now.
/** Crosshairs - from UTWeapon */
// Crosshair image
  CrosshairImage=Texture2D'UI_HUD.HUD.UTCrossHairs'
// Crosshair location
  CrossHairCoordinates=(U=192,V=64,UL=64,VL=64)

/** Crosshairs - From UTHUDBase */
// Crosshair size
  ConfiguredCrosshairScaling=1.0
// Crosshair color
  BlackColor=(R=0,G=0,B=0,A=255)

5.	 Our default properties block should look like this now:
defaultproperties
{
  /** Textures and font */
  // Text scale
  TextScale=0.25
  // Font used for the text
  TutFont="UI_Fonts.MultiFonts.MF_HudLarge"
  // Texture for HP bar
  BarTexture=Texture2D'UI_HUD.HUD.UI_HUD_BaseA'

  /** Ammo */
  /** Corner Position of bar. + / - to X / Y changes which  
  corner it is in */
  AmmoPosition=(X=-1,Y=1)
  // Offsets text from bar
  AmmoTextOffset=(X=-108, Y=0)
  // Coordinates of ammo bar
  AmmoCoords=(U=277,V=494,UL=76,VL=126)
  /** Corner Position of bar. + / - to X / Y changes which  
  corner it is in */
  /** Hit Points */
  HPPosition=(X=0,Y=1)
  // Offsets text from bar
  HPTextOffset=(X=220,Y=0)
  // Coords for the HP bar
  BarCoords=(U=277,V=494,UL=4,VL=13)

  /** Name */
  /** Corner Position of name text. + / - to X / Y changes  
  which corner it is in */
  NamePosition=(X=0, Y=0)
  // Coordinates for the player name text
  NameCoords=(U=0,V=0,UL=0,VL=0)

  /** Crosshairs - from UTWeapon */

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

215

  // Crosshair image
  CrosshairImage=Texture2D'UI_HUD.HUD.UTCrossHairs'
  // Crosshair location
  CrossHairCoordinates=(U=192,V=64,UL=64,VL=64)

  /** Crosshairs - From UTHUDBase */
  // Crosshair size
  ConfiguredCrosshairScaling=1.0
  // Crosshair color
  BlackColor=(R=0,G=0,B=0,A=255)
}

6.	 Don't forget to add our DrawWeaponCrosshair() function to our DrawHud() 
function!
/**********************************************************
* Draws the HUD
**********************************************************/
function DrawHUD()
{
  super.DrawHUD();

  DrawHealthText();
  DrawPawnNameText();
  DrawAmmoText();
  DrawWeaponCrosshair();
}

7.	 Compile the code and view your results!

www.it-ebooks.info

http://www.it-ebooks.info/


HUD

216

How it works...
We start by declaring a few variables that we'll use on our crosshair. Within our 
DrawWeaponCrosshair() function we actually draw the crosshair twice. The first  
layer consists of a dark drop shadow which is slightly offset from the center of the  
screen to give our crosshair some depth.

The second crosshair is the one the end user will actually see. We paint it right in the  
center of the screen, which is exactly where our projectiles fire.

www.it-ebooks.info

http://www.it-ebooks.info/


8
Miscellaneous Recipes

In this chapter, we will be covering the following recipes:

ff Creating an army of companions

ff Having enemies flash quickly as their health decreases

ff Creating a crosshair that uses our weapon's trace

ff Changing the crosshair color when aiming at a pawn

ff Drawing a debug screen

ff Drawing a bounding box around pawns

Introduction
In the previous chapters, we've covered topics that ranged from weapons and navigation, to 
a heads-up display and AI. In this chapter, our recipes are going to cover things that may not 
necessarily fit in one particular chapter, but are still very valuable in a number of applications.

We'll go over a new scheme for aiming our weapons and drawing a crosshair, as well as 
allowing our pawn to flash continuously as its health depreciates, among other things.

Creating an army of companions
Going through a game alone is seldom any fun. We're social creatures so we enjoy the 
company of others. What better way to celebrate this than by creating a group of companions 
to follow us along on our journey? In this chapter, we'll explore how to create a small party of 
companions who spawn at our location and reap the rewards of our adventure!

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

218

Getting ready
Start by having your IDE open and ready to make some changes. We won't have to create any 
new classes, but we will alter the behavior of our existing ones by adding some functions.

How to do it...
1.	 Let's begin by overriding the SpawnDefaultFor() function in our TutorialGame 

class. Once we spawn our default pawn, PlayerSpawned() in our player controller 
is to be called. This function spawns our companion pawns.
/*****************************************************************
 * Returns a pawn of the default pawn class
 * @param     NewPlayer - Controller for whom this pawn is spawned
 * @param     StartSpot - PlayerStart at which to spawn 
 * pawn
 * @return      pawn
*****************************************************************/
function Pawn SpawnDefaultPawnFor 
(Controller NewPlayer, NavigationPoint StartSpot)
{
  local Pawn ResultPawn;
   ResultPawn = super.SpawnDefaultPawnFor 
  (NewPlayer, StartSpot);

  if(ResultPawn != none)
  {
    TutorialPlayerController(NewPlayer).PlayerSpawned 
    (StartSpot);
  }

  return ResultPawn;
}

2.	 We need to tell TutorialPawn to spawn our default controller. This is actually 
defined in UTPawn, but we need to place it in our PostBeginPlay() function  
so that our companions spawn right as the map loads.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

219

PostBeginPlay()
{
  ....
  /** called from UTPawn, spawns the default controller */
  SpawnDefaultController();
  ....
}

3.	 Now we need to do some work in our player controller class, in our case, 
TutorialPlayerController class. Let's add the variable array that we'll  
use to store the number of companions we want to spawn as shown in the  
following code snippet:
/** Array used for setting the number of spawned companions 
 */
var Pawn    Companions[3];

4.	 Let's create a function in our TutorialPlayerController class to spawn  
these companions as shown in the following code:
/*****************************************************************
* Spawns companion pawns
*****************************************************************/
function PlayerSpawned(NavigationPoint StartLocation)
{
  Companions[0] = Spawn(Class'TutorialPawn',,,  
  StartLocation.Location - vect(75,100,0),  
  StartLocation.Rotation);
  Companions[1] = Spawn(Class'TutorialPawn',,,  
  StartLocation.Location - vect(150,120,0),  
  StartLocation.Rotation);
  Companions[2] = Spawn(Class'TutorialPawn',,,  
  StartLocation.Location - vect(200,280,0),  
  StartLocation.Rotation);
}

The fist parameter requires a class, so we're using our TutorialPawn class  
as the pawn we want to spawn, and then we're setting the spawn location.

StartLocation.Location is where our pawn spawns, so we're offsetting  
each of our companions by a bit, and then matching their rotation with ours,  
so that we're all facing the same way upon spawning.

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

220

5.	 That's all there is to it! Compile the project and watch what happens when you spawn. 
You'll have three followers alongside you! They'll even follow once you reach a certain 
distance. They're following you because the player controller attached to their pawn 
class is following you.

How it works...
We override the SpawnDefaultFor() function in our TutorialGame class, which  
spawns our default pawn in our TutorialGame class. Upon doing so, PlayerSpawned() 
in our TutorialPlayerController class is to be called. This function spawns our 
companion pawns.

We also tell our TutorialPawn class to spawn our default controller by making a call to 
SpawnDefaultController(). This is actually defined in UTPawn, which is placed in our 
PostBeginPlay() function so that our companions spawn right as the map finishes loading.

Finally, we create a function in our TutorialPlayerController class to spawn our 
companions, with PlayerSpawned(). This simply takes an array, Companions[3],  
which we defined at the top of the class, and spawns each one of them at a set location.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

221

Having enemies flash quickly as their health 
decreases

Gamers require some sort of feedback each time something happens to their pawn. This can 
be auditory, visual, or kinetic (controller vibrations). Most frequently the cues are visual, as 
many controllers still do not support a vibration feature, however. Unreal Tournament pawns 
flash red briefly each time they are hit. While UDK natively does this, why not extend that idea, 
and bring back something from the NES era of gaming, wherein enemies flash red as their 
health decreases, and continues to do so more quickly as it reaches zero.

