

Java 7 for Absolute
Beginners

■ ■ ■

Jay Bryant

Java 7 for Absolute Beginners

Copyright © 2012 by Jay Bryant

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on
a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts
thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current
version, and permission for use must always be obtained from Springer. Permissions for use may be obtained
through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective
Copyright Law.

ISBN-13 (pbk): 978-1-4302-3686-3

ISBN-13 (electronic): 978-1-4302-3687-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Chandra Clarke
Production Support: Patrick Cunningham
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/
source-code.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in this work.

For Clancey, Kylie, and Philip

–Jay Bryant

iv

Contents at a Glance

Foreword .. xiii

About the Author ... xiv

About the Technical Reviewer .. xv

Acknowledgments .. xvi

Introduction .. xvii

■Chapter 1: Writing Your First Java Program ... 1

■Chapter 2: Java Syntax .. 15

■Chapter 3: Data Types ... 35

■Chapter 4: Operators ... 51

■Chapter 5: Control Flow, Looping, and Branching ... 77

■Chapter 6: Object-oriented Programming ... 95

■Chapter 7: Writing a User Interface ... 111

■Chapter 8: Writing and Reading Files .. 151

■Chapter 9: Writing and Reading XML ... 169

■Chapter 10: Animation ... 185

■Chapter 11: Debugging with Eclipse .. 205

■Chapter 12: Video Games .. 221

■Chapter 13: Garbage Collection ... 249

 ■ CONTENTS AT A GLANCE

v

■Chapter 14: Recursion ... 263

■Chapter 15: Generics and Regular Expressions ... 279

Index ... 291

vi

Contents

Foreword .. xiii

About the Author ... xiv

About the Technical Reviewer .. xv

Acknowledgments ... xvi

Introduction .. xvii

■Chapter 1: Writing Your First Java Program ... 1

Installing the JDK ... 1

Installing Eclipse .. 2

Creating Your First Project ... 2

Creating the Program... 5

Adding More Functionality .. 9

Further Development .. 11

About Java Objects ... 12

Summary ... 12

■Chapter 2: Java Syntax .. 15

An Example .. 15

Lines ... 18

Package Declaration ... 20

Imports ... 21

Classes ... 22

Fields .. 23

■ CONTENTS

vii

Methods .. 24

Constructors ... 26

Access Modifiers .. 27

Interfaces .. 27

Exceptions .. 28

Blocks ... 30

Comments .. 31

Summary ... 33

■Chapter 3: Data Types ... 35

Primitive Data Types .. 35

Integer Primitives ... 35

Real Primitives .. 36

boolean ... 37

char .. 37

The Special Type: String ... 37

Literals .. 38

Wrapper Classes .. 41

Arrays .. 43

The Non-Existent Type: null ... 44

Enumerations ... 45

Summary ... 48

■Chapter 4: Operators ... 51

Operator Precedence .. 52

The Missing Operator: Parentheses.. 52

Postfix Operators .. 53

Unary Operators .. 53

Casting .. 55

Multiplicative Operators ... 57

■ CONTENTS

viii

Additive Operators .. 57

Shift Operators ... 58

Relational Operators ... 60

Equality Operators .. 62

Bitwise AND Operator (&) ... 63

Bitwise Exclusive OR Operator (^) .. 63

Bitwise Inclusive OR Operator (|) .. 64

Logical AND Operator (&&) ... 64

Logical OR Operator (||) ... 65

Assignment Operators .. 66

Comparing and Sorting Objects ... 67

Implementing the equals Method ... 68

Comparisons for Sorting ... 70

Summary ... 75

■Chapter 5: Control Flow, Looping, and Branching ... 77

Control Flow ... 77

if and if-else Statements .. 77

switch Statements .. 79

Looping .. 82

For Loops .. 82

While loops ... 85

Do-while Loops ... 87

Branching .. 88

The break Statement .. 88

The continue Statement ... 89

The return Statement ... 91

Summary ... 93

■ CONTENTS

ix

■Chapter 6: Object-oriented Programming ... 95

Objects ... 95

Encapsulation .. 96

Inheritance ... 96

Multiple Inheritance .. 97

Modeling Behavior through Interfaces ... 98

Abstract Classes ... 98

Static Members .. 100

Polymorphism .. 101

Our Animals in Java ... 102

A Lesson about Granularity .. 106

Pass-by-Reference and Pass-by-Value ... 107

Summary ... 109

■Chapter 7: Writing a User Interface ... 111

Java Swing: The Basics ... 111

A Basic Swing Application .. 112

A Larger Swing Application ... 119

Summary ... 149

■Chapter 8: Writing and Reading Files .. 151

Working with File Objects .. 151

Opening a File ... 153

Deleting a File ... 154

Working with Temporary Files .. 155

Creating a Directory .. 157

Deleting a Directory .. 159

Deleting Multiple Directories .. 160

■ CONTENTS

x

Writing and Reading Content ... 161

Merrily Down the Stream .. 161

Reading a File's Content ... 162

Writing a File's Content .. 163

Summary ... 167

■Chapter 9: Writing and Reading XML ... 169

The Structure of XML ... 169

XML and Streams .. 172

DOM and SAX ... 173

Writing XML ... 173

Writing XML with DOM .. 174

Writing XML with Strings .. 178

Reading XML .. 179

Reading XML with DOM .. 179

Reading XML with SAX ... 181

A Word about Factory Classes ... 184

Summary ... 184

■Chapter 10: Animation ... 185

Timing Is Everything .. 185

Animation: A Simple Example .. 186

Animating Multiple Items ... 190

Sprite Animation .. 196

Summary ... 202

■Chapter 11: Debugging with Eclipse .. 205

The Flow of Debugging .. 206

Debugging without a Debugger ... 207

Starting the Eclipse Debugger ... 207

■ CONTENTS

xi

Breakpoints and Variables ... 208

Setting a Line Breakpoint ... 209

About Scope ... 210

Removing a Line Breakpoint ... 212

Disabling a Line Breakpoint .. 212

Making a Conditional Breakpoint .. 213

Debugging Tips and Tricks .. 215

Fixing the Fireworks Program ... 216

Summary ... 218

■Chapter 12: Video Games .. 221

The Mechanics of a Video Game .. 221

The User Interface .. 221

The Game Logic .. 222

The Game Loop ... 222

The TargetClick Game .. 222

The Shooting Gallery Game ... 230

Expanding the ShootingGallery Game .. 245

A Note about Limitations .. 246

Game Design Resources .. 246

Summary ... 247

■Chapter 13: Garbage Collection ... 249

Understanding Memory Allocation ... 249

The Java Garbage Collection Algorithm: Marking and Sweeping ... 251

Understanding Memory Settings .. 252

Understanding Garbage Collection .. 253

Understanding Generations .. 254

Scavenges and Full Collections .. 255

■ CONTENTS

xii

Garbage Collection is Event-Driven .. 255

Understanding Garbage Collection Settings ... 255

Optimizing Garbage Collection ... 257

Collection Hints .. 258

Blocking Garbage Collection .. 259

A New Garbage Collector ... 260

Summary ... 261

■Chapter 14: Recursion ... 263

Recursion is Natural .. 263

Recursion is Common .. 264

Know Your Stop Condition ... 264

When to Avoid Recursion ... 265

When to Use Recursion .. 266

Calculating the Fibonacci Sequence .. 267

Calculating Fractals ... 268

Drawing a Sierpinski Triangle .. 268

Drawing a Fractal Tree ... 273

Summary ... 276

■Chapter 15: Generics and Regular Expressions ... 279

Generics ... 279

Regular Expressions .. 283

Summary ... 290

Index ... 291

xiii

Foreword

This book happened because the daughter (hi, Kylie) of a friend (hi, Ross) asked me what I do. As it
happened, I had my laptop with me at the time, so I showed her. Kylie was 15 at the time, so she
promptly lost interest. I was working as a web developer (writing middleware and database code rather
than front-end code), so I explained that Facebook worked in a similar way. That got her attention. It
pays to know one's audience.

That experience gave me the idea of writing a book to get young people started on programming.
Later that year, when Apress asked me to write a book, I managed to talk them into writing one for
beginners.

So, if you want to try writing software, this book is for you. It's by no means an exhaustive
explanation of either topic (how it works and how it's written are really two topics), but it's a start. I hope
it's enough of a start that you can have a new hobby: writing software. If you then learn more, you might
even make a career of it someday. I hope some of the people who read this book end up in the
profession, as we need more sharp minds writing software.

If that happens to be you, welcome to the quirky, frustrating, fascinating, and sometimes lucrative
world of software development.

Jay Bryant

xiv

About the Author

I started as a poet. I discovered that I had no “spark,” though I was good
enough at the mechanics. So I became a teacher. Having gotten two degrees in
English literature while trying to be a poet, I naturally taught English. Starting
in 1986, I also worked part-time writing software manuals.

As it happened, I had taken all the linguistics courses the university
offered, purely because I enjoy concepts such as transformational grammar
and morphology. When I was looking at code over a developer's shoulder, I
said, “I see structure and syntax here. Tell me how it works.” Phil Schlump was
smart enough to not try to explain how C works while I looked over his
shoulder. Instead, he told me to buy The C Programming Language, by Brian
Kernighan and Dennis Ritchie. I read the book and did all the exercises, with a
little coaching from Phil.

That got me started on my journey toward software development. From there, I read many more
books and learned (and have forgotten some) more languages. When the university let me go in 1991, I
continued on as a technical writer who programmed as a hobby until 1998, when I started writing code
as part of my job. I was annoyed with the documentation tools I had, so I started writing some of my
own. After a few years of doing even more programming to make documentation tools, I gave up writing
as part of my job and became a full-time software developer in late 2004. I worked full-time as a Java and
XSLT developer for three years and then full time as a Java Web Application Developer for three years.

By the end of those experiences, I knew enough to write a book about Java. Writing this book has
taught me some more and helped to formalize the knowledge I already had. As ever, the act of teaching
(and writing this kind of book is an exercise in teaching) also teaches the teacher.

Writing this book also reminded me that I really like writing. So I've taken a job that lets me both
write and code. I'm writing API documentation. That is, I explain how software works to software
developers, so that they can get more done in less time. The job title I like best for this sort of work is
Programming Writer, so that's what I call myself these days.

When I'm not writing software and writing about software, I play games of all sorts (not just
computer games), read fantasy and science fiction, and go out with friends. I live with an orange tabby
cat named Oscar who alternates between feline terrorist and snugglemonster.

Jay Bryant

xv

About the Technical Reviewer

■Massimo Nardone was born under Mount Vesuvius and holds a Master of
Science Degree in Computing Science from the University of Salerno, Italy. He
currently works as a Senior IT Security, Cloud and Infrastructure Architect, and
is the Finnish Invention Development Team Leader (FIDTL) for IBM Finland.
With more then 16 years of experience in Mobile, Security, and WWW
technology areas for both national and international projects, he has worked as
a Project Manager, Software Engineer, Research Engineer, Chief Security
Architect, and Software Specialist. Massimo is also a visiting lecturer and
supervisor for exercises at the Networking Laboratory of the Helsinki
University of Technology (TKK) for the course "Security of Communication
Protocols".

xvi

Acknowledgments

I couldn't have written this book without some early influences in both writing and programming. So I
have to thank to Dick Holland, Keith Hull, Janet Constantanides, Phil Schlump, and Pat LaFollett for my
education (only three of those were my teachers – Phil and Pat are former co-workers who are natural
mentors). More recently, I have to thank John Sederberg, Terry Dexter, and Daniel Padilla for taking a
chance on a guy whose degrees were not in computer science. Finally, I have to thank Mary Jackson
(good friend and fabulous software developer) for putting me in touch with Steve Anglin at Apress.

Ewan Buckingham and Adam Heath have put up with a lot from me, as I went from working on the
book full-time to writing all day at work and having to write part-time at home, too. That made my
response time slower than anyone liked at times. Also, Ewan and my technical reviewer, Massimo
Nadone, have had a number of good ideas that have made the book better than I could have done on my
own. They are intelligent and conscientious professionals, and I thank them for their efforts.

Jay Bryant

xvii

Introduction

Who This Book Is For
The title says “for Absolute Beginners.” By that, I mean absolute beginners at programming. My original
audience was teenagers whom I hope will go to college, get degrees in Mathematics, Computer Science,
or Electrical Engineering (or perhaps Technical Communication or Graphic Design), and then enter the
software industry. However, I quickly realized that adults might also wish to learn to program, as part of
changing careers, as a hobby, or simply out of curiosity. As a result, I've written the book for anyone who
wants to learn to program but doesn't have any programming knowledge, regardless of other
characteristics such as age or future career paths.

How This Book Is Structured
The first chapter gets you started by showing you how to install a development environment and by
getting you through writing your first program. The next few chapters cover the basics of how Java
works, including operators, data types, branching and looping, and how object-oriented languages
define and solve problems. The middle chapters detail some of the “bread and butter” tasks that
software developers must continually do, such as working with files and their contents and creating a
user interface for a program. Once the book gets through all that, it turns to some topics that are more
fun (I think), such as creating animations and video games. The book closes with a chapter that briefly
introduces two topics that, although somewhat advanced, may let you do good things in your own
programs once you finish the book.

All through the book, I include code samples that you can type into your development environment
and run. You can also get the code from the Apress web site. I've also included lessons from my 25 years
(twenty of them full-time) in software development. I hope those real-world experiences make the highly
abstract field of software development more concrete for you. It pays to remember that, although the
field is by nature theoretical, the problems we want to solve mostly exist in the real world.

Conventions
This book uses a number of formatting conventions that should make it easier to read. Formatting can't
substitute for poor writing or poor coding, but it can help to make either more clear. To that end, the
book incorporates the following conventions:

Code within other text, usually within a paragraph, appears as follows: java.lang.System
Code listings appear as follows:

■ INTRODUCTION

xviii

Listing Intro-1. Sample Code Block

public static void main(String[] args) {
 System.out.println("Hello, World!");
}

Within procedures, interface items (such as buttons and menu choices) that you should use appear
as bold text in sentences, as follows: “From the FFile menu, choose NNew.” The names of objects that
appear within the file system (such as files and directories) appear in a monospace font, as follows:
C:\temp

I should also mention that I've intentionally used an informal (almost “folksy”) style and tone. When
I'm sharing my experiences, I use the first-person singular (“I”). When I hope you're doing the same
thing I did when I wrote the book (usually writing code or thinking about a problem in a particular way),
I use the first-person plural (“We”). When I want you to do something, I use the second-person (“You”).
Also, I've made liberal use of contractions, such as “I've.” I hope you'll find the book to be more
engaging for being informal in its presentation.

Prerequisites
Before reading this book, you need to know your way around at least one operating system, such as
Windows or Mac OS X. In particular, you need to know how to create and delete files on your computer.
If you've looked into how “command” or “batch” files work on your computer, that would be even
better, as that is a kind of light-weight programming.

You don't need any other prerequisites to read this book. You don't need to know math or logic or
computer science. The book covers bits and pieces of all those subjects at times, but in a pragmatic way
that doesn't rely on the reader having any existing knowledge.
All you really need is a desire to learn to program.

C H A P T E R 1

1

Writing Your First Java Program

To write a program in Java, you need the Java Development Kit (JDK). Strictly speaking, the JDK is all you
need; however, other tools can make writing a Java application easier. Most software developers like to
use an Integrated Development Environment (IDE). One of the most popular IDEs is Eclipse.
Fortunately, both the JDK and Eclipse are free downloads. This chapter describes how to download and
install both products and how to set up your first Java project in Eclipse. By the end of this chapter, you
will have typed in and run your first Java program.

Installing the JDK
JDK is a collection of programs that enables you to write programs in Java. The two programs you'll use
most are javac.exe and java.exe. The javac.exe program is the compiler, which means it's the program
that turns code you can read (the code you write in Java) into code your computer can read (the
collection of 0s and 1s that a computer needs when it runs a program). The java.exe program runs the
programs that you write. After javac.exe compiles them, java.exe starts them and manages all the things
a program needs (a connection to the operating system, handles for files, and a lot of other things).
Because you’ll use Eclipse (which we discuss shortly), you don't need to run javac.exe and java.exe.
Eclipse does that for you. But it's handy to know what they do, so that you can run programs directly
from a command window when you want to do so.

Before you can install it, you have to download it, of course. To get the latest version of the JDK,
follow these steps:

1. Open http://www.oracle.com/technetwork/java/javase/downloads/
index.html in a web browser.

2. Click the DDownload JDK button.

3. Follow the instructions provided by the web site.

4. Run the installer and accept any defaults.

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

2

■ Note If you don't have administrator rights on your computer, clear (that is, uncheck) the checkbox that lets
you install the program for all users. This enables you to still install the JDK.I would provide more details, but the
web site changes from time to time, so more detailed instructions would probably be wrong (and confusing and
irritating).

You can put the JDK anywhere you'd put any other program. The default location works just fine.

Installing Eclipse
Eclipse is an IDE. Basically, it provides a convenient tool for writing and testing your programs. Among
other things, it identifies your errors as you make them, which makes correcting them much easier and
faster than writing code in a text file and compiling it from the command line. Eclipse also colors parts of
your code. After you get used to the color scheme (which happens very quickly), you'll be able to write
code more quickly.

Again, before you can install Eclipse, you have to download it. To do so, follow these steps:

1. Open http://www.eclipse.org/downloads/ in a web browser.

2. Find the EEclipse IDE for Java Developers choice and select the 32-bit version.

■ Note If you have a 64-bit operating system, choose the 32-bit version of Eclipse anyway. At the time of this
writing, the 64-bit version of Eclipse has issues that make Java development more difficult than it needs to be.

3. Follow the instructions provided by the web site.

4. Run the installer and accept any defaults.

Again, I would try to provide more detail, but the web site changes from time to time, so more
detailed instructions would probably be wrong (and so confusing and irritating).

You can put Eclipse anywhere you'd put any other program. Again, the default location works
just fine.

Creating Your First Project
When you use Eclipse, you have to create a separate project for each program. That way, Eclipse can
keep the details of one program separate from another. Each project consists of the source code files you
write for your program and, potentially, a number of other resources that you might attach to a program.
For example, you might include images and files that contain settings to load at run time and many
other possible items.

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

3

After you've started Eclipse, you can make a new project as follows:

1. From the FFile menu, select NNew, and then select PProject. The New Project
window appears, as shown in Figure 1-1.

Figure 1-1. Eclipse's New Project window.

2. In the New Project window, double-click JJava Project. The New Java Project
window appears, as shown in Figure 1-2.

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

4

Figure 1-2. Eclipse's New Java Project window.

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

5

3. Type Hello in the PProject name field.

■ Note Be careful to pick meaningful names. I've chosen Hello for this example because the first program
we're going to write is one that says Hello. One common mistake for new software developers is to choose
names such as Project1 and Project2. It probably won't be long before you can't remember the details of any of
them. Instead, if you're writing a minesweeper game, call your project Minesweeper. Then, when you're also
working on an instant messaging program, you can distinguish Minesweeper from InstantMessenger much more
readily than you can distinguish Project1 from Project2.

4. Click OOK. You can change a number of other options here. However, for our
purposes, the default settings work just fine. You should now have a window
that looks something like the one in Figure 1-3.

Figure 1-3. The main area of the Eclipse IDE.

Creating the Program
Every Java program has one class that is the program's starting point .(often called an entry point). A
class is a bit of code that groups other bits of code together in a particular way. We'll get to classes in the
next chapter. The thing that makes that class special is the existence of the main method. A method is a
bit of code that does one particular thing – in this case, it starts the program. We'll cover methods in the
next chapter, too. The main method accepts inputs and starts the program. Ever Java program has one
and only one main method.

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

6

■ Note That said, some code bases actually have a number of main methods. They exist so that classes can be
tested individually. Strictly speaking, each one starts a separate Java program, even though the people working on
them might think of them as just parts of the larger program. For our purposes, just remember that a Java
program must have a main method.

The class that contains the main method .determines the name of the program. The name of the
program is the name of that class. For example, the program we write later in this chapter is called Hello
because the class that holds its main method is named Hello. (Of course, the marketing department can
call it anything, but it's the Hello program to Java and Java developers.) This naming arrangement
happens because of the way Java programs are started: The Java runtime engine requires the name of a
class that contains a main method.

■ Note The file that holds a Java class must have exactly the same name as the Java class. For example, the
Hello class must be stored in a file named Hello.java. If the file were named hello.java, it wouldn't work. A
lowercase h is not an uppercase H, and the Java compiler won’t recognize that hello.java contains the Hello
class.

To create a class with a main method for your first program, follow these steps:

1. Right-click the Hello project in the Eclipse Package Explorer, choose NNew,
and then choose CClass. The New Java Class window displays, as shown in
Figure 1-4.

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

7

Figure 1-4. Eclipse's New Java Class window.

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

8

2. In the PPackage field, type whatever you like for the package, but remember to
use a name you can remember and keep it separate from your other projects. A
package is a way to group classes together. For small projects, you don't need
them. Large projects would be impossible to manage without them, though.
We'll cover classes in the next chapterIn the NName field, type Hello. This is the
name of your class.

3. Check the checkbox that gives you a main method (public static void main
(String args[])). When you're done, you should have a class similar to the
one in Listing 1-1.

Remember that Java is case-sensitive. “Hello” is not the same as “hello”
to Java.

Listing 1-1: Preliminary Hello class

package com.bryantcs.examples.hello;

public class Hello {

 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub

 }

}

4. Remove the comments. We don't need a comment (the lines that start with /*
and end with /* and the line that starts with //), and we're about to fill in that
autogenerated stub.

5. Within the main method, type:

System.out.println(“Hello, World!”);

Your class should now look similar to Listing 1-2.

Listing 1-2: Basic Hello program

package com.bryantcs.examples.hello;

public class Hello {

 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }

}

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

9

That's a complete Java program. You can now run your program by clicking the Run button in the
toolbar or by choosing RRun from the RRun menu. Figure 1.5 shows where to find the Run button.

Figure 1-5. Where to find the Run button.

 Eclipse then displays a console panel under the code area that shows the output of your program.
In this case, it says, “Hello, World!” Writing a program that outputs “Hello, World!” is an old tradition, by
the way. If you tell experienced developers that you're at the “Hello, World!” stage in learning how to
program, they'll know that you've just taken your first steps on the road to being a software developer.
Most software developers remember that day fondly.

The String[] args part is the mechanism that a Java program uses to read in options (more properly
called arguments) that you can give to your program. The word String refers to a collection of characters
that we can treat as a single object. A name is a classic example of a string. The [] indicates an array,
which is a collection of values (strings in this case). The collection (that is, the array) of strings is called
args. We add the capability to use an argument to our Hello program later in the chapter, we cover arrays
in the next chapter, and we cover strings in Chapter 3, “Data Types.”

Adding More Functionality
Now that you have a working program, let's make it do more. Specifically, let's make it read in your
name and say hello to you rather than to the whole world.

Look at the declaration for the main method. The args array holds all the values that were provided
to the Java runtime engine when someone started your program. Often, these are configuration settings
of various types. One common practice is to pass in the path to a file that contains more information
(such as difficulty settings for a game or the most recently opened files for a word processor)—that is, the
path to a configuration file. We read files later in the book. For now, we get the arguments from Eclipse.
First, though, we need to write the code to read the arguments and put the first argument into our
message. Listing 1-3 shows how to do this.

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

10

Listing 1-3: Reading arguments

package com.apress.java7forabsolutebeginners;

public class Hello {

 public static void main(String[] args) {
 System.out.println("Hello, " + args[0] + "!");
 }

}

■ Note Computers start counting at 0 rather than 1. Consequently, the first member of an array can be found at
0. Typing args[1] here generates an out-of-bounds exception, by which Java means that it expects to find two
strings, but you provided only one. You'll quickly get used to computers starting their counting at 0.

System.out.println accepts a single String object as its argument. In this case, we've got three
String objects, but the plus signs concatenate them together to create a single string, satisfying the
requirement (for just one string) of the println method. The plus sign is Java's string concatenation
operator (in addition to being a plus sign when used for mathematical operations). We cover operators
in Chapter 4, “Operators.”

To provide a value for the argument in Eclipse, follow these steps:

1. From the RRun menu, choose RRun Configurations. The Run Configurations
window appears. Figure 1.6 shows the Run Configurations window.

Figure 1-6. The Run Configurations window.

2. In the AArguments tab, type your name.

3. Click the RRun button.

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

11

This time, your program says hello to you.
Congratulations. At this point, you've created a program that does the basic things all programs do:

accepts input, modifies the input to accomplish something, and produces output. It might not seem like
much, but it's the first step on a fun path. We do much more before we're done.

Further Development
Just for fun, let's tack on a bit more functionality. When programs generate console output, they often
include the date and time. Formatting a date takes more code than most people would expect until
they've had to do it. That's because the real world has so many different date formats. In the United
States, month/day/year (MDY) format prevails. In Europe, day/month/year (DMY) prevails. In addition
to the date formats used by people, computer systems also have various ways of representing dates,
from simple variations such as year/month/day (YMD) to far more arcane arrangements. Java, having
inherited from C, uses the same date storage technique as C and Unix (which was originally coded
mostly in C) and Linux (which shares much with Unix). Consequently, Java stores dates as the number of
seconds since January 1, 1970. In more detailed and technical terms, Java's “epoch” started at January 1,
1970, 00:00:00 GMT.

So, how do we turn the number of seconds since 1970 into a nicely formatted time stamp for our
output? Listing 1-4 shows one way. (Part of both the joy and the pain of software development is that
there's almost always more than one way to do something.) I explain more about the new pieces of code
in the next section.

Listing 1-4: Adding a timestamp to Hello

package com.apress.java7forabsolutebeginners;

import java.text.SimpleDateFormat;
import java.util.Date;

public class Hello {

 public static void main(String[] args) {
 // First, get the date as seconds since 1/1/1970
 // Note that a Date object also contains time information
 Date now = new Date();
 // Second, create a formatter object
 SimpleDateFormat formatter =
 new SimpleDateFormat("EEE, MMM dd, yyyy HH:mm:ss");
 // Third, apply the formatter to the date
 String formattedDate = formatter.format(now);
 // Finally, add our formatted date to our output
 System.out.println(formattedDate + "> Hello, " + args[0] + "!");
 }

}

When you run this program, you'll see a date and time stamp before your other output.

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

12

About Java Objects
Notice how we had to use two kinds of objects (Date and SimpleDateFormat) to create a nicely formatted
date. Date and SimpleDateFormat are defined by class files, just as your Hello program is defined by a
class file. We told our Java program where to find those classes with the import statement near the top of
the file. Your program cannot run without them, so we have to tell Java where to find them.

For any class or other bit of code that's part of the Java standard libraries, you can learn all about it
from the Javadoc that Oracle maintains for each version of Java. Javadoc is a special document format
that lets Java programmers embed documentation directly into code. That way, you can look at the
documentation for classes you want to use as you program your own classes. As you do more
programming, you'll spend a lot of time reading this documentation. As a good learning exercise, look
up the SimpleDateFormat class and look at all the options you can use when formatting a date.

For Java 7, you can find the API (short for Application Programming Interface) documentation at
http://download.oracle.com/javase/7/docs/api/.

■ Note Eclipse provides the Javadoc information for items in the standard API. Hover your mouse over any
method or object that you're using, and you'll see the Javadoc information for that item. When you see the
Javadoc, press F2 to open a separate window that lets you see more.

Summary
In this chapter, we did the following tasks:

• Downloaded and installed the Java Development Kit

• Downloaded and installed Eclipse, which we use to write Java programs

• Created the code for our first program within Eclipse

• Ran our first program (“Hello, world!”)

• Modified the first program to do a bit more (say hello to you specifically)

• Modified the program still more (to include the date and time)

• Learned where to find more information about the other code used in future
programs

Many of these tasks constitute the day-to-day work of full-time software developers. We spend a lot
of time (more than we'd like, usually) setting up tools. We also spend most of our time either writing new
classes or (far more often) rewriting existing classes, either to add new functionality or to correct a
problem. We also certainly spend plenty of time reading documentation or wishing we had more
documentation to read.

CHAPTER 1 ■ WRITING YOUR FIRST JAVA PROGRAM

13

I guarantee that you'll find yourself returning to these tasks many, many times if you stick with
software development, whether as a hobby or as a profession. You’ll also do some of these tasks
(especially writing and modifying code) as you work your way through this book. I hope you find it to be
fun. I usually do.

C H A P T E R 2

15

Java Syntax

The syntax of any language is the rules that any speaker of the language follows so that other speakers of
that language can understand. In other words, syntax is a set of rules that all the speakers of a language
agree to follow so that they can communicate. If you violate the rules, people listening to you are either
going to ask, “Huh? What?” or think you're being silly (which might be appropriate in some settings but
will often cause a problem).

Computer languages work in much the same way, except that they're never spoken (though I won't
be surprised to see, or should I say hear, oral programming languages someday). If you decide to do your
own thing, don't be surprised when your computer doesn't do what you had in mind. If you fail to code
clearly and follow the rules of your programming language, all you'll get is confusion, though your
computer will generate error messages rather than say, “Huh? What?”

Java gets most of its syntax from another language called C++. C++ in turn gets most of its syntax
from C. And C was influenced by other languages. The people who created Java chose C++ as the basis
for Java's syntax because C++ was one of the most widely used languages at the time, and that gave many
developers some familiarity with Java syntax. Java's success (it's now widely used) depends on many
factors, but adopting an already widely known syntax certainly didn't hurt.

An Example
I created two classes and an interface that together demonstrate almost all of Java's syntax. We learned
in Chapter 1 that a class is a bit of code that contains other bits of code (which we get to later in this
chapter). An interface is basically a contract; a class that uses an interface must do all the things
specified by the interface. (In proper Java terms, a class that implements an interface must implement
all the methods specified by the interface)I might have missed some obscure bits, but understanding this
much syntax serves you well for a long time. We refer to these three listings throughout the rest of the
chapter. If the listings seem long, don't let that bother you. For now, just read through them. As we work
through this chapter, come back to these three listings and things should become clearer. Let's start with
an interface, as shown in Listing 2-1.

Listing 2-1. The Average interface

package com.apress.java7forabsolutebeginners.syntaxExample;

public interface Average {

 public int[] getInts();

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 2 ■ JAVA SYNTAX

16

 public void setInts(int[] ints);
 public float getAverage();
}

Any class that uses our Average interface has to include (that is, implement) the getInts, setInts,
and getAverage methods. Also, those methods within the implementing class must have the same
arguments. So a class that includes the following method whose signature is getInts(int
numberOfIntsToGet) does not satisfy the interface's contract unless it also includes a method whose
signature is getInts(). Don't worry too much about this just now. We work through some examples as
we go, and those should clear up your understanding nicely.

Listing 2-2. The AverageImpl class

package com.apress.java7forabsolutebeginners.syntaxExample;

public class AverageImpl extends Object implements Average {
 private long begin;
 private long end;
 private int[] ints;
 private static final String EXCEPTION_MESSAGE =
 "ints must contain at least one int";

 public AverageImpl(int[] ints) throws IllegalArgumentException {
 if (ints.length == 0){
 throw new IllegalArgumentException(EXCEPTION_MESSAGE);
 }
 this.ints = ints;
 }

 @Override
 public float getAverage() {
 begin = System.nanoTime();
 int result = 0;
 for (int i = 0; i < ints.length; i++) {
 result += ints[i];
 }
 end = System.nanoTime();
 return (float) result / ints.length;
 }

 public static float averageTwoNumbers(int a, int b) {
 return (float) (a + b) / 2;
 }

 // a classic getter method
 @Override
 public int[] getInts() {
 return ints;
 }

 // a classic setter method
 @Override

CHAPTER 2 ■ JAVA SYNTAX

17

 public void setInts(int[] ints) throws IllegalArgumentException {
 if (ints.length == 0){
 throw new IllegalArgumentException(EXCEPTION_MESSAGE);
 }
 this.ints = ints;
 }

 public long getRunTime() {
 return end - begin;
 }
}

The AverageImpl implements the Average interface. (“Impl” is an abbreviation that is often used for
a class that implements an interface.) In particular, it implements the three methods defined by the
Average interface. As you can see, it does some other things, too, including defining a message to use
when things go wrong (an exception is Java's way of saying it found something didn't work) and giving
us the tools to keep track of how long it takes to average whatever numbers we provide as input.

Listing 2-3. The AverageTest class

package com.bryantcs.examples.syntaxExample;

import java.text.SimpleDateFormat;
import java.util.Date;

public class AverageTest {

 public static void main(String[] args) {
 // set up a test for AverageImpl
 int[] ints = {1, 2, 3, 4};
 AverageImpl averageImpl = new AverageImpl(ints);
 // do one test
 String testString = buildTestString(averageImpl.getInts(),
 averageImpl.getAverage(), averageImpl.getRunTime());
 System.out.println(testString);

 // set up a second test (using setInts)
 ints[0] = 2;
 ints[1] = 3;
 ints[2] = 4;
 ints[3] = 5;
 averageImpl.setInts(ints);

 // do the second test
 testString = buildTestString(averageImpl.getInts(),
 averageImpl.getAverage(), averageImpl.getRunTime());
 System.out.println(testString);

 // Test the exception
 int[] ints2 = {};
 try {
 averageImpl.setInts(ints2);

CHAPTER 2 ■ JAVA SYNTAX

18

 } catch(IllegalArgumentException iae) {
 System.out.println("Oops! can't use an empty array");
 }

 // add a test for the convenience method
 System.out.println("AverageImpl.averageTwoNumbers(1, 2) = "
 + AverageImpl.averageTwoNumbers(1, 2));
 }

 private static String buildTestString(int[] values, float average, long time) {
 // set up a timestamp for our tests
 Date now = new Date();
 SimpleDateFormat formatter = new SimpleDateFormat("HH:mm:ss");
 String timeStamp = formatter.format(now);

 StringBuffer sb = new StringBuffer(timeStamp);
 sb.append(">Averaged {");
 for (int i = 0; i < values.length; i++) {
 sb.append(values[i]);
 if (i < values.length - 1) {
 sb.append(", ");
 }
 }
 sb.append("} and got ");
 sb.append(average);
 sb.append(" in ");
 sb.append(time);
 sb.append(" nanoseconds");
 return sb.toString();
 }
}

Finally, the AverageTest class creates a program (you can tell because it has a main method, as we
saw in Chapter 1) that lets us test our Average interface and AverageImpl class. It tests all the methods in
the AverageImpl class and even creates an exception (that is, an error) so that we can see how that works.
It also creates a String object that we use as the message to the user to display our results.

Lines
Java files (classes and interfaces) consist of lines of code. Although that might seem obvious, it's actually
important. We measure code in lines (remember in the movie Jurassic Park where the programmer
played by Samuel L. Jackson says that there are two million lines of code and we are supposed to think
the program is complex?) and use lines to separate bits of code from other bits of code. Java has several
kinds of lines, including statements (such as i = 2;), declarations, and just plain old empty lines (which
are often handy for making a program easier to read). Java marks the end of statements with a particular
character, the semicolon (;). That matters because a long statement can be broken across multiple lines
in the file but can still be a single statement from Java's perspective. Sometimes, when you debug a bit of
Java code, that can be important. The examples in Listings 2-2 and 2-3 both have statements that have to
be split because of the width of the page.

To make your programming simpler and easier (and not drive other programmers crazy), keep your
lines (both statements and declarations) as short as possible. For historical reasons, 80 characters is

CHAPTER 2 ■ JAVA SYNTAX

19

often used as a suggested limit for the length of a line. If you get to 80 characters, find a way to divide the
line into two lines. (The 80-character value comes from punch cards having 80 characters.) You can
certainly have longer lines (and there are times when it's acceptable), but hold down on really long lines,
for sanity's sake.

Avoid Overly Complex Code
There's an old joke in which one person writes, “Simplify!” and someone else rewrites it as “Eschew
Obfuscation.” Coding is a lot like writing in some ways (in fact, we enjoy both because of the
similarities). One such way is that you often have choices about how to do things. Although it might be a
fun challenge to see how complex you can make a line, you should avoid coding that way. Your fellow
developers will thank you, and you'll thank yourself when you come back to an old project, if your code
is as readable as possible. Let's consider an example in Listing 2-4:

Listing 2-4. Dense code

someValue = someMethodToGetABooleanValue() != someOtherMethodToGetABooleanValue() ?
 someMethodToDoSomething() : someMethodToDoSomethingElse();

The issue here is density. The previous line has too much meaning in one place. So let's rewrite it
into simpler code in Listing 2-5.

Listing 2-5. Simplified code example

boolean firstBooleanValue = someMethodToGetABooleanValue();
boolean secondBooleanValue = someOtherMethodToGetABooleanValue();

if (firstBooleanValue != secondBooleanValue) {
 someMethodToDoSomething();
} else {
 someMethodToDoSomethingElse();
}

Don't worry about the details. Just consider the structure. We get to the meaning of all these bits and
pieces later in this chapter and the next chapter.

Notice that the simplified code is much longer. Rather than one line of code (on two lines of the file),
the simplified code occupies eight lines of code. Simplification definitely has a cost (making you scroll
more to read it). However, it's far more readable. You (and your fellow developers) can understand it
quickly, where you (probably) have to stop and puzzle out the meaning of the single, dense line.

Some developers would say that we over-simplified the code. They'd point out that the two boolean
variables don't really help (the methods that return those values could be in the if) and that the braces
are unnecessary (you don't need braces for if and else if the block belonging to each is only one line
long). Those things are true. The code would look something like Listing 2-6.

Listing 2-6. Moderately simplified code

if (someMethodToGetABooleanValue() != someOtherMethodToGetABooleanValue())
 someMethodToDoSomething();
else
 someMethodToDoSomethingElse();

CHAPTER 2 ■ JAVA SYNTAX

20

The issue here is one of style. Individual developers have their own thresholds for when code is too
complex (that is, when the information is too dense). Some folks like it really complex and see nothing
wrong with the original line, whereas others like to have every little thing broken out. To the computer, it
doesn't matter. So this is a purely human issue.

You find that developers get serious about coding style. In fact, some of the most serious
disagreements we’ve seen in the software development community have been about coding style. As a
beginner, your best bet is to keep things simple and avoid overly dense code. Eventually, you'll develop
your own threshold for what's too complex.

Package Declaration
Let's start at the top, with the package declaration:

 package com.bryantcs.examples.syntaxExample;

That line says this class belongs to a particular package. A package can contain any number of
classes and interfaces. As you develop more complex programs, you'll want to divide your classes and
interfaces into groups, so that you can more easily find any given class or interface. For example, in web
applications, it's common to divide the classes that talk to the database (the data layer) from the classes
that make web pages for the users (the presentation layer). (Those kinds of applications generally have a
middle layer, too, where the data gets transformed into meaningful information for the user.)

Another good reason for multiple packages is so that separate packages can contain classes with the
same name. For example, the standard Java libraries contain java.util.Date (which is in this example)
and java.sql.Date. They each do slightly different things (for example, they have different ways of
formatting dates). If they were in the same package, only one could be called Date.

■ Note Package declarations are optional; however, they are a good idea. Even if you develop only as a hobby,
you want to keep your projects separate from one another.

By convention, the package declaration follows a particular format. Although not strictly Java syntax
(a program can work without it), most Java developers think ill of you if you don't follow the format. It's
easiest to unravel this format by working from right to left:

• syntaxExample indicates the local name of the package. AverageTest is a simple
application and so had just the one package.

• examples indicates the parent package for the local package. We keep all of the
examples for this book in the examples package.

• com.bryantcs is the identifier for all of the applications, to keep them separate
from those of other people when they get out on the Internet. After all, many
people are likely to have an examples package, and someone else might even have
an examples.syntaxExample package. Package declarations often look like reverse
URLS. You might expect to see something like bryantcs.com/examples/
syntaxExample (but don't visit that site; it doesn't exist). As we see next, the
domain portion (com.bryantcs) provides the final bit of insurance that our class is
unique.

CHAPTER 2 ■ JAVA SYNTAX

21

com.bryantcs prevents the troubles that arise from having two packages with the same name. By
convention, this part of the package name is done in reverse, because the domain name is more specific
than the domain category name, and package names should work from less specific on the left to more
specific on the right. Thus, when reading from left to right, we get the domain category (com), the domain
(bryantcs), the kind of application (examples), and finally the name of the innermost package
(syntaxExample). The first two (com.bryantcs) are part of the standard Java naming convention. The last
two (examples.syntaxExample) are just our own convention for keeping the programs from getting
tangled up with one another.

Here's another example of a package declaration:

 org.apache.fop

That refers to the FOP (Formatting Objects Processor) project at apache.org. (Apache is a leading
provider of open-source software and a great place to get involved as a Java developer or tester.)

Package names can be much longer, because they grow to indicate packages within packages
(within packages, and so on). Here's a longer example from the FOP project:

 org.apache.fop.fo.pagination.bookmarks

That one refers to the bookmarks package, which is within the pagination package, which is within
the fo package, which is within the fop package. Packages nested several levels deep is a common
practice in commercial projects. Few useful applications can reasonably fit into just one package.

You can include code from other people's projects (and your own existing projects) by including the
package in which the code you want used resides. This mechanism enables developers to share code and
lets one company write (and charge money for) code that other companies use.

Imports
After the package declaration, we get the import section (shown in Listing 2-3, earlier in this chapter).
Any number of import statements can be present.

An import statement says your class uses one or more classes or interfaces from another package.
That way, you can write two entirely separate applications but share code between them. Also, someone
else can write a library that you can then use by importing the parts of the library you want to use.

Let's examine our import statements in Listing 2-7:

Listing 2-7. Import statements

 import java.text.SimpleDateFormat;
 import java.util.Date;

After the import keyword, we get a class identifier. Again, it pays to read from right to left when
making sense of a class identifier. java.text.SimpleDateFormat says the SimpleDateFormat is within the
util package, which is within the java package.

That particular class is from the official Java library. This import statement tells experienced Java
developers that AverageTest is going to format a date.

Now, suppose we want to use other classes within the same package. We can then use a wildcard
character (*) to specify any class within the package, thus:

 import java.text.*;

Every different development shop has a different standard for when to stop being specific and use
the wildcard. We prefer to use the wildcard when we have three classes or interfaces from the same

CHAPTER 2 ■ JAVA SYNTAX

22

package. Other folks use a wildcard whenever they have just two members of the same package. Still
other developers never use wildcards because wildcards prevent you from seeing which objects are
actually used.

Classes
The class line identifies this particular class. Don't forget that the file that holds the class must have the
same name as the class, including the same capitalization.

 public class AverageImpl extends Object implements Average {

All classes extend some other class. However, when a class extends Object (which is Java's root
object), you can omit extends Object. As we mentioned before, software developers are by nature
minimalists; we don't write anything that doesn't help. Consequently, few Java developers include the
extends keyword when the class being extended is Object.

 Let's pick apart that class declaration and see what all the pieces mean. The first word, public,
is the access modifier for this class. See "Access Modifiers" later in this chapter, for more detail.

The second word, class, indicates that we define a class. In other words, we define a kind of object
that can be created in the system. In that case, we define a class that will never be an actual object.
Abstract classes are used for other classes to extend and as references. If this class were abstract, its
syntax would be as follows:

 public abstract class AverageImpl extends Object implements Average {

Classes can also be static. On a class, the static keyword means that only one instance of that class
exists. You can't create a new instance of a static class (but the runtime engine creates one for you). As
an aside, you might find it interesting to know that a static class can still be cloned, so the static keyword
by itself does not guarantee a singleton (a class that has exactly one instance).

■ Note The alternative to defining a class is defining an interface. We get to interfaces later in this chapter.

The third word, AverageImpl, is the name of the class. Java has only two rules about class (and other
names). Each name must start with a letter. Each name must consist of only certain characters: a-z, A-Z,
0-9, and the underscore (_) and dollar sign ($) characters.

■ Note Impl is short for implementation, by the way. It's a fairly common practice to have an interface and a
class that provides an implementation for that interface. In those cases, a common naming convention is to name
the class with the name of the interface plus Impl. Don't worry, we get to what "implementation" means in the
"Interfaces" section.

In addition to the actual rules, the Java community follows certain customary guidelines for naming
classes.

CHAPTER 2 ■ JAVA SYNTAX

23

• The first custom is that each class name should start with a capital letter.

• Second, each logical word within the name should start with a capital letter.

• Third, we rarely use underscores in class names. Dollar signs are used only in
generated code (that is, code written by programs rather than by people).

You can't break the rules (your programs won't work if you do), but you can break the community's
conventions. However, you should have a good reason for doing so. The conventions let us all
communicate more easily with one another, so follow them unless you have a good reason to do
otherwise and comment your reasons.

The fourth word, extends, lets us know the class's parent class. A class's parent (more properly, a
super) class is the class from which the current class gets the bases of its definition. In particular, a class
can use all public and protected methods in its parent class just as though they had been defined in the
class at hand. In this case, we extend Java's root class: Object. The extends keyword tells us that this
class is a variety of its parent class. In this case, AverageImpl is a variety of Object. If you look at the
relationship between a class and its parent class and it doesn't make sense, you need to rethink what
you're doing or, if it's not a class you wrote, more closely examine the library you're using.

The fifth word, Object, tells us the name of the base class that we're extending. Sometimes, the
name is meaningful and tells us something about the parent. Sometimes, as here, the name of the parent
class doesn't tell us much (because every class ultimately extends Object). Good software developers
strive for meaningful names, but it's not always possible.

The sixth word, implements, tells us that this class uses one or more interfaces. We visit them later in
this chapter.

The seventh (and last, in this example) word, Average, tells us the name of the interface this class
implements. A class can implement any number of interfaces, though few implement more than two or
three and many classes implement no interfaces at all.

Fields
A field is a member of a class or (rarely) an interface that holds a value. Fields let us store the bits of
information that we care about when we use a particular class. For example, the height and width fields
in a class that defines rectangles are important to the purpose of the class. In the AverageImpl class listed
earlier in this chapter, the following line defines a field:

private long begin;

This particular field contains a value of type long (which is a really big number—we get to data types
in the next chapter). In this case, the field contains null (a keyword meaning that something has no
value assigned to it and, for object references, refers to no object) until some other bit of code defines it.
You can also directly assign a field's value, as shown in Listing 2-8.

Listing 2-8. Field examples

int[] ints = {1, 2, 3, 4};
AverageImpl averageImpl = new AverageImpl(ints);

For primitives (such as int), you can use a value. In this case, we assign values to an array of ints.
For objects, you have to use the new keyword and call the object's constructor. We cover both the
differences between primitives and objects in the next chapter.

CHAPTER 2 ■ JAVA SYNTAX

24

On a field, the static keyword has a similar effect as it does on a method: A static field has one
instance that's used by all the objects defined by that class. Consequently, a static field is also known as a
class field (because it applies only to the class, not to the objects created from the class). Static fields are
mostly used to define constants (values that never change). We get to constants later in this chapter.

■ Warning Static fields can cause problems. Suppose you have two parts of a program running at once, each of
which is working with an object whose class definition has a static field. If both classes try to modify the field at
the same time, bad things (including both race conditions—parts of the program waiting for one another—and the
field's value not being correct) can happen. For this reason, all static fields other than constants (which are both
static and final) should usually be private.

Constants
Many programming languages support the concept of a constant. A constant is a value that never
changes. For example, Java includes a class called Math, and the Math class includes a constant called PI,
which holds the value of Pi to a high level of precision.

In Java, a constant is a field with a particular set of modifiers: static and final. Most are also public,
though it is possible (and sometimes useful) to have private, package, and protected constants. We use a
private constant in the AverageImpl class to avoid typing the same string twice. By convention, the
names of constants are all uppercase and have underscores between the units that are logically words as
in Listing 2-9.

Listing 2-9. A constant

private static final String EXCEPTION_MESSAGE =
 "ints must contain at least one int";

Methods
A method is basically something that a class can do. One common metaphor for classes and objects is
that classes are nouns and methods are verbs. As with all metaphors, it's sometimes true and sometimes
false, but it's often a handy way to check whether your design makes sense. Methods often do something
with the other members (fields and methods) of the class. However, some methods (usually static
methods) do nothing with the other members of the class, effectively operating on their own.

Thanks to the capability of methods to do lots of different things, it's hard to make a meaningful
generalization about methods beyond just saying, “Methods do things.” Perhaps some examples will
help (see Listing 2-10).

CHAPTER 2 ■ JAVA SYNTAX

25

Listing 2-10. Methods

 // a classic getter method
 @Override
 public int[] getInts() {
 return ints;
 }

 // a classic setter method
 @Override
 public void setInts(int[] ints) throws IllegalArgumentException {
 if (ints.length == 0){
 throw new IllegalArgumentException(EXCEPTION_MESSAGE);
 }
 this.ints = ints;
 }

Let's have a closer look at the “setter” method, starting with the first line (not counting the
comment, which starts with //. We cover comments later in the chapter).

public is the method's access modifier. We cover access modifiers earlier in the chapter.
void is the return type. The return type tells any code that called this method what to expect. All

methods must have a return type. void indicates that the method won't return anything. So, all methods
must have a return type, but not all methods must return something. If we look at the other methods in
the class, we can see that they often do return something.

setInts is the method's name. By convention, method names start with a lowercase letter and have
capital letters wherever a logical word appears. This is sometimes called camel case.

The parentheses contain a list of arguments. In this example, the list is only one argument long.
Each argument has a type and a name. In this case, the type is int[] (the brackets indicate an array), and
the name is ints. The arguments are separated by commas when more than one is present, as in the
following method declaration from the AverageTest class:

private static String buildTestString(int[] values, float average, long time) {

The brace character opens the code block that is the method's body. We cover blocks later in this
chapter.

Methods can also be static. On a method, the static keyword means that only one such method
exists in the system, no matter how many objects of that class might exist. For that reason, a static
method is also known as a class method. Also, the method cannot use any of the class's fields other than
fields that have themselves been declared static (usually constants). Static methods can be a handy way
to provide utility methods for use throughout your code. For example, a method that takes a date and
returns a formatted string might be static, provided it doesn't need to use any of its containing class's
non-static methods. Also, static methods can be slightly more efficient, because they don't access
anything outside the method body.

CHAPTER 2 ■ JAVA SYNTAX

26

■ Warning Static methods can cause problems. Suppose you have two threads, each of which is working with
an object whose class definition has a static method. If both classes try to access the method at the same time,
bad things can happen. For one thing, any fields modified by the method can end up with the wrong value,
because the threads might run in the wrong order. Also, a static method has just one instance (the class itself), so
a class that takes a long time to do whatever it does can keep the second (and third, fourth, and so on) thread
waiting.

Constructors
The AverageImpl class includes a constructor, as shown in Listing 2-11.

Listing 2-11. A constructor

 public AverageImpl(int[] ints) throws IllegalArgumentException {
 if (ints.length == 0){
 throw new IllegalArgumentException(EXCEPTION_MESSAGE);
 }
 this.ints = ints;
 }

Constructors look like methods but aren't. Notice the lack of a return type and the name being
identical to the class name. They are called when we first create an object and enable us to set up the
object before we do anything with it. Creating the object is called instantiation.

 What needs to be done varies tremendously by class. Many constructors (such as the one shown in
this example) set some values. Other classes might create other objects, open a database connection or a
file, or start some other process (and the possibilities don't stop there).

If you don't define a constructor, Java still creates a default constructor, to enable the new keyword
to work. Otherwise, no one would ever be able to create an instance of your class. Constructors can have
all the usual access modifiers.

You can also create multiple constructors for a single class. For example, suppose we want to
provide a handy way to average any other number with 2. We can do that with a constructor such as in
Listing 2-12:

Listing 2-12. Another constructor

 public AverageImpl(int otherNumber) {
 ints = new int[] {2, otherNumber};
 }

Now we have two ways to create an instance of the AverageImpl class.

■ Note The this keyword is a reference to the object the class defines. In this case, the this keyword is
necessary to distinguish the ints field in the class from the ints argument in the constructor's argument list.

CHAPTER 2 ■ JAVA SYNTAX

27

Access Modifiers
Classes, interfaces, fields, and methods all use various access modifiers to indicate which other classes
and interfaces can see and (potentially) modify the item in question. Java has four access modifiers:
private, package-private, protected, and public.

• private means that only the other members (that is, fields and methods) within a
class can see and (for fields) modify the method or field at hand. Private classes
and interfaces appear only within classes, never as stand-alone constructs.

• package-private (often just called package) means that other members of the
same package have access to the item. package-private is the default access
modifier and does not have a keyword, because package is used to specify the
package for a class or interface. To declare package access for something, use no
access modifier.

• protected indicates that only descendants of the class can access the item. Classes
can be protected, but protected classes generally appear only within other classes
(an idiom called an inner class). Similarly, interfaces can be protected (provided
they are within a class), but it's rare (I've never seen one). protected is most often
used on fields and methods within classes.

• public indicates that any object has access to the item. public is often used (and
probably overused quite a bit). It pays to get into the habit of asking whether
anything should be public.

One other thing to know is that the access modifiers are hierarchical. private includes package-
private (that is, if something can see a private object, it can see a package-private object, too), package-
private includes protected, and protected includes public. Hard-to-find problems can arise when
people forget that the access modifiers are hierarchical. Imagine a package with multiple classes and
within that package, some class has a method visible to the package and another class has a protected
method of the same name. Potentially, code can end up calling the wrong method. It doesn't happen
often, but it's tough to figure out when it does.

■ Note Access modifiers can be tricky. In the course of writing this brief description of them, I tripped over all
kinds of uses I hadn't previously considered (it's been a learning experience). For example, Ithought that interfaces
could not be protected. However, they can be protected (or private) when they appear within classes. private and
public are easy to understand and use. For package and protected, think carefully before deciding to use that
modifier.

Interfaces
Interfaces define behaviors that classes must implement if they implement the interface. Interfaces are
always abstract, and all the methods they contain are also always abstract. Abstract (which Java supports
with abstract keyword) means that the class or method or field or whatever cannot be instantiated (that
is, created) where it is defined. Some other object must instantiate the item in question. In the case of

CHAPTER 2 ■ JAVA SYNTAX

28

interfaces, that means a class that implements the interface must implement the methods defined in the
interface (as we already learned, but now you know why that's the case). Consequently, interfaces never
implement anything. Also, interfaces, and the methods they contain, are always static. Consequently,
each interface (and its methods) exists exactly once in the system.

Interfaces generally contain only method definitions. They can also contain fields, but those fields
are always constants.

Consider the getAverage() method from the Average interface listed earlier in the chapter. As you
can see, the method has no body, not even braces. That's a method definition (also called a method
signature), as opposed to a method. Any class that implements the interface must implement that
method, including its modifiers and arguments. In this example, a class that implements Average must
contain a method with the same modifiers. That is, the class must contain a public float getAverage()
method with a body that does whatever needs to be done and returns a float value. (We cover data types
in the next chapter.)

Interfaces offer a handy way to ensure that similar classes implement similar (but not necessarily
the same) behavior. Consider a set of classes that model the animal kingdom. Such a model might have a
Predator interface with a hunt() method. Both cats and dogs hunt, but they do it differently (cats tend to
pounce, and dogs tend to chase). By leaving the details to the classes, the Predator interface lets us know
that predators hunt but leaves room for each kind of predator to hunt in their own way.

Exceptions
When something bad happens, Java raises an error through a process known as “throwing an
exception.” Exception is a class with many (and many levels of) descendants. The AverageImpl class
throws an IllegalArgumentException if someone tries to use an empty array, because the getAverage
method divides by the length of the array and it's illegal to divide by 0. (In fact, trying to divide by zero
creates an ArithmeticException, but AverageImpl doesn't let things get that far.)

When you can anticipate that someone might try something that will cause a problem, you should
test for that problem and throw an appropriate exception. Let's look at one of the places where
AverageImpl throws an exception in more detail in Listing 2-13:

Listing 2-13. Throwing an exception

public AverageImpl(int[] ints) throws IllegalArgumentException {
 if (ints.length == 0){
 throw new IllegalArgumentException(EXCEPTION_MESSAGE);
 }
 this.ints = ints;
}

As you can see, the method declaration includes the throws keyword and then the name of the
exception that the method throws. A method can throw any number of exceptions (and many do). When
a method can throw more than one kind of exception, use a comma to separate them.

Within the method, you can see the test for a problem we want to catch, namely an empty array as
the value of ints. Once we detect the problem, we use the throw keyword to throw a new instance of the
appropriate exception.

When a method throws an exception, any object that uses that method must handle that exception.
You can see that happen in the AverageTest class, in Listing 2-14:

CHAPTER 2 ■ JAVA SYNTAX

29

Listing 2-14. Handling an exception

try {
 averageImpl.setInts(ints2);
} catch(IllegalArgumentException iae) {
 System.out.println("Oops! can't use an empty array");
}

That structure is called a try-catch block. As you can see, it's really two blocks—one within the try
statement and one within the catch statement. If the code in the try block throws an exception, the code
in the catch statement gets run. You can have multiple catch statements, each catching a different kind
of exception, within a single try-catch block. That way, you can take different actions for different kinds
of exceptions. You can also add a finally block to a try-catch block. Listing 2-15 shows a more elaborate
example based on the existing example:

Listing 2-15. Try-catch-finally

try {
 averageImpl.setInts(ints2);
} catch(IllegalArgumentException iae) {
 System.out.println("Oops! can't use an empty array");
} catch(ArithmeticException ae) {
 throw ae;
} finally {
 System.out.println("Made it past the exception!");
}

Notice that the second catch block re-throws that particular kind of exception. In this case, you
probably wouldn't do that, but the example illustrates a common practice. Exceptions often get re-
thrown, so that they can get handled by the method that makes the most sense for handling that
particular exception. Often, a developer writes a method and has no idea to handle the exception while
writing that method, so the developer re-throws and figures the next method (or the one after that and
so on) will know what to do with it. Of course, if the exception never gets handled, you have a problem
that might crash the program, stick embarrassing exception messages in your output, or otherwise leave
you wiping egg off your face and trying to placate angry users. When you re-throw an exception, the
method containing your try-catch block needs to throw the exception, too. In that fashion, methods can
pass an exception through many methods to get it to a method that knows how to handle it.

The finally keyword lets you create a block of code that gets run no matter what. Even if an
exception happens, the code in the finally block gets run. In the example shown here, it doesn't do
much. finally often isn't included precisely because nothing needs to be done. However, it's sometimes
critically important that a finally block exist to do something. The classic use for a finally block is to
close a database connection. If you open a database connection to do some work but then hit an
exception, the database connection still needs to get closed. Too many open connections slow database
performance and can ultimately crash a database (a disaster for most commercial software).

One last thing to know about exceptions is that Java has two categories of exceptions: checked
exceptions and runtime exceptions. Checked exceptions are called that because the compiler (which is
the program that turns your code into machine code that your computer can understand) checks for
them when you try to compile your code. One big reason to use Eclipse is that it checks for problems as
you write your code. If you use a method that throws checked exceptions, you must handle those
exceptions in your code (though re-throwing them counts as handling them). The compiler does not
check for runtime exceptions. Eclipse runs a compiler for us and checks our code as we type it, so we

CHAPTER 2 ■ JAVA SYNTAX

30

know immediately when we need to catch checked exceptions. Runtime exceptions (as the name
implies) can only be caught at run time, so Eclipse can't warn us about those as we write our code.

Checked exceptions represent things beyond the program's control, such as bad user input or a file
not existing. Runtime exceptions represent things that can be fixed with more or better code. One school
of thought says that checked exceptions represent things the program should recover from. For example,
if the program encounters a missing file (that is, some method gets an IOException when it expects a file
handle), the program should ask the user where the file is or let the user cancel the operation. Runtime
exceptions represent errors (usually oversights) in the code that developers should fix. If you get a
NullPointerException, you don't ask the user to do anything (though you might tell the user to call
customer support and report the problem). Instead, you fix the point in the code where something is
passing null when it shouldn't. One concept that nearly all experienced programmers embrace is
defensive programming, which means we try to not let things get to a point where exceptions can
happen. Instead, we do things like checking to see whether something is null before we try to use it.

As it happens, IllegalArgumentException is a runtime exception. If you remove the try-catch blocks
from AverageTest, you get no error. However, because I can anticipate the problem, I elect to specifically
throw that error, so that I can attach a meaningful error message.

Blocks
Blocks are units of code that (usually) consist of more than one line and are defined by brace characters
({}). (Brace characters have several names, which can be pretty far-fetched. Throughout the book, I call
them braces, for the sake of consistency.)

Braces define blocks of code for methods, classes, and various statements (such as if and for). Let's
look at a simple block from the AverageImpl class in Listing 2-16:

Listing 2-16. A simple block

 for (int i = 0; i < ints.length; i++) {
 result += ints[i];
 }

Static BlocksStatic blocks are handy bits of code that let you define one block of code and have it be
included in every constructor. Let's consider an example (in the form of a different class) in Listing 2-17.

Listing 2-17. Static block example

package com.bryantcs.examples;

public class StaticBlockClass {

 private static String name;
 private String whichOne;

 static {
 name = "StaticBlockClass";
 }

CHAPTER 2 ■ JAVA SYNTAX

31

 public StaticBlockClass(int identifier) {
 whichOne = Integer.toString(identifier);
 }

 public StaticBlockClass(String identifier) {
 whichOne = identifier;
 }
}

As you can see, the field we set also has to be static. However, because we don't want to change it,
that's just fine. In this case, we don't gain much by having a static block. However, imagine if we have
ten values to set and four constructors.

Aside from saving space (though not in this example), the real value of static blocks makes sure that
everything the class needs gets into each constructor. You can get bugs from having things set in some
constructors but not others, and static blocks can help you manage that problem.

Comments
Comments are lines of code that are (usually) meant purely for humans to read. The compiler utterly
ignores comments. Java supports two styles of comments, end-of-line comments and block comments.
The code examples I provide have many end-of-line comments. End-of-line comments begin with two
slash characters (//), thus:

// end-of-line comment that happens to be the only thing on the line

End-of-line comments can also start after other code on the line, thus:

int counter = 0; // Initialize the counter

Code cannot follow an end-of-line comment on the same line. It would become part of the
comment.

Block comments begin with a slash and an asterisk (/*) and end with an asterisk and a slash (*/).
Block comments can be on one line, but they can also consist of multiple lines. Block comments can
start on the same line as other code. In fact, block comments can occur between code elements on the
same line (possibly making the line of code consist of multiple lines in the file). As ever, examples help.
Here's a block comment by itself on a single line:

/* comment */

And here's a line of code with a comment in the middle of it:

int counter /* comment */ = 0;

Please don't do that. It's legal, but it's poor coding practice, because it makes the code harder to
read.

Now let's look at multi-line block comments in Listing 2-18.