Getting ready
Start by having your IDE open and ready to make some changes. We won't have to create any 
new classes, but we will alter the behavior of our existing ones by adding some functions.

How to do it...
1.	 Let's start by declaring the variables we'll use.

/** Used for flashing damage as pawn's HP drops */
var float           DamageOverlayTime;
var LinearColor     DamageBodyMatColor;

These will be used to store how long the damage will flash over our pawn, along with 
the color used.

2.	 Let's set the values for those variables in our default properties right now:
DefaultProperties
{
  ....
  /** Used for flashing damage as pawn's HP drops */
  // The flash lasts this long (float)
  DamageOverlayTime=.1
  // Sets the pawn to flash red
  DamageBodyMatColor=(R=10)
  ....
}

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

222

3.	 We really only need to add two new functions here, and alter another pre-existing 
one. Let's add our first new function now, FlashDmgTimer():
/*****************************************************************
* NES style flashing damage timer to indicate how hurt a
* pawn is
*****************************************************************/
function FlashDmgTimer()
{
  if (Health < HealthMax * .5)
  {
    'log("HP is less than 50%");
    SetTimer(2.2, true, 'FlashDmg');
  }

  else if (Health < HealthMax * .25)
  {
    'log("HP is less than 25%");
    SetTimer(1.5, true, 'FlashDmg');
  }

  else if (Health < HealthMax * 0.1)
  {
    'log("HP is less than 10%");
    SetTimer(0.7, true, 'FlashDmg');
  }
}

If our pawn's health is less than 50 percent, we call SetTimer(), which tells 
FlashDmg() to be called once every 2.2 seconds. This is a simple visual indication 
that our pawn (or any enemy who uses this function) is hurt. We then add two more 
if statements that work in the same manner, and simply adjust how frequently 
FlashDmg() is called. The more frequent it is called, the quicker the flashing occurs.

4.	 The FlashDmg() function is very simple. It sets our body material color by calling the 
SetBodyMatColor() function and passing in our color and time parameters that 
we defined just before this.
/*****************************************************************
* Sets the flashing overlay on the pawn to indicate damage taken
*****************************************************************/
simulated function FlashDmg()
{
  SetBodyMatColor(DamageBodyMatColor, DamageOverlayTime);
}

5.	 PlayHit() is called each time a pawn is hit. We want to override the current version 
of it and add our own behavior.
/*****************************************************************
* Called when a pawn is hit

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

223

*****************************************************************/
function PlayHit(float Damage, Controller InstigatedBy, vector 
HitLocation, class<DamageType> damageType, vector Momentum, 
TraceHitInfo HitInfo)
{
  Super.PlayHit(Damage, InstigatedBy, HitLocation,  
  DamageType, Momentum, HitInfo);

  // Calls flash timer
  FlashDmgTimer();
}

I may not have mentioned this before, so this is an excellent time to do so. 
The Super function is used inside of a function, and calls the name of the 
function it resides in from the parent class.
So in this example, Super is calling PlayHit from UTPawn, which is the 
class TutorialPawn is extending from. It's useful when you only want to 
add functionality to a function without overwriting what it does in the parent 
class.

Essentially, we're having it call our FlashDmgTimer() function each time the pawn 
is hit. This checks if our pawn's health is below the highest threshold; in our case, this 
is 50 percent health. If it is not, then the body material color is set to its default value.

6.	 Compile your project and either lower your own health down to 50 percent or less, or 
do the same to another pawn. Watch as the red material flashes over their body, and 
continues to do so more quickly as they reach the next threshold.

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

224

How it works...
We create a function called FlashDmgTimer(), which is really just a series of if  
statements that check to see if our pawn's health is below a certain threshold, and  
if so, calls FlashDmg() at a set interval. The lower the pawn's health is, the more  
often the pawn flashes red.

FlashDmg() is really just calling another function inside it, SetBodyMatColor().  
We pass in our DamageBodyMatColor and DamageOverlayTime parameters to  
determine the new body material color (red) and how quickly it flashes over that pawn.

Finally, the FlashDmgTimer() function is called each time the pawn is hit.

Creating a crosshair that uses our weapon's 
trace

We've previously covered crosshairs and aiming in other recipes, but we're going to handle it 
in a different manner now. Rather than always have our pawn fire at the direct center of the 
screen, we'll change some behaviors so that our projectiles fire using the gun's rotation. Both 
look and feel more accurate and realistic.

We'll do this by drawing a trace from the barrel (socket) of our weapon, and using the 
weapon's rotator to draw the crosshair at the end of the trace.

Getting ready
Start by having your IDE open and ready to make some changes. We won't have to create any 
new classes, but we will alter the behavior of our existing ones by adding some functions.

How to do it...
1.	 The first thing we need to do is override the GetBaseAimRotation() function in 

our TutorialPawn class:
/*****************************************************************
* Returns base Aim Rotation without any adjustment.
* We simply use our rotation. Only use this if you want
* your weapon trace to follow where your gun is pointed.
* Comment out if you want to fire in middle of screen.
* @return  POVRot
*****************************************************************/
simulated singular event Rotator GetBaseAimRotation()
{

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

225

  local rotator  POVRot;

  // If we have no controller, we simply use our rotation
  POVRot = Rotation;

  // If our Pitch is 0, then use RemoveViewPitch
  if( POVRot.Pitch == 0 )
  {
    POVRot.Pitch = RemoteViewPitch << 8;
  }

  return POVRot;
}

This function sets our base aim rotator to use our point of view. It is called by our 
GetAdjustedAimFor() function in our TutorialPlayerController class.

That function gives our controller an opportunity to adjust the aiming of the pawn. 
Things such as aim error, auto aiming, and AI help for consoles are things we could 
put here. The weapon class requests BaseAimRotation before firing in order to 
compensate for any of these variables.

BaseAimRotation takes the rotation from a weapon before any 
math or alterations are applied to it, such as auto aim, lock-on, or 
any other adjustments or variables may be applied to it.

It sets BaseAimRot by checking that we have a pawn. If we do have one, it uses the 
pawn's GetBaseAimRotation() function, otherwise it uses the weapon's rotation, 
without applying any sort of modifier like auto aim, as seen by this line:

  BaseAimRot = (Pawn != None) ? Pawn.GetBaseAimRotation()  
                              : Rotation;

2.	 Therefore, we need to set our GetBaseAimRotation function now.
/*****************************************************************
* Returns base Aim Rotation without any adjustment.
* We simply use our rotation. Only use this if you want 
* your weapon trace to follow where your gun is pointed.
* Projectiles will now follow your trace. Comment out if 
* you want to fire in middle of screen.
* @return POVRot
*****************************************************************/
simulated singular event Rotator GetBaseAimRotation()
{
  local rotator  POVRot;

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

226

  // We simply use our rotation
  POVRot = Rotation;

  // If our Pitch is 0, then use RemoveViewPitch
  if( POVRot.Pitch == 0 )
  {
    POVRot.Pitch = RemoteViewPitch << 8;
  }

  return POVRot;
}

Here we are using our point of view rotation, that is, the rotation from our camera and 
not the pawn in this situation. This is what allows us to fire directly where the weapon 
is pointed by following a trace from the weapon's socket. Previously the weapon 
ignored our point of view and simply fired directly towards the center of the screen.

3.	 Our aim is corrected, but now we need a crosshair to display. This next function is 
a large one, but we'll break it down into small and logical steps. Let's create our 
CheckCrosshairOnFriendly() function as shown in the following code snippet:
/*****************************************************************
* Draws the crosshair
*****************************************************************/
function bool CheckCrosshairOnFriendly()
{
  local float      CrosshairSize;
  local vector    HitLocation, HitNormal,  
                  StartTrace, EndTrace,  
                  ScreenPos;
  local actor     HitActor;
  local MyWeapon  W;
  local Pawn      MyPawnOwner;

  /** Sets the PawnOwner */
  MyPawnOwner = Pawn(PlayerOwner.ViewTarget);

  /** If we don't have an owner, then get out of the  
      function */
  if ( MyPawnOwner == None )
  {
    return false;
  }

/** Sets the Weapon */
W = MyWeapon(MyPawnOwner.Weapon);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

227

We start by defining our local variables. We set MyPawnOwner to be the pawn that the 
HUD is currently drawn for. Our weapon, W, is our pawn's currently equipped weapon.  
If we don't have a pawn for whatever reason, get out of the function. There is no point  
in wasting precious CPU cycles if there is no need for the function to get called.

4.	 The next step involves our trace. We need to set the values for our trace,  
then perform one.
  /** If we have a weapon... */
  if ( W != None)
  {
    /** Values for the trace */
    StartTrace = W.InstantFireStartTrace();
    EndTrace = StartTrace + W.MaxRange() *  
    vector(PlayerOwner.Rotation);
    HitActor = MyPawnOwner.Trace(HitLocation, HitNormal,  
    EndTrace, StartTrace, true, vect(0,0,0),,  
    TRACEFLAG_Bullet);
    DrawDebugLine(StartTrace, EndTrace, 100,100,100,);

A trace draws a direct line from one point to another. In this situation we have our 
trace call our weapon's InstanteFireStartTrace() function, which in turn  
calls GetPhysicalFireStartLoc(), which looks like the following code snippet:
/*****************************************************************
* Location that projectiles will spawn from. Works for secondary 
* fire on third person mesh
*****************************************************************/
simulated function vector GetPhysicalFireStartLoc(optional vector 
AimDir)
{
  Local SkeletalMeshComponent AttachedMesh;
  local vector SocketLocation;
  Local TutorialPawn TutPawn;

  TutPawn = TutorialPawn(Owner);
  AttachedMesh = TutPawn.CurrentWeaponAttachment.Mesh;
  AttachedMesh.GetSocketWorldLocationAndRotation 
  (MuzzleFlashSocket, SocketLocation);

    return SocketLocation;
}

Quite simply, we're using our weapon's SocketLocation to start the trace. Our 
trace end uses the StartTrace value and adds our weapon's MaxRange, then 
multiplies it by our player controller's rotation. The HitActor value keeps track  
of anything our trace hits along the way.

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

228

We then draw a debug line so that we can see the trace. The line takes our start trace 
and end trace as parameters. You don't need this line, but it certainly makes your job 
far easier.

5.	 Let's go over to the next step, that is, converting 3D coordinates into a 2D space.
  /** Projection for the crosshair to convert 3d coords 
        into 2d */
  ScreenPos = Canvas.Project(HitLocation);
  /** If we haven't hit any actors... */
  if (HitActor == None )
  {
    HitActor = (HitActor == None) ? None  
                                  : Pawn(HitActor.Base);
    HitLocation = EndTrace;
    ScreenPos = Canvas.Project(HitLocation);
  }

ScreenPos, or the 2D vector we want to draw the crosshair on, is using our Canvas.
Project function and takes HitLocation as a parameter. Project is used when 
you want to take a 3D coordinate and draw it on a 2D space, like our HUD. The opposite 
function, Deproject, takes a 2D coordinate and converts it to 3D space.

Our HitLocation parameter changes depending on how we set that value. Our 
HitLocation parameter is the actor our trace has crossed. If we haven't hit any 
actors, HitLocation is where the trace ends (that is, it may just extend off into  
the distance on a map without walls).

6.	 Now we need to draw the actual crosshair.
  /** Draws the crosshair for no one - Grey*/
  CrosshairSize = 28 * (Canvas.ClipY / 768) *  
                       (Canvas.ClipX /1024);
  Canvas.SetDrawColor(100,100,128,255);

  // Crosshair in center of trace
  Canvas.SetPos(ScreenPos.X - (CrosshairSize * 0.5f),  
                ScreenPos.Y -(CrosshairSize * 0.5f));
  Canvas.DrawTile(class'UTHUD'.default.AltHudTexture, 
  CrosshairSize, CrosshairSize, 600, 262, 28, 27);
  return false;

Our crosshair size uses the edge of our screen, both the X and Y values, then divides 
those values by the standard screen resolution (1020 x 768) and multiples it by 28 
so that it is large enough to see. Our crosshair color can be anything we'd like, but I've 
set it so that it is gray for now.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

229

We set the crosshair to be in the center of the trace by taking its screen position and 
subtracting half of the crosshair size. This allows it to use the center of the crosshair, 
otherwise we'd be using the top-left corner of the crosshair as our center point.

DrawTile takes our texture, AltHudTexture, and uses that as our crosshair 
image. For now it's just an image of a wrench.

7.	 Don't forget to add our CheckCrossHairOnFriendly() function to DrawHUD 
either. The function should now look like the following code snippet:
/*****************************************************************
* Draws the HUD
*****************************************************************/
function DrawHUD()
{
  ...
  CheckCrosshairOnFriendly();
  ...
}

We'll make the necessary changes in our next recipe so that the color adjusts over 
allies, but let's add the function now, which also stores the current info for our 
crosshair in this recipe.

8.	 Compile the project and take a look! We now have a crosshair that follows our 
weapon's trace! We still have that other crosshair drawn in the center of the screen, 
but that can obviously be removed by commenting out DrawWeaponCrosshair() 
from DrawHUD().

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

230

How it works...
We need to set our base aim rotator to use our point of view. We do this by overriding 
the GetBaseAimRotation() function in our TutorialPawn class. It is called by our 
GetAdjustedAimFor() function in our TutorialPlayerController class. This  
gives our controller an opportunity to adjust the aiming of the pawn.

Afterwards, we set our base aim rotation. Here we are using our point of view rotation,  
that is, the rotation from our camera and not the pawn in this situation.

Next, we create the function CheckCrosshairOnFriendly() to draw the crosshair.  
We need to draw a trace first and have it check for actors in our way. If it hits an actor,  
we draw the crosshair there. If not, we draw the crosshair at the end of our trace,  
however long that may be.

This function also makes use of Canvas.Project(), which takes a 3D vector from  
our environment and converts it to a 2D vector, and that's what allows us to actually  
draw the crosshair on the HUD.

Changing the crosshair color when aiming at 
a pawn

Now that we have a more accurate representation of our crosshair working, why not take  
it to the next step and have it change colors to signify that we are pointing at a pawn?

In this next recipe, we'll add behavior to our crosshair that allows us to do just that.

Getting ready
Start by having your IDE open and ready to make some changes. We won't have to create any 
new classes, as we'll only have to make changes to an existing function in our TestHUD class.

How to do it...
This change requires us to add an if statement to our CheckCrosshairOnFriendly().

1.	 Let's add it now as shown in the code snippet:
  /** If our trace hits a pawn... */
  if ((Pawn(HitActor) == None))
  {
    /** Draws the crosshair for no one - Grey*/

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

231

    CrosshairSize = 28 * (Canvas.ClipY / 768) * 
    (Canvas.ClipX /1024);
    Canvas.SetDrawColor(100,100,128,255);

    // Crosshair in center of trace
    Canvas.SetPos(ScreenPos.X - (CrosshairSize * 0.5f),
    ScreenPos.Y -(CrosshairSize * 0.5f)); 
    Canvas.DrawTile(class'UTHUD'.default.AltHudTexture,  
    CrosshairSize, CrosshairSize, 600, 262, 28, 27);

    return false;
  }

This is the same information we posted in the previous recipe, but we have an if 
statement checking if our HitActor parameter is equal to None. When drawing  
our trace from the weapon's socket, we check to see if we've run across any actors, 
as seen by the following bit of code:
  /** If we haven't hit any actors... */
  if (HitActor == None )
  {
    HitActor = (HitActor == None) ? None  
                                  : Pawn(HitActor.Base);
    HitLocation = EndTrace;
     ScreenPos = Canvas.Project(HitLocation);
  }

If we have hit an actor of type Pawn, as seen by our typecast Pawn(HitActor.
Base), then that is our HitActor parameter, otherwise our HitActor parameter 
is set to None. With that said, our function should make a bit more sense now. If we 
don't hit any pawns, the crosshair will be drawn gray.