Listing 2-18. Multi-line block comment

/* Now is the time for all good coders to write meaningful comments,
so that the rest of us can understand what the code is doing. */

Listing 2-19 shows another multi-line block comment, mingled with code.

CHAPTER 2 ■ JAVA SYNTAX

32

Listing 2-19. Bad style in a multi-line block comment

int counter /*
Please don't
do this */ = 0;

By convention (which I break to provide you with examples that you shouldn't emulate), multi-line
comments have the beginning of the comment (/*) on its own line, have the end of the comment (*/) on
its own line, and have each of the middle lines start with an asterisk, as shown in Listing 2-20.

Listing 2-20. Properly formatted multi-line block comment

/*
 * Now is the time for all good coders to write meaningful comments,
 * so that the rest of us can understand what the code is doing.
 * And now this comment is properly formatted, too.
 */

This is easier to read, isn't it?

JAVADOC

Java includes a mechanism to generate documentation from within classes and interfaces. That
mechanism is called Javadoc, and it uses of a special kind of block comment (and here's a comment
meant for both humans and systems to read). A Javadoc comment starts with a slash and two asterisks
(/**) and ends with an asterisk and a slash (*/), much like a block comment but with an additional asterisk
in the starting syntax. The content of the comment then ends up in a document that the Javadoc tool
creates. By convention, any class meant for public consumption should have Javadoc comments on the
class and all methods that someone might use or extend (usually public and protected methods).

When the Javadoc tool runs, it examines all the classes and interfaces and creates a set of HTML pages (or
sometimes other output, depending on various settings) with headings and subheading corresponding to
the classes, interfaces, and methods in the program. Various markers help the Javadoc tool indicate
descriptions for arguments and return values, who wrote the Javadoc comment, and other special content.

When coding a program for yourself, you don't need to insert Javadoc comments. If you start coding for an
open-source project or for a company, you might be asked to add Javadoc comments to your code.

Listing 2-21 shows an example of a Javadoc comment and the method declaration it describes.

CHAPTER 2 ■ JAVA SYNTAX

33

Listing 2-21. A Javadoc comment for a method

/**
 * This method makes a Cat object chase the given Mouse object.
 * @param mouse an instance of the Mouse class for our cat to chase
 */
void chase(Mouse mouse) {

Because you probably won't need to create Javadoc for a while, let's stop there. When you do need
to know more about it, you can find the Javadoc tool home page at http://www.oracle.com/technetwork/
java/javase/documentation/index-jsp-135444.html.

Summary
So, what did we learn in this chapter?

We considered:

• The structure of a Java file, looking at statements and declarations

• The components that comprise a Java program (classes and interfaces)

• The components that comprise classes and interfaces (methods, fields,
constructors, blocks, and comments)

• The basics of Javadoc

Whole books have been written about the content we covered in a single chapter, but those are
awfully dry books for a beginner. I thought it would be more fun to learn the basics and then work with
files, create animations, and create your own video games. We do all those things later in the book.I
recommend reading the chapter again, thinking about what you learned from later in the chapter as you
go. I also recommend stopping to do a little programming of your own. Try some simple things, such as
a program to print a small multiplication table (say up to 4 x 4) and a program that accepts multiple
Strings as arguments and combines them in interesting ways. There's no substitute for learning by doing
it yourself.

C H A P T E R 3

35

Data Types

Most programming languages have data types. Java has several data types. The first characteristic of a
data type is whether it's a primitive or an object. Anything that's not a primitive is an object of some sort.

Primitive Data Types
Primitive means that no class exists to define a variable of that type. Java supports a number of primitive
data types. In the code samples in previous chapters, you saw several variables whose data types were
primitive. Anywhere you saw int or boolean, those were primitive data types (usually called
“primitives”). Primitives fall into several broad categories. From the language's point of view, the
categories don't exist, but they do help people keep the primitives straight from one another.

Integer Primitives
An integer primitive is one whose value can be only an integer. It cannot be a real number (that is, one
with a fractional value). The numbers 0, 1, 16, and 37 are all integers. The number 12.34 is not an integer.
The distinguishing feature between the various integer primitives is how many bits make up each one.
Because a type made of more bits can hold a bigger number, the practical effect of the different number
of bits is to increase the maximum value of that type. The possible detrimental effect of increasing the
number of bits is to consume more memory. Often, it doesn't matter, but it's good practice to use data
elements no larger than you need.

Integer primitives are signed (unless you use the unsigned keyword, which we discuss more in a
moment), so their values range from a negative number to a positive number.

Table 3-1 shows the details of the various integer primitives.

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 3 ■ DATA TYPES

36

Table 3-1. Integer primitives

Type Bits Minimum Value Maximum Value

byte 8 -128 127

short 16 -32768 32767

int 32 -2,147,483,648 2,147,483,647

long 64 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

Do you need even bigger numbers? Real-world applications sometimes need numbers even bigger

than the maximum value of long. In those cases, Java provides a class called BigInteger. A number
represented by a BigInteger object can be of any size, because the BigInteger class allocates enough
bytes to store a representation of any number. It's a little tricky to use and operations on BigInteger
objects are slow, but it's sometimes the only way. BigInteger is not a primitive.

Real Primitives
Real numbers have decimal points and values after the decimal point. Even if that value is 0, and even if
you didn't type a decimal point and anything after it, the decimal point and the zeros after it are there
behind the scenes. They must exist so that operations on the value can compare to the full value, so the
JVM (the Java Virtual Machine, which is the program that runs your programs) fills them in even if you
don't.

■ Note 0 and 0.00 are different values in Java. To the average person, they both mean zero. To a scientist or
mathematician, the one indicates greater precision than the other, but they still both mean zero. But to a compiler,
they are different data types and have nothing to do with one another.

Java supports two real primitives, float and double. float gets its name from the idea of a floating
point number. The decimal point can move, so it's said to “float.” double gets its name because it takes
twice the storage space of a float. Table 3-2 shows the details of float and double.

Table 3-2. Real primitives

Type Bytes Minimum Value Maximum Value

float 4 1.40129846432481707e-45 3.40282346638528860e+38

Again, sometimes even that isn't enough. For those cases, Java provides a class called BigDecimal. As

with BigInteger, it can be tricky to use, and operations on it are slow. But when you absolutely have to
have a number bigger than a double, use BigDecimal. As with BigInteger, BigDecimal is not a primitive.

CHAPTER 3 ■ DATA TYPES

37

boolean
The boolean data type indicates whether something is true or false. In fact, those two words (true and
false) are the only two values boolean data types can have.

■ Note true and false are reserved words in Java. You can't use them for anything other than the value of a
boolean variable. For example, trying to create an int called true throws an error.

char
The char data type holds two 8-bit bytes and is meant to represent characters. It's stored as an unsigned
16-bit integer with a minimum value of 0 and a maximum value of 65,535. However, you should never
use a char to store a number, because that can lead to confusion. Use char variables to hold individual
characters, and you'll avoid trouble.

So why is the maximum so big when relatively few characters exist? Well, when you look at all the
character sets in use all around the world, 65,535 isn't so unreasonable. In fact, it's not enough when
dealing with traditional Chinese.

■ Tip If you're curious about how to handle characters from other languages, look up Unicode, which is a
standard that defines all the world's characters. For more on handling multi-byte characters, look up variable-
width encoding.

The Special Type: String
String is a type that has some of the characteristics of both a primitive and an object. Strictly speaking, it
is an object; that is, a String class defines it. A String object is a sequence of characters (and Java
provides utilities for turning a String object into a collection of char primitives and for making a String
object from such a collection). It's often handy to work on the collection (the string) rather than on each
character, so Java (and nearly all other programming languages) provides a String object.

Java offers special support for the String class that lets String objects act a little like primitives. In
particular, you can create a String object by using the equals sign (=), and you can concatenate String
objects with the plus sign (+), as shown in Listing 3-1. Concatenation applies only to strings, by the way.
If you use a plus symbol with the other data types, you either get an error (try adding two boolean values
and you'll see it) or you get the mathematical plus operation that you usually associate with the plus
symbol.

CHAPTER 3 ■ DATA TYPES

38

Listing 3-1. String examples

String myString = "my string";
String yourString = "your string";
String ourString = myString + " " + yourString;
System.out.println(myString);
System.out.println(yourString);
System.out.println(ourString);

The output is in Listing 3-2.

Listing 3-2. String example output

my string
your string
my string your string

Notice that the value of ourString consists of the concatenation of three values: myString, " ", and
yourString. " " is a String literal. That's another way String differs from other objects; no other object
(remember, primitives aren't objects) can have a literal.

Literals
All the primitives and the String class can have literal values. A literal is a constant value that
corresponds to a particular data type. Table 3-2 provides examples for each of the primitive data types
and the String class.

Table 3-2. Literal examples

Type Literal

byte int a = -100;

short int b = 1000;

int int c = -10000;

long int d = 100000000000;

float float e = 12.34f;

double double f = -56.78;

boolean boolean iLoveJava = true;

char char aChar = 'a';

String String greeting = "Hi, there!";

CHAPTER 3 ■ DATA TYPES

39

■ Note Declaring a float literal requires appending f to the end of the literal. Otherwise, the compiler tries to
make it into a double value and then complains that it can't cast from double to float. Similarly, you can put d at
the end of a double literal's declaration. However, that is redundant because double is the default floating-point
type.

Literals pop up all over the place, often without anyone stopping to think about it (after all, we're
usually trying to get the computer to do something). Every time we write a loop that starts at 0 and
counts to some value, we use a literal (in that case, an integer literal). A number of other literals are
common in nearly all programming languages and tasks. In set theory (which informs a lot of
programming and especially database programming), the only three values that matter are 0, 1, and
many. Consequently, 0 and 1 appear over and over again throughout all kinds of software. The empty
string (""—sometimes handy for comparing String objects) and the single space (" "—handy for linking
String objects without inventing a new and large word in the process) also appear often.

Escaping Characters
Variables of type char can have several special values. First, singe quotation marks ('), double quotation
marks ("), and backslashes (\) all have to be marked as special (that's called escaping a character), so
that the JVM knows you want one of those characters. Otherwise, it would process all your single
quotations as the beginning or end of a char and all your double quotations as the beginning or end of a
String object. The backslash character has to be escaped because it is the escape character. If it couldn't
itself be escaped, then every backslash would indicate an escaped character, which would be a real
problem. Escaped characters (often called escape sequences because they consist of at least two
characters—the escape character and at least one other character) are also used for non-graphical
characters (often called control characters). There's even a character called Bell. It never appears, but it
can (if your computer enables it) make your computer beep. The Bell (or Alert) character's escape
sequence is \a. All of that might not make sense, so let's consider some examples in Listing 3-3 to make
things clearer.

Listing 3-3. Examples of escaping characters

// Let's start with double quotation marks
// The following line throws an error because meow isn't defined
System.out.println("My cat says, "meow."");
// so the line has to be
System.out.println("My cat says, \"meow.\"");
// which will produce this output: My cat says, "meow."

// And now single quotation marks
// The following line throws an error because ' never has a matching '
System.out.println("' is my favorite character");
// so the line has to be
System.out.println("\' is my favorite character");

CHAPTER 3 ■ DATA TYPES

40

// which will produce this: ' is my favorite character
// (my actual favorite character is ;)

// And now the backslash itself
// The following line throws an error because it's missing a closing "
// (The compiler takes \" as a literal " and then can't find an end to the string.)
System.out.println("I want a \");
// so the line has to be
System.out.println("I want a \\");
// which will produce this: I want a \

Java also supports several special escape sequences (all beginning with a backslash). Table 3-3
shows each escape sequence and describes its effect. It begins with the three we already covered.

Table 3-3. Escape sequences

Escape Sequence Effect

\' Create a single quotation mark

\" Create a double quotation mark

\\ Create a backslash character

\n Create a new line (often called the newline character)

\t Create a tab

\b Create a backspace character (which might delete the preceding character,
depending on the output device)

\r Return to the start of the line (but do not make a new line)

\f Form feed (move to the top of the next page for printers)

\a The alert (or bell) character

The newline character (\n) sees a lot of use for things like creating readable error messages,

separating lines in files, and other output. Tabs are less common but still sometimes used (to line up
pieces of output to make things easier to read). The others are much more rarely used, because software
developers hardly ever create unstructured output these days. When programmers used punch cards for
input and line printers for output, programmers made extensive use of the form feed and start-of-line
characters. We still produce plenty of output, of course, but it's usually HTML, XML, or some other
structured format.

In addition to being possible values for variables of type char, String objects can also contain
escape sequences. Many String objects contain a newline sequence or two. Listing 3-4 shows a short
example.

CHAPTER 3 ■ DATA TYPES

41

Listing 3-4. String with escape sequence

String errorMessage = "The whatsit didn't work!\nCheck the doohickey.";
System.out.println(errorMessage);

That code snippet produces the output in Listing 3-5.

Listing 3-5. Newline output

The whatsit didn't work!
Check the doohickey.

Wrapper Classes
Each of the primitives (remember, String is an object rather than a primitive) has a corresponding class
that provides several useful abilities that are otherwise unavailable to a primitive. You can think of the
wrapper classes as each being a package of useful abilities wrapped around a primitive of the
corresponding type. Table 3-4 shows the corresponding class for each primitive:

Table 3-4. Wrapper classes

Primitive Class

byte Byte

short Short

int Integer

long Long

float Float

double Double

boolean Boolean

char Character

The most commonly used methods of those classes are the various parse, Value, and valueOf

methods, because those methods let you turn a String into a primitive. Each class also supports
toString methods to turn primitives into String objects. Listing 3-6 shows what you can do with an int
primitive.

CHAPTER 3 ■ DATA TYPES

42

Listing 3-6. Integer example

// declare an int
int myInt = 1;

// and a String that contains a number
String myString = "1";

// turn myInt into a String
String myIntString = Integer.toString(myInt);

// turn myString into an int
int myStringInt = Integer.parseInt(myString);

// turn myString into an Integer
// be prepared for an exception if myString does not hold a number
Integer myStringInteger = new Integer(myString);

// and then turn myStringInteger into an int
int myOtherStringInt = myStringInteger.intValue();

// Now for more unusual things
// convert an int to a float (perhaps for further floating-point work)
float myFloat = new Integer(myInt).floatValue();

// convert an int to a byte
// be prepared for an exception if the value is out of byte's range
byte myByte = new Integer(myInt).byteValue();

// convert an int to a long
// no need to worry about an exception this time
long myLong = new Integer(myInt).longValue();

// just for fun, get the binary string representation of myInt
// creates a String object that holds "1"
String myIntBinary = Integer.toBinaryString(myInt);

The other numeric primitives (byte, short, long, float, and double) all work in a similar way. You
can convert any of them to any other, though you might have to handle an exception if the conversion
can't be done with the value you provide. For example, if you have an int variable that holds a value of
300, converting it to a byte gives an error, because a byte can't hold that value. We cover this concept in
greater detail in the next chapter, when discussing casting values.

The Boolean and Character classes work a little differently. You can still convert strings to boolean or
char values and vice-versa, but you can't convert boolean and char primitives into other primitives. Also,
the Boolean class includes an equals method, and the Character class includes many methods for
dealing with issues such as characters that are meant to be read from right to left (for example,
characters from Arabic and Hebrew) and other special issues that relate only to characters. All of those
operations are fairly unusual, though, so we don’t cover them. If you want to learn more about them
(and good for you if you do), look at the Javadoc for the Boolean and Character classes. As you might
recall from Chapter 1, JavaDoc is a special kind of documentation that is built into the code itself. Oracle
(the company that makes Java) provides extensive JavaDoc for all the standard Java libraries. You can
find the JavaDoc for the Boolean class at http://download.oracle.com/javase/7/docs/api/java/

CHAPTER 3 ■ DATA TYPES

43

lang/Boolean.html and the JavaDoc for the Character class at http://download.oracle.com/javase/7/
docs/api/java/lang/Character.html. You can find all the JavaDoc for Java 7 at http://download.oracle.
com/javase/7/docs/api/ (as you can see, the other topics are branches of the overall API
documentation).

Arrays
An array is a data structure that holds a group of variables under a single identifier. Java supports arrays
for both primitives and objects. Square brackets after a variable's name indicate that it is an array.
Listing 3-7 shows several arrays and how to manipulate them.

Listing 3-7. Arrays of primitives

int[] a; // array declaration without assignment
a = new int[2]; // specify the length of an existing array
int[] b = {1, 2, 3, 4}; // array declaration with assignment
int bLength = b.length; // how to get the length of an array

// arrays start at 0, not 1
b[0] = 2; // have to reassign each value in the array individually

Let's look at the code one line at a time. The first line creates an array of int primitives but doesn't
assign anything to it (a is null at that point). The second line shows how to set an array to be a particular
length. If a had values, its values would be replaced by the default values of the new type (0 in this case).
The third line shows how to create an array with a set of starting values. You can use that block
assignment syntax only when creating an array, not when assigning new values to an existing array. The
fourth line shows how to get the length of an array. The last line shows how to reassign one of the values
in an array and shows that array addresses start at 0. (Most programming languages start counting at 0.)

Now let's consider an array of objects in Listing 3-8, which reveals some interesting things.

Listing 3-8. Arrays of objects

Integer[] myIntegers = new Integer[4];
for (int i = 0; i < myIntegers.length; i++) {
 myIntegers[i] = new Integer(i);
}

Again, let's go line by line. As you can see, the syntax for creating an array of objects differs a bit
from that for primitives. The part to the left of the equal sign looks the same (the kind of object, the array
indicator, and the name of the variable), but the part to the right of the equal sign differs by having the
new keyword before the type of the item going into the array. To create a new instance of an object, we
usually use the new keyword (though other ways exist), which calls a constructor for the object. However,
all of the Integer class's constructors require an object (either an int or a String object that holds an
integer value), so this array ends up holding four null references. (We dive into what null means in a
moment.)

This listing also shows how to loop through an array and, in this case, create an object for each of
the null objects. Notice that we have to use the new keyword again, even though we used it when we
created the array. Because we got four null references rather than actual objects from the original
assignment, we have to create new ones here. In this case, we end up with four Integer objects having
values of 0, 1, 2, and 3.

CHAPTER 3 ■ DATA TYPES

44

Java provides a convenience class for arrays. The Arrays class consists of many static methods to
do handy things such as copy and sort arrays. For example, Listing 3-9 shows one way to sort an array
of ints.

Listing 3-9. Using the Arrays convenience class

int[] a = {5, 4, 3, 2};
// at the top of the program, we had to import
// java.util.Arrays for this to work correctly
Arrays.sort(a);
for (int i = 0; i < a.length; i++) {
 System.out.println(a[i]);
}

The result is 2, 3, 4, 5 (each on its own line) in the console.

The Non-Existent Type: null
Java includes a value that isn't anything: null. It refers to a memory address that has not been assigned.
In Java terms, that means it refers to an object or primitive that has not been created. As I mentioned in
the “Arrays” section, when you create an array without specifying its values, you are creating a collection
of null values. They have no memory address, no corresponding primitive or object exists for them, and
so they are null. That might sound like a problem, and the whole concept of null often causes novice
programmers some trouble. You can keep it straight by remembering that a null is a non-existent
reference.

The oft-maligned null has its uses (otherwise, it wouldn't exist—programmers are pragmatic
people, most of the time). For example, we often compare an object to null to be sure that something
exists before we try to use it. If the graphics library is supposed to give us an object of type Color and we
get null instead, we have a problem. So we might compare that Color value to null to ensure that we are
getting a Color object and do something useful (such as trying another way or at least logging an error)
if not.

Also, it's common practice to create a variable in one place and assign it in another place. In
between the creation and assignment, the value of that variable might be null (it also might not be null
because some primitives, such as int, have default values). This technique is handy because we might
want to assign different values to the variable based on some logic. For example, a series of if-else
statements or a switch statement might contain code to assign the value of a variable. Let's consider a
small example (from a minesweeper game), shown in Listing 3-10.

Listing 3-10. Using a null value

public getMineIcon(int x, int y) {

// x and y are the position within the game grid
 int numberOfAdjacentMines = getNumberOfAdjacentMines(x, y);

 MineIcon mineIcon = null; // here's our null

CHAPTER 3 ■ DATA TYPES

45

 if (numberOfAdjacentMines == 1) {
 mineIcon = new MineIcon(1);
 } else if (numberOfAdjacentMines == 2) {
 mineIcon = new MineIcon(2);
 }
 // and so on up to 8

 return mineIcon;
}

In this case, we can assume a MineIcon class exists and that its constructor will take two integer
values and return an icon (a type of image) that shows the value of that integer argument. Because a
square in a minesweeper game can have no more than eight neighboring mines, we stop at eight. We
also let the method return null, to represent the case where a square has no neighboring mines.
Consequently, the code that calls this method then has to know what to do with a null value. As it
happens, the setIcon method that we need to use accepts a null argument as a way of saying that no
icon needs to be set.

We create a full-blown minesweeper program in Chapter 7, “Creating a User Interface.” When we
do, you see a different way to use set the mine icon, but it still uses a null reference. For now, just
remember that null is just another value (though a special one that indicates a non-existent reference)
and that it can be used for purposes other than just checking for missing objects.

Enumerations
An enumeration (often written as “enum”) is a data type that consists of a fixed number of constants. For
example, if you are writing a game that involves navigation, you might have an enumeration to define
the four cardinal directions, similar to the one shown in Listing 3-11.

Listing 3-11. Enum for directions

public enum Direction {
 NORTH, EAST, SOUTH, WEST;
}

As Listing 3-11 shows, the declaration of an enumeration consists of the enum keyword, a name for
the enumeration, and the values that comprise the enumeration. The values are just names and have no
type of their own. That works because we need unique identifiers but don't need a type for each one.

The value of enumerations is that they are type-safe (meaning that it can't be confused with another
type—enums used to be created with integers, so confusing an enum with an integer was a real
problem). Without enumerations, we'd have to set up constants in a different way—usually with
integers, as shown in Listing 3-12.

Listing 3-12. Constants to define directions

public static final int NORTH = 0;
public static final int EAST = 1;
public static final int SOUTH = 2;
public static final int WEST = 3;

CHAPTER 3 ■ DATA TYPES

46

■ Caution Do not write collections of constants this way. They can be compared to int values, and that's almost
certain to be the wrong thing to do. That's why Java has enumerations.The enumeration value, Direction.NORTH,
can't be treated as an integer (not even by accident), whereas the constant, NORTH, can be. Also, constants are
static and final (and often public). Enumerations remove the need for those modifiers, which gives us greater
flexibility when using enumerations.

Each enum is actually a class. (You might have noticed that its declaration syntax is similar to a class.)
All enum objects implicitly extend java.lang.Enum. That lets us make more meaningful enums than just
lists of constants. To continue with our example, we can set the degrees for each direction, as shown in
Listing 3-13.

Listing 3-13. Enum with more information

public enum Direction {
 NORTH (0),
 EAST (90),
 SOUTH (180),
 WEST (270);

 private final int degrees;
 Direction(int degrees) {
 this.degrees = degrees;
 }

 public int getDegrees() {
 return degrees;
 }
}

From there, we can write code to get the additional information associated with each value in the
enumeration, as shown in Listing 3-14.

Listing 3-14. Getting details from an enum

for (Direction d : Direction.values()) {
 System.out.println(d + " is " + d.degrees + "degrees.");
}

We can also write methods that work with the enumeration's values. For example, we can write a
method that, given a direction in degrees, tells you which cardinal direction is closest. Listing 3-15 shows
one way to write such a method.

CHAPTER 3 ■ DATA TYPES

47

Listing 3-15. findCardinalDirection method

public static Direction findCardinalDirection (int degrees) {
 if (degrees < 45) {
 return NORTH;
 } else if (degrees < 135) {
 return EAST;
 } else if (degrees < 225) {
 return SOUTH;
 } else if (degrees < 315) {
 return WEST;
 } else {
 return NORTH;
 }
}

You might also notice the different syntax for iterating through a for loop. That syntax is not unique
to enumerations, but it is especially handy for them. We cover these alternate ways of using a for loop
when we get to looping in a later chapter.

As you can see, an enumeration is far more powerful than a simple list of constants. It's also safer,
because no one can confuse Direction.North with 0.

Listing 3-16 shows the full code for the Direction enumeration.

Listing 3-16. Complete enumeration example

package com.bryantcs.examples.enumExample;

public enum Direction {
 NORTH (0),
 EAST (90),
 SOUTH (180),
 WEST (270);

 private final int degrees;
 Direction(int degrees) {
 this.degrees = degrees;
 }

 public int getDegrees() {
 return degrees;
 }

 // static because it doesn't rely on a particular direction
 public static Direction findCardinalDirection (int degrees) {
 if (degrees < 45) {
 return NORTH;
 } else if (degrees < 135) {
 return EAST;
 } else if (degrees < 225) {
 return SOUTH;
 } else if (degrees < 315) {
 return WEST;

CHAPTER 3 ■ DATA TYPES

48

 } else {
 return NORTH;
 }
 }
}

Now that we have our completed enumeration, we need a test program to see how it works. Listing
3-17 shows a program class that does the job.

Listing 3-17. A test class for our enumeration

package com.bryantcs.examples.enumExample;

public class EnumExample {

 public static void main(String[] args) {
 int[] compassPoints = {22, 77, 144, 288};
 for (int i = 0; i < compassPoints.length; i++) {
 System.out.println(compassPoints[i] + " degrees is (very roughly) "
 + Direction.findCardinalDirection(compassPoints[i]));
 }
 for (Direction d : Direction.values()) {
 System.out.println(d + " is " + d.getDegrees() + " degrees.");
 }
 }
}

EnumExample produces the output in the console shown in Listing 3-18.

Listing 3-18. EnumExample output

22 degrees is (very roughly) NORTH
77 degrees is (very roughly) EAST
144 degrees is (very roughly) SOUTH
288 degrees is (very roughly) WEST
NORTH is 0 degrees.
EAST is 90 degrees.
SOUTH is 180 degrees.
WEST is 270 degrees.

Summary
In this chapter, we learned the basics about the various data types that are available in Java. We found
out:

• The size restrictions of the various numeric data types

• How the boolean data type works

• How char variables and String objects work and a bit about how they can interact

CHAPTER 3 ■ DATA TYPES

49

• How arrays work

• What a null is and how to use one to good effect

• How to create and use enumerations

We make repeated use of all these concepts and techniques throughout the rest of the book. As we
work more with Java, you'll do a lot with primitives, the String object, primitive and String literals, and
arrays. Enumerations appear less often in most code, but they offer important advantages (most notably
type safety) when we need them.

C H A P T E R 4

51

Operators

Java includes many operators, from ordinary mathematical operators such as a minus sign (-) to
operators that only make sense for object-oriented programming, such as instanceof. To start with, let's
look at the list of operators in Table 4-1.

Table 4-1. Java Operators

Category Operators

postfix expr++ expr--

unary ++expr --expr +expr -expr ~ !

casting (type)

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 4 ■ OPERATORS

52

Continued

Category Operators

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

Operator Precedence
The first thing to know about operators is that they have precedence. I can’t forget Mr. Smith in junior
high algebra class teaching us to memorize Please Excuse My Dear Aunt Sally. That odd phrase is an
effective mnemonic for the order of operations (another name for operator precedence) in algebra. It
shortens to PEMDAS, which gives us Parentheses, Exponent, Multiplication,Division, Addition, and
Subtraction. Thanks to operator precedence (and, in my case, Mr. Smith), when we work with algebra
equations, we know to resolve parentheses before we resolve exponents, exponents before
multiplication, and so on.

The same kind of thing holds true in Java (and many other programming languages). However, as
shown previously, Java has a lot more than six operators. Also, Java has some operators that have the
same level of precedence. In those cases, precedence proceeds from left to right for binary operators
(except assignment operators) and right to left for assignment operators. That's probably as clear as
mud, but we get to some examples shortly that clarify the order of operations and identify some of the
problem spots where people often trip.

The Missing Operator: Parentheses
Parentheses aren't in the list of Java operators, but they act as an operator with the highest precedence.
Anything in parentheses is resolved first. When a line has several sets of parentheses, they are resolved
from innermost to outermost and from left to right. Let's consider some examples in Listing 4-1.

Listing 4-1. Parentheses as an operator

System.out.println(2 + 4 / 2); // division processed first, so prints 4
System.out.println((2 + 4) / 2); // addition processed first, so prints 3
System.out.println((2 + 4) / 3 * 2); // prints 4, not 1 – see below for why
System.out.println((2 + 4) / (3 * 2)); // prints 1
System.out.println((2 + 4) / (2 * 2)); // prints 1 – note the truncation
System.out.println((2.0 + 4.0) / (2.0 * 2.0)); // prints 1.5

The bolded line prints 4 because the division operator gets processed before the multiplication
operator. That happens because operators of equal precedence get processed from left to right. In
algebra, multiplication comes before division. However, Java is not algebra, and that sometimes trips up
new Java developers who remember their algebra. (I've tripped over that difference at least once.)

CHAPTER 4 ■ OPERATORS

53

The fifth line prints 1 because we use integer literals (as we covered in the previous chapter).
Consequently, we get back an integer literal. Java truncates (that is, throws away) any remainder when
dealing with integers, so 1.5 becomes 1. The last line uses floating-point literals, so it returns 1.5. A value
of 1.9 would also be truncated to 1. Truncation is not a kind of rounding; a truncated value has any value
to the right of the decimal place removed.

As a rule, remember to use parentheses to clarify your code and to ensure the proper order for your
operations. I mention clarity first for a reason: Clarity helps a lot. If you can gain clarity by splitting a line
onto multiple lines to make your operations clear for other developers (and for yourself when you return
to the code at a later date), then do so. Your fellow developers will thank you if they can understand your
code without a struggle.

Postfix Operators
The term postfix has a number of meanings in mathematics, linguistics, and other fields. In computer
science, it means an operator that follows an expression. Java's two postfix operators increment
(increase by one) and decrement (decrease by one) values. Listing 4-2 shows some examples:

Listing 4-2. Postfix operators

private int getC() {
 int c = 0;
 c++; // c = 1 now
 c--; // c = 0 now
 return c++; //returns 0;
}

So why does that return 0? Because the postfix operators first return the original value and then
assign the new value to the variable. That particular language detail bites a lot of new Java programmers.
To fix it, use the unary ++ operator (next on our list) before the expression rather than the postfix
operator after the expression or move your return statement to its own line. Parentheses around the
expression (c++) do not make this method return 1, by the way, because c would have been set to 0
within the parentheses.

Unary Operators
Strictly speaking, a unary operator is an operator that takes just one operand. By that definition, the
postfix operators are also unary operators. However, Java distinguishes between the postfix operators
and the other unary operators. As we learned previously, the postfix operators return the value before
the postfix operation has been applied. The unary operators return their values after the operator has
been applied. Table 4-2 briefly describes the unary operators (other than the postfix operators):

CHAPTER 4 ■ OPERATORS

54

Table 4-2. Unary operators

Operator Name Description

++expr Prefix increment Adds 1 to the value of the expression that follows

--expr Prefix decrement Subtracts 1 from the value of the expression that follows

+expr Unary plus Indicates a positive number (usually redundant)

-expr Unary minus Negates an expression (including literals)

~ Bitwise complement Performs a bit-by-bit reversal of an integer value

! Logical complement Reverses true and false

Let's consider a code example that exercises each of the unary operators (see Listing 4-3):

Listing 4-3. Unary operators

byte a = 0;
++a; // unary prefix increment operator - now a has a value of 1
--a; // unary prefix decrement operator - back to 0
byte b = +1; // unary plus operator (unnecessary)
byte c = -1; // unary minus operator to create a negative number
System.out.println(~b); // bitwise complement operator - prints -2
System.out.println(~c); // bitwise complement operator - prints 0
boolean myCatScratchesTheCouch = false;
System.out.println(!myCatScratchesTheCouch); // logical complement operator - prints true

Understanding the Bitwise Complement Operator
Java (and all programming languages) store values in one or more bytes, and each byte consists of 32
bits. When we talk about bytes in this context, we mean the units computers use for memory. That's not
the same as Java's data type called “Byte” (which has a minimum value of -128 and a maximum value of
of 127). The JVM stores a value of one as the following binary string: 00000000000000000000000000000001
(a 32-bit binary value that consists of 31 zeroes and a single one). When you use the bitwise complement
operator on it, the JVM turns all the zeroes into ones and all the ones into zeroes, resulting in
11111111111111111111111111111110, which evaluates to -2. Similarly, -1 in binary is
11111111111111111111111111111111. Because that's all ones, the bitwise complement operator turns it to
all zeroes, so its value is 0.

I won't blame you if you think that's all meaningless trivia, but the bitwise complement operator
does have real-world uses. For example, in graphics programming, the color white is generally
represented by all the bits being 1. Applying the bitwise complement operator sets all the bits to 0, which
generally indicates the color black. The same principle applies to other colors (which have various bits
set to 0 or 1). In this fashion, a graphics program can quickly create a negative of an image without any
mathematical processing.

CHAPTER 4 ■ OPERATORS

55

The bitwise complement operator promotes the values of byte, short, and char variables to 32 bits
before applying the ~ operator. The result of the operator is an int in those cases. That's why the binary
strings have 32 characters. This process is called unary numeric promotion. Consider the following code
in Listing 4-4:

Listing 4-4. Unary numeric promotion

byte a = 0;
Byte b = new Byte(a); // no problem
Byte c = new Byte(~a); // won't compile because the Byte constructor cannot accept an int
int d = ~a; // no problem

Casting
Software developers often find that they need a variable of one type to be a variable of another type. In
Java (and most programming languages), you can't change the type of a variable. Instead, you should
create a new variable and convert the existing variable into the new variable's type. That process is called
casting, and Java provides an operator of sorts for doing it. I say, “of sorts,” because the casting operator
differs according to the data type to which you're casting. In particular, you wrap parentheses around
the name of the type to which you're casting and put that operator before the value you want to cast.
Casting is often necessary to prevent the compiler from throwing errors when we convert one data type
to another. As ever, examples go a long way toward clarifying things (see Listing 4-5).

Listing 4-5. Casting

// Cast a byte to an int
byte b = 123;
int bInt = b; // no casting necessary

// Cast an int to a short
int i = 123;
short s = (short) i; //(short) is the casting operator – beware of values that are too large

// Cast a float to an int
float f = 12.34f;
int floatInt = (int) f; // floatInt = 12 – the original value is truncated

// Cast a char to a String – oops
char c = 'c'; // can't directly cast a char to a string
Character cChar = new Character(c); // so get a Character wrapper object for our char
String s = cChar.toString(); // and get a String object from the wrapper

In the first example shown previously, casting a byte to an int does not require a cast operator.
Because there's no possibility of data loss (an int can hold any value that a byte can hold), the JVM does
what's sometimes called “an implicit upcast”—implicit because you don't have to add any syntax to
make it happen and upcast because you've gone from smaller to larger in terms of both value range and
number of bits. It's also called a widening cast.

CHAPTER 4 ■ OPERATORS

56

In the second example, casting an int to a short, we must have a cast operator, to tell the compiler
that we really mean to do that. That's necessary because data loss can occur when casting from a type
with more bits (32 in this case) to a type with fewer bits (16 in this case). Suppose i equals 65537. s would
then equal 1. That's because the maximum value of a short is 65536. The JVM divides the original value
by the maximum value of the variable you're casting into and returns the remainder. As you can
imagine, that can produce havoc and be hard to track down. As a rule, don't use narrowing casts (which
place the value of a data type with more available bits into a data type with fewer available bits).
Widening casts (which place the value of a data type with fewer available bits into a data type with more
available bits) aren't a problem (though don't do it unless you have a reason for it), but narrowing casts
are dangerous.

The third example shows another hazard involved in casting: loss of precision. If you cast a float or a
double to an integral type (any of the numeric types with no floating point component), the JVM
truncates (that is, removes) the mantissa. So 12.34 becomes 12. Even if it was originally 12.999, it would
get truncated to 12. In other words, it doesn't round; it removes. Similarly, casting from a double to a
float can lose precision, because a double has more bits than a float and can therefore have greater
precision. Again, narrowing casts are risky. Hard-to-find errors can arise from narrowing casts. Don't do
it unless you must, and it's a good idea to add some defensive code (which we get to shortly).

■ Caution Widening casts are fine; however, narrowing casts are dangerous. Take steps to ensure that your
narrowing casts can't receive values that cause trouble.

The fourth example isn't a cast, but it shows how to get from a primitive (a char in this case) to a
String. The same pattern applies for all the primitives: First get a wrapper for the primitive and then use
the wrapper's toString method.

I mentioned defensive coding for narrowing casts. Defensive coding is a good idea any time you
can't be sure the provided value won't cause a problem. In fact, in some kinds of applications
(distributed applications are a prime example), it's standard practice to validate (that is, ensure workable
values for) all the arguments to a method. Listing 4-6 is an example of defensive coding for a narrowing
cast from an int to a byte:

Listing 4-6. Defensive coding for a narrowing cast

private static byte intToByte(int i) {
 if (i > Byte.MAX_VALUE || i < Byte.MIN_VALUE) {
 throw new IllegalArgumentException("integer argument " +
 "is too large or too small to cast to a byte");
 }
 return (byte) i;
}

Then the code that calls intToByte can decide what to do about the problem. Moving the validation
to its own method can be a good idea, both to encapsulate each bit of validation and to permit multiple
methods to make use of the same bit of validation. Many systems have validation classes (and
sometimes packages) that offer a number of such methods, so that the methods in other classes can
make use of consistent validation. You get used to that kind of design as you learn to use object-oriented
languages, including Java.

CHAPTER 4 ■ OPERATORS

57

Multiplicative Operators
Java has three multiplicative operators: multiplication (*), division (/), and modulus (%). (The modulus
operator is often called mod or modulo; in Java shops, you hear expressions such as “a mod b” when
someone reads code aloud.)

As I mentioned earlier when discussing parentheses, there's no implicit order of operations between
these three operators. To the JVM, they all have the same precedence. Because that's the case, the JVM
processes them from left to right. Again, Java isn't algebra, though some of the operators and concepts
exist in both.

Multiplication and division are obvious enough, but let's look at the modulus operator. As ever,
examples help a lot (see Listing 4-7).

Listing 4-7. Modulus operator examples

int a = 9;
int b = 2;
int c = a % b; // c equals 1
float f = 1.9f;
float g = 0.4f;
float h = f % g; // h equals 0.3 – but beware of rounding

As this brief listing shows, the modulus operator divides the first operand by the second operand

and returns the remainder.

■ Caution Beware of rounding when using the modulus operator on floats and doubles. I rounded this to 0.3, but
my JVM actually assigned 0.29999995 to h when I ran this bit of code in Eclipse. That might not matter if you're
plotting the location of an avatar in a video game (because the screen has a fairly low number of pixels, so the
error isn't large enough to put the avatar in the wrong spot). However, imagine the same error in code that controls
a rocket going to Mars. Then it's a large enough error to ensure that your rocket doesn't end up in the right spot to
go into orbit, and that's an expensive error indeed. Rounding tends to be problematic in many applications.

Additive Operators
You might not think I'd have much to say about plus (+) and minus (-). However, even they have
subtleties worth noting when used in a Java application. As with the multiplicative operators, the order
of precedence for the additive operators is the same, so they get processed from left to right, even when
the minus precedes the plus operator on a line. That usually doesn't matter. However, when it does
matter, it can be a difficult problem to spot.

Also, the plus sign is the string concatenation operator. As we see in various examples, someString +
someOtherString = aThirdString. Strictly speaking, the addition operator and the string concatenation
operator are different operators. However, they use the same character. The JVM figures whether to use
a plus sign as the addition operator or as the string concatenation operator by context. If the JVM
determines that the context is numeric, it performs addition operations. If the JVM determines that the

CHAPTER 4 ■ OPERATORS

58

context is textual, it performs concatenation operations. Listing 4-8 demonstrates what happens when
the JVM encounters different contexts:

Listing 4-8. The ShiftDemo context switching example

int a = 1;
int b = 2;
int c = 3;
System.out.println(a + b + c);
System.out.println("a + b + c = " + a + b + c);
System.out.println("a + b + c = " + (a + b + c));

When run in a program, that code produces the following output (see Listing 4-9):

Listing 4-9. Contect switching example output

6
a + b + c = 123
a + b + c = 6

The context for the first line is numeric, because the first value processed by the println method is
numeric. The context for the second line is textual because the first value processed by the println
method is a String literal. The third line gets the right value because the parentheses force the addition to
happen first, even though the context is textual.

Shift Operators
The shift operators take us back to working with bits. The shift operators require two operands: The
integral (no floating-point values allowed) value to shift and the number of places to shift the bits that
comprise the value. The signed left shift operator (<<) shifts bits to the left. The signed right shift
operator (>>) shifts bits to the right. The signed right shift operator (>>>) shifts bits to the right and fills
the left bits with zeroes.

■ Note The shift operators work only on integer values.

Listing 4-10 demonstrates what the shift operators do to the value of an int variable.

Listing 4-10. ShiftDemo

package com.apress.javaforabsolutebeginners .examples.shiftDemo;

public class ShiftDemo {

 public static void main(String[] args) throws Exception {
 int b = 127;
 System.out.println("b: " + b);

CHAPTER 4 ■ OPERATORS

59

 System.out.println("b as binary: " + Integer.toBinaryString(b));
 String leftShiftString = Integer.toBinaryString(b<<3);
 System.out.println("binary after signed left shifting 3 places: " +
 leftShiftString);
 System.out.println("value of b after signed shifting left 3 places: " +
 Integer.parseInt(leftShiftString, 2));
 String rightShiftString = Integer.toBinaryString(b>>3);
 System.out.println("binary after signed shifting right 3 places: " +
 rightShiftString);
 System.out.println("value of b after signed shifting right 3 places: " +
 Integer.parseInt(rightShiftString, 2));
 String unsignedRightShiftString = Integer.toBinaryString(b>>>3);
 System.out.println("binary after unsigned shifting right 3 places: " +
 unsignedRightShiftString);
 System.out.println("value of b after unsigned shifting right 3 places: " +
 Integer.parseInt(unsignedRightShiftString, 2));
 b = -128;
 System.out.println("Resetting b to " + b);
 System.out.println("b as binary: " + Integer.toBinaryString(b));
 unsignedRightShiftString = Integer.toBinaryString(b>>>3);
 System.out.println("binary after unsigned shifting right 3 places: " +
unsignedRightShiftString);
 System.out.println("value of b after unsigned shifting right 3 places: " +
 Integer.parseInt(unsignedRightShiftString, 2));
 }
}

Running ShiftDemo produces the following output (see Listing 4-11):

Listing 4-11. ShiftDemo output

b: 127
b as binary: 1111111
binary after signed left shifting 3 places: 1111111000
value of b after signed shifting left 3 places: 1016
binary after signed shifting right 3 places: 1111
value of b after signed shifting right 3 places: 15
binary after unsigned shifting right 3 places: 1111
value of b after unsigned shifting right 3 places: 15
Resetting b to -128
b as binary: 11111111111111111111111110000000
binary after unsigned shifting right 3 places: 11111111111111111111111110000
value of b after unsigned shifting right 3 places: 536870896

ShiftDemo and its output reveal a number of things worth knowing about the shift operators:

• The left-hand operator represents the value to be shifted, and the right-hand
operator indicates the number of bits by which to shift (known as the shift
distance).

CHAPTER 4 ■ OPERATORS

60

• Using a shift operator on byte, char, or short values promotes those values to int
values. Unary numeric promotion strikes again. It's unary because both operands
are separately promoted before the operation is performed. So, a byte value
shifted by another byte value leads to two separate unary promotions before the
shift operation happens. Sometimes, that doesn’t matter. Other times, you might
need to account for the promotion when assigning the result of the shift to
another variable.

• Signed shifting causes trouble with negative values. In the ShiftDemo example, I
didn't use the signed shift operators (<< and >>) because doing so on that value
produces an exception. That happens because of the way Java stores negative
numbers; shifting the bits that comprise a negative number results in a binary
string that Java can't recognize as any number.

• Integer.toBinaryString shows the minimum possible number of digits. In many
of the values shown by the ShiftDemo results, the internal representation is 32 bits
long, with all the bits to the left of the value shown being 0 (that is, those values are
0-padded). That's why the binary strings for the unsigned right shift operator are
32 bits long.

• When used on a relatively small negative number, the unsigned shift operator can
create a large positive number. That happens because the result of the operation is
a string of binary digits that the JVM can recognize as a number. However, that
large number might not be what you have in mind. And that takes us to our last
point:

• Shifting is tricky. Test very carefully when you use the shift operators.

So why use the shift operators? Because they are the fastest possible operators. The simplest and
fastest operation a computer can do is to shift a binary value. If you can be sure that shifting produces
the values you want or if you happen to be working with values that aren't really values but rather
collections of switches (such as graphics settings), the shift operators can provide efficient ways to
manipulate those values or switches. We cover the idea of using a value as a series of switches when we
get to the bitwise operators, later in this chapter.

Relational Operators
The relational operators compare things to one another. In particular, they determine whether one value
is greater than, less than, equal to, or not equal to another value. For the relational operators to work, the
items being compared have to be comparable. That sounds obvious, but it has a particular meaning in
Java. The language specification defines what it means to be comparable for the primitives. Thus, you
can compare an int to a float and get a meaningful result (the JVM promotes the int to a float and
then does the comparison). So long as one or the other can be cast to the other value, Java can
meaningfully compare primitives, and Eclipse tells you when they can't be.

> (greater than), < (less than), >= (greater than or equal to), and <= (less than or equal to) all work on
primitives, but they don't work on objects. Conversely, instanceof works on objects but not on
primitives. Java does provide ways to compare objects to one another, but not through any operators.
We get to comparing objects later in this chapter.

CHAPTER 4 ■ OPERATORS

61

Listing 4-12 illustrates the comparison of primitives

Listing 4-12. Comparing primitives

int a = 0;
float b = 1.0f;
System.out.println(a > b);

That bit of code prints “false” in the console.
The instanceof operator can be a bit tricky, because a class that extends another class is also an

instance of the parent class. Consider the following small program, implemented in three classes (see
Listing 4-13).

Listing 4-13. instanceof test

package com.apress.javaforabsolutebeginners .examples.instanceofTest;

public class Person {
 String firstName;
 String lastName;

 public Person (String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
}

package com.apress.javaforabsolutebeginners .examples.instanceofTest;

public class Student extends Person {
 String schoolName;

 public Student (String firstName, String lastName, String schoolName) {
 super(firstName, lastName);
 this.schoolName = schoolName;
 }
}

package com.apress.javaforabsolutebeginners .examples.instanceofTest;

public class InstanceofTest {

 public static void main(String[] args) {
 Student student = new Student("Sam", "Spade", "Noir U");
 System.out.println(student instanceof Student);
 System.out.println(student instanceof Person);
 }

}

CHAPTER 4 ■ OPERATORS

62

Both print statements print “true” in the console. After all, a student is a person. The nature of
object-oriented programming, where one class always extends another, demands that the instanceof
operator works this way.

The instanceof operator can cause subtle problems. In particular, the instanceof operator won't
throw an error if its right-hand operand is null. Instead, it always returns false in those cases. If you use
something like myClass instanceof myBaseClass and have inadvertently set myBaseClass to null, the
result is false. You might then think that myClass isn't an instance of myBaseClass, but you can't actually
know that if you're comparing to null. This is another great place to practice defensive programming
and make sure you're not getting null there.

If you're careful to make sure you know the relationships between the classes you use (which is part
of being a good object-oriented programmer) and to ensure that you're not comparing to null, you
shouldn't get into too much trouble with the instanceof operator.

Equality Operators
Java has two equality operators: == (equals) and != (not equals). (The exclamation point, both in this
context and in others, is sometimes called a “bang” by software developers.) The equality operator (==)
and the inequality operator (!=)work the same way (each is the negative of the other), so I'll confine this
discussion to the equality operator.

Java uses a single equal sign as the base assignment operator (we get to the assignment operators
later in this chapter), so it can't use a single equal sign for comparisons. Consequently, Java (and the
other languages that share Java's basic syntax) uses two equal signs.

A common mistake among folks new to Java (and not-so-new folks who aren't careful with their
typing) is to use a single equal sign (the assignment operator) when they should use two equal signs (the
equality operator) and accidentally assign a value to a variable rather than compare the variable's value
to something else. Consider the following example in Listing 4-14:

Listing 4-14. Accidental assignment

for (int counter = 0; counter < 10; counter++) {
 if (counter = 0) { // should be == rather than =
 // do something
 }
}

That bit of code, if not corrected, causes an infinite loop. In every iteration, counter gets set to 0, so
its value is always less than 10. Fortunately, Eclipse and other modern development tools warn you
when you do this. You can still do it, but at least you do it intentionally (though you really should re-
structure your code if you need to reset a value). I have to admit that I have gotten into exactly that
situation more than once (because of poor typing), though never since I started using Eclipse, thanks to
its warnings. That's one of the reasons I had you install Eclipse at the start of this journey.

For primitives, the equality operators work exactly as you probably think they would. However, for
objects, the equality operators indicate whether two references refer to the same instance. As ever,
examples help (see Listing 4-15).

CHAPTER 4 ■ OPERATORS

63

Listing 4-15. Equality operator examples

int a = 0;
int b = 1;
String s = "s";
String sToo = "s";
System.out.println(a == b);
System.out.println(s == sToo);

That bit of code prints “true” for a == b and “false” for s == sToo. That's because s and sToo are
references to different instances of the String object. So, even though they have the same value, they are
not equal in the eyes of the equality operators. Also, s == “s” prints false, because the string literal
produces yet another instance of the String class.

To compare objects (including instances of the String class), Java programmers use the equals
method. Any object whose instances can be compared to each other should implement the equals
method (which is defined in the Object class). Because it makes sense for String objects to be compared
to one another, the String class implements the equals method. That way, we can use code similar to
Listing 4-16 to compare instances of String.

Listing 4-16. Testing equality for objects

String s = "s";
String sToo = "s";
System.out.println(s.equals(sToo));
System.out.println(s.equals("s"));

Both of these print statements produce “true” in the console. We cover comparing objects in more
depth later in this chapter.

Bitwise AND Operator (&)
The bitwise AND operator (&) compares two binary values and sets each bit to 1 where each bit in the
two values being compared is 1. As usual, an example helps (see Listing 4-17).

Listing 4-17. Bitwise AND operator (&)

Byte byte1 = Byte.parseByte("01010101", 2); // byte1 = 85
Byte byte2 = Byte.parseByte("00111111", 2); // byte2 = 63
int result = byte1 & byte2; // result = 21

The value of result is 21 because taking the bits where both bits in the compared value is 1 gives a
binary result of 00010101, which happens to be the binary representation of 21.

Bitwise Exclusive OR Operator (^)
The bitwise Exclusive OR (often shortened to XOR) operator (^) compares two binary values and sets
each bit to 1 if the bits differ. Again, examples make the best explanations for this kind of thing (see
Listing 4-18).

CHAPTER 4 ■ OPERATORS

64

Listing 4-18. Bitwise Exclusive OR operator (^)

Byte byte1 = Byte.parseByte("01010101", 2); // byte1 = 85
Byte byte2 = Byte.parseByte("00111111", 2); // byte2 = 63
int result = byte1 ^ byte2; // result = 106

The value of result is 106 because taking the bits where either bit in the compared values is 1 gives a
binary result of 01101010, which happens to be the binary representation of 106.

Bitwise Inclusive OR Operator (|)
The bitwise Inclusive OR operator (|) compares two binary values and sets each bit to 1 if either bit is 1.
Again, examples make the best explanations for this kind of thing (see Listing 4-19).

Listing 4-19. Bitwise Inclusive OR operator (|)

Byte byte1 = Byte.parseByte("01010101", 2); // byte1 = 85
Byte byte2 = Byte.parseByte("00111111", 2); // byte2 = 63
int result = byte1 | byte2; // result = 127

The value of result is 127 because taking the bits where either bit is 1 in the compared values is 1
gives a binary result of 01101010, which happens to be the binary representation of 127.

You might ask when anyone would ever use these bitwise operators. They have a number of useful
applications, actually. Game developers often use bitwise operations for high-speed graphics
processing. Again, imagine a game in which two objects merge somehow (maybe shooting a blue object
with a red bullet makes the object turn purple). The bitwise and operator (&) provides a high-speed way
to determine the new color. The bitwise operators are also often used to see which combination of
mouse buttons have been pressed or to see whether a mouse button has been held down while the
mouse was moved (creating a drag operation). So they might seem like oddball operators, but they
definitely have their uses.

Logical AND Operator (&&)
The logical AND operator (&&) returns true if both arguments are true and false if either one is false. It's
most often used within if statements but is handy anywhere you need to be sure that two boolean values
are true. Also, the logical AND operator is one of the most-often used operators. If we had a nickel for
every time we typed &&....

Listing 4-20 is an example.

Listing 4-20. Logical AND operator (&&)

if (2 > 1 && 1 > 0) {
 System.out.println("Numbers work as expected");
}

In that code snippet, we have three operators. Thanks to operator precedence, the two comparison
operators (>) get evaluated before the logical AND operator (&&), so we don't need parentheses to make
things work correctly (though you might want parentheses for clarity, depending on your coding style).

Also, you can chain multiple logical AND operators (and most other operators), as shown in Listing
4-21.

CHAPTER 4 ■ OPERATORS

65

Listing 4-21. Chaining logical AND operators

if (3 > 2 && 2 > 1 && 1 > 0) {
 System.out.println("Numbers work as expected");
}

The result of the middle comparison (2 > 1) serves as an operator to both of the logical AND
operators. That kind of chaining is common in all programming problems, regardless of language. We're
fortunate that Java makes it easy to do.

Logical OR Operator (||)
The logical AND operator (||) returns true if either of its arguments are true and false only if both
arguments are false. Otherwise, it works just like the logical AND operator.

Listing 4-22 is an example.

Listing 4-22. Logical AND operator (&&)

if (2 > 1 || 1 < 0) {
 System.out.println("Numbers work as expected");
}

As with logical AND operators, you can chain multiple logical AND operators, as shown in Listing
4-23.

Listing 4-23. Chaining logical AND operators

if (3 > 2 || 2 < 1 || 1 < 0) {
 System.out.println("Numbers work as expected");
}

■ Note Eclipse warns us that we have dead code within the comparisons when we run this code. Because 2 is
always greater than 1, the JVM won't try to compare 1 to 0, so Eclipse tells us that we can remove that
comparison. Of course, real-world examples check to make sure that a data stream isn't null and has at least
some content. Listing 4-24 contains that code.

Listing 4-24. A more realistic use for the logical OR operator

if (dataStream == null || dataStream.length == 0) {
 log.error("No data available!");
}

Again, the equality operators have higher precedence, so we don't need additional parentheses.

CHAPTER 4 ■ OPERATORS

66

Assignment Operators
The assignment operators set values and assign object references. The basic assignment operator (=) is
by far the most often used operator. Every time we put something like int = 0 (assigning a value to a
primitive) or Date now = new Date() (assigning an object reference to a variable) into an example, we
use the basic assignment operator.

Java provides a number of compound assignment operators (often called shortcut operators).
Listing 4-25 is an example of one of the compound assignment operators.

Listing 4-25. Compound assignment operator

int myInt = 2;
myInt *= 2; // equivalent to myInt = myInt * 2;
System.out.println(myInt); // prints 4;

Each of the compound operators applies the first operator within the compound operator and the
value after the compound operator and then applies the assignment operator. In the previous example,
the multiplication operator is applied to myInt with the value after the compound operator (in this case,
doubling the value of myInt) and then sets myInt to the result.

The compound assignment operators can lead to unexpected results. Consider the following code
snippet in Listing 4-26. Before reading past the snippet, ask yourself “What is the value of myInt at the
end?”

Listing 4-26. Compound assignment problem

int myInt = 2;
myInt *= (myInt = 4);
System.out.println(myInt);

The last assignment before the print statement is myInt = 4, so you might think the answer must be
4. But we set myInt to 4 and then multiply it by itself, so you might think the answer must be 16. In fact,
neither is correct. The code snippet prints 8. It might seem odd at first, but it makes sense once you
understand how the JVM deals with a compound operator. When the JVM encounters the compound
operator, it knows myInt equals 2. Until the entire operator is resolved, the value of myInt can't be
changed. (This is the only case we know of where parentheses aren't processed first, by the way.)
Consequently, the assignment within the line is ignored, but the value within the assignment is used.
After all that, the result is 2 times 4, or 8.

■ Note This issue is pretty much an academic curiosity. It's an issue the developers of the Java language had to
account for, but smart programmers don't write code like this. Smart programmers break up their operations so
that the effect of each line is clear with minimal interpretation. Remember, if you program for a living, other
programmers have to read your code and understand it, and very few development shops will tolerate this kind of
confused and confusing code.

Table 4.3 shows all the assignment operators, including the compound operators.

CHAPTER 4 ■ OPERATORS

67

Table 4-3. The assignment operators

Operator Description

= This is the basic assignment operator.

+= Add the right-hand operand to the left-hand operand and assign the result to the left-hand
operand. x += 2 is the same as x = x + 2.

-= Subtract the right-hand operand from the left-hand operand and assign the result to the left-
hand operand. x -= 2 is the same as x = x – 2.

*= Multiply the right-hand operand by the left-hand operand and assign the result to the left-
hand operand. x *= 2 is the same as x = x * 2.

/= Divide the right-hand operand by the left-hand operand and assign the result to the left-hand
operand. x /= 2 is the same as x = x / 2.

%= Use the right-hand operand to determine the modulus of the left-hand operator and assign
the result to the left-hand operator. x %= 2 is the same as x = x % 2.

&= Perform a bitwise and operation and assign the result to the left-hand operator. x &= y is the
same as x = x & y.

|= Perform a bitwise inclusive operation and assign the result to the left-hand operator. x |= y is
the same as x = x | y.

^= Perform a bitwise exxclusive or operation and assign the result to the left-hand operator. x ^=
y is the same as x = x ^ y.

<<= Perform a bitwise left-shift operation and assign the result to the left-hand operator. x <<= y
is the same as x = x << y.

>>= Perform a bitwise right-shift operation and assign the result to the left-hand operator. x &= y
is the same as x = x & y.

>>>= Perform a bitwise signed right-shift operation and assign the result to the left-hand operator.
x &= y is the same as x = x & y.

Comparing and Sorting Objects
As I indicated previously, comparing objects differs from comparing primitives. The comparison
operators work for primitives, but they do not work for objects. Instead, Java requires the use of a
number of different interfaces and methods to compare objects.

CHAPTER 4 ■ OPERATORS

68

Implementing the equals Method
The first comparison is to see whether one object is equal to another. As we saw previously, the equality
and inequality operators determine only whether two objects use the same object reference (that is, the
same place in memory). Consequently, two different objects, each with its own memory address, are
never equal. The following class might help illustrate the issue (see Listing 4-27).

Listing 4-27. Using the equality operator with objects

package com.apress.javaforabsolutebeginners .examples.comparing;

public class CompareTest {

 public static void main(String[] args) {
 Object a = new Object();
 Object b = new Object();
 Object c = b;
 System.out.println(a == b);
 System.out.println(b == c);
 }

}

That code prints “false” for the first comparison and “true” for the second. In essence, we create a
single object with two names (b and c), so the second comparison yields a value of “true.” The new
keyword offers a big hint here. For c, we don’t create a new object, just another reference to an existing
one. To see whether two objects are equal, we have to compare objects that implement the equals
method. Let's return to our Person class and expand it to have an equals method (see Listing 4-28).

Listing 4-28. Person class with equals method

package com.apress.javaforabsolutebeginners .examples.comparing;

public class Person {
 String firstName;
 String lastName;

 public Person (String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public boolean equals(Person p) {
 if (p == null) {
 return false;
 }
 if (p == this) {
 return true;
 }

CHAPTER 4 ■ OPERATORS

69

 if (!(p instanceof Person)) {
 return false;
 }
 if (p.lastName.equals(this.lastName)
 && p.firstName.equals(this.firstName)) {
 return true;
 } else {
 return false;
 }
 }

 public int hashCode() {
 int result = 17;
 result *= firstName.hashCode() * 37;
 result *= lastName.hashCode() * 37;
 return result;
 }
}

Let's examine that equals method. I followed a standard recipe for implementing it. (The Java
community has best practices for many things, and we show them to you whenever they come up, as
here.) First, I check for null, just to make sure we have an object. Then I check to see whether it's the
same object, in which case they are certainly equal. Then we check to make sure that, if we do have an
object, it's a Person object. If not, the comparison is always false. But remember that other classes might
extend our Person class, so a Student object might be equal to our Person object. Because Student
extends Person, this equals method works for both. However, Student might implement its own equals
method to account for the school each student attends. Finally, I check all the relevant fields within the
class. If they are all equal, it must be the same person. Naturally, a real-world Person class probably
includes middle name, address fields, social security number, and possibly even ancestors and
descendants. Two fields will do for the sake of a demonstration, though. Now, let's rewrite CompareTest
to use our new Person object (see Listing 4-29).

Listing 4-29. Checking people objects for equality

package com.apress.javaforabsolutebeginners .examples.comparing;

public class CompareTest {

 public static void main(String[] args) {
 Person samSpade = new Person("Sam", "Spade");
 Person greatNoirDetective = new Person("Sam", "Spade");
 System.out.println(samSpade == greatNoirDetective);
 System.out.println(samSpade.equals(greatNoirDetective));
 }

}

CompareTest now prints “false” and then “true,” even though samSpade and greatNoirDetective are
different references to different Person objects. That's because our equals method isn't comparing
references but rather the relevant fields of the two objects.

CHAPTER 4 ■ OPERATORS

70

The hashCode and equals methods are closely related because they rely on the same premise. They
add together a set of values to create a value that can be used for comparison (an equals-to comparison
in the case of the equals method and equals-to, greater-than, and less-than comparisons in the case of
the hashCode method).

■ Note When you implement the equals method, you must also implement the hashCode method. The
hashCode method determines where an object reference goes when put into a collection that uses a hashing
algorithm (such as the HashMap and HashTable classes). We address those two collections (and others) when we
get to data structures, later in the book. The goal of the hashCode method is to return a unique (or at least nearly
unique) identifier; that's why it starts with a prime number and multiplies by another prime number. Again, we get
to that in much greater detail.

■ Caution When you implement both equals and hashCode (and you should implement both if you implement
one), you must make sure that they use the same fields. For example, if you use firstName and lastName in the
equals method, you must use firstName and LastName in the hashCode method. Otherwise, your comparisons
fail. Worse yet, you don't get exceptions; you get the wrong behavior and a hard-to-find bug.

■ Caution The hashCode method must generate equal values for equal objects. Otherwise, comparisons that
should succeed fail, and you have another hard-to-find bug.