2.	 But what if we do run across a pawn in our trace? Well let's add that functionality 
now, just beneath our if ((Pawn(HitActor) == None)) statement for drawing 
the gray crosshair.
  /** Draws the crosshair for friendlies - Yellow */
  CrosshairSize = 28 * (Canvas.ClipY / 768) * 
  (Canvas.ClipX /1024);
  Canvas.SetDrawColor(255,255,128,255);
  Canvas.SetPos(ScreenPos.X - (CrosshairSize * 0.5f),  
                ScreenPos.Y -(CrosshairSize * 0.5f));
  Canvas.DrawTile(class'UTHUD'.default.AltHudTexture,  
  CrosshairSize, CrosshairSize, 600, 262, 28, 27);
  return true;

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

232

3.	 Compile the project and see for yourself. If you run your crosshair over another pawn 
it will turn yellow!

How it works...
We add a simple if statement to check if the trace from our weapon has run across a pawn. 
If it has, then we draw a yellow crosshair. If not, we default to our gray crosshair.

Drawing a debug screen
UDK offers easy access to a plethora of debug options through the console commands. While 
this is useful, it can be tedious to constantly type in these commands. What if there was a 
more effective way to draw our debug options for individuals who may not be as savvy with 
programming, like a level designer?

As a programmer, one of your many roles may include supporting designers and creating 
tools. To make their world easier we'll be creating a debug menu that can be accessed with 
one key and allow access to a number of debug options. This is great in situations where you 
don't have a keyboard available, such as when you are demoing a project with a game pad. 
We'll bind them to keyboard keys for now, but understand that they can just as easily be done 
with the game pad.

Getting ready
Start by having your IDE open and ready to make some changes. We'll be creating a new 
class, as well as a new function in our HUD, and adding some game bindable actions in  
our defaultInput.ini file.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

233

How to do it...
1.	 Start by creating a new class which will be our actual debug menu. Have 

it extend from CheatManager. You'll notice that we have this class within 
PlayerController. This allows our cheat manager (really, our debug menu)  
to capture all of our input commands. It is also a collection of executable functions 
capable of performing numerous commands.
class DebugMenu extends CheatManager within  
PlayerController;

2.	 We also want to keep these organized, so we'll use a struct record type to  
do just that.
struct DebugCommand
{
    var string CommandName; 
    var string Command; 
};

struct SDebugCommandPage
{
    var string PageName; 
    var array<DebugCommand> PageCommands; 
};

3.	 We're going to create a number of commands, so let's add the variables for  
them as shown in the following code snippet:
var array<SDebugCommandPage> CommandDebugPages;
var int CurrentPage;
var int CurrentIndex;
var bool bShowDebugMenu;

Be sure to add the structs above your variables! Otherwise, the compiler 
won't recognize the variables inside as they haven't been created yet.

4.	 We need a way to turn our debug menu on and off now, so let's add the following 
code snippet:
/*****************************************************************
* Toggles Debug Menu on and off
*****************************************************************/
exec function ToggleDebug()

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

234

{
    CurrentPage = -1;    // Starts on main page
    CurrentIndex = 0;
    bShowDebugMenu = !bShowDebugMenu;

    // Disables movement
    SetCinematicMode 
    (bShowDebugMenu,false,false,true,true,true);
}

This starts with the main menu each time we pull up the debug screen and  
also prevents our pawn from accepting inputs like movement and firing.

5.	 With our main menu set, we now need a way to navigate through it. The following  
two functions will allow us to move to the previous or next item on our list:
/*****************************************************************
* Selects the next item on the list
*****************************************************************/
exec function NextItem()
{
  local int IndexMax;

  if (bShowDebugMenu)
  {
    if (CurrentPage != -1)
    {
      IndexMax =  
      CommandDebugPages[CurrentPage].PageCommands.Length-1;
    }
    else
    {
      IndexMax = CommandDebugPages.Length-1;
    }
    CurrentIndex = Min(CurrentIndex +1, IndexMax);
  }
}

/*****************************************************************
* Selects the previous item on the list
*****************************************************************/
exec function PreviousItem()
{
  if (bShowDebugMenu)
  {
    CurrentIndex = Max(CurrentIndex -1, 0);
  }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

235

We define the maximum number of pages available, as shown by IndexMax,  
and changing its value depending on how far we've scrolled in the list.

6.	 We're going to need a way to get in and out of the pages. Let's add the following  
code snippet for executing the chosen debug item:
/*****************************************************************
* Executes chosen debug item
*****************************************************************/ 
exec function DoDebugCommand()
{
    local DebugCommand command;
    if (bShowDebugMenu)
    {
      /** Leave menu & execute the chosen cmnd */
      if (CurrentPage != -1)
      {
        command = CommandDebugPages[CurrentPage]. 
        PageCommands[CurrentIndex];
        ToggleDebug();
        ConsoleCommand(command.Command);
      }
      else
      {
        /** Next page */
        CurrentPage = CurrentIndex;
        CurrentIndex = 0;
      }
    }
}

Add the following code snippet to come out of the selected page:
/*****************************************************************
* Back out of currently selected page
*****************************************************************/ 
exec function DebugBack()
{
    if (bShowDebugMenu)
    {
      if (CurrentPage != -1)// We're at the main menu
      {
        CurrentPage = -1;
        CurrentIndex = 0;
      }

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

236

      else
      {
        ToggleDebug(); // Can't go any further, so back out
      }
    }
}

The following code should be added to draw the debug menu:
/*****************************************************************
* Draws the debug menu
*****************************************************************/
function DrawDebugMenu(HUD H)
{
    local float XL, YL, YPos;
    local DebugCommand command;
    local SDebugCommandPage page;
    local int index_array;
    local Color cmnd_color;

    /** Draws the menu */
    if (bShowDebugMenu)
    {
      // Sets the font
      H.Canvas.Font = class'Engine'.Static.GetLargeFont();
      // Sets the length of the string (text)
      H.Canvas.StrLen("X", XL, YL);
      // Location on Y axis where text will begin (left)
      YPos = 0;

      // Top-left corner of the screen
      H.Canvas.SetPos(0,0);

      // Dark color
      H.Canvas.SetDrawColor(10,10,10,128);
      // Cover the size of the screen
      H.Canvas.DrawRect(H.Canvas.SizeX,H.Canvas.SizeY);
      if (CurrentPage == -1)
      {
        TutorialHUD(H).DrawDebugText("Debug 
        Screen",vect2d(0,YPos),
        H.Canvas.Font,H.WhiteColor);
        YPos += YL;

       // Set the text color

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

237

       foreach CommandDebugPages(page,index_array)
       {
         // For the currently selected item in the array...
         if (index_array == CurrentIndex)
         {
           // set text color to red
           cmnd_color = H.RedColor;
         }
         else
         {
           // All other text is white
           cmnd_color = H.WhiteColor;
         }

/** Draws the text on screen based on the preceding info 
    that we've provided */
         TutorialHUD(H).DrawDebugText 
         (index_array$":"@page.PageName,vect2d(0,YPos),  
         H.Canvas.Font,cmnd_color);
// Draws next line beneath current one
         YPos += YL;
       }
      }
      else
      {
        page = CommandDebugPages[CurrentPage];
        TutorialHUD(H).DrawDebugText("Debug Menu -  
        "$page.PageName,vect2d(0,YPos), 
        H.Canvas.Font,H.WhiteColor);

        // Draws next line beneath current one
        YPos += YL; 
        foreach page.PageCommands(command,index_array)
        {
          if (index_array == CurrentIndex)
          {
            // Active text is red
            cmnd_color = H.RedColor;
          }
          else
          {
            // All other text is white
            cmnd_color = H.WhiteColor;
          }

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

238

          TutorialHUD(H).DrawDebugText(index_array$": 
          "@command.CommandName,vect2d(0,YPos),
          H.Canvas.Font,cmnd_color);

          // Draws next line beneath current one
          YPos += YL; 
        }
      }
    }
}

We start by setting our font to be drawn in the top-left corner, as indicated by the 
coordinates 0,0. From there we use an if-else statement to make our currently 
highlighted text stand out by coloring it red and all other text white. We also draw a 
transparent gray rectangle across the entire screen.

How do we get one line to display beneath the other? Well the line YPos += YL; 
represents the Y position for our text, and we set it to be its current position plus  
the float YL.