Comparisons for Sorting
I include sorting in this topic because it's impossible to sort things without comparing them. Suppose
you want to sort a bunch of colorful rocks into the spectrum. To do so, you pick up each rock, compare it
to the other rocks, and use that information to decide where in the row of rocks each rock belongs.
Sorting comes to most people pretty readily, with little training. However, a computer has to be told
exactly how to do it. To that end, Java offers two mechanisms for creating comparisons that can be used
for sorting: implementing the compareTo method from java.util.Comparable and creating a class that
extends java.util.Comparator. We do both for our Person class. Classes don't have to implement both,
but many do. The String class offers a fine example of a class that implements both comparison
interfaces (and equals and hashCode), by the way.

To be able to compare objects with the goal of sorting them, we have to know more than whether
one object equals another. We also have to know whether one object is greater than or less than another
object. For our color-sorting example, we can assign an integer value to each color and then sort our
rocks by putting each one to the left of all the rocks its color value is greater than and to the right of all
the rocks its color value is less than. Rocks with the same color value make piles of rocks whenever that
happens (and that's comparable to what happens in Java when hash code values are identical).

CHAPTER 4 ■ OPERATORS

71

Implementing java.lang.Comparable
Another best practice acknowledged by the Java community is to use java.lang.Comparable for
comparisons that are “natural” to the object. People naturally sort themselves by name (just look at a
phone book), so it makes sense to implement java.lang.Comparable and have its compareTo method tell
us whether a name is less than, equal to, or greater than another person's name. Listing 4-30 shows our
Person class again, with the addition of implementing java.lang.Comparable. For our Person example,
we get the numeric value of each String field, add them together, and use that as the numeric value of
our Person object.

Listing 4-30. Person class implementing java.lang.Comparable

package com.apress.javaforabsolutebeginners .examples.comparing;

public class Person implements Comparable<Person> {
 String firstName;
 String lastName;
 public Person (String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public boolean equals(Person p) {
 if (p == null) {
 return false;
 }
 if (p == this) {
 return true;
 }
 if (!(p instanceof Person)) {
 return false;
 }
 if (p.lastName.equals(this.lastName)
 && p.firstName.equals(this.firstName)) {
 return true;
 } else {
 return false;
 }
 }

 public int hashCode() {
 int result = 17;
 result *= firstName.hashCode() * 37;
 result *= lastName.hashCode() * 37;
 return result;
 }

 public int compareTo(Person p) {
 int thisTotal = firstName.hashCode() + lastName.hashCode();
 int pTotal = p.firstName.hashCode() + p.lastName.hashCode();
 if (thisTotal > pTotal) {

CHAPTER 4 ■ OPERATORS

72

 return 1;
 }
 if (thisTotal < pTotal) {
 return -1;
 }
 // must be equal
 return 0;
 }
}

The contract that the compareTo method guarantees (as described in its documentation) is that it will
return a positive number if the local object is greater than the object in the argument, a negative number
if the local object is less than the object in the argument, and 0 if the two are equal. It's also important
that, given the same object as an argument, the equals method returns true and the compareTo method
returns 0. To do that, just use the same fields in both methods. If you need to break the rule, be sure to
document it in the Javadoc for the compareTo method.

■ Tip A common problem is to try to cast a class that implements java.lang.Comparable to a class of your
own. Because they are in different packages (your class is in your own package and the other class is in the
java.lang.Comparable package), you can't cast your class to the other class. Integer is probably the class that
most often causes this problem, but any class that extends java.lang.Comparable has the same issue. So, if you
see a ClassCastException, remember this particular problem, because it is a likely cause of the exception.

Remember that to compare Person objects, you need to create another class with a main method,
set up a few Person objects, and then compare them. I include a class to do just that at the end of the
chapter, but why not give it a try now? As with so many other things, you can't learn to program unless
you program.

Implementing java.util.ComparatorAlthough the Java community uses java.lang.Comparable for
natural comparisons, we implement a Comparator when we want to compare objects in some arbitrary
way. Also, because Comparator objects are themselves classes, it's possible to implement many different
Comparator objects for the same class. Let's expand our Person object to have a field by which we
probably wouldn't usually want to sort and then create a Comparator class to sort by it. That kind of thing
happens pretty often, really, because it allows for grouping by not-so-obvious characteristics. Listing 4-
31 shows the modified Person class.

Listing 4-31. Person class with a favorite book field

package com.apress.javaforabsolutebeginners .examples.comparing;

public class Person implements Comparable<Person> {
 String firstName;
 String lastName;
 String favoriteBook;
 public Person (String firstName, String lastName, String favoriteBook) {
 this.firstName = firstName;

CHAPTER 4 ■ OPERATORS

73

 this.lastName = lastName;
 this.favoriteBook = favoriteBook;
 }

 public boolean equals(Person p) {
 if (p == null) {
 return false;
 }
 if (p == this) {
 return true;
 }
 if (!(p instanceof Person)) {
 return false;
 }
 if (p.lastName.equals(this.lastName)
 && p.firstName.equals(this.firstName)) {
 return true;
 } else {
 return false;
 }
 }

 public int hashCode() {
 int result = 17;
 result *= firstName.hashCode() * 37;
 result *= lastName.hashCode() * 37;
 return result;
 }

 public int compareTo(Person p) {
 // sort by last name first
 if (lastName.compareTo(p.lastName) > 0) {
 return 1;
 }
 if (lastName.compareTo(p.lastName) < 0) {
 return -1;
 }
 // last names must be equal
 // so compare first names
 if (firstName.compareTo(p.firstName) > 0) {
 return 1;
 }
 if (firstName.compareTo(p.firstName) < 0) {
 return -1;
 }
 // both names must be equal
 return 0;
 }
}

And Listing 4-32 shows the book comparator class.

CHAPTER 4 ■ OPERATORS

74

Listing 4-32. Book comparator class

package com.apress.javaforabsolutebeginners .examples.comparing;

import java.util.Comparator;

public class BookComparator implements Comparator<Person> {

 public int compare(Person p1, Person p2) {
 return p1.favoriteBook.compareTo(p2.favoriteBook);
 }
}

In this case, all we have to do is use the String class's compareTo method. Note that we must tell the
comparator what kind of thing to compare (with Comparator<Person>). Otherwise, we have to accept
arguments of type Object and cast to objects of type Person.

■ Note You don't need comparators for arrays of primitives or for collections of any objects that implement
java.lang.Comparable (such as String and Integer). Those objects are already comparable.

Finally, Listing 4-33 shows CompareTest, expanded to use both kinds of comparison.

Listing 4-33. CompareTest using both comparisons

package com.apress.javaforabsolutebeginners .examples.comparing;

import java.util.ArrayList;
import java.util.Collections;

public class CompareTest {

 public static void main(String[] args) {
 Person samSpade = new Person("Sam", "Spade", "The Maltese Falcon");
 Person sherlockHolmes =
 new Person("Sherlock", "Holmes", "The Sign of the Four");
 Person johnWatson = new Person("John", "Watson", "A Study in Scarlet");
 Person drWatson = new Person("John", "Watson", "A Study in Scarlet");
 // compare the two that are really equal
 System.out.println(johnWatson == drWatson);
 System.out.println(johnWatson.equals(drWatson));
 System.out.println();
 System.out.println("Sorting by name");
 // Make a collection from our characters and sort them
 ArrayList<Person> characters = new ArrayList<Person>();
 characters.add(samSpade);
 characters.add(sherlockHolmes);
 characters.add(johnWatson);

CHAPTER 4 ■ OPERATORS

75

 characters.add(drWatson);
 // sort by the natural values (uses compareTo())
 Collections.sort(characters);
 for (int i = 0; i < characters.size(); i++) {
 Person person = characters.get(i);
 System.out.println(person.firstName + " "
 + person.lastName + " likes " + person.favoriteBook);
 }
 System.out.println();
 System.out.println("Sorting by favorite book");
 // sort by book (uses the Comparator)
 Collections.sort(characters, new BookComparator());
 for (int i = 0; i < characters.size(); i++) {
 Person person = characters.get(i);
 System.out.println(person.firstName + " "
 + person.lastName + " likes " + person.favoriteBook);
 }
 }
}

And Listing 4-34 shows the output from our test class.

Listing 4-34. CompareTest output

false
true

Sorting by name
Sherlock Holmes likes The Sign of the Four
Sam Spade likes The Maltese Falcon
John Watson likes A Study in Scarlet
John Watson likes A Study in Scarlet

Sorting by favorite book
John Watson likes A Study in Scarlet
John Watson likes A Study in Scarlet
Sam Spade likes The Maltese Falcon
Sherlock Holmes likes The Sign of the Four

Summary
In this chapter, we learned:

• Java has a large number of operators.

• Java's operators have precedence (that is, some operators are processed before
other operators).

• Java has some seemingly odd operators (such as the bitwise operators) but that
they all have their uses.

CHAPTER 4 ■ OPERATORS

76

• The details of each of the operators.

• When and how to use the equals and hashCode methods.

• How to compare objects with their natural values and how to compare objects
with arbitrary values.

This chapter presents a lot of complex information in a fairly short space. I recommend reading it
again. Also, as I mentioned before, there's no substitute for doing some programming. You should create
a few classes that can be compared in various ways and do some fiddling with the less-obvious operators
(such as the bitwise operators).

C H A P T E R 5

77

Control Flow, Looping, and
Branching

Control flow, looping, and branching are fundamental concepts in all programming. Control flow
consists of running different code under different conditions. Looping consists of running the same code
(though often with different values or different objects each time) until some condition has been met.
Branching consists of doing something else when some condition has been detected. The thread that
ties them all together is detecting conditions.

Control Flow
Java offers two constructs for controlling the flow of a program.

• if and if-else

• switch

■ Note try-catch blocks offer a form of control flow, because you can try something and then do something else
if the first thing you tried throws an exception. However, because that mechanism relies on catching exceptions,
it's not really a control flow mechanism. Because exceptions happen only when something goes wrong, they
shouldn't be thought of (and certainly shouldn't be used for) branching.

if and if-else Statements
You've already seen some examples of if statements, but let's examine another. Let's start with a sample
that's about as simple as it can be, as shown in Listing 5-1.

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

78

Listing 5-1. A simple if statement

if (a > 0) {
 b = 1;
}

Let's examine a little more complex example. It’s more realistic, but programs often make simple
comparisons, so both Listing 5-1 and Listing 5-2 are realistic. Here's part of a program that generates an
appropriate greeting based on the current time of day.

Listing 5-2. A more complex if statement example

GregorianCalendar gregorianCalendar = new GregorianCalendar();
int hour = gregorianCalendar.get(Calendar.HOUR_OF_DAY);
String greeting = "Good ";
if (hour < 12) {
 greeting += "morning";
}

The condition is simply whether the hour of the day is before 12 (that is, noon). If the hour of the day
is before noon, we add “morning” to our greeting. For conditions, the equality operators (== and !=) and
the comparison operators (>, <, <=, >=) are often used. However, any condition that evaluates to true or
false works for a condition.

So what should our program do when it's not morning? For that case, we can use the else keyword
and have another block of code that gets run for afternoons. Listing 5-2 shows that code.

Listing 5-2. if-else statement example

GregorianCalendar gregorianCalendar = new GregorianCalendar();
int hour = gregorianCalendar.get(Calendar.HOUR_OF_DAY);
String greeting = "Good ";
if (hour < 12) {
 greeting += "morning";
} else {
 greeting += "afternoon";
}

This structure represents a common arrangement in all software. Often, we need consider only two
alternatives. In this case, though, we have a problem. Late in the day, we say, “Good evening,” rather
than “Good afternoon.” So let's address that problem with some more code. In this case, we create a
structure called an else-if. It's possible, as we see later, to create long chains of branches with else-if
structures. Let's start with a fairly simple one, though, as shown in Listing 5-3.

Listing 5-3. else-if example

GregorianCalendar gregorianCalendar = new GregorianCalendar();
int hour = gregorianCalendar.get(Calendar.HOUR_OF_DAY);
String greeting = "Good ";
if (hour < 12) {
 greeting += "morning";
} else if (hour < 18) {
 greeting += "afterooon";

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

79

} else {
 greeting += "evening";
}
System.out.println(greeting);

 You probably knew what we were going to do with that greeting string.
Notice the else if structure. We can attach additional if statements to our else statements. In this

fashion, it's possible to step through any number of alternatives, providing a different behavior for each
one. If you step through the code with various values (try 10, 13, and 19), you can see how any possible
value gets caught and sets the greeting string appropriately. The key to that capability is the final else,
which does not check for any condition. In this case, that's just a convenience that lets us avoid writing
if (hour < 24).

Sometimes, though, you want to use a final else to catch problems. In many real-world programs, a
set of if-else statements catches all the expected conditions, whereas the final condition-free else
statement throws an exception (which means the program lets us know that it found a problem) because
the program found an unexpected condition. That's another example of defensive coding to put in your
programming toolkit.

Let's consider a larger example in Listing 5-4, to show the mechanism in greater detail.

Listing 5-4. A larger else-if example

GregorianCalendar gregorianCalendar = new GregorianCalendar();
int day = gregorianCalendar.get(Calendar.DAY_OF_WEEK);
String greeting = "Good ";
if (day == 1) {
 greeting += "Sunday";
} else if (day == 2) {
 greeting += "Monday";
} else if (day == 3) {
 greeting += "Tuesday";
} else if (day == 4) {
 greeting += "Wednesday";
} else if (day == 5) {
 greeting += "Thursday";
} else if (day == 6) {
 greeting += "Friday";
} else if (day == 7) {
 greeting += "Saturday";
}
greeting += " to you.";
System.out.println(greeting);

Notice that we don’t put in a final else statement. In this case, we know that the GregorianCalendar
class can't produce values we don't expect (it instead throws an exception before even getting to our if
statements), so there's no need for it. Use that final else trick when you can't be sure you'll always get an
expected condition or (as in the earlier example) when you can use it as a shortcut.

switch Statements
The switch keyword lets us set up a structure that does the same thing as a set of if-else statements but
that uses a different syntax. Personally, I'm so accustomed to reading if-else blocks that we prefer them,

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

80

but many developers prefer switch statements. Also, a switch statement can be easier to debug, if your
debugger doesn't support conditional breakpoints. Fortunately for us, the debugger built into Eclipse
does support conditional breakpoints, as we will see in Chapter 11, “Debugging.”

One difference between if statements and switch blocks is that if statements evaluate only boolean
conditions. That is, the evaluation expression in an if statement must always resolve to true or false. A
switch block evaluates any value of the type used as its argument. Consequently, a switch block
evaluating int values evaluate any int value. In this way, switch blocks support any number of execution
paths versus the two paths (true and false) of an if statement.

Also, the switch statement evaluates only integers, String objects, and enumerations. If you have a
class that produces a set of other possibilities (such as a class that produces a different type of object for
each possible result), you need to use an if-else structure rather than a switch statement.

A switch statement requires a number of case labels, each of which forms a comparison with the
value defined as the switch statement's single argument. Let's consider Listing 5-5: creating a greeting
based on the time of day (same output as Listing 5-3, but with a switch statement).

Listing 5-5. Example switch statement

GregorianCalendar gregorianCalendar = new GregorianCalendar();
int hour = gregorianCalendar.get(Calendar.HOUR_OF_DAY);
String greeting = "Good ";
switch(hour) {
 case (1):
 case (2):
 case (3):
 case (4):
 case (5):
 case (6):
 case (7):
 case (8):
 case (9):
 case (10):
 case (11): {
 greeting += "morning";
 break;
 }
 case (12):
 case (13):
 case (14):
 case (15):
 case (16):
 case (17): {
 greeting += "afternoon";
 break;
 }
 default: {
 greeting += "evening";
 break;
 }
}
System.out.println(greeting);

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

81

Note the default case at the end. That's a switch block's way of letting you do something with input
that doesn’t match any of the cases. In this example, we use it to catch the values between 18 and 24
(inclusive). We can do that because we know we won't get any other values. If we aren’t sure that we
wouldn't get an unexpected value, we would probably throw an exception in the default case, to let
whatever code uses the switch block know that we found a problem.

One issue with a switch statement is that it cannot group its possible values (other than through the
default keyword). Consequently, we end up with a lot of case labels that appear to do nothing. In fact,
each group of case statements shares the next block of code they encounter within the switch statement.
In this case, that means values 1 through 11 share the code that adds “morning” to the greeting and
values 12 through 17 share the code that adds “afternoon” to the greeting.

Another issue with switch statements is that each block of code generally requires a break
statement. Each break statement makes the program jump from the break statement to the end of the
switch statement. Consider what happens if we assume the input is 10. As written, the output is “Good
morning.” Without the break statements, the output is “Good morningafternoonevening.” That is, each
of the blocks is run. This happens because any case label without a break statement falls through to the
next case statement. That's the mechanism that lets multiple case labels share one block of code. With
no break statements, every block of code in the switch statement gets run. Although running more than
one block of code might be useful in some cases, it's generally an error (and can be hard to find because
the code probably looks right).

A final issue is the default keyword. A switch statement doesn't require a default section. However,
switch statements often do include default sections. A default section performs the same function as a
final else statement in a group of if-else statements. As with the final else, you can use a default
section for any remaining values, provided you are sure you won't get an unexpected value for the
switch statement's argument. When you can't be sure of your input, use the default block to trap
unexpected values and take some appropriate action (often either doing nothing or throwing an
exception). default sections don't require break statements (the code “falls through” to the end of the
switch statement anyway), but it's customary (and it's custom because it's a good idea) to add one, for
consistency and readability.

Let's consider another example in Listing 5-6 of a switch statement, this one being parallel in
function to Listing 5-4.

Listing 5-6. Using a switch statement without a default section

GregorianCalendar gregorianCalendar = new GregorianCalendar();
int day = gregorianCalendar.get(Calendar.DAY_OF_WEEK);
String greeting = "Good ";
switch (day) {
 case 1: {
 greeting += "Sunday";
 }
 case 2: {
 greeting += "Monday";
 }
 case 3: {
 greeting += "Tuesday";
 }
 case 4: {
 greeting += "Wednesday";
 }

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

82

 case 5: {
 greeting += "Thursday";
 }
 case 6: {
 greeting += "Friday";
 }
 case 7: {
 greeting += "Saturday";
 }
}
greeting += " to you.";
System.out.println(greeting);

Listing 5-4 could use a final else statement with no comparison. The final case in Listing 5-6 could
be a default section. Either one works. When I make a single case for every option, I prefer to fill it in,
but that's just a matter of style. As with the final else, you can use a default section either as a shortcut
for all the cases you didn't define or as a way to trap an unexpected value. Only use default as a shortcut
if you're absolutely sure of the values (as we can be when using GregorianCalendar).

Looping
Java offers three constructs for looping:

• for

• while

• do-while

for loops are the most commonly used, but while and do-while loops certainly have their uses.

■ Note All loops have three operations: initialize a variable, test it to see whether we're done, and update the
variable to be tested again. Everything else is just additional detail or alternate syntax, as we see shortly.

For Loops
As a rule, use a for loop when you have some value that you can count. For example, whenever you have
an array or a list or an enumeration, you can use a for loop based on the number of items present.

Remember our cardinal direction example from Chapter 3? Let's examine that more closely in
Listing 5-7.

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

83

Listing 5-7. Loop that finds directions

int[] compassPoints = {22, 77, 144, 288};
for (int i = 0; i < compassPoints.length; i++) {
 System.out.println(compassPoints[i] + " degrees is (very roughly) "
 + Direction.findCardinalDirection(compassPoints[i]));
}

The for loop consists of two parts: the information that controls the looping and the block of code
that gets run each time through the loop. The control section (within the parentheses) consists of three
parts: initialization, termination, and increment. Each of these three parts ends with a semicolon,
though the semicolon after the increment is often dropped. The names give us a good indication of what
they do. The initialization code sets up whatever variable we use for our counting, the termination code
indicates how to know when to stop looping, and the increment code dictates how to change the
initialization variable each time through the loop. In this simple case, we set an int named i to 0,
running the code in the loop for each item in the compassPoints array, and incrementing the
initialization variable (i) by one each time.

Java programmers can certainly do things differently than shown here. Consider the following for
statements in Listing 5-8.

Listing 5-8. Alternate for loops

// Process just half the compassPoints array
for (int i = compassPoints.length / 2; i < compassPoints.length; i++) {

}
// Process every other member of the compassPoints array
for (int i = 0; i < compassPoints.length; i += 2) {

}

The first of the two loops process the high-value half (items 2 and 3—remember that arrays start at
0) of the compassPoints array. The second loop processes items 0 and 2. If we use int i = 1, the second
loop processes items 1 and 3. As a rule, any variable that can be counted (including char variables, but
that's bad practice unless you process individual characters—otherwise, groups of characters should be
treated as String objects, both for simplicity and for performance) can serve as the initialization value,
and it can start at any of the variable's possible values (including negative numbers). Also, any valid
mathematical operation can be performed in the increment value. Of course, if you also use the
initialization variable as an index into an array, using a negative number gets you an ArrayOutOfBounds
exception, because array indices don't use negative numbers. When you do these kinds of things,
though, test thoroughly to be sure you get the results you expect.

Speaking of using the initialization variable as an index, that's exactly what we do in Listing 5-7. You
can also perform mathematical operations on the initialization variable in the body of the loop, as
shown in Listing 5-9.

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

84

Listing 5-9. Modifying the initialization variable in the loop body

int[] compassPoints = {22, 77, 144, 288};
for (int i = 0; i < compassPoints.length; i++) {
 System.out.println(compassPoints[i++] + " degrees is (very roughly) " +
Direction.findCardinalDirection(compassPoints[i]));
}

Notice that we add a postfix operator to the initialization variable at one point where it's used as an
index. Consequently, this loop now processes items 0 and 2 in the compassPoints array. As you can see,
this offers another way to process every other item. If we make i++ be i += 2, the loop processes every
third item and processes items 0 and 3. Although potentially useful, this kind of thing can lead to
problems. Again, test thoroughly.

By the way, the best practice for processing alternating items differently is not to write two for loops
or do math on the increment value but to test each item as it goes through the loop and do the
appropriate thing in each case, as shown in Listing 5-10.

Listing 5-10. Processing every other item in a single loop

int[] compassPoints = {22, 77, 144, 288};
for (int i = 0; i < compassPoints.length; i++) {
 if (i % 2 == 1) {
 System.out.println("[" + i + " is odd] " + compassPoints[i] +
 " degrees is (very roughly) " +
 Direction.findCardinalDirection(compassPoints[i]));
 } else {
 System.out.println("[" + i + " is even] " + compassPoints[i] +
 " degrees is (very roughly) " +
 Direction.findCardinalDirection(compassPoints[i]));
 }
}

Listing 5-11 shows the output of that loop.

Listing 5-11. Output from processing alternate items differently

[0 is even] 22 degrees is (very roughly) NORTH
[1 is odd] 77 degrees is (very roughly) EAST
[2 is even] 144 degrees is (very roughly) SOUTH
[3 is odd] 288 degrees is (very roughly) WEST

This kind of code is often used to alternate the colors of rows in tables and similar applications.
Using if (i % 3 == 1) processes every third item differently, and so on.

for loops support an alternate (and sometimes handy) syntax, called enhanced for syntax. The
enhanced for syntax consists of an initialization variable and an object (an array in this case) to associate
with the initialization variable. Every item in the object gets processed by the loop, with the initialization
variable providing access to the current index value (which is nearly always needed). Provided you want
to process every item (though you can skip items with if statements in the loop body), the enhanced for
syntax provides a nice shortcut. The enhanced for syntax was created for collections and arrays, but it
can also be used with enumerations (as we saw in Chapter 3, “Operators”). Let's consider an example in
Listing 5-12, using the same array that we saw in the previous examples.

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

85

The enhanced for syntax is also called “for each”. I dislike that, because other languages (such as
Perl) have an actual foreach keyword. Java has the notion of “for each of these items, run the following
code”, but it does not have an actual foreach keyword. Consequently, I prefer to call it the “enhanced
for.” It got the name when it was introduced in Java 5. Before Java 5, only the basic for structure was
available to Java developers.

Listing 5-12. Enhanced for syntax example

int[] compassPoints = {22, 77, 144, 288};
for (int i: compassPoints) {
 System.out.println(compassPoints[i] + " degrees is (very roughly) " +
 Direction.findCardinalDirection(compassPoints[i]));
}

Listing 5-12 does the same thing as Listing 5-9.
One last thing that every Java developer should know about a for loop is that it is just a shortcut for

a while loop. That is, every for loop can be rewritten as a while loop. Let's turn the loop from Listing 5-9
into a while loop in Listing 5-13.

Listing 5-13. Turning a for loop into a while loop

int i = 0;
while (i < compassPoints.length) {
 System.out.println(compassPoints[i] + " degrees is (very roughly) " +
 Direction.findCardinalDirection(compassPoints[i]));
 i++;
}

Listing 5-13 does the same thing as Listing 5-9 and 5-12. (You can almost always find multiple ways
to do the same thing in most programming languages, including Java.)

While loops
As we just learned, for loops deal with a specific case of the more general purpose served by while loops.
for loops (usually) deal with things that can be counted. while loops continue to loop as long as
something is true. A while loop has only one argument: an expression that can be evaluated as true or
false.

Before we go any further, let's look at the simplest possible while loop, as shown in Listing 5-14.

Listing 5-14. A simple while loop

while (counter < 10) {
 System.out.println(counter);
}

A while loop does not have an explicit initialization variable or an increment statement; you must
provide that functionality yourself. (One of the reasons for the invention of the for loop was to put all
three parts of a loop – initialize, test, and increment – in a single spot.) Though both initialization and
increment often appear near (for initialization) or within (for incrementing) while loops, they are not
part of the while loop syntax, as they are in for loops. So let's look at a more complete example, which
includes initialization and incrementing, in addition to the test (see Listing 5-15).

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

86

Listing 5-15. A more complete while loop

int counter = 0;
while (counter < 10) {
 System.out.println(counter);
 counter++;
}

That (still simple) example shows the typical structure of a while loop: declare a variable, test the
variable at the top of the while loop, do some work in the while loop, and increment the variable in the
while loop. After the test fails, the while loop is done, and the code below the while loop runs.

You can create a while loop that runs forever (or, more likely, until some condition that gets checked
by an if statement in the body of the loop triggers a break statement) by using while(true). That
construct is useful in some cases, but it's not a safe thing to do. Savvy programmers try to ensure that
loops can't run forever (that's called an infinite loop). What if, due to unexpected input data, your break
condition in the body of the loop never gets hit? Then your program is stuck (and that can be loads of fun
if it happens to be writing into a file—you can quickly cause problems for your operating system this
way). If you feel that you must use while(true), test thoroughly.

Another use for a while loop is to try something for a set amount of time when you don't know how
long each try will take. For example, suppose a mail client tries for one minute to connect to a mail
server and then gives up (that is, it times out). Listing 5-14 shows one way to wait for a connection.

Listing 5-14. While loop that waits for an event

boolean connected = false;
long now = System.currentTimeMillis();
long oneMinuteFromStart = System.currentTimeMillis() + 60000;
while (!connected && now < oneMinuteFromStart) {
 System.out.println("Trying to connect....");
 if (MailServer.connect()) {
 connected = true;
 break;
 }
 // pause for two seconds
 // to let other processes work, too
 try {
 System.out.println("(letting other processes run)");
 Thread.sleep(2000);
 } catch (Exception e) {
 e.printStackTrace();
 }
 // reset now for the next comparison
 now = System.currentTimeMillis();
}
if (connected) {
 System.out.println("Connected to the mail server");
} else {
 System.out.println("Timed out while trying to connect to the mail server");
}

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

87

Code to connect to a server in a real-world application also checks for a number of exceptions and
does not print to the console but rather updates a status window (that includes a cancel button) for the
user.

Notice the break statement. If we do connect, we don't want to wait for the rest of the code to run
(especially because it contains a sleep instruction). Consequently, we jump out of the while loop after we
connect. The handy thing is that, if we connect on the first try, we never wait and never loop. We shoot
through the code as though it were linear (except for the overhead of the comparison in the while) and
we're done. If we usually do connect on the first try, that's a nice little optimization. We cover break
statements in detail later in this chapter.

Notice also the try-catch block and the call to Thread.sleep(2000) within it. The Thread.sleep()
method tells the current thread to sleep for some number of milliseconds, letting other processes run. In
other words, it lets other processes get some work done while your process takes a break. If it weren't
present, the JVM wouldn't try to do anything else until your while loop exited. That's generally a bad
practice, because it can bring an entire application to a halt while everything waits for your code. Exactly
how long to let your thread sleep varies by a number of factors (how long what you're doing takes, how
important what you're doing is, and so on).

■ Tip You should almost always put the current thread to sleep for a bit to let other processes work when you
do anything that has to be timed.

Do-while Loops
Do-while loops work much like while loops. The difference is that checking the condition comes after
the block of code runs. Put differently, the test comes at the bottom of the loop rather than at the top.
That means the code always runs at least once. Because we always want our mail server connector to try
at least once, it's a great case for converting to a do-while loop (see Listing 5-15).

Listing 5-15. Do-while loop

boolean connected = false;
long now = System.currentTimeMillis();
long oneMinuteFromStart = System.currentTimeMillis() + 60000;
do {
 System.out.println("Trying to connect....");
 if (MailServer.connect()) {
 connected = true;
 break;
 }
 // pause for two seconds
 // to let other processes work, too
 try {
 System.out.println("(letting other processes run)");
 Thread.sleep(2000);
 } catch (Exception e) {
 e.printStackTrace();
 }

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

88

 // reset now for the next comparison
 now = System.currentTimeMillis();
} while (!connected && now < oneMinuteFromStart);
if (connected) {
 System.out.println("Connected to the mail server");
} else {
 System.out.println("Timed out while trying to connect to the mail server");
}

In a do-while loop with a break statement, we can skip the overhead of the comparison. If our code
happens to work the first time, we're done. That's a tiny optimization, but it's good practice to take
advantage of that kind of thing whenever you can, because those little bits of time add up after a while.

Branching
The if and switch constructs are not strictly branching structures (though developers often speak of
them as such). Strictly speaking, branching means “jumping” from one place in a program to another
place in the same program. Some languages (such as Assembler) make extensive use of this kind of
branching. Java uses the concept much more sparingly. The Java community regards arbitrarily jumping
to some other point in the code to be at odds with the principles of object-oriented development. It's
generally thought that object-oriented code that has to rely on jumping around is bad object-oriented
code. Consequently, Java has no goto statement, and the Java community is careful about using the
break and continue keywords.

Java offers three branching statements:

• break

• continue

• return

The break Statement
Many programming languages offer some form of break statement, because the need to stop the current
execution path when some condition is met is a common problem. The break statement without a label
moves the execution point (the bit of code the program is currently running) to the next statement that
is outside of whatever structure contains the break statement. The only structures that can contain break
statements are for, while, and do-while loops and switch statements.

The break statement has two forms, one (the most commonly used form) without a label and one
with a label. We see several examples of break statements throughout this chapter. A break statement
with a label breaks an outer loop, meaning that it is useful only within nested loops. As an example,
suppose we search a chessboard to find a particular piece (say the black king). We might implement the
search as a loop going left to right with a loop going across the board. (By the way, if we search for the
position of a chess piece this way, we have a badly designed program; each piece should be an object,
and we find its location by examining its properties, but this idea will do for an example as in Listing
5-16.)

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

89

Listing 5-16. Labeled break statement

String[][] pieces = {
 {"Black Castle", "Black Knight", "Black Bishop", "Black Queen",
 "Black King", "", "", ""},
 {"Black Pawn", "Black Pawn", "Black Pawn", "", "", "", "", ""},
 {"", "", "", "", "", "", "", ""},
 {"", "", "", "", "", "", "", ""},
 {"", "", "", "", "", "", "", ""},
 {"", "", "", "", "", "", "", ""},
 {"White Pawn", "White Pawn", "White Pawn", "", "", "", "", ""},
 {"White Castle", "White Knight", "White Bishop", "White Queen",
 "White King", "", "", ""}
 };
int x = 0, y = 0;
king:
for (int i = 0; i < 8; i++) {
 for (int j = 0; j < 8; j++) {
 if (pieces[i][j].equals("Black King")) {
 x = i;
 y = j;
 break king;
 }
 }
}
System.out.println("x: " + x + ", y: " + y);

The king: label indicates which loop the break king; statement should terminate. Code execution
then resumes with the print statement below the outer loop.

The continue Statement
The continue statement works within loops. It stops the current iteration of the loop and moves to the
next one. The break statement, on the other hand, exits the entire loop. In other words, the continue
statement continues the loop, whereas the break statement breaks out of the loop (which explains the
origin of these two keywords). The general idiom for its use is that the code in the loop has determined
that it does not need to go further and can jump to processing the next item. It's Java's way of letting you
say, “No, not that one. How about the next one?” Returning to our chessboard, suppose we want to
count the number of surviving pawns (see Listing 5-17).

Listing 5-17. continue statement

String[][] pieces = {
 {"Black Castle", "Black Knight", "Black Bishop", "Black Queen", "Black King", "", "", ""},
 {"Black Pawn", "Black Pawn", "Black Pawn", "", "", "", "", ""},
 {"", "", "", "", "", "", "", ""},
 {"", "", "", "", "", "", "", ""},
 {"", "", "", "", "", "", "", ""},
 {"", "", "", "", "", "", "", ""},
 {"White Pawn", "White Pawn", "White Pawn", "", "", "", "", ""},
 {"White Castle", "White Knight", "White Bishop", "White Queen", "White King", "", "", ""}

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

90

};
int pawns = 0;
for (int i = 0; i < 8; i++) {
 for (int j = 0; j < 8; j++) {
 if (!pieces[i][j].contains("Pawn")) {
 continue;
 }
 pawns++;
 }
}
System.out.println("Surviving pawns: " + pawns);

When we encounter the continue statement, we jump over any other code in the loop and process
the next item.

Note that we can rewrite the body of the inner loop to not use a continue statement as in Listing
5-18:

Listing 5-18. Doing without the continue statement

if (pieces[i][j].contains("Pawn")) {
 pawns++;
}

It turns out that writing an example of the continue statement that can't be rewritten to be simpler
without the continue statement is fairly hard to do, which is why continue statements don't appear in
code that often.

Like the break statement, the continue statement can use a label. As it happens, adding a label to a
continue statement in the chess example yields the same result, though with more processing. So let's
consider an example that counts the number of characters that appear before the first space in each
string within an array of strings (see Listing 5-19).

Listing 5-19. A continue statement with a label

String[] detectives = {"Sam Spade", "Sherlock Holmes", "Charlie Chan"};
int charactersBeforeSpaces = 0;
outer:
for (String str : detectives) {
 char[] strChars = str.toCharArray();
 for (char ch : strChars) {
 if (ch == ' ') {
 continue outer;
 }
 charactersBeforeSpaces++;
 }
}
System.out.println(charactersBeforeSpaces);

This bit of code prints 18.

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

91

■ Note As mentioned earlier in this chapter, the Java community frowns on the use of labels, because they
dislike the use of goto-like idioms, and jumping to a label comes close to being a goto instruction. The designers
of Java intentionally did not include a goto instruction, and the community has embraced the no-goto idea to the
extent of frowning on labels as well. The accepted view is that if your code has to jump around, you've done a poor
job designing your code. I concur, because I've never yet found a use for break or continue statements with
labels, other than in writing examples to show how they work.

Let's redo that bit of code to show how it works without a label and thus fits the best practices of the
Java community (see Listing 5-20).

Listing 5-20. Removing a label

String[] detectives = {"Sam Spade", "Sherlock Holmes", "Charlie Chan"};
int charactersBeforeSpaces = 0;
for (String str : detectives) {
 char[] strChars = str.toCharArray();
 for (char ch : strChars) {
 if (ch == ' ') {
 break;
 }
 charactersBeforeSpaces++;
 }
}
System.out.println(charactersBeforeSpaces);

As you can see, removing the label and replacing the continue statement with a break statement
produces the same result and is simpler to follow. Labels are appropriate in some rare cases, but you'll
probably write Java code for a long time before you find such a case. (I've been writing Java code since
1995, and we've yet to need a label.) In the meantime, try to structure your code to avoid jumping
around beyond the use of label-free break and continue statements. Instead, structure your code so that
your logic catches every possible case. That way, you won't need to jump anywhere.

The return Statement
The final branching instruction is the return statement, which has two forms. If a method returns
nothing (that is, its return type is void), the return statement has no arguments. If a method returns a
value or object (that is, the return type is not void), the return statement takes one argument (the value
or object being returned). Return statements stop any further processing within the method and return
processing to the code that called the method. Let's consider an example of a method that returns a
string (see Listing 5-21).

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

92

Listing 5-21. Using return to stop processing

public String getAuthorForDetective (String detective) {
 if(detective.equals("Sam Spade")) {
 return "Dashiell Hammett";
 }
 if (detective.equals("Sherlock Holmes")) {
 return "Sir Arthur Conan Doyle";
 }
 if (detective.equals("Charlie Chan")) {
 return "Earl Derr Biggers";
 }
 return "Unknown author";
}

As you can see in this example, as soon as we find the author that matches the fictional character,
we stop looking and return the name of the author. If all else fails, we admit to not knowing the name of
the author. We don't need else statements because each if statement has a return statement; at each if
statement, we stop processing if we get a match and continue processing if we don't get a match, so else
is needless syntax. This idiom is common in Java programs. It works especially well when you can order
your matches by likelihood. That way, you can often do as little processing as possible, which makes for
a handy bit of optimization. For example, if you happen to code on behalf of the Sherlock Holmes
Memorial Library (if there is such a thing), you'd put the “Sherlock Holmes” match at the top.

Let's consider a similar example in Listing 5-22 for a method that returns void.

Listing 5-22. Using return with no values

public void printAuthorForDetective (String detective) {
 if(detective.equals("Sam Spade")) {
 System.out.println("Dashiell Hammett");
 return;
 }
 if (detective.equals("Sherlock Holmes")) {
 System.out.println("Sir Arthur Conan Doyle");
 return;
 }
 if (detective.equals("Charlie Chan")) {
 System.out.println("Earl Derr Biggers");
 return;
 }
 System.out.println("Unknown author");
}

Again, the return statements stop further processing within the method and return processing to
the code that called the method. If we don’t have the return statements, the method prints whatever
match it found (if any) and then prints, “Unknown author.” So, in addition to causing needless
processing, leaving out the return statements also creates a bug. We don't need a return statement after
the last statement because the method implicitly returns after the last instruction.

CHAPTER 5 ■ CONTROL FLOW, LOOPING, AND BRANCHING

93

Summary
This chapter covered what many programmers consider to be the main purpose of programming:
identifying conditions and doing appropriate things for each one. If we have no ability to change what
we do based on the inputs we receive, no program could achieve the complexity to do anything useful.
To that end, every programming language offers at least a few ways to change paths within the code.

As we learned in this chapter, Java offers:

• if and if-else (and else if) statements, for simple comparisons

• switch blocks, for comparing lots of values

• for (and enhanced for or “for each”) loops, for easy-to-read looping

• while loops, for when we want to do something until a condition is met

• do-while loops, for when we want to have the test come last

• break statements, for jumping out of the current block

• continue statements, for moving on to the next item

• return statements, for saying we're done with this method and returning a value

Thanks to all these possibilities for controlling the flow of our logic, we can write programs that can
handle any number of inputs and outputs and intermediate processing steps correctly and still be easy-
to-read.

C H A P T E R 6

95

Object-oriented Programming

Java is an object-oriented language. That means that Java lets programmers develop software by
developing objects and specifying the relationships between the objects. The relationships are defined
within the objects, so the objects are the central focus of any software development effort in Java.

Objects
So what's an object? In technical terms, an object is an instance of a class (or the class itself if it's static or
a singleton—that is, a class of which there can be only one instance). So what exactly is an instance?
Think of it this way: A class definition is the definition for an instance, and a particular item defined by
that class is an instance. Suppose we have a class that defines documents (title, author, and so on). Then
an object that describes a particular document is an instance.

Usually, an object is a software object that represents some important part of the system.
(Unimportant parts of the system should be eliminated —most software developers are by nature or
quickly become minimalists.) Sometimes, these objects correspond to actual physical items. For
example, shipping software might have a class that represents shipping containers, and each instance of
that class corresponds to a real shipping container somewhere in the world.

Far more often, though, objects in software define abstract items—that is, things that don't really
exist. For example, the Math class defines a constant for pi. You can't touch a mathematical constant,
though it might seem real to you (take enough math classes and such things seem very real). But even a
mathematical constant is less abstract than some of the things that come up in software development.
That's because object-oriented languages such as Java let us define purely abstract objects, such as a
Shape class. In many shape-related systems, Shape itself can never be instantiated; you must instead
create an instance of some other class that extends Shape (such as a Circle class). And sometimes an
abstract class extends another abstract class, making for layers of abstraction.

Let's consider some other examples. The following are all objects that I have developed for one
system or another:

• A class that handles button clicks

• A class that contains information about a three-dimensional structure (such as a
pyramid or sphere)

• A class that contains that describes a paragraph within a document (font style,
font size, and so on)

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

96

• A class that defines a print job (such as gets created when you click Print in a word
processor)

Notice that I always say “a class.” All objects in Java are classes. Enumerations are a special kind of
class, because each enumeration has an implicit class provided by the compiler. Java also has primitives
and interfaces, but primitives and interfaces are not objects. As we saw in earlier chapters, primitives
define values, but they aren't objects. We get to why neither primitives nor interfaces are objects shortly.
For now, just remember that a Java object is an instance of a class, and a class is code that defines
something useful. Even an abstract class defines something useful, though it relies on the classes that
extend it to provide the remaining information.

Object-oriented languages support three important features:

• Encapsulation

• Inheritance

• Polymorphis

We look at these in turn.

Encapsulation
Encapsulation means that an object holds its contents in such a way that other objects can't see or
change those contents (though we have a number of ways to provide access to the contents of a class).
That way, one object's contents can't get tangled up with the contents of another object. Given that an
application can have thousands of classes, keeping the bits and pieces of all those classes separate is a
really good idea. Otherwise, we'd never be able to find anything.

One of the key concerns of a Java developer when creating a new class (or modifying an existing
one) is figuring out which bits and pieces to make visible to other classes. Another, related, concern is
which classes get to see (and possibly modify) the contents of the current class. As that implies, you can
make part of a class visible to just selected other classes rather than all other classes. We cover the
mechanics of access modifiers in Chapter 3, “Data Types”. We cover when you should use the various
access modifiers in the next chapter.

Inheritance
Inheritance defines relationships between the classes (and so between the objects) within an object-
oriented system. All classes in Java have some other object as a parent. Java developers say that one
object extends another. If you think about it for a minute, you shortly realize that there must be some
object that starts it all. That special object (the only one that has no parent) is a class called Object. All
other Java objects are descendants (sometimes through many levels) of Object.

Let's consider a simple example from the field of Biology (with apologies to biologists for vastly
over-simplifying and thanks to Caroline Valentine at Valentine Human Resources for the idea). Suppose
we want to represent certain animals (in particular, cats, dogs, and mice). They're all mammals, so we
might start with a class called Mammal.

Then we have three more classes called Cat, Dog, and Mouse. Each of those classes extend the Mammal
class.

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

97

■ Note You can always tell if you're right to make a new class by asking a simple question: Is this new class a
member of the old class? That's called the “is-a” test or the “is-one-of” test. A cat is a mammal, so we can make
our Cat class extend our Mammal class. The same is true for our Dog and Mouse classes. If we had a Snake class, it
would not be wise to create it by extending the Mammal class. It's not always so obvious, but it's a good place to
start when you need to figure out which class your new class should extend.

Of course, there are substantial differences among cats, dogs, and mice, and we cover how to model
those differences when we get to Polymorphism, later in this chapter.

Multiple Inheritance
Java does not support multiple inheritance (though interfaces give us a way to get most of the benefits of
multiple inheritance without the one big problem, which we discuss shortly, that comes with it). That is,
an object cannot extend more than one parent object. Other languages (such as C++) do permit
inheriting from more than one parent. The designers of Java determined that Java could be made
without that level of complexity. The problem with multiple inheritance is that a single class can extend
two other classes, and those two classes might in turn extend the same ancestor class. How would your
code know which ancestor class provides the right information? That's sometimes called “the diamond
problem,” because it looks like a diamond when graphed (see Figure 6-1).

Figure 6-1. The diamond problem

You might think that the diamond problem is easy to avoid. However, remember that most software
is created by multiple teams of people. At the time of this writing, I'm working with two development
teams and a testing team in another country to create a software product that no fewer than 75 other
software development teams in the same company will use as the basis for yet more software. In those
circumstances, it's not hard to imagine how one team might implement a class that extends a class, the
other team might extend the same class, and, if we had multiple inheritance, someone in the client
teams might try to extend both and run right into the diamond problem. It's easy to get into a situation
where a single method might extend methods from two other classes. How would the compiler know
which method we meant to use? Java prevents all that by not providing multiple inheritance.

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

98

However, Java does provide a way to get most of the benefits and very few of the problems from
multiple inheritance. You can include instances of other classes as fields within your class. That way,
your class can access the public (or package, if your class is in the same package) fields and methods
within those classes. Because you can't access the private bits and because you can't include abstract
classes, you're (if those other classes are well designed) well protected from getting into problems that
arise from having more than one ancestor. This technique is sometimes called composition, because
your new class is composed, in part, of the publicly available bits of other classes. As with all techniques,
be sure you need to do it, though. The simpler and cleaner you keep your objects, the easier it is to get
your program to work, and the more your fellow developers appreciate your work.

Here's an example of the kind of problem for which composition works really well (with thanks to
Jeremy Conner at Uplogix for the idea). Consider a classic monster from horror movies: a wolfman.
Typically, a wolfman is more man than wolf (if only because the actors in the furry suits are themselves
humans and not wolves). Consequently, we might model our wolfman by making a new class called
Wolfman that extends Man (which might itself extend Human and be parallel to Woman) and includes an
instance of the Wolf class as one of its fields. Then we can get all the attributes of a man and most of the
attributes (anything declared public) from a wolf and have a software model of a wolfman.

Modeling Behavior through Interfaces
Java includes the concept of interfaces. An interface is a set of methods (basically, things an object can
do) that an object must have if it uses (the keyword in Java is implements) that interface. In particular, a
class that implements an interface must implement all the methods within that interface. Let's return to
our three concrete classes: Cat, Dog, and Mouse.

Cats are predators and carnivores. Dogs are carnivores (there's some argument that they're
omnivores, but we call them carnivores for the sake of our example) and both predators and scavengers.
Mice are herbivores and are not predators or scavengers. So, we might create a set of interfaces to model
the behavior of the animals we chose. We have the following interfaces: Predator, Scavenger, Carnivore,
and Herbivore. If we add bears, we need an Omnivore interface, too.

Abstract Classes
Sometimes, a Java developer writes a class that should never be instantiated. That is, it's a class that will
never have an object associated with it. Such a class usually serves as the basis for other classes. Our
Mammal class is an example of such a class. All the mammals in the real world are specific types of
mammals rather than just mammals. Cats, dogs, mice, humans, whales, and so on are all mammals, of
course, but they all have more specific names and more specific traits. So, there's no actual animal that's
a generic mammal. Consequently, we don't want anyone to create an instance of our Mammal class,
because that would be bad modeling.

Java lets developers declare that a class should never have an instance by using the abstract
keyword. In Java, abstract means that the class can still be extended by other classes but that it can
never be instantiated (turned into an object). Returning to our example, we can have Mammal be abstract
(because there's no such thing as a generic mammal) and still have Cat, Dog, and Mouse extend Mammal
(because cats, dogs, and mice are mammals).

The hard part is figuring out when a class should be abstract. Modeling the animal kingdom is a
simple example, so it's not hard to see that Mammal should be an abstract class.

The opposite of an abstract class is usually called a concrete class. Concrete classes are the default,
so there's no keyword for it. In most programs, most classes are concrete classes.

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

99

Methods in Abstract Classes
Abstract classes can include abstract methods. Any class that extends a class with an abstract method
must implement that method. For example, our Mammal class includes an abstract speak() method. Any
class that extends Mammal must implement the speak method, and that implementation must have the
same signature. So, in this case, the implementations must return void and accept no arguments.

Abstract classes can also include regular methods that their descendant classes can use without
needing to implement them. Listing 6-1 shows both kinds of methods within the Mammal class.

Listing 6-1. Methods within an abstract class

package com.apress.java7forabsolutebeginners.examples.animalKingdom;

abstract class Mammal {
 // And here's a method for making the sound.
 // Each child class must implement it.
 abstract void speak();

 // All descendant classes can call this and do
 // not need to implement their own versions of it
 protected void sayWhatIAm() {
 System.out.println("I am a mammal");
 }
}

That's a trivial method, but it raises an interesting point. Classes that extend the Mammal class might
also have methods with the same signature. Those methods are said to override this method. For
example, the Cat class might have a sayWhatIAm method of its own. Let's suppose it was identical but
printed “I am a cat” to System.out. Then, to use the Mammal class's method, we'd have to use the super
keyword, as shown in Listing 6-2.

■ Note I made the sayWhatIAm() method protected so that only descendants of the Mammal class can say
they're mammals. If it were public, we might have Snake objects saying they're mammals, and that would be
wrong. Being protected forces any overriding methods in descendant classes to also be protected. Consequently,
the sayWhatIAm() method in the Cat class has to be protected. That makes perfect sense, though. If we were to
add Lion and Tiger classes, we would want them to say they are mammals and cats.

Listing 6-2. The Cat class with an overridden sayWhatIAm method

package com.apress.java7forabsolutebeginners.examples.animalKingdom;

class Cat extends Mammal {
 // implement the super class's abstract methods

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

100

 private static int numberOfCats;

 Cat() {
 numberOfCats++;
 }

 public static final int getNumberOfCats() {
 return numberOfCats;
 }

 @Override
 protected void sayWhatIAm() {
 System.out.println("I am a cat");
 super.sayWhatIAm();
 }
}

If a test program then called a Cat object's sayWhatIAm () method, the output would be as shown in
Listing 6-3.

Listing 6-3. Output of a Cat object's sayWhatIAm method

I am a cat
I am a mammal

This is a trivial example, but I hope it gives you a sense of how you can use the characteristics of
both a base class and a child class to provide meaningful information and other functionality for your
users. The trick is knowing which objects to put at which level. One rule of thumb is to put each object as
high in your class hierarchy as you can. That's whyI define the speak method at the Mammal level but
implement it at the individual animal level.

Static Members
Classes can have static members, including fields, methods, and other classes (a class within a class is
called an inner class). A static member of a class is often called a class member. The important thing to
know about class members is that only one instance of that member ever exists. If our Cat class has a
static method, we might have ten different instances of the Cat class, but there would only ever be one of
that static method. That becomes an issue when each of the members of the Cat class want to use that
method. The instances end up waiting for each other.

Static members have their uses, though. When you want to be certain that only one of something
exists for all the objects that instantiate a particular class, the static keyword is how you do it. One
obvious use of the static keyword is on the main method. Imagine if every instance of a program class
could start a new program. We would quickly swamp the operating system with programs. A more
common and useful use of static members is to implement counters. Suppose we want to keep track of
how many Cat objects we create. The Cat class could then include a static field called numberOfCats, and
the constructors for the class would increment that field every time we create a Cat object. That code
would look something like the Cat class in Listing 6-4.

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

101

Listing 6-4. Counting Cat objects

class Cat extends Mammal{

 static int numberOfCats;

 Cat() {
 numberOfCats++;
 }
}

To get the number of Cat objects, we can either implement a method to return the value or we can
reference the field and get its value. To reference a static member, we use the name of the class
separated from the static member's name by a period, as shown in Listing 6-5.

Listing 6-5 Referencing a static member

System.out.println(Cat.numberOfCats);

However, we should generally prefer the idiom of making the static field private and creating a get
method to return that value. Otherwise, we expose the field for other classes to set, and that is probably a
bug. Listing 6-6 shows the Cat class modified to use the private field pattern (patterns are common
idioms in computer science—there are many of them, and they are a worthwhile thing to study if you
pursue programming).

Listing 6-6. The Cat class with a private static field

class Cat extends Mammal{

 private static int numberOfCats;

 Cat() {
 numberOfCats++;
 }

 public static final int getNumberOfCats() {
 return numberOfCats;
 }
}

Do you notice that the method is also static? We need only one such method, regardless of how
many Cat objects we create, so it makes sense for getNumberOfCats to be static. We also make it final,
because there's no reason for child classes to implement their own getNumberOfCats methods. Thus, if
we have Tiger and Lion classes extending the Cat class, they could not have getNumberOfCats methods
unless those methods have different arguments.

Polymorphism
Polymorphism, from the Greek poly, for many, and morph, for form, means that the same thing can have
different forms. It's a technical term in many fields, including chemistry, biology, and (of course)

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

102

computer science. Each field defines it in terms relevant to that field of study, but it all boils down to
having multiple forms.

In object-oriented computer languages, one kind of polymorphism is the ability of different classes
to respond appropriately to the same input. So, our Mammal class might define a speak method. The Cat
class would implement the speak method as a meow, the dog as a bark, and the mouse as a squeak. They
all implement the same method, but they each do it in their own appropriate way. These methods are
said to be overridden. The methods in the child class replace the behavior of the parent class with their
own behavior—that is, they override the parent's method.

Another kind of polymorphism (called overloading) is having the same behavior mean something
different depending on the object passed to the behavior (or method). For example, our Cat object might
have two methods called chase, and an instance of Cat would exhibit different behavior for the
chase(Tail) method and the chase(Mouse) method. That is, we have methods of the same name, but
they have different signatures (one takes a Tail object as its argument and one takes a Mouse object).
That's a classic example of method overloading.

Our Animals in Java
Listing 6-7 shows an incomplete definition of the animal classes used as examples earlier in the chapter.
When a developer writes this kind of code, the developer is “creating stubs” or “writing stubbed out
code.” A stub means that we created the structure but have left at least some of the details for another
time or for someone else to do.

You should put your code in packages. That way, the code in one package won't interfere with the
code in other packages. If you put everything in the default package, you soon run into the problem of
wanting to call a class or interface by a name you already used. I suggest you get in the habit of putting
all your code into packages. The package used throughout this chapter includes a Predator interface.
Imagine if want another object model that defined Predator drones (the remote-control aircraft made
famous in recent wars). That's exactly the kind of entanglement that makes packages so useful. So we
add a package definition for each class and interface. In this case, they are in the same package.

Listing 6-7. The finished Mammal class

package com.apress.java7forabsolutebeginners.examples.animalKingdom;

abstract class Mammal {
 // And here's a method for making the sound.
 // Each child class must implement it.
 abstract void speak();

 // All descendant classes can call this
 // and do not need to implement their own versions of it
 protected void sayWhatIAm() {
 System.out.println("I am a mammal");
 }
}

The Mammal class serves as the basis for our other classes. As we discussed previously, we never want
to create a Mammal object, so it's abstract. It also has an abstract method, so every class that extends
Mammal has to implement a speak method with the same signature (returns void and accepts no
arguments). Finally, it includes an ordinary method, which descendant classes can use (see Listing 6-8).

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

103

Listing 6-8. The finished Cat class

package com.apress.java7forabsolutebeginners.examples.animalKingdom;

class Cat extends Mammal implements Predator, Carnivore {

 private static int numberOfCats;

 Cat() {
 numberOfCats++;
 }

 public static final int getNumberOfCats() {
 return numberOfCats;
 }

 @Override
 protected void sayWhatIAm() {
 System.out.println("I am a cat");
 super.sayWhatIAm();
 }

 // implement the super class's abstract methods
 @Override
 void speak() {
 System.out.println("The cat says, \"meow.\"");
 }

 // here's our example of overloading
 void chase(Mouse mouse) {
 // chase a mouse
 }
 public void chase (Object tail) {
 // chase one's tail
 }

 // methods for the Predator interface
 @Override
 public void hunt() {
 // go hunting
 }

 // methods for the Carnivore interface
 @Override
 public void eat (Object freshMeat) {
 // eat fresh meat
 }
}

Because we use the Cat class throughout the earlier examples, you already know it extends the
Mammal class. As we discussed in the “Modeling Behavior through Interfaces” section, it also implements
the Predator and Carnivore interfaces. After all, cats are predators and carnivores (see Listing 6-9).

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

104

Listing 6-9. The finished Dog class

package com.apress.java7forabsolutebeginners .examples.animalKingdom;

class Dog extends Mammal implements Predator, Carnivore, Scavenger {
 // implement the super class's abstract methods
 @Override
 void speak() {
 System.out.println("The dog says, \"bark.\"");
 }
 // methods for the Predator interface
 @Override public void hunt() {
 // go hunting
 }

 // methods for the Carnivore interface
 @Override public void eat (Object freshMeat) {
 // eat fresh meat
 }

 // methods for the Scavenger interface
 @Override public void eat (Object carrion, boolean tooOld) {
 if (tooOld) {
 // don't eat that!
 } else {
 // munch away
 }
 }
}

The Dog class also extends Mammal and implements the Predator and Carnivore classes. However,
dogs also scavenge for food, so the Dog class also implements the Scavenger Interface.

Now, let's move onto an animal that is still a mammal but that has different behaviors: a mouse.
Listing 6-10 defines our Mouse object.

Listing 6-10. The finished Mouse class

package com.apress.java7forabsolutebeginners .examples.animalKingdom;

class Mouse extends Mammal implements Herbivore{
 // implement the super class's abstract methods
 @Override
 void speak() {
 System.out.println("The mouse says, \"squeak.\"");
 }
 // methods for the Herbivore interface
 @Override public void eat (Object plantMatter) {
 // eat plants
 }
}

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

105

As with our other animal objects, the Mouse class extends Mammal. However, a mouse is not a
carnivore, a predator, or a scavenger. Instead, a mouse is an herbivore, so we make our Mouse class
implement the Herbivore interface.

Now let's move onto the interfaces. We start with the Predator interface (see Listing 6-11).

Listing 6-11. The Predator interface

package com.apress.java7forabsolutebeginners .examples.animalKingdom;

interface Predator {
 public void hunt();
}

All predators hunt, so our Predator interface includes a hunt() method. Any class that implements
this Predator interface must implement a hunt() method with the same signature (void and with no
arguments). If we have a Drone class that implements a Predator interface, that interface might
implement a launch(Missile hellfire) method, which is different from a Predator interface that suits
animals (at least outside the realm of science fiction).

Let's move on to the Carnivore interface, shown in Listing 6-12.

Listing 6-12. The Carnivore interface

package com.apress.java7forabsolutebeginners .examples.animalKingdom;

interface Carnivore {
 public void eat(Object freshMeat);
}

Carnivores eat fresh meat, so we specify an object named freshMeat as the argument to the
interface's only method.

Compare that to the Scavenger interface, shown in Listing 6-13.

Listing 6-13. The Scavenger interface

package com.apress.java7forabsolutebeginners .examples.animalKingdom;

interface Scavenger {
 public void eat(Object carrion, boolean tooOld);
}

Scavengers eat whatever meat they can find. Of course, one issue is that some meat might be too
foul to eat, so we include a boolean argument that we can test for that problem.

Finally, we come to our Herbivore interface, as shown in Listing 6-14.

Listing 6-14. The Hervibore interface

package com.apress.java7forabsolutebeginners .examples.animalKingdom;

interface Herbivore {
 public void eat(Object plantMatter);
}

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

106

The Herbivore interface is parallel to the Carnivore and Scavenger interfaces, but herbivores eat
plants, so we specify an object named plantMatter as the only argument.

Finally, here's a program class, called AnimalVoices, that lets our animals speak (see Listing 6-15).

Listing 6-15. Getting our animals to speak

package com.apress.java7forabsolutebeginners .examples.animalKingdom;

public class AnimalVoices {

 public static void main(String[] args) {
 // create instances of our animals
 Cat cat = new Cat();
 Dog dog = new Dog();
 Mouse mouse = new Mouse();

 // let our animals speak
 cat.speak();
 dog.speak();
 mouse.speak();
 }

}

As you can see, all it does is create an instance of each kind of animal and then have each one speak.

A Lesson about Granularity
Five classes and four interfaces might seem like a lot of objects to get three animals to make their
appropriate sounds. Honestly, if I were writing a program to produce three lines of text, I'd write just one
class. However, the purpose of the animal kingdom example was to show how to model a (not very)
complex system in Java.

If I were really writing a system to model the animal kingdom, I'd have many more classes. For
starters, if I were doing this for real, I wouldn't pass generic objects to the eat methods. I'd have an
abstract class called Food and concrete classes called FreshMeat, Carrion, and PlantMatter and very likely
subclasses from those, too.

If you “chunk up” your program into as many classes and interfaces as possible, you gain two
things:

• Extensibility

• Maintainability

Extensibility means that you can easily make your program do more than it does now. In the case of
our animal program, we could quickly add more animals and make those animals do more things (such
as walk, swim, play, and sleep). If we expand the program, we might also expand the food details such
that the PlantMatter class has Nut and Grain subclasses.

Maintainability means that you can easily find the spot where your code is wrong when you find an
error. If all your code is in just a few classes (or worst of all, one class), you have a harder time figuring
out the problem. Sure, the debugger gets you to the right line, but you won't know whether the problem
is in your definition of an animal or your definition of a mammal or your definition of its behavior (such

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

107

as predator or herbivore). Making multiple classes and interfaces greatly aids debugging because you
can see which piece holds the problem spot. In other words, granularity makes it easier to create error-
free programs.

Real programs need granularity, and good programmers work to achieve it.

Pass-by-Reference and Pass-by-Value
Pass-by-reference and pass-by-value refer to how information is passed from one object to another.
Nearly all of the passing of information in Java goes through methods, but information can also go
through fields within an object.

Strictly speaking, Java uses only pass-by-value. However, the values it passes differ greatly based on
what is passed. For primitives, Java passes a copy of the primitive. So, if you pass an int to a method, the
method receives a copy of the int, not the original int. For objects, Java passes a pointer. A pointer is the
address of an object in memory. This subtle difference trips up many novice Java developers. A few
examples clarify (I hope) the issue (see Listing 6-16). I say, “I hope,” because this topic gives even
seasoned developers fits.