We're also calling our HUD class and telling it to draw the DrawDebugText() 
function, which we'll cover shortly.

7.	 The final thing we need to do in this class is set the default properties of  
our variables:
DefaultProperties
{
    bShowDebugMenu=false
    CurrentPage=-1  // Starts us on the first page
    CurrentIndex=0

    /** Look in UDKInput.Ini to find additional debug  
      commands to add to this list */
    CommandDebugPages(0)=(PageName="Debug  
    Info",PageCommands[0]=(CommandName="Turn off Debug  
    Info",Command="showdebug none"), 
    PageCommands[1]=(CommandName="Toggle Camera Debug  
    Info",Command="showdebug camera"), 
    PageCommands[2]=(CommandName="Toggle Pawn Debug  
    Info",Command="showdebug pawn"), 
    PageCommands[3]=(CommandName="Toggle Pawn Weapon  
    Info",Command="showdebug weapon"))

    CommandDebugPages(1)=(PageName="HUD",PageCommands[0]= 
    (CommandName="Toggle HUD",Command="ToggleHUD"))

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

239

    CommandDebugPages(2)=(PageName="Collision |  
    Pathfinding", PageCommands[0]= 
    (CommandName=" Show Collision",Command="ShowDebug  
    COLLISION"),PageCommands[1]=(CommandName=" Show  
    Paths",Command="Show PATHS"))
}

It looks like a lot is thrown at you at once, so let's break it down carefully.

We've already seen CurrentPage and CurrentIndex used as local variables  
in the preceding functions, so we're aware of what they do.

CommandDebugPages is an array of our pages, or screens. We set the name of the 
page to be relevant to whatever we will fill the page with. For example, the third one is 
called Collision | Pathfinding as it holds all of our debug functions for those 
two categories.

Next, we add the command name as we want it displayed, for example, Show 
Collision. Following that we issue the actual command. These can be found  
in the UDKInput.ini file, so feel free to browse through those to find more.

8.	 Let's bind our inputs now, so that we can execute the functions we just created.  
Open up your DefaultInput.ini file, located at UDK/DirectoryName/
UDKGame/Config.
;----------------------- -----------------------------------------
; CUSTOM BINDINGS FOR TUTORIALS
;----------------- -----------------------------------------------
;Bindings for Debug Menu 
.Bindings=(Name="GBA_ToggleDebug" ,Command="ToggleDebug")
.Bindings=(Name="H" ,Command="GBA_ToggleDebug")
.Bindings=(Name="GBA_NextItem" ,Command="NextItem")
.Bindings=(Name="I" ,Command="GBA_NextItem")
.Bindings=(Name="GBA_PreviousItem" ,Command="PreviousItem")
.Bindings=(Name="U" ,Command="GBA_PreviousMenuItem")
.Bindings=(Name="GBA_DoDebugCommand" ,Command="DoDebugCommand")
.Bindings=(Name="O" ,Command="GBA_DoDebugCommand")
.Bindings=(Name="GBA_DebugBack" ,Command="DebugBack")
.Bindings=(Name="P" ,Command="GBA_DebugBack")

You could obviously bind the functions to any key of your choice, but I found that 
these work well for me. I use H to bring up my menu, and navigate with my I, U, O,  
and P keys.

Alternatively, you could just as easily bind these to the game pad.

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

240

9.	 We need to create the DrawDebugText() function in our TestHUD class which is 
called by DrawDebugMenu() in our DebugScreen class.
/*****************************************************************
* Draws the text for the debug screen
*****************************************************************/
 function DrawDebugText(string text, Vector2D position, Font 
font,Color textColor)
{
    Canvas.SetDrawColorStruct(textColor);
    Canvas.SetPos(position.X,position.Y);
    Canvas.Font = font;
    Canvas.DrawText(text);
}

This draws the debug text and looks similar to the other canvas functions we used in 
Chapter 7, HUD.

10.	 Our TutorialHUD class's PostRender() event needs to call our DebugMenu as 
well, so let's do that now.
event PostRender()
{
  ....
  /** Draws debug HUD */
  DebugMenu(PlayerOwner.CheatManager).DrawDebugMenu(self);
  ....
}

11.	 The final step in this recipe has us assigning the DebugMenu class as the default 
cheat class in our TutorialPlayerController class. Add the following bit of 
code to the defaultproperties block:
defaultproperties
{
  ....
  CheatClass=class'DebugMenu' // Reference for DebugMenu
  ....
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

241

12.	 Compile the project and load your map. Hit the H key when it loads and take a look at 
your new debug menu!

How it works...
To make a debug menu we first needed to extend from UDK's CheatManager, which is a 
series of executable functions that allow us to alter the way the game works. We create our 
own cheat manager, which is really our debug screen, and allow it to combine various debug 
functions on one page.

Our functions are organized into a struct type, which holds the name and command of the 
debug function we're trying to call, such as Show PATHS. We then call a new function in our 
HUD that we created called DrawDebugText, which actually draws the text on the screen.

In the defaultproperties block of our DebugMenu class, we list the number 
of pages that we'll be using to organize our debug menu. Finally, we head to our 
TutorialPlayerController class and in the defaultproperties block we told it to 
use our DebugMenu class as the default cheat class, instead of the one previously defined.

Be sure to go to UDKGame.ini and scroll down to the bottom; you will 
find your game HUD. Mine is listed as [tutorial.TutorialHUD]. 
Make sure that your bShowHUD value is set to true.

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

242

Drawing a bounding box around pawns
If you've ever played Eidos' excellent Deux Ex before, then you should be very familiar with 
bounding boxes around objects that your character is facing. We're going to replicate the 
same effect, but just for pawns. It's easy to alter and add functionality, however, so we really 
could draw a bounding box around nearly any object in the game.

This is great for highlighting objects that you want to point out to the player, or entice them to 
perform an action, such as pick up an object.

Getting ready
Start by having your IDE open and ready to make some changes. We won't have to create any 
new classes, as we'll only have to make changes to an existing function in our TestHUD class.

How to do it...
We need to use a trace to detect whether or not a pawn is standing in front of our  
character. Because invisible actors (that is, objects which don't use a sprite or something 
we can actually see on screen) may still block our path, we use TraceActors to determine 
what's in front of us.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

243

1.	 This occurs in our PostRender() function within our TutorialHUD class.  
Let's add the variables we'll need right now.
  local Actor      HitActor;
  local Vector     HitLocation, HitNormal, EyeLocation;
  local Rotator    EyeRotation;

2.	 A check is necessary to verify that we have a player controller, and whether we  
grab the camera location and rotation or not. This will be used for our trace.
  /**Check for pawn owner*/
  if (PlayerOwner != None)
{
  /** Grab player camera loc & rot */
  PlayerOwner.GetPlayerViewPoint(EyeLocation, EyeRotation);

3.	 The pawn's EyeLocation is where we start the trace and extend from. We check  
to see if each actor is actually a pawn, and anything else is discarded, including  
our own pawn.
/* Trace to see where player is looking. Used to ignore 
specific objects */
  ForEach TraceActors(class'Actor', HitActor, HitLocation,  
  HitNormal, EyeLocation + Vector(EyeRotation) *  
  PlayerOwner.InteractDistance, EyeLocation,  
  Vect(1.f, 1.f, 1.f),, TRACEFLAG_Bullet)
  {
    /** If the hit actor is the player owner, player 
    owner's pawn or if hit actor isn't visible, ignore 
    it */
    if (HitActor == PlayerOwner ||  
        HitActor == PlayerOwner.Pawn ||  
        !FastTrace(HitActor.Location, EyeLocation))
    {
      continue;
    }
    /** Checks if the actor is a pawn */
    if (HitActor.IsA('Pawn'))
    {
      /** Draws the 2D brackets */
      RenderBoundingBox(HitActor);
    }

If a pawn is within our trace, we then call our RenderBoundingBox() function  
to draw a box around the pawn.

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

244

Using the if (HitActor.IsA()) statement, we can place our 
bounding box around any actor in UDK. Replace 'Pawn' with any 
actor class of your choice to do this.