Listing 6-16. Pass-by-reference and pass-by-value

package com.apress.java7forabsolutebeginners .examples.hello;

public class IntegerWrapper {

 public int objectInt = 0;
}

package com.apress.java7forabsolutebeginners .examples.hello;

public class Hello {

 static int primitiveInt = 0;
 static IntegerWrapper intWrapper = new IntegerWrapper();

 public static void main(String[] args) throws Exception {
 passBy(primitiveInt, intWrapper);
 System.out.println("primitiveInt = " + primitiveInt +
 "; intWrapper.objectInt = " + intWrapper.objectInt);
 }
 public static void passBy(int primitiveInt, IntegerWrapper intWrapper) {
 primitiveInt++;
 intWrapper.objectInt++;
 }
}

As you can see, this program has two classes, IntegerWrapper and PassByTest. IntegerWrapper is a
way to turn a primitive into an object (and don't ever write objects like this for real, by the way—it's bad
form, but it makes sense to keep this illustration as simple as possible). PassByTest demonstrates pass-
by-reference and pass-by-value. When we run PassByTest, its output is primitiveInt = 0;
intWrapper.objectInt = 1.

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

108

When you pass a primitive to a method, the JVM preserves the original value and makes a new
primitive (literally, a copy) with the same value for use in the method. The JVM consequently has two
values, the original primitiveInt field in PassByTest and the primitiveInt argument to the passBy
method. Therein lies the heart of the issue: Because the JVM makes a new primitive, the original never
gets modified.

Even if the passBy method returned the primitive value, it would not change the original value. Until
we re-assign the original value, it remains whatever it was originally set to (0 in this case). If we assign the
return value of the method to the original primitive, that works. Again, though, we have two different
values, and we assign the value of the new one (created by the method) to the old one. Consider the
modified PassByTest class in Listing 6-17.

Listing 6-17. PassByTest with a return value for the passBy method

package com.apress.java7forabsolutebeginners .examples.hello;

public class Hello {

 static int primitiveInt = 0;
 static IntegerWrapper intWrapper = new IntegerWrapper();

 public static void main(String[] args) throws Exception {
 passBy(primitiveInt, intWrapper);
 System.out.println("primitiveInt = " + primitiveInt +
 "; intWrapper.objectInt = " + intWrapper.objectInt);
 }
 public static int passBy(int primitiveInt, IntegerWrapper intWrapper) {
 primitiveInt++;
 intWrapper.objectInt++;
 return primitiveInt;
 }
}

The passBy method now returns an int, but the output remains the same (primitiveInt remains 0).
I know I've hammered the point repeatedly, but, again, primitiveInt in the method is a different
primitive than the primitiveInt field in the class. Remember, the compiler makes a copy of it when it
calls the method.

Now, let's look at what happens to IntegerWrapper.objectInt. Because IntegerWrapper is an object,
the value that gets passed is its address in memory (that is, a pointer to the object). There's only one
IntegerWrapper object, named intWrapper, in memory (because we used the new keyword with that class
only once). So, any work done on intWrapper is done to the same object. Consequently, when we
increment intWrapper.objectInt, the change makes it back to the main method, because the main
method still looks at the same spot in memory. That is, intWrapper continues to be at the same location
in memory, and so we change that object where we could not change a primitive.

If all that seems confusing, you're in good company. It stumped me enough that I remember clearly,
thirty years later, when I first realized that something (a function in Fortran, in fact) was working on the
pass-by-reference model. It's a tricky concept, but you have to master it to be able to program in Java
(and many other languages).

Java has a particular reason for passing objects by reference, by the way. Suppose you have a
complex object. Such a class might have several fields, and many of those fields might themselves be
references to other objects (remember the composition technique), and so on, to any depth you can
imagine (object stacks, as such things are called, are often many layers deep). What exactly is the value of

CHAPTER 6 ■ OBJECT-ORIENTED PROGRAMMING

109

such an object, and how much memory and processing time gets chewed up trying to make a temporary
copy for every method that gets that object as an argument? And what happens if we use such an object
recursively (that is, the object can modify itself)? If you think about those issues for a minute, you see
why objects are passed as references (that is, as memory addresses). Otherwise, Java programs would be
substantially harder to create and perform more poorly than they could.

Summary
Many books have been written (and no doubt more books will be written) on object modeling. It's a
fundamental part of object-oriented programming, and it's easy to fall into bad practices. Mastering
object modeling requires both experience and study: experience to see how object models actually work
and study to be aware of the issues. This chapter presents one simple example (a few members of the
animal kingdom), but it's by no means a complete treatment of object modeling.

Along the way, we learned when to use abstract classes, static and final methods, and static fields.
We also learned why we generally want fields to be private and have get methods rather than having the
field be visible outside the class.

We also learned a bit about the value of granular programming (also known as “chunking” and
modularity and many other similar names). Remember to “chunk” your programs into classes and
interfaces, both to make them easier to understand and to make them easier to debug when problems
arise.

Finally, we dove into the thorny theoretical issue of pass-by-reference versus pass-by-value. In
particular, we learned that Java is strictly pass-by-value. However, some of those values are pointers
(that is, memory addresses at which objects reside). Consequently, modifying an object that has been
passed modifies the original object, whereas modifying a primitive modifies only a local copy of the
primitive rather than the original.

C H A P T E R 7

111

Writing a User Interface

Most of the people who want to develop software get into it to write programs that have rich user
interfaces of some sort. That rich user interface might be through a set of windows, such as programs
like Word or many games use, or through a web browser. However, a substantial community of
developers largely develops programs that have no user interface. They write programs such as device
drivers (the software that lets something like a mouse work with a computer), services (programs that
provide information to other programs outside of the user interface), and database engines (which
usually manage data in such a way that many programs can access that data). So there's plenty of work
to do outside of user interfaces. Still, though, the visible part of the job attracts a lot of people to the
profession, and there's nothing wrong with that.

This chapter shows you how to develop a user interface with the most commonly used of Java's
built-in user-interface toolkits: Java Swing. We start with some simple basics and we end with an
implementation of a Minesweeper game. After all, why not have a little fun when we're done? (And I bet
a lot of the folks who buy this book would like to write a game. That works for me; I like games, too.)

Java Swing: The Basics
Java Swing is a large toolkit that includes support for all the things that you generally (and some things
you don't generally) see in a non-web user interface: windows, buttons (with text, images, both, or
neither), option lists, menus, labels, text boxes, text areas, checkboxes, droplists, drawing areas, file-
selection dialogs, file save dialogs, other dialogs, and so on. In short, Swing offers all the tools you need
to write almost any program. Some specialized programs might require interface objects that Swing
doesn't have, but other toolkits probably don't have them, either. Also, Swing does include the ability to
make new kinds of interface objects, though that's beyond the scope of this book.

Swing uses the Java Foundation Classes (JFC). The JFC is another toolkit that supports the creation
of applications that can run on many different operating systems (such as Windows, Unix, and MacOS).
Swing is one of several toolkits supported by JFC. Others include Java2D and the Abstract Window
Toolkit (AWT). We use parts of the AWT as we work on our Swing application. For example, Java's Color
class is part of the AWT.

Some people dislike Swing, claiming that it's overly complex and slow. Those criticisms fall on any
UI toolkit, though. Swing is verbose but not more verbose than other UI toolkits that I've used. When
you need to specify a lot of properties (size, font, color, placement on the screen, conditional presence,
and so on), it takes a number of lines of code for each object to specify all that. That's the nature of the
job, regardless of toolkit. As for speed, Swing can perform as well as other UI toolkits, though you have to
know a great deal about the toolkit to get the most from it. Again, that's also true of other UI toolkits. The

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 7 ■ WRITING A USER INTERFACE

112

code in this book is not optimized for speed, by the way. I just show you the basics. To teach you
everything about Swing, I'd have to write another (very likely larger) book.

A Basic Swing Application
Swing applications follow a fairly common flow. First, we create a JFrame object. The JFrame object is the
main window and holds all the other interface components (buttons, text fields, and so on).

So, let's write a Swing application. The JFrame class lets you create a window, put other components
in that window, and associate other windows with the first window. Consequently, creating a JFrame
object is often the first step to creating a Swing application. As usual in software development, other
ways exist, but we follow one common path, as shown in Listing 7-1.

Listing 7-1. The simplest possible Swing application

package com.apress.java7forabsolutebeginners.examples.swingdemo;

import java.awt.Dimension;

import javax.swing.JFrame;

public class SwingDemo {

 private JFrame frame = new JFrame("SwingDemo");

 private void createAndShowGUI() {
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setPreferredSize(new Dimension(200, 200));
 frame.pack();
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 SwingDemo swingDemo = new SwingDemo();
 swingDemo.createAndShowGUI();
 }
}

Before we go any further, Figure 7-1 shows our simple application.

CHAPTER 7 ■ WRITING A USER INTERFACE

113

Figure 7-1. Simple SwingDemo application

All this program does is create and display an empty window. Let's look at how it does it, though. As
you can see, we first create a JFrame object, which defines the window. Then, we specify some attributes
for that window: size and whether to stop the application when the window closes. After setting those
attributes, we prepare the window for display with the pack and setVisible methods. The pack method
tells any Swing component that can have children to arrange its children within the component. The
setVisible method dictates whether a component is visible or hidden. Naturally, for an application's
main window, we want it to be visible. Hiding components can work well in some circumstances,
though. If you have a window that you want to show sometimes and not other times, leaving the window
in the set of windows and setting it to visible or hidden as needed uses a lot less overhead than creating it
from scratch every time, especially if the window needs to maintain some content along the way.

Notice the behavior of the main method. In particular, notice that it creates an instance of the class
that contains it. That's a common idiom for Swing programs. Otherwise, every method in the class must
be static, and that's a nuisance (and often just won't work). I prefer to create the instance as soon as
possible, to get it out of the way, so I put it in the main method. Other developers prefer to wait until at
least one Swing component requires an instance. That's largely a matter of style. The important thing is
that you'll almost always need to create an instance of your base class at some point.

■ Note A window is not a program. As the Jframe.EXIT_ON_CLOSE constant implies, an application does not
need to stop because all its windows have been closed. In fact, some applications never have a window in the first
place. Device drivers and services almost always run without showing a window.

Before we proceed, let's learn a bit more about JFrame. The first thing that trips up a lot of people is
that a JFrame goes into a separate component called .a content pane. You can get the content pane with
the getContentPane() method. You can also replace a content pane by calling setContentPane(). Any
class that extends Container can serve as a content pane. Swing developers often use a JPanel object
when they need to replace JFrame's content pane. You can swap sets of content by using setContentPane.
However, the card layout might work better for hiding and showing different sets of content.

CHAPTER 7 ■ WRITING A USER INTERFACE

114

Swing includes the concept of .a “layout.” A layout. is an object that defines the relationship
between other objects. For example, if you use a BoxLayout object, your components go in a line either
horizontally or vertically. A grid layout, on the other hand, creates a layout that looks like a table (a
number of cells wide by a number of cells high). Java also has a number of other layouts. We use a
number of them in this chapter and later in the book. One handy thing about layouts is that you can use
layouts within layouts. For example, you might use a BoxLayout object set to vertical and then use a
number of other BoxLayouts, each set to horizontal, to add rows of components to your window. You
can achieve a similar effect with a GridLayout object, too, but the BoxLayout with BoxLayout scheme
might work better if you have different numbers of objects to put in each row.

I can go on for a long time (probably for a whole book) about all the options available in Swing, but
I'll mention just one more that may be of interest to you. Swing includes different looks for programs. If
you use the default settings (as I do in this chapter), you get Java's Metal look, which is meant to look the
same on all operating systems. To get the native layout for any given operating system, use the
SystemLookAndFeel object. If you use SystemLookAndFeel, people who use your software on Windows get
a Windows look and feel, whereas users on other operating systems get the look and feel of those
operating systems. The down side is that if Java can't figure out the look and feel of the system, your
program doesn't work. That's why so many Java programs (especially those written for demonstrations
and books) use the default (Metal) look and feel. Still, if you're writing software just for yourself or for a
group of users who use the same operating system, and you can be sure that Java supports that
operating system's look and feel, you can make your programs look just like the other programs that run
on that operating system.

Now, let's do a little more with our program. Let’s start by adding a feature many programs have, a
menu. Listing 7.2 shows how to add .a menu.

Listing 7-2. A Swing program with a menu

package com.apress.java7forabsolutebeginners.examples.swingdemo;

import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;

public class SwingDemo implements ActionListener {

 private JFrame frame = new JFrame("SwingDemo");

 private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem exitItem = new JMenuItem("Exit");
 exitItem.setMnemonic('x');
 exitItem.addActionListener(this);
 file.add(exitItem);
 JMenuBar menuBar = new JMenuBar();

CHAPTER 7 ■ WRITING A USER INTERFACE

115

 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

 private void createAndShowGUI() {
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setPreferredSize(new Dimension(200, 200));
 addMenu(frame);
 frame.pack();
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 SwingDemo swingDemo = new SwingDemo();
 swingDemo.createAndShowGUI();
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand().equals("Exit")) {
 System.exit(0);
 }
 }
}

Again, before we discuss how and why it works, let's see what it looks like. Figure 7-2 shows our
additions.

Figure 7-2. SwingDemo with a menu

CHAPTER 7 ■ WRITING A USER INTERFACE

116

That listing shows why some people complain that Swing is verbose. We added a lot of code just to
add a menu with a single item. We can manage that problem, though, by using good software design and
coding practices. Feel free to write helper classes (for example, the ActionListener can be its own class;
here's a place to apply the design principles we covered in Chapter 6, “Object-Oriented Programming”),
and you should always be careful to make each method serve a well-defined purpose. As your programs
get larger, good design and good coding become ever more important. Indeed, good design is a
developer's primary skill (though we often keep the designs simple in this book to make easier-to-read
examples).

So, let's look at what we had to add to get a menu. We encapsulated the menu code in a separate
method (a good practice) called addMenu. As you can see, it first creates a menu called “File,” then it
creates a menu item called “Exit,” and finally, it creates a menu bar to hold the menu item and attaches
that menu bar to the JFrame object. If we created another menu object and added it to the menu bar,
we'd have another top-level menu object. For example, the word processor I'm using to write this book
has a File menu, an Edit menu, a Format menu, and so on. Each top-level menu is visible in the menu
bar and contains one or more menu items. .The createAndShowGUI method (which is the controlling
method in the program) then calls the addMenu method.

The other big addition that we need to make a menu work is an ActionListener. In this case, we
made the program class itself the ActionListener by implementing the ActionListener interface. More
complex programs often have a separate class (or several classes) serve as listeners. A listener, as its
name implies, monitors (listens to) the events in the program and lets you specify that something should
be done when a certain event happens. In this case, we want the program to stop when someone
chooses Exit from the File menu, so we check for that event and exit when it happens. Java offers a
number of listeners, including mouse, keyboard, and many other listeners, all of which extend the
EventListener interface. We'll add another listener in the next iteration of our SwingDemo program.

Let's add a few other commonly used components: a button, a label, a text area, and a separate child
window called a dialog. In software development, a dialog (or dialog box) is a separate window that
serves a simple, well-defined purpose, such as displaying information or letting the user choose a file. All
those little windows that pop up to ask whether you want to do something in the Windows operating
system are probably the best known (and least loved) dialog boxes. Listing 7-3 shows the expanded code
for all these new components.

Figure 7-3 shows what our modified program looks like when we're done.

Figure 7-3. SwingDemo with more features

CHAPTER 7 ■ WRITING A USER INTERFACE

117

Listing 7-3. A more complex Swing program

package com.apress.java7forabsolutebeginners.examples.swingdemo;

import java.awt.Component;
import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

import javax.swing.BoxLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextArea;

public class SwingDemo implements ActionListener, MouseListener {

 private JFrame frame = new JFrame("SwingDemo");
 private JPanel panel = new JPanel();
 private JButton sayButton = new JButton("I say!");
 private JLabel sayLabel = new JLabel("Say something:");
 private JTextArea sayText = new JTextArea();

 private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem exitItem = new JMenuItem("Exit");
 exitItem.setMnemonic('x');
 exitItem.addActionListener(this);
 file.add(exitItem);
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

 private void arrangeComponents(JFrame frame) {
 panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));
 sayText.setPreferredSize(new Dimension(200, 50));
 sayText.setAlignmentX(Component.CENTER_ALIGNMENT);
 sayLabel.setAlignmentX(Component.CENTER_ALIGNMENT);
 sayButton.setAlignmentX(Component.CENTER_ALIGNMENT);
 sayButton.addMouseListener(this);
 panel.add(sayLabel);
 panel.add(sayText);

CHAPTER 7 ■ WRITING A USER INTERFACE

118

 panel.add(sayButton);
 frame.add(panel);
 }
 private void createAndShowGUI() {
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 addMenu(frame);
 arrangeComponents(frame);
 frame.pack();
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 SwingDemo swingDemo = new SwingDemo();
 swingDemo.createAndShowGUI();
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand().equals("Exit")) {
 System.exit(0);
 }
 }

 @Override
 public void mouseClicked(MouseEvent e) {
 }

 @Override
 public void mouseEntered(MouseEvent e) {
 }

 @Override
 public void mouseExited(MouseEvent e) {
 }

 @Override
 public void mousePressed(MouseEvent e) {
 }

 @Override
 public void mouseReleased(MouseEvent e) {
 if (e.getSource() == sayButton) {
 JOptionPane.showMessageDialog(frame, sayText.getText(),
 "You said", JOptionPane.PLAIN_MESSAGE);
 }
 }
}

CHAPTER 7 ■ WRITING A USER INTERFACE

119

Getting big, isn't it? Actually, no. It's a much bigger program than most of what we've done so far,
but it's still not as big as many real programs. Managing complexity is a big part of software
development. As mentioned previously, good design and good coding practices let you manage the
complexity of your code and still produce robust programs. I hammer on this point, by the way, because
it is crucial to good software development.

In this case, we’ve managed the additional complexity by adding an arrangeComponents method.
That method lets you associate all the components with a JPanel and then add the panel to the frame.
Without a panel, the frame would have no place to put the components, so JFrame and JPanel often go
hand in hand. As usual, other ways exist, but a JFrame object with one or more JPanel objects is common
in Swing applications.

In a more complex program, multiple methods (and probably classes) would handle all the
components. In larger Swing programs, it's common practice to have each window be defined by its own
class. In such systems, another class (or set of classes), called a controller, determines which window (or
windows) should be visible and which one should have focus. Our little program isn't that complex,
though, so one class will do.

We also had to implement the MouseListener interface, so that the program can tell when someone
clicks on the button. The MouseListener interface requires five methods, but we use only one of them.
Other programs might need to distinguish between when a mouse button is pressed and when it is
released (for enabling behavior such as drag and drop or drawing a box in a drawing program), but our
little program just needs to know that the user clicked the button. Note the line where a mouse listener is
added to the button. Each component that you want to handle an event has to have an event listener
added to it. When you have multiple objects listening for events, you have to figure out which object the
user chooses and make your program respond accordingly. The getSource method lets us do that. You’ll
see a great deal more of that kind of decision making, both with menus and with buttons, in the next
example.

■ Tip If you need to detect whether a mouse button has been clicked, use the mouseReleased method instead
of the mouseClicked method. In many JVMs, mouseClicked doesn't work well (in particular, it misses some
clicks, which is frustrating for the user), whereas mouseReleased is more reliable. This happens because mouse
motion interrupts the mouse listener (Java has a separate listener interface for monitoring mouse motion). So, if
you twitch just a little bit while clicking the button, you lose the mouse click.

A Larger Swing Application
As it happens, I like Minesweeper and similar games, so I thought I'd write my own Minesweeper game
to serve as a larger, more real example of a Swing application. In addition to being one of my favorite
games, MineSweeper makes a good sample because it uses a mouse listener and an action listener. It's
also the kind of application that benefits from having both a program class and a number of additional
classes to handle various bits of functionality.

Before we get started, let's think about the design of such a program. Table 7-1 describes the various
classes that comprise the MineSweeper program.

CHAPTER 7 ■ WRITING A USER INTERFACE

120

Table 7-1. MineSweeper classes

Class Name Description

MineSweeper The program class. It contains the user interface (Swing) elements and has
links to the game's functionality (which is in the other classes).

MineField Models a minefield. Contains Mine objects.

Mine Models an individual mine.

MineIcon Defines and makes available the mine icons.

MineSweeperActionListener Listens for menu actions.

MineSweeperMouseListener Listens for mouse actions that affect the play area (left clicks and right
clicks).

MineSweeperHelper Convenience class that contains the game's logic.

Let's start with the program class (MineSweeper). After listing 7-4, I'll describe the flow of control

through the class (in other words, the logic of it) and describe each method. Compared to other things
we've done, it's a big and complex class. For now, read through it, even if it doesn't seem to make sense.
Then we'll work through it in detail. Listing 7-4 shows the MineSweeper class. Before we get into the
listing, though, let's see what we're going to get from the MineSweeper class, in Figure 7-4.

CHAPTER 7 ■ WRITING A USER INTERFACE

121

Figure 7-4. The MineSweeper program

Listing 7-4. The MineSweeper class

package com.apress.java7forabsolutebeginners.examples.MineSweeper;

import java.awt.Component;
import java.awt.Dimension;
import java.awt.GridLayout;

import javax.swing.BorderFactory;
import javax.swing.BoxLayout;
import javax.swing.ButtonGroup;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.JPanel;

CHAPTER 7 ■ WRITING A USER INTERFACE

122

import javax.swing.JRadioButtonMenuItem;
import javax.swing.border.Border;

public class MineSweeper {

 int columns = 8;
 int rows = 8;
 int numberOfMines = 10;

 JFrame frame = new JFrame("MineSweeper");
 JPanel minePanel = new JPanel();
 JLabel minesRemainingLabel = new JLabel("Remaining:");
 JLabel minesFoundLabel = new JLabel("Found: 0");
 JButton[][] mineButtons;
 Dimension buttonSize = new Dimension(20, 20);

 MineField mineField;
 MineSweeperMouseListener mouseListener;
 MineSweeperActionListener actionListener;
 MineSweeperHelper helper;

 public MineSweeper() {
 helper = new MineSweeperHelper(this);
 actionListener = new MineSweeperActionListener(this, helper);
 mouseListener = new MineSweeperMouseListener(this, helper);
 init();
 }

 void init() {
 mineButtons = new JButton[rows][columns];
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < columns; j++) {
 JButton currentButton = new JButton();
 mineButtons[i][j] = currentButton;
 currentButton.setPreferredSize(buttonSize);
 currentButton.setMaximumSize(buttonSize);
 currentButton.setMinimumSize(buttonSize);
 currentButton.addMouseListener(mouseListener);
 currentButton.setEnabled(true);
 currentButton.setText("");
 currentButton.setIcon(null);
 }
 }
 minePanel.setLayout(new GridLayout(rows, columns));
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < columns; j++) {
 minePanel.add(mineButtons[i][j]);
 }
 }
 mineField = new MineField(rows, columns, numberOfMines);
 }

CHAPTER 7 ■ WRITING A USER INTERFACE

123

 private void addAndArrangePanels(JFrame frame) {
 Border paddingBorder = BorderFactory.createEmptyBorder(5,5,5,5);
 JPanel controlPanel = new JPanel();
 minesFoundLabel.setBorder(paddingBorder);
 minesFoundLabel.setAlignmentX(Component.LEFT_ALIGNMENT);
 minesRemainingLabel.setAlignmentX(Component.RIGHT_ALIGNMENT);
 minesRemainingLabel.setBorder(paddingBorder);
 minesRemainingLabel.setText("Remaining: " + mineField.getMinesRemaining());
 controlPanel.add(minesFoundLabel);
 controlPanel.add(minesRemainingLabel);
 GridLayout gridLayout = new GridLayout(1,2);
 controlPanel.setLayout(gridLayout);
 frame.getContentPane().add(controlPanel);
 frame.getContentPane().add(minePanel);
 }

 private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem newItem = new JMenuItem("New Game");
 newItem.setMnemonic('n');
 newItem.addActionListener(actionListener);
 file.add(newItem);
 ButtonGroup sizeOptions = new ButtonGroup();
 JRadioButtonMenuItem smallOption = new JRadioButtonMenuItem("Small (8 x 8, 10 mines)");
 smallOption.setMnemonic('s');
 smallOption.addActionListener(actionListener);
 sizeOptions.add(smallOption);
 file.add(smallOption);
 JRadioButtonMenuItem mediumOption =
 new JRadioButtonMenuItem("Medium (16 x 16, 40 mines)");
 mediumOption.setMnemonic('m');
 mediumOption.addActionListener(actionListener);
 sizeOptions.add(mediumOption);
 file.add(mediumOption);
 JRadioButtonMenuItem largeOption =
 new JRadioButtonMenuItem("Large (16 x 32, 100 mines)");
 largeOption.setMnemonic('l');
 largeOption.addActionListener(actionListener);
 sizeOptions.add(largeOption);
 file.add(largeOption);
 JMenuItem exitItem = new JMenuItem("Exit");
 exitItem.setMnemonic('x');
 exitItem.addActionListener(actionListener);
 file.add(exitItem);
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

CHAPTER 7 ■ WRITING A USER INTERFACE

124

 private void createAndShowGUI() {
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane()
 .setLayout(new BoxLayout(frame.getContentPane(), BoxLayout.Y_AXIS));

 addAndArrangePanels(frame);
 addMenu(frame);

 frame.pack();
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 MineSweeper mineSweeper = new MineSweeper();
 mineSweeper.createAndShowGUI();
 }
}

MineSweeper does the same things as the other Swing classes we've already written, and it does
quite a bit more, as you just saw. So let's step through exactly what it's doing. We'll start where you just
stopped: at the bottom, with the main method. As you learned in Chapter 1, “Writing Your First Java
Program,” the main method is the entry point for a program. Listing 7-5 shows the main method.

Listing 7-5. MineSweeper's main method

 public static void main(String[] args) {
 MineSweeper mineSweeper = new MineSweeper();
 mineSweeper.createAndShowGUI();
 }

The main method doesn't do much. It creates an instance of the MineSweeper class, which is a handy
way to avoid having to use nothing but static objects and methods throughout the class. Creating a new
object calls the constructor for that object's class. In the other classes we've seen so far, the constructors
have done nothing (and we've not coded them, relying on the default constructors for our objects). The
MineSweeper class, however, needs a true constructor. Listing 7-6 shows the constructor.

Listing 7-6. MineSweeper's constructor

 public MineSweeper() {
 helper = new MineSweeperHelper(this);
 actionListener = new MineSweeperActionListener(this, helper);
 mouseListener = new MineSweeperMouseListener(this, helper);
 init();
 }

The MineSweeper constructor first creates a helper object by instantiating (a fancy word for creating
an object) the MineSweeperHelper class. We have to do that first, so that we can pass the helper object to
our two listener objects. The next two lines create instances of the MineSweeperActionListener and
MineSweeperMouseListener classes. Those classes monitor the menu and the minefield (respectively) for
mouse clicks. We could have had those listeners here in the MineSweeper class (in fact, we originally had
that functionality in the MineSweeper class). Instead, we decided to have the MineSweeper class handle
just the user interface definition and push all the other tasks off to other classes. That's the kind of design

CHAPTER 7 ■ WRITING A USER INTERFACE

125

decision that you'll often face as you develop your programs. In this case, both my editor (Ewan) and my
technical reviewer (Massimo) suggested splitting the functionality, and they were right. (Thanks, guys.)
Even relatively simple (and yes, MineSweeper is pretty simple) software benefits from being reviewed by
others, which is something to keep in mind when you do your own programming.

You probably noticed that all the classes created by the constructor take the MineSweeper instance
itself (through the this keyword) as an argument. For now, don't concern yourself with that detail. You’ll
see why that happens when we cover those classes.

Finally, the MineSweeper constructor calls the init method, which appears (again) in Listing 7-7.

Listing 7-7. MineSweeper's init method

 void init() {
 mineButtons = new JButton[rows][columns];
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < columns; j++) {
 JButton currentButton = new JButton();
 mineButtons[i][j] = currentButton;
 currentButton.setPreferredSize(buttonSize);
 currentButton.setMaximumSize(buttonSize);
 currentButton.setMinimumSize(buttonSize);
 currentButton.addMouseListener(mouseListener);
 currentButton.setEnabled(true);
 currentButton.setText("");
 currentButton.setIcon(null);
 }
 }
 minePanel.setLayout(new GridLayout(rows, columns));
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < columns; j++) {
 minePanel.add(mineButtons[i][j]);
 }
 }
 mineField = new MineField(rows, columns, numberOfMines);
 }

The init method creates the two-dimensional array of small buttons that is the user interface to the
minefield. (The minefield itself is a more abstract object that contains the information about where the
mines are a subtle but meaningful distinction that we delve into a bit more later in the chapter.) It then
adds all those buttons to the JPanel object that holds the minefield buttons. Finally, it creates the actual
minefield. (Again, the buttons are the way we let the player access the set of information that is the
minefield.)

■ Note The init method gets called both when the user starts the application and when the user starts a new
game. That's why it replaces the existing instance of the MineField class with a new instance.

CHAPTER 7 ■ WRITING A USER INTERFACE

126

After the constructor and the init method are done setting up the game, the main method passes
control to the next method in the chain of execution: createAndShowGUI. Listing 7-8 shows the
createAndShowGUI method.

Listing 7-8. MineSweeper's createAndShowGUI method

 private void createAndShowGUI() {
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane()
 .setLayout(new BoxLayout(frame.getContentPane(), BoxLayout.Y_AXIS));

 addAndArrangePanels(frame);
 addMenu(frame);

 frame.pack();
 frame.setVisible(true);
 }

The createAndShowGUI method sets up and shows the JFrame object. Remember that a JFrame object
is a window. So we define the details of the program's window and then show it. Let's take it line by line
from here. The first line indicates that closing the window should also exit the program (stopping a
program and removing it from the operating system's list of running programs is often called “exiting a
program”). The second line sets the layout. In this case, it uses a BoxLayout object that places controls in
a line vertically. Notice that we have to get the content pane to be able to set the layout. Next, we pass
execution (that is, the current work being done by the program) to the addAndArrangePanels method
(which we get to next). When that's done, execution returns to this method. Then, we pass execution to
yet another method called addMenu. Notice that both of those methods take the JFrame object as
argument, which tells us that those methods do more of the work of setting up the window. In fact, they
do most of that work. Finally, we get to the last two lines, which directly affect the JFrame object. The line
that calls the pack method on the JFrame object (that is, the frame.pack(); line) tells the JVM to organize
all the controls in the JFrame object. The last line calls the setVisible method on the JFrame object,
which is Java's way of saying to make the window visible to the user. You can keep windows in memory
and make them visible or invisible. This gives better performance than re-specifying a window when you
need to hide a window.

Now let's look at the addAndArrangePanels method, which appears in listing 7-9.

Listing 7-9. MineSweeper's addAndArrangePanels method

 private void addAndArrangePanels(JFrame frame) {
 Border paddingBorder = BorderFactory.createEmptyBorder(5,5,5,5);
 JPanel controlPanel = new JPanel();
 minesFoundLabel.setBorder(paddingBorder);
 minesFoundLabel.setAlignmentX(Component.LEFT_ALIGNMENT);
 minesRemainingLabel.setAlignmentX(Component.RIGHT_ALIGNMENT);
 minesRemainingLabel.setBorder(paddingBorder);
 minesRemainingLabel.setText("Remaining: " + mineField.getMinesRemaining());
 controlPanel.add(minesFoundLabel);
 controlPanel.add(minesRemainingLabel);
 GridLayout gridLayout = new GridLayout(1,2);
 controlPanel.setLayout(gridLayout);

CHAPTER 7 ■ WRITING A USER INTERFACE

127

 frame.getContentPane().add(controlPanel);
 frame.getContentPane().add(minePanel);
 }

You might ask, “Panels? What panels?” Well, it happens that the MineSweeper program uses two
JPanel objects. One panel holds the score panel and the other holds the minefield. Remember the
BoxLayout object with the vertical axis? It dictates that one panel is over the other. In this case, the panel
that shows the scores (called controlPanel) is above the minefield (called minePanel). Again, let's go
through it one line at a time.

The first line creates a Border object that has 5 pixels of padding on all four sides. We use that Border
object to keep our labels from bumping into the other things in the window. The second line creates a
new JPanel object called controlPanel, which holds our labels. So why not create the panel that holds
the minefield here? Because we need it elsewhere, so we have to create it in the class variables at the top
of the class. The third line sets the padding for the minesFoundLabel object, which tells the player how
many mines they've marked so far. (Of course, the player might be wrong; that's part of the fun.) The
fourth line sets the alignment of the minesFoundLabel to the left, which makes it appear on the left side of
the panel. The fifth line sets the alignment of the minesRemainingLabel, which tells the player how many
mines have yet to be found, such that the label is on the right side of the panel. The sixth line uses our
border definition to add a border to the minesRemainingLabel. The seventh line sets the text of the
minesRemainingLabel. So why didn't we set the value of the minesFoundLabel? Because we don't need to
concatenate two strings together to set that one and we can't be sure how many mines the player has
chosen to have in the game. The next two lines add our labels to the controlPanel object. Then, we
create a GridLayout object, which we use to control the placement of the two labels. In this case, we
create a small grid with just one row and two cells (one for each label). Finally, we add the two panels to
the JFrame object. At this point, all the controls that appear in the window have been defined and their
relationships to one another have also been defined.

■ Note Creating a component, setting its attributes, and adding the component to a container is the normal
idiom for setting up user interfaces in Swing (and other user interface frameworks as well). You'll do a lot of that if
you write many applications that have user interfaces. Remember that a container is also a component, so you'll
often add one component to another component and then add that set of components to yet another component.
You can see that here in the addAndArrangePanels method when we add labels to a JPanel object and then add
the JPanel object to the JFrame object.

Now that we have the components in the window defined, let's add a menu, so that a player can
start a new game, set the size of the game, and exit the game. We do all that in the AddMenu method,
which appears in Listing 7-10.

Listing 7-10. MineSweeper's addMenu method

 private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem newItem = new JMenuItem("New Game");
 newItem.setMnemonic('n');

CHAPTER 7 ■ WRITING A USER INTERFACE

128

 newItem.addActionListener(actionListener);
 file.add(newItem);
 ButtonGroup sizeOptions = new ButtonGroup();
 JRadioButtonMenuItem smallOption = new JRadioButtonMenuItem("Small (8 x 8, 10 mines)");
 smallOption.setMnemonic('s');
 smallOption.addActionListener(actionListener);
 sizeOptions.add(smallOption);
 file.add(smallOption);
 JRadioButtonMenuItem mediumOption =
 new JRadioButtonMenuItem("Medium (16 x 16, 40 mines)");
 mediumOption.setMnemonic('m');
 mediumOption.addActionListener(actionListener);
 sizeOptions.add(mediumOption);
 file.add(mediumOption);
 JRadioButtonMenuItem largeOption =
 new JRadioButtonMenuItem("Large (16 x 32, 100 mines)");
 largeOption.setMnemonic('l');
 largeOption.addActionListener(actionListener);
 sizeOptions.add(largeOption);
 file.add(largeOption);
 JMenuItem exitItem = new JMenuItem("Exit");
 exitItem.setMnemonic('x');
 exitItem.addActionListener(actionListener);
 file.add(exitItem);
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

The addMenu method is larger than some of the programs we've written so far. As I mentioned at
the start of the chapter, one common complaint about Swing is that it is overly verbose (which means
that it takes a lot of code to do what seems like not much work). Again, that's an unfair criticism because
other user-interface frameworks suffer from the same problem. Being able to set a lot of options to make
your program do all kinds of things means there are a lot of attributes to set, which means a lot of code.
That's the nature of user-interface development. You get used to it after you create a few programs that
have graphical user interfaces (GUIs).

So, let's look at the addMenu method in detail. The method follows a repetitious pattern, so we
describe the pattern rather than describe every line (after all, it is a big method). The first line creates a
JMenu object named “file.” If our program also had an Edit menu (such as a word processor might have),
we would have another JMenu object. So, to Swing, a menu is one of the menus in the larger menu
structure (which we get to near the bottom of the method). After creating the File menu object, we start
creating JMenuItem objects. Each JMenuItem object defines one of the choices in this particular menu. For
each menu item, we specify a name (such as “New Game” or “Exit), set a mnemonic character (which
lets the player control the menu with the keyboard), add an ActionListener object (the same action
listener for all of them, in this case), and then add the menu item to the file menu object. Towards the
bottom of the method, we create a JMenuBar object. A JmenuBar object probably corresponds more
closely to what you think of when someone says, “menu,” because a JMenuBar object defines the whole
menu across the top of a program. Once we have our JMenuBar object, we add the file menu object to it
and, finally, add the whole menu to our window (again, defined by our JFrame object).

CHAPTER 7 ■ WRITING A USER INTERFACE

129

Now that we're through all the methods, we should look at the fields in the MineSweeper class. The
fields are the variables at the top of the class. Rather than make you flip all the pages between here and
there, Listing 7-11 shows the field definitions.

Listing 7-11. MineSweeper's fields

 int columns = 8;
 int rows = 8;
 int numberOfMines = 10;

 JFrame frame = new JFrame("MineSweeper");
 JPanel minePanel = new JPanel();
 JLabel minesRemainingLabel = new JLabel("Remaining:");
 JLabel minesFoundLabel = new JLabel("Found: 0");
 JButton[][] mineButtons;
 Dimension buttonSize = new Dimension(20, 20);

 MineField mineField;
 MineSweeperMouseListener mouseListener;
 MineSweeperActionListener actionListener;
 MineSweeperHelper helper;

The rest of the MineSweeper class and the other classes that comprise the program use these values.
The three int values at the top control the size of the game and the number of mines. They have default
values (the values of the small size of the game) so that the game can load a version of the game when
the player starts the MineSweeper application. The JFrame, JPanel, JLabel, JButton, and Dimension
objects help us define the user interface. The last four give us a way to refer to the other classes that we
use to make the program work.

To sum up our trip through MineSweeper class, we can make a few general observations about the
whole class. The most interesting thing about this class is programmatically creating a lot of buttons and
then figuring out which one the user selected. Another interesting thing is the ability to replace the
existing minefield and all its buttons with a new minefield and buttons when the user wants a new game
(because of winning or losing or choosing to abandon the current game). The validate methods on the
minePanel and frame objects make that possible. After the existing buttons have been removed and new
buttons added, the validate methods tells the program to redraw the minefield panel and all its buttons.
If your own applications need to know which mouse button the user pressed, use the
MouseEvent.getButton method, as we did here. In this case, we check only for the left button and treat
anything else as a right click (even though it could be some other button, such as the middle button).

Now let’s move to the problems. This version of Minesweeper is an example, so it's far from perfect.
For one thing, rather than figure out which other buttons should be revealed when an empty spot is
clicked, the codecycles through the all the mines. I did that because the MineField class already has a
cascade method for figuring out which neighboring locations would clear because of click. Also, I made
no attempt to optimize performance (though it runs as well as the Windows Minesweeper game on my
Windows laptop). Also, as you can see, I didn't bother to solve the problem of making the first click never
hit a mine. If you want to tackle that problem, by the way, populate the mine field after the user clicks
the first mine button (that's called late loading). Finally, I'm no artist, so the icons I created aren't much
to look at. They're ours, though, so we don't have to worry about copyrights to use them. Feel free to
create or find your own.

I separate the MineField and Mine classes from the user interface because I might want to use those
classes as the underpinnings of a Minesweeper game that does not use Swing. In particular, I might write
an Android version of Minesweeper, just for fun (it certainly wouldn't be a money maker, because many

CHAPTER 7 ■ WRITING A USER INTERFACE

130

Minesweeper apps already exist for Android—most of my projects are for fun and my own learning).
Also, it's the kind of abstraction that makes for good design. When the real-world situation you model
has discrete objects, it's good practice to create a class for each of those objects. In this case, a mine is a
discrete real-world object (to which the game adds another layer of abstraction, in fact), so a Mine class is
a good choice. The same applies to a minefield, so the MineField class is also a good design idea.Now,
let's move on to the MineField class. Like the MineSweeper class, it's a bigger class than anything else
we've seen earlier in the book. Again, please read through it as closely as you can, but don't be
concerned if parts of it don't make sense right now. We take it apart method by method after you see the
whole thing. Listing 7-12 shows the entire MineField class.

Listing 7-12. The MineField class

package com.apress.java7forabsolutebeginners.examples.MineSweeper;

public class MineField {

 private Mine[][] mineField;
 private int rows;
 private int columns;
 private int mines;
 private int minesFound = 0;
 private int minesRemaining;
 private int emptiesRemaining;
 enum gameState {WIN, LOSE, CONTINUE};

 MineField(int rows, int columns, int mines) {
 this.rows = rows;
 this.columns = columns;
 this.mines = mines;
 minesRemaining = mines;
 emptiesRemaining = rows * columns - mines;
 mineField = new Mine[rows][columns];
 init();
 populate();
 }

 private void init() {
 for (int i = 0; i < rows; i++){
 for (int j = 0; j < columns; j++) {
 mineField[i][j] = new Mine();
 }
 }
 }
 gameState resolveClick(int x, int y, boolean left) {
 for (int i = 0; i < rows; i++){
 for (int j = 0; j < columns; j++) {
 if (i == x && j == y) {
 Mine thisMine = mineField[i][j];
 if (left) {
 if (thisMine.getFlagState() ==

CHAPTER 7 ■ WRITING A USER INTERFACE

131

 Mine.flagState.MINE) {
 return gameState.CONTINUE;
 }
 if (thisMine.isCleared())
 return gameState.CONTINUE;
 if (thisMine.hasMine()) {
 return gameState.LOSE;
 } else {
 return cascade(i, j);
 }
 } else {
 Mine.flagState state =
 thisMine.setFlagState();
 if(state == Mine.flagState.MINE) {
 minesFound++;
 minesRemaining--;
 } else if(state == Mine.flagState.SUSPECT) {
 minesFound--;
 minesRemaining++;
 }
 }
 }
 }
 }
 return gameState.CONTINUE;
 }

 private void populate() {
 populate(0);
 }

private void populate(int mineCount) {
 int currentCount = mineCount;
 double mineChance = (double) mines / (double) (rows * columns);
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < columns; j++) {
 Mine thisMine = mineField[i][j];
 if (!thisMine.hasMine()) {
 if (Math.random() < mineChance) {
 thisMine.setMine();
 currentCount++;
 if (currentCount == mines) {
 return;
 }
 }
 }
 }
 }
 if (currentCount < mines) {
 populate(currentCount);
 }
}

CHAPTER 7 ■ WRITING A USER INTERFACE

132

 int getMinesFound() {
 return minesFound;
 }

 int getMinesRemaining() {
 return minesRemaining;
 }

 private gameState cascade(int x, int y) {
 if (x < 0 || y < 0 || x >= rows || y >= columns) {
 return gameState.CONTINUE;
 }
 Mine thisMine = mineField[x][y];
 if (thisMine.hasMine()) {
 return gameState.CONTINUE;
 }
 if (!thisMine.isCleared()) {
 thisMine.clear();
 emptiesRemaining--;
 if (emptiesRemaining == 0) {
 return gameState.WIN;
 }
 }
 if (countAdjacentMines(x, y) > 0) {
 return gameState.CONTINUE;
 } else{
 for (int i = x - 1; i <= x + 1; i++) {
 for (int j = y - 1; j <= y + 1; j++) {
 if (i < 0 || j < 0 || i >= rows || j >= columns) {
 continue;
 } else if (!mineField[i][j].isCleared()) {
 cascade(i, j);
 }
 }
 }
 }
 return gameState.CONTINUE;
 }

 int countAdjacentMines(int x, int y) {
 int count = 0;
 for (int i = x - 1; i <= x + 1; i++) {
 for (int j = y - 1; j <= y + 1; j++) {
 if (i == x && j == y) {
 continue;
 } else if (i < 0 || j < 0 || i >= rows || j >= columns) {
 continue;
 } else if (mineField[i][j].hasMine()) {
 count++;
 }
 }
 }

CHAPTER 7 ■ WRITING A USER INTERFACE

133

 return count;
 }

 boolean getMineCleared(int x, int y) {
 return mineField[x][y].isCleared();
 }
 Mine.flagState getMineFlag(int x, int y) {
 return mineField[x][y].getFlagState();
 }

 boolean isMine(int x, int y) {
 return mineField[x][y].hasMine();
 }
}

Let's start at the top, with the fields (remember, a variable at the class level is called a field). Listing
7-13 shows the fields in the MineField class.

Listing 7-13. The MineField class's fields

 private Mine[][] mineField;
 private int rows;
 private int columns;
 private int mines;
 private int minesFound = 0;
 private int minesRemaining;
 private int emptiesRemaining;
 enum gameState {WIN, LOSE, CONTINUE};

First, we have a two-dimensional array that holds the locations of the mines. Then we get a bunch of

integer values to tell us how many rows, columns, and mines this instance of the game should have.
Then we get more int values to tell us the state (number of mines found, number of mines remaining,
and empty spaces remaining) of the current game. We add a minesRemaining field to avoid having to type
mines - minesFound repeatedly. The emptiesRemaining field is more interesting, because it lets us know
when the user has won. Finally, we have a tri-state enumeration that tells us the current state of the
whole game—specifically, whether the player has won, the player has lost, or the player can continue the
current game.

■ Note The gameState enumeration is not private (meaning it is visible to all the other classes in the package)
because the other classes use its values in various places, as we see later.

The MineField class has a constructor (used by the init method in the MineSweeper class). Listing 7-
14 shows the MineField constructor.

CHAPTER 7 ■ WRITING A USER INTERFACE

134

Listing 7-14. The MineField construcor

MineField(int rows, int columns, int mines) {
 this.rows = rows;
 this.columns = columns;
 this.mines = mines;
 minesRemaining = mines;
 emptiesRemaining = rows * columns - mines;
 mineField = new Mine[rows][columns];
 init();
 populate();
}

Like most constructors, the MineField constructor first populates the fields with the values of the
current game. Then it calls a method called init (which we examine next). Finally, it calls the populate
method that has no constructors (there are two populate methods—we go over why that is shortly). The
pattern of a constructor doing some simple work and then calling other methods to do more complex
work is common, by the way. It offers a way to isolate complexity, which makes the code easier to read
and easier to debug when problems arise.

Now let's look at the init method, shown in Listing 7-15.

Listing 7-15. The MineField init method

private void init() {
 for (int i = 0; i < rows; i++){
 for (int j = 0; j < columns; j++) {
 mineField[i][j] = new Mine();
 }
 }
}

As you can see, it's a simple method. It populates the minefield with the right number of Mine
objects. The two populate methods do the heavy lifting of figuring out where the mines reside. If you're a
clever reader (and I know you are), you're wondering how there can be a Mine object in every possible
location; we tackle that mystery when we get to the Mine object itself.

For now, let's press on into the two populate methods., which I've put together in Listing 7-16.

Listing 7-16. The two populate methods

private void populate() {
 populate(0);
}

private void populate(int mineCount) {
 int currentCount = mineCount;
 double mineChance = (double) mines / (double) (rows * columns);
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < columns; j++) {
 Mine thisMine = mineField[i][j];
 if (!thisMine.hasMine()) {
 if (Math.random() < mineChance) {
 thisMine.setMine();

CHAPTER 7 ■ WRITING A USER INTERFACE

135

 currentCount++;
 if (currentCount == mines) {
 return;
 }
 }
 }
 }
 }
 if (currentCount < mines) {
 populate(currentCount);
 }
}

So why two populate methods? The first one is a convenience method that saves the trouble of
providing an argument. In this case, it's not all that convenient, because we call only the convenience
method once. You can rightfully say that we should have used just one method. However, we use this
pattern so often that it's essentially a habit. More importantly, it gives us a chance to talk about this
useful pattern.

So, again, why two methods? It's a useful technique in a number of situations. If you're exposing
methods to other objects (meaning the methods are not private), multiple methods of the same name let
developers (including you) call the same method with different parameters. Then each of those methods
calls some other method that applies the parameters. In other cases, the simpler method gets used
multiple times to make coding a bit easier (by not having to specify parameters that rarely change every
time).

Now let's talk about what the two populate methods do. The simple populate method calls the more
complex populate method with an argument (which is the value needed to start the process of
populating the minefield). That initial value is the number of mines that have been placed so far. That's
why the initial argument is 0.

The complex version of the populate method keeps a count (the currentCount variable) of the mines
placed so far. To figure out whether any given spot has a mine, the method uses the random number
generator to compare against the chance of a mine being in any one spot. That chance is the number of
possible spots divided by the number of mines.

If we happen to get to the required number of mines before going through the whole array, we can
stop. The if statement in the middle of the method accomplishes that goal. On the other hand, if we go
through the whole array and don't get to the required number of mines, we call the populate method
again. Let me repeat that bit: We call the method we're in again. That's called recursion, and I dedicate a
whole chapter to that relatively advanced topic later in the book. Recursion. is one of my favorite
programming techniques, and you can do some interesting things with it. For now, though, let's finish a
MineSweeper game.

If we do have to re-enter the method, the second pass will go through the array again until we finally
have the required number of mines. In theory, this process could require more than two passes. In
testing, though, no more than two passes were ever needed, and the first pass never produced fewer
than seven mines. This algorithm gives a slight weighting to the top left corner of the minefield, but I
think that's an acceptable problem.

So, the populate methods get a little tricky, but they do solve the problem of how to randomly
populate a minefield. Let's press on to other methods.

The next two methods, getMinesFound and getMinesRemaining, return the values of fields. So let's
skip describing them in any further detail. The method after those two, though, is another complex bit of
code that requires some explanation. Listing 7-17 shows the cascade method.

CHAPTER 7 ■ WRITING A USER INTERFACE

136

Listing 7-17. The MineField cascade method

private gameState cascade(int x, int y) {
 if (x < 0 || y < 0 || x >= rows || y >= columns) {
 return gameState.CONTINUE;
 }
 Mine thisMine = mineField[x][y];
 if (thisMine.hasMine()) {
 return gameState.CONTINUE;
 }
 if (!thisMine.isCleared()) {
 thisMine.clear();
 emptiesRemaining--;
 if (emptiesRemaining == 0) {
 return gameState.WIN;
 }
 }
 if (countAdjacentMines(x, y) > 0) {
 return gameState.CONTINUE;
 } else{
 for (int i = x - 1; i <= x + 1; i++) {
 for (int j = y - 1; j <= y + 1; j++) {
 if (i < 0 || j < 0 || i >= rows || j >= columns) {
 continue;
 } else if (!mineField[i][j].isCleared()) {
 cascade(i, j);
 }
 }
 }
 }
 return gameState.CONTINUE;
}

The cascade method handles the hardest task, which is figuring out whether multiple locations
should be cleared when one location is cleared. It uses a simple version of the well-known flood fill
algorithm, checking for adjacent clear locations rather than pixels of the same color (as you would
expect from a flood fill in a paint program). It works by checking the location the player clicked (not
right-clicked), checking every location next to (including diagonally) that location, checking all the
locations next to those locations, and so on, until we finally run out of locations to check. To make that
algorithm work requires recursion again. As you can see near the bottom of the method, the cascade
method calls itself.

Given that a large area without mines can result in a single click clearing a lot of locations, the
cascade method might end up calling itself quite a number of times. I haven't tested the method for the
purpose of seeing how often it is called, but we would not be surprised to see 100 calls in a worst-case
scenario. If you are interested in knowing that, add a counter variable (it has to be an argument to the
method), increment it each time you enter the method, and print that value to the console. Then, when
you play a game, you see how many calls to the cascade method happen.

Another bit of complexity that crops up in the cascade method is the need to check for boundaries.
If the current location is at the edge of the game area, checking an adjacent location can result in an
ArrayOutOfBounds exception, which wouldn't be much fun. So we have an if statement check all four
boundaries and not call the cascade method again if doing so would result in an impossible location.

CHAPTER 7 ■ WRITING A USER INTERFACE

137

Finally, you probably notice that the cascade method returns one of the values from the gameState
enumeration. Most of the time, that’s gameState.CONTINUE. However, it is possible for a cascade event
to clear the board and win the game, so the method can also return gameState.WIN.

The MineField class has one last non-trivial method, called countAdjacentMines. Listing 7-18 shows
the countAdjacentMines method.

Listing 7-18. The MineSweeper countAdjacentMines method

int countAdjacentMines(int x, int y) {
 int count = 0;
 for (int i = x - 1; i <= x + 1; i++) {
 for (int j = y - 1; j <= y + 1; j++) {
 if (i == x && j == y) {
 continue;
 } else if (i < 0 || j < 0 || i >= rows || j >= columns) {
 continue;
 } else if (mineField[i][j].hasMine()) {
 count++;
 }
 }
 }
 return count;
}

When a player clears a location that does not contain a mine, we have to show the number of
adjacent mines in that location. To do that, we need a method of counting the mines adjacent to any
given location. As with the cascade method, we have to check for the edges of the playing field, and we
use identical code to do that. Other than that, the countAdjacentMines method checks each adjacent
(including diagonals) location and adds up the number of mines found.

The Mine class defines an individual location. You might think it's misnamed, because it doesn't
correspond only to locations that have mines. To that end, we thought about changing the name to
Location. Then it occurred to us that, when Explosive Ordnance Disposal specialists (those folks are real
heroes, by the way) check for explosives, they assume every location is mined. So, in a fit of sophistry, I
left the name as Mine. Listing 7-19 shows the Mine class.

Listing 7-19. The Mine class

package com.apress.java7forabsolutebeginners.examples.MineSweeper;

public class Mine {

 enum flagState {UNKNOWN, MINE, SUSPECT};
 private boolean isCleared = false;
 private boolean hasMine = false;
 private flagState flag = flagState.UNKNOWN;
 boolean hasMine() {
 return hasMine;
 }

CHAPTER 7 ■ WRITING A USER INTERFACE

138

 void setMine() {
 hasMine = true;
 }

 boolean isCleared() {
 return isCleared;
 }

 void clear() {
 isCleared = true;
 }

 flagState getFlagState() {
 return flag;
 }

 flagState setFlagState() {
 if (flag == flagState.UNKNOWN) {
 flag = flagState.MINE;
 return flagState.MINE;
 }
 if (flag == flagState.MINE) {
 flag = flagState.SUSPECT;
 return flagState.SUSPECT;
 }
 if (flag == flagState.SUSPECT) {
 flag = flagState.UNKNOWN;
 return flagState.UNKNOWN;
 }
 return flagState.UNKNOWN;
 }
}

The Mine class keeps track of whether a location has a mine, whether the location has been cleared,
and whether the user has flagged the location as having a mine, being a suspect (usually marked by a
question mark icon in minesweeper games), or being unknown (which means not having an icon in the
game). The only complexity is in the setFlagState method, which toggles through the states rather than
accepting an argument to set the flag state. That behavior models the user's behavior of cycling through
flags by right-clicking on a minefield location.

Now we can move on to the MineSweeperHelper class, which contains miscellaneous methods that
the game needs. Though not as large as the MineSweeper and MineField classes, it's still a large class when
compared to earlier work. Again, read through it and do your best to understand it (now that you know
how the rest of the program works, you can probably do pretty well with it), and then we examine it in
detail. Listing 7-20 shows the MineSweeperHelper class.

Listing 7-20. The MineSweeperHelper class

package com.apress.java7forabsolutebeginners.examples.MineSweeper;

import java.awt.Color;

CHAPTER 7 ■ WRITING A USER INTERFACE

139

import javax.swing.JButton;
import javax.swing.JOptionPane;

public class MineSweeperHelper {

 private MineSweeper mineSweeper;

 public MineSweeperHelper(MineSweeper mineSweeper) {
 this.mineSweeper = mineSweeper;
 }

 void updateLabels() {
 mineSweeper.minesFoundLabel.setText("Found: " + mineSweeper.mineField.getMinesFound());
 mineSweeper.minesRemainingLabel.setText("Remaining: " +
 mineSweeper.mineField.getMinesRemaining());
 }

 void updateButtons() {
 for (int i = 0; i < mineSweeper.rows; i++) {
 for (int j = 0; j < mineSweeper.columns; j++) {
 if (mineSweeper.mineField.getMineCleared(i, j) == true) {
 mineSweeper.mineButtons[i][j].removeMouseListener(mineSweeper.mouseListener);
 mineSweeper.mineButtons[i][j].setBackground(Color.WHITE);
 int count = mineSweeper.mineField.countAdjacentMines(i, j);
 if (count > 0) {
 mineSweeper.mineButtons[i][j].setIcon(MineIcon.getNumberIcon(count));
 }
 } else {
 if (mineSweeper.mineField.getMineFlag(i, j) == Mine.flagState.MINE) {
 mineSweeper.mineButtons[i][j].setIcon(MineIcon.getMineIcon());
 } else if (mineSweeper.mineField.getMineFlag(i, j) == Mine.flagState.SUSPECT) {
 mineSweeper.mineButtons[i][j].setIcon(MineIcon.getSuspectIcon());
 } else {
 mineSweeper.mineButtons[i][j].setIcon(null);
 }
 }
 }
 }
 }

 void showAll() {
 for (int i = 0; i < mineSweeper.rows; i++) {
 for (int j = 0; j < mineSweeper.columns; j++) {
 boolean mine = mineSweeper.mineField.isMine(i, j);
 if (mine) {
 mineSweeper.mineButtons[i][j].setIcon(MineIcon.getMineIcon());
 } else {
 JButton thisButton = mineSweeper.mineButtons[i][j];
 thisButton.removeMouseListener(mineSweeper.mouseListener);
 thisButton.setBackground(Color.WHITE);
 thisButton.setIcon(null);
 int count = mineSweeper.mineField.countAdjacentMines(i, j);

CHAPTER 7 ■ WRITING A USER INTERFACE

140

 if (count > 0) {
 thisButton.setIcon(MineIcon.getNumberIcon(count));
 }
 }
 }
 }
 }

 void endGame(boolean won) {
 showAll();
 String wonOrLost;
 int option;
 if (won) {
 wonOrLost = "You won!";
 } else {
 wonOrLost = "You lost.";
 }
 option = JOptionPane.showConfirmDialog(mineSweeper.frame, wonOrLost
 + " Play again?", wonOrLost,
 JOptionPane.YES_NO_OPTION);
 if (option == 1) {
 System.exit(0);
 } else {
 newGame(mineSweeper.rows, mineSweeper.columns);
 }
 }

 void newGame(int previousRows, int previousColumns) {
 for (int i = 0; i < previousRows; i++) {
 for (int j = 0; j < previousColumns; j++) {
 mineSweeper.minePanel.remove(mineSweeper.mineButtons[i][j]);
 }
 }
 mineSweeper.init();
 mineSweeper.minePanel.validate();
 mineSweeper.frame.validate();
 mineSweeper.frame.pack();
 updateLabels();
 }
}

The MineSweeperHelper class has a constructor, as shown in Listing 7-21.

Listing 7-21. The MineSweeperHelper constructor

 public MineSweeperHelper(MineSweeper mineSweeper) {
 this.mineSweeper = mineSweeper;
 }

This constructor doesn't do much, but what it does is critically important. All the methods in the
class work on an instance of the MineSweeper class, so we must have an instance for them. The
constructor gives us that instance. As we saw in the constructor for the MineSweeper class, the

CHAPTER 7 ■ WRITING A USER INTERFACE

141

MineSweeper class passes itself (with the this keyword) to this class (and to the other utility classes that
do work on its behalf). That's a common idiom for helper classes: The helper has to have a link back to
the object it's helping to be able to do anything.

Let's examine the next method: updateLabels. Listing 7-22 shows the updateLabels method.

Listing 7-22. The MineSweeperHelper updateLabels method

 void updateLabels() {
 mineSweeper.minesFoundLabel.setText("Found: " + mineSweeper.mineField.getMinesFound());
 mineSweeper.minesRemainingLabel.setText("Remaining: " +
 mineSweeper.mineField.getMinesRemaining());
 }

It doesn't get much simpler than that. The updateLabels has the simple task of updating the labels
that show how many mines have been found and how many mines remain to be found. Remember that
those values are based on the player's guesses, not the actual values. The player could be wrong, which
would make the numbers wrong. That's part of the fun.

The updateButtons method does a bit more, including placing the numbers on the grid, which we
explore in a bit more detail after the listing. Listing 7-23 shows the updateButtons method.

Listing 7-23. The MineSweeperHelper updateButtons method

 void updateButtons() {
 for (int i = 0; i < mineSweeper.rows; i++) {
 for (int j = 0; j < mineSweeper.columns; j++) {
 if (mineSweeper.mineField.getMineCleared(i, j) == true) {
 mineSweeper.mineButtons[i][j].removeMouseListener(mineSweeper.mouseListener);
 mineSweeper.mineButtons[i][j].setBackground(Color.WHITE);
 int count = mineSweeper.mineField.countAdjacentMines(i, j);
 if (count > 0) {
 mineSweeper.mineButtons[i][j].setIcon(MineIcon.getNumberIcon(count));
 }
 } else {
 if (mineSweeper.mineField.getMineFlag(i, j) == Mine.flagState.MINE) {
 mineSweeper.mineButtons[i][j].setIcon(MineIcon.getMineIcon());
 } else if (mineSweeper.mineField.getMineFlag(i, j) == Mine.flagState.SUSPECT) {
 mineSweeper.mineButtons[i][j].setIcon(MineIcon.getSuspectIcon());
 } else {
 mineSweeper.mineButtons[i][j].setIcon(null);
 }
 }
 }
 }
 }

The updateButtons method runs through the whole grid, replacing any cleared buttons with either
empty spaces or numbers and setting the mine and suspect icons on any locations the player has
marked as either a mine or a suspect. As you can see from the listing 7-23, that takes a number of if
statements, some of them nested inside other if statements. Let's start with the first if statement (the first
line inside the for loops). If the location has been cleared, it removes the mouselistener for that location,
so that further clicks on that location won't do anything. Then it sets the background color to white and
puts the proper icon image (which might be no image at all if no mines are adjacent to the location) in

CHAPTER 7 ■ WRITING A USER INTERFACE

142

the location. If the mine has not been cleared, we enter the outer else block. I say, “outer,” because it
contains other else blocks (after if blocks, of course). Because the location has not been cleared, we
have to make sure the mine and suspect icons are properly set. Finally, if the player has removed (or
never set) the mine and suspect icons on this location, we have to make sure no icon is present. That's
why we set the location's icon to null in that last line (not counting the lines with the closing braces).

In essence, the updateLabels method manages the appearance of the minefield, setting the colors
and icons for all the locations. There's a good design tip in there for you: Always make sure each method
has a single, well-defined task. If a method has to do several things, break it up into several methods and
have one method do nothing but (or at least not much more than) call the others. We see an example of
this kind of method when we get to the newGame method.

Next up, we get to the showAll method, shown in Listing 7-24.