4.	 Now that our RenderBoundingBox() function is called, let's take a look at what  
it actually does.
/*****************************************************************
* Draws brackets around an actor, based on bounding box 
* coordinates
*****************************************************************/
function RenderBoundingBox(Actor Actor)
{
  local Box    ActorBB;
  local int    ActualWidth, ActualHeight;

  /** If we don't have a canvas to draw  on or are  
  targeting an actor, get out */
  if (Canvas == None || Actor == None)
  {
    return;
  }

We pass in our Actor parameter that we did a trace on. We have three parameters 
here: one Box variable, that is, ActorBB, which represents the bounding box around 
our actor, along with ActualHeight and ActualWidth, which measure the 
dimensions of the box.

As always, we need to have a check. This time we're verifying that we have a canvas 
to draw on in addition to an actor available to us. If either of those are not present, 
then we get out of the function.

5.	 We need a bounding box for our actor now, so we set our ActorBB variable to be 
set to the function GetBB, while passing in our Actor parameter. We'll get to know 
exactly how this function works shortly, but it's going to determine how far from the 
pawn the box should reside.
  /** Grabs the bounding box around our selected actor */
  ActorBB = GetBB(Actor);

  /** Math for the height and width */
  /** Change the float to adjust whether there are spaces 
    between lines */

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

245

  ActualWidth = (ActorBB.Max.X - ActorBB.Min.X) * 0.4f;
  ActualHeight = (ActorBB.Max.Y - ActorBB.Min.Y) * 0.4f;

/** Draws colored brackets around anchor */
  Canvas.SetDrawColor(100, 255, 255);

Math needs to be performed to determine the size of the box around the  
pawn. We multiply by a float value to illustrate whether or not the box will  
be completely closed, or open on the top, bottom, and sides. We add the color  
of our bracket here too.

6.	 Let's draw the rectangle around the pawn now. We'll break it up into corners  
so that it's easy to understand the code.
/** Top Right */
  Canvas.SetPos(ActorBB.Max.X - ActualWidth,  
  ActorBB.Min.Y);
  Canvas.DrawRect(ActualWidth, 10);
  Canvas.SetPos(ActorBB.Max.X , ActorBB.Min.Y);
  Canvas.DrawRect(2, ActualHeight);

  /** Top Left  */
  Canvas.SetPos(ActorBB.Min.X, ActorBB.Min.Y);
  Canvas.DrawRect(ActualWidth, 10);
  Canvas.SetPos(ActorBB.Min.X, ActorBB.Min.Y);
  Canvas.DrawRect(2, ActualHeight);

  /**  Bottom Right */
  Canvas.SetPos 
  (ActorBB.Max.X - ActualWidth, ActorBB.Max.Y );
  Canvas.DrawRect(ActualWidth, 10);
  Canvas.SetPos 
  (ActorBB.Max.X, ActorBB.Max.Y - ActualHeight);
  Canvas.DrawRect(2, ActualHeight );

  /** Bottom Left */
  Canvas.SetPos(ActorBB.Min.X, ActorBB.Max.Y);
  Canvas.DrawRect(ActualWidth, 10);
  Canvas.SetPos 
  (ActorBB.Min.X, ActorBB.Max.Y - ActualHeight );
  Canvas.DrawRect(2, Actualheight);
}

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

246

The top-right corner sets our position to use the maximum X value from our ActorBB 
variable and subtract the actual width of the box, while the Y value is simply set to 
the minimum size of the actor's bounding box Y variable.

We draw our rectangle next. The first parameter is the X value and determines  
how thick or wide the bar appears on the sides. The second parameter, the Y 
variable, does the same for the top and bottom bar. The ActualWidth variable 
defines a very thin line, while a number such as 10 in the Y parameter creates a  
nice thick one to stand out.

7.	 Let's take a look at where we actually get our bounding box information from. This 
may look like quite a bit, but it's really just a lot of the same information repeated 
over and over. We'll create our GetBB() function, which grabs our bounding box 
dimensions from our actor.
/*****************************************************************
* Grabs bounding box around an actor
*****************************************************************/
function Box GetBB(Actor Actor)
{
  local Box       CompBBox, OutBox;
  local Vector    BoundingBoxCoords[8];
  local int       i;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

247

  /** grabs the bounding box for the specified actor */
  Actor.GetComponentsBoundingBox(CompBBox);

  /** X1, Y1 */
  BoundingBoxCoords[0].X = CompBBox.Min.X;
  BoundingBoxCoords[0].Y = CompBBox.Min.Y;
  BoundingBoxCoords[0].Z = CompBBox.Min.Z;
  BoundingBoxCoords[0] =  
  Canvas.Project(BoundingBoxCoords[0]);
  /** X2, Y1 */
  BoundingBoxCoords[1].X = CompBBox.Max.X;
  BoundingBoxCoords[1].Y = CompBBox.Min.Y;
  BoundingBoxCoords[1].Z = CompBBox.Min.Z;
  BoundingBoxCoords[1] =  
  Canvas.Project(BoundingBoxCoords[1]);
  /** X1, Y2 */
  BoundingBoxCoords[2].X = CompBBox.Min.X;
  BoundingBoxCoords[2].Y = CompBBox.Max.Y;
  BoundingBoxCoords[2].Z = CompBBox.Min.Z;
  BoundingBoxCoords[2] =  
  Canvas.Project(BoundingBoxCoords[2]);
  /** X2, Y2 */
  BoundingBoxCoords[3].X = CompBBox.Max.X;
  BoundingBoxCoords[3].Y = CompBBox.Max.Y;
  BoundingBoxCoords[3].Z = CompBBox.Min.Z;
  BoundingBoxCoords[3] =  
  Canvas.Project(BoundingBoxCoords[3]);

  /**X1, Y1 */
  BoundingBoxCoords[4].X = CompBBox.Min.X;
  BoundingBoxCoords[4].Y = CompBBox.Min.Y;
  BoundingBoxCoords[4].Z = CompBBox.Max.Z;
  BoundingBoxCoords[4] =  
  Canvas.Project(BoundingBoxCoords[4]);
  /** X2, Y1 */
  BoundingBoxCoords[5].X = CompBBox.Max.X;
  BoundingBoxCoords[5].Y = CompBBox.Min.Y;
  BoundingBoxCoords[5].Z = CompBBox.Max.Z;
  BoundingBoxCoords[5] =  
  Canvas.Project(BoundingBoxCoords[5]);
  /** X1, Y2 */
  BoundingBoxCoords[6].X = CompBBox.Min.X;
  BoundingBoxCoords[6].Y = CompBBox.Max.Y;
  BoundingBoxCoords[6].Z = CompBBox.Max.Z;

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

248

  BoundingBoxCoords[6] =  
  Canvas.Project(BoundingBoxCoords[6]);
  /** X2, Y2 */
  BoundingBoxCoords[7].X = CompBBox.Max.X;
  BoundingBoxCoords[7].Y = CompBBox.Max.Y;
  BoundingBoxCoords[7].Z = CompBBox.Max.Z;
  oundingBoxCoords[7] =  
  Canvas.Project(BoundingBoxCoords[7]);

The CompBBox variable is a box that grabs the actor's bounding box, as definied  
at the beginning of the function with the line Actor.GetComponentsBoundingBox
(CompBBox);.

The next step has us creating an array for each corner of our box. We need a 
vector for our rectangle in the previous function to draw at. We get this vector, 
BoundingBoxCoordinates by using the values of our actor's bounding box. The 
first array sets BoundingBoxCoords.X to be equal to the minimum X value for 
our pawn's bounding box, as found in the Object class. We do this for the Y and Z 
variables as well, before finally combining them all and using Canvas.Project  
to convert the 3D coordinates to 2D ones.

8.	 Now we have to locate the top, bottom, left, and right coordinates for the pawn's 
bounding box. Using the edge of the canvas we find the minimum values for  
our X and Y variables, and set the max values to be zero.
  /* Locates left, top, right & bottom coords */
  OutBox.Min.X = Canvas.ClipX;
  OutBox.Min.Y = Canvas.ClipY;
  OutBox.Max.X = 0;
  OutBox.Max.Y = 0;

9.	 The final step has us iterating through our outside box coordinates to detect the 
smallest and largest coordinates. We do this by comparing the X and Y values  
of our pawn's bounding box. We return the value of Outbox, which is what we  
used in our RenderBoundingBox() function.
  /** Iterate though bounding box coordinates */
  for (i = 0; i < ArrayCount(BoundingBoxCoords); ++i)
  {
    /** Detect the smallest X coords */
    if (OutBox.Min.X > BoundingBoxCoords[i].X)
    {
      OutBox.Min.X = BoundingBoxCoords[i].X;
    }

    /** Detect the smallest Y coords */

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8

249

    if (OutBox.Min.Y > BoundingBoxCoords[i].Y)
    {
      OutBox.Min.Y = BoundingBoxCoords[i].Y;
    }

    /** Detect the largest X coords */
    if (OutBox.Max.X < BoundingBoxCoords[i].X)
    {
      OutBox.Max.X = BoundingBoxCoords[i].X;
    }

    /** Detect the largest Y coords */
    if (OutBox.Max.Y < BoundingBoxCoords[i].Y)
    {
      OutBox.Max.Y = BoundingBoxCoords[i].Y;
    }
  }
  return OutBox;
}

10.	 That's all there is to it! Compile the project and point your pawn towards another 
pawn to see a bounding box drawn around it.

www.it-ebooks.info

http://www.it-ebooks.info/


Miscellaneous Recipes

250

There's more...
We could easily adopt this to have a different appearance around specific actors. For example, 
we could have a thin white box drawn around any weapon. This would be done by using a 
case or switch statement in our PostRender function, where it checks whether Actor is 
of type Weapon or not. From there, we'd create a method similar to our DrawBoundingBox 
that could be called something like DrawBoundingBoxWeap. The properties inside would 
only have to be changed marginally to have a noticeable effect, such as having the box 
completely wrap around the actor, changing the color, or how far away the actor is resting.

How it works...
PostRender is an event called by the game during each frame, and PostRender  
calls DrawHUD, so really our call to DrawBoundingBox could occur in either function. 
Regardless, we start by making a trace from our pawn's EyeLocaton. A check is then 
performed to see if we run across an Actor object of type Pawn. If it is, then we call our 
DrawBoundingBox function.

This is responsible for the appearance of our box, from the color to whether or not the  
lines form one complete box around the pawn. Furthermore, it controls the thickness  
of each rectangle as well.

DrawBoundingBox grabs the coordinates for the box by calling the GetBB function  
which handles all of the heavy math for us. It grabs the bounding box from our pawn,  
and using that sets the vectors for us to draw our four rectangles around the pawn.

www.it-ebooks.info

http://www.it-ebooks.info/


Index
Symbols
3P Mesh  24

A
Actor class  91
ActorComponent object  99
AI  89, 90
AI Controller  112
AIController class  89
AI pawn

adding, via Kismet  124-130
Ajax Animator  189
AmmoPosition parameter  204
ammunition  90
anchors  112
archetypes

about  40
class, creating for  63-67
subarchetype, creating from  47-50
using, on occasions  46
working  41

archetypes, using
compile-time and load-time, reducing  47
multiple deviations of an actor object is  

necessary  46
objects, altering within editor  46

army of companions
creating  217-220

Artificial intelligence. See  AI
audio effects

adding, to prefabs  39, 40

B
bar, displaying

for player’s ammo  201-204
for player’s health  190-197

base
creating, for pickup  96-98

benefits, NavMeshes  113
benefits, WayPoints  112
bounding box

drawing, around pawns  242-250
Bullet Hit  25

C
Camera class  54
cameras  53, 54
canvas  190
CheckCrosshairOnFriendly() function  226, 

230
CheckCrossHairOnFriendly() function  229
CheckTargetLock() function  155
class, creating

for archetypes  63-67
for properties  63-67

class browser, UnCodeX  11
class tree browser, UnCodeX  10
color, crosshair

modifying  230-232
Complain Friendly Fire  25
CorrectedHudPos() function   

192, 197, 199, 205
CorrectedHudPOS() function  203

www.it-ebooks.info

http://www.it-ebooks.info/


252

crosshair
about  211
color, modifying  230-232
creating  211-216
creating, for using weapon’s trace  224-230

custom camera
editor, configuring for  55-57
engine, configuring for  55-57

D
Damage Impulse  25
Damage Over Time (DoT) weapons

about  170
creating  170-173

DDDK
about  12
downloading  13
Steam client, downloading  12
Steam client, installing  12
working  13

DebugMenu class  241
debug screen

drawing  232-241
DefaultGameEngine.ini file  55
DefaultGame.ini file  55
defaultproperties block  93
DrawAmmoBar() function  203, 205
DrawAmmoText() function  202, 205, 208, 

211
DrawBoundingBox function  250
Drawcolor parameter  213
DrawDebugText() function  238, 240
DrawHealthbar() function  192
DrawHealthBar() function  192, 197, 202-204
DrawHealthText() function  192, 197, 198, 

201, 204, 208, 211
DrawHud() function  204, 215
DrawHUD() function  197, 211, 229
DrawPathCache() function  146
DrawTile() function  197, 205
DrawWeaponCrosshair() function  211, 215, 

216, 229
Dungeon Defenders  12
Dungeon Defenders Development Kit. See  

DDDK

E
editor

configuring, for custom camera  55-57
engine

configuring, for custom camera  55-57
Explode() function  180
explosive barrel

creating  177-186

F
feedback

providing, in game by flashing enemies   
221-223

FindPathToward function  112
first person camera

about  68
creating  68-71

FlashDevelop  189
FlashDmg() function  222, 224
FlashDmgTimer() function  222-224
flashlight

about  174
adding, to weapons  174-177

G
GametTypegametype class  55
GetActorEyesViewPoint method  59
GetAdjustedAimFor() function  81, 87, 225, 

230
GetBaseAimRotation() function  81, 87, 224, 

225, 230
GetBB() function  246
GetEffectLocation() function  152
GetPhysicalFireStartLoc() function  152, 227
GibPeterbation   25
guns  177
guns, creating

for firing homing missiles  150-168
for healing pawns  168-170

H
heads-up display. See  HUD
HitActor variable  60

www.it-ebooks.info

http://www.it-ebooks.info/


253

HitLocation parameter  228
HitLocation variable  60
HitNormal variable  60
HpAmountMax variable  198
HPAmount variable  198
HUD  189
HudOffset() function  198, 201, 208, 211
HurtRadius() function  180

I
IDEs

about  8
Dungeon Defenders  12
nFringe  16
UnCodeX  8
Unreal Script IDE  14
Unreal X-Editor  19

InstanteFireStartTrace() function  227
InstantFireStartTrace() function  152
Integrated development environments. See  

IDEs

K
Kismet

used, for adding AI pawn  124-130

L
landmine

creating  186, 188
leaking pipe prefab

constructing  34-36

M
Make Splash  24
map

NavMeshes, laying on  118-121
PathNodes, laying on  114-118
PathNodes, patrolling on  134-139
patrolling, with NavMeshes  139-143
pawn, wandering around  130-133

MoveRandom() function  131
MoveTo() function  148
MoveToward() function  148
Muzzle Flash Socket  24

N
navigation meshes  111
NavigationPoint  91
NavigationPoints  112
NavMeshes

about  112
benefits  113
laying, on map  118-121
used, for patrolling map  139-143

NavMesh properties creation
scout, adding for  121-124

nFringe
about  16
downloading  16
installing  16
project, setting up  17, 18
working  19

O
Open Dialect  189

P
package browser, UnCodeX  9
particles

adding, to prefabs  37, 38
pathfinding  111, 112
PathNodes

laying, on map  114-118
patrolling, on map  134-139

pawn
about  90
bounding box, drawing around  242-250
following around map, with NavMeshes   

143-148
map, patrolling with NavMeshes  139-143
PathNodes, patrolling on map  134-139
wandering, around map  130-133