Listing 7-24. The MineSweeperHelper showAll method

 void showAll() {
 for (int i = 0; i < mineSweeper.rows; i++) {
 for (int j = 0; j < mineSweeper.columns; j++) {
 boolean mine = mineSweeper.mineField.isMine(i, j);
 if (mine) {
 mineSweeper.mineButtons[i][j].setIcon(MineIcon.getMineIcon());
 } else {
 JButton thisButton = mineSweeper.mineButtons[i][j];
 thisButton.removeMouseListener(mineSweeper.mouseListener);
 thisButton.setBackground(Color.WHITE);
 thisButton.setIcon(null);
 int count = mineSweeper.mineField.countAdjacentMines(i, j);
 if (count > 0) {
 thisButton.setIcon(MineIcon.getNumberIcon(count));
 }
 }
 }
 }
 }

The showAll method .has the simple task of revealing everything and removing the mouse listener
from all the locations. It gets called only when the game ends, whether the player won or lost. Why show
everything if the player won? The player might not have set mine icons on all of the locations that have
mines and might even have won in spite of being wrong. We want a complete representation of the true
state of the game at the end, so we clear and set the proper number icons (including no icon) for all the
locations that don't have mines and set the mine icon for all the locations that do have mines. If the
player won, doing so confirms the player's accuracy. If the player lost, showing the true state of the game
reveals mistakes, possibly letting the player learn to better play the game.

Notice that there's no instance of the MineIcon class, but we can get icons out of it anyway. We see
how that works when we get to the MineIcon class. For now, let's move on to the endGame method.
Listing 7-25 shows the endGame method.

CHAPTER 7 ■ WRITING A USER INTERFACE

143

Listing 7-25. The MineSweeperHelper endGame method

 void endGame(boolean won) {
 showAll();
 String wonOrLost;
 int option;
 if (won) {
 wonOrLost = "You won!";
 } else {
 wonOrLost = "You lost.";
 }
 option = JOptionPane.showConfirmDialog(mineSweeper.frame, wonOrLost
 + " Play again?", wonOrLost,
 JOptionPane.YES_NO_OPTION);
 if (option == 1) {
 System.exit(0);
 } else {
 newGame(mineSweeper.rows, mineSweeper.columns);
 }
 }

As we saw in the description of the showAll method, the endGame method calls the showAll method.
Then it shows the player a dialog box to indicate whether the player won or lost and ask the player
whether to play again. To show the dialog box, we use the JOptionPane class, which is one way to show a
dialog box in Swing. They probably call it JOptionPane because it has a bunch of different options. If you
examine the JavaDoc for JOptionBox, you see that it has a number of constructors, each of which creates
a different kind of dialog box. For this case, we want a box with a message, a Yes button, a No button,
and the capability to let us know which button the player clicked. To do all that, we create a String object
to hold the message (either “You won!” or “You lost.”) and define an int value to hold the return value of
the JOptionPane object. The return value indicates which button the user clicked, with 0 being “Yes” and
1 being “No.” Finally, if the user chose “No” (return value of 1), we exit the program with an exit code of
0 (which means the program shut down normally, rather than as the result of an error). If the user chose
“Yes,” we call the newGame method, which is the next method. Listing 7-26 shows the newGame method.

Listing 7-26. The MineSweeper newGame method

 void newGame(int previousRows, int previousColumns) {
 for (int i = 0; i < previousRows; i++) {
 for (int j = 0; j < previousColumns; j++) {
 mineSweeper.minePanel.remove(mineSweeper.mineButtons[i][j]);
 }
 }
 mineSweeper.init();
 mineSweeper.minePanel.validate();
 mineSweeper.frame.validate();
 mineSweeper.frame.pack();
 updateLabels();
 }

As we saw in the description of the updateButtons method, when a method needs to call a bunch of
other methods, it's best for the calling method to not do too much more than that, and the things it does
do should be simple. Otherwise, you risk having a hard method to understand and to debug. Also,

CHAPTER 7 ■ WRITING A USER INTERFACE

144

because a method with that problem is overly complex, it's exactly the kind of place where errors arise.
So not only is such a method hard to debug, but it's likely that you have to debug it—a double whammy.

In the case of the newGame method, it performs one simple task (removing all the buttons from the
minefield panel), and then calls a chain of other methods that do the work of setting up a new game and
updating the interface. In particular, it calls the init method in the MineSweeper class, which makes a new
MineField object and sets up all the buttons in the play area. Then it validates the minePanel object in the
MineSweeper class, which ensures that all the old buttons won't appear and that the new buttons created
by the init method will appear. Then it validates the JFrame object, which forces it to correctly accept
the changed minePanel object. (Think of the validate method on Swing objects as a mechanism for
ensuring that any changes are shown to the user.) Then it calls the pack method on the JFrame object,
which finishes the job of refreshing our changed minefield interface. Finally, it updates the labels to their
starting values (which were set by the init method).

That's a lot to do, but we manage it by having methods that do clearly defined bits of it for us, rather
than lumping it all together in one spot, which would, again, be hard to understand, hard to debug, and
(worst of all) more likely to produce errors. Remember: If you have to struggle to figure out what a
method is doing, it probably needs to be multiple methods. On the other hand, it might also mean that
you have a design problem (probably a badly thought-out set of classes). Either way, take hard-to-
understand code as a sign of a problem and think of a way to make it easy to understand.

Now let's look at an unusual class, the MineIcon class, shown in Listing 7-27.

Listing 7-27. The MineIcon class

package com.apress.java7forabsolutebeginners.examples.MineSweeper;

import javax.swing.Icon;
import javax.swing.ImageIcon;

public class MineIcon {

 private static Icon mineIcon = new ImageIcon("C:\\Projects\\MineSweeper\\mine.png");
 private static Icon suspectIcon = new ImageIcon("C:\\Projects\\MineSweeper\\question.png");
 private static Icon oneIcon = new ImageIcon("C:\\Projects\\MineSweeper\\one.png");
 private static Icon twoIcon = new ImageIcon("C:\\Projects\\MineSweeper\\two.png");
 private static Icon threeIcon = new ImageIcon("C:\\Projects\\MineSweeper\\three.png");
 private static Icon fourIcon = new ImageIcon("C:\\Projects\\MineSweeper\\four.png");
 private static Icon fiveIcon = new ImageIcon("C:\\Projects\\MineSweeper\\five.png");
 private static Icon sixIcon = new ImageIcon("C:\\Projects\\MineSweeper\\six.png");
 private static Icon sevenIcon = new ImageIcon("C:\\Projects\\MineSweeper\\seven.png");
 private static Icon eightIcon = new ImageIcon("C:\\Projects\\MineSweeper\\eight.png");

 static Icon getMineIcon() {
 return mineIcon;
 }

 static Icon getSuspectIcon() {
 return suspectIcon;
 }

 static Icon getNumberIcon(int mineCount) {
 if (mineCount == 1) return oneIcon;
 if (mineCount == 2) return twoIcon;

CHAPTER 7 ■ WRITING A USER INTERFACE

145

 if (mineCount == 3) return threeIcon;
 if (mineCount == 4) return fourIcon;
 if (mineCount == 5) return fiveIcon;
 if (mineCount == 6) return sixIcon;
 if (mineCount == 7) return sevenIcon;
 if (mineCount == 8) return eightIcon;
 return null;
 }
}

Notice that every member, both fields and methods, is static. We do that because there's no point in
loading the icon images more than once. Because being static is handy for the icons, we also make the
methods static. Consequently, we never need to create an instance of the MineIcon class. To get an icon,
we can use the syntax for calling a class method. (Remember that a class method belongs to the class,
not to any instance of the class.) That syntax is the name of the class, a period, and the name and
arguments of the method, such as MineIcon.getMineIcon();.

Static methods are fairly common. You can use them for any task that doesn't require an instance of
the containing class. Even classes that consist entirely of static methods are fairly common. As with the
MineIcon class, they provide functionality that doesn't need an object of any sort to work. They either
offer utility methods (such as formatting String objects in special ways needed by a particular
application) or return items (such as our icons) that don't require any other input to find. It might seem
odd, because you've never seen it before, but it gives you another tool in your programming toolkit.

Hang in there. We're almost done with the code for the MineSweeper program. We have just the two
classes that listen for user actions (mouse clicks and menu actions) left to go. Let's keep going with the
MineSweeperMouseListener class, shown in Listing 7-28.

Listing 7-28. The MineSweeperMouseListener class

package com.apress.java7forabsolutebeginners.examples.MineSweeper;

import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

import javax.swing.JButton;

public class MineSweeperMouseListener implements MouseListener {

 private MineSweeper mineSweeper;
 private MineSweeperHelper mineSweeperHelper;

 public MineSweeperMouseListener(MineSweeper mineSweeper, MineSweeperHelper helper) {
 this.mineSweeper = mineSweeper;
 mineSweeperHelper = helper;
 }

 @Override
 public void mouseClicked(MouseEvent e) {
 }

CHAPTER 7 ■ WRITING A USER INTERFACE

146

 @Override
 public void mouseEntered(MouseEvent e) {
 }

 @Override
 public void mouseExited(MouseEvent e) {
 }

 @Override
 public void mousePressed(MouseEvent e) {
 }

 @Override
 public void mouseReleased(MouseEvent e) {
 JButton clickedButton = (JButton) e.getSource();
 for (int i = 0; i < mineSweeper.rows; i++) {
 for (int j = 0; j < mineSweeper.columns; j++) {
 if (clickedButton == mineSweeper.mineButtons[i][j]) {
 MineField.gameState state;
 if (e.getButton() == MouseEvent.BUTTON1) {
 state = mineSweeper.mineField.resolveClick(i,j, true);
 if (state == MineField.gameState.CONTINUE) {
 if (mineSweeper.mineField.getMineFlag(i, j) == Mine.flagState.UNKNOWN) {
 clickedButton.removeMouseListener(this);
 }
 }
 } else {
 state = mineSweeper.mineField.resolveClick(i,j, false);
 }
 if (state == MineField.gameState.WIN) {
 mineSweeperHelper.endGame(true);
 } else if (state == MineField.gameState.LOSE){
 mineSweeperHelper.endGame(false);
 } else {
 mineSweeperHelper.updateButtons();
 }
 }
 }
 }
 mineSweeperHelper.updateLabels();
 }
}

As we saw in the MineSweeperHelper class, the MineSweeperMouseListener class has a constructor that
it uses to get an instance of the MineSweeper class. It also gets an instance of the MineSweeperHelper class.
Both of those classes need to listen for mouse clicks, so the MineSweeperMouseListener class has to have
instances of both classes. The only other method that does anything is the mouseReleased method. As we
learn earlier, using the mouseReleased method is more reliable than using the mouseClicked method,
thanks to the problem of mouse motion wiping out the click event.

The mouseClicked method runs through all the buttons until it finds the button on which the player
clicked. If the player clicked the left mouse button, the method calls the resolveClick method in the
MineField class to see whether the player hit a mine. If not, the resolveClick method figures out whether

CHAPTER 7 ■ WRITING A USER INTERFACE

147

the game is over (because the player won or lost) or the game should continue. If the user clicked any
other button (most likely the right button), this method still calls the resolveClick method, but with the
button flag indicating that a button other than the left button was clicked. The resolveClick method
then toggles the mine, suspect, and unknown icons on that location. Finally, the mouseClicked method
uses the value returned by the resolveClick method to end the game (the player won or lost) or
continue the game. If the game didn't end, we update the buttons in the minefield. Finally, once all the
other processing has been done, the mouseClicked method updates the labels.

The MineSweeperMouseListener class isn't complex, but it is worth moving this functionality into its
own class, to simplify the MineSweeper class. It also follows the design principle that each object should
have a clear purpose. In this case, we create a class with the clear mission of listening for clicks in the
minefield, and removing that functionality (and moving other bits to other classes) lets the MineSweeper
focus purely on showing the user interface.

Let's finish up this long journey through the MineSweeper game by looking at the last class in the
MineSweeper package. Listing 7-29 shows the MineSweeperActionListener class.

Listing 7-29. The MineSweeperActionListener class

package com.apress.java7forabsolutebeginners.examples.MineSweeper;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class MineSweeperActionListener implements ActionListener {

 private MineSweeper mineSweeper;
 private MineSweeperHelper mineSweeperHelper;

 public MineSweeperActionListener(MineSweeper mineSweeper, MineSweeperHelper helper) {
 this.mineSweeper = mineSweeper;
 mineSweeperHelper = helper;
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand().equals("Exit")) {
 System.exit(0);
 }
 if (e.getActionCommand().equals("New Game")) {
 mineSweeperHelper.newGame(mineSweeper.rows, mineSweeper.columns);
 return;
 }
 if (e.getActionCommand().equals("Small (8 x 8, 10 mines)")) {
 int previousRows = mineSweeper.rows;
 int previousColumns = mineSweeper.columns;
 mineSweeper.rows = 8;
 mineSweeper.columns = 8;
 mineSweeper.numberOfMines = 10;
 mineSweeperHelper.newGame(previousRows, previousColumns);
 return;
 }

CHAPTER 7 ■ WRITING A USER INTERFACE

148

 if (e.getActionCommand().equals("Medium (16 x 16, 40 mines)")) {
 int previousRows = mineSweeper.rows;
 int previousColumns = mineSweeper.columns;
 mineSweeper.rows = 16;
 mineSweeper.columns = 16;
 mineSweeper.numberOfMines = 40;
 mineSweeperHelper.newGame(previousRows, previousColumns);
 return;
 }
 if (e.getActionCommand().equals("Large (16 x 32, 100 mines)")) {
 int previousRows = mineSweeper.rows;
 int previousColumns = mineSweeper.columns;
 mineSweeper.rows = 16;
 mineSweeper.columns = 32;
 mineSweeper.numberOfMines = 100;
 mineSweeperHelper.newGame(previousRows, previousColumns);
 return;
 }
 }
}

Similar to the MineSweeperMouseListener class, the MineSweeperActionListener has to have both a
MineSweeper object and a MineSweeperHelper object. To that end, it has a constructor that provides those
two objects. The only method in the class (remember that a constructor isn't a method, though it looks a
lot like one) is the actionPerformed method, which implements the only method defined by the
ActionListener interface.

The actionPerformed method listens for menu events and either exits the game or starts a new
game. In the case of starting a new game, it can either start a new game with the current settings (size of
the playing field and number of mines) or start a new game with new settings. For a new game with a
different size, the actionPerformed method gets the size of the current playing field, sets the size of the
new playing field (by setting values in the MineSweeper object), and then calls the newGame method in the
MineSweeperHelper object. Remember that the newGame method first removes the existing buttons that
comprise the playing field. That's why we have to get the current size of the playing field.

As with the MineSweeperMouseListener class, the MineSweeperActionListener is a simple class. Again,
though, it conforms to good design principles by having a clear purpose, and it helps simplify the
MineSweeper class (which was getting cluttered before we split it into five classes).

Now that we've made it through the whole MineSweeper program, let's see what we get when we're
done, in the form of a finished game in Figure 7-5.

CHAPTER 7 ■ WRITING A USER INTERFACE

149

Figure 7-5. A finished MineSweeper game

Summary
In this chapter, you saw a number of Swing applications, of steadily increasing complexity, culminating
in a larger application that implements our own version of a common and popular game. It made for a
long chapter and a lot of code, but it shows our first real-world example. We create several more real
applications as we proceed throughout the rest of the book, but none of them are as large as the
MineSweeper game.

In the course of writing those applications, we saw that:

• Swing applications can become verbose (a problem that plagues all user-interface
frameworks).

• The starting point for a Swing application is a JFrame object, because it gives us a
window.

• The place to add components is in the content pane.

CHAPTER 7 ■ WRITING A USER INTERFACE

150

• The normal idiom for working with Swing components is to create a component,
set whatever attributes we need to set on it (to customize it for our purpose), and
then add that component to another component.

• It can be handy to move the mouse and menu listeners (and keyboard listeners, if
we needed them) out to their own classes, to simplify a large class and to let each
class focus on a single, clear purpose.

• It can be handy to have a helper class, to again simplify a large class.

• All the members of a class can be static and how to use such a class.

The best way (and only real way, in my opinion) to learn to program is to program. So go write a
Swing application or two of your own.

C H A P T E R 8

151

Writing and Reading Files

Writing data to and reading data from files are common tasks for almost any kind of program. Even
simple games, such as our MineSweeper game, can benefit from storing information in a file and
retrieving it later. (MineSweeper could store the size of game the player last chose and keep track of the
best time for each size.) Java provides an extensive collection of classes and interfaces for dealing with
files (and associated objects such as directories and drives). The heart of it all is the aptly named and
often-used java.io.File class. “io” stands for input/output.

Working with File Objects
The first thing to know about working with java.io.File (I'll call it “File” from here on) objects is that a
File object is not a file. A File object in Java is an object that contains various bits of information about a
file. The distinction might seem meaningless, but it's very important. Consider the following bit of code:
File myFile = new File(); That code does not create an empty file on your system. Instead, it creates
an object within your program. For the sake of comparison, let's look at code that creates an empty file
on your system. Notice how we have to create a file, with the createNewFile() method, after we create
the file object.

■ Note To get the code in Listing 8-1 and Listing 8-2 to work, you must first create a directory called test on
your C drive.

Figure 8-1 shows my test directory (which I created just for this code) before running Listing 8-1. It's
not the most thrilling image, but I thought you should see the “before” image to go with Figure 8-2
(which shows the “after” image).

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 8 ■ WRITING AND READING FILES

152

Figure 8-1. A test directory

Listing 8-1. Creating an empty file

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;

public class FileTest {

 public static void main(String[] args) {
 String fileName = "C:\\test\\myFile.txt";
 File myFile = new File(fileName);
 try {
 myFile.createNewFile();
 } catch (Exception e) {
 System.out.println("Couldn't create " + myFile.getPath());
 }
 System.out.println("Created " + myFile.getPath());
 }
}

If you have a test directory on your C drive, that program creates an empty text file called
myFile.txt in that directory. Figure 8-2 shows the results on my Windows laptop.

Figure 8-2. Test directory with our file

Let's examine the code. First, notice that we have double backslashes (which are escape sequences
that insert a single backslash) for path separators. Using double backslashes is actually bad practice. It
assumes we're running on a Windows (or perhaps DOS) system. But what happens when someone runs
our program on a Unix or Linux system or a Mac? The JVM might figure it out and use the right

CHAPTER 8 ■ WRITING AND READING FILES

153

characters, but we can't count on such things. Instead, we should specify a file name by using Java's path
specifiers, as shown in listing 8-2.

Second, notice that we must handle an exception to work with a File object. Nearly all the methods
in the various Input/Output classes and interfaces throw an IOException. As we learned when we
covered the basics of exceptions in Chapter 2, “Java Syntax,” Java objects generally throw exceptions
whenever something beyond the bounds of your program might cause a problem. In the case of
methods that deal with files, your program cannot anticipate all the things that can go wrong on the file
system. You might inadvertently specify a directory or drive that does not exist or specify an invalid file
name. For example, my laptop has no Z drive. So, if I try to create Z:\\test\\myFile.txt, the program
fails. Listing 8-2 shows how to create a file with a path that works on any operating system (so long as a
JVM exists for that operating system).

Listing 8-2. Creating an empty file with path specifiers

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;

public class FileTest {

 public static void main(String[] args) {
 String fileName = "C:" + File.separator +
 "test" + File.separator + "myFile.txt";
 File myFile = new File(fileName);
 try {
 myFile.createNewFile();
 } catch (Exception e) {
 System.out.println("Couldn't create " + myFile.getPath());
 }
 System.out.println("Created " + myFile.getPath());
 }
}

Now, no matter what system we run the program on, we get a proper path for our file. If everything
else works (the C drive exists, the test directory exists, our program has permission to write a file in that
location, and so on), we get a new and empty text file where we expect it.

Opening a File
You probably can't get by with just writing new files all the time, so you should know how to open a file
that already exists, too. What opening a file really amounts to is creating a File object that corresponds
to a file on the file system. Then, through that File object, you can do various things to the contents of
the file. We get to manipulating contents later; for now, let's just get a File object for an existing file.
Because we already created myFile.txt, let's get a File object for that file. To make sure we actually
found a file, we use the exists() method to check for a file, as shown in see Listing 8-3.

CHAPTER 8 ■ WRITING AND READING FILES

154

Listing 8-3. Getting a File object for an existing file

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;

public class FileTest {

 public static void main(String[] args) {
 String fileName = "C:" + File.separator +
 "test" + File.separator + "myFile.txt";
 File myFile = new File(fileName);
 System.out.println(fileName + " exists? " + myFile.exists());
 }
}

Notice how the creation of a File object is the same, regardless of whether the file exists or not. As
we saw earlier in this chapter, a File object is not a file. A File object is a path specification (which might
or might not exist on the file system) and some other information that might or might correspond to an
actual file. Just specifying a path and creating a new File object for it does not create a new file or prove
an existing file exists. To do that, we have to take further steps, as shown in Listings 8-1 and 8-2 (where
we used the createnewFile() method) and Listing 8-3 (where we used the exists() method).

Deleting a File
Sometimes, you need to delete a file, too. The process parallels that of creating a new or finding an
existing file. Listing 8-4 shows the simplest way to do it.

Listing 8-4. Deleting a file

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;
import java.io.IOException;

public class FileTest {

 public static void main(String[] args) throws IOException {
 String fileName = "C:" + File.separator +
 "test" + File.separator + "myFile.txt";
 File myFile = new File(fileName);
 if(!myFile.exists()) {
 throw new IOException("Cannot delete " + fileName
 + " because" + fileName + " does not exist");
 } else {
 myFile.delete();
 }
 System.out.println(fileName + " exists? " + myFile.exists());
 }
}

CHAPTER 8 ■ WRITING AND READING FILES

155

You don't need to check for the file after you delete it, by the way. If the operation fails, you get an
error message. We put in the print statement so that the program would produce some output and let us
know it's done. Figure 8-3 shows the output (in Eclipse's console window) if the program finds a file
named myFile.txt in the test directory and removes it.

Figure 8-3. Output for a successful file deletion

Figure 8-4 shows the output (in Eclipse's console window) if the program cannot find and remove a
file named myFile.txt in the test directory.

Figure 8-4. Output for a failed file deletion

Working with Temporary Files
Temporary files give us a way to store data that we might want at some point but don't want right now
and that we don't to keep after the program exits. For example, most word processors keep a temporary
file open while you work on a document. That file serves a number of purposes, including offering a way
to recover at least most of your work if the program crashes. The temporary file gets removed only if the
program exits normally, so a crash leaves a file that contains your work, which can be handy indeed.

The File class provides a few methods specifically for dealing with temporary files. These methods
let you create multiple temp files without having to think of a new name for each one. Instead, you
specify a prefix (at least three characters long), a suffix (which is .tmp if you set the suffix to null), and
(optionally) a directory. If you don't specify a directory, the JVM creates your files in the system's temp
directory. On most systems, the default temp directory is a subdirectory of your user directory.

So, let's look at how to create a batch of temporary files in Listing 8-5.

Listing 8-5. Creating temp files

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;

public class FileTest {

 public static void main(String[] args) {

CHAPTER 8 ■ WRITING AND READING FILES

156

 String tempDirectoryName = "C:" + File.separator + "test";
 File tempDirectory = new File(tempDirectoryName);
 for (int i = 0; i < 10; i++) {
 try {
 File thisFile =
 File.createTempFile("tmp", null, tempDirectory);
 } catch (Exception e) {
 System.out.println("Couldn't create temp file " + i);
 }
 }
 System.out.println("Done creating temp files");
 }
}

The createTempFile method guarantees that each temp file created during the life of the program
will be different. It doesn't guarantee that the file names will mean anything to a human. Listing 8-6
shows the names of the files that program created in our test directory.

Listing 8-6. Temp file names

tmp1672349819571008723.tmp
tmp3234113842230809615.tmp
tmp5343720775549909618.tmp
tmp6194798942830449846.tmp
tmp7016714774703888253.tmp
tmp720922773409895465.tmp
tmp7634665877605496722.tmp
tmp7730975525106591320.tmp
tmp799007629249445444.tmp
tmp8048303951856646489.tmp

Figure 8-5 shows the temp files after they've been created in my test directory.

Figure 8-5. Temp files in the test directory

CHAPTER 8 ■ WRITING AND READING FILES

157

Some systems create files and leave them on the system for a long time (usually until a user deletes
them, often through a program's user interface rather than through the file system). For example,
Windows Live Mail stores each mail message as a separate file, for example. Still, we usually want to
delete any temp files that we might create. (Otherwise, they don't really seem like temp files.) All we have
to do to get rid of any temp files we create is add one line, as in Listing 8-7.

Listing 8-7. Removing temp files

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;

public class FileTest {

 public static void main(String[] args) {
 String tempDirectoryName = "C:" + File.separator + "test";
 File tempDirectory = new File(tempDirectoryName);
 for (int i = 0; i < 10; i++) {
 try {
 File thisFile =
 File.createTempFile("tmp", null, tempDirectory);
 thisFile.deleteOnExit();
 } catch (Exception e) {
 System.out.println("Couldn't create temp file " + i);
 }
 }
 System.out.println("Done creating temp files");
 }
}

The deleteOnExit() method tells the JVM to remove the file (or directory or set of directories and
files) associated with a particular File object when the program exits. In this case, the files don't exist for
long. However, in a program that does more, the temp files might linger for quite a while as the program
does whatever it does. Consider a game, for example, that's storing various information in temp files.
Those files exist until you stop playing.

Creating a Directory
Sometimes, you need to create a directory in which to put the files you create. As it happens, the File
class defines both directories and files. (You saw an example of that in the programs that deal with
temporary files, earlier in this chapter, when we use a File object to specify our test directory.)
Remember that a File object is a path with some other information. The path can be to either a file or a
directory. Listing 8-8 shows a simple program that creates a directory.

CHAPTER 8 ■ WRITING AND READING FILES

158

Listing 8-8. Creating a directory

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;

public class FileTest {

 public static void main(String[] args) {
 String testDirectoryName = "C:" + File.separator + "test";
 File testDirectory = new File(testDirectoryName);
 try {
 testDirectory.mkdir();
 } catch (Exception e) {
 System.out.println("Couldn't create a directory called "
 + testDirectoryName);
 System.exit(1);
 }
 System.out.println("Created a directory called " + testDirectoryName);
 }
}

Note that we use the mkdir method rather than the createNewFile method. Windows, requires that
we give special permission to write into the root of the C: drive. Any attempt to create a file called
C:\test on the system would fail. (If we change the path to C:\temp\test, we would get a file called test
(with no extension) in our test directory.) However, we can create a new directory as a child of the root
directory, so the mkdir method works.

You can also create multiple directories, in the form of a longer path to a particular location.
Suppose we want to create a directory called C:\test\test2\test3. We can use the mkdirs method (note
the s on the end) to do so, as shown in Listing 8-9 (with the line that specifies the path and the mkdirs
line highlighted).

Listing 8-9. Creating multiple directories

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;

public class FileTest {

 public static void main(String[] args) {
 String testDirectoryName = "C:" + File.separator + "test" +
 File.separator + "test2" + File.separator + "test3";
 File testDirectory = new File(testDirectoryName);
 try {
 testDirectory.mkdirs();
 } catch (Exception e) {
 System.out.println("Couldn't create a directory called "
 + testDirectoryName);
 System.exit(1);
 }

CHAPTER 8 ■ WRITING AND READING FILES

159

 System.out.println("Created a directory called " + testDirectoryName);
 }
}

Notice the System.Exit(1) command. That line makes the program stop (to be more precise, it
terminates the currently running Java Virtual Machine) if something bad happens. By convention (and
an old convention, at that), an exit code of 0 indicates that a program stopped normally (that is, without
error). Any other value indicates some kind of error. In the days before detailed exception messages (and
still today in some systems), a cryptic number was all a person got when a program failed. Then
someone would have to look up the number in a list of error codes to find out what happened. Good
system operators knew large numbers of these codes by heart. Developers are happy to get more
meaningful output these days.

As usual, you can see the name of the directory in Eclipse's console. I've also included a screenshot
of the file system after the program runs, just to show that it works. Figure 8-6 shows the directories in
the path field of Windows Explorer on my system.

Figure 8-6. Result of creating three nested directories

Deleting a Directory
Similarly, you might need to delete a directory at some point. As you probably expect by now, the code
for doing so is remarkably similar to the code for creating a directory, as shown in Listing 8-10.

Listing 8-10. Deleting a directory

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;

public class FileTest {

 public static void main(String[] args) {
 String testDirectoryName = "C:" + File.separator + "test";
 File testDirectory = new File(testDirectoryName);
 if (testDirectory.exists()) {
 testDirectory.delete();
 System.out.println("Deleted a directory called " + testDirectoryName);
 } else {
 System.out.println("Couldn't delete " + testDirectory
 + " because it does not exist");
 }
 }
}

CHAPTER 8 ■ WRITING AND READING FILES

160

Deleting Multiple Directories
If you use the mkdirs method and the JVM can't create the final directory, it might create some of the
directories along the way. That's a problem, so you need to check for each directory in the chain and
remove it. For that reason, paths are sometimes stored as a collection of individual values (perhaps in an
array of String objects), so that they can be worked through programmatically. In cases where not
making empty directories matters (and it always matters, because it's bad form to clutter up the user's
drive), it's best to store the bits of the path as a collection and create each one individually, stopping and
removing any directories that get created if one fails. Consequently, we wouldn't use the mkdirs method
if we care about removing path fragments after a failed directory creation attempt. Listing 8-11 shows a
small program to create directories until one fails and then remove any that might be created along
the way.

■ Note If you still have a directory called test on your C drive, remove it before running the code in Listing 8-11.

Listing 8-11. Rolling back directories when creating a path fails

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;

public class FileTest {

 public static void main(String[] args) {
 String currentPath = "C:";
 // a double colon is illegal on my Windows machine, so this fails
 String[] pathParts = {"test", "test2", "test3::fail"};
 for (String pathPart: pathParts) {
 currentPath += File.separator + pathPart;
 File testDirectory = new File(currentPath);
 if (!testDirectory.mkdir()) {
 System.out.println("Failed to create " + testDirectory
 + "; removing all created directories");
 removePathByParts("C:", pathParts);
 } else {
 System.out.println("Created " + testDirectory);
 }
 }
 }

 private static void removePathByParts(String pathStart, String[] pathParts) {
 String currentPath = pathStart;
 String[] paths = new String[pathParts.length];
 // First, build an array of possible paths

CHAPTER 8 ■ WRITING AND READING FILES

161

 for (int pathCounter = 0; pathCounter < pathParts.length; pathCounter++) {
 currentPath += File.separator + pathParts[pathCounter];
 paths[pathCounter] = currentPath;
 }
 // Then work backwards, checking for the existence of each path
 // and deleting each one if we find it
 for (int pathCounter = pathParts.length - 1; pathCounter >= 0;
 pathCounter--) {
 File currentFile = new File(paths[pathCounter]);
 if (currentFile.delete()) {
 System.out.println("Removed " + currentFile);
 }
 }
 }
}

As you can see, fixing a failed mkdirs run takes a bit of doing. (Of course, there might be better ways
to solve this problem.) Ever have a software installation fail and then notice that you have directories left
behind? It's because rolling back a path is a pain in almost every programming language, and some folks
don't bother, even for commercial software.

Figure 8-7 shows the output from trying to create a directory with an impossible name and the
process of rolling back the directory creation options.

Figure 8-7. Rolling back a failed directory creation operation

Writing and Reading Content
We covered quite a bit of ground without ever writing or reading a single byte to or from a file. It often
happens in software development that you must invest the time to understand one thing before you can
understand another thing. Nearly all fields of study have enough complexity to require learning
prerequisite information, and software development works that way, too. As Bill Cosby once quipped, “I
had to tell you that joke before I could tell you this joke.”

Merrily Down the Stream
In Java (and some other languages), reading from and writing to a file relies on the use of a structure
called a stream. A stream is the data going to or coming from the file with some metadata (that is, data
about the data) to indicate information such as how many bytes are available (in a file being read),
whether the data is inbound or outbound, the file descriptor for the file in question, and so on. We do a
bit more with streams (because we use a different kind of stream) when we process XML files in the next
chapter. For now, just remember that a stream is the data structure that holds the content going to or
coming from our file.

CHAPTER 8 ■ WRITING AND READING FILES

162

Reading a File's Content
Before we can get much further, we first need a file that contains some content. So, let's set up a test
case. Copy the content from Listing 8-12 (a few lines from Shakespeare's play, Hamlet) into a text file
called Hamlet.txt and put the file in your C:\test directory.

Listing 8-12. Original contents of Hamlet.txt

To sleep: perchance to dream: ay, there's the rub;
For in that sleep of death what dreams may come
When we have shuffled off this mortal coil,
Must give us pause: there's the respect
That makes calamity of so long life

(Feel free to use your own favorite bit of content if you don't like mine. For our purposes right now,
all we need is some text.)

Now that we have a file with some content, we can read that content into memory with a program.
To read a file's content, a Java developer generally reaches for a FileInputStream object. Listing 8-13
shows a simple program to read a file and repeat the contents in the console:

Listing 8-13. Putting hamlet.txt in the console.

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class ReadFile {

 public static void main(String[] args) {
 // Specify the file
 String fileName = "C:" + File.separator + "test"
 + File.separator + "Hamlet.txt";
 File hamletFile = new File(fileName);
 // Set up a byte array to hold the file's content
 byte[] content = new byte[0];
 try {
 // Create an input stream for the file
 FileInputStream hamletInputStream = new FileInputStream(hamletFile);
 // Figure out how much content the file has
 int bytesAvailable = hamletInputStream.available();
 // Set the content array to the length of the content
 content = new byte[bytesAvailable];
 // Load the file's content into our byte array
 hamletInputStream.read(content);
 // Close the stream
 hamletInputStream.close();
 } catch (FileNotFoundException fnfe) {
 System.out.println("Couldn't find a file called " + fileName);

CHAPTER 8 ■ WRITING AND READING FILES

163

 } catch (IOException ioe) {
 System.out.println("Couldn't read from a file called " + fileName);
 }
 // Convert our content to a String
 // and write it out to the console
 System.out.print(new String(content));
 }
}

Let's examine that program. After doing what we already know how to do (finding a file), we first set
up a data structure (a byte array) to hold the content of the file. Then we set up a try-catch block to
handle the exceptions that can arise when working with files. We could handle both kinds of exceptions
by handling just Exception (the parent object of both FileNotFoundException and IOException), but then
we won’t know what went wrong. More detail (up to a point) is generally better when diagnosing a
problem.

Within our try-catch block, we create a stream object to hold the content of the file and then read
the content of the stream into our byte array. Then we close the stream. In this simple case, we don’t
need to close the stream. The JVM does that for us when the program exits. However, closing files as
soon as you can is a good habit to have. Each open file forces the operating system to provide an object
called a file handle. Enough open files can greatly degrade a computer's performance, crash your
program, or even crash the operating system.

After we have the contents of the file in memory, we can do something with it. In this case, we cast it
into a String object and send the String object to the console, thus mirroring the contents of our file. We
can potentially do many other things with the contents of a file. A word processing program would
display the content to the user so that the user can modify the content, a game might initialize certain
values (perhaps the size of the map and how aggressive the opponent is), and so on.

Writing a File's Content
Writing to a file works in much the same way as reading from a file. We get a stream, put the content we
want to write to the file in the stream, write that content to the file, and then close the stream. Listing 8-
14 shows a program that does just that. It’s a little more complex but still straight-forward. For fun and
so that we can be sure something happens when we compare the file before and after we run the
program, we reverse the file's content along the way.

Listing 8-14. Writing to hamlet.txt

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class WriteFile {

CHAPTER 8 ■ WRITING AND READING FILES

164

 public static void main(String[] args) {
 // Specify the file
 String fileName = "C:" + File.separator + "test"
 + File.separator + "Hamlet.txt";
 File hamletFile = new File(fileName);
 // Set up a byte array to hold the file's content
 byte[] content = new byte[0];
 try {
 // Create an input stream for the file
 FileInputStream hamletInputStream = new FileInputStream(hamletFile);
 // Figure out how much content the file has
 int bytesAvailable = hamletInputStream.available();
 // Set the content array to the length of the content
 content = new byte[bytesAvailable];
 // Load the file's content into our byte array
 hamletInputStream.read(content);
 // Close the stream
 hamletInputStream.close();
 } catch (FileNotFoundException fnfe) {
 System.out.println("Couldn't find a file called " + fileName);
 } catch (IOException ioe) {
 System.out.println("Couldn't read from a file called " + fileName);
 }
 // Reverse the contents of our array, just so we'll
 // know we did something to the file's content
 reverseByteArray(content);
 try {
 // Create a stream for our output
 FileOutputStream hamletOutputStream
 = new FileOutputStream(hamletFile);
 // Write our output to our stream
 // (and thus to our file)
 hamletOutputStream.write(content);
 // Close the output stream
 hamletOutputStream.close();
 } catch (FileNotFoundException fnfe) {
 System.out.println("Couldn't find a file called " + fileName);
 } catch (IOException ioe) {
 System.out.println("Couldn't write to a file called " + fileName);
 }
 }

 private static void reverseByteArray(byte[] inBytes) {
 int inLength = inBytes.length;
 for (int i = 0; i < inLength >> 1; i++) {
 byte temp = inBytes[i];
 inBytes[i] = inBytes[inLength - i - 1];
 inBytes[inLength - i - 1] = temp;
 }
 }
}

CHAPTER 8 ■ WRITING AND READING FILES

165

Before we proceed with reviewing the file, let's examine the reverseByteArray method. It does
what's called in-place reversing, because we modify the original object without using any additional
memory. Because we use the same memory area that the object already modifies, it's said to be “in-
place.” We can do that because Java passes memory addresses rather than values for objects (such as an
array). We can’t do it for a primitive, because Java passes copies of values for primitives. Many
developers prefer in-place operations because they consume less memory and generally perform more
quickly than code that makes copies of things and then modifies the copies.

This particular reversing algorithm works from both ends of the input at once, by the way. Although
you might think we have to worry about whether we have an even number or odd number of bytes, we
don't actually need to concern ourselves with that detail. If we start with an even number of bytes, we
walk down the array to the middle and swap the center two bytes. With an odd number of bytes, the byte
at the center simply never moves. Also, shifting to the right by one is a smidgeon faster than dividing by
two. Combined with working from both ends at once and doing the reversal in place (that is, by not
creating an additional array to hold intermediate results), this reversing algorithm is about as fast as a
reversing algorithm can be, making it a handy trick to remember.

Alternately, we can reverse the contents of the file by using Java's StringBuffer class. To do so, we
have to convert the content variable to a String object, create an instance of the StringBuffer class, call
the reverse method on the StringBuffer object, and convert the result of StringBuffer.reverse back into a
byte array. Listing 8-15 shows that alternate way to reverse the contents of a byte array.

Listing 8-15. Another way to reverse a byte array

 String contentString = content.toString();
 StringBuffer sb = new StringBuffer(contentString);
 sb.reverse();
 content = sb.toString().getBytes();

I showed you another way to reverse the contents of a byte to demonstrate that there's almost
always another way to do things and to illustrate an issue you should know about: Conversion is
expensive. The code in Listing 8-15 does a number of conversions (both of the toString methods and
the getBytes method are conversions). Conversions consume both time and memory, though, so you
can optimize your code by using an algorithm that doesn't demand conversions. Conversely, the
reverseByteArray method does all of its work with bytes and never tries to convert to another type, so it
ties up fewer resources (memory) and runs more quickly. Try to remember to not convert between types
unless you must.

Now examine the contents of hamlet.txt. You find it's completely reversed, as shown in Listing
8-16.

Listing 8-16. Hamlet in reverse

efil gnol os fo ytimalac sekam tahT
tcepser eht s'ereht :esuap su evig tsuM
,lioc latrom siht ffo delffuhs evah ew nehW
emoc yam smaerd tahw htaed fo peels taht ni roF
;bur eht s'ereht ,ya :maerd ot ecnahcrep :peels oT

So now you see how to open a file, read its content, and replace (and reverse) that content. We can
also modify the file's content rather than replace it. One simple operation is to append our new content
to the existing content. To do so, we need to specify that we want to append to the file when we open it,
by using a different File constructor. To get it to print nicely, we also put a newline character ('\n')

CHAPTER 8 ■ WRITING AND READING FILES

166

between the original and the reversed content. Listing 8-17 shows the code with the additional and
changed lines highlighted.

Listing 8-17. Appending rather than replacing

package com.apress.java7forabsolutebeginners.examples;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class WriteFile {

 public static void main(String[] args) {
 // Specify the file
 String fileName = "C:" + File.separator + "test"
 + File.separator + "Hamlet.txt";
 File hamletFile = new File(fileName);
 // Set up a byte array to hold the file's content
 byte[] content = new byte[0];
 try {
 // Create an input stream for the file
 FileInputStream hamletInputStream = new FileInputStream(hamletFile);
 // Figure out how much content the file has
 int bytesAvailable = hamletInputStream.available();
 // Set the content array to the length of the content
 content = new byte[bytesAvailable];
 // Load the file's content into our byte array
 hamletInputStream.read(content);
 // Close the stream
 hamletInputStream.close();
 } catch (FileNotFoundException fnfe) {
 System.out.println("Couldn't find a file called " + fileName);
 } catch (IOException ioe) {
 System.out.println("Couldn't read from a file called " + fileName);
 }
 // Reverse the contents of our array, just so we'll
 // know we did something to the file's content
 reverseByteArray(content);
 try {
 // Create a stream for our output
 FileOutputStream hamletOutputStream
 = new FileOutputStream(hamletFile, true);
 // Write a newline character to separate the
 // original content from the new content.
 hamletOutputStream.write('\n');
 // Write our output to the file output stream
 // (and thus to our file)
 hamletOutputStream.write(content);

CHAPTER 8 ■ WRITING AND READING FILES

167

 // Close the output stream
 hamletOutputStream.close();
 System.out.println("New contents of hamlet.txt written");
 } catch (FileNotFoundException fnfe) {
 System.out.println("Couldn't find a file called " + fileName);
 } catch (IOException ioe) {
 System.out.println("Couldn't write to a file called " + fileName);
 }
 }

 private static void reverseByteArray(byte[] inBytes) {
 int inLength = inBytes.length;
 for (int i = 0; i < inLength >> 1; i++) {
 byte temp = inBytes[i];
 inBytes[i] = inBytes[inLength - i - 1];
 inBytes[inLength - i - 1] = temp;
 }
 }
}

And now we have Hamlet going forwards and backwards in Listing 8-18.

Listing 8-18. Original and reversed content

To sleep: perchance to dream: ay, there's the rub;
For in that sleep of death what dreams may come
When we have shuffled off this mortal coil,
Must give us pause: there's the respect
That makes calamity of so long life
efil gnol os fo ytimalac sekam tahT
tcepser eht s'ereht :esuap su evig tsuM
,lioc latrom siht ffo delffuhs evah ew nehW
emoc yam smaerd tahw htaed fo peels taht ni roF
;bur eht s'ereht ,ya :maerd ot ecnahcrep :peels oT

Summary
Software developers often need to work with files, and Java has a rich set of classes that let us do so. As
we saw, we use the File class to work with files and directories, and we use streams (FileInputStream
objects and FileOutputStream objects) to read and write files. We learned a number of things about File,
FileInputStream, and FileOutputStream objects:

• A File object can represent a directory structure defined by a path.

• A File object is not a file or directory. It is an object that represents a file or
directory.

• The file or directory represented by a File object does not necessarily exist.

• A failed attempt to create directories can leave unwanted directories, so we need
to clean up after a failed directory creation operation.

CHAPTER 8 ■ WRITING AND READING FILES

168

• FileInputStream objects and FileOutputStream objects use byte arrays to read
from and write to files.

• We can load the content of a FileInputStream object into a FileOutputStream
object by using a byte array.

Working with directories, files, and the contents of files might not be the most exciting kind of
programming, but it's often necessary. As you continue your programming career (whether as a
professional or as a hobbyist), you'll almost certainly work with files on a regular basis.

As ever, I encourage you to write a few programs of your own. Here are a couple of ideas to tackle:

• Read the contents of one file and put them in another file.

• Read all the file names within a directory and put them in a file.

• Add full path names to the names of the files in the previous idea.

• Create all the files listed in a file.

• Create all the files listed in a file, but with a different path for each file.

■ Tip As you test files, read and write only from files within a test directory, as we do in this chapter. That
lessens the risk that you'll accidently change a file that could cause a problem. Also, test often, to be sure the files
you work with end up in the right places and have the right contents.

C H A P T E R 9

169

Writing and Reading XML

XML stands for Extensible Markup Language. You might think it would be “eXtensible Markup
Language,” but it's not. Odd acronym aside, XML rates inclusion in a book for beginning programmers
because, as your software-development career (whether as a hobbyist sqor a professional) continues,
you'll inevitably run into XML in all sorts of places. It's used to store documents, from the contents of a
single web page to the contents of entire sets of encyclopedias. It's also used to transmit data between
applications, whether the servers running those applications are halfway around the world or in the
same room. It's even used (with Cascading Style Sheets) to display information in web browsers. Every
company I've worked for over the last dozen years, and every application I've written (at least those
applications more serious and substantial than Minesweeper), has made at least some use of XML.

Although a specialized language called XSLT (Extensible Stylesheet Language Transformation) exists
specifically for processing XML, Java is also a very popular language for dealing with XML. Also, one of
the best and most popular XSLT processors, called Saxon, is coded in Java. Java is especially handy for
working with XML because it includes a number of packages intended specifically for processing
(reading, writing, and transforming) XML. The two most common packages (largely because they are
included in Java) are DOM (Document Object Model) and SAX (Simple API for XML). You can use DOM
to read and write XML. SAX only reads (or, more properly, parses) XML. For writing XML, though, you
can also create a String object and write that to your file. Done correctly, writing String objects offers
the lowest overhead (in both memory and speed) for producing XML. This chapter will cover writing
XML from DOM and from String objects, and reading XML with DOM and SAX.

The Structure of XML
Before you get to processing the stuff, you should see what XML looks like and learn a bit about its
nature. First off, know that XML, while called a language, isn't a language in the same sense as Java. XML
is a storage format, and it offers no processing capabilities of its own. It has no looping structure, no way
to specify variables or data types (except that a program might use a bit of XML as a variable or data type,
but that's not the same as what Java does). So, XML is really just text that has been organized in a
particular way.

The root of any XML document is a single element. That element can have any number of other
elements as children, and each of these children can have any number of children, and so on, resulting
in a hierarchical structure of arbitrary complexity and depth (which is to say that an XML document can
be of any size and have elements nested to any depth). Also, each element can have any number of
attributes. However, attributes cannot have children, so most of the content, in most XML documents,
comes from the elements.

Before going any further, take a look at the smallest possible XML file.

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 9 ■ WRITING AND READING XML

170

Listing 9-1. The Smallest Possible XML File

<?xml version="1.0" encoding="UTF-8"?>
<elementName/>

I have worked with systems that had many such files, as each directory in a set of directories meant
to contain the output of a complex process had to have at least one file. Consequently, we had a bunch
of XML files with content as follows: <?xml version="1.0" encoding="UTF-8"?><placeholder/>You can
see the exact syntax shortly. Until then, a more meaningful example will help to clarify things. Here's one
of my favorite poems, encoded as an XML document.

Listing 9-2. An Example of XML

<?xml version="1.0" encoding="UTF-8"?>
<poem title="The Great Figure" author="William Carlos Williams">
 <line>Among the rain</line>
 <line>and lights</line>
 <line>I saw the figure 5</line>
 <line>in gold</line>
 <line>on a red</line>
 <line>fire truck</line>
 <line>moving</line>
 <line>tense</line>
 <line>unheeded</line>
 <line>to gong clangs</line>
 <line>siren howls</line>
 <line>and wheels rumbling</line>
 <line>through the dark city</line>
</poem>

The first line, the document specifier, indicates that this document is an XML document and
specifies the version (1.0, which is the most often used version, and suffices for most purposes) and the
encoding. Document specifiers always begin with <? and end with ?>. This way, they can't be confused
with XML elements. Most systems that can process XML will work with documents that don't have a
document specifier, but a document without one isn't strictly an XML file—it's just a collection of
characters that happen to look like an XML file. That may seem like an arbitrary and trivial distinction,
but your XML document may be rejected for just that reason by some systems, so it's good to get in the
habit of always including a document specifier. The encoding indicates the character set that applies to
the content. UTF-8 is a large set that includes most of the characters available in non-Asian languages
(including English, Greek, Spanish, Russian, and many others). The Asian languages (Chinese, Japanese,
Vietnamese, and others) use pictographs (that is, an image that corresponds to a word). The Asian
character sets are consequently very large and tricky to manipulate. For the sake of simplicity, we'll stick
to UTF-8 and documents in English.

The next line contains the root element. The first element in any XML file is that document's root
element. All other elements, no matter how deeply nested, are descendants of the root. The root
element, poem, contains two attributes, title and author. The root element also contains all the line
elements, which make up the body of the poem.

Note the syntax for each element. Each one begins with an opening tag (<poem> or <line>) and ends
with a closing tag (</poem> or </line>). The basic rule is that the names within the tags have to match
(and there are various restrictions about which characters can be used, but just about any English word
works). Other than that, opening tags always start with a left angle character (<) and end with a right
angle character(>). Ending tags always begin with a left angle character and a forward slash (</) and end

CHAPTER 9 ■ WRITING AND READING XML

171

with a right angle character (>). Elements can also be empty, in which case they can take one of two
forms: a beginning tag and an ending tag with nothing between them, or a special empty element tag.
For example, an empty line element can be represented as either <line></line> or <line/>. That second
structure provides a handy shortcut that saves some typing. If the poem included a blank line (such as a
line between stanzas in a longer poem), you could represent a blank line that way.

■ Note XML is case-sensitive. <POEM>, <Poem>, and <poem> are all different elements, so <POEM></poem> would
cause an XML parser to throw an error.

A poem offers an example of a fairly traditional document encoded as XML. Consider an example of
data transmitted between systems as XML.

Listing 9-2. XML As Data

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:Body xmlns:w="http://www.noaa.gov/weather">
 <w:GetTemperature>
 <w:Location>78701</w:Location>
 </w:GetTemperature>
 </soap:Body>
</soap:Envelope>

Look closely at the document specifier. In this case, it doesn't indicate encoding. The default
encoding for XML is UTF-8, so you can omit the specifier when you are going to use UTF-8 characters.
Then you have a root element named soap:Envelope. The specifier and the root element constitute the
minimum content for an XML file, but that wouldn't make a very useful message between systems. So
this example also contains a bit of data (the zip code for a particular city).This XML document represents
a request for data from one system to another system. (I invented it from scratch, by the way; NOAA may
use something else entirely.) In particular, it's a request to get the temperature in Austin, TX. Note the
indentation. When XML is meant to be read by humans, it's customarily indented, such that each level
of elements is farther to the right than its parent level. When creating a stream to send to another
system, all the white space between elements is generally removed, resulting in the whole document
being on one line. That's tough to read for a human, but it saves bandwidth, and a computer doesn't find
it hard to read.

■ Note “Document” is the normal way to refer to any instance of XML, whether it encodes an actual document
or some arbitrary bit of data—XML originally comes from the publishing industry, and it retains some of that
industry's terminology.

CHAPTER 9 ■ WRITING AND READING XML

172

SOAP stands for Simplified Object Access Protocol. It's a common way for systems to pass data back
and forth. One system makes a request, and another system sends a corresponding response, which may
trigger yet another request. The system that processes the request, and produces a response, may then
send a request. In this fashion the systems “play tag” with one another, until the data is properly
transmitted (or an error condition indicates that the systems should stop trying). Inter-system and inter-
process communication can get much more complex than a simple request-response cycle, but that’s
beyond the scope of this book.The purpose of this kind of protocol (SOAP is one of many such
standards) is to provide separate systems a way to communicate that has as few dependencies as
possible on the operating system or language. One system might be a Windows server running an
application written in C++, while another system might be a Linux server running a Java application, and
yet another system might be a supercomputer running an ADA application. Provided the other system
can recognize the request and generate an appropriate response, anything else is irrelevant. This makes
SOAP, and similar protocols, very useful to software developers. You can create all kinds of systems and
make them talk to one another. The Internet is the plumbing, but SOAP messages, and similar content,
constitute the water in the pipes (or the information in the network, to abandon the metaphor).
Requests and responses (the latter, in particular) can be very large, by the way. I once created a system
that shared insurance policy information with a national insurance clearing house. The responses in that
system were very large— often several megabytes of data. (Honestly, had I designed that system, I would
have sent a response that specified a location from which the other system could download a file
containing the policy. Huge responses can be problematic. The longer the message, the higher the
chance for corrupted data, and it's sometimes useful to store data for a time. It wasn't my decision to
make, though.)

The xmlns:soap attribute specifies the namespace for SOAP, so that any system receiving it can
recognize what kind of message it is (assuming the system knows about SOAP at all). (XMLNS stands for
XML NameSpace.) The encodingStyle element (itself a member of the soap namespace) specifies the
exact version of SOAP being used. The soap:Body namespace specifies a (fictional, in this case)
namespace for weather information. Note that each namespace has an alias (soap or w, in this
document). The aliases save the trouble of typing out the namespace for each element and, more
importantly, reduces the number of bytes going down the pipe. The relatively simple poem example has
no namespace declaration, which means that it uses the default XML namespace. Every XML element
has a namespace, even if it's only the default. In the SOAP example, you can see that a single XML
document can contain elements from multiple namespaces (a Microsoft Word document contains as
many as 14 different namespaces, just to show how complex things can get). Namespaces let different
organizations use the same elements without trampling one another when they get into the same
document. For example, if another organization produced weather information, they'd have their own
namespace, to prevent collisions with the noaa namespace.

XML and Streams
A stream is a collection of data meant to be read sequentially. That is, a stream is meant to be read one
byte at a time. It is generally said that such a block of data is serialized (meaning that it is ready to be
transmitted and read serially, which is another way to say one byte at a time).In Java (and in other many
other languages), XML is processed as streams. Reading XML is done by parsing InputStream objects,
and writing XML is generally done by creating StreamResult objects. When creating XML with String
objects, the result is often still exported as an OutputStream, as some other process needs to receive a
stream to do its part in a larger process. For example, many systems produce large documents. In these
systems, you can create XML by using String objects, create an OutputStream from the result, and send
that stream as an InputStream to another object, which would produce a PDF file. The PDF file serves as
the final document, to be stored on a server, printed, or both.

CHAPTER 9 ■ WRITING AND READING XML

173

As you saw in Chapter 8, Java uses Stream objects for reading from, and writing to, files. Since you’re
already processing Stream objects, saving an XML document as a file is a natural and easy task. Reading
an existing file as a stream also makes loading an XML file straightforward. So, there are streams in,
streams out, and streams between the steps of larger processes. Fortunately, Java makes working with
streams easy.

DOM and SAX
DOM (Document Object Model) and SAX (Simplified API for XML) have their strengths and weaknesses.
As with most data-related problems, knowing which one to use comes down to knowing your data. If
you need to work with relatively small documents, DOM works well, as it loads the entire XML data
stream into memory, making it fast (again, provided the document is small). SAX, on the other hand,
uses only enough memory to process the current element (called a node), which makes it capable of
handling documents of any size. I've used SAX to parse the contents of books as long as 2,000 pages. The
down side of SAX is that you can't reach much of the document at once, as little of it is in memory. Also,
SAX only works with incoming XML documents; it doesn't write XML.

So, remember to use DOM for small XML sources and SAX for larger XML sources. If you're
uncertain if the XML input will be large or small, use SAX. Of course, whether a document is large or
small depends on how much memory is available for processing the document. If your program can run
on a computer with plenty of memory all to itself, you can use DOM to load fairly large documents.
However, if your program has to share a server with other processes, or has to run on a small device
(such as a phone), memory will be limited and your options will be reduced. Finally, if your application
has to process multiple documents at once (perhaps for multiple users), the memory for each process
will be greatly reduced. The more constrained the memory available to the application, the more you
should lean toward SAX. As an example, I recently worked on an application that would trigger an
arbitrary number of transforms to create sets of documents. In practice, each set contained about 15
documents. Also, multiple users could start document-production runs at the same time, leading to as
many as 50 documents being processed at the same time, all with 8 MB of RAM. We definitely needed to
use SAX.

Writing XML
As mentioned above, you can write XML with the DOM package or by writing String objects. If you just
need to write an XML file, writing strings works well enough (and it is the fastest way to create XML). On
the other hand, if you need to pass your XML output to a process that requires an XML header, and
perhaps even needs to ensure that the XML conforms to a schema, you might want to consider using
DOM.

Before you get to writing XML, you first need a data source to provide the content that you want to
turn into XML. Here is a simple class that provides the content of the poem used earlier (“The Great
Figure,” by William Carlos Williams).

Listing 9-3. A Poem As a Data Source

package com.bryantcs.examples.xml;

import java.util.ArrayList;

CHAPTER 9 ■ WRITING AND READING XML

174

public class Poem {

 private static String title = "The Great Figure";
 private static String author ="William Carlos Williams";
 private static ArrayList<String> lines = new ArrayList<String>();

 static {
 lines.add("Among the rain");
 lines.add("and lights");
 lines.add("I saw the figure 5");
 lines.add("in gold");
 lines.add("on a red");
 lines.add("fire truck");
 lines.add("moving");
 lines.add("tense");
 lines.add("unheeded");
 lines.add("to gong clangs");
 lines.add("siren howls");
 lines.add("and wheels rumbling");
 lines.add("through the dark city");
 }

 public static String getTitle() {
 return title;
 }

 public static String getAuthor() {
 return author;
 }

 public static ArrayList<String> getLines() {
 return lines;
 }
}

As you can see, it's a pretty simple representation of a poem. Notice that it's also entirely static.
Some classes consist entirely of static members, but those classes usually define sets of helper methods
(string manipulation specialized for a particular application is a common use for that kind of helper
class). A class with static data, though, usually indicates that someone hasn't thought through a problem
very well. This kind of thing usually belongs in a file. For our purposes, though, this slightly odd class will
serve well enough.

Writing XML with DOM
Here's the code for writing an XML file with DOM, given the Poem class as the data source:

Listing 9-4. Writing XML with DOM

package com.bryantcs.examples.xml;

import java.io.File;

CHAPTER 9 ■ WRITING AND READING XML

175

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.StringWriter;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.OutputKeys;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Text;

public class WriteWithDOM {

 public static void main (String args[]) {
 // Create an empty Document
 Document doc = createDocument();

 // Create the XML
 createElements(doc);

 // Create a String representation of the XML
 String xmlContent = createXMLString(doc);

 // Write the XML to a file
 writeXMLToFile(xmlContent);
 }

// Here's where we create the (empty for now) XML document private static Document
createDocument() {
 Document doc = null;
 try {
 DocumentBuilderFactory dbfac = DocumentBuilderFactory.newInstance();
 DocumentBuilder docBuilder = dbfac.newDocumentBuilder();
 doc = docBuilder.newDocument();
 doc.setXmlStandalone(true);
 }
 catch(ParserConfigurationException pce) {
 System.out.println("Couldn't create a DocumentBuilder");
 System.exit(1);
 }
 return doc;
 }

CHAPTER 9 ■ WRITING AND READING XML

176

 // Here's where we add content to the XML document private static void
createElements(Document doc) {
 // Create the root element
 Element poem = doc.createElement("poem");
 poem.setAttribute("title", Poem.getTitle());
 poem.setAttribute("author", Poem.getAuthor());

 // Add the root element to the document
 doc.appendChild(poem);

 // Create the child elements
 for (String lineIn : Poem.getLines()) {
 Element line = doc.createElement("line");
 Text lineText = doc.createTextNode(lineIn);
 line.appendChild(lineText);
 // Add each element to the root element poem.appendChild(line);
 }
 }

 // Here's where we convert the DOM object
 // into a String that contains XML private static String createXMLString(Document doc) {
 // Transform the DOM to a String
 Transformer transformer = null;
 StringWriter stringWriter = new StringWriter();
 try {
 TransformerFactory transformerFactory =
 TransformerFactory.newInstance();
 transformer = transformerFactory.newTransformer();
 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION,
 "no");
 transformer.setOutputProperty(OutputKeys.INDENT, "yes");

 // Create a string to contain the XML from the Document object
 stringWriter = new StringWriter();
 StreamResult result = new StreamResult(stringWriter);
 DOMSource source = new DOMSource(doc);
 transformer.transform(source, result);
 } catch (TransformerConfigurationException e) {
 System.out.println("Couldn't create a Transformer");
 System.exit(1);
 } catch (TransformerException e) {
 System.out.println("Couldn't transform DOM to a String");
 System.exit(1);
 }
 return stringWriter.toString();
 }

 // Here's where we turn the String holding the XML
 // into a file private static void writeXMLToFile(String xmlContent) {
 String fileName = "C:" + File.separator + "test"
 + File.separator + "domoutput.xml";
 try {

CHAPTER 9 ■ WRITING AND READING XML

177

 File domOutput = new File(fileName);
 FileOutputStream domOutputStream
 = new FileOutputStream(domOutput, true);
 domOutputStream.write(xmlContent.getBytes());
 domOutputStream.close();
 System.out.println(fileName + “ was successfully written”);
 } catch (FileNotFoundException fnfe) {
 System.out.println("Couldn't find a file called " + fileName);
 System.exit(1);
 } catch (IOException ioe) {
 System.out.println("Couldn't write to a file called " + fileName);
 System.exit(1);
 }
 }
}

■ Tip Use a StringBuilder object to create a string whenever you need to append strings onto other strings.
If you use the string concatenation operator (+), the JVM creates a new String object but also keeps the previous
String object in memory, which quickly consumes a great deal of memory. Modern JVMs have gotten better about
handling this problem, but it remains an issue, and good practice dictates using StringBuilder when you have more
than one or two concatenations to do.

As you can see, I've carved it up into a few methods to cleanly and clearly separate the parts of the
algorithm. That's a practice you'll see many developers follow, and it’s good to embrace this when code
complexity reaches a certain level. Every programmer has a different threshold for when they think a
long method should become multiple methods. My own threshold is pretty low. A method doesn't have
to get very long before I start itching to split it. In this case, splitting the code also lets me handle the
Exception objects thrown by each step separately.

The process for creating XML with DOM is fairly straightforward:

1. Create an empty Document object (the top-level DOM object that contains
everything else). That's done in the createDocument method.

2. Create the elements and attributes (and their children, grandchildren, and so
on, as needed) and add the elements and attributes to the Document object.
The createElements method performs this step.

3. Convert the contents of the DOM object to a String object. The
createXMLString method does this step for you.

4. Write the String object to the target (a file in this case). The writeXMLToFile
method creates your file and puts your XML into the file.

CHAPTER 9 ■ WRITING AND READING XML

178

Writing XML with Strings
Here's the code to produce the same output by writing out a String object.