Pawn class  54, 55
PawnSocketName variable  64
PickupFactory  91
pickups

about  90, 91
animating  99, 100
base, creating for  96-98

www.it-ebooks.info

http://www.it-ebooks.info/


254

creating  92-96
using, in vehicles  105-109

pickup variables
altering  100-104

Pixel Mine  16
PlayerController class  54, 89, 209
player name

drawing, on screen  208- 211
player’s ammo

bar, displaying for  201-204
text, drawing for  205-208

player’s health
bar, displaying for  190-197
text, drawing for  197-201

PlayerSpawned() function  218, 220
PlayerStart  112
PlayerStart navigation point  116
PlayHit() function  222
PointLight archetype

creating  40-45
working  45

PoisonDmg() function  172
PoisonPlayer() function  171
PostBeginPlay() function  69, 131, 179, 218, 

220
PostBeginPlay() method  59
PostRender() function  191, 197, 212, 250
prefabs

about  26, 33
audio effects, adding  39, 40
leaking pipe prefab, constructing  34-36
particles, adding  37, 38
working  36

ProcessInstantHit() function  171
properties

class, creating for  63-67

R
raycasting  114
ReachSpecs  112
Remote Control

about  27
used, for editing runtimme values  26-31

RenderBoundingBox() function  243, 248
RespawnDestructable() function  179

ResScaleY variable  198
RouteCache  112
runtime values

editing, with Remote Control  26-31

S
Scaleform  189
scout

adding, for NavMesh properties creation   
121-124

Scout class  121
screen

player name, drawing on  208-211
SetBodyMatColor() function  222, 224
SetMovementPhysics() function  131
SetTimer() function  131, 172
ShockRifle class  150
side-scrolling camera

about  75
creating  75-81

side-scrolling games  75
SpawnDefaultController() function  220
SpawnDefaultFor() function  218, 220
Steam sale  13
subarchetype

creating, from archetype  47-49
working  51

T
text

drawing, for player’s ammo  205-208
drawing, for player’s health  197-201

TextScale variable  198
ThirdPersonCam class  72
third person camera

about  72
creating  72-74

Tick() function  159
top-down camera

about  81
creating  82-87

Touched() function  186, 188
TripleA games  189
Tut_AmmoPickup class  95, 99
Tut_HealthPickup class  100

www.it-ebooks.info

http://www.it-ebooks.info/


255

TutorialCamera class
about  58, 63
writing  58-62

TutorialCameraProperties class  58, 61
TutorialGame class  218, 220
TutorialPawn class  219, 55
TutorialPlayerController class  219, 55

U
UDKEngine.ini file  56
UDKGame.ini file  56
UDKPickupFactory  91
UnCodeX

about  8, 11
Actor class  10
class browser  11
class tree browser  10
downloading  8
installing  8
Object class  10
package browser  9

Unreal Engine  99, 111
UnrealScript  91
Unreal Script IDE  14, 15
Unreal Weapon Wizard

3P Mesh  24
about  22-24
Make Splash  24
Muzzle Flash Socket  24

Unreal X-Editor
about  19-21
downloading  20
features  19

UpdateViewTarget function  69
UpdateViewTarget method  59
user interface (UI)  189
UTAmmoPickupFactory class  92
UTHealthPickupFactory class  104
UTItemPickupFactory  91
UTPickupFactory  91
UTPowerupPickupFactory  91
UTWeaponLocker  91
UTWeaponPickupFactory  91
UTWeap_ShockRifle  55

V
VehicleClassPath variable  106
Vehicle Damage Scaling  25
vehicles

pickups, using  105-109

W
WayPoints

about  111
benefits  112

weapons
about  149
flashlight, adding to  174-177

weapon’s trace
crosshair, creating for  224-230

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Thank you for buying  
UnrealScript Game 
Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL 
Management" in April 2004 and subsequently continued to specialize in publishing highly focused 
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and 
customizing today's systems, applications, and frameworks. Our solution based books give you the 
knowledge and power to customize the software and technologies you're using to get the job done. 
Packt books are more specific and less general than the IT books you have seen in the past. Our 
unique business model allows us to bring you more focused information, giving you more of what 
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be 
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to 
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors 
will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/


UDK iOS Game Development 
Beginner's Guide
ISBN:  978-1-84969-190-1           Paperback: 280 pages

Create your own third-person shooter game using the 
Unreal Development Kit to create your own game on 
Apple's iOS devices, such as the iPhone, iPad, and  
iPod Touch

1.	 Learn the fundamentals of the Unreal  
Editor to create gameplay environments  
and interactive elements

2.	 Create a third person shooter intended for 
the iOS and optimize any game with special 
considerations for the target platform

3.	 Take your completed game to Apple's App Store 
with a detailed walkthrough on how to do it

Unreal Development Kit 
Game Design Cookbook
ISBN: 978-1-84969-180-2            Paperback: 544 pages

Over 100 recipes to accelerate the process of learning 
game design with UDK

1.	 An intermediate, fast-paced UDK guide for  
game artists

2.	 The quickest way to face the challenges of  
game design with UDK

3.	 All the necessary steps to get your artwork  
up and running in game

4.	 Part of Packt's Cookbook series: Each recipe is  
a carefully organized sequence of instructions  
to complete the task as efficiently as possible

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/


Unreal Development Kit 
Game Programming with 
UnrealScript: Beginner's 
Guide
ISBN: 978-1-84969-192-5            Paperback: 466 pages

Create games beyond your imagination with the Unreal 
Development Kit

1.	 Dive into game programming with UnrealScript  
by creating a working example game.

2.	 Learn how the Unreal Development Kit is 
organized and how to quickly set up your  
own projects.

3.	 Recognize and fix crashes and other errors  
that come up during a game's development.

Unity 3.x Scripting
ISBN: 978-1-84969-230-4            Paperback: 292 pages

Write efficient, reusable scripts to build custom 
characters, game environments, and control  
enemy AL in your Unity game

1.	 Make your characters interact with buttons and 
program triggered action sequences

2.	 Create custom characters and code dynamic 
objects and players’ interaction with them

3.	 Synchronize movement of character and 
environmental objects

4.	 Add and control animations to new and existing 
characters

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Development Environments
	Introduction
	Using UnCodeX
	Dungeon Defenders to save the day
	Unreal Script IDE
	nFringe
	Unreal X-Editor
	Editing runtime values with Remote Control

	Chapter 2: Archetypes and Prefabs
	Introduction
	Construct a leaking pipe prefab
	Adding particles to our prefab
	Adding audio effects to our prefab
	Create a PointLight archetype
	Create a subarchetype from an archetype

	Chapter 3: Scripting a Camera System
	Introduction
	Configuring the engine and editor for a custom camera
	Writing the TutorialCamera class
	Camera properties and archetypes
	Creating a first person camera
	Creating a third person camera
	Creating a side-scrolling camera
	Creating a top-down camera

	Chapter 4: Crafting Pickups
	Introduction
	Creating our first pickup
	Creating a base for our pickup to spawn from
	Animating our pickup
	Altering what our pickup does
	Allowing vehicles to use a pickup

	Chapter 5: AI and Navigation
	Introduction
	Laying PathNodes on a map
	Laying NavMeshes on a map
	Adding a scout to create NavMesh properties
	Adding an AI pawn via Kismet
	Allowing a pawn to wander randomly around a map
	Making a pawn patrol PathNodes on a map
	Making a pawn randomly patrol PathNodes on a map
	Allowing a pawn to randomly patrol a map with NavMeshes
	Making a pawn follow us around the map with NavMeshes

	Chapter 6: Weapons
	Introduction
	Creating a gun that fires homing missiles
	Creating a gun that heals pawns
	Creating a weapon that can damage over time
	Adding a flashlight to a weapon
	Creating an explosive barrel
	Creating a landmine

	Chapter 7: HUD
	Introduction
	Displaying a bar for the player's health
	Drawing text for a player's health
	Displaying a bar for the player's ammo
	Drawing text for the player's ammo
	Drawing the player's name on screen
	Creating a crosshair

	Chapter 8: Miscellaneous Recipes
	Introduction
	Creating an army of companions
	Having enemies flash quickly as their health decreases
	Creating a crosshair that uses our weapon's trace
	Changing the crosshair color when aiming at a pawn
	Drawing a debug screen
	Drawing a bounding box around pawns

	Index