Listing 9-5. Writing XML with Strings

package com.bryantcs.examples.xml;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class WriteWithStrings {

 public static void main(String[] args) {
 String xmlContent = createXMLContent();
 writeXMLToFile(xmlContent);
 }

 private static String createXMLContent() {
 // write the first line
 StringBuilder sb = new StringBuilder();
 sb.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"); sb.append("<poem title=\"");
 sb.append(Poem.getTitle());
 sb.append("\" author=\"");
 sb.append(Poem.getAuthor());
 sb.append("\">\n");
 // write the middle lines
 for (String lineIn : Poem.getLines()) {
 sb.append("<line>");
 sb.append(lineIn);
 sb.append("</line>\n");
 }
 // write the last line
 sb.append("</poem>");
 return sb.toString();
 }

 private static void writeXMLToFile(String xmlContent) {
 String fileName = "C:" + File.separator + "test"
 + File.separator + "domoutput.xml";
 try {
 File domOutput = new File(fileName);
 FileOutputStream domOutputStream
 = new FileOutputStream(domOutput, true);
 domOutputStream.write(xmlContent.getBytes());
 domOutputStream.close();
 System.out.println(fileName + " was successfully created");
 } catch (FileNotFoundException fnfe) {
 System.out.println("Couldn't find a file called " + fileName);

CHAPTER 9 ■ WRITING AND READING XML

179

 System.exit(1);
 } catch (IOException ioe) {
 System.out.println("Couldn't write to a file called " + fileName);
 System.exit(1);
 }
 }
}

As you can see, the code is substantially simpler and easier to follow. It also performs more quickly.
Again, it doesn't have some of the output features from DOM (no XML header, for example), but it works
if you just need a simple XML document.

Reading XML
To read XML, you can use either DOM or SAX. As mentioned earlier in this chapter, DOM is handy when
you can be sure that your XML content will fit into the memory you have available. However, DOM fails
when the input is too large. SAX, on the other hand, can handle any amount of input. For SAX, you need
only as much memory as the largest element needs (usually not much, unless you're doing something
such as processing large images or items where a single element can contain a large amount of data).

Reading XML with DOM
Here's the source for a program that reads XML with DOM. For this program to work, you need to
create a file named poemsource.xml and put it in your C:\test (on Windows) or C:/test (on Unix or
Linux) directory. You can use the contents of the domoutput.xml file as the contents of the
poemsource.xml file.

Listing 9-6. Reading XML with DOM

package com.bryantcs.examples.xml;

import java.io.File;
import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.xml.sax.SAXException;

CHAPTER 9 ■ WRITING AND READING XML

180

public class ReadWithDOM {

 public static void main(String[] args) {
 String fileName = "C:" + File.separator + "test"
 + File.separator + "poemsource.xml";
 writeFileContentsToConsole(fileName);
 }

 // Write the contents of the file to the console private static void
writeFileContentsToConsole(String fileName) {
 // Create a DOM Document object Document doc = createDocument(fileName);
 // Get the root element Element root = doc.getDocumentElement();
 // Create a StringBuilder object that describes the root element StringBuilder sb = new
StringBuilder(); sb.append("The root element is named: \"" + root.getNodeName() + "\"");
 sb.append(" and has the following attributes: ");
 NamedNodeMap attributes = root.getAttributes();
 for (int i = 0; i < attributes.getLength(); i ++) {
 Node thisAttribute = attributes.item(i);
 sb.append(thisAttribute.getNodeName());
 sb.append (" (\"" + thisAttribute.getNodeValue() + "\")");
 if (i < attributes.getLength() - 1) {
 sb.append(", ");
 }
 }
 // Write the description of the root element to the console System.out.println(sb);

 // Work through the children of the root
 // First, get a list of the child nodes NodeList nodes =
doc.getElementsByTagName("line");
 for (int i = 0; i < nodes.getLength(); i++) {
 // Process each element in turn Element element = (Element) nodes.item(i);
 System.out.println("Found an element named \"" +
 // By writing its name and content to the console (System.out)
element.getTagName() + "\"" +
 " with the following content: \"" +
 element.getTextContent() + "\"");
 }
 }

 // Create a DOM Document object from a file private static Document createDocument(String
fileName) {
 Document doc = null;
 try {
 // Get the file File xmlFile = new File(fileName);
 // Create document builder factory DocumentBuilderFactory dbfac =
DocumentBuilderFactory.newInstance();
 // Create a document builder object DocumentBuilder docBuilder =
dbfac.newDocumentBuilder();
 // Load the document by parsing the file with the document builder doc =
docBuilder.parse(xmlFile);
 // Indicate that this document is self-contained doc.setXmlStandalone(true);
 }

CHAPTER 9 ■ WRITING AND READING XML

181

 // Deal with the possible exceptions catch (IOException ioe) {
 System.out.println("Couldn't open file: " + fileName);
 System.exit(1);
 }
 catch (SAXException se) {
 System.out.println("Couldn't parse the XML file");
 System.exit(1);
 }
 catch(ParserConfigurationException pce) {
 System.out.println("Couldn't create a DocumentBuilder");
 System.exit(1);
 }
 // Finally return the Document object
 // that we built from the file return doc;
 }
}

In this case, we just create a Document object, read through each line of the input, and describe the
content in the console. Naturally, you'll probably want to do something more than describe your input
in the console, but this example shows you how to read a file. One thing to note is that each Element
object is really a Node object (the Element interface extends the Node interface). Due to the way DOM has
been implemented, you sometimes need to work with both Element objects and Node objects, as I had to
do here when working with the attribute values.

Reading XML with SAX
SAX uses an interface called ContentHandler to expose parsing events that you can then intercept in your
own code to do whatever processing you want to do for each parsing event. The SAX packages also
provide a default implementation of ContentHandler, called DefaultHandler. DefaultHandler does
nothing with each event, because doing nothing is the default behavior. However, you can override the
methods in DefaultHandler to do whatever you like. The advantage of extending DefaultHandler is that
you can override just the methods you care about and leave the rest alone. In the example I've used here,
I didn't need many of the methods in DefaultHandler, so I didn't override them.

If you look at the names of the methods, you can see why SAX uses so little memory to process XML.
It triggers an event for the beginning and end of each part of an XML document, be it the document itself
or an element. So, all the parser has to put in memory is the name (and some other details) about the
element, and a list of the element's children. It doesn't have to put the element's content into memory
until it gets to the characters method, which is the method that handles an element's character content.
Most elements don't have vast amounts of text content (one exception is when someone stores an image
in an XML element, as Word documents do), so the memory used to process the text usually isn't much.

To show you how to read a simple XML document and describe its contents in the console, I first
created a class (called XMLToConsoleHandler) that extends DefaultHandler and overrides the handful of
methods I need to use when capturing the contents of an XML file. Here's the XMLToConsoleHandler class:

Listing 9-7. XMLToConsolHandler

package com.bryantcs.examples.xml;

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;

CHAPTER 9 ■ WRITING AND READING XML

182

import org.xml.sax.helpers.DefaultHandler;

public class XMLToConsoleHandler extends DefaultHandler {

 // The characters method handles the actual content of an element @Override
 public void characters(char[] content, int start, int length) throws SAXException {
 // Describe the content in the console System.out.println("Found content: " + new
String(content, start, length)); }

 // The endDocument method lets us do something
 // when the parser reaches the end of the document @Override
 public void endDocument() throws SAXException {
 // Announce in the console that we found the end of the document
System.out.println("Found the end of the document"); }

 // The endElement method lets us do something
 // when the parser reaches the end of an element @Override
 public void endElement(String arg0, String localName, String qName)
 throws SAXException {
 // Announce in the console that we found the end of an element
System.out.println("Found the end of an element named \"" + qName + "\"");
 }

 // The startDocument lets us do something
 // when we find the top of the document @Override
 public void startDocument() throws SAXException {
 // Announce in the console that we found the beginning of the document
System.out.println("Found the start of the document");
 }

 // The startElement method lets us do something
 // when we reach the beginning of an element @Override
 public void startElement(String uri, String localName, String qName,
 Attributes attributes) throws SAXException {
 // Create a StringBuilder object to contain our description of this element
StringBuilder sb = new StringBuilder();
 // Add the name of the element sb.append("Found the start of an element named \"" +
qName + "\"");
 // See if the element has any attributes if (attributes != null &&
attributes.getLength() > 0) {
 sb.append(" with attributes named ");
 // If we do find attributes, describe each one for (int i = 0; i <
attributes.getLength(); i++) {
 String attributeName = attributes.getLocalName(i);
 String attributeValue = attributes.getValue(i);
 sb.append("\"" + attributeName + "\"");
 sb.append(" (value = ");
 sb.append("\"" + attributeValue + "\"");
 sb.append(")");

CHAPTER 9 ■ WRITING AND READING XML

183

 // If we're not at the end of the attributes,
 // add a comma, for proper formatting if (i < attributes.getLength() - 1) {
 sb.append(", ");
 }
 }
 }
 // Describe the element in the console System.out.println(sb.toString());
 }
}

Again, we're using a StringBuilder to avoid creating an excess of String objects in memory. The
only complexity comes when we work through any attributes that may be present, and most of the code
is really just for “pretty printing” (a phrase that programmers often use when referring to code that
formats output to be easily read by humans).

Let's look at the class that uses the XMLToConsoleHandler class to write to the console. Again, you
need to have a file named poemsource.xml in the C:\test (on Windows) or C:/test (on Unix or Linux)
directory. You can use the contents of the domoutput.xml file as the contents of the poemsource.xml
file. Here's that class:

Listing 9-8. ReadWithSAX

package com.bryantcs.examples.xml;

import java.io.File;
import java.io.IOException;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.SAXException;

public class ReadWithSAX {

 public static void main(String[] args) {
 String fileName = "C:" + File.separator + "test"
 + File.separator + "poemsource.xml";
 getFileContents(fileName);
 }

 private static void getFileContents (String fileName) {
 try {
 // Make an instance of our handler XMLToConsoleHandler handler = new
XMLToConsoleHandler();
 // Get a parser factory SAXParserFactory factory = SAXParserFactory.newInstance();
 // Get a parser SAXParser saxParser = factory.newSAXParser();
 // And now parse the file with our handler saxParser.parse(fileName, handler);

CHAPTER 9 ■ WRITING AND READING XML

184

 // Deal with the possible exceptions } catch(IOException ioe) {
 System.out.println("Couldn't open " + fileName + " for parsing");
 } catch(ParserConfigurationException pce) {
 System.out.println("Failed to create a SAX parser ");
 } catch(SAXException saxe) {
 System.out.println("Failed to parse an XML file");
 }
 }
}

Simple, isn't it? One of the joys of SAX is that it's simple to implement. Create a handler, create a
parser, and pass your input and handler to the factory. Consequently, the exception-handling code is
longer than the code that does the work. Of course, this arrangement is really masking the fact that the
complexity is in the handler class. Still, carving up your code so that complexity is isolated to a single
class is exactly the right way to use an object-oriented language such as Java.

A Word about Factory Classes
You may have noticed that to get a DocumentBuilder object, you had to use a DocumentBuilderFactory
object. Similarly, to get a SAXParser object, you had to use a SAXParserFactory object. The factory pattern
is often used in Java (and other object-oriented languages, such as C++) to permit the creation of objects
that have varying attributes. For example, the SAXParserFactory class includes a way to specify a
separate validator object, to ensure that the XML conforms to a schema (which is a definition of what a
set of data should contain).

The factory pattern is a handy way to present a group of very similar objects that vary only by having
some features turned on or off. Otherwise, you’d have to have a class for every possible combination of
features. In some cases, that would be a lot of very similar classes. The factory pattern offers an easy-to-
use and easy-to-understand solution to that problem. Consequently, Java has a number of factory
objects in its standard libraries. You can also create your own factory classes. When you find yourself
needing to create many very similar (but slightly different) objects, consider creating a factory for them.

Summary
Well, that was a whirlwind tour of how to use Java to work with XML. Several good books have been
written about the subject, as there's a great deal more complexity than what’s been presented here. Still,
this chapter should prepare you for when you have to read and write XML files or streams.

In particular, we covered the basics of Java's two main ways to deal with XML: the Document Object
Model (DOM) and the Simplified API for XML (SAX). You learned that DOM offers great performance
because it loads the entire document into memory. However, loading the entire document into memory
is also DOM's biggest problem, as large documents may exceed the available memory. SAX, on the other
hand, can handle any amount of XML (including gigabyte-size streams of data), but it requires making a
custom handler class for each kind of XML document.

Finally, you looked at the nature of factory classes and learned about why they exist, and when you
might want to use them.

C H A P T E R 1 0

185

Animation

Animation involves an image that changes over time. It's interesting (to us, anyway, but we love
etymology) that animation outside of computer science means “bestowing of life.” Animated images
certainly seem to have more life than still images.

Timing Is Everything
The essence of animation is timing. An animated image changes every so often. Usually, that's very often
(many times a second), but an image that changes once a minute (such as a clock) is still animated,
though it might not be much fun to watch. To give you an idea of how often an animated image can
change, let's look at some common animation speeds that most of us see every day, usually without even
thinking of them as being animated images.

A standard TV signal (STV, the predecessor to HDTV) shows a new image (approximately) 30 times a
second. That is, an STV signal has a frame rate of 30 per second. Frame rate is a key term in animation, in
computing in general, and in other industries. You've seen what it means in animation. For computing
in general, “frame rate” refers to how often a program processes all of its inputs and produces all of its
outputs. The classic example is software that steers a vehicle. If the vehicle is a freighter at sea, a low
frame rate (such as once a minute) might suffice. For an automated lander (for the moon or Mars), a
frame rate approaching 100 times per second might be necessary. Such a system is said to work at a
certain hertz, which is the technical term for how many times a second a process repeats. Hertz is used
in many industries, including the electronics industry. Finally, for video games, animation is generally
measured in frames per second (FPS), which is the same as hertz but is an industry-specific term.

To get back to common frame rates (or FPS), a standard TV shows 30 frames per second. Most
movies are filmed at 24 FPS (though this is rapidly changing to 60 FPS). NTSC (the standard television
signal format in the United States and the predecessor to HDTV) works at 60 FPS (but it's interlaced,
meaning the screen is divided into lines and alternating sets of lines are shown 30 times per second
each). Many other countries (including most of Europe) use 50 FPS (interlaced) for standard television.
The ATSC standard (essentially the HDTV standard used in the United States) shows between 24 and 60
frames per second, depending on several factors. More recent HDTV devices claim frame rates as high as
240. Finally, most computer monitors operate between 75 and 85 hertz, meaning 75 to 85 frames per
second.

That last rate is generally the one most important to programmers (though game console
programmers have to concern themselves with TV frame rates, too). We can make animation systems
that can show hundreds of frames per second, but there's no point in doing so. No monitor can show
that many frames per second. Consequently, a monitor's hertz is the practical limit on computer-
generated animation. In fact, not only is trying for a frame rate higher than the monitor's hertz pointless,

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 10 ■ ANIMATION

186

it might do harm, by tying up the system such that it can't do other work (either for your process or for
other processes).

In creating samples for this chapter, we chose frame rates between 4 and 25 FPS. That might seem
low, but it's adequate for the sake of examples. A low frame rate might even help you understand how
animation works, as you can then see it happen. If you watch the sprite animation example closely, you
can see the individual images being drawn.

By the way, humans (and cats, dogs, and anything else with non-mechanical eyes) don't see the
world as frames going by every so often. Being analog, the human eye and brain respond to a steady
input of light, motion, and color. The question that usually concerns game makers and other animators
(such as the folks who re-create car accidents for use in court rooms) is at what rate can the viewers feel
like they're seeing something realistic (which, again, is not the same as seeing something real). That
number varies hugely according to a number of factors, such as resolution, light/dark balance of the
content on the screen, the lighting in the viewer's area, the visual acuity of the viewer (which is itself
dictated by a number of variables, such as age, fatigue, experience with animation, and so on).

So what is the right FPS for your application? The only real way to know is to put it in front of several
different potential users and ask them if it looks good. Also, if you do a lot of animation, you'll probably
develop a feel for the right frame rate. Finally, game makers often concern themselves with what the
competition is doing. If their games run at 75 FPS, your game better be able to do that, too, or have a
good reason for not doing so.

Animation: A Simple Example
Let's start with the basics: getting an object to move from one side of the screen to the other. My friends
in the game industry say this is the “Hello, World” stage of game development. To do it, we create two
classes: a field for the object to cross and a frame to be the main program. (We could do it in a single
class, but Swing makes a separate drawing field easier to do.) Listing 10-1 shows the program class
(called ScootBall because a ball scoots across the screen).

Listing 10-1. The ScootBall class

package com.bryantcs.examples.animation;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.JPanel;

CHAPTER 10 ■ ANIMATION

187

public class ScootBall implements ActionListener {

 private static final long serialVersionUID = 1L;

 ScootBallPanel scootBallPanel = new ScootBallPanel();
 JFrame frame = new JFrame("ScootBall");
 JPanel buttonPanel=new JPanel(new FlowLayout(FlowLayout.CENTER));
 JButton scootButton=new JButton("Scoot");
 Thread animationThread = null;

 private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem exitItem = new JMenuItem("Exit");
 exitItem.setMnemonic('x');
 exitItem.addActionListener(this);
 file.add(exitItem);
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

 private void createAndShowGUI() {
 addMenu(frame);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().setLayout(new BorderLayout());
 scootButton.addActionListener(this);
 buttonPanel.add(scootButton);
 scootBallPanel.setPreferredSize(new Dimension(400, 200));
 scootBallPanel.setBackground(Color.WHITE);
 frame.getContentPane().add(scootBallPanel,BorderLayout.CENTER);
 frame.getContentPane().add(scootBallPanel);
 frame.getContentPane().add(buttonPanel,BorderLayout.SOUTH);
 frame.pack();
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 ScootBall scootBall = new ScootBall();
 scootBall.createAndShowGUI();
 }

 // The actionPerformed method listens for actions taken by the user
 public void actionPerformed(ActionEvent e) {
 // If the user chooses Exit, then exit
 if (e.getActionCommand().equals("Exit")) {
 System.exit(0);
 }
 // Since we didn't exit, check for whether the user clicked the Scoot button
 // and ignore the click if a ball is already moving. If not, start one moving.
 if (e.getActionCommand().equals("Scoot") && scootBallPanel.isAnimating() == false) {
 scootBallPanel.reset();

CHAPTER 10 ■ ANIMATION

188

 animationThread = new Thread(scootBallPanel);
 scootBallPanel.setAnimating(true);
 animationThread.start();
 }
 }
}

The key to the this class is the actionPerformed method. It checks for which action the user has
chosen and starts the animation if the user selects the Scoot button (and if the ball isn't already being
drawn). The animation is accomplished through the ScootBallPanel class. Because ScootBallPanel
implements the Runnable interface (meaning it can be run in its own thread), we have a means to let it
know when to start drawing the ball. Note that we create a new thread each time the Scoot button is
pressed, letting any previous thread go to garbage collection. That's a simple way to restart an animation
process.Listing 10-2 shows the ScootBallPanel class.

Listing 10-2. The ScootBallPanel class

package com.bryantcs.examples.animation;

import java.awt.Color;
import java.awt.Graphics;

import javax.swing.JPanel;

public class ScootBallPanel extends JPanel implements Runnable {

 private static final long serialVersionUID = 1L;
 private boolean animating = false;
 private int xPosition = 5;

 public boolean isAnimating() {
 return animating;
 }

 public void setAnimating(boolean animating) {
 this.animating = animating;
 }

 public void reset() {
 xPosition = 5;
 }

 public void paint (Graphics g) {
 int width = this.getSize().width;
 int height = this.getSize().height;
 super.paintComponent(g);

CHAPTER 10 ■ ANIMATION

189

 if (animating) {
 g.setColor(Color.RED);
 g.fillOval(xPosition, height / 2, 10 ,10);
 xPosition += 20;
 if (xPosition > width) {
 animating = false;
 }
 }
 }

 // The run method controls how often the screen
 // gets redrawn and so controls the frame rate
 public void run() {
 while(animating) {
 try {
 Thread.sleep(40);
 this.repaint();
 } catch (InterruptedException ie) {
 return;
 }
 }
 }
}

Those two classes create a program that looks like the image in Figure 10-1.

Figure 10-1. ScootBall starting state

CHAPTER 10 ■ ANIMATION

190

The heart of the ScootBallPanel class is the run method, which implements the corresponding run
method in the Runnable interface. All it does is run through a continuous loop, sleeping a while and then
repainting the panel. How long it sleeps dictates the frame rate. In this case, it sleeps for 40 milliseconds,
producing a frame rate of about 25. I wrote, “about,” because the repainting takes some time, yielding a
frame rate a bit less than 25. We see how to get a more exact frame rate in the next example.

The paint method draws the ball on the screen, each time at a new position, until that position
exceeds the width of the panel. In particular, the call to super.paintComponent(g) redraws the panel to its
original state (a blank white box). The remaining lines then draw the ball. Figure 10-2 shows a ball
scooting across the screen.

Figure 10-2. Scootball in actionScootball is not much of a program, but it demonstrates the basics of
animation: drawing an updated image every so often (generally some number of times per second). Let's
move on to a slightly more complicated (and thus more interesting) example.

Animating Multiple Items
This example shows one way to animate multiple items at once. In this case, we use an object-oriented
approach to the problem (Java is an object-oriented language, after all). In particular, we create a class
for the things we want to animate and then create multiple instances of that class. Being a simple
example, we use the same class for all the animating items. However, you can use the same technique to
animate different kinds of objects. For example, a tank (an instance of one class) might shoot a bullet (an
instance of a different class) at a bunker (an instance of a third class).

The trick is to have each object draw itself and then iterate through them, letting each one draw
itself in turn. In that way, the calling class needs to know nothing about how to draw the objects and can
focus on the timing and user interface. This kind of organization embodies one of the principles of

CHAPTER 10 ■ ANIMATION

191

object-oriented programming, encapsulation, and embodies a primary goal of nearly all software
systems, separation of concerns (meaning that each different thing a program can do should be handled
by a different part of the program). Those principles are part of the advantage of object-oriented
programming, because they make designing programs and finding errors much easier. We get to finding
errors in the next chapter.

To illustrate how to animate multiple objects at the same time, we create a simple fireworks
program. When the user clicks the GGo button, it draws fireworks on the screen, in sets of four. Figure 10-
3 shows the Fireworks program in action.

Figure 10-3. The Fireworks program in action

By the way, even with a simple animation program such as Fireworks, a screenshot does not do it
justice. It's the nature of animation that no static image of part of the animation can compare to the
actual animation. So please run the programs in this chapter to see how they really look. I hope you've
been running the programs in the book all along, but, if not, you need to do so in this chapter if you want
to have a real sense of what they do. I suggest you then customize the programs to create your own
versions and ultimately your own original animations.

The Fireworks class works similarly to the ScootBall class, except for one important difference: the
Fireworks class uses a Timer object to control the animation. The Timer class provides instances an easy
way to trigger a process (not just animations, but any process) every so often. Because the timer is
independent of the drawing process, we get much closer to a frame rate of exactly 25 frames per second
(once every 40 milliseconds). Also, the timer simplifies both this class and the drawing panel class,
because we no longer have to manage threads. The program still uses threads, but the Timer class does
that work for us. For those reasons, using a Timer object is much better than making your own thread
and setting it to sleep for some amount of time. (I showed you the other way so that you'd know it exists,
but use Timer objects for your own animations.).Listing 10-3 shows the Fireworks class.

CHAPTER 10 ■ ANIMATION

192

Listing 10-3. The Fireworks class

package com.bryantcs.examples.animation;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.JPanel;
import javax.swing.Timer;

public class Fireworks implements ActionListener {

 private static final long serialVersionUID = 1L;

 FireworksPanel fireworksPanel = new FireworksPanel();
 JFrame frame = new JFrame("Fireworks");
 JPanel buttonPanel=new JPanel(new FlowLayout(FlowLayout.CENTER));
 JButton actionButton=new JButton("Go");
 boolean animating = false;
 // Here's the timer, which checks for user actions
 // and, if the animation is running, redraws the
 // screen. It does both 25 times per second
 // (1000 milliseconds divided by 40).
 Timer timer = new Timer(40, this);

 private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem exitItem = new JMenuItem("Exit");
 exitItem.setMnemonic('x');
 exitItem.addActionListener(this);
 file.add(exitItem);
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

 private void createAndShowGUI() {
 addMenu(frame);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().setLayout(new BorderLayout());
 actionButton.addActionListener(this);
 buttonPanel.add(actionButton);
 fireworksPanel.setPreferredSize(new Dimension(400, 200));

CHAPTER 10 ■ ANIMATION

193

 fireworksPanel.setBackground(Color.WHITE);
 frame.getContentPane().add(fireworksPanel,BorderLayout.CENTER);
 frame.getContentPane().add(fireworksPanel);
 frame.getContentPane().add(buttonPanel,BorderLayout.SOUTH);
 frame.pack();
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 Fireworks fireworks = new Fireworks();
 fireworks.createAndShowGUI();
 }

 // This method listens to the timer. The
 // program goes through it every 40th of a
 // second, giving us a Hertz or frame rate of 25.
 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand() != null) {
 // Check for the user choosing Exit
 // from the file menu and exit if so
 if (e.getActionCommand().equals("Exit")) {
 System.exit(0);
 }
 // Check for the Go button being clicked and, if so,
 // start the animation and set the button to Stop
 if (e.getActionCommand().equals("Go")) {
 animating = true;
 timer.start();
 actionButton.setText("Stop");
 }
 // Check for the Stop button being clicked and, if so,
 // stop the animation and set the button to Go
 if (e.getActionCommand().equals("Stop")) {
 animating = false;
 timer.stop();
 actionButton.setText("Go");
 }
 }
 // If the animation is running (the user has
 // clicked Go but not Stop), repaint the window
 // which is how we create the animation).
 if (animating){
 fireworksPanel.repaint();
 }
 }
}

Now let's look at the Fireworks drawing panel. The use of a Timer object in the Fireworks class
simplifies this class, too. We no longer need to implement the Runnable interface, have a run method, or
specify when to repaint. Again, the Timer class does all that for us, letting us focus on drawing the
collection of objects we want on the panel. Listing 10-4 shows the FireworksPanel class.

CHAPTER 10 ■ ANIMATION

194

Listing 10-4. The FireworksPanel class

package com.bryantcs.examples.animation;

import java.awt.Graphics;

import javax.swing.JPanel;

public class FireworksPanel extends JPanel{

 private static final long serialVersionUID = 1L;
 private Firework[] fireworks = new Firework[4];

 FireworksPanel() {
 init();
 }

 void init() {
 for (int i = 0; i < 4; i++) {
 fireworks[i] = new Firework((int)(Math.random()
 * this.getWidth()), this.getHeight(), 30);
 }
 }

 public void reset() {
 init();
 }

 public void paint (Graphics g) {
 super.paintComponent(g);
 for (int i = 0; i < 4; i++) {
 if (fireworks[i].isDone()) {
 fireworks[i] = new Firework((int)(Math.random()
 * this.getWidth()), this.getHeight(), 30);
 }
 fireworks[i].draw(g);
 }
 }
}

All the FireworksPanel class really does is manage the set of objects we want to draw, so let's look at
the class that defines the individual objects. The Firework class uses a random color to draw a line
halfway up the screen and then creates a burst of a dozen evenly spaced lines. Conceptually, it's simple,
but it takes a bit of code to get the math right. Listing 10-5 shows the Firework class.

Listing 10-5. The Firework class

package com.bryantcs.examples.animation;

import java.awt.Color;
import java.awt.Graphics;

CHAPTER 10 ■ ANIMATION

195

public class Firework {

 private int startX, startY, burstX, burstY, burstStep, currentStep, panelHeight, steps;
 Color color;

 // It takes a fair bit of setup work to figure out
 // * the starting location
 // * the bursting location
 // * which step we're on
 // * the total number of steps
 Firework(int x, int height, int ticks) {
 panelHeight = height;
 steps = ticks;
 startX = x;
 startY = height;
 burstX = x;
 burstY = height >> 1;
 burstStep = ticks >> 1;
 currentStep = 0;
 color = new Color((int)(Math.random() * 0xFFFFFF));
 }

 void draw(Graphics g) {
 Color drawColor = color;
 g.setColor(drawColor);
 int height = panelHeight - panelHeight / steps * currentStep;
 // the origin is at the top of the screen, so we check for being in
 // the bottom half by checking to see if the current height is larger
 // than the burst height. It seems backwards, but that's how it works.
 if (height > burstY) {
 // if we are in the bottom half of the panel, just draw
 // the line that represents the firework shell going up.
 g.drawLine(startX, startY, burstX, height);
 }

 if(currentStep >= burstStep) {
 // When we reach the bursting point, draw 12 lines in a circle.
 // For that, we need a tiny bit of trigonometry.
 for (int i = 0; i < 12; i++) {
 double xPrime, yPrime;
 double currentRadians = Math.toRadians(30 * i);

 int length = burstY / 2 / steps * currentStep;
 xPrime = (Math.cos(currentRadians)
 - Math.sin(currentRadians)) * length;
 yPrime = (Math.sin(currentRadians)
 + Math.cos(currentRadians)) * length;
 int endX = new Double(xPrime).intValue() + burstX;
 int endY = new Double(yPrime).intValue() + burstY;

CHAPTER 10 ■ ANIMATION

196

 g.drawLine(burstX, burstY, endX, endY);
 }
 }
 currentStep++;
 }

 // This firework is done, so the panel
 // class can let it be garbage collected.
 public boolean isDone() {
 return currentStep >= steps;
 }
}

 By the way, you can use similar code to draw a bullet going out and exploding against a target. Ideas
are often similar to other ideas, so the same code can often be used for a different purpose with little
modification, and this is one of those ideas. I encourage you to create that animation. Try it both with all
12 splines (the lines that radiate from the center) and with just the splines that are not over the target
(which might be more realistic, depending on what kind of event you choose to model.)

Sprite Animation
So far, we concentrated on drawing simple objects made of circles and lines. You can use the same
technique to create more complex objects, but it's often easier to use a series of images. Those images
are called sprites. Many animations rely on sprites to create complex images that take a lot of code (and
thus time) to create programmatically. Also, using images lets companies hire artists to create the
images and programmers to create the animation. Consequently, the quality of both the images and the
code improves, making a better program. .Separation of concerns is also a good principle for business,
where it's generally called specialization.

In this case, we create a simple four-image sprite that represents an expanding bullseye. Figure 10-4
shows all four sprite images together and zoomed in ten times.

Figure 10-4. The sprites used by the MouseSprites program

I zoom it in ten times to reveal something about how things are drawn on a monitor (or TV, your
phone, or anything with a digital display)—there are no curves. Any curve you see on a screen is a
collection of straight lines (each called a segment of the curve). The more segments, the better the
illusion, but there is no curve. Create a circle on the screen (the drawOval method in the Graphics class

CHAPTER 10 ■ ANIMATION

197

will do the job), and then take a close look at it (perhaps by making a screen capture and zooming in on
it). You see it's a set of straight lines.

As an aside, I work with a bunch of great digital artists whose favorite quotation is from The Matrix,
when the little girl says, “There is no spoon.” She has realized that the matrix is an illusion, and most
digital artists realize (and revel in the fact) that they are making illusions. If you like to make illusions,
you can have a lot of fun (and a great career) with digital art and animation.

I'm We no artist, so I created a simple set of sprites. I also set the timer to one quarter of a second,
making a relatively slow (a video gamer would probably say it's very slow) animation. If you look closely,
you can probably see the individual images as they are drawn. Most animations have a much higher
frame rate (at least comparable to a movie), but this one makes a good demonstration.

When you run the program, click repeatedly to see how many animations you can get going at once.
Doing so demonstrates that you can have multiple sprite animations going at the same time (and test
your ability to click in a hurry—we were able to get four at a time going). Move the mouse a bit between
clicks, so that you can see each animation separately.

I also added one more feature: triggered animation. Rather than run through an endless loop
(perhaps stopped and started by something like a button click), this animation runs once in response to
an event. In this case, the trigger is a mouse click. I added this technique to show you how to create
animations that respond to your users' commands. For example, you might have an endless loop draw
most of the objects in a game and use triggered animations to draw explosions and other items that
appear because of game events.

One other thing to know about sprites is that the individual images can be stored as separate files or
as a single file (often called a sprite sheet). Figure 10-4 can be a sprite sheet if used at its normal zoom
level. In the case of a single file, the program loads part of the image rather than an entire image. For
example, many games that involve maps store the individual terrain symbols together in a single file.
The Java graphics API provides a method for reading part of an image: getSubImage in the BufferedImage
class.

Listing 10-6 shows a program class for a sprite animation program (called MouseSprites because it's
triggered by a mouse click).

Listing 10-6. The MouseSprites class

package com.bryantcs.examples.animation;

import java.awt.Color;
import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.Timer;

public class MouseSprites implements ActionListener, MouseListener {

 private static final long serialVersionUID = 1L;

 private MouseSpritePanel mouseSpritePanel = new MouseSpritePanel();

CHAPTER 10 ■ ANIMATION

198

 private JFrame frame = new Jframe("MouseSprites");
 // Here's our very slow timer. 4 times a second – vroom!
 private Timer timer = new Timer(250, this);

 private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem exitItem = new JMenuItem("Exit");
 exitItem.setMnemonic('x');
 exitItem.addActionListener(this);
 file.add(exitItem);
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

 private void createAndShowGUI() {
 addMenu(frame);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 mouseSpritePanel.setPreferredSize(new Dimension(400, 200));
 mouseSpritePanel.addMouseListener(this);
 mouseSpritePanel.setBackground(Color.WHITE);
 frame.getContentPane().add(mouseSpritePanel);
 frame.pack();
 frame.setVisible(true);
 timer.start();
 }

 public static void main(String[] args) {
 MouseSprites mouseSprite = new MouseSprites();
 mouseSprite.createAndShowGUI();
 }

 // This method listens to the timer
 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand() != null) {
 // If the user chooses Exit, we exit
 if (e.getActionCommand().equals("Exit")) {
 timer.stop();
 System.exit(0);
 }
 }
 // otherwise, we redraw the panel
 // (which is how we achieve animation)
 mouseSpritePanel.repaint();
 }

 @Override
 public void mouseClicked(MouseEvent e) {
 }

CHAPTER 10 ■ ANIMATION

199

 @Override
 public void mouseEntered(MouseEvent e) {
 }

 @Override
 public void mouseExited(MouseEvent e) {
 }

 @Override
 public void mousePressed(MouseEvent e) {
 }

 // This method adds a new expanding bullseye.
 @Override
 public void mouseReleased(MouseEvent e) {
 mouseSpritePanel.add(e.getX(), e.getY());
 }
}

As you can see, this class is similar to the Fireworks class, with the addition of implementing the
MouseListener interface (and all its required methods). We made the MouseListener implementation (at
the top of the class) and the MouseListener methods (at the bottom of the class) bold, to make them easy
to find. Like the Fireworks class, the MouseSprites class has a timer to control how often to draw a new
sprite, and it has a panel class to provide a place for drawing the sprites.

■ Note You must create a directory called C:\test\sprites (on Windows) or C:/test/sprites (on Unix or Linux) and
put the sprite images in that directory to get the program to show the sprites. Alternatively, you can put the images
elsewhere and change the code to point to that directory.

A more complex program might expect the location of the sprite files as an argument to the
program. It's generally considered bad form to hard-code paths and file names into a program, but I
don’t want to introduce the additional complexity of reading them from an argument (I want to focus on
animation instead). Adding the location as an argument would be a good exercise, if you want to expand
this simple program a bit. If you do, remember that the argument would be handled in the main method
of the MouseSprites class, not in the MouseSpritePanel class.Listing 10-7 shows the MouseSpritePanel
class.

Listing 10-7. The MouseSpritePanel class

package com.bryantcs.examples.animation;

import java.awt.Graphics;
import java.awt.Image;
import java.io.File;

CHAPTER 10 ■ ANIMATION

200

import java.io.IOException;
import java.util.ArrayList;

import javax.imageio.ImageIO;
import javax.swing.JPanel;

public class MouseSpritePanel extends JPanel {

 private static final long serialVersionUID = 1L;

 private Image[] spriteImages = new Image[4];
 private ArrayList<MouseSprite> currentSprites = new ArrayList<MouseSprite>();

 MouseSpritePanel() {
 try {
 spriteImages[0] = ImageIO.read(new
 File("C:\\test\\sprites\\sprite1.png"));
 spriteImages[1] = ImageIO.read(new
 File("C:\\test\\sprites\\sprite2.png"));
 spriteImages[2] = ImageIO.read(new
 File("C:\\test\\sprites\\sprite3.png"));
 spriteImages[3] = ImageIO.read(new
 File("C:\\test\\sprites\\sprite4.png"));
 } catch (IOException e) {
 System.out.println("Couldn't open a sprite file");
 System.exit(1);
 }
 }

 void add (int x, int y) {
 MouseSprite newSprite = new MouseSprite(x, y, spriteImages, this);
 currentSprites.add(newSprite);
 }

 public void paint (Graphics g) {
 super.paintComponent(g);
 for (int i = 0; i < currentSprites.size(); i++) {
 MouseSprite currentSprite = currentSprites.get(i);
 if (!currentSprite.isDone()) {
 currentSprite.draw(g);
 } else {
 currentSprite = null;
 currentSprites.remove(i);
 }
 }
 }
}

The MouseSpritePanel class manages a set of images, which it passes to each new MouseSprite
object. When each sprite is done drawing itself, the MouseSpritePanel removes the sprite object, to keep
from cluttering the list and let the finished sprite be garbage collected. Otherwise, we'd have a runaway
memory leak, which would constitute bad programming.

CHAPTER 10 ■ ANIMATION

201

The the MouseSprite class, shown in Listing 10-8, draws each of the four sprites in turn.
Conceptually, it is similar to the Firework class, in that it draws its pieces on the screen and then
announces that it's done, so that the class holding a reference to it can let that reference go, which lets
the system garbage collect the now useless MouseSprite object.

Listing 10-8. The MouseSprite class

package com.bryantcs.examples.animation;

import java.awt.Graphics;
import java.awt.Image;
import java.awt.image.ImageObserver;

import javax.swing.JPanel;

public class MouseSprite {
 private int spriteX, spriteY, step;
 private boolean done = false;
 Image[] spriteImages= new Image[4];
 JPanel spritePanel;

 MouseSprite(int x, int y, Image[] images, JPanel panel) {
 spriteX = x;
 spriteY = y;
 step = 0;
 spriteImages = images;
 spritePanel = panel;
 }

 void draw(Graphics g) {
 ImageObserver observer = spritePanel;
 if (step < 4) {
 g.drawImage(spriteImages[step], spriteX, spriteY, observer);
 step++;
 } else {
 done = true;
 }
 }

 public boolean isDone() {
 return done;
 }

}

Figure 10-5 shows the MouseSprite program.

CHAPTER 10 ■ ANIMATION

202

Figure 10-5. The MouseSprite program

I can catch only two bullseyes in the screen shot. This problem of trying to catch the animation in
motion is one reason why animation programmers often add switches to slow or stop the animation. For
non-game animations (such as rotating medical images or animations used in court), slow, pause, and
fast forward options are essential. Another good exercise is to add a stop feature to the MouseSprite
program (perhaps a right-click can stop and start the animation).

The MouseSprite class draws a different image for each part of its process and then sets a flag to
indicate that it's done. As we saw previouslly, the class (MouseSpritePanel) that manages the individual
MouseSprite objects can then detect when to remove the MouseSprite object.

Summary
In this chapter, we covered the basics of creating animations with Java. In particular, we discussed the
following:

• How to draw on the screen with Java's Graphics package

• How to use a thread to control an animation

• How to use a timer to control an animationHow timers give better control than
threads, so we should prefer timers

• How to create a timed animation

• How to create a triggered animation

CHAPTER 10 ■ ANIMATION

203

How to put an image from a file onto the screenIn the first draft of this chapter, I didn't add screen
shots. I originally left them out because we hoped you run the code as you read the book. My editor (hi,
Ewan) pointed out that readers might want to see them, even if they are running the code, to see how
things should look when working correctly. Because Ewan had a good point, I added them, even though
the screenshots aren't nearly as good as seeing the animations run on your own computer. I also hope
that you “tinker” with the code as you go through the book. Don't just run what you see in the book.
Change the book's code to match your own ideas. All the code in the book belongs to you, so change it
all you like. Better still, write your own programs to create your own animations. I've tried to provide
some ideas, and I imagine you have lots of ideas, too.

As a final thought for this chapter, this chapter was one of my favorite chapters to write. I find
animations to be fun to create. If you agree, I encourage you to pursue animation programming as either
a hobby or a career (or both—many of the folks I work with go home and do more projects on their own
time). It can be rewarding, both in seeing your ideas come to life on a screen and in your pocketbook,
because it's a skill valued by many employers.

C H A P T E R 1 1

205

Debugging with Eclipse

Not every error throws an exception; sometimes, due to poor programming, your code will do something
totally wrong without throwing an exception. The computer did exactly what you told it to do, but it
didn't do what you meant. When programming, it pays to remember that a computer is just a
construction of silicon and various metals, so it is literally as dumb as a box of rocks. It has no conscious
ability to adjust for your errors, as another person does when you speak or write.

Software developers love exceptions. Every time Java throws an exception, it provides a stack trace,
showing us the classes and methods (and line numbers therein) that led to the exception. That makes
finding and fixing the error easy.

In the absence of an exception, though, you have to either puzzle it out by examining the logic of the
program or use a debugger. Sometimes, just examining the logic will do the trick. Other times, however,
only a debugger will do the job. As my editors could surely tell you, I often miss my own errors. I know
what I meant to write and look past what I actually wrote. The same problem applies to programming:
we know what we intended to do and often overlook what we actually did. A debugger forces you to look
at your code differently, which can help you find the problem. Also, a debugger “steps” through the code
one line at a time. That narrow scope (a single line) allows you to really focus to find any error.

Eclipse includes a full-featured debugger, and the rest of this chapter describes how to use that
debugger to track down and fix a problem. Other debuggers exist for Java, and Java includes a
command-line debugger called JDB (The Java Debugger). However, I think the Eclipse debugger is easier
to use and provides all the features one needs. For what it's worth, I generally use it for my own work.

I had a problem with the Fireworks program from Chapter 10, “Animation” that I had to use the
debugger to find, so I'll use that program as an example for our debugging exercise. In fact, I'll start by
showing you a problem that I used the Eclipse debugger to solve. Figure 11-1 shows the mess I made of
the Fireworks program before I got it to work correctly.

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

206

Figure 11-1. Fireworks problem

As you can see, I accidentally created searchlights rather than fireworks. The question is: How did I
do it? Since the answer didn't just jump out at me when I first read the code, I used the debugger to
puzzle out the problem. As always, 99% of the effort went into finding the problem. Once you reach the
“Aha!” moment, actually fixing the problem usually takes very little time (except for those times when
you discover that you need to rewrite the whole program—those are bad days.)

Before we can analyze what went wrong, though, you need to learn more about debugging in
general and how to use the Eclipse debugger in particular, so we'll return to this busted Fireworks
program near the end of the chapter.

The Flow of Debugging
Before we dive into the Eclipse debugger, I think it would be a good idea to present a walkthrough of the
overall debugging process.

1. Identify the problem. That sounds trivial, but it's often not. In complex
systems (and sometimes even in simple ones), just stating the trouble can be
tricky. Ask yourself: Exactly which behavior is wrong?

2. Set a breakpoint at a line you think (you often can't be entirely sure) will be
executed before your problem occurs. As you gain skill with debugging, you'll
get better at setting your initial entry point.

3. Step over the lines until you hit the error. The line you just stepped over is the
problem line (or possibly one of multiple problem lines, if you have nested
issues). If it's helpful, examine the values of the variables as you go. That can
be especially useful in loops.

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

207

4. Set a breakpoint on that line and restart your application. When you get to that
line, step into it.

5. Alternate between stepping over and stepping into lines until you finally have
the defective code at its lowest level. Again, examine the values of any variables
related to the problem as you go.

By following that the preceding general flow, you can use a debugger to identify exactly where your
program did what you didn't want it to do, even though it didn't throw an exception.

Debugging without a Debugger
In Java's early days (circa 1995), there was no debugger, either at the command line or in a nice program
such as Eclipse. Yet those of us using Java still had to find and fix our bugs. So, we fell back on the old
practice of writing values to the console. The System.out.println() method was our friend (though we
certainly got tired of writing it). We would add print statements to show the values of all the relevant
variables wherever we suspected a bug existed. In that fashion, we could inspect the values as the code
ran. It was a poor substitute for being able to step over and into lines with an actual debugger, but it
worked.

Programmers sometimes still use that technique, even when a debugger is available. For example, if
I think I can figure out a problem quickly with just a print statement or two, I'll try that first. If you use
print statements this way, remember to remove them when you solve the issue. I've been embarrassed
in more than one code review by a lingering print statement.

Fortunately for you, you get to learn Java at a time when mature tools have already been created,
so you don't have to rely on print statements. To that end, let's fire up the Eclipse debugger and see how
it works.

Starting the Eclipse Debugger
To start the Eclipse debugger:

1. Open Eclipse.

2. From the WWindow menu, choose OOpen Perspective, and then choose DDebug.
The Debug perspective appears.

■ Tip After the first time you open the Debug perspective, a shortcut button appears on the right side of the
Eclipse toolbar. In the future, you can switch to the Debug perspective by clicking that button and back to the
regular perspective by clicking the Java button.

Let's start by opening the Firework class (the object that controls drawing a single firework). When
you first open the Firework class in the Debug perspective, you'll see a screen very similar to the one in
Figure 11-2.

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

208

Figure 11-2. Eclipse Debug perspective

Let's look at this screen in more detail. You can see the code in the middle left panel of the
application. The middle right panel displays an outline of the class. So far, it’s the same as the Java
perspective, but with a lot less space. The top left area shows the Debug panel and a tab to switch back to
the Navigator panel. When you run the debugger, the Debug panel shows the call stack (all the objects
the program went through to get to its current point). The top right area shows the breakpoints and
variables. We'll talk about breakpoints and variables shortly. Finally, the bottom panel shows a number
of possible views. You generally want the console view when debugging.

Don't worry if your debugger doesn't look exactly like mine. Like every software developer, I've
customized my environment a bit, and we may be on different versions. The general layout is still the
same, though, and that's enough to show you the relevant parts.

Breakpoints and Variables
A breakpoint is a place in the code where you want to stop the execution of a program. Computers run
programs one instruction at a time. As a result, you can interrupt the flow of instructions and make the
computer wait while you look at the values that are produced by your code at a particular spot.
Fortunately, computers don't get bored, so you can make them wait as long as you like.

When you debug an application, you create temporary breakpoints, which appear in the
Breakpoints view, wherever you want the debugger to stop. The debugger lets your application run until
it reaches one of those points in the code; it then suspends your program, and shows you the values of
the various objects and primitives in the Variables view.

Eclipse lets you set a number of different kinds of breakpoints:

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

209

• Line breakpoints

• Exception breakpoints

• Classloading breakpoints

• Watchpoints

• Method breakpoints

• Printpoints

I'm going to cover only line breakpoints, as they will solve nearly all the problems you are likely to
encounter—I made it a long way into my career before I ever needed anything other than a line
breakpoint. However, I encourage you to investigate the other kinds of breakpoints on your own. Start
by reading the Eclipse help file's content about breakpoints.

Setting a Line Breakpoint
To set a line breakpoint:

1. Right-click in the thin area to the left of the line of code where you want to set a
breakpoint.

2. Choose TToggle Breakpoint. A breakpoint appears at the line where you right-
clicked, as shown in Figure 11-3. The blue dot to the far left of the first line in
the draw method is the breakpoint indicator. When your program runs, it
stops at that point and shows you the values of all the objects and primitives
that are in scope at the time.

Figure 11-3. Breakpoint in code:

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

210

Let's see what happens when we run the program (Figure 11-4).

Figure 11-4. Execution suspended at breakpoint:

Notice the line highlighted in green. That green line indicates the current execution point (that is,
the line that was being processed before the program was suspended). When the debugger stops at a
line, it shows you the values in scope for that line in the Variables list, the method containing the line in
the Outline panel, and the call stack in the Debug panel. From there, you can step through the code,
either one line at a time or even within a line. We'll get to stepping shortly. First, though, let's be sure you
understand the concept of scope.

About Scope
What does “in scope” mean? The objects and primitives (that is, the variables) that are in scope are those
that are capable of being used at a particular point in the program. In the case of the breakpoint above,
the only local value we can see is g, the instance of the Graphics class that will be used for the drawing.
However, we can also see a value called this, which is the containing class. By expanding the this entry
in the variable list, we can see all the class variables declared within it (rather than in a method). Figure
11-5 displays what an expanded view of the this value looks like.

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

211

Figure 11-5. Expanded containing class value this

As you can see, the expanded this listing shows the values of all the class variables (the arrow to the
left of an entry indicates that that entry can be expanded). Clicking on one of them causes details about
it to appear at the bottom of the Variables view. In this case, we can see the RGB values (values for red,
green, and blue) that constitute the color for this particular firework. You can also right-click the entry
and get even more information, but we'll skip that for now. Once you've mastered the basics of
debugging, you can try out those more advanced features.

Stepping:
“Stepping” in debuggers refers to the ability to move to the next execution point in the program. For
convenience, Eclipse offers three kinds of stepping commands: Step Into, Step Over, and Step Return.
Figure 11-6 shows the step buttons on the debug toolbar.

Figure 11-6. Callout of step controls on debug toolbar

You can also use function keys to step. FF5 corresponds to Step Into, FF6 corresponds to Step Over,
and FF7 corresponds to Step Return.

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

212

Stepping Into

When you step into a line, you advance to the first of whatever methods may be in the line. Consider the
second line in the draw method:

g.setColor(drawColor);

When you step into that line, you step to the top of the setColor method in the Graphics class.
That's probably not very useful; you only want to use this command to step into your own code.

For some lines, stepping into is the same as stepping over, because nothing in the line changes the
execution point. For example, stepping into the first line of the draw method has the same effect as
stepping over it, because that line just assigns one value to another value.

Stepping Over

When you step over a line, you let the debugger run through whatever methods may be called by that
line. That includes any classes and methods that may be called by those methods, and so on. Sometimes,
that amounts to very little code; other times, it's a large chunk of a Java library.

Stepping over lines is a good way to find the place in your program where you have a problem. Step
over until the problem behavior presents itself. Then you know which line is bad. From that point, you
can step into the methods under that line, and then step over the lines in those methods until you hit the
problem spot again. Thus, by swapping back and forth between stepping over and stepping into code,
you can narrow down and finally locate the failure in your code.

Stepping to Return

Step Return lets the program run until the current method returns. Step Return is really just a
convenience feature so that you don't have to step through all the lines in a method. If you step into a
method and realize that it can't possibly be the source of your problem, Step Return offers a handy way
to move along.

Removing a Line Breakpoint
You may have noticed that the command for creating a breakpoint is TToggle Breakpoint. Toggling an
existing breakpoint removes it.

Disabling a Line Breakpoint
Sometimes, it's handy to leave a breakpoint in place but not use it for a while. For example, you might
disable a breakpoint while you track down some other bug that you have to fix sbefore you can deal with
the one you originally started to fix. You'll sometimes find that a bug is really a nested set of bugs, and
you have to fix one before you can fix another. The good news is that identifying one bug often gives you
insight into the larger problem, and fixing the remaining issues then becomes largely mechanical. There
are times, though, when you hit a series of hard-to-solve problems, and then you'll be happy to have a
good debugger. To disable a breakpoint:

1. Right-click the breakpoint you want to disable.

2. Choose Disable Breakpoint.

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

213

Making a Conditional Breakpoint
Another common need is to make a breakpoint conditional:, such that it only triggers when a variable
has a particular value. You can check the values of multiple variables, too.

To set a conditional breakpoint

1. Right-click the breakpoint you want to be conditional.

2. Choose BBreakpoint Properties. The Properties window for your breakpoint
appears (Figure 11-7).

Figure 11-7. Breakpoint Properties window:

3. Set the EEnable Condition checkbox.

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

214

4. In the text field below the checkbox, type the code for your condition. This is
generally a single line of normal Java code, without the semicolon. For
example, if you want to hit this breakpoint only when the value of currentStep
is 15 or higher, set a condition as shown in Figure 11-8.

Figure 11-8. Breakpoint condition enabled and specified:

5. Click OOK.

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

215

When you let the code run (and click the GGo button in the application to get the drawing started),
you get the set of variables shown in Figure 11-9 after a very short wait:

Figure 11-9. Variables at conditional breakpoint:

As you can see, it stopped when currentStep got to 15.

Debugging Tips and Tricks
Now that you know the basics of using the Eclipse debugger, here are a few tips and tricks to help you
along when you use any debugger:

• Be especially watchful in loops. By nature, loops repeatedly check and define a
small set of values. So, examine those variables as you work through a loop. I can't
tell you how often a badly set looping variable has been the source of my troubles,
but it's a large percentage of the time.

• Use conditional breakpoints in loops. Often, a problem doesn't surface until a
particular value is reached. It's not much fun to watch the same set of values, and
boredom can dull your focus and make you miss the actual problem, so use
conditional breakpoints to skip over the things you know aren't problems.

• Watch for “copy and paste” errors. If you're using code you got from somewhere
else (including this book), it's very easy to neglect to change a variable to the value
you need from whatever was in the example you borrowed. It may look right,
because it's what you read when you went looking for an example, but it's wrong
because it's not what your program needs.

• Take the time to understand the code. I'm a great one for rushing through things I
think are simple, only to discover they're not so simple. Painful experience has
taught me to take the time to fully understand the code I'm using (whether from a
library or a sample or my own code). Only by understanding the code in all its
detail can you understand the results the debugger is giving you.

That last one is actually the hardest things developers do, by the way. Getting all the relationships
within a codebase into your head so that you have a clear idea of how it works, usually called
visualization, is a tough task. Good developers are good at visualization. It's also why so many

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

216

developers are good musicians, master video game players, or both. All three pursuits require good
visualization skills, and all good developers are good puzzle solvers for the same reason. More so than
formal education or even experience, visualization is the key to being a good developer. Of course,
education and experience help you develop and refine your visualization skill.

Fixing the Fireworks Program
Now that you know enough to be able to understand how I used the debugger to find and fix the issue,
we can return to my problem of making searchlights when I wanted fireworks.

The first thing I had to do was figure out where the problem was happening. Fortunately, I had
isolated all of the code for drawing an individual firework into the draw() method of the Firework class.
Remember, each method should do one easily identified task. Making debugging easier is one of the
biggest reasons Java developers follow that practice.

Fireworks programListing 11-1 shows the version of the method that was causing the problem.

Listing 11-1. The flawed Firework.draw() method

void draw(Graphics g) {
 Color drawColor = color;
 g.setColor(drawColor);
 int height = panelHeight - panelHeight / steps * currentStep;
 if (height > burstY) {
 g.drawLine(startX, startY, burstX, height);
 }
 if(currentStep >= burstStep) {
 for (int i = 0; i < 12; i++) {
 double xPrime, yPrime;
 double currentRadians = Math.toRadians(30 * i);

 int length = burstY / 2 / steps * currentStep;
 xPrime = (Math.cos(currentRadians)
 - Math.sin(currentRadians)) * length;
 yPrime = (Math.sin(currentRadians)
 + Math.cos(currentRadians)) * length;
 int endX = new Double(xPrime).intValue();
 int endY = new Double(yPrime).intValue();

 g.drawLine(burstX, burstY, endX, endY);
 }
 }
 currentStep++;
}

Within the draw method, I knew that the problem had to be inside the loop that drew the twelve
splines (the lines from the center to the edge of the firework). So, I was able to determine that a good
starting point for stepping through the code would be at the first line inside the for loop.

From that breakpoint, I stepped over each line to the last line inside the for loop (that is, until I got
to the drawLine method). At that point, I could see that endX and endY had values I didn't expect, and I
had my first clue. (Debugging often makes me feel like a detective—maybe that's why I like Sherlock
Holmes so much.) Figure 11-10 shows the values in the debugger.

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

217

Figure 11-10. Incorrect values in the debugger

The thing that tipped me off was that the endX and endY values were the same as the value for the
length of the line. Those two values should be somewhere near the middle of the width and height of the
panel, which would be 200 for endX and 100 for endY (though endX could vary a great deal more than endY
because of the random starting X location).

So, on my second debug run, I paid special attention to where endX and endY got defined: in the two
lines just before the drawLine method call. That’s when I realized that I had forgotten to account for the
offset from the edges of the screen (one of those palm-to-forehead moments wherein I call myself an
idiot, but at least I found the problem).

Finally, I corrected the code to the version you saw in Chapter 10, which I'll give you again in
Listing 11-2.

Listing 11-2. The corrected Firework.draw() method

void draw(Graphics g) {
 Color drawColor = color;
 g.setColor(drawColor);
 int height = panelHeight - panelHeight / steps * currentStep;
 if (height > burstY) {
 g.drawLine(startX, startY, burstX, height);
 }
 if(currentStep >= burstStep) {
 for (int i = 0; i < 12; i++) {
 double xPrime, yPrime;
 double currentRadians = Math.toRadians(30 * i);

 int length = burstY / 2 / steps * currentStep;
 xPrime = (Math.cos(currentRadians)
 - Math.sin(currentRadians)) * length;
 yPrime = (Math.sin(currentRadians)
 + Math.cos(currentRadians)) * length;
 int endX = new Double(xPrime).intValue() + burstX;
 int endY = new Double(yPrime).intValue() + burstY;

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

218

 g.drawLine(burstX, burstY, endX, endY);
 }
 }
 currentStep++;
}

The parts I added are in bold. Simple little oversights such as this one are a common source of bugs.
So, remember to fully understand what your code is doing and to proofread very carefully. And you'll
still miss things, which is why you should get to know at least one good debugger.

Figure 11-11 shows the values yielded by the correct code.

Figure 11-11. Correct values in the debugger

As you can see, the values for endX and endY are closer to the values I expected, which brings us to
one more thing that you need to do when writing software: figure out what values to expect. If you don't
know what values should appear in the debugger, you can't be sure your code is doing the right (or
wrong) thing.

Summary
We covered a lot of ground in this chapter. You learned:

• The general flow of debugging.

• How to debug without a debugger (and why it’s better to have one).

• How to set a line breakpoint.

• That other kinds of breakpoints are available to expand with your debugging
needs.

• How to step over code and how to step into code.

• How to examine the values of the variables as they are affected by the code.

CHAPTER 11 ■ DEBUGGING WITH ECLIPSE

219

• That you need to know what to expect before you can know what's wrong.

• How to use those expectations to find and fix a problem.

As you do more with programming, you'll go through this basic process many, many times. With
practice, you'll gradually develop your own feel for where problems lie and how to find them. Honestly,
debugging is an art form, and it's the sense of what's wrong that comes with experience that will let you
do more, rather than any formal understanding of debuggers. So, use the Eclipse debugger and any
other debuggers you may encounter in the future to develop your own debugging skill. Having a knack
for debugging is one of the things that separate senior developers from junior developers, and
experience is the only way to create that knack for yourself.

Now, go point the Eclipse debugger at the code you've developed while reading this book, set a few
breakpoints, and see what you can learn. I bet you'll be surprised.

C H A P T E R 1 2

221

Video Games

By “video games,” I mean games which have very limited controls and a primary interface that is
somehow animated. Other computer games still use animation but aren't video games in classic
parlance. For example, an old game called BattleZone (which I used to play in college) is a video game.
Civilization, in all of its incarnations, is a computer game but not a video game. What's the difference?
Complexity and the skill used to play the game. Video games tend to be simple and require dexterity.
Other games tend to be more complex and rely on intelligence. As an avid gamer, I enjoy both,
depending on my mood.

I bet a lot of the people who read this book want to learn to write video games. Fair enough. I
probably would do that, too. If you love games so much that you jumped to this chapter first, I suggest
you at least read the chapter on animation as those concepts very much apply to programming video
games.

The Mechanics of a Video Game
Before we plunge into the game, let's first consider the core components of a video game in terms that
aren't specific to any programming language, including Java. Then, as we go through a couple of
examples, we can talk about how the examples implement these mechanics. Video games consist of
three main pieces:

• The user interface

• The game logic

• The game loop

The User Interface
As we have seen in the previous chapters, any program with a graphical user interface devotes much of
its code to creating and responding to that user interface. Unfortunately, that can mean losing sight of
the game logic in the user interface code. Complex games (such as most modern video games) separate
the logic from the presentation (another name for the user interface) by having the logic in one set of
classes and having the presentation in another set of classes. Simple games may blend logic and
presentation in the same classes (though probably in different methods). The sample games in this
chapter use the latter organization as they are very simple games. We've already discussed the idea of
blending logic and presentation in Chapter 6, “Object-oriented Programming.”

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 12 ■ VIDEO GAMES

222

However, there's always some point in the user interface code that triggers behavior in the logic
code. These points are usually where the code handles input from the user. If you click a button on a
mouse, the input does go through the user interface layer (via the mouse handler), but that click almost
certainly triggers some kind of game logic as well. When you read the code for video games (you can find
code for lots of games on the web, by the way), watch for those entry points to the game logic. They are
key spots in any computer game.

The Game Logic
“Game logic” refers to the way the game responds to the user's input and possibly to other conditions
(such as timers or network events). Here are some examples of game logic that you may have seen in
various games:

• The player scores points after hitting a target.

• The game is over when the timer runs down.

• Jumping on a particular spot opens a secret door.

All games have at least a little game logic. The game (usually) needs some kind of ending condition
(the game-over condition), and most games have some way of keeping score. Not all games need these
things, but most do. For instance, the second example (a very simple shooting gallery game) in this
chapter has no ending condition. You can keep shooting things as long as you like.

The Game Loop
As you may recall from Chapter 10, “Animation,” the number of times a program redraws the screen is
its frame rate, and the number of times a program processes all of its inputs and produces all of its
outputs is its hertz. The game loop dictates both of those measures of speed. The second sample in this
chapter (the shooting gallery game) runs through its game loop 50 times a second, so both its frame rate
and its hertz are 50.

So what does a game loop do? That can vary from game to game, but there are some basics that any
game loop has to do:

• Process the user input and all other inputs

• Process the game logic

• Redraw the playing field

The TargetClick Game
TargetClick is very much a video game version of the mechanical classic, Whac-a-Mole. A spot shows up,
and you have to click it before it disappears. The more spots you click, the bigger your score. You can
(indirectly) control the length of the game by setting the number of successful clicks needed to win. If
you want a more difficult game, expand the game's window (making the spots farther apart). Figure 12-1
shows the TargetClick game in progress.

CHAPTER 12 ■ VIDEO GAMES

223

Figure 12-1. The TargetClick game

Wondering why the spots are different sizes? We'll see why that happens as we study the
game's code.

The TargetClick game consists of three classes:

• TargetClick manages the user interface, the game logic, and the game loop

• TargetClickPanel creates the playing field and manages the targets

• Target draws the targets

As you can tell from that description, the TargetClick class contains most of the game's complexity.

Listing 12-1. The TargetClick class

package com.bryantcs.examples.videogames;

import java.awt.Color;
import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.Random;

import javax.swing.BoxLayout;
import javax.swing.JFrame;
import javax.swing.JLabel;

CHAPTER 12 ■ VIDEO GAMES

224

import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.Timer;

public class TargetClick implements ActionListener {

 // Create the user interface components
 private TargetClickPanel targetClickPanel = new TargetClickPanel();
 private JPanel scorePanel = new JPanel();
 private JLabel timeLabel = new JLabel("Time: ");
 private JLabel scoreLabel = new JLabel(" Targets Hit: ");
 private JLabel timeDisplayLabel = new JLabel("0");
 private JLabel scoreDisplayLabel = new JLabel("0");
 private JFrame frame = new JFrame("TargetClick");

 // Create the timer, which will manage the game loop
 private Timer timer = new Timer(400, this);

 // Create some other bits needed by the game logic
 static Random random = new Random();
 static int score;
 private long startTime;
 long elapsedTime = 0;
 private int gameLength = 50;

 // Add a menu, as we've seen before private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem exitItem = new JMenuItem("Exit");
 JMenuItem newGameItem = new JMenuItem("New Game");
 JMenuItem gameLengthItem = new JMenuItem("Set Game Length");
 exitItem.setMnemonic('x');
 exitItem.addActionListener(this);
 newGameItem.setMnemonic('n');
 newGameItem.addActionListener(this);
 gameLengthItem.setMnemonic('s');
 gameLengthItem.addActionListener(this);
 file.add(exitItem);
 file.add(newGameItem);
 file.add(gameLengthItem);
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

 // Display the user interface, as we've seen before
 private void createAndShowGUI() {
 addMenu(frame);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

CHAPTER 12 ■ VIDEO GAMES

225

 targetClickPanel.setPreferredSize(new Dimension(400, 200));
 targetClickPanel.setBackground(Color.WHITE);
 scorePanel.setPreferredSize(new Dimension(400, 50));
 scorePanel.setLayout(new BoxLayout(scorePanel, BoxLayout.X_AXIS));
 scorePanel.add(timeLabel);
 scorePanel.add(timeDisplayLabel);
 scorePanel.add(scoreLabel);
 scorePanel.add(scoreDisplayLabel);
 frame.getContentPane().add(scorePanel);
 frame.getContentPane().add(targetClickPanel);
 frame.getContentPane().setLayout(new
 BoxLayout(frame.getContentPane(), BoxLayout.Y_AXIS));
 frame.pack();
 frame.setVisible(true);
 }

 // start or restart the game
 private void init() {
 timer.start();
 startTime = System.currentTimeMillis();
 }

 // The main method
 public static void main(String[] args) {
 TargetClick targetClick = new TargetClick();
 targetClick.createAndShowGUI();
 targetClick.init();
 }

 // The game loop (which isn't a loop)
 // Also contains the game logic
 public void actionPerformed(ActionEvent e) {
 // check for user input (step 1 in a game loop)
 if (e.getActionCommand() != null) {
 if (e.getActionCommand().equals("Exit")) {
 timer.stop();
 System.exit(0);
 }
 if (e.getActionCommand().equals("New Game")){
 newGame();
 }
 if (e.getActionCommand().equals("Set Game Length")) {
 String option = JOptionPane.showInputDialog(frame,
 "Number of Targets:");
 if (option != null) {
 gameLength = Integer.parseInt(option);
 }
 newGame();
 }
 }
 // update the score
 updateScorePanel();

CHAPTER 12 ■ VIDEO GAMES

226

 // game over? (part of step 2 in a game loop)
 // the rest of step 2 (processing the game logic)
 // is in the TargetClickPanel and Target classes
 if (score == gameLength) {
 endGame();
 }
 // redraw the playing field (step 3 in a game loop)
 targetClickPanel.repaint();
 }

 // A convenience method for showing the time and score
 private void updateScorePanel() {
 elapsedTime = System.currentTimeMillis() - startTime;
 timeDisplayLabel.setText(Long.toString(elapsedTime / 1000));
 scoreDisplayLabel.setText(Integer.toString(score));
 }

 // What to do when the game ends – part of the game logic
 private void endGame() {
 timer.stop();
 String scoreString = "You clicked " + gameLength +
 " targets in " + (elapsedTime / 1000) + " seconds";
 int option;
 option = JOptionPane.showConfirmDialog(frame, scoreString
 + " Play again?", "Game Over",
 JOptionPane.YES_NO_OPTION);
 if (option == 1) {
 System.exit(0);
 } else {
 newGame();
 }
 }

// What to do when the user starts a new game
 private void newGame() {
 score = 0;
 scoreDisplayLabel.setText("0");
 startTime = System.currentTimeMillis();
 timeDisplayLabel.setText("0");
 if (!timer.isRunning()) {
 timer.start();
 }
 }
}

Nearly all of the TargetClick class creates and manages the user interface. The actionPerformed
method contains part of the game logic (with the rest in the TargetClickPanel and Target classes, which
we'll soon see). The endGame and startGame methods show those places where user interface code
meshes with game logic. The endGame method has just enough logic to stop the timer. The rest of the
endGame method provides the user with a way to either start a new game or exit. The newGame method
resets everything (including the user interface) and starts a new game.

CHAPTER 12 ■ VIDEO GAMES

227

The actionPerformed method also contains the game loop. That's not obvious because there's no
actual loop present. Instead, the Timer object calls the actionPerformed method each time the timer
ticks. As a result, we get a continuous loop so long as the timer runs. When you examine the
actionPerformed method, you can see that it does all three tasks that go in a game loop; it handles user
input (through the getActionCommand method), handles the game logic (by checking to see if the user has
clicked enough targets to end the game), and redraws the game area (by calling the repaint method of
the TargetClickPanel object).

The TargetPanel class provides the game field and keeps five targets in play. As part of keeping five
targets in play, it also checks to see if a mouse click in its area hits a target. Those functions are part of
the game logic. In this case, it's acceptable for the game logic to be distributed over more than one class.
The guiding principle is that each class has a clear, well-defined task. Keeping the right number of
targets in play and checking for targets being hit is part of managing the field of play, and that's the job
of the TargetClickPanel class. There's a lesson here: where possible, separate logic from user interface.
However, favor the principle of each class having a clear purpose over separating logic from
presentation. Ideally, you can achieve both goals, but that's not always practical (as here).

Listing 12-2. The TargetClickPanel class

package com.bryantcs.examples.videogames;

import java.awt.Graphics;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

import javax.swing.JPanel;

public class TargetClickPanel extends JPanel implements MouseListener{

 private static final long serialVersionUID = 1L;

 // Keep track of the targets
 private Target targets[] = new Target[5];

 // The constructor, which populates the array with nulls
 public TargetClickPanel() {
 addMouseListener(this);
 for (int i = 0; i < targets.length; i++) {
 targets[i] = null;
 }
 }

 // Here's where we update the game field
 public void paint (Graphics g) {
 super.paintComponent(g);
 for (int i = 0; i < targets.length; i++) {
 // here's where we make the initial targets
 // on the first time through the loop
 if (targets[i] == null) {
 targets[i] = new Target(this);
 }
 // Is the target done (either fully drawn or has been clicked?)

CHAPTER 12 ■ VIDEO GAMES

228

 if (!targets[i].isDone()) {
 // if not done, draw it in the game area
 targets[i].draw(g);
 } else {
 // if it is done, make a new one and put it in the array;
 // the old one can then be garbage collected
 // as no reference to it now exists
 targets[i] = new Target(this);
 }
 }
 }

 // We have to have this method to fulfill the MouseListener contract
 @Override
 public void mouseClicked(MouseEvent e) {
 }

 // We have to have this method to fulfill the MouseListener contract
 @Override
 public void mouseEntered(MouseEvent e) {
 }

 // We have to have this method to fulfill the MouseListener contract
 @Override
 public void mouseExited(MouseEvent e) {
 }

 // We have to have this method to fulfill the MouseListener contract
 @Override
 public void mousePressed(MouseEvent e) {
 }

 // Here's where we check for user input within the game field
 // and check to see if the input changes the game
 // (because the user hit a target)
 @Override
 public void mouseReleased(MouseEvent e) {
 for (int i = 0; i < targets.length; i++) {
 targets[i].pointInTarget(e.getX(), e.getY());
 }
 }
}

As we've just seen, the TargetClickPanel class only provides a place for targets to appear, handles
mouse clicks in the play area (the TargetClick class handles mouse clicks in the menu and the frame),
and keeps the five targets in play.

The Target class has the simplest mission of the three classes that comprise the TargetClick game: It
draws a target and figures out whether a target has been hit. That may seem like too much to do, and
your first instinct may be to move the hit logic out of this class. However, an instance of the Target class
has to stop drawing its target if the player hits the target. Consequently, it makes sense to put the hit
logic in the Target class. Again, giving each class a clear purpose trumps separating logic from
presentation. When deciding whether to separate code, ask yourself two useful questions: Can I separate

CHAPTER 12 ■ VIDEO GAMES

229

further? Does further separation make the code easier to understand or maintain? In this case, the code
could have been separated further. However, further separation would just clutter this simple program.

Listing 12-3. The Target class

package com.bryantcs.examples.videogames;

import java.awt.Color;
import java.awt.Graphics;

import javax.swing.JPanel;

public class Target {
 // The essential information drawing a target:
 // where is it and how big is it right now?
 private int drawX, drawY, step;

 // Are we done yet? By default, no
 private boolean done = false;

 // a reference to the game area, which we use
 // to find a spot for this target
 JPanel panel;

 // The constructor
 Target(JPanel panel) {
 this.panel = panel;
 // -30 + 15 creates a 15-pixel border

 // Find a random spot in the game field
 drawX = TargetClick.random.nextInt(panel.getWidth() - 30) + 15;
 drawY = TargetClick.random.nextInt(panel.getHeight() - 30) + 15;

 // Start the step counter
 step = 0;
 }

 // Here's where we draw the target
 void draw(Graphics g) {
 if (!done) {
 // if not done, draw a circle that varies in size by the current step
 if (step == 0) {
 g.setColor(Color.RED);
 g.fillOval(drawX - 15, drawY - 15, 10, 10);
 }
 if (step == 1) {
 g.setColor(Color.RED);
 g.fillOval(drawX - 15, drawY - 15, 20, 20);
 }

CHAPTER 12 ■ VIDEO GAMES

230

 if (step == 2) {
 g.setColor(Color.RED);
 g.fillOval(drawX - 15, drawY - 15, 30, 30);
 }
 if (step == 3) {
 g.setColor(Color.RED);
 g.fillOval(drawX - 15, drawY - 15, 20, 20);
 }
 if (step == 4) {
 g.setColor(Color.RED);
 g.fillOval(drawX - 15, drawY - 15, 10, 10);
 done = true;
 }
 } else {
 // if we are done, erase the remaining circle
 g.setColor(Color.WHITE);
 g.fillOval(drawX + 1, drawY + 1, 30, 30);
 }
 step++;
 }

 // This is how we let the playing field
 // know whether this target is done
 public boolean isDone() {
 return done;
 }

 // Did this target get hit?
 public void pointInTarget(int x, int y) {
 if (x > drawX -15 && x < drawX + 15 && y > drawY - 15 && y < drawY + 15) {
 // A hit! So add 1 to the sore and indicate that this target is done
 TargetClick.score++;
 done = true;
 }
 // no need to do anything if not a hit
 }
}

The Target class contains the logic for drawing a target and for figuring out whether a target has

been clicked. As a simplification, I determined whether the click was within a square that contains the
target spot. For a more certain method, you could check the color of the pixel the player clicked on and
award a hit if it is not white. My simplification makes the game a bit easier.

TargetClick is about as simple as a game gets. Let's move on to a more complex game.

The Shooting Gallery Game
As the title indicates, Shooting Gallery is a very simple shooting gallery game. I created it mostly to show
the concept of controlling multiple items with a single timer, to show similar objects moving at different
speeds, and to show one simple way to resolve collision detection (which means detecting when one

CHAPTER 12 ■ VIDEO GAMES

231

object interacts with another – usually by running into one another). I'll also show one way to achieve
double buffering, which makes games have less of that irritating flicker. When you write your own (no
doubt far more interesting and entertaining) games, you'll need to know how to do those things.

Before we dive into the code, let's see what the game looks like. Figure 12-2 shows the
ShootingGallery game during play.

Figure 12-2. The ShootingGallery Game

CHAPTER 12 ■ VIDEO GAMES

232

As you can tell from the score, I hit four 10-point targets and one 25-point target before I took the
screen shot. I find the back row to be hard to hit, but it's supposed to be that way, so I guess that's a
good sign.

The ShootingGallery game consists of six classes:

• ShootingGallery defines and manages the user interface.

• ShootingGalleryPanel manages the playing area and contains the game loop.

• ShootingGalleryShooter manages the cursor.

• ShootingGalleryTargetRow manages an individual row of targets.

• ShootingGalleryTarget manages an individual target.

• ShootingGallerySprites manages the sprites used by the game.

Listing 12-4. The ShootingGallery class

package com.bryantcs.examples.videogames;

import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.BoxLayout;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.JPanel;

public class ShootingGallery implements ActionListener {

 // Define the components
 private ShootingGalleryPanel shootingGalleryPanel;
 private JPanel scorePanel = new JPanel();
 private JLabel scoreLabel = new JLabel("Score: ");
 static JLabel scoreDisplayLabel = new JLabel("0");
 private JFrame frame = new Jframe("Shooting Gallery");
 // Set up a place to keep score (default is 0)
 static int score;
 // Set the game size
 static Dimension gameDimension = new Dimension(500, 500);

 // Add a menu (just one option, Exit)
 private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem exitItem = new JMenuItem("Exit");
 exitItem.setMnemonic('x');
 exitItem.addActionListener(this);

CHAPTER 12 ■ VIDEO GAMES

233

 JMenuBar menuBar = new JMenuBar();
 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

 // Setup and display the user interface
 private void createAndShowGUI() {
 shootingGalleryPanel = new ShootingGalleryPanel();
 addMenu(frame);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setExtendedState(frame.getExtendedState()|JFrame.MAXIMIZED_BOTH);
 shootingGalleryPanel.setPreferredSize(gameDimension);
 scorePanel.setPreferredSize(new Dimension(400, 50));
 scorePanel.setLayout(new BoxLayout(scorePanel, BoxLayout.X_AXIS));
 scorePanel.add(scoreLabel);
 scorePanel.add(scoreDisplayLabel);
 frame.getContentPane().add(scorePanel);
 frame.getContentPane().add(shootingGalleryPanel);
 frame.getContentPane().setLayout(new
 BoxLayout(frame.getContentPane(), BoxLayout.Y_AXIS));
 frame.pack();
 frame.setVisible(true);
 frame.setResizable(false);
 }

 // The main method
 public static void main(String[] args) {
 ShootingGallery shootingGallery = new ShootingGallery();
 shootingGallery.createAndShowGUI();
 }

 // Listen for the user choosing Exit from the menu
 //
 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand() != null) {
 if (e.getActionCommand().equals("Exit")) {
 System.exit(0);
 }
 }
 }
}

As usual, the ShootingGallery class just sets up the window and handles clicks to the menu and the
window's controls (minimize and close, in this case). I disabled the resize control on the window, both
because it simplified the math in the game and because it's something you might want to know how to
do someday. The following line removes the ability to resize the window:

Listing 12-5. Preventing Resizing

 frame.setResizable(false);

CHAPTER 12 ■ VIDEO GAMES

234

I try to not restrict the user's actions unless I have a good, user-friendly reason to do so. So I would
not normally have removed the ability to resize the window. Again, though, I thought it would make a
good example, and it simplified the programming a bit. Restricting the user's actions to make your own
life easier is poor practice though (it's a form of intellectual laziness) – don't do it unless you're doing it
just to show how it's done.

One last thing to note about the ShootingGallery class (and the game) is that it has no start or stop
control. It just runs continuously without end. I left out a number of common features that you might
expect in a game so that you can implement them yourself. I've added a list of those ideas near the end
of the chapter.

Listing 12-6. The ShootingGalleryPanel class

package com.bryantcs.examples.videogames;

import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.BoxLayout;
import javax.swing.JPanel;
import javax.swing.Timer;

public class ShootingGalleryPanel extends JPanel implements ActionListener{

 private static final long serialVersionUID = 1L;

 // The cursor, controlled by the player
 private ShootingGalleryShooter shooter;

 // The sprites that march down the game area
 private ShootingGalleryTargetSprites sprites;

 // The width of the widest target
 public final static int TARGET_SPACE = 50;

 // A tick counter to control the animation
 private int ticks;

 // Three rows of targets
 static ShootingGalleryTargetRow row1, row2, row3;

 // The timer, to control the game loop
 private Timer timer = new Timer(20, this);

 // The constructor
 public ShootingGalleryPanel() {

CHAPTER 12 ■ VIDEO GAMES

235

 // Set up the sprites
 sprites = new ShootingGalleryTargetSprites();
 sprites.init();

 // Set a horizontal layout, because we'll
 // add three vertical rows to the left side
 setLayout(new BoxLayout(this, BoxLayout.X_AXIS));

 // Set up and add the left-most row (the smallest and most valuable targets)
 row1 = new ShootingGalleryTargetRow(sprites.getSpriteBySize(25), 50);
 row1.setPreferredSize(new Dimension(TARGET_SPACE + 10, getHeight()));
 add(row1);

 // Set up and add the middle row (slower and worth less)
 row2 = new ShootingGalleryTargetRow(sprites.getSpriteBySize(40), 25);
 row2.setPreferredSize(new Dimension(TARGET_SPACE + 10, getHeight()));
 add(row2);

 // Set up and add the right-most row (slowest and least valuable targets)
 row3 = new ShootingGalleryTargetRow(sprites.getSpriteBySize(50), 10);
 row3.setPreferredSize(new Dimension(TARGET_SPACE + 10, getHeight()));
 add(row3);

 // Figure out how far to indent the player's cursor and add it
 int shooterOffset = (3 * (TARGET_SPACE + 10));
 int gameWidth = ShootingGallery.gameDimension.width;

 // Set up and add the player's cursor
 shooter = new ShootingGalleryShooter(gameWidth - shooterOffset);
 shooter.setPreferredSize(new Dimension(gameWidth - shooterOffset, getHeight()));
 add(shooter);

 // Start the timer
 timer.start();
 }

 // Let the parent component paint itself
 @Override
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 }

 // The game loop
 @Override
 public void actionPerformed(ActionEvent e) {

 // increment the tick counter
 ticks++;

CHAPTER 12 ■ VIDEO GAMES

236

 // Once a second, reset the tick counter
 // to keep it from overflowing the value of an int
 if (ticks == 50) {
 ticks = 0;
 }

 // Move the left-most row every tick
 row1.tick();

 / Move the center row every second tick
 if (ticks == 0 || ticks % 2 == 0) {
 row2.tick();
 }

 // Move the right-most row every third tick
 if (ticks == 0 || ticks % 3 == 0) {
 row3.tick();
 }

 // Update the location of the player's cursor every tick
 shooter.tick();
 }
}

As with the TargetClickPanel class, most of the ShootingGalleryPanel class sets up and manages the
playing area (the user interface). The actionPerformed method, however, consists entirely of game logic
and contains the game loop. It works by moving the rows every so many ticks. The left-most row (which
contains the smallest and most valuable targets) updates on every tick, making it very fast (I have a hard
time hitting those, but that's how it should be). The middle row updates on every second tick, and the
right-most row (containing the largest and least valuable targets) updates every third tick. Consequently,
the big and slow targets are in the way of the speedy and valuable targets, as is typical of shooting gallery
games.

Finally, the actionPerformed method updates the location and status of the cursor. The cursor is the
only thing the user controls, so we have to update its location and status as often as possible. Fifty times
a second is enough to keep up with the actions of any player I've ever met.

Once the timer has run for a full second, the actionPerformed method resets it. Otherwise, a long
game might see the number of ticks exceed the maximum possible value of the ticks’ variable. That's
unlikely, but why not head off a potential problem before it starts? We could just as easily reset every
thousand or every million ticks, but setting an int to 0 is a very cheap operation, so I chose to reset every
second.

The actionPerformed method handles all three of the tasks a game loop needs to do, but not in the
same order or in the same way as we saw in the TargetClick game. This time, the updating of the
interface is pushed off to other classes (ShootingGalleryTargetRow and ShootingGalleryShooter), and
the handling of the user input comes last rather than first. In this case, whether the user input gets
handled first or last makes no difference. I did it this way to demonstrate that the order of the tasks
doesn't usually matter. There are exceptions, but you'll be able to identify those when you encounter
them, as they will be part of how your game works.

Since one of the three main functions of the ShootingGalleryPanel.actionPerformed method is to
update the rows, let's look at how the rows work (the other main functions are updating the cursor and
managing the ticks). As you read the code for the ShootingGalleryTargetRow class, pay particular

CHAPTER 12 ■ VIDEO GAMES

237

attention to the tick method (which removes objects as they go off the bottom and replaces them with
new objects at the top, assuming the player doesn't shoot that particular target).

Listing 12-7. The ShootingGalleryTargetRow class

package com.bryantcs.examples.videogames;

import java.awt.Color;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.util.LinkedList;

import javax.swing.JPanel;

public class ShootingGalleryTargetRow extends JPanel {

 private static final long serialVersionUID = 1L;

 // We need a list of targets
 private LinkedList<ShootingGalleryTarget> targets =
 new LinkedList<ShootingGalleryTarget>();

 // We need to know how many points this target is worth
 private int targetValue;

 // We need to know when to remove a target
 // off the bottom and add a new one at the top
 private int newTargetTicker;

 // We need a sprite for the player to shoot
 // Using a buffered image to reduce flicker
 private BufferedImage sprite;

 // The constructor, in which we set the values of the things we need to know
 public ShootingGalleryTargetRow(BufferedImage sprite, int value, int delay) {
 targetValue = value;
 newTargetTicker = 0;
 this.sprite = sprite;
 }

 public LinkedList<ShootingGalleryTarget> getTargets() {
 return targets;
 }

 @Override
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 this.setBackground(Color.WHITE);
 for (int targetCounter = 0; targetCounter < targets.size(); targetCounter ++) {
 ShootingGalleryTarget currentTarget = targets.get(targetCounter);
 if (currentTarget.getY() > getHeight() + ShootingGalleryPanel.TARGET_SPACE) {

CHAPTER 12 ■ VIDEO GAMES

238

 targets.remove(currentTarget);
 } else {
 currentTarget.setY(currentTarget.getY() + ShootingGalleryPanel.TARGET_SPACE / 10);
 currentTarget.draw(g);
 }
 }
 }

 public void tick() {
 for (int targetCounter = 0; targetCounter < targets.size(); targetCounter ++) {
 ShootingGalleryTarget currentTarget = targets.get(targetCounter);
 currentTarget.setY(currentTarget.getY() + ShootingGalleryPanel.TARGET_SPACE / 10);
 }
 newTargetTicker++;
 if (newTargetTicker > 9) {
 newTargetTicker = 0;
 ShootingGalleryTarget newTarget =
 new ShootingGalleryTarget(targetValue, sprite, 0,
 -ShootingGalleryPanel.TARGET_SPACE, this);
 targets.add(newTarget);
 }
 repaint();
 }
}

The ShootingGalleryTargetRow class handles the targets in a given row. The paintComponent method
removes targets that move off the bottom and draws all the remaining targets in the row (the
ShootingGalleryShooter class, which handles the player's cursor, removes targets that get shot). The
tick method handles updating the information about the collection of targets. In particular, the tick
method adds a new target to the top of the row every tenth tick, which has the effect of constantly
replenishing the row (one possible way to limit the time the game runs is to limit the total number of
targets in each row – run out of targets and the game is over. Feel free to implement that idea if it
interests you).

Using a LinkedList object to hold the targets allows for adding and removing targets without having
to have a fixed number of targets. Given that targets get shot, the number of targets fluctuates, so we
need a data structure that accommodates the fluctuation.

Now that we've seen how rows of targets work, let’s move on to the actual Target objects.

Listing 12-8. The ShootingGalleryTarget class

package com.bryantcs.examples.videogames;

import java.awt.Graphics;
import java.awt.Polygon;
import java.awt.Image;

public class ShootingGalleryTarget {

 // The integer things we need to know: value, size, position,
 // and offset from the edge of the row (for centering)
 private int value, size, xPosition, yPosition, offset;

CHAPTER 12 ■ VIDEO GAMES

239

 // A reference to the row that holds the target (which
 // we need to use as the ImageObserver for the sprite)
 private ShootingGalleryTargetRow row;

 // The sprite
 private Image sprite;

 // A polygon object that we use for collision detection
 Polygon polygon;

 // The constructor, wherein we set the values of all the things we need
 public ShootingGalleryTarget(int value, Image sprite, int x, int y, ShootingGalleryTargetRow
row) {
 size = sprite.getWidth(row);
 this.value = value;
 this.sprite = sprite;
 xPosition = x;
 yPosition = y;
 this.row = row;
 offset = (ShootingGalleryPanel.TARGET_SPACE - size) / 2;
 }

 // The draw method
 public void draw(Graphics g) {

 // Set the target's position
 int x = xPosition + offset;
 int y = yPosition + offset;

 // Draw the sprite
 g.drawImage(sprite, x, y, size, size, row);

 // Create a polygon that matches the sprite
 // We'll use the polygon to see if the sprite gets hit
 polygon = new Polygon();
 polygon.addPoint(x, y);
 polygon.addPoint(x, y + size);
 polygon.addPoint(x + size, y + size);
 polygon.addPoint(x + size, y);
 }

 // Provide a way to update the vertical position
 public void setY(int y) {
 yPosition = y;
 }

 // Provide a way to get the vertical position
 public int getY() {
 return yPosition;
 }

CHAPTER 12 ■ VIDEO GAMES

240

 // Provide a way to get the value
 // (used when the target is hit)
 public int getValue() {
 return value;
 }
}

The ShootingGalleryTarget class is a very simple object that keeps track of a target's position, its
value (if it gets hit), and the way in which it draw itself within its row. To make collision detection easier,
I implemented the target as a Polygon object, because the Polygon class has a handy method called
contains that lets us know whether a point is in the polygon. I could have used the properties of the
image itself, but doing so would require more code and more math, which would neither perform better
nor be more readable.

Collision detection usually means two objects end up in the same space and the game has to figure
out what to do about it (such as draw an explosion, or open a door, or any other number of possibilities
that are determined by the nature of the game). In this case, I elected to simplify the game by not
drawing a bullet (or laser beam or whatever) going from the cursor to the target area. However, we still
have to determine whether a target has been hit when the player shoots. So I make the shooter class see
whether a target has the same vertical position as the center of the player's cursor and (working from the
right-most row to the left-most row) remove the first target that matches the vertical location.

An excellent exercise would be to add an animation for the shot. You could either add a bullet object
(use another class) and move it across the screen or just draw a line from the cursor to the first target it
touches (an expansion of the ShootingGalleryShooter class will do this trick).

Speaking of the shooter class, let's look at it a little more closely. As you read the class, notice that it
implements both the MouseListener and the MouseMotionListener interfaces. No other object in the
game needs to listen for mouse clicks and mouse motion, so only the ShootingGalleryShooter class
implements those interfaces. You might also want to study the paintComponent method to see how it
changes the color of the bar after a player shoots and enforces a one-second delay between shots.
Finally, take a close look at the analyzeShot and analyzeShotForRow methods. Those two contain the
logic for determining whether a shot hit a target.

Listing 12-9. The ShootingGalleryShooter class

package com.bryantcs.examples.videogames;

import java.awt.Color;
import java.awt.Graphics;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.event.MouseMotionListener;

import javax.swing.JPanel;

public class ShootingGalleryShooter extends JPanel implements MouseListener,
MouseMotionListener {

 private static final long serialVersionUID = 1L;

 // We need to know where the cursor is
 private int xPosition, yPosition;

CHAPTER 12 ■ VIDEO GAMES

241

 // We need to know whether the player can shoot
 private boolean readyToShoot;

 // We need to know the current step
 // when drawing the cursor after a shot
 private int currentStep;

 // We need to know the maximum steps
 // (Changing this value would change
 // the timeout between shots, by the way.)
 private int maxSteps = 50;

 // The constructor
 public ShootingGalleryShooter(int width) {

 // Add the listeners for mouse clicks and motion
 addMouseListener(this);
 addMouseMotionListener(this);

 // Let the player shoot right away
 readyToShoot = true;
 currentStep = maxSteps;

 // Draw the cursor 20 pixels from the right edge
 xPosition = width - 20;
 }

 public void paintComponent(Graphics g) {
 // Let the parent draw itself
 // (sets the panel's background color)
 super.paintComponent(g);

 // Set the cursor's background color
 this.setBackground(Color.WHITE);

 // Figure out whether the player can shoot
 if (currentStep < maxSteps) {
 // If not, increment the current step
 currentStep++;
 readyToShoot = false;
 } else {
 readyToShoot = true;
 }

 // Fill two rectangles to show how long
 // the player has to wait to shoot again
 g.setColor(Color.RED);
 g.fillRect(xPosition, yPosition - (maxSteps / 2), 3, currentStep);
 g.setColor(Color.YELLOW);
 g.fillRect(xPosition, yPosition - (maxSteps / 2) + currentStep, 3, maxSteps -
currentStep);

CHAPTER 12 ■ VIDEO GAMES

242

 // Draw the actual position from which a shot comes
 g.setColor(Color.BLACK);
 g.fillRect(xPosition - 5, yPosition, 5, 2);
 }

 // Provide a way to set the Y location
 public void setY(int newY) {
 yPosition = newY;
 }

 // Convenience method for indicating that the player can shoot
 private void setReadyToShoot(boolean ready) {
 readyToShoot = ready;
 if (ready == false) {
 currentStep = 0;
 }
 }

 // Work through the rows from right to left to see if a shot hit a target
 private void analyzeShot(int shotY) {
 if (!analyzeShotForRow(ShootingGalleryPanel.row3, shotY)) {
 if(!analyzeShotForRow(ShootingGalleryPanel.row2, shotY)) {
 analyzeShotForRow(ShootingGalleryPanel.row1, shotY);
 }
 }
 }

 // Work through the targets in a row to see if we hit one
 private boolean analyzeShotForRow(ShootingGalleryTargetRow row, int shotY) {
 boolean hit = false;
 int count = row.getTargets().size();

 while(!hit && count > 0) {
 ShootingGalleryTarget currentTarget = row.getTargets().get(count - 1);

 // Here's where we check the target's polygon for a hit
 if (currentTarget.polygon.contains(ShootingGalleryPanel.TARGET_SPACE / 2, shotY)) {
 // If we get a hit, stop checking
 hit = true;

 // Update the score
 ShootingGallery.score += currentTarget.getValue();
 ShootingGallery.scoreDisplayLabel.setText(new
Integer(ShootingGallery.score).toString());

 Remove the target that got hit
 row.getTargets().remove(currentTarget);
 } else {
 // We're working backwards because doing so makes
 // it easy to detect when we've run out of targets to check
 count--;
 }

CHAPTER 12 ■ VIDEO GAMES

243

 }
 return hit;
 }

 // We have to have this method to fulfill the MouseListener contract
 @Override
 public void mouseClicked(MouseEvent e) {
 }

 // We have to have this method to fulfill the MouseListener contract
 @Override
 public void mouseEntered(MouseEvent e) {
 }

 // We have to have this method to fulfill the MouseListener contract
 @Override
 public void mouseExited(MouseEvent e) {
 }

 // We have to have this method to fulfill the MouseListener contract
 @Override
 public void mousePressed(MouseEvent e) {
 }

 // Here's where we check for mouse clicks
 @Override
 public void mouseReleased(MouseEvent e) {
 if(readyToShoot){
 // If ready to shoot, process the shot
 setReadyToShoot(false);
 analyzeShot(e.getY());
 }
 // If not ready to shoot, do nothing
 }

 // We have to have this method to fulfill the MouseMotionListener contract
 @Override
 public void mouseDragged(MouseEvent e) {
 }

 // Here's where we listen for mouse movement and use
 // the setY method to update the cursor's position
 @Override
 public void mouseMoved(MouseEvent e) {
 setY(e.getY());
 }

 // process a tick from the timer (in ShootingGalleryPanel)
 public void tick() {
 if (currentStep < maxSteps) {
 // If we're still drawing the cursor after a shot, then increment
 // the step counter and ensure that the player can't shoot yet

CHAPTER 12 ■ VIDEO GAMES

244

 currentStep++;
 readyToShoot = false;
 } else {
 // Otherwise, let the player shoot
 readyToShoot = true;
 }

 // repaint the cursor (otherwise, the cursor won't move)
 repaint();
 }
}

The ShootingGalleryShooter class handles the only object the player controls: the cursor that
indicates both where a shot will go and whether the player can shoot. Remember that the timer in the
ShootingGalleryPanel class ticks fifty times a second. For that reason, the ShootingGalleryShooter class
keeps track of fifty steps, so that it can impose a one-second delay between shots. Then it uses those 50
steps to draw the cursor's vertical bar, setting it to yellow when a player shoots and, over the course of a
second, setting it back to red as the second passes. When it's all red, the player can shoot again.

There's one last class that we need to examine in order to fully understand the ShootingGallery
game (as we learned in Chapter 11, “Debugging with Eclipse,” fully understanding a program's code is a
key part of software development). The ShootingGalleryTargetSprites class loads the three different
target images and makes them available to the rest of the program. Listing 12-10 shows the
ShootingGalleryTargetSprites class.

Listing 12-10. The ShootingGalleryTargetSprites class

package com.bryantcs.examples.videogames;

import java.awt.Image;
import java.io.File;
import java.io.IOException;

import javax.imageio.ImageIO;

public class ShootingGalleryTargetSprites {

 // Variables for the images
 // Static so that each one exists in memory only once
 private static Image smallTarget = null;
 private static Image mediumTarget = null;
 private static Image largeTarget = null;

 // Load the images into the variables
 public void init() {
 try {
 smallTarget = ImageIO.read(new File("C:\\test\\sprites\\target_small.png"));
 mediumTarget = ImageIO.read(new File("C:\\test\\sprites\\target_medium.png"));
 largeTarget = ImageIO.read(new File("C:\\test\\sprites\\target_large.png"));
 } catch (IOException e) {

CHAPTER 12 ■ VIDEO GAMES

245

 System.err.println("Couldn't load one or more sprite images");
 System.exit(1);
 }
 }

 // Get the sprite that corresponds to the size of the target
 public Image getSpriteBySize(int size) {
 // Set up an object to return
 Image imageToReturn = null;

 if (size == 25) { // Get the little black target
 imageToReturn = smallTarget;
 } else if (size == 40) { // Get the medium-sized blue target
 imageToReturn = mediumTarget;
 } else if (size == 50) { // Get the large green target
 imageToReturn = largeTarget;
 } else { // oops - no such target, so tell the player and stop
 throw new IllegalArgumentException("Unknown Sprite Size: " + size);
 System.exit(1);
 }

 return imageToReturn;
 }
}

If you didn't skip straight to this chapter, then you've seen a very similar class in Chapter 7, “Writing
a User Interface,” when we examined the MineIcon class. That class creates a set of ImageIcon objects
rather than a set of Image objects and doesn’t have an init method, but the idea is the same. We load a
set of images into a set of static variables.

An important implementation detail is that those variables being static: being static ensures that
each memory gets loaded into the memory only once. Imagine the memory consumption if every target
loaded its own separate image. We'd quickly have a problem, either with a crash because we ran out of
memory or with horrible performance because images are constantly loading. As it happens, the init
method gets called only once, so the images would get loaded into memory only once. However, the
static loading technique is still a good idea to keep around, just in case. There's an old joke (familiar to
members of the United States Navy) that goes: “I know I'm being paranoid, but am I being paranoid
enough?” It's often a good question for software developers, too.

Expanding the ShootingGallery Game
As I promised earlier, here's a collection of ideas for making the ShootingGallery game more complex
(and more like a game you'd actually want to play):

• A button or menu item or keyboard command (use the KeyListener interface,
which works much like the MouseListener interface) that toggles between Start
and Stop

• A Pause button or menu item or keyboard command

• A New Game menu item or keyboard command

CHAPTER 12 ■ VIDEO GAMES

246

• A timer that ends the game after some amount of time – perhaps settable by the
player

• A target score (the game ends when the player reaches a certain score – don't
forget to show the elapsed time) – perhaps settable by the player

• A fixed number of targets (either total or for each row – the game ends when the
targets run out) – perhaps settable by the player

• A fixed number of bullets (which makes the game a bit more of a thinking game,
since unaimed shots get punished) – perhaps settable by the player

• Bullet or laser beam animation

A Note about Limitations
Larry Niven, a great science fiction author, in a collection of short stories entitled Limits, wrote that
“Often enough, it's the limits that make [emphasis in original] the story.”

That excellent observation very much applies to software development as well. No program can do
everything, so we have to choose what each program will and won't do. In addition to design
considerations, we often also have to battle performance and hardware constraints. For example, I am
currently working as a member of a team attempting to re-engineer content delivery for a major web site
(it's a household name and one that you'd recognize instantly). The site gets 80 million visits a month
(on average – during the holiday shopping season, that number goes up substantially). We have to
ensure that each page request (each click a user makes on the web site, in other words) gets a response
in less than two seconds. Otherwise, the user might take their business elsewhere, and our company
wouldn't make all the money it can. That two-second limit is a huge factor in every decision we make.
And we can't just throw hardware (more and bigger servers) at the problem, even though the company
makes computers, including extremely high-end web servers. At some point, we run out of address
space for servers (each computer on the Internet has to have a unique address, known as its IP address).
So there's yet another limitation.

So why tell you all this here? Because games, even more than software, rely on limitations. In a very
real sense, a game is a collection of limitations. Each rule in a game is a limitation, and a game is nothing
without its rules. If you could put a card wherever you want when you play solitaire, would it still be a
game? If you could shoot multiple times a second, wouldn't ShootingGallery be less challenging (and so
less fun)?

In that same essay (the introduction to Limits), Mr. Niven also states that “puzzles require [emphasis
in original] rules.” All games are puzzles. The player always asks, even if only subconsciously, “What is
the proper set of steps that I need to follow in order to beat this game?” Thus, all games require rules,
and all rules are limitations. As you design your own games, remember to make a set of limitations that
make the game fun. If the limitations are too many or too severe, they will make the game frustrating. If
the limitations are too few or too loose, the game is such a poor challenge that it's not worth playing.

Game Design Resources
I anticipate that many of the people who read this book are doing so because they want to create their
own games. To that end, here's a short list of resources that I've found useful when thinking about
games and how to design good ones. Note that these resources apply to designing games in general, not
just computer games.

CHAPTER 12 ■ VIDEO GAMES

247

• Game Design (Volume 1: Theory and Practice) by Nick Schuessler and Steve
Jackson (1981). You can get it from http://e23.sjgames.com. Steve Jackson is the
fellow who made Ogre (one of my favorite board games), GURPS (the role-playing
system I use), and Munchkin (a commercial hit that spoofs role-playing games).
He does not make computer games, but the wisdom in this small book applies to
all games, computer or otherwise.

• A Theory of Fun for Game Design by Raph Koster (Foreword by Will Wright) (2004).
Raph Koster is a veteran of many large computer game efforts, including MMOGs
(Massively Multiplayer Online Games). His book combines thoughts on learning
theory with thoughts on game design, bringing good ideas to both fields.

• “I Have No Words & I Must Design: Toward a Critical Vocabulary for Games” by
Greg Costikyan (online essay). You can find this excellent exploration of what a
game is and how a game works at http://www.costik.com/nowords2002.pdf
You can find his blog, which contains other content of interest to game
developers, at http://www.costik.com

Summary
In this chapter, I hope you learned the basics of making a computer game with Java. In particular, I hope
you learned:

• The three basic components of a computer game:

• The user interface

• The game logic

• The game loop

• The essential tasks of a game loop:

• Processing the user input and all other inputs

• Processing the game logic

• Redrawing the playing field

• How to animate multiple objects at once

• How to make multiple objects move at different speeds

• How to test for conditions to see if a game should end or something else should
happen

• How to update a score display in response to game events

As I have mentioned several times, there's nearly always more than one way to do any given thing in
software (that's part of both the fun and the frustration of writing software). So, when I say that I've
shown you how to do something, I really mean that I've shown you one way to do something. I hope
you'll experiment with other ideas and find your own ways to meet your software goals. Writing a game
of your own would be a great way to do just that, so go write a game.

C H A P T E R 1 3

249

Garbage Collection

Java relies on garbage collection. A garbage collector removes unused objects from memory and lets
your programs re-use memory rather than constantly grow. For very small programs, this constant
growth doesn't matter much. However, even a program of fairly low complexity and scale can quickly
chew through a lot of memory. Therefore, most programs really need some kind of garbage collection
mechanism.

When they use many other languages, including C++, programmers have to manage memory
themselves, writing code to remove objects from memory at the right time. Java frees developers from
this problem. That's not to say that Java is better than C++. Both languages have their strengths and
weaknesses. Many developers who prefer Java would tell you that having to manage memory yourself is
a weakness in C++ and that garbage collection is a strength of Java. Conversely, many C++ developers
would tell you the opposite. Both are true: Garbage collection can be a problem in Java, yet is also an
inherent feature and very powerful if managed correctly.

So how do we turn garbage collection into an advantage rather than a burden?

Understanding Memory Allocation
Before we can really talk about garbage collection, we need a basic understanding of how the Java Virtual
Machine (JVM) allocates memory in the first place. Every time you create a new object or primitive, the
heap grows by the size of that object or primitive. In addition, if you create a complex object (an object
that itself contains other objects, as many objects do), the heap grows by the size of all those objects as
well. For example, consider a class we've seen before (in the previous chapter), the TargetClickPanel
class:

Listing 13-1. Memory Allocation in the TargetClickPanel Class

package com.bryantcs.examples.videogames;

import java.awt.Graphics;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

import javax.swing.JPanel;

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 13 ■ GARBAGE COLLECTION

250

public class TargetClickPanel extends JPanel implements MouseListener{

 private static final long serialVersionUID = 1L;

 private Target targets[] = new Target[5];

 public TargetClickPanel() {
 addMouseListener(this);
 for (int i = 0; i < targets.length; i++) {
 targets[i] = null;
 }
 }

 public void paint (Graphics g) {
 super.paintComponent(g);
 for (int i = 0; i < targets.length; i++) {
 if (targets[i] == null) {
 targets[i] = new Target(this);
 }
 if (!targets[i].isDone()) {
 targets[i].draw(g);
 } else {
 targets[i] = new Target(this);
 }
 }
 }

 @Override
 public void mouseClicked(MouseEvent e) {
 }

 @Override
 public void mouseEntered(MouseEvent e) {
 }

 @Override
 public void mouseExited(MouseEvent e) {
 }

 @Override
 public void mousePressed(MouseEvent e) {
 }

 @Override
 public void mouseReleased(MouseEvent e) {
 for (int i = 0; i < targets.length; i++) {
 targets[i].pointInTarget(e.getX(), e.getY());
 }
 }
}

CHAPTER 13 ■ GARBAGE COLLECTION

251

Consider the lines in bold (the targets array and the lines within the paint method that create new
instances of the Target object). If you visualize the values of all of the objects and primitives as the
program runs, you can see that the paint method first creates five instances of the Target class and then
keeps five of the instances going as the existing instances declare themselves to be finished.
Consequently, the result of creating an instance of the TargetClickPanel also creates five instances of the
Target class.

However, creating an instance of the TargetClickPanel class actually creates many more than just
five instances of the Target class. The instances of the Target class that have marked themselves as
finished still exist, even though the instance of the TargetClickPanel no longer has references to them.
That’s the key to garbage collection: references. We'll get to that shortly. First, let's consider the state of
the Target objects that have been created after the TargetClick game has run for a few seconds:

Target 1: Created because targets[0] was null. Now finished.

Target 2: Created because targets[1] was null. Now finished.

Target 3: Created because targets[2] was null. Now finished.

Target 4: Created because targets[3] was null. Now finished.

Target 5: Created because targets[4] was null. Now finished.

Target 6: Created because targets[0] was finished. Now finished.

Target 7: Created because targets[1] was finished. Now finished.

Target 8: Created because targets[2] was finished. Still in play.

Target 9: Created because targets[3] was finished. Still in play.

Target 10: Created because targets[4] was finished. Still in play.

Target 11: Created because targets[0] was finished. Still in play.

Target 12: Created because targets[1] was finished. Still in play.

And so on...
At any given moment, the instance of the TargetClickPanel class has references to five instances of

the Target class. But what happens to all the finished instances? As it happens, they get garbage
collected. And there's the primary rule of garbage collection: If an object no longer has references held
on it by other objects, that object gets garbage collected. In other words, once an object no longer has
any other objects using it, that object is ready to be removed from memory. Yet another way to say this is
that the object is now unreachable, meaning that no other bit of code can reach that object.

The Java Garbage Collection Algorithm: Marking and Sweeping
The algorithm that Java uses for garbage collection is called marking and sweeping. Conceptually, it's a
simple idea. First, make an initial pass of the memory and mark any memory that can be collected. Then
make another pass and free the memory that was marked in the first pass.

In practice, though, the process becomes much more complex. The basic algorithm (often called
naïve mark and sweep) works fine, so long as the whole program stops while the garbage collector runs.
The program has to stop so that the garbage collector can be sure that no new objects are being created
and that no existing objects have gotten into a state such that they can be garbage collected while the
collector runs. Java's earliest versions used just such an algorithm. Consequently, Java earned a
reputation for being unsuitable for applications that required high performance, from video games to

CHAPTER 13 ■ GARBAGE COLLECTION

252

real-time monitoring of things like valves in a refinery. Later versions fixed that problem, but the
reputation lingered for several more versions (and still pops up in some circles).

So how does one collect objects and still let the program run? In particular, how does one allow
creation of new objects and send existing objects to collection while letting the garbage collector run?
Two more advanced algorithms have been developed: Incremental garbage collection and concurrent
garbage collection.

Incremental garbage collection relies on intermittently stopping and starting both the program and
the garbage collector (which is really just another program being run in parallel by the JVM). Essentially,
the program gets to do a bit of work, and then the garbage collector gets to do a bit, and so on. In this
fashion, the program gets to do some work while the garbage collector runs. As you can imagine, though,
the program's performance is still slower than when the garbage collector is not running. In fact,
versions of Java had noticeably slower performance when the garbage collector ran. I recall playing a
video game written in Java and being able to tell when the garbage collector started and stopped.

Concurrent garbage collection lets the program run at full speed, with one exception: The program
must be halted while the stack (the list of objects in memory) is scanned. Fortunately, scanning the stack
takes very little time. Scanning the stack (which is really just a list) takes much less time than does
scanning the heap (which is all of the objects in memory). Imagine reading a book's table of contents
versus reading the whole book, and you'll have an idea of the difference.

So how does a concurrent garbage collector let the program run at (almost) full speed? The garbage
collector doesn't concern itself with finding everything that can be collected. Instead, it finds what it can
be sure of and frees those objects. On its next pass, it can catch anything it missed, as well as anything
that has become removable in the meantime. Thus, the concurrent garbage collection rarely gets a
perfect sweep, but it lets the program run much more smoothly.

Java 1.4.2 (which was a “red letter” release in the Java community, partly because of garbage
collection) introduced a garbage collector that can be switched between incremental garbage collection
and concurrent garbage collection. (It actually supports 4 kinds of garbage collection: two variants of
naïve garbage collection, incremental garbage collection, and concurrent garbage collection.) Software
developers could then decide (preferably through testing) which kind of collection worked best for their
programs. Suddenly, the performance of many Java programs got a big boost. At that point, Java could
finally compete with non-garbage-collecting languages (notably C++) in the arena of high performance
applications. Java 5 (also known as Java 1.5) and Java 6 (or Java 1.6) continued to add fine tuning to the
garbage collector, through various switches that could be set on the collector. We'll cover the most
helpful of these switches near the end of this chapter.

Enter Java 7. Java 7 provides a new collector, called G1 (for “garbage first”). The G1 collector offers a
step up from the previous garbage collectors by dividing the heap into regions (or sectors) and then
garbage collecting each sector beginning with the sector that has the most the most garbage to collect.
As a result of this “garbage-first” collection scheme, the G1 collector ensures that it gets as much garbage
as possible on any given sweep. If the G1 collector was unable to sweep the whole thing because the
program needed to run, at least it got to the worst sectors while it had a chance. Over subsequent
sweeps, the other regions gradually fill up and come to contain the most garbage. Those sectors then get
swept in their turn. Thus, the collector eventually gets to all regions in memory but doesn't try to get
them all at once. It's a nice bit of optimization that is made all the better by not needing any new settings
to control it. It's just how the G1 collector works. Also, there's no need to enable the G1 collector. If
you're using Java 7, you're using the G1 collector, unless you specify an older collector.

Understanding Memory Settings
Some programs must keep large numbers of objects in memory to work correctly. In those cases, the
only way to make them work is to expand the amount of memory available to the programs.

CHAPTER 13 ■ GARBAGE COLLECTION

253

As a case in point, consider an XML parser. It must have a reference to each node in the document
tree from the top to its current location. In addition, processing each node creates a reference to each
child node. Consequently, by the time an XML parser has gotten very far into a document tree, it
probably has references to a lot of nodes, each represented by an object, and each object having a
reference from the object that represents its parent node. Parsers are one common example of the types
of programs that don't benefit much from garbage collection. Of course, a program that parses a
document and then does something else could free the memory used by the parser when the parsing is
done. That memory could then be for another purpose, such that the program's footprint would be just
the larger of the parsing or whatever else it does, rather than the total of both parsing and other work.
Conversely, a program that runs other processes in the background must have enough memory to
enable all of its concurrent processes.

So how do Java programmers give their programs more memory? They do it through switches on the
JVM when they start the program. Here are the basic memory settings:

Table 13-1. Basic Java Memory Settings

Switch Effect

-Xms<size> Sets the starting heap size. For example: -Xms64M sets the starting heap size to 64
megabytes (64MB is the default memory allocation, by the way)

-Xmx<size> Sets the maximum heap size. For example: -Xmx1024M sets the maximum heap size to
1024 megabytes (that is, 1 gigabyte)

You can increase a program's performance by setting the starting heap size properly. If you set the

number too low, the JVM starts at that amount and then has to adjust upward (perhaps several times)
until it has enough memory for your program's initial set of objects. Then, as soon as the program does
something (perhaps because a user did something with the program), the JVM has to allocate yet more
memory. Rather than force your users to put up with the slow performance that a low starting memory
value creates, you should instead allocate enough initial memory to handle all the objects your program
needs at start-up time and to handle the first several operations it might need to perform.

The maximum memory setting is both more obvious and more critical. If you don't allocate enough
memory, your program crashes. Usually, finding the right amount of maximum memory is a matter of
experimentation. You have to start the program, let it run for a while, and see how much memory it uses.
On Windows, the Task Manager shows how much memory each process, including a Java program, uses.
Other operating systems reveal that information in other ways, but it should be there somewhere.

Here's an example of using the memory switches when you start a Java program:

Listing 13-2. Example of Java Memory Switches

java -Xms1024M -Xmx8192M ExampleProgram

Understanding Garbage Collection
The first thing to understand about the Java garbage collector is that you can't directly control it. You can
give it hints that certain objects are now ready for collection. You can also set a number of garbage
collection options when you start your program, and those settings will control the garbage collector's
behavior. However, you cannot explicitly tell the garbage collector to remove an object from memory

CHAPTER 13 ■ GARBAGE COLLECTION

254

right now. That is, no method or class exists to let you specifically collect an existing object. You may be
sure that the object can safely be removed, but you can't force the garbage collector to remove it.

This lack of control drives plenty of software developers a little nuts. As a group, software developers
tend to want to control the computers they program, so a system that offers only indirect control is often
not welcomed. For programmers accustomed to other languages (especially C++), that's often a primary
complaint when they start using Java. Rather than have direct control, Java developers must instead be
careful not to allow unnecessary references to exist.

When Java was new, some developers thought and said nonsense such as, “Oh, great! Java will
manage my memory for me!” Therefore, more than a few programs with an unfortunate tendency to use
large amounts of memory were created as a result. Having a garbage collector doesn't allow us to be lazy.
We still have to manage memory, but we don't do it explicitly.

Another common complaint with Java (and other languages that use garbage collection) used to be
that everything stopped while garbage collection ran. The addition of incremental and concurrent
garbage collection has reduced that complaint somewhat, and further refinements in Java's garbage
collection algorithms have improved the situation greatly. It used to be common for Java programs to
have long pauses when the garbage collector ran. With the modern Java virtual machines available now,
those pauses are now very rare (and are a symptom of poor programming rather than the JVM).

Understanding Generations
The Java garbage collector uses the concept of generations. In most applications, nearly all objects exist
for a very short time. If you look at the Target objects created by an instance of the TargetClickPanel
class (listed in the previous chapter), you'll see that they exist for just a few seconds each. In fact, if a
player clicks on one, an instance of the Target class might exist for only a fraction of a second.
Conversely, the TargetClickPanel instance and the TargetClick instance both exist for the duration of
the game, but there's only instance of each class for the entire time.

Suppose a game of TargetClick involves the creation of 100 Target objects. In that scenario, two
objects (one instance of the TargetClick class and one instance of the TargetClickPanel class) exist for
the entire life of the program, while 100 other objects (all the instances of the Target class) exist for no
more than a few seconds each. So, at least in this case, we have a great example where nearly all objects
are not present in the system for long.

All of these short-lived objects end up in the “young generation.” The young generation has three
spaces: “eden,” “from,” and “to.” The eden space is where objects go first. So, when your program
creates a new object (such as an instance of the Target class in the TargetClick game), the object goes
into the eden space. The from and to spaces are called “survivor spaces,” and objects that survive at least
one garbage collection pass move to these spaces until they've survived sufficiently long to move to the
tenured generation. At any given moment, one survivor space is empty. When the garbage collector
runs, it moves the survivors from the eden space and the currently occupied survivor space into the
currently empty survivor space.

Objects that last a while (either a certain amount of time or a certain number of collections) end up
in the “tenured generation” (also called the “old generation” – the older I get, the more I prefer to talk
about the “tenured generation”). Finally, the “permanent generation” isn't really a generation but is
instead the area where the JVM stores the class definitions. The permanent generation isn't necessarily
static, as Java programs can load and unload classes as they run.

CHAPTER 13 ■ GARBAGE COLLECTION

255

Java's garbage collector sweeps the young generation more often than the tenured generations and
uses different collection algorithms for the two generations. Further detail is beyond the scope of this
book. If you're interested in greater detail about Java collection algorithms, you can find a number of
books and web sites devoted to the subject. Efficient garbage collection is one of those problems that
draws the best minds in the field of computer science, because it is both practical (every Java
programmer needs a good one) and highly theoretical.

One of the very difficult issues facing the designers of garbage collection algorithms (including those
used in Java) is how to deal with references that cross the generational boundaries. Before the garbage
collector can remove an object from memory, it has to ensure that no references exist. That means
checking references across the generations, which is a difficult task to do quickly.

Scavenges and Full Collections
The Java garbage collector can do partial garbage collection by collecting just the young generation. This
type of operation is called a “scavenge.” When the garbage collector collects both the young and the
tenured generations, this is called a “full collection,” or (often) just a “collection.” A number of
command-line switches modify the garbage collector's behavior with regard to the young and tenured
generations. We'll encounter these and other switches later in the chapter, in the section entitled
“Understanding Garbage Collection Settings.”

Garbage Collection is Event-Driven
Garbage collection doesn't happen every time an object happens to no longer have any references. If it
did, every Java program would spend more time removing unused objects than it would spend doing
anything else, and the performance of all Java programs would be so poor that no one would use Java for
anything.

Instead, the Java garbage collector works on an event-driven model. When certain conditions are
met, the garbage collector runs. These conditions involve the ratio of heap space (the amount of
memory) in use to the amount of free memory and the amount of total memory. In simple terms, when
the JVM determines that it's running out of memory, it runs the garbage collector. So, when the amount
of heap space relative to the amount of total memory gets to a certain percentage, the garbage collector
removes any objects that have no references. Doing so readjusts the percentage of memory in use
downward, so that the program can keep on running.

Understanding Garbage Collection Settings
The Java garbage collector uses another group of switches (similar to the memory switches we saw
earlier) that you set when you start your program. Here's a summary of the most common switches:

CHAPTER 13 ■ GARBAGE COLLECTION

256

Table 13-2. Garbage Collection Settings

Switch Effect

-XX:NewRatio=3 Sets the ratio of objects in the young generation to objects in the tenured
generation. This is a key setting for optimization, which we'll explore later
in this chapter.

-XX:NewSize=32M Sets the minimum size of the new generation area. This is a key setting for
optimization, which we'll explore later in this chapter.

-XX:MaxNewSize=32M Sets the maximum size of the new generation area. This is a key setting for
optimization, which we'll explore later in this chapter.

-XX:MaxHeapFreeRatio=70 If the free memory after a scavenge or collection is less than the indicated
percentage of total available memory, set total available memory to that
value. This setting lets memory grow into the free space again. Its default
value is 70. Remember that the JVM grows or shrinks the heap at each
collection in order to preserve this ratio (within certain bounds).

-XX:MinHeapFreeRatio=40 If the free memory after a scavenge or collection is less than the indicated
percentage of total available memory, this sets the total available memory
to the value given in the argument. This setting keeps some memory
immediately available in situations where the garbage collector has
recovered a lot of memory. Its default value is 40.

-XX:MaxPermSize=64m Sets the size of the permanent generation. If your program has a lot of
classes, you may gain better performance by increasing this value. Its
default is 64M (that is, 64 megabytes).

-
XX:+ScavengeBeforeFullGC

Before trying to do a full collection, this scavenges first. If the result of the
scavenge puts free memory in the desired range, a full collection isn’t
done.

-XX:-UseParallelGC Uses parallel garbage collection for scavenges. Specifically, it uses one
thread per processor on the machine. As a rule, for a single processor
machine, this results in a loss of performance. On a two-processor
machine, it's roughly equivalent. On machines with more than two
processors, it's faster. The opposite setting is -XX:-UseSerialGC

-XX:-UseParallelOldGC Uses parallel garbage collection for both scavenges and full collections.
The same rules for efficiency on multiple processors applies.

 -XX:-UseSerialGC Uses serial garbage collection for both scavenges and full collections. This
setting is more efficient on machines with only one processor (or machines
with multiple processors that are running your Java program on just one
processor).

CHAPTER 13 ■ GARBAGE COLLECTION

257

Optimizing Garbage Collection
Now that you understand the basics of how to configure memory and garbage collection for Java
programs, we can talk about how to gather the information you need in order to make intelligent
decisions about the various switches and settings. Again, the JVM offers a number of switches you can
set to create output related to memory usage and garbage collection. The following table describes these
switches.

Table 13-3. Garbage Collection Output Switches

Switch Effect

-verbose:gc Enables the logging of garbage collection information. The other garbage
collection logging switches require this one.

-XX:+PrintGCTimeStamps Prints time stamps for the scavenges and full collections. The time is
measured as seconds since the program started.

-XX:+PrintGCDetails Adds various details to the log, including at least the following
information:

1. Size of the young and old generation before and
after scavenges and full collections

2. Size of the heap (that is, all the memory in use)

3. Time taken by a scavenge or full collection to
happen in the young and tenured generations

4. Total size of all objects promoted from one
generation to the next by the garbage collector

Here's a bit of sample output from running the TargetClick game from the command line with the -

verbose:gc, -XX:+PrintGCTimeStamps -XX:+PrintGCDetails switches:

Listing 13-3. Garbage Collection Output Sample

C:\temp>java -verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails TargetClick
Heap
 PSYoungGen total 17920K, used 8077K [0x00000000ec000000,
 0x00000000ed3f0000, 0x0000000100000000)
 eden space 15424K, 52% used [0x00000000ec000000,0x00000000ec7e3538,0x00000000ecf10000)
 from space 2496K, 0% used [0x00000000ed180000,0x00000000ed180000,0x00000000ed3f0000)
 to space 2496K, 0% used [0x00000000ecf10000,0x00000000ecf10000,0x00000000ed180000)
 PSOldGen total 40960K, used 0K [0x00000000c4000000,
0x00000000c6800000,0x00000000ec000000)
 object space 40960K, 0% used [0x00000000c4000000,0x00000000c4000000,0x00000000c6800000)
 PSPermGen total 21248K, used 9423K [0x00000000bee00000, 0x00000000c02c0000,
0x00000000c4000000)
 object space 21248K, 44% used [0x00000000bee00000,0x00000000bf733cc0,0x00000000c02c0000)

CHAPTER 13 ■ GARBAGE COLLECTION

258

Let's examine these results a bit. First, we can see that the young generation has 17920K allocated
and is using 8077K of it. All of the objects in the young generation are in the eden space. Given how
briefly instances of the Target class last, there should never be one in the from and to spaces. In the
tenured generation (called PSOldGen here), we find nothing, although 40960K has been allocated to it.
The instances of the TargetClick and TargetClickPanel class are not in the tenured generation because I
took this snapshot shortly after starting the TargetClick game, so those objects are still in the eden space.
Finally, the permanent generation contains the three class files, which use 9423K of 21248K allocated.

To really make this information useful, we'd have to let the program run for a while, find a number
of these blocks of information, and compare them to one another, watching for changes over time. As
you can imagine, analyzing this kind of information for a large and complex program can take quite a
while. For one thing, developers working on those kinds of applications often have to let their
applications run for days at a time to get a sufficiently broad window of input. Also, if the number of
users or number of network connections or other load factors change (and they nearly always do – very
few programs exist in constantly stable environments), those factors need to be captured and then
identified in the log. Then there's the difficulty of reading this kind of information (which is why many
programmers write additional utilities to “scrape” this data and put it into some handy application, such
as a spread sheet). All of this together makes analyzing garbage-collection data a non-trivial task.
However, the task pays off with better performance, happier users, happier programmers, and so on.
Therefore, the investment in time and effort often pays off nicely.

■ Tip You can get a good optimization by monitoring the size of the tenured generation over the lifetime of your
program and setting its size to closely match (with perhaps a 10% increase) the tenured generation size to the
largest size you observe over a few runs of your program. You can control the size of the tenured generation by
controlling the size of the new generation, which you can do with the -XXNewRatio, -XX:NewSize, -
XX:MaxNewSize switches. Suppose your testing reveals that your program needs 256MB of memory and that the
tenured generation should be 4 times the size of the new generation (meaning you have a lot of long-lived
objects). You could set the following switches: -XXNewRatio=4 -XXNewSize=52MB -XXMaxNewSize=52MB

Collection Hints
Java developers can give hints to the garbage collector. The following line asks the JVM to do garbage
collection for your program:

Listing 13-4. Garbage Collection Hint

System.gc();

However, most of the Java programming community frowns on using garbage collection hints.
Instead, you should try to organize your code so that the garbage collector doesn't need a hint. Most of
that organization comes down to arranging your classes such that each class has a clear, well-defined job
to do. For example, TargetClickPanel maintains a collection of five Target objects. When it needs a new
instance of the Target class, it sets a member of that collection to the new instance. Thus, old instances
become free for collection. If I had tried to do more with that collection of Target objects, I might easily

CHAPTER 13 ■ GARBAGE COLLECTION

259

have gotten into a situation where garbage collection wouldn't work correctly, as I'd still be hanging
onto the Target objects.

■ Note Using a garbage collection hint will not prevent your program from running out of memory if it is about to
run out anyway. That's yet another reason to not use garbage collection hints. As a rule, they don't help.

Blocking Garbage Collection
Sometimes, you need an object to exist for as long as your program runs. To make sure it continues to
exist, you need to ensure that a reference to that object always exists. Java offers a couple of handy ways
to ensure a reference always exists: singletons and reference lists.

A singleton is a class that can never have more than one instance. Java developers have a number of
techniques for creating a singleton, but Listing 13-5 shows one common way to do it.

Listing 13-5. Making a Singleton

public class Singleton {

 private static Singleton instance = new Singleton();

 private Singleton() {
 // initialization stuff goes here
 }

 public synchronized static Singleton instance() {
 return instance;
 }
}

Because there's always a static instance of the class held within the class itself, there's always a
reference to this kind of singleton. We make the instance method synchronized so that, if two objects
call the method at the same time, they take turns. Otherwise, they might get the object in the wrong state
(in cases where some other method updates the data in the singleton class). As a rule, synchronize any
method that returns a static object (not including constants).

Of course, if you need more than one instance of a class, that's not going to work. In those cases, you
can use a reference list. Consider the program class shown in Listing 13-6.

Listing 13-6. Program Class with a Reference List

package com.bryantcs.examples.referenceList;

import java.util.ArrayList;

public class ReferenceProgram {

 // This list lasts as long as the program runs

CHAPTER 13 ■ GARBAGE COLLECTION

260

 public static ArrayList<Object> referenceList;

 public static void main(String[] args) {
 referenceList = new ArrayList<Object>();
 }

}

As the comment within the class says, the referenceList object will have a reference for as long as the
program runs. So far, so good, but how do we add to it? The trick to that is to have any class we need to
keep around to add itself to the list, as shown in the next code listing:

Listing 13-7. Class that Adds Itself to a Reference List

package com.bryantcs.examples.referenceList;

public class ClassToList {

 public ClassToList() {
 ReferenceProgram.referenceList.add(this);
 }
}

Since ReferenceProgram.referenceList is static, it is a class variable, which means there's only one
of them, regardless of the number of instances we may make of the ReferenceProgram class. (Of course,
in this very simple example, we wouldn't make more than one instance of the ReferenceProgram class
anyway.) As a result, we can add to that single list from anywhere within the program. Thus, we have a
handy mechanism for ensuring that a reference to any given class always exists and, consequently, that
any instance of this class will never be garbage collected.

While these techniques work, you should avoid overusing both the singleton pattern and the
reference list pattern. If you prevent the garbage collector from removing many objects, your program
performs that much more slowly.

A New Garbage Collector
As we saw earlier in the chapter, Java 7 includes a new garbage collector, called G1. G1 is a concurrent
garbage collector, meaning that it uses multiple processors (if available) at the same time. Also, as we
read earlier in the chapter, the G1 collector's “garbage first” algorithm offers better performance than
other collectors, regardless of the number of processors. For a computer with just one processor (or a
shared computer that makes only one processor available to the JVM), G1 should offer some
improvement over any other garbage collector (though the nature of the application may limit the
improvement). If G1 can get access to at least two processors, the improvement in performance should
be even better. Given that most modern computers have multiple processors and modern server-class
computers often have numerous processors, G1 may provide a sizable performance boost for some
applications. That's going to result in games that play more smoothly, web applications that return web
pages more quickly, and all the other good things that come with higher-performance applications.

CHAPTER 13 ■ GARBAGE COLLECTION

261

Summary
In this chapter, we've touched on one of Java's more advanced concepts: garbage collection. We've just
skimmed the surface of this advanced topic, with an eye toward providing you with the basic
information for optimizing your own applications. If you really get into optimization, you can find whole
books written about the subject.

In this brief overview, we covered:

• Memory allocation

• The garbage-collection algorithm used by Java

• The variations on the algorithm (naïve, incremental, and concurrent)

• How the G1 collector improves on the overall algorithm

• The difference between a scavenge and a full collection

• That garbage collection is event-driven

• That garbage collection is beyond our direct control, but can be controlled
indirectly

• The most common settings that control garbage collection

• How to see what the garbage collector does in each of its runs

• How to use that information to optimize our garbage collection settings (and thus
the performance of our programs)

• How to prevent an object from ever being garbage collected.

• That Java 7 offers an improved garbage collector named G1 (for “garbage first”)

For all that we've learned, I'd like to point out that you can do a lot of programming without ever
thinking about garbage collection. Other than to collect sample data for this chapter, I haven't changed a
single garbage collection setting for the programs in this book. However, if you stick with programming
in Java, your programs will eventually run into the bottleneck that arises from not controlling your
garbage collection settings. At that point, I want you to come back to this chapter and cover the basics.
Eventually, you may need more advanced information, but this set of basic information will let you solve
a lot of garbage collection problems.

C H A P T E R 1 4

263

Recursion

Recursion has an undeserved reputation for being hard to do and hard to control. For various reasons,
many developers have trouble using recursion as one of their programming tools. I suspect the difficulty
stems from two predicaments: having to give up control so that the recursive classes or methods can do
their work and not being able to “see” the recursion work (though the debugger can solve the latter
problem). Also, the first try at recursion usually ends poorly, resulting in an infinite loop (that is, a
process that never stops), and software developers are trained to be very wary of infinite loops. All of
these problems can be overcome with surprisingly easy-to-use and easy-to-understand techniques,
which I'll address later in the chapter.

Before I dive into how to work with recursions, though, let's take a close look at what recursion is.

Recursion is Natural
The main reason I am surprised that so many developers distrust recursion is that recursion is a feature
of human language. We all use it every day when we talk to one another. English utilizes recursion in a
number of situations. One of the rules (from the field within Linguistics called Transformational
Grammar, which I studied in college) of the English language is that one sentence can be embedded into
another sentence. I won’t dive into the sentence diagrams to prove it, but I'll give you an example in the
form of a children’s rhyme from long ago:

This is the house that Jack built.
This is the malt that lay in the house that Jack built.
This is the rat that ate the malt that lay in the house that Jack built.

As you can see, kids can keep going for as long as they can think of things to add (or until their

parents yell at them to stop). English supports recursion in other situations as well. For instance, another
rule in English is that we can stack up prepositional phrases as deep as we like, thus:

The princess lives in the castle.
The princess lives in the castle on the hill.
The princess lives in the castle on the hill by the road.
The princess lives in the castle on the hill by the road in the swamp.

Again, we can keep doing this for as long as it amuses us to do so.

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 14 ■ RECURSION

264

Recursion is Common
You encounter instances of recursion every day and never think twice about them. The only notable
feature about the following sentence is that it involves a princess and a castle: “The princess lives in the
castle on the hill.” How many times have you said something similar to “I live in a red house on
Mulberry Street”?

Recursion is common in the field of computer science, too. A number of languages use recursion as
their main idiom for processing data. The most famous recursive programming language is probably
Lisp. Lisp stands for “List processing” and treats everything as a list. The usual method of processing in
Lisp is to read the first item of a list (reducing the original list), process it, read the first value of the
remaining list, process it, and so on until the list is empty. XSLT (a grandchild of Lisp through another
language called DSSSL) works in a similar way, processing XML nodes until it runs out of nodes.

All the programming languages with which I am familiar also have one mechanism or another for
supporting recursion. Recursion may be easier or harder to achieve depending on the language, but in
my experience, it's always possible.

Know Your Stop Condition
Now that you know what recursion is and have discovered that recursion is actually all around us, let's
look at how to make it work. We’ll start with a problem that many software developers fear: the infinite
loop.

Recursion usually generates an infinite loop because the developer fails to check for a stop
condition or for the correct stop condition. The trouble is that the stop condition always depends on
what you're doing. If you're processing a factorial, your stop condition is the argument to the factorial
symbol. Therefore, if you're calculating 10! (10 factorial), you stop when you get to 10. Similarly, if you're
processing an XML file, the stop condition is the last child node.

The other problem is that those conditions are not similar enough for many developers. People like
to be sure of things: they don't want to have to figure out the stop condition every time. This issue often
persuades developers to avoid recursion, even when recursion is the best way to solve a problem.

Let's look at one of the examples I just mentioned, calculating a factorial:

Listing 14-1. Calculating a Factorial

package com.bryantcs.examples.factorial;

public class Factorial {

 int calculate(int number) {
 if (number < 0) {
 throw new IllegalArgumentException("integer must be 0+");
 }
 if(number == 0) { return 1;
 } else {
 return number * calculate (number - 1);
 }
 }

CHAPTER 14 ■ RECURSION

265

 public static void main(String[] args) {
 Factorial factorial = new Factorial();
 System.out.println(factorial.calculate(4));
 }

}

In the calculate method, after checking for valid input, check for the stop condition, which is the
argument “1”. (Note the recursion in the preceding sentence: “In . . . after” It really is common.)

When to Avoid Recursion
The biggest problem with recursion is that each pass through the method puts another object in the call
stack. If you have a lot of recursion to do, you can overflow the stack. As the following image shows, there
are four instances of the calculate method on the stack when the factorial of four (4!) is calculated.

Figure 14-1. calculate Methods on the Call Stack

CHAPTER 14 ■ RECURSION

266

If I had calculated the factorial of ten (10!), I would have had ten instances of the calculate method
on the stack. To avoid this problem, I can rewrite the method to use a loop instead, thus:

Listing 14-2. Converting Recursion to a Loop

package com.bryantcs.examples.factorial;

public class Factorial {

 int calculate(int number) {
 if (number < 0) {
 throw new IllegalArgumentException("integer must be 0+");
 }
 if(number == 0 || number == 1)
 return 1;
 else {
 int total = 1;
 for (int i = 1; i < number + 1; i++) {
 total *= i;
 }
 return total;
 }
 }
 public static void main(String[] args) {
 Factorial factorial = new Factorial();
 System.out.println(factorial.calculate(4));
 }

}

Since it contains no calls to itself, the calculate method appears on the stack only once. Therefore,
the lesson here is that any time you can easily replace recursion with a loop, you should do so.

When to Use Recursion
If you should replace recursion with loops whenever you can easily do so, when should you use
recursion? The simple (but not helpful) answer is: when it's useful to do so. But when is that? Essentially,
you should use recursion when you can't know (or can't be sure of) the number of times you need to
process something. Processing an XML file is a good illustration of this problem. When you write a
program to process an XML file, you can't be sure how many nodes will be in the given XML file. It is
possible to solve these kinds of problems with while loops, but in this case, recursion is easier both to
code and to understand.

In addition to parsing, other problems are simply easier to code with recursion. If you can
significantly reduce the size of your code or gain an algorithm that is easier to understand, you should
consider recursion, even in cases where the problem can be solved with loops. What sorts of things are
solved with recursive algorithms? Let's look at some common problems that utilize recursion (and I'll
code some of the more interesting ones later in the chapter):

CHAPTER 14 ■ RECURSION

267

• Repetitive mathematical functions, such as a factorial, a sum of digits, the
Fibonacci sequence, and many others

• Any problem in which the depth of processing is hard to predict (e.g., processing
files and other data streams)

• Certain kinds of searches (such as finding all the instances of a substring within a
string and finding all the instances of a particular data element in a tree structure)

• Fractal images (which I'll focus on later in the chapter).

Without further ado, I’ll get to the fun stuff: coding solutions to problems that are a good fit for
recursion.

Calculating the Fibonacci Sequence
The Fibonacci sequence (named after Italian mathematician Leonardo Bigollo, also known as Fibonacci)
is a sequence of numbers consisting of 0, 1, and numbers that are each the sum of the previous two.
Thus, the Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and so on for as long as one cares
to do the math.

While the Fibonacci sequence can be calculated with a loop, it's commonly used as an example
when folks discuss recursion. I’ll stir up my own code for it:

Listing 14-3. Recursively Calculating the Fibonacci Sequence

package com.bryantcs.examples.fibonacci;

public class Fibonacci {

 private int calculate(int length) {
 if (length < 0) {
 throw new IllegalArgumentException("Input must be 0 or greater");
 }
 if (length <= 1) {
 return length;
 } else {
 return calculate(length - 1) + calculate(length - 2);
 }
 }
 public static void main(String[] args) {
 Fibonacci fibonacci = new Fibonacci();
 for (int i = 0; i < 10; i++){
 System.out.println(fibonacci.calculate(i));
 }
 }

}

CHAPTER 14 ■ RECURSION

268

■ Note Fibonacci numbers turn up in all kinds of interesting places. They are closely linked to the golden ratio
(important in the history of art and architecture), appear in the ratios of a number of objects in nature, and have
been used to determine when to buy stocks. While they are well beyond the scope of this book, the origin and uses
of the Fibonacci sequence are interesting subjects in their own right.

Calculating Fractals
Fractal images involve using the output of one calculation as the input to a subsequent calculation—a
perfect task for recursion. I’ll start with my personal favorite.

Drawing a Sierpinski Triangle
A Sierpinski triangle (named after Polish mathematician Waclaw Sierpinski) is a triangle consisting of
other triangles. Each smaller triangle can itself consist of other triangles. Thus, you can have triangles
within triangles within triangles to any depth you like. (Note the recursion within the preceding
sentence; just talking about recursion requires recursion.)

Here's a pair of classes that draw a Sierpinski triangle to a depth of 7 (a number I picked because I
liked the resulting output). As usual, I've created a program class that uses another class to do the
drawing.

Here's the program class:

Listing 14-4. SierpinskiTriangle.java

package com.bryantcs.examples.fractals;

import java.awt.Color;
import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;

public class SierpinskiTriangle implements ActionListener {

 private SierpinskiTrianglePanel
 sierpinskiTrianglePanel = new SierpinskiTrianglePanel();
 private JFrame frame = new JFrame("Sierpinski Triangle");

 private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem exitItem = new JMenuItem("Exit");

CHAPTER 14 ■ RECURSION

269

 exitItem.setMnemonic('x');
 exitItem.addActionListener(this);
 file.add(exitItem);
 JMenuItem redrawItem = new JMenuItem("Repaint");
 redrawItem.setMnemonic('r');
 redrawItem.addActionListener(this);
 file.add(redrawItem);
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

 private void createAndShowGUI() {
 addMenu(frame);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 sierpinskiTrianglePanel.setPreferredSize(new Dimension(400, 400));
 sierpinskiTrianglePanel.setBackground(Color.WHITE);
 frame.getContentPane().add(sierpinskiTrianglePanel);
 frame.pack();
 frame.setVisible(true);
 }
 public static void main(String[] args) {
 SierpinskiTriangle sierpinskiTriangle = new SierpinskiTriangle();
 sierpinskiTriangle.createAndShowGUI();
 }

 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand() != null) {
 if (e.getActionCommand().equals("Exit")) {
 System.exit(0);
 }
 if (e.getActionCommand().equals("Repaint")) {
 sierpinskiTrianglePanel.repaint();
 }
 }
 }
}

By now, you're accustomed to how this kind of program class works: it handles the input from the
user, sets up the window that holds your content, and manages the class that does the more interesting
work.

Here's the class that does the drawing:

Listing 14-5. SierpinskiTrianglePanel.java

package com.bryantcs.examples.fractals;

import java.awt.Color;
import java.awt.Graphics;
import java.awt.geom.Point2D;

CHAPTER 14 ■ RECURSION

270

import javax.swing.JPanel;

public class SierpinskiTrianglePanel extends JPanel {

 private static final long serialVersionUID = 1L;

 int maxLevel = 7;

 private void drawTriangle(int level, Graphics g, Point2D.Double point1,
 Point2D.Double point2, Point2D.Double point3) {
 if (level < maxLevel) {
 // Work our way down through the levels
 Point2D.Double midPoint1 = getMiddlePoint(point1, point2);
 Point2D.Double midPoint2 = getMiddlePoint(point2, point3);
 Point2D.Double midPoint3 = getMiddlePoint(point1, point3);

 g.setColor(new Color((int)(Math.random() * 0xFFFFFF)));

 drawTriangle(level + 1, g, point1, midPoint1, midPoint3);
 drawTriangle(level + 1, g, midPoint1, point2, midPoint2);
 drawTriangle(level + 1, g, midPoint3, midPoint2, point3);
 } else {
 // At the bottom level, draw the actual triangles
 // (which are parts of the larger triangles)
 int[] xPoints = {
 new Double(point1.getX()).intValue(),
 new Double(point2.getX()).intValue(),
 new Double(point3.getX()).intValue()
 };
 int[] yPoints = {
 new Double(point1.getY()).intValue(),
 new Double(point2.getY()).intValue(),
 new Double(point3.getY()).intValue()
 };
 g.fillPolygon(xPoints, yPoints, 3);
 }
 }

 private Point2D.Double getMiddlePoint(Point2D.Double point1,
 Point2D.Double point2) {
 double newX = (point1.getX() + point2.getX()) / 2;
 double newY = (point1.getY() + point2.getY()) / 2;
 return new Point2D.Double(newX, newY);
 }

 public void paint (Graphics g) {
 super.paintComponent(g);
 int height = this.getHeight();
 int width = this.getWidth();
 // Here's one way to get the height of an equilateral triangle Double doubleHeight
 = Math.sqrt(height * height - (width / 2) * (width / 2)); // 0 on the Y axis is at
the bottom, so this seems upside-down

CHAPTER 14 ■ RECURSION

271

 Point2D.Double lowerLeft = new Point2D.Double(0, doubleHeight);
 Point2D.Double lowerRight = new Point2D.Double(width, doubleHeight);
 Point2D.Double top = new Point2D.Double(width / 2, 0);
 drawTriangle(1, g, lowerLeft, lowerRight, top);
 }
}

The SierpinskiTriangleJava class really starts in the paint method, where it calculates the corners
of the outer triangle and passes those values to the drawTriangle method. Then the drawTriangle
method calculates a series of triangles within triangles, down to the depth specified in the maxLevel
variable that is stated at the top of the class. You can change the depth by changing that value, and a
good exercise is to add setting that value to the user interface.

The actual drawing happens only after the class reaches the maximum level. At that point, there are
729 (3 to the 6th power) triangles that draw themselves and 364 triangles that contain other triangles.
Three hundred and sixty-four is not a power of 3, so how was that number obtained by calculating six
levels of depth? The following table shows the progression:

Table 14-1. drawTriangle Methods on the Stack, by Level of Recursion.

Step Number of Triangles

1 1

2 4

3 13

4 40

5 121

6 364

7 1093

As you can see, the inclusion of the outer triangle throws off the numbers a bit so that the total is

never a power of three. However, the difference between any two steps is a power of three. This kind of
pattern appears whenever a single item contains other items that scale in a regular fashion.

Within the drawTriangle method, I calculated the midpoints of the current triangle and created
three new triangles based on those points. That's the essence of the Sierpinski algorithm. The remaining
code in the method does the work of drawing and of making sure I don't miss the stop condition.

CHAPTER 14 ■ RECURSION

272

■ Note The code for drawTriangle could be made simpler by starting at the outermost layer and counting
backwards. However, I wanted to have a maxLevel value to make setting the depth as easy as possible. I also
used Point2D rather than Point to obtain a greater level of accuracy (and thus prevent small mismatches in the
positions of the triangles within the window).

Finally, here's the result of my SierpinskiTriangle program:

Figure 14-2. Output from the SierpinskiTriangle Program

CHAPTER 14 ■ RECURSION

273

Drawing a Fractal Tree
One of my other favorite fractals is the fractal tree because it really does resemble a tree (at first glance,
anyway). Here's the program class:

Listing 14-6. FractalTree.java

package com.bryantcs.examples.fractals;

import java.awt.Color;
import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;

public class FractalTree implements ActionListener {

 private FractalTreePanel
 fractalTreePanel = new FractalTreePanel();

 private JFrame frame = new JFrame("Fractal Tree");

 private void addMenu(JFrame frame) {
 JMenu file = new JMenu("File");
 file.setMnemonic('F');
 JMenuItem exitItem = new JMenuItem("Exit");
 exitItem.setMnemonic('x');
 exitItem.addActionListener(this);
 file.add(exitItem);
 JMenuItem redrawItem = new JMenuItem("Repaint");
 redrawItem.setMnemonic('r');
 redrawItem.addActionListener(this);
 file.add(redrawItem);
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(file);
 frame.setJMenuBar(menuBar);
 }

 private void createAndShowGUI() {
 addMenu(frame);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 fractalTreePanel.setPreferredSize(new Dimension(600, 450));
 fractalTreePanel.setBackground(Color.WHITE);
 frame.getContentPane().add(fractalTreePanel);
 frame.pack();
 frame.setVisible(true);
 }

CHAPTER 14 ■ RECURSION

274

 public static void main(String[] args) {
 FractalTree fractalTree = new FractalTree();
 fractalTree.createAndShowGUI();
 }

 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand() != null) {
 if (e.getActionCommand().equals("Exit")) {
 System.exit(0);
 }
 if (e.getActionCommand().equals("Repaint")) {
 fractalTreePanel.repaint();
 }
 }
 }
}

As I'm sure you know by now, the FractalTree class merely manages the user interface and provides
a place for another class to do the drawing. So let's move on to the class that does the fun stuff: drawing
our fractal trees.

Listing 14-7. FractalTreePanel.java

package com.bryantcs.examples.fractals;

import java.awt.Color;
import java.awt.Graphics;
import java.util.Random;

import javax.swing.JPanel;

public class FractalTreePanel extends JPanel {

 private static final long serialVersionUID = 1L;

 private final static double RADIANS = Math.PI / 180.0;
 Random rand;

 public FractalTreePanel() {
 rand = new Random();
 }
 private void drawSegment(Graphics g, int x1, int y1, double angle, int depth) {
 if (depth == 0) return; // the stop condition
 int xAngleOffset = new Double(Math.cos(angle * RADIANS) * depth * 10.0).intValue();
 int yAngleOffset =
 new Double(Math.sin(angle * RADIANS) * depth * 10.0).intValue();
 int x2 = x1 + xAngleOffset;
 int y2 = y1 + yAngleOffset;
 int colorValue = 256 - ((depth - 1) * 32) - 1;

CHAPTER 14 ■ RECURSION

275

 if (colorValue < 0) {
 colorValue = 0;
 }
 g.setColor(new Color(0, colorValue, 0));
 g.drawLine(x1, y1, x2, y2);
 int randFactor = rand.nextInt(20) + 10; // a value between 10 and 30
 drawSegment(g, x2, y2, angle - randFactor, depth - 1);
 randFactor = rand.nextInt(20) + 10; // a value between 10 and 30
 drawSegment(g, x2, y2, angle + randFactor, depth - 1);
 }

 public void paint(Graphics g) {
 super.paintComponent(g);
 drawSegment(g, getWidth() / 2, getHeight(), -90, 9);
 }
}

The algorithm for a fractal tree is quite simple: draw a line; from the end point of that line, draw two
more lines; and so on. I can do that by using fixed values, but I will generate trees that are more realistic
by adding some randomness. To that end, I also changed the color for each part of the tree, using lighter
shades of green towards the top.

In my case, I configured the algorithm from the maximum depth down to 0. For this kind of
algorithm, doing so results in less code (and so should be easier to understand). Since I liked the look of
the tree with a depth of 9, I didn't set the depth value out separately like I did in the
SierpinskiTrianglePanel class. Another interesting feature of this class is that the initial angle is -90. If it
were 0, the tree would grow sideways to the right. This would happen because an angle of 0 draws a line
that lies on the X-axis. Thus, to make the lines go up the Y-axis, I had to rotate 90 degrees to the left (i.e., -
90). An angle of 90 would produce a tree that grew downward (which could be a handy way to model
roots).

The next page shows one result (each result is a bit different) of the FractalTree program.

CHAPTER 14 ■ RECURSION

276

Figure 14-3. Output from the FractalTree Program

Summary
In this chapter, I explained the unusual but sometimes useful idea of working with items that refer to
themselves, known as recursion. In particular, you learned that:

• Recursion occurs in human languages.

• Recursion happens all the time (but we often don't notice it).

• Recursive algorithms need stop conditions.

• It's sometimes a good idea to avoid recursion.

CHAPTER 14 ■ RECURSION

277

• Conversely, recursion is sometimes the best answer to a problem.

• Recursion can be an elegant solution to some problems, such as that of generating
the Fibonacci sequence.

• Recursion is the underlying algorithm in making fractals.

I hope you enjoyed this chapter. It was one of my favorites to write, and I enjoyed creating sample
code for it. In fact, I played with many variations of the code, just for fun. You should do the same. In
particular, regarding the Sierpinski triangle program, try changing colors at every other depth or every
third depth value rather than at every depth value (hint: use the modulus operator). Then, play with the
values that control the appearance of the fractal tree. In particular, play with different numbers as inputs
to the randInt method. Also, rotate the tree and fiddle with the colors to create roots instead of the
branches of a tree.

I leave you with two challenges that will help you grow as a programmer. First, create a Sierpinski
gasket (a square of squares rather than a triangle of triangles). Second, create a Mandelbrot or Julia
fractal. I nearly included sample code for a Julia fractal (one of my favorites), but I thought it would be a
great exercise for you, now that you know the basics of recursion in Java. You'll need to do a bit of
research to find the algorithms and math behind the Sierpinski gasket and the Mandelbrot and Julia
fractals, but discovering algorithms and formulae is part of the job when you develop software. I'm sure
you'll get used to performing this kind of research.

C H A P T E R 1 5

279

Generics and Regular Expressions

Readers who already know Java may very well ask why these two topics are together in the same chapter.
The answer is that they both involve pattern matching. A generic specifier (also known as a parameter) is
a pattern that code must match in order to use a particular block of code (which might be an interface, a
class, a method, or other things). Regular Expressions, on the other hand, use patterns to select
substrings within strings. In both cases, the pattern restricts the available selections. Both have
additional benefits as well, which we'll get to next.

Generics
Generics offer a way to specify the kind of objects that a class, variable, or method can use. The most
common use of generics is to specify what kind of object can go into a collection (such as a list or a tree
or a hashmap). Another use is to allow a type that has yet to be specified to be used where the generic is
specified. In that sense, the type is generic, which is where the name of this idea comes from. We'll see
examples of both kinds of generics as proceed through this section.

Prior to Java 5, Java had no mechanism for specifying generics. That lack led to a number of
problems, including being able to assign unexpected types of objects to a collection (leading to run-time
errors), the necessity of casting objects from one type to another, and overly verbose and complex code.
Fortunately, we now have a way to avoid those problems.

The syntax of generic specifiers relies on the angle bracket characters (< and >). To create a
collection with a generic specifier, add the generic expression at the end of the type specifier for the
collection, as shown in Listing 15-1.

Listing 15-1. A Simple Generic

LinkedList<JPanel> panelList = new LinkedList<JPanel>();

That line of code declares a LinkedList that can only contain JPanel objects. Java 7 introduces a nice
shorthand that slightly reduces the amount of code. In particular, you can leave out the type declaration
when creating an instance of a parameterized object, provided the compiler can infer the type from
elsewhere in the line. Thus, the code in Listing 15-1 could be replaced with the code in Listing 15-2.

 Java 7 for Absolute Beginners
© Jay Bryant 2012
J. Bryant,

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

280

Listing 15-2. A Simplified Generic

LinkedList<JPanel> panelList = new LinkedList<>();

Notice that the constructor for our LinkedList object indicates that it's a generic but doesn't provide
the type of the objects that can go in the list. We can leave that out because the compiler can infer a type
of JPanel from the type declaration portion of this variable declaration. By the way, the <> expression is
often called “the diamond.”

An object can have multiple parameters, provided a matching class exists to define that object.
Listing 15-3 shows an example.

Listing 15-3. A Generic with Multiple Parameters

package com.bryantcs.examples;

public class GenericRole<Actor, Role> {

 private Actor actor;
 private Role role;

 public GenericRole(Actor p, Role a) {
 actor = p;
 role = a;
 }

 public Actor getActor() {
 return actor;
 }

 public Role getRole() {
 return role;
 }
}

A significant feature of this class is that you do not have to create an Actor class or a Role class.
Because it uses generics, the declarations that create instances of the GenericRole object must specify
the types of the Actor and Role objects.

As I mentioned at the beginning of this section, this arrangement is where the word “generic” comes
from. These objects can be undeclared at this point, so they are, in a sense, generic.

So let's look at a class that does something with our GenericRole class. Consider Listing 15-4.

Listing 15-4. Using a Multiple-Parameter Generic

package com.bryantcs.examples;

import java.util.LinkedList;

public class GenericRoleProgram {

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

281

 public static void main(String[] args) {
 LinkedList<GenericRole<String, String>> roleMap =
 new LinkedList<GenericRole<>>();

 roleMap.add(new GenericRole<String, String>("Humphrey Bogart",
 "Sam Spade"));
 System.out.println(roleMap.getFirst().getActor() +
 " appeared on screen as " + roleMap.getFirst().getRole());
 }
}

Notice that we now have parameters nested within parameters (in
LinkedList<GenericRole<String, String>> roleMap). When a parameterized (that is, generic) collection
consists of a type of object that itself has parameters, you get nested generic specifiers. It may seem odd,
but it's common practice once you start using generics.

You can also specify that a collection can contain multiple kinds of objects, provided that the
objects all extend the same class or implement the same interface. To do so, Java includes a wildcard (in
the form of the question mark character) that you can use with generic specifiers. For an example,
consider Listing 15-5.

Listing 15-5. Using the Generic Wildcard

LinkedList<? extends JPanel> panels = new LinkedList<>();

That declaration says any class that extends JPanel can be a member of this list. Remember all the
times I extended JPanel in the chapters about animation, video games, and recursion? If I ever need a
single list to hold those different panels, the list above would do the job nicely.

The extends keyword works with interfaces, too. So, if I wanted a list of classes that implement the
MouseListener interface, I could use the declaration shown in Listing 15-6.

Listing 15-6. A Generic for an Interface

LinkedList<? extends MouseListener> mouseListeners = new LinkedList<>();

Listing 15-7. A Generic with the Super Keyword

LinkedList<? super JPanel> panelAncestors = new LinkedList<>();

The super keyword specifies that any object extended by the JPanel class can be a member of this
list. For this list, that would be objects of type javax.swing.JComponent. The super keyword is probably
most useful when you want to ensure that the objects that satisfy a parameter are comparable (so that
they can be sorted). In my experience, it's not often used, so I won't dive into it any further.

Now that we've seen the syntax for generics, let's talk about why you want to use them. The biggest
benefit is earlier error detection. It's a truism in software development (and many other professions) that
the earlier you catch an error, the less expensive it is to fix. If we can catch an error at coding time, fixing
it is just a matter of re-writing code we're already working on; the cost is trivial. If an error makes it to the
testers (assuming we have testers—not all software companies have test teams), it's more expensive. The
test team has to find it and tell the developer about it, the developer (who has moved on to some other
task) has to re-open and modify that code, and then the test team has to verify that the fixed code works
correctly. The worst result is when an error gets all the way to the customer; we get all the added expense
of communicating with the test team and the customer, with the added (and usually more important)

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

282

cost that the customer now thinks less of our software and our company. So let's adopt techniques,
including generics, that catch errors early.

Listing 15-9 and Listing 15-10 demonstrate why generics promote early error detection.

Listing 15-8. An Ordinary List

List integerList = new LinkedList();
integerList.add(new Integer(0));
integerList.add("here's a problem"); // perfectly legal and very wrong

In listing 15-9, integerList can contain any object. I can pass objects of type String into that list. A
name is just a name and, while it reveals the intent (which is good practice), it doesn't offer any
protection against someone passing things other than objects of type Integer into the list. Consequently,
when someone does pass something other than an Integer object, we get a run-time error when we try to
get Integer objects out of this list.

So let's see how generics prevent the testers or, worse, the customer from ever seeing our error.

Listing 15-9. A Generic List

List<Integer> integerList = new LinkedList<Integer>();
integerList.add(new Integer(0));
integerList.add("here's a problem");

The generic expression (or parameter) on the List declaration in the second example specifies that
this list can contain only Integer objects. The Integer parameter prevents anyone from passing a String
object (or anything but an Integer object) to integerList. When some other programmer tries to add an
object that isn't of type Integer to integerList, they get a compiler error. Their code can't be compiled,
and there's no chance the customer will ever see an error because some sloppy coder confuses a String
with an Integer. Figure 15-1 shows the error that Eclipse produces when I try it.

Figure 15-1. Type match error from trying to misuse a generic list

Notice how it says the proper argument for the add method is an Integer object. The List interface
has no such method, in fact. However, the Eclipse compiler creates an instance of the LinkedList class
that has such a method. Consequently, no one can compile code that violates the intention of our
generic list. That prevents all the problems that might occur at run-time and prevents our fellow
programmers, the testers, and ultimately our customers from thinking we must be idiots.

Personally, I also find this kind of code to be easier to read and to write. Casting always feels like
clutter to me. Purist that I am, I also much prefer to have the proper type in the first place and not need
to cast.

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

283

Finally, ensuring that your collections contain only the types you expect is one aspect of defensive
programming (another good practice every programmer should adopt). If you ensure that no other
programmer (including yourself at a later date) can pass bad values to your code, you ensure less trouble
for your users. It's a thankless task, as no one (except possibly your co-workers) will ever realize you did
it, but it's a good idea all the same. If you wish to think of it in more positive terms, think of it as ensuring
that the developers who use your code are more likely to write error-free code. One of my co-workers
(Matt Hinze, who also writes books about MVC when not coding) calls it “pushing our customers into a
pit of success.” However you phrase it, limiting the possibilities for errors to creep into the system is the
epitome of good software development practice.

Regular Expressions
If you've ever worked with files from the command line on your computer, you may very well have used
a regular expression without realizing it. For example, I recently wanted a list of all the HTML files in a
directory (on a Windows 7 system). In a command window, I typed dir *.htm and got the list I wanted.
*.htm is in fact a regular expression that means all the files with an extension of htm. Suppose I had
wanted all the HTML files with names that start with “s”. The command would have been dir s*.htm.
Regular expressions in Java work in much the same way, except that you can specify much more
complex patterns.

The Java regular expression package is java.util.regex. It contains the MatchResult interface, the
Matcher class (which implements the MatchResult interface), the Pattern class, and the
PatternSyntaxException class. You can't directly instantiate the Matcher and Pattern classes, as they
have no public constructors. In other words, new Matcher and new Pattern don't work. Instead, the
pattern for using them is to get a Pattern object by calling one of the compile methods within the Pattern
class. Then you get a Matcher object by calling the matcher method within the Pattern class. Finally, to
find the substrings that match your pattern, you call the find method within the Matcher class. Let's
create a class that will let us experiment with the Pattern and Matcher classes. Listing 15-11 shows one
possible implementation of such a class.

Listing 15-10. RegexTester Class

package com.bryantcs.examples;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexTester {

 public static void main(String[] args) {
 Pattern pattern = Pattern.compile(args[0]);
 Matcher matcher = pattern.matcher(args[1]);
 while(matcher.find()) {
 String groupText = matcher.group();
 int matchBegin = matcher.start();
 int matchEnd = matcher.end();
 StringBuilder sb = new StringBuilder("Found a match for ");
 sb.append(groupText);
 sb.append(" beginning at ");
 sb.append(matchBegin);

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

284

 sb.append(" and ending at ");
 sb.append(matchEnd);
 System.out.println(sb);
 }
 }
}

matcher.group gives us the text being matched (that's essentially the result of the pattern we specify
in the second argument). matcher.start gives us the starting position of the matched string within the
input string (the first argument). matcher.end gives us the ending position of the matched string. I used a
StringBuilder object to avoid a really long line, which is awkward to read in a book. I often use
StringBuilder objects within my production code, too, for the sake of performance (the concatenation
operator is the worst way to create a String object).

Before we plunge into the syntax of regular expressions, let's cover how to pass values to the
RegexTester program. In doing so, we'll also run it for the first time. To set up arguments for
RegexTester, follow these steps.

1. From the RRun menu, choose RRun Configurations. The Run Configurations
window appears, as shown in Figure 15-2.

Figure 15-2. Run configurations for RegexTester

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

285

2. In the right pane, click the AArguments tab. The Arguments tab appears, as
shown in Figure 15-3.

Figure 15-3. Empty parameters for RegexTester

3. To set up our first test data, type the following text (including the quotation
marks) into the PProgram arguments: field:

 "Sam" "Sam Spade;Yosemite Sam;Sam Merlotte;Samwise Gamgee;"

When you're done typing, the window should look like the window shown in
Figure 15-4.

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

286

Figure 15-4. Populated parameters for RegexTester

4. To run the RegexTester program, click RRun. The output of the program
appears in the Eclipse console, as shown in Figure 15-5.

Figure 15-5. Output of RegexTester in the Eclipse console

I won't show all those steps for each test, but I thought it might help you to see them for the first
test. For the subsequent tests, I'll just show what to type in the AArguments tab and what appears in the
console.

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

287

Now that we have a testing program and know how to use it, we need to focus on the regular
expression syntax that Java supports. Regular expression syntax is almost a language unto itself, so we'll
focus on the basics and some of the more commonly used advanced bits. The whole thing is worthy of a
book (and such books exist).

Our simple test case uses a string literal. A string literal is just a piece of text. In the example we just
ran, "Sam" is a string literal. "Spade" is another string literal. If we replace "Sam" with "Spade," we get the
following output in the console:

Found a match for Spade beginning at 4 and ending at 9

We won't be able to accomplish much with just string literals. We can find all the instances of a
particular string, but we can't find anything that matches a pattern. To create a pattern, we have to dive
into the key component of regular expressions—metacharacters.

Metacharacters are characters that create patterns. Rather than represent a single literal character, a
metacharacter represents a set of characters. Some metacharacters work by themselves, while other
metacharacters are meaningless in the absence of other metacharacters. Table 15-1 describes the
metacharacters supported by the Java regular expression syntax.

Table 15-1. Java Regular Expression Metacharacters

Metacharacter Description

(Starts a subpattern (a pattern within the larger pattern). For example compan(y|ies)
lets you match either “company” or “companies”.

Also starts the definition of a group. (Dog) treats those three characters as a single
unit for other regular expression operators.

[Starts a set of characters. For example, [A-Z] would match any upper-case
character. A[A-Z]Z would match “AAZ”, “ABZ”, and so on to “AZZ”.

{ Starts a match count specifier. For example, s{3} would match three s characters in
a row: sss. Pas{3} would match “Passs”.

\ Starts an escape sequence, so that you can match a literal instance of a
metacharacter. For example, if you needed to match the periods in a paragraph,
you'd use \. (that is, a backslash and a period). The period character (.) is itself a
regular expression metacharacter, so you must escape it to find the actual periods.
Similarly, to find an actual backslash character, you must escape the escape
character, thus: \\

^ Matches the start of the string. ^A finds any line that begins with “A”. ^[0-9] finds
any line that begins with a digit. ^[0-9]{2} finds any line that begins with two digits.
^[0-9]+ matches any line that begins with a number of any size.

Inside of a range, ^ is the negation character. [^abc] matches any character other
than a, b, or c. [^abc]at matches “rat” and “sat” and “eat” (and many others) but not
“bat” or “cat” (or “aat”).

- Used within range expressions, such as [0-9], which would match any digit.

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

288

Continued

Metacharacter Description

$ Matches the end of the string. Z$ matches a Z character at the end of the string.

| Matches the expression on either side of itself. (This character is sometimes called
the pipe character.) For example, this|that would match either “this” or “that”. The
expressions need not be string literals. [a-s]|[u-z] finds any lower-case character
other than t.

] Closes a set of characters. For example, [a-z] would match any lower-case
character.

} Closes a match count specifier. For example, n{2} would match two n characters in
a row: nn. ban{2} matches “bann”, and [a-z]{2}n matches any lower-case three-letter
string that ends with n, such as “sun”, “fun”, “ban”, “wan”, and so on. Of course, it
also matches nonsense strings, such as “dcn”.

) Closes a subpattern (a pattern within the larger pattern). For example
identit(y|ies) lets you match either “identity” or “identities”.

Also ends the definition of a group. (Cat) treats those three characters as a single
unit for other regular expression operators.

? Matches the preceding character 0 or 1 times. For example, ban? matches “ba” and
“ban”.

* Matches the preceding character any number (including 0) of times. For example,
ban* matches “ba”, “ban”, “bann”, “bannn”, and so on.

+ Matches the character one or more times. For example ban+ matches “ban”, “bann”,
bannn”, and so on. It does not match “ba” because the n character has to appear at
least once.

. Matches any single character. For example, bar. matches “bark”, “bard”, “bar9”,
and so on. .* matches any number of any character. It is probably the most used
regular expression, because it lets you skip over any text you don't want to match to
find the bits you do want to match. We'll see some examples later in this chapter.

From all those examples, I bet you're beginning to get an idea of how powerful regular expressions

can be. In truth, though, describing the metacharacters is just scratching the surface of regular
expressions. There's lots more to it than what I've shown here. Let's learn a little more by looking at
examples.

Returning to our example involving fictional characters named Sam, suppose we want to get the
whole name (including the separator, which is a semicolon). We might try something like the following:

(Sam).*;

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

289

The output of that is:

Found a match for Sam Spade;Yosemite Sam;Sam Merlotte;Samwise Gamgee; beginning at 0 and
ending at 51

That's not going to work. The trouble is that the .* pattern matches everything it can (that's called a
greedy match). In this case, it matches the whole line. Fortunately, the Java regular expression syntax
includes a way to make a pattern not be greedy (regular expression programmers would say it's
reluctant). To make a match be reluctant, we can append the question mark character (?) to the pattern,
as follows:

(Sam).*?;

The output of that regular expression is:

Found a match for Sam Spade; beginning at 0 and ending at 10
Found a match for Sam; beginning at 19 and ending at 23
Found a match for Sam Merlotte; beginning at 23 and ending at 36
Found a match for Samwise Gamgee; beginning at 36 and ending at 51

We're getting closer, but what happened to the “Yosemite” in “Yosemite Sam”? Well, the expression
starts with (Sam), so it will match only bits that start with “Sam”, which doesn't include “Yosemite Sam”.
The solution is to use the .*? pattern at the beginning as well as at the end, as follows:

.*?(Sam).*?;

Notice that the leading pattern must be reluctant, too, or we get the whole line again. Now the
output is:

Found a match for Sam Spade; beginning at 0 and ending at 10
Found a match for Yosemite Sam; beginning at 10 and ending at 23
Found a match for Sam Merlotte; beginning at 23 and ending at 36
Found a match for Samwise Gamgee; beginning at 36 and ending at 51

In this fashion, we've parsed a line containing multiple records. We could then add code to write
each match to a separate line in a file or otherwise manipulate each of the matching values. This kind of
parsing is a common task in software development, and regular expressions offer one good way to do it.

As I have indicated, regular expressions can get a lot more complicated. The following regular
expression removes “Sam” from each entry that starts with “Sam”:

S(?!am)|(?<!S)a|a(?!m)|(?<!Sa)m|[^Sam](.*?;)

Its output is:

Found a match for Spade; beginning at 3 and ending at 10
Found a match for Yosemite Sam; beginning at 10 and ending at 23
Found a match for Merlotte; beginning at 26 and ending at 36
Found a match for wise Gamgee; beginning at 39 and ending at 51

The code to also remove the “Sam” in “Yosemite Sam” would be even more complex. As it happens,
negating a group is one thing that regular expressions don't make easy. In those cases, it's often best to
mix regular expressions with other String operations and to pass the result of one expression to another
regular expression (a process known as chaining). Those techniques let you manage the complexity of
your regular expressions and may offer better performance than a single complex regular expression.

If you want to know more about regular expressions, start with the official Regular Expression
Tutorial at http://download.oracle.com/javase/tutorial/essential/regex/index.html

CHAPTER 15 ■ GENERICS AND REGULAR EXPRESSIONS

290

Summary
This chapter covered the things that benefit from pattern matching: generics and regular expressions.
About generics, we learned that:

• We can specify the kind of content that goes into a collection.

• Thanks to an improvement introduced in Java 7, we can use the diamond specifier
(<>) to shorten our code a bit, so long as the compiler can determine the type from
earlier in the line.

• Generics can have multiple parameters.

• We can nest generic parameters to ensure we get the proper kinds of objects at
any depth.

• We can use wildcards within generic parameters, to accommodate similar objects
(any object that extends a particular class or implements a particular set of
interfaces or both).

• Generics let us catch problems at coding time rather than at run time, saving time
and embarrassment.

About regular expressions, we learned:

• How to instantiate the member classes (Matcher and Pattern) of the
java.util.regex package.

• What each of the metacharacters does.

• How to combine the metacharacters in a number of useful ways.

• How to make a pattern be reluctant (match the fewest possible characters) rather
than greedy (match the most possible characters).

• That regular expressions can become very complex and a bit about how to
manage that complexity.

This chapter covered two language features that I hope you will find useful as you develop your own
programs. I especially hope that you'll use generics any time you use a collection, as you should embrace
best practices whenever you can. As for regular expressions, remember that they are supposed to make
things simpler. If you find that a regular expression is too hard to figure out, break it up with other String
operations and use multiple regular expressions rather than one big one.

291

Index

■A
Abstract Window Toolkit (AWT), 111

Access modifiers

package-private, 27

private, 27

protected, 27

public, 27

Additive operators, 57–58

Animal classes

animals speak, 106

Carnivore interface, 105

Cat class, 103

Dog class, 104

Herbivore interface, 105

Mammal class, 102

Mouse class, 104–105

Predator interface, 105

Scavenger interface, 105

Animation

factors, 186

frame rate, 185

multiple objects

class, color usage, 194–196

Fireworks class, 192–193

FireworksPanel class, 194

fireworks program in action, 191

Timer object, 191

scoot ball game

actionPerformed method, 188

actionScootball, 190

paint method, 190

run method, 190

Runnable interface, 188

ScootBall class, 186–188

ScootBallPanel class, 188–189

starting state, 189

■ INDEX

292

sprites

definition, 196

display, 202

images of, 196

MouseListener interface, 199

MouseSprite object, 201

MouseSpritePanel class, 199–200

MouseSprites, 197–199

sheet, 197

specialization, 196

stop feature, 202

triggered animation, 197

timing, 185

Assignment operators, 66–67

■B
Bitwise operator

AND, 63

complement, 54–55

exclusive OR, 63

inclusive OR, 64

Block comments, 31

Branching

break statement, 88–89

continue statement, 89–91

return statement, 91–92

Breakpoint, Eclipse debugger, 208

■C
Casting, 55–56

Classloading breakpoints, 209

Comments

end-of-line, 31

Javadoc, 32–33

multi-line block, 31

Complexity code

dense code, 19

moderately simplified code, 19

simplified code, 19

Composition technique, 98

Concurrent garbage collector, 260

Control flow

if and if-else statements

complex if statement, 78

if-else statement, 78

larger else-if statement, 79

simple if statement, 78

■ INDEX

293

switch statements

evaluation, 80

issues, 81

vs. if statements, 80

■D
Data types

arrays, 43–44

boolean, 37

char, 37

enumerations, 45–48

escaping characters, 39–41

integer primitives, 35–36

literals, 38–39

null, 44–45

primitive, definition, 35

real primitives, 36

string, 37–38

wrapper classes, 41–43

Debugging process

methods, 206–2077

without debugger, 207

Document Object Model (DOM), 173

■E
Eclipse, 2

Eclipse debugger

breakpoint and variables, 208

display, 208

expanded view, value, 210

Fireworks problem, 206

Fireworks program

corrected method, 217

correct values, debugger, 218

flawed method, 216

incorrect values, debugger, 217

line breakpoint

code, 209

conditional, 213

condition enabled and specified,
214

disable, 212

executions, 210

properties window, 213

removable, 212

settings, 209

variables-conditional, 215

■ INDEX

294

procedure, 207

stepping, 211–212

tips and tricks, 215–216

Eden space, 254

Encapsulation, 96

Entry point, 5

Enumeration data types, 45–48

Equality operators, 62–63

Escaping characters, 39–41

Exception breakpoints, 209

Extensibility, 106

Extensible Markup Language (XML)

and streams, 172

DOM and SAX, 173

Factory Classes, 184

reading

DefaultHandler, 181

with DOM, 179–181

with SAX, 183

XMLToConsoleHandler class, 181–
183

structure

attributes, 169

basic rules, 170

document specifier, 170

root element, 170

single element, 169

SOAP, 172

storage format, 169

UTF-8, 170

XMLNS, 172

writing

data source, 173–174

with DOM, 174–177

with strings, 178–179

■F
Fibonacci sequence, 267

File object

deleting a directory, 159

deleting a file, 154–155

deleting multiple directories, 160–161

directory creation, 157–158

double backslashes, 152

empty file creation, 152, 153

exception, 153

exists() method, 153

mkdir method, 158

multiple directories creation, 160–161

■ INDEX

295

opening a file, 153

temporary file, 155–157

test directory, 152

Fireworks program

class, color usage, 194–196

display, 191

Fireworks class, 192–193

FireworksPanel class, 194

Timer object, 191

Fractal tree program

class, 273–274

drawing tree, 274–275

output, 276

■G
G1, concurrent garbage collector, 260

Garbage collection

event-driven, 255

G1, 260

generations, 254–255

hints, 258

memory allocation

algorithm, marking and sweeping,
251–252

references, 251

settings, 252–253

TargetClickPanel class, 249–250

reference list, 259–260

scavenges and full collections, 255

singleton, 259

switches, 255, 257–258

Generic specifier

coding, 279–280

definition, 279

GenericRole class, 280

hashmap, 279

integerList, 282

interface, 281

LinkedList class, 282

multiple parameters, 280

Ordinary List, 282

super keyword, 281

type match error, 282

wildcard, 281

Granularity

extensibility, 106

maintainability, 106

■ INDEX

296

■I
Inheritance, 96

abstract classes

concrete class, 98

methods, 99–100

interfaces, 98

multiple inheritance

composition technique, 98

diamond problem, 97

static members, 100–101

Instantiation, 26

Integrated Development Environment
(IDE). See Eclipse

■J
Java Development Kit (JDK), 1–2

Java operators

additive, 57–58

assignment, 66–67

bitwise

AND, 63

complement, 54–55

exclusive OR, 63

inclusive OR, 64

casting, 55–56

equality, 62–63

equal method, 68–70

java.lang.Comparable, 71–75

logical

AND, 64

OR, 65

multiplicative, 57

operator precedence, 52

parentheses, 52–53

postfix, 53

relational, 60–62

shift, 58–60

sorting comparisons, 70

unary, 53

Java programs

args array, 9–10

creation

Eclipse’s New Project window, 3

Java Project, 3–4

main area, 5

date format, 11

Eclipse, 2

entry point, 5

JDK, 1–2

■ INDEX

297

main method, 6

New Java Class window display, 6–7

objects, 12

package, 8

plus sign-string concatenation
operator, 10

Run button, 8–9

Run Configurations window, 10

String[] args, 9

Java Swing

application, 112

basics, 111–112

components, 116

content pane, 113

createAndShowGUI method, 116

JFrame object, 112

layout, 114

menu, 114

Minesweeper program (see
MineSweeper)

MouseListener interface, 119

pack and setVisible methods, 113

Java syntax

access modifiers, 27

Average interface, 15–16

AverageImpl, 16–17

AverageTest class, 17–18

blocks, 30–31

classes, 22–23

comments, 31–33

complex code

dense code, 19

moderately simplified code, 19

simplified code, 19

constants, 24

constructors, 26

exceptions, 28–30

fields, 23–24

imports, 21–22

interfaces, 27–28

lines, 18–19

methods, 24–25

package declaration, 20–21

Java2D, 111

Javadoc comment, 32–33

JDK. See Java Development Kit (JDK)

■L
Line breakpoints, 209

■ INDEX

298

List processing (Lisp), 264

Logical operator

AND, 64

OR, 65

Looping

Do-while loops, 87–88

for loops

alternate for loops, 83

ArrayOutOfBounds, 83

compassPoints array, 84

control section, 83

enhanced for syntax, 84

increment code, 83

initialization code, 83

termination code, 83

while loops

complete while loop, 86

simple while loop, 85

Thread.sleep() method, 87

wait for event, 86

■M
Maintainability, 106

Method breakpoints, 209

MineSweeper

AddMenu method, 127

class, 120

constructor, 124

createAndShowGUI method, 126

description, 119

field definitions, 129

finished game, 148

init method, 125

JPanel objects, 127

main method, 124

Mine class, 137

MineField

cascade methods, 135

class, 130

constructor, 133

countAdjacentMines methods, 137

init method, 134

MineIcon class, 144

MineSweeperActionListener class, 147

MineSweeperMouseListener class, 145

populate methods, 134

program, 121

recursion, 135

■ INDEX

299

MineSweeperHelper

class, 138

constructor, 140

endGame method, 142

newGame method, 143

showAll method, 142

updateButtons method, 141

updateLabels method, 141

Multiplicative operators, 57

■O
Objects, 95–96

■P
Pass-by-reference and pass-by-value, 107

IntegerWrapper class, 107, 108

passBy method, 108

PassByTest class, 107

Polymorphism, 101

Postfix operators, 53

Primitive data types

definition, 35

integer primitives, 35–36

real primitives, 36

Printpoints, 209

■R
Recursion

avoidance, 265–266

Fibonacci sequence calculation, 267

fractals

drawing tree (see Fractal tree
program)

Sierpinski triangle(see Sierpinski
triangle)

human language, 263

Lisp, 264

stop condition, 264–265

usage, 266

RegexTester

arguments, 284

class, 283

empty parameters, 285

output, 286

populated parameters, 286

Run configurations, 284

Regular expressions

definition, 279

metacharacters, 287–288

RegexTester

arguments, 284

■ INDEX

300

class, 283

empty parameters, 285

output, 286

populated parameters, 286

Run configurations, 284

string literal, 287

Relational operators, 60–62

■S
SAX. See Simplified API for XML (SAX)

Scoot ball game

actionPerformed method, 188

actionScootball, 190

paint method, 190

run method, 190

Runnable interface, 188

ScootBall class, 186–188

ScootBallPanel class, 188–189

starting state, 189

Shift operators, 58–60

Shooting gallery game

actionPerformed method, 236

class, 232–233

display, 231

expansion, 245

limitations, 246

panel class, 234–236

polygon object, 240

resize prevention, 233

row class, 238–240

shooter class, 240–244

static variables, 245

target class, 238–240

target sprites class, 244–245

Sierpinski triangle

class, 268–269

definition, 268

drawing triangle, 269–271

drawTriangle methods, 271

output, 272

Simplified API for XML (SAX), 173

Simplified Object Access Protocol (SOAP),
172

SOAP. See Simplified Object Access
Protocol (SOAP)

Sprites

definition, 196

display, 202

images of, 196

■ INDEX

301

MouseListener interface, 199

MouseSprite object, 201

MouseSpritePanel class, 199–200

MouseSprites, 197–199

sheet, 197

specialization, 196

stop feature, 202

triggered animation, 197

Static blocks, 30–31

Stepping commands

step controls, debug toolbar, 211

step into, 212

step over, 212

step return, 212

String concatenation operator, 10

String type, 37–38

Stub, 102

Survivor spaces, 254

■T
TargetClick game

actionPerformed method, 227

class, 223–226

display, 223

Panel class, 227–228

Target class, 229–230

Whac-a-Mole, 222

■U
Unary operators, 53

User interface. See Java Swing

■V
Video games

design resources, 246–247

mechanics

game logic, 222

game loop, 222

user interface, 221–222

shooting gallery

actionPerformed method, 236

class, 232–233

display, 231

expansion, 245

limitations, 246

paintComponent method, 240

panel class, 234–236

polygon object, 240

resize prevention, 233

■ INDEX

302

row class, 238–240

shooter class, 240–244

static variables, 245

target class, 238–240

target sprites class, 244–245

TargetClick

actionPerformed method, 227

class, 223–226

display, 223

Panel class, 227–228

Target class, 229–230

Whac-a-Mole, 222

■W, X, Y, Z
Watchpoints, 209

Wrapper classes, 41–43

Writing and reading content

append content, 166

Hamlet.txt

in console, 162

original content, 162

reverse, 165

writing to file, 163

in-place reversing, 165

original and reversed content, 167

reverse method

reverseByteArray method, 165

StringBuffer class, 165

stream, 161

string object, 163

try-catch block, 163

XML. See Extensible Markup Language
(XML)

XML NameSpace (XMLNS), 172

XMLNS. See XML NameSpace (XMLNS)

	cover
	Front matter
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Conventions
	Prerequisites

	Writing Your First Java Program
	CHAPTER 1 Writing Your First Java Program
	Installing the JDK
	Installing Eclipse
	Creating Your First Project
	Creating the Program
	Adding More Functionality
	Further Development
	About Java Objects

	Summary

	Java Syntax
	CHAPTER 2 Java Syntax
	An Example
	Lines
	Avoid Overly Complex Code

	Package Declaration
	Imports
	Classes
	Fields
	Constants

	Methods
	Constructors
	Access Modifiers
	Interfaces
	Exceptions
	Blocks
	Comments

	Summary

	Data Types
	CHAPTER 3 Data Types
	Primitive Data Types
	Integer Primitives
	Real Primitives
	boolean
	char
	The Special Type: String
	Literals
	Escaping Characters

	Wrapper Classes
	Arrays
	The Non-Existent Type: null
	Enumerations
	Summary

	Operators
	CHAPTER 4 Operators
	Operator Precedence
	The Missing Operator: Parentheses
	Postfix Operators
	Unary Operators
	Understanding the Bitwise Complement Operator

	Casting
	Multiplicative Operators
	Additive Operators
	Shift Operators
	Relational Operators
	Equality Operators
	Bitwise AND Operator (&)
	Bitwise Exclusive OR Operator (^)
	Bitwise Inclusive OR Operator (|)
	Logical AND Operator (&&)
	Logical OR Operator (||)
	Assignment Operators
	Comparing and Sorting Objects
	Implementing the equals Method
	Comparisons for Sorting
	Implementing java.lang.Comparable

	Summary

	Control Flow, Looping, and Branching
	CHAPTER 5 Control Flow, Looping, and Branching
	Control Flow
	if and if-else Statements
	switch Statements

	Looping
	For Loops
	While loops
	Do-while Loops

	Branching
	The break Statement
	The continue Statement
	The return Statement

	Summary

	Object-oriented Programming
	CHAPTER 6 Object-oriented Programming
	Objects
	Encapsulation
	Inheritance
	Multiple Inheritance
	Modeling Behavior through Interfaces
	Abstract Classes
	Methods in Abstract Classes

	Static Members

	Polymorphism
	Our Animals in Java
	A Lesson about Granularity
	Pass-by-Reference and Pass-by-Value
	Summary

	Writing a User Interface
	CHAPTER 7 Writing a User Interface
	Java Swing: The Basics
	A Basic Swing Application

	A Larger Swing Application
	Summary

	Writing and Reading Files
	CHAPTER 8 Writing and Reading Files
	Working with File Objects
	Opening a File
	Deleting a File
	Working with Temporary Files
	Creating a Directory
	Deleting a Directory
	Deleting Multiple Directories

	Writing and Reading Content
	Merrily Down the Stream
	Reading a File's Content
	Writing a File's Content

	Summary

	Writing and Reading XML
	CHAPTER 9 Writing and Reading XML
	The Structure of XML
	XML and Streams
	DOM and SAX
	Writing XML
	Writing XML with DOM
	Writing XML with Strings

	Reading XML
	Reading XML with DOM
	Reading XML with SAX

	A Word about Factory Classes
	Summary

	Animation
	CHAPTER 10 Animation
	Timing Is Everything
	Animation: A Simple Example
	Animating Multiple Items
	Sprite Animation
	Summary

	Debugging with Eclipse
	CHAPTER 11 Debugging with Eclipse
	The Flow of Debugging
	Debugging without a Debugger
	Starting the Eclipse Debugger
	Breakpoints and Variables
	Setting a Line Breakpoint
	About Scope
	Stepping:
	Stepping Into
	Stepping Over
	Stepping to Return

	Removing a Line Breakpoint
	Disabling a Line Breakpoint
	Making a Conditional Breakpoint

	Debugging Tips and Tricks
	Fixing the Fireworks Program
	Summary

	Video Games
	CHAPTER 12 Video Games
	The Mechanics of a Video Game
	The User Interface
	The Game Logic
	The Game Loop

	The TargetClick Game
	The Shooting Gallery Game
	Expanding the ShootingGallery Game
	A Note about Limitations

	Game Design Resources
	Summary

	Garbage Collection
	CHAPTER 13 Garbage Collection
	Understanding Memory Allocation
	The Java Garbage Collection Algorithm: Marking and Sweeping
	Understanding Memory Settings

	Understanding Garbage Collection
	Understanding Generations
	Scavenges and Full Collections
	Garbage Collection is Event-Driven
	Understanding Garbage Collection Settings

	Optimizing Garbage Collection
	Collection Hints
	Blocking Garbage Collection
	A New Garbage Collector
	Summary

	Recursion
	CHAPTER 14 Recursion
	Recursion is Natural
	Recursion is Common
	Know Your Stop Condition
	When to Avoid Recursion
	When to Use Recursion
	Calculating the Fibonacci Sequence
	Calculating Fractals
	Drawing a Sierpinski Triangle
	Drawing a Fractal Tree

	Summary

	Generics and Regular Expressions
	CHAPTER 15 Generics and Regular Expressions
	Generics
	Regular Expressions
	Summary

	Back matter
	Index

